
HAL Id: tel-01706954
https://theses.hal.science/tel-01706954

Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hole quantum spintronics in strained germanium
heterostructures

Patrick Torresani

To cite this version:
Patrick Torresani. Hole quantum spintronics in strained germanium heterostructures. Other [cond-
mat.other]. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAY040�. �tel-01706954�

https://theses.hal.science/tel-01706954
https://hal.archives-ouvertes.fr


THÈSE

Pour obtenir le grade de

DOCTEUR DE la Communauté UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Nanophysique

Arrêté ministériel : 7 Août 2006

Présentée par

TORRESANI Patrick

Thèse dirigée par DE FRANCESCHI Silvano

préparée au sein du LaTEQS, du service PHELIQS, de l’Institut

NAnosciences et Cryogénie, du CEA Grenoble

et de Ecole doctorale de physique

Hole quantum spintronics in
strained germanium heterostruc-
tures

Thèse soutenue publiquement le 14/06/2017,

devant le jury composé de :

Prof. Marco Fanciulli
Università degli Studi di Milano-Bicocca, Président

Prof. Wilfred van der Wiel
University of Twente, Rapporteur

Prof. Stefano Roddaro
Scuola Normale Superiore Pisa, Rapporteur

Dr Hermann Sellier
Institut Neel, Examinateur

Dr Silvano De Franceschi
CEA Grenoble, Directeur de thèse





À mes grand-mères. . .





Abstract

This thesis focuses on low temperature experiments in germanium based heterostruc-

ture in the scope of quantum spintronic. First, theoretical advantages of Ge for quantum

spintronic are detailed, specifically the low hyperfine interaction and strong spin orbit

coupling expected in Ge. In a second chapter, the theory behind quantum dots and

double dots systems is explained, focusing on the aspects necessary to understand the

experiments described thereafter, that is to say charging effects in quantum dots and

double dots and Pauli spin blockade. The third chapter focuses on spin orbit interaction.

Its origin and its effect on energy band diagrams are detailed. This chapter then focuses

on consequences of the spin orbit interaction specific to two dimensional germanium het-

erostructure, that is to say Rashba spin orbit interaction, D’Yakonov Perel spin relaxation

mechanism and weak antilocalization.

In the fourth chapter are depicted experiments in Ge/Si core shell nanowires. In these

nanowire, a quantum dot form naturally due to contact Schottky barriers and is studied.

By the use of electrostatic gates, a double dot system is formed and Pauli spin blockade is

revealed.

The fifth chapter reports magneto-transport measurements of a two-dimensional hole

gas in a strained Ge/SiGe heterostructure with the quantum well laying at the surface,

revealing weak antilocalization. By fitting quantum correction to magneto-conductivity

characteristic transport times and spin splitting energy of 2D holes are extracted. Addi-

tionally, suppression of weak antilocalization by a magnetic field parallel to the quantum

well is reported and this effect is attributed to surface roughness and virtual occupation of

unoccupied subbands.
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Finally, chapter number six reports measurements of quantization of conductance in

strained Ge/SiGe heterostructure with a buried quantum well. First the heterostructure

is characterized by means of magneto-conductance measurements in a Hall bar device.

Then another device engineered specifically as a quantum point contact is measured and

displays steps of conductance. Magnetic field dependance of these steps is measured and

an estimation of the g-factor for heavy holes in germanium is extracted.



Résumé

Le travail exposé dans cette thèse de doctorat présente des expériences à basse tem-

pérature dans le domaine de la spintronique quantique sur des hétérostructures à base de

germanium. Tout d’abord, les avantages attendus du germanium pour la spintronique

quantique sont exposés, en particulier la faible interaction hyperfine et le fort couplage

spin-orbite théoriquement prédits dans le Ge. Dans un second chapitre, la théorie des

boites quantiques et systèmes à double boite sont détaillés, en se focalisant sur les con-

cepts nécessaires à la compréhension des expériences décrites plus tard, c’est-à-dire

les effets de charge dans les boites quantiques et double boites, ainsi que le blocage de

spin de Pauli. Le troisième chapitre s’intéresse à l’interaction spin-orbite. Son origine

ainsi que ses effets sur les diagrammes d’énergie de bande sont discutés. Ce chapitre

se concentre ensuite sur les conséquences de l’interaction spin-orbite spécifiques aux

gaz bidimensionnels de trous dans des hétérostructures de germanium, c’est-à-dire

l’interaction spin-orbite Rashba, le mécanisme de relaxation de spin D’Yakonov-Perel

ainsi que l’antilocalisation faible.

Le chapitre quatre présente des mesures effectuées sur des nanofils cœur coquille

de Ge/Si. Dans ces nanofils une boite quantique se forme naturellement et celui-ci est

étudié. Un système à double boite quantiques est ensuite formé par utilisation de grilles

électrostatiques, révélant ainsi du blocage de spin de Pauli.

Dans le cinquième chapitre sont détaillés des mesures de magneto-conductance de

gas de trous bidimensionnels dans des hétérostructures de Ge/SiGe contraints dont le

puit quantique se situe à la surface. Ces mesures montrent de l’antilocalisation faible. Les

temps de transport caractéristiques sont extraits ainsi que l’énergie de séparation des trous
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2D par ajustement de courbe de la correction à la conductivité due à l’antilocalisation. De

plus, les mesures montrent une suppression de l’antilocalisation par un champ magné-

tique parallèle au puit quantique. Cet effet est attribué à la rugosité de surface ainsi qu’à

l’occupation virtuelle de sous-bandes inoccupées.

Finalement, le chapitre six présente des mesures de quantisation de la conductance

dans des hétérostructures de Ge/SiGe contraints dont le puit quantique est enterré. Tout

d’abord, l’hétérostructure est caractérisée grâce à des mesures de magneto-conductance

dans une barre de Hall. Ensuite, un second échantillon dessiné spécialement pour la

réalisation de points de contact quantiques est mesuré. Celui-ci montre des marches

de conductance. La dépendance en champ magnétique de ces marches est mesurée,

permettant ainsi une extraction du facteur gyromagnétique de trous lourds dans du

germanium.
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Introduction

During the second half of the 20th century computers have revolutionized the way

scientific research is made. The ever increasing computing power available allowed for

the simulation of problems of exceptional complexity. Still, as Richard Feynman explained

in his famous talk in 1981 [1], a classical computer, being limited to classical physics, will

never be a universal computer, that is to say a computer that can be used to simulate

any physics problem. In particular, being based on classical physics, classical computers

could not properly simulate the quantum world. This would require a quantum computer.

In classical computing, information is encoded in bits. These bits are two levels sys-

tems, usually denoted by 0 and 1. On chips, such as CPUs, they are physically implemented

by transistors of which the open or closed status are the two levels of the bit. In a quantum

computer, these classical bits would be replaced by quantum bits or qubits. Instead of a

classical two level system, that can be 0 or 1, a qubit would rely on a quantum two level

system, that can be in any superposition of the two levels.

Qubits can theoretically be realized with any quantum two level system, but a quantum

computer should be based on qubits that respects the 5 DiVincenzo’s criteria exposed in

2000 [2]. In 1998 Loss and DiVincenzo had already made a proposal for such a system.

The idea was to use the spin of an electron in a quantum dot as a two level system [3],

thus providing an efficient way to do two qubits gates (one of DiVincenzo’s criteria) by the

simple use of electrical gating.

This proposal led to an increase in interest in the field of quantum spintronic. Research

was performed in order to engineer qubits in different systems, mainly III-V materials

such as GaAs two dimensional electron gas [4] or InAs nanowires [5].
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But not every qubit are equal. Indeed, in order to create a fault tolerant quantum

computing system, one has to use quantum error correction codes [6] that require that the

qubit states lifetimes are longer than the operation gate times. As the hyperfine interaction

is the main reason for spin decoherence, more and more interest has been seen for group

IV materials such as Ge and Si recently for which almost all natural isotopes have no

nuclear spins.

The prospect of realizing a quantum computer based on spin qubits then require the

use of a material in which spin manipulation is fast and coherence time is long. Systems

based on strained germanium is expected to present such characteristics. The aim of this

thesis is to present experiments that will tend to bring new information on the validity of

these claims.

The outline of this thesis will be as follows. The first chapter will try to highlight the

advantages of Germanium in the field of quantum spintronic, focusing around the low

hyperfine interaction and strong spin orbit coupling. The second chapter focuses on

the theory of quantum dots and double quantum dots systems. This chapter is limited

to the concepts required for a correct understanding of the results obtained in the fol-

lowing chapters, that is to say charging effect in quantum dots and double dots systems

and Pauli spin blockade. Chapter three describes the theory of spin orbit interaction.

Similarly to chapter two, this chapter does not pretend to be a review on spin orbit but

only highlights the elements of this theory that permit to describe the systems described

in the following chapters. In chapter four, experiments on Ge/Si core/shell nanowires

are described. In these nanowire, a quantum dot form naturally due to contact Schottky

barriers and is studied. By the use of electrostatic gates, a double dot system is formed

and Pauli spin blockade is revealed. The fifth chapter reports magneto-transport mea-

surements of a two-dimensional hole gas in a strained Ge/SiGe heterostructure with

the quantum well laying at the surface, revealing weak antilocalization. By fitting quan-

tum correction to magneto-conductivity characteristic transport times and spin splitting

energy of 2D holes are extracted. Additionally, suppression of weak antilocalization by

a magnetic field parallel to the quantum well is reported and this effect is attributed
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to surface roughness and virtual occupation of unoccupied subbands. Finally, chapter

number six reports measurements of quantization of conductance in strained Ge/SiGe

heterostructure with a buried quantum well. First the heterostructure is characterized

by means of magneto-conductance measurements in a Hall bar device. Then another

device engineered specifically as a quantum point contact is measured and displays steps

of conductance. Magnetic field dependence of these steps is measured and an estimation

of the g-factor for heavy holes in germanium is extracted.
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Chapter 1

Advantages of strained germanium for

quantum spintronics

The prospect of a quantum computer implies the realization of tens of coherently cou-

pled quantum bits or qubits [1]. While creating a single qubit can already be challenging,

fault-tolerant quantum computation requires that the qubits used possess high fidelity

[2]. Each individual qubits can have a different fidelity and while some of the parameters

influencing this fidelity are dependent on the type of qubit realized and the measurement

setup, the host material for the qubit plays a large role in the gate control fidelity and

defines the upper bound limit of the qubit fidelity.

It is possible to define a quality factor Q for a qubit representing its efficiency at gate

control [3]. This quality factor Q = T Rabi
2 /Tπ represents the ratio between the qubit decay

time T Rabi
2 and the π rotation time of the qubit quantum state. A higher Q factor then

represents a higher probability of the response to a qubit manipulation to be coherent

with the initial state.

Choosing a good host material for spin qubits is then of the utmost importance as the

nature of the material will have a big impact on the quality factor. On the π rotation time

first as the presence of spin orbit interaction can help the manipulation of the spin by fully

electrical control. On the qubit decay time T Rabi
2 then as the hyperfine interaction is the

main reason for spin decoherence in quantum dots and is due to the presence of nuclear
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spins in the host material. Germanium presents advantages in both parameters as will

now be detailed.

1.1 Hyperfine interaction

When using the spin of an electron or a hole to encode quantum information, as in

spin qubits, it is important that the spin maintains its phase for a duration long enough so

that it can be manipulated or read and that the end state of this operation is coherent with

the initial state. While in bulk semiconductors, charge carriers spin decoherence mainly

occurs due to scattering through mechanism such as D’Yakonov-Perel [4], in quantum

dots where charge carriers are confined, the main source of decoherence is the hyperfine

interaction, that is to say the electron-nucleus spin interaction.

As opposed to an atom where the spin of an electron only interacts with the spin of its

own nucleus through hyperfine coupling, in quantum dots, the spin of a charge carrier

will interact with a lot of nuclei (N ≃ 105) and their spins (see Fig.:1.1a)[5]. The slow and

random fluctuations of the effective magnetic field created by these nuclear spins (known

as the Overhauser field) will in turn induce a random evolution of the charge carrier spin,

thus inducing decoherence.

To the first order, the hyperfine interaction can be considered only as a Fermi contact

hyperfine interaction whose Hamiltonian can be written as:

H =
n∑
k

(Ak I⃗k S⃗) (1.1)

Where I⃗k is the spin operator for the nucleus k and S⃗ the one for the charge carrier

spin. The term Ak represents the coupling strength between the nucleus spin k and the

carrier spin, and is proportional to the square of the overlap of the nucleus and carrier k

wavefunctions.

The first reason why strained Ge is so interesting as a host material for qubits with

regards to hyperfine interaction comes from the nature of the charge carrier. While as of

today most qubits experiments have been performed with electrons, intrinsic compres-
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sively strained Ge, whether in core/shell nanowire or in two-dimensional heterostructures

form holes quantum wells [6][7]. With regard to hyperfine interaction, the main advantage

of holes as opposed to electrons comes from the overlap of their wavefunction with nuclei

spin wavefunction. Electron conduction states are formed from atomic s orbitals, mean-

ing that the amplitude of their wavefunction is larger at the location of the nuclei. On the

other hand, holes conduction states are formed from atomic p orbital which amplitude is

0 at the location of the nuclei. This implies that the Fermi contact hyperfine interaction is

equal to zero for conduction holes as the Ak of the Hamiltonian are equal to zero.

Fig. 1.1: a: The electron or hole wavefunction spatial extension covers
around N ≃ 105 atoms, interacting with their spins. b:Electron conduc-
tion states are formed from atomic s orbitals of which the amplitude
is localized on a unit cell. c: Holes conduction states are formed from
atomic p orbital which amplitude is 0 at the location of the nuclei. From
[5]

With holes as charge carriers, the only influence of the hyperfine interaction on the

carrier spin is through a dipole-dipole interaction between the carrier and nucleus spins.

