
HAL Id: tel-01707043
https://theses.hal.science/tel-01707043

Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization Algorithms for Clique Problems
Yi Zhou

To cite this version:
Yi Zhou. Optimization Algorithms for Clique Problems. Optimization and Control [math.OC]. Uni-
versité d’Angers, 2017. English. �NNT : 2017ANGE0013�. �tel-01707043�

https://theses.hal.science/tel-01707043
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Yi ZHOU
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université d’Angers

Label européen
sous le sceau de l’Université Bretagne Loire

École doctorale : 503 (STIM)

Discipline : Informatique, section CNU 27
Unité de recherche : Laboratoire d’Étude et de Recherche en Informatique d’Angers (LERIA)

Soutenue le 29 Juin 2017
Thèse n° : 1

Optimization Algorithms for Clique Problems

JURY

Rapporteurs : M. Christian BLUM, Directeur de recherche, Spanish National Research Council (CSIC)
M. Sébastien VÉREL, Maître de conférences HDR, Université du Littoral Côte d’Opale

Examinateurs : M. André ROSSI, Professeur, Université d’Angers
M. Marc SEVAUX, Professeur, Université de Bretagne-Sud
Mme Yang WANG, Professeur, Northwestern Polytechnic University

Directeur de thèse : M. Jin-Kao HAO, Professeur, Université d’Angers
Co-directeur de thèse : M. Adrien GOËFFON, Maître de conférences HDR, Université d’Angers

Acknowledgement

Four years ago, I started my journey in the joint area of computer science, combinatorial optimization
and artificial intelligence in LERIA, University of Angers. From a foreign beginner who hardly knows
anything around to a final year PhD student who enjoys very much the research and daily life in France, I
feel that a few lines are not enough to thank everyone who has helped me adapting the work and life.

I would like firstly thank my supervisor Prof. Jin-Kao Hao, who introduced me the interesting clique
problems. In order to achieve an efficient algorithm, one may do many unfruitful experiments and try a lot
unnecessary techniques. Thanks to him, I got many valuable advises and avoid some detours. Prof. Hao
is also very kind and always be patient with my questions. I also appreciate my associate supervisor, Prof.
Adrien Goëffon, who I cooperated a lot during the four years. He not only proposed some interesting ideas,
but also proofread some of my manuscripts.

My thanks also go to another professor, Prof. André Rossi who had a lot of interesting talk with me. His
rich experience in integer programming gave me another key to solve the combinatorial problems. I also
thank my office mates Arthur Chambon, Marc Legeay who spent a great deal of time solving my daily-life
problems since I spoke french poorly. We also have a lot of interesting non-work related discussions. Ad-
ditionally, I want to thank our technicians Eric Girardeau and Jean-Mathieu Chantrein, our nice secretaries
Catherine Pawlonski and Christine Bardarine, my new office mate Hugo Traverson and all the other lab
members. Thanks to their supports, the research work becomes much more easier and enjoyable in LERIA.
Also, I would like to thank the Center of French Language for Foreigners (CeLFE) in University of Angers.
After following their free courses, I am able to speak french in daily life and also make some foreign friends.

I am particularly grateful to my parents, my elder sister Zhifang Zhou as well as her husband Min
Zhu. Thanks for all their love and selfless support! Without them, this work would not be possible. I also
thank my Chinese friends Yuning Chen, Zhanghua Fu, Yan Jin, Fuda Ma, Xiangjin Lai, Le Li, Wen Sun,
Yangming Zhou, Zhi Lu, Jintong Ren in Angers for their accompanies. I also appreciate my best friends in
Chengdu – thanks for being there for me.

I also thank all the jury members, for their efforts in reviewing and improving this thesis.
This research has been financially supported by China Scholarship Council (CSC).

3

Contents

General Introduction 1

1 Introduction 5
1.1 Clique problems . 6
1.2 Applications . 8
1.3 Evolution of maximum clique algorithms . 9
1.4 Algorithm assessment . 10

1.4.1 Benchmarks . 11
1.4.2 Metaheuristic algorithms evaluation . 12
1.4.3 Exact algorithms Evaluation . 13

2 A Generalized Operator “PUSH” for MVWCP 15
2.1 Introduction . 17
2.2 PUSH: a generalized operator for MVWCP . 18

2.2.1 Preliminary definitions . 18
2.2.2 Motivations for the PUSH operator . 19
2.2.3 Definition of the PUSH Operator . 20
2.2.4 Special cases of PUSH . 20

2.3 PUSH-based tabu search . 21
2.3.1 Random initial solution . 22
2.3.2 Solution reconstruction . 22
2.3.3 ReTS-I: Tabu search with the largest candidate push set 23
2.3.4 ReTS-II: Tabu search with three decomposed candidate push sets 23
2.3.5 Fast evaluation of move gains . 24

2.4 Computational experiments . 25
2.4.1 Benchmarks . 26
2.4.2 Experimental protocol . 26
2.4.3 Computational results . 26
2.4.4 Comparisons with state-of-the-art algorithms . 27

2.5 Effectiveness of restart strategy . 31
2.6 Conclusion . 34

3 Frequency-driven tabu search for MsPlex 35
3.1 Introduction . 36
3.2 FD-TS algorithm for the maximum s-plex problem . 37

3.2.1 General procedure . 37
3.2.2 Preliminary definitions . 37
3.2.3 Move operators . 38
3.2.4 Constructing the initial solutions . 40
3.2.5 FD-TS . 41
3.2.6 Reducing large (sparse) graphs . 43

5

6 CONTENTS

3.3 Implementation and time complexity . 43
3.4 Computational assessment . 44

3.4.1 Benchmarks . 44
3.4.2 Experimental protocol and parameter tuning . 44
3.4.3 Computational results for very large networks from SNAP and the 10th DIMACS

Challenge . 45
3.4.4 Computation results for graphs from the 2nd DIMACS Challenge 48
3.4.5 Impact of frequency information . 51

3.5 Conclusions . 53

4 Heuristic and exact algorithms for MBBP 55
4.1 Introduction . 57
4.2 Heurisitc algorithm with graph reduction . 58

4.2.1 Preliminary definitions . 58
4.2.2 Rationale of the proposed approach . 59
4.2.3 General procedure of TSGR-MBBP . 60
4.2.4 Computational experiments . 65
4.2.5 Analysis . 70

4.3 Exact algorithms . 72
4.3.1 Preliminary definitions . 72
4.3.2 Review of the BBClq algorithm . 73
4.3.3 Upper bound propagation and its use to improve BBClq 73
4.3.4 The upper bound propagation procedure . 74
4.3.5 A tighter mathematical formulation . 76
4.3.6 A novel MBBP algorithm ExtUniBBClq . 77
4.3.7 Computational experiments . 78
4.3.8 Analysis . 81

4.4 Conclusion . 83

5 A Three-Phased Local Search Approach for CPP 85
5.1 Introduction . 87
5.2 General procedure . 88

5.2.1 Search space and evaluation function . 88
5.2.2 Top Move and restricted neighborhood . 88
5.2.3 Heap structure . 90
5.2.4 Generation of initial solution . 90
5.2.5 Descent search phase . 90
5.2.6 Exploration search phase . 91
5.2.7 Directed perturbation phase . 91
5.2.8 Singularity of CPP-P3 . 92

5.3 Computational experiments . 92
5.3.1 Benchmark instances and parameter settings . 93
5.3.2 Experiments and comparison . 93

5.4 Analysis . 99
5.4.1 The effectiveness of Top Move based neighborhood 99
5.4.2 Landscape analysis . 99
5.4.3 Impact of the descent search phase of CPP-P3 . 101

5.5 Conclusion . 101

General Conclusion 103

CONTENTS 7

List of Figures 107

List of Tables 109
5.6 Computational results of MsPlex on additional instances 111

List of Publications 115

References 123

General Introduction

Context
A clique in a graph is a subset of vertices which are pairwise adjacent. Generally, clique problems

involve finding the maximum clique in the graph or grouping the vertices into disjoint cliques. In this
thesis, we are interested in four representative clique problems. The first one is the maximum vertex weight
clique problem (MVWCP) which is the generalized version of the classic maximum clique problem (MCP).
The second one, the maximum s-plex problem (MsPlex), aims at locating the maximum relaxed clique (i.e.,
s-plex) in a graph. The maximum balanced biclique problem (MBBP) is the third clique problem, which
limits MCP to bipartite graph and enforces the same number of vertices in both partitions. The last one, the
clique partitioning problem (CPP), requires to partition the vertices of an edge-weighted complete graph
into different groups such that the sum of edge weights within all groups is maximized. These clique
problems are relevant models in practice since they can be used to formulate numerous applications in
popular social network analysis, computer vision, manufacturing, economics and so on. These problems
are also theoretically significant as they can represent other classical combinatorial optimization problems
(e.g., winner determination problem), or used as sub-problems of other more complicated applications (e.g.,
community detection). Due to these reasons, research on these problems has become more and more intense
in recent years.

However, all these problems are known to be NP-Hard. As a result and unless P = NP , it is hopeless to
solve them exactly in the general case in polynomial time. Moreover, real-life graphs are normally massive
(with millions even billions of vertices and edges), which increases the intractability of these combinato-
rial problems. For these reasons, we are interested mainly in tackling them by heuristic and metaheuristic
algorithms, even if we also investigate some exact approaches. To assess the proposed algorithms, we per-
form extensive computational experiments on well-known benchmarks and show comparisons with state-
of-the-art approaches whenever this is possible. We also investigate the key components of each proposed
algorithm to shed light on their impact on the performance of the algorithm.

Objectives
The main objectives of this thesis are summarized as follows:
– detect problem-specific features and design corresponding heuristic rules for the search algorithms.
– develop perturbation strategies which are able to help local search algorithm escape from local op-

tima.
– design graph reduction techniques in order to deal with massive graphs which emerge in real-life

applications.
– design effective exact algorithms, and mainly focus on new bounding techniques and tightened math-

ematical formulations.
– devise specific techniques and data structures to ensure a high computational efficiency of the pro-

posed algorithms.
– evaluate the proposed algorithms on a wide range of benchmark instances, and perform a compre-

hensive comparison with the state-of-the-art.

1

2 CONTENTS

Contributions
The main contributions of this thesis are summarized below:
– For MVWCP, we proposed a powerful move operator PUSH , which generalizes the existing move

operators. Based on this operator, we designed two restart tabu search algorithms (ReTS-I and ReTS-
II) which explore different candidate push sets. Computational results indicates that our new algo-
rithms compete favorably with the leading MVWCP algorithms of the literature. The work has been
published in European Journal of Operational Research 257(1): 41-54, 2017 [Zhou et al., 2017a].

– For MsPlex, we proposed a frequency-driven multi-neighborhoods tabu search algorithm (FD-TS).
The algorithm relies on two traditional move operators (ADD and SWAP) for search space explo-
ration and a frequency-driven move operator (PRESS) for perturbation. We tested the algorithm on
all 80 DIMACS instances and 47 representative real-life instances. The results indicated that FD-TS
outperforms the existing algorithms and sets new records for numerous instances with different val-
ues s. A paper describing this work is accepted to Computer & Operations Research [Zhou and Hao,
2017b].

– For MBBP, we propose a new constraint-based tabu search algorithm called CBTS which is based
on the aforementioned PUSH operator for MWCP as well as two graph reduction techniques. This
algorithm is particularly efficient on random dense instances and very large real-life sparse instances.
Experiments indicate that this algorithm outperforms state-of-the-art algorithms. This study was
presented in a paper submitted to Expert Systems with Applications [Zhou and Hao, 2017a].
We also investigate exact solution approaches for MBBP. We propose an upper bound propagation
procedure (UBP) to tighten the upper bound of all vertices, which are then used by specifically de-
signed exact algorithms. We assessed the effectiveness of these new algorithms and showed that they
are quite suitable to deal with large sparse real-life graphs. The work is currently under revision for
European Journal of Operational Research [Zhou et al., 2017b].

– For CPP, we proposed a three-phase local search heuristic CPP-P3. The three phases correspond to a
descent search, an exploration tabu search and a directed perturbation. One key element of CPP-P3

is its restricted neighborhood which is based on the notion of TOP MOVE of a vertex. Experiments
and additional analyses showed the high performance of the algorithm and the effectiveness of its
components. This work has been published in Journal of Combinatorial Optimization 32(2): 469-
491, 2016 [Zhou et al., 2016].

Organization
The manuscript is organized in the following way:
– In the first chapter, we first introduce the four clique problems considered in this thesis. Then we

present a number of applications related to these problems and a brief overview of existing exact
and heuristic clique algorithms. We also introduce the benchmark and methodologies for algorithm
assessment.

– In the second chapter, we study the maximum vertex weight problem (MVWCP) and review ex-
isting algorithms for its resolution. Then, we introduce the generalized PUSH operator, followed
by two push-based algorithms, ReTS-I and ReTS-II. We provide an experimental study of the new
algorithms, as well as comparisons with state-of-the-art algorithms.

– In the third chapter, we study the maximum s-plex problem (MsPlex). This chapter begins with a
short introduction and a short review of existing approaches for this problem. Then, we present the
proposed FD-TS algorithm and some important implementation issues concerning this new algorithm.
Afterward, we proceed to a thorough computational study of FD-TS on three well-known benchmark
sets.

– In the fourth chapter, we first introduce the maximum bipartite biclique problem (MBBP) and review
the existing algorithms for MBBP. Then we propose a new heuristic algorithms called TSGR-MBBP

CONTENTS 3

which combines tabu search and graph reduction techniques, and report computational results and
analysis of this algorithm. We also show our improvements for exact MBBP solutions. This involves
introducing an upper bound propagation procedure, a new mathematical formulation and a novel
exact search algorithm. Then, we present computational results in order to verify the effectiveness of
these improvements.

– In the last chapter, we consider the clique partitioning problem (CPP). After introducing CPP and
existing resolution strategies, we present our three-phase local search algorithm CPP-P3. Computa-
tional comparisons between CPP-P3 and other algorithms are presented. We provide an analysis of
different components of CPP-P3, as well as the landscape on some representative instances.

1
Introduction

Contents
1.1 Clique problems . 6
1.2 Applications . 8
1.3 Evolution of maximum clique algorithms . 9
1.4 Algorithm assessment . 10

1.4.1 Benchmarks . 11
1.4.2 Metaheuristic algorithms evaluation . 12
1.4.3 Exact algorithms Evaluation . 13

5

6 CHAPTER 1. INTRODUCTION

1.1 Clique problems
A clique, defined as a subset of vertices which are pairwise adjacent, is an important concept in graph

theory. There are many significant clique problems in combinatorial optimization and integer programming.
The maximum clique problem (MCP), which is to find the clique of maximum cardinality from the given
graph, is one of the most classic NP-hard problems. Many important combinatorial problems like graph
coloring [Wu and Hao, 2012], graph clustering [Cramton et al., 2006] and vertex cover [Cai, 2015] can
be directed formulated as a maximum clique problem or have a sub-problem which requires to solve MCP
efficiently. Practical applications of MCP in real-life are also very common in fields like bioinformatics
[Malod-Dognin et al., 2010], coding theory [Etzion and Ostergard, 1998], chemoinformatics [Ravetti and
Moscato, 2008], etc. Due to the significance of MCP, there has been a rich number of theoretical and prac-
tical studies in the past decades, especially after the Second DIMACS Implementation Challenge dedicated
to maximum clique, graph coloring, and satisfiability organized during 1992–1993.

However, in the recent years, relaxed or generalized clique models have become popular since these
models are more convenient to formulate the real-life applications. In this work, we mainly concentrate on
the following four variants or generalizations of the difficult clique problems. The four problems studied in
this thesis extend the applications of clique model to more fields (see Section 1.2).

– The Maximum Vertex Weight Clique Problem (MVWCP).
Given an undirected graph G = (V,E,W) with vertex set V and edge set E, let W : V → R+

be a weighting function that assigns to each vertex v ∈ V a positive value wv. A clique C ⊆ V
of G is a subset of vertices such that its induced subgraph is complete, i.e., every two vertices in C
are pairwise adjacent in G (∀u, v ∈ C, {u, v} ∈ E). For a clique C of G, its weight is given by
W (C) =

∑
v∈C wv. The maximum vertex weight clique problem (MVWCP) is to determine a clique

C∗ of maximum vertex weight.
MVWCP can be formulated as a mixed integer linear program (MILP) as follows.

max W (G) =
∑
i∈V

wixi (1.1)

subject to:
xi + xj ≤ 1,∀{i, j} ∈ Ē (1.2)

xi ∈ {0, 1}, ∀i ∈ V (1.3)

In this formulation, xi is a binary variable associated with vertex i, Ē is the edge set of the complement
graph of G. Objective (1.1) maximizes the clique weight. Constraint (1.2) indicates that only one of
any two non-adjacent vertices can be selected in the clique.
Obviously, MCP can be considered as a special case of MVWCP where the weight of each vertex is
equal to one. For this reason, MVWCP is also NP-Hard since it has at least the same computational
complexity as its unweighted counterpart.

– The Maximum s-Plex problem (MsPlex).
MsPlex is similar to MCP except that the clique constraint is relaxed. Formally, given an undirected
graph G = (V,E) with vertex set V and edge set E, let N(v) denote the set of vertices adjacent to v
in G. Then, an s-plex for a given integer s ≥ 1 (s ∈ N+) is a subset of vertices C ⊆ V that satisfies
the following condition: ∀v ∈ C, |N(v) ∩ C| ≥ |C| − s. Thus, each vertex of an s-plex C must
be adjacent to at least |C| − s vertices in the subgraph G[C] = (C,E ∩ (C × C)) induced by C.
Therefore, MsPlex involves finding, for a fixed value of s, an s-plex of maximum cardinality among
all possible s-plexes of a given graph.
MsPlex can be also formulated as a MILP as follows [Balasundaram et al., 2011]:

max ωs(G) =
∑
i∈V

xi (1.4)

1.1. CLIQUE PROBLEMS 7

subject to: ∑
j∈V \(N(i)∪{i})

xj ≤ (s− 1)xi + d̄i(1− xi),∀i ∈ V (1.5)

xi ∈ {0, 1}, ∀i ∈ V (1.6)

where xi is the binary variable associated to vertex i (xi = 1 if vertex i is in the s-splex, xi = 0
otherwise). Also, d̄i = |V \ N(i)| − 1 denotes the degree of vertex i in the complement graph
Ḡ = (V, Ē). Note that i /∈ N(i) by definition.
MsPlex was first proposed in [Seidman and Foster, 1978] in 1978. Clearly, when s equals one,
MsPlex is equivalent to MCP, in this sense, MsPlex is a relaxed problem of MCP. The decision
version of MsPlex was proven to be NP-Complete in [Balasundaram et al., 2011].

– The Maximum Bipartite Biclique Problem (MBBP).
Given a bipartite graph G = (U, V,E) with two disjoint vertex sets U , V and an edge set E ⊆ U×V ,
a biclique (X, Y) = X ∪ Y is the union of two subsets of vertices X ⊆ U , Y ⊆ V such that
u ∈ X, v ∈ Y implies that {u, v} ∈ E. In other words, the subgraph induced by the vertex set X ∪Y
is a complete bipartite graph. If |X| = |Y |, then (X, Y) is called a balanced biclique of G. The
Maximum Balanced Biclique Problem (MBBP) is to find a balanced biclique (X∗, Y ∗) of maximum
cardinality of G, (X∗, Y ∗) being the maximum balanced biclique of size |X∗| (or |Y ∗|) [Garey and
Johnson, 1979].

max ω(G) =
∑
i∈U

xi (1.7)

subject to:
xi + xj ≤ 1,∀{i, j} ∈ Ē (1.8)∑

i∈U

xi −
∑
i∈V

xi = 0 (1.9)

xi ∈ {0, 1},∀i ∈ U ∪ V (1.10)

where each vertex of U ∪ V is associated to a binary variable xi indicating whether the vertex is part
of the biclique, Ē is the set of edges in the bipartite complement of G. Objective (1.7) maximizes the
size of the biclique. Constraint (1.8) ensures that each pair of non-adjacent vertices cannot be selected
at the same time (i.e., the solution must be a clique). Equation (1.9) enforces that the returned biclique
is balanced.
Obviously, MBBP is another clique problem with regards to the bipartite graph. As shown in [Garey
and Johnson, 1979; Alon et al., 1994], the decision version of MBBP is NP-complete in the gen-
eral case, even though the maximum biclique problem without the balance constraint (Eq. (1.9)) is
polynomially solvable by the maximum matching algorithm [Cheng and Church, 2000].

– The Clique Partitioning Problem (CPP).
Let G = (V,E,W) be a complete edge-weighted undirected graph with a vertex set V and edge set
E = V × V , W : E → R be an edge weighting function that assigns to each edge {u, v} a weight
wuv ∈ R. A subset A ⊆ E is called a clique partition if there is a partition of V into nonempty
disjoint sets V1, ..., Vk (k ∈ Z+ is unfixed) such that

A =
k⋃
p=1

{{i, j}|i, j ∈ Vp, i 6= j} (1.11)

The weight of such a clique partition is defined as
∑
{i,j}∈Awijxij . In other words, the Clique Par-

titioning Problem (CPP) consists in clustering all the vertices into k mutually disjoint subsets (or
groups), such that the sum of the edge weights of all groups is as large as possible [Grötschel and
Wakabayashi, 1989; Grötschel and Wakabayashi, 1990; Wakabayashi, 1986].

8 CHAPTER 1. INTRODUCTION

We can reformulate this problem as a MILP by associating each edge {i, j} ∈ E to a binary variable
xij as follows [Dorndorf and Pesch, 1994].

max f(G) =
∑
{i,j}∈E

wijxij (1.12)

subject to:
xij + xjk − xik ≤ 1,∀i, j, k ∈ V ∧ i < j < k (1.13)

xij − xjk + xik ≤ 1,∀i, j, k ∈ V ∧ i < j < k (1.14)

− xij + xjk + xik ≤ 1,∀i, j, k ∈ V ∧ i < j < k (1.15)

xij ∈ {0, 1},∀{i, j} ∈ E (1.16)

where variable xij is associate to edge {i, j}. xij equals 1 if the two end vertices of edge {i, j} are inside
the same group, 0 otherwise. The constraints (1.13), (1.14) and (1.15) assure that, for any triangle (a clique
of three vertices) in the graph, if two of the vertices in the triangle are part of the same group, then the third
vertex is also a part of this group.

The set of edges which have both ends in different groups is called a cut of G. In order to find groups
as homogeneous as possible, positive edges should appear within groups and negative edges in the cut.
Hence, a optimal partition has a minimal cut weight. The decision problem of CPP is also NP-complete
[Wakabayashi, 1986].

1.2 Applications
As a generalization of MCP, MVWCP algorithms can be used to solve the MCP when the vertices are

associated with different weights. A classical application is solving the Winner Determination Problem
(WDP) in combinatorial auctions. Given a collection of bids B = {B1, B2, ..., Bn}, each bid Bj being
specified by its set of items Sj and its associated price Pj , WDP is to find an allocation of items to bidders
in order to maximize the auctioneer’s revenue under the constraint that each item is allocated to at most
one bid. One can transform an instance of WDP to a weighted graph G = (V,E,W) where each vertex is
associated to a bid and its weight is equal to the corresponding price. Two vertices are adjacent only if the
corresponding bids do not share any common item. Then the WDP is to find the maximum weight clique
from this graph [Wu and Hao, 2015b; Wu and Hao, 2016].

Another applications of MVWCP can be found in computer vision and robotics. In order to match a
new image against a model, one approach is to find the maximum weight clique from an auxiliary graph
where each vertex represents putative association between features of the graphs being matched, and vertex
weight represents the similarity. An edge exists between two associations if they are compatible. Then the
matching problem is equivalent to MVWCP [Ballard and Brown, 1982].

In social network analysis, clique is also a popular model used to describe cohesive subgroups whose
members are closely related. Recent studies point out that the clique model idealizes the structural prop-
erties as the individuals in a cohesive group may not be pairwise connected. In this sense, the clique
model biases the real situation especially when the graph is built on inexact, empirical data. Consequently,
clique relaxation models like s-plex are often referred [Pattillo et al., 2012; Pattillo et al., 2013b]. Other
clique relaxation models include s-defective clique [Yu et al., 2006], quasi-clique [Pajouh et al., 2014;
Brunato et al., 2007; Pattillo et al., 2013a], and k-club [Bourjolly et al., 2000], which are defined by re-
laxing the edge number, the edge density, and the pairwise distance of vertices in an induced subgraph,
respectively. In terms of MsPlex, an application is to find profitable diversified portfolios on the stock
market [Boginski et al., 2014]. In this application, a market graph is firstly built by assigning each vertex
(stock) a weight which corresponds to its return over the considered time period, and connecting each pair
of vertices by an edge if the correlation between the corresponding pair of stocks does not exceed a certain

1.3. EVOLUTION OF MAXIMUM CLIQUE ALGORITHMS 9

threshold θ. The maximum weight s-plex of this market graph corresponds to the recommended set of
profitable diversified portfolios.

The above cases mainly concerns the clique or relaxed clique models in a general graph (i.e., non-
bipartite). When the graph is bipartite, MCP problem becomes trivial as it can be solved polynomially
[Cheng and Church, 2000]. Now, a more challenging problem is to find the maximum balanced biclique.
This problem denoted as MBBP is relevant in real-life applications. In nanoelectronic system design, MBBP
is used to identify the maximum defect-free crossbar from a partially fabricated defective crossbar rep-
resented by a bipartite graph [Tahoori, 2006; Al-Yamani et al., 2007; Tahoori, 2009]. In computational
biology, MBBP is applied to simultaneously group genes and their expressions under different conditions
(called biclustering) [Cheng and Church, 2000]. Another application can be found in the field of VLSI for
PLA-folding [Ravi and Lloyd, 1988]. The clique and biclique models are also popular tools for mining
patterns for clustering on numerical datasets [Gutierrez-Rodríguez et al., 2015], semantic interpretation of
clusters contents [Role and Nadif, 2014], and community detection in complex networks [Zhi-Xiao et al.,
2016].

CPP is a clique grouping problem, whereas the above MVWCP, MsPlex and MBBP problems are subset
selection problems. CPP has also a number of practical applications such as biology, flexible manufacturing
systems, airport logistics, and social sciences. For instance, in qualitative data analysis, CPP can be used
to uncover natural groupings, or types of objects, each one being characterized by several attributes. One
can bijectively associate these objects with vertices of an edge-weighted graph G; each positive or negative
edge weight represents some measure of similarity or dissimilarity of two objects linked by the edge. The
associated CPP problem consists in determining an appropriate partition of the vertices. In biology, the
classification of animals and plants is based on qualitative and/or quantitative descriptions. As the number
of classes is unknown a priori, CPP is well suited for determining such classifications [Grötschel and Wak-
abayashi, 1989]. In transportation, an application of CPP to a flight-gate scheduling problem is presented
in [Dorndorf et al., 2008]. In manufacturing, CPP can be used to determine different groups of products as
shown in [Oosten et al., 2001; Wang et al., 2006].

1.3 Evolution of maximum clique algorithms

To introduce existing clique algorithms, it is inevitable to first briefly present MCP algorithms since
many clique algorithms find their origin in the strategies developed for MCP. Existing approaches for MCP
mainly fall into two categories: exact algorithms and heuristic algorithms.

An exact algorithm aims at finding provable optimal solutions. However, it is well known that MCP is
a fundamental NP-Hard problem and its decision version is among the first 21 Karp’s NP-complete prob-
lems [Karp, 1972]. Therefore, it is unrealistic to find a polynomial algorithm for MCP unless P=NP. One
alternative is to implicitly enumerate the solutions under a branch and bound (B&B) scheme. Numerous
exact solvers based on the original well-known B&B algorithm [Carraghan and Pardalos, 1990] for MCP
have been proposed. The two key issues of improving the efficiency of B&B algorithms are bounding
techniques and branch heuristics. From the literature, we mainly found the following techniques: 1) obtain
improved upper bounds on the size of maximum clique with the help of some previously computed smaller
graphs [Östergård, 2002]; 2) bound the maximum clique size using vertex coloring [Tomita and Seki, 2003;
Tomita and Kameda, 2007; San Segundo et al., 2011]; 3) remove unpromising vertices [Fahle, 2002;
Verma et al., 2015]; 4) combine vertex coloring with MaxSAT reasoning techniques [Li and Quan, 2010].
These algorithms have been demonstrated to be very efficient in solving a wide range of MCP instances.
Consequently, these techniques have also been adapted for other clique problems like aforementioned
MVWCP, MsPlex and MBBP. For example, the first bounding techniques mentioned above were also em-
ployed in [Östergård, 1999] to solve MVWCP, in [Trukhanov et al., 2013] to solve MsPlex. The vertex
coloring technique was used in [Kumlander, 2004; Warren and Hicks, 2006; Wu and Hao, 2016] to bound-
ing and branching for solving MVWCP. In [McClosky and Hicks, 2012], an algorithm for MsPlex was

10 CHAPTER 1. INTRODUCTION

proposed using the co-s-plex bounding technique, which is an adaption of the vertex coloring technique for
MsPlex. In [Fang et al., 2016], the MaxSAT Reasoning is used as a bounding technique for MVWCP as
well.

Except the B&B based exact algorithms, mixed integer programming (MIP) solvers like CPLEX con-
stitutes another approach to solve exactly clique problems. The efficiency of MIP solvers highly depends
on the mathematical formulation of the target problem. Numerous studies on the formulations of MCP can
be found for the last decades. The simplest formulation for MCP may be the one described in Equation
(1.7) – (1.10) with vertex weights set to one. This formulation can be tightened by odd-cycle inequalities
[Nemhauser and Trotter, 1974], clique inequalities [Padberg, 1973], rank inequalities [Mannino and Sas-
sano, 1996], etc. Meanwhile, many polynomial time separation algorithms have been proposed to separate
these inequalities. Interested readers are referred to [Rebennack et al., 2012] for more details. These in-
equalities for MCP can be directly employed to describe MVWCP since they share the same polyhedral
structure. With some adaptions, they can also be used for describing MsPlex. The co-k-plex inequalities
and hole inequalities in [Balasundaram et al., 2011] are adapted from the clique inequalities and odd-cycle
inequalities. However, in terms of CPP, the polyhedral structure is quite different from that of clique. Some
interesting studies and a cutting plane algorithm of CPP can be found in [Grötschel and Wakabayashi,
1989].

On the other hand, heuristic algorithms constitute another way to search high quality solutions in a
reasonable time, but without proving optimality. As far as we know, local search is the most successful
framework for designing effective MCP heuristics. The scheme of existing local search algorithms generally
can be divided into two types: search a legal k-clique by increasing k values, namely k-fixed penalty
strategy; or search all the feasible cliques to locate the ones with large cardinality, i.e., legal strategy. The
two types of strategies can be further classified by the move operator used to explore the search space. For
the k-fixed penalty strategy, a swap operator is often employed to find a clique of size k. While for the
legal strategy, different move operators have been used, most of the time, adding a vertex to the incumbent
clique, swapping a vertex from the clique against another one outside the clique or drop one vertex from
the clique.

Meanwhile, local search has been successfully used for MVWCP in [Benlic and Hao, 2013a; Pullan,
2008; Wang et al., 2016; Wu et al., 2012; Wu and Hao, 2015b]. These algorithms are also based on add,
swap, drop operators which were applied in local search algorithms for MCP for search intensification. As
for MsPlex, only two GRASP based [Feo and Resende, 1995a] heuristic algorithms are found in [Miao
and Balasundaram, 2012; Gujjula et al., 2014]. For CPP, the reallocation of one vertex was also a common
way of constructing new neighbor solutions in many local seach algorithms, for example tabu search and
simulated annealing in [De Amorim et al., 1992; Kirkpatrick et al., 1983; Brusco and Köhn, 2009]. The
reallocation algorithm was sometimes combined with an ejection chain heuristic in [Dorndorf and Pesch,
1994], with noisy heuristic in [Charon and Hudry, 2001; Charon and Hudry, 2006]. Recently, we noticed
that two heuristic algorithms [Palubeckis et al., 2014; Brimberg et al., 2015] also employed reallocation
and swap operators.

In the following chapters, we will review, for each considered problem, additional and specific state-of-
the-art elements.

1.4 Algorithm assessment

For each clique problem considered in this thesis, one can find in the literature several heuristic or exact
algorithms, which have to be carefully evaluated. Due to the lack of theory for metaheuristic algorithms,
most evaluations are based on computational experiments. We give an introduction of the important aspects
of algorithm assessment for the clique problems in this thesis.

1.4. ALGORITHM ASSESSMENT 11

1.4.1 Benchmarks

It is unrealistic to study the performance of existing algorithms to every possible instances. Hence, in
practice, we often chose a set of diversified instances built under different settings. The benchmark sets
used in this thesis include those commonly used in the literature and some new instances proposed in this
work. We summarize these benchmarks according to their associate problems.

The instances for MVWCP can be divided into three sets.
– The 2nd DIMACS Implementation Challenge Benchmark (2nd DIMACS). This set of 80 in-

stances originated from the second DIMACS implementation challenge for the maximum clique prob-
lem 1. These instances cover both real world problems (coding theory, fault diagnosis, Steiner Triple
Problem...) and random graphs. They include small graphs (50 vertices and 1,000 edges) to large
graphs (4,000 vertices and 5,000,000 edges). Though DIMACS graphs were originally collected for
benchmarking MCP algorithms, these graphs are still very popular and widely used as a testbed for
evaluating MVWCP algorithms [Benlic and Hao, 2013a; Fang et al., 2016; Mannino and Stefanutti,
1999; Pullan, 2008; Wang et al., 2016; Wu et al., 2012], and MsPlex algorithms [Balasundaram et
al., 2011; McClosky and Hicks, 2012; Trukhanov et al., 2013; Moser et al., 2012].

– BHOSLIB benchmarks. The BHOSLIB (Benchmarks with Hidden Optimum Solutions) instances
were generated randomly in the SAT phase transition area according to the model RB 2. The 40
instances included in this set were widely used to test MCP and MVWCP algorithms. The sizes of
these instances range from 450 vertices and 17,794 edges, to 1,534 vertices and 127,011 edges. When
testing MWCP algorithms, the weight of each vertex i is equal to i mod 200 + 1.

– Winner Determination Problem (WDP) benchmarks. The Winner Determination Problem can
be reformulated as a MVWCP and thus solved by MVWCP solvers [Wu and Hao, 2015b; Wu and
Hao, 2016]. Therefore, benchmark instances for WDP can also be used to test the performance of
MVWCP solvers.

For MsPlex, except the classical 2nd DIMACS instances (with unit vertex weight), we additionally
consider two benchmark sets which include very large real-life instances.

– The 10th DIMACS Implementation Challenge Benchmark (10th DIMACS) 3. This testbed con-
tains many large networks, including artificial and real-world graphs from different applications. This
benchmark set is popular for testing graph clustering and partitioning algorithms. More information
about the graphs can be obtained from [Bader et al., 2012].

– Stanford Large Network Dataset Collection (SNAP) 4. SNAP provides a large range of large-scale
social and information networks [Leskovec and Sosič, 2016], including graphs retrieved from social
networks, communication networks, citation networks, web graphs, product co-purchasing networks,
Internet peer-to-peer networks, and Wikipedia networks. Some of these networks are directed graphs,
so we simply ignored the direction of each edge and eliminate loops and multiple edges.

MBBP requires the input graph to be bipartite, thus the above popular instances are not directly appli-
cable. In this work, we adopt a set of randomly generated benchmark instances as well as instances from
popular Koblenz Network Collection [Kunegis, 2013].

– Random Graphs. This set of benchmark instances includes 30 randomly generated dense graphs.
In each graph, the two vertex sets U and V have an equal cardinality (i.e., |U | = |V |) and an edge
between a pair of vertices {u, v} (u ∈ U, v ∈ V) exists with an uniform probability p (0 < p < 1)
which defines the edge density of the graph. For our study, we used random graphs generated by the
same rule of [Yuan et al., 2015] so that the performances of different algorithms can be compared.
A theoretical analysis in [Dawande et al., 2001] showed that the maximum balanced size in such
random graphs locates in range [lnn

ln(1/p)
, 2∗lnn

ln(1/p)
] with high probability (when n is sufficiently large).

1. http://www.cs.hbg.psu.edu/txn131/clique.html
2. http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
3. http://www.cc.gatech.edu/dimacs10/downloads.shtml
4. http://snap.stanford.edu/data/

http://www.cs.hbg.psu.edu/txn131/clique.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.cc.gatech.edu/dimacs10/downloads.shtml
http://snap.stanford.edu/data/

12 CHAPTER 1. INTRODUCTION

– The Koblenz Network Collection (KONECT) 5. The entire collection contains hundreds of net-
works derived from different real-life applications, including social networks, hyperlink networks,
authorship networks, physical networks, interaction networks and communication networks. These
networks are commonly used in the social network analyzing [Hardiman and Katzir, 2013].

For CPP, the input graphs are always complete ones. Thus the instances vary in terms of vertex number
and edge weight distribution. We employ the following four sets 6.

– Group I: a set of 7 instances which constitutes the benchmark reported in the literature in 2006
[Charon and Hudry, 2006]. Instances named "rand100-100","rand300-100","rand 500-100" are gen-
erated by choosing a random integer for the edge weights in range [-100, 100], while the weights
of "rand300-5" and "zahn300" respectively take value in range [-5, 5] and set {-1, 1}. To generate
"sym300-50", 50 symmetric relations among 300 vertices were established, and the differences be-
tween related and unrelated components were used to compute the edge weights. To create the last
instance named "regnier300-50", 50 bipartitions of 300 vertices were established and the difference
between the number of bipartitions for which each pair of vertices is or is not in the same cluster was
used to obtain the edge weights.

– Group II: a set of 6 instances originally proposed in 2009 [Brusco and Köhn, 2009] ("rand200-100",
"rand400-100","rand100-5", "rand200-5", "rand400-5", "rand500-5"). For these graphs, (integer)
edge weights are uniformly generated in range [-100,100] or [-5, 5].

– Group III: a set of 35 instances reported in 2014 [Palubeckis et al., 2014]. These instances are
grouped into 4 categories by the number of vertices. Edge weights are also uniformly distributed in
range [-5,5] or [-100, 100].

– Group IV: a set of 15 additional instances specifically generated for this study. We provide a first
set of 5 instances with 500 vertices, where edge weights are generated using gaussian distribution
N (0, 52) (the prefix of the instances name is "gauss"). Moreover, we provide another set of 10 large
instances involving graphs of 700 and 800 vertices, while the edge weights are uniformly distributed
in range [-5, 5] (the prefix of the instances name is "unif").

1.4.2 Metaheuristic algorithms evaluation

As far as we know, there is no agreement upon the evaluation and analysis of metaheuristic algorithms.
At the moment, a general approach to compare the performance of different algorithms is to run each
algorithm multiple times and then give an overall evaluation. Specifically, the algorithms are given the
same benchmark instances and tested under the same environment (ideally, the same test machine and
time limitation). Important indicators like solution quality, running time or memory consumption for each
independent run are recorded. Then we collect these records and compare some statistic features. In this
study, we frequently use features like average and standard deviation of solution quality, the average time
consumption, the average speed, etc. Note that for some problems and instances, the general purpose MILP
solver CPLEX is also used as a benchmark algorithm.

Modern metaheuristics generally integrate many components which involve dedicated heuristics (solu-
tion initialization, solution perturbation, crossover, etc). To analyze the contribution of a specific component
to the the overall performance, the control experiment is frequently used. We normally set up a variant of
the tested algorithm in which only the discussed component is replaced by other implementations or a trivial
one. Then the variant and original algorithms are compared experimentally on the benchmark. For the four
clique problems studied in the following chapters, such control experiments are frequently used.

5. http://konect.uni-koblenz.de/
6. All these instances can be downloaded from https://drive.google.com/open?id=

0Bxq63AJFrhOjd2h4YVRxOWNXNnc

http://konect.uni-koblenz.de/
https://drive.google.com/open?id=0Bxq63AJFrhOjd2h4YVRxOWNXNnc
https://drive.google.com/open?id=0Bxq63AJFrhOjd2h4YVRxOWNXNnc

1.4. ALGORITHM ASSESSMENT 13

1.4.3 Exact algorithms Evaluation
As opposed to stochastic metaheuristics, exact algorithms are normally deterministic. The exact algo-

rithms involved in this work are mainly based on the branch and bound (B&B) framework. To evaluate
them, we measure the computational time as well as the size of the B&B tree, (i.e., the number of B&B
nodes enumerated during the search). Under certain settings, an exact algorithm is unable to complete in a
reasonable time, we then evaluate the gap between the current best solution and the best-known lower/upper
bound.

2
A Generalized Operator “PUSH” for the
Maximum Vertex Weight Clique Problem

In this chapter, we introduce a generalized move operator called PUSH, which generalizes the conven-
tional ADD and SWAP operators commonly used in the literature and can be integrated in a local search
algorithm for MVWCP. The PUSH operator also offers opportunities to define new search operators by
considering dedicated candidate push sets. To demonstrate the usefulness of the proposed operator, we
implement two simple tabu search algorithms which use PUSH to explore different candidate push sets.
The computational results on a total of 142 benchmark instances from different sources (2nd DIMACS,
BHOSLIB, and Winner Determination Problem) indicate that the proposed approach competes favorably
with the leading MVWCP algorithms. The generality of the PUSH operator could lead to new applications
in other contexts bypassing the problem and search procedures studied in this work. The content of this
chapter is based on an article published in European Journal of Operational Research [Zhou et al., 2017a].

Contents
2.1 Introduction . 17
2.2 PUSH: a generalized operator for MVWCP . 18

2.2.1 Preliminary definitions . 18
2.2.2 Motivations for the PUSH operator . 19
2.2.3 Definition of the PUSH Operator . 20
2.2.4 Special cases of PUSH . 20

2.3 PUSH-based tabu search . 21
2.3.1 Random initial solution . 22
2.3.2 Solution reconstruction . 22
2.3.3 ReTS-I: Tabu search with the largest candidate push set 23
2.3.4 ReTS-II: Tabu search with three decomposed candidate push sets 23
2.3.5 Fast evaluation of move gains . 24

2.4 Computational experiments . 25
2.4.1 Benchmarks . 26
2.4.2 Experimental protocol . 26
2.4.3 Computational results . 26
2.4.4 Comparisons with state-of-the-art algorithms . 27

2.5 Effectiveness of restart strategy . 31

15

16 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

2.6 Conclusion . 34

2.1. INTRODUCTION 17

2.1 Introduction

Given an undirected graph G = (V,E,W) with vertex set V and edge set E, let W : V → R+ be a
weighting function that assigns to each vertex v ∈ V a positive value wv. A clique C ⊆ V of G is a subset
of vertices such that its induced subgraph is complete, i.e., every two vertices in C are pairwise adjacent in
G (∀u, v ∈ C, {u, v} ∈ E). For a clique C of G, its weight is given by W (C) =

∑
v∈C wv. The Maximum

Vertex Weight Clique Problem (MVWCP) is to determine a clique C∗ of maximum weight.
MVWCP is an important generalization of the classic Maximum Clique Problem (MCP) [Wu and Hao,

2015a]. Indeed, when the vertices of V are assigned the unit weight of 1, MVWCP is equivalent to MCP
which is to find a clique C∗ of maximum cardinality. Given that the decision version of MCP is NP-
complete [Karp, 1972], the generalized MVWCP problem is at least as difficult as MCP. Consequently
solving MVWCP represents an imposing computational challenge in the general case. Note that MVWCP
is different from another MCP variant – the Maximum Edge Weight Clique Problem [Alidaee et al., 2007;
Dijkhuizen and Faigle, 1993] where a clique C∗ of maximum edge weight is sought.

Like MCP which has many practical applications, MVWCP can be used to formulate and solve some
relevant problems in diverse domains. For example, in computer vision, MVWCP can be used to solve
image matching problems [Ballard and Brown, 1982]. In combinatorial auctions, the Winner Determination
Problem can be recast as MVWCP and solved by MVWCP algorithms [Wu and Hao, 2015b; Wu and Hao,
2016].

Given the significance of MVWCP, much effort has been devoted to design various algorithms for
solving the problem over the past decades. On the one hand, there are a variety of exact algorithms which
aim to find optimal solutions. For instance, in 2001, Östergård [Östergård, 1999] presented a branch-
and-bound (B&B) algorithm where the vertices are processed according to the order provided by a vertex
coloring of the given graph. This MVWCP algorithm is in fact an adaptation of an existing B&B algorithm
designed for MCP [Östergård, 2002]. In 2004, Kumlander [Kumlander, 2004] introduced a backtrack tree
search algorithm which also relies on a heuristic coloring-based vertex order. In 2006, Warren and Hicks
[Warren and Hicks, 2006] exposed three B&B algorithms which use weighted clique covers to generate
upper bounds and branching rules. In 2016, Wu and Hao [Wu and Hao, 2016] developed an algorithm
which introduces new bounding and branching techniques using specific vertex coloring and sorting. In
2016, Fang et al. [Fang et al., 2016] presented an algorithm which uses Maximum Satisfiability Reasoning
as a bounding technique. On the other hand, local search heuristics constitute another popular approach
to find high-quality sub-optimal or optimal solutions in a reasonable computing time. In 1999, Mannino
and Stefanutti [Mannino and Stefanutti, 1999] proposed a tabu search method based on edge projection and
augmenting sequence. In 2000, Bomze et al. [Bomze et al., 2000] formulated MVWCP as a continuous
problem which is solved by a parallel algorithm using a distributed computational network model. In 2006,
Busygin [Busygin, 2006] exposed a trust region algorithm. The same year, Singh and Gupta [Singh and
Gupta, 2006] introduced a hybrid method combining genetic algorithm, a greedy search and the exact
algorithm of [Carraghan and Pardalos, 1990]. In 2008, Pullan [Pullan, 2008] adapted the Phase Local
Search for the classical MCP to MVWCP. In 2012, Wu et al. [Wu et al., 2012] introduced a tabu search
algorithm integrating multiple neighborhoods. In 2013, Benlic and Hao [Benlic and Hao, 2013a] presented
the Breakout Local Search algorithm which also explores multiple neighborhoods and applies both directed
and random perturbations. Recently in 2016, Wang et al. [Wang et al., 2016] reformulated MVWCP as a
Binary Quadratic Program (BQP) which was solved by a probabilistic tabu search algorithm designed for
BQP.

