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Abstract

Title : Scheduling Problems with Production and Consumption of Resources.

This thesis investigates the Extended Resource Constrained Project Scheduling

Problem (ERCPSP). ERCPSP is a general scheduling problem where the availabi-

lity of a resource is depleted and replenished at the occurrence times of a set of

events. It is an extension of the Resource Constrained Project Scheduling Problem

(RCPSP) where activities are replaced by events, which have to be scheduled subject

to generalized precedence relations.

We are interested in this thesis in proposing new methodologies and approaches

to solve ERCPSP. First, we study some polynomial cases of this problem and we

propose a dynamic programing algorithm to solve the parallel chain case. Then, we

propose lower bounds, mixed integer programming models, and a branch-and-bound

method to solve ERCPSP. Finally, we develop an instance generator dedicated to

this problem.

Key Words : Scheduling problem, nonrenewable resource, lower bounds, branch-

and-bound, linear programming, dynamic programming.

Supervisors : Jacques CARLIER and Aziz MOUKRIM.
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Resumé

Titre : Problèmes d'ordonnancement avec production et consommation des res-

sources

La plupart des travaux de recherches sur les problèmes d'ordonnancement

traitent le cas des ressources renouvelables, c'est-à-dire des ressources qui sont exi-

gées en début d'exécution de chaque tâche et sont restituées en �n d'exécution.

Peu d'entre eux abordent les problèmes à ressources consommables, c'est-à-dire des

ressources non restituées en �n d'exécution. Le problème de gestion de projet à

contraintes de ressources (RCPSP) est le problème à ressources renouvelables le

plus traité dans la littérature.

Dans le cadre de cette thèse, nous nous sommes intéressés à une généralisa-

tion du problème RCPSP qui correspond au cas où les tâches sont remplacées par

des événements liés par des relations de précédence étendues. Chaque événement

peut produire ou consommer une quantité de ressources à sa date d'occurrence et

la fonction économique reste la durée totale à minimiser. Nous avons nommé cette

généralisation ERCPSP (Extended RCPSP). Nous avons élaboré des modèles de

Programmation Linéaire pour résoudre ce problème. Nous avons proposé plusieurs

bornes inférieures algorithmiques exploitant les travaux de la littérature sur les pro-

blèmes cumulatifs. Ensuite, nous avons élargi la porté des méthodes utilisées pour

la mise en place de méthodes de séparation et évaluation. Nous avons traité aussi

des cas particuliers par des méthodes basées sur la programmation dynamique.

Mots clés : problème d'ordonnancement, ressource consommable, bornes infé-

rieures, méthode arborescente, programmation linéaire, programmation dynamique.

Directeurs de thèse : Jacques CARLIER et Aziz MOUKRIM.
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Notations

Scheduling problem with renewable resource

• Y : set of activities.

• n : number of activities.

• Si : starting time of activity i.

• pi : processing time of activity i.

• ri : release date of activity i.

• qi : tail of activity i.

• R : set of renewable resources.

• Rρ : the global resource amount of resource ρ ∈ R.

• E : set of precedence graph.

• eρi : the requirement for resource ρ by activity i during its execution.

ERCPSP

• X : set of events.

• n : number of events.

• Xp
k : set of production events of resource k.

• Xc
k : set of consumption events of resource k.

• S(i) : the occurrence time of event i (also denoted Si).

• Si : the occurrence time of event i (also denoted S(i)).

• X(S, t) : the set of events which have occurred by time t.

xix



• ES(i) : the earliest occurrence time of event i (also denoted ESi).

• ESi : the earliest occurrence time of event i (also denoted ES(i)).

• K : set of nonrenewable resources.

• Qk : the initial level of resource k ∈ K.

• aki : the quantity of resource k produced or consumed by event i.

• U : set of generalized precedence graph.

• vij : the time lag between events i and j.

• li,j : the length of the longest path from i to j.

• Γ+(i) : the set of direct successors of event i.

• Γ̄+(i) : the set of ascendants of event i.

• Γ−(i) : the set of direct predecessors of event i

• Γ̄−(i) : the set of descendants of event i.

• H : the set the scheduling horizon.

The single-resource case

• Xp : set of production events.

• Xc : set of consumption events.

• ai : the number of resource units produced or consumed by event i.

Parallel chain case

• SP : the number of parallel chains.

• Lh : the number of events of chain h.

• Ch
i : the ith event of chain h.

• bh(i) : the number of resource units produced or consumed by event Ch
i .

• Eh(i) : the earliest occurrence time of event Ch
i .

• Ah(i) : the level of resource at the earliest occurrence time of event Ch
i .



• A(e|S) : the level of resource at the occurrence time of event e ∈ X.

• m(S) : The minimal level of resource associated with S.





Introduction

The concept of scheduling is not new. Sun Tzu wrote about scheduling and strategy

from a military point of view 2500 years ago. The pyramids were built 3000 years

ago and transcontinental railways were constructed for some 200 years. All these

achievements could not be accomplished without some kind of schedule. At the

beginning of this century, scheduling began to be taken seriously in manufacturing

with the work of Henry Gantt and other pioneers. The scheduling theory is younger.

Indeed, it took many years for the �rst scheduling publications to appear in

operations research literature. Some of the �rst publications came in the early

�fties in Naval Research Logistics Quarterly and involved results by [Johnson, 1954],

[Smith, 1956] and [Jackson, 1956]. In the sixties, an important number of works was

done on dynamic programming and integer programming formulations of scheduling

problems. In the seventies, the research focused mainly on the complexity hierarchy

of scheduling problems. Since the eighties, di�erent directions in industry and

academia have been studied with an increasing amount of attention devoted to

stochastic scheduling problems.

Scheduling problems are de�ned by activities (tasks) or events (milestones) that

have to be performed in accordance with a set of precedence and resource constraints.

Each activity has a duration and normally requires resources. An event (milestone)

refers to a stage of accomplishment associated with a certain point in time.

Resources may be renewable or nonrenewable. Renewable resources are available

each period without being depleted. Typical examples of renewable resources

include manpower, machines, tools, equipment, space, etc. Nonrenewable resources

are depleted as they are used. The money is the best example of nonrenewable

resource for which Carlier and Rinnooy Kan introduced the �nancing problem

[Carlier and Rinnooy Kan, 1982]. The application �elds of scheduling theory include

computers, manufacturing, agriculture, hospitals, transport, etc. The principal focus

is on the optimal allocation of one or more resources to activities over time

[Lawler et al., 1993, Lee et al., 1997, Brucker, 2007, Pinedo, 2012].

The Resource Constrained Project Scheduling Problem (RCPSP) is with-

out doubt the most widely studied scheduling problem in literature. In this

problem, non-preemptive activities requiring renewable resources, and subject to

1
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precedence constraints, have to be scheduled within a minimal makespan. The

RCPSP with minimum and maximum time lags has also been the subject of sev-

eral papers [Bartusch et al., 1988] [Cesta et al., 2002] [Neumann and Zhan, 1997]

[Neumann et al., 2006], it also concerns only renewable resources. In this thesis,

we address the Extended Resource Constrained Project Scheduling Problem (ER-

CPSP). ERCPSP is a general scheduling problem where the availability of resources

is depleted and replenished [Carlier et al., 2009, Carlier et al., 2016]. An instance

of ERCPSP consists of events, nonrenewable resources and generalized precedence

constraints between pairs of events. Each event produces or consumes some units of

resources at its occurrence time. The objective is to build a schedule that satis�es

the precedence and resource constraints and minimizes the makespan. ERCPSP is a

generalization of RCPSP where activities requiring renewable resources are replaced

by events consuming or producing nonrenewable resources.

Some other authors have worked on models similar to ERCPSP. We can quote

the works of [Neumann and Schwindt, 2002] and of [Laborie, 2002]. Neumann and

Schwindt formalized the Project Scheduling Problem with Inventory Constraints

where the availability of each resource is at any time upper and lower bounded. To

solve this problem, they proposed a branch-and-bound algorithm with a �ltered

beam search heuristic. Laborie introduced the concept of a Resource Temporal

Network (RTN). He proposed a constraint propagation algorithm to solve the

problem. Koné et al. worked on the RCPSP with Consumption and Production of

Resources (RCPSP/CPR) [Koné et al., 2013]. The particularity of their extension of

RCPSP is that, in addition to renewable resources considered in the basic version, it

also involves nonrenewable resources which can be consumed (or not) at the starting

time of an activity in a certain amount and/or then produced in another amount

at the completion time of this activity. To solve this problem, Koné et al. proposed

four mixed integer linear programming models for RCPSP/CPR. ERCPSP coincides

with the problem considered by [Neumann and Schwindt, 2002] and [Laborie, 2002]

where no upper bound on the resource availability is prescribed.

We are interested in this thesis in proposing new methodologies and approaches

to solve ERCPSP. Chapter 1 is concerned with giving the reader a background on

scheduling problems and several methods previously proposed to solve them. More

precisely, we present �rst some de�nition and terminology dedicated to scheduling

problems. Then, we introduce the RCPSP and we present some lower bounds, exact

procedures and heuristics to solve it. Finally, we study three scheduling problems

with nonrenewable resources. The �rst problem is the �nancing problem which can

be solved using the shifting algorithm, the second problem is the Project Scheduling

Problem with Inventory Constraints of [Neumann and Schwindt, 2002] and the last
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one is the RCPSP with consumption and production of resources.

Following the presentation of the �eld of the study of the thesis, we present in

Chapter 2 some terminology dedicated to basic concepts and formulate the ERCPSP,

and we show the connection between this problem and other scheduling problems

with production and consumption of resources. Then, we study four special cases

of ERCPSP for which the decision problem can be solved in polynomial time: the

relocation problem, the parallel chain case, the series-parallel case and the interval

order case. An adaptation of the algorithm of [Abdel-wahab and Kameda, 1978] is

proposed for the parallel chain case. This algorithm is based on a decomposition of

chains into production and consumption subchains. These subchains can be seen as

jobs of a �ow-shop with two machines. The idea is to construct a schedule of standard

form, where the events of each subchain are scheduled next to each other, from any

feasible schedule. Then, the Johnson's rule is applied to these subchains in order

to obtain an optimal sequence. A list algorithm is introduced for the interval order

case to construct feasible schedules. The priorities of events are de�ned using the

proprieties of interval orders. Finally, a dynamic programing algorithm is proposed

to solve the parallel chain case.

In Chapter 3, we introduce six lower bounds for ERCPSP. Two of them

are based on the extraction of a generalized Cumulative Scheduling Problem,

combined with an adapted version of Jackson's Pseudo-Preemptive Schedule

[Carlier and Pinson, 2004] and the concept of energetic reasoning. Two further

lower bounds respectively result from applying Carlier and Rinnooy Kan's Shifting

Algorithm to a Financing Problem and iteratively testing the feasibility of associated

network �ow problems in a dichotomic search method. The last two lower bounds

are destructive lower bounds computed using a general linear programming scheme.

This linear programming scheme is based on a decomposition of the time horizon

into successive intervals.

In the continuity of Chapter 3, Chapter 4 deals with the exact solving of

ERCPSP. In the �rst half of the chapter, we present four mixed integer linear pro-

gramming formulations for ERCPSP. More precisely, we propose �rst an adaptation

of two known time-indexed MILP formulations of RCPSP to ERCPSP. Second,

we introduce an adaptation of a �ow-based continuous-time formulation. Finally, we

propose a new MILP formulation based on the concept of event partitioning to solve

the problem. The time-indexed formulations involve pseudo-polynomial numbers of

constraints and variables, since the number of binary variables increases proportion-

ally with the time horizon. However, the two other formulations involve polynomial

numbers of constraints and variables. In the second half of the chapter, we present

a branch-and-bound method to solve the ERCPSP. The branching process of this
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method is similar to the one proposed by [Demeulemeester and Herroelen, 1990] for

the RCPSP. The proposed search tree is a binary tree. Each node represents a subset

of solutions which satisfy a set of precedence constraints, and it is evaluated using

our lower bounds. Finally, we present two adapted constraint propagation algorithms

to reduce the number of nodes: the timetabling of [Le Pape, 1994] and the balance

constraint of [Laborie, 2002].

In Chapter 5, we develop an instance generator for ERCPSP based on the

methodology of ProGen [Kolisch et al., 1995]. This generator takes into account

several graph measures such as the number of nodes, the graph complexity, the

number of predecessors and successors of a node as well as parameters for the

generation of the basic data and the resource constraints.

Finally, the di�erent parts of the thesis are discussed in a general conclusion and

future works and perspectives are presented.
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1.1 Introduction

Scheduling has been the subject of extensive research since the early 1950s. The ap-

plication �elds of scheduling theory include computers, manufacturing, agriculture,

hospitals, transport, etc. The principal focus is on the optimal allocation of one

or more resources to activities over time. (see [Lawler et al., 1993, Lee et al., 1997,

Brucker, 2007] and [Pinedo, 2012]).

Scheduling problems may be polynomially solvable or NP-hard. The NP-hardness

of a problem means that it is impossible to obtain an optimal solution without using

an enumerative algorithm, for which computation times increase exponentially with

problem size. To solve NP-hard scheduling problems, a branch-and-bound algorithm

is usually applied. In practice it is better to use a heuristic method to �nd quickly

an approximate solution.

More recently the Resource Constrained Project Scheduling Problem (RCPSP)

has been extensively studied. The RCPSP and its extensions are very general

scheduling models which contain all complex machine scheduling problems as

special cases [Brucker et al., 1999]. In RCPSP, non-preemptive activities requiring

renewable resources, and subject to precedence constraints, have to be scheduled in

order to minimize makespan. Renewable resources are allocated to activities at their

starting time and released at their completion time. On the contrary, a nonrenewable

5
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resource is produced or consumed by an activity only at its starting time. Money

is an example of nonrenewable resource for which [Carlier and Rinnooy Kan, 1982]

introduced the �nancing problem.

The remaining of this chapter is structured as follows. In Section 1.2 we present

some de�nition and terminology dedicated to scheduling problems. In Section 1.3 we

present the RCPSP which is the most famous scheduling problem with renewable

resources. In Section 1.4 we present three scheduling problems with nonrenewable

resources, and �nally we conclude the chapter in Section 1.5.

1.2 De�nition of Scheduling Problems

A scheduling problem consists of a number of activities (tasks) or events (milestones)

that have to be performed in accordance with a set of precedence and resource

constraints. Each activity has a duration and normally requires resources. An event

(milestone) refers to a stage of accomplishment associated with a certain point in

time. Resources can be of di�erent types, including manpower, machinery, �nancial

resources, energy, etc. The �nish-start relation with a zero time lag is the usual

type of precedence relation. An activity can only occur as soon as all its predecessor

activities have occurred. Other precedence relations exist such as start-start, �nish-

�nish and start-�nish relations, with various types of minimal and/or maximal time

lags.

1.2.1 Activities and Events

Activities and events are the basic entities in scheduling problems. An activity is

characterized by a starting time Si, a completion time Ci and a processing time pi. An

activity has speci�c requirements on the amounts and types of resources. The set of

activities is denoted Y = {0, 1, ..., n+1}. By convention, the two activities 0 and n+1

are added to respectively de�ne the start and the end of the schedule. Activities may

be non-preemptive or preemptive. A non-preemptive activity is executed without

interruption from its starting time to its completion time. Preemptive activity can

be interrupted at any time. According to the scheduling problem, an activity i may

also have the following characteristics:

• A release date (ri) is the time when activity i is available to start processing.

• A tail (qi) is the latency between the completion of activity i and the

completion of the project.
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• A due date (resp. deadline) (di) denotes the latest time instant at which

activity i has to �nish.

• A weight (wi) signi�es the importance of activity i.

An event is characterized by an occurrence time Si and has no processing time.

The set of events is denoted X = {0, 1, ..., n + 1}. The two events 0 and n + 1 are

added to respectively de�ne the start and the end of the schedule. An event can

produce or consume a quantity of resource at its occurrence time.

1.2.2 Resources

Activities and events require resources for their execution. Each resource has a

limited capacity and may be renewable or nonrenewable. Renewable resources are

available each period without being depleted. The set of renewable resources is

denoted by R. The constant availability of renewable resource k ∈ R is denoted

Rk. Typical examples of renewable resources include manpower, machines, tools,

equipment, space, etc. Nonrenewable resources are depleted as they are used. The

money is the best example of nonrenewable resources. The set of nonrenewable

resources is denoted by K. The availability of nonrenewable resource k ∈ K is

denoted Qk.

1.2.3 Precedence relations

Precedence relations between activities can be expressed by linear constraints

between the starting times and the completion times of activities. For example

a �nish-start precedence relation with zero time lag between activities i and j is

modeled by the linear constraint Sj ≥ Ci. This relation implies that activity j can

start immediately after the completion time of activity i, or later. Other type of

precedence relations exist such as start-start relation (Sj ≥ Si: activity j can only

start after the starting time of activity i), start-�nish relation (Cj ≥ Si: activity j can

only �nish after the starting time of activity i) and �nish-�nish relation (Cj ≥ Ci:

activity j can only �nish after the completion time of activity i). Note that we

have only one type of precedence relations between events and it is the start-start

relation.

Each precedence relation (i, j) has a time lag vij to denote the latency between

i and j. Time lags can be positive, zero or negative. A �nish-start relation with a

non-zero time lag vij 6= 0 implies that activity j can only start after Ci + vij. When

vij is negative (resp. positive), we talk about maximal (resp. minimal) time lag.



8 CHAPTER 1. SCHEDULING PROBLEMS

1.2.4 Constraints and Objectives

Constraints and objectives are de�ned during the formulation of the problem.

Constraints de�ne the feasibility of a schedule. Objectives de�ne the optimality of

a schedule. Constraints must be satis�ed and objectives should be optimized. Both

constraints and objectives may be resource-based, activity-based or a combination

of them. Constraints appear in many forms. Precedence constraints de�ne the order

in which activities can be performed. Resource constraints de�ne the requirements

of resources.

A feasible schedule satis�es all of the constraints. An optimal schedule not only

satis�es all of the constraints, but also is better than any other feasible schedule.

Goodness is de�ned by objective function. Typical example of objectives include

minimization of the makespan, minimization of cost, maximization of resource

utilization, resource e�ciency, minimization of work-in-progress, etc.

1.3 Resource Constrained Project Scheduling Prob-

lem

The Resource Constrained Project Scheduling Problem (RCPSP) is the basic

problem type in project scheduling. It is without doubt the most widely studied

scheduling problem with renewable resources in literature, and it has resulted in

an overwhelming amount of papers with solution procedures devoted to it. In this

problem, non-preemptive activities requiring renewable resources, and subject to

precedence constraints, have to be scheduled in order to minimize the makespan.

1.3.1 Problem Description

An instance I of the Resource Constrained Project Scheduling Problem (RCPSP)

is de�ned by:

• A set Y of n activities: ∀i ∈ Y , pi denotes the processing time of i.

• A set E of precedence relations: (i, j) ∈ E means that activity i precedes

activity j (j cannot start before i is over).

• A set R of renewable resources: ∀k ∈ R, Rk denotes the global resource amount

of resource k and ∀i ∈ Y, ∀k ∈ R, eki denotes the requirement for resource

k by activity i during its execution. These resources are given back to the

system once the activity is completed. The total resource demand must be less
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than or equal to the global resource amount for each resource throughout the

scheduling horizon.

A schedule S is a function assigning a starting time Si to each activity i ∈ Y . It is
feasible if it satis�es the precedence and resource constraints. Thus, solving RCPSP

means computing a feasible schedule S with a minimal makespan.

1.3.2 Lower bound calculations

In this section we present methods for computing lower bounds for the RCPSP.

Lower bounds are used to estimate the quality of heuristic solutions. They are also

needed for the construction of branch-and-bound algorithms.

1.3.2.1 Critical Path and Capacity Bounds

The Critical Path Bound (lb0) is the most obvious and the most frequently used

lower bound. This bound is based on ignoring the resource constraints. So, it is

obtained by computing the length of a critical path in the project network. Another

simple bound, called Capacity Bound (lb1), is obtained by focusing on the resource

constraints instead of the precedence constraints, it is computed as follows:

lb1 = max
k∈R
d
∑
i∈Y

eki × pi
Rk

e

[Stinson et al., 1978] introduced the critical sequence lower bound (lb2), which takes

into account simultaneously precedence and resource constraints. Let us consider a

critical path CP in the graph (Y,E). For each activity i ∈ Y −CP , it is determined

how many time periods p′i activity i can be scheduled in parallel to the critical path

(taking into account the resource constraints). In case of p′i < pi, activity i cannot

be processed completely and the project cannot �nish before lb0 +pi−p′i. Therefore,
lb2 is de�ned as follows:

lb2 = lb0 + max{0, {pi − p′i|i ∈ Y − CP}}

1.3.2.2 Bin Packing Bounds

RCPSP can be relaxed by ignoring the precedence constraints and all resource

constraints but one for some resource k. The obtained problem is similar to single

resource constrained problems of the bin packing type. Thus, lower bounds for

such problems could be generalized for RCPSP, see for instance [Berger et al., 1992,

Scholl et al., 1997].
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1.3.2.3 Node Packing Bounds

These bounds consist of �nding a subset SY of activities, such that each activity

i ∈ SY is incompatible with any other activity within this set. So, the activities of

SY must be scheduled sequentially and the sum of their processing times represents a

lower bound for RCPSP. The problem of determining a set SY which maximizes the

obtained lower bound value can be formulated as a weighted-node packing problem

[Mingozzi et al., 1998].

1.3.2.4 Parallel Machine Bounds

These lower bounds are based on m-machine scheduling problems generated from

RCPSP. The m-machine scheduling problem is de�ned as follows. A set Y of

activities have to be executed on m identical machines. At most one activity is

executed on one machine at a time. A basic lower bound for this problem is the

quantity G′(Y ) de�ned as [Carlier, 1984]:

G′(Y ) = (1/m)× (ri1 + ...+ rim +
∑
i∈Y

pi + (qi1 + ...+ qim)

The bound G′(Y ) can be improved using the Jackson's Pseudo Preemptive Schedule

[Carlier and Pinson, 1998], which is an e�cient lower bound for the m-machine

problem.

1.3.2.5 Precedence Bounds

These lower bounds are based on incompatible pair of activities. For each incom-

patible pair (i, j), a disjunctive precedence relation can be introduced, because i

must be �nished before j can be started or vice versa. Therefore, lower bounds

can be computed by testing both directions of the disjunctive precedence relation

[Balas, 1968]. These lower bounds can be improved by considering incompatible

triplets of activities.

1.3.2.6 LP-Based Bounds

Authors of [Mingozzi et al., 1998, Brucker and Knust, 2000] proposed lower bounds

based on linear programming formulations. They relaxed the non-preemption

constraints and associate a variable with each subset of activities that can be

executed simultaneously without violating any constraint. As a result the linear

program can be very large, however it can be tackled by column generation. A general

linear programming scheme for computing new bounds for RCPSP was proposed
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by [Carlier and Néron, 2003]. It is based on a decomposition of the time horizon

into several successive intervals. The interest of this scheme was demonstrated

theoretically.

1.3.3 Exact procedures

One of the most commonly used methods for solving RCPSP is the branch-and-

bound method. Mixed Integer Linear Programming (MILP) is used to model

RCPSP. It can be solved either using branch-and-price, branch-and-cut or some

other method [Br£i¢ et al., 2012].

1.3.3.1 Linear programming based approaches

There are a large number of MILP formulations for the RCPSP. Among others,

we can quote the formulations involving an exponential number of variables such

as the discrete time formulation of [Mingozzi et al., 1998] which considers that all

feasible sets of activities (all activities included in such a set can be processed

simultaneously) of the problem are known, and the continuous time formulation of

[Alvarez-Valdés and Goerlich, 1993] which assumes that all forbidden sets (distinct

sets whose elements are activities which cannot be processed simultaneously) are

given. On the other hand, there exist formulations involving a pseudo-polynomial

number of variables (such as the formulation of [Christo�des et al., 1987] involving

time-indexed variables), and other formulations involving a polynomial number of

variables (such as the formulation of [Artigues et al., 2003] involving sequencing

variables). Authors of [Koné et al., 2011] proposed an e�cient MILP formulation

for RCPSP involving event variables. This formulation is also used as modeling

inspiration for other solving methods.

1.3.3.2 Branch-and-bound procedures

The branch-and-bound method is a well known technique for solving combinatorial

problems. This method was described by [Agin, 1966], it allows the generation of

optimal solutions within an acceptable computational time. The RCPSP belongs

to the set of complex combinatorial problems. A combinatorial problem refers to

the assignment of numerical values to a �nite set of variables, in order to satisfy

a set of constraints and to minimise an objective function f(x). The constraints

of combinatorial problems may be implicit or explicit. Implicit constraints are

satis�ed by the way in which the branch-and-bound algorithm is constructed

(example: precedence constraints). Explicit constraints, however, need procedures

for recognition as an integral part of the branch-and-bound algorithm (example:
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resource constraints). A solution s is an assignment of numerical values to a set of

variables that satis�es all the implicit constraints. In RCPSP, an earliest starting

time schedule represents a solution. A feasible solution is de�ned to be an assignment

of numerical values that satis�es all the constraints (implicit and explicit ones).

A solution in which the activities are processed one after the other respecting all

precedence relations represents a feasible solution.