Conduction electrons are formed from s orbitals and dot not possess an angular momen-

tum, thus they dot not have a dipole-dipole interaction with the nuclei spins. Conduction

holes on the other hand are formed from p orbitals and have a non-zero angular mo-
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mentum. Pure heavy holes for example have Jz =±3/2. This will induce a dipole-dipole

interaction between the hole spin and the different nucleus spins. Still this interaction has

been shown to be around 10 times weaker than the contact Fermi interaction of electrons

[8], thus confirming that using holes as charge carriers is an advantage with regards to

spin qubit coherence time.

When looking at the strength of the dipole-dipole interaction for holes or the Fermi

contact interaction if electrons are used as charge carriers, germanium shows a second

advantage over other standard spintronic materials and this advantage is related to the

spin of the Ge nuclei. The only natural isotope of germanium with a non zero nuclear spin

is 73Ge (spin equal to 9/2) and has a natural abundance of only 7.73%. Looking back at

equation 1.1 for the Fermi contact interaction for electrons in Ge, one can understand that

with most of the I⃗k equal to zero, the interaction will be weaker than for another material

like GaAs where all isotopes of both elements have a non zero nuclear spin. Still, Ge is

less attractive than Si in this regard as the only isotope with non zero nuclear spin is 29Si

(spin equal to 1/2) and has a natural abundance of only 4.68%. The same principles apply

for the dipole-dipole interaction, which will be weaker in Ge than in other III-V materials

but still stronger than in Si due in part to natural abundance but mostly due to the fact

that a spin 9/2 will create a much stronger dipole than a spin 1/2. A summary of natural

isotopes of the most commonly used elements for spintronic and their respective spins is

given in table 1.1.

1.2 Spin orbit interaction in quantum dots

Spin qubits use the spin of a charge carrier as a two level system to encode quantum

information [9]. To engineer such a qubit, it is then required to be able to drive coherently

the spin between these two levels. One possible technique is Electron Spin Resonance or

ESR which uses an oscillating magnetic field to induce coherent rotations of the spin state.

Still, this technique presents some drawbacks. It usually requires a microfabricated ESR

antenna, i.e. a conducting line close to the qubit, through which an oscillating current is
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Element Isotope Spin Natural abundance (% atom)

Germanium

70Ge 0 20.84

72Ge 0 27.54

73Ge 9/2 7.73

74Ge 0 36.28

76Ge 0 7.61

Silicon

28Si 0 92.23

29Si 1/2 4.68

30Si 0 3.09

Gallium
69Ga 3/2 60.10

71Ga 3/2 39.90

Indium
113In 9/2 4.29

115In 9/2 95.71

Arsenic 75As 3/2 100

Antimony
121Sb 5/2 57.21

123Sb 7/2 42.79

Table 1.1: Natural isotopes, spin and natural abundance for most
commonly used elements in spintronic

driven, thus generating an oscillating magnetic field. Due to Joule heating, this technique

cannot allow for fast rotation of the spin, which in turns leads to low qubit fidelity.

In a sample where charge carriers experience spin orbit interaction, a second possibil-

ity arises. Indeed, spin orbit interaction, as will be detailed in chapter 3, links the spin of a

particle to its orbital motion. In a quantum dot, due to the little amount of space available

for the charge carriers to move in, one may expect spin orbit interaction to have a limited

effect. While it is definitely different from the effect observed in bulk materials, the spin

orbit interaction affects the spins of confined particles in a quantum dot by mixing the

pure spin states | ↑ 〉 and | ↓ 〉. The eigenstates are then admixtures of spin and orbital

degrees of freedom.
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This is a significant change as an electric field cannot induce transitions between pure

spin states, but it can for these mixed states. One can then produce an oscillating electric

field on a quantum dot rather than a magnetic field and then drive the spin of a charge

carrier from one state to the other. This spin control technique called Electrically Driven

Spin Resonance or EDSR is far more efficient than ESR in terms of potential spin rotation

time.

A strong spin orbit interaction can also have drawbacks for a qubit though. While it

allows for faster qubit manipulation, thus shorter Tπ, a strong mixing of the pure spin

states | ↑ 〉 and | ↓ 〉 can make the system sensitive to charge fluctuation in its environment

such as electrostatic gate noise, thereby leading to shorter decay time T Rabi
2 . This is why it

is still relevant to perform research toward new materials for quantum spintronics, in order

to find a material with the most effective balance between pros and cons. Germanium

could be this material as it is known to show spin orbit interaction [10].
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Chapter 2

Quantum dots and double dots systems

In electronic transport in semiconductors, one of the basic system that can be fab-

ricated is a quantum dot. In these elements the quantification of charge plays a very

important role in the transport characteristics, allowing them to be used as blocks of a

more complex device to perform charge sensing, electronic thermometry or spin readout

for example. In this section, the physics behind quantum dots and double dot systems as

well as the experimental evidences of these properties in electronic transport are explained

in the scope of the work performed in this thesis.

2.1 Quantum dots

2.1.1 Device geometry

In order to engineer a quantum dot for electronic transport, one has to isolate a

small section of a bigger semiconductor system. This is usually done in nanowires or

two-dimensional electron/hole gases as will be shown in this thesis or in semiconductor

islands such as self assembled quantum dots [1]. Tunnel barriers are used for separation

from the rest of the system in order to allow for charge transport across the dot as required

for transport experiments. These barriers can be created by electrostatic gating [2] or by
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materials interfaces [3]. The quantum dot is usually connected to one or several gates

called plunger gates in order to modify the electrostatic potential of the dot [4].

VSD

Vg

I

Fig. 2.1: Schematic of a quantum dot (red) connected to the rest of
the system by leads (blue) through tunnel barriers (green). Transport
experiment are usually done by applying voltage on the source (VSD)
and measuring the current (I) going through. The chemical potential
of the dot can be changed by applying a voltage (Vg) on a plunger gate
(maroon)

2.1.2 Charging energy

In a quantum dot such as the one described previously, adding an electron requires an

additional energy, or charging energy [5]. This energy consists in two phenomena. The

first one, which is not exclusive to quantum dots is the coulombian repulsion term [6].

Charge carriers, whether they are electrons or holes are charged particles. In a small island

of a metal or semiconductor, they will repel each other. This is why adding another charge

will require an additional energy to counter this repulsion. This term will be equal to e2/C

where C is the total capacitance of the island to its environment. This phenomenon is the

one behind the functioning of single electron transistors (SET) [7].

The second phenomena is at the essence of a quantum dot. Such a system has to be

small enough so that the charge carriers have a deBroglie wavelength of approximately the
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same size as the dot, meaning the maximum dot size is dependent on the material used

(through the effective mass of the charge carrier). This implies that the charge carriers

occupy discrete quantum levels that have a discrete energy spectrum (properties for which

they are sometimes referred to as artificial atoms) [8]. This discrete energy spectrum is the

reason why adding a charge carrier to a dot requires a second additional energy (that we

will refer to as orbital spacing). The smaller the dot and the number of charge carriers in

it, the bigger this orbital spacing term.

2.1.3 Coulomb peaks

When connecting a quantum dot to two reservoirs via tunnel barriers, charge carriers

will tunnel in the dot in order to minimize the energy of the system. When no bias is

applied across the dot, the levels of the reservoirs are aligned. As tunneling through a

tunnel barrier is only allowed when the end level is aligned with the starting level, charge

transport across the dot is only possible when the first available state in the dot is aligned

with the reservoirs. In this configuration both the states with N and N+1 charges in

the dot are possible where N is the total number of charge in the dot. When modifying

the voltage applied on the plunger gate by ∆Vg , the potential of the dot is changed by

∆µdot =αg ×∆Vg where αg is the lever arm of the gate on the dot (αg =Cg /C where Cg

is the capacitance of the plunger gate to the dot). By linearly sweeping the plunger gate,

one can switch the quantum dot from off to on for discrete values of Vg , when a level of

the dot aligns with the leads. Probing the dot conductivity as a function of gate voltage

will result in series of peaks called Coulomb peaks. In between these peaks, the system is

blocked and the number of charge inside the dot is perfectly defined.[5]

As the Coulomb peaks appear when a dot level is aligned with the reservoirs Fermi

energy, it is possible to extract the charging energy of the dot from the peak spacing via

the formula ∆EN→N+1 = αg ×∆Vg ,N→N+1. When the dot is filled with a high number of

charges, the coulombian repulsion term in the charging energy (e2/C where C is the

total capacitance of the dot to its environment) is dominant compared to the orbital
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spacing of the dot. That leads to Coulomb peaks with highly regular spacing equal to

∆Vg =∆E/αg = e2/αg C (see fig. 2.2).
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Fig. 2.2: A series of highly regularly spaced Coulomb peaks. Data from
chapter 4

When the number of charges in the dot becomes smaller, the orbital spacing of the dot

levels reaches the same order of magnitude as the coulombian repulsion energy, creating

a difference between odd and even filling of the dot. When the dot is filled with an odd

number of charges, adding one more will only require the coulombian energy as the

new charge will occupy an orbital level already containing the previous charge. On the

other hand, when adding a charge to a dot filled with an even number of charges, the

required energy will be the coulombian term plus the orbital energy spacing between the

last orbital level filled and the one the new charge will occupy.

When reaching the last few charges in a dot, the charging energy tends to increase

a lot from one transition to the other. This is mainly due to two mechanisms. The first

one is that the orbital spacing will continue increasing as the number of charges gets

smaller, thus increasing the charging energy. The second reason is due to the fact that

when reaching a low number of charges by the use of a gate, the electrical field created

by the plunger will also modify the shape of the dot. This will lead to a modification of

C the total capacitance of the dot and of the gate lever arm αg , leading to a change in

the coulombian repulsion energy. For these reasons, when trying to extract the charging
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energy of a dot with a low number of charge, one has to perform bias spectroscopy of the

dot.

2.1.4 Coulomb diamonds

When applying a voltage VSD between source and drain, an energy difference qVSD

will be created between the two reservoirs. From now on we will consider that the charge

carriers are holes, meaning that q is equal to e and not −e as it would be for electrons. It

means that in our case, for a positive bias, the holes in the source lead are of higher energy

than the ones in the drain lead.

While with no bias applied the dot was in an on state only when a level was aligned

with both contacts, it is now on whenever a level gets an energy situated in between the

Fermi energies of the leads. When looking at the conductance of the dot as a function of

gate voltage, what were previously peaks will then widen linearly and become plateaus as

a function of bias as w =αg VSD where w is the plateau width. Measuring the current going

through a quantum dot as a function of both gate voltage and bias will display distinctive

features called Coulomb diamonds as the off region of the dot gets smaller as the bias gets

higher (see fig. 2.3
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Fig. 2.3: Conductance of a dot as a function of bias and gate voltage.
Data from chapter 4
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With high enough bias, the dot will be in an on configuration for all gate voltage values.

This happens when the bias window is big enough so that it becomes higher than the

splitting between two levels of the dot, thus ensuring that at least one level will always be

in the bias window regardless of the gate voltage. It allows for charging energy extraction

from the Coulomb diamonds as the tip of a diamond represents the exact bias for which

two dot levels enter the bias window, that is to say that eVSD is equal to the charging energy

to go from one of these levels to the other.

2.2 Double dot systems

In order to perform a spin qubit, one has to readout the quantum state of the spin of a

single charge carrier. The magnetic moment of a single spin being so weak, it is extremely

difficult to perform its electrical readout directly [9]. To counter this difficulty, it is possible

to conceive charge transport processes that are spin selective, that is to say to perform spin

to charge conversion. It is then easier to measure charge than spin. The most common

process used relies on Pauli spin blockade and requires two quantum dots in series, a

system whose physics will now be detailed.

2.2.1 Stability diagram

The stability diagram of a double dot system represents the charge configuration of

the dots as a function of both gates voltage. The experimental depiction of this diagram

is the measurement of the conductivity of the double dot system as a function of gates

voltage. For a system made of two quantum dots in series to be conductive, both of the

dots must be in an on state at the same time. A simplistic representation of this would be

to first consider both dots independently with their own conductance resonances, and

just consider that the system will be conducting when both gate voltages will attain the

values of resonance, as depicted on fig 2.4 a.

This picture is only true for completely decoupled quantum dots. When the two dots

are close enough, there is a cross capacitance of the gates, meaning that varying the gate
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voltage of one dot will also vary the energy levels of the other dot. This implies that the

voltages at which each dot gets its resonances will not be constant but will vary linearly

with the gate voltage of the other dot, as shown in fig 2.4 b.

The most important difference between this first approach to a stability diagram and

the reality of coupled quantum dots is the separation of the resonances. Each of the

resonances depicted before are actually split into two resonances in a coupled double dot

system and the diamond shaped regions where charge configurations are defined turn

into hexagons (see fig 2.4 c). This has to be explained by a charging energy of the whole

system. Resonances are points in the stability diagram where several charge configuration

are favorable, thus allowing charges to go across the system. Splitting of the resonances

in a coupled double dot system is the evidence that is not possible to go straight from a

(N1,N2) charge configuration to a (N1+1,N2+1) (where Ni is the charge number in the dot

i). One could imagine that such a change in charge configuration would be possible if

both the dots and contacts levels were aligned, but then adding a charge to one of the two

dots would lift the level of the second one, due to the cross capacitance. Additional gate

voltage would then be required for a charge to enter the second dot.

Each of the resonances is then a gate configuration where three charge configura-

tions of the charge system are accessible, explaining why they are sometimes referred to

as triple points. This allows for charge transfer across the system through a cycle of the type

(N1,N2)→(N1+1,N2)→(N1,N2+1)→(N1,N2) or (N1,N2+1)→(N1+1,N2+1)→(N1+1,N2)→(N1,N2+1),

thus making the double dot system conducting.

