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Abstract

Finding a theory of quantum gravity which describes in a consistent way the quantum
properties of matter and spacetime geometry is one of the greatest challenges of modern
theoretical physics. However after several decades of research it still looks like a wild territory
and a lot of conceptual and technical issues need to be resolved. A glimpse of the properties
such a theory should have can be granted by the study of simplified toy models that allow
for exact computations.

In this thesis we will take this approach from two different points of view.
The first part deals with two-dimensional quantum gravity. In two dimensions quan-

tum gravity is much better understood and many computations can be carried out exactly.
Whereas two-dimensional quantum gravity coupled to conformal matter has been widely
studied and is now well understood, much less was known until recently about what hap-
pens when matter is non-conformal. This is the issue we will focus on in this part of the
thesis. First we compute the gravitational action in two cases: a massive scalar field on a
Riemann surface with boundaries and a massive Majorana fermion on a manifold without
boundary. The last case corresponds to a CFT perturbed by a conformal perturbation and
is usually tackled through the DDK ansatz. However as we will see the results do not seem
to match. Finally we give a minisuperspace computation of the spectrum of the Mabuchi
action, a functional that has been shown to appear in the gravitational action for a massive
scalar field.

In the second part we focus on black hole thermal behaviour which provides a lot of
insight of how a theory of quantum gravity should look like. In the context of string theory
the AdS/CFT correspondence provides powerful tools for understanding the microscopic
origin of black holes thermodynamics. Here we will construct a quantum mechanical toy
model based on holographic principles to study the dynamics of quantum black holes.
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Chapter 1

Introduction

1.1 Why quantum gravity?

The beginning of the twentieth century has seen the development of two major theories that
have completely changed our understanding of Nature: quantum mechanics (and quantum
field theory) and general relativity. The first one deals with the fundamental interactions
that occur between particles at very short distances: the electromagnetic, weak and strong
interactions. On the other hand general relativity describes the large scale structure of the
Universe by relating gravitation to the geometry of spacetime. Both of them are very well
tested experimentally. Their last successes being respectively the discovery in 2012 by Atlas
and CMS detectors at the LHC of the Brout–Englert–Higgs boson predicted in 1964 and
the observation of gravitational waves at Ligo and Virgo in 2016.

However these two theories seem to be inconsistent with each other. Indeed their math-
ematical frameworks are very different and do not look compatible. While general relativity
is a classical theory where spacetime is dynamical, quantum field theory needs a fixed space-
time background and, in particular, a fixed time direction. But as all particles interact
gravitationally one expects to be able to describe all interactions in a coherent framework.
Moreover, general relativity seems to break down at small distances around the Planck scale.
Indeed it predicts singularities in spacetime (Big-Bang, black holes) where the curvature be-
comes infinite and the theory does not make sense. Furthermore semiclassical computations
coupling classical general relativity to a quantum field theory show inconsistencies, the most
important being Hawking radiation of black holes which questions the unitarity of quantum
mechanics, one of its fundamental postulates. As a consequence, the search for a theory
of quantum gravity that would unify general relativity and quantum mechanics is a major
challenge for theoretical physics of the twenty-first century.

But after almost one century of research quantum gravity remains elusive as there is
no such theory related to experiments for the moment. The fact is that one rapidly runs
into several issues [1–4]. To begin with, a direct quantization of the Einstein–Hilbert action
is not possible as it is perturbatively non-renormalisable: at each order in perturbation
theory new divergences occur and one needs an infinity of counterterms to cancel them.
A first possibility is that there exists a non-gaussian UV fixed-point which would make the
theory non-perturbatively renormalisable (which goes under the name of asymptotic safety).
Another one is that general relativity is only an effective low-energy theory which needs
to be completed (by higher-derivative terms, specific matter, supersymmetry, strings. . . )
to be made UV finite or renormalisable. An even more difficult issue is to formulate a
background independent quantum theory in particular without a specific time. Moreover
it is not even clear what should be the observables of a quantum theory of gravity since
diffeomorphism invariance of general relativity does not enable us to make sense of local
observables. Furthermore an essential postulate of quantum field theory is causality which
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means that fields separated by space-like intervals do not influence each other and then
commute. But if the metric undergoes quantum fluctuations the notions of time-like, null
or space-like separations do not have any meaning anymore. These issues have lead to the
development of several frameworks which tackle diverse problems: string theory [5–7], loop
quantum gravity [8–10], non-commutative geometry [11–13], dynamical triangulations [14,
15], causal sets [16–19], asymptotic safety [20–22], random matrix and tensor models [23–
26]. . .

There is little doubt that the full understanding of our Universe, in particular concerning
the primordial cosmology and black holes, requires a theory of quantum gravity. Another
issue that we may hope to solve with a quantum gravity theory is the cosmological constant
problem. For the moment we cannot explain why the cosmological constant, though non-
zero, is so small, of order 10−52 m−4 while a naive QFT computation would make it at least
fifty orders of magnitude bigger [27]. Quantum gravity might also be a solution to remove
short-distance divergences that are present in most quantum field theories (even those which
are renormalisable but not finite) by introducing a fundamental cut-off at the Planck scale.
There is also hope, in particular in string theory or in non-commutative geometry, that this
new theory might solve some other problems that plague our current Standard Model of
particle physics. First of all the huge number of free parameters (nineteen) in the Standard
Model is not satisfying and we would like to be able to describe the physics with as few
parameters as possible. In particular we expect that a complete theory would predict the
masses of the fundamental particles. This could be achieved by a grand unification theory.
A hint for the existence of such a theory is that the three coupling constants of the standard
model become almost equal at an energy around 1015 GeV and the agreement is even better
with supersymmetry. Other questions that could be answered by grand unification include
the origin of the gauge group SU(3)×SU(2)×U(1), the explanation of the number of families
of fermions or the mechanism gives masses to neutrinos. For the moment a grand unified
theory is still elusive as no beyond-Standard Model physics has been detected so far.

A major difficulty is that the effects of quantum gravity are expected to be important

at energies around the Planck scale (mP =
√

~c
G ∼ 1019 GeV) which is far out of reach of

modern accelerators which probe energies around 10 TeV. Currently there is no experimental
observation that could put us on the right track. Nevertheless our best experimental hopes
for the near future come from cosmology [28] (measures of anisotropies in the CMB, detection
of primordial black hole radiations, analysis of gravitational waves. . . ).

1.2 Two-dimensional quantum gravity

Two directions have been followed in this thesis. The main one is the study of quantum
gravity in two dimensions. Indeed one way to tackle the problem of quantum gravity is to
study lower-dimensional models: as mentioned earlier there is no available experiment for the
moment so it make sense to study a priori akin but simpler systems. One can then hope that
quantum gravity in d < 4 dimensions is not tremendously different from the four-dimensional
one and shares with it some universal properties. This kind of approach has proved very
insightful for Yang–Mills theory. For example in two dimensions one can compute exactly
various UV and IR properties related to anomalies in the Schwinger model [29, 30]. This
model also gives hint of explanation for quark confinement [31]. Two-dimensional quantum
gravity shares several peculiar features with two-dimensional Yang–Mills theory. Both have
much less degrees of freedom than their four-dimensional counterparts: there is no gluon in
two-dimensional Yang–Mills [32] while only the conformal factor (also called the Liouville
mode) can propagate in two-dimensions (cf. chapter 2). Topological effects play an important
role in both theories. Furthermore symmetry groups are often enlarged in two dimensions:
two-dimensional Yang–Mills theory is not only invariant under its local gauge group but
also under area preserving diffeomorphisms [32] while locally the two-dimensional conformal
algebra is enhanced to the Virasoro algebra which is of infinite dimension. Similarly the
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U-duality of the maximal supergravity (N = 16) is given by the affine symmetry E9(9),
while in d ≥ 3 the U-duality is a finite-dimensional Lie group [33].

Following this idea two-dimensional quantum gravity is an interesting toy-model for its
four-dimensional counterpart. Indeed it presents several appealing features: many compu-
tations can be carried out exactly, in particular quantum corrections due to the interaction
between matter and gravity, and it is often renormalisable.

The partition function in two-dimensional quantum gravity is given by the sum of the
contributions of all inequivalent surfaces of a given topology, and then by the sum over
topologies. Combining these two sums is a highly non-trivial problem. Two classes of models
have been developed to tackle this issue. In the discretized approach this sum is replaced by
a sum over all inequivalent triangulations of surfaces. These triangulations can be seen as
ribbon graphs and then be described as the Feynman graphs of a matrix model. This enables
one to transform the complicated functional integral onto a much simpler integral where one
integrates over matrix configurations [34–36]. We will not investigate this strategy in this
thesis (though in chapter 8 we will come back to matrix models for a completely different
reason) and will focus on the other approach, the continuous one. In this approach one treats
quantum gravity as a quantum field theory. For this one needs to deal with all the spurious
degrees of freedom due to the gauge invariance under diffeomorphisms. To do this we will
need to fix a gauge (usually the conformal one), to apply the Faddeev–Popov procedure and
then to sum over the remaining degree of freedom, the Liouville mode in conformal gauge.

Quantum gravity in two dimensions is especially simple when one couples it to conformal
matter only. Polyakov showed that in this case the Wess–Zumino effective action is given
by the Liouville action [37]. This theory is now well defined and understood, in particular
the critical exponents [38, 39], the spectrum [40–44] and certain properties of the correlation
functions [45–47] have been computed. Using a non-Lagrangian description [48–50] the
conformal bootstrap of Liouville theory has demonstrated that it defines a consistent CFT for
any complex central charge (see also [51]). Recently a precise mathematical non-perturbative
definition of Liouville theory has been established [52–54]. Various reviews on this topic are
[49, 55–58].

Despite the fact that four-dimensional gravity is not scale invariant (and even less con-
formal invariant), the coupling of two-dimensional gravity to non-conformal matter has been
mostly ignored in the literature. The case of gravity coupled to a CFT perturbed by pri-
mary operators has been studied through the DDK ansatz [44, 59–61], but this approach
does not fit in the usual framework of two-dimensional gravity in conformal gauge that will
be presented in chapter 4.

Moreover the problem of genuine non-conformal field theories where the perturbation is
not a primary operator (such as the mass term of a scalar field) has been tackled only recently.
When a massive scalar field is coupled to gravity (possibly with non-minimal coupling, and
with a linear term) it was shown that other functionals contribute to the gravitational action
[62–64] and in particular an explicit expression was obtained at first order in a small mass
expansion. The two functionals that appear are the Mabuchi and the Aubin–Yau actions.
They are well-known to mathematicians [65, 66] and appear very naturally in the study of
compact Riemann surfaces. They are also encountered in the quantum hall effect [64, 67–
69]. More recently an exact expression for the gravitational action has been obtained [70].
In this context two-dimensional gravity is reformulated in the Kähler formalism which also
enables one to define rigorously the functional integral [62, 63, 71] and to compute possible
deviations from the KPZ formula for the string susceptibility [71–73].

Finally, two-dimensional quantum gravity is also useful to study quantum gravity intrin-
sically. Indeed string theory, one of the more advanced approach to quantum gravity, can be
formulated, in the worldsheet formulation, as matter coupled to two-dimensional quantum
gravity. Moreover, several approaches including string theory, loop quantum gravity, dy-
namical triangulation, non commutative geometry, asymptotic safety and causal sets have
found evidences that at high energy (around the Planck scale) quantum gravity undergoes
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a dimensional reduction to two dimensions [74, 75].
Our main work was to pursue the study of the gravitational action obtained when cou-

pling massive matter to gravity. As the Mabuchi functional seems to play a major role one
needs understand its physical properties and for that to follow the same program as what
was done for Liouville theory. Our goal was then to compute the spectrum of the Mabuchi
theory. For that we cannot rely on all the apparatus of conformal field theory. We thus
opted for the minisuperspace approximation which enables one to compute the spectrum
and the 2 and 3-point functions of a theory in the semiclassical limit [76, 77]. Doing this
we were lead to study the Mabuchi theory on the cylinder. As it is ill-defined on a genus-1
Riemann surface we had to work with a rescaled version of the action. This problem also
made us think about the generalisation of the results of [63] for the computation of the
gravitational action for a massive scalar field on Riemann surfaces with boundaries [78].

Whether the same functionals will appear in the gravitational action for other matter
fields is still an open question. The remarkable properties of the Mabuchi action described
in chapter 4 make it likely to be the case. To shed some light on this issue we began the
study of a massive free Majorana fermion minimally coupled to quantum gravity which
is the simplest example after the scalar field. Another point of interest of this model is
that the mass term is a conformal deformation of the massless theory. Our goal is then to
compare our results with the DDK ansatz which as mentioned previously suffers from some
inconsistency in this case.

1.3 Other research directions during this PhD

The second direction taken in this thesis uses the framework of string theory. The partic-
ularity of this theory is that it completely unifies all the four interactions, gauge bosons
(including gravitons) and matter appearing as excitations of relativistic extended objects
[5–7]. Gauge interactions are described by the degrees of freedom of the end points of
open strings while gravitons appear in the spectrum of the closed string. All the groups of
grand unification (SU(5), S0(10), E6 . . . ) are subgroups of E8, one of the gauge group that
naturally appear. A very interesting feature of string theory is that it contains all the ingre-
dients of the Standard Model while being UV finite. Moreover it has only one dimensionful
parameter, the string length ls and no dimensionless adjustable parameter.

One way to introduce fermionic matter is to impose supersymmetry on the theory. Su-
perstrings can then live in a ten-dimensional spacetime where some dimensions can be com-
pactified on an appropriate manifold (usually a Calabi–Yau manifold). Moreover it has
been realised by Polchinski that superstring theory not only contains strings but also fun-
damental extended objects of various dimensions called branes. Typical examples are the
D-branes where open strings can end. A fundamental characteristic of D-branes is that
they are non-perturbative objects. There are five different superstring theories: type I, IIA,
IIB, heterotic with SO(32) gauge group and heterotic with E8 × E8 gauge group. Each type
possesses different kinds of D-branes in addition to the fundamental string. The five theories
are related by a network of dualities. In particular some of these dualities like T-duality
relate a strongly coupled theory to a weakly coupled one. This is a very interesting feature
since for the moment string theory is essentially defined perturbatively. The discovery of
these dualities has lead to the realisation that string theory is in fact the low energy limit
of an eleven-dimensional theory called M-theory. Though the dualities and the AdS/CFT
correspondence give some glimpse on M-theory, it remains for the moment elusive.

String theory is thus a fascinating framework which encompasses quantum gravity and
grand unification. Moreover it has lead to a lot of progress in mathematics, for example
it lead to the discovery of the mirror symmetry which describes how topologically different
Calabi–Yau manifolds are related.
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1.3.1 A fermionic matrix model for black holes

One of the main achievement of string theory is the conjecture of the AdS/CFT correspon-
dence or holography [79–82]. This states that a gravitational theory in (d+ 1)-dimensional
AdS space (the bulk) is dual to a conformal field theory without gravity living in a d-
dimensional spacetime (called the boundary). This means that there exists a dictionary
between the observables of the two theories and that correlators can be computed equiv-
alently in one or the other [83]. This offers great opportunity for quantum gravity since
quantum corrections in the bulk may be computed from usual gauge theories in the bound-
ary. However decoding the hologram is highly non-trivial since the boundary gauge the-
ory is always strongly coupled for a bulk gravitational description to exist. Consequently
AdS/CFT has mostly been used in the other direction to provide insights on strongly cou-
pled gauge theories from a classical supergravity theory in the bulk. In this context string
theory is not considered as the fundamental theory but as a theoretical tool which could
provide dual descriptions to interesting systems such as Yang–Mills theory in the IR or at
finite temperature.

We will be interested in one of the most studied gauge/gravity duality proposal which
relates type II string theory in the near-horizon geometry of an AdS black hole to the
maximally supersymmetric N = 4 super Yang–Mills gauge theory. Our goal is to study
some properties of black holes with the help of the gauge theory description.

Black holes are classical objects whose gravitational field is so strong that they are
surrounded by a surface, called the horizon, from which nothing (not even light) can escape.
They have been predicted long ago by general relativity and their existence is supported
by numerous (indirect) astrophysical observations, the latest being the detection of the
gravitational waves emitted by two colliding black holes. The experimental data fit the
theoretical predictions very precisely. Thus observational evidence give very strong support
for the existence of black holes, either stellar-mass ones (due to the gravitational collapse of
a star, like the X-ray binary star Cygnus X-1) or supermassive ones in the centre of galaxies
(like Sagittarius A* in the centre of the Milky Way).

In the 60s and 70s a remarkable link between black holes and thermodynamics has been
unravelled. First there is a striking analogy between the laws of black holes mechanics and
the laws of thermodynamics. Black holes seem to have an entropy proportional to their area
[84]. Then Hawking discovered that when quantum effects are taken into account, black holes
have a temperature and emit a corresponding black body radiation which eventually should
lead to their evaporation [85]. This thermodynamic interpretation leads to several puzzles.
First one can wonder whether black hole entropy does have a statistical interpretation in
which case it should count the microstates of the black holes. What is particularly intriguing
is the fact that the entropy scales as the area of the horizons while in usual quantum
mechanics one expects the number of states to scale as the volume. Microstates counting in
string theory and supergravity has successfully recovered the Bekenstein entropy for black
holes that preserve some amount of supersymmetry [86, 87]. The story is far less understood
for non-supersymmetric black holes in Minkowski space. Second, Hawking radiation is
thermal and leads to the complete evaporation of the black hole. Then information which
has fallen behind the horizon seems to be lost after the vanishing of the black hole. It
looks like this information paradox contradicts the unitarity of quantum mechanics. Since
Hawking’s discovery there has been a large debate among physicists about whether we should
abandon the unitarity of quantum mechanics or whether Hawking computation simply did
not take sufficiently into account the entanglement between the interior and exterior of the
black hole or would break at the Planck scale [88–92]. Though the debate is far from being
closed, the AdS/CFT correspondence sheds some light on the issue. Indeed according to it,
the evolution of black holes could be mapped to the evolution of a gauge theory which is
completely unitary and thus this property should be mirrored in the BH evolution.

The second project of this thesis takes place in this context. Using insights from holog-
raphy we can look at black holes from the dual theory perspective which corresponds to a
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U(N) invariant N × N matrix model and which aims to capture the essential features of
the black hole thermal behaviour. Indeed in the gauge theory we can compactify all spatial
dimensions to get a quantum mechanical model. Moreover since all objects are in the adjoint
representation of U(N) they are represented by matrices. The states of the Hilbert space of
the model are dual to the microstates of the black hole. However even in this zero dimen-
sional version, the quantum mechanical Hilbert space is still infinite-dimensional. In our
project, we replace the Grassmann-even matrices by Grassmann-odd (fermionic) matrices,
which makes the Hilbert space finite-dimensional. This enables us to get exact numerical
results in the sense that we can compute the entire spectrum of the theory. To study the
dynamics of thermalisation of the black hole we numerically compute correlation functions
between states of this dual theory. Unfortunately the algorithmic complexity of the imple-
mentation of Grassmann algebra in a system of many q-bits has prevented us to go beyond
the case of N = 3 while the AdS/CFT correspondence can only be trusted for large N .
While some interesting features can already be seen with our results at N = 3, others seem
to require a larger N , at least N = 4, which we have not been able to implement so far. In
this sense, the results presented in chapter 8 are to be considered as preliminary.

1.3.2 String field theory

The standard worldsheet formulation of string theory is a first-quantized description. So
many computations could be done only thanks to the power of complex analysis and the
fact that the conformal group is infinite-dimensional in two dimensions (some developments
also benefited from the non-perturbative dualities). However it suffers from limitations that
call for a second-quantized formulation. First the worldsheet formulation of string theory is
intrinsically on-shell as a consequence of the BRST and conformal invariances. There are
some ways to extend it off-shell, but at the price of ambiguities. In any case renormalization
is difficult and can be done only using some specific ad-hoc procedure. Moreover the theory
suffers from infrared divergences [93].

Formulating a second-quantization of string theory has proven very challenging. If a
complete bosonic string field theory has been constructed since the 90’ both for the open
[94] and closed [95, 96] string, such a theory was built only recently for the heterotic and
type II closed superstrings. Indeed the generalisation to superstrings presents three major
difficulties. First it was not known how to deal with the Ramond fields because no kinetic
term could be found (because the propagator is not invertible). This problem has been
circumvented by introducing a new set of free fields that do not interact with the other ones
[97, 98]. Another issue was to deal with the picture changing operators (PCOs) insertions
in the (off-shell) correlation functions and the associated spurious poles. A construction of
the correlation functions with the correct PCO insertions and free of spurious poles was
proposed thanks to vertical integration [99]. Finally one has to take care of the ultraviolet
divergences that occur when expressing the correlation functions as a sum over Feynman
diagrams.

After solving these problems one gets a quantum field theory for strings and one has
to show that it possesses the standard nice properties of a QFT. It has been shown that
the action for the string field is real [100]. A iε prescription was found [101, 102]. The
amplitudes obey the Cutkowski rules and together with Ward identities this leads to a
proof of unitarity of string field theory [103, 104]. Then several applications have been
made, including the computations of the vacuum shift, mass renormalization [105] and soft
theorems [106]. Recent important developments in the explicit construction of the action
have been made in [107, 108]. Note that there are other approaches to superstring field
theory which offer another perspectives (for example they propose a construction for the
open superstring, with super-Riemann surfaces instead of PCO, etc.) – a selected set of
references is [109–114].

After contributing to a review on superstring field theory together with Ashoke Sen and
collaborators, a project has begun with Harold Erbin, Roji Pius and Ashoke Sen to prove
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the crossing symmetry of string field theory. This would close the circle in the history of
string theory which started with the study Veneziano amplitude (at a time when one did
not know it involves strings!) which arose interest for being manifestly crossing symmetric.
In quantum field theory proofs of crossing symmetry have been established for 4 and 5-point
amplitudes using analytical properties of the S-matrix [115–117]. Generalising these proofs
to string field theory is in fact highly non-trivial since string field theory has been formulated
directly in term of Feynman diagrams and not in an axiomatic way. The main issue is the
form of the vertices which contain exponentials of the momenta. For these reasons, the
project is still at the initial stage and will not be discussed in this thesis.

1.4 Outline of the thesis

The outline of the thesis is as follows. In part I we present our work on two-dimensional
quantum gravity. Chapter 2 reviews some peculiar properties of two-dimensional gravity at
the classical level. Then chapter 3 presents some mathematical tools on spectral analysis
that we used in the subsequent chapters. Chapter 4 reviews some known points of two-
dimensional quantum gravity particularly in the conformal case. It also presents the Kähler
formalism and the Mabuchi and Aubin–Yau functionals. In chapter 5 we derive the gen-
eralisation of the Mabuchi action for a scalar field on a Riemann surface with boundaries.
In chapter 6 we compute the gravitational action for a two-dimensional massive Majorana
fermion. Chapter 7 proposes a computation of the spectrum of the Mabuchi theory from a
minisuperspace analysis.

Part II focuses on black holes and holography. We review some main thermodynamical
properties of black holes in chapter 8 and introduce the AdS/CFT correspondence. We then
show how this correspondence can be used to build quantum mechanical models for black
holes, in particular in view to study the information paradox. Finally we present a fermionic
matrix model that reproduces some aspects of quantum black holes dynamics in chapter 9.

1.5 Publications

The content of the thesis is based on the following papers:

• Introduction
[118] C. de Lacroix, H. Erbin, S. Kashyap, A. Sen and M. Verma. “Closed Superstring
Field Theory and its Applications”. arXiv: 1703.06410
C. de Lacroix, H. Erbin, S. Kashyap, A. Sen and M. Verma. “Lectures Notes on String
Field Theory”. Work in progress.

• Chapter 2
[119] C. de Lacroix and H. Erbin. “A short note on dynamics and degrees of freedom
in 2d classical gravity”. arXiv: 1612.04097.

• Chapter 5
[78] A. Bilal and C. de Lacroix. “2D gravitational Mabuchi action on Riemann sur-
faces with boundaries”. Submitted to Journal of high energy physics (June 2017),
arXiv: arXiv:1703.10541.

• Chapter 6
A. Bilal, S. Chakrabarti, C. de Lacroix, H. Erbin and V. Lahoche. “Gravitational
action for a massive Majorana fermion in 2d quantum gravity”. Work in progress.

• Chapter 7
[76] C. de Lacroix, H. Erbin and E. Svanes. “Mabuchi spectrum from the minisuper-
space”. Physics Letters B 758 (July. 2016), arXiv: 1511.06150.
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[77] C. de Lacroix, H. Erbin and E. Svanes. “Minisuperspace computation of the
Mabuchi spectrum”. arXiv: 1704.05855.

• Chapter 9
T. Azeyanagi, A. Bilal, C. de Lacroix, and F. Ferrari. “A fermionic matrix model for
black holes”. Work in progress.
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Part I

Quantum gravity in two
dimensions with massive matter
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Chapter 2

Classical two-dimensional
gravity

In the following of this thesis we will study the coupling of massive matter to two-dimensional
quantum gravity. In this chapter we look at the classical behaviour and highlight some
simple, but not always well-known, properties. It is mostly based on [119].

Two-dimensional classical gravity is often ignored since it is deemed to be trivial and
one is more interested in the quantum effects. However the classical theory presents some
peculiarities that need to be kept in mind. In particular one often blames theories for which
the semi-classical limit of the quantized theory does not reproduce the classical behaviour,
but one should recognize that two-dimensional gravity is such a theory. The most obvious
sign of this is that renormalization introduces a cosmological constant even if it is forbidden
at the classical level when the matter is conformal.

After a brief review of some general aspects of two-dimensional gravity in section 2.1, we
will discuss in this chapter the degrees of freedom and the dynamics when it is coupled to
conformal and non-conformal matter. In the latter case gravity displays some particularities
that one does not find in higher dimensions – and this is an important point to keep in
mind when comparing two and four dimensions. More specifically we show in section 2.2
that for a wide class of Lagrangians there are less degrees of freedom when the matter is
massive (i.e. when there is no Weyl symmetry). This is a consequence of the invariance of
the equations of motion for the metric under the Weyl symmetry, even if the action itself
is not invariant. Then in section 2.3 we discuss the fact that unitary matter coupled to
gravity does not generically admit dynamics, using a set of scalar fields with an arbitrary
(metric-independent) potential as an example. At best only a trivial solution is possible
while in some cases there is no solution at all (in similarity with the well-known example of
pure gravity with cosmological constant). These conclusions can be easily derived through
general formalisms [120, 121] but it is insightful to consider the case of d = 2 explicitly.

2.1 General considerations

Let M be a 2-dimensional space with metric gµν with signature (−+) and whose coordinates
are denoted by xµ. We will denote all the matter fields generically by ψ. The total action
of the matter coupled to 2d gravity is

S[g, ψ] = Scl[g] + Sm[g, ψ] (2.1)

where Scl is the (classical) action for pure gravity. Only the case where the matter action
Sm[g, ψ] is obtained by making covariant the action Sm[η, ψ] by minimal coupling (ηµν being
just the flat metric) is considered. The action is required to satisfy the following criteria:
renormalizability, invariance under diffeomorphisms and no more than first-order derivatives.
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Weyl transformations, which correspond to local rescaling of the metric without changing
the coordinates

gµν = e2σ(xµ)g′
µν , (2.2)

will be a central element of the discussion. In general this transformation is not a symmetry
of the action. Note that it should not be conflated with conformal transformations which are
diffeomorphisms which leave the metric invariant up to a scale factor. The transformation
of the metric is then analogous to (2.2) but the fields transform differently. A theory that
is both diffeomorphism and Weyl invariant is conformally invariant as a diffeomorphism
that leaves the metric invariant up to a scale factor can always be compensated by a Weyl
transformation but the inverse is not necessary true. However for actions that are at most
quadratic in the first derivative, which will be the case of the models we will consider,
conformal invariance implies Weyl invariance [122, 123]. Hence we assume that the action
for conformal matter on curved space is Weyl invariant. We will give more details on
conformal field theory in chapter 4.

The action for pure gravity is given by the sum of two terms

Scl = SEH + Sµ (2.3)

as there are only two invariants which fulfil conditions mentioned above. The first piece SEH

is the Einstein–Hilbert action

SEH[g] =
∫

d2x
√

|g|R = 4πχ, χ = 2 − 2h, (2.4)

which is a topological invariant in two dimensions and equal to the Euler number χ, h being
the genus of the surface. As a consequence it is not dynamical (equivalently the Einstein
tensor is identically zero) and it can be ignored as long as one is not interested in topological
properties (which we are not). This action is also invariant under Weyl transformation (2.2).
The second allowed term is the cosmological constant

Sµ[g] = µ

∫
d2x

√
|g| = µA[g] (2.5)

where A is the area of M associated to the metric g. The cosmological constant µ can be
either positive or negative which corresponds respectively (in our current sign convention
in the normalization of the action) to anti-de Sitter and de Sitter spaces. This action is
not invariant under Weyl transformations (2.2). Its presence has dramatic consequences in
two dimensions, as will be exemplified in sections 2.2 and 2.3. In particular in the case of
pure gravity the equation of motion reduces to µ = 0 and has no solution since µ is a fixed
parameter of the model.

The classical equations of motion are given by variations of the full action (2.1) with
respect to gµν and ψ

δS

δgµν
= 0,

δS

δψ
= 0. (2.6)

Without specifying the action for the matter it is not possible to go further with the second
equation. Nonetheless the first equation is dictating a lot of properties of the system and is
responsible for its subtleties.

The energy–momentum tensors associated to S and Sm are defined by

Tµν = − 4π√
|g|

δS

δgµν
, T (m)

µν = − 4π√
|g|

δSm
δgµν

. (2.7)

Then the metric equation of motion implies that the total energy–momentum tensor (2.7)
is vanishing

Tµν = T (m)
µν + 2πµ gµν = 0. (2.8)
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These three independent equations provide constraints on the metric and matter fields since
they do not contain derivatives of the metric (see section 2.2 for details on the counting of
degrees of freedom). It is convenient to decompose the energy–momentum tensor into its
trace T and its traceless components T̄µν

T̄µν ≡ Tµν − 1
2
T gµν , T ≡ gµνTµν . (2.9)

In terms of these variables the equation of motion (2.8) reads

T = T (m) + 4πµ = 0, T̄µν = T̄ (m)
µν = 0. (2.10)

An obvious advantage is that the cosmological constant has been decoupled from the traceless
tensor, and more generally any matter potential that does not depend on the metric does
not appear in T̄µν .

If Sm[η, ψ] is conformally invariant, then the action Sm[g, ψ] is Weyl invariant. In this
case its energy–momentum tensor (2.7) is traceless T (m) = 0. Then the trace of Tµν reduces
to the cosmological constant and gives the equation of motion µ = 0. This equation has
no solution and solutions for conformally invariant matter coupled to gravity can exist only
in the absence of a cosmological constant. Then the equation of motion without cosmolog-
ical constant is simply T

(m)
µν = 0 which provides two independent equations because it is

symmetric and traceless.

2.2 Degrees of freedom

In this section we provide a counting of the degrees of freedom for a general model linear
in the inverse metric. As we will recall below, in this case the equations of motion for the
metric are Weyl invariant even if the action is not, and as a consequence there are more
constraints without the Weyl symmetry than with it. At the end we comment the general
case.

In two dimensions the naive counting of on-shell degrees of freedom gives −1. This
negative number is due to the fact that there are no equations of motion for the metric, and
as such there are no gauge constraints resulting from them. The counting should be done
without cosmological constant: in this case the action is also Weyl invariant which implies
that all components of the metric can be fixed (two from diffeomorphisms, one from Weyl
invariance) and there is no on-shell degree of freedom.

When matter is present gravity reduces the number of degrees of freedom in 2 dimensions,
as already illustrated above and as we will now discuss for general matter fields ψ with a
total of N on-shell degrees of freedom (before coupling to gravity). The counting may seem
useless in view of the absence of dynamics discussed in 2.3 but it applies to more general
situations (such as non-unitary matter).

Since the precise counting is sensitive to the form of the action we will restrict our
attention to the simpler case when the matter Lagrangian is linear in the inverse metric
(in particular it excludes couplings of the form Rψ) and where there is no additional gauge
invariance.

Sm =
1

2π

∫
d2x

√
|g| L, L = −1

2

(
gµνLµν(ψ) + V (ψ)

)
. (2.11)

The first term is Weyl invariant because the transformation of gµν cancels the one of
√

|g|.
The traceless and trace components of the energy–momentum tensor are

T̄µν = Lµν − 1
2
gµν
(
gαβLαβ

)
, T = −V + 4πµ. (2.12)

It can be seen that the traceless tensor is the energy–momentum tensor corresponding to
the action Sm where all the parameters breaking Weyl invariance have been set to zero.
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As a consequence no dynamical component of the metric appear inside and they give two
constraints on the matter. The trace is also Weyl invariant since it does not contain the
metric and it provides another constraint for the matter. In total the number of on-shell
degrees of freedom is reduced by three, giving N − 3. The N massive scalar fields from
2.3 provides an explicit example. After using the diffeomorphisms, the metric has still one
off-shell degree of freedom which should be fixed by the equations of motion of the scalar
fields since they are not Weyl invariant.

If the matter action is Weyl invariant, then the trace equation is removed and there is
one constraint less, giving N − 2 on-shell degrees of freedom. As in the case of pure gravity
the last off-shell metric component is fixed by a Weyl transformation.

The conclusion is that even if Weyl invariance is not a symmetry of the action it is
a symmetry of the equations of motion for gµν . This is similar to the electric-magnetic
duality except that the matter equations of motion are breaking this duality. It might be
surprising to have a system where adding a gauge symmetry increases the number of degrees
of freedom, whereas the usual common lore is that a gauge symmetry describes a redundancy
among these degrees. This behaviour is very peculiar to two-dimensional gravity because
gravity provides constraints together with degrees of freedom. The metric components act
as Lagrange multipliers and the Weyl symmetry removes one of those, which implies that
one less constraint will be imposed.

2.3 Dynamics of unitary matter

The goal of this section is to show that a large class of models of unitary matter coupled
to gravity has no dynamics. It is well-known that the energy–momentum tensor can be
rewritten as a sum of squares for free scalar fields, which implies that each term vanishes
independently. There is a difference between conformal and non-conformal matter since
the cosmological constant and the additional potential may provide a negative term in Tµν .
In fact, using the decomposition (2.10), the equations in both cases can be brought into a
similar form and in some cases the behaviour of systems with a cosmological constant is
even worse.

We will illustrate this using N scalar fields Xi with a potential V (Xi)

Sm = − 1
2π

∫
d2x

√
|g| 1

2
(gµν∂µXi∂νXi + V (Xi)) , i = 1, . . . , N, (2.13)

where the sum over the index i is implicit and some of the Xi may not appear in the
potential. This potential does not contain any constant term which would just correspond
to a shift of the cosmological constant. The equations of motion for the metric and the
matter are

Tµν = 0, −∆Xi +
∂V

∂Xi
= 0 (2.14)

where ∆ is the curved space scalar Laplacian for the metric g

∆ = gµν∇µ∇ν =
1√
|g|
(
∂µ
√

|g|gµν∂ν
)
. (2.15)

Then the trace and the traceless part of the energy–momentum tensor read

T = −V + 4πµ, T̄µν = ∂µXi∂νXi − 1
2
gµν(gαβ∂αXi∂βXi). (2.16)

One can see that T̄µν looks like the energy–momentum tensor of N free scalar fields and one
can use the usual strategy to solve the associated equation. First one uses the diffeomor-
phisms to write the metric in the flat conformal gauge

gµν = e2σηµν . (2.17)
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Writing explicitly the components of T̄µν one arrives at the equation

2(T̄00 ± T̄01) = (∂0Xi ± ∂1Xi)2 = 0. (2.18)

Since this is a sum of squares the only solution is the one where all terms vanish

(∂0 ± ∂1)Xi = 0 =⇒ ∂µXi = 0 =⇒ Xi = X0
i = cst. (2.19)

In the conformal gauge the matter equation (2.14) and the trace equation give the following
constraints on the values of X i

0

∂V

∂Xi
(X0

i ) = 0, V (X0
i ) = 4πµ. (2.20)

It can be noted that no equation allows to fix the value of σ.
The previous computation shows that unitary matter coupled to 2d gravity does not have

any dynamics since the solutions of the equations of motion is given by the trivial solution
Xi = cst (with some constraints), even in the presence of interactions (if the potential does
not contain the metric). The constraints provided by the vanishing of the trace are too
strong and kill all the dynamics (this is not the case for matter without gravity, whether
the backgroud is curved or not). Note that this argument does not apply to the Xµ fields
of bosonic string theory since X0 is a timelike boson.

Finally in order to give a specific example and to stress the difference between conformal
and non-conformal matter, we consider free massive scalar fields

V (Xi) =
1
2

∑

i

m2
iX

2
i (2.21)

where some of the masses can vanish. Then (2.20) implies X0
i = 0 if mi = 0. Introducing

this into the trace equation gives µ = 0 and there is no solution at all. Hence the behaviour
is worse if one includes a cosmological constant and non-conformal matter fields since the
system of equations is not even consistent, while for conformal matter there is at least
the trivial solution Xi = cst (with the obvious condition that one did not include the
cosmological constant).
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Chapter 3

Spectral theory and heat kernel

In this chapter we present some general results on spectral theory that will be useful for the
computation of gravitational actions on Riemann surfaces. We will restrict ourselves to the
two-dimensional case to get expressions that will be directly available for latter use. We will
focus on operators of Laplace type or which can be derived from covariant derivatives. For
now on, except if otherwise mentioned, we will deal with metrics of euclidean signature. We
will restrict ourselves for the moment to the case where the Riemann surface is compact.
We will see in chapter 5 how some results can be extended to the case of Riemann surfaces
with boundaries.

In section 3.1 we first define the operators of Laplace type and give several examples.
Then we give a brief review on complex calculus and define generalized Laplacians that
can be obtained by the composition of two covariant derivatives. In section 3.2 we define
the Green’s function, the heat kernel and various types of zeta functions associated to an
operator. In section 3.3 we show how to use these spectral functions to compute regularized
versions of determinants of operators. This will be crucial for the rest of the thesis.

3.1 Laplacians on a Riemann surface

3.1.1 Geometric Laplacians and operators of Laplace type

Let M be a two-dimensional Riemann surface with metric g and covariant derivative ∇.
The geometric Laplacian is defined by

∆ = gµν∇µ∇ν . (3.1)

For example let’s look at the cases that will be of interest for us where the metric is
torsion free with an affine connexion which is then equal to the Christoffel symbol

Γρµν =
1
2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) (3.2)

and a spin connexion ω. Then for a scalar field φ, a spinor Ψ and a vector Aµ

∇µφ = ∂µφ (3.3a)

∇µΨ = ∂µΨ +
1
4
ωµabγ

abΨ (3.3b)

∇νA
µ = ∂νA

µ + ΓµνρA
ρ. (3.3c)
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The scalar and spinorial Laplacian are then given by

∆scalar =
1√
g
∂µ

√
ggµν∂ν (3.4a)

∆spinorΨ = gµν
((

∂µ +
1
4
ωµabγ

ab

)
∇νΨ − Γρµν∇ρΨ

)
= gµν∂µ∂νΨ + vµ∂µΨ + wΨ (3.4b)

with

vµ =
1
2
gµνωνabγ

ab − gστΓµστ (3.5a)

w =
1
4
gµν(∂µωνab)γab +

1
16
gµνωµabωνcdγ

abγcd − 1
4
gµνΓρµνωρabγ

ab. (3.5b)

An operator D is said to be of Laplace type if it can be locally expressed as

D = −gµν∂µ∂νΨ + aµ∂µΨ + b. (3.6)

Then there exist a unique connexion derived from a covariant derivative ∇ 1 such that [124]

D = − (gµν∇µ∇ν +Q(x)) Ψ. (3.7)

It is a special case of elliptic operator. The geometric Laplacians (3.4) are then often defined
with a minus sign to put them in this category. This also enables one to work with positive
operators ((3.4a) and (3.4b) are negative operators). In the following, if not otherwise
mentioned, ∆ will denote the geometric Laplacians (3.4).

The spectrum of an operator of Laplace type is discrete and bounded from below and all
its eigenspaces are finite dimensional [125]. We will denote by λn with λ0 ≤ λ1 ≤ . . . ≤ λn ≤
. . . the eigenvalues of D and by ϕn an orthonormal basis of eigenfunctions associated to λn.
They form a complete set of the Hilbert space which means that they obey the completeness
relation ∑

n≥0

ϕn(x)ϕ†
n(y) =

δ(x− y)√
g

. (3.8)

The orthonormality condition reads
∫

d2x
√
gϕ†

m(x)ϕn(x) = δmn. (3.9)

3.1.2 Complex tensor calculus and generalized Laplacians

In chapter 4 we will encounter determinants of some geometric operators that map a rank
n tensor to another one of rank n ± 1. To study them we need to introduce some new
differential operators that are generalized Laplacians on Riemann surfaces [126–128]. We
place ourselves in the flat conformal gauge where the metric is locally given by

ds2 = e2σ(x)δµν dxµdxν . (3.10)

We can go to complex coordinates
{
z = x0 + ix1

z̄ = x0 − ix1
(3.11)

1A covariant derivative is a linear differential operator which maps (k, l) tensors on (k, l + 1) tensor
fields and which obeys Leibniz composition rule, reduces to partial derivative on scalars and commutes
with contractions (for example ∇µT ν

νρ = (∇T ) ν
µ νρ). This is achieved by taking the partial derivative and

adding a linear correction term which compensates for the transformation of the latter and whose coefficients
define the connexion coefficients.
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where
ds2 = e2σ(z,z̄)dzdz̄ (3.12)

so that
gzz̄ = gz̄z =

1
2

e2σ, gzz = gz̄z̄ = 0. (3.13)

The non-zero components of the inverse metric are given by

gzz̄ = gz̄z = 2e−2σ. (3.14)

The change of coordinates (3.11) yields a Jacobian in the integration measure:

dzdz̄ = 2dx0dx1. (3.15)

To stay in the flat conformal gauge under a conformal transformation z → f(z) we need

e2σ′(z′,z̄′) = e2σ(z,z̄) ∂z

∂z′ (3.16)

and then σ has to transform as

2σ′(z′, z̄′) = 2σ(z, z̄) + ln

∣∣∣∣
∂z

∂z′

∣∣∣∣ . (3.17)

A basis of forms and vectors is given by

dz = dx0 + idx1, dz̄ = dx0 − idx1 (3.18a)

∂ =
1
2

(
∂

∂x0
− i

∂

∂x1

)
, ∂̄ =

1
2

(
∂

∂x0
+ i

∂

∂x1

)
. (3.18b)

Vector, forms and tensors can be given either in term of their components in the (x0, x1)
coordinates system or in the (z, z̄) system. For example

V = V 0 ∂

∂x0
+ V 1 ∂

∂x1
= V z∂ + V z̄∂̄ (3.19)

where
V z = V 1 + iV 2, V z̄ = V 1 − iV 2. (3.20)

Indices are raised an lowered by contracting with the metric which amounts to transform
an index z in an index z̄. Indeed

gzz̄ dz̄ ∧ dz
(
V z∂ + V z̄∂̄

)
= gzz̄V

zdz̄ + gzz̄V
z̄dz ≡ Vz̄dz̄ + Vzdz. (3.21)

For example, gzz̄T z̄z = T zz . As the metric is anti-diagonal a tensor with indices z and z̄ can
always be contracted with the metric to be expressed as a tensor with only z indices. We
can then restrict ourselves to tensors with n+ upper z indices and n− lower z indices. Under
an analytic change of coordinates such a tensor transforms as

T → T ′ =
(
∂z′

∂z

)n+
(
∂z

∂z′

)n−

T =
(
∂z

∂z′

)n−−n+

T. (3.22)

Transformation properties of tensors then only depend on the difference n = n− −n+ called
the helicity. We can thus define a space T n of tensors with n indices:

T n =
{
T |T →

(
∂z

∂z′

)n
T

}
. (3.23)

Moreover a tensor T ∈ T n with upper and lower indices

T = T z...zz...z ∂
n+dzn− (3.24)
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can be rewritten, if n ≥ 0, with only lower indices as

T = tz...zdzn (3.25)

and, if n < 0, with only upper indices as

T = tz...z∂n. (3.26)

The covariant derivative of a tensor T = tz...zdzn of helicity n > 0 can also be decomposed
(if n < 0 the argument still holds with dz replaced by ∂):

∇µT dxµ = ∇ztz...zdzn+1 + ∇z̄tz...zdzndz̄. (3.27)

We then define a first covariant derivative ∇n
zT : T n → T n+1 by

∇n
z tz...z ≡ ∇ztz...z = (∂ − nΓzzz) tz...z

= (∂ − 2n ∂σ) tz...z

= (gzz̄)n∂[(gzz̄)ntz...z]. (3.28)

In the same way we define a second covariant derivative ∇z
nT : T n → T n−1 by

∇z
ntz...z ≡ gzz̄∇z̄tz...z = gzz̄∂̄tz...z (3.29)

since the only non-zero Christoffel symbols are Γzzz = 2∂σ and Γz̄z̄z̄ = 2∂̄σ. The scalar
curvature is then given by

R = −2 e−2σ∆σ. (3.30)

A natural scalar product on T n is given by

〈T |S〉n =
∫

d2z
√
g (gzz̄)nT ∗S. (3.31)

Taking the scalar product of T ∈ T n+1 and ∇z
nS with S ∈ T n, one gets the adjoint of ∇z

n:

(∇z
n)† = −∇n−1

z . (3.32)

We can now define two Laplacians on the spaces T n :

∆+
n = −2∇z

n+1∇n
z = −4e−2σ(∂∂̄ − 2n(∂σ)∂̄ − 2n(∂∂̄σ)) (3.33a)

∆−
n = −2∇n−1

z ∇z
n = −4e−2σ(∂∂̄ − 2n(∂σ)∂̄). (3.33b)

In flat space we recover the geometric Laplacian with minus sign −∆ = −4∂∂̄. Moreover
the scalar Laplacian (n = 0) is given by ∆scalar = −∆+

0 = −∆−
0 . These are Laplace type

operator: for ∆−
n , one has

a0 = −4ne−2σ ∂σ, a1 = −4i ne−2σ ∂σ, b = 0 (3.34)

which implies [124]

Q =
n

2
R (3.35)

while for ∆+
n one has

a0 = −4ne−2σ ∂σ, a1 = −4i ne−2σ ∂σ, b = 2n∂∂̄σ (3.36)

which implies
Q = −n

2
R. (3.37)
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Let Sn = T n ⊕ T −n be the space of traceless symmetric tensors of rank n. Covariant
derivatives act on this space as

{
Pn = ∇n

z ⊕ ∇z
−n : Sn → Sn+1

P †
n = −(∇z

n+1 ⊕ ∇−n−1
z ) : Sn+1 → Sn. (3.38)

In particular,

P †
nPn =

1
2

(∆+
n ⊕ ∆−

−n). (3.39)

In the next chapter we will encounter the operator P1 which maps vectors on traceless
symmetric tensors of rank 2.

