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Chapter 1

Introduction and Preliminaries

The two major themes of this thesis are the dueling bandits and the corrupt bandits

which are both variants of the multi-armed bandit (MAB) problem with unconven-

tional forms of feedback. In this introductory chapter, we lay the foundation of the

thesis by introducing the conventional MAB problem. We also introduce the more

general concept of partial monitoring. We emphasize that the aim of this chapter is

not to present an extensive and complete survey of these two vast fields but merely

to introduce the key notions which aid the reading of the thesis. For a survey on

multi-armed bandits, we point the readers to Bubeck and Cesa-Bianchi [2012]. For

further reading on partial monitoring, we recommend Bartók et al. [2014].

This chapter is organized as follows: Firstly, we briefly describe the sequential

decision making problem in Section 1.1, since the MAB problem is a sequential de-

cision making problem with a form of incomplete feedback called bandit feedback, as

we shall see in Section 1.2. We enlist in Section 1.3 some of the major practical appli-

cations of the MAB problem. In Section 1.4, we take a look at a few algorithms for

the various settings of the MAB problem. As we are dealing with forms of feedback

which differ from the conventional bandit feedback, it is natural to pose the con-

sidered problems in a more general paradigm for sequential decision making. This

paradigm known as partial monitoring in introduced in Section 1.5.

1.1 Sequential decision making

As the name suggests, sequential decision making proceeds in a sequence of con-

secutive rounds. In each round, the learner has a number of available actions and

its task is to select one to be taken. Action selection is based on the value associated
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with each action by the environment. In the context of this thesis, a learner is simply

a system which interacts with the environment and makes the decisions of selecting

actions and the environment is anything external to the learner. At this point, we

make no statistical assumptions about how the actions values are generated by the

environment. The learner’s goal is to select an action during each round to optimize

the associated value. In order to do so, the learner forms suitable estimations for all

the action values. Based on these estimations, the learner chooses one of the avail-

able actions accordingly. At the end of the round, feedback about the action value/s

is revealed to the learner. Using this feedback, the learner can update the estimates

for the action values in the next round. For a more detailed portrayal, please refer to

Littman [1996, Chapter 1].

The most descriptive feedback that could be available to the learner is the obser-

vation of all the action values. We term such feedback as complete feedback. Sequential

decision making with complete feedback is depicted in Figure 1.1. The key feature

Sequential decision making with complete feedback

At round (or time) t = 1, . . . ,

1. The environment assigns the values to all the available actions.

2. The learner chooses an action.

3. The learner receives the reward for the selected action.

4. The learner observers the rewards for all the actions.

FIGURE 1.1: Sequential decision making with complete feedback

of the complete feedback is the availability of all the action values at all the time

periods, even for the actions not taken by the learner. While complete feedback is

available in some scenarios like portfolio management, it is still a strong assump-

tion. A natural relaxation of this assumption leads us to bandit feedback in which

the learner, at any time period, only receives the feedback for the action taken and

not for the remaining actions. Bandit feedback is motivated from practical applica-

tions like clinical trials, Internet advertising and online recommendation which are

detailed in Section 1.3. A MAB problem is a mathematical formulation of sequential

decision making with bandit feedback. In the next section, we formally define the
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MAB problem and its various settings.

1.2 Multi-armed bandits

In a MAB problem, actions are symbolized by arms in reference to the arm of a slot

machine or a one-armed bandit and selecting an action is symbolized by pulling the

corresponding arm 1. A learner has to iteratively pull an arm from a set of available

arms. With each arm, there is an associated value. On selecting a particular arm,

the learner receives the value (gains the reward or suffers the loss) corresponding to

the arm it chose. For the purpose of this thesis, we work exclusively with rewards

and not losses as they can be considered mirror images. As a feedback, the learner

only observes the received reward corresponding to the selected arm and is given

no other information as to the merit of other available arms. The learner’s goal is to

optimize the reward of the arms it chooses.

The learner can maintain the history of previous selections and the subsequent

rewards it received and observed as feedback to estimate the action rewards for the

next round. Higher the number of times a particular arm is selected, more accu-

rate is the estimate of its reward. At any round, the learner can decide to select

an arm with the current highest reward estimate. Such a choice is called a greedy

choice. With a greedy choice, the learner is said to exploit its current knowledge of

the action rewards. However, if the learner has inaccurate estimates of the other arm

rewards then one of the those arms might turn out to have a higher reward than the

greedy choice. Hence the learner can decide to choose an arm which currently has

an inferior reward estimate in order to have a more accurate estimate of its reward.

With such a non-greedy choice, the learner is said to explore. With exploration, re-

ceived reward is inferior in the short run, but if the exploration leads to discovery

of arms with rewards higher than that of the current greedy choice, then the learner

can obtain superior reward in the longer run by exploiting the said better arms.

Hence the learner faces the exploration-exploitation dilemma which is inherent to

reinforcement learning problems. This dilemma is mathematically formalized as a

MAB problem as follows.

1For the rest of thesis, we shall use pulling or selecting or choosing an arm interchangeably.
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1.2.1 Formalization of the problem

It is symbolized as a repeated game between a learner and the environment. The

learner has a set of arms A = {1, . . . ,K} available to it. At every time period

t = 1, . . . , each arm a is associated with a numerical reward. The reward vector

xt consists of {x1(t), . . . , xK(t)} where xa(t) 2 is the reward associated with the arm

a at time t. Simultaneously at time period t, the learner pulls an arm at and receives

the reward xat(t). Observation of the received reward xa(t) i.e. bandit feedback is

available to the learner and it does not have access to the rewards of the other arms.

For most of the settings we consider, the game described above is restricted to a

finite time period {1, . . . , T}where T is called the horizon. In finite-horizon setting the

horizon is known to the learner and it is unknown to the learner in anytime setting.

For most of the problems, we assume the rewards are bounded in [0, 1]. In a

binary multi-armed bandit or a Bernoulli multi-armed bandit problem, the reward

values are restricted to 0 and 1. The reward values can be generated by the following

two ways:

Stochastic rewards

The crux of this formulation is the presence of the stationary reward probability

associated with each arm. There areK probability distributions ν1, . . . , νK over [0, 1]

associated respectively with arms 1, . . . ,K. Let µ1, . . . , µK be the respective means of

ν1, . . . , νK . When an arm a is pulled, its reward xa is drawn from the corresponding

distribution νa. This setting can be described as a game between the learner and the

environment as follows:

Bandit game with stochastic rewards

At t = 1, . . . , T

1. The environment draws a reward vector xt according to ν1 × · · · × νK .

2. The learner chooses an arm at ∈ A = {1, . . . ,K}.

3. The learner observes and receives the reward xat(t).

FIGURE 1.2: Bandit game with stochastic rewards

2When t is clear from the context, we simply write xa instead of xa(t).
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Adversarial rewards

Unlike in the case of stochastic rewards, the reward probabilities may not be station-

ary but the rewards are generated by an adversary. The adversary can be either obliv-

ious or malicious. An oblivious adversary selects all the reward vectors x1, . . . ,xT

beforehand. It can be described as a game given below.

Bandit game with oblivious adversarial rewards

The adversary draws reward vectors xt ∈ [0, 1]K for t = 1, . . . , T .
At t = 1, . . . , T

1. The learner chooses an arm at ∈ A = {1, . . . ,K}.

2. The learner observes and receives the reward xat(t).

FIGURE 1.3: Bandit game with oblivious adversarial rewards

However, a malicious adversary chooses a reward vector xt at time t having

access to x1, . . . ,xt−1 and a1, . . . , at−1. It can be described as a game below.

Bandit game with malicious adversarial rewards

At t = 1, . . . , T

1. The adversary draws a reward vector xt ∈ [0, 1]K .

2. The learner chooses an arm at ∈ A = {1, . . . ,K}.

3. The learner observes and receives the reward xat(t).

4. The adversary observes the learner’s arm selection at and the received
reward xat(t).

FIGURE 1.4: Bandit game with malicious adversarial rewards

1.2.2 Performance measure: regret

A policy is a mapping from time period t ∈ {1, . . . , T} to at ∈ A i.e. the arm selected

at time t. Let the policy with the highest associated arm reward be called the optimal

policy. The optimal policy could be single-armed or multiple-armed. If the learner

knew the optimal policy beforehand, then at every time period, it would simply pull
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the arm given by the optimal policy and receive the highest possible reward. How-

ever, in most problems worth solving, the learner does not have access to the optimal

policy. The learner has to conjecture the best arm from the available bandit feedback

i.e. the rewards of the previously chosen arms. In other words, the learner’s goal is

to find a policy which is the closest approximation to the optimal policy. Every time

the learner pulls a sub-optimal arm , it is losing out on the difference of the rewards

between those two arms. Since the learner’s goal is to maximize the reward of its

chosen arms, it follows that the learner should try to minimize this difference i.e. the

regret.

Regret can be classified into two kinds depending upon whether the exploration

and the exploitation overlap. Based on these two kinds of regret, which we will

see shortly, the MAB problem can be divided into two settings: pure exploration

and exploration-exploitation. The third MAB setting, called best arm identification, uses

other performance measures. All of these three settings are introduced next.

1.2.3 Pure exploration setting

In this setting, introduced by Bubeck et al. [2009], the learner has to deal with two

tasks. The secondary task is of exploration i.e of selecting an arm for sampling at ev-

ery time period. Based on the rewards it observes for the selected arms, the learner’s

primary task is to select an arm at the end of each time period to be used as a rec-

ommendation if/when the environment sends a stopping signal indicating that the

exploration phase is over. The goal of the learner is to minimize the simple regret.

Definition 1.1. Simple regret (SRegret): Simple regret is defined as the difference between

the expected reward of the optimal arm (in hindsight) and the expected reward of the arm

recommended by the learner.

In other words, the learner first explores through the arms in the exploration

phase to gain knowledge about the rewards of the arms and then it exploits the

acquired knowledge to recommend an arm. The exploration phase and the exploita-

tion phase do not overlap. The rewards of the arms selected by the learner during

the exploration phase are not considered for computing the simple regret; only the

reward of the recommended arm is considered.
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1.2.4 Exploration-exploitation setting

In this setting, introduced by Robbins [1952], the exploration phase and the exploita-

tion phase overlap. The learner’s task is not to recommend an arm at the end of the

game, but to find a policy which selects an arm at every time period such that the

cumulative regret is minimized.

Definition 1.2. Cumulative regret (CRegret): Cumulative regret is defined as the differ-

ence between the expected cumulative reward of the optimal policy and the expected cumula-

tive reward of the learner’s policy.

So while exploring through the arms, the learner also has to exploit its knowl-

edge about the rewards of the arms as the rewards of the selected arms are being

considered for the computation of the cumulative regret. This captures the classic

exploration vs exploitation dilemma in reinforcement learning.

Cumulative regret can be computed against a single arm optimal policy, in which

case it is called the weak regret, or a dynamic multi-arm optimal policy, in which case

it is called the strong regret.

Weak regret = E

[
T∑

t=1

max(xt)

]
−

T∑

t=1

xat(t)

Strong regret =
T∑

t=1

E(max(xt))−
T∑

t=1

xat(t)

In all of the cases where this setting is used in this thesis, we use the notion of weak

regret.

1.2.5 Best arm identification

The early occurrences of this setting are considered by Bechhofer [1958] and Paulson

[1964]. In this setting, by convention, the rewards are assumed to be stochastic. The

arm with highest mean reward is called the optimal arm or the best arm and is

denoted by a∗ i.e. a∗ := argmax
a=1,...,K

µa. The corresponding optimal mean reward is

denoted by µ∗.

Unlike the settings of pure exploration and exploration-exploitation, this setting

does not use regret as the measure of performance. The learner, as usual, samples
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the available arms to acquire knowledge about their rewards. The learner’s goal

is to recommend an approximation of the best arm. The learner’s decision to stop

sampling the arms and make its recommendation is influenced by either fixing the

confidence in the recommendation or fixing the budget for sampling.

Fixed-confidence setting (PAC setting)

In fixed-confidence best arm identification setting, considered by both Bechhofer

[1958] and Paulson [1964], the learner is obliged to recommend an arm with a certain

level of confidence defined by two parameters ε and δ. The parameter ε is used to

indicate the degree of acceptable approximation for the recommended arm, while

δ is the maximum allowable error probability. The learner’s goal is to recommend

an ε-approximate arm, i.e. an arm a having the mean reward µa ≥ µ∗ − ε, with the

probability of at-least 1 − δ. This is also called as Probably approximate correct (PAC)

setting. The performance of the learner is measured in terms of the sample complexity

which is the number of samples required by the learner to achieve its goal.

Fixed-budget setting

In fixed-budget best arm identification setting, introduced by Audibert et al. [2010],

every arm a is associated with a cost ca known to the learner. The learner has to pay

the cost ca every time it decides to sample the corresponding arm a. The learner is

further given a fixed budget which specifies the maximum permissible cumulative

cost. The learner’s goal is to recommend an ε-approximate arm before exhausting

the given budget. The cost for sampling could be different for all the arms. This

setting addresses the best possible use of available resources (e.g. cpu time) in order

to optimize the performance of some decision-making task. That is, it is used to

model situations with a preliminary exploration phase in which costs are measured

in terms of resources constrained by a limited budget. In a special case, the cost

for every arm could be set to 1 to restrict the total number of samples the learner

is allowed to make. The probability with which the learner fails to a recommend

an ε-approximate arm is termed as the error probability δ. The performance of the

learner is measured in terms of the error probability.
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1.3 Applications of the MAB problem

The original motivation of Thompson [1933] for studying the MAB problem came

from clinical trials. Subsequently, the MAB problem has found its application in

other fields as well. In this section we shall take a look at some practical applications

of the MAB problem.

1.3.1 Clinical trials

In a clinical trial, a researcher would like to find the best treatment for a particu-

lar disease, out of many possible treatments. In a MAB formulation of a clinical

trial, arms represent the treatments while sampling an arm signifies applying the

corresponding treatment on the test subjects. We shall use this application to fur-

ther explain the difference between the exploration-exploitation setting and best arm

identification setting.

Consider a clinical trial for a severe disease in which a number of people suffer-

ing from the disease are used as the test subjects. In such a trial, the loss of trying a

wrong treatment is high (or in terms of reward, the associated reward would equal

a large negative value). It is important to minimize the cumulative regret, since the

test and cure phases coincide. Therefore exploration-exploitation setting is suitable

in this case.

On the other hand, consider a clinical trial for a cosmetic product in which var-

ious possible formulae are tested on animals used as the test subjects. In such a

trial, the loss of trying a wrong formula is minimal, excusing the ethical concerns re-

lated to harming the animals. There exists a test phase in which all the formulae are

tried on the test subjects without taking into consideration the incurred immediate

loss. The test phase is limited by a fixed allocation of funds (fixed-budget) or the re-

quired level of quality of the recommendation (fixed-confidence). At the end of the

test phase, the best-performing formula is recommended for the commercialization

phase, and one aims at maximizing the quality of the recommended formula which

is to be regarded as a commercialized product.
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1.3.2 Internet advertising

Nowadays companies have a suite of potential online ads they can be displayed to

the users, but they need to know which ad strategy to follow to maximize sales.

This is similar to A/B testing, but has the added advantage of naturally minimizing

strategies that do not work (and generalizes to A/B/C/D... strategies). A classical

MAB problem can be utilised for this application but the presence of extra informa-

tion or context paves the way for another setting of MAB problem called contextual

bandits. Context is any additional information that can be used to make a better de-

cision when choosing among all the ads. It includes user’s age, location, previous

buying habits, all of which can be highly informative of what type of products they

might purchase in the future.

1.3.3 Online recommendation

On the Internet, a huge amount of digital information hinders the users from ac-

cessing the items they are interested in. To solve this problem, online recommender

systems provide personalized item recommendations to users. Recommender sys-

tems are beneficial for online vendors too as they enhance their revenues by provid-

ing them effective means of showcasing the products the users are more likely to

buy. The scenario of online recommendation can be modeled as a contextual MAB

problem by considering the items as the arms to be selected by the learner i.e. the

recommender system.

1.4 Algorithms for the MAB problem

In this section, we take a look at some of the popular algorithms for some of the

variations of the MAB problem. These algorithms form the basis of the algorithms

introduced in this thesis (Chapters 4 and 9). Firstly, we shall see two algorithms for

best arm identification with fixed confidence.
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1.4.1 Algorithms for best arm identification with fixed confidence

Many algorithms for the best arm identification with fixed confidence are elimina-

tion strategies that work in rounds. Elimination strategies can be described suc-

cinctly using the following:

1. Sampling rule: to decide which arm (or arms) to pull during a round.

2. Elimination rule: to decide which arm (or arms) to eliminate at the end of a

round.

3. Stopping rule: to decide when to stop sampling and recommend an arm.

We provide below the earliest and the simplest elimination algorithm for best arm

identification with fixed confidence.

• Median elimination: Median elimination (ME), given by Even-Dar et al. [2006],

eliminates the worst half of the arms at each iteration. The step 4 of ME (given

in Algorithm 1) specifies the sampling rule, in which every remaining arm is

pulled a certain number of times depending upon the approximation param-

eter ε, the error probability δ and the current round number. The mean of the

Algorithm 1 Median elimination (ME)

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK .

1: Parameters: ε > 0, δ > 0
2: Set S1 ← A, ε1 ← ε/4, δ ← δ/2, l← 1
3: Do
4: Sample every arm a in Sl for 1/(εl/2)2 log (3/δl) times and let µ̂la be its mean

empirical reward.
5: Let Medl be the median of {µ̂la}a∈S .
6: Sl+1 ← Sl \ {a : µ̂la < Medl}
7: εl+1 ← 3

4εl, δl+1 ← δ
2 , l← l + 1

8: Until |Sl| = 1
9: Output the arm in Sl

observed rewards for each arm serves as the reward estimate for the arm. By

the elimination rule, given in step 6, the arms with lower reward estimate than

the median reward estimate are eliminated. The algorithm stops when there is

only one arm remaining and recommends the remaining arm. This algorithm

serves as a baseline for the algorithm ME-CF, which we introduce in Section

9.1.1.
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• Exponential gap elimination: Exponential gap elimination (EGE), given by

Karnin et al. [2013], aims to eliminate (1/2)l-suboptimal arms at round l. This

algorithm uses ME as a subroutine to estimate the suboptimality of each arm.

EGE is described in Algorithm 2. This algorithm serves as a baseline for the

algorithm EGE-CF, which we introduce in Section 9.1.2.

Algorithm 2 Exponential-gap elimination (EGE)

1: Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK

1
σ .

2: Parameters: δ > 0
3: Set S1 ← A, l← 1
4: While |Sl| > 1

5: let εl ← 2−l/4 and δl ← δ/(50l3)
6: Sample each arm a ∈ Sl for (2/ε2l ) log (2/δl) and let µ̂la be its mean empirical

reward.
7: Invoke al ← ME(Sl, εl/2, δl)
8: Set Sl+1 ← Sl \ {a ∈ Sl : µ̂la < µ̂lal − εl}
9: l← l + 1

10: End while
11: Output the arm in Sl

1.4.2 Algorithms for exploration-exploitation

• UCB1: Upper confidence bound policies are classical algorithms for the stochas-

tic MAB problem. They work on the principle of “optimism in the face of un-

certainty". These policies compute an upper confidence bound (UCB) for each

arm and use it as the estimate of its reward. At each time period, the arm with

the highest upper confidence bound is pulled. UCB1 (Algorithm 3), given by

Auer et al. [2002a], is the simplest UCB algorithm. This algorithm serves a

baseline for the algorithm UCB-CF, which we introduce in Section 9.2.2.

Algorithm 3 UCB1

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK .

1: Initialization: Play each arm once.
2: for t = K + 1, . . . do
3: Pull arm ât = argmaxa x̂a +

√
2·logK
Na(t−1) , where x̂a is the average reward from

arm a and Na(t− 1) is the number of arms pulled till time t− 1.
4: end for
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• kl-UCB: kl-UCB, given by Cappé et al. [2013], is an upper confidence bound

based policy for the stochastic MAB problem. It uses upper confidence bounds

for the arm rewards based on Kullback-Leibler divergence. The precise de-

Algorithm 4 kl-UCB

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with un-

known mean rewards µ1, . . . , µK .

Parameters: A non-decreasing (exploration) function f : N→ R, d(x, y) :=

KL(B(x),B(y)), Time horizon T .

1: Initialization: Pull each arm once.

2: for time t = K, . . . , T − 1 do

3: Compute for each arm a in A the quantity

Indexa(t) := sup {q : Na(t) · d(µ̂a(t), q) ≤ f(t)}

4: Pull arm ât+1 := argmax
a∈A

Indexa(t).

5: end for

scription of kl-UCB is given in Algorithm 4. The empirical mean of the reward

obtained from the arm a until time t is denoted by µ̂a(t). This algorithm serves

a baseline for the algorithm kl-UCB-CF, which we introduce in Section 9.2.1.

• Exponential-weight algorithm for Exploration and Exploitation (EXP3): EXP3,

given by Auer et al. [2002b], is a randomized algorithm for the adversarial

MAB problem. It is a variant of the Hedge algorithm introduced by Freund

and Schapire [1997].

At every time step t, EXP3 pulls an arm ât according to a distribution which is

a mixture of the uniform distribution and a distribution which assigns to each

arm a probability mass exponential in the estimated reward for that action.

Therefore the algorithm, at all times, selects every arm with at-least a non-zero

probability of γ/K, thus ensuring continual exploration, where γ is the explo-

ration parameter and K is the number of arms. For computing the estimated

reward, the algorithm makes use of importance sampling. This choice guar-

antees that the expectation of the estimated reward for each arm is equal to its
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Algorithm 5 EXP3

Input: A bandit model with a set A = {1, . . . ,K}
Parameters: Real γ = (0, 1]

1: Initialization: wa(1) = 1 for a ∈ A
2: for t = 1, 2, . . . do
3: Set

pa(t) = (1− γ)
wa(t)∑K
b=1wb(t)

+
γ

K
a = 1, . . . ,K

4: Draw ât randomly according to the probabilities p1(t), . . . , pK(t)
5: Observe the receive xât(t) ∈ [0, 1]
6: for b = 1, . . . , k do, set

7: x̂b(t) =

{
xb(t)/pb(t) if b = at,

0 otherwise

8: end for
9: end for

actual reward. This algorithm serves a baseline for the algorithm REX3, which

we introduce in Section 4.1.

• Thompson sampling: Thompson sampling (TS), given by Thompson [1933],

is an algorithm for the stochastic MAB problem. It follows a Bayesian ap-

proach, where Bayesian priors are used as a tool to encode the current knowl-

edge about the arm rewards. TS maintains a Beta posterior distribution on the

Algorithm 6 Thompson sampling for Bernoulli bandits

Input: A Bernoulli bandit model with a set of arms A := {1, . . . ,K} arms with
unknown reward means µ1, . . . , µK .

1: Initialization: For each arm a in A, set successa = 0 and faila = 0
2: for t = 0, . . . do.
3: For each arm a in A, sample θa(t) from Beta(successa +1, faila +1)
4: Pull arm ât+1 := arg max

a
θa(t) and receive the reward xât(t+ 1)

5: if xât(t+ 1) = 1 then
6: successât+1 = successât+1 +1
7: else
8: failât+1 = failât+1 +1
9: end if

10: end for

mean reward of each arm. At round t+1, for each arm a, it draws a sample θa(t)

from the posterior distribution on coreeposnding to arm a and pulls the arm

for which g−1
a (θa(t)) is largest. This mechanism ensures that at each round, the

probability that arm a is played is the posterior probability of this arm to be op-

timal. Algorithm 6 describes the Thompson sampling algorithm for stochastic
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bandits with Bernoulli rewards. Agrawal and Goyal [2012] provide a simple

extension which works for bandits with arbitrary reward distributions with

support [0, 1]. This algorithm serves a baseline for the algorithm TS-CF, which

we introduce in Section 9.2.3.

In the next section, we take a look at a general paradigm for sequential decision

making with incomplete feedback.

1.5 Partial monitoring

Partial Monitoring (PM) provides a generic mathematical model for sequential de-

cision making with incomplete feedback. In this section, we take a brief review of

the basic concepts of partial monitoring problems. Most of the information in this

section is taken from Bartók et al. [2011] and Bartók [2013].

A partial monitoring game (PM) is defined by a tuple 〈N ,M ,Σ,L,H〉whereN ,

M , Σ, L and H are the action set, the outcome set, the feedback alphabet, the loss

function and the feedback function respectively. To each action I ∈ N and outcome

J ∈ M , the loss function L associates a real-valued loss L(I, J) and the feedback

functionH associates a feedback symbolH(I, J) ∈ Σ.

In every round, the opponent and the learner simultaneously choose an outcome

Jt from M and an action It from N , respectively. The learner then suffers the loss

L(It, Jt) and receives the feedback H(It, Jt). Only the feedback is revealed to the

learner, the outcome and the reward remain hidden. In some problems, gain G is

considered instead of loss. The loss function L and the feedback function H are

known to the learner. When both N and M are finite, the reward function and the

feedback function can be encoded by matrices, namely reward matrix and feedback

matrix each of size |N | × |M |. We take the liberty of overloading the notations L

and H to also mean loss matrix and feedback matrix respectively. The learner’s aim

is to control the cumulative regret against the best single-action policy at time T :

CRegretT = max
i

T∑

t=1

L(It, Jt)− L(i, Jt)
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Partial monitoring game

At time t = 1, . . . ,

1. The opponent chooses an outcome Jt ∈M .

2. The learner chooses an action It ∈N .

3. The learner suffers the lossL(It, Jt) (or receives the the reward G(It, Jt)).

4. The learner observers the feedbackH(It, Jt) ∈ Σ.

FIGURE 1.5: Partial monitoring game

1.5.1 Examples of partial monitoring game

Various interesting problems can be modeled as partial monitoring games, such

as the multi-armed bandit problem, learning with expect advice (Littlestone and

Warmuth [1994]), dynamic pricing (Kleinberg and Leighton [2003]), the dark pool

problem (Agarwal et al. [2010]), label efficient prediction (Cesa-bianchi et al. [2005]),

and linear and convex optimization with full or bandit feedback (Zinkevich [2003a],

Abernethy et al. [2008], Flaxman et al. [2004]).

The Bernoulli multi-armed bandit problem: A partial monitoring formulation of

this problem is provided with a set of K arms/actions i ∈ N = {1, . . . ,K}, an

alphabet Σ = [0, 1], and a set of environment outcomes which are vectorsm ∈M =

[0, 1]K . The entry with index i (mi) denotes the instantaneous gain of the ith arm.

Assuming binary gains,M is finite and of size 2K .

G(i,m) = mi H(i,m) = mi

The dynamic pricing problem: A seller has a product to sell and the customers

wish to buy it. At each time period, the customer secretly decides on a maximum

amount she is willing to pay and the seller sets a selling price. If the selling price is

below the maximum amount the buyer is willing to pay, she buys the product and

the seller’s gain is the selling price she fixed. If the selling price is too expensive,

her gain is zero. The feedback is incomplete because the seller only receives binary

information stating whether the customer has bought the product or not. A PM
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formulation of this problem is provided below:

x ∈N ⊆ R, y ∈M ⊆ R, Σ = {“sold", “not sold"}

G(x, y) =





0, if x > y,

x, if x ≤ y,
H(x, y) =





“not sold", if x > y,

“sold", if x ≤ y,

1.5.2 Hierarchy of finite stochastic partial monitoring games

Consider a finite partial monitoring game with action set N , outcome set M , loss

matrix L and feedback matrix H. For any action i ∈ N , loss vector lossi denotes

the column vector consisting of ith row in L. Correspondingly, gain vector gaini

denotes the column vector consisting of ith row in G. Let ∆|M | be the |M | − 1-

dimensional probability simplex i.e. ∆|M | =
{
q ∈ [0, 1]|M | | ||q||1 = 1

}
. For any

outcome sequence of length T , the vector q denoting the relative frequencies with

which each outcome occurs is in ∆|M |. The cumulative loss of action i for this out-

come sequence can hence be described as follows:

T∑

t=1

L(i, Jt) = T · lᵀi q

The vectors denoting the outcome frequencies can be thought of as the opponent

strategies. These opponent strategies determine which action is optimal i.e. the

action with the lowest cumulative loss. This induces a cell decomposition on ∆|M |.

Definition 1.3 (Cells). The cell of an action i is defined as

Ci =

{
q ∈ ∆|M | | lᵀi q = min

j∈M
lᵀjq

}

In other words, a cell of an action consists of those opponent strategies in the

probability simplex for which it is the optimal action. An action i is said to be

Pareto-optimal if there exists an opponent strategy q such that the action i is opti-

mal under q. The actions whose cells have a positive (|M |− 1)-dimensional volume
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are called Strongly Pareto-optimal. Actions that are Pareto-optimal but not strongly

Pareto-optimal are called degenerate.

Definition 1.4 (Cell decomposition). The cells of strongly Pareto-optimal actions form a

finite cover of ∆M called as the cell-decomposition.

Two actions cells i and j from the cell decomposition are neighbors if their inter-

section is an (|M | − 2)-dimensional polytope. The actions corresponding to these

cells are also called as neighbors. The raw feedback matrices can be ‘standardized’ by

encoding their symbols in signal matrices:

Definition 1.5 (Signal matrices). For an action i, let σ1, . . . , σsi ∈ Σ be the symbols

occurring in row i of H. The signal matrix Si of action i is defined as the incidence matrix

of symbols and outcomes i.e. Si(k,m) = 1H(i,m)=σk k = 1, . . . , si, for m ∈M .