While technically challenging [10], for spin qubit engineering, it is usually useful to

use the stability diagram to set the system on the triple point with the lowest number of

charges. While the physics behind quantum dot levels and spin and charges interaction is

well understood for few charges systems, systems with higher number of charges can be

hard to describe and tune precisely [11].
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Fig. 2.4: Schematic of the stability diagram of a double dot system.
a) Case with no coupling between the two dots. b) Cross capacitance
of the plungers of the two dots is now taken into account. c) Coupling
between the two dots splits each resonance into two triple points

2.2.2 Conductance resonances characteristics

In the previous section, no bias was considered across the system. Since source and

drain Fermi levels are aligned, resonances only appear for discrete values of gate voltages.

When bias is applied between source and drain, it opens windows of conductance. The

formerly point-like resonances will then turn into triangles.

As the bias is increased, the triangles get bigger. With high enough bias, there will be

gate voltage values for which not only the ground state of a dot level is in the bias window

but also one or more excited state. This will increase the conductance of the system as

more levels are available for tunneling. In a conductance triangle, the position of the

increase of conductance allows for excited states energy reading [12].
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Fig. 2.5: Schematic of a double triangle resonance (for an electron
double dot), showing the dots levels configuration for each features of
the triangles. From [13].

2.2.3 Pauli spin blockade

Until now, only spinless charge carriers were considered, but holes and electrons

have a spin 3/2 and 1/2 respectively, leading to interesting phenomena on conduction in

the presence of magnetic field due to Pauli exclusion principle. Let us now consider for

example the charge triple point where transport through the double dot is done through

the cycle (0,1)→(1,1)→(0,2)→(0,1). Let us also consider an external magnetic field applied

on the system. This will lift the degeneracy between the spin up (| ↑ 〉) and spin down

(| ↓ 〉) states of the dots.

Considering the transport cycle mentioned earlier, a hole will first enter the left dot.

There is no selection of the hole leaving the lead with regard to its spin as it enters the dot

on a new orbital. It will then try to tunnel to the right dot on an orbital where a hole is

already present, leading to two possible scenarios. Either the hole on the left dot has its

spin opposite to the one of the hole in the right dot. It will then be allowed to tunnel to
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the right dot as they will form a spin singlet and will continue the cycle. Either the hole as

the same spin direction as the one in the right dot. It will then not be allowed to tunnel to

the right where it should form a spin triplet on the orbital which is not permitted due to

Pauli exclusion principle. The hole will not be able to go back to the lead either as it has

an energy lower that the Fermi level of the lead. Transport is then blocked in the system.

This phenomena is called Pauli spin blockade.

qVsd

Source Drain

qVsd

Source Drain

 

Fig. 2.6: Schematic representing the conditions in which spin selec-
tivity in a double dot system can induce suppression of current. This
phenomena is called Pauli spin blockade.

If the bias is reversed, then Pauli spin blockade is suppressed. Indeed, the conduction

cycle of the holes becomes (0,1)→(0,2)→(1,1)→(0,1). Here, blockade doesn’t happen as

there will always be a hole in the right lead with the correct spin direction to enter the

right dot. Any of the two holes in the right dot will then be able to tunnel to the left dot

and then to the left lead, thus restarting the cycle.

Not all triple points meet the conditions to observe Pauli spin blockade. For example

the triple point for which conduction involves the cycle (0,1)→(1,1)→(1,0)→(0,1) will not

have spin blockade as it does not involve spin selectivity. Spin selectivity only occur when

the cycle involves a transition (N1+1,N2+1)→(N1,N2+2) or (N1+1,N2+1)→(N1+2,N2) where

N1 and N2 are even numbers of charge. It can be shown that this spin selectivity can occur

for only one fourth of the triple points for a given bias direction and for another fourth of
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Fig. 2.7: Schematic for two opposing biases of a double sot system.
Pauli spin blockade appears for positive bias, but disappear when the
bias is reversed.

the triple points for the opposite bias direction. It is also to be noted that the Pauli spin

blockade conditions for a bias direction are met for both triple points of a pair of triangles

if they are met for one of them.

Experimentally, when Pauli spin blockade occurs, triangle resonances are usually not

fully suppressed. It can happen that some edges of the pair of triangles are still visible.

It represents the configuration when the level of the first dot is aligned with the Fermi

level. There, when a hole with the wrong spin enters the first dot, it will not be able to

tunnel through the system, but can go back to the lead. This cycle will happen until a hole

with the right spin enters the dot and tunnels through the system (see fig 2.8 a). Another

possibility is that only a region at the base of the triangles disappears due to Pauli spin

blockade. This happens when the bias applied is high enough so that the triplet state

of the (0,2) configuration becomes available for transport through the system. When

magnetic field is applied, current is suppressed over the region (adjacent to the base)

where tunneling can only occur through the singlet of (0,2), the triplet state of (0,2) being

energetically inaccessible (see fig 2.8 b).
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a) b)

Fig. 2.8: Experimental evidences of Pauli spin blockade. a) Only the
edges of the pair of triangle still conduct (from [14]). b) Current is
suppressed in a region near the base of the triangles. The extension of
this spin blockaded region measured along the level detuning direction
(perpendicular to the base) is set by the energy splitting ∆ST between
singlet and triplet in the (0,2) charge configuration (from [15])
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Chapter 3

Spin orbit interaction

The spin orbit interaction (SOI) is one of the reasons why germanium is an interesting

material for spintronic. In this chapter the physics of this interaction will be detailed, from

its nuclear origin to the ability it provides to control electrically the spin of a charge carrier

in a quantum dot.

3.1 Origin of spin orbit interaction

The SOI represents the coupling between the spin of an electron and its motion (its

momentum), and can be treated as the effect of an effective k⃗-dependent magnetic field.

For proper treatment of the SOI, one has to derive the Dirac equation, but it is possible

to describe it as a relativistic correction to the Schrödinger equation as will now be done

here.

A moving electron, orbiting around its nucleus or diffusing in a lattice, is a charged

particle moving in an electric field. We can consider it as a reference frame (the electron

rest frame) moving at a speed v⃗ relative to an electric field E⃗ . Following classical electrody-

namics, this will induce an effective magnetic field in the electron rest frame that can be

written as:

B⃗ =−1

c
v⃗ × E⃗ = 1

mc
(E⃗ × p⃗) (3.1)
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The electron, due to its magnetic moment µ⃗, will then acquire an energy:

− µ⃗.B⃗ =−γ⃗s.B⃗ =− γ

mc
s⃗.(E⃗ × p⃗) (3.2)

Where γ is the gyromagnetic ratio and s⃗ the electron spin. Due to our assumption on

the spin orbit (SO) term as a relativistic correction, this term is not fully correct and a full

relativistic calculation would reveal a 1/2 pre-factor known as Thomas factor [1].

As can be seen from formula 3.2, an electron in an electric field will acquire an energy

linked to its spin and its momentum. It can also be seen that this energy is dependent

on the form of the electric field, whether it is the field created by the nucleus around

which the electron orbits, the field created by the crystal in which the electron travels, the

asymmetry of the lattice cell or the asymmetry of the confinement potential. For these

reasons, SOI can have quite different consequences depending on the system studied.

The effects of SOI for our system of choice will now be detailed.

3.2 Spin orbit interaction effect on band diagram

Here we will now describe the consequences of SOI for our specific system, that is to

say a two-dimensional hole gas (2DHG) in a germanium heterostructure. The effects of

SOI in the case of a Ge/Si core/shell nanowire will not be detailed here as SOI had little

to none influence on the experiments on this system described in this thesis. Still, a full

derivation of SOI in this system can be found in a paper by Kloeffel et al. [2].

The first effect of SOI on our system of interest comes from the atomic SOI. Indeed, in

an atom, negatively charged electrons orbit around their nucleus. But in the rest frame

of the electron, the nucleus is a positive charge orbiting the electron. This will induce an

electric field highly influenced from the orbit of the electron (SOI takes its name from this

specific consideration). Specifically, it is possible to show that the SO energy is linked to

the product s.l where s is the spin of the electron and l its orbital momentum. This is of

significant importance for our system, because in an electronic system, in a tight binding

approach, electrons are described by s-like orbitals, for which the orbital momentum l
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is equal to zero. Holes on the other hand are described by p-like orbitals, that is to say

l = 1. Their total angular momentum j can then have two different values, j = 3/2 and

j = 1/2. In this situation, it can be shown that the atomic SOI will split these two subbands

by an energy gap ∆0 called the spin orbit gap. In germanium, the spin orbit gap has been

measured and a value of∆0 = 0.29 eV has been obtained [3]. The j = 1/2 subband, of lower

energy than the j = 3/2 one, is usually called the split-off band.

Additionally, it can be shown that the j = 3/2 subband splits again for a non zero

wavevector k into two subbands. Indeed when the quantization axis of the angular

momentum j⃗ is chosen parallel to k⃗, SOI interaction will induce a k dependent splitting

between the m =±3/2 states (called Heavy Hole states HH) and the m =±1/2 states (Light

Hole states LH) (see Fig.3.1).

Finally, in a two dimensional system, confinement will have an additional effect on

the energy band diagram. Indeed, the projection of the electronic states in a 2DHG on

the direction perpendicular to the quantum well (QW) corresponds to standing waves.

This implies that even for an in-plane wave vector k// equal to zero, the total wave vector

k is not zero, leading to a splitting of the HH and LH states even at k// = 0. This is for this

reason that for low enough carrier densities, as it is the case in the experiments described

in the next chapters, only the HH subband is occupied.

3.3 Rashba spin orbit interaction

Spin orbit interaction can also lift the spin degeneracy of subbands when the charge

carrier travels in a solid with spatial inversion asymmetry. In two-dimensional systems,

it exists two main phenomena that can break space reversal symmetry. The first one is

known as bulk inversion asymmetry (BIA) and is responsible for Dresselhaus SO. This is

of little interest for us as BIA is a consequence of the absence of inversion center in the

crystal structure, which is not the case for germanium (BIA is particularly relevant for III-V

materials such as GaAs). The Dresselhaus Hamiltonian HD contains both a k-linear and

k-cubic terms but the k-cubic terms are usually neglected due to their small contribution
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Fig. 3.1: left: Schematic of the energy band diagram for a bulk semi-
conductor. The valence and conduction bands are separated by the
band gap Eg . The electrons are described by s-like orbitals (l = 0) while
the holes are described by p-like orbitals (l = 1) center: Now taking into
account spin, the SOI splits the valence band between the j = 3/2 states
and the j = 1/2 states by a spin orbit gap ∆0 right: In a 2DHG, quantiza-
tion in a direction perpendicular to the QW plane leads to a splitting of
the HH and LH states, even at k// = 0. Inspired from Winkler et al. and
Moriya et al. [4, 5]

compared to the k-linear ones. Considering a basis x, y and z pointing along the main

crystallographic direction (100), (010) and (001) respectively, and a 2D quantum well

perpendicular to the (001) direction, this Dresselhaus Hamiltonian can be written as [6]:

HD =β[−kxσx +kyσy
]

(3.3)

where β is a pre-factor depending on material and confinement and σi represents

the Pauli matrices. It is often interesting to write this Hamiltonian as a Zeeman term

HD = 1
2 B⃗D (⃗k//) · σ⃗, with B⃗D (⃗k//) = 2β(−kx ,ky ). The direction of the effective field B⃗D

created by the Dresselhaus SOI is represented in Fig.3.2a.

The second phenomena breaking space reversal symmetry is the structural inversion

asymmetry (SIA) and is responsible for Rashba SO [7]. This type of SOI is the one to

consider for a germanium 2DHG as it can be caused by an asymmetry of the confinement
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or by an electric field perpendicular to the 2DHG. The Rashba SOI has seen extended

studies in 2D electrons systems for which the Hamiltonian HR can be given as:

HR =αEz i [k−σ+−k+σ−] (3.4)

where α is a pre-factor depending on material, Ez is the electric field perpendicular to

the QW plane and we can define k+, k−, σ+ and σ− as k± = kx ± i ky and σ± = 1
2 (σx ± iσy ).

Similarly to Dresselhaus SOI, the Rashba SOI can be written as a Zeeman term with

the k//-dependent effective field B⃗R (⃗k//) = 2αEz(ky ,−kx) (see Fig.3.2b). As can be seen

from equation 3.4, Rashba SOI has the experimental advantage of being easily tuned by

changing the electric field applied on the system.

For heavy holes systems, this Hamiltonian is not valid. Indeed, due to the effective spin

3/2 of HH, Pauli matrices σx and σy have to be replaced by Jx and Jy , the 4 x 4 matrices

corresponding to j = 3/2 [4]. This leads to a k-cubic dependence of the Hamiltonian in

the form:

HR3 =α3Ez i
[
k3
+σ−−k3

−σ+
]

(3.5)

One of the major differences between cubic and linear Rashba SOI, beside the k-

dependence, is in the parameters influencing the value of the α pre-factor. While the

α pre-factor for linear Rashba SOI only depends on materials parameters, the α3 pre-

factor for cubic Rashba SOI not only depends on material parameters but also on the

QW geometry. This leads to a much more complex dependence of the SO energy with

respect to electric field Ez . The effective field for cubic Rashba SOI is given by B⃗R3 (⃗k//) =
2α3Ez(ky [k2

y −3k2
x],kx[k2

x −3k2
y ]) (see Fig.3.2c).
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Fig. 3.2: Schematic representing the direction of the effective field
of SO (colored arrows) as a function of the in plane wave vector for
Dresselhaus SO (a), linear Rashba SO (b) and cubic Rashba SO(c)

3.4 Spin relaxation mechanisms

The spin of an electron is not fixed in time, as its direction can vary. This phenomena

is called spin relaxation. Several mechanisms can explain spin relaxation of which the two

prominent ones for 2DHG will now be explained.