Under such an infinitesimal change δσ of σ the covariant derivatives (3.28) and (3.29)
transform as

δ∇z
n = −2δσ∇z

n (3.40a)

δ∇n
z = 2nδσ∇n

z − 2n∇n
z δσ. (3.40b)

This induces the transformations of the Laplacians (3.33);

δ∆−
n = 2(n− 1)δσ∆−

n + 4n∇n−1
z δσ∇z

n (3.41a)

δ∆+
n = −2δσ∆+

n − 4n∇z
n+1δσ∇n

z − 2n∆+
n δσ. (3.41b)

3.2 Spectral functions

3.2.1 Green’s functions

The Green’s function of D is the inverse of D in a distributional sense. To define it we have
to distinguish between the case where D has zero-modes (i.e. if some λi are zero) and the
case where it does not. If the 0 eigenvalue is degenerate, we write λ0 ≡ λ0,i = 0 for all of
them, and we renumber the other ones such that the first non-zero eigenvalue is λ1. Then
we index the zero-modes by a new index.

If D does not have zero-modes its Green’s function G is the solution of

DG(x, y) =
δ(x− y)√

g
. (3.42)

The solution of Df(x) = u(x) will then be given by the convolution of u by G:

f(x) =
∫

d2y
√
g G(x, y)u(y). (3.43)

The Green’s function can be expressed in terms of the eigenfunctions and eigenvalues of D
as

G(x, y) =
∑

n≥0

ϕn(x)ϕn(y)†

λn
. (3.44)

If D has zero-modes ϕ0,i (associated to λ0 = 0), it is not invertible and one cannot define
a Green’s function like in (3.42). However we can exclude them from the sum in (3.44) and
define

G̃(x, y) =
∑

n>0

ϕn(x)ϕn(y)
λn

. (3.45)

which satisfies

DG̃(x, y) =
δ(x− y)√

g
−
∑

i

ϕ0,i ϕ
†
0,i. (3.46)
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For example, D = −∆scalar has an unique zero-mode ϕ0 = 1√
A

where A is the area of M.
From now on we will put a tilde on all quantities from which the zero-modes have been

excluded.
It is well-known that the Green’s function of an operator of Laplace type presents a

singularity when y goes to x. In two dimensions this singularity is given by [6, 129]

Gsing = − 1
4π

ln(ℓ(x, y))2 (3.47)

where ℓ(x, y) is the geodesic distance between x and y. Indeed one has

gµν∂µ∂ν ln(ℓ(x, y))2 = 4π
δ(x− y)√

g
. (3.48)

If we let G(x, y) = − 1
4π ln(ℓ(x, y))2 + f(x, y) we see that f satisfies −gµν∂µ∂νf(x, y) +

aµ∂µf(x, y) + bf(x, y) = 0 and is free from singularity. The same argument works of course
for G̃ if we want to exclude the zero-modes. Note that this short-distance singularity remains
the same if we subtract any finite number of modes. Indeed, the singularity is related to the
large n behaviour of the eigenvalues and eigenvectors.

3.2.2 The heat kernel

The heat kernel K(x, y, t) for the operator D is the solution of
(

d
dt

+D

)
K(t, x, y) = 0, K(t, x, y) ∼ δ(x− y)√

g
as t → 0. (3.49)

In terms of the eigenfunctions and eigenvalues of D it can be expressed as

K(t, x, y) =
∑

n≥0

e−λnt ϕn(x)ϕ†
n(y). (3.50)

If D has zero-modes the solution of (3.49) is of course K̃ where the zero-modes have been
excluded from the sum. If not precised, when talking about the heat kernel we will think of
the solution of (3.49) and, if using the form (3.50) we will always suppose that the possible
zero-modes have been excluded.

One defines the integrated heat kernel K(t) by

K(t) =
∫

d2x
√
g trK(t, x, x). (3.51)

It can be expressed as
K(t) =

∑

n≥0

e−λnt = tr e−tD. (3.52)

As is clear from (3.50), for t > 0, K(t, x, y) is given by a converging sum and is finite,
even as x → y. For t → 0 one recovers various divergences, and, in particular

∫ ∞

0

dtK(t, x, y) = G(x, y) (3.53)

exhibits the short distance singularity of the Green’s function which we have shown to
be logarithmic in two dimensions (3.47). In the following we will study the asymptotic
behaviour of K for t going to 0.

The behaviour of K for small t is related to the asymptotics of the eigenvalues λn and
eigenfunctions ϕn for large n, which in turn is related to the short-distance properties of
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the Riemann surface. The small-t asymptotics is given in terms of local expressions of the
curvature and its derivatives. On a compact manifold without boundaries one has [130]

K(t, x, y) ∼ 1
4πt

e−ℓ2(x,y)/4t
∑

k≥0

tkak(x, y). (3.54)

For small t, the exponential forces ℓ2 to be small (of order t) and one can use normal
coordinates around x. The expansion coefficients can then be computed recursively [124,
125, 131, 132]. Of major interest for us will be the expression of the first ones at coinciding
points:

a0(x, x) = Id (3.55)

a1(x, x) =
R(x)

6
−Q (3.56)

whereR is the scalar curvature. For example, for the scalar Laplacian one has the well-known
expansion

Kscalar(t, x, x) =
1

4πt
+

R

24π
+ o(t). (3.57)

For the generalized Laplacians we find from (3.35) and (3.37)

K±
n (t, z, z) =

1
4πt

+
1 ± 3n

24π
R+ o(t). (3.58)

In particular, as the Gauss-Bonnet theorem states that
∫

d2x
√
g R = 4πχ we finally get

K±
n (t) =

A

4πt
+

1 ± 3n
6

χ+ O(t). (3.59)

As we will see in chapter 5 if the manifold has boundaries the small-t expansion of the
heat kernel involves also half integer powers of t.

3.2.3 Zeta function

The zeta function for the operator D is defined by

ζ(s) =
∑

n

1
λsn
. (3.60)

A local version of the zeta function is given by

ζ(s, x, y) =
∑

n

ϕn(x)ϕ†
n(y)

λsn
. (3.61)

It is related to the heat kernel by

ζ(s, x, y) =
1

Γ(s)

∫ +∞

0

dt ts−1K(t, x, y) (3.62)

and

ζ(s) =
1

Γ(s)

∫ +∞

0

dt ts−1K(t). (3.63)

For the following we will need the values of ζ(s) and ζ(s, x, x) for s = 0 and their
behaviour when s goes to 1.

For Re(s) < 1, the problem of convergence of the integral comes from the region where
t is small. Let

ft0(s, x, y) =
∫ t0

0

dt ts−1K(t, x, y), gt0(s, x, y) =
∫ +∞

t0

dt ts−1K(t, x, y) (3.64)
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with t0 > 0. Then gt0 is an analytic function in the complex plane provided that there is no
zero eigenvalue. For small t0 we can use the small t expansion of the heat kernel to study
ft0 :

ft0(s, x, y) =
∫ t0

0

dt ts−1 1
4πt

∞∑

k=0

tkak(x, y) =
1

4π

∞∑

k=0

tk+s−1
0

k + s− 1
ak(x, y). (3.65)

This is an analytic function in s except for s = 1 − k, k ∈ N where it has poles. One has

ζ(s, x, y) =
1

Γ(s)

[
1

4π

∞∑

k=0

tk+s−1
0

k + s− 1
ak(x, y) + gt0 (s, x, y)

]
. (3.66)

For small s,

Γ(s) =
1
s

+ γ + o(s) (3.67)

and

ζ(s, x, y) =
1

1
s + γ + o(s)

[
1

4π
ts−1
0

s− 1
a0(x, y) +

1
4π

ts0
s
a1(x, y)

+
1

4π

∞∑

k=2

tk+s−1
0

k + s− 1
ak(x, y) + gt0(s, x, y)

]

=
1

4π
ts0

1 + γs+ o(s2)
a1(x, y) +

s

1 + γs+ o(s2)
ht0 (s, x, y)

−−−→
s→0

1
4π
a1(x, y) (3.68)

where

ht0(s, x, y) = gt0(s, x, y) +
1

4π
ts−1
0

s− 1
a0(x, y) +

1
4π

∞∑

k=2

tk+s−1
0

k + s− 1
ak(x, y) (3.69)

is an analytic function around s = 0. Then one can define

ζ(0, x, y) =
1

4π
a1(x, y). (3.70)

In particular

ζ(0) =
1

4π

∫
d2x

√
g tr

(
Q(x) − R(x)

6

)
(3.71)

In the same way, we see that ζ(s, x, y) has a pole when s = 1 with residue a0(x,y)
4π . The

residue of ζ(s, x, x) at s = 1 is then Id
4π .

In the presence of zero-modes these results are still valid if we consider the function ζ̃
where the zero-modes have been excluded.

3.3 Determinant regularization

3.3.1 The path integral formalism

As we will see in chapter 4 the computation of gravitational actions involve the computation
of determinants of various operators. Indeed one is interested in the partition function which
is given in the functional integral formalism by

Z[g] =
∫

Dφ e−S[g,φ] (3.72)
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where φ denotes some matter field whose action is given by

S[g, φ] =
∫

d2x
√
g φ†(x)Dφ(x) (3.73)

D being a second order differential operator. For simplicity we will discuss here the case
where φ is a real scalar field. It can be easily generalized for a complex field in which case
we also have to integrate over φ†. The following discussion can also be extended to other
kinds of fields by making the necessary changes in the dimensions.

For S to be dimensionless φ must be also dimensionless (in 2 dimensions). It can be
decomposed on the basis of eigenvalues of D:

φ(x) =
∑

n

anϕn(x). (3.74)

The normalization condition
∫

d2x
√
gϕ†

n(x)ϕn(x) = 1 ((3.9)) implies that the modes ϕn
scales as 1√

A
. This in turn shows that the an have the dimension of a length. In the

functional integral formalism the integral φ is defined by a product on integrals on the real
numbers an. For the measure to be dimensionless we have to introduce some energy scale µ
and define Dφ =

∏
n d(µan). Finally (3.72) becomes

Z[g] =
∫ ∏

n

d(µan) e−
∑

n
λna

†
nan . (3.75)

Note that as D = −gµν∂µ∂ν + . . . the λn have the dimension of an inverse length squared
and the argument of the exponential is dimensionless.

If D does not have zero-modes the gaussian integrals can be computed and we obtain
(formally)

Z[g] =

(∏

n

λn
µ2

)
=
(

det
D

µ2

)− 1
2

. (3.76)

Of course this determinant is infinite and has to be regularized as we will see in the next
two sections.

If D has zero-modes ϕ0,i (3.75) becomes

Z[g] =
∫ N∏

i=1

d(µa0,i)
∫ ∏

n≥0

d(µan) e−
∑

n>0
λna

†
nan . (3.77)

The integration over the zero-modes yields an infinite contribution that can be absorbed in
the normalization and we get

Z[g] = Ω[g]
(

det ′ D

µ2

)− 1
2

. (3.78)

The coefficient Ω is then an infinite constant. However it can depend on the metric (since
the functional measure may depend on it) and one has to study this dependency when
computing the variation of the partition function with the metric.

Determinants arise also as Jacobians when changing variables in the path integral. We
will encounter this situation in chapter 4 when dealing with the sum over the metrics.

3.3.2 Zeta function regularization

In the next chapters we will be interested in the effective action defined by

Seff = − lnZ. (3.79)
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As we have seen previously this is proportional to ln det D
µ2 where the energy scale µ has

been introduced for dimensional reasons. It also ensures that the argument of the logarithm
is dimensionless (since the λn scale as an energy square). We can then write (formally)

Seff ∝ ln det
D

µ2
=
∑

n>0

ln
λn
µ2
. (3.80)

To regularize the infinite sum we can do some analytic continuation and write:

∑

n>0

ln
λn
µ2

= −ζ′(0) − lnµ2ζ(0). (3.81)

As we have shown above ζ(0) and ζ′(0) have well-defined finite values. A regularization of
the logarithm of the determinant of D is then

ln detζ
D

µ2
= −ζ′(0) − lnµ2ζ(0). (3.82)

Of course if there are zero-modes they have to be excluded and one actually computes det′.
An alternative derivation of (3.82) based on renormalization can be found in [124]. The

link with the usual cutoff regularization is developed in [125, 131, 132].

3.3.3 Heat kernel short time regularization procedure

The small t expansion of the heat kernel can also be used directly to regularize the deter-
minant [124, 126, 127]. For that we notice that for λ > 0

d
dλ

(
−
∫ +∞

ε

dt
t

e−tλ
)

=
e−ελ

λ
−−−→
ε→0

1
λ

=
d

dλ
lnλ. (3.83)

A regularized version of the logarithm of the determinant of a positive operator ln det′ D =∑
n>0 ln λn is then given by

ln det′
εD = −

∫ +∞

ε

dt
t
K̃(t). (3.84)

This scheme of regularization will be particularly useful in chapter 4 when we will com-
pute the variation of the logarithm of the determinants of the operators ∆±

n .
We now have two ways to regularize ln det ∆±

n . Although the two schemes seem to yield
different results they are in fact equivalent. Indeed one has

Γ(s)ζ±
n (s) =

∫ ε

0

dt ts−1K±
n (t) +

∫ ∞

ǫ

dt ts−1K±
n (t). (3.85)

The small t expansion gives
∫ ε

0

dt ts−1K±
n (t) =

A

2π
εs−1

s− 1
+

1 ± 6n
12

χ
εs

s

=
A

2π(s− 1)
+
A

2π
ln ε+

1 ± 6n
12s

χ+
1 ± 6n

12
χ ln ε+ O(ε).

However for small s one has

Γ(s)ζ±
n (s) =

1
s
ζ±
n (0) + γζ±

n (0) + ζ′±
n (0) + o(s) (3.86)
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and then

− ln det′
ζ

∆±
n

µ2
= − ln det′

ε ∆±
n + lnµ2ζ±

n (0) − 1
s
ζ±
n (0) − γζ±

n (0) +
A

2π(s− 1)
+
A

2π
ln ε

+
1 ± 6n

12s
χ+

1 ± 6n
12

χ ln ε+ O(ε) + o(s). (3.87)

Note that in detε∆±
n there is an implicit energy scale as ε has the dimension of an inverse

energy square as we can see from (3.83).
Moreover (3.71) shows that ζ(0) is a local expression. Furthermore as A =

∫
d2x

√
g

and 4πχ =
∫

d2x
√
g R, terms proportional to A and χ are local expressions. Up to local

counterterms both regularizations give the same results and are then equivalent.

3.3.4 Variation of determinants of complex Laplacians

In the next chapter we will need the variation of the complex Laplacian (3.33) under a
change in the conformal factor σ.

The simplest method is to used the regularized version of the determinant of ∆±
n is given

by (3.84):

ln det′
ε ∆±

n = −
∫ +∞

ε

dt
t
K̃±
n (t). (3.88)

As K̃±
n (t) = tr e−t∆±

n − N±
n , where N±

n = dim Ker ∆±
n

2, the variation of ln det′
ε ∆±

n under
an infinitesimal Weyl transformation δσ is given by

δ ln det′
ε ∆±

n =
∫ ∞

ε

dt tr(δ∆±
n e−t∆±

n − δN±
n ). (3.89)

To go further we need to look at the zero-modes of ∆±
n :

• If ∆−
n φ = 0, either φ ∈ Ker ∇z

n or ∇z
nφ ∈ Ker ∇n−1

z . But since (∇z
n)† = −∇n−1

z we
have

Ker ∇n−1
z = Ker(∇z

n)† = (Im ∇z
n)⊥ (3.90)

so that Ker ∇z
n ∩ Ker ∇n−1

z = {0} and then

Ker ∆−
n = Ker ∇z

n. (3.91)

The transformation rule (3.40a) then shows that δN−
n = 0.

• The same argument shows that

Ker ∆+
n = Ker ∇n

z . (3.92)

Let ψ ∈ Ker ∇n
z . Then the transformation rule (3.40b) implies (∇n

z + δ∇n
z )(ψ +

2nδσψ) = 0. This shows that δN+
n = 0.

Then using the transformation rules (3.41) and the identity e−ABA = Ae−BA we get

δ ln det′
ε ∆−

n = −2(n− 1)
[
tr δσ e−t∆−

n

]∞

ǫ
+ 2n

[
tr δσ e−t∆+

n−1

]∞

ε

= −2(n− 1)
∫

dzdz̄
√
g δσ

[
K−
n (t, z, z)

]∞
ǫ

+ 2n
∫

dzdz̄
√
g δσ

[
K+
n−1(t, z, z)

]∞
ε
.

(3.93)

2One can show using Riemann-Roch theorem that Ker ∆±
n are finite-dimensional [128].
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When t goes to infinity only the zero-modes contribute to the heat kernel as the others
are exponentially suppressed. Let φi, i = 1, . . . , N−

n , be an orthonormal basis of Ker ∇z
n =

Ker ∆−
n . Then

lim
t→∞

K−
n (t, z, z) =

N−
n∑

j=1

φj(z)∗φj(z) (3.94)

so that

∫
dzdz̄

√
g lim
t→∞

δσK−
n (t, z, z) =

N−
n∑

j=1

∫
dzdz̄

√
g δσ(z)φj(z)∗φj(z) ≡

N−
n∑

j=1

〈φj |δσ|φj〉. (3.95)

Moreover form (3.40a) we see that the φi are still zero-modes of ∇z
n after a Weyl transfor-

mation δσ. However they do not necessary remain orthonormal since the scalar product in
T n (3.31) transforms as

δ〈T |S〉 = 2(1 − n)〈T |δσ|S〉. (3.96)

We then have

δ ln det〈φj |φk〉 = δ tr〈φj |φk〉 = 2(1 − n)
N−

n∑

j=1

〈φj |δσ|φk〉 (3.97)

so that [
K−
n (t, z, z)

]∞
ǫ

=
δ ln det〈φj |φk〉

2(1 − n)
−K−

n (ε, z, z). (3.98)

Consider now an orthonormal basis ψα, α = 1, . . . , N+
n−1, of Ker ∆+

n−1 = Ker ∇n−1
z . We

have seen previously that under a Weyl transformation of parameter δσ the variation of
the ψα is given by δψα = 2nδσψα. Combining this with is the transformation of the scalar
product in T n−1 we get:

δ ln det〈ψα|ψβ〉 = 2n

N+
n−1∑

j=1

〈ψα|δσ|ψβ〉. (3.99)

Finally we arrive at

δ ln
det′

ε∆
−
n

det〈φj |φk〉 det〈ψα|ψβ〉 = 2(n− 1)
∫

dzdz̄
√
g δσK−

n (ε, z, z)

− 2n
∫

dzdz̄
√
g δσK+

n−1(ε, z, z)

= − 1
πε

∫
d2x

√
g δσ +

−6n2 + 6n− 1
12π

∫
d2x

√
g δσ R

= − 1
πε

∫
d2x
√
ĝ e2σδσ +

−6n2 + 6n− 1
12π

∫
d2x
√
ĝ
(
R̂− 2∆̂σ

)
δσ

(3.100)

and then

ln
det′

ε∆
−
n

det〈φj |φk〉 det〈ψα|ψβ〉 = ln
det′

ε∆̂
−
n

det〈φ̂j |φ̂k〉 det〈ψ̂α|ψ̂β〉
− 1
πǫ

∫
d2x
√
ĝ e2σ

− 6n2 − 6n+ 1
12π

∫
d2x
√
ĝ
(
R̂σ − σ∆̂σ

)
(3.101)

where the factor of 2 in front of ∆ has been absorbed through integration by part.
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We can do similar computations with ∆+
n so that finally

det ′∆±
n

det〈φj |φk〉 det〈ψα|ψβ〉 =
det ′∆̂±

n

det〈φ̂j |φ̂k〉 det〈ψ̂α|ψ̂β〉
e− 6n2±6n+1

3 SL (3.102)

where SL is the Liouville action with cosmological constant:

SL =
1

4π

∫
d2x

√
ĝ
(

−σ∆̂σ + R̂ σ
)

+ µ

∫
d2x

√
ĝ e2σ. (3.103)

The cosmological constant µ = − 1
πε is infinite and will be absorbed through renormalization.

This shows that the cosmological constant always appear in the quantum theory (even if
the matter is conformal).

In the case where n = 0 (3.93) gives

δ ln det′
ε∆ = 2

∫
dzdz̄

√
g δσ

[
K−

0 (t, z, z)
]+∞
ε

. (3.104)

On compact Riemann surfaces the scalar Laplacian has always one an only one zero-mode
ϕ = 1√

A
. Then we get

δ ln det′
ε∆ =

δA

A
− 1
πε

∫
d2x

√
g δσ − 1

6π

∫
d2x

√
g δσR. (3.105)

Finally we get the well-known result:

det ′∆
A

=
det ′∆̂

Â
e− 1

3SL (3.106)

which yields the gravitational action for the scalar field (see chapter 4)

Sgrav = −1
6
SL. (3.107)
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Chapter 4

Two-dimensional quantum
gravity

We have seen in chapter 2 that at the classical level two-dimensional gravity is trivial.
However this is no more the case at the quantum level where the coupling to the matter
fields makes the quantum fluctuations of the metric dynamical. We will work in Euclidean
signature and study the coupling of some matter Ψ to gravity. This is described by the
action

S[g,Ψ] = Sµ[g] + Sm[g,Ψ] (4.1)

where Sµ is the cosmological constant action (2.5) and Sm is the matter action which depends
on the considered model (we reduce the action for gravity Scl to Sµ as the Einstein–Hilbert
action SEH is just a topological term proportional to the Euler characteristic). The partition
function is then defined by

Z =
∫

DgDΨ e−S[g,Ψ]. (4.2)

To give a sense to this expression the integration measures Dg and DΨ have to be defined
properly. Moreover to define the path integral we have to deal with the huge gauge invariance
of the action under diffeomorphisms. For that we will have to implement the Faddeev–
Popov procedure. We will see how to do this in 4.1. In this section we will also define the
gravitational action and see how it can be computed. In 4.2 the well known case where the
matter is conformal will be reviewed as an example.

In 4.3 we will introduce the Kähler formalism that will be needed in the next chapters.
In 4.3.2 we will discuss the most remarkable functionals that can appear in the gravitational
action, in particular the Liouville and Mabuchi actions that will be studied in some detail
in the subsequent sections 4.4 and 4.5.

4.1 Functional integral

In this section we will review the construction of the partition function (4.2) given in [126,
127, 133].

4.1.1 Gauge fixing

The first thing we need to do is to define what we mean by the summation over the metrics
g implied in (4.2). Indeed the sum has to go only through the independent degrees of
freedom. In the formalism of functional integrals the measure is induced by the norm of a
small variation of the considered field. This quantity has of course to be invariant under the
gauge group of the theory in order to define a measure on the field that is also gauge invariant.
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In our case we need invariance under diffeomorphism. Let M be a two-dimensional Riemann
surface endorsed with a metric g. For a scalar field ϕ the norm of its variation around its
mean value is defined to be

‖δϕ‖2 =
∫

M
d2x

√
g δϕ δϕ. (4.3)

For a vector field V µ the simplest way to define the norm is

‖δV ‖2 =
∫

M
d2x

√
g gµν δVµδVν . (4.4)

For a rank 2 tensor we can write more invariant terms. The most general way to define the
norm of the variation δg of the metric is given by

‖δg‖2 =
∫

M
d2x

√
g

(
gµρgνσ

2
+ c gµνgρσ

)
δgµν δgρσ. (4.5)

If the trace of δg is given by gµνδgµν = 4δτ , then

δgµν = 2δτgµν + δhµν (4.6)

where δh is traceless: gµνδhµν = 0. Reporting in (4.5), one gets

‖δg‖2 = 8
∫

M
d2x

√
g (1 + c)(δτ)2 +

∫

M

d2x
√
g gµρgνσδhµνδhρσ. (4.7)

The variations in the directions τ and h are then decoupled i.e. they are orthogonal. In the
path integral we can then factorize the metric measure as

Dg = Dτ Dh. (4.8)

As (4.7) is gauge invariant (i.e. invariant under diffeomorphisms), the measure (4.8) is also
gauge invariant. To deal with the gauge invariance of the action and the measure one needs
to follow the Faddeev–Popov procedure.

First we need to fix the gauge. In two dimensions we can choose some reference metric
ĝ and write any other metric on M as

g = e2σĝ. (4.9)

This is the conformal gauge and σ is called the conformal factor or the Liouville mode. In
particular on a given chart one may choose to work in the flat conformal gauge where ĝ = δ
is the flat metric. However global topology prevents in general the existence of a global flat
fiducial metric but the uniformization theorem states that, for a genus h ≥ 2, we can choose
a metric of constant negative curvature.

Under an infinitesimal diffeomorphism generated by δVµ, the variation of the metric is
given by

δgµν = ∇µδVν + ∇νδVµ. (4.10)

We can also change the metric by changing the conformal factor σ without making any
change of coordinates. This Weyl transformation preserves the gauge choice and transforms
the metric by

δgµν = 2δσgµν . (4.11)

The total transformation is then

δgµν = ∇µδVν + ∇νδVµ + 2δσgµν . (4.12)

We can take the trace to come back to the variables τ and h:

2δτ = 2δσ + gµν∇µδVν (4.13)
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and then, as δhµν = δgµν − 2δτgµν ,

δhµν = ∇µδVν + ∇νδVµ − gµνg
τσ∇τδVσ = (PδV )µν . (4.14)

The operator P maps a vector on a rank 2 symmetric traceless tensor.
We then have two sets of variables: (τ, h) and (σ, V ) so that

Dτ Dh = DσDV |J | (4.15)

with

J = det
(
∂τ
∂σ

∂τ
∂V

∂h
∂σ

∂h
∂V

)
= det

(
1 O
0 P

)
. (4.16)

Thus
J = detP =

√
det(P †P ). (4.17)

This is almost the Faddeev–Popov determinant. Indeed if there are vectors δV such that
δhµν = 0 i.e. PδV = 0 the diffeomorphisms they generate are equivalent to a Weyl transfor-
mation since δgµν = 2δτgµν . The vectors of KerP are called the conformal Killing vectors
and should not be taken into account to avoid double counting the same transformation. The
Faddeev–Popov determinant is then

√
det′(P †P ) where the zero eigenvalues have been ex-

cluded. There will still be a residual gauge invariance under the diffeomorphisms generated
by the conformal Killing vectors.

The norm for a vector field (4.4) is invariant under diffeomorphisms and then the measure
DV is invariant too. As the action is diffeomorphism invariant we would like to separate
the integral over V from the rest and write it as the (infinite) volume of diffeomorphisms:

∫
DV = Ωdiff. (4.18)

Note that the norm (4.4) does not depend on the conformal factor, at least formally.
We should also be aware of another subtlety: on all compact Riemann surfaces except

the sphere (χ = 0) there exist deformations that cannot be expressed as δhµν = (PδV )µν :
there is a finite number of additional degrees of freedom called the Teichmüller deformations.

In the functional integral one has to sum on all metrics that are inequivalent under the
gauge group G = Diff(M) × Weyl for some fixed genus h and then sum over the genus. Let
Mh be the set of all possible metrics for a genus h Riemann surface. We then have to sum
over the elements of the moduli space

Modh = Mh/G. (4.19)

Let Diff0(M) be the set of diffeomorphisms on M that are connected to the identity that is
that can be written as a sum of infinitesimal diffeomorphisms and lead to a transformation
of the metric of the form δgµν = ∇µδVν + ∇νδVµ. The Teichmüller space Th is the set of
equivalence classes for metrics under Weyl transformations and diffeomorphisms connected
to the identity that is:

Th = Mh/G0 (4.20)

where G0 = Diff0(M) × Weyl.
We saw that infinitesimal diffeomorphisms and Weyl transformations lead to a transfor-

mation of the metric of the form

δgµν = (2δσ + ∇ρδVρ)gµν + (P δV )µν (4.21)

where (P δV )µν gives the traceless part of the transformation. However one also has to
take into account the transformations due to the deformations of the conformal class of the
metric called the Teichmüller deformations. Indeed infinitesimal diffeomorphisms and Weyl
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transformations do not change the conformal class of the metric (we can still write g = e2σg0

with the same g0 and a change in σ).
Any deformation δTeichgµν can be decomposed as a traceless part and a part with a trace.

Equation (4.21) shows that the part with trace can always be compensated by some Weyl
transformation (without having to worry about possible change of chart). Finally one can
show that the deformations that cannot be reabsorbed by a diffeomorphism (i.e. that cannot
be written as (P δṼ )µν) are the elements of KerP † where P † acts on symmetric traceless
tensors by (P †h)µ = −2∇νδhµν . KerP † is then the tangent space to Teichmüller space.

Going to complex coordinates and taking δvz ∈ T −1 and δvz = gzz̄δv
z̄ ∈ T 1 we see that

P acts as

(Pδv)zz = 2∇1
zδvz (4.22a)

(Pδv)zz = 2∇z
−1δv

z. (4.22b)

We recognize the operator P1 defined in (3.38):

P = 2P1 = 2∇z
1 ⊕ ∇−1

z : S1 → S2. (4.23)

For this operator the Riemann–Roch theorem states that [128]

dim KerP1 − dim KerP †
1 = 3χ = 6(1 − h). (4.24)

As we have seen KerP1 corresponds to the conformal Killing vectors. On the sphere
they correspond to transformations of the form

z → (az + b)
(cz + d)

,

(
a b
c d

)
∈ SL(2,C). (4.25)

This gives six conformal Killing vectors on the sphere so dim KerP1 = 6 and dim KerP †
1 = 0.

So there is no Teichmüller deformation on the sphere. On the torus conformal Killing
vectors correspond to translations along the two directions of the torus so that dim KerP1 =
dim KerP †

1 = 2. Finally for h ≥ 2 there is no conformal Killing vector which means that
dim KerP †

1 = 6h − 6. As KerP †
1 is finite dimensional so is Th and dim Th = dim KerP †

1 .
Teichmüller deformations then add a finite number of integration variables in the functional
integral.

The partition function is then

Z = Ω⊥
diff

∫
DσDΨ[Teich]

√
det ′(P †

1P1)e−S (4.26)

where Ω⊥
diff is the volume of diffeomorphisms orthogonal to those generated by the conformal

Killing vectors and [Teich] is the volume element of the Teichmüller space which we will now
define.

The Teichmüller deformations transform a metric into another one with whom it is not
conformally related. In the coordinate system where g can be written as dx2 = e2σdzdz̄ a
metric which is not in the same conformal class will not satisfy gzz = gz̄z̄ = 0. Instead an
infinitesimal Teichmüller deformation is equivalent to an infinitesimal change of coordinates
z → z + δz where the fields δz and δz̄ are not globally defined. It transforms gz̄z̄ as

δgz̄z̄ = gzz̄µ
z
z̄. (4.27)

µzz̄ is called a Beltrami differential [7, 127, 128]. If we denote by τi an orthogonal system
of coordinates in the Teichmüller space an infinitesimal Teichmüller transformation can be
written as

δgz̄z̄ =
6h−6∑

i=1

δτiµ
z
iz̄. (4.28)
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There is a natural pairing between Beltrami differentials and the elements of Ker ∇z
2 (called

quadratic differential) which does not involve the metric. Indeed if µzz̄ is a Beltrami differ-
ential and φzz ∈ Ker ∇z

2 one can define

〈µ|φ〉 =
∫

dzdz̄ µzz̄φzz. (4.29)

Finally the measure on the Teichmüller space can be written as (to get a factor orthogonal
to δσ and δV )

[Teich] =
det〈µj |φk〉

(det〈φj |φk〉g)1/2

6h−6∏

i=1

dτi (4.30)

where φi, i = 1, . . . , 6h− 6 is an orthonormal basis of KerP †
1 . The partition function is then

given by

Z = Ω⊥
diff

∫ 6h−6∏

i=1

dτi det〈µj |φk〉
∫

DσDΨ

√
det ′(P †

1P1)
det〈φj |φk〉g

e−S . (4.31)

4.1.2 The ghost contribution

Since detP †
1P1 = det ∆+

1 det ∆−
−1 we have from the results of 3.3.4

(
det ′P †

1P1

det〈φj |φk〉

) 1
2

=

(
det P̂ †

1 P̂1

det〈φ̂j |φ̂k〉

) 1
2

e− 26
6 SL . (4.32)

At the end, the partition function is given by

Z = Ω⊥
diff

∫ 6h−6∏

i=1

dτi det〈µj |φk〉
√

det ′(P̂ †
1 P̂1)

det〈φ̂j |φ̂k〉g

∫
Dσ e− 26

6 SL

∫
DΨ e−Sm[g,Ψ]. (4.33)

A more physical way to compute the Jacobian (detP †
1P1)1/2 is to follow the Faddeev–

Popov procedure [7, 133]. We introduce the anticommuting ghost fields cz and its complex
conjugate to represent infinitesimal diffeomorphisms and bzz and its complex conjugate to
represent infinitesimal deformations orthogonal to the gauge slice. Then the Jacobian can
be formally written as

(detP †
1P1)1/2 =

∫
DcDb e−Sgh[g,b,c] (4.34)

with

Sgh[g, b, c] =
∫

dzdz̄
√
g (bzz∇zcz + bz̄z̄∇z̄cz̄). (4.35)

The measures are derived from the norms:

‖c‖2 =
∫

d2x
√
g gzz̄ c

zcz̄ (4.36a)

‖b‖2 =
∫

d2x
√
g (gzz̄)2bzzbz̄z̄. (4.36b)

In conformal gauge the ghost action may be rewritten as

Sgh[g, b, c] =
∫

d2z(b∂̄c+ b̄∂c̄) (4.37)

where we have defined
b = bzz, b̄ = bz̄z̄, c = cz, c̄ = cz̄. (4.38)
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We will see in section 4.2 that the b, c ghost system constitutes a conformal field theory
of central charge cg = −26. This give a contribution of −26

6 SL exactly as we found in
(4.32). There is some subtlety with the integration over the ghosts fields. Since they are
anticommuting the integral over the zero-modes would give zero if we do not insert them
in the functional integral (since

∫
db = 0 for an anticommuting parameter). However these

zero-modes satisfy
∂̄c = gzz̄∇z

−1c = 0, ∂̄b = gzz̄∇z
2b = 0. (4.39)

We then see that the zero-modes of the c ghost correspond to the conformal Killing vectors
while the zero-modes of the b ghost correspond to the quadratic differentials. The integration
over the c zero-modes will then yield the inverse of the volume of the diffeomorphisms
generated by conformal Killing vectors while the integration over the b zero-modes will give

the factor
det〈µj |φk〉

det〈φ̂j |φ̂k〉1/2
g

.

4.1.3 Gravitational action

One can define the matter partition function

Zm[g] =
∫

DΨ e−Sm[g,Ψ] (4.40)

and the gravitational partition function

Z[g] = e−Sµ[g] Zm[g] (4.41)

such that

Z =
∫

DgZ[g] =
∫

Dg e−Sµ[g] Zm[g]. (4.42)

We define the effective action Seff[g] by

Zm[g] = e−Seff[g]. (4.43)

If g and ĝ are two metrics defined on a Riemann surface, one has

Z[g] = e−Sµ[g] Zm[g]
Zm[ĝ]

Zm[ĝ] (4.44)

= e−Sµ[g] e−(Seff[g]−Seff[ĝ]) Zm[ĝ]. (4.45)

The gravitational effective action is defined by

Sgrav[ĝ, g] = Seff[g] − Seff[ĝ] = − ln
Zm[g]
Zm[ĝ]

. (4.46)

For most of this thesis we will place ourselves in the conformal gauge (4.9). Similarly the
ghost contribution will be lumped inside the matter partition function as it only changes
the factor that appears in front of the Liouville part of the gravitational action. In order to
distinguish quantities computed in the metric g and ĝ, the ones associated with the latter
will be surmonted by a hat: for example Â is the area for the metric ĝ while A is the area
for the metric g. In this gauge, the gravitational action Sgrav is a functional of ĝ and of the
Liouville mode σ only: Sgrav[ĝ, σ] ≡ Sgrav[ĝ, g].

We then have

Z[g] =
∫

DĝΨ e−S∗[Ψ,σ,ĝ] (4.47)

where the total action is

S∗[ĝ, σ,Ψ] = Sµ[σ, ĝ] + Sgrav[ĝ, σ] + Sm[ĝ,Ψ]. (4.48)
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We see that a major interest of the conformal gauge is that the dynamics of the matter Ψ
and of the Liouville mode σ are totally decoupled (up to the Teichmüller parameters). One
has to deal with two quantum field theories in a fixed curved background. We will see later
that the gravitational action Sgrav can be computed sometimes more easily even if one does
not know how to compute the effective action Seff.

There is a freedom in the decomposition (4.9) of the physical metric into a conformal
factor and a background metric: this amounts to the existence of an emergent Weyl sym-
metry

ĝ = e2ω ĝ′, σ = σ′ − ω. (4.49)

The latter is equivalent to the diffeomorphisms in terms of the physical metric and thus
should be preserved. The most important consequence is that the total action (Liouville
and matter fields) should be a CFT on the background ĝ.

From (4.46) we see that a gravitational action must satisfy the cocycle identities

Sgrav[g1, g2] = −Sgrav[g2, g1] (4.50a)

Sgrav[g1, g3] = Sgrav[g1, g2] + Sgrav[g2, g3]. (4.50b)

The stress-energy tensor is the tensor of conserved currents coming from translation
invariance. It is defined by

Tµν = − 4π√
g

δS

δgµν
. (4.51)

From the effective action we can obtain the stress-energy tensor with quantum corrections:

〈Tµν〉 = − 4π√
g

δSeff

δgµν
. (4.52)

Reversing the argument we see that we can compute the gravitational action by integrating
the quantum expectation value of the stress-energy tensor.

The simplest gravitational action which satisfies (4.50) is the cosmological constant action
(2.5). In the conformal gauge (4.9), it reads

Sµ = µ

∫
d2x

√
ĝ e2σ. (4.53)

The cosmological constant µ can receive quantum corrections and its value may differ from
the classical one, but we keep the same symbol. The associated energy–momentum tensor
is

T (µ)
µν = 2πµ ĝµν e2σ, T (µ) = 4πµ e2σ, (4.54)

while the variation of this action is

1√
ĝ

δSµ
δσ

= 2µ e2σ. (4.55)

4.2 The conformal case and the Liouville action

4.2.1 Basics of conformal field theory in two dimensions

A conformal transformation is a diffeomorphism x → x′ which leaves the metric invariant
up to a scale factor Ω(x):

gµν(x) → gµν(x′) = Ω(x)gµν(x). (4.56)

Such a transformation preserves the angles u·v
(u2v2)

1
2

between two vectors u and v (u · v =

gµν(x)uµvν).
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Under an infinitesimal change of coordinates xµ → xµ + ǫµ(x) the metric transforms as

g′
µν(x′) = gµν(x) − ∇µǫν − ∇νǫµ. (4.57)

For this to correspond to a conformal transformation we need to have ∇µǫν + ∇νǫµ =
K(x)gµν(x). In flat space where gµν = δµν this implies ∂µǫν + ∂νǫµ = K(x)ηµν . Taking the
trace we get 2∂µǫµ = 2K(x) so that the condition is

∂µǫν + ∂νǫµ = ∂ρǫρδµν . (4.58)

Going to complex coordinates (3.11) and defining ǫ(z) = ǫ0 + iǫ1 et ǭ(z̄) = ǫ0 − iǫ1 this
condition becomes

∂̄ǫ(z) = ∂ǭ(z̄) =
1
2

(∂0ǫ0 − ∂1ǫ1) = 0. (4.59)

We see that conformal transformations correspond to analytic transformations of coordi-
nates: z → f(z) et z̄ → f̄(z̄). The metric transforms as

ds2 = dzdz̄ →
∣∣∣∣
∂f

∂z

∣∣∣∣
2

dzdz̄ (4.60)

so that

Ω =
∣∣∣∣
∂f

∂z

∣∣∣∣
2

. (4.61)

The stress-energy tensor (4.51) is symmetric by definition and is covariantly conserved:

∇µTµν = 0. (4.62)

For the theory to be conformal we need to have δS = 0 if δgαβ = ǫgαβ. As

δS =
∫

d2x
δS

δgαβ
δgαβ = − 1

4π

∫
d2x

√
g ǫ Tαα (4.63)

we see that
Tαα = 0. (4.64)

Classically in a conformal theory the stress-energy tensor is then traceless. In complex
coordinates we get

T zz̄ = T z̄z = Tzz̄ = Tz̄z = 0. (4.65)

In flat space the conservation law ∂αTαβ and the vanishing of the trace imply

∂̄Tzz = ∂Tz̄z̄ = 0. (4.66)

T (z) = Tzz is then a holomorphic function while T̄ (z̄) = Tz̄z̄ is anti-holomorphic. As we
will see at the quantum level there is an anomaly and the stress-energy tensor is no longer
traceless.

An operator O is said to have conformal weight (h, h̃) if under transformations of the
form δz = ǫz and δz̄ = ǭz̄ it transforms as

δO = −ǫ(hO + z∂O) − ǭ(h̃O + z̄∂̄O). (4.67)

h and h̄ are related to the scaling dimension by ∆ = h+ h̄ and to the spin by s = h− h̄. Its
operator product expansion with the stress-energy tensor is then of the form

〈T (z)O(w, w̄)〉 = . . .+ h
O(w, w̄)
(z − w)2

+
∂O(w, w̄)
z − w

+ . . .

〈T̄ (z̄)O(w, w̄)〉 = . . .+ h̃
O(w, w̄)
(z̄ − w̄)2

+
∂O(w, w̄)
z̄ − w̄

+ . . . .

(4.68)
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Such an operator is called primary if its operator product with T and T̄ does not have
singularities of order greater than 2:

〈T (z)O(w, w̄)〉 = h
O(w, w̄)
(z − w)2

+
∂O(w, w̄)
z − w

+O(1)

〈T̄ (z̄)O(w, w̄)〉 = h̃
O(w, w̄)
(z̄ − w̄)2

+
∂O(w, w̄)
z̄ − w̄

+ O(1).
(4.69)

Under a finite conformal transformation z → z′(z) et z̄ → z̄′(z̄), it transforms as

O(z, z̄) → O′(z′, z̄′) =
(
∂z′

∂z

)−h(
∂z̄′

∂z̄

)−h̃
. (4.70)

The stress-energy tensor has dimension ∆ = 2 and spin s = 2. Then T has conformal
weight (2, 0) while T̄ has (0, 2). However it is not primary as its OPE with itself is given by

〈T (z)T (w)〉 =
c/2

(z − w)4
+

2T (w)
(z − w)2

+
∂T (w)
z − w

(4.71a)

〈T̄ (z̄)T̄ (w̄)〉 =
c̄/2

(z̄ − w̄)4
+

2T̄ (w̄)
(z̄ − w̄)2

+
∂̄T̄ (w̄)
z̄ − w̄

. (4.71b)

The constants c and c̄ are called the central charges of the theory.
We give below some useful examples [129, 134].

The free scalar field

The action for a free scalar field is given by

Sfree =
∫

d2x
√
g gµν∂µX∂νX. (4.72)

It is conformally invariant. However the field X is not primary. Indeed we have seen in
(3.47) that the propagator has a logarithmic singularity. This means that the OPE between
X and itself is given by

〈X(x)X(y)〉 = − 1
4π

ln(ℓ(x, y))2 + non-singular. (4.73)

We then see that X does not have a definite scaling dimension and then is not a primary
field.

