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Résumé 
 
 
 

La nécessité d'une transmission sans fils des données à des débits élevés, à la fois fiables 
et avec de faible latence a donné lieu à ces dernières années à une succession de normes sans fil, 
allant de 3G-4G, WLAN à la cinquième génération (5G) des réseaux mobiles. Dans ce contexte, 
les équipementiers, ainsi que les opérateurs, doivent élaborer des méthodes d'essai standard 
précises et efficaces pour évaluer les performances des systèmes et des terminaux. Les 
méthodologies de test en direct par voie aérienne ("Over-The-Air") (OTA) visent à reproduire 
des environnements multi-trajets radio en laboratoire de manière répétable et contrôlable, en 
évitant  les coûteuses mesures in-situ. 
 

L'objectif de cette thèse est de proposer une nouvelle méthodologie d'essai OTA, afin de 
reproduire la propagation des canaux radio, sur une large bande et d'évaluer les performances 
des systèmes sans fil dans des environnements réels. 
 

La thèse débute en présentant les bases de la chaîne radio et de certains modèles de 
chaînes présentés dans la littérature. Ensuite, un examen critique des méthodologies OTA 
existantes dans la littérature est fourni. Parmi les différentes méthodologies, nous avons opté 
pour l'approche de la chambre anéchoïde multi-sonde, qui consiste à déployer un certain 
nombre de sondes autour d'un équipement radio sous test et à les alimenter avec un émulateur 
d’évanouissements (fading). Cette méthodologie fournit une reproduction précise des 
caractéristiques des canaux spatiaux, qui sont nécessaires pour évaluer la performance des 
terminaux multi-antennes dans des environnements réels. L'avantage le plus important de cette 
méthodologie est la capacité d'imiter différents modèles de canaux en termes de résolution 
spatiale, d’évanouissements angulaire et temporel. 
 

Un outil de simulation a été développé pour étudier et déterminer les caractéristiques de 
l'installation OTA  pour différents types de canaux d’intérêt. En particulier, le nombre et la mise 
en place des antennes nécessaires et la taille de l'installation ont été étudiés en fonction de la 
taille électrique du dispositif testé. Sur la base des études de dimensionnement, une 
configuration OTA expérimentale a été réalisée pour reproduire les caractéristiques des canaux 
dans l'espace tridimensionnel pour une plage de fréquences de 2 à 6 GHz. 
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Abstract 
 

The need for high data-rate, reliable and low latency transmission in wireless 
communication systems motivated a multitude of wireless standards, spanning from 3G-4G, 
WLAN to the upcoming fifth generation (5G) of mobile networks. In this context, technology 
providers, as well as operators, need to develop accurate and cost effective standard test 
methods, to evaluate devices performance. Over-The-Air (OTA) test methodologies aim to 
reproduce radio multipath environments in laboratory in repeatable and controllable manner, 
avoiding costly field test.  

 
The focus of this thesis is to propose a new OTA test methodology, in order to emulate 

radio channel propagation, over a wide band, and to evaluate the performance of the wireless 
systems in real environments.   
 

We start our study by introducing the basics of radio channel and some channel models 
presented in literature.  Then a critical review of existing OTA methodologies in literature is 
provided. Among the different methodologies we opted for the multi-probe anechoic chamber 
approach, which consists into deploying a number of probes around a device, and feed them 
with fading emulator. This methodology provides an accurate reproduction of spatial channel 
characteristics, which are needed to assess the performance of multi-antenna terminals in real 
environments. The most important advantage of this methodology is the capability to emulate 
different channel model in term of spatial resolution, angular and temporal fading.  

 
A simulation tool was developed to investigate and determine the OTA setup under 

different channel condition. In particular the number and emplacement of antennas needed and 
the size of the setup were investigated as a function of the electrical size of the device under 
test.  Based on the dimensioning studies, an experimental OTA setup was realized to reproduce 
the channel characteristics in the three dimensional space for a frequency range from 2 to 6 
GHz.  
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1 Introduction 

1.1 Motivation 
 

In the last decades, wireless telecommunications did not cease to evolve.  On the one hand 
a wide variety of advanced technologies have greatly facilitated our daily lives, on the other 
hands the user needs stimulated an explosive growth of these technologies.  
In the years 2000 the third generation (3G) of mobile phone network, which is based mainly 
based on Universal Mobile Telecommunications System (UMTS) and CDMA2000 technology, 
has been deployed to provide up to 42 Mbit/s data rate.  However, the demands of users on the 
quality and efficiency of networks make challenges to invent new systems. 
 As a result, the fourth generation (4G) mobile radio system is developed. The prime objective 
of 4G mobile system is to achieve a fully integrated digital communication that offers voice, 
data, and multimedia, and to provide enhanced peak data rate of 100 Mbit/s. The Long Term 
Evolution (LTE) standard was first proposed by 3GPPP to fulfill the 4G requirements. Finally, 
only in 2010, the International Telecommunication Union (ITU) recognized the LTE Advanced 
(LTE-A) as 4G technology. The 3GPP rel.11 foresees bandwidth from 1.4 MHz to 20 MHz, and 
64 QAM modulation providing up to 450 Mbit/s downlink data rate. One of the key-
technologies employed is Multiple Input Multiple Output (MIMO) approaches, exploiting 
multi-antenna system.  
 

Nowadays the focus of the research and development is on the fifth generation (5G) of 
wireless communication, which is expected to answer to a wide number of use cases 
requirement, spanning from the Internet of Things (IoT) to high-data rate and low-latency 
communication. It promises significant gains in wireless network capacity and data rates up to 
20 Gbits/s. Different technologies are aimed for the development of 5G, including massive 
MIMO and millimeter wave. However the first technologies deployed are expected to work for 
frequency below 6 GHz. Also vehicle-to-everything (V2X) communications are expected to 
gain an important role in the next years. Here the data volume is relatively low, and the foreseen 
standard is an evolution of Wireless Local Area Network (WLAN) based on IEE 802.11(p) 
working at frequencies around 5.9 GHz.  
  

In each one of the above mentioned wireless technologies, the performance are 
intrinsically limited by the radio channel characteristics. The propagation environment often 
presents multipath fading that could alter the communication quality. To counteract fading 
effect, one of the techniques used is the diversity of antennas. This technique consists to place 
several antennas at both ends of the radio link.  
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For the operators and manufacturers of mobile industry there is a need to evaluate, by 

standardized measurements, the performance of such advanced systems. This evaluation must 
be carried out in realistic way in different representative environment such as indoor or outdoor. 
However, the field tests in the application environments are tedious and costly. For this reason, 
the so called Over-The-Air (OTA) channel emulation technique appears as a reasonable 
solution, for reproduce repeatability and reliability realistic fading conditions.  

OTA test methodologies aim to recreate in a laboratory the multipath environment, to 
characterize and evaluated wireless devices. It can include the actual interaction of the antennas, 
radio frequency front ends and baseband processing elements. OTA is the best way to evaluate 
the performance as experienced by the user equipment. OTA testing terminal has attracted great 
attention by the research community in the last years [3]. However a great number of questions 
are still open to reproduce accurately the radio channel.  

 

1.2 Outline of the thesis and contributions 
 

The ultimate goal of this work is to investigate an OTA test methodology to reproduce 
realistic multi-path propagation channels. This methodology is based on multi-probe approach 
where a number of antennas are placed around the device under test (DUT) in an anechoic 
chamber. This work is mainly focused on frequency below 6 GHz, being the main wireless 
communication standard in this frequency range.   
The objective is to provide an experimental setup, which is able to be adapted to the different 
needs in terms of application, hence propagation channel. For this reason the OTA setup must 
be wideband, and ensuring the reproduction of multipath channel in a three dimensions (3D) 
environment, in both vertical and horizontal polarization. A synopsis of the manuscript is 
graphically represented in Figure 1-1. 
 
 

 
Figure 1-1 Synopsis of the thesis manuscript 

 
 
 

Chapter 2 presents the state of the art of basic concepts of channel propagation by 
recalling the phenomena generated by the interactions of the electromagnetic signal with the 
environment. Different channel modeling approaches are presented. In particular mathematical 
representation and classical stochastic description of the channel are provided. An overview of 
some standardized channel models of interest is also presented. 
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 Chapter 3 introduces OTA systems and their potential for the evaluation of the 
communication systems. A review of different OTA methodologies proposed in the literature, 
and various measurement systems to assess the performance of systems are discussed. The 
analysis is focused on multi-probes methodology that has been retained to achieve the project 
objective. In this kind of setup, two methods of OTA channel emulation are presented:  the so 
called "Prefaded Signals Synthesis" (PFS) and "Planar Wave Synthesis" (PWS) techniques. 

 
Chapter 4 is dedicated to the dimensioning of OTA setup. The analysis is based on an 

OTA simulator in Matlab. This physical dimensioning is based on criteria of far field and 
correlation characteristics of the emulated channel. We start by simulating a two dimensional 
(2D) OTA system  to determine the number of antennas, and the radius of the OTA system as a 
function of the device size under measurement, its orientation, frequency band and the channel 
propagation model. Simulation results are presented in the case of a uniform channel model and 
a single cluster. Based on the PFS technique, a weighting OTA antennas method is adopted. 
The objective of this method consists of calculating the excitation of the transmitting antennas, 
which minimizes the error between the desired correlation and the emulated correlation. 
Dimensional study is extended to 3D OTA system in order to take into account of both azimuth 
and elevation angular distribution in the channel 
 

Chapter 5 introduces the experimental OTA setup realized in the anechoic chamber at 
CEA LETI.  The setup intends to reproduce 3D channel over a wideband from 2 to 6 GHz. A 
series of measurements has been carried out in order to validate its performance under different 
configurations and scenarios.  
 

Finally, Chapter 6 throws the conclusions of this work and proposed some perspectives for 
future research work.  
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2 State of the Art of Channel Modeling for Wireless 
Devices Testing 

 
 
 

2.1 Introduction 
 

During the channel propagation between a transmitter and a receiver. A several distinct 
multi-path component are present. This fact is due to reflections and diffractions surrounding 
environment. The received signal is composed from the multiples paths with specific directions 
and delays. This last phenomenon is more commonly called fading; it can significantly affect 
the performance of mobile systems communications.  
 

This chapter reviews wireless channel characterization. Firstly, it describes the general 
description of propagation principles, and then a multipath environment is described, where 
channel parameters as delay spread and coherence time are introduced. Secondly, the multipath 
channel is modeled as a multi-dependent random Wide/Sense Stationary (WSS) process. The 
MIMO channel and its intrinsic characteristics are reviewed. Different channels models are 
presented. The GSCMs channel models are discussed and different standards channels models 
are presented to determine the distribution of PAS in this channel. 
 

This chapter is organized as follows: Section 2.2 describes the general principles of 
propagation principles, and then in section 2.3 a multipath environment is described and 
presents multipath channel modeling, highlighting the most important phenomena to be 
considered throughout in wireless communication. A mathematical representation of channel 
propagation and the MIMO systems, focusing on their spatial proprieties, is given in section 
2.5. Section 2.6 studies different classification of channel models.  The geometrical stochastic 
channel models are presented in section 2.7. Finally, in Section 2.8, the main conclusions are 
summarized. 
 

 

2.2  Radio channel basic 

2.2.1   Definition of radio channel propagation 

 
The concept of radio channel refers to the transfer function between a transmitter and 

receiver. It is composed of two termination antennas and a propagation environment where 
takes place various electromagnetic phenomena such as reflection, refraction, diffraction, 
diffusion. It is a common practice in the field to make a clear distinction between the 
propagation channel (which relates a vector electric field at the transmitter side to another 
electric field at the receiver side) and the transmission channel which is scalar and relates a 
transmit signal to a received signal see Figure 2-1. 
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Figure 2-1 Illustration of the channel. 

 
   

 
 

 
 

2.2.2 Free-Space Propagation and Antenna Gain 

 
When an electromagnetic wave propagates through free space, i.e. the environment 

around the transmitter and the receiver is uncluttered; the wave is attenuated as the distance 
increases. The free space path loss between the transmitter and the receiver is given by the Friis 
formula as follows. Consider a transmitter radiating a power ��� with an antenna gain of	���. 
Hence at a distance of d from the transmitter, the received power is given by the expression 
 
 
 
 
 

���				��	 = 	��������� � �4���
�		 

 

                                                
( 2.1) 

 
 
Where �	refers to the wavelength. 
 
From the expression for the received power, the free space path loss can be computed as the 
ratio of the received power to that of the transmitted power and is usually expressed in decibels. 
If we take apart the effect of both transmitting and receiving antenna gains, the free space path 
loss is expressed as: 
 
 

�� = 	 � �4���
�
 

                                                           
( 2.2) 
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2.3 Multipath propagation channel 
 
 In a real environment, the transmission of a signal is usually composed of a direct path 
and many other propagation paths. These paths vary in number and depend on the interaction 
between the electromagnetic wave and obstacles surrounding environments. The signal obtained 
at the level of the receiver antenna corresponds to a recombination of these waves, which arrive 
at the receiver with different delays. Inside the buildings, the path of direct visibility Line of 
Sight, (LOS), is not always available. In this case, the paths which are not in visibility or Non 
Line of Sight (NLOS) allow the communication. Figure 2-2 illustrates the concept of multi-path 
propagation, as well as the main encountered propagations phenomena. 
 
 

 
Figure 2-2 Principle of multipath propagation. Source [2] 

 
 
 

The electromagnetic wave when propagating in a cluttered space experiences various 
well known physical effects which modifies on a well-established manner the amplitude and 
phase of the propagating signal. There are mostly the reflection and the refraction effect when 
considering the interaction with surfaces, respectively going backward or forward the interface. 
In NLOS an important effect especially in urban environment for UHF and VHF is the 
diffraction which corresponds to the ability of a wave to go into shadow regions where the 
geometrical optics field is zero. And there is also the important effect of diffusion which 
corresponds to the effect on the field of rough surfaces which spread the radiated energy in 
large regions of the angular domain. 
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2.4 Variation of channel propagation, large and small scale fading 
 

There are two types of fading, large-scale fading and small-scale fading.  
 
Large-scale fading corresponds to a loss or large fluctuation of the received signal due to 

shadowing by obstacles present in the propagation environment. If a receiver is moving at a 
constant distance from the transmitter, and suddenly goes behind a building, the received power 
drops. This kind of channel variation is called shadowing. In practice, shadowing is determined 
by considering the statistical property of the channel power around the path loss curve. This 
type of channel variations can be determined and characterized with extensive measurement 
campaigns. Several models exist to describe the shadowing variations[6]. 

 
Small-scale fading corresponds to a random recombination of multipath and is 

characterized by a rapid fluctuation on a shorter temporal scale. The variation of the received 
signal level depends on the relationships of the relative phases among the number of signals 
reflected from the local scatterers. Each of the multiple signal paths may also undergo changes 
that depend on the speeds of the mobile station and surrounding objects. In summary, small-
scale fading is attributed to multi-path propagation, mobile speed, speed of surrounding objects, 
and transmission bandwidth of signal [7]. 
 

2.5 Representation of radio channel propagation 

2.5.1 Mathematic formulation  

 
The complex baseband impulse response h(t) radio channel is usually described [3][4]  

by its links the input baseband signal at the transmitter with the output baseband signal at the 
receiver.  

 
 

 ���	 = ℎ��	 ∗ ���	 + ���	 
 

                                                           
( 2.6) 

 
 

Where x(t) and y(t) are the transmitted and the received complex signal, respectively, 
and n(t) represents the additive noise at the receiver. The operator * is the convolution operator. 
In the frequency domain this expression becomes: 
 
 
 ���	 = ���	���	 + ���	 
 

                                                           
( 2.7) 

 
 

Where Y(f), H(f), X(f) and N(f) are the Fourier transforms of y, h, x and n respectively.  
The channel transfer function does not consist of a single propagation path. When an antenna is 
excited, it transmits electromagnetic waves in multiple directions. Each of these waves interacts 
differently with the environment, and reaches the receiver with a certain delay (which may be 
different between different waves).  
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The impulse response is thus composed of the sum of multiple propagation paths. Note that the 
properties of an antenna are dependent on the direction in which the wave is transmitted. Each 
propagation path is thus composed of: 
 

• The effects of the transmit antenna in the direction of emission of the propagation path. 

• The effects of the propagation channel on the propagation path. 
• The effects of the receive antenna in the direction of arrival of the propagation path. 

 
The channel of a narrowband system is reduced generally to a single tap and the delay spread is 
in that case not a relevant parameter while in the case of a wideband system the delay spread 
becomes a key parameter of the radio channel.  There exist four system functions to describe the 
behavior of the channel [8]: 

• The time variant impulse response. 
• The time-variant transfer function. 

• The Doppler-variant impulse response.  
• The Doppler-variant transfer function. 

 
Time-variant impulse response 
 

The radio propagation channel can be represented by a time variant impulse response h 
(t, τ) and the received signal	y��	 is the convolution of the transmit signal x (t) with the time-
variant impulse response h (t, τ): 

 
 

���	 = 	 � ��� − !	"
#"

ℎ��, !	�! 
 

 
                                                           
( 2.8) 

 
 
 
 
 
 

2.5.2  Characterization of deterministic channels  

 
Time-variant transfer function Bello formulas [9] 
 

Applying the Fourier transform to the time-variant impulse response h (t, τ) with respect 
to the variable τ leads to the time-variant transfer function H(t, f). 

 
 

   
                                                          
( 2.9) 
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���, �	 = 	 � ℎ��, !	"
#"

%�&�−'2��!	�! 
 

 
 

 

 

The relationship between the spectrums transmit signal X (f) and the received signal y (t) is 
given by: 
 
 
 
 
 

���	 = � ���	���, �	"
#"

%�&�'2���	�� 

 

 
                                                         

(2.10) 

 
 
 
 
Doppler-variant impulse response  
 

Similarly, applying the Fourier transform to the time-variant impulse response h (t, τ) 
with respect to the variable t leads to the Doppler-variant impulse response s (), τ) 

 
 

 
 

*�), !	 = � ℎ��, !	"
#"

%�&�−'2�+�	�� 
 

 
 
 
(2.11) 

 
 

 
 

The Doppler-variant impulse response s (), τ) describes the spreading effect of the radio 
channel to the transmit signal in both the delay and Doppler domains. 

 
 
 
Doppler-variant transfer function 
 
Finally, applying the Fourier transform to the Doppler-variant impulse response s (), τ) with 
respect to τ leads to the Doppler-variant transfer function: 
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,�), �	 = 	 � *�), !	%�&�−'2��!	�!"
#"

 

 

 
 
 

(2.12) 

 
 
The interrelations among the above four system functions are shown in Figure 2-3, where the 
symbols ℱ	and ℱ-1 denote the Fourier transform and the inverse Fourier transform, respectively 
[9]. 
 
    

 
Figure 2-3 Interrelations among h-functions for WSSUS channels. 
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2.5.3  Characterization of randomly time-variant linear channels 

 
As mentioned previously, in practice a radio is a random process. We thus interpret them 

as randomly time-variant linear systems. A complete description of such radio channels requires 
a joint multidimensional PDF of all the system functions which is in practice too complicated to 
obtain. Hence, a less accurate but more realistic approach which is frequently used is based on a 
second-order description, i.e. the autocorrelation function of various system functions [10]. 

 
 
Here, we still use the h (t, τ), H (t, f), s (), τ) and B (), f) to represent the randomly time-

variant impulse response, the randomly time-variant transfer function, the randomly Doppler-
variant impulse response and the randomly Doppler-variant transfer function, respectively, for 
notational simplicity. The autocorrelation functions of the four system functions for the 
randomly time-variant linear systems are defined as follows: 
 

 
 ./��, �0, !, !0	 = Ε2ℎ∗��, !	ℎ��0, !0	3 
 

                                             
( 2.13) 

 
 .4��, �0, �, �0	 = Ε2�∗��, �	���0, �0	3 
 

                                                      
 

( 2.14) 

 .5�), )0, !, !0	 = Ε2*∗�), !	*�)0, !0	3 
 

                                      
( 2.15) 

 .6�), )0, �, �0	 = Ε2,∗�), �	,�)0, �0	3 
 

                                                      
( 2.16) 

                                       
 

At that stage, the autocorrelation functions depend on four variables. Hence, the Wide-
Sense Stationary Uncorrelated Scattering (WSSUS) assumption is usually made to further 
simplify the autocorrelation functions. Under the assumption of the WSSUS, the autocorrelation 
functions of the four system functions satisfy the following relationships: 
 
 

 		./��, � + ∆�, !, !0	   =  �/�∆�, !	8�! − !0	 
 

                                                                                                                             
( 2.17) 

 .4��, � + ∆�, �, � + ∆�	 =  .4�∆�, ∆�	 
 

                                                          
( 2.18) 

 						.5�), )0 + ∆�, !, !0	 =  �*�9, !		8�9	 −	90	8�!	 −	!0	 
 

                                                     
( 2.19) 
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 .,�9, )0, �, �	 + 	∆�	 	= 	�,�9, ∆�	8�9	 −	)0	 
 

 
( 2.20) 

 
 

Now the P-functions depend only on two variables, which greatly simplify the analysis. The = �/�∆�, !		is called the delay cross power spectral density; the .4�∆�, ∆�		is called the time 
frequency correlation function; the �*�9, !		 is called the scattering function and 
the	�,�9, ∆�	 is called the Doppler cross power spectral density. They are connected to each 
other by the Fourier transform. Their interrelations are shown in Figure 2-4. 
 