Let Ω denote the set of all solutions of a combinatorial problem. A partition of

Ω is a collection of subsets Ω1,Ω2, ...,Ωs with the following properties:

Ω1 ∪ Ω2 ∪ ... ∪ Ωs = Ω

Ωi ∩ Ωj = ∅, ∀i 6= j

The branching process starts with partitioning the set Ω into several subsets

Ω1, ...,Ωs. By continuously partitioning such subsets again a search tree with subsets

of solutions as nodes is constructed. The initial node of the tree is the set of all

solutions Ω. Branches are created by the branching process and nodes of the tree

represent the subsets Ωi of Ω. With each node i, a subset Ωi is associated. The

branching process stops, if the optimal solution of each leaf node of the tree is

known or can e�ciently be computed. A branching scheme de�nes how the initial

set Ω as well as the subsets Ωi are partitioned. A search strategy de�nes the sequence

in which the nodes of the search tree are considered. In general, we distinguish two

search strategies. The �rst one is a backtracking strategy that selects an intermediate

node which was created at the previous stage. The second one is a best-�rst strategy

that selects the intermediate node which has the best lower bound.

Two characteristics of the branch-and-bound algorithm are necessary in order

to solve the combinatorial problem optimally. The �rst characteristic is called the

branching characteristic, which ensures the generation of an optimal solution during

the branching process. The second characteristic, which is called the bounding

characteristic, gives the possibility to identify an optimal solution. For example, if

during the search process a feasible solution s′, whose objective value f(s′) is smaller

than or equal to the lower bounds lbi of each intermediate node i, is obtained then

s′ is an optimal solution and no further branching from the nodes i are needed.

Using the de�nitions given above, a branch-and-bound algorithm could be de�ned

as follows:

1. branching from end nodes to new nodes: given an intermediate node, we create

new nodes,

2. determining lower bounds for the new nodes,
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3. choosing an intermediate node from which to branch next,

4. recognizing when a node contains only infeasible or non-optimal solutions,

5. recognizing when a �nal node contains an optimal solution.

In the sequel of this section, di�erent branch-and-bound procedures will be

presented. Note that the list of the presented branching schemes is not exhaustive.

1.3.3.3 Chronological branching scheme

An easy way to build solution is to associate a partial schedule with each node of the

search tree, and the branching scheme consists of adding at least one activity to this

partial schedule. Thus, a leaf of such a tree corresponds to a feasible schedule. There

are two families of chronological branching schemes. The �rst one considers that at

most one activity is added to the partial solution at each node of the tree, whereas

in the second one feasible subsets of activities are added to the partial schedule.

Adding one activity to a partial solution: Let N be a given node of the search

tree that corresponds to a partial schedule. The set of eligible activities (EL)

is the set of activities whose all predecessors have been already scheduled.

The most natural method to extend a partial solution is to consider this set

of eligible activities EL. A new node is created for each activity in EL and

this activity is scheduled as soon as possible, at a time-point greater than the

starting time of the activity scheduled at the previous level and satisfying both

resource and precedence constraints, see for instance [Sprecher, 2000].

[Baptiste et al., 1999] introduced another method to extend a partial solution.

An activity i ∈ EL is chosen (the one with minimum earliest starting time)

and two new nodes are created. In the �rst node activity i is scheduled as soon

as possible. In the second node, at least one activity in EL \ {i} is enforced to

start before or simultaneously with the start of i.

Delaying alternatives: This branching scheme was initially introduced by

[Christo�des et al., 1987]. Improvements and corrections of this method was

proposed by [Erik L. Demeulemeester, 1997]. Let us consider a given node

that corresponds to a partial schedule, and a time t which corresponds to

the completion time of an activity scheduled at a previous level. We de�ne

the set IP (t) (resp. EL(t)) of in progress activities (resp. eligible activities)

at time t. We consider that an activity is eligible if all its predecessors are

completed at t. These eligible activities are added to the partial schedule at

time t. If no resource con�ict occurs, then t is increased, otherwise all Minimal
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Delaying Alternatives are enumerated and a node is created for each one of

them. A minimal delaying alternative (MDA) is a subset of IP (t) ∪ EL(t),

such that if the activities of this subset are delayed then the resource con�ict

disappears. Each subset of a MDA is not a delaying alternative.

1.3.3.4 Minimal forbidden sets

This branching scheme was introduced by [Lgelmund and Radermacher, 1983] and

is totally di�erent from the previous ones. A forbidden set F is a set of activities

that violate the resource constraints if they are performed concurrently. A forbidden

set F is called minimal forbidden set if it does not admit any forbidden set as a

subset. Suppose that a resource con�ict is detected at a time-point t. This resource

con�ict corresponds to at least one forbidden set F . So, to solve it, we add precedence

constraints between any two activities of F in order to delay one or more than one

activity. Theoretical aspects related to forbidden set enumeration for Branch-and-

Bound was investigated by [Stork and Uetz, 2005].

1.3.4 Heuristic procedures

Heuristic procedures dominate the research on RCPSP. The simplest heuristics are

constructive ones that use a priority list [Br£i¢ et al., 2012]. The basic members of

this family are serial and parallel scheduling schemes. These methods are very fast,

even for huge projects but they do not produce good solutions. In a recent paper,

[Valls et al., 2005] showed that incorporating a technique called double justi�cation

(DJ) in RCPSP heuristic algorithms can produce a substantial improvement in the

results obtained.

Metaheuristics are improvement heuristics which aim to produce solutions

reasonably close to the optimum. Decomposition based genetic algorithm for

RCPSP was introduced in [Debels and Vanhoucke, 2007], This metaheuristic yields

some best results on standard benchmarks. Hybrid algorithm using a combination

of scatter search and ant colony optimization was used by [Chen et al., 2010]

to get very good results on RCPSP. Other methods were used such as: taboo

search, simulated annealing, electromagnetism metaheuristics, etc. Authors of

[Kolisch and Hartmann, 2006] concluded that the best metaheuristics are the ones

that use population-based approaches.
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1.4 Scheduling problems with non-renewable re-

sources

In this section, we present three scheduling problems with non-renewable resources.

The �rst one is the Project Scheduling Problem with Inventory Constraints, which

was de�ned by Neumann and Schwindt [Neumann and Schwindt, 2002]. The second

problem is the Financing problem and the last one is the RCPSP with consumption

and production of resources.

1.4.1 The Financing Problem

The Financing Problem [Carlier and Rinnooy Kan, 1982, Slowi«ski, 1984] has been

investigated prior to the Project Scheduling Problem with Inventory Constraints.

This problem aims to model the �nancing of some project. It is a special case of

ERCPSP, insofar as the dates of production events are given whenever there are

precedence constraints between consumption events. It is solved using a polynomial

algorithm known as the shifting algorithm. Deadlines can also be taken into account.

1.4.1.1 Problem description

An instance of this problem is de�ned by a set X of n consumption events. Each

event i ∈ X consumes ai units of a nonrenewable resource at its occurrence time.

Initially, at time z1 = 0, b1 units of resource are available. An additional quantity of

b2, ..., bq units of resource becomes available at given times z2, ..., zq. A precedence

graph G = (X,E) is associated with the problem. X contains the set of consumption

events and the two �ctitious events 0 and n + 1. We suppose that the minimum

capacity is 0 and the maximum capacity is in�nite. When money is involved, it is

better to have as large a stock as possible! At �rst we will suppose that G does

not contain any arc (i, 0). Such an arc will model a deadline. All events have to be

scheduled in a minimal makespan. This problem can also be modeled using ERCPSP.

1.4.1.2 Feasible Schedule

Let us denote πij the value of a maximal path from i to j in G. ES = {ESi = π0i/i ∈
X} is the earliest time-feasible schedule and LS = {LSi = π0,n+1 − πi,n+1/i ∈
X} the latest time-feasible schedule. Let LS(δ) = {LSi + δ/i ∈ X} be a latest

schedule with makespan equal to π0,n+1 + δ (δ is positive). A time-feasible schedule

S = {Si/i ∈ X} is resource-feasible if the following condition is satis�ed: for any

t : R(t) =
∑
{i/Si≤t} ai ≤ A(t) =

∑
{µ∈[1...q]/τµ≤t} bµ. In other words, the requirement
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curve is below the availability curve.

1.4.1.3 The Shifting Algorithm

The �nancing problem can be solved using the shifting algorithm in polynomial

time (O(n log n)). In the shifting algorithm, the latest schedule is shifted in order to

satisfy the feasibility condition. Calculation details are given in Algorithm 1.1.

Algorithm 1.1: The shifting algorithm

begin
if (

∑
i∈X ai >

∑
µ∈[1,...,q] bµ) then

there is no feasible schedule
else

Compute the latest schedule LS := {LSi = π0,n+1 − πi,n+1/i ∈ X};
A(τ1) := b1;
for µ := 2 to q do

A(τµ) := A(τµ−1) + bµ

µ := 1; δ := 0;R := 0;
for i := 1 to n do

R := R + ai;
while A(τµ) < R do

µ := µ+ 1

if δ < (τµ − LSi) then
δ := (τµ − LSi)

1.4.2 The Project Scheduling Problem with Inventory Con-

straints

The Project Scheduling Problem with Inventory Constraints was introduced by

Neumann and Schwindt [Neumann and Schwindt, 2002]. Inventory constraints refer

to nonrenewable resources, which can be stocked and have minimum and maximum

prescribed stocks. Neumann and Schwindt proposed a branch and bound method

for solving this problem and truncated it to a �ltered beam search heuristic.

1.4.2.1 Problem description

An instance of the Project Scheduling Problem with Inventory Constraints is de�ned

by a set X of events, a set K of nonrenewable resources, and a set U of generalized

precedence relations. For each event i ∈ X and for each resource k ∈ K, aki denotes

the quantity of resource k produced or consumed by event i. For each (i, j) ∈ U , vij
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represents the time lag between events i and j. The length of the longest path from i

to j in the graph (X,U) is denoted πij. Inventory constraints refer to nonrenewable

resources, which can be stocked and have minimum and maximum prescribed stocks.

So, a safety stock Qk and a capacity of the storage facility Qk are given for each

resource k ∈ K. A schedule S is a function giving an occurrence time Si to each event

i ∈ X. It is time-feasible if it satis�es all the precedence constraints. It is resource-

feasible if, for each resource k and for every time t, the inventory of the resource is

between Qk and Qk. A schedule is said to be feasible if it is both time-feasible and

resource-feasible. The objective in this problem is to �nd a feasible schedule that

minimizes the makespan.

1.4.2.2 The Exact Method of Neumann and Schwindt

[Neumann and Schwindt, 2002] propose a branch and bound method which enu-

merates alternatives for avoiding stock shortages and surpluses by introducing

disjunctive precedence constraints between some disjoint sets of events A and B: A

is before B if min{Si/i ∈ B} ≥ min{Si/i ∈ A}. So a node in the tree corresponds

to a set of these disjunctive precedence constraints. The authors show that if the set

of schedules of a node is not empty, there exists an earliest schedule S respecting the

initial precedence constraints and the disjunctive precedence constraints. Moreover

they explain how to compute this earliest schedule by adjusting the starting times of

events. If this schedule is resource-feasible, it is feasible, so we backtrack. Otherwise,

there exists a time t such that X(S, t) = {i ∈ X | Si ≤ t} is a surplus set or a

shortage set. That is:
∑

i∈X(S,t) a
k
i > Qk or

∑
i∈X(S,t) a

k
i < Qk. They consider the

smallest t satisfying the previous condition.

Let us explain the case of a surplus set. Here it is necessary to postpone a minimal

subset B of events (B included in X(S, t)). B is composed of events i with aki strictly

positive (production events) and it is minimal in the sense that the surplus con�ict

is solved, but it is not solved for some proper subset of B. Of course it is necessary

to enumerate several alternatives for B. To postpone B, they consider the set A of

events which are not in X(S, t) and with aki strictly negative (consumption events).

Neumann and Schwindt proposed two lower bounds. The �rst lower bound is

associated with the earliest schedule. The second lower bound uses the earliest

schedule ES (∀i ∈ X,ESi = π0i) and also a latest schedule LS (∀i ∈ X,LSi =

Cmax− πi,n+1 where Cmax is a hypothetic makespan). A lower bound of the stock is

obtained by starting the consumption events as early as possible, given by ES, and

the production events as late as possible, given by LS. Similarly an upper bound of

the stock is obtained by starting the consumption events as late as possible, given
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by LS, and the production events as early as possible, given by ES. If at some time

t it can be proved that the stock will be insu�cient or too large, there is no solution

and the corresponding node of the tree can be cancelled.

The experimental analysis of [Neumann and Schwindt, 2002] shows that their

method can solve problem instances with 100 events and �ve storage resources.

These data were generated by the authors, and are composed of 360 projects. Twelve

projects have not been solved optimally. The larger problems are solved by replacing

the minimal subset B by a subset of cardinality one.

1.4.2.3 The Exact Method of Laborie

The scheduling problems which are considered by [Laborie, 2002] are very general.

They include the Resource Constrained Project Scheduling Problem and the project

scheduling problem with inventory constraints. His method propagates resource

constraints within a constraint programming approach. Its application to the project

scheduling problem with inventory constraints is presented below. [Laborie, 2002]

refers to a resource reservoir, because the maximum and minimum capacities are

given. Most of the techniques in the literature re�ne the execution intervals of

activities. These are the cases of edge �nding or energy based reasoning devoted to

renewable resources. But generally, at the start of the search, no activity intervals

can yet be deduced. So [Laborie, 2002] focuses on the precedence relations between

events rather on their absolute positions in time, as we explain below. It is a method

that is complementary to the aforementioned techniques.

The search space consists of a global search tree. The method consists in itera-

tively re�ning a partial schedule. A partial schedule is composed of a set of events,

temporal constraints and resource constraints. The main tools of [Laborie, 2002] are

time-tabling, the resource graph and the balance constraints.

Time-tabling is a propagation technique which relies on the computation of

upper and lower bounds at any time t for the use of every resource k. It can limit

the domains of the start and completion times of activities by removing the dates

that would necessarily lead to an over-consumption or under-consumption of some

resource by an event.

The resource graph RG is composed of two sets of arcs: RG = (V,E≤, E<), where

E< is included in E≤, and

• E≤ is the set of couples (i, j) such that: Si ≤ Sj,

• E< is the set of couples (i, j) such that: Si < Sj.

The resource graph expresses precedence relations between events. The graph on

a resource is designed to gather together all the precedence relations between events
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on the resource. They may come from initial temporal constraints, from deductions

and from branching decisions. When new precedence relations are introduced, the

transitive closure of the resource graph is maintained thanks to a matrix.

This graph means that balance constraints associated with events can be

evaluated. The basic idea is to compute, for each event using a speci�c resource,

upper and lower bounds on the resource level just before and just after this event.

An event i is safe for some resource if the upper bound of the resource level just

before i and just after i is smaller than the maximum capacity, and the lower bound

of the resource level before i and after i is larger than the minimum capacity. When

all events of a resource are safe, the reservoir constraint of this resource is satis�ed.

The balance constraint can reveal three types of information: dead-ends, new

bounds for time variables and new precedence relations. For instance, when the

upper bound of the resource level just before event i is strictly smaller than the

minimal capacity, we get a dead-end. We can also get new bounds on time variables.

For instance, if the resource level before i in the partial schedule is smaller than the

minimum stock, production events need to be scheduled before i. The earliest dates

can be computed at which su�cient resources might be available for processing i.

It will depend on the earliest dates at which production events can be scheduled.

Finally if the processing of event j after event i would provoke a dead-end, i must

be scheduled before j. So we can add the corresponding precedence constraint.

Branching is based on precedence relations. It involves choosing two events i and

j. Laborie chooses either to process i before j or j before i, one of both precedences

being strict. i is chosen as a critical event, for instance an event consuming

or producing a large quantity of resources. The choice which is sophisticated is

explained in the paper.

Laborie's method has been implemented in the ILOG Scheduler, a C++ library

for constraint-based scheduling. It can solve to optimality all the instances of

[Neumann and Schwindt, 2002], including the twelve previously open instances in

less than 10 seconds. To resume this method is elaborated and innovative. It is also

very e�cient in practice.

1.4.3 RCPSP with Consumption and Production of Re-

sources

The RCPSP with consumption and production of Resources (RCPSP/CPR) was

introduced by Koné et al. [Koné et al., 2013]. The particularity of this extension of

RCPSP is that, in addition to renewable resources considered in its basic version, it

also involves nonrenewable resources. Koné et al. [Koné et al., 2013] proposed four
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mixed integer linear programming models to solve the problem. An instance I of

RCPSP/CPR is de�ned by:

• A set Y of n activities: ∀i ∈ Y , pi denotes the processing time of i.

• A set E of precedence relations: (i, j) ∈ E means that activity i precedes

activity j (j cannot start before i is over).

• A set R of renewable resources: ∀ρ ∈ R, Rρ denotes the global resource amount

of resource ρ and ∀i ∈ Y, ∀ρ ∈ R, eρi denotes the requirement for resource ρ by

activity i during its execution. These resources are given back to the system

once the activity is over. The total resource demand must be less than or equal

to the global resource amount for each resource throughout the scheduling

horizon.

• A set K of nonrenewable resources: ∀k ∈ K, Qk denotes the initial level

of resource k. Each activity i ∈ Y consumes b−ik units of resource k at its

beginning, and produces b+
ik units of k at its end. If b−ik ≤ b+

ik, then activity i

produces (b+
ik − b−ik) units of resource k, whereas if b−ik > b+

ik, then it consumes

|b+
ik− b−ik| units of resource k. The total amount of each nonrenewable resource

must remain non-negative throughout the scheduling horizon.

A schedule S is a function assigning a starting time Si to each activity i ∈ Y .

It is feasible if it satis�es the precedence and resource constraints. Thus, solving

RCPSP/CPR means computing a feasible schedule S with a minimal makespan.

1.5 Conclusion

In this chapter we have presented some de�nition and terminology dedicated to

scheduling problems. Then we have presented some lower bounds, exact procedures

and heuristics for solving the RCPSP. Moreover, we have studied three scheduling

problems with nonrenewable resources. The �rst problem is the �nancing problem

which can be solved using the shifting algorithm, the second problem is the Project

Scheduling Problem with Inventory Constraints of [Neumann and Schwindt, 2002]

and the last one is the RCPSP with consumption and production of resources.

Project Scheduling Problem with Inventory Constraints and RCPSP/CPR are

two generalizations of RCPSP. In the next chapter, we introduce another extension

of RCPSP called the Extended Resource Constrained Project Scheduling Problem

(ERCPSP). ERCPSP is a general scheduling problem where the availability of

resources is depleted and replenished. An instance of this problem consists of events,
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nonrenewable resources and generalized precedence constraints between pairs of

events.
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2.1 Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) is the basic

problem type in project scheduling. It is without doubt the most widely studied

scheduling problem in literature, and it has resulted in an overwhelming amount

of papers with solution procedures devoted to it. In this problem, non-preemptive

activities requiring renewable resources, and subject to precedence constraints, have

to be scheduled in order to minimize the makespan. The RCPSP with general time

lag constraints has also been the subject of several papers [Bartusch et al., 1988]

[Cesta et al., 2002] [Neumann and Zhan, 1997] [Neumann et al., 2006]. It also con-

cerns only renewable resources such as the workforce. Renewable resources are

allocated to activities at their starting times and released at their completion

times. On the contrary, a nonrenewable resource is produced or consumed by

an activity at its starting time only. Money is an example of nonrenewable

resource for which Carlier and Rinnooy Kan introduced the �nancing problem

[Carlier and Rinnooy Kan, 1982].

In this work we address the Extended Resource Constrained Project Scheduling

Problem (ERCPSP). ERCPSP is a general scheduling problem where the availability

23
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of resources is depleted and replenished [Carlier et al., 2009]. An instance of

ERCPSP consists of events, nonrenewable resources and generalized precedence

constraints between pairs of events. Each event produces or consumes some units of

resources at its occurrence time. The objective is to build a schedule that satis�es

the precedence and resource constraints and minimizes the makespan.

ERCPSP is a generalization of RCPSP where activities requiring renewable

resources are replaced by events consuming or producing nonrenewable resources.

Some other authors have worked on models similar to ERCPSP. We can quote the

works of Neumann and Schwindt [Neumann and Schwindt, 2002] and of Laborie

[Laborie, 2002]. Neumann and Schwindt formalized the Project Scheduling Problem

with Inventory Constraints where the availability of each resource is at any time

upper and lower bounded. To solve this problem, they proposed a branch-and-

bound algorithm with a �ltered beam search heuristic. Beck [Beck, 2002] proposed

heuristics for constraint-directed scheduling with inventory which exploit dynamic

constraint criticality. Laborie [Laborie, 2002] introduced the concept of a Resource

Temporal Network (RTN). He proposed a constraint propagation algorithm to

solve the problem. Bouly et al. [Bouly et al., 2005] developed a model which allows

resource production by tasks, and provided algorithms to solve the problem for

makespan minimization. Moreover, Sourd and Rogerie [Sourd, 2005] introduced

continuous reservoir model, in which activities �ll or empty the reservoir at a

constant rate from their start time to their completion time. A branch-and-bound

method for solving scheduling problems with continuous reservoirs can be found in

Neumann et al. [Neumann et al., 2005]. Koné et al. [Koné et al., 2013] worked on

the RCPSP with Consumption and Production of Resources (RCPSP/CPR). The

particularity of their extension of RCPSP is that, in addition to renewable resources

considered in the basic version, it also involves nonrenewable resources which can

be consumed (or not) at the starting time of an activity in a certain amount

and/or then produced in another amount at the completion time of this activity. To

solve this problem, Koné et al. proposed four mixed integer linear programming

models for RCPSP/CPR. ERCPSP coincides with the problem considered by

[Neumann and Schwindt, 2002] and [Laborie, 2002] where no upper bound on the

resource availability is prescribed.

Several methods have been introduced to enumerate solutions of RCPSP

[Brucker et al., 1999] [Kolisch and Padman, 2001]. One of them is based on the

notion of complete linear order of activities, which corresponds to the order of their

execution. Linear order was termed arbitrage by Carlier in [Carlier, 1984] because

for every linear order we can compute an earliest schedule which respects it or we

can prove its infeasibility. In a recent paper Carlier et al. [Carlier et al., 2009] have
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generalized this notion to the ERCPSP. They showed how to associate an earliest

schedule with a linear order. The drawback of this approach is, of course, the large

number of linear orders. So they considered only linear orders of consumption events.

They show that there also exists an earliest schedule, and they described polynomial

algorithms to compute it.

The remaining of this paper is structured as follows. In Section 2.2 we present

some terminology dedicated to basic concepts and formulate the ERCPSP, and

we show the connection between our problem and other scheduling problems with

production and consumption of resources. In Section 2.3 we present the Decision

and the Resource Usage Problems. In Section 2.4 we report an algorithm which

computes the earliest schedule of a complete linear order, and we present the notion

of linear order on consumption events. In Section 2.5 we present four special cases

of ERCPSP for which the decision problem can be solved in polynomial time. In

Section 2.6 we introduce a dynamic programming algorithm to solve the ERCPSP

with parallal chain precedence graph, and �nally we conclude this chapter in Section

2.7.

2.2 Problem formulation

An instance I = (X,K,U, a, v) of the Extended Resource Constrained Project

Scheduling Problem consists of:

• A set X = {0, 1, ..., n, n + 1} of events: ∀i ∈ X, the occurrence time of event

i is denoted S(i) (also denoted Si). Of course S(i) is not given and has to be

determined. By convention, the two events 0 and n+1 are added to respectively

de�ne the start and the end of the schedule.

• A set U of precedence constraints which express relations of start-to-start

between pairs of events. ∀(i, j) ∈ U , the precedence constraints have the form
Si + vij ≤ Sj, where vij represents the time lag between events i and j. If

vij < 0, this implies that event i has to occur no later than time Sj − vij,

whereas if vij ≥ 0, then event j cannot occur before time Si + vij.

• A set K of non-renewable resources: ∀k ∈ K, the initial level of resource k is

denoted by Qk and ∀i ∈ X, ∀k ∈ K, aki represents the quantity of resource k

produced or consumed by event i. If aki is positive, then event i produces the

quantity aki of resource k, whereas if a
k
i ≤ 0, it consumes the quantity |aki | of

resource k. We denote by Xp
k = {e ∈ X|ake > 0} (resp. Xc

k = {e ∈ X|ake < 0})
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the set of production (resp. consumption) events of resource k. At any time,

the resource availability must be positive or null for each resource k ∈ K.

We say that an event i is a direct predecessor of an event j if there exists a

non-negative arc from i to j in the graph (X,U), which is equivalent to say that j is

a direct successor of i. li,j denotes the length of the longest path from i to j. We say

that an event i is an ascendant of an event j if there exists a path from i to j with

non-negative li,j, which is equivalent to say that j is a descendant of i. Event j is a

0-descendant if li,j = 0 and strict-descendant if i,j > 0. We denote the set of direct

successors of an event i as Γ+(i), and the set of all descendants of i, not including i,

as Γ̄+(i). The corresponding sets of direct predecessors and ascendants are denoted

respectively as Γ−(i) and Γ̄−(i). Thus, event 0 (resp. event n + 1) is an ascendant

(resp. a descendant) of all the other events. Moreover, we set S0 = 0, ak0 = Qk and

akn+1 = 0 for each k ∈ K.