The stress energy tensor is given by

T = −∂X∂X. (4.74)

(in the quantum theory the needed normal ordering will be implied). Computing the OPE
with ∂X shows that ∂X is a primary operator of weight (1, 0). In the same way, eikX is also

a primary operator with weight
(
k2

4 ,
k2

4

)
. Finally the OPE of T with itself gives the central

charge
c = 1. (4.75)

The free Majorana fermion

In chapter 6 we will study the gravitational action for a Majorana fermion. In the Weyl
basis (see section 6.1) the action for a free massless Majorana spinor is given by

Sfree =
∫

d2z
√
g (ψ∂̄ψ − ψ̄∂ψ̄) (4.76)
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where ψ is a Grassmann odd function. The OPE of ψ with itself is given by

ψ(z)ψ(w) =
1

2π
1

z − w
+ non-singular. (4.77)

This is an odd function which is consistent with the fact that ψ is anticommuting. The
holomorphic component of the stress-energy tensor is

T (z) = −πψ(z)∂ψ(z). (4.78)

Computing the OPE of ψ with T shows that this time ψ is a primary field with conformal
weight

(
1
2 ,

1
2

)
. Then the OPE of T with itself gives the central charge

c =
1
2
. (4.79)

The ghost system

The ghost action was given by

Sgh =
∫

dzdz̄ (b∂̄c+ b̄∂c̄). (4.80)

The ghosts b, b̄, c, c̄ are anticommuting and satisfy

b(z)c(w) =
1

z − w
+ non-singular. (4.81)

Moreover the OPE of b with itself and of c with itself are non-singular. The stress-energy
tensor is given by

T = 2(∂c)b+ c∂b, T̄ = 2(∂̄c̄)b̄+ c̄∂̄b̄. (4.82)

The fields b, b̄, c, c̄ are primary with weights (2, 0), (0, 2), (−1, 0) and (0,−1). The OPE of T
with itself gives the central charge of the ghost system:

cgh = −26. (4.83)

4.2.2 The conformal anomaly

As we have seen previously conformal symmetry implies that the stress-tensor is classically
traceless. However at the quantum level there might be an anomaly. In flat space, using the
fact that Tµν is symmetric and conserved one can show [134, sec. 4.3] that the two-point
function 〈Tµν(x)Tρσ(0)〉 is traceless which means that 〈T µµ (x)T ρρ (0)〉 = 0 everywhere. This
in turn implies that 〈T µµ 〉 = 0.

But if the background is no longer flat the argument does not hold anymore. However we
know that if there is an anomaly it must be a local quantity of dimension 2 which vanishes
in flat space the only possibility is that 〈T µµ 〉 is proportional to R. Using the OPE (4.71a) to
compute the variation of 〈T µµ 〉 under an infinitesimal Weyl transformation around flat space
one can show [6, 129] that the constant of proportionality is just the central charge:

〈T µµ 〉 = − c

12
R (4.84)

Note that one can also use the OPE (4.71b) between T̄ and itself to compute 〈T µµ 〉. The
constant of proportionality would then be c̄. This shows that for the theory to be consistent
at the quantum level the left and right central charges must be equal c̄ = c to avoid the
so-called gravitational anomaly.

In conformal gauge
R = e−2σR̂ − 2e−2σ∆̂σ (4.85)
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This means that if c 6= 0 there is at least one physical observable 〈T µµ 〉 whose value depends
on the gauge choice. This is the conformal (or Weyl) anomaly. Weyl invariance at the
quantum level requires c = 0.

In conformal gauge the conformal anomaly is directly related to the gravitational action.
Indeed one has

〈T µµ 〉 = − 4π√
g
gµν

δSeff

δgµν
=

2π√
g

δSeff

δσ
(4.86)

so that the integration of 〈T µµ 〉 with respect to σ gives the gravitational action. Then (4.84)
becomes

δSeff

δσ
= − c

24π
√
g R = − c

24π

√
ĝ (R̂ − 2∆̂σ). (4.87)

Finally we see that the gravitational action is given by

Sgrav[ĝ, g] = Seff[g] − Seff[ĝ] = − c

24π

∫
d2x
√
ĝ(R̂σ − σ ∆̂σ)

= − c

24π

∫
d2x
√
ĝ(ĝµν∂µσ∂νσ + R̂ σ)

≡ − c

6
SL (4.88)

where SL is the Liouville action (without cosmological constant) given by [37]

SL =
1

4π

∫
d2x

√
ĝ
(
ĝµν∂µσ ∂νσ + R̂ σ

)
. (4.89)

Note that the cosmological constant action will still appear as a counterterm in the functional
integral.

4.2.3 Conformal deformations and DDK anstatz

If we want to use two-dimensional quantum gravity as a toy-model for the four-dimensional
one we cannot restrict ourselves to the coupling to conformal matter. Indeed the matter of
our Universe is not conformal. The first step to go away from conformal matter is to study
a CFT which is deformed by a conformal perturbation [60]. This means that the matter
action Sm for a set of fields ψ is given by

Sm[g, ψ] = Scft[g, ψ] + Sp[g, ψ] (4.90)

where Scft is an action which is conformally invariant on flat space and the conformal
perturbation Sp is of the form

Sp[g, ψ] =
∑

i

λi
∫

d2x
√
gOi(ψ), (4.91)

where Oi(ψ) is a set of primary operators (built from the fields ψ) with conformal weight hi.
While the operators Oi can depend explicitly on the metric there is also an implicit metric
dependence which is due to the regularization needed to remove self-contraction. We will
only consider fields without (conformal) spin i.e. such that h̄i = hi and then the conformal
dimension is given by ∆i = 2hi.

A Weyl transformation acts as

g = e2ω ĝ, Oi = e−2hiω Ôi. (4.92)

For the type of theories we are interested in, the action Scft is generically invariant under
Weyl transformations [122]. On the other hand the action Sp is not invariant if hi 6= 1 for
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at least one operator. If there is no explicit metric dependence, the trace of the energy-
momentum tensor for the perturbation is

T (p) = 4π
∑

i

λiOi. (4.93)

Let’s look at some well-known examples. For a scalar field X we have seen that X is not
a primary field. Then the addition of a mass term m2X2 is not a conformal perturbation. A
conformal perturbation would contain fields of the form ∂X or eikX . On the contrary for a
Majorana spinor Ψ the mass term is given by mΨ̄γ∗Ψ = 2mψψ̄. As ψ is a primary field the
mass term is now a conformal perturbation. This case will be studied in details in chapter
6.

The DDK construction proposes that the total action in the conformal gauge is

S∗[ĝ, σ, ψ] ≡ SDDK[ĝ, σ, ψ] = Q2 SL[ĝ, σ] + Scft[ĝ, ψ] + S
(p)
DDK[ĝ, σ, ψ], (4.94a)

S
(p)
DDK[ĝ, σ, ψ] =

∑

i

λi
∫

d2x
√
ĝ e2aiQσÔi(ψ). (4.94b)

We recall that Q is related to the central charge by cm = −6Q2 (the ghost contribution is
not included since its only contribution to the gravitational action is to shift the coefficient
in front of SL by −26). The ai are chosen such that each term has a conformal weight 1
and is thus invariant under the Weyl transformation

ĝ = e2ω ĝ′, σ = σ′ − ω, Ôi = e−2hiω Ôi, (4.95)

which leads to the condition
ai(Q− ai) + hi = 1 (4.96)

(the a2
i term comes from the regularization of the exponential). The solution is

ai =
Q

2
−
√
Q2

4
+ hi − 1 (4.97)

where the sign is found by matching to the semi-classical solution Q → ∞

ai ∼ 1
Q

(1 − hi). (4.98)

One says that the operator Oi has been gravitationally dressed.
For example in the case of the massive Majorana fermion the DDK ansatz yields

SDDK[ĝ, σ,Ψ] = i

∫
d2x

√
ĝ Ψ̄ /∇Ψ − 1

12
SL[ĝ, σ] +m

∫
d2x
√
ĝ e

1
3σΨ̄γ∗Ψ. (4.99)

To derive (4.94) we note that the matter partition function can be written as [59, sec. 3]

Zm[g] =
∫

dgψ e−Scft[g,ψ]−Sp[g,ψ] = Zcft[g]
〈

exp
(

−λ
∫

d2σ
√
gO
)〉

g,cft

, (4.100)

where Zcft[g] arises from the normalization of the correlation function. The exponential can
be expanded perturbatively in the coupling constant

Zm[g]
Zcft[g]

=
∞∑

n=0

(−λ)n

n!

∫
〈O(x1) · · · O(xn)〉g,cft

n∏

i=1

√
g(xi) d2xi. (4.101)

Since the correlation function is computed in the CFT one can use the relations (4.92) in
order to express the quantities in the conformal gauge

Zm[g]
Zcft[g]

=
∞∑

n=0

(−λ)n

n!

∫ 〈
Ô(x1) · · · Ô(xn)

〉
ĝ,cft

n∏

i=1

e2(1−hi)σ(xi)
√
ĝ(xi) d2xi. (4.102)
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Resumming the expansion yields

Zm[g]
Zcft[g]

=
1

Zcft[ĝ]

∫
Dĝψ e−Scft[ĝ,ψ]−S(p)

DDK
[ĝ,σ,ψ]. (4.103)

Finally (4.94) is recovered by using the relation

ln
Zcft[g]
Zcft[ĝ]

= Q2 SL[ĝ, σ]. (4.104)

The semi-classical result can be recovered by a direct computation with the action

Sp[g, ψ] =
∑

i

λi
∫

d2x
√
gOi =

∑

i

λi
∫

d2x
√
ĝ e2(1−hi)σÔi = S

(p)
DDK[ĝ, σ, ψ]. (4.105)

Note that this does not follow from a direct integration of the quantum expectation of the
trace (4.93) in the classical limit

〈
T (p)

〉
g

= 4π
∑

i

λi 〈Oi〉g ∼ 4π
∑

i

λiOi,cl (4.106)

because one finds an additional factor of (2 − 2hi)−1.
The DDK ansatz for the gravitational action for a deformed CFT is plagued by several

problems:

1. Unlike the gravitational action (4.46) the DDK action is not a Wess–Zumino action
since it depends on both the matter fields and the Liouville mode: S

(p)
DDK[g, σ, ψ].

This means that the ansatz does not fit directly inside the conformal gauge formalism
described in 4.1.3 despite the appearance.

We recall in the conformal gauge the total action (4.48), in absence of cosmological
constant, was given by :

S∗[g, σ, ψ] = Sgrav[ĝ, σ] + Sm[ĝ, ψ], Sgrav[ĝ, σ] = Q2SL[ĝ, σ] + S(p)
grav[ĝ, σ]. (4.107)

Comparing with (4.94), the discrepancy between SDDK and Scg can be summarised by
the fact that the non-conformal contribution to the gravitational S(p)

grav and matter Sp
actions have been replaced by a single term S

(p)
DDK.

2. The validity of the conformal gauge approach relies on the conformal invariance of
the total action (matter plus gravitational) on the background metric. In the DDK
approach this translates into the fact that the gravitationally dressed deformations
should be exactly marginal operators, but this is generically not the case beyond the
leading order in the coupling [135–141]. This can be understood from the fact that the
presence of the operators inside the action modify the renormalization conditions (and)
and thus one cannot expect a tree-level condition to hold beyond the semi-classical
level.

Given the OPE coefficients Ckij

Vi(x)Vj(y) ∼ Ckij |x− y|2(hk−hi−hj)Vk(y) (4.108)

the beta functions for operators with hi ∼ 1 and for vanishing cosmological constant
are

βi = (∆j
i − 2δji )λ

j + πCijkλ
jλk +O(λ3) (4.109)

where ∆j
i is the normalization of the two-point function (the O(λ3) term has been

computed in [139, 140]). One can add a term

S
(p,2)
DDK =

π

Q(1 + 4ak)
Ckijλ

iλj
∫

d2x
√
ĝ σ e2akQσÔk(ψ) (4.110)
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to ensure that the beta functions vanish at quadratic order (in practice this implies
that ∆j

i becomes coupling-dependent). Note that without this additional term the
vanishing of the beta functions at O(λ) is obtained thanks to the gravitational dressing.

While such an approach may lead to a well-defined gravitational action, computing
the higher-order corrections [139] is a formidable task and not more easy than a di-
rect computation of the gravitational action in the conformal gauge (in particular for
weights far from 1).

3. As we have seen in (4.106) the DDK action cannot be obtained by a direct compu-
tation or by integrating the trace of the quantum matter energy–momentum tensor.
In particular the DDK action (4.94b) is linear in the coupling constant while the
gravitational action for the massive fermion computed in chapter 6 is not.

4. The derivation from [59] presented before may yield an incorrect result because of the
formal manipulations in the functional integral. In particular the correlation functions
have logarithmic singularities [137, p. 4] and care is required when resumming an
infinite series of those.

This can be summarized by saying that a deformation of the matter CFT does not seem
to be equivalent to a deformation of the Liouville plus matter CFT, at least beyond the
semi-classical approximation (see also [142, pp. 19–20] for related discussions). A possible
explanation for the failure of this construction is that symmetries are not sufficient to deter-
mine the form of the action when locality is lost, which is certainly the case in a theory of
gravity with massive matter (for example the Mabuchi action is non-local when expressed
in terms of the Liouville field).

It is possible that these problems are just apparent and result from a “bad” parametriza-
tion of the action and functional integrals. This would amount to prove that

∫
Dgψ e−Scft[ĝ,ψ]−S(p)

DDK
[ĝ,σ,ψ] =

∫
Dgψ e−Scft[ĝ,ψ]−Sp[ĝ,ψ]−S(p)

grav[ĝ,ψ]. (4.111)

It is also possible that such a relation would hold only after incorporating all the corrections
to the DDK action needed to make the beta functions vanish. While establishing directly this
identity might be difficult, one may also prove it either by establishing that the correlation
functions computed from both sides satisfy the same Ward identities, or either by computing
numerically the correlation functions and showing that they agree. This can be already
tested in a leading-order approximation in the mass, i.e. in the Liouville–Mabuchi theory.
These approaches would not be attempted until one had the (at least tentative) spectrum
for the Mabuchi theory: such a proposal was put forward in [76, 77]. Moreover the results
of the previous sections provide a concrete example where these ideas can be tested. This
justifies our attempt of a derivation from first principles of the gravitational action for a
Majorana fermion in 6.

It can be noted that gravitationally dressed conformal deformations are seen as origi-
nating in two different contexts: first as the gravitational action of a deformed CFT [59,
60], and secondly as a mean to bring the theory (seen as a statistical system) away from
the critical point [38, 61, 143] or as a model for some phenomenon [144]. In particular
these systems have been mapped to matrix models [136, sec. 4] and were shown to lead to
consistent statistical systems [60, 61].

It should be clear that the second approach gives up the link with gravity and studies
the action and the associated functional integral just for themselves: as a consequence any
constraint originating from gravity can be relaxed (in particular the Wess–Zumino form and
the marginal scaling conditions) and our comments do not apply. Similarly the gravitational
dressing of operators in correlation functions such as

〈∏

i

e2aiQσ(xi)Oi(xi)

〉
(4.112)
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do not pose any problems since the scaling dimensions are not modified in this case [34, 39,
63, 145, 146].

4.3 Kähler formalism

4.3.1 Kähler parametrization

Since every 2-dimensional manifold is Kähler, another parametrization of the metric g is
possible in terms of the Kähler potential φ [62, 63, 71]. We can then look at another
partition of the space of metrics namely the set of Kähler classes [147, 148]. Given a metric
ĝ defined by

ds2 = 2ĝzz̄ dzdz̄ (4.113)

its Kähler potential ψ is locally defined by

ĝzz̄ = ∂∂̄ψ(z, z̄). (4.114)

The Kähler class of ĝ is the set of metrics that satisfy

gzz̄(z, z̄) = ĝzz̄(z, z̄) + ∂∂̄φ(z, z̄) (4.115)

for some function φ ∈ C∞(M) (along with gzz = gz̄z̄ = 0). This amounts to shift the
Kähler potential ψ by φ. Note that if φ(z, z̄) = f(z) + g(z̄) where f is holomorphic and g
anti-holomorphic (4.115) is just a Kähler transformation which leaves the metric invariant.
For compact surfaces holomorphic and anti-holomorphic functions are just the constants so
this restricts the invariance of (4.115) to the constant shifts of φ. All metrics in a given class
have the same area. Indeed

√
g =

√
ĝ + ∂∂̄φ so that

∫
dzdz̄

√
g =

∫
dzdz̄

√
ĝ since φ is C∞

on M (note that
∫

dzdz̄ ∂∂̄ψ 6= 0 since ψ is not globally defined).
In complex dimension one, the Kähler gauge is equivalent to the conformal gauge at fixed

area. Indeed, recalling that ∆ = 2gzz̄∂∂̄ we see that

ĝzz̄

(
1 +

∆φ
2

)
= ĝzz̄ + ∂∂̄φ = gzz̄. (4.116)

Defining

e2σ = 1 +
∆φ
2

(4.117)

we see that g = e2σ ĝ. If we want to include area variation in the Kähler parametrization
(that is to relate g to a metric ĝ of different area) we should rather write

e2σ =
A

Â

(
1 +

Â

2
∆̂φ

)
, (4.118)

which corresponds to

gzz̄ =
A

Â
ĝzz̄ +A∂∂̄φ. (4.119)

For a given pair (A, φ) this relation defines σ uniquely (up to constant shift of φ), and
positivity of the exponential implies the inequality

∆̂φ > − 2

Â
. (4.120)

The Kähler parametrization is very convenient because it can be used to write local actions
that would otherwise be non-local in terms of the Liouville field (in the same way that
actions non-local in terms of the curvature can be made local in terms of the Liouville field).
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The main drawback of this formalism is that it forces to work at fixed area and the subtleties
we will find in chapter 7 may originate from this.

The variation of the conformal factor δσ is related to the one of the Kähler potential δφ
and of the area δA by

δσ =
δA

2A
− A

4
∆δφ . (4.121)

The measure on σ is related to the measure on φ by

‖δσ‖2 =
∫

d2x
√
g(δσ)2 =

∫
d2x

√
g

(
δA2

4A2
− 1

4
δA∆δφ+

A2

16
(∆δφ)2

)
(4.122)

The second term vanishes as the integrand is a total derivative. Then

‖δσ‖2 =
δA2

4A
+ ‖δσ‖2

A (4.123)

where ‖δσ‖2
A is the measure on the space of metrics of fixed area A:

‖δσ‖2
A = ‖A∆δφ‖2

=
1
16

∫
d2x

√
g (A∆δφ)2

=
A

16Â

∫
d2x
√
ĝ

(
1 − 1

2
Â∆̂φ

)−1

(Â∆̂δφ)2 (4.124)

The integration on σ in the functional integral can be replaced by an integration on φ if the
two integration measures are formally related by

Dσ =
dA√
A

(
det

(
A

Â

(
1 − 1

2
Â∆̂φ

)−1
)) 1

2

(det ′Â∆̂)Dĝφ (4.125)

It is of course purely formal as the determinants are manifestly infinite and have to be
regularized [71]. In [149] a definition of Dφ is given in term of Bergmann metrics.

4.3.2 Gravitational functionals

Various functionals appear in the gravitational action (4.46), the most remarkable ones
(beside the area functional) are: the Liouville functional, the Mabuchi functional and the
Aubin–Yau functional. It is expected that, in general, other functionals are present.

The first one is well-known and describes the effective action when gravity is coupled to
conformal matter only while the other two appear when it is coupled to massive matter [62,
63]. Note that, recently, all these functionals have been used in the description of the
fractional quantum Hall effect [64, 67].

In the conformal gauge the simplest functional variation is given by the variation of the
area (or equivalently of the cosmological constant action):

δA = 2
∫

d2x
√
g δσ (4.126)

The equivalent in the Kähler formalism is [147]

δSAY =
1
A

∫
d2x

√
g δσ (4.127)

where the area has been introduced for dimensional reason. This can be integrated to give
the Aubin-Yau action:

SAY [ĝ, φ] = −
∫

d2x
√
ĝ

(
1
4
φ∆̂φ− φ

Â

)
(4.128)
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In the conformal gauge the variation of the Liouville action was a very natural quantity
as it contains only the Ricci scalar R:

δSL =
1

4π

∫
d2x

√
g δσ(x)R(x) (4.129)

In the Kähler formalism some analogue quantity is given by [147]

δS = − 1
4π

∫
d2x

√
g δφ(x)

(
R(x) − 4πχ

A

)
(4.130)

where R̄ = 4πχ
A is the average curvature. Integrating this we obtain the Mabuchi action [62,

63, 67, 71]:

SM =
1

4π

∫
d2x

√
ĝ

{
− πχ ĝµν∂µφ∂νφ+

(
4πχ

Â
− R̂

)
φ

+
2

Â

(
1 +

Â

2
∆̂φ

)
ln

[
A

Â

(
1 +

Â

2
∆̂φ

)]}
(4.131)

where the last term can be expressed in terms of σ through (4.118):

2

Â

(
1 +

Â

2
∆̂φ

)
ln

[
A

Â

(
1 +

Â

2
∆̂φ

)]
=

4σ
A

e2σ. (4.132)

If A is allowed to vary the total variation of the Mabuchi action is given by

δSM =
1

2π
δA

A
− 1

4π

∫
d2x

√
g δφ(x)

(
R(x) − 4πχ

A

)
. (4.133)

4.4 The Liouville action

Here we study the Liouville action with cosmological constant. To make contact with the
literature we work the action obtained from (4.89) by rescaling the conformal factor by b:
σ → bσ and redefining the cosmological constant as µ̃ = Q2µ:

S̃L =
∫

d2x
√
ĝ
(
ĝµν∂µσ ∂νσ +QR̂σ + µ̃ e2bσ

)
(4.134)

where we have defined
Q =

1
b
. (4.135)

4.4.1 Basic properties

The variation of the action is

1√
ĝ

δS̃L
δσ

= QR̂− 2∆̂σ + 2b µ̃be2bσ = e2bσ (QR+ 2b µ̃) (4.136)

where we have used the fact that the rescaling of the Liouville mode modifies ?:

R = e−2bσ(R̂− 2b∆̂σ). (4.137)

The equations of motion are then
R = −2µ̃b2. (4.138)

This means that the extremal points of Liouville theory are the metrics of constant curvature.
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For µ̃ = 0 the trace of the energy–momentum tensor reads

T (L) = −Q∆̂σ. (4.139)

Using the equations of motion this becomes

T (L) = −Q2

2
R̂. (4.140)

We see that whereas this vanishes in flat space this is no more the case in curved space.
However the equation of motions (4.138) become R = 0 which is obviously Weyl invariant.
This means that although the action is non conformally invariant the theory is (classically)
conformal [150]. Moreover (4.140) shows that T generates a Virasoro algebra with (classical)
central charge

cL = 6Q2. (4.141)

As the Liouville action arises when coupling conformal matter to gravity the total action
(4.48) must be conformally invariant. This is the case if

cL + c = 0 (4.142)

where c = 26 − cm (central charge of the ghosts minus the one of the matter). This means
that

Q =

√
c

6
. (4.143)

Note that it is only true if the parameters b and Q are related by (4.135).

4.4.2 From variable to fixed area

At fixed area the cosmological constant Sµ = µA is fixed and the only contribution to the
gravitational action when the matter is conformal is SL. The equation of motion reads [47,
sec. 2]

4π√
ĝ

δSL
δAσ

= 0 =⇒ ∆R = 0 =⇒ R =
4πχ
A

(4.144)

where the subscript A on the variation indicates that only variations of σ which keep the
area fixed are considered.

To formulate the theory at finite area, we can also write it in the Kähler formalism in
terms of (A, φ). The variation at fixed area is then obtained using (4.121) with δA = 0:

δSL =
A

16π

∫
d2x

√
ĝ
(

−2∆̂σ +QR̂
)
δ∆φ. (4.145)

From this we can read the equation of motion

0 = ∆̂R = e2bσ∆R. (4.146)

implying that the curvature is constant (since any harmonic function on a compact surface
is constant) and hence must be given by

R =
4πχ
A

. (4.147)

Identifying (4.144) and (4.138) leads to the relation

− 8πµb2 =
4πχ
A

. (4.148)

This relation also results from integrating (4.138) over the manifold and it can be seen in
correlation functions upon performing the Laplace transform (which means that it holds not
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only on-shell, see [47, sec. 2] for the case χ = 2). In some way this relation encodes how
to pass from the fixed to the variable area expressions in the Liouville case, and one may
hope that it generalizes to the case of the Mabuchi action. It is then tempting to make the
following identification (at least as a rough analogy)

2µ =
signχ
A

, b2 ∼ |χ|. (4.149)

This suggests that b and χ may play analogous roles. This will indeed come back in chapter
7 when comparing the minisuperspace results of the Liouville and Mabuchi actions.

4.4.3 Change of the integration measure

The relation (4.141) is only valid is the integration measure Dσ is a gaussian one. However
this is not the case. Indeed the integration measure Dσ in the functional integral is derived
from

‖δσ‖2 =
∫

d2x
√
g (δσ)2 =

∫
d2x
√
ĝ e2bσ (δσ)2. (4.150)

This is not a gaussian measure since it depends intrinsically of σ (i.e. Dσ ≡ Dσσ). We
would like to transform it to the usual gaussian measure in background ĝ:

‖δσ‖2 =
∫

d2x
√
ĝ (δσ)2. (4.151)

Such a transformation in general yields a non-trivial Jacobian J . However it is not easy
to compute it from first principles. To remedy to this problems DDK proposed to make an
ansatz using the fact that this quantity should be local, diffeomorphism and conformally
invariant [39, 55, 57]. The more general form for such an action is

J =
∫

d2x
√
ĝ
(
ĝµν∂µσ ∂νσ + αR̂ σ + 4πβ e2γσ

)
. (4.152)

Then the total action will be equivalent to a renormalization of the Liouville action which
reads

SL =
∫

d2x
√
ĝ
(
ĝµν∂µσ ∂νσ + Q̃R̂ σ + 4πµ̃ e2b̃σ

)
. (4.153)

The parameters are now independent: b̃ and Q̃ do not need to satisfy (4.135).
If the cosmological constant is set to 0 we want the theory to be conformally invariant.

For that we need the total central charge ctot to vanish i.e.

c = cσ + cm + cgh = 0 ⇒ cσ = 26 − cm. (4.154)

However cσ corresponds to the central charge of a scalar field with background charge which
is given by [55]

cσ = 1 + 6Q̃2 (4.155)

so that Q is given by

Q̃ =

√
25 − cm

6
. (4.156)

Finally we also need the interaction term e2b̃σ to be a tensor of conformal weight (1, 1). The
conformal weight ∆ of this exponential is given by

∆ = b̃(Q̃− b̃). (4.157)

We then need
b̃(Q̃ − b̃) = 1 (4.158)

which yields

Q̃ = b̃+
1

b̃
. (4.159)

Note that this approach had been justified by direct computations [146, 151, 152] and
should not be confounded with the DDK ansatz for conformal perturbations.
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4.4.4 States and correlation functions

Several approaches can be used to quantize Liouville theory and compute the spectrum,
the correlation functions and other properties [51]: canonical quantization [40, 42, 44], path
integral, minisuperspace [41, 44, 153–155], conformal bootstrap, BRST quantization, multi-
plicative gaussian chaos. . . We will only review here the simpler approach, the minisuperspace
approximation which we will used again for the Mabuchi theory in chapter 7.

The minisuperspace approximation has been widely used in quantum cosmology [156]:
the idea consists in restricting the (super)space of metrics under consideration by imposing
a symmetry. In two dimensions it is logical to consider the spacetime to be a cylinder,
with a non-compact time direction and a periodic spatial direction (used to regularize IR
divergences). In this case one can truncate the spatial dependence of the fields by performing
a Kaluza–Klein reduction over the circle and by keeping only the (spatial) zero-mode, which
results in a quantum-mechanical model. The canonical quantization of this model allows
one to determine the spectrum: the resulting Hilbert space can then be interpreted as the
one-particle Hilbert space of the full theory from which the Fock space is built by a sum of
tensor products [157] (conceptually this is what is presented in many standard textbooks on
QFT when one introduces the Fock space of the free scalar field). The wave functions can
finally be used to compute correlation functions.

In d-dimensional quantum cosmology the validity of such an approximation is not clear,
but one can expect it to be well justified in two dimensions. Indeed in two-dimensional
gravity with conformal matter the length of the circle (given by the zero-mode ℓ = eφ)
specifies completely the spatial geometry up to diffeomorphisms. From this naive argument
the superspace and minisuperspace should be equivalent [158] (motivations for this statement
using matrix models are also presented in [158]), but it was found in cases where the full
theory is under control that there may be corrections to the correlation functions [159].
Nonetheless the spectrum is less sensible to quantum corrections and the minisuperspace in
two dimensions is also expected to be equivalent to the semi-classical limit [159] (which can be
explicitly checked in the case of the Liouville theory), and hence one may compare the results
obtained with the complete theory. In the absence of any other controlled approximations
the minisuperspace, by its simplicity, provides a first analysis that may help to refine the
questions and give indications about the general features of the model.

From the point of view of two-dimensional CFTs each wave function found in the min-
isuperspace lifts to a primary operator [160] (additional primary operators can arise due to
the fact that the minisuperspace is blind to the winding modes around the spatial direc-
tion). This method has been used for numerous CFTs [159–166] and other two-dimensional
theories [155, 167–171], and the validity of the minisuperspace approach could be checked
in several examples where the full theory is also under control. Additional support for the
minisuperspace in the Liouville theory can be found in [153].

Hence we remove the spatial dependence of the Liouville field and we consider the back-
ground to be flat (Lorentzian) cylinder:

σ = σ(t), ĝ = η. (4.160)

With the above conditions the minisuperspace Liouville action reads

SL =
∫

dt
(
σ̇2

2
− 2πµ e2bσ

)
. (4.161)

The conjugate momentum

p =
δSL
δσ̇

= σ̇ (4.162)

is used to construct the Hamiltonian

HL = pσ̇ − L =
p2

2
+ 2πµ e2bσ. (4.163)
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Note that this Hamiltonian is correctly positive definite.
We can now proceed with the canonical quantization by doing the replacement

p = −i d
dσ
. (4.164)

Then the stationary Schrödinger equation

HLψp = 2p2ψp (4.165)

corresponds the differential equation
(

−1
2

d2

dσ2
+ 2πµe2bσ − 2p2

)
ψp = 0. (4.166)

We then do a change of variable
ℓ = ebσ (4.167)

to bring the equation to the form
(
ℓ2 d

dℓ2
+ ℓ

d
dℓ

− 4(µ̂ ℓ2 − p̂2)
)
ψp = 0 (4.168)

where
µ̂ =

πµ

b2
, p̂ =

p

b
. (4.169)

We recognize the modified Bessel equations whose solutions are

ψp(ℓ) = αpK2ip̂(2
√
µ̂ ℓ) + βp I2ip̂(2

√
µ̂ ℓ). (4.170)

The asymptotic behaviour of these functions

Iν(x) ∼∞
ex√
2πx

, Kν(x) ∼∞

√
π

2x
e−x (4.171)

requires to set βp = 0 in order to remove the exponential growth at infinity. Finally in
order to fix αp the solutions are normalized such that the incoming plane waves have unit
coefficient as σ → −∞. Using the formula

Kν(x) ∼0
Γ(ν)

2

(
2
x

)ν
+

Γ(−ν)
2

(x
2

)ν
, (4.172)

the coefficient of normalization reads

αp =
2µ̂−ip̂

Γ(−2ip̂)
. (4.173)

As a consequence the wave functions and its asymptotic form reads

ψp(ℓ) =
2µ̂−ip̂

Γ(−2ip̂)
K2ip̂(2

√
µ̂ ℓ) (4.174a)

∼0 e2ip̂σ + r0(p)e−2ip̂σ. (4.174b)

The factor r0(p) corresponds to the reflection coefficient due to the exponential wall

r0(p) =
Γ(2ip̂)

Γ(−2ip̂)
µ̂−2ip̂. (4.175)

Because of the wall wave functions with p and −p are not independent

ψ−p(ℓ) = r0(−p)ψp(ℓ). (4.176)
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In order to interpret the spectrum it is necessary to bring the theory back to the plane
(we can then do a conformal transformation to go to another background). The Hamiltonian
on the latter is given by the dilatation operator L0 + L̄0 and the associated wave functions
are solutions of

(L0 + L̄0)ψ∆ = 2∆ψ∆ (4.177)

where ∆ is the conformal weight. Through a conformal transformation the Hamiltonians on
the plane and on the cylinder are related by

L0 + L̄0 − c

12
= H0 − 1

12
, (4.178)

(the last factor corresponds to a zero-point energy), c being the central charge of Liouville
theory

c = 1 + 6Q2. (4.179)

Comparing these equations with (7.47) teaches that the conformal dimension is related to p
by

∆ =
Q2

4
+ p2. (4.180)

Moreover the states Vp = e2ipσ on the cylinder are mapped to states Va = e2aσ on the plane
where the relation between a and p is

a =
Q

2
+ ip. (4.181)

Since the Liouville theory is unitary the conformal weights should be positive, i.e. ∆ ≥
0, which implies p ∈ R+ or p ∈ i[0, Q/2) (only half of the intervals are considered as a
consequence of the reflection).

Until this point there was no restriction on the values of p. The first condition that is
imposed is unitarity, i.e. ∆ ≥ 0, which implies p ∈ R+ or ip ∈ [0, Q/2) (only half of the
intervals are considered as a consequence of the reflection). Finally the states that form the
Hilbert space needs to be (delta-function) normalizable under the canonical inner product.
It can be seen that this condition is fulfilled only for p ∈ R

∫ ∞

−∞
dσ ψ∗

p(σ)ψp′ (σ) =
∫ ∞

0

dℓ
ℓ
ψ∗
p(ℓ)ψp′(ℓ) = π δ(p− p′), (4.182)

which moreover form a complete basis. On the other hand the inner product is infinite
for the wave functions with p ∈ [0, Q/2). Hence the states with momentum p ∈ R defines
Liouville theory: these states are naturally selected in the conformal bootstrap (see [49]
for a recent review). On the other hand the non-normalizable states have also a physical
interpretation in the context of 2d quantum gravity, as was emphasized in [44].

Finally the wave functions can be used to compute a semi-classical approximation to the
3-point structure constant C(a1, a2, a3) (see for example [155, 170]). In particular the limit
b → 0 of C(a1, a2, a3) evaluated with the following weights (to simplify the notations we
omit the hat on pi and γ but these quantities really correspond to the hatted ones of the
previous formulas).

a1 =
Q

2
+ ibp1, a2 = bγ, a3 =

Q

2
+ ibp3 (4.183)

matches the integral (assuming σ ≡ ip2 > 0)

C0(a1, a2, a3) =
∫ ∞

−∞
dσ ψbp1 (σ)e2bγσψbp3 (σ) (4.184a)

=
1
b

(πµ
b2

)−2p̃

Γ(2p̃)
∏

i

Γ
(
(−1)i2p̃i

)

Γ(2pi)
(4.184b)

where we defined
2p̃ =

∑

i

pi, p̃i = p̃− pi, i = 1, 2, 3. (4.185)
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4.5 The Mabuchi action

We recall the expressin of The Mabuchi action (4.131)

SM =
1

4π

∫
d2x

√
ĝ

{
− πχ ĝµν∂µφ∂νφ+

(
4πχ

Â
− R̂

)
φ

+
2

Â

(
1 +

Â

2
∆̂φ

)
ln

[
A

Â

(
1 +

Â

2
∆̂φ

)]}
. (4.186)

The equation of motion for φ (or for σ at fixed A) is

R =
4πχ
A

. (4.187)

It is the same equation as the one of Liouville (4.144). This means that both functionals
have constant scalar curvature as saddle point.

It was shown in [62, 63] that the Mabuchi action appears in the gravitational action of
a massive scalar field (at leading order in a small mass expansion). The properties of this
action have been further studied in [71] (see also [64, 67, app. F]).

It is not known whether the Mabuchi action defines a CFT but it seems unlikely to be the
case: the non-conformal matter action is not invariant by itself while the total action should
be invariant, and hence the non-invariance of the matter action should be compensated by
the transformation of the Mabuchi action.

4.5.1 Duality between the Liouville and Mabuchi actions

Here we show that the kinetic/potential terms of Liouville (with cosmological constant)
(4.89) and Mabuchi (4.131) actions are separately dual under a Legendre transformation
(but the full actions are not) [147]. The kinetic and potentials terms of the Liouville action
in Lorentzian signature are

TL[σ] = −σ∆̂σ +QR̂σ, VL[σ] = −2πµe2bσ. (4.188)

Let
TM [σ, σ̂] = σσ̂ − TL = σσ̂ + σ∆̂σ −QR̂σ. (4.189)

One has
δTM
δσ

= σ̂ + 2∆̂σ −QR̂ (4.190)

TM is then extremal for

∆̂σ =
1
2

(
QR̂− σ̂

)
⇐⇒ σ =

1
2

(
Q∆̂−1R̂− ∆̂−1σ̂

)
(4.191)

Let’s do a change of variable:
σ̂ = 2∆̂ϕ+ ǫR̂ (4.192)

Then one has
σ =

1
2

(
(Q − ǫ)∆̂−1R̂− 2ϕ

)
(4.193)

Plugging this value back gives

TM = −ϕ∆̂ϕ− ǫ+ 3Q
2

Rϕ+
Q− ǫ

2
∆̂−1R̂∆̂ϕ+

(Q− ǫ)(ǫ+ 3Q)
4

R̂∆̂−1R̂. (4.194)

Taking ǫ = Q
2 gives

TM = −ϕ∆̂ϕ−QRϕ (4.195)
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Next concerning the potential term one has

VM = σσ̂ − VL = σσ̂ + 2πµe2bσ (4.196)

for which the variation reads

σ̂ = −4πµb e2bσ =⇒ σ =
1
2b

ln
(

− σ̂

4πµb

)
. (4.197)

Plugging back provides the expression

VM =
σ̂

2b

[
ln
(

− σ̂

4πµb

)
− 1
]

(4.198)

Setting
σ̂

4πµb
= −A

Â

(
1 +

Â

2πχ
∆̂ϕ

)
(4.199)

yields finally

VM = −2πµ
A

Â

(
1 +

Â

2πχ
∆̂ϕ

)[
ln
A

Â

(
1 +

Â

2πχ
∆̂ϕ

)
− 1

]
. (4.200)

Adding together TM and VM one recognizes the Mabuchi action (4.131) in Euclidean
signature after identifying

ϕ = φ, −2µ =
χ

A
. (4.201)

This is the same relation as in (4.148) with b = 1. We will find again this relation in
our minisuperspace analysis in chapter 7. The value for φ̂ corresponding to the Legendre
transformations of the kinetic and potential terms are not the same: as a consequence it is
not possible to transform the full action.

Note that if one works with the unscaled Mabuchi action then we obtain the following
identifications:

b2 = πχ, 2µ =
1
A
. (4.202)

which also corresponds to (4.148) (but now with b 6= 1).

4.5.2 Hamiltonian

In this section we will compute the Hamiltonian of the Mabuchi action. This will be useful
for the minisuperspace computations in chapter 7. In this perspective we will introduce a
parameter α to enable us to consider both the unscaled and the scaled actions simultaneously:
α = 1 corresponds to (4.131) (with the boundary term) and α = (πχ)−1 to (7.9). Moreover
we introduce a parameter ǫ = ±1 used to consider both Euclidean and Lorentzian signatures.
We consider the Mabuchi action where the Liouville field has been replaced using (4.118)
and where we add a boundary term which is a total derivative:

SM =
ǫ

4π

∫
d2x

√
ĝ

[
− πχα ĝµν∂µφ∂νφ+

(
4πχ

Â
− R̂

)
φ

+
2

Âα

(
1 +

Âα

2
∆̂φ

)(
ln
A

Â

(
1 +

Âα

2
∆̂φ

)
− 1

)]
, (4.203)

The strategy for computing the Hamiltonian is to perform first an ADM decomposi-
tion [172] of the metric in order to extract the time derivative of the Kähler potential before
using the Ostrogradski formalism [173] since the action is of second order in time. Note
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that the background metric ĝ is fixed and for this reason its components are not dynamical.
In particular it is not necessary to decompose the curvature R̂ and to apply the full ADM
formalism.

The ADM decomposition of the metric is

ĝµν = e2ρ

(
ǫN2 +M2 M

M 1

)
, ĝµν =

ǫ e−2ρ

N2

(
1 −M

−M ǫN2 +M2

)
. (4.204)

where ρ, N and M are functions of the coordinates (note that the matrix part is flat). This
decomposition is valid locally and the topology is hidden in the coordinates [6] and in the
values of the conformal factor ρ. In particular the latter has to be singular if χ 6= 0 since

4πχ =
∫

d2x
√
ĝ R̂ =

∫
d2x∂2ρ (4.205)

where ∂2 is the flat Laplacian. Nonetheless we will not work directly with its value and the
fact that it contains singularities does not matter.

The square root of the metric determinant is
√

|ĝ| = Ne2ρ. (4.206)

The Laplacian is

∆̂ =
ǫ e−2ρ

N2

[
∂2
τ + (ǫN2 +M2) ∂2

σ − 2M∂τ∂σ +
(
MN ′

N
−M ′ − Ṅ

N

)
∂τ

+
(

2(ǫN ′N +M ′M) +
MṄ

N
− (ǫN2 +M2)

N ′

N
− Ṁ

)
∂σ

]
. (4.207)

The kinetic term of the action (4.203) is

− ǫπχα

2

√
ĝ ĝµν∂µφ∂νφ = −πχα

2N

(
φ̇2 − 2Mφ̇φ′ + (ǫN2 +M2)φ′2) . (4.208)

It is not needed to decompose the curvature R̂ because only φ is dynamical, not the back-
ground metric ĝ.

Now one can apply the Ostrogradski formalism. The independent variables are {φ, φ̇}
with conjugate momenta {P , P}

P =
∂L

∂φ̈
, P =

∂L

∂φ̇
− ∂τP − ∂σ

∂L

∂φ̇′ (4.209)

and the Hamiltonian reads
H = Pφ̇+ Pφ̈− L (4.210)

where the Lagrangian is normalized such that

S =
1

2π

∫
d2xL. (4.211)

Note that one could also consider φ′ to be an independent variable. Then the last term in P
would correspond to the derivative of its conjugate momentum. The resulting Hamiltonian
would then be equivalent to the one obtained below upon integration by part.

The momentum P is

P =
1

2N
ln
A

Â

(
1 +

Âα

2
∆̂φ

)
. (4.212)
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Using the relation (7.3) one recognizes that the RHS of P is proportional to σ and for
this reason one can perform a canonical transformation to invert the roles of position and
momentum (after having computed the Hamiltonian)

NP = σ, φ̇ = −NΠ. (4.213)

Moreover the above expression can be used to solve for φ̈ in terms of the canonical variables
using (4.207).

The second momentum P is

P = πχαΠ − 1
N
σ̇ +

2M
N

σ′ + πχα
M

N
φ′ − 1

N

(
MN ′

N
−M ′

)
σ. (4.214)

Ultimately one finds the Hamiltonian

H =
πχα

2
N Π2 −N ΠP + 2M Πσ′ +

(
M ′ − MN ′

N
− Ṅ

N

)
Πσ + πχαM Πφ′

+
πχα

2
(ǫN2 +M2)φ′2 − 1

N
(ǫN2 +M2)φ′′σ

+
1
N

(
Ṁ + (ǫN2 +M2)

N ′

N
− 2(ǫNN ′ +MM ′) − MṄ

N

)
φ′σ

− ǫN

2
e2ρ

(
4πχ

Â
− R̂

)
φ+

ǫN

Aα
e2ρe2σ − 2ǫN

Âα
e2ρσ.

(4.215)

In view of the minisuperspace analysis of chapter 7 it is interesting to look at what
happens in Lorentzian signature (ǫ = −1) and consider the case where there is no spatial
dependence. Going to the flat gauge

N = 1, M = 0, ρ = 0, (4.216)

but keeping R̂, χ 6= 0 for comparison, one finds

H =
πχα

2
Π2 − ΠP +

1
2

(
4πχ

Â
− R̂

)
φ+

2

Âα
σ − 1

Aα
e2σ (4.217)

For α = 1 this Hamiltonian has no particularly meaningful limit R̂, χ −→ 0, and in particular
it contains a term linear in σ which could lead to an instability. However for α = (πχ)−1

one finds

H =
Π2

2
− PΠ +

1
2

(
4πχ

Â
− R̂

)
φ+

2πχ

Â
σ − πχ

A
e2σ. (4.218)

an expression we will derive again in (7.41) in the minisuperspace approximation. Taking
the limit R̂, χ −→ 0 gives the minisuperspace Mabuchi Hamiltonian (7.12).
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Chapter 5

Massive matter on a Riemann
surface with boundaries

In this chapter, we study the gravitational action of a massive scalar field X on a two-
dimensional Riemann surface with boundaries. The action for the scalar field is given by

Sm[g,X ] =
1
2

∫
d2x

√
g
(
gµν∂µX∂νX +m2X2

)
(5.1)

As already mentioned earlier, the massive scalar field coupled to gravity on a manifold with-
out boundary has been studied in [63] and [70] and we want to study how these results get
modified when the two-dimensional Riemann surface M has boundaries ∂M. A priori, two
things could happen: the corresponding gravitational actions could get additional boundary
contributions, and the bulk gravitational Lagrangian at a point x could explicitly depend
on the geodesic distances between x and the boundaries. We will indeed observe both of
these. These results have been published in [78].