3.4.1 Elliott-Yafet spin relaxation mechanism

The first mechanism is the Elliott-Yafet mechanism [8, 9]. Mostly happening in met-

als and small gap semiconductors, Elliot-Yafet mechanism explains spin relaxation by

scattering-induced spin flips. During each scattering event of the charge carrier, its spin

will rotate randomly by an infinitesimally small angle. The succession of scattering events

will induce a randomization of the spin with regards to its initial value. For this reason,

Elliott-Yafet mechanism is characterized by a spin relaxation time τSO (the average time

of travel after which the spin has performed a π-rotation) proportional to the scattering

time τtr (the average time between two scattering events).
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3.4.2 D’Yakonov-Perel spin relaxation mechanism

The second mechanism and the one of interest in the case of germanium 2DHG is the

D’Yakonov-Perel mechanism [10]. As seen previously, a hole traveling in a solid lacking

inversion symmetry will experience an internal magnetic field, the SO field. The spin

of the hole will then precess around this internal field. But at each scattering event, the

momentum of the hole will shift and so will do the internal field. As the hole goes through a

succession of scattering events, its spin will go through a succession of precession around

random axes, then losing memory of its initial state.

As opposed to Elliot-Yafet mechanism, in the case of D’Yakonov-Perel spin relaxation

mechanism, the spin relaxation time τSO is inversely proportional to the scattering time

τtr . This can be explained by the fact that if the time in between scattering events is

too short (small τtr ), the spin of the charge carrier will not have enough time to rotate

significantly, thus giving a long spin relaxation time τSO .

3.5 Weak antilocalization theory

In order to study the strength of the spin-orbit interaction in a two dimensional mate-

rial, it is possible to look for evidence of weak antilocalization. This phenomenon tends to

increase conductivity in a low dimensional system with strong spin-orbit interaction, at

low temperature, by reducing the back scattering probability of charge carriers. In order

to better understand it, we will first explain the theory behind weak localization, the no

spin-orbit counterpart of weak antilocalization that reduces the conductivity of a system.

We will then explain how spin orbit interaction reverses this effect.

3.5.1 Weak localization

The diffusive motion of charge carriers in disordered systems such as semiconductors

is well explained by the Drüde model. At low temperature, this model is still viable for

large samples (where transport is diffusive) but corrections need to be made to take into

account the quantum properties of transport.
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When considering a pair of trajectories between two points of a diffusive sample,

of amplitudes A1 and A2, the Drüde model adds them classically, leading to a global

amplitudes of the two paths A that is:

|A|2 = |A1|2 +|A2|2 (3.6)

But at low temperature where quantum properties have to be taken into account, we

now have to consider the full quantum amplitude including the phase for each path. We

then have:

|A|2 = |A1|2 +|A2|2 +2|A1 A2|cosθ (3.7)

where θ is the phase difference between the two paths. The additional term 2|A1 A2|cosθ

represents the interference term of the two paths.

On average over all paths and due to disorder, this cosine of phase difference averages

to 0 (〈cosθ〉 = 0) except for a certain class of loops being the self intersecting paths. For

these trajectories, the charge carrier can go around a loop in both directions, meaning

these trajectories are representative of two paths that can interfere.

It is possible to show that the interference of the two paths will be constructive only

when the charge carrier is backscattered. Calculations behind this assertion will not

be given here [11] but one simple explanation is that in order for a charge carrier to

accumulate the same phase in one direction of the loop or the other, it has to go through

the same momentum shifts at the scattering centers creating the trajectories. This is only

possible if the end wavevector of the loop trajectory k⃗ ′ is equal to −k⃗ where k⃗ is the initial

wavevector (see Fig. 3.3). As the two paths have the same amplitude (A1 = A2) and their

phase difference is equal to zero (cosθ = 1), we have |A|2 = 4|A1|2. This results means that

in these loops, the probability for a charge carrier to be back scattered is twice as high

(4|A1|2) as it would be without taking interferences into account (2|A1|2).

Since all these self intersecting paths in the sample will tend to enhance the global

backscattering of charge carriers, they will have a negative contribution to the conductivity
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Fig. 3.3: Example of a self intersecting path inducing weak localiza-
tion. When going clockwise (black path) or counter clockwise (blue
path) the charge carrier will experience the same momentum shifts (red
arrows) on scattering centers (green dots) (thus getting the same phase
accumulation) only when being back scattered.

of the sample over the classical Drüde conductivity. This is the phenomenon called weak

localization.

Weak localization effect is only observable due to the magnetic field dependence

of this correction term over Drüde conductivity. When a magnetic field is applied on a

sample affected by weak localization, time reversal symmetry is broken and charge carriers

traveling across a loop in one direction or the other will now accumulate a phase term of

opposite sign depending on the direction. This term will prevent the two trajectories to

interfere constructively toward backscattering, thus suppressing weak localization. As this

phase term depends on the magnetic flux through the loop (∆ϕ= 2π Φ
Φ0

where ∆ϕ is the

phase difference between the two paths,Φ is the flux of magnetic field in the loop andΦ0

the quantum of flux), bigger loops will lose their coherence more quickly as a function

of magnetic field applied than smaller loops. This leads to the experimental signature of

weak localization which is a dip in the conductivity of a sample around 0 field applied in

magneto-conductance measurements.
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3.5.2 Weak antilocalization

We just saw how interferences of two time reversed paths induce an enhanced backscat-

tering and a reduction of conductivity. In the presence of spin-orbit interaction though,

these interferences will have the opposite effect. Previously we didn’t consider the spin of

the charge carriers, but spin orbit interaction links a particle spin with its motion. A charge

carrier traveling in a sample in presence of spin-orbit interaction will feel an effective

magnetic field. In the scope of the D’Yakonov-Perel spin relaxation mechanism, this

effective field will induce a rotation of the electron spin as it travels in the sample.

Following the pioneering work of Bergmann [12], we can consider an electron trav-

eling in a diffusive system across a loop. Along this trajectory, the spin s⃗ will be rotated

by a number of random infinitesimal angles (between scattering events in the case of

D’Yakonov-Perel spin relaxation mechanism and during scattering events in the case of

Elliott-Yafet mechanism). These small rotations will induce a final rotation R such as the

end spin state s⃗′ can be written as s⃗′ = Rs⃗. An electron traveling the same loop, but in

the opposite direction will feel the same internal fields but of opposite direction and in

reverse order such as its end state s⃗′′ can be written s⃗′′ = R−1⃗s (see fig.3.4).

x

y
z

ss’’ s’

Fig. 3.4: Schematic representing the electron spin rotation induced by
traveling across a loop in one direction (⃗s → s⃗′) compared to traveling
the opposite direction (⃗s → s⃗′′). Taken from [12]
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As the interference term between the waves of the two electrons going across the loop

in one direction or the other is proportional to 〈 s′ | s′′ 〉 = 〈 s |R†2| s 〉 we will know focus on

the R matrix. Using Euler’s angles α, β and γ we can write the spin rotation matrix as [13]:

R =
 cos

(
α
2

)
e i (β+γ)/2 i sin

(
α
2

)
e−i (β−γ)/2

i sin
(
α
2

)
e i (β−γ)/2 cos

(
α
2

)
e−i (β+γ)/2

 (3.8)

leading to:

R†2 =
cos2

(
α
2

)
e−i (β+γ) − sin2

(
α
2

) − i
2 sin(α)

(
e iγ+e−iβ

)
− i

2 sin(α)
(
e iβ+e−iγ

)
cos2

(
α
2

)
e i (β+γ) − sin2

(
α
2

)
 (3.9)

Considering a spin s⃗ such as s⃗ = (a,b) we now have:

〈 s′ | s′′ 〉 = 〈 s |R†2| s 〉 =cos2
(α

2

)[
aa∗e−i (β+γ)/2 +bb∗e i (β+γ)/2

]
− sin2

(α
2

)
− i

2
sin(α)

[
ab∗

(
e iγ+e iβ

)
+ba∗

(
e−iβ+e−iγ

)] (3.10)

As previously mentioned, this term 〈 s′ | s′′ 〉 enters in the back scattering probability,

but as an average over all possible paths. In the limit of strong spin orbit interaction, the

spin loses memory of its initial value quickly, and the end results s⃗′ and s⃗′′ can take any

orientation, but are still linked one to the other. This induces that all angles α, β and γ are

random and all terms in 〈 s′ | s′′ 〉 average to 0 except for the term −sin2
(
α
2

)
. This leads to:

〈 〈 s′ | s′′ 〉 〉 = 〈 −sin2
(α

2

)
〉 = −1

2
(3.11)

This result implies that in a sample with strong spin orbit interaction, the back scat-

tering probability of electrons is reduced by a factor 1/2, leading to an increase of the

conductance compared to the standard Drüde conductivity. Similarly to weak localization,

weak antilocalization effect is destroyed by an out of plane magnetic field due to time

reversal symmetry breaking. This leads to a peak in conductivity around zero field in

magneto-conductance measurements.
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Chapter 4

Germanium/Silicon core/shell

nanowires

4.1 Introduction

In order to create quantum dots, one has to reduce the dimensionality of the system to

0 [1]. Thus it is a good idea to start with a system that already has reduced dimensionality.

One of the standard approaches for this is the use of heterostructures that give rise to

two-dimensional electron or hole gas (2DEG and 2DHG, respectively) thanks to the use of

a proper stack of materials creating a 2D quantum well. Electrostatic gating is then used to

constrain the charges in the last two dimensions. This method has seen extended effective

use in systems such as GaAs/AlGaAs heterostructures [2], strained Si [3] or strained Ge as

will be detailed later.

The second approach consists in the use of nanowires. A nanowire gets its name from

its shape and size as it is usually a cylinder of a few tens of nanometers in diameter and a

few microns in length. Electronic transport in nanowires is constrained in two dimensions,

leaving only one dimension to be constrained in order to create quantum dots. As of today,

in quantum transport, III-V materials have seen the most use, such as InAs [4] or InSb [5]

nanowires, but type IV materials such as Ge/Si core shell nanowires are receiving consid-



44 CHAPTER 4. GERMANIUM/SILICON CORE/SHELL NANOWIRES

erable interest, owing to their attractive properties for quantum spintronics applications

community due to several advantages.

The qualitative band diagram of core/shell Ge/Si nanowires along the radial direction

is shown in the right panel of Fig.4.1. The Ge core forms a quantum well for holes[6]. This

type of nanowires presents several advantages, including low hyperfine interaction and

strong spin-orbit coupling, as discussed in chapter 1.

Fig. 4.1: Left: Schematic of a Ge/Si core/shell nanowire showing the
Ge core in green and the Si shell in blue Right: Schematic of the radial
band diagram of a Ge/Si core/shell nanowire. The offset of the valence
band (VB) and conduction band (CB) creates a quantum well in the Ge
core due to the relative position of the Fermi energy (Ef)

4.2 Device fabrication

4.2.1 Substrate preparation

The fabrication of the devices aims at the creation of electrostatic barriers in the

nanowires in order to define a double quantum dot. The approach taken is the one of

bottom gates in order to reduce to a maximum the number of fabrication steps seen by

the wire once it is deposited on the sample. It is usually accepted fabrication steps such as

electronic lithography or resist baking have a non negligible chance to induce defects in

very fragile structures such as core-shell nanowires. Since the measurement we are aiming

at are very sensitive to any defect in the structure, it is best to create a device fabrication
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process that involves the strict minimum of steps after the nanowire is deposited, that is

to say just contact metal deposition.

With this problematic in mind, the process starts with the fabrication of alignment

marks as well as anti-break pads on an undoped SiO2 wafer through electronic beam

(e-beam) lithography. The alignment marks will be used in the next lithography steps

for realignment of the optical masks for optical lithography steps or of the masker for

the electron beam lithographies. The anti-break pads will be used as a link between the

contacts and the bonding pads, as will be detailed later. A bilayer of electronic sensitive

resist (PMMA/MMA, PMMA 4%) is exposed through electronic beam lithography by a

100 kV JEOL masker and 10/40 nm of Cr/Au is then deposited on the surface by metallic

evaporation. The use of a bilayer resist rather than a monolayer one aims at creating an

undercut in the resist, thus helping with the lift-off.

Fig. 4.2: Left: Scanning electron microscope image of an array of
interdigital gates. The gates are made of 5/15 nm of Ti/Au and have a 60
nm pitch Right: Scanning electron microscope image of the gate array
after deposition of 12 nm of HfO2 dielectric (center of the image)

In between each step, the wafer is thoroughly cleaned by three baths in acetone,

ethanol and isopropanol of 5 minutes each in ultrasounds to remove any residues that

might affect the rest of the process. The following step is the creation of the bottom gates.

A thin layer of PMMA 2% is exposed by e-beam lithography creating an array of interdigital

gates. These gates are separated by 60 nm center to center and the linear exposure used in
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the masker allows for a fine control of their width of 25 nm. After development, 5/15 nm

of Ti/Au is deposited by metallic evaporation (see Fig. 4.2 left).

After this, a dielectric film is deposited on the gates to prevent electrical contact

between the gates and the nanowire. To do so, a layer of AZ1512HS optical resist is first

deposited on the wafer. In this resist, windows are then opened on top of the gates arrays

by optical lithography. Through atomic layer deposition (ALD), 12 nm of the high-κ

dielectric HfO2 is deposited at 120◦C. The excess dielectric is then removed along the resist

through lift-off (see Fig. 4.2 right).

The final step before nanowire deposition is the fabrication of bonding pads. The

purpose of these pads is to link the microscopic world of our devices to the macroscopic

environment of the measurement setup. Once again a layer of AZ1512HS is deposited on

the wafer and exposed by optical lithography. Then 10/100 nm of Cr/Au is deposited to

create the pads.

Fig. 4.3: Image of a full 4 inches wafer after bonding pads deposition.
This wafer contains 128 different chips.