A schedule S on event set X is a function assigning an occurrence time Si to

each event i ∈ X. The makespan of a schedule S can be computed as Cmax = Sn+1.

A schedule is feasible if it satis�es the precedence constraints

Si + vij ≤ Sj ∀(i, j) ∈ U

and the resource constraints∑
i∈X(S,t)

aki ≥ 0 ∀k ∈ K, ∀t ∈ H

where X(S, t) = {i ∈ X | Si ≤ t} is the set of events which have occurred by time

t ≥ 0, the set H = {0, 1, ..., T} is the scheduling horizon, and T is some given upper

bound on the makespan, which means that all events have to occur no latter than

time T . An optimal schedule is a feasible schedule which minimizes the makespan.

So, the Extended RCPSP can be formulated as follows:

Minimize Sn+1 (2.1)

subject to
∑

i∈X(S,t)

aki ≥ 0 ∀k ∈ K, ∀t ∈ H (2.2)

Si + vij ≤ Sj ∀(i, j) ∈ U (2.3)

Si ≥ 0 ∀i ∈ X \ {0} (2.4)

S0 = 0 (2.5)

The single-resource case of ERCPSP is de�ned by a quadruplet (X,U, a, v). In

this case, ai de�nes the number of resource units produced or consumed by event i,
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a0 corresponds to the initial resource units of the project, and the set of production

(resp. consumption) events is denoted Xp (resp. Xc). In order to illustrate the

presentation, we use the following example.

Exemple 2.1. Let X = {0, 1, 2, 3, 4, 5, 6} be the set of events. a0 = +3, a1 =

+2, a2 = −3, a3 = −3, a4 = +4, a5 = −1, a6 = 0, v13 = 3 (event 1 occurs at least 3

time units before event 3), v31 = −4 (event 3 cannot occur later than 4 times units

after event 1), v24 = 6, v25 = 1, v01 = 0, v02 = 0, v36 = 0, v46 = 0 and v56 = 0.

The graph resulting from Example 2.1 is shown in Fig 2.1. The number associated

with a node represents the number of resource units required for that event, and the

number corresponding to an arc represents the time lag. The number corresponding

to event 0 is equal to the initial number of resource units for the project.
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−3

3

−3

4

+4

5

−1

6

0

0

0

+3

−4

+6

0

0

+1

0

Figure 2.1 � An instance of ERCPSP with seven events and one resource

An optimal schedule for this instance is S = {S0 = 0, S1 = 2, S2 = 0, S3 =

6, S4 = 6, S5 = 2, S6 = 6}. Fig 2.2 shows the resource availability over time

associated with S.

2.2.1 Project Scheduling Problem with Inventory Con-

straints and ERCPSP

The ERCPSP can model a project scheduling problem with inventory constraints.

Let us consider an instance of this problem and a resource k ∈ K. We replace

resource k by two new resources denoted k1 and k2. If event i produces (resp.

consumes) a quantity aki in the original instance, it will produce (resp. consume) aki
units of k1 in the new instance (ak1

i = aki ) and consume (resp. produce) a quantity

aki of resource k2 (ak2
i = −aki ). To introduce the lower limit Qk of resource k, we
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Figure 2.2 � Resource availability curve

add an event at the beginning of the project, which consumes Qk units of resource

k1. To introduce the capacity Qk, we add an event at the beginning of the project

which produces Qk units of resource k2.

2.2.2 RCPSP/CPR and ERCPSP

Two instances of ERCPSP I1 and I2 can be associated with each instance I of

RCPSP/CPR. I1 is obtained as follows. Each activity i is replaced by two events

i′ and i′′, i′ corresponds to the starting time of activity i and i′′ to its completion

time. To represent the processing time pi, an arc (i′, i′′) valued by pi and another

arc (i′′, i′) valued by −pi are added. For each precedence relation (i, j) ∈ E, an arc

(i′′, j′) valued by 0 is added. For each renewable resource ρ ∈ R, event i′ consumes

eρi units of resource ρ at its occurrence time (aρi′ = −eρi ), while event i′′ produces

eρi units of resource ρ (aρi′′ = eρi ). To represent the global resource amount Rρ, we

add an event at the beginning of the project which produces Rρ units of resource

ρ. For each nonrenewable resource k ∈ K, event i′ consumes b−ik units of k at its

occurrence time (aki′ = −b−ik), while event i′′ produces b+
ik units of k (aki′′ = b+

ik). To

represent the initial level of resource k, we add an event at the beginning of the

project which produces Qk units of resource k. The instance I2 is obtained using the

same transformation except that no negative arc from i′′ to i′ is added.

Proposition 2.1. Let I1 and I2 be two instances of ERCPSP associated with an

instance I of RCPSP/CPR. I1 and I2 have the same optimal makespan which is also

the optimal makespan of I.

Proof. At �rst, there is a bijective correspondence between the schedules of I1 and

the schedules of I. Let S1 be an optimal schedule for I1 and S2 an optimal schedule

for I2. The makespan of S2 is a lower bound for I1, since I2 is a relaxation of I1
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obtained by removing all negative arcs. Thus, S2(n+ 1) ≤ S1(n+ 1).

A new schedule S ′2 can be obtained from S2 by scheduling each consumption event

i′ at S2(i′) and each production event i′′ at S2(i′) + pi, where i
′ and i′′ are the two

events associated with activity i. S ′2 respects all precedence and resource constraints

of I2 and I1. Thus, it is an optimal schedule for I2 (S ′2(n + 1) = S2(n + 1)). It is

also a feasible schedule for I1 because i′ is the only predecessor of i′′ which is a

production event and it is better to schedule a production event as soon as possible.

So, S ′2(n + 1) ≥ S1(n + 1). We conclude that I1 and I2 have the same optimal

makespan.

2.3 Decision and Resource Usage Problems

Let I = (X,U, v, a) be an instance of ERCPSP with a single resource. The Decision

Problem is determining whether I has a feasible schedule or not. The Resource Usage

Problem consists of determining the smallest number of initial resources necessary

for I to be feasible. The decision problem is NP-complete, inasmuch as determining

the existence of feasible schedule for RCPSP with minimum and maximum time

lags is NP-complete [Johannes, 2005]. The Decision Problem cannot be solved in

polynomial time even if only positive arcs are permitted. In fact, the special case

where for an instance ai ∈ {−1,+1}, 1 ≤ i ≤ n, and vij = 1, ∀(i, j) ∈ U , is

equivalent to the cumulative cost problem. [Sethi, 1975] proved that such a problem

is NP-complete.

However, in the case of some speci�c precedence constraints, the Decision

Problem can be solved in polynomial time. The strategy is essentially to schedule

the events which increase the level of resources as early as possible. In section 2.5,

we present four cases in which the decision problem can be solved in polynomial

time: the relocation problem, the parallel chain case, the series-parallel case and the

interval order case.

2.4 Linear orders for ERCPSP

A linear order of the resource k is a set of conjunctive arcs αk = {(i1, i2), (i2, i3), ...,

(in−1, in)} with null valuations, while Πk= (i1, i2, ..., in) is a permutation on the set

of events requiring the resource k [Carlier et al., 2009].

De�nition 2.1. A complete linear order is a linear order which contains all events

of the project
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In order to simplify the presentation, we suppose that there is only one resource

and that all events are in the linear order α = {(1, 2), (2, 3), ..., (n− 1, n)}. The case
of several resources is discussed in section 2.4.3. Moreover, when there is an arc from

i to j with valuation ψ in the graph and we wish to add an arc from i to j with

valuation ϕ in the graph, we will take the larger valuation among ψ and ϕ as the

arc weight.

2.4.1 Compatibility

We say a complete linear order α = {(1, 2), (2, 3), ..., (n−1, n)} is compatible if there

exists a feasible schedule S = {S1, S2, ..., Sn}, such that for each arc (i, j) in α we

have Sj ≥ Si. In order to test the compatibility of a complete linear order, we have to

check the existence of a feasible schedule which satis�es resource constraints in the

graph G = (X,U ∪ α). [Carlier et al., 2009] changes this problem into a precedence

constrained problem by introducing a set β of implicit precedence constraints as

follows.

The resource constraint in our problem is that we can start an event only when

there are su�cient resources for it. Now, let us assume that we wish to start event

r and ∑r
j=0 aj < 0.

In this case, if there is no other event which produces resources occurring at

the same time, the resource constraint will not be satis�ed. So we have to force a

production event t to occur at the same time as event r, where∑t
j=0 aj ≥ 0 and t > r.

For s, t ∈ {1, ..., n} where s+ 1 < t, we say that the arc from (t, s+ 1) valued by

0 is implied by α if and only if for every r where s < r < t the following conditions

are satis�ed:

(1)
∑s

j=0 aj ≥ 0

(2) ∀r ∈]s, t[
∑r

j=0 aj < 0

(3)
∑t

j=0 aj ≥ 0.

β is the set of all arcs implied by α in this way. In order to generate β, let B =

{j|∑j
k=0 ak ≥ 0}. Without loss of generality, we suppose that B = {j1, j2, ..., jm}

such that j1 < j2 < ... < jm. If j1 6= 1, we add the arc (j1, 1) of zero valuation to β,

and for every s such that js+1 > js+1, we add the arc (js+1, js+1) of zero valuation

to β.
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Proposition 2.2. [Carlier et al., 2009] All schedules which respect precedence

constraints of U∪α∪β are feasible schedules where β contains all implicit precedence

constraints deduced from α, and conversely.

In addition, if we modify the three conditions above (1), (2) and (3) as follows:

(1')
∑s

j=0 aj ≤ Q̄,

(2') ∀r ∈]s, t[
∑r

j=0 aj > Q̄,

(3')
∑t

j=0 aj ≤ Q̄,

we can also have an upper bound Q̄ on the level of resources. So this method

can be generalized to the project scheduling problem with inventory constraints

[Neumann and Schwindt, 2002] by adding arcs with zero weight to β.

2.4.2 EST schedule of a complete linear order

Algorithm 2.1, which takes a complete linear order as input, will yield the earliest

start time schedule if G(α, β) = (X,U∪α∪β) has no directed cycle of positive length

[Carlier et al., 2009]. The Earliest Starting Time (EST) schedule can be computed

using the Modi�ed Label Correcting Algorithm [Ahuja et al., 1995].

Algorithm 2.1: Computation of the earliest start time schedule for a complete
linear order.
Input:
A complete linear order α = {(i1, i2), (i2, i3), ..., (in−1, in)}.
An instance I = (X,U, a, v).
Output: An Earliest Start Time Schedule S for the linear order α

Generate the set β of all implicit precedence constraints deduced from α;
Use the Modi�ed Label Correcting Algorithm to compute S in graph G(α, β);
return S

Theorem 2.1. [Carlier et al., 2009] Algorithm 2.1 returns an optimal schedule in

O(n× (|U |+ |α|+ |β|)) if the directed graph G(α, β) = (X,U ∪ α ∪ β) contains no

directed cycle of strictly positive length.

2.4.3 Case of multiple resources

The case of multiple resources is more complicated than the one resource problem.

For two resources the feasibility problem has been shown to be NP-complete

[Neumann et al., 2003]. However, the algorithm with complete linear order for one
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resource can be extended to multiple resources directly. We only have to generate

implicit precedence constraints set βk for each resource k separately and then

compute the EST schedule in the graph (X,U ∪ α ∪ β1 ∪ β2... ∪ βR), where R is

the number of resources.

2.4.4 Linear order of consumption events

A consumption linear order αc = {(i1, i2), (i2, i3), ..., (ic−1, ic)} is the linear order of
all consumption events. We denote G = (X,U ∪ αc) as G(αc).

Theorem 2.2. [Carlier et al., 2009] For a given consumption linear order, there

exists an earliest start time schedule provided that there exists at least one feasible

schedule.

A production linear order αp = {(i1, i2), (i2, i3), ..., (ip−1, ip)} is the linear order

of all production events. Theorem 2.2 is replaced by Theorem 2.3

Theorem 2.3. [Carlier et al., 2009] For a given production linear order, there exists

a latest start time schedule provided that there exists at least one feasible schedule.

2.5 Polynomial cases of ERCPSP

In this section, we present four cases of ERCPSP for which the decision problem

can be solved in polynomial time: the relocation problem, the parallel chain case,

the series-parallel case and the interval order case.

2.5.1 The Relocation Problem

The relocation problem consists of a set Y of n activities, which have to be scheduled

on one machine without preemption. The objective is the minimization the makespan

[Kaplan and Amir, 1988, Lin and Cheng, 1999]. Each activity i ∈ Y of duration pi

acquires a quantity a−i of resources at its starting time Si, and returns a quantity

a+
i of resources at its completion time Ci (Ci = Si + pi). In general, a+

i can be less

than, equal to, or greater than a−i . All activities are assumed to require the same

type of resource, the initial number of available resources is denoted V0. A schedule

S is a function assigning a starting time Si to each activity i ∈ Y . The makespan of

a schedule S can be computed as Cmax = maxi∈Y (Si + pi). A schedule is feasible if

each activity following the schedule can be successfully processed. An instance of the

relocation problem is feasible if it admits some feasible schedule. Note that, for �xed
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values of a−i and a+
i such that

∑
i∈Y a

−
i ≥

∑
i∈Y a

+
i , the feasibility of a relocation

problem is determined by V0.

Each instance of this problem can be associated with an instance of ERCPSP.

Each activity i ∈ Y is represented by two events i and i′ with a0
i = −a−i , a1

i = −1,

a0
i′ = a+

i , a
1
i′ = +1, and two arcs vii′ = pi and vi′i = −pi; however, the arc vi′i can be

ignored. So an instance of the relocation problem RP = (Y, V0, a
−, a+, p) where Y =

{1, 2, ..., n} can be represented by an instance I = (X,U,K, a, v) of ERCPSP with

two resources and no negative time lags, where X = {0, 1, 1′, 2, 2′, ..., n, n′, n + 1},
Q0 = a0

0 = V0 and Q1 = 1. Note that the resource 1 here insures the sequential

execution of the events associated with each activity. In the conjunctive graph G =

(X,U), all consumption events have only one direct predecessor corresponding to the

�ctitious beginning event 0, and all production events have only one direct successor

corresponding to the �ctitious termination event n + 1. Each consumption event i

has only one direct successor i′ and each production event i′ has only one direct

predecessor i. Note that the relocation problem can be considered as a problem

with parallel chain precedence constraints where there are only two events in each

chain.

2.5.1.1 Feasibility test of Kaplan and Amir

Kaplan and Amir introduced a simple method for determining the feasibility of the

relocation problem. For given values of a−i and a+
i , their idea is to determine the

smallest number of resources V ∗ such that a relocation problem with the given values

of a−i and a+
i remains feasible. The original problem is feasible if and only if V0 ≥ V ∗

[Kaplan and Amir, 1988]. To determine V ∗, they proposed a method to construct a

particular non-overlapping sequential schedule SRP with the following property: If a

relocation problem with V0 initial resources (given the values of a−i and a+
i ) admits

some feasible schedule, then SRP is also feasible for that problem. The minimum

number of resources necessary for this particular schedule to be feasible is equal to

V ∗.

Let Y + and Y − be two subsets of Y , such that i ∈ Y + if and only if a−i ≤ a+
i ,

and i ∈ Y − if and only if a−i > a+
i . The schedule S

RP is constructed by sequencing

all activities i ∈ Y + in nondecreasing order of their a−i followed by all activities

i ∈ Y − in nonincreasing order of their a+
i . More precisely:

• For i, j ∈ Y +, i precedes j in SRP i� a−i ≤ a−j .

• For i, j ∈ Y −, i precedes j in SRP i� a−i ≥ a−j .

• For i ∈ Y +, j ∈ Y −, i precedes j in SRP .
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Let si be the ith activity scheduled in SRP . The schedule SRP is feasible for the

relocation problem with V0 initial resources, if and only if the following constraints

are satis�ed:

i∑
j=1

a−sj −
i−1∑
j=1

a+
sj
≤ V0, i = 1, 2, ..., n (2.6)

From (2.6) it is easy to see that the minimum number of resources V ∗ necessary to

maintain the feasibility is given by:

V ∗ = max
1≤i≤n

{
i∑

j=1

a−sj −
i−1∑
j=1

a+
sj
} (2.7)

Thus, to test the feasibility of a relocation problem, we construct the schedule SRP .

Then we compute V ∗ from (2.7). If V0 ≥ V ∗, the problem is feasible.

2.5.1.2 Johnson's rule

Kaplan and Amir [Kaplan and Amir, 1988] show that the relocation feasibility prob-

lem is equivalent to the two-machine �owshop problem [Johnson, 1954] which can

be solved in O(n log n). The two-machine �owshop problem consists of scheduling

n activities on two machines with the objective of minimizing makespan. The

processing time of activity i, i = 1, 2, ..., n on machine j, j = 1, 2, is denoted pij.

Johnson proved that the optimal schedule is given by the following algorithm:

Algorithm 2.2: Algorithm of Johnson

(1) Let Y 1 = {i|pi1 ≤ pi2} and Y 2 = {i|pi1 > pi2};
(2) Arrange the activities in set Y 1 in nondecreasing order of pi1;
(3) Arrange the activities in set Y 2 in nonincreasing order of pi2;
(4) Construct an optimal sequence: the ordered set Y 1 followed by the
ordered set Y 2;

To see the connection between the relocation feasibility problem and the problem

considered by Johnson, we suppose that it takes one unit of time to produce

(resp. consume) any resource, and that resources are produced (resp. consumed)

sequentially. Therefore, each activity in the relocation problem can be considered as

an activity which needs to be processed on two machines. The processing time on

the �rst machine corresponds to its resource consumption, thus pi1 = a−i , while the

processing time on the second machine corresponds to its resource production, thus

pi2 = a+
i . The makespan of the optimal schedule in the problem of Johnson is given
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by:

Cmax =
n∑
i=1

pi2 + Idle (2.8)

where Idle is the idle time on the second machine. From (2.8), the way to minimize

the makespan in Johnson's problem is to minimize Idle. Now, suppose that one unit

of time is necessary to construct each of the V0 resources. Thus in the relocation

context (2.8) is equivalent to:

Cmax =
n∑
i=1

a+
i + V0 (2.9)

As we can see, the makespan in Johnson's problem is identical to the total number

of resources produced in the relocation problem (new resources plus V0). This total

is minimized when V0 is minimized, which is precisely the relocation feasibility

problem.

2.5.2 The parallel chain case

In this section we investigate a special case of ERCPSP with single resource,

where the precedence graph G = (X,U) consists of a set of SP (≥ 2)

parallel chains. This special case is an extension of the problem considered by

[Abdel-wahab and Kameda, 1978], where more than one event can be executed at

the same time. Abdel-wahab and Kameda introduced an algorithm for minimizing

maximum cumulative cost. This algorithm calculates the change of resource level,

then determines production and consumption subchains in each chain. An optimal

schedule is obtained by merging the production subchains in nondecreasing order of

their rises followed by consumption subchains in nonincreasing order of their drops.

Thus, a dominant chain which minimizes the maximum cumulative cost is obtained.

In this section, we adapt this algorithm to our problem. It always consists of

determining the minimum required amount of initial resources. Abdel Wahab and

Kameda sequenced the events because they are executed on one machine. In our

problem there is no machine. Thus, some events can be executed at the same time.

The algorithm is actually very similar. It is also based on a decomposition of chains

into production and consumption subchains. We will see that these subchains can be

seen as jobs of a �ow-shop with two machines. The idea is to construct a schedule

of standard form, where the events of each subchain are scheduled next to each

other, from any feasible schedule. Then, we can apply the Johnson's rule to these

subchains in order to obtain an optimal sequence. This method will be illustrated
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by the example of Fig 2.3.
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Figure 2.3 � ERCPSP instance with three chains

2.5.2.1 Notation

The notation that follows is used for this special case. Suppose that chain h (1 ≤
h ≤ SP ) contains Lh (≥ 1) events, Ch

1 , C
h
2 , ..., C

h
Lh
, in the order of precedence

constraints. We use bh(i) to denote the quantity of resources produced or consumed

by event Ch
i . For each chain h, the events Ch

0 and Ch
Lh+1 correspond respectively to

the �ctitious events 0 and n+1. The earliest occurrence time of Ch
i is denoted ESh(i)

(ESh(i) = ES(Ch
i )). For each chain h (1 ≤ h ≤ SP ) we introduce the resource level

function Ah : {0, 1, ..., Lh} −→ Z, de�ned by:

Ah(i) =
∑

{j|ESh(j)≤ESh(i)}
bh(j) for 1 ≤ i ≤ Lh and Ah(0) = 0. (2.10)

Ah(i) is the level of resource at the earliest occurrence time of event Ch
i . Fig 2.3

gives an instance of ERCPSP consisting of three chains (i.e., SP = 3) and a

total of seventeen events. Fig 2.4 shows the three parallel chains associated with

this instance. Table 2.1 illustrates the values of the resource level functions for the

example of Fig 2.3.

Let S be a schedule. The level of resource at the occurrence time of event e ∈ X
is given by A(e|S).

A(e|S) =
∑

{e′ | S(e′)≤S(e)}
ae′ for 1 ≤ e ≤ n and A(0|S) = a0. (2.11)
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Figure 2.4 � Three parallel chains

i 0 1 2 3 4 5

A1(i) 0 -1 +3 +4 -2 +3

A2(i) 0 -4 -1 -3 -3 -2

A3(i) 0 +1 +3 -1 -1 +4

Tableau 2.1 � The resource level functions of the example of Fig 2.3

The minimal level of resource m(S) associated with S is given by:

m(S) = min{A(e | S) | e ∈ X}. (2.12)

Let I be an instance of ERCPSP with single type of resources. The resource usage

problem consists of �nding a schedule S that maximizes m(S) and respects all

precedence constraints. If Q0 ≥ −m(S) then S is a feasible schedule for I.

Without loss of generality, we suppose that in each chain, if any event is followed

by a consumption event, then the time lag between these two events is strictly

positive. In the case we have a zero time lag between an event i and a consumption

event c, we change the value of vic to 1 (c is executed strictly after i). This will not

change the solution of the decision and the resource usage problems.

2.5.2.2 Decomposition of chains into optimal subchains

The decomposition of a chain provides a subsequence of production subchains,

followed by a subsequence of consumption subchains. One of the two subsequences



38 CHAPTER 2. THE EXTENDED RCPSP

may be empty. For example, the �rst chain of the instance of Fig 2.3 consists of one

production subchain and one consumption subchain. The second chain consists of

two consumption subchains, and the third chain consists of two production subchains

(see Fig 2.5).

Each subchain starts by a resource consumption (fall) and �nishes by a

production (rise). For example, the subchain OP1 needs at the beginning one unit

of resource in order to produce 5 units of resource at the end. Therefore, its overall

production is positive and it is equal to 4. This is why we talk about production

subchain. Here, the event C1
3 plays a special role because it corresponds to the

maximal level of resource. The event C1
1 also plays a special role (subchain pivot),

because it corresponds to the minimal level of resource. Each subchain can be seen as

an activity which needs to be processed on two machines. The processing time on the

�rst machine corresponds to its fall, while the processing time on the second machine

corresponds to its rise. Algorithmically, we �rst build the production subchains of a

chain, then the consumption subchains.
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Figure 2.5 � OP-, and OC-subchains of the example of Fig 2.3

Let us consider a subchain α of chain h consisting of events Ch
u+1, ..., C

h
p , ..., C

h
v

(0 ≤ u < p ≤ v ≤ Lh) such that:Ah(u) ≥ Ah(i) ≥ Ah(p), u ≤ i ≤ p.

Ah(p) ≤ Ah(i) ≤ Ah(v), p ≤ i ≤ v.
(2.13)

The index p is called the pivot index. It corresponds to the index of event that

minimizes Ah(i) within the subchain α. The fall ∆−α of α is de�ned by ∆−α = Ah(u)−
Ah(p). The rise ∆+

α of α is de�ned by ∆+
α = Ah(v) − Ah(p). If ∆+

α ≥ ∆−α then α is

a production subchain (P-subchain), whereas if ∆+
α < ∆−α then α is a consumption

subchain (C-subchain). The subchains of a chain which respect the Johnson's rule
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Figure 2.6 � The resource level functions

are called optimal subchains (The fall (resp. the rise) monotonically decreases (resp.

increases) for the successive P-subchains (resp. C-subchains) of each chain). An

OP-subchain is an optimal production subchain and an OC-subchain is an optimal

consumption subchain. Algorithm 2.3 (resp. Algorithm 2.4) determines the OP-

subchains and (resp. OC-subchains) of each chain.