As shown in the literature, local search represents the most popular and the dominating approach for
solving MVWCP heuristically. Typically, local search heuristics explore the search space by iteratively
transforming the incumbent solution into another solution by means of some move (or transformation)
operators. Existing heuristic algorithms for MVWCP [Benlic and Hao, 2013a; Pullan, 2008; Wang et al.,
2016; Wu et al., 2012; Wu and Hao, 2015b] are usually based on two popular move operators for search
intensification: (1) ADD which inserts a vertex to the incumbent solution (a feasible clique), and (2) SWAP

18 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

which exchanges a vertex in the clique against a vertex out of the clique. In studies like [Benlic and Hao,
2013a; Wu et al., 2012], another operator called DROP was also used, which simply removes a vertex from
the current clique. The algorithms using these operators have reported remarkable results on a large range
of benchmark problems. Still as we show in this work, the performance of local search algorithms could be
further improved by employing more powerful search operators.

This work introduces a generalized move operator called PUSH, which inserts one vertex into the clique
and removes k ≥ 0 vertices from the clique to maintain the feasibility of the transformed clique. The pro-
posed PUSH operator shares similarities with some restart and perturbation operators used in MCP and
MVWCP algorithms like [Benlic and Hao, 2013a; Grosso et al., 2008] and finds its origin in these previous
studies. Meanwhile, as we show in this work, the PUSH operator not only generalizes the existing ADD
and SWAP operators, but also offers the possibility of defining additional clique transformation operators.
Indeed, dedicated local search operators can be obtained by customizing the set of candidate vertices con-
sidered by PUSH. Such alternative operators can then be employed in a search algorithm as a means of
intensification or diversification.

To assess the usefulness of the PUSH operator, we experiment two restart tabu search algorithms (ReTS-
I and ReTS-II), which explore different candidate push sets for push operations. ReTS-I operates on the
largest possible candidate push set while ReTS-II works with three customized candidate push sets. Both
algorithms share a probabilistic restart mechanism. The proposed approach is assessed on three sets of
well-known benchmarks (2nd DIMACS, BHOSLIB, and Winner Determination Problem) of a total of 142
instances. The computational results indicate that both ReTS-I and ReTS-II compete favorably with the
leading MVWCP algorithms of the literature. Moreover, the generality of the PUSH operator could allow
it to be integrated within any local search algorithm to obtain enhanced performances.

The chapter is organized as follows. Section 2.2 formally introduces the PUSH operator. Section
2.3 presents the two push-based tabu search algorithms. Section 4.3.7 reports our experimental results and
comparisons with respect to state-of-the-art algorithms. Section 2.5 is dedicated to an experimental analysis
of the restart strategy while conclusions and perspectives are given in Section 5.5.

2.2 PUSH: a generalized operator for MVWCP

2.2.1 Preliminary definitions

Let G = (V,E,W) be an input graph as defined in the introduction, C ⊆ V a feasible solution (i.e.,
a clique) such that any two vertices in C are linked by an edge in E (throughout the chapter, C is used to
designate a clique), and v ∈ V an arbitrary vertex. We introduce the following notations:

- N(v) and N̄(v) denote respectively the set of adjacent and non-adjacent vertices of a vertex v in V ,
i.e., N(v) = {u : {v, u} ∈ E} and N̄(v) = {u : {v, u} /∈ E}.

- NC(v) and N̄C(v) denote respectively the set of adjacent and non-adjacent vertices of a vertex v in
C, i.e., NC(v) = C ∩N(v) and N̄C(v) = C ∩ N̄(v).

- Ω is the search space including all the cliques of G, i.e., Ω = {C ⊆ V : ∀v, u ∈ C, v 6= u, {u, v} ∈
E}.

- m is a move operator which transforms a clique to another one. We use C⊕m to designate the clique
C ′ = C ⊕ m obtained by applying the move operator m to C. C ′ is called a neighbor solution (or
neighbor clique) of C.

- Nm is the set of neighbor solutions that can be obtained by applying m to an incumbent solution C.
The weight W (C) =

∑
v∈C wv of a solution (clique) C ∈ Ω is used to measure its quality (fitness). For

two solutions C and C ′ in Ω, C ′ is said to be better than C if W (C ′) > W (C). The weight W (C∗) of the
best solution ever found by a search procedure is abbreviated as W ∗.

2.2. PUSH: A GENERALIZED OPERATOR FOR MVWCP 19

(a) (b)

Figure 2.1: An example which shows that a better solution can be reached by the PUSH operator, but cannot
be attained by the traditional ADD and SWAP operators.

2.2.2 Motivations for the PUSH operator

As shown in the literature, local search is the dominating approach for tackling MVWCP (see for exam-
ple, [Benlic and Hao, 2013a; Pullan, 2008; Wu et al., 2012; Wu and Hao, 2015b]). Local search typically
explores the search space by iteratively transforming an incumbent solution C to a neighbor solution (often
of better quality) by means of the following move operators:

– ADD extends C with a vertex v ∈ V \ C which is necessarily adjacent to all the vertices in C. Each
application of ADD always increases the weight of C and leads to a better solution.

– SWAP exchanges a vertex v ∈ V \ C with another vertex v′ ∈ C, v being necessarily adjacent to all
vertices in C except v′. Each application of SWAP can increase the weight of C (if wv > wv′), keep
its weight unchanged (if wv = wv′) or decrease the quality of C (if wv < wv′).

In some cases like [Benlic and Hao, 2013a; Wu et al., 2012], a third move operator (DROP) was also
employed which simply removes a vertex from C (thus always leading to a worse neighbor solution).

Generally, local search for MVWCP aims to reach solutions of increasing quality by iteratively moving
from the incumbent solution to a neighbor solution. This is typically achieved by applying ADD whenever
it is possible to increase the weight of the clique, applying SWAP when no vertex can be added to the clique
and occasionally calling for DROP to escape local optima.

However, as both ADD and SWAP have a prerequisite on the operating vertex in V \ C, these operators
may miss improving solutions in some cases. To illustrate this point, we consider the example of Fig.
2.1 where vertex weights are indicated in brackets next to the vertex labels. As shown in Fig. 2.1(a),
C = {a, b, c} is a clique with a total weight of 12. Since vertex d is neither adjacent to a nor b, d cannot
join clique C by means of the ADD and SWAP operators. Meanwhile, one observes that if we insert vertex
d into the clique and remove both vertices a and b, we obtain a new clique C ′ (Fig. 2.1(b)) of weight of 13,
which is better than C.

Inspired by this observation, the PUSH operator proposed in this work basically transforms C by push-
ing a vertex v taken from a dedicated subset of V \C into C and removing, if needed, one or more vertices
from C to re-establish solution feasibility. Indeed, when the added vertex v is not adjacent to all the vertices
in C, the vertices of C which are not adjacent to v (i.e., the vertices in the set N̄C(v) as defined in Section
2.2.1) need to be removed from C to maintain the feasibility of the new solution. In the above example, C
can be transformed to a better solution by pushing vertex d into the clique and then expelling both a and b.

20 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

2.2.3 Definition of the PUSH Operator

Let C be a clique, and v an arbitrary vertex which does not belong to C (v ∈ V \ C). PUSH(v, C) (or
PUSH(v) for short if the current clique does not need to be explicitly emphasized) generates a new clique
by first inserting v into C and then removing any vertex u ∈ C such that {u, v} /∈ E (i.e., u ∈ N̄C(v), see
Section 2.2.1).

Formally, the neighbor clique C ′ after applying PUSH(v) (v ∈ V \ C) to C is given by:

C ′ = C ⊕ PUSH(v) = C \ N̄C(v) ∪ {v}

Consequently, the set of neighbor cliques induced by PUSH(v) in the general case, denoted by NPUSH is
given by:

NPUSH =
⋃

v∈V \C

{C ⊕ PUSH(v)} (2.1)

For each neighbor solution C ′ = C ⊕ PUSH(v) generated by a PUSH(v, C) move, we define the
move gain (denoted by δv) as the variation in the objective function value between C ′ and C:

δv = W (C ′)−W (C) = wv −
∑

u∈N̄C(v)

wu (2.2)

Thus, a positive (negative) move gain indicates a better (worse) neighbor solution C ′ compared to C
while the zero move gain corresponds to a neighbor solution of equal quality.

Typically, a local search algorithm makes its decision of moving from the incumbent solution to a
neighbor solution based on the move gain information at each iteration. In order to be able to efficiently
compute the move gains of neighbor solutions, we present in Section 2.3.5 fast streamlining evaluation
techniques with the help of dedicated data structures.

One notices that PUSH shares similarities with some customized restart or perturbation operators used
in [Benlic and Hao, 2013a; Grosso et al., 2008] and finds its origin in these previous studies. In the iterated
local search algorithm designed for MCP by Grosso et al. [Grosso et al., 2008], the clique delivered at
the end of each local optimization stage is perturbed by insertion of a random vertex and serves then as a
new starting point for the next stage of local optimization. In the BLS algorithm for MCP and MVWCP
presented by Benlic and Hao [Benlic and Hao, 2013a], each random perturbation adds a vertex such that
the resulting clique must satisfy a quality threshold. In these two previous studies, clique feasibility is
established by a repair process which removes some vertices after each vertex insertion.

2.2.4 Special cases of PUSH

From the general definition of PUSH given in the last section, we can customize the move operator by
identifying a dedicated vertex subset of V \ C called candidate push set (CPS) that provides the candidate
vertices for PUSH. We first discuss two special cases by considering non-adjacency information convoyed
by N̄C(v) (see the notations introduced in Section 2.2.1).

- If CPS is given by A = {v : |N̄C(v)| = 0, v ∈ V \ C}, then PUSH is equivalent to ADD.
- If CPS is given by B = {v : |N̄C(v)| = 1, v ∈ V \ C}, then PUSH is equivalent to SWAP.
We can also use other information like move gain to constrain the candidate push set, as illustrated by

the following examples.

1. If CPS is given by M1 = {v : δv > 0, v ∈ V \ C}, then PUSH always leads to a neighbor solution
better than C.

2. If CPS is given by M2 = {v : δv ≤ 0, |N̄C(v)| = 1, v ∈ V \ C}, then PUSH exchanges one vertex in
V \ C with one vertex in C, leading to a solution of equal or worse quality relative to C.

2.3. PUSH-BASED TABU SEARCH 21

Figure 2.2: A simple graph labeled with vertex weights in brackets. The current clique is C = {a, b, c, d},
W (C) = 2+3+4+5 = 14, N̄C(e) = ∅, N̄C(f) = {a}, N̄C(g) = {a, b}, N̄C(h) = {c, d}, N̄C(i) = {a, b, c},
thus, δe = 2, δf = 0, δg = 1, δh = −1, δi = −3. According to the definitions, A = {e}, B = {f},
M1 = {e, g}, M2 = {f}, M3 = {h, i}.

3. If CPS is given by M3 = {v : δv ≤ 0, |N̄C(v)| > 1, v ∈ V \ C}, then PUSH inserts one vertex into
C and removes at least two vertices from C, leading to a solution of equal or worse quality relative to
C.

4. If CPS is given by V \ C, then the candidate push set is not constrained. One notices that V \ C =
M1 ∪M2 ∪M3.

An example of these special cases is provided in Fig. 2.2.
In addition to the ADD and SWAP operators, several restart rules of local search algorithms for MCP can

also be recast with the PUSH operator. In particular, the restart Rule 1 in [Grosso et al., 2008] (previously
used in [Pullan and Hoos, 2006]) states that C := [C∩N(v)]∪{v}, v picked at random in V \C (i.e., add a
random vertex v in the clique while keeping in the clique the adjacent vertices of v). This rule is equivalent
to push a vertex from candidate push set V \C into the current solution. As to the restart Rule 2 in [Grosso
et al., 2008], let us define the candidate push set Sq = {v : δv ≤ 1 − q, v ∈ V \ C} (q > 0 is a fixed
parameter). Then the Rule 2 is to push a random vertex from Sq into C if Sq is not empty; otherwise, push
a random vertex from V \ C. Moreover, in the BLS algorithm for MCP and MVWCP [Benlic and Hao,
2013a], the so-called random perturbation modifies the incumbent clique by adding vertices such that the
quality of the resulting clique is not deteriorated more than a quality threshold. This random perturbation
strategy can simply be considered as applying the PUSH operator to vertices from the candidate push set
M4 = {v : δv > (α− 1) ∗W (C), v ∈ V \ C} (where 0 < α < 1 is a predefined parameter).

Finally, by considering other candidate push sets subject to specific conditions, it is possible to obtain
multiple customized search operators that can be employed by any local optimization procedure to effec-
tively explore the search space. In the next section, we present two local search algorithms based on the
above M1, M2, M3 and V \ C candidate push sets.

2.3 PUSH-based tabu search
In this section, we introduce two simple Restart Tabu Search [Glover and Laguna, 2013] algorithms

(denoted by ReTS-I and ReTS-II). Both algorithms rely on the PUSH operator, but explore different candi-
date push sets. In ReTS-I, the candidate push set considered includes all the vertices out of the clique (i.e.,

22 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

CPS = V \ C) while in ReTS-II, the algorithm jointly considers the candidate push sets M1, M2 and M3

introduced in Section 2.2.3.
Both ReTS-I and ReTS-II share the same restart local search framework as shown in Algorithm 4.1,

but implement different local optimization procedures with different CPS (line 5, see Sections 2.3.3 and
2.3.4). The general framework starts from an initial solution C (or initial clique) generated by means of
Random_Solution (Section 2.3.1). The solution is then improved by one of the dedicated tabu search
procedures described respectively in Sections 2.3.3 and 2.3.4. When the search stagnates in a deep local
optimum, the search restarts from a new solution, which is constructed either by Reconstruct_Solution
(Section 2.3.2) with probability ρ ∈ [0.0, 1.0] (a parameter), or by Random_Solution (Section 2.3.1)
with probability 1 − ρ. It is noted that Reconstruct_Solution reconstructs a new solution from C, while
Random_Solution randomly generates a new solution from scratch. The whole search process repeats
the above procedure until a prefixed stopping condition is met. The details of the tabu search optimization
procedures and restart procedures are described in the following sections.

Algorithm 2.1: Framework of the Restart Tabu Search algorithms for MVWCP
Input: G = (V,E,w) - MVWCP instance, ρ - restart probability parameter, L - maximum number

of consecutive non-improving iterations.
Output: C∗ - maximum vertex weight clique.
begin

C∗ ← ∅ ; /* C∗ maintains the best solution found so far */

C ← Random_Solution(G); /* Section 2.3.1. C is the current solution */

while stopping condition is not met do
(C,C∗)← Tabu_Search(G,C,C∗, L); /* Sections 2.3.3 and 2.3.4 */

if random number ∈ [0, 1] < ρ then
C ← Reconstruct_Solution(G,C) ; /* Section 2.3.2 */

else
C ← Random_Solution(G); /* Section 2.3.1 */

end
return C∗

2.3.1 Random initial solution
TheRandom_Solution(G) procedure (Alg. 4.1, lines 3 and 9) starts from an initial clique C composed

by an unique random vertex. Then iteratively, a vertex v in candidate push set A = {v : |N̄C(v)| =
0, v ∈ V \ C} (Sections 2.2.3 and 2.2.4) is randomly selected and added into C. A is then updated by
A← A\({v}∪N̄A(v)). The procedure continues until the candidate push setA becomes empty. A maximal
clique (i.e., ∀v ∈ V \ C, |N̄C(v)| > 0) is then reached and returned as the initial solution of the search
procedure. This initialization procedure ignores the solution quality (the clique weight), but ensures a good
randomness of the initial solutions generated. Such a feature represents a simple and useful diversification
technique which helps the search algorithm to start the search in a different region of each repeated run. The
initialization procedure can be efficiently implemented with a time complexity of O(|V ||E|). This process
is similar to the initial constructive phase preceding the first SWAP move in the MCP algorithm of [Grosso
et al., 2008] and also applied in the MVWCP algorithms of [Benlic and Hao, 2013a; Wu et al., 2012].

2.3.2 Solution reconstruction
The reconstruction procedure (Alg. 4.1, line 7) generates a new solution by iteratively replacing vertices

of a given solution. At the beginning, considering a cliqueC, all the vertices of V \C are marked available to
join C by means of the PUSH operator. Then, at each iteration, the available vertex belonging to candidate

2.3. PUSH-BASED TABU SEARCH 23

push setM1 (see Section 2.2.4) with the maximum δ value (ties are broken randomly) is selected and pushed
into C. Vertices which are removed from C during the PUSH operation are then marked unavailable. As a
consequence, they cannot rejoin the solution during the remaining iterations. The reconstruction procedure
stops after |C| iterations or when no available vertex may be found from M1. The current clique C is then
returned as the reconstructed solution. Such a reconstruction procedure perturbs the given solution C but,
in most cases, does not decrease the quality heavily. The time complexity of each iteration is bounded by
O(|V |+ (maxv∈V {|N̄(v)|})2) as it scans the M1 set and calls the PUSH operator (The time complexity of
the push operator is discussed in Section 2.3.5). This reconstruction procedure can also be viewed as an
objective-guided strong perturbation procedure since the vertices in the original solution are totally replaced
and vertex insertions are subject to the stipulation of the maximum δ value.

2.3.3 ReTS-I: Tabu search with the largest candidate push set

The first tabu search procedure denoted by ReTS-I uses a greedy rule which gives preference, at each
step of the search, to neighbor solutions having the best objective value. ReTS-I implements this heuristic
with the largest possible candidate push set V \ C. To prevent the search from falling into cycles, a tabu
mechanism [Glover and Laguna, 2013] is incorporated.

The general process of ReTS-I is shown in Algorithm 2.2, where each element tabuv of vector tabu
(called the tabu list) records the earliest iteration number that vertex v is allowed to move inside C. At
each iteration, one vertex is allowed to join the current solution only when it is not forbidden by the tabu
list. Nevertheless, a move leading to a solution better than the best solution found so far is always accepted
(this is the so-called aspiration criterion, line 7, Alg. 2.2). If v is the vertex to be pushed into C, then all
the vertices moving out of C (i.e., those of N̄C(v)) are forbidden to rejoin the solution for the next tt(v)
(tabu tenure) iterations (lines 9-10, Alg. 2.2). The TS procedure ends when the best solution cannot be
improved for L (a parameter) consecutive iterations. Note that similar strategies which temporarily forbid
the removed vertices to rejoin the solution have been used in [Benlic and Hao, 2013a; Grosso et al., 2008;
Pullan, 2008; Wu et al., 2012]. Also note that the added vertex is free to leave the clique. This rule is based
on the fact that due to the objective of maximizing the clique weight, an added vertex has little chance to be
removed anyway.

The tabu tenure tt(v) for a vertex v is empirically fixed as follows:

tt(v) = 7 + random(0, η(v)) (2.3)

where η(v) = |{u ∈ V \ C : N̄C(u) = N̄C(v)}| is the number of vertices which have as many
non-adjacent vertices in C as v, and random(0, n) returns a random integer in range [0, n).

Since ReTS-I needs to scan V \ C at each iteration (line 6, Alg. 2.2), the time complexity of each
iteration of ReST-I is bounded by O(|V |). The ReTS-I algorithm is quite simple, but performs well as
shown by the experimental outcomes presented in Section 4.3.7.

2.3.4 ReTS-II: Tabu search with three decomposed candidate push sets

Contrary to ReTS-I which explores the whole and unique candidate push set V \ C, ReTS-II, as shown
in Algorithm 2.3, considers more features of the candidate vertices for PUSH. For this algorithm, we de-
compose V \C into three candidate push sets M1, M2 and M3 as defined in Section 2.2.4. At each iteration,
the three CPS are evaluated in a fixed order: M1 → M2 → M3 (lines 7-15) and a vertex with the largest δ
value is chosen by PUSH to perform the move. Note that M1 contains preferable vertices as they necessar-
ily increase the weight of the incumbent clique. If no candidate vertex is available in M1, selecting a vertex
from M2 or M3 will degrade the solution (or keep the solution unchanged). Pushing these vertices may be
useful to help the search to leave the current local optimum. M2 is evaluated before M3 since pushing a ver-
tex from M2 will generally lead to less vertices to be removed from C than pushing a vertex from M3. The

24 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

Algorithm 2.2: ReTS-I: Tabu search with the largest candidate push set
Input: C - current solution, C∗ - best solution ever found, L - maximum number of consecutive non-improving iterations.
Output: C - renewed current solution, C∗ - maximum vertex weight clique.
begin

Iter ← 0 ; /* Counter of iterations */
for each v ∈ V do

tabuv ← 0 ; /* tabuv is the earliest iteration vertex v is allowed to join C */

l← 0 ; /* Counter of consecutive iterations where C∗ is not improved */
while l < L do

M ← {v ∈ V \C, tabuv ≤ Iter or W (C) + δv > W (C∗)} ; /* M is the set of eligible vertices for PUSH */
v ← argmaxv∈M δv ;
for u ∈ C \NC(v) do

tabuu ← Iter + tt(v)

C ← C ⊕ PUSH(v);
if W (C) > W (C∗) then

C∗ ← C;
l← 0;

else
l← l + 1;

Iter ← Iter + 1;

end
return C, C∗

motivation of using these three sets with a preference order is thus to keep the improvement possibilities as
much as possible and proceed to more important perturbations only when no other alternative is possible.

Moreover, when M3 is used, only a random sample (of a predetermined size r) of vertices in M3 are
evaluated for each PUSH operation if no appropriate vertex is found inM1 andM2. Also, let us precise that
PUSH selects the vertex with the best δ value in the sample set. This sampling strategy and its variants were
previously used in several studies (ID-Walk [Neveu et al., 2004], Candidate List [Glover and Laguna, 2013],
Best from Multiple Choices [Cai, 2015]). This strategy is obviously more cost effective than evaluating an
entire candidate set.

ReTS-II uses the same tabu mechanism as ReTS-I. Note that the aspiration criterion does not need to
be considered for pushing a vertex from M2 and M3 as better solutions cannot be reached in these cases.
Vertices dropped from C by applying PUSH to M2 or M3 are forbidden to rejoin C for consecutive tt(v)
iterations (lines 18-19, Alg. 2.3). The tabu tenure tt(v) is tuned in the same way as in ReTS-I (Section
2.3.3).

Finally, it is interesting to contrast ReTS-I and ReTS-II. In fact, like ReTS-I, ReTS-II also gives priority
to candidate vertices leading to a solution of better quality. Meanwhile, when no such kind of vertex
exists, ReTS-II may choose a different vertex for the PUSH operation. For example, suppose that the same
candidate push set M = {a, b} is applied in Algorithms 2.2 and 2.3 with δa = −1, δb = −3, |N̄C(a)| = 2,
|N̄C(b)| = 1. Then ReTS-I chooses vertex a while ReTS-II selects vertex b for the PUSH operation.
Therefore, by using different candidate push sets, ReTS-I and ReTS-II visit different search trajectories to
explore the search space. The computational experiments shown in Section 4.3.7 will allow us to observe
the relative performances of both algorithms.

2.3.5 Fast evaluation of move gains

As presented in Section 2.2.3, each neighbor solution relative to a current clique leads to a move gain
δ, which can be positive, null or negative. Since move gain evaluations are frequent in the TS procedures,
we elaborate a fast streamlining technique which enables a direct access to all possible δ values (i.e., cor-
responding to the insertion in the current clique of each candidate vertex), as well as a fast update of the
impacted move gains at each iteration. In this section, we present this incremental evaluation mechanism.

Let us consider a vector ∆ = (δv)v∈V such that δv represents the move gain W (C⊕Push(v))−W (C).
According to the definition in Section 2.2.3, a PUSH operation is composed of two basic operations: adding
a vertex to the current clique C (ADD), and possibly removing one or several vertices from C (DROP).

2.4. COMPUTATIONAL EXPERIMENTS 25

Algorithm 2.3: ReTS-II: Tabu search with three candidate push sets
Input: C - current solution, C∗ - best solution ever found, L - maximum number of consecutive non-improving iterations, r - maximum sample size of

M3.
Output: C - renewed current solution, C∗ - maximum vertex weight clique found.
begin

Iter ← 0;
for each v ∈ V do

tabuv ← 0;
l← 0;
while l < L do

M ← {v ∈ V \ C,W (C) + δv > W (C∗)};
if M 6= ∅ then

l← 0 ; /* New best solution */

else
M ← {v ∈ V \ C, δv > 0 and tabuv ≤ Iter} ; /* Restricted M1 */
if M = ∅ then

M ← {v ∈ V \ C, δv ≤ 0 and |N̄C(v)| = 1 and tabuv ≤ Iter} ; /* Restricted M2 */

if M = ∅ then
M ← Randomly sample r vertices from {v ∈ V \ C, tabuv ≤ Iter} ; /* Restricted M3 */

l← l + 1;
Randomly select v ∈ argmaxv∈M δv ;
for each u ∈ C \NC(v) do

tabuu ← tt(u)

C ← C ⊕ PUSH(v);
if l = 0 then

C∗ ← C;
Iter ← Iter + 1;

end
return C, C∗

Pushing a vertex v into a clique C can be viewed as adding v in C before removing from C every vertex
which is not adjacent to v. Nevertheless this decomposition implies to consider infeasible solutions between
vertex insertion and removals. We propose then to update incrementally ∆ after each basic operation (ADD,
DROP) by first removing from C the vertices which are not adjacent to the pushed vertex v, and finally
adding v to C.

If a vertex v′ is removed (dropped) from the current solution C, then the move gain δu of any vertex
u ∈ V is updated as follows:

∀u ∈ V, δu ←

δu + wv′ , if u ∈ N̄(v′)
wu , if u = v′

δu , otherwise
(2.4)

To speed up the update process, we use the complementary graph Ḡ of the input graph G, so that N̄(v)
sets can be explicitly defined. Since only the move gains associated to vertices of N̄(v′) ∪ {v′} need to be
updated, the time complexity of updating ∆ after a DROP operation is bounded by O(maxv∈V {|N̄(v)|}).

Similarly, when a vertex v is added into the current solution C, then ∆ is updated as follows:

δu ←

δu − wv , if u ∈ N̄(v)
0 , if u = v
δu , otherwise

(2.5)

This operation is obviously also bounded in time by O(maxv∈V {|N̄(v)|}). Thus updating the move
gains after a PUSH operation can be performed inO((maxv∈V {|N̄(v)|})2), since operationC⊕Push(v) in-
volves one ADD operation and |N̄C(v)|DROP operations, with |N̄C(v)| being bounded by maxv∈V {|N̄(v)|}.

2.4 Computational experiments
This section is dedicated to an experimental assessment of the two tabu search algorithms using the gen-

eralized PUSH operator. The assessment was based on three sets of 142 well-known benchmark instances

26 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

and comparisons with state-of-the-art MVWCP algorithms.

2.4.1 Benchmarks

The three benchmark sets include the following instances: 80 2nd-DIMACS instances, 40 BHOSLIB
instances, and 22 instances from the Winner Determination Problem in combinatorial auctions. These
instances are introduced in Section 1.4.1 of Chapter 1. Since 2nd DIMACS and BHOSLIB benchmark
instances are unweighted, we assign to each vertex i (i is an index number) the weight i mod 200 +
1, following the rule in [Pullan, 2008]. The WDP instances are weighted, however, contrary to the 2nd
DIMACS and BHOSLIB instances which are defined using integer weights, WDP weights are fractional.

2.4.2 Experimental protocol

As shown in Algorithms 4.1 to 2.3, ReTS-I and ReTS-II share two common parameters: the probability
parameter ρ which controls the two types of restart, and the maximum number L of consecutive non-
improving iterations before a restart. Besides, ReTS-II has one additional parameter which is the sample
size r. For our experiments, we used the following default values: L = 4, 000, r = 50, and ρ = 0.7. We
provide an analysis of ρ in Section 2.5. In general, we observed that varying the parameter values around
the default values did not alter much the computational outcomes for most of the tested instances even if
some results can be further improved by fine-tuning the parameters.

ReTS-I and ReTS-II were coded in C++ 1 and compiled with g++ 4.4.7 with optimization flag -o3.
Our experiments were performed on a computer with an AMD Opteron 4184 processor (2.8GHz and 2GB
RAM) running Linux 2.6.32. When solving the 2nd DIMACS machine benchmarks without compilation
optimization flag, the run time on our machine is 0.40, 2.50 and 9.55 seconds respectively for instances
r300.5, r400.5 and r500.5.

Following the literature [Benlic and Hao, 2013a; Wang et al., 2016; Wu et al., 2012], both algorithms
were run 100 times to solve each benchmark instance. For the 2nd DIMACS and BHOSLIB instances, a
maximum of 108 iterations were allowed per run while for the WDP instances, the stopping condition was
set to be a cutoff time limit of 10 minutes per run. As discussed in Section 2.4.4, these settings correspond
to the computational effort used by the state-of-the-art MVWCP algorithms in the literature.

2.4.3 Computational results

Tables 2.1 to 2.3 report the computational results obtained by ReTS-I and ReTS-II on the 2nd DIMACS,
BHOSLIB and WDP instances respectively. In these tables, column BKV reports the best-known objective
values (BKV) ever found by the previous algorithms [Benlic and Hao, 2013a; Fang et al., 2016; Pullan,
2008; Wang et al., 2016; Wu et al., 2012] (proven optima are indicated with the star symbol ’*’ with the
BKV values). For each algorithm, column best(hit) indicates the best objective value W ∗ found by ReTS-I
and ReTS-II among 100 trials as well as the number of trails hitting the best value (success rate); column
ave(std) denotes the average value and the standard deviation of the 100 W ∗ values; column time gives
the average seconds of the trails hitting the W ∗ value. The value of 0.00 in columns time indicates that the
corresponding average time in seconds is inferior to 0.005.

Table 2.1 discloses that ReTS-I and ReTS-II reach all the best-known results of 2nd DIMACS instances
except MANN_a45 and MANN_a81 (indicated in italic), which are believed to be quite challenging for
heuristic algorithms [Fang et al., 2016]. Moreover, for 73 out of 80 instances (> 91%), both algorithms
attain the best-known results in every single trial. For the remaining 7 instances except MANN_a45 and

1. Our source code will be available at:
www.info.univ-angers.fr/pub/hao/ReTS.html.

www.info.univ-angers.fr/pub/hao/ReTS.html

2.4. COMPUTATIONAL EXPERIMENTS 27

MANN_a81, each algorithm still hits the best-known results in more than 30 trials. In terms of compu-
tational time, most of these instances are solved in less than 1 second. For the 3 hard MANN instances
(MANN_a27, MANN_a45, MANN_a81), results are attained in 1 to 17 minutes.

From Table 2.2 on the BHOSLIB instances, one finds that ReTS-I and ReTS-II improve the best-known
result of the literature on frb53-24-3 (from 5,640 to 5,655). Although both algorithms attain the best-known
solutions on 38 out of 40 instances, each algorithm fails to do so in 2 cases (frb50-23-4 and frb56-25-5 for
ReTS-I, frb56-23-3 and frb 56-23-4 for ReTS-II, indicated in italic). Interestingly, both algorithms achieve
a success rate of at least 93% on the first 20 instances while the success rate drops to less than 50% on most
of the last 20 instances. Concerning the computational time, both algorithms require more time to find the
best-known solutions when the sizes of the graphs increase, but each average time is inferior to 12 minutes.
In general, BHOSLIB instances are more difficult than 2nd DIMACS ones for ReTS-I and ReTS-II, but
both algorithms still perform quite well by attaining together all the best-known results and finding even an
improved best-known result (new best lower bound).

Table 2.3 (WDP instances) shows that ReTS-I and ReTS-II attain the best-known solutions on all WDP
instances considered except the 4 Decay instances and Paths2000_100 (in italic); for Paths2000_100, the
algorithms have a success rate of 88% and 76% respectively, while this rate drops to 10% or less for the 4
Decay instances, confirming that these Decay instances are particularly hard [Sandholm, 2002]. Actually, as
shown in Section 2.4.4, these instances also represent a challenge for one of the best performing reference
heuristics MN/TS [Wu et al., 2012]. Finally, one observes that ReTS-II attains the best-known results every
run on the in instances in less than 4 seconds, while ReTS-I fails to consistently hit the best results and
requires longer computing times for these instances. Nevertheless we cannot claim that ReTS-II always
dominates ReTS-I since the latter performs better on Uniform2000_400_10 in terms of successful trials
and computing time.

2.4.4 Comparisons with state-of-the-art algorithms

As indicated in the introduction, a large number of heuristic algorithms for the Maximum Vertex Weight
Clique Problem have been reported in the literature, including particularly AugSearch [Mannino and Ste-
fanutti, 1999], HSSGA [Singh and Gupta, 2006], PLS [Pullan, 2008], MN/TS [Wu et al., 2012], BLS
[Benlic and Hao, 2013a], and BQP-PTS[Wang et al., 2016]. To further assess the performance of the pro-
posed approach, we compared ReTS-I and ReTS-II with three state-of-the-art algorithms (MN/TS, BLS and
BQP-TS). Besides, these reference algorithms have been run on computing platforms which are the same
as or very similar to our computer (2.8GHz and 2GB RAM running Linux 2.6.32). For the WDP instances,
we used CPLEX as an additional reference as it achieves more competitive results than heuristic algorithms
on some specific instances [Wu and Hao, 2015b]. Since CPLEX did not perform well on 2nd DIMACS and
BHOSLIB instances [Fang et al., 2016], it was not used for our comparisons for these two benchmarks.

– MN/TS is a tabu search algorithm with multiple move operators, designed for solving both MCP and
MVWCP [Wu et al., 2012]. The results reported for MN/TS on the 2nd DIMACS and BHOSLIB
instances have been obtained using a maximum of 108 iterations per run (on a computer cadenced at
2.83GHz and 8GB RAM). Besides, the results of MN/TS on the WDP instances within 300 seconds
per run were reported in [Wu and Hao, 2015b]. Each instance was solved for 100 independent trials
in all these experiments. Thus, both the stopping condition and the computing platform are almost
the same as those used in our experiments.

– BLS (Breakout Local Search) incorporates an adaptive perturbation strategy for the resolution of
MCP and MVWCP [Benlic and Hao, 2013a]. BLS reported computational results on the sets of
2nd DIMACS and BHOSLIB benchmarks, by running the algorithm 100 times on each instance on
the same computing platform as our algorithms (2.83GHZ Xeon E5440 CPU and 2GB RAM). The
stopping condition for each of the 100 runs was set to 1.6× 108 iterations, which was superior to the
computational limit used by MN/TS and our algorithms.

– BQP-PTS is a probabilistic tabu search algorithm designed for solving unconstrained Binary Quadratic

28 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

Table 2.1: Computational results of ReTS-I and ReTS-II on 80 2nd DIMACS instances.

instance BKV ReTS-I ReTS-II
best(hit) ave(std) time best(hit) ave(std) time

C1000.9 9254 9254(100) 9254.00(0.00) 2.50 9254(100) 9254.00(0.00) 1.73
C125.9 2529 2529(100) 2529.00(0.00) 0.00 2529(100) 2529.00(0.00) 0.00

C2000.5 2466 2466(100) 2466.00(0.00) 2.34 2466(100) 2466.00(0.00) 7.39
C2000.9 10999 10999(92) 10996.44(8.72) 417.56 10999(82) 10993.08(12.76) 474.23
C250.9 5092* 5092(100) 5092.00(0.00) 0.01 5092(100) 5092.00(0.00) 0.01

C4000.5 2792 2792(100) 2792.00(0.00) 116.05 2792(100) 2792.00(0.00) 298.05
C500.9 6955 6955(100) 6955.00(0.00) 0.06 6955(100) 6955.00(0.00) 0.08

DSJC1000_5 2186* 2186(100) 2186.00(0.00) 0.38 2186(100) 2186.00(0.00) 0.37
DSJC500_5 1725* 1725(100) 1725.00(0.00) 0.13 1725(100) 1725.00(0.00) 0.10
MANN_a27 12283* 12283(78) 12282.78(0.41) 82.77 12283(99) 12282.99(0.10) 60.03
MANN_a45 34265* 34259(1) 34253.60(1.11) 157.98 34254(58) 34253.43(0.74) 357.19
MANN_a81 111386 111370(1) 111351.19(6.63) 990.02 111277(1) 111233.47(26.42) 477.75
MANN_a9 372 372(100) 372.00(0.00) 0.00 372(100) 372.00(0.00) 0.00
brock200_1 2821 2821(100) 2821.00(0.00) 0.00 2821(100) 2821.00(0.00) 0.00
brock200_2 1428 1428(100) 1428.00(0.00) 0.00 1428(100) 1428.00(0.00) 0.00
brock200_3 2062 2062(100) 2062.00(0.00) 0.00 2062(100) 2062.00(0.00) 0.00
brock200_4 2107 2107(100) 2107.00(0.00) 0.00 2107(100) 2107.00(0.00) 0.00
brock400_1 3422* 3422(100) 3422.00(0.00) 0.04 3422(100) 3422.00(0.00) 0.05
brock400_2 3350* 3350(100) 3350.00(0.00) 0.04 3350(100) 3350.00(0.00) 0.07
brock400_3 3471* 3471(100) 3471.00(0.00) 0.07 3471(100) 3471.00(0.00) 0.06
brock400_4 3626* 3626(100) 3626.00(0.00) 2.04 3626(100) 3626.00(0.00) 1.43
brock800_1 3121* 3121(100) 3121.00(0.00) 0.14 3121(100) 3121.00(0.00) 0.20
brock800_2 3043* 3043(100) 3043.00(0.00) 0.39 3043(100) 3043.00(0.00) 0.61
brock800_3 3076* 3076(100) 3076.00(0.00) 0.39 3076(100) 3076.00(0.00) 0.51
brock800_4 2971* 2971(31) 2970.31(0.46) 835.03 2971(93) 2970.93(0.26) 506.41
c-fat200-1 1284 1284(100) 1284.00(0.00) 0.00 1284(100) 1284.00(0.00) 0.00
c-fat200-2 2411 2411(100) 2411.00(0.00) 0.00 2411(100) 2411.00(0.00) 0.00
c-fat200-5 5887 5887(100) 5887.00(0.00) 0.00 5887(100) 5887.00(0.00) 0.00
c-fat500-1 1354 1354(100) 1354.00(0.00) 0.01 1354(100) 1354.00(0.00) 0.01
c-fat500-10 11586 11586(100) 11586.00(0.00) 0.11 11586(100) 11586.00(0.00) 0.03
c-fat500-2 2628 2628(100) 2628.00(0.00) 0.02 2628(100) 2628.00(0.00) 0.01
c-fat500-5 5841 5841(100) 5841.00(0.00) 0.09 5841(100) 5841.00(0.00) 0.03

gen200_p0.9_44 5043* 5043(100) 5043.00(0.00) 0.00 5043(100) 5043.00(0.00) 0.00
gen200_p0.9_55 5416* 5416(100) 5416.00(0.00) 0.12 5416(100) 5416.00(0.00) 0.00
gen400_p0.9_55 6718 6718(100) 6718.00(0.00) 0.18 6718(100) 6718.00(0.00) 0.12
gen400_p0.9_65 6940 6940(100) 6940.00(0.00) 0.05 6940(100) 6940.00(0.00) 0.04
gen400_p0.9_75 8006* 8006(100) 8006.00(0.00) 0.03 8006(100) 8006.00(0.00) 0.02

hamming10-2 50512* 50512(100) 50512.00(0.00) 0.20 50512(100) 50512.00(0.00) 0.20
hamming10-4 5129 5129(100) 5129.00(0.00) 26.25 5129(100) 5129.00(0.00) 15.74
hamming6-2 1072 1072(100) 1072.00(0.00) 0.00 1072(100) 1072.00(0.00) 0.00
hamming6-4 134 134(100) 134.00(0.00) 0.00 134(100) 134.00(0.00) 0.00
hamming8-2 10976 10976(100) 10976.00(0.00) 0.01 10976(100) 10976.00(0.00) 0.01
hamming8-4 1472 1472(100) 1472.00(0.00) 0.00 1472(100) 1472.00(0.00) 0.00

johnson16-2-4 548 548(100) 548.00(0.00) 0.00 548(100) 548.00(0.00) 0.00
johnson32-2-4 2033* 2033(100) 2033.00(0.00) 0.04 2033(100) 2033.00(0.00) 0.04
johnson8-2-4 66 66(100) 66.00(0.00) 0.00 66(100) 66.00(0.00) 0.00
johnson8-4-4 511 511(100) 511.00(0.00) 0.00 511(100) 511.00(0.00) 0.00

keller4 1153 1153(100) 1153.00(0.00) 0.00 1153(100) 1153.00(0.00) 0.00
keller5 3317 3317(100) 3317.00(0.00) 1.12 3317(100) 3317.00(0.00) 0.33
keller6 8062 8062(100) 8062.00(0.00) 532.74 8062(96) 8059.91(10.78) 929.74

p_hat1000-1 1514* 1514(100) 1514.00(0.00) 0.14 1514(100) 1514.00(0.00) 0.28
p_hat1000-2 5777* 5777(100) 5777.00(0.00) 0.11 5777(100) 5777.00(0.00) 0.11
p_hat1000-3 8111 8111(100) 8111.00(0.00) 0.19 8111(100) 8111.00(0.00) 0.21
p_hat1500-1 1619* 1619(100) 1619.00(0.00) 0.32 1619(100) 1619.00(0.00) 0.39
p_hat1500-2 7360 7360(100) 7360.00(0.00) 0.35 7360(100) 7360.00(0.00) 0.44
p_hat1500-3 10321 10321(100) 10321.00(0.00) 2.06 10321(100) 10321.00(0.00) 0.50
p_hat300-1 1057 1057(100) 1057.00(0.00) 0.00 1057(100) 1057.00(0.00) 0.00
p_hat300-2 2487 2487(100) 2487.00(0.00) 0.01 2487(100) 2487.00(0.00) 0.01
p_hat300-3 3774 3774(100) 3774.00(0.00) 0.01 3774(100) 3774.00(0.00) 0.01
p_hat500-1 1231* 1231(100) 1231.00(0.00) 0.03 1231(100) 1231.00(0.00) 0.04
p_hat500-2 3920* 3920(100) 3920.00(0.00) 0.02 3920(100) 3920.00(0.00) 0.03
p_hat500-3 5375* 5375(100) 5375.00(0.00) 0.04 5375(100) 5375.00(0.00) 0.05
p_hat700-1 1441* 1441(100) 1441.00(0.00) 0.04 1441(100) 1441.00(0.00) 0.05
p_hat700-2 5290* 5290(100) 5290.00(0.00) 0.06 5290(100) 5290.00(0.00) 0.05
p_hat700-3 7565 7565(100) 7565.00(0.00) 0.10 7565(100) 7565.00(0.00) 0.08

san1000 1716* 1716(100) 1716.00(0.00) 71.07 1716(100) 1716.00(0.00) 12.08
san200_0.7_1 3370 3370(100) 3370.00(0.00) 0.21 3370(100) 3370.00(0.00) 0.13
san200_0.7_2 2422* 2422(100) 2422.00(0.00) 0.04 2422(100) 2422.00(0.00) 0.01
san200_0.9_1 6825* 6825(100) 6825.00(0.00) 0.04 6825(100) 6825.00(0.00) 0.01
san200_0.9_2 6082* 6082(100) 6082.00(0.00) 0.00 6082(100) 6082.00(0.00) 0.00
san200_0.9_3 4748* 4748(100) 4748.00(0.00) 0.01 4748(100) 4748.00(0.00) 0.01
san400_0.5_1 1455 1455(100) 1455.00(0.00) 0.19 1455(100) 1455.00(0.00) 0.11
san400_0.7_1 3941* 3941(97) 3932.00(51.18) 172.04 3941(100) 3941.00(0.00) 74.66
san400_0.7_2 3110* 3110(97) 3105.26(26.95) 234.69 3110(100) 3110.00(0.00) 40.11
san400_0.7_3 2771* 2771(100) 2771.00(0.00) 0.41 2771(100) 2771.00(0.00) 0.07
san400_0.9_1 9776* 9776(100) 9776.00(0.00) 2.38 9776(100) 9776.00(0.00) 0.44
sanr200_0.7 2325* 2325(100) 2325.00(0.00) 0.00 2325(100) 2325.00(0.00) 0.00
sanr200_0.9 5126* 5126(100) 5126.00(0.00) 0.00 5126(100) 5126.00(0.00) 0.00
sanr400_0.5 1835* 1835(100) 1835.00(0.00) 0.02 1835(100) 1835.00(0.00) 0.02
sanr400_0.7 2992* 2992(100) 2992.00(0.00) 0.03 2990(100) 2990.00(0.00) 1.54

2.4. COMPUTATIONAL EXPERIMENTS 29

Table 2.2: Computational results of ReTS-I and ReTS-II on 40 BHOSLIB instances.

instance BKV ReTS-I ReTS-II
best(hit) ave(std) time best(hit) ave(std) time

frb30-15-1 2990* 2990(100) 2990.00(0.00) 1.43 2990(100) 2990.00(0.00) 1.54
frb30-15-2 3006* 3006(100) 3006.00(0.00) 2.09 3006(100) 3006.00(0.00) 0.28
frb30-15-3 2995* 2995(100) 2995.00(0.00) 1.84 2995(100) 2995.00(0.00) 1.31
frb30-15-4 3032* 3032(100) 3032.00(0.00) 0.31 3032(100) 3032.00(0.00) 0.17
frb30-15-5 3011* 3011(100) 3011.00(0.00) 0.80 3011(100) 3011.00(0.00) 1.16
frb35-17-1 3650 3650(100) 3650.00(0.00) 5.10 3650(100) 3650.00(0.00) 3.19
frb35-17-2 3738 3738(100) 3738.00(0.00) 87.05 3738(100) 3738.00(0.00) 65.51
frb35-17-3 3716 3716(100) 3716.00(0.00) 22.26 3716(100) 3716.00(0.00) 10.17
frb35-17-4 3683 3683(100) 3683.00(0.00) 14.80 3683(100) 3683.00(0.00) 1.89
frb35-17-5 3686 3686(100) 3686.00(0.00) 2.70 3686(100) 3686.00(0.00) 6.40
frb40-19-1 4063 4063(100) 4063.00(0.00) 51.68 4063(100) 4063.00(0.00) 61.32
frb40-19-2 4112 4112(100) 4112.00(0.00) 71.72 4112(100) 4112.00(0.00) 73.87
frb40-19-3 4115 4115(99) 4114.94(0.60) 127.00 4115(100) 4115.00(0.00) 79.66
frb40-19-4 4136 4136(98) 4135.92(0.56) 160.48 4136(100) 4136.00(0.00) 44.45
frb40-19-5 4118 4118(100) 4118.00(0.00) 34.72 4118(98) 4117.96(0.28) 208.18
frb45-21-1 4760 4760(98) 4759.76(1.68) 161.39 4760(93) 4759.10(3.29) 231.63
frb45-21-2 4784 4784(100) 4784.00(0.00) 68.11 4784(100) 4784.00(0.00) 35.50
frb45-21-3 4765 4765(90) 4764.80(0.60) 253.27 4765(100) 4765.00(0.00) 53.80
frb45-21-4 4799 4799(100) 4799.00(0.00) 105.52 4799(100) 4799.00(0.00) 31.81
frb45-21-5 4779 4779(100) 4779.00(0.00) 11.23 4779(100) 4779.00(0.00) 10.56
frb50-23-1 5494 5494(4) 5485.18(4.01) 154.05 5494(4) 5482.58(5.64) 590.72
frb50-23-2 5462 5462(9) 5451.94(3.20) 393.53 5462(44) 5455.27(6.08) 458.97
frb50-23-3 5486 5486(57) 5485.24(1.59) 358.92 5486(87) 5485.82(0.50) 292.35
frb50-23-4 5454 5453(91) 5452.54(1.48) 243.84 5454(6) 5450.70(4.36) 548.32
frb50-23-5 5498 5498(100) 5498.00(0.00) 118.21 5498(94) 5497.31(2.80) 277.51
frb53-24-1 5670 5670(33) 5661.37(8.67) 349.95 5670(58) 5664.29(8.05) 325.66
frb53-24-2 5707 5707(1) 5685.28(8.73) 880.86 5707(5) 5689.22(10.82) 415.40
frb53-24-3 5640 5655(3) 5636.51(6.54) 417.69 5655(3) 5632.08(8.50) 457.64
frb53-24-4 5714 5714(4) 5696.85(17.10) 421.52 5714(7) 5693.46(17.38) 402.50
frb53-24-5 5659 5659(1) 5651.39(2.96) 777.93 5659(5) 5649.69(6.01) 381.24
frb56-25-1 5916 5916(59) 5906.48(14.25) 344.18 5916(51) 5900.01(18.76) 428.24
frb56-25-2 5886 5886(9) 5873.03(8.70) 516.06 5886(37) 5878.44(8.03) 470.10
frb56-25-3 5859 5859(1) 5832.31(13.27) 450.99 5854(1) 5821.85(14.57) 30.19
frb56-25-4 5892 5892(2) 5866.11(13.48) 477.79 5885(2) 5856.77(13.99) 449.13
frb56-25-5 5853 5841(1) 5812.23(9.32) 354.28 5853(2) 5816.87(13.86) 514.91
frb59-26-1 6591 6591(20) 6578.65(7.24) 521.08 6591(32) 6576.59(11.57) 432.31
frb59-26-2 6645 6645(13) 6589.14(25.69) 505.28 6645(25) 6599.84(30.81) 660.05
frb59-26-3 6608 6608(1) 6579.05(13.05) 973.94 6608(25) 6593.63(12.32) 455.84
frb59-26-4 6592 6592(71) 6585.08(12.12) 377.92 6592(18) 6565.23(20.67) 541.34
frb59-26-5 6584 6584(3) 6558.48(10.04) 320.54 6584(9) 6563.39(10.95) 399.46

Table 2.3: Computational results of ReTS-I and ReTS-II on 22 selected WDP instances.

instance BKV
ReTS-I ReTS-II

best(hit) ave(std) time best(hit) ave(std) time

in101 72724.61 72724.62(63) 72243.68(731.24) 216.92 72724.62(100) 72724.62(0.00) 0.31
in108 75813.21 75813.21(100) 75813.21(0.00) 5.02 75813.21(100) 75813.21(0.00) 1.87
in115 70221.56 70221.56(76) 70149.21(128.75) 234.30 70221.56(100) 70221.56(0.00) 1.76
in201 81557.74 81557.74(100) 81557.74(0.00) 2.35 81557.74(100) 81557.74(0.00) 0.41
in207 93129.25 93129.25(100) 93129.25(0.00) 11.57 93129.25(100) 93129.25(0.00) 0.65
in209 87268.96 87268.96(11) 86812.25(160.57) 254.65 87268.96(100) 87268.96(0.00) 0.98
in401 77417.48* 77417.48(100) 77417.48(0.00) 0.69 77417.48(100) 77417.48(0.00) 0.04
in403 74843.96* 74843.96(100) 74843.96(0.00) 0.05 74843.96(100) 74843.96(0.00) 0.04
in404 78761.69* 78761.69(100) 78761.69(0.00) 0.48 78761.69(100) 78761.69(0.00) 0.14
in601 108800.45 108800.45(100) 108800.45(0.00) 76.26 108800.45(100) 108800.45(0.00) 3.34
in604 107733.80 107733.80(40) 107062.40(548.20) 257.76 107733.80(100) 107733.80(0.00) 2.90
in614 108364.58 108364.58(100) 108364.58(0.00) 24.66 108364.58(100) 108364.58(0.00) 0.84

Decay2000_200 159.67* 156.97(10) 154.63(0.91) 496.68 157.34(4) 155.99(0.52) 215.57
Decay2000_300 226.82* 221.17(1) 218.46(1.24) 116.72 221.92(9) 219.74(0.77) 201.19
Decay2000_400 277.01* 270.90(5) 267.79(1.36) 127.14 271.16(5) 269.85(0.65) 495.26
Decay2000_500 340.81* 334.36(1) 330.12(1.45) 114.02 333.80(5) 330.77(1.09) 552.07

Random2000_500 12.63* 12.63(100) 12.63(0.00) 0.19 12.63(100) 12.63(0.00) 0.18
Uniform2000_400_10 22.02 22.02(100) 22.02(0.00) 83.76 22.02(90) 22.00(0.06) 197.04
Uniform2000_500_10 26.56 26.56(100) 26.55(0.03) 244.54 26.56(100) 26.50(0.07) 294.15
Wrandom2000_500 37.69* 37.69(100) 37.69(0.00) 0.20 37.69(100) 37.69(0.00) 0.19

Paths2000_100 36.77* 35.56(88) 35.13(0.13) 45.90 36.32(72) 36.05(0.09) 54.53
Regions2000_40 4558.90* 4558.90(19) 4503.94(35.25) 223.79 4558.90(54) 4540.09(22.69) 220.75

30 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

Table 2.4: Experimental results of ReTS-I and ReTS-II in comparison with 3 reference algorithms on 27
selected 2nd DIMACS and BHOSLIB instances.