Observability is a key notion to assess the difficulty of a PM problem in terms of

regret CRegretT against best action at time T .

Definition 1.6 (Observability). For actions i and j, we say that li − lj is globally ob-

servable if li − lj ∈ ImSᵀ. Where the global signal matrix S is obtained by stacking all

signal matrices. Furthermore, if i and j are neighboring actions, then li− lj is called locally

observable if li − lj ∈ ImSᵀi,j where the local signal matrix Si,j is obtained by stacking the

signal matrices of all neighboring actions for i, j: Sk for k ∈ {k ∈N | Ci ∩ Cj ⊆ Ck}.

Theorem 1.1 (Classification of partial monitoring problems). Let (N ,M ,Σ,L,H) be

a partial monitoring game. Let {C1, . . . , Ck} be its cell decomposition, with corresponding

loss vectors l1, . . . , lk. The game falls into the following four regret categories.

• CRegretT = 0 if there exists an action with Ci = ∆|M |. This case is called trivial.

• CRegretT ∈ Θ(T ) if there exist two strongly Pareto-optimal actions i and j such that

li − lj is not globally observable. This case is called hopeless.

• CRegretT ∈ Θ̃(
√
T ) if it is not trivial and for all pairs of (strongly Pareto-optimal)

neighboring actions i and j, li − lj is locally observable. This case is called easy.

• CRegretT ∈ Θ(T 2/3) if G is not hopeless and there exists a pair of neighboring actions

i and j such that li − lj is not locally observable. This case is called hard.
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1.5.3 Expressing MAB problems as partial monitoring game

In Section 1.5.1 we described how a classical MAB problem can be expressed as a

partial monitoring game. The formulation of a K-armed Bernoulli MAB problem as

a partial monitoring game requires matrices of dimensionK×2K for gain matrix and

feedback matrix. Even for moderate values of K, this requirement is impractical.

In Part II of this thesis, we shall focus on the dueling bandit problem which is a

MAB problem with unconventional feedback. In Chapter 6, we illustrate how the

Bernoulli dueling bandits can be formulated as a partial monitoring game. This

formulation too proves to be impractical due the large sizes of the gain matrix and

the feedback matrix. In the same chapter, we see how the performance guarantees

given by the general partial monitoring algorithms are not as tight as that of the

algorithm we propose for the dueling bandit problem.

In Part III of this thesis, we introduce the corrupt bandit problem which is an-

other MAB problem with unconventional feedback. In Chapter 12, we illustrate

how the Bernoulli corrupt bandits can be formulated as a partial monitoring game.

This formulation is also unsuitable due the large sizes of the gain matrix and the

feedback matrix.

With this, we conclude the introductory part of the thesis. In the next two parts,

we study in detail the MAB problem with different kinds of unconventional feed-

back.
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Part II

Dueling Bandits
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Chapter 2

The Dueling Bandits problem

In this part of the thesis, we consider the multi-armed bandit problem with a partic-

ular kind of unconventional feedback called relative feedback. In the classical multi-

armed bandit problem, the learner receives absolute feedback about its choices.

However as we shall see shortly, only relative feedback is available in many practical

scenarios. This chapter provides an introduction to the MAB problem with relative

feedback.

In Section 2.1, we motivate the relative feedback from the practical applications

of the MAB problem. In Section 2.2, we formally define the MAB problem with

relative feedback and its various settings. Our contributions to this problem are

enlisted in Section 2.3. At the end, in Section 2.4, we take an overview of the related

work.

2.1 Motivation

Humans find it much easier to choose from one of the given options rather than

giving absolute feedback about only one choice. For example, if the following two

questions are asked to a group of people :

1 : Which sport do you prefer - football or basketball?

2 : How do you rate football out of 50?

The first question would receive greater number of responses than the second ques-

tion. Hence relative feedback is naturally suited to many practical applications
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where humans are expected to provide feedback like user-perceived product pref-

erences, where a relative perception: “A is better than B” is easier to obtain than its

absolute counterpart: “A’s value is 42, B is worth 33”.

A more commercial application of relative feedback comes from information re-

trieval systems where users provide implicit feedback about the provided results. This

implicit feedback is collected in various ways e.g. a click on a link, a tap, or any mon-

itored action of the user. In all these ways however, this kind of feedback is often

strongly biased by the model itself (the user cannot click on a link which was not

proposed).

FIGURE 2.1: Results of querying "partial feedback" on two search en-
gines

Consider the task of training search engines through machine learning. The fig-

ure 2.1 depicts a scenario where the same search query generates two varying re-

sults. While the user preference for either the first or the second result depends

majorly upon whether their motivation behind the search has been satisfied, it is

also affected by other factors such as presence of certain results and their rank on

the page. In the past, click-through logs that passively collect user interactions with

search engines were used as the source of training data. However Radlinski and

Joachims [2007] showed that passively collecting data leads to the learned ranking

never converging to an optimal ranking. This is because a number of studies have
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shown that users tend to click on results ranked highly on search engines more of-

ten than the those ranked lower. Agichtein et al. [2006] study the click frequency

on search engine results for 120,000 searches for 3,500 queries. They show that the

relative number of clicks drop rapidly with the rank from the following observation

in their study - compared to the top ranked result, 60% as many clicks on the sec-

ond result, 50% as many clicks on the third, and 30% as many clicks on the fourth.

This observation might lead to an interpretation that top ranked results are clicked

more, simply because they are better. However Joachims et al. [2007] showed that

users still click more often on higher ranked results even if the top ten results are

presented in reverse order. In general, users very rarely see beyond the first page, so

highly relevant search results that are not initially highly ranked may never be seen

and evaluated.

To remove the aforementioned bias in search engines, Radlinski and Joachims

[2007] propose to interleave the outputs of different ranking models. If the user

clicks on the link from a certain ranking, that ranking is said to win the duel. The

accuracy of this interleaved ranking method (figure 2.2) was highlighted in several ex-

perimental studies Radlinski and Joachims [2007], Joachims et al. [2007], Chapelle

et al. [2012].

Ranking A Ranking B
Interleaved
Ranking

FIGURE 2.2: Interleaved ranking

Learning from relative feedback is relevant to many other fields, such as recom-

mender systems (Gemmis et al. [2009]), and natural language processing (Callison-

Burch et al. [2011]), which involve explicit or implicit feedback provided by humans.

The classical MAB problem can not learn for such relative feedback provided in

above scenarios. Hence it is crucial to devise a model which is able to learn from
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relative feedback1, which is presented in the next section.

2.2 Formalization

The K-armed dueling bandit problem is a variation of the classical Multi-Armed Ban-

dit (MAB) problem introduced by Yue and Joachims [2009] to formalize the explo-

ration/exploitation dilemma in learning from preference feedback. To be able to

model the practical scenarios described in the previous section, the learner is to se-

lect two arms from the set A = {1, . . . ,K} at every time period. As a feedback, the

learner sees the information about which arm won the duel i.e. which arm gave

higher reward. Note that the learner has no access to the rewards of the selected

arms, but only to the preference feedback. However, the performance of the learner

is judged on the basis of the rewards of the selected arms and not the feedback. The

difficulty of this problem stems from the fact that the learner has no way of directly

observing the reward of the selected arms. Hence the learner has to devise a way

to infer from the feedback the necessary information about the rewards. This can be

considered as an example of partial monitoring problem introduced in section 1.5.

We discuss this further in Chapter 6.

Like the classical MAB problem (section 1.2.1), the dueling bandit problem too

can be sub-divided based on the stationarity of the rewards into the following two

categories:

2.2.1 Stochastic dueling bandits

Stochastic dueling bandit problem is characterized by stationarity like its analogue

in the classical bandits described in section 1.2.1. However as for the dueling bandits,

the learner sees only the relative feedback of the two selected arms and not their

reward, the stationarity is exhibited by the preference of one arm over another arm.

2.2.2 Adversarial dueling bandits

In this formulation, the preference of one arm over another arm is non-stationary.

At each time period, the adversary (or the environment) can affect the preference of

1The terms “relative feedback” and “preference feedback” are used interchangeably in this thesis.
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every arm over every other arm.

In both the above categories, the preference of an arm over itself is assumed to

be equal to 0.5. This is called into use when the arms are selected with replacement

and an arm is selected with itself for a duel.

The dueling bandit problem can be formulated by either using utility values for

individual arms or preference values for every pair of arms. Both of these formula-

tions are described below.

2.2.3 Utility-based formulation

In this formulation, every arm is assigned a value. At each time period t, a real-

valued bounded utility xa(t) is associated with each arm a ∈ A. When arms a and b

are selected, their utility values determines which arm wins the duel as follows:

xa(t) > xb(t) : a wins the duel

xa(t) = xb(t) : tie

xa(t) < xb(t) : b wins the duel

A tie can be provided as a separate feedback or it can be broken randomly.

Now we describe how both the stochastic and adversarial dueling bandit prob-

lem can be encoded in utility-based formulation.

Stochastic utility-based dueling bandits

Every arm a is associated with a probability distribution νa with mean µa. When an

arm a is selected by the learner, its utility is drawn from νa. The arm with the highest

mean reward is called as the (an, in case of more than one) optimal arm a∗.

a∗ = argmax
a∈A

µa

The corresponding highest mean reward is denoted as µ∗. This formulation is de-

picted below:
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Utilities drawn from ν1, . . . , νK x1(t) . . . xa(t) . . . xb(t) . . . xK(t)

↓ ↓

The learner selects a b

The learner sees ψ(xa, xb)

The learner receives φ(xa, xb)

The feedback seen by the learner provides it relative information about the selected

arms. One of the ways to provide such a relative feedback is as follows:

ψ(xa, xb) =





1 if xa > xb

0 if xa = xb

−1 if xa < xb

On pulling arms a and b, the learner receives a reward given by φ(xa, xb). Depending

upon the intent behind formulating the given dueling bandit problem, φ can take

various forms. One way could be that the learner receives the highest of the two

rewards i.e.

φ(xa, xb) =





xa if xa ≥ xb

xb otherwise

Another way is for the learner to receive the mean reward of the selected arms.

In such cases, φ is as follows

φ(xa, xb) =
xa + xb

2
(2.1)

Using these notions, the cumulative reward can be defined as

CRegretT =

T∑

t=1

2xa∗(t)− xa(t)− xb(t)
2

(2.2)

where at and bt are the two arms selected at time t till horizon T . In the rest of this

thesis, we shall call this notion of regret as bandit regret.
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Adversarial utility-based dueling bandits

At each time period, an adversary sets a bounded utility value for each of the arms.

This formulation is depicted below:

The adversary sets x1(t) . . . xa(t) . . . xb(t) . . . xK(t)

↓ ↓

The learner selects a b

The learner sees ψ(xa, xb)

The learner receives φ(xa, xb)

2.2.4 Preference-based formulation

As the name suggests, this formulation is characterized by preferences. It is more ex-

pressive than utility-based formulation since it allows for a cycle. For example, the

following preference can be expressed in this formulation unlike the utility-based

formulation.

a � b � c � a

Since the preference of every pair of arms is to be specified, a natural way to repre-

sent all the preference values is by a square matrix with its dimension being equal to

the number of arms when the number of arms are finite. It is called a preference matrix

P . For each pair (a, b) of arms, the element Pa,b contains the unknown probability

with which a wins the duel against b.

An example preference matrix is shown below:




1 2 ··· K

1 1/2 P1,2 P1,K

2 P2,1 1/2 P2,K

...
. . .

K PK,1 PK,2 1/2



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The matrix P must satisfy the following symmetry property:

∀a, b ∈ {1, . . . ,K}, Pa,b + Pb,a = 1

Hence on the diagonal: Pa,a = 1
2 ∀a ∈ {1, . . . ,K}.

Using these preference values, cumulative regret can be defined as

CRegretT =

T∑

t=1

Pa∗,at + Pa∗,bt − 1

2
(2.3)

where at and bt are the two arms pulled at time t. In the rest of this chapter, this

is called Condorcet regret since it coincides with the notion of a Condorcet winner a∗.

A Condorcet winner is the arm, denoted by a∗ which is preferred over all the other

arms i.e. ∀ a ∈ A\{a∗}, Pa∗,a > 1/2. Note that if µa > µb for some arms a and b, then

Pa,b > 1/2. The optimal arm in the utility-based formulation thus coincides with the

Condorcet winner in the preference formulation.

Stochastic preference-based formulation

As explained in section 2.2.1, the key characteristic of stochastic dueling bandits is

the stationarity of the preference of one arm over another arm. The preference matrix

directly stores this preference as a probability of arm a winning the duel against

arm b for all a, b. Therefore the matrix based formulation lends itself easily to the

stochastic dueling bandits.

Adversarial preference-based formulation

At each time period t, the adversary chooses a ternary square outcome matrix ψ(t)

where 2

ψ(t)a,b =





1 a wins the duel against b at time t

0 a tie between a and b at time t

−1 b wins the duel against a at time t

(2.4)

2We overload the previously defined symbol for feedback function, ψ, to express a similar notion
here.
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Naturally the dimension of the outcome matrix is equal to the number of arms.

At the horizon T , the preference matrix can be constructed as follows:

Pa,b =
1

2T

T∑

t=1

ψ(t)a,b +
1

2
∀a, b ∈ A

2.2.5 Relation between utilities and preferences

We can construct, preferences from utilities with randomized tie-breaking as follows:

Pa,b = P(xa > xb) +
1

2
P(xa = xb)

where P(E) indicates the probability of event E. When all va are Bernoulli laws, this

reduces to:

Pa,b =
µa − µb + 1

2
(2.5)

In this case, the bandit regret, given by Eq. (2.2), is twice the Condorcet regret, given

by Eq. (2.3) as:
2µa∗ − µa − µb

2
= Pa∗,a + Pa∗,b − 1

As utility-based formulation can not express cycles in preferences, there can be no

such general way to convert preferences to utilities.

2.3 Our contributions

Our main contribution is an algorithm designed for the adversarial utility-based

dueling bandit problem in contrast to most of the existing algorithms which assume

a stochastic environment.

Our algorithm, called Relative Exponential-weight algorithm for Exploration and Ex-

ploitation (REX3), is a non-trivial extension of the Exponential-weight algorithm for Ex-

ploration and Exploitation (EXP3) algorithm Auer et al. [2002b] to the dueling bandit

problem. We prove a finite time expected regret upper bound of orderO(
√
K ln(K)T )

and develop an argument initially proposed by Ailon et al. [2014] to exhibit a general

lower bound of order Ω(
√
KT ) for this problem.
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These two bounds correspond to the original bounds of the classical EXP3 algo-

rithm and the upper bound strictly improves from the Õ(K
√
T ) obtained by existing

generic partial monitoring algorithms.3

Our experiments on information retrieval datasets show that the anytime ver-

sion of REX3 is a highly competitive algorithm for dueling bandits, especially in the

initial phases of the runs where it clearly outperforms the state of the art.

We study the utility-based dueling bandit problem as an instance of the partial

monitoring problem and prove that it fits the time-regret partial monitoring hierar-

chy as an easy – i.e. Θ̃
(√

T
)

– instance. We survey some partial monitoring algo-

rithms and see how they could be used to solve dueling bandits efficiently.

2.4 Related work

The conventional MAB problem has been well studied in the stochastic setting as well

as the (oblivious) adversarial setting (see section 1.2). The dueling bandits problem

is recent, although related to previous works on computing with noisy comparison

[see for instance Karp and Kleinberg, 2007]. This problem also falls under the frame-

work of preference learning Freund et al. [2003], Liu [2009], Fürnkranz and Hüller-

meier [2010] which deals with learning of (predictive) preference models from ob-

served (or extracted) preference information i.e. relative feedback which specifies

which of the chosen alternatives is preferred. Most of the articles hitherto published

on dueling bandits consider the problem under a stochastic assumption.

2.4.1 Dueling Bandit Gradient Descent

Yue and Joachims [2009] consider the setting of stochastic utility-based dueling ban-

dits with a possibly infinite number of actions. This is closely related to stochas-

tic approximation (Robbins and Monro [1951]). The authors propose an algorithm

called Dueling Bandit Gradient Descent (DBGD) to solve this problem. They approach

this (contextual) dueling bandits problem with on-line convex optimization as fol-

lows: The set of actions A is embedded within a vector space W . Retrieval functions

3The notation Õ(·) hides logarithmic factors.
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in a search engine is an example of such a space. A is assumed to contain the ori-

gin, is compact, convex and is contained in a d-dimensional ball of radius r. They

assume the existence of a differentiable, strictly concave utility function v : A → R.

This function reflects the intrinsic quality of each point inA, and is never directly ob-

served. Since v is strictly concave, there exists a unique maximum v(a∗) where a∗ is

the optimum point (or action). A link function ϕ : R→ [0, 1] provides the following

relation:

∀a, b ∈ A : P(a wins against b) = ϕ(v(a)− v(b))

The function ϕ is assumed to be monotonic increasing, rotation-symmetric with a

single inflection point at ϕ(0) = 1/2. In the search example, P(a � b) refers to the

fraction of users who prefer the results provided by a over those of b. If at time t, the

algorithm pulls arms at and bt then its regret at time T is given by
∑T

t=1 ϕ(v(a∗) −

v(at)) + ϕ(v(a∗)− v(bt))− 1.

Algorithm 7 Dueling Bandit Gradient Descent (DBGD)

Input: s1, s2, a1 ∈W
for t=1,. . . ,T do

Sample unit vector ut uniformly.
bt ← projectA(at + s2ut) //projected back into A
Compare at and bt
if bt wins then

at+1 ← projectA(at + s1ut) //projected back into A
else

at+1 ← at
end if

end for

DBGD requires two parameters s1 and s2 which can be interpreted as exploita-

tion and exploration step sizes respectively. The algorithm maintains a candidate at

and compares it with a neighboring point bt which is s2 away from at. If bt wins

the comparison, an update of size s1 is made along ut, and then projected back

into A(denoted by projectA). The authors prove that, if ϕ is L1-Lipschitz and v is

L2-Lipschitz, and for suitable s1 and s2, the regret of DBGD is in O(T 3/4
√
rdL1L2)

where r is the radius of the d-dimensional ball that is assumed to contain the set of

actions A.
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2.4.2 Interleaved Filtering

Yue et al. [2012] consider stochastic preference-based dueling bandit formulation

where the preference matrix is expected to satisfy the assumptions of a strict linear

order, strong stochastic transitivity and stochastic triangular inequality. They pro-

pose an algorithm called Interleaved Filtering (IF) for K-armed dueling bandit prob-

lem.

Algorithm 8 Interleaved Filtering (IF)

Input: T, A = {1, . . . ,K}.
1: δ ← 1/(TK2)
2: Choose an arm â ∈ A randomly
3: W ← {1, . . . , k} \ {â}
4: ∀a ∈W , maintain estimate P̂â,a of Pâ,a
5: ∀a ∈ W , compute 1 − δ confidence interval Ĉâ,a = (P̂â,a − ct, P̂â,a + ct) where
ct =

√
log (1/δ)/t

6: while W 6= ∅ do
7: for a ∈W do
8: compare a and â
9: update P̂â,a and Ĉâ,a

10: end for
11: while ∃a ∈W s.t. (P̂â,a > 1/2 ∧ 1/2 /∈ Ĉâ,a) do
12: W ←W \ {a} //â declared winner against a
13: end while
14: if ∃b ∈W s.t. (P̂â,b < 1/2 ∧ 1/2 /∈ Ĉâ,b) then
15: while ∃b′ ∈W s.t. P̂â,b′ > 1/2 do
16: W ←W \ {b′} //pruning
17: end while
18: â← b, W ←W \ {b} //b declared winner against â (new round)
19: ∀b′ ∈W , reset P̂â,b′ and Ĉâ,b′
20: end if
21: end while
22: T̂ ← Total comparisons made
23: return (â, T̂ )

Let a∗ be the best arm. If (at, bt) are the two arms selected at time t, strong regret

for dueling bandits is defined as,

StrongRegret =

T∑

t=1

max {Pa∗,at − 1/2, Pa∗,bt − 1/2}

where T is the time horizon. Weak regret for dueling bandits is defined as,

WeakRegret =

T∑

t=1

min {Pa∗,at − 1/2, Pa∗,bt − 1/2}
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Strong regret is computed by comparing the best arm to the worse of the pair of

selected arms, while weak regret is computed by comparing the best arm to the

better of the two selected arms. 4

The algorithm IF is guaranteed to suffer an expected cumulative regret of order

O(K log T ). This holds true for any notion of regret that is a linear combination of

weak and strong regret as defined earlier.

2.4.3 Beat The Mean

Yue and Joachims [2011] consider the stochastic preference-based dueling bandits

formulation where the preference matrix must only adhere to relaxed stochastic

transitivity instead of strong stochastic transitivity necessitated by IF. They intro-

duce Beat The Mean (BTM), an algorithm which proceeds by successive elimination

of arms.

Algorithm 9 Beat-The-Mean (BTM)

Input: A = {1, . . . ,K}, N , T , cδ,γ(·)
1: W1 ← {1, . . . ,K} //working set of active arms
2: l ← 1 (num round), ∀a ∈ Wl, na ← 0(num comparisons), wa ← 0(num wins), p̂a ≡
wa/na, or 1/2 if na = 0

3: n∗ := mina∈Wl
na, c∗ := cδ,γ(n∗), or 1 if n∗ = 0 //confidence radius

4: t← 0 //num iterations
5: while |Wl| > 1 and t < T and n∗ < N do
6: a← argmina∈Wl

na //break ties randomly
7: select b ∈Wl at random, compare a vs b
8: If a wins, wa ← wa + 1
9: na ← na + 1

10: t← t+ 1
11: if mina′∈Wl

p̂a′ + c∗ ≤ maxa∈Wl
p̂a − c∗ then

12: a′ ← argmina′∈Wl
p̂a′

13: ∀a ∈Wl, delete comparisons with a′ from wa, na
14: Wl+1 ←Wl \ {a′} //update working set
15: l← l + 1 //new round
16: end if
17: end while
18: return argmaxa∈Wl

p̂a

The algorithm proceeds in rounds and in each round l, a set of active arms is

maintained as Wl. For each arm a ∈ Wl, an empirical estimate p̂a is maintained.

In each round, the the arm with the lowest number of comparisons is compared

4This distinction between strong and week regret is different than the one considered in Section 1.2
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with the the arm b sampled uniformly from Wl, in effect comparing a with the mean

arm. Whenever the worst empirical arm is separated from the best empirical arm

by a sufficient confidence margin, the worst arm is eliminated from the working set

along with all the comparisons involving it. The algorithm continues tillWl contains

a single arm.

The authors prove that BTM (Algorithm 11) correctly returns the best arm with

probability at least 1 − 1/T while accumulating the cumulative regret CRegret =

O
(
γ7K log T

)
. This algorithm can be used for both exploration-exploitation setting

as well as PAC setting.

• Exploration-exploitation setting: In the exploration-exploitation setting, the

goal is to minimize cumulative Condorcet regret. In order to achieve minimum

expected regret, the authors have adopted "explore then exploit" approach. In

Algorithm 10 Beat-The-Mean (Exploration-exploitation)

Input: A = {1, . . . ,K}, γ, T
1: δ ← 1/(2TK)

2: cδ,γ(n) := 3γ2
√

1
n log 1

δ

3: Output Beat-The-Mean(A,∞, T , cδ,γ )

the explore phase, BTM is called with the set of arms A, the horizon T , and the

with the confidence interval cδ,γ(n) = 3γ2
√

1
n log (2KT ). In the exploit phase,

the arm returned by the above invocation of BTM is pulled till horizon T . Thus

the expected cumulative regret is bounded as follows:

E[CRegretT ] ≤ (1− 1/T )O
(
γ7K log T

)
+ (1/T )O(T ) = O

(
γ7K log T

)

• PAC setting: In the PAC setting, the goal is to find an approximately optimal

arm with a high probability using the minimum number of comparisons. The

Algorithm 11 Beat-The-Mean (PAC)

Input: A = {1, . . . ,K}, γ, ε, δ
1: Declare N to be the smallest integer such that N =

⌈
36γ6

ε2
log K3N

δ

⌉

2: cδ,γ(n) := 3γ2
√

1
n log K3N

δ

3: Output Beat-The-Mean(A, N ,∞, cδ,γ )
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authors prove that BTM is an (ε, δ)-PAC algorithm with sample complexity

O

(
Kγ6

ε2
log

KN

δ

)

where the confidence interval cδ,γ(n) = 3γ2
√

1
n log K3N

δ and N is the smallest

integer such that N =
⌈

36γ6

ε2
log K3N

δ

⌉
.

2.4.4 Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE)

Urvoy et al. [2013a] propose a generic algorithm called SAVAGE (for Sensitivity Anal-

ysis of VAriables for Generic Exploration) for stochastic preference-based dueling

bandits. Their setting does away with several assumptions made in the previous al-

gorithms e.g. existence of utility values or a linear order for the arms. In this general

setting, the SAVAGE algorithm obtains a cumulative Condorcet regret bound of order

O(K2 log T ). The key notions they introduce for dueling bandits are the Copeland,

Borda and Condorcet scores ( Charon and Hudry [2010]). The Borda score of an arm a

on a preference matrix P is
∑K

b=1 Pa,b and its Copeland score is
∑K

b=1 1(Pa,b> 1
2) (we

use 1 to denote the indicator function). If an arm has a Copeland score of K − 1,

which means that it defeats all the other arms in the long run and it is a Condorcet

winner. There exists however some datasets like MSLR30K [2012] where this Con-

dorcet condition is not satisfied. It is however possible to define a robust Copeland

regret which applies for any preference matrix.

Algorithm 12 SAVAGE

Input: A = {1, . . . ,K}, f , F , T , δ
1: W := {1, . . . ,K}, H := F, s := 1
2: ∀a ∈W : µ̂a := 1/2 and ta := 0
3: while ¬Accept(f,H,W ) ∧ s 6= T do
4: Pick a ∈ argminW t1, tK
5: ta := ta + 1
6: Pull the arm a and receive the reward xa
7: µ̂a :=

(
1− 1

ta

)
µ̂a + 1

ta
xa

8: H := H ∩ {a | |xa − µ̂a| < c(ta)}
9: W := W \ {b | IndepTest(f,H, b)}

10: s := s+ 1
11: end while
12: return the single arm in f(H).
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The algorithm stops exploring an arm when it knows from a sensitivity-analysis

subroutine IndepTest that, given the knowledge of the environment, the final de-

cision will not change according to this arm. The termination of the algorithm is

controlled by the predicate:

Accept(f,H,W ) := “W = ∅” =⇒ |f(H)| = 1

2.4.5 Relative upper confidence bound (RUCB)

Zoghi et al. [2014a] consider the stochastic preference-based dueling bandits formu-

lation. They extend the UCB algorithm and propose an algorithm called Relative Up-

per Confidence Bound(RUCB) provided that the preference matrix admits a Condorcet

winner.

Algorithm 13 RUCB

Input: A = {1, . . . ,K}, α > 1
2 , T ∈ {1, 2, . . . } ∪∞

1: B = ∅ andW = [wab]← 0K×K // wab is the number of times a beat b
2: for t=1, . . . , T do
3: U := [uab] = W

W+WT +
√

α log t
W+WT // all operations are element-wise

4: uaa ← 1
2 for each a ∈ A and C ← {a | ∀b : uab ≥ 1

2}
5: If C = ∅, pick a randomly from A
6: B ← B ∧ C
7: If |C| = 1, then B ← C and a to be the unique arm in C.
8: if |C| > 1 then
9: Sample a from C using the distribution:

p(a) =

{
0.5 if a ∈ B

1
2|B||C\B| otherwise

10: end if
11: b ← argmaxc uca, with ties broken randomly. Moreover, if there is a tie, b is

not allowed to be equal to a.
12: Compare a and b and increment wab or wba depending on which arm wins.
13: end for
14: return An arm a that beats the most arms, i.e. a with the largest count

#
{
b | wab

wab+wba
> 1

2

}

RUCB maintains upper confidence bound on the preference probabilities ff all

possible pairs of arms. It then proceeds in two phases during which it chooses the

two arms to select at the current time period. In the first round, an arm which beats

all the other arms according to the optimistic preference estimates is selected as a
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champion. If no such arm exists, a random arm is picked. In the second round,

a normal classical bandit problem is set up using the preference estimates of all the

arms against the champion selected in the first phase. The arm which has the highest

preference estimate against the champion is selected as the competitor to the cham-

pion. Both of these arms or selected for a duel and based on which arm wins, the

score sheet storing recording the results is updated which in turn affects the prefer-

ence estimates for the next time period.

This algorithm achieves the upper bound ofO(K log T ) on the expected cumula-

tive Condorcet regret. Unlike the previous algorithms, RUCB is an anytime dueling

bandits algorithm since it does not require the time horizon T as input.

2.4.6 Relative confidence sampling (RCS)

Like RUCB, the relative confidence sampling(RCS) algorithm proposed by Zoghi et al.

[2014b] deals with the stochastic preference-based dueling bandit formulation. This

algorithm is designed for the task of ranker evaluation on large-scale datasets. RCS

too relies on the presence of a Condorcet winner in the preference matrix.