Fig 2.5 shows the optimal production and consumption subchains associated

with the instance of Fig 2.3. As we can see, any chain consists of zero or more

OP-subchains, followed by zero or more OC-subchains. The fall (resp. the rise)

monotonically decreases (resp. increases) for the successive OP-subchains (resp. OC-
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Algorithm 2.3: Construction of OP-subchains

1) Determine the event which provides the maximal production;
v ← max{0 ≤ i ≤ Lh | Ah(i) = max{Ah(j)|0 ≤ j ≤ Lh}};
If v = 0, then EXIT: there is 0 OP-subchain;

2) Determine the event which minimizes the level of resource before Ch
v ;

p← min{0 < i ≤ v | Ah(i) = min{Ah(j)|0 < j ≤ v}};

3) Determine the event which provides the maximal production before Ch
p ;

w ← min{0 ≤ i ≤ p | Ah(i) = max{Ah(j)|0 ≤ j ≤ p}};
u← max{w ≤ i ≤ p | ESh(i) = ESh(w)};

4) Ch
u+1, C

h
u+2, ..., C

h
v form an OP-subchain;

5) If u > 0, then v ← u and go to step (2);

Algorithm 2.4: construction of OC-subchains

1) Determine the event which provides the maximal production;
u← max{0 ≤ i ≤ Lh | Ah(i) = max{Ah(j)|0 ≤ j ≤ Lh} + 1;
If u ≥ Lh, then EXIT: there is 0 OC-subchain;

2) Determine the event which minimizes the level of resource after Ch
u ;

p← max{u ≤ i ≤ Lh | Ah(i) = min{Ah(j)|u ≤ j ≤ Lh}};

3) Determine the event which provides the maximal production after Ch
p ;

v ← max{p ≤ i ≤ Lh | Ah(i) = max{Ah(j)|p ≤ j ≤ Lh}};

4) Ch
u , C

h
u+1, ..., C

h
v form an OC-subchain;

5) If v < Lh, then u← v + 1 and go to step (2);

subchains) of each chain (see Fig 2.6).

2.5.2.3 Standard Form Schedule

A schedule of standard form is a schedule in which all events of each subchain are

scheduled next to each other. It can be obtained from any schedule by clustering the

events of each optimal subchain around the event with the pivot index as follows:

• All the events not belonging to the subchain, which are scheduled before the

pivot event, does not change.

• All the events not belonging to the subchain, which are scheduled strictly after

the pivot event, are shifted by 2 ∗ ∆, where ∆ is equal to the length of the

subchain.

• The pivot index is shifted by ∆.
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• All the events belonging to the subchain, which are before the pivot event, are

scheduled (as late as possible) immediately before the pivot event.

• All the events belonging to the subchain, which are after the pivot event, are

scheduled (as soon as possible) immediately after the pivot event.

More formally, let Ch
u+1, C

h
u+2, ..., C

h
p , ..., C

h
v be the subchain of chain h under

consideration, where p is its pivot index. Let S and S ′ be two schedule, such that S ′

is obtained from S by clustering the events of the subchain around the pivot event.

S ′ is de�ned as follows:

S ′(e) =


S(e) + 2 ∗∆ if e /∈ {Ch

u+1, ..., C
h
v } and S(e) > S(Ch

p )

S(Ch
p ) + ∆ + ES(e)− ES(Ch

p ) if e ∈ {Ch
u+1, C

h
u+2, ..., C

h
v }

S(e) otherwise.

(2.14)

Theorem 2.4. Let S be a schedule for an instance I of ERCPSP with parallel

chains. Let S ′ be a schedule obtained from S by clustering the events of any OP-

subchain or OC-subchain around the event with the pivot index. Then, we have

m(S ′) ≥ m(S).

Proof. Let Ch
u , C

h
u+1, ..., C

h
p , ..., C

h
v the subchain of chain h under consideration,

where p is its pivot index. S ′ is obtained from S by scheduling the events

Ch
u , C

h
p+1, ..., C

h
v around event Ch

p . If S respects all the precedence constraints then

also S ′ respects them.

Let e be an event of X such that S(e) < S(Ch
u) or S(e) > S(Ch

v ). By de�nition

of S ′, we have A(e | S ′) = A(e | S). In fact, all the events which are executed before

or at time S(e) by S, are also executed before or at time S ′(e) by S ′. From this it

follows that

A(e|S ′) ≥ m(S), e ∈ X and S(e) ∈ [0, S(Ch
u)[∪]S(Ch

v ), S(n+ 1)]. (2.15)

In the time interval [S ′(Ch
u+1), S ′(Ch

v )] only events of chain h are scheduled by

S ′. Thus, we deduce from this and 2.13 that:

A(Ch
p |S) = A(Ch

p |S ′) ≤ A(Ch
i |S ′) ≤ A(Ch

v |S ′), p ≤ i ≤ v. (2.16)

A(Ch
u+1|S ′) ≥ A(Ch

i |S ′) ≥ A(Ch
p |S ′) = A(Ch

p |S), u+ 1 ≤ i ≤ p. (2.17)
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From this it follows that

A(Ch
i |S ′) ≥ m(S), u+ 1 ≤ i ≤ v. (2.18)

Let e be an event not belonging to chain h such that S(Ch
p ) < S(e) ≤ S(Ch

v )

(S ′(e) > S ′(Ch
v )). Let Ch

w, C
h
w+1, ..., C

h
v , where w ≥ p + 1, be the events of h

which are scheduled after e by S and before e by S ′. So we have A(e | S ′) =

A(e | S) +
∑v

i=w bh(i). Now let us prove that
∑v

i=w bh(i) ≥ 0.

If ES(Ch
w−1) < ES(Ch

w) then
∑v

i=w bh(i) = Ah(v)− Ah(w − 1) ≥ 0.

If ES(Ch
w−1) = ES(Ch

w) then bh(w) ≥ 0. Let w′ be an index of chain h such

that ES(Ch
w) = ES(Ch

w′) and ES(Ch
w) < ES(Ch

w′+1). The events belonging

to {Ch
w, C

h
w+1, ..., C

h
w′} are production events (a production event followed by a

consumption event cannot have the same earliest occurrence time). This implies∑v
i=w bh(i) =

∑w′

i=w bh(i) + Ah(v)− Ah(w′) ≥ 0. Therefore, we deduce that

A(e | S ′) ≥ A(e | S) ≥ m(S), e′ /∈ {Ch
p , ..., C

h
v } and S(Ch

p ) < S(e′) ≤ S(Ch
v ).

(2.19)

Let e′ be an event not belonging to chain h such that S(e′) ≥ S(Ch
u+1) and

S ′(e′) < S ′(Ch
u+1). Let Ch

u+1, C
h
u+2, ..., C

h
w, where w ≤ p, be the events of h which

are scheduled before e′ in S and after e′ in S ′. So we have A(e′ | S ′) = A(e′ | S) −∑w
i=u+1 bh(i). Now let us prove that

∑w
i=u+1 bh(i) ≤ 0.

If ESh(w) < ESh(w + 1) then
∑w

i=u+1 bh(i) = Ah(u)− Ah(w) ≤ 0.

If ESh(w) = ESh(w + 1) then bh(w + 1) ≥ 0. Let w′ be an index of chain h

such that ESh(w) = ESh(w
′) and ESh(w) < ESh(w

′ + 1). The events belonging

to {Ch
w+1, C

h
w+2, ..., C

h
w′} are production events (a consumption event followed by

another consumption event cannot have the same earliest occurrence time). This

implies
∑w

i=u+1 bh(i) = Ah(w
′) − Ah(u) −∑w′

i=w+1 bh(i) ≤ 0. Therefore, we deduce

that

A(e′ | S ′) ≥ m(S), e′ /∈ {Ch
u+1, ..., C

h
p } and S(Ch

u+1) ≤ S(e′) ≤ S(Ch
p ). (2.20)

From (2.15), (2.16), (2.19) and (2.20) it follows that m(S ′) ≥ m(S).

Theorem 2.4 implies that at least one optimal schedule is of standard form. Thus,

we consider from now only the schedules of standard form.
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2.5.2.4 Algorithm of resolution

The following algorithm constructs an optimal schedule for the Resource Usage

Problem of this special case. The idea of this algorithm is to construct a schedule of

Algorithm 2.5: Algorithm to construction an optimal schedule

(1) Determine the OP-subchains and the OC-subchains of each chain;
(2) Schedule the OP-subchains sequentially in nondecreasing order of their
rises;
(3) Schedule the OC-subchains sequentially in nonincreasing order of their
falls;

standard form, where the events of each subchain are scheduled next to each other,

from any feasible schedule. Then, we apply the Johnson's rule to these subchains in

order to obtain an optimal sequence. This is stated in Theorem 2.5 resulting from

Proposition 2.3. By applying Algorithm 2.5 to the example of Fig 2.3, we obtain an

optimal schedule where the events of optimal subchains are sequenced in this order:

OP2, OP1, OP3, OC2, OC3, OC1. Fig 2.7 represents the obtained optimal chain.
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Figure 2.7 � Optimal chain

Theorem 2.5. Let I be an instance of ERCPSP with parallel chains. An optimal

schedule for the resource usage problem of I is obtained as follows. First we sequence

the OP-subchains (if any) of each chain in nondecreasing order of their falls. Then

we sequence the OC-subchains of each chain in nonincreasing order of their rises.

In order to prove this theorem we need a few preliminary results. Let us introduce

the rank r(α) of an optimal subchain α as follows.
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r(α) =

 1
∆−α+1

, if α is an OP-subchain

−1
∆+
α+1

, if α is an OC-subchain.

Proposition 2.3. Let S be a schedule of standard form, where an optimal subchain

α of a chain is immediately followed by an optimal subchain β of another chain and

r(α) ≤ r(β). Let S ′ be schedule obtained form S by interchanging the position of α

and β. Then we have m(S ′) ≥ m(S).

Proof. S and S ′ have respectively the forms SC1.α.β.SC2 and SC1.β.α.SC2, where

SC1 and SC2 are sequences of other optimal subchains. Suppose that α is consisting

of events Ch
u , ..., C

h
v and β is consisting of events Ch′

u′ , ..., C
h′

v′ . For each event i ∈ X
such that S(i) ≤ S(Ch

u) we have S(i) = S ′(i).

Let e be an event of X such that S(e) ∈ [0, S(Ch
u)[∪]S(Ch′

v′ ), S(n + 1)]. All the

events which are scheduled before e in S are also scheduled before e in S ′. Thus, we

deduce that

A(e|S ′) = A(e|S) ≥ m(S), ∀e ∈ X and (S(e) < S(Ch
u) or S(e) > S(Ch′

v′ )). (2.21)

Let e′ be an event of X such that S(e′) ∈ [S(Ch
u), S(Ch′

v′ )]. The minimum of A(e′|S)

(resp. A(e′|S ′)) is reached either at the pivot index of α or at that of β. Thus,

A(e′|S) ≥
∑

{i/∈α∪β|S(i)≤S(e)}
ai −max{∆−α ,∆−α −∆+

α + ∆−β },

A(e′|S ′) ≥
∑

{i/∈α∪β|S(i)≤S(e)}
ai −max{∆−β ,∆−β −∆+

β + ∆−α}.

Our objective now is to prove that

max{∆−α ,∆−α −∆+
α + ∆−β } ≥ max{∆−β ,∆−β −∆+

β + ∆−α}. (2.22)

Depending on the type of α and β, we distinguish four cases.

1. α and β are respectively OP-subchain and OC-subchain. This case is

impossible because of r(α) ≤ r(β).

2. α and β are OP-subchains. In this case we have ∆−α ≤ ∆+
α and ∆−β ≤ ∆+

β .

From the assumption r(α) ≤ r(β), it follows that ∆−α ≥ ∆−β . Thus, ∆−α ≥
max{∆−β ,∆−β −∆+

β + ∆−α}. So, the inequality (2.22) is veri�ed.

3. α and β are OC-subchains. In this case we have ∆−α > ∆+
α and ∆−β > ∆+

β .
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From the assumption r(α) ≤ r(β), it follows that −∆+
α ≥ −∆+

β . Thus, (∆−α −
∆+
α + ∆−β ) ≥ max{∆−β ,∆−β −∆+

β + ∆−α}. So, the inequality (2.22) is veri�ed.

4. α and β are respectively OC-subchain and OP-subchain. In this case we have

∆−α > ∆+
α and ∆−β ≤ ∆+

β . It follows that ∆+
α ≥ ∆−β −∆+

β +∆−α and ∆−α −∆+
α +

∆−β ≥ ∆−β . So, the inequality (2.22) is veri�ed.

Therefore,

A(e′|S ′) ≥ m(S ′) ≥ m(S), ∀e′ ∈ X and S(e′) ∈ [S(Ch
u), S(Ch′

v′ )]. (2.23)

From (2.21) and (2.23) it follows that m(S ′) ≥ m(S).

Proof of Theorem 2.5. By Proposition 2.3 at least one optimal schedule is of

standard form. Let consider such an optimal schedule. We repeatedly interchange, if

necessary, two adjacent subchains of this schedule in order to obtain a new schedule

S, which has the property that r(α) ≥ r(β) for any adjacent pair of subchains α

and β. By Proposition 2.3, S is also optimal. Let S ′ be any schedule of standard

form with the property that r(α) ≥ r(β) for any adjacent pair of subchains α and

β. S ′ can be obtained from S by zero or more interchanges of adjacent subchains

with the same rank. This implies m(S ′) ≥ m(S) by Proposition 2.3. Therefore, S ′

is also optimal.

2.5.3 The series-parallel case

We now consider a more general case, where the precedence relations involved can be

represented by a series-parallel graph. This special case of ERCPSP is an extension

of the problem considered by [Abdel-wahab and Kameda, 1978], where more than

one event can be executed at the same time.

A series-parallel graph G = (X,U) is a directed graph which can be obtained

recursively from a single node by two operations, the series composition (De�nition

2.2) and the parallel composition (De�nition 2.3) of two series-parallel subgraphs

[Valdes et al., 1982].

De�nition 2.2. Let G1 = (X1, U1) and G2 = (X2, U2) be two series-parallel graphs

on disjoint sets. The series composition Gs = (Xs, Us) of G1 and G2 is de�ned as

follows. Xs = X1 ∪X2 and i ≺ j ∈ Us if and only if i ≺ j ∈ U1 ∪ U2, or i ∈ X1 and

j ∈ X2. The sets X1 and X2 are termed the series blocks of Gs.

De�nition 2.3. Let G1 = (X1, U1) and G2 = (X2, U2) be two series-parallel graphs

on disjoint sets. The parallel composition Gp = (Xp, Up) of G1 and G2 is de�ned as
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follows. Xp = X1 ∪X2 and i ≺ j ∈ Up if and only if i ≺ j ∈ U1 ∪ U2. The sets X1

and X2 are termed the parallel blocks of Gp.

[Abdel-wahab and Kameda, 1978] de�ne the series-parallel graphs as follows.

De�nition 2.4. [Abdel-wahab and Kameda, 1978] A graph is a series-parallel graph

if it can be reduced to a graph consisting of only two nodes with an arc between them

by a sequence of the following operations.

1. Replace two arcs, (u, v) and (v, w), and the node v by a single arc (u,w) if

|Γ−(v)| = |Γ+(v)| = 1.

2. Delete an arc in parallel to another arc.

Figure 2.8 � Series-parallel graph

Form De�nition 2.4, any series-parallel graph has a subgraph consisting of

two chains (see Fig 2.8), unless it is a single chain. If the precedence relations

are represented by a series-parallel digraph, then a total order of events can be

de�ned as follows. We �rst �nd two parallel chains using the method proposed

by [Abdel-wahab and Kameda, 1978]. Then we apply Algorithm 2.4 to obtain an

optimal schedule. We replace the two parallel chains by a single chain obtained by

adding an arc between two adjacent subchains according to the optimal schedule.

Thus, we obtain another simpler series-parallel graph. If we continue to repeat this

operation, the outcome is a single chain which corresponds to a total order of events.

This method is illustrated by the example of Fig 2.9. Abdel-wahab and Kameda

proved that any schedule, which respects this total order of events, is optimal for the

bicretirion problem. The same proof can be used in the case of ERCPSP. It is based
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Figure 2.9 � Example

on the same principle as the case of parallel chains (The events of each subchain

are clustered around the pivot event, then the subchains are merged). Moreover, the

feasibility of the problem in this case can be calculated using an O(n2) algorithm

[Abdel-wahab and Kameda, 1978].

2.5.4 The interval order case

In this section, we investigate another special case of ERCPSP with single resource,

where the precedence graph G = (X,U) is an interval order graph and the time

lags are strictly positive. We introduce for this special case a list algorithm to

construct feasible schedules. The priorities of events are de�ned using the proprieties

of interval orders, so that all production events are scheduled when they are ready,

and all consumption events are scheduled when they are ready and ascendant of all

unscheduled production events.

2.5.4.1 Interval orders

An interval order graph G = (X,U) is a directed acyclic graph, such that for

each i ∈ X, one can associate a closed interval l(i) in the real line, such that

for all i, j ∈ X, (i, j) ∈ U if and only if x < y for all x ∈ l(i) and y ∈ l(j)

[Papadimitriou and Yannakakis, 1979]. The system of intervals l(i) is called an

interval representation of G. Fig 2.10 gives an example of interval order graph and
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Fig 2.11 shows the interval representation of this example.

Figure 2.10 � Interval order graph

Figure 2.11 � Interval representation

Interval orders have a very nice property: the sets of successors of the events of

an interval order graph form a total order.

Proposition 2.4. [Palem and Simons, 1993] Let (X,U) be an interval order graph.

Then for i, j ∈ X, either all the successors of i are also successors of j, or all the
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successors of j are also successors of i.

Proposition 2.5. [Palem and Simons, 1993] Let (X,U) be an interval order graph.

Then for i, j ∈ X, either all the predecessors of i are also predecessors of j, or all

the predecessors of j are also predecessors of i.

So, for each interval order graph we can found a total order of X (i0, i1, ..., in+1),

such that Γ̄+(in+1) ⊆ Γ̄+(in) ⊆ ... ⊆ Γ̄+(i0) (the descendants of i0 include

the descendants of i1 which include the descendants of i2,..., which include the

descendants of in+1). The idea to solve the decision problem of ERCPSP with

interval order graph is to schedule the production events as soon as possible, and

the consumption events when they are ready respecting the list (i0, i1, ..., in+1).

2.5.4.2 List schedule for interval order case

A list algorithm can be used to solve the decision problem of this special case of

ERCPSP (see Algorithm 2.6). The structure of this algorithm is simple. In the �rst

phase, a priority is attributed to each event. Based on this priority, the events are

ordered into a list. In each step, the event with the highest priority among the

ready events is chosen and added to the list. An event is said to be ready, if all its

predecessors are already in the list. After adding the chosen event to the list, the

new set of ready events is determined and the step is repeated until all events are

contained in the list. The priorities of events are de�ned as follows.

• For ep1, ep2 ∈ Xp, ep1 has a higher priority than ep2 i� ES(ep1) ≤ ES(ep2).

• For ep ∈ Xp, ec ∈ Xc, ep has a higher priority than ec.

• For ec1, ec2 ∈ Xc, ec1 has a higher priority than ec2 i� |Γ̄+(ec1)| ≥ |Γ̄+(ec2)|.

In the second phase, the algorithm iterates over the list built in the �rst phase

and determines the occurrence time of each event. In each iteration of the algorithm,

all the ready production events are executed �rst, then the consumption event with

the highest number of successors.

Suppose that event j is scheduled just after event i. The occurrence time S(j) of

j is given by S(j) = max{S(i),max{S(e) + vei | (e, i) ∈ U}}. If the resource level in
each iteration is nonnegative, then the obtained schedule is feasible. The algorithm

terminates when a full schedule is constructed or a resource con�ict is detected. Note

that in Algorithm 2.6 the two phases are carried out simultaneously.

Proposition 2.6. Let I be an instance of ERCPSP with interval order precedence

graph and strictly positive time lags. I admits a solution if and only if Algorithm 2.6

terminates when a schedule is constructed.
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Algorithm 2.6: Algorithm to solve the interval order case

1. Schedule all the ready production events;

2. Schedule the consumption event with the highest number of successors;

3. if an over-consumption is detected then
STOP without feasible Schedule;

4. if some events are not scheduled yet then Goto (1);

Proof. Suppose that Algorithm 2.6 constructs a schedule S. It is easy to verify that

S satis�es all precedence and resource constraints. Thus, S is a feasible schedule for

I.

Now let us consider an iteration k of the algorithm where a consumption event

ec1 is scheduled. Suppose that I admits a feasible schedule S ′ and the algorithm

detects an over-consumption in iteration k. If S ′ is feasible then there exists at least

one consumption event ec2 such that |Γ̄+(ec2)| ≤ |Γ̄+(ec1)|, and the set Γ̄+(ec2)

contains at least one production event not in Γ̄+(ec1). This is impossible because

form Proposition 2.4 we have Γ̄+(ec2) ∈ Γ̄+(ec1).

2.6 Dynamic Programming: parallel chain case

In this section, we propose a dynamic programming algorithm for the ERCPSP with

parallel chain precedence graph and single resource to minimize the makespan. We

suppose that all the time lags are strictly positive.

2.6.1 Dynamic programming approach

A state in our dynamic programming approach is de�ned by a triplet (X̃, t, ξ), where

X̃ ⊆ X is a subset of scheduled events, t = (t1, t2, ..., tSP ) is a vector of occurrence

times, and ξ = (ξ1, ξ2, ..., ξSP ) is a vector of resource levels. Note that th is the

occurrence time of the last event of chain h (1 ≤ h ≤ SP ) belonging to X̃ and ξh is

the level of resource at th. A state (X̃, t, ξ) is said to be feasible i� ξh is positive for

each h ∈ {1, 2, ..., SP}. We denote by Θ the set of all feasible states. The makespan

associated with a state (X̃, t, ξ) is given by F (X̃, t, ξ):

F (X̃, t, ξ) =

max{t1, t2, ..., tSP} if ξi ≥ 0, 1 ≤ i ≤ SP.

+∞ otherwise.
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Let F (X̃) be the optimal makespan of a schedule that processes all events in X̃.

F (X̃) = min
(X̃,t,ξ)∈Θ

F (X̃, t, ξ).

So, the optimal makespan of the problem is given by F (X). In the following, we

show how we can enumerate all these feasible states.

2.6.2 State generation

The dynamic programming algorithm requires a procedure for enumerating feasible

states. The enumeration procedure considers states of the form (X̃, t, ξ) such that

|X̃| = ñ < n, and creates new states of the form (X̃ ′ = X̃ ∪ {e}, t′, ξ′) by adding

potential successors with di�erent occurrence times. Of course, all the states are

generated iteratively starting from the initial state ({0}, (0, ..., 0), (0, ..., 0)).

Let (X̃, t, ξ) be a feasible state and Cmax be a hypothetic makespan. Let e1 be

the last event of chain h belonging to X̃. We suppose that e2 is the direct successor

of e1 and LS(e2) is its latest occurrence time according to Cmax. For each θ ∈
[th + ve1,e2 ..LS(e2)], a state (X̃ ′, t′, ξ′) is generated as follows:

X̃ ′ = X̃ ∪ {e2}

t′i =

θ if i = h

ti otherwise.

ξ′i =

ξi if i 6= h and θ < ti

ξi + ati otherwise.

Suppose that the time window length of each event is upper bounded by a constant

∆. The enumeration procedure generates in each iteration at most SP ×∆SP states.

Thus, a total of O(nSP × ∆2×SP ) states are generated by this method, which is

pseudo-polynomial.

2.7 Conclusion

We have presented the ERCPSP which is a general scheduling problem where the

availability of resources is depleted and replenished. ERCPSP is a generalization

of RCPSP where activities requiring renewable resources are replaced by events

consuming or producing nonrenewable resources. We have shown the connection

between ERCPSP and other scheduling problem with production and consumption
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of resources. Moreover, we have introduced the Decision and the Resource Usage

Problem of ERCPSP and we have reported some complexity results. The decision

problem in its general case is NP-complete, however some special cases can be

resolved in polynomial time. We have presented four polynomial cases of ERCPSP

which are the relocation problem, the parallel chain case, the series-parallel case and

the interval order case. Finally, we have reported a dynamic programming algorithm

to solve the parallel chain case of ERCPSP.
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3.1 Introduction

ERCPSP is a general scheduling problem where the availability of resources is

depleted and replenished [Carlier et al., 2009]. An instance of ERCPSP consists of

events, nonrenewable resources and generalized precedence constraints between pairs

of events. Each event produces or consumes some units of resources at its occurrence

time. The objective is to build a schedule that satis�es the precedence and resource

constraints and minimizes the makespan.

ERCPSP is a generalization of RCPSP where activities requiring renewable

resources are replaced by events consuming or producing nonrenewable resources.

Some other authors have worked on models similar to ERCPSP. We can quote the

works of Neumann and Schwindt [Neumann and Schwindt, 2002] and of Laborie

[Laborie, 2002]. Neumann and Schwindt formalized the Project Scheduling Problem

with Inventory Constraints where the availability of each resource is at any time

upper and lower bounded. To solve this problem, they proposed a branch-and-bound

algorithm with a �ltered beam search heuristic. Laborie [Laborie, 2002] introduced

the concept of a Resource Temporal Network (RTN). He proposed a constraint

propagation algorithm to solve the problem. Koné et al. [Koné et al., 2013] worked

on the RCPSP with Consumption and Production of Resources (RCPSP/CPR). The

53
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particularity of this extension of RCPSP is that, in addition to renewable resources

considered in the basic version, it also involves nonrenewable resources which can

be consumed (or not) at the starting time of an activity in a certain amount

and/or then produced in another amount at the completion time of this activity. To

solve this problem, Koné et al. proposed four mixed integer linear programming

models for RCPSP/CPR. ERCPSP coincides with the problem considered by

[Neumann and Schwindt, 2002] and [Laborie, 2002] where no upper bound on the

resource availability is prescribed.

In a recent paper Carlier et al. [Carlier et al., 2009] have generalized tools

introduced for the RCPSP to the ERCPSP. For instance schedules can be built

by using list algorithms. In this work, we have also been inspired by previous works

on scheduling problems with renewable resource such as the Cumulative Scheduling

Problem to develop new lower bounds for ERCPSP.