ReTS-I ReTS-II MN/TS BLS BQP-PTS
instances BKV gap hit time gap hit time gap hit time gap hit time gap hit time
C2000.9 10999 0 92 417.56 0 82 474.23 0 72 168.11 0 74 1152.78 0 72 2711.97

MANN_a27 12283* 0 78 82.77 0 99 60.03 -2 1 88.28 -2 16 396.58 -6 4 12264
MANN_a45 34265* -6 1 157.98 -13 58 357.19 -73 1 390.58 -36 1 929.41 -71 2 17524.05
MANN_a81 111386 -16 1 990.02 -109 1 477.75 -258 1 832.24 -149 1 2942.54 -249 1 6167.28
p_hat1000-3 8111 0 100 0.19 0 100 0.21 0 96 188.38 0 100 1.78 0 100 0.65
brock800_4 2971* 0 31 835.03 0 93 506.41 0 100 49.70 0 100 339.07 0 8 105.35

keller6 8062 0 100 532.74 0 96 929.74 0 5 606.15 0 44 1980.16 0 2 3418.36
frb50-23-1 5494 0 4 154.05 0 4 590.72 0 6 186.62 0 11 1221.72 0 20 1911.49
frb50-23-2 5462 0 9 393.53 0 44 458.97 0 3 14966 0 5 2837.74 0 15 2338.40
frb50-23-3 5486 0 57 358.92 0 87 292.35 0 53 158.71 0 98 537.96 0 100 418.35
frb50-23-4 5454 -1 91 243.84 0 6 548.32 0 9 176.41 0 14 1190.43 0 28 1957.22
frb50-23-5 5498 0 100 118.21 0 94 277.51 0 89 110.85 0 100 388.18 0 100 751.84
frb53-24-1 5670 0 33 349.95 0 58 325.66 0 5 233.22 0 13 1056.82 0 43 981.33
frb53-24-2 5707 0 1 880.86 0 5 415.40 0 6 145.22 0 3 147.65 0 25 1265.70
frb53-24-3 5640 15 3 417.69 15 3 457.64 0 15 215.79 0 48 984.53 0 90 1486.24
frb53-24-4 5714 0 4 421.52 0 7 402.50 0 7 449.39 0 13 1604.50 0 25 1753.36
frb53-24-5 5659 0 1 777.93 0 5 381.24 0 5 294.00 0 4 278.91 0 6 2802.83
frb56-25-1 5916 0 59 344.18 0 51 428.24 0 3 308.90 0 5 1764.87 0 19 1035.00
frb56-25-2 5886 0 9 516.06 0 37 470.10 -14 1 73.25 0 1 1013.85 0 3 1428.18
frb56-25-3 5859 0 1 450.99 -5 1 30.19 0 1 191.93 0 1 101.48 0 5 1756.22
frb56-25-4 5892 0 2 477.79 -7 2 449.13 0 3 104.58 0 12 1256.9 0 5 1756.22
frb56-25-5 5853 -12 1 354.28 0 2 514.91 0 1 322.70 0 1 4386.6 0 1 3549.57
frb59-26-1 6591 0 20 521.08 0 32 432.31 0 3 166.20 0 17 1435.99 0 67 2228.21
frb59-26-2 6645 0 13 505.28 0 25 660.05 0 3 212.49 0 13 1834.93 0 40 1820.56
frb59-26-3 6608 0 1 973.94 0 25 455.84 0 1 232.77 0 1 507.93 0 1 2561.16
frb59-26-4 6592 0 71 377.92 0 18 541.34 0 1 318.39 0 6 952.34 0 5 3322.64
frb59-26-5 6584 0 3 320.54 0 9 399.46 0 1 161.47 0 5 1512.09 0 9 747.80

Programs (BQP) [Wang et al., 2016]. To solve the MVWCP instances, each instance is first recast
into a BQP which is then solved by the probabilistic tabu search algorithm. The 2nd DIMACS
and BHOSLIB instances were tested by this method on a PC with a Pentium 2.83GHz CPU and
2GB RAM. Each benchmark instance was solved by 100 independent trails, each trail being lim-
ited to 3,600 seconds, but extended to 36,000 seconds for large instances C4000.5, MABNN_a27,
MANN_a45, MANN_a81.

– CPLEX. For the WDP instances, we include the results reported in [Wu and Hao, 2015b], which were
obtained by the exact solver, CPLEX 12.4, within a maximum of 3600 seconds on a PC cadenced at
2.83GHz with 8GB of RAM.

Considering that MN/TS, BLS and BQP-PTS have a 100% success rate on most of the 2nd DIMACS
instances in less than 1 second, we selected 7 hard and representative instances from this set in order to
summarize the performances of the 5 compared algorithms. Moreover, as indicated in Section 2.4.3, the
last 20 instances of BHOSLIB are more challenging for ReTS-I and ReTS-II than the first 20 instances,
we only highlight the comparative results on these last 20 instances. The results of this comparison are
summarized in Table 2.4. Column gap represents the gap between the objective value of the best solution
found by an algorithm and the best-known value in the literature (BKV). A positive (negative) gap value
indicates a better (worse) result compared to the current best-known value.

Table 2.4 indicates that both ReTS-I and ReTS-II attain better results than the 3 reference algorithms on
4 instances (highlighted in bold font). Though the MANN_aXX instances were reported as challenging for
heuristic algorithms, ReTS-I and ReTS-II reach the optimal solution of MANN_a27 and better solutions on
MANN_a45 and MANN_a81. BLS and BQP-PTS reach the best-known solutions for all other instances
while the other algorithms fail on 1 or 2 instances. However, they achieve such a performance by using
a larger cutoff time, which is also confirmed by the fact that the average time of BLS and BQP-PTS is
significantly longer than the 3 other algorithms. In an additional experiment, we used a maximum of
1.6× 108 iterations per run (the same condition as that used by BLS) and re-ran ReTS-I to solve frb53-23-4
and frb56-2-5, ReTS-II to solve frb56-25-3 (setting ρ = 0.3 in this case) and frb56-25-4. The results, shown
in Table 2.5, indicate that ReTS-I and ReTS-II, like BLS and BQP-PTS, are also able to hit all the BKVs

2.5. EFFECTIVENESS OF RESTART STRATEGY 31

Table 2.5: Improved results of ReTS-I on frb50-23-4 and frb56-25-5 and improved results of ReTS-II on
frb56-25-3 and frb56-25-4 with an extended cutoff time limit.

solver instance BKV best(hit) ave(std) time

ReTS-I
frb50-23-4 5454 5454(3) 5452.99(0.44) 504.07
frb56-25-5 5853 5853(5) 5820.14(14.23) 763.00

ReTS-II
frb56-25-3 5859 5859(2) 5831.98(14.07) 1386.24
frb56-25-4 5885 5885(5) 5863.16(13.09) 1003.07

Table 2.6: Average hits on 18 selected instances.

ReTS-I ReTS-II MN/TS BLS BQP-PTS
38.8 46.4 25.5 34.0 36.5

with a similar computational effort. Finally, we observe that MN/TS is the most time effective heuristic
among the compared algorithms.

To further compare the competing algorithms, we extract the rows from Table 2.4 where gap = 0 for
all 5 algorithms (18 rows in total), and recalculate the average number of the best trials (hits) for these 18
rows. Results are shown in Table 2.6, and indicate that ReTS-II and ReTS-I are the most robust algorithms,
followed by BQP-PTS, BLS and MN/TS. We conclude thus that ReTS-I and ReTS-II compete favorably
compared to the reference algorithms in terms of solution quality, robustness and computational time on the
2nd DIMACS and BHOSLIB instances.

Finally, Table 2.7 summarizes the results of ReTS-I, ReTS-II, MN/TS and CPLEX on 10 representative
WDP instances, including the most challenging ones (with respect to results taken from Table 2.3). If we
look at the solution quality, we observe that the three heuristic algorithms (ReTS-I, ReTS-II, MN/TS)
attain the best-known solutions for the tested in instances (in101, in108, in109) and the unique Uni-
form2000_400_10 instance while CPLEX fails to solve these instances. However, CPLEX is able to find the
optimum solutions of Decay2000_yyy and Paths2000_100, contrary to the three heuristic methods. Among
the compared heuristic algorithms, ReTS-I finds the best solution on 1 instance, ReTS-II on 2 instances
and MN/TS on 2 (marked by bold font). Therefore, no algorithm outperforms the other algorithms in terms
of solution quality and computational time. So, on the WDP instances, ReTS-I, ReTS-II and MN/TS per-
form similarly. Finally, this experiment confirms that exact solvers like CPLEX and heuristics like ReTS-I,
ReTS-II and MN/TS are complementary solution methods and together can enlarge the class of MVWCP
instances that can be solved effectively.

2.5 Effectiveness of restart strategy
As shown in Section 2.3, the proposed approach uses a restart strategy to displace the search to new

regions when a deep local optimum is attained by tabu search (Alg. 1, lines 6-9). The restart strategy
initializes the new starting solution of the next round of TS with either the reconstruction procedure (Section
2.3.2) or the random procedure (Section 2.3.1). The choice between these two restarting procedures is
determined with a probability ρ. Intuitively, the reconstruction procedure leads the search to a nearby
region (since it is guided by means of the objective function), while the random procedure diversifies more
strongly the search.

In this section, we investigate the impact of the joint use of these two restart procedures by testing
various probabilistic values ρ ∈ {k/10} (k ∈ J1, 10K). The two extreme values ρ = 0 and ρ = 1 correspond
to the cases where only the random or the reconstruction procedure is applied. This study was based on 7
representative instances selected from the 3 benchmark sets. Each instance was solved 20 times by ReTS-I
and ReTS-II with a given ρ value, each run being limited to 120 seconds.

Table 2.9 reports the results of this experiment. Column ave(std) indicates the average and standard

32 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

Table 2.7: Comparison of our ReTS-I and ReTS-II algorithms with MN/TS, CPLEX on the WDP instances

ReTS-I ReTS-II MN/TS CPLEX

instances BKV gap hit time gap hit time gap hit time gap time

in101 72724.61 0 63 216.92 0 100 0.31 0 100 5.46 -5622.67 3600

in108 75813.21 0 100 5.02 0 100 1.87 0 73 113.53 -1175.42 3600

in209 87268.96 0 11 254.65 0 100 0.98 0 100 11.25 -4102.57 3600

Decay2000_200 159.67* -2.70 10 496.68 -2.33 3 215.57 -0.49 3 220.01 0 0.39

Decay2000_300 226.82* -5.65 1 116.72 -4.9 9 201.19 -6.16 1 226.23 0 0.70

Decay2000_400 277.01* -10.11 5 127.14 -6.74 5 495.26 -11.14 1 256.66 0 0.72

Decay2000_500 340.81* -6.45 1 114.02 -7.01 5 552.07 -24.70 1 189.36 0 1.23

Uniform2000_400_10 22.02 0 100 83.76 0 90 197.04 0 100 79.70 -2.84 3600

Paths2000_100 36.77* -1.21 88 45.90 -0.45 72 54.53 -0.36 1 225.39 0 0.09

Regions2000_40 4558.90 0 19 223.79 0 54 220.75 0 100 4.63 0 0.22

Table 2.8: Value of ρ which allows each algorithm to reach its best performance.

in604 Decay2000_500 C2000.9 MANN_a45 keller6 frb50-23-2 frb59-26-5

ReTS-I 0.0-1.0 0.0 0.4 0.9 1.0 0.9 0.8

ReTS-II 0.1 0.0 0.5 0.7 0.9 0.7 1.0

deviation of the best objectives for the 20 runs, and column time shows the average time in seconds needed
to reach the best objective values of the 20 runs. We additionally report in Table 2.8 the values of parameter
ρ which lead to the maximum average objective values.

2.5. EFFECTIVENESS OF RESTART STRATEGY 33

Ta
bl

e
2.

9:
Im

pa
ct

of
th

e
pa

ra
m

et
er
ρ

on
th

e
re

su
lts

of
R

eT
S-

Ia
nd

R
eT

S-
II

A
lg

or
ith

m
ρ

in
60

4
D

ec
ay

20
00

_5
00

C
20

00
.9

M
A

N
N

_a
45

ke
lle

r6
fr

b5
0-

23
-2

fr
b5

9-
26

-5

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

a
v
e(
st
d
)

ti
m
e

R
eT

S-
I

0
10

77
33

.8
0(

0.
00

)
3.

07
33

0.
59

(2
.2

1)
24

.3
7

10
94

7.
45

(3
3.

72
)

54
.1

4
34

17
5.

80
(5

.8
2)

44
.1

7
78

18
.5

0(
10

5.
20

)
57

.8
8

54
46

.2
0(

7.
37

)
49

.4
2

65
39

.6
5(

15
.1

3)
48

.7
4

0.
1

10
77

33
.8

0(
0.

00
)

3.
60

32
9.

09
(1

.2
6)

25
.0

8
10

95
1.

20
(3

7.
20

)
59

.4
3

34
23

5.
95

(4
.9

3)
55

.5
5

78
41

.0
5(

10
3.

14
)

59
.3

4
54

45
.2

0(
8.

33
)

53
.6

0
65

30
.8

0(
12

.5
2)

56
.8

3

0.
2

10
77

33
.8

0(
0.

00
)

2.
45

32
9.

32
(1

.3
6)

37
.7

9
10

94
6.

60
(2

9.
54

)
44

.8
6

34
24

1.
75

(3
.0

8)
49

.9
2

78
56

.1
5(

86
.9

0)
60

.7
0

54
46

.8
0(

6.
38

)
63

.4
8

65
35

.8
0(

12
.3

4)
46

.7
4

0.
3

10
77

33
.8

0(
0.

00
)

3.
38

32
9.

75
(1

.4
5)

38
.6

9
10

93
7.

20
(2

5.
06

)
57

.1
0

34
24

4.
55

(3
.0

1)
63

.8
0

78
61

.8
5(

81
.0

5)
66

.0
2

54
45

.1
0(

7.
39

)
59

.9
1

65
38

.9
0(

16
.7

3)
48

.7
4

0.
4

10
77

33
.8

0(
0.

00
)

3.
12

32
9.

30
(1

.1
2)

35
.8

8
10

95
8.

35
(3

4.
90

)
66

.1
2

34
24

7.
15

(3
.9

5)
53

.1
3

78
09

.7
5(

69
.2

6)
62

.9
3

54
43

.7
5(

9.
09

)
54

.2
6

65
39

.0
5(

15
.5

5)
58

.7
8

0.
5

10
77

33
.8

0(
0.

00
)

2.
07

32
9.

97
(1

.4
0)

27
.3

7
10

93
5.

85
(2

9.
43

)
65

.6
0

34
24

9.
30

(3
.7

4)
40

.5
7

78
66

.2
5(

10
0.

82
)

72
.5

2
54

46
.3

5(
7.

53
)

61
.5

4
65

41
.4

5(
15

.7
2)

50
.7

8

0.
6

10
77

33
.8

0(
0.

00
)

2.
75

32
9.

69
(1

.0
5)

45
.9

6
10

95
0.

05
(2

7.
00

)
52

.8
2

34
25

0.
70

(2
.4

3)
54

.4
4

78
45

.9
0(

96
.0

6)
50

.9
1

54
48

.6
5(

3.
64

)
53

.8
5

65
37

.5
0(

10
.5

7)
69

.1
9

0.
7

10
77

33
.8

0(
0.

00
)

2.
76

33
0.

03
(1

.7
1)

38
.2

2
10

95
6.

50
(2

6.
82

)
55

.7
5

34
25

1.
85

(1
.9

3)
38

.7
8

78
99

.1
0(

10
2.

42
)

53
.6

5
54

39
.6

0(
8.

21
)

44
.1

7
65

43
.9

5(
13

.6
5)

41
.1

2

0.
8

10
77

33
.8

0(
0.

00
)

3.
34

32
9.

69
(1

.2
6)

38
.4

6
10

93
4.

05
(2

9.
88

)
42

.4
3

34
25

2.
65

(0
.8

5)
50

.0
9

78
83

.5
5(

88
.7

5)
56

.2
9

54
45

.3
0(

8.
59

)
53

.9
7

65
44

.6
0(

13
.7

1)
54

.7
1

0.
9

10
77

33
.8

0(
0.

00
)

2.
54

33
0.

16
(1

.1
1)

52
.6

1
10

94
3.

70
(3

6.
12

)
72

.0
1

34
25

2.
75

(0
.9

4)
35

.5
8

79
33

.7
5(

98
.1

5)
68

.8
8

54
49

.3
0(

6.
49

)
61

.6
8

65
43

.1
5(

15
.3

7)
58

.4
7

1
10

77
33

.8
0(

0.
00

)
3.

76
32

9.
33

(0
.8

7)
37

.2
6

10
94

5.
25

(2
4.

52
)

54
.0

4
34

24
8.

10
(1

5.
94

)
32

.0
1

79
35

.7
0(

10
3.

42
)

56
.1

9
54

47
.9

0(
8.

39
)

63
.2

1
65

43
.9

5(
13

.6
1)

76
.8

4

R
eT

S-
II

0
10

68
14

.2
1(

47
1.

76
)

55
.3

2
32

9.
92

(1
.7

3)
17

.4
8

10
96

3.
80

(8
.6

2)
27

.1
0

34
17

4.
50

(2
.2

5)
56

.3
6

79
35

.7
0(

67
.8

2)
49

.8
7

54
30

.6
0(

9.
25

)
36

.6
1

65
29

.3
0(

11
.3

3)
46

.0
1

0.
1

10
69

50
.5

0(
51

2.
80

)
54

.4
6

32
9.

37
(1

.5
3)

27
.4

2
10

96
7.

00
(1

3.
82

)
38

.9
5

34
24

5.
40

(4
.1

0)
62

.4
6

79
76

.7
0(

57
.0

1)
48

.0
9

54
39

.9
0(

12
.6

2)
47

.1
0

65
29

.4
5(

15
.9

0)
50

.6
0

0.
2

10
67

58
.2

6(
42

3.
24

)
55

.6
7

32
9.

73
(1

.8
5)

22
.1

0
10

96
4.

15
(9

.0
3)

38
.1

8
34

24
7.

40
(3

.5
0)

68
.8

8
79

64
.2

0(
51

.3
7)

48
.1

6
54

35
.4

0(
10

.9
8)

47
.0

6
65

30
.6

5(
11

.7
2)

43
.6

4

0.
3

10
67

26
.6

9(
33

5.
70

)
72

.2
9

32
9.

10
(1

.4
5)

20
.0

9
10

97
1.

30
(1

6.
23

)
48

.5
8

34
24

9.
15

(3
.0

0)
46

.5
4

79
95

.7
0(

49
.6

2)
47

.7
5

54
41

.6
5(

9.
89

)
41

.8
8

65
31

.3
5(

16
.9

4)
54

.2
3

0.
4

10
67

02
.3

1(
35

9.
79

)
56

.4
4

32
9.

51
(1

.7
9)

21
.9

1
10

96
6.

75
(1

3.
74

)
38

.4
6

34
25

1.
90

(2
.0

5)
57

.7
7

79
77

.6
5(

56
.8

0)
52

.7
4

54
37

.8
5(

9.
47

)
61

.2
1

65
42

.4
5(

17
.1

6)
68

.4
1

0.
5

10
65

90
.4

1(
10

6.
27

)
62

.7
8

32
9.

84
(2

.3
4)

16
.8

5
10

97
1.

95
(1

6.
13

)
44

.6
3

34
25

1.
45

(1
.6

6)
54

.1
6

79
90

.0
0(

60
.0

1)
45

.3
5

54
40

.2
0(

10
.4

7)
54

.1
0

65
40

.9
5(

16
.8

7)
46

.5
1

0.
6

10
68

38
.5

9(
44

7.
61

)
55

.5
9

32
9.

87
(2

.0
2)

27
.7

6
10

96
5.

10
(1

1.
83

)
46

.1
6

34
25

2.
20

(1
.8

3)
57

.7
3

80
10

.6
5(

54
.6

2)
48

.8
7

54
45

.0
0(

9.
14

)
47

.4
3

65
41

.7
5(

14
.8

7)
53

.4
8

0.
7

10
68

05
.3

6(
48

6.
01

)
58

.4
8

32
8.

95
(1

.8
3)

18
.8

6
10

96
4.

80
(1

1.
78

)
33

.7
9

34
25

2.
30

(1
.1

4)
52

.7
5

79
98

.7
0(

50
.9

7)
51

.4
7

54
45

.8
5(

8.
64

)
52

.9
7

65
44

.3
5(

11
.8

9)
48

.3
0

0.
8

10
67

26
.6

9(
33

5.
70

)
43

.2
1

32
9.

06
(2

.1
3)

17
.2

2
10

96
4.

75
(1

1.
76

)
57

.5
1

34
25

1.
90

(1
.3

0)
39

.5
1

79
74

.9
0(

64
.7

2)
55

.5
8

54
41

.8
0(

9.
82

)
31

.9
5

65
45

.8
5(

12
.5

9)
34

.3
1

0.
9

10
65

39
.0

6(
75

6.
19

)
73

.4
7

32
9.

36
(2

.4
2)

20
.0

8
10

96
7.

85
(1

3.
51

)
36

.5
0

34
25

1.
60

(1
.6

2)
38

.4
7

80
18

.3
0(

37
.9

8)
48

.2
7

54
44

.5
5(

8.
96

)
43

.3
4

65
44

.5
0(

9.
46

)
61

.4
1

1
10

65
11

.7
8(

44
9.

03
)

39
.0

2
32

7.
97

(2
.4

8)
7.

60
10

96
8.

50
(1

5.
40

)
41

.8
6

34
25

1.
60

(1
.4

3)
58

.7
5

79
44

.5
5(

64
.3

9)
61

.4
3

54
44

.9
5(

8.
95

)
44

.4
5

65
51

.5
5(

11
.0

7)
42

.1
7

34 CHAPTER 2. A GENERALIZED OPERATOR “PUSH” FOR MVWCP

According to Table 2.9, setting ρ to small values close to 0 lead to better results on instances in604
and Decay2000_500, while high values of ρ are preferable on other instances, which indicates that the
reconstruction procedure guided by the objective function is helpful to attain better solutions in most cases.
This observation also emphasizes the use of ρ = 0.7 for the experiments of Section 4.3.7. Moreover, Table
2.8 shows that for each instance, ReTS-I and ReTS-II have close best ρ values, which attests the relevance
of integrating both algorithms into the same search framework.

Finally, Table 2.9 discloses that the impact of ρ on the performance of ReTS-I and ReTS-II varies
according to the instances. In particular, for MANN_a45, the result is gradually improved with increasing
ρ values, reaching the best objective value when ρ = 0.7 for ReTS-I and 0.9 for ReTS-II respectively.

2.6 Conclusion
In this chapter, we considered the maximum vertex weight clique problem (MVWCP). We first pointed

out the limits of the commonly used ADD and SWAP operators, and proposed the new generalized operator
PUSH. PUSH inserts one vertex into the clique and removes k ≥ 0 vertices from the clique to maintain its
feasibility. PUSH not only generalizes the existing move operators, but also offers possibility of defining
additional clique transformation operators. We proposed different local search operators by customizing
the candidate set of PUSH. Based on the new operator, we design two tabu search algorithms, ReTS-I and
ReTS-II, which share the same probabilistic restart mechanism but explore different candidate push sets.

Experiments on 143 2nd DIMACS, BHOSLIB and WDP benchmark instances demonstrated the ef-
fectiveness of the algorithms. Further experimental comparisons indicated that our algorithms compete
favorably with state-of-the-art ones. Complementary analysis of restart frequency justified the effectiveness
of sharing the same probabilistic restart mechanism.

In the next chapter, we will consider the maximum s-plex problem, which is a relaxation of the maxi-
mum clique problem. To solve this problem effectively, a frequency based local search algorithm will be
introduced.

3
Frequency-driven tabu search for the maximum
s-plex problem

In this chapter, we present an effective frequency-driven multi-neighborhood tabu search algorithm
(FD-TS) to solve the maximum s-plex problem (MsPlex) on very large networks. The proposed FD-TS
algorithm relies on two transformation operators (ADD and SWAP) to locate high-quality solutions, and a
frequency-driven perturbation operator (PRESS) to search beyond local optimum traps. We report compu-
tational results for 47 massive real-life (sparse) graphs from the SNAP Collection and the 10th DIMACS
Challenge, as well as 52 (dense) graphs from the 2nd DIMACS Challenge (results for 48 more graphs are
also provided in Appendix 5.6). We demonstrate the effectiveness of our approach by presenting compar-
isons with the current best-performing algorithms. An article describing FD-TS is accepted to Computer &
Operations Research [Zhou and Hao, 2017b].

Contents
3.1 Introduction . 36
3.2 FD-TS algorithm for the maximum s-plex problem 37

3.2.1 General procedure . 37
3.2.2 Preliminary definitions . 37
3.2.3 Move operators . 38
3.2.4 Constructing the initial solutions . 40
3.2.5 FD-TS . 41
3.2.6 Reducing large (sparse) graphs . 43

3.3 Implementation and time complexity . 43
3.4 Computational assessment . 44

3.4.1 Benchmarks . 44
3.4.2 Experimental protocol and parameter tuning . 44
3.4.3 Computational results for very large networks from SNAP and the 10th DIMACS

Challenge . 45
3.4.4 Computation results for graphs from the 2nd DIMACS Challenge 48
3.4.5 Impact of frequency information . 51

3.5 Conclusions . 53

35

36 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

3.1 Introduction

Given a simple undirected graph G = (V,E) with a vertex set V and an edge set E, let N(v) denote the
set of vertices adjacent to v in G. Then, an s-plex for a given integer s ≥ 1 (s ∈ N+) is a subset of vertices
C ⊆ V that satisfies the following condition: ∀v ∈ C, |N(v) ∩ C| ≥ |C| − s. Thus, each vertex of an
s-plex C must be adjacent to at least |C| − s vertices in the subgraph G[C] = (C,E ∩ (C ×C)) induced by
C. Therefore, the maximum s-plex problem (MsPlex) consists of finding, for a fixed value of s, an s-plex
of maximum cardinality among all possible s-plexes of a given graph. The mathematical formulation of the
maximum s-plex has been introduced in chapter one (Equation (1.4) – (1.6)) and is not repeated here.

The s-plex concept was first introduced for graph-theoretic social network studies [Seidman and Foster,
1978]. The decision version of MsPlex with any fixed positive integer s is known to be NP-complete
[Balasundaram et al., 2011]. When s equals 1, MsPlex reduces to the popular maximum clique problem,
the decision version of which was among Karp’s 21 NP-complete problems [Karp, 1972]. MsPlex is often
referred to as a clique relaxation model [Pattillo et al., 2012; Pattillo et al., 2013b].

Similar to a clique, an s-plex C has the heredity property, which means that every subset of vertices
C ′ ⊆ C remains an s-plex, i.e., the subgraph induced byC ′ always has the property of an s-plex [Trukhanov
et al., 2013]. The most successful combinatorial algorithms for s-plex essentially rely on the heredity
property and a polynomial feasibility verification procedure. For example, a powerful exact algorithmic
framework was introduced in [Trukhanov et al., 2013] for detecting optimal hereditary structures (s-plex
and s-defective clique), which is based on the maximum clique algorithm proposed in [Östergård, 2002].
This algorithm performed well on MsPlex for graphs in the 2nd DIMACS Challenge and popular large-scale
social networks. Among exact algorithms for MsPlex, [Balasundaram et al., 2011] introduced a branch-and-
cut algorithm based on polyhedral study of MsPlex. Two branch-and-bound algorithms were presented in
[McClosky and Hicks, 2012], which are based on popular exact algorithms for the maximum clique problem
[Carraghan and Pardalos, 1990; Östergård, 2002]. In [Moser et al., 2012], exact combinatorial algorithms
were investigated using methods from parameterized algorithmics. Additionally, a parallel algorithm for
listing all the maximal s-plexes was introduced in [Wu and Pei, 2007].

However, given the computational complexity of MsPlex, any exact algorithm is expected to require
an exponential computational time to determine the optimal solution in the general case. Thus, it is useful
to investigate heuristic approaches, which aim to provide satisfactory solutions within an acceptable time
frame, but without a provable optimal guarantee for the solutions obtained. However, our literature review
found only two heuristics for MsPlex [Miao and Balasundaram, 2012; Gujjula et al., 2014], which are
based on the general GRASP method [Feo and Resende, 1995a]. This situation contrasts sharply with the
huge body of heuristics for the conventional maximum clique problem [Wu and Hao, 2015a] and other
clique relaxation problems [Pattillo et al., 2013b]. We note that exact and heuristic approaches may be
complementary, and together they can enlarge the classes of problem instances that can be solved effectively.
Moreover, they can even be combined within a hybrid approach, as exemplified in [Miao and Balasundaram,
2012] where the GRASP heuristic was used to enhance the exact algorithm proposed in [Balasundaram et
al., 2011] to solve very large social network instances.

In this study, we aim to partially fill the gap in terms of heuristic methods for solving MsPlex by
introducing an effective heuristic approach. The main contributions of this study can be summarized as
follows.

– From an algorithmic perspective, this is the first study to employ the tabu search metaheuristic [Glover
and Laguna, 2013] to solve MsPlex (Section 3.2). Thus, the proposed frequency-driven tabu search
algorithm (FD-TS) integrates several original components. First, FD-TS jointly employs three ded-
icated move operators called ADD, SWAP , and PRESS, two of which (SWAP and PRESS)
are applied for the first time to MsPlex. Second, we introduce a frequency-based mechanism for
perturbation and to construct initial solutions, which is proving to be more effective than a random
mechanism. We also apply a peeling procedure to dynamically reduce the graph with the best identi-
fied lower bound. Finally, specific design decisions are made in order to handle very large networks

3.2. FD-TS ALGORITHM FOR THE MAXIMUM S-PLEX PROBLEM 37

with thousands and even millions of vertices.
– From a computational perspective, our experimental results indicate that the proposed algorithm per-

forms very well with both sparse and dense graphs (Section 3.4). For 47 very large networks from
the SNAP collection and the 10th DIMACS Challenge benchmark set, our algorithm successfully
obtained or improved the best-known results from previous studies for s = 2, 3, 4, 5. Our algorithm
even proved the optimality of many instances for the first time using the peeling procedure. For 52
dense graphs from the collection used in the 2nd DIMACS Challenge, our algorithm also obtained
or improved the best-known results for s = 2, 3, 4, 5. To comprehensively assess the performance of
our algorithm, we compared FD-TS with several cutting edge algorithms, including the commercial
CPLEX solver (version 12.6.1). More results for 48 additional graphs are also presented in Appendix
5.6.

The rest of this chapter is organized as follows. Section 3.2 presents the FD-TS algorithm. Section 3.3
discusses the implementation and complexity issues related to FD-TS. Section 3.4 presents the computa-
tional results obtained on benchmark instances and provide comparisons with state-of-the-art algorithms.
In the final section of this chapter, we give our conclusions and discuss future research.

3.2 FD-TS algorithm for the maximum s-plex problem

3.2.1 General procedure
The general scheme of the proposed FD-TS algorithm is shown in Algorithm 4.1. FD-TS starts from

an initial feasible solution (s-plex) built using the Init_Solution() procedure (Section 3.2.4), before entering
the main multi-neighborhood local search procedure, Freq_Tabu_Search(), to improve the initial solution
(Section 3.2.5). A vector freq, which records the number of times each vertex is moved in the last round
of the Freq_Tabu_Search() procedure, is initialized as a null vector (Algorithm 4.1, line 3). This vector is
used by the Init_Solution() procedure as well as the perturbation method explained in Section 3.2.5. If the
solution returned by tabu search is better than the current best solution C∗, C∗ is updated (Algorithm 4.1,
lines 7–8). The new lower bound |C∗| is then given to the Peel() procedure (Section 3.2.6) to reduce the
current graph (Algorithm 4.1, line 9). If Peel() returns a reduced subgraph with fewer vertices than |C∗|,
then C∗ must be an optimal solution and the overall algorithm stops. Otherwise, the algorithm enters a
new round of search to build a new starting solution with Init_Solution(), before improving the new starting
solution with Freq_Tabu_Search() and reducing the graph with Peel() if this is possible. The algorithm
continues until a given stopping condition (e.g., a cut-off time limit) is met.

3.2.2 Preliminary definitions
Given G = (V,E), s ∈ Z+, let C ⊆ V be a subset of vertices and N(v) the set of vertices adjacent to

v. The following definitions are provided, which are useful for the description of our algorithm.
We say that C is a (feasible) solution or an s-plex if ∀v ∈ C, |N(v) ∩ C| ≥ |C| − s; otherwise, C is an

infeasible solution (i.e., ∃v ∈ C, |N(v)∩C| < |C|−s). For a vertex v ∈ C, we say that v is saturated (first
introduced in [Trukhanov et al., 2013]) if |N(v) ∩ C| = |C| − s. If |N(v) ∩ C| < |C| − s, v is deficient.
Obviously, whenever a deficient vertex exists in C, C is an infeasible solution. The saturated set S of set C
is defined as the set of all saturated vertices in C, i.e., S = {v ∈ C : |N(v) ∩ C| = |C| − s}. We can see
that if C is a 1-plex (i.e., a clique), then all the vertices in C are saturated. The search space Ω of G includes
all s-plexes, Ω = {C ⊆ V : ∀v ∈ C, |N(v) ∩ C| ≥ |C| − s}. For brevity, we also use N(C) to denote the
set of vertices in V \ C with at least one adjacent vertex in C, N(C) =

⋃
v∈C N(v) \ C.

In Figures 3.1 and 3.2, we provide examples of S and N(C), as well as their uses in the definitions of
the ADD and SWAP operators introduced in the next section.

Finally, the quality of any candidate solution (s-plex) C ∈ Ω is evaluated by its cardinality |C|. Thus,
given two candidate solutions C ′ and C, C ′ is better than C if |C ′| > |C|.

38 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

Algorithm 3.1: Main framework of Frequency Driven Tabu Search
Input: Problem instance (G, s), predefined sample size q, maximum allowed iterations in tabu

search L.
Output: The largest s-plex ever found
begin

C∗ ← ∅; /* the best solution found so far */
freq(v)← 0 for all v ∈ V ; /* frequency count of vertex moves */
while the stopping condition is not met do
{C, freq} ← Init_Solution(G, s, freq, q); /* §3.2.4 */
{C, freq} ← Freq_Tabu_Search(G, s, C, freq, L); /* §3.2.5 */
if |C| > |C∗| then

C∗ ← C;
G← Peel(G, s, |C∗|); /* §3.2.6 */
if |V | ≤ |C∗| then

return C∗ ; /* return the best solution found */

end
return C∗

0 5 10 15 202.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0

12

3

Figure 3.1: Suppose s = 2, C = {0, 1, 2} is the incumbent solution, S = {1, 2} is the saturated set of C,
then M1 = {3} and C ∪ {3} is an extended s-plex.

3.2.3 Move operators
Our FD-TS algorithm explores the search space Ω by jointly applying three move (or transformation)

operators, ADD, SWAP , and PRESS, to generate new solutions in Ω from the current solution (or s-
plex). If we let C be the incumbent solution, then each move operator transfers one vertex v ∈ N(C) inside
C and eliminates zero, one, or more vertices from C to keep C feasible. If we let OP be a move operator,
then we use C ′ ← C ⊕OP (v,X) to denote the new (neighboring) solution obtained by applying OP to C
(X represents the subset of vertices eliminated from C, which can possibly be empty). The details of these
operators are described as follows. For simplicity, when the subset of eliminated vertices X is empty or a
singleton, the set notation of X is ignored.

1. ADD(v): This operator extends the incumbent solution C by including a new vertex from N(C).
Clearly, each application of this operator will increase the cardinality of the solution by one, which
always leads to a better solution. However, we must take special care to ensure that the extended
solution remains an s-plex. Thus, we identify the following vertex subset M1 ⊆ N(C), which has
the required feasibility property (first introduced in [Trukhanov et al., 2013]):

3.2. FD-TS ALGORITHM FOR THE MAXIMUM S-PLEX PROBLEM 39

M1 = {v ∈ N(C) : |N(v) ∩ C| ≥ |C| − s+ 1, S \N(v) = ∅} (3.1)

By definition (3.1), if a vertex v in N(C) is adjacent to at least |C| − s+ 1 vertices in C and adjacent
to all the saturated vertices of C, then adding v to C yields a new solution C ′, the size of which is
increased by one (see Fig. 3.1 for an example).
The set of neighboring solutions of C induced by ADD(v) is then given by:

NADD = {C ′ : C ′ ← C ⊕ ADD(v), v ∈M1} (3.2)

The ADD operator is used by the search algorithm to improve the quality of the incumbent solution.
2. SWAP (v, u): This operator exchanges a vertex v ∈ N(C) with another vertex u in the incumbent

solution C (u ∈ C), while keeping the quality of the solution unchanged. Similar to ADD, to ensure
the feasibility of the transformed solutions, we need to identify the set of suitable candidate pairs
< v, u > ∈N(C)×C. Considering the definition of s-plex, a pair of vertices < v, u > is eligible for
exchange only if it satisfies one of the following two conditions.
– First, v is adjacent to at least |C| − s vertices in C and u is the unique saturated vertex that is not

adjacent to v (i.e., S \N(v) = {u}).
– Second, v is adjacent to exactly |C| − s vertices in C and these |C| − s vertices must include all

the saturated vertices (i.e., S \N(v) = ∅), and u is an arbitrary vertex from C \N(v).
We use sets A and B to denote the candidate sets of v that satisfy the two conditions above, respec-
tively, (see Fig. 3.2 for an example of these two types of vertices):

A = {v ∈ N(C) : |N(v) ∩ C| ≥ |C| − s, |S \N(v)| = 1}
B = {v ∈ N(C) : |N(v) ∩ C| = |C| − s, S \N(v) = ∅}

(3.3)

The set of neighboring solutions induced by SWAP (v, u) is then given by:

NSWAP = {C ′ : C ′ ← C ⊕ SWAP (v, u), (v ∈ A, u ∈ S \N(v))∨ (v ∈ B, u ∈ C \N(v))} (3.4)

If we let M2 = A ∪ B, a practical method for generating a suitable pair < v, u > is to first build the
set M2, then pick a vertex v from M2, and finally determine an appropriate vertex u from S \ N(v)
or C \ N(v). The SWAP operator is used by the search algorithm to visit neighboring solutions of
equal quality, so a transition with SWAP is also called a side-walk move.

3. PRESS(v,X): If we let M3 = N(C) \ (M1 ∪M2), this operator adds one vertex v ∈ M3 to C
and then eliminates two or more vertices from C \ N(v) so the s-plex structure of the new solution
is maintained. Obviously, given a vertex v /∈ M1, the set C ′ = C ∪ {v} is an infeasible solution
because v or the vertices in S \ N(v) become deficient (see Section 3.2.2) in G[C ′]. Therefore, to
restore the feasibility of the transformed solution, this operator iteratively eliminates vertices from
(C ′ \ {v}) \ N(v) (i.e., C \ N(v)) until the solution becomes an s-plex. Preference is given to
the deficient vertices in C \ N(v) and if no deficient vertex exists in C \ N(v), the vertices to be
eliminated are selected randomly from C. All of the eliminated vertices are collected in X . The set
of neighboring solutions induced by the PRESS(v,X) operator is given by:

NPRESS = {C ′ : C ′ ← C ⊕ PRESS(v,X), v ∈ V \ C,X ⊆ C \N(v)} (3.5)

By definition, PRESS eliminates at least two vertices from the solution (i.e., |X| > 1). Thus, the
application of PRESS always degrades the quality of the current solution. Hence, this operator
is only used by the perturbation procedure when the ADD and SWAP operators are no longer
applicable, or when the search stagnates in local optima.