In the following we will place ourselves in conformal gauge

g = e2σ ĝ (5.2)

and study the dynamics of the Liouville mode. We will ignore the contribution of the ghost
that arises from this gauge fixing (see chapter 4). We denote by ∆ the negative Laplace-
Beltrami operator (so that its eigenvalues are positive):

∆ = −∆scalar = − 1√
g
∂µ(

√
ggµν∂ν) (5.3)

It is related to ∆̂ by
∆ = e−2σ∆̂ (5.4)

When the manifold has no boundary the action may be rewritten as

Sm[g,X ] =
1
2

∫
d2x

√
gX
(
∆ +m2

)
X (5.5)

A key point for the following will be to impose conditions under which this equality still
holds.

5.1 Integration on a surface with boundaries

5.1.1 Boundary integrals

Integration by parts on a two-dimensional manifold with boundaries generates boundary
terms. The natural way to implement this is via Stoke’s theorem for the integration of an
exact 2-form.
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Let α = αµdxµ be a 1-form on M and α̂ its restriction to ∂M (i.e. the pull-back of α
under the inclusion map of ∂M into M): α̂ = αµdx̂µ where the dx̂µ are the "projections"
of the dxµ on the tangent space to ∂M. We define the (not necessarily normalized) tangent
vector tµ as

dx̂µ = tµdl (5.6)

where dl is the proper length one-form on ∂M. Thus

α̂ = αµt
µdl. (5.7)

As an example, let M be the unit sphere S2, with standard coordinates (θ, ϕ), with the
polar cap θ ≤ θ0 removed. Then ∂M is the circle at θ = θ0, so that

dθ̂ = 0, dϕ̂ = dϕ. (5.8)

As dl = sin θ dϕ the tangent vector components are

tθ = 0, tϕ =
1

sin θ
. (5.9)

Integrating the 1-form α̂ over ∂M then yields
∫

∂M
α̂ =

∫

∂M
αµdx̂µ =

∫

∂M
αµt

µ dl , (5.10)

without the need to introduce a metric. However, sometimes, the 1-form α is the Hodge
dual of some other 1-form β, i.e. α = ∗β, and this requires a metric. Indeed, we have

∗dxµ = gµνǫνρdxρ = gµν
√
g ǫ̂νρdxρ, (5.11)

where ǫ̂12 = 1, ǫ̂21 = −1. Then ∗β = βµ
∗dxµ = βµg

µνǫνρ dxρ and

∗̂β = βµg
µνǫνρ dx̂ρ = βµg

µνǫνρt
ρ dl. (5.12)

One then defines the not necessarily normalized normal vector nµ as

nµ = gµνǫνρt
ρ = gµν

√
g ǫ̂νρt

ρ. (5.13)

which implies ∗̂β = βµn
νdl. Note that gµνnµtν = ǫµνt

µtν = 0, as expected. For the above
example of the sphere with the polar cap removed we have gϕϕ = 1

sin2 θ ,
√
g = sin θ and

nθ = sin θ0, tϕ = 1, nϕ = 0. (5.14)

Integration by parts follows from Stoke’s theorem,
∫

M
dγ =

∫

∂M
γ̂ , (5.15)

for any one-form γ. We are mostly interested in dγ being a kinetic term, i.e. γ = φ ∗dφ =
∗(φdφ). Then dγ = dφ∧ ∗dφ+φd ∗dφ. We have dφ∧ ∗dφ = dx1dx2 √

g gµν∂µφ∂νφ, so that

φd∗dφ = φ∂µ(gµν
√
g ∂νφ)dx1 ∧ dx2 = −dx1 ∧ dx2√

g φ∆φ , (5.16)

Then Stoke’s theorem gives the following integration by parts formula
∫

M
d2x

√
g gµν∂µφ∂νφ =

∫

M
d2x

√
g φ∆φ +

∫

∂M
dl nµφ∂µφ . (5.17)

dl and na are related to dl̂ and n̂a by

dl = eσdl̂, na = e−σn̂a. (5.18)
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We then also have
∂n ≡ na∂a = e−σ∂n̂ (5.19)

One sees that

dl ∂nδσ = eσdl0 e−σ∂0
nδσ = dl0 ∂0

nδσ = δ(dl0 ∂0
nσ) = δ(dl ∂nσ) (5.20)

which is useful to obtain the expression of the Liouville action on a Riemann surface with
boundaries.

5.1.2 Boundary conditions

In the presence of boundaries, we have to impose some boundary conditions. Our choice will
be guided by two requirements: we want ∆ +m2 to be hermitian and we want to preserve
the fact that ∫

M
d2x

√
g∆f ≡

∫

M
d2x
√
ĝ ∆̂f = 0. (5.21)

The hermiticity condition

(ϕ1,∆ϕ2) ≡
∫

M
d2x

√
g ϕ1∆ϕ2 =

∫

M
d2x

√
g ∆ϕ1 ϕ2 ≡ (∆ϕ1, ϕ2) (5.22)

implies that the boundary term
∫

∂M
dl nµ (∂µϕ1ϕ2 − ϕ̄1∂µϕ2) , (5.23)

must vanish. As usual, this leads to two possible choices of boundary conditions: either ϕ = 0
(Dirichlet) or na∂aϕ = 0 (Neumann) on the boundary. Actually, the modified Neumann
(Robin) conditions na∂aϕ = c ϕ with real c are also possible. Our second condition reads

0 =
∫

M
d2x

√
g∆f =

∫

∂M
dl nµ∂µf , (5.24)

selecting the Neumann boundary conditions. In particular, if the massive matter field(s) X
obey these boundary conditions, one may freely integrate by parts in the matter action and
(5.5) still holds for a manifold M with boundaries. From now on, we will always assume
that the matter field(s) obey Neumann boundary conditions. What about the Kähler field
φ and the conformal factor σ? It follow from (4.118) that φ also must satisfy Neumann
conditions (in the metric ĝ). Indeed, the area should be given by A =

∫ √
ĝ e2σ which, by

(4.118) implies that 0 =
∫ √

ĝ ∆̂φ which is possible only if n̂a∂aφ = 0 on ∂M. This same
relation (4.118) also implies ∂nσ = −A

4 e
−2σ∂n(∆̂φ), showing that it is not compatible to

impose Neumann boundary conditions also on σ.

5.2 The gravitational action

Following the notations of chapter 3 we call ϕn and λn the orthonormalised eigenfunctions
and eigenvalues of the hermitian (thanks to the boundary condition) differential operator
appearing in Sm:

(∆ +m2)ϕn = λnϕn ,

∫
d2x

√
g ϕnϕm = δnm , nµ∂µϕm = 0 on ∂M. (5.25)

Since ∆ + m2 is real, one may choose the eigenfunctions ϕn to be real, which we will
always assume (unless an obvious complex choice has been made, like the standard spherical
harmonics on the round sphere). We take the indices n to be n ≥ 0 with n = 0 referring to
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the lowest eigenvalue. In particular, the Laplace operator always has a constant zero-mode,
ϕ0 = 1√

A
and thus λ0 = m2, since this constant obviously obeys the Neumann boundary

condition.
As explained in chapter 3 the gravitational action is given by

Sgrav[ĝ, g] =
1
2

ln
det(∆ +m2)

det(∆̂ +m2)
. (5.26)

In the massless case, we need to exclude the zero-mode. Using the regularization of deter-
minants in terms of the zeta function (3.82) we finally arrive at

Sgrav[ĝ, g] = −1
2

(
ζ′
g(0) + ζg(0) ln µ̂2

)
+

1
2

(
ζ′
ĝ(0) + ζĝ(0) ln µ̂2

)
. (5.27)

where µ̂ is some arbitrary mass scale. It is important to notice that this formula expressing
the gravitational action in terms of the zeta function is true whether the Riemann surface
has a boundary or not. Of course, the zeta function for a manifold with boundary will have
some properties that differ from the case without boundary. Formally, the zeta functions are
always defined by (3.60), but the properties of the manifold are encoded in the eigenvalues
λn that appear in the sum.

The strategy of [63] and [70], that we will also follow here, was to determine the infinites-
imal change of the zeta functions from the infinitesimal change of the eigenvalues λn under
an infinitesimal change of the metric, and then to integrate this relation to get Sgrav[ĝ, g].
The change of the eigenvalues is obtained from (almost) standard quantum mechanical per-
turbation theory, as we discuss next.

5.2.1 Perturbation theory

We want to study how the eigenvalues λn and eigenfunctions ϕn change under an infinites-
imal change of the metric. Since g = e2σ ĝ, the Laplace operator ∆ and hence also ∆ + m2

only depend on the conformal factor σ and on ĝ: ∆ = e−2σ∆̂ and thus under a variation δσ
of σ one has

δ∆ = −2δσ∆̂ ⇒ 〈ϕk|δ∆|ϕn〉 = −2(λn −m2)〈ϕk|δσ|ϕn〉, (5.28)

where, of course, 〈ϕk|δσ|ϕn〉 =
∫

d2x
√
g ϕkδσϕn. One can then apply standard quantum

mechanical perturbation theory. The only subtlety comes from the normalisation condition
in (5.25) which also gets modified when varying σ [63, 132]: the scalar product in the metric
g + δg where δg = 2δσg is related to the one in the metric g by

〈χ|ψ〉g+δg = 〈χ|ψ〉g + 2〈χ|δσ|ψ〉g. (5.29)

One finds

δλn = −2(λn −m2)〈ϕn|δσ|ϕn〉 , (5.30)

δϕn = −〈ϕn|δσ|ϕn〉ϕn − 2
∑

k 6=n

λn −m2

λn − λk
〈ϕk|δσ|ϕn〉ϕk . (5.31)

The first term in (5.31) comes from the modification of the normalisation condition.
Let us insists that this is first-order perturbation theory in δσ, but it is exact in m2.

Note the trivial fact that, since λ0 = m2, one consistently has

δλ0 = 0. (5.32)

57



5.2.2 Variation of the determinant

As mentioned above, in order to compute Sgrav[ĝ, g] as given by (5.27), we will compute
δζ′(0) ≡ δζ′

g(0) and δζ(0) ≡ δζg(0) and express them as "exact differentials" so that one can
integrate them and obtain the finite differences ζ′

g2
(0) − ζ′

g1
(0) and ζg2 (0) − ζg1 (0).

From (5.30) one immediately gets, to first order in δσ,

ζg+δg(s) =
∑

n≥0

1
(λn + δλn)s

= ζg(s) + 2s
∑

n≥0

λn −m2

λs+1
n

〈ϕn|δσ|ϕn〉 , (5.33)

As noted before, δλ0 = 0 and, hence, there is no zero-mode contribution to the second
term and one could just equally well rewrite the following results in terms of the ζ̃-functions
defined by excluding the zero-mode [70]. We get

δζ(s) = 2s
∫

d2x
√
g δσ(x)

[
ζ(s, x, x) −m2ζ(s+ 1, x, x)

]
, (5.34)

As we have seen in chapter 3, ζ(s, x, x) has a pole at s = 1 for every x. For x in the
bulk, this pole is the only singularity. However, as x goes to the boundary there could be,
a priori, additional singularities for other values of s, in particular for s = 0. Keeping this
in mind we find

δζ′(0) = 2

{
lim
s→0

[
1 + s

d
ds

]
−m2 lim

s→1

[
1 + (s− 1)

d
ds

]} ∫
d2x

√
g δσ(x)ζ(s, x, x)

δζ(0) = 2

{
lim
s→0

s−m2 lim
s→1

(s− 1)

} ∫
d2x

√
g δσ(x)ζ(s, x, x) . (5.35)

Our goal now will be to compute
∫

d2x
√
g δσ(x)ζ(s, x, x) on a Riemann surface with bound-

aries and extract its behaviour as s → 0 and s → 1. More generally, we will compute∫ √
g f(x)ζ(s, x, x) where f is some sort of "test function". Once we have determined these

quantities, we will get the variation of the gravitational action under an infinitesimal change
of metric as

δSgrav = −1
2
δζ′(0) − 1

2
δζ(0) ln µ̂2

= −
{

lim
s→0

[
1 + s

(
d
ds

+ ln µ̂2

)]
−m2 lim

s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]}

∫
d2x

√
g δσ(x)ζ(s, x, x) (5.36)

5.3 Green’s functions and heat kernel on a manifold
with boundaries

In this section we discuss how the heat kernel and Green’s functions discussed in chapter 3
are modified when we add boundaries to a two-dimensional Riemann surface. We assume
that the Riemann surface M has a boundary ∂M and that we have imposed Neumann
boundary conditions. We notationally distinguish between the quantities on compact man-
ifolds without boundaries and those on manifolds with boundaries by writing the former in
curved letter (K, G). We first see how it works on simple examples before generalizing.

5.3.1 Examples

Before going on, it is useful to discuss some very simple examples of manifolds with bound-
aries: the one-dimensional interval, the two-dimensional cylinder which is the product of the
interval and a circle, and the two-dimensional half-sphere.
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The one-dimensional interval

The simplest example is a one-dimensional manifold that is just the interval M = [0, π]
with trivial metric and ∆ = −∂2

x. We also take m = 0. The normalized eigenfunctions that
satisfy the Neumann boundary conditions are

ϕ0 =
1√
π
, ϕn(x) =

√
2
π

cosnx, n ∈ N
∗ (5.37)

and the eigenvalues are λn = n2. Then we formally have for any function f(λ):

∞∑

n=0

f(n2)ϕn(x)ϕn(y) =
1
π

[
f(0) +

∞∑

n=1

f(n2)2 cosnx cosny

]

=
1

2π

∞∑

n=−∞
f(n2)

[
ein(x−y) + ein(x+y)

]
(5.38)

For f = 1 this is just the completeness relation (3.8) with the right-hand side equal to
δ(x− y) + δ(x+ y) where the δ are 2π-periodic Dirac distributions, i.e. defined on the circle
S1 = [0, 2π]. With x, y ∈ M \ ∂M =]0, π[, x + y never is 0 mod 2π and the δ(x + y)
never contributes. Actually, x+ y = x− yC , where yC = −y is the image point of y due to
the boundary at y = 0. One would also expect additional image points due to the second
boundary, but because of the 2π periodicity, these additional image points are equivalent to
y and yC . If y = yB is on the boundary, say y = 0, then the image point yC coincides with
y (possibly mod 2π) and we get 2δ(x − yB) = 2δ(x). But

∫ π
0

dx δ(x) = 1
2 and in any case

the integral of the right-hand side of (3.8) correctly gives 1.
If we let f(n2) = 1

n2 , the relation (5.38) expresses the Green’s function GI on the interval
with Neumann boundary conditions in terms of a sum of Green’s functions GS1 on the circle

GI(x, y) = GS1 (x, y) + GS1 (x,−y) , (5.39)

a construction well-known as the method of images.
Similarly, if we let f(n2) = e−tn2

we get a relation that expresses the heat kernel on the
interval KI(t, x, y) as the sum of two heat kernels KS1 on the circle, one at x, y and the
other at x,−y:

KI(t, x, y) = KS1 (t, x, y) + KS1 (t, x,−y) . (5.40)

Actually, the sums can be expressed in terms of the theta function

θ3(ν|τ) =
∞∑

n=−∞
qn

2

e2πinν , q = eiπτ (5.41)

as

KS1(t, x, y) =
1

2π
θ3

(
x− y

2π

∣∣i t
π

)
. (5.42)

The small-t asymptotics is obtained by applying Poisson resummation, or equivalently the
modular transformation of θ3 under τ → − 1

τ ,

θ3(ν|τ) = (−iτ)−1/2e−iπν2/τθ3

(
ν

τ

∣∣− 1
τ

)
, (5.43)

which yields

KS1 (t, x, y) =
1√
4πt

∞∑

n=−∞
e−(x−y+2πn)2/(4t) , (5.44)

and which expresses the heat kernel on the circle as a sum over all geodesics going from x
to y winding n times around the circle and having length squared (x − y + 2πn)2. This is
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of course the expected result for the diffusion (Brownian motion) on a circle. For small t,
the leading term in KS1 (t, x, y) always is the n = 0 term. For KS1(t, x,−y), however, the
leading term is n = 0 if x+ y < π, while it is n = −1 if π < x+ y. Thus

KI(t, x, y) ∼t→0
e−(x−y)2/(4t)

√
4πt

+
e−(x+y)2/(4t)

√
4πt

, for 0 ≤ x+ y ≤ π,

KI(t, x, y) ∼t→0
e−(x−y)2/(4t)

√
4πt

+
e−(2π−x−y)2/(4t)

√
4πt

, for π ≤ x+ y ≤ 2π . (5.45)

Of course, only the coefficient a0√
4π

= 1√
4π

appears, since all other ar involve the curvature
and vanish in our present example. In any case, we see that for small t, the first term is
exponentially small unless x is close to y within a distance of order

√
t. Similarly, the second

term is exponentially small unless x + y (or 2π − x − y) is of order
√
t which is possible

only if x and y both are close to the boundary at 0 (or at π), and thus also close to each
other, within a distance of order

√
t. Thus, for x or y in the bulk, the second term does

not contribute to the small-t expansion. It is only if both points go to one and the same
boundary that the second term becomes important. We see that we can just as well write
this small-t asymptotic expansion as

KI(t, x, y) ∼t→0
e−(x−y)2/(4t)

√
4πt

+
∑

∂Mi

e−(x−y(i)

C
)2/(4t)

√
4πt

, (5.46)

where the sum is over the different boundary components and y(i)
C denotes the image ("con-

jugate") point of y with respect to the boundary component ∂Mi, i.e. y
(1)
C = −y and

y
(2)
C = 2π − y. While the use of image points is familiar from solving the Laplace equation

for simple geometries in the presence of boundaries, we have seen that we should actually
think of (x − y

(i)
C )2 as the length squared of the geodesic from x to y that is reflected once

at the boundary ∂Mi. Geodesics with multiple reflections necessarily are much longer and
give exponentially subleading contributions. Of course, if one uses the exact expression
(5.44) for KS1 (t, x, y) + KS1 (t, x,−y) the heat kernel of the interval is expressed as a sum
over all geodesic paths from x to y being reflected an arbitrary number of times at the two
boundaries.

The cylinder

The two-dimensional cylinder is just an interval times a circle, I × S1. Thus, if we choose
the interval of length a and the circle of circumference 2b, the normalized eigenfunctions of
the Laplace operator satisfying the Neumann boundary conditions are

ϕ0,m(x1, x2) =
eiπmx2/b

√
2ab

, ϕn,m(x1, x2) =
eiπmx2/b

√
ab

cos
nπx1

a
, m ∈ Z , n ∈ N

∗ . (5.47)

The heat kernel for the Laplace operator then simply is the product of the heat kernel for
the circle and the heat kernel of the interval as just given in the previous example, with the
obvious replacements π → a, b :

Kcyl(t, x1, x2, y1, y2) =
∞∑

m=−∞

∞∑

n=0

exp
(

−t
(
π2n2

a2
+
π2m2

b2

))
ϕn,m(x1, x2)ϕ∗

n,m(y1, y2)

=
1

4ab
θ3

(
x2 − y2

2b

∣∣iπt
b2

)[
θ3

(
x1 − y1

2a

∣∣iπt
a2

)
+ θ3

(
x1 + y1

2a

∣∣iπt
a2

)]

= Ktorus(t, x1, x2, y1, y2) + Ktorus(t, x1, x2,−y1, y2) , (5.48)
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with the corresponding torus obviously having periods 2a and 2b. Poisson resummation or
equivalently the modular transformation formula for θ3 yields

Kcyl(t, x1, x2, y1, y2) =
1

4πt

∞∑

n,m∈Z

exp
(

− (x1 − y1 + 2na)2 + (x2 − y2 + 2mb)2

4t

)

+ (y1 → −y1). (5.49)

Again, this expresses the heat kernel as a sum over all geodesics going from x to y winding
m times around the circle direction of the cylinder and being reflected 2n times (for the first
term) or 2n+ 1 times (for the second term) at the boundaries of the cylinder.

The upper half sphere

Our last example involves a curved two-dimensional manifold with a boundary: let M be
the upper half of the standard round sphere of unit radius, i.e. M = S2

+, parametrized by
θ ∈ [0, π2 ] and ϕ ∈ [0, 2π]. Then the boundary ∂M is just the circle at θ = π

2 and the normal
derivative is na∂a = ∂θ. The eigenfunctions of the Laplace operator ∆ on the sphere S2 are
the spherical harmonics Y ml and they still satisfy

∆Y ml = l(l + 1)Y ml (5.50)

on S2
+. However, not all of them satisfy the Neumann boundary condition. The parity of

the Y ml is (−1)l, so that

Y ml (θ, ϕ) = (−1)lY ml (π − θ, ϕ+ π) = (−1)l−mY ml (π − θ, ϕ). (5.51)

It follows that Y ml is even (resp. odd) under reflection by the equator at θ = π
2 if l − m is

even (resp. odd), and hence satisfies Neumann (resp. Dirichlet) conditions at θ = π
2 . Thus,

for each l, there are l + 1 allowed values of m. It follows for even l −m that
∫

S2
+

¯Y m1

l1
Y m2

l2
=

1
2

∫

S2

¯Y m1

l1
Y m2

l2
=

1
2
δl1l2δm1m2 . (5.52)

We see that the orthonormal eigenfunctions ϕn of the Laplace operator on M obeying the
boundary conditions simply are the

√
2Y ml with l−m even. It also follows from (5.51) that

Y ml (θ, ϕ) + Y ml (π − θ, ϕ) =

{
0 if l−m odd
2Y ml (θ, ϕ) if l−m even.

(5.53)

Thus we have for any function f(λ) the formal relation

∑

l,m
l−m even

f (l(l + 1))
√

2Y ml (θ, ϕ)
√

2Y ml (θ′, ϕ′) =
∑

l,m

f (l(l + 1))Y ml (θ, ϕ)

× (Y ml (θ′, ϕ′) + Y ml (π − θ′, ϕ′)) (5.54)

where it is of course understood that l ≥ 0 and |m| ≤ l. If we simply take f = 1, this is
just the completeness relation, with it’s right-hand side being

δ(cos θ − cos θ′)δ(ϕ− ϕ′) + δ(cos θ + cos θ′)δ(ϕ − ϕ′). (5.55)

Here, the first term is just 1√
g δ(x − y) while the second δ is 1√

g δ(x − yC), where yC =
(π − θ′, ϕ′) is the "image point" of y = (θ′, ϕ′). As for the interval and the cylinder, this
image point is always outside of M, except if y is on the boundary. In the latter case both
delta functions contribute equally and one has 2δ(cos θ)δ(ϕ − ϕ′) which correctly gives 1
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when integrated over S2
+. This shows again that the completeness relation (3.8) continues

to hold for x or y on the boundary.
If we let f (l(l+ 1)) = 1

l(l+1)+M2 in (5.54) (we temporarily denote the mass by M to avoid
any confusion with the quantum number m) this relation expresses the Green’s functions
of ∆ + M2 on the upper half sphere S2

+ in terms of a sum of two Green’s function on the
sphere, one at x and y and the other at x and yC :

GS2
+

(θ, ϕ; θ′, ϕ′) = GS2(θ, ϕ; θ′, ϕ′) + GS2 (θ, ϕ;π − θ′, ϕ′). (5.56)

An analogous relation holds for the G̃ when the zero-mode is excluded, as well as for G̃(0)

when M = 0 and the zero-mode is excluded. It is interesting to study the short-distance
singularity of this Green’s function. In two dimensions, the short-distance singularity of
the Green’s function is logarithmic, and one has e.g. G̃(0)

S2 (θ, ϕ; θ′, ϕ) ∼ − 1
4π ln(θ − θ′)2 as

θ → θ′. Then, on the half sphere, the singularity as θ → θ′ for any (θ′, ϕ′) /∈ ∂M is given
by this same logarithmic singularity, since G̃(0)

S2 (θ, ϕ;π − θ′, ϕ) is non-singular. However, if

(θ′, ϕ′) ∈ ∂M, i.e. θ′ = π
2 , then the short-distance singularity of G̃(0)

S2
+

is twice as large, i.e.

− 1
2π ln(θ − θ′)2, in agreement with the factor 2 that accompanied the δ(x− yB).

Finally, taking f(λ) = e−tλ, we get the corresponding relation between the heat kernels:

KS2
+

(t, θ, ϕ; θ′, ϕ′) = KS2 (t, θ, ϕ; θ′, ϕ′) + KS2 (t, θ, ϕ;π − θ′, ϕ′). (5.57)

5.3.2 The heat kernel continued

As it appeared from the previous examples, in simple geometries, the Green’s functions and
the heat kernel can be obtained from the corresponding Green’s functions or heat kernels
on a "bigger" manifold without boundary, by a method of images. In all three cases we have
seen that

K(t, x, y) = K(t, x, y) + K(t, x, yC) , (5.58)

where K is the heat kernel on the "bigger" compact manifold and yC the "image point" of
y. However, we have also seen in the example of the interval that the leading term in the
asymptotic small-t expansion to be used for K(t, x, yC) differs depending on whether x and
y are close to one or the other boundary. Thus the small-t asymptotic expansion has the
following form

K(t, x, y) ∼ e−m2t

4πt


e−ℓ2(x,y)/4t

∑

k≥0

tkak(x, y) +
∑

∂Mi

e−ℓ2(x,y
(i)

C
)/4t

∑

k≥0

tkã
(i)
k (x, y(i)

C )


 .

(5.59)
Indeed, for m = 0, the heat kernel describes the diffusion (Brownian motion) of a particle
on the manifold from x to y. On a flat manifold, this is given as a sum over the geodesic
paths from x to y as 1

4πte
−ℓ2

(r)(x,y)/(4t), where ℓ(r)(x, y) is the geodesic length of the rth path.
In particular, if the manifold has boundaries, there are (possibly infinitely) many geodesic
paths that involve one or several reflections at the boundaries. We write ℓi(x, y) for the
length of the geodesic path from x to y that involves exactly one reflection at the boundary
component ∂Mi. Moreover, on a curved manifold, each 1

4πte
−ℓ2

(r)(x,y)/(4t) gets multiplied
by a power series in t with coefficients that can be determined order by order from the
differential equation (3.49), see e.g. [174]. For small t the leading terms can involve at most
one reflection, resulting indeed in the form (5.59), with ℓ2(x, y(i)

C ) replaced by e−ℓ2
i (x,y)/4t.

However, for small t, the terms involving e−ℓ2
i (x,y)/4t with one reflection at ∂Mi can only

contribute if the points x and y are close to the boundary ∂Mi, and close to each other,
within a distance ≃

√
t. As t → 0, one zooms in close to the boundary which thus becomes

flat. Now for a flat boundary, the length of the geodesic from x to y involving one reflection
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at ∂Mi is the same as the length of the geodesic from x to the "mirror" image point y(i)
C and

e−ℓ2
1(x,y)/4t ≃ e−ℓ2(x,y

(i)

C
)/4t, with any differences at finite t being included in a redefinition

of the coefficients ã(i)
k (x, y(i)

C ) → a
(i)
k (x, y). Thus, we can rewrite (5.59) equivalently as

K(t, x, y) ∼ e−m2t

4πt


e−ℓ2(x,y)/4t

∑

k≥0

tkak(x, y) +
∑

∂Mi

e−ℓ2
i (x,y)/4t

∑

k≥0

tka
(i)
k (x, y)


 . (5.60)

For x = y we have, in particular, ℓ2
1(x, x) = 4ℓ2(x, ∂Mi), where ℓ(x, ∂Mi) denotes the

geodesic distance of the point x to the boundary ∂Mi. Thus

K(t, x, x) ∼ e−m2t

4πt




1 +

∑

k≥1

tkak(x, x)


+

∑

∂Mi

e−ℓ2(x,∂Mi)/t


1 +

∑

k≥1

tka
(i)
k (x, x)




 .

(5.61)
Here, the local expressions ar(x, x) are the same as on a compact Riemann surface without
boundary, e.g. a1(x, x) = R(x)

6 .
If we are going to take the t → 0 limit, we will find that the terms involving the boundaries

drop out, unless the point x is on the boundary ∂Mi. In this case the corresponding
boundary terms diverge for t → 0 (as do the bulk terms). Thus these boundary terms
behave as a Dirac delta concentrated on the boundary. To be more precise, let us look at
the heat kernel evaluated at x = y and integrated over the manifold against a "test function"
f : ∫

M
d2x

√
g f(x)K(t, x, x) . (5.62)

Then the first term in (5.61) just gives the usual bulk result, while each of the boundary
terms yields

e−m2t

4πt

∫

M
d2x

√
g f(x)e−ℓ2(x,∂M)/t


1 +

∑

k≥1

tka
(i)
k (x, x)


 . (5.63)

Again, for small t, the exponential forces x to be close to the boundary. We may then view
the integral as an integral over the boundary and an integral normal to the boundary. For
a given boundary point xB we can Taylor expand all quantities around this point and do
the integral in the normal direction. The leading small-t term of this normal integral then
simply is given by (using Riemann normal coordinates around xB)

e−m2t

∫ ∞

0

dxn
√
g̃(xB)f(xB)

e−(x−xB)2/t

4πt
=

e−m2t

8π

√
π

t

√
g̃(xB)f(xB) , (5.64)

where g̃ is the metric induced on the boundary, so that dxB
√
g̃(xB) = dl. The O(t0)-

corrections to this expression involve the normal derivatives of
√
g and of f . As a result the

small-t asymptotic expansion of (5.62) has the form

∫

M
d2x

√
g f(x)K(t, x, x) =

1
4πt

[∫
d2x

√
g(x)f(x) +

√
πt

2

∑

i

∫

∂Mi

dl f(x) + O(t)

]
.

(5.65)
The leading small-t singularity ∼ t−1 is given by the usual bulk term, while the boundary-
terms yield subleading singularities ∼ t−1/2.

The expansion (5.65) can be generalised to all Laplace type operators using similar
arguments [124, 130].
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5.4 Local zeta functions and Green’s function at coin-
ciding points

Recall that local versions of the zeta functions were defined in (3.61) as

ζ(s, x, y) =
∑

n≥0

ϕn(x)ϕn(y)
λsn

.

Note that ζ(1, x, y) = G(x, y). They are related to the heat kernel by

ζ(s, x, y) =
1

Γ(s)

∫ ∞

0

dt ts−1K(t, x, y) . (5.66)

Of course, this formula involves the heat kernel for all values of t, not just the small-t
asymptotics. However, for s = 0,−1,−2, . . ., 1

Γ(s) has zeros and the value of ζ(s, x, y) is
entirely determined by the singularities of the integral over t that arise from the small-t
asymptotics of K. As shown above, the latter is given by local quantities on the Riemann
surface. In particular, for any point not on the boundary of M, we have

ζ(0, x, x) =
R(x)
24π

− m2

4π
, x 6= ∂M . (5.67)

On the other hand, the values for s = 1, 2, 3, . . . or the derivative at s = 0 cannot be
determined just from the small-t asymptotics and require the knowledge of the full spectrum
of ∆ +m2, i.e. they contain global information about the Riemann surface.

Clearly, ζ(1, x, y) = G(x, y) is singular as x → y. For s 6= 1, ζ(s, x, y) provides a
regularization of the propagator. It will be useful to study in more details the singularities
of ζ(s, x, y) which occur for s → 1 and x → y. More generally, as is clear from (5.66), any
possible singularities of ζ(s, x, y) for s ≤ 1 come from the region of the integral where t is
small. Thus we define

ζsing(s, x, y) ≃ 1
Γ(s)

∫ µ−2

0

dt ts−1K(t, x, y) , (5.68)

where µ is some (arbitrary) large scale we introduce to separate the singular and non-singular
parts, so that ζ − ζsing is free of singularities. For large µ2, say µ2A ≫ 1, where A is the
area of our manifold, we can use the small-t asymptotics (5.59) or (5.60) of K to evaluate
ζsing. With t small, the e−ℓ2/4t are exponentially small unless ℓ2 . t. This means that in
the first sum we must have y = x + O(

√
t) and in the second sum y

(i)
C = x + O(

√
t). Since

a0(x, y) = a0(x, x) + O(ℓ2(x, y)R) = 1 + O(t R), and similarly for ai0(x, y(i)
C ), and since the

O(tR) terms do not contribute to the singularity at s → 1, we define ζsing(s, x, y) more
precisely as

ζsing(s, x, y) =
1

4π Γ(s)

∫ µ−2

0

dt ts−2

(
e−ℓ2(x,y)/4t +

∑

∂Mi

e−ℓ2
i (x,y)/4t

)

=
µ2−2s

4πΓ(s)

[
Es

(
ℓ2(x, y)µ2

4

)
+
∑

∂Mi

Es

(
ℓ2
i (x, y)µ2

4

)]
, (5.69)

where the exponential integral (or incomplete gamma) function is defined by

Er(z) =
∫ ∞

1

du u−re−zu ,
d
dz
Er(z) = −Er−1(z) . (5.70)

As z → 0, the Er(z) are regular for r > 1 and have a logarithmic singularity for r = 1:

E1(z) = −γ − ln z + O(z) as z → 0 . (5.71)

64



For x 6= y, the exponential integral functions are non-singular and we can set s = 1 in (5.69),

ζsing(1, x, y) =
1

4π

[
E1

(
ℓ2(x, y)µ2

4

)
+
∑

∂Mi

E1

(
ℓ2
i (x, y)µ2

4

)]
, (5.72)

with the singularity appearing as the short-distance singularity for x → y. We have :

as x → y : ζsing(1, x, y) ≃ 1
4π

[
−γ − ln

(
ℓ2(x, y)µ2

4

)
+
∑

∂Mi

E1

(
ℓ2
i (x, y)µ2

4

)]
, (5.73)

up to terms that vanish for x = y. If moreover x → y → ∂Mi, i.e. they go to one of the
boundaries, one has (again, up to terms that vanish in this limit)

as x → y → ∂Mi : ζsing(1, x, y) ≃ 1
4π

[
−2γ − ln

(
ℓ2(x, y)µ2

4

)
− ln

(
ℓ2
i (x, y)µ2

4

)]
.

(5.74)
On the other hand, for s 6= 1, we can set x = y directly in (5.69). More precisely, we

assume Re s > 1 and analytically continue in the end. Then (recall ℓ2
i (y, y) = 4ℓ2(y, ∂Mi))

ζsing(s, y, y) =
µ2−2s

4πΓ(s)

[
1

s− 1
+
∑

∂Mi

Es
(
ℓ2(y, ∂Mi)µ2

)
]
. (5.75)

If y /∈ ∂M, only the first term yields a pole at s = 1, while for y ∈ ∂M the second term
also yields the same pole and, hence, the residue is doubled:

ζsing(s, y, y) =
µ2−2s

4πΓ(s)
2

s− 1
, (y ∈ ∂M) . (5.76)

Thus, we see that ζ(s, x, x) has a pole at s = 1 with residue a0(x,x)
4π = 1

4π for x /∈ ∂M and

residue a0(x,x)
2π = 1

2π for x ∈ ∂Mi.
Just as for the heat kernel itself, we will actually encounter expressions where ζsing(s, y, y)

is multiplied by some f(y) and integrated over the manifold. Proceeding similarly to the
derivation of (5.65) we find

∫

M
d2y

√
gf(y)ζsing(s, y, y) =

µ2−2s

4πΓ(s)
1

s− 1

∫

M
d2y

√
gf(y) +

µ1−2s

8
√
πΓ(s)

1
s− 1

2

∫

∂M
dl f(y)

+
µ−2s

8πΓ(s)
1
s

∫

∂M
dl ∂nf(y) +

µ−1−2s

32
√
πΓ(s)

1
s+ 1

2

∫

∂M
dl ∂2

nf(y) + . . . (5.77)

This integrated expression exhibits poles at s = 1, 1
2 ,− 1

2 ,−1,− 3
2 , . . . and no pole at s = 0.

This infinite series of poles translates the discontinuous behaviour between (5.75) and (5.76)
due to the fact that the limits s → 1 and z → 0 of Es(z) do not commute. In particular,
one has

lim
s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]∫

M
d2y

√
g f(y) ζsing(s, y, y)

=
1

4π

(
γ − ln

µ2

µ̂2

)∫

M
d2y

√
g f(y) +

1
4
√
πµ

∫

∂M
dl F (y, µ) , (5.78)

where
F (y, µ) = f(y) +

1
2
√
πµ

∂nf(y) +
1

12µ2
∂2
nf(y) + . . . . (5.79)
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All boundary terms are at least ∼ 1
µ and we can thus restate the previous relation as

lim
s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]∫

M
d2y

√
g f(y) ζsing(s, y, y)

=
1

4π

(
γ − ln

µ2

µ̂2

)∫

M
d2y

√
g f(y) + O

(
1
µ

)
(5.80)

In any case,
ζR(s, x, y) = ζ(s, x, y) − ζsing(s, x, y) (5.81)

is free of singularities and, in particular, has finite limits as s → 1 and x → y, in one order
or the other, i.e. ζR(1, x, x) is finite and well-defined. We then let

Gζ(y) = ζR(1, y, y) +
γ

4π
= lim
s→1

(ζ(s, y, y) − ζsing(s, y, y)) +
γ

4π
(5.82)

This is an important quantity, called the "Green’s function at coinciding points". Note that
Gζ(y) contains global information about the Riemann surface and cannot be expressed in
terms of local quantities only. Combining (5.78) and (5.82) we get

lim
s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]∫

M
d2y

√
g f(y) ζ(s, y, y)

=
∫

M
d2y

√
g f(y)

(
Gζ(y) − 1

4π
ln
µ2

µ̂2

)
+

1
4
√
πµ

∫

∂M
dl F (y, µ). (5.83)

Note that the precise definition of Gζ depends on our choice of µ, as is also obvious from
this last relation since its left-hand side is µ-independent.

The other ingredient needed for computing the variation of the gravitational action was

lim
s→0

[
1 + s

(
d
ds

+ ln µ̂2

)]∫
d2x

√
g δσ(x)ζ(s, x, x). (5.84)

Replacing ζsing(s, x, x) by ζ(s, x, x) we see from (5.77) that
∫

d2x
√
g δσ(x)ζ(s, x, x) actually

has poles for s = 1, 1
2 ,− 1

2 ,−1, . . . but not for s = 0, since the would-be pole is cancelled by
the 1

Γ(s) . Hence,
∫

d2x
√
g δσ(x)ζ(s, x, x) is regular at s = 0 and, adding the bulk contribution

(5.67) and the boundary contribution read from (5.77), we get

lim
s→0

[
1 + s

(
d
ds

+ ln µ̂2

)]∫
d2x

√
g f(x)ζ(s, x, x)

=
∫

d2x
√
g f(x)ζ(0, x, x)

=
1

4π

∫
d2x

√
g f(x)

(
R

6
−m2

)
+

1
8π

∫

∂M
dl ∂nf(x). (5.85)

Let us relate Gζ(y) to the Green’s function G(x, y) at coinciding points with the short-
distance singularity subtracted. Since ζR(s, x, y) = ζ(s, x, y) − ζsing(s, x, y) is free of singu-
larities, we may change the order of limits. If we first let s = 1, so that ζ(1, x, y) = G(x, y)
and ζsing(1, x, y) is given by (5.73), we find

Gζ(y) = lim
x→y

[
G(x, y) +

1
4π

(
ln
(
ℓ2(x, y)µ2

4

)
+ 2γ −

∑

∂Mi

E1

(
ℓ2
i (x, y)µ2

4

))]
. (5.86)

We know that Gζ(y) is a non-singular quantity for all y ∈ M, in particular also on the
boundary. The logarithm subtracts the generic short-distance singularity of G(x, y), while
the E1 subtract the additional singularities present whenever y ∈ ∂Mi.
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If, as before, we multiply this relation by some smooth f(y) and integrate over the
manifold, we get in particular for these E1-terms:

lim
x→y

∫

M
d2y

√
g f(y)E1

(
ℓ2
i (x, y)µ2

4

)
=
∫ µ−2

0

dt
t

∫

M
d2y

√
g f(y)e−ℓ2(y,∂Mi)/t

=
√
π

µ

∫

∂Mi

dl F (y, µ) (5.87)

with F (y, µ) defined in (5.79). It follows that we may rewrite (5.83) as

lim
s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]∫

M
d2y

√
g f(y) ζ(s, y, y) =

∫

M
d2y

√
g f(y)GR,bulk(y) ,

(5.88)
where

GR,bulk(y) = lim
x→y

[
G(x, y) +

1
4π

(
ln
(
ℓ2(x, y)µ̂2

4

)
+ 2γ

)]
(5.89)

is the Green’s function at coinciding points with its bulk singularity subtracted. If necessary,
(5.88) again shows that this does not depend on the arbitrarily introduced µ (although it does
depend on µ̂ which was part of our definition of the functional integral). While the quantity
GR,bulk(x) has the advantage of being µ-independent, it has a (logarithmic) singularity as x
approaches the boundary. However, we know that these singularities must be integrable as
is clear from the equality of (5.88) with (5.83) which is finite, independently of the arbitrary
choice of µ. As will become clear next, while Gζ(x) satisfies Neumann boundary conditions,
this is not the case of GR,bulk(x).

To study the boundary condition satisfied by Gζ(y) we only need its behaviour in the
immediate vicinity of the relevant boundary component which can be read from (5.86):

Gζ(y) ≃ lim
x→y

[
G(x, y) +

1
4π

(
ln
(
ℓ2(x, y)µ2

4

)
+ ln

(
ℓ2
i (x, y)µ2

4

)
+ 3γ

)]
as y → ∂Mi

(5.90)
Now, G(x, y) satisfies the Neumann condition in both its arguments. The same is true for the
sum of the logarithms, up to terms that vanish as x and y approach the boundary. Indeed
as one zooms in close to the boundary, the boundary becomes flat and the geometry locally
Euclidean, and using Riemann normal coordinates in the normal and tangential directions
around the relevant boundary point (such that the boundary is at zero normal coordinate),
one has ℓ2(x, y) ≃ (xt − yt)2 + (xn − yn)2 as well as ℓ2

i (x, y) ≃ (xt − yt)2 + (xn + yn)2. Then

∂xnℓ2(x, y)|xn=0 ≃ −2yn = −∂xnℓ2
i (x, y)|xn=0 (5.91)

as well as
ℓ2(x, y)|xn=0 ≃ ℓ2

i (x, y)|xn=0. (5.92)

It follows that

∂xn

[
ln
(
ℓ2(x, y)m2

4

)
+ ln

(
ℓ2
i (x, y)µ2

4

)]
|xn=0 = 0 (5.93)

i.e. the sum of the logarithms satisfies the Neumann condition in x up to terms that vanish as
x and y approach the boundary. Since ℓ2

i (x, y) is symmetric in x and y, the same is true in y.
Now if any function h(x, y) satisfies the Neumann condition in both arguments, the function
H(y) = lim

x→y
h(x, y) = lim

e→0
h(y+e, y) then obviously also satisfies the Neumann condition. We

conclude that Gζ satisfies the Neumann boundary condition on every boundary component
∂Mi, i.e.

na∂aGζ(y) = 0 , for y ∈ ∂M . (5.94)
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It follows that, if φ is any smooth function that also satisfies Neumann conditions, one has
∫

M
d2y

√
g∆φGζ(y) =

∫

M
d2y

√
g φ∆Gζ(y) . (5.95)

It is now also clear that GR,bulk does not satisfy the Neumann condition since its definition
lacks the crucial third term in (5.90).

We can now evaluate (5.83) for f = ∆φ and use (5.95) to get

lim
s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]∫

M
d2y

√
g∆φ(y) ζ(s, y, y)

=
∫

M
d2y

√
g φ(y) ∆Gζ(y) +

1
4
√
πµ

∫

∂M
dlΦ(y, µ) (5.96)

where
Φ(y, µ) = ∆φ+

1
2
√
πµ

∂n∆φ+
1

12µ2
∂2
n∆φ+ . . . (5.97)

At this point one might be tempted to take µ → ∞ to get rid of the last term but, of course,
one must remember that Gζ also depends on µ. However, this relation shows that, since the
left-hand side does not depend on µ, the quantity

∫
M d2y

√
g φ(y) ∆Gζ(y) has a finite limit

as µ → ∞ and we arrive at the two following equivalent expressions:

lim
s→1

[
1 + (s− 1)

(
d
ds

+ ln µ̂2

)]∫

M
d2y

√
g∆φ(y) ζ(s, y, y)

= lim
µ→∞

∫

M
d2y

√
g φ(y) ∆Gζ(y)

=
∫

M
d2y

√
g∆φ(y)GR,bulk(y) . (5.98)

Both ways of writing require a comment: While the µ → 0 limit of the integral involving
∆Gζ exists, this is not the case of ∆Gζ(y) itself for y on the boundary. On the other hand, in
the integral involving GR,bulk, even though GR,bulk does not satisfy the Neumann condition,
one might want to integrate by parts generating a boundary term:
∫

M
d2y

√
g∆φ(y)GR,bulk(y) ? = ?