Lower bounds have been proposed for models similar to the ERCPSP. Neumann

and Schwindt [Neumann and Schwindt, 2002] introduced two lower bounds for the

Project Scheduling Problem with Inventory Constraints. One is a critical path based

lower bound and the other one is similar to the Shifting Algorithm which was

introduced for the Financing Problem [Carlier, 1984]. Selle [Selle, 1999] proposed

a lower bound based on a time-indexed mixed-integer programming formulation

and a Lagrangean relaxation of the resource constraints.

The purpose of this chapter is to introduce six lower bounds for ERCPSP.

Two of them are based on the extraction of a generalized Cumulative Scheduling

Problem, combined with an adapted version of Jackson's Pseudo-Preemptive

Schedule [Carlier and Pinson, 2004] and the concept of energetic reasoning. Two

further lower bounds respectively result from applying Carlier and Rinnooy Kan's

Shifting Algorithm to a Financing Problem and iteratively testing the feasibility of

associated network �ow problems in a dichotomic search method. The last two lower

bounds are destructive lower bounds computed using a general linear programming

scheme. This linear programming scheme is based on a decomposition of the time

horizon into successive intervals.

The remaining of this chapter is structured as follows. In Section 3.2 we

present the Jackson's Pseudo-Preemptive Schedule and its di�erent adaptations.

In Section 3.3 we present four new lower bounds inspired by previous works on

scheduling problems with renewable resource. In Section 3.4 we present a general

linear programming scheme for computing a lower bound on the makespan, and we

introduce two destructive lower bounds for ESPCPR based on it. In Section 3.5 we

report on experimental results and comment on the practical e�ciency of our lower

bounds, and �nally we conclude this work in Section 3.6.
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3.2 Classical scheduling problems and JPPS

The Jackson's Pseudo-Preemptive Schedule was initially introduced for the m-

Machine Scheduling Problem [Carlier and Pinson, 1998]. Then, it was adapted to the

Cumulative Scheduling Problem by Carlier and Pinson [Carlier and Pinson, 2004].

In this section, we propose to use JPPS for bounding the makespan of the

Generalized Cumulative Scheduling Problem with similar complexities.

3.2.1 m-Machine Scheduling Problem

Them-Machine Scheduling Problem is denoted as Pm/ri, qi/Cmax. In this problem, a

set Y of n activities has to be scheduled without preemption onm identical machines

in order to minimize the makespan. Each activity i has a release date (or head) ri,

a processing time pi, and a tail qi. Tail qi is the latency between the completion

of activity i and the completion of the project. Table 3.1 provides parameters of

an instance of Pm/ri, qi/Cmax having n = 5 activities and m = 2 machines. The

associated instance of ERCPSP is given in Fig. 3.1.

Activity 1 2 3 4 5

ri 0 0 0 4 6
pi 4 6 7 6 5
qi 6 5 0 0 0

Tableau 3.1 � An instance of the m-machine

scheduling problem where

m=2
Figure 3.1 � The associated ERCPSP

3.2.2 Cumulative Scheduling Problem

In the Cumulative Scheduling Problem (CuSP), a set Y of n activities have to

be scheduled without preemption using m available resource units. The aim is to

minimize the makespan. Each activity i requires a constant amount ei of resource

throughout its processing and has a release date ri, a processing time pi, and a tail

qi. Table 3.2 gives an instance of CuSP with n = 4 activities and 3 resource units.

Fig. 3.2 reports the associated instance of ERCPSP without negative arcs.

For an instance of CuSP, the Decision Problem is determining whether it has

a feasible schedule with makespan equal to a given Cmax. We denote this problem

CuSP/Cmax. It is obviously NP-complete, since the optimization problem of CuSP

is NP-hard [Carlier and Pinson, 2004].
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Name ri qi pi ei

A1 0 4 3 2
A2 0 0 6 1
A3 3 0 2 1
A4 3 0 4 2

Tableau 3.2 � An instance of CuSP
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Figure 3.2 � The associated ERCPSP

3.2.3 Generalized Cumulative Scheduling Problem

For the generalized version of CuSP (GCuSP), the resource availability can vary

during the project. The changes of resource availability are represented by a set of

dates {u1, u2, ..., us} and a set of quantities {b1, b2, ..., bs}, where bi is the quantity of

resource that becomes available or unavailable at time ui. If bi ≥ 0, then bi resource

units become available, whereas if bi < 0, |bi| resource units become unavailable.

Name ri pi qi ei

A1 2 4 1 2
A2 0 4 3 3

Tableau 3.3 � An instance of GCuSP such

that u1 = 0, u2 = 3, b1 = 6
and b2 = −3
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Figure 3.3 � The associated ERCPSP

In ERCPSP, an arrival (resp. departure) of bi resources at time ui can be

represented by a production (resp. consumption) event i where ai = bi, v0,i = ui ,

vi,0 = −ui and vi,n+1 = 0. Table 3.3 gives an example of GCuSP with two activities,

one arrival of resource at time u1 = 0 and one departure of resource at time u2 = 3.

Fig. 3.3 shows the associated instance of ERCPSP.

3.2.4 JPPS

JPPS was introduced by Carlier and Pinson [Carlier and Pinson, 1998] for the m-

machine scheduling problem. In a pseudo-preemptive schedule, the preemption of

any available activity is allowed. We also assume that a machine can be shared by a

group of activities and that an activity can be processed on more than one machine

at a time. So, the number of machines assigned to an available activity i at time

t, denoted by αi(t), is not necessarily an integer. For building JPPS, we use a list
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algorithm whose priority dispatching rule is the complete tail ci(t) = qi + ai(t),

where ai(t) is the remaining processing time of activity i at the current time t in

the list algorithm. So, the priority attached to an available activity is not �xed over

the time, but depends on its residual duration. The only restriction is that at any

time t, we must have ai(t) ≥ pi − (t − ri) for any activity i. An activity is said to

be partially available if ai(t) = pi − (t− ri): such an activity can only be scheduled

at a rate αi(t) ≤ 1. Indeed, in this case, we have pi − ai(t) = t − ri and the part

of activity i processed in time interval [ri; t] is as large as possible. It is said to be

totally available if ai(t) > pi − (t− ri): such an activity can be processed at a rate

αi(t) ≤ m. Thus, JPPS schedules �rst the inactive activities with maximal complete

tail at a maximal rate consistent with their status (partially or totally available).

JPPS is then composed of consecutive schedule blocks during which the subset of

in-process activities and the associated rates are invariant, a schedule block B being

partitioned into a set of partially available activities P and a set of totally available

activities T . A schedule block starting at time t is completed at time t + θ, called

decision time, and associated with some event which leads to modi�cations on its

structure. In such a block, activities of T are scheduled at the same rate αT and those

of P are processed at rate 1. The activities of the block are processed in ]t; t + θ].

Fig. 3.4 shows the JPPS built on the instance of Table 3.1.

Figure 3.4 � Solution of JPPS

Theorem 3.1. [Carlier and Pinson, 1998]

C(JPPS) = max{maxi∈Y (ri + pi + qi),max(J⊆Y,|J |≥m)G
′(J)}

C(JPPS) denotes the makespan of JPPS and J ⊆ Y denotes a subset of activities

such as |J | ≥ m, and G′(J) is de�ned by:

G′(J) =
1

m
(ri1 + ...+ rim) +

1

m

∑
i∈J

pi +
1

m
(qj1 + ...+ qjm),

where i1...im (resp. j1...jm) denote the m �rst activities in J rearranged in a

nondecreasing order of heads (resp. tails).
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Note that maxi∈Y (ri + pi + qi) corresponds to the length of the critical path,

and G′(J) is a lower bound on the makespan of Pm/ri, qi/Cmax, which takes into

account heads and tails associated with activities belonging to J and the available

machines.

3.2.4.1 Adaptation of JPPS to CuSP

Carlier and Pinson [Carlier and Pinson, 2004] have proposed two methods to adapt

JPPS to CuSP. The �rst one is to associate with each activity i, ei activities

requiring one machine. Then JPPS is applied on the derived instance involving∑
ei activities. This method introduces a pseudo-polynomial component in the

complexity associated with JPPS construction. However, in the corresponding

schedule, each activity derived from i is executed during the same periods with the

same rates. So, a better idea is to modify rules de�ning rates and schedule blocks

without adding additional activities (see the proposition bellow). Consequently,

JPPS can be computed for the CuSP with the same complexity as Pm/ri, qi/Cmax

(ei = 1; ∀i ∈ I).

Proposition 3.1. Let t and t′ denote two consecutive decision times in JPPS, and

B = P ∪ T the schedule block starting at time t, where P is the set of partially

available activities and T the set of totally available activities with maximal complete

tail cT . For any time u ∈]t; t′], the activities of P are scheduled at rate 1 and the

activities of T are scheduled at rate

α =
m−∑

i∈P ei∑
i∈T ei

In order to apply JPPS to the example of Table 3.2 with the �rst method, we

create the derived instance from the �rst instance as follows. We associate with

activity A1 which needs two resource units, two activities A1
1, A

2
1 requiring each of

them one machine. Similarly, we associate with activity A2 one activity A1
2, with

activity A3 one activity A1
3 and with activity A4 two activities A1

4, A
2
4. The result

of JPPS is shown in Fig. 3.5. As we can see, there are four blocks in this schedule.

At time 0, three activities are available: A1
1, A

2
1 and A

1
2. They are partially available

so we schedule them at rates α = 1. At time 3, activities A1
3, A

1
4 and A2

4 become

partially available and activities A1
1 and A

2
1 are �nished, but the priority of activity

A1
3 is smaller than others, so B = {A1

2, A
1
4, A

2
4}, T = {A1

2} and P = {A1
4, A

2
4}. We

schedule activities A1
4 and A2

4 at rate 1 and A1
2 at rate αT = 1. Until time 4 the

priority of activity A1
3 becomes equal to the priority of activity A1

2. So we have B =

T ∪ P, P = {A1
4, A

2
4}, T={A1

2, A
1
3}, we schedule activities A1

4 and A2
4 at rate α = 1
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Figure 3.5 � Solution of JPPS with the �rst method
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Figure 3.6 � Solution of JPPS with the second method

and activities A1
2, A

1
3 at rate αT = 1

2
. At time 6, all four activities have the same

priority, so we put them in the same schedule block at rate α = 3
4
. All of them �nish

at time 7 + 1
3
. Fig. 3.6 shows the result of JPPS adapted to CuSP using the second

method. As we can see, this method gives the same result as the �rst one but with

much less activities.

3.2.4.2 Adaptation of JPPS to GCuSP (GJPPS)

In JPPS, the current schedule block can be modi�ed by the following events:

(E1) A not in-process activity becomes available.

(E2) An in-process activity is completed.

(E3) A not in-process available activity enters into the process.

(E4) A totally available activity becomes partially available.

(E5) A partially available activity becomes totally available.

To adapt JPPS to GCuSP, we add a new type of decision times not introduced

in [Carlier and Pinson, 1998]. These new decision times correspond to the moments

of resource availability changes. Fig. 3.7 shows the application details of the GJPPS

algorithm on the example of Table 3.3. At time 0, we have an arrival of 6 units of

resource. Activity A2 becomes partially available so we schedule it at rate 1. At time
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2, A1 is partially available. As A1 and A2 are both partially available we schedule

them at rate 1. At time 3, we have a departure of 3 units of resource and A1, A2

become totally available. So, we schedule them at rate αT = 3
5
. At time 4 + 2

3
, A2

completes its execution and A1 remains totally available. So, we schedule it at rate

αT = 3
2
. Finally we obtain a lower bound equal to 7 + 2

3
.
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6 7 7 2
3

3

6

qA2

qA1
A2 A2

A1

A1, A2 A1

Figure 3.7 � Solution of GJPPS for an instance of GCuSP

3.3 Lower bounds for ERCPSP

In this section, we present four destructive lower bounds for ERCPSP. Without

loss of generality, we suppose that there is only one type of resource. For the case

of multiple resources, the lower bound is then the maximum among all the lower

bounds calculated for each single resource.

3.3.1 Notation

Given an instance I = (X,U, a, v) of ERCPSP, the set of events can be separated into

two subsets: one that contains all production events and one with all consumption

events. Let Xp be the set of all production events and Xc the set of all consumption

events. If path of nonnegative length between two events i and j exists in the graph

(X,U), then we denote by li,j the length of the longest path linking i to j. The

earliest occurrence time of event i is denoted by ESi which is equal to l0,i. The

latest occurrence time of event i according to a given hypothetic makespan Cmax is

denoted by LSi(Cmax) which is equal to Cmax − li,n+1.

3.3.2 Lower bound based on JPPS

We compute a lower bound for ERCPSP by associating an instance of transportation

problem with an instance of ERCPSP. Then we solve the transportation problem and
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we associate with its solution an instance of the Generalized Cumulative Scheduling

Problem (GCuSP). Finally, we apply GJPPS to obtain a lower bound for the instance

of GCuSP which is considered as a lower bound for ERCPSP.

3.3.2.1 Transportation problem associated with ERCPSP

For an instance of ERCPSP denoted by I = (X,U, a, v), we establish a bipartite

graph G̃ = (Xc ∪ Xp, Ũ), where Ũ = {(ec, ep)/ec ∈ Xc, ep ∈ Xp}. For each arc

u = (ec, ep) ∈ Ũ , pro�t γec,ep is equal to lec,ep if a positive path from ec to ep exists

in G = (X,U), otherwise γec,ep = −∞. Let a−ec be the quantity of resource consumed

by consumption event ec (a−ec = −aec) and a+
ep be the quantity of resource produced

by production event ep (a+
ep = +aep). An instance of the transportation problem

(Xc ∪Xp, Ũ , a−, a+, γ) is established.

The interest of associating with ERCPSP a transportation problem is to get

a relaxation for ERCPSP based on GCuSP, so we can use existing methods to

calculate a lower bound. An activity in the GCuSP is composed of two events in the

ERCPSP, where a consumption event ec is followed by a production event ep. The

processing time of this activity is equal to the length of the longest path from ec to

ep and the resource requirement is set to be the resource �ow from ec to ep, which

is denoted as fec,ep. In order to tighten the lower bound given by the GJPPS, we

must maximize the total energy required by all activities, where the energy required

by an activity is equal to its processing time multiplied by its resource requirement.

This case can be treated by the transportation problem which can be formulated as

a linear programming problem as follows:

Maximize: ∑
(ec,ep)∈Ũ

γec,ep × fec,ep

Subject to constraint:∑
ec∈Xc

fec,ep ≤ a+
ep ∀ep ∈ Xp

∑
ep∈Xp

fec,ep ≤ a−ec ∀ec ∈ Xc

fec,ep ≥ 0 ∀(ec, ep) ∈ Ũ

The objective of solving this model is to determine the unknown fec,ep that

maximizes the total transportation pro�t while satisfying all supply and demand

constraints.

Finding an optimal solution increases the computation time of the algorithm and
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does not ensure a better lower bound. Thus, we focus on heuristics. There are several

heuristics which are e�ective and have good performance. We quote for example the

Row MinimumMethod (O(n2)), the Column MinimumMethod (O(n2)) [Gass, 2003]

and the Matrix Minimum Method (O(n2 log n)) [Gass, 2003, Ramamurthy, 2007].

3.3.2.2 Transformation from ERCPSP into GCuSP

Once the �ow is computed either optimally or heuristically, we can transform

ERCPSP into GCuSP, where each assignment of resource in the �ow is considered

as an activity. The resource �ow between two events ec and ep is converted into

the resource required by the activity and lec,ep is converted into the duration of the

activity. For each consumption event ec, we compute the length of the longest path

from the beginning of project to ec and store it as rec. For each production event

ep, we compute the length of the longest path from ep to the end of the project and

store it as qep. Therefore, for an activity which is composed of a consumption event

ec and a production event ep, rec is its release date and qep its latency duration or

tail.

The changes of resource availability are provided by the production and

consumption events which are incompletely covered by the �ow. Let X̄ = X̄c ∪ X̄p

be the set of these events, and let āi be the remaining resource units to be produced

or consumed by event i.X̄c = {ec | ec ∈ Xc, āec = aec +
∑

ep∈Xp fec,ep < 0}
X̄p = {ep | ep ∈ Xp, āep = aep −

∑
ec∈Xc fec,ep > 0}

To determine all dates when changes of resource availability occur, we have to �x

a date ui when bi = āi units of resource become available or unavailable for each

incompletely covered event i. Since we do not know the project duration, it is not

so easy to determine the dates of consumption. Thus, relaxations of consumption of

resources are needed. The easiest way is to �x all production events at their earliest

occurrence times and to ignore all consumption events.

Once the relaxation is made, we apply GJPPS to the corresponding GCuSP.

The obtained lower bound is taken as a constructive lower bound for ERCPSP.

The complexity of this method is O(n3). Indeed, we have to compute a matrix of

longest paths (O(n3)), and to determine a solution of the transportation problem

(O(n2 log n)). In the next section we report a method to improve this bound by

de�ning the improved JPPS which is a destructive lower bound.
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3.3.2.3 Improved JPPS Algorithm

Since we have omitted several consumption events, the lower bound is loose. In order

to improve it, we introduce the improved JPPS (IJPPS) in which we �x production

events at their earliest occurrence times and consumption events at their latest

occurrence times. But this needs a hypothetic duration Cmax of the project in order

to calculate them. For an instance G of GCuSP, let GJPPS(G) denote the lower

bound calculated by GJPPS. Calculation details are provided in Algorithm 3.1.

Algorithm 3.1: Improved JPPS algorithm.

Input: An instance I of ERCPSP.
Output: Destructive bound IJPPS.

i) Associate with I an instance G of GCuSP;
ii) Set the dates of resource arrivals of G by setting the incompletely covered
production events at their earliest occurrence times (uj ← ESj, for all
j ∈ X̄p);
iii) Cmax ← GJPPS(G) without considering any resource departures;

iv) Set the dates of resource departures of G by setting the consumption
events at their latest occurrence times (uj ← max{uj, LSj(Cmax)}, for all
j ∈ X̄c);

v) Recalculate C ← GJPPS(G) considering all resource departures;
vi) if C > Cmax then Cmax ← Cmax + 1 and goto iv) ;
IJPPS ← Cmax ;
return IJPPS

Fig. 3.8(a) gives an example of scheduling problem with production and

consumption with n = 7 events. Events 1, 4, 5 and 6 produce respectively 6, 2,

2 and 3 units of resource and events 2, 3 and 7 consume respectively 4, 6 and 3 units

of resource. Thus, we get Xc = {2, 3, 7} and Xp = {1, 4, 5, 6}. Then for each pair of

c ∈ Xc and ep ∈ Xp, if there exists a positive path from ec to ep in the precedence

graph, we calculate pro�t γec,ep = lec,ep. A transportation problem is associated with

the ERCPSP instance as shown in Fig. 3.8(b), where the values on arcs represent

their pro�ts. If we solve it using the Matrix Minimum heuristic, we obtain a �ow as

the one shown in Fig. 3.8(c), where f2,4 = 1, f2,6 = 3 and f3,5 = 2. Each �ow fec,ep

can be considered as an activity in the GCuSP. For the problem above, we introduce

three activities (2, 4), (2, 6) and (3, 5). The arrivals of resources are given by events

1 and 4. The departures of resources are given by events 3 and 7. The associated

GCuSP instance is presented in Fig. 3.8(d). If we apply the improved JPPS on this

instance, we get a lower bound equal to 8. By comparing this lower bound with the

length of critical path which is equal to 7, we get an improvement of 1.
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(c) optimal solution of the transportation
problem

Name ri qi pi ei

activity (2,4) 0 2 3 1

activity (2,6) 0 3 4 3

activity (3,5) 2 0 4 2

event (1) event (4) event (3) event (7)

ui 0 5 * *

bi +6 +1 -4 -3

(d) GCuSP instance associated with the example

Figure 3.8 � An example: From ERCPSP to GCuSP

The evaluation based on the GCuSP instance can be improved by introducing

several instances of GCuSP. Let us return to the graph of the transportation

problem. We have 2n′ events ec1, ec2, ..., ecn′ , ep1, ep2, ..., epn′ . These events are

associated in pairs to form activities. For instance (ec1, ep1) corresponds to activity

1 , ..., (ecn′ , epn′) to activity n′.

Let us choose a subset J of these activities and introduce GCuSP(J) as follows.

For each activity i ∈ J , we replace its release date by max(reci , l0,epi − pi). For each
activity i ∈ J̄ , we replace its tail by max(qepi , leci,n+1 − pi) where J̄ is the absolute

complement of J .

Proposition 3.2. The optimal makespan of GCuSP(J) is a lower bound on the

minimum makespan of the initial ERCPSP.

Proof. Fig. 3.9(a) shows an instance I of ERCPSP. Fig. 3.9(b) represents a relaxation

of I obtained by removing the arc valued by qeci for i belonging to J and the arcs

valued by repi for i belonging to J̄ . We consider a solution S of the relaxed instance.

Then we change this solution by shifting right (resp. left) event eci for i ∈ J (resp.

epi for i ∈ J̄). Let S ′ denote the new solution of the relaxed instance:

S ′(eci) =

max(S(eci), S(epi)− pi) if i ∈ J ,
S(eci) if i ∈ J̄
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(b) A relaxation of I.

Figure 3.9 � Proof of Proposition 3.2

S ′(epi) =

S(epi) if i ∈ J ,
max(S(epi), S(eci) + pi) if i ∈ J̄

Therefore, we obtain a new solution of the relaxed instance which is also a solution

of GCuSP(J). Q.E.D

3.3.3 Extension of Energetic Reasoning

Erschler et al. [Erschler et al., 1991] and Lopez et al. [Lopez et al., 1992] developed

the energetic reasoning to solve the CuSP, they were inspired by the work of

Lahrichi [Lahrichi, 1982]. The energetic approach has been formalized and evaluated

from a theoretical as well as an experimental point of view by Baptiste et al.

[Baptiste et al., 1999]. Since its initial development for CuSP, the energetic reasoning

has been used for solving more complex scheduling problems including RCPSP

[Baptiste et al., 1999]. In this section, we show how we can extend it for the

ERCPSP.

To use the energetic reasoning, we need to get a relaxation for ERCPSP based

on CuSP/Cmax where Cmax is a hypothetic makespan. Thus, we follow the same

process to get an instance of GCuSP as explained in the previous section while

transforming the unassigned production and consumption events X̄p ∪ X̄c into
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activities. Therefore, for an instance of ERCPSP, we associate an instance of the

transportation problem. Then, we solve it and we associate its solution with an

instance of CuSP/Cmax where each assignment of the resource is regarded as an

activity.

Production and consumption events X̄p ∪ X̄c, which are incompletely covered

by the �ow, are transformed into activities as follows. For each production event

ep of X̄p, we introduce an activity i with release date ri = 0, processing time

pi = ESep, tail qi = Cmax − ESep and resource capacity requirement ei = āep.

For each consumption event ec of X̄c, we introduce an activity j with release date

rj = LSec(Cmax), processing time pj = Cmax − LSec(Cmax), tail qj = 0 and resource

capacity requirement ej = −āec. The resource availability of this new instance is

equal to
∑

ep∈X̄p āep.

Once the relaxation is made, we apply energetic reasoning to the corresponding

CuSP/Cmax in order to compute a lower bound. If the obtained bound is strictly

larger than Cmax, we deduce that this instance is infeasible and Cmax + 1 is a valid

lower bound for ERCPSP. Of course the complexity of this method is O(n3), even

if there is no time bound adjustment [Baptiste et al., 1999].

3.3.4 Lower bound based on the Shifting Algorithm

The �nancing problem aims to model the �nancing of some project being realized.

This problem is a special case of ERCPSP, where the dates of production events

are �xed. It can be solved using the shifting algorithm (Section 1.4.1) in polynomial

time (O(n log n)). Hence, to compute a lower bound for ERCPSP, �rst we relax

the ERCPSP to the Financing Problem by setting the production events at their

earliest occurrence times and the consumption events at their latest occurrence

times according to the minimum duration of the project l0,n+1. Then, we apply the

shifting algorithm to the corresponding instance. Finally, we take the makespan of

the �nancing problem instance as a lower bound for ERCPSP. We can compute

the same bound using a destructive approach as follows. Given a trial value

Cmax, we set the production events at their earliest occurrence times and the

consumption events at their latest occurrence times according to Cmax. If a con�ict

of resource is detected then Cmax + 1 is a new valid lower bound [Carlier, 1984]

[Neumann and Schwindt, 2002].

3.3.4.1 Shifting Algorithm for ERCPSP

For an instance I = (X,U, a, v) of ERCPSP, we compute the earliest occurrence

time of production events and the latest occurrence time of consumption events
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according to l0,n+1. We suppose that the production (resp. consumption) events are

indexed in a nondecreasing order of their ESi (resp. LSi(l0,n+1)).

Let us denote Γ = {τi = ESepi/epi ∈ Xp} the set of the earliest occurrence times

and F = {fi = LSeci(l0,n+1)/eci ∈ Xc} the set of the latest occurrence times. At

each time τi of Γ (resp. fi of F ), a
+
epi

(resp. a−eci) units of resource are produced (resp.

consumed).