Algorithm 14 RCS

Input: A = {1, . . . ,K}, α > 1
2

1: W = [wab]← 0K×K // 2D array of wins: wab is the number of times a beat b
2: for t = 1, 2, . . . do
3: Phase I
4: Θ(t)← 1K×K

2
5: for a, b = 1, . . . ,K with a < b do
6: Θab(t) ∼ Beta(W ab + 1,W ba + 1)
7: Θba(t) = 1−Θab(t)
8: end for
9: Pick c such that Θcb(t) ≥ 1/2 for all b. If no such arm exists, pick the arm that

has been chosen champion least frequently.
10: Phase II
11: U ← W

W+WT +
√

α log t
W+WT // all operations are element-wise and division by

zero is assumed to be zero.
12: Uaa ← 1

2 for each a ∈ A
13: d← argmaxbU bc(t)
14: Compare the arms c and d and increment either W cd if c beat d or W dc oth-

erwise.
15: end for

This algorithm works in two phases. In the first phase, an arm deemed champion

is elected by ways of a round-robin tournament based on previous arm comparisons.
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In the second phase, this champion is compared against a worthy competitor. As

time goes on, the best arm becomes increasingly likely to be the both the champion

and the competitor, thereby causing the regret to fall steeply. A key characteristic of

RCS is the use of sampling to conduct a round-robin tournament in the first phase.

It maintains a Beta posterior distribution on Pa,b for every pair of arms a, b. The

samples from these posteriors are used to determine a champion arm c which beats

all the other arms in this tournament. In the second phase, UCB is applied to the the

classical bandit problem with mean rewards {P1,c, . . . , PK,c} to select the competitor

d to duel with c.

RCS can be also used for the explore-then-exploit setting: when the horizon is

reached, it picks any arm that has beat the greatest number of other arms at the final

count.

2.4.7 Merge relative upper confidence bound (MERGERUCB)

Zoghi et al. [2015b] consider the problem of stochastic preference-based dueling ban-

dit problem. This algorithm aims to avoid the quadratic dependence on the number

of arms in the regret bound. For this purpose, they carry arm duels “locally” i.e.

arms are placed in small batches that are processed separately and then merged to-

gether.

The proposed algorithm, (MERGERUCB), first groups the arms into small batches.

Thereafter the algorithm proceeds in stages. During each stage, the arms within the

same batch are compared against each other. The arms to be compared are chosen

based on the upper confidence bounds on the preference probabilities. The current

stage ends when the number of arms remaining becomes small and then pairs of

batches are merged to form bigger batches. In the next stage, the same process re-

peats until a single arm remains.

MERGERUCB takes the initial size of each partition p and exploration parameter

α. It also requires a parameter δ which is to be interpreted as the maximum probabil-

ity of failure. With probability 1− δ, it achieves the following cumulative Condorcet

regret

CRegret ≤ 8αpK log T + C(δ)

mina,b | Pa,b 6=0.5∆2
ab
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Algorithm 15 MERGERUCB

Input: A = {1, . . . ,K}, the size of each partition p ≥ 4, the maximum probability
of failure δ, α > 1

2
1: W = [wab]← 0K×K // 2D array of wins: wab is the number of times a beat b
2: B1 =

{
{1, . . . , p}︸ ︷︷ ︸

B1

, . . . , {(b1 − 1)p+ 1, . . . ,K}︸ ︷︷ ︸
Bb1

}
// a set of disjoint batches of

rankers, with b1 =
⌊
K
p

⌋

3: C(δ) =

⌈(
(4α−1)K2

(2α−1)δ

) 1
2α−1

⌉

4: S = 1 // the current stage of the algorithm
5: for t=1,2,. . . do
6: i = tmod bS

7: U ← W
W+WT +

√
α log t+C(δ)

W+WT // all operations are element-wise

8: For any a ∈ Bi if Uab <
1
2 for any b ∈ Bi, remove a from Bi.

9: Select any c ∈ Bi randomly.
10: Set d← argmax{a|a∈Bi\{c}}Uac

11: Compare the arms c and d and increment either W cd if c beat d or W dc oth-
erwise.

12: if
∑

i |Bi| ≤ K
2I

then
13: Combine pairs of batches of arms so that each new batch has between p/2

and 3p/2 arms in it, pairing the smallest batches with the largest ones, making
sure that each batch contains at least two arms. Update the sets Bi, putting them
all in the set BS , and define bS := |BS |

14: S = S + 1
15: end if
16: end for

where C(δ) =

⌈(
(4α−1)K2

(2α−1)δ

) 1
2α−1

⌉
. By setting δ = 1/T , an upper confidence bound

on the expected cumulative regret can be achieved too. If α ≥ 1, the expected cumu-

lative regret of MERGERUCB is upper bounded by O(K log T )

2.4.8 Copeland confidence bound (CCB)

Zoghi et al. [2015a] consider the stochastic preference-based dueling bandit problem

in which a Condorcet winner might not exist. Instead they propose an algorithm

called Copeland confidence bound (CCB) which aims to minimize the cumulative regret

with respect to the Copeland winner, which unlike the Condorcet winner, is guaran-

teed to exist.
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Algorithm 16 CCB

Input: A = {1, . . . ,K}, α > 1
2

1: W = [wab]← 0K×K // 2D array of wins: wab is the number of times a beat b
2: B1 = {1, . . . ,K} //potential best arms
3: Ba1 = ∅ for each a = 1, . . . ,K //potential to beat the arm i
4: LC = K // estimated max losses of a Copeland winner
5: for t = 1, 2, . . . , do
6: U := [uab] = W

W+WT +
√

α log t
W+WT and L := [lab] = W

W+WT −
√

α log t
W+WT , with

uab = lab = 1
2 , ∀a

7: Cpld(a) = #{b | uab ≥ 1
2 , b 6= a} and Cpld(a) = #{b | lab ≥ 1

2 , b 6= a}
8: Ct = {a | Cpld(a) = maxb Cpld(b)}
9: Set Bt ← Bt−1 and Bat = Bat−1 and update as follows:

A. Reset disproven hypotheses: If for any a and b ∈ Bat we have lab > 0.5, reset
Bt, LC and Bc

t for all the c.
B. Remove non-Copeland winners: For each a ∈ Bt, if Cpld(a) < Cpld(b) holds
for any b, set Bt ← Bt \ {a}, and if |Ba

t | 6= LC + 1 then set Bat ← {c | uac < 0.5}.
However if Bt = ∅, reset Bt, LC and Bc

t for all c.
C. Add Copeland winners: For any a ∈ Ct with Cpld(b) = Cpld(a), set Bt ←
Bt ∪ {a}, Bat ← ∅ and LC ← K − 1 − Cpld(a). For each b 6= a, if we have
|Bb

t | < LC + 1, set Bat ← ∅, and if |Bb
t | < LC + 1, randomly choose LC + 1

elements of Bb
t and remove the rest.

10: With probability 1/4, sample (c, d) uniformly from the set {(a, b) | b ∈
Ba
t and 0.5 ∈ [lab, uab]} (if it is non-empty) and skip to Line 14.

11: If Bt ∩ Ct 6= ∅, then with probability 2/3, set Ct ← Bt ∩ Ct.
12: Sample c from Ct uniformly at random.
13: With probability 1/2, choose the set Ba to be either Bat or {1, . . . ,K} and then

set d← argmaxb∈Ba | lbc≤0.5 ubc. If there is a tie, d is not allowed to be equal to c.
14: Compare the arms c and d and increment wcd or wdc depending on which

arm wins.
15: end for

2.4.9 Contextual dueling bandits

Dudík et al. [2015] consider the problem of stochastic preference-based dueling ban-

dit problem. The two salient features of this article are the introduction of the Von

Neumann winner and incorporating context in the dueling bandit problem. Instead of

containing the preference probabilities, they modify the preference matrix to contain

the expectations of outcomes5 of duels between all the pair of actions.

ψ(a, b) =





+1 a wins the duel

−1 b wins the duel

5Here we overload the definition of outcome which is slightly different from the previous definition
given in equation 2.4 where it can take the value 0 too.
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The authors assume no ties. Of course, ψ(a, b) and preference matrix element Pa,b

are related as follows:

Pa,b =
ψ(a, b) + 1

2

With this construction of the preference matrix P , a Von Neumann winner is

defined as a probability vectorw in the simplex vectors in [0, 1]K whose entries sum

to 1 such that
K∑

a=1

w(a)Pa,b ≥ 0 for all actions b

Like a Condorcet winner, a Van Neumann winner has at least 50% chance of wining

against any other policy. However, unlike a Condorcet winner, a Von Neumann win-

ner is guaranteed to exist provided that the preference matrix P is skew symmetric

which implies that a duel (b, a) is equivalent to the negation of a duel (a, b), as is

natural.

Furthermore in this setting, the learner is allowed to observe a context selected by

the environment. The authors provide two algorithms to compute an approximation

of a Von Neumann winner for the explore-then-exploit version of this problem. The

first algorithm, SPARRINGFPL, is based on the Follow-the-Perturbed-Leader (FPL)

algorithm of Kalai and Vempala [2005]. The second algorithm, PROJECTGD, is based

on online projected gradient descent methods of Zinkevich [2003b].

2.4.10 Double Thompson sampling for dueling bandits

Wu and Liu [2016] consider the problem stochastic preference-based dueling bandit

problem and they propose an algorithm called Double Thompson Sampling (D-TS).

D-TS maintains a posterior distribution for the preference matrix, and chooses the

pair of arms at each time period according to the two set of samples drawn indepen-

dently from the posterior distribution. For Copeland dueling bandits, D-TS achieves

the cumulative regret bound of O(K2 log T ).
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Algorithm 17 D-TS for Copeland dueling bandits

Input: A = {1, . . . ,K}, α > 1
2

1: W = [wab]← 0K×K // 2D array of wins: wab is the number of times a beat b
2: for t = 1, . . . , T do

// Phase I : Choose the first arm a(1)

3: U := [uab] = W
W+WT +

√
α log t
W+WT and L := [lab] = W

W+WT −
√

α log t
W+WT , with

uab = lab = 1
2 , ∀a // Division by zero is assumed to be zero.

4: UBa ← 1
K−1

∑
b 6=a 1(uab > 1/2) // Upper bound on the normalized Copeland

score.
5: C ← {a : UBa = maxb UBb}
6: for a, b = 1, . . . ,K with a < b do
7: Sample θ(1)

ab ∼ Beta(wab + 1, wba + 1)

8: θ
(1)
ba ← 1− θ(1)

ab

9: end for
10: a(1) ← argmaxa∈C

∑
b 6=a 1(θ

(1)
ab >1/2)

// Choosing from C to eliminate likely non-
winner arms with ties broken randomly.
// Phase II : Choose the second arm.

11: Sample θ(2)

ba(1)
∼ Beta(wba(1)+1, wa(1)b+1) for all b 6= a(1), and let θ(2)

a(1)a(1)
= 1/2

12: a(2) ← argmaxb:l
ba(1)

≤1/2 θ
(2)

ba(1)
// Choosing only from uncertain pairs

13: Compare the pair (a(1), a(2)) and increment wa(1)a(2) if a(1) wins or otherwise
increment wa(2),a(1)

14: end for

2.4.11 SPARRING

Ailon et al. [2014] reduce the stochastic utility-based dueling bandits problem to the

conventional MAB problem. They use the notion of bandit regret. They propose

an algorithm called SPARRING which uses two separate classical bandit algorithms

(CBA), each for one arm, to choose the pair of arms to be played at every time period.

Algorithm 18 SPARRING

Input: A = {1, . . . ,K}
1: LCBA, RCBA← Two classical bandit algorithms over A
2: LCBA.init(), RCBA.init(), t← 1
3: while true do
4: at ← LCBA.decide(); bt ← RCBA.decide()
5: Play (at, bt) and observe yt ∈ {0, 1}
6: LCBA.set_feedback(1(yt=0)); RCBA.set_feedback(1(yt=1))
7: t← t+ 1
8: end while

Each CBA has three subroutines: init(), decide() and feedback(). The init()

subroutine simply clears its state. The decide() subroutine returns the next arm to

play and the set_feedback() subroutine provides the feedback to the algorithm.
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SPARRING algorithm, although originally designed for stochastic settings, can

work for adversarial setting as well with an algorithm EXP3 used as CBA. It pre-

serves the O(
√
KT lnK) upper bound of EXP3.

In Table 2.1, we provide a comparative summary of all the algorithms studied in

this chapter.

TABLE 2.1: Summary of dueling bandit algorithms

Algorithm Rewards Formulation Settings
DBGD Stochastic Utility-based Exploration-exploitation
IF Stochastic Preference-based Exploration-exploitation
BTM Stochastic Preference-based PAC & Exploration-exploitation
SAVAGE Stochastic Preference-based Exploration-exploitation
RUCB Stochastic Preference-based Exploration-exploitation
RCS Stochastic Preference-based Exploration-exploitation
MERGERUCB Stochastic Preference-based Exploration-exploitation
DTS Stochastic Preference-based Exploration-exploitation
CCB Stochastic Preference-based Exploration-exploitation
SPARRING Stochastic Utility-based Exploration-exploitation

With this, we conclude the overview of the related work on dueling bandits. In

the next chapter, we shall see what is the best possible performance any dueling

bandit algorithm can achieve in the exploration-exploitation setting.
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Chapter 3

The Lower Bound

In this short chapter, we shall prove the lower bound on the cumulative regret of

any dueling bandit algorithm in the exploration-exploitation setting.

To provide a lower bound on the regret of any dueling bandits algorithm, we

use a reduction to the classical MAB problem suggested by Ailon et al. [2014]. Algo-

rithm 19 gives an explicit formulation of this reduction by using a generic dueling

bandits algorithm (DBA) as a black-box having the following public sub-routines:

init(), decide() and feedback(). The subroutine init() is used to initialize the al-

gorithm, decide() returns the pair of arms to be pulled at any given time instant and

setfeedback() provides the relative feedback to the algorithm. The classical bandit

environment (CBE) provides get_reward() which returns the reward of the input

arm.

Algorithm 19 Reduction to classical MAB

Input: A = {1, . . . ,K}
1: DBA.init()
2: Set t = 1
3: repeat
4: (at, bt+1)← DBA.decide()
5: xat ← CBE.get_reward()
6: xbt+1 ← CBE.get_reward()
7: DBA.set_feedback((at, bt+1), (xat − xbt+1))
8: t = t+ 2
9: until t ≥ T

Let us consider that the reward at time t in the dueling bandits setting is the mean

of the individual rewards of the chosen arms at that time. This was defined earlier in

equation (2.1). Therefore the reward obtained by algorithm 19 on selection of the pair

(at, bt+1) is xat+ xbt+1

2 . On the other hand, in the classical bandit setting, the reward
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obtained on selection of arm at followed by arm bt+1 is xat + xbt+1. So clearly the

expected classical-bandit reward of Algorithm 19 will be twice to expected reward

of the black-box dueling bandit algorithm it uses. Consequently, the expected regret

of DBA is of the order of the expected regret in classical bandit setting.

It is important to note that this reduction only works for stochastic settings where

the expected reward of each arm remains the same across time instants because the

rewards are drawn from stationary distributions. According to Theorem 5.1 given

by Auer et al. [2002b, section 5], for K ≥ 2, the expected regret in the classical bandit

setting is Ω(
√
KT ) (assuming T is large enough i.e. T ≥

√
KT ). Since this result is

obtained with a stationary stochastic distribution, by extension, the expected regret

for any dueling bandits setting cannot be less than Ω(
√
KT ). Therefore we can have

have a lower bound on the expected regret for dueling bandits as follows:

Theorem 3.1. For any number of actions K ≥ 2 and large enough time horizon T (i.e.

T ≥
√
KT ), there exists a distribution over assignments of rewards such that the ex-

pected cumulative regret of any utility-based dueling bandits algorithm cannot be less than

Ω(
√
KT ).

After having the lower bound, the next step for us is to devise an algorithm for

the dueling bandit problem in the exploration-exploitation setting. We provide the

same in the next chapter.
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Chapter 4

The Algorithm and its Analysis

In Section 4.1, we introduce the Relative Exponential-weight Algorithm for Exploration

and Exploitation(REX3). The implementation of the algorithm on a simple toy prob-

lem is illustrated in Section 4.2. Lastly, we prove a finite-horizon upper bound on

the cumulative regret of REX3 in Section 4.3.

4.1 Relative Exponential-weight Algorithm for Exploration

and Exploitation (REX3)

We propose an algorithm for dueling bandits in the exploration-exploitation set-

ting. The pseudo-code for the algorithm we propose, called Relative Exponential-

weight Algorithm for Exploration and Exploitation (REX3) is given in Algorithm 20.

This algorithm is designed to apply for the adversarial utility-based dueling bandits

problem.

It is similar to the original EXP3 from step 1 to step 6 where it computes a distri-

bution p(t) = (p1(t), . . . , pK(t)) which is a mixture of a normalized weighing of the

armswi/
∑

iwi and a uniform distribution 1/K. As in EXP3, this uniform probability

is introduced to ensure a minimum exploration of all arms.

At step 7, the algorithm draws two arms a and b independently according to p(t).

At step 8, the algorithm getsψ(xa−xb) as relative feedback . Note that, since arms are

drawn with replacement, we may have a = b, in which case the algorithm will get no

information. This event is indeed expected to become frequent when the p(t) distri-

bution becomes peaked around the best arms. This necessity for a regret-minimizing

dueling bandits algorithm to renounce getting information when confident about its
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Algorithm 20 REX3

Input: A = {1, . . . ,K}
Parameters: γ ∈ (0, 1]

1: Initialization: wi(1) = 1 for i = 1, . . . ,K.
2: for t = 1, 2, . . . do
3: for i = 1, . . . ,K do
4: Set pi(t)← (1− γ) wi(t)∑K

j=1 wj(t)
+ γ

K

5: end for
6: Pull two arms a and b chosen independently according to the distribution

(p1(t), . . . , pK(t)).
7: Receive relative feedback ψ(xa − xb) ∈ [−1,+1]
8: if a 6= b then

9: Set wa(t+ 1)← wa(t) · e
γ
K

ψ(xa−xb)
2pa

10: Set wb(t+ 1)← wb(t) · e−
γ
K

ψ(xa−xb)
2pb

11: end if
12: Update γ (for anytime version)
13: end for

decision is a structural bias toward exploitation that is not encountered in classical

bandits.

Step 8 is the big difference from EXP3; because we only have access to the relative

ψ(xa−xb) value, we have no mean to estimate the individual rewards xa or xb. There

is however a solution to circumvent this problem: the best arm in expectation at time

t is not only the one which maximizes the absolute reward. It is indeed the one which

maximizes the regret of any fixed strategy π(t) against it:

argmax
i

xi(t) = argmax
i

(
xi(t)− Ea∼π(t)xa

)
.

This reference strategy could be a single-arm or uniform strategy but playing a sub-

optimal strategy to get a reference has a cost in terms of regret. One of our contribu-

tions is to show that the algorithm may use its own strategy as a reference.

At step 9, the condition a 6= b is only a slight improvement for preference-based

dueling bandits where the outcome of a duel of an arm against itself is randomized

as in Eq. (2.5).

At steps 10 and 11, the weights of the played arms are updated. This update

process is the core of our algorithm, it will be detailed in Section 4.3.

Step 13 is only required for the anytime version of the algorithm. It will be ex-

plained in Section 5.2.
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4.2 Illustration of REX3 on a toy problem

To understand the working of this algorithm, let us see how it performs on a 4-armed

dueling bandit problem with the first arm being optimal. Let us assume γ = 0.4 and

ψ to be an identity function. Initially, the weights assigned for all the arms are all

equal to 1, as shown in figure 4.1. Therefore at time instant t = 1, the probability of

any of the fours arms being selected is the same i.e.

p1(1) = p2(1) = p3(1) = p4(1) = 0.25

FIGURE 4.1: REX3: weights at t = 1

Let the arms being picked by the algorithm at time instant t = 1 be 1 and 2, hence

a = 1 and b = 1

Depending upon the rewards of these arms, either the first arm or the second one

wins this duel. Let the reward set by the adversary for arm 1 be greater than that of 2

i.e. xa > xb. Since we are dealing with binary rewards, that translates to xa−xb = 1.

Let us now see how REX3 computes the weights for all the arms at t = 2. The weights

of the arms not selected by the algorithm during the previous time period remain the

same, hence

w3(2) = w3(1) = 1

w4(2) = w4(1) = 1
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The weights of the arms selected at t = 1, however, are computed using the update

rule as follows:

w1(2)← w1(1) · e 0.4
4

1
0.5 ≈ 1.22

w2(2)← w2(1) · e 0.4
4
−1
0.5 ≈ 0.82

These weights are depicted in a bar chart in figure 4.2

FIGURE 4.2: REX3: weights at t = 2

Using these weights, the logarithm computes the distribution pt as follows:

p1(2)← (1− 0.4)
1.22

4.04
+

0.4

4
≈ 0.28

p2(2)← (1− 0.4)
0.82

4.04
+

0.4

4
≈ 0.22

p3(2)← (1− 0.4)
1

4.04
+

0.4

4
≈ 0.25

p4(2)← (1− 0.4)
1

4.04
+

0.4

4
≈ 0.25

Hence arm 1 winning the duel results in its probability of being selected during the

next time period being increased while on the other hand, the probability of arm 2

being selected during the next time period is reduced because it lost the duel. The

algorithms then proceeds to draw a and b according to p(2). Let a = 1 and b = 3.

Assume that 1 wins this duel too because the adversary has set the reward for the

first arm higher than that of third arm during t = 2. Therefore xa − xb = 1. The

algorithm then computes the weights for each of the fours arms. The weights of the
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arms not selected at t = 2 are not affected, hence

w2(3) = w2(2) = 0.82

w4(3) = w4(2) = 1

The weights of 1 and 3 are computed as follows:

w1(3)← w1(2) · e 0.4
4

1
0.56 ≈ 1.45

w3(3)← w3(2) · e 0.4
4
−1
0.5 ≈ 0.82

These weights are shown in the form of a bar chart in figure 4.3

FIGURE 4.3: REX3: weights at t = 3

So we see how the algorithm increases the weight of an arm which wins the duel

and correspondingly also decreases the weight of an arm which loses the duel. The

better arms are likely to win more duels than the worse arms and hence the weights

corresponding to the former are progressively increased by the algorithm after each

duel. This results in higher weights for the better arms. Higher the weight, better is

the probability of the corresponding arm being selected by the algorithm and hence

the algorithm selects better arms with higher and higher probability as they establish

their performance superiority over the worse arms.

4.3 Upper bound on the regret of REX3

In this section, we provide a finite-horizon upper bound on the expected regret of

REX3. For the analysis, we focus on the simple case where ψ is the identity. It
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provides a ternary win/tie/loss feedback if we assume binary rewards as follows:

ψ(xa, xb) =





1 if xa = 1 ∧ xb = 0

0 if xa = xb = 0 ∨ xa = xb = 1

−1 if xa = 0 ∧ xb = 1

The main difference between EXP3 and our algorithm is at steps 10 and 11 of

Algorithm 20, where we update the weights according to the duel outcome: the

winning arm is gratified while the loser is penalized. This ‘punitive’ approach of ex-

ponential weighing departs from EXP3 and other weighing algorithms which grat-

ify the most rewarding arms while kindly ignoring the non-rewarding ones (Freund

and Schapire [1999b], Cesa-Bianchi and Lugosi [2006]).

The steps 10-11 on Algorithm 20 are equivalent to operating for each arm i an

update of the form:

wi(t+ 1) = wi(t) · e
γ
K
ĉi(t)

where

ĉi(t) = 1(i=a)
ψ(xa − xb)

2pa
+ 1(i=b)

ψ(xb − xa)
2pb

(4.1)

One big difference with EXP3 is that ĉi(t) is not an estimator of the reward xi(t). We

instead have:

Lemma 4.1.

E [ĉi(t)|(a1, b1), .., (at−1, bt−1)] = Ea∼p(t)ψ(xi(t)− xa(t))

Proof.

ĉi(t) = 1(i=at)
ψ(xat − xbt)

2pat(t)
+ 1(i=bt)

ψ(xbt − xat)
2pbt(t)

E(a,b)∼p(t)ĉi(t) =
K∑

j=1

K∑

k=1

pj(t)pk(t)

(
1(i=j)

ψ(xj − xk)
2pj

+ 1(i=k)
ψ(xk − xj)

2pk

)

=

K∑

j=1

K∑

k=1

pjpk1(i=j)
ψ(xj − xk)

2pj
+

K∑

j=1

K∑

k=1

pjpk1(i=k)
ψ(xk − xj)

2pk
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=
1

2

K∑

k=1

pkψ(xi − xk) +
1

2

K∑

j=1

pjψ(xi − xj)

= Ea∼pψ(xi − xa)

If ψ is identity, it simplifies into:

E(a,b)∼p(t)ĉi(t) = xi − Ea∼p(t)xa

If ψ is the identity then Eĉi(t) = xi(t) − Ea∼p(t)xa(t) in which case we estimate

the expected instantaneous regret of the algorithm against arm i. If we rather take

ψ(x) = 1(x>0), then Eĉi(t) = Pa∼p(t) (xi(t) > xa(t)), i.e. the probability for the algo-

rithm to select an arm defeated by i.

Let Gmax = maxi
∑T

t=1 xi(t) be the best single-arm gain, and let Galg = 1
2

∑T
t=1 xa(t)+

xb(t) be the gain of the algorithm. Let EGunif = 1
K

∑T
t=1

∑K
i=1 xi(t) be the average

value of the game (i.e. the expected gain of the uniform sampling strategy).

Theorem 4.1. If the transfer function ψ is the identity and γ ∈ (0, 1
2), then,

Gmax − E(Galg) ≤
K

γ
ln(K) + γτ

where τ = e · EGalg − (4−e) · EGunif .

Proof sketch: The general structure of the proof is similar to the one of [Auer et al.,

2002b, section 3], but, as explained before, the ĉi(t) estimator we use differs from the

one of EXP3 because it gives an instantaneous regret estimate instead of an absolute

reward estimate. As such, it may reach negative values and the wi(t) weights may

decrease with time. We only give here a sketch of proof, stressing on the differences

from Auer et al. [2002b]. The complete step-by-step proof is deferred til Appendix A.

Let Wt = w1(t) + w2(t) + · · ·+ wK(t). As in EXP3 proof we consider:

Wt+1

Wt
=

K∑

i=1

pi(t)− γ/K
1− γ e(γ/K)ĉi(t)



58 Chapter 4. The Algorithm and its Analysis

The inequality ex ≤ 1 + x + (e − 2)x2 is tight for x ∈ [0, 1] but it remains valid for

negative values, hence:

Wt+1

Wt
≤ 1− γ2/K

1− γ




1

K

K∑

i=1

ĉi(t)

︸ ︷︷ ︸
=−M1




+
(e− 2)γ2/K

1− γ




1

K

K∑

i=1

pi(t)ĉi(t)
2

︸ ︷︷ ︸
=M2




As in EXP3 we take the logarithm and sum over t. We get for any j:

T∑

t=1

γ

K
ĉj(t)− ln(K) ≤ γ2/K

1− γ M1 +
(e− 2)γ2/K

1− γ M2

By taking the expectation over the algorithm’s randomization, we obtain for any j:

T∑

t=1

γ

K
E∼pĉj(t)︸ ︷︷ ︸

(4.3)

− ln(K) ≤ γ2/K

1− γ
T∑

i=t

E∼pM1︸ ︷︷ ︸
(4.4)

+
(e− 2)γ2/K

1− γ
T∑

i=t

E∼pM2︸ ︷︷ ︸
(4.5)

(4.2)

From Lemma 4.1 we directly get the expected regret against j on the left side of the

inequality:

E∼pĉj(t) = xj − E∼p(xa) (4.3)

By averaging (4.3) over the arms, we obtain:

E∼p(t)M1 = − 1

K

K∑

i=1

E∼pĉi(t) = E(xa)−
1

K

K∑

i=1

xi (4.4)

The following result too is detailed in Appendix A:

E∼p(t)M2 ≤
1

2
E(xa) +

1

2K

K∑

i=1

xi (4.5)

From Lemma 4.1, Equation (4.4) and Inequality (4.5), and by definition of Gmax,

EGalg, and EGunif , the Inequality (4.2) rewrites into:

Gmax − EGalg −
K lnK

γ
≤ γ

1− γ (EGalg − EGunif ) +
(e−2)γ

2(1− γ)
(EGalg + EGunif )
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Assuming γ ≤ 1
2 , we finally obtain:

Gmax − EGalg ≤
K lnK

γ
+ γ (eEGalg − (4−e)EGunif )

Provided that EGalg ≤ Gmax and EGunif ≥ Gmin, where Gmin = mini
∑T

t=1 xi(t)

is the gain of the worst single-arm strategy, we can simplify the bound into:

Corollary 4.1. Gmax − EGalg ≤ KlnK
γ + γ (eGmax − (4−e)Gmin)

As in [Auer et al., 2002b, section 3], since K
γ ln(K) + γτ is convex, we can obtain the

optimal γ on (0, 1
2):

γ∗ = min

{
1

2
,

√
K ln(K)

τ

}
(4.6)

Substituting γ in Corollary 4.1 with its optimal value from eq. (4.6) we obtain:

Gmax − E(Galg) ≤ 2
√
K ln(K) [eGmax − (4−e)Gmin]

Hence,

Corollary 4.2. When γ = min

{
1
2 ,

√
K ln(K)

τ

}
, the expected regret of REX3 (Algorithm 20)

is O
(√

K ln(K)T
)

.

