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M. Stéphane Boucheron
DMA ENS,
Président du Jury

M. François Glineur
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Abstract

The goal of supervised machine learning is to infer relationships between a phenomenon
one seeks to predict and “explanatory” variables. To that end, multiple occurrences of
the phenomenon are observed, from which a prediction rule is constructed. The last two
decades have witnessed the apparition of very large data-sets, both in terms of the number
of observations (e.g., in image analysis) and in terms of the number of explanatory variables
(e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting,
especially when the number of explanatory variables is much higher than the number of
observations; and second, dealing with the computational constraints, such as when the
mere resolution of a linear system becomes a difficulty of its own.

Algorithms that take their roots in stochastic approximation methods tackle both of these
difficulties simultaneously: these stochastic methods dramatically reduce the computational
cost, without degrading the quality of the proposed prediction rule, and they can naturally
avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic
gradient methods.

The popular parametric methods give predictors which are linear functions of a set of
explanatory variables. However, they often result in an imprecise approximation of the
underlying statistical structure. In the non-parametric setting, which is paramount in this
thesis, this restriction is lifted. The class of functions from which the predictor is proposed
depends on the observations. In practice, these methods have multiple purposes, and are
essential for learning with non-vectorial data, which can be mapped onto a vector in a
functional space using a positive definite kernel. This allows to use algorithms designed for
vectorial data, but requires the analysis to be made in the non-parametric associated space:
the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression
also sheds some light on the parametric setting when the number of predictors is much
larger than the number of observations.

The first contribution of this thesis is to provide a detailed analysis of stochastic
approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces.
This analysis proves optimal convergence rates for the averaged stochastic gradient descent
algorithm. As we take special care in using minimal assumptions, it applies to numerous
situations, and covers both the settings in which the number of observations is known a
priori, and situations in which the learning algorithm works in an on-line fashion.

The second contribution is an algorithm based on acceleration, which converges at
optimal speed, both from the optimization point of view and from the statistical one. In
the non-parametric setting, this can improve the convergence rate up to optimality, even in
particular regimes for which the first algorithm remains sub-optimal.

Finally, the third contribution of the thesis consists in an extension of the framework
beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a
Markov chain. This point of view leads to an intuitive and insightful interpretation, that
outlines the differences between the quadratic setting and the more general setting. A
simple method resulting in provable improvements in the convergence is then proposed.



Keywords: stochastic approximation, convex optimization, supervised learning, non-
parametric estimation, reproducing kernel Hilbert spaces.
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Résumé

Le but de l’apprentissage supervisé est d’inférer des relations entre un phénomène que
l’on souhaite prédire et des variables “explicatives”. À cette fin, on dispose d’observations
de multiples réalisations du phénomène, à partir desquelles on propose une règle de
prédiction. L’émergence récente de sources de données à très grande échelle, tant par
le nombre d’observations effectuées (en analyse d’image, par exemple) que par le grand
nombre de variables explicatives (en génétique), a fait émerger deux difficultés : d’une
part, il devient difficile d’éviter l’écueil du sur-apprentissage lorsque le nombre de variables
explicatives est très supérieur au nombre d’observations; d’autre part, l’aspect algorithmique
devient déterminant, car la seule résolution d’un système linéaire dans les espaces en jeu
peut devenir une difficulté majeure.

Des algorithmes issus des méthodes d’approximation stochastique proposent une
réponse simultanée à ces deux difficultés : l’utilisation d’une méthode stochastique réduit
drastiquement le coût algorithmique, sans dégrader la qualité de la règle de prédiction
proposée, en évitant naturellement le sur-apprentissage. En particulier, le coeur de cette
thèse portera sur les méthodes de gradient stochastique.

Les très populaires méthodes paramétriques proposent comme prédictions des fonctions
linéaires d’un ensemble choisi de variables explicatives. Cependant, ces méthodes aboutis-
sent souvent à une approximation imprécise de la structure statistique sous-jacente. Dans
le cadre non-paramétrique, qui est un des thèmes centraux de cette thèse, la restriction
aux prédicteurs linéaires est levée. La classe de fonctions dans laquelle le prédicteur est
construit dépend elle-même des observations. En pratique, les méthodes non-paramétriques
sont cruciales pour diverses applications, en particulier pour l’analyse de données non vec-
torielles, qui peuvent être associées à un vecteur dans un espace fonctionnel via l’utilisation
d’un noyau défini positif. Cela autorise l’utilisation d’algorithmes associés à des don-
nées vectorielles, mais exige une compréhension de ces algorithmes dans l’espace non-
paramétrique associé: l’espace à noyau reproduisant. Par ailleurs, l’analyse de l’estimation
non-paramétrique fournit également un éclairage révélateur sur le cadre paramétrique,
lorsque le nombre de prédicteurs surpasse largement le nombre d’observations.

La première contribution de cette thèse consiste en une analyse détaillée de l’approxima-
tion stochastique dans le cadre non-paramétrique, en particulier dans le cadre des espaces
à noyaux reproduisants. Cette analyse permet d’obtenir des taux de convergence optimaux
pour l’algorithme de descente de gradient stochastique moyennée. L’analyse proposée
s’applique à de nombreux cadres, et une attention particulière est portée à l’utilisation
d’hypothèses minimales, ainsi qu’à l’étude des cadres où le nombre d’observations est connu
à l’avance, ou peut évoluer.

La seconde contribution est de proposer un algorithme, basé sur un principe d’accéléra-
tion, qui converge à une vitesse optimale, tant du point de vue de l’optimisation que
du point de vue statistique. Cela permet, dans le cadre non-paramétrique, d’améliorer



la convergence jusqu’au taux optimal, dans certains régimes pour lesquels le premier
algorithme analysé restait sous-optimal.

Enfin, la troisième contribution de la thèse consiste en l’extension du cadre étudié au
delà de la perte des moindres carrés : l’algorithme de descente de gradient stochastique
est analysé comme une chaine de Markov. Cette approche résulte en une interprétation
intuitive, et souligne les différences entre le cadre quadratique et le cadre général. Une
méthode simple permettant d’améliorer substantiellement la convergence est également
proposée.

Mots-clés : approximation stochastique, optimisation convexe, apprentissage supervisé,
estimation non-paramétrique, espaces de Hilbert à noyaux reproduisants.
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Contributions and thesis outline

Chapter 1: In this opening Chapter, we describe the key areas that come into play in the
following chapters. More specifically, we first introduce the general setting of supervised
machine learning, namely its statistical and computational goals. We then present how
these goals can be achieved using convex optimization and/or stochastic approximation.
Finally, we describe the non-parametric estimation framework, which will be of interest in
Chapters 2 and 3.

Chapter 2: We consider the random-design least-squares regression problem within a
reproducing kernel Hilbert space. We consider the least-mean-squares algorithm, and
detail the benefits of using sufficiently large step-sizes together with averaging, without
regularization. Our analysis is based on two assumptions: on the smoothness of the
optimal prediction function and on the eigenvalue decay of the covariance operators of
the reproducing kernel Hilbert space. We prove that the convergence rate of the algorithm
depends on two factors: the speed at which initial conditions are forgotten, and the
influence of the noise. We describe how both of these factors behave, which leads to an
optimal choice for the learning rate. For this choice, we get optimal non-asymptotic rates
of convergence, in both the finite horizon setting and the online setting, over a variety of
regimes.

We furthermore give minimal assumptions, regarding the input space and the distri-
butions, for our results to hold. We finally compare our results to existing work, both
theoretically and empirically.

While the least-mean-squares algorithm with averaging is able to achieve the optimal rate
of convergence in many situations, it remains sub-optimal for some difficult problems
(typically when the hypothesis space is too small and/or the regression function most
irregular). In such a situation, the speed at which the initial conditions are forgotten always
dominates the convergence rate. This was one of the key motivations for Chapter 3.

Chapter 3: In this Chapter, we propose a new algorithm based on averaged accelerated
regularized gradient descent to minimize a quadratic objective function whose gradients
are accessible through a stochastic oracle. For least-squares regression, we show that in the
parametric regime, this algorithm improves on the previous one (without acceleration).
Indeed, it improves the speed at which the initial conditions are forgotten, up to the optimal
rate𝑂(𝑛−2) for a first order algorithm, while preserving the statistically optimal dependence
𝑂(𝑑/𝑛) on the noise and dimension 𝑑 of the problem. In the non-parametric regime,
disregarding computational limits, this allows us to recover the statistical performance for
a wider class of regimes than in Chapter 2 (though in practice, the algorithm cannot always
be computed as it relies on the knowledge of the covariance operator).
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We also propose a simplified analysis of the averaged algorithm considered in Chapter
2, by means of an additional regularization, which does not change the convergence rate.

A crucial aspect of Chapters 2 and 3 was the use of a quadratic objective function. In
Chapter 4, we relax this assumption and consider a more general smooth and strongly-
convex objective function.

Chapter 4: In this Chapter, we consider the averaged stochastic gradient descent with
a constant learning rate, in order to minimize a strongly-convex and smooth objective
function. While this behaves optimally in the quadratic case, it does not even converge to
the global optimum in the general setting. We propose a detailed analysis of the different
factors influencing this convergence. More precisely, we provide an explicit expansion of the
moments of the averaged stochastic gradient descent iterates, that outlines the dependence
on initial conditions, the effect of noise and the effect of the non-decaying step-size. We
also use a simple trick from numerical analysis, Richardson-Romberg extrapolation, to
substantially improve the convergence. We support these results both with theoretical and
empirical results.

To conduct such an analysis, we use tools from Markov chain theory to analyze stochastic
gradient descent. This allows for an intuitive understanding of the behavior of averaged
stochastic gradient descent in the general case.

Chapter 5: This Chapter concludes the thesis by summarizing our contributions and
describing possible extensions.

Publications related to this manuscript are listed bellow:

∙ Chapter 2 is based on Non-parametric Stochastic Approximation with Large Step-sizes,
A. Dieuleveut and F. Bach, published in the Annals of Statistics (Dieuleveut and Bach,
2016).

∙ Chapter 3 is based on Harder, Better, Faster, Stronger Convergence Rates for Least-
squares Regression, A. Dieuleveut, N. Flammarion and F. Bach, accepted for publication
in Journal of Machine Learning Research (Dieuleveut et al., 2016).

∙ Chapter 4 is based on Bridging the Gap between Constant Step Size Stochastic Gradient
Descent and Markov Chains, A. Dieuleveut, A. Durmus, F. Bach (Dieuleveut et al.,
2017).



1
Introduction

This introduction describes the key areas that interplay in the following chapters, namely
supervised machine learning (Section 1.1), convex optimization (Section 1.2), stochastic
approximation (Section 1.3) and non-parametric estimation, especially with reproducing
kernel Hilbert spaces (Section 1.4).

Chapters 2, 3 and 4 will use tools from these different settings. The main sources of
influence are summarized in Table 1.1.

Chapter 2 Chapter 3 Chapter 4
Supervised Machine Learning X X X

Convex Optimization X

Stochastic Approximation X X X

Non-parametric estimation X X

Table 1.1: Schematic interplay of supervised machine learning, convex optimization,
stochastic approximation and non-parametric estimation in the main chapters of this thesis.
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1.1. Statistical Learning 5

1.1 Statistical Learning

1.1.1 Supervised machine learning

In supervised machine learning (Vapnik, 1995; Hastie et al., 2001; Shalev-Shwartz and
Ben-David, 2014) one aims to predict an outcome 𝑌 ∈ 𝒴 , based on some feature(s) 𝑋 ∈ 𝒳
that are supposed to have some influence on this outcome. The set 𝒴, which describes
the outcome, can be either quantitative (𝒴 ⊂ R), or categorical (𝒴 is a finite set, typically
{−1, 1} if there are two possible categories). This leads to the two most important tasks of
supervised learning:

∙ Regression, when one predicts a quantitative outcome.

∙ Classification, when one predicts a categorical outcome, with 𝒴 = {−1, 1}.

A predictor is defined as a (measurable) function 𝑓 : 𝒳 → 𝒴, and the set of possible
predictors is denoted ℳ(𝒳 ,𝒴). Variables 𝑋 and 𝑌 are modeled as random variables
following a joint distribution denoted 𝜌, and we denote 𝜌𝑋 the marginal distribution of 𝑋.

To measure the quality of a predictor, we introduce a loss function

ℓ : (𝒳 × 𝒴) × ℳ(𝒳 ,𝒴) → R+,

such that ℓ((𝑋,𝑌 ), 𝑓) is small when 𝑓(𝑋) is a good prediction of 𝑌 . The risk, or general-
ization error, of a predictor 𝑓 is the averaged loss under the distribution of observations
𝑅(𝑓) := E(𝑋,𝑌 )∼𝜌 [ℓ((𝑋,𝑌 ), 𝑓)]. Our general goal is to find a predictor minimizing the risk,
i.e.,

arg min
𝑓∈ℳ(𝒳 ,𝒴)

𝑅(𝑓) .

The most classical loss functions are the following:

∙ For regression, the squared loss: ℓ((𝑋,𝑌 ), 𝑓) = 1
2(𝑌 − 𝑓(𝑋))2.

∙ For classification, the binary loss ℓ((𝑋,𝑌 ), 𝑓) = 1𝑌 ̸=𝑠𝑖𝑔𝑛(𝑓(𝑋)). However this loss
is often replaced by surrogates that allow easier computations of predictors, for
example the logistic loss ℓ((𝑋,𝑌 ), 𝑓) = log(1 + exp(−𝑌 𝑓(𝑋))), or the hinge loss,
ℓ((𝑋,𝑌 ), 𝑓) = max{0, 1 − 𝑌 𝑓(𝑋)}.

The optimal predictor 𝑓𝜌, that minimizes the risk, is called the Bayes predictor, when it
exists. While it may have a closed form depending on 𝜌 (e.g., for regression with the square
loss, 𝑓𝜌(𝑋) = E𝜌[𝑌 |𝑋]), as the distribution 𝜌 is unknown, the Bayes predictor cannot be
directly computed in practice and needs to be approximated.

In most situations, only weak assumptions are made on the distribution 𝜌; we refer to
this setting as the “distribution free” approach (Györfi et al., 2002). Unlike in parametric
statistics, where a model of the distribution is chosen, we here generally only assume that
the marginal laws have first order moments (typically 2 or 4 moments are necessary).

1.1.2 Observations and Empirical Risk Minimization

In practice, in order to build a predictor, 𝑛 observations (𝑥𝑘, 𝑦𝑘)𝑘∈J1;𝑛K ∈ (𝒳 × 𝒴)𝑛 are
used as training examples1. They correspond to 𝑛 independent and identically distributed

1we use the notation J1; 𝑛K := [1; 𝑛] ∩ N.
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examples of possible inputs and outputs, with 𝑛 ∈ N. The intuition is that, given multiple
input/output pairs of observations, one can infer a prediction rule that generalizes to any
input.

A learning rule 𝒜 (or statistical learning algorithm) is thus naturally defined as a mea-
surable function that maps the set of observations to an estimator 𝑓 : it is a function
𝒜 : ∪∞

𝑛=1(𝒳 × 𝒴)𝑛 → ℳ(𝒳 ,𝒴). As we describe our observations as random variables,
the predictor 𝑓 = 𝒜((𝑥𝑘, 𝑦𝑘)𝑘∈J1;𝑛K) is a random variable in ℳ(𝒳 ,𝒴), and its risk 𝑅(𝑓)
is a random variable in R+. One of our main goals is to find learning rules that min-
imize the expectation (under the law of the observations) of the risk of the predictor:
E(𝑥𝑘,𝑦𝑘)𝑘∈J1;𝑛K∼𝜌⊗𝑛

[︁
𝑅(𝒜((𝑥𝑘, 𝑦𝑘)𝑘∈J1;𝑛K))

]︁
(simply denoted E[𝑅(𝑓)] from now on). While

one could also try to control this quantity with high probability, we mainly propose results
in expectation in this thesis. Extensions to high probability bounds could be the subject of
future work.

The most common learning rule consists in proposing a predictor that behaves well
on the observed data. This method is known as empirical risk minimization (ERM): as we
cannot access the risk function itself, we minimize instead the averaged loss on the observed
points, defined as the empirical risk, or training error, 𝑅𝑛(𝑓) = 𝑛−1∑︀𝑛

𝑘=1 ℓ((𝑥𝑘, 𝑦𝑘), 𝑓). The
learning rule is thus:

𝒜((𝑥𝑘, 𝑦𝑘)𝑘∈J1;𝑛K) = arg min
𝑓∈ℳ(𝒳 ,𝒴)

𝑅𝑛(𝑓) .

This idea historically dates back to Legendre (1805) and Gauss (1809), who introduced
independently the least-squares principle, which corresponds to empirical risk minimization
for linear predictors and the square loss.

Even though this rule seems intuitive, it is still questionable: choosing a predictor that
behaves well on observed points does not guarantee that it has small generalization error.
On the contrary, in most situations, a predictor minimizing the empirical risk has poor
generalization performance as it only fits the observed sample. This phenomenon is known
as “overfitting”. Indeed, any function 𝑔 such that 𝑔(𝑥𝑘) = 𝑦𝑘 for any 𝑘 has minimal (null)
empirical risk, while its generalization error may be arbitrarily large. To avoid such a pitfall,
one needs to avoid selecting functions with such pathological behavior. This is the purpose
of regularization (Hastie et al., 2001), which can take several forms. The most popular
approaches consist in either restricting the class of functions over which the empirical
risk is minimized, or adding a penalization term that artificially increases the risk of the
undesirable functions. This means considering the following predictors:

∙ Constrained formulation:
𝑓ℱ = arg min

𝑓∈ℱ
𝑅𝑛(𝑓),

where ℱ is a set of functions, called the hypothesis space.

∙ Penalized formulation:

𝑓𝜆 = arg min
𝑓∈ℳ(𝑋,𝑌 )

(𝑅𝑛(𝑓) + 𝜆 pen(𝑓)) ,

where pen : ℳ(𝑋,𝑌 ) → R+ is a penalty on some functions (generally the least
regular ones), and 𝜆 > 0.
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Beyond the choice of the regularization, two keys challenges appear: computing the
estimator and analyzing its statistical properties. The cost of computing such estimators may
be prohibitive. Interestingly, some estimators designed to ensure a lower computational
cost naturally regularize the problem. This is the case of some gradient methods and
stochastic gradient methods. These methods will be introduced later in Section 1.2 and 1.3;
and stochastic gradient methods will be the key ingredient of the main three chapters of
the thesis. Stochastic gradient descent will be used as an alternative to ERM. To facilitate
the comparison, we first describe some statistical properties of ERM, in the particular case
of linear predictors. We introduce this particular setting in Section 1.1.3 and relate it to
statistical models in Section 1.1.4; we then describe how the risk can be upper bounded in
Section 1.1.5 and 1.1.6, and show how the upper bounds can be considered as optimal in
Section 1.1.7.

1.1.3 Linear predictors: the parametric setting

In an important particular case, referred to as the parametric regime, we look for estimators
in a finite-dimensional space parameterized by vectors in R𝑑, for some dimension 𝑑 ∈ N*.
The space R𝑑 is embedded with the Euclidean norm and the associated inner product ⟨·, ·⟩.
We consider a function Φ : 𝒳 → R𝑑: for any 𝑥 ∈ 𝒳 , Φ(𝑥) is a finite-dimensional vector
containing features of 𝑥. We here choose for our hypothesis space the set of linear predictors
of these features: 𝑓𝜃 : 𝑥 ↦→ ⟨Φ(𝑥), 𝜃⟩. That is, we minimize the empirical risk over the set of
functions {𝑓𝜃, 𝜃 ∈ R𝑑}. In such a setting, with a slight abuse in notation, the loss can be
written ℓ(⟨Φ(𝑋), 𝜃⟩ , 𝑌 ) = ℓ((𝑋,𝑌 ), 𝑓𝜃), and the risk can be denoted 𝑅(𝜃) = 𝑅(𝑓𝜃).

This particular case is of major importance as many practitioners rely on such linear
predictors (Neter et al., 1996; Seber and Lee, 2012). Of course, it is not assumed that the
regression function 𝑓𝜌 truly belongs to the class of linear functions. If it does, we are in the
well-specified setting. Also note that Φ is not necessarily linear, and can be learned itself, for
example using deep learning techniques (Le Cun et al., 2015). Yet, in this Chapter, Φ is
considered as known.

1.1.4 Statistical point of view on least-squares and logistic regression

It is worth pointing out that for a variety of losses, the ERM framework can be understood
as a particular case of maximum likelihood estimation, with a well-suited statistical model.
In statistics, a model is a set of possible joint distributions on (𝑋,𝑌 ). We give here two
classical examples.

Gaussian linear regression statistical model: we first consider the statistical model
{𝑝𝜃(𝑋,𝑌 ), 𝜃 ∈ R𝑑}, where 𝑝𝜃(𝑌 |𝑋) = 𝒩 (⟨𝜃,Φ(𝑋)⟩ , 𝜎2), i.e., the law of 𝑌 knowing 𝑋 is
a normal law with variance 𝜎2 > 0. The maximum likelihood estimator is then also the
ordinary least-squares estimator, that minimizes the empirical square loss.

Logistic regression statistical model: we now consider the following statistical model:
{𝑝𝜃(𝑋,𝑌 ), 𝜃 ∈ R𝑑}, where 𝑝𝜃(𝑌 |𝑋) = ℬ

(︁
exp⟨𝜃,Φ(𝑋)⟩

1+exp⟨𝜃,Φ(𝑋)⟩

)︁
is a Bernoulli law. Then the

maximum likelihood estimator is also the empirical risk minimizer for the logistic loss.
The properties of maximum likelihood estimators have been widely studied (Van der

Vaart, 1998). As we intend to address a more general situation, without assuming a
particular statistical model, we will not build on such results. Indeed, in most situations, we
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have neither (sub-) Gaussian assumption on the noise in our approach, nor the assumption
that the model is well-specified.

1.1.5 Risk decomposition: approximation and estimation errors

We consider here, for simplicity, the constrained version. In fact, the penalized version
is in most situations “equivalent” to the constrained one2, but the latter has a simpler
geometrical interpretation, as illustrated in Figure 1.1.

Let 𝑓ℱ ∈ arg min𝑓∈ℱ 𝑅𝑛(𝑓), 𝑓ℱ ∈ arg min𝑓∈ℱ 𝑅(𝑓) be the predictors that minimize the
empirical and generalization risk over ℱ , and recall that 𝑓𝜌 minimizes 𝑅. The excess of
generalization error of our estimator can be decomposed in two terms:

𝑅(𝑓ℱ ) −𝑅(𝑓𝜌) = 𝑅(𝑓ℱ ) −𝑅(𝑓ℱ )⏟  ⏞  
estimation error

+𝑅(𝑓ℱ ) −𝑅(𝑓𝜌)⏟  ⏞  
approximation error

. (1.1)

fρ

fF

F

f̂F

approx.
error

error
estim.

Figure 1.1: Risk decomposition

This error decomposition is illustrated in
Figure 1.1. The approximation error is due
to the fact that ℱ is smaller than ℳ(𝑋,𝑌 ).
It decreases as ℱ increases. The estimation
error is linked to the fact that 𝑓 minimizes
the empirical risk and not the true risk. It
decreases as the number of observations in-
crease and as the size of ℱ decreases. More-
over, we have the following upper bound
on the estimation error:

𝑅(𝑓ℱ ) −𝑅(𝑓ℱ ) = 𝑅(𝑓ℱ ) −𝑅𝑛(𝑓ℱ ) +𝑅𝑛(𝑓ℱ ) −𝑅𝑛(𝑓ℱ )⏟  ⏞  
60

+𝑅𝑛(𝑓ℱ ) −𝑅(𝑓ℱ )

6 𝑅(𝑓ℱ ) −𝑅𝑛(𝑓ℱ ) +𝑅𝑛(𝑓ℱ ) −𝑅(𝑓ℱ )
6 2 sup

𝑓∈ℱ
|𝑅𝑛(𝑓) −𝑅(𝑓)| .

As a consequence, one can derive bounds on the estimation error from uniform bounds on
the function 𝑅𝑛 −𝑅. Analyzing deviations between empirical quantities and their averages
is one of the key problems studied in empirical process theory (van der Vaart and Wellner,
2000; Van der Vaart and Wellner, 2007). We develop these methods in the next section.

1.1.6 Upper bounds on the estimation error

General case
In order to control uniformly the function 𝑅𝑛 −𝑅, we introduce the Rademacher complexity
of the class of functions {(𝑋,𝑌 ) ↦→ ℓ((𝑋,𝑌 ), 𝑓), 𝑓 ∈ ℱ}:

ℛ𝑛 = E

[︃
sup
𝑓∈ℱ

(︃
1
𝑛

𝑛∑︁
𝑘=1

𝜀𝑘ℓ((𝑥𝑘, 𝑦𝑘), 𝑓)
)︃]︃

,

where the 𝜀𝑘, 𝑘 ∈ J1;𝑛K are i.i.d. Rademacher variables (P(𝜀𝑘 = 1) = P(𝜀𝑘 = −1) = 1/2)
independent from (𝑥𝑘, 𝑦𝑘)𝑘∈J1;𝑛K; and the expectation is taken with respect to both the
distribution of observations and the randomness of (𝜀𝑘)𝑘∈J1;𝑛K.

2especially, if the class ℱ in the constrained case is the set of predictors 𝑓 such that pen(𝑓) 6 𝐶 for some
𝐶, then the Lagrangian of the constrained version is equivalent to the penalized problem (Rockafellar, 1970).
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A symmetrization argument shows that E[sup𝑓∈ℱ |𝑅𝑛(𝑓) −𝑅(𝑓)|] 6 2ℛ𝑛. For simple
classes of functions, it is possible to control the Rademacher complexity, which immediately
yields upper bounds on the estimation error. For example, in the parametric setting, if
we consider almost surely (a.s.) bounded inputs such that ‖Φ(𝑋)‖ 6 𝑅, a 𝐺-Lipschitz
loss function, and minimize the empirical risk over {𝜃 s.t. ‖𝜃‖ 6 𝐷}, then using Ledoux-
Talagrand inequality, one has ℛ𝑛 6 𝑅𝐺𝐷√

𝑛
(Ledoux and Talagrand, 1991).

While this 𝑂(1/
√
𝑛) bound shows that our estimator is weakly consistent (E[𝑅(𝜃) −

𝑅(𝜃*)] 𝑛→∞→ 0), this rate of convergence is pessimistic in several settings. For example, Srid-
haran et al. (2008); Boucheron and Massart (2011) proved that for a 𝜇-strongly convex
loss, one has 𝑅(𝜃) −𝑅(𝜃*) = 𝑂(1/(𝑛𝜇)). In this thesis, we aim at proving rates faster than
𝑂(1/

√
𝑛). In order to derive these faster rates of convergence, two approaches have mainly

been used: performing a direct and explicit calculation, or extending and refining the
framework presented above, considering localized Rademacher complexities (Koltchinskii,
2001, 2006; Bartlett et al., 2005) to obtain a sharper bound, without using a uniform
upper bound on the empirical process over the whole set ℱ . In the next paragraph, we
address the case of linear regression with the square loss, where all computations are made
explicitly.

Linear least-squares regression
In this section, we show that the excess risk (defined as 𝑅(·) − inf𝜃 𝑅(𝜃)) is of order 𝜎2𝑑

𝑛 for
the empirical risk minimizer for linear least-squares regression. We have Φ(𝑋) ∈ R𝑑, and
𝑅(𝜃) = 1

2E
[︀
(⟨𝜃,Φ(𝑋)⟩ − 𝑌 )2]︀. We denote Σ = E[Φ(𝑋)Φ(𝑋)⊤] the covariance matrix. The

optimal predictor 𝜃* satisfies the first order condition:

𝑅′(𝜃*) = 2E [(𝑌 − ⟨Φ(𝑋), 𝜃*⟩)Φ(𝑋)] = 0, (1.2)

i.e., Σ𝜃* = E[𝑌 Φ(𝑋)]. Therefore, the best linear predictor exists and is unique if Σ is an
invertible matrix. We then have the following excess risk decomposition:

𝑅(𝜃) = 1
2E
[︁
(⟨𝜃,Φ(𝑋)⟩ − 𝑌 )2

]︁
= 1

2E
[︁
(⟨𝜃 − 𝜃*,Φ(𝑋)⟩)2

]︁
+𝑅(𝜃*)

= 1
2(𝜃 − 𝜃*)⊤E[Φ(𝑋)Φ(𝑋)⊤](𝜃 − 𝜃*)⊤ +𝑅(𝜃*) ,

where E[(𝑌 − ⟨Φ(𝑋), 𝜃*⟩) ⟨𝜃 − 𝜃*,Φ(𝑋)⟩] = 0 is due to Equation (1.2). The function 𝑅 is
thus quadratic, and the excess risk is written:

𝑅(𝜃) −𝑅(𝜃*) = 1
2

⃦⃦⃦
Σ1/2(𝜃 − 𝜃*)

⃦⃦⃦2
. (1.3)

We denote Φ ∈ R𝑛×𝑑 the feature matrix, whose 𝑘-th row contains the feature vectors
Φ(𝑥𝑘) for 𝑘 ∈ J1;𝑛K. The empirical risk is thus

𝑅𝑛(𝜃) = 1
2

𝑛∑︁
𝑘=1

(𝑦𝑘 − ⟨Φ(𝑥𝑘), 𝜃⟩)2 = 1
2 ‖𝑌 − Φ𝜃‖2 ,

with 𝑌 = (𝑦𝑘)𝑘∈J1;𝑛K ∈ R𝑛. We consider the ordinary least-squares estimator (OLS):

𝜃 = arg min
𝜃∈R𝑑

𝑅𝑛(𝜃) = (Φ⊤Φ)−1Φ⊤𝑌 , (E)

assuming Φ⊤Φ to be invertible.
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Fixed design analysis. In the fixed design setting, the covariates (𝑥𝑘)𝑘∈J1;𝑛K are con-
sidered to be deterministic: only the outputs (𝑦𝑘)𝑘∈J1;𝑛K are treated as random. As a
consequence, the covariance matrix Φ is fixed and known, which simplifies the analysis
of standard estimators, including the OLS estimator. Indeed, Equation (1.2) gives that
𝜃* = (Φ⊤Φ)−1Φ⊤E[𝑌 ] and 𝜃 = (Φ⊤Φ)−1Φ⊤𝑌 . Denoting 𝜀 = 𝑌 − 𝐸[𝑌 ] ∈ R𝑛 and using
the fact that Φ(Φ⊤Φ)−1Φ⊤ is a projector, we have:

𝑅(𝜃) −𝑅(𝜃*) = 1
𝑛

⃦⃦⃦
Φ(𝜃 − 𝜃*)

⃦⃦⃦2
= 1
𝑛

⃦⃦⃦
Φ(Φ⊤Φ)−1Φ⊤𝜀

⃦⃦⃦2
= tr((Φ⊤Φ)−1Φ⊤𝜀𝜀⊤) .

Finally, if E[𝜀𝜀⊤] = 𝜎2 Id, we conclude that E[𝑅(𝜃) − 𝑅(𝜃*)] = 𝜎2rank(Φ)
𝑛 . More generally,

if E[𝜀𝜀⊤] 4 𝜎2 Id, where 4 is the natural order between positive definite matrices (by
definition 𝐴 4 𝐵 if 𝐵 −𝐴 is non-negative), then E[𝑅(𝜃) −𝑅(𝜃*)] 6 𝜎2𝑑

𝑛 .

Random design analysis. The fixed design does not directly address the “out of
sample” error (the error made at input points that were not present in the training set),
which may be the most important in practice. The random design setting, in which both
𝑋 and 𝑌 are random, is thus the most relevant. Consistency and asymptotic behavior of
the OLS estimator are consequences of the general study of M-estimators (see, for example,
chapter 5 in Van der Vaart, 1998). As 𝜃 is such an estimator, it is consistent (𝜃 converges
in probability to 𝜃*) and asymptotically normal, as

√
𝑛(𝜃 − 𝜃*) 𝑑→ 𝒩 (0,Σ−1𝐶Σ−1), with3

𝐶 := E[((⟨𝜃*,Φ(𝑋)⟩−𝑌 )Φ(𝑋))⊗2]. Such a limit distribution is optimal, in the sense that the
estimator is asymptotically efficient: an estimator is asymptotically efficient if it converges
to the asymptotic lower bound (see, for example, Chapter 8 in Van der Vaart, 1998). For
parametric models, under some regularity assumptions, the asymptotic lower bound is
a normal distribution with mean 0 and covariance the inverse of the Fisher information
matrix. Asymptotic efficiency can be understood as an “asymptotic Cramer-Rao bound”
(the Cramer-Rao bound gives a lower bound on the variance of an unbiased estimator).
However, this does not do justice to the depth and complexity of results on asymptotic
efficiency.

Moreover, 𝑛(𝑅(𝜃) −𝑅(𝜃*)) = 𝑛‖Σ1/2(𝜃 − 𝜃*)‖2 converges in distribution to a Wishart
distribution 𝑊 (Σ−1/2𝐶Σ−1/2) (with one degree of freedom), a natural generalization of
a 𝜒2 distribution when the variance is not the identity (Wishart, 1928). The noise is said
to be structured when 𝐶 4 𝜎2Σ for some 𝜎2 > 0. In such a situation, 𝑊 (Σ−1/2𝐶Σ−1/2)
is dominated in probability4 by 𝜎2𝜒2(𝑑), which has expectation 𝜎2𝑑. We thus have an
asymptotic upper bound on E[𝑅(𝜃)] −𝑅(𝜃*).

However, we are mainly interested in non-asymptotic bounds. Under a kurtosis condition
(there exists 𝐶 > 0 such that for all 𝜃 ∈ R𝑑, E[⟨𝜃,Φ(𝑋)⟩4] 6 𝐶E2[⟨𝜃,Φ(𝑋)⟩2]), a uniform
one-sided law holds: with high probability, for any 𝑛 > 𝑑, the generalization error is
uniformly upper bounded by the in-sample error (Raskutti et al., 2014; Mendelson, 2014).
This results in a non-asymptotic bound on the generalization error. A tighter error decom-
position has been proposed by Hsu et al. (2014). Overall, for parametric least-squares, the
excess of generalization error is of order 𝑂

(︁
𝜎2𝑑
𝑛

)︁
(Lecué and Mendelson, 2016). The next

section will give elements to show that this rate is optimal for least-squares regression.
3we denote 𝑣⊗2 = 𝑣𝑣⊤.
4for two distributions 𝜇, 𝜈 with support included in R, 𝜇 dominates 𝜈 if the cumulative distribution function

of 𝜇 is below the one of 𝜈.
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1.1.7 Minimax rates of convergence

In this introduction, and throughout the thesis, we derive upper convergence rates for
estimation procedures. If the analysis is not tight, the upper bound may sometimes not
reflect the actual behavior of an estimator. Moreover, the estimator itself may not be the
best one. In order to fully understand the behavior of the estimator, and whether a better
estimator exists, we may ask the two following questions:

∙ Given a learning rule, can we prove a lower bound on (the expectation of) its excess
risk?

∙ Can we prove that given 𝑛 observations, any learning rule has a lower bounded
excess risk?

These two questions are quite different, as the first one is specific to a procedure or an
algorithm, while the second one embraces all possible learning rules, regardless of their
other properties (complexity, storage, etc.).

In this paragraph, we answer the second question for parametric least-squares. Such
lower bounds are extremely insightful as they describe the optimal statistical performance
that can be expected. Consequently, if we can prove that an estimator converges at a
rate which matches the lower bound, we know that the upper bound actually reflects its
behavior, and that no estimator would perform better. In Section 1.4, we will explain how
these results can be extended to the non-parametric setting.

This approach takes its roots in the seminal work of Shannon (1948, 1949) on informa-
tion theory. We define the minimax risk associated to a statistical model {𝑃𝜃, 𝜃 ∈ Θ} (Mas-
sart, 2007; Tsybakov, 2008):

ℛ*
𝑛 := inf

𝜃
sup
𝜃*∈Θ

E𝑃𝜃*

[︁
dist

(︁
𝜃̂, 𝜃*

)︁]︁
,

where the infimum is taken over all estimators (i.e., over all learning rules), E𝑃𝜃*
stands

for the averaging over the observation’s law 𝑃𝜃* , and dist is a distance on Θ. While in
the parametric case we could also consider the squared euclidean distance dist(𝜃̂, 𝜃*) =
‖𝜃 − 𝜃*‖2, throughout this document, we mainly focus on prediction errors for the square
loss. We thus state results on the distance which corresponds to the excess risk of a predictor
(see Equation (1.3)): dist(𝜃̂ − 𝜃*) = ‖Σ1/2(𝜃̂ − 𝜃*)‖2.

We call 𝜓𝑛 an optimal rate of convergence if there exist positive constants 𝑚,𝑀 such
that

𝑚 6 lim inf
𝑛→∞

ℛ*
𝑛𝜓𝑛 6 lim sup

𝑛→∞
ℛ*

𝑛𝜓𝑛 6𝑀 . (1.4)

Moreover, we say that an estimator 𝜃𝑛 converges at the optimal statistical rate if sup𝜃∈Θ E𝜃[‖𝜃𝑛−
𝜃‖2] 6 𝐶𝜓𝑛 for some 𝐶 > 0.

Lower bound for linear least-squares regression. In the parametric linear regres-
sion setting with fixed design, under a Gaussian model for the noise, with homoscedastic
variance 𝜎2, the optimal rate is 𝜓𝑛 = 𝜎2𝑑

𝑛 (Massart, 2007). Similarly, in the random design
setting, the rate is also 𝜎2𝑑

𝑛 (Tsybakov, 2003).
It thus appears that ERM for least squares regression achieves the optimal rate of

convergence. Yet, computing the empirical risk minimizer can be difficult.



1.2. Convex optimization 12

1.1.8 Computational cost of ERM

In machine learning, dimension 𝑑 often becomes very large. Therefore, finding the empirical
risk minimizer, i.e., solving the linear system (Equation (E)), can be prohibitive. In the
next two sections, we describe the main tools (mainly stochastic approximation and convex
optimization) used to build estimators than can be computed more efficiently than the
ERM. Bottou and Bousquet (2008) underlined two key insights which shed light on how to
approach this task: first, the true goal is to minimize the generalization error, thus using
the empirical risk is not necessary; second, as no estimator can converge faster than the
statistical rate, it is un-necessary to solve optimization problems beyond the statistical level.

1.2 Convex optimization

As the problem we address is expressed as a minimization problem, which is convex if the
loss is a.s. convex in 𝜃, we here recall a few results from convex optimization. We introduce
gradient descent in Section 1.2.2, and a modification relying on a second order system,
accelerated gradient descent in Section 1.2.3. We then briefly describe the framework used
to show that these rates are optimal in Section 1.2.4.

1.2.1 Assumptions

We denote 𝒞𝑝(R𝑑) the set of 𝑝 times continuously differentiable functions from R𝑑 into R.
For 𝑓 ∈ 𝒞𝑝(R𝑑), we denote 𝑓 (𝑛) the 𝑛-th differential of 𝑓 . In particular, when 𝑓 is 𝒞1, we
denote 𝑓 ′ its gradient. By definition, a function 𝑓 ∈ 𝒞1(R𝑑) is convex if for any 𝜃, 𝜂 ∈ R𝑑 we
have:

𝑓(𝜂) > 𝑓(𝜃) +
⟨︀
𝑓 ′(𝜃), 𝜂 − 𝜃

⟩︀
.

Moreover, 𝑓 is 𝐿-smooth if its gradient is 𝐿-Lipschitz, i.e., if there exists a constant 𝐿 > 0,
such that for any 𝜃, 𝜂 ∈ R𝑑 we have:

‖𝑓 ′(𝜂) − 𝑓 ′(𝜃)‖ 6 𝐿‖𝜂 − 𝜃‖ .

Finally, 𝑓 is 𝜇-strongly convex if there exists a constant 𝜇 > 0, such that for any 𝜃, 𝜂 ∈ R𝑑

we have:

𝑓(𝜂) > 𝑓(𝜃) +
⟨︀
𝑓 ′(𝜃), 𝜂 − 𝜃

⟩︀
+ 𝜇

2 ‖𝜃 − 𝜂‖2 .

Note that if 𝑓 is 𝒞2, then it is convex if and only if for all 𝜃 ∈ R𝑑, the hessian matrix
𝑓 ′′(𝜃) at 𝜃 satisfies 𝑓 ′′(𝜃) < 0, strongly convex if and only if for all 𝜃 ∈ R𝑑, 𝑓 ′′(𝜃) < 𝜇 Id,
and 𝐿-smooth if and only if for all 𝜃 ∈ R𝑑, 𝑓 ′′(𝜃) 4 𝐿 Id. Following Nesterov (2004), we
denote ℱ1

𝐿(R𝑑) the subset of 𝒞1(R𝑑) of convex 𝐿-smooth functions and 𝒮1
𝜇,𝐿(R𝑑) the subset

of 𝒞1(R𝑑) of 𝜇-strongly convex and 𝐿-smooth functions.
Convex-smooth functions satisfy the following inequality, which is central for the

analysis of stochastic gradient descent: for all 𝜃, 𝜂 ∈ R𝑑,⃦⃦
𝑓 ′(𝜃) − 𝑓 ′(𝜂)

⃦⃦2 6 𝐿
⟨︀
𝜃 − 𝜂, 𝑓 ′(𝜃) − 𝑓 ′(𝜂)

⟩︀
, (1.5)

This is the so called co-coercivity Lemma (Nesterov, 2004): it strengthens the Lipschitz
gradient inequality when the function is also convex.
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1.2.2 Gradient methods

For a convex function 𝑓 in ℱ1
𝐿(R𝑑) , we consider the following optimization problem:

𝒫𝑓 := min
𝜃∈R𝑑

𝑓(𝜃) . (1.6)

For simplicity, we assume that 𝑓 has a unique minimum 𝜃* (this always holds when 𝑓 is in
𝒮1

𝜇,𝐿(R𝑑)).
The simplest first-order algorithm is gradient descent (GD). We start from some 𝜃0 and

compute the sequence (𝜃𝑛)𝑛∈N* defined recursively by:

𝜃𝑛 = 𝜃𝑛−1 − 𝛾𝑛𝑓
′(𝜃𝑛−1) . (1.7)

This is a simple incremental algorithm, which updates the current iterate moving in the
opposite direction of the gradient, as illustrated in Figure 1.2. At each step, we only
access or use a gradient, thus the computational cost is much lower than with Newton’s
methods, which use second derivatives of the function (Boyd and Vandenberghe, 2004).
The sequence (𝛾𝑛)𝑛∈N is called the sequence of step sizes or learning rates. The choice of
the learning rate is fundamental, and has been one of the most studied questions.

For a smooth function, the simplest choice is to use a constant learning rate: indeed,
choosing 𝛾𝑛 = 1

𝐿 for all 𝑛 ∈ N*, ensures convergence for all smooth convex functions,
with a faster rate if the function is strongly convex. More precisely, we have the following
proposition:

Proposition 1.1 (Convergence of gradient descent (Nesterov, 2004)). Let 𝑓 ∈ ℱ1
𝐿(R𝑑), and

𝛾𝑛 = 1
𝐿 , for all 𝑛 ∈ N*. The gradient method (1.7) generates a sequence (𝜃𝑛)𝑛∈N satisfying

𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 2𝐿 ‖𝜃0 − 𝜃*‖2

𝑛+ 4 .

Moreover, if 𝑓 ∈ 𝒮1
𝜇,𝐿(R𝑑), we also have, with 𝛾𝑛 = 1

𝐿 for all 𝑛 ∈ N*:

𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
(︂

1 − 𝜇

𝐿

)︂𝑛

(𝑓(𝜃0) − 𝑓(𝜃*)) ,

and a slightly more powerful result if 𝛾𝑛 = 2
𝐿+𝜇 for all 𝑛 ∈ N*:

𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
(︂

1 − 2𝜇
𝜇+ 𝐿

)︂2𝑛 𝐿

2 ‖𝜃0 − 𝜃*‖2 .

The first two equations show that the choice 𝛾 = 1/𝐿 is very powerful, as the algorithm
then adapts to the difficulty of the problem: a unique algorithm works for all convex
functions, but the convergence is faster if the function is strongly convex. Moreover, this
choice of step sizes does not require the knowledge of 𝜇. The last equation, on the contrary,
holds for a step size which depends on 𝜇, and while convergence is asymptotically faster, it
does not show convergence if 𝜇 goes to 0.

1.2.3 Accelerated gradient descent

Nesterov (1983) proposed an improvement of the gradient method, able to achieve faster
rates of convergence: accelerated gradient descent (AGD). This algorithm takes the following
generic form: starting form some 𝜃0 and 𝜂0 = 𝜃0, for any 𝑛 ∈ N, for some sequences of step
size (𝛾𝑛)𝑛∈N* , and momentum (𝛿𝑛)𝑛∈N* ,
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θn−1

θn

−γf 0(θn−1)

−γf 0(θn)

θn+1

θn−2

θn−1

δ(θn−1 − θn−2)
ηn−1

−γf 0(ηn−1)

θn δ(θn − θn−1)

−γf 0(ηn)

θn+1

ηn

Figure 1.2: Gradient descent and Accelerated Gradient Descent
Left: Gradient descent. Right: Accelerated Gradient descent. The blue lines are the level
lines of the objective function 𝑓 .

{︃
𝜃𝑛 = 𝜂𝑛−1 − 𝛾𝑛𝑓

′(𝜂𝑛−1)
𝜂𝑛 = 𝜃𝑛 + 𝛿𝑛(𝜃𝑛 − 𝜃𝑛−1) .

(1.8)

We thus compute two updates, one being a normal gradient update, the second one
being an extrapolation from the two previous points, an “acceleration” proportional to the
momentum coefficient 𝛿𝑛, with 0 6 𝛿𝑛 6 1. See Figure 1.2.

Proposition 1.2 (Convergence of accelerated gradient descent). Let 𝑓 ∈ ℱ1
𝐿(R𝑑), and for

all 𝑛 ∈ N*, let 𝛾𝑛 = 1
𝐿 , and 𝛿𝑛 = 𝑛−1

𝑛+2 . The accelerated gradient method (1.8) generates a
sequence (𝜃𝑛) satisfying:

𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 2𝐿 ‖𝜃0 − 𝜃*‖2

(𝑛+ 1)2 .

Moreover, if 𝑓 ∈ 𝒮1
𝜇,𝐿(R𝑑), and for all 𝑛 ∈ N*, 𝛾𝑛 = 1

𝐿 , 𝛿𝑛 =
√

𝐿−√
𝜇√

𝐿+√
𝜇

, we have:

𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
(︂

1 −
√︂
𝜇

𝐿

)︂𝑛 𝐿+ 𝜇

2 ‖𝜃0 − 𝜃*‖2 .

Acceleration with a momentum term was originally proposed by Nesterov (1983). The
result given here is from Nesterov (2004) for the strongly convex case, and from Schmidt
et al. (2011) for the convex case with a simple sequence of steps (a summary and proofs of
these results can be found for example in Bubeck (2015)). Acceleration has since received
large attention, with several approaches to explain the improvement in the rate: the idea
of adding a momentum terms dates back to the heavy ball algorithm by Polyak (1964), but
several other interpretations have been proposed: Allen-Zhu and Orecchia (2017) viewed
AGD as a linear coupling of gradient descent and mirror descent, Bubeck et al. (2015)
proposed a simple geometric reason for the possibility of acceleration, while Su et al. (2014)
described it as the discretization of a certain second-order ODE.

1.2.4 Lower complexity bounds

These results raise again a very natural question: can we do better? To address such
a question, one first needs to define its precise meaning: what is the problem we are
trying to solve, what type of information is our method allowed to access, and how
do we measure the cost of a method. To do so, we introduce the black box optimization
framework (Nemirovsky and Yudin, 1983; Nesterov, 2004; Juditsky and Nemirovski, 2011).
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This framework formalizes the analysis of optimization complexity. We consider a
class of problems (here, a class of functions), and a set of available methods. For a
problem 𝒫𝑓 (as in Equation (1.6)), we define the performance of a method as the amount
of computation needed to solve the problem: to solve a problem is to find an 𝜀-approximate
solution. The performance of a method on a class of problems is the worst case performance
of the method on any problem of the class. Here, we consider two classes of problems:
respectively ℱ1

𝐿(R𝑑) and 𝒮1
𝜇,𝐿(R𝑑) for fixed 𝐿, 𝜇 > 0.

To define the set of available methods, we describe the information the method accesses
in terms of calls to an oracle. An oracle is a routine that answers question asked by the
method. Typically, for 𝑝 > 0, a 𝑝-th order oracle provides the value of the function at a
point, together with the first 𝑝 derivatives of the function at that point. We consider here
the set of first-order incremental methods. Such a method incrementally performs oracle
calls, and updates its current prediction with respect to the available information. We also
restrict to methods that build estimators in the linear span of the gradients, which holds for
the majority of practical methods.

The amount of computation can be either defined as the number of oracle calls, or as
the total number of arithmetic operations. Here, we consider only the number of iterations
as it allows to directly compare the convergence rates of the different methods. However,
to guarantee a fair comparison, we need to check that the cost of the updates (given the
answer of the oracle), is the same for the different methods.

We have the following results on the lower complexity bounds. We consider 𝜇,𝐿 > 0:

Proposition 1.3 (Lower complexity bounds for ℱ1
𝐿(R𝑑) and 𝒮1

𝜇,𝐿(R𝑑) (Nesterov, 2004)).
Convex case: For any 𝑛 ∈ N such that 1 6 𝑛 6 𝑑−1

2 , for any 𝜃0 ∈ R𝑑, there exists a function
𝑓 ∈ ℱ1

𝐿(R𝑑), such that for any first-order method providing 𝜃𝑛 after 𝑛 iterations, we have:

𝑓(𝜃𝑛) − 𝑓(𝜃*) > 3𝐿 ‖𝜃0 − 𝜃*‖2

32(𝑛+ 1)2 .

Strongly-convex case: Let ℓ2 be the set of squared summable sequences, embedded with the
norm ‖(𝑥𝑘)𝑘∈N‖2

ℓ2
:=

∑︀∞
𝑘=0 𝑥

2
𝑘. For any 𝑛 ∈ N, for any 𝜃0 ∈ ℓ2, there exists a function

𝑓 ∈ 𝒮𝜇,𝐿(ℓ2), such that for any first-order method providing 𝜃𝑛 after 𝑛 iterations, we have:

𝑓(𝜃𝑛) − 𝑓(𝜃*) > 𝜇

2 ‖𝜃𝑛 − 𝜃*‖2
ℓ2
>
𝜇

2

(︃
1 −

√︃
𝐿

𝜇

)︃2𝑛

‖𝜃0 − 𝜃*‖2
ℓ2
.

In the strongly convex case, as ℓ2 is an infinite-dimensional space, there is no restriction
on the number of iterations as in the non-strongly convex case.

To prove such results, Nesterov (2004) proposed a simple quadratic function, for which
no algorithm can converge faster than the described rate. Note that in the first case, the
result only holds for the first 𝑛 6 𝑑

2 iterations. Rates are summarized in the following table:

ℱ1
𝐿(R𝑑) 𝒮1

𝜇,𝐿(R𝑑)

GD
𝐿 ‖𝜃0 − 𝜃*‖2

𝑛

(︂
1 − 𝜇

𝐿

)︂𝑛

(𝑓(𝜃0) − 𝑓(𝜃*))

AGD
𝐿 ‖𝜃0 − 𝜃*‖2

𝑛2

(︂
1 −

√︂
𝜇

𝐿

)︂𝑛

𝐿 ‖𝜃0 − 𝜃*‖2

In machine learning, convex optimization can be used to optimize the empirical risk.
Specifically, instead of looking for exact minimizer of the empirical loss, we can compute
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Introduction

Stochastic Approximation

1. Final iterate
2. With averaging

Asymptotic results

3. Setting
5. Assumptions

Stochastic Gradient Descent

6. Non-smooth
7. Smooth

Non-asymptotic results

4. How it applies
5. Assumptions

Application to ML

8. For least squares
and logistic regression

Non-asymptotic results

Table 1.2: Organization of the Section 1.3. All numbers are references to subsections of
Section 1.3. Stochastic gradient descent is a particular case of stochastic approximation,
and that be used in machine learning.

an iterative sequence of estimators, using GD or AGD on the empirical risk; the cost of
each iteration is then of order 𝑂(𝑛𝑑) per iteration, in order to compute the gradient of
the average of 𝑛 functions. This generates an additional optimization error, but it appears
that after 𝑛 iterations for GD (or

√
𝑛 iterations for AGD), this additional error is of the

same order as the statistical error. However, as it will appear in the following part, using
randomized gradient methods further reduces the complexity.

1.3 Stochastic approximation

Robbins and Monro (1951) introduced stochastic approximation (SA) as the following
iterative sequence, for a function ℎ : R𝑑 → R𝑑, for any 𝑛 ∈ N*:

𝜃𝑛 = 𝜃𝑛−1 − 𝛾𝑛(ℎ(𝜃𝑛−1) + 𝜀𝑛) ,

where (𝜀𝑛)𝑛∈N* are random variables corresponding to a noise and (𝛾𝑛)𝑛∈N* is a positive
deterministic sequence of step sizes. We assume that there exists a filtration5 (ℱ𝑛)𝑛∈N

such that 𝜃𝑛 is ℱ𝑛-measurable, and that the noise has 0 mean given past information, i.e.,
E [𝜀𝑛|ℱ𝑛−1] = 0. The original work of Robbins and Monro was motivated by the problem of
finding a root of a continuous function, when the function is not completely known, but
noisy evaluations of the function at any desired point are available.

In machine learning, stochastic approximation is used to find the minimum of func-
tions by searching for roots of their gradients (we consider ℎ = 𝑓 ′). However, stochastic
approximation goes beyond minimization problems, and can be applied without con-
vexity. Notably, it has been used in wireless communications, repeated games, decision
problems in economics, amongst others (Benaim and Hirsch, 1999; Marcet and Sargent,
1989). Overall, it resulted in a tremendous amount of both theoretical work and practical
applications (Kushner and Yin, 2003; Benveniste et al., 2012).

In this section, we describe several results of the literature. In Section 1.3.1 and
Section 1.3.2, we review asymptotic results on stochastic approximation, respectively

5an increasing sequence of 𝜎-algebras (Billingsley, 2008).
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for the last iterate and using an averaging scheme on the iterates. We describe how
stochastic approximation is used for optimization, introducing stochastic gradient descent
in Section 1.3.3, then how it applies to machine learning in Section 1.3.4. We discuss
assumptions that can be made on the sequence of noise in Section 1.3.5. Finally, we
describe results for stochastic optimization in Section 1.3.6 and Section 1.3.7, and in
some special case of machine learning in Section 1.3.8. The structure of this chapter is
summarized in Table 1.2.

1.3.1 Convergence of the last iterate

Theoretical results include the proof of the convergence to a root of ℎ (in probability,
or almost surely), the analysis of the convergence speed, and the asymptotical behavior,
depending on the learning rate (𝛾𝑛)𝑛∈N* (Duflo, 1997).

The convergence almost always depends on two aspects: the possibility of forgetting
the initialization choice, and the robustness to noise. As a consequence, traditional learning
rates satisfy two properties:

∑︀∞
𝑛=1 𝛾𝑛 = ∞, which ensures that the initial condition will be

forgotten, and
∑︀∞

𝑛=1 𝛾
2
𝑛 < ∞, which limits the influence of the noise. As it will appear later

on, this second condition can be relaxed.
Traditional analysis requires the introduction of a Lyapunov function, i.e., a differ-

entiable smooth function 𝑉 : R𝑑 → R such that for any 𝜃 ∈ R𝑑, ‖ℎ(𝜃)‖2 6 𝐶(1 + 𝑉 (𝜃))
and ⟨ℎ(𝜃), 𝑉 ′(𝜃)⟩ > 𝜇 ‖𝑉 ′(𝜃)‖2. In the context of machine learning, for 𝜇-strongly con-
vex and 𝐿-smooth risks, the function 𝑉 such that 𝑉 (𝜃) := 𝑅(𝜃) − 𝑅(𝜃*) is a Lyapunov
function. If such a Lyapunov function exists, under simple assumptions on the noise (typi-
cally, E[‖𝜀𝑛‖2|ℱ𝑛−1] 6 𝜎2), the convergence of 𝑉 (𝜃𝑛) to 0 is guaranteed; this convergence
holds in expectation if

∑︀∞
𝑛=1 𝛾𝑛 = ∞ and 𝛾𝑛

𝑛→∞→ 0, and almost surely if one also has∑︀∞
𝑛=1 𝛾

2
𝑛 = ∞ (Robbins and Siegmund, 1985). These properties suggested to use decaying

sequences of step size, typically scaling as 𝛾𝑛 ∝ 𝑛−𝜁 for 𝜁 ∈]1
2 ; 1]. The convergence can

then be extended to non-random noise with vanishing magnitudes (Duflo, 1997; Schmidt
et al., 2011).

In regards to asymptotical results, Fabian (1968) showed that for 𝛾𝑛 = 𝛾0𝑛
−1, with

𝛾0 > 𝜇−1, the sequence
√
𝑛(𝜃𝑛 − 𝜃*) is asymptotically normal. This is a powerful result

but unfortunately, the variance of the chain is potentially large (scaling as 𝜇−2), sensitive
to ill conditioning (𝜇 → 0), and the proposed choice of initial step size depends on the
unknown 𝜇.

1.3.2 Polyak-Ruppert averaging

This difficulty of selecting an appropriate step size was partially tackled in a fundamental
paper by Polyak and Juditsky (1992), generalizing one-dimensional results from Ruppert
(1988). The Polyak-Ruppert averaging consists in considering the sequence of averaged
iterates:

𝜃𝑛 := 1
𝑛+ 1

𝑛∑︁
𝑘=0

𝜃𝑘 .

Loosely speaking, they showed that for a wider range of decaying step sizes, this averaged
sequence converges to its limit at optimal rate: it underlines that one can use larger step
sizes than 𝑛−1 and benefit from the fact that the off-line averaging naturally reduces the
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higher noise induced by a larger step size. In addition, this averaged sequence can be
computed online, as for any 𝑛 ∈ N

𝜃𝑛 = 1
𝑛+ 1𝜃𝑛 + 𝑛

𝑛+ 1𝜃𝑛−1.

More precisely, Polyak and Juditsky (1992) showed that for any sequence of step sizes
𝛾𝑛 = 𝛾0𝑛

−𝜁 , with 𝜁 ∈]1
2 ; 1[, the sequence

√
𝑛(𝜃𝑛 − 𝜃*) converges in distribution to a normal

law, with a variance that does not depend on (𝛾𝑛), and is asymptotically efficient6 (Van der
Vaart, 1998). This result led to numerous extensions (Chen, 1993; Delyon and Juditsky,
1992; Kushner and Yang, 1993; Yin, 1991).

Deriving non-asymptotic convergence rates is more challenging. In the following sections,
we summarize a few important results in the context of stochastic optimization, first without
strong convexity, then with strong convexity. But before, we describe how stochastic
approximation is used for optimization.

1.3.3 Stochastic gradient descent.

To optimize a convex function 𝑓 , one searches for a root of its gradient 𝑓 ′. Therefore, we
consider the stochastic gradient descent algorithm (SGD), for 𝑘 ∈ N*:

𝜃𝑘 = 𝜃𝑘−1 − 𝛾𝑘𝑓
′
𝑘(𝜃𝑘−1)

with 𝑓 ′
𝑘(𝜃𝑘−1) being an unbiased estimate of the gradient, i.e.,

E
[︀
𝑓 ′

𝑘(𝜃𝑘−1)|ℱ𝑘−1
]︀

= 𝑓 ′(𝜃𝑘−1), (1.9)

for a filtration (ℱ𝑘)𝑘∈N, such that 𝜃𝑘 is ℱ𝑘-measurable. Thus with (𝜀𝑘)𝑘∈N* the sequence of
noise functions, such that for all 𝑘 ∈ N*, 𝜀𝑘 = 𝑓 ′ − 𝑓 ′

𝑘, the recursion is written:

𝜃𝑘 = 𝜃𝑘−1 − 𝛾𝑘(𝑓 ′(𝜃𝑘−1) + 𝜀𝑘(𝜃𝑘−1)) .

The noise functions satisfy:

E [𝜀𝑘(𝜃𝑘−1)|ℱ𝑘−1] = 0. (1.10)

As it is defined, 𝑓 ′
𝑘 is not necessarily the gradient of a function 𝑓𝑘, but just an arbitrary

notation for the noisy gradient, as 𝑓 ′
𝑘 = 𝑓 ′ + 𝜀𝑘. However, this notation is convenient as

there may exist functions 𝑓𝑘 such that 𝑓 ′
𝑘 = (𝑓𝑘)′.

In a slightly different setting, the assumption that the noise is random and is a 0 mean
random variable is removed, and methods are analyzed for deterministic “small errors”, a
context occurring if one only observes an inexact oracle on the gradient (Devolder et al.,
2014). We do not consider such a situation, as the machine learning setting naturally fits
into the framework of Equation 1.9, as described in the next paragraph.

1.3.4 Application to machine learning and optimization.

In supervised machine learning, the function we seek to minimize is either the generaliza-
tion error, or the training loss for ERM. Using i.i.d. observations, both of these tasks can be

6 definition was given in Section 1.1.6.
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addressed with SGD. For any 𝑘 ∈ J1;𝑛K, we define the loss on observation 𝑘 as the function
𝑓𝑘 defined by

𝑓𝑘 : 𝜃 ↦→ ℓ(⟨𝜃,Φ(𝑥𝑘)⟩ , 𝑦𝑘). (1.11)

We use these losses to build stochastic gradients. Note that we could also use a batch (or
mini-batch) of observations as each step (Cotter et al., 2011; Dekel et al., 2012; Jain et al.,
2016).

For the empirical error: Recall that

𝑅𝑛(𝜃) = 1
𝑛

𝑛∑︁
𝑘=1

ℓ(⟨𝜃,Φ(𝑥𝑘)⟩, 𝑦𝑘).

We consider the filtration (ℱ𝑘)𝑘∈N, with

ℱ𝑘 = 𝜎((𝑥𝑖, 𝑦𝑖)𝑖∈J1;𝑛K, (𝐼𝑖)𝑖∈J1;𝑘K) ,

where for any step 𝑘 ∈ N*, 𝐼𝑘 ∼ 𝒰J1;𝑛K is an index uniformly sampled over J1;𝑛K. We
emphasize that, for any 𝑘 ∈ N, all the observations are ℱ𝑘-measurable. Then 𝑓 ′

𝐼𝑘
(𝜃𝑘−1) =

ℓ′(⟨𝜃𝑘−1,Φ(𝑥𝐼𝑘
)⟩, 𝑦𝐼𝑘

) is an unbiased gradient of the empirical risk 𝑅𝑛:

E[𝑓 ′
𝐼𝑘

(𝜃𝑘−1)|ℱ𝑘−1] = 𝑅′
𝑛(𝜃𝑘−1).

With this setting, SGD can be used to minimize the empirical risk. However, our goal
remains to minimize the generalization error; once the empirical loss is minimized, this
requires an additional control on 𝑅𝑛 −𝑅.

For the generalization error: Recall that

𝑅(𝜃) = E[ℓ(⟨𝜃,Φ(𝑋)⟩), 𝑌 ].

We consider the filtration (ℱ𝑘)𝑘∈J0;𝑛K, with

ℱ𝑘 = 𝜎((𝑥𝑖, 𝑦𝑖)𝑖∈J1;𝑘K) ,

where for any 𝑘 ∈ J1;𝑛K, a new point (𝑥𝑘, 𝑦𝑘), independent of 𝜃𝑘−1 has been added to the
ℱ𝑘. Then 𝑓 ′

𝑘(𝜃𝑘−1) = ℓ′(⟨𝜃𝑘−1,Φ(𝑥𝑘)⟩, 𝑦𝑘) is in an unbiased gradient of the true risk 𝑅.
Indeed,

E[𝑓 ′
𝑘(𝜃𝑘−1)|ℱ𝑘−1] = 𝑅′(𝜃𝑘−1). (1.12)

This is a very powerful method, which emphasizes that stochastic approximation is far more
than a simple optimization tool. It directly minimizes the true risk, which is an un-known
function. As a consequence, it avoids the need for regularization, which is only meant to
avoid converging to a minimum of the empirical risk that would poorly generalize. In other
words, as the algorithm converges to a minimum of the true risk, it cannot over-fit. The
only constraint is that one can only perform a single pass through the data-set.

In the case of least-squares regression, this algorithm is called least-mean-squares (LMS).
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Smoothness and strong convexity conditions in machine learning applications. In
order to understand how the results described for stochastic approximation apply to the
true risk 𝑅 or the empirical risk 𝑅𝑛, it is necessary to check which assumptions these
functions satisfy.

First, most usual loss functions ℓ are almost surely convex7 in 𝜃 (i.e., for a.s. any (𝑋,𝑌 ),
𝜃 ↦→ ℓ(𝜃, (𝑋,𝑌 )) is convex). By integration, 𝑅 is convex.

Moreover, if the loss is twice differentiable, 𝑅 is also twice differentiable, and for all
𝜃 ∈ R𝑑, 𝑅′′(𝜃) = E

[︁
ℓ′′(⟨𝜃,Φ(𝑋)⟩ , 𝑌 )Φ(𝑋)Φ(𝑋)⊤

]︁
. Thus if ℓ is also 𝐿ℓ-smooth in its first

variable (this is the case for the logistic loss and the square loss, but not for the hinge loss),
𝑅 is smooth if E[‖Φ(𝑋)‖2] 6 𝑟2. Indeed, we then have

𝑅′′(𝜃) 4 𝐿ℓE
[︁
Φ(𝑋)Φ(𝑋)⊤

]︁
4 𝐿ℓ𝑟

2 Id .

Similarly, if ℓ is twice differentiable and 𝜇ℓ-strongly convex and if Φ(𝑋)Φ(𝑋)⊤ is
invertible, then 𝑅 is also strongly convex, as

𝑅′′(𝜃) < 𝜇ℓE
[︁
Φ(𝑋)Φ(𝑋)⊤

]︁
< 𝜇ℓ𝜆min(Φ(𝑋)Φ(𝑋)⊤) Id .

However, unless a regularization is added to force strong convexity, 𝜆min(Φ(𝑋)Φ(𝑋)⊤) may
be arbitrarily small. Indeed, if the feature vector has finite second order moment, which is a
common assumption, then the smallest eigenvalue covariance 𝜆min(Φ(𝑋)Φ(𝑋)⊤) satisfies

𝜆min
(︁
Φ(𝑋)Φ(𝑋)⊤

)︁
6

tr(E
[︁
Φ(𝑋)Φ(𝑋)⊤

]︁
)

𝑑
=

E
[︁
‖Φ(𝑋)‖2

]︁
𝑑

,

thus it is generally very close to 0 when dimension 𝑑 is large.
In the following Section, we introduce supplementary assumptions on the noise func-

tions, and discuss their validity in the machine learning context as we go along.

1.3.5 Assumptions on the noise

In order to obtain more precise results, several types of assumptions can be made on the
noise function (𝜀𝑘)𝑘∈N* or equivalently when they exist on the function (𝑓𝑘)𝑘∈N* . We still
assume that we observe unbiased gradients, satisfying Equation (1.10). Moreover, in the
context of this thesis, we only consider i.i.d. noise functions:

H1 (I.i.d. noise functions). The sequence (𝜀𝑘)𝑘∈N* is i.i.d.

This is a reasonably weak assumption, which always applies in the context of machine
learning described above, since the observations are i.i.d. and we use one observation
for each gradient. Dependent (or non identically distributed) observations are studied in
the context of online learning (Cesa-Bianchi and Lugosi, 2006). This situation is relevant
in practice, as the observations may come from times series, or even from an adversary
who tries to degrade the performance of the learner (this adversarial situation naturally
relates to game theory). In such a situation, there is no common distribution for all
the observations. It is then impossible to define a generalization risk, thus one seeks to
minimize another function, called the regret instead. Analysis of gradient methods for
online learning has led to numerous studies (Hazan et al., 2007; Bubeck and Cesa-Bianchi,

7apart from the 0-1 loss in classification, which is, for this reason, generally replaced by a convex surrogate.
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2012; Shalev-Shwartz, 2011). Interestingly, this theory also brings ways to analyze the
performance of multiple passes stochastic gradient descent (Shamir, 2016).

Even though the noise functions (𝜀𝑘)𝑘∈N* are i.i.d., the sequence of noise actually
suffered (𝜀𝑘(𝜃𝑘−1))𝑘∈N* is generally not i.i.d. , since the iterate 𝜃𝑘−1 depends on the previous
noise functions. To overcome this issue when it is necessary, we may use the following
assumption, generally described as the “semi-stochastic” setting.

H2 (Semi-Stochastic). For any 𝑘 ∈ N*8, the noise function 𝜀𝑘 is constant: 𝜀𝑘(𝜃) does not
depend on 𝜃.

Under Assumption H2, the sequence (𝜀𝑘(𝜃𝑘−1))𝑘∈N* is 𝑖.𝑖.𝑑. .

More generally, any noise can de decomposed as an additive noise plus a more general
noise:

𝜀𝑘(𝜃𝑘−1) = 𝜀𝑘(𝜃𝑘−1) − 𝜀𝑘(𝜃*)⏟  ⏞  
General noise

+ 𝜀𝑘(𝜃*)⏟  ⏞  
Additive noise

. (1.13)

As the additive noise does not depend on 𝜃𝑘, the noise satisfies Assumption H2
if and only if the “general noise” is null. For least-mean-squares, since 𝑓𝑘(𝜃𝑘−1) =
1
2(⟨Φ(𝑥𝑘), 𝜃𝑘−1⟩ − 𝑦𝑘)2 decomposition (1.13) can be written as:

𝜀𝑘(𝜃𝑘−1) = 𝑓 ′
𝑘(𝜃𝑘−1) − 𝑓 ′(𝜃𝑘−1)

= (⟨Φ(𝑥𝑘), 𝜃𝑘−1⟩ − 𝑦𝑘)Φ(𝑥𝑘) − E [(⟨Φ(𝑋), 𝜃𝑘−1⟩ − 𝑌 )Φ(𝑋)]

=
(︁
Φ(𝑥𝑘)Φ(𝑥𝑘)⊤ − E

[︁
Φ(𝑋)Φ(𝑋)⊤

]︁)︁
(𝜃𝑘−1 − 𝜃*)⏟  ⏞  

Multiplicative noise

+ (⟨Φ(𝑥𝑘), 𝜃*⟩ − 𝑦𝑘)Φ(𝑥𝑘)⏟  ⏞  
Additive noise

,

using that E
[︁
Φ(𝑋)Φ(𝑋)⊤

]︁
𝜃* = E[𝑌 Φ(𝑋)] (Equation (1.2)). Due to its particular multi-

plicative structure, the general part for least mean squares is called the multiplicative noise.
Proving results for general noises is harder than for additive noise functions: in Chapter 3,
some of the results for acceleration only hold under Assumption H2.

However, this assumption is not always valid (e.g., for LMS), making the theorems that
rely on it somehow limited. One can often use less restrictive assumptions, which aim to
control the general part of the noise:

H3 (Lipschitz noise). For any 𝑘 ∈ N*, the noise function 𝜀𝑘 is a.s. 𝐿∞-Lipschitz. In particular,
a.s.,

‖𝜀𝑘(𝜃𝑘−1) − 𝜀𝑘(𝜃*)‖ 6 𝐿 ‖𝜃𝑘−1 − 𝜃*‖ .

Assumption H3 will often be seen as a consequence of the following assumption.

H4 (𝑓𝑘 a.s. convex smooth). There exist functions (𝑓𝑘)𝑘∈N* , such that for any 𝑘 ∈ N*,
(𝑓𝑘)′ = 𝑓 ′

𝑘. Moreover, 𝑓𝑘 is a.s. convex and 𝐿∞-smooth, thus satisfies (Eq. (1.5)):⃦⃦
𝑓 ′

𝑘(𝜃𝑘−1) − 𝑓 ′
𝑘(𝜃*)

⃦⃦2 6 𝐿∞
⟨︀
𝑓 ′

𝑘(𝜃𝑘−1) − 𝑓 ′
𝑘(𝜃*), 𝜃𝑘−1 − 𝜃*

⟩︀
. (1.14)

8since the noise functions are i.i.d., Assumptions H2-6 hold for any 𝑘 ∈ N* if and only if they hold for
𝑘 = 1. Assumptions could be made only on 𝜀1, but equivalently holds for any 𝑘.
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This assumption can be extended to the setting where the noisy gradients 𝑓 ′
𝑘 do not

come from the derivation of a function 𝑓𝑘. The assumption is then that the noisy gradients
are a.s. 𝐿∞-co-coercive, which is, by definition, Equation 1.14 (Zhu and Marcotte, 1996),
see Chapter 4 for details. Finally, a slightly weaker version only assumes this inequality 1.14
in mean

H5 (𝑓𝑘 a.s. convex smooth in QM). There exist functions (𝑓𝑘)𝑘∈N* , such that for any 𝑘 ∈ N*,
(𝑓𝑘)′ = 𝑓 ′

𝑘. Moreover, 𝑓𝑘 is a.s. convex and 𝐿2-smooth in quadratic mean, i.e.,

E
[︁⃦⃦
𝑓 ′

𝑘(𝜃𝑘−1) − 𝑓 ′
𝑘(𝜃*)

⃦⃦2 |ℱ𝑘−1
]︁
6 𝐿2

⟨︀
𝑓 ′(𝜃𝑘−1) − 𝑓 ′(𝜃*), 𝜃𝑘−1 − 𝜃*

⟩︀
.

In the machine learning context, the existence and a.s. convexity of functions 𝑓𝑘 is
natural, since the loss measured on one observation (Equation (1.11)) is a.s. convex.
Thus, Assumption H4 is generally true for bounded inputs (‖Φ(𝑋)‖ 6 𝑅, 𝜌𝑋 -a.s.) and
Assumption H5 holds if E𝜌𝑋 [‖Φ(𝑋)‖2] 6 𝑅2. Moreover, Assumptions H4-5 only make
sense if the risk is 𝐿-smooth, since they imply its smoothness9. The constants involved (if
taken “optimally”), verify 𝐿 6 𝐿2 6 𝐿∞, which can typically influence the quality of the
result (see discussion in Agarwal and Bottou, 2015).

In the non-smooth context, since assumptions H4 and H5 cannot hold, it is generally
assumed that the noise is a.s. bounded (Bach and Moulines, 2011):

H6 (Bounded noise). There exists 𝐵, such that, for all 𝑘 ∈ N*, a.s. , ‖𝜀𝑘(𝜃𝑘−1)‖ 6 𝐵.

This assumption can be true in machine learning, e.g., when iterates are a.s. bounded
(for example, constrained to live in a ball), assumption H3 is satisfied, and the additive
part of the noise is a.s. bounded.

Assumptions made on the noise are summarized in the following table:

Chapter 2 Chapter 3 Chapter 4
H1, H5 H1, H2 or H5 H1, H4

Apart from these assumptions, the following assumption is also made in most parts of
this thesis.
Structured noise. The noise is structured if the additive part of the noise 𝜀𝑘(𝜃*) satisfies
E[𝜀𝑘(𝜃*)𝜀𝑘(𝜃*)⊤] 6 𝜎2Σ, for some 𝜎2 > 0. For LMS, as 𝜀𝑘(𝜃*) = (⟨Φ(𝑥𝑘), 𝜃*⟩ − 𝑦𝑘)Φ(𝑥𝑘),
this assumption is true for example if (⟨Φ(𝑥𝑘), 𝜃*⟩ − 𝑦𝑘)2 6 𝜎2 almost surely, or if the
model is well-specified, (e.g., 𝑦𝑘 = ⟨𝜃*,Φ(𝑥𝑘)⟩ + 𝜉𝑘, with (𝜉𝑘)𝑘∈J1;𝑛K i.i.d. of variance
𝜎2 and independent of Φ(𝑥𝑘)). This is a crucial assumption: convergence rates are
dramatically different if the noise is un-structured. For example Lan (2012) proved an
optimal convergence rate of order 𝑂(1/

√
𝑛) for un-structured noise.

1.3.6 Non-asymptotic results: stochastic approximation for minimizing
convex functions

For convex functions (without strong convexity), although the sequence of iterates does not
always converge, it is possible to prove bounds on 𝑓(𝜃𝑛) − 𝑓(𝜃*), which shows convergence
of the function values . For example, for 𝛾𝑛 ∝ 𝑛−1/2, Zhang (2004) showed that function
values converge at speed 𝑛−1/2.

9for any 𝑘 ∈ N*, for any 𝜂, 𝜃 ∈ R𝑑, ‖𝑅′(𝜃) − 𝑅′(𝜂)‖2 = ‖E[𝑓 ′
𝑘(𝜃) − 𝑓 ′

𝑘(𝜂)]‖2 6 E[‖𝑓 ′
𝑘(𝜃) − 𝑓 ′

𝑘(𝜂)‖2] 6
ess sup ‖𝑓 ′

𝑘(𝜃) − 𝑓 ′
𝑘(𝜂)‖2.
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In the strongly convex case (but without smoothness), the upper bound on the function
values scales as (𝑛𝜇)−1, for decaying step sizes 𝛾𝑛 = 2/(𝜇(𝑛 + 1)), and a non uniform
averaging or tail averaging scheme (Lacoste-Julien et al., 2012; Rakhlin et al., 2011); while
with Polyak-Ruppert averaging, a log factor is lost in the worst case.

Note that both of these rates are optimal, respectively for the class of convex functions
and the class of strongly convex functions: this optimality is meant in the sense that no
algorithm querying 𝑛 stochastic first-order oracles can achieve a better rate of convergence.
Analysis dates back to Nemirovsky and Yudin (1983) and was nicely summarized and
extended by Agarwal et al. (2012). It brings together tools from optimization (esp. first-
order oracle models), information theory and statistics: the problem is shown to be as
hard as an estimation problem, and classical tools from statistics are used, such as Fano’s
inequality.

1.3.7 Non-asymptotic results: stochastic approximation for minimizing
smooth convex functions

The smoothness assumption does not change the minimax convergence rate in the convex
case: Flammarion and Bach (2015) showed Ω(𝑛−1/2) lower bound for a smooth (even
quadratic) function (with unstructured noise). Following the intuition coming from the
asymptotic rate by Polyak and Juditsky (1992), Bach and Moulines (2011) proposed a
non-asymptotic analysis for smooth strongly convex functions, showing upper bounds for any
decaying step size 𝛾𝑛 ∝ 𝑛−𝜁 , with 𝜁 ∈ [0, 5; 1]. Precisely, the averaged iterate 𝜃𝑛 converges
in quadratic mean to 𝜃*: E[‖𝜃𝑛 − 𝜃*‖2] = 𝑂((𝑛𝜇)−1), and the function values decay at
asymptotic rate 𝑂(𝑛−1) if 𝜁 ∈]1

2 ; 1[. Moreover, for logistic regression, Bach (2014) proved
that for function values, with 𝛾𝑛 ∝ 𝑛−1/2, averaged SGD achieves the rate 𝑂((𝑛𝜇)−1)10.
This uses the additional property that logistic regression is self-concordant.

In such situations, the step size 𝛾𝑛 ∝ 𝑛−1/2 is adaptive to strong convexity in the
smooth case. This single procedure indeed achieves the optimal rate of convergence in both
situations, without depending on the strong convexity parameter. This was not the case in
the non-smooth case, where one needed to use much smaller steps (scaling as 𝑛−1) to get
the optimal rate in the strongly convex case.

To understand differences between quadratic functions and other smooth-strongly
convex function, we briefly describe the proof technique in the following paragraph.

Proof technique for averaged iterate.

General case: In the general setting, proofs for the averaged iterate rely on an
expansion of 𝑓 ′

𝑘(𝜃𝑘−1): for 𝑘 ∈ J1;𝑛K, we have 𝛾𝑘(𝑓 ′(𝜃𝑘−1) + 𝜀𝑘(𝜃𝑘−1)) = 𝜃𝑘−1 − 𝜃𝑘. Using
a first order Taylor expansion of 𝑓 ′(𝜃𝑘−1), as 𝑓 ′′(𝜃*)(𝜃𝑘−1 − 𝜃*) + 𝑂(‖𝜃𝑘−1 − 𝜃*‖2, we
get (Polyak and Juditsky, 1992):

𝛾𝑘𝑓
′′(𝜃*)(𝜃𝑘−1 − 𝜃*) = 𝜃𝑘−1 − 𝜃𝑘 − 𝛾𝑘𝜀𝑘(𝜃𝑘−1) − 𝛾𝑘𝑂

(︁
‖𝜃𝑘−1 − 𝜃*‖2

)︁
.

Averaging over 𝑘 from 1 to 𝑛 then yields:

𝑓 ′′(𝜃*)(𝜃𝑛 − 𝜃*) = 1
𝑛

𝑛∑︁
𝑘=1

𝜃𝑘−1 − 𝜃𝑘

𝛾𝑘
− 1
𝑛

𝑛∑︁
𝑘=1

𝜀𝑘(𝜃𝑘−1) − 1
𝑛

𝑛∑︁
𝑘=1

𝑂
(︁
‖𝜃𝑘−1 − 𝜃*‖2

)︁
. (D)

10here, 𝜇 is the strong convexity constant at the optimum, as the problem is not globally strongly convex.
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In this decomposition, the first term (on the right-hand part of the inequality) corresponds
to the speed at which the initial conditions are forgotten, the second one is a variance
term, and the third one a residual term (which can be upper bounded using convergence in
higher order moments on the chain). In the quadratic case, as 𝑓 ′(𝜃𝑘−1) = 𝑓 ′′(𝜃*)(𝜃𝑘−1 −𝜃*),
the residual term is removed.

Quadratic case: In the quadratic case, the proof does not necessarily rely on Equa-
tion (D): we instead use the fact that 𝜃𝑛 − 𝜃* can be written as a linear transform of the
initial distance 𝜃0 − 𝜃* and of the noise sequence; we then analyze the behavior of the
linear operator.

Decaying vs. constant learning rates. With 𝑛 observations, the practitioner can follow
two strategies concerning the learning rate: either use decaying steps 𝛾𝑘 = 1√

𝑘
for 𝑘 ∈ J1;𝑛K,

or use constant steps 𝛾𝑘 = 1√
𝑛

for 𝑘 ∈ J1;𝑛K. This formally corresponds to two different
regimes:

∙ In the online-setting, a.k.a. “any-time”, or decaying step-size, between steps 1 and 𝑛,
we use a sequence of step sizes (𝛾𝑘)𝑘∈J1;𝑛K, which is a subsequence of a universal
sequence (𝛾𝑘)𝑘∈N* . This is simple to use in practice: if a first estimator 𝜃𝑛1 has
been computed with 𝑛1 observations, and 𝑛2 additional observations are opportunely
provided, a new estimator can be computed by just making 𝑛2 additional steps
starting from 𝜃𝑛1 , with step size (𝛾𝑛1+𝑘)𝑘∈J1;𝑛2K. It is thus not necessary to know in
advance how many iterations will be made.

∙ In the finite-horizon setting, frequently used for the purpose of analysis (Bach, 2014;
Ying and Pontil, 2008), we use a constant learning rate, which often depends on the
number of iterations we plan to make, assumed to be known and fixed. Formally,
for a sequence (Γ𝑛)𝑛∈N* , 𝑛 being the number of iterations, we choose 𝛾𝑘 = Γ𝑛, for
any 𝑘 ∈ J1;𝑛K. In such a setting, changing the horizon from 𝑛1 to 𝑛1 + 𝑛2 implies to
recompute the entire sequence with a new (constant) learning rate Γ𝑛1+𝑛2 , instead
of Γ𝑛1 .

Using doubling tricks allows to pass from constant steps to varying steps (Hazan and Kale,
2011), but is not fully satisfactory as it results in the definition of “epochs”, which create
discontinuities in the performance.

In most situations, up to constants or logarithmic terms, the performance is the same
for both regimes, when using the “same decay”, i.e., if (𝛾𝑘)𝑘∈N* = (Γ𝑘)𝑘∈N*: one intuition
is that the convergence often mainly depends on the sum of the steps11, and if 𝛾𝑘 = 𝑘−𝜁

for all 𝑘, then
∑︀𝑛

𝑘=1 𝛾𝑘 and 𝑛Γ𝑛 are both of order Θ(𝑛1−𝜁).
However, this heuristical argument admits at least one noticeable exception: in the

smooth strongly convex case, for averaged SGD with 𝛾𝑛 = Γ𝑛 ∝ 𝑛−𝜁 , 1/2 < 𝜁 < 1, only
the online version reaches the asymptotically optimal rate 𝑂(𝑛−1). The bias is indeed of
order 𝑂(𝑛−2𝛾−1

𝑛 𝜇−3) in the online case, but of order 𝑂(𝑛−2Γ−2
𝑛 𝜇−2) in the finite-horizon

case. Technically, the difference appears in Equation (D): in the finite-horizon case, the first
term is exactly 𝑛−1Γ−1

𝑛 (𝜃0 − 𝜃*), while in the strongly convex case, using Abel’s summation
formula, we have that this first term can be upper bounded by 𝑂(𝑛−1𝛾𝑛

− 1
2𝜇−1).

11for example, in the convex case, with gradients a.s. bounded by 𝐵, we have that 𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
‖𝜃𝑛‖2

𝑛𝛾𝑛
+

𝐵2
∑︀𝑛

𝑘=1
𝛾𝑘

𝑛
.
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While this could tend to discredit constant learning rates, the difference vanishes with-
out strong convexity: in Chapter 2, we prove similar rates of convergence for both situations.
In Chapters 3 and 4, we only consider constant learning rates. This is summarized in the
following tabular.

Chapter 2 Chapter 3 Chapter 4
Finite horizon X X X

Online X

1.3.8 Non-asymptotic results: stochastic approximation for least-squares
regression and logistic regression

Equation (D) also emphasizes that the algorithm may behave substantially better if the
third derivative of the function is null. For quadratic functions, the asymptotically dominant
term in the convergence rate is of order 𝑂(𝑛−1) for any decaying step-size scaling as 𝑛−𝜁 ,
𝜁 ∈]0; 1[ (Bach and Moulines, 2011). This allows to consider much larger learning rates
than 𝑛−1/2. Bach and Moulines (2013) built on Györfi and Walk (1996) to exploit this idea
with a constant step 𝛾, that does not depend on the number of observations. They showed
the following result:

Theorem 1.4. Consider the averaged least mean squares algorithm, with structured noise
(such that E[𝜀𝑘(𝜃*)𝜀𝑘(𝜃*)⊤] 6 𝜎2Σ). Writing 𝑟2 = 𝐸𝜌𝑋 [‖Φ(𝑋)‖2], and using 𝛾 6 1

2𝑟2 , we
have, for any 𝑛 ∈ N*,

𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 4𝜎
2𝑑

𝑛
+ 2‖𝜃0 − 𝜃*‖2

𝛾𝑛
. (F)

Therefore, it is possible to obtain a non-asymptotic rate 𝑂(𝑛−1) without dependence
on the strong convexity constant. This bound decomposes into a variance term, 𝜎2𝑑

𝑛

that matches the statistical lower bound described in Section 1.1.7, and a bias term
corresponding to the speed at which initial conditions are forgotten. This bound leads to
the choice of the largest possible step size, 𝛾 = 1

2𝑟2 .
One can also get this fast convergence rate for logistic regression. The main idea is to

use an algorithm built in two different steps: first, averaged SGD with 𝛾𝑛 ∝ 𝑛−1/2 which
gives a first estimator 𝜃𝑛; then, 𝑛 steps of averaged LMS with constant step-size 1

2𝑟2 for the
quadratic approximation of 𝑓 around 𝜃𝑛 (Bach and Moulines, 2013).

Theorem 1.4 is the cornerstone of this thesis: it indeed allows for several extensions
which are the starting points for the three next chapters.

Robustness to the lack of strong convexity. In the non-parametric setting, which will
be introduced in detail in the Section 1.4, problems are typically never strongly convex
if they are not regularized. The fact that the convergence rate in Equation (F) does not
depend on the strong convexity constant opens the door to its analysis in infinite dimension.
We address this question in Chapter 2.

Forgetting initial conditions. The speed at which initial conditions are forgotten (𝑛−1)
does not impact the order of magnitude of the bound but sometimes has an important
influence in practice, as it can be the leading term during the first iterations. Moreover, in
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Figure 1.3: Stochastic Gradient Descent with constant learning rate. Dashed lines are
the level lines of the objective function 𝑓 , green points correspond to the main recursion,
and black to the averaged one. Left: Quadratic case, the limit is the optimal point. Right:
General case, the limit is a different point.

comparison to the rates of deterministic optimization summarized in Section 1.2, a gap
appears between the optimal rate for non strongly convex problems 𝑂(𝑛−2) and the rate in
Equation (F). We bridge this gap in Chapter 3.

Markov chain interpretation. Interestingly, SGD with constant learning rate 𝛾 is an
homogeneous Markov chain (Meyn and Tweedie, 1993): the distribution of 𝜃𝑛 only depends
on the distribution of 𝜃𝑛−1, and the way this distribution evolves does not change with time.
Ergodic theorems for Markov chains then show that the averaged iterate 𝜃𝑛 almost surely
converges to a point 𝜃𝛾 , and that it satisfies a central limit theorem:

√
𝑛(𝜃𝑛 −𝜃𝛾) 𝑑→ 𝒩 (0, 𝑉 )

for a certain variance matrix 𝑉 . This gives a simple intuition on Theorem 1.4: 𝑛E‖𝜃𝑛 − 𝜃𝛾‖2

converges to a constant, therefore 𝑓(𝜃𝑛) − 𝑓(𝜃𝛾) converges to zero at rate 𝑛−1. Moreover,
(𝜃𝑛)𝑛∈N converges to a limit distribution 𝜋𝛾 , such that 𝜃𝛾 = E𝜋𝛾 [𝜃]. As this limit distribution
is stable (if 𝜃𝑛−1 ∼ 𝜋𝛾 then 𝜃𝑛 ∼ 𝜋𝛾), if 𝜃0 ∼ 𝜋𝛾 , then 𝜃1 = 𝜃0 − 𝛾𝑓 ′

1(𝜃0) ∼ 𝜋𝛾 and taking
expectations on both sides thus yields

E𝜋𝛾

[︀
𝑓 ′

1(𝜃)
]︀

= 0.

In least-squares regression, as the function is quadratic, the gradients are linear functions
and we get E𝜋𝛾 [𝑓 ′

1(𝜃)] = Σ(𝜃𝛾 − 𝜃*) = 0, i.e., 𝜃𝛾 = 𝜃* if Σ invertible. The limit of the
averaged stochastic gradient is thus the optimal point, and 𝑓(𝜃𝑛) − 𝑓(𝜃*) = 𝑂(𝑛−1).

On the contrary, if the risk is not quadratic, the averaged recursion converges to a limit
which is not the optimal point. This is illustrated in Figure 1.3. We develop and use the
Markov chain approach in Chapter 4 to improve the convergence rate with large step sizes
in the non quadratic case.

Rates of convergence for stochastic approximation are summarized in Table 1.3.
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1.4 Non-parametric regression in reproducing kernel Hilbert
spaces

Parametric models often only provide an imprecise approximation of the underlying statis-
tical structure: relationships between inputs and outputs are rarely linear (or even linear
functions of features), and the approximation error (the excess risk of the best linear
predictor) remains non negligible. Looking for an estimator in an infinite-dimensional
space can substantially reduce the approximation error. In this section, we introduce the
framework of non-parametric regression. Non-parametric statistical estimation dates back
to the 50s and goes beyond regression, especially with density estimation (Rosenblatt,
1956; Parzen, 1962); a nice introduction is provided by Tsybakov (2008).

Analyzing non-parametric regression is paramount both for applications that use infinite-
dimensional feature spaces, and to gain intuition on the behavior of algorithms in large
dimension 𝑑 ≫ 𝑛 (see Section 1.4.4).

Random design non-parametric regression

In non-parametric regression, we consider the regression problem presented in Section 1.1,
but allow the estimator to live in a broader class ℱ of functions from 𝒳 to 𝒴 than in the
parametric setting. We aim to find a predictor solving the following problem:

inf
𝑓∈ℱ

𝑅(𝑓).

For the square loss, this is called non-parametric least-squares:

inf
𝑓∈ℱ

1
2E(𝑋,𝑌 )∼𝜌

[︁
(𝑓(𝑋) − 𝑌 )2

]︁
.

Recall that if the marginal distribution 𝜌𝑌 has a second order moment, the Bayes predictor
has a simple expression: 𝑓𝜌(𝑋) = E [𝑌 |𝑋]. We still do not assume that this predictor
belongs to the class ℱ . However, as this class is much larger than a class of linear functions,
the approximation error inf𝑓∈ℱ 𝑅(𝑓) −𝑅(𝑓𝜌) can be much smaller than in the parametric
case, and is even always 0 if the class ℱ is large enough. Moreover, the excess risk can be
written as the 𝐿2

𝜌𝑋
-norm of the difference

𝑅(𝑓) −𝑅(𝑓𝜌) = 1
2E𝑋∼𝜌𝑋

[︁
(𝑓(𝑋) − 𝑓𝜌(𝑋))2

]︁
= ‖𝑓 − 𝑓𝜌‖2

𝐿2
𝜌𝑋

, (1.15)

where 𝐿2
𝜌𝑋

is the space of squared integrable functions with respect to 𝜌𝑋 .

Non-parametric statistics: minimax rates

Under a well-defined statistical model, assuming that 𝑦𝑘 = 𝑓*(𝑥𝑘) + 𝜀𝑘, with 𝑓* ∈ ℱ , and
(𝜀𝑘)𝑘∈J1;𝑛K i.i.d. Gaussian variables, it is possible to derive upper and lower bounds for
least-squares regression.

