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ABSTRACT (English) 

 

The South Atlantic conjugate margins are the product of continental rifting and break-up of Pangea, which 

was made up of different crustal features prior to rifting. This study investigates continental rift initiation 

and break-up of alternative lithospheric setups, consisting of large segments with different rheological 

strength, with the use of analogue and numerical modelling. The analogue models investigate the effect of 

far-field forces on a system that consist of multiple rheological segments, whereas the numerical models 

include thermal processes and focus on the impact of initial plume emplacement on such a setup. 

 

Lithosphere-scale analogue models consisting of two different rheological compartments have been 

subjected to extensional forces, to understand effect of far-field forces on large rheological heterogeneities 

in a system within an extensional tectonic regime. The results show that in such a system, the weaker 

segment accommodates all the extension. At the contact between the two compartments no rift-initiation is 

observed. In the presence of a strong sub-Moho mantle, the rift evolution consists of two phases. The first 

phase is a wide or distributed rift event. Once the strong part of the upper mantle has sufficiently weakened, 

the rift localizes and a narrow rift continues to accommodate the extension. If extension would continue, 

break-up would happen at the location of the narrow rift, thereby breaking a rather homogenous part within 

a laterally heterogeneous system. This would result in asymmetric margins with hyperextended, weak crust 

on both margins.  

 

The numerical results show that, in the case of plume-induced continental break-up, the classical ‘central’ 

mode of break-up, where the break-up centre develops above the plume-impingement point is not the only 

form of continental break-up. When the mantle anomaly is located off-set from the contact between 

rheological segments, a ‘shifted’ mode of break-up may develop. In this case, the mantle plume material 

rises to the base of the lithosphere and migrates laterally to the contact between two rheological segments 

where rifting initiates. Mantle material that does not reach the spreading centre and remains at lower crustal 

depths, resemble high density/high velocity bodies at depth found along the South Atlantic margin and 

providing geometric asymmetry. 

 

Further investigation on the exact influence of the initial plume position with respect to the contact between 

the rheological compartments shows that there is a critical distance for which the system develops either 

‘central’ (or ‘plume-induced’) continental break-up or ‘shifted’ (or ‘structural inherited’) continental break-

up. For Moho temperatures of 500 – 600 oC, there is a window of ~50 km where the system creates two 

break-up branches. These results explain complex rift systems with both vertical penetration of plume 

material into the overlying lithosphere as well as reactivated inherited structures developing break-up 

systems both aided by the same mantle plume.  

 

The analogue models provide an explanation for the formation of a-symmetric margins without the use of a 

mantle plume. The numerical model results show that in the presence of a mantle plume, several modes of 

continental break-up modes may occur and care should therefore be taken with the initial position of a 

thermal anomaly in a thermo-mechanical model. These results can be used to simulate in more detail the 

thermal evolution of conjugate margin basins. In absence of an anomaly, heat flow intensities are lower than 

when a mantle plume is present. The different heat transfer trends can be used in basin modelling programs 

to investigate a more varied heat flow on basin scale processes e.g. hydrocarbon maturation and generation.  

 

 

 

 

Key words: rifting, continental break-up, South Atlantic, rheology, analogue modelling, thermo-mechanical 

modelling, lithosphere, mantle plume, crust, a-symmetry, conjugate margins
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L’ABSTRACT (français) 

Les marges conjuguées de l'Atlantique Sud sont le produit du rifting et de la rupture du continent Pangée. 

Ce continent présente une hétérogénéité crustale et lithosphérique importante, dont la prise en compte est 

un objectif de la thèse. Afin de comprendre la rupture continentale à l'échelle lithosphérique de systèmes de 

rhéologies préexistantes très différentes, nous avons effectué des modélisations, analogique et numérique. 

Les modèles analogiques s'attachent à montrer l'effet des forces externes sur un tel système hétérogène 

tandis que les modèles numériques, thermomécaniques, se concentrent sur l'impact des anomalies de fusion 

du manteau sur le rifting avec une telle configuration.  

 

Avec la modélisation analogique, l'effet des forces aux limites sur un système composé de deux segments 

de rhéologies différentes a été testé à l’échelle de la lithosphère pour comprendre l'influence de 

l'hétérogénéité rhéologique dans un système en extension. Les résultats montrent que dans un système 

combiné, toute l'extension se produit dans le segment faible et que le contact entre les deux segments ne 

joue pratiquement aucun rôle dans l'initiation des failles. Lorsque le segment le plus faible contient une 

couche résistante dans le manteau supérieur, le rift évolue en deux phases. La première phase montre un 

système de failles larges où la déformation est distribuée. Une fois que la partie résistante du manteau 

supérieur est suffisamment affaiblie, l'extension se localise le long d'une zone de faille étroite. Si l'extension 

continuait, la rupture se produirait à cet emplacement, dans une partie plutôt homogène alors que le système 

est latéralement hétérogène. Le résultat de ce système extensif serait des marges asymétriques avec une 

croûte faible/hyper-étirée sur deux marges.  

 

Les résultats numériques montrent que, dans le cas de la rupture continentale induite par un panache, le 

mode de rupture «central», où la rupture se localise au-dessus du point de l'impact du panache, est une forme 

de rupture continentale parmi d'autres. Ainsi, lorsque l'anomalie de fusion du manteau est localisée de 

manière décalée par rapport au contact entre les segments rhéologiques, un mode de rupture "décalé" peut 

se développer. Dans ce cas, le matériel du panache atteint la base de la lithosphère et s’écoule latéralement 

jusqu’au contact entre les deux segments rhéologiques où le rifting se localise in fine. La partie du matériel 

qui n’arrive pas au centre de la zone de rupture, se situe au niveau de la croûte inférieure ou bien plus 

profond, ressemblant aux corps de densité/vitesse élevées imagés le long des marges de l'Atlantique Sud. 

De plus, le mode «décalé» reproduit l'asymétrie des marges conjuguées.  

 

Un deuxième exercice de modélisation numérique porte sur l'influence de la position initiale du panache par 

rapport au contact entre les segments de rhéologie différente. Il montre qu'il existe une distance critique 

pour laquelle le système développe une rupture continentale "centrale" ou "décalée" (ou structuralement 

héritée). Pour les températures de Moho de 500 à 600°C, il y a une fenêtre de ~ 50 km pour laquelle deux 

branches de rifts sont créées. Cela explique l'existence de systèmes de rifts complexes avec une ou plusieurs 

branches avortées, et également la pénétration de matériel mantellique dans la lithosphère sous-jacente 

associée à la réactivation des structures héritées. Cela permet le développement de deux zones de rupture 

avec un seul panache.  

 

D'une part, les modèles analogiques donnent une nouvelle explication sur la formation des marges 

asymétriques sans l'intervention d'anomalies de fusion mantelliques. D'autre part, les résultats des 

simulations numériques montrent qu’il y a plusieurs façons pour aboutir à la rupture continentale avec l’aide 

d’un panache. Ainsi, la position d'une anomalie thermique dans un modèle thermomécanique est capitale et 

doit être considérée. Ces résultats pourront être utilisés pour simuler en détail l'évolution du flux de chaleur 

avec le temps pour les différents modes de rupture et pourront être intégrés dans les modèles de bassins afin 

d'examiner l'effet sur les processus à l'échelle du bassin, par exemple la maturation et la production 

d'hydrocarbures.  

 

Mots de clés: rifting, la rupture continentale, Atlantic Sud, rhéologie, modélisation analogique, 

modélisation thermomécanique, anomalie mantellique, lithosphère, croûte, asymétrie, marges conjuguées  
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Samenvatting (Nederlands) 

De tegenover elkaar liggende marges van de Zuid-Atlantische Oceaan zijn het product van de breking van 

Pangea, dat op dat moment uit verschillende stukken korst bestond. Deze studie onderzoekt het ontstaan 

van scheuren in de korst en het breken van continenten met alternatieve opbouw van de lithosfeer, dat wil 

zeggen bestaande uit grote fragmenten met verschillende sterkten, met behulp van analoge en numeriek 

methoden. De analoge modellen onderzoeken het effect van externe krachten op een heterogeen systeem 

terwijl de numerieke modellen zich richten op de invloed van mantelanomalieën op zo’n opstelling.  

 

Het effect van externe krachten op een systeem dat bestaat uit twee verschillende reologische segmenten is 

getest met behulp van analoge modellen om de invloed van reologische heterogeniteit in een systeem dat 

onder extensie staat te begrijpen. Uit de resultaten blijkt dat in een gecombineerd systeem met een relatief 

‘zwak’ en ‘sterk’ compartiment, het zwakke segment alle krachten opneemt en dat het contact vrijwel geen 

rol speelt bij de breking. Wanneer het zwakkere segment een sterke laag in de bovenmantel bevat, bestaat 

de brekingsevolutie uit twee fasen. De eerste fase is de vorming van een breed rift-systeem. Zodra het sterke 

deel van de bovenmantel voldoende verzwakt is, ontwikkeld zich een smal rift direct boven het verzwakte 

punt. Als de extensie door zou gaan, zou er op de plaats van het smalle rift breking plaatsvinden, waardoor 

een homogeen deel in een lateraal heterogeen systeem doormidden breekt. Het resultaat zouden 

asymmetrische marges zijn met een sterk verdunde, zwakke korst aan beide kanten van het 

spreidingscentrum.  

 

Uit de numerieke resultaten blijkt dat in het geval van continentale breking beïnvloed door 

mantelanomalieën, de klassieke 'centrale' afbreekwijze, waar het brekingscentrum zich boven het inslags-

punt ontwikkelt, slechts één vorm van continentale breking is. Wanneer de anomalie inslaat onder een 

homogeen deel van de lithosfeer, kan een 'verschoven' breukvorming ontstaan. Hierbij stijgt mantelpluim 

materiaal op naar de onderkant van de lithosfeer, waarna het vervolgens lateraal migreert naar het contact 

tussen twee reologische segmenten, waar het rift ontstaat. Mantelmateriaal dat niet in het spreidingscentrum 

terecht komt blijft op diepte van de onder-korst hangen, waar ze lijken op hoge dichtheids- / hoge 

snelheidslichamen die op diepte langs de Zuid Atlantische marge worden gevonden en die bijdrage aan de 

asymmetrie van de marges. 

 

Verder onderzoek naar de exacte invloed van de aanvankelijke pluimpositie met betrekking tot het contact 

tussen reologische segmenten laat zien dat er een kritische afstand is waarbij het systeem 'centrale' of 

'verschoven ' continentale breking laat zie. Voor Moho-temperaturen van 500 tot 600 oC is er een marge van 

~ 50 km waar het systeem twee verschillende brekings-armen ontwikkelt. Dit helpt de uitleg van complexe 

rif systemen met een of meer afgebroken armen met behulp van een combinatie tussen verticale penetratie 

van mantle materiaal in de overliggende lithosfeer en de reactiviteit van oude structuren die de breking 

accommoderen met behulp van slechts één mantle pluim.  

 

De analoge modellen geven een nieuwe uitleg over het ontstaan van asymmetrische geometrieën zonder de 

invloed van een mantel pluim. De numerieke resultaten van dit werk laten zien dat er meer dan één vorm 

van continentale breking mogelijk is wanneer er een mantel pluim bij betrokken is. Er moet zorg gedragen 

worden voor de positie van de mantel pluim in thermo-mechanische modellen aangezien dit een cruciale 

factor is. De resultaten kunnen worden gebruikt om de warmteoverdracht door de tijd heen van de 

verschillende type breking te simuleren. Bekkenmodelleringsprogramma’s kunnen deze tendensen 

gebruiken om het effect op van lithosfeer-schaal processen te onderzoeken op bekken-schaal, bijvoorbeeld 

voor olie- en gasontwikkeling.  

 

 

Sleutelwoorden: rift, continentale breking, Zuid-Atlantische Oceaan, reologie, analoge modellen, thermo-

mechanische modellen, mantel pluim, lithosfeer, korst, asymmetrie, tegenoverliggende marges.
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This thesis project started in January 2015 and was a successful collaboration between IFP Energies 

nouvelles and the University Pierre et Marie Curie (UPMC) in France. The study focussed on rift initiation 

and continental break-up processes at lithosphere scale. An extensive literature study on geological and 

geophysical observations of the South Atlantic conjugate margins pointed to a crust and lithosphere 

consisting of different parts with various crustal thicknesses, thermal structure and acting forces (such as 

far-field forces and mantle anomalies). How do extensional forces work on a system consisting of multiple 

segments with different rheologies? Are rheological differences alone enough to explain features along the 

margins of the South Atlantic domain or are more complicated setups needed that include for example 

inherited structures and thermal anomalies? These questions were addressed by performing lithosphere scale 

continental rift initiation and break-up tests of alternative, more complex lithosphere setups using analogue 

models and 2D thermo-mechanical numerical models. The analogue models were used to investigate the 

impact of external forces on a rheological divers system. This was done at the TecLab of Utrecht University 

in The Netherlands for a period of 10 weeks (Chapter 2). The numerical modelling was done at ISTeP, 

UPMC in France, using the SGI Ulysse cluster, to address the effect of thermal processes on the break-up 

of laterally varying lithosphere. The first exercise used the FLAMAR code (Chapter 3), written at UPMC, 

whereas the second exercise used the I3ELVIS code from the ETH Zürich (Chapter 4), Austria. The three 

chapters together show that the more complex a problem is, the more complex the results and solutions are. 

At least four different kind of rift initiation and continental break-up evolutions have been modelled. 

Altogether, they explain margin asymmetry in the South Atlantic domain as well as one of the possible 

reasons why petroleum systems are dissimilar in conjugate basins sets along the margins in the South 

Atlantic (Chapter 5). As part of enhancing the skills on geophysical data acquisition a six-week cruise on 

the Indian Ocean organised by the Alfred Wegner Institute and the University of Bremerhaven, Germany, 

was part of the program (appendix III).  
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CHAPTER 1. Introduction 

 

 

 

 

 

 

 

 

 

 

 

…I was so busy making maps I let them argue…  

There’s some truth to the old cliché  

That a picture is worth a thousand words and that seeing is believing… 

~ Marie Tharp, Geologist 
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1.1.  A short history on plate tectonics 

1.1.1. On the origin of plate tectonics 

Early recognition of plate movements were known as continental drift, first proposed by von Wegener 

(1912). He noticed the perfect jigsaw-fit between South-America and Africa and concluded that the two 

continents had been in close contact at some point in time (Fig. 1.1). Unfortunately he lacked a mechanism 

to support his theory and so he went with the ‘pole-fleeing force’ theory that used the earth’s centrifugal 

force. He later included gravitational forces of the sun and the moon to explain the movement of continents. 

These mechanisms were quickly rejected by the scientific community, but despite the lack of evidence, he 

did have supporters for his theory of ‘moving plates’. One of them was Arthur Holmes who proposed that 

the movement of the earth’s continents could be due to convection currents that worked as conveyer belts, 

transporting the continents around the globe, breaking them apart and bringing them back together (Holmes, 

1929). Unfortunately for him, at that time there was no evidence of a once exiting supercontinent that could 

support his theory. Alexander Du Toit was also in favour of the continental drift theory and came with 

supporting evidence for a former supercontinent. He studied the structural geology and paleontology of the 

Karoo region in South Africa and compared this with data he obtained from Argentina, Paraguay and Brazil. 

He found remarkable similarities on both continents and proposed the existence of two supercontinents 

(Laurasia and Gondwana) that collided to form Pangea (Du Toit, 1937), the last supercontinent on earth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Copy of a figure of Alfred von Wegener’s proposition of continental drift from the Carboniferous 

to present-day (von Wegener, 1912). 
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The concept of continental drift altered significantly after the release of global echo-sound data acquried by 

research vessels after World War II, during the Cold War. Marie Tharp, an oceanographer and geologist, 

got the task to draw a bathymetric map of the ocean floor, starting with the Atlantic Ocean, using the echo-

sound data acquired by research vessels. In 1953 she finished her first map of the North Atlantic Ocean (Fig. 

1.2). Her results showed a large mountain range in the middle of the Atlantic Ocean with a deep trough at 

its centre. Initially she thought it was a flaw in the data but her exceptional knowledge of the ocean floor 

made her realise one of the most revolutionary discoveries in geosciences of the last century. The feature, 

now known as the Atlantic Mid Oceanic Ridge, was a plate boundary. Her ideas were originally dismissed 

by her colleague, prof. Heezen, but she kept her ground convincing him. Eventually he still ran off with her 

idea and created a shock wave through the geological community when he published Tharp’s ideas in 1956, 

excluding her name (Heezen, 1956). Few years later, her work was credited and a new concept for plate 

tectonics was born (Heezen et al., 1959). 

 

Figure 1.2. Marie Tharp’s first bathymetric map, based on echo-sound data acquired by research vessels 

after World War II, during the Cold War. At the centre of the ocean, there is a clear feature visible, which 

is nowadays known as the Atlantic Mid Oceanic Ridge (Heezen et al., 1959). 

 

1.1.2. The principles of plate tectonics 

During the 60’s and 70’s the for that time controversial idea of oceanic crust being formed at the centre of 

the ocean, was discussed in a series of papers that eventually disproving the mechanism behind continental 

drift as von Wegner had proposed. The ‘spreading sea-floor theory’ was based on the acceptance of large-

scale convection cells operating in the mantle. The ‘crustal layers’ were different for oceanic and continental 

crust, considering the strength of the crust and Holmes’ conveyor belt theory was discarded (Dietz, 1961). 
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The high heat flow of the oceanic ridge together with equal divergence rate on both sides of the ridge, were 

arguments in favour of seafloor spreading (Hess, 1962). Hess (1962) also gave a first age constrained on the 

oldest oceanic crust on earth, not more than 100 Myr. Another key-argument in favour of the seafloor 

spreading theory was the observation that magnetic anomalies had similar patterns on both sides of an 

oceanic ridge (Vine and Matthews, 1963). As a result of this, a whole field developed in magnetic data 

reconstruction, solemnly investigating the magnetic fabric of oceanic and continental crust, including the 

construction of a global polarity timescale (GPTS, (Gradstein et al., 2012)). It took only until the 1965 for 

a first quantitative attempt to fit together the two continents that von Wegner had recognised as the perfect 

jigsaw-fit (South America and Africa), using a numerical approach of least square fit for the whole Atlantic 

ocean (Fig. 1.3, Bullard et al., 1965). Even though computers have become much faster and the 

reconstruction gap between South America and Africa has diminished significantly since this first numerical 

approach, up until today, the puzzle has not yet been completely solved as the most tide fits, still contain 

some error (e.g. Aslanian et al., 2009; Eagles, 2007; Jackson et al., 2000; Moulin et al., 2010; Nürnberg and 

Müller, 1991; Torsvik et al., 2009; Unternehr et al., 1988; Vink, 1982). Finally, when plate tectonics as a 

scientific theory was accepted, the Wilson Cycle theory was developed, which stated that every 300 to 500 

million years all the earth’s continents aggregate into one big supercontinent, the most recent one being 

Pangea (Wilson, 1966). Trying to fit the continents together by correlating geometries and magnetic 

anomalies eventually led to the question why Gondwanaland and Pangea broke apart in the first place. This 

is still a major questions in plate tectonics and geodynamics and this thesis contributes to better 

understanding of continental rift initiation and break-up.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Example of the first quantitative approach, based on least square fit approximation, fitting all 

continents around the Atlantic at 500 finite contour transverse Mercator projection (Bullard et al., 1965). 
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1.2. A journey through scales 

1.2.1. The crust 

The crust is the upper-most part of the lithosphere and is separated by the mantle through the Moho, a 

seismic discontinuity signal that can be traced all around the globe, discovered in 1910 by the Croatian 

seismologist Andrija Mohorovičić. The Moho is interpreted as a mineralogical transition that separates the 

earth’s crust from its mantle (Fig. 1.4). This discovery led to the understanding that the Earth was not a 

homogeneous solid but instead consisted of several compositional and physical phases.  

 

Figure 1.4. Phase diagram of phase transformations versus pressure and depth. The Moho and LAB are 

variable with depth. At 410 km and 660 km depth major phase changes occur defining the mantle transition 

zone (after Ringwood, 1991). 
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Not only are there vertical variations in the earth as a result of different mineral phases, there is also a large 

difference in composition and behaviour between oceanic and continental crust. For example, oceanic crust 

is normally between 5 and 9 km thick and has a more mafic composition, whereas continental crust can be 

as thick as 100 km and contains more felsic minerals. Also within continental crust itself, large variations 

exist as it consists sometimes of old, heavy crust (cratons), but can also be made of younger, lighter crust. 

Deformation styles in the crust depend greatly on differences such as mineral composition, inherited 

structures, pressure and temperature (Passchier and Trouw, 1996) and thus oceanic crust and continental 

crust respond very differently to forces acting upon it.  

Isostasy and gravity studies are used to describe the earth’s topography and understand the structure of the 

crust. These kind of studies describe the state of the earth in gravitational equilibrium. They require accurate 

numbers of the density of the crust. Early models describing the relation between topography and the 

structure of the crust were developed in the mid-19th century. John Henry Pratt stated that different masses 

of rocks caused topography, more mass, meant higher topography than less mass (Fig. 1.5a). Another 

possibility was proposed by George Biddell Airy, who dictated topography changes to different density’s 

(Fig. 1.5b). Later ‘Dynamic Topography’ was introduced, an new concept stating that topography is induced 

on the surface by buoyancy differences in the earth's mantle (Hager and Richards, 1989). Another version 

of dynamic topography is flexural isostasy (proposed by Vening Meinesz) which calculates the response of 

the lithosphere to a certain load, (Allen and Allen, 2013), for example a seamount or glaciation (Fig. 1.5c).  

Gravity studies were than introduced to work out the mass and density of crustal structures. This can be 

estimated by measuring gravitational deflections to the normal gravity, which is the free-fall acceleration of 

an object to the earth. There are two main types of estimating the gravitational force of an object. The free-

air anomaly is the observed (or measured) gravity minus the normal gravity. The Bouguer anomaly assumes 

a plate of a certain thickness and indefinite length that takes into account the gravity of the plate itself. Any 

gravitational deflections to this ‘standard’ are anomalies and tell something about the crustal structure and 

the density of different crustal bodies.  

 

 

 

 

 

 

 

 

Figure 1.5. Three types of isostasy. a) Pratt isostasy assumes an equal density and unequal mass for different 

crustal sections. b) Airy isostasy predicts topography after different densities of crustal sections with an 

equal mass. c) Flexural isostasy calculates the lithosphere compensation to a certain load, where Te is the 

flexural rigidity of the lithosphere and λ the flexural wavelength. After (Watts, 2001) 
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When the crust with all its heterogeneities is put under tensional or extensional stress, its initial behaviour 

is elastic until it breaks or starts to flow. In general, brittle structures like faults develop in the upper crust 

and faults and shearzones form at depth in the ductile regime or lower crust. At a larger scale this results in 

orogens or basins. In this thesis we focus on marginal basins, although basins can form in different tectonic 

settings (Fig, 1.6).  In a purely compressional setting accommodation space is created through tectonic 

processes in back-arc basins (Fig. 1.6a), e.g. the Aegean region (Jolivet et al., 2015), or accretion wedges 

(Fig. 1.6b), e.g. the Calabrian wedge, one of the many accretionary wedges that resulted from the Alpine 

orogeny (Minelli and Faccenna, 2010). In a purely extensional setting basins can develop intra-cratonically 

(Fig. 1.6c), for example the Paris Basin (Averbuch and Piromallo, 2012) or along passive margins (Fig. 

1.6d), for example the South Atlantic basins (Marcano et al., 2013). Also in strike-slip setting 

accommodation space forms in pull-apart basins, e.g. the pull-apart basins in Western and Central Africa 

(Guiraud and Maurin, 1992). 

Figure 1.6. Different tectonic settings where basins or accommodation space is formed in both 

compressional (a and b) and extensional settings (c and d). 

 

1.2.2. The lithosphere 

The word ‘lithosphere’ comes from the Greek words ‘λιθοσ (lithos)’, meaning ‘rock’ and ‘σφαιρα 

(sphaira)’, meaning ‘sphere’, in other words, ‘the rocky sphere’. The lithosphere is the solid, buoyant, 

outermost-layer of the earth that cools through conduction. There are two types of lithosphere: continental 

lithosphere and oceanic lithosphere. The continental lithosphere has a thermal thickness between 150 - 350 

km for Archaean and Proterozoic rocks (Artemieva and Mooney, 2001), whereas the oceanic lithosphere is 

thinner between 100-125 km (Burov, 2011). The lithosphere is separated from the underlying less viscous 

asthenosphere. The asthenosphere transports heat on geological timescales through convection (e.g. Sleep, 

2005). The boundary between the lithosphere and asthenosphere is known as the Lithosphere-

Asthenosphere Boundary (LAB). There are five main physical and chemical ways to define the lithosphere 

(Fig. 1.7). It can be described as 1) a mechanical boundary layer, marked by a decoupling layer shown as a 

sudden increase in strain-rate with depth (Fig. 1.7a).  The LAB can be defined by 2) its thermal structure. 
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The thermal thickness of the lithosphere corresponds to the 1330 oC mantle adiabet and the temperature 

gradient of the Moho varies between 500 and 800 oC depending on its age (Fig. 1.7b, Artemieva and 

Mooney, 2001). The LAB can also be explained using 3) seismic velocities where high velocities 

(characteristic for more ‘solid’ parts) represent the lithosphere and low velocities the underlying 

asthenosphere (Fig. 1.7c, Eaton et al., 2009). Also 4) anisotropy can be used to identify the LAB. Examples 

of rock’s anisotropy are, seismic anisotropic changes such as the change from anisotropic cratonic 

lithosphere to isotropic asthenosphere, also known as the Lehmann discontinuity (Gaherty and Jordan, 1995) 

or a directional change in anisotropy (Debayle and Kennett, 2000, Fig. 1.7d). The 5) electrical resistivity, 

which decreases drastically below the LAB (Fig. 1.7e, Eaton et al., 2009), can also be used to detect the 

LAB.  

 

Figure 1.7. Five ways to physically describe the lithosphere-asthenosphere-boundary (LAB). a) mechanical 

(strain rate), b) thermal, c) seismic velocities, several velocity transitions can be interpreted as the LAB d) 

anisotropic variations and e) electrical resistivity (after Eaton et al., 2009). 

 

Changes in mineral phases are a petrological way to determine the LAB (Fig. 1.4). For example, when more 

rigid and depleted peridotite (the mantle lithosphere) reaches the liquidus and becomes partially melted, 

hydrated and enriched peridotite (the mantle asthenosphere) (Hirth and Kohlstedt, 1996), the LAB has been 

crossed. The LAB depth ranges from roughly 80 km for oceanic lithosphere to a maximum of 250 km for 
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old, cratonic lithosphere. At 410 km depth another seismic discontinuity is observed, which marks the top 

of the mantle transition zone. At this point, olivine minerals change into spinel and this process contributes 

to a distinctive seismic discontinuity. This zone is 250 km thick and separates the upper mantle from the 

lower mantle (Fig. 1.4). At 660 km depth, spinel changes to magnesium-perovskite and the lower mantle 

has been reached (Ringwood, 1991). These phase transformations have been determined with experimental 

and petrological studies that mimic bulk chemical composition of the upper mantle (pyrolite) conditions at 

800 km depth (Ringwood, 1991). Most of the experimental studies use pressures up to 30 GPa, which 

corresponds to approximately 800 km depth (Dorfman, 2016), some studies investigated pressure up to 50 

GPa (Tange et al., 2009) and only few studies have investigated ultra-high pressures of more than 100 GPa 

(Yamazaki et al., 2014).  

 

1.2.3. The thermo-mechanical lithosphere 

The boundaries or discontinuities within the crust and lithosphere result from thermo-mechanical properties 

of the system, which are also known as the ‘rheology’. The word ‘rheology’ is also deduced from the Greek 

language with ‘ρεω (reo)’ meaning ‘flow’ and ‘λογια (logia)’ meaning ‘study’, or, in other words ‘the study 

of flow’. The most important parameters that define the rheology are pressure, temperature, strain, strain 

rate, strain history, grain size, the chemical activity of mineral components, fluid content, pore fluid 

pressure, and volatile fugacities (Burov, 2011; Evans and Kohlstedt, 1995; Keefner et al., 2011).  

The strength of a lithospheric plate varies laterally and vertically and depends thus on the rheological 

properties and the thermal state of the lithosphere and also the geodynamic setting (Burov, 2011). The elastic 

thickness of the lithosphere is the strong part of the lithosphere. This thickness diminishes significantly at 

100-180 km depth for continental lithosphere and 20-60 km for oceanic lithosphere and the oceanic 

lithosphere is largely dependent on the age of the lithosphere.  

The lithosphere consists of brittle and ductile parts that, when described separately, comply with different 

physical laws. The brittle rock strength is calculated using Byerlee’s law (Byerlee, 1978). The strength of 

the layer is a function of pressure and depth and behaves as Mohr-Coulomb plasticity. From Byerlee’s law, 

it has also been demonstrated that the angle of internal friction for almost all rock types is between 30o and 

33o and this is thus the value for internal friction adopted in numerical models. Ductile rock strength on the 

contrary depends heavily on the type of rock and a multitude of parameters such as grain size, macro- and 

microstructures, temperature, strain rate, fluid content, etc. (Burov, 2011). Ductile rock strength can be 

described as a function of strain rate, not of strain itself as is the case for brittle material. When the rock 

strength is linearly dependent on strain rate, deformation is Newtonian viscous. When this dependency in 

non-linear the rock’s viscosity is non-Newtonian.  
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A brittle-ductile layered system has an elastic response when a force acts on it for a very short time, for 

example a seismic wave. The material returns to its original state after being subjected to this force. When 

the layers react inelastically, the force exerted on the system has deformed the material in such a way that 

it cannot go back to its original state. This can happen in a brittle way, where the Mohr-Coulomb criterion 

best expresses brittle deformation or in a ductile manner where stress is a function of strain rate and not 

dependent on strain itself.  

In natural systems, brittle and ductile layers form one system and they are thus subjected to the same force. 

This makes both brittle and viscous material strain rate dependent. To account for that, different constitutive 

models (e.g. Maxwell or Kelvin) describe the relationship between elastic and viscous strain and stresses 

(Burov, 2011). Goetze and Evans (1979) combined these rheological laws into yield-stress-envelopes 

(YSE), to calculate the strength of the whole system. An YSE is a vertical profile that calculates the 

maximum differential stress of the lithosphere before deforming (Fig. 1.8) based experimental data being 

extrapolated to geological time scales. They provide the elastic thickness of the lithosphere. For oceanic 

lithosphere, YSE are well established, but for continental lithosphere it is more complicated as continental 

crust is thicker, its structures and properties may vary for different regions and it contains fluids that might 

weaken the YSE at depth (Jackson, 2002).  