The upper bound of REX3 for adversarial utility-based dueling bandits is hence

the same as the one of EXP3 for classical adversarial MABs. This is remarkable as the

relative feedback in the dueling bandits can be considered as a more restrictive since

relative feedback For a high-number of arms or a short term horizon, this bound is

competitive against the O (K ln(T )) or O
(
K2 ln(T )

)
existing bounds for stochastic

dueling bandits.

This corollary brings us to the end of this chapter. In the next chapter, we shall

see how the empirical performance of REX3 on real datasets compares against the

state of the art algorithms.
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Chapter 5

Empirical Evaluation

In the first part of this chapter, given in Section 5.1, we provide the experimental

results to verify Corollary 4.1. In the second part of this chapter, given in Section 5.2,

we compare the performance of REX3 to the state of the art algorithms which were

introduced in Section 2.4.

To evaluate REX3 and other dueling bandits algorithms, we have applied them

to the online comparison of rankers for search engines by interleaved filtering Radlin-

ski and Joachims [2007]. A search-engine ranker is a function that orders a collection

of documents according to their relevancy to a given user search query. By inter-

leaving the output of two rankers and tracking on which ranker’s output the user

did click, we are able to get an unbiased feedback about the relative quality of these

two rankers. Given K rankers, the problem of finding the best ranker is indeed a

K-armed dueling bandits.

In order to obtain reproducible and comparable results, we adopted the stochas-

tic preference-based experiment setup already employed by Yue and Joachims [2011],

Zoghi et al. [2014a,c, 2015c] with both the cumulative Condorcet regret as defined by

Yue et al. [2012], Urvoy et al. [2013a] and the accuracy i.e. the best arm selection-rate

over the runs.

This experimental setup uses real search engines’ logs to build empirical pref-

erence matrices. We used several preference matrices issued from namely: ARXIV

dataset (Yue and Joachims [2011]), LETOR NP2004 dataset (Liu et al. [2007]), and

MSLR30K dataset(MSLR30K [2012]). The last dataset distinguishes three kinds of

queries: informational, navigational and perfect-hit navigational. These matrices

are courtesy the authors of Zoghi et al. [2014c]. The preference matrices we used
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TABLE 5.1: The preference matrices used for experiments

Dataset K Condorcet =Borda?
ARXIV 2011 6 yes yes
LETOR NP2004 16 yes yes
LETOR NP2004 32 yes yes
LETOR NP2004 64 yes yes
MSLR INF. 136 no -
MSLR NAV. 136 yes yes
MSLR PERF. 136 yes yes
SAVAGE (artificial) 6 yes yes
SAVAGE (artificial) 30 yes yes
BVS (artificial) 20 yes no

and their properties are summarized in Table 5.1.

5.1 Empirical validation of Corollary 4.1

We have used LETOR NP2004 and MSLR30K datasets (resricted to 64 rankers) to com-

pare the average Condorcet regret of 100 runs of REX3 with T = 105 to the corre-

sponding halved1 theoretical bounds from Corollary 4.1 for various values of γ. The

results of this experiment are summarized in Figure 5.1. The colored areas around

the curves in all the subsequent figures show the minimal and maximal values over

the runs.
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FIGURE 5.1: Empirical validation of Corollary 4.1.

1 As mentioned in Section 2.4.3, the utility-based bandit regret is indeed twice the Condorcet regret.
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We plotted two theoretical curves: one with a conservative Gmax = T/2, and a

riskier one with Gmax = T/4. This experiment illustrates the dual impact of the γ

parameter on the exploration/exploitation tradeoff: a low value reduces both the

exploration and the reactivity of the algorithm to unexpected feedbacks and a high

value tends to uniformize exploration while increasing reactivity. It also shows that

the theoretical optimal γ∗ we obtain with Equation (4.6) is a good guess even with a

conservative upper-bound for Gmax.

5.2 Interleave filtering experiments

For our experiments we have considered the following state of the art algorithms:

BTM by Yue and Joachims [2011] (section 2.4.3) with γ = 1.1 and δ = 1/T (explore-

then-exploit setting), Condorcet-SAVAGE by Urvoy et al. [2013a] (section 2.4.4) with

δ = 1/T , RUCB by Zoghi et al. [2014a] (section 2.4.5) with α = 0.51, and SPARRING

coupled with EXP3 by Ailon et al. [2014] (section 2.4.11). We also took the uniform

sampling strategy RANDOM as a baseline. We considered three versions of REX3

two non-anytime versions where the optimal γ∗ is computed beforehand according

to (4.6) with Gmax set respectively to T/2 and T/10 and one anytime version where

γ∗ is recomputed at each time step according to Eq. (4.6) [see Seldin et al., 2012, for

details about this form of “doubling trick”].

A point which makes the comparison difficult is that some algorithms are any-

time while others require the horizon as input. For anytime algorithms, namely

RANDOM, RUCB and REX3 with adaptive γ, we displayed the average over 100 runs

of the progressive accumulation of regret while for non-anytime algorithms, namely

BTM, CSAVAGE, SPARRING and other versions of REX3 we displayed the average

over 50 runs of the final cumulative regret for several fixed and known horizons.

This protocol is slightly favorable to non-anytime algorithms which benefit from

more information. However, for elimination algorithms like BTM and CSAVAGE the

difference between the anytime regret and the non-anytime regret is small. For ad-

versarial algorithms like SPARRING and REX3 the “doubling trick" can be applied

to make them anytime: the adaptive γ version of REX3 is an example of such a

fixed-to-anytime transformation.
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The results of these experiments are summarized in Figure 5.2 and 5.3. On regret

plots, both time and regret scales are logarithmic (
√
t hence appears as t/2).
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FIGURE 5.2: Regret and accuracy plots averaged over 100 runs (50
runs for fixed-horizon algorithms) respectively on ARXIV dataset (6

rankers) and LETOR NP2004 dataset (64 rankers).
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FIGURE 5.3: On the left: average regret and accuracy plots on
MSLR30K with navigational queries (K = 136 rankers). On the right:
same dataset, average regrets for a fixed T = 105 and K varying from

4 to 136.

As expected, the adversarial-setting algorithms SPARRING and REX3 follow an

O(
√
T ) regret curve while the stochastic-setting algorithms follow an O(lnT ) curve.

Among the adversarial-setting algorithms, REX3 is shown to outperform SPARRING

on all datasets. In the long run, adversarial-setting algorithms continue exploring
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and cannot compete in terms of regret against stochastic-setting algorithms, but the

accuracy curves show that the cost of this exploration is very small. Moreover, for

small horizons or high number of rankers, REX3 is extremely competitive against

other algorithms. This difference is clearly illustrated on the left-hand side of Fig-

ure 5.3 where we show the evolution of the expected cumulative regret at a fixed

time horizon (T = 105) according to the number of arms. To obtain this plot we

averaged the regret over 50 runs. For each K and each run we sampled uniformly

K dimensions of the original 136×136 MSLR30K navigational preference matrix.

Figure 5.4 gives results for smaller number of rankers on NP2004 dataset. We

give the anytime runs for BTM and SAVAGE too with a conservative δ = 10−8. Fig-

ure 5.5 gives results for the experiments on MSLR30K dataset. There is no Condorcet

winner on the left-hand-side informational queries matrix (we took a Copeland win-

ner as a placeholder but the regret is negative for some arms).

On Figure 5.6, we added an experiment we made with Sparring coupled with

UCB. We also considered two artificial matrices: SAVAGE and BVS. The 30×30 SAVAGE

matrix, defined by Pi,j = 1
2 + j/(2K) for i < j as described in Urvoy et al. [2013a].

The 20×20 BVS matrix is defined by: P1,j = 0.51 for any j > 1 and Pi,j = 1 for

any 1 < i < j. Its Condorcet winner has a low Borda score (9.69 against 18.49 for

the Borda winner) which makes it difficult for algorithms to find the real Condorcet

winner. These experiments results are summarized in Figure 5.7.

We conclude these experiments by a non-stationary utility-based dueling ban-

dit simulation where the expected reward gap ∆(t) between the best arm and the

others is set in order to deceive stochastic algorithms (see Figure 5.8). The rewards

are taken from Bernoulli distributions. The best arm has a time-dependent expected

reward equal to 1/2 + ∆(t) with ∆(t) =
√
K · log(t)/t. The others arms’ rewards

are stationary with a mean of 1/2. The gap function ∆(t) has been chosen to de-

ceive stochastic algorithms: O
(
K·log(T )

∆(T )

)
∼ O

(√
KT · log(T )

)
. To ease reading we

provide the same plot with logarithmic scale on the left and linear scale on the right.
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FIGURE 5.4: Average regret and accuracy plots on LETOR NP2004
with respectively 16, and 32 rankers.
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FIGURE 5.5: Expected regret and accuracy plots on MSLR30K with
respectively informational and perfect navigational queries (136

rankers).
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FIGURE 5.6: Average regret and accuracy plots respectively on LETOR
NP2004 (64 rankers) and MSLR30K navigational queries (136 rankers)

with Sparring coupled with a standard UCB MAB.
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FIGURE 5.7: Average regret and accuracy plots respectively on SAV-
AGE and BVS artificial matrices.
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FIGURE 5.8: An experiment on a synthetic utility-based 10-armed du-
eling bandits problem with non-stationary rewards.
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Chapter 6

Dueling Bandits as Partial

Monitoring games

In this chapter, we shall see how the Bernoulli dueling bandits can be formulated

as a partial monitoring game (detailed in Section 1.5). Since partial monitoring is

a generic way of expressing online learning problems with incomplete feedback,

formulating dueling bandits as a partial monitoring game opens a way for us to

place the dueling bandits in the hierarchy of other similar learning problems.

In Section 6.1, we formalize the Bernoulli utility-based dueling bandits as a par-

tial monitoring game. In Section 6.2, we place the dueling bandits in the partial

monitoring hierarchy provided in Section 1.5.2. In Section 6.3, we investigate if the

general partial monitoring algorithms can be used for the dueling bandits.

6.1 Formalization of dueling bandits as Partial Monitoring

game

To recapitulate, a partial monitoring game (PM) is defined by a tuple 〈N ,M ,Σ,G,H〉

whereN ,M , Σ, G andH are the action set, the outcome set, the feedback alphabet,

the reward function and the feedback function respectively. To each action I ∈ N

and outcome J ∈M , the reward function G associates a real-valued gain G(I, J) and

the feedback functionH associates a feedback symbolH(I, J) ∈ Σ.

An action in the utility-based dueling bandits model consists of selecting a pair

(a, b) of arms. However, symmetric actions like (a, b) and (b, a) lead to the same

gains and provide equally informative feedback. Hence the action set for the learner



70 Chapter 6. Dueling Bandits as Partial Monitoring games

can be restricted to N = {(a, b) : 1 ≤ a, b ≤ K, a ≤ b}. The outcome set consists of

environment outcomes which are arm reward vectorsmwherema is the reward for

arm a. The feedback alphabet Σ = {�, �,�} where �, � and � indicate loss, tie and

win for the first arm in the duo of arms selected. When the environment selects an

outcomem ∈M and the learner selects a duel/action (a, b) ∈N , the instantaneous

gain G((a, b),m) and feedbackH((a, b),m) are as follows:

G((a, b),m) =
ma +mb

2
H((a, b),m) =





� ifma <mb (loss)

� ifma = mb (tie)

� ifma >mb (win)

To illustrate this formalism, we encode a 4-armed binary-gain dueling bandit

problem as a PM problem in Figures 6.1 and 6.2. In the provided figures, the first

element of every column is of the form m1m2m3m4 where ma is the gain for ith

arm. The first element of every row is of the form d1d2 where d1 is the first arm

being picked and d2 being the second. Figure 6.3 shows the signal matrix for action

(12) i.e. when arms 1 and 2 are picked. Recall from definition 1.5 that, the signal

matrix for an action is the incidence matrix of symbols and outcomes.

G =

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

12 0 0 0 0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1 1

13 0 0 1
2

1
2 0 0 1

2
1
2

1
2

1
2 1 1 1

2
1
2 1 1

14 0 1
2 0 1

2 0 1
2 0 1

2
1
2 1 1

2 1 1
2 1 1

2 1

22 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

23 0 0 1
2

1
2

1
2

1
2 1 1 0 0 1

2
1
2

1
2

1
2 1 1

24 0 1
2 0 1

2
1
2 1 1

2 1 0 1
2 0 1

2
1
2 1 1

2 1

33 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

34 0 1
2

1
2 1 0 1

2
1
2 1 0 1

2
1
2 1 0 1

2
1
2 1

44 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

FIGURE 6.1: Gain matrix G for a 4-armed binary dueling bandits re-
sulting in 10 non-duplicate actions and 16 possible outcomes.

As shown above, the formulation of a K-armed Bernoulli dueling bandit prob-

lem as a partial monitoring game requires matrices of dimension
(
K
2

)
× 2K for gain

matrix and feedback matrix. Even for moderate values of K, this requirement is
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H =

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

11 � � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � � �
22 � � � � � � � � � � � � � � � �
23 � � � � � � � � � � � � � � � �
24 � � � � � � � � � � � � � � � �
33 � � � � � � � � � � � � � � � �
34 � � � � � � � � � � � � � � � �
44 � � � � � � � � � � � � � � � �

FIGURE 6.2: Feedback matrixH for the same problem as in Figure 6.1.

S(12) =

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

� 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

� 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

� 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

FIGURE 6.3: Signal matrix for action (12) for the same problem as in
Figure 6.1.

impractical. In the next section, we see how the dueling bandits fit into the partial

monitoring hieracrhy.

6.2 Dueling bandits in the partial monitoring hierarchy

This section examines the place of the dueling bandit problem in the hierarchy of

partial monitoring problems described earlier. Note that the existence of the REX3

algorithm (Section 4.1) with a Θ̃
(√

KT
)

regret guarantee is enough to state that

dueling bandit is an easy game according to the hierarchy described in Theorem 1.1,

but our aim here is to retrieve this result from the PM machinery.

Theorem 6.1 (Duelings bandits: locally observable). In a binary utility-based dueling

bandit problem with more than two arms, all the pairs of actions are locally observable.

Proof. Consider a dueling bandit problem as defined above with binary gains and

K > 2 arms. The signal matrix of any action (a, b) ∈N2 is defined as follows:

S(a,b)(�,m) = 1(ma<mb) S(a,b)(�,m) = 1(ma=mb) S(a,b)(�,m) = 1(ma>mb)



72 Chapter 6. Dueling Bandits as Partial Monitoring games

Recall that, gain vector gi denotes the column vector consisting of ith row in G. In

the following, we show that for any pair of actions (a, b) and (a′, b′), g(a′,b′) − g(a′,b′)

is locally observable. For the sake of readability, Let us consider S�, S� and S� to

be the column vectors containing the rows pertaining to the symbols �, � and � of

the signal matrix S respectively. We consider the following two cases for the pair of

actions which together cover all the possibilities:

• A pair of actions that share at-least one common arm:

1. Actions (a, c) and (c, b). For any binary gain outcomem, we have :

g(a,c) − g(c,b) =

(
ma +mk

2
− mk +mb

2

)

m∈M

= 0.5 (ma −mb)m∈M = 0.5
[
(ma −mb)(ma −mb)

2
]
m∈M (binary gains)

= 0.5

[
(ma −mb + 1)

2
(ma −mb)

2 − (mb −ma + 1)

2
(ma −mb)

2

]

m∈M

= 0.5
(
1(ma>mb) − 1(mb>ma)

)
m∈M = 0.5

(
S�(a,b) − S�(a,b)

)
(6.1)

So, g(a,c) − g(c,b) falls in the row space of the signal matrix of the action

(a, b) and hence in the row space of the signal matrix of the neighborhood

action set. (refer definition 1.6)

2. Actions (a, c) and (b, c). Similarly, g(a,c) − g(b,c) = 0.5S�(a,b) − 0.5S�(a,b).

• No common arm (a 6= a′ 6= b 6= b′): In this case,

g(a,b) − g(a′,b′) = g(a,b) − g(a,b′) + g(a,b′) − g(a′,b′)

= 0.5
(
S�(b,b′) − S�(b,b′) + S�(a,a′) − S�(a,a′)

)
Using equation (6.1)

Hence, for any pair of actions (a, b) and (a′, b′), g(a,b)−g(a′,b′) falls in the row space of

the signal matrix of the neighborhood action set i.e. g(a,b) − g(a′,b′) ∈ ImSᵀ((a,b)(a′,b′))

and therefore it is locally observable. So, by extension, the binary dueling bandit

problem is locally observable and hence we arrive at the following corollary.

Corollary 6.1. According to the hierarchy described in theorem 1.1, the binary dueling

bandit problem is easy and its regret is Θ̃(
√
T ).
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6.3 Partial monitoring algorithms and their use for dueling

bandits

FEEDEXP3 by Piccolboni and Schindelhauer [2001] was the first algorithm for finite

partial monitoring games. For its application, there is an important pre-condition –

existence of a matrix B such that BH = G. We prove by contradiction that such

a matrix B doesn’t exist for the dueling bandit problem. Let us assume B exists.

Therefore, for any action (a, b) ∈N and any outcome vectorm ∈M ,

G((a, b),m) =

K∑

i′,j′=1

B((a,b)(a′,b′)) · H((a′,b′)(m))

Consider m = 0 . . . 0, i.e. the gain of every arm is 0. In this case, the gain of any

action (a, b) is 0 and the feedback for every action is �, therefore

0 =

K∑

i′,j′=1

B((a,b)(a′,b′)) · � (6.2)

Now considerm = 1 . . . 1, i.e. the gain of every arm is 1. In this case, the gain of any

action (a, b) is 1 and feedback of every action is �, therefore

1 =
K∑

i′,j′=1

B((a,b)(a′,b′)) · � (6.3)

Eq.(1) and eq.(2) reach a contradiction, therefore our assumption that B exists is in-

correct. Fortunately, the authors also provide a general algorithm which performs

several matrices transformations to sidestep this pre-condition. These transforma-

tions are studied thoroughly in [Bartók, 2012].

BALATON by Bartók et al. [2011], CBP-vanilla and CBP by Bartók [2012] belong

to the family of algorithms for the locally observable PM games as does GLOBAL-

EXP3 by Bartók [2013]. Although, for GLOBAL-EXP3, its regret bound of Õ(
√
N ′T )

does not directly depend on the number of actions, but rather on the structure of

games as N ′ is the size of the largest point-local game. We can however provide a

counter-example for utility-based dueling bandits where N ′ ≈ K2.

We use the notations from Bartók [2013]. Consider a p in the probability simplex
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TABLE 6.1: Summary of partial monitoring algorithms

Algorithm Setting Optimality Regret
FEEDEXP3 1 Adversarial Not in T or N Õ(T 2/3K)

BALATON 2 Stochastic Not in T or N Õ(K
√
T )

CBP 3 Stochastic in T , not in N Õ(K2logT )

GLOBAL-EXP3 4 Adversarial in T , not in N Õ(K
√
T )

SAVAGE 5 Stochastic in T , not in N O(K2logT )

NEIGHBORHOOD WATCH 6 Adversarial in T , not in N Õ(K
√
T )

REX3 7 Adversarial in T and N Õ(
√
KT )

∆|M | where all the arms have maximal gains. For this p, all the actions are optimal

therefore this point belongs to all the cells in the cell-decomposition. Hence, accord-

ing to definition 6 in Bartók [2013], there exists a point-local game consisting of all

the K(K+ 1)/2 non-duplicate actions. Therefore the upper bound of GLOBALEXP3

translates to Õ(K
√
T ) for utility-based dueling bandits.

The table 6.1 summarizes the salient features of these PM algorithms. We can

clearly see that none of them, except REX3 is optimal with respect to the number of

actions N . Please note that for the dueling bandits problem, N ≈K2.

This brings us to the end of this chapter. Next in Appendix A, we shall see the

detailed proof of Theorem 4.1.

1(Piccolboni and Schindelhauer [2001])
2(Bartók et al. [2011])
3(Bartók [2012])
4(Bartók [2013])
5(Urvoy et al. [2013b])
6(Foster and Rakhlin [2011])
7(Gajane et al. [2015])
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Appendix A

Detailed Proof of Theorem 4.1

For better readabilty, we simply write a, b instead of at, bt when referring of the arms

chosen by the algorithm. We also frequently drop the time indices for p.(t) and x.(t).

Proof. Let Wt = w1(t) + w2(t) + · · ·+ wK(t)

Wt+1

Wt
=

K∑

i=1

wi(t+ 1)

Wt
=

K∑

i=1

wi(t)

Wt
e(γ/K)ĉi(t)

By substituting the values of wi(t)Wt
, we get:

Wt+1

Wt
=

K∑

i=1

pi(t)− γ/K
1− γ e(γ/K)ĉi(t)

Using the inequality ex ≤ 1 + x+ (e− 2)x2 for x ≤ 1, we get:

Wt+1

Wt
≤

K∑

i=1

pi(t)− γ/K
1− γ (1 + (γ/K)ĉi(t)) +

K∑

i=1

pi(t)− γ/K
1− γ

(
(e− 2)(γ2/K2)ĉi(t)

2
)

≤
K∑

i=1

pi(t)− γ/K
1− γ

︸ ︷︷ ︸
=1

+
γ/K

1− γ




K∑

i=1

pi(t)ĉi(t)

︸ ︷︷ ︸
=0 see (A.2)

− γ
K

K∑

i=1

ĉi(t)




+
(e− 2)(γ2/K2)

1− γ
K∑

i=1

pi(t)ĉi(t)
2

≤ 1 +
γ/K

1− γ

(
0− γ

K

K∑

i=1

ĉi(t)

)
+

(e− 2)(γ2/K2)

1− γ
K∑

i=1

pi(t)ĉi(t)
2

≤ 1− γ2/K

1− γ




1

K

K∑

i=1

ĉi(t)

︸ ︷︷ ︸
=−M1




+
(e− 2)(γ2/K)

1− γ
1

K

K∑

i=1

pi(t)ĉi(t)
2

︸ ︷︷ ︸
=M2

(A.1)
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K∑

i=1

pi(t)ĉi(t) =
K∑

i=1

pi(t)

(
1(i=a)

xa − xb
2pa

)
+

K∑

i=1

pi(t)

(
1(i=b)

xb − xa
2pb

)

=
xa − xb

2
+
xb − xa

2
= 0 (A.2)

From (A.1) and (A.2), we obtain:

Wt+1

Wt
≤ 1 +

γ2/K

1− γ M1 +
(e− 2)(γ2/K)

1− γ M2

Taking logarithms and using the inequality 1 + x ≤ ex

ln
Wt+1

Wt
≤ γ2/K

1− γ M1 +
(e− 2)(γ2/K)

1− γ M2

Summing over t, we get:

ln
WT+1

W1
≤ γ2/K

1− γ M1 +
(e− 2)(γ2/K)

1− γ M2 (A.3)

For any arm j we have:

T∑

t=1

γ

K
ĉj(t)− ln(K) ≤ ln

WT+1

W1
(A.4)

The proof of the above inequality is given in appendix A.1. By combining (A.3) and

(A.4) , we get:

T∑

t=1

γ

K
ĉj(t)− ln(K) ≤ γ2/K

1− γ M1 +
(e− 2)γ2/K

1− γ M2 (A.5)

Taking the expectation over the algorithm’s randomization, we obtain:

T∑

t=1

γ

K
E∼pĉj(t)︸ ︷︷ ︸
Lemma 4.1

− ln(K) ≤ γ2/K

1− γ
T∑

i=t

E∼pM1︸ ︷︷ ︸
see (A.7)

+
(e− 2)(γ2/K)

1− γ
T∑

i=t

E∼pM2︸ ︷︷ ︸
see (A.8)

From Lemma 4.1 which proof is detailed in appendix A.2, we have:

E∼pĉj(t) = xj − E∼p(xa) (A.6)
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By averaging (A.6) over the arms, we obtain:

E∼p(t)M1 = E∼p

(
− 1

K

K∑

i=1

ĉi(t)

)
= − 1

K

K∑

i=1

E∼pĉi(t) = E(xa)−
1

K

K∑

i=1

xi (A.7)

The following result is detailled in appendix A.3:

E∼p(t)M2 = E∼p(t)

(
(pa + pb)(xa − xb)2

4Kpapb

)
=

1

2
E(x2

a)− E(xa)
1

K

K∑

i=1

xi +
1

2K

K∑

i=1

x2
i

≤ 1

2
E(xa)− E(xa)

1

K

K∑

i=1

xi +
1

2K

K∑

i=1

xi as ∀i, xi ∈ [0, 1] (A.8)

From Lemma 4.1, (A.7), and (A.8), we get for any j:

γ

K

(
T∑

t=1

xj −
T∑

t=1

E(xa)

)
− ln(K) ≤ γ2/K

1− γ
T∑

i=t

(
E(xa)−

1

K

K∑

i=1

xi

)

+
(e−2)γ2/K

2(1− γ)

T∑

i=t

(
E(x2

a)− 2E(xa)
1

K

K∑

i=1

xi +
1

K

K∑

i=1

x2
i

)
(A.9)

By definition, Gmax = maxj
∑T

t=1 xj , EGalg =
∑T

t=1E∼p(t)(xa), and EGunif =
∑T

t=1
1
K

∑K
i=1 xi. We can hence rewrite Equation (A.9) into:

Gmax − EGalg −
K lnK

γ
≤ γ

1− γ (EGalg − EGunif )

+
(e−2)γ

2(1− γ)

(
EGalg + EGunif − 2

T∑

t=1

K∑

i=1

xi
K
E(xa)

)

Let ε be such that ∀i, t ε ≤ xi(t) then:

Gmax − EGalg ≤
K lnK

γ
+

eγ

2(1− γ)
EGalg −

(4−e+ (e−2)ε)γ

2(1− γ)
EGunif

Assuming γ ≤ 1
2 :

Gmax − EGalg ≤
K lnK

γ
+ γ [eEGalg − (4−e+ (e−2)ε)EGunif ]
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A.1 Proof of eq. (A.4)

For any j we have:

WT+1 =
K∑

i=1

wi(T + 1) ≥ wj(T + 1).

Hence:

WT+1 ≥ wj(T )e(γ/K)(ĉj(T ))

= wj(T − 1)e(γ/K)(ĉj(T−1))e(γ/K)(ĉj(T ))

= wj(1)
T∏

t=1

e(γ/K)(ĉj(t))

and

lnWT+1 ≥ lnwj(1) +

T∑

t=1

γ

K
ĉj(t)

Since wj(1) = 1 for any j, it turns out that:
∑T

t=1
γ
K ĉj(t)− ln(K) ≤ ln(

WT+1

W1
)

A.2 Proof of Lemma 4.1

ĉi(t) = 1(i=at)
ψ(xat − xbt)

2pat(t)
+ 1(i=bt)

ψ(xbt − xat)
2pbt(t)

E(a,b)∼p(t)ĉi(t) =

K∑

j=1

K∑

k=1

pj(t)pk(t)

(
1(i=j)

ψ(xj − xk)
2pj

+ 1i=k)
ψ(xk − xj)

2pk

)

=
K∑

j=1

K∑

k=1

pjpk1(i=j)
ψ(xj − xk)

2pj
+

K∑

j=1

K∑

k=1

pjpk1(i=k)
ψ(xk − xj)

2pk

=
1

2

K∑

k=1

pkψ(xi − xk) +
1

2

K∑

j=1

pjψ(xi − xj)

= Ea∼pψ(xi − xa)

If ψ is identity, it simplifies into:

E(a,b)∼p(t)ĉi(t) = xi − Ea∼p(t)xa



A.3. Proof of eq. (4.5) and (A.8) 79

A.3 Proof of eq. (4.5) and (A.8)

M2 =
1

K

K∑

i=1

pi(t)ĉi(t)
2

=
1

K

K∑

i=1

pi

(
1(i=a)

xa − xb
2pa

+ 1(i=b)
xb − xa

2pb

)2

=
1

K

K∑

i=1

(
pi1(i=a)

(xa − xb)2

4p2
a

+ pi(t)1(i=b)
(xb − xa)2

4p2
b

+ 2pi1(i=a)1(i=b)
xa − xb

2pa

xb − xa
2pb︸ ︷︷ ︸

= 0

)

=

K∑

i=1

pi1(i=a)
(xa − xb)2

4Kp2
a

+

K∑

i=1

pi1(i=b)
(xb − xa)2

4Kp2
b

=
(xa − xb)2

4Kpa
+

(xb − xa)2

4Kpb

=
(pa + pb)(xa − xb)2

4Kpapb

E(a,b)∼p(t)M2 = E(a,b)∼p(t)

(
(pa + pb)(xa − xb)2

4Kpapb

)

=
K∑

i=1

K∑

j=1

pipj
(pi + pj)(xi − xj)2

4Kpipj

=
1

4K

K∑

i=1

K∑

j=1

(pi + pj)(xi − xj)2

=
1

4K

K∑

i=1

K∑

j=1

(pi + pj)(x
2
i − 2xixj + x2

j )

=
1

4K




K∑

i=1

K∑

j=1

pix
2
i − 2

K∑

i=1

K∑

j=1

pixixj +
K∑

i=1

K∑

j=1

pix
2
j

+

K∑

i=1

K∑

j=1

pjx
2
i − 2

K∑

i=1

K∑

j=1

pjxixj +
K∑

i=1

K∑

j=1

pjx
2
j



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=
1

4K

(
2KE(x2

a)− 4E(xa)
K∑

i=1

xi + 2
K∑

i=1

x2
i

)

=
1

2

(
Ea∼p(t)(x

2
a)− 2Ea∼p(t)(xa)

1

K

K∑

i=1

xi +
1

K

K∑

i=1

x2
i

)

For any x ∈ [0, 1], x2 < x, hence:

E(a,b)∼p(t)M2 ≤
1

2

(
Ea∼p(t)(xa)− 2Ea∼p(t)(xa)

1

K

K∑

i=1

xi +
1

K

K∑

i=1

xi

)
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Part III

Corrupt Bandits





83

Chapter 7

The Corrupt Bandits problem

In the previous part, we considered a form of unconventional feedback called rel-

ative feedback in which the learner selects two arms and receives the preference of

one over the other. In this chapter, we consider another form of unconventional

feedback. In this setting, the learner selects a single arm at each time period akin to

the classical MAB problem. However the learner does not see the reward of the cho-

sen arm but receives a corrupt feedback derived from the corresponding reward. In

this chapter, we introduce the MAB problem with corrupted feedback or the corrupt

bandit problem.