At this step, the wafer is cut in separate chips that will be processed independently.

Before nanowire deposition each sample goes through 5 min of oxygen plasma. The main

purpose of this step is to remove any resist residue on the surface but it has also been

shown that a step of oxygen plasma on a SiO2 substrate prior to the deposition of InSb

nanowires can improve their low temperature conductivity [7].
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4.2.2 Nanowire deposition

The nanowires used in this work were grown in the group of Charles M. Lieber in

Harvard University. They consist of a Ge core of around 15 nm of diameter circled by a

shell of around 3 nm of thickness. The fabrication process has been detailed elsewhere [8].

Nanowires can be deposited on the gates using a nanomanipulator consisting of a

tungsten tip with a 350 nm end radius fixed on a commercial 3-axis stage (see Fig. 4.4).

Under an optical microscope, and with the use of the stage, the tip is lightly brushed over

the nanowire substrate until a wire can be seen on the tip. The tip is then moved on top of

a field of the processed chip and the nanowire is gently deposited across the gates (see Fig.

4.5 left).

Fig. 4.4: Left: Picture of the microscope and the nanomanipula-
tor Right: Closer image of the tungstene tip with the sample and the
nanowire substrate

The chip is then imaged under a scanning electronic microscope (SEM) in order to

identify which of the gates fields have a single nanowire properly lying on top of the gates.

The imaging is done quickly and at low acceleration voltage (1 kV) in order to minimize

the possible damages to the nanowires and the deposition of charges and carbon atoms

on the surface that the electron beam could induce.
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Due to their long length relative to their diameter, the nanowires do not stay straight

on the surface but tend to bend and tangle, forming bundles and making it hard to

pick individual wires. Still, the technique is reliable enough that out of the 64 fields per

chip onto which wires are deposited, around 10 usually present a single nanowire laying

correctly across the gate. This provides a sufficient yield given that only 7 wires can be

fully contacted due to the required number of pads needed (nine, two for the contacts,

three for the barrier gates, two for the plunger gates and two for the contacts gate groups)

compared to the number of pads available (64 in our design)

4.2.3 Contact fabrication

The sample is then covered with PMMA 4% electronic resist in which the contacts

to the wire are written by e-beam lithography. The wire is then dipped for 3 seconds in

buffered hydrofluoric acid in order to remove the oxidized shell so that the metal contacts

directly the Ge core. By metallic evaporation, 100 nm of Ni is then deposited on the

sample (see Fig. 4.5 right). This metal had been chosen as it was the one giving the best

combination of both contact yield and resistance among the one accessible by metallic

evaporation in the clean room.

The two contacts of the wire are separated by a distance of around 780 nm or 13 times

the distance between gates in order to leave exactly 13 gates under the wire in between the

contacts. Of these 13 gates, the 5 center ones were contacted individually to independent

bonding pads and, during the measurements, were employed as three barrier gates and

two plunger gates. The four gates on each sides were shorted in such a way as to form two

sets of larger "contact gates", which were then used to act on the contact resistance of the

wire.

During the deposition of the contact metal, it is possible that the metal line breaks at

the edge of the bonding pads. A possible reason for this phenomenon is that the Au of the

bonding pads expands significantly during the contact lines evaporation due to the heat

brought by the Ni target. As the sample cools down after the evaporation, the Au retracts,

thus applying significant stress on the Ni line that breaks on the step it has to do to go up
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the bonding pad. This is why anti-break are processed earlier. At this last step they will be

situated both under the bonding pads and the contact lines providing an electrical link

between the two even if the Ni line breaks. The much lower thickness of the anti-break

(50 nm) compared to the bonding pads (110 nm) makes significantly more reliable the

contact of the Ni line (100 nm thick) with the anti-break rather than with the bonding

pads.

Fig. 4.5: Left: Scanning electron microscope image of a nanowire
deposited across the gates. These Ge/Si nanowires are approximately 20
nm of diameter and a few microns in length Right: Scanning electron
microscope image of a finished device showing a wire contacted by two
metal leads

The sample is then ready to be measured.

4.3 Measurements

4.3.1 Experimental setup

In order to observe quantum effects in electronic transport, one has to perform mea-

surements at low temperature. Indeed, the energy scales of the phenomena to be observed

are so small that the measurement temperature has to be low enough so that the tem-

perature energy scale kbT (where kb is the Boltzmann constant and T is the temperature)

is significantly smaller than the ones of the phenomena. It is for this reason that all the
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measurements detailed in this section were performed in a 3He fridge capable of reaching

a base temperature of around 250 mK.

The chip to be measured is glued on a sample holder that will serve as an interface

between the device and the measurement setup. The silver paste used to glue the sample

is a material with both high thermal and electrical conductivity in order to ensure a good

thermalization of the sample with the fridge and a uniform ground level as reference for

all electric potentials in the sample. The bonding pads of the device are each connected

one of the 24 line of the sample holder by 25 µm diameter aluminum wire wedge bonded

through a commercial bonding machine. The sample holder is then plugged on the cold

finger of the 3He fridge.

Similarly to the sample holder, the fridge is equipped with 24 DC lines connecting the

cold finger to the outside world. Each of these line possesses an RC filter with a cutoff

frequency of 100 kHz to minimize high frequency excitation from the environment to go

in the sample and to help thermalizing the electrons. My previous work in this exact fridge

have shown good agreement between the fridge measured temperature and the electronic

temperature [9].

The battery powered low-noise electronic used for transport measurements was devel-

opped by Raymond Schouten at the QT laboratory in Delft

Bl Bm Br

Pl Pr

Cl Cr

Source Drain

Fig. 4.6: Schematic of the measured device. The nanowire (blue) lies
on top of 5 individual gates (green) and two sets of shorted gates (red)
going under the Ni contacts (grey)
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4.3.2 Gate capacitance

Once the sample is cooled down to base temperature, a bias is applied across the

nanowire and the current going through it is measured. Sweeping the bias from -10 mV

to +10 mV while keeping all the gates grounded, no current goes through the wire at

small bias (from -0.8 to +1.2 mV approximately) (see Fig. 4.7). This can be explained by a

Coulomb blockade effect in the wire due to the presence of tunnel barriers at the interfaces

between the nanowire and the contacts. The nanowire is not conducting without a large

enough bias. Applying negative voltage on the sets of gates under the contacts reduces the

strength of the contact barriers thus increasing the conductance of the system but does

not entirely remove the Coulomb blockade effect.
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Fig. 4.7: Left: Current (I) as a function of source drain voltage (Vsd)
in the full wire with no voltage applied to any gate Right: Differential
conductance (dI/dVsd) as a function of source drain voltage (Vsd) in the
full wire with no voltage applied to any gate

Applying no DC bias across the wire and applying AC voltage with the help of a lock-in,

allows for the readout of the differential conductance of the system. By sweeping one of

the bottom gates we observe a series of conductance peaks (see Fig. 4.8). This effect is

referred to as Coulomb peaks and confirms the presence of a quantum dot in the wire

due to the barriers at the contacts (see chapter 2.1.3). In figure 4.8 we can observe 55

regularly spaced peaks on a span of 2 V of a bottom gate, the left plunger in this specific

case. Similar results are observed for all individual gates. The invariance of the spacing

between the peaks over a large number of transitions tends to indicate that the dot is

in a regime where the number of holes it includes is large enough so that the Coulomb
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charging energy e2/CT where e is the quantum of charge and CT is the total capacitance

of the dot to its environment, is the dominant component in the addition energy, and the

dot is behaving mostly as a single-electron metallic transistor, with negligible mean level

spacing (see chapter 2.1.2).
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Fig. 4.8: Differential conductance dI/dVsd as a function of PL gate
voltage VPL showing 55 regularly spaced Coulomb peaks over a span of
2 V of gate voltage

Measuring the bias dependence of these peaks results in the characteristic Coulomb

diamonds (see Fig. 4.9). From the size of diamonds along the bias voltage axis, we can

extract the charging energy of the dot (see chapter 2.1.4). We find a charging energy of

around 1.2 meV. The reproducible shape and size of this series of diamonds confirm

the large number of charges and the metallic character of the dot. From the value of

the charging energy we deduce a total capacitance of the system CT = 133 aF, which

corresponds to the sum of the capacitances between the dot and all the elements in

its environment (mostly the gates and the source and drain electrodes). Knowing that

the gate-voltage spacing ∆Vg between two consecutive Coulomb peaks is 36 mV, we

can deduce the capacitance of an individual gate Cg from the formula Cg = e/∆Vg . All

individual gates have the same value of around Cg = 4 aF. This value is consistent with the

value Cth = 9 aF expected for a 20 nm×20 nm overlap of the nanowire on the gate, the

two being separated by 12 nm of hafnium oxide.
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Fig. 4.9: Differential conductance dI/dVsd in the wire as a function of
PL gate voltage VPL and bias Vsd with no voltage applied on the other
gates. The regular shape and size of the Coulomb diamonds indicate a
dot with a large number of charges

By sweeping the gates under the contacts, it is possible to increase the conductivity

in the wire. Doing so reveals the same type of conductance peaks but with a different

periodicity. Sweeping the barrier under the right contact (CR) (see Fig. 4.10 left) we

observe that the periodicity changed to 9 mV. This is easily explained by the fact that the

CR activates 4 individual gates under the wire, thus increasing the capacitance to the dot

by a factor 4. On the other hand, sweeping the gate under the left contact only reduces the

periodicity by a factor 2.6 (see Fig. 4.10 right). This is most likely due to an overlap of the

Ni contact on one of the gates or due to a broken gate.

4.3.3 Double dot system

By properly adjusting the voltages applied to the local gates, it is then possible to split

the quantum dot in two. The middle gate (BM) is swept to +4 V in order to create a barrier

in the middle of the wire, thus splitting the dot. The gates under the contacts CR and

CL are then used as plungers for the two dots. Plotting the differential conductance of

the wire as a function of the voltage applied on the contact gates shows that conduction

in the wire only happens in small, regularly spaced regions (see Fig. 4.11). This is to be
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Fig. 4.10: Differential conductance dI/dVsd measurement of the wire
as a function of right (left graph) and left contact gates (right graph).
The periodicity of the Coulomb peaks is different from sweeps of an
individual gate

expected from a double dot system where the system can only conduct when both dots

are conducting (see chapter 2.2.1). It has to be noted that the spacing between conducting

resonances for a given gate is the same as the one previously observed with only one

dot. This shows that the contact gates have really low effect on the opposite side of the

wire even when it is not split in two. The fact that the resonances are aligned on almost

completely vertical or horizontal lines further confirm that there is no cross capacitance

of one gate to the opposite dot.

In order to observe quantum effects such as Pauli spin blockade in a double dot system,

one has to reduce the number of charges in the dots. To do so, the external barrier gates

BL and BR are progressively swept to observe the transition from a plunger effect to a

barrier effect (see Fig. 4.12). When applying low voltages on the gates, they will act as

plungers for the two metallic dots observed before (see Fig. 4.12 a). As the voltage on the

gates is increased, they will start creating a barrier. The resulting potential can be quite

complicated as the charges will not yet be completely localized between barriers (see Fig.

4.12 b). Only when the voltage applied on the gates is high enough will the barriers allow

for the system to be considered as a double dot and the characteristic double triangle

resonances can be observed (see Fig. 4.12 c). We notice that some of the transitions

expected are missing or have a much lower current than the others. This is most likely due

to the presence of other dots in series between the barriers and the contacts.
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Fig. 4.11: Differential conductance dI/dVsd of the wire as a function
of both the left and right contact gate voltages VC L and VC R respectively,
with a barrier created in the middle of the wire by BM (VB M = 4 V)

In order to get rid of the effects of the parasitic dots, the bias across the wire is increased

from 0.5 to 4 mV. This higher bias should keep the parasitic dots in a conducting regime

for most of the transitions. For a better confinement, the three barriers BL, BM and

BR are raised to +5 V and the two plungers PL and PR are swept. The stability diagram

shows the characteristic double triangle resonances of a double dot(see Fig. 4.13). This

time the spacing is not regular between transitions, showing the variation of the orbital

spacing component of the addition energy. This component becomes of the same order

of magnitude as the Coulomb repulsion component only when the number of charges

in the dots is small. It is to be noted that the last transitions seen in Fig. 4.13 does not

correspond to the last holes in the system as other transition can be observed for higher

plunger voltages but with much lower conductance.

When focusing on the barely visible transition highlighted in Fig. 4.13, we can clearly

observe a pair of triangles. When observed at a positive bias with no magnetic field

applied, the triangles contain three parallel lines corresponding to the ground state and

excited-state transitions. In Fig. 4.14, yellow lines highlight the triangles and the base line

as they can be seen with no magnetic field and a +4 mV bias. The same lines (reversed
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Fig. 4.12: Stability diagram of the double dot system as a function
of gates BL and BR. At lower gate voltage (a), the dots are confined
between the middle barrier (BM) and the contacts. As the gate voltages
are increased, the gates BR and BL start creating barriers (b) and the
dots end up confined between the the middle barrier BM and the two
side barriers BL and BR (c)

for negative bias) have been reproduced in the other situations in order to highlight the

differences. When reversing the bias, the direction of the triangles changes as expected

(see Fig. 4.14b). The size of the triangles is also reduced, which can be explained by the

asymmetry of the bias applied across the double dot system. Going back to positive bias

but applying magnetic field perpendicular to the nanowire and the sample, the base line

of the triangles fades away at +2 T (Fig. 4.14c) and completely disappears at +4 T (fig.

4.14d). This behavior is a characteristic signature of Pauli spin blockade where the hole in

the left dot cannot tunnel to the right dot because its forms a triplet state with the spin

of the hole in the right dot. The system is then blocked and current is suppressed (see

chapter 2.2.3).
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Fig. 4.13: Stability diagram of the studied double dot system, with the
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transition.