Figure 1.8. Rheological yield stress envelopes for a) oceanic lithosphere and b) continental lithosphere. 

The major difference lies in the multi-layer structure and thickness of the continental crust and compared 

to the one layered and thin oceanic crust. The right examples (c) give different variations and commonly 

used rheological yield stress envelopes for craton (jelly-sandwich, JS) and hot lithosphere (crème-brulée, 

CB) (Burov, 2011). 
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An YSE depends on so many different properties that there is an infinite amount of possibilities to describe 

the strength of the lithosphere. To be able to do quantitative research some ‘end-member’ YSE’s have been 

proposed. For example, the ‘crème brulée’ YSE describes young, hot (continental) lithosphere, with a thin 

brittle crust overlying a hot, viscous mantle, where the crust and mantle are coupled. A ‘jelly-sandwich’ 

YSE on the contrary, describes cold and cratonic lithosphere (Burov, 2011) of several brittle and ductile 

layers, that result in decoupling between the different layers (Brun, 2002).  

Apart from material properties, another way to describe the lithosphere is in terms of temperature and 

thermal state (Eaton et al., 2009) where the change from convective to conductive mode of heat transfer 

defines the LAB. The surface heat calculated on earth is a result of two primary heat producing mechanisms: 

1) radiogenic heat production by radioactive decay of atoms in the crust and 2) the primordial heat residing 

in the earth. Only 8.7 x 10-2 W/m2 accounts for the surface heat produced by these two processes (Fowler, 

1990), compared to 4.0 x 10 W/m2 that comes from heat generated by the sun that is reflected back to outer 

space (Jaupart and Mareschal, 2010). The total heat budget of the earth is estimated at approximately 47 

TW (Davies and Davies, 2010).  

Heat transfer through convection takes place by moving material (mass) around and is the dominant 

mechanism of heat transfer in the Earth’s mantle. Heat transfer through conduction occurs through the 

interaction between atoms or molecules of two connecting, solid media that differ in temperature causing 

heat to transfer from the warmer body to the colder body. This happens in the solid inner core and in the 

lithosphere.  

The main body through which the earth loses heat is the oceanic crust with an estimate of 510 mW/m/yr2 

(Pollack et al., 1993) and a total heat flux of 32 TW compared to an average of only 65 mW/m2 for the 

continental crust (Jaupart and Mareschal, 2010) and a total heat flux of 12 TW  (Davies and Davies, 2010). 

Oceanic lithosphere loses heat solemnly through cooling of the crust formed at spreading centres which is 

linearly dependent on age until the crust is 80 Myr old (Burov, 2011; Jaupart and Mareschal, 2010). The 

continental crust looses heat through cooling of the earth and in addition has its own resource through 

radiogenic heat production by the decay of radioactive elements (Furlong and Chapman, 2013). This heat 

producing mechanism is limited to the upper continental crust (9-10 km) and is depleted in mafic rocks 

(Jaupart and Mareschal, 2010). In addition, the crust is very heterogeneous with thicker and thinner crust 

and different rock types. Zones of higher heat flows are for example tectonically active regions and 

continental margins that are not in a steady thermal state. Zones of extension have a high heat flux (72 – 

125 mW/m2 (Morgan, 1983). Zones of lower thermal gradients are cratons or compressional orogens 

(Jaupart and Mareschal, 2010). 

The rate at which heat transfers with conduction through a solid medium (e.g. the lithosphere) is measured 

with gradients: the difference in temperature per unit length. The thermal conductivity (W/m/oC) is an 
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important property of rocks as it describes how fast a material transfers heat. The accompanying heat flow 

(Q) is measured in W/m2 flows in the opposite direction of the temperature that increases with depth. The 

thermal conductivity varies per rock type and vary between 3.0 W m-1 oC-1 for granitic upper crustal rocks 

to 2.6 W m-1 oC-1 as an average for lower crustal rocks (Cemark and Rybach, 1982; Furlong and Chapman, 

2013).  It depends on the composition of the rock, temperature and also to some extend on pressure (Furlong 

and Chapman, 2013). 

To calculate a reasonable geotherm the surface temperature is often set at 0 km depth with a temperature 

range between -50 oC for polar regions and 30 degrees for equatorial regions. Also, close to the lithosphere 

base, geotherms should approach melting conditions to be consistent with shear wave velocities observed 

in the Earth’s asthenosphere and lastly, xenolith samples and or exhumed metamorphic rocks, should be 

used to classify geotherm families (Furlong and Chapman, 2013). 

There are many reservations in describing the rheology of the earth’s lithosphere. For starters, experimental 

rock mechanics data brings uncertainties. For faulting and fracturing values, Byerlee’s law is valid for brittle 

deformation of homogeneous systems, but it is questionable if it works for extensive fault zones (Chester, 

1995) and weather it works at depths below 30 – 50 km (e.g. Kirby et al., 1996). Ductile rock mechanics 

have complex problems due to the extrapolation of the results to geological time scales (Burov, 2011). 

Experimental temperatures and strain rates for ductile deformation are higher than in nature, samples are 

much smaller and rather homogeneous compared to natural rocks, there might be water in the system that 

is not accounted for by the experiments and thermodynamic reactions and P-T conditions are different than 

in nature. The second uncertainties results from calculating synthetic yield stress envelopes where vertical 

and horizontal strain rate variations are not coherent with the background strain rate given by the initial YSE 

(e.g. Burov and Poliakov, 2001; Kusznir et al., 1991). Also ductile materials have a strong reaction to small 

temperature changes, e.g. due to increasing geotherm or radioactive heat production (Burov, 2011). Third, 

elastic-viscous-plastic deformation mechanisms are not completely understood. There are for example 

secondary factors like frictional heating, pressure, fluid content, partial melting and metamorphic phase 

changes that have a great influence on the system, but are not always taken into account. Lastly, these 

analytical and numerical methods need to be compared to observations to parametrize the rheology for 

geological time scales (Burov, 2011). 

Passive margins are located between oceanic and continental crust and have a complex crustal structure. 

Despite these uncertainties on the rheology and the thermal state, thermo-mechanical modelling and 

analogue modelling provide valuable insight in the interaction between physical forces, the thermal state 

and material behavior of the lithosphere. They are the main methods used in this PhD to investigate the 

initiation of continental rifting and break-up.  
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1.3. Rift-to-spreading systems 

1.3.1. Classifying extension systems 

The first classification of extensional systems was made during the 70’s with a distinction between ‘active’ 

and ‘passive’ systems (Fig. 1.9a, Olsen and Morgan, 1995; Sengör and Burke, 1978). An ‘active’ 

extensional system develops as a reaction to thermal upwelling (Bott and Kusznir, 1979; Dewey and Burke, 

1974), for example a rising mantle plume. A ‘passive’ extensional system is the result of far-field forces 

caused by plate-pull (McKenzie, 1978a). This specific way of classifying rift systems (active versus passive) 

has continuously developed and the most recent version takes into account the geodynamical setting. There 

are 1) active intra-continental rifts that develop on continental lithosphere (e.g. the Rhine Graben or the East 

African Rift), 2) active intra-oceanic rifts that form on oceanic lithosphere but that are tightly connected to 

the continent (e.g. the Red Sea or the Gulf of California) rifts and 3) inactive rifts such as paleo-rifts (e.g. 

Labrador Sea) or aborted arms (e.g. Central North Sea) (Cloetingh et al., 2013).  

A second way of grouping extensional systems was designed in the 80’s when rift geometries were linked 

according to shear settings (Fig. 1.9b). The ‘pure shear’ setting is characterized by listric faults, extensive 

horst and graben structures, symmetry and is largely influenced by the thermal state of the system 

(McKenzie, 1978a). The ‘simple shear’ setting is marked by basin development bounded by low angle 

detachment faults, asymmetry and a lower thermal regime (Wernicke, 1985). Of course these are two 

extreme version so rather quickly an intermediate extension setting was introduced, known as the 

‘delamination’ setting (Lister et al., 1986). Here, the system consists of low-angle detachment faults, 

asymmetry and thermally subsiding basins that are offset from the thinning centre.  

The division of extensional systems by geometry soon became related to tectonic processes and the rheology 

at lithosphere scale (Fig. 1.9c). Rift systems can be ‘narrow’, which is a sign for a strong continental lower 

crust, extension concentrated in the mantle of the lithosphere and a low thermal gradient. Rift systems can 

also be ‘wide’, which is the result of a weak continental lower crust, thinning that is uniformly distributed 

over the mantle and lithosphere (Buck, 1991) and an intermediate thermal gradient. A last type of extension 

mode within this classification system is the ‘core-complex’ type of extension system, where the lower crust 

is exhumed through extension that localised in the upper crust and a high thermal gradient.  

A fourth categorisation of extensional systems was based on the tectonic setting, e.g. extension vs. 

contraction. The category ‘Atlantic’-type of system points to rift-to-break-up systems that form in an 

extensional setting. It is comparable to the ‘active’ category from the first classification system (Fig. 1.9a) 

but it is not necessarily the result of a thermal anomaly at the base of the system. This type goes through the 

entire rift-to-spreading cycle, eventually reorganising the mantle convection system (Ziegler, 1993). The 

‘Atlantic’-type rifts are accompanied by failed horst and graben structures that might be re-used later in the 

tectonic cycle. The ‘back-arc’-type of rift develops in an overarching contractional regime (e.g. the Aegean 
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Sea) and is comparable to the ‘passive’ classification (Fig. 1.9b), although ‘far-field forces’ that result from 

slab-pull of the subducting slab are only one parameter that can cause this setting. This type of rifting also 

forms when the convergence rate of plates changes or when young colliding orogens stop diverging. When 

the convergence rate changes, the heavier subducting slab sinks, becomes steeper and allows mantle material 

to well-up, weakening the crust (Okay et al., 1994; Uyeda and McCabe, 1983). When young orogens stop 

to collide, deviatoric stresses can change, making the area more prone to back-arc formation. 

 

Figure 1.9. Different rift classification systems. a) The first classification system is based on ‘active’ as the 

result of thermal upwelling and ‘passive’ rifting as a result of far-field forces. These are comparable with 

the Atlantic-type system and the back arc-type systems that take into account the tectonic setting (overall 

extension or contraction). b) Rifts can also be described based on their geometry, resulting in ‘pure-shear’, 

‘simple shear’ and an intermediate ‘delamination-type’ rift-system classification. Lastly, c) are rift systems 

where lithosphere scale tectonic processes result in ‘narrow’, ‘wide’, or ‘core-complex’ type rift systems. 

 

One of the difficulties with all these classification systems is that they are all based on different 

characteristics. They show overlap but there is no over-arching system that includes all modes. Most rift-

systems do fit in more than one box and are both influenced by thermal processes as far-field forces. Also, 

there is still a large debate whether thermal anomalies in the mantle are essential for producing a successful 

rift-to-spreading centre or not. Some back-arc basins might eventually lead to oceanic crust formation and 

are then suddenly of Atlantic-type of system. The pure shear and simple shear end-member geometries are 

not observed on earth as such and can only be reproduced with analogue and numerical models. The 

challenge with the classification is to deal with the large heterogeneity of the lithosphere which makes it 

extremely difficult for a coherent, comprehensive classification system. In the above classification systems, 

crustal processes such as like erosion, sediment deposition and water-content are not taken into account, but 

their impact on rift formation processes is beyond the scope of this work and thus the existing rift 
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classification systems are used. Processes that initiate crustal thinning, rupture and the formation of oceanic 

crust are still debated (Rosenbaum et al., 2008; Rosendahl et al., 2005) and the more factors taken into 

consideration, the more complex continental rifting and conjugate margin formation  becomes. 

 

1.3.2. From rift to drift 

A rift-system goes through several phases before it enters the post-rift phase and either stops extending 

(resulting in a failed rift) or becomes a successful spreading centre (Fig. 1.10). The first phase is the pre-rift 

phase, where the initial conditions of a rift-to-drift system are generated. This is followed by a rift or syn-

rift phase, then break-up and exhumation of the lower crust and mantle and finally a post-rift, drift or 

spreading phase with an oceanic ridge at the centre.  

 

Figure 1.10. Schematic representation of the three major phases of a rift-to-break-up system. a) The pre-

rift phase b) the syn-rift phase, c) the break-up and exhumation phase and d) the (early) post-rift phase. 

MOR = Mid-Oceanic Ridge. 

 

The shift from a stable pre-rift situation to a syn-rift phase is the result of changing thermal and/or 

mechanical conditions. The strength of the lithosphere is a key-parameter for the likelihood of a rift system 

to develop (Burov, 2011; Cloetingh et al., 2013). Especially its compositional layers (e.g. Brun et al., 1999; 

Buck, 1991; Huismans and Beaumont, 2011, 2008), their individual thicknesses (Burov and Diament, 1995), 

the lateral variation in rheology (e.g. Geoffroy, 2005; Ziegler et al., 1995) and the total effective elastic 

thickness of the lithosphere (Huismans and Beaumont, 2008; Watts, 2001) are very important. Inherited 

weak zones (Manatschal et al., 2015), such as ancient sutures or large shearzones and pre-existing anisotropy 

(e.g. Rosendahl, 1987; Younes and Mcclay, 2002) also play a significant role in localizing extension and 

initiating rifting. The thermal state (Carter and Tsenn, 1987; Davis and Kusznir, 2004; Goetze and Evans, 

1979; Ranalli and Murphy, 1987), including the presence or absence of hotspots (e.g. Brozena and White, 
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1999; Feighner and Richards, 1995; Ito et al., 1996; Mittelstaedt et al., 2008; Ribe, 1996), the occurrence or 

enriched or depleted mantle (Hirth and Kohlstedt, 1996; Lee et al., 2005; Pollack, 1986) and the presence 

or absence of magma (Ebinger and Casey, 2001; Geoffroy, 2005; Stab et al., 2016), are crucial factors for 

controlling the thermal conditions. Also strain rate (Allemand and Brun, 1991; Ranalli, 1995) and the width 

of extension (Davis and Kusznir, 2004) should not be ignored. 

One of the oldest, and well-established models, to explain the onset of rifting is the uniform stretching model 

(McKenzie, 1978b). This model assumes instantaneous and uniform crustal thinning that changes both the 

gravitational and thermal regime (Fig. 1.11). The system adapts directly to the gravitational instabilities, 

developing syn-rift subsidence and basin infill. The thermal response has a longer wavelength and will only 

re-stabilize in the post-rift part. Driving forces behind this model are for example plate boundary stresses, 

frictional forces and tensional stresses. Plate boundary forces include slab pull, slab roll-back, ridge push 

and collisional resistance. Frictional forces hold the interaction of mantle convection with the lithosphere 

base leading to the movement of the overlying plate (Bott, 1993; Forsyth and Uyeda, 1975; Wessel and 

Muller, 2007; Ziegler, 1993), also known as mantle drag (Ziegler et al., 2001). Tensional stresses (Bott, 

1993) are diverging forces that act on the plate, e.g. far-field forces. New concepts result from the interaction 

of the large-scale forces described above. An example is an evolutionary trajectory going from passive to 

active in which volcanism and seismic activity increasingly play bigger roles (Burov and Cloetingh, 1997; 

Cloetingh et al., 2013; Huismans and Beaumont, 2011; Huismans et al., 2001; Wilson and Guiraud, 1992). 

Figure 1.11. Schematic representation of the uniform stretching model (McKenzie, 1978b) where the β-

factor can be calculated by dividing the width of the stretched domain (b, b) by the initial domain (a, a). It 

is then assumed that the vertical thinning is proportional to the horizontally stretched domain. The heat 

flow evolution corresponding to this stretching and thinning changes instantaneously, resulting in a heat 

flow peak at the syn-rift to post-rift phase transition. Only during subsidence does the system cool down 

over a long period of time after which it stabilizes during the post-rift phase (c).  

 

This simplified uniform stretching model was initially build for the North Sea (McKenzie, 1978b) to explain 

the onset of rifting and subsequent syn-rift evolution. He identified a β-factor, or stretching factor, defined 

by ‘b/a’ where ‘a’ is the initial width of the stretched domain and ‘b’ the width of the stretched domain (Fig. 

1.11). The vertical thinning of the crust is assumed to be proportional to the thinning factor of the stretched 

domain. The heat flow evolution that corresponds to the stretching and thinning changes instantaneously, 
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which results in a heat flow peak at the syn-rift to post-rift phase transition. During subsidence the system 

cool down over a long period of time after which it stabilizes during the post-rift phase. When applied to 

different areas, this model posed problems and modified versions appeared including depth-dependent 

stretching (Royden and Keen, 1980), ‘active’ rifting (Huismans et al., 2001), erosion and deposition (Burov 

and Poliakov, 2001) and mineral transitions (Podladchikov et al., 1994; Simon and Podladchikov, 2008; 

Yamasaki and Nakada, 1997). Most of these studies are theoretical studies, based on numerical modelling. 

Even though they do not explain all observations made, these studies aid our understanding on the onset of 

rifting and its subsequent evolution.  

During the early syn-rift phase the lithosphere is under extension. Depending on amongst others the 

rheology of the crust and lithosphere, distributed or localized rifts develop. When the crust and mantle are 

coupled, wide-spread or distributed rift geometries such as horst and graben structures and rift cells develop 

(Buck, 1991; Taylor et al., 1995). When the lithosphere is decoupled, it includes for example a strong sub-

Moho mantle, the rift width can be much narrower (Brun, 1999). The effective elastic thickness of the crust 

depends on the depth of the lithospheric necking level (McKenzie, 1978a). Once the system has overstepped 

the elastic boundary, entering the plastic regime, deformation is irreversible. Deep mantle processes, 

including upwelling of the asthenosphere, thermal displacement of the LAB, thermal expansion and 

intrusion of melts in the lower crust (Turcotte and Emerman, 1983; van der Beek et al., 1994) highly effect 

the rift evolution. Shallow crustal inherited structures guide lithosphere deformation as these features 

already weakened the system, prior to rifting (Manatschal et al., 2015). Structures that form during the early 

stages of rifting (e.g. faulting or softening) only affect deformation localization to a minor extent. During 

the later rift evolution, these inhomogeneities could help to localize and distribute crustal strain and favor a 

certain tensional reactivation (Janssen et al., 1995; Ziegler et al., 2001), but this is not always the case and 

strongly depends on the thermal regime (Chapter 4, Beniest et al., 2017b). The upper crust behaves brittle 

or plastic whereas the lower crust is less viscous. Faults are allowed to cross-cut the upper crust bringing 

water into the weaker lower crust and underlying mantle. This process leads to serpentinization of the mantle 

(Pérez-Gussinyé and Reston, 2001) allowing hyperextended crust to form, reaching beta-factor from 3-4.  

This extreme thinning of the crust leads to weakening of the crust. On one hand, this provides early 

subsidence basins and accommodation space to put more load on the lithosphere. On the other hand, when 

extension continues, the lithosphere eventually breaks. The break-up phase is important as it decides much 

of the margin geometry that will develop in the post-rift phase. For example, depending on where the crust 

break symmetric or a-symmetric margins may form in terms of extended width (Fig. 1.12, Huismans and 

Beaumont, 2007)), basin distribution or crustal thickness. Also in terms of volcanism, the margins can be 

grouped differently, the most common division being ‘volcanic’ or ‘non-volcanic’ margins (Fig. 1.12b, 

Franke, 2013)). Weather the mantle lithosphere or the crust will break first are two different views that give 
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two different results. When the mantle lithosphere breaks first, mantle material reaches shallow depths and 

the margins of the spreading system become ‘volcanic’. When the crust breaks first, the margins already 

develop while the mantle lithosphere is still intact and ‘non-volcanic’ margins form (Tugend et al., 2017).  

During the post-rift phase the basins that did not suffer break-up, undergo a thermal subsidence phase which 

eventually re-equilibrates the lithosphere, similar to the model proposed by Mckenzie (1978) and Royden 

et al. (1980). During this phase accommodation space is created and sediments can deposit. For a rift-system 

that reaches break-up and eventual spreading, the margins suffer from vertical movements, partly from 

thermal subsidence, but also from isostatic rebound of the lithosphere after the crust has broken apart 

(Kusznir and Ziegler, 1992) or vertical movements due to folding of the lithosphere through compression 

that resulted from abrupt changes in lithosphere thicknesses between continental and oceanic lithosphere 

(Japsen et al., 2012). 

Most recent advances on continental rifting and break-up studies, including integrated 3D models, impose 

as many of the above described parameters on the system when simulating rifting. These studies look for 

example at alternative lithosphere setups by comprising strong crustal blocks resembling cratons and other 

inherited structures (Koptev et al., 2016, 2015), or pushing the model through the complete pre-rift to 

spreading evolution (Koptev et al., 2017). In this spirit, two chapters of this manuscript have been developed 

where the effect of initial mantle anomaly location on a lateral rheological varying lithosphere has been 

tested (Chapter 3 and 4, Beniest et al., 2017a, 2017b) 

 

 

Figure 1.12. Schematic representation of the examples of types of margins that develop after continental 

break-up based on a) geometry (symmetric vs a-symmetric margins in terms of crustal thickness and margin 

width) and b) volcanism (volcanic vs non-volcanic margins). COT = continent-ocean-transition. 

 

1.4. Analogue and numerical models 

Analogue and numerical modelling methods are used to understand the plate tectonic processes. The 

advantage of analogue models is that resolution is higher and the models work in three dimensions per 
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definition. A drawback is the exclusion of thermal processes that are not accounted for in analogue 

experiments using silicon putty and sand that float on a liquid. For this, numerical models are more 

convenient because they can solve for temperature and displacement using physical principles. Appendix I 

and II provide the explanations of the numerical codes used in this project, the 2D thermo-mechanical 

FLAMAR code and a 2D version of the I3ELVIS code.  

 

1.4.1. Analogue modelling 

The first analogue models were performed by James Hall in the early 19th century, using sand layers with 

different colors to investigate how folding would develop under converging stresses. At the end of the 19th 

century other experiments developed with the aim to understand fracturing, folding and faulting of rocks, 

mainly in compression (Schellart and Strak, 2016). Analogue models investigating normal faulting and thus 

extensional processes occurred in the mid 20st century (e.g. Hubbert, 1951). From the 90’s onwards a new 

wave of analogue models in extension occurred with a focus on lithosphere scale processes and the 

exhumation of the lower crust and mantle (e.g. Brun et al., 1994; Brun and Beslier, 1996). In contrast with 

earlier analogue models, these models used less viscous materials representing weaker parts of the crust and 

the upper mantle. With these type of analogue models extensional systems could be characterized in terms 

of width (“narrow” vs “wide” (Brun, 1999)) and geometry (“asymmetric” vs “symmetric” (e.g. Calignano 

et al., 2015a).  

The challenge with analogue models in extension using silicon putty, sand floating on a heavy liquid made 

of a glucose solution or polytungstate, is to localize the extension inside the model domain and not at the 

boundary. Weak zones are therefore often implemented in an overall lateral homogeneous setup to avoid 

model failure. These ‘weak zones’ can be formed by actively incorporating a weak material inside the model 

(e.g Corti et al., 2013, 2007; Tirel et al., 2006; Willingshofer et al., 2005). Other possibilities are simulating 

velocity discontinuities by a ‘box-in-box’ method, where a box half the width of the model box is attached 

to the moving wall (Allemand and Brun, 1991). The edges of the small box a discontinuity in the model at 

the desired place. Another possibility to provide displacement boundary conditions is the use of rubber 

sheets at the base of the model box (Withjack and Jamison, 1986). 

The analogue models allow to investigate the rheological behavior of different materials in one system. The 

different layers as described in section 1.2 can be simulated with silicon (ductile material) and sand (brittle 

material). The decoupling of brittle layers by ductile layers has a major impact on the way rifting initiates 

in the system (Brun, 2002). Most analogue models are therefore vertically stratified but laterally 

homogeneous, except the implemented weak zone. As the earth’s crust consists of many different types of 

rocks, the system cannot be seen a homogeneous system. Some recent studies attempted to include more 

variation in terms of crustal thickness (Bonini et al., 2007), various weak zones (Cappelletti et al., 2013) 
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and extension rate (Nestola et al., 2015). In chapter 2 of this manuscript the results of an analogue modelling 

exercise including different segments with different strength envelopes are presented. 

Even though no thermal processes are taken into account with the analogue models presented in this 

manuscript, several attempts to understand for example plume geometries have been published (Davaille et 

al., 2005; Davaille and Vatteville, 2005). These models don’t investigate the interaction between mantle 

plumes and overlying lithosphere, but the results of these analogue models can be compared to numerical 

models that do examine how the lithosphere reacts to thermal upwelling and plume-impingement.  

 

1.4.2. Numerical modelling 

Thermo-mechanical processes at lithosphere scale were initially tackled using a purely hydrodynamic 

approach (e.g. D’Acremont et al., 2003; Ribe and Christensen, 1994; Tackley, 2002, 1998). Later, thermo-

mechanical models based on the FLAC algorithm were developed that could take into account non-linear 

elastic, brittle and ductile properties of the lithosphere (e.g. Burov and Diament, 1995; D’Acremont et al., 

2003; Huismans et al., 2001; Le Pourhiet, 2004). These studies were dedicated to understand the behavior 

of the lithosphere in reaction to erosion and deposition of sediments (Burov and Cloetingh, 1997), 

lithospheric folding (Cloetingh et al., 1999) and thermal upwelling from the mantle (D’Acremont et al., 

2003).  

The FLAMAR code, used also in chapter 3 of this manuscript, proved to be very useful for questions that 

relate to changes in topography over time, as this code allows topography to develop freely. The 2D nature 

of the code makes it less time-consuming than many 3D numerical codes. Other exercises were performed 

to investigate for example the effect of strain-softening in the plastic-frictional domain (Huismans and 

Beaumont, 2002) or on deformation localization for various strength profiles (Huismans and Beaumont, 

2007). After obtaining a better understanding of the influence different parameters have in thermo-

mechanical modelling mineral phase changes that occurred when for example mantle material rises to 

shallower levels were incorporated in thermo-mechanical models, including mechanisms to account for 

fluid transport, as they heavily influence the results. Thermo-dynamic models such as Perple_X (Connolly, 

2005) that uses experimentally acquired data to identify the state of the lithosphere when in thermodynamic 

equilibrium, were incorporated into the thermo-mechanical codes, including the  (e.g. Mezri et al., 2015; 

Yamato et al., 2008).  

With increasing computing power, more complex and powerful codes could be developed, leading to the 

rise of 3D numerical models that also take into account , e.g. SLIM3D (Popov and Sobolev, 2010) and 

I3ELVIS (Gerya, 2010; Gerya and Yuen, 2007), the latter being used for chapter 4 of this manuscript. Even 

though these models did not appear from scratch and they do include melt formation and phase changes, the 

3D nature of these codes holds some limitations. Not only are 3D models time consuming in calculation 
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time, also the free surface, which proved to be very powerful for the 2D thermo-mechanical code is not so 

easily implemented in a 3D code.  

Despite the limitations of either type of code, these numerical techniques are not only used by physicists 

and computer scientists. Geophysicists and geologists with numerical affiliation can be users of these codes 

and use them to explain geological observations. Some of the key-questions addressed in modelling 

extensional processes include the impact of inherited structures (e.g. Buiter and Tetreault, 2015; Manatschal 

et al., 2015), magmatic versus non-magmatic margin formation (e.g. Péron-Pinvidic and Manatschal, 2009), 

crustal break-up vs lithosphere break-up (e.g. Tugend et al., 2017), varying extension-rates (Brune et al., 

2016, 2014) and symmetry and asymmetry in extensional settings (Brune et al., 2014; Huismans and 

Beaumont, 2003; Unternehr et al., 2010). The most recent thermo-mechanical models addressing 

extensional tectonic systems include complex lithosphere model setups that include the interaction of mantle 

anomalies (Beniest et al., 2017a, 2017b, Koptev et al., 2017, 2016, 2015) or investigate the effect of the 

presence of melts in the spreading centre on the spreading rate (Lavecchia et al., 2017). 

  

1.5. The South Atlantic as a case study 

1.5.1. Pre-rift 

The pre-rift tectonic setting of the South Atlantic started with supercontinent Pangea that existed during the 

Permian (250 Ma). Pangea broke apart into two smaller super-continents Laurasia and Gondwanaland 

during the Triassic and Jurassic. South America and Africa were part of Gondwanaland, which was 

discovered by comparing Mesozoic lithologies and structures on both continents (Du Toit, 1937; Frimmel 

et al., 2011; Konopásek et al., 2016; Macdonald et al., 2003). Pre-break-up times, South-America and Africa 

were occupying a region ranging between 60 oS – 30 oN.  

On Gondwanaland, tectonic ‘pre-rift inherited’ features were present that possibly guided rift initiation. 

These structures separated an amalgamation of Archaean and Proterozoic cratons (Fig. 1.13 from Frimmel 

et al. (2011)) through Pan-African fold-and-thrust belts and fore-land basins that could have worked as 

shearzones along which deformation during the syn-rift phase took place (Burke, 1996; Nürnberg and 

Müller, 1991; Torsvik et al., 2009, Jackson et al., 2000; Martin and Hartnady, 1986; Martin et al., 1981; 

Moulin et al., 2010; Rabinowitz and Labrecque, 1979; Talwani and Eldholm, 1973; Torsvik et al., 2009). 

Example of pre-break-up features that are now located on both continent are the Congo-São Francisco craton 

(Frimmel et al., 2011) and the Dom Feliciano-Damara belt (Konopásek et al., 2016).  

Using data of the present-day structure of the South Atlantic margins a reconstruction of the pre-rift crustal 

structure of Gondwanaland can be made. Deep reflection seismic data provides Moho depth and crustal 

thickness (Pindell et al., 2014), refraction and reflection seismic data gives the crustal structure (Bauer et 

al., 2000; Blaich et al., 2011; Gladczenko et al., 1998; Mello et al., 2013). Gravity data is used to identify 
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different densities of bodies in the crust. Along the margins of the South Segment anomalous high-density 

bodies are observed at lower crustal depth. They have been interpreted in different ways, e.g. feeder dykes 

(Blaich et al., 2011) or heavily intruded continental crust (Cornwell et al., 2006; Schnabel et al., 2008) in 

the form of Seaward Dipping Reflectors (SDR’s) or magmatic underplating and voluminous magmatism 

(White et al., 2008; White and Smith, 2009). In some parts, high-velocity-high-density bodies are only 

observed along the South American margin (Blaich et al., 2009; Franke et al., 2006) not along the South-

African side. Here, these bodies could be inherited from Paleozoic accretion of bodies on the former SW-

side of Gondwana (Ramos, 2004; Ramos et al., 1996) and therefore contribute to the heterogeneous pre-rift 

state of Gondwanaland.  