 
Figure 2-4 Interrelations among P-functions for WSSUS channels. 

 
  
With the autocorrelation functions of the system functions in time variant linear channels, it is 
possible to obtain the autocorrelation function of the received signal y (t) given the 
autocorrelation function of the transmit signal x (t). In the following it is shown how the 
autocorrelation functions of the received signal are related to those of the system functions. 
Here, we just take the randomly time-variant impulse response h (t, τ) system function as an 
example. For other system functions, they can be derived in a similar way. From (2.12), we 
know that the autocorrelation function of the received signal ���	 can be expressed as	.:��, �). 
 
 
 .:��, �0	 = 	Ε2�∗��	���	3 
 

 
 
 
 
 
 
( 2.21) 

= 	Ε ;� � �∗"
#"

"
#" �� − !	���0 −	!0	ℎ∗�� − !	ℎ��0 −	!0	< 

 

= � � �∗"
#"

"
#" �� − !	���0 −	!0	=2ℎ∗�� − !	ℎ��0 −	!0	3 
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This shows that the autocorrelation function of the received signal can be determined by the 
auto correlation functions of the system functions of radio channels. For WSSUS channels, we 
have	./��, 	�0, !, !0		 =	�/�∆�, !		8�!	 − !0	, where: 
 ∆� = �0 − � So (2.20) becomes 
 
 
 
 
 .:��, � + ∆�	   

 
 
            ( 2.22) 

                    =  

� �∗�� − !	"
#"

��� +	∆� − !	�/�∆�, !	�! 
 
 	

 
For the case   ∆� = 0, it	becomes: 
 
 
 

				.:	��, !	 = 	 �|	��� − !	|��/�∆�, !	�!"
#"

 

 

 
( 2.23) 

 
 
 
 
Where  �/�!		 	= 	�/�0, !		 is known as the Power Delay Profile (PDP).  The equation (2.23) 
means that for WSSUS channels, the autocorrelation function of the received signal is 
determined by the Power Delay Profile	�/�!		of the radio channels. If ergodicity holds, the PDP 
can be obtained from the time-variant impulse response according to 
 
 

�/�!		 = 	 HIJK→" 12N �|	h�t, τ	|�dt
K

#R
 

 

 
(2.24) 
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2.5.4  Statistical Channel Metrics 

This chapter focuses mainly on the characteristics of channel radio propagation, where 
the Doppler shift is negligible, so we are more interested in two of the autocorrelation functions 
of the system functions for randomly time-variant linear channels: the delay cross power 
spectral density �/��, !		 and the time frequency correlation function .4�∆�, ∆�	. For the time 
frequency correlation function .4 (∆�,	∆�), when ∆� = 0: 

 
 

 
 .4�0, ∆�	 	= 	.��∆�	 
 
 

     
 (2.25)                                                     

 
 
 
The .4(∆�) is called the Frequency Correlation Function (FCF).  When = ∆� = 0, 
 
 
 .4�	∆�, 0	 = 	.4�	∆�	 
 

                                                         
(2.26) 

 
 
The .4�	∆�		 is called the Time Correlation Function (TCF). From Figure, it is easy to show 
that the PDP �/ (τ) and the FCF .4(f) are a Fourier transform pair. Two useful statistical 
parameters associated to �/�!		 are the mean delay !Tand the root mean square delay !�T5: For 
the time frequency correlation function .4 (∆t,	Cf), there are also two statistical parameters 
associated to it: the coherence bandwidth	,W	and the coherence time NW .	 
 
 

The coherence bandwidth ,W is the minimum value of ∆�	for which	.4 (∆f) equals some 
predefined values, e.g. 0.5 or 0.9. It is a parameter used to indicate how large is the bandwidth 
which corresponds to the signals still strongly correlated. Similarly, the coherence time TX is 
the minimum value for which .4�∆�	 equals some predefined values. It is a measure of how 
long is the duration during which the two signals are still strongly correlated. 
 
  When considering wideband system, the delay spread is of great importance for 
communication systems. For a system with infinite bandwidth, the power delay profile (PDP) is 
defined as: 
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 ��!	 = =2|ℎ�!	|�3 
 

                                                      
( 2.27) 

 

Where  ! represents the delay. In that case, the total power, the mean delay (or average delay) 
and the delay spread of the channel are given by 135[3][6][7] 
 
 
 	�K		 =	���!	 �! 
 

                                                         
( 2.28) 

		!T =	 1�K���!	!�! 
 

                                                         
( 2.29) 

YZ	 =	[ 1�K ���!	!��! − !T� 	 
 

                                                         
(2.30) 

 
 

The delay spread is a measure of the dispersion of the impulse response's power. The higher the 
delay spread of a channel is, the lower the coherence bandwidth of the channel. 
 

2.5.5 MIMO channel models 

 
A MIMO system is a wireless communication system that is equipped with multiple 

antennas at both end of the link. Compared to conventional single-antenna systems, MIMO 
systems enable many significant advantages in terms of e.g. link reliability and data transfer. 
The most fundamental difference between the operation of a single antenna system and a 
MIMO system is grounded on the way they treat multi-path propagation. MIMO technology has 
also been recently adopted by several standards, namely by the 3GPP LTE, LTEA, and it is seen 
more important in spectral efficiency for 5G deployment in 2020 [11]. 
 
 

A schematic illustration of the operation of a generic MIMO system is shown in Figure 
2-5. The transmit signal is fed as a digital bit stream to the TX, where the stream is reprocessed 
before feeding it to the antenna ports. At the RX, the received signal needs to be post-processed 
in order to decode the original signal that was transmitted. The performance of a MIMO system 
depends on the quality of the signal processing algorithms at the TX and RX. However, the 
signal processing algorithms are not developed only based on the envisioned performance target 
i.e. link reliability, capacity enhancement, etc., but also the characteristics of the radio channel 
in which the system needs to operate play an essential role.  
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Figure 2-5 Illustration of MIMO system. 

 
 

The radio channel is often represented as a time varying function  ℎ��, !	 which includes 
the effect of the transmit antenna and the receive antenna as: 
 ℎ��, !	 = 	\]�� �^K		_��, !, ^` , ^K	]��	�^`		�^K�^`	
 

                                                                                  
( 2.31) 

 
 
 

Where ϕR represents the angle (and therefore the direction) where the transmitting 
antenna radiates, ϕb	represents the incoming angle of the receiving position, and gde	�ϕb		and gfe	�ϕR		are the complex gains of the antennas. Then the integral sums the radiation of the 
whole system over all the possible directions. Assuming a finite g	number of paths, transforms 
the integral in a summation, with the consequent reduction in complexity. 

 
 
 
 

h�t, τ	 = 	h]��i
jkl

�^K	_��, !, ^` , ^K	]���^`	 
 

 
(2.32) 

 
 
 

The impulse response described is applicable to single polarized antennas. A more 
general case is when both transmitting and receiving antennas are dual polarized. Then we can 
write matrix impulse responses with all the possible combinations between polarizations. 
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h�t, τ	 = 	 mℎno��, !	 ℎnp��, !	ℎ/o��, !	 ℎ/p��, !	q 
 

                                                      
( 2.33) 

 
Everything we have seen so far is valid for the case where there only is one antenna in the 
transmitting part, and other one is reception (SISO). However, to describe the full MIMO 
channel, we need to characterize the impulse response of all possible combinations of antennas. 
Thus, for the general case of M transmitters and N receiving antennas, the MIMO channel is 
characterized by an M*N dimension matrix, which includes all double-directional impulse 
response for all the single antenna combinations. 
 
 
 

h�t, τ	 = 	 rℎll��, !	 ⋯ ℎlt��, !	⋮ ⋱ ⋮ℎwl��, !	 ⋯ ℎwt��, !	x 
 

                                                      
(2.34) 

 
 
 
Where ℎyT��, !	 represents the time-variant impulse response between the inputs of the mth 
transmit antenna and the output of the nth receive antenna.  If polarization diversity is present 
on the antennas, then the impulse response ℎyT��, !	  must be subsided by the 2* 2 matrix 
defined in (Eq. 2.33). 

2.6 Channels models 
 
 A remarkable study on the different channel models is presented in [13]. According to 
this study, channel models can be separated in two main categories, depending on whether they 
include or not the antenna properties of the system. Below it is shortly described each of these 
two categories: 
 

2.6.1 Physical channel models    

 
These models characterize the propagation environment from an electromagnetic point of 

view. To this end, by propagation theory of electromagnetic waves, the bidirectional 
propagation channel that connects the position of the transmitter and receiver is described. 
Thus, parameters inherent to the physical channel are evaluated (regardless of the transmitter 
receiver systems) as i.e. the complex amplitude, Delay Spread, AoA or DoA.  This type of 
channel models is independent of parameters such as antenna radiation pattern, number of 
antennas and polarization... channel models based on ray tracing, or extension of Saleh-
Valenzuela, are examples of this type of models. 

 
 
Analytical  channel models, approach the problem from another perspective. What they do 

is to characterize the transfer function between the transmitters and receivers antennas, 
individually. Thus, the analysis is not in terms of electromagnetic wave propagation. 
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 On the contrary it produces a matrix of MIMO impulse responses that take into account all 
possible combinations of antennas. Other authors propose to perform this characterization of the 
channel matrix using the correlation between the difference antennas. 
    
   Apart from the models listed in the above categories, some international organization have 
proposed a number of channel models for the purpose of comparing different wireless system in 
order to define some reproducible conditions. These models are based on field measurements 
made in real environments such as streets, indoors and rural environments the objective of this 
type of models is to clearly define a reference environment where wireless devices can be tested 
the same way in different laboratories with different methodologies. 
 

2.6.2 Deterministic channels models 

 
Deterministic models are used for site-specific channel modeling; they consist of an 

environment model and a wave propagation model. The environment model describes position, 
geometry, material composition and surface properties of the wave propagation relevant objects 
and obstacles (e.g. trees, houses, vehicles, walls, etc.). In practical applications an analytic 
solution of the Maxwell equations, due to the computation time, is not possible.  Deterministic 
models can provide very accurate and meaningful interpretation of the channel for a given 
location and environment only if an accurate description of the environment is available. To 
consider the uncertainties in the channel, the deterministic methods sometimes include a 
statistical component called diffuse scattering [14]. There are several deterministic modeling 
methods such as the difference time-domain (FDTD) [15] method, the finite-element method 
(FEM) and so-called ray tracing (RT) [16].  

2.6.2.1 Ray tracing model 

 
Ray tracing is a technique which have been used for long in computer graphics, when 

tracing light waves emitted from a light source. The idea is to trace radio waves in the same 
way, from a transmitter to a receiver. Once all possible paths have been identified, 
electromagnetic techniques are applied to the rays to compute interesting parameters, such as 
signal strength. The electrical lengths of the different ray paths give the amplitudes and phases 
of the component waves. The signals are also affected in amplitude and phase when being 
transmitted, reflected or diffracted on obstacles during propagation. Those effects are accounted 
for in the calculations. The ray tracing [10] model is an image-based model which assumes all 
objects in the propagation environments are potential reflectors. 

But ray tracing has the disadvantage that its computational time grows exponentially 
with the order of calculated reflections. Both in the ray launching and ray tracing models, the 
strengths of reflected rays and refracted rays are computed according to the geometrical optics. 
The diffracted rays are computed according to e.g. UTD theory. For ray launching and ray 
tracing, the complexity of the propagation environments has a strong impact on their 
computational load since more obstacles lead to more reflections and diffractions etc. 
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2.6.2.1 FDTD model  

 
Here, the FDTD model means the conventional FDTD model. The FDTD model [17]  

[10][18]  is a numerical solution of Maxwell’s equations. Since Maxwell’s equations were first 
published in 1861[19] they have been considered as the most accurate and elegant description 
about how electric field and magnetic field interact with each other and how electromagnetic 
waves propagate [20]. The idea is that we replace the set of partial differential equations of 
Maxwell’s equations by a set of finite difference equations and then this set of finite-difference 
equations can be solved iteratively based on the space-time grid.  

2.6.3 Stochastic channel model 

 
Stochastic channel models are those whose results are random each time, but their 

statistical characteristics, e.g. Probability Density Function (PDF) follow a certain law. In 
general, stochastic models use one or more random variables to model the random aspects of 
radio channels. Stochastic models are usually used to model all kinds of fading’s, e.g. the large 
scale fading and the small scale fading, since fading are with the nature of randomness[21][22]. 
 
 

2.6.3.1 Rayleigh fading model 

 
The most typical statistical behavior that we can find in real multi-path environments, 

especially in urban and indoor cases, is that one where both real and imaginary part follows a 
Gaussian distribution. Therefore, it is possible to mathematically demonstrate that the variable 
of amplitude follows a Rayleigh distribution (its square follows an exponential distribution) 
while the random phase is uniform: 

 
 

�z�{	 = 	2{Ω %�& }−{�Ω ~ 							{ ≥ 0 

 

 
                                                       
( 2.35) 

 
Where Ω= {� is the average power of the fading. 
 
 

2.6.3.2 Rice fading model 

 
 
The Rice distribution is also known as the Nakagami-n distribution. Unlike the Rayleigh 

fading model, the Rice fading model is usually used to model the multipath fading when there is 
a path much stronger than the others typically in case of direct LOS path. In LOS scenarios, the 
received signal amplitude α is distributed according to the Rice distribution. 
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�z�{	 = 	2�1 + ��	Ω %�& }− �1 + ��	Ω ~ ���2�{[1 + ��Ω � 						{ ≥ 0 

 

 
   (2.36) 

 
 

 
 
Where n is the Nakagami-n fading parameter ranging from 0 to ∞. This parameter n is 

related to the well-known Rice K factor by K = n2 which is defined as the ratio of the power of 
the LOS component to all the NLOS components (usually called diffuse components). It is of 
importance to note that in the extreme case when the LOS component tends to 0, e.g. K and n 
→ 0, the Rice distribution reduces to the Rayleigh distribution. And when K and n → ∞, the 
Rice distribution approaches to the Gaussian distribution. 
 
 

2.6.3.3 Nakagami-m fading model 

 
The Nakagami-m fading distribution is given as follows [23] 

 
 
 

�z�{	 = 	2JΩT
T {�T#lΤ�J	 %�& }−J{�Ω ~ 			{ ≥ 0 

 

 
                                                  
(2.37) 

 
 

Where m is called the m parameter of the Nakagami-m fading and Τ (·) is the gamma 
function.  The Nakagami-m distribution includes the Rayleigh distribution when m = 1 and the 
one-sided Gaussian distribution when m = 1, 2 as special cases. When m → ∞, the Nakagami-m 
fading channel approaches to a non-fading Additive White Gaussian Noise (AWGN) channel. 
When m > 1, we have a one-to-one mapping between the Nakagami-m distribution and the Rice 
distribution by their parameters:  

 
 

J	 = 	 �1 + �	�1 + 2g , g ≥ 0 

 

 
                                                   (Eq. 2.38) 
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Where K is the Rice K factor. Hence, the Nakagami-m fading model can describe a very wide 
range of multipath fading. Nakagami and Rician distributions are quite similar in shape, but the 
main difference they present in Nakagami model fits better some Ultra-Wide Band (UWB) 
channel, while Rician model is more appropriate for environments with LOS [24]. 
 
 
 

2.7  Geometrical stochastic channel model 
 
 When we evaluate the performance of devices, it is useful to evaluate them over at least 
a minimum number of channel realizations. These could be generated by deterministic 
propagation models described in the previous section; however, their high computational cost 
prohibits the intensive link or system level simulations required during testing. Thus, procedure 
with a lower computational complexity that could emulate a whole class of radio-propagation 
environments is preferred [25]. These requirements have led to (GSCMs), where the multipath 
often tend to appear  as clusters, i.e. groups of closely rays that have propagated along a similar 
path. In the GSCMs the underlying idea is to theoretically create the radio channel in delay and 
directional domains by placing clusters in the simulation environment to emulate the physical 
scattering objects of real environments. The characteristics of the clusters are modeled based on 
channel measurements, and naturally, the accuracy of a cluster-based channel model always is 
indispensably dependent on the quality of the cluster parameters [26]. 
  

2.7.1  3GPP Spatial Channel Model (SCM) 

 
 

The SCM was designed for evaluating multiple-antenna systems and algorithms. The 
model was developed within a combined 3GPP 3GPP2 ad-hoc group to address the need for a 
precise channel model able to facilitate fair comparisons of various MIMO proposals. The 
model uses a system-level approach to simulate performance across the range of conditions 
expected in a cellular system [27][28]. This ensures that multiple antenna algorithms are not 
only optimized for a few test conditions, but across the system as a whole. In the following 
sections, the concepts of spatial channel modeling are introduced and explained. 

 

• Link-level model 

 
 

Since only one snapshot of the channel characteristics can be captured by the link-level 
channel model, link-level simulations are not enough for understanding the typical behavior of 
the system and evaluating the system-level performance, such as average system throughput and 
outage rate. In fact, the link-level simulation is used for the purpose of calibration, which 
compares the performance results from different implementations of the given algorithm [28]. 
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• System level model 

 
The system level model is a multi-link physical model intended for performance evaluation 

in which each link represents a cell or a sector within a cell. Figure 2-6 illustrates a system-level 
simulation in which an MS receives interference from adjacent sectors of adjacent cells. 
 

 

 
Figure 2-6 SCM system level simulation. Source [31]. 

 
Each link comprises an MS and BS MIMO antenna array. Propagation occurs via multipath and 
sub-paths. The excess delays of sub-paths are closely clustered around the delay of their 
(parent) multipath. This is assumed to originate from an environment with closely spaced 
clusters of scatterers. 
 
 The SCM distinguishes between three different environments:  
 

•   Urban macro-cell: Simulates the scenario where a user is in a very reflective (urban) 
environment, but where there is a certain distance to the BS. 

 
• Suburban macro-cell: This model has a reduced delay spread and is used for modeling 

lower density environments. 
  

• Urban micro-cell: simulates the case where a user is in a reflective scenario and is 
being serviced by a BS located within walking distance of it (typical of micro-cell). 
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     SCM models are used so that the system simulation is performed as a sequence of drop, 
where a drop is a run of the channel model during a very short time. The duration is short 
enough, so that it can be assumed that the AS, mean AoA, DS and shadowing are constant 
throughout the drop. These models have both a geometric and a stochastic component. The 
geometric component contains the position of DUT with respect to the BS, the orientation of the 
antennas and the direction of motion, are calculated randomly at the beginning of each drop. 
The three models consist of 6 main multipath components.  

 
The angular dispersion implementation is performed by introducing 20 sub-paths for 

each of the 6 main components, with the same delay, but different DoA. The per-path power 
azimuth spectrum (PAS) is a description of the power and angle distribution, and is typically 
assumed to follow a Laplacian distribution. This is a two sided exponential, which is an 
isosceles triangle when plotted in dB The center of the distribution is at zero degrees relative to 
the average AoA or AoD, as shown in Figure 2-7. 

 

 
Figure 2-7 PAS path in SCM channel model 

 
 

Figure 2-8 illustrates the sub-path spacing in degrees relative to the path AoD at the BS. 
Since the BS antennas are somewhat isolated from the clutter, the angle spread (AS) is quite 
small. The AS is 35 degrees as defined by the model, with 20 sub-paths of equal power and a 
non-linear spacing as shown to approximate the Laplacian PAS. 

 

 
Figure 2-8 Path model in SCM channel. 
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This model has two drawbacks. Firstly, it is not supposed to work for higher bandwidth than 5 
MHz, so it is not suitable for the new coming 4G, LTE standards, which use 20 MHz, secondly 
the SCM model was designed for a CDMA systems working at 2 GHz, so its accuracy is not 
guaranteed for other frequency band.  

2.7.2 Extended 3GPP Spatial Channel Model (SCME) 

 
  The SCME [30] model proposed the extensions of some of the parameters proposed by 
the SCM model, maintaining the basic idea  of the original model. With the arrival of the 5G 
standards, an extension of the channel bandwidth applicability is required to the channel model. 
The SCME model proposes to add intra-paths DS following a one-sided exponential function. 
This approach is based in the methodology proposed by Saleh and Valenzuela [27] for the 
modeling of indoor environments. 
 
