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Abstract 
  

  This PhD thesis aims at investigating the possibility to detect landmines using hyperspectral 

imaging. Using this technology, we are able to acquire at each pixel of the image spectral data in 

hundreds of wavelengths. So, at each pixel we obtain a reflectance spectrum that is used as 

fingerprint to identify the materials in each pixel, and mainly in our project help us to detect the 

presence of landmines.    

  The proposed process works as follows: a preconfigured drone (hexarotor or octorotor) will carry 

the hyperspectral camera. This programmed drone is responsible of flying over the contaminated 

area in order to take images from a safe distance. Various image processing techniques will be 

used to treat the image in order to isolate the landmine from the surrounding. Once the presence 

of a mine or explosives is suspected, an alarm signal is sent to the base station giving information 

about the type of the mine, its location and the clear path that could be taken by the mine removal 

team in order to disarm the mine.  

 This technology has advantages over the actually used techniques:  

• It is safer because it limits the need of humans in the searching process and gives the 

opportunity to the demining team to detect the mines while they are in a safe region.   

• It is faster. A larger area could be cleared in a single day by comparison with demining 

techniques   

• This technique can be used to detect at the same time objects other than mines such oil or 

minerals. 

  First, a presentation of the problem of landmines that is expanding worldwide referring to some 

statistics from the UN organizations is provided. In addition, a brief presentation of different types 

of landmines is shown. Unfortunately, new landmines are well camouflaged and are mainly made 

of plastic in order to make their detection using metal detectors harder. A summary of all landmine 

detection techniques is shown to give an idea about the advantages and disadvantages of each 

technique.  

 In this work, we give an overview of different projects that worked on the detection of landmines 

using hyperspectral imaging. We will show the main results achieved in this field and future work 

to be done in order to make this technology effective.  

  Moreover, we worked on different target detection algorithms in order to achieve high probability 

of detection with low false alarm rate. We tested different statistical and linear unmixing based 

methods. In addition, we introduced the use of radial basis function neural networks in order to 

detect landmines at subpixel level. A comparative study between different detection methods will 

be shown in the thesis. 

  A study of the effect of dimensionality reduction using principal component analysis prior to 

classification is also provided. The study shows the dependency between the two steps (feature 
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extraction and target detection). The selection of target detection algorithm will define if feature 

extraction in previous phase is necessary.  

  A field experiment has been done in order to study how the spectral signature of landmine will 

change depending on the environment in which the mine is planted. For this, we acquired the 

spectral signature of 6 types of landmines in different conditions: in Lab where specific source of 

light is used; in field where mines are covered by grass; and when mines are buried in soil. The 

results of this experiment are very interesting. The signature of two types of landmines are used in  

the simulations. They are a database necessary for supervised detection of landmines. Also we 

extracted some spectral characteristics of landmines that would help us to distinguish mines from 

background. 
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Chapter One  

1.Introduction 
 

Landmines and cluster munition constitute a main obstacle against the development of the 

societies and return to normal life after the ceasefire is achieved. The fear of death and the 

destruction won’t stop with the end of war, but will continue with the existence of threat of 

cluster munitions, landmines, unexploded ordnance and improvised explosive devices. This 

type of weapons doesn’t know when the war is ended and remain active for years or even 

decades menacing innocent people in their everyday life 

According to recent statistics [1], 80% of the casualties of landmines are from children that 

have nothing to do with the war or its causes. Therefore, there is a need to ban the use of this 

type of blind weapons. The efforts to ban landmines has started and we have an international 

campaign to ban landmines and cluster munitions with numeral signees countries [130]. 

However, nobody can control the situation during the war and the landmines are being used 

during recent conflicts (ex. In Libya and Syria 2016). Therefore, there is a need to find 

detection techniques that are fast and reliable.  

Different techniques have been addressed in order to detect landmines. Each method has its 

advantages and inconveniences. One of the earlier and most used methods is the metal detector. 

Due to electrical induction phenomena, this type of detectors is able to detect the objects that 

contains metal under the soil. Although this technique is cheap, it has several drawbacks: it 

detects all metals, either landmines or inert metals so it has very high false alarm rate; new 

landmines contains less metals so they are harder to be detected. Other techniques used for 

landmine detection will be mentioned in the next chapters.  

 In this thesis, we are addressing this problem with a new technique named Hyperspectral 

Imaging or Imaging spectroscopy. This technique gives the ability to measure at each image 

unit (pixel) the portion of light reflected in hundreds of wavelengths. Thus, we will obtain a 

hypercube composed of two spatial dimensions and a third dimension that contains spectral 

information. This technique is well used in remote sensing field for different purposes like 

mapping, agriculture, astronomy, food monitoring, surveillance and others. 

When light hits an object, it is either absorbed or reflected. The portion of light that is reflected 

depends on the size of the molecules of the object that is reflecting on, the intermolecular 



13 

 

distances in addition to the wavelength of the radiation. Each material composed of different 

components could reflect light of various wavelengths in a different manner. Therefore, we 

have the ability using this technology to identify the materials remotely. In our case, we will 

use the spectral and spatial information of the hyperspectral images to detect landmines and 

cluster munitions without the presence of deminers on field. 

Several approaches exist for target detection using hyperspectral imaging: some are supervised 

where the spectrum of the data is known before; other are unsupervised based on searching for 

targets that are spectrally different from their surroundings. The latter type of information does 

not necessitate the knowledge of the target spectrum in advance. However, this type of 

detectors is characterized by a high false alarm rate as we will see in the next chapters because 

rare events in the image different from their background will be marked as targets. 

  During the work on this PhD thesis, we studied different scenarios of supervised and 

unsupervised detection, taking into consideration image preprocessing techniques like feature 

selection and dimensionality reduction. Knowing the target reflectance spectra will not make 

its detection a straightforward process due to several reasons: 

 1) Spectral variability: the spectrum registered in lab conditions will not be necessary the 

same in field condition due to effect of weather and illumination conditions. 

 2) Noisy images. 

3) Low spatial resolution that make the reflectance detected in a pixel composed by a 

mixture of endmembers reflectance spectra.  

We worked on different types of supervised and unsupervised detection algorithms based 

on probabilistic and linear mixture models. In addition, we worked on artificial neural 

networks in order to detect landmines using hyperspectral images in a fast and more 

accurate way. 

In Chapter 2, we analyze the problem of landmines and show the existing methods currently 

used to address this issue. An introduction to hyperspectral imaging with stat of art of landmine 

detection using hyperspectral imaging and different tools used in hyperspectral image 

treatment are shown in Chapter 3. In Chapter 4, we present all experiments done during my 

work on the thesis with the results achieved. The conclusions are drawn in Chapter 5. 
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Chapter Two:  

2.Problem of landmines and existing 

solutions 
 

 

2.1. Problem of Landmines 
 

This chapter presents an introduction concerning landmines contamination issues, crisis, legacy, 

and action. We conduct an analysis of mine action, national and international programs. It is 

consequential to survey the foundation of the mine activity area since its start. We introduce the 

problem of landmines and how action is taken to face these problems. A concise abridgement of 

the expedition to ostracize killing mines is additionally included. In addition, we show the main 

types of landmines. 

Part of the information shown here is published in [129]. 

 Landmine contamination and impact 
 

Several countries suffer from the existence of millions of landmines in their territories. These 

landmines have indefinite life, and may still cause horrific personal injuries and economic 

dislocation for decades after a war has finished. Therefore, there is a growing demand by these 

countries for reliable landmine inspection systems.   

 This problem affects the social and economic development of the regions, diminishes the areas to 

be cultivated [2], [3], [4], [5]], and also risks killing innocent people; triggered by the fact that 

mines do not know truce [[6], [7], [8], [9]]. As known, mines lead to hundreds of thousands of 

deaths or to amputation of limbs. For instance, in Cambodia there are more than 35000 amputees 

affected by landmine explosion [[2], [5]]. Some of the injured people die in the fields from bleeding 
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or lack of transport to reach the hospital [5]. Mines can decrease the area to be cultivated, also 

prevent the income of valuable foreign currency coming from tourist’s visit, which lead to 

economic regression. 

Various obstacles are faced in removing these landmines, such as the loss or absence of maps or 

information about the landmine types used or the areas where they were originally emplaced, the 

change of landmines locations due to climatic and physical factors, the large variety of types of 

landmines, and the high cost of locating and removing landmines. The landmines sensitivity to 

explosion with time or atmospheric factors also poses a great danger to individuals.   

Landmines are victim-activated and indiscriminate. Mines emplaced during a conflict against 

enemy forces can still kill or injure civilians decades later. Land mines, cluster munitions, and 

other explosive remnants of war (ERW) continue to kill or injure at least 4,300 people every 

year [3]. The vast majority of recorded casualties are civilians (80% in 2015) as shown in Fig. 1 

of which 39% are children (Fig 2). Between 1999 and 2012, more than 1,000 deminers have been 

killed or injured while undertaking demining operations [10]. 

  

 

States with causalities in 2015 are shown in the next table: 

 

 

 

 

 

 

Figure 1: Mines/erw casualties by civilian/military 
status in 2014 

Figure 2: Mines/erw casualties by age in 2014 
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Table 1: States/Areas With Mine/Erw Casualties In 2014 

 

 

The total casualties in 2015 denoted the most yearly recorded losses since 2006. Year 2015 

additionally denoted the most noteworthy number of yearly losses by extemporized mines 

recorded by the Monitor [5]. 

  When a landmine explodes, the impact of the explosion weakens as the distance increases from 

the mine. The blast wave generated by to explosion has a peak power at the beginning and loses 

its power while moving in the atmosphere. Accordingly, it is possible that get a high killing power 

from a mine containing small amount of explosives in close contact, (for example, a mine under 

the foot) while encountering considerably less damage from a significantly bigger dangerous 

charge a few meters away. There is consequently a colossal assortment in the scope of touchy 

wounds from landmines and UXO. Mine/UXO wounds have two fundamental effects. Firstly, they 

influence the lives of the wounded and their family; furthermore, they have impacts on the 

medicinal foundation of the influenced nation. The fundamental monetary impact on the casualty 

is the constraining of capacity to acquire wage to bolster themselves and their family. In addition 

to evident physical wounds, the setback may endure mental harm. Female setbacks are viewed as 

being especially helpless as the broad physical harm can seriously restrict their odds of marriage. 

The impacts are not constrained to the setback or their close families. Treating mine wounds 

depletes the neighborhood therapeutic foundation of developing nations, as these sorts of wounds 

unavoidably wind up noticeably tainted and typically requires 2-3 operations to debride the 

wounds.  Every loss will require prosthesis or a wheelchair on the chance to recover portability. 

The prostheses will likewise require concentrated physiotherapy to figure out how to utilize the 

counterfeit appendage. Moreover, most amputees will require another appendage ever 2-3 years 

as the old ones destroy. 
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 Types of landmines 
 

Mines can be outlined either as ‘anti-personnel’ or as ‘anti-tank'. Anti-personnel (AP) mines are 

intended to be actuated by individuals, while anti-tank (AT) mines are expected to thrash tanks or 

other shielded vehicles [11].  

Anti-tank mines are designed to be triggered by heavy vehicles such as tanks. They are large 

(usually bigger than a person’s shoe) and heavy (weighing more than 5 kilos). These mines contain 

enough explosives to destroy the vehicle that runs over them and as a result also frequently kill 

people in or near the vehicle. Anti-tank mines are laid where enemy vehicles are expected to travel: 

on roads, bridges and tracks. 

Anti-personnel mines are triggered much more easily and are designed to wound people. They 

have less explosives and are much smaller and lighter than anti-tank mines—they could be as small 

as a packet of cigarettes, weighing as little as 50 grams. Anti-personnel mines come in all shapes 

and colors and are made from a variety of materials. 

Although AP mines may kill a person, they are primarily designed to cause severe injury—a 

wounded person must be assisted and this takes more of the enemy’s time and resources. Anti-

personnel mines can be laid anywhere and can be set off in a number of ways—stepping on them, 

pulling on a wire or simply shaking them. Anti-personnel mines may also explode when an object 

placed over them is removed. [12] 

 

 

 

 

 

 

 

 
Generally, there are two types of AP mines: blast mines and fragmentation mines.  

BLAST MINES  

Blast landmines are buried close to the surface of the soil and are generally triggered by 

pressure. When a person steps on a blast mine and activates it, the mine's main charge 

detonates, creating a blast shock wave consisting of hot gases travelling at extremely high 

velocity. A famous type of blast mines is scatterable mines.[13] 

 

 

type  AP landmine   AT landmine  

weight  Light(100g-4Kg)  Heavy(6Kg-11Kg)  

size  6-20cm  20-50cm  

target  Human  Vehicle  

Case material  Plastic,metal,wood  Plastic,metal  

Operating 

pressure  

5Kg  120Kg  

Figure 3: Comparison between AT and AP landmines 
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FRAGMENTATION MINES 

This type of landmines release fragments in all directions, or can be arranged to send fragments in 

one direction. These landmines can cause injuries up to 200m away and kill at closer distances. 

The fragments used in these landmines are either metal or glass. [13] 

Anti-tank mines are designed to immobilize or destroy vehicles. All anti-tank mines are blast 

mines, because the goal of the anti-tank mine is to destroy the tank's tracks and body. There's no 

need for a fragmentation anti-tank mine. 

Most countries and armies try to possess landmines to protect the main installations and key basis 

from enemy intruders. When a military base is constructed in an open area, it will be vulnerable to 

attacks by the enemy from all sides. In such cases, the landmines are used to limit the reachable 

zones and focus the defensive forces in one side. Mines can also be used as part of the support 

system for heavy artillery. 

However, while landmines may have readily identifiable military applications, the nature, design, 

and deployment of large numbers of mines will necessarily lead to civilian casualties 

The neutralization of mines requires specialized training and remains a tedious and dangerous 

process.  Mines are often designed and deployed in order to make their detection as difficult as 

possible.  Furthermore, advances in technology are exacerbating the problem because most 

modern mines are now made with plastics and may contain only traces of metal, if any.  Newer 

models may also contain sophisticated electronic fuses that make them more hazardous to remove. 

 

2.2. Landmine detection techniques 
 

  In this section, we show the main detection techniques used in the detection of landmines. The 

goal of this section is to show the techniques already used, their pros and cons and compare their 

performance with the hyperspectral image technique. 

The most widely used method for detecting mines follows the same techniques developed during 

the Second World War, and directly involves human beings. The typical deminer’s tool kit today 

largely resembles those used more than 50 years ago (It consists of a metal detector and a prodding 

instrument).  

 Several techniques have been designed and developed for demining. Each technique is suitable 

for detection under some conditions depending on the type of the mine case, the explosive material 

and the soil. 

  As we are studying the potential of hyperspectral imaging for landmine detection, we will 

describe the detection techniques currently used. The rationale of this section is not to go through 

the complicated physics principles of how the sensors work but to give some brief information 

about these techniques stating their strengths and limitations, in order to highlight the advantages 

of hyperspectral imaging over other techniques.  
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 Generally, most of the landmine detection techniques consist of three main units; a sensor to 

capture a signature of the landmine, a signal or image processing unit to arrange the acquired data 

and a decision making unit to decide whether a landmine exists or not.  

The sensor may be electromagnetic, acoustic, nuclear, biological, chemical or mechanical. 

2.2.1. Electromagnetic Methods 
 

The deminer holds the handle of Electro-Magnetic Induction 

(EMI) detector (Fig.4) close to the ground and sweeps it slowly 

around the area being investigated. Electrical current flowing 

through the first coil, the “transmit coil,” induces a time-varying 

magnetic field in the ground. This primary magnetic field, in turn, 

induces electrical (eddy) currents in buried metal objects. The 

currents from the buried objects create a weaker, secondary 

magnetic field. The second coil, the “receiver coil,” detects 

changes in voltage induced by the secondary magnetic field as 

shown. The detector then converts these changes in the electric potential to an audible signal. [13] 

 

2.2.2. Ground Penetrating Radar (GPR) 
 

  Difficulty in detecting tiny amounts of metal in a plastic land 

mine with a metal detector has led to the development of this 

technique. GPR detects buried objects by emitting radio waves 

(ranging from about 10 MHz to a few GHz) into the ground and 

then analyzing the return signals generated by reflections of the 

waves at any subsurface discontinuity with different indexes of 

refraction such as at the boundary between soil and a landmine or 

between soil and a large rock. The GPR technique (Fig.5) uses an 

antenna pair (transmitter and receiver separated by a small fixed 

distance) to send short pulses of electromagnetic energy into the 

subsurface and then record the returning signals. The return signal 

is interpreted using a computerized signal processing system that 

gives an audio image to determine the object’s shape and position.  

[[13],[14]]   

 

 

 

 

Figure 4: Landmine detection with 
metal detector 

Figure 5: GPR principle 



20 

 

2.2.3. Infrared/Hyperspectral Systems 
         

Infrared radiation consists of wavelength of 0.7𝜇𝑚 to 1𝑚𝑚 in microwave regions.  

Infrared/hyperspectral methods detect anomalous variations in electromagnetic radiation reflected 

or emitted by either surface mines or the soil and vegetation immediately above buried mines. Two 

modes of action, including active and passive irradiation using a broad range of electromagnetic 

wavelengths: A passive IR system detects natural radiation from the object whereas active systems 

are provided with heat source and detects radiation from heated object. Thermal detection methods 

exploit diurnal variations in temperatures of areas near mines relative to surrounding areas. The 

physical activity of emplacing mines changes the natural soil particle distribution by bringing small 

particles to the surface, which in turn affects the way in which the soil scatters light. Systematic 

changes in vegetation moisture levels immediately above buried mines also may have 

influence [13]. 

2.2.4. Acoustic/Seismic method 
 

These methods are unique among detection methods 

that identify the mine casing based on the 

mechanical properties and are not based on 

electromagnetic properties. The A/S technique is 

used for the detection of landmines by vibrating 

them with acoustic or seismic waves that are 

generated and received by non-contact (acoustic) 

and contact (seismic) transducers, respectively. The 

transmitting system may be composed of acoustic 

loudspeakers or electrodynamic shakers. When the 

receiver senses a reflected energy that means an 

object possibly a landmine is buried. (Fig.6) [15]. 

2.2.5. Nuclear Quadruple Resonance (NQR)  
 

This is a radiofrequency-based technique used to detect specific chemical compound like 

explosives. It is composed of an emitter that sends a radiation with a frequency that corresponds 

to the frequency of resonance of the explosive material. By this, the nuclei of the component is 

excited and when it returns to the stable state, it emits another radiation that induces an electric 

potential at the receiver coil. By this, the presence of a landmine is noticed by the detection of the 

presence of explosives [16]. 

 

 

Figure 6: Amplitude of Surface Vibration of Ground in response 
to sound waves: over a Mine (solid line) and a Blank (dashed 
line)  



21 

 

2.2.6. Vapor sensors 
 

A small percentage of the explosive manages to get out, as vapor, through fissures and shield 

structures of mines. The idea is to detect the presence of vapor from explosives. There are two 

research lines in this topic: biological and chemical. 

Biological detection methods involve the use of mammals, insects, microorganisms, or plants to 

detect explosives. Each of the different methods operates on a different set of principles and is at 

a different stage of development. 

A variety of possible non-biological mechanisms for detecting low concentrations of explosives 

in air or in soil samples have been investigated in recent years leading to the development of highly 

sensitive odor detection devices. When a sample of air containing explosives passes between the 

slides of the sensor, some of the explosive binds to the polymer and reduces the amount of 

fluorescent light that one slide emits. This reduction in the intensity of radiation received is 

detected by a small photomultiplier device giving notice the existence of explosive 

material.[13],[15] 

2.2.7. Mechanical methods 
 

In some cases, if the terrain and soil conditions are suitable, it is possible to use large armored 

vehicles in order to clean the minefields. This method is preferred by the army during the time of 

conflict as there is no much time to localize, identify and isolate the mines. It necessitates the use 

of large and expensive vehicles. The risk is minimized as the demining personnel are either in a 

well shielded place or are remotely controlling the vehicles. However, this technique leaves the 

area virtually destroyed. In addition, a landmine may be buried deeper or partly damaged making 

it more dangerous. [15] 
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Chapter Three 

3.Hyperspectral Imaging: Introduction to 

landmine detection and processing 

techniques 
 

3.1. Introduction to Hyperspectral imaging 
 

Hyperspectral imaging is a trending technique in the field of remote sensing. It is based on 

acquiring images in quasi-continuous bands in the visible and infrared domain. By this, we get 

at each pixel a reflectance spectrum that help us to identify the constituents of the materials in 

the image. This type of imaging is a developed version of the multispectral imaging technique. 

In this section, we would like to show the origin of hyperspectral imaging, different data 

acquisition processes used to acquire the hypercube in addition to main hyperspectral imaging 

cameras used in this field. 