At first sight, considering the minimax bound Θ
(︁

𝜎2𝑑
𝑛

)︁
in finite dimension, it might seem

pointless to expect anything in the non-parametric regime, with 𝑑 = ∞. This difficulty is
circumvented by making some extra assumptions on the class of distributions followed by
the observations. Recalling Section 1.1.7, the minimax risk is here defined as:

inf̂
𝑓

sup
𝑓*∈ℱ

E𝑃𝑓*

[︃⃦⃦⃦
𝑓 − 𝑓*

⃦⃦⃦2

𝐿2
𝜌𝑋

]︃
(1.16)
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for a non-parametric class ℱ being an infinite-dimensional space, and the associated non-
parametric model {𝑃𝑓 , 𝑓 ∈ ℱ}. For example, ℱ can be a Sobolev or Hölder class (Tsybakov,
2008), and the family of distributions a Gaussian model, i.e., for some 𝑓* ∈ ℱ ,

𝑃𝑓*(𝑌 |𝑋) ∼ 𝒩 (𝑓*(𝑋), 𝜎2).

For 𝛿 ∈ N*, the Sobolev space W𝛿[0; 1] of order 𝛿 is defined as the class of real valued
functions on [0; 1] , 𝛿-times differentiable, such that 𝑓 (𝛿) Lebesgue-integrable, 𝑓 (𝛿−1) is
absolutely continuous, and 𝑓(0) = · · · = 𝑓 (𝛿−1)(0) = 0. This space is embedded with the
inner product ⟨𝑓, 𝑔⟩ =

∫︀ 1
0 𝑓

(𝛿)(𝑥)𝑔(𝛿)(𝑥)d𝑥. Minimax rates for Sobolev classes (and Hölder
classes) with Gaussian noise were proved by Ibragimov and Has’ Minskii (1979, 1982),
and Stone (1982). Upper convergence bounds were also proved by Nemirovski et al. (1983,
1984, 1985). These lines of work show that under suitable assumptions on the model, if
the class of functions containing the Bayes predictor is known, then the minimizer of the
empirical risk over that set has optimal error rate in 𝐿2

𝜌𝑋
norm. For Sobolev spaces of order

𝛿, this minimax rate is 𝑛
−2𝛿

2𝛿+1 .
In practice however, the class in which the regression function lives is unknown (and

the noise is not necessarily Gaussian). The choice of the hypothesis space and learning
algorithm are left to the learner, with the following constraints: the hypothesis space should
be large enough for the approximation error to vanish, the estimator should be computable,
and the combination of the hypothesis space and learning rule should avoid over-fitting.

Example of estimators

Several learning rules have been proposed; among others, noticeable examples include

∙ Local regressors, that estimate the unknown value at a point 𝑥 by a mean of the
observed values at points 𝑥𝑘, 𝑘 ∈ J1;𝑛K which are “close” to 𝑥 in a sense. They include
Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964), locally polynomial
estimators (Stone, 1977) and nearest neighbor regression (Altman, 1992).

∙ Shape constrained regressors, for which the hypothesis space is defined by some criteria
— typically monotonic (Brunk, 1955, 1970) and/or convex functions (Hildreth, 1954;
Hanson and Pledger, 1976).

∙ Estimators in reproducing kernel Hilbert spaces (Wahba, 1990; Schölkopf and Smola,
2002), which will be the setting for Chapters 2 and 3, and thus the main focus of the
rest of this Section.

Overall, non-parametric regression has been an extremely active topic over the last 60
years; the books by Györfi et al. (2002) and Wasserman (2006) give a complete overview
and contain most necessary references. In this thesis, we consider estimators built in a
reproducing kernel Hilbert space (RKHS): we introduce this spaces in Section 1.4.1, see
that they have good statistical properties (Section 1.4.3), and computational properties
(Section 1.4.5). We describe a few settings in which RKHSs are useful in Section 1.4.2, and
touch on how it is insightful for parametric regression in Section 1.4.4.
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1.4.1 Reproducing kernel Hilbert spaces

Hilbert spaces of functions (complete12 linear spaces with an inner product) are well suited
as hypothesis spaces for regression: as they can have infinite dimension, they can include a
sufficiently large class of functions (for example, to have small approximation error), and
they enjoy a geometric structure similar to ordinary Euclidean spaces (for example, one
can define projections). A particular class of such function-based Hilbert spaces are those
defined with respect to a reproducing kernel; these spaces are known as reproducing kernel
Hilbert spaces.

There are several definitions and points of view on reproducing kernel Hilbert spaces.
In particular, they can be defined together with a reproducing kernel (Definition 1.5), more
abstractly without even introducing any kernel function (Definition 1.6), or on the contrary,
implicitly (without describing the space itself) with a positive definite kernel (Definition 1.7
and Theorem 1.8).

Definition 1.5. Consider a set 𝒳 and ℋ ⊂ R𝒳 a Hilbert space of real valued functions on 𝒳 ,
with inner product ⟨, ⟩ℋ. The function 𝐾 : 𝒳 × 𝒳 → R is called a reproducing kernel of ℋ if:

∙ For any 𝑥 ∈ 𝒳 , ℋ contains the function 𝐾𝑥, defined by:

𝐾𝑥 : 𝒳 → R

𝑦 ↦→ 𝐾(𝑥, 𝑦).

∙ For any 𝑥 ∈ 𝒳 and 𝑓 ∈ ℋ, the reproducing property holds:

⟨𝐾𝑥, 𝑓⟩ℋ = 𝑓(𝑥). (1.17)

If a reproducing kernel exists, then ℋ is called a reproducing kernel Hilbert space (RKHS)
(associated with 𝐾).

The reproducing property (1.17) allows to compute inner products in the Hilbert space
as function evaluations. Moreover, one can show that the reproducing kernel of an RKHS is
unique, and that distinct RKHS have distinct reproducing kernels.

From the point of view of Riesz’s representation theorem, the reproducing property
states that 𝐾𝑥 is the representer of the evaluation functional 𝐿𝑥 : ℋ → R which maps 𝑓 to
𝑓(𝑥). If ℋ is an RKHS, this application is clearly continuous (by Cauchy-Schwarz inequality
|𝑓(𝑥)| = |⟨𝐾𝑥, 𝑓⟩|ℋ 6 ‖𝐾𝑥‖ℋ ‖𝑓‖ℋ). Conversely, an equivalent definition of RKHS holds:

Definition 1.6. An RKHS is a Hilbert space of real valued functions on 𝒳 such that for each
𝑥 ∈ 𝑋, the evaluation functional 𝐿𝑥 is continuous.

In other words, if all evaluation functionals are continuous, the space is an RKHS and
there exists a reproducing kernel associated to the space. Interestingly, this definition does
not require the introduction of the kernel function 𝐾. For example, Definition 1.6 implies
that the Sobolev space W𝛿[0; 1] is a reproducing kernel Hilbert space13 (Wahba, 1990).
However, the general expression of the kernel function for Sobolev spaces is complicated
(though for 𝛿 = 1, the kernel is simply 𝐾(𝑥, 𝑦) = min(𝑥, 𝑦), for 𝑥, 𝑦 ∈ [0; 1]2).

While these first two definitions give a central role to the set ℋ, RKHS can also be
defined implicitly. To do so, we introduce positive semi-definite kernels.

12w.r.t. the norm defined by their inner product.
13this can be seen using a Taylor expansion and Cauchy-Schwarz inequality.
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Definition 1.7. A positive semi-definite (PSD) kernel𝐾 is a symmetric function𝐾 : 𝒳 ×𝒳 →
R, such that, for any 𝑝 ∈ N* and any (𝑥𝑖)𝑖∈J1;𝑝K ∈ 𝒳 𝑝, the corresponding kernel matrix
𝐾 ∈ R𝑝×𝑝 (such that, for all 𝑖, 𝑗 ∈ J1; 𝑝K2, 𝐾𝑖,𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗)), is positive semi-definite.

For a reproducing kernel 𝐾, Equation (1.17) implies that

𝐾(𝑥1, 𝑥2) = 𝐾𝑥1(𝑥2) = ⟨𝐾𝑥1 ,𝐾𝑥2⟩ℋ .

As a consequence, a reproducing kernel is always a PSD kernel, as for any 𝑎 ∈ R𝑝 and any
(𝑥𝑖)𝑖∈J1;𝑝K ∈ 𝒳 𝑝,

𝑝∑︁
𝑖,𝑗=1

𝑎𝑖𝑎𝑗𝐾(𝑥𝑖, 𝑥𝑗) =
⟨ 𝑝∑︁

𝑖=1
𝑎𝑖𝐾𝑥𝑖 ,

𝑝∑︁
𝑗=1

𝑎𝑗𝐾𝑥𝑗

⟩
ℋ

.

This simple property has an “extended converse”: the following theorem states that for any
PSD kernel, there exists an RKHS such that the kernel is its reproducing kernel. This result
is known as Moore-Aronszajn theorem (Aronszajn, 1950):

Theorem 1.8. For any PSD kernel 𝐾, there exists a unique reproducing kernel Hilbert space
(ℋ, ⟨, ⟩ℋ) with reproducing kernel 𝐾.

Here, the RKHS and its inner product are not explicitly described, and may be difficult to
determine, but is fortunately un-necessary: using the reproducing property, inner products
can be computed ignoring the precise definitions of both the space and the inner product.

These different definitions correspond to two trends in understanding (and using)
kernels. In the “first trend”, the focus is on the class of function ℋ, and the kernel satisfying
the reproducing property serves as a tool. In the “second trend”, the kernel 𝐾 is the main
focus of attention, together with its possible applications, while little interest is given to
the space ℋ itself. Historically, these two trends both emerged at the beginning of the 20𝑡ℎ

century. The “first trend” results from the introduction of reproducing kernels by Zaremba
(1907, 1909) for certain classes of functions. It was later on extended by Bergmann (1922)
who considered classes of harmonic and analytical functions, describing the associated
reproducing kernel. The second approach, for which the kernel function is central and
space ℋ secondary, takes its roots in the study of positive definite kernels. Those were
introduced by Mercer (1909), building on the works of Hilbert (1904). Theorem 1.8 was
stated in the general case by Aronszajn (1950), who attributes it to Moore (1916, 1935).
The seminal paper by Aronszajn (1950) remains a most interesting reference, containing a
detailed presentation of the results above, together with precise historical references.

The success of RKHSs for non-parametric regression is due to the combination of the
following three facts:

∙ they are spaces of functions, thus naturally used as hypothesis spaces in which to
build predictors,

∙ they have a Hilbert structure, i.e., a linear space, for which numerous methods have
already been designed

∙ finally, it is possible to compute inner products even though the space is infinite-
dimensional (one can therefore treat non-parametric estimation in the same algebraic
framework as parametric regression). This last property is the most useful in practice.
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In other words, any algorithm designed for finite-dimensional vectors, and that can be
expressed only in terms of pairwise inner products, can be applied to infinite-dimensional
vectors in the feature space of a PSD kernel. Each inner product evaluation is then replaced
by a kernel evaluation.

Let us emphasize that kernel methods allow us to separate the representation of
the inputs (mapping points into an RKHS) from the algorithmic aspect and its analysis
(proposing a generic algorithm in an RKHS and analyzing it). We now give a few examples,
first of possible kernels, then of typical application settings.

1.4.2 Examples

PSD kernels. Numerous examples of positive semi-definite kernel exist. If the space 𝒳 is
R𝑑, they include:

∙ The Linear kernel, and polynomial kernels: respectively 𝐾(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩R𝑑 and
𝐾(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩𝑚

R𝑑 for some 𝑚 ∈ N*. They lead to finite-dimensional reproduc-
ing kernel Hilbert spaces (with dimension 𝐷 > 𝑑).

∙ The Gaussian kernel: 𝐾(𝑥, 𝑦) = exp(− 1
2𝜎2 ‖𝑥− 𝑦‖2). It leads to an infinite-dimen-

sional reproducing kernel Hilbert space. More generally, radial basis function (RBF)
kernels are kernels that can be written as 𝐾(𝑥, 𝑦) = ℎ(dist(𝑥, 𝑦)) for a function ℎ and
a distance dist.

Note that one of the key advantages of PSD kernels is that they can be defined on non-
vectorial data: for example, on text (Lodhi et al., 2002), on (biological) sequences (Jaakkola
et al., 1999; Leslie et al., 2002), on images (Harchaoui and Bach, 2007), on graphs (Borg-
wardt and Kriegel, 2005), or on measures (Cuturi et al., 2005), among many others.

Possible settings. The analysis we propose applies to several contexts, corresponding to
different types of applications.

i) Learning with non-vectorial data. A positive definite kernel can be used to map
non-vectorial inputs into a linear space. Indeed, the feature map 𝑥 ↦→ 𝐾𝑥 associates to any
input 𝑥 a feature vector, which is an element of an RKHS. In such a situation, the kernel
function is sometimes imposed by the setting, as for some particular applications, only few
kernels have been designed. Here, the space ℋ is not described, in the spirit of the “second
trend” described above.

ii) Non-parametric regression for real valued inputs. Assume that 𝒳 ⊂ R, and that
we look for a predictor 𝑓 in a set of functions having some regularity (typically, a Sobolev
space of order 𝛿, where 𝛿 can be chosen arbitrarily). These applications adopt the point of
view of the “first trend”, the primary focus being the choice of the space, which is often left
to the user.

iii) Linear regression for 𝑑 ≫ 𝑛. Using a linear kernel in dimension 𝑑, parametric regres-
sion becomes a special case of RKHS regression. Results proved in the RKHS setting thus
apply in finite dimension. This is useful in many applications for which linear estimation
is used, but the number of features 𝑑 is much larger than 𝑛. Indeed, the analysis in the
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RKHS is inherently designed to address infinite-dimensional spaces: it relies on bounds
and guarantees that do not depend on the dimension (these quantities are referred to as
being “dimensionless”). As a consequence, it therefore provides some natural insight on
the finite “large-dimensional” setting.

We now give a precise description of least-squares regression in the kernel setting.

1.4.3 Least-squares regression in RKHS

In a reproducing kernel Hilbert space, least-squares regression minimization is inf𝑓∈ℋ𝑅(𝑓),
where 𝑅(𝑓) can be written using the reproducing property:

𝑅(𝑓) = 1
2E(𝑋,𝑌 )∼𝜌

[︁
(⟨𝐾𝑋 , 𝑓⟩ − 𝑌 )2

]︁
.

Similarly, the empirical risk minimization is then written inf𝑓∈ℋ𝑅𝑛(𝑓), with

𝑅𝑛(𝑓) = 1
2𝑛

𝑛∑︁
𝑘=1

(⟨𝐾𝑥𝑘
, 𝑓⟩ − 𝑦𝑘)2.

Tikhonov regularization

The most popular regularization is Tikhonov regularization (a.k.a. ridge regression), where
we add the following penalty term:

inf
𝑓∈ℋ

1
2𝑛

𝑛∑︁
𝑘=1

(⟨𝐾𝑥𝑘
, 𝑓⟩ − 𝑦𝑘)2 + 𝜆

2 ‖𝑓‖2
ℋ .

The representer theorem (Kimeldorf and Wahba, 1970) states that there exists a function
minimizing the (penalized) empirical risk over ℋ, and that this minimum can be chosen in
the space ℋ1,𝑛 := span {𝐾𝑥𝑘

, 𝑘 ∈ J1;𝑛K}. Using the Hilbertian structure, the space ℋ can

indeed be decomposed as the orthogonal sum ℋ1,𝑛

⊥
⊕ℋ⊥

1,𝑛. Note that, using the reproducing

property, for any function 𝑓⊥ ∈ ℋ⊥
1,𝑛, for any 𝑘 ∈ J1;𝑛K, 𝑓⊥(𝑥𝑘) =

⟨
𝑓⊥,𝐾𝑥𝑘

⟩
ℋ

= 0.
Therefore, a function in the orthogonal space does not change predicted values on the
observations. The empirical risk of a function is thus the same as the empirical risk of
its projection on ℋ1,𝑛; and the infimum over ℋ is thus larger than (thus equal to) the
minimum over ℋ1,𝑛

14. Moreover, when a penalization 𝜆 ‖𝑓‖2
ℋ, for 𝜆 > 0 is added, the

penalized risk of a function becomes larger than the one of its projection (strictly larger if
the function is not in ℋ1,𝑛, as ‖𝑓‖2

ℋ = ‖𝑝ℋ1,𝑛(𝑓)‖2
ℋ + ‖𝑓⊥‖2

ℋ). Thus, there exists a unique
minimizer to the penalized empirical risk, and this minimizer lies in ℋ1,𝑛.

In other words, the problem can be rewritten as an equivalent finite-dimensional
minimization problem:

min
𝛼∈R𝑛

1
2𝑛

𝑛∑︁
𝑘=1

‖𝐾𝛼− 𝑌 ‖2 + 𝜆

2𝛼
⊤𝐾𝛼, (E’)

for 𝑓 =
∑︀𝑛

𝑘=1 𝛼𝑘𝐾𝑥𝑘
, with 𝐾 the kernel matrix and 𝑌 = (𝑦𝑘)𝑘∈J1;𝑛K. If 𝜆 > 0, the problem

(E’) has a unique solution 𝛼̂ = (𝐾 + 𝑛𝜆𝐼)−1𝑌 . This estimator can be explicitly computed,
14 the infimum on ℋ1,𝑛 is attained as it is a quadratic function over a finite-dimensional space.
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but this cost can be prohibitive, this will be discussed in Section 1.4.5. We now turn to the
analysis of the risk of such an estimator.

In the end of this Section, we assume that the approximation error is null, i.e.,
inf𝑓∈ℋ𝑅(𝑓) = 𝑅(𝑓𝜌). This is true for any 𝑓𝜌 ∈ ℋ if ℋ is dense in 𝐿2

𝜌𝑋
(with respect

to the 𝐿2
𝜌𝑋

-norm). We discuss this property in Chapter 2. Recalling the risk decomposi-
tion (1.1), the excess risk is then only the estimation error 𝑅(𝑓) −𝑅(𝑓𝜌).

We recall that in the fixed design setting (see Section 1.1.6), the input points (𝑥𝑘)𝑘∈J1;𝑛K

are considered as fixed, and the only randomness is in the distribution of (𝑦𝑘)𝑘∈J1;𝑛K. We
now give the error decomposition in the fixed design setting.

Fixed design error analysis. In the fixed design setting, the excess risk is

𝑅(𝑓) −𝑅(𝑓𝜌) = 1
2𝑛

𝑛∑︁
𝑘=1

(𝑓(𝑥𝑘) − 𝐸[𝑦𝑘])2 = 1
2𝑛‖𝐾(𝐾 + 𝑛𝜆𝐼)−1𝑌 − E[𝑌 ]‖2,

since the prediction vector (𝑓(𝑥𝑘))𝑘∈J1;𝑛K is equal to 𝐾(𝐾 + 𝑛𝜆𝐼)−1𝑌 . Following classical
literature (Gu, 2002; Wahba, 1990), it leads to the following in-sample decomposition
error:

𝑅(𝑓) −𝑅(𝑓𝜌) = 1
2𝑛

⃦⃦⃦
𝐾(𝐾 + 𝑛𝜆𝐼)−1𝑌 − E[𝑌 ]

⃦⃦⃦2

E
[︁
𝑅(𝑓) −𝑅(𝑓𝜌)

]︁
= 𝑛𝜆2

⃦⃦⃦
(𝐾 + 𝑛𝜆𝐼)−1 E[𝑌 ]

⃦⃦⃦2
+ 1

2𝑛E
⃦⃦⃦
𝐾(𝐾 + 𝑛𝜆𝐼)−1𝜀

⃦⃦⃦2

= 𝑛𝜆2 E[𝑌 ]⊤(𝐾 + 𝑛𝜆𝐼)−2 E[𝑌 ] + 1
2𝑛 tr(𝐾2(𝐾 + 𝑛𝜆𝐼)−2𝐶) , (1.18)

with 𝜀 = 𝑌 − E[𝑌 ] and 𝐶 = E[𝜀𝜀⊤]. The two terms in Equation (1.18) are respectively a
bias and a variance term: the bias increases with 𝜆, while the variance decreases: intuitively,
a non 0 regularization induces a bias, but reduces the variance. This leads to an optimal
choice of 𝜆 if we can estimate the quantities involved.

The variance strongly depends on the eigenvalue decay of the kernel matrix 𝐾: we
denote15 (𝜇̂𝑖)𝑖∈J1;𝑛K the eigenvalues of the renormalized kernel matrix 𝑛−1𝐾. The variance

depends on the quantity tr(𝐾2(𝐾 + 𝑛𝜆𝐼)−2) =
∑︀𝑛

𝑖=1

(︁
𝜇̂𝑖

𝜇̂𝑖+𝜆

)︁2
, which is known as the

degrees of freedom (Hastie et al., 2001), and plays the role of an implicit dimension which
depends on the spectrum of 𝐾. If the RKHS has finite dimension 𝐷, then it is smaller than
𝐷, but it is still finite for most infinite-dimensional kernel spaces, since the eigenvalues of
𝐾 are summable under weak assumptions (see Chapter 2 for details, and Figure 1.5 for two
examples). As for the bias term, it depends on both the spectrum and the decomposition of
the vector E[𝑌 ] on the eigenvectors of 𝐾.

While the random design analysis is slightly more complicated, it involves similar
quantities, and relies on two fundamental assumptions that we present hereafter.

Random design error analysis. We introduce the covariance operator 𝑇 : ℋ → ℋ, such
that for any 𝑓 ∈ ℋ, 𝑇 (𝑓) = E𝜌𝑋 [𝑓(𝑋)𝐾𝑋 ]16. Informally, this is an extension of the finite-
dimensional covariance matrix to the non-parametric setting. This operator is crucial as

15we use the notation 𝜇̂ because the eigenvalues of 𝑛−1𝐾 are also the eigenvalues of the empirical
covariance matrix 𝑛−1∑︀𝑛

𝑘=1 𝐾𝑥𝑘 𝐾⊤
𝑥𝑘

which is the empirical version of the covariance operator 𝑇 defined
below, whose eigenvalues are denoted (𝜇𝑖)𝑖∈N.

16Descriptions of how such expectations are defined will be given in Chapter 2.
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Figure 1.4: Schematic representation of the source condition H7: for different 𝑓𝜌, there
exists an 𝑟 > 0 such that H7 is satisfied.

it “identifies” the space in which we work: indeed, elements of the reproducing kernel
space ℋ can be decomposed as combinations of the eigenvectors of 𝑇 , with conditions
on the coefficients characterized by the eigenvalues of 𝑇 ; this is the purpose of Mercer’s
theorem (Aronszajn, 1950). Formally, we have the following result:

Theorem 1.9 (Mercer’s theorem). Assume 𝒳 compact, 𝐾 continuous. Then the covariance
operator 𝑇 has a family of eigenvectors {𝜑𝑖, 𝑖 ∈ N}, forming an an Hilbertian basis of ℋ,
with associated eigenvalues (𝜇𝑖)𝑖∈N. Moreover the feature functions can be decomposed on the
eigen-basis: for any 𝑥 ∈ 𝒳 ,

𝐾𝑥 =
∞∑︁

𝑖=0
𝜇𝑖𝜑𝑖(𝑥)𝜑𝑖 ,

where the convergence is absolute17. Elements of the space ℋ can then be decomposed over
eigenvalues:

ℋ =
{︃
𝑓 ∈ 𝐿2

𝜌𝑋
: 𝑓 =

∞∑︁
𝑖=0

𝑎𝑖𝜑𝑖, s.t.,
∞∑︁

𝑖=0

𝑎2
𝑖

𝜇𝑖
< ∞

}︃
. (1.19)

In Chapter 2 we propose an extension of this result under weaker assumptions, in
particular without topological assumption on 𝒳 (see Section A.1.3).

Decomposing any function on the eigenbasis {𝜑𝑖, 𝑖 ∈ N}, we can define 𝑇 𝑟, the 𝑟-th
power of 𝑇 , for any 𝑟 ∈ [0; 1]. These operators are necessary to define the two following
assumptions, which describe respectively the smoothness of the function and the size of
the kernel, and strongly influence the performance of random design kernel regression:

H7 (Source Condition). 𝑓𝜌 ∈ 𝑇 𝑟
(︁
𝐿2

𝜌𝑋

)︁
for some 𝑟 > 0.

H8 (Capacity Condition). We sort the sequence (𝜇𝑖)𝑖∈𝐼 of non-zero eigenvalues of the opera-
tor 𝑇 in decreasing order. We assume that 𝜇𝑖 6 𝑠2

𝑖𝛼 for some 𝛼 > 1 (so that tr(𝑇 ) < ∞), and
some 𝑠 ∈ R+.

The first condition H7 should be understood as a regularity condition. The sequence
of spaces 𝑇 𝑟

(︁
𝐿2

𝜌𝑋

)︁
is a decreasing sequence of subspaces of 𝐿2

𝜌𝑋
; for 𝑟 > 1

2 , it implies

17more precisely, the convergence is in the sense of Bochner, which generalizes the absolute convergence
for Banach spaces.
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Figure 1.5: Eigenvalue decay of the empirical covariance operator (blue) (resp. population
covariance operator (red)). Left: min kernel with 𝜌𝑋 = 𝒰 [0; 1], inducing the first order
Sobolev space. Right: Gaussian kernel with 𝜌𝑋 = 𝒰 [−1; 1]. The capacity condition is
satisfied for any 𝛼 6 2 for the min kernel, and for any 𝛼 for the Gaussian kernel.

that the objective function 𝑓𝜌 truly lies in ℋ. A corollary of Theorem 1.9 is indeed that
𝑇 1/2

(︁
𝐿2

𝜌𝑋

)︁
= ℋ. As 𝑟 gets bigger, the assumption gets stronger. This condition is illustrated

in Figure 1.4.
On the other hand, the capacity condition H8 describes the size of the kernel space.

Again, considering Mercer’s theorem (in particular Equation (1.19)), we see that for a fixed
eigenbasis, the faster the eigenvalue decay is, the smaller ℋ is. It is valid in practice for
classical kernels, see Figure 1.5.

These assumptions are discussed in detail in Chapter 2, and have been used under mul-
tiple variants in the literature. Let us now summarize some of the important contributions
to their study.

With Tikhonov regularization. Starting with the work of Smale and Cucker (2001), De
Vito et al. (2005) proposed an approach of Tikhonov regularization under source conditions.
Refined bounds for Tikhonov regularization were then successively proved by Smale and
Zhou (2007). Rates with both source conditions and capacity conditions were proved
by Zhang (2004), and optimal rates under both conditions provided by Caponnetto and De
Vito (2007); Steinwart et al. (2009). Minimax rates under capacity conditions were also
proved by (Raskutti et al., 2014).

With other regularizations. Using Tikhonov’s regularization is not always necessary, and
other algorithms have also been studied. Notably, analysis of batch gradient descent for
ERM (where early stopping is used as a regularization) were provided by Yao et al. (2007)
and Rosasco et al. (2014) under source conditions, Blanchard and Krämer (2010) for the
conjugate gradient algorithm, and Raskutti et al. (2014). Raskutti et al. (2014) provided
statistical minimax rates depending on the capacity condition parameter (under a Gaussian
noise model, and valid for any algorithm), together with a data-dependent stopping rule
for gradient descent. Interestingly, most classical regularizations (Tikhonov, Landweber
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(early stopping GD), spectral cut-off) can be analyzed under a single framework (Bauer
et al., 2007; Caponnetto and Yao, 2006).

The analysis of online methods in this context, in particular SGD (which naturally
regularizes, as explained in Section 1.3), was initiated by Smale and Yao (2006), and then
refined by Ying and Pontil (2008) and Tarrès and Yao (2014). Detailed description of these
approaches is given in Chapter 2, where we consider stochastic approximation algorithm
for least-squares regression in an RKHS. A refined analysis under both capacity condition
and source condition was recently proposed by Lin and Rosasco (2016), under a unifying
approach analyzing all mini-batches sizes, notably recovering both multiple passes SGD
and early stopping as special cases.

Overall, the optimal rate, attained by some of the above papers and in Chapter 2, is of
order 𝑂

(︁
𝑛

−2𝑟𝛼
2𝑟𝛼+1

)︁
.

1.4.4 Consequences in finite dimension
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Figure 1.6: Upper bound on the vari-
ance term as a function of 𝛼. 𝑑 = 2000,
𝑛 = 100, eigenvalues decaying as
(𝑖−2)𝑖∈J1;𝑑K.

Our analysis offers interesting insight to the analy-
sis of the finite-dimensional setting. “Conditions” in
infinite dimension translate to “quantities” in finite
dimension: in infinite-dimension, conditions are ei-
ther satisfied or not satisfied, thus their importance
is clear; in finite dimension, the meaningful quan-
tities are only “small” or “large”. This contributes
to blurring the understanding of their importance.

In other words, in finite dimension, the rate
𝜎2𝑑
𝑛 is optimal, but this optimality corresponds to

the worst case with respect to the distribution 𝜌𝑋 .
For any fixed 𝜌𝑋 , and a fixed 𝑛, the ratio 𝜎2𝑑

𝑛 might
be a very pessimistic bound on the error we would
like to reach.

For the un-regularized ERM, the estimation er-
ror is equal to 𝜎2𝑑

𝑛 independently of the distribution
𝜌𝑋 (see the analysis of fixed design in 1.1.6). Thus
if 𝑑 ≫ 𝑛, this error is “large” . Still, other algo-
rithms may behave “well”; in particular, algorithms based on stochastic approximation can
have a much smaller error than 𝜎2𝑑

𝑛 . In Chapter 2, we will prove that for averaged SGD
with constant learning rate 𝛾, in finite dimension, the variance term is upper bounded by
𝛾1/𝛼 tr(Σ1/𝛼)

𝑛1−1/𝛼 , for any 𝛼 > 1. When 𝛼 → ∞, we recover the bound 𝜎2𝑑
𝑛 . Considering the

worst case over any matrix Σ, the best bound is 𝜎2𝑑
𝑛 ; asymptotically, the best bound is 𝜎2𝑑

𝑛 ;
but for a fixed Σ, and 𝑛, this quantity can be much smaller than 𝜎2𝑑

𝑛 ; the infimum in 𝛼

of the bound may be achieved for a finite “small” 𝛼. We illustrate this phenomenon by
plotting the bound as a function of the parameter 𝛼 in Figure 1.6: the minimum quantity is
obtained for an 𝛼 ≪ ∞.

1.4.5 Computations in RKHS

Surprisingly, even though the space is infinite-dimensional, most estimators (based on
Tikhonov regularization, batch gradient descent, or stochastic gradient descent) can be
computed exactly: indeed, associated estimators can be decomposed as combinations of
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the feature vectors {𝐾𝑥𝑘
, 𝑘 ∈ J1;𝑛K}, and we can compute inner products of such functions

as function evaluations using the reproducing property, a property known as the Kernel
trick.

The algorithms based on Tikhonov regularization have complexity 𝑂(𝑛3) to compute
the empirical risk minimizer. Solving the linear system (Equation (E’)) can be done either by
using Cholesky decomposition or conjugate gradient, both with this complexity (Golub and
Van Loan, 1996). Batch gradient methods have complexity 𝑂(𝑛2) per iteration, resulting
in a final complexity 𝑂(𝑇𝑛2) after 𝑇 iterations, and stochastic gradient methods have
complexity 𝑂(𝑛) per iteration, resulting in a final complexity 𝑂(𝑛2) after one single pass
on observations.

It is interesting to note that dimension reduction techniques can be used to reduce these
complexities: roughly speaking, there exists an implicit dimension 𝑑𝑛 such that a projection
on a space of dimension 𝑑𝑛 still allows to get the optimal statistical rate. To do so, the two
main methods are column sampling (Bach, 2012; El Alaoui and Mahoney, 2014; Lin and
Rosasco, 2016), and random features (Rahimi and Recht, 2007, 2008; Rudi et al., 2016).
Together with stochastic methods, these methods allow to derive optimal statistical rates
for algorithms of overall complexity 𝑂(𝑛𝑑𝑛).



2
Non-parametric Stochastic Approximation

with Large Step-sizes

We consider the random-design least-squares regression problem within the reproducing
kernel Hilbert space (RKHS) framework. Given a stream of independent and identically
distributed input/output data, we aim to learn a regression function within an RKHS ℋ,
even if the optimal predictor (i.e., the conditional expectation) is not in ℋ. In a stochastic
approximation framework where the estimator is updated after each observation, we show
that the averaged unregularized least-mean-square algorithm (a form of stochastic gradient
descent), given a sufficient large step-size, attains optimal rates of convergence for a variety
of regimes for the smoothnesses of the optimal prediction function and the functions in ℋ.

This chapter is based on our work Non-parametric Stochastic Approximation with Large
Step-size, A. Dieuleveut and F.Bach, published in the Annals of Statistics, 2016.
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2.1 Introduction

Positive-definite-kernel-based methods such as the support vector machine or kernel ridge
regression are now widely used in many areas of science of engineering. They were first
developed within the statistics community for non-parametric regression using splines,
Sobolev spaces, and more generally reproducing kernel Hilbert spaces (see, e.g., Wahba
(1990)). Within the machine learning community, they were extended in several interesting
ways (see, e.g., Schölkopf and Smola (2002); Shawe-Taylor and Cristianini (2004)): (a)
other problems were tackled using positive-definite kernels beyond regression problems,
through the “kernelization” of classical unsupervised learning methods such as principal
component analysis, canonical correlation analysis, or K-means, (b) efficient algorithms
based on convex optimization have emerged, in particular for large sample sizes, and (c)
kernels for non-vectorial data have been designed for objects like strings, graphs, measures,
etc. A key feature is that they allow the separation of the representation problem (designing
good kernels for non-vectorial data) and the algorithmic/theoretical problems (given a
kernel, how to design, run efficiently and analyze estimation algorithms).

The theoretical analysis of non-parametric least-squares regression within the RKHS
framework is well understood. In particular, regression on input data in R𝑑, 𝑑 > 1, and so-
called Mercer kernels (continuous kernels over a compact set) that lead to dense subspaces
of the space of square-integrable functions and non-parametric estimation (Tsybakov,
2008), has been widely studied in the last decade starting with the works of Smale and
Cucker (2001, 2002) and being further refined (De Vito et al., 2005; Smale and Zhou,
2007) up to optimal rates (Caponnetto and De Vito, 2007; Steinwart et al., 2009; Bach,
2012) for Tikhonov regularization (batch iterative methods were for their part studied in
(Blanchard and Krämer, 2010; Raskutti et al., 2014)). However, the kernel framework goes
beyond Mercer kernels and non-parametric regression; indeed, kernels on non-vectorial
data provide examples where the usual topological assumptions may not be natural, such
as sequences, graphs and measures. Moreover, even finite-dimensional Hilbert spaces may
need a more refined analysis when the dimension of the Hilbert space is much larger than
the number of observations: for example, in modern text and web applications, linear
predictions are performed with a large number of covariates which are equal to zero
with high probability. The sparsity of the representation allows to reduce significantly the
complexity of traditional optimization procedures; however, the finite-dimensional analysis
which ignores the spectral structure of the data often leads to trivial guarantees because
the number of covariates far exceeds the number of observations, while the analysis we
carry out is meaningful (note that in these contexts sparsity of the underlying estimator
is typically not a relevant assumption). In this chapter, we consider minimal assumptions
regarding the input space and the distributions, so that our non-asymptotic results may be
applied to all the cases mentioned above.

In practice, estimation algorithms based on regularized empirical risk minimization
(e.g., penalized least-squares) face two challenges: (a) using the correct regularization
parameter and (b) finding an approximate solution of the convex optimization problems. In
this chapter, we consider these two problems jointly by following a stochastic approximation
framework formulated directly in the RKHS, in which each observation is used only once
and overfitting is avoided by making only a single pass through the data–a form of early
stopping, which has been considered in other statistical frameworks such as boosting (Zhang
and Yu, 2005). While this framework has been considered before (Rosasco et al., 2014;
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Ying and Pontil, 2008; Tarrès and Yao, 2014), the algorithms that are considered either (a)
require two sequences of hyper-parameters (the step-size in stochastic gradient descent and
a regularization parameter) or (b) do not always attain the optimal rates of convergence
for estimating the regression function. In this chapter, we aim to remove simultaneously
these two limitations.

Traditional online stochastic approximation algorithms, as introduced by Robbins and
Monro (Robbins and Monro, 1951), lead in finite-dimensional learning problems (e.g.,
parametric least-squares regression) to stochastic gradient descent methods with step-sizes
decreasing with the number of observations 𝑛, which are typically proportional to 𝑛−𝜁 , with
𝜁 between 1/2 and 1. Short step-sizes (𝜁 = 1) are adapted to well-conditioned problems
(low dimension, low correlations between covariates), while longer step-sizes (𝜁 = 1/2)
are adapted to ill-conditioned problems (high dimension, high correlations) but with a
worse convergence rate—see, e.g., Shalev-Shwartz (2011); Bach and Moulines (2011)
and references therein. More recently Bach and Moulines (2013) showed that constant
step-sizes with averaging could lead to the best possible convergence rate in Euclidean
spaces (i.e., in finite dimensions). In this chapter, we show that using longer step-sizes
with averaging also brings benefits to Hilbert space settings needed for non-parametric
regression.

With our analysis, based on positive definite kernels, under assumptions on both the
objective function and the covariance operator of the RKHS, we derive improved rates of
convergence (Caponnetto and De Vito, 2007), in both the finite horizon setting where the
number of observations is known in advance and our bounds hold for the last iterate (with
exact constants), and the online setting where our bounds hold for each iterate (asymptotic
results only). It leads to an explicit choice of the step-sizes (which play the role of the
regularization parameters) which may be used in stochastic gradient descent, depending
on the number of training examples we want to use and on the assumptions we make.

In this chapter, we make the following contributions:

– We review in Section 2.2 a general though simple algebraic framework for least-
squares regression in RKHS, which encompasses all commonly encountered situations.
This framework however makes unnecessary topological assumptions, which we relax
in Section 2.2.5 (with details in App. A.1).

– We characterize in Section 2.3 the convergence rate of averaged least-mean-squares
(LMS) and show how the proper set-up of the step-size leads to optimal convergence
rates (as they were proved in Caponnetto and De Vito (2007)), extending results
from finite-dimensional (Bach and Moulines, 2013) to infinite-dimensional settings.
The problem we solve here was stated as an open problem by Rosasco et al. (2014)
and Ying and Pontil (2008). Moreover, our results apply as well in the usual finite-
dimensional setting of parametric least-squares regression, showing adaptivity of
our estimator to the spectral decay of the covariance matrix of the covariates (see
Section 2.4.1).

– We compare our new results with existing work, both in terms of rates of convergence
in Section 2.4, and with simulations on synthetic spline smoothing in Section 2.5.

Complete proofs are given in Chapter A. More precisely, minimal assumptions are
presented in Section A.1 and sketches of the proofs are given in Section A.2. Then detailled
proofs are given in Section A.3, and Section A.4.
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2.2 Learning with positive-definite kernels

In this chapter, we consider a general random design regression problem, where observa-
tions (𝑥𝑖, 𝑦𝑖) are independent and identically distributed (i.i.d.) random variables in 𝒳 × 𝒴
drawn from a probability measure 𝜌 on 𝒳 × 𝒴. The set 𝒳 may be any set equipped with a
measure; moreover we consider for simplicity 𝒴 = R and we measure the risk of a function
𝑔 : 𝒳 → R, by the mean square error, that is, 𝜀(𝑔) := E𝜌

[︀
(𝑔(𝑋) − 𝑌 )2]︀.

The function 𝑔 that minimizes 𝜀(𝑔) over all measurable functions is known to be the
conditional expectation, that is, 𝑔𝜌(𝑋) = E[𝑌 |𝑋]. In this chapter we consider formulations
where our estimates lie in a reproducing kernel Hilbert space (RKHS) ℋ with positive
definite kernel 𝐾 : 𝒳 × 𝒳 → R.

2.2.1 Reproducing kernel Hilbert spaces

Throughout this section, we make the following assumption:

(A1) 𝒳 is a compact topological space and ℋ is an RKHS associated with a continuous
kernel 𝐾 on the set 𝒳 .

RKHSs are well-studied Hilbert spaces which are particularly adapted to regression prob-
lems (see, e.g., Berlinet and Thomas-Agnan (2004); Wahba (1990)). They satisfy the
following properties:

1. (ℋ, ⟨·, ·⟩ℋ) is a separable Hilbert space of functions: ℋ ⊂ R𝒳 .

2. ℋ contains all functions 𝐾𝑥 : 𝑡 ↦→ 𝐾(𝑥, 𝑡), for all 𝑥 in 𝒳 .

3. For any 𝑥 ∈ 𝒳 and 𝑓 ∈ ℋ, the reproducing property holds:

𝑓(𝑥) = ⟨𝑓,𝐾𝑥⟩ℋ.

The reproducing property allows to treat non-parametric estimation in the same algebraic
framework as parametric regression. The Hilbert space ℋ is totally characterized by the
positive definite kernel 𝐾 : 𝒳 × 𝒳 → R, which simply needs to be a symmetric function on
𝒳 × 𝒳 such that for any finite family of points (𝑥𝑖)𝑖∈𝐼 in 𝒳 , the |𝐼|×|𝐼|-matrix of kernel
evaluations is positive semi-definite. We provide examples in Section 2.2.6. For simplicity,
we have here made the assumption that 𝐾 is a Mercer kernel, that is, 𝒳 is a compact set
and 𝐾 : 𝒳 × 𝒳 → R is continuous. See Section 2.2.5 for an extension without topological
assumptions.

2.2.2 Random variables

In this chapter, we consider a set 𝒳 and 𝒴 ⊂ R and a distribution 𝜌 on 𝒳 × 𝒴. We denote
by 𝜌𝑋 the marginal law on the space 𝒳 and by 𝜌𝑌 |𝑋=𝑥 the conditional probability measure
on 𝑌 given 𝑥 ∈ 𝒳 . We may use the notations E [𝑓(𝑋)] or E𝜌𝑋 [𝑓(·)] for

∫︀
𝒳 𝑓(𝑥)𝑑𝜌𝑋(𝑥).

Beyond the moment conditions stated below, we will always make the assumption that
the space 𝐿2

𝜌𝑋
of square 𝜌𝑋 -integrable functions defined below is separable (this is the

case in most interesting situations; see Thomson et al. (2000) for more details). Since we
will assume that 𝜌𝑋 has full support1, we will make the usual simplifying identification of

1that is, the smallest closed space of measure 1 in the topological space 𝒳 is 𝒳 itself.
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functions and their equivalence classes (based on equality up to a zero-measure set). We
denote by ‖ · ‖𝐿2

𝜌𝑋
the norm:

‖𝑓‖2
𝐿2

𝜌𝑋
=
∫︁

𝒳
|𝑓(𝑥)|2𝑑𝜌𝑋(𝑥).

The space 𝐿2
𝜌𝑋

is then a Hilbert space with norm ‖ · ‖𝐿2
𝜌𝑋

.
Throughout this section, we make the following simple assumption regarding finiteness

of moments:

(A2) 𝑅2 := sup𝑥∈𝒳 𝐾(𝑥, 𝑥) and E[𝑌 2] are finite; 𝜌𝑋 has full support in 𝒳 .

Note that under these assumptions, any function in ℋ is in 𝐿2
𝜌𝑋

; however this inclusion
is strict in most interesting situations.

2.2.3 Minimization problem

We are interested in minimizing the prediction error 𝜀(𝑓) of a function 𝑓 defined in
Section 2.2. As we are looking for a function with a low prediction error in the particular
function space ℋ, we aim to minimize 𝜀(𝑓) over 𝑓 ∈ ℋ. We have for 𝑓 ∈ 𝐿2

𝜌𝑋
:

𝜀(𝑓) = ‖𝑓‖2
𝐿2

𝜌𝑋
− 2

⟨
𝑓,

∫︁
𝒴
𝑦𝑑𝜌𝑌 |𝑋=·(𝑦)

⟩
𝐿2

𝜌𝑋

+ E[𝑌 2] (2.1)

= ‖𝑓‖2
𝐿2

𝜌𝑋
− 2 ⟨𝑓,E [𝑌 |𝑋 = ·]⟩𝐿2

𝜌𝑋
+ E[𝑌 2].

A minimizer 𝑔 of 𝜀(𝑔) over 𝐿2
𝜌𝑋

is known to be such that 𝑔(𝑋) = E[𝑌 |𝑋]. Such a function
is generally referred to as the regression function, and denoted 𝑔𝜌 as it only depends on
𝜌. It is moreover unique (as an element of 𝐿2

𝜌𝑋
). An important property of the prediction

error is that the excess risk may be expressed as a squared distance to 𝑔𝜌, i.e.,

∀𝑓 ∈ 𝐿2
𝜌𝑋
, 𝜀(𝑓) − 𝜀(𝑔𝜌) = ‖𝑓 − 𝑔𝜌‖2

𝐿2
𝜌𝑋
. (2.2)

A key feature of our analysis is that we only considered ‖𝑓 − 𝑔𝜌‖2
𝐿2

𝜌𝑋

as a measure of

performance and do not consider convergences in stricter norms (which are not true in
general). This allows us to neither assume that 𝑔𝜌 is in ℋ nor that ℋ is dense in 𝐿2

𝜌𝑋
. We

thus need to define a notion of the best estimator in ℋ. We first define the closure 𝐹 (with
respect to ‖ · ‖𝐿2

𝜌𝑋
) of any set 𝐹 ⊂ 𝐿2

𝜌𝑋
as the set of limits in 𝐿2

𝜌𝑋
of sequences in 𝐹 . The

space ℋ is a closed and convex subset in 𝐿2
𝜌𝑋

. We can thus define 𝑔ℋ = arg min𝑓∈ ℋ 𝜀(𝑔),
as the orthogonal projection of 𝑔𝜌 on ℋ, using the existence of the projection on any closed
convex set in a Hilbert space. See Proposition A.1 in Section A.1 for details. Of course we
do not have 𝑔ℋ ∈ ℋ, that is the infimum in ℋ is in general not attained.

Estimation from 𝑛 i.i.d. observations builds a sequence (𝑔𝑛)𝑛∈N in ℋ. We will prove
under suitable conditions that such an estimator satisfies weak consistency, that is 𝑔𝑛 ends
up predicting as well as 𝑔ℋ:

E [𝜀(𝑔𝑛) − 𝜀(𝑔ℋ)] 𝑛→∞−−−→ 0 ⇔ ‖𝑔𝑛 − 𝑔ℋ‖ℒ2
𝜌𝑋

𝑛→∞−−−→ 0.

Seen as a function of 𝑓 ∈ ℋ, our loss function 𝜀 is not coercive (i.e., not strongly
convex), as our covariance operator (see definition below) Σ has no minimal strictly
positive eigenvalue (the sequence of eigenvalues decreases to zero). As a consequence,
even if 𝑔ℋ ∈ ℋ, 𝑔𝑛 may not converge to 𝑔ℋ in ℋ, and when 𝑔ℋ /∈ ℋ, we shall even have
‖𝑔𝑛‖ℋ → ∞.
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2.2.4 Covariance operator

We now define the covariance operator for the space ℋ and probability distribution 𝜌𝑋 . The
spectral properties of such an operator have appeared to be a key point to characterize
the convergence rates of estimators (Smale and Cucker, 2001; Smale and Zhou, 2007;
Caponnetto and De Vito, 2007).

We implicitly define (via Riesz’ representation theorem) a linear operator Σ : ℋ → ℋ
through

∀(𝑓, 𝑔) ∈ ℋ2, ⟨𝑓,Σ𝑔⟩ℋ = E [𝑓(𝑋)𝑔(𝑋)] =
∫︁

𝒳
𝑓(𝑥)𝑔(𝑥)𝑑𝜌𝑋(𝑥).

This operator is the covariance operator (defined on the Hilbert space ℋ). Using the
reproducing property, we have:

Σ = E [𝐾𝑋 ⊗𝐾𝑋 ] ,

where for any elements 𝑔, ℎ ∈ ℋ, we denote by 𝑔 ⊗ ℎ the operator from ℋ to ℋ defined as:

𝑔 ⊗ ℎ : 𝑓 ↦→ ⟨𝑓, ℎ⟩ℋ 𝑔.

Note that this expectation is formally defined as a Bochner expectation (an extension of
Lebesgue integration theory to Banach spaces, see Mikusinski and Weiss (2014)), in ℒ(ℋ)
the set of endomorphisms of ℋ.

In finite dimension, i.e., ℋ = R𝑑, for 𝑔, ℎ ∈ R𝑑, 𝑔 ⊗ ℎ may be identified to a rank-one
matrix, that is, 𝑔 ⊗ ℎ = 𝑔ℎ⊤ =

(︁
(𝑔𝑖ℎ𝑗)16𝑖,𝑗6𝑑

)︁
∈ R𝑑×𝑑 as for any 𝑓 , (𝑔ℎ⊤)𝑓 = 𝑔(ℎ⊤𝑓) =

⟨𝑓, ℎ⟩ℋ𝑔. In other words, 𝑔 ⊗ ℎ is a linear operator, whose image is included in Vect(𝑔),
the linear space spanned by 𝑔. Thus in finite dimension, Σ is the usual (non-centered)
covariance matrix.

We have defined the covariance operator on the Hilbert space ℋ. If 𝑓 ∈ ℋ, we have for
all 𝑧 ∈ 𝒳 , using the reproducing property:

E[𝑓(𝑋)𝐾(𝑋, 𝑧)] = E[𝑓(𝑋)𝐾𝑧(𝑋)] = ⟨𝐾𝑧,Σ𝑓⟩ℋ = (Σ𝑓)(𝑧),

which shows that the operator Σ may be extended to any square-integrable function
𝑓 ∈ 𝐿2

𝜌𝑋
. In the following, we extend such an operator as an endomorphism 𝑇 from 𝐿2

𝜌𝑋

to 𝐿2
𝜌𝑋

.

Definition 2.1 (Extended covariance operator). Assume (A1-2). We define the operator 𝑇
as follows:

𝑇 : 𝐿2
𝜌𝑋

→ 𝐿2
𝜌𝑋

𝑔 ↦→
∫︁

𝒳
𝑔(𝑡) 𝐾𝑡 𝑑𝜌𝒳 (𝑡),

so that for any 𝑧 ∈ 𝒳 , 𝑇 (𝑔)(𝑧) =
∫︁

𝒳
𝑔(𝑥) 𝐾(𝑥, 𝑧) 𝑑𝜌𝒳 (𝑡) = E[𝑔(𝑋)𝐾(𝑋, 𝑧)].

From the discussion above, if 𝑓 ∈ ℋ ⊂ 𝐿2
𝜌𝑋

, then 𝑇𝑓 = Σ𝑓 . We give here some of
the most important properties of 𝑇 . The operator 𝑇 (which is an endomorphism of the
separable Hilbert space 𝐿2

𝜌𝑋
) may be reduced in some Hilbertian eigenbasis of 𝐿2

𝜌𝑋
. It

allows us to define the power of such an operator 𝑇 𝑟, which will be used to quantify the
regularity of the function 𝑔ℋ. See proof in Section A.3.2, Proposition A.19.
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Proposition 2.2 (Eigen-decomposition of 𝑇 ). Assume (A1-2). 𝑇 is a bounded self-adjoint
semi-definite positive operator on 𝐿2

𝜌𝑋
, which is trace-class. There exists a Hilbertian eigenbasis

(𝜑𝑖)𝑖∈𝐼 of the orthogonal supplement 𝑆 of the null space Ker(𝑇 ), with summable strictly
positive eigenvalues (𝜇𝑖)𝑖∈𝐼 . That is:

– ∀𝑖 ∈ 𝐼, 𝑇𝜑𝑖 = 𝜇𝑖𝜑𝑖, (𝜇𝑖)𝑖∈𝐼 strictly positive such that
∑︀

𝑖∈𝐼 𝜇𝑖 < ∞.

– 𝐿2
𝜌𝑋

= Ker(𝑇 )
⊥
⊕ 𝑆, that is, 𝐿2

𝜌𝑋
is the orthogonal direct sum of Ker(𝑇 ) and 𝑆.

When the space 𝑆 has finite dimension, then 𝐼 has finite cardinality, while in general
𝐼 is countable. Moreover, the null space Ker(𝑇 ) may be either reduced to {0} (this is
the more classical setting and such an assumption is often made), finite-dimensional (for
example when the kernel has zero mean, thus constant functions are in 𝑆) or infinite-
dimensional (e.g., when the kernel space only consists in even functions, the whole space
of odd functions is in 𝑆).

Moreover, the linear operator 𝑇 allows to relate 𝐿2
𝜌𝑋

and ℋ in a very precise way. For
example, when 𝑔 ∈ ℋ, we immediately have 𝑇𝑔 = Σ𝑔 ∈ ℋ and ⟨𝑔, 𝑇𝑔⟩ℋ = E𝑔(𝑋)2 =
‖𝑔‖2

𝐿2
𝜌𝑋

. As we formally state in the following propositions, this essentially means that 𝑇 1/2

will be an isometry from 𝐿2
𝜌𝑋

to ℋ. We first show that the linear operator 𝑇 happens to
have an image included in ℋ, and that the eigenbasis of 𝑇 in 𝐿2

𝜌𝑋
may also be seen as

eigenbasis of Σ in ℋ (See proof in Section A.3.2, Proposition A.18):

Proposition 2.3 (Decomposition of Σ). Assume (A1-2). Σ : ℋ → ℋ is injective. The
image of 𝑇 is included in ℋ: Im(𝑇 ) ⊂ ℋ. Moreover, for any 𝑖 ∈ 𝐼, 𝜑𝑖 = 1

𝜇𝑖
𝑇𝜑𝑖 ∈ ℋ , thus(︁

𝜇
1/2
𝑖 𝜑𝑖

)︁
𝑖∈𝐼

is an orthonormal eigen-system of Σ and an Hilbertian basis of ℋ, i.e., for any 𝑖
in 𝐼, Σ𝜑𝑖 = 𝜇𝑖𝜑𝑖.

This proposition will be generalized under relaxed assumptions (in particular as Σ will
no more be injective, see Section 2.2.5 and Section A.1).

We may now define all powers 𝑇 𝑟 (they are always well defined because the sequence
of eigenvalues is upper-bounded):

Definition 2.4 (Powers of 𝑇 ). We define, for any 𝑟 > 0, 𝑇 𝑟 : 𝐿2
𝜌𝑋

→ 𝐿2
𝜌𝑋

, for any ℎ ∈ Ker(𝑇 )
and (𝑎𝑖)𝑖∈𝐼 such that

∑︀
𝑖∈𝐼 𝑎

2
𝑖 < ∞, through: 𝑇 𝑟 (ℎ+

∑︀
𝑖∈𝐼 𝑎𝑖𝜑𝑖) =

∑︀
𝑖∈𝐼 𝑎𝑖𝜇

𝑟
𝑖𝜑𝑖. Moreover,

for any 𝑟 > 0, 𝑇 𝑟 may be defined as a bijection from 𝑆 into Im(𝑇 𝑟). We may thus define its
unique inverse 𝑇−𝑟 : Im(𝑇 𝑟) → 𝑆.

The following proposition is a consequence of Mercer’s theorem (Smale and Cucker,
2001; Aronszajn, 1950). It describes how the space ℋ is related to the image of operator
𝑇 1/2.

Proposition 2.5 (Isometry for Mercer kernels). Under assumptions (A1,2), ℋ = 𝑇 1/2
(︁
𝐿2

𝜌𝑋

)︁
and 𝑇 1/2 : 𝑆 → ℋ is an isometrical isomorphism.

The proposition has the following consequences:

Corollary 2.6. Assume (A1, A2):

– For any 𝑟 > 1/2, 𝑇 𝑟(𝑆) ⊂ ℋ, because 𝑇 𝑟(𝑆) ⊂ 𝑇 1/2(𝑆), that is, with large enough
powers 𝑟, the image of 𝑇 𝑟 is in the Hilbert space.
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– ∀𝑟 > 0, 𝑇 𝑟(𝐿2
𝜌𝑋

) = 𝑆 = 𝑇 1/2(𝐿2
𝜌𝑋

) = ℋ, because (a) 𝑇 1/2(𝐿2
𝜌𝑋

) = ℋ and (b) for
any 𝑟 > 0, 𝑇 𝑟(𝐿2

𝜌𝑋
) = 𝑆. In other words, elements of ℋ (on which our minimization

problem attains its minimum), may seen as limits (in 𝐿2
𝜌𝑋

) of elements of 𝑇 𝑟(𝐿2
𝜌𝑋

), for
any 𝑟 > 0.

– ℋ is dense in 𝐿2
𝜌𝑋

if and only if 𝑇 is injective (which is equivalent to ker(𝑇 ) = {0})

The sequence of spaces {𝑇 𝑟(𝐿2
𝜌𝑋

)}𝑟>0 is thus a decreasing (when 𝑟 is increasing)
sequence of subspaces of 𝐿2

𝜌𝑋
such that any of them is dense in ℋ, and 𝑇 𝑟(𝐿2

𝜌𝑋
) ⊂ ℋ if

and only if 𝑟 > 1/2.
In the following, the regularity of the function 𝑔ℋ will be characterized by the fact that

𝑔ℋ belongs to the space 𝑇 𝑟(𝐿2
𝜌𝑋

) (and not only to its closure), for a specific 𝑟 > 0 (see
Section 2.2.7). This space may be described depending on the eigenvalues and eigenvectors
as

𝑇 𝑟(𝐿2
𝜌𝑋

) =
{︃ ∞∑︁

𝑖=1
𝑏𝑖𝜑𝑖 such that

∞∑︁
𝑖=1

𝑏2
𝑖

𝜇2𝑟
𝑖

< ∞
}︃
.

We may thus see the spaces 𝑇 𝑟(𝐿2
𝜌𝑋

) as spaces of sequences with various decay conditions.

2.2.5 Minimal assumptions

In this section, we describe under which “minimal” assumptions the analysis holds. We
prove that the set 𝒳 may only be assumed to be equipped with a measure, the kernel 𝐾
may only be assumed to have bounded expectation E𝜌𝐾(𝑋,𝑋) and the output 𝑌 may only
be assumed to have finite variance. That is:

(A1’) ℋ is a separable RKHS associated with kernel 𝐾 on the set 𝒳 .

(A2’) E [𝐾(𝑋,𝑋)] and E[𝑌 2] are finite.

In this section, we have to distinguish the set of square 𝜌𝑋 -integrable functions ℒ2
𝜌𝑋

and
its quotient 𝐿2

𝜌𝑋
that makes it a separable Hilbert space. We define 𝑝 the projection from

ℒ2
𝜌𝑋

into 𝐿2
𝜌𝑋

(precise definitions are given in Section A.1). Indeed it is no more possible
to identify the space ℋ, which is a subset of ℒ2

𝜌𝑋
, and its canonical projection 𝑝(ℋ) in 𝐿2

𝜌𝑋
.

Minimality: The separability assumption is necessary to be able to expand any element
as an infinite sum, using a countable orthonormal family (this assumption is satisfied in
almost all cases, for instance it is simple as soon as 𝒳 admits a topology for which it is
separable and functions in ℋ are continuous, see Berlinet and Thomas-Agnan (2004) for
more details). Note that we do not make any topological assumptions regarding the set 𝒳 .
We only assume that it is equipped with a probability measure.

Assumption (A2’) is needed to ensure that every function in ℋ is square-integrable, that
is, E[𝐾(𝑋,𝑋)] < ∞ if and only if ℋ ⊂ ℒ2

𝜌𝑋
; for example, for 𝑓 = 𝐾𝑧, 𝑧 ∈ 𝒳 , ‖𝐾𝑧‖2

𝐿2
𝜌𝑋

=
E[𝐾(𝑋, 𝑧)2] 6 𝐾(𝑧, 𝑧)E𝐾(𝑋,𝑋) (see more details in the Section A.3, Proposition A.7).

Our assumptions are sufficient to analyze the minimization of 𝜀(𝑓) with respect to
𝑓 ∈ ℋ and seem to allow the widest generality.

Comparison: These assumptions will include the previous setting, but also recover
measures without full support (e.g., when the data lives in a small subspace of the whole
space) and kernels on discrete objects (with non-finite cardinality).

Moreover, (A1’), (A2’) are strictly weaker than (A1), (A2). In previous work, (A2’)
was sometimes replaced by the stronger assumptions sup𝑥∈𝒳 𝐾(𝑥, 𝑥) < ∞ (Rosasco et al.,
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2014; Ying and Pontil, 2008; Tarrès and Yao, 2014) and |𝑌 | bounded (Rosasco et al.,
2014; Tarrès and Yao, 2014). Note that in functional analysis, the weaker hypothesis∫︀

𝒳×𝒳 𝑘(𝑥, 𝑥′)2𝑑𝜌𝑋(𝑥)𝑑𝜌𝑋(𝑥′) < ∞ is often used (Brezis, 1983), but it is not adapted to the
statistical setting.

Main differences: The main difference here is that we cannot identify ℋ and 𝑝(ℋ): there
may exist functions 𝑓 ∈ ℋ ∖ {0} such that ‖𝑓‖ℒ2

𝜌𝑋
= 0. This may for example occur if the

support of 𝜌𝑋 is strictly included in 𝒳 , and 𝑓 is zero on this support, but not identically
zero. See the Section A.3.5 for more details.

As a consequence, Σ is no more injective and we do not have Im(𝑇 1/2) = ℋ anymore.
We thus denote S an orthogonal supplement of the null space Ker(Σ). As we also need to
be careful not to confuse ℒ2

𝜌𝑋
and 𝐿2

𝜌𝑋
, we define an extension 𝒯 of Σ from ℒ2

𝜌𝑋
into ℋ,

then 𝑇 = 𝑝 ∘ 𝒯 . We can define for 𝑟 > 1/2 the power operator 𝒯 𝑟 of 𝒯 (from 𝐿2
𝜌𝑋

into ℋ),
see App. A.1 for details.

Conclusion: Our problem has the same behaviour under such assumptions. Propo-
sition 2.2 remains unchanged. Decompositions in Prop. 2.3 and Corollary 2.6 must be
slightly adapted (see Proposition A.3 and Corollary A.5 in Section A.1 for details). Finally,
Proposition 2.5 is generalized by the next proposition, which states that 𝑝(S ) = 𝑝(ℋ) and
thus 𝑆 and 𝑝(ℋ) are isomorphic (see proof in Section A.3.2, Proposition A.19):

Proposition 2.7 (Isometry between supplements). 𝒯 1/2 : 𝑆 → S is an isometry. Moreover,
Im(𝑇 1/2) = 𝑝(ℋ) and 𝑇 1/2 : 𝑆 → 𝑝(ℋ) is an isomorphism.

We can also derive a version of Mercer’s theorem, which does not make anymore
assumptions that are required for defining RKHSs. As we will not use it in this article, this
proposition is only given in Section A.1.

Convergence results: In all convergence results stated below, assumptions (A1, A2) may
be replaced by assumptions (A1’, A2’).

2.2.6 Examples

The property ℋ = 𝑆, stated after Proposition 2.5, is important to understand what the space
ℋ is, as we are minimizing over this closed and convex set. As a consequence the space ℋ
is dense in 𝐿2

𝜌𝑋
if and only if 𝑇 is injective (or equivalently, Ker(𝑇 ) = {0} ⇔ 𝑆 = 𝐿2

𝜌𝑋
). We

detail below a few classical situations in which different configurations for the “inclusion”
ℋ ⊂ ℋ ⊂ 𝐿2

𝜌𝑋
appear:

1. Finite-dimensional setting with linear kernel: in finite dimension, with 𝒳 = R𝑑

and 𝐾(𝑥, 𝑦) = 𝑥⊤𝑦, we have ℋ = R𝑑, with the scalar product in ⟨𝑢, 𝑣⟩ℋ =
∑︀𝑑

𝑖=1 𝑢𝑖𝑣𝑖.
This corresponds to usual parametric least-squares regression. If the support of 𝜌𝑋

has non-empty interior, then ℋ = ℋ: 𝑔ℋ is the best linear estimator. Moreover, we
have ℋ = ℋ  𝐿2

𝜌𝑋
: indeed Ker(𝑇 ) is the set of functions such that E𝑋𝑓(𝑋) = 0

(which is a large space).

2. Translation-invariant kernels: for instance the Gaussian kernel over 𝒳 = R𝑑, with
𝑋 following a distribution with full support in R𝑑: in such a situation we have
ℋ  ℋ = 𝐿2

𝜌𝑋
. This last equality holds more generally for all universal kernels, which

include all kernels of the form 𝐾(𝑥, 𝑦) = 𝑞(𝑥− 𝑦) where 𝑞 has a summable strictly
positive Fourier transform (Micchelli et al., 2006; Sriperumbudur et al., 2011). These
kernels are exactly the kernels such that 𝑇 is an injective endomorphism of 𝐿2

𝜌𝑋
.
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3. Splines over the circle: When 𝑋 ∼ 𝒰 [0; 1] and ℋ is the set of periodic 𝑚-times
weakly differentiable functions (see Section 2.5), we have in general ℋ  ℋ  𝐿2

𝜌𝑋
.

In such a case, ker(𝑇 ) = span(𝑥 ↦→ 1) = {𝑥 ↦→ 𝑐, 𝑐 ∈ R}, and ℋ⊕ span(𝑥 ↦→ 1) = 𝐿2
𝜌𝑋

.
This means we can approximate a function in 𝐿2

𝜌𝑋
by functions in ℋ if and only if

this function has zero-mean.

Many examples and more details may be found in Shawe-Taylor and Cristianini (2004);
Aronszajn (1950); Vert (2014). In particular, kernels on non-vectorial objects may be
defined (e.g., sequences, graphs or measures).

2.2.7 Convergence rates

In order to be able to establish rates of convergence in this infinite-dimensional setting,
we have to make assumptions on the objective function and on the covariance operator
eigenvalues. In order to account for all cases (finite and infinite dimensions), we now
consider eigenvalues ordered in non-increasing order, that is, we assume that the set 𝐼 is
either {1, . . . , 𝑑} if the underlying space is 𝑑-dimensional or N* if the underlying space has
infinite dimension.

(A3) We denote (𝜇𝑖)𝑖∈𝐼 the sequence of non-zero eigenvalues of the operator 𝑇 , in de-
creasing order. We assume 𝜇𝑖 6 𝑠2

𝑖𝛼 for some 𝛼 > 1 (so that tr(𝑇 ) < ∞), with
𝑠 ∈ R+.

(A4) 𝑔ℋ ∈ 𝑇 𝑟
(︁
𝐿2

𝜌𝑋

)︁
with 𝑟 > 0, and as a consequence ‖𝑇−𝑟(𝑔ℋ)‖𝐿2

𝜌𝑋
< ∞.

We chose such assumptions in order to make the comparison with the existing literature
as easy as possible, for example Caponnetto and De Vito (2007); Ying and Pontil (2008).
However, some other assumptions may be found as in Bach (2012); Hsu et al. (2014).

Dependence on 𝛼 and 𝑟. The two parameters 𝑟 and 𝛼 intuitively parametrize the
strengths of our assumptions:

– In assumption (A3) a bigger 𝛼 makes the assumption stronger: it means the repro-
ducing kernel Hilbert space is smaller, that is if (A3) holds with some constant 𝛼,
then it also holds for any 𝛼′ < 𝛼. Moreover, if 𝑇 is reduced in the Hilbertian basis
(𝜑𝑖)𝑖 of 𝐿2

𝜌𝑋
, we have an effective search space 𝑆 =

{︀∑︀∞
𝑖=1 𝑏𝑖𝜑𝑖/

∑︀∞
𝑖=1

𝑏2
𝑖

𝜇𝑖
< ∞

}︀
: the

smaller the eigenvalues, the smaller the space. Note that since tr(𝑇 ) is finite, (A3)
is always true for 𝛼 = 1. This assumption is generally referred to as the capacity
condition.

– In assumption (A4), for a fixed 𝛼, a bigger 𝑟 makes the assumption stronger, that
is the function 𝑔ℋ is actually smoother. Indeed, considering that (A4) may be
rewritten 𝑔ℋ ∈ 𝑇 𝑟

(︀
𝐿2

𝜌𝑋

)︀
and for any 𝑟 < 𝑟′, 𝑇 𝑟′(︀

𝐿2
𝜌𝑋

)︀
⊂ 𝑇 𝑟

(︀
𝐿2

𝜌𝑋

)︀
. In other words,{︀

𝑇 𝑟
(︁
𝐿2

𝜌𝑋

)︁ }︀
𝑟≥0 are decreasing (𝑟 growing) subspaces of 𝐿2

𝜌𝑋
.

For 𝑟 = 1/2, 𝑇 1/2(︀𝐿2
𝜌𝑋

)︀
= ℋ; moreover, for 𝑟 > 1/2, our best approximation function

𝑔ℋ ∈ ℋ is in fact in ℋ, that is the optimization problem in the RKHS ℋ is attained by
a function of finite norm. However for 𝑟 < 1/2 it is not attained. This assumption is
generally referred to as the source condition.



2.3. Stochastic approximation in Hilbert spaces 50

– Furthermore, it is worth pointing the stronger assumption which is often used in the
finite dimensional context, namely tr

(︁
Σ1/𝛼

)︁
=
∑︀

𝑖∈𝐼 𝜇
1/𝛼
𝑖 finite. It turns out that this

is a stronger assumption, indeed, since we have assumed that the eigenvalues (𝜇𝑖)
are arranged in non-increasing order, if tr

(︁
Σ1/𝛼

)︁
is finite, then (A3) is satisfied for

𝑠2 =
[︀
2 tr

(︁
Σ1/𝛼

)︁ ]︀𝛼. Such an assumption appears for example in Corollary 2.15.

Related assumptions. The assumptions (A3) and (A4) are adapted to our theoretical
results, but some stricter assumptions are often used, that make comparison with existing
work more direct. For comparison purposes, we will also use:

(a3) For any 𝑖 ∈ 𝐼 = N, 𝑢2 6 𝑖𝛼𝜇𝑖 6 𝑠2 for some 𝛼 > 1 and 𝑢, 𝑠 ∈ R+.

(a4) We assume the coordinates (𝜈𝑖)𝑖∈N of 𝑔ℋ ∈ 𝐿2
𝜌𝑋

in the eigenbasis (𝜑𝑖)𝑖∈N (for ‖.‖𝐿2
𝜌𝑋

)

of 𝑇 are such that 𝜈𝑖𝑖
𝛿/2 6𝑊 , for some 𝛿 > 1 and 𝑊 ∈ R+ (so that ‖𝑔ℋ‖𝐿2

𝜌𝑋
< ∞).

Assumption (a3) directly imposes that the eigenvalues of 𝑇 decay at rate 𝑖−𝛼 (which
imposes that there are infinitely many), and thus implies (A3). Together, assumptions
(a3)(𝛼) and (a4)(𝛿), imply assumptions (A3)(𝛼) and (A4)(𝑟), with any 𝑟 such that 𝛿 >
1 + 2𝛼𝑟 (and assumption (A4)(𝑟) does not stand if 𝛿 < 1 + 2𝛼𝑟). Indeed, we have

‖𝑇−𝑟𝑔ℋ‖2
𝐿2

𝜌𝑋
=
∑︁
𝑖∈N

𝜈2
𝑖 𝜇

−2𝑟
𝑖 = Θ

(︃
𝑊 2

𝑢4𝑟

∑︁
𝑖∈N

𝑖−𝛿+2𝛼𝑟

)︃
,

which is finite if and only if 2𝛼𝑟 + 1 < 𝛿. Thus, the supremum element of the set of 𝑟 such
that (A4) holds is such that 𝛿 = 1 + 2𝛼𝑟. Thus, when comparing assumptions (A3-4) and
(a3-4), we will often make the identification above, that is, 𝛿 = 1 + 2𝛼𝑟.

The main advantage of the new assumptions is their interpretation when the basis
(𝜑𝑖)𝑖∈𝐼 is common for several RKHSs (such as the Fourier basis for splines, see Section 2.5):
(a4) describes the decrease of the coordinates of the best function 𝑔ℋ ∈ 𝐿2

𝜌𝑋
independently

of the chosen RKHS. Thus, the parameter 𝛿 characterizes the prediction function, while the
parameter 𝛼 characterizes the RKHS.

2.3 Stochastic approximation in Hilbert spaces

In this section, we consider estimating a prediction function 𝑔 ∈ ℋ from observed data,
and we make the following assumption:

(A5) For 𝑛 > 1, the random variables (𝑥𝑛, 𝑦𝑛) ∈ 𝒳 × R are independent and identically
distributed with distribution 𝜌.

Our goal is to estimate a function 𝑔 ∈ ℋ from data, such that 𝜀(𝑔) = E(𝑌 − 𝑔(𝑋))2 is as
small as possible. As shown in Section 2.2, this is equivalent to minimizing ‖𝑔 − 𝑔ℋ‖2

𝐿2
𝜌𝑋

.

Among others, two generic approaches to define an estimator are by regularization or by
stochastic approximation (and combinations thereof). See also approaches by early-stopped
gradient descent on the empirical risk in Yao et al. (2007).
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2.3.1 Regularization and linear systems

Given 𝑛 observations, regularized empirical risk minimization corresponds to minimizing
with respect to 𝑔 ∈ ℋ the following objective function:

1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑔(𝑥𝑖))2 + 𝜆‖𝑔‖2
ℋ.

Although the problem is formulated in a potentially infinite-dimensional Hilbert space,
through the classical representer theorem (Schölkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Kimeldorf and Wahba, 1971), the unique (if 𝜆 > 0) optimal solution may
be expressed as 𝑔 =

∑︀𝑛
𝑖=1 𝑎𝑖𝐾𝑥𝑖 , and 𝑎 ∈ R𝑛 may be obtained by solving the linear system

(K + 𝑛𝜆𝐼)𝑎 = y, where K ∈ R𝑛×𝑛 is the kernel matrix, a.k.a. the Gram matrix, composed
of pairwise kernel evaluations K𝑖𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, and y is the 𝑛-dimensional
vector of all 𝑛 responses 𝑦𝑖, 𝑖 = 1, . . . , 𝑛.

The running-time complexity to obtain 𝑎 ∈ R𝑛 is typically 𝑂(𝑛3) if no assumptions
are made, but several algorithms may be used to lower the complexity and obtain an
approximate solution, such as conjugate gradient (Golub and Van Loan, 1996) or column
sampling (a.k.a. Nyström method) (Mahoney, 2011; Williams and Seeger, 2001; Bach,
2012).

In terms of convergence rates, assumptions (a3-4) allow to obtain convergence rates
that decompose 𝜀(𝑔)−𝜀(𝑔ℋ) = ‖𝑔−𝑔ℋ‖2

𝐿2
𝜌𝑋

as the sum of two asymptotic terms (Caponnetto

and De Vito, 2007; Hsu et al., 2014; Bach, 2012):

– Variance term: 𝑂
(︀
𝜎2𝑛−1𝜆−1/𝛼

)︀
, which is decreasing with 𝜆, where 𝜎2 characterizes

the noise variance, for example, in the homoscedastic case (i.i.d. additive noise), the
marginal variance of the noise; see assumption (A6) for the detailed assumption that
we need in our stochastic approximation context.

– Bias term: 𝑂
(︀
𝜆min{(𝛿−1)/𝛼,2})︀, which is increasing with 𝜆. Note that the corresponding

𝑟 from assumptions (A3-4) is 𝑟 = (𝛿−1)/2𝛼, and the bias term becomes proportional
to 𝜆min{2𝑟,2}.

There are then two regimes:

– Optimal predictions: If 𝑟 < 1, then the optimal value of 𝜆 (that minimizes the
sum of two terms and makes them asymptotically equivalent) is proportional to
𝑛−𝛼/(2𝑟𝛼+1) = 𝑛−𝛼/𝛿 and the excess prediction error ‖𝑔−𝑔ℋ‖2

𝐿2
𝜌𝑋

= 𝑂
(︀
𝑛−2𝛼𝑟/(2𝛼𝑟+1))︀ =

𝑂
(︀
𝑛−1+1/𝛿

)︀
, and the resulting procedure is then “optimal” in terms of estimation of

𝑔ℋ in 𝐿2
𝜌𝑋

(see Section 2.4 for details).

– Saturation: If 𝑟 > 1, where the optimal value of 𝜆 (that minimizes the sum of two
terms and makes them equivalent) is proportional to 𝑛−𝛼/(2𝛼+1), and the excess pre-
diction error is less than 𝑂

(︀
𝑛−2𝛼/(2𝛼+1))︀, which is suboptimal. Although assumption

(A4) is valid for a larger 𝑟, the rate is the same than if 𝑟 = 1.

In this chapter, we consider a stochastic approximation framework with improved
running-time complexity and similar theoretical behavior as regularized empirical risk
minimization, with the advantages of (a) needing a single pass through the data and (b)
simple assumptions.
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2.3.2 Stochastic approximation

Using the reproducing property, we have for any 𝑔 ∈ ℋ, 𝜀(𝑔) = E(𝑌 − 𝑔(𝑋))2 =
E(𝑌 − ⟨𝑔,𝐾𝑋⟩ℋ)2, with gradient (defined with respect to the dot-product in ℋ) ∇𝜀(𝑔) =
−2E

[︀
(𝑌 − ⟨𝑔,𝐾𝑋⟩ℋ)𝐾𝑋

]︀
.

Thus, for each pair of observations (𝑥𝑛, 𝑦𝑛), we have ∇𝜀(𝑔) = −2E
[︀
(𝑦𝑛−⟨𝑔,𝐾𝑥𝑛⟩ℋ)𝐾𝑥𝑛

]︀
,

and thus, the quantity (⟨𝑔,𝐾𝑥𝑛⟩ℋ − 𝑦𝑛)𝐾𝑥𝑛 = (𝑔(𝑥𝑛) − 𝑦𝑛)𝐾𝑥𝑛 is an unbiased stochastic
(half) gradient. We thus consider the stochastic gradient recursion, in the Hilbert space ℋ,
started from a function 𝑔0 ∈ ℋ (taken to be zero in the following):

𝑔𝑛 = 𝑔𝑛−1 − 𝛾𝑛
[︀
⟨𝑔𝑛−1,𝐾𝑥𝑛⟩ℋ − 𝑦𝑛

]︀
𝐾𝑥𝑛 = 𝑔𝑛−1 − 𝛾𝑛

[︀
𝑔𝑛−1(𝑥𝑛) − 𝑦𝑛

]︀
𝐾𝑥𝑛 ,

where 𝛾𝑛 is the step-size.
We may also apply the recursion using representants. Indeed, if 𝑔0 = 0, which we now

assume, then for any 𝑛 > 1,

𝑔𝑛 =
𝑛∑︁

𝑖=1
𝑎𝑖𝐾𝑥𝑖 ,

with the following recursion on the sequence (𝑎𝑛)𝑛>1:

𝑎𝑛 = −𝛾𝑛(𝑔𝑛−1(𝑥𝑛) − 𝑦𝑛) = −𝛾𝑛

(︃
𝑛−1∑︁
𝑖=1

𝑎𝑖𝐾(𝑥𝑛, 𝑥𝑖) − 𝑦𝑛

)︃
.

We also output the averaged iterate defined as

𝑔𝑛 = 1
𝑛+ 1

𝑛∑︁
𝑘=0

𝑔𝑘 = 1
𝑛+ 1

𝑛∑︁
𝑘=1

(︁ 𝑘∑︁
𝑗=1

𝑎𝑗𝐾𝑥𝑗

)︁
. (2.3)

Running-time complexity. To compute 𝑔𝑛, we need 𝑛 steps of stochastic approximation.
The running time complexity is 𝑂(𝑖) for iteration 𝑖—if we assume that kernel evaluations
are 𝑂(1), and thus 𝑂(𝑛2) after 𝑛 steps. This is a serious limitation for practical applications.
Several authors have considered expanding 𝑔𝑛 on a subset of all (𝐾𝑥𝑖), which allows
to bring down the complexity of each iteration and obtain an overall linear complexity
𝑂(𝑛) (Dekel et al., 2005; Bordes et al., 2005), but this comes at the expense of not obtaining
the sharp generalization errors that we obtain in this chapter. Note that when studying
regularized least-squares problem (i.e., adding a penalization term), one has to update all
the coefficients (𝑎𝑖)16𝑖6𝑛 at step 𝑛, while in our situation, only 𝑎𝑛 is computed at step 𝑛.

Relationship to previous works. Similar algorithms have been studied before (Rosasco
et al., 2014; Ying and Pontil, 2008; Kivinen et al., 2004; Yao, 2006; Zhang, 2004), under
various forms. Especially, in Tarrès and Yao (2014); Kivinen et al. (2004); Yao (2006);
Zhang (2004) a regularization term is added to the loss function (thus considering the
following problem: arg min𝑓∈ℋ 𝜀(𝑓) + 𝜆||𝑓 ||2𝐾). In Rosasco et al. (2014); Ying and Pontil
(2008), neither regularization nor averaging procedure are considered, but in the second
case, multiple passes through the data are considered. In Zhang (2004), a non-regularized
averaged procedure equivalent to ours is considered. However, the step-sizes 𝛾𝑛 which are
proposed, as well as the corresponding analysis, are different. Our step-sizes are larger and
our analysis uses more directly the underlying linear algebra to obtain better rates (while
the proof of Zhang (2004) is applicable to all smooth losses).
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Step-sizes. We are mainly interested in two different types of step-sizes (a.k.a. learning
rates): the sequence (𝛾𝑖)16𝑖6𝑛 may be either:

1. a subsequence of a universal sequence (𝛾𝑖)𝑖∈N, we refer to this situation as the “online
setting”. Our bounds then hold for any of the iterates.

2. a sequence of the type 𝛾𝑖 = Γ(𝑛) for 𝑖 6 𝑛, which will be referred to as the “finite
horizon setting”: in this situation the number of samples is assumed to be known
and fixed and we chose a constant step-size which may depend on this number. Our
bound then holds only for the last iterate.

In practice it is important to have an online procedure, to be able to deal with huge amounts
of data (potentially infinite). However, the analysis is easier in the “finite horizon” setting.
Some doubling tricks allow to pass to varying steps (Hazan and Kale, 2011), but it is not
fully satisfactory in practice as it creates jumps at every 𝑛 which is a power of two.

2.3.3 Extra regularity assumptions

We denote by Ξ = (𝑌 −𝑔ℋ(𝑋))𝐾𝑋 the residual, a random element of ℋ. We have E [Ξ] = 0
but in general we do not have E [Ξ|𝑋] = 0 (unless the model of homoscedastic regression
is well specified). We make the following extra assumption:

(A6) There exists 𝜎 > 0 such that E [Ξ ⊗ Ξ] 4 𝜎2Σ, where 4 denotes the order between
self-adjoint operators.

In other words, for any 𝑓 ∈ ℋ, we have E
[︀
(𝑌 − 𝑔ℋ(𝑋))2𝑓(𝑋)2]︀ 6 𝜎2E[𝑓(𝑋)2].

In the well specified homoscedastic case, we have that (𝑌 − 𝑔ℋ(𝑋)) is independent
of 𝑋 and with 𝜎2 = E

[︀
(𝑌 − 𝑔ℋ(𝑋))2]︀, E [Ξ|𝑋] = 𝜎2Σ is clear: the constant 𝜎2 in the first

part of our assumption characterizes the noise amplitude. Moreover when |𝑌 − 𝑔ℋ(𝑋)| is
a.s. bounded by 𝜎2, we have (A6).

We first present the results in the finite horizon setting in Section 2.3.4 before turning
to the online setting in Section 2.3.5.

2.3.4 Main results (finite horizon)

We can first get some guarantee on the consistency of our estimator, for any small enough
constant step-size:

Theorem 2.8. Assume (A1-6), then for any constant choice 𝛾𝑛 = 𝛾0 <
1

2𝑅2 , the prediction
error of 𝑔𝑛 converges in expectation to the one of 𝑔ℋ, that is:

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] = E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋

𝑛→∞−−−→ 0. (2.4)

The expectation is considered with respect to the distribution of the sample (𝑥𝑖, 𝑦𝑖)16𝑖6𝑛,
as in all the following theorems (note that ‖𝑔𝑛 − 𝑔ℋ‖2

𝐿2
𝜌𝑋

is itself a different expectation

with respect to the law 𝜌𝑋).
Theorem 2.8 means that for the simplest choice of the learning rate as a constant, our

estimator tends to perform as well as the best estimator in the class ℋ. Note that in general,
the convergence in ℋ is meaningless if 𝑟 < 1/2. The following results will state some
assertions on the speed of such a convergence; our main result, in terms of generality is the
following:
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Theorem 2.9 (Complete bound, 𝛾 constant, finite horizon). Assume (A1-6) and 𝛾𝑖 = 𝛾 =
Γ(𝑛), for 1 6 𝑖 6 𝑛. If 𝛾𝑅2 6 1/4, then

E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
6

4𝜎2

𝑛

(︁
1 + (𝑠2𝛾𝑛)

1
𝛼

)︁
+ 4(1 + 𝑞𝑛,𝛾,𝑠,𝑟)

‖𝑇−𝑟𝑔ℋ‖2
𝐿2

𝜌𝑋

𝛾2𝑟𝑛2 min{𝑟,1} ;

where 𝑞𝑛,𝛾,𝑠,𝑟 := (𝑅2𝛼𝛾1+𝛼𝑛𝑠2)
2𝑟−1

𝛼 if 𝑟 > 1
2 and 𝑞𝑛,𝛾,𝑠,𝑟 := 0 otherwise is a residual quantity.

We can make the following observations:

– Proof: Theorem 2.8 is directly derived from Theorem 2.9, which is proved in Sec-
tion A.4.3: we derive for our algorithm a new error decomposition and bound the
different sources of error via algebraic calculations. More precisely, following the
proof in Euclidean space Bach and Moulines (2013), we first analyze (in Section A.4.2)
a closely related recursion (we replace 𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 by its expectation Σ, and we thus
refer to it as a semi-stochastic version of our algorithm):

𝑔𝑛 = 𝑔𝑛−1 − 𝛾𝑛(𝑦𝑛𝐾𝑥𝑛 − Σ𝑔𝑛−1).

It (a) leads to an easy computation of the main bias/variance terms of our result,
(b) will be used to derive our main result by bounding the drifts between our
algorithm and its semi-stochastic version. A more detailed sketch of the proof is given
in Section A.2.

– Bias/variance interpretation: The two main terms have a simple interpretation.
The first one is a variance term, which shows the effect of the noise 𝜎2 on the error.
It is bigger when 𝜎 gets bigger, and moreover it also gets bigger when 𝛾 is growing
(bigger steps mean more variance). As for the second term, it is a bias term, which
accounts for the distance of the initial choice (the null function in general) to the
objective function. As a consequence, it is smaller when we make bigger steps.

– Assumption (A4): Our assumption (A4) for 𝑟 > 1 is stronger than for 𝑟 = 1 but
we do not improve the bound. Indeed the bias term (see comments below) cannot
decrease faster than 𝑂(𝑛−2): this phenomenon in known as saturation (Engl et al.,
1996). To improve our results with 𝑟 > 1 it may be interesting to consider another
type of averaging. In the following, 𝑟 < 1 shall be considered as the main and most
interesting case.

– Relationship to regularized empirical risk minimization: Our bound ends up
being very similar to bounds for regularized empirical risk minimization, with the
identification 𝜆 = 1

𝛾𝑛 . It is thus no surprise that once we optimize for the value of 𝛾,
we recover the same rates of convergence. Note that in order to obtain convergence,
we require that the step-size 𝛾 is bounded, which corresponds to an equivalent 𝜆
which has to be lower-bounded by 1/𝑛.

– Finite horizon: Once again, this theorem holds in the finite horizon setting. That is
we first choose the number of samples we are going to use, then the learning rate as
a constant. It allows us to chose 𝛾 as a function of 𝑛, in order to balance the main
terms in the error bound. The trade-off must be understood as follows: a bigger 𝛾
increases the effect of the noise, but a smaller one makes it harder to forget the initial
condition.
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We may now deduce the following corollaries, with specific optimized values of 𝛾:

Corollary 2.10 (Optimal constant 𝛾). Assume (A1-6) and a constant step-size 𝛾𝑖 = 𝛾 = Γ(𝑛),
for 1 6 𝑖 6 𝑛:

1. If 𝛼−1
2𝛼 < 𝑟 and Γ(𝑛) = 𝛾0 𝑛

−2𝛼 min{𝑟,1}−1+𝛼
2𝛼 min{𝑟,1}+1 , 𝛾0𝑅

2 6 1/4, we have:

E
(︁
‖𝑔𝑛 − 𝑔ℋ‖2

𝐿2
𝜌𝑋

)︁
6 𝐴 𝑛

− 2𝛼 min{𝑟,1}
2𝛼 min{𝑟,1}+1 . (2.5)

with 𝐴 = 4
(︁
1 + (𝛾0𝑠

2)
1
𝛼

)︁
𝜎2 + 4(1+𝑜(1))

𝛾2𝑟
0

||𝐿−𝑟
𝐾 𝑔ℋ||2𝐿2

𝜌𝑋

.

2. If 0 < 𝑟 < 𝛼−1
2𝛼 , with Γ(𝑛) = 𝛾0 is constant, 𝛾0𝑅

2 6 1/4, we have:

E
(︁
‖𝑔𝑛 − 𝑔ℋ‖2

𝐿2
𝜌𝑋

)︁
6 𝐴 𝑛−2𝑟, (2.6)

with the same constant 𝐴.

We can make the following observations:

– Limit conditions: Assumption (A4), gives us some kind of “position” of the objective
function with respect to our reproducing kernel Hilbert space. If 𝑟 > 1/2 then 𝑔ℋ ∈ ℋ.
That means the regression function truly lies in the space in which we are looking
for an approximation. However, it is neither necessary to get the convergence result,
which holds for any 𝑟 > 0, nor to get the optimal rate (see definition in Section 2.4.2),
which is also true for 𝛼−1

2𝛼 < 𝑟 < 1 .

– Evolution with 𝑟 and 𝛼: As it has been noticed above, a bigger 𝛼 or 𝑟 would be a
stronger assumption. It is thus natural to get a rate which improves with a bigger 𝛼
or 𝑟: the function (𝛼, 𝑟) ↦→ 2𝛼𝑟

2𝛼𝑟+1 is increasing in both parameters.

– The quantity 𝑜(1) in Equation (2.5) stands for (𝛾0𝑠
2𝑛−2𝛼2𝑟+1)

2𝑟−1
𝛼 if 𝑟 > 1/2 (0

otherwise) and is a quantity which decays to 0.

– Different regions: in Figure 2.1(a), we plot in the plan of coordinates 𝛼, 𝛿 (with
𝛿 = 2𝛼𝑟 + 1) our limit conditions concerning our assumptions, that is, 𝑟 = 1 ⇔ 𝛿 =
2𝛼+ 1 and 𝛼−1

2𝛼 = 𝑟 ⇔ 𝛼 = 𝛿. The region between the two green lines is the region
for which the optimal rate of estimation is reached. The magenta dashed lines stands
for 𝑟 = 1/2, which has appeared to be meaningless in our context.

The region 𝛼 > 𝛿 ⇔ 𝛼−1
2𝛼 > 𝑟 corresponds to a situation where regularized empirical

risk minimization would still be optimal, but with a regularization parameter 𝜆 that
decays faster than 1/𝑛, and thus, our corresponding step-size 𝛾 = 1/(𝑛𝜆) would not
be bounded as a function of 𝑛. We thus saturate our step-size to a constant and the
generalization error is dominated by the bias term.

The region 𝛼 6 (𝛿−1)/2 ⇔ 𝑟 > 1 corresponds to a situation where regularized empir-
ical risk minimization reaches a saturating behaviour. In our stochastic approximation
context, the variance term dominates.
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2.3.5 Online setting

We now consider the second case when the sequence of step-sizes does not depend on the
number of samples we want to use (online setting).

The computations are more tedious in such a situation so that we will only state
asymptotic theorems in order to understand the similarities and differences between the
finite horizon setting and the online setting, especially in terms of limit conditions.

Theorem 2.11 (Complete bound, (𝛾𝑛)𝑛 online). Assume (A1-6), assume for any 𝑖, 𝛾𝑖 = 𝛾0
𝑖𝜁 ,

𝛾0𝑅
2 6 1/2:

– If 0 < 𝑟(1 − 𝜁) < 1, if 0 < 𝜁 < 1
2 then

E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
= 𝑂

(︃
𝜎2(𝑠2𝛾𝑛)

1
𝛼

𝑛1− 1
𝛼

)︃
+𝑂

⎛⎝ ||𝐿−𝑟
𝐾 𝑔ℋ||2𝐿2

𝜌𝑋

(𝑛𝛾𝑛)2𝑟

⎞⎠ . (2.7)

– If 0 < 𝑟(1 − 𝜁) < 1, 1
2 < 𝜁

E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
= 𝑂

(︃
𝜎2(𝑠2𝛾𝑛)

1
𝛼

𝑛1− 1
𝛼

1
𝑛𝛾2

𝑛

)︃
+𝑂

⎛⎝ ||𝐿−𝑟
𝐾 𝑔ℋ||2𝐿2

𝜌𝑋

(𝑛𝛾𝑛)2𝑟

⎞⎠ . (2.8)

The constants in the 𝑂(·) notations only depend on 𝛾0 and 𝛼.

Theorem 2.11 is proved in Section A.4.4. In the first case, the main bias and variance
terms are the same as in the finite horizon setting, and so is the optimal choice of 𝜁.
However in the second case, the variance term behaviour changes: it does not decrease
anymore when 𝜁 increases beyond 1/2. Indeed, in such a case our constant averaging
procedure puts too much weight on the first iterates, thus we do not improve the variance
bound by making the learning rate decrease faster. Other type of averaging, as proposed
for example in Lacoste-Julien et al. (2012), could help to improve the bound.