4.4 Conclusion

After measuring the data shown in this chapter, the device ceased to function, due to

an accidentally large voltage spike and unfortunately we were not able to reproduce a fully

working and stable device after this one.

At the moment of this experiment, two major factors were affecting the number of

devices that could be effectively measured a low temperature. The first one was the yield

on the fabrication of the finger gates. Due to the technicality of the gate fabrication

process, most of the devices would have at least one broken gate. This would be synonym

to a floating potential below the wire which would induce high instability of the device.

The fabrication process was improved shortly after these experiment and fully working

substrates could be produced more reliably.

The second limiting factor on the number of device measured was the contact resis-

tance. The majority of the devices exhibited a room temperature resistance above 200

kΩ. Such high resistance would result in an insulating behavior at low temperature. To

remedy this issue, it was then decided to add to the fabrication process a step of annealing

of the contacts in Ar gas at 300◦C for 10 minutes, after contacts deposition. This added
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Fig. 4.14: The same double triangle at different bias and magnetic
field. a): VSD=4 mV and no magnetic field. b): VSD=-4 mV and no
magnetic field. c): VSD=4 mV and B = 2 T. d): VSD=4 mV and B= 4 T

step allowed for a more reliable production of devices with room temperature resistance

of around 100 kOhm that were conducting at low temperature.

Unfortunately, while both these issues were fixed shortly after measuring the sample

presented earlier, a lot more devices were measured but none of them was stable enough

to reproduce these results and go further. I now believe that this instability was due to

the annealing step. I later became aware of a work on rapid thermal annealing of pure

germanium nanowires with nickel contacts [10] showing a 56.3% lattice mismatch between

the Ni2Ge germanide phase formed by annealing and the Ge of the wire. This mismatch

can induce the formation of nanoclusters of Ni2Ge on the surface of the nanowire. While

none of these clusters have been observed on our wires after annealing, it is likely that

this mismatch will create additional strain on the very fragile Si shell. Defects in the shell

can explain the instability of the wires measured.
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Chapter 5

Weak antilocalization in strained

germanium heterostructure

While using nanowires and a bottom-up fabrication process can be a versatile enough

approach for research challenges, fabricating a quantum computer would require a high

number of qubits for which a top-down fabrication process, closer to the standards

of the microelectronic industry, would be more reliable. For this reason, using two-

dimensional quantum wells in germanium heterostructures can be advantageous as

spintronics elements such as quantum dots or quantum point contacts can be easily

engineered with a combination of mesa etching and metal gate electrostatic confinement.

In this chapter we use such an heterostructure and a Hall bar device to study the spin

orbit interaction in these germanium systems.

5.1 Heterostructure description and device fabrication

5.1.1 Heterostructure

The heterostructure employed here and illustrated in Fig. 5.1 was grown by the team

of Maksym Myronov at Warwick University. On a 200 mm Si (001) wafer, a reverse linearly

graded, fully relaxed, virtual substrate of 3 µm Si0.2Ge0.8/Ge/Si(001) was deposited by
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RP-CVD (Reduced-Pressure Chemical Vapor Deposition). Using the same technique,

with a germane (GeH4) gas precursor, a 32 nm thick Ge epilayer was grown on top, at a

temperature lower than 450◦C. This low temperature is of the utmost importance for the

stability of compressively strained Ge. More details on the heterostructure fabrication can

be found in Ref. [1].

The lattice mismatch between Si0.2Ge0.8 (a= 5.60 Å) and Ge (a= 5.66 Å) [2] will induce

a compressive strain in the Ge epilayer. The germanium epilayer eventually acts as a

confining quantum well for a two-dimensional hole gas (2DHG).

Fig. 5.1: Schematic of the heterostructure used in this chapter. On a
silicon wafer is deposited a buffer layer of SiGe. On top of this buffer
layer, 32 nm of Ge are strained, thus inducing the formation of a 2DHG
at the top surface

The presence of the 2DHG at the top surface of the heterostructure confers an ad-

vantage in terms of ease of fabrication as no etching is required to contact the hole gas.

Moreover, it allows for an efficient control of the confined holes by means of top gate

electrodes, due to maximal capacitive coupling.

5.1.2 Device fabrication

Device fabrication aims at realizing a Hall bar on this heterostructure in order to

perform magneto-transport measurements. Preliminary tests revealed that this undoped
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heterostructure is frozen at low temperature. As a result, it becomes necessary to provide

the Hall bar with a top gate aimed at inducing the accumulation of the 2DHG.

The first fabrication step consists in the deposition of alignment marks that will be

used for realignment of the optical masks used in the next lithography steps. A layer of

positive optical resist AZ1512HS is first deposited on the sample. Optical lithography

is then performed, thus opening windows in the resist after development. By metallic

evaporation, 10/50 nm of Ti/Au is then deposited. After lift off in acetone, the resist and

the metal on top is removed leaving only the alignment marks.

We then proceed to mesa etching. The mesa is necessary to prevent the 2DHG to

propagate under the accumulation gate pad when a voltage is applied (the structure being

frozen at low temperature, only the part below the accumulation gate can be conducting).

A second lithography step consisting of negative resist AZ2070HS spinning, exposure and

development is performed. This time the lithography will remove all the resist but the one

covering the future mesas. We then etch the heterostructure through a Cl2/N2/O2 plasma

for a depth of 55 nm. The resist on top of the mesa is finally removed with an acetone bath

(Fig. 5.2 a).

Ohmic contacts then need to be defined to access the 2DHG. An optical lithography

similar to the one used for the alignment marks is used, this time opening windows at

the edge of the mesa and further away. A layer of 60 nm of Pt is then evaporated on the

sample and we proceed to lift off (Fig. 5.2 b).

As the gas needs to be isolated from the top gate, an oxide has to be deposited. We pro-

ceed to the deposition of 30 nm of Al2O3 by atomic layer deposition (ALD) at temperature

of 250 ◦C.

Finally, a last step of electronic lithography, similar to to the previous ones is performed

to create the top gate (the resist used here is PMMA). This lithography opens a window in

the resist in a standard 6 terminals Hall bar shape that extends to the edge of the ohmic

contacts. The metal of choice here is 10/50 nm of Ti/Au deposited by metallic evaporation.

A final lift-off is then performed to remove the resist and the exceeding metal (Fig. 5.2 c

and d). The sample is then ready.
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a) b)

c) d)

Fig. 5.2: a): Optical image of the surface of the heterostructure after
etching of the 55 nm deep mesa.b): Optical image of the sample after
deposition of the 60 nm Pt contacts.c): An oxide layer of 30 nm of Al2O3

is deposited by ALD over the sample and a Ti/Au hall bar shaped accu-
mulation top gate is evaporated on top.d): Zoom on the Hall bar shaped
top gate

5.2 Transport measurements

5.2.1 Experimental setup

Similarly to chapter 4, measurements are performed in a 3He fridge with a base tem-

perature of around 250 mK. Two of the 24 lines are used to apply a constant current Ich

on the channel of the Hall bar. Rather than using a current source for this, we preferred a

voltage source used with a serial resistance of 1MΩ in order to protect the sample (when

the sample is highly resistive, a current source would try to apply high voltage on the

sample and might damage it). A currentmeter is used to control the current going through
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the channel. Two pairs of lines are then used to measure the voltage drop across the

channel Vch and the Hall voltage VH. Finally, a seventh line is used to apply voltage on the

accumulation gate situated on top of the Hall bar.

vch

vH

B⊥ B//

Ich

Fig. 5.3: Optical image of the Hall bar device. The blue line outlines
the mesa and the white dashed lines the Pt contacts. We measure the
Hall voltage (VH) and the channel voltage (Vch) from which we extract
Hall resistivity and channel resistivity respectively. Direction of the two
components for the applied magnetic fields is also indicated.

The fridge used is also equipped with a single axis 9 Tesla magnet. In section 5.2.2, the

sample is situated in way so that the magnetic field applied is perpendicular to the surface

of the Hall bar (B⊥). For the measurements described in section 5.2.3, a mechanical rotator

was added in the fridge to allow for the rotation of the sample inside the coil. This leads to

the ability to switch from a fully perpendicular field B⊥ to a magnetic field parallel to the

2DHG plane and perpendicular to the conduction channel B// (see Fig.5.3).

5.2.2 Gate dependence

As previously mentioned, the hole gas is frozen at low temperature. In order for the

system to be conductive, a negative voltage has to be applied on the accumulation gate.

In our experiment, the conduction threshold is situated at -3.8 V. Due to leakage through
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the oxide starting at higher gate voltage, all the measurements have been performed for a

range of gate voltages between -4.1 and -4.4 V.

For each gate voltage value, both the channel voltage Vch and the Hall voltage VH are

measured as a function of out-of-plane magnetic field B⊥. Channel or Hall resistivity

is then defined as ρX X = Vch/(Ich .Nsq ) and ρX Y = VH /Ich respectively, where Ich is the

measured channel current and Nsq represents the size of the channel in number of squares

Nsq = L/w where L and w are the channel length and width respectively. Nsq = 4 in this

sample.

Examples of traces of channel and Hall resistivity as a function of magnetic field are

presented in fig.5.4. In red, the channel resistivity most distinctive feature is a dip at zero

field. This is a clear sign of weak antilocalization, as will be detailed later.

13.0

11.0

20

0

0-6 B⊥[T]

Fig. 5.4: Channel resistivity ρX X (red) and Hall resistivity ρX Y (blue) as
a function of out of plane magnetic field B⊥. Channel resistivity shows a
dip at low field which is a signature of weak antilocalization.

Traces of Hall resistivity, on the other hand, show a linear dependance with magnetic

field for smaller field (|B⊥| ≤ 2 T). From this, we can extract the carrier density nhol e from

the formula:

nhol e =
B⊥

e ×ρX Y (B⊥)
(5.1)

We can then extract the carrier mobility µ from the channel resistivity at 0 field by:
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µ= 1

e ×nhol e ×ρX X (B⊥ = 0)
(5.2)

On the accumulation gate voltage range used during the measurement, that is to say

from -4.1 to -4.4 V, we obtained mobility and carrier density ranging from 800 to 2400

cm2/Vs and 1.3 to 1.7 ×1011 cm−2 respectively (see fig. 5.5).

2

1
-4400 -4100

1.8

1.2
Vtg[mV]

Fig. 5.5: Mobility µ (red) and carrier density nhol e (blue) as a function
of accumulation gate voltage

When comparing to similar heterostructures [3], our values obtained for mobility are

quite low. Additionally, from the evolution of carrier density with gate voltage, it is possible

to estimate the capacitance of the accumulation gate. From the Hall measurement we

extract a gate capacitance of only 21 nF/cm2, one order of magnitude lower than the

expected value of 0.27 µF/cm2 for a capacitor with a dielectric made of 30 nm of Al2O3.

We were also able to measure our gate capacitance at room temperature using a gate

reflectometry technique [4] and obtained a value of 0.33 µF/cm2, in good agreement with

the expected value. We explain both the low mobility and gate capacitance by a high

number of traps at the interface between the germanium epilayer and the oxide layer as

will be explained later.

As previously mentioned, the traces of channel resistivity as a function of magnetic

field show a dip at 0 field, a sign of weak antilocalization (WAL) which is a positive cor-

rection to conductivity over the Drüde model. In order to understand the magnetic field
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dependance of our system, we can consider the channel conductivity as being a sum

of three contributions: the Drüde conductivity σD , the WAL correction to conductivity

∆σW AL , and a third term σo f f set regrouping all contributions that are not magnetic field

dependent, such as hole-hole interaction.

σX X =σD +∆σW AL +σo f f set (5.3)

To extract the WAL contribution to conductivity, we first need to subtract the Drüde

conductivity term which dependance on magnetic field is given by:

σD (B) = enhol eµ

1+µ2B 2
(5.4)

As the other contributions are not magnetic field dependent, we can just subtract

a constant term in order to have ∆σW AL(B = 0) = 0. The different traces of ∆σW AL for

different sample carrier densities nhol e are displayed in fig. 5.6. It is to be noted that the

size of the WAL peak is highly influenced by the carrier density.

The dependance on magnetic field of these WAL corrections to conductivity can be

fitted with the following formula [5]:

∆σW AL(B⊥) = e2

2π2~

{
Ψ

(
1

2
+ Bϕ

B⊥
+ BSO3

B⊥

)
+ 1

2
Ψ

(
1

2
+ Bϕ
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+2

BSO3

B⊥

)
− 1

2
Ψ

(
1

2
+ Bϕ
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)
− ln

(
Bϕ
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)
− 1

2
ln

(
Bϕ

B⊥
+ 2BSO3

B⊥

)
+ 1

2
ln

(
Bϕ

B⊥

)} (5.5)

where B⊥ is the out of plane magnetic field,Ψ(X ) is the digamma function, Bϕ is the

phase coherence field and BSO3 is a characteristic field of spin relaxation time due to cubic

spin orbit interaction.

The first fitting parameter, Bϕ, can be associated to a time, the phase coherence time

τϕ through the formula τϕ = m∗/4π~µnhol e Bϕ, m∗ being the heavy hole effective mass.

The phase coherence time is the time the hole can travel through the lattice before loosing

its coherence. It is of significant importance in weak antilocalization physic as any self
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Fig. 5.6: Traces of the contribution of antilocalization on the chan-
nel conductivity ∆σW AL as a function of perpendicular magnetic field
for different accumulation gate voltages ranging from 1.3×1011cm−2

(top trace) to 1.7×1011cm−2 (bottom trace). The antilocalization peaks
disappears as carrier density is reduced (traces are offset for better visi-
bility).

intersecting path for which the hole has to travel longer than τϕ cannot contribute to WAL,

given no interference will be possible at the end of the loop.