40 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

0 2 4 6 8 10 122

3

4

5

6

7

8

9

10

0

12

3

4

5

Figure 3.2: Suppose s = 2, C = {0, 1, 2, 3} is the incumbent solution, S = {1, 2} is the saturated set of C,
N(C) = {4, 5}. Then for the SWAP operator, we get A = {4} and exchangeable pair < 4, 1 >; B = {5}
and exchangeable pairs < 5, 0 > and < 5, 3 >.

Next, we provide some additional comments about these operators and discuss some implementation
issues.

– ADD and SWAP have been used in several algorithms for the maximum clique problem and the
equivalent maximum independent set problem [Benlic and Hao, 2013a; Jin and Hao, 2015; Pullan
and Hoos, 2006; Wu et al., 2012]. However, given the generality of MsPlex, the definitions of these
operators are different and more complex in the present study; in particular, the saturated set S must
be involved. The PRESS operator can be treated as a dedicated application to the s-plex problem of
the PUSH operator introduced in [Zhou et al., 2017a] for the maximum weight clique problem.

– It should be noted that traditional maximum clique benchmark graphs, such as those from the 2nd
DIMACS Challenge, include many dense graphs. Thus, most maximum clique algorithms typically
operate on the complement graph Ḡ to search for the maximum independent sets in terms of run-time
efficiency [Jin and Hao, 2015; Pullan and Hoos, 2006; Wu and Hao, 2013a]. The FD-TS algorithm
proposed in the present study is designed to handle very large real-world networks, which are typically
sparse graphs. Consequently, FD-TS operates directly on the original graph based on its adjacency-list
representation. In addition, we restrict the candidate vertices considered by the three move operators
to N(C) instead of V \C because N(C) is much smaller than V \C for very large networks. Indeed,
given the size of the networks considered (up to millions of vertices), even a simple operation such
as scanning all the vertices of V \ C becomes too expensive, and it can slow down the algorithm
considerably. Thus, special care is taken to avoid ineffective or unpromising examinations.

– When SWAP and PRESS are applied, each dropped vertex is forbidden from rejoining the solution
during a number of subsequent iterations to avoid revisiting previously examined solutions. This is
achieved by using a tabu list (see Section 3.2.5).

3.2.4 Constructing the initial solutions
Each round of the FD-TS algorithm requires a starting solution (see Algorithm 4.1, line 5). In general,

the starting solutions can be generated by any method that ensures the s-plex property. In our method,
we employ the following construction procedure, which applies the ADD operator while considering the
frequency information for vertex moves.

From a random sample of q vertices (q ∈ [50, 150]), we use the vertex with the minimum frequency
(ties are broken randomly) to create a singleton set C. From the singleton s-plex C, the procedure repeats
the following three steps to extend the current solution: 1) generate the M1 set from N(C), 2) select one
vertex with the minimum frequency from M1 (ties are broken randomly), and 3) add the selected vertex to

3.2. FD-TS ALGORITHM FOR THE MAXIMUM S-PLEX PROBLEM 41

C. We repeat this process until M1 becomes empty. The final s-plex C is returned as the initial solution.
The intuitive assumption that less frequently moved vertices are preferred is intended to make the initial

solution as diverse as possible. Moreover, using a sample of q vertices instead of the whole set V for seeding
the solution helps to reduce the computational overheads in the initialization procedure. This is particularly
true for massive graphs because scanning all the vertices of the graph can be time consuming in this case.
In Section 3.4.2, we discuss the calibration of the parameter q.

3.2.5 FD-TS

Algorithm 3.2: Frequency driven tabu search
Input: Problem instance (G, s), current solution C, max. allowed iterations L
Output: The largest s-plex found Cbest
begin

Cbest ← C;
tabu_list← ∅;
l← 0 ; /* Counter of cycles of TS2 + PERTURB runs */
fix← ∅; /* The vertices that are forbidden to drop */
freq(v)← 0 for all v ∈ V ; /* Reset frequency records */
λ← 0 ; /* Counter of consecutive non-improving iterations */

// Run TS2 + PERTURB a maximum of L iterations
while l ≤ L do

// Start the two neighborhood tabu search procedure - TS2

Updating the saturated subset S ; /* Sect. 3.2.2 */
Decompose set N(C) into M ′1 = {v ∈M1 : v /∈ tabu_list ∨ |C|+ 1 > |Cbest|}, M ′2 = {v ∈M2 : v /∈ tabu_list},
M ′3 = {v ∈M3 : v /∈ tabu_list} ; /* Sect. 3.2.3 */
if M ′1 6= ∅ then

v ← a random vertex from M ′1;
C ← C ⊕ADD(v);
freq(v)← freq(v) + 1;

else if M ′2 6= ∅ then
(v, u)← two random exchangeable vertices from M ′2 ×N(C); /* See Sect. 3.2.5 for selection rule */
C ← C ⊕ SWAP (v, u);
Add u to tabu_list with tabu tenure Tu; /* Sect. 3.2.5 */
freq(v)← freq(v) + 1, freq(u)← freq(u) + 1;

if |C| > |Cbest| then
Cbest ← C;
λ← 0;

else
λ← λ+ 1;

// Run the PERTURB procedure
if (No feasible ADD and SWAP operation) ∨ (λ > s ∗ |Cbest|) ∧M ′3 6= ∅) then

v ← a vertex with maximum freq(v) from M ′3, break ties randomly;
C ← C ⊕ PRESS(v,X) ; /* X collects the removed vertices from C, Sect. 3.2.3 */
fix← {v}, λ← 0;
freq(v)← 0, freq(u)← freq(u) + 1 for all u in X;
Add each u ∈ X to tabu_list with tabu tenure Tu; /* Sect. 3.2.5 */

l← l + 1

end
Return Cbest, freq;

General procedure

The key search procedure employed in the FD-TS algorithm (see Algorithm 3.2) combines a double-
neighborhood search procedure (we refer to this procedure as TS2; Algorithm 3.2, lines 11–24) to facilitate
intensification (to obtain local optima) and a frequency-based perturbation procedure (we refer to this pro-
cedure as PERTURB; Algorithm 3.2, lines 25–30) for diversification (to escape from local optima).

Based on a given initial solution, TS2 uses ADD and SWAP to improve the current solution until
search stagnation occurs. PERTURB then applies PRESS to modify (perturb) the current local optimum
and passes the modified solution to TS2 for further improvement. FD-TS iterates this TS2+PERTURB
process a maximum of L times and then starts the next round of its search procedure.

42 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

In addition to the three move operators (ADD, SWAP , and PRESS), FD-TS employs a tabu mech-
anism (see Section 3.2.5) [Glover and Laguna, 2013] and a frequency technique to ensure the effective
exploration of the search space. A tabu list (tabu_list) is used to mark the vertices that are forbidden from
joining the current solution during a specific number of iterations. Information related to the move fre-
quency of each vertex v is collected, where freq(v) records the number of times that v is operated upon
by a move operator in the recent history. Initially, tabu_list is empty and the frequency of each vertex is
set to 0. The fix set (a singleton set used by the PERTURB procedure) records an added vertex, which is
forbidden from moving out of the current solution in TS2 and the counter l counts the completed iterations,
the upper limit of which is given by the parameter L. Moreover, in order to avoid being trapped by local
optima, a counter λ records the consecutive iterations that have passed since the last improvement of the
current solution. Each time that the counter λ reaches a threshold, the perturbation procedure is triggered
to modify the current solution using the PRESS operator.

At the beginning of each iteration, set C is checked to identify the saturated subset S. Next, N(C)
is decomposed into three disjoint subsets: M ′

1, M ′
2, and M ′

3. These sets correspond to M1, M2, and M3

(defined in Section 3.2.3), respectively, but they exclude the vertices in the tabu_list. However, a vertex
v ∈M1 is always retained in M ′

1 if adding v to C leads to a new solution that is better than the best solution
found previously, i.e., |C|+ 1 > |Cbest|, regardless of the tabu status of the vertex.

Solution improvement with ADD and SWAP

The current solution is transformed successively by applying ADD and SWAP. Preference is given to
the ADD operator. Thus, whenever M ′

1 is not empty, ADD is applied to improve the current solution by
adding one vertex of M ′

1 to the solution (Algorithm 3.2, lines 11–14). If no vertex can be added to the
solution (M ′

1 = ∅), but M ′
2 is not empty, then the search continues with the SWAP (v, u) operator by

visiting solutions of equal quality (Algorithm 3.2, lines 15–19).
To provide SWAP (v, u) with an appropriate exchangeable pair < v, u >, v is first selected randomly

from M ′
2, and u is then selected from the candidate set defined by the rules given in Section 3.2.3, while

excluding the vertex recorded in fix. In particular, if v is a vertex of type (set) A, then u is selected from
S \ (N(v) ∪ fix) (which is a trivial set with zero or one vertex); and if v is a vertex of type (set) B, u
is selected randomly from C \ (N(v) ∪ fix). If there is no eligible candidate for u (S \ N(v) = fix or
C \N(v) = fix), then we simply give up attempting to apply SWAP (v, u) and move on to the PERTURB
procedure (Algorithm 3.2, line 25).

Perturbation with PRESS

Inevitably, at a certain search stage, no candidate vertex v or candidate pair < v, u > is available for the
ADD(v) or SWAP (v, u) operator (i.e., both M ′

1 and M ′
2 are empty or no eligible vertex can be found for

u), or the search stagnates on the SWAP (v, u) operator. In the latter case, search stagnation occurs when
the current solution has not been improved for s∗|Cbest| consecutive iterations. The self-adaptive threshold,
s ∗ |Cbest|, is identified based on the assumption that if the current s-plex cannot be improved even after the
replacement of each of its vertices at least s times by the SWAP operator, then no better solution can be
found in the current search region. To continue the search, the algorithm triggers the PERTURB procedure
in order to move the search to a distant new region. This procedure applies the PRESS(v,X) operator,
where v is the vertex fromM ′

3 with the largest freq value andX collects the dropped vertices fromC\N(v)
to recover a feasible solution (Algorithm 3.2, lines 26–27). It is important to reset the frequency of vertex
v (Algorithm 3.2, line 29), or the accumulated frequency of this vertex could dominate other vertices in
subsequent cycles. The dropped vertices in X are added to the tabu list (Algorithm 3.2, line 30) and they
will not be considered during the forbidden period, as explained in the next section.

3.3. IMPLEMENTATION AND TIME COMPLEXITY 43

Tabu tenure and management

As mentioned above, to avoid revisiting recently examined solutions, we use a tabu list to record the
vertices dropped from the current solution in order to exclude them from consideration during a number of
consecutive iterations. According to the definitions in Section 3.2.3, each application of SWAP (v, u) or
PRESS(v,X) removes one or more vertices from the current s-plex. Each dropped vertex u will be kept
in the tabu list for the next Tu iterations (the tabu tenure), which is set according to the following two rules: Tu = 10 + random(0, |M2|), u is dropped by SWAP (v, u)

Tu = 7, u ∈ X is dropped by PRESS(v,X)
(3.6)

where random(0, I) is a random integer in {0, . . . , I}. These rules are based on previous studies of the
related maximum clique problem [Wu et al., 2012; Jin and Hao, 2015]. The first rule estimates the forbidden
period for vertices for side-walk moves with the SWAP operator, which ensures that a dropped vertex will
not be reconsidered for at least 10 iterations, and the second rule for the PRESS operator prevents any
dropped vertex from being reconsidered for a small number of iterations (seven in this case). Based on
experiments, we observed that other values around these tabu tenures obtained similar performance. Thus,
we selected the values used in [Wu et al., 2012; Jin and Hao, 2015].

Finally, the tabu list is more useful when the number of candidate vertices for SWAP or PRESS is
limited, because a dropped vertex u will have a high probability of being added again to the solution if it
is not prohibited. However, if numerous candidate vertices exist (such as in massive graphs), there is little
chance of a dropped vertex being re-selected immediately. Thus, the tabu mechanism is more useful for
graphs of limited size than massive graphs.

3.2.6 Reducing large (sparse) graphs

Given a graph G = (V,E) and a parameter s, suppose that after tabu search (Algorithm 4.1, line
6), the current best s-plex has cardinality |C∗| (lower bound of the maximum s-plex of G). Clearly, to
further improve C∗, considering any vertex in V with a degree smaller than or equal to |C∗| − s would
not be beneficial because such a vertex cannot extend C∗. Thus, these vertices can be safely removed from
the graph [Abello et al., 2002]. In FD-TS, we explore this strategy using the Peel(G, s, |C∗|) procedure
(Algorithm 4.1, line 9), which recursively deletes the vertices (and their incident edges) with a degree less
than or equal to |C∗|−s until no such vertex exists. Finally, if the subgraphs obtained after Peel(G, s, |C∗|)
have fewer vertices than |C∗|, then C∗ must be an optimal solution because no better solution can exist.

For very dense graphs, the Peel procedure may not reduce the graph size greatly because the degrees
of most vertices will remain larger than |C∗| − s. However, this technique is highly effective when it is
applied to large sparse graphs such as massive real-world complex networks. As shown in Section 3.4.3, by
using the high-quality lower bound |C∗| provided by our tabu search procedure, this pruning technique can
effectively reduce large sparse graphs to very small graphs (even the null graph).

We note that the idea of removing unpromising vertices was used previously in a GRASP heuris-
tic for detecting dense subgraphs (quasi-cliques) in massive sparse graphs [Abello et al., 2002], as well
as in several exact algorithms for the maximum clique and s-plex problems [Balasundaram et al., 2011;
Trukhanov et al., 2013; Verma et al., 2015].

3.3 Implementation and time complexity
To effectively implement FD-TS, we maintain two structures: the vector degC [v] (i.e., degC [v] =

|N(v) ∪ C|, v ∈ V) and the set N(C) (i.e., N(C) =
⋃
v∈C N(v) \ C), which are updated whenever

the current solution C changes. Thus, each time a vertex (say u) is added to or removed from C by a move

44 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

operator, we increase or decrease degC [v] by one for each v ∈ N(u). Since the set N(C) must only contain
vertices with degC [v] > 0, it is also adjusted when degC [v] changes.

Next, we discuss the time complexity of the main components of the proposed algorithm. First, we
consider the procedure for constructing initial solutions (Section 3.2.4). In each iteration, we need to build
the subset M1 from N(C) and update degC [v] and N(C) after adding a vertex, which can be achieved in
O(|N(C)|+ ∆) (∆ = maxv∈V {|N(v)|}).

The efficiency of TS2 (Section 3.2.5) and PERTURB (Section 3.2.5) is closely related to the method
used for building sets M ′

1, M ′
2, and M ′

3 from N(C) from scratch in each iteration. In our implementation,
we build the saturated set S (Algorithm 3.2, line 9) from C in a time of O(|C|) at the very beginning of
each iteration. Then, for each vertex in N(C) (e.g., u), we count the number of saturated vertices in the
set of vertices adjacent to u, i.e., |S ∩ N(u)| (the saturated connectivity of u). Obviously, if the saturated
connectivity of u is 0, S \N(u) = ∅; and if the saturated connectivity of u is 1, |S \N(u)| = 1. According
to the definitions of M1, M2, and M3, once the saturated connectivity of u and degC [u] is known, it is trivial
to identify u as an element of M ′

1, M ′
2 or M ′

3. Consequently, decomposing N(C) (Algorithm 3.2, line 10)
can be achieved in O(|N(C)| ∗∆).

Next, we consider the time complexity when employing the move operators. First, for the ADD operator,
we only need to update the vector degC [v] and setN(C) after reallocating a vertex v, which can be achieved
in O(∆). Second, to apply SWAP with a vertex v ∈ N(C), we first need to identify the other vertex
u ∈ C. According to the rule defined in Section 3.2.5, the sets S \N(v) and C \N(v) can be identified by
traversing sets C and N(v) respectively. Thus, the time required to identify u is bounded by O(|C|+ ∆) =
O(2 ∗ ∆ + s) = O(∆ + s) (because |C| ≤ ∆ + s), while updating degC [v] and N(C) is bounded by
O(2 ∗ ∆) = O(∆) because two vertices are displaced during each application of SWAP. Finally, each
application of the PRESS operator can be achieved in O(∆2).

Overall, one operator (ADD, SWAP or PRESS) is applied during one iteration, so the total time
complexity of TS2 and PERTURB for each iteration is bounded by O(|C| + |N(C)| ∗ ∆ + ∆2). We note
that for sparse graphs, |C|, N(C), and ∆ are usually extremely small compared with the number of vertices
in a graph.

3.4 Computational assessment

3.4.1 Benchmarks

In this section, we present computational evaluations of the proposed FD-TS algorithm for MsPlex
based on 79 (19, 17, and 43, respectively) instances from benchmark sets SNAP, 10th DIMACS and 2nd
DIMACS (see Section 1.4.1, Chapter 1).

3.4.2 Experimental protocol and parameter tuning

The proposed FD-TS algorithm was implemented in C++ 1 and compiled by g++ with optimization
option ‘-O3’. All experiments were conducted on a computer with an AMD Opteron 4184 processor (2.8
GHz and 2 GB RAM) running CentOS 6.5. When we solved the DIMACS machine benchmarking program
fdmax.c 2 without compilation optimization flag, the run time on our machine was 0.40, 2.50, and 9.55
seconds for graphs r300.5, r400.5, and r500.5, respectively.

An interesting feature of FD-TS is that it has very few parameters. In addition to the tabu tenure
discussed in Section 3.2.5, the parameter q (the sample number of vertices in Section 3.2.4) was set to
100. As indicated in Section 3.2.4, q is not a sensitive parameter so we simply fixed it to the middle value
in the range of [50,150]. However, according to our experiments, the best value of parameter L, which

1. We will make our program available.
2. ftp://dimacs.rutgers.edu/pub/dsj/clique/

3.4. COMPUTATIONAL ASSESSMENT 45

specifies the maximum number of iterations in each round of tabu search, was highly dependent on the
instance considered. We compared different values in {10, 100, 1000, 5000} for L with s = 2, 3, 4, 5
for six selected instances from the 2nd DIMACS benchmark set (MANN_a27, brock400_2, brock800_2,
C1000.9, keller6, p_hat1500-3). As a trade-off, we retained L = 1000 because the algorithm achieved the
best average solution quality in most cases. We also observed that fine tuning L for each pair (instances,
s) could improve the performance. However, to report our computational results, we used the fixed setting
L = 1000, which allowed the algorithm to obtain highly competitive results. Given the stochastic nature of
our algorithm, we ran FD-TS to solve each instance 20 times for each given s, where each run was limited
to a maximum of 180 CPU seconds (3 minutes).

3.4.3 Computational results for very large networks from SNAP and the 10th DI-
MACS Challenge

Table 3.1 shows the performance of FD-TS on 47 instances taken from the SNAP and 10th DIMACS
benchmarks, namely, all 37 instances tested in [Trukhanov et al., 2013] for the s-plex problem, as well as
10 instances from the recent literature [Verma et al., 2015]. Note that in [Verma et al., 2015], only the best
clique size was reported, which is just a lower bound of maximum s-plex for s = 2, 3, 4, 5. To be complete,
we also report our results for the remaining 20 instances from [Verma et al., 2015] in the Appendix (Table
5.6).

For each instance, the columns “Instance," “|V |," and “|E|" indicate basic information for the name,
number of vertices, and number of edges, respectively. For each s = 2, 3, 4, 5, column “BKV" denotes the
best-known objective values collected from [Trukhanov et al., 2013] (for the first 37 instances) and [Verma
et al., 2015] (for the last 10 instances). For the items in this column, an additional symbol “*" indicates
that this objective value was proved to be optimal in [Trukhanov et al., 2013], and the symbol ω shows that
this value is the maximum clique size mentioned in [Verma et al., 2015] (which is a lower bound of the
maximum s-plex). The “max" column shows the best objective value found by FD-TS among its 20 trials
and the “time" column indicates the average time (in seconds) required for runs to obtain the best objective
value (excluding the time spent reading the graph). The “|V ′|" column shows the number of remaining
vertices in the reduced subgraph after executing the Peel(G, s,max) procedure (see Section 3.2.6). As
mentioned earlier, if the number of vertices in the reduced subgraph (column “|V ′|") is less than or equal to
the lower bound (column “max"), then the latter is guaranteed to be the optimal solution. In these cases, we
put a “*" beside the value.

Moreover, for instances where the optimum could not be determined in either [Trukhanov et al., 2013] or
FD-TS, we conducted an additional experiment with the CPLEX solver (version 12.6.1). First, we reduced
the original graph by applying the Peel(G, s,max) procedure. Then, for the reduced subgraph and a given
s ∈ {2, 3, 4, 5}, a cutoff time of one CPU hour was used when running CPLEX with the mathematical
model (Equation 1.4 – Equation 1.6) presented in Section 3.1. Experiments were conducted using the same
machine employed for running FD-TS. The best objective values found by CPLEX are listed in the “cplex"
column, where “*" indicates the optimal values. If CPLEX was unable to load the model, the entry is
marked by “N/A."

Table 3.1 shows that FD-TS always obtained the same or better objective values compared with the
current best-known results (BKV values) (better objective values are highlighted with a bold font). In
particular, FD-TS improved the best-known results for more instances as s increased (FD-TS found better
solutions for 7, 15, 19, 21 instances with s = 2, 3, 4, 5, respectively). This observation indicates that the
instances become more challenging for exact algorithms with a larger s. Using the Peel procedure, FD-TS
was also provably optimum for the first time for 6, 6, 6, 10 instances and s = 2, 3, 4, 5, respectively. For the
cases where the number of vertices in the reduced subgraph remained larger than the lower bound given
by FD-TS, the majority of these cases were manageable when the subgraph had less than 10,000 vertices
(exceptions include the instances 333SP, cage15, cit-Pattens, and wiki-Talk for s = 2). In terms of the
computational time, FD-TS was able to obtain the best solutions in less than one second in most cases,

46 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

including instances with millions of vertices. The average time required by FD-TS on cit-Patents for s = 3
was the longest but still less than one minute. Unfortunately, and similarly to CPLEX, it could not determine
any solution better than that found by FD-TS in one hour when given the reduced subgraph. However, for
the instances rgg_n_2_17_s0 with s = 5, and rgg_n_2_20_s0 with s = 4 and 5, optimal solutions were also
obtained by CPLEX. Finally, we note that for the instances coPapersCiteseer, coPapersDBLP, and cond-
mat-2005, the size of the maximum clique was the same as the size of the maximum s-plex for s = 2, 3, 4, 5.

3.4. COMPUTATIONAL ASSESSMENT 47

Ta
bl

e
3.

1:
C

om
pu

ta
tio

na
lr

es
ul

ts
of

FD
-T

S
on

47
la

rg
e

ne
tw

or
ks

fr
om

th
e

SN
A

P
C

ol
le

ct
io

n
an

d
th

e
10

th
D

IM
A

C
S

Im
pl

em
en

ta
tio

n
C

ha
lle

ng
e.

In
st

an
ce

|V
|

|E
|

s=
2

s=
3

s=
4

s=
5

B
K

V
m

ax
tim

e
|V

′ |
cp

le
x

B
K

V
m

ax
tim

e
|V

′ |
cp

le
x

B
K

V
m

ax
tim

e
|V

′ |
cp

le
x

B
K

V
m

ax
tim

e
|V

′ |
cp

le
x

ad
jn

ou
n

11
2

42
5

6*
6

0.
00

10
2

-
8*

8
0.

00
10

2
-

8*
8

0.
00

89
-

10
*

10
0.

00
10

2
-

ce
le

ga
ns

_m
et

ab
ol

ic
45

3
20

25
10

*
10

0.
00

31
3

-
11

*
11

0.
00

42
9

-
13

*
13

0.
00

24
0

-
14

*
14

0.
00

42
9

-
do

lp
hi

ns
62

15
9

6*
6

0.
00

53
-

7*
7

0.
00

36
-

7*
7

0.
00

45
-

9*
9

0.
00

45
-

em
ai

l
11

33
54

51
12

*
12

0.
01

23
8

-
12

*
12

0.
02

34
9

-
12

*
12

0.
01

34
9

-
13

*
13

0.
01

84
8

-
fo

ot
ba

ll
11

5
61

3
10

*
10

0.
01

11
4

-
11

*
11

0.
01

11
5

-
12

*
12

0.
00

11
5

-
12

*
12

0.
00

11
5

-
ja

zz
19

8
27

42
30

*
30

0.
00

13
0

-
30

*
30

0.
00

16
4

-
30

*
30

0.
00

12
7

-
30

*
30

0.
00

12
7

-
ka

ra
te

34
78

6*
6

0.
00

22
-

6*
6

0.
00

10
-

8*
8

0.
00

10
-

11
a

9*
0.

00
0

-
ne

ts
ci

en
ce

15
89

27
42

20
*

20
0.

00
50

-
20

*
20

0.
00

13
7

-
20

*
20

0.
00

15
8

-
20

20
*

0.
00

20
-

po
lb

lo
gs

14
90

16
71

5
23

*
23

0.
02

54
1

-
27

*
27

0.
03

89
4

-
29

*
29

0.
04

48
9

-
32

32
0.

03
29

3
32

*
po

lb
oo

ks
10

5
44

1
7*

7
0.

00
10

3
-

9*
9

0.
00

10
3

-
10

*
10

0.
00

10
5

-
11

*
11

0.
00

10
5

-
po

w
er

49
41

65
94

6*
6

0.
00

36
-

6*
6

0.
00

23
1

-
6

8
0.

01
12

8*
8

9
0.

01
12

9*
PG

Pg
ia

nt
co

m
po

10
68

0
24

31
6

29
*

29
0.

03
11

5
-

31
*

31
0.

02
43

-
33

*
33

0.
02

41
-

35
*

35
0.

02
41

-
as

-2
2j

ul
y0

6
22

96
3

48
43

6
19

*
19

0.
02

11
7

-
21

*
21

0.
02

11
0

-
22

*
22

0.
04

11
0

-
24

*
24

0.
09

10
4

-
as

tr
o-

ph
16

70
6

12
12

51
57

*
57

0.
06

11
3

-
57

*
57

0.
05

11
3

-
57

*
57

0.
07

11
3

-
57

*
57

0.
07

16
5

-
ca

id
aR

ou
te

rL
ev

el
19

22
44

60
90

66
20

*
20

0.
31

20
39

-
22

23
0.

50
12

90
13

23
24

0.
74

12
90

12
23

26
0.

82
10

98
14

cn
r-

20
00

32
55

57
27

38
96

9
85

*
85

*
6.

75
0

-
86

*
86

10
.5

1
0

-
86

*
86

*
7.

66
86

-
86

*
86

*
8.

09
86

-
co

A
ut

ho
rs

C
ite

se
er

22
73

20
81

41
34

87
*

87
*

0.
21

87
-

87
*

87
*

0.
21

87
-

87
*

87
*

0.
22

87
-

87
*

87
*

0.
22

87
-

co
A

ut
ho

rs
D

B
L

P
29

90
67

97
76

76
11

5*
11

5*
0.

27
11

5
-

11
5*

11
5*

0.
26

11
5

-
11

5*
11

5*
0.

27
11

5
-

11
5*

11
5*

0.
27

11
5

-
co

nd
-m

at
-2

00
5

40
42

1
17

56
91

30
*

30
*

0.
08

30
-

30
*

30
*

0.
07

30
-

30
*

30
*

0.
08

30
-

30
*

30
0.

08
57

-
m

em
pl

us
17

75
8

54
19

6
97

*
97

*
0.

08
97

-
97

*
97

*
0.

11
97

-
97

*
97

*
0.

11
97

-
97

*
97

*
0.

10
97

-
rg

g_
n_

2_
17

_s
0

13
10

72
72

87
53

16
*

16
*

0.
15

0
-

17
*

17
*

0.
15

0
-

18
*

18
*

0.
14

0
-

18
18

0.
14

34
18

*
rg

g_
n_

2_
19

_s
0

52
42

88
32

69
76

6
19

*
19

*
0.

69
0

-
19

*
19

*
0.

66
19

-
20

*
20

*
0.

64
19

-
20

21
*

0.
66

19
-

rg
g_

n_
2_

20
_s

0
10

48
57

6
68

91
62

0
18

*
18

1.
42

59
-

19
*

19
1.

37
59

-
19

20
1.

36
59

20
*

19
20

1.
33

17
2

20
*

ci
t-

H
ep

Ph
34

54
6

42
08

77
24

*
24

0.
37

47
68

-
25

27
0.

27
34

98
5

25
30

0.
19

23
44

11
25

32
0.

30
18

04
22

ci
t-

H
ep

T
h

27
77

0
35

22
85

28
*

28
1.

20
48

15
-

31
31

0.
70

39
99

N
/A

31
34

0.
81

29
22

6
31

37
0.

72
17

26
23

em
ai

l-
E

uA
ll

26
52

14
36

44
81

19
*

19
0.

15
13

57
-

22
22

0.
22

11
98

20
22

25
0.

22
10

55
23

27
27

0.
26

98
8

26
p2

p-
G

nu
te

lla
04

10
87

6
39

99
4

5*
5

0.
22

60
89

-
5

7
0.

09
54

33
4

6
9

0.
10

48
57

5
7

10
0.

01
48

57
N

/A
p2

p-
G

nu
te

lla
24

26
51

8
65

36
9

5*
5

0.
07

92
71

-
5

6
0.

02
92

71
N

/A
5

8
0.

10
74

80
N

/A
5

9
0.

08
74

80
N

/A
p2

p-
G

nu
te

lla
25

22
68

7
54

70
5

5*
5

0.
03

78
92

-
5

6
0.

01
78

92
N

/A
5

8
0.

01
60

91
5

5
10

*
0.

01
0

-
so

c-
E

pi
ni

on
s1

75
87

9
40

57
40

28
*

28
0.

09
41

56
12

28
32

0.
09

37
91

12
28

37
0.

09
32

80
12

28
39

0.
16

31
78

10
so

c-
Sl

as
hd

ot
08

11
77

36
0

46
91

80
31

*
31

0.
05

36
65

-
33

34
0.

06
31

88
6

36
38

0.
12

25
96

7
36

40
0.

10
24

16
7

so
c-

Sl
as

hd
ot

09
02

82
16

8
50

42
30

32
*

32
0.

05
36

69
-

35
35

0.
06

31
85

6
36

40
0.

10
24

35
9

36
42

0.
10

22
87

7
w

eb
-B

er
kS

ta
n

68
52

30
66

49
47

0
20

2*
20

2
4.

19
39

2
-

20
2*

20
2

4.
47

39
2

-
20

2*
20

2
4.

21
39

2
-

20
2*

20
2

6.
55

39
2

-
w

eb
-G

oo
gl

e
87

57
13

43
22

05
1

46
*

46
*

1.
13

0
-

47
*

47
*

1.
24

0
-

48
*

48
*

1.
34

0
-

48
*

48
*

1.
29

48
-

w
eb

-N
ot

re
D

am
e

32
57

29
10

90
10

8
15

5*
15

5
0.

74
13

67
-

15
5*

15
5

0.
71

13
67

-
15

5*
15

5
0.

84
13

67
-

15
5*

15
5

0.
99

13
67

-
w

eb
-S

ta
nf

or
d

28
19

03
19

92
63

6
64

*
64

3.
86

74
1

-
64

*
64

5.
61

98
5

-
64

65
4.

77
98

5
65

64
66

6.
80

98
5

65
w

ik
i-

Vo
te

71
15

10
07

62
21

*
21

0.
10

20
98

-
24

24
0.

11
20

05
12

26
27

0.
12

19
25

16
27

28
0.

13
19

25
17

33
3S

P
37

12
81

5
11

10
86

33
4(
ω

)
5

1.
19

22
61

40
8

N
/A

4(
ω

)
6

0.
71

22
61

40
8

N
/A

4(
ω

)
7

0.
51

22
61

40
8

N
/A

4(
ω

)
8

0.
46

22
61

40
8

N
/A

be
lg

iu
m

.o
sm

14
41

29
5

15
49

97
0

3(
ω

)
5*

0.
66

0
-

3(
ω

)
5*

0.
35

5
-

3(
ω

)
6*

0.
37

5
-

3(
ω

)
7*

0.
34

5
-

ca
ge

15
51

54
85

9
47

02
23

46
6(
ω

)
6

2.
48

51
35

35
5

N
/A

6(
ω

)
8

5.
68

51
34

11
5

N
/A

6(
ω

)
10

6.
02

50
91

61
9

N
/A

6(
ω

)
11

26
.7

1
50

91
61

9
N

/A
co

Pa
pe

rs
C

ite
se

er
43

41
02

16
03

67
20

84
5(
ω

)
84

5*
7.

92
84

5
-

84
5(
ω

)
84

5*
7.

20
84

5
84

5
84

5(
ω

)
84

5*
7.

01
84

5
-

84
5(
ω

)
84

5*
8.

51
84

5
-

co
Pa

pe
rs

D
B

L
P

54
04

86
15

24
57

29
33

7(
ω

)
33

7*
2.

83
33

7
-

33
7(
ω

)
33

7*
3.

03
33

7
-

33
7(
ω

)
33

7*
3.

18
33

7
-

33
7(
ω

)
33

7*
3.

28
33

7
-

am
az

on
03

12
40

07
27

23
49

86
9

11
(ω

)
12

*
0.

54
0

-
11

(ω
)

13
*

0.
58

0
-

11
(ω

)
14

*
0.

61
0

-
11

(ω
)

15
*

0.
60

0
-

am
az

on
05

05
41

02
36

24
39

43
7

11
(ω

)
12

*
0.

50
0

-
11

(ω
)

13
*

0.
58

0
-

11
(ω

)
14

*
0.

62
0

-
11

(ω
)

15
*

0.
64

0
-

am
az

on
06

01
40

33
94

24
43

40
8

11
(ω

)
12

*
0.

75
0

-
11

(ω
)

13
*

0.
82

0
-

11
(ω

)
14

*
0.

79
0

-
11

(ω
)

15
*

0.
74

0
-

ci
t-

Pa
te

nt
s

37
74

76
8

16
51

89
47

11
(ω

)
17

21
.2

5
29

58
5

N
/A

11
(ω

)
21

51
.0

2
14

71
7

N
/A

11
(ω

)
26

16
.2

3
62

93
N

/A
11

(ω
)

31
11

.0
9

36
04

5
w

ik
i-

Ta
lk

23
94

38
5

46
59

56
5

26
(ω

)
32

1.
18

11
32

7
N

/A
26

(ω
)

36
3.

60
98

14
N

/A
26

(ω
)

41
1.

51
83

76
N

/A
26

(ω
)

44
3.

72
77

19
N

/A
N

ot
e
a

:T
he

va
lu

e
of

11
re

po
rt

ed
in

[T
ru

kh
an

ov
et

al
.,

20
13

] f
or

‘k
ar

at
e’

is
w

ro
ng

ly
cl

ai
m

ed
to

be
th

e
op

tim
al

so
lu

tio
n.

48 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

3.4.4 Computation results for graphs from the 2nd DIMACS Challenge
Table 3.2 shows the computational results obtained by FD-TS for 52 classical hard instances from the

2nd DIMACS set, with s = 2, 3, 4, 5. The first group contains all 36 instances that have been studied by
four state-of-the-art s-plex algorithms [Balasundaram et al., 2011; McClosky and Hicks, 2012; Moser et al.,
2012; Trukhanov et al., 2013]. The second group includes 16 additional large 2nd DIMACS instances with
at least 800 vertices, which have not been tested previously by any existing s-plex algorithm. For the sake
of completeness, we also tested the remaining 28 instances of this benchmark set, for which no previous
s-plex result is available. These results are reported in Table 5.7 of the Appendix.

For each instance, the following information is included. The “|V |" column shows the number of
vertices in the original graph. The “ω" column indicates the best-known maximum clique size reported
previously [Wu and Hao, 2015a] (lower bounds for the maximum s-plex). The “BKV" column indicates the
best-known objective values obtained by algorithms in [Balasundaram et al., 2011; McClosky and Hicks,
2012; Moser et al., 2012; Trukhanov et al., 2013] (proven optima are indicated by “*"). The letters between
parentheses following each “BKV" value indicate the algorithm(s) that obtained the BKV value.

– “B" - A branch-and-cut algorithm [Balasundaram et al., 2011] based on polyhedral analysis of the
convex hull of MsPlex. This algorithm was evaluated based on instances from the 2nd DIMACS set
with s = 1, 2. Each instance was solved within a maximum of 3 hours on a machine with a 2.66 GHz
XEON® processor, 3 GB RAM, and 120 GB HDD.

– “M" - A branch-and-bound algorithm [McClosky and Hicks, 2012] adapted from the classical max-
imum clique algorithm [Östergård, 2002]. Results were obtained based on 2nd DIMACS instances
with s = 2, 3, 4. The experiments were conducted on a machine with a 2.2 GHz Dual-Core AMD
Opteron processor and 3 GB RAM. A time limit of one hour was allowed to solve each instance.

– “T" - A generalized algorithm framework used to detect optimal hereditary structures in graphs
[Trukhanov et al., 2013]. For MsPlex, this approach was tested based on instances from the 2nd
DIMACS, 10th DIMACS and SNAP benchmark sets, for s = 2, 3, 4, 5. Experiments were conducted
with a Dell Optiplex GX620 computer with an Intel Core™2 Quad 3 GHz processor and 4 GB RAM
with a time limit of 3 hours for each instance.

– “H" - Exact combinatorial algorithms based on methods from parameterized algorithmics [Moser et
al., 2012]. Results were reported for a subset of the 2nd DIMACS instances (s = 1, 2) with a time
limit of 3 hours on a machine with an AMD Athlon 64 3700+ 2.2 GHz CPU, 3 GB RAM, and 1M L2
cache.

For instances where the optimal solution has not been proven by any of the algorithms mentioned above
(i.e., no “*" is indicated for “BKV"), we used the CPLEX solver to solve these instances (i.e., their reduced
subgraphs after applying the Peel procedure, see Section 3.2.6) with a time limit of one CPU hour on
our computer. The “cplex" column shows the best feasible solutions attained by CPLEX. The “max(ave)"
column reports the maximum value achieved by FD-TS in 20 runs and the average value (in parentheses) if
the 20 best values were not the same. The “time" column shows the average time (in seconds) required by
the runs that obtained the best value among the 20 runs. Obviously, the total time allowed to FD-TS in 20
runs (180*20 = 3600 s) was exactly one hour.

Table 3.2 shows that the FD-TS algorithm matched or improved (highlighted in bold font) the current
best-known results with s = 2, 3, 4, 5. The average objective values obtained by our algorithm were even
better than the best-known values based on these instances for different s (except for MANN_a27 and
MANN_a45 with s = 2). In terms of the stability of the best solution, for most of the small instances (|V | ≤
400) in the first group, the best solution could be obtained in each of the 20 runs (except for MANN_a27,
brock400_4 and san200_0.7_2 with s = 2, brock400_1 with s = 5). The larger graphs in the second
group of the table (which were not reported previously), such as brock800_X, CXXX.X, hamming10-4,
and keller6, represent the most challenging cases for FD-TS because the best solution could not be found in
every run. Moreover, for instances such as brock400_1, brock800_2, brock800_3, keller6, and p_hat1500-
2, FD-TS failed to achieve a 100% success rate as s increased. However, for instances such as MANN_a27
and brock800_4, there was no correlation between the success rate and the value of s. In terms of the

3.4. COMPUTATIONAL ASSESSMENT 49

computational time, FD-TS achieved its best values rather quickly, since it rarely exceeded one minute,
whereas CPLEX failed to solve these instances (in fact, the reduced subgraphs) to optimality for any swithin
one hour. Nevertheless, for the cases where the optimal value is still unknown, the lower bounds obtained
by CPLEX were competitive compared with the four other reference algorithms [Balasundaram et al., 2011;
McClosky and Hicks, 2012; Moser et al., 2012; Trukhanov et al., 2013].

50 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

Ta
bl

e
3.

2:
C

om
pu

ta
tio

na
lr

es
ul

ts
of

FD
-T

S
on

52
be

nc
hm

ar
k

in
st

an
ce

s
of

th
e

2n
d

D
IM

A
C

S
Im

pl
em

en
ta

tio
n

C
ha

lle
ng

e

in
st

an
ce

|V
|

ω
s=

2
s=

3
s=

4
s=

5
B

K
V

cp
le

x
m

ax
(a

ve
)

tim
e

B
K

V
cp

le
x

m
ax

(a
ve

)
tim

e
B

K
V

cp
le

x
m

ax
(a

ve
)

tim
e

B
K

V
cp

le
x

m
ax

(a
ve

)
tim

e
M

A
N

N
_a

9
45

16
26

*(
B

M
T

H
)

-
26

0.
00

36
*(

M
T

)
-

36
0.

00
36

*(
M

T
)

-
36

0.
00

44
(T

)a
45

45
0.

00
M

A
N

N
_a

27
37

8
12

6
23

6*
(H

)
-

23
6(

23
5.

90
)

12
.6

4
35

1*
(T

)
-

35
1

0.
41

35
1(

M
)

35
1

35
1

0.
45

35
1(

T
)

35
1

35
1

0.
45

M
A

N
N

_a
45

10
35

34
5

66
2(

B
H

)
66

2*
66

2(
66

1.
40

)
5.

46
99

0(
M

)
99

0*
99

0
7.

40
99

0(
M

)
99

0*
99

0
7.

48
99

0(
M

)
99

0*
99

0
7.

44
br

oc
k2

00
_1

20
0

21
25

(B
)

26
26

0.
15

24
(M

)
29

30
0.

05
27

(M
)

33
35

3.
59

27
(T

)
38

39
2.

36
br

oc
k2

00
_2

20
0

12
13

*(
M

T
H

)
-

13
0.

01
16

*(
T

)
-

16
0.

27
17

(T
M

)
17

18
0.

06
17

(T
M

)
20

20
0.

04
br

oc
k2

00
_3

20
0

15
17

*(
T

)
-

17
0.

02
19

(T
)

19
20

0.
02

19
(T

)
22

23
0.

03
19

(T
)

25
26

0.
09

br
oc

k2
00

_4
20

0
17

20
*(

T
H

)
-

20
0.

06
20

(T
)

22
23

0.
07

21
(M

)
26

26
0.

03
21

(M
)

28
30

0.
20

br
oc

k4
00

_1
40

0
27

23
(T

)
29

30
0.

42
23

(T
)

34
36

7.
24

23
(T

)
37

41
41

.3
7

23
(T

)
43

46
(4

5.
50

)
36

.5
7

br
oc

k4
00

_2
40

0
29

27
(B

)
28

30
0.

51
27

(M
)

33
36

15
.3

7
29

(M
)

37
41

33
.5

1
29

(M
)

41
45

2.
14

br
oc

k4
00

_4
40

0
33

27
(B

)
28

33
(3

1.
20

)
64

.1
8

27
(B

)
34

36
4.

60
30

(M
)

36
41

1.
76

30
(M

)
44

46
25

.6
7

c-
fa

t2
00

-1
20

0
12

12
*(

B
M

T
H

)
-

12
0.

00
12

*(
M

T
)

-
12

0.
00

12
*(

M
T

)
-

12
0.

00
14

*(
T

)
-

14
0.

00
c-

fa
t2

00
-2

20
0

24
24

*(
B

M
T

H
)

-
24

0.
01

24
*(

M
T

)
-

24
0.

01
24

*(
M

T
)

-
24

0.
02

24
*(

T
)

-
24

0.
01

c-
fa

t2
00

-5
20

0
58

58
*(

B
M

T
H

)
-

58
0.

01
58

*(
M

T
)

-
58

0.
01

58
*(

M
T

)
-

58
0.

00
58

*(
T

)
-

58
0.

00
c-

fa
t5

00
-1

50
0

14
14

*(
B

M
T

H
)

-
14

0.
00

14
*(

M
T

)
-

14
0.

00
14

*(
M

T
)

-
14

0.
00

15
*(

T
)

-
15

0.
00

c-
fa

t5
00

-2
50

0
26

26
*(

B
M

T
H

)
-

26
0.

00
26

*(
M

T
)

-
26

0.
00

26
*(

M
T

)
-

26
0.

00
26

*(
T

)
-

26
0.

00
c-

fa
t5

00
-5

50
0

64
64

*(
B

M
T

H
)

-
64

0.
02

64
*(

M
T

)
-

64
0.

02
64

*(
M

T
)

-
64

0.
03

64
*(

T
)

-
64

0.
04

c-
fa

t5
00

-1
0

50
0

12
6

12
6*

(B
M

T
H

)
-

12
6

0.
08

12
6*

(M
T

)
-

12
6

0.
22

12
6*

(M
T

)
-

12
6

0.
23

12
6*

(T
)

-
12

6
0.

16
ha

m
m

in
g6

-2
64

32
32

*(
B

M
T

H
)

-
32

0.
00

32
*(

M
T

)
-

32
0.

00
40

*(
M

T
)

-
40

0.
00

48
*(

T
)

-
48

0.
00

ha
m

m
in

g6
-4

64
4

6*
(B

M
T

H
)

-
6

0.
00

8*
(M

T
)

-
8

0.
00

10
*(

M
T

)
-

10
0.

00
12

*(
T

)
-

12
0.

00
ha

m
m

in
g8

-2
25

6
12

8
12

8*
(B

M
T

)
-

12
8

0.
09

12
8*

(M
T

)
-

12
8

0.
09

12
8(

M
T

)
12

8
12

9
22

.4
1

12
8(

M
T

)
15

2
15

2
0.

97
ha

m
m

in
g8

-4
25

6
16

16
*(

B
M

T
)

-
16

0.
01

20
(T

)
20

20
0.

01
20

(T
)

24
25

0.
28

20
(T

)
32

32
0.

02
ha

m
m

in
g1

0-
2

10
24

51
2

51
2*

(M
)

-
51

2
8.

97
51

2(
M

)
51

2
51

2
4.

66
51

2(
M

)
51

2
51

2
8.