Moreover, the constraint 𝜁 < 1/2, to avoid saturation, changes a bit the regions where
we get the optimal rate (see Figure 2.1(b)), and we have the following corollary:

Corollary 2.12 (Optimal decreasing 𝛾𝑛). Assume (A1-6) (in this corollary, 𝑂(·) stands for a
constant depending on 𝛼, ||𝐿−𝑟

𝐾 𝑔ℋ||𝐿2
𝜌𝑋
, 𝑠, 𝜎2, 𝛾0 and universal constants):

1. If 𝛼−1
2𝛼 < 𝑟 < 2𝛼−1

2𝛼 , with 𝛾𝑛 = 𝛾0𝑛
−2𝛼𝑟−1+𝛼

2𝛼𝑟+1 for any 𝑛 > 1 we get the rate:

E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
= 𝑂

(︁
𝑛− 2𝛼𝑟

2𝛼𝑟+1
)︁
. (2.9)

2. If 2𝛼−1
2𝛼 < 𝑟, with 𝛾𝑛 = 𝛾0𝑛

−1/2 for any 𝑛 > 1, we get the rate:

E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
= 𝑂

(︁
𝑛− 2𝛼−1

2𝛼

)︁
. (2.10)

3. If 0 < 𝑟 < 𝛼−1
2𝛼 , with 𝛾𝑛 = 𝛾0 for any 𝑛 > 1, we get the rate given in (2.6). Indeed the

choice of a constant learning rate naturally results in an online procedure.

This corollary is directly derived from Theorem 2.11, balancing the two main terms.
The only difference with the finite horizon setting is the shrinkage of the optimality region
as the condition 𝑟 < 1 is replaced by 𝑟 < 2𝛼−1

2𝛼 < 1 (see Figure 2.1(b)). In the next section,
we relate our results to existing work.
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(a) Finite Horizon (b) Online

Figure 2.1: Behaviour of convergence rates: (left) finite horizon and (right) online setting.
We describe in the (𝛼, 𝛿) plan (with 𝛿 = 2𝛼𝑟 + 1) the different optimality regions: between
the two green lines, we achieve the optimal rate. On the left plot the red (respectively
magenta and cyan) lines are the regions for which Zhang (2004) (respectively Tarrès and
Yao (2014) and Ying and Pontil (2008)) proved to achieve the overall optimal rate (which
may only be the case if 𝛼 = 1). The four blue points match the coordinates of the four
couples (𝛼, 𝛿) that will be used in our simulations: they are spread over the different
optimality regions.

2.4 Links with existing results

In this section, we relate our results from the previous section to existing results.

2.4.1 Euclidean spaces

Recently, Bach and Moulines (2013) showed that for least-squares regression, averaged
stochastic gradient descent achieved a rate of 𝑂(1/𝑛), in a finite-dimensional Hilbert space
(Euclidean space), under the same assumptions as above (except the first one of course),
which is replaced by:

(A1-f) ℋ is a 𝑑-dimensional Euclidean space.

They showed the following result:

Proposition 2.13 (Finite-dimensions (Bach and Moulines, 2013)). Assume (A1-f), (A2-6).
Then for 𝛾 = 1

4𝑅2 ,

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] 6 4
𝑛

[︁
𝜎

√
𝑑+𝑅‖𝑔ℋ‖ℋ

]︁2
. (2.11)

We show that we can deduce such a result from Theorem 2.9 (and even with comparable
constants). Indeed under (A1-f) we have:

– If E
[︀
||𝑥𝑛||2

]︀
6 𝑅2 then Σ 4 𝑅2𝐼 and (A3) is true for any 𝛼 ≥ 1 with 𝑠2 = 𝑅2𝑑𝛼.

Indeed 𝜆𝑖 6 𝑅2 if 𝑖 6 𝑑 and 𝜆𝑖 = 0 if 𝑖 > 𝑑 + 1 so that for any 𝛼 > 1, 𝑖 ∈ N*,
𝜆𝑖 6 𝑅2 𝑑𝛼

𝑖𝛼 .

– As we are in a finite-dimensional space (A4) is true for 𝑟 = 1/2 as ||𝑇−1/2𝑔ℋ||2ℒ2
𝜌𝑋

=
||𝑔ℋ||2ℋ.
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Under such remarks, the following corollary may be deduced from Theorem 2.9:

Corollary 2.14. Assume (A1-f), (A2-6), then for any 𝛼 > 1, with 𝛾𝑅2 6 1/4:

E‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
6

4𝜎2

𝑛

(︁
1 + (𝑅2𝛾𝑑𝛼𝑛)

1
𝛼

)︁
+ 4‖𝑔ℋ‖2

ℋ
𝑛𝛾

.

So that, when 𝛼 → ∞,

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] 6 4
𝑛

(︃
𝜎

√
𝑑+𝑅‖𝑔ℋ‖ℋ

1√︀
𝛾𝑅2

)︃2

.

This bound is easily comparable to (2.11) and shows that our more general analysis
has not lost too much. Moreover our learning rate is proportional to 𝑛

−1
2𝛼+1 with 𝑟 = 1/2,

so tends to behave like a constant when 𝛼 → ∞, which recovers the constant step set-up
from Bach and Moulines (2013).

Moreover, the result can be extended in the following more general corollary of our
Theorem 2.9:

Corollary 2.15. Assume (A1-f), (A2-6), and ||Σ−𝑞𝑔ℋ||2ℋ = ||Σ−(𝑞+1/2)𝑔ℋ||2𝐿2
𝜌𝑋

< ∞, for

some 𝑞 ∈ [−1/2; 1/2], then:

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] 6 16𝜎
2 tr(Σ1/𝛼)(𝛾𝑛)1/𝛼

𝑛
+ 8𝑅4(𝑞+1/2) ||Σ−𝑞𝑔ℋ||2ℋ

(𝑛𝛾𝑅2)2(𝑞+1/2) .

Such a result is derived from Theorem 2.9 and with the stronger assumption tr(Σ1/𝛼) <
∞ clearly satisfied in finite dimension, and with 𝑟 = 𝑞 + 1/2. Note that the result above is
true for all values of 𝛼 > 1 and all 𝑞 > −1/2 (for the ones with infinite ||Σ−(𝑞+1/2)𝑔ℋ||2𝐿2

𝜌𝑋

,

the statement is trivial). This shows that we may take the infimum over all possible
𝛼 6 1 and 𝑞 > 0, showing adaptivity of the estimator to the spectral decay of Σ and the
smoothness of the optimal prediction function 𝑔ℋ.

Thus with 𝛼 → ∞, we obtain:

Corollary 2.16. Assume (A1-f), (A2-6), and ||Σ−𝑞𝑔ℋ||2ℋ = ||Σ−(𝑞+1/2)𝑔ℋ||2𝐿2
𝜌𝑋

< ∞, for

some 𝑞 ∈ [−1/2; 1/2], then:

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] 6 16𝜎
2𝑑

𝑛
+ 8𝑅4(𝑞+1/2) ||Σ−𝑞𝑔*||2ℋ

(𝑛𝛾𝑅2)2(𝑞+1/2) .

When 𝑞 = 1/2, we get the following bound:

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] 6 16𝜎
2𝑑

𝑛
+ 8𝑅4 ‖Σ−1/2𝑔ℋ‖2

(𝛾𝑅2)2𝑛2 . (2.12)

which means that in finite dimension, the initial conditions are asymptotically forgotten at
speed 1/𝑛2. Moreover, we can make the following remarks:

– The constants 16 and 8 come from the upper bounds (𝑎 + 𝑏)2 6 2(𝑎2 + 𝑏2) and
1 + 1/

√
𝑑 6 2 and are thus non optimal.

– We can also derive from Corollary 2.15, with 𝛼 = 1, 𝑞 = 0, and 𝛾 ∝ 𝑛−1/2, we recover
the rate 𝑂(𝑛−1/2) (where the constant does not depend on the dimension 𝑑 of the
Euclidean space). Such a rate was described, e.g., in Nemirovski et al. (2009).

Note that linking our work to the finite-dimensional setting is made using the fact that
our assumption (A3) is true for any 𝛼 > 1.
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2.4.2 Optimal rates of estimation

In some situations, our stochastic approximation framework leads to “optimal” rates
of prediction in the following sense. In (Caponnetto and De Vito, 2007, Theorem 2)
a minimax lower bound was given: let 𝒫(𝛼, 𝑟) (𝛼 > 1, 𝑟 ∈ [1/2, 1]) be the set of all
probability measures 𝜌 on 𝒳 × 𝒴, such that:

– |𝑦| 6𝑀𝜌 almost surely,

– 𝑇−𝑟𝑔𝜌 ∈ 𝐿2
𝜌𝑋

,

– the eigenvalues (𝜇𝑗)𝑗∈N arranged in a non increasing order, are subject to the decay
𝜇𝑗 = 𝑂(𝑗−𝛼).

Then the following minimax lower rate holds:

lim inf
𝑛→∞

inf
𝑔𝑛

sup
𝜌∈𝒫(𝑏,𝑟)

P
{︁
𝜀(𝑔𝑛) − 𝜀(𝑔𝜌) > 𝐶𝑛−2𝑟𝛼/(2𝑟𝛼+1)

}︁
= 1,

for some constant 𝐶 > 0 where the infimum in the middle is taken over all algorithms as a
map ((𝑥𝑖, 𝑦𝑖)16𝑖6𝑛) ↦→ 𝑔𝑛 ∈ ℋ.

When making assumptions (a3-4), the assumptions regarding the prediction problem
(i.e., the optimal function 𝑔𝜌) are summarized in the decay of the components of 𝑔𝜌 in an
orthonormal basis, characterized by the constant 𝛿. Here, the minimax rate of estimation
(see, e.g., Johnstone (1994)) is 𝑂(𝑛−1+1/𝛿) which is the same as 𝑂

(︀
𝑛−2𝑟𝛼/(2𝑟𝛼+1))︀ with the

identification 𝛿 = 2𝛼𝑟 + 1.
That means the rate we get is optimal for 𝛼−1

2𝛼 < 𝑟 < 1 in the finite horizon setting, and
for 𝛼−1

2𝛼 < 𝑟 < 2𝛼−1
2𝛼 in the online setting. This is the region between the two green lines on

Figure 2.1.

2.4.3 Regularized stochastic approximation

It is interesting to link our results to what has been done in Yao (2006) and Tarrès and Yao
(2014) in the case of regularized least-mean-squares, so that the recursion is written:

𝑔𝑛 = 𝑔𝑛−1 − 𝛾𝑛 ((𝑔𝑛−1(𝑥𝑛) − 𝑦𝑛)𝐾𝑥𝑛 + 𝜆𝑛𝑔𝑛−1)

with (𝑔𝑛−1(𝑥𝑛) − 𝑦𝑛)𝐾𝑥𝑛 + 𝜆𝑛𝑔𝑛−1 an unbiased gradient of 1
2E𝜌

[︀
(𝑔(𝑥) − 𝑦)2]︀+ 𝜆𝑛

2 ||𝑔||2. In
Tarrès and Yao (2014) the following result is proved (Remark 2.8 following Theorem C):

Theorem 2.17 (Regularized, non averaged stochastic gradient(Tarrès and Yao, 2014)).
Assume that 𝑇−𝑟𝑔𝜌 ∈ 𝐿2

𝜌𝑋
for some 𝑟 ∈ [1/2, 1]. Assume the kernel is bounded and 𝒴 compact.

Then with probability at least 1 − 𝜅, for all 𝑡 ∈ N,

𝜀(𝑔𝑛) − 𝜀(𝑔𝜌) 6 𝑂𝜅

(︁
𝑛−2𝑟/(2𝑟+1)

)︁
.

Where 𝑂𝜅 stands for a constant which depends on 𝜅.

No assumption is made on the covariance operator beyond being trace class, but only
on ‖𝑇−𝑟𝑔𝜌‖𝐿2

𝜌𝑋
(thus no assumption (A3)). A few remarks may be made:

1. They get almost-sure convergence, when we only get convergence in expectation. We
could perhaps derive a.s. convergence by considering moment bounds in order to be
able to derive convergence in high probability and to use Borel-Cantelli lemma.

2. They only assume 1
2 6 𝑟 6 1, which means that they assume the regression function

to lie in the RKHS.
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2.4.4 Unregularized stochastic approximation

In Ying and Pontil (2008), Ying and Pontil studied the same unregularized problem as we
consider, under assumption (A4). They obtain the same rates as above (𝑛−2𝑟/(2𝑟+1) log(𝑛))
in both online case (with 0 6 𝑟 6 1

2) and finite horizon setting (0 < 𝑟).
They led as an open problem to improve bounds with some additional information on

some decay of the eigenvalues of 𝑇 , a question which is answered here.
Moreover, Zhang (2004) also studies stochastic gradient descent algorithms in an

unregularized setting, also with averaging. As described in Ying and Pontil (2008), his
result is stated in the linear kernel setting but may be extended to kernels satisfying
sup𝑥∈𝒳 𝐾(𝑥, 𝑥) 6 𝑅2. Ying and Pontil derive from Theorem 5.2 in Zhang (2004) the
following proposition:

Proposition 2.18 (Short step-sizes (Zhang, 2004)). Assume we consider the algorithm
defined in Section 2.3.2 and output 𝑔𝑛 defined by equation (2.3). Assume the kernel 𝐾
satisfies sup𝑥∈𝒳 𝐾(𝑥, 𝑥) 6 𝑅2. Finally assume 𝑔𝜌 satisfies assumption (A4) with 0 < 𝑟 < 1/2.
Then in the finite horizon setting, with Γ(𝑛) = 1

4𝑅2𝑛
− 2𝑟

2𝑟+1 , we have:

E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)] = 𝑂
(︁
𝑛− 2𝑟

2𝑟+1
)︁
.

Moreover, note that we may derive their result from Corollary 2.10. Indeed, using
Γ(𝑛) = 𝛾0𝑛

−2𝑟
2𝑟+1 , we get a bias term which is of order 𝑛

−2𝑟
2𝑟+1 and a variance term of order

𝑛−1+ 1
2𝑟𝛼+𝛼 which is smaller. Our analysis thus recovers their convergence rate with their

step-size. Note that this step-size is significantly smaller than ours, and that the resulting
bound is worse (but their result holds in more general settings than least-squares). See
more details in Section 2.4.5.

2.4.5 Summary of results

All three algorithms are variants of the following:

𝑔0 = 0
∀𝑛 > 1, 𝑔𝑛 = (1 − 𝜆𝑛)𝑔𝑛−1 − 𝛾𝑛(𝑦𝑛 − 𝑔𝑛−1(𝑥𝑛))𝐾𝑥𝑛 .

But they are studied under different settings, concerning regularization, averaging,
assumptions: we sum up in Table 2.1 the settings of each of these studies. For each of them,
we consider the finite horizon settings, where results are generally better.
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Algorithm Ass. Ass.
𝛾𝑛 𝜆𝑛 Rate Conditions

type (A3) (A4)

This chapter yes yes 1 0 𝑛−2𝑟 𝑟 < 𝛼−1
2𝛼

This chapter yes yes 𝑛− 2𝛼𝑟+1−𝛼
2𝛼𝑟+1 0 𝑛

−2𝛼𝑟
2𝛼𝑟+1 𝛼−1

2𝛼 < 𝑟 < 1
This chapter yes yes 𝑛− 𝛼+1

2𝛼+1 0 𝑛
−2𝛼

2𝛼+1 𝑟 > 1

Zhang (2004) no yes 𝑛
−2𝑟

2𝑟+1 0 𝑛
−2𝑟

2𝑟+1 0 6 𝑟 6 1
2

Tarrès and Yao (2014) no yes 𝑛
−2𝑟

2𝑟+1 𝑛
−1

2𝑟+1 𝑛
−2𝑟

2𝑟+1 1
2 6 𝑟 6 1

Ying and Pontil (2008) no yes 𝑛
−2𝑟

2𝑟+1 0 𝑛
−2𝑟

2𝑟+1 𝑟 > 0

Table 2.1: Summary of assumptions and results (step-sizes, rates and conditions) for our
three regions of convergence and related approaches. We focus on finite-horizon results.

We can make the following observations:

– Dependence of the convergence rate on 𝛼: For learning with any kernel with 𝛼 > 1
we strictly improve the asymptotic rate compared to related methods that only assume
summability of eigenvalues: indeed, the function 𝑥 ↦→ 𝑥/(𝑥+ 1) is increasing on R+.
If we consider a given optimal prediction function and a given kernel with which we
are going to learn the function, considering the decrease in eigenvalues allows to
adapt the step-size and obtain an improved learning rate. Namely, we improved the
previous rate −2𝑟

2𝑟+1 up to −2𝛼𝑟
2𝛼𝑟+1 .

– Worst-case result in 𝑟: in the setting of assumptions (a3,4), given 𝛿, the optimal
rate of convergence is known to be 𝑂(𝑛−1+1/𝛿), where 𝛿 = 2𝛼𝑟 + 1. We thus get
the optimal rate, as soon as 𝛼 < 𝛿 < 2𝛼 + 1, while the other algorithms get the
suboptimal rate 𝑛

𝛿−1
𝛿+𝛼−1 under various conditions. Note that this sub-optimal rate

becomes close to the optimal rate when 𝛼 is close to one, that is, in the worst-case
situation. Thus, in the worst-case (𝛼 arbitrarily close to one), all methods behave
similarly, but for any particular instance where 𝛼 > 1, our rates are better.

– Choice of kernel: in the setting of assumptions (a3,4), given 𝛿, in order to get the
optimal rate, we may choose the kernel (i.e., 𝛼) such that 𝛼 < 𝛿 < 2𝛼 + 1 (that is
neither too big, nor too small), while other methods need to choose a kernel for
which 𝛼 is as close to one as possible, which may not be possible in practice.

– Improved bounds: Ying and Pontil (2008) only give asymptotic bounds, while we
have exact constants for the finite horizon case. Moreover there are some logarithmic
terms in Ying and Pontil (2008) which disappear in our analysis.

– Saturation: our method does saturate for 𝑟 > 1, while the non-averaged framework
of Ying and Pontil (2008) does not (but does not depend on the value of 𝛼). We
conjecture that a proper non-uniform averaging scheme (that puts more weight on
the latest iterates), we should get the best of both worlds.
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2.5 Experiments on artificial data

Following Ying and Pontil (2008), we consider synthetic examples with smoothing splines
on the circle, where our assumptions (A3-4) are easily satisfied.

2.5.1 Splines on the circle

The simplest example to match our assumptions may be found in Wahba (1990). We
consider 𝑌 = 𝑔𝜌(𝑋) + 𝜀, with 𝑋 ∼ 𝒰 [ 0; 1] is a uniform random variable in [0, 1], and 𝑔𝜌 in
a particular RKHS (which is actually a Sobolev space).

Let ℋ be the collection of all zero-mean periodic functions on [0; 1] of the form

𝑓 : 𝑡 ↦→
√

2
∞∑︁

𝑖=1
𝑎𝑖(𝑓) cos(2𝜋𝑖𝑡) +

√
2

∞∑︁
𝑖=1

𝑏𝑖(𝑓) sin(2𝜋𝑖𝑡),

with

‖𝑓‖2
ℋ =

∞∑︁
𝑖=1

(𝑎𝑖(𝑓)2 + 𝑏𝑖(𝑓)2)(2𝜋𝑖)2𝑚 < ∞.

This means that the 𝑚-th derivative of 𝑓 , 𝑓 (𝑚) is in ℒ2([0 ; 1]). We consider the inner
product:

⟨𝑓, 𝑔⟩ℋ =
∞∑︁

𝑖=1
(2𝜋𝑖)2𝑚 (𝑎𝑖(𝑓)𝑎𝑖(𝑔) + 𝑏𝑖(𝑓)𝑏𝑖(𝑔)) .

It is known that ℋ is an RKHS and that the reproducing kernel 𝑅𝑚(𝑠, 𝑡) for ℋ is

𝑅𝑚(𝑠, 𝑡) =
∞∑︁

𝑖=1

2
(2𝜋𝑖)2𝑚

[cos(2𝜋𝑖𝑠) cos(2𝜋𝑖𝑡) + sin(2𝜋𝑖𝑠) sin(2𝜋𝑖𝑡)]

=
∞∑︁

𝑖=1

2
(2𝜋𝑖)2𝑚

cos(2𝜋𝑖(𝑠− 𝑡)).

Moreover the study of Bernoulli polynomials gives a close formula for 𝑅(𝑠, 𝑡), that is:

𝑅𝑚(𝑠, 𝑡) = (−1)𝑚−1

(2𝑚)! 𝐵2𝑚 ({𝑠− 𝑡}) ,

with 𝐵𝑚 denoting the m-th Bernoulli polynomial and {𝑠 − 𝑡} the fractional part of 𝑠 −
𝑡 (Wahba, 1990).

We can derive the following proposition for the covariance operator which means that
our assumption (A3) is satisfied for our algorithm in ℋ when 𝑋 ∼ 𝒰 [0; 1], with 𝛼 = 2𝑚,
and 𝑠 = 2(1/2𝜋)𝑚.

Proposition 2.19 (Covariance operator for smoothing splines). If 𝑋 ∼ 𝒰 [0; 1], then in ℋ:

1. the eigenvalues of Σ are all of multiplicity 2 and are 𝜆𝑖 = (2𝜋𝑖)−2𝑚,

2. the eigenfunctions are 𝜑𝑐
𝑖 : 𝑡 ↦→

√
2 cos(2𝜋𝑖𝑡) and 𝜑𝑠

𝑖 : 𝑡 ↦→
√

2 sin(2𝜋𝑖𝑡).

Proof. For 𝜑𝑐
𝑖 we have (a similar argument holds for 𝜑𝑠

𝑖 ):

𝑇 (𝜑𝑐
𝑖 )(𝑠) =

∫︁ 1

0
𝑅(𝑠, 𝑡)

√
2 cos(2𝜋𝑖𝑡)𝑑𝑡

=
(︂∫︁ 1

0

2
(2𝑖𝜋)2𝑚

√
2 cos(2𝜋𝑖𝑡)2𝑑𝑡

)︂
cos(2𝜋𝑖𝑠) = 𝜆𝑖

√
2 cos(2𝜋𝑖𝑠)
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= 𝜆𝑖𝜑
𝑐
𝑖 (𝑠).

It is well known that (𝜑𝑐
𝑖 , 𝜑

𝑠
𝑖 )𝑖>0 is an orthonormal system (the Fourier basis) of the func-

tions in 𝐿2([ 0; 1]) with zero mean, and it is easy to check that ((2𝑖𝜋)−𝑚𝜑𝑐
𝑖 , (2𝑖𝜋)−𝑚𝜑𝑠

𝑖 )𝑖>1
is an orthonormal basis of our RKHS ℋ (this may also be seen as a consequence of the fact
that 𝑇 1/2 is an isometry).

Finally, considering 𝑔𝜌(𝑥) = 𝐵𝛿/2(𝑥) with 𝛿 = 2𝛼𝑟 + 1 ∈ 2N, our assumption (A4)
holds. Indeed it implies (a3-4), with 𝛼 > 1, 𝛿 = 2𝛼𝑟 + 1, since for any 𝑘 ∈ N, 𝐵𝑘(𝑥) =

−2𝑘!
∞∑︁

𝑖=1

cos
(︀
2𝑖𝜋𝑥− 𝑘𝜋

2
)︀

(2𝑖𝜋)𝑘
(see, e.g., Abramowitz and Stegun (1964)).

We may notice a few points:

1. Here the eigenvectors do not depend on the kernel choice, only the re-normalization
constant depends on the choice of the kernel. Especially the eigenbasis of 𝑇 in
𝐿2

𝜌𝑋
does not depend on 𝑚. That can be linked with the previous remarks made in

Section 2.4.

2. Assumption (A3) defines here the size of the RKHS: the smaller 𝛼 = 2𝑚 is, the bigger
the space is, the harder it is to learn a function.

In the next section, we illustrate on such a toy model our main results and compare our
learning algorithm to the algorithms by Ying and Pontil (2008), Tarrès and Yao (2014) and
Zhang (2004) .

2.5.2 Experimental set-up

We use 𝑔𝜌(𝑥) = 𝐵𝛿/2(𝑥) with 𝛿 = 2𝛼𝑟 + 1, as proposed above, with 𝐵1(𝑥) = 𝑥 − 1
2 ,

𝐵2(𝑥) = 𝑥2 − 𝑥+ 1
6 and 𝐵3(𝑥) = 𝑥3 − 3

2𝑥
2 + 1

2𝑥.
We give in Figure 2.2 the functions used for simulations in a few cases that span our

three regions. We also remind the choice of 𝛾 proposed for the 4 algorithms. We always
use the finite horizon setting.

𝑟 𝛼 𝛿 𝐾 𝑔𝜌
log(𝛾)
log(𝑛) (this chapter) log(𝛾)

log(𝑛) (previous)

0.75 2 4 𝑅1 𝐵2 −1/2 = −0.5 −3/5 = −0.6

0.375 4 4 𝑅2 𝐵2 0 −3/7 ≃ −0.43

1.25 2 6 𝑅1 𝐵3 −3/7 ≃ −0.43 −5/7 ≃ −0.71

0.125 4 2 𝑅2 𝐵1 0 −1/5 = −0.2

Table 2.2: Different choices of the parameters 𝛼, 𝑟 and the corresponding convergence
rates and step-sizes. The (𝛼, 𝛿) coordinates of the four choices of couple “(kernel, objective
function)” are mapped on Figure 2.1. They are spread over the different optimality regions.

2.5.3 Optimal learning rate for our algorithm

In this section, we empirically search for the best choice of a finite horizon learning rate, in
order to check if it matches our prediction. For a certain number of values for 𝑛, distributed
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exponentially between 1 and 103.5, we look for the best choice Γbest(𝑛) of a constant
learning rate for our algorithm up to horizon 𝑛. In order to do that, for a large number
of constants 𝐶1, · · · , 𝐶𝑝, we estimate the expectation of error E[𝜀(𝑔𝑛(𝛾 = 𝐶𝑖)) − 𝜀(𝑔𝜌)] by
averaging over 30 independent sample of size 𝑛, then report the constant giving minimal
error as a function of 𝑛 in Figure 2.2. We consider here the situation 𝛼 = 2, 𝑟 = 0.75. We
plot results in a logarithmic scale, and evaluate the asymptotic decrease of Γbest(𝑛) by
fitting an affine approximation to the second half of the curve. We get a slope of −0.51,
which matches our choice of −0.5 from Corollary 2.10. Although, our theoretical results
are only upper-bounds, we conjecture that our proof technique also leads to lower-bounds
in situations where assumptions (a3-4) hold (like in this experiment).

lo
g 1

0
(Γ

𝑖𝑑
(𝑛

))

1 2 3
−1

−0.5

0

0.5

log
10

(n)

lo
g

1
0
 (

Γ
id

(n
))

log10(𝑛)

Figure 2.2: Optimal learning rate Γbest(𝑛) for our algorithm in the finite horizon setting
(plain magenta). The dashed green curve is a first order affine approximation of the second
half of the magenta curve.

2.5.4 Comparison to competing algorithms

In this section, we compare the convergence rates of the four algorithms described in
Section 2.4.5. We consider the different choices of (𝑟, 𝛼) as described in Table 2.2 in order
to go all over the different optimality situations. The main properties of each algorithm are
described in Table 2.1. However we may note:

– For our algorithm, Γ(𝑛) is chosen accordingly with Corollary 2.10, with 𝛾0 = 1
𝑅2 .

– For Ying and Pontil’s algorithm, accordingly to Theorem 6 in Ying and Pontil (2008),
we consider Γ(𝑛) = 𝛾0𝑛

− 2𝑟
2𝑟+1 . We choose 𝛾0 = 1

𝑅2 which behaves better than the
proposed 𝑟

64(1+𝑅4)(2𝑟+1) .

– For Tarrès and Yao’s algorithm, we refer to Theorem C in Tarrès and Yao (2014), and
consider Γ(𝑛) = 𝑎 (𝑛0 + 𝑛)− 2𝑟

2𝑟+1 and Λ(𝑛) = 1
𝑎 (𝑛0 + 𝑛)− 1

2𝑟+1 . The theorem is stated
for all 𝑎 > 4: we choose 𝑎 = 4.

– For Zhangl’s algorithm, we refer to Part 2.2 in Ying and Pontil (2008), and choose
Γ(𝑛) = 𝛾0𝑛

− 2𝑟
2𝑟+1 with 𝛾0 = 1

𝑅2 which behaves better than the proposed choice
1

4(1+𝑅2) .
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Figure 2.3: Comparison between algorithms. We have chosen parameters in each algorithm
accordingly with description in Section 2.4.5, especially for the choices of 𝛾0. The y-axis is
log10 (E[𝜀(𝑔𝑛) − 𝜀(𝑔𝜌)]), where the final output 𝑔𝑛 may be either 𝑔𝑛 (This chapter, Zhang)
or 𝑔𝑛(Ying & Pontil, Yao & Tarres). This expectation is computed by averaging over 15
independent samples.

Finally, we sum up the rates that were both predicted and derived for the four algorithms
in the four cases for (𝛼, 𝛿) in Table 2.3. It appears that (a) we approximately match the
predicted rates in most cases (they would if 𝑛 was larger), (b) our rates improve on existing
work.

2.6 Conclusion

In this chapter, we have provided an analysis of averaged unregularized stochastic gradient
methods for kernel-based least-squares regression. Our novel analysis allowed us to
consider larger step-sizes, which in turn lead to optimal estimation rates for many settings
of eigenvalue decay of the covariance operators and smoothness of the optimal prediction
function. Moreover, we have worked on a more general setting than previous work, that
includes most interesting cases of positive definite kernels.

In the finite horizon setting, the convergence rate remains sub-optimal in two situations:
when the combination of the kernel and the function result in a function which is “too
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𝑟 = 0.75 𝑟 = 0.375 𝑟 = 1.25 𝑟 = 0.125
𝛼 = 2 𝛼 = 4 𝛼 = 2 𝛼 = 4

Predicted rate (our algo.) -0.75 -0.75 -0.8 -0.25
Effective rate (our algo.) -0.7 -0.71 -0.69 -0.29

Predicted rate (YP) -0.6 -0.43 -0.71 -0.2
Effective rate (YP) -0.53 -0.5 -0.63 -0.22

Predicted rate (TY) -0.6
Effective rate (TY) -0.48 -0.39 -0.43 -0.2

Predicted rate (Z) -0.43 -0.2
Effective rate (Z) -0.53 -0.43 -0.41 -0.21

Table 2.3: Predicted and effective rates (asymptotic slope of the log-log plot) for the four
different situations. We leave empty cases when the set-up does not come with existing
guarantees: most algorithms seem to exhibit the expected behaviour even in such cases.

smooth” (precisely when 𝑟 > 1), then the uniform averaging scheme is responsible from
the sub-optimality: indeed, at any iteration, the averaged iterate still “strongly” depends on
𝜃0, which counts for one 𝑛-th of the averaged iterate. The bias cannot decrease faster than
𝑛−2. This problem can be addressed using non uniform averaging schemes. For example,
one can consider, for 𝑝 ∈ N:

𝜃𝑝
𝑛 := 1

𝑛∑︀
𝑘=0

𝑘𝑝

𝑛∑︁
𝑘=0

𝑘𝑝𝜃𝑘 . (2.13)

This non-uniform averaging tends to put more weight on final iterates and thus can forget
the initial condition faster in situations that were limiting before: the saturation limit
changes. Typically, the bias would then decrease as 𝑛2 min(𝑝+1,𝑟) instead of 𝑛2 min(1,𝑟), while
the bias would be degraded by a constant factor (which depends on 𝑇 ).

Jain et al. (2016) later proposed an analysis of tail averaging, where one considers the
uniform averaging over the last half of the iterates. While this averaging scheme cannot be
compute “on-the-fly” anymore, it naturally removes the saturation effect:

𝜃tail
𝑛 = 1

𝑛+ 1 − ⌊𝑛/2⌋

𝑛∑︁
𝑘=⌊𝑛/2⌋

𝜃𝑘. (2.14)

Optimality with

tail averaging

Figure 2.4: Regions of optimal con-
vergence for tail averaging.

In such a situation, the regions of optimal conver-
gence would be improved, as depicted in Figure 2.4

On the other hand, the algorithm also behaves
sub-optimally on the other extreme situation, in
which the optimal function is not only out of the
RKHS, but really badly conditioned: then the bias
term dominates as the optimal function is “too far
away”. We partially address this problem in Chap-
ter 3, using acceleration to improve the speed at
which initial conditions are forgotten.

The proofs of the results given in this chapter
are given in the next Chapter (Ch. A): Section A.1
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contains a short description of minimal assumptions,
and Section A.2 the sketch of the proofs. The following Sections A.3 and A.4 contain the
details and might be skipped at first reading.



A
Appendix to Non-parametric Stochastic

Approximation with Large Step-sizes

A.1 Minimal assumptions

A.1.1 Definitions

We first define the set of square 𝜌𝑋 -integrable functions ℒ2
𝜌𝑋

:

ℒ2
𝜌𝑋

=
{︂
𝑓 : 𝒳 → R

⧸︁∫︁
𝒳
𝑓2(𝑡)𝑑𝜌𝑋(𝑡) < ∞

}︂
;

we will always make the assumptions that this space is separable (this is the case in most
interesting situations. See Thomson et al. (2000) for more details.) 𝐿2

𝜌𝑋
is its quotient

under the equivalence relation given by

𝑓 ≡ 𝑔 ⇔
∫︁

𝒳
(𝑓(𝑡) − 𝑔(𝑡))2𝑑𝜌𝑋(𝑡) = 0,

which makes it a separable Hilbert space (see, e.g., Kolmogorov and Fomin (1999)).
We denote 𝑝 the canonical projection from ℒ2

𝜌𝑋
into 𝐿2

𝜌𝑋
such that 𝑝 : 𝑓 ↦→ 𝑓 , with

𝑓 = {𝑔 ∈ ℒ2
𝜌𝑋
, s.t. 𝑓 ≡ 𝑔}.

Under assumptions A1, A2 or A1’, A2’, any function in ℋ in in ℒ2
𝜌𝑋

. Moreover, under
A1, A2 the spaces ℋ and 𝑝(ℋ) may be identified, where 𝑝(ℋ) is the image of ℋ via the
mapping 𝑝 ∘ 𝑖 : ℋ 𝑖−→ ℒ2

𝜌𝑋

𝑝−→ 𝐿2
𝜌𝑋

, where 𝑖 is the trivial injection from ℋ into ℒ2
𝜌𝑋

.

A.1.2 Isomorphism

As it has been explained in the main text, the minimization problem will appear to be an
approximation problem in ℒ2

𝜌𝑋
, for which we will build estimates in ℋ. However, to derive

theoretical results, it is easier to consider it as an approximation problem in the Hilbert
space 𝐿2

𝜌𝑋
, building estimates in 𝑝(ℋ).

We thus need to define a notion of the best estimation in 𝑝(ℋ). We first define the
closure 𝐹 (with respect to ‖ · ‖𝐿2

𝜌𝑋
) of any set 𝐹 ⊂ 𝐿2

𝜌𝑋
as the set of limits of sequences

in 𝐹 . The space 𝑝(ℋ) is a closed and convex subset in 𝐿2
𝜌𝑋

. We can thus define 𝑔ℋ =
arg min

𝑓∈ 𝑝(ℋ) 𝜀(𝑔), as the orthogonal projection of 𝑔𝜌 on 𝑝(ℋ), using the existence of the
projection on any closed convex set in a Hilbert space. See Proposition A.1 in Section A.1
for details.
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Proposition A.1 (Definition of best approximation function). Assume (A1-2). The minimum
of 𝜀(𝑓) in 𝑝(ℋ) is attained at a certain 𝑔ℋ (which is unique and well defined in 𝐿2

𝜌𝑋
).

Where 𝑝(ℋ) =
{︁
𝑓 ∈ 𝐿2

𝜌𝑋
/ ∃(𝑓𝑛) ⊂ 𝑝(ℋ), ‖𝑓𝑛 − 𝑓‖𝐿2

𝜌𝑋
→ 0

}︁
is the set of functions 𝑓

for which we can hope for consistency, i.e., having a sequence (𝑓𝑛)𝑛 of estimators in ℋ such
that 𝜀(𝑓𝑛) → 𝜀(𝑓).

The properties of our estimator, especially its rate of convergence will strongly depend
on some properties of both the kernel, the objective function and the distributions, which
may be seen through the properties of the covariance operator which is defined in the
main text. We have defined the covariance operator, Σ : ℋ → ℋ. In the following, we
extend such an operator as an endomorphism 𝒯 from 𝐿2

𝜌𝑋
to ℒ2

𝜌𝑋
and by projection as an

endomorphism 𝑇 = 𝑝∘𝒯 from 𝐿2
𝜌𝑋

to 𝐿2
𝜌𝑋

. Note that 𝒯 is well defined as
∫︀

𝒳 𝑔(𝑡) 𝐾𝑡 𝑑𝜌𝒳 (𝑡)
does not depend on the function 𝑔 chosen in the class of equivalence of 𝑔.

Definition A.2 (Extended covariance operator). Assume (A1-2). We define the operator 𝒯
as follows (this expectation is formally defined as a Bochner expectation in ℋ.):

𝒯 𝐿2
𝜌𝑋

→ ℒ2
𝜌𝑋

𝑔 ↦→
∫︁

𝒳
𝑔(𝑡) 𝐾𝑡 𝑑𝜌𝒳 (𝑡),

so that for any 𝑧 ∈ 𝒳 , 𝒯 (𝑔)(𝑧) =
∫︁

𝒳
𝑔(𝑥) 𝐾(𝑥, 𝑧) 𝑑𝜌𝒳 (𝑡) = E[𝑔(𝑋)𝐾(𝑋, 𝑧)].

A first important remark is that Σ𝑓 = 0 implies ⟨𝑓,Σ𝑓⟩ = ‖𝑓‖2
𝐿2

𝜌𝑋

= 0, that is

𝑝(Ker(Σ)) = {0}. However, Σ may not be injective (unless ‖𝑓‖2
𝐿2

𝜌𝑋

⇒ 𝑓 = 0, which

is true when 𝑓 is continuous and 𝜌𝑋 has full support). Σ and 𝒯 may independently be
injective or not.

The operator 𝑇 (which is an endomorphism of the separable Hilbert space 𝐿2
𝜌𝑋

) can be
reduced in some Hilbertian eigenbasis of 𝐿2

𝜌𝑋
. The linear operator 𝒯 happens to have an

image included in ℋ, and the eigenbasis of 𝑇 in 𝐿2
𝜌𝑋

may also be seen as eigenbasis of Σ in
ℋ (See proof in Section A.3.2, Proposition A.18):

Proposition A.3 (Decomposition of Σ). Assume (A1-2). The image of 𝒯 is included in ℋ:
Im(𝒯 ) ⊂ ℋ, that is, for any 𝑓 ∈ 𝐿2

𝜌𝑋
, 𝒯 𝑓 ∈ ℋ. Moreover, for any 𝑖 ∈ 𝐼, 𝜑𝐻

𝑖 = 1
𝜇𝑖

𝒯 𝜑𝑖 ∈ ℋ ⊂
ℒ2

𝜌𝑋
is a representant for the equivalence class 𝜑𝑖, that is 𝑝(𝜑𝐻

𝑖 ) = 𝜑𝑖. Moreover 𝜇1/2
𝑖 𝜑𝐻

𝑖 is an
orthonormal eigen-system of the orthogonal supplement S of the null space Ker(Σ). That is:

– ∀𝑖 ∈ 𝐼, Σ𝜑𝐻
𝑖 = 𝜇𝑖𝜑

𝐻
𝑖 .

– ℋ = Ker(Σ)
⊥
⊕ S .

Such decompositions allow to define 𝒯 𝑟 : 𝐿2
𝜌𝑋

→ ℋ for 𝑟 > 1/2. Indeed , completeness
allows to define infinite sums which satisfy a Cauchy criterion. See proof in Section A.3.2,
Proposition A.19. Note the different condition concerning 𝑟 in the definitions. For 𝑟 > 1/2,
𝑇 𝑟 = 𝑝 ∘ 𝒯 𝑟. We need 𝑟 > 1/2, because (𝜇1/2

𝑖 𝜑𝐻) is an orthonormal system of S .

Definition A.4 (Powers of 𝒯 ). We define, for any 𝑟 > 1/2, 𝒯 𝑟 : 𝐿2
𝜌𝑋

→ ℋ, for any
ℎ ∈ Ker(𝑇 ) and (𝑎𝑖)𝑖∈𝐼 such that

∑︀
𝑖∈𝐼 𝑎

2
𝑖 < ∞, through:

𝒯 𝑟

(︃
ℎ+

∑︁
𝑖∈𝐼

𝑎𝑖𝜑𝑖

)︃
=
∑︁
𝑖∈𝐼

𝑎𝑖𝜇
𝑟
𝑖𝜑

𝐻
𝑖 .
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We have two decompositions of 𝐿2
𝜌𝑋

= Ker(𝑇 )
⊥
⊕ 𝑆 and ℋ = Ker(Σ)

⊥
⊕ S . The two

orthogonal supplements 𝑆 and S happen to be related through the mapping 𝒯 1/2, as
stated in Proposition 2.7: 𝒯 1/2 is an isomorphism from 𝑆 into S . It also has he following
consequences, which generalizes Corollary 2.6:

Corollary A.5. – 𝑇 1/2(𝑆) = 𝑝(ℋ), that is any element of 𝑝(ℋ) may be expressed as 𝑇 1/2𝑔

for some 𝑔 ∈ 𝐿2
𝜌𝑋

.

– For any 𝑟 > 1/2, 𝑇 𝑟(𝑆) ⊂ ℋ, because 𝑇 𝑟(𝑆) ⊂ 𝑇 1/2(𝑆), that is, with large powers 𝑟,
the image of 𝑇 𝑟 is in the projection of the Hilbert space.

– ∀𝑟 > 0, 𝑇 𝑟(𝐿2
𝜌𝑋

) = 𝑆 = 𝑇 1/2(𝐿2
𝜌𝑋

) = ℋ, because (a) 𝑇 1/2(𝐿2
𝜌𝑋

) = 𝑝(ℋ) and (b) for
any 𝑟 > 0, 𝑇 𝑟(𝐿2

𝜌𝑋
) = 𝑆. In other words, elements of 𝑝(ℋ) (on which our minimization

problem attains its minimum), may seen as limits (in 𝐿2
𝜌𝑋

) of elements of 𝑇 𝑟(𝐿2
𝜌𝑋

), for
any 𝑟 > 0.

– 𝑝(ℋ) is dense in 𝐿2
𝜌𝑋

if and only if 𝑇 is injective.

A.1.3 Mercer theorem generalized

Finally, although we will not use it afterwards, we can state a generalized version of
Mercer’s theorem, which does not make any other assumptions than the one required for
defining RKHSs.

Proposition A.6 (Kernel decomposition). Assume (A1-2). We have for all 𝑥, 𝑦 ∈ 𝒳 ,

𝐾(𝑥, 𝑦) =
∑︁
𝑖∈𝐼

𝜇𝑖𝜑
𝐻
𝑖 (𝑥)𝜑𝐻

𝑖 (𝑦) + 𝑔(𝑥, 𝑦),

and we have for all 𝑥 ∈ 𝒳 ,
∫︀

𝒳 𝑔(𝑥, 𝑦)2𝑑𝜌𝑋(𝑦) = 0. Moreover, the convergence of the series is
absolute.

We thus obtain a version of Mercer’s theorem (see Section A.3.5) without any topo-
logical assumptions. Moreover, note that (a) S is also an RKHS, with kernel (𝑥, 𝑦) ↦→∑︀

𝑖∈𝐼 𝜇𝑖𝜑
𝐻
𝑖 (𝑥)𝜑𝐻

𝑖 (𝑦) and (b) that given the decomposition above, the optimization problem
in S and ℋ have equivalent solutions. Moreover, considering the algorithm below, the
estimators we consider will almost surely build equivalent functions (see Section A.3.4).
Thus, we could assume without loss of generality that the kernel 𝐾 is exactly equal to its
expansion

∑︀
𝑖∈𝐼 𝜇𝑖𝜑

𝐻
𝑖 (𝑥)𝜑𝐻

𝑖 (𝑦).

A.1.4 Complementary (A6) assumption

Under minimal assumptions, we also have to make a complementary moment assumption:

(A6’) There exists𝑅 > 0 and 𝜎 > 0 such that E [Ξ ⊗ Ξ] 4 𝜎2Σ, and E(𝐾(𝑋,𝑋)𝐾𝑋 ⊗𝐾𝑋) 4
𝑅2Σ where 4 denotes the order between self-adjoint operators.

In other words, for any 𝑓 ∈ ℋ, we have: E
[︀
𝐾(𝑋,𝑋)𝑓(𝑋)2]︀ 6 𝑅2E[𝑓(𝑋)2]. Such an

assumption is implied by (A2), that is if 𝐾(𝑋,𝑋) is almost surely bounded by 𝑅2: this
constant can then be understood as the radius of the set of our data points. However,
our analysis holds in these more general set-ups where only fourth order moment of
‖𝐾𝑥‖ℋ = 𝐾(𝑥, 𝑥)1/2 is finite.
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A.2 Sketch of the proofs

Our main theorems are Theorem 2.9 and Theorem 2.11, respectively in the finite horizon
and in the online setting. Corollaries can be easily derived by optimizing over 𝛾 the upper
bound given in the theorem.

The complete proof is given in Section A.4. The proof is nearly the same for finite
horizon and online setting. It relies on a refined analysis of strongly related recursions
in the RKHS and on a comparison between iterates of the recursions (controlling the
deviations).

We first present the sketch of the proof for the finite-horizon setting:
We want to analyze the error of our sequence of estimators (𝑔𝑛) such that 𝑔0 = 0 and

𝑔𝑛 = 𝑔𝑛−1 − 𝛾𝑛
[︀
𝑦𝑛 − ⟨𝑔𝑛−1,𝐾𝑥𝑛⟩ℋ

]︀
𝐾𝑥𝑛

𝑔𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝑔𝑛−1 + 𝛾𝑦𝑛𝐾𝑥𝑛

𝑔𝑛 − 𝑔ℋ = (𝐼 − 𝛾 ˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝑔𝑛−1 − 𝑔ℋ) + 𝛾Ξ𝑛.

Where we have denoted Ξ𝑛 = (𝑦𝑛 − 𝑔ℋ(𝑥𝑛))𝐾𝑥𝑛 the residual, which has 0 mean, and
˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 : 𝐿2

𝜌𝑋
→ ℋ an a.s. defined extension of 𝐾𝑥𝑛 ⊗ 𝐾𝑥𝑛 : ℋ → ℋ, such that

˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛(𝑓) = 𝑓(𝑥𝑛)𝐾𝑥𝑛 , that will be denoted for simplicity 𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 in this section.

Finally, we are studying a sequence (𝜂𝑛)𝑛 = (𝑔𝑛 − 𝑔ℋ)𝑛 defined by:

𝜂0 = 𝑔ℋ,

𝜂𝑛 = (𝐼 − 𝛾𝑛𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛−1 + 𝛾𝑛Ξ𝑛.

We first consider splitting this recursion in two simpler recursions 𝜂𝑖𝑛𝑖𝑡
𝑛 and 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 such that
𝜂𝑛 = 𝜂𝑖𝑛𝑖𝑡

𝑛 + 𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 :

∙ (𝜂𝑖𝑛𝑖𝑡
𝑛 )𝑛 defined by :

𝜂𝑖𝑛𝑖𝑡
0 = 𝑔ℋ and 𝜂𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑖𝑛𝑖𝑡
𝑛−1.

𝜂𝑖𝑛𝑖𝑡
𝑛 is the part of (𝜂𝑛)𝑛 which is due to the initial conditions ( it is equivalent to

assuming Ξ𝑛 ≡ 0).

∙ Respectively, let (𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 )𝑛 be defined by :

𝜂𝑛𝑜𝑖𝑠𝑒
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒
𝑛−1 + 𝛾Ξ𝑛.

𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 is the part of (𝜂𝑛)𝑛 which is due to the noise.

We will bound ‖𝜂𝑛‖ by ‖𝜂𝑖𝑛𝑖𝑡
𝑛 ‖ + ‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖ using Minkowski’s inequality. That is how the
bias-variance trade-off originally appears.

Next, we notice that E[𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 ] = 𝒯 , and thus define “semi-stochastic” versions of the
previous recursions by replacing 𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 by its expectation:

For the initial conditions: (𝜂0,𝑖𝑛𝑖𝑡
𝑛 )𝑛∈N so that :

𝜂0,𝑖𝑛𝑖𝑡
0 = 𝑔ℋ, 𝜂0,𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝒯 )𝜂0,𝑖𝑛𝑖𝑡
𝑛−1 .
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which is a deterministic sequence.
An algebraic calculation gives an estimate of the norm of 𝜂0,𝑖𝑛𝑖𝑡

𝑛 , and we can also bound
the residual term 𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0,𝑖𝑛𝑖𝑡
𝑛 , then conclude by Minkowski.

For the variance term: We follow the exact same idea, but have to define a sequence of
“semi-stochastic recursion”, to be able to bound the residual term.

This decomposition is summed up in Table A.1.

Complete recursion 𝜂𝑛

↘ ↘
variance term 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 | bias term 𝜂𝑖𝑛𝑖𝑡
𝑛

↓ | ↓
multiple recursion | semi stochastic variant

↘ ↘ | ↘ ↘
main terms 𝜂𝑟

𝑛, 𝑟 > 1 residual term 𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

∑︀
𝜂𝑟

𝑛 | main term 𝜂0
𝑛 residual term 𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛

satisfying semi-sto recursions satisf. stochastic recursion | satisf. semi-sto recursion satisf. stochastic recursion
↓ Lemma A.30 ↓ Lemma A.31 | ↓ ↓ Lemma A.31
6 𝐶 Variance term −→

𝑟→∞
0 | 6 Bias term residual negligible term

Lemma A.26 ↘ ↘ Lemma A.25
Theorem 2.9

Table A.1: Error decomposition in the finite horizon setting. All the references refer to
Lemmas given in Section A.4.

For the online setting, we follow comparable ideas and end in a similar decomposition.
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In Section A.3, we provide proofs of the propositions from Section 2.2 that provide the
Hilbert space set-up for kernel-based learning, while in Section A.4, we prove convergence
rates for the least-mean-squares algorithm.

A.3 Reproducing kernel Hilbert spaces

In this Section, we provide proofs of the results from Section 2.2 that provide the RHKS
space set-up for kernel-based learning. See Aronszajn (1950); Smale and Cucker (2001);
Yao (2006) for further properties of RKHSs.

We consider a reproducing kernel Hilbert space ℋ with kernel 𝐾 on space 𝒳 as defined
in Section 2.2.1. Unless explicitly mentioned, we do not make any topological assumption
on 𝒳 .

As detailed in Section 2.2.2 we consider a set 𝒳 and 𝒴 ⊂ R and a distribution 𝜌 on
𝒳 × 𝒴. We denote 𝜌𝑋 the marginal law on the space 𝒳 . In the following, we use the
notation (𝑋,𝑌 ) for a random variable following the law 𝜌. We define spaces 𝐿2

𝜌𝑋
,ℒ2

𝜌𝑋
and

the canonical projection 𝑝. In the following we further assume that 𝐿2
𝜌𝑋

is separable, an
assumption satisfied in most cases.

We remind our assumptions:

(A1) ℋ is a separable RKHS associated with kernel 𝐾 on a space 𝒳 .

(A2) E [𝐾(𝑋,𝑋)] and E[𝑌 2] are finite.

Assumption (A2) ensures that every function in ℋ is square-integrable, that is, if
E[𝐾(𝑋,𝑋)] < ∞, then ℋ ⊂ ℒ2

𝜌𝑋
. Indeed, we have:

Proposition A.7. Assume (A1).

1. If E[𝐾(𝑋,𝑋)] < ∞, then ℋ ⊂ ℒ2
𝜌𝑋

.

2. If sup𝑥∈𝒳 𝐾(𝑥, 𝑥) < ∞, then any function in ℋ is bounded.

Proof. Under such condition, by Cauchy-Schwartz inequality, any function 𝑓 ∈ ℋ is either
bounded or integrable:

|𝑓(𝑥)|2 6 ‖𝑓‖2
𝐾𝐾(𝑥, 𝑥) 6 ‖𝑓‖2

𝐾 sup
𝑥∈𝒳

𝐾(𝑥, 𝑥),∫︁
𝒳

|𝑓(𝑥)|2𝑑𝜌𝑋(𝑥) 6 ‖𝑓‖2
𝐾

∫︁
𝒳
𝐾(𝑥, 𝑥)𝑑𝜌𝑥(𝑥).

The assumption E[𝐾(𝑋,𝑋)] < ∞ seems to be the weakest assumption to make, in
order to have at least ℋ ⊂ ℒ2

𝜌𝑋
. However they may exist functions 𝑓 ∈ ℋ ∖ {0} such that

‖𝑓‖ℒ2
𝜌𝑋

= 0. However under stronger assumptions (see Section A.3.5) we may identify ℋ
and 𝑝(ℋ).
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A.3.1 Properties of the minimization problem

We are interested in minimizing the following quantity, which is the prediction error of a
function 𝑓 , which may be rewritten as follows with dot-products in 𝐿2

𝜌𝑋
:

𝜀(𝑓) = E
[︁
(𝑓(𝑋) − 𝑌 )2

]︁
= ‖𝑓‖2

𝐿2
𝜌𝑋

−
∫︁

𝒳 ×𝒴
𝑓(𝑥)𝑦𝑑𝜌(𝑥, 𝑦) + 𝑐

= ‖𝑓‖2
𝐿2

𝜌𝑋
−
∫︁

𝒳
𝑓(𝑥)

(︂∫︁
𝒴
𝑦𝑑𝜌𝑌 |𝑋=𝑥(𝑦)

)︂
𝑑𝜌|𝑋(𝑥) + 𝑐

= ‖𝑓‖2
𝐿2

𝜌𝑋
−
⟨
𝑓,

∫︁
𝒴
𝑦𝑑𝜌𝑌 |𝑋=·(𝑦)

⟩
𝐿2

𝜌𝑋

+ 𝑐 (A.1)

= ‖𝑓‖2
𝐿2

𝜌𝑋
− ⟨𝑓,E [𝑌 |𝑋 = ·]⟩𝐿2

𝜌𝑋
+ 𝑐

Notice that the problem may be re-written, if 𝑓 is in ℋ, with dot-products in ℋ:

𝜀(𝑓) = E[𝑓(𝑋)2] − 2⟨𝑓,E[𝑌 𝐾𝑋 ]⟩𝐾 + E[𝑌 2]
= ⟨𝑓,Σ𝑓⟩𝐾 − 2⟨𝑓, 𝜇⟩𝐾 + 𝑐.

Interpretation: Under the form (A.1), it appears to be a minimization problem in a Hilbert
space of the sum of a continuous coercive function and a linear one. Using Lax-Milgramm
and Stampachia theorems (Brezis, 1983) we can conclude with the following proposition,
which implies Prop. A.1 in Section 2.2:

Proposition A.8 (𝑔𝜌, 𝑔ℋ). Assume (A1-2). We have the following points:

1. There exists a unique minimizer over the space 𝐿2
𝜌𝑋

. This minimizer is the regression
function 𝑔𝜌 : 𝑥 ↦→

∫︀
𝒴 𝑦𝑑𝜌𝑌 |𝑋=𝑥(𝑦) (Lax-Milgramm).

2. For any non empty closed convex set, there exists a unique minimizer (Stampachia). As
a consequence, there exists a unique minimizer:

𝑔ℋ = arg min
𝑓∈𝑝(ℋ)

E
[︁
(𝑓(𝑋) − 𝑌 )2

]︁
over 𝑝(ℋ). 𝑔ℋ is the orthogonal projection over 𝑔𝜌 over 𝑝(ℋ), thus satisfies the following
equality: for any 𝜀 ∈ 𝐻:

E [(𝑔ℋ(𝑋) − 𝑌 )𝜀(𝑋)] = 0 (A.2)

A.3.2 Covariance Operator

We defined operators Σ, 𝒯 , 𝑇 in Section 2.2.4. We here state the main properties of these
operators, then prove the two main decompositions stated in Propositions 2.2 and A.3.

Proposition A.9 (Properties of Σ). Assume (A1-2).

1. Σ is well defined (that is for any 𝑓 ∈ ℋ, 𝑧 ↦→ E𝑓(𝑋)𝐾(𝑋, 𝑧) is in ℋ).

2. Σ is a continuous operator.

3. Ker(Σ) = {𝑓 ∈ ℋ s.t. ‖𝑓‖𝐿2
𝜌𝑋

= 0}. Actually for any 𝑓 ∈ ℋ, ⟨𝑓,Σ𝑓⟩𝐾 = ‖𝑓‖𝐿2
𝜌𝑋

.

4. Σ is a self-adjoint operator.
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Proof. 1. for any 𝑥 ∈ 𝒳 , 𝑓(𝑥)𝐾𝑥 is in ℋ. To show that the integral
∫︀

𝑥∈𝒳 𝑓(𝑥)𝐾𝑥 is
converging, it is sufficient to show the is is absolutely converging in ℋ, as absolute
convergence implies convergence in any Banach space1 (thus any Hilbert space).
Moreover:∫︁

𝑥∈𝒳
‖𝑓(𝑥)𝐾𝑥‖𝐾 6

∫︁
𝑥∈𝒳

|𝑓(𝑥)|⟨𝐾𝑥,𝐾𝑥⟩1/2
𝐾

6
∫︁

𝑥∈𝒳
|𝑓(𝑥)|𝐾(𝑥, 𝑥)1/2𝑑𝜌𝑋(𝑥)

6
(︂∫︁

𝑥∈𝒳
𝑓(𝑥)2𝑑𝜌𝑋(𝑥)

)︂1/2 (︂∫︁
𝑥∈𝒳

𝐾(𝑥, 𝑥)𝑑𝜌𝑋(𝑥)
)︂1/2

< ∞,

under assumption E[𝐾(𝑋,𝑋)] < ∞ ((A2)).

2. For any 𝑓 ∈ ℋ, we have

‖Σ𝑓‖𝐾 = ⟨Σ𝑓,Σ𝑓⟩𝐾 =
∫︁

𝑥∈𝒳
(Σ𝑓)(𝑥)𝑓(𝑥)𝑑𝜌𝑋(𝑥)

=
∫︁

𝑥∈𝒳

(︂∫︁
𝑦∈𝒳

𝑓(𝑦)𝐾(𝑥, 𝑦)𝑑𝜌𝑋(𝑦)
)︂
𝑓(𝑥)𝑑𝜌𝑋(𝑥)

=
∫︁

𝑥,𝑦∈𝒳 2
⟨𝑓,𝐾𝑥⟩𝐾⟨𝑓,𝐾𝑦⟩𝐾⟨𝐾𝑦,𝐾𝑥⟩𝐾𝑑𝜌𝑋(𝑥)𝑑𝜌𝑋(𝑦)

6
∫︁

𝑥,𝑦∈𝒳 2
‖𝑓‖𝐾‖𝐾𝑥‖𝐾‖𝑓‖𝐾‖𝐾𝑦‖𝐾‖𝐾𝑥‖𝐾‖𝐾𝑦‖𝐾𝑑𝜌𝑋(𝑥)𝑑𝜌𝑋(𝑦)

by Cauchy Schwartz,

6 ‖𝑓‖2
𝐾

(︂∫︁
𝑥∈𝒳 2

‖𝐾𝑥‖2
𝐾𝑑𝜌𝑋(𝑥)

)︂2

6 ‖𝑓‖2
𝐾

(︂∫︁
𝑥∈𝒳 2

𝐾(𝑥, 𝑥)𝑑𝜌𝑋(𝑥)
)︂2
,

which proves the continuity under assumption (A2).

3. Σ𝑓 = 0 ⇒ ⟨𝑓,Σ𝑓⟩ = 0 ⇒ E[𝑓2(𝑋)] = 0. Reciprocally, if ‖𝑓‖𝐿2
𝜌𝑋

= 0, it is clear that
‖Σ𝑓‖𝐿2

𝜌𝑋
= 0, then ‖Σ𝑓‖𝐾 = E [𝑓(𝑋)(Σ𝑓)(𝑋)] = 0, thus 𝑓 ∈ Ker(𝑇 ).

4. It is clear that ⟨Σ𝑓, 𝑔⟩ = ⟨𝑓,Σ𝑔⟩.

Proposition A.10 (Properties of 𝒯 ). Assume (A1-2). 𝒯 satisfies the following properties:

1. 𝒯 is a well defined, continuous operator.

2. For any 𝑓 ∈ ℋ, 𝒯 (𝑓) = Σ𝑓 , ‖𝒯 𝑓‖2
𝐾 =

∫︀
𝑥,𝑦∈𝒳 2 𝑓(𝑦)𝑓(𝑥)𝐾(𝑥, 𝑦)𝑑𝜌𝑋(𝑦)𝑑𝜌𝑋(𝑥).

3. The image of 𝑇 is a subspace of ℋ.

Proof. It is clear that 𝒯 is well defined, as for any class 𝑓 ,
∫︀

𝒳 𝑓(𝑡) 𝐾𝑡 𝑑𝜌𝑋(𝑡) does not
depend on the representer 𝑓 , and is converging in ℋ (which is the third point), just as in
the previous proof. The second point results from the definitions. Finally for continuity, we
have:

‖𝒯 𝑓‖2
𝐾 = ⟨𝒯 𝑓, 𝒯 𝑓⟩𝐾

1A Banach space is a linear normed space which is complete for the distance derived from the norm.
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=
∫︁

𝑥∈𝒳

∫︁
𝑦∈𝒳

𝑓(𝑦)𝑓(𝑥)𝐾(𝑥, 𝑦)𝑑𝜌𝑋(𝑦)𝑑𝜌𝑋(𝑥)

6
(︂∫︁

𝑥∈𝒳 2
|𝑓(𝑥)𝐾(𝑥, 𝑥)1/2|𝑑𝜌𝑋(𝑥)

)︂2

6
(︂∫︁

𝑥∈𝒳
𝑓(𝑥)2𝑑𝜌𝑋(𝑥)

)︂(︂∫︁
𝑥∈𝒳

𝐾(𝑥, 𝑥)𝑑𝜌𝑋(𝑥)
)︂
6 𝐶‖𝑓‖2

𝐿2
𝜌𝑋
.

We now state here a simple lemma that will be useful later:

Lemma A.11. Assume (A1).

1. E [𝑘(𝑋,𝑋)] < ∞ ⇒
∫︀

𝑥,𝑦∈𝒳 𝑘(𝑥, 𝑦)2𝑑𝜌𝑋(𝑥)𝑑𝜌𝑋(𝑦) < ∞.

2. E [|𝑘(𝑥, 𝑦)|] < ∞ ⇒
∫︀

𝑥,𝑦∈𝒳 𝑘(𝑥, 𝑦)2𝑑𝜌𝑋(𝑥)𝑑𝜌𝑋(𝑦) < ∞.

Proposition A.12 (Properties of 𝑇 ). Assume (A1-2). 𝑇 satisfies the following properties:

1. 𝑇 is a well defined, continuous operator.

2. The image of 𝑇 is a subspace of 𝑝(ℋ).

3. 𝑇 is a self-adjoint semi definite positive operator in the Hilbert space 𝐿2
𝜌𝑋

.

Proof. 𝑇 = 𝑝 ∘ 𝒯 is clearly well defined, using the arguments given above. Moreover:

‖𝑇𝑓‖2
𝐿2

𝜌𝑋
=

∫︁
𝑥∈𝒳

(︂∫︁
𝑡∈𝑋

𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝜌𝑋(𝑡)
)︂2
𝑑𝜌𝑋(𝑥)

6
(︂∫︁

𝑥∈𝒳

∫︁
𝑡∈𝑋

𝐾(𝑥, 𝑡)2𝑑𝜌𝑋(𝑡)𝑑𝜌𝑋(𝑥)
)︂(︂∫︁

𝑡∈𝒳
𝑓2(𝑡)𝑑𝜌𝑋(𝑡)

)︂
by C.S.

6 𝐶‖𝑓‖ℒ2
𝜌𝑋

by Lemma A.11,

which is continuity2. Then by Proposition A.10, Im(𝑇𝑑) ⊂ 𝑝(Im(𝒯 )) ⊂ 𝑝(ℋ). Finally, for
any 𝑓, 𝑔 ∈ ℒ2

𝜌𝑋
,

⟨𝑓, 𝑇𝑔⟩ℒ2
𝜌𝑋

=
∫︁

𝒳
𝑓(𝑥) 𝑇𝑔(𝑥)𝑑𝜌𝑋(𝑥)

=
∫︁

𝒳
𝑓(𝑥)

(︂∫︁
𝒳
𝑔(𝑡)𝐾(𝑥, 𝑡)𝑑𝜌𝑋(𝑡)

)︂
𝑑𝜌𝑋(𝑥)

=
∫︁

𝒳 ×𝒳
𝑓(𝑥)𝑔(𝑡)𝐾(𝑥, 𝑡)𝑑𝜌𝑋(𝑡)𝑑𝜌𝑋(𝑥) = ⟨𝑇𝑓, 𝑔⟩ℒ2

𝜌𝑋
.

and ⟨𝑓, 𝑇𝑓⟩ℒ2
𝜌𝑋

≥ 0 as a generalization of the positive definite property of 𝐾.

In order to show the existence of an eigenbasis for 𝑇 , we now show that 𝑇 is trace-class.

Proposition A.13 (Compactness of the operator). We have the following properties:

1. Under (A2), 𝑇 is a trace class operator3. As a consequence, it is also a Hilbert-Schmidt
operator4.

2We could also use the continuity of 𝑝 : ℋ → 𝐿2
𝜌𝑋

.
3Mimicking the definition for matrices, a bounded linear operator 𝐴 over a separable Hilbert space 𝐻 is

said to be in the trace class if for some (and hence all) orthonormal bases (𝑒𝑘)𝑘 of 𝐻 the sum of positive terms
tr|𝐴| :=

∑︀
𝑘
⟨(𝐴*𝐴)1/2 𝑒𝑘, 𝑒𝑘⟩ is finite.

4A Hilbert-Schmidt operator is a bounded operator 𝐴 on a Hilbert space 𝐻 with finite Hilbert–Schmidt
norm: ‖𝐴‖2

HS = tr|(𝐴
*
𝐴)| :=

∑︀
𝑖∈𝐼

‖𝐴𝑒𝑖‖2.



A.3. Reproducing kernel Hilbert spaces 77

2. If 𝐾 ∈ 𝐿2(𝜌𝑋 × 𝜌𝑋) then 𝑇 is a Hilbert-Schmidt operator.

3. Any Hilbert-Schmidt operator is a compact operator.

Proof. Proofs of such facts may be found in Brezis (1983); Paulin (2009). Formally, with
(𝜑𝑖)𝑖 an Hilbertian basis in 𝐿2

𝜌𝑋
:

E [𝐾(𝑋,𝑋)] = E [⟨𝐾𝑥,𝐾𝑥⟩𝐾 ]

= E

[︃ ∞∑︁
𝑖=1

⟨𝐾𝑥, 𝜑𝑖⟩2
𝐾

]︃
by Parseval equality,

=
∞∑︁

𝑖=1
E
[︁
⟨𝐾𝑥, 𝜑𝑖⟩2

𝐾

]︁
=

∞∑︁
𝑖=1

⟨𝑇𝜑𝑖, 𝜑𝑖⟩𝐾 = tr(𝑇 ).

Corollary A.14. We have thus proved that under (A1) and (A2), the operator 𝑇 may be
reduced in some Hilbertian eigenbasis: the fact that 𝑇 is self-adjoint and compact implies the
existence of an orthonormal eigen-system (which is an Hilbertian basis of 𝐿2

𝜌𝑋
).

This is a consequence of a very classical result, see for example Brezis (1983).

Definition A.15. The null space Ker(𝑇 ) :=
{︁
𝑓 ∈ 𝐿2

𝜌𝑋
s.t. 𝑇𝑓 = 0

}︁
may not be {0}. We

denote by 𝑆 an orthogonal supplementary of Ker(𝑇 ).

Proposition 2.2 is directly derived from a slightly more complete Proposition A.16
below:

Proposition A.16 (Eigen-decomposition of 𝑇 ). Under (A1) and (A2), 𝑇 is a bounded self
adjoint semi-definite positive operator on 𝐿2

𝜌𝑋
, which is trace-class. There exists5 a Hilbertian

eigenbasis (𝜑𝑖)𝑖∈𝐼 of the orthogonal supplement 𝑆 of the null space Ker(𝑇 ), with summable
eigenvalues (𝜇𝑖)𝑖∈𝐼 . That is:

∙ ∀𝑖 ∈ 𝐼, 𝑇𝜑𝑖 = 𝜇𝑖𝜑𝑖, (𝜇𝑖)𝑖 strictly positive non increasing (or finite) sequence such that∑︀
𝑖∈𝐼 𝜇𝑖 < ∞.

∙ 𝐿2
𝜌𝑋

= Ker(𝑇 )
⊥
⊕ 𝑆.

We have6: 𝑆 = span{𝜑𝑖} =
{︃ ∞∑︁

𝑖=1
𝑎𝑖𝜑𝑖 s.t.

∞∑︁
𝑖=1

𝑎2
𝑖 < ∞

}︃
. Moreover:

𝑆 = 𝑝(ℋ). (A.3)

Proof. For any 𝑖 ∈ 𝐼, 𝜑𝑖 = 1
𝜇𝑖
𝐿𝐾𝜑𝑖 ∈ 𝑝(ℋ). Thus span {𝜑𝑖} ⊂ 𝑝(ℋ), thus 𝑆 = span {𝜑𝑖} ⊂

𝑝(ℋ). Moreover, using the following Lemma, 𝑝(ℋ) ⊂ Ker(𝑇 )⊥ = 𝑆, which concludes the
proof, by taking the closures.

5𝑆 is stable by 𝑇 and 𝑇 : 𝑆 → 𝑆 is a self adjoint compact positive operator.
6We denote by span(𝐴) the smallest linear space which contains 𝐴, which is in such a case the set of all

finite linear combinations of (𝜑𝑖)𝑖∈𝐼 .
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Lemma A.17. We have the following points:

∙ if 𝑇 1/2𝑓 = 0 in 𝐿2
𝜌𝑋

, then 𝑇𝑓 = 0 in ℋ.

∙ 𝑝(ℋ) ⊂ Ker(𝑇 )⊥.

Proof. We first notice that if 𝑇 1/2𝑓 = 0 in 𝐿2
𝜌𝑋

, then 𝒯 𝑓 = 0 in ℋ: indeed7

‖𝑇𝑓‖2
ℋ =

⟨∫︁
𝒳
𝑓(𝑥)𝐾𝑥𝑑𝜌𝑋(𝑥),

∫︁
𝒳
𝑓(𝑦)𝐾𝑦𝑑𝜌𝑋(𝑦)

⟩
𝐾

=
∫︁

𝒳 2
𝑓(𝑥)𝑓(𝑦)𝐾(𝑥, 𝑦)𝑑𝜌𝑋(𝑥)𝑑𝜌𝑋(𝑦)

= ⟨𝑓, 𝑇𝑓⟩𝐿2
𝜌𝑋

= 0 if 𝑇𝑓 = 0 in 𝐿2
𝜌𝑋

.

Moreover ℋ is the completed space of span {𝐾𝑥, 𝑥 ∈ 𝒳 }, with respect to ‖ · ‖𝐾 and for
all 𝑥 ∈ 𝒳 , for all 𝜓𝑘 ∈ Ker(𝑇 ):

⟨𝑝(𝐾𝑥), 𝜓𝑘⟩𝐿2
𝜌𝑋

=
∫︁

𝒳
𝐾𝑥(𝑦)𝜓𝐾(𝑦)𝑑𝜌𝑋(𝑦) = (𝑇𝜓𝑘)(𝑥),

however, 𝑇𝜓𝑘 =𝐿2
𝜌𝑋

0 ⇒ 𝑇𝜓𝑘 =ℋ 0 ∀𝑥 ∈ 𝒳 ⇒ 𝑇𝜓𝑘(𝑥) = 0.

As a consequence, span {𝑝(𝐾𝑥), 𝑥 ∈ 𝒳 } ⊂ Ker(𝑇 )⊥. We just have to show that
span {𝑝(𝐾𝑥), 𝑥 ∈ 𝒳 } = 𝑝(ℋ), as Ker(𝑇 )⊥ is a closed space. It is true as for any 𝑓 ∈
𝑝(𝐻), 𝑓 ∈ ℋ there exists 𝑓𝑛 ⊂ span {𝐾𝑥, 𝑥 ∈ 𝒳 } such that 𝑓𝑛

ℋ→ 𝑓 , thus 𝑝(𝑓𝑛) → 𝑓 in
𝐿2

𝜌𝑋

8. Finally we have proved that 𝑝(ℋ) ⊂ Ker(𝑇 )⊥.

Similarly, Proposition A.3 is derived from Proposition A.18 below:

Proposition A.18 (Decomposition of Σ). Under (A1) and (A2), Im(𝒯 ) ⊂ ℋ, that is, for
any 𝑓 ∈ 𝐿2

𝜌𝑋
, 𝒯 𝑓 ∈ ℋ. Moreover, for any 𝑖 ∈ 𝐼, 𝜑𝐻

𝑖 = 1
𝜇𝑖

𝒯 𝜑𝑖 ∈ 𝐻 is a representant for the

equivalence class 𝜑𝑖. Moreover
(︁
𝜇

1/2
𝑖 𝜑𝐻

𝑖

)︁
𝑖∈𝐼

is an orthonormal eigen-system of S That is:

∙ ∀𝑖 ∈ 𝐼, Σ𝜑𝐻
𝑖 = 𝜇𝑖𝜑

𝐻
𝑖 .

∙
(︁
𝜇

1/2
𝑖 𝜑𝐻

𝑖

)︁
𝑖∈𝐼

is an orthonormal family in S .

We thus have:

S =
{︃∑︁

𝑖∈𝐼

𝑎𝑖𝜑
𝐻
𝑖 s.t.

∑︁
𝑖∈𝐼

𝑎2
𝑖

𝜇𝑖
< ∞

}︃
.

Moreover S is the orthogonal supplement of the null space Ker(Σ):

ℋ = Ker(Σ)
⊥
⊕ S .

7In other words, we the operator defined below 𝑇 1/2

𝑇 1/2𝑓 =𝐿2
𝜌𝑋

0

𝒯 𝑓 =ℋ Σ1/2( 𝒯 1/2𝑓)
‖ 𝒯 𝑓‖2

𝐾 = ‖Σ1/2( 𝒯 1/2𝑓)‖2
𝐾 = ‖( 𝒯 1/2𝑓)‖2

𝐿2
𝜌𝑋

= 0
𝐻𝑇 𝑓 =ℋ 0.

8‖𝑓𝑛 − 𝑓‖𝐿2
𝜌𝑋

= ‖Σ1/2(𝑓𝑛 − 𝑓)‖𝐾 → 0 as Σ continuous.
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Proof. The family 𝜑𝐻
𝑖 = 1

𝜇𝑖
𝑇𝜑𝑖 satisfies:

∙ ̃︂𝜑𝐻
𝑖 = 𝜑𝑖 (in 𝐿2

𝜌𝑋
),

∙ 𝜑𝐻
𝑖 ∈ S ,

∙ 𝑇𝜑𝐻
𝑖 = 𝜇𝑖𝜑𝑖 in 𝐿2

𝜌𝑋
,

∙ 𝒯 𝜑𝐻
𝑖 = Σ𝜑𝐻

𝑖 = 𝜇𝑖𝜑
𝐻
𝑖 in ℋ.

All the points are clear: indeed for example Σ𝜑𝐻
𝑖 = 𝑇𝜑𝑖 = 𝜇𝑖𝜑

𝐻
𝑖 . Moreover, we have

that:

‖𝜑𝑖‖2
𝐿2

𝜌𝑋
= ‖𝜑𝐻

𝑖 ‖2
𝐿2

𝜌𝑋
= ⟨𝜑𝐻

𝑖 ,Σ𝜑𝑖⟩𝐾 by Proposition 3

= 𝜇𝑖‖𝜑𝐻
𝑖 ‖2

𝐾

= ‖√
𝜇𝑖𝜑

𝐻
𝑖 ‖2

𝐾

That means that (√𝜇𝑖𝜑
𝐻
𝑖 )𝑖 is an orthonormal family in ℋ.

Moreover, S is defined as the completion for ‖ · ‖𝐾 of this orthonormal family, which

gives S =
{︂∑︀

𝑖∈𝐼 𝑎𝑖𝜑
𝐻
𝑖 s.t.

∑︀
𝑖∈𝐼

𝑎2
𝑖

𝜇𝑖
< ∞

}︂
.

To show that ℋ = Ker(Σ)
⊥
⊕ S , we use the following sequence of arguments:

∙ First, as Σ is a continuous operator, Ker(Σ) is a closed space in ℋ, thus ℋ = Ker(Σ)
⊥
⊕

(Ker(Σ))⊥.

∙ Ker(Σ) ⊂ (𝒯 1/2(𝑆))⊥: indeed for all 𝑓 ∈ Ker(Σ), ⟨𝑓, 𝜑ℋ
𝑖 ⟩ = 1

𝜇𝑖
⟨𝑓,Σ𝜑ℋ

𝑖 ⟩ = 1
𝜇𝑖

Σ⟨𝑓, 𝜑ℋ
𝑖 ⟩ =

0, and as a consequence for any 𝑓 ∈ Ker(Σ), 𝑔 ∈ 𝒯 1/2(𝑆), there exists (𝑔𝑛) ⊂
span(𝜑𝐻

𝑖 ) s.t. 𝑔𝑛
ℋ→ 𝑔, thus 0 = ⟨𝑔𝑛, 𝑓⟩ℋ → ⟨𝑓, 𝑔⟩ and finally 𝑓 ∈ (𝒯 1/2(𝑆))⊥. Equiv-

alently 𝒯 1/2(𝑆) ⊂ (Ker(Σ))⊥.

∙ (𝒯 1/2(𝑆))⊥ ⊂ Ker(Σ). For any 𝑖, 𝜑𝐻
𝑖 ∈ 𝒯 1/2(𝑆). If 𝑓 ∈ (𝒯 1/2(𝑆))⊥, then ⟨𝑝(𝑓), 𝜑𝑖⟩𝐿2

𝜌𝑋
=

⟨𝑓, 𝒯 𝜑𝑖⟩ℋ = 0. As a consequence 𝑝(𝑓) ∈ 𝑝(ℋ) ∩ Ker(𝑇 ) = {0}, thus 𝑓 ∈ Ker(Σ). That
is (𝒯 1/2(𝑆))⊥ ⊂ Ker(Σ). Equivalently Ker(Σ)⊥ ⊂ (𝒯 1/2(𝑆)).

∙ Combining these points: ℋ = Ker(Σ)
⊥
⊕ S .

We have two decompositions of ℒ2
𝜌𝑋

= Ker(𝑇 )
⊥
⊕𝑆 and ℋ = Ker(Σ)

⊥
⊕ S . They happen

to be related through the mapping 𝒯 1/2, which we now define.

A.3.3 Properties of 𝑇 𝑟, 𝑟 > 0

We defined operators 𝑇 𝑟, 𝑟 > 0 and 𝒯 𝑟, 𝑟 > 1/2 in Section 2.2.4 in Definitions 2.4,A.4.

Proposition A.19 (Properties of 𝑇 𝑟, 𝒯 𝑟).

∙ 𝑇 𝑟 is well defined for any 𝑟 > 0.

∙ 𝒯 𝑟 is well defined for any 𝑟 > 1
2 .

∙ 𝒯 1/2 : 𝑆 → S is an isometry.
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∙ Moreover Im(𝑇 1/2) = 𝑝(ℋ). That means 𝑇 1/2 : 𝑆 → 𝑝(ℋ) is an isomorphism.

Proof. 𝑇 𝑟 is well defined for any 𝑟 > 0.
𝑆 =

{︀∑︀∞
𝑖=1 𝑎𝑖𝜑𝑖 s.t.

∑︀∞
𝑖=1 𝑎

2
𝑖 < ∞

}︀
. For any sequence (𝑎𝑖)𝑖∈𝐼 such that

∑︀∞
𝑖=1 𝑎

2
𝑖 < ∞,

𝑇 𝑟(
∑︀
𝑎𝑖𝜑𝑖) =

∑︀
𝑖 𝜇

𝑟
𝑖𝑎𝑖𝜑𝑖 is a converging sum in the Hilbert space 𝐿2

𝜌𝑋
(as (𝜇𝑖)𝑖∈𝐼 is bounded

thus
∑︀

𝑖 𝜇
𝑟
𝑖𝑎𝑖𝜑𝑖 satisfies Cauchy is criterion: ‖

∑︀𝑝
𝑖=𝑛 𝜇

𝑟
𝑖𝑎𝑖𝜑𝑖‖2 6 𝜇𝑟

0
(︀∑︀𝑝

𝑖=𝑛 𝑎
2
𝑖

)︀1/2). And
Cauchy is criterion implies convergence in Hilbert spaces.

𝒯 𝑟 is well defined for any 𝑟 > 1
2 .

We have shown that (√𝜇𝑖𝜑
𝐻
𝑖 )𝑖 is an orthonormal family in ℋ. As a consequence (using

the fact that (𝜇𝑖) is a bounded sequence), for any sequence (𝑎𝑖)𝑖 such that
∑︀
𝑎2

𝑖 < ∞,∑︀
𝑖 𝜇

𝑟
𝑖𝑎𝑖𝜑

𝐻
𝑖 satisfies Cauchy is criterion thus is converging in ℋ as ‖

∑︀
𝑖∈𝐼′ 𝜇𝑟

𝑖𝑎𝑖𝜑
𝐻
𝑖 ‖𝐾 =∑︀

𝑖∈𝐼′ 𝜇
𝑟−1/2
𝑖 𝑎2

𝑖 6 𝜇
𝑟−1/2
0

∑︀
𝑖∈𝐼′ 𝑎2

𝑖 < ∞. (We need 𝑟 > 1/2 of course).

𝒯 1/2 : 𝑆 → S is an isometry.
Definition has been proved. Surjectivity in S is by definition, as

𝒯 1/2(𝑆) =
{︃∑︁

𝑖∈𝐼

𝑎𝑖𝜑
𝐻
𝑖 s.t.

∑︁
𝑖∈𝐼

𝑎2
𝑖

𝜇𝑖
< ∞

}︃
.

Moreover, the operator is clearly injective as for any 𝑓 ∈ 𝑆, 𝑇𝑓 ̸= 0 in 𝐿2
𝜌𝑋

thus 𝑇𝑓 ̸= 0 in ℋ.
Moreover for any 𝑓 =

∑︀∞
𝑖=1 𝑎𝑖𝜑𝑖 ∈ 𝑆, ‖𝑇𝑓‖2

𝐾 = ‖
∑︀∞

𝑖=1 𝑎𝑖
√
𝜇𝑖𝜑𝑖‖2

𝐾 =
∑︀∞

𝑖=1 𝑎
2
𝑖 = ‖𝑓‖2

ℒ2
𝜌𝑋

,

which is the isometrical property.
It must be noticed that we cannot prove surjectivity in ℋ9, that is without our “strong

assumptions”. However we will show that operator 𝑇 1/2 is surjective in 𝑝(ℋ).

Im(𝑇 1/2) = 𝑝(ℋ). That means 𝑇 1/2 : 𝑆 → 𝑝(ℋ) is an isomorphism.
Im(𝑇 1/2) = 𝑝(Im(𝒯 1/2)) = 𝑝(S ). Moreover 𝑝(ℋ) = 𝑝(Ker(Σ)⊕S ) = 𝑝(S ). Consequently
Im(𝑇 1/2) = 𝑝(ℋ). Moreover 𝑇 1/2 : 𝑆 → 𝐿2

𝜌𝑋
is also injective, which give the isomorphical

character.
Note that it is clear that 𝑇 1/2(𝑆) ⊂ 𝑝(ℋ) and that for any 𝑥 ∈ 𝒳 , 𝑝(𝐾𝑥) ∈ 𝑇 1/2(𝑆) in-

deed 𝑝(𝐾𝑥) =
∑︀∞

𝑖=1⟨𝐾𝑥, 𝜑𝑖⟩𝐿2
𝜌𝑋
𝜑𝑖 =

∑︀∞
𝑖=1 𝜇𝑖𝜑

𝐻
𝑖 (𝑥)𝜑𝑖, with

∑︀∞
𝑖=1

(𝜇𝑖𝜑
𝐻
𝑖 (𝑥))2

𝜇𝑖
=
∑︀∞

𝑖=1 𝜇𝑖𝜑
𝐻
𝑖 (𝑥)2 <

∞, as 𝐾(𝑥, 𝑥) =
∑︀∞

𝑖=1 𝜇𝑖𝜑
𝐻
𝑖 (𝑥)2

Finally, it has appeared that 𝑆 and S may be identified via the isometry 𝒯 1/2. We
conclude by a proposition which sums up the properties of the spaces 𝒯 𝑟(𝐿2

𝜌𝑋
).

Proposition A.20. The spaces 𝑇 𝑟(𝐿2
𝜌𝑋

), 𝑟 > 0 satisfy:

∀𝑟 > 𝑟′ > 0, 𝑇 𝑟
(︁
𝐿2

𝜌𝑋

)︁
⊂ 𝑇 𝑟′ (︁

𝐿2
𝜌𝑋

)︁
∀𝑟 > 0, 𝑇 𝑟

(︁
𝐿2

𝜌𝑋

)︁
= 𝑆

𝑇 1/2
(︁
𝐿2

𝜌𝑋

)︁
= 𝑝(ℋ)

∀𝑟 > 1
2 , 𝑇 𝑟

(︁
𝐿2

𝜌𝑋

)︁
⊂ 𝑝(ℋ)

9It is actually easy to build a counter example, f.e. with a measure of “small” support (let is say [−1, 1]),
a Hilbert space of functions on 𝒳 = [−5; 5], and a kernel like min(0, 1 − |𝑥 − 𝑦|): Im

(︀
𝒯 1/2)︀ ⊂ {𝑓 ∈

ℋ s. t. supp(𝑓) ⊂ [−2; 2]}  ℋ.
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A.3.4 Kernel decomposition

We prove here Proposition A.6.

Proof. Considering our decomposition of ℋ = S
⊥
⊕ ker(Σ), an the fact the (√𝜇𝑖𝜑

ℋ
𝑖 ) is a

Hilbertian eigenbasis of S , we have for any 𝑥 ∈ 𝒳 ,

𝐾𝑥 =
∞∑︁

𝑖=1
⟨√𝜇𝑖𝜑

ℋ
𝑖 ,𝐾𝑥⟩ℋ

√
𝜇𝑖𝜑

ℋ
𝑖 + 𝑔𝑥

=
∞∑︁

𝑖=1
𝜇𝑖𝜑

ℋ
𝑖 (𝑥)𝜑ℋ

𝑖 + 𝑔𝑥

And as it has been noticed above this sum is converging in S (as in ℋ) because∑︀∞
𝑖=1

(𝜇𝑖𝜑
ℋ
𝑖 (𝑥))2

𝜇𝑖
=
∑︀∞

𝑖=1 𝜇𝑖(𝜑ℋ
𝑖 (𝑥))2 = 𝐾(𝑥, 𝑥) < ∞. However, the convergence may not be

absolute in ℋ. Our function 𝑔𝑥 is in Ker(Σ), which means
∫︀

𝑦∈𝒳 𝑔𝑥(𝑦)2𝑑𝜌𝑋(𝑦) = 0.
And as a consequence, we have for all 𝑥, 𝑦 ∈ 𝒳 ,

𝐾(𝑥, 𝑦) =
∑︁
𝑖∈𝐼

𝜇𝑖𝜑
𝐻
𝑖 (𝑥)𝜑𝐻

𝑖 (𝑦) + 𝑔(𝑥, 𝑦),

With 𝑔(𝑥, 𝑦) := 𝑔𝑥(𝑦). Changing roles of 𝑥, 𝑦, it appears that 𝑔(𝑥, 𝑦) = 𝑔(𝑦, 𝑥). And we have
for all 𝑥 ∈ 𝒳 ,

∫︀
𝒳 𝑔(𝑥, 𝑦)2𝑑𝜌𝑋(𝑦) = 0. Moreover, the convergence of the series is absolute

We now prove the following points

(a) (S , ‖ · ‖ℋ) is also an RKHS, with kernel 𝐾S : (𝑥, 𝑦) ↦→
∑︀

𝑖∈𝐼 𝜇𝑖𝜑
𝐻
𝑖 (𝑥)𝜑𝐻

𝑖 (𝑦)

(b) given the decomposition above, almost surely the optimization problem in 𝒮 and ℋ
have equivalent solutions.

(a) (S , ‖ · ‖ℋ) is a Hilbert space as a closed subspace of a Hilbert space. Then for any
𝑥 ∈ 𝒳 : 𝐾S

𝑥 := (𝑦 ↦→ 𝐾S (𝑥, 𝑦)) =
∑︀∞

𝑖=1 𝜇𝑖𝜑
ℋ
𝑖 (𝑥)𝜑ℋ

𝑖 ∈ S . Finally, for any 𝑓 ∈ S

⟨𝑓,𝐾S
𝑥 ⟩ℋ = ⟨𝑓,𝐾S

𝑥 + 𝑔𝑥⟩ℋ = ⟨𝑓,𝐾𝑥⟩ℋ = 𝑓(𝑥),

because 𝑔𝑥 ∈ Ker(Σ) = S ⊥ ∋ 𝑓 . Thus stands the reproducing property.
(b) We have that 𝑝(S ) = 𝑝(ℋ) and our best approximating function is a minimizer

over this set. Moreover if 𝐾S
𝑥 was used instead of 𝐾𝑥 in our algorithm, both estimators

are almost surely almost surely equal (i.e., almost surely in the same equivalence class).
Indeed, at any step 𝑛, if we denote 𝑔S

𝑛 the sequence built in S with 𝐾S , if we have
𝑔S

𝑛
𝑎.𝑠.= 𝑔𝑛, then almost surely 𝑔S

𝑛 (𝑥𝑛) = 𝑔𝑛(𝑥𝑛) and moreover 𝐾𝑥𝑛

𝑎.𝑠.= 𝐾𝑆
𝑥𝑛

. Thus almost
surely, 𝑔𝑛+1

𝑎.𝑠.= 𝑔S
𝑛+1.

A.3.5 Alternative assumptions

As it has been noticed in this chapter, we have tried to minimize assumptions made on 𝒳
and 𝐾. In this section, we review some of the consequences of such assumptions.
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Alternative assumptions

The following have been considered previously:

1. Under the assumption that 𝜌 is a Borel probability measure (with respect with some
topology on R𝑑) and 𝒳 is a closed space, we may assume that supp(𝜌) = 𝒳 , where
supp(𝜌) is the smallest close space of measure one.

2. The assumption that 𝐾 is a Mercer kernel (𝒳 compact, 𝐾 continuous) has generally
been made before (Tarrès and Yao, 2014; Smale and Zhou, 2007; Smale and Cucker,
2001; Ying and Pontil, 2008), but does not seem to be necessary here.

3. (A2) was replaced by the stronger assumption sup𝑥∈𝒳 𝐾(𝑥, 𝑥) < ∞ (Tarrès and Yao,
2014; Ying and Pontil, 2008; Rosasco et al., 2014) and |𝑌 | bounded (Tarrès and Yao,
2014; Rosasco et al., 2014) .

Identification ℋ and 𝑝(ℋ)

Working with mild assumptions has made it necessary to work with sub spaces of 𝐿2
𝜌𝑋

,
thus projecting ℋ in 𝑝(ℋ). With stronger assumptions given above, the space ℋ may be
identified with 𝑝(ℋ).

Our problems are linked with the fact that a function 𝑓 in ℋ may satisfy both ‖𝑓‖ℋ ̸= 0
and ‖𝑓‖𝐿2

𝜌𝑋
= 0.

∙ the “support” of 𝜌 may not be 𝒳 .

∙ even if the support is 𝒳 , a function may be 𝜌-a.s. 0 but not null in ℋ.

Both these “problems” are solved considering the further assumptions above. We have
the following Proposition:

Proposition A.21. If we consider a Mercer kernel 𝐾 (or even any continuous kernel), on a
space 𝒳 compact and a measure 𝜌𝑋 on 𝒳 such that supp(𝜌) = 𝒳 then the map:

𝑝 : ℋ → 𝑝(ℋ)
𝑓 ↦→ 𝑓

is injective, thus bijective.

Mercer kernel properties

We review here some of the properties of Mercer kernels, especially Mercer’s theorem which
may be compared to Proposition A.6.

Proposition A.22 (Mercer theorem). Let 𝒳 be a compact domain or a manifold, 𝜌 a Borel
measure on 𝒳 , and 𝐾 : 𝒳 × 𝒳 → R a Mercer Kernel. Let 𝜆𝑘 be the 𝑘-th eigenvalue of 𝑇 and
Φ𝑘 the corresponding eigenvectors. For all 𝑥, 𝑡 ∈ 𝒳 , 𝐾(𝑥, 𝑡) =

∑︀∞
𝑘=1 𝜆𝑘Φ𝑘(𝑥)Φ𝑘(𝑡) where the

convergence is absolute (for each 𝑥, 𝑡 ∈ 𝒳 2) and uniform on 𝒳 × 𝒳 .

The proof of this theorem is given in Hochstadt (1973).