The orientation of the basins along the South American margin in the South Segment of the South Atlantic 

is perpendicular to the present-day orientation of the spreading axis (Fig. 1.14), whereas on the African 

margin their orientation is parallel to the spreading axis. This difference in orientation suggests an earlier 

phase of extension for the South American side, before the opening of the South Atlantic ridge along former 

inherited structures (Franke et al., 2006; Pángaro and Ramos, 2012; Urien et al., 1981; Urien and Zambrano, 

1973). This extension phase was perpendicular or obliquely oriented to the extension phase (Franke et al., 

2006; Keeley and Light, 1993; Tankard et al., 1995; Urien et al., 1995) that caused the opening of the South 

Atlantic. This pre-spreading event (Autin et al., 2013) might have weakened the lithosphere in such a way 

that during the rift phase that would eventually form the South Atlantic, this weakened crust developed the 

break-up centre (Chapter 3, Beniest et al., 2017a). The perpendicular oriented basins are considered failed 

rift branches (Asmus and Baisch, 1983; Franke et al., 2002; Urien et al., 1995). 

The thermal structure of the pre-rift lithosphere and underlying mantle is more questionable and evidence 

can only be derived with modelling based on thermal principles. What is interesting to note though is that 

there is a Large Low Shear Velocity Province (LLSVP) located below the western shores of the present-day 

south West African margin at lower mantle depths. Modelling has shown that these LLSVP’s, do not move 

and evolve very fast, making its presence at the time of Gondwanaland rather likely (Bull et al., 2014). 

Around this LLSVP hot spot trails are observed (Hassan et al., 2015). Since the LLSVP remains rather 

stable and the hotspot trails are evidence for mantle anomalies. There is discussion if the Tristan Plume, the 

only rooted mantle plume in the South Atlantic domain, located slightly to the east of Mid Oceanic Ridge 

in the South Segment, has aided and perhaps even caused the break-up of Gondwanaland (e.g. Geoffroy et 

al., 2015; O’Connor and Duncan, 1990). If thermal anomalies or plumes exists (there are more than 50 

definitions for this phenomenon (Lustrino, 2016)), they can be described in terms of composition and/or 

thermal state and/or origin in the crust (e.g. lower mantle vs upper mantle) with respect to the surrounding 

material. In this thesis we regard a plume or mantle anomaly as such: a body, less viscous than its 

surroundings, with an anomalous thermal state and/or composition originating at mantle depth. 
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Figure 1.13. Paleogeographic map of the cratons, basins and fold-an-thrust belts of Gondwanaland from 

Frimmel et al. (2011). CDPT = Cuchilla Dionsio-Pelotas Terrane, CFT = Cabo Frío Terrane, CT = Coastal 

Terrane, CUT = Curitiba Terrane, LAT = Luis Alves Terrane, MT = Marmora Terrane, SM/OT = Serra do 

Mar-Oriental Terrane, PSZ = Purros Shear Zone, SBSZ = Sierra Ballena Shear Zone, CSZ = Colenso 

Shear Zone. 
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How these anomalous mantle features guide crustal deformation has been investigated since the 1990’s 

early 2000’s with thermo-mechanical models (Burov et al., 2001; Burov and Poliakov, 2001; Huismans and 

Beaumont, 2011; Huismans et al., 2001; Poliakov et al., 1993). Early plume-lithosphere interacting models 

showed that large-scale topographic changes could result from these rising bodies (e.g. Burov and Guillou-

Frottier, 2005; D’Acremont et al., 2003; Guillou-Frottier et al., 2007). 

One approach to better understand the role of mantle anomalies (or plumes) in rift initiation and continental 

break-up is forward thermo-mechanical modelling. Different scenarios have been modelled throughout the 

years that show that plumes can rise quickly to the base of the lithosphere (D’Acremont et al., 2003), they 

can cause topographic uplift prior to break-up (Burov et al., 2007; Burov and Cloetingh, 2009; Burov and 

Gerya, 2014), when extension rates are rather low, plumes help to localize rifting (Koptev et al., 2017), 

when the lithosphere is heterogeneous, plumes even assist continental break-up off-set from their 

impingement location (Chapter 3, Beniest et al., 2017a; Koptev et al., 2015) and they are capable of opening 

two rift branches in heterogeneous systems (Chapter 4, Beniest et al., 2017b).  

 

1.5.2. Syn-rift and continental break-up 

A combination of extensional forces (slab-roll back) and thermal weakening (mantle plume) of the 

lithosphere resulted in rift-initiation and break-up of Gondwanaland (Will and Frimmel, 2017). Extension 

was accommodated by shearzones and inherited features that separated the domains of Gondwanaland. The 

South Atlantic oceanic domain originates around 134 Ma (Channell et al., 1995) when continental break-up 

and spreading migrated from south to north until the northernmost segment, the Equatorial segment opened 

between 110-104 Ma (Eagles, 2007; Moulin et al., 2010; Nürnberg and Müller, 1991). 

The first and strongest extensional pull was felt along the present-day Agulhas- Falkland Fracture Zone 

(AFFZ, Fig. 1.14) that was initially considered a moderate strike-slip boundary between rigid, continental 

blocks (Martin and Hartnady, 1986). The Agulhas part of the fracture zone is located on the African Plate, 

whereas the Falkland side is located on the South-American Plate (Ben-Avraham et al., 1997). On satellite-

derived gravity maps (Sandwell and Smith, 2009) large movements/displacements of 500 km have been 

observed along the intraplate boundaries in South-America between 180 – 160 Ma (Torsvik et al., 2009). 

Further north, roughly 175 km of dextral movement occurred between 150 – 126 Ma and between Amazonia 

and Paraná, along the Florianopolis Fault Zone (FFZ, also known as Paraná-Etendeka Fracture Zone (PEFZ) 

or the Rio Grande – Walvis Ridge Fracture Zone) (Fig. 1.14, Torsvik et al. (2009)). During the syn-rift 

phase and perhaps also during the early post-rift phase, this fracture zone worked as a barrier with the South 

Segment to allow a thick sequence of salt to be deposited during the Aptian (Fig. 1.14, Antonio et al., 1981; 

Torsvik et al., 2009). Between 132 and 129 Ma the syn-rift phase ends in the South Segment when the 

lithosphere breaks and oceanic spreading starts (Ernesto et al., 1999; Raposo et al., 1998; Renne et al., 1996; 
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Torsvik et al., 2009). This was possibly aided by the arrival of the Tristan Plume that leaves two volcanic 

lineaments in the South Segment the Rio Grande Rise and the Walvis Ridge (O’Connor and Duncan, 1990). 

From ~126 Ma South-America behaved as a rigid single plate. In the Central Segment, the diverging 

continents thin the crust until 112 Ma when it breaks apart in two continents (Torsvik et al., 2009). The 

Romanch Fracture Zone separates the Central Segment from the Equatorial Segment and suffered two 

phases of transpressionally driven deformation. The first phase between 108-92 Ma and a second between 

65-52 Ma. The first phase is possibly due to a 9o change in divergence direction between the two continents, 

which would have resulted in a convergence component across this fracture zone (Nemcok et al., 2013). 

 In older publications, the margins of the South Segment are considered ‘volcanic’ margins, because of the 

large number of melt occurrences in the form of SDR’s, flood basalts and high velocity/high density bodies 

in the lower crust that are widely distributed in the north of the South segment, close to the Tristan Plume. 

These volcanic bodies were emplaced during the syn-rift phase when the system was under extension or 

during the early post-rift phase. Towards the south of the margins, the volume of melt decreases (Blaich et 

al., 2013), which adds to the question if the margins are really volcanic or not. The influence of the Tristan 

Plume is too far away in this region (further than 2000 km as proposed by White and McKenzie, 1989)) to 

have caused the massive igneous occurrence in the central and south of the South Segment. Here, the 

volcanic occurrences originate from pulsed or episodic events that allowed melts to accumulate. The crust 

got heated after which volcanic rocks extruded along large or prominent transfer faults bordering the 

different segments (Blaich et al., 2013).   

Some authors do not agree with the volcanic interpretation of the SDR and assign their existence to high-

grade metamorphic crustal rocks, serpentinized material, or a mixture of mafic and ultramafic material 

(Contrucci et al., 2004; Moulin et al., 2005). To make it more complicated, the deep crustal structures 

(including the SDR’s) are partially covered by a thick package of sediment. This makes it very difficult to 

distinguish intruded and underplated continental crust and oceanic crust (Ebinger and Casey, 2001). The 

SDR are also interpreted as proto-oceanic crust (Talwani and Abreu, 2000). 

The half-graben systems along the margins are filled, either with pre-rift/syn-rift sedimentary rocks or basalt 

flows (Talwani and Abreu, 2000). A half-graben system on the South African margin extending landwards 

is observed and is possibly filled with post-rift/syn-rift sediments or basalt flows (Bauer et al., 2000). The 

Mesozoic (syn-rift) package is much thicker on the African side than on the South American side. The basin 

axes of the African basins are parallel to the coastline which implies they are formed along the same stresses 

as the Mid-Atlantic Ridge during the syn-rift phase. Some authors consider that the syn-rift deposits are not 

coeval and that a Mesozoic rifting phase occurs before the final opening of the South Atlantic (Macdonald 

et al., 2003). These authors propose that early rifting was oblique (NE–SW extension), which created basins 

at high angle to the trend of the ocean on the Argentine margin (Autin et al., 2013). 
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Figure 1.14. Bathymetric map of the South Atlantic domain showing the different segments and examples 

of continent-ocean-boundary locations (COB), seaward-dipping-reflectors areas (SDR) and the outline of 

the marginal basins. 

 

1.5.3. Post-rift 

Magnetic anomalies have  helped to determine the age of the oceanic crust and also to onset of spreading 

and thus the timing of continental break-up  (e.g. Moulin et al., 2010; Nürnberg and Müller, 1991; Torsvik 

et al., 2009). The magnetic signal of oceanic crust is being captured by shipboard profiles and aeromagnetic 

profiles. The variations in magnetic strength of magnetic minerals of the Earth’s crust can be mapped over 

large distances and are best captured in full oceanic crust (Fig. 1.15). In the South Atlantic domain, the 

oldest magnetic anomaly in full oceanic crust is of Aptian age and is called Chron M-0. Hence, seafloor 

spreading started at least during the Early Cretaceous (Channell et al., 1995). The M0-anomaly is also known 

as the ‘magnetic quite zone’ or the ‘Cretaceous superchron’, between 108 Ma to 92 Ma. This period has 

been adopted in the Global Polarity Time Scale (GPTS) (Gradstein et al., 2012), the standard timescale 

based on paleomagnetic research and nanofossils. That the South Atlantic started spreading during the 

magnetic quite zone, makes it very difficult to determine the exact timing of opening. Recent studies have 

identified two long wavelength magnetic wiggles within Chron M-0. These can be globally correlated to 

better constrain the magnetic quite zone (Granot and Dyment, 2015). The most prominent magnetic anomaly 

recognized early on in magnetic studies is the so-called ‘G magnetic anomaly’ (Fig. 1.15) (Rabinowitz and 
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Labrecque, 1979). This very dominant anomaly has been interpreted as an edge-effect between the 

continent-ocean-boundary (COB) (Rabinowitz and Labrecque, 1979) or as the result of SDR’s (Blaich et 

al., 2009; Hinz et al., 1999). The Large Marginal Anomaly (LMA) has a clear magnetic signal and includes 

the G-anomaly and two minor magnetic anomalies in the Early Cretaceous (M9 and M11), because these 

two are not clearly observed separately on magnetic data along the margins (Moulin et al., 2010). The LMA 

is very wide along the South African margin, with a double branch in the Orange basin. The LMA is less 

wide along the South American margin. The asymmetry between anomalies is also observed in the Northern 

Atlantic, where it can be explained by asymmetric sea-floor spreading (Larsen and Saunders, 1998) or 

stretched and intruded continental crust (White and Smith, 2009). The regularity of the magnetic anomalies 

facilitated the calculation of the age of the oceanic crust (Müller et al., 2008) and also the spreading rate 

(Colli et al., 2014). 

The South Atlantic is divided into several segments. The segmentation is largely based on the subsurface 

margin (a)symmetry of the Continent-Ocean-Boundary (COB), its Continent-Ocean-Transition (COT), the 

presence or absence of volcanism and Seaward Dipping Reflectors (SDR) (Fig. 1.14 and 1.15). The term 

‘continent-ocean transition’ (COT) is used for the part that separates clearly identifiable stretched 

continental crust and the fully developed oceanic crust (Blaich et al., 2011). Whether the COB is located 

towards the landwards edge or the seawards edge of the COT is still a matter of debate due to several factors 

such as the masking effects of the evaporitic sequences (Central Segment), the exhumed continental mantle 

(South Segment), depth-dependent stretching (Davis and Kusznir, 2004) and the different interpretations of 

SDR’s (Torsvik et al., 2009). The COB, the location of the SDR’s and the Aptian salt occurrences have 

been used to reconstruct the pre-break-up configuration, just before spreading started (Torsvik et al., 2009). 

Along the African margin, the COT is often mapped as a very narrow band of SDR’s in the South Segment 

(Gladczenko et al., 1997). This correlates well with the integrated geophysical study of (Bauer et al., 2000). 

On the South American side there are three possibilities for the COT based on large volcanic activity 

(Gladczenko et al., 1997), the presence of SDR’s and voluminous extrusive units (Chang et al., 1992; 

Mohriak et al., 1990) and residual isostatic gradients (Torsvik et al., 2009). The location of the COT in the 

Central Segment is more complicated due to the presence of salt (which is absent in the South Segment 

margins) and is often based on seismic data and less on gravimetry for example (Contrucci et al., 2004; 

Dupré et al., 2007; Moulin et al., 2005).  

Gravity modelling is the most used method to identify the COB (Fig. 1.14). The positive gravity anomaly 

is interpreted as a broad Moho uplift in the footwall of Early Cretaceous extensional faults. Anomalies 

further offshore correlate well with a volcanic ridge, interpreted as a failed rift/spreading centre (Meisling 

et al., 2001). The COB is fairly well established north of the Santos Basin, due to well defined features in 

gravity data (Torsvik et al., 2009).  
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Figure 1.15. Map of the South Atlantic domain with four large segments, the magnetic anomalies (the most 

important anomalies are highlighted: Large-Marginal Anomaly after Moulin et al., 2013; M0, M2, M3, M4, 

M11 and G after Rabinowitz and Labrecque, 1979) and the age of the oceanic crust (Müller et al., 2008). 

 

A second group of authors put the COB along the Brazilian coast further landwards (Macdonald et al., 2003; 

Müller et al., 1997). Arguments against this are the long distance of post-break-up salt flow that is needed 

to reach the current setting which are unrealistically high (Torsvik et al., 2009), even after correction of the 

landward COB (Müller et al., 2008). 

The geometries of the margins differ too. Along the South Segment, the African margin is roughly 200 km 

wide, compared to 300 km on the South American side. (Blaich et al., 2009). In the Central Segment, the 

African margin is 400 km wide compared to 300 for the South American margin (Blaich et al., 2011). Also 

basin width, orientation and quantity is not the equally divided in the South Segment (Fig. 1.14). On the 

African side the basins are 75 – 150 km wide along the Namibian-South African margin (Bauer et al., 2000; 

Gladczenko et al., 1997), compared to 160 – 180 km off the Congo-Angolan margin (Moulin et al., 2005) 

and 120 km wide of the Gabon margin (Watts and Stewart, 1998). There are only three basins along the 

South Segment margins, all oriented parallel to the present-day spreading axis. On the South American side 

there are 10 basins, all oriented perpendicular to the Mid-Oceanic Ridge or with a more circular geometry. 

The sediment infill of the South America and African marginal basins contains syn-rift sedimentation and 
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they show that they have been affected by post-rift subsidence and uplift events (Marcano et al., 2013). In 

addition, the South American basins of the South Segment contain older sediments and a thick package of 

Mesozoic sediments, which is not the case for the African basins (Blaich et al., 2011) and implying a 

previous deformation phase. 

 

1.6. Objective and approach 

Ever since the Map of the Ocean Floor from Marie Tharp, the numerical studies of Bullard et al. (1965) and 

the Plate Tectonic Cycle of Richard Wagner were accepted, questions arose about the reasons for why 

continents break apart. The conceptual concepts of Mckenzie (1978) and Lister et al.  (1986) and variations 

there-off were used for decades to explain rift-to-drift systems. However, the heterogeneous lithosphere and 

the numerous processes acting on it, drastically increased the complexity of lithosphere-scale processes in 

extension and the theoretical concepts for continental rifting and break-up.  

There has long been a debate whether rifting originated from far-field stresses (e.g. ‘passive’ rifting) or 

thermal upwelling of mantle material (e.g. active rifting) (Olsen and Morgan, 1995; Sengör and Burke, 

1978). In the case of the South Atlantic, where, at the time of rift initiation Gondwanaland consisted of an 

amalgamation of crustal blocks, the varied nature of the lithosphere, or its rheology is also extremely 

important. For that reason analogue modelling was performed at the tectonics laboratory at Utrecht 

University. The analogue modelling approach allowed to investigate in detail the response of extensional 

forces on a complex lithosphere, consisting of several segments, for example an amalgamation of crustal 

blocks or cratons, as no thermal processes are taken into account. Here, the objective was to understand 

what the effect is of far-field forces on complex lithospheric setups. Is it possible to reproduce features 

observed along the margins with just the interaction of far-field forces and rheological differences? Does 

such a system break at the contact between two different segments, the ‘inherited structure’, or not? Silicon-

putty and sand models with lateral varying rheological segments were put under extensional forces. The 

results of this exercise can be read in Chapter 2.  

In the South Atlantic domain a deep-rooted mantle anomaly is present and might have influenced rift 

initiation and continental break-up. Interestingly, the plume is located not exactly beneath the ridge and also 

the margins show dissimilar crustal thicknesses, orientation of basins and high velocity/high density bodies 

are present at depth. Since analogue modelling does not include thermal processes, 2D thermo-mechanical 

modelling has been performed to understand the influence of thermal processes on these complex 

lithosphere setups, consisting of different segments.  

The first thermo-mechanical modelling exercise investigated the influence of far-field forces and plume 

locations on a lithosphere consisting of two different segments including different thicknesses of the 

segments and geometries between these segments. The objective was to understand how a laterally 
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heterogeneous lithosphere responds to different combinations of far-field forces, thermal anomalies and 

rheological setups. Does the ‘classical’ break-up mode always develop or are there other options? Is it 

possible reproduce margin asymmetry and lower crustal high density/high velocity bodies as observed along 

the margins of the South Atlantic? The 2D thermo-mechanical code FLAMAR is used for this exercise. The 

results can be found in Chapter 3 and a detailed explanation of the model can be found in appendix I.  

The location of the plume turned out to be a key-parameter for rift initiation and final break-up location. 

However, the model design of the previous exercise did not allow a qualitative review of the impact of the 

plume location on continental break-up. For this reason, a set of models was designed that investigated in 

detail the location of the plume in combination with far-field forces, thermal gradients and, again, a complex 

rheological setup with a lithosphere consisting of two different segments. This time, a 2D version of the 3D 

thermo-mechanical code I3ELVIS was used. The results can be found in Chapter 4, with a detailed 

description of the model in in appendix II.  

The analogue and numerical studies presented here help to explain geological and geophysical observations. 

They also provide a new hypotheses and ideas on the formation of asymmetric margins and plume-induced 

continental break-up that need verification by geological and geophysical observations. A detailed 

discussion about the impact of these exercises on geodynamic concepts in extensional tectonics, the 

formation of surface features and the implications for deeper structures is given in Chapter 5. Conclusions 

and perspectives provide ideas for follow-up work using of the results of this work to understand basin-

scale processes. During the PhD, a scientific cruise on the acquisition of geophysical data (seismic reflection 

and refraction, gravity and magnetic data), which might eventually provide information on the formation of 

asymmetric margins and also the deeper crustal structure and the sub-Moho mantle, was held on the Indian 

Ocean during the summer of 2017. A report on this acquisition through Magnetometer and Ocean Bottom 

Seismometers deployment and recovery is provided in appendix III. 

 

Main questions: 

 What is the effect of far-field forces on a rheologically segmented lithosphere without taking 

thermal processes into account? Is it possible to reproduce features observed along the margins with 

just the interaction of far-field forces and lateral rheological variations? (Chapter 2) 

 Can margin asymmetry and lower crustal high density/high velocity bodies be reproduced when 

including thermal processes through adding mantle plumes to the equation? (Chapter 3) 

 What is the qualitative effect of pre-rift plume location on the final break-up style? (Chapter 4) 

 How does conjugate margin asymmetry and thermal history vary with break-up mode? (Chapter 5)
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Chapter 2: Extending the continental lithosphere: influence of lateral strength variations on 

deformation mode and geometry 
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Summary  

Prior to break-up Gondwanaland consisted of an amalgamation of cratons, fold-and-thrust belts and basins. 

These different features have different internal properties and thus different strengths. If this system of 

amalgamated blocks is regarded as a whole, the question is how this complex setup reacts to extensional 

far-field forces. In the case of the opening of the South Atlantic these horizontal, far-field forces result from 

the slab roll-back of the subducting slab below the Andes, on the western side of the South American Plate.  

To investigate the effect of far-field forces on a more complex lithosphere (consisting of domains with 

different strengths) analogue modelling experiments have been performed at Utrecht University. The 

advantage of analogue models over numerical models in this specific case is that the models provide a higher 

resolution, they work in 3D and because there is no interaction with temperature anomalies purely the effect 

of extension can be tested on setups that contain large segments with different strength.  

The model setups combine two large segments of equal size with different strength on which extension is 

applied on one side of the model by displacing a moving wall away from the model. The justification for 

only applying extension on one side of the model box results from the notion that the South American plate 

is moving fast towards the west as a result of the subducting slab that exerts horizontal far-field forces on 

this complex system. Africa remains rather stationary and thus the assumption is that extensional forces 

only act on the South American side, but they can be felt throughout the system. 

The results of these analogue models show that in a complex setup with several domains with different 

strength, extension is accommodated in the weak zone only and not, as would be expected at the contact 

between the different segments. In case the crust and mantle are decoupled the strong upper mantle also 

accommodates extension, although initially rifting is distributed and wide rift geometries develop. When at 

some point the strong mantle breaks, a weak zone develops that then starts to accommodate all extension 

leading to extreme thinning of the lithosphere, developing a narrow rift zone. If extension would continue, 

this narrow rift domain is where the system would eventually break. 

Margin geometries that result from this are comparable to the South Atlantic margins. When only taking 

into account the rifted domain, the margins appear to have been formed in a pure shear fashion, developing 

symmetric geometries comparable to the margins of the Central Segment. In case the initial system is looked 

at, including the strong part that has not suffered any extensional deformation, the geometries are 

asymmetric because the strong part has now a part of the thinned, weak lithosphere attached to it. This is 

comparable to margins of the South Segment where the crust is thicker and thins abruptly on the African 

side, whereas the South American side has a thinner crust in general. Also the basin distribution is 

comparable with more basins of the South American side than on the African side, although this is highly 

dependent on the location of failure of the strong part of the upper mantle.  
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Abstract 

The South Atlantic domain is the result of continental rifting and break-up of supercontinent Pangea. 

Supercontinents consist of an amalgamation cratons, fold-and-thrust belts and basins before they break 

apart. These different features vary in lithosphere strength and respond differently to extensional forces. It 

is important to understand how the ensemble of a system that contains of a variety of lithospheric strengths 

responds to extensional forces because this might influence the rift localization location and final margin 

geometries. With lithosphere-scale analogue modelling the rift structure and evolution in response to 

extension of complex lithospheric setups has been studied. The experiments include two equally sized 

segments of continental lithosphere with a lateral strength variation. The results show that deformation by 

extension always localizes in the relatively weaker section and not at the contact between the lithospheres 

where the strength contrast is highest. When the weak segment consists of three layers (brittle crust, ductile 

crust and ductile mantle) a wide-rift develops due to ductile coupling of the lower crust and upper mantle. 

In case the weaker lithosphere includes a very resistant upper mantle layer, the system undergoes a two-

phase evolution. First, a rift, with a 25% narrower width compared to the 3-layer experiment, develops under 

decoupled conditions. This mode of rifting persists until the mechanically strong upper mantle loses strength 

and the weak lower crust and weak upper mantle become a coupled system (phase two). The coupling results 

in immediate narrow-rift deformation localization that is symmetric in the mantle lithosphere, but 

asymmetric within the crust. This two-phased extension can explain different margin geometries depending 

on the scale the final system is looked at. When only the rifted domain is taken into consideration to describe 

margin geometries, the system develops in a pure-shear fashion, resulting in rather symmetric margins in 

terms of crustal thicknesses, comparable to the Central Segment of the South Atlantic. When the initial 

system as a whole is regarded, the system still developed in a pure-shear fashion. In this case though, the 

margin’s geometry is asymmetric in terms of crustal thickness and unequal basin distribution on either side 

of the margin, because the ‘stronger’ segment has now a thin sliver of weak lithosphere attached to it. This 

asymmetry is comparable to the margins along the South Segment of the South Atlantic. The asymmetric 

basin distribution is highly dependent on the location of failure of the strong upper mantle. With this two-

phased extension evolution we provide an alternative view on rift asymmetry based in the absence of 

lithosphere-scale detachments.  

 

 

 

 

Reference: Beniest, A., Willingshofer, E. Sokoutis, S., Sassi, W. Extending the continental lithosphere: 

influence of lateral strength variations on deformation mode and geometry. In preparation.
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2.1. Introduction 

The last supercontinent, Pangea, consisted of amalgamated cratons, fold-and-thrust belts and basins prior to 

its break-up (Will and Frimmel, 2017). The East African rift and the South Atlantic domain are both results 

of the disintegration of Pangea. Different to the East African rift, the South Atlantic rift system did not 

always follow inherited tectonic contacts like suture zones for rift-localization and break-up, but also cross-

cuts these contacts, e.g. the Gondwana Fold and Thrust Belt (Fig. 2.1, Cobbold et al., 1992).  In some cases 

even, other crustal units broke apart rather, that can be found now on both sides of the Atlantic Ocean, e.g. 

the Dom Feliciano Gariep belts or former back-arc basins (Engelmann de Oliveira et al., 2016; Konopásek 

et al., 2016; Will and Frimmel, 2017). The localization of deformation and the geometry of rift structures 

can be explained by inherited structures, strain softening and complex brittle-ductile rheology and 

stratification (e.g. Balázs et al., 2017; Brun and Beslier, 1996; Manatschal et al., 2015; Philippon et al., 

2014). The extensional deformation modes that eventually cause the break-up of continents and create rift 

geometries highly depend on first-order parameters such as temperature and strain rate that influence the 

rheological state of the lithosphere at the onset of rifting (eg. Buck 1991,  Brun, 1999, Burov and Gerya, 

2014). The difference in rift localization observed between the East African Rift and the South Atlantic 

might thus be a result of different interaction between the first order parameters and the rheological state of 

the lithosphere at the onset of rifting.  

Analogue and numerical models are used to investigate the structural style that develops during plate 

rupture. In analogue modelling rheological weak zones are often implemented in lateral homogenous, but 

vertically layered model setups to simulate variations in strength (Chenin and Beaumont, 2013; Zwaan et 

al., 2016). These studies provide valuable insight in controls on strain localization and rift geometry. We 

know for example that weak zones in the lower crust impact rift localization more than weak zones in the 

lithospheric mantle (Sokoutis et al., 2007) and that different weak zones at lower crust impact along margin 

segmentation (Cappelletti et al., 2013). The effect of large lateral strength variations, that possibly interfered 

with the break-up of Gondwana into the South American and African plates (Will and Frimmel, 2017), can 

however, not be addressed with these kind of models. Experimental work using wide domains with 

significant rheological contrasts in extensional setting are scarce. An example could be the one from Corti 

et al. (2013) where a large weak segment is implemented at the centre of the model. However, even though 

the strength contrast is large in this study, the weak and strong domains cannot be compared to an 

amalgamation of strong crustal features present in supercontinents. The strength of the lithosphere is also 

impacted by thickness (Burov and Diament, 1995) which has been tested by Bonini et al. (2007) with small-

scale analogue models. Here, deformation was mainly accommodated at the boundary between the two 

types of lithosphere or at an inherited structure, but not in either the thin or thick lithosphere segment. 
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Figure 2.1. Map of the South Atlantic domain showing the outline of the basins along the margins in the 

Central and South Segment as well as the locations of the cross-section given in Fig. 5. (red lines: Fig. 5g, 

orange lines Fig. 5h). The extend of the SDR (after Torsvik et al., 2009) is also provided. Note the presence 

of one rooted mantle plume in the South Segment (TdC = Tristan da Cunha Plume) and two hotspots in the 

Central Segment (Tr = Trinidade hotspot) and StH = Saint Helena hotspot). The age of the oceanic crust 

(Müller et al., 2008) is overlying the bathymetry map (Ryan et al., 2009). The yellow line represents the 

Cape fold and thrust belt that partly runs on the African continent and the South American continent.  

 

In numerical modelling up until recently, the strength profiles of model setups were mainly laterally 

homogeneous and vertically stratified. Weak seeds or thermal perturbations, not necessarily based on 

observations, are implemented to localize deformation within the model and not at its borders (e.g. Brune 

et al., 2014; Huismans and Beaumont, 2007). Combining two different rheological segments to test the 

effect of far-field forces on a laterally heterogeneous system has only been performed numerically (Beniest 

et al., 2017a, 2017b; Koptev et al., 2015, 2016), but always with the presence of a mantle plume. These 

studies have shown that in a system with lateral strength variations, several modes of break-up can occur 

depending on the thermal regime and far-field forces. These modes include break-up at lithospheric contacts 

(or inherited structures) but also in homogeneous parts of a lithospheric segment (Beniest et al., 2017a, 

2017b), which could be the case for the South Atlantic (Engelmann de Oliveira et al., 2016).  Also the 

implementation of large, strong crustal blocks in numerical models offsets the break-up centre significantly 
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from the plume impingement point (Koptev et al., 2016, 2015) thereby explaining the geometries observed 

in the East Africa Rift.  