62
51

2(
M

)
51

2
51

3(
51

2.
15

)
16

.8
2

jo
hn

so
n8

-2
-4

28
4

5*
(B

M
T

H
)

-
5

0.
00

8*
(M

T
)

-
8

0.
00

9*
(M

T
)

-
9

0.
00

12
*(

T
)

-
12

0.
00

jo
hn

so
n8

-4
-4

70
14

14
*(

B
M

T
H

)
-

14
0.

00
18

*(
T

H
)

-
18

0.
00

22
*(

T
)

-
22

0.
00

24
(T

)
24

28
0.

00
jo

hn
so

n1
6-

2-
4

12
0

8
10

*(
T

)
-

10
0.

00
16

(T
)

16
16

0.
00

19
(T

)
19

19
0.

00
21

(T
)

24
24

0.
00

ke
lle

r4
17

1
11

15
*(

B
M

T
H

)
-

15
0.

00
21

*(
T

)
-

21
0.

09
22

(T
)

23
23

0.
06

22
(T

)
28

28
0.

02
p_

ha
t3

00
-1

30
0

8
10

*(
M

T
H

)
-

10
0.

00
12

*(
M

T
)

-
12

0.
00

14
*(

T
)

-
14

0.
01

14
(T

)
15

16
0.

02
p_

ha
t3

00
-2

30
0

25
30

*(
T

)
-

30
0.

01
30

(T
)

36
36

0.
02

33
(M

)
41

41
0.

06
33

(M
)

46
46

0.
03

p_
ha

t3
00

-3
30

0
36

43
(B

)
43

44
0.

07
43

(B
)

52
52

0.
06

43
(B

)
59

59
0.

09
43

(B
)

65
65

0.
11

p_
ha

t5
00

-1
50

0
9

12
*(

T
)

-
12

0.
06

14
*(

T
)

-
14

0.
20

14
(T

)
16

16
0.

11
14

(T
)

17
18

0.
15

p_
ha

t7
00

-1
70

0
11

13
*(

M
)

-
13

0.
06

13
(M

)
14

15
0.

13
13

(M
)

15
17

0.
45

13
(M

)
18

19
2.

00
p_

ha
t7

00
-2

70
0

44
50

(B
)

51
52

0.
06

50
(B

)
60

62
1.

35
50

(B
)

68
70

0.
26

50
(B

)
75

79
9.

42
p_

ha
t7

00
-3

70
0

62
73

(B
)

75
76

0.
54

73
(B

)
88

89
2.

13
73

(B
)

97
10

0
1.

46
73

(B
)

10
6

10
9

1.
35

sa
n2

00
_0

.7
_2

20
0

18
24

(M
)

26
26

(2
5.

40
)

9.
74

36
(M

)
37

37
0.

21
48

(M
)

49
49

1.
90

48
(M

)
60

60
0.

02
sa

n2
00

_0
.9

_1
20

0
70

90
(M

)
90

*
90

0.
01

12
5*

(M
)

-
12

5
0.

02
12

5(
M

)
12

5*
12

5
0.

03
12

5(
M

)
12

5*
12

5
0.

03
ha

m
m

in
g1

0-
4

10
24

40
41

(B
M

)
44

48
1.

53
46

(M
)

53
64

1.
13

51
(M

)
64

68
(6

7.
20

)
20

.6
4

51
(M

)
73

79
(7

8.
05

)
34

.3
7

br
oc

k8
00

_1
80

0
23

-
21

25
10

.9
0

-
26

29
12

.3
5

-
29

34
(3

3.
20

)
24

.4
3

-
33

37
27

.1
2

br
oc

k8
00

_2
80

0
24

-
22

25
11

.3
6

-
27

30
(2

9.
30

)
31

.2
0

-
30

34
(3

3.
15

)
26

.4
0

-
33

38
(3

7.
15

)
32

.4
6

br
oc

k8
00

_3
80

0
25

-
24

25
12

.6
8

-
25

30
(2

9.
20

)
11

.7
1

-
30

34
(3

3.
15

)
28

.4
6

-
32

38
(3

7.
10

)
36

.7
8

br
oc

k8
00

_4
80

0
26

-
22

26
(2

5.
55

)
56

.2
1

-
26

29
14

.3
5

-
31

33
32

.0
4

-
33

37
33

.5
8

C
10

00
.9

10
00

68
-

71
81

(8
0.

55
)

39
.6

5
-

84
95

(9
3.

75
)

58
.5

9
-

97
10

7(
10

6.
00

)
48

.9
1

-
10

8
11

9(
11

8.
15

)
60

.3
9

C
20

00
.5

20
00

16
-

14
19

(1
8.

95
)

27
.9

6
-

18
22

(2
1.

90
)

62
.3

5
-

21
25

(2
4.

50
)

22
.7

9
-

23
28

(2
7.

15
)

11
.7

2
C

20
00

.9
20

00
80

-
76

90
(8

8.
90

)
65

.2
1

-
88

10
5(

10
3.

40
)

69
.4

1
-

94
11

8(
11

6.
80

)
63

.8
5

-
10

7
13

2(
12

9.
65

)
76

.6
6

C
40

00
.5

40
00

18
-

12
20

39
.2

3
-

14
23

69
.3

7
-

13
26

(2
5.

55
)

53
.6

4
-

16
29

(2
8.

20
)

26
.9

3
ke

lle
r6

33
61

59
-

52
63

3.
60

-
65

90
(8

7.
80

)
66

.2
1

-
77

10
7(

10
3.

45
)

67
.8

8
-

90
12

5(
12

3.
20

)
73

.9
1

p_
ha

t1
00

0-
1

10
00

10
-

11
13

0.
28

-
13

15
0.

15
-

15
18

4.
09

-
18

20
7.

17
p_

ha
t1

00
0-

2
10

00
46

-
52

56
0.

43
-

64
67

0.
81

-
71

76
28

.8
9

-
82

84
1.

30
p_

ha
t1

00
0-

3
10

00
48

-
77

82
0.

33
-

95
98

2.
19

-
10

9
11

1
3.

50
-

11
7

12
2

29
.8

4
p_

ha
t1

50
0-

1
15

00
12

-
13

14
1.

46
-

14
17

22
.4

7
-

16
19

3.
73

-
16

21
1.

43
p_

ha
t1

50
0-

2
15

00
65

-
71

80
1.

75
-

90
93

0.
41

-
99

10
7(

10
6.

50
)

29
.4

6
-

11
3

11
7(

11
6.

55
)

41
.9

0
p_

ha
t1

50
0-

3
15

00
94

-
10

8
11

4
0.

61
-

12
5

13
3

17
.8

5
-

14
1

15
0

3.
90

-
15

4
16

4
48

.7
6

sa
n1

00
0

10
00

15
-

17
17

9.
39

-
25

25
6.

73
-

33
33

1.
70

-
41

41
6.

39
N

ot
e
a

:T
he

va
lu

e
of

44
re

po
rt

ed
in

[T
ru

kh
an

ov
et

al
.,

20
13

] f
or

M
A

N
N

_a
9

is
w

ro
ng

ly
cl

ai
m

ed
to

th
e

op
tim

al
so

lu
tio

n.

3.4. COMPUTATIONAL ASSESSMENT 51

3.4.5 Impact of frequency information
As described in Sections 3.2.4 and 3.2.5, the construction procedure and perturbation procedure are

guided by frequency information. In this section, we describe our evaluation of the effectiveness of this
frequency strategy. We compared the original FD-TS algorithm with a variant, FD-TS-R, in which the
frequency-based vertex selection rule was replaced by a random selection rule. In particular, to create a new
solution, FD-TS-R randomly adds a vertex from M1 to the current solution (Section 3.2.4) and randomly
selects a vertex from M ′

3 for perturbation (Algorithm 3.2, line 31).
To better differentiate FD-TS and FD-TS-R, we selected 27 instances from the three benchmark sets,

such that the selected instances cover different characteristics (random vs real-world, dense vs sparse) and
are sufficiently challenging based on the search effort required to attain the best solutions according to the
results of Tables 3.1 and 3.2. For this experiment, both FD-TS and FD-TS-R were run 20 times to solve each
instance, each run being limited to 20 seconds for the 2nd DIMACS instances and 180 seconds for the other
(larger) instances. We compared the average objective values reached by both algorithms (“ave" columns),
the average time required to first obtain the best objective value (“time" columns), and the improvement in
the average objective value achieved by FD-TS as a percentage (“ave_imp" column).

Table 3.3 shows the results achieved for s = 2, 3, 4, 5 respectively. A difference in the average solution
quality obtained by the two algorithms was only observed with the 2nd DIMACS instances (the first 12
instances). For the large instances, both FD-TS and FD-TS-R converged so fast that the best solution was
found quite early (the average time required to first obtain the best solution was less than one second in
most cases). For the 2nd DIMACS instances, FD-TS achieved better solutions than FD-TS-R for 5, 6, 8, 8
instances with s = 2, 3, 4, 5, respectively (marked in bold font). In addition, for 4, 4, 4, 2 instances with
s = 2, 3, 4, 5, respectively, the average objective values found by FD-TS were worse than those found
by FD-TS-R (marked in italic font). In general, there was a slight advantage when using the frequency
mechanism, and it increased with s. This experiment confirms that the frequency mechanism is helpful for
solving hard dense graphs that require persistent search efforts.

52 CHAPTER 3. FREQUENCY-DRIVEN TABU SEARCH FOR MSPLEX

Ta
bl

e
3.

3:
Im

pa
ct

of
fr

eq
ue

nc
y

in
fo

rm
at

io
n

-c
om

pa
ri

so
n

be
tw

ee
n

FD
-T

S
an

d
FD

-T
S-

R
.

in
st

an
ce

s=
2

s=
3

s=
4

s=
5

FD
-T

S-
R

FD
-T

S
av

e_
im

p
FD

-T
S-

R
FD

-T
S

av
e_

im
p

FD
-T

S-
R

FD
-T

S
av

e_
im

p
FD

-T
S-

R
FD

-T
S

av
e_

im
p

av
e

tim
e

av
e

tim
e

av
e

tim
e

av
e

tim
e

av
e

tim
e

av
e

tim
e

av
e

tim
e

av
e

tim
e

C
10

00
.9

79
.4

0
8.

59
79

.7
0

7.
45

0.
38

%
92

.7
0

7.
95

92
.8

0
7.

89
0.

11
%

10
4.

95
5.

18
10

5.
10

6.
68

0.
14

%
11

6.
85

10
.4

0
11

7.
30

9.
88

0.
38

%

C
20

00
.5

18
.4

5
3.

25
18

.5
0

5.
05

0.
27

%
21

.0
5

1.
29

21
.1

0
2.

71
0.

24
%

24
.1

5
3.

35
24

.1
0

4.
06

-0
.2

1%
26

.8
5

6.
27

26
.9

5
9.

35
0.

37
%

C
20

00
.9

87
.8

0
6.

97
87

.8
5

9.
95

0.
06

%
10

2.
20

9.
50

10
1.

70
7.

97
-0

.4
9%

11
5.

05
8.

65
11

4.
85

9.
61

-0
.1

7%
12

8.
25

9.
76

12
7.

70
8.

95
-0

.4
3%

C
40

00
.5

19
.6

0
4.

80
19

.2
5

2.
75

-1
.8

2%
22

.3
5

3.
96

22
.2

5
3.

86
-0

.4
5%

25
.0

5
3.

99
25

.2
0

4.
18

0.
60

%
27

.9
0

4.
81

27
.9

0
6.

42
0.

0%

br
oc

k8
00

_1
24

.8
5

4.
98

24
.7

0
4.

30
-0

.6
1%

28
.9

0
7.

04
28

.9
5

5.
38

0.
17

%
32

.7
0

4.
57

33
.1

5
5.

91
1.

36
%

36
.4

0
3.

93
36

.5
0

4.
00

0.
27

%

br
oc

k8
00

_2
24

.8
5

6.
20

24
.9

0
7.

63
0.

20
%

29
.0

0
7.

62
28

.9
5

5.
08

-0
.1

7%
32

.8
0

5.
74

32
.7

5
5.

48
-0

.1
5%

36
.4

5
5.

56
36

.6
5

6.
22

0.
55

%

br
oc

k8
00

_3
24

.8
5

8.
74

24
.8

0
5.

31
-0

.2
0%

28
.7

5
5.

06
29

.0
0

7.
19

0.
86

%
32

.8
0

7.
74

32
.9

5
6.

84
0.

46
%

36
.3

0
3.

60
36

.4
5

5.
27

0.
41

%

br
oc

k8
00

_4
24

.7
0

6.
84

24
.8

5
7.

28
0.

60
%

28
.6

5
5.

76
28

.7
0

5.
99

0.
17

%
32

.4
0

5.
43

32
.5

5
5.

49
0.

46
%

36
.2

5
4.

71
36

.3
0

3.
07

0.
14

%

ha
m

m
in

g1
0-

4
48

.0
0

1.
36

48
.0

0
1.

16
0.

0%
64

.0
0

0.
98

64
.0

0
1.

12
0.

0%
66

.7
5

5.
73

66
.8

5
3.

98
0.

15
%

77
.5

0
3.

92
77

.4
5

3.
05

-0
.0

6%

ke
lle

r6
63

.0
0

2.
98

63
.0

0
3.

33
0.

0%
84

.7
0

8.
68

85
.7

0
8.

46
1.

17
%

99
.5

0
9.

00
98

.9
5

11
.6

9
-0

.5
6%

12
1.

00
9.

89
12

1.
40

14
.5

3
0.

33
%

p_
ha

t1
50

0-
2

80
.0

0
1.

66
80

.0
0

2.
02

0.
0%

93
.0

0
0.

47
93

.0
0

0.
48

0.
0%

10
6.

00
1.

40
10

6.
05

1.
50

0.
05

%
11

6.
00

1.
49

11
6.

10
2.

78
0.

09
%

sa
n1

00
0

16
.8

0
4.

73
16

.7
5

2.
50

-0
.3

0%
25

.0
0

3.
30

24
.9

5
2.

46
-0

.2
0%

32
.9

5
3.

35
33

.0
0

1.
29

0.
15

%
41

.0
0

3.
59

41
.0

0
3.

82
0.

0%

33
3S

P
5.

00
1.

21
5.

00
1.

19
0.

0%
6.

00
0.

71
6.

00
1.

04
0.

0%
7.

00
1.

03
7.

00
0.

51
0.

0%
8.

00
0.

96
8.

00
0.

46
0.

0%

ca
ge

15
6.

00
2.

41
6.

00
2.

48
0.

0%
8.

00
8.

89
8.

00
5.

68
0.

0%
10

.0
0

5.
84

10
.0

0
6.

02
0.

0%
11

.0
0

34
.7

7
11

.0
0

26
.7

1
0.

0%

ca
id

aR
ou

te
rL

ev
el

20
.0

0
0.

55
20

.0
0

0.
31

0.
0%

23
.0

0
0.

94
23

.0
0

0.
51

0.
0%

24
.0

0
0.

81
24

.0
0

0.
74

0.
0%

26
.0

0
0.

52
26

.0
0

0.
82

0.
0%

ci
t-

H
ep

Ph
24

.0
0

0.
32

24
.0

0
0.

37
0.

0%
27

.0
0

0.
46

27
.0

0
0.

27
0.

0%
30

.0
0

0.
37

30
.0

0
0.

19
0.

0%
32

.0
0

0.
34

32
.0

0
0.

30
0.

0%

ci
t-

H
ep

T
h

28
.0

0
1.

31
28

.0
0

1.
20

0.
0%

31
.0

0
1.

51
31

.0
0

0.
70

0.
0%

34
.0

0
1.

02
34

.0
0

0.
81

0.
0%

37
.0

0
1.

39
37

.0
0

0.
72

0.
0%

ci
t-

Pa
te

nt
s

17
.0

0
15

.5
6

17
.0

0
21

.2
5

0.
0%

21
.0

0
18

.9
0

21
.0

0
51

.0
2

0.
0%

26
.0

0
9.

55
26

.0
0

16
.2

3
0.

0%
31

.0
0

10
.1

3
31

.0
0

11
.0

9
0.

0%

em
ai

l-
E

uA
ll

19
.0

0
0.

13
19

.0
0

0.
15

0.
0%

22
.0

0
0.

19
22

.0
0

0.
22

0.
0%

25
.0

0
0.

17
25

.0
0

0.
22

0.
0%

27
.0

0
0.

15
27

.0
0

0.
26

0.
0%

p2
p-

G
nu

te
lla

04
5.

00
0.

02
5.

00
0.

02
0.

0%
7.

00
0.

08
7.

00
0.

09
0.

0%
9.

00
0.

12
9.

00
0.

10
0.

0%
10

.0
0

0.
00

10
.0

0
0.

01
0.

0%

p2
p-

G
nu

te
lla

24
5.

00
0.

04
5.

00
0.

07
0.

0%
6.

00
0.

01
6.

00
0.

02
0.

0%
8.

00
0.

12
8.

00
0.

10
0.

0%
9.

00
0.

32
9.

00
0.

18
0.

0%

p2
p-

G
nu

te
lla

25
5.

00
0.

03
5.

00
0.

03
0.

0%
6.

00
0.

01
6.

00
0.

01
0.

0%
8.

00
0.

01
8.

00
0.

01
0.

0%
10

.0
0

0.
08

10
.0

0
0.

10
0.

0%

so
c-

Sl
as

hd
ot

08
11

31
.0

0
0.

06
31

.0
0

0.
05

0.
0%

34
.0

0
0.

06
34

.0
0

0.
06

0.
0%

38
.0

0
0.

13
38

.0
0

0.
12

0.
0%

40
.0

0
0.

08
40

.0
0

0.
10

0.
0%

so
c-

Sl
as

hd
ot

09
02

32
.0

0
0.

06
32

.0
0

0.
05

0.
0%

35
.0

0
0.

07
35

.0
0

0.
06

0.
0%

40
.0

0
0.

11
40

.0
0

0.
10

0.
0%

42
.0

0
0.

12
42

.0
0

0.
10

0.
0%

w
eb

-N
ot

re
D

am
e

15
5.

00
1.

21
15

5.
00

0.
74

0.
0%

15
5.

00
1.

30
15

5.
00

0.
71

0.
0%

15
5.

00
1.

22
15

5.
00

0.
84

0.
0%

15
5.

00
1.

18
15

5.
00

0.
99

0.
0%

w
ik

i-
Ta

lk
32

.0
0

1.
40

32
.0

0
1.

18
0.

0%
36

.0
0

3.
41

36
.0

0
3.

60
0.

0%
41

.0
0

2.
68

41
.0

0
1.

51
0.

0%
44

.0
0

3.
82

44
.0

0
3.

72
0.

0%

w
ik

i-
Vo

te
21

.0
0

0.
07

21
.0

0
0.

10
0.

0%
24

.0
0

0.
13

24
.0

0
0.

11
0.

0%
27

.0
0

0.
16

27
.0

0
0.

12
0.

0%
28

.0
0

0.
08

28
.0

0
0.

13
0.

0%

3.5. CONCLUSIONS 53

3.5 Conclusions
In this chapter, we proposed FD-TS, an effective local search algorithm for MsPlex. FD-TS combines

a multi-neighborhood search procedure with vertex-moving frequency based perturbation. Three move
operators ADD, SWAP and PRESS were integrated into the search process. FD-TS collects the vertex
move frequency to guide the construction of the starting solutions and the perturbation process. A dynamic
graph peeling technique is employed to reduce the large graphs.

To verify the effectiveness of FD-TS, we carried out experiments using SNAP, 10th DIMACS, and 2nd
benchmark instances. FD-TS has set new records on numerous instances for these benchmark instances,
or even found the optimal solutions due to the integration of graph peeling techniques. Comparisons with
recent algorithms including CPLEX indicated that FD-TS was quite competitive for MsPlex. Additional
results for 48 additional graphs from the above benchmark sets shown in Appendix 5.6 further demon-
strated the performance of the proposed algorithm. Furthermore, we justified the frequency strategy by
computational comparison between FD-TS and a variant without this strategy.

In the next chapter, we will consider the maximum balanced biclque problem, which is a special case
of maximum clique problem in the bipartite graph. We propose both heuristic and exact algorithms for its
solution.

4
Heuristic and Exact algorithms for the
maximum balanced bipartite clique problem

The Maximum Balanced Biclique Problem is a well-known graph model with relevant applications in
diverse domains. This chapter investigates both a new heuristic and some improvements of exact algorithms
for MBBP. We design descent techniques combining graph reduction and upper bound propagation to tackle
MBBP for very large sparse graphs. For the purpose of readability, we introduce the two kinds of algorithms
separately.

In the first part, we introduce a novel heuristic algorithm, which combines an effective constraint-based
tabu search procedure and two dedicated graph reduction techniques. We verify the effectiveness of the
algorithm on 30 classical random benchmark graphs and 25 very large real-life sparse graphs from the
popular Koblenz Network Collection (KONECT). The results show that the algorithm improves the best-
known results (new lower bounds) for 10 classical benchmarks and obtains the optimal solutions for 14
KONECT instances.

In the second part, we propose novel ideas for designing effective exact algorithms for MBBP. Firstly,
we present an Upper Bound Propagation (UBP) procedure to pre-compute an upper bound involving each
vertex. Then we extend an existing branch-and-bound algorithm by integrating the pre-computed upper
bounds. We also introduce a set of new valid inequalities induced from the upper bounds to tighten an
existing mathematical formulation for MBBP. Lastly, we investigate another exact algorithm scheme which
enumerates a subset of balanced bicliques based on our upper bounds. Experiments show that compared
with existing approaches, the proposed algorithms and formulations are more efficient in solving hard ran-
dom graphs and large real-life MBBP instances

The content of this chapter is based on two articles submitted to Expert Systems with Applications and
European Journal of Operational Research respectively.

Contents
4.1 Introduction . 57
4.2 Heurisitc algorithm with graph reduction . 58

4.2.1 Preliminary definitions . 58
4.2.2 Rationale of the proposed approach . 59
4.2.3 General procedure of TSGR-MBBP . 60
4.2.4 Computational experiments . 65
4.2.5 Analysis . 70

55

56 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

4.3 Exact algorithms . 72
4.3.1 Preliminary definitions . 72
4.3.2 Review of the BBClq algorithm . 73
4.3.3 Upper bound propagation and its use to improve BBClq 73
4.3.4 The upper bound propagation procedure . 74
4.3.5 A tighter mathematical formulation . 76
4.3.6 A novel MBBP algorithm ExtUniBBClq . 77
4.3.7 Computational experiments . 78
4.3.8 Analysis . 81

4.4 Conclusion . 83

4.1. INTRODUCTION 57

4.1 Introduction

Given a bipartite graph G = (U, V,E) with two disjoint vertex sets U , V and an edge set E ⊆ {{u, v} :
u ∈ U, v ∈ V }, a biclique (X, Y) = X ∪ Y is the union of two subsets of vertices X ⊆ U , Y ⊆ V such
that u ∈ X, v ∈ Y implies that {u, v} ∈ E. In other words, the subgraph induced by the set of vertices
X∪Y is a complete bipartite graph. If |X| = |Y |, then (X, Y) is called a balanced biclique. The Maximum
Balanced Biclique Problem (MBBP) is to find a balanced biclique (X∗, Y ∗) of maximum cardinality of G,
(X∗, Y ∗) being the maximum balanced biclique of size |X∗| (or |Y ∗|) [Garey and Johnson, 1979].

As shown in [Garey and Johnson, 1979; Alon et al., 1994], the decision version of MBBP is NP-
complete in the general case, even though the maximum biclique problem without the balance constraint
(Eq. 4.5) is polynomially solvable by the maximum matching algorithm [Cheng and Church, 2000].

MBBP is a very important model with numerous applications in nanoelectronic system design, com-
putational biology, VLSI design (see Chapter 1 for more details). Given the significance of MBBP as a
NP-hard problem and its relevance in practice, a number of methods, including approximate, heuristic and
exact algorithms have been proposed and investigated in the literature. For example, in [Feige and Kogan,
2004], the relations between the approximate hardness of MBBP and 3-SAT as well as the maximum clique
problem were established. In [Mubayi and Turán, 2010], despite the NP-hardness of MBBP, a polynomial
algorithm was given to find a balanced biclique with size b lnn

ln (2en2/m)
c (the cardinality of |X| or |Y |) for a

graph with n vertices and m edges.
To cope with the computational challenge of MBBP, heuristic methods constitute a prominent approach.

From an algorithmic point of view, rather than directly seeking the maximum balanced biclique in the given
graph, the majority of existing heuristic algorithms solved the equivalent maximum balanced independent
set problem for the bipartite complement. For example, in 2006, a greedy heuristic algorithm based on
vertex-deletion was proposed in [Tahoori, 2006], which iteratively removes vertices with maximum degree
from the bipartite complement until the set of remaining vertices forms an independent set (i.e., a set of
vertices such that no edge exists between any pair of vertices in that set). In 2007, an improved greedy
heuristic was presented in [Al-Yamani et al., 2007], in which the vertex connecting the maximum number
of vertices of minimum degree is removed. In 2011, another greedy heuristic algorithm was introduced in
[Yuan and Li, 2011], which iteratively deletes vertices adjacent to the maximum number of vertices in a
restricted set. Then in 2014, this algorithm was accelerated by removing multiple vertices at each iteration
[Yuan and Li, 2014]. Recently in 2015, a powerful (and rather complex) evolutionary algorithm combining
structure mutation and repair-assisted restart was proposed in [Yuan et al., 2015]. The computational results
showed that this algorithm performed very well on random dense graphs, which represent one type of the
most challenging instances for MBBP. We will use this algorithm as one of the main references for our
comparative studies.

Still, according to our literature review, there exists few exact algorithms which guarantee the optimality
of solutions. In [Tahoori, 2006], a recursive exact algorithm for searching a maximum balanced independent
set with a given half-size in the complement graph was proposed. However, the computational time of this
algorithm becomes prohibitive when the number of vertices of the given graph exceeds 64 (|U | = 32, |V | =
32). In [McCreesh and Prosser, 2014], a branch-and-bound (B&B) algorithm for MBBP for general graphs
(including non-bipartite graphs) was studied. The algorithm incorporates a clique cover technique for upper
bound estimation (an equivalent technique of using graph coloring to estimate the upper bound for the
maximum clique problem) and employs lex symmetry breaking techniques for general graphs. As far as
we know, this algorithm is currently the best performing exact algorithm, even though the bounding and
symmetry breaking techniques are only effective for non-bipartite graphs.

In addition to specifically designed exact algorithms, the general Mixed Integer Programming (MIP)
constitutes an interesting alternative for addressing hard combinatorial problems such as MBBP. Commer-
cial MIP solvers, like IBM CPLEX, can even solve some hard instances which cannot be handled by other
approaches. Meanwhile, the success of a MIP solver highly depends on the tightness of the mathematical
formulation of the problem. For MBBP, a MIP formulation based on the complement graph has been pro-

58 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

posed in [Dawande et al., 2001]. Another mathematical formulation which defines the constraints on the
original graph was presented in [Yuan et al., 2015]. However, this formulation was not applicable for MIP
solvers as it contains non-linear constraints.

The remaining of this chapter is organized as follows. We first introduce the heuristic algorithm TSGR-
MBBP in Section 4.2. Sections 4.2.1 and 4.2.2 provide some useful notations and rationales of TSGR-
MBBP. Section 4.2.3 introduces the proposed algorithm TSGR-MBBP. Computational results on bench-
mark instances are presented in Section 4.2.4. Section 4.2.5 shows an analysis of the key components of
the proposed algorithm.

In Section 4.3, we present the exact algorithms. Section 4.3.1 introduces the notations that will be used
for elaborating the exact algorithms and Section 4.3.2 reviews BBClq introduced in [McCreesh and Prosser,
2014]. In Section 4.3.3, we present our Upper Bound Propagation procedure for upper bound estimation
and explain how to use it to improve BBClq. Then, in Section 4.3.5, we show how the upper bounds
can lead to new valid inequalities to tighten the MIP formulation of [Dawande et al., 2001]. Furthermore,
we introduce the novel ExtUniBBClq algorithm in Section 4.3.6. Computational results and experimental
analyses are then presented in Section 4.3.7, followed by conclusions of this chapter.

4.2 Heurisitc algorithm with graph reduction
Graphs from real-life applications like social networks and biological networks are usually very large

with millions even billions of vertices, rendering most existing approaches unpractical. In this study, we
aim to fill the gap by developing improved methods for MBBP, which should be able to handle both random
dense graphs and very large real-life networks. For this purpose, we introduce a new algorithm named tabu
search with graph reduction for MBBP (TSGR-MBBP), which combines an effective Constraint-Balanced
Tabu Search (CBTS) and two dedicated graph reduction techniques. We identify the main contributions of
this study as follows.

1. From an algorithmic perspective, the proposed TSGR-MBBP algorithm seeks maximum balanced
bicliques directly on the given graph. Compared to the existing approaches which search for balanced
independent sets on the complement, operating on the given graph has an advantage of requiring less
memory for large sparse graphs. More importantly, TSGR-MBBP employs the Constraint-Balanced
Tabu Search (CBTS) algorithm to effectively explore the search space and two bound-based dedicated
reduction techniques to shrink progressively the given graph. This is the first study combining local
optimization and graph reduction within the iterated search framework for MBBP.

2. We demonstrate the effectiveness of the proposed algorithm on two sets of 55 MBBP benchmark
instances. For the set of 30 random challenging instances, the algorithm dominates state-of-the-art
algorithms including the current best-performing algorithm presented in [Yuan et al., 2015] and the
powerful mixed integer programming solver CPLEX. The algorithm also obtains 10 improved best
solutions (i.e., new lower bounds) and matches the best-known results for the remaining 20 instances.
For the 25 very large real-life instances from the well-known Koblenz Network Collection, the algo-
rithm proves, for the first time, the optimal solutions for 14 instances (by obtaining the same upper
and lower bounds) and obtains tight lower bounds (better than those of CPLEX) for the remaining
instances. We also show an analysis of key components (CBTS and the reduction methods) to get
insight of their usefulness.

4.2.1 Preliminary definitions
Let G = (U, V,E) be a bipartite graph, we introduce the following notations and definitions which are

needed for the description of the proposed approach.
- Given a vertex v ∈ U ∪ V , N(v) denotes the set of vertices adjacent to v, i.e., N(v) = {u : {v, u} ∈
E}. Clearly, if v ∈ U , then N(v) ⊆ V , otherwise, N(v) ⊆ U .

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 59

Figure 4.1: X = {1, 2, 3}, Y = {5, 6}, N(X ∪ Y) = {4, 7, 8}, (X, Y) is a biclique of balanced size 2. The
balance deviation of (X, Y) is 1.

- Given S ⊆ U ∪ V , N(S) denotes the subset of vertices from (U ∪ V) \ S that are adjacent to at least
one vertex in S, i.e., N(S) = (

⋃
i∈S

N(i)) \ S.

- Given X ⊆ U , Y ⊆ V , G[X ∪ Y] = (X, Y,E(X ∪ Y)) denotes the subgraph induced by X ∪ Y . If
G[X ∪ Y] is a complete bipartite graph, i.e., E(X, Y) = X × Y , then X ∪ Y is a biclique, which is
also denoted by (X, Y).

- Given a biclique (X, Y), the balanced size of (X, Y) is min(|X|, |Y |), and the balance deviation is
||X| − |Y ||. If the balance deviation is 0, (X, Y) is a balanced biclique of size |X| (or |Y |).

Figure 4.1 illustrates the above definitions with a bipartie graph composed of 8 vertices and 13 edges.
Let Ω(G) denote the search space composed of all balanced bicliques in G, Ωk be the relaxed search

space including all bicliques with a balance deviation no more than k (k ≥ 0), i.e., Ωk = {(X, Y) : X ⊆
U, Y ⊆ V,E(X, Y) = X × Y, ||X| − |Y || ≤ k}, then, as explained in the next section, our algorithm
explores bicliques in the (slightly) relaxed search space Ω2 (i.e., with a balance deviation limited to 2)
rather than the search space of strictly balanced bicliques Ω(G) (i.e., Ω0).

Finally, the quality of a biclique (X, Y) in Ωk is measured by its balanced size min(|X|, |Y |). Given
two bicliques (X1, Y1) and (X2, Y2), (X1, Y1) is better than (X2, Y2) if min(|X1|, |Y1|) > min(|X2|, |Y2|).

4.2.2 Rationale of the proposed approach
Many real-life networks have millions or even billions of vertices with a very low edge density. Existing

approaches for solving MBBP rely heavily on the complement and the adjacent matrix representation.
Unfortunately, the complement of such a massive graph usually results in very high memory consumption,
making most of existing MBBP approaches unpractical. To avoid this difficulty, the proposed algorithm
operates directly on the given graph, implying that much less memory is required for processing very
large real-life sparse networks. From an algorithmic perspective, our algorithm iteratively seeks improved
solutions by local search combined with graph reduction strategies. Specifically, the algorithm starts from
an initial solution (a slightly relaxed balanced biclique) and uses move operators to improve the solution
iteratively. However, we still need to answer a crucial question: how to improve the solution effectively
while maintaining the two main constraints of a solution (balanced and biclique)?

Intuitively, local search operators that are successful for the maximum clique problem [Wu and Hao,
2015a] can be applied to MBBP, such as “add" (adding a vertex to the solution), “swap" (exchanging
a vertex in the solution with another vertex out of the solution) or still “drop" (dropping a vertex from
the solution). However, given a balanced biclique, an application of any of these operators results in an
unbalanced biclique. To cope with this difficulty, we propose to (slightly) relax the balance requirement of
the solution and allow the algorithm to explore both balanced and slightly unbalanced bicliques. For this
purpose, we adopt the generalized PUSH operator initially designed for the maximum vertex weight clique
problem [Zhou et al., 2017a] to explore solutions within the relaxed search space Ω2 rather than Ω0.

Another key idea we used is graph reduction. Given a bipartite graph G and a known best balanced
size ω (a lower bound), it is clear that to further improve ω, it is useless to consider any vertex whose

60 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

degree is smaller than or equal to ω since such a vertex can in no way extend the best solution found so far.
Consequently, these vertices (with a degree smaller than or equal to ω) along with the incident edges can
be safely removed from the graph. Our algorithm integrates this idea to dynamically prune the graph under
consideration, which proves to be highly effective on massive sparse graphs.

Finally, applying the pruning techniques can disconnect the original graph into several connected sub-
graphs. This observation can be explored advantageously to further prune the graph in combination with
an exact algorithm. Indeed, if a subgraph is small enough such that an exact algorithm can identify the
maximum balanced biclique quickly, then the subgraph can be definitively removed since the subproblem
(associated to the subgraph) is optimally solved. Moreover, the optimal solution of this subgraph can also be
used to update the current best balanced biclique (and the lower bound bound), which can lead to additional
reduction of the graph.

4.2.3 General procedure of TSGR-MBBP

Based on the rationale presented in Section 4.2.2, we introduce Tabu Search with Graph Reduction for
MBBP (TSGR-MBBP) (Algorithm 4.1). TSGR-MBBP is an iterated two phase algorithm and includes two
main components: the Constraint-Based Tabu Search (CBTS) procedure and the graph reducing procedure.
The CBTS procedure is used to find high quality bicliques in the relaxed search space Ω2, while the graph
reducing procedure aims to shrink progressively the current graph without losing optimal solutions.

After setting the best biclique (Xb, Y b) to (∅, ∅) and the best balanced size ω to 0 (lines 2 and 3), the
algorithm repeats the main ‘while’ loop (lines 4-20) until a stopping condition is met. For each ‘while’
loop, an initial biclique, which is not necessarily balanced, is first generated by Random_Init_Solution()
(line 5, see Section 4.2.3), and then further improved by the CBTS procedure (Constraint_Tabu_Improve(),
line 6, see Section 4.2.3). If the resulting biclique has a balanced size larger than the current best balanced
size ω, the best biclique (Xb, Y b) and the best balanced size are updated (lines 7-9).

Now, if the current best balanced size is greater than or equal to the degree of any vertex in the current
graph, the graph reduction procedure is activated (lines 10-18). This procedure includes two phases: first,
reducing the current graph by the Peel procedure to remove fruitless vertices and their incident edges (line
11, see Section 4.2.3); second, determining the maximum balanced size of each connected subgraphs with
up to K (a predefined parameter) vertices by a branch-and-bound (B&B) exact algorithm (Exact_Search(),
line 14, see Section 4.2.3) and then deleting these subgraphs from the current graph (line 18). The optimal
solution found by exact search can also be used to update the current best solution found so far (lines 15-17).
Finally, though TSGR-MBBP is a heuristic algorithm, thanks to the graph reduction procedure, ω is proven
to be the optimal balanced size when the cardinality of any partition (|U | or |V |, which is a upper bound of
the maximum biclique) in the current graph is no more than ω (which is a lower bound) (lines 19-20).

As explained in Section 4.2.1, the proposed algorithm operates on the relaxed biclique space Ω2. As a
result, the current solution (X, Y) and the best biclique found so far (Xb, Y b) are not necessarily balanced
with nevertheless a balance deviation limited to 2. Actually, the three procedures: Random_Init_Solution(),
Constraint_Tabu_Improve() and Exact_Search() generate or return a biclique with a balance deviation no
more than 2. The procedure of retrieving a strict balanced biclique of size ω from an unbalanced biclique
is accomplished by Make_Balance(). This procedure simply removes vertices from the larger set Xb or
Y b until a balanced biclique of size ω is obtained. Obviously, no more than 2 vertices will be removed by
Make_Balance().

Construct random initial solutions

The Random_Init_Solution() procedure is invoked to initialize each restart of TSGR-MBBP with a new
biclique. This procedure starts from a trivial solution formed by a random vertex from U ∪V , say (X, Y) =
({1}, ∅) (without loss of generality). Then, it iteratively expands the current solution by alternatively adding
one vertex v to the set X or Y , v being necessarily connected to all vertices of the other set. Specifically,

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 61

Algorithm 4.1: Main framework of TSGR-MBBP
Input: Graph instance G = (U, V,E), tabu search depth L, cardinality threshold K for graph reduction with

exact algorithm, tabu tenure parameter α.
Output: The maximum balanced biclique.
begin

(Xb, Y b)← (∅, ∅); /* The largest balanced biclique found so far */
ω = 0 ; /* The largest balanced size found so far */
while stopping condition is not met do

// Find an improved biclique from a new initial biclique
(X,Y)← Random_Init_Solution(G) ; /* Section 4.2.3 */
(X,Y)← Constraint_Tabu_Improve(G, (X,Y), L, α) ; /* Section 4.2.3 */
if min(|X|, |Y |) > ω then

(Xb, Y b)← (X,Y);
ω ← min(|X|, |Y |)

// Graph reduction procedure using improved balanced size ω
while ω ≥ minv∈U∪V {|N(v)|} do

// The first graph reduction
G← Peel(G,ω) ; /* Section 4.2.3 */
// The second graph reduction
for each connected subgraph Gi[Ui ∪ Vi] in G do

if |Ui|+ |Vi| ≤ K then
(X,Y)← Exact_Search(Gi, ω) ; /* Section 4.2.3 */
if min(|X|, |Y |) > ω then

(Xb, Y b)← (X,Y);
ω ← min(|X|, |Y |)

G← G[(U \ Ui) ∪ (V \ Vi)]

if |U | ≤ ω ∨ |V | ≤ ω then
return Make_Balance(Xb, Y b) ; /* (Xb, Y b) is an optimum solution */

end
return Make_Balance(Xb, Y b)

in the first iteration, a vertex is selected randomly from the candidate set ∩i∈XN(i) \ Y . Then, in the next
iteration, we switch to the candidate set ∩i∈YN(i) \X . The procedure continues until the current candidate
set becomes empty. The time complexity of this procedure is bounded by O(|U ∪ V | × |E|).

Consider Figure 4.1 as an example and suppose that we start from solution (X, Y) = ({1}, ∅), the
algorithm expands the solution by selecting an arbitrary vertex from N(1) \ ∅ = {5, 6, 8} (say 5) in the
first iteration. In the second iteration, the algorithm expands Y by adding a vertex from N(5) \ {1} =
{2, 3, 4}. Suppose that the algorithm goes on likewise to achieve a solution (X, Y) = ({1, 2, 3}, {5, 6})
after four iterations. Then in the fifth iteration, we try to expand Y by adding a vertex from the candidate set
∩i∈N(X) \ Y . However, since this candidate becomes empty, the Random_Init_Solution() procedure stops
and returns (X, Y) = ({1, 2, 3}, {5, 6}) as its output.

The biclique (X, Y) returned by this procedure may not be strictly balanced, but the balance deviation
can never exceed 1. This biclique is served as the starting solution for the tabu search procedure which is
explained below.

Constraint-Based Tabu Search

The CBTS procedure (Algorithm 4.2) is the main search component of the proposed algorithm. CBTS
iteratively transforms the current solution (biclique) to a neighbor solution while respecting the unbalance

62 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

limit of 2. The parameter L (a positive integer) is called tabu search depth, which defines the total number
of iterations of tabu search. The other parameter, α ∈ R+ ∪ {0}, is a coefficient of tabu tenure (see Section
4.2.3). In each iteration, CBTS applies the PUSH operator (lines 5-14, see Section 4.2.3), which either adds
a vertex to the current solution or swaps a vertex of the biclique against a vertex outside of the biclique.
Whenever the balance deviation exceeds 2 after an application of PUSH, a repairing procedure is followed to
recover the balance of the current biclique (lines 15-23, see Section 4.2.3). The repairing procedure simply
drops vertices from the larger partition of the biclique until the cardinality of both partitions becomes equal.
CBTS terminates after L such “push" and “repair" iterations.

The push operator

The PUSH operator was first proposed for the maximum weight clique problem in [Zhou et al., 2017a]
where each application of PUSH adds a vertex (taken from a candidate set) in the clique and expels p ≥ 0
vertices from the clique to maintain the feasibility of the transformed clique. In the context of MBBP,
given a biclique (X, Y) with X ⊆ U and Y ⊆ V , and without loss of generality, suppose that a vertex
v ∈ N(Y) \X (i.e., N(Y) \X is the candidate set for PUSH) is chosen. The PUSH operator adds vertex v
to X and expels from Y the vertices that are not adjacent to v. Let (X ′, Y ′) denotes the new biclique after
the PUSH operation, then we represent this transformation by (X ′, Y ′)← (X, Y)⊕ push(v).

Algorithm 4.2: Constraint-Based Tabu Search
Input: Graph instance G = (U, V,E), starting solution (X,Y), tabu search depth L, tabu tenure parameter α.
Output: The best biclique (X∗, Y ∗) found.
begin

I ← 0, (X∗, Y ∗)← (X,Y); /* I is the iteration counter, (X∗, Y ∗) keeps the best biclique found so far

*/
T [1...n]← [0...0]n ; /* initiate tabu list, each vertex v being marked tabu for the next T [v]th
iterations; n = |U |+ |V | */
while I ≤ L do

// Explore the neighbor solutions
Build Cexpand ⊆ C and Cplateau ⊆ C ; /* Decompose candidate set, see Section 4.2.3 */
v ← null;
if Cexpand 6= ∅ then

v ← random(Cexpand) ;

else if Cplateau 6= ∅ then
v ← random(Cplateau) ;

if v 6= null then
(X,Y)← (X,Y)⊕ push(v) ;
// Set tabu tenure for each vertex expelled by PUSH.
for u← expelled vertex do

T [u]← I + tt(α, |S|) ; /* S = X if u ∈ X, otherwise S = Y */

// Recover balance when the balance deviation exceeds 2
if ||X| − |Y || > 2 then

while |X| > |Y | do
u← random(X) ;
(X,Y)← (X,Y)⊕ drop(u) ;
T [u]← I + tt(α, |X|) ; /* Set tabu tenure for the dropped vertex */

while |X| < |Y | do
u← random(Y) ;
(X,Y)← (X,Y)⊕ drop(u) ;
T [u]← I + tt(α, |Y |) ;

// update the best solution
if min(|X|, |Y |) > min(|X∗|, |Y ∗|) then

(X∗, Y ∗)← (X,Y)

I ← I + 1

end

return (X∗, Y ∗)

Let δv = min(|X ′|, |Y ′|) − min(|X|, |Y |) be the change of the balanced sizes between (X ′, Y ′) and
(X, Y), then δv can be calculated by the following rule.

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 63

δv ←

 −|Y \N(v)| , if |X| > |Y |

min(1, |Y | − |X| − |Y \N(v)|) , otherwise
(4.1)

Similarly, if v ∈ N(X) \ Y , (X ′, Y ′) = (X ∩ N(v), Y ∪ {v}), δv is updated by the same rule except
that the roles of X and Y are exchanged.

The PUSH operator can be explained as a generalization of the conventional (1, p)-swap (p ∈ Z0)
operator. For example, if we restrict the candidate vertex v with property N(v)∩X = X or N(v)∩Y = Y ,
push(v) is equivalent to adding v without expelling any vertex (i.e., (1, 0)-swap); if we restrict v with
property |X \ N(v)| = 1 or |Y \ N(v)| = 1, push(v) exchanges v with another vertex in X or Y that is
not adjacent to v (i.e., (1, 1)-swap). Actually, the two restrictions are employed in our CBTS algorithm to
customize the PUSH operator, as explained in the next section.

Explore the neighbor solutions

The general PUSH operator applied to MBBP can add an arbitrary vertex from the candidate setN(X∪
Y) into one set X or Y , and then expel p ≥ 0 vertices from the other set. However, for the reason of
computational efficiency, only a subset of N(X ∪ Y) is considered for each PUSH operation. Specifically,
we add restrictions on the candidate vertices for the PUSH operation so that it adds one vertex to the current
solution and at the same time, no more than one vertex from the current solution will be expelled. These
restrictions lead exactly to the two cases that were introduced at the end of Section 4.2.3. In Algorithm 4.2,
set C (line 5) includes the restricted candidate vertices for PUSH. Every vertex in C is adjacent to all the
vertices of X (or Y), or all but one vertex of X (or Y).

Moreover, Cexpand is a subset of C such that applying PUSH to any vertex (say v) of this subset always
results in a solution of better quality (i.e., δv > 0). Similarly, Cplateau ⊆ C includes the vertices that can be
exchanged by PUSH to obtain solutions of equal quality (i.e., δv = 0).