 

  Broadband, Multispectral, Hyperspectral and Ultraspectral 

Imaging 
 

  Hyperspectral imaging is the result of development in the field of electro optics. The 

development in sensor manufacturing made the image acquisition in hundreds of wavelengths 

possible. The first imagers were broadband imagers that sense the light intensity in a wide 
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range of spectrum. These imagers detect the light intensity in a wide range of frequencies in 

the visible or infrared domain. After that, the eighties and nineties became the era of 

multispectral imagers were the imagers were able to acquire image slices in tens of frequencies 

(Fig.7). The development of photodetectors made possible to acquire image slices in even 

narrower bands. This have increased the spectral resolution of the imager and improved the 

possibility to distinguish more materials. 

 

 

Figure 7: Difference between broadband, multispectral, hyperspectral and Ultraspectral Imaging 

  Hyperspectral Image Scanning Modes 
 

 Generally, to acquire a multispectral or hyperspectral images, two types of scanners are usually 

used: Wiskbroom scanners and Pushbroom scanners. These two scanners differs in the technology 

used to detect the light of different wavelengths. In both techniques, we use the forward motion of 

the platform to record successive scan lines and build up the 2 dimensional images. In the 

following, we will some of the characteristics of each technology. 

3.1.2.1. Whiskbroom or Across Track scanner 

  Whiskbroom scanners collect measurements from one pixel in the image at a time. A rotating 

reflecting device moves forth and back to reflect the incident light from different angles to the 

single sensor that the scanner have. This allows the scanner to measure the energy from one side 

of the aircraft to the other. The Instantaneous Field of View (IFOV) is scanned perpendicular to 

the direction of motion of the sensor to form one spatial rom of the spectral image [132]. The 

incoming energy is separated into several spectral components that are independently sensed. 
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3.1.2.2. Pushbroom or Along Track scanner 

A push broom scanner collects data along track using a row of sensors arranged perpendicular to 

the direction of travel. The data are collected row by row. The imager scans a slit on the ground in 

across-track direction. The slit image is focused and spectrally dispersed onto a two dimensional 

array of image sensors. 

 

Figure 9: Pushbroom scanner principle 

Figure 8: Wiskbroom scanning principle [132] 
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Whiskbroom imager have inherently inferior spatial resolution compared to pushbroom imagers. 

In addition,  pushbroom imager has better geometry than wiskbroom imagers due to fixed distance 

among detector elements. However, in pushbroom imager more detectors need to be calibrated 

before use. 

In new hyperspectral imagers, instead of using the dispersive elements to measure the energy in 

different wavelengths, spectral filters in the fore optics at the focal plan are used to switch between 

wavebands. 

 

 Important hyperspectral camera 
 

  Several hyperspectral imagers gained a large reputation in the field of hyperspectral imaging. The 

number of companies that manufacture hyperspectral cameras is increasing as the use of this 

technology is expanding to new domains. Now this technique is used in different unrelated 

domains like chemistry, mapping, military, food quality monitoring, agriculture and other. 

Therefore, the number of buyers is increasing and the number of the manufacturers so. Some of 

the main hyperspectral cameras are: 

  AVIRIS: Airborne Visible Infrared Imaging Spectrometer is operated by Jet Propulsion Lab 

(JPL) of NASA. This sensor acquires hyperspectral images in 224 bands between 0.4 and 2.5 

µm. the spectral resolution is about 10nm. It is a pushbroom sensor that have field of View 

FOV=30° distributed on 614 pixels. The instantaneous field of view IFOV equal to 1mrad and 

could be calibrated to 0.1mrad. 

 HyMap sensor: it works from visible to thermal infrared range. The spectral resolution is about 

10-20nm in the VNIR and SWIR regions and about 100-200nm in TIR. The FOV vary between 

30 and 65° distributed on 512 sample with IFOV between 1 and 3 mrad. This sensor is 

fabricated by Integrated Spectronics and mainly used for earth observation. 

 COMPASS: this sensor is developed by the Night Vision and Electronic Sensors Directorate 

(NVESD) of the US army. It works between 400 and 2350nm in 256 samples. 

 HYDICE: Hyperspectral Digital Imagery Collection Experiment. It acquires hyperspectral 

images in 210 bands between 400 and 2500 nm. It is manufactured by the NAVAL Research 

Lab. 

 CASI: Compact Airborne Spectrographic Imager. It is one of series of sensors manufactured 

by ITRES research limited in collaboration with Defence Research and Development Canada 

(DRDC). It detects image slices between 400 and 1000nm with 10 nm spectral resolution. 

Other imagers also manufactured by the same company cover other ranges like SASI (1000 to 

2500nm) and microTABI (3700 to 4800nm). 

 NVIS: Night Vision Imaging Spectrometer is a pushbroom imager that uses two co-aligned 

imaging spectrometers covering together the range between 400 and 2350 nm with 384 spectral 

bands. The cross-track FOV is 13° composed of 256 pixels with IFOV about 0.9 mrad. 
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 EPS-H: It is a sensor manufactured by GER Corporation. It is composed of several imagers 

that covers the range between visible 430nm to thermal infrared 12500nm. The spectral 

resolution changes in each range. 

 

3.2. Previous projects on landmine detection using HI  
 

This research was published in the journal paper ISPRS journal of photogrammetry and remote 

sensing [17]. 

Our goal in this section is to describe past projects that used infrared hyperspectral imaging for 

landmine detection and that have been presented in conferences proceedings and journal articles. 

Note that additional military research may exist in this field. Such projects, however, are not 

described herein due to lack of information.  

3.2.1. Defence Research and Development Canada projects  
 

  One of the earlier projects doing research on landmine detection using infrared wavelengths took 

place at Defence Research & Development Canada (DRDC). DRDC started their research, in 

support of the Canadian army on landmine and unexploded ordnance detection in 1978 and, in 

collaboration with Itres Research, on hyperspectral imaging for landmine detection in 1989. 

Detection of sparse targets using optical imaging was previously studied. Algorithms developed 

during this project could be applied to preprocessed images of hyperspectral imagers. An early 

project proposed a hierarchical image-processing algorithm to detect sparsely distributed bright 

region of several pixels wide in a monochromatic image [18]. A preprocessing operation is 

performed in order to remove distortions, dropouts, overlapping areas, misregistration, and any 

other artifacts and imperfections. Non suspected areas are discarded to reduce the data size. Then, 

suspected regions are segmented into homogeneous sub-regions and the morphological features of 

the sub-regions are extracted. Based on the extracted features, sub regions are classified. Finally, 

the spatial relationships between mine-like objects are determined. A supervised method analyzes 

these relationships and classifies the areas as a minefield providing a specific likelihood ratio. This 

hierarchical method can potentially achieve real-time detection of surface-laid mines. With the 

aim of improving the detection system, scientific research was focused on two topics: the first one 

dealt with the enhancement of the detection algorithms in order to achieve real-time detection, 

while the second one was related to the improvement of proper imaging technologies in order to 

obtain a higher image quality. 

After the development of Visible and Near Infrared (VNIR) hyperspectral imagers (400-1000 nm), 

several experiments showed their compatibility with the detection of surface-laid and buried 

landmines. While testing the possibility to detect surface-laid mines, it was found that their spectral 

reflectance has similar behavior under different illumination conditions with different scaling 

factors and offsets. More precisely, a linear correlation exists between the mine spectra under 

different incident illuminations if the spectral vector is confined between 500nm and 680nm [21]. 
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For classification purposes, the authors tested two methods: Linear Cross Correlation (LCC) and 

linear spectral unmixing. LCC is better in the case of high spatial resolution images. The linear 

unmixing method has a higher Probability of detection in the case of subpixel sized mines; but has 

also a higher false alarm rate. 

Other tests led to study the possibility of detecting buried landmines using a VNIR imager. It was 

noticed that buried mines could not be detected by calculating the shift of the red edge of vegetative 

spectra. However, by using linear correlation, some mines with low vegetative cover were 

detected [18]. It was also noticed that Anti-Tank surrogates were more detectable than 

Antipersonnel surrogates, presumably due to the increased area of disturbance required to bury the 

former [20]. The probability of detection (PD), intended as the number of mines detected over all 

existing mines in the image, obtained during the experiment varies between 33% and 100% and 

the False Alarm Rate (FAR), measured as the number of falsely detected mines per unit area, varies 

between 0.1 and 0.52/m2. According to the authors of [20], improving the classification algorithms 

and optimizing the spectral vectors, involving a systematic pattern classification study and 

emphasizing discriminant analysis and feature analysis, are possible steps to achieve better PD and 

lower FAR. 

The spatial resolution of the image affects the performance of the detection algorithm [22]. As the 

pixel size gets closer to the size of the mine, the possibility to isolate landmines increases. This 

has been proven by the research team of DRDC in [23]. The authors acquired two types of images 

using a VNIR imager: Medium resolution images at the altitude of 300m and high-resolution 

images at the altitude of 6m in a different place. In the medium resolution experiment, they 

obtained a 100% PD and 0.00034/m2 FAR. In the high-resolution experiment, all mines were 

detected with a false alarm rate of 0.0043/m2. Linear Cross Correlation (LCC) and Orthogonal 

subspace projection (OSP) were used in classification. The best detection is achieved when taking 

the result of the combination of the two techniques. 

In order to have quasi real-time detection of surface-laid mines using a VNIR imager, the authors 

in [24] proposed a system consisting of two modes: in the first mode, the system learns the target 

spectra. In the second mode, the system looks for the targets by acquiring spectral data for each 

pixel and then applying comparative algorithms to the candidate pixels, using the stored reference 

spectra. The processing platform involves a system that generates the results of data acquisition 

and target analysis to an operator by displaying probability information alongside the base 

imagery. The entire process (data acquisition - radiometric correction - data fusion from different 

systems) finishes within few time frames of acquisition (a time frame is approximately 15-35 ms). 

The radiometric and target identification processes can be applied independently to each frame, so 

the processing of a frame will not affect the results related to the processing of other frames [24]. 

In [25], which is a continuation of the research in [24], we find the first experiment that aims at 

detecting landmines from an airborne hyperspectral imaging system in real time. The above paper 

describes how software and hardware improvements can achieve real time detection from an 

airborne platform. First, radiometric correction is applied on raw data, then custom classification 

algorithms are applied to the corrected data. A spectral signature library provides reference spectral 

vectors. The classification results are stored and displayed in real time. The first real time landmine 
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detection system was mounted on a slow vehicle (1-2 km/h) [24].  A display system shows selected 

bands including corrected spectral bands, partial data results or final target bands. The second real-

time detection system was an improvement of the first system to be compatible with airborne 

imaging data rates. A hardware/software system was implemented measuring the change in slit 

contamination (filings, dust, paint flecks) relative to the slit performance during calibration and 

modifying the correction matrix accordingly during radiometric conversion. Detection rates were 

not the prime concern of the test. The authors wanted to test the ability to detect landmines from 

an airborne platform in real time. There are no indications regarding the algorithms used for data 

correction, band selection, and classification. 

Short wave infrared (SWIR) bands (1000-2500nm) have also been considered to detect landmines. 

As the spectrum is wider with the inclusion of SWIR bands, the possibility to distinguish 

landmines is higher. A simple classification boundary should be able to distinguish surface-laid 

mines from many human-made artifacts and natural materials. However, old buried landmines are 

hard to be detected using SWIR [26]. 

A project studying Long Wavelength Infrared (LWIR) hyperspectral imaging of landmines led to 

the development of a commercially available LWIR hyperspectral imager suitable for airborne 

landmine detection [27]. The instrument was used to collect imagery of surface and buried mines 

and improvised explosive devices over full diurnal cycles in arid, desert-like conditions and was 

found to provide some advantages over broad-band imaging in the detection of buried threat 

objects [28]. 

The team of DRDC started in 1997 a project testing the combination of various detection 

technologies called Improved Landmine Detector Project ILDP. Since a single detection technique 

will not be able to detect all types of landmines in all conditions, the fusion of various techniques 

can be more effective [29],[30]. The authors tested a small teleoperated vehicle carrying four types 

of detectors: Forward Looking Infrared imager, down looking electromagnetic induction detector, 

down-looking Ground Penetrating Radar (GPR) and finally a thermal neutron activation detector 

used as confirmatory detector of suspected targets. In order to apply sensor data fusion, several 

methodologies were used, including spatial correspondence and custom designed navigation. The 

above system was intended for anti-vehicle landmines, but not for anti-personnel mines. In order 

to address the latter, a smaller system with different sensors was proposed. Therefore, using a high 

mobility robotic platform, the authors proposed a system that contains five separate technologies: 

2 hyperspectral cameras (thermal infrared (TIR) and VNIR), a scanning sensor imaging system 

which is mounted on a custom built articulated robotic scanner, and a nuclear confirmation 

sensor [31]. The role of each technique is as follows:  

 Forward looking SWIR or TIR cameras should detect thermal contrast between a landmine 

and its surroundings. 

 VNIR camera should detect spectral reflectance differences between disturbed and 

undisturbed soil and the presence of a trip wire.  

 Articulated Robotic Scanner affords the mechanical precision to provide images from scans 

of a lightweight non imaging sensor. 

 Nuclear imaging is used for confirmation. 
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 High mobility platform helps in moving the sensor payload. 

In order to handle the enormous volume of data generated by hyperspectral imaging, the authors 

proposed to use real-time techniques and algorithms described in [24], [25] to compress the 

hyperspectral images into single band images,  which could  then be processed by the minefield  

detection algorithms described in [18]. The results of these projects were encouraging and show 

that a teleoperated replacement of a human operator may be possible in the future. 

A discussion of the results obtained after landmine detection tests using VNIR, SWIR, and TIR 

imagers by DRDC and Itres was presented in [32]. Reliable surface-laid mine detection in various 

weather conditions was achieved using VNIR and SWIR spectra, even if not in real time. Reliable 

buried landmine detection was not achieved. There is no huge difference in the VNIR range 

between the signatures of buried landmines and background materials, however they could be 

indirectly detected by observing differences in reflectance between compact soil over mines and 

background. 

DRDC and Itres presented a review of the research on infrared and hyperspectral technologies for 

landmine detection in [33]. Besides providing the theoretical background for the detection of 

surface-laid and buried mines and the results of their experiments, the authors also described 

examples of Hyperspectral Imagery (HSI) images of trace amounts trinitrotoluene (TNT) and 

Cyclotrimethylenetrinitramine (RDX) distributed on the ground surface. The mechanism of the 

distribution of the trace explosives by ants is further discussed in [34], [35]. 

The Canadian research and development conducted a project between 2004 and 2008 called Shield 

ARP 12rl in order to develop and exploit optical imaging sensors for mine detection. Airborne 

tests of real time hyperspectral imaging and a SWIR HSI imaging phenomenology study were 

completed in October 2006. Tests on vehicle mounted optical tripwire imager and development of 

Thermal infrared hyperspectral imager were completed on March 2008 [36]. After the realization 

of simultaneous imaging in VNIR and SWIR bands, the ability of classifiers to separate 

camouflage coatings from background improves when the VNIR and SWIR spectra are combined. 

Simultaneous collection of SWIR and TIR images from an airborne platform in an environment 

with minimal infrastructure has also been done. In vehicle-mounted trip wire detector tests, the 

SWIR provided better wire/background contrast than the VNIR band. The above report describes 

the tests and the results obtained during the project without mentioning the algorithms used or the 

way the real time airborne detection is performed. 

DRDC and Itres proposed in [37] a new design of hyperspectral camera with a range-gated 

intensifier and combined the camera with selected pulsed lasers. The authors showed that it is 

possible to relate the reflected signal to specific light matter interactions, like induced fluorescence. 

This approach is independent of the ambient light conditions and can be customized to specific 

wavelengths. In addition, it could help in surveying a specific area in order to increase the SNR. 

The preliminary results indicate that the false alarm rate associated with this scenario might be too 

high for ground area scanning speeds of practical interest. 

DRDC also began a project in 2005 to demonstrate the military utility of space-based reflective 

hyperspectral imagery (0.4-2.5 microns), especially in the domain of target detection and 
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identification for land and marine mapping applications. The results achieved are encouraging and 

show that target abundance can be retrieved with high accuracy at the subpixel level using the 

Constrained Energy Minimization (CEM) algorithm. The fact that the estimated abundances are 

generally lower than the true abundances is consistent with an error introduced during the manual 

delineation of targets area, by assigning to targets larger areas than their true area [38]. 

3.2.2. Equinox Corporation fusion test  
 

The fusion of visible and SWIR bands could give better detection results. A basic fusion of two 

spectrum bands produces acceptable segmentation of objects against background, irrespective of 

illumination conditions.  In other words, selecting a set of two or three spectral image bands has 

been found to be just as effective in differentiating man-made objects from background as using 

all spectral bands at once [39]. Such fusion has the potential to detect mine-like objects in an image 

using an integrated camera with visible and SWIR sensors and more sophisticated and specialized 

detection algorithms.  

 

3.2.3. Hyperspectral Mine Detection program HMD 
 

  In [40], a Defense Advanced Research Project Agency (DARPA) sponsored experiment testing 

the potential to detect buried landmines using hyperspectral Mid-wave Infrared (MWIR) (3 to 5 

µm) and Long-wave Infrared (LWIR) (8 - 12 µm) bands is described. The project emphasizes the 

detection of surface disturbances due to landmine burying. Previous experiments showed the 

capability of VNIR and SWIR imagers to detect surface disturbances [19], [20],[26]. However, 

the problem was the high false alarm rate induced by surrounding vegetation and rocks. According 

to the authors, the main rationale behind the detection of buried landmines using the spectral 

properties is that the surface proprieties are in some way different from the properties of subsurface 

soil. The soil exposure at the surface changes some of its physical and chemical properties. These 

experiments showed that spectral information are necessary for landmine detection. 

In addition, the researchers of the Hyperspectral mine detection program HMD tried to detect 

buried landmines by evaluating the contrast in thermal reflectivity between the mine and the soil 

in just two bands of the thermal IR region [41]. They noticed that recently buried landmines could 

be seen in thermal infrared imaging as bright spots because the disturbed soil has an apparent 

temperature different from that of the surrounding undisturbed soil. In addition, they claimed that 

even mines buried for a very long time could be detected in some types of soil as the subsurface 

mine will have different thermal properties. 

3.2.4. Hyperspectral Mine Detection Phenomenology program 
 

The American army also started the project “Hyperspectral mine detection phenomenology 

program” (HMDP). Their main objective was to determine the existence of spectral characteristics 
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that are useful for landmine detection [42]. Therefore, they collected high quality hyperspectral 

signatures of background materials and mines, measured temporal effects on buried landmines and 

measured a statistically significant set of hyperspectral signatures of surface and buried mines in 

natural soils, under variations of controlled variables. The spectral analysis results obtained during 

the HMDP project recordings are presented in [43]. The authors concluded that uncontrolled 

variables, mainly wind and rainfall, usually affect the results. The mines affected by more rainfall 

continue to produce a signature distribution that is different from the background. Also, it is 

remarkable that the temporal evolution of vegetation around landmines is too complex and makes 

the characterization of temporal signature evolution extremely difficult. The following general 

observations were made: 1) A light shower won't significantly reduce the signature; 2) The 

signature is reduced by one-half inch of rain, 3) One-inch of rain further reduces the signature, but 

does not eliminate it, and 4) For some conditions, several inches of rain may not eliminate the 

signature. Overall, the VNIR and LWIR spectral regions show the most consistent and highest 

performance. SWIR and LWIR show good performance for some conditions. MWIR showed the 

least consistent and lowest performance. 

3.2.5. Joint Multispectral Sensor Program (JMSP) 
 

  The goal of the research presented in [44] is to test the design of multispectral and hyperspectral 

imagers that are able to obtain better detection performance by respecting the requirements and 

conditions of target detection. For target detection, it is necessary to detect targets both in daylight 

and nighttime conditions. Panchromatic or multispectral images in VNIR and SWIR ranges give 

this capability during daylight. However, for military use, the MWIR and LWIR ranges are 

necessary for nighttime operation. Due to high correlation of spectral bands of background 

materials in all background conditions, the possibility to detect targets is high using MWIR and 

LWIR ranges.  After testing dual bands in MWIR and LWIR ranges, the authors concluded that 

thermal multispectral images would give a better target detection and false alarm rate than a single 

band infrared sensor.  Tests showed that appropriately chosen small bands could provide good 

detection, the optimal bands range being between 8 and 10.5 micrometers. There is a significant 

increased utility of using LWIR with MWIR compared to the use of MWIR alone. Thanks to the 

obtained results, the authors manufactured a new hyperspectral imager called SEBASS that works 

in the ranges 2.9 to 5.2 micron and 7.8 to 13.4 micron. The Aerospace Corporation is still using 

this sensor to take remote hyperspectral images in MWIR and LWIR ranges.  