Not all extensional systems develop with the presence of a mantle plume. The Central Segment of the South 

Atlantic for example, does not have a rooted mantle plume below the Mid Oceanic Ridge. The influence of 

extensional forces on a system with large lateral strength variations without the inclusion of mantle 

anomalies have not been modelled up until today. The advantage of modelling this with analogue 

experiments is the high-resolution and the 3D nature of the models that allow for a good comparison with 

margin geometries in the South Atlantic domain. We address the question whether large lateral strength 

variations within the continental lithosphere can direct deformation localization and the evolution of rift 

structures and geometries. Our aim is to understand why, like in the case of the South Atlantic, localization 

of deformation is not solemnly controlled by inherited structures but also affected more homogeneous parts 

of a larger system containing lateral strength variations. The results of our study add to our understanding 

of the influence of strength variations in the lithosphere on complex rift systems. 

 

2.2. Experimental setup 

2.2.1. Analogue models setup 

Lithosphere-scale analogue models have been performed, at the Tectonic Laboratory (TecLab) of Utrecht 

University. First, two reference models with no lateral strength variations consist of weak (model 1, M1, 

Fig. 2.2a) and intermediate strength (model 2, M2, Fig. 2.2b) profiles. Next, two equally sized compartments 

with weak and strong lithosphere (model 3, M3, Fig. 2.2c) and intermediate and strong lithosphere (model 

4, M4, Fig. 2.2d) are combined. Lateral strength variations are achieved by increasing the thickness of the 

brittle layers in expense of the ductile layers across vertical boundaries. There is no weak zone added 

between the two lithospheric segments, but by placing these domains in direct contact a discontinuity in the 

system arises naturally. In our experiments, dry granular material such as feldspar and quartz sand represents 

the brittle crust and brittle mantle, whereas mixtures of Rhodorsil Gomme GSIR (RG) silicone with fillers 

embody the viscous layers (ductile crust and ductile mantle lithosphere; see table 1 for the material 

properties and scaling parameters). 

The weakest strength profile (S1, Fig. 2.2e) consists of three layers, representing, from bottom to top, the 

strong part of the lithospheric upper mantle, the ductile lower crust and the brittle upper crust (Willingshofer 

et al., 2005). The stronger part of the upper mantle is represented by ductile Rhodorsil-gum layer with a 

density of 1503 kg/m3 and an almost Newtonian viscosity (2 cm thickness), a second ductile Rhodorsil-gum 

layer with a density of 1407 kg/m3 and an almost Newtonian viscosity represents the ductile lower crust (1 

cm thickness). A brittle feldspar layer with a density of 1300 kg/m3 with Mohr-Coulomb criteria represents 

the upper crust (1 cm thickness). The strength peak of this profile resides in the brittle upper crust. The 
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middle and strongest strength profiles (S2 and S3, Fig. 2.2f and 2.2g) both consist of four layers, a ductile 

Rhodorsil-gum layer (1.6 cm thick for S2 and 1.2 cm thick for S3) at the bottom of the model with a density 

of 1503 kg/m3, followed by a quartz sand layer with Mohr-Coulomb criteria and a density of 1503 kg/m3 

(0.4 cm thick for S2 and 0.8 cm thick for S3) that represent the strong part of the lithospheric mantle. The 

ductile lower crust is featured by a second Rhodorsil-gum layer with a density of 1.407 kg/m3 and an almost 

Newtonian viscosity (thickness of 1.2 cm for S2 and 0.8 cm thickness for S3). The top layer depicts the 

upper crust and consists of feldspar sand with Mohr-Coulomb criteria and a density of 1300 kg/m3, the 

thickness being 0.8 cm for S2 and 1.2 cm for setup S3. The intermediate and strong strength profiles have 

two strength peaks, one in the brittle crust and another in the brittle mantle lithosphere (e.g. Brun, 1999).  

 

 

 

 

 

Figure 2.2. Experimental setup of the four analogue models (a-d) with rheological strength envelopes (e-

g). a) Model 1 (M1), lateral homogeneous stratified strength profile S1 (weak, three layers, e). b) Model 2 

(M2), lateral homogeneous stratified strength profile S2 (intermediate, four layers, f). c) Model 3, lateral 

variation in strength profile combining vertically stratified strength profile S1 (weak, three layers, e) and 

S3 (strong, four layers, g) and d) Model 4, lateral variation in strength profile combining vertically stratified 

strength profile S2 (intermediate, three layers, e) and S3 (strong, four layers, g). The black arrow indicates 

the direction of the moving wall (10 mm/hr, constant rate) that also holds the box-in-box. The layered 

lithosphere floats on a low viscosity high density fluid within the Plexiglas box. UC = upper crust, LC = 

lower crust, UM = upper mantle. 

 

All models float on a heavy liquid consisting of a polytungstate-glycerol mixture, normally used for 

separating materials, with a density of 1600 kg/m3, to avoid the model from subducting (Fig. 2.2). This fluid 

represents the asthenosphere as well as the very weak part, with the least strength of the lithospheric mantle 

(Willingshofer et al., 2005). The used tank is transparent with one moving wall giving the model the 

dimension 36 x 30 cm. The total thickness of the lithosphere was kept the same at 4 cm for all models at the 

onset of extension, although strength variations may also be associated with thickness variations in nature 

(Burov and Diament, 1995). Following Allemand and Brun (1991), extension of the lithosphere was 
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implemented by a box-in-box construction. A small box that measured half of the model box’ width was 

attached to the moving wall creating a velocity discontinuity at the long sides of the Plexiglas box (Fig. 2.2). 

One half of the box was attached to a wall that was pulled at constant rate of 1 cm/hr, which corresponds to 

1.45 cm/yr in nature, perpendicular to the contact between lithosphere segments of variable strength (Fig. 

2.2). During the experiments, top view photos were being made every 10 minutes. Models ran for a variety 

of time (3 to 8.5 hours).  

 

2.2.2. Analogue model scaling 

Analogue models are comparable with natural examples when three scaling criteria are fulfilled: geometric, 

dynamic and kinematic criteria.  

For geometric scaling the modelled length ratios need to be equal in all directions (x (length), y (width) and 

z (depth), i.e. Xm/Xn = Ym/Yn = Zm/Zn). The reference models M1 and M2 consist of a lateral homogeneous 

setup of 36 x 30 x 4 cm. M3 and M4 consist of two types of strength profiles, with equal thicknesses (4 cm), 

widths (36 cm) and lengths (16 cm). With a scale-factor of 6.67 e-7, this would represent 540 km x 480 km 

x 60 km in nature, or 1 cm is 15 km.  

Dynamic scaling of the model with a natural example can be accomplished by respecting the stress-scale 

factor which includes of stress distribution, rheologies and densities (Hubbert 1937, Ramberg, 1981, Brun, 

1999, Sokoutis, et al. 2005), σ*/L* + ρ*x g* - ρ* (ε* / t*) = 0, when conserving mass. The following conditions 

apply for the model: 

σ* = L* x ρ*x g*         (eq. 1) 

ε* = g* x (t*)2         (eq. 2) 

where σ refers to stress, L to length, ρ to density, g to gravitational acceleration, ε strain and t to time. The 

asterisk indicates that the number is unit-less representing the ratio between the model and nature. 

Experiments are carried out under normal gravity and therefore the gravity ratio (g*) is equal to 1. The 

densities for the model and the natural example are in the same order of magnitude (e.g. 1300 kg/m3 for the 

model and 2800 kg/m3 for the natural example), hence the density ratio (ρ*) is more or less equal to 1. This 

simplifies eq. 1 to:  

σ* =  L*           (eq. 3) 

or in other words, the ratio between the stresses and the length of the model and natural example need to be 

roughly equal (Davy and Cobbold, 1991). The last scaling criteria is the kinematic scaling, where the model 

and the natural example abide a timescale that is proportional to the changes in shape and/or position in both 

the model and natural example (so tm/tn = tm2/tn2 = tmx/tnx etc.). Since velocity is given by length/time, the 

model can be scaled with respect to the prototype with the following equation: 

Vn = Vm*((Ln * tm)/ (Lm*tn)       (eq. 4) 
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Table 2.1. Physical properties for experimental material and comparison of lithosphere and experiments. 
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where Vn is velocity in nature, Vm is velocity in the model, Ln is length in nature, Lm is length in the model, 

tn is time in nature and ttm is time of the model. With a modelled 1 cm/hr extension rate (Vm) the natural 

velocity is 1.45 cm/yr, which is comparable to the average extension rate in the South Atlantic domain 

(Müller et al., 2008). Table 1 lists all the properties of experimental materials and a comparison to 

lithosphere properties. 

 

2.3. Modelling results 

The results of the four analogue experiments with varying continental lithospheric strengths are presented 

here. The models with laterally uniform strength profiles have extended for 8.5 cm (127.5 km in nature, M1, 

Fig. 2.3a) and 5.3 cm (79.5 km in nature, M2, Fig. 2.3b). Both show that the brittle crust accommodates 

extension through normal faults that outline horst and graben, half-graben and tilted fault block geometries. 

Faults grow either through laterally propagating graben structures or by coalescence of individually 

developed fault segments to form structures features that span the entire width of the models (map views, 

Fig. 2.3a and Fig 2.3b). Asymmetric structures such as tilted blocks, half grabens or slightly asymmetric 

grabens exist on the scale of the brittle crust, but the overall deformation is symmetric, both on the scale of 

the individual layers as well as the entire lithosphere. With reference to the moving wall, the extensional 

structures develop randomly, not in sequence. This shows that deformation is evenly distributed. None of 

the structures developed into a major rift that would eventually lead to a break-up system. One important 

observation are the pinch and swell structures that develop in the brittle mantle of M2. This shows that 

deformation is also accommodated by deeper, brittle layers. The most important difference observed on the 

cross-sections between the above described experiments is that grabens in M1 are distributed over a 

distinctly wider area as opposed to M2 (compare Figs. 2.3a and 2.3b). 

The combined weak (S1) and strong lithospheres (S3) has accommodated 3.2 cm of extension (48 km in 

nature, M3, Fig. 4a). This model develops deformation exclusively in the weak lithosphere. The structural 

style is similar to M1 with graben and half graben in the brittle crust and flow dominated deformation in the 

ductile layers. The more pronounced exhumation of the lower crust to shallow levels (location x, Fig. 4a) 

and a more distinct Moho topography are the consequence of extension being focused within a less wide 

segment of lithosphere compared to M1.  

 

 

Figure 2.3 (next page). Experimental results of models with one type of lithosphere a) Model 1 (M1) and b) 

Model 2 (M2). Wide rifts form in both models, M2 being 25% less wide than M1 due to the presence of a 

stronger sub-Moho mantle. Ductile lower crust is exhumed (positions x, M1 and M2). Moho topography 

shows subtle long wavelength undulations, generally not in phase with the graben structures indicating the 

flow of material. Pinch and swell structures form in the brittle lithospheric mantle of M2 (position y). BC = 

brittle crust, DC = ductile crust, BM = brittle mantle, DM = ductile mantle. 
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The finite lithosphere-scale geometry of the model is asymmetric as a consequence of thinning of the weak 

lithosphere (S1) from 4.0 cm to 2.6 cm (35% thickness decrease). The combined intermediate (S2) and 

strong (S3) lithosphere has accommodated 6.2 cm of extension (93 km in nature, M4, Fig. 4b), also 

developed deformation structures solely within the relatively weaker (S2) lithosphere (Fig. 4b). 

Deformation in the brittle crust is symmetric with a series of grabens that exhume lower crust material. 

Faulting affects the brittle layers in M4 until the boundary between the two lithosphere segments (Fig. 4d, 

position x). Different to M3, extension in M4 led to necking of the mantle lithosphere and exhumation of 

the ductile mantle layer where the brittle mantle broke and got separated (Fig. 4b, position y). This region 

of maximum thinning of the mantle lithosphere is only matched by the location of one of the grabens within 

the crust that developed late in the evolutionary sequence (graben a, Fig. 4b). Overall, narrow and localized 

deformation within the mantle lithosphere is compensated by distributed deformation within the crust. 

Besides thinning at the area of necking (4.0 cm to 2.6 cm, 35% thickness decrease), minor thickness change 

occurred within the mantle lithosphere of the intermediate-strength (S2) lithosphere (4.0 cm to 3.6 cm, 10% 

thickness decrease). For both M3 and M4 the strong segment kept its original thickness.  

 

2.4.  Implications for rift geodynamics 

2.4.1. Rheological control on the locus of extension in continental lithosphere with lateral strength 

variations 

Our experiments consistently predict that extension of continental lithosphere with lateral strength variations 

will lead to stretching of the relatively weaker (S1 or S2) lithosphere (Fig. 4, M3 and M4). Unexpectedly, 

deformation never initiates at the location where the rheological contrast is largest (at the transition of the 

weaker to stronger lithosphere) but always starts within the weaker segment and never propagates into the 

stronger one. This behaviour is different to convergent settings where deformation tends to localize at 

transitions from stronger to weaker and vice versa crust or lithosphere (e.g. Calignano et al., 2015b; 

Munteanu et al., 2014; Willingshofer et al., 2005). However, in an orthogonal rifting setting, simulated with 

a centrifugal experimental apparatus, similar results have been modelled, where the cratonic, strong part of 

the model remains rather unreformed and in the weaker segment, wide rift structures are observed (Bonini 

et al., 2007). 

 

Figure 2.4 (next page). Experimental results of homogeneous lithospheric setup a) Model 3 (M3) and b) 

Model 4 (M4). M3 and M4 show that all extension is accommodated in the weak segment. The thickness of 

the weak segment of M3 decreases with 35% in a distributed fashion. In the weak segment of M4 the sub-

Moho mantle has lost its strength and thickness decreases with 35% at the necking domain (Fig 4b, position 

y). The original thickness of the strong domains of both models remains. BC = brittle crust, DC = ductile 

crust, BM = brittle mantle, DM = ductile mantle. 
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2.4.2. Rift evolution during extension of continental lithosphere with laterally varying strength 

In our experiments extension affects large parts of the weaker lithosphere, whereby the width of deformation 

is regulated by the degree of coupling among the layers that constitute the lithosphere. The width of the 

deformed zone is wider when layers are coupled (M1, Fig. 3a, and M3, Fig. 4a) and narrower by 40-50% 

when layers are less well coupled (M2 and M4). This behaviour is consistent with analogue modelling 

studies by Brun (1999). During distributed extension the ductile mantle rises below the larger grabens, 

leading to significant exhumation of the mantle lithosphere (Brun and Beslier, 1996; Corti et al., 2011) as 

often observed along passive margins (Manatschal et al., 2015). Rift localization and architecture is 

controlled partly by the extension rate (Brun, 1999). We argue that the switch from distributed to localized 

deformation through time is also controlled by the strength of the sub-Moho mantle. This strength decreases 

during the initial distributed rifting phase (Fig. 5a-c) after which a localized weaker zone emerges (Fig. 5d) 

that develops into the necking domain (M4, Fig. 5e) and eventually exhumes lower crust and mantle (Fig. 

5f).  

 

2.4.3. Final rift geometries 

The final rift and break-up geometry can be interpreted in two different ways, depending on the scale. If the 

final rift geometry is only regarded from the ‘rifted domain’ point of view (small black box Fig. 5), the 

margins have equal thicknesses and look rather symmetric. Only the basin distribution on both margins 

might be different, but this depends largely on location where the resistant upper mantle mantle fails, which 

does not have to be exactly in the centre of the initial distributed rift (see section 4.2). On this scale, the 

break-up results from pure-shear deformation and the margin geometries appear symmetric. If, on the other 

hand, the complete system is taken into account (big red box, Fig. 5) when observing the final rift geometry, 

the margins seem asymmetric, because the crustal thicknesses are quite different and the basin distribution 

is far from equal. The margins of the Central Segment have been interpreted as rather symmetric (Blaich et 

al., 2011) in terms of crustal thickness of the continent side of both margins as well as the width of the 

transition zone. The margins of the South Segment show more asymmetric features (Blaich et al., 2011) 

with the African side of the continent being thicker (40  km, Maystrenko et al., 2013) compared to the South 

American side (25-30 km, Schnabel et al., 2008) . Also in terms of width of the transition zone does the 

African side show a much wide transition zone than the South American side (Blaich et al., 2011). Both the 

Central and South segments of the South Atlantic domain can be explained by the analogue model presented 

in this paper, depending on the scale the break-up system is looked at only the rifted zone or also outside of 

the rift zone.  
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Figure 2.5 (previous page). Cartoon showing the two-phased conceptual evolution of continental break-up 

in a system consisting of two large lithosphere segments. Phase 1 (a-c): distributed rift formation, Phase 2 

(d-e): localized deformation. Continuous extension will eventually lead to breakup above the necking point 

that formed during the second phase, resulting in asymmetric margins in terms of thickness and basin 

positioning.  The scale on which the final results are regarded can be ‘rift-wide’ (red box), which has 

symmetric geometries and is comparable to the g) Central Segment continental margin in terms of crustal 

thickness or ‘system-wide’ (purple box) which gives asymmetric geometries and is comparable to the h) 

South Segment continental margins in terms of crustal thickness, width of transitional domain and basin 

distribution on either side of the margin.  

 

 

2.5. Conclusion 

We investigated the deformational response to extensional, far-field forces on continental lithosphere with 

lateral strength variations. Lithospheres with a lateral strength variation only develop deformation structures 

in the weaker lithosphere, not at the contact between the two segments. The weaker segment thins, whereas 

the strong segment preserves its original thickness, resulting in an asymmetric rift geometry. Models 

including a strong sub-Moho mantle develop a necking zone and their evolution is two-phased with 1) a 

distributed rift phase with normal fault systems throughout the weak segment and 2) a localized rift phase 

that forms once the strong sub-Moho mantle suffers strength failure and develops a necking zone. This two 

phase evolution forms asymmetric margins with different crustal thicknesses and lengths depending on the 

scale the system is looked at. When only taking into account the rifted domain, the margin geometries are 

symmetric and compare well with the margins of the Central Segment of the South Atlantic. When including 

the whole initial domain in the interpretation of margin geometries, asymmetry is observed which is 

coherent with observations along the South Segment margins of the South Atlantic domain. The unequal 

distribution of basins is highly dependent on the location of failure of the strong part of the upper mantle. 

 

 

Highlights: 

 Extension is accommodated in the rheological weak segment, not at the contact between two 

segments 

 When a strong sub-Moho mantle is present the system develops in two phases 

 Final margin geometries would be asymmetric in terms of crustal thickness and basin distribution 

if extension continues. 
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Summary 

The results from the previous chapter explain well the difference in geometry observed along the margins 

of Central Segment and South Segment the South Atlantic domain. The biggest drawback however is that 

thermal processes have not been taken into account. In the South Segment a deep rooted mantle plume is 

present which supposedly had some influence on the development of the margins in this segment, for 

example the presence of volcanic material (Seaward Dipping Reflectors (SDR’s) which are absent along the 

margins in the Central Segment, as well as the presence of high velocity/high density bodies at depth.  

The question that arises is therefore how do thermal perturbations in the mantle influence rift initiation and 

break-up and the development of margin geometries? 

To address this problem the 2D thermo-mechanical FLAMAR code has been used that couples rheological 

parameters and the heat equation and solves for temperature and displacement. The drawback is the 2D 

nature of the code which includes the assumption of a cylindrical continuation of the model box in the third 

dimension to compare the results to nature. The code has the advantage that calculation times are moderate, 

it include complex geometries, the thermal state of the lithosphere and it allows topography to develop 

freely.  An erosion coefficient also accounts for vertical lithosphere processes that are affected by the 

removal and deposition of material.  Even though this version of the code does not include phase changes 

to account for the formation of oceanic crust, the break-up locations and margin evolution can be simulated 

and compared to data along the margins of the South Segment of the South Atlantic. 

The rheological parameters chosen for this setup are based on work by previous authors and assumes that 

the upper crust consists of silica (quartz, dry or wet) the lower crust of diabase, which behaves in a less 

viscous manner and a mafic upper mantle (peridotite/olivine). In laboratories the rheological parameters 

have been quantified in more than one way. To arrive at a strength profile that was suitable for this exercise 

multiple yield-stress-envelopes have been calculated after which a relatively weak and strong profile have 

been chosen to account for the different strength of rheological segments. No weak seeds are included, the 

contact between the two lithospheric segments and the presence of the mantle plume are sufficient to let 

develop the model internally and not at the borders of the model box. 

The results show that as soon as the thermal state of the lithosphere is taken into account and a mantle 

anomaly is added to a complex system consisting of multiple lithosphere segments with different rheological 

strength, not just one mode of break-up is possible but several different modes. This is highly dependent on 

the initial location of the mantle anomaly. It is thus extremely important to put a plume at the correct location 

in the model as this greatly influences the model results. For the margins of the South Segment, a plume 

location slightly offset from the contact between the lithospheric segments gives results that compare best 

to the present-day margin geometries.  
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Abstract 

We propose a mechanism that explains in one unified framework the presence of continental break-up 

features such as failed rift arms and high-velocity and high-density bodies that occur along the South 

Atlantic rifted continental margins. We used 2D and 3D numerical models to investigate the impact of 

thermo-rheological structure of the continental lithosphere and initial plume position on continental rifting 

and breakup processes. 2D experiments show that break-up can be 1) “centred”, mantle plume-induced and 

directly located above the centre of the mantle anomaly, 2) “shifted”, mantle plume-induced and 50 to 250 

km shifted from the initial plume location or 3) “distant”, self-induced due to convection and/or slab-

subduction/delamination and 300 to 800 km off-set from the original plume location. With a 3D, perfectly 

symmetrical and laterally homogenous setup, the location of continental break-up can be shifted hundreds 

of km’s from the initial position of the mantle anomaly. We demonstrate that in case of shifted or distant 

continental break-up with respect to the original plume location, multiple features can be explained. Its 

deep-seated source can remain below the continent at one or both sides of the newly-formed ocean. This 

mantle material, glued underneath the margins at lower crustal levels, resembles the geometry and location 

of high velocity/high density bodies observed along the South Atlantic conjugate margins. Impingement of 

vertically up-welled plume material on the base of the lithosphere results in pre-break-up topography 

variations that are located just above this initial anomaly impingement. This can be interpreted as aborted 

rift features that are also observed along the rifted margins. When extension continues after continental 

break-up, high strain rates can relocalize. This relocation has been so far attributed to rift jumps. Most 

importantly, this study shows that there is not one, single rift mode for plume-induced crustal break-up. 

 

 

 

 

 

 

 

 

 

Reference: Beniest, A., Koptev, A., Burov, E., 2017. Numerical models for continental break-up: 

implications for the South Atlantic. Earth and Planetary Sciences Letters, 461, p. 176-189.  
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3.1. Introduction 

Over the last decades a large variety of rift features have been recognised and explained with different 

methods and different concepts. These features include for example aborted rift structures, anomalous 

topography or anomalously high velocity/high density bodies located in the lower crust. Explanations for 

anomalous features often link one mechanism with one observed rift feature. For example, on plume 

impingement, a stratified lithospheric rheology (e.g. D’Acremont et al., 2003; Burov et al., 2007;) would 

result in topographic uplift, as has been modelled with thermo-mechanical modelling. Forward modelling 

shows that magmatic underplating can cause topographic variations (Hirsch et al., 2010). Anomalously high 

velocity/high density bodies have been observed on tomographic images below the continents, implying 

that in some regions magmatic processes dominate rifting (Cornwell et al., 2006). The latter is also suggested 

by gravity modelling that revealed the presence of anomalously high-density bodies in e.g. the South 

Atlantic domain, implying that volcanic activity played a key role in margin development (Blaich et al., 

2011; Maystrenko et al., 2013b).  

Review papers combine all these studies on one specific topic. Examples are the role of the Moho in 

extensional settings (Cloetingh et al., 2013), the effect of volcanism in rifting and continental break-up 

(Franke, 2013) or the dynamic processes that control rifting (Ziegler and Cloetingh, 2004). 

With this study we demonstrate how one break-up mechanism can explain a multitude of features. We use 

the South Atlantic break-up as our case study for plume-induced continental break-up. Since the South 

Atlantic developed diachronously and it is a very complex region requiring a 3D approach, we have not the 

intension to reproduce the South Atlantic evolution as such, including along-axis northward break-up 

propagation to close to the plume (Franke, 2013), but rather to address general observations on continental 

break-up. Our fully coupled lithospheric-grade 2D and 3D models have an explicit elasto-visco-plastic 

rheology that accounts for realistic deformation of the lithosphere and a slip free surface that can calculate 

vertical motions. The 2D model has proven to be very useful to investigate plume-lithosphere interactions 

(e.g. d’Acremont et al., 2003; Burov et al., 2007). We take it one step further by developing one scenario to 

explain multiple anomalous features, such as high-velocity/high-density bodies and anomalous topographic 

variations with one single model. The 3D model is used to include the lateral component in a very simple, 

completely lateral homogeneous setting (Koptev et al., 2016). 

 

3.2. Geological and geophysical setting 

3.2.1. South Atlantic opening 

Initial extension between Africa and South America was accommodated along a former fold-and-thrust belt 

(present-day location see Fig. 3.1), known as the Gondwana Fold Belt (GFB) or the Cape Fold Belt (CFB). 

This fold-and-thrust-belt was reactivated during the Early Mesozoic as a strike-slip system before the 
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opening of the South Atlantic (Cobbold et al., 1992). During this reactivation it weakened the South 

American plate prior to the development of the Atlantic Mid-Oceanic Ridge, forming a first set of 

extensional basins (Autin et al., 2013), their axes oriented obliquely to the present-day orientation of the 

spreading centre (Fig. 3.1).  

 

Figure 3.1. Map of the South Atlantic domain with the location of large fracture zones, high velocity bodies 

(red ellipsoids), onshore graben structures (black dashed lines), the outline of the African Super Plume 

(dashed green line, after Davaille et al. (2015)) and the African superswell (dashed red line, after Nyblade 

and Robinson, 1994). Also shown are the extent of the Seaward Dipping Reflectors (SDR’s, blue after 

Moulin et al., 2010 and green after Torsvik et al., 2009) and the Aptian salt (yellow, after Torsvik et al., 

2009) deposits. The orange line gives the location of the Gondwana Fold-and-Thrust-Belt. Pink solid lines 

mark locations of the lithosphere-scale cross-sections (South America: A-A’; South Africa: B-B’, Fig. 3.2). 

Hotspots (red stars): Tr = Trinidad hotspot; StH = Saint Helena hotspot; Bv = Bouvet (Meteor) hotspot; 

Deep-rooted mantle plume (yellow star): TdC = Tristan deep-rooted hotspot. 

 

Several extensional pulses caused the opening of the South Atlantic between 134 Ma and 113 Ma (e.g.  

Torsvik et al., 2009; Moulin et al., 2010). Voluminous volcanic activity, recognised on seismic reflection 

profiles as ‘Seaward Dipping Reflectors’ (SDR’s) in the form of aerial flood basalts (extrusive) and/or 

underplating (intrusive) accompanied an episode of extension that created the South Segment (Fig. 3.1), 

starting between 134 Ma and 132 Ma (Moulin et al., 2010). Another pulse contributed to the formation of 
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the Central Segment, starting around 112 Ma (Moulin et al., 2010) and is marked by massive salt deposits 

that have not been found along the margins of the South Segment (Fig. 3.1, Torsvik et al., 2009). Only minor 

volcanic activity has been recorded in this segment as the typical SDR’s are mostly absent, except just north 

of the Rio Grande Rise (Franke, 2013). The opening of the South Atlantic and formation of the Mid-Atlantic 

Ridge is considered to be due to a combination of passive far-field forces (Husson et al., 2012) and the 

presence of different hotspots (Torsvik et al., 2009). A major far-field stress component that enhanced the 

growth of the South Atlantic domain during the Mesozoic is the subducting and ‘pulling’ Nazca plate to the 

west of the South American continent, which also resulted in the faster west-ward migration of the South 

American plate with respect to the almost stationary African plate (e.g. Husson et al., 2012). The South-

African super plume rises from the core-mantle boundary (CMB) to below the mantle transition zone 

(Hassan et al., 2015) which is reflected in present-day topography by a “superswell” at the margins of the 

south-west African continent (Nyblade and Robinson, 1994; Davaille et al., 2005). As shown by amongst 

others Lithgow-Bertelloni and Silver (1998), this excess of topography elevation is dynamically supported 

by upwelling flow of buoyant material through the mantle.  From this large-scale, lower mantle low-velocity 

anomaly, the hotspots and their tracks (e.g. the Bouvet (Meteor), the Trinidad and St Helena Hotspots 

(Torsvik et al., 2006,2009)) and the only deep rooted Tristan plume (Fig. 3.1, Torsvik et al. (2009) and 

references therein) might develop over a long period of time (~200 Myr).  

 

3.2.2. Lithosphere structure margins 

The selected profile for our 2D model connects the offshore southwest Africa Orange Basin and its 

conjugate with the Colorado basin on the South American side (pink line, Fig. 3.1). The Tristan hotspot lies 

actually in the middle of the two transects (Fig. 3.1). The present-day crustal and lithosphere structure of 

these margins is constrained by combining published work on deep seismic refraction data, tomography, 

gravity and magnetic studies (Fig. 3.2). On the African side of the transect (Fig. 3.2a) the lithosphere 

thickness ranges from 120 km below the oceanic crust to 200 km below the continent (Fishwick, 2010). 

With gravity modelling and seismic interpretation the Moho-depth has been estimated to be less than 10 km 

below the oceanic crust of the Orange basin and over 40 km below the continent (Maystrenko et al., 2013b). 

Even though crustal movements have been observed in central Africa, the southern African plate is 

considered relatively stable with a strong rheology (Heine et al., 2013). 

On the South American side the lithosphere-asthenosphere boundary (LAB) reaches depths of 160km below 

the stable continent in Eastern Brazil and 120 km in below the continent in Central Argentina (Heit et al., 

2007). The Moho depth varies between 70 km below the plateau in the Andean orogeny to 25-35 km below 

the flat continent (Van Der Meijde et al., 2013). For the Colorado basin specifically, deep refraction seismic 

studies reveal a crustal thickness of the margins of 30 km (Franke et al., 2006). 
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Figure 3.2. Lithosphere scale cross-sections of present-day South Atlantic margins. The Moho depth varies 

from 10 to 30 km on the South American side from ocean to continent (Schnabel et al., 2008). On the African 

side the depth varies from less than 10 km to over 40 km, ocean to continent (Maystrenko et al., 2013b). The 

lithosphere-asthenosphere boundary (LAB) varies from 50 km to 120 km, ocean to continent for Colorado 

basin on the Argentinean margin (Heit et al., 2007). The Orange Basin on the South African margin has a 

LAB depth ranging between 80 km and 200 km from ocean to continent (Fishwick, 2010). The location of 

anomalous bodies is depicted (in green) for the Colorado Basin (Schnabel et al., 2008) and the Orange 

Basin (Maystrenko et al., 2013b). The gravity profile has been extracted from the global marine gravity 

map of Sandwell and Smith v18.1 (Sandwell and Smith, 2009). 