To prevent CBTS from revisiting recently examined solutions, a tabu list [Glover and Laguna, 2013] is
considered when we construct Cexpand and Cplateau from candidate set C: a vertex which is marked tabu in
the current iteration will not be included in Cexpand or Cplateau unless pushing the vertex into the solution
leads to a solution better than the best solution ever found (this is called aspiration rule in tabu search
terminology). To sum up, let (X, Y) and (X∗, Y ∗) be respectively the current solution and the best solution
found so far during the current CBTS run, I the current iteration number, T [v] the tabu tenure of vertex v
(see below), then the restricted candidate set C, and sets Cexpand, Cplateau are defined as follows.

C = {v ∈ N(X ∪ Y) : v ∈ U ∧ |N(v) ∩ Y | ≥ |Y | − 1, v ∈ V ∧ |N(v) ∩X| ≥ |X| − 1}
Cexpand = {v ∈ C : δv > 1, T [v] ≤ I ∨min(|X|, |Y |) + 1 > min(|X∗|, |Y ∗|)}
Cplateau = {v ∈ C : δv = 0, T [v] ≤ I}

(4.2)

where T [v] ≤ I indicates that vertex v is no more forbidden by the tabu list for the current iteration and
can take part in a future PUSH operation.

Given the subsets Cexpand, Cplateau as two alternative candidate sets for PUSH, CBTS gives priority to
Cexpand since pushing vertices of this set always improves the current biclique. Only when Cexpand is empty,
set Cplateau is explored by the PUSH operator (lines 6-14). After each PUSH application with Cplateau, the
vertex expelled by PUSH (u in line 13) is marked tabu for the following tt(α, |A|) (A = X if u ∈ X ,
otherwise A = Y) consecutive iterations. According to [Zhou et al., 2017a], tt(α, l) (called tabu tenure) is
defined by the function: tt(α, l) = max(7, α ∗ random(l)) where α ∈ R+ ∪ {0} is a predefined parameter
and random(l) returns a random integer in [0, l].

64 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

Recover biclique balance

Recall that with the restrictions on candidate vertices, the number of vertices expelled by PUSH in each
iteration is either zero or one. As a result, if the balance deviation of the current biclique is greater than
2 (i.e., ||X| − |Y || > 2), it is impossible to make the biclique strictly balanced with one application of
the PUSH operator. Consequently, each time the balance deviation of the solution exceeds 2, we restore
the balance property by applying a repair procedure (lines 15-23). This repair procedure simply drops
vertices from the larger set (X or Y) of the biclique until the solution becomes strictly balanced (denoted
as (X, Y) ← (X, Y) ⊕ drop(u) at lines 18 and 22). Again, each dropped vertex u is forbidden to rejoin
the solution during the period fixed by its tabu tenure (tt(α, |X|) if u ∈ U , tt(α, |Y |) if u ∈ V). In
general, CBTS utilizes the PUSH operator to explore the space Ω2 rather than Ω0 by constraining the
balance deviation of the visited solutions. In Section 4.2.5, we further investigate the effectiveness of this
strategy.

Time complexity

CBTS operates directly on the input graph and uses the adjacent list representation to store the graph.
Given a solution (X, Y), by our implementation, the time complexity of constructing Cexpand and Cplateau
is bounded by O(|N(X ∪ Y)|). The time complexity of moving one vertex (outside the solution or into the
solution) is bounded by O(M) (M = maxv∈U∪V {|N(v)|}). Hence, the time complexity of one iteration in
CBTS is bounded by O(|N(X ∪ Y)|+ 2×M). Though |N(X ∪ Y)| is almost equal to |U |+ |V | in dense
graphs, in very large real-life networks, both |N(X ∪ Y)| and M are very limited due to the sparsity of the
graphs.

Reduction by the Peel procedure

Our TSGR-MBBP algorithm employs the Peel(G,w) procedure (Algorithm 4.1, line 11) to recursively
delete all vertices whose degrees are smaller than or equal to ω until no such vertex exists. Obviously, if
the cardinality of one vertex set of the reduced bipartite graph (which is a upper bound of the maximum
biclique) is less than or equal to ω (which is a lower bound), then ω must be the optimal objective value
because no better solution can exist in the reduced graph (Algorithm 4.1, lines 19-20).

The peeling procedure is triggered each time the balanced size of the largest biclique discovered so far
(lower bound) is larger than or equal to the minimum degree of the current graph. This procedure is effective
on large sparse graphs but may not reduce a dense graph much. The experiments reported in Section 4.3.7
confirm that, with a high quality lower bound, large real-life bipartite graphs can be significantly reduced.

We note that the idea of reducing a graph by removing unpromising vertices was previously used in
a GRASP heuristic for detecting dense subgraphs (quasi-cliques) in massive sparse graphs [Abello et al.,
2002]. We adapted this technique for solving MBBP for the first time.

Reduction by exact search

Exact search algorithms guarantee the optimality of the solution found, but may require prohibitive
computing time on large instances. However, since exact search algorithms are able to prove optimality on
small graphs rapidly, they can still be used as a basis for graph reduction. In Algorithm 4.1 (lines 12-18), we
show such an approach of using exact search for MBBP. If a solution has been confirmed to be optimal for
a subgraph of the current graph, this subgraph can be safely eliminated from the current graph. Moreover,
since the optimal value of the subgraph is a lower bound of the initial graph, we can use the optimal solution
of the subgraph to update the current best balanced biclique, which in turn can further reduce the current
graph. The exact algorithm used by TSGR-MBBP was adapted from a well-known B&B algorithm for
the maximum clique problem [Carraghan and Pardalos, 1990] and described in Section 4.3.2. This exact
algorithm is only applied to solve a subgraph with K vertices at most (K being the largest subgraph that is

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 65

estimated to be solved in reasonable time by the algorithm). It is clear that K depends on the adopted exact
algorithm and target subgraph. According to our experiments, we set K to 100 for random dense graphs
and 500 for sparse real-life networks.

4.2.4 Computational experiments

To comprehensively evaluate the proposed TSGR-MBBP algorithm as well as its components, we tested
our algorithm on two sets of benchmark instances including both (dense) random graphs and massive real-
life networks.

Benchmark

We use the random graphs and KONECT benchmarks introduced in Section 1.4.1, Chapter 1. The
random graphs for our study are generated by the same rule of [Yuan et al., 2015] so that the performance
of different algorithms can be compared. As for KONECT instances, we randomly select 25 bipartite
instances 1.4.1.

Parameter tuning and experimental protocol

The TSGR-MBBP algorithm has three parameters: L - the tabu search depth; α - the coefficient for
tabu tenure required by the Constraint_Tabu_Improve() procedure (Section 4.2.3); K - the threshold on the
number of vertices of the subgraph for graph reduction with the exact algorithm (Section 4.2.3).

Since the first two parameters (L and α) are independent from the reduction procedure, we tuned them
on a simplified version of TSGR-MBBP without the graph reduction procedure (i.e., by disabling lines 10-
20 in Algorithm 4.1). We used the automatic parameter configuration package iRace [López-Ibánez et al.,
2011], which implements the Iterated F-Race (IFR) method. Given L ∈ {10, 100, 1000, 5000, 10000}, and
α ∈ [0, 2], for each parameter configuration, we used a tuning budget of 500 hook-runs, each of which repre-
senting 10 independent calls of TSGR-MBBP. The training set for random graphs included 6 challenging in-
stances, i.e., GraphU_500_XXX_1.clq and GraphU_500_XXX_2.clq (XXX can be replaced by 0.95, 0.90,
0.85). The experiments suggested that the combination (L = 1000, α = 0.30) was a suitable configuration
for random graphs. As for KONECT graphs, the training set included “actor-movie", “bookcrossing_full-
rating", “dbpedia-genre", “dbpedia-team", “github", “stackexchange-stackoverflow". The final choice of
parameters was L = 100 and α = 1.74.

The use of two different settings for (L, α) is mainly due to the graph structures which vary much.
According to our observations, for random dense graphs, a more intensified search is needed to find quality
solutions. This is achieved with a large tabu search depth (L = 1000) and a short tabu tenure (with α =
0.30). On the contrary, for large real-life sparse instances, the tabu search component is able to reach local
optima very quickly. As a result, it is preferable to restart more frequently the tabu search component (with
L = 100) and diversify more strongly the search during the optimization process (using a larger tabu tenure
with α = 1.74).

The third parameter K indicates the largest subgraph that can be solved in reasonable time by the exact
algorithm described in Section 4.2.3. We set K = 100 for random graphs and 500 for KONECT graphs. In
effect, since the random graphs we tested are very dense, they cannot be reduced by the reduction procedure,
implying that no connected subgraph with less than 100 vertices exists in this set of benchmarks. A very
large K is not acceptable, otherwise the computing time for exact search becomes prohibitive according
to our observations for random graphs. Preliminary experiments also confirmed that the time consumption
was normally insignificant (less than 2 seconds) for connected subgraphs with less than 500 vertices for
sparse KONECT graphs. As the vertex number is just a rough estimation of the hardness of the subgraph
for our exact algorithm, we terminate the exact algorithm if it does not finish during 10 seconds. This
additional cutting-off condition prevents the algorithm from spending too much effort in searching optimal

66 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

solutions for some potential hard subgraphs. If the exact search stops without giving an optimal solution,
the corresponding subgraph will not be removed.

TSGR-MBBP was implemented in C++ and compiled with g++ v4.4.7 with optimization flag -o3. Our
experiments were performed on a computer with an AMD Opteron 4184 processor (2.8GHz and 2GB RAM)
running Linux 2.6.32. When solving the DIMACS machine benchmark procedure ‘dfmax.c’ 1 without
compilation optimization flag, the run time on our machine is 0.40, 2.50 and 9.55 seconds for graphs
r300.5, r400.5 and r500.5 respectively.

Considering the stochastic nature of TSGR-MBBP, we ran TSGR-MBBP 20 independent times to solve
each instance. For the random graphs of 250 vertices, the time limit of each run was 30 seconds, while for
the random graphs of 500 vertices, 60 seconds were allowed. As for the KONECT instances, we prolong
this limitation to 360 seconds (6 minutes) since these instances are much larger than the random graphs.

Computational results of Random graphs

To evaluate the performance of TSGR-MBBP, we show computational results relative to three state-of-
the-art MBBP approaches:

- EA/SM [Yuan et al., 2015]: This is a hybrid algorithm mixing local search, structure mutation and
repair-assisted restart. EA/SM is the most recent heuristic algorithm and outperforms the precedent
algorithms like [Yuan and Li, 2011; Yuan and Li, 2014]. For our comparative experiment, we ran
20 times the source code of EA/SM (provided by its authors) to solve each instance, each run being
limited to 200,000 fitness evaluations according to [Yuan et al., 2015]. We observed that to attain
its best solutions, EA/SM needed a run time ranging from 42 to 50 seconds for instances of 250
vertices and 75 to 94 seconds for instances of 500 vertices (see Table 4.1). Consequently, the stopping
condition of EA/SM can be considered to be more favorable than that used to run our algorithm (a cut
off time of 30 seconds for instances of 250 vertices and and 60 seconds for instances of 500 vertices).

- IBM CPLEX: CPLEX is one of the most popular commercial optimization software. We ran CPLEX
(version 12.6.1) 2 hours (7200 seconds) on each instance with the binary linear formulation Equation
1.7 – Equation 1.10 in Chapter 1. Obviously, the total time given to TSGR-MBBP for 20 runs (60*20
= 1200 seconds for the random instances and 360*20 = 7200 seconds for the KONECT instances) is
no more than 2 hours.

- AL_Greedy [Al-Yamani et al., 2007]. This is a (fast) greedy algorithm which solves the equiva-
lent maximum balanced independent set problem for the bipartite complement. According to [Yuan
et al., 2015], this algorithm performs better than its earlier version [Tahoori, 2006]. Thus, we re-
implemented this algorithm and used it for our comparative study. Since AL_Greedy is a determin-
istic heuristic, only one run was needed to solve each instance. Moreover, AL_Greedy stops once its
construction procedure reaches its end. Thus, no explicit stopping condition is required.

Table 4.1 reports the computational results of TSGR-MBBP together with the results of the reference
approaches (EA/SM, CPLEX and AL_Greedy) on the 30 random dense graphs. Column “instance” shows
the name of each instance. Column “BKV" presents the best known values reported in [Yuan et al., 2015].
For TSGR-MBBP and EA/SM, column “best(ave)" indicates the maximum value of the 20 best balanced
sizes found in 20 runs, the average size is given between parentheses if the 20 runs do not lead to an identical
balanced size; column “time” reports the average time (in seconds) of first hitting the best balanced size
in 20 runs; column “reduce” (only for TSGR-MBBP) reports the number of vertices removed by the two
reduction methods in one of the runs where we find the best balanced size. For CPLEX, we report the best
lower bounds and the time needed to complete the search. If CPLEX fails to report a feasible solution for an
instance due to memory limitation, “-" is used in the corresponding entries of columns “best” and “time”.
For AL_Greedy, since its run time is negligible (shorter than 0.01 second for all instances), we only report
the best biclique values.

1. dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/

dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 67

Table 4.1: Computational results of TSGR-MBBP together with the results of EA/SM, CPLEX and
AL_Greedy on the set of 30 random dense graphs.

instance BKV [Yuan et al., 2015]
TSGR-MBBP EA/SM CPLEX 12.6.1 AL_Greedy

best(ave) time reduce best(ave) time best time best

G_250_0.95_1 68 68 0.05 0 68(67.90) 50.28 66 ≥7200 64

G_250_0.95_2 66 66 0.21 0 66(65.05) 49.31 64 ≥7200 59

G_250_0.95_3 70 70 0.17 0 70(69.50) 48.87 - - 67

G_250_0.95_4 68 68 0.42 0 68(67.10) 47.36 66 ≥7200 63

G_250_0.95_5 68 68 0.72 0 67(66.95) 47.41 67 ≥7200 62

G_250_0.90_1 44 44 0.06 0 44(43.70) 42.94 42 ≥7200 37

G_250_0.90_2 44 45 0.52 0 45(43.90) 43.28 42 ≥7200 39

G_250_0.90_3 44 44 0.13 0 44(43.45) 43.20 42 ≥ 7200 40

G_250_0.90_4 45 45 0.66 0 44(43.80) 43.13 42 ≥ 7200 40

G_250_0.90_5 45 45 0.23 0 45(44.10) 45.13 41 ≥7200 40

G_250_0.85_1 33 33 0.11 0 33(32.40) 47.92 - - 30

G_250_0.85_2 33 33 0.04 0 33(32.75) 49.94 - - 31

G_250_0.85_3 34 34 0.69 0 34(32.95) 44.66 - - 31

G_250_0.85_4 33 33 0.07 0 33(32.90) 43.76 30 ≥7200 30

G_250_0.85_5 33 33 0.52 0 33(32.30) 44.16 30 ≥7200 30

G_500_0.95_1 91 93 14.37 0 91(90.20) 93.28 - - 83

G_500_0.95_2 89 91 15.58 0 90(88.30) 92.02 - - 81

G_500_0.95_3 89 91(90.05) 3.85 0 90(87.85) 92.62 85 ≥ 7200 81

G_500_0.95_4 88 90(89.40) 21.04 0 88(86.85) 93.28 83 ≥ 7200 78

G_500_0.95_5 90 91(90.90) 13.40 0 90(88.15) 94.30 81 ≥ 7200 83

G_500_0.90_1 56 56 12.21 0 55(53.75) 76.24 46 ≥ 7200 49

G_500_0.90_2 56 56 5.38 0 56(54.00) 79.34 47 ≥ 7200 48

G_500_0.90_3 54 56(55.60) 15.57 0 55(53.45) 79.52 46 ≥ 7200 48

G_500_0.90_4 55 56(55.55) 9.87 0 55(53.75) 79.59 47 ≥ 7200 48

G_500_0.90_5 55 56(55.50) 13.68 0 55(53.25) 82.23 44 ≥ 7200 48

G_500_0.85_1 40 40 4.59 0 40(38.45) 75.55 33 ≥ 7200 34

G_500_0.85_2 41 41 5.84 0 40(39.25) 75.56 32 ≥7200 33

G_500_0.85_3 40 41(40.50) 13.50 0 41(38.65) 81.48 35 ≥7200 35

G_500_0.85_4 40 40 1.84 0 39(38.30) 75.29 33 ≥7200 35

G_500_0.85_5 41 41 4.60 0 40(38.60) 75.06 31 ≥7200 34

68 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

From Table 4.1, we first observe that in terms of solution quality, TSGR-MBBP competes very favor-
ably with the reference approaches. In particular, TSGR-MBBP improves the best-known results of [Yuan
et al., 2015] for 10 instances (marked in bold font). For the 20 remaining instances, the best objective
values found by TSGR-MBBP are always as good as or better than those of the reference algorithms. The
average objective values of the 20 runs of TSGR-MBBP are also better than that of EA/SM. Moreover, the
performance of TSGR-MBBP is quite stable across the whole set of tested instances. In terms of computa-
tional efficiency, TSGR-MBBP is very competitive – it hits its best result within no more than one and 22
seconds for the instances of 250 and 500 vertices respectively, against up to 50 and 94 seconds for the best
reference algorithm EA/SM. As for CPLEX, it cannot complete its search within a duration of 2 hours and
thus fails to find the optimal solution for any instance (still CPLEX finds some solutions better than those
of AL_Greedy). Unsurprisingly, the greedy algorithm AL_Greedy leads to solutions of very poor quality.
Finally, as expected, neither reduction method is successful on these very dense graphs as the degree of any
vertex is much larger than the best balanced size. For example, the vertex degree of “G_500_0.85_X” is
closely around 425 while the optimal balanced size is estimated to be between 39 and 76 by the theorem
of [Dawande et al., 2001]. However, as we show in the next section, the reduction procedure becomes
extremely effective when large sparse graphs are considered.

Computational results of KONECT networks

We report in Table 4.2 the computational results of TSGR-MBBP and CPLEX on the set of 25 KONECT
instances. For this study, we ignore EA/SM and AL_Greedy since the EA/SM code cannot be run on these
graphs (EA/SM imposes the input graph to be balanced, which is not the case for KONECT instances),
while AL_Greedy performs very poorly (see Table 4.1). Columns “name”, “(|U |, |V |)”, “|E|” show the
basic information of the original instances. For TSGR-MBBP, columns “best(ave)" and “time" report the
same information as in Table 4.1. Columns “red_1” and “red_2” indicate the total number of vertices
that are removed from the original graph by the two reduction methods (the Peel procedure and the exact
search procedure) in one of the runs where we find the best balanced size. To enable CPLEX to load large
graphs, each original graph was pre-reduced by applying Peel(G, best) before starting CPLEX. Column
“(|U ′|, |V ′|)" reports the number of vertices after applying Peel(G, best) while columns “best” and “time"
report the best balanced size reached as well as the total consumed time. Symbol “*" indicates that the
solution has been proven to be optimal by the corresponding algorithm, while symbol “-" means that the
initial (and Peel pre-reduced) graph cannot be loaded into CPLEX.

As explained in Section 4.2.3, when either of the two vertex sets of the current bipartite graph contains
less than ω (the best balanced size found so far) vertices, ω is proven to be the optimal maximum balanced
size. From Table 4.2, we observe that TSGR-MBBP proves optimality for 14 out of the 25 instances
(indicated by “*"), even though these real-world instances are significantly larger than the random instances.
Also, TSGR-MBBP achieves the same best balanced size in all 20 runs for all but 5 instances (whose
average objective values are reported in the table). Observing the number of vertices that has been reduced,
we find that the first reduction method (the Peel method) prunes more than half or even all of the vertices
during the search procedure. As for the second reduction method (which is based on exact search), though
the vertices removed by this method are fewer than the first method, we cannot neglect its significance. For
5 instances “bibsonomy-2ui",“dpedia-genre",“dbpedia-starring", “moreno_crime" and “wiki-en-cat", the
Peel procedure fails to reduce these graphs to small enough subgraphs such that optimality can be proven
(one vertex set of the subgraph includes fewer than ω vertices, see column “(|U ′|, |V ′|)"), TSGR-MBBP
directly finds the optimal solution for the resulting subgraphs with less than K vertices. The CPLEX
solver, unfortunately, is unable to load some of these massive graphs even after reducing these graphs
significantly by applying Peel(G, best) in the pre-processing step. For instances for which CPLEX finds a
feasible solution, like “discogs_style", “edit-frwiktionary", “stackexchange-stackoverflow" and “youtube-
groupmemberships", the results are still worse than those achieved by TSGR-MBBP. Besides, CPLEX
always requires a longer time than TSGR-MBBP to attain the best solution.

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 69

Table 4.2: Computational results of TSGR-MBBP and CPLEX on the set of 25 large KONECT instances.
The results of EA/SM and AL_Greedy are not available.

instance TSGR-MBBP CPLEX

name (|U |, |V |) |E| best(ave) time red_1 red_2 (|U ′|, |V ′|) best times

actor-movie (127823, 383640) 1470418 8 8.91 474822 357 (100398, 88729) N/A N/A

bibsonomy-2ui (5794, 767447) 2555080 8∗ 1.01 772062 1179 (137, 307) 8∗ 2209.76

bookcrossing_full-
rating

(105278, 340523) 1149739 13(12.30) 122.25 433428 33 (26799, 76949) N/A N/A

dblp-author (1425813, 4000150) 8649016 10∗ 8.92 5416361 9602 (0, 0) - -

dbpedia-genre (258934, 7783) 463497 7∗ 1.22 265973 744 (385, 118) 7∗ 931.59

dbpedia-
location

(172091, 53407) 293697 5∗ 0.22 224220 1278 (0, 0) - -

dbpedia-
occupation

(127577, 101730) 250945 6∗ 0.88 228847 460 (0, 0) - -

dbpedia-
producer

(48833, 138844) 207268 6∗ 0.17 183879 3798 (0, 0) - -

dbpedia-
recordlabel

(168337, 18421) 233286 6∗ 0.23 186474 284 (0, 0) - -

dbpedia-
starring

(76099, 81085) 281396 6∗ 0.29 156370 814 (44, 21) 6∗ 2.06

dbpedia-team (901166, 34461) 1366466 6(5.50) 99.29 906083 341 (24858, 4345) N/A N/A

dbpedia-writer (89356, 46213) 144340 6∗ 0.13 131338 4231 (0, 0) - -

discogs_affiliation (1754823, 270771) 14414659 26 22.15 2008903 662 (11722, 4307) N/A N/A

discogs_lgenre (270771, 15) 4147665 15∗ 10.16 270786 0 (0, 0) - -

discogs_style (1617943, 383) 24085580 38(37.15) 131.85 1612732 0 (5289, 305) 36 ≥
7200

edit-frwiki (288275, 4022276) 46168355 41(27.50) 228.91 4250247 0 (6664, 56700) N/A N/A

edit-
frwiktionary

(5017, 1907247) 7399298 19 31.88 1909273 0 (232, 2759) 16 ≥
7200

flickr-
groupmemberships

(395979, 103631) 8545307 67 94.74 458053 0 (213863, 61790) N/A N/A

github (56519, 120867) 440237 12 4.74 169775 774 (4001, 2836) N/A N/A

moreno_crime (829, 551) 1476 2∗ 0.00 1072 308 (4, 4) 2∗ 0.03

opsahl-
collaboration

(16726, 22015) 58595 8∗ 0.05 37780 961 (0, 0) - -

opsahl-ucforum (899, 522) 33720 5∗ 0.03 531 890 (0, 0) - -

stackexchange-
stackoverflow

(545196, 96680) 1301942 9(8.95) 92.12 625399 52 (1432, 867) 8 ≥
7200

wiki-en-cat (1853493, 182947) 3795796 14∗ 17.58 2027887 8553 (87, 60) 14∗ 11.23

youtube-
groupmemberships

(94238, 30087) 293360 12 0.81 121908 118 (1432, 867) 8 ≥
7200

70 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

Table 4.3: Comparison between three different versions of the Constraint-Based Tabu Search procedure:
CBTSΩ∞ can visit any biclique; CBTSΩ1 visits only bicliques with a balance deviation no more than 1;
CBTSΩ2 (the original version of CBTS) visits bicliques with a balance deviation no more than 2.

instance
CBTSΩ∞ CBTSΩ1 CBTSΩ2

best(ave) time iter best(ave) time iter best(ave) time iter

GraphU_500_0.05_3 90(89.20) 8.48 2827917 70(68.25) 19.63 1387704 91(90.20) 7.76 2297846

GraphU_500_0.05_4 90(88.20) 19.48 2886301 69(67.35) 19.47 1386318 90(89.20) 10.99 2288732

GraphU_500_0.05_5 91(89.95) 20.37 2829679 71(68.40) 28.71 1389515 91(90.95) 16.41 2287010

GraphU_500_0.10_3 54(53.85) 18.77 5620994 42(40.70) 15.32 1387011 56(55.60) 13.49 2343998

GraphU_500_0.10_4 55(54.20) 17.11 5774901 42(40.90) 16.74 1385316 56(55.30) 7.17 2356738

GraphU_500_0.10_5 55(54.10) 10.04 5750204 42(41.45) 22.12 1388886 56(55.55) 13.27 2352404

GraphU_500_0.15_3 39(38.55) 15.57 6340722 31(29.75) 18.62 1441000 41(40.70) 16.92 2409855

dblp-author 8(5.40) 26.69 2674721 10(8.60) 27.25 1089614 10(9.50) 21.27 696636

dbpedia-genre 5(2.85) 18.07 546103 4(2.85) 19.69 121851 4(3.05) 9.35 147990

dbpedia-team 4(3.25) 16.25 5699436 4(3.30) 8.94 1232615 5(3.85) 24.11 1260575

discogs_style 9(3.30) 1.19 10651 7(3.80) 5.14 13617 25(7.20) 29.43 19900

edit-frwiktionary 9(2.65) 0.18 2476 9(2.85) 5.52 2204 9(3.05) 1.28 1946

wiki-en-cat 14(6.05) 29.28 3640199 13(7.50) 24.17 553078 14(8.75) 25.18 706691

4.2.5 Analysis
This section presents an empirical analysis of the restricted unbalance constraint related to the Constraint-

Based Tabu Search procedure (Section 4.2.3) and the merit of the graph reduction procedure (Section 4.2.3).

Unbalance constraint of Constraint-Based Tabu Search

The Constraint-Based Tabu Search procedure (Algorithm 4.1, line 6) is one key component of the pro-
posed TSGR-MBBP algorithm. One of the main features of CBTS is that while unbalanced bicliques
are allowed, the balance deviation of the explored bicliques must be no more than 2 (see Sections 4.2.1
and 4.2.3) (this constraint is called unbalance constraint). To justify this specific unbalance constraint, we
compare CBTS with two CBTS versions with different unbalance constraints. The first version (called
“CBTSΩ∞") removes the unbalance constraint and allows the procedure to visit any bicliques (lines 15-23
are removed from Algorithm 4.2). The second version (named as “CBTSΩ1") introduces a more restrictive
unbalance constraint – the balance deviation is required to be no more than 1 after each iteration (i.e., change
the repairing condition in line 15 to |X| − |Y | > 1). We also used “CBTSΩ2" to denote the original CBTS
procedure. As such, these three CBTS versions correspond to three restart algorithms searching within the
solution spaces Ω2, Ω∞, and Ω1 respectively. Note that the version with absolute balanced constraint is not
considered. In effect, if we repair the solution whenever |X| − |Y | 6= 0, the current solution can never be
improved because the PUSH operator only imports one vertex to one vertex set in each iteration.

For this study, we used 13 instances selected from the two benchmark sets. We ran each CBTS version
20 trials to solve each instance under the same configuration mentioned in Section 4.2.4. Each trial was
given a time limit of 60 seconds. The comparative results of this study are summarized in Table 4.3. We
denote one restart of CBTS as one iteration here (one ‘while’ loop, lines 10-20 in Algorithm 4.1). Column
“best(ave)" indicates the best and average balanced biclique size found by each algorithm over 20 runs.
Column “time" reports the average time to achieve the best balanced biclique size in all 20 runs. Column
“iter" reports the average number of restarts for 20 runs.

As for the solution quality, the original Constraint-Based Tabu Search (CBTSΩ2) procedure dominates
the other variants both in terms of best and average values. CBTSΩ2 also performs the best concerning
the average time of attaining the best solution for random graphs. As for the total number of iterations
(column “iter"), CBTSΩ∞ restarts more often than CBTSΩ2 which on the other hand restarts more often

4.2. HEURISITC ALGORITHM WITH GRAPH REDUCTION 71

0 20 40 60 80 100
iterations

0
2

4
6
8

10
av

er
ag

e
si

ze

dblp-author

0 200 400 600 800 1000
iterations

0
1
2
3
4
5
6
7
8

av
er

ag
e

si
ze

dbpedia-genre

0 50 100 150 200 250 300 350 400
iterations

0
1
2
3
4
5
6
7

av
er

ag
e

si
ze

dbpedia-team

0 200 400 600 800 1000
iterations

0
5

10
15
20
25
30
35

av
er

ag
e

si
ze

discogs_style

0 200 400 600 800 1000
iterations

0

5

10

15

20

av
er

ag
e

si
ze

edit-frwiktionary

0 50 100 150 200
iterations

0
2
4
6
8

10
12
14

av
er

ag
e

si
ze

wiki-en-cat

No Reduction
Reduct 1
Reducion 1&2

No Reduction
Reduct 1
Reducion 1&2

No Reduction
Reduct 1
Reducion 1&2

No Reduction
Reduct 1
Reducion 1&2

No Reduction
Reduct 1
Reducion 1&2

No Reduction
Reduct 1
Reducion 1&2

Figure 4.2: The relations between the number of iterations and the average best sizes of 20 runs on 6
selected instances from KONECT.

than CBTSΩ1 . Obviously, a tighter unbalance constraint leads to more frequent calls to the repair procedure,
thus less iterations under the same time limitation. Meanwhile, the results suggest that the strategy of
incorporating unbalance constraint is a good trade-off between solution quality and number of iterations.

Effectiveness of reduction methods

To gain a comprehensive understanding of the run-time behavior and efficiency of the two reduction
methods, we show in this section an analysis of the convergence rate of three variants of the TSGR-MBBP
algorithm:

– No Reduction: The reduction procedure is disabled, i.e., lines 10-18 are removed from Algorithm 4.1.
– Reduction 1: Only the first reduction method (the Peel method) is used. i.e., lines 12-18 are removed

from Algorithm 4.1.
– Reduction 1&2: Both reduction methods are used, i.e., the original TSGR-MBBP algorithm.
The variant with only the second reduction is not considered as the exact search will never be triggered

without the Peel procedure.
This study was based on 6 KONECT instances, “dblp-author", “dbpedia-genre", “dbpedia-team", “discog_style",

“edit-frwikitionary" and “wiki-en-cat" which are large enough with different levels of difficulty for TSGR-
MBBP (the difficulty is estimated by the time consumption of TSGR-MBBP in Table 4.2). We ran each
algorithm variant 20 times to solve each instance with a time limit of 6 minutes per run. Again, we denote
one restart of CBTS as one iteration. Figure 4.2 reports the relation between the number of iterations and
the average best balanced size reached by each variant in 20 runs (abbreviated as ‘average size’). Consid-
ering the two variants with reduction can stop before reaching the time limit when the optimum is proven,
we assume that the best size after termination is constantly the optimal size in this case.

72 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

According to Figure 4.2, in terms of the average result after the same number of iterations, the two
variants using reduction always dominate the variant without reduction. Actually, “No Reduction" con-
verges so slowly that it even has difficulties in reaching half of the best-known size in the given time
limit. Comparing “Reduction 1" and “Reduction 1&2", for “dblp-author", “dbpedia-genre", “dbpedia-
team", “edit_fiwikitionaryand" and “wiki-en-cat", “Reduction 1&2" always discovers solutions of high
quality earlier. In particular, for two instances, “dblp-author" and “wiki-en-cat", “Reduction 1&2" reaches
the optimal solution in the very first iteration. This is because for these graphs, the exact algorithm discov-
ered the optimal solution in some of the connected subgraphs at the beginning of the search, which in turn
enabled the peel procedure to prune the graph to trivial size and thus proves the global optimality. Nev-
ertheless, for “discogs_style", “Reduction 1&2" and “Reduction 1" perform similarly. We also notice that
the curves of “Reduction 1" and “Reduction 1&2" meet sooner or later for all the instances. In a nutshell,
the convergence rate is highly related to the instance under consideration, but in any case, both reduction
methods accelerate the search procedure.

4.3 Exact algorithms
In this section, we introduce new ideas for developing effective exact algorithms for MBBP, which

can be applied to solve very large MBBP instances from applications like social networks. Our main
contribution can be summarized as follows.

– We elaborate an upper bound propagation (UBP) procedure inspired from [Soto et al., 2011], which
produces an upper bound of the maximum balanced biclique involving each vertex in the bipartite
graph. UBP propagates the initial upper bound involving each vertex and achieves an even tighter
upper bound for each vertex. UBP is independent from the search procedure and is performed before
the start of the algorithm. A new exact algorithm, denoted by (ExtBBClq), is devised by taking
advantage of UBP to improve BBClq, the branch-and-bound algorithm introduced in [McCreesh and
Prosser, 2014].

– Based on the upper bounds returned by UBP, we introduce new valid inequalities to tighten the MIP
formulation of MBBP introduced in [Dawande et al., 2001]. Our numerical experiments suggest that
using the tightened model allows to achieve better results.

– We also present a new exact algorithm (ExtUniBBClq) to supplement the family of B&B based
algorithms for MBBP. Unlike BBClq which goes through every possible balanced biclique, the new
algorithm only enumerates the possible partial sets (half-sets) of the balanced bicliques in the graph.
ExtUniBBClq also integrates UBP as a pre-processing procedure and performs generally well for the
benchmark instances.

4.3.1 Preliminary definitions

Figure 4.3: A bipartite graph G = (U, V,E), U = {1, 2, 3, 4, 5}, V = {6, 7, 8, 9, 10}.

Given a bipartie graph G = (U, V,E) (|U | ≤ |V | if not specifically stated), we still use N(v) = {u :
{v, u} ∈ E} to denote the set of vertices adjacent to v and degG(v) = |N(v)| the degree of vertex v.
However, to distinguish (X, Y) which represents a biclique in the heuristic algorithm, we use (A,B) ⊆

4.3. EXACT ALGORITHMS 73

(U, V) to represent a balanced biclique of G (i.e., |A| = |B|) in this part. The balanced size (half-size)
of the balanced biclique (A,B) is the cardinality of |A| (or |B|). Specifically, the upper bound involving
vertex v is denoted by ubv, which is an upper bound of the half-size of the maximum balanced biclique
containing vertex v. For example, in Figure 4.3, a possible value for ub1 could be 2, since degG(1) = 2.

4.3.2 Review of the BBClq algorithm

Algorithm 4.3 shows the BBClq algorithm, which is a recursive exact algorithm introduced in [Mc-
Creesh and Prosser, 2014] and used in TSGR-MBBP for graph reduction. BBClq is adapted from a well-
known B&B algorithm for the maximum clique problem [Carraghan and Pardalos, 1990] and recursively
builds up two sets A and B such that (A,B) forms a biclique. The algorithm maintains a candidate set CA
(CB) that includes vertices which are eligible to move into A (B) while ensuring that (A,B) is a biclique
(i.e., CA =

⋂
i∈B N(i), CB =

⋂
i∈AN(i)). Initially, the algorithm sets lb, the global lower bound on the

maximum biclique half-size to 0 and starts the search by calling BBClq(G, ∅, ∅, U, V).
At each recursive call to BBClq, a vertex v (called branch vertex) is moved from CA (lines 7-8). The

algorithm then considers the branches (possibilities) of v ∈ A in lines 9-12 and v /∈ A in the next while
loop. The bounding procedure (line 9) prunes the branch of v ∈ A if the upper bound after estimation in this
context is not larger than the global lower bound. The upper bound estimating method, which is classically
a key point concerning the performance of a B&B algorithm, will be introduced in the following section.
If the current branch is not pruned, the search goes on by reconstructing A′ with a new vertex v and C ′B
by filtering from CB those vertices not adjacent to v (every vertex in B must be adjacent to every vertex in
A). After updating the two sets, the algorithm recursively calls BBClq in line 12, swapping the roles of A
and B, as A and B are extended alternatively for the sake of satisfying the balance requirement. The above
process is repeated in the next recursive call of BBClq.

When the algorithm loops back to line 4, as we just mentioned, it explores another branch implying
v /∈ A. The while loop stops when CA becomes empty or when the remaining vertices in CA do not
allow to build a solution better than the global lower bound (lines 5-6). Besides, since |A| + 1 = |B| or
|A| = |B| holds each time BBClq is called, we update the lower bound in lines 1-3 once |A| > lb and store
the incumbent solution (A,B) as the best solution found so far. As a result, the best solution (A∗, B∗) is an
optimal biclique with |A∗| = lb (A∗ ⊆ U or A∗ ⊆ V), but it may not be totally balanced (|A∗| − |B∗| ≤ 1).
Thus, in line 13, the procedure of retrieving the maximum balanced biclique (of half-size lb) from a biclique
is accomplished by make_balance(). This procedure simply removes vertices from the larger set A∗ or B∗

until a balanced biclique is obtained.
Figure 4.3 is now used to illustrate BBClq. Initially, lb = 0 and BBClq(G, ∅, ∅, U, V) is called. Accord-

ing to the minimal degree heuristic in [McCreesh and Prosser, 2014], vertex 1 is chosen as the first branch
vertex. Clearly, the current upper bound is greater than 0, the algorithm proceeds to BBClq(G, ∅, {1}, {6, 7}, U\
{1}) to explore the solutions containing vertex 1. As a result, the solution ({1}, {6}) is found and lb is
updated to 1. Likewise, the algorithm selects 5 as the second branch vertex in the following loop, pro-
ceeds to BBClq(G, ∅, {5}, {8, 10}, U \ {1, 5}) if no upper bounding technique is applied. We can see
that this recursive call to BBClq has to explore the case of expanding the given biclique by adding ver-
tex 8 or 10. However, with the upper bounding estimating technique proposed in this section, the call
of BBClq(G, ∅, {5}, {8, 10}, U \ {1, 5}) will not even start since the upper bound involving vertex 5 is 1
(upper_bound({5}) = lb = 1). The algorithm finds the optimal solution ({1, 2}, {4, 5}) after the third loop
(which explores A = {2} and calls BBClq(G, ∅, {2}, {7, 8, 9}, U \ {1, 5, 2})). There will be no additional
iteration as |A|+ |CA| ≤ 2 (A = ∅, CA = {3, 4}).

4.3.3 Upper bound propagation and its use to improve BBClq

We introduce in this section our Upper Bound Propagation procedure (UBP) which is then used as a
pre-processing technique to reinforce the BBClq algorithm presented in the last section.

74 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

Algorithm 4.3: BBClq(G, A, B, CA, CB), the B&B algorithm for MBBP taken from [McCreesh and
Prosser, 2014].

Input: Graph instance G = (U, V,E), A, B - current sets that form a biclique, CA, CB - the sets of
eligible vertices that can be added to A and B respectively.

Output: A maximum balanced biclique of G.
if |A| > lb then

lb← |A| ;
Record current best biclique in (A∗, B∗);

while CA 6= ∅ do
if |A|+ |CA| ≤ lb then

return ;
v ← branch_vertex(CA);
CA ← CA \ {v};
if upper_bound(A ∪ {v}) > lb then

A′ ← A ∪ {v};
C ′B ← CB ∩N(v);
BBClq(G,B, A′, C ′B, CA);

return make_balance(A∗, B∗);

4.3.4 The upper bound propagation procedure
The original BBClq algorithm calculates a biclique cover (based on addressing the graph coloring prob-

lem on the complement graph) to estimate the upper bound in a general graph relying on the fact that sets
A and B are independent sets. However, when the given graph is bipartite, the upper bound found by this
technique is trivial as two vertex sets are initially independent sets. Here, we introduce our Upper Bound
Propagation to produce, for each vertex, an upper bound on the half-size of any maximum balanced biclique
involving that vertex. UBP is based on the following propositions.

Proposition 1. For each vertex v ∈ U ∪ V , degG(v) is an upper bound on the maximum half-size balanced
biclique involving v.

This proposition is obviously true since the half-size of a balanced biclique cannot exceed the degree of
any vertex in the biclique.

Proposition 2. Given a vertex v ∈ U , let wvu = |N(v) ∩ N(u)|,∀u ∈ U . Let yv be the maximum integer
such that there exists at least yv vertices in {wvu : u ∈ U} satisfying wvu ≥ yv, then yv is an upper bound
on the maximum half-size balanced biclique involving v.

Proof : Clearly, in the maximum balanced biclique (A,B) involving v ∈ A, for any vertex u ∈ A
(including v), we have B ⊆ N(v) ∩N(u). Therefore, the maximum possible value yv such that yv vertices
in U share at least yv adjacent vertices with v is an upper bound involving v. Note that this proposition also
holds given any vertex in V .

Proposition 3. Given a vertex v ∈ U ∪ V , let zv be the largest integer such that there exists zv vertices
in N(v) having upper bounds at least zv. Then zv is an upper bound on the maximum half-size balanced
biclique involving v.

Proof : We prove this proposition by contradiction. Suppose zv is not an upper bound, then there exists
a balanced biclique (A′, B′) involving v ∈ A′ of half-size z′v such that z′v > zv, implying that all the z′v
vertices in B′ (B′ ⊆ N(v)) must have an upper bound of at least z′v (i.e., ∀u ∈ B, ubv ≥ z′v), which
contradicts the condition that zv is the maximum integer such that there exists in N(v) at least zv vertices
having zv ≥ ubv.

4.3. EXACT ALGORITHMS 75

Consider the example of Figure 4.3, according to Proposition 1, we have ub1 = ub5 = 2, ub2 = ub3 =
ub4 = 3. Then, following Proposition 2, ub1 can be improved (decreased) to 1 since w12 = w13 = w14 = 1,
w15 = 0 (y1 = 1). Similarly ub2, ub3, ub4, ub5 can also be improved to 2, 2, 1, 1 respectively. By Proposition
3, it can be deduced that ub6 = 1 and ub7 = 2 (z6 = 1, z7 = 2), which are better upper bounds than the
degrees.

Based on these proposition, we devise the UBP procedure (see Algorithm 4.4) to calculate an upper
bound involving each vertex. Initially ubv is set to degG(v), then the upper bound of each vertex in U is
improved according to Proposition 2 (lines 2-9). From line 10 to the end of Algorithm 4.4, the procedure
aims at propagating the upper bound based on Proposition 3 until the upper bounds cannot be improved any
more. The propagation procedure is guaranteed to converge as the upper bounds cannot be smaller than 0.
Experiments in Section 4.3.7 show that, for both random and real-life large instances, UBP converges very
fast, only in a limited number of iterations.

In both lines 7 and 14, we use binary search to find, for a given set I of integers, the maximum element
x ∈ I such that there are at least x integers in I that are larger than or equal to x. The procedure works
as follows: first, I is sorted by decreasing order, then, an iteration starts by comparing the middle element
with its index in S (i.e., its position in the sorted list). If the middle element is greater (respectively lesser)
than its index, the next iteration proceeds with the second half (respectively the first half) of I . This binary
search procedure based on dichotomy performs at most log2(|I|) operations.

Actually, we can also tighten the initial upper bound involving each vertex in V by repeating the process
in lines 2-9 after replacing U with V before the propagating procedure (lines 10-17) starts. However, this
procedure requires considerable memory and time especially for large graphs. For example, the matrix
representing wij, (i, j) ∈ V × V requires a memory of O(|V |2), the computational time of computing yv
(v ∈ V) is bounded by O(|U | × (maxv∈V degG(v))2) + |V | × log(|V |). Thus the overhead is not negligible.
As a compromise, we set a threshold on the size of the vertex set. We apply the procedure of lines 2-9 to
improve the upper bound involving each vertex only when the cardinality of the vertex set (U or V) is less
than the threshold. In the following experiments, the threshold has empirically been set to 30000.

Algorithm 4.4: Upper bound propagation procedure
Input: Graph instance G = (U, V,E)
Output: An upper bound vector ub for each vertex in G.
∀v ∈ U ∪ V, ubv ← degG(v);
∀(v, u) ∈ U × U,wvu ← 0;
for k ∈ V do

for (v, u) ∈ N(k)×N(k) do
wvu ← wvu + 1;

for v ∈ U do
Binary search for the largest integer yv such that |{u ∈ U : wvu ≥ yv}| ≥ yv;
if yv < ubv then

ubv ← yv;

stable← false;
while stable 6= true do

stable← true;
for v ∈ U ∪ V do

Binary search for the largest integer zv such that |{u ∈ N(v) : ubu ≥ zv}| ≥ zv;
if zv < ubv then

ubv ← zv;
stable← false;

return ub;

76 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

To see how tight the upper bounds provided by UBP are, consider the example of Figure 4.3, the final
upper bound achieved by UBP is ubv = 1, 2, 2, 1, 1 for v ∈ U and ubv = 1, 2, 2, 2, 1 for v ∈ V . These upper
bounds are actually all tight.

Combining UBP with BBClq: ExtBBClq

As UBP is independent of the search algorithm, we use it as a pre-processing procedure for BBClq to
obtain an extended version named ExtBBClq. In ExtBBClq, we use the same branching heuristic as in
the original BBClq algorithm: the vertex of the minimum degree in CA is given the highest priority for
branching. To efficiently implement ExtBBClq, we sort the arrays N(v) (∀v ∈ U ∪ V) in ascending order
of index number before the beginning of BBClq, so that the intersection operation in line 11 (Algorithm
4.3) can be accomplished in O(|CB| ∗ log(|N(v)|)) asymptotic time by binary search. More importantly,
to make use of the upper bound information calculated by UBP, in ExtBBClq, instead of calculating the
upper bound by calling the upper bound estimation method (i.e., upper_bound(A ∪ {v}) in line 9, we use
the pre-computed ubv returned by UBP as the upper bound in the current branch.