3.2.6. Night Vision and Electronics Systems Directorate (NVESD) 
 

  Night Vision and Electronics Systems Directorate (NVESD) has conducted during the fall of 

2002 and spring of 2003 a wide variety of tests to examine airborne sensors for landmine 

detection [45]. The examined hyperspectral sensors were the Airborne Hyperspectral Imager 

(AHI) of the University of Hawaii, which is a Long-wave Infrared (LWIR) imager, and the 

Compact airborne hyperspectral sensor (COMPASS) which is an NVESD VNIR/SWIR sensor. In 

addition, a high frequency Synthetic Aperture Radar (SAR) and GPR have been used. The authors 

tested two methods for classification: Signature based and anomaly detection. Further, for anomaly 
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detection two approaches were considered: Local like Reed-Xioli method and Global like 

NFINDR. The latter is an unmixing model method and alone is not sufficient for classification 

since it produces only abundance fractions as output. For that purpose, the authors proposed to use 

it with a Stochastic Target Detector (STD). The output of STD is a detection stochastic map that 

can be thresholded. The tests showed the capability of LWIR and reflection bands to detect 

landmines with the use of proper algorithms. The detection of landmines at subpixel level is 

challenging, but indeed possible with the use of high quality hyperspectral instruments and 

algorithms. 

Using the LWIR hyperspectral images acquired by AHI, another test has been conducted by 

researchers at the Georgia Institute of Technology to detect a grid pattern of landmines and to use 

this information to improve the detection performance. First, an anomaly detector is applied to the 

hyperspectral data; in this case, the authors used the Dual Window-based Eigen Separation 

Transform (DWEST). Then, pattern parameters are extracted and used to form a pattern projection 

image. Finally, a pattern-based false alarm reduction is performed [46]. Using this process, higher 

probability of detection at lower false alarm rate is obtained. Therefore, the results prove that the 

inclusion of spatial pattern information in anomaly detection improves the detection of landmines 

in minefields [46]. 

3.2.7. Defense Science and Technology Laboratory DSTL countermine 

project 
 

  A project similar to those of DRDC and DARPA was started in Britain with the goal to detect 

landmines using a VNIR imager [47]. The program was called DSTL countermine project. Using 

the VNIR hyperspectral camera SOC 700 mounted on a tripod, the team took high spatial 

resolution images of landmines. However, the data is mainly used to investigate different 

processing methods and not to evaluate the PD and the FAR of the sensor. For data processing, 

the authors used Principal Component Analysis (PCA) for dimensionality reduction and anomaly 

detection method for classification. The authors avoid the use of spectral comparisons between the 

target and each pixel of the image, as it will be very time consuming due to the low 

target/background ratio. The results were still preliminary, however the authors concluded that 

VNIR has the potential to distinguish surface-laid landmines from background. 

3.2.8. Indian Test to detect landmines using infrared images 
 

  In India, researchers proposed a hierarchical algorithm to detect landmines from infrared images 

that consist of preprocessing (contrast enhancement- filtering- smoothing), segmentation, feature 

extraction, and ANN based classification [48]. The authors tested the algorithm on surface-laid 

mines in two types of soil: black cotton and sand. During the preprocessing, the image is converted 

to gray level. The two most important preprocessing stages are the contrast enhancement and noise 

removal. Segmentation is the process of grouping homogenous pixels sharing some common 

attributes such as color, intensity or texture in an image. The aim is to separate the image into 

regions of interest and background, in order to make further analysis easier. Clustering, edge 
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detection, and threshold based region growing are the main three categories encompassing the 

various existing image segmentation techniques [48]. Therefore, feature extraction and further 

processes are applied on the clusters that are deemed mine like. A Neural Network (NN) based 

algorithm is used to classify the mine from the surrounding. During the tests, the authors used a 

small NN of 1 hidden layer and 4 neurons. The results provided on a simple dataset are good, 

however the algorithm is not expected to work well on another field or type of soil as the data used 

during the phase of learning are not rich enough. 

3.2.9. NATO project 
 

  In the Netherlands, a project took place in cooperation with NATO to make a remote detector of 

landmines. The main objective was to obtain near real time minefield detection during a conflict 

using an Unmanned Aerial Vehicle (UAV) at a typical altitude of 100 m.  First, the authors 

presented the imaging technologies available at that time: Radar, Microwave radiometers, visible 

wavelengths, near, middle and far infrared. After that, the authors showed the principal signal 

processing techniques used for mine detection at that time. The main steps involved can be 

categorized as: 

 

* image enhancement 

* edge detection 

* segmentation 

* feature extraction and classification 

* morphology 

At the end of the report, the authors gave the following main recommendations based on various 

experimental results [49] 

1. Conventional medium-resolution imaging radars are less suitable for remote mine 

detection. 

2.  Microwave radiometry detection principle is promising for remote mine detection.  

3. The characteristics of visible and near infrared imaging are often requested. This is because 

imaging systems in these bands are often low cost, compact, have a high spatial resolution 

and can be used in real time detection.  

4. The mid- or long-wave infrared wavelength band is a promising band for remote mine 

detection.  

5. As Meteorological conditions (such as rain showers) can make mine and minefield 

detection in mid- and longwave infrared wavelength bands difficult, it is better to combine 

several wavelength bands. 

6.  A study on the best processing techniques and a reliable and accurate interpretation of the 

images of a remote mine detection system has to run in parallel with the development of a 

mine (field) detection system. 
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3.2.10.Humanitarian DEMining (HUDEM) and Belgian Mine Action 

Technology (BEMAT)  
 

  In Belgium, a research project focused on using the fusion of data from multiple sensors (Ground 

penetrating radar, metal detector and infrared sensor) [50]. In the above paper, the authors 

presented their views regarding multi-sensor data fusion potentials in improving the close-in 

detection of landmines and reduction of mined area. Modelling and fusion of the extracted features 

are based on belief function theory and possibility theory. After modelling, the fusion part is 

performed in two steps: the first step consists in analyzing all data measured by one sensor. The 

second step combines the results of the three sensors. The final part of the fusion approach is the 

decision. According to the authors, the final decision about the identity of the object should be left 

to a human observer with field experience. Therefore, the fusion output is an informative decision. 

The experience showed that the fusion gives better detection than any input sensor used alone.  

3.2.11.FOI Multiple-Optical Mine detection System (MOMS) project 
 

  FOI, A Swedish defense research agency, worked on a project for the Swedish armed forces 

called Multi-Optical Mine detection System (MOMS). The objective of the project was to provide 

knowledge and competence for fast detection of surface-laid mines using multiple optical 

sensors [50]. The authors conducted research to test the feasibility of detecting landmines using 

optical sensors and the possibility to combine multiple sensors. According to the authors, 

hyperspectral imaging is an encouraging candidate for automatic detection and recognition of 

exposed and semi-hidden mines, when a priori knowledge of the target spectral signature is 

available. However, the detection performance is limited when the targets are camouflaged by 

natural vegetation or hidden under other objects. In addition, the authors claim that no single 

detection architecture is able to meet the performance needed under all operating conditions; the 

choice of the particular sensors and algorithms will depend on environmental and operations 

conditions [51]. 

3.2.12.TELOPS test to detect buried object using airborne thermal 

hyperspectral images 
 

  In 2015, a Canadian research company specialized in infrared and hyperspectral imaging named 

TELOPS proved the possibility to detect buried objects using an airborne LWIR hyperspectral 

imager [52]. From an aircraft platform, they acquired thermal hyperspectral images of areas that 

contain man-made objects previously buried. They found that the disturbed soil right above a 

buried target is warmer than the undisturbed soil area next to it [52]. By comparing the emissivity 

data obtained through the Temperature-Emissivity separation, the buried target sites show up as 

part of the hottest ground area within the scene but further classification or additional information 

are needed to discriminate the buried objects from other naturally hot areas. 

A summary of the above projects and of the results obtained is given in Table 2.  
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Table 2: Summary of projects studied landmine detection using infrared and hyperspectral 
imaging. 

Research Project Type of data Techniques Used Comments 

Detection of 

surface-laid 

minefields using 

a hierarchical 

image processing 

algorithm 

(DRDC) 

Infrared 

monochrom

atic Image 

Hierarchical image 

processing 

Method would be useful as follow-on 

stage to process airborne hyperspectral 

imagery after preprocessing in order to 

reduce the hyperspectral image to a 

single band. 

Surface laid 

Landmine 

detection using 

VNIR (DRDC) 

VNIR  LCC & Linear 

Unmixing 

Surface-laid mines have consistent shape 

in VNIR bands; LCC performs well in 

case of high spatial resolution images; 

Unmixing techniques have higher PD in 

the case of subpixel target at the price of 

higher FAR 

Buried 

Landmines 

detection using 

VNIR (DRDC) 

VNIR  LCC  Using VNIR, buried mines are not 

directly detected, however the change of 

soil characteristics and vegetative stress 

due to mine burying is detectable. 

Effect of Spatial 

resolution on 

mines detection 

(DRDC) 

VNIR  LCC & OSP LCC performs better when the pixel size 

is smaller than mine size. OSP is better 

when mine size is smaller than pixel size. 

Best detection is achieved when the result 

of two methods are combined. 

Surface-laid 

Landmine 

detection using 

VNIR in real 

time (DRDC) 

VNIR  Pipeline image 

processing 

the proposed suite of algorithms proves 

the possibility to detect landmines in 

quasi real time using an airborne platform 

Landmines 

detection using 

SWIR bands 

(DRDC) 

SWIR LCC Similarly to VNIR bands, the use of 

SWIR is beneficial to detect surface-laid 

mines and recently buried landmines. 

Landmines 

detection using 

LWIR bands 

(DRDC) 

LWIR (TIR) Spectral 

comparison 

LWIR hyperspectral imaging provides 

advantages over broadband LWIR 

Multiple sensors 

mounted on a 

robot (DRDC) 

Fusion of 

VNIR, 

SWIR, 

LWIR HSI 

and other 

sensors 

Dynamic range 

detector and 

contrast 

enhancement 

A proposed system employing 

hyperspectral imagers for close-in anti-

personnel mine detection. 
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Active 

hyperspectral 

imaging 

(DRDC/Itres) 

VNIR  Casi imager with 

intensifier 

With the addition of external 

illumination, the FAR increases as 

reflectivity of background increases.  

Equinox Project Fusion of 

visible and 

SWIR 

Thresholded Ratio 

vegetation index 

Here a ratio between two or three bands 

is used. More bands using other 

approaches may improve the results. 

DARPA project 

to detect buried 

landmines 

MWIR and 

LWIR  

spectral 

comparison 

LWIR and MWIR are more suitable to 

detect buried landmines. 

Hyperspectral 

mine detection 

phenomenology 

program 

VNIR,SWI

R,MWIR,L

WIR 

Data collection 

using 

spectrometers 

Weather conditions affect the intensity of 

the reflected spectra. The effect of rain is 

more important than other effects. 

Joint 

Multispectral 

Sensor Program  

VNIR,SWI

R,MWIR,L

WIR 

Fourier Transform Thermal sensor are beneficial for target 

detection at nighttime. LWIR bands are 

more effective than MWIR 

airborne sensors 

tests (NVESD) 

VNIR,SWI

R,MWIR,L

WIR 

RX and NFINDR 

with STD anomaly 

detection. Grid 

pattern detection of 

landmines 

LWIR gives a good detection with the use 

of proper algorithms. The inclusion of 

spatial pattern information in anomaly 

detection improves the detection 

performance. 

DSTL 

countermine 

project 

VNIR PCA more tests and other algorithms shall be 

tested to evaluate the effectiveness of 

VNIR bands in landmine detection 

Indian Test to 

detect landmines 

using infrared 

image 

Infrared  

Image 

Hierarchical image 

processing 

More images are needed to train the 

Neural network based classifier. A more 

complex one may be used in complex 

situations. 

 NATO project VNIR,SWI

R,MWIR, 

LWIR 

Hierarchical image 

processing 

Radars are less suitable for airborne mine 

detection. Combination of bands is 

necessary to overcome the 

meteorological effects. Improvement of 

algorithms and techniques in parallel is 

necessary. 

Humanitarian 

demining 

(HUDEM & 

BEMAT) 

GPR, metal 

detector, 

infrared 

sensor 

belief and 

possibility theory 

Fusion of sensors may give better results 

than single sensor. 

FOI (MOMS) VNIR,SWI

R,MWIR, 

LWIR, 3D 

LADAR. 

Anomaly 

detection, Support 

Vector Machines 

Hyperspectral imaging is useful for 

automatic detection of open and semi-

hidden mines. 

The choice of sensor suite and algorithms 

depends on environmental and 

operational conditions. 
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TELOPS LWIR Temperature-

Emissivity 

separation, Linear 

Unmixing to study 

the mineral 

distribution 

Soil above landmines is warmer than 

surrounding undisturbed soil. 

Complementary information are needed 

to reduce the FAR. 

 

3.3. Hyperspectral Image Processing 
 

  In this section, we will introduce the detection algorithms used for target detection in 

hyperspectral imagery. In addition, we will introduce several preprocessing steps and 

hyperspectral data treatment usually used in a preliminary phase to simplify further detection or 

classification. Most of these methods were developed during research on general problems 

regarding the processing of hyperspectral images and are not specific for the landmine detection 

problem. However, advances in that research will directly affect the success of landmine detection 

using hyperspectral imaging. A review of different processing techniques used for data fusion, 

spectral unmixing, classification and target detection could be found in [53]. 

After the acquisition of a hyperspectral image, the data pass through several steps. First, the image 

is preprocessed to remove impurities, noise, and to reduce the size of the image. The main pre-

processing steps are contrast enhancement, filtering and smoothing. Then, segmentation is done to 

separate useful data from background. After that, feature extraction is applied to extract the most 

appropriate features for classification. Finally, classification or clustering methods are applied to 

locate a target. In the following, we present the main algorithms used for target detection using 

hyperspectral images. Many other methods may be used in each phase. However, in this chapter 

we detail the most commonly used ones. 

3.3.1.  Contrast enhancement 
 

  The image enhancement process consists of a collection of techniques that try to improve the 

visual appearance of an image or to convert the image into a better form suited for analysis by a 

human or a machine [54]. Image enhancement methods are divided into two main categories: 

spatial domain methods and frequency domain methods. Spatial domain methods are applied 

directly on the pixels of the image. In frequency domain methods, the image is processed in the 

frequency domain after applying the Fourier transform on the original data. Contrast enhancement 

is one of the most commonly used image enhancement methods. For the mine detection case, the 

role of contrast enhancement is to enhance the difference between the landmine and the 

background materials [55]. The main contrast enhancement methods used are: 
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3.3.1.1. Histogram equalization  

 

  Histogram Equalization (HE) is the most widely used contrast enhancement technique due to its 

simplicity and effectiveness. The aim of HE is to make the probability distribution of gray levels 

approximately uniform in the output image. It is a global method that flattens the histogram and 

stretches the dynamic range using the cumulative density function of the image [55]. 

The probability of the kth gray level in an image f can be described as  𝑝𝑓(𝑓𝑘) =  
𝑛𝑘

𝑛
 

where k ∈ [0, L-1], L is the number of gray levels in an image, nk is the number of times the kth 

level appears in the image, and n is the total number of pixels in the image. The histogram is the 

plot of 𝑝𝑓(𝑓𝑘) versus k, and the goal of the histogram equalization is to obtain an image with a 

uniform histogram. The uniform histogram can be achieved by  

𝑔𝑘 = 𝑇(𝑓𝑘) = ∑
𝑛𝑗

𝑛

𝑘

𝑗=0

= ∑𝑝𝑓 (𝑓
𝑗
)

𝑘

𝑗=0

 

Keeping two conditions, 

(a) T(fk) is single valued and monotonically increasing in the range k ∈ [0, L-1]. 

(b) T(fk) should be T(fk)∈ [0,L-1] for k ∈ [0,L-1]. 

The drawback of HE is that the brightness of the image is changed. To overcome this drawback 

and improve the performance, many derivations of this method were proposed. Among them, we 

list the following: 

Brightness Bi-Histogram Equalization (BBHE)[56], Dualistic Sub Image Histogram Equalization 

(DSIHE) [57], Minimum Mean Brightness Error Bi-Histogram Equalization (MMBEBHE)[58], 

Recursive Mean Separate Histogram Equalization (RMSHE)[59], Multi Histogram Equalization 

(MHE) [60], Brightness Preserving Dynamic Histogram Equalization (BPDHE) [61], Recursive 

Separated and Weighted Histogram Equalization (RSWHE) [62], Global Transformation 

Histogram Equalization (GHE)[63] and Local Transformation Histogram Equalization (LHE)[63]. 

3.3.1.2. Morphological Contrast Enhancement 

 

  Morphological theory has been introduced in image processing to overcome a number of 

problems like image distortion due to noise. The first step in morphological contrast enhancement 

is to find peaks and valleys in the original image. Peaks are light shades of gray tone image, while 

valleys are dark ones. Peaks are obtained by subtracting the opening from the original image, and 

valleys are obtained by subtracting the original image from the closing as 

 p(f) = f −γ ( f ),  

v(f) = ϕ( f )− f , 
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where p(f) denotes the peaks, v (f) denotes the valleys, γ(f) denotes the opening, and ϕ(f) denotes 

the closing of an image function f. Basic definitions of morphological methods and operators 

(erosion, dilation, opening and closing) could be found in [59]. To improve the contrast, the 

peaks and valleys are multiplied by constants as follows: 

p′( f ) = p(f)× c1 , v ′( f ) = v (f)× c2 where: 𝑐1 = |
max(𝑓)−max (𝐼)

max [𝑝(𝑓)]
| and 𝑐2 = |

min(𝑓)−min(𝐼)

max [𝑣(𝑓)]
| 

where I indicates the gray level. In the case of 8 bit gray levels, max(I)=255 and min (I)=0. 

The contrast-enhanced image is obtained as the summation of the original image, the peaks, and 

the negative valleys f ′ = f + p′( f )− v ′( f ) [55]. 

3.3.2. Filtering 
 

Filtering is an operation that allows to reduce the noise or to sharpen blurred areas in an image in 

order to make it clearer and more suitable for further processes. In the filtering of hyperspectral 

images, several techniques usually used in image processing have been upgraded to obtain 

multichannel restoration. For example, the well-known Wiener filter used in image processing has 

been extended to be used in hyperspectral images. There are two groups of filters: One is based on 

the assumption that the within-channel information is separable from between-channel 

information, i.e., spectral and spatial information are separable. These filters are called Hybrid 

filters. In this case, the first step is to decorrelate channels using Fourier Transform or PCA and 

then apply a classic 2D restoration method such as Wiener filter or Static Wavelet Transform. The 

other group consists of a few proposed filters that do not rely on the assumption of spectral and 

spatial separability [64]. 

 

3.3.2.1. Wiener filter  

 

  The Wiener filter is a widely used filter based on minimum mean square estimation. The original 

image is obtained from the received image by minimizing the mean square error. It assumes that 

the acquired image is composed of the original image and a white noise component that has a zero-

mean Gaussian distribution [65]. 

   g (t)= f(t) + n(t)   Where f(t) is the original image, g(t) the acquired image and n(t) the noise. 

The estimation of f(t) is 𝑓(𝑡) =  ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1
𝑘=0 . It is estimated using L samples taken from 

the received signal. h(k) is a variable independent of time to be found. It is calculated by 

minimizing the approximation error  

 𝐽 = 𝐸(𝑒2(𝑡)) = 𝐸 [(𝑓(𝑡) − 𝑓(𝑡))  2] = 𝐸[{𝑓(𝑡) − ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1
𝑘=0 }

2
] 

The minimum is achieved by 
𝜕𝐽

𝜕ℎ(𝑖)
= 𝐸 [2{𝑓(𝑡) − ∑ ℎ(𝑘)𝑔(𝑡 − 𝑘)𝑘=𝐿−1

𝑘=0 }
𝑑𝑒(𝑡)

𝑑ℎ(𝑖)
] = 0   
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and  
𝑑𝑒(𝑡)

𝑑ℎ(𝑖)
= −𝑔(𝑡 − 𝑖) 

We can reformulate it in a matrix form: 

H=[h0,h1, h2,…..,hL-1]
T and G(k)=[g(k) g(k-1) … g(k-L+1)]T 

Thus  
𝜕𝐽(𝐻)

𝜕𝐻
= 2 RH-2P   => H*=R-1P. This is called Wiener-Hopf equation.  

Note that R is the autocorrelation of G. It is a symmetric Toeplitz matrix and therefore it is positive 

definite and non singular so R-1 has a solution. P is the cross-correlation between H and the input 

image. 