Another important extension included in the SCME model is the calculation of the path loss, in 
order to extend the frequency applicability to 5 GHz band. The SCM path loss, model is based 
on the Cost-Hata-Model for Suburban and Urban Macro and the COST-Walfish-Ikegami-Model 
(COST-WI). Instead, the SCME model proposes the use of the COST-WI model approximation 
for all the scenarios, due to its distance range (0.02-5 km) is more appropriate to the current 
standards use. (The Hata Model was calculated for GSM with a distance range of up to 20 
Km/s). The proposed parameters for the different scenarios are: 
 

• BS antenna height: Macro 32 m, Micro 10 m. 
• Building height: Urban 12 m, Suburban 9 m. 
• Building to building distance: 50 m, street width: 25 m. 

• DUT antenna height:   1.5 m. 
• Orientation: 30 ° for all paths. 

• “Macro” scenarios: medium sized city / suburban centers. 
• “Micro” scenarios: metropolitan. 

 
 
 
Finally, an important characteristic proposed by the SCME model is the incorporation of a fixed 
set of delay taps and angular parameters, instead of the stochastic FDP estimation proposed in 
the original SCM. This extension is especially important for some methodologies, since it 
allows an important reduction in the complexity of the equipment. Proposed values are shown 
in Table 2-1.  
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Table 2-1 Parameters of Tap delay line parameters SCME scenarios. Source [(3GPP document TR 37.976)] 

Scenario Suburban UrbanMacro Urban Micro 

Power 
delay parameters 

relative paths 
power(dB)/delay(us) 

1 0 0 0 0 0 0 
2 -2.6682 0.1408 -2.22.4 0.3600 -1.2661 0.2840 
3 -6.2147 0.0626 -1.7184 0.2527 -2.7201 0.2047 
4 -10.4132 0.4015 -5.1896 1.0387 -4.2973 0.6623 
5 -16.4735 1.3820 -9.0516 2.7300 -6.0140 0.8066 
6 -22.1898 2.8280 -12.5013 4.5977 -8.4306 0.9227 

Resulting Total DS 0.231 0.841 0.294 

 
Angular parameters: 

AoA (deg) 
AoD (deg) 

2.35 2.35 5.35 
2 156.1507 -101.33 65.7489 81.9720 0.69666 6.6100 
3 -13.72020 -290086 45.645480 11.87878 13.2268 14.1360 
4 39.3383 1109758 14.5707 -136.8071 1460669 50.8297 
5 91.1897 115.508 17.7.08 -96.2155 30.5485 38.3972 
6 4.7669 118.068 107.0643 139.077 1.0587 40.2849 

Resulting totral AS at 
BS MS (deg) 

 
4.70, 64.78 

 
7.87,62.35 

 
15.76,62.19 

 
18.21 67.80 

2.7.3 WINNER Channel model 

2.7.3.1 Generic WINNER model 

 
Based on the stochastic geometry approach, the WINNER model [31] allows creating an 

arbitrary radio channel model. The model depends on the antenna pattern and the spatial 
distribution of scatterers. As well as in the SCM models, the channel parameters are determined 
stochastically, based on statistical distributions extracted from channel measurement. 
 
 

The WINNER channel model [81] is built from measurement results. It describes the 
channel propagation as sum of the different paths regrouped into clusters. The clusters are the 
same properties in term of power but different delays. Clusters consist of the paths having 
interacted with obstacles in a diffuse zone. In the terminology proposed in this document the 
cluster is a propagation path diffused in space, either only in angle or both in delay and angle 
domains. Elements of the MIMO channel, i.e. antenna arrays at both link ends and propagation 
paths, are illustrated in Figure 2-9. It shows a set of clusters that constitute the channel 
propagation. The number of clusters in each path is between 8 and 20 depending on the 
scenario. 
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Figure 2-9 WINNER channel model. 

 
 

Transfer matrix of the MIMO channel is composed the summation of N clusters: 
  

���; !	 = h�yw
ykl

��; !	 
 

 
(2.37) 

 
 

It is composed of antenna array response matrices _�� for the transmitter, _�� for the receiver 
and the propagation channel response matrix ℎy for cluster n as follows: 
 

 �y��; !	 =∬_����	 ℎy��; !; ^; �	_��K �^	�^�� 
 

 
 (2.38) 

 
 

 
The channel from Tx antenna element s to Rx element u for cluster n is:  
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(2.39) 

 
 
 
 
 
 

Where _��,�,� and  _��,�,4 are the antenna element u field patterns for vertical and horizontal 
polarizations respectively. {y,T,�� and {y,T,�4 are the complex gains for vertical to vertical-to-
horizontal polarizations of ray �,J	respectively. Further �� is the wave length of the carrier 
frequency.  
 �̂y,T is AoD unit vector, �̅��,� and �̅��,5 are the location vectors of elements s and u respectively, 
and )y,T is the Doppler frequency component of ray	�,J. If the radio channel is modeled as 
dynamic, all the above mentioned small scale parameters are function of time t. 
 
In the phase I of the WINNER [32]  project, they proposed a generic model based on the same 
principles than SCM models, but extending the bandwidth and the number of scenarios (six in 
total). The model implements a ray-based double-directional model multi-link independent of 
the antenna, which makes the model scalable and capable of modeling MIMO channels. The 
model was taken from a measurement campaign at 2 and 5 GHz The following propagation 
models were defined: 
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• Typical urban micro-cell. 

• Indoor. 
• Sub-urban macro-cell. 

• Rural macro -cell. 
• Stationary feeder link. 

 
   
   
    In phase II of the WINNER [33] project, they made some extensions to the original 
WINNER models. One of the most important is the extension of the frequency range used so 
that channel models are applicable in the range 2-6 GHz. There were also added more scenarios, 
based on measurement campaigns, for a total of 13. The covered propagation scenarios are:  
 
 
     

• A1  Indoor office 
• A2  Indoor to outdoor 
• B1  Urban micro-cell 

• B2  Bad Urban micro-cell 
• B3  Indoor hotspot 

• B4  Outdoor to indoor 
• B5  Stationary Feeder  

• C1  Suburban macro-cell 
• C2  Urban macro-cell 
• C3  Bad urban macro-cell 

• C4  Urban macro outdoor to indoor 
• D1  Rural macro-cell 

• D2  Moving networks 

 
 
 

In the WINNER II a set of multidimensional channel models are developed. Also it adds 
features such as the extension of the AoA in elevation plane. This family of models can be 
applied to any wireless system operating in the frequency bands covered by the 2-6 GHz range, 
with up to 100 MHz bandwidth.  They are based on more generic channel modeling approach, 
which means the possibility to vary number of antennas, the antenna configurations, geometry 
and the beam antenna pattern without changing the basic propagation model.  We describe in 
the following the procedure for generation of channel coefficients. 
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• Set the environment, and antenna array parameters 
a) Choose one of the scenario 
b) Give the number of BS and MS 
c) Give the locations of BS and MS, and relative directions of departures and arrival 
d) Give BS and MS antenna field patterns  and array geometry 
e) Give speed and direction of motion of MS 
f) Give system center frequency 

 

• Small scale parameters 
a) Generate the delays ! 
b) Delays are drawn randomly from the delay distribution. With exponential delay 

distribution: 

 

 
 

Where�	Z		: delay distribution proportionality factor and  YZ : Delay spread and �y ~��I�0,1	 
 

 
• Generate the clusters powers P 

 
Cluster power is calculated a single slop exponential power delay profile as: 

 
 �y	0 = 	%�& �−!yYZ � 10�#��l� � 

 

 
(2.41) 

 
 

 
Where  �y~��0, �	  and   �	  the per cluster shadowing in [dB]: 
 

 
 
 
 
 

																					��0 = −�Z��H���y	  

 

 
(2.40) 

�y	 = �y	0∑ �y	0wykl  

 

 
(2.42) 
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• Generate the azimuth arrival angles � and azimuth departure angles �  
 
In the generic model of the WINNER the PAS is modeled as Wrapped Gaussian, the AoAs are 
determined by inverse Gaussian function with input parameters�y: 
 
 
 
                       	

�y0			 = 2Y��� −�−H� �
�yJ����y	�   

 

 
 
(2.43) 

 
Where  Y��� = 	 ¡¢l,£  : Standard deviation of arrival angles, and C: scaling factor related to the 

total number of cluster ratio: 
 
 

 �y = 	�y	 �y0			 + �y			 + �¤¥5 
 

    
     (2.44) 

 
 
 
 
Where  �y	~��I�−1,1	   (2.45) 		
 

 �y	~��0, ¡¦§¦¨ ) 

 

 
  (2.46) 

 
 
 
The procedure developed above depicts the complexity of the generic model, to determine 
channel parameters. Due, this WINNER project has been developed a new feature version of 
generic model called Cluster Delay Line (CDL) model. 
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2.7.3.2 Cluster Delay Line model (CDL) 

 
CDL model is composed of a number of separate delayed clusters. Each cluster has a 

number of multipath components that have the same known delay values but differ in known 
angle of departure and known angle of arrival. The cluster angle-spread may be different from 
that of BS to that of the MS. The offset angles represent the Laplacian PAS of each cluster. The 
average power, mean AoA, mean AoD of clusters, angle-spread at BS and angle-spread at MS 
of each cluster. An example of the CDL model for Outdoor to Indoor channel developed in 
WINNER II project is developed in Table 2-2. 
 

Table 2-2 Parameters of WINNER II scenarios (3GPP document TR 37.976) 

                                  Modified WINNER II   Outdoor –to-Indoor 
Cluster Dealy [ns] Power [dB] AoD [°] AoA° 

1 0 5 10 -3 -5.2 -7 0 0 

2 0 -8.7 32 101.5 

3 5 -3.7 -21 66.2 

4 10 -11.9 37 -118.7 

5 35 -16.2 -43 138.5 

6 35 -6.9 -28 -90.4 

7 65 70 75 -3.9 -6.1 -7.9 -49 32.7 

8 120 -10.3 -34 10.5 

9 125 -20.7 -49 156.6 

10 195 -16 43 -157.7 

11 250 -21 49 -157.7 

12 3058 -22.9 51 -164.7 
Dealy spread [ns] 5/25 
Cluster AS AoD/AS AoA [°] Laplacian 
Total AS AoD / AS AoA [°] 28.6/56 
Mobile speed [Km/h]/ Direction of travel [°] 3/120 
XPR 9 dB 
Mid paths Share Cluster parameter values for  AoD, 

AOA,AS 
 

2.7.3.1 3D Extension of WINNER II Channel model (WINNER+) 

 
Current popular (GSCM), e.g. [81] are in practice 2-dimensional because the addition of the 

third dimension, elevation, is assumed to make the models much more complex than the 2D 
ones.  At the moment the situation is changing and there seems to be remarkable interest in 3D 
channel models.    

The extension methodology has been largely specified for WINNER II channel models in a 
proprietary work published. The focus is the extended of the (2D) implementation of channel to 
3D channel model [82]. The 3D implementation can be found in [81]. 3D GSCM channel model 
is generalized from a 2D model by generating for each ray an elevation component. The 
procedure has been described in [83], where there is a detailed description, how a 3D 
implementation is created from the existing WINNER II implementation.  
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Therefore the details have not been described in this chapter. In this section the PAS of 
elevation has been described .In the terminology of WINNER+, the values of elevation is 
illustrated in Table 2-3. 

 
 

Table 2-3 Elevation parameters for five propagation scenarios [84]. 
Elevation parameters 

Scenario Indoor (A1) O2I (B4) Umi (B1) Uma(C2) SMa (C1) 
Condition LOS NLOS NLOS LOS NLOS LOS NLOS LOS NLOS 
ESA[°] 8.7 12.6 10.2 4 7.5 9 18 12 10 
MEA [°] 1.6 1.6 1.2 2 2 6 10 5.5 7 
CESA [°] 3 3 3 7 7 7 7 7 7 
CESA : Composite Elevation spread Angle 

 
 

2.7.3.1 Comparison of geometrical channels models 

The multi-probe OTA system in this thesis aims to evaluate the performance of devices 
of ultra-wide band, thus supported bandwidth of up 2 GHz is required. The WINNER model 
satisfies this requirement. The SCM is not suitable, due its 5 MHz bandwidth. The comparison 
parameters of these models are shown in Table 2-4. 

 
Table 2-4 Comparaison of parameters. 

Parameter SCM SCME WINNERII WINNER+ 
Max. bandwidth [MHz] 5 100 100** 100*** 
Frequency range [ GHz] 2 2-5 2-6 2-6 
No.of scenarios 3 3 12 12 
No.of clusters 6 6 8-20 8-20 
Distribution of PAS Wrapped 

Gaussian[83]  
 

Laplacian Laplacian 3D channel models 

* Artificial extension from 5 MHz bandwidth.                           
**Based on 100 MHz measurements. 
 

Currently, the SCME has been considered as the first channel model for OTA testing 
devices by the COST2100 community. However, SCME model is built for testing devices in 
frequencies between 2 and 5 GHz, and the numbers of scenarios are not sufficient for advanced 
simulations. Due to these reasons, we use a simplification of CDL model of WINNER II in this 
thesis, which the objective is to emulate one single cluster individually based on the PAS. In 
order to preserve the delay information developed in WINNER CDL model. 
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2.8 Conclusion 
 

This chapter described the fundamentals of propagation channel and different modeling 
approaches. We started with the characterization of deterministic channels whose behavior can 
be determined by any one of their four system functions. However, a realistic radio channel is a 
kind of random process whose characteristics cannot be completely determined in a 
deterministic manner. Thus a statistical modeling of the channel was introduced, together with 
the autocorrelation functions and popular fading models such as Rayleigh and Rician. 

 
MIMO channels have been also described, with a focus on the spatial characteristics.  

Finally, we have introduced some popular Geometrical Stochastic Channel, e.g. SCM or 
WINEER, which are based on the cluster concept to describe propagation environment.  In 
particular WINNER-like models, and its extension for 3D channel description in the 2-6 GHz 
band was retained.    
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3 Over-The-Air (OTA) Test Methodologies  
 

3.1 Introduction 
 

The proper development and testing of wireless devices systems lie in detailed channel 
knowledge. As stated in chapter 2, multipath propagation in different environments may be 
modeled theoretically, in a deterministic or stochastic way. These models can truly reflect real 
propagation, but still lack of experimental work to support and complement the channel 
modeling process. Because of this, the assessment of devices in real channels is of paramount 
importance. To that end, the acquisition of equipment for evaluating devices under real 
conditions is the starting point of experimental evaluation and characterization. In the past 
years, wireless test beds and prototypes have received much interest from research community. 
Wireless devices need pass some evaluations showing that the performances reach the 
minimum requirements considered to address a specific market. For this reason, various 
experiment methods to which wireless devices are subjected before reaching the final consumer 
and several measurements techniques proposed for the characterization and qualification of 
systems are necessary. Those methods are called Over -The-Air (OTA) methodologies.  

 
 
After an initial request by 3GPP RAN4 directed to COST 2100 to collect proposals for 

MIMO OTA measurement methods in 2008 [25], several MIMO OTA test methods have been 
proposed by participants of COST 2100, 3GPP RAN4 and CTIA. The proposals differ 
significantly in terms of measurement setup and equipment because each approach is trying to 
solve the issue from a different perspective. After some effort of consolidation and 
development, four forms of proposed methods have been accepted by 3GPP RAN4 for further 
investigation [34] and also under discussion in CTIA.  

 
 

At the beginning, in section 3.2, the first OTA testing for device with single antenna 
systems was standardized by the CTIA ten years ago. Section 3.3 presents a critical review of 
different OTA methodologies; reverberation chamber, two stage methods and anechoic chamber 
method.  The questions raised in analyzing these methodologies will be discussed and answered 
in section 3.3. The selected studies are discussed in section 3.4. Although multi-probe method is 
comparatively costly, from technical points of view it appears to be the most flexible one for 
wireless performance evaluation. 

 
  The focus of this chapter is on multi-probe anechoic chamber approach. Section 3.4 is 
devoted to describe the setup of the multi-probe method. Having defined the intended field 
several emulation techniques are discussed to emulate such field, the two most commonly used 
techniques are the prefaded signal synthesis (PFS) and plane-wave field synthesis (PWS).  Their 
advantages and disadvantages are discussed. Section 3.5.2 presents multi-probes OTA 
methodologies and their characteristics. Finally, section 3.6 concludes this chapter. 
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3.2 Single-Input-Single-Output (SISO)   OTA Tests Methodologies 
 
 

OTA testing solutions create an environment where signals are transmitted to verify the 
performance of a product and accurately distinguish a poorly performing device from a good 
device. OTA test methods evaluate the wireless device end to end.  If the device has a single 
antenna mode, it can be evaluated using traditional SISO OTA measurements methods.  In all 
other cases, new test methodologies metrics are required to correctly characterize the device 
under test. 
 

The first SISO OTA specification developed by The Cellular Telecommunications 
Industry Association (CTIA) released in 2001 and later by 3GPP [34].  It defines the general 
requirement for equipment configurations, laboratory techniques, test methodologies, and 
evaluation criteria that must be met in order to ensure the accurate, repeatable, and uniform 
testing of wireless devices. Proposed metrics for device radiation performance evaluation are 
Total Radiated Power (TRP) and Total Isotropic Sensitivity (TIS). TRP metric is a metric that 
provides information about radiated RF performance of the DUT.  
   
   The TRP metric is calculated by computing the average of the radiated power over a 
sphere centered on the device under test (DUT). The TIS metric is the average over the same 
sphere of the minimum received power to achieve a particular bit error rate. This DUT receiver 
measurement is made while the DUT is transmitting at maximum power so that any radiated 
effects that might cause self-blocking or desensitization of the DUT receiver are fully captured. 
Most of the work in this field was then concentrated on defining the right measurement 
procedure, the uncertainty of the technique and the minimum.  DUT performance demanded. 
The maximum uncertainty allowed is defined in [35] and showed in Table 3-1. 

 
Table 3-1 Uncertainty maximum limits (dB) for different configuration for TRP and TIS.  Source [35]. 

Test Configuration TRP TIS 
 Free Space    2 2.3 
  Beside Head   2.1 2.3 
  Beside Head and Hand 2.4 2.6 
  Hand Right    2.2 2.4 

 
 

As shown in Table 3-1, measurements of TIS and TRP can be done in four different use 
cases. These different cases simulate the most common scenarios where the DU is supposed to 
work, including the effect that user presence has over the device performance. The four typical 
measurement scenarios are: 
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• Free-Space: Where the DUT is placed on a support made of low dielectric material in 
order to avoid any effect from the close environment. This case is not realistic, but it is 
very useful as a reference case for inter-comparison purposes. 

• Head Phantom Only: Where the DUT is placed against a head phantom. 

• Head and Hand Phantom: where the DUT is placed in a hand phantom, against a head 
phantom. This position is commonly known as "talk") position and it gives an accurate 
idea about the device performance in a realistic case. 

• Hand phantom only: where the DUT is placed in a hand phantom. This scenario (using 
one or two hands) is commonly known as "browse" mode and it simulates the situation 
where the user is using the device to send and receive data (SMS, Internet data...). 

 
 Figure 3-1 shows an illustration of the first SISO OTA testing in anechoic chamber, 
which consists of the measurements of total radiated power for transmit performance and total 
sensitivity for receive performance. It was selected as the FoMs for such OTA testing. This 
method was also adopted by the 3GPP. It consists in measuring a simple 3D radiation pattern 
measurement of the antenna by using the own RF transceiver section as an internal signal 
source, and by establishing a radio link with a base station (BS) emulator.  
 
 

 

Figure 3-1 An illustration of the SISO OTA test facility in an anechoic chamber. Source [34]. 
 
 
With the emergence of MIMO technology, and in particular in the cellular telecommunication, 
the methods developed for SISO OTA could not be sufficient to measure the performance of 
MIMO devices.  
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 This led in late 2007 to the formation of a reverberation chamber subgroup within CTIA 
to study the feasibility of extending reverberation chambers for MIMO OTA methodologies. In 
April 2009, CTIA developed an anechoic chamber subgroup to study the development of 
MIMO measurements in anechoic chambers. In 2009, the study of MIMO OTA was appeared 
in the COST action 2100 and in March 2009, 3GPP approved the study item “Measurement of 
radiated performance for MIMO and multi-antenna reception for HSPA and LTE terminals” in 
[85] in March 2011, the two CTIA groups were merged to create the MIMO OTA subgroup 
(MOSG), and finally, in February 2012, 3GPP approved the work item “Verification of radiated 
multi-antenna reception performance of UEs in LTE/UMTS” [86] to create a formal test 
specification for MIMO OTA. The major difference between SISO and MIMO performance is 
the radio propagation channel. For SISO, the DUT performance is independent of the channel, 
which is defined as isotropic and with no channel fading. 
 