∫

M
d2y

√
g φ(y) ∆GR,bulk(y) +

∫

∂M
dl φ(y)∂nGR,bulk(y).

(5.99)
However, this is not possible : both terms on the r.h.s. are meaningless since ∆GR,bulk(y) has
a non-integrable singularity as y approaches the boundary (expected to be ∼ 1/ℓ2(y, ∂M)),
and ∂nGR,bulk is infinite everywhere on the boundary.

5.5 The Mabuchi action on a manifold with boundaries

We are now in position to assemble our results and determine the gravitational action
on a Riemann surface with boundaries. As already explained, the strategy is to use the
infinitesimal variation of Sgrav under an infinitesimal change of the metric as given by (5.36),
and then to integrate δSgrav to obtain Sgrav[ĝ, g].

Inserting (5.85) and (5.88) into (5.36), we immediately get

δSgrav = − 1
24π

[∫

M

√
g δσ R+ 3

∫

∂M
dl ∂nδσ

]

+ m2

[∫

M

√
g δσ

(
Gζ +

1
4π

− 1
4π

ln
µ2

µ̂2

)
+

1
4
√
πµ

∫

∂M
dl F (y, µ)

]

= − 1
24π

[∫

M

√
g δσ R+ 3

∫

∂M
dl ∂nδσ

]
+ m2

∫

M

√
g δσ

(
GR,bulk +

1
4π

)
.

(5.100)
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Note that this is not an expansion in powers of m2 but an exact result. Our perturbation
theory was a first order perturbation in δσ not in m2. Indeed, Gζ and GR,bulk still depend on
m2 and we get exactly the first two terms in an expansion in powers of m2 if we replace them
by the corresponding quantities G(0)

ζ and G
(0)
R,bulk defined for the massless case. However

there is a subtlety here, since in the massless case the zero-mode must be excluded from the
sum over eigenvalues defining the Green’s function. If we denote with a tilde all quantities
lacking the zero-mode contribution we have

G(x, y) =
1

m2A
+ G̃(x, y), Gζ(x) =

1
m2A

+ G̃ζ(x), GR,bulk(x) =
1

m2A
+ G̃R,bulk(x) .

(5.101)
The quantities G̃, G̃ζ and G̃R,bulk all have a smooth limit as m → 0. Thus, the expansion
in powers of m2 reads

δSgrav = − 1
24π

[∫

M

√
g δσ R + 3

∫

∂M
dl ∂nδσ

]
+
δA

2A

+ m2

[∫

M

√
g δσ

(
G̃

(0)
ζ +

1
4π

− 1
4π

ln
µ2

µ̂2

)
+

1
4
√
πµ

∫

∂M
dl F (y, µ)

]
+ O(m4)

= − 1
24π

[∫

M

√
g δσ R + 3

∫

∂M
dl ∂nδσ

]
+
δA

2A

+ m2

[∫

M

√
g δσ

(
G̃

(0)
R,bulk +

1
4π

)]
+ O(m4) .

The first term is independent of m and corresponds to − 1
6 times the variation of the Liouville

action on a manifold with boundary [175, 176]

SL =
1

4π

(∫

M

√
ĝ (ĝab∂aσ∂bσ + R̂σ) + 3

∫

∂M
dl ∂nσ

)
, (5.102)

while the δA
2A -term contributes a piece 1

2 ln A
Â

to Sgrav. Recall that, contrary to φ or δφ, the
field σ and its variation δσ do not satisfy the Neumann condition.

5.5.1 Variation of G̃
(0)
R,bulk

To go further, we need the variation of G̃(0)
ζ and of

∫
∂M dlΣ or the variation of G̃(0)

R,bulk

under an infinitesimal variation of the metric corresponding to δσ. At this point it turns
out to be easier to study the variation of G̃(0)

R,bulk which is obtained exactly as for a manifold

without boundary (we will see an alternative derivation using the variation of G̃(0)
ζ in the

next section). The simplest derivation just uses the differential equation satisfied by G(x, y)
to obtain

δG(x, y) = −2m2

∫
d2z

√
g G(x, z) δσ(z)G(z, y) , (5.103)

which satisfies the Neumann conditions. Alternatively, one can use the perturbation theory
formulae (5.30) and (5.31) to obtain

δG(x, y) =
∑

n

δϕn(x)ϕn(y) + ϕn(x)δϕn(y)
λn

− ϕn(x)ϕn(y)δλn
λ2
n

= −2m2
∑

n,k

〈ϕk|δσ|ϕn〉ϕk(x)ϕn(y)
λnλk

= −2m2

∫
d2z

√
g G(x, z)δσ(z)G(z, y) ,

(5.104)

in agreement with (5.103). Next, the variation of ℓ2(x, y) was given e.g. in [63, 70, 132]. In
the limit x → y one simply has ℓ2(x, y) ≃ gabdxadxb = e2σ(y)ĝabdxadxb which shows that
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one has δℓ2(x, y) ≃ 2δσ(y) ℓ2(x, y) and, hence,

lim
x→y

δ ln
(
ℓ2(x, y)µ2

)
= 2δσ(y) . (5.105)

It follows that

δGR,bulk(x) = −2m2

∫
d2z

√
g (G(x, z))2

δσ(z) +
δσ(x)

2π
. (5.106)

Separating the zero-mode parts 1
m2A , this is rewritten as

δG̃R,bulk(x) = − 4
A

∫
d2z

√
g G̃(x, z)δσ(z) − 2m2

∫
d2z

√
g
(
G̃(x, z)

)2

dσ(z) +
δσ(x)

2π
.

(5.107)
Since δ

√
g = 2

√
g δσ, it follows that

δ

∫ √
g G̃R,bulk(x) =

∫ √
g 2δσ

(
G̃R,bulk(x) +

1
4π

)
+ O(m2) . (5.108)

(Note that the first term in (5.107) integrates to zero and does not contribute in (5.108).)
Thus

δSgrav = −1
6
δSL +

1
2
δA

A
+
m2

2
δ

∫ √
g G̃

(0)
R,bulk(x) + O(m4) , (5.109)

where G̃(0)
R,bulk is computed from the Green’s function without zero-mode of the massless

theory. Thus the order m2 term in (5.109) is given by the variation of the functional

ΦG[g] =
∫ √

g G̃
(0)
R,bulk(x; g) , (5.110)

where we explicitly indicated the dependence of G̃(0)
R,bulk on the metric g. Thus

Sgrav[ĝ, g] = −1
6
SL[ĝ, g] +

1
2

ln
A

Â
+
m2

2
(ΦG[g] − ΦG[ĝ]) + O(m4). (5.111)

In order to express ΦG[g] − ΦG[ĝ] as a local functional of σ and φ, we use again (5.107)
in the zero-mass limit and replace δσ in the first term by δA

2A − A
4 ∆δφ according to (4.121):

δG̃
(0)
R,bulk(x) =

∫
d2z

√
g G̃(0)(x, z)∆δφ(z) +

δσ(x)
2π

= δφ(x) − 1
A

∫
d2z

√
g δφ(z) +

δσ(x)
2π

. (5.112)

Note that we integrated the Laplace operator by parts without generating boundary terms
since both G̃ and δφ satisfy the Neumann boundary conditions (which is not the case for
δσ) and then we used the differential equation (3.45). Equation (5.112) can be integrated
as

G̃
(0)
R,bulk(x, g) − G̃

(0)
R,bulk(x, ĝ) = φ(x) +

σ(x)
2π

− SAY[ĝ, g] , (5.113)

with

SAY[ĝ, g] = −
∫ √

ĝ

(
1
4
ĝab ∂aφ∂bφ− φ

Â

)
. (5.114)

Finally we obtain

ΦG[g] − ΦG[ĝ] =
∫ √

ĝ

(
A

Â
− A

2
∆̂φ
)(

G̃
(0)
R,bulk[ĝ] + φ+

σ

2π
− SAY [ĝ, g]

)
− ΦG[ĝ]

=
A− Â

Â
ΦG[ĝ] − A

2

∫ √
ĝ

(
1
2
φ∆̂φ− 1

πA
σe2σ + ∆̂φ G̃(0)

R,bulk[ĝ]
)
. (5.115)
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As already emphasized, contrary to G(x, y) or Gζ(x), the quantities GR,bulk and G̃(0)
R,bulk do

not satisfy the Neumann condition. Moreover, ∂nGR,bulk and ∂G̃
(0)
R,bulk are singular on the

boundary.
Thus, we arrive at

Sgrav[ĝ, g] = −1
6
SL[ĝ, g] +

1
2

ln
A

Â
+
m2 (A− Â)

2Â
ΦG[ĝ]

+
m2A

4

[∫ √
ĝ

(
−1

2
φ∆̂φ+

1
πA

σe2σ − ∆̂φ G̃(0)
R,bulk[ĝ]

)]
+ O(m4) . (5.116)

The first line contains the usual Liouville action along with a factor + 1
2 ln A

Â
, as well as

a contribution to the cosmological constant action. The cosmological constant action is
required in any case to act as a counterterm to cancel the divergence that accompanies the
ζ′(0) when properly evaluating the determinant, e.g. with the spectral cut-off regularization
as was done in [132]. The terms in the second line are the genuine order m2 corrections.
Using the second equality in (5.98), we can rewrite the latter using G̃(0)

ζ ≡ G̃
(0)
ζ [ĝ, µ] instead

of G̃(0)
R,bulk. In particular, this allows us to integrate by parts the Laplacian, but it requires

to take the µ → ∞ limit :

Sgrav[ĝ, g] = −1
6
SL[ĝ, g] +

1
2

ln
A

Â
+
m2 (A− Â)

2Â
ΦG[ĝ]

+
m2A

4
lim
µ→∞

[∫ √
ĝ

(
−1

2
φ∆̂φ+

1
πA

σe2σ − φ ∆̂G̃(0)
ζ [ĝ, µ]

)]
+ O(m4) .

(5.117)

Written this way, the order m2-terms looks like the usual Mabuchi plus Aubin–Yau actions
found for manifolds without boundary [63, 70]. However, here the function ∆̂G̃(0)

ζ (x) is no
longer a simple expression but depends non-trivially on the point x and in particular on the
distances from the various boundary components. Of course, the same is true for G̃(0)

R,bulk(x).

5.5.2 Variation of G̃
(0)
ζ

We can also derive the gravitation action directly in terms of G̃(0)
ζ instead of G̃R,bulk. For

this we need the variation of G̃(0)
ζ for finite µ which requires the use of some additional

variational formulae we will derive here.
First, the variation of G̃ζ also involves the variation of E1

(
ℓ2(y,yi

C)µ2

4

)
. For x → y and

close to the boundary one has

δℓ2(y, yiC) ≃ 2δσ(yB) ℓ2(y, yiC). (5.118)

It follows that

δE1

(
ℓ2(y, yiC)µ2

4

)
= E′

1

(
ℓ2(y, yiC)µ2

4

)
ℓ2(y, yiC)µ2

2
δσ(yiB) = −2 e−

ℓ2(y,yi
C

)µ2

4 δσ(yiB)

(5.119)
where we used the fact that

d
dx
Es(x) = −Es−1(x),

d
dx
E1(x) = −E0(x) = −e−x

x
. (5.120)

Thus we get

δGζ(x) = −2m2

∫
d2z

√
g (G(x, z))2

δσ(z) +
δσ(x)

2π
+
∑

∂Mi

e−ℓ2(x,xi
C)µ2/4 δσ(xiB)

2π
. (5.121)

71



One also encounters
∑
i

∫
∂Mi

dlδσ :

∑

i

∫

∂Mi

dl δσ(xB) =
∑

i

δ

(∫

∂Mi

dl
)

= δL(∂M) (5.122)

where L(∂M) is the total length of the boundary. The finite variation of G̃(0)
ζ follows from

(5.121) in the zero-mass limit as

G̃
(0)
ζ (x, g) − G̃

(0)
ζ (x, ĝ) = φ(x) +

σ(x)
2π

− SAY[ĝ, g]

− 1
4π

∑

∂Mi

(
E1

(
ℓ2
g(x, x

i
C)µ2

4

)
− E1

(
ℓ2
ĝ(x, x

i
C)µ2

4

))
. (5.123)

Finally, at finite µ the gravitational action is given by

Sgrav[ĝ, g] = −1
6
SL[ĝ, g] +

1
2

ln
A

Â
+
m2 (A− Â)

2Â

(
ΦG[ĝ] +

1
4
√
π µ

L(∂M, ĝ)
)

+
m2A

4

∫ √
ĝ

(
−1

2
φ∆̂φ+

1
πA

σe2σ − φ ∆̂G̃(0)
ζ [ĝ]

)

− m2A

16
√
π

(
1
µ

∫

∂M
dl̂ ∆̂φ+ O

(
1
µ2

))
+ O(m4) (5.124)

which gives back (5.117) when taking µ → +∞.

5.6 The cylinder

In this section we work out the gravitational action for the simplest two-dimensional manifold
with a boundary : the cylinder. As we have seen in section 5.3.1 the heat kernel and hence
also the Green’s function on the cylinder are obtained from the corresponding quantities on
the torus by a method of images. Thus to get the Green’s function of the Laplace operator
on the cylinder of length T and circumference 2πR we first determine the Green’s function
on the torus with periods 2T and 2πR.

With respect to our general notation, throughout this section we consider a fixed reference
metric ĝ and corresponding Laplacian ∆̂ and Green’s functions G(z1, z2; ĝ) although we will
mostly drop the reference to ĝ.

5.6.1 Green’s function on the torus

To get the Green’s function on the torus with periods 2a and 2b , in principle, one could
take the heat kernel Ktorus(t, x1, x2, y1, y2) as constructed from the eigenfunctions (5.47) and
eigenvalues of the Laplace operator, cf (5.48) and integrate over t form 0 to ∞. However,
we have not been able to find any useful formula for

∫∞
0

dt θ3

(
iπtb2

∣∣x2−y2

2b

)
θ3

(
iπta2

∣∣x1−y1

2a

)
.

Instead, we will follow the usual approach to identify a suitable doubly periodic solution of
the Laplace equation with the correct singularity at the origin. It will be convenient to use
a complex coordinate z. Thus, in this section we will change our notation with respect to
the previous one and call x and y the real and imaginary parts of z:

z = x+ iy , x ≃ x+ 2a , y ≃ y + 2b . (5.125)

When we need to label two points we will use z1 = x1 + iy1 and z2 = x2 + iy2. We thus have
a square torus with modular parameter τ = i ba . The reference metric ĝ is just the standard
metric ds2 = dzdz̄ and ∆̂ = −4∂∂̄.
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The Green’s function G(z1, z2) must be doubly periodic in both z1 and z2 with periods
2a and 2b i. By the translational invariance of the torus, it can only depend on the difference
z1 − z2, and it must exhibit the appropriate − 1

4π ln |z1 − z2|2 singularity as z1 → z2 in order
to satisfy

∆̂G(z1, z2) = δ(2)(z1 − z2) − 1

Â
. (5.126)

Define the function g (not to be confused with the metric) as

g(z) =
(Im z)2

8ab
− 1

4π
ln
[
θ1

(
z

2a

∣∣i b
a

)
θ1

(
z̄

2a

∣∣i b
a

)]

=
(Im z)2

8ab
− 1

4π
ln
∣∣∣θ1

(
z

2a

∣∣i b
a

) ∣∣∣
2

, (5.127)

where the elliptic theta function is defined as [177]

θ1(ν|τ) = 2q1/4
∞∑

n=0

(−1)nqn(n+1) sin(2n+ 1)πν

= 2q1/4 sinπν
∞∏

n=1

(1 − q2n)(1 − 2q2n cos 2πν + q4n) , q = eiπτ . (5.128)

The latter satisfies θ1(ν + 1|τ) = −θ1(ν|τ) and θ1(ν + τ |τ) = −e−iπ(2ν+τ)θ1(ν|τ). It follows
that

• g(x+ iy) is periodic under x → x+ 2a and under y → y + 2b.

• It is obvious from the factorization of the logarithm that for z 6= 0

− 4∂∂̄g = − 1
4ab

= − 1

Â
(5.129)

where Â is the area of the torus.

• As z → 0, g(z) ∼ − 1
4π ln |z|2, which together with the previous relation ensures that

∆̂g(z) = −4∂∂̄g(z) = δ(2)(z) − 1

Â
. (5.130)

• We have the symmetry properties

g(z̄) = g(z), g(−z) = g(z), g′(−z) = −g′(z). (5.131)

Thus
G(z1, z2) = g(z1 − z2) (5.132)

is the appropriate Green’s function on the torus. It would be satisfying to show that this
coincides with the expression for the Green’s function obtained by integrating the heat kernel
one gets from the eigenfunction expansion but, as already mentioned, we have not been able
to find a corresponding identity in the literature.

One can then define the renormalized Green’s function at coinciding points GR(z) on the
torus, after subtracting the short-distance singularity as

GR(z) = lim
z1→z2≡z

(
G(z1, z2) +

1
4π

ln |z1 − z2|2
)

= − 1
2π

ln

(
π

a
q1/4

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)

)
(5.133)

with q = e−πb/a. As was expected from the isometries of the torus GR is a constant.
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5.6.2 Green’s function and Green’s functions at coinciding points
on the cylinder

We now construct the Green’s function on the cylinder of length T (coordinate x) and
circumference 2πR (coordinate y). We impose Neumann boundary conditions at x = 0 and
x = T . Let g be the function defined in (5.127) with a = T and b = πR:

g(z) =
(Im z)2

8πRT
− 1

4π
ln
[
θ1

(
z

2T

∣∣iπR
T

)
θ1

(
z̄

2T

∣∣iπR
T

)]
. (5.134)

Again, the Neumann boundary conditions are achieved by adding to g(z1 − z2) the same
functions with z2 = x2 + iy2 replaced by the appropriate image points. The boundary at
x = 0 requires the image point zC2 = −z̄2 = −x2 + iy2, while the boundary at x = T
would require to add the image points of z2 and zC2 , i.e. T + (T − x2 + iy2) = 2T + zC2
and T + (T + x2 + iy2) = 2T + z2. However, due to the 2T -periodicity these points are
equivalent to z2 and zC2 and adding g at these points would result in an over-counting. Of
course, this is in agreement with the relation between the heat kernels of the torus and the
cylinder, from which the corresponding Green’s functions could be obtained by integration
over t. Thus we let

Gcyl(z1, z2) = G(z1, z2) + G(z1, z̄2) = g(z1 − z2) + g(z1 + z̄2) . (5.135)

Using the symmetry properties (5.131), one easily verifies that this indeed satisfies Neumann
conditions at x1 = 0 and T as well as at x2 = 0 and T , e.g.

∂n,1G
cyl(z1, z2)

∣∣
z1=T

= g′(T + iy1 − x2 − iy2) + g′(T + iy1 + x2 − iy2)

= g′(T − iy1 − x2 + iy2) − g′(−T − iy1 − x2 + iy2) = 0 . (5.136)

From (5.130) we see that Gcyl satisfies, for any x2 6= 0, T ,

∆̂z1G
cyl(z1, z2) = δ(2)(z1 − z2) − 1

2πRT
(5.137)

where the term − 1
2πRT arises as − 2

Âtorus
and equals − 1

Âcyl
. Integrating the right-hand side

of (5.137) over the cylinder then correctly yields 0.
Next, we need to determine the various Green’s functions at coinciding points that played

an important role for formulating the gravitational action, i.e. Gcyl
ζ (z) and Gcyl

R,bulk(z). In

the present specific case of the cylinder it is useful to first define yet another function Gcyl
R (z)

by

Gcyl
R (z) = lim

z1→z2≡z

(
Gcyl(z1, z2)

+
1

4π
ln
[
sin

π(z1 − z2)
2T

sin
π(z̄1 − z̄2)

2T
sin

π(z1 + z̄2)
2T

sin
π(z̄1 + z2)

2T

])
. (5.138)

The additional terms subtract the bulk singularity at z1 → z2, as well as the boundary
singularities that occur as z1 → z2 → 0 or T . Explicitly we find that Gcyl

R only depends on
x = Re z (as well as on q = e−π2R/T , of course):

Gcyl
R (z) ≡ Gcyl

R (x) = − 1
2π

ln

[
θ1( xT |iπRT )

sin πx
T

]
− 1

2π
ln

[
2q1/4

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)

]
.

(5.139)
One sees again, that this is non-singular, even as x → 0 or x → T . It is clear from its
definition that Gcyl

R satisfies Neumann boundary conditions, as follows also from the explicit
expression just given.
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However, it is not this quantity Gcyl
R which enters the gravitational action, but rather

Gcyl
ζ or Gcyl

R,bulk. These quantities differ from Gcyl
R by the following terms:

δGcyl
ζ/R(z) ≡ Gcyl

ζ (z) −Gcyl
R (z)

=
1

4π

[
2 ln

Tµ

π
− E1(x2µ2) − E1((T − x)2µ2) − 2 ln sin

πx

T
+ 2γ

]
,

δGcyl
R,bulk/R(z) ≡ Gcyl

R,bulk(z) −Gcyl
R (z)

=
1

4π

[
2 ln

T µ̂

π
− 2 ln sin

πx

T
+ 2γ

]
, (5.140)

The expression δGcyl
ζ/R is non-singular, even as x → 0 or x → T , as it obviously should be,

since all singularities have been removed in the definition of Gζ , as well as in the one of GR.
On the other hand, δGcyl

ζ/R,bulk is singular as x → 0 or x → T , and in particular it cannot

satisfy the Neumann condition. On the other hand, δGcyl
ζ/R satisfies the Neumann condition

at x = 0 and x = T for any finite µ. Explicitly we have

Gcyl
R,bulk(x) = − 1

2π
ln θ1

(
x

T

∣∣iπR
T

)
+

1
2π

(
ln
T µ̂

π
+ γ − ln

[
2q1/4

∞∑

n=0

(−1)n(2n+ 1)qn(n+1)

])

(5.141)
with only the first term depending on x.

5.6.3 Laplacian of GR and Gζ on the cylinder

We also need the Laplacian of the Green’s function at coinciding points Gcyl
R and Gcyl

ζ . Recall

that ∆̂ = − ∂2

∂x2 − ∂2

∂y2 , so that ∆̂Gcyl
R (x) = − ∂2

∂x2G
cyl
R (x) and we find from (5.139), using a

formula from p 358 of [177], and writing q = e−π2R/T :

∆̂Gcyl
R (x) =

(
1

2π
ln

[
θ1( xT |iπRT )

sin πx
T

])′′

=
1

2πT

(
θ′

1

(
x
T

∣∣iπRT
)

θ1

(
x

2T

∣∣iπRT
) − π cot

πx

T

)′

=
2
T

( ∞∑

n=1

q2n

1 − q2n
sin

2πnx
T

)′

=
4π
T 2

∞∑

n=1

n q2n

1 − q2n
cos

2πnx
T

. (5.142)

This sum converges for all x, as well as all R 6= 0 and all finite T . To obtain ∆̂Gcyl
ζ we need

to add ∆̂δGcyl
ζ/R which, using (5.140) and (5.120), is given by

∆̂ δGcyl
ζ/R(x) =

1
2π

[
1
x2

+ 2µ2

]
e−x2µ2

+
1

2π

[
1

(T − x)2
+ 2µ2

]
e−(T−x)2µ2 − π

2T 2

1
sin2 πx

T

,

(5.143)
and thus

∆̂Gcyl
ζ (x) =

1
2π

[
1
x2

+ 2µ2

]
e−x2µ2

+
1

2π

[
1

(T − x)2
+ 2µ2

]
e−(T−x)2µ2 − π

2T 2

1
sin2 πx

T

+
4π
T 2

∞∑

n=1

n q2n

1 − q4n
cos

2πnx
T

(5.144)
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where q = e−π2R/T .
Note that this is non-singular for all finite µ, even as x → 0 or x → T .
If one thinks of the cylinder as a simple Euclidean version of one compact space and

one time dimension, one would like to study the limit where the cylinder becomes infinitely
long, i.e. T → ∞. However, as T

R → ∞, one has q → 1 and the sum over n diverges, hence
this expression ceases to be valid. To study the behaviour as T

R → ∞, one must first do the
modular transformation τ ≡ iπRT → τ̃ = − 1

τ = i TπR . This reads for θ1, as well as for θ2

(which we will need below),

θ1(ν|τ) =
i

(−iτ)1/2
exp

(
−iπ ν

2

τ

)
θ1

(
ν

τ

∣∣− 1
τ

)
,

θ2(ν|τ) =
1

(−iτ)1/2
exp

(
−iπ ν

2

τ

)
θ4

(
ν

τ

∣∣− 1
τ

)
. (5.145)

This will allow us to write the theta functions as sums of powers of q̃ = eiπτ̃ = e−T/R. Note
that the first argument ν

τ now is imaginary which will turn the sin and cos in (5.142) into
sinh and cosh. We get, through similar manipulations as above,

∆̂Gcyl
R (x) =

(
1

2π
ln
θ1

(
− ix
πR

∣∣i TπR
)

sin πx
T

− x2

2πRT
+

1
2π

ln i

√
T

πR

)′′

=
π

2T 2

1
sin2 πx

T

− 1
πRT

− 1
2πR2

1

sinh2 x
R

− 4
πR2

∞∑

n=1

n q̃2n

1 − q̃2n
cosh

2nx
R

, (5.146)

where q̃ = eiπτ̃ = e−T/R.
Note that the poles at x = 0 cancel and that this representation as an infinite sum is

convergent and finite for all |x| < T . Note also that, although not obvious, within this
interval (−T, T ) these functions are periodic under x → x+T . Then the finiteness at x = 0
implies finiteness at x = T , too.

To study the T → ∞ limit, we set

x =
T

2
+ t , t ∈

[
−T

2
,
T

2

]
. (5.147)

so that, in particular, finite t corresponds to values in the "middle" of the cylinder. Of
course, we could use (5.146), but we certainly get a better convergence if we first re-express
the θ1

(
1
2 + t

T

∣∣iπRT
)

appearing in (5.142) in terms of θ2

(
t
T

∣∣iπRT
)

and then use the modular
transformation to θ4. The corresponding sums for the derivatives will converge much faster:

∆̂Gcyl
R

(
T

2
+ t

)
=

(
1

2π
ln
θ4

(
− it
πR

∣∣i TπR
)

cos πtT
− t2

2πRT
+

1
4π

ln
T

πR

)′′

= − 1
πRT

+
π

2T 2

1
cos2 πt

T

− 4
πR2

∞∑

n=1

n q̃n

1 − q̃2n
cosh

2nt
R

. (5.148)

Upon adding (5.143), we also get

∆̂Gcyl
ζ

(
T

2
+ t

)
= − 1

πRT
+

1
2π

[
1

(T2 + t)2
+ 2µ2

]
e−( T

2 +t)2µ2

+
1

2π

[
1

(T2 − t)2
+ 2µ2

]
e−( T

2 −t)2µ2 − 4
πR2

∞∑

n=1

n q̃n

1 − q̃2n
cosh

2nt
R

(5.149)
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Again, we have a finite and convergent expression for all |t| < T
2 . On the other hand, as

t → ±T
2 , both the 1

2π( T
2 ±t)2 and the sum diverge. However, we know that ∆̂Gcyl

R and ∆̂Gcyl
ζ

are finite for all t ∈ [−T
2 ,

T
2 ].

It is now easy to see what happens for finite t and T → ∞. In this limit q̃ = e−T/R → 0
and the sum does not contribute. Also, e−( T

2 ±t)2µ2

vanishes exponentially for all finite µ.
Thus, for t finite and T → ∞

∆̂Gcyl
ζ

(
T

2
+ t

)
≃ − 1

πRT
+ O

(
e−T 2µ2

, e−T/R
)

= − 2

Âcyl
+ O

(
e−T 2µ2

, e−T/R
)
. (5.150)

5.6.4 The gravitational action on the cylinder

We are now in position to explicitly give the gravitational action on the cylinder. The
Liouville part has a universal form, while the purely cosmological term is not of much
interest since it gets combined with the corresponding counterterm. Hence, we will only
display the genuine order m2A-term that generalises the Mabuchi (and Aubin–Yau) actions.
From (5.116) we get

Scyl
grav[ĝ, g]

∣∣∣
m2A

=
m2A

4

∫ T

0

dx
∫ 2πR

0

dy
(

−1
2
φ∆̂φ+

1
πA

σe2σ +
1

2π
∆̂φ ln θ1

(
x

T

∣∣iπR
T

))

(5.151)
with ∆̂ = − ∂2

∂x2 − ∂2

∂y2 (since ln θ1 does not depend on y, the y-derivative is a total derivative
and gives a vanishing result). Alternatively, we can use (5.117) and obtain

Scyl
grav[ĝ, g]

∣∣∣
m2A

=
m2A

4
lim
µ→∞

∫ T

0

dx
∫ 2πR

0

dy

{
− 1

2
φ∆̂φ+

1
πA

σe2σ

+ φ

[
π

2T 2

1
sin2 πx

T

− 4π
T 2

∞∑

n=1

n e−2nπ2R/T

1 − q−4nπ2R/T
cos

2πnx
T

− 1
2π

[
1
x2

+ 2µ2

]
e−x2µ2 − 1

2π

[
1

(T − x)2
+ 2µ2

]
e−(T−x)2µ2

]}
. (5.152)

One can show that with φ obeying Neumann boundary conditions, the limit µ → ∞ indeed
exists (and equals (5.151), of course).

In order to study the limit of an infinitely long cylinder, we have seen that one has to
set x = T

2 + t and use (5.149) in order to obtain the limit T → ∞ as given by (5.150). Thus

S∞ cyl
grav [ĝ, g]

∣∣∣
m2A

=
m2A

4
lim
T→∞

∫ T/2

−T/2

dt
∫ 2πR

0

dy
[
−1

2
φ∆̂φ+

1
πA

σe2σ +
2

Â
φ

]
. (5.153)

Comparing with the Mabuchi action of a manifold without boundary as defined in (4.131),
we see that this corresponds to the Mabuchi action with h = 0 and R̂ = 0:

S∞ cyl
grav [ĝ, g]

∣∣∣
m2A

=
m2A

16π
SM[ĝ, g]

∣∣∣
h=0, R̂=0

. (5.154)

This equality is to be understood as an equality of the Lagrangian densities, rather than
of the actions. Note that, of course, R̂ = 0 was to be expected for a cylinder, but what is
interesting is the replacement χ = 2(1 − h) → 2.
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Chapter 6

Gravitational action for massive
fermionic matter

In this chapter we compute the gravitational action for a massive Majorana fermion Ψ. The
goal of this computation is to compare the result with the DDK ansatz (4.99). In section
6.1 we review the main properties of Euclidean spinors in two-dimensions and define the
Majorana condition. In section 6.2 we define the action for the massive Majorana fermion
and construct the functional integral. We also recall the spectral functions that we will be
used to compute the gravitational action in section 6.3.

6.1 Two-dimensional spinors

In this section we summarize the main properties of Euclidean spinors and gamma matrices
in two dimensions [7, app. 7.5, 8.5, 178, chap. 2, 3, 179, 180, sec. 13.2]. We will work with
local indices denoted by the first letters of the alphabet a, b, . . .

6.1.1 Clifford algebra and gamma matrices

The SO(2) Clifford algebra is an algebra generated by the two gamma matrices γa satisfying
the anti-commutation relation

{γa, γb} = 2δab. (6.1)

Both matrices are taken to be unitary, and as a consequence Hermitian

(γa)† = γa. (6.2)

The last element of the algebra corresponds to the antisymmetric product

γab =
1
2

[γa, γb] = −i ǫabγ∗ (6.3)

which is proportional to the chirality matrix

γ∗ = i γ0γ1 =
i

2
ǫabγ

ab. (6.4)

It corresponds to the generator of the SO(2) group

Mab =
i

2
γab = ǫabγ∗. (6.5)

The chirality matrix is Hermitian, unitary and anticommutes will other gamma matrices

γ2
∗ = 1, (γ∗)† = γ∗, γ∗γ

a = −γaγ∗. (6.6)
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6.1.2 Dirac and Majorana spinors

A Dirac spinor Ψ is a 2-dimensional complex vector with anti-commuting components that
forms a reducible representation of the Clifford algebra. Such a spinor transforms under a
Lorentz transformation as

δΨ = − i

4
ωabM

ab Ψ = −iω
4
γ∗Ψ, ω ≡ ωabǫ

ab. (6.7)

The Dirac conjugation corresponds to Hermitian conjugation

Ψ̄ = Ψ†. (6.8)

This object transforms as
δΨ̄ = i

ω

4
Ψ̄ γ∗ (6.9)

such that Ψ̄Ψ is a scalar.
Introducing the charge conjugation matrix C such that

(γµ)∗ = CγµC−1, (γµ)t = CγµC−1, (6.10)

the charge conjugated spinor and its Dirac conjugate (giving the Majorana conjugate) are
defined by

Ψc = C−1Ψ∗, Ψ̄c = ΨtC. (6.11)

Both spinors transform respectively as Ψ and Ψ̄. Note that C is unitary and symmetric.
From a Dirac spinor one can obtain two different irreducible representations: a Weyl (or

chiral) spinor or a Majorana (or real) spinor. The latter is given by the reality condition

Ψc = Ψ =⇒ Ψ∗ = CΨ. (6.12)

This implies in particular that the Dirac and Majorana conjugations coincide. A Weyl spinor
is obtained from a Dirac spinor by projecting it on its positive or negative chirality

Ψ = P±Ψ, P± =
1
2

(1 ± γ∗). (6.13)

Note that it is not possible to have Majorana–Weyl fermion in Euclidean signature (contrary
to what happens in Lorentzian signature).

Given two Majorana spinors Ψ1 and Ψ2, the Majorana flip relation reads

Ψ̄1γ
µ1 · · · γµnΨ2 = Ψ̄2γ

µn · · ·γµ1 Ψ1. (6.14)

For Ψ1 = Ψ2 = Ψ this formula implies

Ψ̄γµνΨ = 0. (6.15)

6.1.3 Gamma matrix representations

Majorana basis

In the Majorana representation the Dirac matrices read

γ0 = σ1 =
(

0 1
1 0

)
, γ1 = σ3 =

(
1 0
0 −1

)
, γ∗ = σ2 =

(
0 −i
i 0

)
, (6.16)

which implies that the charge conjugation is the identity

C = 1. (6.17)
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In this basis a Majorana spinor has real components

Ψ =
(
ψ1

ψ2

)
, ψ∗

1 = ψ1, ψ∗
2 = ψ2, (6.18)

The scalar bilinears are

Ψ̄Ψ = (ψ1)2 + (ψ2)2 = 0, Ψ̄γ∗Ψ = −2i ψ1ψ2, (6.19)

while the kinetic operator reads

i γµ∂µ = i

(
∂1 ∂0

∂0 −∂1

)
. (6.20)

Weyl basis

In the Weyl representation the Dirac matrices read

Γ0 = σ1 =
(

0 −i
i 0

)
, Γ1 = σ2 =

(
0 1
1 0

)
, Γ∗ = σ3 =

(
1 0
0 −1

)
, (6.21)

which implies that the charge conjugation is

C = Γ1. (6.22)

In this basis a Majorana spinor has complex components conjugated to each other

Ψ =
(
ψ∗

ψ

)
. (6.23)

The relation with the Weyl components is

ψ =
1√
2

(ψ1 + iψ2). (6.24)

The scalar bilinears are

Ψ̄Ψ = ψψ∗ + ψ∗ψ = 0, Ψ̄γ∗Ψ = 2ψψ∗, (6.25)

while the kinetic operator reads

i γµ∂µ =
(

0 ∂̄
−∂ 0

)
. (6.26)

6.2 Majorana fermion field theory

6.2.1 Action

The action for a massive two-dimensional Majorana fermion Ψ coupled to gravity is [181]

S =
1

4π

∫
d2x

√
g Ψ̄(i /∇ +mγ∗)Ψ. (6.27)

The fact that the mass term contains the chirality matrix originates from the fact that
the standard bilinear Ψ̄Ψ vanishes ((6.19) and (6.25)). Moreover the important flip relation
(6.14) for a Majorana fermion indicates that the connection term vanishes. Nonetheless
one needs to keep it in order to define the functional integral since one has to work with a
covariant object.

In the Weyl basis, the action in components Ψ = (ψ∗, ψ) reads

S =
1

4π

∫
d2z

√
g (ψ∂̄ψ − ψ∗∂ψ∗ + 2mψψ∗) (6.28)

where ∂ = 1
2 (∂0 − i∂1) and ∂̄ = 1

2 (∂0 + i∂1), and one recognizes the standard form for the
massive Ising model [182, sec. 2.2].
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6.2.2 Functional integral

We now construct the functional integral for the Majorana field theory. Let D = i /∇ +mγ∗.
First we notice that

DΨ = λΨ (6.29)

does not have any real solution. However it admits a complete basis of complex unitary
eigenvectors ψλ associated with eigenvalues λ ∈ R.

If λ > 0, then ψ∗
λ is an eigenvalue of D associated to −λ. We will then denote the positive

eigenvalues by λn, n ∈ N and the negative ones by λ−n = −λn. The associated eigenvectors
will be denoted by ψn and ψ−n = ψ∗

n. Then

(i /∇ +mγ∗)ψn = λnψn, λn ≥ 0. (6.30)

We can now take

χn =
1√
2

(ψn + ψ∗
n) (6.31)

φn =
1

i
√

2
(ψn − ψ∗

n). (6.32)

These are real (Majorana) spinors that satisfy
{

(i /∇ +mγ∗)χn = iλnφn

(i /∇ +mγ∗)φn = −iλnχn
(6.33)

and then {(
−∆ + R

4 +m2
)
χn = λ2

nχn(
−∆ + R

4 +m2
)
φn = λ2

nφn.
(6.34)

As the basis (ψn, ψ∗
n) is orthonormal, we see that 〈χn|χm〉 = δmn, 〈φn|φm〉 = δmn and

〈χn|φm〉 = 0 where the scalar product is defined by

〈φ|χ〉 =
∫

d2x
√
g φ†(x)χ(x). (6.35)

Note that the spinors ψn, χn and φn are commuting classical functions.
We can then decompose a Majorana spinor quantum field Ψ as

Ψ =
∑

n≥0

(bnχn + cnφn) (6.36)

where the bn and cn are Grassmannian.
We then have

(i /∇ +mγ∗)Ψ = i
∑

n≥0

λn(bnφn − cnχn) (6.37)

and 〈
Ψ|(i /∇ +mγ∗)Ψ

〉
= i

∑

n≥0

λn(cnbn − bncn). (6.38)

Define
an = (cn + ibn), a†

n = cn − ibn (6.39)

so that
a†
nan = i(cnbn − bncn). (6.40)

Then the partition function is given by

Z[g] =
∫

DΨe−S =
∫ ∏

n≥0

da†
ndane

−
∑

n≥0
λna

†
nan =

∏

n>0

λn. (6.41)
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But (formally)

∏

n>0

λn =

(∏

n>0

λ2
n

)1/2

=


∏

n6=0

λ2
n




1/4

= det
(

−∆ +
R

4
+m2

)1/4

. (6.42)

Of course if m = 0 D may have zero-modes which must be excluded from the product and
which yield an infinite normalization factor which may depend on the metric.

Now D2 = −∆ + R
4 + m2 is an operator of Laplace type and we can use the standard

heat kernel and zeta function methods seen in chapter 3 to compute the gravitational action.
The spinor Laplacian was given in (3.4b).

We let Λn = λ2
n and we will put a subscript (0) to all quantities where m = 0. We have

Λn = Λ(0)
n +m2. (6.43)

We will use a zeta function regularization of the determinant (3.82):

ln detζ
D

µ2
= −ζ′(0) − lnµ2ζ(0). (6.44)

The gravitational action is then given by

Sgrav[ĝ, g] = − ln
Zm[g]
Zm[ĝ]

=
1
4

(ζ′
g(0) + lnµ2ζg(0)) − 1

4
(ζ′
ĝ(0) + lnµ2ζĝ(0)). (6.45)

The infinitesimal variation is

δSgrav[g] =
1
4

(δζ′
g(0) + lnµ2δζg(0)). (6.46)

6.2.3 Spectral functions

We will denote collectively χn and φn by Ψn as they are associated to the same eigenvalue
of D2 = −∆ +R/4 +m2. We recall briefly the expressions of the spectral functions defined
in 3.2.

The Green’s function for the operator D2 is given by:

D2G(x, y) =
δ(x− y)√

g
I2 ⇔ G(x, y) =

∑

n

Ψn(x)Ψ†
n(y)

Λn
(6.47)

where n is running over positive and negative integers. Taking the hermitian conjugate we
see that

G(y, x) = G(x, y)†. (6.48)

The Green’s function without the zero-modes Ψ0,i is defined by

D2G̃(x, y) =
δ(x − y)√

g
I2 −

∑

i

Ψ0,i(x)Ψ†
0,i(y) ⇔ G̃(x, y) =

∑

n>0

Ψn(x)Ψ†
n(y)

Λn
. (6.49)

G and G̃ are related by

G(x, y) =
1
m2

∑

i

Ψ0,i(x)Ψ†
0,i(y) + G̃(x, y). (6.50)

The heat kernel is the solution of
(

d
dt

+D2

)
K(t, x, y) = 0, K(t, x, y) ∼t→0

δ(x− y)√
g

I2 (6.51)

82



which can be expressed as

K(t, x, y) =
∑

n

e−ΛntΨn(x)Ψ†
n(y) (6.52)

while the integrated heat kernel is given by

K(t) =
∫

d2x
√
g trDK(t, x, x) =

∑

n

e−Λnt. (6.53)

In this case the coefficients of the small t expansion (3.55) becomes

a0(x, x) = I2 (6.54a)

a1(x, x) =
(

− R

12
−m2

)
I2 (6.54b)

so that

K(t) =
A

2πt
− 1

24π

∫
d2x

√
gR(x) − m2A

2π
+ o(t). (6.55)

The zeta functions are defined by

ζ(s, x, y) =
∑

n

Ψn(x)Ψ†
n(y)

Λsn
, ζ(s) =

∑

n

1
Λsn

. (6.56)

We can compute ζ(0) using (6.54b):

ζ(0) = − 1
24π

∫
d2x

√
gR(x) − m2A

2π
. (6.57)

Finally we note that for s 6= 1, trD ζ(s, x, x) is a scalar and we have

trD ∆ζ(s, x, x) = ∆ trD ζ(s, x, x) (6.58)

where in the l.h.s. ∆ is the spinor Laplacian (3.4b) while in the r.h.s. ∆ is the scalar
Laplacian (3.4a). Of course this is true only for the zeta function at coincident points (not
for ζ(s, x, y)).

6.3 Gravitational action

6.3.1 Conformal variations

In conformal gauge gµν = e2σ ĝµν , the vielbein is given by

eaµ = eσ êaµ. (6.59)

Then the affine et spin connections are

Γµνρ = Γ̂µνρ + δµν ∂ρσ + δµρ ∂νσ − ĝνρ ∂
µσ (6.60)

ωµab = ω̂µab + êµa ê
ν
b ∂νσ − êµb ê

ν
a ∂νσ. (6.61)

This gives the covariant derivative for a spinor:

∇µΨ = ∇̂µΨ +
1
2
êµa ê

ν
b ∂νσ γ

ab Ψ (6.62)

so that
/∇ = e−σ /̂∇ +

1
2

e−σ∂µσγ̂
µ. (6.63)
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The spinor Laplacian ∆ is

∆Ψ = e−2σ∆̂Ψ + e−2σ ∂νσ γ̂
µν ∇̂µΨ − 1

4
e−2σ ∂µσ ∂

µσΨ. (6.64)

As
R = e−2σR̂ − 2 e−2σ∆̂σ (6.65)

we have

D2 = e−2σ

(
−∆̂ +

1
4
R̂

)
− e−2σ ∂νσ γ̂

µν ∇̂µ +
1
4

e−2σ ∂µσ ∂
µσ − 1

2
e−2σ∆̂σ +m2 (6.66)

and

δD2 = −2δσ
(

−∆ +
1
4
R

)
− ∂ν(δσ)γµν∇µ − 1

2
∆(δσ). (6.67)

6.3.2 Perturbation theory

To compute the variation of the zeta function we need the variation of the eigenvalues of
D2 under a Weyl transformation. For this we distinguish between the zero-modes and the
other ones.

For m = 0, −∆ + R
4 is a positive operator which may have zero-modes which are the

zero-modes of /∇. A Weyl transformation does not change the number of zero-modes. Indeed
if χ̂ satisfies /̂∇χ̂ = 0 then (6.63) implies /∇

(
e−σ/2χ̂

)
= 0. On the sphere we can take for

ĝ the round metric which has R > 0 constant. As −∆ is a positive operator we see that
−∆ + R

4 cannot have any zero-mode. On the torus we can use the flat metric ĝ = δ for
which there are two constant zero-modes:

φ̂0 =
1√
A

(
1
0

)
, χ̂0 =

1√
A

(
0
1

)
. (6.68)

For genus g ≥ 2, we can take for ĝ a metric of constant negative curvature and one typically
has zero-modes.