In Section 7.1, we provide the motivation in the form of practical applications for

the MAB problem with corrupted feedback. We formally define the problem and its

different variations in Section 7.2. We enlist, in Section 7.3, our contributions to the

problem. In Section 7.4, we provide an overview of the prvious related work.

7.1 Motivation

Consider an organization which has a pool of advertisements to be displayed on

a website. Since the space available to display them is limited, only a few of the

advertisements can be used at any time. Naturally the concerned organization wants

to select the set which perform the best. One of the most important indicators about

the performance of an online advertisement is the number of users which clicked on

it over a given period of time.

To formulate this in terms of a MAB problem, we can assume individual adver-

tisements to be the arms. When an arm is pulled, the corresponding advertisement
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is chosen to be displayed for a scheduled period of time. If a user clicks on the

advertisement, it is considered a positive reward and no click constitutes a nega-

tive reward. However, the feedback is usually given only for positive rewards since

propagating feedback for negative rewards as well is costly in terms of network load.

The reception of a click feedback can be safely interpreted as a positive reward, but

the absence of such a click (timeout) might either be a consequence of a negative

reward (the user did not click on the advertisement) or the consequence of a bug or

a packet loss.

Let us now briefly examine the task of adaptive routing. In this task, the learner

has to select a routing path in a network with unknown delays varying over time.

If the intended message is correctly transmitted to the destination along the channel

selected by the learner, it constitutes a positive reward for the learner. If the se-

lected channel is impassable, the intended message can not arrive at the destination

and this event corresponds to a negative reward for the learner. In the former case,

positive feedback is sent to the learner. Hence, positive feedback means the corre-

sponding path is usable but no feedback could either mean that the corresponding

channel is unusable or the feedback was dropped due to extraneous issues. If we

were to model this scenario as a MAB problem, we would run into the same diffi-

culty mentioned in the previous paragraph; namely, the feedback is not equal to the

corresponding reward.

Consider the task of online recommendation. The goal of an online recommen-

dation system is to provide recommendations to the users for items that are likely

to interest them. For instance, movie streaming websites recommend a number of

movies to their users. These recommendations are based on the ratings given for

the items by the users, user demographics, items characteristics etc. For the sake of

simplicity, let us assume only the binary ratings given by the user are employed to

determine the items to be recommended to that user. Let us attempt to formulate

this as a MAB problem. The items are to be considered as the arms of the bandit

problem. When the learner picks an arm, the corresponding item is recommended

to the user. If the user likes the recommended item, it constitutes a positive reward
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for the learner and a negative reward corresponds to the case where user dislikes

the recommended item. The user is then expected to give true feedback equivalent

to the reward i.e. positive feedback for positive reward and vice versa. However the

users might be hesitant to provide true feedback due to privacy concerns. One of

the ways that the user privacy is breached is when the recommender systems share

user data with third parties (Bennett and Lanning [2007]). Therefore some users are

willing to surrender the benefits of useful recommendations in order to protect their

privacy (Culnan [2000]). This phenomenon of personalization to privacy trade-off is

described in Awad and Krishnan [2006], Chellappa and Sin [2005].

In the related task of survey systems, individuals are given a questionnaire and

they are expected to provide honest responses to them. However, Warner [1965] note

that some respondents attempt to evade certain questions for the reasons of modesty,

fear of being thought bigoted, or merely a reluctance to confide secrets to strangers.

These non-cooperative respondents either refuse outright to be surveyed or consent

to be surveyed but purposefully provide wrong answers. To elicit responses from

such individuals Warner [1965] propose the randomized response method (RR) as a

survey technique to reduce potential bias due to non-response and social desirabil-

ity when asking questions about sensitive behaviors and beliefs. This method asks

respondents to employ randomization say with a flip of coin having bias p, the out-

come of which is not available to the interviewer. Before responding to an question,

the respondent flips the coin. If it is heads, the respondent answers truthfully oth-

erwise inaccurately. By introducing random noise, the method conceals individual

responses and protects respondent privacy. The randomized response method can

be used to protect user privacy in online recommendation as well. If recommen-

dation systems that allow users to employ randomized response method are to be

modeled as a MAB problem, we again face the oft-mentioned complication in this

section: untrustworthy feedback.
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The common theme among all of the above cases is that the feedback the learner

receives is not equal to the reward of the chosen arm but at the same time the feed-

back and the corresponding reward are nonetheless related. This presents a hin-

drance if we were to model these applications as a classical MAB problem as it

assumes that the feedback is equal to the reward i.e. the learner sees the reward

of the selected arm. This motivates us to devise a variation of the MAB problem

in which the learner is able to learn from the feedback derived from, but not neces-

sarily equal to the corresponding reward. We call this model as the MAB problem

with corrupted feedback or corrupt bandits and it is formally presented in the next

section.

7.2 Formalization

A corrupt bandit problem ν is formally characterized by a set of armsA = {1, . . . ,K}

on which are indexed a list of known corruption functions {ga}a∈A. At each time pe-

riod t, every arm a ∈ A is associated with a reward xa(t) and a feedback ya(t). The

reward vector xt consists of {x1(t), . . . , xK(t)} and the feedback vector yt consists

of {y1(t), . . . , yK(t)}. If the learner pulls the arm a at time t, it receives the corre-

sponding (hidden) reward xa(t) and observes the feedback ya(t). We assume that,

for each arm a ∈ A, there exists a loose link between the reward and the feedback

through the corruption function ga. A corrupt bandit problem can also be expressed

as an instance of the partial monitoring problem introduced in Section 1.5 and we

discuss this further is Chapter 12. Like the classical MAB problem (Section 1.2.1)

and the dueling bandit problem (Section 2.2), the corrupt bandit problem too can be

formalized in two different settings.

7.2.1 Stochastic setting

Similar to the corresponding stochastic setting in other variations of the MAB prob-

lem, the defining feature of this setting is the stationarity of the distributions associ-

ated with the arms. A stochastic corrupt bandit problem ν is characterized by a set



7.2. Formalization 87

of arms A = {1, . . . ,K} on which are indexed a list of unknown sub-Gaussian re-

ward distributions {νa}a∈A, a list of unknown sub-Gaussian feedback distributions

{ςa}a∈A, and a list of known mean-corruption functions {ga}a∈A.

If the learner pulls an arm a ∈ A at time t, it receives a reward Rt = xa(t) drawn

from the distribution νa with mean µνa and observes a feedback Ft = ya(t) drawn

from the distribution ςa with mean λνa . We assume that a known mean-corruption

function (or simply, corruption function) ga maps the mean of the reward distribu-

tion to the mean of the feedback distribution :

ga(µ
ν
a ) = λνa , ∀a ∈ A (7.1)

Stochastic corrupt bandit problem

The corruption functions g1, . . . , gK are revealed to the learner.

At t← 1, . . . , T

1. The environment draws a reward vector xt according to ν1 × · · · × νK
with means µ1, . . . , µk respectively.

2. The learner selects an arm at ∈ A := {1, . . . ,K}.

3. The learner receives the reward xat(t).

4. The learner observes the feedback yat(t) drawn from a Bernoulli distri-

bution with mean gat(µat).

Note that these ga functions may be completely different from one arm to an-

other. For Bernoulli distributions, µa and λa are in [0, 1] for all a ∈ A and we assume

all the corruption functions {ga}a∈A to be continuous at-least in this interval.

Another way to define the link between the reward and the feedback is to pro-

vide a corruption scheme operator g̃a which maps the reward outcomes into feedback

distributions. If the mean is a sufficient statistic of the reward distribution, then the

learner can build its own corruption function from the corruption scheme and the

two definitions are equivalent. This equivalence is true for Bernoulli distributions

where most of our results apply.
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7.2.2 Adversarial setting

In the adversarial setting the reward and the feedback are not assumed to be drawn

from a distribution, unlike the stochastic setting. At each time period, an adversary

assigns a reward value and a feedback value to every arm. Learning any informa-

tion about the hidden reward from the observed feedback is not achievable if the

adversary is not placed under any constraint with respect to its ability to generate

the feedbacks. Hence the adversary is forced to comply by some constraints. In a

similar setting proposed by Feige et al. [2015], the adversary is only allowed to cor-

rupt to a certain number of values. In our setting, the constraint is on the average

reward and the average feedback. Let x̂a(t) and and ŷa(t) denote the average re-

ward and the average feedback for arm a till time t. The adversary is then restricted

to set the reward and feedback values for any arm a such that the respective average

feedback is derivable from the average reward with the use of a known corruption

function. Overloading the symbol g, this restriction can be expressed as1

ŷa(T )
con
= ga(x̂a(T )) ∀a ∈ A

Adversarial corrupt bandit problem

The corruption constraints g1, . . . , gK are revealed to the learner.

The adversary draws reward vectors xt ∈ [0, 1]K for t← 1, . . . , T .

At t← 1, . . . , T

1. The learner selects an arm at ∈ A := {1, . . . ,K}.

2. The learner receives the reward xat(t).

3. The learner observes the feedback yat(t) set by the adversary constraint

to the condition that ŷa(T )
con
= ga(x̂a(T ))

1con= is used to denote an equality constraint.
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7.2.3 Randomized response as a corrupt bandit problem

The randomized response method (Warner [1965]) was briefly described in the sec-

tion 7.1. It can also be used to corrupt the rewards in a MAB problem. Here we

illustrate how it can be formulated as a corrupt bandit problem.

Consider a bandit problem with binary rewards and feedbacks. For each arm a,

every possible reward is corrupted to one of the possible values of feedback with a

certain probability given by

p00(a) := the probability that feedback is 0 given the reward for arm a is 0

p01(a) := the probability that feedback is 0 given the reward for arm a is 1

p10(a) := the probability that feedback is 1 given the reward for arm a is 0

p11(a) := the probability that feedback is 1 given the reward for arm a is 1

Hence the corruption function is ga : λa := p10(a) + (p11(a)− p10(aa))µa. The corre-

sponding corruption scheme g̃a can be encoded by the matrix:

Ma :=




0 1

0 p00(a) p01(a)

1 p10(a) p11(a)




The matrix Ma contains elements denoting the probability with which the learner

sees, for arm a, the feedback given by the row index on receiving the reward given

by the column index i.e.

Ma(x, y) := P(feedback for arm a = x | reward for arm a = y)

Having formalized the problem in this section, we briefly enlist our contributions

to the literature.
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7.3 Our contributions

We introduce the setting of corrupt bandits to the MAB literature. We propose al-

gorithms for the stochastic corrupt bandit problem 2 for exploration-exploitation as

well as best arm identification. We provide the upper bounds on the regret of the in-

troduced algorithms for exploration-exploitation and the upper bounds on the sam-

ple complexity for the introduced algorithms for best arm identification. We also

provide the lower bounds to verify how our algorithms fare as compared to the best

achievable performance given by the respective lower bounds. Furthermore, we

describe how corrupt bandits can be used to enforce differential privacy. Our exper-

iments show the performance of the proposed algorithms on simulated examples.

We also formulate Bernoulli corrupt bandits as an instance of the partial monitoring

problem.

Before studying our contributions in detail, we shall first take a look at the related

work for this problem, in the next section.

7.4 Related work

To the best of our knowledge, the exact setting of corrupt bandits has not been stud-

ied previously, however it can be considered as a form of learning with incomplete

feedback, therefore we shall take a look at the relevant previous work in this broad

topic. Feedback could be considered as incomplete because:

I. it is provided only for a subset of instances or

II. it is provided erroneously for some/all instances

Firstly, we study scenarios in which feedback is provided only for a subset of in-

stances belonging to particular class.

7.4.1 Positive and unlabeled learning

One of the tasks in text learning applications is to classify user-generated text ac-

cording to the interest. In this task, positive examples can be found and unlabeled

2Henceforth, we mention the stochastic corrupt bandit problem simply as the corrupt bandit prob-
lem.
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examples are abundant. In the classification literature, such an asymmetric feedback is

called Positive and Unlabeled (PUN) feedback.

Denis [1998] introduce the Probably Approximately Correct (PAC) learning model

from positive and unlabeled examples. They show that the decision functions are

learnable in this model which contain ostensibly less information than the model

with positive and negative examples as well. Denis et al. [2005] design a decision

tree induction algorithm which uses only positive and unlabeled examples. Lee

and Liu [2003a] transform the problem of learning from only positive and unlabeled

examples into a problem of learning with noise by labeling all unlabeled examples

as negative. They obtain a linear function to learn from these noisy examples while

performing weighted logical regression to handle noise rates greater than half.

Zhang and Zuo [2008] present an extensive survey on the classification problem

with positive and unlabeled feedback. They divide the solution methods into three

families described below:

• The first family of methods employs two steps. In the first step, they extract

the negative examples from unlabeled data. In the second step, they iteratively

apply a classification algorithm to build a set of classifiers and then they select

a suitable classifier from that set. Liu et al. [2003], Liu et al. [2002], Yu et al.

[2002] and Li and Liu [2003] give examples of the first family of methods.

• The second family of methods estimates statistical queries over positive and

unlabeled examples. The methods provided by Denis et al. [2002] and Denis

et al. [2003] belong to the second family.

• The third family of methods reduces the problem to learning with high one-

sided noise by treating the unlabeled set as noisy negative examples. Some of

these methods are given in Lee and Liu [2003b] and Zhang [2005].

Next we study scenarios in which erroneous feedback is provided for a subset

of instances i.e. the feedback is noisy. Frénay and Verleysen [2014] note that, in

the literature, two types of noise are distinguished: feature noise and label noise.
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Feature noise affects the observed values of the feature and label noise affects the

observed label of an instance. Firstly we study the previous work done in learning

with feature noise.

7.4.2 Learning in the presence of feature noise

Globerson and Roweis [2006] consider the classification problem in which some of

the features present during the training phase are potentially deleted by an adver-

sary later. The adversary is permitted to delete only up-to a fixed number features

at any given time. The authors formulate this classification problem as a two-player

game where the learner attempts to determine the parameters to use for a robust

classifier and the adversary tries to delete such features that their deletion causes

most harm to the current classifier built by the learner. The authors construct a clas-

sifier which is optimal in the worst case deletion scenario.

Dekel et al. [2010] consider a binary classification problem, features of which,

available during the training phase, are either deleted or corrupted by an adversary

during the classification phase. As we noted in Section 7.2.1, the authors too con-

cede that without limiting the adversary’s ability to remove and modify features,

any classifier obviously stands no chance of making correct predictions. They over-

come this predicament by assigning each feature with an a-priori importance value

and assuming that the adversary may remove or corrupt any feature subset whose

total value is upper-bounded by a predefined constant. For this setting they devise

two approaches given below:

• In the first approach, they formulate the classification problem as a linear pro-

gram. However the number of constraints in this linear program grows ex-

ponentially with the features in the classification problem. They describe a

reduction to polynomial-size linear program, which under certain conditions,

is an exact equivalent of the original exponential-size linear program. Even

when these conditions are not met, the polynomial size linear program is a

close approximation of the original linear program. The authors provide an

upper bound on the approximation error. They build an efficient classifier
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on the polynomial-sized linear program and prove a statistical generalization

bound of this approach.

• In the second approach, the authors define an online learning problem in which

an adversary removes features from every instance presented to the learner.

This online learning problem resembles the original statistical learning prob-

lem. A modified version of the Perceptron algorithm (Rosenblatt [1958]) is

used to solve the online learning problem. Then this online algorithm is con-

verted into a statistical learning algorithm using an online-to-batch conversion

technique.

Having overviewed the relevant work in the topic of feature noise, let us turn our

attention to the second type of noise – label noise.

7.4.3 Learning in the presence of label noise

Zhu and Wu [2003] and Sáez et al. [2014] show that label noise is potentially more

harmful than feature noise. This is due to the fact that there are many features and

the importance of each feature for learning is different whereas there is only one la-

bel per instance and it has a large impact on learning. The sources of label noise can

be human errors, subjective labeling and problems in data encoding and communi-

cation.

In the survey on label noise, Frénay and Verleysen [2014] propose the following

taxonomy for label noise:

• Noisy completely at random (NCAR): when the noise is independent of the

labels.

• Noisy at random (NAR): when the noise pattern is dependent on the labels.

• Noisy not at random (NNAR): when the feedback corruption is set by an ad-

versary.

Angluin and Laird [1988] consider the classification problem where NCAR errors

are introduced in the data during the learning phase. The instances are assumed to
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be generated by a sampling procedure that first produces a correctly classified in-

stance; subsequently the instance is subjected to a noise process which introduces

random errors before being presented to the learning algorithm. The noise affects

each instance independently. The authors introduce a simple model of noise called

the Classification Noise Process in which each individual instance is reported with

incorrect class to the learning algorithm with certain probability. The goal of the

learning algorithm is to produce a probably approximately correct classification. To

this end, the authors prove that the strategy of selecting the most consistent rule for

the input examples is sufficient and usually with feasibly small sample complexity

if the errors are only present in less than half the examples on average. The authors

also provide a general upper bound on the size of a sample sufficient for learning

in finite domains in the presence of classification noise, and evidence that computa-

tionally feasible algorithms exist for learning in the presence of classification noise

in non-trivial domains.

Natarajan et al. [2013] consider the problem of classification with NAR errors.

They assume that the data consists of iid samples from a clean distribution but the

feedback given to the learner is drawn from a noisy version of the distribution and

the noise rates are dependent on the class labels. The goal of the learner is to mini-

mize a loss function. The authors provide two methods to modify the loss function

in such a way that minimizing the sample average of the modified loss function

leads to provable risk bounds.

The adversarial NNAR case is particularity noteworthy because positive results

in the adversarial model extend to all mistakes and NNAR models the situations in

which corruption is due to a deliberate action rather than a random mistake. This

model was studied in Kearns and Li [1993]. As we emphasized earlier, the adver-

sary’s ability to corrupt the feedback needs to be curbed in order to have learning

possible. In this model, the adversary gets to arbitrarily corrupt an instance with a

fixed error probability independent of other instances. For this setting, the authors

provide bounds on the optimal malicious error rate EMAL(C) for the representation
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class C i.e. the largest error probability for which any learning algorithm is appli-

cable on C. The upper bound on EMAL(C) conveys a hardness result placing lim-

itations on the rate of error that can be tolerated. The lower bounds on EMAL(C)

are given by the way of providing algorithms that tolerate certain rate of error. The

authors provide a valuable insight that tolerating errors up-to certain level need not

compromise the efficiency of the algorithms. They provide the examples of represen-

tation classes for which the optimal error rate can be achieved by polynomial-time

algorithms.

More recently, this model was also studied in Feige et al. [2015]. They constrain

the adversary so that it can corrupt an input to a certain number of values. In their

setting, there is an unknown distribution over the uncorrupted inputs, the learner

receives a sample of uncorrupted examples (inputs and labels) and selects a hypoth-

esis (or a mixture of hypotheses) from some limited hypothesis class, mapping a

corrupted input to a prediction (or to a distribution over predictions). The error is

defined on future inputs which are corrupted by the adversary. They assume the

availability of an oracle which on a set of examples finds a minimizing hypothesis

in the hypothesis class, i.e. an ERM (Empirical Risk Minimization) oracle. They pro-

pose an algorithm based on the idea of adaptive game playing (Freund and Schapire

[1999a]), and using a variation of a regret algorithm of Cesa-Bianchi et al. [2007] to

find near optimal learner and adversary policies, for the specific sample. Thus, they

reduce learning from uncorrupted inputs to learning from corrupted inputs near

optimally.

Next we look at the setting where noise is deliberately added to increase data

privacy. This motivation of adding noise is related to our setting because corrupt

bandits too can be used to achieve a particular kind of privacy as we show in Section

10.3.

7.4.4 Noise addition for data privacy

Noise for the purpose of data privacy could be additive as considered by Kim [1986]

in which random stochastic noise is added to the confidential attributes of the data

to conceal the distinguishing values. Ciriani et al. [2007] consider the scenario of
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adding uncorrelated additive noise which preserves the mean and covariance of the

original data but not the correlation coefficients and variances. In the same article,

correlated additive noise that preservers the mean and the correlation coefficients of

the original data is considered too.

Noise could also be multiplicative as outlined by Kim et al. [2003]. They gener-

ate random numbers with mean = 1 which are then multiplied to the data instances.

They also make use of logarithmic multiplicative noise by adding the random num-

bers to the logarithm of the original data instances. Mivule [2013] note the trade-off

between utility and privacy; closer the perturbed data is to the original, the less con-

fidential that data set becomes, and more distant the perturbed data set is from the

original, the more secure but then, utility of the data set might be lost when the sta-

tistical characteristics of the origin data set are lost. In section 10.3, when we describe

how corrupt bandits can be used to provide privacy, we shall revisit this point.

Presently, we conclude the review of the related work and move on to the next

chapter where we provide the lower bounds.
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Chapter 8

The Lower Bounds

In this chapter, we shall see the lower bound on the performance measures for best

arm identification as well as exploration-exploitation setting. In , we provide first

the lower bound on the sample complexity for best arm identification. Then, we

provide the lower bound on the cumulative regret for exploration-exploitation set-

ting in Section 8.2.

8.1 Lower bound on the sample complexity for best arm iden-

tification

As mentioned in section 1.2.5, the goal of an algorithm in the best arm identification

setting is to output the best arm for the given bandit model in the shortest possible

time. The performance measure of the algorithm in the fixed confidence setting is

the sample complexity τ i.e. the time it takes to identify and output the best arm

within the given error probability δ.

Definition 8.1. An algorithm, which given any valid input, produces the correct output

with the probability of at least 1− δ is called a δ-correct algorithm.

We proceed to provide the lower bound on the sample complexity of a δ-correct

algorithm for the task of best arm identification for corrupt bandits.

Theorem 8.1. For a K-armed Bernoulli corrupt bandit problem using corruption functions

g1, . . . , gK with Lipschitz constant 1/σ, the expected sample complexity of any δ − correct
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algorithm is lower-bounded as,

E(τ) ≥ σ2 · d(δ, 1− δ)
2

K∑

a=1

1

∆2
a

where µa is the mean reward for arm a, µ∗ is the optimal mean reward, ∆a := µ∗ − µa and

d(x, y) := x log(x/y) + (1−x) log((1−x)/(1− y)) is the binary relative entropy, with the

convention that d(0, 0) := d(1, 1) := 0

Proof. let us define a few notations first. Let ν characterize a bandit model with

reward distribution νa for an arm a. Let µνa be the mean reward of arm a under

bandit model ν and λνa be the mean feedback of arm a under the same model. Let

a∗(ν) ∈ arg maxµνa be the optimal arm of bandit model ν.

To obtain a lower bound we adapt a change-of-distribution argument from Kauf-

mann et al. [2016]. We hence consider two K-armed corrupted bandit models, re-

spectively ν and ν ′, with different optimal arms i.e. such that a∗(ν) 6= a∗(ν ′). Let

ALG be a δ-correct algorithm for the best arm identification for corrupt bandits with

sample complexity τ . Let âτ represent the arm returned by the algorithm ALG. Let

Na(t) be the number of times arm a has been pulled till time t.

The following lemma can be extracted from Garivier et al. [2016]

Lemma 8.1. Let ν and ν ′ be two bandit models with K arms and and T ∈ {0} ∪ N, then:

K∑

a=1

Eν [Na(T )] ·KL(λνa , λ
ν′
a ) ≥ d (Eν(Z),Eν′(Z))

where d(x, y) := x log(x/y) + (1 − x) log((1 − x)/(1 − y)) is the binary relative entropy

and Z ∈ [0, 1] is a random variable measurable from the past-observations filtration (FT )

Let Za := 1âτ=a be the binary random variable for the event “ALG’s output is a".

Using lemma 8.1 on Z, we obtain:

K∑

a=1

Eν [Na(τ)] ·KL(λνa , λ
ν′
a )

≥ d
(
Eν [Za∗(ν)],Eν′ [Za∗(ν)]

)

= d (Pν [âτ = a∗(ν)],Pν′ [âτ = a∗(ν)])
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Since algorithm A is δ-correct and a∗(ν) 6= a∗(ν ′)

K∑

a=1

Eν [Na(τ)] ·KL(λνa , λ
ν′
a ) ≥ d(δ, 1− δ) (8.1)

let us assume for the sake of readability that arm 1 is the optimal arm in bandit

model ν (i.e. a∗(ν) = 1). To compute Na(τ) for each a such that 2 ≤ a ≤ K, we can

have ν ′ for some ω′ > 0 such that

µν
′
b =





µν1 + ω′, if b = a

µνb otherwise

This translates to the following change in feedback,

λν
′
b =





gb(µ
ν
1 + ω′) = λν1 + ω, if b = a

gb(µ
ν
b ) = λνb otherwise

where ω > 0 if gb is increasing and ω < 0 otherwise.

Therefore, the divergence being null for any b 6= a, from (8.1) we get:

Eν [Na(τ)] ≥ d(δ, 1− δ)
KL(λνa , λ

ν
1 + ω)

(8.2)

To compute N1(τ), we can have ν ′ for some ω′ > 0 such that

µν
′
b =





µν2 − ω′, if b = 1

µνb otherwise

This translates to the following changes in feedback,

λν
′
b =





gb(µ
ν
2 − ω′) = λν2 − ω, if b = 1

gb(µ
ν
b ) = λvb otherwise

Therefore,

Ev[N1(τ)] ≥ d(δ, 1− δ)
KL(λν1 , λ

ν
2 − ω)

(8.3)
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let us compute the expected value of stopping time τ

E(τ) =

K∑

a=1

E(Na(τ))

≥
[ 1

KL(λν1 , λ
ν
2 )

+

K∑

a=2

1

KL(λν1 , λ
ν
a )

]
· d(δ, 1− δ)

≥
[ 1

2(λν1 − λν2 )2
+

K∑

a=2

1

2(λν1 − λνa )2

]
· d(δ, 1− δ)

If ga is (1/σ)-Lipschitz, we can relate the reward gap ∆ν
a = µν1 − µνa to the feedback

gap λν1 − λνa by:

|λν1 − λνa | ≤ ∆ν
a/σ

Hence, dropping the ν superscripts, and with the convention that ∆1 := ∆2, we

have:

E(τ) ≥ σ2 · d(δ, 1− δ)
2

K∑

a=1

1

∆2
a

8.2 Lower bound on the cumulative regret for exploration-

exploitation setting

The goal of an algorithm in the exploration-exploitation setting is to minimise the

cumulative regret as explianed in Section 1.2.4. Naturally, the performance measure

of the algorithm is the expected cumulative regret CRegret. Following a definition

by Lai and Robbins [1985] for the classical MAB problem, we define an uniformly effi-

cient algorithm for the corrupt bandit problem with prescribed corruption functions

{ga} as an algorithm which, for any problem instance ν, CRegretT (ν) = o(Tα) for all

α ∈]0, 1[. Theorem 8.2 provides a lower bound on the regret of an uniformly efficient

algorithm.
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Theorem 8.2. Given strictly monotonic corruption functions {ga}a∈A, any uniformly effi-

cient algorithm for a Bernoulli corrupt bandit problem satisfies at time horizon T ,

lim inf
T→∞

CRegretT
log(T )

≥
K∑

a=2

∆a

d (λa, ga(µ1))

where d(x, y) := Kullback-Leibler divergence of (Bernoulli(x), Bernoulli(y))

Proof. To obtain a lower bound on the regret, we use a change-of-distribution argu-

ment. Let ν and ν′ be K-armed corrupted bandit models with different optimal

arms i.e. a∗(ν) 6= a∗(ν). For the ease of readability, let us assume without loss of

generality that a∗(ν) = 1.

The log-likelihood ratio of the observations up to time T under ν and ν,LT (ν,ν′),

can be written

LT (ν,ν′) =

K∑

a=1

Na(T )∑

s=1

log
fλνa (Fa,s)

f
λν

′
a

(Fa,s)
,

where fx(·) denotes the Bernoulli density of mean x and Fa,s are the successive ob-

served feedback from arm a. By Wald’s lemma on the cumulative sum of random

variables (Wald [1944]),

Eν
[
LT (ν,ν′)

]
=

K∑

a=1

Eν [Na(T )]d(λνa , λ
ν′
a ),

Using Lemma 8.1 with Z = N1(T )
T , one obtains

K∑

a=1

Eν(Na(T ))d
(
λνa, λ

ν′
a

)

≥ d
(Eν(N1(T ))

T
,
Eν′(N1(T ))

T

)
(8.4)

Using the inequality d(p, q) ≥ p log(1/q)− log(2) (see Garivier et al. [2016]) yields

d
(Eν(N1(T ))

T
,
Eν′(N1(T ))

T

)

≥
Eν(N1(T ))

T
log
( T

Eν′(N1(T ))

)
− log(2)
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Since a∗(ν) = 1, and a∗(ν′) 6= 1, Eν(N1(T ))∼T and Eν′(N1(T )) = o(Tα) for allα ∈]0, 1].