3.3 Multiple-Input-Multiple-Output (MIMO)   OTA Tests Methodologies 
 

OTA becomes very important for testing MIMO systems or products in real conditions. 
Ranging devices as good fair or poor w.r.t is a common practice in the industry. One 
distinguishes three categories of method for such MIMO OTA characterization: 

 
 
• Reverberation chamber based method. 
• Two-stage method. 
• Anechoic chamber based multi-probes OTA method. 

 
 

3.3.1 Reverberation chamber 

 
The Reverberation Chamber is a metallic cavity or cavities that can emulate an isotropic 

multi-path environment which represents a reference environment for systems designed to work 
during fading; similar to how the free space "anechoic" reference environment is used for tests 
of Line-Of-Sight systems. The Rayleigh environment in a reverberation chamber is well known 
as a good reference for urban and indoor environments, but does not well represent rural and 
suburban environments.  
 
 A typical mode stirred reverberation chamber (MSRC), also referred as Reverberation 
Chamber (RC), consists of a closed metal cavity equipped with movable metal blades that act as 
field mixers (commonly called stirrers) and a turntable that rotates the DUT. A description  is 
provided in Figure 3-2[36]. The independent movement of the stirrers and the rotation of the 
sample, allow to dynamically changing the boundary conditions of the electromagnetic field 
generated inside the cavity. 
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Figure 3-2  Reverberation chamber setup for devices testing with single cavity.  
 
 
 

In a perfectly agitated MSRC, the real and imaginary parts of the rectangular components of 
electric and magnetic fields follow Gaussian distributions with identical paths variance. Thus, 
the amplitude of the electric and magnetic fields measured in a perfectly stirred follows a 
Rayleigh probability density function (PDF), while the phase is uniformly distributed. This type 
of distribution is very similar to the multipath field distribution found in urban environments for 
mobile communication systems.  The naturally emulated Rayleigh environment in a MSRC is 
well known as a good reference for urban and indoor multipath environments, but does not 
reflect the reality of other propagation environments. Limits to emulate arbitrary channel 
models in a typical MSRC can be summarize as: 
 
 

• Delay Spread (DS) cannot be arbitrarily set.  
• Doppler is limited by the relatively slow motion of the stirrers. 

 
    
On the other hand, there are some important advantages that have made this methodology 
become an emerging technique during the last few years. 

 
• Cost effective solution: the number of probe antennas used in a MSRC is much lower 

than in other solutions (as those based in anechoic chamber). 
• Measurement time: due to the capability of MSRC to emulate a 3-D environment 

(instead of 2-D environments generated with other methodologies), the measurement 
time with this technique is lower than in other techniques and can be even suitable to be 
included in production lines. 
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The extension of this methodology is one of the most promised techniques, which consist on 
adding more than one metal cavity so the fields do not necessarily have to be constrained to a 
single cavity. In consequence, MSRCs may contain more than one metal cavity that could be 
coupled through a variety of means, including wave guides, slots or metal plates, as it is shown 
in Figure 3-3. 
 
 

 
Figure 3-3 Mode-stirred chambers with multiple cavities. Source [38]  

 
         

 
Solution that has been proposed to overcome that limitation, consist of cascading a MIMO CE 
and the MSRC. Using that setup, the properties of an arbitrary channel can be set in the channel 
emulator, extending the channel model emulation capabilities of a typical MSRC. However, the 
channel models parameters are changed by the innate response of the MSRC, and therefore the 
signal properties inside the MSRC is not exactly the same than those set in the channel 
emulator as seen in Figure 3-4. 
 

 
Figure 3-4 Test bench configuration for testing in reverberation chamber. Source [38] 
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Several works provide interesting results for the RC methods. In [87], the joint research 

effort of OTA in Sweden and UPCT in Spain show that it is possible for a multicavity RC to 
emulate different channel models with diverse levels of correlation using a novel sample-
selection technique.  The 3GPP MIMO OTA Work Item in progress highlighted [88], a recent 
contribution by EMITE. The new figures of merit, which are a statistical analysis of measured 
throughput, are presented in this issue by Marin-Soler et al [89]. These figures can indeed be 
very useful for determining the final goal of distinguishing between good and bad MIMO 
devices with a large set of measured throughput data obtained for a specific device following 
the 3GPP/CTIA test plans. The differences between test methods observed during measurement 
campaigns can be mitigated for RCs by the novel calibration method presented by Garcia-
Fernandez et al. [90]. The ability of RCs to emulate the time domain aspects of 3GPP SCME 
channel models is demonstrated by Arsalane et al [91]. The work by Hansen [92] concentrates 
on demonstrating the ability of RCs to evaluate antenna correlations in an isotropic environment 
to those obtained from the classical definition. 
 

3.3.2  Two stages method 

 
The two stages method consists on the measurements of far field antenna radiation patter 

therefore the method divides the MIMO OTA tests in two separate measurements. Firstly, the 
MIMO antenna radiation pattern is measured inside an anechoic chamber. Secondly, a 
commercial channel emulator is used to mathematically convolve the measured antenna 
characteristic with the chosen OTA channel model for real time emulation.  

 
In [86] authors explains how to experiment this methodology in the anechoic chamber. 

They demonstrated that the first stage consists of the characterization of the three dimensional 
antenna radiation patterns of all the antennas in the DUT, using an anechoic chamber. The setup 
needed to perform this part of the measurement is defined in the 3GPP document TS 34.114. 
The measurements are started by placing the DUT in the anechoic chamber in the far zone 
radiation pattern. The measurements were conducted in two polarizations ©	 and ̂  as shown in 
Figure 3-5. The user influence can be included in this stage, by repeating the antenna radiation 
pattern characterization including head and hand phantoms.  
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Figure 3-5 The coordinate system used in the measurements. 

 
 
The second stage of this method consists on performing the desired FoM conducted 

measurements. To establish the communication, the BSE is connected to the MIMO CE 
(emulating the compound channel, including both the MIMO antenna effect and the multipath 
channel effect) and then to the MIMO DUT’s temporary antenna ports via approved RF cables, 
as it is showed in Figure 3-6. By controlling the power settings of the channel emulator and also 
the integrated channel model, the end-to end throughput with the MIMO antenna radiation 
influence can be measured [38]. 

 
Figure 3-6 Proposed two-stage test methodology for MIMO OTA test. Source [38] 
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3.3.2.1 Radiated test method 

 
This method is illustrated in Figure 3-7. It is using two probe antennas and one azimuth 

positioner in order to cover a large number of different angle of-arrival constellations. The two 
signals from the base station emulator are routed directly to the probe antennas with the chosen 
polarization. In the radiated test the constellations are categorized as spatial constellations, i.e., 
the azimuth orientation of the DUT and the elevation. 

 
 

 
Figure 3-7  radiated test example. Source [40]. 

 
 

3.3.3 Multi-probe and fading emulator 

  
This type of OTA test methodology groups a number of slightly different 

methodologies, but all of them include an anechoic chamber and several antennas that surround 
the DUT. These techniques are commonly referred as anechoic chamber based methodologies 
[39]. These methodologies consist of a large number of probe antennas placed inside an 
anechoic chamber transmitting with temporal and spatial characteristics for testing multiple 
antenna devices. Probe antennas are positioned around the DUT in such a way that it is possible 
to change the receiving spatial profile of Angle of Arrival (AoA) and consequently the Angle 
Spread (AS) at the DUT position. A schematic representation of the setup of a typical multi-
probe method for MIMO OTA testing facility is illustrated in Figure 3-8. 
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Figure 3-8 Illustration of a Multi-Probe MIMO OTA Testing. Source [38] 

 
The contributions related to the anechoic chamber are very interesting. Khatun et al [93] 

clarify the very important issue of the required number of probes for synthesizing the desired 
fields inside a multi-probe system. The work by Kyosti et al. [94] show that the creation of a 
propagation environment inside an anechoic chamber with the ring of probes method requires a 
mapping of the original channel modeling on to the OTA antennas, with the geometric 
description being a prerequisite for the original channel model. In the following, we discussed 
some recent experimental realization for OTA test setups.  
 

3.3.3.1 Sakata system fading emulator 

 
The spatial fading emulator presented by Tokyo Institute of Technology and Panasonic 

[39] has been further developed in parallel at SP and Sony Ericson. Various aspects and 
measurements have been presented in COST 2100 Transmit Diversity (TD) s (see Figure 3-9). 
It is shown for the SFE has 62 dipoles antennas in 31 pairs dual polarized.  Phase shifters, 
power dividers and attenuators, operating in the RF band, it has been shown that a realistic 
fading channel environment can be emulated reduce the influence from the measurement 
equipment. 
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Figure 3-9 Spatial Fading Emulator Test Setup. Source [39]. 
 
 
    The antenna probe consists of two antennas: 
 

• A half-wavelength dipole set vertically. 

• A horizontally-located half-wavelength dipole. This configuration can reproduce a cross 
polarization power ratio, XPR, of incoming wave. A measurement of the RF-controlled 
spatial fading emulator is carried out using the following procedure. The calibration 
procedure can be performed by using an electrical-controlled RF switch. Thus, the 
calibration of the emulator can be done automatically. Once the calibration is finished, 
the attenuators value can be modified in order to produce a special distribution of the 
incoming wave and to make a Cross polarization Power Ratio (XPR). Moreover, an 
initial phase can be imposed to each antenna probe to create a multipath fading channel. 

3.3.3.2 SATIMO 

Figure 3-10 shows SATIMO configuration [40]: 15 probes antennas are located on a 
circle with 45 cm radius. Only 8 probes are used since the multi-channel fading emulator used 
could only accommodate 8 outputs. Antennas are spaced 45° apart. Horizontal polarization of 
each probe is used in order to fit with the chosen channel models. The basic principle is to 
create a specific propagation environment at the DUT. The channel emulator has its outputs (8 
multiple channels connected to the 8 probes surrounding the DUT) create multipath 
environment including delay dispersion, fast fading, path delays, and Doppler shift. The 
multipath signals are then transmitted to the DUT via probes. 
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Figure 3-10  SATIMO Test Setup Components. Source [40] 
 
 
    Measurement capabilities of the SATIMO solution include evaluation of receiver 
diversity-based handsets, evaluation of MIMO performances of Wi-Fi, LTE and WiMAX-based 
handsets, and emulation of widely standardized 3GPP channel. It employs propagation models 
in a controlled environment, namely, single cluster, multiple clusters, and uniform. Emulation 
of variable angles of arrival, angular spread, cross polar ratio (XPR), Doppler, and delay spread 
are supported. The figures-of-merit are the device throughput in controlled fading 
environments, channel capacity and bit Error rate and antenna-related parameter 
characterization such as correlation and diversity gain. 

3.3.3.1 Electrobit 

 
Figure 3-11 depicts Electrobit OTA system, three OTA antennas were used in the 

chamber and they were positioned in a segment of Azimuth space with 20° spacing. The radio 
channel emulator used was EB Propsim C8.  The MIMO OTA test setup is composed of a base 
station emulator, a multidimensional fading emulator, anechoic chamber, a number of OTA 
antennas and a DUT. 
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Figure 3-11 Electrobit test setup components. Source [41]. 

 
 
     It is a MIMO-OTA test solution where flexible configuration for SISO, MISO/SIMO, and 
MIMO up to 4 * 4 or 8 * 4 is available. It supports 3GPP Release 10 and Release 11 
enhancements including carrier aggregation up to 160 MHz, multiple RF bands, coordinated 
multi-point, and relaying. It provides the channel modeling applications for MIMO, beam 
forming, multiuser MIMO, smart antenna, and virtual drive testing. It provides integrated uplink 
and down-link signal separation, meaning there is no need for external duplexes. Both 
unidirectional and bidirectional fading modes are available and the system is compatible within 
the Electrobit Propsim product family. As the DUT antenna array is Electrobit uniform circular 
array (UCA) at 2.45 GHz. OTA antennas [41], where Aerial's LPD380-220 antennas, as 
depicted in Figure 3-12. 
 

 
(a) OTA antenna 

 
(b) DUT antennas 

Figure 3-12 Characteristics of DUT (a) and OTA antennas (b). 
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3.3.3.1 Spirent 

 
This MIMO-OTA solution determines the downlink MIMO-OTA performance using an 

anechoic chamber. The software facilitates comprehensive performance characterization 
including antenna, RF front-end, and base-band signal processing implementations. Through the 
characterization of antenna gain or efficiency, branch imbalance, and antenna correlation, for 
dual-polarized antenna conditions, it enables to precisely characterize the difference between a 
good and a poor design [42]. 

3.3.3.1 Rhode and Schwarz 

 
The two-channel method was implemented by Rohde and Schwarz.  It was focused in 

verification of the OTA performance on MIMO devices.  The major component is on downlink 
(DL) 2 * 2 MIMO testing for spatial multiplexing and transmits diversity [43].  Measurements 
of receiver sensitivity and throughput were evaluated with statistical metrics. The TS8991 
MIMO-OTA test system supporting the two channel method consists of an OTA chamber 
having three angular positioners to control angles, two test antennas (downlink), and one 
circularly polarized communication antenna (uplink) integrated in the azimuth positioner. 
Furthermore, the access panel permits five RF connections to the test antennas placed in the 
chamber. Two quad-ridged horn antennas are utilized as test antennas, each of which is capable 
of creating orthogonal components of linearly polarized field. 

3.3.3.2 ETS-LINDGREN 

 
   ETS-LINDGREN developed a MIMO-OTA test system (model AMS-8700) for a 
multipath environment. The simulated environment is suitable for evaluation of downlink 
MIMO performance for emerging wireless technologies such as LTE, WiMAX, and 802.11n, 
Wi-Fi as well as receiving diversity performance of existing wireless technologies. The system 
consists of a dual-polarized antenna array in an absorber lined fully anechoic chamber, 
connected to technology-specific communication test equipment through a spatial channel 
emulator. The antenna array transmits downlink signals from a range of angles of arrival (AoA) 
as seen in Figure 3-13. 

 

Figure 3-13  ETS-LINDGREN OTA system. Source [44]. 
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The spatial channel emulator uses specially modified spatial channel models to feed 
each antenna in the array with a statistical sampling of the source signal(s) with appropriate 
Doppler and delay spreads, to emulate the scattering effect of fixed and moving objects. A 
positioning system allows the wireless DUT to be rotated through the generated field structure, 
to determine its relative performance in different orientations. 
 

3.3.3.1 EMITE Ing 

  
They have provided a solution for MIMO measurements with a second-generation 

multimode-stirred chamber. A MIMO measurement service with the 8 × 8 MIMO Analyzer 
Series E100 is available where up to 8 radiating element prototypes can be tested. Diversity 
gain, MIMO capacity, efficiency, and other parameters are provided for a variety of fading 
scenarios with and without the presence of the user. The developers claim that testing with this 
service could be the only fast and non-expensive alternative for novel LTE or WiMAX 
prototypes [45] as shown in Figure 3-14. 

 

 

Figure 3-14 EMITE OTA. Source [45]. 
 

3.3.3.1  Agilent Technologies 

 
   The company is mainly involved in research and development of MIMO-OTA with 
focus on channel models and test methods for measuring the performance of MIMO devices in 
realistic environments. Results were presented for three OTA methods: the reverberation 
chamber method, anechoic chamber OTA, and two-stage OTA The results revealed that 
although the anechoic chamber method has the flexibility of emulating a variety of multipath 
conditions and does not require access to the user equipment antenna ports, it can become 
highly complex and costly to implement especially when dual-polarized measurements are 
required. This method also has the longest calibration and measurement times as well as the 
largest chamber requirements compared to other systems. It has been suggested to use a smaller 
number of probe antennas for reduced complexity and cost, but this makes system accuracy 
sensitive to calibration and measurement errors [46]. 
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3.3.3.1 Aalborg University (AAU) 

 
Figure 3-15 shows a test setup of the multi-probe setup mounted at AAU for testing 

DUT which is placed in an anechoic chamber surrounded by 16 probes on a 4 meters diameter. 
The probes are designed by AAU. The ring is covered by absorbers to avoid interactions with 
the emulated field. The probes are connected to channel emulator (2 EB F8 Unites) Through 
Power Amplifiers (PA). A base station (BS) emulator, and CMW500 and a Vector Network 
Analyzer (VNA) are connected via switching unit to the faders [47]. 
 

 

Figure 3-15 Test setup at AAU. Source [47] 
 
 
Summarizing, the advantages of this method are: 
 

• Measurements can be performed in an end-to-end way. On the contrary to the two-stage 
method, measurements with anechoic chamber method allow to actually measure the 
DUT as one complete system, including the antenna effect. 

• Flexibility to emulate all the important parameters that characterize a channel model 
(Doppler shift, AoA, AoD, delay and polarization). 

3.4  Recent advances on OTA techniques 

3.4.1 Vehicular OTA 

 
Nowadays, the history of technology advancement continues. The field of this 

development is interested in Intelligent Transport Systems (ITS). The technology called 
Vehicle-to-Vehicle (V2V) communication is a fast-growing technology that is capable of 
improving traffic safety and efficiency.   
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To insure road safety, vehicle industry has until now used some intelligent sensors, like 

radars, cameras to detect others cars. The received information is transmitted between cars in 
the dedicated frequency 5.9 GHz. This, technology provides some environmental benefits, 
which consists in reducing the consumption of fuel. The ability to accomplish the aim of these 
applications extremely depends on the quality of the V2V communication link, which rely upon 
the properties of the propagation channel [99]. Therefore, OTA methodologies, replaying the 
properties of the propagation channel becomes highly important.  

 
In [101], authors test vehicular system by implementing the “virtual road, as seen in 

Figure 3-16. Vehicles nodes have been embedded into ad hoc meshed network structure, in 
order to safe, and secure the traffic management. A specific method and complex channel 
models have been used in V2V systems. Due to the Uncorrelated Scattered (US) channels 
characteristics. Scenarios to be emulated differ considerably from usual ones. The automotive 
industry system testing a car with its antennas is described in [100]. Measurements uncertainty 
of an OTA at 5.9 GHz has been given.  

 
Figure 3-16 A typical implementation of an OTA in VEE test setup for the single-user downlink scenario for 

Mobile communication UE. Source [101]. 
 

 

3.4.2 3D OTA  

 
As we mentioned in chapter 2, the propagation channel models are also dependent on the 

elevation, thus is three-dimensional. In this context, OTA test methodologies have been 
deployed to test wireless performance in 3D realistic channels models. Very few works have 
addressed this issue. Authors in [97] present a channel reconstruction technique for 3D MIMO 
OTA test setups, it was  mentioned that 32 OTA antennas arranged in different elevation angles 
in a 3D setup were used to emulate 3D channel model, but no experimental realization of 
system is given. In [98] a 3D OTA test methodology using simulation approach is briefly 
described.  

The OTA test setup where the DUT is placed in 3D plans, i.e. considering a volume test 
zone.   Additionally, we present various realization of 3D OTA system which has been recently 
developed in the community in Table 3-2. 
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Table 3-2 OTA test facilities in [101]. 