Proposition A.23 (Mercer Kernel properties). In a Mercer kernel, we have that:

1. 𝐶𝐾 := sup𝑥,𝑡∈𝒳 2(𝐾(𝑥, 𝑡)) < ∞.
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2. ∀𝑓 ∈ ℋ, 𝑓 is 𝐶0.

3. The sum
∑︀
𝜆𝑘 is convergent and

∑︀∞
𝑘=1 𝜆𝑘 =

∫︀
𝑋 𝐾(𝑥, 𝑥) 6 𝜌(𝒳 )𝐶𝐾 .

4. The inclusion 𝐼𝐾 : ℋ → 𝐶(𝒳 ) is bounded with |||𝐼𝐾 ||| 6 𝐶1/2
𝐾 .

5. The map

Φ : 𝒳 → ℓ2

𝑥 ↦→ (
√︀
𝜆𝑘Φ𝑘(𝑥))𝑘∈N

is well defined, continuous, and satisfies 𝐾(𝑥, 𝑡) = ⟨Φ𝑘(𝑥),Φ𝑘(𝑡)⟩.

6. The space ℋ is independent of the measure considered on 𝒳 .

We can characterize ℋ via the eigenvalues-eigenvectors:

ℋ =
{︃
𝑓 ∈ 𝐿2

𝜌𝑋
|𝑓 =

∞∑︁
𝑘=1

𝑎𝑘Φ𝑘 with
∞∑︁

𝑘=1

(︂
𝑎𝑘√
𝜆𝑘

)︂2
< ∞

}︃
.

Which is equivalent to saying that 𝑇 1/2 is an isomorphism between 𝐿2
𝜌𝑋

and ℋ. Where
we have only considered 𝜆𝑘 > 0. It has no importance to consider the linear subspace 𝑆 of
𝐿2

𝜌𝑋
spanned by the eigenvectors with non zero eigenvalues. However it changes the space

ℋ which is in any case 𝑆, and is of some importance regarding the estimation problem.

A.4 Proofs

To get our results, we are going to derive from our recursion a new error decomposition
and bound the different sources of error via algebraic calculations. We first make a few
remarks on short notations that we will use in this part and difficulties that arise from the
Hilbert space setting in Section A.4.1, then provide intuition via the analysis of a closely
related recursion in Section A.4.2. We give in Sections A.4.3, A.4.4 the complete proof
of our bound respectively in the finite horizon case (Theorem 2.9) and the online case
(Theorem 2.11). We finally provide technical calculations of the main bias and variance
terms in Section A.4.6.

A.4.1 Preliminary remarks

We remind that we consider a sequence of functions (𝑔𝑛)𝑛∈N satisfying the system defined
in Section 2.3.

𝑔0 = 0 (the null function),

𝑔𝑛 =
𝑛∑︁

𝑖=1
𝑎𝑖𝐾𝑥𝑖 .

With a sequence (𝑎𝑛)𝑛>1 such that for all 𝑛 greater than 1 :

𝑎𝑛 := −𝛾𝑛(𝑔𝑛−1(𝑥𝑛) − 𝑦𝑛) = −𝛾𝑛

(︃
𝑛−1∑︁
𝑖=1

𝑎𝑖𝐾(𝑥𝑛, 𝑥𝑖) − 𝑦𝑖

)︃
. (A.4)

We output

𝑔𝑛 = 1
𝑛+ 1

𝑛∑︁
𝑘=0

𝑔𝑘. (A.5)
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We consider a representer 𝑔ℋ ∈ ℒ2
𝜌𝑋

of 𝑔ℋ defined by Proposition A.1. We accept to
confuse notations as far as our calculations are made on 𝐿2

𝜌𝑋
-norms, thus does not depend

on our choice of the representer.
We aim to estimate :

𝜀(𝑔𝑛) − 𝜀(𝑔ℋ) = ‖𝑔𝑛 − 𝑔ℋ‖2
𝐿2

𝜌𝑋
.

Notations

In order to simplify reading, we will use some shorter notations :

∙ For the covariance operator, we will only use Σ instead of Σ, 𝑇, 𝒯 ,

Space : ℋ
Observations : (𝑥𝑛, 𝑦𝑛)𝑛∈N i.i.d. ∼ 𝜌

Best approximation function : 𝑔ℋ
Learning rate : (𝛾𝑖)𝑖

All the functions may be split up the orthonormal eigenbasis of the operator 𝒯 . We
can thus see any function as an infinite-dimensional vector, and operators as matrices.
This is of course some (mild) abuse of notations if we are not in finite dimensions. For
example, our operator Σ may be seen as Diag(𝜇𝑖)16𝑖. Carrying on the analogy with the
finite dimensional setting, a self adjoint operator, may be seen as a symmetric matrix.

We will have to deal with several “matrix products” (which are actually operator
compositions). We denote :

𝑀(𝑘, 𝑛, 𝛾) =
𝑛∏︁

𝑖=𝑘

(𝐼 − 𝛾𝐾𝑥𝑖 ⊗𝐾𝑥𝑖) = (𝐼 − 𝛾𝐾𝑥𝑘
⊗𝐾𝑥𝑘

) · · · (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)

𝑀(𝑘, 𝑛, (𝛾𝑖)𝑖) =
𝑛∏︁

𝑖=𝑘

(𝐼 − 𝛾𝑖𝐾𝑥𝑖 ⊗𝐾𝑥𝑖)

𝐷(𝑘, 𝑛, (𝛾𝑖)𝑖) =
𝑛∏︁

𝑖=𝑘

(𝐼 − 𝛾𝑖Σ)

Remarks :

∙ As our operators may not commute, we use a somehow unusual convention by
defining the products for any 𝑘, 𝑛, even with 𝑘 > 𝑛 , with 𝑀(𝑘, 𝑛, 𝛾) = (𝐼 − 𝛾𝐾𝑥𝑘

⊗
𝐾𝑥𝑘

)(𝐼 − 𝛾𝐾𝑥𝑘−1 ⊗𝐾𝑥𝑘−1) · · · (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛).

∙ We may denote 𝐷(𝑘, 𝑛, 𝛾) =
∏︀𝑛

𝑖=𝑘(𝐼 − 𝛾Σ) even if its clearly (𝐼 − 𝛾Σ)𝑛−𝑘+1 just in
order to make the comparison between equations easier.

On norms

In the following, we will use constantly the following observation :

Lemma A.24. Assume A2-4 , let 𝜂𝑛 = 𝑔𝑛 − 𝑔ℋ, 𝜂𝑛 = 𝑔𝑛 − 𝑔ℋ :

𝜀(𝑔𝑛) − 𝜀(𝑔ℋ) = ⟨𝜂𝑛,Σ𝜂𝑛⟩ = E
[︁
⟨𝑥, 𝑔𝑛 − 𝑔ℋ⟩2

]︁ (︁
:= ‖𝑔𝑛 − 𝑔ℋ‖2

𝐿2
𝜌𝑋

)︁
,

𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ) = ⟨𝜂𝑛,Σ𝜂𝑛⟩.
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On symmetric matrices

One has to be careful when using auto adjoint operators, especially when using the order
𝐴 4 𝐵 which means that 𝐵 −𝐴 is non-negative.

Some problems may arise when some self adjoint 𝐴,𝐵 do not commute, because then
𝐴𝐵 is not even in auto adjoint. It is also hopeless to compose such relations : for example
𝐴 4 𝐵 does not imply 𝐴2 4 𝐵2 (while the opposite is true).

However, it is true that if 𝐴 4 𝐵, then for any 𝐶 in 𝑆𝑛(R), we have 𝐶𝑡𝐴𝐶 4 𝐶𝑡𝐵𝐶. We
will often use this final point. Indeed for any 𝑥, 𝑥𝑡 (𝐶𝑡𝐵𝐶−𝐶𝑡𝐴𝐶)𝑥 = (𝐶𝑥)𝑡(𝐵−𝐴)(𝐶𝑥) >
0.

Notation

In the proof, we may use, for any 𝑥 ∈ ℋ:

˜𝐾𝑥 ⊗𝐾𝑥 : 𝐿2
𝜌𝑋

→ ℋ
𝑓 ↦→ 𝑓(𝑥) 𝐾𝑥.

We only consider functions ℒ2
𝜌𝑋

, which are well defined at any point. The regression
function is only almost surely defined but we will consider a version of the function in ℒ2

𝜌𝑋
.

The following properties clearly hold :

∙ ˜𝐾𝑥 ⊗𝐾𝑥|ℋ = 𝐾𝑥 ⊗𝐾𝑥

∙ E
(︁
˜𝐾𝑥 ⊗𝐾𝑥

)︁
= 𝒯

∙ E (𝐾𝑥 ⊗𝐾𝑥) = Σ as it has been noticed above.

For some 𝑥 ∈ 𝒳 , we may denote 𝑥⊗ 𝑥 := 𝐾𝑥 ⊗𝐾𝑥. Moreover, abusing notations, we
may forget the ∼ in many cases.

A.4.2 Semi-stochastic recursion - intuition

We remind that :
𝑔𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝑔𝑛−1 + 𝛾𝑦𝑛𝐾𝑥𝑛 ,

with 𝑔0 = 0. We have denoted Ξ𝑛 = (𝑦𝑛 − 𝑔ℋ(𝑥𝑛))𝐾𝑥𝑛 . Thus 𝑦𝑛𝐾𝑥𝑛 = 𝑔ℋ(𝑥𝑛)𝐾𝑥𝑛 + Ξ𝑛
def=

˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛𝑔ℋ + Ξ𝑛, and our recursion may be rewritten :

𝑔𝑛 − 𝑔ℋ = (𝐼 − 𝛾 ˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝑔𝑛−1 − 𝑔ℋ) + 𝛾Ξ𝑛, (A.6)

Finally, we are studying a sequence (𝜂𝑛)𝑛 defined by :

𝜂0 = 𝑔ℋ,

𝜂𝑛 = (𝐼 − 𝛾𝑛
˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛−1 + 𝛾𝑛Ξ𝑛. (A.7)

Behaviour : It appears that to understand how this will behave, we may compare it to
the following recursion, which may be described as a “semi-stochastic” version of (A.7) :
we keep the randomness due to the noise Ξ𝑛 but forget the randomness due to sampling
by replacing ˜𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 by its expectation Σ (𝑇 , more precisely) :

𝜂𝑠𝑠𝑡𝑜
0 = 𝑔ℋ,
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𝜂𝑠𝑠𝑡𝑜
𝑛 = (𝐼 − 𝛾𝑛Σ)𝜂𝑠𝑠𝑡𝑜

𝑛−1 + 𝛾𝑛Ξ𝑛. (A.8)

Complete proof : This comparison will give an interesting insight and the main terms
of bias and variance will appear if we study (A.8). However this is not the true recursion :
to get Theorem 2.9, we will have to do a bit of further work : we will first separate the error
due to the noise from the error due to the initial condition, then link the true recursions to
their “semi-stochastic” counterparts to make the variance and bias terms appear. That will
be done in Section A.4.3.

Semi-stochastic recursion : In order to get such intuition, in both the finite horizon
and on-line case, we will begin by studying the semi-stochastic equation (A.8).

First, we have, by induction:

∀𝑗 > 1 𝜂𝑠𝑠𝑡𝑜
𝑗 = (𝐼 − 𝛾𝑗Σ)𝜂𝑠𝑠𝑡𝑜

𝑗−1 + 𝛾𝑗Ξ𝑗 .

𝜂𝑠𝑠𝑡𝑜
𝑗 =

⎡⎣ 𝑗∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝜂𝑠𝑠𝑡𝑜
0 +

𝑗∑︁
𝑘=1

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝛾𝑘Ξ𝑘

𝜂𝑠𝑠𝑡𝑜
𝑗 = 𝐷(1, 𝑗, (𝛾𝑖)𝑖)𝜂𝑠𝑠𝑡𝑜

0 +
𝑗∑︁

𝑘=1
𝐷(𝑘 + 1, 𝑗, (𝛾𝑖)𝑖)𝛾𝑘Ξ𝑘

𝜂𝑠𝑠𝑡𝑜
𝑛 = 1

𝑛

𝑛∑︁
𝑗=1

𝐷(1, 𝑗, (𝛾𝑖)𝑖)𝜂𝑠𝑠𝑡𝑜
0 + 1

𝑛

𝑛∑︁
𝑗=1

𝑗∑︁
𝑘=1

𝐷(1, 𝑗, (𝛾𝑖)𝑖)𝛾𝑘Ξ𝑘.

Then :

E‖𝜂𝑠𝑠𝑡𝑜
𝑛 ‖2

𝐿2
𝜌𝑋

= 1
𝑛2 E‖

𝑛∑︁
𝑗=1

𝐷(1, 𝑗, (𝛾𝑖)𝑖)𝑔ℋ +
𝑛∑︁

𝑗=1

𝑗∑︁
𝑘=1

𝐷(𝑘 + 1, 𝑗, (𝛾𝑖)𝑖)𝛾𝑘Ξ𝑘‖𝐿2
𝜌𝑋

= 1
𝑛2 E‖

𝑛∑︁
𝑗=1

𝐷(1, 𝑗, (𝛾𝑖)𝑖)𝑔ℋ‖𝐿2
𝜌𝑋⏟  ⏞  

Bias(𝑛)

+ 2 1
𝑛2 E⟨

𝑛∑︁
𝑗=1

𝐷(1, 𝑗, (𝛾𝑖)𝑖)𝑔ℋ,
𝑛∑︁

𝑗=1

𝑗∑︁
𝑘=1

𝐷(𝑘 + 1, 𝑗, (𝛾𝑖)𝑖)𝛾𝑘Ξ𝑘⟩𝐿2
𝜌𝑋⏟  ⏞  

=0 by (A.2) ,

+ 1
𝑛2 E‖

𝑛∑︁
𝑗=1

𝑗∑︁
𝑘=1

𝐷(𝑘 + 1, 𝑗, (𝛾𝑖)𝑖)𝛾𝑘Ξ𝑘‖𝐿2
𝜌𝑋⏟  ⏞  

var(𝑛)

(A.9)

In the following, all calculations may be driven either with ‖Σ1/2 · ‖𝐾 or in ‖ · ‖𝐿2
𝜌𝑋

using the isometrical character of Σ1/2. In order to simplify comparison with existing work
and especially (Bach and Moulines, 2013), we will mainly use the former as all calculations
are only algebraic sums, we may sometimes use the notation ⟨𝑥,Σ𝑥⟩𝐻 instead of ‖Σ1/2𝑥‖2

ℋ.
It is an abuse if 𝑥 /∈ ℋ, but however does not induce any confusion or mistake. In the
following, if not explicitly specified, ‖ · ‖ will denote ‖ · ‖𝐾 .

In the following we will thus denote:

Bias
(︁
𝑛, (𝛾𝑖)𝑖,Σ, 𝑔ℋ

)︁
= 1

𝑛2 E
⃦⃦⃦⃦
Σ1/2

𝑛∑︁
𝑗=1

⎡⎣ 𝑗∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝑔ℋ

⃦⃦⃦⃦2

𝐾
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var
(︁
𝑛, (𝛾𝑖)𝑖,Σ, (Ξ𝑖)𝑖

)︁
= 1

𝑛2 E
⃦⃦⃦⃦
Σ1/2

𝑛∑︁
𝑗=1

𝑗∑︁
𝑘=1

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝛾𝑘Ξ𝑘

⃦⃦⃦⃦2

𝐾

.

In section A.4.6 we will prove the following Lemmas which upper bound these bias and
variance terms under different assumptions :

1. Bias
(︁
𝑛, 𝛾,Σ, 𝑔ℋ

)︁
if we assume A3,4, 𝛾 constant,

2. var
(︁
𝑛, 𝛾,Σ, (Ξ𝑖)𝑖

)︁
if we assume A3,6, 𝛾 constant,

3. Bias
(︁
𝑛, (𝛾𝑖)𝑖,Σ, 𝑔ℋ

)︁
if we assume A3,4 and 𝛾𝑖 = 1

𝑛𝜁 , 0 6 𝜁 6 1,

4. var
(︁
𝑛, (𝛾𝑖)𝑖,Σ, (Ξ𝑖)𝑖

)︁
if we assume A3,6 and 𝛾𝑖 = 1

𝑛𝜁 , 0 6 𝜁 6 1.

The two terms show respectively the impact :

1. of the initial setting and the hardness to forget the initial condition,

2. the noise.

Thus the first one tends to decrease when 𝛾 is increasing, whereas the second one increases
when 𝛾 increases. We understand we may have to choose our step 𝛾 in order to optimize
the trade-off between these two factors.

In the finite-dimensional case, it results from such a decomposition that if 𝐶 = 𝜎2Σ
then E

[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
6 1

𝑛𝛾 ‖𝛼‖2
0 + 𝜎2𝑑

𝑛 , as this upper bound is vacuous when 𝑑 is either
large or infinite, we can derive comparable bounds in the infinite-dimensional setting under
our assumptions A3,4,6.

Lemma A.25 (Bias, A3,4, 𝛾 const.). Assume A3-4 and let 𝛼 (resp. 𝑟) be the constant in A3
(resp. A4) :

If 𝑟 6 1 :

Bias
(︁
𝑛, 𝛾,Σ, 𝑔ℋ

)︁
6 ‖Σ−𝑟𝑔ℋ‖2

𝐿2
𝜌𝑋

(︂ 1
(𝑛𝛾)2𝑟

)︂
not= bias(𝑛, 𝛾, 𝑟).

If 𝑟 > 1 :

Bias
(︁
𝑛, 𝛾,Σ, 𝑔ℋ

)︁
6 ‖Σ−𝑟𝑔ℋ‖2

𝐿2
𝜌𝑋

(︂ 1
𝑛2𝛾𝑟

)︂
not= bias(𝑛, 𝛾, 𝑟).

Lemma A.26 (Var, A3,4, 𝛾 const). Assume A3,6, let 𝛼, 𝑠 be the constants in A3, and 𝜎 the
constant in A6 (so that E [Ξ𝑛 ⊗ Ξ𝑛] 4 𝜎2Σ).

var
(︁
𝑛, 𝛾,Σ, (Ξ𝑖)𝑖

)︁
6 𝐶(𝛼) 𝑠2/𝛼 𝜎2 𝛾

1
𝛼

𝑛1− 1
𝛼

+ 𝜎2

𝑛
not= var(𝑛, 𝛾, 𝜎2, 𝑟, 𝛼),

with 𝐶(𝛼) = 2𝛼2

(𝛼+1)(2𝛼−1) .

Lemma A.27 (Bias, A3,4, (𝛾)𝑖 ). Assume A3-4 and let 𝛼 (resp. 𝑟) be the constant in A3
(resp. A4). Assume we consider a sequence 𝛾𝑖 = 𝛾0

𝑖𝜁 with 0 < 𝜁 < 1 then :



A.4. Proofs 88

1. if 𝑟(1 − 𝜁) < 1:

Bias
(︁
𝑛, (𝛾𝑖)𝑖,Σ, 𝑔ℋ

)︁
= 𝑂

(︁
‖Σ−𝑟𝑔ℋ‖2

𝐿2
𝜌𝑋
𝑛−2𝑟(1−𝜁)

)︁
= 𝑂

(︂
‖Σ−𝑟𝑔ℋ‖2

𝐿2
𝜌𝑋

1
(𝑛𝛾𝑛)2𝑟

)︂
,

2. if 𝑟(1 − 𝜁) > 1:

Bias
(︁
𝑛, (𝛾𝑖)𝑖,Σ, 𝑔ℋ

)︁
= 𝑂

(︂ 1
𝑛2

)︂
.

Lemma A.28 (Var, A3,4, (𝛾)𝑖 ). Assume A3,6, let 𝛼, 𝑠 be the constants in A3, and 𝜎 the
constant in A6 . If we consider a sequence 𝛾𝑖 = 𝛾0

𝑖𝜁 with 0 < 𝜁 < 1 then :

1. if 0 < 𝜁 < 1
2 then

var
(︁
𝑛, (𝛾𝑖)𝑖,Σ, (Ξ𝑖)𝑖

)︁
= 𝑂

(︁
𝑛−1+ 1−𝜁

𝛼

)︁
= 𝑂

(︃
𝜎2(𝑠2𝛾𝑛)

1
𝛼

𝑛1− 1
𝛼

)︃
,

2. and if 𝜁 > 1
2 then

var
(︁
𝑛, (𝛾𝑖)𝑖,Σ, (Ξ𝑖)𝑖

)︁
= 𝑂

(︁
𝑛−1+ 1−𝜁

𝛼
+2𝜁−1

)︁
.

Those Lemmas are proved in section A.4.6.
Considering decomposition (A.9) and our Lemmas above, we can state a first Proposi-

tion.

Proposition A.29 (Semi-stochastic recursion). Assume A1-6. Let’s consider the semi-
stochastic recursion (that is the sequence : 𝜂𝑛 = (𝐼 − 𝛾𝑛Σ)𝜂𝑛−1 + 𝛾𝑛Ξ𝑛) instead of our
recursion initially defined. In the finite horizon setting, thus with 𝛾𝑖 = 𝛾 for 𝑖 6 𝑛, we have:

1
2E [𝜀 (𝑔𝑛) − 𝜀(𝑔𝜌)] 6 𝐶(𝛼) 𝑠

2
𝛼 𝜎2 𝛾

1
𝛼

𝑛1− 1
𝛼

+ 𝜎2

𝑛
+ ‖Σ−𝑟𝑔𝜌‖2

𝐿2
𝜌𝑋

(︂ 1
𝑛2 min{𝑟,1}𝛾2𝑟

)︂
.

Theorem 2.9 must be compared to Proposition A.29 : Theorem 2.9 is just an extension
but with the true stochastic recursion instead of the semi-stochastic one.

We finish this first part by a very simple Lemma which states that what we have done
above is true for any semi stochastic recursion under few assumptions. Indeed, to get
the complete bound, we will always come back to semi-stochastic type recursions, either
without noise, or with a null initial condition.

Lemma A.30. Let’s assume:

1. 𝛼𝑛 = (𝐼 − 𝛾Σ)𝛼𝑛−1 + 𝛾Ξ𝛼
𝑛, with 𝛾Σ 4 𝐼.

2. (Ξ𝛼
𝑛) ∈ ℋ is ℱ𝑛 measurable for a sequence of increasing 𝜎-fields (ℱ𝑛).

3. E [Ξ𝛼
𝑛|ℱ𝑛−1] = 0, E

[︀
‖Ξ𝛼

𝑛‖2|ℱ𝑛−1
]︀

is finite and E [Ξ𝛼
𝑛 ⊗ Ξ𝛼

𝑛] 4 𝜎2
𝛼Σ.

Then :

E
[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
= Bias

(︁
𝑛, 𝛾,Σ, 𝛼0

)︁
+ var

(︁
𝑛, 𝛾,Σ, (Ξ𝛼

𝑖 )𝑖

)︁
. (A.10)

And we may apply Lemmas A.25 and A.26 if we have good assumptions on Σ, 𝛼0.
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Complete recursion 𝜂𝑛

↘ ↘
variance term 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 | bias term 𝜂𝑖𝑛𝑖𝑡
𝑛

↓ | ↓
multiple recursion | semi stochastic variant

↘ ↘ | ↘ ↘
main terms 𝜂𝑟

𝑛, 𝑟 > 1 residual term 𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

∑︀
𝜂𝑟

𝑛 | main term 𝜂0
𝑛 residual term 𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛

satisfying semi-sto recursions satisf. stochastic recursion | satisf. semi-sto recursion satisf. stochastic recursion
↓ Lemma A.30 ↓ Lemma A.31 | ↓ ↓ Lemma A.31
6 𝐶 Variance term −→

𝑟→∞
0 | 6 Bias term residual negligible term

Lemma A.26 ↘ ↘ Lemma A.25
Theorem 2.9

Table A.2: Error decomposition in the finite horizon setting.

A.4.3 Complete proof, Theorem 2.9 (finite horizon)

In the following, we will focus on the finite horizon setting, i.e., we assume the step size
is constant, but may depend on the total number of observations 𝑛: for all 1 6 𝑖 6 𝑛,
𝛾𝑖 = 𝛾 = Γ(𝑛). The main idea of the proof is to be able to :

1. separate the different sources of error (noise & initial conditions),

2. then bound the difference between the stochastic recursions and their semi-stochastic
versions, a case in which we are able to compute bias and variance as it is done
above.

Our main tool will be the Minkowski’s inequality, which is the triangular inequality for
E
(︁
‖ · ‖𝐿2

𝜌𝑋

)︁
. This will allow us to separate the error due to the noise from the error due to

the initial conditions. The sketch of the decomposition is given in Table A.2.

We remind that (𝜂𝑛)𝑛 is defined by :

𝜂0 = 𝑔ℋ, and the recursion 𝜂𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛−1 + 𝛾Ξ𝑛.

A Lemma on stochastic recursions

Before studying the main decomposition in Section A.4.3 we must give a classical Lemma
on stochastic recursions which will be useful below :

Lemma A.31. Assume (𝑥𝑛,Ξ𝑛) ∈ ℋ × ℋ are ℱ𝑛 measurable for a sequence of increasing 𝜎-
fields (ℱ𝑛). Assume that E [Ξ𝑛|ℱ𝑛−1] = 0, E

[︀
‖Ξ𝑛‖2|ℱ𝑛−1

]︀
is finite and E

[︀
‖𝐾𝑥𝑛‖2𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 |ℱ𝑛−1

]︀
4

𝑅2Σ, with E [𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 |ℱ𝑛−1] = Σ for all 𝑛 > 1 , for some 𝑅 > 0 and invertible operator Σ.
Consider the recursion 𝛼𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝛼𝑛−1 + 𝛾Ξ𝑛, with 𝛾𝑅2 6 1. Then :

(1 − 𝛾𝑅2) E
[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
+ 1

2𝑛𝛾E‖𝛼𝑛‖2 6
1

2𝑛𝛾 ‖𝛼0‖2 + 𝛾

𝑛

𝑛∑︁
𝑘=1

E‖Ξ𝑘‖2.

Especially, if 𝛼0 = 0, we have

E
[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
6

1
(1 − 𝛾𝑅2)

𝛾

𝑛

𝑛∑︁
𝑘=1

E‖Ξ𝑘‖2.
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Its proof may be found in Bach and Moulines (2013) : it is a direct consequence of the
classical recursion to upper bound ‖𝛼𝑛‖2.

Main decomposition

We consider :

1. (𝜂𝑖𝑛𝑖𝑡
𝑛 )𝑛 defined by :

𝜂𝑖𝑛𝑖𝑡
0 = 𝑔ℋ and 𝜂𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑖𝑛𝑖𝑡
𝑛−1.

𝜂𝑖𝑛𝑖𝑡
𝑛 is the part of (𝜂𝑛)𝑛 which is due to the initial conditions ( it is equivalent to

assuming Ξ𝑛 ≡ 0).

2. Respectively, let (𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 )𝑛 be defined by :

𝜂𝑛𝑜𝑖𝑠𝑒
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒
𝑛−1 + 𝛾Ξ𝑛.

𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 is the part of (𝜂𝑛)𝑛 which is due to the noise.

A straightforward induction shows that for any 𝑛, 𝜂𝑛 = 𝜂𝑖𝑛𝑖𝑡
𝑛 + 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 and 𝜂𝑛 = 𝜂𝑖𝑛𝑖𝑡
𝑛 +

𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 . Thus Minkowski’s inequality, applied to

(︂
E
[︂
‖ · ‖2

𝐿2
𝜌𝑋

]︂)︂1/2
, leads to :

(︁
E
[︁
‖𝜂𝑛‖2

𝐿2
𝜌𝑋

]︁)︁1/2
6
(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
+
(︁
E
[︁
‖𝜂𝑖𝑛𝑖𝑡

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2

(E [⟨𝜂𝑛,Σ𝜂𝑛⟩])1/2 6
(︁
E
[︁
⟨𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 ⟩

]︁)︁1/2
+
(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︁)︁1/2
. (A.11)

That means we can always consider separately the effect of the noise and the effect of
the initial conditions. We’ll first study 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 and then 𝜂𝑖𝑛𝑖𝑡
𝑛 .

Noise process

We remind that (𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 )𝑛 is defined by :

𝜂𝑛𝑜𝑖𝑠𝑒
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒
𝑛−1 + 𝛾Ξ𝑛. (A.12)

We are going to define some other sequences, which are defined by the following
“semi-stochastic” recursion, in which 𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 has been replaced be its expectancy Σ :
first we define

(︀
𝜂𝑛𝑜𝑖𝑠𝑒,0

𝑛

)︀
𝑛 so that

𝜂𝑛𝑜𝑖𝑠𝑒,0
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒,0

𝑛 = (𝐼 − 𝛾Σ)𝜂𝑛𝑜𝑖𝑠𝑒,0
𝑛−1 + 𝛾Ξ𝑛.

Triangular inequality will allow us to upper bound
(︂

E
[︂
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︂)︂1/2
:

(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
6
(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒,0

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
+
(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,0
𝑛 ‖2

𝐿2
𝜌𝑋

]︁)︁1/2
(A.13)

So that we’re interested in the sequence
(︀
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,0
𝑛

)︀
𝑛 : we have

𝜂𝑛𝑜𝑖𝑠𝑒
0 − 𝜂𝑛𝑜𝑖𝑠𝑒,0

0 = 0,
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,0
𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝜂𝑛𝑜𝑖𝑠𝑒

𝑛−1 − 𝜂0
𝑛−1) + 𝛾(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂0

𝑛−1
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= (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝜂𝑛𝑜𝑖𝑠𝑒
𝑛−1 − 𝜂0

𝑛−1) + 𝛾Ξ1
𝑛. (A.14)

which is the same type of Equation as (A.12). We have denoted Ξ1
𝑛 = (Σ−𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂0

𝑛−1.
Thus we may consider the following sequence, satisfying the “semi-stochastic” version

of recursion (A.14), changing 𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 into its expectation Σ : we define
(︀
𝜂𝑛𝑜𝑖𝑠𝑒,1

𝑛

)︀
𝑛 so

that:
𝜂𝑛𝑜𝑖𝑠𝑒,1

0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒,1
𝑛 = (𝐼 − 𝛾Σ)𝜂𝑛𝑜𝑖𝑠𝑒,1

𝑛−1 + 𝛾Ξ1
𝑛. (A.15)

Thanks to the triangular inequality, we’re interested in
(︀
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,1

𝑛

)︀
𝑛,

which satisfies the (A.12)-type recursion :

𝜂𝑛𝑜𝑖𝑠𝑒
0 − 𝜂𝑛𝑜𝑖𝑠𝑒,0

0 − 𝜂𝑛𝑜𝑖𝑠𝑒,1
0 = 0,

𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,0

𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒,1
𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝜂𝑛𝑜𝑖𝑠𝑒

𝑛−1 − 𝜂𝑛𝑜𝑖𝑠𝑒,0
𝑛−1 − 𝜂𝑛𝑜𝑖𝑠𝑒,1

𝑛 )
+𝛾(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒,1

𝑛−1

= (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝜂𝑛𝑜𝑖𝑠𝑒
𝑛−1 − 𝜂𝑛𝑜𝑖𝑠𝑒,0

𝑛−1 − 𝜂𝑛𝑜𝑖𝑠𝑒,1
𝑛 ) + 𝛾Ξ(2)

𝑛 .

With Ξ(2)
𝑛 := (Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒,1

𝑛−1 .

And so on... For any 𝑟 > 0 we define a sequence (𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛 )𝑛 by :

𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟

𝑛 = (𝐼 − 𝛾Σ)𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛−1 + 𝛾Ξ𝑟

𝑛,

with Ξ𝑟
𝑛 = (Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒,𝑟−1

𝑛−1 .

We have, for any 𝑟, 𝑛 ∈ N2 :

𝜂𝑛𝑜𝑖𝑠𝑒
0 −

𝑟∑︁
𝑖=0

𝜂𝑛𝑜𝑖𝑠𝑒,𝑖
0 = 0,

𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

𝑟∑︁
𝑖=0

𝜂𝑛𝑜𝑖𝑠𝑒,𝑖
𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)

(︃
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛−1 −
𝑟∑︁

𝑖=0
𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛−1

)︃
+𝛾(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒,𝑟

𝑛−1 .

= (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)
(︃
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛−1 −
𝑟∑︁

𝑖=0
𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛−1

)︃
+ 𝛾Ξ(𝑟+1)

𝑛 . (A.16)

So that
(︀
𝜂𝑛𝑜𝑖𝑠𝑒,𝑟+1

𝑛

)︀
follows the “semi-stochastic” version of (A.16)...

Minkowski’s inequality. Considering this decomposition, we have, for any 𝑟, using
triangular inequality :

(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
6

𝑟∑︁
𝑖=0

(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
+

⎛⎝E

⎡⎣⃒⃒⃒⃒⃒⃒⃒⃒𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

𝑟∑︁
𝑖=0

𝜂𝑛𝑜𝑖𝑠𝑒,𝑖
𝑛

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2

𝜌𝑋

⎤⎦⎞⎠1/2

(A.17)

Moment Bounds. For any 𝑖 > 0, we find that we may apply Lemma A.30 to the sequence
(𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛 ). Indeed :

1. For any 𝑟 > 0, (𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛 ) is defined by :

𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟

𝑛 = (𝐼 − 𝛾Σ)𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛−1 + 𝛾Ξ𝑟

𝑛,

with Ξ𝑟
𝑛 =

{︃
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑟−1

𝑛−1 if 𝑟 > 1.
Ξ𝑛 if 𝑟 = 0.
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2. for any 𝑟 > 0, for all 𝑛 > 0, Ξ𝑟
𝑛 is ℱ𝑛 := 𝜎 ((𝑥𝑖, 𝑧𝑖)16𝑖6𝑛) measurable. (for 𝑟 = 0 we

use the definition of Ξ𝑛 (H4), and by induction, for any 𝑟 > 0 if we have ∀𝑛 ∈ N, Ξ𝑟
𝑛

is ℱ𝑛 measurable, then for any 𝑛 ∈ N, by induction on 𝑛, 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛 is ℱ𝑛 measurable,

thus for any 𝑛 ∈ N, Ξ𝑟+1
𝑛 is ℱ𝑛 measurable.)

3. for any 𝑟, 𝑛 > 0, E [Ξ𝑛|ℱ𝑛−1] = 0 : as shown above, 𝜂𝑟−1
𝑛−1 is ℱ𝑛−1 measurable so

E [ Ξ𝑛 |ℱ𝑛−1] = E [Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 |ℱ𝑛−1] 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟−1
𝑛−1 = E [Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 ] 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟−1

𝑛−1 =
0 (as 𝑥𝑛 is independent of ℱ𝑛−1 by A5 and E [Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 ] = E [Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 ]
by H4 ).

4. E
[︀
‖Ξ𝑟

𝑛‖2]︀ is finite (once again, by A2 if 𝑟 = 0 and by a double recursion to get the
result for any 𝑟, 𝑛 > 0).

5. We have to find a bound on E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛]. To do that, we are going, once again to use
induction on 𝑟.

Lemma A.32. For any 𝑟 > 0 we have

E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛] 4 𝛾𝑟𝑅2𝑟𝜎2Σ
E
[︁
𝜂𝑛𝑜𝑖𝑠𝑒,𝑟

𝑛 ⊗ 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛

]︁
4 𝛾𝑟+1𝑅2𝑟𝜎2𝐼.

Lemma A.32. We make an induction on 𝑛.

Initialization : for 𝑟 = 0 we have by A6 that E
[︀
Ξ0

𝑛 ⊗ Ξ0
𝑛

]︀
4 𝜎2Σ. Moreover

E(𝜂0
𝑛 ⊗ 𝜂0

𝑛) = 𝛾2
𝑛−1∑︁
𝑘=1

(𝐼 − 𝛾Σ)𝑛−𝑘E
[︁
Ξ0

𝑛 ⊗ Ξ0
𝑛

]︁
(𝐼 − 𝛾Σ)𝑛−𝑘

4 𝛾2𝜎2
𝑛−1∑︁
𝑘=1

(𝐼 − 𝛾Σ)2(𝑛−𝑘)Σ.

We get

∀𝑛 > 0, E
[︁
𝜂0

𝑛 ⊗ 𝜂0
𝑛

]︁
4 𝛾2𝜎2

𝑛−1∑︁
𝑘=1

(𝐼 − 𝛾Σ)2𝑛−2−𝑘Σ 4 𝛾𝜎2𝐼.

Recursion : If we assume that for any 𝑛 > 0,E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛] 4 𝛾𝑟𝑅2𝑟𝜎2Σ and E [𝜂𝑟
𝑛 ⊗ 𝜂𝑟

𝑛] 4
𝛾𝑟+1𝑅2𝑟𝜎2𝐼 then for any 𝑛 > 0 :

E
[︁
Ξ𝑟+1

𝑛 ⊗ Ξ𝑟+1
𝑛

]︁
4 E

[︀
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑟

𝑛−1 ⊗ 𝜂𝑟
𝑛−1(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)

]︀
= E

[︀
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)E

[︀
𝜂𝑟

𝑛−1 ⊗ 𝜂𝑟
𝑛−1

]︀
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)

]︀
(as 𝜂𝑛−1 ∈ ℱ𝑛−1)

4 𝛾𝑟+1𝑅2𝑟𝜎2E
[︁
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)2

]︁
4 𝛾𝑟+1𝑅2𝑟+2𝜎2Σ.

Once again we have (𝜂𝑟+1
𝑛 ) = 𝛾2∑︀𝑛−1

𝑘=1(𝐼 − 𝛾Σ)𝑛−1−𝑘Ξ𝑟+1
𝑛 , for any 𝑛:

E
[︁
𝜂𝑟+1

𝑛 ⊗ 𝜂𝑟+1
𝑛

]︁
4 𝛾2E

[︃
𝑛∑︁

𝑘=1
(𝐼 − 𝛾Σ)𝑛−1−𝑘Ξ𝑟+1

𝑛 ⊗ Ξ𝑟+1
𝑛 (𝐼 − 𝛾Σ)𝑛−1−𝑘

]︃

4 𝛾𝑟+3𝑅2𝑟+2𝜎2
𝑛∑︁

𝑘=1
(𝐼 − 𝛾Σ)2𝑛−2−2𝑘Σ
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4 𝛾𝑟+2𝑅2𝑟+2𝜎2𝐼.

With the bound on E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛] and as we have said, with Lemma A.30:

E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛 ‖2
𝐿2

𝜌𝑋

]︁
= E

[︁
⟨𝜂𝑖

𝑛,Σ𝜂𝑖
𝑛⟩
]︁
6 var(𝑛, 𝛾, 𝜎2𝛾𝑖𝑅2𝑖, 𝑠, 𝛼)

6
‖

𝛾𝑖𝑅2𝑖 var(𝑛, 𝛾, 𝜎2, 𝑠, 𝛼) . (A.18)

Moreover, using the Lemma on stochastic recursions (Lemma A.31) for (𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −∑︀𝑟

𝑖=0 𝜂
𝑖
𝑛)𝑛 (all conditions are satisfied) we have :

(1 − 𝛾𝑅2) E

[︃⟨
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 −
𝑟∑︁

𝑖=0
𝜂𝑖

𝑛,Σ
(︃
𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 −
𝑟∑︁

𝑖=0
𝜂𝑖

𝑛

)︃⟩]︃
6

𝛾

𝑛

𝑛∑︁
𝑖=1

E‖Ξ𝑟+1
𝑘 ‖2

6 𝛾 tr
(︁
E
[︁
Ξ𝑟+1

𝑘 ⊗ Ξ𝑟+1
𝑘

]︁)︁
6 𝛾𝑟+2𝑅2𝑟+2𝜎2 tr(Σ)

that is E

⎡⎣⃒⃒⃒⃒⃒⃒⃒⃒𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

𝑟∑︁
𝑖=0

𝜂𝑛𝑜𝑖𝑠𝑒,𝑖
𝑛

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2

𝜌𝑋

⎤⎦ 6 𝛾𝑟+2𝑅2𝑟+2𝜎2 tr(Σ). (A.19)

Conclusion. Thus using (A.17), (A.18) and (A.19) :

(︁
E
[︁
⟨𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 ⟩

]︁)︁1/2
6

(︂ 1
1 − 𝛾𝑅2𝛾

𝑟+2𝜎2𝑅2𝑟+2 tr(Σ)
)︂1/2

+ var(𝑛, 𝛾, 𝜎2, 𝑠, 𝛼)1/2
𝑟∑︁

𝑖=0

(︁
𝛾𝑅2

)︁𝑖/2
. (A.20)

And using the fact that 𝛾𝑅 < 1, when 𝑟 → ∞ we get:(︁
E
[︁
⟨𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 ⟩

]︁)︁1/2
6 var(𝑛, 𝛾, 𝜎2, 𝑠, 𝛼)1/2 1

1 −
√︀
𝛾𝑅2 . (A.21)

Which is the main result of this part.

Initial conditions

We are now interested in getting such a bound for E
[︀
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︀
. As this part stands for

the initial conditions effect we may keep in mind that we would like to get an upper bound
comparable to what we found for the Bias term in the proof of Proposition 1.

We remind that :

𝜂𝑖𝑛𝑖𝑡
0 = 𝑔ℋ and 𝜂𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑖𝑛𝑖𝑡
𝑛−1.

and define (𝜂0
𝑛)𝑛∈N so that :

𝜂0
0 = 𝑔ℋ, 𝜂0

𝑛 = (𝐼 − 𝛾Σ)𝜂0
𝑛−1.
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Minkowski’s again. As above(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︁)︁1/2
6
(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛,Σ

(︁
𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛

)︁
⟩
]︁)︁1/2

+
(︁
E
[︁
⟨𝜂0

𝑛,Σ𝜂0
𝑛⟩
]︁)︁1/2

.

(A.22)
First for 𝜂0

𝑛 we have a semi-stochastic recursion, with Ξ𝑛 ≡ 0 so that we have

E⟨𝜂0
𝑛,Σ𝜂0

𝑛⟩ 6 bias(𝑛, 𝛾, 𝑟).

Then , for the residual term we use Lemma A.31. Using that :

𝜂0
𝑛 − 𝜂𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝜂0
𝑛 − 𝜂𝑖𝑛𝑖𝑡

𝑛 ) + 𝛾(𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 − Σ)𝜂0
𝑛−1,

we may apply Lemma A.31 to the recursion above with 𝛼𝑛 = 𝜂0
𝑛 − 𝜂𝑖𝑛𝑖𝑡

𝑛 and Ξ𝑛 =
(𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 − Σ)𝜂0

𝑛−1. That is (as 𝛼0 = 0):

E⟨𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ(𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 )⟩ 6 1
1 − 𝛾𝑅2

𝛾

𝑛
E

[︃
𝑛∑︁

𝑘=1
‖Ξ𝑘‖2

]︃
. (A.23)

Now

E‖Ξ𝑘‖2 = E
[︁⟨︀
𝜂0, (𝐼 − 𝛾Σ)𝑘(Σ − 𝑥𝑘 ⊗ 𝑥𝑘)2(𝐼 − 𝛾Σ)𝑘𝜂0

⟩︀]︁
6

⟨︀
𝜂0, (𝐼 − 𝛾Σ)𝑘𝑅2Σ(𝐼 − 𝛾Σ)𝑘𝜂0

⟩︀
6 𝑅2⟨︀𝜂0, (𝐼 − 𝛾Σ)2𝑘Σ𝜂0

⟩︀
.

Thus :

𝛾

𝑛
E

[︃
𝑛∑︁

𝑘=1
‖Ξ𝑘‖2

]︃
6

𝛾𝑅2

𝑛

⟨︀
𝜂0,

𝑛∑︁
𝑘=1

(𝐼 − 𝛾Σ)2𝑘Σ𝜂0
⟩︀

6
𝛾𝑅2

𝑛

⃒⃒⃒⃒⃒⃒⃒⃒ (︃ 𝑛∑︁
𝑘=1

(𝐼 − 𝛾Σ)2𝑘Σ2𝑟

)︃1/2

Σ1/2−𝑟𝜂0

⃒⃒⃒⃒⃒⃒⃒⃒2

6
𝛾𝑅2

𝑛
𝛾−2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

(𝐼 − 𝛾Σ)2𝑘(𝛾Σ)2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋
.

‖|𝐴1/2‖|2 = ‖|𝐴‖|. Moreover, as Σ is self adjoint, we have:⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

(𝐼 − 𝛾Σ)2𝑘(𝛾Σ)2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
6 sup

06𝑥61

𝑛∑︁
𝑘=1

(1 − 𝑥)2𝑘(𝑥)2𝑟

6 sup
06𝑥61

1 − (1 − 𝑥)2𝑛

1 − (1 − 𝑥)2 (𝑥)2𝑟

6 sup
06𝑥61

1 − (𝑥)2𝑛

1 − 𝑥2 (1 − 𝑥)2𝑟

6 sup
06𝑥61

1 − (𝑥)2𝑛

1 + 𝑥
(1 − 𝑥)2𝑟−1

6 sup
06𝑥61

(1 − (1 − 𝑥)2𝑛)(𝑥)2𝑟−1

6 𝑛1−2𝑟

Where we have used inequality (A.53), if 𝑟 6 1/2. However, this result does not stand
anymore if 𝑟 > 1/2. To deal with this particular case, we use the fact that,

E⟨𝜂𝑛 − 𝜂*,Σ(𝜂𝑛 − 𝜂*)⟩ 6 (1 + (𝑅2𝛼𝛾1+𝛼𝑛𝑠2)
2𝑟−1

𝛼 )‖Σ−𝑟𝜂0‖2
𝐿2

(𝛾𝑛)2𝑟
.
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This result’s proof is postponed to Lemma A.36.
So that we would get, replacing our result in (A.23) :

E⟨𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ(𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 )⟩ 6 1
1 − 𝛾𝑅2

𝛾𝑅2

(𝛾𝑛)2𝑟
‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋
. (A.24)

Conclusion. Summing both bounds we get from (A.22) :

(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︁)︁1/2
6

(︃
1

1 − 𝛾𝑅2
𝛾𝑅2

(𝛾𝑛)2𝑟
‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋

)︃1/2

+ (𝐵𝑖𝑎𝑠(𝑛, 𝛾, 𝑔ℋ, 𝛼))1/2 .

(A.25)

Conclusion

These two parts allow us to show Theorem 2.9 : using (A.25) and (A.21) in (A.11), and
Lemmas A.25 and A.26 we have the final result.

Assuming A1-6 :

1. If 𝑟 < 1

( E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)])1/2 6
1

1 −
√︀
𝛾𝑅2

(︃
𝐶(𝛼) 𝑠

2
𝛼 𝜎2 𝛾

1
𝛼

𝑛1− 1
𝛼

+ 𝜎2

𝑛

)︃1/2

+
(︂

‖Σ−𝑟𝑔ℋ‖2
𝐿2

𝜌𝑋

(︂ 1
(𝑛𝛾)2𝑟

)︂)︂1/2

+
(︃

1
1 − 𝛾𝑅2

𝛾𝑅2

(𝛾𝑛)2𝑟
‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋

)︃1/2

.

2. If 𝑟 > 1

( E [𝜀 (𝑔𝑛) − 𝜀(𝑔ℋ)])1/2 6
1

1 −
√︀
𝛾𝑅2

(︃
𝐶(𝛼) 𝑠

2
𝛼 𝜎2 𝛾

1
𝛼

𝑛1− 1
𝛼

+ 𝜎2

𝑛

)︃1/2

+
(︂

‖Σ−𝑟𝑔ℋ‖2
𝐿2

𝜌𝑋

(︂ 1
𝑛2𝛾2𝑟

)︂)︂1/2

+
(︃

1
1 − 𝛾𝑅2

𝛾𝑅2

(𝛾𝑛)2𝑟
‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋

)︃1/2

.

Regrouping terms, we get:

Theorem A.33 (Complete bound, 𝛾 constant, finite horizon). Assume (A1-6) and 𝛾𝑖 = 𝛾 =
Γ(𝑛), for 1 6 𝑖 6 𝑛. We have, with 𝐶(𝛼) = 2𝛼2

(𝛼+1)(2𝛼−1) :

(︁
E‖𝑔𝑛 − 𝑔ℋ‖2

𝐿2
𝜌𝑋

)︁1/2
6

𝜎/
√
𝑛

1 −
√︀
𝛾𝑅2

(︁
1 + 𝐶(𝛼)𝑠

2
𝛼 (𝛾𝑛)

1
𝛼

)︁ 1
2

+
‖𝐿−𝑟

𝐾 𝑔ℋ‖𝐿2
𝜌𝑋

𝛾𝑟𝑛min{𝑟,1}

(︂
1 +

√︀
𝛾𝑅2√︀

1 − 𝛾𝑅2

)︂
.

Then bounding 𝐶(𝛼) by 1 and simplifying under assumption 𝛾𝑅2 6 1/4, we exactly get
Theorem 2.9 in the main text. In order to derive corollaries, one just has to chose 𝛾 = Γ(𝑛)
in order to balance the main terms.
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Complete recursion 𝜂𝑛

↘ ↘
noise term 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 | bias term 𝜂𝑖𝑛𝑖𝑡
𝑛

↓ | ↓
multiple recursion | semi stochastic variant

↘ ↘ | ↘ ↘
main terms 𝜂𝑟

𝑛, 𝑟 > 1 residual term 𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

∑︀
𝜂𝑟

𝑛 | main term 𝜂0
𝑛 residual term 𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛

satisfying semi-sto recursions satisf. stochastic recursion | satisf. semi-sto recursion satisf. stochastic recursion
Lemma A.30 Lemma A.34 | ↓ Lemma A.34

↓ ↘ ↘ | ↓ ↘ ↘
6 𝐶 Variance term −→

𝑟→∞
0 + −→

𝑟→∞
0 | 6 Bias term Resid. term 1 + Resid term 2

Lemma A.28 ↘ ↘ Lemma A.27
Theorem 2.11

Table A.3: Sketch of the proof, on-line setting.

A.4.4 Complete proof, Theorem 2.11 (on-line setting)

The sketch of the proof is exactly the same. We just have to check that changing a constant
step into a decreasing sequence of step-size does not change too much. However as most
calculations make appear some weird constants, we will only look for asymptotics. The
sketch of the decomposition is given in Table A.3.

A Lemma on stochastic recursions - on-line

We want to derive a Lemma comparable to Lemma A.31 in the online setting. That is
considering a sequence (𝛾𝑛)𝑛 and the recursion 𝛼𝑛 = (𝐼 − 𝛾𝑛𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝛼𝑛−1 + 𝛾𝑛Ξ𝑛 we
would like to have a bound on E

⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀
.

Lemma A.34. Assume (𝑥𝑛,Ξ𝑛) ∈ ℋ × ℋ are ℱ𝑛 measurable for a sequence of increasing 𝜎-
fields (ℱ𝑛). Assume that E [Ξ𝑛|ℱ𝑛−1] = 0, E

[︀
‖Ξ𝑛‖2|ℱ𝑛−1

]︀
is finite and E

[︀
‖𝐾𝑥𝑛‖2𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 |ℱ𝑛−1

]︀
4

𝑅2Σ, with E [𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 |ℱ𝑛−1] = Σ for all 𝑛 > 1 , for some 𝑅 > 0 and invertible operator
Σ. Consider the recursion 𝛼𝑛 = (𝐼 − 𝛾𝑛𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝛼𝑛−1 + 𝛾𝑛Ξ𝑛, with (𝛾𝑛)𝑛 a sequence such
that for any 𝑛, 𝛾𝑛𝑅

2 6 1. Then if 𝛼0 = 0, we have So that if 𝛼0 = 0 :

E
[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
6

1
2𝑛(1 − 𝛾0𝑅2)

(︃
𝑛−1∑︁
𝑖=1

‖𝛼𝑖‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
+

𝑛∑︁
𝑘=1

𝛾𝑘E‖Ξ𝑘‖2
)︃
. (A.26)

Proof.

2𝛾𝑛(1 − 𝛾𝑛𝑅
2)E⟨Σ𝛼𝑛−1, 𝛼𝑛−1⟩ 6 E

(︁
‖𝛼𝑛−1‖2 − ‖𝛼𝑛‖2 + 𝛾2

𝑛‖Ξ𝑛‖2
)︁

(A.27)

So that, if we assume that (𝛾𝑛) is non increasing:

E⟨Σ𝛼𝑛−1, 𝛼𝑛−1⟩ 6 1
2𝛾𝑛(1 − 𝛾0𝑅2)E

(︁
‖𝛼𝑛−1‖2 − ‖𝛼𝑛‖2 + 𝛾2

𝑛‖Ξ𝑛‖2
)︁

(A.28)

Using convexity :

E
[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
6

1
2𝑛(1 − 𝛾0𝑅2)

(︃
‖𝛼0‖2

𝛾1
+

𝑛−1∑︁
𝑖=1

‖𝛼𝑖‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
⏟  ⏞  

>0
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−‖𝛼𝑛‖2

𝛾𝑛
+

𝑛∑︁
𝑘=1

𝛾𝑘E‖Ξ𝑘‖2
)︃
.

So that if 𝛼0 = 0 :

E
[︀⟨︀
𝛼𝑛−1,Σ𝛼𝑛−1

⟩︀]︀
6

1
2𝑛(1 − 𝛾0𝑅2)

(︃
𝑛−1∑︁
𝑖=1

‖𝛼𝑖‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
+

𝑛∑︁
𝑘=1

𝛾𝑘E‖Ξ𝑘‖2
)︃
. (A.29)

Note that it may be interesting to consider the weighted average 𝛼̃𝑛 =
∑︀

𝛾𝑖𝛼𝑖∑︀
𝛾𝑖

, which

would satisfy be convexity

E
[︀⟨︀
𝛼̃𝑛−1,Σ𝛼̃𝑛−1

⟩︀]︀
6

1
2(
∑︀
𝛾𝑖)(1 − 𝛾0𝑅2)

(︃
‖𝛼0‖2

𝛾1
− ‖𝛼𝑛‖2

𝛾𝑛
+

𝑛∑︁
𝑘=1

𝛾2
𝑘E‖Ξ𝑘‖2

)︃
. (A.30)

Noise process

We remind that (𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 )𝑛 is defined by :

𝜂𝑛𝑜𝑖𝑠𝑒
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒
𝑛−1 + 𝛾Ξ𝑛. (A.31)

As before, for any 𝑟 > 0 we define a sequence (𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛 )𝑛 by :

𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
0 = 0 and 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟

𝑛 = (𝐼 − 𝛾Σ)𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛−1 + 𝛾Ξ𝑟

𝑛,

with Ξ𝑟
𝑛 = (Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑛𝑜𝑖𝑠𝑒,𝑟−1

𝑛−1 .

And we want to use the following upper bound

(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
6

𝑟∑︁
𝑖=0

(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
+

⎛⎝E

⎡⎣⃒⃒⃒⃒⃒⃒⃒⃒𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

𝑟∑︁
𝑖=0

𝜂𝑛𝑜𝑖𝑠𝑒,𝑖
𝑛

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2

𝜌𝑋

⎤⎦⎞⎠1/2

.

(A.32)
So that we had to upper bound the noise :

Lemma A.35. For any 𝑟 > 0 we have E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛] 4 𝑅2𝑟𝛾𝑟
0𝜎

2Σ and E
[︀
𝜂𝑛𝑜𝑖𝑠𝑒,𝑟

𝑛 ⊗ 𝜂𝑛𝑜𝑖𝑠𝑒,𝑟
𝑛

]︀
4

𝛾𝑟+1
0 𝑅2𝑟𝜎2𝐼.

Lemma A.35. We make an induction on 𝑛.
We note that :

𝑛∑︁
𝑘=1

𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾2
𝑘Σ𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘) 6 𝛾0

𝑛∑︁
𝑘=1

𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾𝑘Σ

6 𝛾0

𝑛∑︁
𝑘=1

𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘) −𝐷(𝑛, 𝑘, (𝛾𝑘)𝑘)

6 𝛾0(𝐼 −𝐷(𝑛, 1, (𝛾𝑘)𝑘))
6 𝛾0𝐼 (A.33)

Where we have used that : 𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘) −𝐷(𝑛, 𝑘, (𝛾𝑘)𝑘) = 𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾𝑘Σ.
Initialization : for 𝑟 = 0 we have by A6 that E

[︀
Ξ0

𝑛 ⊗ Ξ0
𝑛

]︀
4 𝜎2Σ. Moreover 𝜂0

𝑛 =∑︀𝑛
𝑘=1𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾𝑘Ξ0

𝑘.
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E(𝜂0
𝑛 ⊗ 𝜂0

𝑛) =
𝑛∑︁

𝑘=1
𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾2

𝑘E
[︁
Ξ0

𝑘 ⊗ Ξ0
𝑘

]︁
𝐷(𝑘 + 1, 𝑛, (𝛾𝑘)𝑘)

4 𝜎2
𝑛∑︁

𝑘=1
𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾2

𝑘Σ𝐷(𝑘 + 1, 𝑛, (𝛾𝑘)𝑘)

4 𝜎2𝛾0𝐼, by (A.33)

Induction : If we assume ∀𝑛 > 0, E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛] 4 𝛾𝑟
0𝑅

2𝑟𝜎2Σ and E [𝜂𝑟
𝑛 ⊗ 𝜂𝑟

𝑛] 4 𝛾𝑟+1
0 𝑅2𝑟𝜎2𝐼

then: ∀𝑛 > 0,

E
[︁
Ξ𝑟+1

𝑛 ⊗ Ξ𝑟+1
𝑛

]︁
4 E

[︀
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑟

𝑛−1 ⊗ 𝜂𝑟
𝑛−1(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)

]︀
= E

[︀
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)E

[︀
𝜂𝑟

𝑛−1 ⊗ 𝜂𝑟
𝑛−1

]︀
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)

]︀
(as 𝜂𝑛−1 ∈ ℱ𝑛−1)

4 𝛾𝑟+1
0 𝑅2𝑟𝜎2E

[︁
(Σ −𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)2

]︁
4 𝛾𝑟+1

0 𝑅2𝑟+2𝜎2Σ.

Once again we have 𝜂𝑟+1
𝑛 =

∑︀𝑛
𝑘=1𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾𝑘Ξ𝑟+1

𝑘 , for any 𝑛:

E
[︁
𝜂𝑟+1

𝑛 ⊗ 𝜂𝑟+1
𝑛

]︁
4 𝛾2E

[︃
𝑛∑︁

𝑘=1
(𝐼 − 𝛾Σ)𝑛−1−𝑘Ξ𝑟+1

𝑛 ⊗ Ξ𝑟+1
𝑛 (𝐼 − 𝛾Σ)𝑛−1−𝑘

]︃

4 𝜎2𝛾𝑟+1
0 𝑅2𝑟

𝑛∑︁
𝑘=1

𝐷(𝑛, 𝑘 + 1, (𝛾𝑘)𝑘)𝛾2
𝑘Σ𝐷(𝑘 + 1, 𝑛, (𝛾𝑘)𝑘)

4 𝜎2𝛾𝑟+2
0 𝑅2𝑟𝐼, by (A.33)

With the bound on E [Ξ𝑟
𝑛 ⊗ Ξ𝑟

𝑛] and as we have said, with Lemma A.30:

E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒,𝑖

𝑛 ‖2
𝐿2

𝜌𝑋

]︁
= E

[︁
⟨𝜂𝑖

𝑛,Σ𝜂𝑖
𝑛⟩
]︁
6 var(𝑛, 𝛾, 𝛼, 𝛾𝑖

0𝑅
2𝑖𝜎, 𝑠) = 𝛾𝑖

0𝑅
2𝑖 var(𝑛, 𝛾, 𝛼, 𝜎, 𝑠).

(A.34)
Moreover, using the Lemma on stochastic recursions (Lemma A.34) for (𝛼𝑟

𝑛)𝑛 = (𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −∑︀𝑟

𝑖=0 𝜂
𝑖
𝑛)𝑛 (all conditions are satisfied) we have :

2(1 − 𝛾0𝑅
2) E

[︁⟨
𝛼𝑟

𝑛,Σ𝛼𝑟
𝑛

⟩]︁
6

1
𝑛

(︃
𝑛−1∑︁
𝑖=1

E‖𝛼𝑟
𝑖 ‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
+

𝑛∑︁
𝑘=1

𝛾𝑘E‖Ξ𝑟+1
𝑘 ‖2

)︃
.

We are going to show that both these terms goes to 0 when 𝑟 goes to infinity. Indeed :
𝑛∑︁

𝑘=1
𝛾𝑘E‖Ξ𝑟+1

𝑘 ‖2 6
𝑛∑︁

𝑘=1
𝛾𝑘 tr

(︁
E
[︁
Ξ𝑟+1

𝑘 ⊗ Ξ𝑟+1
𝑘

]︁)︁
6

𝑛∑︁
𝑘=1

𝛾𝑘𝛾
𝑟+1
0 𝑅2𝑟+2𝜎2 tr(Σ)

6 𝑛𝛾𝑟+2
0 𝑅2𝑟+2𝜎2 tr(Σ)

Moreover, if we assume 𝛾𝑖 = 1
𝑖𝜁 :

1
𝑛

𝑛−1∑︁
𝑖=1

E‖𝛼𝑟
𝑖 ‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
6 2𝜁 1

𝑛

𝑛−1∑︁
𝑖=1

𝛾𝑖

𝑖
E‖𝛼𝑟

𝑖 ‖2
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And
𝛼𝑟

𝑖 = (𝐼 − 𝛾𝑖
˜𝐾𝑥𝑖 ⊗𝐾𝑥𝑖)𝛼𝑟

𝑖−1 + 𝛾𝑖Ξ𝑖

So that :

‖𝛼𝑟
𝑖 ‖ 6 ‖|(𝐼 − 𝛾𝑖

˜𝐾𝑥𝑖 ⊗𝐾𝑥𝑖)‖| ‖𝛼𝑟
𝑖−1‖ + 𝛾𝑖 ‖Ξ𝑖‖

6 ‖𝛼𝑟
𝑖−1‖ + 𝛾𝑖 ‖Ξ𝑖‖

6
𝑖∑︁

𝑘=1
𝛾𝑘 ‖Ξ𝑘‖.

thus : ‖𝛼𝑟
𝑖 ‖2 6

𝑖∑︁
𝑘=1

𝛾𝑘

𝑖∑︁
𝑘=1

𝛾𝑘 ‖Ξ𝑘‖2

E‖𝛼𝑟
𝑖 ‖2 6

𝑖∑︁
𝑘=1

𝛾𝑘

𝑖∑︁
𝑘=1

𝛾𝑘 E‖Ξ𝑘‖2

E‖𝛼𝑟
𝑖 ‖2 6 𝐶1 𝑖𝛾𝑖 𝑖𝛾𝑟+2

0 𝑅2𝑟+2𝜎2 tr(Σ)
𝛾𝑖

𝑖
E‖𝛼𝑟

𝑖 ‖2 6 𝐶2 𝑖𝛾2
𝑖 (𝛾0𝑅

2)𝑟+2

1
𝑛

𝑛−1∑︁
𝑖=1

E‖𝛼𝑟
𝑖 ‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
6 𝐶3 𝑛𝛾2

𝑛 (𝛾0𝑅
2)𝑟+2.

That is:

𝐸

⎡⎣⃒⃒⃒⃒⃒⃒⃒⃒𝜂𝑛𝑜𝑖𝑠𝑒
𝑛 −

𝑟∑︁
𝑖=0

𝜂𝑛𝑜𝑖𝑠𝑒,𝑖
𝑛

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2

𝜌𝑋

⎤⎦ 6 (𝛾0𝑅
2)𝑟+2

(︁
𝜎2 tr(Σ) + 𝐶3𝑛𝛾

2
𝑛

)︁
. (A.35)

With (A.32), (A.34),(A.35), we get :

(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
6

𝑟∑︁
𝑖=0

(︁
𝛾𝑖

0𝑅
2𝑖 var(𝑛, 𝛾, 𝛼, 𝜎, 𝑠)

)︁1/2

+
(︁
(𝛾0𝑅

2)𝑟+2
(︁
𝜎2 tr(Σ) + 𝐶3 𝑛𝛾

2
𝑛

)︁)︁1/2
.(A.36)

So that, with 𝑟 → ∞ :(︁
E
[︁
‖𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ‖2
𝐿2

𝜌𝑋

]︁)︁1/2
6 (𝐶 var(𝑛, 𝛾, 𝛼, 𝜎, 𝑠))1/2 . (A.37)

Initial conditions

Exactly as before, we can separate the effect of initial conditions and of noise : We are
interested in getting such a bound for E

[︀
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︀
. We remind that :

𝜂𝑖𝑛𝑖𝑡
0 = 𝑔ℋ and 𝜂𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝑛𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)𝜂𝑖𝑛𝑖𝑡
𝑛−1.

and define (𝜂0
𝑛)𝑛∈N so that :

𝜂0
0 = 𝑔ℋ, 𝜂0

𝑛 = (𝐼 − 𝛾𝑛Σ)𝜂0
𝑛−1.

Minkowski’s again : As above(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︁)︁1/2
6
(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛,Σ

(︁
𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛

)︁
⟩
]︁)︁1/2

+
(︁
E
[︁
⟨𝜂0

𝑛,Σ𝜂0
𝑛⟩
]︁)︁1/2

.

(A.38)
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First for 𝜂0
𝑛 we have a semi-stochastic recursion, with Ξ𝑛 ≡ 0 so that we have

⟨𝜂0
𝑛,Σ𝜂0

𝑛⟩ 6 Bias(𝑛, (𝛾𝑛)𝑛, 𝑔ℋ, 𝑟). (A.39)

Then, for the residual term we use Lemma A.34 for the recursion above with 𝛼𝑛 =
𝜂0

𝑛 − 𝜂𝑖𝑛𝑖𝑡
𝑛 . Using that :

𝜂0
𝑛 − 𝜂𝑖𝑛𝑖𝑡

𝑛 = (𝐼 − 𝛾𝐾𝑥𝑛 ⊗𝐾𝑥𝑛)(𝜂0
𝑛 − 𝜂𝑖𝑛𝑖𝑡

𝑛 ) + 𝛾𝑛(𝐾𝑥𝑛 ⊗𝐾𝑥𝑛 − Σ)𝜂0
𝑛−1,

That is (as 𝛼0 = 0):

E⟨𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ(𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 )⟩ 6 1
2𝑛(1 − 𝛾0𝑅2)

(︃
𝑛−1∑︁
𝑖=1

E‖𝛼𝑖‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂

+
𝑛∑︁

𝑘=1
𝛾𝑘E‖Ξ𝑘‖2

)︃
. (A.40)

Now

E‖Ξ𝑘‖2 = E
[︁⟨︀
𝜂0, 𝐷(𝑛, 1, (𝛾𝑖)𝑖)(Σ − 𝑥𝑘 ⊗ 𝑥𝑘)2𝐷(1, 𝑛, (𝛾𝑖)𝑖)𝜂0

⟩︀]︁
6 𝑅2⟨︀𝜂0, 𝐷(1, 𝑛, (𝛾𝑖)𝑖)2Σ𝜂0

⟩︀
.

Thus :

E

[︃
𝑛∑︁

𝑘=1
𝛾𝑘‖Ξ𝑘‖2

]︃
6 𝑅2⟨︀𝜂0,

𝑛∑︁
𝑘=1

𝛾𝑘𝐷(1, 𝑛, (𝛾𝑖)𝑖)2Σ𝜂0
⟩︀

6 𝑅2
⃒⃒⃒⃒⃒⃒⃒⃒ (︃ 𝑛∑︁

𝑘=1
𝛾𝑘𝐷(1, 𝑛, (𝛾𝑖)𝑖)2Σ2𝑟

)︃1/2

Σ1/2−𝑟𝜂0

⃒⃒⃒⃒⃒⃒⃒⃒2

6 𝑅2
⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁

𝑘=1
𝐷(1, 𝑛, (𝛾𝑖)𝑖)2𝛾𝑘Σ2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋
. (A.41)

Now :⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

𝐷(1, 𝑛, (𝛾𝑖)𝑖)2𝛾𝑘Σ2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
6 sup

06𝑥61/𝛾0

𝑛∑︁
𝑘=1

𝑛∏︁
𝑖=1

(1 − 𝛾𝑖𝑥)2𝛾𝑘𝑥
2𝑟

6 sup
06𝑥61/𝛾0

𝑛∑︁
𝑘=1

exp
(︃

−
𝑘∑︁

𝑖=1
𝛾𝑖𝑥

)︃
𝛾𝑘𝑥

2𝑟

6 sup
06𝑥61/𝛾0

𝑛∑︁
𝑘=1

exp (−𝑘𝛾𝑘𝑥) 𝛾𝑘𝑥
2𝑟 if (𝛾𝑘)𝑘 is decreasing

6 𝛾0 sup
06𝑥61/𝛾0

𝑛∑︁
𝑘=1

exp (−𝑘𝛾𝑘𝑥)𝑥2𝑟

6 𝛾0 sup
06𝑥61/𝛾0

𝑛∑︁
𝑘=1

exp
(︁
−𝑘1−𝜌𝛾0𝑥

)︁
𝑥2𝑟 if (𝛾𝑘)𝑖 = 𝛾0

𝑘𝜌

6 𝛾0 sup
06𝑥61/𝛾0

𝑥2𝑟
∫︁ 𝑛

𝑢=0
exp

(︁
−𝑢1−𝜌𝛾0𝑥

)︁
𝑑𝑢

∫︁ 𝑛−1

𝑢=0
exp

(︁
−𝑢1−𝜌𝛾0𝑥

)︁
𝑑𝑢 6 𝑛 clearly, but also∫︁ 𝑛−1

𝑢=0
exp

(︁
−𝑢1−𝜌𝛾0𝑥

)︁
𝑑𝑢 6

∫︁ ∞

𝑡=0
exp

(︁
−𝑡1−𝜌

)︁
(𝑥𝛾0)− 1

1−𝜌𝑑𝑡 changing variables. So that :
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⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

𝐷(1, 𝑛, (𝛾𝑖)𝑖)2𝛾𝑘Σ2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
6 𝛾0 sup

06𝑥61/𝛾0

𝑥2𝑟
(︁
𝑛 ∧ 𝐼(𝑥𝛾0)− 1

1−𝜌

)︁
6 𝛾0𝐶1 sup

06𝑥61/𝛾0

(︁
𝑛𝑥2𝑟 ∧ 𝑥

2𝑟− 1
1−𝜌

)︁
and if 2𝑟 − 1

1 − 𝜌
< 0

6 𝛾0𝐶1𝑛
1−2𝑟(1−𝜌). (A.42)

And finally, using (A.41), (A.42) :

1
2𝑛(1 − 𝛾0𝑅2)

𝑛∑︁
𝑘=1

𝛾𝑘E‖Ξ𝑘‖2 6
𝛾0𝐶1 ‖Σ−𝑟𝜂0‖2

𝐿2
𝜌𝑋

𝑅2

2(1 − 𝛾0𝑅2) (𝑛𝛾𝑛)−2𝑟

6 𝐾(𝑛𝛾𝑛)−2𝑟. (A.43)

To conclude, we have to upper bound :

1
2𝑛(1 − 𝛾0𝑅2)

𝑛−1∑︁
𝑖=1

E‖𝛼𝑖‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
.

By the induction we make to get Lemma A.34, we have :

‖𝛼𝑖‖2 6 ‖𝛼𝑖−1‖2 + 𝛾2
𝑖 ‖Ξ𝑖‖2

6
𝑖∑︁

𝑘=1
𝛾2

𝑘‖Ξ𝑘‖2

6
𝑖∑︁

𝑘=1
𝛾𝑘‖Ξ𝑘‖2

6 𝐶𝑖 (𝑖𝛾𝑖)−2𝑟.

So that (C changes during calculation) :

1
2𝑛(1 − 𝛾0𝑅2)

𝑛−1∑︁
𝑖=1

E‖𝛼𝑖‖2
(︂

− 1
𝛾𝑖

+ 1
𝛾𝑖+1

)︂
6 𝐶

1
𝑛

𝑛−1∑︁
𝑖=1

E‖𝛼𝑖‖2𝛾𝑖

𝑖

6 𝐶
1
𝑛

𝑛−1∑︁
𝑖=1

𝑖 (𝑖𝛾𝑖)−2𝑟 𝛾𝑖

𝑖

6 𝐶
1
𝑛

𝑛−1∑︁
𝑖=1

(𝑖𝛾𝑖)−2𝑟𝛾𝑖

6 𝐶
𝛾𝑛

(𝑛𝛾𝑛)2𝑟
.

So that we would get, replacing our result in (A.40) :

E⟨𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 ,Σ(𝜂0
𝑛 − 𝜂𝑛𝑜𝑖𝑠𝑒

𝑛 )⟩ = 𝑂

(︂ 1
𝑛𝛾𝑛

)︂2𝑟

+𝑂

(︂
𝛾𝑛

𝑛𝛾𝑛

)︂2𝑟

= 𝑂

(︂ 1
𝑛𝛾𝑛

)︂2𝑟

. (A.44)

And finally, with (A.39) and (A.44) in (A.38),(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 ,Σ𝜂𝑖𝑛𝑖𝑡
𝑛 ⟩

]︁)︁1/2
6

(︁
E
[︁
⟨𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛,Σ

(︁
𝜂𝑖𝑛𝑖𝑡

𝑛 − 𝜂0
𝑛

)︁
⟩
]︁)︁1/2

+
(︁
E
[︁
⟨𝜂0

𝑛,Σ𝜂0
𝑛⟩
]︁)︁1/2

6

(︃
𝑂

(︂ 1
𝑛𝛾𝑛

)︂2𝑟
)︃1/2

+ bias(𝑛, (𝛾𝑛)𝑛, 𝑔ℋ, 𝑟)1/2. (A.45)
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Conclusion

We conclude with both (A.37) and (A.45) in (A.11) :

(︁
E
[︁
‖𝜂𝑛‖2

𝐿2
𝜌𝑋

]︁)︁1/2
6 (𝐶 var(𝑛, 𝛾, 𝛼, 𝜎, 𝑠))1/2 +

(︃
𝑂

(︂ 1
𝑛𝛾𝑛

)︂2𝑟
)︃1/2

+ bias(𝑛, (𝛾𝑛)𝑛, 𝑔ℋ, 𝑟)1/2.

(A.46)
Which gives Theorem 2.11 using Lemmas A.27 and A.28. Once again, deriving corollar-

ies is simple.

A.4.5 A lemma on stochastic recursion, 𝑟 > 1/2

Lemma A.36. If we consider the recursion 𝜂𝑛+1 = (𝐼 − 𝛾𝑥𝑛 ⊗ 𝑥𝑛)𝜂𝑛, with 𝜂0 = 𝑔ℋ, we have

E⟨𝜂𝑛,Σ𝜂𝑛⟩ 6 (1 + (𝑅2𝛼𝛾1+𝛼𝑛𝑠2)
2𝑟−1

𝛼 )‖Σ−𝑟𝜂0‖2
𝐿2

(𝛾𝑛)2𝑟
.

Let us first state a few properties of symmetric matrices that are useful here. First we
recall that the order 4 is defined by 𝑀 4 𝑁 if 𝑁 − 𝑀 is sdp. This is an order on 𝑆𝑛,
which is not a total order. We say that a function 𝑓 is matrix increasing if 𝑀 4 𝑁 implies
𝑓(𝑀) 4 𝑓(𝑁). We have the following special cases:

∙ The function 𝑀 ↦→ 𝑀2 is not matrix increasing on 𝑆+
𝑛 .

∙ For any 𝑞 ∈ [0; 1], the function 𝑀 ↦→ 𝑀 𝑞 is matrix increasing on 𝑆+
𝑛 .

∙ For any 𝑁 , the function 𝑀 ↦→ 𝑁⊤𝑀𝑁 is matrix increasing.

∙ For some 𝑁 , the function 𝑀 ↦→ 𝑁⊤𝑀 +𝑀𝑁 is not matrix increasing.

∙ For any 𝑁 , the function 𝑀 ↦→ (𝑁 ⊗ I + I ⊗𝑁)−1 is matrix increasing.

∙ exp is not matrix increasing, log is matrix increasing.

∙ if 𝐴 4 𝐵, 𝐴 4 𝐶 and 𝐵𝐶 = 𝐶𝐵, then for any 𝑞 ∈ [0; 1], 𝐴 4 𝐵𝑞𝐶1−𝑞.

It is important to notice that it often occurs that 𝑓 is matrix increasing and its inverse 𝑓−1

is not (square/square root, exp/log, left and right multiplication).
Notation ∧ is somehow ill defined as 𝐴 ∧𝐵 may be neither 𝐴 nor 𝐵. However, we use

this notation as a shortcut for a matrix 𝐶 such that 𝐶 4 𝐴 and 𝐶 4 𝐵.
To prove Lemma A.36, we consider the stochastic recursion, in the case 𝑟 > 1/2.
We consider a full expansion of the function value ‖Σ1/2(𝜂𝑛)‖2. This corresponds to

𝜂𝑛 = 𝜃𝑛 − 𝜃0 = 𝑀(𝑛, 1)(𝜂0) = 𝑀(𝑛, 1)(𝜃0 − 𝑔ℋ)

Where the matrix 𝑀(𝑛, 𝑘) is (𝐼 − 𝛾𝑥𝑛 ⊗ 𝑥𝑛) · · · (𝐼 − 𝛾𝑥𝑘 ⊗ 𝑥𝑘), for 𝑘 6 𝑛 We consider the
recursion without noise and rely on an explicit decomposition.

𝑛2E⟨𝜂𝑛,Σ(𝜂𝑛)⟩ = E
𝑛∑︁

𝑖=0

𝑛∑︁
𝑗=0

⟨𝜂𝑖,Σ(𝜂𝑗)⟩

= E
𝑛∑︁

𝑖=0
⟨𝜂𝑖,Σ(𝜂𝑖)⟩ + 2E

𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜂𝑖,Σ(𝜂𝑗)⟩.
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Moreover,

E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜂𝑖,Σ(𝜂𝑗)⟩

= E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨
𝜂𝑖,Σ

[︂
𝑀(𝑗, 𝑖+ 1)(𝜂𝑖)

]︂⟩

= E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜂𝑖,Σ(I − 𝛾Σ)𝑗−𝑖(𝜂𝑖)⟩ because 𝑀(𝑗, 𝑖+ 1) and 𝜂𝑖 are independent,

= E
𝑛−1∑︁
𝑖=0

⟨
𝜂𝑖, (𝛾−1[︀(I − 𝛾Σ) − (I − 𝛾Σ)𝑛−𝑖+1]︀ ∧ 𝑛Σ(I − 𝛾Σ))(𝜂𝑖)

⟩
6 E

𝑛∑︁
𝑖=0

⟨𝜂𝑖, 𝐴𝑖,𝑛(𝜂𝑖)⟩ − E
𝑛∑︁

𝑖=0
⟨𝜂𝑖,Σ(𝜂𝑖)⟩.

with 𝐴𝑖,𝑛 4 (𝛾−1𝐼 ∧ 𝑛Σ) (meaning 𝐴𝑖,𝑛 4 𝛾−1𝐼 and 𝐴𝑖,𝑛 4 𝑛Σ). As for 𝑖 ∈ [0;𝑛],
𝐴𝑖,𝑛 4 𝐴0,𝑛 =: 𝐴, we only need to get an upper bound on: E

∑︀𝑛
𝑖=0⟨𝜂𝑖, 𝐴(𝜂𝑖)⟩, to get a

bound on 𝑛2E‖Σ1/2(𝜂𝑛)‖2.
However,

E
𝑛∑︁

𝑖=0
⟨𝜂𝑖, 𝐴(𝜂𝑖)⟩ = E

𝑛∑︁
𝑖=0

⟨(𝜂0), (𝑀(𝑖, 1))*𝐴𝑀(𝑖, 1)(𝜂0)⟩

= ⟨⟨E
𝑛∑︁

𝑖=0
(𝑀(𝑖, 1))⊤𝐴𝑀(𝑖, 1), 𝐸0⟩⟩

as 𝜂𝑖 = 𝑀(𝑖, 1)(𝜂0), with 𝐸0 = (𝜂0)(𝜂0)*. and ⟨⟨·, ·⟩⟩ denoting the Froebenius scalar product
between matrices.

We consider the operator 𝑇 from symmetric matrices to symmetric matrices defined as

𝑇𝐴 = Σ𝐴+𝐴Σ − 𝛾𝐸
[︀
𝑥𝑛 ⊗ 𝑥𝑛𝐴𝑥𝑛 ⊗ 𝑥𝑛

]︀
.

of the form 𝑇𝐴 = Σ𝐴+𝐴Σ − 𝛾𝑆𝐴.
We can make the following remarks:

∙ Operator (𝐼−𝛾𝑇 ) is matrix increasing, as it is by definition 𝑀 ↦→ E[𝑥𝑛 ⊗𝑥𝑛Σ𝑥𝑛 ⊗𝑥𝑛].

∙ The operator 𝑆 is self-adjoint and positive.

We have for any symmetric matrix 𝐴:

E𝑀(𝑖, 1)*𝐴𝑀(𝑖, 1) = (I − 𝛾𝑇 )𝑖𝐴.

Thus,

E
𝑛∑︁

𝑖=0
𝑀(𝑖, 1)*𝐴𝑀(𝑖, 1) =

𝑛∑︁
𝑖=0

(I − 𝛾𝑇 )𝑖𝐴

We have from previous calculations (case 𝑟 = 1/2 previously) that the main quantity of
interest

∑︀𝑛
𝑖=0(I − 𝛾𝑇 )𝑖𝐴 satisfies:

𝛾
𝑛∑︁

𝑖=0
(I − 𝛾𝑇 )𝑖𝐴 4 𝑛𝐼. (A.47)

We now show the following lemma:
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Lemma A.37.

𝛾
𝑛∑︁

𝑖=0
(I − 𝛾𝑇 )𝑖𝐴 6 𝛾−1Σ−1 + (𝑛𝛾)1/𝛼 tr(Σ𝛼)Σ−1. (A.48)

Proof. Let us denote P the quantity of interest 𝑃 =
∑︀𝑛

𝑖=0(I − 𝛾𝑇 )𝑖𝐴. We clearly have that
𝑃 4 𝑛𝐴, and 𝑃 4 𝛾−1𝑇−1𝐴. As a consequence, we first consider an upper bound on
𝑀𝐴 := 𝑇−1𝐴.

We have:

𝐴 = Σ𝑀𝐴 +𝑀𝐴Σ − 𝛾𝑆𝑀𝐴. (A.49)

Thus:

𝑀𝐴 =
[︀
Σ ⊗ I + I ⊗ Σ

]︀−1
𝐴+ 𝛾

[︀
Σ ⊗ I + I ⊗ Σ

]︀−1
𝑆𝑀𝐴

As
[︀
Σ ⊗ I + I ⊗ Σ

]︀−1 is a matrix increasing operator, we have that:
[︀
Σ ⊗ I + I ⊗ Σ

]︀−1
𝐴 4[︀

Σ ⊗ I + I ⊗ Σ
]︀−1

𝑛Σ = 𝑛
2 I and

[︀
Σ ⊗ I + I ⊗ Σ

]︀−1
𝐴 4

[︀
Σ ⊗ I + I ⊗ Σ

]︀−1
𝛾−1I = 1

2𝛾 Σ−1.
Moreover,

𝑆𝑀𝐴 4 tr(𝑆𝑀𝐴)I (A.50)

Moreover we can upper bound tr(𝑆𝑀) : as

tr(𝐴) = 2 tr(Σ𝑀𝐴) − 𝛾 tr E(𝑥𝑛 ⊗ 𝑥𝑛𝑀𝐴𝑥𝑛 ⊗ 𝑥𝑛)

And
tr E(𝑥𝑛 ⊗ 𝑥𝑛𝑀𝐴𝑥𝑛 ⊗ 𝑥𝑛) 6 𝑅2 tr𝑀𝐴Σ.

This implies

tr𝐴 >
1
𝑅2 tr𝑆𝑀𝐴.

And as 𝐴 4 𝑛1/𝛼𝛾−1/𝛼Σ1/𝛼, we finally have:

𝑆𝑀𝐴 4 𝑅2𝑛1/𝛼𝛾−1+1/𝛼 tr(Σ1/𝛼)I

Thus:

𝑃 4 𝛾−2Σ−1 +𝑅2𝑛1/𝛼𝛾−1+1/𝛼 tr(Σ1/𝛼)Σ−1

𝛾𝑃 4 (𝛾−1 +𝑅2𝑛1/𝛼𝛾1/𝛼 tr(Σ1/𝛼))Σ−1.

Combining equation (A.47) and (A.48) we get, for any 𝑞 ∈ [0; 1]:

𝛾𝑃 4 (𝛾−1 +𝑅2(𝑛1/𝛼𝛾1/𝛼 tr(Σ1/𝛼))𝑞𝑛1−𝑞Σ−𝑞 (A.51)

Thus with 𝑞 = −1 + 2𝑟, for 𝑟 ∈ [1/2; 1], we get

𝛾𝑃 4 (𝛾−1 +𝑅2(𝑛1/𝛼𝛾1/𝛼 tr(Σ1/𝛼))2𝑟−1𝑛2−2𝑟Σ1−2𝑟 (A.52)
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Thus

E⟨⟨𝑃,𝐸0⟩⟩ 6 1
𝛾

(𝛾−1 +𝑅2𝛾1/𝛼𝑛1/𝛼 tr(Σ1/𝛼))2𝑟−1𝑛2−2𝑟‖Σ−𝑟𝜂0‖2
𝐿2

= 1
𝛾2𝑟

(1 +𝑅2𝛾1+1/𝛼𝑛1/𝛼 tr(Σ1/𝛼))2𝑟−1𝑛2−2𝑟‖Σ−𝑟𝜂0‖2
𝐿2

And the quantity 𝑅2𝛾1+1/𝛼𝑛1/𝛼 is always going to 0 for the optimal choice of 𝛾. Moreover,
the exponent 2𝑟 − 1 is logically vanishing when 𝑟 → 1/2.

And we have

E⟨𝜂𝑛,Σ(𝜂𝑛)⟩ 6 (1 +𝑅2𝛾1+1/𝛼𝑛1/𝛼 tr(Σ1/𝛼))2𝑟−1 ‖Σ−𝑟𝜂0‖2
𝐿2

(𝛾𝑛)2𝑟

6 (1 + (𝑅2𝛼𝛾1+𝛼𝑛𝑠2)
2𝑟−1

𝛼 )‖Σ−𝑟𝜂0‖2
𝐿2

(𝛾𝑛)2𝑟

which concludes the proof of the Lemma.

A.4.6 Some quantities

In this section, we bound the main quantities which are involved above.

Lemma A.25

Lemma A.25.

If 0 6 𝑟 6 1:

Bias(𝑛, 𝛾, 𝑔ℋ, 𝑟) = 1
𝑛2
⟨︀ 𝑛−1∑︁

𝑘=0
(𝐼 − 𝛾Σ)𝑘𝑔ℋ,

𝑛−1∑︁
𝑘=0

(𝐼 − 𝛾Σ)𝑘 Σ𝑔ℋ
⟩︀

= 1
𝑛2
⟨︀ 𝑛−1∑︁

𝑘=0
(𝐼 − 𝛾Σ)𝑘Σ2𝑟Σ−𝑟+1/2𝑔ℋ,

𝑛−1∑︁
𝑘=0

(𝐼 − 𝛾Σ)𝑘 Σ−𝑟+1/2𝑔ℋ
⟩︀

= 1
𝑛2

⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛−1∑︁
𝑘=0

(𝐼 − 𝛾Σ)𝑘Σ𝑟(Σ−𝑟+1/2𝑔ℋ)
⃒⃒⃒⃒⃒⃒⃒⃒2

6
1
𝑛2

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛−1∑︁
𝑘=0

(𝐼 − 𝛾Σ)𝑘Σ𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒2 ⃒⃒⃒⃒⃒⃒⃒⃒
Σ−𝑟+1/2𝑔ℋ

⃒⃒⃒⃒⃒⃒⃒⃒2

= 1
𝑛2𝛾

−2𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛−1∑︁
𝑘=0

(𝐼 − 𝛾Σ)𝑘𝛾𝑟Σ𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒2 ⃒⃒⃒⃒⃒⃒⃒⃒
Σ−𝑟𝑔ℋ

⃒⃒⃒⃒⃒⃒⃒⃒2
ℒ2

𝜌

6
1
𝑛2𝛾

−2𝑟 sup
06𝑥61

(︃
𝑛−1∑︁
𝑘=0

(1 − 𝑥)𝑘𝑥𝑟

)︃2 ⃒⃒⃒⃒⃒⃒⃒⃒
Σ−𝑟𝑔ℋ

⃒⃒⃒⃒⃒⃒⃒⃒2
ℒ2

𝜌

6
(︂ 1

(𝑛𝛾)2𝑟

)︂ ⃒⃒⃒⃒⃒⃒⃒⃒
Σ−𝑟𝑔ℋ

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2

𝜌𝑋

.

Using the inequality:

sup
06𝑥61

(︃
𝑛−1∑︁
𝑘=0

(1 − 𝑥)𝑘𝑥𝑟

)︃
6 𝑛1−𝑟. (A.53)

Indeed: (︃
𝑛−1∑︁
𝑘=0

(1 − 𝑥)𝑘𝑥𝑟

)︃
= 1 − (1 − 𝑥)𝑛

𝑥
𝑥𝑟
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= (1 − (1 − 𝑥)𝑛)𝑥𝑟−1.

And we have, for any 𝑛 ∈ N, 𝑟 ∈ [ 0; 1], 𝑥 ∈ [ 0; 1]: (1 − (1 − 𝑥)𝑛) 6 (𝑛𝑥)1−𝑟:

1. if 𝑛𝑥 6 1 then (1 − (1 − 𝑥)𝑛) 6 𝑛𝑥 6 (𝑛𝑥)1−𝑟 (the first inequality can be proved by
deriving the difference).

2. if 𝑛𝑥 > 1 then (1 − (1 − 𝑥)𝑛) 6 1 6 (𝑛𝑥)1−𝑟 .

If 𝑟 > 1, 𝑥 ↦→ (1 − (1 − 𝑥)𝑛) is increasing on [ 0; 1] so sup06𝑥61

(︁∑︀𝑛−1
𝑘=0(1 − 𝑥)𝑘𝑥𝑟

)︁
= 1:

there is no improvement in comparison to 𝑟 = 1:

Bias(𝑛, 𝛾, 𝑔ℋ, 𝑟) 6
(︂ 1
𝑛2𝛾2𝑟

)︂ ⃒⃒⃒⃒⃒⃒⃒⃒
Σ−𝑟𝑔ℋ

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2

𝜌𝑋

.

Lemma A.26

Lemma A.26 .
In the following proof, we consider 𝑠 = 1. It’s easy to get the complete result replacing
in the proof below “ 𝛾” by “ 𝑠2𝛾”. We have, for 𝑗 ∈ N, still assuming 𝛾Σ 4 𝐼, and by a
comparison to the integral:

tr
(︁
𝐼 − (𝐼 − 𝛾Σ)𝑗

)︁2
Σ−1𝐶 = 𝜎2 tr

(︁
𝐼 − (𝐼 − 𝛾Σ)𝑗

)︁2

6 1 + 𝜎2
∫︁ ∞

𝑢=1

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢

(1 stands for the first term in the sum)

= 1 + 𝜎2
∫︁ (𝛾𝑗)

1
𝛼

𝑢=1

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢

+𝜎2
∫︁ ∞

𝑢=(𝛾𝑗)
1
𝛼

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢.

Note that the first integral may be empty if 𝛾𝑗 6 1. We also have:

tr
(︁
𝐼 − (𝐼 − 𝛾Σ)𝑗

)︁2
Σ−1𝐶 > 𝜎2

∫︁ ∞

𝑢=1

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢.

Considering that 𝑔𝑗 : 𝑢 ↦→
(︁
1 −

(︀
1 − 𝛾

𝑢𝛼

)︀𝑗)︁2
is a decreasing function of 𝑢 we get:

∀𝑢 ∈ [1; (𝛾𝑗)
1
𝛼 ], (1 − 𝑒−1)2 6 𝑔𝑗(𝑢) 6 1.

Where we have used the fact that
(︁
1 − 1

𝑗

)︁𝑗
6 𝑒−1 for the left hand side inequality. Thus we

have proved:

(1 − 𝑒−1)2(𝛾𝑗)
1
𝛼 6

∫︁ (𝛾𝑗)
1
𝛼

𝑢=1

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢 6 (𝛾𝑗)
1
𝛼 .
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For the other part of the sum, we consider ℎ𝑗 : 𝑢 ↦→
(︂

1−(1− 𝛾
𝑢𝛼 )𝑗

𝛾
𝑢𝛼

)︂2
which is an increasing

function of u. So:

∀𝑢 ∈ [(𝛾𝑗)
1
𝛼 ; +∞], (1 − 𝑒−1)2𝑗2 6 ℎ𝑗(𝑢) 6 𝑗2,

using the same trick as above. Thus:

∫︁ ∞

𝑢=(𝛾𝑗)
1
𝛼

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢 =
∫︁ ∞

𝑢=(𝛾𝑗)
1
𝛼

ℎ𝑗(𝑢)
(︂
𝛾

𝑢𝛼

)︂2
𝑑𝑢

6 𝑗2
∫︁ ∞

𝑢=(𝛾𝑗)
1
𝛼

(︂
𝛾

𝑢𝛼

)︂2
𝑑𝑢

6 𝑗2𝛾2
∫︁ ∞

𝑢=(𝛾𝑗)
1
𝛼

(︂ 1
𝑢𝛼

)︂2
𝑑𝑢

= 𝑗2𝛾2
[︂ 1

(1 − 2𝛼)𝑢2𝛼−1

]︂∞

𝑢=(𝛾𝑗)
1
𝛼

= 𝑗2𝛾2 1
(2𝛼− 1)((𝛾𝑗)

1
𝛼 )2𝛼−1

= 1
(2𝛼− 1)(𝑗𝛾)

1
𝛼 .