The variation of the non-zero eigenvalues Λn can be obtained through usual perturbation
theory:

δΛn = 〈Ψn|δD2|Ψn〉 = −2(Λn−m2)〈Ψn|δσ|Ψn〉−〈Ψn|∂ν(δσ)γµν∇µ|Ψn〉− 1
2

〈Ψn|∆(δσ)|Ψn〉.
(6.69)

6.3.3 Variation of the zeta function

To obtain the gravitational action we need δζ(0) and δζ′(0). One has:

δζ(s) = −s
∑

n

δΛn
Λs+1
n

. (6.70)

As there is no zero-mode contribution to this equation we can work with the function ζ̃
instead of ζ:

δζ(s) = δζ̃(s). (6.71)

Doing this we do not have to distinguish between the massive and the massless case. Using
(5.29) we get

δζ̃(s) = 2s
∑

n6=0

∫
d2x

√
g δσ(x)

Ψ†
n(x)Ψn(x)

Λsn
− 2m2s

∑

n6=0

∫
d2x

√
g δσ(x)

Ψ†
n(x)Ψn(x)

Λs+1
n

+ s
∑

n6=0

∫
d2x

√
g
∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x)
Λs+1
n

+
s

2

∑

n6=0

∫
d2x

√
g∆(δσ)

Ψ†
n(x)Ψn(x)

Λs+1
n

.

(6.72)
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The first two terms can be expressed in terms of trace of the local zeta function:

∑

n6=0

∫
d2x

√
g δσ(x)

Ψ†
n(x)Ψn(x)

Λsn
=
∫

d2x
√
g δσ(x) trD ζ̃(s, x, x). (6.73)

To evaluate the third term one needs to integrate by parts and use γµν = γµγν − gµν :
∫

d2x
√
g ∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x) = − 1
4

∫
d2x

√
g δσ(x)R(x)Ψ†

n(x)Ψn(x)

+
∫

d2x
√
g δσ(x)( /∇Ψn)†(x) /∇Ψn(x)

−
∫

d2x
√
g δσ(x)∇µ(Ψ†

n(x))∇µΨn(x). (6.74)

Note that for n 6= 0 /∇Ψn is also an eigenvector of D2 associated to the eigenvalue Λn and
∫

d2x
√
g ( /∇Ψn)† /∇Ψn = −

∫
d2x

√
gΨ†

n /∇
2
Ψn = Λ(0)

n = Λn −m2. (6.75)

As the heat kernel is uniquely defined by (6.51), (3.62) implies that the zeta function is also
uniquely defined and does not depend on the basis of eigenvectors one has chosen. Then
one has

ζ̃(s, x, y) =
∑

n6=0

/∇Ψn(x) /∇Ψ†
n(y)

Λ(0)
n Λsn

=
∑

n6=0

/∇Ψn(x) /∇Ψ†
n(y)

Λsn(Λn −m2)
. (6.76)

One has Λn = Λ(0)
n +m2 and then Λn ≥ m2 for all n 6= 0. Then, for all m, one has

ζ̃(s, x, y) =
∑

n6=0

/∇Ψn(x) /∇Ψ†
n(y)

Λs+1
n

∑

k

(
m2

Λn

)k
=
∑

n6=0,k

/∇Ψn(x) /∇Ψ†
n(y)

Λs+1+k
n

m2k (6.77)

then

∑

n6=0

/∇Ψn(x) /∇Ψ†
n(y)

Λs+1
n

= ζ̃(s, x, y) −m2
∑

n6=0

/∇Ψn(x) /∇Ψ†
n(y)

Λs+2
n

−
∑

n6=0;k≥2

/∇Ψn(x) /∇Ψ†
n(y)

Λs+1+k
n

m2k

= ζ̃(s, x, y) −m2ζ̃(s+ 1, x, y) +
∑

n6=0;k≥1

/∇Ψn(x) /∇Ψ†
n(y)

Λs+2+k
n

m2k+2

−
∑

n6=;k≥2

/∇Ψn(x) /∇Ψ†
n(y)

Λs+1+k
n

m2k

= ζ̃(s, x, y) −m2ζ̃(s+ 1, x, y). (6.78)

To compute the last term in (6.74), one sees that

∇µζ̃(s, x, x) =
∑

n6=0

(∇µΨn(x))Ψ†
n(x)

Λsn
+
∑

n6=0

Ψn(x)∇µΨ†
n(x)

Λsn
(6.79)

then

∇µ∇µζ̃(s, x, x) =
∑

n6=0

(∆Ψn(x))Ψ†
n(x)

Λsn
+ 2

∑

n6=0

(∇µΨn(x))∇µΨ†
n(x)

Λsn
+
∑

n6=0

Ψn(x)∆Ψ†
n(x)

Λsn

= −2ζ̃(s− 1, x, x) + 2
(
R

4
+m2

)
ζ̃(s, x, x) + 2

∑

n6=0

(∇µΨn(x))∇µΨ†
n(x)

Λsn
.

(6.80)
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Then

∑

n6=0

∫
d2x

√
g δσ(x)

∇µ(Ψ†
n(x))∇µΨn(x)

Λs+1
n

=
1
2

∫
d2x

√
g δσ(x) trD(∆ζ̃(s+ 1, x, x))

+
∫

d2x
√
g δσ(x) trD ζ̃(s, x, x)

−
∫

d2x
√
g δσ(x)

(
R

4
+m2

)
trD ζ̃(s+ 1, x, x).

(6.81)

Finally

∑

n6=0

∫
d2x

√
g
∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x)
Λs+1
n

= −1
2

∫
d2x

√
g δσ(x) trD(∆ζ̃(s+ 1, x, x)). (6.82)

The last term in (6.72) is

∑

n6=0

∫
d2x

√
g∆(δσ)

Ψ†
n(x)Ψn(x)

Λs+1
n

=
∫

d2x
√
g δσ trD(∆ζ̃(s+ 1, x, x)). (6.83)

Finally the total variation of the zeta function is given by

δζ(s) = 2s
∫

d2x
√
g δσ(x) trD ζ̃(s, x, x) − 2m2s

∫
d2x

√
g δσ(x) trD ζ̃(s+ 1, x, x) (6.84)

and

δζ′(s) = 2s
∫

d2x
√
g δσ(x) trD ζ̃′(s, x, x) + 2

∫
d2x

√
g δσ(x) trD ζ̃(s, x, x)

− 2m2

(
s

∫
d2x

√
g δσ(x) trD ζ̃′(s+ 1, x, x) +

∫
d2x

√
g δσ(x) trD ζ̃(s+ 1, x, x)

)
.

(6.85)

We then have

δζ(0) = lim
s→0

[
2s
∫

d2x
√
g δσ(x) trD ζ̃(s, x, x) − 2m2s

∫
d2x

√
g δσ(x) trD ζ̃(s+ 1, x, x)

]

= −2m2 lim
s→0

s

∫
d2x

√
g δσ(x) trD ζ̃(s+ 1, x, x)

= −2m2

∫
d2x

√
g δσ(x) trD

a0(x, x)
4π

= −m2

π

∫
d2x

√
g δσ(x) (6.86)

and

δζ′(0) = 2
∫

d2x
√
g δσ(x) trD ζ̃(0, x, x)

− 2m2 lim
s→0

[(
1 + s

d
ds

)∫
d2x

√
g δσ(x) trD ζ̃(s+ 1, x, x)

]
. (6.87)

It is exactly the same formula as the one of [70] for the case of the massive scalar field.
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6.3.4 The massless case

In the massless case we expect that the gravitational action is just the Liouville action with
a factor 1/2 compared to the scalar case.

When m = 0 one has
δζ̃(0) = 0 (6.88)

and

δζ̃′(0) = 2
∫

d2x
√
g δσ(x) trD ζ̃(0, x, x)

= 2
∫

d2x
√
g δσ(x)

1
4π

trD a1(x, x)

= − 1
12π

∫
d2x

√
g δσ(x)R(x) (6.89)

and

δSgrav =
1
4
δζ̃′(0) = − 1

48π

∫
d2x

√
g δσ(x)R(x) = − 1

12
δSL (6.90)

so that the gravitational action is

Sgrav[ĝ, σ] = − 1
12
SL[ĝ, σ] (6.91)

which is what was expected from (4.88) since the central charge is c = 1
2 .

6.3.5 The massive case

Using the fact that

ζ̃(0, x, x) = ζ(0, x, x) −
∑

i

Ψ0,i(x)Ψ†
0,i(x) =

a1(x, x)
4π

−
∑

i

Ψ0,i(x)Ψ†
0,i(x) (6.92)

we find that

δζ′(0) = − 1
12π

∫
d2x

√
g δσ(x)R(x) − 2

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x)

− m2

π

∫
d2x

√
g δσ(x) − 2m2

∫
d2x

√
g δσ(x) trD ζ̃reg(1, x, x) (6.93)

where we have defined
ζ̃reg(s, x, x) = ζ̃(s, x, x) − 1

4π(s− 1)
. (6.94)

Then

δSgrav = − 1
12
δSL − 1

2

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x)

− m2

2

∫
d2x

√
g δσ(x) trD

(
ζ̃reg(1, x, x) +

lnµ2

4π
+

1
4π

)
(6.95)

The zeta function gives a regularized version of the Green’s function at coincident point:

Gζ(x) = lim
s→1

(
µ2s−2ζ(s, x, x) − a0(x)

4π(s− 1)

)
= lim

s→1

(
µ2s−2ζ(s, x, x) − I2

4π(s− 1)

)
(6.96)

and the same for ζ̃ and G̃ζ where Gζ and G̃ζ are related by

Gζ(x) = G̃ζ(x) +
∑

i

Ψ0,i(x)Ψ†
0,i(x). (6.97)
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We then have
ζ̃reg(1, x, x) = G̃ζ(x) − 1

4π
lnµ2 (6.98)

so that (6.95) becomes

δSgrav = − 1
12
δSL − 1

2

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x)

− m2

2

∫
d2x

√
g δσ(x) trD

(
G̃ζ(x) +

1
4π

)

= − 1
12
δSL − m2

2

∫
d2x

√
g δσ(x) trD

(
Gζ(x) +

1
4π

)
. (6.99)

The last term appears with a factor −m2/2 comparing to the case of the scalar field where
it is +m2 [70]. In particular due to the trace over the identity which gives a factor of 2 the
second term in the parenthesis cancels for a system with one Majorana and one scalar field
of the same mass, and one is left with

δSgrav = − 1
12

(
1 +

1
2

)
δSL +m2

∫
d2x

√
g δσ(x)

(
Gscalar
ζ (x) − 1

2
trD G

Majorana
ζ (x)

)
.

(6.100)
Now we want to express δSgrav as the variation of some functional. For this we note that
∫

d2x
√
g δσ trD Gζ(x) =

1
2
δ

(∫
d2x

√
g trD Gζ(x)

)
− 1

2

∫
d2x

√
g trD δGζ(x). (6.101)

We will then compute
∫

d2x
√
g trD δGζ(x). To do this we define another regularization of

the Green’s function:

GR(x) = lim
y→x

(
G(x, y) +

1
4π

ln
(
µ2ℓ2(x, y)

))
. (6.102)

It is linked to Gζ by
Gζ(x) = GR(x) + α (6.103)

where α is a constant [132]. This implies

δGζ(x) = δGR(x) = δ lim
y→x

(
G(x, y) +

1
4π

ln
(
µ2ℓ2(x, y)

))
. (6.104)

Under an infinitesimal Weyl transformation (6.47) becomes

(
D2 + δD2

)
(G(x, y) + δG(x, y)) =

δ(x− y)√
g

(1 − 2δσ). (6.105)

Then, at first order in δσ, δG is solution of

D2δG(x, y) = −2m2δσ(x)G(x, y) + ∂νδσ(x)γµν∇µG(x, y) +
1
2

∆(δσ(x))G(x, y). (6.106)

This solution is obtained by convolution with G:

δG(x, y) = −2m2

∫
d2z

√
g G(x, z)δσ(z)G(z, y) +

∫
d2z

√
g G(x, z)∂νδσ(z)γµν∇µG(z, y)

+
1
2

∫
d2z

√
g G(x, z)∆(δσ(z))G(z, y). (6.107)

Using the fact that

δℓ2(x, y) = ℓ2(x, y)(δσ(x) + δσ(y)) + O(ℓ4(x, y)) (6.108)
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which implies that
lim
y→x

δ ln(µ2ℓ2(x, y)) = 2δσ(x) (6.109)

and some computations similar to what we did before, we find that
∫

d2x
√
g trD δGζ(x) = −2m2

∫
d2x

√
g δσ(x) trD ζ(2, x, x) +

1
2π

∫
d2x

√
g δσ(x). (6.110)

This gives:

δSgrav = − 1
12
δSL − m2

4
δ

(∫
d2x

√
g trD Gζ(x)

)
− m4

2

∫
d2x

√
g δσ(x) trD ζ(2, x, x).

(6.111)
To deal with the last term of the r.h.s. we will express it in term of the heat kernel:

δK(t) = δK̃(t) = −t
∑

n6=0

e−ΛntδΛn

= −2t
(

d
dt

+m2

)∫
d2x

√
g δσ(x) trD K̃(t, x, x)

− t
∑

n6=0

e−Λnt

∫
d2x

√
gΨ†

n(x)∂ν (δσ)γµν∇µΨn(x)

− t

2

∫
d2x

√
g∆(δσ(x)) trD K̃(t, x, x). (6.112)

To compute the second term we introduce the generalised heat kernel

K(s, t, x, y) =
∑

n

e−ΛntΨn(x)Ψn(y)
Λsn

. (6.113)

In particular
K(0, t, x, y) = K(t, x, y). (6.114)

We can then redo the computations we have done for the variation of the zeta function. In
particular (6.82) can be generalised as

∑

n6=0

e−Λnt

∫
d2x

√
g
∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x)
Λs+1
n

= −1
2

∫
d2x

√
g δσ(x) trD(∆K̃(s+1, t, x, x)).

(6.115)
Taking s = −1 we find that

∑

n6=0

e−Λnt

∫
d2x

√
g ∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x) = −1
2

∫
d2x

√
g δσ(x) trD(∆K̃(t, x, x)).

(6.116)
We then have

δK(t) = −2t
(

d
dt

+m2

)∫
d2x

√
g δσ(x) trD K̃(t, x, x). (6.117)

Note that the differential equations satisfied by K and K(0) imply that

K(t, x, y) = e−m2tK(0)(t, x, y). (6.118)

The eigenfunctions expansions show that the same is true between K̃ and K̃(0) which implies

δK(t) = −2te−m2t d
dt

∫
d2x

√
g δσ(x) trD K̃(0)(t, x, x). (6.119)
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We then have
∫ ∞

0

dt
em

2t −m2t− 1
t

δK̃(t) = −2
[∫

d2x
√
g δσ trD K̃(0)(t, x, x)

]+∞

0

+ 2
∫ +∞

0

dt (m2t+ 1)
(
m2 +

d
dt

)∫
d2x

√
g δσ trD K̃(t, x, x)

= −2
∫

d2x
√
g δσ trD

[
K̃(0)(t, x, x) − K̃(t, x, x)

]+∞

0

+ 2m2

∫
dt
∫

d2x
√
g δσ trD K̃(t, x, x)

+ 2m2

∫
dt t

d
dt

∫
d2x

√
g δσ trD K̃(t, x, x)

+ 2m4

∫
dt t

∫
d2x

√
g δσ trD K̃(t, x, x)

= 4m4

∫
d2x

√
g δσ(x) trD ζ̃(2, x, x)

= 4m4

∫
d2x

√
g δσ(x) trD ζ(2, x, x)

− 4
∫

d2x
√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x). (6.120)

Reporting in (6.111) we get

δSgrav = − 1
12
δSL − m2

4
δ

(∫
d2x

√
g trD Gζ(x)

)
− 1

8
δ

(∫ ∞

0

dt
em

2t −m2t− 1
t

K̃(t)

)

− 1
2

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x). (6.121)

We then have an expression for δSgrav as a variation of a local functional up to a term
involving the projection on the subspace of zero-modes.

To obtain a small mass expansion we note that

δ

(∫
d2x

√
g trD Gζ(x)

)
= δ

(∫
d2x

√
g trD G̃ζ(x)

)
(6.122)

since the normalization condition of the zero-modes do not change:

δ

(∑

i

∫
d2x

√
gΨ†

0,i(x)Ψ0,i(x)

)
= 0. (6.123)

Furthermore ∫ ∞

0

dt
em

2t −m2t− 1
t

K(t) = O((m2A)2) (6.124)

so that

δSgrav = − 1
12
δSL − m2

4
δ

(∫
d2x

√
g trD G̃ζ(x)

)

− 1
2

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x) + O(m4). (6.125)

To get the gravitational action from (6.121) or (6.125) we need to express the third term
as the variation of some functional. For the moment we were not able to do this generically
so we present the two simplest cases: the sphere and the torus.
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The sphere

On the sphere there is no zero-mode (G(x, y) = G̃(x, y)) and (6.121) reduces to

δSgrav = δ

(
− 1

12
SL − m2

4

∫
d2x

√
g trD Gζ(x) +

1
8

∫ ∞

0

dt
em

2t −m2t− 1
t

K(t)

)
. (6.126)

We then obtain the gravitational action

Sgrav[ĝ, g] = − 1
12
SL[ĝ, g] − m2

4

∫
d2x

(√
g trD Gζ(x; g) −

√
ĝ trD Gζ(x; ĝ)

)

+
1
8

∫ ∞

0

dt
em

2t −m2t− 1
t

(Kg(t) −Kĝ(t)). (6.127)

When m goes to zero Gζ has a finite limit and, at first order in m2 one has

Sgrav[ĝ, g] = − 1
12
SL[ĝ, g] − m2

4
(AΨG[g] − ÂΨG[ĝ]) + O(m4) (6.128)

where

ΨG[g] =
1
A

∫
d2x

√
g trD Gζ(x; g). (6.129)

The gravitational action can then be written as

Sgrav[ĝ, g] = − 1
12
SL[ĝ, g] − m2

4
(AΨG[g] − ÂΨG[ĝ]) + O(m4)

= − 1
12
SL[ĝ, g] − Am2

4
(ΨG[g] − ΨG[ĝ]) +

m2

4
(A− Â)ΨG[ĝ] + O(m4) (6.130)

where the last term only contributes to the cosmological constant.

The torus

On the torus there are two zero-modes given, for the flat torus by (6.68). For a small
deformation around the flat torus one then has

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x) =

2
A

∫
d2x

√
g δσ(x) = 2

δA

A
= 2δ ln

A

Â
. (6.131)

Then the gravitational action is given by

Sgrav[ĝ, g] = − 1
12
SL[ĝ, g]−ln

A

Â
−Am2

4
(ΨG[g]−ΨG[ĝ])+

m2

4
(A−Â)ΨG[ĝ]+O(m4). (6.132)

6.3.6 Outlook

To obtain the gravitational action the next step is to express
∫

d2x
√
g δσ(x)

∑
i Ψ†

0,i(x)Ψ0,i(x)
as the variation of some functional for Riemann surfaces of genus ≥ 2. An idea would be to
use the uniformization theorem to write the metric on such a surface as

ds2 =
dzdz̄

(Im z)2
. (6.133)

Next we need to find an explicit expression for (ΨG[g] − ΨG[ĝ]) for the small mass
expansion. It is likely that we will encounter again the Mabuchi and Aubin–Yau functionals
which appear quite naturally, but the combination will probably be different from the scalar
case.

Finally we see that nor (6.121) neither (6.125) can give the DDK action (4.99). Indeed
the former are a given by a complicated development in the mass whose first term (after
m0) is in m2 and not in m.
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Chapter 7

Spectrum of the Mabuchi action
from a minisuperspace analysis

As we have seen, when conformal matter is coupled to two-dimensional quantum gravity the
resulting gravitational action is the Liouville one. Liouville theory is now well understood.
In particular its spectrum has been computed in [40–42, 44, 155]. We now need to follow
the same program when the matter is non conformal. An interesting step would be to find
the spectrum of the pure Mabuchi theory. In order to tackle this problem we rely on the
minisuperspace approximation where the quantum field theory is reduced to the quantum
mechanics of a point particle. In general the dynamics of the zero-mode is sufficient to build
the Hilbert space which is made from normalizable wave functions.

We find that, in this limit, the Mabuchi Hamiltonian coincides with the Liouville Hamil-
tonian. As a consequence the spectra are identical in both theories. Using the results for the
spectrum we can provide an expression for the 3-point function in the semi-classical limit.
The results of this chapter have been published in [76, 77].

We first give our ansatz for the computation of the minisuperspace action. Indeed a
rigorous derivation of the minisuperspace action and of the associated Hamiltonian requires
a variable-area action, but the latter is not known for the Mabuchi theory. We provide several
independent derivations relying on different assumptions of the minisuperspace action for
the Mabuchi action: the fact that the results agree in all cases gives a strong support to our
proposal. Finally we stress that this computation considers the Mabuchi action in isolation,
and in particular without the area-dependent coupling constant arising from the matter, the
reason being that this piece is not universal.

7.1 Rescaling of the Mabuchi action

In order to prepare the study of the minisuperspace it is necessary to rescale the Kähler
potential and the Mabuchi action

φ =
φ̃

πχ
, SM =

S̃M
πχ

(7.1)

such that the action reads

S̃M =
1

4π

∫
d2x

√
ĝ

(
−ĝµν∂µφ̃ ∂ν φ̃+

(
4πχ

Â
− R̂

)
φ̃+

4πχ
A

σ e2σ

)
(7.2)

and the relation (4.118) between the Liouville mode and the Kähler potential becomes

e2σ =
A

Â

(
1 +

Â

2πχ
∆̂φ̃

)
. (7.3)
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In the following we will omit the tildes on φ and SM . Note that, introducing the dependence
in the area, the above action can also be written as

SM [A] = SM [Â] +
χ

2
ln
A

Â
. (7.4)

This rescaling requires explanations since it is singular for χ = 0 (genus 1 surfaces),
which is precisely the case we will be looking at in the following sections. We want to argue
that this rescaling is necessary in order to get a consistent result:

1. The first point is that the kinetic term of (4.131) vanishes for χ = 0 which indicates
possible pathologies. On the other hand the action (7.2) is canonically normalized (up
to a minus sign that we expect to be also an artifact of the Kähler parametrization).

2. Despite the fact that the relation between the fields is singular for χ → 0, the equations
of motion, the Hamiltonian and the spectrum are well-defined even in the limit χ → 0.

3. The Kähler formalism itself presents other oddities. For example in [63] it was found
that in the gravitational action the factors multiplying the Mabuchi (and Aubin–Yau)
actions depend on A. As a consequence the equation of motion for the area (necessary
to recover the full dynamics with respect to the Liouville field) contains the actions
themselves, which is odd. More generally it is strange that what would be coupling
constants in standard cases depend on a parameter that is integrated over in the
functional integral. Another difficulty is to compute the energy–momentum tensor:
taking the Liouville mode and the background metric as the independent variables,
the relation (4.118) implies that the variation of φ in terms of ĝ does not vanish (and
similarly for A and Â) and thus the variation of the action in terms of ĝ is involved.

4. Adding the cosmological constant term µA and using the expression (7.4) one directly
finds the equation of motion for the area to be

µ+
χ

2A
= 0, (7.5)

which corresponds to (4.148). Then by plugging this result into (4.187) one finds the
same equation than (4.138), in the same way that (4.187) was matching (4.138). Due
to the comments below (4.148) it is possible that this relation holds at the level of
the functional integral. This will be used in the next section to infer the possible
minisuperspace action, where we will find other support for this procedure.

5. The action (7.2) contains only the geometric quantities

R̄ =
4πχ
A

, ˆ̄R =
4πχ

Â
, (7.6)

and this is also true of the factors in front of the Mabuchi action in [63] (in agreement
with the comment at the bottom of p. 21 of [63]). According to the previous point this
would mean that every instance of χ/A could be replaced by −µ and this would remove
the ambiguities described above (with this interpretation the apparent divergences
discussed below (4.21) of [63] would be an artifact of the formulation).

6. There are various instances where the action and/or the fields are rescaled by a pa-
rameter that tends to zero. This procedure is used to extract meaningful information
when the details of the system are smeared in the limit we are taking such that one
needs to "zoom".

A simple example is the case of a dimensional reduction where the volume of the
additional dimensions are taken to zero: since it multiplies the full action it is necessary
to rescale the latter to obtain a non-trivial result. More generally this happens also
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when one rescales some variables by the volume of a non-compact manifold or by the
number of degrees of freedom when the latter is taken to be infinite (e.g. in matrix
models when scaling the coupling constants or the fields, see for example [183]).

A closer example to our problem is the Liouville theory. Usually the Liouville action
with a cosmological constant is written as (in particular when it is studied by itself)

S′
L =

1
4π

∫
d2x
√
ĝ
(

(∂σ)2 +QR̂σ + 4πµ e2bσ
)

(7.7)

where Q = 1/b or Q = 1/b + b depending on whether one is working with the action
of (4.89) or with the DDK/bootstrap action [38, 39, 47]. The above action is not
well-defined in the semi-classical limit b → 0: for this reason one needs to perform the
rescaling

σ =
σc
b
, µ =

µc
b2
, SL = b2Sc. (7.8)

This should be compared with (7.1). Moreover it should be noted that the semi-
classical limit is part of the minisuperspace approximation [47, sec. 5].

Even though the analogy is not complete since the parameter b is continuous while χ
is discrete, it does provide some additional support to this rescaling. Moreover, the
form of the minisuperspace approximation of the unscaled action (4.118) does not give
a meaningful result.

7. One could have considered to rescale by −πχ instead in order to make the kinetic term
positive definite, but one would find that the Hamiltonian is not positive definite –
see (4.215) – and the identification (4.148) would not hold for the potential. Moreover
as argued in point 5) one should not take too seriously the negative sign in front
of the kinetic term since the coupling constant is also negative for χ < 0: then the
replacement (4.148) would make the combination positive for all genus.

Even if none of these arguments is sufficiently rigorous to prove alone that the rescaling
is well-defined, the convergence of these arguments gives support to this idea and points
more toward the fact that the various pathologies are not genuine but rather due to the
formalism. Since there is no other formalism at our disposition we will use the action (7.3)
as our starting point.

Finally the action (7.3) will be modified a last time to

SM =
1

4π

∫
d2x

√
ĝ

[
−ĝµν∂µφ∂νφ+

(
4πχ

Â
− R̂

)
φ+

4πχ
A

(σ − 1) e2σ

]
(7.9)

where a trivial term has been added. In terms of the Liouville mode it means that one
can shift the field σ by a constant term without changing anything, while in terms of the
Kähler potential it becomes a constant term and a boundary term. Moreover the addition
of this term makes the variation of the action better defined since it cancels a boundary
term proportional to the normal derivative of δφ, which does not vanish (in the same way
that one is adding a Gibbons–Hawking–York term in general relativity).

7.2 Computations of the minisuperspace Hamiltonian

In this section we will argue that a good minisuperspace action for the Mabuchi functional
(in Lorentzian signature) is

SM = −1
2

∫
dt
[
φ̇2 − φ̈ ln

(
φ̈

4πµ

)
+ φ̈

]
(7.10)
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together with the relation between σ and φ

e2σ =
φ̈

4πµ
, (7.11)

Note that for ̟ = K̈
8πµ the second term of this action corresponds to the one of the flat (or

BMS) Liouville theory in the minisuperspace approximation. The latter corresponds to the
asymptotic theory of 3d Minkowski M3 in the same sense that the usual Liouville theory is
the asymptotic theory of adS3 [184, 185]. We will argue that the Hamiltonian of (7.10) is
equal to the one of the Liouville theory (in the minisuperspace approximation)

HM =
Π2

2
+ 2πµ e2σ, (7.12)

Π being the conjugate momentum of σ.
Due to various pathologies of the formalism (explained in 7.1 and 7.2.1) we are not able

to give a rigorous derivation of this result. Nonetheless we present three computations of
the Hamiltonian (7.12) that all rely on different (mild) assumptions and for this reason we
believe that together they provide a support for our conjecture. Moreover since the action
(7.10) reproduces the main characteristics of the Mabuchi action (4.131) (standard kinetic
term for φ and potential in σ e2σ) it is expected to capture the main features of the zero-
mode dynamics in the Mabuchi theory. Hence even if a rigorous derivation can be performed
only by starting with a variable area action which is not known one is still able to make
progress.

The first subsection explains the various subtleties of the minisuperspace approximation
while the other ones present the different derivations.

7.2.1 Minisuperspace approximation

The minisuperspace approximation consists in studying only time-dependent Kähler poten-
tial and Liouville mode

σ(t, x) = σ(t), φ(t, x) = φ(t). (7.13)

In order to single out a globally defined time direction (global hyperbolicity) for the Hamil-
tonian formalism, the background spacetime is taken to be a cylinder I × S1 where I is an
interval of length T . This cylinder is obtained from the torus T 2 by unwrapping one of its
dimension. This direct product structure implies that the spacetime is flat

χ = 0, g0 = η, t ∈
[
−T

2
,
T

2

]
, x ∈ [0, 2π). (7.14)

The physically-relevant case is when time is non-compact with T → ∞ and I = R (the
infinite cylinder can also be obtained by taking the radius of one of the torus circle to
infinity). Unfortunately several difficulties arise from the fact that the Mabuchi action is
formulated at fixed area, and that it depends on χ and Â = 2π T . For this reason one needs
to be careful when taking the limits.

The dynamical variables in the fixed area formalism are φ and A and do not include
Â. Since the background metric ĝ results from a gauge choice, it can be chosen such that
Â have some specific values (in particular the area Â does not appear in the equation of
motion). For these different reasons it is expected that one can take Â → ∞ (corresponding
to T → ∞), independently of the value of A which can be kept finite. Note that this limit is
taken by changing the ranges of the coordinates as described above and not the components
of the metric: for this reason ĝ is kept fixed while taking the limit. This point is similar to
the question of whether the moduli describing a Riemann surfaces appear in the definition
of the coordinate ranges or in the metric [6]. This may introduce some spurious singularity
in σ but this will be of no importance for our study. In any case working at variable
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area is necessary in order to have a non-trivial dynamics in the minisuperspace: starting
with the Liouville action (4.89) one finds that the minisuperspace Hamiltonian reduces to a
free field Hamiltonian. Below we will find the same result for the Mabuchi minisuperspace
Hamiltonian. Moreover the Hamiltonian formalism is usually formulated in terms of a time
taking value over the real axis and for this reason it is more natural to consider variable
(non-compact) area for the ĝ metric in order to have a time that ranges over the full real
axis.

In a second step we impose that the curvature vanishes since the spacetime is flat, R̂ = 0.
A potential problem can arise because χ = 0 for flat space, but the Lagrangian is singular in
this case (this translates into the vanishing of the kinetic term in (4.131) before the rescaling
of the action). Two different solutions are possible. The first one is to consider a singular σ
such that

4πχ =
∫

d2x
√

|g|R 6=
∫

d2x
√

|ĝ| R̂, (7.15)

in which case R̂ = 0 does not imply χ = 0. One is then forced to work with patches in order
to deal with the singularity of σ: as explained above we do not work directly with the value
of φ in this paper and this should be of no consequence. The second solution is simpler:
from the relation

R̂Â = 4πχ, (7.16)

which is valid for constant R0, one sees that χ can take a non-zero value if one takes the
limits Â → ∞ and R̂ → 0 simultaneously such that the product is constant (this is a form
of double scaling limit). We will adopt this view in 7.2.4 and we will formally work with
χ 6= 0.

Another motivation for keeping χ arbitrary until the end is the fact that the operations
of taking a limit in the Lagrangian or in some quantity computed from it may not commute.
The Liouville theory provides again an example: it is well-known that one should not set
R̂ = 0 in the Lagrangian before computing the energy–momentum tensor for the flat space
case ĝ = η since the variation of this term gives a non-vanishing contribution in the limit
R̂ → 0. So one should avoid to take limits directly in the Lagrangian if one is not sure of
the effect this will have when computing other quantities.

Finally the question of the Wick rotation needs to be addressed since a positive definite
Hamiltonian requires the signature to be Lorentzian. Since the background spacetime is non-
compact it is expected that the Wick rotation can be performed without any problem. Let
us comment the case of finite T : then it is not clear if one can perform the Wick rotation
since analyticity can be lost for a variable defined on a segment. On the other hand no
pathological behaviour is seen when performing the Wick rotation for the Liouville theory
defined with finite time t ∈ I. Note that compact spacetimes with Lorentzian signature
are perfectly well-defined and it can be convenient to use them at intermediate stages of
computations. For example it is frequent in QFT to consider “spacetime in a box” in order
to regulate IR divergences, before taking the infinite limit volume. Moreover the equation of
motion for the Liouville mode has the same form (4.138) in both Euclidean and Lorentzian
signatures. Hence the relation (4.148) also holds and indicates that classical solutions have
finite area A even in Lorentzian signature except possibly if χ = 0 at the same time. For
these reasons it is fine to first perform the Wick rotation of the action and later to consider
the infinite area limit.

7.2.2 First derivation: infinite area and flat limits

Gathering all the previous elements, the relation (7.3) between the Liouville and Kähler
fields becomes

e2σ = − A

2πχ
φ̈. (7.17)
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and the minisuperspace action of the Mabuchi action (7.9) reads

SM = −1
2

∫
dt
[
φ̇2 − φ̈ ln

(
− A

2πχ
φ̈

)
+ φ̈

]
. (7.18)

The overall minus sign comes from the Lorentzian signature and we have set R̂ = 0 while
the integration over the spatial direction has provided a factor 2π. It is straightforward to
check that the variation of (7.18) agrees with the minisuperspace approximation of (4.187)

σ̈ =
2πχ
A

e2σ. (7.19)

Since the action (7.18) does not depend on φ it is possible to reduce it to a first order
action by considering K̇ as the canonical variable (in fact the condition R̂ = cst is sufficient
for this to happen in view of the relation (7.16)). The conjugate momenta P reads

P =
δSM

δφ̈
=

1
2

ln
(

− A

2πχ
φ̈

)
. (7.20)

It is necessary to invert this expression

φ̈ = −2πχ
A

e2P . (7.21)

in order to compute the Hamiltonian

HM = Pφ̈− LM =
φ̇2

2
− πχ

A
e2P . (7.22)

Comparing the relations (7.21) and (7.17) shows that P can be identified with σ. Performing
a canonical transformation to exchange position and momentum

P = σ, φ̇ = −Π, (7.23)

where Π is the canonical momentum associated to φ, provides the Hamiltonian

HM =
Π2

2
− πχ

A
e2σ. (7.24)

It is straightforward to check that the equations of motion (7.19) follow from this Hamil-
tonian. At this point it is possible to set χ = 0 (which is well-defined) and to add the
cosmological constant term to find (7.12)

HM =
Π2

2
+ 2πµ e2σ. (7.25)

This is equivalent to insert the cosmological constant term in the path integral and to replace
the integration over (φ,A) by the one over σ. Note that the same effect is achieved using
the arguments in section 4.4 and the replacement (4.148).

In this form the Hamiltonian is explicitly positive definite and it is nothing else but the
Liouville Hamiltonian (4.163) in the minisuperspace approximation (with b = 1 correspond-
ing to the case where the Liouville mode has not been rescaled). The equation of motion
for this Hamiltonian is

σ̈ = −4πµ e2σ. (7.26)

which corresponds to the minisuperspace approximation of (4.138) which is also expected
for the Mabuchi theory following the comments in 7.1.

One may be surprised to start with a Lagrangian (7.10) containing a negative-definite
kinetic term and to end with a positive-definite Hamiltonian (7.25). This is a consequence

97



of the presence of higher-derivatives: the Π2 term comes entirely from the −LM term which
explains why it has the correct sign, compared to the standard computation in the absence
of higher-derivatives where the first term contributes typically with an opposite sign and is
twice bigger. In particular one can see here that rescaling with −πχ to get a positive-definite
kinetic term in the Lagrangian would have lead to a negative-definite Hamiltonian.

The consistency of these computations can be checked by following the same approach
with the Liouville action (4.89) at fixed area: the minisuperspace Hamiltonian of the latter
is simply HL = p2/2 which coincides with (7.24) when χ = 0, and the full Hamiltonian
(4.163) is recovered by adding the cosmological constant.

7.2.3 Second derivation: Legendre transformation

It has been observed in [147] that the kinetic and potential terms of the Mabuchi action are
respectively Legendre dual to the kinetic term of the Liouville action and to the cosmological
constant potential (the kinetic terms including the linear piece). Despite the fact that
this relation did not receive any explanation it gives a simple consistency check of the
other derivations: we will apply it in the minisuperspace approximation and show that the
resulting action corresponds to (7.10).

Let’s define from (4.89) and (4.131)

TL =
σ̇2

2
, VL = −2πµ e2σ (7.27)

(the 2π in the second term comes from integrating over S1, since the cosmological constant
is not normalized) along with the Legendre transforms of these functions

TM = σσ̂ − TL = σσ̂ − σ̇2

2
, VM = σσ̂ − VL = σσ̂ + 2πµ e2σ. (7.28)

We need to extremize the above functions with respect to σ and plug back the result.
Let’s start with TL:

δTM
δσ

= σ̂ + σ̈ = 0. (7.29)

Defining σ̂ = −ϕ̈ one obtains the solution, and plugging back gives (under the integral)

TM = −ϕ̈ − ϕ̇2

2
=
ϕ̇2

2
. (7.30)

Let’s apply the same procedure to VL:

δVM
δσ

= σ̂ + 4πµ e2σ = 0. (7.31)

The solution reads

σ =
1
2

ln
(

− σ̂

4πµ

)
, (7.32)

and defining again σ̂ = −ϕ̈ one obtains

VM =
σ̂

2

(
ln
(

− σ̂

4πµ

)
− 1
)

= − ϕ̈

2

(
ln
(

ϕ̈

4πµ

)
− 1
)
. (7.33)

Note the presence of a boundary term.
The final action that we obtain by gathering both terms is

SM =
1
2

∫
dt
[
ϕ̇2 − ϕ̈ ln

(
ϕ̈

4πµ

)
+ ϕ̈

]
. (7.34)
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Note that the Liouville terms were in Lorentzian signature whereas the resulting Mabuchi
action is in Euclidean signature. The explanation may be that one should rescale with −πχ
instead of πχ in (7.1) (this can be supported by the fact that, according to the discussion of
7.1, the coupling constants at variable area would get a minus sign without this). This action
is the same as (7.10) upon the identification ψ = φ and thus it will yield the Hamiltonian
(7.25). Note that it naturally incorporates the boundary term from (7.9) and the relation
(4.148). Other forms of the Mabuchi actions could have been obtained by considering a
different φ̂ in the transformation of VL, but the above choice is more natural since φ̂ is the
same for both TL and VL.

7.2.4 Third derivation: Ostrogradski formalism

In order to generalize the computation of 7.2.2 we will consider the case where Â = 2πT and
R̂ are kept finite (generalizing the idea that one should not set terms to zero directly in the
Lagrangian). In this case the Lagrangian is of higher order in the derivatives and one needs
to use the Ostrogradski formalism [173] in the same way as what we did when computing
the Hamiltonian of the full action in 4.5.2.

The Mabuchi action (in Lorentzian signature) in the minisuperspace approximation (no
spatial dependence) is

SM = −1
2

∫
dt

[
φ̇2 +

(
4πχ

Â
− R̂

)
φ+

2πχ

Â

(
1 − Â

2πχ
φ̈

)(
ln
A

Â

(
1 − Â

2πχ
φ̈

)
− 1

)]

(7.35)
with the relation

e2σ =
A

Â

(
1 − Â

2πχ
φ̈

)
. (7.36)

The canonical variables are taken to be (φ,P) and (φ̇, P ) where the conjugate momenta
are

P =
∂L

∂φ̈
=

1
2

ln
A

Â

(
1 − Â

2πχ
φ̈

)
, (7.37a)

P =
∂L

∂φ̇
− dP

dt
= −φ̇− 1

2
dP
dt
. (7.37b)

In particular we can invert the first relation to find φ̈ in terms of the canonical variable

φ̈ =
2πχ
A

(
A

Â
− e2P

)
. (7.38)

Moreover comparing this expression with (7.36) one finds P = σ. The Hamiltonian reads

H = Pφ̇+ Pφ̈− L = Pφ̇+
2πχ

Â
P +

φ̇2

2
+

1
2

(
4πχ

Â
− R̂

)
φ− πχ

A
e2P . (7.39)

The canonical transformation

P = σ, φ̇ = −Π (7.40)

can be performed in order to express the Hamiltonian (7.39) in terms of the Liouville field

H =
Π2

2
− PΠ +

1
2

(
4πχ

Â
− R̂

)
φ+

2πχ

Â
σ − πχ

A
e2σ. (7.41)

Note that we can obtain this minisuperspace Hamiltonian as a limit from the full Hamiltonian
computed through an ADM parametrization of the metric in 4.5.2.
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The Hamiltonian is well-defined for χ = 0 and R̂ = 0 and it reduces to

H =
Π2

2
− PΠ, (7.42)

noting that in this case it is not necessary to take the limit Â → ∞. After performing the
canonical transformation

Π̃ = Π − P , P̃ = P , σ̃ = σ, φ̃ = σ + φ, (7.43)

the Hamiltonian reads (omitting the tildes)

H =
Π2

2
− P2

2
. (7.44)

Adding the cosmological constant gives finally

H =
Π2

2
+ 2πµ e2σ − P2

2
. (7.45)

Hence one recovers Liouville Hamiltonian plus a free (ghost) term. The interpretation of this
additional ghost field with respect to the other methods is not clear but it can be expected
that it is just an artifact of the fixed area formalism.

7.3 Minisuperspace canonical quantization of the Mabuchi

theory

The minisuperspace approximation is well-suited to determine the Hilbert space of the theory
as the latter can be found by studying the dynamics of the zero-mode only which simplifies
greatly the canonical quantization of the action. Through several changes of variables we
were are able to show that the Mabuchi and Liouville Hamiltonians are equal, implying that
the Mabuchi spectrum is identical to the Liouville spectrum.

The spectrum of Mabuchi theory is determined through the canonical quantization

Π −→ −i d
dσ
. (7.46)

It coincides with the minisuperspace quantization of the Liouville theory [41, 44, 153] that
we reviewed in 4.4.4. The stationary Schrödinger equation reads (if the action had not been
rescaled by πχ before, it would be equivalent to rescale the eigenvalues here).

HMψp = 2p2 ψp, (7.47)

where the definition of the eigenvalue is conventional, and this provides the differential
equation (

−1
2

d2

dσ2
+ 2πµ e2σ − 2p2

)
ψp(σ) = 0. (7.48)

It corresponds to the modified Bessel equation whose solutions are

ψp(σ) =
2(πµ)−ip

Γ(−2ip)
K2ip(2

√
πµ eσ) (7.49a)

∼0 e2ipσ + r0(p)e−2ipσ . (7.49b)

The second linearly independent solution has been removed because it blows up at σ →
∞ and the normalization has been chosen such that the incoming plane waves have unit
coefficient as σ → −∞. The factor

r0(p) =
Γ(2ip)

Γ(−2ip)
(πµ)−2ip (7.50)
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r0(p) was interpreted as a reflection coefficient in the Liouville theory, but its interpretation
in terms of the Mabuchi action is not clear. Moreover it can be seen that wave functions
with ±p are not independent.

ψ−p(σ) = r0(−p)ψp(σ). (7.51)

Additional constraints such as normalisability are needed in order to restrict the eigenval-
ues. As was the case for Liouville only the states with p ∈ R are (delta-function) normalizable
under the canonical inner product and belong then to the physical Hilbert space. Moreover
these states form a complete basis.

Since it is not clear if the Mabuchi theory defines a CFT we do not link these eigenvalues
to conformal weights as we did in 4.4.4 for the Liouville theory. In particular the unitarity
condition is not clear and hence we do not comment the status of the states with p ∈ iR
(note that some of those play a physical role in 2d Liouville gravity).

As a consequence the operators and the associated eigenvalues are identical in the
Mabuchi and Liouville theories. On one hand it is not surprising due to the fact that
the classical equations of motion are identical, but on the other hand it is highly non-trivial
that the very complicated action (7.10) reduces to the Liouville Hamiltonian after perform-
ing suitable changes of variables. Without the identification of the momentum P to the
Liouville mode it would have been very difficult to extract the wave functions for φ.