 
 
On the other hand, the main disadvantage of this methodology is the growing complexity and 
cost when the number of probe antennas grows, compared to the other solutions in Table 3-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test facility Chamber type Hardware support channel emulation Frequency range 

Forte 
Anechoic chamber 

(5m*3.1m*4.5) 
12*32 (physical 

channels) 

Time 
domain processing 
similar to tap delay 
line (32 taps 350 

MHz to 3 GHz Forte 
Anechoic chamber 

(5m_ 12_32 (physical 
(per physical 
channel) and 

frequency domain 
processing (unlimited 

fading paths per 
channel) 

350 MHz to 3 GHz 
(4_4 channels 

Vista 
Anechoic 

(16 m*12 m *9m, 
max DUT size = 6 m) 

Under research 

Dynamically 
evolving 

geometry-based 
stochastic channel 

model 

70 MHz to 6 GHz 
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Table 3-3 Comparison of proposed test setups in anechoic chamber 

Solution 
Developer 

Chamber type 
and dimension 

Hardware 
support 

Channel 
emulation 

Frequency 
range 

Other features 

Electrobit Anechoic 

2*2 to 8*4 up to 
32 channels with 
48 fading path 

per fading 
channel available 

Standard (LTE, 
ITU, 3G) 
optional 

including LTE-A  
evaluation 

models, dynamic 
spatially evolving 
channel modeling 

30-2700 MHz, 
RF interface 

channel signal 
BW 40 MHz 

Support carrier 
aggregation up to 

1600MHz 
Multiple RF 

bands, coordinate 
multipoint and 

relaying 

Spirent Anechoic 
4 to 32 probe 

Layouts 

Standard (3GPP, 
SCM/SCME) 
Winner, and 

ITU) and 
classical user 

defined models 

Up to 6 GHz 
signal BW 26 

MHz 
SR5500 Wireless 
channel Emulator 

Transmit antenna 
having single as 

dual 
Polarisations 

SATIMO Anechoic 
4 to 32 MIMO 
dual polarized 

probes 

Propagation 
model in a 
controlled 

environment 
 

(single cluster, 
multiple cluster, 

and uniform) 

400 MHz to 6 
GHz 

Positioner 
feature allowing 

to choose 
desired azimuth 
for testing the 
DUT in more 
orientations 

Rhode and 
Schwarz 

Anechoic 
(5m *5 m* 5m) 

2*2 MIMO 
Downlink 

10 MHz BW 
(LTE static 
channel) 

Test results 
reported for 

Quad-ridget horn 
mode in 0.7 GHz 

band (TS8991 
MIMO OTA) 

antennas, 
dedicated  ^ 

and © 
antennas 

connectors 

ETS-Lindgren 
Anechoic 

(4.9 
m*4.9m*3.7m) 

Not specified 

Specially 
modified spatial 
channel models, 

appropriate 
Doppler and 

Delay spread to 
emulate the 

scattering effect 
of fixed and 

moving objects 

700 MHz to 
10 GHz( Model 

AMS-8700) 

MIMO dual 
polarized 

environments 
simulation 
antennas 
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3.5 Multi-probe OTA channel emulation techniques 
 

The multi-probe anechoic chamber method has appeared as a fundamental solution to 
reproduce different channels models accurately. The principle element in this methodology is 
the number of probes; each probe is fed by a channel emulator to generate the temporal 
characteristics of the desired channel model. Two channel emulation techniques are proposed in 
the literature. The methods are prefaded signal Synthesis (PFS) and plane wave synthesis 
(PWS). Both methods can create statistically equal radiated propagation environment within the 
test volume. The plane wave synthesis focused on individual rays while the PFS focuses on the 
concept of "cluster".  A cluster being constituted by a certain number of rays. In a common 
terminology the cluster is understood as a propagation path diffused in space, either or both in 
delay and angle domains. Typically a cluster is composed of a fixed number a rays and has a 
specific shaped Power Angular Spectrum (PAS), for example, Laplacian function, defined by 
Angles of Arrives (AOA) and Angular Spread (AS).  

 
The plane wave synthesis for MIMO OTA comes from traditional plane wave synthesis 

is in the field acoustics and electromagnetic. It is based on synthesis of the electromagnetic field 
environment using the spherical wave theory[47]. In [47] the influence of the number of probes 
on the geometrical size of the test zone and quietness of the test zone has been presented of the 
maximum relative error between the synthesized and intended field on the circumference of the 
test zone is evaluated, is called equivalent reflectivity level. Authors in [48] present a different 
approach of PWS, which consists into setting the incoming power angular spectrum (PAS) of 
the channel which is modeled as a collection of plane waves. This PWS technique can generate 
a specific AOA on the test zone by selecting properly the complex weights associated to each 
probe. The time variant channel can be also emulated in controlling the phase of the probes, to 
emulate a given Doppler effect. 

 
The synthesis technique utilized in [49] is the PWS based on spherical wave theory. 

According to this theory, any arbitrary electromagnetic fields can be described by means of 
spherical wave expansion (SWE). This spherical wave expansion is the theoretical justification 
of the limited number of probes because of its well-known cutoff properties of the basis 
function.  In [49], the rules for the number of probes as a function of the test zone size in 
wavelengths are presented for both 2D and 3D cases. Then accurate rules for the minimum 
number of required probes have been established taking into account the uncertainty level of the 
2D field synthesis.  
 

With respect to PWS, two types of setup exist, one where the distances between OTA 
probes satisfy the Nyquist sampling criterion and other one where such criterion is not satisfied. 
The latter is typically the reciprocal of near-field antenna measurement setups or the real-time 
equivalent of the near-field setup working with virtual synthesis. The proposed multi-probe 
based OTA test setups in the literatures are of the latter type. Principally, irrespective of the two 
types, for synthesis, one should find those excitation voltages of the OTA probes that cause the 
superposition of the radiated fields to match the prescribed fields tangential to the surface of the 
test volume [50] . 
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 For the first type of setups, the synthesis is done just by taking the components of the 
target field at the OTA probe positions tangential to the test surface by utilizing the Huygens’ 
Principle. This is typically the approach studied in acoustic wave field synthesis and in [51]. 

 
For the second type of setups, almost invariably inversion, of the known fields generated 

by the OTA probe on the test zone surface, is used to derive the proper excitations for the OTA 
probe. The PWS reported in [52], is based on the synthesis of electromagnetic field 
environment using the spherical wave theory, whereas [53] deals with PWS based on a plane-
wave description. In [57], the PWS is considered for pure 2D case with hypothetical line 
sources while regular OTA ring array is considered in [56]. 

 
 

3.5.1.1 Required theoretical number of OTA probes  

 
In this section, we recall the rule for the minimum number of OTA antennas as a 

function of the radius of Zone under Test (ZUT) in wavelengths through the spherical wave 
theory. The spherical wave expansion has been long known and used in this context of radiation 
problems [45]. The spherical wave function forms an orthogonal set that provides a complete 
solution to Maxwell's equations in free space. The electric field in a source-free region of space 
can be written as a weighted sum of the spherical wave functions as: 

 

=��., ©, ^	 = 	 �ª«hhhh ¬5Ty�W	 _�5Ty�W	 �., ©, ^	y
Tk#y 									w

ykl
�
5kl

£
Wkl  

 

 
     (3.1) 

 
 

Where =��., ©, ^		is the electric field in standard spherical coordinates �., ©, ^		k is the wave 

number; « = 	�­® is the free-space field impedance; s, m and n are the spherical mode 

indices	¬5Ty�W	  are the spherical vector wave coefficients; and	_�5Ty�W	 �., ©, ^	 represent the power 
normalized spherical vector wave functions in spherical coordinates. It is known that 

the	_�5Ty�W	 �., ©, ^	functions are separated into radial, elevation and azimuth functions, where the 
radial functions are specified by the upper index c, the elevation functions are the Associated 
Legendre function and the azimuth functions are the exponential functions. Index n represents 
the degree of the radial function, index m is the index for the azimuth functions and values of s 
= 1 and 2, represent the transverse electric and the transverse magnetic field. The functions _�5Ty�W	 �., ©, ^	 are defined as: _�lTy�W	 =	&Ty;¯��°	�±�	jT²��|³| ´µ¶·¶¸¹· º»	����¼	¯��°	�±�	½²��|³| ´µ¶·W¥5· º¾	�����	<  

(3.2) 

 
 
And 
 

_�lTy�W	 =	��� + 1	�� ��y|T| �cos ©		��� +	 1�� ���	����		¿y�W	���	 ���y
|T| cos ©XÀ*© ©̅ 

 
 
(3.3) 

With    
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                                       &Ty =	 l√�Â lªy�y¼l	 � T|T|�T %jTÃ 

 
(3.4) 

 
 
 
 
 
 

Where   �yÄTis the normalized Associate Legendre function.  ¿y�W	���	  is one the 
functions ¿yl Spherical Bessel function ¿y�	spherical Neumann function¿yÅ	 Spherical Hankel function of 
the first kind ¿y£	 spherical Hankel function of the second kind where X	 = 	1 and X	 = 	2 
correspond to radial standing waves, finite or infinite at the origin, respectively, whereas X	 = 	3	and X	 = 	4 correspond to radial outgoing and incoming waves, respectively. Due to the 
well-known cut-off property of the spherical wave functions, the expansion in (3.3). 
 
 � =	 Ç�� + �lÈ (3.5) 
 

Where r is the radius of the minimum sphere that fully encloses the device, n1 is a small 
integer number, and the square brackets indicate the nearest integer number greater than or 
equal to the number inside the brackets. Typically, �lvaries from 0 to 10 depending on the 
desired accuracy of the field characterization. For electrically relatively small antennas, for   
instance, antennas	� ≤ 2�, a clearly smaller value, e.g.., �l= 2 can be applied is the wavelength 
of carrier frequency. The spherical wave mode, indicated by j index is calculated from j = 2 (n 
(n + 1) + m - 1) and the total number of modes in spherical wave characterization is:  
 
 
 Ê = 2��� + 2	 
 

 
(3.6) 

 
 
Now, in theory, for synthesizing all J modes, the minimum number of probes, Nantmin, is equal to 
the number of modes J. Hence the general rule for required number of probes in 3D case, where 
the probes are distributed over a sphere and both the elevation and azimuthal distribution of the 
incoming waves are considered, becomes: 
 �ÅËºy�Tjy	 = 2��� +		�lÈ	� + 4�Ç�� +	�l	È	 
 

 
(3.7) 

 
 
 
The noticeable issue in 3.7 is that the (3D) number of the OTA antennas is proportional to the 
square of the (ZUT) radius r and the value for	�l.  
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 In the azimuth plane, we can derive the minimum number of probes in 2D case as: 
 
 
 
 ��Ëºy�Tjy	 = 2�Ç�� +	�l	È + 1	 
 

 
(3.7) 

 
We summarize some values of required number of OTA antennas according to DUT radius in  
Table 3-4. 

 
 
 

 
Table 3-4 ZUT radius as function of number of OTA probes in 2D case. 

Number of probes  ÌÍÎÏ�ÐÑÒ�	 ZUT radius r [ Ó] 
4 0.22 
8 0.45 
16 0.75 
32 1.19 
 
 

3.5.2 Pre-faded signal synthesis (PFS) 

 
 This technique was proposed in [95] the focus is on reproducing the channel spatial 
characteristics in the test volume. The objective is to find the optimum power weights of the 
OTA probes that minimize the correlation error between the theoretical spatial correlation 
resulting from the target continuous PAS and the synthesized spatial correlation resulting from 
discrete PAS. This technique has been implemented in several commercial channel emulators 
[52][96]. The so-called pre-fading approach differs from the PWS approach because fading 
results not only from the superposition of the waves at the level of the zone under test but this 
intended effect is produced partially at the level of the excitation probes of the OTA device. 
 

Of the two described techniques for emulating the field environment inside the test zone, 
an advantage of the PWS is that the PWS approach supports the emulation of any circumstances 
of an arbitrary channel whereas PFS doesn’t support modeling of LOS path with arbitrary AoA 
and thus not with dynamic LOS path direction neither. Additionally, PWS supports controlled 
linear, circular, or elliptic polarization of the multipath. A drawback of the PWS is that it 
requires a phase calibration which is not needed in PFS. 
 

In PWS technique using Huygens’ Principle, the Huygens’ sources are placed on the 
surface of the test volume and thus the required chamber will be small in size, which reduces 
the cost of the MIMO OTA test setup significantly.  
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On the other hand, the mutual coupling between the sources will be increased for such a 
large number of sources placed on the test surfaces, resulting in increased measurement 
uncertainty and need of complex antenna calibration. Additionally, this method increases the 
system cost due to a required large number of coherent output channels of the fading emulator. 
For these reasons, the PFS technique will be adopted in this work to emulate a different channel 
model. The concept of this method is detailed in the next chapter. Table 3-5 compares different 
characteristics for OTA test methodologies in this chapter. 
 

 
Table 3-5 Comparison between different MIMO OTA methodologies. 

 
  

Attribute 
Reverberation 

chamber Anechoic chamber Two stage method 

Major components Reverberation chamber 

Channel 
emulator 
probe, 

antennas, 
anechoic chamber 

Channel emulator,   probe 
antenna, anechoic 

Chamber 

Number 
of antennas 

2-4 8- 32 varies  

Channel 2D/3D 3D 2D/3D 2D/3D 
Number 

of spatial cluster 
1 2D/3D varies) 2D/3D 

Power 
Angular 

Spectrum 
per cluster 

Uniform Controllable Controllable 

As Random Controllable Controllable 
PDP Exponential decay Controllable Controllable 
DS Slight Controllable Controllable  

Doppler sift limited Controllable Controllable  

Support channel models Uniform 
SCME,  cluster, 

uniform, 
Single 

cluster, uniform 
Cross Polarization 

Ratio (XPR) 
Constant Controllable Controllable 

Ability to 
control 

interference direction 
None Yes Yes 

DUT 
size constraints 

None 0.5-4� None 

Calibration equipment/ 
Method 

2port VNA 

Joint 
OTA link 
calibration 
using 2 port 

VNA 

Chamber calibration by 2 
port VNA second stage 

calibration 

Requires 
non-intrusive 

test 
mode 

for antenna pattern 
measurement 

N/A No Yes 

Throughput 
measurement method 

OTA OTA connector 
Conducted 

via 
temporary antenna 
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3.6 Conclusion  
It is now generally admitted that geometric channel models with well-defined 

characteristics such as complex amplitudes, directions of arrival directions of departure delays, 
and polarizations of the multipath components constitute a good means to describe the radio-
propagation channel.  What is expected is to exploit those channel models in the context of real 
devices testing. In this chapter we provided an overview of the different approaches and 
techniques to test devices performances exposed to different radio propagation channel models. 
The first approach which has been presented is the two stage method which cannot really be 
qualified as fully “over the air” and two other approaches “fully over the air” which exploits 
different kind of confined environments either reverberant or anechoic.   
 

 The two-stage method has the problem with the cable connection to the antenna ports it 
requires, which means that the test is never performed in the realistic usage conditions of the 
device under test. The difficulty with reverberation chamber-based methods is that they are not 
well suited for synthesizing all channel conditions in line with usual geometric radio channel 
model. From these technical points of view the anechoic chamber based methods appear to be 
the most promising method for device performance evaluation.  For this reasons we adopted the 
multi-probe anechoic chamber based method. This choice is made for several reasons: the 
ability to emulate a variety of fading scenarios, while controlling its geometric characteristics 
(i.e. AoA distribution).   

 
This chapter shows that the major challenge for OTA testing with the multi-probe 

method is to emulate a realistic environment which accurately reflects the real wireless 
propagation environment. Mainly two channel emulation techniques have been proposed in the 
multi-probe based OTA setups. One technique is the plane wave synthesis (PWS) technique 
reported in [52][53]. The basic idea of the PWS technique is that static plane waves with 
arbitrary impinging angle of arrivals (AoAs) can be created. The other technique is named the 
prefaded signal synthesis (PFS) technique and has been adopted in several commercial 
emulators’ tools [56]. The essence of this technique is to reproduce the channel desired spatial 
characteristics at the receiver side. 

 
 
After having determined the OTA methodology that meets our needs, we will be 

interested in the next chapters to address the question of how to dimension the proposed multi-
probe OTA test setup, based on simulations approaches in order to propose an optimal 
experimental realization in the anechoic chamber. 
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4 Multi-probes OTA Setup Dimensioning    
 
 

4.1 Introduction 
 
 Different Over-The-Air (OTA) test methodologies have been presented in Chapter 3. 
Among the OTA methodologies aiming to emulate the radio channel in realistic manner:  
reverberation chamber, two stage methods, and the multi-probe anechoic chamber based system 
have been considered. Due to the capability of the multi-probe anechoic chamber method to 
reproduce multipath environment in repeatable and controllable manner, and the capacity to 
control the polarization and spatial characteristics of the channel, we considered this approach 
in our work. 

In this approach an array of antennas are disposed in a zone around the Device Under 
Test (DUT) and connected to a fading emulator that distributes the signal over the proves to 
reproduce different channels models in the Zone Under Test (ZUT).  The probes can be fed in 
order to reproduce a planar wave impinging from a certain direction, according to the so-called 
Planar Wave Synthesis (PWS) previously discussed. Alternatively the Pre-Faded Signal (PFS) 
techniques apply a distorted signal in order to reproduce the stochastic channel characteristics.    
 

In this chapter, we address the issue of dimensioning the two dimensional (2D) and 
three-dimensional (3D) multi-probes OTA test setup.  The purpose is to provide guidelines for 
the design of the OTA ring and the choice and emplacement of OTA antennas, according to the 
channel and the size of the aimed ZUT the size of the anechoic chamber, antennas placement, 
have to be addressed. 
 

For this purpose we first introduce the criteria and the metrics used to dimension the 
OTA multi-probe setup. Then using the spatial correlation as a figure of merit we investigate 
the dimensioning of 2D and 3D OTA setups.  The Matlab tool developed allows characterizing 
the spatial correlation in the ZUT by jointly considering to the number of antennas and their 
emplacement, as well as the ring radius.  In the 2D setup also the effect of near field condition 
are analyzed considering half-wavelength probes as antennas.  The analysis is carried out as a 
function of the frequency and the channel. In particular here we considered a Clarke’s 
scenarios, i.e. isotropic channel, and a single cluster channel.  PFS technique is applied in both 
the 2D and 3D setups in order to reduce the spatial correlation error.  
 

4.2  Criteria and metrics for OTA setup dimensioning 
 

In the literature different works investigated the key aspects related to the multi-probe 
system setup dimension [60]. One of the issues in OTA multi-probe system design is the 
location of OTA antennas around the ZUT. Several OTA setup realization in the literature, have 
employed horn antennas and Vivaldi antennas [103]. 
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The antennas are often disposed on a ring, whose physical dimension determines the 
emulation accuracy in the OTA system. In [60] criteria for physical dimensions are developed 
based on field strength stability and phase stability across the test zone. In this section, we start 
by reviewing some criteria related to dimension multi-probes OTA test setups and provide 
metrics to determine it.  

4.2.1  Far Field criteria 

 
One of the common criteria when measuring the antenna is to respect the far field 

condition.  Let's consider a generic antenna as shown in Figure 4-1. It is very well known that 
the reactive near-field region is the region immediately surrounding the antenna, defined as 0 < 
r < R1, where r is the radial distance between the antenna and the point of observation. In this 
region, the field is reactive and therefore non-radiating. The boundary of this region for a short 
dipole antenna is defined as 0 < r < λ/2π, where λ is the wavelength.  The region in the 
immediate neighborhood of the far-field region is the radiating near-field region, i.e., R2 > r ≥ 
R1. This region is also the intermediate region between the far-field and the reactive near-field 
regions. In this region, fields decay more rapidly than 1/r and the relative angular distribution of 
the fields varies with r. Moreover, the phase error decreases with an increase in r (as r → ∞ the 
phase error becomes zero).  For an antenna with D as the largest dimension, generally larger 
than one wavelength, the commonly used criterion to define the boundary between the radiating 
near field and far field region is defined in terms of the Fraunhofer distance [104], as follows:  
 

� ≥ 2Ô��  

 

(4.1) 

 
In the far field region, the radiation pattern does not change shape with distance 

(although the fields still die off as 1/r, the power density dies off as 1/r²). Also, this region is 
dominated by radiated fields, with the E- and H-fields orthogonal to each other and the direction 
of propagation as with plane waves. 
These criteria explicitly concern antennas for which the maximum overall dimension, D, is 
large with respect to the wavelength.   
 
In [105], it was shown that when considering dipoles we can find at r < λ/2π as much reactive 
power as active power. Authors demonstrated that this value should rather be set at 1.62 λ for 
infinitesimal and short dipoles, 2 λ for half-wavelength dipoles, and 3 λ for one-wavelength 
dipoles. Also they had shown that the transversality condition is more restrictive than the 
sphericity condition. Thus, the far-field zone lower boundary is located at 10 λ. 
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Figure 4-1 Field regions of thin dipole antenna. 

 
  

CTIA provided a reference document for test of mobile station Over the Air [80]. In this 
report CTIA specifies minimum r with three conventional far field criteria, as below: 

 

• � > �ËÖ×  ( the Fraunhofer distance) 

•  � > 3� 
• � > 3Ô  

Actually the third criterion is based on the amplitude uncertainty.  The more restrictive of these 
criteria should be employed. However it is worth to notice that this test plan is provided to 
perform standards measurements of total radiated power (TRP) and total isotropic sensitivity 
(TIS) for GSM, CDMA, GRPS and LTE systems device. In particular in [80], the device 
dimension is considered equals to 0.3 m. Let us consider 30 cm and 15 cm as an example of 
typical device dimension.  
Aiming to perform OTA measurements on a wideband in Figure 4-2, we show the far field 
criteria in the 2-6 GHz band. It can be clearly seen that, accordingly to the frequency and the 
device dimension one criteria is more stringent than others. 
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(a) (b) 

Figure 4-2 Far field criteria with fixed DUT size:  15 cm (a) and 30 cm (b) 
 

 
Obviously in emulating the channel one would ideally look for far field condition. However this 
criterion is not the only one request. Actually, the multi path fading should be reproduced and a 
dedicated metric should be used.  