And we could get, by a similar calculation:

∫︁ ∞

𝑢=(𝛾𝑗)
1
𝛼 +1

(︃
1 −

(︂
1 − 𝛾

𝑢𝛼

)︂𝑗
)︃2

𝑑𝑢 > (1 − 𝑒−1)2 1
(2𝛼− 1)(𝑗𝛾)

1
𝛼 .

Finally, we have shown that:

𝐶1(𝑗𝛾)
1
𝛼 6 tr

(︁
𝐼 − (𝐼 − 𝛾Σ)𝑗

)︁2
6 𝐶2(𝑗𝛾)

1
𝛼 + 1.

Where 𝐶1 = (1 − 𝑒−1)2 (1 + 1
(2𝛼−1)) and 𝐶2 = (1 + 1

(2𝛼−1)) are real constants. To get the

complete variance term we have to calculate: 𝜎2

𝑛2
∑︀𝑛−1

𝑗=1 tr (𝐼 − (𝐼 − 𝛾Σ))𝑗 . We have:

𝜎2

𝑛2

𝑛−1∑︁
𝑗=1

tr
(︁
𝐼 − (𝐼 − 𝛾Σ)𝑗

)︁2
6

𝜎2

𝑛2

𝑛−1∑︁
𝑗=1

(︁
𝐶2(𝑗𝛾)

1
𝛼 + 1

)︁
6

𝜎2

𝑛2𝐶2𝛾
1
𝛼

∫︁ 𝑛

𝑢=2
𝑢

1
𝛼𝑑𝑢+ 𝜎2

𝑛

6
𝜎2

𝑛2𝐶2𝛾
1
𝛼

𝛼

𝛼+ 1𝑛
𝛼+1

𝛼 + 𝜎2

𝑛

6
𝛼 𝜎2 𝐶2
𝛼+ 1

𝛾
1
𝛼

𝑛1− 1
𝛼

+ 𝜎2

𝑛
.

That is:

(1 − 𝑒−1)2 𝐶(𝛼) 𝜎2 𝛾
1
𝛼

(𝑛− 1)1− 1
𝛼

6 var(𝑛, 𝛾, 𝛼, 𝜎2) 6 𝐶(𝛼) 𝜎2 𝛾
1
𝛼

𝑛1− 1
𝛼

+ 𝜎2

𝑛
,

with 𝐶(𝛼) = 2𝛼2

(𝛼+1)(2𝛼−1) .
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Lemma A.27

Proof.

1
𝑛2

⃦⃦⃦⃦
Σ1/2

𝑛∑︁
𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) 𝑔ℋ

⃦⃦⃦⃦2

𝐾

6
1
𝑛2

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) Σ𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒2
||Σ1/2−𝑟𝑔ℋ||2𝐾

6
1
𝑛2

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) Σ𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒2
||Σ−𝑟𝑔ℋ||2𝐿2

𝜌𝑋
.

Moreover:⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) Σ𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
6 sup

06𝑥61

𝑛∑︁
𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖𝑥)𝑥𝑟

6 sup
06𝑥61

𝑛∑︁
𝑘=1

exp
(︃

−
𝑘∑︁

𝑖=1
𝛾𝑖𝑥

)︃
𝑥𝑟

6 sup
06𝑥61

𝑛∑︁
𝑘=1

exp (−𝑘𝛾𝑘𝑥)𝑥𝑟 if (𝛾𝑘)𝑘 is decreasing

6 sup
06𝑥61

𝑛∑︁
𝑘=1

exp
(︁
−𝑘1−𝜁𝑥

)︁
𝑥𝑟 if 𝛾𝑘 = 1

𝑘𝜁

6 sup
06𝑥61

𝑥𝑟
∫︁ 𝑛

𝑢=0
exp

(︁
−𝑢1−𝜁𝑥

)︁
𝑑𝑢 by comparison to the integral∫︁ 𝑛

𝑢=0
exp

(︁
−𝑢1−𝜁𝑥

)︁
𝑑𝑢 6 𝑛 clearly, but also∫︁ 𝑛

𝑢=0
exp

(︁
−𝑢1−𝜁𝑥

)︁
𝑑𝑢 6

∫︁ ∞

𝑡=0
exp

(︁
−𝑡1−𝜁

)︁
(𝑥)− 1

1−𝜁 𝑑𝑡 changing variables. So that:⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒ 𝑛∑︁
𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) Σ𝑟

⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒⃒
6 𝐾 sup

06𝑥61
𝑥𝑟
(︁
𝑛 ∧ 𝑥

− 1
1−𝜁

)︁
6 𝐾 sup

06𝑥61

(︁
𝑛𝑥𝑟 ∧ 𝑥

𝑟− 1
1−𝜁

)︁
and if 𝑟 − 1

1 − 𝜁
< 0

6 𝐾𝑛1−𝑟(1−𝜁).

So that:

1
𝑛2

⟨
𝑛∑︁

𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) 𝑔ℋ,
𝑛∑︁

𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) Σ𝑔ℋ

⟩
6

1
𝑛2

(︁
𝐾𝑛1−𝑟(1−𝜁)

)︁2
||Σ−𝑟𝑔ℋ||2𝐿2

𝜌𝑋

6 𝐾2||Σ−𝑟𝑔ℋ||2𝐿2
𝜌𝑋
𝑛−2𝑟(1−𝜁).

Else if 𝑟 − 1
1−𝜁 > 0, then sup06𝑥61

(︁
𝑛𝑥𝑟 ∧ 𝑥

𝑟− 1
1−𝜁

)︁
= 1, so that

1
𝑛2

⟨
𝑛∑︁

𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) 𝑔ℋ,
𝑛∑︁

𝑘=1

𝑘∏︁
𝑖=1

(𝐼 − 𝛾𝑖Σ) Σ𝑔ℋ

⟩
= 𝑂

⎛⎝ ||Σ−𝑟𝑔ℋ||2𝐿2
𝜌𝑋

𝑛2

⎞⎠ .
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Lemma A.28

Proof. To get corollary A.28, we will just replace in the following calculations 𝛾 by 𝑠2𝛾 We
remind that:

var
(︁
𝑛, (𝛾𝑖)𝑖,Σ, (𝜉𝑖)𝑖

)︁
= 1
𝑛2 E

⟨
𝑛∑︁

𝑗=1

𝑗∑︁
𝑘=1

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝛾𝑘𝜉𝑘,Σ
𝑛∑︁

𝑗=1

𝑗∑︁
𝑘=1

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝛾𝑘𝜉𝑘

⟩
.

(A.54)
For shorter notation, in the following proof, we note var(𝑛) = var

(︁
𝑛, (𝛾𝑖)𝑖,Σ, (𝜉𝑖)𝑖

)︁
.

var(𝑛) = 1
𝑛2 E

⟨
𝑛∑︁

𝑗=1

𝑗∑︁
𝑘=1

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝛾𝑘𝜉𝑘,Σ
𝑛∑︁

𝑗=1

𝑗∑︁
𝑘=1

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦ 𝛾𝑘𝜉𝑘

⟩

= 1
𝑛2 E

⟨
𝑛∑︁

𝑘=1

⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦⎞⎠ 𝛾𝑘𝜉𝑘,Σ
𝑛∑︁

𝑘=1

⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦⎞⎠ 𝛾𝑘𝜉𝑘

⟩

= 1
𝑛2

𝑛∑︁
𝑘=1

E

⟨⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦⎞⎠ 𝛾𝑘𝜉𝑘,Σ

⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦⎞⎠ 𝛾𝑘𝜉𝑘

⟩

= 1
𝑛2

𝑛∑︁
𝑘=1

E ⟨𝑀𝑛,𝑘𝛾𝑘𝜉𝑘,Σ𝑀𝑛,𝑘𝛾𝑘𝜉𝑘⟩ with 𝑀𝑛,𝑘 :=

⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦⎞⎠
= 1

𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘 E ⟨𝑀𝑛,𝑘𝜉𝑘,Σ𝑀𝑛,𝑘𝜉𝑘⟩ = 1

𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘 E tr (𝑀𝑛,𝑘Σ𝑀𝑛,𝑘𝜉𝑘 ⊗ 𝜉𝑘)

6
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2 tr
(︁
𝑀2

𝑛,𝑘ΣΣ
)︁

6
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2 tr

⎛⎝⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(𝐼 − 𝛾𝑖Σ)

⎤⎦⎞⎠Σ

⎞⎠2

6
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
∞∑︁

𝑡=1

⎛⎝⎛⎝ 𝑛∑︁
𝑗=𝑘

⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(︂
1 − 𝛾𝑖

1
𝑡𝛼

)︂⎤⎦⎞⎠ 1
𝑡𝛼

⎞⎠2

.

Let’s first upper bound:⎡⎣ 𝑗∏︁
𝑖=𝑘+1

(︂
1 − 𝛾𝑖

1
𝑡𝛼

)︂⎤⎦ 6 exp
𝑗∑︁

𝑖=𝑘+1
(𝛾𝑖

1
𝑡𝛼

)

= exp −
𝑗∑︁

𝑖=𝑘+1

(︂ 1
𝑖𝜁

1
𝑡𝛼

)︂
if 𝛾𝑖 = 1

𝑖𝜁

6 exp − 1
𝑡𝛼

∫︁ 𝑗+1

𝑢=𝑘+1

(︂ 1
𝑢𝜁
𝑑𝑢

)︂
6 exp − 1

𝑡𝛼
(𝑗 + 1)1−𝜁 − (𝑘 + 1)1−𝜁

1 − 𝜁
.

Then

𝑛∑︁
𝑗=𝑘

𝑗∏︁
𝑖=𝑘+1

(︂
1 − 𝛾𝑖

1
𝑡𝛼

)︂
6

𝑛∑︁
𝑗=𝑘

exp − 1
𝑡𝛼

(𝑗 + 1)1−𝜁 − (𝑘 + 1)1−𝜁

1 − 𝜁
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6
∫︁ 𝑛

𝑢=𝑘
exp − 1

𝑡𝛼
(𝑢+ 1)1−𝜁 − (𝑘 + 1)1−𝜁

1 − 𝜁
𝑑𝑢

6 (𝑛− 𝑘) clearly

(this upper bound is good when 𝑡 >> 𝑛1−𝜁), but we also have:

∫︁ 𝑛

𝑢=𝑘
exp − 1

𝑡𝛼
(𝑢+ 1)1−𝜁 − (𝑘 + 1)1−𝜁

1 − 𝜁
𝑑𝑢 =

∫︁ 𝑛+1

𝑢=𝑘+1
exp − 1

𝑡𝛼
𝑢1−𝜁 − (𝑘 + 1)1−𝜁

1 − 𝜁
𝑑𝑢.

With 𝜌 = 1 − 𝜁,𝐾𝜁 := 1
(1−𝜁)1/𝜌𝑡𝛼/𝜌 and

𝑣𝜌 = 1
𝑡𝛼

(𝑢)𝜌 − (𝑘 + 1)𝜌

(1 − 𝜁)

𝑣 = 1
(1 − 𝜁)1/𝜌𝑡𝛼/𝜌

((𝑢)𝜌 − (𝑘 + 1)𝜌)1/𝜌

𝑑𝑣 = 𝐾𝜁
1
𝜌

(𝑢𝜌 − (𝑘 + 1)𝜌)1/𝜌−1 𝜌𝑢𝜌−1𝑑𝑢

𝑑𝑣 = 𝐾𝜁

(︂
1 −

(︂
𝑘 + 1
𝑢

)︂𝜌)︂1/𝜌−1
𝑑𝑢

𝑑𝑣
1

𝐾𝜁

(︁
1 −

(︁
(𝑘+1)𝜌

𝑡𝛼𝐶𝑣𝜌+(𝑘+1)𝜌

)︁)︁1/𝜌−1 = 𝑑𝑢

𝑑𝑣
1
𝐾𝜁

(︂
𝑡𝛼𝐶𝑣𝜌 + (𝑘 + 1)𝜌

𝑡𝛼𝐶𝑣𝜌 + (𝑘 + 1)𝜌 − (𝑘 + 1)𝜌

)︂1/𝜌−1
= 𝑑𝑢

𝑑𝑣
1
𝐾𝜁

(︂
𝑡𝛼𝐶𝑣𝜌 + (𝑘 + 1)𝜌

𝑡𝛼𝐶𝑣𝜌

)︂1/𝜌−1
= 𝑑𝑢

𝑑𝑣
1
𝐾𝜁

(︂
1 + (𝑘 + 1)𝜌

𝑡𝛼𝐶𝑣𝜌

)︂1/𝜌−1
= 𝑑𝑢

∫︁ 𝑛

𝑢=𝑘
exp − 1

𝑡𝛼
(𝑢+ 1)

𝛼
𝛼+𝛽 − (𝑘 + 1)

𝛼
𝛼+𝛽

(1 − 𝜁) 𝑑𝑢 6
∫︁ ∞

0

1
𝐾𝜁

(︂
1 + (𝑘 + 1)𝜌

𝑡𝛼𝐶𝑣𝜌

)︂1/𝜌−1
exp (−𝑣𝜌) 𝑑𝑣

6
21/𝜌−1

𝐾𝜁

∫︁ ∞

0

(︂
1 ∨ (𝑘 + 1)𝜌

𝑡𝛼𝐶𝑣𝜌

)︂1/𝜌−1
exp (−𝑣𝜌) 𝑑𝑣

6 21/𝜌−1(1 − 𝜁)1/𝜌𝑡𝛼/𝜌
∫︁ ∞

0

(︃
1 ∨ (𝑘 + 1)1−𝜌

(𝑡𝛼𝐶)1/𝜌−1𝑣1−𝜌

)︃
exp (−𝑣𝜌) 𝑑𝑣.

6 𝐾𝑡𝛼/𝜌

(︃
𝐼1 ∨ 𝐼2

(𝑘 + 1)1−𝜌

(𝑡𝛼)1/𝜌−1

)︃
6 𝐾

(︁
𝑡

𝛼
1−𝜁 ∨ 𝑡𝛼(𝑘 + 1)𝜁

)︁
.

Finally:

var(𝑛) 6 1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
∞∑︁

𝑡=1

1
𝑡2𝛼

(︁
(𝑛− 𝑘) ∧𝐾

(︁
𝑡

𝛼
1−𝜁 ∨ 𝑡𝛼(𝑘 + 1)𝜁

)︁)︁2

var(𝑛) 6 1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
∞∑︁

𝑡=1

1
𝑡2𝛼

(︁
(𝑛− 𝑘)2 ∧𝐾

(︁
𝑡
2 𝛼

1−𝜁 + 𝑡2𝛼𝑘2𝜁
)︁)︁
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6
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
∞∑︁

𝑡=1

1
𝑡2𝛼

(︁
(𝑛− 𝑘)2 ∧𝐾

(︁
𝑡
2 𝛼

1−𝜁

)︁)︁
⏟  ⏞  

𝑆1

+ 1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
∞∑︁

𝑡=1

1
𝑡2𝛼

(︁
(𝑛− 𝑘)2 ∧ 𝑡2𝛼𝑘2𝜁

)︁
⏟  ⏞  

𝑆2

𝑆1 6 𝐾
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2

⎛⎜⎜⎝(𝑛−𝑘)
1−𝜁

𝛼∑︁
𝑡=1

1
𝑡2𝛼

𝑡
2 𝛼

1−𝜁 +
∞∑︁

𝑡=(𝑛−𝑘)
1−𝜁

𝛼

1
𝑡2𝛼

(𝑛− 𝑘)2

⎞⎟⎟⎠

6 𝐾
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2

⎛⎜⎜⎝(𝑛−𝑘)
1−𝜁

𝛼∑︁
𝑡=1

𝑡
2𝛼𝜁
1−𝜁 + (𝑛− 𝑘)2

∞∑︁
𝑡=(𝑛−𝑘)

1−𝜁
𝛼

1
𝑡2𝛼

⎞⎟⎟⎠
6 𝐺

1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
(︃

(𝑛− 𝑘)
1−𝜁

𝛼
( 2𝛼𝜁

1−𝜁
+1) + (𝑛− 𝑘)2 1

(𝑛− 𝑘)
1−𝜁

𝛼
(2𝛼−1)

)︃

6 𝐺
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
(︂

(𝑛− 𝑘)
(2𝛼−1)𝜁+1

𝛼 + (𝑛− 𝑘)2− 1−𝜁
𝛼

(2𝛼−1)
)︂

= 2𝐺𝜎2 1
𝑛2

𝑛∑︁
𝑘=1

1
𝑘2𝜁

(𝑛− 𝑘)
(2𝛼−1)𝜁+1

𝛼

6 2𝐺𝜎2 1
𝑛2

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘
− 1

)︂ (2𝛼−1)𝜁+1
𝛼

𝑘
1−𝜁

𝛼

= 2𝐺𝜎2𝑛−1+ 1−𝜁
𝛼

1
𝑛

𝑛∑︁
𝑘=1

(︂ 1
𝑘/𝑛

− 1
)︂ (2𝛼−1)𝜁+1

𝛼
(︂
𝑘

𝑛

)︂ 1−𝜁
𝛼

= 2𝐺𝜎2𝑛−1+ 1−𝜁
𝛼

⎛⎝ 1
𝑛

𝑛∑︁
𝑘=1

(︂ 1
𝑘/𝑛

− 1
)︂ (2𝛼−1)𝜁+1

𝛼
(︂
𝑘

𝑛

)︂ 1−𝜁
𝛼

⎞⎠
= 2𝐺𝜎2𝑛−1+ 1−𝜁

𝛼

⎛⎝ 1
𝑛

𝑛∑︁
𝑘=1

(︂ 1
𝑘/𝑛

− 1
)︂2𝜁 (︂

1 − 𝑘

𝑛

)︂ 1−𝜁
𝛼

⎞⎠ .
If 𝜁 < 1

2 then ∫︁ 1

0

(︂1
𝑥

− 1
)︂2𝜁

(1 − 𝑥)
1−𝜁

𝛼 𝑑𝑥 < ∞

and

𝑆1 6 𝐻𝑛−1+ 1−𝜁
𝛼

⎛⎝ 1
𝑛

𝑛∑︁
𝑘=1

(︂ 1
𝑘/𝑛

− 1
)︂2𝜁 (︂

1 − 𝑘

𝑛

)︂ 1−𝜁
𝛼

⎞⎠
6 𝐻 ′𝑛−1+ 1−𝜁

𝛼 .

If 𝜁 > 1
2 then ∫︁ 1

0

(︂1
𝑥

− 1
)︂2𝜁

(1 − 𝑥)
1−𝜁

𝛼 −
(︂1
𝑥

)︂2𝜁

𝑑𝑥 < ∞.

and

𝑆1 6 𝐻𝑛−1+ 1−𝜁
𝛼

⎛⎝ 1
𝑛

𝑛∑︁
𝑘=1

(︂ 1
𝑘/𝑛

− 1
)︂2𝜁 (︂

1 − 𝑘

𝑛

)︂ 1−𝜁
𝛼

−
(︂
𝑛

𝑘

)︂2𝜁

+ 1
𝑛

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂2𝜁
⎞⎠
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6 𝐻𝑛−1+ 1−𝜁
𝛼

(︁
𝐶 + 𝑛2𝜁−1

)︁
6 𝐶𝑛−1+ 1−𝜁+𝛼(2𝜁−1)

𝛼 .

𝑆2 = 1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
∞∑︁

𝑡=1

1
𝑡2𝛼

(︁
(𝑛− 𝑘)2 ∧ 𝑡2𝛼𝑘2𝜁

)︁

6
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2

⎛⎝ 𝑡ℓ∑︁
𝑡=1

1
𝑡2𝛼

𝑡2𝛼𝑘2𝜁 +
∞∑︁

𝑡=𝑡ℓ

1
𝑡2𝛼

(𝑛− 𝑘)2

⎞⎠ with 𝑡ℓ = (𝑛− 𝑘)
1
𝛼

𝑘
𝜁
𝛼

6
1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2

⎛⎝𝑘2𝜁
𝑡ℓ∑︁

𝑡=1
1 + (𝑛− 𝑘)2

∞∑︁
𝑡=𝑡ℓ

1
𝑡2𝛼

⎞⎠
6

1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2

⎛⎜⎝𝑘2𝜁 (𝑛− 𝑘)
1
𝛼

𝑘
𝜁
𝛼

+ (𝑛− 𝑘)2

⎛⎝(𝑛− 𝑘)
1
𝛼

𝑘
𝜁
𝛼

⎞⎠1−2𝛼
⎞⎟⎠

= 1
𝑛2

𝑛∑︁
𝑘=1

𝛾2
𝑘𝜎

2
(︁
𝑘2𝜁− 𝜁

𝛼 (𝑛− 𝑘)
1
𝛼 + (𝑛− 𝑘)

1
𝛼𝑘

𝜁
𝛼

(2𝛼−1)
)︁

= 2𝜎2

𝑛2

𝑛∑︁
𝑘=1

1
𝑘2𝜁

(𝑛− 𝑘)
1
𝛼𝑘

𝜁
𝛼

(2𝛼−1)

= 2𝜎2

𝑛2

𝑛∑︁
𝑘=1

𝑘− 𝜁
𝛼 (𝑛− 𝑘)

1
𝛼

= 2𝜎2𝑛(−1+− 𝜁
𝛼

+ 1
𝛼 ) 1
𝑛

𝑛∑︁
𝑘=1

(︂
𝑘

𝑛

)︂− 𝜁
𝛼
(︂

1 − 𝑘

𝑛

)︂ 1
𝛼

6 𝐾𝑛(−1+ 1−𝜁
𝛼 ).

As we have a Riemann sum which converges.
Finally we get: if 0 < 𝜁 < 1

2 then

var(𝑛) = 𝑂
(︁
𝜎2𝑛−1+ 1−𝜁

𝛼

)︁
= 𝑂

(︃
𝜎2𝜎

2(𝑠2𝛾𝑛)1/𝛼
𝑛1−1/𝛼

𝑛−1+ 1−𝜁
𝛼

)︃

where we have re-used the constants 𝑠 by formally replacing in the proof 𝛾 by 𝛾𝑠2.
and if 𝜁 > 1

2 then

var(𝑛) = 𝑂
(︁
𝜎2𝑛−1+ 1−𝜁

𝛼
+2𝜁−1

)︁
.

Which is substantially Lemma A.28.



3
Faster Convergence Rates for Least-Squares

Regression

We consider the optimization of a quadratic objective function whose gradients are only
accessible through a stochastic oracle that returns the gradient at any given point plus a
zero-mean finite variance random error. We present the first algorithm that achieves jointly
the optimal prediction error rates for least-squares regression, both in terms of forgetting
the initial conditions in 𝑂(1/𝑛2), and in terms of dependence on the noise and dimension 𝑑
of the problem, as 𝑂(𝑑/𝑛). Our new algorithm is based on averaged accelerated regularized
gradient descent, and may also be analyzed through finer assumptions on initial conditions
and the Hessian matrix, leading to dimension-free quantities that may still be small in
some distances while the “optimal” terms above are large. In order to characterize the
tightness of these new bounds, we consider an application to non-parametric regression
and use the known lower bounds on the statistical performance (without computational
limits), which happen to match our bounds obtained from a single pass on the data and
thus show optimality of our algorithm in a wide variety of particular trade-offs between
bias and variance.

This chapter is based on our work Harder, Better, Faster, Stronger Convergence Rates for
Least-Squares Regression, A. Dieuleveut, N. Flammarion and F.Bach, accepted for publication
in Journal of Machine Learning Research (JMLR), 2017.
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3.1 Introduction

Many supervised machine learning problems are naturally cast as the minimization of
a smooth function defined on a Euclidean space. This includes least-squares regression,
logistic regression (see, e.g., Hastie et al., 2001) or generalized linear models (McCullagh
and Nelder, 1989). While small problems with few or low-dimensional input features may
be solved precisely by many potential optimization algorithms (e.g., Newton method),
large-scale problems with many high-dimensional features are typically solved with simple
gradient-based iterative techniques whose per-iteration cost is small.

In this chapter, we consider a quadratic objective function 𝑓 whose gradients are only
accessible through a stochastic oracle that returns the gradient at any given point plus a zero-
mean finite variance random error. In this stochastic approximation framework (Robbins
and Monro, 1951), it is known that two quantities dictate the behavior of various algorithms,
namely the covariance matrix 𝑉 of the noise in the gradients, and the deviation 𝜃0 − 𝜃*
between the initial point of the algorithm 𝜃0 and any of the global minimizer 𝜃* of 𝑓 . This
leads to a “bias/variance” decomposition (Bach and Moulines, 2013; Hsu et al., 2014) of
the performance of most algorithms as the sum of two terms: (a) the bias term characterizes
how fast initial conditions are forgotten and thus is increasing in a well-chosen norm of
𝜃0 − 𝜃*; while (b) the variance term characterizes the effect of the noise in the gradients,
independently of the starting point, and with a term that is increasing in the covariance of
the noise.

For quadratic functions with (a) a noise covariance matrix 𝑉 which is proportional (with
constant 𝜎2) to the Hessian of 𝑓 (a situation which corresponds to least-squares regression)
and (b) an initial point characterized by the norm ‖𝜃0 − 𝜃*‖2, the optimal bias and variance
terms are known separately from the optimization and statistical theories. On the one
hand, the optimal bias dependency after 𝑛 iterations is proportional to 𝐿‖𝜃0−𝜃*‖2

𝑛2 , where 𝐿
is the largest eigenvalue of the Hessian of 𝑓 . This rate is achieved by accelerated gradient
descent (Nesterov, 1983, 2004), and is known to be optimal if the number of iterations 𝑛
is less than the dimension 𝑑 of the underlying predictors, but the algorithm is not robust to
random or deterministic noise in the gradients (d’Aspremont, 2008; Schmidt et al., 2011;
Devolder et al., 2014). On the other hand, the optimal variance term is proportional to
𝜎2𝑑
𝑛 (Tsybakov, 2003); it is known to be achieved by averaged gradient descent (Bach and

Moulines, 2013), for which the bias term only achieves 𝐿‖𝜃0−𝜃*‖2

𝑛 instead of 𝐿‖𝜃0−𝜃*‖2

𝑛2 .
Our first contribution in this chapter is to present a novel algorithm which attains

optimal rates for both the variance and the bias terms. This algorithm analyzed in Section 3.4
is averaged accelerated gradient descent; beyond obtaining jointly optimal rates, our result
shows that averaging is beneficial for accelerated techniques and provides a provable
robustness to noise.

While optimal when measuring performance in terms of the dimension 𝑑 and the initial
distance to optimum ‖𝜃0 − 𝜃*‖2, these rates are not adapted in many situations where
either 𝑑 is larger than the number of iterations 𝑛 (i.e., the number of observations for
regular stochastic gradient descent) or 𝐿‖𝜃0 − 𝜃*‖2 is much larger than 𝑛2. Our second
contribution is to provide in Section 3.5 an analysis of a new algorithm (based on some
additional regularization) that can adapt our bounds to finer assumptions on 𝜃0 − 𝜃* and
the Hessian of the problem, leading in particular to dimension-free quantities that can thus
be extended to the Hilbert space setting (in particular for non-parametric estimation).

In order to characterize the optimality of these new bounds, our third contribution is
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to consider an application to non-parametric regression in Section 3.6 and use the known
lower bounds on the statistical performance (without computational limits), which happen
to match our bounds obtained from a single pass on the data and thus show optimality of
our algorithm in a wide variety of particular trade-offs between bias and variance.

This chapter is organized as follows: in Section 3.2, we present the main problem we
tackle, namely least-squares regression, then introduce the two algorithms that we consider
in Section 3.2.2, as well as the two types of oracles on the gradient in Section 3.2.3. In
Section 3.3, we present new results for averaged stochastic gradient descent that set the
stage for Section 3.4, where we present our main novel result leading to an accelerated
algorithm which is robust to noise. This tighter analysis of convergence rates based on finer
dimension-free quantities is presented in Section 3.5, and their optimality for kernel-based
non-parametric regression is studied in Section 3.6. Organization of the main results is
summarized in the Table 3.1 bellow.

Proofs are given in Chapter B.

Averaged
Algo.

Averaged
Accelerated Algo.

Dimension dependent rates Section 3.3 Section 3.4
Additive Noise Lemma 3.1♦ Theorem 3.3
Multiplicative Noise Theorem 3.2♦ ♮

Dimension independent rates Section 3.5 Section 3.5
Additive Noise ♯ Theorem 3.5
Multiplicative Noise 4𝑡ℎ remark after

Cor. 3.6♭

♮

Kernel regression setting Section 3.6 Section 3.6
Additive Noise ♯ Theorem 3.8
Multiplicative Noise Theorem 3.7♭ ♮

Table 3.1: Organization of the chapter. ♦: We extend results from (Bach and Moulines,
2013) to the setting in which extra regularization is added; ♯: apart from Lemma 3.1 which
is useful to develop intuition of the different terms in the upper bound, we do not state
result for the averaged algorithm with additive noise, as the most powerful result is for
the multiplicative noise; ♭: these results recover results from Chapter 2 (with the use of an
extra regularization); ♮: it is still an open problem to get results in the accelerated setting
for a multiplicative noise oracle.

Collaboration with Nicolas Flammarion: this work was done in collaboration with
another PhD student, Nicolas Flammarion, and we both equally contributed to the entire
paper. We both include parts of the paper in our thesis but with a different focus: while
the core acceleration result is present in the two thesis, Nicolas mainly focused on the
finite-dimensional part (and does not cover the non-parametric setting), I focused more on
the non-parametric setting (e.g., the experimental part which is done in finite dimension is
not covered).
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3.2 Least-Squares Regression

In this section, we present the least-squares regression framework, which is risk minimiza-
tion with the square loss, together with the main assumptions regarding the model and
the algorithms. These algorithms will rely on stochastic gradient oracles, which will come
in two kinds, an additive noise which does not depend on the current iterate, which will
correspond in practice to the full knowledge of the covariance matrix, and a “multiplica-
tive/additive” noise, which corresponds to the regular stochastic gradient obtained from a
single pair of observations. This second oracle is much harder to analyze.

3.2.1 Statistical Assumptions

We consider the following general setting:

∙ ℋ is a 𝑑-dimensional Euclidean space with 𝑑 > 1. The (temporary) restriction to
finite dimension will be relaxed in Section 3.6.

∙ The observations (𝑥𝑛, 𝑦𝑛) ∈ ℋ ×R, 𝑛 > 1, are independent and identically distributed
(i.i.d.), and such that E‖𝑥𝑛‖2 and E𝑦2

𝑛 are finite.

∙ We consider the least-squares regression problem, namely the minimization of the
expected loss 𝑓(𝜃) = 1

2E(⟨𝑥𝑛, 𝜃⟩ − 𝑦𝑛)2 which is a quadratic function.

We first introduce an assumption on the distribution of 𝑥𝑛.

Covariance matrix. We denote by Σ = E(𝑥𝑛 ⊗ 𝑥𝑛) ∈ R𝑑×𝑑 the population covariance
matrix, which is the Hessian of 𝑓 at all points. Without loss of generality, we can assume Σ
is invertible by reducing ℋ to the minimal subspace where all 𝑥𝑛, 𝑛 > 1, lie almost surely.
This implies that all eigenvalues of Σ are strictly positive (but they may be arbitrarily small).
Following Bach and Moulines (2013), we assume there exists 𝑅 > 0 such that

E‖𝑥𝑛‖2𝑥𝑛 ⊗ 𝑥𝑛 4 𝑅
2Σ, (𝒜1)

where 𝐴 4 𝐵 means that 𝐵 − 𝐴 is positive semi-definite. This assumption implies in
particular that (a) E‖𝑥𝑛‖4 is finite and (b) tr Σ = E‖𝑥𝑛‖2 6 𝑅2 since taking the trace of
the previous inequality we get E‖𝑥𝑛‖4 6 𝑅2E‖𝑥𝑛‖2 and using Cauchy-Schwarz inequality
we get E‖𝑥𝑛‖2 6

√︀
E‖𝑥𝑛‖4 6 𝑅

√︀
E‖𝑥𝑛‖2.

Assumption (𝒜1) is satisfied, for example, for least-square regression with almost surely
bounded data, since ‖𝑥𝑛‖2 6 𝑅2 almost surely implies E‖𝑥𝑛‖2𝑥𝑛 ⊗ 𝑥𝑛 4 E

[︀
𝑅2𝑥𝑛 ⊗ 𝑥𝑛

]︀
=

𝑅2Σ. This assumption is also true for data with infinite support and a bounded kurtosis
for the projection of the covariates 𝑥𝑛 on any direction 𝑧 ∈ ℋ, e.g, for which there exists
𝜅 > 0, such that:

∀𝑧 ∈ ℋ, E⟨𝑧, 𝑥𝑛⟩4 6 𝜅⟨𝑧,Σ𝑧⟩2. (3.1)

Indeed, by Cauchy-Schwarz inequality, Equation (3.1) implies for all (𝑧, 𝑡) ∈ ℋ2, the follow-
ing bound E⟨𝑧, 𝑥𝑛⟩2⟨𝑡, 𝑥𝑛⟩2 6 𝜅⟨𝑧,Σ𝑧⟩⟨𝑡,Σ𝑡⟩, which in turn implies that for all positive semi-
definite symmetric matrices 𝑀,𝑁 , we have E⟨𝑥𝑛,𝑀𝑥𝑛⟩⟨𝑥𝑛, 𝑁𝑥𝑛⟩ 6 𝜅 tr(𝑀Σ) tr(𝑁Σ).
Equation (3.1), which is true for Gaussian vectors with 𝜅 = 3, thus implies (𝒜1) for
𝑅2 = 𝜅 tr Σ = 𝜅E‖𝑥𝑛‖2.

In the next two paragraphs, we introduce some quantities that will be important in the
analysis, in order to get tighter bounds.
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Eigenvalue decay. Most convergence bounds depend on the dimension 𝑑 of ℋ. However
it is possible to derive dimension-free and often tighter convergence rates by considering
bounds depending on the value tr Σ𝑏 for 𝑏 ∈ [0, 1]. Given 𝑏, if we consider the eigenvalues
of Σ ordered in decreasing order, which we denote by 𝑠𝑖, then tr Σ𝑏 =

∑︀
𝑖 𝑠

𝑏
𝑖 , and the

eigenvalues decay1 at least as (tr Σ𝑏)1/𝑏

𝑖1/𝑏 . Moreover, it is known that (tr Σ𝑏)1/𝑏 is decreasing
in 𝑏 and thus, the smaller the 𝑏, the stronger the assumption. For 𝑏 going to 0 then tr Σ𝑏

tends to 𝑑 and we are back in the classical low-dimensional case. When 𝑏 = 1, we simply
get tr Σ = E‖𝑥𝑛‖2, which will correspond to the weakest assumption in our context.

Optimal predictor. In finite dimension the regression function 𝑓(𝜃) = 1
2E(⟨𝑥𝑛, 𝜃⟩ − 𝑦𝑛)2

always admits a global minimum 𝜃* = Σ†E(𝑦𝑛𝑥𝑛). When initializing algorithms at 𝜃0 = 0
or regularizing by the squared norm, rates of convergence generally depend on ‖𝜃*‖, a
quantity which could be arbitrarily large.

However there exists a systematic upper-bound2 ‖Σ
1
2 𝜃*‖ 6 2

√︀
E𝑦2

𝑛. This leads naturally
to the consideration of convergence bounds depending on ‖Σ𝑟/2𝜃*‖ for 𝑟 6 1. In infinite
dimension this will correspond to assuming ‖Σ𝑟/2𝜃*‖ < ∞. This new assumption relates
the optimal predictor with sources of ill-conditioning (since Σ is the Hessian of the objective
function 𝑓), the smaller 𝑟, the stronger our assumption, with 𝑟 = 1 corresponding to no
assumption at all, 𝑟 = 0 to 𝜃* in ℋ and 𝑟 = −1 to a convergence of the bias of least-squares
regression with averaged stochastic gradient descent in 𝑂

(︀‖Σ−1/2𝜃*‖2

𝑛2
)︀
(as in Chapter 2, or

in Défossez and Bach, 2015). In this chapter, we will use arbitrary initial points 𝜃0 and thus
our bounds will depend on ‖Σ𝑟/2(𝜃0 − 𝜃*)‖.

Finally , we make an assumption on the joint distribution of (𝑥𝑛, 𝑦𝑛).

Noise. We denote by 𝜀𝑛 = 𝑦𝑛 − ⟨𝜃*, 𝑥𝑛⟩ the residual for which we have E[𝜀𝑛𝑥𝑛] = 0.
Although we do not have E[𝜀𝑛|𝑥𝑛] = 0 in general unless the model is well-specified, we
assume the noise to be a structured process such that there exists 𝜎 > 0 with

E[𝜀2
𝑛𝑥𝑛 ⊗ 𝑥𝑛] 4 𝜎2Σ. (𝒜2)

Assumption (𝒜2) is satisfied for example for data almost surely bounded or when the
model is well-specified, (e.g., 𝑦𝑛 = ⟨𝜃*, 𝑥𝑛⟩ + 𝜀𝑛, with (𝜀𝑛)𝑛∈N i.i.d. of variance 𝜎2 and
independent of 𝑥𝑛).

B In order to slightly simplify notations, notations change between Chapter 2 and Chap-
ter 3. Especially, we use 𝑏 instead of 1

𝛼 for the constant characterizing the eigenvalue decay (in
order to write tr(Σ𝑏) and not tr(Σ1/𝛼)). Similarly, the 𝑟 in this chapter corresponds to 1 − 2𝑟
with the 𝑟 from Chapter 2: we summarize connections in the following tabular:

Chapter 2 Chapter 3 Connections
Capacity condition parameter 𝛼 𝑏 𝛼 = 1/𝑏
Source condition parameter 𝑟Ch.2 𝑟Ch.3 𝑟Ch.3 = 1 − 2𝑟Ch.2

As a consequence, e.g., the exponent on 𝑛 in the optimal rate is −2𝛼𝑟Ch.2
2𝛼𝑟Ch.2+1 in Chapter 2 and

− 1−𝑟Ch.3
𝑏+1−𝑟Ch.3

in Chapter 3.
1Indeed for any 𝑖 > 1, we have 𝑖𝑠𝑏

𝑖 6
∑︀𝑖

𝑡=1 𝑠𝑏
𝑡 6 tr(Σ𝑏).

2Indeed for all 𝜃 ∈ R𝑑 and in particular 𝜃 = 0, by Minkowski’s inequality, ‖Σ 1
2 𝜃*‖−

√︀
E𝑦2

𝑛 =
√︀

E⟨𝜃*, 𝑥𝑛⟩2−√︀
E𝑦2

𝑛 6
√︀

E(⟨𝜃*, 𝑥𝑛⟩ − 𝑦𝑛)2 6
√︀

E(⟨𝜃, 𝑥𝑛⟩ − 𝑦𝑛)2 6
√︀

E(𝑦𝑛)2.



3.2. Least-Squares Regression 119

3.2.2 Averaged Gradient Methods and Acceleration

We focus in this chapter on stochastic gradient methods with and without acceleration for
the least-squares function regularized by 𝜆

2 ‖𝜃 − 𝜃0‖2 for 𝜆 ∈ R+. The regularization will be
useful when deriving tighter convergence rates in Section 3.5, and it has the additional
benefit of making the problem 𝜆-strongly-convex. Stochastic gradient descent (referred to
from now on as “SGD”), applied to the regularized problem, can be described for 𝑛 > 1 as

𝜃𝑛 = 𝜃𝑛−1 − 𝛾𝑓 ′
𝑛(𝜃𝑛−1) − 𝛾𝜆(𝜃𝑛−1 − 𝜃0), (3.2)

starting from 𝜃0 ∈ ℋ, where 𝛾 > 0 is either called the step-size in optimization or the
learning rate in machine learning, and 𝑓 ′

𝑛(𝜃𝑛−1) is an unbiased estimate of the gradient of
𝑓 at 𝜃𝑛−1, that is, its conditional expectation given all other sources of randomness is equal
to 𝑓 ′(𝜃𝑛−1).

Accelerated stochastic gradient descent is defined, for the regularized problem, by an
iterative system with two parameters (𝜃𝑛, 𝜈𝑛) satisfying for 𝑛 > 1

𝜃𝑛 = 𝜈𝑛−1 − 𝛾𝑓 ′
𝑛(𝜈𝑛−1) − 𝛾𝜆(𝜈𝑛−1 − 𝜃0)

𝜈𝑛 = 𝜃𝑛 + 𝛿
(︀
𝜃𝑛 − 𝜃𝑛−1

)︀
, (3.3)

starting from 𝜃0 = 𝜈0 ∈ ℋ, with 𝛾, 𝛿 ∈ R2 and 𝑓 ′
𝑛(𝜃𝑛−1) described as before. It may be

reformulated as the following second-order recursion

𝜃𝑛 = (1 − 𝛾𝜆)
(︀
𝜃𝑛−1 + 𝛿(𝜃𝑛−1 − 𝜃𝑛−2)

)︀
− 𝛾𝑓 ′

𝑛

(︀
𝜃𝑛−1 + 𝛿(𝜃𝑛−1 − 𝜃𝑛−2)

)︀
+ 𝛾𝜆𝜃0.

The momentum coefficient 𝛿 ∈ R is chosen to accelerate the convergence rate (Nesterov,
1983; Beck and Teboulle, 2009) and has its roots in the heavy-ball algorithm from Polyak
(1964). We especially concentrate here, following Polyak and Juditsky (1992), on the
average of the sequence

𝜃𝑛 = 1
𝑛+ 1

𝑛∑︁
𝑖=0

𝜃𝑛, (3.4)

and we note that it can be computed online as 𝜃𝑛 = 𝑛
𝑛+1𝜃𝑛−1 + 1

𝑛+1𝜃𝑛.
The key ingredient in the algorithms presented above is the unbiased estimate on the

gradient 𝑓 ′
𝑛(𝜃), which can take two forms that we now describe in our setting.

3.2.3 Additive versus Multiplicative Stochastic Oracles on the Gradient

We consider the standard stochastic approximation framework (Kushner and Yin, 2003).
That is, we let (ℱ𝑛)𝑛>0 be the increasing family of 𝜎-fields that are generated by all variables
(𝑥𝑖, 𝑦𝑖) for 𝑖 6 𝑛, and such that for each 𝜃 ∈ ℋ the random variable 𝑓 ′

𝑛(𝜃) is square-
integrable and ℱ𝑛-measurable with E[𝑓 ′

𝑛(𝜃)|ℱ𝑛−1] = 𝑓 ′(𝜃), for all 𝑛 > 0. Consequently it is
of the form

𝑓 ′
𝑛(𝜃) = 𝑓 ′(𝜃) − 𝜉𝑛, (𝒜3)

where the noise process 𝜉𝑛 is ℱ𝑛-measurable with E[𝜉𝑛|ℱ𝑛−1] = 0 and E[‖𝜉𝑛‖2] is finite. We
will consider two different gradient oracles.
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Additive noise. The first oracle is the sum of the true gradient 𝑓 ′(𝜃) and an independent
zero-mean noise that does not depend on 𝜃. This oracle is equal to

𝑓 ′
𝑛(𝜃) = Σ𝜃 − 𝑦𝑛𝑥𝑛. (3.5)

Since 𝑓 ′(𝜃) = Σ𝜃 − E𝑦𝑛𝑥𝑛, the oracle above has a noise vector 𝜉𝑛 = 𝑦𝑛𝑥𝑛 − E𝑦𝑛𝑥𝑛

independent of 𝜃 and therefore satisfies Assumption (𝒜3). Furthermore we also assume
that there exists 𝜏 ∈ R such that

E[𝜉𝑛 ⊗ 𝜉𝑛] 4 𝜏2Σ, (𝒜4)

that is, the noise has a particular structure adapted to least-squares regression. For optimal
results for unstructured noise, with convergence rate for the noise part in 𝑂(1/

√
𝑛), see Lan

(2012). The oracle above with an additive noise which is independent of the current iterate
corresponds to the first setting studied in stochastic approximation (Robbins and Monro,
1951; Duflo, 1997; Polyak and Juditsky, 1992). While used by Bach and Moulines (2013)
as an artifact of proof, for least-squares regression, such an additive noise corresponds to
the situation where the distribution of 𝑥 is known so that the population covariance matrix
is computable, but the distribution of the outputs (𝑦𝑛)𝑛∈N remains unknown. Thus it may
be seen as an intermediate set-up between regression estimation with fixed and random
design (see, e.g., Györfi et al., 2002, Section 1.9).

Assumption (𝒜4) will be satisfied, for example if the outputs are almost surely bounded
because E[𝜉𝑛 ⊗ 𝜉𝑛] 4 E[𝑦2

𝑛𝑥𝑛 ⊗ 𝑥𝑛] 4 𝜏2Σ if 𝑦2
𝑛 6 𝜏2 almost surely. But it will also be for

data satisfying Equation (3.1) since we will have

E[𝜉𝑛 ⊗ 𝜉𝑛] 4 E[𝑦2
𝑛𝑥𝑛 ⊗ 𝑥𝑛] = E[(⟨𝜃*, 𝑥𝑛⟩ + 𝜀𝑛)2𝑥𝑛 ⊗ 𝑥𝑛]

4 2E[⟨𝜃*, 𝑥𝑛⟩2𝑥𝑛 ⊗ 𝑥𝑛] + 2𝜎2Σ 4 2(𝜅‖Σ1/2𝜃*‖2 + 𝜎2)Σ
4 2(4𝜅E[𝑦2

𝑛] + 𝜎2)Σ,

and thus Assumption (𝒜4) is satisfied with 𝜏2 = 2(4𝜅E[𝑦2
𝑛] + 𝜎2).

Stochastic noise (“multiplicative/additive”). This corresponds to:

𝑓 ′
𝑛(𝜃) = (⟨𝑥𝑛, 𝜃⟩ − 𝑦𝑛)𝑥𝑛 = (Σ + 𝜁𝑛)(𝜃 − 𝜃*) − Ξ𝑛, (3.6)

with 𝜁𝑛 = 𝑥𝑛 ⊗ 𝑥𝑛 − Σ and Ξ𝑛 = (𝑦𝑛 − ⟨𝑥𝑛, 𝜃*⟩)𝑥𝑛 = 𝜀𝑛𝑥𝑛. This oracle corresponds to
regular SGD, which is often referred to as the least-mean-square (LMS) algorithm for
least-squares regression, where the noise comes from sampling a single pair of observations.
While still satisfying Assumption (𝒜3), it combines an additive noise Ξ𝑛 independent of
𝜃 as in Equation (3.5) and a multiplicative noise 𝜁𝑛. This multiplicative noise makes this
stochastic oracle harder to analyze which explains why it is often approximated by an
additive noise oracle. However it is the most widely used and most practical one. Note
that for the oracle in Equation (3.6), from Equation (𝒜2), we have E[Ξ𝑛 ⊗ Ξ𝑛] 4 𝜎2Σ.
It has a similar form to Assumption (𝒜4) which is valid for the additive noise oracle in
Equation (3.5): we use different constants 𝜎2 and 𝜏2 to highlight the difference between
these two oracles.
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3.3 Averaged Stochastic Gradient Descent

In this section, we provide convergence bounds for regularized averaged stochastic gradient
descent. The main novelty compared to the work of Bach and Moulines (2013) is (a)
the presence of regularization, which will be useful when deriving tighter convergence
rates in Section 3.5 and (b) a much simpler proof. We first consider the additive noise in
Section 3.3.1 before considering the multiplicative/additive noise in Section 3.3.2.

3.3.1 Additive Noise

We study here the convergence of the averaged SGD recursion defined by Equation (3.2)
under the simple oracle defined in Equation (3.5). For least-squares regression, it takes the
form:

𝜃𝑛 =
[︀
I − 𝛾Σ − 𝛾𝜆I

]︀
𝜃𝑛−1 + 𝛾𝑦𝑛𝑥𝑛 + 𝜆𝛾𝜃0. (3.7)

This is an easy adaptation of the work of Bach and Moulines (2013, Lemma 2) for the
regularized case.

Lemma 3.1. Assume (𝒜4). Consider the recursion in Equation (3.7) with any regularization
parameter 𝜆 ∈ R+ and any constant step-size 𝛾 such that 𝛾(Σ + 𝜆I) 4 I. Then

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
(︁
𝜆+ 1

𝛾𝑛

)︁2
‖Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2 +

𝜏2 tr
[︀
Σ2(Σ + 𝜆I)−2]︀

𝑛
. (3.8)

We can make the following observations:

∙ The proof (see Section B.1) relies on the fact that 𝜃𝑛 − 𝜃* is obtainable in closed form
since the cost function is quadratic and thus the recursions are linear, and follows
from Polyak and Juditsky (1992).

∙ The constraint on the step-size 𝛾 is equivalent to 𝛾(𝐿+ 𝜆) 6 1 where 𝐿 is the largest
eigenvalue of Σ and we thus recover the usual step-size from deterministic gradient
descent (Nesterov, 2004).

∙ When 𝑛 tends to infinity, the algorithm converges to the minimum of 𝑓(𝜃)+ 𝜆
2 ‖𝜃−𝜃0‖2

and our performance guarantee becomes 𝜆2‖Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2. This is the
standard “bias term” from regularized ridge regression (Hsu et al., 2014) which
we naturally recover here. The term 𝜏2

𝑛 tr
[︀
Σ2(Σ + 𝜆I)−2]︀ is usually referred to

as the “variance term” (Hsu et al., 2014), and is equal to 𝜏2

𝑛 times the quantity
tr
[︀
Σ2(Σ+𝜆I)−2]︀, which is often called the degrees of freedom of the ridge regression

problem (Gu, 2002).

∙ For finite 𝑛, the first term in Equation (3.8) is the usual bias term which depends on
the distance from the initial point 𝜃0 to the objective point 𝜃* with an appropriate
norm. It includes a regularization-based component which is proportional to 𝜆2 and
optimization-based component which depends on (𝛾𝑛)−2. The regularization-based
bias appears because the algorithm tends to minimize the regularized function instead
of the true function 𝑓 .

∙ Given Equation (3.8), it is natural to set 𝜆𝛾 = 1
𝑛 , and the two components of the

bias term are exactly of the same order leading to 4
𝛾2𝑛2 ‖Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2. It

corresponds up to a constant factor to the bias term of regularized least-squares (Hsu
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et al., 2014), but it is achieved by an algorithm accessing only 𝑛 stochastic gradients.
Note that when 𝜆 or 𝛾 depend on 𝑛, this term is not necessarily of order 𝑂(𝑛−2), as
the numerator might be arbitrarily large. Note also that here as in the rest of the
chapter, we only prove results in the finite horizon setting, meaning that the number
of samples is known in advance and the parameters 𝛾, 𝜆 may be chosen as functions
of 𝑛, but remain constant along the iterations (when 𝜆 or 𝛾 depend on 𝑛, our bounds
only hold for the last iterate).

∙ Note that the bias term can also be bounded by 1
𝛾𝑛‖Σ1/2(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)‖2 only

when ‖𝜃0 − 𝜃*‖ is finite (note the difference in the powers of 𝑛 and (Σ + 𝜆I)−1). See
the proof in Section B.1.2 for details.

∙ The second term in Equation (3.8) is the variance term. It depends on the noise in
the gradient. When this one is not structured the variance turns to be also bounded
by 𝛾 tr

(︀
Σ(Σ + 𝜆I)−1E[𝜉𝑛 ⊗ 𝜉𝑛]

)︀
(see Section B.1.3) and we recover for 𝛾 = 𝑂(1/

√
𝑛),

the usual rate of 1√
𝑛

for SGD in the smooth case (Shalev-Shwartz et al., 2009).

∙ Overall we get the same performance as the empirical risk minimizer with fixed
design, but with an algorithm that performs a single pass over the data.

∙ When 𝜆 = 0 we recover Lemma 2 of Bach and Moulines (2013). In this case the
variance term 𝜏2𝑑

𝑛 is optimal over all estimators in ℋ (Tsybakov, 2003) even without
computational limits, in the sense that no estimator that uses the same information
can improve upon this rate.

3.3.2 Multiplicative/Additive Noise

When the general stochastic oracle in Equation (3.6) is considered, the regularized LMS
algorithm defined by Equation (3.2) takes the form:

𝜃𝑛 =
[︀
I − 𝛾𝑥𝑛 ⊗ 𝑥𝑛 − 𝛾𝜆I

]︀
𝜃𝑛−1 + 𝛾𝑦𝑛𝑥𝑛 + 𝜆𝛾𝜃0. (3.9)

We have a very similar result with an additional corrective term (second line below)
compared to Lemma 3.1.

Theorem 3.2. Assume (𝒜1,2). Consider the recursion in Equation (3.9). For any regular-
ization parameter 𝜆 ∈ R+ and for any constant step-size 𝛾 such that 2𝛾(𝑅2 + 2𝜆) 6 1 we
have:

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 3
(︁
2𝜆+ 1

𝛾𝑛

)︁2
‖Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2 + 6𝜎2

𝑛+ 1 tr
[︀
Σ2(Σ + 𝜆I)−2]︀

+3
⃦⃦
(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)

⃦⃦2tr(Σ(Σ + 𝜆I)−1)
𝛾2(𝑛+ 1)2 .

We can make the following remarks:

∙ The proof (see Section B.2) relies on a bias-variance decomposition, each term being
treated separately. We adapt a proof technique from Bach and Moulines (2013)
which considers the difference between the recursions in Equation (3.9) and in
Equation (3.7).
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∙ As in Lemma 3.1, the bias term can also be bounded by 1
𝛾𝑛‖Σ1/2(Σ+𝜆I)−1/2(𝜃0−𝜃*)‖2

and the variance term by 𝛾 tr[Σ(Σ + 𝜆I)−1𝜉𝑛 ⊗ 𝜉𝑛] (see proof in Sections B.2.4
and B.2.5). This is useful in particular when considering unstructured noise.

∙ The variance term is the same as in the previous case. However there is a residual
term that now appears when we go to the fully stochastic oracle (second line). This
term will go to zero when 𝛾 tends to zero and can be compared to the corrective
term which also appears when Hsu et al. (2014) go from fixed to random design.
Nevertheless our bounds are more concise than theirs, making significantly fewer
assumptions and relying on an efficient single-pass algorithm.

∙ In this setting, the step-size may not exceed 1/(2(𝑅2 + 2𝜆)), whereas with an additive
noise in Lemma 3.1 the condition is 𝛾 6 1/(𝐿+ 𝜆), a quantity which can be much
bigger than 1/(2(𝑅2 + 2𝜆)), as 𝐿 is the spectral radius of Σ whereas 𝑅2 is of the order
of tr(Σ). Note that in practice, computing 𝐿 is as hard as computing 𝜃* so that the
step-size 𝛾 ∝ 1/𝑅2 is a good practical choice. See Défossez and Bach (2015) for
larger allowed step-sizes that require more information.

∙ For 𝜆 = 0 the error is bounded by 3(1+𝑑)
(𝛾𝑛)2 ‖Σ−1/2(𝜃0 − 𝜃*)‖2 + 6𝜎2𝑑

𝑛+1 . We recover
results from Défossez and Bach (2015) with a non-asymptotic bound but we lose
the advantage of having an asymptotic equivalent (i.e., a limit rather than an upper-
bound). We note that the assumption (𝒜1,2) are close to the minimal assumptions
required to obtain the optimal rate of convergence of 𝜎2𝑑/𝑛 (Lecué and Mendelson,
2016; Oliveira, 2016)

3.4 Accelerated Stochastic Averaged Gradient Descent

We study the convergence under the stochastic oracle from Equation (3.5) of averaged
accelerated stochastic gradient descent defined by Equation (3.3) which can be rewritten for
the least-squares function 𝑓 as a second-order iterative system with constant coefficients:

𝜃𝑛 =
[︀
I − 𝛾Σ − 𝛾𝜆I

]︀[︀
𝜃𝑛−1 + 𝛿(𝜃𝑛−1 − 𝜃𝑛−2)

]︁
+ 𝛾𝑦𝑛𝑥𝑛 + 𝛾𝜆𝜃0. (3.10)

When using averaging, we refer to this algorithm as “averaged-accelerated-SGD”.

Theorem 3.3. Assume (𝒜4). For any regularization parameter 𝜆 ∈ R+ and for any constant

step-size 𝛾(Σ + 𝜆I) 4 I, we have for any 𝛿 ∈
[︀1−

√
𝛾𝜆

1+
√

𝛾𝜆
, 1
]︀
, for the recursion in Equation (3.10):

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 2
(︁
𝜆+ 36

𝛾(𝑛+ 1)2

)︁
‖Σ1/2(Σ + 𝜆𝐼)−1/2(𝜃0 − 𝜃*)‖2 + 8𝜏2 tr

[︀
Σ2(Σ + 𝜆𝐼)−2]︀

𝑛+ 1 .

The numerical constants are partially artifacts of the proof (see Sections B.3 and B.5).
Thanks to a wise use of tight inequalities, the bound is independent of 𝛿 and valid for all
𝜆 ∈ R+. This results in the simple following corollary for 𝜆 = 0, which corresponds to the
particularly simple recursion (with averaging to obtain 𝜃𝑛):

𝜃𝑛 =
[︀
I − 𝛾Σ

]︀
(2𝜃𝑛−1 − 𝜃𝑛−2) + 𝛾𝑦𝑛𝑥𝑛. (3.11)

Corollary 3.4. Assume (𝒜4). For any constant step-size 𝛾Σ 4 I, we have for 𝛿 = 1,

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 36‖𝜃0 − 𝜃*‖2

𝛾(𝑛+ 1)2 + 8 𝜏2𝑑

𝑛+ 1 . (3.12)
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We can make the following observations:

∙ The proof technique relies on direct moment computations in each eigensubspace
obtained by O’Donoghue and Candès (2013) in the deterministic case. Indeed as Σ is
a symmetric matrix, the space can be decomposed on an orthonormal eigenbasis of Σ,
and the iterations are decoupled in such an eigenbasis. Although we only provide
an upper-bound, this is in fact an equality plus other exponentially small terms as
shown in the proof which relies on linear algebra, with difficulties arising from the
fact that this second-order system can be expressed as a linear stochastic dynamical
system with non-symmetric matrices. We only provide a result for additive noise.

∙ The first bound 1
𝛾𝑛2 ‖𝜃0 −𝜃*‖2 in Equation (3.12) corresponds to the usual accelerated

rate. It has been shown by Nesterov (2004) to be the optimal rate of convergence
for optimizing a quadratic function with a first-order method that can access only to
sequences of gradients when 𝑛 6 𝑑. We recover by averaging an algorithm dedicated
to strongly-convex function the traditional convergence rate for non-strongly convex
functions. Even if it seems surprising, the algorithm works also for 𝜆 = 0 and 𝛿 = 1.

∙ The second bound in Equation (3.12) also matches the optimal statistical performance
𝜏2𝑑
𝑛 described in the observations following Lemma 3.1. Accordingly this algorithm

achieves joint bias/variance optimality (when measured in terms of 𝜏2 and ‖𝜃0−𝜃*‖2).

∙ We have the same rate of convergence for the bias when compared to the regular
Nesterov acceleration without averaging studied by Flammarion and Bach (2015),
which corresponds to choosing 𝛿𝑛 = 1 − 2/𝑛 for all 𝑛. However if the problem is 𝜇-
strongly convex, this latter was shown to also converge at the linear rate 𝑂

(︀
(1−𝛾𝜇)𝑛

)︀
and thus is adaptive to hidden strong-convexity (since the algorithm does not need to
know 𝜇 to run). This explains that it ends up converging faster for quadratic function
since for large 𝑛 the convergence at rate 1/𝑛2 becomes slower than the one at rate
(1 − 𝛾𝜇)𝑛 even for very small 𝜇. Thanks to this adaptivity, we can also show using
the same tools and considering its weighted average 𝜃𝑛 = 2

𝑛(𝑛+1)
∑︀𝑛

𝑘=0 𝑘𝜃𝑘 that the

bias term of E𝑓(𝜃𝑛) − 𝑓(𝜃*) has a convergence rate of order
(︀
𝜆2 + 1

𝛾2(𝑛+1)4
)︀
‖Σ1/2(Σ +

𝜆𝐼)−1(𝜃0 −𝜃*)‖2 without any change in the variance term. This has to be compared to
the bias of averaged SGD

(︀
𝜆+ 1

𝛾(𝑛+1)2
)︀
‖Σ1/2(Σ +𝜆𝐼)−1(𝜃0 − 𝜃*)‖2 in Section 3.3 and

may lead to faster convergence for the bias in presence of hidden strong-convexity.

∙ Overall, the bias term is improved whereas the variance term is not degraded and
acceleration is thus robust to noise in the gradients. Thereby, while second-order
finite difference methods for optimizing quadratic functions in the singular case, such
as conjugate gradient (Polyak, 1987, Section 6.1) are notoriously highly sensitive to
noise, we are able to propose a version which is robust to stochastic noise.

∙ Note that when there is no assumption on the covariance of the noise we still have
the variance bounded by 𝛾𝑛

2 tr
[︀
Σ(Σ + 𝜆𝐼)−1𝑉

]︀
; setting 𝛾 = 1/𝑛3/2 and 𝜆 = 0 leads

to the bound ‖𝜃0−𝜃*‖2
√

𝑛
+ tr 𝑉√

𝑛
. We recover the usual rate for accelerated stochastic

gradient in the non-strongly-convex case (Xiao, 2010). When the values of the bias
and the variance are known, we can achieve the optimal trade-off of Lan (2012)
𝑅2‖𝜃0−𝜃*‖2

𝑛2 + ‖𝜃0−𝜃*‖
√

tr 𝑉√
𝑛

for 𝛾 = min
{︁

1/𝑅2, ‖𝜃0−𝜃*‖√
tr 𝑉 𝑛3/2

}︁
.
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3.5 Tighter Dimension-independent Convergence Rates

We have seen in Corollary 3.4 above that the averaged accelerated gradient algorithm
matches the lower bounds 𝜏2𝑑/𝑛 and 𝐿

𝑛2 ‖𝜃0 − 𝜃*‖2 for the prediction error. However the
algorithm performs better in almost all cases except the worst-case scenarios corresponding
to the lower bounds. For example the algorithm may still predict well when the dimension
𝑑 is much bigger than 𝑛. Similarly the norm of the optimal predictor ‖𝜃*‖2 may be huge
and the prediction still good, as gradients algorithms happen to be adaptive to the difficulty
of the problem: indeed, if the problem is simpler, the convergence rate of the gradient
algorithm will be improved. In this section, we provide such a theoretical guarantee.

The following bound stands for the averaged accelerated algorithm. It extends bounds
from Chapter 2 in the kernel least-mean-squares setting.

Theorem 3.5. Assume (𝒜4); for any regularization parameter 𝜆 ∈ R+ and for any con-

stant step-size such that 𝛾(Σ + 𝜆I) 4 I we have for 𝛿 ∈
[︀1−

√
𝛾𝜆

1+
√

𝛾𝜆
, 1
]︀
, for the recursion in

Equation (3.10):

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 min
𝑟∈[0,1], 𝑏∈[0,1]

[︂
2‖Σ𝑟/2(𝜃0 − 𝜃*)‖2 𝜆−𝑟

(︂ 36
𝛾(𝑛+ 1)2 + 𝜆

)︂
+ 8𝜏

2 tr(Σ𝑏)𝜆−𝑏

𝑛+ 1

]︂
.

The proof is straightforward by upper bounding the terms coming from regularization,
depending on Σ(Σ + 𝜆I)−1, by a power of 𝜆 times the considered quantities. More
precisely, the quantity tr(Σ(Σ + 𝜆I)−1) can be seen as an effective dimension of the
problem (Gu, 2002), and is upper bounded by 𝜆−𝑏 tr(Σ𝑏) for any 𝑏 ∈ [0; 1]. Similarly,
‖Σ1/2(Σ + 𝜆𝐼)−1/2𝜃*‖2 can be upper bounded by 𝜆−𝑟‖Σ𝑟/2(𝜃0 − 𝜃*)‖2. A detailed proof of
these results is given in Section B.4.

In order to benefit from the acceleration, we choose 𝜆 = (𝛾𝑛2)−1. With such a choice
we have the following corollary:

Corollary 3.6. Assume (𝒜4), for any constant step-size 𝛾(Σ+𝜆I) 4 I, we have for 𝜆 = 1
𝛾(𝑛+1)2

and 𝛿 ∈
[︀
1 − 2

𝑛+2 , 1
]︀
, for the recursion in Equation (3.10):

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 min
𝑟∈[0,1], 𝑏∈[0,1]

[︂
74 ‖Σ𝑟/2(𝜃0 − 𝜃*)‖2

𝛾1−𝑟(𝑛+ 1)2(1−𝑟) + 8 𝜏
2𝛾𝑏 tr(Σ𝑏)

(𝑛+ 1)1−2𝑏

]︂
.

We can make the following observations:

∙ The algorithm is independent of 𝑟 and 𝑏, thus all the bounds for different values of
(𝑟, 𝑏) are valid. This is a strong property of the algorithm, which is indeed adaptive
to the regularity and the effective dimension of the problem (once 𝛾 is chosen). In
situations in which either 𝑑 is larger than 𝑛 or 𝐿‖𝜃0 − 𝜃*‖2 is larger than 𝑛2, the
algorithm can still enjoy good convergence properties, by adapting to the best values
of 𝑏 and 𝑟.

∙ For 𝑏 = 0 we recover the variance term of Corollary 3.4, but for 𝑏 > 0 and fast
decays of eigenvalues of Σ, the bound may be much smaller; note that we lose in the
dependency in 𝑛, but typically, for large 𝑑, this can be advantageous.

∙ For 𝑟 = 0 we recover the bias term of Corollary 3.4 and for 𝑟 = 1 (no assumption at
all) the bias is bounded by ‖Σ1/2𝜃*‖2 6 4𝑅2, which is not going to zero. The smaller
𝑟 is, the stronger the decrease of the bias with respect to 𝑛 is (which is coherent with
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the fact that we have a stronger assumption). Moreover, 𝑟 is only considered between
0 and 1: indeed, if 𝑟 < 0, the constant‖(𝛾Σ)𝑟/2(𝜃0 − 𝜃*)‖ is bigger than ‖𝜃0 − 𝜃*‖, but
the dependence on 𝑛 cannot improve beyond (𝛾𝑛2)−1. This is a classical phenomenon
called “saturation” (Engl et al., 1996). It is linked with the uniform averaging scheme:
here, the bias term cannot forget the initial condition faster than 𝑛−2.

∙ A similar result happens to hold, for averaged gradient descent, with 𝜆 = (𝛾𝑛)−1:

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 min
𝑟∈[−1,1]
𝑏∈[0,1]

[︂
(18 + Res(𝑏, 𝑟, 𝑛, 𝛾)) ‖Σ𝑟/2(𝜃0 − 𝜃*)‖2

𝛾1−𝑟(𝑛+ 1)(1−𝑟) + 6𝜎
2𝛾𝑏 tr(Σ𝑏)

(𝑛+ 1)1−𝑏

]︂
,(3.13)

where Res(𝑏, 𝑟, 𝑛, 𝛾)) corresponds to a residual term, which is smaller than tr(Σ𝑏)𝑛𝑏𝛾1+𝑏

if 𝑟 > 0 and does not exist otherwise. The bias term’s dependence on 𝑛 is degraded,
thus the “saturation” limit is logically pushed down to 𝑟 = −1, which explains the
[−1; 1] interval for 𝑟. The choice 𝜆 = (𝛾𝑛)−1 arises from Th. 3.2, in order to balance
both components of the bias term 𝜆 + (𝛾𝑛)−1. This result is proved in Section B.4.
This recovers the result of Chapter 2.

∙ Considering a non-uniform averaging, as proposed after Theorem 3.2 the min06𝑟61
in Th. 3.5 and Corollary 3.6 can be extended to min−16𝑟61. Indeed, considering a
non-uniform averaging allows to have a faster decreasing bias, pushing the saturation
limit observed below.

In finite dimension these bounds for the bias and the variance cannot be said to be
optimal independently in any sense we are aware of. Indeed, in finite dimension, the
asymptotic rate of convergence for the bias (respectively the variance), when 𝑛 goes to ∞
is governed by 𝐿‖𝜃0 − 𝜃*‖2/𝑛2 (resp. 𝜏2𝑑/𝑛). However, we show in the next section that in
the setting of non parametric learning in kernel spaces, these bounds lead to the optimal
statistical rate of convergence among all estimators (independently of their computational
cost). Moving to the infinite-dimensional setting allows to characterize the optimality of the
bounds by showing that they achieve the statistical rate when optimizing the bias/variance
tradeoff in Corollary 3.6.

3.6 Rates of Convergence for Kernel Regression

Computational convergence rates give the speed at which an objective function can decrease
depending on the amount of computation which is allowed. Typically, they show how the
error decreases with respect to the number of iterations, as in Theorem 3.2. Statistical rates,
however, show how close one can get to some objective given some amount of information
which is provided. Statistical rates do not depend on some chosen algorithm: these bounds
do not involve computation, on the contrary, they state the best performance that no
algorithm can beat, given the information, and without computational limits. In particular,
any lower bound on the statistical rate implies a lower bound on the computational rates,
if each iteration corresponds to access to some new information, here pairs of observations.
Interestingly, many algorithms for the past few years have proved to match, with minimal
computations (in general one pass through the data), the statistical rate, emphasizing the
importance of carrying together optimization and approximation in large scale learning,
as described by Bottou and Bousquet (2008). In a similar flavor, it also appears that
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regularization can be accomplished through early stopping (Yao et al., 2007; Rudi et al.,
2015), highlighting this interplay between computation and statistics.

To characterize the optimality of the bounds, we will show that averaged-accelerated-
SGD matches the statistical lower bound in the context of non-parametric estimation.
Even if it may be computationally hard or impossible to implement averaged-accelerated-
SGD with additive noise in the kernel-based framework below (see remarks following
Theorem 3.8), it leads to the optimal statistical rate for a broader class of problems than
averaged-SGD, showing that for a wider set of trade-offs, acceleration is optimal.

A natural extension of the finite-dimensional analysis is the non-parametric setting,
especially with reproducing kernel Hilbert spaces. In the setting of non-parametric regres-
sion, we consider a probability space 𝒳 × R with probability distribution 𝜌, and assume
that we are given an i.i.d. sample (𝑥𝑖, 𝑦𝑖)𝑖=1,...,𝑛 ∼ 𝜌⊗𝑛, and denote by 𝜌𝑋 the marginal
distribution of 𝑥𝑛 in 𝒳 ; the aim of non-parametric least-squares regression is to find a
function 𝑔 : 𝒳 → R, which minimizes the expected risk:

𝑓(𝑔) = 1
2E𝜌[(𝑔(𝑥𝑛) − 𝑦𝑛)2]. (3.14)

The optimal function 𝑔 is the conditional expectation 𝑔(𝑥) = E𝜌(𝑦𝑛|𝑥). In the kernel
regression setting, we consider as hypothesis space a reproducing kernel Hilbert space
(Aronszajn, 1950; Steinwart and Christmann, 2008; Schölkopf and Smola, 2002) associated
with a kernel function 𝐾. The space ℋ is a subspace of the space of squared integrable
functions 𝐿2

𝜌𝑋
. We look for a function 𝑔ℋ which satisfies: 𝑓(𝑔ℋ) = inf𝑔∈ℋ 𝑓(𝑔), and 𝑔ℋ

belongs to the closure ℋ̄ of ℋ (meaning that there exists a sequence of function 𝑔𝑛 ∈ ℋ
such that ‖𝑔𝑛 −𝑔𝐻‖𝐿2

𝜌𝑋
→ 0). When ℋ is dense, the minimum is attained for the regression

function defined above. This function however is not in ℋ in general. Moreover there
exists an operator Σ : ℋ → ℋ, which extends the finite-dimensional population covariance
matrix, that will allow the characterization of the smoothness of 𝑔ℋ. This operator is known
to be trace class when E𝜌𝑋 [𝐾(𝑥𝑛, 𝑥𝑛)] < ∞.

Data points 𝑥𝑖 are mapped into the RKHS, via the feature map: 𝑥 ↦→ 𝐾𝑥, where
𝐾𝑥 : ℋ → R is a function in the RKHS, such that 𝐾𝑥 : 𝑦 ↦→ 𝐾(𝑥, 𝑦). The reproducing
property3 allows to express the minimization problem (3.14) as a least-squares linear
regression problem: for any 𝑔 ∈ ℋ, 𝑓(𝑔) = 1

2E𝜌[(⟨𝑔,𝐾𝑥𝑛⟩ℋ − 𝑦𝑛)2], and can thus be seen as
an extension to the infinite-dimensional setting of linear least-squares regression.

However, in such a setting, both quantities ‖Σ𝑟/2𝜃*‖ℋ (where ‖ · ‖ℋ stands for the norm
associated with the inner product in the Hilbert space ℋ) and tr(Σ𝑏) may exist or not. It
thus arises as a natural assumption to consider the smaller 𝑟 ∈ [−1; 1] and the smaller
𝑏 ∈ [0; 1] such that

∙ ‖Σ𝑟/2𝜃*‖ℋ < ∞ (meaning that Σ𝑟/2𝜃* ∈ ℋ), (𝒜5)

∙ tr(Σ𝑏) < ∞. (𝒜6)

The quantities considered in Sections 3.2 and 3.5 are the natural finite-dimensional twins
of these assumptions. However in infinite dimension a quantity may exist or not and it is
thus an assumption to consider its existence, whereas it can only be characterized by its
value, big or small, in finite dimension. The first assumption is generally called the “source
condition”, the second one the “capacity condition”.

3It states that for any function 𝑔 ∈ ℋ, ⟨𝑔, 𝐾𝑥⟩ℋ = 𝑔(𝑥), where ⟨·, ·⟩ℋ denotes the scalar product in the
Hilbert space.



3.6. Rates of Convergence for Kernel Regression 128

In the last decade, De Vito et al. (2005); Smale and Cucker (2002) studied non-
parametric least-squares regression in the RKHS framework. These works were extended to
derive rates of convergence depending on assumption (𝒜5): Ying and Pontil (2008) studied
un-regularized stochastic gradient descent and derived asymptotic rate of convergence
𝑂(𝑛− 1−𝑟

2−𝑟 ), for 𝑟 6 1 and proved that one could derive similar rates of convergence for
0 6 𝑟 6 1 from Zhang (2004), who studies stochastic gradient descent with averaging;
whereas Tarrès and Yao (2014) give similar performance for −1 6 𝑟 6 0. Interestingly, Ying
and Pontil (2008) do not have saturation, meaning that the rate still improves for 𝑟 smaller
than −1. As it will appear, any algorithm based on a uniform averaging scheme faces a
saturation issue: one cannot forget initial conditions faster than 𝑛−2, which makes the
algorithm sub-optimal in situations in which the optimal predictor is very smooth (𝒜5 holds
with 𝑟 6 −1). However, these papers only prove rates in the capacity-independent setting,
meaning without assumption on the spectrum of the covariance matrix. Although the
rate 𝑂(𝑛− 1−𝑟

2−𝑟 ) is optimal in this setting, it comes from a worst-case analysis. Considering
the capacity-dependent setting is more challenging, but allows to derive tighter and more
realistic rates (a capacity condition always stands under the trace class assumption that
is made). Moreover, the capacity-independent setting also does not allow to recover
finite-dimensional rates. Up to our knowledge, there is no one pass stochastic gradient
algorithm which does not have saturation while getting the minimax rate under both the
capacity condition and source condition. In a recent work, Lin and Rosasco (2016) achieves
optimality without saturation with multiple passes. We show in the next paragraphs
that we can derive a tighter and optimal rate for both averaged-SGD (recovering results
from Chapter 2) and averaged-accelerated-SGD, for a larger class of kernels for the latter.
Note that the averaging scheme for the RKHS setting was originally considered by Yao
(2006).

We will first describe results for averaged-SGD, then increase the validity region of these
rates (which depends on 𝑟, 𝑏) using averaged accelerated SGD. We show that the derived
rates match statistical rates for our setting and thus our algorithms reach the optimal
prediction performance for certain 𝑏 and 𝑟.

3.6.1 Averaged SGD

We have the following result, proved in Section B.4 and following from Theorem 3.2: for
some fixed 𝑏, 𝑟, we choose the best step-size 𝛾, that optimizes the bias-variance trade-off,
while still satisfying the constraint 𝛾 6 1/(2𝑅2). We get a result for the stochastic oracle
(multiplicative/additive noise).

Theorem 3.7. With 𝜆 = 1
𝛾𝑛 , we have, if 𝑟 6 𝑏, under Assumptions (𝒜1,2,5,6) and the stochastic

oracle Equation (3.6), for any constant step-size 𝛾 such that 2𝛾(𝑅2+2𝜆) 6 1, with 𝛾 ∝ 𝑛
−𝑏+𝑟

𝑏+1−𝑟 ,
for the recursion in Equation (3.9):

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
(︂

(27 + 𝑜(1))
⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦2 + 6𝜎2 tr(Σ𝑏)
)︂
𝑛− 1−𝑟

𝑏+1−𝑟 .

We can make the following remarks:

∙ The term 𝑜(1) stands for a quantity which is decreasing to 0 when 𝑛 → ∞. More
specifically, this constant is smaller than 3 tr(Σ𝑏) divided by 𝑛𝜒, where 𝜒 is bigger
than 0 (see Section B.4). The result comes from Equation (3.13) (which follows from
Theorem 3.5), with the choice of the optimal step-size.
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∙ We recover the same errors bounds as in Chapter 2, but with a simpler analysis
resulting from the consideration of the regularized version of the problem associated
with a choice of 𝜆. However, we only recover rates in the finite horizon setting.

∙ This result shows that we get the optimal rate of convergence under Assump-
tions (𝒜5,6), for 𝑟 6 𝑏. This point will be discussed in more details after Theorem 3.8.

We now turn to the averaged accelerated SGD algorithm. We prove that it enjoys the
optimal rate of convergence for a larger class of problems, but only for the additive noise
which corresponds to knowing the distribution of 𝑥𝑛.

3.6.2 Averaged-accelerated SGD

Similarly, choosing the best step-size 𝛾, it comes from Theorem 3.5, that in the RKHS
setting, under additional Assumptions (𝒜5,6), we have for the the averaged accelerated
algorithm the following result:

Theorem 3.8. With 𝜆 = 1
𝛾𝑛2 , we have, if 𝑟 6 𝑏 + 1/2, under Assumptions (𝒜4,5,6), for any

constant step-size 𝛾 6 1
𝐿+𝜆 , with 𝛾 ∝ 𝑛

−2𝑏+2𝑟−1
𝑏+1−𝑟 , for the recursion in Equation (3.10):

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6
(︂

74
⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦2 + 8𝜏2 tr(Σ𝑏)
)︂
𝑛− 1−𝑟

𝑏+1−𝑟 .

We can make the following remarks:

∙ The rate 1−𝑟
𝑏+1−𝑟 is always between 0 and 1, and improves when our assumptions gets

stronger (𝑟 getting smaller, 𝑏 getting smaller). Ultimately, with 𝑏 → 0, and 𝑟 → −1,
we recover the finite-dimensional 𝑛−1 rate.

∙ We can achieve this optimal rate when 𝑟 6 𝑏+ 1/2. Beyond, if 𝑟 > 𝑏+ 1/2, the rate
is only 𝑛−2(1−𝑟). Indeed, the bias term cannot decrease faster than 𝑛−2(1−𝑟), as 𝛾 is
compelled to be upper bounded.

∙ The same phenomenon appears in the un-accelerated averaged situation, as shown by
Theorem 3.7, but the critical value was then 𝑟 6 𝑏. There is thus a region (precisely
𝑏 < 𝑟 6 𝑏 + 1/2) in which only the accelerated algorithm gets the optimal rate
of convergence. Note that we increase the optimality region towards optimization
problems which are more ill-conditioned, naturally benefiting from acceleration. This
is represented in Figure 3.1.

∙ This algorithm cannot be computed in practice (at least with computational limits).
Indeed, without any further assumption on the kernel 𝐾, it is not possible to compute
images of vectors by the covariance operator Σ in the RKHS. However, as explained
in the following remark, this is enough to show some form of optimality of our
algorithm.

Note that the easy computability is a great advantage of the multiplicative/additive
noise variant of the algorithms, for which the current point 𝜃𝑛 can always be expressed
as a finite sum of features 𝜃𝑛 =

∑︀𝑛
𝑖=1 𝛼𝑖𝐾𝑥𝑖 , with 𝛼𝑖 ∈ R, leading to a tractable al-

gorithm. An accelerated variant of SGD naturally arises from our algorithm, when
considering this stochastic oracle from Equation (3.6). Such a variant can be imple-
mented but does not behave similarly for large step sizes, say, 𝛾 ≃ 1/(2𝑅2). It is an
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Figure 3.1: Regions of theoretical optimal convergence with acceleration. B: in this figure
only, for the sake of comparison, we use the notations from Chapter 2.

open problem to prove convergence results for averaged accelerated gradient under
this multiplicative/additive noise.

∙ These rates happen to be optimal from a statistical perspective, meaning that no
algorithm which is given access to the sample points and the distribution of 𝑥𝑛 can per-
form better for all functions that satisfy assumption (𝒜6), for a kernel satisfying (𝒜5).
Indeed it is equivalent to assuming that the function lives in some ellipsoid in the
space of squared integrable functions. Note that the statistical minimization problem
(and thus the lower bound) does not depend on the kernel, and is valid without
computational limits. The case of learning with kernels is studied by Caponnetto and
De Vito (2007) which shows these minimax convergence rates under (𝒜5,6), under
assumption that −1 6 𝑟 6 0 (but state that it can be easily extended to 0 6 𝑟 6 1).
They do not assume knowledge of the distribution of the inputs; however, Massart
(2007) and Tsybakov (2008) discuss optimal rates on ellipsoids, and Györfi et al.
(2002) proves similar results for certain class of functions under a known distribution
for the input data, showing that the knowledge of the distribution does not make any
difference. This minimax statistical rate stands without computational limits and is
thus valid for both algorithms (additive noise that corresponds to knowing Σ, and
multiplicative/additive noise). The optimal tradeoff is derived for an extended region
of 𝑏, 𝑟 (namely 𝑟 6 𝑏+ 1/2 instead of 𝑟 6 𝑏) in the accelerated case which shows the
improvement upon non-accelerated averaged SGD.

∙ The choice of the optimal 𝛾 is difficult in practice, as the parameters 𝑏, 𝑟 are unknown,
and this remains an open problem in general (see, e.g., Birgé, 2001, for some methods
for non-parametric regression), even if in the capacity-independent setting, Orabona
(2014) has proposed an algorithm that adapts to the unknown parameter 𝑟.

∙ Note that we do not give rates in terms of norm in the RHKS (i.e., an upper bound
on ‖𝜃𝑛 − 𝜃*‖ℋ), because we mainly aim at extending optimality of prediction error
rate to ill-conditioned cases (i.e., situations for which 𝑟 > 𝑏 > 0). In such a situation,
Hilbert spaces norm bounds would not be relevant as the optimal estimator does not
even live in the RKHS.
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3.7 Conclusion

In this chapter, we showed that stochastic averaged accelerated gradient descent was robust
to structured noise in the gradients present in least-squares regression. Beyond being the
first algorithm which is jointly optimal in terms of both bias and finite-dimensional variance,
it is also adapted to finer assumptions such as fast decays of the covariance matrices or
optimal predictors with large norms.

In Chapters 2 and 3, we have focused on least squares regression. While it is a very
classical setting in practice, many methods, for example in Classification, rely on non
quadratic risk functions. In Chapter 4, we consider a more general strongly convex and
smooth function and analyze SGD with constant step size.

The proofs of the results given in this chapter are given in the next chapter (Ch. C): it
might be skipped at first reading.



B
Appendix to Faster Convergence Rates for

Least-Squares Regression

B.1 Proofs of Section 3.3

B.1.1 Proof of Lemma 3.1

We proof here Lemma 3.1 which is the extension of Lemma 2 of Bach and Moulines
(2013) for the regularized case. The proof technique relies on the fact that recursions in
Equation (3.7) are linear since the cost function is quadratic which allows us to obtain
𝜃𝑛 − 𝜃* in closed form.

For any regularization parameter 𝜆 ∈ R+ and any constant step-size 𝛾(Σ + 𝜆I) 4 I we
may rewrite the regularized stochastic gradient recursion in Equation (3.7) as:

𝜃𝑛 − 𝜃* =
[︀
I − 𝛾Σ − 𝛾𝜆I

]︀
(𝜃𝑛−1 − 𝜃*) + 𝛾𝜉𝑛 + 𝜆𝛾(𝜃0 − 𝜃*).

We thus get for 𝑛 > 1 the expansion

𝜃𝑛 − 𝜃* = (I − 𝛾Σ − 𝛾𝜆I)𝑛(𝜃0 − 𝜃*) + 𝛾
𝑛∑︁

𝑘=1
(I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘𝜉𝑘

+𝛾𝜆
𝑛∑︁

𝑘=1
(I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘(𝜃0 − 𝜃*)

= (I − 𝛾Σ − 𝛾𝜆I)𝑛(𝜃0 − 𝜃*) + 𝛾
𝑛∑︁

𝑘=1
(I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘𝜉𝑘

+𝜆
[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

= (I − 𝛾Σ − 𝛾𝜆I)𝑛[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*) + 𝛾
𝑛∑︁

𝑘=1
(I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘𝜉𝑘

+𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*).

We then have using the definition of the average

𝑛(𝜃𝑛−1 − 𝜃*) =
𝑛−1∑︁
𝑗=0

(𝜃𝑗 − 𝜃*)

=
𝑛−1∑︁
𝑗=0

(I − 𝛾Σ − 𝛾𝜆I)𝑗 [I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)
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+ 𝛾
𝑛−1∑︁
𝑗=0

𝑗∑︁
𝑘=1

(I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘𝜉𝑘 + 𝑛𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*).

For which we will compute the two sums separately

𝑛−1∑︁
𝑗=0

(I − 𝛾Σ − 𝛾𝜆I)𝑗 [I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)

= 1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀(Σ + 𝜆I)−1[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*),

and

𝛾
𝑛−1∑︁
𝑗=0

𝑗∑︁
𝑘=1

(I − 𝛾Σ − 𝛾𝜆I)𝑗−𝑘𝜉𝑘 = 𝛾
𝑛−1∑︁
𝑘=1

(︁ 𝑛−1∑︁
𝑗=𝑘

(I − 𝛾Σ − 𝛾𝜆I)𝑗−𝑘
)︁
𝜉𝑘

= 𝛾
𝑛−1∑︁
𝑘=1

(︁ 𝑛−1−𝑘∑︁
𝑗=0

(I − 𝛾Σ − 𝛾𝜆I)𝑗
)︁
𝜉𝑘

=
𝑛−1∑︁
𝑘=1

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘]︀(Σ + 𝜆I)−1𝜉𝑘.

Gathering the three terms together, we thus have

𝑛(𝜃𝑛−1 − 𝜃*) = 1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀(Σ + 𝜆I)−1[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)

+
𝑛−1∑︁
𝑘=1

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘]︀(Σ + 𝜆I)−1𝜉𝑘 + 𝑛𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

=
[︁1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀[I − 𝜆(Σ + 𝜆I)−1] + 𝑛𝜆I

]︁
(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

+
𝑛−1∑︁
𝑘=1

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘]︀(Σ + 𝜆I)−1𝜉𝑘.

Using standard martingale square moment inequalities which amount to consider 𝜉𝑖,
𝑖 = 1, . . . , 𝑛 independent, the variance of the sum is the sum of variances and we have for
𝑉 = E𝜉𝑛 ⊗ 𝜉𝑛

𝑛2E‖Σ1/2(𝜃𝑛−1 − 𝜃*)‖2 =
∑︀𝑛−1

𝑘=1 tr
[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘

]︀2Σ(Σ + 𝜆I)−2𝑉

+
⃦⃦⃦[︁1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀[I − 𝜆(Σ + 𝜆I)−1] + 𝑛𝜆I

]︁
Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

⃦⃦⃦2
. (B.1)

Since all the matrices in this equality are symmetric positive-definite we are allowed to
bound [︁1

𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀[I − 𝜆(Σ + 𝜆I)−1] + 𝑛𝜆I

]︁
4

(︁1
𝛾

+ 𝑛𝜆
)︁
I (B.2)[︀

I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘]︀2 4 I.

This concludes proof of the Lemma 3.1

E‖Σ1/2(𝜃𝑛−1 − 𝜃*)‖2 6
(︁ 1
𝑛𝛾

+ 𝜆
)︁2

‖Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2

+ 1
𝑛

tr Σ(Σ + 𝜆I)−2𝑉. (B.3)
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B.1.2 Proof when only ‖𝜃0 − 𝜃*‖ is finite

Unfortunately ‖Σ−1(𝜃0 − 𝜃*)‖ may not be finite. However we can use that for all 𝑢 ∈ [0, 1]
we have 1−(1−𝑢)𝑛

𝑛𝑢 6 11 and have therefore the bound[︁1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀[I − 𝜆(Σ + 𝜆I)−1] + 𝑛𝜆I

]︁
[Σ + 𝜆I]−1

4
[︁1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀+ 𝑛𝜆I

]︁
[Σ + 𝜆I]−1

4
[︁1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀[Σ + 𝜆I]−1 + 𝑛𝜆[Σ + 𝜆I]−1

]︁
4 I + 𝑛I.

Combining with Equation (B.2) we have⃦⃦⃦[︁1
𝛾

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛]︀[I − 𝜆(Σ + 𝜆I)−1] + 𝑛𝜆I

]︁
Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

⃦⃦⃦2

6 (𝑛+ 1)
(︁1
𝛾

+ 𝑛𝜆
)︁
‖Σ1/2(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)‖2,

which implies that

E‖Σ1/2(𝜃𝑛−1 − 𝜃*)‖2 6 2
(︁ 1
𝑛𝛾

+ 𝜆
)︁
‖Σ1/2(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)‖2

+ 1
𝑛

tr Σ(Σ + 𝜆I)−2𝑉, (B.4)

which is interesting when only ‖𝜃0 − 𝜃*‖ is finite.

B.1.3 Proof when the noise is not structured

The bound in Equation (B.3) becomes less interesting when the noise is not structured.
However using the same technique we have that

[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘

]︀2(Σ + 𝜆I)−1 4
(𝑛− 𝑘)𝛾I and we get the following upper-bound on the variance

𝑛∑︁
𝑘=1

tr
[︀
I − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑘]︀2Σ(Σ + 𝜆I)−2𝑉 6 𝛾

𝑛∑︁
𝑘=1

(𝑛− 𝑘) tr Σ(Σ + 𝜆I)−1𝑉

6 𝛾
𝑛(𝑛+ 1)

2 tr Σ(Σ + 𝜆I)−1𝑉.

Therefore we get

E‖Σ1/2(𝜃𝑛−1 − 𝜃*)‖2 6
(︁ 1
𝑛𝛾

+ 𝜆
)︁2

‖Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2

+ 𝛾 tr Σ(Σ + 𝜆I)−1𝑉, (B.5)

which is meaningful when the noise is not structured.

B.2 Proof of Theorem 3.2

In this section, we will prove Theorem 3.2. The proof relies on a decomposition of the error
as the sum of three main terms which will be studied separately. We state decomposition in
Section B.2.1 then prove upper bounds for the different terms in Sections B.2.2 and B.2.3.

1since 1−(1−𝑢)𝑛

𝑢
=
∑︀𝑛

𝑘=0(1 − 𝑢)𝑘 6 𝑛
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B.2.1 Expansion of the recursion

We may rewrite the regularized stochastic gradient recursion as:

𝜃𝑛 =
[︀
I − 𝛾𝑥𝑛 ⊗ 𝑥𝑛 − 𝛾𝜆I

]︀
𝜃𝑛−1 + 𝛾𝜀𝑛𝑥𝑛 + 𝛾⟨𝑥𝑛, 𝜃*⟩𝑥𝑛 + 𝜆𝛾𝜃0

𝜃𝑛 − 𝜃* =
[︀
I − 𝛾𝑥𝑛 ⊗ 𝑥𝑛 − 𝛾𝜆I

]︀
(𝜃𝑛−1 − 𝜃*) + 𝛾𝜀𝑛𝑥𝑛 + 𝜆𝛾(𝜃0 − 𝜃*).

For 𝑖 > 𝑘, let
𝑀(𝑖, 𝑘) =

[︀
I − 𝛾𝑥𝑖 ⊗ 𝑥𝑖 − 𝛾𝜆I

]︀
· · ·
[︀
I − 𝛾𝑥𝑘 ⊗ 𝑥𝑘 − 𝛾𝜆I

]︀
be an operator from ℋ to ℋ. We have the expansion

𝜃𝑛 − 𝜃* = 𝑀(𝑛, 1)(𝜃0 − 𝜃*) + 𝛾
𝑛∑︁

𝑘=1
𝑀(𝑛, 𝑘 + 1)𝜀𝑘𝑥𝑘 + 𝛾

𝑛∑︁
𝑘=1

𝑀(𝑛, 𝑘 + 1)𝜆(𝜃0 − 𝜃*).

Our goal is to study these three terms separately and bound ‖Σ1/2(𝜃𝑛 − 𝜃*)‖ for each of
them.

B.2.2 Regularization-based bias term

This is the term: 𝜃𝑛−𝜃* = 𝛾
∑︀𝑛

𝑘=1𝑀(𝑛, 𝑘+1)𝜆(𝜃0−𝜃*), which corresponds to the recursion

𝜃𝑛 − 𝜃* =
(︀
I − 𝛾𝑥𝑛 ⊗ 𝑥𝑛 − 𝛾𝜆I

)︀
(𝜃𝑛−1 − 𝜃*) + 𝜆𝛾(𝜃0 − 𝜃*), (B.6)

initialized with 𝜃0 = 𝜃*, and no noise.
Following the proof technique of Bach and Moulines (2013), we are going to consider a

related recursion by replacing in Equation (B.6) the operator 𝑥𝑛 ⊗ 𝑥𝑛 by its expectation Σ.
Thus, we consider 𝜂𝑛 defined as

𝜂𝑛 − 𝜃* = 𝛾
𝑛∑︁

𝑘=1
(I − 𝛾Σ − 𝜆𝛾I)𝑛−𝑘𝜆(𝜃0 − 𝜃*),

which satisfies the recursion (with initialization 𝜂0 = 𝜃*) and

𝜂𝑛 − 𝜃* =
[︀
I − 𝛾Σ − 𝜆𝛾I

]︀
(𝜂𝑛−1 − 𝜃*) + 𝜆𝛾(𝜃0 − 𝜃*).