 

We assume that before continental break-up, the lithosphere thickness of the South American plate was 

similar to that of the African plate. However, the South American plate underwent an earlier deformation 

phase prior to the formation of the South Atlantic domain (Autin et al., 2013). Extensional deformation does 

result in lithospheric thinning and weakening (Ziegler and Cloetingh, 2004). We, therefore, adopt a weaker 

strength compared to the African plate and a thickness of 180 km, which is the mean between the 200 km 

of the African lithosphere and the present-day 160 km South American lithosphere, to account for this earlier 

deformation phase. 
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3.2.3. High velocity/high density bodies and aborted rift structures 

Along the South Atlantic conjugate margins high velocity/high density bodies have been described at lower 

crustal depths below the continent and the margin (Fig. 3.1) using seismic data and gravity modelling. 

Anomalous gravity and velocity bodies have been noted in the Central segment on the African side from 

Gabon (Dupré et al., 2007) to the Lower Congo (Contrucci et al., 2004) and the Kwanza Basin (Blaich et 

al., 2011) and on the South American side from the Sergipe-Alagoas Basin (Mohriak et al., 2000), to the 

Camamu-Atmada basin (Blaich et al., 2011) and the Santos basin (Blaich et al., 2011). In the South segment 

on the African side these bodies have been observed in the Walvis Basin (Blaich et al., 2011) and the Orange 

Basin (Dressel et al., 2015) and on the South American side in the Colorado basin, along the Uruguayan 

margin (Clerc et al., 2015) and in the deep Argentina Basin (Franke et al., 2006; Schnabel et al., 2008). 

These bodies differ from the seaward-dipping reflectors (SDR) as they are situated at the base of the 

lithosphere or at lower crustal levels and do not necessarily have a magmatic origin. They could be 

serpentinized mantle or mafic and ultramafic crustal rocks (Fig. 3.2, Blaich et al., 2011).  

Graben structures or aborted rift structures onshore along the whole South American margin of the South 

Atlantic domain (Burke, 1976), are located near the anomalously high velocity/high density bodies. In the 

South Segment, graben structures and failed rift structures are less-abundant along the African margin, 

where they appear mainly along the south South-African margin and in the Central segment along the Gabon 

and Benin margins. On the South American side of the South Segment, the basins oriented perpendicular to 

the present-day ridge extend onshore as aborted rift features (Burke, 1976). Another failed rift feature is 

observed in the southwestern part of the Santos Basin, where the now aborted Abimael ridge is located 

parallel to the present-day Mid Oceanic Ridge (Heine et al., 2013).  

 

3.3. Model setup 

The 2D thermo-mechanical numerical code FLAMAR, based on the FLAC-Para(o)voz algorithm (Cundall, 

1989; Poliakov et al., 1993) has been used to investigate the effect of plume location on continental break-

up using the South-Atlantic as an example of a fully developed rift-to-spreading system. We built our case 

on the continuation of earlier parametric studies on the rheology of the lithosphere and plume-continental 

lithosphere interactions (D’Acremont et al., 2003; Burov et al., 2007). Where needed, we adjust the 

parameters according to the geological and geophysical evidence described above. A symmetric simulation 

that is not area-specific are carried out with the 3D viscous-plastic numerical code 3DELVIS (Gerya and 

Yuen, 2007). All mechanical and thermo-rheological parameters are listed in table 3.1. We have performed 

a series of 36 experiments. Controlling parameters and principal results are summarized in table 3.2. 
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Table 3.1. Summary of the thermal and mechanical parameters used for this study. 1) Turcotte and 

Schubert (2002), 2) Ranalli (1995); 3) d’Acremont et al. (2003) and references therein; 4) Tsenn and 

Carter (1987); 5) Burov and Poliakov (2001). 
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3.3.1. 2D numerical model 

The FLAMAR code has been updated and modified over the last 20 years (Burov and Diament, 1995; Burov 

and Poliakov, 2001; Le Pourhiet et al., 2004; Yamato et al., 2008). For the sake of coherency with previously 

published papers we only describe the main features and essentials of the model used for this study. Detailed 

descriptions of the code can be found in Appendix I of this manuscript and in other studies that have tested 

the code for many different geological cases (D’Acremont et al., 2003; Le Pourhiet et al., 2004; Yamato et 

al., 2008). FLAMAR is a fully explicit, finite element/finite difference code based on a Cartesian coordinate 

frame. It has a 2D strain formulation with a Lagrangian mesh that consists of quadrilateral elements 

consisting of two couples of triangular sub-elements containing tri-linear shape functions. It uses a large-

strain, time-marching scheme. The code solves for full Newtonian equations of motions in a continuum 

mechanics approximation (3.1) 

< 𝜌𝒖̈ > −∇𝜎 − 𝜌𝒈 = 0         (3.1) 

where 𝜌, 𝒖̈, σ and g stands for density, acceleration of the object, stress and acceleration due to body forces 

or gravity, respectively. 

It is coupled with constitutive laws (3.2) to quantify viscous, elastic and plastic characteristics by the heat 

transfer equation (3.3), where the heat advection term (𝒖̇∇𝑇) is included in the Lagrangian derivative 

(DT/Dt). Erosion and sedimentation is accounted for using a linear diffusion equation assuming 

conversation of mass (3.4). 

Dσ

Dt
= 𝐹(𝜎, 𝒖, 𝒖̇, 𝛁𝒖̇, 𝑇)         (3.2) 

𝜌𝐶𝑝𝐷𝑇/𝐷𝑡 − 𝑘∇2𝑇 −  ∑ 𝐻𝑖
𝑛
𝑖 = 0; 𝜌 = 𝑓(𝑃, 𝑇)     (3.3) 

𝑑ℎ

𝑑𝑡
= 𝑎∇2ℎ          (3.4) 

In this case, t stands for time, u is the displacement vector, and T is temperature. The heat transfer equation 

relies on Cp for the specific heat, k for thermal conductivity respectively and H for the internal heat 

production, including radiogenic heat and frictional heat dissipation. P stands for pressure that become 

negative for compression. The linear diffusion equation uses a constant a and the height or thickness of the 

sediments h. 

The code is capable of calculating realistic visco-elasto-plastic rheologies explicitly. Pressure-dependent 

deformation is maintained through the Mohr-Coulomb criteria for the plastic regime and the non-linear 

viscous flow law at depth. The free surface upper boundary condition calculates high-resolution topographic 

changes due to deformation of the lithosphere. 
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Table 3.2. Controlling 

parameters and principal 

results of the experiments. 
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3.3.2. Model geometries 

The model box is 2000 km wide and 400 km deep. The grid size is 400 x 80 elements, resulting in a 

resolution of 5 km x 5 km per element. We have tested three different lithospheric setups with diverse 

complexities (see 3.1.2, Fig. 3.3) and three different locations of a 1700oC thermal and compositional mantle 

anomaly at 400 km depth (D’Acremont et al., 2003). The initial locations vary laterally at the base of the 

model with the centre of the anomaly positioned 1) at the centre of the model (i.e. plume location at 1000 

km, see table 3.2), 2) at 200 km to the right of the model box’s centre (i.e. plume location at 1200 km) and 

3) at 200 km to the left of the model box’s centre (i.e. plume location at 800 km). Each location is tested in 

a separate calculation. Following previous studies the base of the anomaly lies at 400 km depth as the deeper 

mantle phase does not have a large impact on the crustal evolution (D’Acremont et al., 2003; Ribe and 

Christensen, 1994). The anomaly has a simplified, symmetric, spherical shape since at depth viscous bodies 

take a spherical shape and this follows the line of 2D and 3D numerical modelling experiments on plume-

lithosphere interaction (a.o. D’Acremont et al., 2003; Burov and Gerya, 2014; Koptev et al., 2016). In most 

of the experiments, it has a diameter of 230 km. The effects of a mantle anomaly with a diameter of 100 km 

were tested in a limited number of models. The composition of the mantle anomaly is olivine with a density 

of 3250 kg/m3 (except for several models where it is 3310 kg/m3) which has been determined to be an 

intermediate plume in previous studies (Turcotte and Schubert, 2002; D’Acremont et al., 2003). No 

background density tests have been performed as the background density used for background calculations 

is the same for the plume as well as the surrounding mantle. The thermal contrast between the plume and 

the mantle varies as thermal exchanges happen between the plume and the mantle, decreasing the 

temperature of the plume. The mantle also cools as the plume rises to shallower depths. 

 

3.3.3.  Density and rheological structure 

The 2D model consists of four horizontal rheological layers. For Setup 1 (Fig. 3.3a and Fig. 3.3b), a laterally 

homogeneous 40 km thick two-layered crust and a 160 km thick lithospheric mantle have been applied. We 

test the model’s sensitivity for two different rheological properties of the crust. We use a “weaker” 

rheological strength envelope (Setup 1a; Fig. 3.3a), composed of 1) a wet quartz upper crust with a density 

of 2500 kg/m3 and 2) a diabase lower crust with a density of 2750 kg/m3. Our second rheological strength 

envelope has the characteristics of a “strong”, cratonic crust that consists of: 1) a dry quartz upper crust with 

a density of 2600 kg/m3 and 2) a strong diabase lower crust with a density of 2850 kg/m3. The rheological 

differences of the two strength envelopes represent a “weaker” crust that has been subject to an earlier 

deformation phase, before the opening of the South Atlantic, which is the case for the South American side 

(Autin et al., 2013), and a “stronger” crust of cratonic nature that represents the stable southern African 

continent (after Burov and Diament, 1995). Dry olivine flow law has been assumed for both lithospheric 
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and sub-lithospheric mantle in all our experiments. The initial density of the mantle decreases from 3330 

kg/m3 to 3310 kg/m3 at the lithosphere-asthenosphere boundary. Specific values of the rheological 

parameters used are given in table 3.1. 

Figure 3.3. Six tested numerical setups. a) Setup 1a: 4-layered weak rheology, crust 40 km thick, lithosphere 

200 km thick. b) Setup 1b: strong 4-layered rheology, crust 40 km thick, lithosphere 200 km thick. c) Setup 

2a: combined rheological profiles (weak on the left side, strong on the right side), crust 40 km thick, and 

lithosphere 200 km (equal for both rheologies). d) Setup 2b: combined rheological strength envelopes, 

(weak on the left side, strong on the right side), crust 30 km thick on the right side and 40 km thick on the 

left side, lithosphere 180 km thick on the left side and 200 km thick on the right side, no complex contact 

geometries. e) Setup 3a: combined rheological strength envelopes, (weak on the left side, strong on the right 

side), crust 30 km thick on the right side and 40 km thick on the left side; lithosphere 180 km thick on the 

left side and 200 km thick on the right side. The contact between the two different crustal thicknesses is a 

low-angle geometry, dipping towards the right. f). Setup 3b: combined rheological strength envelopes, 

(weak on the left side, strong on the right side), crust 30 km on the right side and 40 km thick on the left 

side, lithosphere 180 km thick on the left side and 200 km thick on the right side. The contact between the 

two different crustal thicknesses is a low-angle geometry dipping towards the left. 

 

For Setups 2 and 3 we apply a laterally non-homogeneous crustal rheology: a “weak” crustal rheology for 

the left half of the model and a “strong” crustal rheology for the right one (Fig. 3.3c-f). The crustal and 

lithospheric thicknesses are laterally homogeneous in Setup 2a: 20 km for upper crust, 20 km for lower crust 

and 160 km for lithospheric mantle (Fig. 3.3c). Setups 2b and 3 are characterized by laterally varying 

lithospheric layers, based on the lithospheric scale structure described in section 2.2: the “weaker” left half 

has a 15 km-thick upper crust, 15 km-thick lower crust and a 150 km-thick lithospheric mantle, whereas the 

“stronger” right half has a 20 km-thick upper crust, a 20-km think lower crust and a 160 km-thick 
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lithospheric mantle (Fig. 3.3c-f). Three different contacts between the rheological strengths are tested. Setup 

2b has a straight vertical contact. For Setup 3 we have adopted a geometry resembling the old suture zone 

that is reactivated during the first extensional phase. The suture is dipping either 40 degrees towards the 

‘strong’, African rheology (Setup 3a) or towards the ‘weak’ South American rheology (Setup 3b). By the 

setups described above we have tested the following parameters: initial position of the plume, density of the 

mantle plume (limited to Setup 3a) and different half-rate velocity boundary conditions (see table 3.1).  

 

3.3.4. Mechanical and thermo-rheological boundary conditions 

We simulate tectonic forcing by applying a constant, time independent, extension rate along the vertical side 

of the box of 25 mm/yr. An equal half-rate velocity is applied on both sides of the box (12.5 mm/yr) to one 

set of models and 5 mm/yr on the right side and 20 mm/yr on the left side is applied to a second set of 

models (table 3.1). The half-rate velocities are adopted from (Müller et al., 2008). The bottom of the box is 

defined by hydrostatic pressure with free slip in all directions. The upper side of the box is a free surface 

boundary, implying a free stress and a free slip condition in all direction, allowing the lithosphere to develop 

freely. A moderate erosion by diffusion is applied (a = 500 m2/yr). 

The upper and bottom thermal boundary condition is a fixed temperature 10 oC and 1400 oC respectively to 

represent a ‘cold’ geotherm. An old lithosphere of 500 Ma (Burov and Diament, 1995) has been assumed 

for the tectonic age used to represent the super-continent Pangea before break-up. The geotherm used for 

the models reaches 500 oC at Moho depth, 1330 oC at the lithosphere-asthenosphere boundary (LAB) after 

which it becomes adiabatic until it reaches 1400 oC at the base of the model at 400 km (Ribe and Christensen, 

1994).  

 

3.3.5. 3D numerical model 

A 3D model has been performed with the thermo-mechanical viscous-plastic 3DELVIS code (Gerya, 2010; 

Gerya and Yuen, 2007) that combines the finite difference method with a marker-in-cell technique. The 3D 

model box has the horizontal dimensions 1500 × 1500 × 635 km and consists of 297 × 297 × 133 nodes 

offering spatial resolution of ca. 5 × 5 × 5 km per grid cell. Not area-specific initial setup consists of a 

stratified three-layer (upper/lower crust and lithospheric mantle) continental lithosphere underlain by an 

asthenosphere. The total thickness of the two-layer crust is 36 km; the depth of lithosphere-asthenosphere 

boundary is 150 km. The mantle plume has been seeded at the base of the modelled domain by a spherical 

thermal anomaly of 370 oC with a radius of 200 km. The initial geotherm is piece-wise linear with fixed 

temperatures at the surface (0°C), at the Moho (700°C), at the base of the lithosphere (1300°C), and at the 

bottom of the model box (1630°C). Weak tectonic forcing has been simulated by applying a constant ultra-

slow divergent horizontal velocity of 3 mm/year along the sides of the model. More detailed information on 
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the 3D model setup and rheological and material properties used in our 3D experiments can be found in 

Burov and Gerya (2014) and Koptev et al. (2015, 2016). 

 

3.4. Model results 

3.4.1. 2D model results 

Three types of model scenarios result from our set of experiments. “Centred” break-up, when the mantle 

anomaly moves vertically upwards and break-up happens directly above the original location of the centre 

of the mantle anomaly. “Shifted” break-up, when the mantle anomaly first migrates vertically and, once it 

reaches the base of the lithosphere, migrates laterally until break-up occurs with a 50 to 250 km offset with 

respect to the initial anomaly position. “Distant” break-up, when a mantle anomaly rises to the base of the 

lithosphere and remains there, while the location of break-up takes place more than 300 km away from the 

initial site of the anomaly. 

Experiment 6, characterized by a “strong” homogenous lithosphere, is an example of “centred” break-up 

(Fig. 3.4a). The mantle anomaly reaches the base of the lithosphere rapidly within 2 Myr, after which it 

penetrates into the lithosphere. The rising flow of plume material is strong enough to break apart the 

overlying lithospheric mantle and crust between 7 and 8 Myr. The surface reacts by uplift, then subsidence 

and alternating positive and negative vertical movements of the margins and the rift centre. Although the 

initial position of break-up centre is situated directly above mantle plume, the continuous extensional 

evolution, including strain relocation and changing temperature distribution, suggest a post-rift lateral shift 

of the spreading axis. Note that after continental break-up mantle plume material reaches the surface where 

it contributes to the formation of new oceanic lithosphere. 

The “shifted” mode of continental break-up is illustrated by Experiment 12 where the mantle plume anomaly 

has been seeded below a stronger lithosphere composing the right half of the model domain (Fig. 3.4b). As 

in the case of Experiment 6, the onset of rifting starts with a rapid rise of the anomaly, impinging the 

lithosphere not later than 2 Myr. Surface topography associated with localized crustal strain is formed 

around 3-4 Myr with small offset (<50 km) from the point directly above mantle plume impingement. 

Further upslope migration plume material leads to continental break-up between 7 and 10 Myr. A principal 

difference from the “centred” experiment 6 is the lateral shift (50 to 250 km) of the newly formed spreading 

axis with respect to the initial position of the mantle plume. Lateral migration of the plume head to this 

break-up axis leads to an asymmetrical distribution of the plume material: some of the material reaches the 

surface at the spreading centre, another part remains glued beneath the highly thinned lithosphere at depths 

between 200 and 10 km. Similar to Experiment 6, the final stage of the “shifted” system development is the 

strain relocation corresponding to 200 km-wide jump of the spreading axis. 
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Figure 3.4. Models with different rheology and plume location showing the most representative examples 

of the three modes of continental break-up. a) “Centred”: Experiment 6, Setup 1, with a strong rheology 

and the anomaly located at 1200 km (200 km offset from the centre towards the right). At 2.1 Myr the first 

topographic response occurs. The break-up axis develops directly above the initial mantle plume position 

and mantle material reaches the surface. b) “Shifted”: Experiment 12, Setup 2, with a laterally varying 

rheology and the anomaly positioned in the centre at 1000 km. At 2.1 Myr the first topographic variation 

shows with a larger extend than the “centred” break-up model. The break-up axis develops offset from the 

original mantle plume location and mantle material migrates towards the spreading centre, reaching the 

surface. c) “Distant”: Experiment 23, Setup 3, has a laterally varying rheology and the anomaly is 

positioned in the centre at 1000 km. At 2.1 Myr minor topographic variation. The break-up axis develops 

far offset from the original mantle plume location and the mantle plume remains glued to the base of the 

lithosphere. The initial topographic variations remain visible after break-up. 

 

Finally, experiment 16 illustrates the “distant” break-up mode that starts with a rapid uplift of the mantle 

plume to the bottom of the lithosphere, an observation typical for all performed models. This expectedly 

results in associated topography variations (Fig. 3.4c). In contrast with the two previously discussed break-

up modes (experiments 6 and 12), mantle plume material remains glued beneath the base of the lithosphere 

without localized ascent towards the formed break-up centre. Lithosphere thinning that will result in break-

up occurs at large distance (more than 500 km) from the plume impingement. This appears to be related to 

secondary mantle convection associated with plume-induced subduction of the lithospheric mantle that has 

developed upon plume upwelling to the lithosphere-asthenosphere boundary on both sides of the plume 

head. It is noteworthy that initial topographic changes created by the impingement of the plume remain 

visible throughout the model evolution. Given the lack of near-surface plume material, this “distant” mode 

cannot be considered as break-up directly induced by the impact of the mantle plume. Nevertheless, it might 

reflect the implicit influence of the upwelled plume on “distant” break-up processes via plume-induced 

subduction and mantle convection. 
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Figure 3.5. Examples of models with different setup, plume location rheological structure showing the 

different modes of break-up; a-c) “centred” examples, d-f) “shifted” examples, g-i) “distant” examples. In 

red the initial location of the mantle anomaly is drawn. The graphs below show the normalised, statistical 

likelihood of a mode (“centred”, “shifted” or “distant”) for a given setups. 

 

“Centred” break-up preferably takes place using initial Setup 1, where the crust and lithospheric mantle are 

laterally homogeneous and no inherited structures are given (Fig. 3.4a, table 3.1), but other setups can also 

evolve according to this mode (Fig. 3.5a-c). Break-up occurs between 6 and 10 Myr, directly above the 

initial location of the mantle anomaly. Mantle material reaches the surface at the point of impingement that 

evolves into the break-up axis. Almost all plume material is involved in formation of new oceanic 

lithosphere. As a result, after continuous (more than 10 Myr) calculations, only little material remains below 

the thinned continental lithosphere. Note that, even though central located plumes are expected to develop 

to a symmetric or “central” mode, a central located plume evolves the least likely into “central” type of 

break-up (table 3.1). “Shifted” break-up is favoured by Setup 2a where the thickness of the lithospheric 

layers is laterally homogeneous but crustal rheology differs (Fig. 3.5d-f). The mantle anomaly rises and 

break-up also occurs between 6 and 10 Myr, but in this case it is shifted from the initial point of 

impingement. Most mantle material remains below the lithosphere, but through migration along the bottom 
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of the lithosphere some material still reaches the surface. This mode of break-up only occurs when the 

lithosphere properties (rheology and/or thickness) varies laterally, but it does not completely control 

“shifted” break-up, because not all laterally varying rheology experiments result in “shifted” break-up. 

Plume location is also not a controlling factor for the model to result in “shifted” break-up as all three plume 

locations can result in “shifted” break-up. The “distant” break-up experiments have a preference for Setup 

2 and 3, where both the lithospheric layers’ thickness and the crustal rheology are laterally different (Fig. 

3.5g-i). Crustal break-up happens slightly later compared to the “centred” and “shifted” experiments: 

between 9 and 12 Myr. Mantle anomaly material does not reach the surface, but remains completely glued 

to the bottom of the lithosphere. Most of the continental break-up modelled with the “distant” experiments 

occurs in the lithospheric segment that is characterized by a strong crust. 

Almost half (12 out of 25) of the equal half-rate velocities boundary condition results in “centred” break-

up. More than half (6 out of 11) of the unequal half-rate velocity boundary conditions result in “distant” 

break-up mode. The different velocity parameters do have a preference for a certain break-up style, but it is 

not a controlling factor. 

The models that resulted in “shifted” break-up have a mantle anomaly that rises to the base of the lithosphere 

and upon arrival, migrates, in most cases, towards the weaker lithosphere to break through this less strong 

segment. This is in contrast with the “distant” model results that develop crustal break-up in the stronger 

lithosphere (11 out of 11 models) when the plume remains glued below the weaker lithosphere and does not 

break through. In case of “distant” break-up mode, the rheology is very important and strongly controls this 

mode of break-up. 

 

3.4.2. 3D model results 

Similarly to the 2D experiments, the 3D model shows a quick (<2 Myr) upwelling of the plume material up 

to lithosphere-asthenosphere boundary (Fig. 3.6a). After this, the plume head starts to spread laterally within 

lower part of lithospheric mantle (Fig. 3.6b-d). When the mantle plume impinges on the base of lithosphere, 

almost all plume material is partially melted (Fig. 3.6a). Following spreading and cooling expectedly leads 

to gradual solidification of the plume (Fig. 3.6b-c), which has been completed at 50 Myr (Fig. 3.6d). 

The interplay between far-field forces and active mantle upwelling results in a “classical” single rift that 

crosses the entire model domain in the direction perpendicular to external extension (Fig. 3.6a). Continuous 

evolution shows the formation of a wide rift valley where localized brittle deformation is concentrated along 

the boundary fault (Fig. 3.6b-c). This rift basin opens rapidly (Fig. 3.6b) reaching a width of 600 km in less 

than 35 Myr while passive extension applied at the boundaries would result in only 200 km width (Fig. 

3.6c). This highlights the important role of plume-related buoyancy forces in the context of studied “active-

passive” rifting. 
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Figure 3.6. Evolution of 3D model a) rapid plume uplift leading to formation of linear extension-

perpendicular rift at the crustal level; b-c) development of wide rift basin with localized crustal high strain 

along bounding normal faults; gradual cooling and solidification of plume head material; d) widely 

distributed rift above completely crystallized plume head ponding lithosphere-asthenosphere boundary; e) 

rapid transition from deformation localized in normal faults bounding wide rift valley to localized strain 

within narrow zones associated with localized plume ascent; f) breakup of the continental lithosphere along 

spreading zone considerably shifted from centre of the mantle plume. Bulk of plume material is shown in 

pale orange. Green to red colours indicate strain rate at the level of 10 km (i.e. within upper crust). 

Component distribution is shown for vertical cross-sections trough central part of the model domain. 

 

The next stage of the system evolution (65 Myr) is a quick switch of deformation localization from rift-

bounding faults to narrow zones inside the rift valley (Fig. 3.6e). This change in rifting style is caused by 

initiation of localized upwelling of plume material along stretched zone(s) highlighted at the surface by 

localized high strain rates (Fig. 3.6e). Further localized plume ascent associated with decompression melting 

of plume material increases the rate of lithospheric thinning leading to continental break-up along a 

spreading axis that has shifted laterally outwards from the centre of the plume head (Fig. 3.6f). This 

asymmetrical position of the spreading zone arises spontaneously within initially symmetrical and laterally 

homogenous lithosphere and is likely controlled by melting and cooling processes into head of mantle 

plume. Thus, a lateral shift of plume-induced break-up centres with respect to initial plume impingement 

revealed in certain 2D experiments (see for example Experiment 6, Fig. 3.4a) appears to be an intrinsic 

characteristic of self-induced plume-related processes that do not necessary requires fast (>1 cm/y) external 
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extension nor any lateral lithospheric heterogeneity (see also Experiment 2 for a 2D example of “distant” 

break-up in the context of laterally homogenous lithosphere). 

 

3.5. Discussions 

3.5.1. General aspects 

The results of our models are important in the context of ongoing discussion on plume-induced continental 

break-up. We show that continental break-up can be initiated by just one single mantle plume under different 

initial and boundary conditions. In most of our 2D models (32 out of 36) continental break-up takes place 

as a result of the direct (“centred” or “shifted” modes) or indirect (“distant” mode) impact of the mantle 

plume (Fig. 3.8). Four remaining models do not result in break-up. On one hand, the models that develop 

according to “centred” (Fig. 3.8b) or “shifted” (Fig. 3.8c) modes are directly induced by the plume anomaly 

which results in penetration of plume material up to the surface. On the other hand, the “distant” mode is 

characterized by secondary mantle convection associated with plume-induced subduction and/or 

convection. In this case, the mantle plume is not involved directly in break-up processes and remains glued 

at the base of adjacent unbroken lithosphere (Fig. 3.8d). 

In a very early phase, strain rate localizes and topographic variations develop directly above the initial plume 

impingement location (Fig. 3.8a). They remain visible only in the “shifted” and “distant” models and can 

be interpreted as aborted rifts. It was commonly accepted and almost self-evident that in the case of plume-

induced continental break-up, its axis should be situated directly above the initial plume impingement 

position (D’Acremont et al., 2003). However, observations such as failed rifts and deep-seated mantle 

sources beneath a strong continent that are significantly remote from the mid-oceanic ridge, actually imply 

that continental rifting and break-up are not a purely symmetric and “plume-centred” processes. Our 

modelling demonstrates that symmetric development of mantle material ascent and subsequent continental 

break-up are not a definite outcome. More than half of our models (19 out of 32) result in “shifted” and 

“distant” break-up modes, suggesting that these modes should also be expected in a wide range of initial 

and boundary conditions. Even so, our perfectly symmetric and lateral homogeneous 3D model shows that 

in a purely symmetric setting, with no lithospheric rheological heterogeneities, continental break-up shifted 

from the original centre of the mantle anomaly is possible. We argue here that “centred” symmetric 

continental break-up developed directly above mantle plume is only one particular case of possible 

evolutions of plume-induced break-up systems. 
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Figure 3.7. Detailed display of experiment 12. Setup 2 is the base for this experiment with a laterally varying 

rheology. The anomaly is positioned in the centre of the model at 1000 km. At 2.1 Myr the first topographic 

variation shows with a larger extend than the “centred” break-up model. Strain rate localizes slightly 

shifted from the plume impingement point at 3.1 Myr. Strain localizes, topography variations grow and 

crustal break-up occurs at 8.1 Myr. Mantle material slowly migrates towards the spreading centre reaching 

the surface until the material that remains below the lithosphere reaches thermal equilibrium around 22 

Myr. 
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3.5.2. The case of the South Atlantic 

The South Atlantic is considered to be a good example of plume-induced continental break-up (e.g. Torsvik 

et al., 2009). Some of the observations such as failed rifts (Heine et al., 2013) and high velocity bodies (e.g. 

Blaich et al., 2011) cannot be explained with conventional models, usually assuming a “centred”-like break-

up style (e.g. Burov et al., 2007; D’Acremont et al., 2003). Yet, our experiments showing “shifted” break-

up mode (Fig. 3.7; Fig. 3.8c) can be used to explain these features. In these models, initial crustal 

deformation associated with mantle plume impingement (Fig. 3.7a-b; Fig. 3.8a) are formed within the first 

5 Myr. Significant topography variations developed during this initial stage of rift evolution (i.e. before 

break-up) can be interpreted as very early failed rift features (e.g. the failed Abimael rift in the southwest of 

the Santos Basin). The topographic plateaus that remain elevated long after break-up have also been 

observed with dynamic topography studies (Nyblade and Robinson, 1994). Next, localized strain becomes 

concentrated close to the boundary between strong and weak lithosphere that is laterally offset (~400 km) 

from the area of initial plume impingement (Fig. 3.7c). Transition from wide rift stage to lithospheric break-

up is marked by narrowing a broad rift region (over 1000 km width) down to narrow rift valley (Fig. 3.7c-

d) with the width of 10’s of kilometres between the two rift-shoulders. Associated lithospheric thinning 

leads to a separation of the two plates along a spreading centre corresponding to South Atlantic ridge (Fig. 

3.7e; Fig. 3.8c). Part of strong crust that remains attached to the weaker lithosphere segment, could 

correspond to the Brazilian craton that was once bordering the African continent (Heine et al., 2013). 

Simultaneously with thinning of the lithosphere below the future break-up centre, the plume material 

migrates along the base of the lithosphere and rises towards the deformed crust where it breaks through. 