3.3.2.2. Adaptive 3D Wiener filter 

 

  As most of the filters used while preprocessing hyperspectral images are based on the assumption 

of spectral and spatial separability, Gaucel et al [64]proposed a new filter for hyperspectral images    

relying on spectral and spatial information simultaneously.   

  First the authors assume that the channel vector v(n1,n2) represents the zero-mean white Gaussian 

noise, uncorrelated with the original image f(n1,n2). The received image is 

g(n1,n2)=f(n1,n2)+v(n1,n2). Then, they apply the filter in local regions in which the signal-pixel 

vector f(n1,n2) is assumed homogeneous. So f could be modelled as f(n1,n2)= mf +w(n1,n2),  where 

mf is the local mean of f(n1,n2) and w(n1,n2) a zero mean white noise. 

The linear solution of Wiener filter is  𝑓 = 𝑚𝑓 + Γ𝑓𝑔Γ𝑔𝑔
−1(𝑔 − 𝑚𝑔) where Γ𝑓𝑔 is the covariance of 

f and g, and Γ𝑔𝑔 is the variance-covariance matrix of g. From the received image we could estimate 

Γ𝑔𝑔. But as the noise and the signal are uncorrelated, Γ𝑔𝑔 = Γ𝑓𝑓 + Γ𝑣𝑣 and Γ𝑓𝑔 = Γ𝑓𝑓 

Since the noise is zero-mean, mf=mg and the equation becomes  

 𝑓 = 𝑚𝑔 + 𝐻(𝑔 − 𝑚𝑔) and 𝐻 = (Γ
𝑔𝑔

− Γ𝑣𝑣) Γ𝑔𝑔
−1 

Using the local region model, Γ𝑔𝑔 is estimated and mg is updated at each pixel. 

 

3.3.2.3. Multiway filtering 

 

Multiway filtering is another reformulation of the Wiener filter based on modelling the 

hyperspectral image by a third order Tensor.  

The collected hyperspectral image R is modeled as the sum of the desired original image X and the 

additive white and Gaussian noise N  

𝑅 = 𝑋 + 𝑁 
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The goal is to estimate the original image by applying multidimensional filtering on the received 

data  

�̂� = 𝑅1𝐻12𝐻23𝐻3 

Where n represents the n-mode product. The n-mode product between a data tensor R and matrix 

Hn represents the consecutive matrix product between matrix Hn and the In-dimensional vectors 

obtained from R by varying index in and keeping the other indexes fixed [66]. 

In order to determine the optimal n-mode filters H1, H2 and H3, the criterion used is the 

minimization of the mean squared error between the estimated signal �̂� and the original one 𝑋. 

e(H1,H2,H3)= E[||X − 𝑅1𝐻12𝐻23𝐻3||2] 

To estimate Hn, an Alternative Least Square algorithm is used, consisting of the following 

steps [66]: 

1. Initialization k = 0: R0 = R ⇔ H0
n = IIn for all n = 1 to N (=3 in this case). 

2. ALS loop: while ||X − Rk||2 > thr, with thr > 0 fixed a priori. 

(a) for n = 1 to N: 

i. Rk
n = R ×1 H1

k · · · ×n−1 Hn-1
k ×n+1 Hn+1

k . . . ×N HN
k. 

ii. Hn
k+1=argmin ||X−Rk

n×nQn||
2 subject to 𝑄𝑛 = H1

𝑇𝐻1⨂…H𝑛−1
𝑇 𝐻n−1⨂H𝑛+1

𝑇 𝐻𝑛+1⨂. . . H𝑁
𝑇𝐻N 

Qn∈ R In×In. 

 

(b) Rk+1 = R ×1 H1 
k+1 · · · ×N HN k+1, k ← k + 1. 

3. Output: �̂� = 𝑅1𝐻12𝐻23𝐻3 

  

Step (2)(a)(ii) of the ALS algorithm can be decomposed into the following sub-steps: 

1.n-mode unfold Rk
n into Rn

k =Rn(H1
k⊗…Hn

k−1⊗Hn
k+1...⊗HN

k),and R 

into Rn; 

2. Compute γRR
n = E(Rn

kRn
T), perform its eigenvector decomposition (EVD) and place the 

eigenvalues in λγ
k, for k = 1 to In; 

3. Estimate Kn using Akaike Information Criterion or Minimum Description Length criterion. 

4. Estimate σ γ
 (n)2

  by computing 
1

𝐼𝑛−𝐾𝑛
∑ 𝜆𝑘

𝛾𝐼𝑛
𝑘=𝐾𝑛+1  and estimate βi by computing  λγ

i- σ γ
 (n)2 for i= 

1 to Kn; 

5. compute ΓRR (n) = E(Rn 
kRn 

kT ), perform its EVD, keep in matrix Vs
n the Kn eigenvectors 

associated with the Kn largest eigenvalues of ΓRR (n), and keep the Rn largest eigenvalues λn
Γk for 

 k = 1 to Kn; 
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6. Compute the (k + 1)th iteration of n-mode Wiener filter Hn 
k+1 using the expression of n-mode 

Wiener filter. 

This method has been tested in [66] on different images and proved its efficiency by increasing 

the SNR by about 3dB. However, one of the main drawbacks is an increased complexity and 

computational time.  

 

3.3.3. Segmentation 
 

  In the remote sensing community, segmentation is defined as the process of searching for 

homogenous regions in an image, that is later followed by the classification of these regions [67]. 

In image processing, there are many methods used for segmentation, however not all of them are 

applicable to multispectral and hyperspectral images.  Some methods like watershed algorithms 

have been upgraded in order to segment hyperspectral images. Globally, segmentation algorithms 

are divided into two categories: Boundary-based and Region-based. Boundary based methods 

detect the boundary using the discontinuity property. In region-based algorithm, pixels in a region 

are grouped using the similarity property. In the following, we present the main methods used in 

hyperspectral image segmentation. 

3.3.3.1. Watershed Algorithm 

 

  The watershed algorithm is a powerful tool usually used for mathematical morphology 

segmentation. In [68] the authors proposed to use spatial gradients and spectral markers for 

segmentation. The algorithm works as follows: 

First, to avoid obtaining a large number of minima while flooding the watershed using the gradient 

function (over-segmentation), they determine markers for each region of interest using Clara 

Clustering algorithm [69]. Then, the Factor Correspondence Analysis FCA [70] data reduction 

method is applied to remove the redundancy of channels and filter the image. Next, a chi-squared 

distance based gradient is performed on the filtered image, then watershed segmentation is 

computed. This approach works well and proves that an adapted data reduction is necessary for 

multivariate gradient segmentation. 

3.3.3.2. Hierarchical segmentation 

 

In 1989, Beaulieu and Goldberg [71] proposed a hierarchical process to segment images based on 

hierarchical step-wise optimization. Hierarchical segmentation is defined as a set of segmentations 

of the same image at different levels of detail in which the segmentations at coarser levels can be 

produced from a simple merging of regions at finer levels [71]. First, each pixel is assigned to a 

region label. Then, spatially adjacent regions with small dissimilarity value are merged. The 

dissimilarity between new spatially adjacent regions are calculated and the pairs with smallest 

value are merged. The process is repeated until the number of regions needed is obtained or all 
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values of dissimilarity are below a predefined threshold. The drawback of this method is the long 

computational time while dealing with large data.  

Tilton in 1998 [72] proposed a new hierarchical segmentation method called HSEG. The main 

improvement of this method is that non-adjacent regions could be merged together and the 

dissimilarity function is selectable. Another recursive version of this algorithm called RHEG was 

proposed in [73] to overcome the problem of long computational time of HSEG. These algorithms 

are registered patents for US government.  

3.3.4. Feature extraction 
 

Feature extraction consists in transforming the data from a high dimensional space to a lower 

dimensional space chosen in such a way as to conserve as much as possible the information of 

interest in the data. Feature extraction is used in hyperspectral image analysis to overcome the 

problem of a low number of data training samples in comparison to the high spectral resolution of 

the image and to reduce the computational time. There are many feature extraction algorithms that 

are introduced; some are linear while others are nonlinear. While working on landmine or target 

detection, not all feature extraction algorithms are useful, because the targets of interest are 

generally sparse and the feature extraction may remove the key features of the target. In the 

following, we are going to list some of these algorithms, their implementation and their 

advantages. 

3.3.4.1. Principal Component Transformation (PCT) 

 

Principal Component Transformation, also called principal component analysis, Hotelling 

transformation or Karhunen-Loeve transformation is a dimensionality reduction method based on 

the minimization of the representation error. The idea is to choose the most representing bands 

with the help of the eigenvalue decomposition of the covariance matrix of the hyperspectral 

image [74]. The first step of PCT is the calculation of the covariance matrix of the image matrix. 

Then, the eigenvalues of the covariance matrix are calculated and the eigenvectors are extracted. 

Finally, the image matrix is projected onto the new subspace formed by the k orthogonal 

eigenvectors corresponding to the highest eigenvalues.  Y=WT x where x is a d x1 -dimensional 

vector representing one image pixel,  y is the transformed k x1-dimensional sample in the new 

subspace and W is the transformation matrix of k orthogonal eigenvectors. 

Note that while computing the PCT algorithm, the variance of the projections along the principal 

components is equal to the eigenvalues of the principal components. In theory, PCT transformation 

affects the classification of hyperspectral images. However, the overall effect on classification 

does not  change  the general  class  patterns  and,  therefore, the  dominating  classification  result  

remains correct. 
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3.3.4.2. Linear Discriminant Analysis (LDA)  

 

Linear discriminant analysis is a statistical based method often used for feature extraction and 

dimensionality reduction. It is also named Discriminant Analysis Feature Extraction (DAFE). It is 

an extension of the well-known Fisher discriminant analysis, which is limited to binary class 

decomposition. LDA computes an optimal transformation by minimizing the within-class distance 

and maximizing the between-class distance simultaneously, thus achieving maximum class 

discrimination [75]. Therefore, the first step is to calculate the within-class, between-class and 

total scatter matrices. A transformation matrix is then defined and computed by applying the 

eigenvector decomposition on the scatter matrix [76]. The main disadvantage of this method is 

that it requires that the scatter matrix of the data be nonsingular. This method has also other 

drawbacks: the maximum number of features extracted is equal to the number of classes minus 

one. The number of training samples should be large enough to estimate the between-class and 

within-class scatter matrix reliably. The between-class will be biased toward the class that has very 

different mean value. Also, it is very time consuming compared to other methods. In addition, it 

requires more training samples for hyperspectral images to calculate the class statistical parameters 

at full dimension [77]. Many LDA extensions have been proposed to deal with the singularity 

problem like PCA+LDA, regularized LDA (RLDA) , null space LDA (NLDA) , orthogonal 

centroid method (OCM) , uncorrelated LDA (ULDA) , orthogonal LDA (OLDA), LDA/GSVD, 

etc. [78].  

 

In addition to the main methods we described above for feature extraction of hyperspectral 

images, many other techniques exist like matched pursuit [77], neighborhood embedding [79], 

Sammon’s mapping [80] and nonparametric weighted feature extraction [81].   

 

3.3.5. Classification 
 

  It is the most important step in landmine and target detection. The performance of the algorithms 

used in each of the previous steps and in the classification phase are evaluated by the study of the 

classification results. The classification phase in an image based target detection process could be 

defined as the step in which the pixels are discerned between target and non-target. Globally, the 

classification algorithms are divided into two main classes: Supervised and unsupervised. 

Supervised classification methods are based on the knowledge of the target and the use of training 

samples. Unsupervised classification methods consist of grouping pixels that have similar 

properties without the knowledge of target properties.  Considering the way the classifier computes 

the information in the pixels, classification algorithms are divided into per pixel classifiers, 

subpixel classifiers, per-field classifiers, knowledge based classifiers, contextual and multiple 

classifiers [82]. In landmine detection, unsupervised classification techniques are used when there 

is no information on the type of mine present in the field or when there is the possibility that a 

particular type of mine is deployed but its reflectance spectrum is not in the library of known 
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spectra. However, unsupervised classification methods do not work well in every possible 

condition and suffer from high false alarm rate due to the generally low number of target pixels 

compared to background pixels. While the use of unsupervised methods could help in detecting 

unknown types of landmines, the use of supervised classification methods is necessary for the 

identification of mines. In the following, we are going to mention the major classification methods 

used in landmine detection: 

 

3.3.5.1. Support vector machine (SVM) 

 

Support vector machine is a powerful non-parametrical supervised classification method. Firstly, 

it was proposed for binary classification and regression [83]. Then, it has been used in the 

classification of hyperspectral images [84]. SVM consists in finding the best separation between 

two classes based on the separation of representative training samples called support vectors. In 

addition, SVM does not suffer from Hughes effect and may perform separation of classes having 

very close means even with a very small number of training samples [85]. First, we start with a 

couple of training samples (xi,yi) where yi is a class label equal to ±1 which indicates the class of 

the pixel and xi is a d-dimensional vector which represents the spectrum of the pixel in d 

wavelengths in the case of hyperspectral images. If the classes are linearly separable by a 

hyperplane, the SVM classifier is represented by the function f(x)=w.x+b where w is a vector ∈ 

Rd and b is a real bias ∈ R that could separate the classes without errors. The decision is made 

according to the sign of f. The SVM approach consists in finding the separating hyperplane that 

has the largest distance from the closest training samples.  This distance is expressed as 1/||w||. The 

margin is defined as 2/||w||. So to calculate W and b, the following optimization must be calculated: 

min{1/2 ||w||2} with yi(w.x+b)≥1, for all samples. By introducing the Lagrangian formalism, the 

problem is transformed to the dual problem:  

Max of: ∑ 𝛼 𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖. 𝑥𝑗)

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1  with the condition ∑ 𝛼𝑖𝑦𝑖 = 0𝑁

𝑖=1  𝑎𝑛𝑑 𝛼𝑖 ≥ 0.  

Where 𝛼𝑖 are Lagrange multiplier that can be estimated using quadratic programming. 

If the samples are not linearly separable, suitable kernel functions are used to project the data into 

a higher dimensional feature space in which the data could be linearly classified. Profiting from 

this transformation, the inner product in the maximization (𝑥𝑖 . 𝑥𝑗)is replaced with the function 

𝑘(𝑥𝑖. 𝑥𝑗).  

There are many types of kernel functions, including: polynomial: K(xi, xj) = (1 + xi.xj)q ;Gaussian 

radial basis K(xi, xj) = exp(−||xi−xj||2/(2σ2)) ; Laplacian radial basis K(xi, xj) = exp(−||xi−xj||/(2σ2)) 

; Sigmoidal K(xi, xj) = tanh(α0(xi.xj) + σ2). In the case of multiclass classification, two approaches 

could be used: One against all, where each class is discriminated using the samples of all classes. 

One against one, where a larger number of classifiers are computed using each time the training 

samples of two different classes. 
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3.3.5.2. K means clustering 

 

K means clustering is one of the most used clustering methods for hyperspectral images. In k 

means clustering, the pixels of the image are grouped into classes based on spectral similarity. 

First, k random centroids are assigned. Then each pixel is assigned to the closest centroid. The 

norm used to calculate the distance between the pixel and the centroid could be the Euclidian 

distance, Manhattan distance, max distance, or linear combination of the above distances. After 

that, new centroids are found by calculating the mean value of each cluster. Then, the clusters are 

reformulated. This process is repeated until the total number of iterations is achieved or the total 

distance between classes is minimized [86]. 

3.3.5.3. Orthogonal subspace projection (OSP) 

 

Orthogonal subspace projection is a supervised classification method used to detect targets in 

hyperspectral images at subpixel level. This method is based on the theory of spectral unmixing 

which consists in subdividing the reflectance spectra of each pixel into endmembers spectra. This 

method was proposed by Harsanyi and Chang in 1994 [87] in order to exploit a priori knowledge 

of the target and facilitate the target detection. Suppose the image pixel is modeled by the equation: 

x=ta +Bα+ξ where: 

x = spectral vector characterizing the pixel 

t = spectral vector associated with the target 

a = unknown fractional abundance of the target within the pixel 

B = matrix of vectors of the scene endmembers (materials found in the scene background) 

α = unknown fractional abundance of each basis vector 

ξ = residual error associated with this model. 

After the background suppression, OSP uses the matched filter to determine if the target spectrum 

is a part of the pixel spectra by calculating its abundance. This is done using the OSP operator 

δOSP(x)= tTPB
┴x   where PB

┴=I-BB# is the orthogonal background operator, and I is the identity 

matrix. The fractional abundance of the target within the pixel can be computed as follows: 

�̂�=Tosp(x)= (tTPB
┴t)-1 δOSP(x) [87]. 

 

3.3.5.4. Matched Filter (MF)  

 

This technique is based on the statistical approach. The problem is posed as a hypothesis testing 

problem between the two hypotheses: 

H0: Mine absent (Background material) 
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H1: Mine present 

In the statistical model, the background and the target mine are usually considered to be following 

a Multivariate normal distribution (MVN) as follows [88]: 

𝐻0: 𝑥~𝑁(𝜇𝑏, 𝜎
2Σ𝒃) 

                              𝐻1: 𝑥~𝑁(𝑎𝑆𝑡, 𝜎
2Σ𝒕)      

Where 𝜇𝑏 is the background mean vector, 𝑆𝑡 is the target spectrum, Σ𝑏 and Σ𝑡 are the variance-

covariance matrices of background and target respectively, a and 𝜎 are scaling factors. 

The detectors should satisfy the Generalized Likelihood Ratio Test (GLRT)  

                                    𝐿(𝑥) =
𝑓(𝑥 𝐻1)⁄

𝑓(𝑥 𝐻0)⁄
   

where 𝑓(𝑥 𝐻𝑖), 𝑖 = 0,1⁄  is the conditional probability density function (PDF) of the input x given 

hypothesis Hi. The unknown parameters of the PDFs are replaced with their maximum likelihood 

estimates.   

  In order to simplify the model, we consider that the target and the background have the same 

covariance matrix. In addition, we remove the mean of the background from all pixels and from 

the target. The new hypotheses are as follows [89]: 

𝐻0: 𝑥~𝑁(0, 𝜎2Σ𝒃) 

                              𝐻1: 𝑥~𝑁(𝑎𝑆, 𝜎2Σ𝒃)      

Where S=St-µb.  

The conditional density functions are:  

𝑓(𝑥 𝐻0) =⁄
1

(2𝜋)
𝑝
2|Σ𝑏|

1
2(𝜎2)

𝑝
2

exp (−
1

2𝜎2
𝑥𝑇𝛴𝑏

−1𝑥)    

                       𝑓(𝑥 𝐻1) =⁄
1

(2𝜋)
𝑝
2|Σ𝑏|

1
2(𝜎2)

𝑝
2

 exp (−
1

2𝜎2
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆))  

To simplify the calculation of the maximum likelihood ratio, a monotonic function (usually 

logarithmic) is applied without affecting the performance of the matched filter [90]. The derivative 

of the logarithmic of the likelihood ratio is equal to 

𝐿′(𝑥) = −
1

2𝜎2
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆) +
1

2𝜎2
𝑥𝑇Σ𝑏

−1𝑥   

expanding L’(x) we will arrive to the MF detector 

𝑦
𝑀𝐹=

𝑆𝑇Σ𝑏
−1𝑥

√𝑆𝑇Σ𝑏
−1𝑆

   
 

In the literature, we may find the MF defined as a finite impulse response (FIR) filter y=hTx where  
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h𝑇 =
𝑆𝑇Σ𝑏

−1

√𝑆𝑇Σ𝑏
−1𝑆

 

 

3.3.5.5. Constrained energy minimization (CEM) 

 

  This algorithm is derived from a different point of view than the MF but in the end, it provides a 

very similar solution. The main difference is that CEM uses the correlation matrix instead of the 

covariance matrix. Therefore, there is no need in CEM to subtract the mean of image scene from 

all pixels. 

 The objective of CEM is to design a FIR linear filter W=(w1,w2…,wL)T  that maximizes the 

response for a given target d while minimizing the output power [91].  

𝑑𝑇𝑤 = 1                           

The output of the filter is given by: 

𝑦 = 𝑤𝑇𝑥 = ∑ 𝑤𝑖𝑥𝑖
𝐿
𝑖=1                  

The average output power is equal to: 

1

𝑁
∑ 𝑦𝑖

2𝐿
𝑖=1 =

1

𝑁
∑ (𝑟𝑖

𝑇𝑤)𝑇𝑟𝑖
𝑇𝑤 = 𝑤𝑇(𝐿

𝑖=1
1

𝑁
∑ 𝑟𝑖𝑟𝑖

𝑇)𝑤 =  𝑤𝑇𝑅𝐿𝑥𝐿𝑤
𝐿
𝑖=1      

where RLxL is the autocorrelation matrix of the samples. 

The solution is found using the Lagrange multipliers methods as shown in [92]. 