In order to bound ‖Σ1/2(𝜃𝑛 − 𝜃*)‖, we will independently bound ‖Σ1/2(𝜂𝑛 − 𝜃*)‖ and
‖Σ1/2(𝜃𝑛 − 𝜂𝑛)‖ using Minkowski’s inequality.

Bounding ‖Σ1/2(𝜃𝑛 − 𝜂𝑛)‖. We have 𝜃0 − 𝜂0 = 0, and

𝜃𝑛 − 𝜂𝑛 =
[︀
I − 𝛾𝑥𝑛 ⊗ 𝑥𝑛 − 𝜆𝛾I

]︀
(𝜃𝑛−1 − 𝜂𝑛−1) + 𝛾

[︀
Σ − 𝑥𝑛 ⊗ 𝑥𝑛

]︀
(𝜂𝑛−1 − 𝜃*).

We can now bound the recursion for 𝜃𝑛 − 𝜂𝑛 as follows, using standard online learning
proofs (Nemirovski et al., 2009):

‖𝜃𝑛 − 𝜂𝑛‖2 6 ‖𝜃𝑛−1 − 𝜂𝑛−1‖2 − 2𝛾
⟨︀
𝜃𝑛−1 − 𝜂𝑛−1, (𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
+2𝛾

⟨︀
𝜃𝑛−1 − 𝜂𝑛−1,

[︀
Σ − 𝑥𝑛 ⊗ 𝑥𝑛

]︀
(𝜂𝑛−1 − 𝜃*)

⟩︀
+𝛾2⃦⃦[︀𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I

]︀
(𝜃𝑛−1 − 𝜂𝑛−1) −

[︀
Σ − 𝑥𝑛 ⊗ 𝑥𝑛

]︀
(𝜂𝑛−1 − 𝜃*)

⃦⃦2
.

By taking conditional expectations given ℱ𝑛−1, we get, using first the fact that E(Σ −
𝑥𝑛 ⊗ 𝑥𝑛|ℱ𝑛−1) = 0 and the inequality (𝑎 + 𝑏)2 6 2(𝑎2 + 𝑏2), then developing and using
E[(𝑥𝑛 ⊗ 𝑥𝑛)2] 6 𝑅2Σ, which is assumption 𝒜1.

E
(︀
‖𝜃𝑛 − 𝜂𝑛‖2|ℱ𝑛−1

)︀
6 ‖𝜃𝑛−1 − 𝜂𝑛−1‖2 − 2𝛾

⟨︀
𝜃𝑛−1 − 𝜂𝑛−1, (Σ + 𝜆I)(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
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+ 2𝛾2E
(︀⃦⃦[︀

𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I
]︀
(𝜃𝑛−1 − 𝜂𝑛−1)

⃦⃦2|ℱ𝑛−1
)︀

+ 2𝛾2E
(︀⃦⃦[︀

Σ − 𝑥𝑛 ⊗ 𝑥𝑛
]︀
(𝜂𝑛−1 − 𝜃*)

⃦⃦2|ℱ𝑛−1
)︀

6 ‖𝜃𝑛−1 − 𝜂𝑛−1‖2 − 2𝛾
⟨︀
𝜃𝑛−1 − 𝜂𝑛−1, (Σ + 𝜆I)(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
+ 2𝛾2⟨︀𝜃𝑛−1 − 𝜂𝑛−1, (𝑅2Σ + 𝜆2I + 2𝜆Σ)(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
+ 2𝛾2𝑅2⟨𝜂𝑛−1 − 𝜃*,Σ⟩
6 ‖𝜃𝑛−1 − 𝜂𝑛−1‖2 − 2𝛾

[︀
1 − 𝛾(𝑅2 + 2𝜆)

]︀⟨︀
𝜃𝑛−1 − 𝜂𝑛−1,Σ(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
+ 2𝛾2𝑅2⟨𝜂𝑛−1 − 𝜃*,Σ(𝜂𝑛−1 − 𝜃*)⟩.

This leads by taking full expectations and moving terms to

E
⟨︀
𝜃𝑛−1 − 𝜂𝑛−1,Σ(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
6

1
2𝛾
[︀
1 − 𝛾(𝑅2 + 2𝜆)

]︀[︀E‖𝜃𝑛−1 − 𝜂𝑛−1‖2 − E‖𝜃𝑛 − 𝜂𝑛‖2]︀
+ 𝛾𝑅2

1 − 𝛾(𝑅2 + 2𝜆)⟨𝜂𝑛−1 − 𝜃*,Σ(𝜂𝑛−1 − 𝜃*)⟩.

Thus, if 𝛾(𝑅2 + 2𝜆) 6 1
2

E
⟨︀
𝜃𝑛−1 − 𝜂𝑛−1,Σ(𝜃𝑛−1 − 𝜂𝑛−1)

⟩︀
6

1
𝛾

[︀
E‖𝜃𝑛−1 − 𝜂𝑛−1‖2 − E‖𝜃𝑛 − 𝜂𝑛‖2]︀

+2𝛾𝑅2E⟨𝜂𝑛−1 − 𝜃*,Σ(𝜂𝑛−1 − 𝜃*)⟩.

This leads to, summing and using initial conditions 𝜃0 − 𝜂0 = 0, then using convexity to
upper bound

⟨︀
𝜃𝑛 − 𝜂𝑛,Σ(𝜃𝑛 − 𝜂𝑛)

⟩︀
6 1

𝑛+1
∑︀𝑛

𝑘=0
⟨︀
𝜃𝑘 − 𝜂𝑘,Σ(𝜃𝑘 − 𝜂𝑘)

⟩︀
,

E
⟨︀
𝜃𝑛 − 𝜂𝑛,Σ(𝜃𝑛 − 𝜂𝑛)

⟩︀
6

2𝛾𝑅2

𝑛+ 1

𝑛∑︁
𝑘=0

⟨𝜂𝑘 − 𝜃*,Σ(𝜂𝑘 − 𝜃*)⟩.

Bounding ‖Σ1/2(𝜂𝑛 − 𝜃*)‖. Moreover we have:

𝜂𝑛 − 𝜃* =!𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*) − (I − 𝛾Σ − 𝜆𝛾I)𝑛[︀𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*)
]︀

𝜂𝑛 − 𝜃* =𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*) − 1
𝑛+ 1

𝑛∑︁
𝑘=0

(I − 𝛾Σ − 𝜆𝛾I)𝑘[︀𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*)
]︀

=𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

− 1
𝑛+ 1𝛾

−1(Σ + 𝜆I)−1[︀I − (I − 𝛾Σ − 𝜆𝛾I)𝑛+1]︀[︀𝜆(Σ + 𝜆I)−1(𝜃0 − 𝜃*)
]︀
.

This leads using Minkowski inequality to(︀
E‖Σ1/2(𝜂𝑛 − 𝜃*)‖2)︀1/2

6 ‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖(︀
E‖Σ1/2(𝜂𝑛 − 𝜃*)‖2)︀1/2

6 ‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖.

Thus this part is such that(︀
E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2)︀1/2

6 ‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖ +
√︁

2𝛾𝑅2‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖

6 ‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖
(︀
1 +

√︁
2𝛾𝑅2)︀,

that gives the first bound on the regularization-based bias

E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2 6 ‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2(︀1 +
√︁

2𝛾𝑅2)︀2. (B.7)
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B.2.3 Expansion without the regularization term

We will follow here the outline of the proof of Györfi and Walk (1996) which considers a
full expansion of the function value ‖Σ1/2(𝜃𝑛 − 𝜃*)‖2. This corresponds to

𝜃𝑛 − 𝜃* = 𝑀(𝑛, 1)(𝜃0 − 𝜃*) + 𝛾
𝑛∑︁

𝑘=1
𝑀(𝑛, 𝑘 + 1)𝜀𝑘𝑥𝑘.

We have

E
𝑛∑︁

𝑖=0

𝑛∑︁
𝑗=0

⟨𝜃𝑖 − 𝜃*,Σ(𝜃𝑗 − 𝜃*)⟩ = E
𝑛∑︁

𝑖=0
⟨𝜃𝑖 − 𝜃*,Σ(𝜃𝑖 − 𝜃*)⟩ + 2E

𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜃𝑖 − 𝜃*,Σ(𝜃𝑗 − 𝜃*)⟩.

Moreover,

E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜃𝑖 − 𝜃*,Σ(𝜃𝑗 − 𝜃*)⟩

= E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨
𝜃𝑖 − 𝜃*,Σ

[︂
𝑀(𝑗, 𝑖+ 1)(𝜃𝑖 − 𝜃*) +

𝑗∑︁
𝑘=𝑖+1

𝑀(𝑗, 𝑘 + 1)𝛾𝜀𝑘𝑥𝑘

]︂⟩

= E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜃𝑖 − 𝜃*,Σ𝑀(𝑗, 𝑖+ 1)(𝜃𝑖 − 𝜃*)⟩ because 𝜀𝑘𝑥𝑘 and 𝜃𝑖 are independent,

= E
𝑛−1∑︁
𝑖=0

𝑛∑︁
𝑗=𝑖+1

⟨𝜃𝑖 − 𝜃*,Σ(I − 𝛾Σ − 𝛾𝜆I)𝑗−𝑖(𝜃𝑖 − 𝜃*)⟩ as 𝑀(𝑗, 𝑖+ 1) and 𝜃𝑖 are independent,

= E
𝑛−1∑︁
𝑖=0

⟨
𝜃𝑖 − 𝜃*, 𝛾

−1Σ(Σ + 𝜆I)−1[︀(I − 𝛾Σ − 𝛾𝜆I) − (I − 𝛾Σ − 𝛾𝜆I)𝑛−𝑖+1]︀(𝜃𝑖 − 𝜃*)
⟩

6 E
𝑛∑︁

𝑖=0

⟨
𝜃𝑖 − 𝜃*, 𝛾

−1Σ(Σ + 𝜆I)−1(I − 𝛾Σ − 𝛾𝜆I)(𝜃𝑖 − 𝜃*)
⟩

using (Σ + 𝜆I) 4 I,

= 𝛾−1E
𝑛∑︁

𝑖=0
⟨𝜃𝑖 − 𝜃*,Σ(Σ + 𝜆I)−1(𝜃𝑖 − 𝜃*)⟩ − E

𝑛∑︁
𝑖=0

⟨𝜃𝑖 − 𝜃*,Σ(𝜃𝑖 − 𝜃*)⟩.

We thus simply need to bound 𝛾−1E
∑︀𝑛

𝑖=0⟨𝜃𝑖 − 𝜃*,Σ(Σ +𝜆I)−1(𝜃𝑖 − 𝜃*)⟩, to get a bound
on 𝑛2E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2.

Recursion on operators. We have:

E
[︀
𝑀(𝑖, 𝑘)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘)*]︀ = E

[︁
𝑀(𝑖, 𝑘 + 1)

[︀
I − 𝛾𝑥𝑘 ⊗ 𝑥𝑘 − 𝛾𝜆I

]︀
Σ(Σ + 𝜆I)−1

[︀
I − 𝛾𝑥𝑘 ⊗ 𝑥𝑘 − 𝛾𝜆I

]︀
𝑀(𝑖, 𝑘 + 1)*

]︁
= E

[︁
𝑀(𝑖, 𝑘 + 1)

(︁
Σ(Σ + 𝜆I)−1 − 2𝛾Σ + 𝛾2[︀𝑥𝑘 ⊗ 𝑥𝑘

+𝜆I
]︀
Σ(Σ + 𝜆I)−1[︀𝑥𝑘 ⊗ 𝑥𝑘 + 𝜆I

]︀)︁
𝑀(𝑖, 𝑘 + 1)*

]︁
4 E

[︁
𝑀(𝑖, 𝑘 + 1)

[︀
Σ(Σ + 𝜆I)−1 − 2𝛾Σ

+𝛾2(𝑅2 + 2𝜆)Σ
]︀
𝑀(𝑖, 𝑘 + 1)*

]︁
= E

[︁
𝑀(𝑖, 𝑘 + 1)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘 + 1)*

]︁
−𝛾(2 − 𝛾(𝑅2 + 2𝜆))E

[︁
𝑀(𝑖, 𝑘 + 1)Σ𝑀(𝑖, 𝑘 + 1)*

]︁
,
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which leads to

E
[︁
𝑀(𝑖, 𝑘 + 1)Σ𝑀(𝑖, 𝑘 + 1)*

]︁
4

1
𝛾(2 − 𝛾(𝑅2 + 2𝜆))

(︁
𝐸
[︁
𝑀(𝑖, 𝑘 + 1)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘 + 1)*

]︁
− 𝐸

[︁
𝑀(𝑖, 𝑘)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘)*

]︁)︁
. (B.8)

Using the operator 𝑇 on matrices defined below, this corresponds to showing

(I − 𝛾𝑇 )
[︀
Σ(Σ + 𝜆I)

]︀
4 Σ(Σ + 𝜆I) − 𝛾Σ.

Noise term. For 𝜃0 − 𝜃* = 0, we have:

E⟨𝜃𝑖 − 𝜃*,Σ(Σ + 𝜆I)−1(𝜃𝑖 − 𝜃*)⟩

= 𝛾2E
𝑖∑︁

𝑘=1

𝑖∑︁
𝑗=1

𝜀𝑗𝑥
*
𝑗𝑀(𝑖, 𝑗 + 1)*Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘 + 1)𝜀𝑘𝑥𝑘 by expanding all terms,

= 𝛾2E
𝑖∑︁

𝑘=1
𝜀𝑘𝑥

*
𝑘𝑀(𝑖, 𝑘 + 1)*Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘 + 1)𝜀𝑘𝑥𝑘 using independence,

= 𝛾2 tr
(︂ 𝑖∑︁

𝑘=1
E𝜀2

𝑘𝑥𝑘𝑥
*
𝑘E𝑀(𝑖, 𝑘 + 1)*Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘 + 1)

)︂

6 𝛾2𝜎2 tr
(︂ 𝑖∑︁

𝑘=1
E𝑀(𝑖, 𝑘 + 1)Σ𝑀(𝑖, 𝑘 + 1)*Σ(Σ + 𝜆I)−1

)︂
,

using our assumption regarding the noise. Then using the recurrence between operators

E⟨𝜃𝑖 − 𝜃*,Σ(Σ + 𝜆I)−1(𝜃𝑖 − 𝜃*)⟩

6
𝛾𝜎2

2 − 𝛾(𝑅2 + 2𝜆) tr
𝑖∑︁

𝑘=1

(︂
𝐸
[︁
𝑀(𝑖, 𝑘 + 1)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘 + 1)*Σ(Σ + 𝜆I)−1

]︁
−𝐸

[︁
𝑀(𝑖, 𝑘)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑘)*Σ(Σ + 𝜆I)−1

]︁)︂
6

𝛾𝜎2

2 − 𝛾(𝑅2 + 2𝜆) tr
(︂
𝐸
[︁
𝑀(𝑖, 𝑖+ 1)Σ(Σ + 𝜆I)−1𝑀(𝑖, 𝑖+ 1)*Σ(Σ + 𝜆I)−1

]︁
−𝐸

[︁
𝑀(𝑖, 1)Σ(Σ + 𝜆I)−1𝑀(𝑖, 1)*Σ(Σ + 𝜆I)−1

]︁)︂
by summing,

6
𝛾𝜎2

2 − 𝛾(𝑅2 + 2𝜆) tr Σ2(Σ + 𝜆I)−2.

This implies that for the noise process

E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2 6
(︂

𝜎2

𝑛+ 1 tr
[︀
Σ2(Σ + 𝜆I)−2]︀)︂ 1

1 − 𝛾(𝑅2/2 + 𝜆) .

Note that when 𝛾 tends to zero, we recover the optimal variance term.

Noiseless term. Without noise, we then need to bound:

𝛾−1E
𝑛∑︁

𝑖=0
⟨𝜃𝑖 − 𝜃*,Σ(Σ + 𝜆I)−1(𝜃𝑖 − 𝜃*)⟩,
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with 𝜃𝑖 − 𝜃* = 𝑀(𝑖, 1)(𝜃0 − 𝜃*), that is

𝛾−1E
𝑛∑︁

𝑖=0
tr
[︁
𝑀(𝑖, 1)*Σ(Σ + 𝜆I)−1𝑀(𝑖, 1)(𝜃0 − 𝜃*)(𝜃0 − 𝜃*)*

]︁
.

We follow here the proof of Défossez and Bach (2015) and consider the operator 𝑇 from
symmetric matrices to symmetric matrices defined as

𝑇𝐴 = (Σ + 𝜆I)𝐴+𝐴(Σ + 𝜆I) − 𝛾𝐸
[︀
(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)𝐴(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)

]︀
.

of the form 𝑇𝐴 = (Σ + 𝜆I)𝐴+ (Σ + 𝜆I)𝐴− 𝛾𝑆𝐴.
The operator 𝑆 is self-adjoint and positive. Moreover:

⟨𝐴,𝑆𝐴⟩ = E tr
[︀
𝐴(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)𝐴(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)

]︀
= tr

[︀
2𝐴2𝜆Σ + 𝜆2𝐴2]︀+ E tr

[︀
⟨𝑥𝑛, 𝐴𝑥𝑛⟩2]︀

6 tr
[︀
2𝐴2𝜆Σ + 𝜆2𝐴2]︀+ E tr

[︀
‖𝑥𝑛‖2𝑥𝑛 ⊗ 𝑥𝑛, 𝐴

2]︀ with Cauchy-Schwarz ineq.,

6 tr
[︀
2𝐴2𝜆Σ + 𝜆2𝐴2]︀+𝑅2 tr Σ𝐴2

6 (𝑅2 + 2𝜆) tr
[︀
Σ + 𝜆I]𝐴2.

We have for any symmetric matrix 𝐴:

E𝑀(𝑖, 1)*𝐴𝑀(𝑖, 1) = (I − 𝛾𝑇 )𝑖𝐴.

Thus,

𝛾−1E
𝑛∑︁

𝑖=0
tr
[︁
𝑀(𝑖, 1)*Σ(Σ + 𝜆I)−1𝑀(𝑖, 1)(𝜃0 − 𝜃*)(𝜃0 − 𝜃*)*

]︁
= 𝛾−1E

𝑛∑︁
𝑖=0

⟨⟨(I − 𝛾𝑇 )𝑖𝐴,𝐸0⟩⟩

with 𝐸0 = (𝜃0 − 𝜃*)(𝜃0 − 𝜃*)* and 𝐴 = Σ(Σ + 𝜆I)−1. This leads to

𝛾−1E⟨⟨𝛾−1𝑇−1(I − (I − 𝛾𝑇 )𝑛+1)𝐴,𝐸0⟩⟩,

where ⟨⟨·, ·⟩⟩ denote the dot-product between self-adjoint operators.
The sum is less than its limit for 𝑛 → ∞, and thus, we can get rid of the term (I−𝛾𝑇 )𝑛+1,

and we need to bound

𝛾−2⟨⟨𝑀,𝐸0⟩⟩ = 𝛾−2⟨⟨𝑇−1(Σ(Σ + 𝜆I)−1), 𝐸0⟩⟩,

with 𝑀 := 𝑇−1[︀Σ(Σ + 𝜆I)−1]︀, i.e., such that

Σ(Σ + 𝜆I)−1 = (Σ + 𝜆I)𝑀 +𝑀(Σ + 𝜆I) − 𝛾E(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)𝑀(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)
= (Σ + 𝜆I)𝑀 +𝑀(Σ + 𝜆I) − 𝛾𝑆𝑀. (B.9)

So that:

𝑀 =
[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1[︀Σ(Σ + 𝜆I)−1]︀+ 𝛾
[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝑆𝑀

= 1
2Σ(Σ + 𝜆I)−2 + 𝛾

[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝑆𝑀.

The operator (Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I) is self adjoint, and so is its inverse, thus:

𝛾−2⟨⟨𝑀,𝐸0⟩⟩ = 𝛾−2⟨⟨1
2Σ(Σ + 𝜆I)−2 + 𝛾

[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝑆𝑀,𝐸0⟩⟩
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= 1
2𝛾2 ⟨⟨Σ(Σ + 𝜆I)−2, 𝐸0⟩⟩ + 𝛾−1⟨⟨𝑆𝑀,

[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝐸0⟩⟩

= 1
2𝛾2 tr(Σ(Σ + 𝜆I)−2𝐸0) + 𝛾−1⟨⟨𝑆𝑀,

[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝐸0⟩⟩.

Moreover,

𝐸0 = (𝜃0 − 𝜃*)(𝜃0 − 𝜃*)*

= (Σ + 𝜆I)1/2(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)(𝜃0 − 𝜃*)*(Σ + 𝜆I)−1/2(Σ + 𝜆I)+1/2

4 [(𝜃0 − 𝜃*)*(Σ + 𝜆I)−1(𝜃0 − 𝜃*)] (Σ + 𝜆I),
as (Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)(𝜃0 − 𝜃*)*(Σ + 𝜆I)−1/2 4 (𝜃0 − 𝜃*)*(Σ + 𝜆I)−1(𝜃0 − 𝜃*)𝐼.

Thus, as [(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)]−1 is an non-decreasing operator on (𝑆𝑛(R),4) (see
technical Lemma B.7 in Section B.5):[︀

(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)
]︀−1

𝐸0

4
[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1 (︁[(𝜃0 − 𝜃*)*(Σ + 𝜆I)−1(𝜃0 − 𝜃*)](Σ + 𝜆I)
)︁

= (𝜃0 − 𝜃*)*(Σ + 𝜆I)−1(𝜃0 − 𝜃*)
2 𝐼.

Thus as 𝑆𝑀 is positive:

𝛾−2⟨⟨𝑀,𝐸0⟩⟩ 6 1
2𝛾2 tr(Σ(Σ + 𝜆I)−2𝐸0) + (𝜃0 − 𝜃*)*(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

2𝛾 tr(𝑆𝑀).

Moreover we can upper bound tr(𝑆𝑀) : using Equation (B.9) we have

tr(Σ(Σ + 𝜆I)−1) = 2 tr(Σ + 𝜆I)𝑀 − 𝛾 tr E(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)𝑀(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)

then, using Assumption (𝒜1):

tr E(𝑥𝑛⊗𝑥𝑛+𝜆I)𝑀(𝑥𝑛⊗𝑥𝑛+𝜆I) 6 𝑅2 tr𝑀Σ+2 tr𝑀Σ𝜆+𝜆2 tr𝑀 6 (𝑅2+2𝜆) tr𝑀(Σ+𝜆I).

This implies

tr
[︀
Σ(Σ + 𝜆I)−1]︀ > (︀ 2

𝑅2 + 2𝜆 − 𝛾
)︀

tr E(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)𝑀(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I),

>
1

𝑅2 + 2𝜆 tr E(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I)𝑀(𝑥𝑛 ⊗ 𝑥𝑛 + 𝜆I) since 𝛾(𝑅2 + 2𝜆) 6 1,

>
1

𝑅2 + 2𝜆 tr𝑆𝑀.

Thus finally:

𝛾−2⟨⟨𝑀,𝐸0⟩⟩ 6 1
2𝛾2 tr𝐸0Σ(Σ + 𝜆I)−2

+ (𝜃0 − 𝜃*)*(Σ + 𝜆I)−1(𝜃0 − 𝜃*)
2𝛾 (𝑅2 + 2𝜆) tr(Σ(Σ + 𝜆I)−1),

which leads to the desired error term.
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B.2.4 Proof when only ‖𝜃0 − 𝜃*‖ is finite

When 𝜆 = 0, without noise, we then need to bound:

𝛾−1E
𝑛∑︁

𝑖=0
⟨𝜃𝑖 − 𝜃*, 𝜃𝑖 − 𝜃*⟩,

with 𝜃𝑖 − 𝜃* = 𝑀(𝑖, 1)(𝜃0 − 𝜃*), that is

𝛾−1E
𝑛∑︁

𝑖=0
tr
[︁
𝑀(𝑖, 1)*𝑀(𝑖, 1)(𝜃0 − 𝜃*)(𝜃0 − 𝜃*)*

]︁
.

By definition of 𝑀(𝑖, 1) we have that E𝑀(𝑖, 1)*𝑀(𝑖, 1) 4 I leading to

𝛾−1E
𝑛∑︁

𝑖=0
⟨𝜃𝑖 − 𝜃*, 𝜃𝑖 − 𝜃*⟩ 6 (𝑛+ 1)‖𝜃0 − 𝜃*‖2

𝛾
.

For the regularization-based bias we also have

‖𝜆Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)‖2 6 𝜆‖Σ1/2(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)‖2.

B.2.5 Proof when the noise is not structured

For ‖𝜃0 − 𝜃*‖ = 0 we have 𝜃𝑛 − 𝜃* = 𝛾
∑︀𝑛

𝑘=1𝑀(𝑛, 𝑘 + 1)𝜀𝑘𝑥𝑘 which leads to

E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2 = 𝛾2
𝑛∑︁

𝑘=1
tr E𝑀(𝑛, 𝑘 + 1)*Σ𝑀(𝑛, 𝑘 + 1)𝑉,

where 𝑉 = E𝜀2
𝑘𝑥𝑘𝑥

*
𝑘. And using the recursion on operators in Equation (B.8) by changing

order of elements we have

E
[︁
𝑀(𝑛, 𝑘 + 1)*Σ𝑀(𝑛, 𝑘 + 1)

]︁
4

1
𝛾(2 − 𝛾(𝑅2 + 2𝜆))

(︁
𝐸
[︁
𝑀(𝑛, 𝑘 + 1)*Σ(Σ + 𝜆I)−1𝑀(𝑛, 𝑘 + 1)

]︁
− 𝐸

[︁
𝑀(𝑛, 𝑘)*Σ(Σ + 𝜆I)−1𝑀(𝑛, 𝑘)

]︁)︁
.

And by adding the terms

E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2 4
𝛾2

𝛾(2 − 𝛾(𝑅2 + 2𝜆)) tr Σ(Σ + 𝜆I)−1𝑉,

We conclude by convexity

E‖Σ1/2(𝜃𝑛 − 𝜃*)‖2 4
𝛾2

𝛾(2 − 𝛾(𝑅2 + 2𝜆)) tr Σ(Σ + 𝜆I)−1𝑉.

B.3 Convergence of Accelerated Averaged Stochastic Gradient
Descent

We now prove Theorem 3.3. We thus consider iterates satisfying Equation (3.10), under
Assumptions (𝒜3), (𝒜4). We consider a fixed step size 𝛾 such that 𝛾(Σ + 𝜆𝐼) 4 𝐼. Seeing
Equation (3.10) as a linear second order for 𝜃𝑛, we will derive from exact calculations
a decomposition of the errors a sum of three terms that will be studied independently.
The proof is organized as follows: in Section B.3.1, we state the formulation as a sec-
ond order linear system and derive the three main terms that have to be studied (see
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Lemma B.1). Section B.3.2 studies asymptotic behaviors of the three terms, ignoring some
exponentially decreasing terms, in order to give insight of how they behave. This section
is not necessary for the proof, indeed a direct and exact calculation in the eigenbasis of
Σ, following O’Donoghue and Candès (2013), is provided in Section B.3.3. Results are
summed up in Section B.3.4.

B.3.1 General expansion

We study the regularized stochastic accelerated gradient descent recursion defined for
𝑛 > 1 by

𝜃𝑛 = 𝜈𝑛−1 − 𝛾𝑓 ′(𝜈𝑛−1) − 𝛾𝜆(𝜈𝑛 − 𝜃0) + 𝛾𝜉𝑛

𝜈𝑛 = 𝜃𝑛 + 𝛿(𝜃𝑛 − 𝜃𝑛−1),

starting from 𝜃0 = 𝜈0 ∈ ℋ. We may rewrite it for a quadratic function 𝑓 : 𝜃 ↦→ 1
2⟨𝜃 −

𝜃*,Σ(𝜃 − 𝜃*)⟩ for 𝑛 > 2 as

𝜃𝑛 =
[︀
I − 𝛾Σ − 𝛾𝜆I

]︀[︀
𝜃𝑛−1 + 𝛿(𝜃𝑛−1 − 𝜃𝑛−2)

]︁
+ 𝛾𝜉𝑛 + 𝛾𝜆𝜃0 + 𝛾Σ𝜃*,

with 𝜃0 ∈ ℋ and 𝜃1 =
[︀
I − 𝛾Σ − 𝛾𝜆I

]︀
𝜃0 + 𝛾𝜉1 + 𝛾𝜆𝜃0 + 𝛾Σ𝜃*.

And by centering around the optimum, we get:

𝜃𝑛 − 𝜃* =
[︀
I − 𝛾Σ − 𝛾𝜆I

]︀[︀
𝜃𝑛−1 − 𝜃* + 𝛿(𝜃𝑛−1 − 𝜃* − 𝜃𝑛−2 + 𝜃*)

]︁
+ 𝛾𝜉𝑛 + 𝜆𝛾(𝜃0 − 𝜃*).

Thus this is a second order iterative system which is standard to cast in a linear form

Θ𝑛 = 𝐹Θ𝑛−1 + 𝛾Ξ𝑛 + 𝛾𝜆Θ𝜆, (B.10)

with 𝑇 = I − 𝛾Σ − 𝛾𝜆I, 𝐹 =
(︃

(1 + 𝛿)𝑇 −𝛿𝑇
𝐼 0

)︃
, Θ𝑛 =

(︃
𝜃𝑛 − 𝜃*
𝜃𝑛−1 − 𝜃*

)︃
, Θ0 =

(︃
𝜃0 − 𝜃*
𝜃0 − 𝜃*

)︃
,

Ξ𝑛 =
(︃
𝜉𝑛

0

)︃
and Θ𝜆 =

(︃
𝜃0 − 𝜃*

0

)︃
.

We are interested in the behavior of the average Θ̄𝑛 = 1
𝑛+1

∑︀𝑛
𝑘=0 Θ𝑘 for which we have

the following general convergence result:

Lemma B.1. For all 𝜆 ∈ R+ and 𝛾 such that 𝛾(Σ + 𝜆I) 4 I and any matrix 𝐶 the average of

the iterates Θ𝑛 defined by Equation (B.10) satisfy for 𝑃𝑘
(𝑑𝑒𝑓)= 𝐶1/2(𝐼 − 𝐹 𝑘)(𝐼 − 𝐹 )−1, with

Θ̃0 = Θ0 − 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆,

E⟨Θ̄𝑛, 𝐶Θ̄𝑛⟩ 6 2 (𝛾𝜆)2 ‖𝐶1/2(𝐼 − 𝐹 )−1Θ𝜆‖2 + 2
(𝑛+ 1)2 ‖𝑃𝑛+1Θ̃0‖2

+ 𝛾2

(𝑛+ 1)2

𝑛∑︁
𝑗=1

tr𝑃𝑗𝑉 𝑃
⊤
𝑗 .

The error thus decomposes as the sum of three main terms:

∙ the two first ones are bias terms, one arising from the regularization (the first one),
and one arising computation (the second one),

∙ a variance term. which is the last one.
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We remark that as we have assumed that Σ is invertible, the matrix 𝐼 −𝐹 can be shown
to be invertible for all the considered 𝛿.

The regularization-based term will be studied directly whereas the two others will be
studied in two stages. First a heuristic will lead to an asymptotic bound then an exact

computation will give a non-asymptotic bound. Then using 𝐶 = 𝐻 =
(︃

Σ 0
0 0

)︃
would give

a convergence result on the function value and 𝐶 =
(︃

I 0
0 0

)︃
a result on the iterate. The

end of the section is devoted to the proof of this lemma.

Proof. The sequence Θ𝑛 satisfies a linear recursion, from which we get, for all 𝑛 > 1:

Θ𝑛 = 𝐹𝑛Θ0 + 𝛾
𝑛∑︁

𝑘=1
𝐹𝑛−𝑘Ξ𝑘 + 𝛾𝜆

𝑛∑︁
𝑘=1

𝐹𝑛−𝑘Θ𝜆

= 𝐹𝑛Θ0 + 𝛾
𝑛∑︁

𝑘=1
𝐹𝑛−𝑘Ξ𝑘 + 𝛾𝜆(𝐼 − 𝐹𝑛)(𝐼 − 𝐹 )−1Θ𝜆.

We study the averaged sequence: Θ̄𝑛 = 1
𝑛+1

∑︀𝑛
𝑘=0 Θ𝑘 . Using the identity

∑︀𝑛−1
𝑘=0 𝐹

𝑘 =
(𝐼 − 𝐹𝑛)(𝐼 − 𝐹 )−1, we get

Θ̄𝑛 = 1
𝑛+ 1

𝑛∑︁
𝑘=0

𝐹 𝑘Θ0 + 𝛾

𝑛+ 1

𝑛∑︁
𝑘=1

𝑘∑︁
𝑗=1

𝐹 𝑘−𝑗Ξ𝑗 + 𝛾𝜆

𝑛+ 1

𝑛∑︁
𝑘=1

(𝐼 − 𝐹 𝑘)(𝐼 − 𝐹 )−1Θ𝜆.

With
Θ̃0 = Θ0 − 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆,

and
∑︀𝑛

𝑘=1(𝐼 − 𝐹 𝑘) =
∑︀𝑛

𝑘=0(𝐼 − 𝐹 𝑘) = [𝑛+ 1 − (𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1].

Using summation formulas for geometric series, we derive:

Θ̄𝑛 = 1
𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0 + 𝛾

𝑛+ 1

𝑛∑︁
𝑘=1

𝑘∑︁
𝑗=1

𝐹 𝑘−𝑗Ξ𝑗 + 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆

= 1
𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0 + 𝛾

𝑛+ 1

𝑛∑︁
𝑗=1

(︀ 𝑛∑︁
𝑘=𝑗

𝐹 𝑘−𝑗)︀Ξ𝑗 + 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆

= 1
𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0 + 𝛾

𝑛+ 1

𝑛∑︁
𝑗=1

(︀ 𝑛−𝑗∑︁
𝑘=0

𝐹 𝑘)︀Ξ𝑗 + 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆

= 1
𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0 + 𝛾

𝑛+ 1

𝑛∑︁
𝑗=1

(𝐼 − 𝐹𝑛+1−𝑗)(𝐼 − 𝐹 )−1Ξ𝑗 + 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆

= 1
𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0 + 𝛾

𝑛+ 1

𝑛∑︁
𝑗=1

(𝐼 − 𝐹 𝑗)(𝐼 − 𝐹 )−1Ξ𝑛+1−𝑗 + 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆.

Using martingale square moment inequalities which amount to consider Ξ𝑖, 𝑖 = 1, ..., 𝑛
independent, so that the variance of the sum is the sum of variances, and denoting by
𝑉 = E[Ξ𝑛 ⊗ Ξ𝑛] we have for any positive semi-definite 𝐶,

E⟨Θ̄𝑛, 𝐶Θ̄𝑛⟩ =
⃦⃦⃦
𝐶1/2

(︂ 1
𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0 + 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆

)︂ ⃦⃦⃦2
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+ 𝛾2

(𝑛+ 1)2

𝑛∑︁
𝑗=1

tr(𝐼 − 𝐹 𝑗)(𝐼 − 𝐹 )−1𝑉 (𝐼 − 𝐹⊤)−1(𝐼 − 𝐹 𝑗)⊤𝐶,

where 𝐶1/2 denotes a symmetric square root of 𝐶. Define 𝑃𝑘
(𝑑𝑒𝑓)= 𝐶1/2(𝐼 − 𝐹 𝑘)(𝐼 − 𝐹 )−1,

we have, Using Minkowski’s inequality and inequality (𝑎+ 𝑏)2 6 2(𝑎2 + 𝑏2) for any 𝑎, 𝑏 ∈ R,

E⟨Θ̄𝑛, 𝐶Θ̄𝑛⟩ =
⃦⃦⃦ 1
𝑛+ 1𝑃𝑛+1Θ̃0 + 𝛾𝜆𝐶1/2(𝐼 − 𝐹 )−1Θ𝜆

⃦⃦⃦2
+ 𝛾2

(𝑛+ 1)2

𝑛∑︁
𝑗=1

tr𝑃𝑗𝑉 𝑃
⊤
𝑗

6 2 (𝛾𝜆)2 ‖𝐶1/2(𝐼 − 𝐹 )−1Θ𝜆‖2 + 2‖𝑃𝑛+1Θ̃0‖2

(𝑛+ 1)2 + 𝛾2

(𝑛+ 1)2

𝑛∑︁
𝑗=1

tr𝑃𝑗𝑉 𝑃
⊤
𝑗 .

This concludes proof of Lemma B.1.

B.3.2 Asymptotic expansion

To give the main terms that we expect, we first provide an asymptotic analysis, which shall
only be understood as an insight and is not necessary for the proof. Operator 𝐹 will have
only eigenvalues smaller than 1, thus

⃒⃒⃒⃒ ⃒⃒
𝐹 𝑗
⃒⃒⃒⃒ ⃒⃒

will decrease exponentially to 0 as 𝑗 → ∞
(even if |||𝐹 |||2 might be bigger than 1). The asymptotic analysis relies on ignoring all terms
in which 𝐹 𝑗 appears. We thus approximately have:

E⟨Θ̄𝑛, 𝐶Θ̄𝑛⟩ 6 2 (𝛾𝜆)2 ‖𝐶1/2(𝐼 − 𝐹 )−1Θ𝜆‖2 + 2
⃦⃦⃦
𝐶1/2 1

𝑛+ 1(𝐼 − 𝐹𝑛+1)(𝐼 − 𝐹 )−1Θ̃0
⃦⃦⃦2

+ 𝛾2

(𝑛+ 1)2

𝑛∑︁
𝑗=1

tr(𝐼 − 𝐹 𝑗)(𝐼 − 𝐹 )−1𝑉 (𝐼 − 𝐹⊤)−1(𝐼 − 𝐹 𝑗)⊤𝐶

≈ 2 (𝛾𝜆)2 ‖𝐶1/2(𝐼 − 𝐹 )−1Θ𝜆‖2 + 2
⃦⃦⃦
𝐶1/2 1

𝑛+ 1(𝐼 − 𝐹 )−1Θ̃0
⃦⃦⃦2

+ 𝛾2

(𝑛+ 1)2

𝑛∑︁
𝑗=1

tr(𝐼 − 𝐹 )−1𝑉 (𝐼 − 𝐹⊤)−1𝐶,

where, as it has been explained ≈ stands for an equality up to terms that will decay
exponentially. However, these terms have to be studied very carefully, what will be done in
the Section B.3.3.

Using the matrix inversion lemma we have for 𝐶 =
(︃
𝑐 0
0 0

)︃
,

I − 𝐹 =
(︃

(1 + 𝛿)(𝛾Σ + 𝛾𝜆I) − 𝛿I 𝛿(I − (𝛾Σ + 𝛾𝜆I))
−I I

)︃

(I − 𝐹 )−1 =
(︃

(𝛾Σ + 𝛾𝜆I)−1 𝛿
(︀
I − (𝛾Σ + 𝛾𝜆I)−1)︀

(𝛾Σ + 𝛾𝜆I)−1 (1 + 𝛿)I − 𝛿(𝛾Σ + 𝛾𝜆I)−1

)︃
(B.11)

𝐶1/2(I − 𝐹 )−1 =
(︃
𝑐1/2(𝛾Σ + 𝛾𝜆I)−1 𝛿𝑐1/2(︀I − (𝛾Σ + 𝛾𝜆I)−1)︀

0 0

)︃
.

Regularization based term. This gives for the regularization based term

⃦⃦⃦
𝐶1/2(I − 𝐹 )−1Θ𝜆

⃦⃦⃦2
=

⃦⃦⃦⃦
⃦
(︃
𝑐1/2(𝛾Σ + 𝛾𝜆I)−1 𝛿𝑐1/2(︀I − (𝛾Σ + 𝛾𝜆I)−1)︀

0 0

)︃(︃
𝜃0 − 𝜃*

0

)︃ ⃦⃦⃦⃦
⃦

2

2|||𝐹 ||| denotes the operator norm of 𝐹 , i.e., sup‖𝑥‖61 ‖𝐹 𝑥‖.



B.3. Convergence of Accelerated Averaged Stochastic Gradient Descent 145

=
(︂1
𝛾

)︂2
‖(𝑐1/2(Σ + 𝜆𝐼)−1(𝜃0 − 𝜃*))‖2. (B.12)

The computation of this term is exact (not asymptotic).

Bias term. For the bias term we have

Θ̃0 = Θ0 − 𝛾𝜆(𝐼 − 𝐹 )−1Θ𝜆

=
(︃
𝜃0 − 𝜃*
𝜃0 − 𝜃*

)︃
− 𝛾𝜆

(︃
(𝛾Σ + 𝛾𝜆I)−1 𝛿

(︀
I − (𝛾Σ + 𝛾𝜆I)−1)︀

(𝛾Σ + 𝛾𝜆I)−1 (1 + 𝛿)I − 𝛿(𝛾Σ + 𝛾𝜆I)−1

)︃(︃
𝜃0 − 𝜃*

0

)︃

=
(︃
𝜃0 − 𝜃*
𝜃0 − 𝜃*

)︃
− 𝛾𝜆

(︃
(𝛾Σ + 𝛾𝜆I)−1(𝜃0 − 𝜃*)
(𝛾Σ + 𝛾𝜆I)−1(𝜃0 − 𝜃*)

)︃

=
(︃

[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)
[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)

)︃
.

Thus this gives for the dominant term

⃦⃦⃦
𝐶1/2(I − 𝐹 )−1Θ̃0

⃦⃦⃦2
=

⃦⃦⃦⃦
⃦
(︃
𝑐1/2(𝛾Σ + 𝛾𝜆I)−1 𝛿𝑐1/2(︀I − (𝛾Σ + 𝛾𝜆I)−1)︀

0 0

)︃
Θ̃0

⃦⃦⃦⃦
⃦

2

= ‖(𝑐1/2[(1 − 𝛿)(𝛾Σ + 𝛾𝜆I)−1 + 𝛿I][I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)‖2.

And if 𝑐 commutes with Σ we have the bound for 𝛿 ∈ [1−
√

𝛾𝜆

1+
√

𝛾𝜆
, 1]

⃦⃦⃦
𝐶1/2(I − 𝐹 )−1Θ̃0

⃦⃦⃦2
6 ((1 − 𝛿)

𝛾𝜆
+ 𝛿)‖(𝑐1/2[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)‖2

6 ( 2√
𝛾𝜆

+ 1)‖(𝑐1/2[I − 𝜆(Σ + 𝜆I)−1](𝜃0 − 𝜃*)‖2.

Variance term. And for the variance term with 𝑉 =
(︃
𝑣 0
0 0

)︃
, we have𝐶1/2(I−𝐹 )−1𝑉 1/2 =(︃

𝑐1/2(𝛾Σ + 𝛾𝜆I)−1𝑣1/2 0
0 0

)︃
, and

tr𝐶1/2(𝐼 − 𝐹 )−1𝑉 (𝐼 − 𝐹⊤)−1𝐶1/2 = tr 𝑐(𝛾Σ + 𝛾𝜆I)−1𝑣(𝛾Σ + 𝛾𝜆I)−1.

This gives the three dominant terms. However in order to control the remainders we
have to compute the eigenvalues more carefully, as done in the next section.

B.3.3 Direct computation without the regularization based term

We derive now direct computation both the bias and variance terms. This is not required for
the regularization based term whose previous expression in Equation (B.12) is already non-
asymptotic. Following O’Donoghue and Candès (2013) we consider an eigen-decomposition
of the matrix 𝐹 , in order to study independently the recursion on eigenspaces. We assume
Σ has eigenvalues (𝑠𝑖) and we decompose vectors in an eigenvector basis of Σ we denote
by (𝑝𝑖), with 𝜃𝑖

𝑛 = 𝑝⊤
𝑖 𝜃𝑛 and 𝜉𝑖

𝑛 = 𝑝⊤
𝑖 𝜉𝑛 and we have the reduced equation:

Θ𝑖
𝑛+1 = 𝐹𝑖Θ𝑖

𝑛 + 𝛾Ξ𝑖
𝑛+1.

with Θ𝑖
0 = Θ̃𝑖

0, 𝐹𝑖 =
(︃

(1 + 𝛿)𝑇𝑖 −𝛿𝑇𝑖

1 0

)︃
, with 𝑇𝑖 = 1 − 𝛾𝑠𝑖 − 𝛾𝜆.
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Computing initial point Θ̃𝑖
0. Θ̃𝑖

0 = Θ𝑖
0 − 𝛾𝜆(𝐼 − 𝐹𝑖)−1Θ𝑖

𝜆, with Θ𝑖
0 =

(︃
𝜃𝑖

0 − 𝜃𝑖
*

𝜃𝑖
0 − 𝜃𝑖

*

)︃
, Θ𝑖

𝜆 =(︃
𝜃𝑖

0 − 𝜃𝑖
*

0

)︃
and (𝐼 − 𝐹𝑖)−1 given in Equation (B.11). Thus

Θ̃𝑖
0 =

(︃
𝜃𝑖

0 − 𝜃𝑖
*

𝜃𝑖
0 − 𝜃𝑖

*

)︃
− 𝛾𝜆

(𝛾𝑠𝑖 + 𝛾𝜆)

(︃
1 𝛿((𝛾𝑠𝑖 + 𝛾𝜆) − 1)
1 (1 + 𝛿)(𝛾𝑠𝑖 + 𝛾𝜆) − 𝛿

)︃(︃
𝜃𝑖

0 − 𝜃𝑖
*

0

)︃

=
(︃

(1 − 𝜆
𝜆+𝑠𝑖

)(𝜃𝑖
0 − 𝜃𝑖

*)
(1 − 𝜆

𝜆+𝑠𝑖
)(𝜃𝑖

0 − 𝜃𝑖
*)

)︃
. (B.13)

Study of spectrum of 𝐹𝑖. Depending on 𝛿, 𝐹𝑖 may have two distinct complex eigenvalues
of same modulus, only one (double) eigenvalue, or two real eigenvalues. We only consider
the two former cases, which we detail below.

Indeed, the characteristic polynomial

𝜒𝐹𝑖(𝑋) 𝑑𝑒𝑓= det(𝑋I − 𝐹𝑖) = 𝑋2 − (1 + 𝛿)(1 − 𝛾(𝑠𝑖 + 𝜆))𝑋 + 𝛿(1 − 𝛾(𝑠𝑖 + 𝜆))

has discriminant Δ𝑖 = (1 − 𝛾(𝑠𝑖 + 𝜆))((1 + 𝛿)2(1 − 𝛾(𝑠𝑖 + 𝜆)) − 4𝛿) which is non positive

as far as 𝛿 ∈ [𝛿−; 𝛿+], with 𝛿− = 1−
√

𝛾(𝑠𝑖+𝜆)
1+

√
𝛾(𝑠𝑖+𝜆)

, 𝛿+ = 1+
√

𝛾(𝑠𝑖+𝜆)
1−

√
𝛾(𝑠𝑖+𝜆)

.

Two distinct eigenvalues

We first assume that 𝐹𝑖 has two distinct complex eigenvalues 𝑟± = (1+𝛿)(1−𝛾(𝑠𝑖+𝜆))±
√

−1
√

−Δ𝑖

2
which are conjugate. Thus the roots are of the form 𝜌𝑖𝑒

±𝑖𝜔𝑖 with 𝜌𝑖 =
√︀
𝛿(1 − 𝛾(𝑠𝑖 + 𝜆)),

cos(𝜔𝑖) = (1+𝛿)(1−𝛾(𝑠𝑖+𝜆))
2𝜌𝑖

, 𝜔𝑖 ∈ [−𝜋/2;𝜋/2] and sin(𝜔𝑖) =
√

−Δ𝑖
2𝜌𝑖

.

Let 𝑄𝑖 =
(︃
𝑟−

𝑖 𝑟+
𝑖

1 1

)︃
be the transfer matrix into an eigenbasis of 𝐹𝑖, i.e., 𝐹𝑖 = 𝑄𝑖𝐷𝑖𝑄

−1
𝑖

with 𝐷𝑖 =
(︃
𝑟−

𝑖 0
0 𝑟+

𝑖

)︃
and 𝑄−1

𝑖 = 1
𝑟−

𝑖 −𝑟+
𝑖

(︃
1 −𝑟+

𝑖

−1 𝑟−
𝑖

)︃
.

Computing 𝑃𝑖,𝑘. We first compute the matrix 𝑃𝑖,𝑘: With

𝐶
1/2
𝑖 =

(︃√
𝑐𝑖 0

0 0

)︃
, 𝐶

1/2
𝑖 𝑄𝑖 =

(︃
𝑟−

𝑖

√
𝑐𝑖 𝑟+

𝑖

√
𝑐𝑖

0 0

)︃

we have

𝐶
1/2
𝑖 𝑄𝑖(𝐼 −𝐷𝑘

𝑖 )(𝐼 −𝐷𝑖)−1 =
√
𝑐𝑖

⎛⎝1−(𝑟−
𝑖 )𝑘

1−𝑟−
𝑖

𝑟−
𝑖

1−(𝑟+
𝑖 )𝑘

1−𝑟+
𝑖

𝑟+
𝑖

0 0

⎞⎠ ,
and, when developing and regrouping terms which depend on 𝑘, we get:

𝑃𝑖,𝑘 = 𝐶
1/2
𝑖 𝑄𝑖(𝐼 −𝐷𝑘

𝑖 )(𝐼 −𝐷𝑖)−1𝑄−1
𝑖

=
√
𝑐𝑖

𝑟−
𝑖 − 𝑟+

𝑖

⎛⎝1−(𝑟−
𝑖 )𝑘

1−𝑟−
𝑖

𝑟−
𝑖 − 1−(𝑟+

𝑖 )𝑘

1−𝑟+
𝑖

𝑟+
𝑖

1−(𝑟+
𝑖 )𝑘

1−𝑟+
𝑖

𝑟−
𝑖 𝑟

+
𝑖 − 1−(𝑟−

𝑖 )𝑘

1−𝑟−
𝑖

𝑟+
𝑖 𝑟

−
𝑖

0 0

⎞⎠
=

√
𝑐𝑖

⎛⎝ 1
(1−𝑟−

𝑖 )(1−𝑟+
𝑖 )

−𝑟+
𝑖 𝑟−

𝑖

(1−𝑟−
𝑖 )(1−𝑟+

𝑖 )
0 0

⎞⎠
−

√
𝑐𝑖

𝑟−
𝑖 − 𝑟+

𝑖

⎛⎝ (𝑟−
𝑖 )𝑘+1

1−𝑟−
𝑖

− (𝑟+
𝑖 )𝑘+1

1−𝑟+
𝑖

(𝑟+
𝑖 )𝑘+1

1−𝑟+
𝑖

𝑟−
𝑖 − (𝑟−

𝑖 )𝑘+1

1−𝑟−
𝑖

𝑟+
𝑖

0 0

⎞⎠ .
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We also have 𝑃𝑖,𝑘 = 𝐶
1/2
𝑖 𝑄𝑖(𝐼 −𝐷𝑘

𝑖 )(𝐼 −𝐷𝑖)−1𝑄−1
𝑖 =

∑︀𝑘−1
𝑗=0 𝑅𝑖,𝑗 with

𝑅𝑖,𝑗 = 𝐶
1/2
𝑖 𝑄𝑖𝐷

𝑗
𝑖𝑄

−1
𝑖

=
√
𝑐𝑖

(︃
(𝑟−

𝑖 )𝑗+1 (𝑟+
𝑖 )𝑗+1

0 0

)︃
𝑄−1

𝑖

=
√
𝑠𝑖

𝑟−
𝑖 − 𝑟+

𝑖

(︃
(𝑟−

𝑖 )𝑗+1 − (𝑟+
𝑖 )𝑗+1 −𝑟+

𝑖 (𝑟−
𝑖 )𝑗+1 + 𝑟−

𝑖 (𝑟+
𝑖 )𝑗+1

0 0

)︃
,

but computing error terms based in 𝑅𝑖,𝑗 before summing these errors gives a looser error
bound than a tight calculation using 𝑃𝑖,𝑘. More precisely, if we use 𝑃𝑖,𝑘Θ𝑖

0 =
∑︀𝑘−1

𝑗=0 𝑅𝑖,𝑗Θ𝑖
0

to upper bound ‖𝑃𝑖,𝑘Θ𝑖
0‖ 6

∑︀𝑘−1
𝑗=0 ‖𝑅𝑖,𝑗Θ𝑖

0‖, we end up with a worse bound.

Bias term. Thus, for the bias term:

𝑃𝑖,𝑘Θ𝑖
0 =

√
𝑐𝑖𝜃

𝑖
0

1 − 𝑟+
𝑖 𝑟

−
𝑖

(1 − 𝑟−
𝑖 )(1 − 𝑟+

𝑖 )
−

√
𝑐𝑖𝜃

𝑖
0

𝑟−
𝑖 − 𝑟+

𝑖

⎛⎝[︁(𝑟−
𝑖 )𝑘+1 1−𝑟+

𝑖

1−𝑟−
𝑖

− (𝑟+
𝑖 )𝑘+1 1−𝑟−

𝑖

1−𝑟+
𝑖

]︁
0

⎞⎠
=

√
𝑐𝑖𝜃

𝑖
0√︁

(1 − 𝑟−
𝑖 )(1 − 𝑟+

𝑖 )

⎛⎜⎝
[︀
(1−𝑟+

𝑖 𝑟−
𝑖 )−𝜌𝑘

𝑖 𝐴1
]︀√︀

(1−𝑟−
𝑖 )(1−𝑟+

𝑖 )
0

⎞⎟⎠ ,
where

𝜌𝑘
𝑖𝐴1 = (𝑟−

𝑖 )𝑘+1(1 − 𝑟+
𝑖 )2 − (𝑟+

𝑖 )𝑘+1(1 − 𝑟−
𝑖 )2

𝑟−
𝑖 − 𝑟+

𝑖

.

This can be bound with the following lemma

Lemma B.2. For all 𝜌 ∈ (0, 1) and 𝜔 ∈ [−𝜋/2;𝜋/2] and 𝑟± = 𝜌(cos(𝜔) ±
√

−1 sin(𝜔)) we
have: ⃒⃒⃒⃒1 − 𝑟+𝑟− − 𝜌𝑘|𝐴1|

|1 − 𝑟+|

⃒⃒⃒⃒
6 3 + 3𝜌𝑘 6 6 (B.14)

We note that the exact constant seems empirically to be 2. This lemma is proved as
Lemma B.8 in Section B.5. This gives for the bias term

‖𝑃𝑖,𝑘Θ𝑖
0‖ =

√
𝑐𝑖(𝜃𝑖

0)√︁
(1 − 𝑟−

𝑖 )(1 − 𝑟+
𝑖 )

[︀ 1√︁
(1 − 𝑟−

𝑖 )(1 − 𝑟+
𝑖 )

(︁
(1 − 𝑟+

𝑖 𝑟
−
𝑖 ) − 𝜌𝑘

𝑖𝐴1
)︁ ]︀

6 6
√
𝑐𝑖(𝜃𝑖

0)√︀
𝛾(𝑠𝑖 + 𝜆)

,

since:

(1 − 𝑟−
𝑖 )(1 − 𝑟+

𝑖 ) = 1 − 2Re (𝑟+
𝑖 ) + |𝑟+

𝑖 |2

= 1 − (1 + 𝛿)(1 − 𝛾(𝑠𝑖 + 𝜆)) + 𝛿(1 − 𝛾(𝑠𝑖 + 𝜆))
= 𝛾(𝑠𝑖 + 𝜆).

We also have a looser bound using 𝑃𝑖,𝑘Θ𝑖
0 =

∑︀𝑘−1
𝑗=0 𝑅𝑖,𝑗Θ𝑖

0.

𝑅𝑖,𝑗Θ𝑖
0 =

√
𝑐𝑖𝜃

𝑖
0

𝑟−
𝑖 − 𝑟+

𝑖

(︀
(1 − 𝑟+

𝑖 )(𝑟−
𝑖 )𝑗+1 − (1 − 𝑟−

𝑖 )(𝑟+
𝑖 )𝑗+1)︀

=
√
𝑐𝑖𝜃

𝑖
0

(︂(𝑟−
𝑖 )𝑗+1 − (𝑟+

𝑖 )𝑗+1

𝑟−
𝑖 − 𝑟+

𝑖

− 𝑟+
𝑖 (𝑟−

𝑖 )𝑗+1 − 𝑟−
𝑖 (𝑟+

𝑖 )𝑗+1

𝑟−
𝑖 − 𝑟+

𝑖

)︂
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using De Moivre’s formula,

=
√
𝑐𝑖𝜃

𝑖
0

(︂
𝜌𝑗+1

𝑖 sin(𝜔𝑖(𝑗 + 1))
𝜌𝑖 sin(𝜔𝑖)

− 𝜌𝑖𝑒
𝑖𝜔𝑖𝜌𝑗+1

𝑖 𝑒−𝑖𝜔𝑖(𝑗+1) − 𝜌𝑖𝑒
−𝑖𝜔𝑖𝜌𝑗+1

𝑖 𝑒+𝑖𝜔𝑖(𝑗+1)

𝜌𝑖𝑒−𝑖𝜔𝑖 − 𝜌𝑖𝑒𝑖𝜔𝑖

)︂

=
√
𝑐𝑖𝜃

𝑖
0

(︂
𝜌𝑗+1

𝑖 sin(𝜔𝑖(𝑗 + 1))
𝜌𝑖 sin(𝜔𝑖)

− 𝜌𝑗+1
𝑖

𝑒−𝑖𝜔𝑖𝑗 − 𝑒+𝑖𝜔𝑖𝑗

𝑒−𝑖𝜔𝑖 − 𝑒𝑖𝜔𝑖

)︂

=
√
𝑐𝑖𝜃

𝑖
0

(︂
𝜌𝑗

𝑖 sin(𝜔𝑖(𝑗 + 1))
sin(𝜔𝑖)

− 𝜌𝑗+1
𝑖

sin(𝜔𝑖𝑗)
sin(𝜔𝑖)

)︂
6 (1 + 𝑒−1)

√
𝑐𝑖𝜃

𝑖
0 using Lemma B.9 (see proof in Section B.5),

which also gives for the bias term

‖𝑃𝑖,𝑘Θ𝑖
0‖ 6 (1 + 𝑒−1)

√
𝑐𝑖𝜃

𝑖
0𝑘.

Thus we have the final bound:

‖𝑃𝑖,𝑘Θ𝑖
0‖2 6 min

{︃
36 𝑐𝑖(𝜃𝑖

0)2

𝛾(𝑠𝑖 + 𝜆) , 6𝑛(1 + 𝑒−1) 𝑐𝑖(𝜃𝑖
0)2√︀

𝛾(𝑠𝑖 + 𝜆)
, 𝑛2(1 + 𝑒−1)2𝑐𝑖(𝜃𝑖

0)2
}︃
. (B.15)

Variance term. As for the variance term, with 𝑉𝑖 =
(︃
𝑣𝑖 0
0 0

)︃
, we have tr𝑃𝑖,𝑘𝑉𝑖𝑃𝑖,𝑘 =

⃦⃦⃦
𝑃𝑖,𝑘

(︃√
𝑣𝑖

0

)︃ ⃦⃦⃦2
.

⃦⃦⃦
𝑃𝑖,𝑘

(︃√
𝑣𝑖

0

)︃ ⃦⃦⃦
=

√
𝑣𝑖𝑐𝑖

(1 − 𝑟−
𝑖 )(1 − 𝑟+

𝑖 )

[︃
1 + (𝑟−

𝑖 )𝑘+1(1 − 𝑟+
𝑖 ) − (𝑟+

𝑖 )𝑘+1(1 − 𝑟−
𝑖 )

𝑟+
𝑖 − 𝑟−

𝑖

]︃

=
√
𝑣𝑖𝑐𝑖

𝛾(𝑠𝑖 + 𝜆)

[︃
1 − 𝜌𝑘

𝑖𝐵𝑖,𝑘

]︃
,

where

𝜌𝑘
𝑖𝐵𝑖,𝑘 = −(𝑟−

𝑖 )𝑘+1(1 − 𝑟+
𝑖 ) − (𝑟+

𝑖 )𝑘+1(1 − 𝑟−
𝑖 )

𝑟+
𝑖 − 𝑟−

𝑖

,

which we can bound using the following Lemma:

Lemma B.3. For all 𝜌 ∈ (0, 1) and 𝜔 ∈ [−𝜋/2;𝜋/2] and 𝑟± = 𝜌(cos(𝜔) ±
√

−1 sin(𝜔)) we
have: ⃒⃒⃒⃒

𝜌𝑘𝐵𝑘

⃒⃒⃒⃒
6 1.75.

Where we note that the exact upper bound seems to be 1.3. This Lemma is proved as
Lemma B.10 in Section B.5.

We can also have a looser bound using 𝑃𝑖,𝑘

(︃
𝑣

1/2
𝑖

0

)︃
=
∑︀𝑘−1

𝑗=0 𝑅𝑖,𝑗

(︃
𝑣

1/2
𝑖

0

)︃
and

𝑅𝑖,𝑗

(︃
𝑣

1/2
𝑖

0

)︃
=

√
𝑐𝑖𝑣𝑖

𝑟−
𝑖 − 𝑟+

𝑖

(︀
(𝑟−

𝑖 )𝑗+1 − (𝑟+
𝑖 )𝑗+1)︀

=
√
𝑐𝑖𝑣𝑖

𝜌𝑗+1
𝑖 sin(𝜔𝑖(𝑗 + 1))

𝜌𝑖 sin(𝜔𝑖)
6 (𝑗 + 1)

√
𝑐𝑖𝑣𝑖, using the inequality | sin(𝑘𝜔𝑖)| 6 𝑘| sin(𝜔𝑖)|
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and
⃦⃦
𝑃𝑖,𝑘

(︃
𝑣

1/2
𝑖

0

)︃ ⃦⃦
6

√
𝑐𝑖𝑣𝑖(𝑘+1)𝑘

2 .

This gives for the Variance term

𝑛∑︁
𝑘=1

tr𝑃𝑖,𝑘𝑉𝑖𝑃𝑖,𝑘 6 𝑣𝑖𝑐𝑖

𝑛∑︁
𝑘=1

min
{︃[︀

1 − 𝜌𝑘
𝑖𝐵1,𝑘

]︀2
𝛾2(𝑠𝑖 + 𝜆)2 ,

[︀
1 − 𝜌𝑘

𝑖𝐵1,𝑘

]︀
𝑘(𝑘 + 1)

2𝛾(𝑠𝑖 + 𝜆) ,
𝑘2(𝑘 + 1)2

4

}︃

6 𝑣𝑖𝑐𝑖 min
{︃

8𝑛
𝛾2(𝑠𝑖 + 𝜆)2 ,

(𝑛+ 1)3

2𝛾(𝑠𝑖 + 𝜆) ,
(𝑛+ 1)5

20

}︃
. (B.16)

One coalescent eigenvalue

We now turn to the case where 𝐹 has two coalescent eigenvalues, which happens when the
discriminant Δ = 0. We assume that 𝐹𝑖 has one coalescent eigenvalue 𝑟𝑖 = (1+𝛿)(1−𝛾(𝑠𝑖+𝜆))

2 .

Then, with 𝛿 = 1−
√

𝛾(𝑠𝑖+𝜆)
1+

√
𝛾(𝑠𝑖+𝜆)

, 𝑟𝑖 = (1+𝛿)(1−𝛾(𝑠𝑖+𝜆))
2 = 1 −

√︀
𝛾(𝑠𝑖 + 𝜆). Then 𝐹𝑖 can be

trigonalized as 𝐹𝑖 = 𝑄𝑖𝐷𝑖𝑄
−1
𝑖 with 𝑄𝑖 =

(︃
𝑟𝑖 1
1 0

)︃
, 𝐷𝑖 =

(︃
𝑟𝑖 1
0 𝑟𝑖

)︃
and 𝑄−1

𝑖 =
(︃

0 1
1 −𝑟𝑖

)︃
.

We note that for all 𝑘 > 0, then 𝐷𝑘
𝑖 = 𝑟𝑘−1

𝑖

(︃
𝑟𝑖 𝑘

0 𝑟𝑖

)︃
.

Computing 𝑃𝑖,𝑘. We first compute 𝑃𝑖,𝑘:

(𝐼2 −𝐷𝑖)−1 =
(︃ 1

1−𝑟𝑖

1
(1−𝑟𝑖)2

0 1
1−𝑟𝑖

)︃

and

(𝐼2 −𝐷𝑘
𝑖 )(𝐼2 −𝐷𝑖)−1 =

⎛⎝1−𝑟𝑘
𝑖

1−𝑟𝑖

1−𝑟𝑘
𝑖

(1−𝑟𝑖)2 − 𝑘𝑟𝑘−1
𝑖

1−𝑟𝑖

0 1−𝑟𝑘
𝑖

1−𝑟𝑖

⎞⎠ .
Thus with 𝐶1/2

𝑖 𝑄𝑖 =
(︃√

𝑐𝑖𝑟𝑖
√
𝑐𝑖

0 0

)︃
we have

𝐶
1/2
𝑖 𝑄𝑖(𝐼2 −𝐷𝑘

𝑖 )(𝐼2 −𝐷𝑖)−1 =
√
𝑐𝑖

⎛⎝1−𝑟𝑘
𝑖

1−𝑟𝑖
𝑟𝑖

1−𝑟𝑘
𝑖

(1−𝑟𝑖)2 − 𝑘𝑟𝑘
𝑖

1−𝑟𝑖

0 0

⎞⎠ .
And, computing as previously the matrices products, we derive:

𝑃𝑖,𝑘 = 𝐶
1/2
𝑖 𝑄𝑖(𝐼2 −𝐷𝑘

𝑖 )(𝐼2 −𝐷𝑖)−1𝑄−1
𝑖

=
√
𝑐𝑖

⎛⎝ 1−𝑟𝑘
𝑖

(1−𝑟𝑖)2 − 𝑘𝑟𝑘
𝑖

1−𝑟𝑖

1−𝑟𝑘
𝑖

1−𝑟𝑖
𝑟𝑖 − ( 1−𝑟𝑘

𝑖
(1−𝑟𝑖)2 − 𝑘𝑟𝑘

𝑖
1−𝑟𝑖

)𝑟𝑖

0 0

⎞⎠
=

√
𝑐𝑖

⎛⎝ 1−𝑟𝑘
𝑖

(1−𝑟𝑖)2 − 𝑘𝑟𝑘
𝑖

1−𝑟𝑖

1−𝑟𝑘
𝑖

(1−𝑟𝑖)2 (𝑟𝑖)2 + 𝑘𝑟𝑘+1
𝑖

1−𝑟𝑖

0 0

⎞⎠
=

√
𝑐𝑖

1 − 𝑟𝑖

(︃1−𝑟𝑘
𝑖

1−𝑟𝑖
− 𝑘𝑟𝑘

𝑖 −1−𝑟𝑘
𝑖

1−𝑟𝑖
(𝑟𝑖)2 + 𝑘𝑟𝑘+1

𝑖

0 0

)︃
.
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Bias term. We thus have:

𝑃𝑖,𝑘Θ𝑖
0 =

√
𝑐𝑖

1 − 𝑟𝑖

(︃1−𝑟𝑘
𝑖

1−𝑟𝑖
− 𝑘𝑟𝑘

𝑖 −1−𝑟𝑘
𝑖

1−𝑟𝑖
(𝑟𝑖)2 + 𝑘𝑟𝑘+1

𝑖

0 0

)︃(︃
𝜃𝑖

0
𝜃𝑖

0

)︃

= 𝜃𝑖
0
√
𝑐𝑖

(︃
(1 − 𝑟𝑘

𝑖 )1+𝑟𝑖
1−𝑟𝑖

− 𝑘𝑟𝑘
𝑖

0

)︃
,

and this gives for the bias term:

‖𝑃𝑖,𝑘Θ𝑖
0‖2 = (𝜃𝑖

0)2𝑐𝑖

[︁
(1 − 𝑟𝑘

𝑖 )1 + 𝑟𝑖

1 − 𝑟𝑖
− 𝑘𝑟𝑘

𝑖

]︁2
= (𝜃𝑖

0)2𝑐𝑖

[︁1 + 𝑟𝑖

1 − 𝑟𝑖
−
(︁
𝑘 + 1 + 𝑟𝑖

1 − 𝑟𝑖

)︁
𝑟𝑘

𝑖

]︁2
developing the product, then using formulas for 𝑟𝑖,

= (𝜃𝑖
0)2𝑐𝑖

[︁2 −
√︀
𝛾(𝑠𝑖 + 𝜆)√︀

𝛾(𝑠𝑖 + 𝜆)
−
(︁
𝑘 + 2 −

√︀
𝛾(𝑠𝑖 + 𝜆)√︀

𝛾(𝑐𝑖 + 𝜆)

)︁
(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘

]︁2
= (𝜃𝑖

0)2𝑐𝑖

𝛾(𝑠𝑖 + 𝜆)
[︁
2 −

√︁
𝛾(𝑠𝑖 + 𝜆)

−
(︂
𝑘
√︁
𝛾(𝑠𝑖 + 𝜆) + 2 −

√︁
𝛾(𝑠𝑖 + 𝜆)

)︂(︂
1 −

√︁
𝛾(𝑠𝑖 + 𝜆)

)︂𝑘 ]︁2
= (𝜃𝑖

0)2𝑐𝑖

𝛾(𝑠𝑖 + 𝜆)
[︁
2 −

√︁
𝛾(𝑠𝑖 + 𝜆) −

(︂
(2 + (𝑘 − 1)

√︁
𝛾(𝑠𝑖 + 𝜆)

)︂(︂
1 −

√︁
𝛾(𝑠𝑖 + 𝜆)

)︂𝑘 ]︁2
6 4 (𝜃𝑖

0)2𝑐𝑖

𝛾(𝑠𝑖 + 𝜆) , using Lemma B.11 in Section B.5. (B.17)

Variance term. With 𝑉 =
(︃
𝑣𝑖 0
0 0

)︃
,

tr𝑃𝑖,𝑘𝑉 𝑃𝑖,𝑘

= 𝑠𝑖

(1 − 𝑟𝑖)2

(︃1−𝑟𝑘
𝑖

1−𝑟𝑖
− 𝑘𝑟𝑘

𝑖 −1−𝑟𝑘
𝑖

1−𝑟𝑖
(𝑟𝑖)2 + 𝑘𝑟𝑘+1

𝑖

0 0

)︃(︃
𝑣𝑖 0
0 0

)︃⎛⎝ 1−𝑟𝑘
𝑖

1−𝑟𝑖
− 𝑘𝑟𝑘

𝑖 0
−1−𝑟𝑘

𝑖
1−𝑟𝑖

(𝑟𝑖)2 + 𝑘𝑟𝑘+1
𝑖 0

⎞⎠
= 𝑠𝑖𝑣𝑖

(1 − 𝑟𝑖)2

[︁1 − 𝑟𝑘
𝑖

1 − 𝑟𝑖
− 𝑘𝑟𝑘

𝑖

]︁2
= 𝑣𝑖ℎ𝑖

𝛾(𝑠𝑖 + 𝜆)
[︁1 − 𝑟𝑘

𝑖

1 − 𝑟𝑖
− 𝑘𝑟𝑘

𝑖

]︁2
= 𝑣𝑖ℎ𝑖

𝛾(𝑠𝑖 + 𝜆)(1 − 𝑟𝑖)2

[︁
1 − 𝑟𝑘

𝑖 − (1 − 𝑟𝑖)𝑘𝑟𝑘
𝑖

]︁2
= 𝑣𝑖ℎ𝑖

𝛾2(𝑠𝑖 + 𝜆)2

[︁
1 − (1 + 𝑘

√︁
𝛾(𝑠𝑖 + 𝜆))(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘

]︁2
,

and
𝑛∑︁

𝑘=1
tr𝑃𝑖,𝑘𝑉 𝑃𝑖,𝑘 = 𝑣𝑖𝑠𝑖

𝛾2(𝑠𝑖 + 𝜆)2

𝑛∑︁
𝑘=1

[︁
1 − (1 + 𝑘

√︁
𝛾(𝑠𝑖 + 𝜆))(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘

]︁2
6 𝑛

𝑣𝑖𝑠𝑖

𝛾2(𝑠𝑖 + 𝜆)2 using Lemma B.11 in Section B.5. (B.18)

Alternative bounds for the bias and the variance term, as in Equations(B.12), (B.15)
may be derived as well. Combining all these results, we are now able to state Theorem 3.3.
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B.3.4 Conclusion

Combining results from Lemma B.1, and Equations (B.12), (B.15), (B.16), with 𝑐 = Σ, and
using the following simple facts:

∙ For the least squares regression function, with 𝑐 = Σ, E⟨Θ̄𝑛, 𝐶Θ̄𝑛⟩ = E𝑓(𝜃𝑛) − 𝑓(𝜃*).

∙ Under assumption 𝒜3, 𝒜4, we have 𝑉 4 𝜏2Σ.

∙ The squared norm of a vector is the sum of its squared components on the orthonormal
eigenbasis. For example ‖𝑃𝑛+1Θ0‖2 =

∑︀𝑑
𝑖=1 ‖𝑃𝑖,𝑛+1Θ𝑖

0‖2.

∙ For any regularization parameter 𝜆 ∈ R+ and for any constant step-size 𝛾(Σ +𝜆I) 4 I,
for any 𝛿 ∈

[︀1−
√

𝛾𝜆

1+
√

𝛾𝜆
, 1
]︀
, matrix 𝐹 will have only two distinct complex eigenvalues or

two coalescent eigenvalues.

Proposition B.4. Under (𝒜4,5), for any regularization parameter 𝜆 ∈ R+ and for any constant

step-size 𝛾(Σ + 𝜆I) 4 I we have for any 𝛿 ∈
[︀1−

√
𝛾𝜆

1+
√

𝛾𝜆
, 1
]︀
, for the recursion in Equation (3.10):

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 2𝜆‖𝜆1/2Σ1/2(Σ + 𝜆𝐼)−1(𝜃0 − 𝜃*)‖2

+
𝑑∑︁

𝑖=1

2
(𝑛+ 1)2 min

{︃
36 𝑐𝑖(𝜃𝑖

0)2

𝛾(𝑠𝑖 + 𝜆) , 6𝑛(1 + 𝑒−1) 𝑐𝑖(𝜃𝑖
0)2√︀

𝛾(𝑠𝑖 + 𝜆)
, 𝑛2(1 + 𝑒−1)2𝑐𝑖(𝜃𝑖

0)2
}︃

+
𝑑∑︁

𝑖=1

𝛾2

(𝑛+ 1)2 𝑣𝑖𝑐𝑖 min
{︃

8𝑛
𝛾2(𝑠𝑖 + 𝜆)2 ,

(𝑛+ 1)3

2𝛾(𝑠𝑖 + 𝜆) ,
(𝑛+ 1)5

20

}︃
.

This implies, using the Equation (B.13) for the initial point, using 𝑐𝑖 = 𝜎𝑖 and regrouping
sums as traces or norms:

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 2𝜆‖𝜆1/2Σ1/2(Σ + 𝜆𝐼)−1(𝜃0 − 𝜃*)‖2

+ 2 min
{︃

36‖Σ1/2(Σ + 𝜆𝐼)−1/2(𝜃0 − 𝜃*)‖2

𝛾(𝑛+ 1)2 , (1 + 𝑒−1)2‖Σ1/2(𝜃0 − 𝜃*)‖2
}︃

+ min
{︃

8 tr(𝑉 Σ(Σ + 𝜆𝐼)−2)
𝑛+ 1 , 𝑛𝛾 tr(𝑉 Σ(Σ + 𝜆𝐼)−1)

}︃
,

which gives exactly Theorem 3.3 using 𝑉 4 𝜏2Σ in the Variance term, and 𝜆1/2(Σ+𝜆𝐼)−1/2 4
𝐼 in the first term.

B.4 Tighter bounds

B.4.1 Simple upper-bounds

In this section, we chow how tighter bounds naturally appear from the regularized quanti-
ties appearing in Theorems. It only relies on simple algebraic majorations, even if one has
to be careful with the allowed intervals for 𝑟, 𝑏.

Lemma B.5. For any 𝜆 > 0, for any 𝑏 ∈ [0; 1], if tr(Σ𝑏) exists, we have:

tr(Σ(Σ + 𝜆𝐼)−1) 6 tr(Σ𝑏)
𝜆𝑏

tr(Σ−2(Σ + 𝜆𝐼)−2) 6 tr(Σ𝑏)
𝜆𝑏

.



B.4. Tighter bounds 152

Proof. As all operators can be diagonalized in a same eigenbasis with positive eigenvalues,
we have,

tr(Σ(Σ + 𝜆𝐼)−1) 6
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

Σ1−𝑏(Σ + 𝜆𝐼)−1
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

tr(Σ𝑏)

|||Σ1−𝑏(Σ + 𝜆𝐼)−1||| 6 sup
06𝑥

𝑥1−𝑏

(𝑥+ 𝜆)

6 sup
06𝑥

𝑥1−𝑏
(︂ 1
𝜆

∧ 1
𝑥

)︂
6 sup

06𝑥
𝑥1−𝑏

(︂ 1
𝜆

)︂𝑏 (︂1
𝑥

)︂1−𝑏

= 𝜆−𝑏.

The calculations are exactly the same for tr(Σ−2(Σ + 𝜆𝐼)−2) 6 tr(Σ𝑏)
𝜆𝑏 .

As for the bias term, we need to bound the following quantities:

Lemma B.6. For any 𝜆 > 0, for any 𝑟 ∈ [−1; 1], we have:⃦⃦
Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

⃦⃦2
6 𝜆−(1+𝑟)⃦⃦Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦2
.

For any 𝜆 > 0, for any 𝑟 ∈ [−1; 0], we have:⃦⃦
(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)

⃦⃦2
6 𝜆−(1+𝑟)⃦⃦Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦2
.

For any 𝜆 > 0, for any 𝑟 ∈ [0; 1], we have:

‖Σ1/2(Σ + 𝜆𝐼)−1/2(𝜃0 − 𝜃*)‖2 6 𝜆−𝑟
⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦2

(No result when 𝑟 6 0 because of saturation effect).

Proof. Proof relies of simple following calculations:⃦⃦
Σ1/2(Σ + 𝜆I)−1(𝜃0 − 𝜃*)

⃦⃦
6

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
Σ1/2−𝑟/2(Σ + 𝜆I)−1

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒ ⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦
6

(︂ 1
𝜆

)︂1−(1/2−𝑟/2) ⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦
6 𝜆− 1+𝑟

2
⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦

⃦⃦
(Σ + 𝜆I)−1/2(𝜃0 − 𝜃*)

⃦⃦
6

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
Σ−𝑟/2(Σ + 𝜆I)−1/2

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦
6

(︂ 1
𝜆

)︂ 1+𝑟
2 ⃦⃦

Σ𝑟/2(𝜃0 − 𝜃*)
⃦⃦

6 𝜆− 1+𝑟
2
⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦

‖Σ1/2(Σ + 𝜆𝐼)−1/2(𝜃0 − 𝜃*)‖ 6
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

Σ1/2−𝑟/2(Σ + 𝜆I)−1/2
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒⃦⃦

Σ𝑟/2(𝜃0 − 𝜃*)
⃦⃦

6
(︂ 1
𝜆

)︂ 1−(1−𝑟)
2 ⃦⃦

Σ𝑟/2(𝜃0 − 𝜃*)
⃦⃦

6 𝜆− 𝑟
2
⃦⃦
Σ𝑟/2(𝜃0 − 𝜃*)

⃦⃦
.
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B.4.2 Theorem 3.5 and Equation (3.13)

Theorem 3.5 and Equation (3.13) are directly derived from Theorem 3.2 and Theorem 3.3,
using Lemmas B.5 and B.6.

To derive corollaries for the optimal 𝛾, one has to find the 𝛾 that balances the bias and
variance term and to compute the products for such a step size.

Equation (3.13)

We derive from Theorem 3.2, when choosing 𝛾 = (𝜆𝑛)−1, and using Lemmas B.5 and B.6,
the following bound, under assumptions of Theorem 3.2:

E𝑓(𝜃𝑛) − 𝑓(𝜃*) 6 (18 + Res(𝑛, 𝑏, 𝑟, 𝛾))‖Σ𝑟/2(𝜃0 − 𝜃*)‖2

(𝛾𝑛)
1−𝑟

2
+ 6𝜎2 tr(Σ𝑏)𝛾𝑏

𝑛1−𝑏
.

Where Res(𝑛, 𝑏, 𝑟, 𝛾) := 3𝛾1+𝑏𝑛𝑏 tr(Σ𝑏) if −1 6 𝑟 6 0 and Res(𝑛, 𝑏, 𝑟, 𝛾) := 0 if 0 6 𝑟 6 1.

When choosing the optimal 𝛾 ∝ 𝑛
−𝑏+𝑟

𝑏+1−𝑟 , we have that 𝛾1+𝑏𝑛𝑏 = 𝑛−1+ 1+𝑏
1+𝑏−𝑟 = 𝑛𝜒, with

𝜒 = −𝑟
1+𝑏−𝑟 > 0 if 𝑟 6 0. Thus the residual term is always vanishing for 𝑟 6 0 and does not

exist for 𝑟 > 0.

Theorem 3.5

Theorem 3.5 directly follows from Lemmas B.5 and B.6 and the choice of 𝛾 ∝ 𝑛
−2𝑏+2𝑟−1

𝑏+1−𝑟 .

B.5 Technical Lemmas

The following sequence of Lemmas appear in the proof. They are mostly independent and
rely on simple calculations.

Lemma B.7. The operator
[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1 is a non-decreasing operator on
(𝑆𝑛,4).

Proof. Lemma means that for two matrices 𝑀,𝑁 ∈ 𝑆𝑛(R) such that 𝑀 4 𝑁 , then[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝑀 4

[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝑁.

It is equivalent to show that for any symmetric positive matrix 𝐴 ∈ 𝑆+
𝑛 ,[︀

(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)
]︀−1

𝐴 ∈ 𝑆+
𝑛 (R).

We consider a matrix 𝐴 ∈ 𝑆+
𝑛 (R). 𝐴 can be decomposed as a sum of (at most) 𝑛 rank one

matrices 𝐴 =
∑︀𝑛

𝑖=1 𝜔𝑖𝜔
⊤
𝑖 , with 𝜔𝑖 ∈ R𝑛. We thus just have to prove that for some 𝜔 ∈ R𝑛,[︀

(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)
]︀−1

𝜔𝜔⊤ ∈ 𝑆+
𝑛 (R).

Let Σ =
∑︀

𝑖>0 𝜇𝑖𝑒𝑖 ⊗ 𝑒𝑖 is the eigenvalue decomposition of Σ, then

[︀
(Σ + 𝜆I) ⊗ I + I ⊗ (Σ + 𝜆I)

]︀−1
𝜔𝜔⊤ =

∑︁
𝑖,𝑗>0

⟨𝜔, 𝑒𝑖⟩⟨𝜔, 𝑒𝑗⟩
𝜇𝑖 + 𝜇𝑗 + 2𝜆𝑒𝑖 ⊗ 𝑒𝑗 .

Thus, in the orthonormal basis of eigenvectors, this is thus Hadamard product between∑︁
𝑖,𝑗>0

⟨𝜔, 𝑒𝑖⟩⟨𝜔, 𝑒𝑗⟩𝑒𝑖 ⊗ 𝑒𝑗 = 𝜔𝜔⊤
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and the matrix 𝐶 =
(︁(︀ 1

𝜇𝑖+𝜇𝑗+2𝜆

)︀
𝑖,𝑗>0

)︁
. Matrix 𝐶 is a Cauchy matrix and is thus positive.

Moreover the Hadamard product of two positive matrices is positive, which concludes the
proof.

Remark: surprisingly, the inverse operator (Σ+𝜆I)⊗I+I⊗(Σ+𝜆I) is not non-decreasing.
Indeed, 4 is not a total order on 𝑆𝑛 so we may have that an operator is non-decreasing
and its inverse is not.

Lemma B.8. For all 𝜌 ∈ (0, 1) and 𝜔 ∈ [−𝜋/2;𝜋/2] and 𝑟± = 𝜌(cos(𝜔) ±
√

−1 sin(𝜔)) we
have: ⃒⃒⃒⃒1 − 𝑟+𝑟− − 𝜌𝑘|𝐴1|

|1 − 𝑟+|

⃒⃒⃒⃒
6 min{1 + 𝜌+ 𝑒−1 + 4𝜌𝑘, 2 + 𝜌+

√
5𝜌𝑘+1} 6 6. (B.19)

Proof. We note that 𝜌𝑘
𝑖𝐴1 is a real number as is is a quotient of pure complex numbers,

which come from the difference between a complex and its conjugate. We first write 𝐴1 as
a combination of sine and cosine functions:

𝜌𝑘
𝑖𝐴1 = (𝑟−

𝑖 )𝑘+1(1 − 𝑟+
𝑖 )2 − (𝑟+

𝑖 )𝑘+1(1 − 𝑟−
𝑖 )2

𝑟−
𝑖 − 𝑟+

𝑖

= −(𝑟−
𝑖 )𝑘+1 − (𝑟+

𝑖 )𝑘+1 − 2𝑟−
𝑖 𝑟

+
𝑖 ((𝑟−

𝑖 )𝑘 − (𝑟+
𝑖 )𝑘) + (𝑟−

𝑖 𝑟
+
𝑖 )(𝑟−

𝑖 )𝑘−1 − (𝑟+
𝑖 )𝑘−1)

𝜌𝑖 sin𝜔𝑖

= −𝜌𝑘+1
𝑖 sin((𝑘 + 1)𝜔𝑖) − 2𝜌𝑘+2

𝑖 sin(𝑘𝜔𝑖) + 𝜌𝑘+3
𝑖 sin((𝑘 − 1)𝜔𝑖)

𝜌𝑖 sin𝜔𝑖
.

This quantity can be simplified when 𝜌 → 1 or 𝜔 → 0. We thus modify the expression
of 𝐴1 to make these dependencies clearer:

−𝐴1 = sin((𝑘 + 1)𝜔𝑖) − 2𝜌𝑖 sin(𝑘𝜔𝑖) + 𝜌2
𝑖 sin((𝑘 − 1)𝜔𝑖)

sin𝜔𝑖

= (cos(𝜔) − 𝜌)(sin(𝑘𝜔) − 𝜌 sin((𝑘 − 1)𝜔)) + cos(𝑘𝜔) sin(𝜔) − 𝜌 cos((𝑘 − 1)𝜔) sin(𝜔)
sin𝜔𝑖

developing sin(𝑎+ 𝑏) = sin(𝑎) cos(𝑏) + cos(𝑎) sin(𝑏) and regrouping terms,

= (cos(𝜔) − 𝜌)2 sin((𝑘 − 1)𝜔) + (cos(𝜔) − 𝜌) sin(𝜔) cos((𝑘 − 1)𝜔) + cos(𝑘𝜔) sin(𝜔)
sin𝜔𝑖

−𝜌 cos((𝑘 − 1)𝜔) sin(𝜔)
sin𝜔𝑖

= (cos(𝜔) − 𝜌)2 sin((𝑘 − 1)𝜔)
sin𝜔𝑖

+ (cos(𝜔) − 𝜌) cos((𝑘 − 1)𝜔) + cos(𝑘𝜔)

−𝜌 cos((𝑘 − 1)𝜔)
simplifying expression, then developing the cosine,

= (cos(𝜔) − 𝜌)2 sin((𝑘 − 1)𝜔)
sin𝜔𝑖

+ 2(cos(𝜔) − 𝜌) cos((𝑘 − 1)𝜔) + sin(𝜔) sin((𝑘 − 1)𝜔)

. (B.20)

So that in that final expression all the terms behave relatively simply when 𝜌 → 1 or 𝜔 → 0.
We want to upper bound: ⃒⃒⃒⃒1 − 𝑟+𝑟− − 𝜌𝑘|𝐴1|

|1 − 𝑟+|

⃒⃒⃒⃒
.

We thus consider separately the first and second term.

1 − 𝑟+
𝑖 𝑟

−
𝑖

|1 − 𝑟+
𝑖 |

= 1 − 𝜌2

|1 − 𝑟+
𝑖 |
6 1 + 𝜌 (exact if 𝜔 = 0).
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Then, using Equation (B.20):

−𝜌𝑘
𝑖 |𝐴1|

|1 − 𝑟+
𝑖 |

= 𝜌𝑘
(cos(𝜔)−𝜌)2 sin((𝑘−1)𝜔)

sin 𝜔𝑖
+ 2(cos(𝜔) − 𝜌) cos((𝑘 − 1)𝜔) + sin(𝜔) sin((𝑘 − 1)𝜔)√︁

(1 − 𝜌 cos𝜔)2 + 𝜌2 sin2(𝜔)
.

Considering separately the three terms in the numerator, using numerous times that for
any 𝑎, 𝑏 ∈ [0; 1], |𝑎− 𝑏| 6 1 − 𝑎𝑏:

♦ =

⃒⃒⃒⃒
⃒⃒𝜌𝑘

(cos(𝜔)−𝜌)2 sin((𝑘−1)𝜔)
sin 𝜔𝑖√︁

(1 − 𝜌 cos𝜔)2 + 𝜌2 sin2(𝜔)

⃒⃒⃒⃒
⃒⃒

6 𝜌𝑘 (cos(𝜔) − 𝜌) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

as |(cos(𝜔) − 𝜌)| 6 1 − 𝜌 cos(𝜔),

6 𝜌𝑘 (cos(𝜔) − 1) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

+ 𝜌𝑘 (1 − 𝜌) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

writing cos(𝜔) − 𝜌 = cos(𝜔) − 1 + 1 − 𝜌

6 𝜌𝑘(1 − 𝜌)(𝑘 − 1) + 𝜌𝑘 (cos(𝜔) − 1) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

as | sin((𝑘 − 1)𝜔)| 6 |(𝑘 − 1) sin(𝜔)|,

6 𝜌𝑘(1 − 𝜌)𝑘 − (1 − 𝜌)𝜌𝑘 + 𝜌𝑘 (cos(𝜔) − 1) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

writing cos(𝜔) − 1 = 2 sin2(𝜔/2),

6 𝜌𝑘(1 + (1 − 𝜌))𝑘 − 𝜌𝑘 − (1 − 𝜌)𝜌𝑘 + 𝜌𝑘 2 sin2(𝜔/2)
sin𝜔𝑖

using 1 + (1 − 𝜌)𝑘 6 (1 + (1 − 𝜌))𝑘,

6 𝜌𝑘(1 + (1 − 𝜌))𝑘 − 𝜌𝑘 − (1 − 𝜌)𝜌𝑘 + 𝜌𝑘 tan(𝜔/2)
and as tan(𝜔/2) 6 1 for |𝜔| 6 𝜋/2,

6 1 − (1 − 𝜌)𝜌𝑘

using 𝜌𝑘(1 + (1 − 𝜌))𝑘 = (1 − (1 − 𝜌)2)𝑘 6 1,

And for the second and third term:

2

⃒⃒⃒⃒
⃒⃒𝜌𝑘 (cos(𝜔) − 𝜌) cos((𝑘 − 1)𝜔)√︁

(1 − 𝜌 cos𝜔)2 + 𝜌2 sin2(𝜔)

⃒⃒⃒⃒
⃒⃒ 6 2𝜌𝑘,

⃒⃒⃒⃒
⃒⃒𝜌𝑘 + sin(𝜔) sin((𝑘 − 1)𝜔)√︁

(1 − 𝜌 cos𝜔)2 + 𝜌2 sin2(𝜔)

⃒⃒⃒⃒
⃒⃒ 6 𝜌𝑘.

Thus: ⃒⃒⃒⃒1 − 𝑟+
𝑖 𝑟

−
𝑖 − 𝜌𝑘

𝑖 |𝐴1|
|1 − 𝑟+

𝑖 |

⃒⃒⃒⃒
6 1 + 𝜌+ 1 + 3𝜌𝑘.

We also have

♦ = |𝜌𝑘
(cos(𝜔)−𝜌)2 sin((𝑘−1)𝜔)

sin 𝜔𝑖√︁
(1 − 𝜌 cos𝜔)2 + 𝜌2 sin2(𝜔)

|
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6 𝜌𝑘 (cos(𝜔) − 𝜌) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

6 𝜌𝑘(1 − 𝜌)(𝑘 − 1) + 𝜌𝑘 (cos(𝜔) − 1) sin((𝑘 − 1)𝜔)
sin𝜔𝑖

6 (1 − 1
𝑘 + 1)𝑘+1 − (1 − 𝜌)𝜌𝑘 + 𝜌𝑘 (cos(𝜔) − 1) sin((𝑘 − 1)𝜔)

sin𝜔𝑖

6 𝑒−1 − (1 − 𝜌)𝜌𝑘 + 𝜌𝑘 sin2(𝜔/2)
sin𝜔𝑖

.

Using that

𝑘 sup
𝑥∈[0;1]

𝑥𝑘(1 − 𝑥) = 𝑘
1

𝑘 + 1(1 − 1
𝑘 + 1)𝑘 = (1 − 1

𝑘 + 1)𝑘+1 (B.21)

= exp((𝑘 + 1) ln((1 − 1
𝑘 + 1)) 6 𝑒−1, (B.22)

we get ⃒⃒⃒⃒1 − 𝑟+
𝑖 𝑟

−
𝑖 − 𝜌𝑘

𝑖 |𝐴1|
|1 − 𝑟+

𝑖 |

⃒⃒⃒⃒
6 1 + 𝜌+ 𝑒−1 + 4𝜌𝑘

We can also change 3𝜌𝑘 into
√

5𝜌𝑘 We have used that |(𝜌− cos(𝜔))| 6 (1 − 𝜌 cos(𝜔)).