This migration can go as far as 300 km from the plume impingement point and only ceases when the material 

that is still at the base of the lithosphere (at depths between 200 km and 10 km) reaches thermal equilibrium 

(in this case after 22 Myr). This confirms the hypothesis that one mantle anomaly (or plume) can flow 

laterally over significant distances below a slow-moving continent, after being risen to the base of the 

lithosphere (e.g. Sleep, 2006). When thermal equilibrium is reached, the mantle material glued to the base 

of the lithosphere at shallower depths corresponds geometrically and location-wise to high-velocity/high-

density bodies observed on seismic data below the thinned continental lithosphere and the transition zone 

of the South Atlantic domain (Clerc et al., 2015). During migration, products of partial melting of the mantle 

material can move vertically to (shallow) lower crustal levels. They might resemble high density bodies 

observed at lower crustal levels inside continental crust with similar geometries observed with gravity 

modelling (Blaich et al., 2011). These processes cannot be reproduced by our 2D modelling, because no 

melt production and extraction have been simulated. 
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Note that our 2D study has not the intention to capture such 3D features like along-axis northward 

propagation of the break-up axis (Franke, 2013) up to the centre of the surface manifestation of Tristan 

plume activity – the Paraná-Etendeka continental flood basalts province. 

After continental break-up, the mantle plume anomaly continues to play an important role in the spreading 

evolution of the system. Strain rate relocation takes place around 18 Myr, when the spreading axis shifts 

another 200 km towards the left from the original position of the break-up centre (Fig. 3.7f). This 

phenomenon could correspond to a rift-jump that have also been both observed and modelled (Brune et al., 

2014) in the South Atlantic domain. 

 

Figure 3.8. Schematic representation of the three modes of break-up. a) The very early phase of rifting (0 

– 5 Myr) is very similar for all three modes after which they develop into b) “Centred”; c) “shifted” and 

d) “distant”. An example of a simplified interpretation of the Uruguayan margin (after Clerc et al., 2015) 

is used to demonstrate the resemblance of the “shifted” mode of break-up, like experiment 12, with the 

South Atlantic domain. e) Map showing the outline of the plate configuration at the moment of break-up 

between Africa and South America on the lower mantle low velocity zone (South African Super Plume) 

(from Davaille et al., 2005). The Parana-Etendeka flood basalts are depicted in green (after Torsvik et al., 

2009). The orange dots refer to the three possible principal locations of initial thermal anomaly at the 

upper/lower mantle boundary corresponding to the Tristan plume. 
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The question we raised about the initial position of the mantle plume anomaly responsible for continental 

break-up in the South Atlantic remains open. On Fig. 3.8e, we show a reconstructed configuration of the 

slow velocity anomaly (corresponding to the South African Super Plume) at the CMB based on present-day 

seismic tomography model (after Davaille et al., 2005). The orange dots refer to the three possible principal 

locations of initial thermal anomaly at the upper/lower mantle boundary corresponding to the Tristan plume. 

The central point refers to the most evident “centred” scenario (Fig. 3.8b) when the deep-seated thermal 

anomaly in the upper mantle is supposed to be located directly below its surface manifestation and hints to 

voluminous Paranà-Etendeka continental flood basalts province (Fig. 3.8e, e.g. Torsvik et al., 2009; Heine 

et al., 2013). This scenario, however, is not consistent with the commonly considered concept that plumes 

emerge from the edges of the large low-velocity anomalies at the CMB that has been confirmed by both 

numerical modelling (Hassan et al., 2015) and by empirically established correlation between downward 

projected plume-associated large igneous provinces and the margins of the large low shear velocity province 

beneath Africa (Torsvik et al., 2006). Moreover, with this ‘centred’ scenario we cannot explain additional 

features such as failed rift arms and anomalous bodies at lower crustal levels. The ‘distant’ break-up mode 

(Fig. 3.8d), where the initial plume centre is located below the South American section and remains there 

after “plume-independent” continental break-up, does not fit well with geological observations of the 

voluminous Paranà-Etendeka continental flood basalts that are supposed to be related with direct influence 

of the Tristan hot spot (Torsvik et al., 2009). Finally, initial plume position slightly moved to African side 

(right dot on Fig. 3.8e) refers to “shifted” scenario that seems to be preferable (Fig. 3.8c). The time length 

of the modelled rift phase (10 Myr +/- 3 Myr) is much shorter than has been inferred from geological and 

geophysical observations (160 Ma to 134 Ma, (Franke, 2013)) in the South Segment of the South Atlantic. 

Despite this, with the eastward offset initial position of the mantle plume with respect to a heterogeneous 

thermo-rheological lithospheric structure we are able to explain not only plume induced flood basalts but 

also a set of anomalous features such as failed rift systems, and deep crustal bodies. 

 

3.6. Conclusion 

Different lithospheric strengths comparable to the South American and African continental crust, inherited 

structures, boundary velocity conditions corresponding to average spreading rates, and initial location of a 

thermal mantle anomaly (i.e. plume) have been tested to investigate the dynamics of plume induced 

continental break-up. A set of 36 models shows that with only one anomaly three very different scenarios 

for continental break-up can be realized depending on the rheological structure, anomaly location and 

inherited structures. Continental break-up does not necessarily occur above the centre of the initial location 

of a mantle anomaly. As mentioned above, our models show three types of break-up 1) “centred” break-up, 

2) “shifted” break-up and 3) “distant” break-up. 
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“Centred” and “shifted” break-up types of models refer to plume-induced type of break-up. For the first 

mode, mantle material rises vertically towards the bottom of the lithosphere after which it breaks through 

the crust and reaches the surface directly above the initial plume position. The “shifted” type of break-up 

shows continental break-up that is 50 to 200 km shifted from the initial location of the mantle anomaly. In 

this case, the mantle plume rises and impinges the lithosphere, after that it migrates laterally and cuts through 

the lithosphere reaching the surface at a break-up point considerably shifted from the area of initial, pre-

break-up impingement. Some material remains glued underneath the lithosphere at depths between 200 and 

10 km. These deep-seated bodies, at depths of 200 km, are not situated directly below the break-up centre, 

but are spread over a large area below the continental margins. The shallower bodies geometrically resemble 

high density/high velocity bodies detected by seismic profiling and gravity modelling along the margins of 

the South Atlantic domain and at lower crustal levels. 

The “distant” break-up mode refers to continental rupture that is indirectly induced by the presence of the 

mantle plume ponding at the bottom of the weaker continental lithosphere, when “plume-independent” 

break-up of adjacent stronger lithosphere appears to be considerably (from 250 and 800 km) displaced from 

the location of plume-lithosphere interaction. In this case, laterally widely spread plume material remains 

glued below unbroken segments of the lithosphere. 

Topographic changes that occur very early during initial rifting stage remain visible for a long period and 

can possibly be interpreted as failed rift systems (in the cases of “shifted” and “distance” modes). Strain 

relocation after continuous post-break-up extension could be interpreted as rift jumps. A simple 3D model 

has been built to illustrate that even in a fully symmetric setup, rift-to-break-up processes are not by default 

symmetric and can very well evolve asymmetrically. 

There is no controlling parameter for one of the three types of rifting, with a combination of parameters 

determining the outcome, but the location of the mantle anomaly with respect to the rheology is the most 

essential. The most important result of this study is that there is not one single rift mode for plume-induced 

crustal break-up. 

 

Highlights: 

 Numerical models reveal several plume-induced crustal break-up modes 

 Rift and spreading systems do not necessarily develop above the mantle plume 

 Early plume impact results in topography that resembles failed rift features 

 Material glued to the lithosphere-base resembles anomalous margin-features 
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Summary 

The results from chapter 3 showed that the initial plume location is a key-parameter for plume-related 

thermo-mechanical modelling. The results, however, did not show the qualitative impact of the initial 

plume-location for model setups with more complicated rheological setups. A second set of 47 numerical 

models was designed to investigate the impact of plume-location on complex lithospheric model setups. 

The model setups are similar to the setups in chapter 3, with two segments with different strengths. Not only 

the plume location was tested, of which the results can be found in this chapter, also the size of the plume, 

grid-cell size, temperature of the plume and the location of the plume below the weak lithosphere were 

investigated. These results can be found in appendix II. The results of this modelling exercise showed that 

the ‘shifted’ mode of break-up, modelled in chapter 3, is reproduced when the anomaly is located close 

enough to the contact between the two segments, this mode of break-up is called ‘structural inherited’ break-

up as crustal break-up occurs at the contact or inherited structure between the two segments. When the 

plume is positioned further away, the ‘central’ mode of break-up modelled in chapter 3 is produced, which 

is here called ‘plume-centred’ mode of break-up. In this case the break-up centre develops directly above 

the plume-impingement point. This ‘plume-centred’ mode of break-up does not develop per definition when 

it is further away from the inherited structure or the contact between the two segments. This only occurs 

when the thermal gradient of the initial system is high enough, in this case 600 oC or more and the far-field 

forces are high enough, in this case over 10 mm/yr. When these conditions are met, the vertical penetration 

of plume material and thermal weakening of the crust in combination with far-field stresses have a stronger 

effect on the deformation of the system than deformation at the contact between the two segments. This has 

also been shown by Burov and Gerya (2014) who state that both thermal and displacement (e.g. extension 

rate) conditions should be present to localize deformation to eventually break- the crust. If one of the two is 

absent, no deformation localisation will occur in a vertically stratified and laterally homogeneous system. 

When in a complex system with two segments with different strength, the thermal and displacement 

constraints are in the order of magnitude to reproduce the ‘plume-centred’ break-up mode, then it is possible 

to reproduce not only the ‘plume-centred’ break-up mode, but also the ‘structural inherited’ break-up mode, 

creating two rift branches that can both develop into a spreading centre. This heavily depends on the initial 

location of the mantle plume in a system where the thermal and displacement conditions are favourable for 

extensional deformation localisation. The two-branch break-up results are not applicable to the South 

Atlantic. In the North Atlantic domain, several rift and spreading branches exist, that are considered to have 

somehow been influenced by the Iceland mantle plume. In this region, the two-branch break-up models 

might be applicable, showing that it is actually possible to create to break-up branches that both have been 

influenced by one, single mantle plume.    
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Abstract 

Thermomechanical modelling of plume-induced continental break-up reveals that the initial location of a 

mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of 

a rift-to-spreading system. Models with a warmer Moho temperature are more likely to result in “plume-

centred” mode, where the rift and subsequent spreading axis grow directly above the plume. Models with 

weak far-field forcing are inclined to develop a “structural-inherited” mode, with lithosphere deformation 

localized at the lateral lithospheric boundary. Models of a third group cultivate two break-up branches (both 

“plume-centred” and “structural inherited”) that form consecutively with a few million years delay. With 

our experimental setup, this break-up mode is sensitive to relatively small lateral variations of the initial 

anomaly position. We argue that one single mantle anomaly can be responsible for non-simultaneous 

initiation and development of two rift-to-spreading systems in a lithosphere with a lateral strength contrast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference: Beniest, A., Koptev, A., Leroy, S., Sassi, W., Guichet, X., 2017. Two-branch break-up systems 

by a single mantle plume: insights from numerical modelling. Geophysical Research Letters, 44, pp. 1-9. 
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4.1 Introduction 

Continental rifting is a complex process that depends on many factors such as the rheological structure of 

the crust and lithospheric mantle (Brun, 2002; Burov, 2011), thermal distribution in the lithosphere (Brune 

et al., 2014; Lavier and Manatschal, 2006)), the presence or absence of inherited structures (Chenin and 

Beaumont, 2013; Manatschal et al., 2015), far-field forces (e.g. Huismans et al., 2001) and mantle plume(s) 

(Burov and Gerya, 2014). To date, a variety of analogue and numerical models have examined plume-

induced continental rifting and break-up. For example, these models are able to explain quite complex 

geometries of a plume itself (Davaille et al., 2005) and its diverse effects when interacting with a 

rheologically stratified lithosphere such as asymmetric short-wavelength topography (Burov and Cloetingh, 

2010; Burov and Gerya, 2014), the reduction of lithospheric strength (Brune et al., 2013), the multiphase 

development of rifting with a quick transition from wide to narrow mode (Koptev et al., 2017) and the 

shifted position of the break-up centre with respect to the initial point of plume impingement (Beniest et al., 

2017).  

Single rift – plume interactions are well-investigated, but complex multi-branch continental rift and oceanic 

spreading systems are less well-understood even though they exist all around the world. The Labrador Sea 

between Greenland and mainland Canada (Chalmers et al., 1995; Saunders et al., 1997) and the Aegir Ridge 

between Greenland and Norway (Gaina et al., 2009) are two (non-active) spreading branches that developed 

consecutively in the North Atlantic region (Fig. 4.1a, for tectonic reconstruction see Skogseid et al. (2000)). 

The Abimael Ridge offshore south Brazil (Fig. 4.1b, for tectonic reconstruction see e.g. Torsvik et al. (2009) 

and Moulin et al. (2010)) corresponds to an abandoned part of the South Atlantic rift system (Mohriak et 

al., 2010). Another example is the Tasman Sea that is separated by the Dampier Ridge from the Lord Howe 

Rise and Middleton Basin, all part of the same rift system (Fig. 4.1c, for tectonic reconstruction see Gaina 

et al. (1998)). These ridges and branches differ significantly in terms of the width of newly formed oceanic 

lithosphere and the distance between active and aborted ridges. For example, the total width of the 

Norwegian-Greenland Sea reaches for some 1000 km (Fig. 4.1a, (Greenhalgh and Kusznir, 2007)) whereas 

both the Labrador and Tasman Sea only gained 100 of km’s of oceanic crust width before abortion (Fig. 

4.1a and 4.1c). The oceanic lithosphere associated with the Abimael ridge is even narrower than the 

Labrador Sea and the Tasman Sea, with a total width of a couple of 10’s of kilometers only (Fig. 4.1b, 

(Mohriak et al., 2010)). The Lord Howe Rise and Middleton Basin (Fig. 4.1c) have only reached a rift phase 

(between 90 Ma and 84 Ma, Gaina et al. (1998)), not providing any evidence for oceanic crust formation, 

but they remain a separate branch of the break-up system of the Tasman Sea, where spreading initiated at 

83 Myr (Gaina et al., 1998). The distance between the present-day location of the aborted and active rift- 

and spreading ridges can be as far away as over 5000 km’s in the case of the Abimael ridge and the South 

Atlantic mid-ocean ridge (Fig. 4.1b) or as close by as only 200 km in case of the Aegir Ridge (Fig. 4.1a). 
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Despite these differences, such multi-branch systems have one important thing in common: they are 

underlain by a deep-rooted mantle anomaly with varying geometries that may have triggered their initiations 

and controlled their subsequent evolution. Present-day geometries of mantle anomalies can be visualized 

with mantle tomography. This method suggests that the Iceland plume (Fig. 4.1a, after (Zhao, 2007)) 

extends throughout the mantle to the core-mantle boundary (French and Romanowicz, 2015). The Tristan 

plume (Fig. 4.1b, (Zhao, 2007)) is rooted in the lower mantle and seems to be failing in the upper mantle 

nowadays, although it leaves an ancient hotspot trail behind (Schlömer et al., 2017). The Tasmantid (TasP) 

low velocity zone (Fig. 4.1c, (Zhao, 2007)) is currently confined to the upper mantle and transition zone 

with a lower mantle stem significantly distanced from the upper mantle part of the plume. Yet, up to five 

ancient hotspots could be the surface expressions of this mantle plume (Davies et al., 2015). 

 

 

Figure 4.1. Three natural examples of a complex multi-branch spreading system associated with a single 

mantle plume: a) The Labrador Sea (Chalmers et al., 1995) and the Aegir Ridge (Greenhalgh and Kusznir, 

2007) developed consecutively in the North Atlantic region. The Iceland plume (dashed purple line) is now 

located directly below currently active mid-ocean ridge (Rickers et al., 2013). The black line represents a 

position of a schematic cross-section of the North Atlantic domain (for color-code see Figs. 4.2 and 4.4). b) 

The Abimael Ridge is a failed rift branch along which evidence for oceanic crust has been observed (e.g. 

Mohriak et al., 2010). The Tristan Plume associated to the African Superswell (dashed purple line) is 

located close to the South Atlantic mid-ocean ridge (Ernesto et al., 2002). c) The spreading axes of the 

Tasman Sea and rift axis of Lord Howe and Middleton Basins are part of the same system (Gaina et al., 

1998). The Tasmantid (TasP) and Cosgrove (C) hotspots lay on the edge of the Tasmantid Plume (dashed 

purple line). The tomographic images are taken from Zhao [2007]. The purple lines show their approximate 

location. The yellow stars are asthenosphere hotspot locations. IP = Iceland Plume hotspot, LS = Labrador 

Sea, KR = Kolbeinsey Ridge, AR = Aegir Ridge, MAR = Mid-Atlantic Ridge, TP = Tristan Plume hotspot, 

BH = Begargo Hill hotspot, BR = Bokhara River hotspot, B = Buckland Hotspot, CH = Cape Hillsborough 

hotspot, DR = Dampier Ridge, LH&M Basins = Lord Howe and Middleton Basins. Australian hotspots 

after Davies et al. [2015]. 
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Despite numerous numerical modelling exercises (Beniest et al., 2017; Brune et al., 2014; Burov and Gerya, 

2014; Chenin and Beaumont, 2013; Huismans and Beaumont, 2008; Koptev et al., 2016; Lavecchia et al., 

2017) no self-consistent numerical model has thus far explained how multi-branch break-up centres, 

separated in space and time, can result from the impact of the same mantle plume (Fig. 4.1). Here, we present 

the results of a 2D thermo-mechanical modelling study investigating the effect of the pre-rift position of a 

mantle plume anomaly on the rift-to-spreading evolution in a laterally heterogeneous lithosphere, with 

different initial Moho temperatures and various extension rates. 

 

4.2. Numerical model setup 

We use a 2D version of the viscous-plastic numerical code I3ELVIS (Gerya and Yuen, 2007) to study 

plume-induced rifting and continental break-up of a lithosphere with a lateral rheological contrast. This code 

combines a finite difference method on a staggered Eulerian grid with a marker-in-cell technique. For a 

detailed description of the code we refer to Gerya and Yuen (2007), Gerya (2010) and supplementary 

material 1. 

The spatial dimensions of the model are 1500 km in length and 635 km in width. The model box contains 

297 x 133 nodes, so that the grid cell size corresponds to 5 x 5 km. The model setup consists of a three-

layered lithosphere (150 km), overlying the sub-lithospheric mantle (455 km). The crustal thickness is 40 

km, equally divided in upper crust (20 km) and lower crust (20 km) (appendix II, supplementary Fig. 1.1). 

The homogenous upper crust has ductile properties of wet quartzite whereas the lower crust is characterized 

by a lateral contrast in rheological strength: a ‘strong’ left side, made of anorthite rheology, and a ‘weak’ 

right side, consisting of wet quartzite rheology (Bittner and Schmeling, 1995; Clauser and Huenges, 1995; 

Connolly, 2005; Kohlstedt et al., 1995; Ranalli, 1995; Turcotte and Schubert, 2002). The contact between 

these two rheologically different crustal segments represents a simplified inherited structure, located in the 

top-middle of the model box. The lithospheric and sub-lithospheric mantle uses dry olivine rheology 

whereas the mantle plume is simulated with wet olivine rheology (more detailed information on rheological 

and material properties of the crust can be found in appendix II, supplementary table 2.1). The initial mantle 

plume anomaly is positioned at the base of the model box and has a spherical shape with a radius of 200 

km, which is in correspondence with previous work (e.g. Burov and Gerya, 2014; Koptev et al., 2015). We 

use a linear geotherm with 0 oC at the surface, 500 oC or 600 oC at the Moho (40 km), 1300 oC at the base 

of the lithosphere (150 km) and 1630 oC at the bottom of the model domain (635 km). The Moho temperature 

(500 oC and 600 oC) is one of the variable parameters of our study (appendix II supplementary table 3.1). 

The mantle anomaly has an initial temperature of 2000 oC corresponding to 300-370 oC contrast with 

surrounding mantle. The general thermal boundary conditions align with fixed temperatures at the top (0 

oC) and bottom (1630 oC) of the model and zero heat flux is imposed on the vertical boundaries of the model 
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box. Far-field tectonic extension is applied on both vertical sides with a constant half-rate of 5 mm/yr or 10 

mm/yr (appendix II supplementary table 3.1). The resulting horizontal forces along the border of the models 

are of the same order of magnitude (5x1012 N per unit length) as “ridge push” (e.g. Buck, 2007) and “slab-

pull” forces (Schellart, 2004). Apart from the initial Moho temperature and the initial extension rate, our 

main changing parameter is the pre-rift plume location. In a previous study of Beniest et al. (2017a) the 

anomaly was positioned at three different locations with respect to the crustal rheological and geometrical 

variations. For this study, the mantle plume is initially placed directly below the rheological contact after 

which it is positioned further away from this contact below the ‘stronger’ half of the model with steps of 

25-100 km. The maximum lateral shift of the plume with respect to its central location is 450 km. We 

performed 3 sets of 9 numerical experiments, resulting in 27 models total (appendix II supplementary table 

3.1). The first set has a Moho temperature of 500 oC and an extension rate of 10 mm/yr, the second set has 

a Moho temperature of 600 oC and an extension rate of 10 mm/yr and the last set has a Moho temperature 

of 500 oC and an extension rate of 5 mm/yr. In addition, we performed 19 complementary models 

(supplementary material 3.2 and 4) to test the models sensitivity to certain parameters such as grid cell size 

(higher resolution), plume size (larger radius), plume temperature (1900 oC instead of 2000 oC), Moho 

isotherm (650 oC) and more complex structure of the lithospheric mantle (different thicknesses for 

“stronger” and “weaker” segments) and crustal geotherm (non-linear). 

 

4.3. Experimental results 

In all models the mantle plume rises rapidly, reaching the base of the lithosphere in less than 2 Myr. Plume 

material spreads laterally along the lowest part of the lithosphere flowing as far away as ~1000 km (similarly 

to previous 2D experiments of Burov and Cloetingh (2010) and 3D models of Koptev et al. (2017)). Unlike 

these models, our experiments develop different rift-to-break-up modes that can be divided into three major 

groups (Fig. 4.2 and appendix II, supplementary table 3.1). 

The first group demonstrates continental break-up directly above the initial plume location (‘plume-centred’ 

break-up mode, model 8, Fig. 4.2d and appendix II supplementary Fig. 5.1d). This category corresponds to 

the classical plume models also shown by e.g. d’Acremont et al. (2003) and Burov and Cloetingh (2010). 

Despite initial deformation localization at the contact between the ‘weak’ and ‘strong’ segments (‘structural 

inherited’) (appendix II, supplementary Fig. 5.1d; 1 Myr), vertical ascent of hot plume material throughout 

the lithospheric mantle (Fig. 4.2d; 10 Myr) leads to a second ‘plume-centred’ zone of localized strain 

(appendix II supplementary Fig. 4.1d; 10 Myr). This zone becomes the dominant deformation domain 

(appendix II supplementary Fig. 4.1d; 13 Myr) at the moment of the continental break-up (Fig. 4.2d; 13 

Myr). The initial ‘structural’ inherited’ deformation zone becomes eventually completely extinct (appendix 

II supplementary Fig. 4.1d; 21 Myr). Thus, the plume material flowing laterally at the base of the lithosphere 
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is unable to turn the distant ‘structural inherited’ rifting into a break-up centre (appendix II supplementary 

Fig. 5.1d).  

The second category includes models showing rifting and subsequent break-up only at the contact between 

two rheological segments (‘structural inherited’ break-up mode). Here, due to the initial plume position 

being closer to the inherited structure, localized plume ascent coincides with the ‘structural inherited’ zone 

of the initial continental rifting. This leads to plume-induced (but ‘structural inherited’) break-up (model 3, 

Fig. 4.2a). Note that there is no evidence for strain localization within the stronger lithosphere above the 

initial plume location (appendix II supplementary Fig. 5.1a).  

Models of the third group illustrate an intermediate behavior where two break-up centres form 

consecutively. These ‘two-branch’ experiments develop first the ‘structural inherited’ and then the ‘plume-

centred’ break-up modes or vice-versa depending on the initial plume position (models 6 and 7, Figs. 4.2b 

and 3.2c). In both cases the first rifting phase is ‘structural inherited’ (appendix II supplementary Figs. 5b-

c; 1 Myr), but the order in which the break-up centres develop, depends heavily on relatively small (< 30 

km) lateral variation of the initial plume position with respect to the rheological boundary (Figs. 4.2b-c and 

appendix II supplementary Figs. 5b-c). When the initial thermal anomaly is situated further away from the 

rheological contact (at 375 km) ‘plume-centred’ break-up develops first, directly above the anomaly. This 

is due to the rapid, localized ascent of plume material through the mantle part of the stronger overlying 

lithosphere (Fig. 4.2c and appendix II supplementary Fig. 5.1c, 11-16 Myr). After that, hot plume material 

residing at the base of the lithosphere rises below the ‘structural inherited’ rift zone (Fig. 4.2c and appendix 

II supplementary Fig. 5.1c; 16 Myr) leading to complete rupture of the continent at the pre-imposed 

structural boundary (Fig. 4.2c and appendix II supplementary Fig. 5.1c; 22 Myr). When the mantle plume 

is positioned only 350 km away from the rheological contact ‘structural inherited’ break-up develops first, 

followed by a ‘plume-centred’ one (Fig. 4.2b; appendix II supplementary Fig. 5.1b). In both cases the time 

delay between these two continental break-ups is less than 10 Myr.  

The ‘two-branch’ category results from the reference model setup that uses a relatively fast extension rate 

(half-rate 10 mm/yr) and colder Moho temperature (500 oC, models 1-9, Fig. 4.3a). In a different set of 

models where the extension rate is being kept at 10 mm/yr but the crustal geotherm is warmer (600 oC at 

the Moho, models 10-18), a similar ‘two-branch’ system is produced when the plume is shifted 300 km 

away from the rheological contact (Fig. 4.3b). Note, however, that in this model only the ‘plume-centred’ 

rift axis evolves into a spreading centre, whereas the ‘structural inherited’ branch does not reach this phase. 

For this set of model setups, the ‘plume-centred’ break-up mode is the dominant break-up mechanism when 

the anomaly is located 350 km or further away from the inherited structure (Fig. 4.3b).   

A series of complementary experiments show that a further increase in the initial crustal geotherm (e.g. 650 

oC, models 30-36) has no principal effect on the final continental break-up mode (compare Fig. 4.3b and 
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appendix II supplementary Fig. 4.2). Small variations in the initial temperature distribution, e.g. a non-linear 

crustal geotherm that takes into account radiogenic heat production (model 29, appendix II supplementary 

Fig. 4.1c), does not play a significant role neither. For the last set of models the thermal state is the same as 

for the reference model (500 oC Moho temperature) and the spreading rate is decreased to 5 mm/yr half-rate 

extension (models 19-27). For this model series, all models persistently cultivate ‘structural inherited’ 

break-up for all tested mantle plume emplacements (Fig 4.3c). Exactly the same behavior is observed in the 

complementary experiments that include non-uniform thicknesses of the lithosphere with a thicker 

“stronger” (150 km) segment and a thinner “weaker” (100 km) segment (models 43-46). Regardless the 

initial plume position and the type of transitional zone between the different rheological segments (vertical 

or slope), these models show only “structural inherited” break-up mode, without any evidence for “plume 

centred” rift initiation (appendix II supplementary Fig. 4.5). Without dismissing that such contrasts in the 

rheological and thermal structure are present not only at crustal level but also in the lithospheric mantle, our 

results provide new elements to evaluate the importance of the mantle inhomogeneities on the initiation and 

development of multi-branch rift systems. 

 

Figure 4.2. The most representative examples of the three different break-up modes (from the model series 

distinguished with a Moho temperature of 500 oC and half-rate extension of 10 mm/yr, see also Fig. 4.3a 

and appendix II and supplementary table 3.1): a) model 3 with an initial plume shift towards the stronger 

segment of 200 km: “structural inherited” mode; b-c) models 6 (plume shift of 350 km) and model 7 (plume 

shift of 375 km): “two-branch” mode; d) model 8 (plume shift of 400 km): “plume-centred” mode. Note 

that not only the initial position but also the initial size (models 37-38) and temperature (models 39-42) of 

the mantle anomaly (appendix II supplementary Figs. 4.3 and 4.4) might be critical for the final break-up 

mode. 
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4.4. Discussion and conclusion 

Our results show that in case of a cold Moho (500 oC) and relatively fast (10 mm/yr) extension, three modes 

of break-up are possible, depending on the location of the mantle anomaly with respect to a rheological 

contact. With respect to this “reference model” set, a higher Moho temperature better facilitates deeper 

penetration of plume material into the lithosphere. This favors a vertical localized ascent up to the Moho 

ultimately leading to continental break up directly above initial plume emplacement. This “plume-centred” 

axis is situated closer to the rheological contact than in case of lower Moho temperature. A general example 

of this ‘plume-centred’ rifting, can be observed in for example the Afar depression where the formation of 

complex triple junction (e.g. McClusky et al., 2010) is linked to  the arrival of the Afar plume (Bellahsen et 

al., 2003) at ∼30 Ma (Hofmann et al., 1997; Coulié et al., 2003). In case extension rate is relatively low (5 

mm/yr extension), the thermal impact of the mantle plume becomes less important, the system prefers 

deformation localization at the mechanical instability created by the rheological contact. This implies that 

external tectonic forcing is too weak to localize deformation outside of the pre-defined structural boundary 

even in presence of an active mantle anomaly that is considerably shifted with respect to this structure. This 

is generally consistent with numerical results done by Burov and Gerya (2014).  

A natural example for ‘structural inherited’ break-up could be the South Atlantic domain where plume-

induced break-up takes place at the boundary between stronger (African) and weaker (South-American) 

lithosphere segments despite possible eastward offset initial position of the mantle plume with respect to 

this boundary (see Beniest et al., (2017a) for more details).  

When the anomaly is located at a position where both the impact of the mantle anomaly on the lithosphere 

and the predefined rheological contact of the system are competing for deformation localization, the ‘two-

branch’ break-up mode develops. For our reference models set (Fig. 4.3a), a ‘two-branch’ system forms 

when the mantle anomaly has a lateral displacement of 350-375 km towards the stronger half of the model 

domain with respect to the rheological contact. The two branches develop consecutively, with roughly 10 

Myr delay, with either ‘structural inherited’ break-up first, followed by ‘plume-centred’ (displacement 350 

km, Fig. 4.2b) or the other way around (displacement 375 km, Fig. 4.2c). Slight offset to this specific 

dislocation converts the break-up mode to either ‘structural inherited’ or ‘plume-centred’ (Figs. 4.2, 4.3).  
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Figure 4.3 (previous page). Graph showing the results of the three sets of models (a. 500 oC Moho 

temperature and 10 mm/yr extension rate, b. 600 oC Moho temperature and 10 mm/yr extension rate and c. 