Finally the semi-classical limit of the 3-point function can be read from the minisuper-
space

C0(p1, p2, p3) =
∫ ∞

−∞
dσ ψp1 (σ)e−2ip2σψp3(σ) (7.52a)

= (πµ)−2p̃ Γ(2p̃)
∏

i

Γ
(
(−1)i2p̃i

)

Γ(2pi)
(7.52b)

where we defined
2p̃ =

∑

i

pi, p̃i = p̃− pi, i = 1, 2, 3. (7.53)

Of course this result agrees with the Liouville theory in the minisuperspace approximation,
but discrepancies will certainly appear beyond the semi-classical limit.
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Part II

A quantum mechanical model
for black holes from holography
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Chapter 8

Black holes and holography

Very soon after the construction of general relativity it appeared that some solutions of
Einstein equations display singularities i.e. points where the curvature of spacetime becomes
infinite. It has been shown by Penrose and Hawking that these singularities appear in quite
generic situations [186–188]. Black holes constitute a major class of solutions which display
this behaviour. A black hole is a region of spacetime where the gravitational force is so
strong that nothing can escape from it. In the centre of the black hole lies a singularity.
This singularity is hidden behind an event horizon which is the boundary of the region
from which no causal signal can reach an observer at infinity. It is not clear whether the
singularity (and even the horizon) still appears when the quantum effects are taken into
account. Indeed when the curvature becomes very large general relativity cannot be trusted
anymore and one has to take into account quantum gravity effects. This is why black holes
seem to offer a window on the elusive theory of quantum gravity.

At first sight black holes are just classical solutions of general relativity. Their structure
is very simple and only depends on their mass, angular momentum and charge. In four-
dimensional Minkowski spacetime there are then only four possible black hole solutions:
Schwarzschild (non-rotating and uncharged), Kerr (rotating and uncharged), Reissner–
Nordström (non-rotating and charged) and Kerr–Newman (rotating and charged). However
as developed in section 8.1 black holes display some puzzling thermal behaviour: it has
an entropy, a temperature and then emits thermal radiation. When analysing the ther-
modynamics of black holes one rapidly encounters strange phenomena, the most intriguing
being the information paradox which highlights some strong contradiction between general
relativity and quantum mechanics.

A powerful tool to study quantum black holes is given by the AdS/CFT correspondence
which is reviewed in 8.2. This duality proposes to study the properties of a gravitational
system from the one of a standard quantum field theory without gravity. This enables one
to build simpler quantum mechanical models to study the quantum dynamics of black holes.

8.1 The thermal behaviour of black holes

8.1.1 Thermodynamics of black holes

In this section we review some fundamental aspects of black hole thermodynamics. We will
momentarily reintroduce the dimensionful constants G, ~ and c.

The fact that nothing can escape from a black hole raises a thermodynamics issue: if an
object with an entropy falls into the black hole then the entropy of the outside will seem
to decrease which contradicts the second law of thermodynamics. There is no problem with
the first law since the black hole has an energy, its mass, which will increase if an object
carrying energy falls inside the horizon. We see that here what preserves the first law is the
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fact that the black hole has been assigned with an energy. This suggests that the second
law might be preserved if we assign some kind of entropy to the black hole.

This idea is pushed forward when we notice that some characteristics of black holes look
very much alike those of thermodynamical systems [87, 88, 189, 190]. First a black hole can
be completely characterised by a few macroscopic parameters namely its mass M , its charge
Q and its spin (or angular momentum) J . Correspondingly a thermodynamical system is
entirely described by a few macroscopic parameters like its temperature, pressure, chemical
potential. . . What is even more striking is that black holes mechanics follows laws that are
very similar to the laws for thermodynamics:

• The zeroth law states that the temperature is constant throughout a body at thermal
equilibrium. In the same way the surface gravity κ = 1

4GM is constant on the horizon
of stationary black holes (the surface gravity might be thought as the limiting force
one needs to exert from infinity to keep an object stationary at the horizon of a static
black hole).

• The first law is concerned with energy conservation: dE = TdS− pdV +µdn where E
is the energy, V the volume and n the number of particles. Correspondingly for black
holes one has

dM =
κ

8πG
dA+ µdQ+ Ω dJ (8.1)

(for a Schwarzschild black hole, µ = Ω = 0 since there is no charge nor spin).

• The second law states that there exists an extensive quantity, the entropy S who can
never decrease in an isolated system: ∆S ≥ 0. For black holes the area theorem states
that the area A of the horizon cannot decrease in any process: ∆A ≥ 0. For example
when two Schwarzschild black holes of masses M1 and M2 coalesce they form a black
hole of mass M1 +M2. Since the area of the horizon is proportional to the mass square
we see that the area indeed increases ((M1 +M2)2 ≥ M2

1 +M2
2 ).

These observations lead Bekenstein to propose that black holes have an entropy proportional
to there area [84].

However if black holes do have an entropy there must also exist a quantity to play the
role of the temperature:

1
T

=
∂S

∂E
. (8.2)

But a thermodynamical object at non-zero temperature emits thermal radiation which seems
paradoxal for a black hole that is supposed to absorb everything without remitting anything.
However, by a semiclassical computation treating the black hole metric as a fixed background
where evolve quantum fields, Hawking showed that black holes do actually radiate thermally
at a temperature T given by the Hawking temperature [85]:

T =
~

8πGM
. (8.3)

Reporting in (8.2) gives the Bekenstein–Hawking entropy:

SBH =
Ac3

4G~
. (8.4)

In statistical systems the entropy is the quantity which counts the number of states of
the system. Therefore it is natural to ask whether (8.4) has a statistical interpretation and
if yes which states it is actually counting.
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8.1.2 The information paradox

However the thermodynamics of black holes raises more questions than it gives answers. The
main issue is that if black holes radiate they will evaporate. But no matter in which state the
black hole was when it formed, Hawking radiation is always (approximately) thermal [89,
191]. This means that if initially the black hole was in a pure state Ψ , which means that the
density matrix takes the form ρ = |Ψ〉〈Ψ |, the final state will be a mixed state i.e. described
by a density matrix of the form ρ =

∑
n pn|Ψn〉〈Ψn| where the Ψn are an orthonormal basis

of states and the pn are (almost thermal) probability weights (satisfying
∑

n pn = 1), more
than one being non-zero. This is in contradiction with the unitarity of quantum mechanics
which implies that the evolution of a quantum system preserves pure states.

This also means that the information that was present in the initial state is not recovered
in the radiation and then disappears at the end of the evaporation of the black hole. This
is the information paradox. A measure of the missing information is given by the Von
Neumann entropy S = − tr(ρ ln ρ) = −∑n pn ln pn.

There are several proposals concerning what happens to this missing information [88–92].

1. The information is lost and we have to give up the unitarity of quantum mechanics.
This was the first conclusion of Hawking but we will see that AdS/CFT tends to
discard it [192].

2. At the last stage of the evaporation when the curvature of the horizon reaches the
Planck scale, Hawking’s semiclassical computation cannot be trusted. The black hole
leaves a stable remnant of planckian size in which the initial information is concen-
trated. But for the total state to remain pure this remnant must have a huge entangle-
ment entropy, much larger than that of a black hole of the same mass. The remnant
would have a very low mass (since most of the black hole would have evaporated) but
an enormous number of states to achieve for the high entropy. But objects of this kind
have a huge production rate which is not consistent with observations. Even supposing
that the remnants slowly evaporate and disappear does not solve the problem since
the transmission of so much information with so little energy would take a time so
long that the remnant would still look stable.

3. All the information is in fact returned in the radiation which is actually not a mixed
state. The information is contained in the entanglement of the fields of the radiation.
Every small subsystems would look thermal but the entire state would be pure. This
implies a breakdown of causality and locality.

4. Other ideas have been proposed. For example [193] argues that the information loss
comes from the impossibility for a distant observer to measure the state of a black
hole with arbitrary accuracy.

The information paradox opens a window on what could be some essential features of
quantum gravity. In any case it seems that we will have to give up some postulates of
quantum mechanics, either unitarity or locality. As we will see the holographic proposal
suggests that we should rather look at the third solution of the paradox and that quantum
gravity would be essentially non-local.

8.2 Studying black holes from holography

8.2.1 The AdS/CFT correspondence

As we have seen in the previous section the entropy of black holes scales as the area A of
the horizon. Bekenstein [194] then conjectured that the maximum entropy that can fit into
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some region of space with boundary area A is equal to the entropy of the black hole whose
horizon has area A (for now on we come back to natural units):

Smax =
A

4
. (8.5)

Indeed if the entropy S of the region is superior to the entropy SBH of the black hole then
we could add some matter to the region to form a black hole. But then the total entropy
would decrease which contradicts the second law of thermodynamics. This has lead to the
holographic proposal [74, 195–197] which states that the number of degrees of freedom of
a gravitating system in some region of space is the same as the one of a system on the
boundary of this region. The holographic hypothesis requires a major transformation in the
description of fields and interactions (and maybe of the structure of spacetime itself). Indeed
in holographic systems the number of degrees of freedom and their growth in terms of the
size of the system are much lower than what is expected in standard (non-gravitational)
systems. In the latter the number of degrees of freedom is proportional to the volume while
in holographic systems it scales as the area. It seems that these particularities are the sign
of the non-locality of the underlying theory of quantum gravity. This is not completely
surprising since diffeomorphism invariance prevents us from building local observables in
quantum gravity (however what is puzzling there is that the Universe looks local at the
scales that are currently reachable by experiments).

The holographic proposal found a concrete realisation with the conjecture of the AdS/CFT
correspondence by Maldacena [79]. It states that non-perturbative string theory in asymp-
totic AdS background is dual to a conformal field theory living on the boundary. This means
that there is a dictionary between the observables in some gravity theory and those in a
gauge theory that enables to use one picture or the other to compute correlation functions.
What is surprising with this construction is that it relates a theory of gravity with a gauge
theory without any kind of gravity. Moreover as CFTs are UV complete the holographic
correspondence provides a non-perturbative description of a UV complete theory of quan-
tum gravity. Here we will just review the fundamentals ideas of AdS/CFT, more details can
be found in [80–82, 91, 198–200].

In the original formulation of the conjecture the bulk theory consists of type IIB string
theory on AdS5 × S5 where the AdS and 5-sphere radii are equal. The flux of the 5-form
through S5 is an integer N and is related to the AdS radius rAdS by

r4
AdS = 4πgsNα′2 (8.6)

where α′ is the universal Regge slope of string theory related to the string length ls by
α′ = l2s and gs is the string coupling. The CFT side of the correspondence is given by
four-dimensional N = 4 super-Yang–Mills theory with SU(N) gauge group and coupling
g2

YM = gs. The idea of the AdS/CFT correspondence comes from the study of a stack of
N D3-branes in type IIB string theory in 10 dimensions. At large N the geometry near
the stack of branes approaches the one of AdS5 × S5. However at any finite N the system
admits N = 4 four-dimensional SYM with SU(N) gauge group as a low-energy description.
Then in their overlapping area of validity both theories must give an equivalent description
of the system.

The elaboration of the AdS/CFT conjecture relies on perturbation theory on both sides.
On the SYM side this can be trusted as long as it is weakly coupled i.e. as long as g2

YMN ≪ 1.
On the other hand the classical description of the geometry of AdS5 is valid only when the
radius of AdS is large compared to the string length given by α′ which is the case, according
to (8.6), when g2

YMN ≫ 1. For the two theory to be equivalent one then needs to be strongly
coupled when the other is weakly coupled and vice-versa: AdS/CFT is a strong-weak duality.

The t’Hooft limit consists in taking N to infinity while keeping λ = g2
YMN fixed. In the

gauge theory we can then do a 1/N perturbative expansion which corresponds to a topo-
logical expansion of the Feynman diagrams. The bulk side is now classical type IIB string
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theory (i.e. without α′ corrections) and the 1/N expansion corresponds to a perturbative
loop expansion in gS .

A signal of the duality is that the symmetry groups of AdS5 × S5 and of N = 4 four-
dimensional SYM match. Indeed by definition, the symmetry group of AdS5 is SO(4, 2)
which corresponds also to the conformal group in four dimensions. Moreover N = 4 su-
persymmetry gives rise to a SU(4) R-symmetry which is isomorphic to the S0(6) symmetry
group of S5. There is also an SL(2,R) weak-strong duality on both sides, in the four-
dimensional N = 4 SYM and in type IIB string theory.

The first dictionary between the two sides of the correspondence has been established
shortly after Maldacena proposal [201, 202]. To each light field Ψi in the bulk theory
corresponds a local operator Oi with the same spin in the CFT. For example massive scalar
fields in the bulk are dual to scalar fields in the CFT whose conformal dimension is related
to the mass. The graviton in AdS is mapped to the stress-energy tensor of the CFT. If
the gravity theory has a spin-1 vector field Aµ, then the dual CFT has a spin-1 operator
Jµ. If Aµ is massless the current Jµ is conserved. This constitutes a central feature of the
AdS/CFT correspondence: gauge symmetries in the bulk correspond to global symmetries
in the CFT.

The partition function ZST of the string theory depends on the value ΨB,i of the fields
Ψi on the boundary B. The AdS/CFT correspondence states that this is related to an
expectation value in the CFT by

ZST =
〈

e
∫

B

∑
i

ΨB,iOi

〉

cft

. (8.7)

The fields Ψi act as sources for the boundary operators Oi. The correlators of the Ψi in the
gravity theory match the ones of the Oi computed in the CFT.

Nowadays the AdS/CFT correspondence is strongly believed to hold in much more gen-
eral cases than what was thought at the beginning, and even if the gauge theory is not
supersymmetric. Indeed it has been conjectured that any relativistic conformal field theory
on R×Sd−1 is dual to a theory of quantum gravity in an asymptotically AdS×M spacetime
where M is some compact manifold (which can be trivial or not) [203]. However we do not
know in general how to construct the bulk geometry from the dual gauge theory. Moreover
as the gauge theory is strongly coupled, the duality has mostly been used to provide under-
standing on non-perturbative aspects of Yang–Mills theory from the weakly coupled gravity
side rather than the other way around.

8.2.2 Black holes in AdS/CFT

As we have seen the study of thermodynamics properties of black holes has played a mayor
role in the discovery of the AdS/CFT correspondence. It also gave some consistency verifi-
cations for example with the computation of the quasinormal modes. When a black hole is
perturbed it emits gravitational waves that put it back in its initial state according to the
no-hair theorem. These oscillations decay exponentially with time which is consistent with
the picture the perturbation will eventually be absorbed by the black hole. The frequencies
and damping times of these oscillations called the quasinormal modes are independent of
the perturbation and depend only on the black hole. In term of the thermal behaviour of
black holes this means that small perturbations of the black hole thermalize and the corre-
lation functions vanish exponentially. AdS/CFT states that a large static AdS black hole
is dual to an (almost) thermal state in some CFT. Perturbations of the black hole corre-
spond to perturbations of this thermal QFT state and the quasinormal modes describe the
thermalization of the system [204]. For the AdS3 black hole this has provided a good check
of AdS/CFT [205]. Note that the exponential decay of correlation functions is only valid
at large N . Indeed at finite N the spectrum is finite and correlation functions will present
Poincaré recurrences. This also implies that the spectrum of black holes is continuous oth-
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erwise the Fourier transform of the correlation functions would be a sum of delta functions
which does not describe an exponentially decaying function.

Rapidly AdS/CFT has revealed to be a powerful tool to deepen our understanding of
black holes through gauge theory technology (in particular large N methods). Of course a
caveat is needed there: for the moment the duality still relies on the AdS geometry of the
bulk theory even though there are attempts to enlarge it to de Sitter or Minkowski spaces.
Then AdS/CFT mostly gives us information on AdS black holes which are different from the
Minkowski ones (in particular because AdS boundary conditions look like putting the black
hole in a box). However they still present the main thermodynamical characteristics in which
we are interested for Minkowski black hole (an entropy given by A/4, thermal radiation, . . . ).
For example the quasinormal modes of Minkowski black holes have a long-time behaviour
slightly different from the AdS ones (a power-law tail) but the main characteristics remain.
So it seems reasonable to hope that we can gain some useful insights thanks to AdS/CFT.

First of all AdS/CFT seems to give us an answer to the information paradox: as the
black hole geometry is dual to some CFT which is unitary, the process of evaporation of the
black hole must be described by some evolution in the CFT which is governed by a unitary
S-matrix. Then black hole evaporation is unitary and the information is conserved [192].
However as argued in [92, 206] AdS/CFT tells us that the information is conserved but not
by which process and does not explain us where Hawking’s computation gets wrong.

A main characteristic of AdS is that it has finite energy and has an infinite potential wall
at asymptotic infinity. This gives boundary conditions that look like those of a box. There
are two kinds of black holes in AdS: small ones that evaporate and large ones that can be
stable. Indeed large black hole can be in thermal equilibrium with the radiation. These black
holes undergo a first order phase transition called the Hawking–Page transition [207]. Under
the Hawking–Page temperature pure radiation is more stable while black hole becomes more
stable for T > THP. There are also two other critical temperatures T1 < THP < T2: for
T < T1 black holes are not possible at all while for T > T2 all radiation will necessarily
collapse to form a black hole. Such phase transition needs to be recovered in any CFT
supposed to be dual to a black hole. It has been argued that the Hawking–Page transition
corresponds in the CFT side to a confinement-deconfinement transition [83]. Note that in
this case the CFT is strongly coupled (λ ≫ 1) since it is dual to a classical gravitational
system.

8.2.3 Building quantum models for black holes from holography

The most natural way to construct models from holography is to look at D-branes construc-
tion from string theory. A stack of N coincident Dp-branes is described by N ×N matrices
which depend on p+ 1 coordinates. If we compactify all spatial dimensions this reduces to
a simple quantum mechanical problem. Another way to build a purely quantum mechanical
model is to look at a system of N D0-branes described by the BFSS model [208]. In d
dimensions the action for the bosonic part is given by

S =
1

2g2

∫
dt tr

(
(Dtφ

µ)2 + [φµ, φν ]2
)

(8.8)

where the φµ are d N × N matrices. For d = 10 this action can also be obtained by
dimensional reduction of ten-dimensional N = 1 SYM or of four-dimension N = 4 SYM.
This action is clearly SO(d) invariant. At large N the D0-brane model has been argued
to be dual to M-theory at low energy [208] and to type IIA string theory at higher energy
[209]. Recently it has been shown that this model was chaotic [210, 211]. This has lead to
a model for black hole evaporation [211, 212].

More general models can be built which need to be U(N) invariant. Most of the time
an additional O(D) invariance is imposed where D is the number of matrices and is then
interpreted as the dimension of the bulk. The matrices transform as vectors under this O(D)
[183]. Large N matrix models are unfortunately difficult to solve since in many cases we do
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not know how to perform the sum over planar diagrams. To make progress it is natural to
try to understand even simpler models. Doing that we should be careful not to oversimplify
and to conserve the black hole like properties like continuous spectrum and quasinormal
behaviour. . .

A first strategy is to notice that a large class of gauge theories exhibits black hole
like behaviour in the large N limit even at weak coupling. A first hint of this is that
N = 4 SYM exhibits even at weak coupling a deconfinement transition between a low
temperature confining phase and a high temperature deconfined one. This has been shown
to correspond to a Hagedorn transition [213, 214] where the partition function diverges due
to an exponential growth of the number of states with the energy. It has been proposed that
this transition could be dual to some kind of Hawking–Page transition of a stringy black
hole [214, 215]. As we have seen gauge theories can describe black holes only at large N . At
finite N the spectrum is finite and there is no thermalization. This means that the large N
limit acts in some sense as a thermodynamical limit. Moreover the fact that the spectrum
becomes continuous in this limit is highly non-trivial. It has been shown in [216] that, for
a large class of models, this is a non-perturbative effect. Even at small t’Hooft coupling
perturbation theory cannot be trusted. Indeed turning on a small perturbation will lift the
enormous degeneracy of the free theory (of order eN

2

for states of energy of order N2).
This is the reason why the system is mixing and thermalizes. This thermalization appears
even for the weakly coupled theory which means that it could have some interpretation
as some kind of stringy black hole in the dual theory. This strategy has been followed
successfully for example for the Iizuka–Polchinski [217] and Iizuka–Okuda–Polchinski [218]
models which find a qualitative change of behaviour at weak coupling between finite N and
large N where they observe information loss. They deduce that the 1/N corrections dual
to quantum gravity corrections in the bulk are crucial to resolve the information paradox.
However these models are very simple and to not implement the singlet constraint so their
results need to be generalised.

An other path of research, the one we will follow in the rest of this chapter, is to build
simplified models where non-perturbative computations can be performed even if they seem
quite different from the usual models of gauge theory. A recent proposal that has lead to a lot
of interesting insights is the Sachdev–Ye–Kitaev (SYK) model. This is a much simpler model
consisting of N Majorana fermions with random couplings involving a few of these fermions
at a time (this can be viewed as a fermionic vector model). Amazingly it has been shown
to display some main properties of quantum black holes like chaos, quasinormal behaviour,
emergent reparametrization symmetry. . . [219–221]. The Feynman graphs of these models
were shown to be equivalent to the ones of fermionic random tensor models [222]. The latter
were in turn related to matrix models at large d in [183]. Interestingly one can also address
the properties of 1/N corrections in this context [223].

In the following we will construct a quantum mechanical model that still preserves the
matrix structure of (8.8) but is much simpler since the matrices are fermionic. Then the
spectrum is finite and can be computed (numerically) exactly without relying on perturba-
tion theory.
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Chapter 9

A fermionic matrix model for
black holes

In this chapter we describe a quantum mechanical model for black holes which is built using
the ideas of 8.2.3. The main feature of this model is that it uses fermionic matrices which
enables to keep the matrix structure of gauge theories while restricting the Hilbert space to
be finite-dimensional. The model is described in section 9.1. We build the Hilbert space in
section 9.2 and explain in section 9.3 how to compute the Hamiltonian. Finally we present
some preliminary results in section 9.4.

9.1 Description of the model

We consider a model with two fermionic matrices of size N :

X = (a†
ij), Y = (b†

ij) (9.1)

where a†
ij and b†

ij are fermionic creation operators. We set X̄ij = aji and Ȳij = bji. We will
denote the set of the two matrices byXµ = (X,Y ). As explained in 8.2.3 we want a model for
which high energy levels are highly degenerated so that a perturbation lifts the degeneracy
and produces a quasi-continuum spectrum when N is large. This forces us to work with
at least two matrices since this cannot happen in a model of one matrix upon which a
Hamiltonian is constructed. Indeed a perturbation will commute with the free Hamiltonian
and will then never lift the degeneracy (since it can be diagonalized simultaneously with the
free Hamiltonian). In this case the spectrum will remain discrete even in the large N limit.

The Hilbert space is constructed by acting with the creation matrices on the vacuum
|0〉. The dynamics of the model is determined by a Hamiltonian H with a U(N) × SO(2)
invariance, where the U(N) acts on X and Y by conjugation and the SO(2) rotates the pair
(X,Y ). Invariants under SO(2) can then be built using the invariant tensors δµν and ǫµν .
We can replace the SO(2) by an U(1) acting on the complex combinations

Z =
X + iY√

2
, Z̄ =

X − iY√
2

, Z† =
X† − iY †

√
2

, Z̄† =
X† + iY †

√
2

. (9.2)

We can consider that Z creates one unit of U(1) charge while Z̄ creates minus one unit.
Similarly, Z† destroys one unit of charge while Z̄† destroys minus one unit, i.e. increases
the charge by one unit. We will denote by l the corresponding conserved quantum number:
it is the number of Z minus the number of Z̄ used to excite a state from the vacuum. For
example, the state trZZ̄Z|0〉 has charge l = 1. The elements of the matrices Z and Z̄ will
be denoted by θ†

ij and θ̄†
ij .
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It follows from the gauge symmetry of any action of the type (8.8) that a U(N) singlet
constraint is imposed on the states. Hence the Fock will only contain states that can be
written as multi-traces of the form

tr(Zα1 Z̄β1 · · ·ZαnZ̄βn) . . . tr(Zρ1 Z̄σ1 · · ·Zρm Z̄σm)|0〉 (9.3)

We will say that a state is at level n if it contains products of n oscillators. The maximum
level is 22N2

when all the oscillators are excited. Using group theory, we can compute the
dimension of the Fock space and of the subspaces associated with a given level n. There is
a symmetry between the level n and the level 22N2 − n because there is an arbitrariness in
the choice of the vacuum: one could have chosen level 22N2

as the vacuum and exchange
the role of a†, b† with a, b. Consequently, we only have to do computations up to level 2N

2

.
For N = 2 and N = 3 the dimensions are given in the following table:

N
n

0 1 2 3 4 5 6 7 8 9

2 1 2 2 6 10
3 1 2 2 6 14 26 40 50 71 88

The most general quadratic, U(N) and U(1) invariant hermitian Hamiltonian is given
by

H2 = α trZZ† + β tr Z̄Z̄† + γ tr(ZZ̄ + Z̄†Z†)

+ α̃ trZ trZ† + β̃ tr Z̄ tr Z̄† + γ̃(trZ tr Z̄ + tr Z̄† trZ†) (9.4)

trZZ† counts the number of Z-creation operators used to create a state from the vacuum
while tr Z̄Z̄† counts the number of Z̄-creation operators. Thus trZZ† + tr Z̄Z̄† measures
the total number n of creation operators used to create a given state from the vacuum i.e.
the level of the state. For simplicity we will take α = β = 1 and α̃ = β̃ = γ̃ = 0. The
quadratic Hamiltonian is then the sum of a free Hamiltonian

H0 = tr
(
ZZ† + Z̄Z̄†) (9.5)

and an interaction term
Hint,2 = γ tr(ZZ̄ + Z̄†Z†). (9.6)

Note that the term Hint,2 does not change the degeneracy of the spectrum. This can be seen
by doing a Bogolubov-type transformation. Indeed, defining

U = cos(ϑ)Z + sin(ϑ)Z̄†, V = cos(ϑ)Z̄ − sin(ϑ)Z† (9.7)

we see that U ij and (U †)kl on one side and V ij and (V †)kl on an another satisfy standard
anticommutation relations while U and U † anticommute with V and V †. We have

tr
(
UU † + V V †) = cos(2ϑ) tr

(
ZZ† + Z̄Z̄†)+ sin(2ϑ) tr

(
ZZ̄ + Z̄†Z†)+ 2N2 sin2(ϑ). (9.8)

Choosing ϑ such that tan(2ϑ) = γ we have

H2 =
√

1 + γ2 tr
(
UU † + V V †)−N2

(√
1 + γ2 − 1

)
. (9.9)

The spectrum of H2 has then the same degeneracy as the one of H0, the eigenvalues being
shifted now to

√
1 + γ2 n−N2

(√
1 + γ2 − 1

)
instead of n. Consequently we do not expect

that turning on γ will change the qualitative behaviour of the system.
As U(1) invariance forbids any cubic interaction the simplest interactions terms with

more than two oscillators are at least quartic. As there are around a hundred possible quartic
terms we need to choose some particular combination. A natural choice is motivated by the
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interaction term in N = 4 SYM or in the D0-brane (8.8) action. It is tr[φµ, φν ][φµ, φν ] where
we identify φµ with a matrix-valued position in the µ direction, i.e. in terms of the creation
and annihilation matrices as φ1 = X +X† and φ2 = Y + Y †. One finds

Hint,4 = tr[φµ, φν ][φµ, φν ] = 4 tr(Z + Z̄†)(Z̄ + Z†)(Z̄ + Z†)(Z + Z̄†) − 8N3 (9.10)

Interestingly other natural terms such as tr{φµ, φν}{φµ, φν} or tr(φµφµ)2 can be also ex-
pressed with the same expression tr(Z + Z̄†)(Z̄ + Z†)(Z̄ + Z†)(Z + Z̄†):
{

tr{φµ, φν}{φµ, φν} = −4 tr(Z + Z̄†)(Z̄ + Z†)(Z̄ + Z†)(Z + Z̄†) + 12N3 + 2N
tr(φµφµ)2 = 2 tr(Z + Z̄†)(Z̄ + Z†)(Z̄ + Z†)(Z + Z̄†) + 4N3

(9.11)

The total Hamiltonian is then

H = H0 + γHint,2 + gHint,4. (9.12)

The fact that the matrices are fermionic implies some relations:

tr(X2p) = 0, ∀p ∈ N
∗, X2N = 0. (9.13)

Moreover we know by Cayley–Hamilton theorem that the power N of a bosonic matrix (i.e.
a product of an even number of fermionic ones) is a linear combination of lower powers of
this matrix. The traces (9.3) are then not independent: they form an overcomplete set. To
construct the Hilbert space we need to take into these relations. To get a basis of the Hilbert
space we will then use Gram-Schmidt orthonormalization procedure.

9.2 Construction of the Hilbert space

There are two parts of the basis: the part with level ≤ N2 and the part with level > N2.
As already mentioned it is sufficient to construct only the first part.

The first step is to generate all inequivalent single-traces operators. This requires several
precautions. First as in the case with bosonic matrices traces that are related by a circular
permutation of their arguments have to be included only once. Doing this amounts to solve
the Polya problem, which is already implemented in Mathematica. Secondly we need to take
care of the relations (9.13) that are specific to fermionic matrices in order to avoid carrying
states that are trivially vanishing. Finally we also have to discard states that contain a
bosonic matrix to the power N since this state is a linear combination of over states. To be
sure to take into account all these constraints and to obtain a minimal list of single-traces
the simplest is to build it level by level.

Next we use this list of single-traces to construct a basis containing all single-trace and
multi-trace states. We first have to delete states which contain the product of an even number
of some fermionic trace since they automatically vanish. Then we implement Gram-Schmidt
orthogonalization scheme. The scalar product is defined by the usual one on Grassmann
algebras:

〈0|θ . . . θθ† . . . θ†|O〉 =

{
0 if all the θ match all the θ†

1 otherwise.
(9.14)

With this process we get a basis of the Hilbert space classed by level and by charge. It
is then easy to change the order to get a basis in which in will be simpler to compute the
Hamiltonian that is classed by charge and then by level.

A main difficulty is that comparing all the factors in a Grassmannian expression takes
a time which is exponential in the length of this expression. For N = 3 we only need to
go to level n = 9 which is still doable by this method but the level n = 16 needed for
N = 4 and beyond is clearly out of reach. Another idea would be to use Wick theorem to
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compute the scalar products. However although it is much faster for levels smaller than 10
it is much slower for higher levels since the complexity is factorial in n. Then it seems that
to do computations with higher-dimensional matrices we need to think of another way to
construct the Hilbert space. Analytical expressions for the basis do exist in the bosonic case
and can be extended to the fermionic one [224] but the expressions are much too complicated
to be used for numerical simulations.

As an example we give an orthogonal basis of the Hilbert space in the case N = 2 (for
N = 3 there are several hundreds of states and we did not find relevant to insert them
there). We group the states by charge l and then by level n. Indeed U(1) invariance of
the Hamiltonian means that the interactions will always preserve l while the levels n will
be mixed. We only write the results for l ≤ 0 since the ones for l > 0 are obtained by
exchanging Z and Z̄

• l = 0

– n = 0: the vacuum |0〉
– n = 2: trZZ̄|0〉,

(
− 1

2 trZZ̄ + trZ tr Z̄
)

|0〉
– n = 4: trZ2Z̄2|0〉, trZZ̄ZZ̄|0〉,

(
− 1

2 trZZ̄ZZ̄ + trZ trZZ̄2
)

|0〉, trZ tr Z̄ trZZ̄|0〉
– n = 6: trZ†Z̄†|Ω〉,

(
− 1

2 trZ†Z̄† + trZ† tr Z̄†) |Ω〉
– n = 8: the Dirac sea : |Ω〉 = θ†

11θ
†
12θ

†
21θ

†
22θ̄

†
11θ̄

†
12θ̄

†
21θ̄

†
22|0〉

• l = −1

– n = 1: tr Z̄|0〉
– n = 3: trZZ̄2|0〉, tr Z̄ trZZ̄|0〉
– n = 5: trZ†(Z̄†)2|Ω〉, tr Z̄† trZ†Z̄†|Ω〉
– n = 7: tr Z̄†|Ω〉

• l = −2

– n = 2: no state

– n = 4: trZ3 tr Z̄|0〉 and trZ2Z̄ trZ|0〉
– n = 6: no state

• l = −3

– n = 3 tr Z̄3

– n = 5 tr (̄Z†)3

• l = −4

– n = 4 tr Z̄ tr Z̄3

9.3 Computation of Hamiltonians

The computation of the Hamiltonians (9.6) and (9.10) requires to do the scalar product of
states of different levels and in particular states that are written as created from the vacuum
and states written as annihilation operators action on the Dirac sea.

A first difficulty is that a typical state involves a sum of many products of Grassmannian.
It is then much slower to compute the scalar product of two such states than to compute
the scalar product of a state with an element of the Grassmann basis. To reduce as much as
possible the number and the complexity of the scalar products we need to compute we will
use a projection of the space of singlets on a subspace of the Grassmannians. Let’s denote by
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|eI〉, I = 1, . . . , 2N
2

the elements of the Grassmann basis (that is product of Grassmannian
of the form θ†

i1j1
. . . θ†

ipjp
) at level n ≤ N2 and by |φα〉, α = 1, . . . , d the elements of the

orthogonal basis of singlets (d is the dimension of one subspace of interest, for example the
subspace of states with l = 0). We have 〈φα|φβ〉 = cαδαβ . We then write

|φα〉 =
22N2

∑

I=1

M I
β |eI〉 =

d∑

I=1

M I
β |eI〉 +

22N2

∑

J̃=d

M Ĩ
β |eĨ〉 (9.15)

where the |eI〉, I = 1, . . . , d are chosen such that M I
α is invertible. Of course for the states

at level n > N2, we will take the same Grassmannians for the projection but now considering
them as annihilation operators acting on the Dirac sea and replacing the θ† by θ.

Our goal is to compute the matrix elements Hαβ of an Hamiltonian H that is the Hβα

defined by
H |φα〉 = Hβα|φβ〉. (9.16)

We have

H |φα〉 = Hβα|φβ〉 = Hβα




d∑

J=1

M J
β |eJ〉 +

22N2

∑

J̃=d

M J̃
β |eJ̃ 〉


 (9.17)

thus, for I = 1, . . . , d
〈eI |H |φα〉 = HβαM

I
β . (9.18)

If we note ĥ the matrix whose elements are ĥIα = 〈eI |H |φα〉, then

ĥT = (HTM)T ⇔ H = (MT )−1ĥ. (9.19)

We then see that we can compute the scalar products 〈eI |H |φα〉 instead of 〈φα|H |φβ〉 which
is much simpler.

Let’s consider a subspace of the Hilbert space consisting of states of a given l and d̃ be
the number of states with level n ≤ N2. The matrix ĥIα can be written by block as

ĥ =
(
A B
C D

)
(9.20)

where, denoting by ẽI (resp. φ̃α) the state eI (resp. φα) where creation operators are
replaced by annihilation operators, the blocks are constituted by matrix elements of the
form :

• Aij = 〈0|eIHφα|0〉, I ≤ d̃, α ≤ d̃

• Bij = 〈0|eIHφ̃α|Ω〉, I ≤ d̃, α > d̃

• Cij = 〈Ω|ẽIHφα|0〉, I > d̃, α ≤ d̃

• Dij = 〈Ω|ẽIHφ̃α|Ω〉, I > d̃, α > d̃

At this point we only know how to compute scalar products between states written in
the same language: creation operators acting on the vacuum on both side or annihilation
operators acting on the Dirac sea on both sides. To compute matrix elements of the form
〈0|eIHφ̃α|Ω〉 or 〈Ω|ẽIHφα|0〉, we just have to know how to transform eI |0〉 to O|Ω〉 and
ẽI |Ω〉 to Õ|0〉 where O is an operator which contains only annihilation operators and Õ
contains only creation operators. We have

|Ω〉 = θ†
11θ

†
12θ

†
21θ

†
22θ̄

†
11θ̄

†
12θ̄

†
21θ̄

†
22|0〉 ≡ c†

1 . . . c
†
2N2 |0〉. (9.21)
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We will always take the eI to be ordered chains of creation operators. We then just have to
know that if i1 < . . . < ik:

ci1 . . . cik |Ω〉 = (−1)i1−1 . . . (−1)ik−1c†
1 . . . c

†
i1−1c

†
i1+1 . . . c

†
ik−1c

†
ik+1 . . . c

†
2N2 |0〉. (9.22)

The same formula works to go from annihilation operators acting on the Dirac sea to creation
operators on the vacuum. We now just have to compute matrix elements of the form
〈0|eIHφα|0〉 or 〈Ω|ẽIHφ̃α|Ω〉. For the first one, we have to put H in anti-normal order
(annihilation operators on the left, creation on the right) while for the second one, we have
to put it in normal order.

9.4 Results

The first step of the analysis is to compute the spectrum of the theory. As expected the
qualitative features are not modified when turning on γ which will then be set to 0. We see
in figure 9.1 that as soon as we turn on a small coupling constant g for the quartic interaction
the degeneracy is lifted and the spectrum becomes quasi-continuous. This is encouraging
since it was not obvious that taking N as small as 3 will enable us to see such a drastic
effect.

0.05 0.10 0.15 0.20

5

10

15

20

Figure 9.1 – Evolution of the spectrum for coupling g from 0 to 0.2.

We also observe that when the coupling grows gaps appear in the spectrum (figure 9.2).
This may be due to the fact that our interaction term is not sufficiently generic when the
matrices are fermionic and so the mixing is not complete.

The continuous aspect of the spectrum encourages to investigate whether we can observe
a black hole like phase transition. This indeed seems to be the case as we see in figure 9.3
where we plot the free energy as a function of the temperature. For each curve there appears
to be a critical temperature Tc below which the free energy is almost constant and above
which the free energy decreases rapidly with the temperature. This critical temperature
decreases when the coupling grows and seems to disappear for g ≈ 0.8. We recover this
phase transition in the Green’s function

G(t) =
1
Z

tr e−H/T eitH A e−itHA−
(

1
Z

tr e−H/T A

)2

(9.23)

of the operator A = tr(ZZ̄ + Z̄†Z†) (Z denotes the partition function). We see in figure 9.4
that for T < Tc (blue curve) the Green’s function just oscillates while for T ≥ Tc (orange
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Figure 9.2 – Evolution of the spectrum for coupling g from 0 to 1.
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Figure 9.3 – Evolution of the free energy with the temperature (the coupling increases with
the origin point of the free energy).

and green curves) we begin to see an exponential decrease which could indeed indicate
thermalization. It appears desirable to increase N to see this effect more clearly.

Despite its simplicity this model presents encouraging features for modelling quantum
black holes. However the study needs to be developed further. In particular it would be
interesting to see whether a more generic interaction term modifies the thermal behaviour
of the system. Another interesting point would be to explore whether we can see some trace
of quantum chaos. Of course being able to extend the computations to N = 4 would lead
significant progress since the number of states that mix in this case is by far much higher.
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Figure 9.4 – Time evolution of the absolute value of the Green’s function for g = 0.2.
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Annexe A

Résumé en français

A.1 Nécessité d’une théorie de gravité quantique

Au début du vingtième siècle deux théories majeures ont changé radicalement notre com-
préhension des lois de la physique : la mécanique quantique (et la théorie quantique des
champs) et la relativité générale. La première concerne les interactions fondamentales entre
particules à très courtes distances : l’électromagnétisme et les interactions faible et forte. La
relativité générale, quant à elle, décrit les structures de l’Univers à grande échelle en reliant
la gravitation à la géométrie de l’espace-temps. Les deux théories sont très bien vérifiées
expérimentalement, leurs derniers succès étant respectivement la découverte en 2012 par
les détecteurs Atlas et CMS au LHC du boson de Brout–Englert–Higgs prédit en 1964 et
l’observation des ondes gravitationnelles à Ligo et Virgo en 2016.

Cependant, ces deux théories ne semblent pas cohérentes l’une avec l’autre. En effet,
les formalismes mathématiques qui les décrivent sont très différents et paraissent incom-
patibles. Tandis que la relativité générale est une théorie classique où l’espace-temps est
dynamique, la théorie quantique des champs se place dans un espace-temps fixe avec, en
particulier, une direction de temps fixée. Mais, comme toutes les particules interagissent
gravitationnellement, on s’attend à pouvoir décrire toutes les interactions avec un forma-
lisme cohérent. De plus, la relativité générale ne semble pas valable à courtes distances (de
l’ordre de l’échelle de Planck). En effet, elle prédit des singularités dans l’espace-temps (Big-
Bang, trous noirs) où la courbure devient infinie et où la théorie ne fait plus sens. En outre,
des calculs semi-classiques couplant la relativité générale classique à une théorie quantique
des champs révèlent des incohérences, la plus importante étant la radiation de Hawking des
trous noirs qui remet en question l’unitarité de la mécanique quantique, l’un de ses postulats
fondamentaux. Par conséquent, la recherche d’une théorie de gravité quantique qui unifie
la relativité générale et la mécanique quantique est l’un des défis majeurs de la physique
théorique du XXIe siècle.

Mais après presque un siècle de recherche, la gravité quantique nous échappe toujours
et il n’existe pour le moment aucune théorie vérifiée expérimentalement. Il faut dire que
le physicien en quête de gravité quantique se heurte rapidement à de nombreuses difficul-
tés [1–4]. En premier lieu, une quantification directe de l’action d’Einstein–Hilbert n’est pas
possible car elle est perturbativement non-renormalisable : à chaque ordre dans la théorie
des perturbations, de nouvelles divergences apparaissent et il faut introduire une infinité
de contre-termes pour les supprimer. Un premier remède serait l’existence d’un point fixe
UV non-gaussien qui rendrait la théorie renormalisable de façon non-perturbative (sécurité
asymptotique). Un autre serait que la relativité générale n’est qu’une théorie effective valide
uniquement à basse énergie et qui doit être complétée (par des termes avec des dérivées
d’ordre supérieur, d’autres types de matière, de la supersymétrie, des cordes. . . ) pour être
rendue finie dans l’ultraviolet ou renormalisable. Un point encore plus difficile est la formu-
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lation d’une théorie des champs indépendante de l’espace-temps de fond, et en particulier
sans temps fixé. En outre, on ne sait toujours pas quels devraient être les observables d’une
théorie de gravité quantique puisque l’invariance par difféomorphismes de la relativité géné-
rale ne permet pas de donner un sens à des observables locaux. De plus, un postulat essentiel
de la théorie quantique des champs est la causalité, ce qui signifie que des champs séparés
par un intervalle de genre espace ne s’influencent pas mutuellement et commutent. Mais si la
métrique est soumise à des fluctuations quantiques, les notions d’intervalles de genre temps
ou de genre espace n’ont plus de sens. Ces différents problèmes ont conduit au développe-
ment de différents formalismes qui résolvent diverses questions : la théorie des cordes [5–7],
la gravité quantique à boucles [8–10], la géométrie non-commutative [11–13], les triangula-
tions dynamiques [14, 15], les ensembles causaux [16–19], la sécurité asymptotique [20–22],
les modèles de matrices et les tenseurs aléatoires [23–26]. . .

Il y a peu de doutes que la compréhension complète de l’Univers, en particulier en ce
qui concerne la cosmologie primordiale et les trous noirs, nécessite une théorie de gravité
quantique. Une telle théorie pourrait aussi permettre de résoudre le problème de la constante
cosmologique. Actuellement, on ne peut pas expliquer pourquoi la constante cosmologique,
bien que non nulle, est si petite, de l’ordre de 10−52 m−4 alors qu’un calcul naïf de théo-
rie quantique des champs trouve une valeur plus grande d’une cinquantaine d’ordres de
grandeur [27]. La gravité quantique pourrait aussi être une solution pour supprimer les di-
vergences à courtes distances présentes dans la plupart des théories quantiques des champs
(y compris celles qui sont renormalisables mais pas finies) en introduisant une coupure fon-
damentale à l’échelle de Planck. Il semble aussi, en particulier en théorie des cordes ou
en géométrie non-commutative, que cette nouvelle théorie pourrait résoudre d’autres pro-
blèmes de l’actuel Modèle standard de la physique des particules. Premièrement, le nombre
important de paramètres libres (dix-neuf) du Modèle standard n’est pas satisfaisant et l’on
souhaiterait pouvoir décrire la physique avec le plus petit nombre possible de paramètres.
En particulier, une théorie complète devrait pouvoir prédire les masses des particules fon-
damentales, ce qui peut être réalisé par une théorie de grande unification. Le fait que les
trois constantes de couplage du Modèle standard deviennent presque égales à une énergie
autour de 1015 GeV est un indice fort pour l’existence d’une telle théorie (et l’accord est
encore meilleur si l’on inclut la supersymétrie). Parmi les questions qui pourraient trouver
une réponse grâce à la grande unification, on trouve, entre autres, l’origine du groupe de
jauge SU(3)×SU(2)×U(1), l’explication du nombre de familles de fermions ou le mécanisme
qui donne leurs masses aux neutrinos. A cette heure, la grande unification reste un problème
ouvert et aucune physique au-delà du Modèle standard n’a encore été détectée.

La gravité quantique n’est pour l’instant pas accessible expérimentalement ce qui consti-
tue une difficulté majeure. En effet, on s’attend à ce que les effets de la gravité quantique

deviennent importants à des énergies autour de l’échelle de Planck (mP =
√

~c
G ∼ 1019 GeV)

ce qui est loin des énergies actuellement à portée des accélérateurs de l’ordre de 10 TeV. Il
n’y a donc pour le moment pas d’observation expérimentale qui puisse nous guider sur le
bon chemin. Néanmoins, les meilleurs espoirs expérimentaux pour le futur viennent de la
cosmologie [28] (mesures des anisotropies dans le CMB, détection des radiations de trous
noirs primordiaux, analyse des ondes gravitationnelles. . . ).