Similarly, the spin relaxation field can be associated to the spin relaxation time τSO =
m∗/4π~µnhol e BSO3, corresponding to a characteristic time of spin flipping mechanisms

due to spin orbit interaction. The high spin orbit interaction limit mentioned in section

3.5.2 correspond to a spin orbit time τSO much larger than the average time between

scattering events such as the spin direction undergoes a high number of small angle shifts

across the loop.

Both these times can be compared the scattering time, τtr = m∗µ/e. This time rep-

resents the average time between two scattering events. Both τϕ and τSO require to be

orders of magnitude larger than τtr as τtr is directly related to the time required to travel

across one of the weak antilocalization-inducing loop.
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The dependance of τtr , τϕ and τSO on carrier density is displayed in fig. 5.7. Due to

the low mobility of our sample, Shubnikov-de Haas oscillations could not be observed and

the heavy hole effective mass could not be extracted so we used m∗ = 0.1m0 where m0 is

the electron mass, consistently with what was observed in similar heterostructures [6–9]

6

4

2

τ
φ ,τ

S
O  [ps]

1.40 1.60
nhole [1011 cm-2]

Fig. 5.7: Evolution of scattering time τtr (red crosses), phase relaxation
time τϕ (blue circles) and spin relaxation time τSO (blue triangles) as a
function of carrier density

It is to be noted that the width of the weak antilocalization peaks measured is approxi-

mately two orders of magnitude larger than what is expected from similar heterostructure

(see fig. 5.6) [10] and magneto-conductance experiments in general [11]. This can be

explained by the low mobility of our device. The scattering time τtr measured being one or-

der of magnitude smaller than in similar experiments, the weak antilocalization-inducing

loops are expected to span an area two order of magnitude smaller. The magnetic field

required to have a same amount of flux in these loops and break time reversal symmetry

is then two order of magnitude larger.

The dependance of the characteristic times with respect to carrier density is indicative

of the spin relaxation mechanism. In a sample with strong spin orbit interaction such

as ours, D’Yakonov-Perel mechanism is expected. The spin orbit relaxation time τSO

should then increase as the scattering time τtr and spin orbit splitting ∆SO decreases

(τSO ∝ 1/(τtr ×∆2
SO) and ∆SO =α3Ezk3

F where α3 is the cubic Rashba coupling, Ez is the

vertical electric field and kF is the Fermi wave number). The extracted values for the spin
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orbit splitting energy is displayed in fig.5.8 and are consistent with values extracted in

similar heterostructures [10, 7]

∆ S
O
 [m

eV
]

1.601.40
nhole [1011 cm-2]

c)

Fig. 5.8: Evolution of the spin splitting energy ∆SO as a function of
carrier density

5.2.3 Parallel magnetic field dependance

The sample was then rotated in the fridge in order to align the magnetic field in the

plane of the 2DHG, perpendicular to the conduction channel (see fig.5.3). To the first

order, breaking of the weak antilocalization in this configuration due to magnetic field

is not expected as a parallel field induces no flux in the self intersecting paths, and thus

should not break time reversal symmetry. Still, a peak in channel conductivity can be

observed around 0 bias (see fig.5.9).

In order to make sure that this dependance is not induced by a misalignment of

the sample in the magnetic field, it is possible to look at the Hall resistivity. The small

magnetic field dependance of this resistivity (exclusively sensitive to out of plane magnetic

field) allows us to extract a misalignment of only 2◦(see fig.5.10). The small out of plane

component of the magnetic field that this misalignment induces is not sufficient to explain

the weak antilocalization breaking effect.



72CHAPTER 5. WEAK ANTILOCALIZATION IN STRAINED GERMANIUM HETEROSTRUCTURE

∆σ
W

A
L[µ

S
*s

q]
6

4

2

0

-2

-4

3210-1-2-3
B//[T]

Fig. 5.9: Black circles: quantum correction to channel conductivity
∆σW AL as a function of in plane magnetic field. Fitting with the model
from Minkov et al. [12] (blue dashed line) does not agree with our
data without the addition of a B 6

// (red line) term describing the virtual
occupation of unoccupied subbands

A model had been developed by Minkov et al. [12] to explain this dependance of weak

antilocalization on a parallel magnetic field. To do so, they took into account the effect of

Zeeman splitting and surface roughness. We used the following formula to fit our data:

∆σW AL(B//) = e2

4π2~

[
2ln

(
Bϕ+BSO +∆r

Bϕ+BSO

)
+ ln

(
Bϕ+2BSO +∆r

Bϕ+2BSO

)
− ln

(
Bϕ+∆r +∆s

Bϕ

)
+S

(
Bϕ+∆r

BSO

)
−S

(
Bϕ

BSO

)]
(5.6)

with the S(x) function being:

S(x) = 8p
7+16x

[
arctan

(p
7+16x

1−2x

)
−πΘ(1−2x)

]
(5.7)

and theΘ(y) function being the Heaviside step function. The effective fields BSO and

Bϕ are the one extracted for this specific gate configuration at perpendicular field (BSO =
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Fig. 5.10: Hall resistivity ρX Y as a function of in plane magnetic field.
The small dependance on field indicates a tilt of the sample of only 2◦.

170 mT, Bϕ= 19 mT). The fitting parameters ∆r and ∆s are corrections made to Bϕ to take

into account surface roughness and Zeeman splitting respectively, and are both expected

to be proportional to B 2
//. The fitting was only done for the negative field half of the trace

due to the asymmetry of the measurement, that can be explained by the Lorentz force

applied on charge carriers[13, 14].

Still, as can be seen in fig.5.9 (blue dashed line), this formula does not fit our data

correctly. For a better fit, we took into account the virtual occupation of higher subbands.

While we consider that only one heavy hole subband is occupied in our system, virtual

processes of occupation of higher subbands can break time reversal symmetry and induce

weak antilocalization breaking[15]. These processes have to be taken into account as a

supplementary term in ∆r and have a B 6
// dependance[11, 16], such as ∆r =∆r 1 +∆r 2 =

P ×B 2
// +Q ×B 6

// where P and Q are fitting parameters.

This additional parameter allows for a much better fit of our data (see fig.5.9 red line).

It also allows for 2DHG thickness extraction through the formula:

d ∼
(

Q ×Φ5
0

~4n2
hol e

)1/14

(5.8)
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where d is the quantum well thickness, Q the fitting parameter,Φ0 is the quantum of flux

and nhol e the carrier density. We then obtain a quantum well thickness of 8 nm, which is

coherent with our epilayer thickness of 32 nm.

5.3 Conclusion

In this chapter, we presented magneto-transport measurements performed on a

strained germanium quantum well confining a 2DHG at the Ge/Al2O3 interface. The

2DHG is induced by means of a negatively biased top gate. This measurements displayed

signatures of weak antilocalization, with the magnetic field applied both perpendicular

and parallel to the quantum well. We managed to extract characteristic parameters of the

sample such as scattering time, phase coherence time, spin relaxation time or spin orbit

splitting. Still, the sample was affected by a low mobility, that we explain by a high number

of traps at the Ge/Al2O3 interface.

Our sample has the peculiar property of having the quantum well situated at the

top interface, which is expected to allow for better spin control and easier fabrication

process. On the contrary, this position of the quantum well requires more care during

the fabrication process. The high number of traps is most likely due to the formation

of a native germanium oxide on the top surface in between HF cleaning and ALD oxide

deposition and germanium oxide is known to be a highly unstable oxide [17, 18].

For this reason, buried germanium heterostructures can provide a better option to

achieve high mobility 2DHGs
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Chapter 6

Quantum point contacts in strained

germanium heterostructure

The low-temperature electrical resistance resistivity of metals and semiconductors is

usually determined by the scattering of carriers (electrons or holes) on scattering centers

such as lattice defects or impurities. These scattering processes can be empirically incor-

porated in a Drüde model. For a given sample, it is then possible to define a characteristic

length ltr called scattering length which is the mean distance a charge carrier will travel

between two scattering events. But what about the case of a sample much smaller than

this scattering length? The charge carriers would then travel through the sample without

any scattering. This is called the ballistic regime.

A ballistic constriction connecting extended regions of a 2DHG is called a quantum

point contacts (QPC). It consists of a number of one-dimensional channels whose contri-

bution to the conductance is quantized. Upon modifying the confinement potential of a

QPC, by the help of electrical gating for example, one could progressively open more and

more of these one dimensional channels, thus leading to a staircase increase of the QPCs

conductance. In the case of perfect transmission of the 1D modes, each conductance step

should correspond to 2e2/h, i.e. twice the quantum of conductance e2/h = 38.8 µS. The

factor 2 accounts for spin degeneracy, which can be lifted by a sufficiently large Zeeman

splitting at finite magnetic field.
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The realization of such devices is a good indicator of the quality of a system, as a

long enough ltr is a requirement for an experimental feasibility. It is also a useful tool to

investigate physical properties of the system, as will now be explained.

6.1 Heterostructure and device fabrication

As it has been seen in chapter 5,having a 2DHG at the top surface of a heterostructure

could present advantages in terms of spin manipulation and ease of fabrication process.

However, the poor quality of the Ge/Al2O3 interface resulted in a rather low hole mobility.

Here we consider a new heterostructure in which the Ge quantum well is buried 70

nm below the surface. This heterostructure was also fabricated by the team of Maksym

Myronov at Warwick University, with a similar recipe to the one described in chapter

5.1.1. The Ge layer is now 22 nm thick (as opposed to 32 nm) and it is capped by 70 nm of

Si0.2Ge0.8, followed by 2 nm of silicon to prevent the oxidation of the Si0.2Ge0.8 (see Fig.6.1).

In such a heterostructure, the 2DHG is once again situated in the germanium layer, which

is now far enough from the top interface to limit the influence of imperfections and

charged defects at the semiconductor-oxide interface. Additionally, the presence of the Si

cap should prevent the formation of any germanium oxide in the device, thus improving

even more the potential stability. Similar heterostructures have been shown to display

exceptionally high mobilities, up to 106 cm2/V.s [1–3].

The fabrication of the Hall bar sample measured in section 6.2 is in all point the same

as the one described in section 5.1.2 except for one step. Due to the position of the 2DHG,

buried under 70 nm of Si0.2Ge0.8, one etching step is added. During the ohmic contacts

fabrication step, after optical lithography but before metallic evaporation, the sample is

etched in a Cl2/N2 plasma for a depth of 75 nm. The design of the Hall bar is also slightly

different, as shown in Fig.6.2.

On the other hand, fabrication of the QPC device measured in section 6.3 involves

quite a few differences with the processes described earlier. Similarly to the fabrication of

the Hall bars, the process starts with the deposition of alignment marks, made of 10/50
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Fig. 6.1: Schematic of the heterostructure used in this chapter. On
a silicon wafer is deposited a buffer layer of Si0.2Ge0.8. On top of this
buffer layer, a 22 nm layer of Ge is deposited, then covered by 70 nm of
Si0.2Ge0.8. Due to lattice mismatch the Ge layer is strained, thus inducing
the formation of a 2DHG in it

nm of Ti/Au. We then proceed to mesa etching with the striking difference that in this

device the mesa is much smaller, being made of two pads for the ohmic contacts linked by

a 16 by 5 µm channel. This mesa is etched in a Cl2/N2 plasma for a depth of 100 nm. Then

comes the fabrication of the ohmic contacts. Similarly to the fabrication process of the

Hall bar made in the same heterostructure, after a step of optical lithography, the mesa is

etched under the pads for a depth of 75 nm to attain the Ge layer. By metallic evaporation,

60 nm of platinum is then deposited to make the contacts. The sample is then cleaned in

HF prior to deposition of 30 nm of Al2O3 by ALD.

Finally, the electrostatic gates are made in three lithography steps for better precision.

First, the gate bonding pads are made by optical lithography as well as lines to get closer

to the mesa, and 10/50 nm of Ti/Au is deposited (see Fig.6.3 left). Then, the fine gates

are made by electron beam lithography (e-beam). They consist of one accumulation gate

linking the two contacts that has a 300 nm wide constriction in the middle and of two

side gates located 70 nm away from the constriction (see Fig.6.3 right). Here, 5/25 nm

of Ti/Au are deposited. Finally, a link between the two aforementioned lithographies is
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VH

Vch

Fig. 6.2: Optical image of the Hall bar measured in this chapter. The
points at which the channel bias Vch and the Hall bias VH are measured
are also displayed

made by e-beam and 200 nm of Al. This metal has been chosen for its better conforming

capacities to avoid breaking at the different physical steps at the fine gates, the mesa and

the bonding pads.

6.2 Hall bar measurements

Prior to realizing QPCs, the transport characteristics of this heterostructure were inves-

tigated by magneto-transport measurements in a Hall bar device as described previously

(see Fig.6.2). This also allowed us to validate the fabrication process. The measurement

setup is the same as the one used in section 5.2.1, with no rotator.

The hole gas being frozen at low temperature, a negative voltage Vt g is applied to the

accumulation gate to study transport, the onset of conduction occurs near Vt g =-3.8 V.

Due to risks of top gate leakage all the measurements have been performed on a top gate

voltage range from -3.9 to -4 V.