Lemma B.9. For any 𝜌𝑖 ∈ (0; 1), for any 𝜔𝑖 ∈ [−𝜋/2;𝜋/2]

𝜌𝑗
𝑖 sin(𝜔𝑖(𝑗 + 1))

sin(𝜔𝑖)
− 𝜌𝑗+1

𝑖

sin(𝜔𝑖𝑗)
sin(𝜔𝑖)

6 1 + 𝑒−1.

Proof.

𝜌𝑗
𝑖 sin(𝜔𝑖(𝑗 + 1))

sin(𝜔𝑖)
− 𝜌𝑗+1

𝑖

sin(𝜔𝑖𝑗)
sin(𝜔𝑖)

= 𝜌𝑗
𝑖

(︂sin(𝜔𝑖(𝑗 + 1)) − 𝜌𝑖 sin(𝜔𝑖𝑗)
sin(𝜔𝑖)

)︂
= 𝜌𝑗

𝑖

(︂(cos(𝜔𝑖) − 𝜌𝑖) sin(𝜔𝑖𝑗)
sin(𝜔𝑖)

+ cos(𝑗𝜔𝑖)
)︂

6 𝜌𝑗
𝑖 ((1 − 𝜌𝑖)𝑗 + 1)

6 1 + 𝑒−1 using (B.22).

Lemma B.10. For all 𝜌 ∈ (0, 1) and 𝜔 ∈ [−𝜋/2;𝜋/2] and 𝑟± = 𝜌(cos(𝜔) ±
√

−1 sin(𝜔)) we
have: ⃒⃒⃒⃒

𝜌𝑘
𝑖𝐵1,𝑘

⃒⃒⃒⃒
6 1.75 (B.23)

Proof. Once again, as the considered quantity is real, we first express it as a combination
of sine and cosine functions. We then use some simple trigonometric tricks to upper bound
the quantity.

𝜌𝑘
𝑖𝐵1,𝑘 = −(𝑟−

𝑖 )𝑘+1(1 − 𝑟+
𝑖 ) − (𝑟+

𝑖 )𝑘+1(1 − 𝑟−
𝑖 )

𝑟+
𝑖 − 𝑟−

𝑖

= −
2Im

[︀
(𝑟−

𝑖 )𝑘+1(1 − 𝑟+
𝑖 )
]︀

√
−Δ𝑖
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as it is the difference between a complex and its conjugate,

= −
Im
[︀
𝜌𝑘

𝑖 𝑒
−(𝑘+1)𝑖𝜔𝑖(1 − 𝜌𝑖 cos(𝜔𝑖) − 𝑖𝜌𝑖 sin(𝜔𝑖))

]︀
sin𝜔𝑖𝜌𝑖

developing the product,

= 𝜌𝑘
𝑖

cos((𝑘 + 1)𝜔𝑖) sin(𝜔𝑖)𝜌𝑖 + sin((𝑘 + 1)𝜔𝑖)(1 − 𝜌𝑖 cos(𝜔𝑖))
sin𝜔𝑖𝜌𝑖

= 𝜌𝑘
𝑖

[︁
𝜌𝑖 cos((𝑘 + 1)𝜔𝑖) + (1 − 𝜌𝑖 cos(𝜔𝑖))

sin((𝑘 + 1)𝜔𝑖)
sin𝜔𝑖

]︁
and simplifying.

Let’s turn our interest to the second part of the quantity:

♦ =
⃒⃒⃒⃒
𝜌𝑘

𝑖 (1 − 𝜌𝑖 cos(𝜔𝑖))
sin((𝑘 + 1)𝜔𝑖)

sin𝜔𝑖

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝜌𝑘

𝑖 (1 − 𝜌𝑖 + 𝜌𝑖(1 − cos(𝜔𝑖)))
sin((𝑘 + 1)𝜔𝑖)

sin𝜔𝑖

⃒⃒⃒⃒
introducing an artificial + 𝜌𝑖 − 𝜌𝑖,

6 𝜌𝑘
𝑖

⃒⃒⃒⃒
(1 − 𝜌𝑖)

sin((𝑘 + 1)𝜔𝑖)
sin𝜔𝑖

⃒⃒⃒⃒
+ 𝜌𝑘

𝑖

⃒⃒⃒⃒
𝜌𝑖(1 − cos(𝜔𝑖))

sin((𝑘 + 1)𝜔𝑖)
sin𝜔𝑖

⃒⃒⃒⃒
by triangular inequality,

6 𝜌𝑘
𝑖

⃒⃒⃒⃒
(1 − 𝜌𝑖)(𝑘 + 1)

⃒⃒⃒⃒
+ 𝜌𝑘

𝑖

⃒⃒⃒⃒
𝜌𝑖 sin2(𝜔2 ) 1

2 cos(𝜔
2 ) sin(𝜔

2 )

⃒⃒⃒⃒
using 1 − cos(𝜔𝑖) = 2 sin2(𝜔2 )

6 𝜌𝑘
𝑖 (1 − 𝜌𝑖)𝑘 + 𝜌𝑘

𝑖 (1 − 𝜌) + 𝜌𝑘
𝑖

⃒⃒⃒⃒
𝜌𝑖 sin2(𝜔2 ) 1

2 cos(𝜔
2 ) sin(𝜔

2 )

⃒⃒⃒⃒
6 (1 − (1 − 𝜌𝑖))𝑘(1 + (1 − 𝜌𝑖))𝑘 − 𝜌𝑘

𝑖 + 1
2(𝑘 + 1) + 𝜌𝑘

𝑖

⃒⃒⃒⃒
𝜌𝑖

2 tan(𝜔2 )
⃒⃒⃒⃒

6 (1 − (1 − 𝜌𝑖)2)𝑘 + 1
4 + 1

2 6 1 + 1
4 + 1

2 − 𝜌𝑘
𝑖 .

Thus ⃒⃒⃒⃒
𝜌𝑘

𝑖𝐵1,𝑘

⃒⃒⃒⃒
= 𝜌𝑘

𝑖 + 1 + 1
4 + 1

2 − 𝜌𝑘
𝑖 6 1 + 1

4 + 1
2 = 1.75.

Lemma B.11. For any 𝑠𝑖, 𝛾, 𝜆 ∈ R3
+ such that 𝛾(𝑠𝑖 + 𝜆) 6 1, for any 𝑘 ∈ N, we have the two

following highly related identities:

0 6 2 −
√︁
𝛾(𝑠𝑖 + 𝜆) −

(︀
2 + (𝑘 − 1)

√︁
𝛾(𝑠𝑖 + 𝜆)

)︀
(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘 6 2

0 6 1 − (1 + 𝑘
√︁
𝛾(𝑠𝑖 + 𝜆))(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘 6 1.

Proof. Proof relies on the trick, for any 𝛼 ∈ R, 𝑛 ∈ N: 1 + 𝑛𝛼 6 (1 + 𝛼)𝑛. For the first one:√︁
𝛾(𝑠𝑖 + 𝜆) +

(︀
2 + (𝑘 − 1)

√︁
𝛾(𝑠𝑖 + 𝜆)

)︀
(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘 =

=
√︁
𝛾(𝑠𝑖 + 𝜆) + (1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘 +

(︀
1 + (𝑘 − 1)

√︁
𝛾(𝑠𝑖 + 𝜆)

)︀
(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘

6
√︁
𝛾(𝑠𝑖 + 𝜆) + (1 −

√︁
𝛾(𝑠𝑖 + 𝜆)) +

(︀
1 + (𝑘 − 1)

√︁
𝛾(𝑠𝑖 + 𝜆)

)︀
(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘−1

6 1 + (1 − 𝛾(𝑠𝑖 + 𝜆))𝑘−1 6 2.

For the second one:

0 6 (1 + 𝑘
√︁
𝛾(𝑠𝑖 + 𝜆))(1 −

√︁
𝛾(𝑠𝑖 + 𝜆))𝑘 6 (1 − 𝛾(𝑠𝑖 + 𝜆))𝑘 6 1.



4
Bridging the Gap between Constant Step

Size Stochastic Gradient Descent and
Markov Chains

We consider the minimization of an objective function given access to unbiased estimates
of its gradient through stochastic gradient descent (SGD) with constant step-size. While
the detailed analysis was only performed for quadratic functions, we provide an explicit
asymptotic expansion of the moments of the averaged SGD iterates that outlines the
dependence on initial conditions, the effect of noise and the step-size, as well as the lack
of convergence in the general (non-quadratic) case. For this analysis, we bring tools from
Markov chain theory into the analysis of stochastic gradient and create new ones (similar
but different from stochastic MCMC methods). We then show that Richardson-Romberg
extrapolation may be used to get closer to the global optimum and we show empirical
improvements of the new extrapolation scheme.

This chapter is based on our work Bridging the Gap between Constant Step Size Stochastic
Gradient Descent and Markov Chains, A. Dieuleveut, A. Durmus and F.Bach.
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4.1 Introduction

We consider the minimization of an objective function given access to unbiased estimates
of the function values or its gradients. This key methodological problem has raised interest
in different communities: in large-scale machine learning (Bottou and Bousquet, 2008;
Shalev-Shwartz et al., 2009, 2007), optimization (Nemirovski et al., 2009; Nesterov and
Vial, 2008), and stochastic approximation (Kushner and Yin, 2003; Polyak and Juditsky,
1992; Ruppert, 1988). The most widely used algorithms are stochastic gradient descent
(SGD), a.k.a. Robbins-Monro algorithm (Robbins and Monro, 1951), and some of its
modifications based on averaging of the iterates (Polyak and Juditsky, 1992; Rakhlin et al.,
2011; Shamir and Zhang, 2013).

While the choice of the step-size may be done robustly in the deterministic case (see,
e.g., Bertsekas, 1995), this remains a traditional theoretical and practical issue in the
stochastic case. Indeed, early work suggested to use step-size decaying with the number 𝑘
of iterations as 𝑂(1/𝑘) (Robbins and Monro, 1951), but it appeared to be non-robust to
ill-conditioning and slower decays such as 𝑂(1/

√
𝑘) together with averaging lead to both

good practical and theoretical performance (Bach, 2014).
We consider in this chapter constant step-size SGD, which is often used in practice.

Although the algorithm is not converging in general to the global optimum of the objective
function, constant step-sizes come with benefits: (a) there is single parameter value to set
as opposed to the several choices of parameters to deal with decaying step-sizes, e.g., as
1/(�𝑘 + △)∘; the initial conditions are forgotten exponentially fast for well-conditioned
(e.g., strongly convex) problems (Nedić and Bertsekas, 2001; Needell et al., 2014), and the
performance, although not optimal, is sufficient in practice (in a machine learning set-up,
being only 0.1% away from the optimal prediction often does not matter).

The main goals of this chapter are (a) to gain a complete understanding of the prop-
erties of constant-step-size SGD in the strongly convex case, and (b) to propose provable
improvements to get closer to the optimum when precision matters or in high-dimensional
settings. We consider the iterates of the SGD recursion on R𝑑 defined starting from 𝜃0 ∈ R𝑑,
for 𝑘 > 0, and a step-size 𝛾 > 0 by

𝜃
(𝛾)
𝑘+1 = 𝜃

(𝛾)
𝑘 − 𝛾

[︀
𝑓 ′(𝜃(𝛾)

𝑘 ) + 𝜀𝑘+1(𝜃(𝛾)
𝑘 )

]︀
, (4.1)

where 𝑓 is the objective function to minimize (in machine learning the generalization per-
formance), 𝜀𝑘+1(𝜃(𝛾)

𝑘 ) the zero-mean statistically independent noise (in machine learning,
obtained from a single i.i.d. observation of a data point). Following Bach and Moulines
(2013), we leverage the property that the sequence of iterates (𝜃(𝛾)

𝑘 )𝑘>0 is an homogeneous
Markov chain.

This interpretation allows us to capture the general behavior of the algorithm. In the
strongly convex case, this Markov chain converges exponentially fast to its unique stationary
distribution 𝜋𝛾 (see Section 4.3.1) highlighting the facts that (a) initial conditions of the
algorithms are forgotten quickly and (b) the algorithm does not converge to a point but
oscillates around the mean of 𝜋𝛾 . See an illustration in Figure 4.1 (left). It is known that
the oscillations of the non-averaged iterates have an average magnitude of 𝛾1/2 (Pflug,
1986).
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Consider the average process (𝜃(𝛾)
𝑘 )𝑘>0 given for all 𝑘 > 0 by

𝜃
(𝛾)
𝑘 = 1

𝑘 + 1

𝑘∑︁
𝑗=0

𝜃
(𝛾)
𝑗 . (4.2)

Then under appropriate conditions on the Markov chain (𝜃(𝛾)
𝑘 )𝑘>0, a central limit theorem

on (𝜃(𝛾)
𝑘 )𝑘>0 holds which implies that 𝜃(𝛾)

𝑘 converges at rate 𝑂(1/
√
𝑘) to

𝜃𝛾 =
∫︁

R𝑑
𝜗 d𝜋𝛾(𝜗) . (4.3)

The deviation between 𝜃
(𝛾)
𝑘 and the global optimum 𝜃* is thus composed of a stochastic

part 𝜃(𝛾)
𝑘 − 𝜃𝛾 and a deterministic part 𝜃(𝛾) − 𝜃*.

For quadratic functions, it turns out that the deterministic part vanishes (Bach and
Moulines, 2013), that is, 𝜃(𝛾) = 𝜃* and thus averaged SGD with a constant step-size does
converge. However, it is not true for general objective functions where we can only show
that 𝜃𝛾 − 𝜃* = 𝑂(𝛾), and this deviation is the reason why constant step-size SGD is not
convergent.

The first main contribution of the chapter is to provide an explicit asymptotic expansion
that highlights all dependencies on initial conditions and noise variance, as achieved for
least-squares by Défossez and Bach (2015), with an explicit decomposition into “bias” and
“variance” terms: the bias term characterizes how fast initial conditions are forgotten and
thus is increasing in a well-chosen norm of 𝜃0 − 𝜃*; while the variance term characterizes
the effect of the noise in the gradient, independently of the starting point, and increases
with the covariance of the noise.

Moreover, akin to weak error results for ergodic diffusions, we achieve a non-asymptotic
weak error expansion in the step-size between 𝜋𝛾 and the Dirac at 𝜃*. Namely, we prove
that for all functions 𝑔 : R𝑑 → R, regular enough,

∫︀
R𝑑 𝑔(𝜃)d𝜋𝛾(𝜃) = 𝑔(𝜃*) + 𝛾𝐶 +𝑂(𝛾2) for

some 𝐶 ∈ R independent of 𝛾. Given this expansion, we can now use a very simple trick
from numerical analysis, namely Richardson-Romberg extrapolation (Stoer and Bulirsch,
2013): if we run two SGD recursions (𝜃(𝛾)

𝑘 )𝑘>0 and (𝜃(2𝛾)
𝑘 )𝑘>0 with the two different step-

sizes 𝛾 and 2𝛾, then the averaged iterates (𝜃(𝛾)
𝑘 )𝑘>0 and (𝜃(2𝛾)

𝑘 )𝑘>0 will converge to 𝜃𝛾 and
𝜃2𝛾 respectively. Since 𝜃𝛾 = 𝜃* + Δ𝛾 + 𝑂(𝛾2) and 𝜃2𝛾 = 𝜃* + 2Δ𝛾 + 𝑂(𝛾2), for Δ ∈ R𝑑

independent of 𝛾, the combined iterate 2𝜃(𝛾)
𝑘 − 𝜃

(2𝛾)
𝑘 will converge to a point which is

𝜃* +𝑂(𝛾2) and we have thus gained one order in the convergence rate. See illustration in
Figure 4.1(right).

In summary, we make the following contributions:

∙ We provide in Section 4.2 an asymptotic expansion of the mean of the averaged SGD
iterate that outlines the dependence on initial conditions, the effect of noise and the
step-size.

∙ We show in Section 4.2 that Richardson-Romberg extrapolation may be used to get
closer to the global optimum.

∙ We bring and adapt in Section 4.3 tools from analysis of discretization of diffusion
processes into the one of SGD and create new ones. We believe that this analogy and
the associated ideas are interesting in their own right.

∙ We show in Section 4.4 empirical improvements of the extrapolation schemes.

Proofs are given in Chapter C.
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θ̄γ

θ0

θk,γ

θ̄k,γ

θ∗

θk,γ − θ̄γ = Op(γ
1/2)

θ̄k,γ − θ̄γ = Op(k
−1/2)

θ∗ − θ̄γ = O(γ)

θ∗

θ̄γ

θ̄2γ

2θ̄γ − θ̄2γ

θ∗+γ∆

θ∗+2γ∆

Figure 4.1: (Left) Convergence of iterates 𝜃(𝛾)
𝑘 and averaged iterates 𝜃(𝛾)

𝑘 to the mean 𝜃(𝛾)

under the stationary distribution 𝜋𝛾 . (Right) Richardson-Romberg extrapolation, the disks
are of radius 𝑂(𝛾2).

4.2 Main results

In this section, we describe the assumptions underlying our analysis and give our main
results.

4.2.1 Setting

Let 𝑓 : R𝑑 → R be an objective function, satisfying the following assumptions:

A1. The function 𝑓 is strongly convex with convexity constant 𝜇, i.e., 𝑓 − 𝜇
2 ‖ · ‖2 is convex.

A2. The function 𝑓 is four times continuously differentiable with uniformly second to fourth
bounded derivatives. Especially 𝑓 is 𝐿-smooth: ∀𝜃 ∈ R𝑑, the largest eigenvalue of 𝑓 ′′(𝜃) is less
than 𝐿.

If there exists a positive definite matrix Σ ∈ R𝑑×𝑑, such that the function 𝑓 is a quadratic
function 𝑓Σ : 𝜃 ↦→ ‖Σ1/2(𝜃 − 𝜃*)‖2, then Assumptions A1, A2 are satisfied.

In the definition of SGD given by (4.1), (𝜀𝑘)𝑘>1 is a sequence of random functions from
R𝑑 to R satisfying the following properties.

A3. There exists a filtration (ℱ𝑘)𝑘>0 (i.e., for all 𝑘 ∈ N, ℱ𝑘 ⊂ ℱ𝑘+1) on some probability space
(Ω,ℱ ,P) such that for any 𝑘 ∈ N, for any 𝜃 ∈ R𝑑, 𝜀𝑘+1(𝜃) is an ℱ𝑘+1-measurable random
variable and E [𝜀𝑘+1(𝜃)|ℱ𝑘] = 0. In addition, (𝜀𝑘)𝑘∈N* are independent and identically
distributed (i.i.d.) random fields.

A3 expresses that we observe a noisy gradient 𝑓 ′
𝑘+1(𝜃(𝛾)

𝑘 ) = 𝑓 ′(𝜃(𝛾)
𝑘 ) − 𝜀𝑘+1(𝜃(𝛾)

𝑘 ) which
are unbiased estimator of 𝑓 ′. Note that we do not assume that the random vectors
(𝜀𝑘+1(𝜃(𝛾)

𝑘 ))𝑘∈N are i.i.d., a stronger assumption generally referred to as the semi-stochastic
setting. We also consider the following conditions on the noise, for 𝑝 > 2:

A4 (p). For any 𝑘 ∈ N*, 𝑓 ′
𝑘 is almost surely 𝐿-co-coercive (with the same constant as in

A2): for any 𝜂, 𝜃 ∈ R𝑑, 𝐿 ⟨𝑓 ′
𝑘(𝜃) − 𝑓 ′

𝑘(𝜂), 𝜃 − 𝜂⟩ > ‖𝑓 ′
𝑘(𝜃) − 𝑓 ′

𝑘(𝜂)‖2. Moreover, for any
𝑘 ∈ N*, there exists 𝜏𝑝 > 0, such that 𝜀𝑘(𝜃*) admits bounded moments up to the order 𝑝:
E1/𝑝[‖𝜀𝑘(𝜃*)‖𝑝] 6 𝜏𝑝.

Almost sure 𝐿-co-coercivity (Zhu and Marcotte, 1996) is for example satisfied if for any
𝑘 ∈ N*, there exist a random function 𝑓𝑘 (such that 𝑓 ′

𝑘 = (𝑓𝑘)′) which is a.s. convex and
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𝐿-smooth. Note that weaker assumptions could be made on the noise (see Section C.1.3
for a discussion). Also note that we could remove the “for any 𝑘 ∈ N*” quantification in
Assumption A4, and only make the assumption for 𝑘 = 1: as the functions are already
assumed to be i.i.d., the assumption for 𝑘 = 1 is equivalent to the assumption for all 𝑘 ∈ N*.

Learning from i.i.d. observations. Our main motivation comes from machine learning;
namely, we consider sets 𝒳 ,𝒴, a convex loss function ℓ : 𝒳 × 𝒴 × R𝑑 → R. The objective
function is the generalization error 𝑓ℓ(𝜃) = E𝑋,𝑌 [ℓ(𝑋,𝑌, 𝜃)]. For any 𝑘 > 1, we define
𝜀𝑘(𝜃) = ℓ(𝑥𝑘, 𝑦𝑘, 𝜃) − 𝑓ℓ(𝜃) which corresponds to following the negative gradient of a single
i.i.d. observation (𝑥𝑘, 𝑦𝑘)𝑘>1; Assumption A3 is then satisfied with ℱ𝑘 := 𝜎((𝑥𝑗 , 𝑦𝑗)16𝑗6𝑘).

Two classical situations are worth mentioning: in least-squares regression, 𝒳 = R𝑑,
𝒴 = R, and the loss function is ℓ(𝑋,𝑌, 𝜃) = (⟨𝑋, 𝜃⟩ − 𝑌 )2. Then 𝑓ℓ is a quadratic function
𝑓Σ, with Σ = E[𝑋𝑋⊤], thus satisfies Assumption A2. For any 𝑝 > 2, Assumption A4(p)
is satisfied as soon as the iterates are a.s. bounded, while A1 is satisfied if the second
moment matrix is invertible or additional regularization is added. In this setting, 𝜀𝑘 can be
decomposed as 𝜀𝑘 = 𝜚𝑘 + 𝜉𝑘 where 𝜚𝑘 is the multiplicative part, 𝜉𝑘 the additive part, given
for 𝜃 ∈ R𝑑 by 𝜚𝑘(𝜃) = (𝑥𝑘𝑥

⊤
𝑘 − Σ)(𝜃 − 𝜃*) and

𝜉𝑘 = (𝑥⊤
𝑘 𝜃* − 𝑦𝑘)𝑥𝑘 . (4.4)

Note that for all 𝑘 > 1, 𝜉𝑘 does not depend on 𝜃. This two parts in the noise will
appear in Corollary 4.5. In logistic regression, where ℓ(𝑋,𝑌, 𝜃) = log(1 + exp(−𝑌 ⟨𝑋, 𝜃⟩)).
Assumptions A4 or A2 are similarly satisfied, while A1 needs an additional restriction to
a compact set. Using self-concordance assumptions (Bach, 2014) would allow a direct
unconstrained application.

4.2.2 Related work

Constant step-size SGD. Several attempts have been made to improve convergence of
SGD. Bach and Moulines (2013) propose an online Newton algorithm which converges to
the optimal point with constant steps. While it behaves very well in practice, this algorithm
has no convergence guarantees.

The quadratic case was studied by Bach and Moulines (2013), for the (uniform)
average iterate: the variance term is upper bounded by 𝜎2𝑑/𝑛 and the squared bias term
by ‖𝜃*‖2/(𝛾𝑛). This last term was improved to ‖Σ−1/2𝜃*‖2/(𝛾𝑛)2 in Chapter 2 and by
Défossez and Bach (2015). See also (Lan, 2012). Analysis has been extended to “tail
averaging” (Jain et al., 2016), to improve the dependence on the initial conditions. Note
that this procedure can be seen as a Richardson-Romberg trick with respect to 𝑘. Other
strategies were proposed to improve the speed at which initial conditions were forgotten,
for example using acceleration when the noise is additive (as in Chapter 3; or in Jain et al.,
2017).

Link between discretization of ergodic diffusions and SGD. In the context of dis-
cretization of ergodic diffusions, weak error estimates between the stationary distribution
of the discretization and the invariant distribution of the associated diffusion have been
first shown by Talay and Tubaro (1990) and Mattingly et al. (2002) in the case of the
Euler-Maruyama discretization. Then Talay and Tubaro (1990) suggested the use of
Richardson-Romberg interpolation to improve the accuracy of estimates of integrals with
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respect to the invariant distribution of the diffusion. Extension of these results have been
obtained for other types of discretization by Abdulle et al. (2014) and Chen et al. (2015).
We show in Section 4.3.3 that a weak error expansion in the step size 𝛾 also holds for
SGD between 𝜋𝛾 and 𝛿𝜃* . Interestingly similarly to the Euler-Maruyama discretization,
SGD has a weak error of order 𝛾. Finally, Durmus et al. (2016) proposed and analyzed
the use of Richardson-Romberg extrapolation applied to the stochastic gradient Langevin
dynamics (SGLD) algorithm. This method introduced by Welling and Teh (2011) combines
SGD and the Euler-Maruyama discretization of the Langevin diffusion associated to a
target probability measure (see also Dalalyan (2014)). Note that this method is however
completely different from SGD, in part because Gaussian noise of order 𝛾1/2 (instead of 𝛾)
is injected in SGD which changes the overall dynamics.

4.2.3 Summary and discussion of main results

Under the stated assumptions, the Markov chain (𝜃(𝛾)
𝑘 )𝑘>0 admits a unique invariant/statio-

nary distribution 𝜋𝛾 which has a moment of order 2, see Theorem 4.4 in Section 4.3. Recall
that 𝜋𝛾 is a stationary distribution of this Markov chain if, when 𝜃(𝛾)

0 is distributed according
to 𝜋𝛾 , then 𝜃(𝛾)

1 is distributed according to 𝜋𝛾 as well. In the next section, by two different
methods (Theorem 4.3 and Theorem 4.6), we show that under suitable conditions on 𝑓
and the noise (𝜀𝑘)𝑘>1, there exists 𝐶 > 0 such that for all 𝛾 > 0, small enough

𝜃𝛾 =
∫︁

R𝑑
𝜗𝜋𝛾(d𝜗) = 𝜃* + 𝐶𝛾 +𝑂(𝛾2) .

Using Theorem 4.3, we get that for 𝛾 small enough and all 𝑘 > 1,

E(𝜃(𝛾)
𝑘 − 𝜃*) = 𝐴(𝜃0, 𝛾)

𝑘
+ 𝐶𝛾 +𝑂(𝛾2) +𝑂(𝑒−𝑘𝜇𝛾) . (4.5)

This expansion in the step size 𝛾 shows that a Richardson-Romberg extrapolation can be
used to have better estimates of 𝜃*. Consider the average iterates (𝜃(𝑘)

2𝛾 )𝑘>0 and (𝜃(𝛾)
𝑘 )𝑘>0

associated with SGD with step size 2𝛾 and 𝛾 respectively. Then (4.5) shows that (2𝜃(𝛾)
𝑘 −

𝜃
(2𝛾)
𝑘 )𝑘>0 satisfies

E(2𝜃(𝛾)
𝑘 − 𝜃

(2𝛾)
𝑘 − 𝜃*) = 𝐴(𝜃0, 𝛾) −𝐴(𝜃0, 2𝛾)

𝑘
+𝑂(𝛾2) +𝑂(𝑒−𝑘𝜇𝛾) ,

and therefore is closer to the optimum 𝜃*. This very simple trick improves the convergence
by a factor of 𝛾 (at the expense of a slight increase of the variance). In practice, while the
un-averaged gradient iterate 𝜃(𝛾)

𝑘 saturates rapidly, 𝜃(𝛾)
𝑘 may already perform well enough

to avoid saturation on real data-sets (Bach and Moulines, 2013). The Richardson-Romberg
extrapolated iterate 2𝜃(𝛾)

𝑘 − 𝜃
(2𝛾)
𝑘 very rarely reaches saturation in practice. This appears in

synthetic experiments presented in Section 4.4. Moreover, this procedure only requires to
compute two parallel SGD recursions, either with the same inputs, or with different ones,
and is naturally parallelizable.

In Section 4.3.2, we give a quantitative version of the central limit theorem for a fixed
𝛾 > 0 and 𝑘 goes to +∞ for (𝜃(𝛾)

𝑘 )𝑘>0, i.e., under appropriate conditions, there exist 𝐵1(𝛾)
and 𝐵2(𝛾) such that

E
[︂⃦⃦⃦
𝜃

(𝛾)
𝑘 − 𝜃𝛾

⃦⃦⃦2
]︂

= 𝐵1(𝛾)
𝑘

+ 𝐵2(𝛾)
𝑘2 . (4.6)

Combining (4.5) and (4.6) characterizes the bias/variance trade-off of SGD used to
estimate 𝜃*.
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4.3 Detailed analysis

In this Section, we describe in detail our approach. A first step is to describe the existence of
a unique stationary distribution 𝜋𝛾 for the Markov chain (𝜃(𝛾)

𝑘 )𝑘>0 and the convergence of
this Markov chain to 𝜋𝛾 . The convergence is quantified with the Wasserstein distance (see
e.g., Chapter 6 in Villani, 2009).

Limit distribution. A fundamental tool in Markov chain theory is the Markov kernel,
which is the equivalent for continuous spaces of the transition matrix in finite state spaces.
Let 𝑅𝛾 be the Markov kernel on (R𝑑,ℬ(R𝑑)) associated with the SGD iterates (𝜃(𝛾)

𝑘 )𝑘>0,
where ℬ(R𝑑) is the Borel 𝜎-field of R𝑑. We refer to (Meyn and Tweedie, 2009) for an
introduction to Markov chain theory. For all initial distributions 𝜈0 on ℬ(R𝑑) and 𝑘 ∈ N,
𝜈0𝑅

𝑘
𝛾 denotes the law of 𝜃(𝛾)

𝑘 starting at 𝜃0 distributed according to 𝜈0. For any measure 𝜋
on ℬ(R𝑑) and any measurable function ℎ : R𝑑 → R, 𝜋(ℎ) denotes

∫︀
ℎ(𝜃)𝑑𝜋(𝜃) when it exists.

Finally, for all 𝜃 ∈ R𝑑 and measurable function ℎ : R𝑑 → R, 𝑘 > 1, set 𝑅𝑘
𝛾(𝜃, ·) = 𝛿𝜃𝑅

𝑘
𝛾 the

distribution of 𝜃(𝛾)
𝑘 starting at 𝜃 and 𝑅𝑘

𝛾ℎ(𝜃) =
∫︀

R𝑑 ℎ(𝜗)
{︁
𝛿𝜃𝑅

𝑘
𝛾

}︁
(d𝜗).

To show that (𝜃(𝛾)
𝑘 )𝑘>0 admits a unique stationary distribution 𝜋𝛾 and quantify the

convergence of (𝜈0𝑅
𝑘
𝛾)𝑘>0 to 𝜋𝛾 , we introduce the Wasserstein distance. For all probability

measures 𝜈 and 𝜆 on ℬ(R𝑑), such that
∫︀

R𝑑 ‖𝜃‖2 d𝜈(𝜃) < +∞ and
∫︀

R𝑑 ‖𝜃‖2 d𝜆(𝜃) 6 +∞, de-

fine the Wasserstein distance of order 2 between 𝜆 and 𝜈 by 𝑊2(𝜆, 𝜈) := inf𝜉∈Π(𝜆,𝜈)
(︁ ∫︀

‖𝑥−

𝑦‖2𝜉(𝑑𝑥, 𝑑𝑦)
)︁1/2

, where Π(𝜇, 𝜈) is the set of probability measure 𝜉 on ℬ(R𝑑 × R𝑑) satisfying

for all A ∈ ℬ(R𝑑), 𝜉(A × R𝑑) = 𝜈(A), 𝜉(R𝑑 × A) = 𝜆(A).

Proposition 4.1. Assume A1-A2-A3-A4(2), for any step size 𝛾 < 𝐿−1, the Markov chain
(𝜃(𝛾)

𝑘 )𝑘>0 defined by the recursion (4.1), admits a unique stationary distribution 𝜋𝛾 such that∫︀
R𝑑 ‖𝜗‖2 d𝜋𝛾(𝜗) < +∞. In addition for all 𝜃 ∈ R𝑑, 𝑘 ∈ N:

𝑊 2
2 (𝑅𝑘

𝛾(𝜃, ·), 𝜋𝛾) 6 (1 − 2𝜇𝛾(1 − 𝛾𝐿))𝑘
∫︁

R𝑑
‖𝜃 − 𝜗‖2 d𝜋𝛾(𝜗) .

Proof. The proof is postponed to Section C.2.1.

To prove the existence of the limit, one shows that for any 𝑥, (𝑅𝑘
𝛾(𝑥, ·))𝑘>0 is a Cauchy

sequence in a particular Polish space. We can thus define a point-wise limit, and show that
it is unique. This uses the strong convexity, smoothness and the Lipschitzness of the noise.

As a consequence of Proposition 4.1, the expectation of 𝜃(𝛾)
𝑘 = 1

𝑘+1
∑︀𝑘

𝑖=0 𝜃
(𝛾)
𝑖 converges∫︀

R𝑑 𝜗d𝜋𝛾(𝜗) as 𝑘 goes to infinity at a rate of order 𝑂(𝑘−1), see Theorem C.8 in Section C.3.

4.3.1 Expansion of moments under 𝜋𝛾 when 𝛾 is in a neighborhood of 0

In this paragraph, we analyze the properties of the chain starting at 𝜃0 distributed according
to 𝜋𝛾 . As a result, we prove that the mean of the stationary distribution 𝜃𝛾 =

∫︀
R𝑑 𝜗𝜋𝛾 (d𝜗)

is such that 𝜃𝛾 = 𝜃* +𝑂(𝛾). By simple developments of Equation (4.1) at the equilibrium,
we propose expansions of the first two moments of the chain. It extends (Pflug, 1986;
Ljung et al., 1992) which showed that (𝛾−1/2(𝜋𝛾 − 𝛿𝜃*))𝛾>0 converges in distribution to a
normal law as 𝛾 → 0.



4.3. Detailed analysis 166

Quadratic case. When 𝑓 is a quadratic function, i.e., 𝑓 ′ is affine, we have the following
result.

Lemma 4.2 (Properties under stationarity, Quadratic case).
Let 𝛾 < 1/𝐿 and assume A 1-A 2-A 3-A 4(4). Then for a quadratic function 𝑓Σ : 𝜃 ↦→⃦⃦⃦
Σ1/2(𝜃 − 𝜃*)

⃦⃦⃦2
,

𝜃𝛾 = E𝜋𝛾 [𝜃] = 𝜃*∫︁
R𝑑

(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)−1E𝜀1

[︂∫︁
R𝑑
𝜀1(𝜃)⊗2𝜋𝛾(d𝜃)

]︂
,

where we denote, for any 𝜃 ∈ R𝑑, 𝜃⊗2 := 𝜃𝜃⊤, where for any matrices 𝑀,𝑁 ∈ R𝑑×𝑑, 𝑀 ⊗𝑁

is defined as the following operator from R𝑑×𝑑 into R𝑑×𝑑 such that 𝑀 ⊗𝑁 : 𝑃 ↦→ 𝑀𝑃𝑁 .

The first part of the result, which highlights the crucial fact that for a quadratic function,
the mean under the limit distribution is the optimal point, is easy to prove. Indeed, since
𝜋𝛾 is invariant for (𝜃(𝛾)

𝑘 )𝑘>0, if 𝜃(𝛾)
0 is distributed according to 𝜋𝛾 , then 𝜃(𝛾)

1 is distributed
according to 𝜋𝛾 as well. Thus as 𝜃(𝛾)

1 = 𝜃
(𝛾)
0 − 𝛾𝑓 ′(𝜃(𝛾)

0 ) + 𝛾𝜀1(𝜃(𝛾)
0 ) taking expectations

on both sides, we get
∫︀

R𝑑 𝑓 ′(𝜗)d𝜋𝛾(𝜗) = 0. For a quadratic function, its gradient is linear:∫︀
R𝑑 𝑓 ′(𝜗)d𝜋𝛾(𝜗) = 𝑓 ′(𝜃𝛾) = 0 and thus that 𝜃𝛾 = 𝜃*. This implies that the averaged iterate

converges to 𝜃*, see e.g. Bach and Moulines (2013). The proof for the second expression is
given in Section C.2.3.

General case. While the quadratic case led to particularly simple exact expressions, in
general, we can only get a first order development of these expectations as 𝛾 → 0 (proofs
are given in Section C.2.3). Note that it improved on (Pflug, 1986), which shows a similar
expansion but an error of order of 𝑂(𝛾3/2).

Theorem 4.3 (Properties under stationarity, general case). Let 𝛾 < 1/𝐿 and assume A1-A
2-A3-A4(4). Then

𝜃𝛾 − 𝜃* = 𝛾𝑓 ′′(𝜃*)−1𝑓 ′′′(𝜃*)
(︁[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
E𝜀

[︂∫︁
R𝑑
𝜀(𝜃)⊗2𝜋𝛾(d𝜃)

]︂ )︁
+𝑂(𝛾2)∫︁

R𝑑
(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾

[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
E𝜀

[︂∫︁
R𝑑
𝜀(𝜃)⊗2𝜋𝛾(d𝜃)

]︂
+𝑂(𝛾2) ,

where 𝜋𝛾 is the stationary distribution of the Markov chain (𝜃(𝛾)
𝑘 )𝑘>0 defined by the recursion

(4.1) and 𝜃𝛾 is given by (4.3). We denote 𝑓 ′′′(𝜃*) the third order derivative, which is a third
order tensor (thus such that for any matrix, 𝑀 ∈ R𝑑×𝑑, 𝑓 ′′′(𝜃*)𝑀 is a vector in R𝑑 such that

(𝑓 ′′′(𝜃*)𝑀)𝑘 =
𝑑∑︀

𝑖,𝑗=1
𝑀𝑖,𝑗

𝜕3𝑓
𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

, for any 𝑘 ∈ J1;𝑛K).

Proof. The proof is postponed to Section C.2.3.

This shows that 𝛾 ↦→ 𝜃𝛾 is a differentiable function at 𝛾 = 0. The “drift” 𝜃𝛾 − 𝜃* can be
understood as an additional error occurring because the function is non quadratic and the
step sizes are not decaying to zero. The mean under the limit distribution is at distance
𝛾 from 𝜃* while the final iterate oscillates in a sphere of radius proportional to

√
𝛾, as∫︀

R𝑑 ‖𝜃 − 𝜃*‖𝜋𝛾(d𝜃) 6 √
𝛾 tr1/2(

[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1 ∫︀
R𝑑 𝜀(𝜃)⊗2𝜋𝛾(d𝜃)), where for any

matrix 𝑀 ∈ 𝑅𝑑×𝑑, tr(𝑀) is the trace of 𝑀 , i.e., the sum of diagonal elements of the matrix
𝑀 .
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4.3.2 Expansion for a given 𝛾 > 0 when 𝑘 tends to +∞

In this Section, we analyze the convergence of 𝜃(𝛾)
𝑘 to 𝜃𝛾 , when 𝑘 → ∞, and the convergence

of E
[︂⃦⃦⃦
𝜃

(𝛾)
𝑘 − 𝜃𝛾

⃦⃦⃦2
]︂

to 0. Under suitable conditions (Meyn and Tweedie, 1993; Jones, 2004),

𝜃
(𝛾)
𝑘 satisfies a central limit theorem:

√
𝑘
(︁
𝜃

(𝛾)
𝑘 − 𝜃𝛾

)︁
𝑑→ 𝒩 (0, 𝜎2

𝜙), where 𝜎2
𝜙 > 0 . However,

this result is purely asymptotic; we propose a new tighter development that describes how
the initial conditions are forgotten: we prove that the convergence behaves similarly to the
convergence in the quadratic case, where the expected squared distance decomposes as a
sum of a bias term, that scales as 𝑘−2, and a variance term, that scales as 𝑘−1, plus linearly
decaying residual terms. We also describe how the asymptotic bias and variance can be
expressed easily as moments of solutions to several Poisson equations.

Poisson equation. For any Lipschitz function 𝜙 : R𝑑 → R, the convergence speed of
𝑘−1∑︀𝑘−1

𝑖=0 𝜙(𝜃(𝛾)
𝑖 ) towards

∫︀
R𝑑 𝜙(𝜗)d𝜋𝛾(𝜗) can be decomposed as a sum of two main terms,

that can be expressed as moments of two Poisson solutions associated with 𝜙 which we now
described. It shows in Section C.2.2 that the sequence of functions {𝜃 ↦→

∑︀𝑘
𝑖=1𝑅

𝑖
𝛾𝜑(𝜃) −

𝜋𝛾(𝜑)}𝑘>0 converges uniformly on all compact sets of R𝑑. Define then 𝜓𝛾 =
∑︀+∞

𝑖=0 {𝑅𝑖
𝛾𝜑−

𝜋𝛾(𝜑)}. Note that 𝜓𝛾 satisfies 𝜋𝛾(𝜓𝛾) = 0, (𝐼−𝑅𝛾)𝜓𝛾 = 𝜙 and is Lipschitz, see Section C.2.2.
𝜓𝛾 will be referred to as the Poisson solution associated with 𝜙.

For the convergence of 𝜃(𝛾)
𝑘 to 𝜃𝛾 , we thus introduce 𝜓𝛾 , the Poisson solution associated

to 𝜙 : 𝜃 ↦→ 𝜃 − 𝜃*, 𝜒1
𝛾 the Poisson solution associated to 𝜃 ↦→ 𝜓𝛾(𝜃)𝜓⊤

𝛾 (𝜃), and finally 𝜒2
𝛾 the

Poisson solution associated to 𝜃 ↦→ ((𝜓𝛾 − 𝜙)(𝜃))⊗2. We then have:

Theorem 4.4 (Convergence of the Markov chain). Let 𝛾 ∈ (0, 1/(2𝐿)) and assume A1-A2-
A3-A4(4). Then for any starting point 𝜃0 ∈ R𝑑, setting 𝜌 := (1 − 𝛾𝜇)1/2:

E
[︁
𝜃

(𝛾)
𝑘 − 𝜃𝛾

]︁
= (1/𝑘)𝜓𝛾(𝜃0) +𝑂(𝜌𝑘) ,

E
[︂(︁
𝜃

(𝛾)
𝑘 − 𝜃𝛾

)︁⊗2
]︂

= (1/𝑘)
∫︁

R𝑑

[︁
𝜓𝛾(𝜃)𝜓𝛾(𝜃)⊤ − (𝜓𝛾 − 𝜙)(𝜃)(𝜓𝛾 − 𝜙)(𝜃)⊤

]︁
d𝜋𝛾(𝜃)

+(1/𝑘2)
[︁
𝜓𝛾(𝜃0)𝜓𝛾(𝜃0)⊤ + 𝜒1

𝛾(𝜃0) − 𝜒2
𝛾(𝜃0)

]︁
+𝑂(𝜌𝑘) ,

where (𝜃(𝛾)
𝑘 )𝑘>0 is given by (4.2) and 𝜋𝛾 is its unique stationary distribution of the Markov

chain defined by the recursion (4.1).

Proof. This result is a consequence of Theorem C.5, proved in Section C.2.4.

This bound for the second order moment decomposes as a sum of two terms: (i) a
variance term, that scales as 1/𝑘, and does not depend on the initial distribution (but only
on the asymptotic distribution 𝜋𝛾), and (ii) a bias term, which scales as 1/𝑘2, and depends
on the initial distribution 𝜈0.

In order to give the intuition of the proof and to underline how the associated Poisson
solutions are introduced, we here sketch the proof of the first result:

E
[︁
𝜃

(𝛾)
𝑘

]︁
− 𝜃* = 1

𝑘

𝑘−1∑︁
𝑖=0

(𝑅𝑖
𝛾𝜙)(𝜃0)

= 𝜋𝛾𝜙+ 1
𝑘
𝜓𝛾(𝜃0) +𝑅𝑘

𝛾𝜓𝛾(𝜃0),
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where we have used 𝑅𝑖
𝛾𝜋𝛾(𝜙) = 𝜋𝛾𝜙, and

𝑘−1∑︁
𝑖=0

𝑅𝑖
𝛾(𝜙− 𝜋𝛾(𝜙)) =

∞∑︁
𝑖=0

𝑅𝑖
𝛾(𝜙− 𝜋𝛾(𝜙)) −𝑅𝑘

𝛾

∞∑︁
𝑖=0

𝑅𝑖
𝛾(𝜙− 𝜋𝛾(𝜙))

= 𝜓𝛾 −𝑅𝑘
𝛾𝜓𝛾

Finally, we have that 𝑅𝑘
𝛾𝜓𝛾(𝜃0) converges to 0 at linear speed, using Proposition 4.1.

This result gives an exact closed form for the asymptotic bias and variance, for a fixed
𝛾, and as 𝑘 → ∞. Unfortunately, in the general case, it is neither possible to compute the
Poisson solutions exactly, nor is it possible to prove a first order development of the limits
as 𝛾 → 0. Indeed, part of the difficulty comes from the fact that as 𝛾 goes to zero, the
Markov chain does not mix fast enough.

When 𝑓Σ is a quadratic function, it is possible, for any 𝛾 > 0, to compute 𝜓𝛾 and 𝜒1,2
𝛾

explicitly; we get the following decomposition of the error, which exactly recovers the
result of Défossez and Bach (2015).

Corollary 4.5. Assume that 𝑓 is a quadratic function 𝑓Σ, A3 and A4(4). Consider the least
mean squares algorithm iterates (𝜃(𝛾)

𝑘 )𝑘>0 starting from 𝜃0 ∈ R𝑑 with 𝛾𝐿 6 1/2. Then

E
[︁
(𝜃(𝛾)

𝑘 − 𝜃*)⊗2
]︁

= 1
𝑘2𝛾2 Σ−1Ω(𝜃0 − 𝜃*)⊗2Σ−1 + 1

𝑘
Σ−1[︀E𝜀1,𝜋𝛾 (𝜀⊗2

1 (𝜃))
]︀
Σ−1

− 1
𝑘2𝛾

Σ−1Ω
[︀
Σ ⊗ I + I ⊗ Σ − 𝛾𝑇

]︀−1[︀
E𝜉⊗2

1
]︀
Σ−1 +𝑂(𝜌𝑘) ,

where 𝜌 = (1 − 𝛾𝜇)1/2, Ω := (Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾𝑇 )−1, 𝑇 : 𝐴 ↦→
E
[︁
(𝑥⊤𝐴𝑥)𝑥𝑥⊤

]︁
and 𝜉1 is given by (4.4).

4.3.3 Continuous interpretation of SGD and weak error expansion

In this section, we propose a new decomposition of 𝜃(𝛾)
𝑘 − 𝜃*. It is comparable to the

decomposition used in classical proofs, e.g., by Nemirovsky and Yudin (1983), that we
recall bellow, yet is more powerful to understand the behavior when 𝛾 is small. It uses the
link with the continuous interpretation of SGD.

For the sake of comparison, we first informally present the two decompositions, then
introduce the necessary tools and assumptions rigorously.

Two decompositions. For smooth and strongly convex functions, classical proofs of the
convergence of SGD rely on the following decomposition (Nemirovsky and Yudin, 1983;
Bach and Moulines, 2011), which comes from a Taylor expansion of 𝑓 ′(𝜃(𝛾)

𝑘+1) around 𝜃*.
For any 𝑘 ∈ N,

𝑓 ′(𝜃(𝛾)
𝑘 ) = 𝑓 ′′(𝜃*)(𝜃(𝛾)

𝑘 − 𝜃*) +𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘 − 𝜃*

⃦⃦⃦2
)︂
.

As a consequence, using the definition of the SGD recursion,

𝜃
(𝛾)
𝑘+1 − 𝜃

(𝛾)
𝑘 = −𝛾𝑓 ′(𝜃(𝛾)

𝑘 ) − 𝛾𝜀𝑘+1(𝜃(𝛾)
𝑘 )

= −𝛾𝑓 ′′(𝜃*)(𝜃(𝛾)
𝑘 − 𝜃*) − 𝛾𝜀𝑘+1(𝜃(𝛾)

𝑘 ) + 𝛾𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘 − 𝜃*

⃦⃦⃦2
)︂

Thus

𝑓 ′′(𝜃*)(𝜃(𝛾)
𝑘 − 𝜃*) = 1

𝛾
(−𝜃(𝛾)

𝑘+1 + 𝜃
(𝛾)
𝑘 ) − 𝜀𝑘+1(𝜃(𝛾)

𝑘 ) +𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘 − 𝜃*

⃦⃦⃦2
)︂
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Averaging over the first 𝑘 iterates yields:

(𝑘+1)(𝜃(𝛾)
𝑘 −𝜃*) = 1

𝛾
𝑓 ′′(𝜃*)−1(𝜃(𝛾)

0 −𝜃(𝛾)
𝑘+1)−

𝑘∑︁
𝑖=0

𝑓 ′′(𝜃*)−1𝜀𝑖+1(𝜃(𝛾)
𝑖 )+

𝑘∑︁
𝑖=0

𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑖 − 𝜃*

⃦⃦⃦2
)︂
.

(4.7)
The term on the right-hand part of Equation 4.7 is composed of a bias term (which clearly
depends on the initial condition), a variance term which is the average of noise, and a
residual term. This residual term is of course highly important, as it differentiates the
general setting from the quadratic one (in which it simply does not appear, as the first order
Taylor expansion of 𝑓 ′ is exact). While this decomposition is powerful and has been used
in many proofs, it does not allow for a tight decomposition in powers of 𝛾 when 𝛾 → 0,
because the residual 𝜃(𝛾)

𝑖 − 𝜃* simply does not go to 0 when 𝛾 → 0: on the contrary, the
chain becomes ill-conditioned when 𝛾 = 0.

To better understand the behavior when 𝛾 → 0, we here propose another decomposition.
The idea is that, when 𝛾 tends to 0, we can compare the recursion to the gradient flow. For
a function 𝑔 : R𝑑 → R𝑞 regular enough, we show that there exists a function ℎ𝑔 : R𝑑 → R𝑞

such that, for any 𝜃 ∈ R𝑑:
ℎ′

𝑔(𝜃)𝑓 ′(𝜃) = 𝑔(𝜃) − 𝑔(𝜃*),

where ℎ′
𝑔(𝜃) ∈ R𝑞×𝑑, and 𝑓 ′(𝜃) ∈ R𝑑. This function ℎ𝑔 will be the solution to the continuous

Poisson equation. We then use its first order Taylor development of ℎ𝑔(𝜃(𝛾)
𝑘+1) around 𝜃(𝛾)

𝑘 .
For any 𝑘 ∈ N,

ℎ𝑔(𝜃(𝛾)
𝑘+1) =ℎ𝑔(𝜃(𝛾)

𝑘 ) + ℎ′
𝑔(𝜃(𝛾)

𝑘 )(𝜃(𝛾)
𝑘+1 − 𝜃

(𝛾)
𝑘 ) +𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘+1 − 𝜃

(𝛾)
𝑘

⃦⃦⃦2
)︂

=ℎ𝑔(𝜃(𝛾)
𝑘 ) − 𝛾ℎ′

𝑔(𝜃(𝛾)
𝑘 )𝑓 ′(𝜃(𝛾)

𝑘 ) − 𝛾ℎ′
𝑔(𝜃(𝛾)

𝑘 )𝜀𝑘+1(𝜃(𝛾)
𝑘 ) +𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘+1 − 𝜃

(𝛾)
𝑘

⃦⃦⃦2
)︂

=ℎ𝑔(𝜃(𝛾)
𝑘 ) − 𝛾(𝑔(𝜃(𝛾)

𝑘 ) − 𝑔(𝜃*)) − 𝛾ℎ′
𝑔(𝜃(𝛾)

𝑘 )𝜀𝑘+1(𝜃(𝛾)
𝑘 ) +𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘+1 − 𝜃

(𝛾)
𝑘

⃦⃦⃦2
)︂
.

Thus reorganizing terms,

𝑔(𝜃(𝛾)
𝑘 ) − 𝑔(𝜃*) = 1

𝛾
(ℎ𝑔(𝜃(𝛾)

𝑘 ) − ℎ𝑔(𝜃(𝛾)
𝑘+1)) + ℎ′

𝑔(𝜃(𝛾)
𝑘 )𝜀𝑘+1(𝜃(𝛾)

𝑘 ) + 1
𝛾
𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑘+1 − 𝜃

(𝛾)
𝑘

⃦⃦⃦2
)︂
.

Finally, averaging over the first 𝑘 iterations, for 𝑔 the identity function,

(𝑘 + 1)(𝜃(𝛾)
𝑘 − 𝜃*) = 1

𝛾

(︁
ℎid(𝜃(𝛾)

0 ) − ℎid(𝜃(𝛾)
𝑘+1)

)︁
+

𝑘∑︁
𝑖=0

ℎ′
id(𝜃(𝛾)

𝑖 )𝜀𝑖+1(𝜃(𝛾)
𝑖 )

+ 1
𝛾

𝑘∑︁
𝑖=0

𝑂

(︂⃦⃦⃦
𝜃

(𝛾)
𝑖+1 − 𝜃

(𝛾)
𝑖

⃦⃦⃦2
)︂
. (4.8)

This expansion is the root of the proof of Theorem 4.6, which formalizes the expansion
as powers of 𝛾. The key difference between decomposition (4.7) and (4.8) is that in the
latter, the residual term 𝜃

(𝛾)
𝑖+1 − 𝜃

(𝛾)
𝑖 tends to 0 and can naturally be controlled when 𝛾 → 0.

We now formally introduce the function ℎ𝑔 for a real valued function 𝑔 (generalization to
functions with values in R𝑞 is not difficult as everything can be defined on projections onto
coordinates), some sufficient conditions for its existence, and assumptions for Theorem 4.6
to be valid.
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Detailed setting. We here describe how this recursion can be seen as a noisy discretization
of the following gradient flow equation, with now 𝑡 ∈ R:

𝜃𝑡 = −𝑓 ′(𝜃𝑡) . (4.9)

Note that since 𝑓 ′(𝜃*) = 0 by definition of 𝜃* and A1, then 𝜃* is an equilibrium point of
(4.9), i.e., 𝜃𝑡 = 𝜃* for all 𝑡 > 0 if 𝜃0 = 𝜃*. Under A2, (4.9) admits a unique solution on R+
for any starting point 𝜃 ∈ R𝑑. Denote by (𝜑𝑡)𝑡>0 the flow of (4.9), defined for all 𝜃 ∈ R𝑑 by
(𝜑𝑡(𝜃))𝑡>0 as the solution of (4.9) starting at 𝜃.

Denote by (𝒜, 𝐷(𝒜)), the infinitesimal generator associated with the flow (𝜑𝑡)𝑡>0 defined
by

𝐷(𝒜) =
{︂
ℎ : R𝑑 → R : for all 𝜃 ∈ R𝑑, lim

𝑡→0

ℎ(𝜑𝑡(𝜃)) − ℎ(𝜃)
𝑡

exists
}︂

𝒜ℎ(𝜃) = lim
𝑡→0

𝑡−1 {ℎ(𝜑𝑡(𝜃)) − ℎ(𝜃)} for all ℎ ∈ 𝐷(𝒜) , 𝜃 ∈ R𝑑 . (4.10)

Note that for all ℎ ∈ 𝐶1(R𝑑), ℎ ∈ 𝐷(𝒜), 𝒜ℎ = − ⟨𝑓 ′, ℎ′⟩ .
Under A1 and A2, for any locally Lipschitz function 𝑔 : R𝑑 → R, denote by ℎ𝑔 the solution

of the continuous Poisson equation defined for all 𝜃 ∈ R𝑑 by ℎ𝑔(𝜃) =
∫︀∞

0 (𝑔(𝜑𝑠(𝜃))−𝑔(𝜃*))𝑑𝑠.
Note that ℎ𝑔 is well-defined by Lemma C.9-b) in Section C.4, since 𝑔 is assumed to be
locally Lipschitz. Note that by (4.10), we have for all 𝑔 : R𝑑 → R, locally Lipschitz,

𝒜ℎ𝑔(𝜃) = −𝑔(𝜃) + 𝑔(𝜃*) . (4.11)

Under regularity assumptions on 𝑔 (see Theorem C.11), ℎ𝑔 is twice continuously differ-
entiable and therefore satisfies −

⟨
𝑓 ′, ℎ′

𝑔

⟩
= 𝒜ℎ𝑔. As described in the second expansion

above, the idea is then to make a Taylor expansion of ℎ𝑔(𝜃(𝛾)
𝑘+1) around 𝜃

(𝛾)
𝑘 to express

𝑘−1∑︀𝑘
𝑖=1 𝑔(𝜃(𝛾)

𝑖 )−𝑔(𝜃*) as convergent terms imvolving the derivatives of ℎ𝑔. For 𝑔 : R𝑑 → R
and 𝑘1, 𝑘2 ∈ N, 𝑘1 > 1 we consider the following assumptions on the regularity of 𝑔.

A5 (𝑘1, 𝑘2). There exist 𝑎𝑔, 𝑏𝑔 ∈ R+ such that 𝑔 ∈ 𝐶𝑘1(R𝑑) and for all 𝑥 ∈ R𝑑 and 𝑖 ∈
{1, · · · , 𝑘1},

⃦⃦
𝐷𝑖𝑔(𝜃)

⃦⃦
6 𝑎𝑔

{︁
‖𝜃 − 𝜃*‖𝑘2 + 𝑏𝑔

}︁
, where 𝐷𝑖𝑔 is the differential of order 𝑖 of 𝑔.

We then have the following result.

Theorem 4.6. Assume A1-A2-A3-A4(2(𝑞 + 3)), for 𝑞 ∈ N. Let 𝑔 : R𝑑 → R be a function
satisfying A5(5, 𝑞). Then there exists a constant 𝐶2(𝑞+3) only depending on 𝑞 such that for all

𝛾 ∈
(︁
0, 𝐶2(𝑞+3)

)︁
, 𝑘 ∈ N* and 𝜃0 ∈ R𝑑 it holds

E

[︃
𝑘−1

𝑘∑︁
𝑖=1

{︁
𝑔(𝜃(𝛾)

𝑖 ) − 𝑔(𝜃*)
}︁]︃

=
ℎ𝑔(𝜃0) − E

[︁
ℎ𝑔(𝜃(𝛾)

𝑘+1)
]︁

𝑘𝛾

+ (𝛾/2) tr
(︁
ℎ′′

𝑔(𝜃*)E
[︁
{𝜀(𝜃*)}⊗2

]︁)︁
+ 𝛾

𝑘
𝐴1(𝜃0) + 𝛾2𝐴2(𝜃0, 𝑘) , (4.12)

where 𝜃(𝛾)
𝑘 is the Markov chain starting from 𝜃0 and defined by the recursion (4.1). In addition

for some constant 𝐶 > 0 independent of 𝛾 and 𝑛, we have

𝐴1(𝜃0) 6 𝐶
{︁

1 + ‖𝜃0 − 𝜃*‖𝑞+2
}︁
, 𝐴2(𝜃0, 𝑘) 6 𝐶

{︁
1 + ‖𝜃0 − 𝜃*‖𝑞+3 /𝑘

}︁
.
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First in the case where 𝑓 ′ is linear, choosing for 𝑔 the identity function, then ℎId =∫︀+∞
0 {𝜑𝑠 − 𝜃*}d𝑠 = Σ−1, and we get that the first term in (4.12) vanishes which is natural

since in that case 𝜃𝛾 = 𝜃*. Second by Lemma C.10-c), we recover the first expansion of
Theorem 4.3 for arbitrary objective functions 𝑓 . Finally note that for all 𝑞 ∈ N, under
appropriate conditions, Theorem 4.6 implies that there exist 𝐶1, 𝐶2(𝜃0) > 0 such that

E
[︂
𝑘−1∑︀𝑘

𝑖=1

⃦⃦⃦
𝜃

(𝛾)
𝑖 − 𝜃*

⃦⃦⃦2𝑞
]︂

= 𝐶1𝛾 + 𝐶2(𝜃0)/𝑛+𝑂(𝛾2).

4.4 Experiments

We performed experiments on simulated data, for logistic regression, with 𝑛 = 107 observa-
tions, for 𝑑 = 10 and 25. Results are presented in Figure 4.2. We consider SGD with constant
step-sizes 1/𝑅2, 1/2𝑅2 (and 1/4𝑅2) with or without averaging, with 𝑅2 = 𝐿. Without
averaging, the chain saturates with an error proportional to 𝛾 (as ‖𝜃(𝛾)

𝑘 − 𝜃*‖ = 𝑂(√𝛾)).
Note that the ratio between the convergence limits of the two sequences is roughly 2 in
the un-averaged case, and 4 in the averaged case, which confirms the predicted limits. We
consider Richardson Romberg iterates, which saturate at a much lower level, and performs
much better than decaying step sizes (as 1/

√
𝑛) on the first iterations, as it forgets the

initial conditions faster. Finally, we run the online-Newton (Bach and Moulines, 2013),
which performs very well but has no convergence guarantee. On the Right plot, we also
propose an estimator that uses 3 different step sizes to perform a higher order interpolation.
More precisely, we compute 𝜃3

𝑘 := 8
3𝜃

(𝛾)
𝑘 − 2𝜃(2𝛾)

𝑘 + 1
3𝜃

(4𝛾)
𝑘 . With such an estimator, the

first 2 terms in the expansion, scaling as 𝛾 and 𝛾2, should vanish, which explains that
it does not saturate. We also perform an experiment on a the covertype1 data-set: the
Richardson-Romberg iterate improves on simple recursions.

4.5 Conclusion

In this chapter, we have used and developed Markov chain tools to analyze the behavior of
constant step-size SGD, with a complete analysis of its convergence, outlining the effect of
initial conditions, noise and step-sizes. For machine learning problems, this allows us to
extend known results from least-squares to all loss functions. This analysis leads naturally to
using Romberg-Richardson extrapolation, that provably improves the convergence behavior
of the averaged SGD iterates.

The proofs of the results given in this chapter are given in the next chapter (Ch. C): it
might be skipped at first reading.

1https://archive.ics.uci.edu/ml/datasets/covertype

https://archive.ics.uci.edu/ml/datasets/covertype
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Figure 4.2: Plot of the excess risk as a function of 𝑛, logarithmic scales. Upper-left:
synthetic data, logistic regression, 𝑑 = 12, with averaged SGD with step-size 1/𝑅2, 1/2𝑅2,
decaying step sizes as 1/2𝑅2√

𝑛 (averaged (plain) and non-averaged (dashed)), Richardson
Romberg extrapolated iterates, and online Newton iterates. Upper-right: same in lower
dimension (𝑑 = 4). Bottom: same but with three different step sizes and an estimator built
using Richardson on 3 different sequences: 𝜃3

𝑘 = 8
3𝜃

(𝛾)
𝑘 − 2𝜃(2𝛾)

𝑘 + 1
3𝜃

(4𝛾)
𝑘 , with 𝛾 = 1/4𝑅2.

Bottom-right: experiment on the covertype data-set, 𝑑 = 55, 𝑛 = 581012, logistic regression.



C
Appendix to Bridging the Gap between
Constant Step Size Stochastic Gradient

Descent and Markov Chains

Notation

Denote by {e1, . . . , e𝑑} the canonical basis of R𝑑. Let 𝐸 and 𝐹 be two vector spaces, denote
by 𝐸 ⊗𝐹 the tensor product of 𝐸 and 𝐹 . For all 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 denote by 𝑥⊗ 𝑦 ∈ 𝐸 ⊗𝐹

the tensor product of 𝑥 and 𝑦. Let 𝑛 ∈ N*, denote by 𝐶𝑛(R𝑑) the set of 𝑛 times continuously
differentiable functions from R𝑑 to R. Let 𝑓 ∈ 𝐶𝑛(R𝑑), denote by 𝐷𝑛𝑓 the 𝑛th differential
of 𝑓 . Let 𝑓 ∈ 𝐶1(R𝑑), denote by ∇𝑓 the gradient of 𝑓 . Let 𝑓 ∈ 𝐶2(R𝑑), denote by Δ𝑓 the
Laplacian of 𝑓 . Denote by ⌊·⌋ and ⌈·⌉ the floor and ceiling function respectively. For 𝑎, 𝑏 ∈ R,
denote by 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 the maximum and the minimum of 𝑎 and 𝑏 respectively. Denote
𝒮𝐿,𝜇 the set of 𝜇-strongly convex and 𝐿-smooth functions on R𝑑. By abuse of notation, we
will denote sometimes 𝑥⊗2 = 𝑥𝑥⊤.

In the next sections mainly devoted to proofs, we first introduce definitions and gen-
eralities about convex functions in Section C.1.1, then discuss extra different possible
assumptions on the noise in Section C.1.3. We prove the existence of a limit distribution in
Section C.2.1, and address asymptotic properties when 𝛾 → 0 in Section C.1.1. We prove
the convergence of the Markov chain in Section C.2.4, and study the relationship with the
gradient flow in Section C.4.

C.1 Generalities on convex and strongly convex functions

C.1.1 Definitions

Most of the following definitions can be found in Nesterov (2004). A continuously differen-
tiable function 𝑓 is convex if there exists for any 𝜃, 𝜂 ∈ R𝑑 we have:

𝑓(𝜂) > 𝑓(𝜃) +
⟨
𝑓 ′(𝜃), 𝜂 − 𝜃

⟩
.

A continuously differentiable function 𝑓 is 𝐿-smooth if its gradient is 𝐿-Lipschitz, i.e., if
there exists a constant 𝐿 > 0, such that for any 𝜃, 𝜂 ∈ R𝑑 we have:

‖𝑓 ′(𝜂) − 𝑓 ′(𝜃)‖ 6 𝐿‖𝜂 − 𝜃‖ .
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A continuously differentiable function 𝑓 is 𝜇-strongly convex if there exists a constant
𝜇 > 0, such that for any 𝜃, 𝜂 ∈ R𝑑 we have:

𝑓(𝜂) > 𝑓(𝜃) +
⟨
𝑓 ′(𝜃), 𝜂 − 𝜃

⟩
+ 𝜇

2 ‖𝜃 − 𝜂‖2 .

Recall that 𝜃* refers to as arg min𝜃∈R𝑑 𝑓 , which is unique when 𝑓 is strongly convex.
Let 𝑓 be a 𝐿-smooth and 𝜇-strongly convex function. Then for all 𝜃, 𝜂 ∈ R𝑑, it holds

𝑓(𝜃) − 𝑓(𝜃*) > 𝜇

2 ‖𝜃 − 𝜃*‖2 (C.1)

𝑓(𝜃(𝛾)
𝑛 ) − 𝑓(𝜃*) 6 𝐿‖𝜃(𝛾)

𝑛 − 𝜃*‖2 (C.2)⟨
𝑓 ′(𝜃) − 𝑓 ′(𝜂), 𝜃 − 𝜂

⟩
> 𝜇‖𝜃 − 𝜂‖2 (C.3)⟨

𝑓 ′(𝜃) − 𝑓 ′(𝜂), 𝜃 − 𝜂
⟩
>

1
𝐿

‖𝑓 ′(𝜃) − 𝑓 ′(𝜂)‖2 (C.4)⟨
𝑓 ′(𝜃) − 𝑓 ′(𝜂), 𝜃 − 𝜂

⟩
>

𝐿𝜇

𝐿+ 𝜇
‖𝜃 − 𝜂‖2 + 1

𝐿+ 𝜇
‖𝑓 ′(𝜃) − 𝑓 ′(𝜂)‖2 . (C.5)

The first two inequalities are direct consequences of the definition and the fact that
𝑓 ′(𝜃*) = 0. (C.3) is shown in (Nesterov, 2004, Chapter 2, (2.1.24)). (C.4) is the co-
coercivity equation in (Zhu and Marcotte, 1996). (C.5) is a combination of the co-coercivity
equation and of (C.3). It can be found in (Nesterov, 2004, Chapter 2, (2.1.24)),

C.1.2 Quadratic case

Consider the following assumption on 𝑓 .

Q1. There exists a positive definite matrix Σ such that 𝑓 = 𝑓Σ := (𝜃 ↦→
⃦⃦⃦
Σ1/2(𝜃 − 𝜃*)

⃦⃦⃦2
).

If there exists a positive definite matrix Σ such that 𝑓 = 𝑓Σ := (𝜃 ↦→
⃦⃦⃦
Σ1/2(𝜃 − 𝜃*)

⃦⃦⃦2
),

then A1 and A2 are satisfied, with 𝜇 the smallest eigenvalue of Σ, 𝐿 its largest eigenvalue,
and 𝑀 = 0.

C.1.3 Discussion on assumptions on the noise

Assumption A4, made in the text, can be weakened in order to apply to settings where input
observations are un-bounded (typically, Gaussian inputs would not satisfy Assumption A4).
Especially, for most situations, we only need Assumption A6 below.

A6. (i) There exists 𝜏 > 0 such that {E1/4[‖𝜀1(𝜃*)‖4]} 6 𝜏 .

(ii) For all 𝜃1, 𝜃2 ∈ R𝑑, there exists 𝐿 > 0 such that, for 𝑝 = 2, . . . , 4,

E
⃦⃦
𝑓 ′

𝑛(𝜃1) − 𝑓 ′
𝑛(𝜃2)

⃦⃦𝑝 6 𝐿𝑝−1 ‖𝜃1 − 𝜃2‖𝑝−2
⟨
𝜃1 − 𝜃2, 𝑓

′(𝜃1) − 𝑓 ′(𝜃2)
⟩
, (C.6)

We can also make the stronger assumption that the noise is independent of 𝜃 (the
“semi-stochastic” setting in Chapter 3), or more generally that the noise has a uniformly
bounded fourth order moment.

A7. There exists 𝜏 > 0 such that sup𝜃∈R𝑑{E1/4[‖𝜀1(𝜃)‖4]} 6 𝜏 .
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Assumption A6 is the weakest, as it is satisfied for random design least mean squares
and logistic regression with bounded fourth moment of the inputs. Note that we do not
assume that gradient or gradient estimates are a.s. bounded, to avoid the need for a
constraint on the space where iterates live. Of course Assumption A4 implies Assumption A
6. Moreover, in the special case of Assumption A7 where the noise is independent of 𝜃,
then Assumption A4 is clearly satisfied under Assumption A2.

C.2 Results on the Markov chain defined by SGD

C.2.1 Proof of Proposition 4.1

Let 𝜆1, 𝜆2 be two probability measures on ℬ(R𝑑) with finite second moment and 𝛾 >

0. Let 𝜃(1)
0 , 𝜃

(2)
0 be independent and distributed according to 𝜆1, 𝜆2 respectively, and

(𝜃(1)
𝑘 )>0,(𝜃(2)

𝑘 )𝑘>0 the SGD iterates associated with the step size 𝛾, starting from 𝜃
(1)
0 and

𝜃
(2)
0 respectively and sharing the same noise, i.e., for all 𝑘 > 0,⎧⎨⎩𝜃

(1)
𝑘+1 = 𝜃

(1)
𝑘 − 𝛾

[︀
𝑓 ′(𝜃(1)

𝑘 ) + 𝜀𝑘+1(𝜃(1)
𝑘 )

]︀
𝜃

(2)
𝑘+1 = 𝜃

(2)
𝑘 − 𝛾

[︀
𝑓 ′(𝜃(2)

𝑘 ) + 𝜀𝑘+1(𝜃(2)
𝑘 )

]︀
.

(C.7)

Therefore for all 𝑘 > 0, the distribution of (𝜃(1)
𝑘 , 𝜃

(2)
𝑘 ) belongs to Π(𝜆1𝑅𝛾 , 𝜆2𝑅𝛾) defined in

Section 4.3 in the main document. Then by definition of the Wasserstein distance,

𝑊 2
2 (𝜆1𝑅𝛾 , 𝜆2𝑅𝛾) 6 E

[︁
‖𝜃(1)

1 − 𝜃
(2)
1 ‖2

]︁
6 E

[︁
‖𝜃(1) − 𝛾𝑓 ′

1(𝜃(1)) − (𝜃(2) − 𝛾𝑓 ′
1(𝜃(2))))‖2

]︁
𝑖)
6 E

[︂⃦⃦⃦
𝜃(1) − 𝜃(2)

⃦⃦⃦2
− 2𝛾

⟨
𝑓 ′(𝜃(1)) − 𝑓 ′(𝜃(2)), 𝜃(1) − 𝜃(2)

⟩]︂
+𝛾2E

[︂⃦⃦⃦
𝑓 ′

1(𝜃(1)) − 𝑓 ′
1(𝜃(2))

⃦⃦⃦2
]︂

𝑖𝑖)
6 E

[︂⃦⃦⃦
𝜃(1) − 𝜃(2)

⃦⃦⃦2
− 2𝛾(1 − 𝛾𝐿)

⟨
𝑓 ′(𝜃(1)) − 𝑓 ′(𝜃(2)), 𝜃(1) − 𝜃(2)

⟩]︂
𝑖𝑖𝑖)
6 (1 − 2𝜇𝛾(1 − 𝛾𝐿))E

[︂⃦⃦⃦
𝜃(1) − 𝜃(2)

⃦⃦⃦2
]︂
,

using A3 for 𝑖), A6 for 𝑖𝑖), and finally A1 for 𝑖𝑖𝑖).
Thus by a straightforward induction, we get setting 𝜌 = (1 − 2𝜇𝛾(1 − 𝛾𝐿))

𝑊 2
2 (𝜆1𝑅

𝑛
𝛾 , 𝜆2𝑅

𝑛
𝛾 ) 6 E

[︁
‖𝜃(1)

𝑛 − 𝜃(2)
𝑛 ‖2

]︁
6 𝜌E

[︁
‖𝜃(1)

𝑛−1 − 𝜃
(2)
𝑛−1‖2

]︁
6 𝜌𝑛

∫︁
R𝑑×R𝑑

‖𝑥− 𝑦‖2 d𝜆1(𝑥)d𝜆2(𝑦) , (C.8)

By (Villani, 2009, Theorem 6.16), the space 𝒫2(R𝑑) of probability measures with second
order moment on R𝑑 endowed with 𝑊2 is a Polish space. As a consequence of (C.8) for
𝜆2 = 𝜆1𝑅

𝑝
𝛾 , for 𝑝 ∈ N, and Picard fixed point theorem, (𝜆1𝑅

𝑛
𝛾 )𝑛>0 is a Cauchy sequence

and converges to a limit 𝜋𝜆1
𝛾 ∈ 𝒫2(R𝑑):

lim
𝑛→+∞

𝑊2(𝜆1𝑅
𝑛
𝛾 , 𝜋

𝜆1
𝛾 ) = 0 . (C.9)

In addition by the triangle inequality

𝑊2(𝜋𝜆1
𝛾 , 𝜋𝜆2

𝛾 ) 6𝑊2(𝜋𝜆1
𝛾 , 𝜆1𝑅

𝑛
𝛾 ) +𝑊2(𝜆1𝑅

𝑛
𝛾 , 𝜆2𝑅

𝑛
𝛾 ) +𝑊2(𝜋𝜆2

𝛾 , 𝜆2𝑅
𝑛
𝛾 ) .
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Thus taking the limits as 𝑛 → +∞, we get 𝑊2(𝜋𝜆1
𝛾 , 𝜋𝜆2

𝛾 ) = 0 and 𝜋𝜆1
𝛾 = 𝜋𝜆2

𝛾 . The limit is
thus the same for all initial distributions and is denoted by 𝜋𝛾 .

Moreover, 𝜋𝛾 is invariant for 𝑅𝛾 . Indeed for all 𝑛 ∈ N, 𝑛 > 1,

𝑊2(𝜋𝛾𝑅𝛾 , 𝜋𝛾) 6𝑊2(𝜋𝛾𝑅𝛾 , 𝜋𝛾𝑅
𝑛
𝛾 ) +𝑊2(𝜋𝛾𝑅

𝑛
𝛾 , 𝜋𝛾) .

Using (C.8) and (C.9), we get taking 𝑛 → +∞, 𝑊2(𝜋𝛾𝑅𝛾 , 𝜋𝛾) = 0 and 𝜋𝛾𝑅𝛾 = 𝜋𝛾 . The
fact that 𝜋𝛾 is the unique stationary distribution can be shown by contradiction and using
(C.8).

Thus finally for 𝜆1 = 𝛿𝜃, 𝜆2 = 𝜋𝛾 , using the invariance of 𝜋𝛾 and (C.8), we get:

𝑊 2
2 (𝑅𝑛

𝛾 (𝜃, ·), 𝜋𝛾) 6 (1 − 2𝜇𝛾(1 − 𝛾𝐿))𝑛
∫︁

‖𝜃 − 𝜗‖2d𝜋𝛾(𝜗) .

C.2.2 Existence of Poisson solutions

Using the process (𝜃(1)
𝑘,𝛾)>0,(𝜃(2)

𝑘,𝛾)𝑘>0 defined by (C.7) with 𝜆1 = 𝛿𝜃 and 𝜆2 = 𝜋𝛾 and (C.8),
we have if ℎ is 𝐿ℎ-Lipschitz, for any 𝑥 ∈ R𝑑, any 𝑛 ∈ N*:⃒⃒⃒

𝑅𝑛
𝛾 (ℎ− 𝜋𝛾(ℎ))(𝜃)

⃒⃒⃒
6 𝐿ℎ𝑊

2
2 (𝑅𝑛

𝛾 (𝜃, ·), 𝜋𝛾)

6 𝐿ℎ(1 − 2𝜇𝛾(1 − 𝛾𝐿))𝑛/2
(︂∫︁

‖𝜃 − 𝜗‖2d𝜋𝛾(𝜗)
)︂1/2

. (C.10)

In addition, for any (𝜃, 𝜗) ∈ R𝑑 × R𝑑, 𝑛 ∈ N*, using (C.7):⃦⃦⃦
𝑅𝑛

𝛾ℎ(𝜃) −𝑅𝑛
𝛾ℎ(𝜗)

⃦⃦⃦
6 𝐿ℎ𝑊

2
2 (𝑅𝑛

𝛾 (𝜃, ·), 𝑅𝑛
𝛾 (𝜗, ·))

6 𝐿ℎ(1 − 2𝜇𝛾(1 − 𝛾𝐿))𝑛/2‖𝜃 − 𝜗‖ . (C.11)

As a consequence by (C.10), for any Lipschitz continuous function 𝜙 and any 𝜃 ∈ R𝑑,
{𝜃 ↦→

∑︀𝑘
𝑖=1(𝑅𝑖

𝛾𝜙(𝜃) − 𝜋𝛾(𝜙))}𝑘>0 converges absolutely on all compact sets of R𝑑. Denote
by 𝜓𝛾 the limit associated with this sequence: 𝜓𝛾 : 𝜃 ↦→

∑︀∞
𝑖=1(𝑅𝑖

𝛾𝜙(𝜃) − 𝜋𝛾(𝜙)). By (C.11),
𝜓𝛾 is also Lipschitz continuous. This function is called the solution to the Poisson equation
since it satisfies (𝐼 −𝑅𝛾)𝜓𝛾 = 𝜙− 𝜋𝛾(𝜑). Moreover, 𝜋𝛾(𝜓𝛾) = 0.

C.2.3 Asymptotic properties of the chain, behavior under equilibrium, and
drift.

In the following, we consider the function 𝜙1 : 𝜃 ↦→ 𝜃 − 𝜃* ∈ R𝑑, and the function
𝜙2 : 𝜃 ↦→ (𝜃 − 𝜃*)(𝜃 − 𝜃*)⊤ ∈ R𝑑×𝑑. In the quadratic case, we give an exact formula for
the expectation under the limit distribution of these two terms. For the general case, we
propose a first order development of these expectations.

The most important quantity, as we are eventually interested in the behavior of the
averaged iterate 𝜃(𝛾)

𝑛 , is the expectation of the identity function under the limit distribution,
𝜃𝛾 defined by (4.3).

This part extends existing ideas from the literature to prove that 𝛾−1/2(𝜋𝛾−𝜃*) converges
in distribution to a normal law when 𝛾 → 0. See for example (Pflug, 1986; Ljung et al.,
1992). We consider the Markov chain under the limiting stationary distribution, together
with a Taylor expansion of the function around the optimal point 𝜃*, in order to analyze
how the average under the stationary distribution 𝜃𝛾 deviates from 𝜃*.
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Analysis is carried through the dynamic (4.1) at stationarity, i.e., we assume that 𝜃0
is distributed according to 𝜋𝛾 given by the study of the equilibrium equation: under
stationarity, i.e., if 𝜃(𝛾)

𝑛 ∼ 𝜋𝛾 ,

𝜃
(𝛾)
𝑛+1

𝑑= 𝜃(𝛾)
𝑛 − 𝛾𝑓 ′(𝜃(𝛾)

𝑛 ) − 𝛾𝜀𝑛+1(𝜃(𝛾)
𝑛 ) 𝑑= 𝜋𝛾 . (C.12)

In order to get a first order development of 𝜃𝛾 around 𝜃*, we use the definition of the
stationary distribution. We are going to use this equality several times to obtain information
on 𝜃’s first moments under 𝜋𝛾 . The first consequence of this equation is that, taking
expectations on both sides, ∫︁

R𝑑
𝑓 ′(𝜃)𝜋𝛾(d𝜃) = 0 . (C.13)

Lemma C.1 (Properties under stationarity, Quadratic case).
We consider, the stochastic gradient descent algorithm (4.1), for the quadratic function

𝑓Σ(𝜃) :=
⃦⃦⃦
Σ1/2(𝜃 − 𝜃*)

⃦⃦⃦2
. Then the mean value under the stationary distribution of the

iterate is the optimal point:

𝜃𝛾 =
∫︁

R𝑑
𝜃𝜋𝛾(d𝜃) = 𝜃*∫︁

R𝑑
(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)−1

∫︁
R𝑑
𝜀1(𝜃)⊗2𝜋𝛾(d𝜃) .

Moreover, for the least mean squares algorithm, as defined described in the examples in
Section 4.2.1,

𝜃(𝛾)
𝑛 − 𝜃* = (𝐼 − 𝛾Σ)

(︁
𝜃

(𝛾)
𝑛−1 − 𝜃*

)︁
+ 𝛾𝜀𝑛(𝜃(𝛾)

𝑛−1)

𝜀𝑛(𝜃(𝛾)
𝑛−1) = (Σ − 𝑥𝑛 ⊗ 𝑥𝑛)(𝜃(𝛾)

𝑛−1 − 𝜃*) + (𝑦𝑛 − ⟨𝜃*, 𝑥𝑛⟩)𝑥𝑛 ,

we have another formula:∫︁
R𝑑

(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾𝑀)−1E[𝜉⊗2
1 ] ,

where in the last equation, 𝑀 is an operator on matrices such that 𝑀 : 𝐴 ↦→ E[𝑥𝑛𝑥
⊤
𝑛𝐴𝑥𝑛𝑥

⊤
𝑛 ],

and 𝜉𝑛 = (𝑦𝑛 − ⟨𝜃*, 𝑥𝑛⟩)𝑥𝑛 is the additive part of the noise (the part that does not depend on
𝜃).

Proof. The first part directly comes from Equation (C.13) and the fact that gradients of 𝑓Σ
are linear:

∫︀
R𝑑 𝑓 ′(𝜃)𝜋𝛾(d𝜃) = Σ

∫︀
R𝑑 𝜃 − 𝜃*𝜋𝛾(d𝜃) = 0, thus

∫︀
R𝑑 𝜃𝜋𝛾(d𝜃) = 𝜃*.

The second part comes from the development of Equation (C.12):

(𝜃(𝛾)
1 − 𝜃*)⊗2 𝑑=

(︁
(𝐼 − 𝛾Σ)

(︁
𝜃

(𝛾)
0 − 𝜃*

)︁
+ 𝛾𝜀1(𝜃(𝛾)

0 )
)︁⊗2

E(𝜃(𝛾)
1 − 𝜃*)⊗2 = (𝐼 − 𝛾Σ)E

(︁
𝜃

(𝛾)
0 − 𝜃*

)︁⊗2
(𝐼 − 𝛾Σ) + 𝛾2E

(︁
𝜀1(𝜃(𝛾)

0 )
)︁⊗2

E(𝜃(𝛾)
1 − 𝜃*)⊗2 = (𝐼 − 𝛾Σ ⊗ 𝐼 − 𝛾𝐼 ⊗ Σ + 𝛾2Σ ⊗ Σ)E

(︁
𝜃

(𝛾)
0 − 𝜃*

)︁⊗2

+𝛾2E
(︁
𝜀1(𝜃(𝛾)

0 )
)︁⊗2

, (C.14)

Thus as if 𝜃(𝛾)
0 ∼ 𝜋𝛾 , then 𝜃(𝛾)

1 ∼ 𝜋𝛾:∫︁
R𝑑

(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)−1
∫︁

R𝑑
𝜀1(𝜃)⊗2𝜋𝛾(d𝜃) .
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Similarly, starting from:

𝜃
(𝛾)
1 − 𝜃* = (𝐼 − 𝛾𝑥1 ⊗ 𝑥1)

(︁
𝜃

(𝛾)
0 − 𝜃*

)︁
+ 𝛾𝜉1 ,

using the fact that E[𝑥𝑛𝑥
⊤
𝑛 ] = Σ and the definition of 𝑀 , one gets:∫︁

R𝑑
(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾𝑀)−1E[𝜉⊗2

1 ] .

Which concludes the proof.

Lemma C.2. Assume A1, A2, A3, A6. Then

E
[︂
−2𝛾

⟨
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ), 𝜃(𝛾)

𝑛 − 𝜃*
⟩

+ 𝛾2
⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 )

⃦⃦⃦2
|ℱ𝑛

]︂
6 −2𝛾𝜇(1−𝛾𝐿)

⃦⃦⃦
𝜃(𝛾)

𝑛 − 𝜃*
⃦⃦⃦2

+2𝛾2𝜏2,

where 𝑓 ′
𝑛 = 𝜀𝑛 + 𝑓 ′ for all 𝑛 > 1 and (𝜃(𝛾)

𝑛 )𝑛>0 is given by (4.1).

Proof. Under A6, we have:

E
[︂⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 )

⃦⃦⃦2
|ℱ𝑛

]︂
6 2

(︂
E
[︂⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ) − 𝑓 ′

𝑛+1(𝜃*)
⃦⃦⃦2
]︂

+ E
[︁⃦⃦
𝑓 ′

𝑛+1(𝜃*)
⃦⃦2 |ℱ𝑛

]︁)︂
6 2

(︂
E
[︂⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ) − 𝑓 ′

𝑛+1(𝜃*)
⃦⃦⃦2

|ℱ𝑛

]︂
+ 𝜏2

)︂
6 2

(︁
𝐿E

[︁⟨
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ) − 𝑓 ′

𝑛+1(𝜃*), 𝜃(𝛾)
𝑛 − 𝜃*

⟩
|ℱ𝑛

]︁
+ 𝜏2

)︁
6 2

(︁
𝐿
⟨
𝑓 ′(𝜃(𝛾)

𝑛 ) − 𝑓 ′(𝜃*), 𝜃(𝛾)
𝑛 − 𝜃*

⟩
+ 𝜏2

)︁
.

Combining this result and A1 concludes the proof.

Note that if we instead make Assumption A7, we have a slightly different result. We
only gives this result as it underlines the difference between a stochastic noise and a
semi-stochastic noise, especially the fact that the maximal step size differs depending on
this assumption made. This Lemma is not used in the following.

Lemma C.3. Assume A1, A2, A3, A7. Then, for 𝛾 6 2
𝐿+𝜇

E
[︂
−2𝛾

⟨
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ), 𝜃(𝛾)

𝑛 − 𝜃*
⟩

+ 𝛾2
⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 )

⃦⃦⃦2
|ℱ𝑛

]︂
6 −2𝛾𝜇̃

⃦⃦⃦
𝜃(𝛾)

𝑛 − 𝜃*
⃦⃦⃦2

+ 𝛾2𝜏2 ,

where 𝑓 ′
𝑛 = 𝜀𝑛 + 𝑓 ′, for all 𝑛 > 1 and (𝜃(𝛾)

𝑛 )𝑛>0 is given by (4.1). We are allowed a larger step
size (nearly twice as large), but we slightly degrade 𝜇 into 𝜇̃ := 𝜇𝐿

𝐿+𝜇 .

Proof. Under A7, we have:

E
[︂⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 )

⃦⃦⃦2
|ℱ𝑛

]︂
=

(︂⃦⃦⃦
𝑓 ′(𝜃(𝛾)

𝑛 )
⃦⃦⃦2

+ E
[︂⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ) − 𝑓 ′(𝜃(𝛾)

𝑛 )
⃦⃦⃦2
]︂)︂

6
(︂⃦⃦⃦
𝑓 ′(𝜃(𝛾)

𝑛 )
⃦⃦⃦2

+ 𝜏2
)︂
.

So that finally, using Equation (C.5), and rearranging terms:

E
[︂
−2𝛾

⟨
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 ), 𝜃(𝛾)

𝑛 − 𝜃*
⟩

+ 𝛾2
⃦⃦⃦
𝑓 ′

𝑛+1(𝜃(𝛾)
𝑛 )

⃦⃦⃦2
|ℱ𝑛

]︂
6 −2𝛾𝜇̃

⃦⃦⃦
𝜃(𝛾)

𝑛 − 𝜃*
⃦⃦⃦2

+ 𝛾2𝜏2

− 2 𝛾

𝐿+ 𝜇

⃦⃦⃦
𝑓 ′(𝜃(𝛾)

𝑛 )
⃦⃦⃦

+ 𝛾2
⃦⃦⃦
𝑓 ′(𝜃(𝛾)

𝑛 )
⃦⃦⃦2

6 −2𝛾𝜇̃
⃦⃦⃦
𝜃(𝛾)

𝑛 − 𝜃*
⃦⃦⃦2

+ 𝛾2𝜏2 ,
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Lemma C.4 (Properties under stationarity, general case).
If 𝑓 satisfies Assumptions A1, A2, and we study stochastic gradient descent under Assumptions A
3, A6, we have:

𝜃𝛾 − 𝜃* = 1
2𝛾𝑓

′′(𝜃*)−1𝑓 ′′′(𝜃*)
(︁[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
∫︁

R𝑑
𝜀(𝜃)⊗2𝜋𝛾(d𝜃)

)︁
+𝑂(𝛾2)

∫︁
R𝑑

(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾
[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
∫︁

R𝑑
𝜀(𝜃)⊗2𝜋𝛾(d𝜃) +𝑂(𝛾2) .

This lemma improves some result of (Pflug, 1986), and proves that the residual term is
of order 𝑂(𝛾2) (we first prove that it is of order 𝑂(𝛾3/2)) and then improve on that result.

Proof. As before, the proof relies on the analysis of the recursion under stationarity. That is
we consider 𝜃(𝛾)

0 ∼ 𝜋𝛾 (thus 𝜃(𝛾)
1 ∼ 𝜋𝛾), and expand the stochastic gradient recursion:

𝜃
(𝛾)
1 = 𝜃

(𝛾)
0 − 𝛾𝑓 ′

1(𝜃(𝛾)
0 )

= 𝜃
(𝛾)
0 − 𝛾

(︁
𝑓 ′(𝜃(𝛾)

0 ) + 𝜀1(𝜃(𝛾)
0 )

)︁
.

For simplicity, in the rest of the proof, we skip the explicit dependence in 𝛾 in 𝜃
(𝛾)
𝑖 , for

𝑖 ∈ {0, 1}. We only denote it 𝜃𝑖.
We first prove that:

𝜃𝛾 − 𝜃* = 1
2𝛾𝑓

′′(𝜃*)−1𝑓 ′′′(𝜃*)
(︁[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
E𝜀⊗2

)︁
+𝑂(𝛾3/2) .

We first notice that E𝜋𝛾 ‖𝜃 − 𝜃*‖ = 𝑂(𝛾1/2), which will be used several times in the
following. Indeed, if 𝜃0 ∼ 𝜋𝛾:

E
[︁
‖𝜃1 − 𝜃*‖2

]︁
= E

[︁⃦⃦
𝜃0 − 𝜃* − 𝛾𝑓 ′

1(𝜃0)
⃦⃦2
]︁

= E
[︁
‖𝜃0 − 𝜃*‖2 − 2𝛾

⟨︀
𝑓 ′

1(𝜃0), 𝜃0 − 𝜃*
⟩︀

− 𝛾2 ⃦⃦𝑓 ′
1(𝜃0)

⃦⃦2
]︁

⇔ 0 6 −2𝛾𝜇E
[︁
‖𝜃0 − 𝜃*‖2

]︁
+ 𝛾2𝜏2

Using Lemma C.2, under Assumption A6, with 𝜏2 the bound on E[‖𝜀1(𝜃*)‖2]. Thus we
have E𝜋𝛾 [‖𝜃 − 𝜃*‖2] 6 𝛾𝜏2

2𝜇 , and by Jensen, E𝜋𝛾 [‖𝜃 − 𝜃*‖] 6 𝛾1/2𝜏√
2𝜇

= 𝑂(𝛾1/2) . More

generally, we show in Section C.3, in Lemma C.7, that E𝜋𝛾 [‖𝜃 − 𝜃*‖4] = 𝑂(𝛾2), and thus
E𝜋𝛾 [‖𝜃 − 𝜃*‖3] = 𝑂(𝛾3/2).

We now use the following expression for the SGD recursion:

𝜃1 = 𝜃0 − 𝛾
(︀
𝑓 ′(𝜃0) + 𝜀1(𝜃0)

)︀
.