4.2.2  Spatial correlation  

 
In the previous chapter, we demonstrated the importance of channel modeling for the 

evaluation of MIMO system and a proposal which enables the consideration of the coexistence 
of NLOS and LOS paths. Multi-path-richness refers to an environment which is surrounded by 
many scatterings or tall buildings resulting in waves coming from many different spatial 
directions. When talking about the propagation channel, spatial correlation is an important 
metric that indicates how the channel is correlated along time or equivalently distance. In 
particular for multi-antennas systems it determines the performance and is strictly related to the 
antenna separation. Here we consider the channel spatial correlation as metric to evaluate the 
quality of OTA. The underlying assumption is that the channel is Wide Sense Stationary with 
Uncorrelated Scattering (WSSUS) as explained in chapter 2.  

 
 

In practice the spatial correlation is determined the Power Angular Spectrum (PAS). When 
considering two antennas at positions i and j the spatial correlation coefficient can be expressed 
as [55]:  
 
 

Øj,Ù = Ú Ú Û�Ü	�©, ^		 ∙ Û∗�Þ�©, ^		�ßà�©, ^	�©	�^Â��Â�
�Ú Ú áÛ�Ü	�©, ^	á�	�ßà�©, ^		�©�^Â� 	�Â� 	�Ú Ú âÛ�Þ	�©, ^	â� 	�ßà�©, ^	�©	�^�Â� 	Â#Â

 

 
(4.2) 
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Where Û�Ü	�^	 and Û�Þ	�^	 are the complex incoming field on DUT antennas i and j placed on 

the DUT.  �ßà�©, ^		is the distribution of Angle of Arrivals (AoAs) in elevation and azimuth. 
Thus the spatial correlation, and consequently the performance of a wireless system, depends 
generally on the density distribution of angles of departures and arrivals. In the case of 
scatterers uniformly distributed [0, 2 �Ç in the azimuth plane the PAS reduces to: 
 
 
 �ßà�^	 = 

l�Â , ^ ∈ Ç0,2�Ç 
 

(4.3) 
 
 In this case the module of the complex correlation for a distance d is given by the zero order 
Bessel function [79][106]. 
 |Ø��	| = 	 |Ê�	���	| 
 

(4.4) 
 

Where �	 = 
�Â×  . When the scatterers are uniformly distributed in all 3D space, the amplitude of 

the correlation coefficient can be described by the sinus cardinal function as [79]. 
 
 	

|Ø��	| = 	 äsin	���	�� ä 
 

 
         

             (4.5) 

 
In Figure 4-3 we represent the variation of the correlation function as function of distance or 
equivalently the antenna separation, showing that first null comes at 0.4 �	in 2D and 0.5 � in 
3D. 

 
Figure 4-3 Theoretical spatial correlation in 2D and 3D isotropic channel model 
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To assess the performance of wireless communication systems, various geometrical 
channel models of realistic radio channel representing real world environments have been 
proposed in the literature [81][82].  Different angle of arrival distribution have been proposed in 
different GSCMs studied.  For example, the 3GPP model with SCME that is useful for OTA 
channel emulation in different environments is described.  Multipath components are often 
grouped in clusters whose distribution depends on the environments and model. A commonly 
used intra-cluster distribution is the Laplacian one, which can be expressed as:  

 
  
 

�ßà�^		 = l			¡¾√� 	%
æá¾	æ¾Äá√Öç¾       (4.6) 

 
Where ̂� is the mean angle of arrival and 	YÃ is the angular spread.  For instance in the single 
cluster SCME model the AoA distribution is Laplacian and the SCME Urban Micro-cell model 
with all AoAs assumed to be zero, for OTA purposes the angular spread can be specified with 	YÃ= 35º or with 	YÃ= 25º to enable a range of spatial correlation for different types of devices. 
For 3D channel a common assumption is to consider independent distribution of azimuth and 
elevation angles [83]. Under this assumption the 3D Power Angular Spectrum (PAS) can be 
written as: 

 
  

                �ßà�©, ^	 = �ßà�©	 ∙ �ßà�^	                                                          
                             

(4.7) 
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 Where �ßà�^	and �ßà�©	 are the power spectrum in azimuth and elevation respectively. 
Therefore, we considered two antennas under test ßj and ßÙ 	separate one from the other by a 
distance d. It should be noted that we correlated channels and not electromagnetic fields. The 
implication is that we should always specify what the hypothesis of the projection of the field 
across DUT. For example if the fields are all vertically polarized, the resultant is also vertical 
and the orientation of DUT is also a vertical antenna. If all fields are coming from different 
direction in space with a horizontal polarization, it is no longer possible to stay in the Omni- 
directionality hypothesis because the orientation of the DUT induced necessarily a polarization 
of spatial correlation.  We considered the first case where antennas are omnidirectional, in 
vertical polarization.  
 
 

4.3    Two- dimensions OTA setup 
 
Let us consider two antennas ßj and ßÙ 	separate one from the other by a distance d.  As longs as 
the scatterers are distributed over the azimuth plane, the spatial correlation can be expressed as 
[79]: 
 
 	

Ø�/è¥�Ü,	Þ	 = Ú áÛ�Ü	�^	á âÛ�Þ	�^	â 	�ßà�^	%�& }−'2� �� �XÀ*�^ − ^j	~ �^Â#Â
�Ú 	áÛ�Ü	�^	á�	�ßà�^		�^Â#Â 	�Ú 	 âÛ�Þ	�^	â� 	�ßà�^		�^Â#Â

 

(4.8) 
 
 

Where �	 is the wavelength, d is the DUT antennas separation and ̂ j represents the angular 
orientation in the azimuth plane of the i-the DUT antenna. 
 
 
Let us consider a 2D OTA ring as depicted in                                                    Figure 4-4, where * probe antennas are placed over a finite ring radius R and ̂ 5 is the angular position of each s-
th antennas. DUT antennas are separated by distance d.  .j,5 and .Ù,5 are the distance between 
OTA antenna and �I, '	 DUT antennas.  In this work we consider that the j-th antenna is 
opposite to the i-th one. Hence		^Ù=^j- �. 
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                                                   Figure 4-4 Multi-probe OTA setup 
 

 
 

Ø�K��Ü,Þ	 = ∑ Û�Ü	é.j,5, ^5ê ∙ 	Û∗�Þé.Ù,5, ^5êwë�ì	5kl 	�5
�∑ áÛ�Ü	é.j,5, ^5êá�	�5	wë�ì	5kl 	�∑ âÛ�Þ	é.Ù,5, ^5êâ� �5	wë�ì	5kl

 
 
       (4.9) 

 
 
Where Û�Ü	é.j,5, ^5ê and Û�Þ	é.Ù,5, ^5ê are the incident field on ßj and ßÙ 	 antennas respectively, 

and �5 is the power weight of the s-th OTA probe.    
 
 
 
Based on the spatial correlation, the accuracy of the OTA emulation can be analyzed in terms of 
error in correlation as expressed here below: 
 

í��	 = 	[î	 â|Ø�/è¥�Ü,Þ	��	| − |Ø�K��Ü,Þ	��	|â�ï 
 

  
            (4.10) 

 
This metric is then used in simulations in order to dimension the OTA setup in terms of 

radius of the OTA ring and number of antennas, according to the wavelength and DUT 
dimensions.  However it has to be noticed that the spatial correlation expressed in (4.8) is based 
on the hypothesis of far field and planar wave condition. In practice this could not be verified in 
realistic OTA deployment because of some physical constraints.  
Let us consider a generic dipole of length l, as depicted in Figure 4-5. 
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Figure 4-5 Dipole antenna of length l 

 
 The incident field on the generic antenna  ßj, on the vertical polarization (here the z-axis) can 
be expressed in cylindrical coordinates as [64]:   
 
 Û�Ü	 = Ïðñ=ò + Ïóñ=¯ 
 

(4.11) 
where 
 

			=ò = 			=: = −'« �4�� ô�¿ − H2� %#Ù±`õ.l + �¿ + H2� 	 %#Ù±`Ö.� 	 − 2¿ XÀ* ��H2 � %#Ù±`Ü,ö.j,5 ÷ 
 

(4.12) 
 
and 
 

			=¯ = −'« �4� ô%#Ù±`õ.l + 	 %#Ù±`Ö.� 	 − 2 XÀ* ��H2 � %#Ù±`Ü,ö.j,5 ÷ 
 

(4.13) 
 
where « is the free space impedance, � is the wavelength number, and 
 

.l = �Ø� + �¿ − ø���     (4.14) 

  
 

.� = �Ø� + �¿ + ø���     (4.15) 
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It should be noticed that the second term of (4.12) and (4.13) disappear when the overall length 
is an integer number of odd half-wavelength.   
In the following, we will consider half-wavelength as OTA antenna probes, in order to assess 
about the effect of the radius of the ring in the accuracy of the spatial correlation in 2D OTA 
setups.   
 

4.3.1 Simulation framework  

 
In order to assess the correlation accuracy of 2D OTA multi-probe setups, we considered two 
antennas at DUT, i.e. ßj	and	ßÙ, separated by a distance d. 
  
The DUT is arbitrarily oriented in the azimuth plane, hence ^j is considered uniformly 
distributed in [0, 2π [.  
Here we consider two channels: 

• isotropic channel, corresponding to the Clarke’s scenario where the scatterers are 
uniformly distributed according to (4.3) 

• single cluster channel, where the scatterers are distributed according to Laplacian 
distribution (4.6), whose angular spread is chosen to be equal to 35°[82].  

 
 DUT was chosen to be arbitrarily oriented, hence in simulations ^jwas uniformly distributed in 
[0, 2π [. Spatial correlation is computed from 100000 realizations, corresponding to different 
DUT orientations. As a first step the �5weights in (4.9) were computed by direct sampling of the 
PAS of the desired channel model. 

4.3.2 Results 

4.3.2.1  2D isotropic scenario 

 
In Figure 4-6 we show the absolute value of the spatial correlation as a function of DUT 

size, in the isotropic 2D channel. Here all incoming paths at DUT are supposed to have the 
same energy contribution. Hence the expected correlation follows the classical first kind zero 
order Bessel function Ê����	 This behavior is verified for a huge number of scatterers, i.e. OTA 
antenna probes, and correlation approaches the zero value at the integer multiple of 0.4�, as 
expected. 
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(c)  Nant  = 16  

Figure 4-6 Spatial correlation in 2D isotropic channel as a function of the number of probes and radius of OTA ring 
             
 

 
The accuracy of the OTA emulated spatial correlation is affected by the number of antenna 
probes: a high number of antennas allows a fine sampling of the PAS and increases the quality 
of the OTA channel emulation.  
By reducing the radius R the OTA ring, the emulated correlation obviously differs from the far 
field condition. This effect is particularly evident for R smaller than 5�  and small number of 
antennas.  In Figure 4-7 we show the error introduced in correlation for 2D isotropic scenarios. 
It can be noticed that the antenna radiation properties has an important effect on the correlation. 
For instance, when considering a low number of probes, e.g. �ºy� the combined fields on the 
test zone, could bring a smaller correlation error, thanks to the weighting given by the antenna 
itself. 
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(a) Nant = 4 (b) Nant = 8 

  
(c) Nant = 16 (d) Nant  = 32 

Figure 4-7 Correlation error in 2D isotropic scenario as a function of the number of antennas and radius of OTA 
ring  

 

4.3.2.2  2D single cluster scenario 

 
Here we considered a single cluster scenario, with mean angle of arrival �̂ = 0° and 

angular spread	YÃ = 35°. As in the previous simulations, DUT is considered randomly oriented. 
As shown in Figure 4-8 , a small number of equally separated probes allow to correctly 
reproduce for very small DUT size. This is due to the fact that a uniform distribution of antenna 
probes does not allow a fine emulation of a cluster channel, while a distribution on an angular 
sector would allow better reproducing the PAS with the same number of antennas. A feature 
observed in both isotropic and single cluster scenarios is that the correlation error decreases 
along with the number of OTA antennas and DUT size. 
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An unexpected feature, in both scenarios is that in the setup considered, with half-wavelength 
dipoles, the correlation error is slightly reduced for ring radius lower than 5�.  
This is clearly visible in Figure 4-8 where the correlation error is depicted as a function of DUT 
size. This effect is particularly evident for larger DUT size and depends on the considered 
antenna effect.  
 
 
 

  
(a) Nant = 4 (b) Nant = 8 

  
(c) Nant = 16 (d) Nant  = 32 

Figure 4-8 Spatial correlation in 2D single cluster channel as a function of the number of probes and radius of OTA 
ring 
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(a) Nant = 4 (b) Nant = 8 

  
(c) Nant = 16 (d) Nant  = 32 

Figure 4-9 Correlation error in 2D single cluster scenario as a function of the number of antennas and radius of 
OTA ring 

 
 

 

4.3.3 Optimization of OTA antenna feeding 

 
As explained in chapter 3, different techniques can be applied to feed the OTA probe. 

Here, as extension of the PFS technique, the signal transmitted from the probes is weighted in 
order to reduce the target correlation error. In previous section we obtained the �5 weight from 
direct sampling of discrete PAS at the angular OTA antennas locations. This is a sub-optimal 
operation since the correlation error of (4.10) can be further reduced by opportunely choosing 
the antenna weights, eventually complex, in order to compensate of the effect of reduced 
number of antennas, or ring radius. 
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Here the antenna weights vector û = Çül, ü�, … , üwºy�È were iteratively optimized through 
Conjugate Gradient Method, the objective being to minimize error in (4.10), where the power 
weight is �5 = |ü5|². Hence 
 
 																																						ü5��ì = 	JI��ö éí�ü5	ê 
                              where 

																																								 h|ü5|� = 1wë�ì
5kl  

 
                                                        
                             (4.16) 

 
The constraint given by the fact the integral of PAS over the azimuth plane should be equal to 1.   
 
In Figure 4-10, we show the spatial correlation obtained with optimal antenna weight compared 
to the ones obtained by direct sampling of the PAS, in the single cluster scenario in far field. It 
can be noticed that the higher accuracy achieved as a consequence of the optimization used to 
calculate the complex weights, yielding to a lower correlation error. 
 

 
(a) 
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(b) 

Figure 4-10 Single cluster channel, effect of antenna weight optimization: spatial correlation (a), correlation error 
(b) 

 
 
 
It should be noted that the proposed weighting method was also employed for the uniform 
channel model. In this case, simulations results with the proposed weighting method, is similar 
to the previous results, presented in section 4.3.2.1. This is due to the fact that to emulate 
uniform model with uniform antenna separation, there is no other way than exciting the probes 
with the same weight. Hence the number of antennas is the only parameter of interest for the 
uniform case.                 
  
In order to determine the maximum DUT size, we fixed a maximum error threshold equal to 
0.05. Figure 4-11 shows the maximum DUT size considering an error equal to 0.05 as a 
function of number of OTA antennas in two channel models.  

  

 
(a) 
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(b) 

Figure 4-11 DUT size as function of number of OTA antennas: 2D isotropic (a) and single cluster (b) scenarios 
 
 
In far field condition, when considering	�ºy� = 8, the maximum DUT size is 0.9 �	and 0.2	� in 
the uniform and single cluster scenarios. Nevertheless this situation is not realized in practice 
and finite radius should be considered. For instance when considering R = 3	� , �ºy� = 8, the 
maximum DUT size is 0.1	� and 0.2	� in the uniform and single cluster scenarios, when direct 
PAS sampling is performed.  
 
 
In the 2D isotropic channel, all angle of arrives are the same amplitude, i.e., the transmission of 
all OTA antennas is weighted with the same value. Consequently, the emulated spatial are the 
same for direct sampling and optimization technique, thus, OTA antennas weights and their 
angular positions  could be carefully optimized, for giving a better emulation.  Figure 4-11 
highlights also the effect of weight optimization in PFS technique in single cluster model. As 
shown, by increasing size of DUT it becomes necessary to increase the number of OTA 
antennas.  
 
 

 
To illustrate the obtained simulations results by indicative values. Table 4-1 depicts the 

minimum DUT size obtained from our simulations.  Results are given for direct sampling 
technique and optimization in single cluster scenario for different configuration of probes 
antennas. 
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Table 4-1 Maximum of DUT size as function of number of probes with Direct sampling and PFS techniques for 2D 

uniform channel  
DUT (diameter) size [�] 

 Direct Sampling Optimization 
 4 8 16 32 4 8 16 32 
R = ∞ (diameter = ∞	) 0.1 0.2 0.9 3.7 0.2 0.5 1.6 3.8 
R = 3 Ó (diameter = 6 Ó) 0.1 0.2 1 5 0.2 0.5 1.7 5 
R = 5 Ó (diameter = 10 Ó) 0.1 0.2 0.9 4.35 0.2 0.5 0.9 4 
R =10 Ó (diameter =20 Ó) 0.1 0.2 0.9 4.1 0.2 0.5 1.7 4.2 
R =100 Ó(diameter = 200 Ó) 0.1 0.2 0.9 3.9 0.2 0.5 1.6 4.1 
 
 

In this section we jointly analyzed the effect of number of probes, ring radius, and 
antenna radiation for 2-D OTA multi-probe setup. Simulations were performed considering a 
device under test arbitrarily oriented, in a uniform and single cluster channel. It was shown that 
antenna effect at short distance, i.e. ring radius, affect the correlation accuracy. Despite this 
phenomenon, the field combination on the zone test could be beneficial in terms of spatial 
correlation accuracy. Actually the OTA antenna transfer function acts as a filter, modifying the 
excitation of each probe. Hence Prefaded Signal Synthesis techniques should take into account 
the antenna effect, in order to better optimize the power, eventually complex, weights and 
achieve better accuracy. This optimization here was shown for OTA rings composed by half-
wavelength dipoles, and proven to be effective in order to test larger devices while keeping low 
the number of antennas.  

4.4    Three-dimensions OTA setup 
 

Most of the MIMO OTA multi-probe configuration considers a two-dimension probe 
distribution over a ring. However the radio channel is intrinsically three-dimensional and some 
channel extensions, including elevation angles have been introduced in literature [83].  Recently 
3D MIMO OTA setups have been investigated [68][69]proposing different probe configurations 
and analyzing the effect on channel emulation accuracy. 
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  Most of the configurations proposed are based on spherical layouts, while for practical 
reasons cylindrical configurations could be useful. Nevertheless in cylindrical configurations 
the separation between the DUT and the probe is not constant according to the setup, and this 
could affect the correlation accuracy in the OTA configuration. 3D probes OTA antennas 
configurations sphere radius, as well as cylinder radius and height were set at 10�.  

In this part we analyze the correlation accuracy in spherical and cylindrical setups 
composed by three rings. Effect of Elevation Spread angular (ES) on emulating channel spatial 
characteristics is studied in 3D multi-probe configurations. In order to reproduce 3D target PAS 
of the channel model with higher accuracy, PFS technique is adopted. Simulation results show 
the potential of this technique to emulate 3D spatial correlation.  

4.4.1 Simulation framework 

    
The 3D PAS is a function of both the elevation �©	and azimuth �^	 angles. In order to 

simplify the model, the angular azimuth and angular distributions are often considered 
independent [71], hence the PAS can be considered as in (4.7).  

 
Here we consider two channels: 

• isotropic channel, corresponding to uniform distribution in both azimuth and elevation 
angles (Figure 4-12 (a)) 

• single cluster channel, where both azimuth and elevation follow a Laplacian (Figure 
4-12 (b)) 

 
 DUT was chosen to be arbitrarily oriented, hence in simulations ^jwas uniformly distributed in 
[0, 2π [.  

Spatial correlation is computed from 100000 realizations, corresponding to different 
DUT orientations. 

 

  
(a) (b) 
Figure 4-12 3D model PAS: Uniform (a), Single cluster (b) 

 
When considering a 3D OTA setup with a limited number of antennas �ºy� the correlation can 
be written as: 
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Ø�K��Ü,Þ	 = ∑ Û�Ü	é.5,©5, ^5ê	. Û∗�Þé.5,©5, ^5êwë�ì	5kl 	�5
�∑ áÛ�Ü	é.5,©5, ^5êá�	�5	wë�ì	5kl 	�∑ áÛ�Ü	é.5,©5, ^5êá��5	wë�ì	5kl

 
 

(4.17) 

 

Where �5 is the power of the s-th OTA antenna, obtained by PFS technique.  Here with respect 
to the 2D setup we highlight in the notation that the impinging field on the i-th antenna depends 
on the actual spherical coordinate é.5,©5, ^5ê  s-th of the probe. This is obviously true also in 
the 2D case, but in OTA 2D ring this reduces to a correction phase factor which only depends 
on the angular position of the probe. In 3D according to the antenna position and probes 
emplacement the distance is not constant.  
In the following we present the results for 3D spherical and cylindrical configurations. On the 
contrary of what has been done in the 2D space, here we consider specific alignment of the 
DUT antennas along one of the three main axes.  