Hence one can show that

Eν(N1(T ))

T
∼ 1 and log

(
T

Eν′ [N1(T )]

)
∼ log(T ).

Equation (8.4) yields

lim inf
T→∞

∑K
a=1 Eν(Na(T ))d

(
λνa , λ

ν′
a

)

log T
≥ 1. (8.5)

To obtain a lower bound on Eν [Na(T )] for each a ∈ {2, . . . ,K}, one can choose ν′

such that, for some ε > 0,

µν
′
b =





µν1 + ε, if b = a

µνb otherwise

This translates to the following change in feedback,

λν
′
b =





gb(µ
ν
1 + ε) if b = a,

gb(µ
ν
b ) = λνb otherwise.

As d
(
λνb , λ

ν′
b

)
= 0 for b 6= a, using equation (8.5) we get

lim inf
T→∞

Eν(Na(T ))

log T
≥ 1

d (λνa , ga(µ1 + ε))

Letting ε go to zero for each a ∈ {2, . . . ,K} (and using that {g}Ka=1 are continuous),

one obtains,

lim inf
T→∞

CRegretT (ν)

log(T )
≥

K∑

a=2

∆ν
a

d (λνa , ga(µ
ν
1 ))

.

The lower bound reveals that the divergence between the mean feedback from

a ∈ A and the image of the optimal reward µ1 with ga plays a crucial role in dis-

tinguishing arm a from the optimal arm. The shape of the ga function in the neigh-

borhood of both µa and µ1 has a great impact on the information the learner can
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(A) Uninformative ga function. (B) Informative ga function.

FIGURE 8.1: In Figure 8.1a, ga is such that λa = ga(µ1) thereby mak-
ing it impossible to discern arm a from the optimal arm given the
mean feedback. In Figure 8.1b, a steep monotonic ga leads the reward

gap ∆a = µ1 − µa into a clear gap between λa and ga(µ1).

extract from the received feedback. Particularly, if the ga function is non-monotonic,

as shown in Figure 8.1a, it might be impossible to distinguish between arm a and the

optimal arm. To dodge this problem, we assume the corruption functions {ga}a∈A
to be strictly monotonic in our algorithms and we denote its corresponding inverse

function by g−1
a . Such an informative corruption function is shown in Figure 8.1b.

To clarify that the gap between λa and λ1 is not relevant here, we also plot in Fig-

ure 8.1b a corruption function g1 which differs from ga and causes fortuitously the

two arms to have the same mean feedback with different interpretations in terms of

mean rewards.

Having proven the lower bounds on the performance measures of best arm iden-

tification and exploration-exploitation, we shall see the algorithms for these two set-

tings.
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Chapter 9

The Algorithms and their Analyses

In this chapter, we shall present the algorithms for various settings of corrupt ban-

dits. Let us begin with the setting of best arm identification. Firstly, in Section 9.1,

we introduce two algorithms for the corrupt bandits for best arm identification with

fixed confidence. In Section 9.2, we introduce two algorithms for the corrupt bandits

in the exploration-exploitation setting.

9.1 Algorithms for best arm identification

As mentioned in Section 1.4.1, best arm identification algorithms for the classical

bandit problem usually proceed in rounds eliminating sub-optimal arms. Using

similar round-based format, we present two elimination algorithms for best arm

identification in corrupt bandits.

9.1.1 Median elimination for corrupt bandits

The first algorithm we present is derived from the corresponding median elimina-

tion algorithm for classical bandits presented in Even-Dar et al. [2006]. The goal of

ME-CF(ε, δ) is to output an ε-approximate best arm with probability at-least 1−δ. An

ε-approximate best arm is any arm whose mean reward is at most ε lower than that

of the best arm.

In each round, ME-CF (21) samples every remaining arm equal number of times

which is determined using the parameters ε and δ. Then, it computes the empirical

estimates for each remaining arm applying the corresponding inverse corruption

function on the mean empirical feedback. Only the arms whose empirical estimate is
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Algorithm 21 Median elimination for corrupt bandits (ME-CF)

1: Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK and unknown feedback means λ1, . . . , λK and, strictly
monotonic and differentiable corruption functions g1, . . . , gk with Lipschtiz con-
stant 1

σ .
2: Parameters: ε > 0, δ > 0
3: Set S1 ← A, ε1 ← ε/4, δ ← δ/2, l← 1
4: Do
5: Sample every arm a in Sl for 1/(εl/2σ)2 log (3/δl) times and let λ̂la be its mean

empirical feedback and let f̂ la := g−1
a (λ̂la) represent its empirical estimate.

6: Let Medl be the median of {f̂ l1}a∈Sl .
7: Sl+1 ← Sl \ {a : f̂ la < Medl}
8: εl+1 ← 3

4εl, δl+1 ← δ
2 , l← l + 1

9: Until |Sl| = 1
10: Output the arm in Sl

greater than the median of the empirical estimates of the remaining arms are carried

forward to the next round. This process repeats till only a single arm remains at

which point the algorithm stops and returns the sole remaining arm. The following

theorem bounds the sample complexity of ME-CF.

Theorem 9.1. For a K-armed corrupt bandit problem using strictly monotonic and dif-

ferentiable corruption functions g1, . . . , gK with Lipschitz constant 1/σ, ME-CF returns an

ε-approximate arm with probability at-least 1−δ and its sample complexity is upper-bounded

by

E(τ) ≤ O
(
Kσ2

ε2
log

(
1

δ

))

This proof proceeds along the lines of the proof for the sample complexity for the

median elimination algorithm given in Even-Dar et al. [2006] and it is given in Ap-

pendix B.

9.1.2 Exponential-gap elimination for corrupt bandits

The next algorithm we present is derived from the exponential-gap elimination al-

gorithm given in Karnin et al. [2013]. The goal of EGE-CF (22) is to output the best

arm with probability at-least 1− δ i.e. it is an δ-correct algorithm.

During each round, EGE-CF too samples every remaining arm an equal number

of times which is determined using the parameter δ. Then, it computes the empir-

ical estimates for each arm applying the corresponding inverse corruption function
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Algorithm 22 Exponential-gap elimination for corrupt bandits (EGE-CF)

1: Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK and unknown feedback means λ1, . . . , λK and, strictly
monotonic and differentiable corruption functions g1, . . . , gk with Lipschtiz con-
stant 1

σ .
2: Parameters: δ
3: Set S1 ← A, l← 1
4: While |Sl| > 1

5: let εl ← 2−l/4 and δl ← δ/(50l3)
6: Sample each arm a ∈ Sl for 2/(εl/σ)2 log (1/δl) and let λ̂la be its mean empiri-

cal feedback and let f̂ la := g−1
a (λ̂la) represent its empirical estimate.

7: Invoke al ← ME-CF(Sl, εl/2, δl)
8: Set Sl+1 ← Sl \ {a ∈ Sl : f̂ la < f̂ lal − εl}
9: l← l + 1

10: End while
11: Output the arm in Sl

on the mean empirical feedback. It uses ME-CF as a subroutine to select an approxi-

mately optimal arm from the set of remaining arms. Only the arms whose empirical

estimates are sufficiently close to the approximately correct arm are carried forward

to the next round. Arms are eliminated in successive rounds till only a single arm

remains at which point the algorithm stops and the remaining arm is returned as the

output. The following theorem bounds the sample complexity of EGE-CF.

Theorem 9.2. For a K-armed corrupt bandit problem using strictly monotonic and differ-

entiable corruption functions g1, . . . , gK with Lipschitz constant 1/σ, EGE-CF returns the

optimal arm with probability at-least 1 − δ and its expected sample complexity is upper-

bounded by

Eτ ≤ O
(
σ2

K∑

a=2

1

∆2
a

log

(
1

δ
log

1

∆a

))

The proof for Theorem 9.2 is given in appendix C

9.2 Algorithms for exploration-exploitation setting

As explianed in Section 1.2.4, the goal of an algorithm in this setting is to minimise

the cumulative regret. There are two popular approaches to solve the MAB problem

in this setting: the frequentist approach and the Bayesian approach. Some of the

notable frequentist algorithms are UCB1(Auer et al. [2002a]), KL-UCB (Cappé et al.
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[2013]), while one of the earliest solutions for the MAB problem known as THOMP-

SON SAMPLING (Thompson [1933]) is a Bayesian algorithm. We too shall solve the

corrupt bandits problem with both a frequentist and a Bayesian approach.

9.2.1 kl-UCB for MAB with corrupted feedback (kl-UCB-CF)

We propose an algorithm called kl-UCB-CF which is an adaptation of the KL-UCB

algorithm of Cappé et al. [2013]. It computes Indexa(t) from a KL-based confidence

interval on λa (line 3 in algorithm 23) to be used as an upper-confidence bound on

µa. We denote by λ̂a(t) the empirical mean of the feedback obtained from the arm a

until time t.

Algorithm 23 kl-UCB for MAB with corrupted feedback (kl-UCB-CF)

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
mean rewards µ1, . . . , µK and unknown mean feedbacks λ1, . . . , λK and mono-
tonic and continuous corruption functions g1, . . . , gk.
Parameters: A non-decreasing (exploration) function f : N → R, d(x, y) :=
KL(B(x),B(y)), Time horizon T .

1: Initialization: Pull each arm once.
2: for time t = K, . . . , T − 1 do
3: Compute for each arm a in A the quantity

Indexa(t) := max
{
q : Na(t) · d(λ̂a(t), ga(q)) ≤ f(t)

}

4: Pull arm ât+1 := argmax
a

Indexa(t) and observe the feedback Ft+1.

5: end for

Theorem 9.3 gives an upper bound on the regret of kl-UCB-CF showing that it

matches the lower bound given in Theorem 8.2. A more explicit finite-time bound is

proved in Appendix D.

Theorem 9.3. kl-UCB-CF using f(t) := log(t) + 3 log(log(t)) on a K-armed Bernoulli

corrupt bandit with strictly monotonic and continuous corruption functions {ga}a∈A satis-

fies at time T ,

CRegretT ≤
K∑

a=2

∆a log(T )

d (λa, ga(µ1))
+O(

√
log(T )).

Here we present a brief sketch of the proof. The detailed version of this proof is

given in Appendix D.
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Proof sketch: Recall that Na(t) := the number of times arm a has been pulled till time

t. Letting Fa,s being the successive observations of arm a and λ̂a,s := 1
s

∑s
l=1 Fa,l,

one has λ̂a(t) = λ̂k,Na(t) when Na(t) > 0.

The event {ât+1 = a} can happen either with λ1 being within or outside its KL-

based confidence interval. We compute the probability of λ1 being outsides its in-

terval i.e. either greater than u1(t) or lower than l1(t) depending upon whether g1

is increasing or decreasing respectively. If λ1 is within its confidence interval, the

fact that arm a is played translates into the upper bound (resp. lower bound) on λa

being greater (resp. lower) than ga(µ1) when ga is increasing (resp. decreasing). We

compute all the required quantities to get an upper bound on E[Na(T )] which when

multiplied by ∆a and summed over all the non-optimal arms gives an upper bound

on the expected regret. Starting from

E(Na(T )) = 1 +

T−1∑

t=K

P(ât+1 = a),

we provide below the decomposition that are used in each case.

• When both g1 and ga are increasing,

E(Na(T )) ≤ 1 +

T−1∑

t=K

P(u1(t) < λ1) +

T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1))

• When g1 is decreasing and ga is increasing,

E(Na(T )) ≤ 1 +
T−1∑

t=K

P(`1(t) > λ1) +
T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1))

• g1 is increasing and ga is decreasing,

E(Na(T )) ≤ 1 +
T−1∑

t=K

P(u1(t) < λ1) +
T−1∑

t=K

P(ât+1 = a, `a(t) ≤ ga(µ1))

• When g1 is decreasing and ga is decreasing,

E(Na(T )) ≤ 1 +

T−1∑

t=K

P(`1(t) > λ1) +

T−1∑

t=K

P(ât+1 = a, `a(t) ≤ ga(µ1))
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Using deviation inequalities (introduced by Cappé et al. [2013]), we show that

T−1∑

t=K

P(u1(t) < g1(µ1)) ≤ 3 + 4e log (log T ) ∈ o(log T ) (9.1)

T−1∑

t=K

P(`1(t) > g1(µ1)) ≤ 3 + 4e log (log T ) ∈ o(log T ) (9.2)

We introduce the notation d+(x, y) := d(x, y)1(x<y) and d−(x, y) := d(x, y)1(x>y),

where 1 is the indicator function. So we can write, when ga is increasing,

T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1)) ≤
T−1∑

s=1

P
(
s · d+(λ̂a,s, ga(µ1)) ≤ f(T )

)
. (9.3)

And when ga is decreasing,

T−1∑

t=K

P(ât+1 = a, `a(t) ≤ ga(µ1)) ≤
T−1∑

s=1

P
(
s · d−(λ̂a,s, ga(µ1)) ≤ f(T )

)
. (9.4)

The quantity in the right-hand side of (9.3) is upper bounded in Appendix A.2.

of Cappé et al. [2013] by

f(T )

d(λa, ga(µ1)
+
√

2π

√
(d′(λa, ga(µ1)))2

(d(λa, ga(µ1)))3

√
f(T ) + 2

(
d′(λa, ga(µ1))

d(λa, ga(µ1))

)2

+ 1. (9.5)

where d′(x, y) is used to indicate the derivative of d(x, y) with respect to the first

variable. Following the same approach as Cappé et al. [2013], we can prove that the

right-hand side of (9.4) is upper bounded by the same quantity. Combining inequal-

ities (9.1), (9.2), (9.3), (9.4) and (9.5) with the initial decomposition of E[Na(T )],

E[Na(T )] ≤ log(T )

d(λa, ga(µ1))
+
√

2π

√
d′(λa, ga(µ1))2

d(λa, ga(µ1))3

√
log(T ) + 3 log log(T )

+

(
4e+

3

d(λa, ga(µ1)

)
log log(T ) + 2

(
d′(λa, ga(µ1)

d(λa, ga(µ1)

)2

+ 4.

So the expected regret of kl-UCB-CF is at most

K∑

a=2

∆a

[ log(T )

Da
+
√

2π

√
(D′a)2

D3
a

√
log(T ) + 3 log log(T )

+

(
4e+

3

Da

)
log log(T ) + 2

(
D′a
Da

)2

+ 4
]
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where Da := d(λa, ga(µ1)) and D′a := d′(λa, ga(µ1)), which concludes the proof.

9.2.2 UCB1 for MAB with corrupted feedback (UCB-CF)

UCB1 (Auer et al. [2002a]) can also be adapted to corrupted feedback by modifying

the index to

Indexa(t) :=





g−1
a

(
λ̂a(t) +

√
f(t)

2Na(t)

)
if increasing ga

g−1
a

(
λ̂a(t)−

√
f(t)

2Na(t)

)
if decreasing ga

Corollary 9.1. With f(t) := log(t)+3 log(log(t)), the expected cumulative regret of UCB-

CF on a K-armed corrupt bandit with strictly monotonic and continuous corruption func-

tions {ga}Ka=1 at time horizon T is in O
(∑K

a=2
∆a log(T )

(λa−ga(µ1))2

)
.

The proof of this corollary follows the proof of Theorem 9.3 using the quadratic

divergence 2(x−y)2 in place of d(x, y). The UCB-CF algorithm is only order optimal

with respect to the bound of Theorem 8.2, but its index is simpler to compute.

9.2.3 Thompson sampling for MAB with corrupted feedback (TS-CF)

TS-CF maintains a Beta posterior distribution on the mean feedback of each arm. At

round t + 1, for each arm a, it draws a sample θa(t) from the posterior distribution

on λa and pulls the arm for which g−1
a (θa(t)) is largest. This mechanism ensures that

at each round, the probability that arm a is played is the posterior probability of this

arm to be optimal, as in regular Thompson Sampling (TS) (Thompson [1933]).

Theorem 9.4. When TS-CF is run on any K-armed corrupt bandit with corruption func-

tions {ga}Ka=1, there exists a constant Cε := C(ε, {µa}a=1,...,K , {ga}a=1,...,K) for all the

sub-optimal arms a, and ε > 0, such that the expected cumulative regret at time horizon T

is

E[CRegretT ] ≤ (1 + ε)

K∑

a=2

∆a log(T )

d(λa, ga(µ1))
+ Cε.
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Algorithm 24 Thompson sampling for MAB with corrupted feedback (TS-CF)

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK and unknown feedback means λ1, . . . , λK and mono-
tonic and continuous corruption functions g1, . . . , gK .
Parameters: Time horizon T .

1: Initialization: For each arm a in A, set successa = 0 and faila = 0
2: for t = 0, . . . , T − 1 do.
3: For each arm a in A, sample θa(t) from Beta(successa +1, faila +1)
4: Pull arm ât+1 := arg max

a
g−1
a (θa(t)) and observe the feedback Ft+1.

5: if Ft+1 = 1 then
6: successât+1 = successât+1 +1
7: else
8: failât+1 = failât+1 +1
9: end if

10: end for

This theorem also yields the asymptotic optimality of TS-CF with respect to the

lower bound given in Theorem 8.2. We give a sketch of its proof here. The detailed

version of this proof is given in Appendix E.

Proof sketch. Assume 1 to be the optimal arm. For each arm non-optimal arm a,

choose two thresholds ua and wa such that λa < ua < wa < ga(µ1) if ga is increasing

and λa > ua > wa > ga(µ1) is decreasing.

DefineEλa (t) as the event {g−1
a (λ̂a(t)) ≤ g−1

a (ua)} andEθa(t) as the event {g−1
a (θa(t)) ≤

g−1
a (wa)}.

Define Ft as the history of arm selections and received feedbacks including time

t and recall that TS-CF selects the arm as follows, ât+1 = argmaxa θa(t), where θa(t)

is a sample from the posterior distribution on arm a after t observations.

Define pa,t := P(g−1
1 (θ1(t)) > g−1

a (wa) | Ft).

Starting from the following decomposition,

E[Na(T )] =

T−1∑

t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +

T−1∑

t=0

P(ât+1 = a,Eλa (t), Eθa(t))

+
T−1∑

t=0

P(ât+1 = a,Eλa (t)),

We provide below some lemmas that permit to bound these three terms. These re-

sults generalize to the corrupted setting the main steps of the analysis of Thompson
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Sampling by Agrawal and Goyal [2013]. In particular Lemma 9.1 relates the proba-

bility of drawing a sub-optimal arm awhen the two “typical" eventsEθa(t) andEλa (t)

hold to the probability of playing the optimal arm, through a coefficient involving

the inverse of pa,t. This result is used in the analysis in conjugation with Lemma 9.4,

that bounds the growth of the expected value of p−1
a,t .

Lemma 9.1. P(ât+1 = a,Eθa(t), Eλa (t) | Ft) ≤ (1−pa,t)
pa,t

P(ât+1 = 1, Eθa(t), Eλa (t) | Ft).

Lemma 9.2. When ga is increasing (resp. decreasing), for any u′a ∈ (ua, wa) (resp. (wa, ua)),

when T is large enough,

T−1∑

t=0

P
(
ât+1 = a,Eθa(t), Eλa (t)

)
≤ log(T )

d(u′a, wa)
+ 1.

Lemma 9.3.
∑T−1

t=0 P
(
ât+1 = a,Eλa (t)

)
≤ 1 + 1

d(ua,λa) .

Lemma 9.4. Let τs be the instant of the s-th play of arm 1. Then there exists a function

f(s) := f(s, λ1, g1(g−1
a (µ1))) satisfying

∑∞
s=1 f(s) <∞ such that for all s,

E
[

1

pa,τs+1

]
≤ 1 + f(s).

Let (τs) be the sequence introduced in Lemma 9.4. Using Lemma 9.1-9.4, one can

write, for large enough T ,

E[Na(T )] ≤
T−1∑

t=0

E
[

(1− pa,t)
pa,t

1(ât+1=1,Eθa(t),Eλa (t))

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

≤
T−1∑

s=0

E
[(1− pa,τs+1)

pa,τs+1

τs+1−1∑

t=τs

1(ât+1=1)

︸ ︷︷ ︸
=1

]
+

log T

d(u′a, wa)
+

1

d(ua, λa)
+ 2

≤ log T

d(u′a, wa)
+
∞∑

s=0

f(s) +
1

d(ua, λa)
+ 2.

Fix ε > 0. Using the monotonicity properties of the divergence function d, there

exists ua < u′a < wa in the increasing case and ua > u′a > wa in the decreasing case

such that d(u′a, wa) ≥ d(λa, ga(µ1))/(1 + ε). For these particular choice, one obtains

E[Na(T )] ≤ (1 + ε)
log(T )

d(λa, ga(µa))
+R(ua, u

′
a, wa),
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where R(ua, u
′
a, wa) is a rest term that depends on ε, µ1, µa, g1 and ga. The result

follows using that E[CRegretT ] =
∑K

a=2 ∆aE[Na(T )].

9.2.4 kl-UCB-CF and TS-CF for MAB with randomized response

In this subsection, we consider the application of the dedicated corrupt bandit al-

gorithms on randomized response which is a special form of corrupted feedback

introduced in the subsection 7.2.3. The following corollary bounds the expected re-

gret of kl-UCB-CF and TS-CF when a applied on a MAB problem with randomized

response.

Corollary 9.2. The expected regret of kl-UCB-CF and TS-CF for a K-armed MAB prob-

lem with randomized response using corruption matrices {M}a∈A at time horizon T is in

O
(∑K

a=2
log(T )

∆a(p00(a)+p11(a)−1)2

)
where

Ma :=




0 1

0 p00(a) p01(a)

1 p10(a) p11(a)




and

Ma(x, y) := P(feedback for arm a = x | reward for arm a = y)

Proof. This corollary follows from Theorem 9.3 and Theorem 9.4 together with Pinsker’s

inequality.

In the next chapter, we shall provide a practical application of the corrupted

feedback and explain how the algorithms introduced in this chapter can be used

for that purpose.
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Chapter 10

Corrupt Bandits to enforce

Differential Privacy

In this chapter, we shall explain how our setting can be used for the practical appli-

cation of enforcing differential privacy. In Section 10.1, we provide an introduction

to the topic of differential privacy. In Section 10.2, we first provide the motivation for

using differential privacy in bandits and then overview the related previous work.

Lastly, in Section 10.3, we present how the corrupt bandits can be used for achieving

differential privacy.

10.1 Introduction to differential privacy

Differential privacy was introduced by Dwork et al. [2006]. Dwork and Roth [2014]

describe differential privacy as a promise, made by a data holder to a data subject:

“You will not be affected, adversely or otherwise, by allowing your data to be used

in any study or analysis, no matter what other studies, data sets, or information

sources, are available." A dataset is a collection of records and a statistic is a quantity

computed from a record. A querying mechanism or simply a mechanism is an algo-

rithm that takes as an input a dataset and produces output for a query. The goal of a

privacy-preserving querying mechanism is to ensure that the information about in-

dividual records are not revealed from the output. The other approaches to privacy-

preserving mechanism include removal of personally identifiable information from

the records (anonymization) or answering only summary queries. However Dwork

and Roth [2014] explain the vulnerabilities of these approaches and they illustrate
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how these approaches can be defeated. For example, a linkage attack can be used

to match anonymized records with non-anonymized records in a different dataset

to compromise the personal information from the anonymized records. Moreover

the answers to the two summary queries - first for all the individuals in the dataset

and second for all the individuals in the dataset except X, does reveal the individ-

ual information about X even when only summary queries are answered. This is

called as differencing attack. To address these concerns, differential privacy produces

output from which it is possible to learn the properties of the population of the sam-

ples present in the dataset as a whole while not divulging the information about the

individual samples. Differential privacy ensures that any sequence of outputs is “es-

sentially” equally likely to occur independent of the presence or the absence of an

individual record in a dataset. More formally, it is defined as follows:

Definition 10.1. Any randomized mechanismM is (ε, δ)-differentially private if for all the

datasets d1, d2 ∈ Domain(M) differing in at most one record and for all S ∈ Range(M)

P[M(d1) ∈ S] ≤ exp (ε)P[M(d2) ∈ S] + δ

If δ = 0, thenM is said to be ε-differentially private.

By definition, differential privacy is unsusceptible to differencing attack. Moreover,

since differential privacy is a property of the data access mechanism, and is unre-

lated to the presence or absence of auxiliary information, it is also immune to linkage

attacks as well. Dwork [2010] enlist the following strengths of differential privacy:

1. It is independent of any additional information, including other databases,

available to the adversary.

2. It is achievable using fairly simple and general mechanisms.

3. It frequently allows very accurate analyses.

In the definition 10.1, we saw that randomization is a necessary condition for a

mechanism to be differentially private. let us investigate the prerequisite of random-

ization for differential privacy.
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10.1.1 Why randomization?

Consider for example a simple dataset which stores the credit rating for a number of

individuals. A querying mechanism accesses this dataset and returns the arithmetic

mean of the values. Consider the following two datasets: dataset A which contains

the information about user X and dataset B which doesn’t. Any deterministic query-

ing process yields two different outputs for these two datasets. Knowing these two

values, an adversary realizing that the dataset is one of these two almost identical

datasets can learn the value of the credit rating of user X. Therefore randomization

is essential for any privacy guarantee.

We have already seen that differential privacy can be preferable to other privacy

mechanisms by the virtue of being immune to privacy-compromising attacks that

neutralise the latter. A possible counter-argument for differential privacy might be

why not simply use secure cryptosystems which are guaranteed to exist under stan-

dard computational assumptions. This counter-argument is however fallacious as

explained below.

10.1.2 Why not simply use cryptosystems?

A cryptosystem is a pair of algorithms that take plain-text as a key whose privacy

is needed to be protected and convert it to cipher-text which appears to be a ran-

dom gibberish and back. In a cryptosystem, there are three parties: the message

sender (who encrypts the plain-text message), the message receiver (who decrypts

the cipher-text), and the eavesdropper whose goal is to read the plain-text message

without having the authority to do so. A secure cryptosystem ensures that eaves-

dropper is foiled in their attempt to compromise the privacy of the sent message.

However, in a privacy-preserving mechanism, there are only two parties: the cura-

tor who runs the mechanism (analogous to the sender) and the receiver who receives

the output to the queries. The receiver tries to discover personal information about

the queried records. To wit, the legitimate receiver is the same party as the snooping

eavesdropper in a privacy-preserving mechanism. Therefore a secure cryptosystem

is not a suitable substitute for a privacy preserving mechanism.
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Having seen what does differential privacy mean in the general context, let us

turn our attention to differential privacy specifically for the bandit problems.

10.2 Differential privacy in bandits

Since its inception, differential privacy has been used in conjunction with many set-

tings (Dwork [2006], Dwork [2009], Dwork [2010]). Particularly, it has also been ap-

plied in the milieu of online learning (Jain et al. [2012] ,Thakurta and Smith [2013]),

of which bandit learning is a subset. Before studying how differential privacy is

adopted to bandits, let us see the motivation for applying differential privacy to

bandit applications.

10.2.1 Motivation for differential privacy in bandits

In section 1.3.2, we looked at Internet advertising as one of the main applications

of the bandit problem. To personalise the advertisements for the users, advertising

systems make use of personal user information. This opens the way for loss of user

privacy. Korolova [2010] provide experimental evidence of several approaches to ob-

tain private user information from the advertising system of the world’s largest on-

line social network, Facebook. Calandrino et al. [2011] show methods to infer users’

private transactions from the information routinely revealed by the users to the ad-

vertising system. The provided methods make use of aggregate statistics which con-

tain no personally identifiable information. The authors have employed these meth-

ods on public data extracted from the advertising systems of the popular websites

Hunch, Last.fm, LibraryThing, and Amazon. To deal with such type of methods, one

of the proposals suggested by Korolova [2010] 1 asks advertising systems to only use

the public user information. While this way can defend the user privacy against al-

most all the attacks, it is highly unlikely that any for-profit corporation will use this

way because it would make targeted advertising campaigns unfeasible. Lindell and

Omri [2011] have argued that differential privacy is the most relevant method to pro-

vide user privacy in online advertising. Since online advertising is one of the most

important application of the bandit problem, it behooves the community to devise

1We only discuss this way since the other suggested way is specific to Facebook.
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differentially-private bandit algorithms. In the next section we take a look at such

algorithms.

10.2.2 Previous work

The customary approach to achieve differential privacy in bandits is to employ a

differentially private mechanism on the user feedback. This approach ensures dif-

ferential privacy as stated by the following proposition [Proposition 2.1 from Dwork

and Roth [2014]]

Proposition 10.1. LetM : Domain(M)→ R be a (ε, δ)-differentially private mechanism.

Let f : R→ R′ be an arbitrary randomized mapping. Then f ◦M : Domain(M)→ R′ is

(ε, δ)-differentially private.