For simplicity, in the following, we may denote: 𝜀1 = 𝜀1(𝜃0). By definition, we have
𝜃𝛾 = E𝜋𝛾𝜃 , and as it has been seen before, E𝜋𝛾𝑓

′(𝜃) = 0.
At it has been proved above, E𝜋𝛾 ‖𝜃 − 𝜃*‖2 = 𝑂(𝛾), which also implies by Jensen’s

inequality that ‖𝜃𝛾 − 𝜃*‖2 = 𝑂(𝛾). Using a Taylor expansion, we have that:

𝑓 ′(𝜃) = 𝑓 ′′(𝜃*)(𝜃 − 𝜃*) + 1
2𝑓

′′′(𝜃*)(𝜃 − 𝜃*)⊗2 +𝑂(‖𝜃 − 𝜃*‖3).

Where 𝑓 ′′(𝜃*) is the Hessian matrix of 𝑓 , and 𝑓 ′′′(𝜃*) a third order tensor that acts on the
second order tensor (𝜃 − 𝜃*)⊗2: 𝑓 ′′′(𝜃*)(𝜃 − 𝜃*)⊗2 is a vector in R𝑑, such that for 𝑘 ∈ [1; 𝑑],
(𝑓 ′′′(𝜃*)(𝜃 − 𝜃*)⊗2)𝑘 =

𝑛∑︀
𝑖,𝑗=1

𝜕3𝑓
𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘

(𝜃 − 𝜃*)𝑖(𝜃 − 𝜃*)𝑗 .

0 = E𝜋𝛾

[︁
𝑓 ′′(𝜃*)(𝜃 − 𝜃*) + 1

2𝑓
′′′(𝜃*)(𝜃 − 𝜃*)⊗2

]︁
+𝑂(𝛾3/2),
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using the fact that 𝑓 is 𝒞4, with bounded 4−𝑡ℎ derivative, and E𝜋𝛾 [‖𝜃 − 𝜃*‖3] = 𝑂(𝛾3/2).
This leads to

𝑓 ′′(𝜃*)(𝜃𝛾 − 𝜃*) + 1
2𝑓

′′′(𝜃*)
[︀
E𝜋𝛾 (𝜃 − 𝜃*)⊗2]︀ = 𝑂(𝛾3/2) . (C.15)

Moreover, we have:

𝜃1 − 𝜃* = 𝜃0 − 𝜃* − 𝛾
[︀
𝑓 ′′(𝜃*)(𝜃0 − 𝜃*) + 𝜀1 +𝑂(‖𝜃0 − 𝜃*‖)

]︀
= (I − 𝛾𝑓 ′′(𝜃*))(𝜃0 − 𝜃*) − 𝛾𝜀1 + 𝛾𝑂(‖𝜃0 − 𝜃*‖).

Taking the second order moment of this equation, and using the fact that E𝜋𝛾 [𝜀1(𝜃0−𝜃*)⊤] =
E𝜋𝛾 [E[𝜀1(𝜃0 − 𝜃*)⊤|ℱ0]] = E𝜋𝛾 [E[𝜀1|ℱ0](𝜃0 − 𝜃*)⊤] = 0, we get:

E𝜋𝛾 (𝜃 − 𝜃*)⊗2 = (I − 𝛾𝑓 ′′(𝜃*))E𝜋𝛾 (𝜃 − 𝜃*)⊗2(I − 𝛾𝑓 ′′(𝜃*)) + 𝛾2E𝜋𝛾 [𝜀⊗2
1 ] +𝑂(𝛾5/2).

This leads to:

E𝜋𝛾 (𝜃 − 𝜃*)⊗2 = 𝛾
[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
E𝜋𝛾 [𝜀⊗2

1 ] +𝑂(𝛾3/2). (C.16)

And combining Equation (C.15) and Equation (C.16), we get:

𝜃𝛾 − 𝜃* = 1
2𝛾𝑓

′′(𝜃*)−1𝑓 ′′′(𝜃*)
(︁[︀
𝑓 ′′(𝜃*) ⊗ I + I ⊗ 𝑓 ′′(𝜃*)

]︀−1
E𝜋𝛾 [𝜀⊗2

1 ]
)︁

+𝑂(𝛾3/2) .

The rest of the proof is devoted to showing that the residual term is of order 𝑂(𝛾2).
At that point, we have also proved that E[𝜃 − 𝜃*] = 𝑂(𝛾). To find the next term in the
development, we develop further each of the terms. We introduce the 4−𝑡ℎ order tensor
𝑓 (4) ∈ R𝑑×𝑑×𝑑×𝑑, which acts on R𝑑×𝑑×𝑑 to give a vector of R𝑑. Using the following Taylor
expansion, with 𝑓 assumed to be 𝒞5:

𝜃1 − 𝜃* = 𝜃0 − 𝜃* − 𝛾
[︀
𝑓 ′′(𝜃*)(𝜃0 − 𝜃*) + 1

2𝑓
(3)(𝜃*)(𝜃0 − 𝜃*)⊗2

+1
6𝑓

(4)(𝜃*)(𝜃0 − 𝜃*)⊗3 + 𝜀1 +𝑂(‖𝜃0 − 𝜃*‖4)
]︀
. (C.17)

Thus if 𝜃0 ∼ 𝜋𝛾:

E𝜋𝛾 [𝜃 − 𝜃*] = E𝜋𝛾 [𝜃 − 𝜃*] − E𝜋𝛾

[︁
𝛾
[︀
𝑓 ′′(𝜃*)(𝜃 − 𝜃*) + 1

2𝑓
(3)(𝜃*)(𝜃 − 𝜃*)(𝜃 − 𝜃*)⊤

+1
6𝑓

(4)(𝜃*)(𝜃 − 𝜃*)⊗3 + 𝜀1
]︀]︁

+ 𝛾𝑂(𝛾2)

𝑓 ′′(𝜃*)E𝜋𝛾 [𝜃 − 𝜃*] = −E𝜋𝛾

[︂1
2𝑓

(3)(𝜃*)(𝜃 − 𝜃*)⊗2 + 1
6𝑓

(4)(𝜃*)(𝜃 − 𝜃*)⊗3 + 𝜀1

]︂
+𝑂(𝛾2)

𝑓 ′′(𝜃*)(𝜃𝛾 − 𝜃*) = −1
2𝑓

(3)(𝜃*)E𝜋𝛾 [(𝜃 − 𝜃*)⊗2] − 1
6𝑓

(4)(𝜃*)E𝜋𝛾 [(𝜃 − 𝜃*)⊗3] +𝑂(𝛾2) .

(C.18)

Using Assumption 3 (implying E[𝜀1(𝜃0)] = 0). To get the next term in the development, we
need to

∙ Expand E𝜋𝛾 [𝜃 − 𝜃*]⊗2 = �𝛾 + △𝛾2 + 𝑜(𝛾2);

∙ Expand E𝜋𝛾 [(𝜃 − 𝜃*)⊗3] = �𝛾2 + 𝑜(𝛾2).
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First, we have, squaring Equation (C.17) and taking expectations:

E[𝜃1 − 𝜃*]⊗2 = E
[︁ (︀
𝐼 − 𝛾𝑓 ′′(𝜃*)

)︀
(𝜃0 − 𝜃*) + 𝛾

2𝑓
(3)(𝜃*)(𝜃0 − 𝜃*)⊗2 + 𝛾𝜀1

+𝑂(𝛾 ‖𝜃0 − 𝜃*‖3)
]︁⊗2

= E[𝜃0 − 𝜃*]⊗2 − 𝛾(𝐼 ⊗ 𝑓 ′′(𝜃*) + 𝑓 ′′(𝜃*) ⊗ 𝐼)E
[︀
(𝜃 − 𝜃*)⊗2]︀+𝑂(𝛾3)

+𝛾

2
(︁
(𝜃0 − 𝜃*)𝑓 (3)(𝜃*)(𝜃0 − 𝜃*)⊗2 + [(𝜃0 − 𝜃*)𝑓 (3)(𝜃*)(𝜃0 − 𝜃*)⊗2]⊤

)︁
+𝛾2E𝜀⊗2

1 + 𝛾E[
(︀
𝐼 − 𝛾𝑓 ′′(𝜃*)

)︀
(𝜃0 − 𝜃*)𝜀⊤

1 ] .

Where we have used:

∙ 𝛾2E
[︀
(𝜃 − 𝜃*)⊗2]︀ = 𝑂(𝛾3).

∙ E[(𝐼 − 𝛾𝑓 ′′(𝜃*)) (𝜃0 − 𝜃*)𝜀⊤
1 ] = 0 (Assumption 3 again).

Under 𝜃0
𝑑= 𝜃1 ∼ 𝜋𝛾 , and simplifying by E𝜋𝛾 [𝜃 − 𝜃*]⊗2 left and right and dividing by 𝛾:

(𝐼 ⊗ 𝑓 ′′(𝜃*) + 𝑓 ′′(𝜃*) ⊗ 𝐼)E𝜋𝛾

[︀
(𝜃 − 𝜃*)⊗2]︀=𝑂(𝛾2) − E

1
2𝑓

(3)(𝜃*)(𝜃 − 𝜃*)⊗3−

E[12𝑓
(3)(𝜃*)(𝜃 − 𝜃*)⊗3]⊤− 𝛾E𝜀⊗2

1 . (C.19)

We now show that E𝜋𝛾 [(𝜃 − 𝜃*)⊗3] = 𝑂(𝛾2). It can then be used in both (C.19) and (C.18),
to prove that the next leading term is indeed or order 𝑂(𝛾2) and not 𝛾3/2. To compute
E𝜋𝛾 [(𝜃 − 𝜃*)⊗3] we use the second order development again:

𝜃1 − 𝜃* = 𝜃0 − 𝜃* − 𝛾
[︀
𝑓 ′′(𝜃*)(𝜃0 − 𝜃*) + 𝜀1 +𝑂(𝛾)

]︀
= (I − 𝛾𝑓 ′′(𝜃*))(𝜃0 − 𝜃*) − 𝛾𝜀1 +𝑂(𝛾2).

E𝜋𝛾 (𝜃 − 𝜃*)⊗2 = (I − 𝛾𝑓 ′′(𝜃*))E𝜋𝛾 (𝜃 − 𝜃*)⊗2(I − 𝛾𝑓 ′′(𝜃*)) + 𝛾2E𝜀⊗2 +𝑂(𝛾5/2).

Let us denote in the following 𝜂𝑖 = 𝜃𝑖 − 𝜃*, 𝑖 ∈ {1, 2}:

E[𝜂⊗3
1 ] = E(𝜃1 − 𝜃*)⊗3

= E
(︁
(I − 𝛾𝑓 ′′(𝜃*))𝜂0 − 𝛾𝜀1 +𝑂(𝛾2)

)︁⊗3

= E((𝐼 − (𝛾𝑓 ′′(𝜃*) ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝛾𝑓 ′′(𝜃*) ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝛾𝑓 ′′(𝜃*))(𝜂0)⊗3

+𝑂((𝛾2+3/2)) + 𝛾2E[(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝜀⊗2
1 + 𝜀1 ⊗ (I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝜀1

+𝜀⊗2
1 ⊗ (I − 𝛾𝑓 ′′(𝜃*))𝜂0] + 𝛾3E[𝜀⊗3

1 ] + 0 +𝑂(𝛾3) .

Using the fact that E[𝜀1] = 0, and the fact that E[𝑂(𝛾2) ⊗ ((I − 𝛾𝑓 ′′(𝜃*))𝜂)⊗2] = 𝑂(𝛾3) as

E[𝜂⊗2] = 𝑂(𝛾). Thus, if 𝜃0
𝑑= 𝜃1, simplifying by E[𝜂⊗3

𝑖 ]:

𝛾ME[𝜂⊗3
0 ] = 𝛾2E

[︀
(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝜀⊗2

1 + 𝜀1 ⊗ (I − 𝛾𝑓 ′′(𝜃*))𝜂 ⊗ 𝜀1

+𝜀⊗2
1 ⊗ (I − 𝛾𝑓 ′′(𝜃*))𝜂0

]︀
+ 𝛾3E[𝜀⊗3

1 ] + 0 +𝑂(𝛾3) .

With M = (𝑓 ′′(𝜃*) ⊗ 𝐼 ⊗ 𝐼 + 𝐼 ⊗ 𝑓 ′′(𝜃*) ⊗ 𝐼 + 𝐼 ⊗ 𝐼 ⊗ 𝑓 ′′(𝜃*)) : R𝑑×𝑑×𝑑 → R𝑑×𝑑×𝑑.
We need to bound the term E[(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝜀⊗2

1 ] and its symmetric counterparts.
We recall that 𝜀1 stands for 𝜀1(𝜃0) and decompose it as the sum of an additive noise
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(independent on 𝜃0) and a multiplicative one: 𝜀1(𝜃0) = 𝜀1(𝜃0) − 𝜀1(𝜃*) + 𝜀1(𝜃*). For the
multiplicative part, under Assumption 6, E[‖𝜀1(𝜃0) − 𝜀1(𝜃*)‖2 |ℱ0] 6 𝐿[‖𝜃0 − 𝜃*‖2], and
thus E[(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ (𝜀1(𝜃0) − 𝜀1(𝜃*))⊗2] = 𝑂(𝛾3/2). For the additive part,

E[(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝜀1(𝜃*)⊗2] = E[(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ E[𝜀1(𝜃*)⊗2|ℱ0]]
= E[(I − 𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝐶]
= (I − 𝛾𝑓 ′′(𝜃*)(𝜃𝛾 − 𝜃*) ⊗ 𝐶 ,

with 𝐶 = E[𝜀1(𝜃*)⊗2] = E[𝜀1(𝜃*)⊗2|ℱ0] as 𝜀1(𝜃*)⊗2 is independent of ℱ0, and thus E[(I −
𝛾𝑓 ′′(𝜃*))𝜂0 ⊗ 𝜀1(𝜃*)⊗2] = 𝑂(𝛾). Finally, for the crossed term, we use the fact that the
multiplicative noise is Lipschitz to get the same result. Overall

ME𝜋𝛾

[︁
(𝜃 − 𝜃*)⊗3

]︁
= 𝛾2

(︂
E𝜋𝛾 [𝜀⊗3

1 ] + 1
𝛾

E𝜋𝛾 [𝜂0 ⊗ 𝜀⊗2
1 + 𝜀1 ⊗ 𝜂0 ⊗ 𝜀1 + 𝜀⊗2

1 ⊗ 𝜂0]
)︂

= 𝑂(𝛾2) (C.20)

Combining (C.20) and the previously established results, we get the Lemma.

C.2.4 Convergence of second order moments

Poisson equation

We now introduce the Poisson equation; for a function 𝜙 : R𝑑 → R𝑞 locally-Lipschitz, let
𝜓 : R𝑑 → R𝑞 be a function such that 𝜋𝛾(𝜓) = 0 and the following equations:

(𝐼 −𝑅𝛾)𝜓𝑓 = 𝜙− 𝜋𝛾(𝜙) (C.21)

𝜓𝑓 =
∞∑︁

𝑖=0
𝑅𝑖

𝛾(𝜙− 𝜋𝛾(𝜙)) , (C.22)

such that for any 𝑥 ∈ R𝑑, 𝜓𝑓 (𝑥) =
∑︀∞

𝑖=0𝑅
𝑖
𝛾(𝜙− 𝜋𝛾(𝜙))(𝑥) =

∑︀∞
𝑖=0 E

[︁
𝜙(𝜃(𝛾)

𝑖 (𝑥))
]︁

− 𝜋𝛾(𝜙).
The convergence of this sum has already been proved for Lipschitz functions, using the
contraction in Wasserstein distance between the law of iterates. More generally, for any
locally Lipschitz function, Theorem C.8, proved in Section C.3, shows that the solution to
the Poisson equation exists, and is locally Lipschitz. As a consequence, we can consider
recursively consider the solution to a Poisson equation associated to the solution of a
Poisson equation.

Convergence theorem

Theorem C.5. Let 𝜙 : R𝑑 → R𝑞 be a locally Lipschitz function, let 𝜓 be the solution of the
Poisson Equation (C.21). We assume that 𝜃0 ∼ 𝜈0 for some initial distribution 𝜈0. We study Φ
defined as the following random variable in R𝑞.

Φ := 1
𝑛

𝑛−1∑︁
𝑖=0

𝜙(𝜃(𝛾)
𝑖 (𝜈0)) ,

Then:

EΦ = 𝜋𝛾(𝜙) + 1
𝑛
𝜈0(𝜓) +𝑂(𝜌𝑛) .
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And if 𝜋𝛾(𝜙) = 0:

E(ΦΦ⊤) − (EΦ)(EΦ)⊤ = 1
𝑛

∫︁
R𝑑

[︁
𝜓𝛾(𝜃)𝜓𝛾(𝜃)⊤ − (𝜓𝛾 − 𝜙)(𝜃)(𝜓𝛾 − 𝜙)(𝜃)⊤

]︁
d𝜋𝛾(𝜃)

+ 1
𝑛2

∫︁
R𝑑

[︁
𝜓𝛾(𝜃)𝜓𝛾(𝜃)⊤ + 𝜒1

𝛾(𝜃) − 𝜒2
𝛾(𝜃)

]︁
d𝜈0(𝜃) +𝑂(𝜌𝑛) ,

where:

1. 𝜌 := (1 − 2𝜇𝛾(1 − 𝛾𝐿))1/2.

2. 𝜓𝛾 is the solution to the Poisson equation associated with 𝜙.

3. 𝜒1
𝛾 is the solution to the Poisson equation associated with 𝜓𝛾𝜓

⊤
𝛾 .

4. 𝜒2
𝛾 is the solution to the Poisson equation associated with (𝑅𝛾𝜓𝛾)(𝑅𝛾𝜓

⊤
𝛾 ).

Proof. In the following proof, in order to improve readability, we skip the dependance on 𝛾
for 𝜃(𝛾)

𝑛 , which is thus simply denoted 𝜃𝑛. We have:

EΦ = 1
𝑛

𝑛−1∑︁
𝑖=0

E [𝜙(𝜃𝜈0
𝑖 )] = 1

𝑛

𝑛−1∑︁
𝑖=0

𝜈0(𝑅𝑛
𝛾 (𝜙))

= 𝜋𝛾(𝜙) + 1
𝑛

𝑛−1∑︁
𝑖=0

𝜈0(𝑅𝑛
𝛾 (𝜙− 𝜋𝛾(𝜙)))

= 𝜋𝛾(𝜙) + 1
𝑛
𝜈0(𝜓𝛾) + 𝜈0(𝑅𝑛

𝛾 (𝜓𝛾))

= 𝜋𝛾(𝜙) + 1
𝑛
𝜈0(𝜓) +𝑂(𝜌𝑛) ,

with 𝜌 := (1 − 2𝜇𝛾(1 − 𝛾𝐿))1/2, and using the fact that 𝜈0(𝑅𝑛
𝛾 (𝜓𝛾)) = 𝜈0(𝑅𝑛

𝛾 (𝜓𝛾 −𝜋(𝜓𝛾))).
We now consider:

EΦΦ⊤ = 1
𝑛2

𝑛−1∑︁
𝑖,𝑗=0

E𝜙(𝜃𝜈0
𝑖 )𝜙(𝜃𝜈0

𝑗 )⊤

= 1
𝑛2

𝑛−1∑︁
𝑖=0

(︂
E𝜙(𝜃𝜈0

𝑖 )𝜙(𝜃𝜈0
𝑖 )⊤ +

𝑛−1∑︁
𝑗=𝑖+1

[︀
E𝜙(𝜃𝜈0

𝑖 )𝜙(𝜃𝜈0
𝑗 )⊤ + E𝜙(𝜃𝜈0

𝑗 )𝜙(𝜃𝜈0
𝑖 )⊤]︀)︂

= − 1
𝑛2

𝑛−1∑︁
𝑖=0

𝜈0(𝑅𝑖
𝛾(𝜙(·)𝜙(·)⊤))

+ 1
𝑛2

𝑛−1∑︁
𝑖=0

(︂ 𝑛−1∑︁
𝑗=𝑖+1

[︀
E𝜙(𝜃𝜈0

𝑖 )𝜙(𝜃𝜈0
𝑗 )⊤ + E𝜙(𝜃𝜈0

𝑗 )𝜙(𝜃𝜈0
𝑖 )⊤]︀)︂

= − 1
𝑛
𝜋𝛾(𝜙(·)𝜙(·)⊤) − 1

𝑛2 𝜈0

(︃ ∞∑︁
𝑖=0

𝑅𝑖
𝛾

(︁
(𝜙(·)𝜙(·)⊤) − 𝜋𝛾(𝜙(·)𝜙(·)⊤

)︁)︃

+𝑂(𝜌𝑛) + 1
𝑛2

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=𝑖

[︀
E𝜙(𝜃𝜈0

𝑖 )(𝑅𝑗−𝑖
𝛾 𝜙(𝜃𝜈0

𝑖 ))⊤ + E(𝑅𝑗−𝑖
𝛾 𝜙(𝜃𝜈0

𝑖 ))𝜙(𝜃𝜈0
𝑖 )⊤]︀

= − 1
𝑛
𝜋𝛾(𝜙(·)𝜙(·)⊤) − 1

𝑛2 𝜈0
(︁
𝜒3

𝛾

)︁
+ 1
𝑛2

𝑛−1∑︁
𝑖=0

(︂ 𝑛−1−𝑖∑︁
𝑗=0

[︀
E𝜙(𝜃𝜈0

𝑖 )(𝑅𝑗
𝛾𝜙(𝜃𝜈0

𝑖 ))⊤ + E(𝑅𝑗
𝛾𝜙(𝜃𝜈0

𝑖 ))𝜙(𝜃𝜈0
𝑖 )⊤]︀)︂ .
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With 𝜒3 the solution to the Poisson equation associated with 𝜙𝜙⊤. Thus:

EΦΦ⊤ = − 1
𝑛
𝜋𝛾(𝜙(·)𝜙(·)⊤) − 1

𝑛2 𝜈0
(︁
𝜒3

𝛾

)︁
+𝑂(𝜌𝑛)

+ 1
𝑛2

𝑛−1∑︁
𝑖=0

𝜈0
(︁
𝑅𝑖

𝛾

[︁
𝜙(·)𝜓𝛾(·) − 𝜙(·)𝑅𝑛−𝑖

𝛾 𝜓(·)⊤
]︁

+ symmetric term
)︁
.

Using that 1
𝑛2
∑︀𝑛−1

𝑖=0 𝜈0
(︁
𝑅𝑖

𝛾

[︁
𝜙(·)𝑅𝑛−𝑖

𝛾 𝜓(·)⊤
]︁)︁

= 𝑂(𝜌𝑛), we get:

EΦΦ⊤ = − 1
𝑛
𝜋𝛾(𝜙(·)𝜙(·)⊤) − 1

𝑛2 𝜈0
(︁
𝜒3

𝛾

)︁
+ 1
𝑛
𝜋𝛾

(︂
𝜙(·)𝜓𝛾(·)⊤

)︂
+ 1
𝑛2 𝜈0(𝜒4

𝛾)

+ symmetric terms +𝑂(𝜌𝑛) .

With 𝜒4 the solution to the Poisson equation associated with 𝜙𝜓⊤
𝛾 .

For the first order terms, which scale as 1
𝑛 , we have:

E(ΦΦ⊤) − (EΦ)(EΦ)⊤ = 1
𝑛
𝜋𝛾

(︁
−𝜙(·)𝜙(·)⊤ + 𝜙(·)𝜓𝛾(·)⊤ + 𝜓𝛾(·)𝜙(·)⊤

)︁
= 1

𝑛
𝜋𝛾

(︁
−𝜙(·)𝜙(·)⊤ + 𝜙(·)𝜓(·)⊤ + 𝜓(·)𝜙(·)⊤

)︁
= 1

𝑛
𝜋𝛾

(︁
−(𝜙− 𝜓)(·)(𝜙− 𝜓)(·)⊤ + 𝜓(·)𝜓(·)⊤

)︁
= 1

𝑛
𝜋𝛾

(︁
−(𝑅𝛾𝜓)(·)(𝑅𝛾𝜓)(·)⊤ + 𝜓(·)𝜓(·)⊤

)︁
,

using the fact that for the solution to the Poisson equation: 𝜓−𝑅𝛾𝜓 = 𝜙, i.e., 𝜓−𝜙 = 𝑅𝛾𝜓.
This can also be written:

E(ΦΦ⊤) − (EΦ)(EΦ)⊤ = 1
𝑛

∫︁
R𝑑

[︁
𝜓𝛾(𝜃)𝜓𝛾(𝜃)⊤ − (𝜓𝛾 − 𝜙)(𝜃)(𝜓𝛾 − 𝜙)(𝜃)⊤

]︁
d𝜋𝛾(𝜃) .

For the following order in 𝑂(1/𝑛2), we have:

E(ΦΦ⊤) − (EΦ)(EΦ)⊤ − term
𝑛

= −1
𝑛2 + 1

𝑛2 𝜈0(−𝜒3
𝛾 + 𝜒4

𝛾) + symmetric term

= 1
𝑛2 𝜈0(𝜒1

𝛾 − 𝜒2
𝛾) ,

using the linearity of 𝑅𝛾 and the fact that: −𝜙𝜙⊤ +𝜓𝛾𝜙
⊤ +𝜙𝜓⊤

𝛾 = −(𝜙−𝜓)(·)(𝜙−𝜓)(·)⊤ +
𝜓(·)𝜓(·)⊤, thus: 𝜈0(−𝜒3

𝛾 + 𝜒4
𝛾) = 𝜈0(𝜒1

𝛾 − 𝜒2
𝛾).

This is the expected result.

Application in the quadratic case (𝑓 = 𝑓Σ), for 𝜙 = I

We consider, the stochastic gradient descent algorithm (4.1), for the quadratic function

𝑓Σ(𝜃) :=
⃦⃦⃦
Σ1/2(𝜃 − 𝜃*)

⃦⃦⃦2
. We consider the classical stochastic approximation noise oracle

of the least mean squares (LMS) algorithm:

𝜃𝑛,𝛾 − 𝜃* = (𝐼 − 𝛾Σ) (𝜃𝑛−1,𝛾 − 𝜃*) + 𝛾𝜀𝑛(𝜃𝑛−1,𝛾)
𝜀𝑛(𝜃𝑛−1,𝛾) = (Σ − 𝑥𝑛 ⊗ 𝑥𝑛)(𝜃𝑛−1,𝛾 − 𝜃*) + (𝑦𝑛 − ⟨𝜃*, 𝑥𝑛⟩)𝑥𝑛 .

We first recall the observation made in Section C.2.3: for quadratic functions, under
the stationary distribution, the mean value of the iterate is the optimal point. According to
Lemma C.1, we have 𝜋𝛾(𝜙) = 0. The following Lemma recovers result from Défossez and
Bach (2015), as a corollary of our more general theorem.
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Lemma C.6. If 𝑓 is a quadratic function 𝑓Σ, and we consider the LMS algorithm with
𝛾𝐿 6 1/2, then with 𝜌 6 (1 − 𝛾𝜇), we have:

E
[︁
(𝜃(𝛾)

𝑛 − 𝜃*)⊗2
]︁

= 1
𝑛2𝛾2 Σ−1Ω(𝜃0 − 𝜃*)⊗2Σ−1 + 1

𝑛
Σ−1[︀E𝜋𝛾𝜀

⊗2]︀Σ−1

− 1
𝑛2𝛾

Σ−1Ω
[︀
Σ ⊗ I + I ⊗ Σ − 𝛾𝑇

]︀−1[︀
E𝜉⊗2]︀Σ−1 .

With Ω := (Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾𝑇 )−1.

Moreover, the value of 𝜌 is known: 𝜌 = (1 − 2𝛾𝜇(1 − 𝛾𝐿)) 6 (1 − 𝛾𝜇) if 𝛾𝐿 6 1/2, with
𝜇 = 𝜆min(Σ).

Proof. We consider the linear function 𝜙 which is 𝜙(𝜃) = 𝜃 − 𝜃*. We then have that
𝜓(𝜃) = (𝛾Σ)−1(𝜃 − 𝜃*). Indeed from Equation (C.22), for any 𝜃0:

𝜓(𝜃0) =
∞∑︁

𝑖=0
E(𝜃(𝜃0)

𝑖,𝛾 ) − 𝜃* =
∞∑︁

𝑖=0
(𝐼 − 𝛾Σ)𝑖(𝜃0 − 𝜃*) = (𝛾Σ)−1(𝜃0 − 𝜃*) .

We can thus apply Theorem 4.4 to get a bound on E
(︁
(𝜃(𝛾)

𝑛 − 𝜃*)(𝜃(𝛾)
𝑛 − 𝜃*)⊤

)︁
. Indeed, with

the previous notations, 𝜙 = 𝜃
(𝛾)
𝑛 − 𝜃*. We recall that:

E(ΦΦ⊤) − (EΦ)(EΦ)⊤ = 1
𝑛

∫︁
R𝑑

[︁
𝜓𝛾(𝜃)𝜓𝛾(𝜃)⊤ − (𝜓𝛾 − 𝜙)(𝜃)(𝜓𝛾 − 𝜙)(𝜃)⊤

]︁
d𝜋𝛾(𝜃)

+ 1
𝑛2

∫︁
R𝑑

[︁
𝜓𝛾(𝜃)𝜓𝛾(𝜃)⊤ + 𝜒1

𝛾(𝜃) − 𝜒2
𝛾(𝜃)

]︁
d𝜈0(𝜃) +𝑂(𝜌𝑛) .

Term proportional to 1/𝑛.
We need to compute the expectation under the stationary distribution of 𝜙(𝜃)⊗2. For
simplicity, we here denote E𝜀⊗2 =

∫︀
R𝑑 𝜀1(𝜃)⊗2𝜋𝛾(d𝜃). We have, according to Lemma C.1:∫︁

R𝑑
(𝜃 − 𝜃*)⊗2𝜋𝛾(d𝜃) = 𝛾

[︀
Σ ⊗ I + I ⊗ Σ − 𝛾Σ ⊗ Σ

]︀−1
E𝜀⊗2.

The expectation of 𝜓(𝜃)𝜓(𝜃)⊤ under the stationary is∫︁
R𝑑
𝜓(𝜃)𝜓(𝜃)⊤𝜋𝛾(d𝜃) = (𝛾Σ)−1𝛾

[︀
Σ ⊗ I + I ⊗ Σ − 𝛾Σ ⊗ Σ

]︀−1
E𝜀⊗2(𝛾Σ)−1

= 1
𝛾

(Σ−1 ⊗ Σ−1)
[︀
Σ ⊗ I + I ⊗ Σ − 𝛾Σ ⊗ Σ

]︀−1
E𝜀⊗2 .

Moreover,∫︁
R𝑑

(𝜙(𝜃) −𝜓(𝜃))(𝜙(𝜃) −𝜓(𝜃))⊤𝜋𝛾(d𝜃) =
[︀
I − (𝛾Σ)−1]︀𝛾[︀Σ ⊗ I + I ⊗ Σ

]︀−1
E𝜀⊗2[︀I − (𝛾Σ)−1]︀.

Adding both these results and simplifying by
[︀
Σ ⊗ I + I ⊗ Σ − 𝛾Σ ⊗ Σ

]︀
, we get the

following 1/𝑛-term:

1
𝑛

E𝜃∼𝜋𝛾

[︁
𝜓(𝜃)𝜓(𝜃)⊤ − (𝑅𝛾𝜓)(𝜃)(𝑅𝛾𝜓)(𝜃)⊤

]︁
= 1

𝑛
Σ−1[︀ ∫︁

R𝑑

(︁
𝜀1(𝜃)⊗2

)︁
𝜋𝛾(d𝜃)

]︀
Σ−1 .
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Term proportional to 1/𝑛2.
We assume 𝜈0 = 𝛿𝜃0 . This term is composed of three terms:

𝑇1 := −E𝜃0∼𝜈0 [𝜓(𝜃0)] E𝜃0∼𝜈0 [𝜓(𝜃0)]⊤

𝜓(𝜃0) = (𝛾Σ)−1(𝜃0 − 𝜃*)

𝑇1 = − 1
𝛾2 Σ−1

[︁
(𝜃0 − 𝜃*)⊗2

]︁
Σ−1 .

We note that, using 𝜓 = (𝛾Σ)−1𝜙, and 𝑅𝛾𝜓 = 𝜓 − 𝜙 = −(𝐼 − (𝛾Σ)−1)𝜙 that:

𝑇2 := 𝜈0(𝜒1
𝛾)

= (𝐼 − (𝛾Σ)−1)𝜈0(𝜒3
𝛾)(𝐼 − (𝛾Σ)−1) .

Similarly:

𝑇2 := 𝜈0(𝜒1
𝛾)

= (𝛾Σ)−1𝜈0(𝜒3
𝛾)(𝛾Σ)−1 .

Where we recall that denote 𝜒3
𝛾 the solution to the Poisson equation associated with

𝜃 ↦→ 𝜙(𝜃)⊗2. We can compute explicitly this solution, indeed, following Equation C.14:

E
[︁
(𝜃𝑥

𝑛,𝛾 − 𝜃*)⊗2
]︁

= (𝐼 − 𝛾Σ ⊗ 𝐼 − 𝛾𝐼 ⊗ Σ + 𝛾2𝑀)E
[︁
(𝜃𝑥

𝑛−1,𝛾 − 𝜃*)⊗2
]︁

+ E[𝜉⊗2
𝑛 ]

𝜒3
𝛾(𝑥) :=

∞∑︁
𝑖=1

E
[︁
(𝜃𝑥

𝑛,𝛾 − 𝜃*)⊗2
]︁

− 𝜋𝛾(𝜙(𝜃)⊗2)

= (𝛾Σ ⊗ 𝐼 + 𝛾𝐼 ⊗ Σ − 𝛾2𝑀)−1
[︁
E
[︁
(𝜃𝑥

0,𝛾 − 𝜃*)⊗2
]︁

− 𝜋𝛾(𝜙(𝜃)⊗2))
]︁

E𝜃∼𝜈0

[︁
𝜒3

𝛾

]︁
:= (𝛾Σ ⊗ 𝐼 + 𝛾𝐼 ⊗ Σ − 𝛾2𝑀)−1

[︁
(𝜃0 − 𝜃*)⊗2 − 𝜋𝛾(𝜙(𝜃)⊗2))

]︁
.

Simplification comes from the fact that we study an arithmetico-geometric recursion of the
form 𝑤𝑛+1 = 𝑎𝑤𝑛 + 𝑏, 𝑎 < 1, and study

∑︀∞
𝑖=0𝑤𝑛 − 𝑤∞ = (1 − 𝑎)−1(𝑤0 − 𝑤∞). Here we

cannot apply the recursion with (Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ) because then 𝑏 would depend
on 𝑛. Finally,

𝑇2 + 𝑇3 = 1
𝛾

(Σ−1 ⊗ Σ−1)(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)E𝜃∼𝜈0 [𝜒(𝑥)]

= (Σ−1 ⊗ Σ−1)Ω
[︁
(𝜃0 − 𝜃*)⊗2 − 𝛾(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾𝑀)−1E[𝜉⊗2

1 ])
]︁
.

With: Ω = (Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾Σ ⊗ Σ)(Σ ⊗ 𝐼 + 𝐼 ⊗ Σ − 𝛾𝑇 )−1.
Overall, we get that:

E𝜃𝑛 − 𝜃* = 1
𝑛

(𝛾Σ)−1(𝜃0 − 𝜃*)

cov(𝜃𝑛) = 1
𝑛

Σ−1[︀E𝜀⊗2]︀Σ−1 − 1
𝑛2𝛾

[︀
Σ−1 ⊗ Σ−1]︀Ω[︀Σ ⊗ I + I ⊗ Σ − 𝛾𝑇

]︀−1[︀
E𝜉⊗2]︀

+ 1
𝑛2 (Σ−1 ⊗ Σ−1)(Ω − 𝐼)(𝜃0 − 𝜃*)⊗2 .

Finally:

E
[︁
(𝜃(𝛾)

𝑛 − 𝜃*)⊗2
]︁

= 1
𝑛2𝛾2 (Σ−1 ⊗ Σ−1)(Ω)(𝜃0 − 𝜃*)⊗2 + 1

𝑛
Σ−1[︀E𝜀⊗2]︀Σ−1

− 1
𝑛2𝛾

[︀
Σ−1 ⊗ Σ−1]︀Ω[︀Σ ⊗ I + I ⊗ Σ − 𝛾𝑇

]︀−1[︀
E𝜉⊗2]︀ .
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In the semi stochastic setting, we would get:

E
[︁
(𝜃(𝛾)

𝑛 − 𝜃*)⊗2
]︁

= 1
𝑛2𝛾2 (Σ−1 ⊗ Σ−1)(𝜃0 − 𝜃*)⊗2 + 1

𝑛
Σ−1[︀E𝜀⊗2]︀Σ−1

− 1
𝑛2𝛾

[︀
Σ−1 ⊗ Σ−1]︀[︀Σ ⊗ I + I ⊗ Σ − 𝛾Σ ⊗ Σ

]︀−1[︀
E𝜉⊗2]︀ .

C.3 Further properties of the Markov chain (𝜃(𝛾)
𝑘 )𝑘>0

We give uniform bound on the moments of the chain (𝜃(𝛾)
𝑘 )𝑘>0 for 𝛾 > 0. We denote

𝛿𝑛 = ‖𝜃𝑛 − 𝜃*‖. Denote by
𝜅 = 2𝜇𝐿/(𝜇+ 𝐿) . (C.23)

For 𝑝 > 1 define
m𝑝 = E1/𝑝 [‖𝜀1(𝜃*)‖𝑝] , for 𝑝 > 1 . (C.24)

We give a bound on the 𝑝-order moment of the chain, under the assumption that the noise
has a moment of order 2𝑝.

Lemma C.7 (Final iterate). Under Assumptions A1,A2, A3, A6, one has the following bound
on the E1/𝑝[𝛿2𝑝

𝑛+1], 𝑝 = 1, 2. For the 2𝑛𝑑 order moment,

E[𝛿2
𝑛+1] 6 (1 − 2𝛾𝜇(1 − 𝛾𝐿))𝑛 𝛿2

0 + 𝛾𝜎2

𝜇
. (C.25)

For th 4𝑡ℎ-order moment, for 𝛾 6 1
18𝐿

E1/2[𝛿4
𝑛+1] 6 (1 − 2𝛾𝜇(1 − 9𝛾𝐿)) E1/2[𝛿4

𝑛] + 20𝛾2𝜏2

E1/2[𝛿4
𝑛] 6 (1 − 2𝛾𝜇(1 − 9𝛾𝐿))𝑛E1/2[𝛿4

0 ] + 20𝛾𝜏2

𝜇
.

More generally, assume A1-A2-A3-A4(2p), for 𝑝 > 1. There exist numerical constants 𝐶𝑝, 𝐷𝑝

that only depend on 𝑝, such that, if 𝛾𝐿 6 1/2𝐶𝑝,

E1/𝑝
𝜃

[︂⃦⃦⃦
𝜃(𝛾)

𝑛 − 𝜃*
⃦⃦⃦2𝑝
]︂
6 (1 − 2𝛾𝜇(1 − 𝐶𝑝𝛾𝐿))𝑛E1/𝑝

𝜃

[︁
‖𝜃0 − 𝜃*‖2𝑝

]︁
+
𝐷𝑝𝛾m2

2𝑝

𝜇
.

Moreover, under stationary distribution 𝜋𝛾 , under the Assumptions above, one has:

E𝜋𝛾

[︁
‖𝛿𝑛‖2𝑝

]︁
6

(︃
𝐷𝑝𝛾m2

2𝑝

𝜇

)︃𝑝

. (C.26)

Remark: Note that there is no contradiction between Equation (C.26) and Theorem 4.6,
as for any 𝑝 > 2, one has for 𝑔(𝜃) = ‖𝜃 − 𝜃*‖2 and ℎ𝑔 the solution to the Poisson equation,
that ℎ′′

𝑔(𝜃*) = 0, so that the first term in the development (of order 𝛾) is indeed 0.

Lemma C.7. We only prove the result for 𝑝 = 1, 2 as it then naturally extends for any 𝑝.
The proof for the 2nd moment is very close to the one from (Needell et al., 2014) but

we extend it without a.s. Lipschitzness (Assumption A4) but with Assumption A6. We recall
that 𝜃𝑛+1 = 𝜃𝑛 − 𝛾𝑓 ′(𝜃𝑛) + 𝛾𝜀𝑛+1.
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We have that

‖𝜃𝑛+1 − 𝜃*‖2 = ‖𝜃𝑛 − 𝜃* − 𝛾𝑓 ′(𝜃𝑛) + 𝛾𝜀𝑛+1‖2 . (C.27)

According to assumption A3, we have 𝜃𝑛 is ℱ𝑛 measurable, and E[𝜀𝑛+1|ℱ𝑛] = 0. Thus
E[⟨𝜃𝑛 − 𝜃*, 𝜀𝑛+1⟩|ℱ𝑛] = 0.

E[‖𝜃𝑛+1 − 𝜃*‖2|ℱ𝑛] = E[‖𝜃𝑛 − 𝜃*‖|2|ℱ𝑛] − 2𝛾E[⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩|ℱ𝑛]
+𝛾2E[‖𝑓 ′

𝑛(𝜃𝑛) − 𝑓 ′
𝑛(𝜃*)‖2|ℱ𝑛] + 2𝛾2E[‖𝑓 ′

𝑛(𝜃*)‖2|ℱ𝑛] .(C.28)

Moreover, under Assumption A6, one has that E[‖𝑓 ′
𝑛(𝜃*)‖2|ℱ𝑛] = E[‖𝜀1(𝜃*)‖2] 6 𝜏2

(using Hölder’s inequality), and E[‖𝑓 ′
𝑛(𝜃𝑛) − 𝑓 ′

𝑛(𝜃*)‖2|ℱ𝑛] 6 𝐿⟨𝑓 ′(𝜃𝑛) − 𝑓 ′(𝜃*), 𝜃𝑛 − 𝜃*⟩.
Thus:

E[𝛿2
𝑛+1|ℱ𝑛] 6 E[𝛿2

𝑛|ℱ𝑛] − 2𝛾⟨𝑓 ′(𝜃𝑛) − 𝑓 ′(𝜃*), 𝜃𝑛 − 𝜃*⟩ + 2𝛾2𝐿⟨𝑓 ′(𝜃𝑛) − 𝑓 ′(𝜃*), 𝜃𝑛 − 𝜃*⟩
+𝛾2𝜏2

6 (1 − 2𝛾𝜇(1 − 𝛾𝐿)) 𝛿2
𝑛 + 2𝛾2𝜏2 . (C.29)

Thus if 𝛾 6 1
𝐿 , we have

E[𝛿2
𝑛+1] 6 (1 − 2𝛾𝜇(1 − 𝛾𝐿)) E[𝛿2

𝑛] + 2𝛾2𝜏2 . (C.30)

Thus if 𝛾𝐿 6 1.

E[𝛿2
𝑛+1] 6 (1 − 2𝛾𝜇(1 − 𝛾𝐿))𝑛 𝛿2

0 + 𝛾2𝜏2
𝑛−1∑︁
𝑖=0

(1 − 2𝛾𝜇)𝑖 (C.31)

= (1 − 2𝛾𝜇(1 − 𝛾𝐿))𝑛 𝛿2
0 + 𝛾𝜏2

𝛾𝜇(1 − 𝛾𝐿) . (C.32)

Lemma C.7. We have that

𝛿4
𝑛+1 =

(︁
‖𝜃𝑛 − 𝜃*‖2 − 2𝛾⟨𝑓 ′

𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 𝛾2‖𝑓 ′
𝑛(𝜃𝑛)‖2

)︁2

=
(︁
𝛿2

𝑛 − 2𝛾⟨𝑓 ′
𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 𝛾2‖𝑓 ′

𝑛(𝜃𝑛)‖2
)︁2

= 𝛿4
𝑛 − 4𝛾𝛿2

𝑛⟨𝑓 ′
𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 4𝛾2⟨𝑓 ′

𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩2 + 2𝛾2𝛿2
𝑛‖𝑓 ′

𝑛(𝜃𝑛)‖2

−4𝛾3⟨𝑓 ′
𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩‖𝑓 ′

𝑛(𝜃𝑛)‖2 + 𝛾4‖𝑓 ′
𝑛(𝜃𝑛)‖4.

Moreover:

E[‖𝑓 ′
𝑛(𝜃𝑛)‖𝑝|ℱ𝑛] 6 2𝑝−1 (︀E[‖𝑓 ′

𝑛(𝜃𝑛) − 𝑓 ′
𝑛(𝜃*)‖𝑝|ℱ𝑛] + E[‖𝑓 ′

𝑛(𝜃*)‖𝑝|ℱ𝑛]
)︀

6 2𝑝−1 (︀‖𝑓 ′
𝑛(𝜃𝑛) − 𝑓 ′

𝑛(𝜃*)‖𝑝 + E[‖𝜀1(𝜃*)‖𝑝|ℱ𝑛]
)︀

6 2𝑝−1 (︀‖𝑓 ′
𝑛(𝜃𝑛) − 𝑓 ′

𝑛(𝜃*)‖𝑝 + 𝜏𝑝)︀ , (C.33)

using at the first line Minkowski’s inequality and the fact that 𝑥 ↦→ 𝑥𝑝 is convex on R+ for
𝑝 = 1, . . . , 4 thus (𝑥+ 𝑦)𝑝 6 2𝑝−1(𝑥𝑝 + 𝑦𝑝), and at the last line the Assumption A6 on the
noise: E[‖𝜀1(𝜃*)‖𝑝|ℱ𝑛] 6 𝜏𝑝.

Thus,

E[𝛿4
𝑛+1|ℱ𝑛] 6 𝛿4

𝑛 − 4𝛾𝛿2
𝑛E[⟨𝑓 ′

𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩|ℱ𝑛] + 4𝛾2E[⟨𝑓 ′
𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩2|ℱ𝑛]
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+2𝛾2𝛿2
𝑛E[‖𝑓 ′

𝑛(𝜃𝑛)‖2|ℱ𝑛] − 4𝛾3E[⟨𝑓 ′
𝑛(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩‖𝑓 ′

𝑛(𝜃𝑛)‖2|ℱ𝑛]
+𝛾4E[‖𝑓 ′

𝑛(𝜃𝑛)‖4|ℱ𝑛]
6 𝛿4

𝑛 − 4𝛾𝛿2
𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 4𝛾2E[‖𝑓 ′

𝑛(𝜃𝑛)‖2𝛿2
𝑛|ℱ𝑛]

+2𝛾2𝛿2
𝑛E[‖𝑓 ′

𝑛(𝜃𝑛)‖2|ℱ𝑛] + 4𝛾3𝛿𝑛E[‖𝑓 ′
𝑛(𝜃𝑛)‖3|ℱ𝑛] + 𝛾4E[‖𝑓 ′

𝑛(𝜃𝑛)‖4|ℱ𝑛]
6 𝛿4

𝑛 − 4𝛾𝛿2
𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 12𝛾2𝛿2

𝑛E[‖𝑓 ′
𝑛(𝜃𝑛) − 𝑓 ′

𝑛(𝜃*)‖2|ℱ𝑛]
+16𝛾3𝛿𝑛E[‖𝑓 ′

𝑛(𝜃𝑛) − 𝑓 ′
𝑛(𝜃*)‖3|ℱ𝑛] + 8𝛾4E[‖𝑓 ′

𝑛(𝜃𝑛) − 𝑓 ′
𝑛(𝜃*)‖4|ℱ𝑛]

+12𝛾2𝜏2𝛿2
𝑛 + 16𝛾3𝛿𝑛𝜏

3 + 8𝛾4𝜏4,

using Cauchy Schwartz several times for the second inequality and equation (C.33) for the
third one.

Then, using part (𝑖𝑖) of Assumption A6:

E[𝛿4
𝑛+1|ℱ𝑛] 6 𝛿4

𝑛 − 4𝛾𝛿2
𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 12𝛾2𝐿𝛿2

𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩
+16𝛾3𝐿2𝛿2

𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 8𝛾4𝐿3𝛿2
𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩

+12𝛾𝜏2𝛿2
𝑛 + 8𝛾2𝜏2𝛿2

𝑛 + 8𝛾4𝜏4 + 8𝛾4𝜏4

= 𝛿4
𝑛 + (−4𝛾 + 12𝛾2𝐿+ 16𝛾3𝐿2 + 8𝛾4𝐿3)𝛿2

𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩
+(12𝛾2𝜏2 + 8𝛾2𝜏2)𝛿2

𝑛 + 16𝛾4𝜏4

6 𝛿4
𝑛 − 4𝛾(1 − 9𝛾𝐿)𝛿2

𝑛⟨𝑓 ′(𝜃𝑛), 𝜃𝑛 − 𝜃*⟩ + 20𝛾2𝜏2𝛿2
𝑛 + 16𝛾4𝜏4,

using 𝛾𝐿 6 1 at the last line. Finally, using the smooth and strong convexity equation (C.5),
we have:

E[𝛿4
𝑛+1|ℱ𝑛] 6 (1 − 4𝛾𝜇(1 − 9𝛾𝐿)) 𝛿4

𝑛 + 20𝛾2𝜏2𝛿2
𝑛 + 16𝛾4𝜏4,

Thus finally:

E[𝛿4
𝑛+1] 6 (1 − 4𝛾𝜇(1 − 9𝛾𝐿)) E[𝛿4

𝑛] + 20𝛾2𝜏2E[𝛿2
𝑛] + 16𝛾4𝜏4

6
(︁
(1 − 4𝛾𝜇(1 − 9𝛾𝐿))1/2 E[𝛿4

𝑛]1/2 + 20𝛾2𝜏2
)︁2
.

Using that 20𝛾2𝜏2E[𝛿2
𝑛] 6 (1 − 4𝛾𝜇(1 − 9𝛾𝐿))1/2E[𝛿4

𝑛]1/240𝛾2𝜏2 i.e., E[𝛿2
𝑛] 6 E[𝛿4

𝑛]1/2, and
(1−4𝛾𝜇(1−9𝛾𝐿))1/2 > 1/2 which is true if 𝛾 6 1

9𝐿 and (1−4𝛾𝜇(1−9𝛾𝐿)) > (1−4/9)1/2 >
1/2.

E1/2[𝛿4
𝑛+1] 6 (1 − 2𝛾𝜇(1 − 9𝛾𝐿)) E1/2[𝛿4

𝑛] + 20𝛾2𝜏2.

If 9𝛾𝐿 6 1.
Which concludes the proof.

Theorem C.8. Assume A1-A2-A3-A4(2𝑘2)-A8(𝑘1)- for 𝑘1, 𝑘2 ∈ N, 𝑘1 > 1. Let 𝑔 : R𝑑 → R
satisfying A5(𝑘1, 𝑘2) for 𝑘2 ∈ N. Then, there exists 𝐶𝑘2 > 0 only depending on 𝑘2 such that
for all 𝛾 ∈ (0, 𝐶𝑘2/𝐿), for all initial point 𝜃 ∈ R𝑑, there exists 𝐶 such that for all 𝑛 > 1:⃒⃒⃒⃒

⃒E𝜃

[︃
𝑛−1

𝑛∑︁
𝑖=1

{︁
𝑔(𝜃(𝛾)

𝑖 )
}︁]︃

−
∫︁

R𝑑
𝑔(𝜃)𝜋𝛾(d𝜃)

⃒⃒⃒⃒
⃒ 6 𝐶𝑛−1 .

Proof.⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(︂
E𝜃

[︁
𝑔(𝜃𝜃

𝑖,𝛾)
]︁

−
∫︁

R𝑑
𝑔(𝜃)𝜋𝛾(d𝜃)

)︂⃒⃒⃒⃒
⃒ =

𝑛∑︁
𝑖=1

⃒⃒⃒⃒(︂∫︁
𝑦∈R𝑑

E𝜃

[︁
𝑔(𝜃𝜃

𝑖,𝛾) − 𝑔(𝜃𝑦
𝑖,𝛾)
]︁
𝜋𝛾(𝑦)

)︂⃒⃒⃒⃒
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=
𝑛∑︁

𝑖=1

(︂∫︁
𝑦∈R𝑑

E𝜃

[︁⃦⃦⃦
𝑔(𝜃𝜃

𝑖,𝛾) − 𝑔(𝜃𝑦
𝑖,𝛾)
⃦⃦⃦]︁
𝜋𝛾(𝑦)

)︂
.

Using Lemma C.10, a.s.,⃦⃦⃦
𝑔(𝜃𝜃

𝑖,𝛾) − 𝑔(𝜃𝑦
𝑖,𝛾)
⃦⃦⃦
6 𝑎𝑔

⃦⃦⃦
𝜃𝜃

𝑖,𝛾 − 𝜃𝑦
𝑖,𝛾

⃦⃦⃦
((𝑏𝑔 +

⃦⃦⃦
𝜃𝜃

𝑖,𝛾 − 𝜃*
⃦⃦⃦𝑘2 +

⃦⃦⃦
𝜃𝑦

𝑖,𝛾 − 𝜃*
⃦⃦⃦𝑘2)) .

By Cauchy Schwartz, then Minkowski:

E𝜃

[︁⃦⃦⃦
𝑔(𝜃𝜃

𝑖,𝛾) − 𝑔(𝜃𝑦
𝑖,𝛾)
⃦⃦⃦]︁
6𝑎𝑔E1/2

𝜃

[︂⃦⃦⃦
𝜃𝜃

𝑖,𝛾 − 𝜃𝑦
𝑖,𝛾

⃦⃦⃦2
]︂

E1/2
𝜃

[︂
(𝑏𝑔 +

⃦⃦⃦
𝜃𝜃

𝑖,𝛾 − 𝜃*
⃦⃦⃦𝑘2 +

⃦⃦⃦
𝜃𝑦

𝑖,𝛾 − 𝜃*
⃦⃦⃦𝑘2)2

]︂
6𝑎𝑔

(︁
𝑊2(𝑅𝑛

𝛾 (𝜃, .), 𝑅𝑛
𝛾 (𝑦, .)

)︁1/2

×
(︂
𝑏𝑔 + E1/2

𝜃

[︂⃦⃦⃦
𝜃𝜃

𝑖,𝛾 − 𝜃*
⃦⃦⃦2𝑘2

]︂
+ E1/2

𝜃

[︂⃦⃦⃦
𝜃𝑦

𝑖,𝛾 − 𝜃*
⃦⃦⃦2𝑘2

]︂)︂
.

With 𝜌 = (1 − 𝛾𝜇(1 − 𝛾𝐿)), we have, using Lemma C.7 , which implies that:

E1/2
𝜃

[︂⃦⃦⃦
𝜃(𝛾)

𝑛 − 𝜃*
⃦⃦⃦2𝑝
]︂
6 2𝑝/2−1E1/2

𝜃

[︂⃦⃦⃦
𝜃

(𝛾)
0 − 𝜃*

⃦⃦⃦2𝑝
]︂

+ 2𝑝/2
(︃
𝐷𝑝𝛾m2

2𝑝

𝜇

)︃𝑝/2

.

E𝜃

[︁⃦⃦⃦
𝑔(𝜃𝜃

𝑖,𝛾) − 𝑔(𝜃𝑦
𝑖,𝛾)
⃦⃦⃦]︁
6 𝑎𝑔𝜌

𝑛/2 ‖𝜃 − 𝑦‖
(︁
𝑏𝑔 + 2𝑝/2−1E1/2

𝜃

[︂⃦⃦⃦
𝜃

(𝛾)
0 − 𝜃*

⃦⃦⃦2𝑘2
]︂

+2𝑝/2−1 ‖𝑦 − 𝜃*‖𝑘2 2𝑝/2+1
(︃
𝐷𝑝𝛾m2

2𝑝

𝜇

)︃𝑝/2 )︁
.

Thus ⃒⃒⃒⃒
⃒E𝜃

[︃
𝑛−1

𝑛∑︁
𝑖=1

{︁
𝑔(𝜃(𝛾)

𝑖 )
}︁]︃

−
∫︁

R𝑑
𝑔(𝜃)𝜋𝛾(d𝜃)

⃒⃒⃒⃒
⃒ 6 𝐶

𝑛

𝑛∑︁
𝑖=1

𝜌𝑛/2 6
𝐶

𝛾𝜇𝑛

𝐶 = 𝑎𝑔

∫︁
R𝑑

(︃
‖𝜃 − 𝑦‖

(︁
𝑏𝑔 + 2𝑝/2−1E1/2

𝜃

[︂⃦⃦⃦
𝜃

(𝛾)
0 − 𝜃*

⃦⃦⃦2𝑘2
]︂

+ 2𝑝/2−1 ‖𝑦 − 𝜃*‖𝑘2

2𝑝/2+1
(︃
𝐷𝑝𝛾m2

2𝑝

𝜇

)︃𝑝/2 )︁
d𝜋𝛾(𝑦)

)︃
.

C.4 Regularity of the gradient flow and estimates on Poisson
solution

Let 𝑘 ∈ N* and consider the following assumption.

A8 (𝑘). 𝑓 ∈ 𝐶𝑘(R𝑑) and there exists𝑀 > 0 such that for all 𝑖 ∈ {2, . . . , 𝑘}, sup𝜃∈R𝑑

⃦⃦
𝐷𝑖𝑓(𝜃)

⃦⃦
6

𝐿̄.

Lemma C.9. Assume A1 and A8(𝑘 + 1) for 𝑘 ∈ N, 𝑘 > 1.

a) For all 𝑡 > 0, 𝜑𝑡 ∈ 𝐶𝑘(R𝑑). In addition for all 𝜃 ∈ R, 𝜑(𝑘)
𝑡 (𝑥) : 𝑡 ↦→ 𝐷𝑘𝜑𝑡(𝜃) satisfies the

following ordinary differential equation,

𝜑̇
(𝑘)
𝑡 (𝑥) = 𝐷𝑘 {∇𝑓(𝜑𝑡(𝜃))} , for all 𝑡 > 0 ,

with 𝜑(2)
0 (𝑥) = Id and 𝜑(𝑘)

0 (𝑥) = 0 for 𝑘 > 2.
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b) For all 𝑡 > 0 and 𝜃 ∈ R𝑑, ‖𝜑𝑡(𝜃) − 𝜃*‖2 6 e−2𝜇𝑡 ‖𝜃 − 𝜃*‖2 .

c) If 𝑘 > 2, for all 𝑡 > 0,
∇𝜑𝑡(𝜃*) = e−∇2𝑓(𝜃*) .

d) If 𝑘 > 3, for all 𝑡 > 0 and 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑑},⟨
𝐷2𝜑𝑡(𝜃*) {v𝑖,v𝑗} ,v𝑘

⟩
= e−𝜆𝑖𝑡 − e−(𝜆𝑘+𝜆𝑗)𝑡

𝜆𝑖 − 𝜆𝑘 − 𝜆𝑗
,

where {v1, . . . ,v𝑑} and {𝜆1, . . . , 𝜆𝑑} are the eigenvectors and the eigenvalues of ∇2𝑓(𝜃*)
respectively satisfying for all 𝑖 ∈ {1, . . . , 𝑑}, ∇2𝑓(𝜃*)v𝑖 = 𝜆𝑖v𝑖.

Proof. a) This is a fundamental result on the regularity of flows of autonomous differ-
ential equations, see e.g. (Hartman, 1982, Theorem 4.1 Chapter V)

b) Let 𝜃 ∈ R𝑑. Differentiate ‖𝜑𝑡(𝜃)‖2 with respect to 𝑡 and using A1, that 𝑓 is at least
continuously differentiable and Grönwall’s inequality concludes the proof.

c) By Lemma C.9-a) and since 𝜃* is an equilibrium point, for all 𝑥 ∈ R𝑑, 𝜉𝑥
𝑡 (𝜃*) =

𝐷𝜑𝑡(𝜃*) {𝑥} satisfies the following ordinary differential equation

𝜉𝑥
𝑠 (𝜃*) = −∇2𝑓(𝜑𝑠(𝜃*))𝜉𝑥

𝑠 (𝜃*)d𝑠 = −∇2𝑓(𝜃*)𝜉𝑥
𝑠 (𝜃*)d𝑠 . (C.34)

with 𝜉𝑥
0 (𝜃*) = 𝑥. The proof then follows from uniqueness of the solution of (C.34).

d) By Lemma C.9-a), for all 𝑥1, 𝑥2 ∈ R𝑑, 𝜉𝑥1,𝑥2
𝑡 (𝜃*) = 𝐷𝑖𝜑𝑡(𝜃*) {𝑥1 ⊗ 𝑥2} satisfies the

ordinary stochastic differential equation:

d𝜉𝑥1,𝑥2
𝑠

d𝑠 (𝜃*) = −𝐷3𝑓(𝜑𝑠(𝜃*)) {∇𝜑𝑠(𝜃*)𝑥1 ⊗ ∇𝜑𝑠(𝜃*)𝑥2 ⊗ e𝑖} −𝐷2𝑓(𝜑𝑠(𝜃*)) {𝜉𝑥1,𝑥2
𝑠 } e𝑖 .

By c) and since 𝜃* is an equilibrium point we get that 𝜉𝑥1,𝑥2
𝑡 (𝜃*) satisfies

d𝜉𝑥1,𝑥2
𝑠

d𝑠 (𝜃*) = −𝐷3𝑓(𝜃*)
{︁

e−∇2𝑓(𝜃*)𝑡𝑥1 ⊗ e−∇2𝑓(𝜃*)𝑡𝑥2 ⊗ e𝑖

}︁
−𝐷2𝑓(𝜃*) {𝜉𝑥1,𝑥2

𝑠 } e𝑖 .

Therefore we get for all 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑑},

d
⟨
𝜉

v𝑖,v𝑗
𝑠 ,v𝑘

⟩
d𝑠 = −𝐷3𝑓(𝜃*)

{︁
e−𝜆𝑖𝑡v𝑖 ⊗ e−𝜆𝑗𝑡v𝑗 ⊗ v𝑘

}︁
− 𝜆𝑘

⟨
𝜉

v𝑖,v𝑗
𝑠 ,v𝑘

⟩
.

This ordinary differential equation can be solved analytically which finishes the proof.

Under A1 and A8(𝑘), 𝑘 ∈ N, 𝑘 > 1, for any function 𝑔 : R𝑑 → R𝑞, locally Lipschitz,
denote by ℎ𝑔 the solution of the continuous Poisson equation defined for all 𝜃 ∈ R𝑑 by

ℎ𝑔(𝜃) =
∫︁ ∞

0
(𝑔(𝜑𝑠(𝜃)) − 𝑔(𝜃*))𝑑𝑡 . (C.35)

Note that ℎ𝑔 is well-defined by Lemma C.9-b) and since 𝑔 is assumed to be locally-Lipschitz.
Note that by (4.10), we have for all 𝑔 : R𝑑 → R, locally Lipschitz,

𝒜ℎ𝑔(𝜃) = −𝑔(𝜃) + 𝑔(𝜃*) . (C.36)

In addition define ℎId : R𝑑 → R𝑑 for all 𝑥 ∈ R𝑑 by

ℎId(𝜃) =
∫︁ ∞

0
{𝜑𝑠(𝜃) − 𝜃*} 𝑑𝑡 . (C.37)

Note that ℎId is also well-defined by Lemma C.9-b).
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Lemma C.10. Let 𝑔 : R𝑑 → R satisfying A5(𝑘1, 𝑘2) for 𝑘1, 𝑘2 ∈ N, 𝑘1 > 1.

a) Then for all 𝜃1, 𝜃2 ∈ R𝑑,

|𝑔(𝜃1) − 𝑔(𝜃2)| 6 𝑎𝑔 ‖𝜃1 − 𝜃2‖
{︁
𝑏𝑔 + ‖𝜃1 − 𝜃*‖𝑘2 + ‖𝜃2 − 𝜃*‖𝑘2

}︁
.

Assume in addition A1 and A8(𝑘1 + 1).

b) Then for all 𝜃 ∈ R𝑑,

|ℎ𝑔| (𝜃) 6 𝑎𝑔

{︁
(𝑏𝑔/𝜇) ‖𝜃 − 𝜃*‖ + (𝑘2𝜇)−1 ‖𝜃 − 𝜃*‖𝑘2

}︁
.

c) If 𝑘1 > 2, then ∇ℎId(𝜃*) = (∇2𝑓(𝜃*))−1. If 𝑘1 > 3, then for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑},

𝜕2ℎId
𝜕𝜃𝑖𝜕𝜃𝑗

(𝜃*) = −𝐷3𝑓(𝜃*)
{︂[︂(︁

∇2𝑓(𝜃*) ⊗ Id + Id ⊗∇2𝑓(𝜃*)
)︁−1

{e𝑖 ⊗ e𝑗}
]︂

⊗ e𝑖

}︂
(∇2𝑓(𝜃*))−1e𝑖 ,

where {e1, . . . , e𝑑} are the canonical basis of R𝑑.

Proof. a) Let 𝜃1, 𝜃2 ∈ R𝑑. By the mean value theorem, there exists 𝑠 ∈ [0, 1] such that if
𝜂𝑠 = 𝑠𝜃1 + (1 − 𝑠)𝜃2 then

|𝑔(𝜃1) − 𝑔(𝜃2)| = 𝐷𝑔(𝜂𝑠) {𝜃1 − 𝜃2} .

The proof is then concluded using A5(𝑘1, 𝑘2) and

‖𝜂𝑠 − 𝜃*‖ 6 max (‖𝜃1 − 𝜃*‖ , ‖𝜃2 − 𝜃*‖) .

b) For all 𝜃 ∈ R𝑑, we have using the first result of the Lemma and (C.35)

|ℎ𝑔(𝜃)| 6 𝑎𝑔

∫︁ +∞

0
‖𝜑𝑠(𝜃) − 𝜃*‖

{︁
𝑏𝑔 + ‖𝜑𝑠(𝜃) − 𝜃*‖𝑘2

}︁
d𝑠 .

The proof then follows from Lemma C.9-b).

c) The proof is a direct consequence of Lemma C.9-c)-d) and (C.35).

Theorem C.11. Assume A1-A8(𝑘1 + 1) for 𝑘1, 𝑘2 ∈ N, 𝑘1 > 2. Let 𝑔 : R𝑑 → R satisfying A
5(𝑘1, 𝑘2) for 𝑘2 ∈ N.

a) For all 𝑡 > 0, 𝜑𝑡 ∈ 𝐶𝑘1(R𝑑) and for all 𝑖 ∈ {1, . . . , 𝑘}, there exists 𝐶𝑖 > 0 such that for
all 𝜃 ∈ R𝑑 and 𝑡 > 0, ⃦⃦⃦

𝐷𝑖𝜑𝑡(𝜃)
⃦⃦⃦
6 𝐶𝑖e−𝜇𝑡 .

b) Let 𝑔 ∈ 𝐶𝑘1(R𝑑). Then ℎ𝑔 ∈ 𝐶𝑘1(R𝑑) and for all 𝑖 ∈ {0, . . . , 𝑘1}, there exists 𝐶𝑖 > 0
such that for all 𝜃 ∈ R𝑑, ⃦⃦⃦

𝐷𝑖ℎ𝑔(𝜃)
⃦⃦⃦
6 𝐶𝑖

{︁
1 + ‖𝜃 − 𝜃*‖𝑘2

}︁
.
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Proof. a) The proof is by induction on 𝑘1. By Lemma C.9-a), for all 𝑥 ∈ R𝑑, and 𝜃 ∈ R𝑑,
𝜉𝑥

𝑡 (𝜃) = 𝐷𝜑𝑡(𝜃) {𝑥} satisfies

d𝜉𝑥
𝑠

d𝑠 (𝜃) = −∇2𝑓(𝜑𝑠(𝜃))𝜉𝑥
𝑠 (𝜃)d𝑠 . (C.38)

with 𝜉𝑥
0 (𝜃) = 𝑥. Now differentiating 𝑠 → ‖𝜉𝑥

𝑠 (𝜃)‖2, using A1 and Grünwall’s inequality, we
get ‖𝜉𝑥

𝑠 (𝜃)‖2 6 e−2𝑚𝑡 ‖𝑥‖2 which implies the result for 𝑘1 = 2.

Let now 𝑘1 > 2. Using again Lemma C.9-a), Faà di Bruno’s formula (Levy, 2006, Theorem
1) and since (4.9) can be written on the form

d𝜑𝑡

d𝑠 (𝜃) = −
𝑑∑︁

𝑗=1
𝐷𝑓(𝜑𝑡(𝜃)) {𝑒𝑖} 𝑒𝑖 ,

for all 𝑖 ∈ {2, . . . , 𝑘1}, 𝜃 ∈ R𝑑 and 𝑥1, · · · , 𝑥𝑖 ∈ R𝑑, 𝜉𝑥1,··· ,𝑥𝑖
𝑡 (𝜃) = 𝐷𝑖𝜑𝑡(𝜃) {𝑥1 ⊗ · · · ⊗ 𝑥𝑖}

satisfies the ordinary differential equation:

d𝜉𝑥1,··· ,𝑥𝑖
𝑠

d𝑠 (𝜃) = −
𝑑∑︁

𝑗=1

∑︁
Ω∈P({1,...,𝑖})

𝐷|Ω|+1𝑓(𝜑𝑠(𝜃))

⎧⎨⎩𝑒𝑖 ⊗
𝑖⨂︁

𝑙=1

⨂︁
𝑗1,··· ,𝑗𝑙∈Ω

𝜉
𝑥𝑗1 ,··· ,𝑥𝑗𝑙
𝑠 (𝜃)

⎫⎬⎭ 𝑒𝑖 ,

(C.39)
where P({1, . . . , 𝑖}) is the set of partitions of {1, . . . , 𝑖}, which does not contain the empty
set and |Ω| is the cardinal of Ω ∈ P({1, . . . , 𝑖+ 1}). We now show by induction on 𝑖 that for
all 𝑖 ∈ {1, . . . , 𝑘1}, there exists a universal constant 𝐶𝑖 such that for all 𝑡 > 0 and 𝜃 ∈ R𝑑,

sup
𝑥∈R𝑑

⃦⃦⃦
𝐷𝑖𝜑𝑡(𝜃)

⃦⃦⃦
6 𝐶𝑖e−𝜇𝑡 . (C.40)

For 𝑖 = 1, the result follows from the case 𝑘1 = 1. Assume that the result is true for
{1, . . . , 𝑖} for 𝑖 ∈ {1, . . . , 𝑘1 − 1}. We show the result for 𝑖+ 1. By (C.39), we have for all
𝜃 ∈ R𝑑 and 𝑥1, · · · , 𝑥𝑖 ∈ R𝑑,⃦⃦⃦

𝜉
𝑥1,··· ,𝑥𝑖+1
𝑡 (𝜃)

⃦⃦⃦2

d𝑡 =

−
∫︁ 𝑡

0

∑︁
Ω∈P({1,...,𝑖+1})

𝐷|Ω|+1𝑓(𝜑𝑠(𝜃))

⎧⎨⎩𝜉𝑥1,··· ,𝑥𝑖+1
𝑡 (𝜃) ⊗

𝑖+1⨂︁
𝑙=1

⨂︁
𝑗1,...,𝑗𝑙∈Ω

𝜉
𝑥𝑗1 ,··· ,𝑥𝑗𝑙
𝑠 (𝜃)

⎫⎬⎭ d𝑠 .

Isolating the term corresponding to Ω = {{1, . . . , 𝑖 + 1}} in the sum above and using
Young’s inequality, A1, Grönwall’s inequality and the induction hypothesis, we get that
there exists a universal constant 𝐶𝑖+1 such that for all 𝑡 > 0 and 𝑥 ∈ R𝑑 (C.40) holds for
𝑖+ 1.

b) The proof is a consequence of a), (C.35), A5(𝑘1, 𝑘2) and Leibniz’s rule.

C.5 Proof of Theorem 4.6

We preface the proof of the Theorem by two fundamental first estimates.

Theorem C.12. Assume A1-A2-A3-A4(2(𝑘2 + 3)), for 𝑘1, 𝑘2 ∈ N, 𝑘1 > 1. Let 𝑔 : R𝑑 → R
satisfying A5(3, 𝑘2). Then, there exists 𝐶𝑘2 > 0 only depending on 𝑘2 such that for all
𝛾 ∈ (0, 𝐶𝑘2/𝐿), 𝑛 ∈ N*, 𝛾 > 0 and 𝜃 ∈ R𝑑,
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− E𝜃

[︃
𝑛−1

𝑛∑︁
𝑖=1

{︁
𝑔(𝜃(𝛾)

𝑖 ) − 𝑔(𝜃*)
}︁]︃

=
E𝜃

[︁
ℎ𝑔(𝜃(𝛾)

𝑛+1)
]︁

− ℎ𝑔(𝜃)
𝑛𝛾

− (𝛾/2)
∫︁

R𝑑
𝐷2ℎ𝑔(𝜃)E

[︂{︁
𝜀(𝜃)

}︁⊗2
]︂

d𝜋𝛾(𝜃) + (𝛾/𝑛)𝐴1(𝜃) + 𝛾2𝐴2(𝜃, 𝑛) ,

where

𝐴1(𝜃) 6 𝐶
{︁

1 + ‖𝜃 − 𝜃*‖𝑘2+2
}︁
, 𝐴2(𝜃, 𝑛) 6 𝐶

{︁
1 + ‖𝜃 − 𝜃*‖𝑘2+3 /𝑛

}︁
,

for some constant 𝐶 > 0 independent of 𝛾 and 𝑛.

Proof. Let 𝑛 ∈ N*, 𝛾 > 0 and 𝜃 ∈ R𝑑. Consider the sequence (𝜃(𝛾)
𝑘 )𝑘>0 defined by the

stochastic gradient recursion (4.1) and starting at 𝜃. Theorem C.11 shows that ℎ𝑔 ∈ 𝐶3(R𝑑).
Therefore using (4.1) and the Taylor expansion formula, we have for all 𝑖 ∈ {1, . . . , 𝑛}

ℎ𝑔(𝜃(𝛾)
𝑖+1) = ℎ𝑔(𝜃(𝛾)

𝑖 ) + 𝛾𝐷ℎ𝑔(𝜃(𝛾)
𝑖 )

{︁
−∇𝑓(𝜃(𝛾)

𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)
𝑖 )

}︁
+ (𝛾2/2)𝐷2ℎ𝑔(𝜃(𝛾)

𝑖 )
{︁

−∇𝑓(𝜃(𝛾)
𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)

𝑖 )
}︁⊗2

+ (𝛾3/(3!))𝐷3ℎ𝑔(𝜃(𝛾)
𝑖 + 𝑠

(𝛾)
𝑖 Δ𝜃(𝛾)

𝑖+1)
{︁

−∇𝑓(𝜃(𝛾)
𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)

𝑖 )
}︁⊗3

,

where 𝑠(𝛾)
𝑖 ∈ [0, 1] and Δ𝜃(𝛾)

𝑖+1 = 𝜃
(𝛾)
𝑖+1 − 𝜃

(𝛾)
𝑖 . Therefore by (C.36), we get

− 𝑛−1
𝑛∑︁

𝑖=1

{︁
𝑔(𝜃(𝛾)

𝑖 ) − 𝑔(𝜃*)
}︁

=
ℎ𝑔(𝜃(𝛾)

𝑛+1) − ℎ𝑔(𝜃)
𝑛𝛾

− 𝑛−1
𝑛∑︁

𝑖=1
𝐷ℎ𝑔(𝜃(𝛾)

𝑖−1)𝜀𝑖+1(𝜃(𝛾)
𝑖 )

− (𝛾/(2𝑛))
𝑛∑︁

𝑖=1
𝐷2ℎ𝑔(𝜃(𝛾)

𝑖 )
{︁

−∇𝑓(𝜃(𝛾)
𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)

𝑖 )
}︁⊗2

− (𝛾2/(3!𝑛))
𝑛∑︁

𝑖=1
𝐷3ℎ𝑔(𝜃(𝛾)

𝑖 + 𝑠
(𝛾)
𝑖 Δ𝜃(𝛾)

𝑖+1)
{︁

−∇𝑓(𝜃(𝛾)
𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)

𝑖 )
}︁⊗3

.

Taking the expectation and using A3, we have

− E𝜃

[︃
𝑛−1

𝑛∑︁
𝑖=1

{︁
𝑔(𝜃(𝛾)

𝑖 ) − 𝑔(𝜃*)
}︁]︃

=
E𝜃

[︁
ℎ𝑔(𝜃(𝛾)

𝑛+1)
]︁

− ℎ𝑔(𝜃)
𝑛𝛾

− (𝛾/2)
∫︁

R𝑑
𝐷2ℎ𝑔(𝜃)E

[︂{︁
𝜀(𝜃)

}︁⊗2
]︂

d𝜋𝛾(𝜃) +𝐴1 +𝐴2 ,

where

𝐴1 = (𝛾/(2𝑛))E𝜃

[︃
𝑛∑︁

𝑖=1

(︂
𝐷2ℎ𝑔(𝜃*) {𝜀𝑖+1(𝜃*)}⊗2 −𝐷2ℎ𝑔(𝜃(𝛾)

𝑖 )
{︁

−∇𝑓(𝜃(𝛾)
𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)

𝑖 )
}︁⊗2

)︂]︃

𝐴2 = −(𝛾2/(3!𝑛))E𝜃

[︃
𝑛∑︁

𝑖=1
𝐷3ℎ𝑔(𝜃(𝛾)

𝑖 + 𝑠
(𝛾)
𝑖 Δ𝜃(𝛾)

𝑖+1)
{︁

−∇𝑓(𝜃(𝛾)
𝑖 ) + 𝜀𝑖+1(𝜃(𝛾)

𝑖 )
}︁⊗3

]︃
.

The proof is then concluded using Theorem C.11, Lemma C.7 and Theorem C.8.

Corollary C.13. Assume A1-A2-A3-A4(2(𝑘2 + 3)), for 𝑘1, 𝑘2 ∈ N, 𝑘1 > 1. Let 𝑔 : R𝑑 → R
satisfying A 5(3, 𝑘2). Then there exists 𝐶𝑘2 > 0 only depending on 𝑘2 such that for all
𝛾 ∈ (0, 𝐶𝑘2/𝐿), there exists 𝐶 > 0 independent of 𝛾 such that⃒⃒⃒⃒∫︁

R𝑑
𝑔(𝜃)𝜋𝛾(d𝜃) − 𝑔(𝜃*) + (𝛾/2)

∫︁
R𝑑
𝐷2ℎ𝑔(𝜃)E

[︂{︁
𝜀(𝜃)

}︁⊗2
]︂

d𝜋𝛾(𝜃)
⃒⃒⃒⃒
6 𝐶𝛾2 .
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Proof. The proof is a direct consequence of Theorem C.8 and Theorem C.12.

Proof of Theorem 4.6. Under the stated assumptions, 𝜃 ↦→ 𝐷2ℎ𝑔(𝜃)E
[︁
{𝜀(𝜃)}⊗2

]︁
satisfies

the conditions of Corollary C.13. The proof then follows from combining Corollary C.13
applied to this function and Theorem C.12.



5
Conclusion and Future Work

5.1 Summary of the thesis

In this thesis, we investigate several aspects of stochastic approximation for machine
learning, especially in the non-parametric setting.

In the opening chapter, we introduce supervised machine learning, the convex opti-
mization framework, stochastic approximation theory, and the non-parametric regression
setting. We pave the way for the following chapters by describing the related literature and
illustrating some of the fundamental concepts.

In our first contribution, we provide statistically optimal rates of convergence for
learning in a reproducing kernel Hilbert space, under both the source condition (which
quantifies the smoothness of the optimal prediction function) and the capacity condition
(related to the eigenvalue decay of the covariance operators). This problem was stated
as an open problem by Rosasco et al. (2014) and Ying and Pontil (2008). We show that
averaging, combined with larger step sizes than traditional approaches, allows to get this
optimal behavior. We give results in both the finite horizon setting and the online setting,
describing the regimes in which the optimal rate is reached. We also present minimal
assumptions under which the problem can be analyzed, removing un-necessary topological
assumptions and strong conditions (e.g., uniform bounds) on the kernel. The optimal
rate underlines the power of averaging in stochastic gradient descent, which substantially
improves the convergence in comparison to un-averaged methods. It also shows that the
statistical performance can be achieved by an online algorithm performing a single pass on
observations, an important and insightful property in practice.

In our second contribution, we propose a new algorithm, achieving simultaneously
the best possible bias and variance term in the parametric regime: the optimal variance
term matches the statistical rate of convergence as 𝜎2𝑑

𝑛 , while the bias term (the speed
at which initial conditions are forgotten) matches the best possible rate for a first order
algorithm as 𝐿‖𝜃0−𝜃*‖2

𝑛2 . This results in a theoretical improvement in the non-parametric
regime for certain situations in which the function is particularly not regular with respect
to the reproducing kernel Hilbert space. While the bias term was systematically dominating
for the averaged recursion, the acceleration allows to recover the optimal tradeoff and
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statistical rate of convergence.
Finally, in our last contribution, we consider a more general setting where the objective

function is no longer quadratic. We analyze the averaged stochastic gradient descent with
constant step as a Markov chain. We give a complete analysis of its convergence, outlining
the effect of initial conditions, noise and step-sizes. While we mainly consider the general
minimization framework, these results directly apply for supervised machine learning,
extending some results known for least-squares to all loss functions. This analysis naturally
leads to using Romberg-Richardson extrapolation, that provably improves the convergence
behavior of the averaged SGD iterates.

5.2 Perspectives

Our work has triggered a few questions, which are still open.

(i) First, we showed in Chapter 2 that averaged stochastic gradient descent was par-
tially adaptive to the difficulty of the problem. For any constant step, the bias and
variance terms decay faster when the problem is easier (i.e., satisfies a stronger
source condition or capacity condition). However, the choice of the optimal learning
rate is not fully automatic and generally requires to use a cross validation approach.
Proposing a data dependent rule to find an optimal step size, or a fully adaptive
algorithm reaching the optimal rate, without cross validation, would be of major
interest. Orabona (2014) describes a parameter-free algorithm that adapts to the
source condition; and Raskutti et al. (2014) propose a data dependent early stopping
rule, achieving optimal convergence rate with respect to the capacity condition as-
sumption. To the best of our knowledge, getting a simple algorithm that would adapt
to both parameters is still an open problem. The most promising direction to get such
a result seems to be the use of Lepski’s method (Lepski et al., 1997).

(ii) While the optimal rate of convergence is reached, the complexity of the averaged
stochastic gradient descent remains sub-optimal in the non-parametric setting: in a
reproducing kernel Hilbert space, after 𝑛 iterations, the computational complexity is
𝑂(𝑛2). Several approaches have been proposed to reduce this complexity, especially
with random features (Rudi et al., 2016) and Nyström approximation (El Alaoui and
Mahoney, 2014; Lin and Rosasco, 2016). Roughly speaking, these methods solve
a linear system in a lower dimension 𝑑𝑛, corresponding to an “implicit” dimension
of the problem. If this dimension is carefully chosen, these methods can achieve
the statistical rate. Stochastic algorithms can also be used in such a setting: while
an analysis combining iterative algorithm and Nyström approximation was recently
proposed by Rudi et al. (2017), a general analysis of stochastic algorithms together
with random features would be interesting.

(iii) Our results in Chapter 3 underline the differences between additive and multiplicative
noise oracles. Understanding to which extent these results can be generalized to
more general noise oracles would be very interesting.

(iv) In the analysis of SGD as a Markov chain proposed in Chapter 4, the convergence
results are derived for strongly convex functions. This analysis opens several di-
rections and potential extensions: providing an analysis for non-strongly convex



functions, a complete analysis for decreasing step sizes, and extensions of our results
under self-concordance condition, would be valuable. Moreover, Richardson-Romberg
interpolations methods could also be used on other parameters, especially the regu-
larization parameter when regularization is used.

(v) Finally, non-parametric estimation goes beyond prediction: density estimation, its
twin brother, is of equal importance (Tsybakov, 2008). Shape constrained density
estimation has been a stimulating topic these last years (Kim and Samworth, 2014;
Kim et al., 2016). In this setting, one generally considers the maximum likelihood
estimator, which has good statistical properties. However, computing this estimator is
challenging in dimension bigger than one; Cule et al. (2010) suggest using Shor’s
R-algorithm, but this algorithm scales badly with the dimension. Improving opti-
mization techniques in this field would be interesting. Moreover, an important open
question remains: similarly to the regression tasks, is it possible to propose an online
algorithm (performing a single pass on input points), that achieves the statistical rate
of convergence ?
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Résumé
Le but de l’apprentissage supervisé est d’inférer des
relations entre un phénomène que l’on souhaite pré-
dire et des variables “explicatives”. À cette fin, on dis-
pose d’observations de multiples réalisations du phé-
nomène, à partir desquelles on propose une règle de
prédiction. L’émergence récente de sources de don-
nées à très grande échelle, a fait émerger deux diffi-
cultés : d’une part, il devient difficile d’éviter l’écueil du
sur-apprentissage lorsque le nombre de variables ex-
plicatives est très supérieur au nombre d’observations ;
d’autre part, l’aspect algorithmique devient déterminant,
car la seule résolution d’un système linéaire peut devenir
une difficulté majeure.
Des algorithmes issus des méthodes d’approximation
stochastique, qui sont au coeur de cette thèse, proposent
une réponse simultanée à ces deux difficultés : l’utilisa-
tion d’une méthode stochastique réduit drastiquement le
coût algorithmique, sans dégrader la qualité de la règle
de prédiction proposée, en évitant naturellement le sur-
apprentissage.
Les méthodes paramétriques proposent comme prédic-
tions des fonctions linéaires d’un ensemble choisi de
variables explicatives, mais aboutissent souvent à une
approximation de la structure statistique sous-jacente.
Dans le cadre non-paramétrique, qui est un des thèmes
centraux de cette thèse, la restriction aux prédicteurs li-
néaires est levée. Ces méthodes sont cruciales pour de
nombreuses applications.
Cette thèse présente d’abord une analyse détaillée
de l’approximation stochastique dans le cadre non-
paramétrique, en particulier dans le cadre des espaces
à noyaux reproduisants. Cette analyse permet d’obtenir
des taux de convergence optimaux pour l’algorithme de
descente de gradient stochastique moyennée.
Ensuite, un algorithme basé sur un principe d’accéléra-
tion est présenté. Il converge à une vitesse optimale, tant
du point de vue de l’optimisation que du point de vue sta-
tistique. Cela permet, dans le cadre non-paramétrique,
d’améliorer la convergence jusqu’au taux optimal, dans
certains régimes pour lesquels le premier algorithme
analysé restait sous-optimal.
Enfin, la troisième contribution de la thèse consiste en
l’extension du cadre étudié au delà de la perte des
moindres carrés : l’algorithme de descente de gradient
stochastique est analysé comme une chaine de Markov.
Cette approche résulte en une interprétation intuitive, et
souligne les différences entre le cadre quadratique et le
cadre général. Uneméthode simple permettant d’amélio-
rer substantiellement la convergence est également pro-
posée.

Mots Clés
Approximation stochastique, optimisation convexe, ap-
prentissage supervisé, estimation non-paramétrique, es-
paces de Hilbert à noyaux reproduisants.

Abstract
The goal of supervised machine learning is to infer rela-
tionships between a phenomenon one seeks to predict
and “explanatory” variables. To that end, multiple occur-
rences of the phenomenon are observed, from which a
prediction rule is constructed. The last two decades have
witnessed the apparition of very large data-sets. This
has raised two challenges: first, avoiding the pitfall of
over-fitting, especially when the number of explanatory
variables is much higher than the number of observa-
tions; and second, dealing with the computational con-
straints, such as when the mere resolution of a linear
system becomes a difficulty of its own.
Algorithms that take their roots in stochastic approxima-
tion methods tackle both of these difficulties simultane-
ously: these stochastic methods dramatically reduce the
computational cost, without degrading the quality of the
proposed prediction rule, and they can naturally avoid
over-fitting.
The popular parametric methods give predictors which
are linear functions of a set of explanatory variables.
However, they often result in an imprecise approxima-
tion of the underlying statistical structure. In the non-
parametric setting, which is paramount in this thesis, this
restriction is lifted. The class of functions from which the
predictor is proposed depends on the observations. In
practice, these methods have multiple purposes.
The first contribution of this thesis is to provide a de-
tailed analysis of stochastic approximation in the non-
parametric setting, precisely in reproducing kernel Hilbert
spaces. This analysis proves optimal convergence rates
for the averaged stochastic gradient descent algorithm.
The second contribution is an algorithm based on accel-
eration, which converges at optimal speed, both from the
optimization point of view and from the statistical one. In
the non-parametric setting, this can improve the conver-
gence rate up to optimality, even in particular regimes for
which the first algorithm remains sub-optimal.
Finally, the third contribution of the thesis consists in an
extension of the framework beyond the least-square loss.
The stochastic gradient descent algorithm is analyzed
as a Markov chain. This point of view leads to an intu-
itive and insightful interpretation, that outlines the differ-
ences between the quadratic setting and the more gen-
eral setting. A simple method resulting in provable im-
provements in the convergence is then proposed.

Keywords
Stochastic approximation, convex optimization, super-
vised learning, non-parametric estimation, reproducing
kernel Hilbert spaces.


	Contributions and thesis outline
	Introduction
	Statistical Learning
	Supervised machine learning
	Observations and Empirical Risk Minimization
	Linear predictors: the parametric setting
	Statistical point of view on least-squares and logistic regression
	Risk decomposition: approximation and estimation errors
	Upper bounds on the estimation error
	Minimax rates of convergence
	Computational cost of ERM

	Convex optimization
	Assumptions
	Gradient methods
	Accelerated gradient descent
	Lower complexity bounds

	Stochastic approximation
	Convergence of the last iterate
	Polyak-Ruppert averaging
	Stochastic gradient descent.
	Application to machine learning and optimization.
	Assumptions on the noise
	Non-asymptotic results: stochastic approximation for minimizing convex functions
	Non-asymptotic results: stochastic approximation for minimizing smooth convex functions
	Non-asymptotic results: stochastic approximation for least-squares regression and logistic regression

	Non-parametric regression in reproducing kernel Hilbert spaces
	Reproducing kernel Hilbert spaces
	Examples
	Least-squares regression in RKHS
	Consequences in finite dimension
	Computations in RKHS


	Non-parametric Stochastic Approximation with Large Step-sizes
	Introduction
	Learning with positive-definite kernels
	Reproducing kernel Hilbert spaces
	Random variables
	Minimization problem
	Covariance operator
	Minimal assumptions
	Examples
	Convergence rates

	Stochastic approximation in Hilbert spaces
	Regularization and linear systems
	Stochastic approximation
	Extra regularity assumptions
	Main results (finite horizon)
	Online setting

	Links with existing results
	Euclidean spaces
	Optimal rates of estimation
	Regularized stochastic approximation
	Unregularized stochastic approximation
	Summary of results

	Experiments on artificial data
	Splines on the circle
	Experimental set-up
	Optimal learning rate for our algorithm
	Comparison to competing algorithms

	Conclusion

	Appendix to Non-parametric Stochastic Approximation with Large Step-sizes
	Minimal assumptions
	Definitions
	Isomorphism
	Mercer theorem generalized
	Complementary (A6) assumption

	Sketch of the proofs
	Reproducing kernel Hilbert spaces
	Properties of the minimization problem
	Covariance Operator
	Properties of Tr, r>0
	Kernel decomposition
	Alternative assumptions

	Proofs
	Preliminary remarks
	Semi-stochastic recursion - intuition
	Complete proof, Theorem 2.9 (finite horizon) 
	Complete proof, Theorem 2.11 (on-line setting)
	A lemma on stochastic recursion, r1/2
	Some quantities


	Faster Convergence Rates for Least-Squares Regression
	Introduction
	Least-Squares Regression
	Statistical Assumptions
	Averaged Gradient Methods and Acceleration
	Additive versus Multiplicative Stochastic Oracles on the Gradient

	Averaged Stochastic Gradient Descent 
	Additive Noise
	Multiplicative/Additive Noise

	Accelerated Stochastic Averaged Gradient Descent
	Tighter Dimension-independent Convergence Rates
	Rates of Convergence for Kernel Regression
	Averaged SGD
	Averaged-accelerated SGD

	Conclusion

	Appendix to Faster Convergence Rates for Least-Squares Regression
	Proofs of Section 3.3
	Proof of Lemma 3.1
	Proof when only "026B30D 0-*"026B30D  is finite
	Proof when the noise is not structured

	Proof of Theorem 3.2 
	Expansion of the recursion
	Regularization-based bias term
	Expansion without the regularization term
	Proof when only "026B30D 0-*"026B30D  is finite
	Proof when the noise is not structured

	Convergence of Accelerated Averaged Stochastic Gradient Descent 
	General expansion
	Asymptotic expansion
	Direct computation without the regularization based term
	Conclusion

	Tighter bounds
	Simple upper-bounds
	Theorem 3.5 and Equation (3.13)

	Technical Lemmas

	Bridging the Gap between Constant Step Size SGD and Markov Chains
	Introduction
	Main results
	Setting
	Related work
	Summary and discussion of main results

	Detailed analysis
	Expansion of moments under  when  is in a neighborhood of  0
	Expansion for a given >0 when k tends to +
	Continuous interpretation of SGD and weak error expansion

	Experiments
	Conclusion

	Appendix to Bridging the Gap between SGD and Markov Chains
	Generalities on convex and strongly convex functions
	Definitions
	Quadratic case 
	Discussion on assumptions on the noise

	Results on the Markov chain defined by SGD
	Proof of MC:prop:existencepi
	Existence of Poisson solutions
	Asymptotic properties of the chain, behavior under equilibrium, and drift.
	Convergence of second order moments

	Further properties of the Markov chain theta
	Regularity of the gradient flow and estimates on Poisson solution
	Proof of Th. 1.4

	Conclusion and Future Work
	Summary of the thesis
	Perspectives

	Bibliography
	List of Figures
	List of Tables