In the shifting algorithm, the latest occurrence time of consumption events is

shifted in order to satisfy the condition of resource-feasibility (Calculation details are

given in Algorithm 3.2). We say that a time-feasible schedule S = {S(ec)/ec ∈ Xc}
is resource-feasible if the following condition is satis�ed at each time t:

R(t) =
∑

{ec | ec∈Xc, S(ec)≤t}
a−ec ≤ A(t) =

∑
{ep | ep∈Xp, ESep≤t}

a+
ep

Algorithm 3.2: The shifting algorithm

begin
if (

∑
ep∈Xp a+

ep <
∑

ec∈Xc a−ec) then

There is no feasible schedule
else

Γ = {τi = ESepi/epi ∈ Xp};
F = {fi = LSeci(l0,n+1)/eci ∈ Xc};
A(τ0) := a+

ep0
;

for i := 1 to |Xp| − 1 do
A(τi) := A(τi−1) + a+

epi

µ := 0; δ := 0;R := 0;
for i := 0 to |Xc| − 1 do

R := R + a−eci ;
while A(τµ) < R do

µ := µ+ 1

δ := max(δ, τµ − fi)

Fig. 3.10 shows the result of the shifting algorithm applied to the example of Fig.

3.8(a). As we can see, the algorithm computes the latest schedule of consumption

events F = {f0 = 0, f1 = 3, f2 = 7, f3 = 7} and the earliest schedule of production

events Γ = {τ0 = 0, τ1 = 0, τ2 = 4, τ3 = 5, τ4 = 6}. Next, it determines δ which takes

the smallest value such that A(fi + δ) ≥ R(S(eci)) for any consumption event eci.

Therefore, δ = 2 and the optimal schedule built by the algorithm is S(2) = 2, S(3) =

5, S(7) = 9, S(8) = 9. So, the lower bound obtained is equal to 9. Comparing with

the length of critical path which is equal to 7, we have an improvement of lower
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bound by 2. It can be proved that 9 is the optimal makespan.

t

A(t)/R(t)

3 4 5 7 9
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R(t)

A(t)

δ

Figure 3.10 � Applying the shifting algorithm

3.3.5 Lower bound based on Network Flows

In this subsection, we present a destructive bound that we compute as follows. With

an instance of ERCPSP, we associate an instance of the network �ow problem by

setting the value of Cmax. If the network �ow problem does not admit any solution,

then Cmax + 1 is a lower bound.

3.3.5.1 Network Flow problem associated with ERCPSP

Let I = (X,U, a, v) be an instance of ERCPSP. For this instance we introduce a

bipartite graph GI = (Xp∪Xc, UI). Given a trial value Cmax, we set the production

events at their earliest occurrence times and the consumption events at their latest

occurrence times according to Cmax. We consider an arc between a production event

ep and a consumption event ec, if event ep can start before ec. This is obviously

impossible if there exists a strictly positive path from ec to ep or if the earliest

occurrence time of ep is strictly larger than the latest occurrence time of ec (ESep >

LSec(Cmax)). If the network �ow problem de�ned by the bipartite graph GI does not

admit any solution then Cmax+1 is a lower bound for the instance I. The complexity

of the method is O(n3) since we have to compute a solution of the Network Flow

instance.

Fig. 3.11 shows the Network Flow problem associated with the instance of Fig.

3.8(a) when we set Cmax to 8. As this network �ow doses not admit any solution,

9 is a new lower bound. Comparing with the length of critical path, we have an

improvement of the lower bound by 2.
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Figure 3.11 � The associated network �ow

Algorithm 3.3: Destructive bound based on network �ows

Input: An instance I = (X,U, a, v) of ERCPSP
Output: Destructive lower bound FLOW

i) UB =
∑n

i=1 max(i,j)∈U{vij};
ii) LB = Length of critical path ESn+1 ;
iii) V al = d(LB + UB)/2e ;
iv)Generate the bipartite graph GI = (Xp ∪Xc, UI) by setting Cmax = V al ;
if the network �ow de�ned by GI admits a solution then

UB = V al ;

else
LB = V al + 1 ;

if LB < UB then
goto iii)

else if LB > UB then
write(Infeasible instance)

FLOW = V al ;
return FLOW

In order to improve this lower bound we apply Algorithm 3.3. This algorithm

takes as an input an instance of ERCPSP and makes a dichotomic search on the

maximal value of Cmax. Besides the improvement of the bound, this algorithm can

detect the infeasible instances. In fact, at each iteration, the algorithm computes

an upper bound UB and a lower bound LB, if UB < LB we can deduce that the

instance is infeasible.

3.3.6 Method to improve lower bounds

In this subsection, we present a method to improve our lower bounds by adding

new precedence constraints. This method consists in deriving su�cient conditions

to prove that no feasible schedule can exist with speci�c order of a couple of events.
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Given an instance I = (X,U, a, v) of ERCPSP, we de�ne the so-called distance

matrix (Disti,j(I))i,j∈X (i.e., the transitive hull of the time lags li,j, including the

time lag ln+1,0 = Cmax). Let ep be a production event and ec be a consumption

event such that (ec, ep) /∈ U and (ep, ec) /∈ U . We start by �xing the execution of ep

before (resp. after) ec. If an infeasibility is detected, then no feasible solution can

exist in which ep is scheduled before (resp. after) ec. In order to �x the execution of

ep before (resp. after) ec, we need to add an arc from ep to ec (resp. ec to ep) valued

by 0 (resp. 1). Let I1 = (X,U ∪{(ep, ec)}, a, v) and I2 = (X,U ∪{(ec, ep)}, a, v) two

instances of ERCPSP obtained after adding these arcs. An infeasibility is detected

on I1 (resp. I2), if the graph (X,U ∪ {(ep, ec)}) (resp. (X,U ∪ {(ep, ec)})) contains
a strictly positive cycle, which is equivalent to the inequalities Distep,ep(I

1) > 0 or

Distec,ec(I
1) > 0 (resp. Distep,ep(I

2) > 0 or Distec,ec(I
2) > 0). It is also detected if

we compute a lower bound LB(I1) (resp. LB(I2)) strictly larger than a given upper

bound UB of the project.

Algorithm 3.4: Algorithm to improve LB

Input: An instance I = (X,U, a, v)
begin

UB =
∑n

i=1 max(i,j)∈U{vij} ;
for all (ep, ec) ∈ Xp ×Xc do

if (ep, ec) /∈ U and (ec, ep) /∈ U then
De�ne I1 = (X,U ∪ (ep, ec), a, v) with vep,ec = 0;
De�ne I2 = (X,U ∪ (ec, ep), a, v) with vec,ep = 1;
if Distep,ep(I

1) > 0 or Distec,ec(I
1) > 0 then

LB1 ← +∞;

else
Compute a lower bound LB1 for the instance I1;

if Distep,ep(I
2) > 0 or Distec,ec(I

2) > 0 then
LB2 ← +∞;

else
Compute a lower bound LB2 for the instance I2;

if LB1 > UB and LB2 > UB then
return (* infeasible instance *);

else if LB1 > UB and LB2 ≤ UB then
I = I2;

else if LB1 ≤ UB and LB2 > UB then
I = I1;

LB = max(LB,min(LB1, LB2));

return LB
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If an infeasibility is detected only on I1 (resp. I2), then we must always �x the

execution of ep after (resp. before) ec and we replace the instance I by I2 (resp.

I1). However, If an infeasibility is detected on both I1 and I2, then the instance I

is infeasible. The process is reiterated for each production and consumption event.

More details are given in Algorithm 3.4. Of course this test is very costly, it

cannot be used in a branch and bound method at any node of the tree but only at

the root.

3.4 LP-Based lower bound

3.4.1 General linear programming scheme

We now present a general linear programming scheme for computing lower bounds

for ERCPSP. It is based on a decomposition of the time horizon into L successive

intervals [t0, t1[, [t1, t2[, ..., [tL−1, tL[, which are �xed. In this formulation, ERCPSP

is relaxed by allowing events to be partially executed in di�erent intervals. The

decision variable xi,l (i ∈ X, l ∈ [0...L − 1]) denotes the execution proportion

of event i in interval [tl, tl+1[, where xi,l ∈ [0, 1]. Thus, aki × xi,l represents the

quantity of resource k produced or consumed in interval [tl, tl+1[ by event i. The

number of decision variables and the number of constraints in this formulation

increase proportionally with L. Let us now de�ne formally the constraints of our

linear programming formulation.

De�nition 3.1. GLP (I) is the linear programming formulation built from an
instance I of ERCPSP de�ned by:

L−1∑
l=0

xi,l = 1 ∀i ∈ X (3.1)

h∑
l=0

n+1∑
i=0

aki × xi,l ≥ 0 ∀h ∈ [0...L− 1], ∀k ∈ K (3.2)

h1∑
l=0

xi,l −
h2∑
l=0

xj,l ≥ 0 ∀(i, j) ∈ U,∀(h1, h2) ∈ [0...L− 1]2, th2+1 − vij − 1 ∈ [th1
, th1+1[ (3.3)

xi,l ∈ [0, 1] ∀l ∈ [0...L− 1], ∀i ∈ X (3.4)

t0 = 0 < t1 < ... < tL (3.5)

Proposition 3.3. Given an instance I of ERCPSP, if GLP (I) has no feasible

solution, then the time horizon tL of GLP (I) is a valid lower bound on the optimal

makespan of the instance I.

Proof. Let I be an instance of ERCPSP. In GLP (I), events can be partially executed

in di�erent intervals. Due to constraint (3.1), all events are completely executed and

due to constraint (3.2), the availability of each resource k ∈ K in each interval
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[tl, tl+1[ is non negative. Constraint (3.3) expresses the precedence constraints. Let

(i, j) be a pair of events belonging to U and let [th1 , th1+1[ and [th2 , th2+1[ be two

intervals such that th2+1 − vij − 1 ∈ [th1 , th1+1[ (h1 depends on h2). Let us consider

a standard feasible schedule S of I. According to S, events i and j are executed

respectively at times Si and Sj such that Si + vij ≤ Sj. So, the proportion of event

i processed at time Si is larger than or equal to the proportion of event j porcessed

at time Si + vij. To prove the validity of constraint (3.3), we distinguish three cases:

• If Sj ∈ [0, th2 [, then there exist h′1 ≤ h1 and h′2 < h2 such that Sj ∈ [th′2 , th′2+1[

and Si ∈ [0, th′1+1[. This implies
∑h2

l=0 xj,l =
∑h′2

l=0 xj,l = 1 and
∑h1

l=0 xi,l =∑h′1
l=0 xi,l = 1. So, constraint (3.3) is satis�ed.

• If Sj ∈ [th2 , th2+1[, then xh2,j = 1 and Si ∈ [0, th1+1[ (i.e.,
∑h1

l=0 xi,l = 1). So,

constraint (3.3) is also satis�ed.

• If Sj ∈ [th2+1, tL[, then
∑h2

l=0 xj,l = 0 and
∑h1

l=0 xi,l ≥ 0. So, constraint (3.3) is

also satis�ed.

The other constraints are valid.

Note that in this formulation, the precedence and resource constraints are

simultaneously taken into account and tl is constant (∀l ∈ [0...L]).

3.4.2 Application of the general scheme

The �rst lower bound we present in this section is a destructive one. It can be used

to prove that no feasible solution with a makespan smaller than or equal to a value

Cmax exists. It is computed for an instance I of ERCPSP as follows. We start by

�xing a trial value Cmax. Then, we compute for each event i, its earliest starting

time ESi and its latest starting time LSi according to Cmax. The next step is the

computation of the time-intervals. Let T = {t0, t1, ..., tL−1} = {ESi, LSi,∀i ∈ X}
and tL = Cmax + 1. We suppose without loss of generality that T is sorted in an

increasing order and that all time points are di�erent. To decrease the number of

decision variables, we add to GLP (I), the following linear constraints:

xi,l = 0 ∀l ∈ [0...L− 1], ∀i ∈ X, tl > LSi (3.6)

xi,l = 0 ∀l ∈ [0...L− 1],∀i ∈ X, tl+1 − 1 < ESi (3.7)

If GLP (I) has no feasible solution, then Cmax + 1 is a valid lower bound for

the instance I. Note that with this decomposition method we obtain at most O(n)

time-intervals. This leads to a polynomial number of variables and of constraints.
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In fact, with this decomposition method, GLP (I) involves at most O(n2) variables

and at most O(n3) constraints.

This lower bound can be improved by changing adequately tl and by increasing

the number of time-intervals L. In fact, given an instance I of ERCPSP and a

trial value Cmax, a stronger destructive bound can be computed using the following

decomposition of the time horizon. We set t0 = 0, t1 = t0 + 1 , ..., tL = tL−1 + 1 and

L = Cmax + 1. If GLP (I) has no feasible solution, then Cmax + 1 is a valid lower

bound for the instance I. Note that here we get a pseudo-polynomial number of

time-intervals (Cmax + 1), which leads to a pseudo-polynomial number of variables

and of constraints.

3.5 Computational results

Until now, no benchmark has been proposed for the ERCPSP. The only bench-

mark which is the most appropriate to our problem is the one proposed by

[Neumann and Schwindt, 2002] for the Project Scheduling Problem with Inventory

Constraints. This benchmark was considered in order to evaluate the performance

of the proposed lower bounds. It consists of 360 projects with 10, 20, 50, and

100 events (NS10, NS20, NS50 and NS100) involving 5 resources, positive and

negative time lags and minimization of makespan. These instances were generated

according to three parameters: network complexity (NC), resource factor (RF)

and resource strength (RS). Some details about this benchmark extracted from

[Neumann and Schwindt, 2002][Laborie, 2002] are given in Table 3.4 such as the

number of resources K, the number of instances Nbinst, the number of feasible

instances Nbfeas and the number of infeasible instances Nbinf .

We also carried out experiments on 480 instances of RCPSP with 30 activities

generated by authors of [Kolisch and Sprecher, 1997] (J30). All these experiments

were conducted on a personal computer Intel(R) Core(TM) i7-3740QM processor

with 2.70 GHz clock running GNU/Linux and all the bounds were coded in C++

language.

Instances K Nbinst Nbfeas Nbinf
NS10 5 90 60 30
NS20 5 90 43 47
NS50 5 90 48 42
NS100 5 90 47 43

Tableau 3.4 � Neumann and Schwindt benchmark details
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Note that an instance of the Project Scheduling Problem with Inventory

Constraints (resp. of RCPSP) must be associated with an instance of ERCPSP

(as shown in Section 2.2.2) before we test our bounds. The �rst set of experiments

was conducted to assess the performance of the following lower bounds:

• IJPPS: destructive lower bound based on JPPS,

• ER: destructive lower bound based on the energetic reasoning,

• SHIFT: shifting algorithm based bound,

• FLOW: destructive lower bound based on the �ow,

• IFLOW: lower bound computed using the method described in Section 3.3.6

to improve FLOW.

• Best: equal to max{IJPPS,ER, SHIFT, FLOW, IFLOW},

• LB0: critical path based lower bound.

• JPPS/RCPSP: lower bound for RCPSP based on JPPS applied to cumulative

scheduling subproblems directly relaxed from RCPSP [Carlier and Néron, 2003].

Table 3.5 displays a summary of the computational results that were obtained on

the instances of Neumann and Schwindt [Neumann and Schwindt, 2002] and Table

3.6 displays the computational results that were obtained on J30. For each lower

bound, we provide: %Gap: the average deviation from the optimal makespan in

percent, %Opt: the percentage of optimal makespans found and rtavg: the mean

running time in seconds.

A �rst observation from these results is that all the proposed lower bounds

outperform the classical lower bound LB0. They are very e�cient on the instances

of [Neumann and Schwindt, 2002], but less e�cient on the instances of RCPSP

[Kolisch and Sprecher, 1997]. More precisely, we observe that IFLOW exhibits the

best performance on the instances of Neumann and Schwindt. In fact, it yields the

tightest average deviation %Gap and the largest percentage of optimal makespans

reached %Opt. However, ER is the best bound on J30 and IJPPS is slightly better

than JPPS/RCPSP which proves the e�ciency of our extraction method. Moreover,

we see that:

• On NS10 and NS20, ER and FLOW yield the second best average deviation

%Gap. IJPPS and SHIFT provide also good bounds and are impressively fast.

• On NS50, FLOW and SHIFT exhibit the second best results after IFLOW.
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%Gap %Opt rtavg
NS10 IJPPS 0.405% 93.333% 0.001

ER 0.239% 98.333% 0.023
SHIFT 0.502% 93.333% 0.000
FLOW 0.239% 98.333% 0.001
IFLOW 0.077% 98.333% 0,025
LB0 2.888% 81.666% 0.000
BEST 0.077% 98.333% -

NS20 IJPPS 2.342% 81.395% 0.005
ER 1.938% 83.721% 0.119
SHIFT 2.133% 83.721% 0.003
FLOW 1.938% 83.721% 0.008
IFLOW 1.526% 86.046% 0,311
LB0 8.858% 51.162% 0.002
BEST 1.526% 86.046% -

NS50 IJPPS 1.572% 79.167% 0.040
ER 1.572% 79.167% 1.543
SHIFT 1.538% 81.250% 0.034
FLOW 1.522% 81.250% 0.077
IFLOW 0.713% 83.333% 32.00
LB0 14.501% 34.501% 0,033
BEST 0.713% 83.333% -

NS100 IJPPS 0.764% 97.872% 0.263
ER 0.764% 97.872% 11.24
SHIFT 0.764% 97.872% 0.248
FLOW 0.764% 97.872% 0.638
IFLOW 0.648% 97.872% > 600
LB0 18.012% 26.000% 0,245
BEST 0.648% 97.872% -

Tableau 3.5 � Results of the bounds on the benchmark of Neumann and Schwindt
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%Gap %Opt rtavg
IJPPS 7.148% 46.208% 0,059
ER 5.476% 53.125% 2.901
SHIFT 8.340% 46.000% 0,055
FLOW 8.128% 48.333% 0,060
IFLOW 7.389% 51.667% 39.900
LB0 10.020% 44.000% 0.001
BEST 5.385% 54.791% -
JPPS/RCPSP 7.250% 46.208% 0.002

Tableau 3.6 � Results of the bounds on J30

Instances FLOW IFLOW
NS10 40.00% 96.66%
NS20 55.31% 87.23%
NS50 40.47% 85.41%
NS100 54.54% 54.54%

Tableau 3.7 � Percentage of infeasible instances found

• On NS100, IJPPS, ER, SHIFT and FLOW have a similar overall performance.

Even though, IJPPS and SHIFT are the quickest.

• On J30, IJPPS and the energetic reasoning are better than the other bounds.

The energetic reasoning is more powerful than IJPPS but is too costly in

computations.

Thus, we can deduce that our lower bounds are not comparable.

Another striking observation is that IFLOW is very e�cient for small and

medium instances while it is not for large instances. In fact, IFLOW improves

signi�cantly FLOW on NS10, NS20 and NS50. However, it is too costly in

computation time and its improvement is not much signi�cant on NS100.

In addition to their excellent performances on the Neumann and Schwindt

benchmark, FLOW and IFLOW were able to detect some infeasible instances

contrary to the other lower bounds. Table 3.7 summarizes the percentage of infeasible

instances detected using these two bounds. As we can observe, IFLOW improves

dramatically the percentage of detections on the small and medium instances (NS10,

NS20 and NS50). However, it exhibits the same results as the basic bound FLOW

on the large instances (NS100).

Note that we have also tested the method described in Section 3.3.6 with the

other bounds but their performances were not improved.

To evaluate the performance of our two destructive lower bounds, we also

considered the benchmark proposed by (Neumann and Schwindt 2003). The obtained
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results are very interesting (see Table 3.8). They are very close to the optimal

makespan. In fact, more than 93% instances are closed with an average deviation in

percent smaller than 0.8%, which is better than the other proposed lower bounds,

where only 90% instances were closed with 1.12% average deviation in percent.

The second lower bound with pseudo-polynomial decomposition (GLP2) yields the

tightest average deviation (0.6%), but it is too costly in computation time. Indeed,

its average computation time on the large instances is equal to 4 minutes, while the

average computation time of the �rst lower bound (GLP1) is less than 15 seconds.

Data
GPL1 GPL2

Gap Opt CPU Gap Opt CPU
NS10 0.0 100.0 0.0 0.0 100.0 0.0
NS20 1.2 88.7 1.0 1.0 91.0 3.0
NS50 1.4 87.0 5.0 1.2 88.0 40.0
NS100 0.7 97.8 15.0 0.6 97.8 <240

Tableau 3.8 � Results of the LP-based lower bounds

3.6 Conclusion

In this paper, we have studied the Extended Resource Constrained Project

Scheduling Problem (ERCPSP) which is an extension of the RCPSP. We have

shown the usefulness of this model by presenting how several classical project

scheduling problems can be modeled by it. Moreover, we have proposed six new lower

bounds for this problem. Two of them are based on the extraction of a generalized

Cumulative Scheduling Problem, combined with an adapted version of Jackson's

pseudo-preemptive scheduling scheme [Carlier and Pinson, 2004] and the concept

of energetic reasoning. Two further lower bounds respectively result from applying

Carlier and Rinnooy Kan's Shifting Algorithm to a �nancing problem relaxation

and iteratively testing the feasibility of appropriate Network Flow Problems in a

dichotomic search method. The last two lower bounds are destructive lower bounds

computed using a general linear programming scheme.

We have provided a new mechanism translating a scheduling problem with

depleting and replenishing events into a tight relaxation that exclusively contains

renewable resources. Since many lower bounding techniques are available for the

case of renewable resource constraints, this approach paves the way for deriving

further bounding procedures. We have also proposed a method to improve these

lower bounds by adding new precedence constraints.
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We observe that our lower bounds dramatically improve the critical path based

lower bound LB0 and are very close to the optimal makespans for Neumann and

Schwindt instances, we also observed that they are not directly comparable. As

perspectives, we aim to build a branch-and-bound method to solve the ERCPSP

using these lower bounds.
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4.1 Introduction

The Extended Resource Constrained Project Scheduling Problem (ERCPSP) is

de�ned by events, non-renewable resources and generalized precedence constraints

between pairs of events ([Carlier et al., 2009]). Each event has the ability to produce

or to consume some units of resources at its occurrence time. The objective is to

build a schedule that satis�es precedence and resource constraints and minimizes

the makespan.

ERCPSP is an extension of the Resource Constrained Project Scheduling

Problem (RCPSP), where activities requiring renewable resources are replaced

by events consuming or producing non-renewable resources. There exists in the

literature a large number of MILP formulations for the RCPSP. Among others,

we can quote the formulations with an exponential number of variables such as

the discrete time formulation of [Mingozzi et al., 1998], and the formulation of

[Moukrim et al., 2015]. On the other hand, there exist some formulations containing

a polynomial number of variables and other formulations containing a pseudo-

polynomial number of variables. In this paper, we restrict our study to these two

latter categories because the objective is to propose formulations that allow solving

problems by using directly a MILP solver.

In this work, we have been inspired by previous works on RCPSP and

RCPSP/CPR (see [Artigues et al., 2003], [Koné et al., 2013]) to a�ord four mixed

79
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integer linear programming formulations to solve the ERCPSP. More precisely, we

propose �rst an adaptation of two known (time-indexed) MILP formulations of

RCPSP to ERCPSP. Second, we introduce an adaptation of a �ow-based continuous-

time formulation. Finally, we propose a new MILP formulation based on the concept

of event partitioning to solve the problem.

The remaining of this chapter is organized as follows. In Section 4.2, we present

our four MILP formulations for ERCPSP and we report experimental results. In

Section 4.3, we present a branch-and-bound method to solve the ERCPSP using our

lower bounds, and we adapt two constraint propagation algorithms to improve this

method. Finally, we conclude the paper in Section 4.4.

4.2 MILP formulations for the ERCPSP

In this section, we propose �rst an adaptation of two known time-indexed formula-

tions of RCPSP to ERCPSP. Second, we introduce an adaptation of a �ow-based

continuous-time formulation. Finally, we propose a MILP formulation based on the

concept of event group for ERCPSP.

4.2.1 Discrete-time formulation (DT)

The discrete-time formulation (DT) was initially introduced for the RCPSP by

[Pritsker et al., 1969]. Then, it was adapted by [Koné et al., 2013] to the RCPSP

with Consumption and Production of Resources. In this subsection, we extend this

formulation to the ERCPSP. The DT formulation involves only one type of binary

decision variable, xit, indexed by both events and time. The decision variable is

de�ned so that xit = 1 if event i occurs at time t, and xit = 0 otherwise. So, this

formulation can be written for ERCPSP as follows:

min

LSn+1∑
t=ESn+1

txn+1,t (4.1)

LSi∑
t=ESi

txit + vij ≤
LSj∑
t=ESj

txjt ∀(i, j) ∈ U (4.2)

t∑
τ=0

n+1∑
i=0

aki xiτ ≥ 0 ∀k ∈ K, ∀t ∈ H (4.3)

t=LSi∑
t=ESi

xit = 1 ∀i ∈ X (4.4)
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xit = 0 ∀i ∈ X, ∀t ∈ H \ {ESi, ..., LSi} (4.5)

xit ∈ {0, 1} ∀i ∈ X, ∀t ∈ {ESi, ..., LSi} (4.6)

The objective function is given by (4.1). For each event i ∈ X, the value of

Si can be recovered through the relation: Si =
LSi∑
t=ESi

txit. Constraints (4.2) are

simple translations of precedence constraints. Constraints (4.3) simply express the

resource constraints. They ensure to have a non negative resource availability for

each resource k ∈ K at any time t. Note that these constraints take into account the

production and consumption of resources. Constraints (4.4) and (4.6) impose that

each event is processed exactly one time over the planning horizon T . Constraints

(4.5) mean that each event is executed between its earliest occurrence time and its

latest occurrence time.