The optimal filter coefficients are: 

𝑤𝑜𝑝𝑡 =
𝑅𝐿𝑥𝐿

−1 𝑑

𝑑𝑇𝑅𝐿𝑥𝐿
−1 𝑑

 

 

3.3.5.6. Multiple Target CEM (MTCEM) 

 

This is an extended version of the CEM algorithm that supports the detection of multiple targets. 

Suppose we have a matrix D=[S1,S2,…Sp] that contains the signature of p targets. The objective 

now is to minimize the output energy with the constraint DT. w=1. Where 1 is a px1 column vector 

of ones. 

The solution is given in [93]by: 

𝑦𝑀𝑇𝐶𝐸𝑀 = (𝑅𝐿𝑥𝐿
−1 𝐷(𝐷𝑇𝑅𝐿𝑥𝐿

−1 𝐷)−1𝟏)𝑇. 𝑥 
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3.3.5.7. Winner take all CEM (WTACEM) and Sum CEM (SCEM) 

 

Another two techniques for multitarget detection based on CEM are Winner take all CEM and 

Sum CEM [93]. These algorithms necessitate running the CEM algorithm each time for each 

target. Then the results of the detectors are summed up in SCEM or we take the maximum among 

other detectors in case of WTACEM. One advantage of WTACEM over SCEM is that if the results 

are noisy, the noise is not summed up in the final detector. 

 

3.3.5.8. Adaptive Coherent/Cosine estimator (ACE) 

 

  In the derivation of the Adaptive Coherence Estimator, we will use the same procedure we used 

in the case of MF. However, in deriving the ACE we will assume that the covariance matrix in the 

two hypotheses is scaled by different factors 𝜎0
2 𝑎𝑛𝑑 𝜎1

2. Therefore, the hypotheses are drawn as 

follows [88]: 

 

𝐻0: 𝑥~𝑁(0, 𝜎0
2Σ𝒃) 

𝐻1: 𝑥~𝑁(𝑎𝑆, 𝜎1
2Σ𝒃) 

The likelihood ratio will be: 

𝐿(𝑥) = (
𝜎1

2

𝜎0
2)

−𝑝/2

𝑒𝑥𝑝 {−
1

2𝜎1
2 
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆) +
1

2𝜎0
2 𝑥𝑇Σ𝑏

−1𝑥}                                                

 

The MLE of the scaling factors 𝜎0
2 𝑎𝑛𝑑 𝜎1

2 are obtained by differentiating  f(x|H0) and f(x|H1) with 

respect to 𝜎2. 

The results are: 

𝜎1
2 =

1

𝑝
(𝑥 − 𝑎𝑆)𝑇Σ𝑏

−1(𝑥 − 𝑎𝑆) 

𝜎0
2 =

1

𝑝
𝑥𝑇Σ𝑏

−1𝑥 

The MLE of a is given by: 

𝑎 =
𝑥𝑇Σ𝑏

−1𝑆

𝑆𝑇Σ𝑏
−1𝑆

  

 

By replacing these estimates in the likelihood ratio equation, we can arrive to the ACE detector 

given by the equation: 
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𝑦𝐴𝐶𝐸 =
𝑥𝑇Σ𝑏

−1𝑆(𝑆𝑇Σ𝑏
−1𝑆)−1𝑆𝑇Σ𝑏

−1𝑥

𝑥𝑇Σ𝑏
−1𝑥

 

 

ACE could be considered as a little extension of the MF algorithm where the result is normalized 

by the length of the whitened input pixel √𝑥𝑇Σ𝑏
−1𝑥 [133]. 

3.3.5.9. Fully constrained least square (FCLS) 

 

This is another method based on the linear mixing approach. As its name suggests, the abundances 

in this method are calculated so as to respect all abundances’ constraints: the non-negativity and 

the sum-to-one constraints. This makes the method useful for material quantification in 

hyperspectral imagery [94].  

Returning to the linear mixing model, each pixel is written as: 

𝑟 = 𝑀𝛼 + 𝑛 

Where r represents the spectrum of the pixel, M is a concatenation of target and backgrounds 

signatures, 𝛼 is the abundance factor and n represents the noise. 

The least square cost function is given by:  

𝐽 =
1

2
(𝑟 − 𝑀𝛼)(𝑟 − 𝑀𝛼)𝑇 − 𝜆(∑𝛼𝑗

𝑝

𝑗=1

− 1) 

𝜆  is Lagrange multiplier. Differentiating the cost function with respect to α and making it equal 

to zero we obtain: (𝑀𝑇𝑀)−1𝑀𝑇𝑟 −  𝜆=0 

We obtain 𝜆 = (1 − 𝟏𝑇�̂�)/(𝟏𝑇𝑠)   with s=(𝑀𝑇𝑀)−1𝟏 and �̂� = (𝑀𝑇𝑀)−1𝑀𝑇𝑟. The solution of 

FCLS is found using the following procedure [94]: 

 Calculate �̂� 

 Compute 𝜆 and set 𝛼𝐹𝐶𝐿�̂� = �̂� −  𝜆𝑠 

 If all components of �̂�𝐹𝐶𝐿𝑆 are positive, the algorithm stops. 

 If not, divide each negative value of �̂�𝐹𝐶𝐿𝑆 by its corresponding component in the vector s, 

set the maximum absolute fraction to zero and remove its corresponding endmember 

signature. Return to step 1. 

3.3.5.10. Adaptive Matched Subspace Detector (AMSD) 

 

This technique is based on Generalized Likelihood Ratio Test between the two hypotheses. The 

noise is supposed to be a zero-mean normal distribution with covariance matrix 𝜎2𝐼 [88]. 

𝐻0: 𝑥~𝑁(𝑈𝛼𝑈, 𝜎0
2𝑰) 
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𝐻1: 𝑥~𝑁(𝑆𝛼𝑆 + 𝑈𝛼𝑈, 𝜎1
2𝑰) 

By replacing the unknown with their MLE in the likelihood ratio we arrive to the AMSD detector 

given by:  

𝐷𝐴𝑀𝑆𝐷(𝑥) =
𝑥𝑇(𝑃𝑈

˔ −𝑃𝑍
˔ )𝑥

𝑥𝑇𝑃𝑍
˔ 𝑥

   

 

𝑃𝑈
˔ = 𝐼 − 𝑈(𝑈𝑇𝑈)−1𝑈𝑇 𝑎𝑛𝑑 𝑃𝑍

˔ = 𝐼 − 𝐸(𝐸𝑇𝐸)−1𝐸𝑇      

 

E is defined as the concatenation of the background and target signatures. 

3.3.5.11. Hybrid Unstructured Detector (HUD) 

 

  HUD is based on mixing both statistical and physical models. The first step is to calculate the 

abundances using non-negative least square or FCLS. By this, we use the physical model 

information. The obtained abundances are then used as inputs of statistical based detector like 

ACE. The detector is written as follows [88]:  

𝐷𝐻𝑈𝐷(𝑥) =
𝑥𝑇Σ𝑏

−1𝑆�̂�

𝑆𝑇Σ𝑏
−1𝑆

  

 

Where �̂� is the abundance estimate obtained using constrained least squares. 

3.3.5.12. Spectral Angular Mapper (SAM) 

 

  Like Euclidian distance, spectral angular mapper is a measure of similarity between two vectors. 

For hyperspectral target detection, SAM is used to calculate the angle between the target 

reflectance spectra and pixel reflectance spectra treated as vectors. The smaller the angle, the more 

similar the pixel is to the target. The angle is calculated using the following equation [93]: 

𝐷𝑆𝐴𝑀 = cos−1(
�⃗� .�⃗� 

‖�⃗� ‖‖�⃗� ‖
 )  

 

where �⃗�  is the pixel vector and �⃗�  is the target vector. 

 

3.3.5.13. Spectral Information divergence (SID) 

 

Another way to detect the presence of a target in the hyperspectral image is to calculate the 

similarity between each pixel and the target using spectral information divergence. This technique 

is inspired from information theory where the degree of similarity is calculated using the entropy 

formula [95]: 
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𝑆𝐼𝐷(𝑥, 𝑦) = 𝐷(𝑥||𝑦) + 𝐷(𝑦||𝑥) 

Where 𝐷(𝑥||𝑦) = ∑ 𝑝𝑙log (
𝑝𝑙

𝑞𝑙
)𝐿

𝑙=1  and 𝑝𝑙 =
𝑥𝑙

∑ 𝑥𝑙
𝐿
𝑙=1

              

As in the SAM case, the result of the detection depends on the precision of the target reflectance 

spectra and is sensitive to the spectral variability. 

 

3.4. Recent developments in target detection using 

hyperspectral images. 
 

  In recent years, researchers proposed various new algorithms to detect targets in a hyperspectral 

image. Although the different approaches are devoted to generic target detection, they represent 

promising candidates for improving the performance of current landmine detection techniques. As 

a matter of fact, landmines constitute a special type of targets, since they are usually rare and sparse 

in the scene, and they have different shapes, colors and reflectance spectra. For example, various 

approaches to model a hyperspectral image, in addition to a comparison between supervised 

Matched filter and unsupervised Reed-Xioli target detection algorithms, are presented in [89]. A 

nonlinear version of the algorithm Target Constrained Interference Minimized Filter based on 

kernels is recently proposed in [96]. In [97], the authors propose a new endmember extraction 

process to detect anomalies in a hyperspectral image. Some researchers proposed new models to 

interpret the hyperspectral data in order to simplify the target detection process. Here we mention: 

Forward modelling working in radiance space [98], Sparse Representation Based Binary 

Hypothesis Model (SRBBH) [99], Sparsity and Compressed sensing based models [100] and 

spatio-spectral Gaussian random field modeling [101]. 
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Chapter Four 

4.Experiments and Results 
 

4.1. Preliminary test of applicability of hyperspectral images 

for landmine detection 
 

 In this chapter, we will show the first tests done in order to verify the applicability of 

hyperspectral imaging for the detection of landmines. Here we did a test on simulated data in 

order to precise the spectral information in the hypercube that helps in distinguishing 

landmines from background materials. In addition, we tested both Supervised and 

unsupervised classifiers in order to highlight the pros and cons of each type of approach. The 

results were mainly presented in [102]. 

4.1.1. Detection Using VNIR, SWIR AND TIR 
 

  Even if sometimes mines are just laid on the surface or very close to it, they are still hard to 

be detected. New mine casings are made similar to the background and hard to be visible by 

naked eye at visible wavelengths. Because of that, visible wavelengths are not sufficient to 

detect landmines, especially the buried ones, so we will use infrared bands.  While camouflage 

matches mine coating reflectivity to that of the background in an average sense, exact matches 

only occur at a few points across the visible and near infrared spectrum (Fig.10)[103][32] . It 

is difficult to match a coating to a background over a wide range of the spectrum. Quite narrow 

bands may have large differences in reflectivity between mines and background. Such subtle 

mismatches between mine and background spectra in VNIR range can be discerned if the 

spectral range is finely divided [104].  
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  The differences between surface-laid mines and background are more important in the SWIR 

spectral region. Earlier studies have shown that the reflectivity of many mine coatings and 

background materials is significantly lower in the VNIR than in the SWIR region (Fig.11) [26]. 

For example, the reflectivity of the AP landmine is very close to that of a healthy leaf in the visible 

spectrum, but different in most of the infrared region. In order to achieve better detection, we may 

focus on the SWIR spectrum as in this range the contrast  between background materials and man-

made objects is much larger. Plastic mines and painted unexploded ordnance have special 

pigments in their reflectance spectrum that allow simple classifiers to distinguish synthetic objects 

from natural features such as vegetation and soil.   

 

  Thermal infrared hyperspectral (TIR, 8000 to 12000 nm wavelength) have the potential to detect 

buried mines in certain types of recently disturbed soils. The most common mineral constituent of 

sand in the Earth's continental crust is quartz (SiO4 silicon–oxygen tetrahedra); Soil disturbance 

figure 10: VNIR reflectance spectra of mines and background materials [32]. 

Figure 11: VNIR and SWIR reflectance spectra of mines and 
background materials [26] 
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has measurable impact on the quartz reflectance spectrum, presumably due to mixing of different 

soil particle sizes [103]. The presence of other materials, such as carbonates, may also cause similar 

reflectivity changes in the TIR region, which also may be suitable for detection of soil disturbance. 

However, the use of TIR images for the detection of disturbance depends on results of other 

unfinished researches that should precise the effect of weather changes and time on the disturbance 

detection in different types of soil. 

4.1.2. Supervised and unsupervised classification 
 

  An approach to analyze a hyperspectral image is to attempt to match each pixel spectrum 

individually to one of the reference reflectance spectra in a spectral library. This is the supervised 

classification method. Correlation-based classifiers work well with multipixel-sized mines, 

whereas spectral unmixing methods can detect subpixel-sized mines [105]. Some supervised 

algorithms are shown in section 3.3.5. 

  Unsupervised classification, or learning, is a term for grouping objects with similar properties 

together, without any foreknowledge of those properties. Clustering can be used for classification 

on multi-dimensional images. The image clustering result is an assignment of each spatial position 

to a spectral class based on the values of the different points in the image bands. The results of 

clustering can be used to determine the location and number of classes present. A supervised 

connection can later be applied to the results with available spectral reference data.  

4.1.3. Experiments 
 

To compare between the two types of algorithms we did a test in order to detect the spectrum of 

landmine in a hyperspectral scene. The experiments were done on the image SalinasA (which 

could be found on the website [106]. This scene has 224-band over Salinas Valley, California, and 

is characterized by high spatial resolution. It includes vegetables and bare soils. It comprises 50*50 

pixels and includes six classes. In this preliminary experiment, we substitute the spectrum of one 

pixel with the spectrum of the landmine. The reflectance spectra of the landmines inserted and 

bare soil are shown in figure 13: 
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The application of two supervised classification methods Normalized Cross correlation and 

orthogonal subspace projection are shown in fig 14. Note that Red circles designate pixels 

classified as mine type1 and magenta stars are mine type2. 

  

Figure 12: The reflectivity spectrum of one pixel of Salinas 
ground, mine1, mine2. 

Figure 13: Detection performance of supervised methods: Normalized Cross Correlation (left) and Orthogonal 
Subspace projection (right) 
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  Same procedure is done but using the Kmeans and Fuzzy Cmeans unsupervised classification 

techniques and the results are shown in the fig.12. Red circles are for pixels classified as mine 

type1 and mine type2. A supervised connection can later be applied to the results with available 

spectral reference data to discriminate between type1 and type2. 

All the mines are detected with a 100% probability of detection and no false alarm rate. The 

discrimination is accomplished easily in our work because the spectral data of the implemented 

mines are  spectral data of two types of plastic mines. Also the implemented spectra are not covered 

with any ambiguities as for the real case where mines are covered with dirt or vegetation or even 

camouflaged to match surrounding.  

So the pixels that contain the reflectance of the mines show great difference in the reflectivity 

spectrum than the surrounding (Fig. 12). 

There is a need for real images of minefields to investigate accurately the classification and 

clustering methods.   

The tested processing methods showed the potential for a high probability of detection, although 

further investigation is required for detection in more difficult scenarios. The performed 

experiment shows that mines possess spectral features that allow them to be distinguished from 

other materials. Successful surface landmine detection in the VNIR has been shown using spectral 

signatures. However, the graphs showed that there is more distinguishing spectral characteristics 

in the SWIR than in the VNIR. More spectral characteristics may increase the detection and 

identification rates and lower the false alarms. Although reliable detection is not obtained yet, TIR 

HS imagers suggests promise for buried landmine detection. 

  In another scenario, the planted spectrum was mixed with the reflectance spectrum of background 

material. We mixed the reflectance spectrum of landmines by a portion of 0.3 background and 0.7 

Figure 14: Detection performance of unsupervised methods: Kmeans (left) and Fuzzy Cmeans (right) 
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mine. We applied the two supervised method (NCC and OSP) and the two unsupervised clustering 

methods (Kmeans and Fuzzy Cmeans) on the new scene. Using the two supervised methods, we 

were still able to detect landmines with 0 FAR. However, using the unsupervised method, many 

FA showed up (see Fig.15). In case of k means, if we run it several times, few false alarms at the 

borders shows up (Fig. 15 left). But if we run the FCM several times, same large number of false 

alarms will show up every time.  A possible explanation is that by implanting the mixed spectrum 

(landmine + background), the contrast between the implanted target and surrounding background 

is reduced in such a way that the implanted spectrum could not be distinguished in a specific 

cluster. In addition, other rare events that exist in the scene and were not planted are marked as 

targets. 

 

Figure 15: Kmeans clustering after several run (left) and FCM clustering (right) in case of subpixel target 

 

4.2.  Full pixel and subpixel mine detection 
 

  In this section, we describe the simulation tests done in order to emulate a hyperspectral scene of 

a minefield and evaluate the performance of different types of supervised detection algorithms. In 

the first part, we present the image used in addition to the methodology that we followed to 

simulate a minefield. In the second section, we present the results of this simulation followed by a 

discussion and conclusions deducted out of this experiment. 

4.2.1. Data description 
 

In this experiment, we use a part of an AVIRIS image scene named f100902t01p00r03 available 

on the following website (http://aviris.jpl.nasa.gov). This image was acquired by the airborne 

AVIRIS sensor that acquire hyperspectral images in 224 bands ranged between 395 nm and 

http://aviris.jpl.nasa.gov/
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2500nm with 10nm spectral resolution. The spatial resolution of the image is 0.8m. The original 

size of the image was 995 samples and 8716 lines. A part of the original scene containing grass 

and sand in the background was taken. The size of the chosen area is 148x123 pixels (118.4 x 

98.4m= 11651 m2). In order to emulate a minefield, the spectrum of a landmine is inserted in 

different locations of the hyperspectral image scene. 

 In the first step, as the image is given in radiance unit, it is converted to reflectance domain. This 

process is called atmospheric correction. Usually working in the reflectance domain is preferred 

because the reflectance value is independent of the illumination and weather conditions. Then we 

spatially upsample the image to arrive to a pixel size equal to the size of the landmine to be inserted. 

For this, we use the bicubic interpolation. By upsampling the image, we increase the number of 

pixels per unit area and the spectrum of the added pixels are interpolated according to the spectra 

of the surrounding pixels. So we obtain an image with lower Ground Sample Distance (GSD) 

where each pixel represents smaller area but have the same characteristics of the original one (same 

components).  

On the other hand, the information acquired in some bands are too noisy as these bands correspond 

to the water absorption bands. We may remove these bands in order to reduce the noise and reduce 

the size of the image at the same time.  

After that, depending on the surrounding background material, we replace some pixels in the image 

with the reflectance of the landmine. By this, we implant the mines in the scene. Now we can apply 

the classification algorithms on this image to detect the full-pixel target. 

In order to simulate the case of subpixel target, the same classification algorithms are applied on 

downsampled versions of the image. The downsampling was done by grouping the neighbor pixels 

using bicubic interpolation after using an anti-aliasing low pass filter. The downsampled images 

have the same area size of the original one but the pixel size is larger. Therefore, the reflectance 

spectrum of the mined area now is the reflectance of the mine mixed with surrounding background 

spectra. 

Finally, to study the effect of downsampling, we apply the same algorithms on images that have 

the same size of downsampled images but have pixel size equal to the size of the mine. In this 

case, we try to detect full-pixel targets in smaller images. However, the area covered by these 

images is smaller.    

Each time we apply a classification algorithm, we obtain a metric for each pixel that represents the 

degree of similarity between the pixel and the target that we are searching for. After that, we choose 

a threshold to classify the suspected regions from clean ones. Changing this threshold will change 

the probability of detection and the False Alarm Rate (FAR). In this study, we chose the threshold 

in a way to detect all targets and then we registered the FAR obtained when using each algorithm. 

To note that by FAR here we mean the number of wrongly detected landmines per square meter. 

The following chart resumes the characteristics of the images on which we tested the classification 

algorithms: 
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Due to water absorption, here we use 189 of 224 bands. The deleted bands are between 1353 nm 

& 1443nm and between 1812 & 1958 nm. 

4.2.2. Classification Results 
 

In this section, we show the results obtained after we applied the following classification 

algorithms: 

 SAM: Spectral Angular Mapper   

 OSP: Orthogonal Subspace Projection   

 ACE: Adaptive Coherence Estimation  

 CEM: Constrained Energy Minimization  

 SID: Spectral Information Divergence  

 FCLS: Fully Constrained Least Square 

 AMSD: Adaptive Matched Subspace Detector 

 MF: Matched Filter 

 HUD: Hybrid Unstructured Detector 

 

 Table 2 contains the FAR obtained after applying different algorithms on the 5 images. The 

computation times in each case are registered in Table 3.  