4.4.2 Spherical configuration results 

 
Two spherical probe setups considered are shown in Figure 4-13 (a), Figure 4-13 (b), 
respectively. The probes are placed on a three different rings and angular coordinates are 
reported in Table 4-2.  

 

 

 

(a) 16 3R spherical configuration (b) 32 3R spherical configuration 
Figure 4-13 Spherical configuration of OTA test setup (a) and (b) 

 
 

Table 4-2 Angular locations of two spherical probes configurations 

 

Probe 
setup 

OTA antennas configuration [deg] 

16 3R 
©l = 	−30°, ^ = 0	90	180	270; ©� = 	0°, ^ = 0		45	90	135	180	225	270	315; ©Å = 	30°, ^ = 22,5		112,5		205.5	292.5; 

32 3R 
©l = 	−30°, ^ = 0		45	90	135	180	225	270	315; ©� = 	0°, ^ = 0	22.5	45	67.5	90	112.5	135	157.5	180		202.5	225	247.5	270	292.5	315337.5		; ©Å = 	30°, ^ = 0	90	180	270; 



 

95 
 

 
 
 

 
Figure 4-14 shows the absolute value of the spatial correlation as a function of DUT size, in the 
3D uniform PAS model. In this uniform scenario the theoretical spatial correlation follows the 
analytically expressions  *I�X���		Ç76È .  Here the antenna weights are obtained by direct 
sampling of the 3D PAS.  Generally spherical configurations offer better accuracy, when the 
DUT is placed along the x or y axis or z axis.  The reconstruction accuracy depends on the 
probe setup, the target channel and the number of probes. 
 
 

  

(a) (b) 

Figure 4-14 Correlation in 3D isotropic scenario two spherical configurations: 16 3R (a), 32 3R (b).  
 
In the single cluster scenario we considered mean angles of arrival equals to 0°, an azimuth 
angular spread of 35° and an elevation spread equals to 15.5°[84]. As shown in Figure 4-15  
theoretical spatial correlation depends on the DUT antenna orientations in the three axes. 
 
 

  

(a) (b) 

Figure 4-15 Correlation in 3D isotropic scenario two spherical configurations: 16 3R (a), 32 3R (b).  
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It is easier to emulate a 3D isotropic channel, considering DUT in x axis. Larger number of 
probes according Figure 4-15(b), give us accurate channel emulation in two-dimensional plane. 
In y and z axis, the elevation component appears and it becomes more challenging to test a 
wavelength DUT size, based on these proposed configurations. A large number of probes is 
needed according to the elevation spread. This obviously depend on the DUT considered as  
well as the channel to be emulated. 
 
In order, to test DUT in z orientation, we have proposed to study a new 3D configuration, that 
could we be useful. The major characteristic of the proposed cylindrical configuration is the 
height.  It must be studied carefully.  

4.4.3 Cylindrical configuration results 

Figure 4-16 shows two configurations considered in simulations. The first is 16 OTA antennas 
distributed in three OTA ring as illustrated in Figure 4-16 (a). The second consists in 
embodiment the 32 OTA antennas in three OTA ring as shown in Figure 4-16 (b). We opted for 
a uniform cylinder, with � =10�, y =  10� and z =	10�, where z is height of the cylinder.  
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(a) 16 3R cylindrical configuration (b) 32 3R cylindrical configuration 

Figure 4-16 Cylindrical configuration of OTA test setup (a) and (b) 
 

 
Comparison of target and emulated 3D OTA spatial correlation on three orthogonal axes are 
illustrated in Figure 4-17. Therefore, the spatial correlation values on the x, y coincides due to 
the uniform PAS model assumption. In the probe setup illustrated in Figure 4-17 (b), 32 probes 
offer good reconstruction accuracy. 
 

 
 

(a) (b) 
Figure 4-17 Correlation in 3D isotropic scenario two cylindrical configurations: 16 3R (a), 32 3R (b).  

 

The cylindrical configuration offers better results when the DUT is along the z axis. Thus, the 
impact of height of cylinder must be studied. The emulated and target spatial correlation for 
single cluster scenario are illustrated in Figure 4-18. It can be noticed that the elevation angle 
affects the spatial correlation.  
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(a) (b) 
Figure 4-18 Correlation in 3D isotropic scenario two cylindrical configurations: 16 3R (a), 32 3R (b).) 

     
Height effect of 3D OTA test setup in cylindrical probes configuration (32 3R) is here studied. 
Figure 4-19 shows the absolute value of spatial correlation as a function of DUT size with 
different values of cylindrical height, in two 3D channel scenarios, by considering direct 
sampling of the 3D PAS.  As shown in Figure 4-19 (a) and  Figure 4-19 (b), increasing 
cylindrical height OTA test setup to h =100� spatial correlation from DUT along x and y axis 
offers better accuracy than h = 10�, when considering uniform scenarios. When the antennas 
are aligned along z axis OTA spatial correlation with h=100 � becomes less accurate in this test 
setup.  
 

  

(a) (b) 

Figure 4-19 Correlation for cylindrical configuration with height effect in 3D uniform (a) and single cluster (b) 
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 In single cluster scenario Figure 4-19 (b), the height effect strongly depends on the 
elevation spread. The OTA antennas positions must be determined according the height and ES 
characteristics. 
 

4.4.4 Effect of elevation spread and weight optimization 

The quality of OTA emulation depends on the kind of channel we target. For what 
concerns 3D OTA setups, the effect of Elevation Spread (ES) has a direct consequence on the 
dimensioning and antenna position. Here we investigate the ES effect with finite number of 
probes on spatial correlation in spherical probe configuration 163R. Figure 4-20 shows the 
simulation results of OTA spatial correlation as a function of DUT size d. We considered a 
direct sampling of the 3D PAS of single cluster channel model, where we fixed the azimuth 
spread AS = 35° and different elevation spreads ES = 10°, 15°, 20°. The effect of ES becomes 
more evident when the DUT antennas are aligned along the z axis, and generally the correlation 
decreases along with an augmentation of ES. When we consider the DUT antennas on x or y 
axis the effect is somewhat limited. For instance, when considering an antennas separation d = 
0.5 � as highlighted the in, the value of spatial correlation between vertically adjacent elements 
antennas of DUT (red line) is approximately 0.5 with ES = 20° and 0.9 with 0.5 with ES = 10°. 
 

 
Figure 4-20 ES spread impact on correlation in 16 3R spherical configuration 

 
 
  In PFS technique, the signal transmitted by the probes is weighted in order to reduce the target 
correlation error. In the previous section we obtained the �5 weights from direct sampling of the 
discrete 3D PAS at the angular locations of the OTA antennas in elevation and azimuth, here we 
apply PFS technique to 16 3R configurations and single cluster channel model. 
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Figure 4-21 Correlation in 16 3R spherical configuration with direct sampling and optimization 

 
  In Figure 4-21 we compare the results obtained by direct sampling and PFS with the expected 
spatial correlation for single cluster scenario. It can be seen that the accuracy achieved by the 
PFS is higher than the direct sampling technique. However, when we consider the DUT aligned 
along the z-axis, the PFS technique allows increasing the accuracy only for small values of d. 
However since the typical distance between antennas is around the 0.5�, these results can be 
considered acceptable.  
 

4.5  Conclusions 
 

This chapter focuses on multi-probe OTA anechoic chamber testing, which, starting 
from the analysis of chapter 3, has been retained as a promising method to evaluate device 
performances.  

 
We discussed several criteria to dimension the OTA set up. It was shown that classical 

far field conditions are not sufficient to evaluate the quality of the OTA emulation.  While the 
far field criterion can give an indication on the OTA ring radius, it does not provide any 
guideline on the number and disposition of OTA probes around the zone under test.  
A dimension study of OTA multi-probe was based on the establishment of OTA spatial 
correlation with finite number of probes.  Simulation results showed that the required number of 
probes is a key issue, as it directly determines the system accuracy. Investigation on OTA far 
field condition was addressed on a case study employing half-wavelength OTA dipoles.  
It was shown that indeed the antenna effect has an impact on the emulated correlation, 
according to the ring radius. However this effect seems less important than the number of 
antennas.  
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Based on the Pre-Faded Signal (PFS) technique presented in chapter 3, an optimized 

weighting of probes was proposed. This study was first conducted on the two dimensions (2D) 
setup for two channel models: uniform and single cluster. 

The study has been continued to cover a 3D OTA dimension. We compared different 3D 
probe configurations to emulate the spatial correlation in MIMO OTA considering 3D channel 
models.  A comparison between different setups as a function of the angular spreads has been 
presented. It was shown that, when DUT antennas are along the z-axis, the cylindrical 
configuration could be also used to emulate elevation spread. PFS technique results applied to 
the 3D setup show the feasibility to emulate 3D channel models in cylindrical and spherical 
configurations.   

The analysis carried out by simulation, show that there is not a unique setup, regardless 
the frequency, device size and channel model. Hence the OTA setup should be flexible enough 
to adjusted according for the test needs. For this reason it was decided to realize a hemispheric 
OTA setup that can be mechanically modified to have a different antenna emplacement in both 
azimuth and elevation. This setup, as well as its characterization is presented in the next 
chapter.  
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5 Multi-probes OTA Experimentation 
 

5.1 Introduction 
 

Several OTA measurement methodologies have been proposed in chapter 3, as promising 
solutions to evaluate devices performances in realistic situations. Among different options we 
considered in this work the multi-probes anechoic chamber method, to emulate OTA multipath 
environments in which the performances of the devices have to be evaluated.  
The majority of existing methodologies in the literature targets only one specific standard of 
communication. It means testing device for one center frequency. Moreover, their performances 
in terms of resolution are limited by the number of probes, and globally emulate two 
dimensional channel models.  Thus, our investigation is focused on proposing a new multi-
probe OTA test setup, adapted to the any devices testing, able to overcome the encountered 
difficulties, in order to emulate three dimensional channel models.   
 

In chapter 4, it has been shown that the essence is to find a complete dimension of a 
multi-probes OTA test bed, such that channel spatial characteristics can be recreated. We have 
established some criteria related to physical dimension of the proposed OTA test setup that is 
not limited to the classical far field condition. In particular spatial correlation was selected as 
figure of merit to dimension OTA test setup, deriving the number and position of OTA antennas 
as a function of DUT size and frequency.  

 
 Most of realistic channels are tri-dimensional.  The 3D OTA design setup has been 

discussed. (3D) spatial correlation in 3D OTA setup is adopted as criterion to perform a DUT 
radiation in different orientations in 3 axes. Two different configurations have been compared. 
The first one is instinctively spherical probes configurations, and the second is cylindrical 
configurations. Their main drawbacks are the chamber cost and the lack of flexibility to emulate 
specific channel realizations. Both methods, based on cylinder and spherical configurations  
are used in combination with OTA test setup. 
 
   In this chapter, we present an experimental 3D hemispheric multi-probe OTA test-bed 
that can be used in a wide span of applications from 2 to 6 GHz.  The proposed OTA multi-
probes setups provide an efficient way to characterize the performance of today’s advanced 
wireless communication systems. We describe extensive measurements that were performed to 
validate channel emulation in the proposed 3D multi-probe OTA setup, considering two 
frequencies of interest setup. 
 

5.2 OTA test bed realization  
 

The OTA set-up is composed by four metallic arcs covered by electromagnetic absorbers, 
to place the OTA probe antennas at different azimuth and elevation angles.  
The vertical masts of 1.5 height hold the 4 arches whose diameter is equal to 1 m, in order to fit 
in the anechoic chamber, whose dimensions are 6 ×2.5×3 m3. 
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Actually, when considering the mechanical support, the distance from the OTA antenna 
aperture, described below, actually reduces the ring radius to less than 1m (i.e. R = 660 mm). 
 
The mechanical setup allows testing different configurations. Here we considered two different 
configurations: 

• a uniform configuration  with 3 different rings of 4 antennas at different elevations and 
equally spaced in the azimuth plane 

• a sectorial configuration with 3 different rings of 4 antennas at different elevations, 
placed in half space of the azimuth plane 

5.2.1 Antennas 

 
The source antenna in the OTA test-bed must enable the control of direction of 

incidence and polarization of the incoming waves to the test zone. Thus, a directive, dual 
polarized and wideband antenna system has been specifically designed for the OTA test-bed.  
The OTA source antenna is designed based on two crossed Linear Tapered Slot Antennas 
(LTSAs) used for this purpose. The feeding of these antennas is commonly realized with a 
coupling micro strip etched on the opposite face of the PCB. The PCB shape is cut with an 
elliptical profile in order to limit cross polarization effect. The LTSAs are notched so that they 
can be inserted one in the other.  The ground continuity between the two combined LTSAs is 
insured by soldering the two PCBs.  
The final prototype is shown in Figure 5-1 (a) and (b). Each port allows considering either the 
vertical or the horizontal polarization.  
The return loss of the antenna is below -10 dB for both port 1 and 2 over the 2-6 GHz band and 
isolation between the two ports is higher than 20 dB. In Figure 5-1 we show the measured gain 
patterns in the main and cross polarization for both ports at 2 GHz, 4 GHz and 6 GHz.  The 
maximum gain varies between 5 and 8.5 dBi in the band of interest, and the cross-polar 
discrimination is larger than 20 dB. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5-1 OTA antenna gain pattern port 1 (a) (c) (e) & port 2 (b) (d) (f):  2 GHz (red), 4 GHz (blue), 6 GHz 
(black) 

 

5.3 Test Bed Characterization 
 
 Before characterizing the Zone under Test (ZUT), the mutual coupling between OTA 
antennas has been measured by means of a Vector Network Analyzer (VNA). In Figure 5-2 we 
show the mutual coupling in the uniform configuration for co-polar and cross-polar 
combination of all twelve antennas in the OTA test-bed, which is generally lower than -30 dB.    
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(a) (b) 
Figure 5-2 Mutual coupling for uniform configuration: vertical-to-vertical polarization (a) and vertical-to-

horizontal polarization (b) 
 
Besides the antenna mutual coupling, the OTA antennas act also as scatterers that can perturb 
the measurements introducing, together with the setup residual scattering.  
 
 In order to characterize the radiated field in the ZUT a frequency domain setup was 
realized based on Vector Network Analyzer. A 4-port R&s ZVA24 performs a frequency sweep 
from 2 to 6 GHz by step of 10 MHz. The intermediate frequency bandwidth was chosen equal 
to 1 kHz and Output Power equal to 0 dBm.  A wide-band monopole antenna was placed on a 
3-axis positioner, scanning a ZUT of 150x150x150 mm3 placed in the middle of the hemisphere 
of the OTA setup. The positioner has a precision of 0.02mm and scans the ZUT by step of 10 
mm.  
Port 1 of the VNA is connected to the monopole scanning the ZUT, while port 2, 3 and 4 are 
connected to the OTA antennas on the same arc.  An external PC controls both the positioner 
and VNA acquisitions through a Matlab code. The setup is presented in Figure 5-3.  
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Figure 5-3 Setup for OTA test-bed characterization   

 
In practice the measured parameters S21 S31 and S41 correspond to transfer functions between the 
OTA antenna and the antenna under test.  
Ideally, in far field condition, for a given polarization, this corresponds to: 
 �j,5��	 = −' �4�.j,5 %#Ù�Â× `Ü,ö ∙ ���Ké�, ©j,5, ^j,5ê ∙ �	é�, ©5,j, ^5,jê 
 

(5.1) 
Where ���Ké�, ©j,5, ^j,5ê is the i-th Antenna Under Test (AUT) transfer function in the 
direction �©j,5, ^j,5		 towards the s-th antenna, and �	é�, ©5,j, ^5,jê is OTA antenna transfer 
function in the direction �©5,j, ^5,j		 towards the i-th antenna.  
Here because of the non-ideality of the setup, the residual scatterers, and the reduced distance, 
the transfer function in measurements can differ from (5.1). The aim of the following 
measurements is to analyze the difference in terms of transfer function, or equivalently field 
distribution, in the considered ZUT.  
Two frequencies were selected for analysis: 2 GHz testing Wi-Fi devices and 5.9 GHz for IEEE 
802.11 devices. 
 

5.3.1 Uniform setup configuration 

 
Firstly, we realized uniform configuration of experimental test bed, where OTA 

antennas are placed uniformly in three elevation ring. The objective of this implementation is 
mainly to emulate an isotropic channel model.  An illustration of this configuration is presented 
in Figure 5-4 together with a schematic view.  Samples over test zone are marked with black 
grid. Antenna angular positions are reported in Table 5-1.  
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Table 5-1 Angular locations of OTA antennas in uniform setup 

OTA  elevation ring Azimuth Angular locations 


�,Í,�,
 = 	��° ^l = 45	°, ^� = 135	°, ^Å = 225	°, ^£ = 315	°, 

�,�,�,� = 	��° ^¨ = 45	°, ^� = 135	°, ^� = 225	°, ^� = 315	°, 

�,��,��,�Í = 	��° ^� = 45	°, ^l� = 135	°, ^ll = 225	°, ^l� = 315	°, 

 
 
 

 
 

 
(a) 

 

 

(b) (c) 
Figure 5-4 OTA uniform setup configuration: (a) picture, (b) 3Dview, (c) top view 
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Here we present, for sake of simplicity the transfer function in the azimuth plane corresponding 
to the first ring of antennas, i.e. elevation		θl,�,Å,£ = 90°and ϕl= 45°, ϕ� = 135°,  ϕÅ  = 215°, ϕ£ = 315°. When performing measurements all the antennas were loaded on 50 Ω. 

In this first steep, we describe the map of the distribution of the emulated field for 
different positions of the antennas in the simulations and measurements. The emulation of the 
field to test zone is given based on the synthesis electromagnetic field. To verify this, we start 
by developing the expression of the intended electromagnetic field, which we want, emulated in 
our uniform OTA configuration. Figure 5-5 and Figure 5-6 present the amplitudes of transfer 
functions in the ZUT of the ideal free space condition and the measured one.  One can clearly 
notice that despite the presence of absorber, the residual scattering in the setup (and eventually 
on the positioner), create some fading effect up to 3 dB.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-5 Normalized simulated transfer function amplitude [dB] at 2 GHz: antenna 2 (a), antenna 1 (b), antenna 3 
(c), antenna 4 (d) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-6 Normalized measured transfer function amplitude [dB] at 2 GHz: antenna 2 (a), antenna 1 (b), antenna 3 
(c), antenna 4 (d) 

 
On the other hand the measured phase of the transfer function Figure 5-8 is very close to the 
expected one (Figure 5-7), despite some sphericity due to the small distance between the source 
antenna and the AUT.  

 
 

 

(a) 

 

(b) 
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(c) 

 

(d) 
Figure 5-7 Simulated transfer function phase [rad] at 2 GHz: antenna 2 (a), antenna 1 (b), antenna 3 (c),  

antenna 4 (d) 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 5-8 Measured transfer function phase [rad] at 2 GHz: antenna 2 (a), antenna 1 (b), antenna 3 (c), antenna 4 

(d) 
 

When comparing the amplitudes at 5.9 GHz (Figure 5-9, Figure 5-10) there is still some 
scattering, but the fading effect are quite reduced with respect to the low frequency.  
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Figure 5-9 Normalized simulated transfer function amplitude [dB] at 5.9 GHz: antenna 2 (a), antenna 1 (b),  
antenna   3 (c), antenna 4 (d) 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 5-10 Normalized measured transfer function amplitude [dB] at 5.9 GHz: antenna 2(a), antenna 1(b),  
and antenna 3 (c) antenna 4(d) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

113 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-11 Simulated transfer function phase [rad] at 5.9 GHz: antenna 2 (a), antenna 1 (b), 
 antenna 3 (c) antenna 4 (d)  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-12 Measured transfer function phase [rad] at 5.9 GHz in the: antenna 2 (a), antenna 1 (b),  
antenna 3 (c), antenna 4 (d)  
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Figure 5-11 and Figure 5-12 show a good agreement between the measured and the 
simulated complex field in term of phase. It is important to notice that at 5.9 GHz, the planar 
wave condition is poorly verified in both simulation and measurements. 
 

5.3.2 Sectorial setup configuration 

 
Here we use the flexibility of the proposed tri-dimensional structure to realize a second 

sectorial configuration. This configuration is chosen to potentially emulate directional channel 
or single cluster one.  An illustration of this configuration is presented in Figure 5-13 together 
with a schematic view.  Samples over test zone are marked with black grid. Antenna angular 
positions are reported in Table 5-2. 