500 oC Moho temperature and 5 mm extension rate) aligned with increasing distance between the initial 

anomaly location and the rheological contact. For the experiments with faster extension half-rate (10 

mm/yr) there is a critical distance when the system changes from “structural inherited” to “plume-centred” 

break-up through a two-branch system. This distance is between 300 and 400 km for the Moho temperature 

of 500 oC (a) and between 250 and 350 km for Moho temperature of 600 oC (b). Closer to the rheological 

boundary the rift-to-spreading system develops uniquely above the structural inheritance, further away it 

evolves directly above the plume impingement point. Note that “plume-centred” mode of development does 

not exclude some localization of initial deformation at the rheological contact (“structural inherited” 

aborted rifting, see appendix II supplementary Fig. 5.1). 

 

 

 

Both “plume-centred” and “structural inherited” modes of break-up have been modelled by Beniest et al., 

2017a and Lavecchia et al., (2017). To model a “two-branch” system a particular position of the mantle 

plume anomaly with respect to rheological contrast at the crustal level should be determined. Only relatively 

narrow (25-50 km) range of initial plume locations can result in multi-branch systems associated with the 

direct impact of locally upwelled plume material. The thermal state appears to be of lesser importance (see 

Fig. 4.3a-b where two branches develop with both colder and hotter Moho temperatures), but far-field 

forcing should not be too weak (see Fig. 4.3c). Our ‘two-branch’ model with a plume location 375 km away 

from the rheological contact bears most similarities to the geodynamic history of the North Atlantic region 

(Fig. 4.4). Here, the old and rigid lithosphere of the Greenland craton (Kerr et al., 1997) was underlain by a 

single mantle anomaly (the Iceland mantle plume) before rifting started in the Labrador Sea (Lundin and 

Doré, 2002; Rogozhina et al., 2016). The old craton was subjected to plume-activated continental rifting in 

the Late Triassic or Jurassic (Peace et al., 2016) followed by seafloor spreading with the oldest accepted 

magnetic anomaly being of Danian (~64 Ma) age (Chalmers et al., 1995) (although older anomalies are still 

a matter of debate (Peace et al., 2016)). Note, however, that the opening of the mostly a-magmatic Labrador 

Sea might have started before the mantle plume impacted the lithosphere beneath West Greenland (Larsen 

and Saunders, 1998). A second axis of active spreading (the Aegir ridge) initiated at 57 Ma (i.e. 5-10 Myrs 

later) (Lundin and Doré, 2002) close to the adjacent Caledonian suture zone (Gaina et al., 2009; Abdelmalak 

et al., 2016), several 100’s of kilometers away from the area of the first plume impingement. Thus, both the 

position of the Iceland plume (e.g. Rogozhina et al. (2016) and references herein) near the western coast of 

Greenland (with a shift of several hundreds of kilometers with respect to the weaker Caledonian suture) at 

the moment of the initiation of the first spreading branch (even if the paleo-position of the Iceland hotspot 

remains debatable – see e.g. (Torsvik et al., 2015)) and the time delay of less than 10 Myr between “plume-

induced” and “structural inherited” break-ups bear strong similarity with the key features of our “two-

branch” model displayed in Fig. 4.2c and Fig. 4.4a-c.  
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Figure 4.4. Phase (a), temperature (b) and strain rate (c) plots of model 7 (Moho temperature of 500 oC, 

extensional rate of 10 mm/y, plume shift of 375 km). This model develops a “two-branch” break-up mode 

and bears strong similarities with the geodynamical evolution in the North Atlantic domain (d, schematic 

representation) : 1) the first branch forms in the left part of the model, corresponding to the strong crust, 

similar to Greenland craton that will eventually separate Greenland and Canada (Peace et al., 2016); 2) 

the second branch forms 6 million years later close the inherited structure, comparable to the break-up of 

the Caledonian orogeny eventually separating Greenland and Norway (Lundin and Doré, 2002). The pink 

color on the schematic profiles refers to newly formed oceanic lithosphere. 
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In this case, the key-features refer to 1) lateral varying rheological contact resembling an inherited structure 

(the Caledonian Suture), 2) a relatively cool thermal structure comparable to a craton (West-Canada-

Greenland craton), 3) the location of the mantle anomaly at 350-375 km away from the inherited structure, 

which would be well below the Greenland craton, and 4) the timing of the two break-up branches only 5-10 

Myr apart in the model, that corresponds well to the 64 Ma for the Labrador Sea (‘plume-centred’ break-up 

branch) and 7 Myr later, at 57 Ma the Aegir Ridge (‘structural inherited’ break-up branch). We note that 

given the natural limitations of the used 2D approach, further explore the effect of plume on multi-branch 

systems with 3D tests would facilitate a more detailed comparison with observations in the North Atlantic. 

 

Based on our modelling results and examples from nature, we note that rheological heterogeneities in the 

lithosphere, its thermal state and acting mechanical forces and the lithospheric structure are important 

parameters for the rift-to-break-up evolution of the system. In addition we show that, the initial location of 

the plume with respect to a laterally varying lithosphere is not only an important factor on rift and break-up 

modes and geometries, but also affects the timing and order of the development of the branches. We argue 

that, in combination with far-field forces and the thermal state of the system, the emplacement of the plume 

anomaly is a key parameter for plume-induced continental rifting and break-up numerical modelling.  

 

 

 

 

 

Highlights: 

 A single mantle plume can be responsible for two non-contemporaneous rift-to-spreading 

systems in a laterally nonhomogeneous lithosphere 

 The pre-rift distance between a plume and a lateral lithospheric boundary between two 

segments controls rift-to-spreading systems 

 The location of a plume with respect to lithosphere inhomogeneities is a key variable when 

modelling plume-induced continental break-up 
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If you know you are on the right track, if you have this inner knowledge,  

Then nobody can turn you off. No matter what they say. 

 ~ Barbara McClintock, Physiology and Medicine 
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5.1. From continental rifting to conjugate margins 

The rift to spreading history of the break-up of Gondwanaland is recorded in the basins along the South 

Atlantic margins. The margins show dissimilarities in terms of crustal thickness, structure and basin 

sediment infill. These differences are not only latitudinal (between the Central and South Segment), but 

also exist between the conjugate margins (Fig. 5.1). The South Segment margins have massive SDR 

deposits that are mostly absent along the Central Segment margins (e.g. Blaich et al., 2011; Moulin et 

al., 2010; Torsvik et al., 2009). The basins along the Central Segment margins have massive salt deposits 

that are not observed in the basins along the Southern Segment (Blaich et al., 2011; Marcano et al., 

2013).  

The conjugate margins can be compared per segment as well. The South American margins of the 

Central Segment (e.g. Espírito-Santos basin) have transitional domains with similar widths (Blaich et 

al., 2011), although the whole African side (Kwanza basin) margin appears to be wider than the South 

American side (Fig. 5.1a). The crustal thicknesses of both margins are about 18 km thick (Blaich et al., 

2011). In the South Segment, the margins of the South American side (e.g. in the Colorado basin) show 

extensional deformation features further land inwards, than on the African side (the Orange basin). The 

South American margin width is larger than its African conjugate (Fig. 5.1b). Also the crustal thickness 

varies as below the South American margin the thickness reaches 20 km compared to 30 below the 

African margin. Towards the ocean, crustal thicknesses become similar, roughly 10 km. For this reason 

the African margin appears to have thinned more than the South American. 

Despite all these differences between the segments and conjugate margins of the South Atlantic domain, 

the final result is the same: the break-up of two continents. The compilation of rift-to-break-up models 

presented in Chapter 2, 3 and 4, show that there are indeed several ways to break-up a continent 

depending on the rheological differences in the lithosphere and the presence or absence of a mantle 

plume. Previous studies have already explained margin asymmetry and symmetry of the South Atlantic 

with numerical and analogue models. Some studies dedicate it to far-field forces that act on the system, 

for example as a result of non-linear extension velocities (Brune et al., 2016), steady-state rift migration 

of a system under continuous extension (Brune et al., 2014) or the oblique orientation of far-field forces 

to the spreading-centre (Brune et al., 2013). Others consider inherited structures as the main reason for 

the final geometry of the rift (Cappelletti et al., 2013) or the interplay between the rheology of the 

lithosphere and thermo-mechanical processes (Svartman Dias et al., 2015).  

One thing that all these studies have in common is the rather homogeneous initial model setup. The 

contribution to this discussion on conjugate margin geometries that results from this thesis is the 

inclusion of more complex lithosphere initial model setup. The parameters tested with more 

homogenous models, have a different effect on the system once the system itself contains more in-situ 

variations. It’s the combination between the initial state and these processes that define whether or not 

the crust will break at an inherited structure, in a ‘pure-shear’ mode or not at all.  
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Figure 5.1. Two conjugate basin sets along the Central Segment (a) and the South Segment margins of 

the South Atlantic domain projected in map view (Beniest et al., 2017) and cross-sections (Blaich et al., 

2013). Asymmetry is observed in crustal thickness, basin width, basin orientation, sediment thickness 

and the presence of high velocity/high density bodies observed on gravity.  
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Break-up of the central segment has resulted in rather symmetric transitional domain margin geometries, 

although the African margin is wider than the South American side. There is also no rooted mantel 

plume present in the Central Segment. Our analogue model results with two different lithosphere 

segments show that without the use of a thermal anomaly, break-up may occur in a ‘pure-shear’ way. 

The results are rather symmetric geometries close to the break-up point. This compares to e.g. the scale 

of the transitional domain in the Central Segment where transitional domain widths are rather similar. 

However, when taking into account the whole margin, including the strong segment, geometries become 

asymmetric, because the extension is accommodated only in the weak lithosphere, leaving the strong 

segment intact. Which is comparable to a larger scale of the Central Segment margins, including the 

continental and oceanic parts of the margin. 

For the margins of the South Segment, including thermal processes is obligatory because of the presence 

of the Tristan Plume. Adding this parameter complicates rift initiation and increases the possibilities to 

arrive at continental break-up. In the case of the South Segment of the South Atlantic, positioning the 

plume slightly off-set below the stronger segment, results in a-symmetric margin development, in terms 

of crustal thickness (similar to the margin geometries in Fig. 5.1b) and underplated material (comparable 

to the high density/high velocity bodies at lower crustal level that occur along the margins). 

More specifically, depending on the thermal state and extensional forces acting on a system consisting 

of different rheological segments, it is possible to model two break-up branches, by just placing the 

mantle anomaly at a distance from the rheological contact. It is a rather sensitive parameter, as there is 

only a small window for which two-branch systems develop. 

The location of the mantle anomaly with respect to rheological contacts is thus a key-parameter that has 

never been tested before in such detail with thermo-mechanical models. Here it has shown that its initial 

position plays a significant role in the formation of asymmetric margins, volcanism and anomalous 

bodies at lower crustal depth. This parameter should be used with care when performing thermo-

mechanical modelling as it greatly influences the outcome. However, implementing a mantle anomaly 

in thermo-mechanical models and varying its initial plume-emplacement, increases the possibilities of 

geodynamic models for plume-induced continental break-up. 

 

5.2. The thermal evolution of conjugate marginal basins 

The different continental rift to break-up evolutions have implications for basin and petroleum systems 

that develop in the basins above these margins. As an example the focus will lie on the effect of thermal 

processes within a marginal basin.  

The thermal state of the lithosphere and crust is often given as a geotherm that deviates from the mantle 

adiabet once it reaches that part of the system where conduction is the dominant way of heat transfer 

and not convection (Eaton et al., 2009). There are two ways to infer heat flow values. The first way is 

calculating heat flow from tectonic models, e.g. the ‘pure-shear’ extension model (McKenzie, 1978b) 

and variations thereof (e.g. Royden et al., 1980). Here, heat-flow increases sharply just before it reaches 
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the main thinning phase followed by a thermal relaxation period that can last millions of years (Fig. 

1.11c). This way of estimating heat-flow works well for rift-systems, but is less adaptable for spreading 

systems, because the lateral component of heat transfer becomes higher and influences basins, especially 

when they are elongated and not too wide (Rosencrantz et al., 1988). Also the blanketing effect of 

sediments is not taken into account (Van Wees et al., 2009) which might result in both crustal cooling 

and heating depending on the sedimentation rate (ter Voorde and Bertotti, 1994).  The second way of 

evaluating the heat flow overtime is by interpolating Vitrinite Reflection (VR) data. Vitrinite reflection 

data provides punctual data on the thermal state of a system at four point in time, when the system was 

1) immature, 2) within the oil-window, 3) within the gas-window and 4) exhausted (Wangen et al., 

2007). There are several approaches for interpolating these points to heat flow trends, e.g. simple linear 

trends between the points, Monte-Carlo best-fit solutions (Ferrero and Gallagher, 2002) or inverse 

modelling (Gallagher, 1998).  

Both approaches for evaluating heat flows, weather the based on tectonic modelling or vitrinite 

reflection data neglect important factors. The models based on VR do not take into account tectonic 

processes, e.g. the time of a rift phase or a tectonic quiescence period, whereas the tectonic modelling 

often does not take into account radiogenic heat production and erosion and sedimentation processes 

(Van Wees et al., 2009), these processes have proven to affect the thermal history of basins (e.g. 

Wangen, 1995; Waples, 2001). 

Thermo-mechanical modelling has also been used to investigate the thermal response of the crust to 

tectonic processes (ter Voorde and Bertotti, 1994; ter Voorde and Cloetingh, 1996). A similar approach 

has been adopted to investigate the heat flow trends that result from these different rift-to-break-up 

modes.  

Both topography and heat flow are extracted from the thermo-mechanical models. Topography takes 

into account the sediments that are deposited in the basin through an erosion coefficient. The heat flow 

is calculated using a 1D heat equation Q (eq. 5.1) 

 

𝑄 =  −𝑘 ∗ 𝐴 ∗
ΔT

Δh
     (eq. 5.1) 

 

where k is the conductivity of the material, A the surface over which the heat flow is measured, which 

in this 1D approach equals 1, ΔT is the temperature difference between the bottom and the top of the 

layer, and Δh is the vertical thickness of the layer. 

For the ‘central’ break-up mode, topography and heat flow values do not significantly differ between 

the margins (Figure 5.2a). A rather symmetric distribution and a ‘pure-shear’ style evolution is the result. 

The ‘shifted’ break-up mode has more variation along the margin both with topography and heat flow 

values (Fig. 5.2b). During the syn-rift and early spreading phase, there is a higher topography on the left 

margin compared to the right margin, this changes around 15 Myr. Heat flow values are systematically 



Chapter 5 Discussion 

127 
 

higher on the right margin which is considered to be the result of the mantle plume impinging below the 

right margin before break-up.  The “distant” mode is the only mode where no plume material reaches 

the spreading centre (Fig. 5.2c). The topographic and heat flow values are rather similar for both 

margins. This mode is also the only mode where a second depression and rise develop to the left side of 

the break-up centre, directly above the plume-impingement point. This is also reflected in the elevated 

heat flow on this side of the model. The heat flow values calculated with the models, falls within the 

range of heat flow measured along marginal basin (Davies, 2013; Davies and Davies, 2010). However, 

they should not be taken as fixed, because the heat flow calculation is only based on the vertical 

temperature differences, not taking into account lateral variations. Also crustal heterogeneities that are 

likely to occur in the Continent-Ocean-Transition zone, for example the change from underplated mafic 

rocks to more felsic basement rocks are not taken into account. 

The values calculated with this model can be compared with for example the ‘pure-shear’ tectonic model 

(Fig. 5.3., Paton et al., 2007). Heat flow estimations using beta factors are in general higher than the 

ones calculated with the thermo-mechanical model. The trends of the thermo-mechanical model heat 

flow calculations show much more variation than the heat flow based on the ‘pure-shear’ tectonic model. 

The different modes of break-up, with or without the influence of a plume, result in different heat flow 

magnitude levels and also different intensities along the margins, depending on the presence or absence 

of a plume and the initial location of the plume (Fig. 5.4).  When there is no plume involved, intensities 

remain rather low (e.g. the ‘distant’ break-up mode, Fig 5.3 and 5.4.a) but similar on both sides of the 

margin. In case there is a mantle plume involved and it develops into the ‘classical’ or ‘central’ break-

up setting (Fig. 5.3 and 5.4b), intensities are higher, but still of equally intensity on both sides. Lastly, 

when the initial plume location is not directly below the final break-up centre and plume material has to 

migrate laterally along the base of the lithosphere (‘shifted’ break-up mode, Fig. 5.3 and 5.4c) the heat 

flow is significantly higher below the margin along which plume material has migrated compared to the 

other one. 

 



From continental rifting to conjugate margins 

128 
 

Figure 5.2a. Topographic and heat flow evolution of over time for the ‘central’ mode of break-up. The 

profiles show the topography and heat flow at 15 Myr, during the post-rift phase. The white outline 

shows the location of the conjugate basins. Both heat flow and topography show similar values true 

time, although just before break-up (around 7 Myr) the left margin has a higher heat flow value than 

the left margin. 
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 Figure 5.2b. Topographic and heat flow evolution of over time of the ‘shifted’ break-up mode. The 

profiles show the topography and heat flow at 15 Myr, during the post-rift phase. The white outline 

shows the location of the conjugate basins. There is more variation in the topography and heat flow. 

Topography is higher on the left margin than on the right whereas heat flow is higher on the right 

margin, especially during the post-rift phase.   
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Figure 5.2c. Topographic and heat flow evolution of over time for the ‘shifted’ mode of break-up. The 

profiles show the topography and heat flow at 15 Myr, during the post-rift phase. The white outline 

shows the location of the conjugate basins. Both heat flow and topography show similar values true 

time along the spreading centre. A second basin develops with slightly heat flow values where the 

mantle plume remains glued to the lithosphere. 
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Figure 5.3. 1-D Heat flow calculations over time for the three model systems of rifting. The green curves 

are values for the central break-up mode, the orange ones the shifted and the blue ones represent the 

distant break-up mode. The grey and black-lines represent the ‘pure-shear’ stretching model using a β-

factor of 1.5, 2.0 and 2.5 for the case of the Orange basin (Paton et al., 2007).  

 

 

In basin modelling programs such as TemisFlow ™, developed by IFP Energies nouvelles (Burrus et 

al., 1996; Doligez et al., 1986; Ungerer et al., 1990), many different parameters are taken into account 

to evaluate the generation and migration of hydrocarbons in sedimentary basins. In petroleum system 

analysis and modelling, it is important to reduce the uncertainties of these parameters by carefully 

assembling geological data sets. The first step would be 3D data assemblage of the sedimentary basin 

geometries. The surface of each stratigraphic interval and its structural elements (basin scale faults) need 

to be clear. Next, data on the characteristics for each strata have to be identified in terms of lithology 

(siliciclastic, sand, clay, or carbonate rich marls, limestones etc.) and rock petro-physical properties 

(porosity-depth, porosity permeability, etc.), their rock geochemical content and their kinetics (Ungerer, 

1990), i.e. the richness in terms of total organic matter content (TOC) and type of kerogen (type I, II, 

IIS or III, most commonly used in literature). Once these elements have been entered as input data for 

the numerical basin model, its history needs to be reconstructed over geological time. Past geometries, 

temperatures and the fluid transfers (gas, oil and water) need to be understood. This is established by 

doing first a sequential restauration of each past geometries using back stripping and decompaction of 

sedimentary successions, followed by forward modelling of heat transfer, solving the heat equation 
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taking into account conduction, convection and radiogenic production, and lastly the circulation of each 

fluid phases (gas, oil and water) using the Darcy’s equation. One important question in this itinerary is 

to set realistic boundary conditions for solving the heat equation (Bethke, 1989). The numerical method 

used in TemisFlow ™ demands to define the temperature or the heat flow along any model’s surface 

boundary (e.g. face if the basin is a cubic shape body). This must be defined in space and over time.  

 

 

Figure 5.4. Schematic representation of heat flow distribution and intensity in case of a) no mantle 

plume or ‘distant’ break-up, b) a mantle plume with central break-up mode and c)a mantle plume and 

’shifted’ break-up mode. The longer arrows indicate higher intensities, the quantity refers to the 

distribution. 

 

One of the parameters is the heat flow which can be either chosen as a standard value, taken from a 

library (Zeinalzadeh et al., 2015), or by implementing manually the heat flow values obtained through 

e.g. interpolating vitrinite reflection data (Kontorovich et al., 2013) or deriving heat flow from seafloor 

measurement of bottom simulating reflector mapping (Rousseau et al., 2015).  

Thermal simulations show that when lateral variations are taken into account, the thermal regime is best 

explained (Rousseau et al., 2015). The heat flow calculations provided above are only 1D calculations, 

not taking into account lateral thermal variations. There is however a spatial and temporal intensity and 

distribution contrast between the different types of break-up and the margins, that can be taken into 

account easily in basin modelling programmes, like TemisFlow ™.  
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In addition, with TemisFlow ™ it is possible to include crustal structures into its basin model and thus, 

the geometry change of the crustal structure below the margins over time can also be included to better 

simulate the hydrocarbon and thermal evolution of the modelled basin.  

The basins along the South Atlantic domain do not all have the same hydrocarbon occurrences. For 

example the Pelotas Basin has six potential petroleum systems (Conti et al., 2016) whereas it’s conjugate 

the Walvis basin on the African side has no sign for source rocks, although good reservoir rocks are 

present (Holtar and Forsberg, 2000). Further south along the margin, the Colorado basin contains source 

rocks that have matured to Kerogen types I-III during syn-rift and post-rift phase (Marcano et al., 2013) 

whereas the conjugate Orange Basin contains source rock with Kerogen type I during the syn-rift and 

type II during the post-rift phase (Marcano et al., 2013). In some cases the presence or absence of 

hydrocarbon accumulations is due to the lack of essential petroleum system feature, for example source 

rocks or traps or a cap-rocks, but in other cases it’s the physical conditions that decide if hydrocarbons 

are generated and migrate towards their reservoir. 

For the South Atlantic Domain different processes have played a role in the continental break-up, in 

some cases influenced by deep-rooted thermal anomalies as in the South Segment (Torsvik et al., 2009). 

This most likely has resulted in high, or maybe even too high heat flows compared to the Central 

Segment where hydrocarbon occurrences are more abundant. The Campos Basin is the most prolific 

petroleum-bearing basin of the Brazilian margin (Guardado et al., 2000). Its conjugate the Kwanza and 

Congo basins also host hydrocarbons, although its occurrences are more modest compares to its 

Brazilian conjugate (Burwood, 1999).  

 

 

 

Highlights: 

 The formation of a-symmetric and symmetric conjugate margin geometries depend on the 

on presence or absence of mantle anomalies in a complex lithosphere setup.  

 Heat flow intensities and distribution along conjugate margins may vary depending on the 

presence or absence of a mantle anomaly 

 Time and spatial heat flow boundary conditions for basin models can be constrained by 

large scale thermo-mechanical modelling. 

 Understanding the thermal evolution of conjugate margin systems diminishes uncertainties 

for basin and petroleum system models and increases our knowledge on geodynamic 

processes in extensional systems. 
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Chapter 6: Conclusions 

 

 

 

 

 

 

 

 

 

 

 

La vie n’est facile pour aucun de nous, mais quoi,  

Il faut avoir de la persévérance et surtout de la confiance en soi.  

Il faut croire que l’on est doué pour quelque chose 

Et que cette chose il faut l’atteindre coûte que coûte. 

~ Marie Curie, Physicist and Chemist 
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Continental rift initiation and break-up of Gondwanaland to form the South Atlantic domain is a 

complex process. The amalgamation of different rheological segments that made up Pangea were 

subjected to amongst others far-field forces and thermal processes in the mantle. The complex initial 

setup of this domain makes it difficult to quantify the role of every different factor on rift initiation and 

final break-up.  

Analogue modelling has been performed at the Tectonics Laboratory at Utrecht University in the 

Netherlands to investigate the effect of extensional far-field on an alternative, more complex lithosphere 

setup, consisting of two segment with different rheological strength. The results show that when the 

lithosphere consists of two different strengths, e.g. two cratons with vertically contrasting rheological 

setups, the weaker segment accommodates all the deformation. The strong segment remains intact with 

its original thickness without showing any signs of crustal thinning or deformation. More importantly, 

when a strong sub-Moho mantle is present, the rift-evolution happens in two phases. The first phase is 

a wide-rift phase in the weak segment. As soon as the strong part of the upper mantle loses its strength, 

the rift localizes into a narrow rift. If extension would continue the crust would break at this point. 

Eventually, asymmetric margins would form weak with thin crust on either side. The thin margin that 

forms on the part glued to the strong segment has an asymmetric thickness distribution. The strong part 

would be thick, whereas the weak part would be thin, giving this margin a ‘hyperextended’ character. 

Also the basins that develop during the first, wide rift phase, can be unequally distributed on either side. 

These results can thus explain conjugate margin asymmetry without the use of a mantle anomaly. They 

also resemble the present-day geometry of the South Segment of the South Atlantic where the South 

American crust is thinner and shows less variation than the African crust which is thicker and more 

‘extended’. Also the unequal distribution of basins, the South American margins have more basins than 

the African margins, is coherent with the expected evolution if extension would have continued in the 

analogue model.  

However, in the South Segment of the South Atlantic Ocean, the only deep-rooted mantle anomaly, the 

Tristan Plume, is located below the oceanic crust, slightly to the right of the Mid Oceanic Ridge. Hotspot 

tracks and extensive volcanism point to some influence of this mantle anomaly during the rift and 

spreading phase. The analogue models do not take into account thermal processes and thus 2D thermo-

mechanical modelling, using the FLAMAR and I3ELVIS codes, is performed to add the effect of mantle 

plumes to the rift initiation and continental break-up of a complex lithosphere consisting of two 

segments. 

The numerical setup allows more variation in terms of thickness of the layers, geometry of the contact 

between the structures, initial plume location and extension rates. The results show that there is not just 

one way of continental break-up when a plume is involved. The ‘classical’ (or ‘central) plume-induced 

break-up mode (Fig. 6.1b), where the lithosphere will break directly above the plume impingement point 

and the margins evolve rather symmetrically, is only one form of continental break-up. Another type 

would be the ‘shifted’ break-up mode (Fig. 6c), where, after plume impingement, mantle plume material 
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migrates below the base of the lithosphere to the contact between the two segments where break-up 

would eventually rake place. The results even show that it is possible to have a ‘distant’ mode of break-

up (Fig. 6d), where the plume does not reach the spreading centre at all and rifting initiates at a large 

distance from the mantle plume and the anomaly itself remains glued to the base of the lithosphere. At 

this point, where the plume impinged the lithosphere, topography develops and higher heat flows are 

calculated, although no break-up occurs. For the South Atlantic, the ‘shifted’ mode of break-up shows 

the most similarities to geological and geophysical observations. There is an asymmetry between the 

margins in terms of thickness and hyperextension and also the plume material that remains at lower 

crustal depths can be compared with Seaward Dipping Reflectors and/or high velocity/high density 

bodies at depth.  

 

 

Figure 6.1. Four different ways of plume-induced continental break-up. a) All modes initiate similarly 

with plume-impingement at the base of the lithosphere and development of topography. Next, different 

modes can form b) ‘central’ break-up, c) ‘shifted’ break-up, d) ‘distant’ break-up and e) ‘two’-branch 

break-up.  

 

This exercise, of testing the effect of mantle plume locations on complex lithospheric setups, does 

unfortunately not allow to qualitatively investigate the effect of plume emplacement in extensional 

numerical models. Therefore, a new exercise was designed, where the plume was positioned 

systematically further away from the centre of the model where the contact between two rheological 

segments is located. The result are in agreement with the previous exercise and multiple types of 

continental break-up are simulated. Again, the ‘classical’ or ‘central’ or ‘plume-induced’ mode, where 

break-up occurs directly above the plume impingement point is only one mode. Also the ‘shifted’ or 

‘structural inherited’ mode is modelled in which case plume material migrates along the base of the 

lithosphere and break-up occurs at the contact between the segments. This exercise reveals a third mode 

of break-up, where plume material of one mantle plume reaches two spreading centres. In this case, 
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depending on the extension rate and the plume location, both ‘plume-centred’ and ‘structural inherited’ 

break-up develop. There is only a small window in which this ‘two-branch’ mode forms and depending 

on the location of the plume, first ‘plume-induced’ and then ‘structural-inherited’ break-up forms or 

vice-versa. When extension rates are too low, in this case 5 mm/yr half-rate, only ‘structural-inherited’ 

break-up forms. This ‘two-branch’ mode (Fig. 6.1e) is thus very sensitive to extension rate, plume 

location and the rheological setup and can explain complicated rift and spreading systems where aborted 

arms or failed rifts are present, for example in the North Atlantic domain.  

Both the analogue and numerical models are capable of reproducing geological and geophysical 

observations. For asymmetric conjugate margin development, a complex lithosphere with multiple 

rheological segments and some extensional forces acting on the system are sufficient to produces this 

asymmetry. However, when a mantle anomalies is known to be present, the situation becomes more 

complicated and more than one type of break-up can result in asymmetric margins. Features observed 

at the surface and at depth that cannot be explained without thermal processes taken into account, can 

be explained when taking a plume into account. The models have shown though that more than one 

plume-induced rift-to-break-up evolution is possible and care should therefore be taken when including 

these anomalous features in thermo-mechanical modelling.  

The thermal evolution of the conjugate margins that results from thermo-mechanical modelling varies 

in terms of intensity and distribution. These trends can be used in   basin and petroleum system modelling 

to diminish the uncertainties for the thermal evolution included in these kind of models.



 

 

 

 



Chapter 7 Future work and perspectives 

141 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7: Future work and perspectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ship in a port is safe, but that’s not what ships are for.  

Sail out on sea and do new things. 

~ Grace Hopper, U.S. Navy Rear Admiral  & Computer Scientist 
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Testing heat flow trends on natural cases 

This study has shown that heat flow trends that result from numerical models differ from the heat flow 

trends used in the industry for spreaded systems. There is more variation in heat flow values and also 

margins do not necessarily suffer similar heat flow evolutions. These different heat flow trends should 

be tested on natural systems to see what the quantitative impact is on hydrocarbon maturation and 

generation. This can be done with petroleum system models, such as TemisFlow ™, where it is possible 

to use more complex thermal histories as boundary conditions as well as more complex lithosphere 

geometries. 