 

 

 

 

 

Original image (809340 pixels, 
GSD=12cm, Total area=11654 

m2)

Downsampled image 2 
times (202540 pixels, 

GSD=24cm, 
Area=11654 m2)

Downsampled image 
4 times (50635 

pixels, GSD=48cm, 
Area=11654 m2)

2 times smaller 
image(202540pixels, 

GSD=12cm, area= 
2916.6m2)

4 times smaller 
image (50635pixels, 

GSD=12cm, area= 
1458 m2)
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Table 3: FAR (nb of false alarms/m2) 

 Original  D2 D4 S1 S2 

CEM 0 0 0.0049 0 0 

MF 0 0 0.0058 0 0 

ACE 0 0 0.0003 0 0.0048 

OSP 0.001 2.3236 2.4261 0.0014 0 

SID 0 3.6867 2.7836 0 0 

AMSD 0 16.5982 4.151 0 0 

FCLS 0.443 12.0172 3.6171 0.2859 0.6076 

HUD 0.3782 0.9234 3.738 0.5119 0.4786 

SAM 0 4.8432 3.1551 0 0 

 

 

 

Table 4: Computation time in seconds 

 Original  D2 D4 S1 S2 

CEM 19.8 4.62 2.22 4.8 2.17 

MF 23 5.12 2.37 5.7 2.1 

ACE 28.8 6.63 2.65 7 2.5 

OSP 19 4.54 2.1 5 2 

SID 27.2 6.5 2.9 7 2.5 

AMSD 27.3 6.83 2.72 6.8 2.4 

FCLS 177 19.66 6.43 42 11.2 

HUD 152 38 11.6 39 10.4 

SAM 23 5.15 2.3 5 1.68 

 

  As we can notice from the tables, ACE, MF and CEM show the best performance for detecting 

the landmines in the hyperspectral images because even when the image was spatially 
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downsampled by a factor of 2, the FAR remained zero at full detection. When the image was 

downsampled by a factor of 4, few false alarms appeared whereas for the other algorithms the FAR 

is too high to consider the detection as useful. Moreover, the computation times of these algorithms 

are acceptable and are lower than other algorithms.  

As we have seen in section 2, the coefficients of the filter in CEM and MF methods are very 

similar. They differ in using the correlation matrix or the covariance matrix. This explains why the 

computation time and the FAR obtained when applying CEM and MF algorithms are very close. 

 In addition, we can see that the OSP algorithm, which is based on linear unmixing model, is 

sensitive to the target abundance. The detection was good in case of full-pixel target but the FAR 

increased significantly in case of subpixel target in D2 and D4 images. AMSD performance shows 

the same behavior, but in addition to its sensitivity to target abundance, the computation time is a 

bit higher. 

Spectral information divergence (SID) and spectral angular mapper (SAM) belongs to the same 

family of detectors as both measure the difference between the target and the pixel. Globally, SAM 

has higher FAR than SID but has a lower computation time. A comparison between both 

techniques could be found in [95]. 

Fully constrained least square (FCLS) algorithm is used to calculate the abundances of the 

background and the target at each pixel. Therefore, it takes the reflectance spectra of the 

background materials and of the target as input and calculates the abundance of each component 

in every pixel of the image taking into consideration the non-negative and sum-to-one constraints 

of the abundances. It is a complex process, which explains the long computation time. The high 

FAR obtained using this method demonstrates that the estimated abundance of the target could not 

be used alone as a decision metric of the presence of the target. As the background and target 

spectra are used in FCLS processing, the detection results depend on the quality of the input spectra 

and the number of background materials used in the input.  

Finally, The two-step detection process of the hybrid unstructured detector (HUD) explains the 

high computation time. The high false alarm rates may be due to errors in estimating the 

abundances as in the case of FCLS. 

4.2.3. Discussion 
 

  Several approaches have been proposed for target detection using hyperspectral imaging. Some 

of these approaches are based on linear mixing model where the reflectance of each pixel is made 

of mixing the endmembers’ reflectance spectra in different abundances with additional white 

noise. OSP, FCLS are algorithms based on this approach. However, the detection performance of 

these algorithms is too sensitive to the choice of the endmembers. If the number or the type of the 

endmembers was wrongly chosen, the detection will be difficult. 

 Another approach simulates the spectral variability of the targets and background materials using 

statistical models like MF and ACE. This approach proves its efficiency in detecting the mines at 

subpixel level in an acceptable computation time. 
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MF and CEM methods do not require other information than the reflectance spectrum of the target. 

This makes the detection of the target faster and simpler but makes it dependent on the precision 

of the spectrum used in the search. When the spectrum of the target in the acquired scene is 

different from the spectrum that we are looking for, the detection performance get worse. This may 

occur due to differences in weather and illumination conditions at the moment of registering the 

spectral response of the landmine (maybe taken in lab conditions) and at the moment of image 

acquisition. 

4.2.4. Conclusions  
 

 In this study, we arrived to the preliminary result that the CEM, MF and ACE algorithms are three 

of the best algorithms to be used when trying to detect landmines using hyperspectral imagery. 

This result is in agreement with the results obtained in the hyperspectral target detection tests [107] 

that proofs the effectiveness of ACE in target detection.  Linear mixing model based algorithms 

depend on the definition of the endmembers and the fill fraction of the target. The definition of the 

endmember may differ between images and between users changing the detection results. In the 

future, we will try to improve the detection of the algorithms in the case of a multi-target scenario 

as we will see in chapter 4.6. 

4.3. Effect of PCA Feature Selection Prior To Detection 
 

  In another experiment, we tested the effect of dimensionality reduction prior to detection on the 

classification performance. Here we used the Principal component analysis (PCA) to choose the 

most representative bands out the 224 bands of the image and then we applied different detection 

methods.  Our goal is to evaluate the consistency of the detection algorithms if less information is 

used in the detection. 

4.3.1. Data Description 
 

Here we use a part of the same AVIRIS image scene named f100902t01p00r03 used in the previous 

test. However, in this experiment we chose another part of the scene where the main background 

material is sand. The size of the chosen part is 588 samples and 1430 lines (238.4x262.4 m). Here 

we chose a larger area in order the see the effect in computation time.  As in the previous test, the 

image is pretreated before implanting the mines. First, atmospheric correction is applied to 

transform it from radiance into reflectance domain. Then, the image is upsampled in order to obtain 

pixel size equal to the size of landmine. After that, the bands corresponding to water absorption 

bands are discarded. In the resultant image composed of 189 bands, we implant the spectral 

reflectance of landmines. Then, we made another copy of the image reduced to 100 bands with the 

use of Principal Component Analysis algorithm.  By applying the PCA algorithm, we are taking 

the bands that have the largest variability. Thus, these bands contains most of the information in 

the hypercube. 
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The same algorithms used in the previous chapter were applied in this test. We applied them on 

the reduced and normal image. Also in this test, we chose the threshold to discriminate between 

target ad background so as to detect all planted mines, and then we registered the False alarms and 

computation time. The results are shown in the next section 

4.3.2. Results 
 

In this section we present the results obtained when the classification algorithms are applied on 

the original and reduced image using PCA. the tests were done on Windows server with the 

following characteristics: CPU quad Core 2.9 GHz, 32 GB RAM and 1TB Memory. 

The variation of FAR when using each algorithm is shown in fig 14 and the Computation time in 

Fig 16: 

 

 

 

Figure 16: Effect of PCA on FAR 
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Figure 17: Effect of PCA on computation time 

As we see in the charts, after dimensionality reduction using PCA, the performance of ACE, MF 

and CEM did not change in terms of FAR. Zero FAR rate is obtained in both cases. However, in 

case of OSP, AMSD and HUD too many false alarms show up after the size of the image is 

reduced. In case of SID and FCLS, the number of false alarms became too high to consider the 

detection as effective. So in these algorithms, we lost the information useful to distinguish the 

targets from background. To note that the false alarm here is higher than the 300000 limit that we 

considered as maximum value to consider the detection as useful. 300000 is almost half of number 

of pixels of the image. An algorithm is not effective if half of the field is considered as landmine, 

because it is not a realistic result. Usually landmines are rare in the scene. In addition, in the case 

of landmine detection, each false alarm will require about one hour of work to take the necessary 

precautions before starting the deactivation process. Therefore, if we have a high FAR, the wasted 

time is too long making the detection using other preliminary techniques more effective.  

Talking about the computation time, here we register the computation time needed to perform both 

the dimensionality reduction and the classification. We see that the computation time is reduced 

about 48.5% in case of ACE and is reduced about 37.5% in case of MF. In both cases, the FAR 

remained zero after the use of PCA. However, in case of CEM, the total time to perform PCA and 

apply CEM on reduced image is higher than the time needed to compute the detection on the 

original image. This phenomena is repeated with OSP, SID and FCLS however using these 

algorithms, the FAR became higher after using PCA. So reducing the size of the data prior to use 

these algorithms is not beneficial in terms of both FAR and computation time. 
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4.3.3. Conclusions    
 

As in the previous test, ACE and MF showed the best performance. Even if the image was reduced 

to 100 bands we were still able to detect all landmines with 0 FAR. In addition we gained some 

time in the computation time. This performance improvement do not apply to CEM: even though 

the FAR obtained is zero in case of reduced image, the computation time in the two steps 

(reduction+classification) algorithm is higher than when applying the detection on all image. 

Spectral unmixing based methods are too sensitive to the dimension of data used. As we see here, 

when we applied the OSP AMSD and HUD on reduced image, the FAR obtained was too high. 

So the use of these algorithms on reduced images won’t be effective.  

If we would like to use a dimensionality reduction method prior to classification in a real target 

detection scenario, as on board of a quadrotor while acquiring the hyperspectral image, we should 

verify if the use of reduction method is useful. Because using some methods, we may have 

increased computational time as in case of OSP and we may have large FAR. 

4.4. Effect of spectral variability on landmine detection 
 

  In this part, we will test the same algorithms but on images in which the mines were planted with 

different errors. Here we would like to test the possibility to detect landmines if their spectral 

signature in the hyperspectral image is not exactly the same signature that we have in a library. 

This very usual case occurs when the mine is covered by another background material like sand, 

soil or vegetation, or happens in the case of low spatial resolution image. So the reflectance 

spectrum in the pixel where the mine exists is a mixture of the signature spectrum of landmine and 

other background material. 

4.4.1. Data description 
 

In this test, we use a small part of AVIRIS image named f100902t01p00r03. The chosen part 

contains mainly vegetation and soil. The size of the chosen area is 494x410 pixels (59.28 x 49.2 

m). In different locations of the image, we planted the spectrum of the PMN landmine mixed the 

spectrum of green leaf ( vegetation) that is the background material most dominant in the scene. 

We mixed the target and the background material in different proportions: 0.5 PMN+0.5 leaf; 0.6 

PMN+0.4 leaf; 0.8 PMN+0.2 leaf. In the following section we show the results. 

4.4.2. Results 
 

In this paragraph, we will show the results obtained when we tried to detect the PMN signature in 

the hyperspectral image in which the PMN was planted in different proportions. As in the previous 

tests, the threshold was set in such a way as to detect all landmines and then we registered the 

number of false alarms and the computation time. 
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In this test, the graph of computation time do not have any differences between images of different 

abundance factor because the images have the same number of pixels. But it helps to compare 

between different detection algorithms.  

In consistency with previous tests, even in this test, CEM ACE and MF show the best performance 

as using these algorithms, we are still able to detect landmines with 0 FAR even when the 

abundance factor of target is 0.5. In addition, AMSD show the same performance in this test.  
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In OSP case, even when the abundance factor of landmine is 0.8, we did not detect the landmine 

without false alarms. The number of false alarms increases if we are searching for mines with 

lower abundance.  The same could be deduced in case of HUD algorithm. This may be due to 

linear unmixing step in which the abundance of targets was wrongly estimated. 

By using the FCLS, the computation time is too high by comparison with other algorithms. In 

addition the FAR is high. Therefore this method is not preferred for landmine detection case. 

SID and SAM methods are similar as they both compare between target signature and pixel 

signature based on similarity measure. SAM uses the angular distance between the spectra while 

SID measures the mutual entropy between them. However, these methods are sensitive to target 

abundance. Because of that, we see 0 FAR in case of pure target or target with abundance factor 

of 0.8, but the detection become harder and too many false alarms will show up in case we try to 

detect the landmine with  abundance factor of 0.6 or 0.5. 

4.4.3. Conclusions  
 

  In this test, we arrived to almost same result of previous tests that ACE CEM and MF are some 

of the best algorithms to detect landmines with different abundance factors. 

The linear unmixing based methods like OSP do detect the landmines but a right definition of 

background endmembers is necessary to reduce the false alarm rate or to detect landmines with 

low abundance factor. We can say the same conclusion for the hybrid detector (HUD) where the 

first step of its computation is based on linear unmixing model. 

SAM, SID or other similarity or distance calculation methods are not reliable for landmine 

detection, because if the abundance of target is 0.6 or less, the detection of targets is possible but 

we will have several false alarms. This is not practical especially in case of landmines where each 

false alarm will take at least one hour of precautions and land preparations. 

 

4.5. MLP Neural network for landmine detection using 

hyperspectral imaging 
 

  In this chapter, we present the tests done in order to detect landmines in hyperspectral images 

using MLP neural networks. In order to have good performance (reduce the FAR at full detection), 

we did several tests. In each test, we change some factors that affects the results. These factors are: 

 Training data set 

 Number of neurons in the hidden layer 

 activation function of the neurons  

 Error minimization strategy used in the training phase. 



69 

 

In the following, we will present a brief introduction about the multi-layer perceptron used in this 

experiment. Next to it, we will show the results when applied on 17 images and finally the 

conclusions are provided.  

4.5.1. Multi-Layer Perceptron (MLP) Neural networks  
 

  The general structure of MLP NN is presented in section 11.1. It is a kind of feed-forward neural 

networks constituted of at least three layers: Input layer, Hidden layer and output layer. Feed-

forward neural networks provide a general framework for representing non-linear functional 

mappings between a set of input variables and a set of output variables [126]. The network may 

have an arbitrary number of hidden layers, which in turn may have an arbitrary number of 

perceptrons [127].  

The activation function of the hidden layer could be linear, hyperbolic tangent, sigmoid or other. 

Usually sigmoid activation function is preferred as the output of the perceptron are limited between 

zero and one so they can be considered as probabilistic values. To train a MLP NN, usually 

supervised learning is used. The error function to be minimized by backpropagation in the learning 

process tested here are the sum-of-square errors and cross-entropy. In general, we got a better 

performance in case we used cross entropy error function. 

 

4.5.2. MLP training and application 
 

  In order to train the MLP NN, we used a part of AVIRIS hyperspectral image composed of 280 

rows, 150 columns that contain green leaf and sand in the scene. We use the most useful 189 bands 

out of 224 bands after excluding the water absorption bands. In addition, we test the trained NN 

on the same 17 images used in chapter 4 section 6. 

Figure 18:  Example of multilayer perceptron NN 
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  Here in follow, to give a nomenclature of the results, the training image used in this test will be 

named TI. The 17 images on which the resultant neural networks are tested are named according 

to the number of the field number in our data set. The 17 images are named respectively: field2, 

field3, field4, field51, field52, field53, field54, field55, field56, field61, field62, field63, field64, 

field71, field72, field73, field10. We used 17 images that have different background materials in 

order to test the performance of the neural networks in different case studies. 

  In this experiment, the simulation are performed using MATLAB simulation tool. I referred to 

NETLAB toolbox [128]. It contains a group of functions prepared to simplify setting up the 

network parameters.   

  In the first test, we trained a NN using data from TI. The input is composed of 189 neurons 

corresponding to the reflectance bands. The size of the output is 3: 100 for PMN, 010 for M20 and 

001 for background. The hidden layer is composed of 115 neurons. The training dataset is 

composed of 200 entry referring to PMN reflectance spectrum, 100 entry referring to M20 and 200 

background pixels from TI. The network is composed of 2 hidden layers. This NN is named 

“netTI”. When applied on TI, all mines in the training image are detected with 0 FAR. When we 

used this network to detect landmines in the 17 images, all mines in all images were detected. 

However, in some images some FA appeared. The average FAR obtained is 0.121/m2 the detection 

was done in 3.64seconds. 

 In the second test, I used the data from images field3 field4 field51. The dataset were composed 

of all pixels of these images including the pixels were the landmines are inserted. This NN is 

named “netfield3451”. When applied on all fields, the obtained Pd was 0.85 with FAR 1.385/m2. 

the computational time is on average 6.5 s. 

In the third test, in an attempt to increase the Pd and decrease the FAR, I used for training the 

images field2 field3 field4 field51. The input for training was the reflectance spectrum of each 

pixel in these images. This NN is named “netfield23451”. By comparison with the previous test, 

the probability of detection has increased to 0.94, the FAR has also increased to 7.3074/m2. the 

computation time was 6.65s. 

In a fourth test, I trained a NN using the data of images field4 field71 field72 field73 field9 field10. 

The number of neurons in the hidden layer is fixed to 115. This network is named 

“net4717273910withoutpmn”. When this NN is applied on all fields, the average Pd obtained is 

near 1 (0.99) but the FAR was High (29.31 / m2). 

  Then I build another NN in an attempt to reduce the FAR using the pixels of field4 field71 field72 

field73 field9 field10 in the training phase. In addition, I introduced in the training phase 500 

replica of the spectrum of PMN. The number of neurons in the hidden layer is 115. The trained 

NN is named “net4717273910”. This strategy didn’t work well. The probability of detection was 

near zero and the FAR so.  So introducing the spectra of the targets several times will not improve 

the detection. After that, I trained another NN with the same data of the same fields with addition 

replica of PMN landmines spectra with abundance factor 0.9 mixed with other background 

material. This NN is named “net4717273910with9”. The results are similar to the results of 

previous neural networks where the Pd and FAR obtained is near zero. 
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  In another test, I trained the data of the fields that usually had high Pd and low FAR in other tests. 

So in this test I trained a NN using the data of field2 field51 field52 field53 field56 field62. The 

NN is named “net25152535662”. When applied on all fields, the average Pd and FAR were close 

to zero. 

As I found that training data of TI give better results than training few images from the test images, 

I choose to use it in the training. This time I trained a NN named “n1” using 20 spectra of PMN 

mine, 10 spectra of M20 mine, and 20000 spectra of background from TI image. The number of 

hidden neurons was 2. Using this NN, we were able to detect all landmines in all fields. But in 

some images we got some false alarms. the average FAR obtained is 0.464. The detection is done 

in an average of 3.8 seconds. 

To reduce the FAR obtained when using “n1” NN, I used the same data used in the previous test.  

The training set is composed of 20 spectra of PMN mine, 10 spectra of M20 mine, 20000 spectra 

of background materials in addition to 150 pixel spectra of background road from image field3 

usually marked as FA this time is included in the training. To note that the new samples included 

in the training of “n2” and successive NN are not used for testing the NN performance. When “n2” 

is used to detect the landmines in all fields, we detected them all landmines. The FAR is reduced 

to 0.142/m2. The average computational time is 3.36. So including some FA in training may help 

to reduce the FAR. The same NN named “n2” was applied on all images but this time the fields 

contains mines with different abundances. The results are showed under name n2_2. We got the 

same FAR as in case of n2 but the Pd dropped to 0.35. 

To improve the results of “n2”, I took the pixels that were marked as false alarms using n2 and 

add them to the training sample. So the training set of “n3” is composed of 20 spectra of PMN, 10 

spectra of m20, 20000 background spectra from TI and pixels marked as FA when using “n2”. 

When I applied this NN on all fields, all mines are detected in 4.18 seconds. The average FAR 

obtained is 0.609. So the FAR did not decrease as expected. 

After that, instead of using all false alarms found in case of n2, I used in the training of “n4” the 

data used to train “n2” in addition to FA obtained with fields4 52 53 54 and 55. In this case, I got 

Pd=1with FAR=0.397/m2 in 3.673s. So in this case, the FA is reduced by comparison with the 

results of “n2”. 

Finally, I used in the training of new NN  named “n5” the same data used to train “n2” in addition 

to pixels marked as FA in case of when “n2” was applied of field54 field55 field72 field9. when 

“n5” is applied on all fields, all mines are detected in 3.68s with slightly high FAR of 3.797/ m2. 

  In a new series of experiments, we first applied a feature extraction method to reduce the size of 

the image prior to train the MLP NN. Here I used the Net analyte signal presented in section 11.1 

to choose the best bands that represent the landmines. In the first test, I chose 20 bands using this 

method. then I trained a MLP NN names “net_nas20” using the data in the image field3. This NN 

when applied on all fields we got low Pd=0.12 with FAR of 0.209 in 0.58 seconds. So using this 

method, the computational time is reduced but the detection performance has decreased. 
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Then I trained another NN this time using 50 bands chosen using Net analyte signal. I used the 

data in field2 in the training. The resultant NN is named “net_nas50_f2”. This network when 

applied on all fields, we detected all mines but with very high FAR of 65.74. To decrease the FAR, 

I used the same 50 bandswidth a training data set composed of the pixels of the fields field2 field3 

field4. When I applied this NN named “net_nas50_f234” on all fields, all mines were detected 

with FAR of 6.214. 