Depending upon where the (ε, δ)-differentially private mechanism is placed, we

classify the differential privacy algorithms considered in the community into two

settings. In the first setting, the (ε, δ)-differentially private mechanism is located

at the learner’s end. The learner receives the true feedback, employs the differential

privacy mechanism and runs the bandit algorithm on the output of the private mech-

anism. Crucially, the learner has access to true feedback. We shall call this privacy

preserving output. In the second setting, the (ε, δ)-differentially private mechanism

is located outside learner’s control. The learner receives the differentially private

input. We call this as privacy preserving input.

To the best of our knowledge, hitherto all the previous works applying differ-

ential privacy on bandits have used the setting of privacy preserving output. We

briefly summarize some of the salient work below.

Differentially private UCB Sampling

Mishra and Thakurta [2015] provide a high-probability differentially private algo-

rithm for the stochastic MAB problem. The proposed algorithm, called Differen-

tially private UCB Sampling, makes use of Tree based aggregation as a differential

privacy mechanism. Tree based aggregation, proposed by Chan et al. [2011] and

Dwork et al. [2009], is an effective way of releasing private continual statistics over

an input database that is dynamic and evolving over time.
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Algorithm 25 Differentially private UCB Sampling

Input: Time horizon T , set of arms A = {1, . . . ,K}
Parameters: Privacy parameter ε, failure probability γ

1: Create an empty tree Treea with T leaves for each arm a. Set ε0 ← ε/K.
2: for t = 1, . . . ,K do
3: Pull arm at and observe reward xat(t).
4: Insert xat(t) into Treeat via tree based aggregation with privacy parameter ε0.
5: Number of pulls Nat(t) = 1
6: end for
7: Confidence relaxation Γ← K log2 T log ((KT log T )/γ)

ε .
8: for t← K + 1, . . . T do
9: TotalRewarda(t)← Total reward computed using Treea for all a ∈ A.

10: Pull arm at = argmaxa∈A
(
TotalRewarda(t)

Na(t) +
√

2 log t
Na(t) + Γ

Na(t)

)

11: Insert xat(t) into Treeat using tree based aggregation with privacy parameter ε0.
12: end for

Differentially private UCB Sampling uses a tree for each of the K arms to create

a (ε/K)-differentially private reward sequence for each arm. The empirical mean is

computed using these differentially-private reward sequences. To counter the noise

added to the empirical mean of the arm rewards, a normalised confidence relaxation

term is added to the upper confidence bound of every arm. With the probability of

1− γ, the expected regret of this algorithm is

O


 ∑

a∈A:µa<mu∗

K log2 T log (KT/γ)

ε∆a
+ ∆a




where µa is the mean of the rewards for arm a, µ∗ is the optimal mean and ∆a =

µ∗ − µa.

DP-UCB-BOUND and DP-UCB-INT

Tossou and Dimitrakakis [2016] too provide upper confidence bound based differen-

tially private algorithms for the stochastic MAB problem. The algorithm DP-UCB-

BOUND (26)uses hybrid noise (Chan et al. [2011]) as differential privacy mechanism.

Hybrid noise combines logarithmic and binary noise at regular intervals. The empir-

ical mean reward of each arm is computed is using the hybrid mechanism used for

the respective arm. A suitable term to account for the uncertainty due to privacy is

also added besides the usual confidence interval to compute the optimistic estimate

for each arm.
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Algorithm 26 DP-UCB-BOUND

Input: Time horizon T , set of arms A = {1, . . . ,K}
1: Instantiate K hybrid mechanisms, one for each arm.
2: Na ← 0 ∀a ∈ A
3: for t = 1 . . . T do
4: if t ≤ K then
5: Play arm a = t observe xa(t).
6: Insert xa(t) to the hybrid mechanism for arm a.
7: Na = Na + 1.
8: else
9: for a ∈ A do

10: sa(t)← total sum computed using the hybrid mechanism for arm a.
11: if Na is a power of 2 then
12: va ←

√
8
ε log (4t4)

13: else
14: va ←

√
8
ε log (4t4) log (Na) +

√
8
ε log (4t4)

15: end if
16: end for
17: Pull arm at = argmaxa

sa(t)
Na

+
√

2 log t
Na

+ va
Na

observe xat(t).
18: Insert xat(t) to the hybrid mechanism for arm at.
19: Nat = Nat + 1.
20: end if
21: end for

Algorithm 27 DP-UCB-INT

Input: Time horizon T , set of arms A = {1, . . . ,K}
Parameters: ε ∈ (0, 1], v ∈ (1, 1.5]; privacy rate.

1: f ←
⌈

1
ε

⌉
, Meana ← 0, sa ← 0, Na ← 0 ∀a ∈ A

2: for t← 1, . . . , T do
3: if t ≤ Kf then
4: play arm a = (t− 1) mod K + 1 and observe xa(t)
5: sa ← sa + xa(t), Na = Na + 1
6: else
7: for a ∈ A do
8: if Na mod f = 0 then
9: Meana ← sa

Na
+ Lap

(
0, 1

N
1−v/2
a

)
+
√

2 log t
Na

10: end if
11: end for
12: Pull arm at = argmaxaMeana and observe xa(t)
13: satt ← sat + xat(t), Nat = Nat + 1
14: end if
15: end for
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The algorithm DP-UCB-INT (27) uses Laplace noise to achieve differential pri-

vacy. The Laplace noise is computed using a privacy parameter accepted by the

algorithm. The expected cumulative regret of DP-UCB-INT is upper bounded by

∑

a:µa<µ∗

∆a

[
1

ε
+

8

∆2
a

log T + 4ζ(1.5)

]

where µa is the mean of the rewards for arm a, µ∗ is the optimal mean, ∆a = µ∗−µa
and ζ denotes the Riemann zeta function.

Having seen the relevant past work in this topic, let us see how the setting of

corrupt bandits can be utilised to achieve privacy preserving input.

10.3 Corrupt bandits for differential privacy

Following the conventional way, we too shall achieve differential privacy by em-

ploying a differentially private mechanism on the user feedback. Our solution for

differential privacy differs from the previous work on differential privacy in ban-

dits due to the placement of the differentially private mechanism. In our solution,

the differential private mechanism is placed outside learner’s control unlike the pre-

vious work. Thus, according to the classification introduced earlier, our solution

provides privacy preserving input whereas the previous work in bandits provided

privacy preserving output.

To understand the motivation for privacy preserving input, let us consider these

settings in the context of Internet advertising. An advertising system receives, as

input, feedback from the users which includes private information about them. The

advertising system employs a suitable bandit algorithm and selects the ads for the

users tailored to the feedback given by them. These selected ads are then given to

the advertisers as the output. In the setting of privacy preserving output, privacy is

maintained between the advertising system and the advertisers. In the parlance of

differential privacy, the advertising system is the data curator and the the advertiser

is the data receiver. Recall from section that, in private data analysis which is the goal

of differential privacy, the legitimate receiver is the same as the snooping adversary

and hence the receiver does not have access to privacy-compromising information.
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Advertiser User

Advertising
   system

   User 
feedbackSelected ads

output  input
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Collection of ads

   diff.
privacy

FIGURE 10.1: Internet advertising with privacy preserving output

Hence if the setting of privacy preserving output is used for the application of Inter-

net advertising, personal user information is protected from the advertisers. This is

illustrated in figure 10.1

Typically, advertising systems are established by leading social networks, web

browsers and other popular websites. Harper [2010] claim that “most websites and

ad networks do not ’sell’ information about their users. In targeted online advertis-

ing, the business model is to sell space to advertisers - giving them access to peo-

ple (“eyeballs") based on their demographics and interests. If an ad network sold

personal and contact info, it would undercut its advertising business and its own

profitability." However, despite the best of intentions by the corporations hosting

the advertising systems, personal user information stored at the advertising systems

can nonetheless be misused for malicious purpose. Indeed, Korolova [2010] note

that using Facebook’s advertising systems one can infer user age or sexual orienta-

tion, relationship status, political and religious affiliation, presence or absence of a

particular interest, as well as exact birthday. Kosinski et al. [2013] show that it is pos-

sible to accurately predict a range of highly sensitive personal attributes including:
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FIGURE 10.2: Internet advertising with privacy preserving input

sexual orientation, ethnicity, religious and political views, personality traits, intelli-

gence, happiness, use of addictive substances, parental separation, age, and gender

from easily accessible digital records of behaviour. Such possible breach of privacy

necessitates us to protect personal user information not only from the advertisers

but also from the advertising systems. The setting of privacy preserving input is

able to achieve this goal unlike the setting of privacy preserving output. The setting

of privacy preserving used in the application of Internet advertising is illustrated in

the figure 10.2.

Privacy preserving input has been used for data collection by Wang et al. [2016].

They used randomized response to perturb sensitive information before being col-

lected by an untrusted server so as to limit the server’s ability to learn with confi-

dence the sensitive information. We too shall use the corruption process as a mecha-

nism to provide differentially privacy. We next define a bandit feedback corruption

scheme able to provide (ε, δ)-differentially privacy.

Definition 10.2. ((ε, δ)-differentially private bandit feedback corruption scheme) A ban-

dit feedback corruption scheme g̃ is (ε, δ)-differentially private if for all reward sequences
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Rt1, . . . , Rt2 and R′t1 . . . , R
′
t2 that differ in at most one reward, and for all S ⊆ Range(g)

P[g̃(Rt1, . . . , Rt2) ∈ S] ≤ eε · P[g̃(R′t1, . . . , R
′
t2) ∈ S] + δ

If δ = 0, then g̃ is said to be ε-differentially private.

In the case, where corruption is done by randomized response, differential privacy

requires that

max
1≤a≤K

(p00(a)

p11(a)
,
p11(a)

p10(a)

)
≤ eε + δ

By ensuring the appropriate values for the parameters of randomized response,

users can can send differentially private feedback to the learner. The learner can

then use kl-UCB-CF or TS-CF to learn from such feedback. Since the algorithms

can only access differentially private input, using proposition 10.1 it follows that

the above process achieves differential privacy. In the next theorem, we provide an

upper bound on the resulting cumulative regret.

Corollary 10.1. The expected regret of kl-UCB-CF or TS-CF with (ε, δ)-differentially pri-

vate bandit feedback corruption scheme is O
(∑K

a=2

(
eε+δ+1
eε+δ−1

)2
log(T )

∆a

)
.

Proof. From corollary 9.2, we can see that to achieve lower expected regret, p00(a) +

p11(a) is to be maximized for all 1 ≤ a ≤ K. Using result 1 from [Wang et al., 2016, p.

3], we can state that, in order to achieve (ε, δ)-differential privacy while maximizing

p00(a) + p11(a),

Ma :=




0 1

0
eε+δ

1+eε+δ
1

1+eε+δ

1
1

1+eε+δ
eε+δ

1+eε+δ


 (10.1)

Substituting the values of p00(a) and p11(a) in the bound given by corollary 9.2 com-

pletes the proof.

In the next chapter, we provide the results which show the performance of kl-

UCB-CFand TS-CFon various experiments.
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Chapter 11

Empirical Evaluation

This chapter provides the results of the performance of KLUCBCF and TS-CF on

various experiments. In Section 11.1, we compare the performance of kl-UCB-CF

and TS-CFagainst that of the baseline algorithm which we shall introduce shortly. In

Section 11.2.1, we compare the performances of KLUCBCF and TS-CF over a period

of time. In Section 11.2.2, we compare them over varying corruption parameters.

Lastly, in Section 11.2.3, we examine the effect on regret while these algorithms are

used to provide certain levels of differential privacy.

Before delving into the experiments, we first consider a naive algorithm which

we call WRAPPER to be used as a baseline. The WRAPPER algorithm simply applies

the appropriate inverse corruption function to the empirical feedback values and

uses the result as a substitute for empirical reward. It then treats the corrupt ban-

dit problem as a classical MAB problem and solves it using of any classical MAB

algorithm as a black-box. Let CBA denote the MAB algorithm used. The CBA has

three subroutines: init(), decide() and feedback(). The init() subroutine sim-

ply clears its state. The decide() subroutine returns the next arm to play and the

set_feedback() subroutine provides the feedback to the algorithm.

Algorithm 28 WRAPPER for MAB with corrupted feedback (kl-UCB-CF

Input: A bandit model with a set of arms A := {1, . . . ,K} arms with unknown
reward means µ1, . . . , µK and unknown feedback means λ1, . . . , λK and, strictly
monotonic and continuous corruption functions g1, . . . , gk

1: CBA.init()
2: for t← 1, . . . do
3: a← CBA.decide()
4: Pull arm a and observe feedback ya(t).
5: CBA.set_feedback(g−1a (ya(t)))
6: end for
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It is easy too see that this naive algorithm won’t work for the corruption func-

tions in which E(g−1
. (y)) 6= g−1

. (E(y)). Even while using corruption functions such

that E(g−1
. (y)) = g−1

. (E(y)), this algorithm gives worse performance than the so-

phisticated algorithms provided below. This can be verified below. The inferior

performance of WRAPPER is because it doesn’t take into account the variance of the

sequence generated by applying inverse corruption function to the empirical feed-

back values.

For our experiments, we use 6 scenarios with Bernoulli distributions for arm

rewards. The mean arm rewards for all the considered scenarios are enlisted in table

11.1.

TABLE 11.1: Bernoulli mean arm rewards for experimental scenarios.

Scenario
Arms

1 2 3 4 5 6 7 8 9 10
1 0.55 0.45

2 0.9 0.6

3 0.9 0.8

4 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

5 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6

6 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Randomized response was employed to corrupt the feedback in all the experi-

ments. First we demonstrate the performance superiority of kl-UCB-CF and TS-CF

over the naive WRAPPER algorithm.

11.1 Comparison of dedicated corrupt bandit algorithms with

WRAPPER

We compare the performance of kl-UCB-CF and TS-CF against the instantiations

of the WRAPPER algorithm with given kl-UCB and TS given as blackbox subrou-

tines respectively. For the optimal arm, p00 = p11 = 0.6 and for all the other arms,

both p00 and p11 were set to 0.9. Each experiment was repeated 1000 times. Figures

11.1, 11.2 and 11.3 show the average regret plots for kl-UCB-CF , TS-CF and their

corresponding WRAPPER instantiations.
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(A) Regret plots for scenario 1
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(B) Regret plots for scenario 2

FIGURE 11.1: Regret plots comparing dedicated corrupt bandit algo-
rithms with WRAPPER
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FIGURE 11.2: Regret plots comparing dedicated corrupt bandit algo-
rithms with WRAPPER
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(A) Regret plots for scenario 5

102 103 104 105

Time

100

101

102

103

104

A
v
e
ra

g
e
 r

e
g
re

t

TS-CF
WR with TS
kl-UCB-CF
WR with kl-UCB-CF
LB

(B) Regret plots for scenario 6

FIGURE 11.3: Regret plots comparing dedicated corrupt bandit algo-
rithms with WRAPPER
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11.2 Comparison between kl-UCB-CF, UCB-CF and TS-CF

We now demonstrate the empirical performance of kl-UCB-CF, UCB-CF and TS-

CF. To demonstrate the inability of the bandit algorithms to deal with corrupted

feedback, we also consider kl-UCB, UCB1, and TS. These algorithms solve the cor-

rupted bandit problem viewing the feedback as true rewards as is the assumption

for classical MAB problem.

Note that, when all the arms are corrupted by the same increasing function, kl-

UCB-CF, UCB-CF, and TS-CF are equivalent to kl-UCB, UCB1, and TS, respec-

tively. We investigate more complex situations having varying level of corruption

across the arms, for which the classical bandit algorithms may perform poorly. We

give the plots for each of the 6 scenarios for three kinds of comparisons: compari-

son over time, comparison with varying corruption paramters and comparions with

varying level of differetial privacy.

11.2.1 Comparison over a period of time

Here, we aim to see the effect of time over the cumulative regret of the considered

algorithms. We keep the corruption parameters same across time. For the optimal

arm, p00 = p11 = 0.6 and for all the other arms, both p00 and p11 were set to 0.9. We

vary time to 106 Each experiment was repeated 1000 times and the average regret

is plotted against time in Figures 11.4, 11.5 and 11.6 for all the scenarios given in

the Table 11.1. In Figure 11.4a, we include the regret curves for the traditional ban-

dit algorithms (treating feedback as reward) as well to illustrate their comparative

performance. The performance superiority of the dedicated algorithms for corrupt

bandits is more pronounced in the scenarios in which the corruption causes the best

arm to be switched (or at least to be no longer unique). Hence, to have more legible

figures we only display the regret curves for kl-UCB-CF TS-CF and UCB-CF for

the rest of the scenarios.



11.2. Comparison between kl-UCB-CF, UCB-CF and TS-CF 131

100 101 102 103 104 105 106

time horizon

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e 

Re
gr

et

UCB
klUCB
TS
UCB-CF
klUCB-CF
TS-CF
LB

(A) Regret plots for scenario 1
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FIGURE 11.4: Regret plots for comparison over a period of time
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FIGURE 11.5: Regret plots for comparison over a period of time
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(A) Regret plots for scenario 5
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FIGURE 11.6: Regret plots for comparison over a period of time
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11.2.2 Comparison with varying corruption parameters

Here, we aim to see the effect of corruption over the cumulative regret of the consid-

ered algorithms. We fix the time horizon at 105 for all the comparisons. For all the

arms, the corruption parameters (p = p00 = p11) vary from 0 to 1. Each experiment

was repeated 1000 times and the average cumulative regret was plotted against the

value of corruption parameters in Figures 11.7, 11.8 and 11.9 for all the scenarios

given in the Table 11.1.

These experiments also provide an opportunity to test a boundary case where

p00= p11 = 0.5. Recall from Theorem 8.2 that the lower bound on the cumulative

regret for any uniformly efficient algorithm adheres to the following equation

lim inf
T→∞

CRegretT (ν)

log(T )
≥

K∑

a=2

∆a

d (λa, ga(µ1))

where d(x, y) = KL(B(x),B(y)). When p00= p11 = 0.5 for all the arms, λa = ga(µ1)

for every arm a since,

λa = 0.5(1− µa) + 0.5µa = 0.5 and ga(µ1) = 0.5(1− µ1) + 0.5µ1 = 0.5

So as d (λa, ga(µ1) is 0 in this case, the lower bound is undefined. Intuitively the

undefined value for the lower bound at this boundary case follows from the fact that

all the discriminating information for the arms is lost since the mean feedback for all

of them is the same i.e. 0.5. Hence no uniformly efficient algorithm is able to learn

in this case.
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FIGURE 11.7: Regret plots with varying corruption parameters
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(A) Regret plots for scenario 3
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FIGURE 11.8: Regret plots with varying corruption parameters
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(A) Regret plots for scenario 5
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FIGURE 11.9: Regret plots with varying corruption parameters

11.2.3 Comparison with varying level of differential privacy

We vary the differential privacy parameters and examine the effect on the regret of

kl-UCB-CF and TS-CF. We kept δ = 0 and chose ε from the set {1, 2, 4, 8, 16, 32}. The

corruption parameters are set by substituting the values of ε and δ in Equation (10.1).

The time horizon was fixed to 105 and the experiment was repeated 1000 times. The

corresponding curves for average regret can be seen in Figures 11.10, 11.11 and 11.12.

UB indicates the upper bound given by Corollary 10.1.

The regret for both the algorithms decreases with increasing ε. This behavior is

expected since, lower the value of ε, more stringent is the level of differential privacy.

The regret decreases rapidly initially as an increase in ε leads to massive drop in the

imposed level of differential privacy and consequently the corruption parameters set
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(A) Regret plots for scenario 1
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(B) Regret plots for scenario 2

FIGURE 11.10: Regret plots with varying level of differential privacy
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(A) Regret plots for scenario 3
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(B) Regret plots for scenario 4

FIGURE 11.11: Regret plots with varying level of differential privacy
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(A) Regret plots for scenario 5

1 2 4 8 16 32
ε

0

20

40

60

80

100

120

140

160

180

Av
er

ag
e 

re
gr

et

TS-CF
kl-UCB-CF
UB

(B) Regret plots for scenario 6

FIGURE 11.12: Regret plots with varying level of differential privacy
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by Equation (10.1) are adjusted. At higher values of ε, the regret plateaus as a change

in ε causes an infinitesimal change in the required level of differential privacy.
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Chapter 12

Corrupt Bandits as Partial

Monitoring game

In this short chapter, we shall see how the Bernoulli corrupt bandits can be formu-

lated as a partial monitoring game ((detailed in Section 1.5)).

To recapitulate, a partial monitoring game (PM) is defined by a tuple (N ,M ,Σ,G,H)

whereN ,M , Σ, G andH are the action set, the outcome set, the feedback alphabet,

the reward function and the feedback function respectively. To each action I ∈ N

and outcome J ∈M , the reward function G associates a real-valued gain G(I, J) and

the feedback functionH associates a feedback symbolH(I, J) ∈ Σ.

For the binary MAB problem with corrupted feedback, a partial monitoring for-

mulation is provided with an action set N = the set of arms, an alphabet Σ = {0, 1}

and a set of environment outcomes which are vectors m ∈ M = x × y where x is

the reward vector containing the rewards of all the K arms and y is the feedback

vector containing the feedbacks of all the K arms. When the environment selects an

outcome and the learner selects an arm a ∈N , reward and feedback are as follows:

G(a, (x,y)) = xa

H(a, (x,y)) = ya

For stochastic corrupt bandits, Eya = ga(Exa) and for adversarial corrupt bandits

ŷa(T ) = ga(x̂a(T )) where ŷa(T ) is the mean empirical feedback and x̂a(T ) is the

mean empirical reward at horizon T .
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FIGURE 12.1: Gain matrix G and feedback matrix H for a 2-armed
binary MAB problem with corrupted feedback resulting in 2 non-

duplicate actions and 16 possible outcomes.
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FIGURE 12.2: Signal matrices for the same problem as in Figure 12.1.

To illustrate this formalism, we encode a 2-armed binary MAB problem with cor-

rupted feedback as a PM problem in Figure 12.1. The first element of every column

is of the form x1x2y1y2 where xa and ya are reward and feedback for the ath arm.

The first element of every row is of the form d where d denotes the arm being picked

by the learner. Figure 12.2 shows the signal matrix for both the actions. Recall from

definition 1.5 that, the signal matrix for an action is the incidence matrix of symbols

and outcomes.

As shown above, the formulation of aK-armed Bernoulli corrupt bandit problem

as a partial monitoring game requires matrices of dimension K × 2K for gain matrix

and feedback matrix. Even for moderate values ofK, this requirement is impractical.

This brings us to the end of this chapter. Next, we proceed to the appendices

where we present the detailed proofs for various theorems stated earlier.
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Appendix B

Proof for Theorem 9.1

This proof proceeds along the lines of the proof for the sample complexity for the

median elimination algorithm given in Even-Dar et al. [2006]. Acorrding to our as-

sumption, g. is (1/σ)-Lipschitz i.e.

|g.(v1)− g.(v2)| ≤ (v1 − v2)/σ (B.1)

Furthermore, since g. is differentiable and (1/σ)-Lipschitz, g−1
. is σ-Lipschitz

|g−1
. (v1)− g−1

. (v2)| ≤ σ(v1 − v2) (B.2)

First we provide a Lemma which states that the expected reward of the best arm

in Sl drops by at most ε.

Lemma B.1. For every phase l,

P[max
a∈Sl

µa ≤ max
b∈Sl+1

µb + εl] ≥ 1− δl

Proof. Without loss of generality, let us assume l = 1 while proving this lemma.

Since S1 = [K], the best arm in S1 is in fact the optimal arm 1. Let E1 be the event

that during the first round, the empirical estimate of the best arm is pessimistic.

E1 := f̂1
1 < µ1 − ε1/2 ≡ g−1

1 (λ̂1
1) < g−1

1 (λ1)− ε1/2

Using (B.2), we can write that,

|g−1
1 (λ1)− g−1

1 (λ̂1
1)| ≤ σ(λ1 − λ̂1

1)
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Therefore E1 is equivalent to

E1 : λ1 − λ̂1
1 > ε1/(2σ)

Using Hoeffding’s bound, we have

P[E1] ≤ δ1/3 (B.3)

Let a be an arm which is not ε1 optimal i.e.

µ1 − µa > ε1 (B.4)

let us assume that event E1 does not hold.

¬E1 ≡ f̂1
1 ≥ µ1 − ε1/2

≡ f̂1
1 > µa + ε1/2 (using (B.4))

The probability of the arm a being empirically better than the optimal arm when

event E1 does not hold is given by

P[f̂1
a > f̂1

1 | ¬E1] = P[f̂1
a > µa + ε1/2 | ¬E1]

≤ P[λ̂1
a − λa > ε1/(2σ) | ¬E1] (using B.2)

≤ δ1/3 (using Hoeffding’s bound)

Let #bad be the number of arms that are not ε1-optimal but are empirically better

than the best arm.

E[#bad | ¬E1] ≤ Kδ1/3

P[#bad ≥ K/2 | ¬E1] ≤ Kδ1/3

K/2
= 2δ1/3 using Markov’s inequality (B.5)

Therefore the failure probability i.e. the probability that every arm bring selected for

round 2 is not ε1-optimal which is equivalent to P[#bad ≥ K/2] is bounded by δ.
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Lemma B.2. The sample complexity of ME-CF is O
(
(Kσ2/ε2) log(1/δ)

)

Proof. Let nl = |Sl|. Initially we have n1 = K, ε1 = ε/4 and δ1 = δ/2. Then,

nl = nl−1/2 = K/2l−1

εl =
3

4
εl−1 =

(
3

4

)l−1

ε/4 and,

δl = δl−1/2 = δ/2l

The total number of arm samples are given by,

log2(K)∑

l=1

nl log (3/δl)

(εl/2σ)2
= 4σ2

log2(K)∑

l=1

K/2l−1 log (2l3/δ)

((3
4)l−1ε/4)2

= 64σ2

log2(K)∑

l=1

K

(
8

9

)l−1( log(1/δ) + log (3) + l log (2)

ε2

)

≤ 64
Kσ2 log (1/δ)

ε2

∞∑

l=1

(
8

9

)l−1 (
lC + C ′

)

= O

(
Kσ2

ε2
log

(
1

δ

))

Now we can prove Theorem 9.1.

Proof. From Lemma B.1, we have that during round l, the optimal reward of the

surviving arms is reduced by at-most εl with failure probability δl. Therefore the

total error is bounded by
∑log2K

l=1 εl = ε and the probability of failure is bounded by
∑log2K

l=1 δl = δ. Therefore 21 is (ε, δ)-PAC. By Lemma B.2, we have that the sample

complexity of 21 is bounded by O
(
Kσ2

ε2
log
(

1
δ

))
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Appendix C

Proof for Theorem 9.2

This proof closely follows the proof for the upper bound on the sample complexity

of exponential-gap elimination given in Karnin et al. [2013]

The following lemma proves that with high probability, the best arm is not elim-

inated by the algorithm EGE-CF.

Lemma C.1. For any round l, f̂ l1 ≥ f̂ lal − εl, with probability at least 1− δ/5.

Proof. Consider the event |f̂ la − µa| ≥ εl/2. Using (B.2), |f̂ la − µa| ≥ εl/2 ≡ λ̂la − λa ≥

εl/(2σ).

∴ P[|f̂ la − µa| ≥ εl/2] = P[λ̂la − λa ≥ εl/(2σ)]

≤ exp(−2(εl/2σ)2(2/(εl/σ)2) log (1/δl))

= δl (C.1)

Assume that, the optimal arm was not eliminated till the end of round l−1. Consider

the arm al returned by the ME-CF in round l. Since 1 is the optimal arm, µal ≤ µ1

Using (C.1),

P[f̂ lal < µal + εl/2] ≥ 1− δl

P[f̂ lal < µ1 + εl/2] ≥ 1− δl ∵ µal ≤ µ1

P[f̂ lal − εl/2 ≥ µ1] < δl (C.2)

Using (C.1), we can also write that,

P[µ1 < f̂ l1 + εl/2] ≥ 1− δl



144 Appendix C. Proof for Theorem 9.2

P[µ1 ≥ f̂ l1 + εl/2] < δl

P[f̂ lal − εl/2 ≥ f̂
l
1 + εl/2] < 2δl using (C.2)

P[f̂ l1 < f̂ lal − εl] < 2δl

Using union bound, we can bound the error probability as follows,

∞∑

l=1

2δl ≤
∞∑

l=1

2δ/(50l2) ≤ δ/5

Recall that ∆a = µ1 − µa. For all 0 ≤ s ≤
⌈
log2

1
minKa=1 ∆a

⌉
,let us define As as

follows:

As := {a ∈ [K] : 2−s ≤ ∆a ≤ 2−s+1} (C.3)

We denote the set of arms from As surviving after round l by Sl,s = Sl ∩ As for all

l, s ≥ 0.

The following lemma proves that from round s onwards, a constant fraction of

the surviving arms of the set As is eliminated in each round.