A.2 Gravité quantique à deux dimensions

A.2.1 Motivations

Dans cette thèse, deux directions ont été suivies. La plus importante est l’étude de la gra-
vité quantique à deux dimensions. En effet, une façon de s’attaquer au problème de la
gravité quantique est d’étudier des modèles en dimension inférieure : comme mentionné plus
haut, aucun résultat expérimental n’est disponible, il fait donc sens d’étudier des modèles
semblables mais plus simples. On peut en effet espérer que la gravité quantique à d < 4 di-
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mensions n’est pas fondamentalement différente de celle à quatre dimensions et partage avec
cette dernière des propriétés universelles. Ce type d’approche s’est montré fructueux dans
le cas de la théorie de Yang–Mills. A deux dimensions, on peut par exemple calculer exac-
tement diverses propriétés UV et IR reliées aux anomalies dans le modèle de Schwinger [29,
30]. Ce modèle donne aussi une ébauche d’explication pour le confinement des quarks [31].
On retrouve en gravité quantique à deux dimensions plusieurs caractéristiques particulières
de la théorie de Yang–Mills à deux dimensions. Toutes deux ont beaucoup moins de degrés
de liberté que leurs analogues à quatre dimensions : il n’y a pas de gluon dans Yang–Mills
à deux dimensions [32] tandis que seul le facteur conforme (aussi appelé mode de Liouville)
peut se propager à deux dimensions (cf. chapitre 2). Les effets topologiques jouent des rôles
importants dans les deux théories. De plus, les groupes de symétrie sont souvent élargis à
deux dimensions : Yang–Mills bidimensionnel n’est pas seulement invariant sous son groupe
de jauge local mais aussi sous les difféomorphismes préservant l’aire [32] tandis que l’algèbre
conforme locale à deux dimensions devient l’algèbre de Virasoro de dimension infinie. De
même la U-dualité de la supergravité maximale (N = 16) est donnée par la symétrie affine
E9(9), tandis que pour d ≥ 3 la U-dualité est un groupe de Lie de dimension finie [33].

Selon ce principe, la gravité quantique bidimensionnelle est un modèle jouet intéressant
pour son analogue à quatre dimensions. En effet, elle présente plusieurs caractéristiques qui
la rendent plus aisément manipulable : de nombreux calculs peuvent être faits exactement,
en particulier les corrections quantiques dues à l’interaction entre la matière et la gravité,
et elle est souvent renormalisable.

En gravité quantique à deux dimensions, la fonction de partition est donnée par la somme
des contributions de toutes les surfaces inéquivalentes d’une topologie donnée, puis par la
somme sur les topologies. Combiner ces deux sommes est un problème hautement non-trivial.
Pour le résoudre, deux classes de modèles ont été développés. Dans l’approche discrète, cette
somme est remplacée par une somme sur toutes les triangulations inéquivalentes de surfaces.
Ces triangulations peuvent être interprétées comme des graphes en ruban et décrites comme
des graphes de Feynman pour un modèle de matrices. Cela permet de transformer une in-
tégrale fonctionnelle compliquée en une intégrale beaucoup plus simple où l’on intègre sur
les configurations matricielles [34–36]. Nous ne développerons pas cette stratégie dans cette
thèse (bien que nous reviendrons au chapitre 8 sur des modèles de matrices mais dans un
but complètement différent) et nous nous concentrerons sur la deuxième approche, celle des
modèles dans le continu qui traitent la gravité quantique comme une théorie quantique des
champs. Cela nécessite de faire attention aux degrés de liberté redondants provenant de l’in-
variance de jauge sous les difféomorphismes. Pour cela, il faut fixer une jauge (généralement
la jauge conforme), appliquer la procédure de Faddeev–Popov puis sommer sur le degré de
liberté restant, le mode de Liouville dans le cas de la jauge conforme.

La gravité quantique à deux dimensions est particulièrement simple quand elle est couplée
uniquement à de la matière conforme. Polyakov a montré que, dans ce cas, l’action effective
de Wess–Zumino est donnée par l’action de Liouville [37]. Cette théorie est maintenant bien
définie et bien comprise, en particulier les exposants critiques [38, 39], le spectre [40–44] et
certaines propriétés des fonctions de corrélations [45–47] ont été calculés. En utilisant une
description non-lagrangienne [48–50] le bootstrap conforme de la théorie de Liouville a mon-
tré qu’il s’agissait bien d’une théorie des champs conforme cohérente pour toute charge cen-
trale complexe (voir aussi [51]). Récemment, une définition mathématique non-perturbative
de la théorie de Liouville a été établie [52–54]. Voir [49, 55–58] pour des revues sur le sujet.

Bien que la gravité à quatre dimensions ne soit pas invariante d’échelle (et encore moins
invariante conforme), le couplage de la gravité bidimensionnelle à de la matière non-conforme
a été peu investigué dans la littérature. Le cas de la gravité couplée à une théorie conforme
perturbée par des opérateurs primaires a été étudié grâce à l’ansatz de DDK [44, 59–61],
mais cette approche ne s’intègre pas dans le formalisme de la gravité quantique à deux
dimensions dans la jauge conforme présenté au chapitre 4.

En outre, l’étude de théories véritablement non-conformes, où la perturbation n’est pas
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un opérateur primaire (comme le terme de masse pour un champ scalaire) n’a commencé que
récemment. Quand un champ scalaire massif est couplé à la gravité (éventuellement pas cou-
plage non-minimal et avec un terme linéaire) d’autres fonctionnelles contribuent à l’action
gravitationnelle [62–64]. En particulier, une expression explicite a été obtenue au premier
ordre dans un développement à petite masse. Les deux fonctionnelles qui apparaissent sont
les actions de Mabuchi et Aubin–Yau, bien connues des mathématiciens [65, 66] qui étudient
les surfaces de Riemann compactes. On les rencontre également dans la description de l’effet
Hall quantique [64, 67–69]. Plus récemment, une expression exacte pour l’action gravitation-
nelle a été obtenue [70]. Dans ce contexte, la gravité à deux dimensions est reformulée dans
le formalisme de Kähler ce qui permet de définir rigoureusement l’intégrale fonctionnelle [62,
63, 71] et de calculer de possibles déviations de la formule de KPZ pour la susceptibilité de
la corde [71–73].

Pour finir, la gravité quantique bidimensionnelle a aussi des applications dans l’étude in-
trinsèque de la gravité quantique. En effet, la théorie des cordes, l’une des approches les plus
abouties de gravité quantique, peut être formulée, dans le formalisme de la surface d’univers,
comme de la matière couplée à la gravité quantique bidimensionnelle. En outre, plusieurs
approches, dont la théorie des cordes, la gravité quantique à boucles, les triangulations dyna-
miques, la géométrie non-commutative, la sécurité asymptotique et les ensembles causaux,
semblent montrer que la gravité quantique subit, à haute énergie (autour de l’échelle de
Planck) une réduction dimensionnelle à deux dimensions [74, 75].

A.2.2 Jauge conforme et action gravitationnelle

Le travail principal de cette thèse a consisté à poursuivre l’étude de l’action gravitationnelle
obtenue quand de la matière massive est couplée à la gravité. Comme la fonctionnelle de
Mabuchi a l’air de jouer un rôle essentiel, il est important de comprendre ses propriétés
physiques et de suivre le même programme que ce qui a été fait pour la théorie de Liou-
ville. Notre objectif a donc été de calculer le spectre de l’action de Mabuchi. Pour cela, les
techniques des théories conformes ne peuvent pas être utilisées. Nous avons donc opté pour
l’approximation du minisuperespace qui permet de calculer le spectre et les fonctions à 2 et 3
points d’une théorie dans la limite semi-classique [76, 77]. Ce faisant, nous avons été amenés
à étudier la théorie de Mabuchi sur le cylindre. Comme cette théorie est mal définie sur une
surface de Riemann de genre 1, nous avons dû travailler avec une version redimensionnée.
Ce problème nous a fait réfléchir à la généralisation des résultats de [63] au calcul de l’action
gravitationnelle pour un champ scalaire massif sur une surface de Riemann avec bords [78].

Considérons une surface de Riemann M munie d’une métrique g sur laquelle vivent des
champs de matière dénotés génériquement par Ψ. La gravité bidimensionnelle est décrite
par l’action

S[g,Ψ] = SEH[g] + Sµ[g] + Sm[g,Ψ] (A.1)

où

• l’action de Einstein–Hilbert

SEH[g] =
∫

d2x
√
g R = 4πχ (A.2)

est un terme topologique, non-dynamique à deux dimensions qui n’intervient que dans
la somme sur les genres ;

• Sµ est le terme de constante cosmologique

Sµ[g] = µ

∫
d2x

√
g = µA[g]; (A.3)

• Sm est l’action pour la matière.
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On peut alors définir la fonction de partition pour la matière

Zm[g] =
∫

DΨ e−Sm[g,Ψ] (A.4)

et celle pour la gravité
Z[g] = e−Sµ[g] Zm[g]. (A.5)

La fonction de partition totale est alors donnée par

Z =
∫

Dg Z[g] =
∫

Dg e−Sµ[g] Zm[g]. (A.6)

L’action effective est définie par
Zm[g] = e−Seff[g]. (A.7)

Si g et ĝ sont deux métriques sur M on a alors ce qui implique

Z[g] = e−Sµ[g] Zm[g]
Zm[ĝ]

Zm[ĝ] = e−Sµ[g] e−(Seff[g]−Seff[ĝ]) Zm[ĝ]. (A.8)

On définit alors l’action effective gravitationnelle (action de Wess–Zumino) comme la dif-
férence des actions effectives entre les métriques g et ĝ (voir le chapitre 4 pour plus de
détails) :

Sgrav[ĝ, g] = Seff[g] − Seff[ĝ] = − ln
Zm[g]
Zm[ĝ]

. (A.9)

Le calcul de l’intégrale fonctionnelle nécessite de ne prendre en compte que les degrés de
liberté physiques et donc de ne pas compter les degrés de liberté redondants dus à l’invariance
de jauge. Pour cela, il faut fixer une jauge pour les difféomorphismes. On choisit ici la jauge
conforme :

g = e2σ ĝ (A.10)

où σ est le mode de Liouville et ĝ une métrique de fond fixée. La fonction de partition
gravitationnelle s’écrit alors

Z[σ] = e−Sgrav[ĝ,σ]Zm[ĝ,Ψ]. (A.11)

L’intérêt de la jauge conforme réside dans le fait que la matière est découplée du mode de
Liouville (modulo le couplage aux déformations de Teichmüller) :

Z[g] =
∫

DĝΨ e−S∗[Ψ,σ,ĝ] (A.12)

où
S∗[ĝ, σ,Ψ] = Sµ[σ, ĝ] + Sgrav[ĝ, σ] + Sm[ĝ,Ψ]. (A.13)

L’action effective est donnée par la valeur moyenne quantique de la trace du tenseur
énergie-impulsion :

〈T µµ 〉 = − 4π√
g
gµν

δSeff

δgµν
=

2π√
g

δSeff

δσ
. (A.14)

Dans le cas où la matière est conforme, l’intégration de l’anomalie conforme

〈T µµ 〉 = − c

12
R (A.15)

donne immédiatement l’action effective gravitationnelle

Sgrav[ĝ, g] = Seff[g] − Seff[ĝ] = − c

6
SL (A.16)
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en terme de l’action de Liouville

SL =
1

4π

∫
d2x

√
ĝ
(
ĝµν∂µσ ∂νσ + R̂ σ

)
. (A.17)

Si la matière n’est pas conforme, il peut être difficile de calculer la valeur moyenne du tenseur
énergie-impulsion et il faut recourir à d’autres méthodes.

Dans les cas qui nous intéressent, le formalisme de Kähler offre une paramétrisation
pratique des métriques. La classe conforme est en effet équivalente à la classe de Kähler :

e2σ =
A

Â

(
1 +

Â

2
∆̂φ

)
, ∆̂φ > − 2

Â
(A.18)

où φ est le potentiel de Kähler. Une variation infinitésimale du facteur conforme se décompose
en une variation de l’aire et une variation du potentiel de Kähler :

δσ =
δA

2A
− A

4
∆δφ . (A.19)

Ce formalisme permet d’écrire en terme de φ des actions locales qui seraient non-locales en
terme de σ.

Plusieurs fonctionnelles remarquables apparaissent fréquemment dans les actions gravi-
tationnelles :

• la constante cosmologique (A.3)

• l’action de Aubin–Yau

SAY [ĝ, φ] = −
∫

d2x
√
ĝ

(
1
4
φ∆̂φ− φ

Â

)
(A.20)

• l’action de Liouville (A.17)

• l’action de Mabuchi

SM =
1

4π

∫
d2x

√
ĝ

{
− πχ ĝµν∂µφ∂νφ+

(
4πχ

Â
− R̂

)
φ

+
2

Â

(
1 +

Â

2
∆̂φ

)
ln

[
A

Â

(
1 +

Â

2
∆̂φ

)]}
. (A.21)

Par exemple, pour un champ scalaire massif sur une surface de Riemann décrit par l’action
de matière

Sm[g,X ] =
1
2

∫
d2x

√
g
(
gµν∂µX∂νX +m2X2

)
=

1
2

∫
d2x

√
gX

(
∆ +m2

)
X (A.22)

l’action gravitationnelle est donnée par

Sgrav[ĝ, g] =
1
2

ln
A

Â
+ Sµ +

c

6
SL + αSM + β

(
SAY −

∫
d2x

√
gcφ

)
+ O(m2) (A.23)

où α = m2A
4 et β = m2Ah

2 et gc est la métrique canonique sur la surface [63, 70].
Le Laplacien sur une surface de Riemann est défini par

∆ = gµν∇µ∇ν (A.24)

où ∇ désigne la dérivée covariante qui dépend du type de champ considéré. Un opérateur
D est dit de type Laplace s’il est de la forme

D = gµν∂µ∂ν + aµ∂µ + b. (A.25)

Pour un tel opérateur, on peut définir les fonctions spectrales suivantes (λn désignent les
valeurs propres de D, ϕn une base orthonormale de vecteurs propres et ϕ0,i les éventuels
modes zéros) :
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• Fonction de Green

G̃(x, y) =
∑

n>0

ϕn(x)ϕn(y)
λn

⇔ DG̃(x, y) =
δ(x − y)√

g
−
∑

i

ϕ0,i ϕ
†
0,i

• Noyau de la chaleur
(

d
dt

+D

)
K(t, x, y) = 0, K(t, x, y) ∼ δ(x− y)√

g
as t → 0 ⇔ K(t, x, y) =

∑

n≥0

e−λnt ϕn(x)ϕ†
n(y).

K(t) =
∫

d2x
√
g trK(t, x, x) =

∑

n≥0

e−λnt = tr e−tD.

• Fonctions zêta

ζ(s) =
∑

n

1
λsn

=
1

Γ(s)

∫ +∞

0

dt ts−1K(t)

ζ(s, x, y) =
∑

n

ϕn(x)ϕ†
n(y)

λsn
= ζ(s, x, y) =

1
Γ(s)

∫ +∞

0

dt ts−1K(t, x, y)

On note avec un tilde les fonctions où les modes zéros ont été supprimés de la somme.
La fonction zêta permet de donner un sens à des déterminants à priori infinis. Le calcul

de l’intégrale fonctionnelle fait souvent intervenir de tels déterminants :

ln det
D

µ2
=
∑

n>0

ln
λn
µ2
. (A.26)

où µ est un paramètre d’échelle nécessaire pour avoir des quantités sans dimension. Une
continuation analytique permet d’écrire la somme infinie sous la forme

∑

n>0

ln
λn
µ2

= −ζ′(0) − lnµ2ζ(0). (A.27)

Le développement aux temps courts bien connu du noyau de la chaleur permet de montrer
que ζ(0) et ζ′(0) ont des valeurs finies bien définies. On peut ainsi définir une régularisation
du logarithme du déterminant de D par

ln detζ
D

µ2
= −ζ′(0) − lnµ2ζ(0). (A.28)

A.2.3 Action gravitationnelle pour un champ scalaire massif sur
une surface de Riemann avec bords

Le chapitre 5 explique comment généraliser le résultat de (A.23) sur une surface avec bords.
Dans ce cas il faut d’abord imposer des conditions aux bords. Si l’on veut conserver l’her-
miticité de ∆ + m2 et la condition

∫
M d2x

√
g∆f ≡

∫
M d2x

√
ĝ ∆̂f = 0 (afin que l’éga-

lité (A.22) soit toujours valable), on s’aperçoit qu’il faut imposer les conditions aux bords
de Neumann pour le champ scalaire : na∂aX = 0. Comme A =

∫ √
ĝ e2σ φ, la relation

e2σ = A
Â

(
1 + Â

2 ∆̂φ
)

impose à φ de vérifier aussi les conditions aux bords de Neumann. Par
contre, le champ σ ne peut vérifier ces conditions en même temps que φ.

Le comportement des fonctions spectrales sur une surface avec bords soulève quelques
subtilités. En premier lieu, le développement aux temps courts du noyau de la chaleur
contient une singularité sous-dominante en t−1/2 qui n’apparait pas sur une surface sans
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bord. Si l’on intègre le noyau de la chaleur à points coïncidents avec une fonction test f on
obtient alors
∫

M
d2x

√
g f(x)K(t, x, x) =

1
4πt

∫
d2x

√
g(x)f(x)+

1

8
√
πt

∑

i

∫

∂Mi

dl f(x)+O(1). (A.29)

Deuxièmement, le comportement de la fonction zêta à points coïncidents dépend de la lo-
calisation du point considéré : sur la bord ou à l’intérieur de la surface. Ainsi, ζ(s, x, x) a
un pôle en s = 1 avec résidu 1

4π si x /∈ ∂M et 1
2π si x ∈ ∂M. La fonction de Green à point

coïncident, qui joue un rôle majeur dans le calcul de l’action gravitationnelle est définie par

Gζ(y) = lim
s→1

(ζ(s, y, y) − ζsing(s, y, y)) +
γ

4π
(A.30)

où ζsing(s, y, y) est définie différemment selon que y est ou non sur un bord :

ζsing(s, y, y) =

{
µ2−2s

4πΓ(s)
1
s−1 si y ∈ M \ ∂M

µ2−2s

4πΓ(s)
2
s−1 si y ∈ ∂M

(A.31)

Nous montrons dans ce chapitre 5 comment obtenir une expression générale pour l’action
gravitationnelle. Cependant, il n’a pas encore été possible d’écrire une expression analytique
en termes de fonctions usuelles. Il est alors plus intéressant de regarder le développement à
petite masse :

Sgrav[ĝ, g] = −1
6
SL[ĝ, g] +

1
2

ln
A

Â
+
m2 (A− Â)

2Â

(
ΦG[ĝ] +

1
4
√
π µ

L(∂M, ĝ)
)

+
m2A

4

∫ √
ĝ

(
−1

2
φ∆̂φ+

1
πA

σe2σ − φ ∆̂G̃(0)
ζ [ĝ]

)

− m2A

16
√
π

(
1
µ

∫

∂M
dl̂ ∆̂φ+ O

(
1
µ2

))
+ O(m4) (A.32)

En particulier, sur le cylindre

Scyl
grav[ĝ, g]

∣∣∣
m2A

=
m2A

4

∫ T

0

dx
∫ 2πR

0

dy
(

−1
2
φ∆̂φ+

1
πA

σe2σ +
1

2π
∆̂φ ln θ1

(
x

T

∣∣iπR
T

))

(A.33)
et, si on fait tendre la longueur vers l’infini

S∞ cyl
grav [ĝ, g]

∣∣∣
m2A

=
m2A

4
lim
T→∞

∫ T/2

−T/2

dt
∫ 2πR

0

dy
[
−1

2
φ∆̂φ+

1
πA

σe2σ +
2

Â
φ

]

=
m2A

16π
SM[ĝ, g]

∣∣∣
h=0, R̂=0

. (A.34)

Bien qu’on s’attendait à R̂ = 0 sur le cylindre, ce qui est intéressant est le remplacement
χ = 2(1 − h) par 2.

A.2.4 Action gravitationnelle pour un spineur de Majorana

On ne sait pas actuellement si les mêmes fonctionnelles apparaitraient dans l’action gra-
vitationnelle pour d’autres champs de matière. Les propriétés remarquables de l’action de
Mabuchi décrites au chapitre 4 font que l’on s’attend intuitivement à ce que ce soit le cas.
Pour éclairer la question, nous avons commencé au chapitre 6 l’étude de l’exemple le plus
simple après le champ scalaire : un spineur de Majorana libre et massif couplé par couplage
minimal à la gravité quantique. Ce modèle présente aussi l’intérêt que le terme de masse est
cette fois une déformation conforme de la théorie sans masse. L’objectif est alors de comparer
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les résultats avec l’ansatz de DDK qui, comme mentionné précédemment, présente quelques
incohérences dans ce cas.

On étudie un spineur de Majorana Ψ (ce qui revient à dire que Ψ est réel) décrit par
l’action

S =
1

4π

∫
d2x

√
g Ψ̄(i /∇ +mγ∗)Ψ. (A.35)

L’opérateur i /∇ + mγ∗ n’a pas de vecteur propre réel. Par contre les parties réelles et ima-
ginaires de ses vecteurs propres complexes satisfont

{
(i /∇ +mγ∗)χn = iλnφn

(i /∇ +mγ∗)φn = −iλnχn
(A.36)

ce qui, en mettant au carré, donne
{(

−∆ + R
4 +m2

)
χn = λ2

nχn(
−∆ + R

4 +m2
)
φn = λ2

nφn.
(A.37)

En décomposant Ψ sur la base orthonormale des φn et des χn, on trouve que la fonction de
partition est donnée par

Z[g] =
∏

n>0

λn =


∏

n6=0

λ2
n




1/4

= det
(

−∆ +
R

4
+m2

)1/4

. (A.38)

Introduisant une échelle µ, la régularisation par la fonction zêta donne

δSgrav[g] =
1
4

(δζ′
g(0) + lnµ2δζg(0)). (A.39)

En utilisant la théorie des perturbations, on obtient la variation de la fonction zêta puis
celle de l’action gravitationnelle :

δSgrav = − 1
12
δSL − m2

2

∫
d2x

√
g δσ(x) trD

(
Gζ(x) +

1
4π

)
(A.40)

où Gζ est la fonction de Green à points coïncidents définie par

Gζ(x) = lim
s→1

(
µ2s−2ζ(s, x, x) − I2

4π(s− 1)

)
= G̃ζ(x) +

∑

i

Ψ0,i(x)Ψ†
0,i(x). (A.41)

On peut alors effectuer un développement en m2 :

δSgrav = − 1
12
δSL − m2

4
δ

(∫
d2x

√
g trD G̃ζ(x)

)

− 1
2

∫
d2x

√
g δσ(x)

∑

i

Ψ†
0,i(x)Ψ0,i(x) + O(m4). (A.42)

Pour obtenir une expression explicite de l’action gravitationnelle, il est nécessaire d’expri-
mer

∫
d2x

√
g δσ(x)

∑
i Ψ†

0,i(x)Ψ0,i(x) comme la variation d’une certaine fonctionnelle. Sur
la sphère, il n’y a pas de mode zéro et le problème ne se pose pas. On peut aussi facilement
obtenir une expression pour le tore. Par contre, pour les surfaces de genre ≥ 2 nous n’avons
pas encore trouvé une telle expression (une idée pourrait être d’utiliser le théorème d’unifor-
misation et d’écrire la métrique sur la surface sous la forme ds2 = dzdz̄

(Im z)2 ). Ensuite, il faudra
trouver une expression analytique de la variation de l’intégrale de la fonction de Green. Il
est probable qu’on retrouverait les actions de Mabuchi et Aubin–Yau mais la combinaison
sera sûrement différente de celle du cas scalaire.
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Finalement, il est clair que (A.42) ne peut pas redonner l’action de DDK pour un fermion
de Majorana massif donnée par

S∗[ĝ, σ,Ψ] = SDDK[ĝ, σ,Ψ] = i

∫
d2x

√
ĝ Ψ̄ /∇Ψ − 1

12
SL[ĝ, σ] +m

∫
d2x
√
ĝ e

1
3σΨ̄γ∗Ψ.

(A.43)
En effet (A.42) est un développement compliqué dans la masse dont le terme d’ordre le plus
bas (après m0) est en m2 et pas en m.

A.2.5 Spectre de l’action de Mabuchi dans l’approximation du mi-
nisuperespace

Les équations du mouvement pour l’action de Mabuchi (A.21) sont les mêmes que pour
l’action de Liouville à aire fixée :

R =
4πχ
A

. (A.44)

L’action (A.21) est mal définie sur une surface de genre 1 qui est justement ce qui nous
intéresse pour le minisuperespace. On est donc amené à redéfinir le potentiel de Kähler et
l’action :

φ =
φ̃

πχ
, SM =

S̃M
πχ

(A.45)

où

S̃M =
1

4π

∫
d2x

√
ĝ

(
−ĝµν∂µφ̃ ∂ν φ̃+

(
4πχ

Â
− R̂

)
φ̃+

4πχ
A

σ e2σ

)
. (A.46)

La relation entre le mode de Liouville et le potentiel de Kähler devient

e2σ =
A

Â

(
1 +

Â

2πχ
∆̂φ̃

)
. (A.47)

Dans la suite, on supprime les tildes sur le champ et l’action redéfinis.
L’approximation du minisuperespace consiste à se restreindre à des potentiels de Kähler

et des modes de Liouville qui ne dépendent que du temps :

σ(t, x) = σ(t), φ(t, x) = φ(t). (A.48)

La relation entre σ et φ devient

e2σ = − A

2πχ
φ̈. (A.49)

Pour pouvoir utiliser le formalisme hamiltonien, il faut définir une direction de temps
globale. L’espace de fond est alors un cylindre I × S1 où I est un intervalle de longueur T .
Cela implique que l’espace-temps est plat :

χ = 0, g0 = η, t ∈
[
−T

2
,
T

2

]
, x ∈ [0, 2π). (A.50)

Cependant, plusieurs méthodes (prise de limites, formalisme d’Ostrogradski, transformation
de Legendre) permettent de ne pas se restreindre à un espace physique plat (χ 6= χ̂ = 0) et
de conjecturer que, dans l’approximation du minisuperespace, l’action de Mabuchi devient

SM = −1
2

∫
dt
[
φ̇2 − φ̈ ln

(
− A

2πχ
φ̈

)
+ φ̈

]
(A.51)

qui reproduit bien les équations du mouvement dans cette approximation

σ̈ =
2πχ
A

e2σ. (A.52)
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On peut alors appliquer le formalisme hamiltonien à cette action. Le moment conjugué
de φ̇ est donné par

P =
δSM

δφ̈
=

1
2

ln
(

− A

2πχ
φ̈

)
. (A.53)

Après une transformation canonique (qui échange la position et le moment)

P = σ, φ̇ = −Π, (A.54)

on trouve le Hamiltonien

HM =
Π2

2
− πχ

A
e2σ. (A.55)

On peut maintenant prendre χ = 0 et insérer la constante cosmologique ce qui donne

HM =
Π2

2
+ 2πµ e2σ. (A.56)

Il coïncide avec le Hamiltonien de la théorie de Liouville dans l’approximation du minisu-
perespace.

Le spectre
HMψp = 2p2 ψp (A.57)

s’obtient par quantification canonique : le remplacement usuel

Π −→ −i d
dσ

(A.58)

transforme l’équation aux valeurs propres en une équation de Bessel modifiée :
(

−1
2

d2

dσ2
+ 2πµ e2σ − 2p2

)
ψp(σ) = 0. (A.59)

Les solutions de cette équation donnent les fonctions d’onde

ψp(σ) =
2(πµ)−ip

Γ(−2ip)
K2ip(2

√
πµ eσ) ∼0 e2ipσ + r0(p)e−2ipσ . (A.60)

qui forment une base orthonormale pour p ∈ R.
On peut aussi lire la fonction à 3 points dans l’approximation du minisuperespace :

C0(p1, p2, p3) =
∫ ∞

−∞
dσ ψp1 (σ)e−2ip2σψp3(σ) (A.61)

= (πµ)−2p̃ Γ(2p̃)
∏

i

Γ
(
(−1)i2p̃i

)

Γ(2pi)
(A.62)

où
2p̃ =

∑

i

pi, p̃i = p̃− pi, i = 1, 2, 3. (A.63)

A.3 Autres directions de recherche explorées pendant

cette thèse

Le second point de vue abordé dans cette thèse se place dans le cadre de la théorie des cordes.
Cette théorie a pour particularité d’unifier complètement les quatre interactions, les bosons
de jauge (y compris le graviton) et la matière apparaissant comme les excitations d’objets
étendus relativistes. [5–7]. Les interactions de jauge sont décrites par les degrés de liberté
des extrémités des cordes ouvertes tandis que les gravitons apparaissent dans le spectre de
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la corde fermée. De plus, tous les groupes de grande unification (SU(5), S0(10), E6 . . . ) sont
des sous-groupes de E8, l’un des groupes de jauge qui apparait naturellement. En outre,
la théorie des cordes contient tous les ingrédients du Modèle standard tout en étant finie
dans l’ultraviolet. Et, cerise sur le gâteau, elle n’a qu’un unique paramètre dimensionné, la
longueur de la corde ls et aucun paramètre sans dimension ajustable.

Pour introduire de la matière fermionique, une possibilité consiste à rendre la théorie
supersymétrique. Les supercordes peuvent vivre dans un espace à dix dimensions, certaines
pouvant être compactifiées sur une variété appropriée (habituellement une variété de Calabi–
Yau). Polchinski s’est rendu compte que les théories de supercordes ne contiennent pas
seulement des cordes mais aussi des objets fondamentaux étendus de dimensions variées,
nommés branes. L’exemple typique est les D-branes sur lesquelles les cordes ouvertes peuvent
s’accrocher. Les D-branes sont fondamentalement des objets non-perturbatifs. Il y a cinq
types différents de théories de supercordes : type I, IIA, IIB, hétérotique avec groupe de
jauge SO(32) et hétérotique avec groupe de jauge E8 × E8. Chaque type possède différentes
sortes de D-branes en plus de la corde fondamentale. Les cinq théories sont reliées par un
réseau de dualités. En particulier, certaines d’entre elles comme la T-dualité, relient une
théorie fortement couplée à une faiblement couplée. Il s’agit là d’un trait très intéressant
car, pour le moment, la théorie des cordes est essentiellement définie perturbativement. La
découverte de ces dualités a conduit à réaliser que la théorie des cordes est en fait la limite à
basse énergie d’une théorie à onze dimensions appelée théorie M. Bien que ces dualités et la
correspondance AdS/CFT donnent quelques aperçus de la théorie M, elle reste actuellement
peu comprise.

La théorie des cordes est donc une théorie fascinante qui englobe la gravité quantique et
la grande unification. En outre, elle a donné lieu à de nombreux progrès en mathématiques,
comme la découverte de la symétrie miroir qui décrit comment sont reliées des variétés de
Calabi–Yau de topologies différentes.

A.3.1 Un modèle de matrices fermioniques pour décrire des trous
noirs

L’un des résultats majeurs de la théorie des cordes est la conjecture de la correspondance
AdS/CFT ou holographie [79–82] qui établit une dualité entre une théorie de gravitation
dans un espace AdS à d + 1 dimensions (le bulk) et une théorie des champs conforme sans
gravité vivant dans un espace-temps à d dimensions (appelé le bord). Cela signifie qu’il existe
un dictionnaire entre les observables des deux théories et que les corrélateurs peuvent être
calculés de manière équivalente dans une théorie ou dans l’autre [83]. La correspondance
AdS/CFT est un outil formidable pour la gravité quantique puisque les corrections quan-
tiques dans le bulk peuvent être calculées à partir d’une théorie de jauge usuelle sur le bord.
Cependant, le décodage de l’hologramme est hautement non-trivial car la théorie de jauge
sur le bord est toujours fortement couplée si une description gravitationnelle classique existe
pour le bulk. Par conséquent, AdS/CFT a surtout été utilisée dans l’autre direction pour
fournir des indications sur les théories de jauge fortement couplées à partir d’une théorie
classique de supergravité dans le bulk. Dans ce contexte, la théorie des cordes n’est plus
considérée comme la théorie fondamentale mais comme un outil théorique qui offre des des-
criptions duales de systèmes intéressants comme la théorie de Yang–Mills dans l’infrarouge
ou à température finie.

Nous nous intéresserons ici à l’une des propositions les plus étudiées de dualité théorie
de jauge / gravité qui relie la théorie des cordes de type II dans une géométrie de proche
horizon d’un trou noir AdS à la théorie de super Yang–Mills maximalement supersymétrique
N = 4. L’objectif est d’étudier certaines propriétés des trous noirs grâce à la description en
terme de théorie de jauge.

Les trous noirs sont des objets classiques dont le champ gravitationnel est si fort qu’ils
sont entourés d’une surface, appelée horizon, d’où rien ne peut s’échapper, même pas la
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lumière. Leur existence a été prédite depuis longtemps par la relativité générale et est sup-
portée par de nombreuses (mais indirectes) observations astrophysiques, la dernière en date
étant la détection des ondes gravitationnelles émises par la coalescence de deux trous noirs.
Les données expérimentales s’accordent aux prédictions théoriques avec une grande préci-
sion. Ainsi, les données observationnelles donnent un fort crédit à l’existence des trous noirs,
qu’ils soient de masse stellaire (causés par l’effondrement gravitationnel d’une étoile, comme
pour l’étoile binaire à rayons X Cygnus X-1) ou supermassifs dans le centre des galaxies
(comme Sagittarius A* au centre de la Voie Lactée).

Un lien remarquable entre les trous noirs et la thermodynamique a été mis à jour dans
les années 60 et 70. Il y a une analogie frappante entre les lois de la mécanique des trous
noirs et celles de la thermodynamique. Les trous noirs semblent avoir une entropie propor-
tionnelle à leur aire [84]. Puis, Hawking a montré que, quand les effets quantiques sont pris
en compte, les trous noirs ont une température et émettent une radiation de corps noir
qui devrait conduire à leur évaporation [85]. Cette interprétation thermodynamique soulève
plusieurs problèmes. En premier lieu, on peut se demander si l’entropie des trous noirs a
vraiment une interprétation statistique, auquel cas elle devrait compter les micro-états du
trou noir. Il est particulièrement intriguant de constater que l’entropie des trous noirs varie
comme l’aire de l’horizon alors qu’en mécanique quantique usuelle, on s’attend à ce que le
nombre d’états varie comme le volume. Le comptage des micro-états en théorie des cordes et
supergravité a permis de retrouver avec succès l’entropie de Bekenstein pour les trous noirs
qui préservent certaines supersymétries [86, 87] mais la question est bien moins comprise
pour les trous noirs non-supersymétriques dans un espace temps Minkowskien. Deuxième-
ment, la radiation de Hawking est thermale et conduit à l’évaporation totale du trou noir.
L’information tombée derrière l’horizon semble ainsi perdue après la disparition du trou
noir. Ce paradoxe de l’information parait contredire l’unitarité de la mécanique quantique.
Depuis la découverte de Hawking, le débat fait rage parmi les physiciens quant à savoir si
l’unitarité de la mécanique quantique doit être abandonnée ou si le calcul de Hawking ne
tient simplement pas assez compte de l’intrication entre l’intérieur et l’extérieur du trou noir
voire s’il ne serait en fait plus valable à l’échelle de Planck [88–92]. Bien que la discussion
soit loin d’être close, la correspondance AdS/CFT fournit quelque éclairage sur le sujet. En
effet, selon elle, l’évolution des trous noirs peut être décrite par l’évolution d’une théorie de
jauge qui est complètement unitaire et, par conséquent, devrait être elle-même unitaire.

Le second projet de cette thèse, présenté au chapitre 9 se déroule dans ce contexte.
D’après la correspondance AdS/CFT, les trous noirs peuvent être étudiés d’après la théorie
de jauge duale qui correspond à un modèle de matrices N × N invariant sous U(N) censé
capturer les caractéristiques essentielles de leur comportement thermal. En effet, on peut
compactifier toutes les dimensions spatiales de la théorie de jauge pour obtenir un modèle de
mécanique quantique. Comme tous les objets sont dans la représentation adjointe de U(N),
ils sont représentés par des matrices. Les états de l’espace de Hilbert de ce modèle sont duaux
des micro-états du trou noir. Cependant, même dans cette version à zéro dimension, l’espace
de Hilbert quantique est toujours de dimension infinie. Dans notre projet, on remplace les
matrices usuelles par des matrices fermioniques, ce qui rend l’espace de Hilbert de dimension
finie. Cela permet d’obtenir des résultats numériques exacts, dans le sens où l’on peut calculer
l’intégralité du spectre de la théorie. Pour étudier la dynamique de la thermalisation du trou
noir, on calcule numériquement les fonctions de corrélation entre les états de la théorie duale.

Le modèle contient deux matrices fermioniques de taille N

X = (a†
ij), Y = (b†

ij) (A.64)

où a†
ij et b†

ij sont des opérateurs de création fermioniques. Pour reproduire le comportement
de thermalisation d’un trou noir, il nous faut un modèle dont les niveaux d’énergie sont
hautement dégénérés afin qu’une perturbation lève la dégénérescence et produise un spectre
quasi-continu quand N est grand. L’espace de Hilbert contient les états créés en agissant
sur le vide avec les matrices de création. La dynamique du modèle est déterminée par un
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Hamiltonien H invariant sous U(N) × SO(2), où U(N) agit sur X et Y par conjugaison
tandis que SO(2) effectue une rotation de la paire (X,Y ). On peut remplacer SO(2) par un
U(1) qui agit sur les combinaisons complexes

Z =
X + iY√

2
, Z̄ =

X − iY√
2

, Z† =
X† − iY †

√
2

, Z̄† =
X† + iY †

√
2

. (A.65)

La construction du modèle s’inspire de modèles classiques utilisés en AdS/CFT, en parti-
culier de l’action des D0-branes. Pour cela, on impose que les états soient des singlets sous
U(N). L’espace de Fock ne contient donc que des états qui peuvent être écrits comme des
multi-traces de la forme

tr(Zα1 Z̄β1 · · ·ZαnZ̄βn) . . . tr(Zρ1 Z̄σ1 · · ·ZρmZ̄σm )|0〉. (A.66)

Le Hamiltonien choisit s’écrit

H = H0 + γHint,2 + gHint,4. (A.67)

où

• H0 est le Hamiltonien libre
H0 = tr

(
ZZ† + Z̄Z̄†) (A.68)

• Hint,2 est un terme d’interaction quadratique

Hint,2 = γ tr(ZZ̄ + Z̄†Z†). (A.69)

• le terme d’interaction quartique Hint,4 vient du terme d’interaction tr[φµ, φν ][φµ, φν ]
de N = 4 SYM ou de l’action pour les D0-branes où l’on identifie φµ avec une position
à valeur matricielle dans la direction µ, i.e φ1 = X +X† et φ2 = Y + Y †. On obtient

Hint,4 = tr[φµ, φν ][φµ, φν ] = 4 tr(Z + Z̄†)(Z̄ + Z†)(Z̄ + Z†)(Z + Z̄†) − 8N3 (A.70)

Le calcul du spectre montre que la dégénérescence est levée dès que l’on ajoute un faible
couplage g. Le spectre devient alors quasi-continu. Ce résultat est encourageant car il n’était
pas évident qu’un N aussi petit que 3 permettrait d’observer un effet aussi marqué. Quand
le couplage augmente, on observe que des plages vides apparaissent dans le spectre. Cela
peut être dû au fait que notre terme d’interaction n’est pas suffisamment générique quand
les matrices sont fermioniques et que le mélange n’est pas complet.

Cet aspect continu du spectre incite à se demander si l’on peut observer une transition
de phase de type trou noir. Cela semble en effet être le cas, que ce soit pour l’énergie libre
ou pour la fonction de Green

G(t) =
1
Z

tr e−H/T eitH A e−itHA−
(

1
Z

tr e−H/T A

)2

(A.71)

de l’opérateur A = tr(ZZ̄ + Z̄†Z†) (Z dénote la fonction de partition). La température cri-
tique semble décroître quand on augmente le couplage jusqu’à la disparition de la transition
de phase. Il serait souhaitable de pouvoir augmenter N pour voir ces effets plus clairement.

Malheureusement, la complexité algorithmique de l’implémentation de l’algèbre de Grass-
mann pour un système comportant de nombreux q-bits ne nous a pas permis d’aller plus loin
que le cas N = 3 alors que la correspondance AdS/CFT n’est valable que pour N grand. Bien
que certains traits intéressants puissent déjà être observés dans nos résultat pour N = 3,
d’autres semblent nécessiter un N plus grand, au moins N = 4 que nous n’avons pas réussi
à implémenter jusqu’à présent. Dans ce sens, ces résultats doivent être considérés comme
préliminaires.
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A.3.2 Théorie des champs de cordes

La formulation standard de la théorie des cordes en terme de surface d’univers est une
description qui correspond à une première quantification. De nombreux calculs ont pu être
faits grâce à la puissance de l’analyse complexe et au fait que le groupe conforme est de
dimension infinie à deux dimensions (certains développements ont également bénéficié des
dualités non-perturbatives). Cependant, la théorie souffre de limitations qui nécessitent une
deuxième quantification. Premièrement, à cause des invariances BRST et conforme, la for-
mulation en terme de surface d’univers est intrinsèquement on-shell. Il existe des méthodes
pour l’étendre off-shell mais au prix d’ambiguïtés. Dans tous les cas, la renormalisation est
difficile et ne peut être conduite qu’en utilisant des procédures ad-hoc. En outre, la théorie
comporte des divergences infrarouges [93].

La deuxième quantification de la théorie des cordes s’est révélée être un véritable défi.
Bien qu’une théorie des champs de cordes bosonique ait été développée depuis les années 90
à la fois pour les cordes ouvertes [94] et fermées [95, 96], ce n’est que récemment qu’une telle
théorie a été construite pour les supercordes fermées hétérotiques et de type II. En effet, la
généralisation aux supercordes se heurte à trois difficultés majeures. Premièrement, on ne
savait pas comment traiter les champs de Ramond car il n’était pas possible d’écrire un terme
cinétique (puisque le propagateur n’est pas inversible). Ce problème a été contourné en intro-
duisant un nouvel ensemble de champs libres qui n’interagissent pas avec les autres [97, 98].
Deuxièmement l’insertion des opérateurs de changement d’image (PCOs) dans les fonctions
de corrélation (off-shell) entrainait des pôles non-physiques. Une construction des fonctions
de corrélation avec le bon choix d’insertions de PCOs et libre de pôles non-physiques a
été proposée grâce à l’intégration verticale [99]. Finalement, il fallait également régler le
problème des divergences ultraviolettes qui apparaissent lorsqu’on exprime les fonctions de
corrélation comme une somme de diagrammes de Feynman.

Après avoir résolu ces problèmes, on obtient une théorie quantique des champs pour les
cordes et il s’agit de montrer qu’elle en possède les bonnes propriétés usuelles. Il a été prouvé
que l’action pour le champ de corde est réelle [100] et une prescription iε a été trouvée [101,
102]. Les amplitudes satisfont les règles de Cutkowski ce qui, combiné avec les identités de
Ward, permet d’établir l’unitarité de la théorie des champs de cordes [103, 104]. La théorie a
conduit à plusieurs applications dont les calculs du décalage du vide, de la renormalisation de
la masse [105] et l’établissement de théorèmes "softs" [106]. Des développements importants
dans la construction explicite de l’action ont été réalisés dans [107, 108]. Il existe d’autres
approches de la théorie des champs de cordes qui offrent d’autres perspectives (par exemple,
certaines proposent une construction pour la supercorde ouverte ou utilisent des super-
surfaces de Riemann au lieu des PCOs, etc.) – une sélection de références est [109–114].

Après une contribution à une revue sur la théorie des champs de cordes avec Ashoke Sen
et collaborateurs, un projet a commencé avec Harold Erbin, Roji Pius et Ashoke Sen visant
à démontrer la symétrie de croisement de la théorie des champs de cordes. Cela fermerait
le cercle dans l’histoire de la théorie des cordes qui a commencé avec l’étude de l’amplitude
de Veneziano (à une époque où l’on ne savait même pas qu’elle décrivait des cordes !) dont
l’intérêt était justement de présenter de façon manifeste la symétrie de croisement. En théorie
quantique des champs, des preuves de la symétrie de croisement ont été établies pour les
amplitudes à 4 et 5 points en utilisant les propriétés analytiques de la matrice S [115–117].
La généralisation de ces preuves à la théorie des champs de cordes s’est révélée hautement
non-triviale car cette théorie est formulée directement en terme de diagrammes de Feynman
et pas de façon axiomatique. Le problème majeur vient du fait que les vertex contiennent des
exponentielles dans les moments. Pour ces raisons, le projet n’en est qu’à son commencement
et ne sera pas discuté dans cette thèse.
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