 The charts that resume all results obtained are shown in the following figures: 

 

Figure 19: Average Probability of detection 
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Figure 20: Average False Alarm Rate 

 

Figure 21: Average computational time 
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4.5.3. Conclusions 
 

Referring to all tests done in this experiment, we can deduce the following: 

 Repeating the spectra of the targets in the training sample is not necessary as we obtained 

similar performance when using n2 and netTI. 

 The training should be rich and included almost all cases in which a landmine could be in 

the hyperspectral scenes in order to be detected using MLPNN.   

 The use of few neurons in the hidden layer with more representative data is more effective 

than using too many neurons with intensive Training samples. this is concluded when 

comparing between 'net4717273910withoutpmn' that have 115 neurons and ‘n2’. 

  When the landmines in the image have different abundance factors, the training sample 

used to train the MLP NN must include several samples of targets with low abundance 

factor. Without this, the Probability of detection won’t be sufficient as happened in case of 

n2_2. 

 

4.6. Multi Target Detection Using Neural Networks 
 

  In this chapter, we evaluate different classification algorithms used for multitarget detection using 

hyperspectral imaging. We take into consideration different scenarios of landmine detection in 

which we compare the performance of each method in various cases. In addition, we introduce the 

detection of targets using artificial intelligence based methods in order to increase the probability 

of detection, to reduce the false alarm rate and to foster the detection. These algorithms were tested 

on simulated data where the spectra of landmines is planted in different proportions with respect 

to the pixel size in a hyperspectral image scene. We retested these algorithms on real image with 

real targets. The results show that we can use a well-trained radial basis function (RBF) neural 

network in order to detect targets using hyperspectral imagery. 

Several algorithms have been proposed for target detection in hyperspectral imagery. Some of 

them are mentioned in the fifth section of chapter 5. Most of them do not support multitarget 

detection unless we run them several times each run for a specific target. However, this will be a 

time-consuming process especially if the number of targets is high. Some algorithms were 

extended for multitarget case e.g the Constrained Energy minimization (CEM) algorithm 

originally made to give an estimation of the abundance of the target, has several extension to fit 

the multi target detection: multiCEM, SumCEM, Winner-take-all CEM (WTACEM) and 

others [108].  Other unsupervised algorithms may be used to detect targets without referring to 

their reflectance spectrum [109]. But it has been proved that this type of algorithms usually have 

high False alarm rates as some inert low frequency pixels may be marked as targets while they are 

not. 
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In this chapter, we test different supervised classification algorithms used for multitarget detection 

in a landmine detection scenario and show the possibility of detecting targets using artificial 

intelligence based techniques. A comparison of the results will be discussed. The types of tests 

will be carried out: the first one uses images where the targets have been spectrally added to an 

AVIRIS image while the second one uses real images containing manmade targets. 

4.6.1. Neural Networks based Target detection 
 

In this section, we will introduce the use of artificial intelligence in order to detect targets in 

hyperspectral imagery. Specifically, we will work on neural networks (NN). This approach is 

adopted due to several reasons: 

First, to construct a neural network classifier, two phases are needed: training and classification. 

The training phase could be done offline and then the detection is achieved online during image 

acquisition. Therefore, this method may be optimized for real time detection as most of the 

workload is done offline in the training phase. Secondly, we can customize the detector to detect 

a large number of targets in one scan, which means that the detection of several targets is fast and 

requires only one scan. In addition, the network could be customized for different types of 

backgrounds i.e. we could have several trained neural networks, each for different types of scenes 

(background, water, sand or forest); therefore, we reduce the FAR by taking the combination of 

results of several NN. 

Artificial Neural Network (ANN) is a computational model used for various machine learning and 

computer vision tasks. It is designed to work in the same way as the neural networks of the human 

brain work [110]. It is composed of a network of connected units called “neurons” where each 

connection has a weight. The neurons are grouped into layers. In addition to the weights, each 

layer has a bias that plays a crucial role in the detection [111]. A basic NN is composed of two 

layers: input layer and output layer. This type of NN is called Single layer NN. Other type of NN 

may have additional hidden layers between the input and output layers. In this category, we can 

find the Multi Layer Perceptron. This kind of ANN has the ability to solve nonlinear complex 

problems that the single layer NN will not be able to solve [111].  

Another type of neural networks is the Radial basis functions neural networks. It has the same 

structure of layers as the MLP. However, in the hidden layer, the activation function is a kernel 

function (usually Gaussian) [112]. Usually, MLP NN are faster than RBF NN as their computation 

do not necessitate the use of kernels and therefore is simpler. However, in case of high dimensional 

data, as in our case where the pixel is of 189 band dimensions, the RBF performs better. RBF 

showed better performance in our case and thus we will adopt this method in the comparison.   

Here, we used two-layers RBF neural networks. The activation function of the first layer (hidden 

layer) is Gaussian. The activation function of the output layer is linear. The number of neurons is 

empirically estimated to minimize the global problem. 
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Several studies introduced the use of deep learning neural networks for target detection using 

hyperspectral imaging [113]. However, this will not be our work in this study. Here we focus on 

ordinary neural networks due to several reasons: First, the main objective of our test is the detection 

of landmines at subpixel level, therefore extracting some features from a window of pixels as in 

the preliminary step of convolutional neural networks will make the detection harder. Secondly, 

we are dealing in this paper with hyperspectral images where each pixel is composed of hundreds 

of bands. So by mixing several bands we loose some spectral information that are necessary in the 

detection. In addition we are searching for a simple solution to make the detection faster. 

In order to reduce the size of the neural network, our first step will be the feature mapping. In this 

stage, some key features of the hypercube will be chosen in such a way to reduce the size of the 

input image and rely on useful information. For this objective, there are several methods that could 

be used: Principal Component Analysis (PCA), matched pursuit [114], neighborhood embedding 

Error! Reference source not found., Sammon’s mapping [115], multicriteria method [117], 

nonparametric weighted feature extraction [118] linear discriminant analysis (LDA) and 

others [119]. In this experiment, we use the concept of Net analyte signal introduced by Lorber 

1986 in order to specify the unique part of an analyte signal in chemical spectrum analysis. The 

idea is to find the part of the signal that belongs to the orthogonal plane of all materials other than 

the target. By this, we choose the most representative bands of the target. These bands will be used 

as input to the neural networks in order to detect the targets instead of detecting the complete signal 

spectrum.  

The chosen bands are calculated as follows [120] 

                                          nj =( I -S-j (S
T

-j S-j )
-1 ST

-j ) sj 

where sj is the target spectrum, S-j  is a matrix of background analyte spectra and  nj  is the portion 

of sj that is orthogonal to S-j. First we estimate all endmembers spectra of the image using 
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Figure 22: Multi-layer RBF Neural network 
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Automatic Target Generation Process (ATGP) algorithm [121], S-j is obtained after removing the 

endmembers corresponding to the targets. 

4.6.2. Experiment on simulated data 
 

4.6.2.1. Data description 

 

In the first scenario, we tested the target detection algorithms on 17 hyperspectral images taken 

using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) of JPL NASA Laboratory. These 

scenes are available online on the site [122]. The spatial resolution of the images depends on the 

altitude of the airplane during image acquisition. We can find different scenes of different spatial 

resolutions. In the chosen scenes, we introduced in different locations the spectrum of manmade 

targets that will be  PMN landmine (Fig.24) and VS-2.2 mine (Fig.25). The reflectance spectra of 

the landmines were taken in our Lab using Field Spec 4 Hi-Res spectroradiometer. This device is 

able to acquire the reflectance spectrum between 350 and 2500 nm with spectral resolution of 1nm. 

We took the spectral signature in different conditions: in lab where specific source of light is used, 

in grass field and in soil field during a sunny day. Here we plant the spectral reflectance taken 

when thin layer of grass covered the landmine in the AVIRIS scenes. The insertion was done after 

several image-preprocessing steps: firstly, atmospheric correction is done to convert the image 

from radiance domain that depends on the illumination and weather conditions into unified 

reflectance domain scaled between 0 and 1. Some bands characterized by low SNR due to vapor 

absorption are discarded. Then the image is up sampled in order to increase the spatial resolution 

of the image to arrive to pixel size equivalent to the size of the mine.    

Figure 24: Reflectance spectrum of the pmn mine (target) 
inserted in the image 

Figure 23: Reflectance spectrum of the vs-2.2 mine (target) 
inserted in the image 
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  In order to test the full pixel and subpixel cases, the targets were planted in different proportions 

in the images. The signatures of the targets were mixed with the neighbor pixel signatures in 

different fill fractions: 𝑃𝑆 = 𝛼 ∗ 𝑇 + (1 − 𝛼)𝐵 where PS represents the planted spectrum in the 

image, T is a vector containing the target reflectance spectrum, B the background reflectance 

spectrum and 𝛼 the target fill fraction varying between 0.6 and 0.9. In the 17 images, the total 

number of pixels with landmine abundance factor of 𝛼 = 0.6 (PMN& VS-2.2) is 136, 170 have 

landmine abundance factor 𝛼 = 0.7, 102 have landmine abundance factor 𝛼 = 0.8  and 110 pixels 

have landmine abundance factor 𝛼 = 0.9 . By this, we evaluate the ability of a target detection 

technique to detect subpixel targets. 

As the target in this scenario is a landmine, the risk of missing a target is much dangerous than 

having a FAR. Therefore, the decision threshold to discriminate between target and background 

material is set such a way to detect all targets (Pd=1) and then the FAR is registered. Therefore, a 

technique is said to be more efficient if it has lower FAR giving that all targets have been detected. 

4.6.2.2. Results 

 

  In this part, we show the results obtained when applying the detection techniques on all images 

that contain targets in different abundances. We show the average false alarm rate and computation 

time at full target detection. The tests where done on Dell server with 64 cores, 128 GB RAM and 

1TB Memory. 

The tested algorithms are the following: 

 SAM: Spectral Angular Mapper   

 OSP: Orthogonal Subspace Projection   

 ACE: Adaptive Coherence Estimation  

 CEM: Constrained Energy Minimization  

 MTCEM: Multiple target CEM 

 WTACEM & SCEM:Winner take all CEM and Sum CEM 

 SID: Spectral Information Divergence  

 MF: Matched Filter 

 RBF NN: Radial basis function Neural Network 

In case of neural networks, the best NN in terms of false alarm rate was individuated after several 

tests where we took into consideration different training samples and spread values. First, we 

randomly divided the 17 images between training and testing data where we used some images in 

order to train the NN and the other images to evaluate the performance. Using this strategy, the 

training was very intensive process, took a long time, necessitates large number of neurons to 

consider all possible cases and we did not arrive to zero FAR. To make sure that we are training 

the useful data without repetition, we decided to use another strategy. We found that training few 

pixels that represent the image endmembers is sufficient to obtain a NN able to estimate the 

abundance of targets and background in each pixel. The input training dataset is the background 
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reflectance spectra automatically estimated using Automatic Target Generation Process (ATGP) 

algorithm [121]. The PMN reflectance spectra and the VS-2.2 reflectance spectra. The training 

data is composed as follows: 377 spectra represents various background materials, 5 spectra of 

PMN landmine and 5 spectra of VS-2.2 landmine. The corresponding output are respectively: 

001,100 & 010. To note that the reflectance spectrum of the targets exist with different fill fraction 

in the scene (0.6 0.7 0.8 &0.9). However, in the training phase, the pure reflectance spectrum of 

the target is introduced. Using this training strategy, the output for each pixel will be abundance 

fraction of PMN, VS-2.2 or general background. 

 

The following charts represent the results of the adopted methods: 

 

Figure 25: Average computational time /algorithm 
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Figure 26: average FAR/ algorithm 

In figure 25, we see the average time needed for each algorithm to detect all the targets in the 17 

images. As we see in the figure, to detect both types of targets using ACE we needed about 349 

seconds while the computation time of MF is 250.77 s and is 238 s for CEM. About the same time 

is needed using SCEM and WTACEM as these algorithms are based on running the same detector 

2 times each run to detect one target. They differ in the decision making step as follows: in case 

of CEM we set a threshold for each target; in case of SCEM, we add the outputs of the detectors 

and set one threshold for the sum; or we take the maximum of the outputs and set the threshold 

accordingly as in WTACEM. SAM and SID are faster than other algorithms but they have very 

high FAR as we see in Fig 26.  

Talking about the FAR, we see that almost all algorithms could detect the targets with very low 

FAR except for SID and SAM that have high FAR. Both algorithms are based on comparing the 

spectrum of pixels with the target’s spectrum both treated as vectors. Thus, they depend on how 

similar the pixel is to the target. In case of target with abundance 0.6, they are too much different 

causing this high false alarm rate. 

The other algorithms show very good performance even in case of small abundance factor where 

few FA shows up when trying to detect low abundance targets using MF and CEM.  ACE algorithm 

gives the ability to detect all targets with 0 FAR. This confirms the previous tests used for target 

detection [107],[123].    

It is worth to note that when applying CEM 2 times and setting a threshold for each target, we got 

false alarm of 0.00027. Most of the false alarms refer to VS-2.2 targets. However, when we took 

the sum of the results or their maximum as in SCEM and WTACEM, no more false alarms are 

obtained. This is due to the increased contrast between targets and background in case of Sum 

CEM or by ignoring noise effect while taking most valuable results in case of WTACEM.  

On the other hand, MTCEM has better performance as all targets are detected without any false 

alarms with lower computation time. It should be pointed out that, using ACE MF CEM SID SAM 
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and OSP, we have an additional advantage when identifying the targets since using these 

algorithms we are able to distinguish between PMN and VS-2.2  targets. While using the other 

algorithms, we can know the presence of a target without knowing its type. This type of 

information is crucial in some target detection tasks, especially in case of landmine detection in 

order to determine the best strategy to isolate the landmine according to its blast and fuse type. 

However, this ability comes at an additional cost in terms of time and/or computational resources. 

As we see in the charts, using the adopted training strategy, we got an RBF NN able to detect the 

landmines without any false alarm. By setting a large value of spread while training the NN, the 

output was less sensitive to the spectral variability of the input pixel and able to distinguish the 

presence of target even with low abundance factor. 

On the other side, the computation time needed to get this result is lower than ACE that has also 0 

FAR, but is higher than other multitarget detection algorithms MTCEM, SCEM and WTACEM. 

However, using RBFNN, we are able to distinguish between targets whereas in these algorithms 

we are not. 

 

4.6.3. Real target experiment 
 

In this section, we show the results obtained when we applied previously mentioned algorithms in 

order to detect targets in real hyperspectral images. This is done in order to prove the applicability 

of these algorithms in real case scenarios. Even if it has been proven in [124]that the target implant 

method does provide accurate relative predictions in terms of both target difficulty and detector 

performance, but reliably predicting the actual number of false alarms for a given target at a given 

fill fraction is difficult or impossible [124]. 

4.6.3.1. Test Image 

 

Target detection algorithms tested in previous sections will be applied on the hyperspectral data 

collected over Viareggio city, Tuscany, Italy by Centro Interforze Studi e Applicazioni Military 

(CISAM) in collaboration with university of Pisa [125].  The image that we worked on is named 

D1_F12_H1 and contains 5 different targets (2 panels and 3 vehicles).  The data has spectral 

resolution of about 1.2 nm between 400 nm and 1000 nm with 0.6 m spatial resolution. The targets 

are as follows: two green colored panels made of carton named P1 and P2, Ford fiesta car named 

V1, a FIAT DUCATO mini commercial vehicle named V3 and a Ford Focus car named V4. These 

targets are located in different positions of the image scene. The positons are given in a ROI file 

for performance evaluation. The spectra of the targets are also given. The first step we did is to 

convert the image from radiance into reflectance. Then, some bands are chosen to reduce the error. 

In case of RBF NN, we used  in the training phase, the endmembers of the image automatically 

extracted through the ATGP algorithm, knowing that the spectra of the targets are given in the file. 

The total training sample is composed of 396 background pixels and 5 spectra corresponding to 

the targets. 
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In the next paragraph, we will show the results of FAR and the computation time. 

4.6.3.2. Results 

 

  Here we will show the results obtained when we applied the previously mentioned algorithms on 

the image containing real targets. Note that as in the previous case, the threshold for classifying 

targets is chosen in such a way in order to detect all the targets and then we compare the false 

alarms obtained in each method. 

Table 5: Nb of false alarms and computation time obtained when applying each algorithm 

Algorithm/Target P1 P2 V1 V3 V4 Total Time (s) 

ACE 0 0 0 3 0 3 63.7 

MF 6 3 3 7 0 19 35.8 

CEM 8 3 3 7 0 21 28 

OSP 544 0 0 24 0 568 25.8 

SID 43608 11309 10 12 30 54969 27 

SAM 19498 111 1 46 0 19656 5.37 

MTCEM NA NA NA NA NA 44 29 

SumCEM NA NA NA NA NA 24 28 

WTACEM NA NA NA NA NA 40 28 

RBFNN 0 0 0 0 0 0 37 

 

As we see in Table 5, similarly to the previous section, SID and SAM have a high false alarm rate 

in comparison with other techniques. These algorithms are too sensitive to the spectral signature 

of the targets and; therefore, will not be able to distinguish it in case of mixture with other spectra. 

Thought the computation time of SAM is minimal; the high false alarm rate makes this algorithm 

useless for this task.   

ACE algorithm is one of the best algorithms to use in order to detect the targets because it shows 

very low FAR (just 3 pixels marked as V3), but its computation time is high (63.7s) in comparison 

with other techniques. The performance of CEM and MF in terms of FAR and computation time 

is similar. Both have an acceptable false alarm rate with a small advantage for CEM over MF in 

terms of computation time and vice versa (for MF over CEM) in terms of FA. This is due to the 

similarity in the model in which they only differ in using the correlation matrix in case of CEM, 

while the covariance matrix is used in case of MF.  

In addition, in case of OSP, we found out that several FA appeared especially while searching for 

P1 target. This is because there are three panels in the scene, so we lowered the threshold in order 

to detect the third panel that exists in the scene with low abundance fraction. This caused this high 

number of false alarms; however, we didn’t notice this huge change when using other algorithms. 

When using the multi target versions of CEM MTCEM, SCEM and WTACEM, we couldn’t 

identify the target using this type of algorithms because we were setting one threshold for the 

mixture of all detectors. For this reason, the false alarms under these algorithms are marked as Non 
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Available (NA) in the table. However, an additional similarity test may help us in identifying their 

type. In comparison with the results obtained in the simulated image test, we were setting one 

threshold to discriminate the two types of landmines from background. Here in this image we have 

5 different types of targets so we are setting the same threshold for the 5 detectors corresponding 

to each target. This causes the appearance of more FA as the number of targets is higher. 

When applying the proposed type of NN, we were able to detect all targets without any false alarm 

for all of them. Even though the computation time is a bit high (37 s) in comparison with other 

multitarget detection algorithms, however detecting all targets without false alarms is more 

important for this kind of application. It is worth noting that when training the RBFNN to detect 

the targets in this image, we used Gaussian activation function in the hidden layer with high spread 

value to overcome the spectral variability of the targets in the scene. The results prove the 

advantage of using RBFNN with the above-mentioned training strategy in order to detect several 

targets using hyperspectral imagery in one scan. 

 

4.6.4. Conclusions 
 

In this experiment, we tested some supervised multitarget detection algorithms using hyperspectral 

imagery. We tested simulated data where the reflectance spectrum of the target was planted in the 

scene in different proportions and, at the same time, when applied on real hyperspectral image 

with real targets.  

Some of the tested algorithms (ACE, MF, CEM, OSP, SAM, SID) are designed for the detection 

of one target. They were applied several times each run for each target. This may be a time 

consuming process, especially if the number of targets is high. This is why we addressed the 

multitarget detection in this paper. When using some of the multitarget detection process, we lose 

the privilege of identifying the type of the target. However, this can be recovered by an additional 

similarity test to classify each target. 

SAM and SID are similarity measures between pixel signatures and target reflectance spectrum. 

The former calculates the angle between the target spectrum and the pixel spectrum, while the 

latter calculates the entropy between them. When the pixel spectrum is a linear mixture of target 

and other background material, the similarity measure will differ according to the abundance 

fraction of the target making the detection process harder. This is the reason of the high false alarm 

rate that appeared in the simulated data and real image tests. 

ACE is one of the best algorithms for target detection. It showed few false alarms by comparison 

with other algorithms in this test and previously done tests [[107],[123]]. However, its computation 

time is high. This limits the use of this algorithm in such situation where the detection should be 

fast like the case of real-time detection. 