Lemma C.2. Assume that the optimal arm is not eliminated by EGE-CF till the start of

round l, then for all 1 ≤ s ≤ l,

P
[
|Sl+1,s| ≤

1

8
|Sl,s|

]
≥ 1− 4δ/5

Proof. Consider that the optimal arm reached round l. From Theorem 9.1,

P[µ1 − εl/2 > µal ] < δl

Using (C.1), we can write that,

P[µal ≥ f̂ lal + εl/2] ≤ δl

Combining the above two inequalities, we can write that,

P[f̂ lal ≤ µ1 − εl] ≤ 2δl (C.4)
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Consider a round l ≥ s and a sub-optimal arm a ∈ As with

∆a ≥ 2−s ≥ 2−l = 4εl (C.5)

let us compute the probability of arm a, surviving round l i.e. P[f̂ la ≥ f̂ lal − εl]. For

the arm a to survive round l, either empirical estimate of a has to be optimistic i.e.

f̂ la ≥ µa + εl or f̂ lal ≤ µ1 − ε1. Since otherwise,

f̂ la < µa + εl

< µ1 −∆a + 2εl

≤ µ1 − 4εl + 2εl (using (C.5))

< f̂ lal − εl

Hence we can rewrite the probability of arm a, surviving round l as,

P[f̂ la ≥ f̂ lal − εl] ≤ P[f̂ la ≥ µa + εl] + P[f̂ lal ≤ µ1 − ε1]

≤ 3δl (using (C.4) and (C.1)) (C.6)

Therefore,

E [Sl+1,s] ≤ 3δl · E [Sl,s]

Applying Markov’s inequality,

P
[
|Sl+1,s| >

1

8
|Sl,s|

]
<

3δl|Sl,s|
1
8 [Sl,s]

= 24δl

We can now prove the lemma by bounding the probability of failure using union

bound as follows
∞∑

l=1

r∑

s=1

24δl ≤
∞∑

l=1

24δ/(50r2) < 4δ/5

Lemma C.3. With probability at least 1− δ, the total number of times that an arm from As

is sampled in line 6 is O(σ2 · 4s · |As| · log (s/δ)) for all s.
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Proof. Let Ns denote the total number of times an arm from As is pulled. By lemma

C.2, if the algorithm is successful, we have

Ns =

∞∑

l=1

|As| · n̂l

≤
s−1∑

l=1

|As| · n̂l +

∞∑

l=s

|Sl,s| · n̂l

≤ |As|
s−1∑

l=1

n̂l + |As|
∞∑

l=0

(
1

8

)l+1

n̂l+s

≤ |As| · 32σ2
s−1∑

l=1

4l log

(
50l3

δ

)
+ |As| · 4s+1σ2

∞∑

l=0

2−l log

(
50(l + s)3

δ

)

= O(σ2 · 4s · |As| · log (s/δ))

We are now ready to prove Theorem 9.2

Proof. Lemma C.1 proves that the optimal arm is never eliminated with probability

at least 1 − δ/5 and lemma C.2 implies that all the sub-optimal arms are eventu-

ally eliminated with probability at least 1 − 4δ/5. Hence using union bound, the

algorithm stops at some point and returns the optimal arm with probability 1− δ.

Now we turn our attention to computing the sample complexity. First let us

count the number of pulls by the subroutine ME-CF. Note that the invocation of ME-

CF in round l results in O
(
|Sl|·σ2

(εl/2)2
log
(

1
δl

))
= O(|Sl| · n̂l). Lastly, let us compute the

number of pulls by the algorithm on line 6. Lemma C.3 asserts that, if the algorithm

is successful, the number of times it pulls an arm fromAs isO(σ2 ·4s · |As| · log (s/δ)).

From the definition of As(C.3), we can write that 2s < 2/∆a for all a ∈ As.

Ns = O(σ2 · 4s · |As| · log (s/δ)) = O

(
σ2
∑

a∈As

1

∆2
a

log

(
1

δ
log

1

∆a

))

By summing over all s, we obtain the sample complexity of the algorithm as

O

(
σ2

K∑

a=2

1

∆2
a

log

(
1

δ
log

1

∆a

))
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Appendix D

Proof for Theorem 9.3

To get an upper bound on the expected regret of this algorithm, we first bound

E[Na(t)] for all the non-optimal arms a. ât := the arm pulled by the algorithm at

time t. Note that, we assume 1 to be the optimal arm.

E(Na(T )) = 1 +
T−1∑

t=K

P(ât+1 = a)

Depending upon if ga and g1 are increasing or decreasing there are four possible

sub-cases:

• Both g1 and ga are increasing.

(ât+1 = a)

⊆ (u1(t) < g1(µ1)) ∪ (ât+1 = a, u1(t) ≥ g1(µ1))

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
1 (u1(t)) ≥ µ1) since g−1

1 is increasing

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
a (ua(t)) ≥ µ1) since Indexa > Index1

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, ua(t) ≥ ga(µ1)) since ga is increasing

∴ E(Na(T )) ≤ 1 +

T−1∑

t=K

P(u1(t) < g1(µ1)) +

T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1))

(D.1)

• g1 is decreasing and ga is increasing.

(ât+1 = a)

⊆ (`1(t) > g1(µ1)) ∪ (ât+1 = a, `1(t) ≤ g1(µ1))
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= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
1 (`1(t)) ≥ µ1) since g1 is decreasing

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
a (ua(t)) ≥ µ1) since Indexa > Index1

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, ua(t) ≥ ga(µ1)) since ga is increasing

∴ E(Na(T )) ≤ 1 +

T−1∑

t=K

P(`1(t) > g1(µ1)) +

T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1))

(D.2)

• g1 is increasing and ga is decreasing.

(ât+1 = a)

⊆ (u1(t) < g1(µ1)) ∪ (ât+1 = a, u1(t) ≥ g1(µ1))

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
1 (u1(t)) ≥ µ1) since g1 is increasing

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, g−1
a (`a(t)) ≥ µ1) since Indexa > Index1

= (u1(t) < g1(µ1)) ∪ (ât+1 = a, `a(t) ≤ ga(µ1)) since ga is decreasing

∴ E(Na(T )) ≤ 1 +

T−1∑

t=K

P(u1(t) < g1(µ1)) +

T−1∑

t=K

P(ât+1 = a, `a(t) ≤ ga(µ1))

(D.3)

• g1 is decreasing and ga is decreasing.

(ât+1 = a)

⊆ (`1(t) > g1(µ1)) ∪ (ât+1 = a, `1(t) ≤ g1(µ1))

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
1 (`1(t)) ≥ µ1) since g1 is decreasing

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, g−1
a (`a(t)) ≥ µ1) since Indexa > Index1

= (`1(t) > g1(µ1)) ∪ (ât+1 = a, `a(t) ≤ ga(µ1)) since ga is decreasing

∴ E(Na(T )) ≤ 1 +

T−1∑

t=K

P(`1(t) > g1(µ1)) +

T−1∑

t=K

P(ât+1 = a, `a(t) ≤ ga(µ1))

(D.4)

Let λ̂a,s := observed mean feedback from arm a after s samples.
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We first upper bound the two sums

T−1∑

t=K

P(u1(t) < g1(µ1)) and
T−1∑

t=K

P(`1(t) > g1(µ1)) (D.5)

using that `1(t) and u1(t) are respectively lower and upper confidence bound on

g1(µ1). Indeed,

P(u1(t) < g1(µ1)) ≤ P
(
g1(µ1) > λ̂1(t) and N1(t)d(λ̂1(t), g1(µ1)) ≥ f(t)

)

≤ P
(
∃s ∈ {1, . . . , t} : g1(µ1) > λ̂1,s and sd(λ̂1,s, g1(µ1)) ≥ f(t)

)

≤ min{1, edf(t) log tee−f(t)},

where the upper bound follows from Lemma 2 in Cappé et al. [2013], and the fact

that λ̂1,s is the empirical mean of s Bernoulli samples with mean g1(µ1). Similarly,

one has

P(`1(t) > g1(µ1)) ≤ min{1, edf(t) log tee−f(t)}.

As f(t) := log t+ 3(log log t) for t ≥ 3,

edf(t) log te ≤ 4e log2 t,

the two quantities in (D.5) can be upper bounded by

1 +

T−1∑

t=3

edf(t) log tee−f(t) ≤ 1 +

T−1∑

t=3

4e · log2 t · e−f(t)

= 1 + 4e

T−1∑

t=3

1

t log t

≤ 4e
( 1

3 log 3
+

∫ T−1

3

1

t log t
dt
)

≤ 4e
( 1

3 log 3
+ log (log (T − 1))− log (log 3)

)

≤ 3 + 4e log (log T ).
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This proves that

T−1∑

t=K

P(u1(t) < g1(µ1)) ≤ 3 + 4e log (log T ) ∈ o(log T ) (D.6)

T−1∑

t=K

P(`1(t) > g1(µ1)) ≤ 3 + 4e log (log T ) ∈ o(log T ) (D.7)

We now turn our attention to two other sums involved in the upper bounds we

gave for E(Na(t)). We introduce the notation d+(x, y) = d(x, y)1(x<y) and d−(x, y) =

d(x, y)1(x>y), where 1 is the indicator function. So we can write, when ga is increas-

ing,

T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1))

= E

[
T−1∑

t=K

1ât+1=a1Na(t)·d+(λ̂i,Na(t),ga(µ1))≤f(t)

]

≤ E

[
T−1∑

t=K

t∑

s=1

1ât+1=a1Na(t)=s1s·d+(λ̂a,s,ga(µ1))≤f(T )

]

= E
[ T−1∑

s=1

1s·d+(λ̂a,s,ga(µ1))≤f(T )

T−1∑

s=1

1ât+1=a1Na(t)=s

︸ ︷︷ ︸
≤1

]
.

One obtains, when ga is increasing,

T−1∑

t=K

P(ât+1 = a, ua(t) ≥ ga(µ1)) ≤
T−1∑

s=1

P
(
s · d+(λ̂a,s, ga(µ1)) ≤ f(T )

)
. (D.8)

Using similar arguments, one can show that when ga is decreasing,

T−1∑

t=K

P(ât+1 = a, `a(t) ≤ ga(µ1)) ≤
T−1∑

s=1

P
(
s · d−(λ̂a,s, ga(µ1)) ≤ f(T )

)
. (D.9)

The quantity in the right-hand side of (D.8) is upper bounded in Appendix A.2. of

Cappé et al. [2013] by

f(T )

d(λa, ga(µ1)
+
√

2π

√
(d′(λa, ga(µ1)))2

(d(λa, ga(µ1)))3

√
f(T ) + 2

(
d′(λa, ga(µ1))

d(λa, ga(µ1))

)2

+ 1. (D.10)
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For the second term, noting that d−(x, y) = d+(1− x, 1− y), one has

P
(
s · d−(λ̂a,s, ga(µ1)) ≤ f(T )

)
= P

(
s · d+(1− λ̂a,s, 1− ga(µ1)) ≤ f(T )

)

= P
(
s · d+(µ̂a,s, 1− ga(µ1)) ≤ f(T )

)
,

where µ̂a,s := 1− λ̂a,s, is the empirical mean of s observations of a Bernoulli random

variable with mean 1 − λa < 1 − ga(µ1). Hence, the analysis of Cappé et al. [2013]

can be applied, and using that d(1−λa, 1− ga(µ1)) = d(λa, ga(µ1)) and d′(1−λa, 1−

ga(µ1)) = −d′(λa, ga(µ1)), the left hand side of (D.9) can also be upper bound by

(D.10).

Combining inequalities (D.6), (D.7) and (D.8),(D.9), (D.10) with the initial decom-

position of E[Na(T )] yield in all cases

E[Na(T )] ≤ log(T )

d(λa, ga(µ1))
+
√

2π

√
d′(λa, ga(µ1))2

d(λa, ga(µ1))3

√
log(T ) + 3 log log(T )

+

(
4e+

3

d(λa, ga(µ1)

)
log log(T ) + 2

(
d′(λa, ga(µ1)

d(λa, ga(µ1)

)2

+ 4.

Hence the regret of kl-UCB-CF is upper bounded by

K∑

a=2

∆a

[ log(T )

Da
+
√

2π

√
(D′a)2

D3
a

√
log(T ) + 3 log log(T )+

(
4e+

3

Da

)
log log(T )+2

(
D′a
Da

)2

+4
]

where Da := d(λa, ga(µ1)) and D′a := d′(λa, ga(µ1)), which concludes the proof.
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Appendix E

Proof for Theorem 9.4

Assume 1 to be the optimal arm. For each arm non-optimal arm a, choose two

thresholds ua and wa such that λa < ua < wa < ga(µ1) if ga is increasing and

λa > ua > wa > ga(µ1) if ga is decreasing. Define Eλa (t) as the event {g−1
a (λ̂a(t)) ≤

g−1
a (ua)} and Eθa(t) as the event {g−1

a (θa(t)) ≤ g−1
a (wa)}. Define Ft as the history of

arm selections and received feedbacks including time t and recall that TS-CF selects

the arm as follows,

ât+1 = argmax
a

θa(t)

, where θa(t) is a sample from the posterior distribution on arm a after t observations.

Define pa,t := P(g−1
1 (θ1(t)) > g−1

a (wa) | Ft).

We start from the following decomposition.

E[Na(T )] =
T−1∑

t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +

T−1∑

t=0

P(ât+1 = a,Eλa (t), Eθa(t))

+
T−1∑

t=0

P(ât+1 = a,Eλa (t))

Below are the lemmas that permit us to bound these three terms. These results gen-

eralize to the corrupted setting the main steps of the analysis of Thompson Sampling

by Agrawal and Goyal [2013]. Their proof borrows a lot from that of the correspond-

ing lemmas in this paper, with some technicalities that arise from the fact that g1 and

ga may be either increasing or decreasing.

Lemma 9.1. P(ât+1 = a,Eθa(t), Eλa (t) | Ft) ≤ (1−pa,t)
pa,t

P(ât+1 = 1, Eθa(t), Eλa (t) | Ft).
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Proof. Assume that Eλa (t) is true (otherwise the lemma holds trivially because the

left hand size is 0). Hence, it is sufficient to prove that,

P(ât+1 = a | Eθa(t),Ft) ≤
(1− pa,t)
pa,t

P(ât+1 = 1 | Eθa(t),Ft))

Define Ma(t) the event in which the index of arm a at time t is the largest among

those of all suboptimal arms: Ma(t) :=
{
g−1
a (θa(t)) ≥ g−1

j (θj(t)),∀j 6= 1
}

.

P(ât+1 = 1 | Eθa(t),Ft))

≥ P(ât+1 = 1,Ma(t) | Eθa(t),Ft))

= P(Ma(t) | Eθa(t),Ft)) · P(ât+1 = 1 |Ma(t), E
θ
a(t),Ft)) (E.1)

Now, given Ma(t) and Eθa(t) hold,

g−1
j (θj(t)) ≤ g−1

a (θa(t)) ≤ g−1
a (wa) ∀j 6= a, j 6= 1

So,

P(ât+1 = 1 |Ma(t), E
θ
a(t),Ft) ≥ P(g−1

1 (θ1(t)) > g−1
a (wa) |Ma(t), E

θ
a(t),Ft)

= P(g−1
1 (θ1(t)) > g−1

a (wa) | Ft)

= pa,t (E.2)

From inequalities (E.1) and (E.2),

P(ât+1 = 1 | Eθa(t),Ft) ≥ pa,t · P(Ma(t) | Eθa(t),Ft) (E.3)

Now, let us consider the left hand side of the inequality. The fact that Eθa(t) holds

and ât+1 = a implies that g−1
1 (θ1(t)) < g−1

a (θa(t)) < g−1
a (wa). Hence

P(ât+1 = a | Eθa(t),Ft)

≤ P
(
g−1

1 (θ1(t)) ≤ g−1
a (wa), g

−1
a (θa(t)) ≥ g−1

j (θj(t)),∀j 6= 1 | Eθa(t),Ft
)

= P
(
g−1

1 (θ1(t)) ≤ g−1
a (wa) | Ft−1

)
· P
(
g−1
a (θa(t)) ≥ g−1

j (θj(t)), ∀j 6= 1 | Eθa(t),Ft
)
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= (1− pa,t) · P(Ma(t) | Eθa(t),Ft) (E.4)

From inequalities (E.3) and (E.4),

P(ât+1 = a | Eθa(t),Ft) ≤
(1− pa,t)
pa,t

P(ât+1 = 1 | Eθa(t),Ft)

Lemma 9.2. When ga is increasing (resp. decreasing), for any u′a ∈ (ua, wa) (resp. (wa, ua)),

when T is large enough,

T−1∑

t=0

P
(
ât+1 = a,Eθa(t), Eλa (t)

)
≤ log(T )

d(u′a, wa)
+ 1.

Proof. When ga is increasing, the application of Lemma 3 in Agrawal and Goyal

[2013] directly yields

T−1∑

t=0

P
(
ât+1 = a,Eθa(t), Eλa (t)

)
≤ log T

d(ua, wa)
+ 1.

The proof is based on the use of deviation inequalities and a link between the Beta

and Binomial c.d.f. that shall also be useful in the decreasing case, that we handle

now (using slightly different arguments).

Fact E.1.

F betaα,β (w) = 1− FBα+β−1,w(α− 1)

Note that for decreasing ga, one has Eθa(t) = {θa(t) ≤ wa} and Eλa (t) = {λ̂a(t) >

ua}. Fix u′a such that wa < u′a < ua and let L′a(T ) = log(T )
d(u′a,wa) .

T−1∑

t=0

P
(
ât+1 = a, λ̂a(t) > ua, θa(t) ≤ wa

)

≤ log(T )

d(u′a, wa)
+
T−1∑

t=0

P
(
ât+1 = a,Na(t) ≤ L′a(T ), θa(t) ≤ wa, λ̂a(t) > ua

)

≤ log(T )

d(u′a, wa)
+ E

T−1∑

t=0

t∑

s=L′a(T )

1(ât+1=a,Na(t)=s,θa(t)≤wa,λ̂a(t)>ua)
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=
log(T )

d(u′a, wa)
+ E

T−1∑

t=0

t∑

s=L′a(T )

1(ât+1=a,Na(t)=s,λ̂a(t)>ua)P (θa(t) ≤ wa | Ft)

=
log(T )

d(u′a, wa)
+ E

T−1∑

t=0

t∑

s=L′a(T )

1(ât+1=a,Na(t)=s,λ̂a(t)>ua)F
beta
(sλ̂a(t)+1,s−sλ̂a(t)+1)

(wa)

=
log(T )

d(u′a, wa)
+ E

T−1∑

t=0

t∑

s=L′a(T )

1(ât+1=a,Na(t)=s,λ̂a(t)>ua)

(
1− FB(s+1,wa)(sλ̂a(t))

)

≤ log(T )

d(u′a, wa)
+ E

T−1∑

t=0

t∑

s=L′a(T )

1(ât+1=a,Na(t)=s,λ̂a(t)>ua)

(
1− FB(s+1,wa)(sua)

)

︸ ︷︷ ︸
As

Introducing (Xk) an i.i.d. sequence drawn from Bernoulli of mean wa, term As can

be written, for any s, .

As = P

(
s+1∑

k=1

Xk ≥ uas
)
≤ P

(
s∑

k=1

Xk ≥ uas− 1

)
= P

(
1

s

s∑

k=1

Xk ≥ ua −
1

s

)

≤ exp (−sd (ua − 1/s, wa)) ≤ exp

(
− log(T )

d(ua − 1/s, wa)

d(u′a, wa)

)
≤ 1

T
,

for large enough T , and s larger than L′a(T ) (as it holds that d(ua − 1/s, wa) ≥

d(u′a, wa)). Finally, for T large enough,

T∑

t=1

P
(
ât = a, λ̂a(t) ≥ ua, θa(t) ≤ wa

)

≤ log(T )

d(u′a, wa)
+

T−1∑

s=0

1

T
E

T∑

t=s

1(ât+1=a,Na(t)=s)

︸ ︷︷ ︸
≤1

≤ log(T )

d(u′a, wa)
+

T∑

t=1

1

T
=

log(T )

d(u′a, wa)
+ 1.

Lemma 9.3.
∑T−1

t=0 P
(
ât+1 = a,Eλa (t)

)
≤ 1 + 1

d(ua,λa) .

Proof. This result follows from the application of Chernoff bound for the concen-

tration of λ̂a(t). When ga is increasing, it follows directly from the application of

Lemma 2 in Agrawal and Goyal [2013], hence we write the proof in the decreasing
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case only, were we shall justify that for ua < λa,

T−1∑

t=0

P
(
ât+1, λ̂a(t) < ua

)
≤ 1

d(ua, λa)
+ 1.

Using λ̂a,s to denote the empirical mean of the s first observations from the feedback

of arm a,

T−1∑

t=0

P
(
ât+1, λ̂a(t) < ua

)
= E

[
T−1∑

t=0

t∑

s=0

1(ât+1=a,Na(t)=s)1(λ̂a,s<ua)

]

= E
[ T∑

s=0

1(λ̂a,s<ua)

T∑

t=s

1(ât+1=a,Na(t)=s)

︸ ︷︷ ︸
≤1

]

≤ 1 +

T−1∑

s=1

P
(
λ̂a,s < ua

)
≤ 1 +

T−1∑

s=1

exp(−sd(ua, λa))

≤ 1 +
1

d(ua, λa)
,

where the last but one inequality follows from Chernoff inequality (as ua < λa).

Lemma 9.4. Let τs be the instant of the s-th play of arm 1. Then there exists a function

f(s) := f(s, λ1, g1(g−1
a (µ1))) satisfying

∑∞
s=1 f(s) <∞ such that for all s,

E
[

1

pa,τs+1

]
≤ 1 + f(s).

Proof. Let w̃a := g1(g−1
a (wa)). Examining all possibilities, one can easily show that

• if g1 is increasing and ga is increasing, pa,t = P (θ1(t) > w̃a), with w̃a < λ1,

• if g1 is increasing and ga decreasing, pa,t = P (θ1(t) > w̃a), with w̃a < λ1,

• if g1 is decreasing and ga is increasing, pa,t = P (θ1(t) < w̃a), with w̃a > λ1,

• if g1 is decreasing and ga is decreasing, pa,t = P (θ1(t) < w̃a), with w̃a > λ1.

When g1 is increasing, w̃a < λ1 and

pa,τs+1 = 1− F beta(S1(τs)+1,s−S1(τs)+1)(w̃a) = FB(s+1,w̃a)(S1(τs)).
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Using that S1(τs) has a binomial distribution with parameters (s, λ1) yields

E
[

1

pa,τs+1

]
=

s∑

j=0

fB(s,λ1)(j)

FB(s+1,w̃a)(j)
. (E.5)

When g1 is decreasing, recall w̃a > λ1 and one has

pa,τs+1 = F beta(S1(τs)+1,s−S1(τs)+1)(w̃a) = 1− FB(s+1,w̃a)(S1(τs)).

Using again the distribution of S1(τs) yields

E
[

1

pa,τs+1

]
=

s∑

j=0

fB(s,λ1)(j)

1− FB(s+1,w̃a)(j)

Note here two simple properties of Binomial distributions: for all t ∈ N∗ and c ∈

[0, 1], for all j ∈ {0, . . . , t},

• fB(t,c)(j) = f(t,1−c)(s− j)

• FB(t,c)(j) = 1− FB(t,1−c)(t− j − 1)

It follows that

E
[

1

pa,τs+1

]
=

s∑

j=0

fB(s,1−λ1)(s− j)
FB(s+1,1−w̃a)(s− j)

=
s∑

j=0

fB(s,1−λ1)(j)

FB(s+1,1−w̃a)(j)
, (E.6)

with 1− λ1 > 1− w̃a.

The proof for Lemma 4 given in Agrawal and Goyal [2013] provides an upper

bound on the quantity
s∑

j=0

fB(s,c)(j)

FB(s+1,c)(j)

whenever c is larger that d. Using this result one can bound (E.5) and (E.6) by the

same quantity:

E
[

1

pa,τs+1

]
≤





1 + 3
∆′a
, if s < 8

∆′a

1 + Θ
(

exp (−∆′a
2s/2) + 1

(s+1)∆′a
2 exp (−Das) + 1

exp (∆′a
2s/4)−1

)
, if s ≥ 8

∆′a
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where ∆′a := λ1 − w̃a and Da := w̃a log w̃a
λ1

+ (1 − w̃a) log 1−w̃a
1−λ1 . Hence, Lemma 9.4

follows with

f(s) :=





3
∆′a
, if s < 8

∆′a

Θ
(

exp (−∆′a
2s/2) + 1

(s+1)∆′a
2 exp (−Das) + 1

exp (∆′a
2s/4)−1

)
, if s ≥ 8

∆′a

,

that satisfies
∑∞

s=0 f(s) <∞.

One can now complete the proof of Theorem 9.4.

E[Na(T )] =
T−1∑

t=0

P(ât+1 = a)

=

T−1∑

t=0

P(ât+1 = a,Eλa (t), Eθa(t)) +

T−1∑

t=0

P(ât+1 = a,Eλa (t), Eθa(t))

+
T−1∑

t=0

P(ât+1 = a,Eλa (t))

≤
T−1∑

t=0

E
[

(1− pa,t)
pa,t

1(ât+1=1,Eθa(t),Eλa (t))

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

≤
T−1∑

s=0

E

[
(1− pa,τs+1)

pa,τs+1

τs+1−1∑

t=τs

1(ât+1=1)

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

=
T−1∑

s=0

E
[

1

pa,τs+1
− 1

]
+

log T

d(u′a, wa)
+ 1 +

1

d(ua, λa)
+ 1

≤ log T

d(u′a, wa)
+
T−1∑

s=0

f(s) +
1

d(ua, λa)
+ 2.

Fix ε > 0. Using the monotonicity properties of the divergence function d, there

exists ua < u′a < wa in the increasing case and ua > u′a > wa in the decreasing case

such that d(u′a, wa) ≥ d(λa, ga(µ1))/(1 + ε). For these particular choice, one obtains

E[Na(T )] ≤ (1 + ε)
log(T )

d(λa, ga(µa))
+R(ua, u

′
a, wa),

where R(ua, u
′
a, wa) is a rest term that depends on ε, µ1, µa, g1 and ga. The result

follows using that CRegretT =
∑K

a=2 ∆aE[Na(T )].
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Part IV

Final Remarks
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Chapter 13

Summary and future work

In Part I of this thesis, we briefly introduce the sequential decision making problem,

of which the MAB problem is a special case. We explain how the relaxation of the

assumption of complete feedback to bandit feedback in sequential decision making

leads us a MAB problem. We formally define the MAB problem along with its var-

ious formalizations depending upon how the reward is generated. We also specify

various goals for the learner and characterize them as performance measures e.g.

regret and sample complexity. We briefly outline the practical applications which

can be modeled as a MAB problem due to the availability of the conventional ban-

dit feedback. We also study some of the classical algorithms for the MAB problem

which form the basis of the algorithms we introduce later in the thesis. Additionally,

we illustrate a general paradigm of partial monitoring games which can be used for

describing MAB problems with unconventional feedback introduced in this thesis.

In Part II of this thesis, we concentrate on the first kind of unconventional feed-

back considered : relative feedback. We motivate the necessity of using relative

feedback by providing practical applications where it is used. We then formally de-

fine the MAB problem with relative feedback or the dueling bandit problem. We also

illustrate how the dueling bandit problem can be formalized in each of the various

settings described in the first part. We consider a problem setting rarely studied in

the previous related work: adversarial utility-based dueling bandits. We provide the

lower bound on the regret of any algorithm for this setting. We propose a novel al-

gorithm called, Relative Exponential-weight algorithm for Exploration and Exploita-

tion (REX3) and prove the upper bound on its regret. We compare the performance

of REX3 with the state of the art algorithms using the experiments performed on real
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datasets and on simulations too. These experiments show that REX3is a suitable so-

lution for the adversarial utility-based dueling bandits. In the end, we formulate

the dueling bandits problem as an instance of the partial monitoring game. Fur-

thermore, we show that the existing partial monitoring algorithms are suboptimal

in terms of the the number of arms.

In Part III of this thesis, we study another kind of unconventional feedback: cor-

rupted feedback. We explain how the motivation from corrupted feedback arises

from practical applications. We formally defined the MAB problem with corrupted

feedback or the corrupt bandits problem. We provide the lower bounds on the re-

gret for exploration-exploitation setting and on the sample complexity for best arm

identification. We propose two algorithms for best arm identification: Median elimi-

nation for corrupt bandits (ME-CF) and Exponential-gap elimination for corrupt ban-

dits (EGE-CF). We prove the upper bounds on their sample complexity. We also pro-

pose two algorithms for exploration-exploitation: kl-UCB-CF and TS-CF and prove

the upper bounds on their regret. Comparing the upper bound on regret with the

lower bound shows that both kl-UCB-CFand TS-CF and asymptotically optimal.

We demonstrate how corrupted feedback can be used for privacy preservation at

the user level in online recommender systems. We also provide the appropriate cor-

ruption parameters to guarantee a desired level of differential privacy and analyze

how this impacts the regret. Finally, we present experimental results which confirm

our theoretical results.

The work on these problems paves the way to study other kinds of unconven-

tional feedback inspired from practical applications and to solve a number of closely-

connected problems. In the two kinds of feedback considered in this thesis as well,

immediate extensions are possible. For dueling bandits, a natural extension is to

study adversarial preference-based formulation. In the setting of corrupted feed-

back, the feedback is available at all times. In some situations however, the feedback

is simply lost. It is possible extend our problem setting to incorporate such sce-

narios by making appropriate changes to the corruption process. An adversarial

corruption of the feedback can be considered too. Another possible extension is to

incorporate contextual information in the learning process with preference feedback

or corrupted feedback. Since both the kinds of feedback can be expressed as a partial
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monitoring game, it is worthwhile to see if it is possible to devise a general partial

monitoring algorithm which could deal with such unconventional feedback. We il-

lustrated in Chapter 6 that the bounds on regret for the current partial monitoring

algorithms are not tight enough in terms of the number of arms. It remains an open

problem to see if a general partial monitoring algorithm could achieve the optimality

in terms of the number of arms.
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