Remark that this formulation involves
∑n+1

i=0 (LSi − ESi) binary variables, and

|U |+ (T + 1)|K|+ n+ 1 constraints.

4.2.2 Disaggregated discrete-time formulation (DDT)

The disaggregated discrete-time formulation (DDT) was proposed for the

RCPSP by [Christo�des et al., 1987]. It was adapted by [Koné et al., 2013] to

the RCPSP/CPR. Here, we extend this formulation to the ERCPSP. The DDT

formulation is similar to the DT formulation. The unique di�erence between them is

in the formulation of the precedence constraints. In fact, the DT formulation involves

one constraint for each precedence relation, while the DDT formulation de�nes one

constraint for each precedence relation and for every time of the scheduling horizon:

LSi∑
t=τ

xit +

min{LSj ,τ+vij−1}∑
t=ESj

xjt ≤ 1 ∀(i, j) ∈ U,∀τ ∈ [ESi, LSi] (4.7)

All the other constraints remain the same. Note that constraints (4.7) and (4.4)

imply constraints (4.2). The DDT and DT require the same number of binary

variables. However, DDT has |U | × (LSi − ESi) more constraints.

In time-indexed formulations, the number of binary variables increases propor-

tionally with the time horizon T . We remark that both DDT and DT require pseudo-

polynomial numbers of constraints and variables. As a consequence, they exhibit

disastrous performances when solving problems with a very large time horizon.
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4.2.3 Flow-based continuous-time formulation

[Artigues et al., 2003] proposed for the RCPSP a compact �ow-based continuous-

time (FCT) formulation. This formulation was extended to the RCPSP/CPR by

[Koné et al., 2013]. Inspired by these two works, we propose here a �ow-based

continuous-time formulation for the ERCPSP. The idea is as follows. Each quantity

of resources produced by a production event is transfered to consumption events

that follow according to precedence constraints.

The FCT formulation involves three types of decision variables. First, a sequential

binary variable yij is needed for each pair of events (i, j) to determine whether event

j is processed after event i. Second, a continuous time variable Si is required for each

event i to determine its occurrence time. Finally, for each resource k ∈ K and for

each pair of events (i, j) ∈ Xp
k ×Xc

k, a continuous �ow variable fijk is introduced to

indicate the quantity of resource k that is transferred from event i (at its occurrence

time) to event j.

The FCT formulation can be written as follows:

minSn+1 (4.8)

1 ≤ yij + yji ≤ 2 ∀(i, j) ∈ X2, i < j (4.9)

yil + 1 ≥ yij + yjl ∀(i, j, l) ∈ X3 (4.10)

Sj − Si ≥ vij ∀(i, j) ∈ U (4.11)

Sj − Si ≥Mij(yij − 1) ∀(i, j) ∈ X2 (4.12)

fijk ≤ min (aki , |akj |)yij ∀k ∈ K, ∀(i, j) ∈ Xp
k ×Xc

k (4.13)∑
i∈Xp

k

fijk = |akj | ∀k ∈ K, ∀j ∈ Xc
k (4.14)

∑
j∈Xc

k

fijk ≤ aki ∀k ∈ K, ∀i ∈ Xp
k (4.15)

ESi ≤ Si ≤ LSi ∀i ∈ X (4.16)

yij = 1 ∀(i, j) ∈ U, vij ≥ 0 (4.17)



4.2. MILP FORMULATIONS FOR THE ERCPSP 83

yji = 0 ∀(i, j) ∈ U, vij > 0 (4.18)

fijk ≥ 0 ∀k ∈ K, ∀(i, j) ∈ Xp
k ×Xc

k (4.19)

yij ∈ {0, 1} ∀(i, j) ∈ X2 (4.20)

whereMij is an upper bound for Si−Sj, which can be �xed to ESi−LSj. Constraints
(4.9) mean that for two distinct events i and j, either i precedes j (yij = 1, yji = 0),

or j precedes i (yij = 0, yji = 1), or i and j are executed at the same time (yij =

1, yji = 1). Constraints (4.10) de�ne the transitivity of the precedence relations.

Constraints (4.11) express the precedence constraints. Constraints (4.12) link the

time variable of event i and event j with the sequential binary variable yij for each

(i, j) ∈ X2. If yij = 1 (i precedes j), the constraint enforces the precedence relation

Si ≤ Sj, whereas if yij = 0, the constraint is always satis�ed. Constraints (4.13)

link the sequential binary variables with the �ow variables. The maximum �ow sent

from i to j is limited to the capacity min(aki , |akj |) if i precedes j, and to 0 otherwise

for each k ∈ K and (i, j) ∈ Xp
k × Xc

k. Constraints (4.14) and (4.15) are the usual

inequalities of �ow conservation. Constraints (4.16) restrain the occurrence time

of any event i ∈ X to lie between its earliest occurrence time ESi and its latest

occurrence time LSi. Constraints (4.17) and (4.18) �x the preexisting precedence

constraints.

It was shown by [Applegate and Cook, 1991] that this formulation produces bad

linear-relaxation bounds due to big-M constants in constraints (4.12). However, it

may be preferable to time-indexed formulations to solve problems with a large time

horizon. In fact, DT and DDT both involve a pseudo-polynomial number of variables

and constraints, while FCT has a polynomial number of variables and constraints.

It involves at most O(|K| × n2) decision variables and at most O(n3) constraints.

4.2.4 Event partitioning based formulation (EP)

In contrast to the formulations involving variables indexed by time, we propose here

a new formulation for the ERCPSP using variables indexed by event subsets, that we

call the event partitioning based formulation (EP). The idea is to construct feasible

schedules by partitioning the set of events into several subsets such that each subset

contains events having the same occurrence time. The number of subsets can be

restricted to the number of events.

Let Φ = {φ0, φ1, ..., φn+1} be a partition of X. The event partitioning based

formulation uses only one type of binary variables. A decision variable zie is equal

to 1 if event i belongs to subset φe, and to 0 otherwise. This formulation requires
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also the introduction of the following continuous variables:

• Si: the occurrence time of event i.

• te: the occurrence time of each event included in φe.

• sek: the availability of resource k after the execution of each event of φe.

The EP formulation can be written as follows:

min tn+1 (4.21)

t0 = 0 (4.22)

te ≥ Si −M(1− zie) ∀i ∈ X, ∀e ∈ [0...n+ 1] (4.23)

Si ≥ te −M(1− zie) ∀i ∈ X, ∀e ∈ [0...n+ 1] (4.24)

te+1 ≥ te ∀e ∈ [0...n] (4.25)

n+1∑
e=0

zie = 1 ∀i ∈ X (4.26)

Si + vij ≤ Sj ∀(i, j) ∈ U (4.27)

s0k =
n+1∑
i=0

aki zi0 ∀k ∈ K (4.28)

sek = se−1,k +
n+1∑
i=1

aki zie ∀k ∈ K, ∀e ∈ [1...n+ 1] (4.29)

sek ≥ 0 ∀e ∈ [0...n+ 1], k ∈ K (4.30)

ESi ≤ Si ≤ LSi ∀i ∈ X (4.31)

te ≥ ESizie ∀i ∈ X, ∀e ∈ [0...n+ 1] (4.32)

te ≤ LSizie + LSn+1(1− zie) ∀i ∈ X, ∀e ∈ [0...n+ 1] (4.33)

ESn+1 ≤ tn+1 ≤ LSn+1 (4.34)

te ≥ 0 ∀e ∈ [0...n+ 1] (4.35)

zie ∈ {0, 1} ∀i ∈ X, ∀e ∈ [0...n+ 1] (4.36)
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where M is a large enough constant, which can be set to any upper bound on

the makespan of the ERCPSP instance, we can set M for example to LSn+1.

The objective function is given by (4.21). Constraint (4.22) stipulates that each

event belonging to φ0 is processed at time 0. Constraints (4.23) and (4.24) ensure

that events belonging to a same subset have the same occurrence time. Constraints

(4.25) order the subsets according to the occurrence time of their events. Constraints

(4.26) require that each event has a single occurrence. Constraints (4.27) express the

precedence constraints. Constraints (4.28) give the availability of each resource at

time 0. Constraints (4.29) give the level of each resource after the execution of each

subset events. Constraints (4.30) express the resource constraints, they ensure non

negativity for each resource level. Constraints (4.31)-(4.34) are valid inequalities

based on event time windows. They state that the execution of each event i ∈ X

must lie between its earliest occurrence time ESi and its latest occurrence time LSi.

occurrence Note that the variables sek can all be substituted by their expression in

function of zie. Thus, constraints (4.28)-(4.30) can be replaced by:

e∑
e′=0

n+1∑
i=0

aki zie′ ≥ 0 ∀k ∈ K, ∀φe ∈ Φ (4.37)

The EP formulation involves at most O(n2) variables and at most O(n2)

constraints. Compared with DT and DDT, this formulation contains a polynomial

number of variables and constraints, however, it involves big-M constraints. Com-

pared with FCT, EP has less variables and less constraints.

4.2.5 Computation results

To evaluate the performance of our four MILP formulations, we considered the

benchmark proposed by [Neumann and Schwindt, 2002] for the Project Scheduling

Problem with Inventory Constraints. It consists of 360 projects with 10, 20, 50, and

100 events, involving 5 resources, min/max delays between events and minimization

of makespan.

We performed a series of tests to compare the lower bounds obtained by linear

relaxation of each of the four formulations DT, DDT, FCT and EP. These tests were

carried out on a personal computer Intel(R) Core(TM) i7-3740QM processor with

2.70 GHz clock running GNU/Linux. The formulations were coded in C++ language

and the solver used was ILOG-CPLEX (version 12.6). We limited the computation

time of each instance to 300s.

Note that an instance of the Project Scheduling Problem with Inventory
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Constraints must be associated with an instance of ERCPSP before the linear

relaxation based lower bounds are computed.

Tableau 4.1 � Linear relaxation results.

Instances Bounds %Gap %Opt T ime (s)

NS10 DT 0.4 95.0 0.0

DDT 0.2 98.3 0.0

FCT 0.4 96.6 0.0

EP 0.5 93.3 0.0

LBbest 0.2 98.3 0.0

NS20 DT 2.2 81.4 0.2

DDT 1.8 83.7 2.1

FCT 2.4 81.4 0.0

EP 2.4 81.4 0.0

LBbest 1.9 83.7 0.1

NS50 DT 1.5 79.1 2.7

DDT 1.1 81.2 10.2

FCT 1.5 79.1 1.6

EP 1.5 79.1 0.4

LBbest 1.5 81.2 1.5

NS100 DT 0.7 97.8 19.0

DDT 0.6 97.8 40.0

FCT 0.7 97.8 80.0

EP 0.7 97.8 6.0

LBbest 0.7 97.8 2.0

Table 4.1 displays a summary of the computational results that are obtained

on the instances of [Neumann and Schwindt, 2002]. In this table, LBbest represents

the best lower bound obtained in ([Sahli et al., 2015]). We also use the following

abbreviations:
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• %Gap gives the average deviation in percent for solved instances from the

optimal makespans.

• %Opt provides the percentage of optimal makespans found.

• Time(s) displays the average CPU time required, in seconds.

The methods are ranked according to criteria %Gap, %Opt, Time (s), by order

of importance.

A �rst observation from these results is that all the linear relaxation based

lower bounds are e�cient on the instances of [Neumann and Schwindt, 2002] and

are computed within 80s. In fact, they are very close to the optimal makespans.

More precisely, we observe that DDT produces the best lower bounds. It

yields the tightest average deviation %Gap and the largest percentage of optimal

makespans reached %Opt. It also slightly improved the best lower bound (LBbest)

proposed in ([Sahli et al., 2015]). LBbest is slightly better than the other LP-based

lower bounds. Moreover, we see that:

• On NS10 and NS20, the linear relaxations of DT and FCT present the second

best average deviation %Gap. EP yields also good bounds and is impressively

fast.

• On NS50, the LP-relaxations of DT, FCT and EP exhibit a similar overall

performance. Even though, EP is the fastest, followed by FCT.

• On NS100, the lower bound given by DT, FCT and EP are similar and EP

remains the fastest. But here DT is faster than FCT.

The LP-relaxation of the time-indexed formulation is better than the other ones.

However, the number of variables of this formulation explodes for instances with a

large time horizon. In fact, we observe that the LP size increases dramatically for

instances involving very large scheduling horizon.

Another striking observation is that even if DT and DDT are very similar and

use the same decision variables, the linear relaxation of DDT is tighter than the one

of DT. This result is consistent with previous studies of lower bounds using discrete

time relaxations for the RCPSP ([Koné et al., 2011]).

In terms of exact (integer) solving, the four MILP formulations are able to solve

the instances involving 10 and 20 events in less than 120s. But they cannot solve

the large instances within 300s.
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4.3 Branch-and-Bound method for ERCPCP

The search tree which we propose is a binary tree, each node represents a subset of

solutions which satisfy a set of precedence constraints α. At each branching phase,

from a given node, we partition the current subset of solutions into two disjoint

subsets α∪{(a, b)} where vab = 0 and α∪{(b, a)} where vba = 1. Two events a and b

are chosen as follows. From the current subset which contains arcs set α, we calculate

the earliest starting time of each event in respecting graph G = (X,U ∪α). Then we

draw the curve of level of resources. For the �rst time t when we encounter a con�ict

of resource k ∈ K, we pick all events whose earliest starting times are earlier than t

and who consume resource k. We calculate their criticality Crit = abk/(t− tb) and
we choose the one with max criticality as event b. For the selection of event a, it's

nearly the same. We pick all events whose earliest starting times are not earlier than

t and who produce resource k, we calculate their criticality Crit = aak/(ta − t) and
we choose the one with max criticality to be event a. If there is no resource con�ict,

that means we have obtained a feasible solution.

A naive upper bound ub of GRCPSP can be calculated as introduced in

[Carlier et al., 2009]:

ub =
n∑
j=1

max{max{0, vji}|∀i, (j, i) ∈ U} (4.38)

Let EST (α) denote the earliest start time solution for graph G = (X,U ∪ α).

The enumeration is performed according to a depth-�rst search strategy. We

initialize the upper bound ub according to equation 4.38. We start with the root

which contains the subset α0 = ∅, if EST (α0) is feasible, we set ub equal to

C(EST (α0)) and backtrack. Otherwise, we de�ne two child nodes pleft and pright as

described before. For each child node p, if lbp < ub, we add it into the search tree.

We branch from one of the child nodes with maximum lower bound. The branch-

and-bound procedure terminates when all nodes in the processing tree are exploited.

Note that to evaluate each node we use the lower bounds presented in the previous

chapter.

4.3.1 Constraint propagation

In Constraint Programming, a partial schedule is a set of decision variables (occur-

rence time, requirement of resource) and a set of constraints between these variables

(temporal and resource constraints). An instantiation of all these decision variables

that satis�es all the constraints represents a solution. Constraint propagation is
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the main technique used in Constraint Programming to reduce the search space. It

consists in removing from the possible values of a decision variable the ones that

surely violate some constraint. This method can be used in a branch-and-bound

procedure to �nd features shared by all the solutions reachable from the current

search node. These features may involve some additional constraints that must be

satis�ed or some domain restriction. In this subsection, we present two adapted

constraint propagation algorithms to improve our branch-and-bound method: the

timetabling of [Le Pape, 1994] and the balance constraint of [Laborie, 2002].

4.3.1.1 Timetabling

Timetabling is based on the computation for each time t the minimal resource usage

[Laborie, 2002]. It permits to reduce the domains of the occurrence times of events

by removing the dates that would lead to an over-consumption of the resource. The

main advantage of the timetabling technique is its low algorithmic complexity which

is linear [Laborie, 2002]. For this reason, it is the main technique used today for large

scheduling problems.

Suppose that ES(i) and LS(i) are respectively the earliest and the latest

occurrence times of event i. Thus we know surely that i will be executed before

LS(i). For each resource k, the minimal resource usage of event i at time t is given

by the function:

Uk(i, t) =

aki if t > LS(i) or ES(i) ≤ t ≤ LS(i) and aki ≥ 0

0 otherwise.

Note that if i produces a quantity aki of resource k and t ≥ ES(i), then the

minimal resource usage of i is equal to aki . A curve Uk(t) is maintained which

aggregates all these demands:

Uk(t) =
∑
i∈X

Uk(i, t).

If there exists a time t such that Uk(t) is negative, then the current schedule cannot

lead to a solution and the search must backtrack. Furthermore, if there exists a

production event p and a time t such that Uk(t) − Uk(p, t) < 0, then event p must

occur before t. It would be otherwise an over-consumption of the resource. Moreover,

if there exists a consumption event c and a time t such that Uk(t)−Uk(p, t)+akc < 0,

then event c must occur after t. It would be otherwise an over-consumption of the

resource. Thus timetabling allows us to increase (resp. decrease) the earliest start

times (resp. latest completion times) of events.
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4.3.1.2 Balance constraint

The balance constraint was introduced by [Laborie, 2002] for scheduling problems

with reservoir resources. The idea of the balance constraint is to compute, for each

event i ∈ X and for each resource k ∈ K, a lower and an upper bound on the

resource level just before (S(i) − ε) and just after (S(i) + ε) event i. The balance

constraint can be adapted to ERCPSP by computing only upper bounds on the

resource level. Given an event i ∈ X, let us de�ne the following subsets of events:

• Xs(i) = {j ∈ X | li,j = lj,i = 0} is the set of events simultaneous with i.

• Xb(i) = {j ∈ X | li,j < 0 and lj,i > 0} is the set of events strictly before i.

• Xbs(i) = {j ∈ X | li,j < 0 and lj,i = 0} is the set of events before i.

• Xa(i) = {j ∈ X | li,j > 0 and lj,i < 0} is the set of events strictly after i.

• Xas(i) = {j ∈ X | li,j = 0 and lj,i < 0} is the set of events after or simultaneous
with i.

• Xu(i) = {j ∈ X | li,j < 0 and lj,i < 0} is the set of events unranked with

respect to i.

For each event i and each resource k, an upper bound on the resource level L<max(i, k)

at date S(i)− ε (just before i) is computed assuming:

• All the events belonging to subset Xb(i).

• All the production events belonging to Xbs(i) ∪Xu(i).

In a similar way, an upper bound on the resource level L>max(i, k) at date S(i) + ε

(just after i) is computed assuming:

• All the events belonging to subset Xb(i) ∪Xs(i) ∪Xbs(i).

• All the production events belonging to subset Xas(i) ∪Xu(i).

More formally, if P k is the set of production events of resource k, then these upper

bounds can be computed as follows:

L<max(i, k) =
∑

j∈Xb(i)

akj +
∑

j∈Pk∩(Xbs(i)∪Xu(i))

akj (4.39)

L>max(i, k) =
∑

j∈Xb(i)∪Xs(i)∪Xbs(i)

akj +
∑

j∈Pk∩(Xas(i)∪Xu(i))

akj (4.40)
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For each upper bound, the balance constraint for ERCPSP is able to discover tree

kind of information: dead ends, new time windows for events and new precedence

relations.

Discovering dead ends : If L<max(i, k) < 0 (resp. L>max(i, k) < 0), then the level

of resource k will surely be negative just before (resp. after) event i. Thus, the

current schedule cannot lead to a solution and the search must backtrack.

Discovering new time windows for events : Let us de�ne Ψ<(i, k) and

Ψ>(i, k) as follows:

Ψ<(i, k) = −
∑

j∈Xb(i)

akj (4.41)

Ψ>(i, k) = −
∑

j∈Xb(i)∪Xs(i)∪Xbs(i)

akj (4.42)

If Ψ<(i, k) is positive, it means that some production events in Xbs(i)∪Xu(i)

must be executed strictly before i to produce at least: Ψ<(i, k).

Let {ep1, ..., eps} be the set of production events in Xbs(i) ∪ Xu(i). We

suppose that these events are indexed in a nondecreasing order of their earliest

occurrence time. Let r be the index in [1, s] such that:

r−1∑
l=1

akepl < Ψ<(i, k) ≤
r∑
l=1

akepl

If event i is executed at a date S(i) < ES(epr), not enough production events

could be executed strictly before i to ensure a positive level of resource. Thus,

ES(epr) is a valid lower bound of S(i).

In the same way, we can found a new lower bound of S(i) if Ψ>(i, k) is positive.

Discovering new precedence relations : Let P k be the set of production events

of resource k. Suppose there exists a production event ep in Xbs(i) ∪ Xu(i)

such that: ∑
j∈Pk∩(Xbs(i)∪Xu(i))∩(Xb(ep)∪Xbs(ep)∪Xu(ep))

akl < Ψ<(i, k)

Then, if we had S(i) < S(ep), there is no way to produce Ψ>(i, k) before event

i. In fact, the only events which can produce strictly before event i are the

ones in P k ∩ (Xbs(i)∪Xu(i))∩ (Xb(ep)∪Xbs(ep)∪Xu(ep)). Thus, we deduce

the necessary precedence constraint S(ep) < S(i).
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In the same way, if there exists a production event ep in Xas() ∪ Xu(i) such

that: ∑
j∈Pk∩(Xas(i)∪Xu(i))∩(Xb(ep)∪Xbs(ep)∪Xu(ep)))

akl < Ψ<(i, k)

Then, we deduce the precedence relation S(ep) ≤ S(i)

4.3.2 Computation results

To evaluate the performance of our branch-and-bound method, we have considered

the benchmark of [Neumann and Schwindt, 2002]. This benchmark is the most

appropriate to our problem. It consists of 360 projects with 10, 20, 50, and 100 events

involving 5 resources, positive and negative time lags and minimization of makespan.

From these 300 problems, 12 hard instances were not solved to optimality by the

approach of [Neumann and Schwindt, 2002]. These hard instances were solved by

the approach of [Laborie, 2002]. We tested our search procedure combined with the

shifting algorithm lower bound on these 12 hard instances. All the other problems

were easily solved using our approach in less than 10 seconds.

Instance n Optimal
Neumann and Schwindt Laborie Our approach

UB proof CPU UB proof CPU UB proof CPU
10 50 92 93 - 120 92 yes 0.3 92 yes 0.0
27 50 96 +∞ - 120 96 yes 2.4 96 yes 10.0
82 50 inf +∞ - 120 +∞ yes 0.1 +∞ yes 0.1
6 100 211 223 - 120 211 yes 1.0 211 no 120
12 100 197 197 - 120 197 yes 0.7 200 - 120
20 100 199 217 - 120 199 yes 0.5 199 yes 40
30 100 204 218 - 120 204 yes 2.1 205 - 120
41 100 337 364 - 120 337 yes 0.6 337 yes 50
43 100 inf +∞ - 120 +∞ yes 7.7 +∞ yes 2.0
54 100 344 360 - 120 344 yes 0.5 344 yes 8.0
58 100 317 326 - 120 317 yes 0.5 317 yes 10.0
69 100 inf +∞ - 120 +∞ yes 2.0 +∞ yes 0.7

Tableau 4.2 � Results of the branch-and-bound method

The experiments were conducted on a personal computer Intel(R) Core(TM)

i7-3740QM processor with 2.70 GHz clock running GNU/Linux and the method

was coded in C++ language. Table 4.2 summarizes the results obtained by our

method, the beam search of [Neumann and Schwindt, 2002] and the approach of

[Laborie, 2002] on the 12 hard instances. The column n provides the number of

events of each instance. The column Optimal gives the optimal makespan of each

instance. We provide for each method and for each instance:

• UB: the best upper bound obtained.

• proof : column to show if the optimality is proved or not.
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• CPU: CPU time in seconds (we limited the computation time of each instance

to 2 minutes).

We can see that 9 among the 12 hard problems are closed in less than 50 seconds

CPU time, which is better than the method of Neumann and Swchindt. Comparing

with the approach of Laborie, our method is competitive for these 9 instances. The

three remaining instances (6, 12 and 30) are hard for our procedure but they are not

hard for the approach of Laborie. All the other problems were easily solved using

our approach in less than 10 seconds.

4.4 Conclusion

Inspired by previous works on RCPSP, we have proposed four mixed integer linear

programming models to solve this problem. The �rst one is an adaptation of the

discrete-time formulation (DT) which was initially introduced for the RCPSP by

[Pritsker et al., 1969]. The second one is an adaptation of the disaggregated discrete-

time formulation (DDT) which was initially proposed by [Christo�des et al., 1987].

The third one is an adaptation of a �ow-based continuous-time formulation (FCT)

and the last one is an event partitioning based formulation (EP). To evaluate the

performance of our four MILP formulations, we have considered the benchmark

proposed by [Neumann and Schwindt, 2002] for the Project Scheduling Problem

with Inventory Constraints. We have compared the lower bounds obtained by linear

relaxation of each of the four MILP formulations. The obtained results are very

interesting. In fact, all the linear relaxation based lower bounds are very close to the

optimal makespans and are computed in less than 80s. The LP-relaxation of DDT

produces the best lower bounds, followed by DT. The DDT formulation slightly

improves the best lower bound proposed in ([Sahli et al., 2015]). The EP formulation

also exhibits good results, while being very fast. In terms of exact solving, the four

MILP formulations are able to solve the instances involving 10 and 20 events in less

than 120s. But they cannot solve the large instances within 300s.