 
Table 5-2 Angular locations of OTA antennas in sectorial setup 

OTA  elevation ring Azimuth Angular locations 


�,Í,�,
 = 	��° 	^l = 0	°, ^� = 60	°, ^Å = 120°, ^£ = 180	°, 

�,�,�,� = 	��° ^¨ = 0	°, ^� = 60	°, ^� = 120°, ^� = 180	°, 

�,��,��,�Í = 	��° ^� = 0	°, ^l� = 60	°, ^ll = 120	°, ^l� = 180	°, 
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(a) 

 
(b) 

 

 
(c) 

 

  
  

Figure 5-13 OTA sectorial setup configuration: (a) picture, (b) 3Dview, (c) top view 
 

 
As for the uniform configuration here, for sake of briefness, we only show the results in 

the azimuth plane at 2GHz and 5.9GHz.  
The comparison of the simulated (Figure 5-14) and measured (Figure 5-15) amplitude of the 
transfer function, show the presence of some residual scattering in the setup, which can locally 
yield to a higher attenuation up to 3 dB.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-14 Normalized simulated transfer function amplitude [dB] at 2 GHz: antenna 1 (d), antenna 2 (b),antenna 
3 (a), antenna 4(c) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-15 Normalized measured transfer function amplitude [dB] at 2 GHz: antenna 1 (d), antenna 2 (b), antenna 
3(a), antenna 4(c) 
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Figure 5-16 and Figure 5-17 compare the simulated and measured transfer function’s phase. We 
can notice that the phase fronts arrive with wavelengths corresponds well to the emulated 
frequency (2 GHz), but the impinging phase fronts from OTA antennas at ^ = 60	°			and ^ = 120	°			are more spherical than the one at ^ = 180°			and ^ = 0	°		. 
As for the uniform configuration the agreement in phase between the simulation and 
measurement is verified for the phase, which suffers less than amplitude of residual scattering in 
the setup.   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-16 Simulated transfer function phase [rad] at 2 GHz: antenna 1 (d), antenna 2 (b), antenna 3 (a) antenna 
antenna 4 (c) 

 
 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-17 Measured transfer function phase [rad] at 2 GHz: antenna 1 (d), antenna 2 (b), antenna 3 (a) 
antenna 4(c) 

 
 
The same analysis has been carried out at 5.9 GHz for the amplitude as illustrated in Figure 
5-18 and Figure 5-19 in term of synthesis amplitude field in simulations and measurements. 
Phase transfer function component is illustrated in Figure 5-20 and Figure 5-21.  
As expected the planar wave assumption seems less verified at 5.9 GHz than 2 GHz.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-18 Normalized simulated transfer function amplitude [dB] at 5.9 GHz: antenna 1 (d), antenna 2 (b), 
antenna 3 (a), antenna 4 (c) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-19 Normalized measured transfer function amplitude [dB] at 5.9 GHz: antenna 1 (d), antenna 2 (b), 
antenna 3 (a),   antenna 4(c) 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-20 Simulated transfer function phase [rad] at 5.9 GHz: antenna 1 (d), antenna 2 (b), antenna 3 (a), antenna 
4 (c) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-21 Measured transfer function phase [rad] at 5.9 GHz: antenna 1 (d), antenna 2 (b), antenna 3 (a), antenna 
4 (c) 

 
 
In conclusion, two possible configurations of the OTA test-bed have been realized and 
characterized in terms of field distribution in the Zone Under Test.   
It has been shown, that despite the presence of absorber, some residual scatterers and eventually 
some error in alignment can yield to a discrepancy between the target field and realized one. In 
practice the residual scattering can create some undesired fading, which is clearly visible on the 
amplitude distribution.   
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Moreover the physical constraint of the setup, i.e. reduced dimensions of the anechoic chamber, 
can limit the space between the Zone Under Test and the source OTA antenna, which could 
nullify the planar wave condition especially at high frequency. The impact of these 
imperfections is then studied in the following section.  
  
 

5.4 OTA emulated channel correlation 
 
In the previous chapters we presented different techniques to emulate realistic channel 
conditions using the multi-probes anechoic chamber: the Plane Wave Synthesis (PWS and 
Prefaded Signal synthesis. (PFS)  The PWS technique synthesizes the intended electromagnetic 
field inside the test zone by weighting the multiple probes with proper excitations, such that the 
total field from the probes resembles the intended field at a location in the test zone. 
 
 Based on spherical wave theory we have been demonstrated theoretical justification of the 
required number of OTA antennas, to emulate target field on the test zone as wavelength. It has 
been demonstrated, that for larger ZUT, we need four OTA antennas in 2D configuration of 
probes.  That, we give us an idea on size of quiet zone. Yet, our focus is on how to reproduce 
the desired channel conditions within the test zone where device is placed.   

 The purpose of the PFS channel emulation technique is to emulate spatial channel 
characteristics such as power angular spectrum within the test zone. Here we consider different 
channel models to be emulated: 

• an isotropic channel (in 2D and 3D) ; 

• a single cluster channel (in 2D and 3D). 

While the first one is aimed in the uniform configuration, the second one is emulated through 
the sectorial configuration.  
The probe weights, as described in chapter 4, have been obtained in order to reproduce the 
desired power angular spectrum and corresponding correlation.  
Here for each position i in ZUT, and polarization, we compute the total channel as a weighted 
sum over all the OTA antennas 
 

�j��	 = 	 h ü5 ∙ 	�j,5��	wë�ì
5kl  

 
 (5.2) 

Where ü5 are the optimized weights to reproduce the PAS (see chapter 4), and 	�j,5��	 is the 
transfer function corresponding to (5.1).  
As explained in the previous section, we scan a 3D ZUT. Here in the following subsection we 
analyze the autocorrelation of the total channel of (5.2), by performing a 2D cross correlation 
over the plane of interest.  

 
 

5.4.1 2D Isotropic channel, OTA uniform configuration 

 
To verify the capacity of our uniform configuration to reproduce an accurate field 

distribution, we uniformly weighted the OTA antennas from 1 to 4.  
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In Figure 5-22(a), we show the total transfer function at 2 GHz in the ZUT in the ideal case 
where the number of OTA antennas are infinite. One should notice that the correlation present 
the symmetric omnidirectional pattern with some fading that is due to the multipath 
combination. However the quality of the map, in terms of visual representation depends on the 
sampling of the ZUT. Figure 5-22(b) presents the same result, but with a sampling equal to the 
one used in measurement.  
Finally Figure 5-22(c) and Figure 5-22(d) show the simulated and measured total field with a 
reduced number of OTA antennas. One can first notice that the reduced number of antenna 
generates some discrepancy with respect to the ideal one. This is mainly due to the poor 
sampling of the PAS, and depends on the specific OTA antenna location in the setup. On the 
other hand the realization introduces additional difference because of the fading related to the 
residual scattering in the environment as discussed before.  
  
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 5-22 2D isotropic channel. Normalized total transfer function amplitude at 2 GHz: simulation isotropic 
antenna Nant=∞  (a); simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna 

Nant=4, sampling 10 mm (c); measured Nant=4, sampling 10 mm(d). 
 
In order to analyze the quality of the OTA emulation, here we consider the total field correlation 
as in Figure 5-23. Here we clearly see that there is a good agreement on correlation in a small 
zone before the fist 0. Than the correlation lobes are affected by both the spatial sampling and 
number of antennas. However when comparing similar condition in simulation and 
measurements, there is a poor effect of the setup imperfections on the accuracy of  correlation, 
which reduce to a “blurring” of the side lobes (Figure 5-23 (b)). 
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(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 5-23 2D isotropic channel. Correlation at 2 GHz: simulation isotropic antenna Nant=∞  (a); simulation 

isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna Nant=4, sampling 10 mm (c); 
measured Nant=4, sampling 10 mm(d) 

 
Similar analysis has been done for the 5.9 GHz.  As depicted in Figure 5-24 (d) the scattering in 
the setup can destroy the symmetry of the total field amplitude (Figure 5-24 a-c).  
However in terms of correlation, the result for the sampling 10 mm and limited number of 
antennas are very similar in simulation and measurements (Figure 5-25 (c) (d)).  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 
Figure 5-24 2D isotropic channel. Normalized total transfer function amplitude at 5.9 GHz: simulation isotropic 
antenna Nant=∞  (a); simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna 

Nant=4, sampling 10 mm (c); measured Nant=4, sampling 10 mm(d). 
 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-25 2D isotropic channel. Correlation at 5.9 GHz: simulation isotropic antenna Nant=∞  (a); simulation 
isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna Nant=4, sampling 10 mm (c); 

measured Nant=4, sampling 10 mm(d). 
 

5.4.2 3D Isotropic channel, OTA uniform configuration 

 
 A 3D isotropic channel was aimed by feeding with the same weights all the twelve 
antennas in the uniform setup.  
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The total field at 2 GHz is presented in Figure 5-26. The reduced number of antennas breaks the 
aimed symmetry of the field amplitude distribution in the ZUT. Moreover the setup dispersion 
can reduce even more the distribution Figure 5-26 (c)-(d).  Here most likely, beside the residual 
scattering, some misalignment on the higher ring antennas could have occurred. This is also 
visible on the correlation of Figure 5-27 and Figure 5-28 where the measured ones are shifted 
version of the simulated ones.  

 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-26 3D isotropic channel. Normalized total transfer function amplitude at 2 GHz: simulation isotropic 
antenna Nant=∞, sampling 2 mm (a); simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation 

isotropic antenna Nant=12, sampling 10 mm (c); measured Nant=12, sampling 10 mm(d). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-27 3D isotropic channel. Correlation at 2 GHz: simulation isotropic antenna Nant=∞  , sampling 2 mm  (a); 
simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna Nant=12, sampling 10 mm 

(c); measured Nant=12, sampling 10 mm(d). 
  



 

127 
 

 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-28 3D isotropic channel. Correlation at 5.9 GHz: simulation isotropic antenna Nant=∞  , sampling 2 mm  
(a); simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna Nant=12, sampling 10 

mm (c); measured Nant=12, sampling 10 mm(d). 
 

 
In practice from the autocorrelation point of view the size of validity of the ZUT at 5.9 GHz 
seems smaller than the one at 2 GHz.  
 This could be explained not only by the imperfections of the setup, and the non-planarity of the 
impinging wave, but also by the OTA antenna effect. Actually the LTSA employed, being a 
constant aperture antenna, has higher directivity at 5.9 GHz, which could somewhat affects the 
illumination of the ZUT. 
 

From simulation results, we found that the minimum number of OTA antennas to fulfill 
the acceptance criteria depend on the size of ZUT, positions of OTA probes and on the channel 
model. Due to the directionality of isotropic channel model, the OTA uniform configuration 
should be relevant, to cover all (AoA) s of scatterers.  
 
 

5.4.3  2D Single cluster channel, OTA sectorial configuration 

  
The concept of clusters has been widely adopted to model the multipath phenomenon, as 

mentioned in chapter 2. Clusters generally arrive with different delay and angle of arrival.  Here 
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the goal is to recreate OTA the cluster characteristics. The uniform configuration is the one that 
is the most suited to emulate every AoA distribution. However, as show in chapter 3, the 
number of antennas required could be too high with respect to the cost.  

Hence we opted here for a sectorial configuration to emulate a single cluster channel, 
with AoA equals to 90° and azimuth spread equal to 35°. The PAS presents a Laplace 
distribution. The goal is to employ the sectorial setup in 5.3.2 to have a reduced number of 
antennas, and assess the quality of the emulation OTA. 

Figure 5-29 shows a comparison between simulations and measurement results of 
normalized field synthesized at 2 GHz. The sampling grid effect of ZUT is also verified in 
single cluster model as seen in Figure 5-29 (b). Measurement of synthesized complex field in 
OTA sectorial configuration, Figure 5-29 (c) matches the simulation in terms of field 
distribution, as depicted in Figure 5-29 (d).   

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 5-29 2D single cluster channel. Normalized total transfer function amplitude at 2 GHz: simulation 
isotropic antenna Nant=∞ (a); simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic 

antenna Nant=4, sampling 10 mm (c); measured Nant=4, sampling 10 mm(d). 
 
After verifying that the field synthesized in the sectorial configuration, matches the one 
expected from simulation, we compared the autocorrelation obtained from measurements 
with the one from simulation in Figure 5-30. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-30 2D single cluster channel. Correlation at 2 GHz: simulation isotropic antenna Nant=∞  (a); 
simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic antenna Nant=4, sampling 10 

mm (c); measured Nant=4, sampling 10 mm(d). 
 
A good agreement between simulation and measurement results, see Figure 5-30(c) and 
Figure 5-30 (d).  
The same analysis and comparison between 2D map of synthesized fields at 5.9 GHz is 
depicted in Figure 5-31. Here the sampling of the ZUT can have a high visual impact on the 
maps of amplitude distribution. However one can notice that simulation and measurement 
under the same sampling have a similar pattern. (Figure 5-31 (c)-(d)).  
In order to illustrate the potentiality of the sectorial configuration, on OTA channel 
emulation. The measurements campaigns are carried out at 5.9 GHz. The impinging of the 
distribution of measurement field, as seen in Figure 5-31(d) correspond at AOA = 90° of 
single cluster channel model. This can be also verified in simulation of 2D field distribution, 
as shown in Figure 5-31(c).  Figure 5-32 highlights the impact of ZUT sampling on the target 
spatial correlation at 5.9 GHz, as seen in Figure 5-32 (a) and Figure 5-32 (b). It is clearly 
shown that the larger sampling, i.e. 10 mm affects the resolution of the 2D correlation map. 
2D spatial and measured spatial correlation as illustrated in Figure 5-32 (c) and Figure 5-32 
(d). Nevertheless good agreement between simulation and measurement result is observed. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5-31 2D single cluster channel. Normalized total transfer function amplitude at 5.9 GHz: simulation 
isotropic antenna Nant=∞  (a); simulation isotropic antenna Nant=∞ , sampling 10 mm (b);  simulation isotropic 

antenna Nant=4, sampling 10 mm (c); measured Nant=4, sampling 10 mm(d). 
 
 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-32 Spatial correlation (a) target spatial correlation (b) emulated with finite number of Isotropic 
probes (c) with sampling 10 mm and (d) measured spatial autocorrelation f = 2   GHz 

 

5.4.4 3D single cluster channel, OTA sectorial configuration 

In the 3D case of sectorial OTA multi-probes setup, we compare the field obtained by 
summing 12 OTA antennas in azimuth and elevation, Figure 5-33, in simulation and 
measurements. Here the elevation spread was taken equals to 15°. It can be seen that despite 
some discrepancy between the simulated and measured field distribution, the correlation in 
Figure 5-34 is quite in good agreement.   

 
 
 

 
(a) 

 
(b) 

Figure 5-33 3D single cluster channel. Normalized total transfer function amplitude at 2 GHz: simulation isotropic 
antenna Nant=12, sampling 10 mm (a); measured Nant=12, sampling 10 mm(b). 
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(a) 

 

(b) 
Figure 5-34 3D single cluster channel. Correlation at 2 GHz: simulation isotropic antenna Nant=12, sampling 10 

mm (a); measured Nant=12, sampling 10 mm(b). 
 

 

5.5 Conclusion 
 

In this chapter we presented an experimental realization of 3D multi-probe setup for 
OTA test. Linearly Taped Slot Antennas, working between 2 and 6 GHz were employed as 
probes. These antennas were chosen to recreate a channel over a wide band, while controlling 
the polarization.  

The setup was presented and characterized by means of Vector Network Analyzer and a 
3D positioner. The antenna under test employed was a wide band monopole.  
Two dispositions of 12 antennas were considered. The first one is a uniform configuration over 
three elevation ring. The second configuration covers a half plane, i.e. 180° and named sectorial 
configuration. 

Mutual coupling between antennas is generally lower than -30 dB. The field distribution 
was characterized in both amplitude and phase. While the phase is very close to the expected 
one, the amplitude shows some fluctuations which are most likely due to the non-ideality of the 
system and possible scattering on the setup.  

Nevertheless when analyzing the channel autocorrelation for a uniform and single 
cluster model, it was shown that by using an appropriate weighting of antennas it is possible to 
have a good agreement between the measurement and simulation results.  
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6 Conclusion and Perspectives 
 
 

 
In this thesis, we addressed various aspects related Over-The-Air (OTA) methods, with the 

objective to develop a technique to emulate the radio channel in a controlled manner.  
 

As explained in the introduction of the first chapter, this work is motivated by the need of 
evaluating the performance of wireless devices, without performing costly and time-consuming 
field trials. This requirement is already a reality for the existent 3G/4G mobile devices, as well 
as for Wireless Local Area Networks (WLANs), and it is expected to be fundamental for the 
deployment of the fifth generation (5G) of mobile networks, Vehicular-to-everything (V2X) 
communication, as well as for Internet of Things (IoT) solution. Hence the work has been 
focused on a wide spectrum of frequencies below 6 GHz, aiming to have a versatile setup for 
OTA tests.  
 

In the second chapter we introduced the fundamentals of radio channel. The deterministic 
and stochastic approaches of modeling were presented. In particular classical mathematic 
representation of the channels, by means of the functions firstly introduced by Bello, and 
classical fading models (e.g. Rayleigh or Rician) were introduced. It was discussed how the 
spatial channel characteristics are of fundamental importance for Multiple Input Multiple 
Output (MIMO) channels exploiting multi-antennas approaches. For this reason Geometrical 
Stochastic Channel Models (GSCMs), like the one proposed in the WINNER project, are of 
interest for system performance evaluation. This kind of models is based on the concept of 
clusters, which are described by their Power Angular Spectrum (PAS). Hence we retained this 
modeling approach for OTA testing in the three dimension (3D) space from 2 to 6 GHz.  
 

The third chapter provided an overview of different OTA methodologies presented in 
literature.  It described the work about OTA standardization carried out in 3GPP and CTIA 
groups, as well as different solutions proposed by instrument providers or academia.   
The different methodologies were discussed and we show that the test methodology based on 
multi-probe deployed in anechoic chamber with a fading emulator is a promising solution for 
OTA tests.  Actually, with respect to the other solutions, this approach has the advantage of 
being able to emulate a variety of fading scenarios, and to control the spatial characteristics of 
the reproduced OTA channel, by means of Prefaded Signal synthesis (PFS).  
 
  Based on the choice of the multi-probes approach, we developed, in chapter 4, a Matlab 
simulation tool to dimension the final setup. Different criteria were discussed and it was shown 
how the far field condition is not enough to define the OTA configuration. Hence we choose to 
use the spatial correlation accuracy as a figure of merit for OTA dimensioning. We considered a 
uniform and a single cluster channel in both 2D and 3D space. It was shown how the 
emplacement and the number of probes is strictly dependent on the device under test (DUT) 
electrical size. Generally the larger the DUT, the higher is the number of probes needed. 
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 In a simple case study using half wave-length dipoles as probes, it was shown that the number 
of probes is a parameter which is predominant with respect to the ring radius, to accurately 
reproduce the channel correlation. The number of probes, which is an important parameter for 
the cost of the setup, can be reduced by a “smart” disposition of the antennas around the DUT, 
or by means of PFS technique which optimizes the weight of each probe to reproduce the aimed 
PAS.  In particular for some directional, single cluster, channels it could be convenient to have 
more antennas on a smaller angular sector, instead of having them uniformly distributed around 
the DUT. For this reason a flexible and versatile OTA setup was realized. 
 

In chapter 5 we introduced the experimental realization in the anechoic chamber. The 
setup is based on twelve linearly taped slot directive antennas placed on the 3D space around 
the DUT. These antennas have two ports in order to independently address the vertical and 
horizontal polarization.  The setup allows to address frequency from 2 to 6 GHz, and 
mechanically adjust the positions of the probes. Here, for instance, we considered a uniform 
setup on a hemisphere composed by three rings of antennas to reproduce omnidirectional 
channels, and a second sectorial setup on half space to reproduce single cluster channels 

The characteristic of the field reproduced in anechoic chamber was investigated through 
measurements employing a vector network analyzer and a 3D positioner scanning the zone 
under test (ZUT). It was shown that amplitude fluctuations in the ZUT could occur because of 
the residual scattering of the positioner, the setup itself and eventually the probes. However, 
despite this fading, the autocorrelation of the channel is close to the one expected from the 
simulation.    
 
 

The work carried out in this thesis is foundation stone for future development of OTA 
tests. The setup is available to reproduce wideband channel over a 3D space, while controlling 
the polarization. The very first next step is to interface the setup with a fading emulator enabling 
the OTA emulation of time variant channels. In some cases a number of antennas higher than 
twelve could be required to emulate OTA channels. This would mean to have a fading emulator 
with a large number of ports, or to investigate new approaches of probe feeding eventually 
using switching state.  

Moreover the OTA test of large devices, e.g. cars, is expected to be in the next year a 
need for the automotive market and the advent of autonomous driving. In this sense a 
methodology to emulate V2X channels needs to be investigated as long with the need of testing 
the full car or eventually only a representative part of it.  

Finally OTA tests are expected to play an important role for 5G technologies that will 
employ massive arrays or millimeter wave, opening new perspectives in this field of research.  
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