4.3.5 A tighter mathematical formulation
In this section, we propose a tightened mathematical formulation for MBBP that takes advantage of the

UBP procedure. Let us first recall the mathematical formulation of MBBP introduced in [Dawande et al.,
2001]:

max ω(G) =

|U |∑
i=1

xi (4.3)

subject to:
xi + xj ≤ 1,∀{i, j} ∈ Ē (4.4)

|U |∑
i=1

xi −
|U |+|V |∑
i=|U |+1

xi = 0 (4.5)

xi ∈ {0, 1}, ∀i ∈ U ∪ V (4.6)

where each vertex of U ∪ V is associated to a binary variable xi indicating whether the vertex is part
of the biclique, Ē is the set of edges in the complement bipartite graph of G. Constraint (4.4) requires
that each pair of non-adjacent vertices cannot be selected at the same time (i.e., the solution must form a
biclique). Constraint (4.5) enforces that the biclique is balanced.

To make use of the upper bounds returned by UBP, let S` ⊆ U (or S` ⊆ V) be the set of all the vertices
in U (respectively in V) such that ubi ≤ ` (` is a positive integer) for all i ∈ S`. Then the following
inequality is valid: ∑

i∈S`
xi ≤ `

Indeed, the vertices in S` can only be involved in balanced bicliques having half-size less than `. We
consider this inequality for ` = max

i∈U
ubi as it dominates the inequalities associated with higher values of `.

Before tightening this inequality, we observe that since ` = max
i∈U

ubi, we have S` = U . Then for each

u ∈ U such that ubu < `, or equivalently for all u ∈ S`−1, we can lift the term associated with u:

(`− ubu + 1)xu +
∑

i∈U\{u}

xi ≤ ` ∀u ∈ S`−1

4.3. EXACT ALGORITHMS 77

Let T `−1
u be any maximal subset of S`−1 containing u such that for all i and j ∈ T `−1

u , then N(i)∩N(j)
is empty. The term ‘maximal subset’ means that no vertex i ∈ S`−1 can be added to T `−1

u .
We can deduce the following valid inequality:∑

i∈T `−1
u

(`− ubi + 1)xi +
∑

i∈U\T `−1
u

xi ≤ ` ∀u ∈ S`−1

It can be observed that the valid inequalities built from two vertices u and v of S`−1 may possibly be
identical, especially if v ∈ T `−1

u . This is not an issue since modern solvers remove duplicate constraints
automatically during presolving.

Naturally, the lower ubi is, the tighter these inequalities are. Consider the example of Figure 4.3, since
the upper bound involving each vertex is given by UBP, we can produce the following valid inequalities
(` = 2):

– Vertex 1 (and also 4) leads to 2x1 + x2 + x3 + 2x4 + x5 ≤ 2
– Vertex 5 leads to 2x1 + x2 + x3 + x4 + 2x5 ≤ 2
– Vertex 6 leads to 2x6 + x7 + x8 + x9 + x10 ≤ 2
– Vertex 10 leads to x6 + x7 + x8 + x9 + 2x10 ≤ 2
The LP relaxation of the original formulation (1)-(4) yields an objective of 2.5, and nearly all the vari-

ables are fractional. Adding these four inequalities yields an objective of 2 and an integer solution, which
proves to be optimal.

4.3.6 A novel MBBP algorithm ExtUniBBClq
We observe that for any biclique (A,B) such thatA ⊆ U,B ⊆ V and |A| ≤ |B|, the maximum balanced

biclique in subgraph G[A ∪ B] is (A,B′) with B′ ⊆ B, and the maximum half-size of any (A,B′) is still
|A|. In other words, the half-size of the maximum balanced biclique in G = (U, V,E) is the cardinality of
maximum subset A ⊆ U which satisfies |

⋂
i∈AN(i)| ≥ |A|. As a result, instead of building the two sets of

balanced biclique alternatively, we can directly enumerate the eligible subset A from U (or B from V) such
that |

⋂
i∈AN(i)| ≥ |A|. Based on this observation, we propose a new algorithm (Algorithm 4.5) which

builds the maximum eligible subset from U (as |U | ≤ |V |).
The framework of ExtUniBBClq is similar to Algorithm 4.3 except that ExtUniBBClq only builds the set

A recursively such that (A,B) forms a biclique and |A| ≤ |B|. Moreover, in ExtUniBBClq, we make use of
the upper bound involving each vertex returned by UBP. Therefore, UBP has to be called before the start of
ExtUniBBClq. For each call of ExtUniBBClq, a current set A, as well as the candidate set CA that contains
vertices that can be moved into A, and set B which is the common adjacent vertices of vertex in A (i.e.,
B =

⋂
i∈AN(i)) are given. The algorithm initializes lb to 0 and begins from ExtUniBBClq(G, ∅, U, V).

As in BBClq, in each call of ExtUniBBClq, a branch vertex v (with the maximum upper bound) is
moved out from CA (lines 9-10) and the algorithm goes to two branches: the branch where v ∈ A before
the end of current loop (lines 11-15) and another branch where v /∈ A in the next loop. In lines 11-12, when
the upper bound associated with vertex v is not larger than the lower bound, ExtUniBBClq stops the current
search immediately once ubi is the largest upper bound of all vertices in CA. In lines 13-15, the search goes
on by expanding A′ and rebuilding B′. Note that we filter out unpromising vertices from N(v) which have
an upper bound not larger than the lower bound. In the end of the loop, ExtUniBBClq is called to further
enlarge set A. After it returns, the algorithm moves to the next loop, entering another branch with v /∈ A.
In lines 7-8, the search is stopped when CA is not large enough to build a better solution. In lines 5 and 13,
the make_balance procedure is called so that the final solution is a strictly balanced biclique of half-size lb.

At the start of each call to ExtUniBBClq, we update the lower bound if it is needed (lines 1-3) and
terminate the current search if A is not eligible (|A| ≤ |B|) or |B| is not larger than the lower bound. For
an efficient implementation, we pre-sort the array which represents U (the initial CA) in ascending order of
the upper bound involving each vertex. Consequently, the last element in the array will always be the vertex
with the largest upper bound. We also sort the arrays representing V (the initial B) and N(v) (∀v ∈ U) in

78 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

Algorithm 4.5: ExtUniBBClq(G, A, CA, B), a new B&B procedure for MBBP based on enumerating
one vertex set.

Input: Graph instance G = (U, V,E) , A - the current subset of U , CA - the candidate subset of U , B
- the common neighbors of vertices in C ,i.e., B =

⋂
i∈C N(i)

Output: A maximum balanced biclique of G
if |A| ≤ |B| AND |A| > lb then

lb← |A| ;
Record current best biclique (A∗, B∗);

if |A| ≥ |B| OR |B| ≤ lb then
return make_balance(A∗, B∗)

while CA 6= ∅ do
if |A|+ |CA| ≤ lb then

return
v ← argmaxi∈CA ubi;
CA ← CA \ {v};
if ubv ≤ lb then

return
A′ ← A ∪ {v};
B′ ← B ∩ {u ∈ N(v) : ubu > lb};
ExtUniBBlq(G, A′, CA, B′)

return make_balance(A∗, B∗)

ascending order of the index of each vertex so that the intersection operation in line 14 can be accomplished
in linear time.

We illustrate the principle of this procedure by using the example of Figure 4.3 again. Firstly, the lower
bound lb is initialized to 0 and ExtUniBBClq(G, ∅, U, V) is then called. In the first while loop, vertex
2 is selected as the branch vertex as ub2 = 2 is the largest upper bound of all vertices in U ; then we get
A = {2}, C ′A = {1, 4, 5, 3}, B′ = {7, 8, 9}. The next call to ExtUniBBClq expands the incumbent set
A = {2}, which leads to a solution ({2, 3}, {7, 8}) (and lb is updated to 2). The second while loop which
branches on vertex 3 and builds candidate set C ′A = {1, 4, 5}, is stopped earlier as the largest upper bound
(ub3 = 2) is equal to lb. Thus, the whole search stops, returning ({2, 3}, {7, 8}) as the optimal solution.

4.3.7 Computational experiments

This section is dedicated to a computational evaluation of the proposed algorithms for MBBP, based on
the Random graphs and KONECT networks (introduced in 1.4.1 in Chapter 1).

We compare the performance of 5 algorithms including both the existing approaches and the new ap-
proaches proposed in this work. The first 3 algorithms are B&B algorithms.

– BBClq: the algorithm introduced in [McCreesh and Prosser, 2014]. However, compared with the
original algorithm, symmetry breaking and clique cover techniques are removed as they are irrelevant
for bipartite graphs.

– ExtBBClq: the extended version of BBClq combining UBP with our new branching heuristic pre-
sented in Section 4.3.4

– ExtUniBBClq: the new algorithm introduced in Section 4.3.6.
To compare the original mathematical formulation and the tightened formulation presented in this work,

we use IBM CPLEX 12.6.1 to solve the benchmark instances with both formulations.
– Original: the original mathematical formulation of MBBP from [Dawande et al., 2001].
– Tightened: the formulation with the additional inequalities introduced in Section 4.3.5.
All the experiments are conducted on a computer with an Intel Xeon© E5-2670 processor (2.5GHz and

4.3. EXACT ALGORITHMS 79

Table 4.4: Computational results of the 5 algorithms for the random graphs.

n p
UBP B&B Algorithms MIP

time iter BBClq ExtBBClq ExtUniBBClq Original Tightened

50 0.1 0.00 3.1 0.00 0.00 0.00 4.02 0.41

50 0.3 0.00 2.8 0.02 0.01 0.01 4.62 4.70

50 0.5 0.00 3.3 0.45 0.15 0.3 6.48 11.52

50 0.7 0.00 3.0 24.19 5.12 11.60 8.49 7.47

50 0.9 0.00 3.2 10174.28(5) 680.11 4405.93(28) 0.39 0.33

100 0.1 0.00 3.8 0.01 0.00 0.00 30.26 4.77

100 0.3 0.00 3.2 0.96 0.42 0.78 457.77 510.60

100 0.5 0.01 3.3 118.97 32.22 52.75 7137.27 4392.06

100 0.7 0.01 3.1 [13.50-] 9540.81(17) [13.73-] [13.57-20.30] [13.40-20.00]

100 0.9 0.00 2.8 [26.07-] [25.37-] [26.87-] 9977.23(6) 10358.21(4)

150 0.1 0.00 3.7 0.06 0.04 0.05 305.04 225.67

150 0.3 0.01 3.0 11.28 3.44 8.75 9953.88(15) 9937.61(14)

150 0.5 0.02 3.3 4716.49 933.95 2281.69 [8.86-28.38] [8.89-28.46]

150 0.7 0.04 3.4 [14.73-] [14.73-] [15.00-] [14.82-41.86] [14.62-42.08]

150 0.9 0.05 3.3 [29.53-] [27.93-] [30.23-] [35.04-55.58] [34.71-55.54]

200 0.1 0.01 3.3 0.19 0.07 0.26 1725.24 1239.80

200 0.3 0.03 3.2 84.08 21.95 59.22 [6.00-38.44] [6.00-22.52]

200 0.5 0.05 3.3 [9.97-] 10761.34(3) [10.03-] [8.95-55.68] [9.05-50.76]

200 0.7 0.08 3.3 [15.30-] [15.23-] [15.93-] [15.45-64.32] [15.67-65.78]

200 0.9 0.11 3.3 [31.93-] [30.10-] [32.60-] [38.70-79.19] [38.21-79.52]

2GB RAM) running CentOS 6.5. The BBClq, ExtBBClq and ExtUniBBClq algorithms are implemented
in C++ and compiled with g++ using optimization option -O3 2. For each instance, a cut-off time limit of
3 hours (10800 seconds) is given to each trial. When solving the DIMACS machine benchmark procedure
‘dfmax.c’ 3 without compilation optimization flag, the run time on our machine is 0.46, 2.68 and 10.70
seconds for graphs r300.5, r400.5 and r500.5 respectively.

The experimental results for random graphs are summarized in Table 4.4. For each configuration which
is a pairwise combination of n ∈ {50, 100, 150, 200} (the cardinality ofU or |V |) and p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
(the edge density), we generated 30 graphs independently. Column “time" reports the pre-processing time
(the time of running UBP) and column “iter" shows the average number of while loops (i.e., lines 11-17,
Algorithm 4.4) needed to stabilize the upper bound of all the vertices. For each algorithm, we report the
average time consumed to solve the corresponding instance (the time for pre-processing is also included).
Note that 0.00 means the instance can be solved in less than 0.01 second. If some of the 30 instances cannot
be solved within 3 hours, we also append the number of solved instances in brackets. If none of the 30
instances can be solved, for the first three algorithms, we report the average best lower bound, for MIP, we
report both the average best lower bound and average upper bound. The shortest times among the first three
algorithms and between the two mathematical formulations are highlighted by bold font.

For the tested random graphs, the time consumption of UBP is insignificant with respect to the whole
search time. Meanwhile, the number of iterations for propagating upper bounds is also trivial (closely
around 3 for all the configurations). In terms of computational time of all the algorithms, ExtBBClq is gen-
erally the fastest algorithm to solve most of these instances while ExtUniBBClq also performs better than
BBClq. The MIP formulation is found to be quite competitive compared with the other three algorithms
when the density of the instance reaches 0.9. A possible explanation to this phenomenon is that the formula-
tion of dense instances involves fewer constraints and may be solved more easily. In addition, when graphs

2. The code of our algorithms will be available online.
3. dfmax:ftp://dimacs.rutgers.edu/pub/dsj/clique/

dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/

80 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

Table 4.5: Computational results of the 5 algorithms for KONECT instances.

instance BEST
UBP B&B Algorithms MIP

time iter BBClq ExtBBClq ExtUniBBClq Original Tightened

actor-movie 8* 5.54 27 6533.01 1671.29 807.25 - -

bibsonomy-2ui 8* 1.56 7 491.36 13.84 9.13 - -

bookcrossing_full-rating 13* 5.11 33 3102.66 426.37 [10-] - -

dblp-author 10* 19.86 21 [1-] 403.16 30.06 - -

dbpedia-genre 7* 3.94 9 171.86 5.83 16.35 - -

dbpedia-location 5* 0.18 8 633.98 0.52 0.39 - -

dbpedia-occupation 6* 0.27 8 909.03 1.29 1.57 - -

dbpedia-producer 6* 0.27 11 535.44 0.62 0.65 - -

dbpedia-recordlabel 6* 24.33 7 214.45 24.67 24.04 - -

dbpedia-starring 6* 1.07 31 530.61 4.67 1.39 - -

dbpedia-team 6* 3.08 15 2982.24 241.06 1170.25 - -

dbpedia-writer 6* 0.19 12 283.16 0.35 0.23 - -

discogs_affiliation 26* 12.01 17 [1-] 1688.95 [18-] - -

discogs_lgenre 15* 0.06 1 37.08 1.01 0.17 - -

discogs_style 38 17.42 22 [23-] [38-] [23-] - -

edit-dewiki 40 93.68 23 [1-] [40-] [14-] - -

edit-frwiktionary 19* 9.56 9 944.21 152.5 [19-] - -

escorts 6* 5.69 6 7.68 10.05 10.55 - -

flickr-groupmemberships 36 47.37 36 [34-] [36-] [18-] - -

github 12* 1.01 16 677.72 150.66 [12-] - -

gottron-trec 83 549.21 35 [33-] [38-] [83-] - -

jester1 100* 1.86 1 1204.64 1123.66 4.24 248.87 -

moreno_crime 2* 0.05 3 0.05 0.06 0.06 3483.58 55.22

opsahl-ucforum 5* 0.09 10 0.18 0.13 0.26 [4-285] [5-7]

pics_ut 27 21.84 7 [27-] [23-] [23-] - -

reuters 39 611.76 61 [35-] [39-] [12-] - -

stackexchange-stackoverflow 9* 4.62 29 4107.56 265.8 3690.8 - -

unicodelang 4* 0.02 5 0.01 0.02 0.03 1218.46 19.58

wiki-en-cat 14* 7.67 20 [1-] 28.72 121.99 - -

youtube-groupmemberships 12* 0.96 21 222.88 11.49 1784.76 - -

4.3. EXACT ALGORITHMS 81

density increases much, the maximum biclique and the maximum balanced biclique tend to be closer and
closer, which means that the balancing constraint, which makes the problem NP-hard, tends to be less and
less active. Since the maximum biclique problem is easy on bipartite graph, a balanced biclique is likely to
be found easily by a MIP solver (as the quality of the linear programming relaxation improves with density)
whereas high density is the worst situation for enumerative approaches. As expected, the tightened MIP is
often solved faster than the original MIP, and the gap to optimality is generally less for those instances that
could not be solved to optimality.

We report the results for a subset of 30 large KONECT instances in Table 4.5. Column “instance"
indicates the name of graph. Column “best" shows the best half-size found by all algorithms. An extra
“*" indicates the optimality of this best value. Column “UBP" also reports the time of pre-processing and
number of iterations to propagate the upper bounds. For each algorithm, we report the computational time
to solve the instances. As in Table 4.4, when optimality is not proven, the best lower bound is reported for
the first three algorithm while for MIP, both lower bound and upper bound are presented.

For the large real-life instances (see Table 4.5), the time spent by UBP is still insignificant with respect
to the total search time. The number of iterations is also limited in fewer than 40 for these very large
instances. We note that the new algorithms with UBP (ExtBBClq and ExtUniBBClq) dominate the original
algorithms in terms of computational time. The extended version ExtBBClq reduces the time of BBClq
from hundreds of seconds to less than 30 seconds for 10 instances. It is also the only algorithm that solves
discogs_affiliation. ExtUniBBClq is faster than ExtBBClq on 8 instances. It also achieves a substantial
speed-up on jester-1 (where |U | � |V |). CPLEX is no longer able to give a lower bound for most instances
(but we still observe that the tightened formulation leads to a better performance for the 2 solved instances).

4.3.8 Analysis

In this section, we compare the sizes of B&B trees generated by the algorithms to solve MBBP instances.
Though in BBClq or ExtBBClq, there is no explicit declaration of B&B nodes, we can treat one call of
BBClq() procedure as one enumeration of B&B node. In CPLEX, the number of nodes in the search tree
is directly available. We exclude ExtUniBBClq as the search scheme and branching heuristic are different
from BBClq and ExtBBClq.

Firstly, we generate 18 random instances with n fixing to 50 (|U | = |V | = 50) and p (density) ranging
from 0.1 to 0.95, then we solve these instances by BBClq, ExtBBClq and CPLEX with the two formulations.
Then we compare the number of B&B tree nodes between BBClq and ExtBBClq on the one hand, those
generated by CPLEX with the original and tightened formulations on the other hand. The results are shown
in Figure 4.4.

From Figure 4.4, we can observe that, the bounding technique and the extra inequalities significantly
reduce the B&B tree size on sparse graphs (whose densities are below 0.2). When the density of random
graph is lower than 0.9, ExtBBClq always enumerates fewer B&B nodes than BBClq. However, when
the density increase to 0.9, the B&B tree of ExtBBClq has the same size as that of BBClq. Since we have
improved the performance of intersection operation in the implementation of ExtBBClq (see Section 4.3.4),
ExtBBClq still outperforms BBClq when the sizes of B&B trees are equal (see Table 4.4). As to the two
mathematical formulations, CPLEX can solve the tightened formulation without expanding the B&B nodes
when the graph is either quite sparse (p = 0.1) or very dense (p = 0.95).

Secondly, we compare the sizes of B&B trees for the real-life instances. Figure 4.5 shows the number
of B&B tree nodes of BBClq and ExtBBClq for the 21 instances that can be solved by both algorithms in 3
hours (see Table 4.5). We no longer compare the two mathematical formulations as CPLEX fails to solve
the majority of these large instances. Figure 4.5 indicates that ExtBBClq enumerates fewer tree nodes for
all the real-life instances. This is especially true for dbpedia-producer, dbpedia-writer and moreno_crime,
where ExtBBClq prunes more than half of the B&B nodes compared to BBClq.

82 CHAPTER 4. HEURISTIC AND EXACT ALGORITHMS FOR MBBP

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

density

0

1

2

3

4

5

6

7

8

9

lo
g 1

0
(B

&
B
n
od
es

)

(a) B&B nodes of BBClq and ExtBBclq

BBClq
ExtBBclq

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

density

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

lo
g 1

0(
B

&
C
n
od
es

)

(b) B&C nodes of Original and Tightened model

Original
Tightened

Figure 4.4: The base-10 log scale number of B&B tree nodes explored by BBClq, ExtBBClq, and CPLEX
with the original and tightened formulations to solve the random graphs of different densities.

actor-m
ovie

bibsonomy-2ui

bookcrossin
g_full-ra

ting

dbpedia-genre

dbpedia-location

dbpedia-occu
pation

dbpedia-producer

dbpedia-recordlabel

dbpedia-sta
rrin

g

dbpedia-team

dbpedia-write
r

disco
gs_lg

enre

edit-fr
wiktionary

esco
rts
github

jester1

moreno_cri
me

opsahl-ucforum

stackexchange-sta
ckoverflo

w

unicodelang

youtube-groupmemberships

instances

0

1

2

3

4

5

6

7

lo
g

10
(B

&
B
n
od
es

)

B&B nodes of BBClq and ExtBBclq

BBClq
ExtBBclq

Figure 4.5: The base-10 log scaled number of B&B tree nodes explored by the BBClq and ExtBBClq
algorithms for the 21 solvable instances.

4.4. CONCLUSION 83

4.4 Conclusion
The Maximum Balanced Biclique Problem is of great interest both theoretically and practically. We

investigated a heuristic algorithm in the first part of this chapter and exact approaches in the second part.
The heuristic algorithm (TSGR-MBBR) combines constraint-based tabu search (CBTS) with two graph
reduction techniques. The PUSH operator, which was firstly introduced in Chapter 2, was also in employed
and extended in the tabu search for MBBP. Meanwhile, distinguished from common local search routine,
CBTS explores the relaxed search space including both balanced and unbalanced bicliques. An unbalanced
constraint is employed to limit the search space in the following iterations. Besides CBTS, TSGR-MBBP
uses peel procedure and fast exact search algorithm [McCreesh and Prosser, 2014] to reduce the search
space of very large graphs. We tested TSG-MBBP on 30 random instances and 25 KONECT instances
from real-life applications. Comparison with existing algorithms (solvers) including EA/SM [Yuan et al.,
2015], GL_Greedy[Al-Yamani et al., 2007], CPLEX indicates that the TSGR-MBBP is among the most
competitive state-of-the-art algorithms. An interesting feature of TSGR-MBBP is that it can even prove
optimality for large real-life instances thanks to the reduction techniques.

In the second part of this chapter, we investigated exact algorithms. A new pre-processing procedure
called Upper Bound Propagation (UBP) is proposed for the first time. Since UBP provides tightened initial
bound of each vertex, existing exact algorithm [McCreesh and Prosser, 2014] can be improved by using
these tightened bounds. Based on UBP, we also discussed a new type of valid inequalities for MIP formu-
lations in [Dawande et al., 2001]. A new exact algorithm is proposed to enrich the exact algorithm family
of MBBP. Experiments with random graphs and KONECT instances were carried out, which demonstrate
the effectiveness of all these new proposed ideas.

5
A Three-Phased Local Search Approach for the
Clique Partitioning Problem

This chapter presents a three-phased local search heuristic named CPP-P3, for solving the Clique Parti-
tioning Problem (CPP). CPP-P3 iterates a descent search, an exploration search and a directed perturbation.
We also define the Top Move of a vertex, in order to build a restricted and focused neighborhood. The ex-
ploration search is ensured by a tabu procedure, while the directed perturbation uses a GRASP-like method.
To assess the performance of the proposed approach, we carry out extensive experiments on benchmark
instances of the literature as well as newly generated instances. We demonstrate the effectiveness of our
approach with respect to the current best performing algorithms both in terms of solution quality and com-
putation efficiency. We present improved best solutions for a number of benchmark instances. Additional
analyses are shown to highlight the critical role of the Top Move-based neighborhood for the performance
of our algorithm and the relation between instance hardness and algorithm behavior. The content of this
chapter is based on the work published in Journal of Combinatorial Optimization.

Contents
5.1 Introduction . 87
5.2 General procedure . 88

5.2.1 Search space and evaluation function . 88
5.2.2 Top Move and restricted neighborhood . 88
5.2.3 Heap structure . 90
5.2.4 Generation of initial solution . 90
5.2.5 Descent search phase . 90
5.2.6 Exploration search phase . 91
5.2.7 Directed perturbation phase . 91
5.2.8 Singularity of CPP-P3 . 92

5.3 Computational experiments . 92
5.3.1 Benchmark instances and parameter settings . 93
5.3.2 Experiments and comparison . 93

5.4 Analysis . 99
5.4.1 The effectiveness of Top Move based neighborhood 99
5.4.2 Landscape analysis . 99

85

86 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

5.4.3 Impact of the descent search phase of CPP-P3 . 101
5.5 Conclusion . 101

5.1. INTRODUCTION 87

5.1 Introduction

Let G = (V,E,W) be a complete edge-weighted undirected graph with a vertex set V = {v1, v2, ...vn},
an edge set E = {{u, v} : u, v ∈ V, u 6= v} and a set of edge weights W = {wuv : wuv ∈ R, {u, v} ∈
E,wuv = wvu}. The Clique Partitioning Problem (CPP) consists in clustering all the vertices into k (un-
fixed) mutually disjoint subsets (or groups), such that the sum of the edge weights of all groups is as large
as possible [Grötschel and Wakabayashi, 1989; Grötschel and Wakabayashi, 1990; Wakabayashi, 1986].
Formally, let s = {G1, G2, . . . , Gk} be such a partition of a given graph G such that

⋃k
i=1Gi = V and

Gi ∩Gj = ∅ (∀1 ≤ i < j ≤ k). Let Ω denote the set of all partitions for G. CPP is then to find a partition
s∗ ∈ Ω that maximizes the following function:

f(s) =
k∑
p=1

∑
u,v∈Gp

wuv (5.1)

A mathematical formulation of CPP is presented in Chapter 1 and not repeated here. CPP has many
of practical applications like biology, flexible manufacturing systems, airport logistics, and social sciences.
Given the relevance of CPP, a number of solving procedures have been reported in the literature, including
both exact and heuristic methods. Most of the exact methods follow the branch and bound framework
[Dorndorf and Pesch, 1994; Jaehn and Pesch, 2013; Ji and Mitchell, 2007]) and cutting plane method
[Grötschel and Wakabayashi, 1989]. However, exact methods may become prohibitively expensive when
they are used to solve large instances. Consequently, various heuristic algorithms have been proposed
to find high-quality solutions to large CPP instances with acceptable computation time. In [De Amorim
et al., 1992], tabu search [Glover and Laguna, 2013] and simulated annealing [Kirkpatrick et al., 1983]
were applied to this problem. Improved solutions were reported in [Brusco and Köhn, 2009] by using a
reallocation heuristic and an embedded tabu search routine. In [Dorndorf et al., 2008; Dorndorf and Pesch,
1994], an ejection chain heuristic was presented, borrowing the idea of classical Kernighan-Lin algorithm
[Kernighan and Lin, 1970]. In [Charon and Hudry, 2001; Charon and Hudry, 2006], authors proposed a
noising method which adds decreasing levels of noise to neighbor evaluations. More recently, two heuristic
algorithms [Palubeckis et al., 2014; Brimberg et al., 2015] were presented. The work of [Palubeckis et al.,
2014] focuses on an iterated tabu search with tuned parameters. The approach of [Brimberg et al., 2015]
uses a generalized VNS algorithm designed for the Maximally Diverse Grouping Problem to solve CPP.
These two last CPP algorithms integrate two neighborhood relations: (i) reallocating one vertex and (ii)
swapping two vertices. Both of them performs quite well on the instances of [Brusco and Köhn, 2009]
as well as large graphs with more than 1000 vertices. In the experimental section of this work, these two
algorithms will be used as the main references for comparisons.

In this chapter, we introduce a novel heuristic algorithm, denoted by CPP-P3, which uses a Three Phase
Local Search framework combining a descent procedure, a tabu-based exploration search and GRASP-
like perturbations. Different from previous local search algorithms, CPP-P3 introduces a constrained Top
Move neighborhood to make the search more focused and calls for a heap data structure to ensure a fast
neighborhood examination. Computational experiments on four groups of graph instances (from 100 to
2000 vertices) show that CPP-P3 competes favorably with the current best performing algorithms (including
ITS [Palubeckis et al., 2014] and SGVNS [Brimberg et al., 2015]) both in terms of solution quality and
computational efficiency. We also carry out additional analysis to gain insights about the behavior of the
proposed algorithm.

The remaining part of this chapter is organized as follows. Section 5.2 describes the components of
the CPP-P3 algorithm and presents the concept of the Top Move neighborhood. Section 5.3 is dedicated to
computational results and detailed comparisons with state-of-the-art algorithms. Section 5.4 investigates the
effectiveness of the Top Move neighborhood and the hardness of problem instances by means of a landscape
analysis. Conclusions are drawn in the last section of this chapter.

88 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

5.2 General procedure
The proposed CPP-P3 method (see Algorithm 5.1) follows the general scheme of the Three-Phase Search

(TPS) introduced in [Fu and Hao, 2015]. From a given starting solution, the first phase aims to reach a local
optimal solution using a basic descent procedure. From this local optimum, the second phase is applied to
discover nearby local optima of better quality within the current regional area of the search space. If no
further improvement can be obtained, TPS switches to its third phase to perturb the incumbent solution to
displace the search to a more distant area from which a new round of the three phased process is launched.

In this section, we first describe fundamental elements of the proposed procedure: the search space
and the evaluation function (Section 5.2.1), the specific neighborhood induced by the Top Move concept
(Section 5.2.2) and the associated heap structure (Section 5.2.3). Then, we present each subroutine of
the Algorithm 5.1, i.e. the generation of initial solution and the three phases Descent_Search(), Ex-
plore_Local_Optima(), and Diversified_Perturbation(). We also discuss the main differences between
CPP-P3 and the existing heuristic algorithms in Section 5.2.7.

Algorithm 5.1: Pseudo-code of CPP-P3

Input: A graph instance described by a weight matrix G.
Output: The best solution sbest and its objective value fbest.
s← Build_Init_Solution() ; /* Section 5.2.4 */
fbest ← 0 ;
while stop condition is not met do

s← Descent_Search(s) ; /* Section 5.2.5 */
s← Explore_Local_Optima(s); /* Section 5.2.6 */
if f(s) > fbest then

sbest ← s;
fbest ← f(s);

s← Diversified_Perturbation(s) ; /* Section 5.2.7 */
return sbest

5.2.1 Search space and evaluation function
As previously mentioned, a solution s can be expressed as a partition of the set V of vertices into k

mutually disjoint groups {G1, G2, ..., Gk}, such as
⋃k
i=1 Gi = V ,Gi∩Gj = ∅,∀i 6= j, and ∀i, |Gi| > 0. The

number of groups k ∈ {1, . . . , |V |} is not fixed. The search space of a given CPP instance is composed of
all such solutions and has a cardinality of |Ω| =

∑n
k=1 S(n, k), where S(n, k) denotes the Stirling number

of the second kind. Enumerating such a huge search space is obviously impractical, even on reasonably
small graphs.

To evaluate the quality of a candidate solution s ∈ Ω, we simply use the objective function f (see
Equation (5.1)), which sums the weights of the edges whose end-points are inside the same group.

5.2.2 Top Move and restricted neighborhood
CPP-P3 is a local search algorithm, which requires a neighborhood allowing the search to navigate

through a given search space. The most intuitive way to transform one solution to a close solution for CPP
is probably to reallocate one vertex from its current group to another group. Compared with other popular
neighbor operators such as swapping two vertices or reallocating an edge, the size of the neighborhood
of reallocating a vertex is relatively reasonable for complete graphs. Also, it is easy to observe that each
solution can lead to any other solution by applying this reallocation operator. This property makes it possible
for the algorithm to explore potentially the whole search space, depending on the selection criterion.

5.2. GENERAL PROCEDURE 89

We now define the reallocation operator in a more formal way. Given an feasible solution (partition)
s = {G1, G2, ..., Gk}, a neighbor of s is a solution s′ which can be obtained after moving one vertex u from
its original group Gu to another group Gt (Gt ∈ s∪ {∅} \ {Gu}), including a potentially new group. When
Gt = ∅, a new group G′t = Gt ∪ {u} = {u} will be added to s′ as the (k + 1)-th group. On the other hand,
if G′u = Gu \ {u} = ∅, it will not be conserved in s′ anymore.

The key concept related to our neighborhood is the move gain, which indicates the change of the objec-
tive value between solution s and a neighbor s′. In order to calculate the move gain as fast as possible, we
firstly define the potential of vertex u relative to Gi, (Gi ∈ s ∪ {∅}):

pu,Gi =
∑
v∈Gi

wvu (5.2)

Given u ∈ Gu in s, move(u,Gt) the move which reallocates u from group Gu to Gt, the move gain
∆u,Gt (the variation of objective f) of move(u,Gt) can be incrementally computed by:

∆u,Gt = f(s′)− f(s) = pu,Gt − pu,Gu (5.3)

In previous studies on CPP like [Brusco and Köhn, 2009; Charon and Hudry, 2006; De Amorim et al.,
1992; Palubeckis et al., 2014], selecting an appropriate move (u,Gt) requires the evaluation of all feasible
neighboring solutions, i.e., by considering all reallocations of each vertex to each group including the empty
one. Let s⊕move(u,Gt) designate the neighboring solution s′ obtained by applyingmove(u,Gt) to s, then
this complete neighborhood N(s) is defined by:

N(s) = {s′ ← s⊕move(u,Gt) : ∀u ∈ V, ∀Gt ∈ s ∪ {∅} \ {Gu}} (5.4)

In order to make the search more focused and more efficient, our CPP-P3 algorithm follows the idea of
elite candidate list [Glover and Laguna, 2013] and builds a restricted neighborhood which is defined with
the notion of Top Move.

Definition 5.2.1. A move(u,Gζ) is called Top Move of vertex u (u ∈ Gi) if

Gζ = argmax
Gt∈s∪{∅}\Gu

(∆u,Gt)

The target group Gζ is denoted as GTMu , while the move gain ∆u,Gζ is denoted as ∆TMu .

So the Top Move of a vertex identifies the destination group with the largest move gain. Then the
restricted neighborhood induced by the Top Moves of all vertices is given by:

N ′(s) = {s′ ← s⊕move(u,GTMu) : ∀ u ∈ V } (5.5)

In the general case, |N(s)| = k × |V | for the complete neighborhood 1 while N ′(s) = |V | for the restricted
neighborhood. Consequently, it is easier to evaluate the candidate solutions in N ′(s) than in N(s) (we will
show a comparison of using these two neighborhoods in Section 5.4). We present below a fast method to
identify the Top Move of each vertex in each iteration of the algorithm.

Notice that in several recent studies [Chen and Hao, 2015; Wu and Hao, 2013a; Wu and Hao, 2013b],
such a restricted neighborhood strategy has been shown to be particularly useful.

1. If some groups contain exactly one vertex, then several moves lead to equivalent solutions. Thus, |N(s)| can be slightly
inferior to k × |V |.

90 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

5.2.3 Heap structure

Let s be the incumbent solution. Suppose that move(u,Gt) (u ∈ Gu) is chosen and executed to obtain
the desired neighboring solution s′, we update G′u = Gu \ {u}, G′t = Gt ∪ {u} as well as the potentials of
each vertex v ∈ V as follows: p′v,G′u = pv,Gu − wuv, G′u = Gu \ {u}

p′v,G′t
= pv,Gt + wuv, G

′
t = Gt ∪ {u}

(5.6)

To speed up the search and updating procedures, we store the potentials of each vertex in a heap struc-
ture. For a vertex u belonging toGu in the current solution s, the potentials of u to the groups s∪{∅}\{Gu}
are stored in the heap such that the top element pu,Gtop of the heap is always the largest potential of vertex
u. According to Equation (5.3), Gtop will be the target group GTMu .

To maintain the heap, normally, when move(u,Gt) (u ∈ Gu) is executed, p′v,G′u and p′v,G′t will replace
pv,Gu and pv,Gt respectively and their positions in the heap of vertex v will be adjusted. However, to
ensure potential pv,∅ = 0 always be exclusively conserved in the heap, two exceptional situations should
be considered. If G′u = ∅ in s′, p′v,G′u should be removed from the heap to avoid the repetition of pv,∅. If
G′t = {u} (i.e., Gt = ∅), we should add a new potential p′v,G′t = pv,{u} = pv,∅ + wuv, rather than replace
pv,∅.

By this method, the Top Move of one vertex can be found in O(1) time from the top of the heap.
Moreover, updating the whole heap structure costs O(|V | · log |V |).

5.2.4 Generation of initial solution

For the Clique Partitioning Problem, any partition of the vertices of G is a possible feasible solution.
The question is then to fix the number of groups in the initial solution. In CPP-P3, we simply assign each
vertex to an exclusive group. Considering the initial solution will be immediately improved by the descent
search, the quality of the initial solution is not essential in our case.

5.2.5 Descent search phase

The descent search phase aims at finding new solutions of better quality from a given initial solution.
For this purpose, it builds a search trajectory by examining the restricted neighborhood defined in Section
5.2.2. More precisely, the descent iteratively improves the quality of the current solution by searching the
given neighborhood and stops when a local optimum is reached, i.e., when no better solution can be found
in the neighborhood. At each iteration, vertices are evaluated in a random order. Let u be the vertex under
consideration and s be the current solution. If the Top Move gain ∆TMu of vertex u is a positive number
(i.e., the Top Move with vertex u leads to an improved solution with respect to the incumbent solution),
move(u,GTMu) is executed and the neighboring solution s⊕move(u,GTMu) replaces s to become the new
incumbent solution. Otherwise the evaluation continues with the next vertex (always randomly chosen). If
no Top Move offers a positive gain during one iteration after examining all the vertices, then the descent
search stops and the last solution (i.e., a local optimum) is returned and used as the starting solution of the
second search phase (Exploration Search, see next section).

Note that within the restricted neighborhood N ′, the way the neighboring solutions are examined and
selected corresponds to the random-order first improvement search strategy. Clearly, the selected neighbor
using this strategy is not necessarily the best neighbor within the restricted neighborhood N ′ nor within the
complete neighborhood N .

The computing time of each iteration is bounded by O(|V |+ |V | · log |V |).

5.2. GENERAL PROCEDURE 91

5.2.6 Exploration search phase
From the local optimum solution returned by the descent search phase, the second search phase explores

the nearby areas for better solutions. For this purpose, the Explore_Local_Optima procedure (Algorithm
5.2) adopts a tabu search method [Glover and Laguna, 2013] also based on the above restricted neighbor-
hood.

At each iteration, a Top Move move(u,GTMu) is considered to be eligible only if two conditions are
satisfied. First, the move must be a non-trivial one (i.e., reallocating a vertex from a group with only one
vertex to an empty set is forbidden). Second, the move is not forbidden by the tabu list except when the
move leads to a new solution better than any previous visited solution. Among these eligible moves, the
one with the largest move gain is chosen and executed.

Algorithm 5.2: Tabu-based exploration phase (Explore_Local_Optima).
Input: current solution s, current best objective value fbest.
Output: best solution s∗ .
Initialize the tabu list;
iter ← 0 ; /* total number of iterations */
while fbest has not been improved for L iterations. do

Find out vertex w with the maxium ∆TMw from the vertices which meets the following 2 conditions:
1. (|Gu| = 1 AND |GTMu | 6= ∅) OR (|Gu| > 1)
2. (move(u,GTMu) is not TABU) OR (∆TMu + f(s) > fbest)
if |Gw| = 1 then

Mark move(w, ∅) tabu for the next tt iterations;

else
Mark move(w,Gw) tabu for the next tt iterations;

Execute move(w,GTMw) and update data structure ;
if f(s) > fbest then

s∗ ← s, fbest ← f(s);
iter ← iter + 1;

To avoid short-term cycling, the executed move(w,GTMw) as well as the index of the original group of
vertex w are stored in the tabu list. As such, vertex w is prohibited to move back to its original group during
the next tt iterations (tt is called the tabu tenure). However, if the vertex of the executed move is the only
vertex in its original group, then the vertex will be forbidden to be moved into the empty group for the next
tt iterations.

It is well known that the performance of a tabu search algorithm depends on the way the tabu tenure is
determined [Glover and Laguna, 2013]. However, no optimal technique is universally available to tune the
tabu tenure, which is often fixed empirically in practice. In our case, we adopt the technique proposed in
[Galinier and Hao, 1999] and use a base length tbase adjusted with a random value as follows:

tt = tbase+ random(0, k) (5.7)

where random(0, k) is a random integer in {0, . . . , k} (k being the number of groups of the current solu-
tion). After preliminary robustness tests (see Section 5.3.1), we set tbase to 15.

For this exploration search phase, the algorithm is supposed to reach a local optimum if the best solution
cannot be improved during L consecutive iterations. In this case, the Explore_Local_Optima phase stops
and the best solution found is used as the input solution of the Diversified_Perturbation phase.

5.2.7 Directed perturbation phase
The perturbation phase (see Algorithm 5.3) aims to jump out of the current regional search area and

displace the search into a distant area. Instead of relying on random perturbation (e.g., randomly move
some vertices), CPP-P3 uses a directed perturbation mechanism [Benlic and Hao, 2013b].

92 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

Algorithm 5.3: Perturbation phase (Diversified_Perturbation).
Input: Current solution s.
Output: perturbated solution s∗.
PL← random([α× |V |, β × |V |]);
M ← ∅ ;
while |M | < PL do

Construct RCL = {The Maxrcl vertices in V \M with the greatest ∆TMu} ;
Randomly choose a vertex w from RCL;
Execute move(w,GTMw) and update data structure;
M ←M ∪ {w};

return s

The perturbation concerns reallocating a number of specific vertices from a Restricted Candidate List
(RCL). For each perturbation phase, the number of reallocated vertices, which defines the perturbation
strength, is randomly selected from range {α× |V |, . . . , β× |V |}, where α and β (0 ≤ α ≤ β ≤ 1) are two
parameters.

To determine the vertices that will be reallocated during the perturbation phase, we build an RCL to
store the partial best candidates, like with the GRASP method [Feo and Resende, 1995b]. Here, the RCL
contains the Maxrcl first vertices with the largest Top Move gain. For each perturbation step, a vertex w is
randomly chosen from the RCL and the corresponding Top Move is executed. Once a vertex is reallocated,
it is removed from RCL during the current perturbation phase.

To implement the RCL efficiently, we employ once again a heap structure to make sure that it always
contains the best Maxrcl vertices and ignores the other ones. Thus, the construction of the RCL in each
iteration takes O(V · logMaxrcl) time, while updating potentials consumes O(V · log V) after one move.
The complexity of one iteration in each perturbation phase is bounded by O(V · log V).

5.2.8 Singularity of CPP-P3

We now discuss the major differences between CPP-P3 and other local search algorithms for CPP. ITS
[Palubeckis et al., 2014] may be the closest approach for solving CPP as it also integrates a descent search,
a tabu search and a perturbation procedure. However, there are three main differences between the two
algorithms. First, ITS alternates two neighbor operators, i.e. reallocating a vertex and swapping two ver-
tices, while only the first operator is considered in CPP-P3. Second, ITS evaluates all the neighbor solution
induced by the reallocating operators to determine the neighbor solution with the maximum objective gain
while CPP-P3 seeks the best neighbor solution from a restricted solution set associated with Top Move def-
inition. Third, the two algorithms employ different strategies for managing the tabu tenure. The value in
ITS is more deterministic while CPP-P3 is more randomized. As we show in Section 5.3, these differences
make the proposed CPP-P3 more effective than ITS.

CPP-P3 also shares similarities with Eject Chain algorithm [Dorndorf and Pesch, 1994] in the sense that
both approaches use a heap structure to identify the move. In [Dorndorf and Pesch, 1994], the move with the
largest objective gain is always preferred, while in the tabu phase of CPP-P3, the vertex associates with the
best Top Move is selected. Therefore, in CPP-P3, the moves whose associated Top Move is marked tabu will
not be considered, even though such a move may lead to the best gain of objective value. We investigate in
Section 5.4.1 the effect of both strategies and demonstrate the interest of the strategy we adopted in CPP-P3.

5.3 Computational experiments
This section is dedicated to an experimental assessment of CPP-P3. For this purpose, we show extensive

computational results obtained by CPP-P3 on a large collection of benchmark instances. We also make a

5.3. COMPUTATIONAL EXPERIMENTS 93

Table 5.1: Parameter settings of testing CPP-P3.

Parameters § Description Values Range

tbase 5.2.6 Tabu tenure base 15 {7, 10, 15, 20}

L 5.2.6 Maxium consecutive non-improving iterations |V | {0.5|V |, |V |, 1.5|V |, 2|V |}

α 5.2.7 Lower limit of perturbation strength 0.2 {0.1, 0.2, 0.3}

β 5.2.7 Upper limit of perturbation strength 0.5 {0.4, 0.5, 0.6}

Maxrcl 5.2.7 Maximum length of RCL 10 {7, 10, 15, 20}

comparison with the current best performing algorithms published in the literature.

5.3.1 Benchmark instances and parameter settings
As the instances considered in CPP are complete graphs, the differences between instances only concern

the value range and distribution of the edge weights. We use the four groups of instances presented in
Chapter 1. As stated, the first three groups of instances were originally proposed in [Brusco and Köhn, 2009;
Charon and Hudry, 2006; Palubeckis et al., 2014], while the fourth group was created by us with different
edge weight distribution.

CPP-P3 involves 5 parameters whose settings indicated in Table 5.1 are used for all our experiments.
In order to estimate an appropriate value for these parameters, we first fixed a set of possible values for
each parameter as indicated in column Range. Experiments with all these values have been made on
a preliminary set of instances; values which achieved a good compromise in terms of best and average
objective values as well as CPU time have been kept. Of course, fine-tuning these parameters would allow
us to obtain better results. However, as we show in this section, the adopted parameter values of Table 5.1
lead already to highly competitive results.

5.3.2 Experiments and comparison
The CPP-P3 algorithm was implemented in C++ 2, compiled by GNU g++ and run on 2.82GHz Xeon

CPU with 2 GB RAM. The experiments were conducted on a computer with an AMD Opteron 4184 pro-
cessor (2.8GHz and 2GB RAM) running Ubuntu 12.04. When solving the DIMACS machine benchmarks 3

without compilation optimization flag, the run time on our machine is 0.40, 2.50 and 9.55 seconds respec-
tively for graphs r300.5, r400.5 and r500.5. We used the CPU clock as the stop condition of CPP-P3. In
the following experiments, in order to get relative stable results, we fixed cut-off times which refer to the
order (i.e., the number of vertices) of the graphs. Each instance was solved 10 times independently using
different random seeds.