As a perspective, we think that these LP-based lower bounds can be improved

by adding valid inequalities to our MILP formulations. We also plan to generate

a new benchmark dedicated to the ERCPSP and harder than the one proposed by

[Neumann and Schwindt, 2002]. Another perspective is to build a branch-and-bound

method to solve the ERCPSP with an exact method.
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5.1 Introduction

Until 1992, the testset of [Patterson, 1984] was the main benchmark for

RCPSP. This benchmark was not generated using a systematic approach controlled

by several graph and resource-based parameters. It was shown that all the

instances of this benchmark without exception belong to a class of easy problems

[Kolisch et al., 1995]. Therefore, the analysis of algorithms should be based on a

benchmark generated systematically by a problem generator. The performance of the

tested algorithms can then be evaluated depending on di�erent problem measures.

The ProGen of [Kolisch et al., 1995] is an instance generator for RCPSP.

Several graph measures such as the number of nodes, the graph complexity, the

number of predecessors and successors of a node as well as parameters for the

resource constraints can be speci�ed. [Schwindt, 1996] developed ProGen/max which

generates instances of RCPSP/max (RCPSP with minimal and maximal time

lags). ProGen/max is based on the methodology of ProGen for the construction

of precedence graph structures.

95
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Until now, no benchmark has been proposed for the ERCPSP. The only

benchmark which is the most appropriate to our problem is the one proposed by

[Neumann and Schwindt, 2002] for the Project Scheduling Problem with Inventory

Constraints. In this chapter, we describe an instance generator for the ERCPSP also

based on the methodology of ProGen.

The remainder of this chapter is structured as follows. Section 5.2 is concerned

with basic de�nitions of graph theory and several graph measures which are known

from literature. In Section 5.3 we present two di�erent approaches to construct cyclic

graphs. Section 5.4 deals with the generation of resource constraints. In Section 5.7

we conclude the chapter.

5.2 Basic Concepts

The generation steps of an instance of ERCPSP can be summarized as follows:

1. Generation of the basic data (see Subsection 5.3.1).

2. Construction of the precedence graph (see Subsection 5.3.2).

3. Determination of minimal and maximal time lags between events (see Subsec-

tion 5.3.3).

4. Generation of resource constraints (see Section 5.4).

5.2.1 Basic De�nitions

In this section, we give some basic de�nitions and results which are used in Section

5.3 for the generation of precedence graphs. For an introduction to the theory of

graphs we refer to [Bondy and Murty, 1976]. let us introduce the following notation.

The symbols refer to graph G = (X,U).

We assume that graph G is simple, which means it contains no directed loops or

parallel arcs.

De�nition 5.1 (Adjancency matrix A of a graph). The adjacency matrix A of

graph G is de�ned to be the |X| × |X| matrix (Aij)i,j∈X with

Aij =

1, if(i, j) ∈ U
0, otherwise

.

De�nition 5.2 (Indegree and outdegree of node i ∈ X). The indegree δ−(i) of node

i ∈ X is de�ned to be the number of (direct) predecessors of node i: δ−(i) = |Γ+(i)|.
Analogously, the outdegree δ+(i) of node i ∈ X is de�ned to be the number of (direct)

successors of node i: δ+(i) = |Γ−(i)|.
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X set of nodes
X(G) set of nodes of graph G
U set of arcs
U(G) set of arcs of graph G
(i, j) arc from node i ∈ X to node j ∈ X
vij weight of arc (i, j)
δ+(i) outdegree of node i ∈ X
δ−(i) indegree of node i ∈ X
Γ+(i) set of direct successors of node i ∈ X
Γ−(i) set of direct predecessors of node i ∈ X
A adjacency matrix
R reachability matrix
R(i) set of nodes j ∈ X which are reachable from node i ∈ X

R̄(i) set of nodes j ∈ X which node i ∈ X can be reached
C set of cycle structures
C(i) cycle structure to which node i ∈ X belongs

De�nition 5.3 (Reachability). A node j ∈ X is called reachable from node i if

j = i or if there is a (directed) path from i to j.

De�nition 5.4 (Reachability matrix of a graph). The reachability matrix R

of graph G = (X,U) is de�ned to be the n × n matrix (Rij)i,j∈X with

Rij

1, if j is reachable from i

0, otherwise
.

De�nition 5.5 (Connectivity). Let G = (X,U) be a graph with reachability matrix

R. Two nodes i, j ∈ X are called connected in G if i = j or if there is a sequence

(i0, i1, ..., ik) of nodes is ∈ V (s = 0, ..., k) with i0 = i, ik = j, and

k∏
s=1

[1− (1−Ris−1,is) ∗ (1−Ris,is−1)] = 1

De�nition 5.6 (Subgraph induced by node set). A graph G′ = (X ′, U ′) is a subgraph

of a graph G = (X,U) if X ′ ⊆ X, U ′ ⊆ U and ((i, j) ∈ U ′ ⇒ i, j ∈ X ′).
A graph G′′ = (X ′′, U ′′) is a subgraph of a graph G = (X,U) induced by node set X ′′

if X ′ ⊆ X and ((i, j) ∈ U ′′ ⇔ i, j ∈ X ′′, (i, j) ∈ U).

De�nition 5.7 (Weak component). A weak component G′(X ′, U ′) of a graph G =

(X,U) is a maximal subgraph of G (with respect to |X ′|) induced by node set X ′ for

which all nodes i, j ∈ X are connected.

A graph G which constitutes a weak component of itself is called weakly connected.
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De�nition 5.8 (Network). An arc-weighted graph N = (X,U, v) is called network

if the underlying graph G = (X,U) is weakly connected.

De�nition 5.9 (Strong component). A strong component G′ = (X ′, U ′) of G is

a maximal subgraph of G (with respect to |X ′|) for which all nodes i, j ∈ X ′ are

mutually reachable.

A graph G which constitutes a strong component of itself is called strongly connected.

De�nition 5.10 (Cycle structure). A cycle structure C(i) = (X ′, U ′) of G is a

strong component of G with |X ′| ≥ 2.

De�nition 5.11 (Redundant arc). An arc (i, j) ∈ U is said to be redundant in

G = (X,U) if there is a (directed) path from i to j in G which contains more than

one arc.

5.2.2 Graph Measures

The structure of precedence graphs has generally an impact on the time which

an exact algorithm requires for solving a scheduling problem. In literature, a large

number of graph measures can be found which describe the size, the logic, and

the shape of graphs [Thesen, 1977, Patterson, 1976, Kurtulus and Davis, 1982]. The

following parameters are the most commonly used:

• Number of nodes.

• Thesen's estimator for the restrictiveness (see below).

• Degree of redundancy.

• Number of predecessors and number of successors of a node.

• Number of cycle structures.

• Number of backward arcs.

• Number of nodes in a cycle structure.

All these parameters are used by our generator for the generation of precedence

graphs.

De�nition 5.12 (Restrictiveness of a graph). Let G = (X,U) be a weakly connected

graph with exactly one source and one sink and node set X = {0, 1, ..., n, n+ 1}. Let
nΠ denote the number of permutations (i1, i2, ..., in) of X ′ = {1, ..., n} such that if

k < l then ik /∈ R(il). The restrictiveness is equal to 1− lognΠ

logn!
.
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Note that the determination of nΠ is a hard combinatorial problem. That is why

Thesen has tested a set of over 40 di�erent estimators for the restrictiveness. We

denote by RT the best obtained estimator.

RT = 1−
(n+ 2)(n+ 3)− 2

∑
i,j∈X Rij

(n)(n− 1)
(5.1)

Theorem 5.1 ([Schwindt, 1996]). Let G = (X,U) be a weakly connected acyclic

graph with exactly one source 0 and exactly one sink n + 1, node set X =

{0, 1, ..., n, n+1}, and restrictiveness estimator RT . For RT the following properties

apply:

1. RT ∈ [0, 1].

2. RT = 0 exactly if G is parallel.

3. RT = 1 exactly if G is serial.

4. The insertion of a non-redundant arc in G increases RT .

5. The insertion of a redundant arc in G does not a�ect RT .

5.3 Basic Data and Precedence Graph Generation

5.3.1 Basic Data

The user of our generator has to enter values for the following basic data which will

be used to generate the precedence graph and the resource constraints:

nmin, nmax: minimal and maximal number of events.

Qmin, Qmax: minimal and maximal number of nonrenewable resources.

Let rand{a, ..., b} (a, b ∈ Z) be an integer pseudo random number out of the set

{a, ..., b}. The basic data is calculated as follows:

• number of events n = rand{nmin, ..., nmax}

• number of nonrenewable resources |Q| = rand{Qmin, ..., Qmax}
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5.3.2 Precedence Graph

Let us consider a weakly connected graph G = (X,U). The precedence constraints

of ERCPSP instances are given by the graph G and the corresponding minimal and

maximal time lags (arc weights). A minimal time lag Tminij between the occurrence

time of event i and the occurrence time of event j is represented by an arc (i, j)

weighted by vij = Tminij . A maximal time lag Tmaxij between the occurrence time of

event i and the occurrence time of event j is represented by a backward arc (j, i)

weighted by vji := −Tmaxij . If there is a minimal time lag Tminij > 0 and a maximal

time lag Tmaxji > 0, then the maximal time lag Tmaxji is ignored. A precedence

constraint concerning a single event does not make sense in project scheduling.

Therefore, the generation of the precedence graph is limited to the case of simple

graphs.

Algorithm 5.1: Direct method

1. Generation of an acyclic graph without redundancy;

(a) Selection of sources and sinks (nodes which will correspond to initial
and terminal events);

(b) Generation of direct predecessors;

(c) Generation of direct successors;

(d) Insertion of additional arcs such that the resulting graph is still without
redundancy;

2. Insertion of redundant arcs;

3. Generation of cycle structures;

(a) Creation of cycle structures (De�nition 5.13)

(b) Extension of cycle structures (De�nition 5.14)

(c) Densi�cation of cycle structures (De�nition 5.15)

4. Addition of a supersource and a supersink

[Schwindt, 1996] considered two methods to generate cyclic graphs. The �rst

algorithm, called direct method, begins with the generation of an acyclic graph.

Then, backward arcs are added to generate cycle structures. Finally, a supersource

and a supersink are added to obtain a weakly connected graph. The second

algorithm, called contraction method, �rst creates cycle structures which are then

contracted. With the contracted cycle structures and the nodes not employed during

the �rst step we generate an acyclic graph similarly to the direct method (see
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Algorithm 5.2: Contraction method

1. Generation of cycle structures

(a) Generation of several weak components

(b) Transformation of the weak components to cycle structures

2. Contraction of the cycle structures to contracted cycle structures (De�nition
5.16)

3. Generation of an acyclic graph based on the contracted cycle structures and
additional nodes

4. Expansion of the contracted cycle structures and insertion in the graph
(De�nition 5.17)

5. Addition of a supersource and a supersink

Algorithm 5.1). Subsequently, the contracted cycle structures are expanded and

integrated into the graph. Finally, we add a supersource and a supersink to obtain

a weakly connected graph (see Algorithm 5.2). E�cient algorithms for the direct

method and the contraction method are provided in [Schwindt, 1996].

De�nition 5.13 (Creation of a cycle structure within a graph). Let G = (X,U) be

a graph with set of cycle structures C. By a creation of a cycle structure C(i) within

G we mean an operation on G which derives a graph G′ = (X ′, U ′) with set of cycle

structures C ′ such that C ⊂ C ′, U ⊂ U ′, and |U ′| = |U |+ 1.

De�nition 5.14 (Extension of a cycle structure within a graph). Let G = (X,U) be

a cyclic graph with set of cycle structures C 6= ∅. By an extension of a cycle structure

C(i) within G we mean an operation on G which derives a graph G′ = (X ′, U ′) with

set of cycle structures C ′ such that |C| ⊂ |C ′|, U ⊂ U ′, |U ′| = |U |+1, and ∃C ′(i) ∈ C ′
with X(C(i)) ⊂ X(C ′(i)).

De�nition 5.15 (Densi�cation of a cycle structure within a graph G). Let G =

(X,U) be a cyclic graph with set of cycle structures C 6= ∅. By a densi�cation

of a cycle structure C(i) within G we mean an operation on G which derives a

graph G′ = (X ′, U ′) with set of cycle structures C ′ such that |C| ⊂ |C ′|, U ⊂ U ′,

|U ′| = |U |+ 1, and X(C(i)) = X(C ′(i)), ∀C ′(i) ∈ C ′.

De�nition 5.16 (Contraction of a cycle structure [Schwindt, 1996]). The contrac-

tion of a cycle structure C to a contracted cycle structure c in a graph G = (X,U)
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is an operation on G which derives a graph G′ = (X ′, U ′) such that:

X ′ = X \X(C) ∪ {c}
U ′ = U \ {(i, j) ∈ U | {i, j} ∩X(C) 6= ∅}
∪ {(c, j) | ∃(i, j) ∈ U, j ∈ X(C)}
∪ {(i, c) | ∃(i, j) ∈ U, i ∈ X(C)}

De�nition 5.17 (Expansion of a contracted cycle structure). Let c be a contracted

cycle structure of C in a graph G = (X,U) and Let G′ = (X ′, U ′)) be a subgraph

of G. By the expansion of c with respect to G′ we mean an operation on G which

derives a graph G′′ = (X ′′, U ′′)) such that

X ′ = X \ (X(C) ∩X ′) ∪ {c}
U ′ = {(i, j) ∈ U ′ | {i, j} ⊆ X ′′} \ {(i, j) ∈ U | c ∈ {i, j}}

The following input data are required for the generation of acyclic graphs:

• X: set of nodes.

• NBmin
n+1, NB

max
n+1 : minimum and maximum number of sinks in G.

• NBmin
0 , NBmax

0 : minimum and maximum number of sources in G.

• NB−r : maximum number of non-redundant arcs entering node i ∈ X.

• NB+
r : maximum number of non-redundant arcs entering node i ∈ X.

• RT : restrictiveness of Thesen for acyclic weak components.

• ρ: degree of redundancy in G.

To generate cycle structures in an acyclic graph G = (X,U), we need the following

input data:

• MLTmin,MLTmax: minimum and maximum percentage of maximum time

lags.

• CSmin, CSmax: minimum and maximum number of cycle structures, respec-

tively.

• nminc , nmaxc : minimum and maximum cardinal number of a cycle structure.

• δ: percentage of arcs employed for cycle structure densi�cation.
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5.3.3 Minimal and maximal time lags

Let G = (X,U) be a weakly connected graph generated in the previous section. All

the forward arcs of G belong to minimal time lags and all the backward arcs, which

were added to de�ne cyclic structures, belong to maximal time lags. To represent

the precedence constraints by the arc-weighted graph N = (X,U, v) we have to

introduce a weight vij for any arc (i, j) ∈ U . The following input data have to be

speci�ed:

• Dmin, Dmax: minimal and maximal value of minimal time lags.

• CST ∈ [0, 1]: cycle structure tightness.

• SF ∈ [0,+∞[: slack factor.

The minimal time lags Tminij are generated randomly out of the set

{Dmin, ..., Dmax}: Tminij = rand{Dmin, ..., Dmax}. Let N ′ = (X,U ′, v′) be an

acyclic arc-weighted graph such that U ′ is the subset of U that contains all arcs

corresponding to minimal time lags. We denote by Γ
′+(i) the set of direct successors

of node i in N ′. Let l′ij be the length of the longest path from i to j in N ′, and let

ω′ij maximal time lag which can always be met:

ω′ij =
∑

k∈R(i)∩R̄(i)\{j}
max

l∈Γ′+(k)∩R̄(j)
{vkl} (5.2)

The maximal time lags Tmaxij are determined randomly in interval [Schwindt, 1996]:

[ω′ij − (ω′ij − l′ij)CST 2, (ω′ij − 2 ∗ (ω′ij − l′ij)CST + (ω′ij − l′ij)CST 2)(1 + SF )].

5.4 Resource Demand and Availability Generation

In the following, we present the generation of resource requirements and resource

availability.

5.4.1 Resource Demand

The following input data are required for the generation of resource constraints:

• amin, amax: minimal and maximal resource requirement.

• RF : Resource factor.
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The resource constraints are generated as follows. First, for each pair (i, k) ∈ X×Q,
we determine whether or not event i produces or consumes resource k (aki 6= 0).

The resource factor RF determines the percentage of pairs (i, k) belonging to a

requirement. The resource requirements aki are then generated randomly from the

set {amin, ..., amax}.

5.4.2 Resource Availability

The following input data is required for the generation of resource availability:

Resource Strength (RS).RS controls the scarcity of resources. The initial availability

of resource Qk is given by

Qk = RS ∗ (min
t≥0
{

∑
i∈X,ESi≤t

aki }) + (1−RS) ∗
∑
i∈X

aki .

RS = 0 implies that the resource levels of resource-feasible schedules are constant

over time, whereas for RS = 1 the earliest schedule ES is feasible and thus optimal.

5.5 Hardness of ERCPSP Instances

In order to evaluate the impact of the generator control parameters on the hardness

of the Extended RCPSP, we have generated 1620 instances of ERCPSP. We have

used a full factorial design for four parameters which have proven to be closely

related to the hardness ERCPSP instances. Table 5.1 shows the constant parameter

values and Table 5.2 provides the variable parameter values.

Qmin Qmax NBminn+1 NBmaxn+1 NBmin0 NBmax0 NB−r NB+
r ρ δ

5 5 1 5 1 5 3 3 0.05 0.5

MLTmin MLTmax CSmin CSmax nminc nmaxc Dmin Dmax CST SF

0.05 0.25 1 5 2 5 0 30 0.5 0

Tableau 5.1 � Constant parameter values

n RT RS RF
10 0.25 0.00 0.50
20 0.50 0.25 0.75
30 0.75 0.50 1.00

Tableau 5.2 � Variable parameter values
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For each combination of n, RT , RS and RF we have generated 20 instances of

ERCPSP. 963 of the 1620 generated instances are feasible. We have used our branch-

and-bound method to solve these instances (see Section 4.3). We have determined

for each instance the computation time for the generation of an optimal solution

(CPUfd) and the computation time for the veri�cation of optimality (CPUver), for

which we imposed a time limit of 30 seconds.

All the feasible instances were solved to optimality within the time limit. Each

best solution has been determined within 0.01s. The veri�cation of optimality,

however, required a much larger mean computation time of 0.09s. Table 5.3 shows

the e�ect of increasing the number of events on the computation times. As we can

see, the computation times increase by increasing the size of the problem.

n CPUver CPUfd
10 0.00 0.00
20 0.02 0.00
30 0.09 0.01

Tableau 5.3 � E�ects of number of events n on problem hardness

The impact of varying the restrictiveness of the precedence graph can be seen in

Figure 5.1. As we can see, the restrictiveness of the precedence graph has a strong

impact on the hardness of ERCPSP instances. In fact, computation times increase

with decreasing the restrictiveness of precedence graphs.

Figure 5.1 � E�ects of the restrictiveness RT on problem hardness
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Figure 5.2 provides the impact of increasing the resource factor (RF ). The

computation times increase with increasing the resource factor. In fact, a large

resource factor increases the number of resource con�icts. Each resource con�ict

generates several nodes in the search tree of our branch-and-bound method.

Figure 5.2 � E�ects of the resource factor RF on problem hardness

Figure 5.3 provides the impact of decreasing the resource strength (RS). An

interesting relationship between computation times and scarcity of resources (RS) is

provided. A decrease in resource availability makes the problems much more harder.

In fact, a small resource availability increases the number of resource con�icts which

increases the nodes in the search tree.

Note that 333 among 360 instances of [Neumann and Schwindt, 2002] were

generated with a restrictiveness larger than 0.5 and a resource strength larger than

0.2. This is why the instances are easy to solve.
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Figure 5.3 � E�ects of the resource strength RS on problem hardness

5.6 Functional Description of the generator

Our generator was coded in java and C++ language. Figure 5.4 shows the menu

control of this instance generator.

Figure 5.4 � Genrator menu control

First, the type of the ERCPSP instance (standard problem, chain parallel case
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or series-parallel case) must be �xed. Then, the control parameters de�ned in the

previous section have to be set using manual values, the di�erent parameters are

shown in Figures 5.5-5.8. Finally, the number of instances with the same parameters

has to be speci�ed.

Figure 5.5 � Basic data parameters

Figure 5.6 � Acyclic graph parameters

Figure 5.7 � Cyclic graph parameters
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Figure 5.8 � Ressource parameters

The following actions could be performed:

• Generate: Begins the generation of ERCPSP instances corresponding to the

speci�ed parameters.

• Check: Veri�es the consistency conditions for the parameter values.

• Load: Sets the values in the control menu to a previously saved parameters.

• Save: Saves the current parameters in a text �le.

• Quit: Exit the generator.

This generator creates two type of �les during the generation.

• *.shl: contains an instance of ERCPSP.

• Stat.txt: statistics �le that involves several instance characteristics (control

parameters, lower bounds,...).

5.7 Conclusion

In this chapter, we have developed an instance generator for the ERCPSP. This

generator takes into account several graph measures such as the number of nodes,

the graph complexity, the number of predecessors and successors of a node as well

as parameters for the generation of the basic data and the resource constraints. It

is based on the methodology of ProGen [Kolisch et al., 1995].





Chapter 6

Conclusion and perspectives

In this thesis, we are interested in proposing new methodologies and approaches to

solve ERCPSP. This problem is a general scheduling problem where the availability

of resources is depleted and replenished [Carlier et al., 2009, Carlier et al., 2016].

An instance of ERCPSP consists of events, nonrenewable resources and generalized

precedence constraints between pairs of events. Each event produces or consumes

some units of resources at its occurrence time. The objective is to build a schedule

that satis�es the precedence and resource constraints and minimizes the makespan.

ERCPSP is a generalization of RCPSP where activities requiring renewable resources

are replaced by events consuming or producing nonrenewable resources.

After introducing the �eld of the study of the thesis in Chapter 1, we have

presented in Chapter 2 some terminology dedicated to basic concepts and formulate

the ERCPSP, and we have shown the connection between this problem and other

scheduling problems with production and consumption of resources. After that, we

have studied four special cases of ERCPSP for which the decision problem can

be solved in polynomial time: the relocation problem, the parallel chain case, the

series-parallel case and the interval order case. Finally, we have presented a dynamic

programming algorithm to solve the parallel chain case and approximate methods

based on the concept of linear orders.

Chapter 3 investigates lower bound techniques. We have proposed six lower

bounds for ERCPSP. Two of them are based on the extraction of a generalized

Cumulative Scheduling Problem, combined with an adapted version of Jackson's

Pseudo-Preemptive Schedule [Carlier and Pinson, 2004] and the concept of energetic

reasoning. Two further lower bounds respectively result from applying Carlier and

Rinnooy Kan's Shifting Algorithm to a Financing Problem and iteratively testing

the feasibility of associated network �ow problems in a dichotomic search method.

The last two lower bounds are destructive lower bounds computed using a general

linear programming scheme.

Chapter 4 deals with the exact solving of ERCPSP. In the �rst half of the

chapter, we have introduced four mixed integer linear programming formulations for

ERCPSP. In the second half of the chapter, we have presented a branch-and-bound

111
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method to solve the ERCPSP. We have also adapted two constraint propagation

algorithms to improve our method: the timetabling of [Le Pape, 1994] and the

balance constraint of [Laborie, 2002].

Finally in Chapter 5, we have developed an instance generator for ERCPSP

based on the methodology of ProGen [Kolisch et al., 1995]. This generator takes into

account several graph measures such as the number of nodes, the graph complexity,

the number of predecessors and successors of a node as well as parameters for the

generation of the basic data and the resource constraints.

Perspectives

The contributions in this thesis clear the way for numerous perspectives to be done.

We provide in the following the ongoing work as well as the future openings we plan

to investigate.

Approximate methods for ERCPSP. We can associate an earliest schedule

with a consumption linear order. So an exact method would be the list-based

scheduling algorithm which enumerates all consumption linear orders. But if it

is too costly, we have to deal with approximate methods. We now propose

a straightforward generalization of the list algorithm introduced for scheduling

problems with renewable resources. We �rst choose a priority function on the event

set. The list algorithm schedules events at certain decision times. These decision

times are t = 0 and the available times of events. For every time t, the algorithm

chooses the event with the highest priority from among all unscheduled ready events

and schedules it at time t. This is repeated until no further events can be started

at time t, then t is adjusted to the time where an event becomes available, unless

all events are scheduled. We can also use a list of consumption events. In this case

we only have consumption events in the priority list and the algorithm is the same

as the previous list algorithm, except that we schedule all production events when

they are ready. The list algorithm can be applied to graphs with non-negative arc

weights and without directed cycles.

A Benchmark For ERCPSP. Until now, no benchmark has been proposed

for the ERCPSP. The only benchmark which is the most appropriate to ERCPSP

is the one proposed by Neumann and Schwindt. This encourages us to investigate

providing the community with a set of instances for the problem. Using the instance

generator described in Chapter 5, we aim to generate a new benchmark specially

dedicated for ERCPSP. The set of instances will be made online for the researchers.

Column Generation. The di�culty encountered using the mixed integer

programming models we proposed in Chapter 4 incites us to investigate a column
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generation approach for ERCPSP.
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