Using RBFNN, we are able to detect, identify the targets and to estimate the abundance fraction 

without any problem. The proposed strategy for training an RBF NN has reduced the size of the 

used NN making also possible to estimate the abundance fraction of the targets. In both tests shown 
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in this test, we got a full detection rate without any false alarm rate. This was not achieved by any 

of other algorithms, which proves the advantage of using NN for target detection in the proposed. 

On the other hand, the computation time is a bit higher than other techniques, but it can be reduced 

if the size of the NN is reduced. 

 

4.7. Created Spectra method 
 

  In this test, we propose a new algorithm for multi target detection using hyperspectral imaging. 

The objective is to detect the presence of two signatures referring to 2 types of landmines in one 

scan. The idea here is instead of running the classification algorithm to detect the spectrum of the 

target two times each run for each target, we run the algorithm one time for both. In this only one 

run, we search for a synthetic new spectrum that represents both targets. The details about how 

this spectrum is created in addition to results of tests are shown in the next paragraph. 

4.7.1. Spectrum creation  
 

As said in the introduction of this section, in this experiment we create a new spectrum out of the 

reflectance spectrum of the landmines that we are searching for in order to detect several targets 

in one scan. Our goal in this step is to foster the detection process to arrive in the future to real 

target detection at the same time during image acquisition.  

In the same AVIRIS scene used in the previous simulated data tests, here we implanted the 

spectrum of 2 types of landmines: PMN anti-personnel mine and M20 anti-tank mine. The scene 

is composed of 987x 820 pixels with 0.12 m spatial resolution. The total number of planted mines 

30: 15 PMN mines and 15 M20 mines. 

In this experiment, we will test the difference in probability of detection, false alarm rate and 

computation time when applying the CEM, ACE and MF algorithms 2 times each time for each 

target and when applying the detection algorithms once searching for the created spectra.  

Having the image and the reflectance spectrum of landmines in 189 bands between 395 and 

2500nm, to create the representative spectrum of the two target, firstly we calculate the distance 

between the two vectors PMN-M20 and we sort it in increasing order. We take 5 bands where the 

distance is maximum to represent the PMN mine, we take the 5 bands where the distance is 

minimum to represent the m20 and we take 70 bands where the distance in near zero. The new 

spectrum is composed of 80 bands. An image of the created spectra is shown in the next figure: 
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Figure 27: Created reflectance spectrum 

Then we applied the classification algorithm ACE, CEM and MF in addition to MultiCEM on 

reduced image to 80 bands. The results are shown in the following chart: 

 

Figure 28: Created spectrum performance 
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  As we see in the chart, in the three algorithms, the created spectra method has the same 

performance in terms of Pd and FAR as if we applied the algorithms two times. However, we have 

a gain of more than 57% in computation time. Using this method, we would be able to detect both 

landmines in less time. To note that in case of CEM, the method of created spectrum is even faster 

than the MultiCEM that is specified to detect multiple targets. 

We applied the same procedure on another image 870x1330 pixel that have different background 

materials. We got similar results: 

 

 

Figure 29: Performance of created spectrum method when applied on another image 

 

However, when we applied these algorithms on downsampled images by a factor of two, so the 
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4.7.2. Conclusions 
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are taking part of the information to distinguish the landmines and this part is corrupted while 

downsampling. 

The number of bands taken to represent each mine affect the Probability of detection. So we may 

take more bands to represent each landmine in the resultant spectrum. The number of common 

bands also affects the detection probability. If we use more bands to produce the created spectrum, 

we may have better detection but with lower false alarms. This depends on the type of the spectra 

that we are trying to mix and how much they are similar.  

A study to apply this method in case of three or more targets and different types of targets must be 

conducted in order to optimize the bands selection and spectra creation. 

 

4.8. Field Experiment   
 

  In order to study the spectral characteristics of landmines and how they may change according to 

the environment conditions and the type of background where they are planted, it was necessary 

to collect mines, plant them and acquire their reflectance spectra using a spectrometer in different 

conditions. For this purpose, we contacted the Lebanese army to get some samples of landmines 

already found in the Lebanese territory that have been deactivated. After we got the necessary 

permissions, the Lebanese army gave us 6 samples of 6 types of landmines. 4 are anti-personnel 

mines and 2 are anti-tank mines. (see Fig. 30 ) 

 

 

Figure 30: Samples of landmines used for acquiring their reflectance spectra 
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To collect the reflectance spectra, we used a high-resolution spectroradiometer named FieldSpec 

4 HI-RES. This device is made by ASD Inc. Company. It has the capability to detect the spectrum 

in the range between 350 and 2500 nm. The specifications of the spectroradiometer are given in 

table 5. 

 The device is composed of several components:  

 The main radiometer in which is connected the probe via 1.5m fiber connected wire. 

 Power bank battery to supply the radiometer and very useful in case of field experiment 

where no power source is near. 

  Computer with specialized software to control the instrument and register  the data 

  White board used to calibrate the device before registering the data. 

There are other optional accessories. To note that the connection between the computer and the 

spectrometer is wireless. This made simpler the data collection in the field.  

Table 6: FieldSpec 4 Hi-res spectroradiometer specifications 

Spectral Range 350-2500 nm 

Spectral Resolution 3 nm @ 700 nm 

8 nm  @ 1400/2100 nm 

Spectral sampling 

(bandwidth) 

1.4 nm @ 350-1000 nm 

1.1 nm @ 1001-2500 nm 

Scanning Time 100 milliseconds 

Stray light specification VNIR 0.02%, SWIR 1 & 2 0.01% 

Wavelength 

reproducibility 

0.1 nm 

Wavelength accuracy 0.5 nm 

Maximum radiance VNIR 2X Solar, SWIR 10X Solar 

Channels 2151 

Detectors VNIR detector (350-1000 nm): 512 element silicon array 

SWIR 1 detector (1001-1800 nm): Graded Index InGaAs Photodiode, 

Two Stage TE Cooled 

SWIR 2 detector (1801-2500 nm): Graded Index InGaAs Photodiode, 

Two Stage TE Cooled 

Input 1.5 m fiber optic (25° field of view). Optional narrower field of view 

fiber optics available. 

Noise Equivalent 

Radiance (NEdL) 

VNIR  1.0 X10-9  W/cm2/nm/sr @700 nm 

SWIR 1  1.4 X10-9  W/cm2/nm/sr @ 1400 nm 

SWIR 2  2.2 X10-9  W/cm2/nm/sr @ 2100 nm 

  

Weight 5.44 kg (12 lbs) 
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Calibrations Wavelength, absolute reflectance, radiance*, irradiance*. All 

calibrations are NIST traceable. (*radiometric calibrations are 

optional) 

Computer Windows® 7 64-bit laptop (instrument controller) 

 

The Remote Sensing department of the National Research Council in Lebanon owns this device. 

They helped us in the acquisition of the spectra of landmines.  

To test the variation of the reflectance spectra in different conditions, we acquired the reflectance 

spectra in Lab, in grass field and in soil field as we will show in the next sections. 

 

4.8.1. Reflectance spectra of landmines acquired in the lab  
 

  In a first step, in order to register the reflectance spectrum of the landmines that we have, we 

acquired the spectrum in Lab conditions. By this, we mean that in a lab room, we used a specific 

source of light that produces light of different wavelengths between 350 and 2500nm of the same 

intensity. It is designed to produce stable output with a smooth spectral curve into the SWIR range 

and to minimize backscatter and any change of lamp energy output over time [131]. The lamp 

produces a well-defined beam to maximize the amount of light energy on a sample area while 

minimizing stray light from surrounding surfaces [131].  

The Illuminator benefits as stated by the manufacturer are [131]: 

 The 70 watt quartz-tungsten-halogen light source with integrated reflector produces stable 

illumination over the 350 to 2500 nm range 

 Stable output yields accurate and dependable reflectance measurements 

 Well-defined beam maximizes light energy on sample area 

 Precise voltage regulation for high stability light output 

 Multiple mount options for lab stands or tripods 

The source of light is used in order to avoid the noise and other artifacts that we may face in the 

field. In addition, the sunlight when reaches the soil, it will not have the same intensity at all 

wavelengths due to CO2 ,water vapor and other pollutants that absorb radiations of specific 

wavelengths. 

 

This experiment was done in Scientic research center in Engineering at Lebanese University 

faculty of Engineering. 
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Figure 31: Acquisition of 
the reflectance spectrum 
of TM-46 landmine 
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Figure 32: trying different incident angle 
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As we see in the image, to acquire the reflectance spectrum of the landmines, we used the source 

of light shown in the figures. First, the detector is calibrated on the white board. The calibration is 

necessary so after it is achieved, the registered spectra are automatically converted from radiance 

into reflectance value according to the reflection of light on the white board. 

We registered the reflectance spectra of the 6 mines. The results are as follows: 

 

Figure 33: PMN reflectance spectrum taken in LAB 

 

 

Figure 34: VS-50 reflectance spectrum taken in lab 
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Figure 35: PMD-6 reflectance spectrum taken in lab 

 

 

figure 36: M411 reflectance spectrum taken in lab 
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Figure 37: VS 2.2 reflectance spectrum taken in lab 

 

Figure 38: TM 46-reflectance spectrum taken in lab 

As we can see in the images, each landmine has a specific reflectance spectrum. This proves the 

utility of hyperspectral imaging technique in landmine detection because by profiting from the 

spectral information in the hyperspectral images, we are able to detect the landmines and in 

addition to distinguish their type. 

Another thing we can notice is that metal cased landmines like the TM46 antitank mine have an 

increasing reflectance value as the wavelength increases in the VNIR and SWIR domains. 

However, other plastic cased mines, like VS50 M411 and PMD6 have a decreasing value in the 
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VNIR and SWIR ranges. In the next section, we will see how these reflectance spectra will change 

when landmines are planted in grass. 

 

4.8.2. Reflectance spectra of landmines acquired in grass Field 
 

In this part, we show the spectra of reflectance of the landmines when they were planted in grass 

field. This experiment was done at Lebanese university campus-Hadath in a sunny day. The 

weather was clear and sunny without clouds in the sky. Here we planted all mines in the field. In 

addition, we acquired the reflectance spectrum of the grass just to compare the signature with and 

without landmines. 

The reflectance spectrum of the grass is as follows: 

 

Figure 39: AP mines planted in grass 
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Figure 40: Grass reflectance spectrum 

In this test, we removed the bands that corresponds to water absorption bands. In these bands, the 

data collected is too noisy. Just for example, the complete reflectance spectrum of the grass 

including the water absorption bands is as follows: 

 

Figure 41: Grass reflectance spectrum including water absorption bands 

It is clear that the reflectance spectrum contains some erroneous registrations as we see that the 

reflectance value in some bands is higher than one. This is not possible as at maximum an object 

can reflect the entire incident light (reflectance value =1). These erroneous values are registered in 
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the wavelengths that correspond to water absorption bands. So the humidity in the air causes this 

error. 

The reflectance spectrum of the landmines in the grass field is as follows: 

 

Figure 42: PMN reflectance spectrum when covered by grass 

 

 

Figure 43: VS50 reflectance spectrum when covered by grass 



98 

 

 

 

Figure 44: PMD 6 reflectance spectrum when covered by grass 

 

Figure 45: M411 reflectance spectrum when covered by grass 
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Figure 46: VS 2.2 reflectance spectrum when covered by grass 

 

Figure 47: TM-46 reflectance spectrum when covered by grass 
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As we notice in the figures, when landmines are covered with grass, the reflectance spectrum 

changes and became more similar to grass. The maximum reflectance value sensed in case of pure 

grass is 0.58. However, in case of landmine presence, the maximum achieved is lower than 0.5. 

In the case of plastic mines, we notice that the reflectance values at high wavelength value (1500 

nm- 2500 nm) are lower than the case of grass material and have similar shape to landmine 

(especially in case of PMN). However, in case of metallic antitank mine (TM-46), the reflectance 

values are a bit higher.  

These are some key points that we noticed in this test. Many other details would help us to estimate 

the abundance of landmine in the sensed pixel. 

 

Figure 48: Four AP mines exist in this scene. Could you localize them all? 

 

4.8.3. Reflectance spectra of landmines acquired in soil Field 
 

  During the same day when we acquired the reflectance spectra in the grass field, we acquired the 

reflectance spectra of landmines in another field made of soil only and surrounded by trees of 

pines. Also this test was done at Lebanese University Campus in the same weather conditions. 
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Figure 49: Holding the device on my back, we acquired the spectra of the landmines after burying them in the soil 
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In this test, we acquired the reflectance spectrum of four anti-personnel mines. In the following 

some figure of the landmines buried in the soil: 

 

 

The spectrum of soil without landmines is as follows: 

Figure 50: Landmines buried in soil 
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Figure 51: Untouched soil reflectance spectrum 

The reflectance spectra of the landmines buried in soil are as follows: 

 

Figure 52: PMN reflectance spectrum when buried in soil 
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Figure 53: VS 50 reflectance spectrum when buried in soil 

 

 

Figure 54: PMD 6 reflectance spectrum when buried in soil 
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Figure 55: M411 reflectance spectrum when buried in soil 

 

 

We see in these spectra, that once the mines are covered by soil, the reflectance spectrum will have 

an aspect very similar to the spectrum of inert soil without landmine. Just the small details in the 

spectrum will help to distinguish the presence of landmine as untouched soil will have a spectral 

response different than returned or excavated soil.  

In the visible domain, the spectral response is almost identical for all types of mines and is similar 

to the response of the soil. That is expected, as all mines look like soil to naked eye. 

In case of M411, VS 50 and PMD 6 we arrived to maximum reflectance spectra of higher than 0.3 

whilst in case of bare soil, the maximum is less than 0.3. This gives a sign of presence of another 

material other than soil and led us to suspect the presence of landmines. 

 

4.8.4. Conclusions 
 

In this field experiment, we collected the spectral reflectance of 6 different types of landmines in 

various background conditions. Some of these spectra are used in the experiment shown in chap. 

4.6.  
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In real experiments, we are relying on the sun to acquire data. Sun do not produce light of same 

intensity at all wavelengths. Also, there are other artifacts that may affect the detection mainly the 

water absorption and CO2 absorption bands. These artifacts cause the difference in spectral 

signatures of landmines when acquired in Lab or in another fields. 

When the landmine is covered by another material like grass or soil, the spectral signature will 

change also. The changes will depend on the proportion of background material covering the mine. 

However, it has been shown that we still have some spectral characteristics that help in the 

detection of landmine. 

The spectral response of landmines with plastic case have different shape than the reflectance of 

background material. This gives an advantage of hyperspectral imaging technique over the well-

known metal detectors in the detection of plastic mines as nowadays most landmines are made of 

plastic that the metal detector is not able to detect. 
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Chapter Five 

5. Conclusions and Future Work 
 

 The main contribution of this thesis is that we proved the applicability of hyperspectral imaging 

to detect surface laid mines. Landmines buried by soil or in grass are still detectable but proper 

classifiers must be  used. 

The problem of landmines is expanding worldwide. Although it is necessary to ban the use of 

landmines immediately, there is a need to find a new solution able to detect landmines of different 

types and shapes and is at the same time safe, fast and reliable. Hyperspectral imaging technology 

is a good candidate for this purpose. The mostly used technique until now is the metal detector 

thanks to its low cost. However, most of landmines nowadays are made of plastic, which made 

their detection using the metal detector harder.  One of the advantage of hyperspectral imaging 

technique is that it detects the presence of landmines whatever the type of the case is. The 

hyperspectral imagers are too expensive, but when mounted on a UAV to scan minefields on large 

scale, its efficiency will be comparable to other techniques especially if the time of detection is 

considered in the comparison. It is expected that the price of hyperspectral cameras decreases as 

more companies fabricates this type of devices in addition to finding new technologies that makes 

the fabrication of optical devices cheaper.   

 Every material has its special spectral signature. Therefore, knowing the mine spectral curve, by 

comparison between the mine spectrum and the pixel spectrum, we can decide on the presence or 

the absence of the mine at that specific position.  

It has been shown in the previous tests that using VNIR band, recently buried landmines could be 

detected. Also, the fusion of VNIR and SWIR could give better results. Landmine burying changes 

the thermal properties of the upper level of some type of soils. It also changes its surface reflectivity 

and stresses vegetation. Hence, buried landmines can be detected by measuring the change of 

reflectivity both between manipulated soil and background and between stressed and unstressed 

vegetation. Consequently, as anti-tank mine deployment is done by digging up a larger area of 

surface (soil and/or vegetation) and a larger volume of soil is disturbed, the possibility of detecting 

them is higher than with anti-personnel mines. MWIR and LWIR bands are also used to detect 

buried landmines. Even if SWIR and VNIR alone could detect soil disturbances due to buried 
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mines, MWIR and LWIR can reduce the false alarm rate. However, the use of SWIR bands is more 

common since the majority of manufactured imagers operates in the VNIR and SWIR bands.  After 

testing several hyperspectral imagers of different bands, it was found that imagers in LWIR bands 

have the potential to detect buried landmines with the use of proper algorithms. The algorithms 

could be supervised or unsupervised based on the data availability. Note that this does not eliminate 

the possibility to detect landmines with the use of other bands. However, proper algorithms and 

thresholds should be used for each case.  

If we consider high spatial resolution images, which means the image has ground sample distance 

close to the size of landmine, the possibility to detect a landmine is higher as the reflectance 

spectrum of the pixel will result only from the reflectance of the mine, or at least the reflectance 

of the landmine will be present with a high abundance. In addition, military target detection could 

be achieved at subpixel level using hyperspectral images. This means that by acquiring images 

from high altitude, using UAV or aircrafts, fast target detection is possible even if the target 

constitutes a small part of the pixel. 

In order to attain quasi real-time detection, all the processes involved, starting from geocorrection 

until classification, must be studied and organized so as to reduce the computational time. Since 

the detection performance will be possibly affected by some optimizations, a tradeoff between 

computational time and detection performance has to be achieved.   

Several factors affect the reflectance signature obtained by the imager. Wind and rain are the main 

factors, but the effect of rain is the dominant one. In the case of buried landmines, rainfall decreases 

the reflected portion of the thermal energy and therefore the reflectance signal received. However, 

the shape of the signature remains the same. More rainfall will result in more reduction and 

therefore the reflected signal will be more and more similar to the background. 

The use of PCA or other feature extraction method prior to classification do not always reduce the 

total computational time. Depending on the target detect algorithm used in the following step, 

reducing the dimension of the data may be effective or not. For example, the computational time 

have been reduced and the good detection performance have been preserved if we used PCA with 

ACE algorithm. However, the performance became worse when using similarity-based detection 

methods like SAM and SID. 

The use of supervised detection methods is preferred over unsupervised detection techniques 

because usually higher FAR is obtained in case of unsupervised techniques as low frequency 

elements in the scene are marked as targets while they are not. However, supervised detection 

techniques necessitates knowing the target reflectance spectra and sometimes the reflectance 

spectrum of the background materials prior to detection. This kind of information is not always 

present. 

There are different types of supervised detection techniques. Some may be less tolerant to the 

spectral variability or the abundance fraction of the target as in case of ACE, CEM and MF. Other 

techniques will not be able to detect the target if the spectral signature is slightly different from 

the reference spectra as in the case of SAM detector. 
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To detect several targets in one scan, we may run single target detection algorithm several times, 

each run to detect one target. However, this may be time consuming and not effective for real time 

detection. Other target detection algorithms supports the detection of several targets 

simultaneously.  

After several experiments, we proved the advantage of using neural networks in landmine 

detection using hyperspectral imaging. Even if the abundance of landmines was about 0.6, an RBF 

neural network trained with few background endmember data and target spectra was able to detect 

the landmines, identify them and estimate their abundance.  Also MLP neural networks were 

examined to detect the spectra of landmines in hyperspectral scenes. The results are obtained in a 

very fast computational time using this type of NN, but we were not able to detect all landmines 

with 0 FAR. So MLP NN have a good potential to be used in real-time detection but proper 

preparation of training data and network parameters calculation must be conducted first in a future 

work. 

In the field experiment, we collected valuable data of landmines reflectance spectrum in different 

environment. We acquired the reflectance spectrum of 4 types of AP mines and 2 types of AT 

mines. The experiment shows how much the reflectance spectrum change when taken in lab 

conditions and in field situation where too many factors affects the registration. The main factors 

that changes are the sun emission spectrum that is not uniform in all wavelengths, the water vapor 

and CO2 in the air that absorb light in some specific bands, in addition to other artifacts and noise. 

In a future work, a scan of real minefield using hyperspectral imager mounted on an UAV must 

be conducted in order to validate the algorithms proposed and developed here in real case scenario. 

In addition, MLP training must be optimized to obtain 0 FAR. 

Also, we would collect data in new background scenarios to study the possibility to detect 

landmines in situations other than we can find in Lebanon like in desert. 
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