 

Increasing the complexity of analogue and numerical models 

Numerical models become more complex and capable of calculating multiple processes. Developing 

more complex setups, for example including more than two rheological segments, or playing with non-

linear extension velocities will be better suitable for specific regions on earth. Also reproducing 

numerical models in an analogue fashion or recalculating the analogue models in a numerical way will 

give insights in the limits of either method. A very challenging follow-up would be the development of 

an analogue modelling machine that can include thermal processes. These more complex analogue and 

numerical models come one step closer to reproducing tectonic processes. The results can then be used 

for models at a smaller scale, for example basin models, to receive better estimations of hydrocarbon 

reserves or geothermal potential of a basin. 

 

Predicting initiating rift systems 

The analogue modelling exercise provides a framework for rift initiation without the implication of 

mantle plumes. When a strong sub-Moho mantle is present, the two phase rift evolution starts with a 

wide rift until the sub-Moho mantle has lost its strength and rifting localizes. During this first rift phase 

the sub-Moho mantle is actively under extension and if it behaves in a brittle fashion it might produce 

earthquakes at depths below the Moho. It would be interesting to investigate if seismic activity at sub-

Moho depths in a continental setting are an indication for continent rift initiation. Also the earthquake 

magnitudes associated with this type of tectonic activity is worth investigating to understand the risk of 

hazards. A recent earthquake (6.4 on the scale of Richter) in Botswana occurred at lower crustal levels 

and is situated in an extensional setting and could provide a natural laboratory to test this hypothesis.
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The FLAMAR code (Burov et al., 2001), used for chapter 2 and 5 of this manuscript, is based on the 

F.L.A.C. (Fast Lagrangian Analysis of Continua) algorithm developed by Cundall and Board (1988) 

and Cundall (1989). It is modified after the PARA(O)VOZ code from Poliakov et al. (1993) by several 

other PhD studies such as Le Pourhiet (2004) and Yamato (2006).  

The model solves for several coupled physical equations, the first one being Newton’s second law of 

motion (eq. 3.1) to account for pressure-dependant deformation and free upper surface. This law is 

coupled with constitutive equations for visco-elasto-plasticity (eq. 3.2) accounting for realistic visco-

elasto-plastic rheologies. Both eq. 3.1 and eq. 3.2 are coupled with the heat equation (eq. 3.3). The 

model also takes into account erosion processes by using a diffusion equation for transport (eq. 3.4) 

(Burov and Poliakov, 2001), which is based on the classical model of Culling (Culling, 1960). The 

model can perform calculations by assuming either a Boussinesq adiabetic thermal dependence (eq. 

3.5a) or a thermodynamic dependence for the density (eq. 3.5b). Our calculation assume a Boussinesq 

adiabetic thermal dependence. 
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Eq. 3.5b  ( ( , ))eff G P T    

where V is the velocity; σij the stress tensor; g the gravity; u the displacement; ρeff the effective density; 

ρi the initial density; λ and μ the Lamé coefficients; δij the Kronecker delta; ϕ the friction angle, C0 the 

cohesion factor; H the activation enthalpy; R the gas constant; T the temperature; kerosion the diffusion 

coefficient for erosion; t the time; α the thermal expansion coefficient; G the Gibbs free energy; P = 1/3 

of the pressure. 

 

The code is written explicitly and discretises two finite-element grids, both consisting of two triangular 

elements (Fig. 1). This is done to avoid ‘mesh-locking’ problems (Marti and Cundall, 1982). Due to this 

numerical setup, the elastically compressible code independently calculates the temperature, gravity and 

pressure-dependant body-forces. The algorithm also explicitly solves elastic-brittle-ductile properties of 

the mantle, crust and lithosphere. Brittle and ductile strain localization are calculated, allowing the 

formation and visualisation of brittle faults and ductile shearzones. A satisfactory deformation of the 

lithosphere is realized by the free upper surface boundary condition. 

 

 

Figure 1. Schematic visualisation of discretisation of the grid. Every grid element consists of four grid 

points that make up four triangular elements. On the grid points, the velocity, resulting from extensional 

forces are calculated. The deformation constraints are calculated with the triangular elements, in which 

markers are placed (Yamato, 2006).  

 

The calculations are using time steps given by the numerical time of the model. After the Courant 

criteria, the time steps have to be smaller than the time it takes for the slowest physical process to happen. 

Different calculations need a different times span to propagate from one cell to the next. The algorithm 

calculates the critical time step for every process occurring in the model (thermal, elastic perturbations 

etc.). Then it selects a time step that is lower than the lowest critical time it needs for a calculation. On 

the other side of the duration of a time step the fastest processes are the non-elastic processes, like 
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viscous and plastic deformation. The maximum time-step for viscous deformation is limited by the time 

of the viscous-elastic relaxation that needs to be bigger than the time step. Other calculations for other 

mechanical phenomena like material diffusion and surface processes are also taken into account. As a 

result, the algorithm will choose a time step that is lower than the shortest critical time-step. To increase 

the time steps and speed up the calculation, the fastest process needs to be slowed down. The fast process 

in the model is by far, the speed of propagated, elastic waves through a known medium. By increasing 

the inertial mass of a near-static system artificially, like geological deformations, the forces of inertia 

remain negligible (Cundall, 1989). The time for elastic waves to pass through the medium will therefore 

increase, hence, increasing the time steps. 

 

The PARA(O)VOZ algorithm allows for large scale deformation simulations thanks to the automatic 

correction of the components of the stress tensor after rotation of the stress axes. Also the automatic 

procedure for remeshing the grid whenever it gets too distorted, helps in performing large-scale 

numerical calculations. This remeshing uses a critical angle that cannot be lower than 10o when using 

the double triangular grids that give a better precision than a single grid. In addition, numerical diffusion 

due to remeshing is limited due to the use of an interpolation procedure by passive markers, developed 

by Yamato (2006).  

 

After the theses of Le Pourhiet (2004) and Yamato (2006) and publications that describe the code in 

full detail (Burov et al., 2001; Burov and Guillou-Frottier, 2005; Burov and Poliakov, 2001).
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Introduction  

 

This supplementary material provides background information about the modelling procedure including 

a description of the code, model parameters, setup and a full list of performed experiments. In addition, 

figures showing the results of the complementary models that test the sensitivity of the model to the 

variations of such parameters as grid cell size, initial temperature at Moho interface, plume radius and 

temperature, and geometries of lithospheric mantle are also included. Lastly, viscosity, temperature and 

strain rate plots are added to accompany Fig. 2 of the main text, highlighting the evolution of these 

parameters over time. 

 

Supplementary material 2.1. 

 

Numerical methods 

 

1.1. Governing equations. 

The 2D version of thermo-mechanical coupled numerical code I3ELVIS (Gerya, 2010; Gerya 

and Yuen, 2007) is used to solve momentum, continuity and heat conservation equations in the Eulerian 

frame. The physical properties are transported by Lagrangian markers that move according to the 

velocity field interpolated from the fixed grid. The multitudinous markers are initially distributed on a 

fine regular marker mesh with a small (≤1/2 of marker grid distance) random displacement (see Gerya 

and Yuen (2007) for more detail). 

The momentum equations are solved in the form of Stokes flow approximation: 

𝜕𝜎𝑥𝑥
′

𝜕𝑥
+

𝜕𝜎𝑥𝑦
′

𝜕𝑦
=

𝜕𝑃

𝜕𝑥
, 

𝜕𝜎𝑦𝑥
′

𝜕𝑥
+

𝜕𝜎𝑦𝑦
′

𝜕𝑦
=

𝜕𝑃

𝜕𝑦
− 𝑔𝜌,   (1) 

where 𝜎𝑖𝑗
′  are the components of the viscous deviatoric stress tensor, 𝜌 is the density (supplementary 

table 2.1) dependent on rock composition, temperature (𝑇) and pressure (𝑃), and 𝑔 is the acceleration 

due to gravity. 

Conservation of mass is approximated by the continuity equation, as follows: 

𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
= 0,     (2) 

where 𝑉𝑥 and 𝑉𝑦 are the components of velocity vector. 
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The components of the deviatoric stress tensor are calculated using the viscous constitutive 

relationship between stress and strain rate for a compressible fluid: 

𝜎𝑖𝑗
′ = 2𝜂𝜀𝑖̇𝑗,      (3) 

where 𝜀𝑖̇𝑗 are the components of strain rate tensor: 

𝜀𝑖̇𝑗 = 1
2⁄ (

𝜕𝑉𝑖

𝜕𝑥𝑗
+

𝜕𝑉𝑗

𝜕𝑥𝑖
).   (4) 

The model uses non-Newtonian visco-plastic rheologies where the viscosity for dislocation 

creep is defined, as follow [Ranalli, 1995]: 

𝜂 = 1
2⁄ (𝐴𝐷𝑒𝑥𝑝 (

𝐸+𝑃𝑉

𝑅𝑇
))

1

𝑛
𝜀𝐼̇𝐼

1−𝑛

𝑛 ,  (5) 

where 𝑇 is temperature, 𝜀𝐼̇𝐼 = √1 2⁄ 𝜀𝑖̇𝑗𝜀𝑖̇𝑗 is the second invariant of the strain rate tensor and 𝐴𝐷,𝐸,𝑉, 

𝑛 and 𝑅 are the material constant, the activation energy, the activation volume, the stress exponent and 

the gas constant respectively (supplementary table 1). 

Plasticity is implemented using the Drucker-Prager yield criterion (Ranalli, 1995): 

𝜎𝑦𝑖𝑒𝑙𝑑 = 𝐶 + 𝑃𝑠𝑖𝑛(𝜑),    (6) 

where 𝐶 and 𝜑 the residual rock strength and the internal frictional angle respectively that depend on 

the total plastic strain: 

𝐶 = 𝐶0, 𝜀 < 𝜀0, 

𝐶 = 𝐶1, 𝜀 > 𝜀1, 

𝐶 = 𝐶0 + (𝐶1 − 𝐶0)
𝜀−𝜀0

𝜀1−𝜀0
, 𝜀0 < 𝜀 < 𝜀1, (7) 

sin (𝜑) = 𝑏0, 𝜀 < 𝜀0, 

sin (𝜑) = 𝑏1, 𝜀 > 𝜀1, 

sin (𝜑) = 𝑏0 + (𝑏1 − 𝑏0)
𝜀−𝜀0

𝜀1−𝜀0
, 𝜀0 < 𝜀 < 𝜀1, (8) 

where 𝜀 is the second invariant of plastic strain and 𝐶0, 𝐶1, 𝑏0, 𝑏1, 𝜀0 and 𝜀1 are plastic strain softening 

parameters (supplementary table 1). 

The mechanical equations are coupled with heat conservation equations: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
) = −

𝜕𝑞𝑥

𝜕𝑥
−

𝜕𝑞𝑦

𝜕𝑦
+ 𝐻𝑟 + 𝐻𝑎 + 𝐻𝑠, 
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𝑞𝑥 = −𝑘
𝜕𝑇

𝜕𝑥
,     (7) 

𝑞𝑦 = −𝑘
𝜕𝑇

𝜕𝑦
, 

where 𝐶𝑝 is the heat capacity; 𝑘 is the thermal conductivity, 𝐻𝑟 is the radiogenic heat production and 

𝐻𝑎 and 𝐻𝑠 are the contributions due to isothermal (de)compression (i.e., adiabatic heating/cooling) and 

the shear heating, respectively. 

Partial melting is introduced using the most common parameterization of hydrous mantle 

melting processes. Melt is assumed to be transported together with the mineral matrix. Thermo-

mechanical effects of melt percolation through the matrix are neglected. The effect of latent heating is 

included implicitly by increasing the effective heat capacity (𝐶𝑃𝑒𝑓𝑓) and thermal expansion (𝛼𝑒𝑓𝑓) of 

the melting/crystallizing rocks: 

     𝐶𝑃𝑒𝑓𝑓 = 𝐶𝑃 + 𝐻𝐿 (
𝜕𝑀

𝜕𝑇
)

𝑃=𝑐𝑜𝑛𝑠𝑡
,  (8) 

     𝛼𝑒𝑓𝑓 = 𝛼 + 𝜌
𝐻𝐿

𝑇
𝐻𝐿 (

𝜕𝑀

𝜕𝑇
)

𝑇=𝑐𝑜𝑛𝑠𝑡
  (9) 

where 𝐻𝐿 is the latent heat of melting of rock (supplementary table 1) and 𝑀 is volumetric degree of 

melting. 

Mineralogical phase changes have been taken into account by thermodynamic solution for 

density,  =  𝑓(𝑃, 𝑇)  obtained from optimization of Gibbs free energy for a typical mineralogical 

composition of the mantle, plume and lithosphere material (Connolly, 2005). For crustal rocks a simple 

Boussinesq approximation has been used since phase transformations in these rocks are of minor 

importance for the geodynamic settings explored here. 

Full details of used here method, allowing for its reproduction, are provided in Gerya [2010]. 

 

1.2. 2D model design: Spatial dimensions and resolution 

The regular rectangular model box used in this study consists of 297 × 133 nodes that 

corresponds to dimensions of 1500 × 635 km and offers spatial resolution of ca. 5 × 5 km per grid cell 

(supplementary Fig. 1.1). At each time step, the code advects about five million Lagrangian markers 

and solves a system of algebraic equations that comprises more than one million degree of freedom. The 

total model time of experiments varies between 5 and 25 Myr, representing 10,000 time steps in average. 

Simulations were run on a SGI shared (NUMA) fat-node cluster with 2.8 Ghz Intel Xeon CPU cores. 

We have performed numerical resolution test for the “best-fit” model 7 to assess the robustness 

of our results. The results presented on supplementary Fig. 4.1 (model 28) show that a notable increase 



From continental rifting to conjugate margins  

 

170 
 

in the resolution (up to 2.5 km per grid cell) does not change considerably the main features of the 

system evolution - compare “high-resolution” experiment 28 (supplementary Fig. 4.1b) with “normal-

resolution” case of the model 7 (supplementary Fig. 4.1a). We conclude that a development of multi-

branch rift system is a robust model feature appearing independently of the size of the grid cell. 

Therefore, the grid resolution of 5 km adopted in presented experiments is optimal and its further 

increasing does not change significantly our principal findings. 

The free surface topography is reproduced using the ‘sticky air’ technique enhanced by the 

introduction of a high-density marker distribution in the upper part of the model domain. The viscosity 

of this 30 km-thick ‘sticky air’ layer added on the top of the upper crust is 1018 Pa s and the density is 1 

kg/m3, according to previously derived optimal parameters. 

Further information on model structure, initial temperature distribution and boundary conditions 

can be found in the main text of the manuscript. 

 

Supplementary figure 1.1. Numerical model setup. Three-layered lithosphere with a weak crustal 

rheology on the right side of the box and a strong crustal rheology on the left side of the box. The mantle 

anomaly has a 200 kilometer radius. Extension velocities (Vext) are 5 mm/yr or 10 mm/yr. The Moho 

temperature is 600 oC or 500 oC. 
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Supplementary material 2.2.  

Supplementary table 2.1. Rheological and material properties. 
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 Rheological and material property parameters, where  is reference density (at  = 0.1 MPa and 

 = 298 K),  is activation energy,  is power law exponent,  is material constant,  is 

activation volume,
 

 is cohesion,  is friction angle,  is strain, ,  are maximal and 

minimal cohesion (linear softening law), ,  are maximal and minimal sines of frictional angle 

(linear softening law), ,  are minimal and maximal strains (linear softening law),  is thermal 

conductivity,  is radiogenic heat production,  is the latent heat of melting of rock. 

*1 – Turcotte and Schubert (2002); 2 – Bittner and Schmeling (1995); 3 – Ranalli (1995); 4 – Kohlstedt 

et al. (1995); 5 – (Burov, 2011); 6 – Clauser et al. (1995). 

**Mantle densities, thermal expansion, adiabatic compressibility, and heat capacity are computed as 

function of pressure and temperature in accord with a thermodynamic petrology model Perple_X by 

Connolly (2005). For the crustal rocks we used simple Boussinesq approximation

, where  = 3×10-5 K-1 is thermal expansion coefficient,  = 

1×10-3 Mpa-1 is adiabatic compressibility
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  Variable Parameters   Results 

Exp. Nr. Location plume Moho Temp ( C) Ext. rate (mm/yr) Break-up mode 

1 0 500 10 structural inherited 

2 100 500 10 structural inherited 

3 200 500 10 structural inherited 

4 250 500 10 structural inherited 

5 300 500 10 structural inherited 

6 350 500 10 two branches (left first) 

7 375 500 10 two branches (right first) 

8 400 500 10 plume-centred 

9 450 500 10 plume-centred 

10 0 600 10 structural inherited 

11 100 600 10 structural inherited 

12 200 600 10 structural inherited 

13 250 600 10 structural inherited 

14 300 600 10 two branches 

15 350 600 10 plume-centred 

16 375 600 10 plume-centred 

17 400 600 10 plume-centred 

18 450 600 10 plume-centred 

19 0 500 5 structural inherited 

20 100 500 5 structural inherited 

21 200 500 5 structural inherited 

22 250 500 5 structural inherited 

23 300 500 5 structural inherited 

24 350 500 5 structural inherited 

25 375 500 5 structural inherited 

26 400 500 5 structural inherited 

27 450 500 5 structural inherited 

`Supplementary table 3.1. Key variable parameters and break-up modes of main model series 
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Supplementary table 3.2. Key variable parameters and break-up modes of supplementary model 

series 
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Supplementary material 2.4. 

 

 

Supplementary figure 4.1. Our “best fit” experiment of the main model series (model 7 (a); 5 km per grid 

cell) is compared with complementary models 28 (b) and 29 (c) with a higher resolution grid (2.5 km per 

grid cell). Model 29 has a non-linear crustal geotherm that takes into account radiogenic heat production 

(supplementary table 2.1). Independent of the grid cell size and the type of crustal geotherm all three models 

show a similar system evolution resulting in ‘two-branch’ break-up mode. 
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Supplementary figure 4.2. Graph showing the results of the 

complementary models with a warmer Moho temperature of 650 oC 

and extension rate of 10 mm/yr (models 30-36). The results are very 

similar to that of the models 10-18 (Fig. 3b, main text) with the same 

far-field extension rate and a lower Moho temperature (600 oC). The 

critical distance between the plume location and the lithosphere 

inhomogeneity for which a two-branch system develops is again 

around 300 km (model 34). Model 30 has a shift of 100 km towards 

the weak segment and in this case, the system expectedly evolves 

according to “plume-centred” break-up mode, despite close distance 

between mantle plume and pre-defined zone of rheological contact. 
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Supplementary figure 4.3. Complementary models 37 (a) and 38 (b) testing the impact of the size of the 

mantle anomaly. A slightly bigger plume radius (250 km instead of 200 km used in the main model series) 

expectedly leads to more profound penetration of hot plume material into lithosphere thus favoring “plume-

induced” break-up. In contrast, further increasing the mantle plume’s size (300 km-radius) results in long-

distance lateral spreading of plume material at the base of the lithosphere leading to “structural inherited” 

break-up. 
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Supplementary figure 4.4. Complementary models 39 – 42 (a-d) with relatively cold mantle anomaly (1900 

oC instead of 2000 oC used in the main model series) at several locations below the stronger lithospheric 

segment. In all models, the break-up mode is “structural inherited”. Only in model 42, continental break-up 

occurs in a quasi-passive regime without direct implication of the mantle anomaly due to lithospheric tinning 

and associated decompressional melting. Plume material arrives at the break-up centre only at a later stage 

when oceanic spreading has already been established. Similar system behavior is presented in the models 

by Lavecchia et al. [2017]. In contrast, when the plume is located closer to zone of “structural inherited” 

deformation (shift of 100 and 200 km; models 39 and 40, respectively), break-up occurs in the “plume-

induced” way, typical for our study. Model 41 demonstrate intermediate behavior: “structural inherited” 

lithospheric thinning starts in “passive” regime (i.e. without direct implication of the mantle plume), but 

final break-up stage is achieved in the presence of the plume material. 
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Supplementary figure 4.5. Complementary models with more complex initial geometries: lithospheric 

thickness within the “stronger” segment is 150 km whereas it is only 100 km in the “weaker” one. The 

contact between the two segments is either sharp (or vertical, models 43-45 (a-c)) or gradual (with a slope, 

model 46 (d)). All models result in “structural inherited” break-up regardless of the plume position or the 

type of transitional zone. 
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Supplementary material 2.5.  

Supplementary figure 5.1. The images display the viscosity, temperature and strain plots of the experiments 

shown in Fig. 2: a) model 3; b) model 6; c) model 7; d) model 8. See “Experimental results” of the main 

text for more details. 
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Polar research on the equator: tracking India’s escape from Antarctica by ship 

GPS location: 0o 000,000’ S; 81o 000,000’ E 

By Anouk Beniest 

Published as blogpost on: www.travellinggeology.com 

 

A warm, blue ocean stretches as far as the eye can see in all directions. The water is over 4000 meters deep, 

too deep for swimming. The weather is calm now, even for monsoon times, which is a good thing because 

I can adapt easily to the ocean’s motions. I am standing on the Monkey Island of a German research vessel, 

Sonne. The vessel left from the harbour of Colombo, Sri Lanka, and traces the 81o E longitude southwards. 

The empty quarter of the Indian Ocean lies right in front of me. The southern-most point of this trip is 11° 

30´ S. The cruise will take me back and forth between the northern and southern hemispheres several times. 

On the other side of the ocean lies Antarctica that was once connected to India and Sri Lanka. The aim of 

the cruise is to understand more about the break-up history of Antarctica and so we trace back how India 

fled from Antarctica by gathering all types of geophysical data. As soon as we pass the nautical highway in 

front of Colombo deployment of the first equipment begins. The first acquisition instruments that need to 

be put into place are the magnetometer and the hydro-acoustic equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photo 1. Deploying the magnetometer. A magnetometer measures the intensity of the magnetic particles in 

the rocks. Whenever there is a change in intensity, we have found an anomaly. There is a variety of reasons 

for magnetic anomalies to exist. They could be due to crustal features such as faults, or as a result of a 

change in chemical composition, for example an elevated amount of magnetite. Here, we are interested in 

the magnetic minerals in the oceanic crust that have captured polarity changes of the Earth’s magnetic 

field. (Photo by Konrad Behnke, 2017) 
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While the magnetometer is recording and the hydro acoustic equipment produces high-frequency beeps, the 

ship is heading further south. We reach the equator and the weather is about to change. I am standing again 

on the Monkey Island, the highest deck on the ship where scientists are allowed to come. Dark clouds are 

rolling in and the wind is blowing so strong that I have the impression my eyelashes are blowing away. 

Despite the dark sky, the ocean still has its dark blue colour and suddenly a group of spinner dolphins turns 

up out of nowhere. There at least 30 of them as they jump out of the water, doing little tricks.  

 

Photo 2. Spinner dolphins speeding our way. There are three marine mammal observers on board. During 

day-time they watch for whales, dolphins, turtles and other wildlife. Once the airguns are working for 

seismic data acquisition, the observers have to watch that no marine mammal comes to close to the vessel 

as it might damage their hearing and the orientation. Once a marine mammal is observed, a shutdown of 

the airguns is being requested by the observers until the animals are gone. (Photo by Marcus Bridge, 

2017) 

Clouds are covering the sky now and the waves have reached heights of over 5 meters. When on deck, the 

waves sometimes reach above me, which is very impressing. In the eating room the salt and pepper has been 

removed from the table as they wouldn’t stand straight anymore. In the lab everything rolls from left and 

right and front to back. It is time to learn some knots and secure all the equipment. The storm remains for a 

couple of days but there is no time to lose and so I prepare my first Ocean Bottom Seismometer (OBS) 

station while the ship is dancing with the waves. While I am testing my balancing skills I somehow manage 

to attach the different OBS equipment items to the brightly coloured floating devices. From time to time a 

wave floods the deck, making the whole scene quiet dynamic. My fellow scientist colleagues prepare the 

streamer and the airguns. The OBS stations and streamer will be deployed as soon as the longest magnetic 

profile is finished.  
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Photo 3. Preparing the OBS stations on deck. Releaser, flash light, radio beacon, pressure tube, hydrophone 

and geophone are all attached to the floating device that is again attached to an anchor, before deployment. 

(Photo by Mareen Lösing, 2017) 

 

When the first OBS station, #301, is being assigned to the ocean bottom, all hands are on deck. Everybody 

is curious about the deployment procedure. To me, it is completely alien to throw heavily coloured 

equipment overboard and hope that they will surface again, but apparently this works. For two days and two 

nights I work my shifts to deploy all the stations. In the early morning of the second night, the last station 

is thrown into ocean. We watch a beautiful sunrise and treat ourselves on a well-earned cold drink. Then I 

go back to my cabin and dream about oceans full of floating OBS stations.  
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Photo 4. An OBS system consists of many parts. First, a recording system is needed inside a pressure tube. 

For this cruise, it needs to hold pressures up to 4500 m depth, the maximum depth we expect for this cruise. 

The recorder records hydrostatic pressure changes with a hydrophone and records refracted and reflected 

seismic waves through a geophone or seismometer. These are all attached to a floating device that should 

bring the whole system back up after the seismic profile has been shot. To bring the system down, the OBS 

is attached to an anchor with a releaser. A releaser is the only connection between the OBS and the anchor 

and replies to high-frequency sounds as sound is the only way to communicate through water. When the 

correct frequency is heard by the releaser, it will let go of the anchor and the OBS makes its way back to 

the surface. (Photo by Tabea Altenbernd, 2017) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Photo 5. Deploying OBS stations. Every 12-15 kilometres an OBS station is thrown overboard. With the 

anchor positioned correctly, they should reach the bottom in little time. It is important that the anchor sinks 

well into the sediments, because only then will the geophone record the refracted and reflected waves 

produced by the airguns. (Photo by Menaka Goonewardena, 2017) 
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 The morning shift deploys the airguns into the water. It is quite a violent business as they are very heavy 

and bump against the back of the boat. The first seismic profile runs north-south and starts on the platform 

with only 400 meters water depth, close to the continent. It crosses the shelf to the deep ocean with roughly 

4500 meters water depth. The shelf is the perfect area for marine wildlife and so the whale watchers have 

an intensive look-out to make sure no sea mammals are in the vicinity of the ship before the soft-start of the 

airguns begins. The shelf is also the perfect place to investigate how India broke apart from Antarctica as it 

records the whole break-up to spreading history.  

 

Photo 6. Deployment of the airguns. The seismic installation has 8 airguns, 4 on each side. They are 

programmed to release high air pressure every minute. Air-pressure will rise to 200 bar before discharging. 

This produces a seismic signal that the geophones and hydrophones can record. The orange balloons are 

connected to the airguns so they remain close to the surface and to show where they are located in the 

water. (Photo by Konrad Behnke, 2017) 

 

The scientific team counts 26 people and during the data acquisition there are 4 hour watches day and night. 

Per watch, three people take care of quality control and airgun performance. In the meantime, we also 

prepare OBS recovery and the next seismic profile. But it’s not only work on the ship. There is some free 

time on board. For the sportive ones there is a gym, a table tennis table and a football table. There is also a 

library and a large television screen to watch movies. Even a sauna is installed complete with relaxing chairs 

on the sun deck. Every now and then there are events such as seminars given by the scientists, poker 

evenings, movie nights and birthday parties. Everybody is invited, both crew and scientists.  
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Photo 7. Football table competition during OBS deployment. It takes roughly one hour between the OBS 

drop-off locations and so we try the football table to kill some time (Photo by Konrad Behnke, 2017) 

 

With five knots per hour, the vessel sails along the profile. At the end, it makes a turn and the recovery of 

the OBS stations starts. The whole OBS team is restless. Will the releaser pick up the signal and let go of 

the anchor? We wait for a long time, but then the bridge relieves us from our worries, the radio picked up a 

signal! The OBS station surfaced! The watchman has already spotted the device and the vessel heads 

towards the yellow, floating unit. On the deck the crew-members are ready to rescue the OBS station from 

the water using hooks and ropes. The recovery also continues night and day. My cabin is located on the 

second deck, close to the surface of the sea. I have bull’s eye windows and during the night I can see the 

OBS stations flashing by.  
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Photo 8. OBS recovery. The OBS rises with 0.9 m/s to the surface. With a depth of over 4300 meters, the 

ascent takes roughly 80 minutes. When there are strong currents, heavy waves or bad weather they are not 

so easy to spot. Luckily the OBS station is equipped with a radio beacon and when they reach the surface 

the radio picks up the signal. They also have a flash light so it can be easily spotted at night (Photo by 

Mareen Lösing, 2017) 

 

The recovery is going according to plan. OBS after OBS surfaces and gets safely back on the deck. The 

ocean remains blue and wavy. There is not much to disturb that few. Every now and then a lonely 

fisherman’s boat passes the ship, but other than it is quiet empty on this side of the world. The weeks pass 

by quickly. In total, we measured two seismic lines with OBS’s and streamer. We acquire 10 magnetic 

profiles and cover whatever we have sailed with bathymetry. Processing the data would be the logical next 

step, but most of this will be done back in our labs. The RV Sonne is used for many different research 

purposes and so the boat is not permanently equipped with OBS stations or a streamer. Packing all the 

equipment in containers, so the next cruise starts with a clean ship, is our last task before we get back to 

harbour of Colombo.  
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Photo 9. A fisherman boat on the Indian Ocean. Men on boats like these are often at sea for over a month. 

They only come back ashore when they caught some fish. Sometimes these boats have some places to store 

fish, but often this is lacking. There is not much luxury on these kinds of boat. (Photo by Marc Hiller, 2017) 

 

The weeks pass by quickly. We shoot two seismic lines with OBS’s and streamer. We acquire 8 magnetic 

profiles and covered the whole sailed ground with bathymetry. What remains is processing the data and 

packing all the equipment in containers, so the next cruise starts with a clean ship. The main processing will 

be done back in Germany.  
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Photo 10. The science party of the INGON cruise Leg 258b. We left Colombo Harbour with the RV Sonne 

on the 12th of July 2017. The aim of the cruise was to gather more subsurface data along the Sri Lankan 

continental margin. Once, India and Sri Lanka were attached to Antarctica. The break-up to spreading 

history is recorded on the margins of the continent and in the oceanic crust. With the magnetic data acquired 

during this cruise, we investigate the magnetic pattern and thus the age of the oceanic crust and the timing 

of the spreading history. The OBS stations record both reflected and refracted waves, giving inside in the 

crustal structure of the margin. Do the margins contain volcanic material? Where does the continental crust 

change to oceanic crust? The hydro-acoustic data provided information on the ocean floor, which in this 

case was quite flat except for one deep-sea channel. On the 17th of August 2017 the vessel docked again in 

the harbour of Colombo. (Photo by Wolfgang Borchert, 2017) 
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…For knowing yourself gives you the wings 

to fly unshackled of your chains. 

~ Bilal Haq, Scientist 