Similarly to the experiment described in section 5.2.2, both the channel voltage Vch and

the Hall voltage VH are measured as a function of magnetic field B for different top gate
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100 µm 500 nm

Fig. 6.3: Left: SEM image of the sample with added color showing the
mesa (green), the ohmic contacts (red) and the bonding pads for the
gates (blue, only three were connected to an actual gate) Right: Close
SEM image showing the 300 nm wide constriction in the accumulation
gate where the QPC is situated, as well as the two side gates situated at
70 nm of the constriction

voltages and the channel resistivity ρX X =Vch/(Ich .Nsq ) and Hall resistivity ρX Y =VH /Ich ,

where Ich is the current going through the channel and Nsq represents the size of the

channel in number of squares Nsq = L/w where L and w are the channel length and

width respectively. Nsq = 4 in this sample. Examples of the traces measured are displayed

in fig.6.4. At high fields, traces of ρX X show oscillations, corresponding to plateaus on

the traces of ρX Y . These oscillations are called Shubnikov-De Haas oscillations and are

signatures of the quantum Hall effect [4]. From the linear dependence on ρX Y to magnetic

field ( in low field region) we extract the carrier density nhol e through the formula:

nhol e =
B⊥

e ×ρX Y (B⊥)
(6.1)

We can also estimate the carrier mobility µ from the channel resistivity at 0 field with

the formula:
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Fig. 6.4: Hall resistivity ρX Y (black) as well as channel resistivity ρX X

(red) as a function of magnetic field for Vt g = -3.9 V. The plateaus in ρX Y

and the oscillations in ρX X (Shubnikov-de Haas oscillations) are signa-
tures of the quantum Hall effect. No weak antilocalization is observed

µ= 1

e ×nhol e ×ρX X (B⊥ = 0)
(6.2)

The values of nhol e and µ obtained for different gate voltages are displayed in Fig.6.5.

It is to be noted that while the carrier density obtained with this range of top gate voltage

is slightly smaller than the ones obtained in section 5.2.2, the mobility measured is two

orders of magnitude larger, reaching 170,000 cm2/Vs and indicating a good interface

quality. Further confirmation of this quality can be observed from the accumulation gate

capacitance extracted from the carrier density dependence on Vt g (53 nF/cm2) being this

time as much as half of the expected gate capacitance (109 nF/cm2).

Looking at the traces of channel resistivity as a function of magnetic field, this time,

no weak antilocalization is observed. This can be explained by the much higher mobility.

Such an enhanced mobility implies a much longer scattering time while the spin relaxation

time is in principles unchanged to first order. As a consequence, the requirement for weak

antilocalization that the scattering time is much shorter than the spin orbit time may not

be fulfilled anymore.
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Fig. 6.5: Mobility µ (red crosses) as well as carrier density nhol e (blue
circles) as a function of accumulation gate Vt g

6.3 Quantum point contacts experiment

6.3.1 Quantization of conductance

The device studied here aims at showing the quantization of conductance in a ger-

manium quantum well. This is done by creating a constriction in the 2DHG and varying

its lateral size with the help of side electrostatic gates. Upon increasing the voltage on

the side gates, the number of conducting one dimensional channels in the constriction

decreases and the conductance of the system is expected to display a conductance step of

2e2/h (at B = 0) each time a channel is pinched off.

Similarly to the experiments mentioned previously, the 2DHG is frozen at low tem-

perature. A negative voltage is applied on the accumulation gate in order to induce the

2DHG and make the Ge quantum well conducting. A constriction is already created where

the accumulation gate is narrower. A positive voltage Vg is then applied on the side gates

to deplete the 2DHG in the constriction (the two facing gates are always swept together).

The conductance of the system is measured by using a lock-in with an AC excitation of

30 µV (well below the thermal broadening Eth of the leads around the Fermi energy as
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Eth = 3.52×kB T ≈ 90µeV at 300 mK , with kB the Boltzmann constant and T the electronic

temperature [5]) and 0 DC bias between source and drain.

The conductance measured this way shows steps, but not of regular height. This is

due to the presence of a series resistance, due to the RC filters present in the fridge (= 2.2

kΩ), the input resistance of the current amplifier (≈ 3 kΩ) and to the contact resistances

in the device. If we consider an additional resistance Rs in series of our QPC, the actual

conductance of the QPC, G , can be obtained from measured conductance, Gmeas :

G = 1
1

Gmeas
−Rs

(6.3)

Correcting for a series resistance Rs = 17 kΩ and converting the conductance in units

of 2e2/h (2e2/h = 77 µS), we recover regular steps of 2e2/h as seen in Fig. 6.6.
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G
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e2 /h
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Fig. 6.6: Conductance G in the QPC as a function of gates voltage Vg

showing conductance steps of 2e2/h. On the rightmost step, a kink can
be observed, also known as the 0.7 anomaly

It is to be noted that the rightmost step possesses a kink at a value of conductance close

to 0.7×2e2/h. This feature, known as the 0.7 anomaly, has been the subject of extensive

studies over the past years [6–8]. Still, there is no clear consensus about its origin, as

many different explanations have been given (Kondo effect [9], inelastic scattering [10],
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spontaneous spin polarization [11], etc...). Unfortunately, due to a small gate instability,

this feature did not appear in all traces recorded, and its full characterization was not

possible.

Another interesting characteristic of the trace displayed in Fig.6.6 is that only the first

(rightmost) four steps are correctly aligned with integer multiples of 2e2/h. This implies

that the series resistance is gate voltage dependent. This is coherent with the fact that

a non negligible part of the series resistance is not due to the setup but comes from the

sample (in this configuration, the setup should account for 5−6 kΩ), on which the gates

can have an influence.

6.3.2 Magnetic field dependence

We just saw how in a QPC, the conductance is quantized in steps of 2e2/h. This specific

value is explained by the full transmission of a one dimensional mode (e2/h) while the

factor 2 is due to spin degeneracy. This means that applying a magnetic field should lift the

degeneracy between the two spin degenerate levels and the 2e2/h steps should become

e2/h steps. This is indeed what is observed in Fig.6.7, showing conductance traces as

a function of gate voltage Vg for different magnetic fields applied perpendicular to the

sample. The conductance as been corrected for series resistances of 17350, 21300, 20650,

20000, 19950 and 19600Ω for magnetic fields of 0, 0.1, 0.2, 0.3, 0.4 and 0.5 T respectively.

At 0.5 T, the e2/h steps are already clearly defined.

Since the splitting of the conductance steps with magnetic field is due to the Zeeman

splitting of spin degenerate states, it is possible to extract the gyromagnetic ratio (or

g-factor) of the hole spins. To do so, it is necessary to study the splitting of the steps

with respect to magnetic field and to determine the lever-arm parameter relating the gate

voltage to energy. In Fig.6.8, the transconductance ∂G/∂Vg of the device is displayed as

a function of gate voltage Vg (applied simultaneously on both gates) and magnetic field.

No correction for the series resistance was made as it was not necessary in this case. The

numerical derivative of the conductance with respect to gate voltage was done in order

to turn step edges into peaks and more easily study their evolution. As we can see, each
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Fig. 6.7: Traces of device conductance G as a function of gates voltage
Vg for different magnetic fields B applied (traces are offset horizontally
for better visibility), starting at 0T (rightmost trace) to 0.5 T (leftmost
trace) in steps of 0.1 T. As the magnetic field is increased, the 2e2/h steps
split into e2/h steps due to Zeeman splitting of the subbands.

of the peaks at 0 field splits into two peaks of which the evolution is highlighted by blue

dashed lines.

One noticeable feature in this map is the strong bending of the lines toward smaller

gate voltages. This can be explained by an additional confinement induced by the perpen-

dicular magnetic field. This confinement will turn the subbands into two dimensional

Landau levels [12]. This bending makes it harder to extract the g-factor from high field

data except from the splitting of the first conductance step.

There are different ways to extract the g-factor. One is to look at the bias dependence

of the splitting of the step at a given magnetic field. Figure 6.9 shows such a dependence.

This map has been obtained by measuring the device conductance as a function of both

gate voltage Vg and source drain bias Vsd at a magnetic field of 0.5 T. Then the conductance

has been renormalized by taking into account the serial resistance so that the trace at

0 bias shows steps of e2/h (at 0.5 T the splitting of the steps is well defined). The white

number in Fig.6.9 indicates this conductance value in scale of e2/h. Then the position of

each data point on the bias axis has been modified to take into account this same series

resistance. Indeed, due to series resistance, only a portion of the DC bias falls on the QPC.
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Fig. 6.8: Differential conductance ∂G/∂Vg as a function of gates volt-
age Vg and magnetic field B . The blue dashed lines highlight the position
of the peaks that are synonym of steps in the conductance G

The higher the conductance of the QPC and the larger the fraction of applied bias is falling

on the series resistance. Each data point then has to be positioned on the graph for the

actual value of bias accross the QPC. Finally, we take the derivative with respect to Vg for a

better visibility of each feature.

As shown in Fig.6.9, when increasing the bias, the conduction plateaus shorten, thus

forming diamonds (highlighted by the yellow dashed lines). Similarly to the Coulomb

diamonds described in section 2.1.4, we can extract a characteristic energy from the bias

at which the diamond closes. In the case of the diamond for a plateau of an odd multiple

of e2/h, this energy corresponds to the Zeeman energy.

In our measurement, it is difficult to identify the exact position of the tip of the 1 e2/h

plateau. The tip of the 3 e2/h plateau on the other hand (highlighted by the red dashed

line) is more easily visible and its bias position doesn’t seem so far off from the position

of the tip of the 1 e2/h plateau. From there, we can then deduce a Zeeman energy of

0.54 meV. The g-factor g can then be extracted from the formula:
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Fig. 6.9: Differential conductance ∂G/∂Vg a function of gates voltage
Vg and source drain bias Vsd for an out of plane magnetic field B of 0.5 T.
The yellow dashed lines highlight the position of peaks that are synonym
of steps in the conductance G. These peaks form diamond shapes and
the conductance is quantized inside them. The white numbers give the
value of conductance in these plateaus in scale of e2/h. The red dashed
line highlight the bias position of the tip of the 3e2/h diamond from
which a g-factor of 19 is extracted. The black crosses highlight the gate
splitting of the peak from which the gate lever arm is extracted.

g = Ez

µbB
(6.4)

where Ez is the Zeeman energy, µb the Bohr magneton and B the magnetic field. We

then obtain a g-factor for the splitting of the second 2e2/h step g = 19.

A second way to obtain the g-factor is to study the field dependence of the gate splitting

of the subbands, as seen in Fig.6.8. In this figure, we can see the linear dependence of the

splitting with respect to magnetic field, giving a gate splitting value of dVg /dB = 172 mV/T.

This splitting then needs to be converted in energy. This requires the extraction of the

gate lever arm. This can be done from the differential conductance map of Fig.6.9. As
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mentioned earlier, each of the peaks situated at 0 bias (representing transitions from one

plateau of conduction to the next) splits into two lines at non-zero bias. The dependence

of this gate splitting with respect to bias is equal to the lever arm α. For a given bias, such

as the one previously mentioned of 0.54 mV for example, we measure a gate splitting of

102 mV (highlighted by the black crosses). This leads to a lever arm of α = 0.54/102 =
5.3 10−3eV/V. We then obtain a g-factor of 15, using a new formula derivated from equation

6.4:

g = α

µb

dVg

dB
(6.5)

These two obtained values are consistent with each other, given the limited precision

of the data extraction from the maps. They are also consistent with the theoretical value

expected for g-factor of 21.4 for pure heavy holes in a germanium 2DHG [13]. In a QPC,

the additional confinement is expected to reduce the g-factor which is consistent with our

data [14].

6.4 Conclusion

In this chapter we started by characterizing a second germanium heterostructure. By

the use of a Hall bar device, we measured the carrier density and mobility for different

accumulation gate voltages, and obtained much higher mobility than for the previous

heterostructure studied in chapter 5.

This high mobility allowed us to demonstrate quantization of conductance in a germa-

nium QPC, which had never been reported before. From the splitting of the conductance

steps with respect to magnetic field, we extracted two g-factor values of 19 and 15. The

obtained g-factor values are close to the expected value for a pure heavy-hole subband

in a Ge quantum well. Additionally, these values are quite high if compared to other

two-dimensional structures based on other elements such as GaAs [15]. This large g-factor

and high mobility can make germanium 2DHG an interesting platform for quantum

spintronics and for Majorana fermions systems [16].
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Conclusion

As was described in the first chapter of this thesis, germanium is predicted to be a

promising host material for quantum spintronics due to several properties. First of all,

the spin of charge carriers in a germanium based device are expected to display a low

hyperfine interaction with the nuclei spins, due to the low natural abundance of the only

non-zero nuclear spin germanium isotope. The use of holes as charge carriers in such

devices should reduce the influence of hyperfine interaction even more. Second of all, the

spin orbit interaction, linking the electron’s spin to its orbital motion, is predicted to be

strong in germanium. This should allow for a better control of a spin state in a germanium

based device through the use of EDSR.

The initial goal of the work described in this thesis was the realization of a quantum

bit or qubit in a core shell Ge/Si nanowire. As described in chapter four, this led to the

fabrication of double dot devices, confined by electrostatic gating. One of these devices

allowed for the measurement of a double dot stability diagram, and of of the conductance

resonances of this diagram showed signs of Pauli spin blockade, a requirement for the

realization of spin qubits. Still, due to the extreme fragility and the lack of reproducibility

of these devices, it was not possible to replicate these results. For this reason, it was then

decided a change of host system, from Ge/Si core shell nanowires to germanium two

dimensional heterostructures.

The heterostructure studied in chapter five has the peculiar property of having the hole

quantum well situated at the top surface. This should allow for a more straightforward

access to the two dimensional hole gas, both easing the fabrication process and permitting

a easier use of superconducting contacts for induced superconductivity. Unfortunately,
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the results displayed in chapter four also show that the formation of a native germanium

oxide on the top interface will lead to the formation of numerous defects. These defects

are the origin of the weak antilocalization signatures in the Hall bar devices studied in

chapter five.

When trying to create nanoscale devices in these heterosctructures, the defects led to

a great instability of the measurements. For this reason, chapter six describe experiments

now performed on a heterostructure in which the germanium quantum well is buried

under a SiGe layer. This allowed for the measurement of quantization of conductance in a

germanium one dimensional channel, which had never been reported before. This is a

very promising step toward the realization of qubits in germanium based devices.
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