As mentioned in the introduction, ITS [Palubeckis et al., 2014] and SGVNS [Brimberg et al., 2015]
are the most recent and also the best performing algorithms among all previously developed heuristics.
Consequently, we used ITS and SGVNS as the main references for our comparative study. To make a fair
comparison between the three algorithms, we ran them under the same conditions, i.e. the same cut-off
time for each instances and the same testing platform. The source code of ITS is publicly available from
http://www.proin.ktu.lt/~gintaras/, and the code of SGVNS was kindly provided by the
authors of [Brimberg et al., 2015].

Computational results on instances of Groups I and II

2. The source code will be available upon publication of the paper at: http://www.info.univ-angers.fr/pub/
hao/cpp.html.

3. dimacs: ftp://dimacs.rutgers.edu/pub/dsj/clique/.

http://www.proin.ktu.lt/~gintaras/
http://www.info.univ-angers.fr/pub/hao/cpp.html
http://www.info.univ-angers.fr/pub/hao/cpp.html
ftp://dimacs.rutgers.edu/pub/dsj/clique/

94 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

Ta
bl

e
5.

2:
C

om
pu

ta
tio

n
re

su
lts

on
in

st
an

ce
s

of
G

ro
up

s
I

an
d

II
of

ou
r

C
PP

-P
3 ,I

T
S

[P
al

ub
ec

ki
s

et
al

.,
20

14
]

an
d

SG
V

N
S

al
go

ri
th

m
s

[B
ri

m
be

rg
et

al
.,

20
15

]

C
PP

-P
3

IT
S

SG
V

N
S

In
st

an
ce

f
p
r
e
v

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

ra
nd

10
0-

5
14

07
14

07
14

07
.0

0
10

/1
0

0.
05

14
07

14
07

.0
0

10
/1

0
0.

10
14

07
14

07
.0

0
10

/1
0

0.
54

ra
nd

10
0-

10
0

24
29

6
24

29
6

24
29

6.
00

10
/1

0
0.

74
24

29
6

24
29

6.
00

10
/1

0
0.

90
24

29
6

24
29

6.
00

10
/1

0
1.

87

ra
nd

20
0-

5
40

79
40

79
40

79
.0

0
10

/1
0

6.
57

40
79

40
79

.0
0

10
/1

0
17

.8
0

40
79

40
78

.8
0

9/
10

31
.3

0

ra
nd

20
0-

10
0

74
92

4
74

92
4

74
92

4.
00

10
/1

0
20

.3
3

74
92

4
74

92
4.

00
10

/1
0

23
.8

0
74

92
4

74
92

4.
00

10
/1

0
94

.3
9

ra
nd

30
0-

5
77

32
77

32
77

32
.0

0
10

/1
0

36
.0

1
77

32
77

30
.5

0
5/

10
16

9.
50

77
32

77
31

.4
0

8/
10

23
1.

48

ra
nd

30
0-

10
0

15
27

09
15

27
09

15
27

09
.0

0
10

/1
0

5.
18

15
27

09
15

27
09

.0
0

10
/1

0
14

.5
0

15
27

09
15

27
09

.0
0

10
/1

0
39

.5
1

sy
m

30
0-

50
17

59
2

17
59

2
17

59
2.

00
10

/1
0

69
.5

3
17

59
2

17
59

0.
00

9/
10

10
1.

00
17

59
2

17
59

1.
40

9/
10

43
8.

21

re
gn

ie
r3

00
-5

0
32

16
4

32
16

4
32

16
4.

00
10

/1
0

0.
90

32
16

4
32

16
4.

00
10

/1
0

1.
20

32
16

4
32

16
4.

00
10

/1
0

1.
56

za
hn

30
0

25
04

25
04

25
04

.0
0

10
/1

0
6.

21
25

04
25

04
.0

0
10

/1
0

15
.9

0
25

04
25

04
.0

0
10

/1
0

32
.6

9

ra
nd

40
0-

5
12

13
3

12
13

3
12

13
3.

00
10

/1
0

94
.3

3
12

13
3

12
13

0.
30

7/
10

43
0.

00
12

13
3

12
13

3.
00

10
/1

0
67

7.
03

ra
nd

40
0-

10
0

22
27

57
22

27
57

22
27

57
.0

0
10

/1
0

17
0.

32
22

27
57

22
26

90
.8

0
5/

10
35

6.
90

22
27

57
22

27
25

.2
0

8/
10

52
2.

16

ra
nd

50
0-

5
17

12
7

17
12

7
17

12
6.

50
9/

10
25

8.
50

17
11

4
17

10
4.

90
2/

10
60

8.
70

17
12

7
17

12
4.

10
8/

10
79

3.
90

ra
nd

50
0-

10
0

30
91

25
30

91
25

30
89

85
.5

0
4/

10
20

5.
39

30
90

07
30

88
60

.9
0

1/
10

40
6.

70
30

89
84

30
88

60
.3

0
1/

10
13

20
.8

7

5.3. COMPUTATIONAL EXPERIMENTS 95

Table 5.2 shows the computational results of three algorithms on Group I and Group II instances. Col-
umn 1 and 2 provide instance name and best known objective value fprev which are extracted from [Brusco
and Köhn, 2009; Charon and Hudry, 2006]. The same time limits for each algorithm are fixed as follows:
200, 500, and 1000 seconds for graphs with vertices in range [1,200], [201,300], and [301,500] respectively.

For each instance and each algorithm (CPP-P3, ITS and SGVNS), we report the best objective value
attained fbest over 10 runs, the average objective value favg, the frequency hit of reaching fbest over 10
runs, as well as the average CPU time (in seconds) for finding the best value.

In Table 5.2, one observes that in terms of solution quality, CPP-P3 is able to hit all the previous best
results while both ITS and SGVNS fail on the two largest instances rand500-5 and rand500-100. While
comparing the performance robustness over 10 runs, we note that the average objective value of CPP-P3 is
better than the competing algorithms on all instances. Moreover, CPP-P3 consistently reaches the previously
best-known fprev at each of 10 runs on 11 instances over 13, contrary to the ITS (7/13) and SGVNS (7/13).
Finally, CPP-P3 spends less average time than the other two algorithms to hit the best solutions. This
experiment indicates that CPP-P3 dominates the two references algorithms on instances from Groups I and
II.

Computational results on instances of Group III

96 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

Ta
bl

e
5.

3:
C

om
pu

ta
tio

n
re

su
lts

on
in

st
an

ce
s

of
G

ro
up

II
Io

fo
ur

C
PP

-P
3 ,I

T
S

[P
al

ub
ec

ki
s

et
al

.,
20

14
] a

nd
SG

V
N

S
al

go
ri

th
m

s
[B

ri
m

be
rg

et
al

.,
20

15
]

C
PP

-P
3

IT
S

SG
V

N
S

In
st

an
ce

f
p
r
e
v

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

p5
00

-5
-1

17
69

1
17

69
1

17
69

0.
10

9/
10

14
0.

32
17

69
1

17
68

3.
30

2/
10

86
4.

08
17

68
0

17
67

3.
40

4/
10

56
2.

20
p5

00
-5

-2
17

16
9

17
16

9
17

16
8.

10
7/

10
30

0.
22

17
16

9
17

15
2.

90
1/

10
40

6.
80

17
16

6
17

15
4.

70
1/

10
70

5.
73

p5
00

-5
-3

16
81

5
16

81
6

16
81

5.
20

3/
10

32
6.

05
16

81
6

16
81

2.
50

1/
10

62
3.

80
16

81
0

16
80

5.
10

1/
10

18
45

.8
5

p5
00

-5
-4

16
80

8
16

80
8

16
80

8.
00

10
/1

0
14

1.
59

16
80

8
16

79
0.

90
2/

10
47

3.
00

16
80

8
16

80
0.

60
6/

10
59

8.
65

p5
00

-5
-5

16
95

7
16

95
7

16
95

7.
00

10
/1

0
99

.0
0

16
95

7
16

94
8.

50
6/

10
59

5.
00

16
95

7
16

94
3.

80
2/

10
44

6.
62

p5
00

-5
-6

16
61

5
16

61
5

16
61

5.
00

10
/1

0
18

5.
04

16
61

5
16

60
6.

80
3/

10
48

2.
20

16
61

5
16

60
9.

00
3/

10
48

1.
48

p5
00

-5
-7

16
64

9
16

64
9

16
64

8.
80

9/
10

28
5.

55
16

64
9

16
63

2.
70

1/
10

54
7.

80
16

64
7

16
63

2.
20

1/
10

31
4.

10
p5

00
-5

-8
16

75
6

16
75

6
16

75
6.

00
10

/1
0

15
6.

56
16

75
6

16
75

2.
30

4/
10

37
6.

90
16

75
6

16
74

8.
30

9/
10

59
0.

98
p5

00
-5

-9
16

62
9

16
62

9
16

62
9.

00
10

/1
0

16
1.

42
16

61
9

16
60

7.
60

2/
10

52
6.

50
16

62
9

16
62

3.
80

5/
10

54
9.

73
p5

00
-5

-1
0

17
36

0
17

36
0

17
36

0.
00

10
/1

0
51

.5
2

17
36

0
17

35
6.

80
8/

10
54

7.
40

17
36

0
17

35
9.

80
8/

10
43

0.
33

p5
00

-1
00

-1
30

88
96

30
88

96
30

88
96

.0
0

10
/1

0
31

7.
40

30
88

96
30

88
10

.9
0

2/
10

48
1.

90
30

88
96

30
88

90
.6

0
4/

10
74

1.
65

p5
00

-1
00

-2
31

01
63

31
02

41
31

02
25

.4
0

8/
10

36
7.

47
31

02
41

30
98

43
.4

0
1/

10
53

0.
50

31
02

41
31

01
70

.8
0

1/
10

44
9.

71
p5

00
-1

00
-3

31
04

77
31

04
77

31
04

71
.1

0
9/

10
26

7.
23

31
04

77
31

00
28

.6
0

2/
10

55
5.

10
31

04
18

31
02

59
.2

0
3/

10
69

0.
50

p5
00

-1
00

-4
30

95
67

30
95

67
30

95
28

.6
0

9/
10

37
6.

93
30

94
94

30
91

93
.8

0
1/

10
41

2.
00

30
95

67
30

94
11

.6
0

1/
10

35
9.

16
p5

00
-1

00
-5

30
91

35
30

91
35

30
91

16
.9

0
9/

10
28

6.
63

30
91

35
30

89
98

.6
0

2/
10

63
9.

20
30

91
35

30
91

16
.9

0
9/

10
89

7.
59

p5
00

-1
00

-6
31

02
80

31
02

80
31

02
80

.0
0

10
/1

0
25

1.
93

31
02

80
30

99
73

.7
0

6/
10

48
2.

60
31

02
80

31
02

18
.5

0
8/

10
35

3.
39

p5
00

-1
00

-7
31

00
63

31
00

63
31

00
63

.0
0

10
/1

0
15

3.
16

31
00

63
31

00
29

.4
0

5/
10

47
9.

90
31

00
63

30
99

92
.7

0
3/

10
34

2.
03

p5
00

-1
00

-8
30

31
48

30
31

48
30

31
48

.0
0

10
/1

0
28

4.
58

30
31

48
30

28
30

.1
0

5/
10

58
0.

00
30

31
48

30
27

74
.3

0
5/

10
73

7.
08

p5
00

-1
00

-9
30

53
05

30
53

05
30

53
05

.0
0

10
/1

0
81

.3
0

30
53

05
30

52
36

.4
0

8/
10

49
7.

50
30

53
05

30
52

99
.8

0
9/

10
62

3.
31

p5
00

-1
00

-1
0

31
48

64
31

48
64

31
48

64
.0

0
10

/1
0

43
.9

9
31

48
64

31
48

15
.3

0
5/

10
39

2.
90

31
48

64
31

48
18

.2
0

5/
10

49
2.

15
p1

00
0-

1
88

33
59

88
49

70
88

43
48

.6
8

1/
10

12
21

.8
0

88
18

55
87

93
82

.1
0

1/
10

12
15

.1
0

*8
85

01
6

88
41

26
.1

0
2/

10
21

25
.7

2
p1

00
0-

2
87

97
92

88
11

49
88

01
31

.8
7

1/
10

12
12

.2
2

87
88

54
87

58
49

.9
0

1/
10

12
18

.0
0

*8
81

75
1

88
01

89
.3

0
1/

10
34

24
.1

5
p1

00
0-

3
86

29
69

*8
66

41
5

86
47

18
.6

2
1/

10
10

58
.5

4
86

43
09

86
09

87
.9

0
1/

10
13

76
.0

0
86

60
41

86
48

74
.2

0
1/

10
80

9.
87

p1
00

0-
4

86
57

54
86

85
73

86
72

95
.3

7
1/

10
88

5.
94

86
58

66
86

29
84

.7
0

1/
10

12
07

.2
0

*8
69

37
4

86
76

69
.0

0
2/

10
13

47
.6

0
p1

00
0-

5
88

73
14

88
86

78
88

79
97

.0
0

1/
10

12
57

.4
4

88
70

66
88

37
68

.5
0

1/
10

87
6.

50
*8

88
72

0
88

77
83

.0
0

1/
10

34
87

.0
1

p1
50

0-
1

16
14

79
1

16
16

99
9

16
14

84
7.

50
1/

10
27

11
.0

4
16

08
76

1
16

04
75

3.
00

1/
10

24
89

.0
0

*1
61

82
81

16
15

01
9.

10
1/

10
33

00
.0

2
p1

50
0-

2
16

42
44

2
*1

64
88

00
16

46
91

6.
12

1/
10

23
13

.6
6

16
36

85
6

16
31

07
0.

60
1/

10
26

43
.4

0
16

47
55

7
16

44
37

2.
50

1/
10

47
69

.1
9

p1
50

0-
3

16
00

85
7

*1
60

98
54

16
07

42
6.

12
1/

10
29

91
.3

3
16

00
45

1
15

95
26

8.
00

1/
10

29
77

.8
0

16
08

87
7

16
05

00
9.

60
1/

10
23

28
.5

6
p1

50
0-

4
16

33
08

1
16

39
52

8
16

37
37

5.
12

1/
10

18
67

.7
7

16
28

34
9

16
26

16
5.

90
1/

10
25

52
.2

0
*1

64
06

43
16

36
22

2.
90

1/
10

10
91

.3
7

p1
50

0-
5

15
85

48
4

15
92

73
2

15
90

29
1.

25
1/

10
17

91
.0

4
15

80
96

5
15

75
69

0.
70

1/
10

25
85

.8
0

*1
59

35
18

15
91

04
3.

60
1/

10
35

67
.0

0
p2

00
0-

1
24

89
88

0
*2

50
53

59
25

00
05

0.
00

1/
10

52
38

.9
3

24
87

04
8

24
80

72
0.

40
1/

10
77

10
.9

0
25

01
96

2
24

98
41

7.
40

1/
10

31
27

.1
5

p2
00

0-
2

24
79

12
7

24
90

10
4

24
88

01
6.

75
1/

10
59

97
.6

0
24

73
69

1
24

64
96

0.
90

1/
10

67
50

.6
0

*2
49

26
62

24
85

93
6.

90
1/

10
49

25
.6

0
p2

00
0-

3
25

27
11

9
*2

54
00

63
25

36
09

1.
50

1/
10

69
90

.8
3

25
28

77
7

25
17

09
0.

50
1/

10
76

39
.3

0
25

38
19

6
25

35
41

4.
30

1/
10

17
31

.3
4

p2
00

0-
4

25
23

88
4

*2
52

59
03

25
21

44
9.

00
1/

10
59

92
.9

7
25

09
08

0
25

02
05

9.
40

1/
10

66
07

.0
0

25
22

15
6

25
16

37
5.

90
1/

10
27

30
.6

8
p2

00
0-

5
24

99
69

0
*2

50
87

29
25

04
67

8.
00

1/
10

50
22

.8
3

24
96

03
6

24
87

41
6.

50
1/

10
72

39
.0

0
25

06
78

4
25

03
39

6.
90

1/
10

19
45

.2
3

5.3. COMPUTATIONAL EXPERIMENTS 97

Table 5.3 shows comparative results among CPP-P3, ITS and SGVNS on the instances of Group III.
The same information as in Table 5.2 is provided. The fbest entries which are superior to fprev and inferior
to fprev are marked respectively in bold and italic. Moreover, a star indicates a stricly fbest value among
the three algorithms. Larger instances with more than 1000 vertices are included. The time limit was set
to 1000, 2000, 4000 and 10000 seconds for instances with 500, 1000, 1500 and 2000 vertices respectively.
Note that these time limits are shorter than those used in [Palubeckis et al., 2014].

Table 5.3 discloses that CPP-P3 outperforms ITS and SGVNS on instances of type ’p500’ (i.e., with
|V | = 500) both in terms of solution quality and computation time. We observe that CPP-P3 reaches every
fprev while ITS and SGVNS fail respectively on 1 and 5 instances. Note that the best-known objective value
of two instances (p500-5-3 and p500-100-2) is improved by CPP-P3 and ITS. Another noticeable point is
that CPP-P3 achieves a 100% successful rate (hit) on 12 instances over 20, while considering ITS and
SGVNS the corresponding robustness indicator is often low and never maximal on any instance. One also
observes that the average time of CPP-P3 is always shorter except slightly longer on p500-100-4 comparing
to SGVNS.

Larger instances (with |V | ≥ 1000) are unsurprisingly much difficult to tackle in a reasonable time limit,
as confirmed by the less robust results: each algorithm hits the respective best solution only one or two times
over 10 runs under the given time limit. The essential point is that all fprev are improved by CPP-P3 and
SGVNS. for these two algorithms even their average scores favg are better than the previous best-known
values. ITS also improves fprev on three instances (p1000-3, p1000-4 and p2000-3), but systematically less
than CPP-P3 and SGVNS. Comparing the fbest (resp. favg) entries, CPP-P3 reached better solutions on 7
(resp. 10) instances, and SGVNS on 8 (resp. 5). Contrary to the previous sets of instances where CPP-
P3 was the most powerful algorithm, it appears that on this particular set, CPP-P3 and SGVNS perform
similarly.

Computational results on instances of Group IV

As Group IV instances are newly created, no previous results are available. To obtain reasonable ref-
erence values fprev, each instance is first solved by CPP-P3 for 8 hours and the objective value of the best
solution found is set as fprev. Then, we run CPP-P3, ITS and SGVNS on all the instances of this group
under a cutoff limit of 1000 seconds. The computational results are given in Table 5.4.

We first examine the uniform graphs (’unif700’ and ’unif800’). Recall that 1000 seconds are sufficient
for CPP-P3 to reach a stable objective value for random instances of size 500 (Group III, see table 5.3). Here,
one can note that hit rates are decreasing when the number of vertices grows to 700 and 800. Nevertheless,
CPP-P3 and SGVNS are able to hit fprev at least once for these 10 instances while ITS fails to match this
performance.

The edge weights of the last five instances (of type "gauss500") are generated according to a Gaussian
distribution. Comparing the results with the instances of Group III (p500-100-1 to p500-100-10), we ob-
serve that the hit and time indicators, for each algorithm, are similar. This may imply that the distribution
has no significant influence on the performance of these local search based algorithms.

98 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

Ta
bl

e
5.

4:
C

om
pu

ta
tio

n
re

su
lts

on
ne

w
in

st
an

ce
s

of
ou

rC
PP

-P
3 ,I

T
S

[P
al

ub
ec

ki
s

et
al

.,
20

14
] a

nd
SG

V
N

S
al

go
ri

th
m

s
[B

ri
m

be
rg

et
al

.,
20

15
]

C
PP

-P
3

IT
S

SG
V

N
S

In
st

an
ce

f
p
r
e
v

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

f
b
e
s
t

f
a
v
g

h
it

ti
m
e

un
if

70
0-

10
0-

1
51

50
16

51
50

16
51

47
68

.4
0

6/
10

76
8.

90
51

46
89

51
33

68
.5

0
1/

10
96

5.
40

51
50

16
51

42
91

.5
0

2/
10

32
2.

68

un
if

70
0-

10
0-

2
51

94
41

51
94

41
51

88
15

.2
0

6/
10

57
1.

39
51

91
41

51
73

77
.7

0
1/

10
10

55
.6

0
51

94
41

51
82

65
.4

0
3/

10
26

73
.3

5

un
if

70
0-

10
0-

3
51

23
51

51
23

51
51

14
57

.7
0

3/
10

74
9.

91
51

23
51

51
00

02
.5

0
1/

10
10

94
.3

0
51

23
51

51
18

76
.9

0
7/

10
20

33
.9

9

un
if

70
0-

10
0-

4
51

35
82

51
35

82
51

35
40

.8
0

9/
10

75
5.

93
51

17
72

51
08

61
.6

0
1/

10
85

9.
80

51
35

82
51

32
79

.3
0

8/
10

13
28

.6
2

un
if

70
0-

10
0-

5
51

03
87

51
03

87
51

02
44

.5
0

1/
10

75
9.

50
51

02
34

50
91

62
.7

0
1/

10
96

3.
80

51
03

67
50

99
85

.1
0

3/
10

10
26

.2
3

un
if

80
0-

10
0-

1
63

96
75

63
96

75
63

96
05

.5
0

4/
10

10
33

.0
6

63
93

07
63

79
27

.4
0

1/
10

87
9.

90
63

96
75

63
93

73
.7

0
3/

10
11

01
.7

4

un
if

80
0-

10
0-

2
63

07
04

63
07

04
63

04
88

.0
0

2/
10

12
48

.8
6

63
00

88
62

87
76

.3
0

1/
10

12
03

.5
0

63
07

04
63

00
34

.0
0

2/
10

88
2.

15

un
if

80
0-

10
0-

3
62

91
08

62
91

08
62

88
19

.6
0

2/
10

82
1.

97
62

81
30

62
70

45
.4

0
1/

10
12

67
.7

0
62

91
08

62
87

40
.5

0
1/

10
30

55
.5

4

un
if

80
0-

10
0-

4
62

47
28

62
47

28
62

41
53

.2
0

1/
10

11
40

.4
6

62
39

05
62

21
72

.0
0

1/
10

11
30

.6
0

62
47

28
62

41
65

.5
0

2/
10

27
17

.1
9

un
if

80
0-

10
0-

5
62

59
05

62
59

05
62

53
78

.4
0

1/
10

10
97

.9
6

62
50

66
62

31
77

.0
0

1/
10

13
36

.6
0

62
59

05
62

53
55

.9
0

2/
10

63
9.

25

ga
us

s5
00

-1
00

-1
26

50
70

26
50

70
26

50
49

.1
0

9/
10

41
0.

31
26

50
70

26
47

41
.5

0
1/

10
55

4.
10

26
50

70
26

48
82

.4
0

2/
10

96
4.

81

ga
us

s5
00

-1
00

-2
26

90
76

26
90

76
26

90
39

.2
0

7/
10

46
9.

05
26

90
76

26
88

15
.2

0
2/

10
51

2.
60

26
90

76
26

89
53

.1
0

4/
10

96
7.

99

ga
us

s5
00

-1
00

-3
25

77
00

25
77

00
25

74
67

.4
0

3/
10

34
3.

48
25

77
00

25
72

05
.3

0
1/

10
48

5.
20

25
77

00
25

74
44

.5
0

2/
10

87
1.

46

ga
us

s5
00

-1
00

-4
26

76
83

26
76

83
26

76
33

.7
0

9/
10

25
1.

65
26

76
83

26
72

66
.9

0
4/

10
42

4.
10

26
76

83
26

75
89

.5
0

4/
10

45
8.

60

ga
us

s5
00

-1
00

-5
27

15
67

27
15

67
27

15
67

.0
0

10
/1

0
94

.0
8

27
15

67
27

14
85

.4
0

5/
10

57
6.

80
27

15
67

27
15

39
.6

0
7/

10
63

8.
76

5.4. ANALYSIS 99

Table 5.5: Comparison results of CPP-P3-X and CPP-P3

CPP-P3-X CPP-P3

Instance
fbest favg(σ) hit time iteravg fbest favg(σ) hit time iteravg

rand300-5 7732 7732.0(0.0) 10/10 64.29 26321 7732 7732.0(0.0) 10/10 33.82 33812

rand500-100 309007 308891.3(38.8) 1/10 131.60 15226 309125 308935.6(98.4) 2/10 259.65 21499

p500-5-3 16815 16814.2(0.4) 2/10 274.24 17011 16815 16815.0(0.0) 10/10 373.79 23100

gauss500-100-3 257700 257264.4(229.6) 1/10 500.59 13851 257700 257558.6(148.0) 3/10 245.04 21417

unif700-100-2 519441 518482.6(1026.3) 5/10 728.18 13919 519441 519441.0(0.0) 10/10 907.01 21289

unif800-100-4 624646 623951.8(383.2) 2/10 932.25 12099 624728 624164.3(372.0) 2/10 1001.97 15067

p1000-1 884861 883068.0(1133.7) 1/10 1111.76 6504 884709 883565.0(854.1) 1/10 921.53 9970

p1500-3 1607199 1604345.2(2026.0) 1/10 1595.41 4234 1608549 1604854.2(1568.4) 1/10 2549.95 4051

p2000-1 2504261 2489626.0(6067.3) 1/10 6593.32 1536 2506312 2500859.4(3420.5) 1/10 6256.35 9875

p2000-4 2517390 2510779.3(4151.5) 1/10 6405.45 1363 2522665 2519964.9(1835.7) 1/10 5761.96 4008

5.4 Analysis

5.4.1 The effectiveness of Top Move based neighborhood
One of the most crucial features of a local search algorithm is the definition of its neighborhood and

the selection criterion used. Contrary to the previous algorithms like [Brusco and Köhn, 2009; Charon and
Hudry, 2006; De Amorim et al., 1992; Palubeckis et al., 2014], CPP-P3 is based on a different neighborhood
definition. Indeed, while other methods consider all the possible moves for each vertex (seeN(s) in Section
5.2.2), CPP-P3 only considers a restricted neighborhood defined by the Top Move of each vertex (see N ′(s)
in Section 5.2.2).

To evaluate the most accurate strategy, we defined another algorithm, CPP-P3-X which replaces N ′(s)
in CPP-P3 by the complete neighborhood N(s) and keeps the other elements of CPP-P3 unchanged. Then,
we selected 10 instances of different sizes from the benchmarks (see Table 5.5) and ran CPP-P3-X as well
as CPP-P3 under the same conditions as described in Section 5.3.2. To give a comprehensive comparison
between the two methods, we report in Table 5.5, for each instance, the best objective value fbest obtained
over 10 runs, the average objective value favg with the standard deviation σ, and the average time needed
to attain a best objective value. We define one pass of three phases of the algorithms as one iteration, and
the average number of iterations over 10 runs is given in column iteravg.

Experimental results show that CPP-P3 globally outperforms CPP-P3-X. One can observe that CPP-P3

completes more iterations than CPP-P3-X for the same time limit, which means that CPP-P3 spends shorter
times to find an appropriate move during one iteration. If we compare the results of CPP-P3-X with the
results of the ITS algorithm reported in the last section, one finds that even CPP-P3-X is more efficient
than ITS in reaching better solutions on large instances. This highlights the usefulness of our three phase
approach.

To illustrate the convergence rate of both algorithms, we ran CPP-P3 and CPP-P3-X on two instances
and record the best objective value fbest after every 104 reallocations. The comparative convergence can
be visualized in Figure 5.1. One observes that using the same computation times, CPP-P3-X finds a better
solution than CPP-P3 at first, but CPP-P3 finally exceeds CPP-P3-X and remains superior to CPP-P3-X in the
following steps. This indicates that CPP-P3 has a stronger ability to reach better solutions after experiencing
the same number of reallocations.

5.4.2 Landscape analysis
In order to obtain some information about the difficulty of the CPP instances, we carried out a landscape

analysis based on the fitness distance correlation (FDC) [Jones and Forrest, 1995]. Such an analysis could
shed lights on the behavior of the experimented algorithms. FDC estimates how closely the fitness and

100 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

0 20 40 60 80 100 120 140 160 180
reallocation 1 ∗104

780000
800000
820000
840000
860000
880000
900000

f b
es

t

Instance p1000-1

CPP-P3

CPP-P3 -X

0 50 100 150 200 250
reallocation 1 ∗104

1480000
1500000
1520000
1540000
1560000
1580000
1600000
1620000

f b
es

t

Instance p1500-3

CPP-P3

CPP-P3 -X

Figure 5.1: Running profiles of CPP-P3 and CPP-P3-X

distance to the nearest global optimum are related. For a maximization problem, if the fitness improves
when the distance to the optimum decreases, then the search is expected to be effective as there is a "path"
to the optimum via solutions with increasing fitness. The correlation coefficient ρpdf ∈ [−1, 1] measures the
correlation strength, and the perfect ρpdf value will be -1 for maximization problems, while for minimization
problems, the ideal ρpdf will be 1.

For this study, we investigated several representative instances: sym300-50, regnier300-50, rand500-
100, p500-5-3, p500-5-5, p500-100-6, gauss500-100-3, gauss500-100-4. For each graph, we ran CPP-P3

and collect 5000 high quality local optimum solutions. The distances between these local optima to the
global optimum (in our case, the best local optimum) are computed according to the following definition.

Definition 5.4.1. Let s1 = {G1, G2, ..., Gk}, s2 = {H1, H2, .., Hl} be two solutions (partitions) of graph
G = {V,E,W}. The Rand Index [Rand, 1971] computes a distance between s1,s2:

d(s1, s2) =

∑
e∈E de(s1, s2)

|E|
(5.8)

while de(s1, s2) of edge euv is defined by:

de(s1, s2) =

1, if ∃Gi ∈ s1,∃Hj ∈ s2, and e ∈ Gi, e ∈ Hj

or if ∀Gi ∈ s1,¬(e ∈ Gi) and ∀Hj ∈ s2,¬(e ∈ Hj)

0, otherwise

(5.9)

The correlation between fitness (objective function value) and distance to the reference solution can
be visualized in Figure 5.2. One observes that the instances on the left side of the figure have weak FD
correlations as indicated by ρpdf values close to 0. On the other hand, the instances on the right side have
stronger FD correlations. It is interesting to see that the correlation strength is proportional to the efforts of
our algorithm to reach the best optimum, i.e., CPP-P3 needs more time to solve weakly correlated instances
contrary to strongly related instances. For example, Table 5.2 indicates that CPP-P3 only needs 0.90s to
reach the best local optimum on instance regnier300-50 (with a strong correlation ρpdf = −0.89) on average
while 69.53s on sym300-50 (with a weak correlationρpdf = −0.12). Although we did not include fitness-
distance plots for all the instances, this observation suggests that ρpdf helps us estimate the performance of
CPP-P3 on a particular instance.

5.5. CONCLUSION 101

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78

fit
ne

ss

1e4 sym300-50 pfdc=-0.118459

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

3.05
3.10
3.15
3.20
3.25

fit
ne

ss

1e4 regnier300-50 pfdc=-0.887019

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15

fit
ne

ss

1e5 rand500-100 pfdc=-0.059680

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

2.85
2.90
2.95
3.00
3.05
3.10
3.15

fit
ne

ss

1e5 p500-100-6 pfdc=-0.688126

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70

fit
ne

ss

1e4 p500-5-3 pfdc=-0.157768

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

1.50
1.55
1.60
1.65
1.70
1.75

fit
ne

ss

1e4 p500-5-5 pfdc=-0.597036

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

2.42
2.44
2.46
2.48
2.50
2.52
2.54
2.56
2.58
2.60

fit
ne

ss

1e5gauss500-100-3 pfdc=-0.223082

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
distance

2.52
2.54
2.56
2.58
2.60
2.62
2.64
2.66
2.68
2.70

fit
ne

ss

1e5gauss500-100-4 pfdc=-0.648687

Figure 5.2: FD correlation plots with respect to the solution fitness and distance to the optimum for 8 graphs.

5.4.3 Impact of the descent search phase of CPP-P3

As shown in Section 5.2, the first phase of CPP-P3 employs a descent procedure to locate a first local
optimum from a given starting solution (which is typically generated by the perturbation phase). Since the
descent phase is followed by a tabu-based exploration phase, one may wonder if the descent phase is nec-
essary. To clarify this, we investigated a CPP-P3 variant where the descent search phase was disabled (i.e.,
line 6 of Algorithm 5.1 was removed) and the other components were kept unchanged. We then used the
variant to solve all the benchmark instances under the same experimental condition as that used in Section
5.3.2. Without bothering to give a detailed tabulation of the detailed results, we mention that, between CPP-
P3 and its variant, no strict dominance is observed according to the main performance indicators (best and
average objective values, hit and CPU time). In fact, CPP-P3 performs better than its variant on a number
of instances while the reverse is true for other instances. This experiment indicates that it would be more
appropriate to consider the descent search phase as an option of the CPP-P3 which can be switched on or
off to solve a given problem instance.

5.5 Conclusion
The clique partitioning problem (CPP) is a significant NP-Hard problem with numerous applications.

This chapter mainly studied an effective heuristic algorithm CPP-P3 for CPP. The algorithm iterates three
phases, i.e., the descent search, the exploration search and the directed perturbation before meeting the stop
condition. The three phases play different roles during the search: descent search quickly converges solu-
tion to very high quality, tabu search explores nearby region of local optimum while the perturbation leads
the search to explore new search areas for the purpose of diversification. The concept of Top Move was
used to reduce the number of considered neighborhoods for all three phases. We conducted experiments on

102 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

four groups of instances to verify the effectiveness of our algorithms. In terms of solution quality and com-
putational time, CPP-P3 generally outperforms two state-of-the-art algorithms ITS and SGVNS. Besides,
CPP-P3 also sets new records on some large instances. Analysis of Top Move demonstrates the effective-
ness of our local move operator. Further landscape analysis using fitness distance correlation reveals the
characteristics and hardness of some representative instances.

General Conclusion

Conclusions

This thesis concerns four NP-hard combinatorial problems in the clique problem family, namely, the
maximum vertex weight clique problem (MVWCP), the maximum s-plex problem (MsPlex), the maxi-
mum balanced biclique problem (MBBP) and the clique partitioning problem (CPP). These problems are
extensively studied in the literature not only for their theoretical intractability, but also for their real world
applications in many domains like social network analysis, computer vision, investigation analysis, nano-
electronic system design, etc. In this thesis, we mainly focused on developing heuristic algorithms to solve
these problems. Some ideas for improving exact algorithms were also proposed. Besides, since emerging
very large scale real-life networks in recent years have also introduced additional difficulty of solving these
problems, we discussed some interesting reduction techniques to deal with very large sparse networks.

In Chapter 2, we presented the generalized PUSH operator for MVWCP. PUSH(v,C) adds to the current
clique C a vertex v taken from a candidate push set of vertices, and removes from C any vertex which is not
adjacent to v to keep the resulting clique feasible. By customizing the candidate push set, the PUSH operator
can be used to define various dedicated neighborhoods which can be explored by any local optimization
algorithm. In particular, we showed that the traditional ADD and SWAP operators as well as some restart
and perturbation rules are also covered by the PUSH operator. To demonstrate the usefulness of the PUSH
operator for solving MVWCP, we introduced two restart tabu search algorithms (ReTS-I and ReTS-II)
which apply PUSH on different candidate push sets. In ReTS-I, PUSH operates with the single largest
candidate push set V \ C, while ReTS-II explores three customized candidate push sets. Both ReTS-I
and ReTS-II also share the same restart strategy which generates, according to a probability, new starting
solutions either with an objective-guided reconstruction procedure or a randomized one. ReTS-I and ReTS-
II were evaluated on 3 sets (2nd DIMACS, BHOSLIB and WDP) of 142 benchmark instances. Experimental
results indicated that both algorithms compete very favorably with the state-of-the-art algorithms on the
tested instances in terms of computational effort and solution quality. Both algorithms are even able to
find an improved best-known result (new lower bound) for one instance (frb53-24-3). In addition to these
interesting results, the generality of the PUSH operator enables a wider application surpassing the studied
tabu search procedures.

In Chapter 3, we explored an effective tabu based local search algorithm for solving MsPlex heuristi-
cally. To ensure its efficiency, the proposed algorithm combines a multi-neighborhood search procedure
with vertex-moving frequency, where the search process is driven by two intensification oriented operators
(ADD and SWAP) and one diversification operator (PRESS). Dedicated rules are defined to explore the
neighborhoods introduced by these operators. Information regarding vertex moves is collected and used to
guide the construction of the starting solutions and the perturbation process. A graph peeling technique is
also integrated to dynamically reduce large sparse graphs. We assessed the performance of the proposed
algorithm using three popular benchmark sets: 47 instances from the Stanford Large Network Dataset Col-
lection and the 10th DIMACS Implementation Challenge, and 52 dense graphs from the 2nd DIMACS
Implementation Challenge. For the SNAP and 10th DIMACS benchmarks, FD-TS obtained improved so-
lutions (new lower bounds) for 7, 15, 19, 20 instances when s = 2, 3, 4, 5, respectively. Moreover, many of
these solutions were proved to be optimal using the Peel procedure. FD-TS also performed very well on

103

104 CHAPTER 5. A THREE-PHASED LOCAL SEARCH APPROACH FOR CPP

the instances from the 2nd DIMACS benchmark set. The Peel procedure was no longer effective for these
dense graphs, but FD-TS still obtained the current best-known results for all of the instances and discov-
ered better solutions for most instances compared with four recent reference algorithms and the powerful
CPLEX solver.

In Chapter 4, we discussed two types of algorithms for the maximum balanced biclique problem
(MBBP): heuristic algorithm and exact algorithms. Firstly, we presented an original tabu search combined
with two dedicated graph reduction techniques for solving MBBP approximately. The proposed TSGR-
MBBP algorithm is driven by a Constraint-Based Tabu Search (CBTS) procedure to retrieve high quality
solutions from the current graph. CBTS employs the “push" operator to explore relaxed search space in-
cluding both balanced and unbalanced bicliques and imposes a specific unbalance constraint on explored
solutions. Moreover, each time the lower bound is updated by CBTS, two reduction rules are used to prune
the graph, which leads to a reduced search space for the following iterations. Specifically, the first reduction
rule is based on removing unpromising vertices according to their degrees, while the second reduction rule
removes small subgraphs using an exact search procedure. The TSGR-MBBP algorithm has been assessed
on two benchmark sets: 30 random dense instances and 25 real-life large instances from the KONECT
collection. For the random instances, TSGR-MBBP dominates existing state-of-the-art approaches EA/SM
[Yuan et al., 2015], GL_Greedy[Al-Yamani et al., 2007] and CPLEX (version 12.6.1). Besides, new im-
proved solutions (new lower bounds) were found by TSGR-MBBP for 10 out of the 30 instances. For the
KONECT instances, TSGR-MBBP proved optimal solutions for 14 instances for the first time and found
high quality solutions for the other instances. Experiments also indicated that TSGR-MBBP performs bet-
ter than CPLEX both in terms of solution quality and computational time. Besides, we noticed that the two
reduction methods are able to prune a significant number of vertices for large sparse graphs. Additional
experiments demonstrated the effectiveness of the adopted unbalance constraint used by tabu search and
confirmed that the combination of two reduction methods significantly accelerates the convergence of the
search procedure.

In Chapter 5, we proposed an effective heuristic algorithm, CPP-P3, to solve the clique partitioning
problem. The algorithm is composed of three iterated search phases: a descent search, an exploration
search and a directed perturbation. The descent search quickly converges from a starting solution to a
local optimum. The exploration search uses a tabu procedure to explore nearby optimum solutions. The
directed perturbation creates an effective diversification with a mechanism similar to a GRASP construction
process. The originality of the neighborhood search comes from the concept of Top Move, which allows the
algorithm to reduce drastically the number of considered neighbors. To verify the effectiveness of CPP-P3,
we evaluated it on a large number of CPP benchmark instances from the literature as well as large random
instances specifically generated for this study. We also made a comprehensive comparison with the most
recent and the best performing CPP algorithms available in the literature (ITS and SGVNS). Experimental
results showed that CPP-P3 dominates both ITS and SGVNS in terms of solution quality, computational time
and robustness on a large set of graphs. On large instances (i.e., graphs with 1000 vertices and more), CPP-
P3 and SGVNS obtain comparable results (and dominate ITS) although improvements are clearly possible
since we observe a loss of robustness for all algorithms on these difficult instances. Note that the best-known
solutions of some large instances have been improved by our algorithm. We also provided an analysis of
the Top Move neighborhood to assess its key role to the performance of CPP-P3. Moreover, we presented
a landscape analysis using the fitness distance correlation to shed light on the instance characteristics and
hardness.

Perspectives

In this thesis, we mainly consider algorithms and experimental validations for the four aforementioned
critical clique problems. The study can be extended in several directions.

Firstly, according to the no free lunch theorem [Wolpert and Macready, 1997], there is no single al-

5.5. CONCLUSION 105

gorithm that can achieve the best performance for all possible instances. For an algorithm, in order to
maximize the robustness across a large range of problem instances with very different characteristics, it
would be useful to develop adaptive or learning techniques to help the algorithm to adjust its parameters
or search strategy dynamically. For example, the ρ parameter impacts the performance of both algorithms
for MVWCP (Chapter 2), it would be interesting to investigate ways of making this parameter self-adaptive
during the search. Aside from adaptive techniques, off-line learning for algorithm selection and parameter
tuning has also been successfully applied to classical NP-Hard combinatorial problem like MAX-SAT and
TSP [Hutter et al., 2014]. This technique also provides us with an approach to better tune parameters for
the concerned problems.

Secondly, since the graph reduction techniques have been successfully employed for MsPlex, MBBP
and MCP [Verma et al., 2015], these techniques are believed to have great potential in solving other impor-
tant graph problems with very large networks. In fact, though we did not reduce the graph in algorithms
for MVWCP, we have observed that graph reduction has been successfully used in MVWCP in [Cai and
Lin, 2016] shortly after our work and obtained very good results. Except the graph reduction techniques,
it is worth testing other general ideas in this thesis on similar problems. One example is the PUSH op-
erator we proposed in Chapter 2. As it has been successfully used in MVWCP and MBBP, this operator
would work well on other similar problems like relaxed clique problems, such as s-defective clique [Yu
et al., 2006], quasi-clique [Abello et al., 2002; Pajouh et al., 2014; Pattillo et al., 2013a; Veremyev et al.,
2016] and k-club [Bourjolly et al., 2000; Moradi and Balasundaram, 2015; Shahinpour and Butenko, 2013;
Veremyev and Boginski, 2012]. We could also investigate the frequency information in new selection rules
for the transformation operators as well as other guided perturbation mechanisms such as those proposed in
[Benlic and Hao, 2013a].

Lastly, as introduced in the beginning, the clique problems considered in this thesis have numerous
real-life application. However, there is still a huge gap between application and theory. For example, in
[Boginski et al., 2014], MsPlex was applied to find the profitable portfolio, but the strategy of building
the networks still obviously influences in the results. Same problems would be faced when using CPP
algorithms to cluster different objects. Therefore, to make use of the algorithms proposed in this thesis, it is
important to model the real application into a suitable graph. Besides, for some applications, the algorithms
should be conducted on a distributed computing system, which raises another question of how to distribute
or parallelize these algorithms.

List of Figures

2.1 An example which shows that a better solution can be reached by the PUSH operator, but
cannot be attained by the traditional ADD and SWAP operators. 19

2.2 A simple graph labeled with vertex weights in brackets. 21

3.1 An example of ADD operator for MsPlex. 38
3.2 An example of SWAP operator for MsPlex. 40

4.1 An example of balanced biclique. 59
4.2 The relations between the number of iterations and the average best sizes of 20 runs on 6

selected instances from KONECT. 71
4.3 An example graph for MBBP exact algorithms. 72
4.4 The base-10 log scale number of B&B tree nodes explored by BBClq, ExtBBClq, and

CPLEX with the original and tightened formulations to solve the random graphs of different
densities. 82

4.5 The base-10 log scaled number of B&B tree nodes explored by the BBClq and ExtBBClq
algorithms for the 21 solvable instances. 82

5.1 Running profiles of CPP-P3 and CPP-P3-X . 100
5.2 FD correlation plots with respect to the solution fitness and distance to the optimum for 8

graphs. 101

107

List of Tables

2.1 Computational results of ReTS-I and ReTS-II on 80 2nd DIMACS instances. 28
2.2 Computational results of ReTS-I and ReTS-II on 40 BHOSLIB instances. 29
2.3 Computational results of ReTS-I and ReTS-II on 22 selected WDP instances. 29
2.4 Experimental results of ReTS-I and ReTS-II in comparison with 3 reference algorithms on

27 selected 2nd DIMACS and BHOSLIB instances. 30
2.5 Improved results of ReTS-I on frb50-23-4 and frb56-25-5 and improved results of ReTS-II

on frb56-25-3 and frb56-25-4 with an extended cutoff time limit. 31
2.6 Average hits on 18 selected instances. 31
2.7 Comparison of our ReTS-I and ReTS-II algorithms with MN/TS, CPLEX on the WDP

instances . 32
2.8 Value of ρ which allows each algorithm to reach its best performance. 32
2.9 Impact of the parameter ρ on the results of ReTS-I and ReTS-II 33

3.1 Computational results of FD-TS on 47 large networks from the SNAP Collection and the
10th DIMACS Implementation Challenge. 47

3.2 Computational results of FD-TS on 52 benchmark instances of the 2nd DIMACS Imple-
mentation Challenge . 50

3.3 Impact of frequency information - comparison between FD-TS and FD-TS-R. 52

4.1 Computational results of TSGR-MBBP together with the results of EA/SM, CPLEX and
AL_Greedy on the set of 30 random dense graphs. 67

4.2 Computational results of TSGR-MBBP and CPLEX on the set of 25 large KONECT in-
stances. The results of EA/SM and AL_Greedy are not available. 69

4.3 Comparison between three different versions of the Constraint-Based Tabu Search proce-
dure: CBTSΩ∞ , CBTSΩ1 , CBTSΩ2 . 70

4.4 Computational results of the 5 algorithms for the random graphs. 79
4.5 Computational results of the 5 algorithms for KONECT instances. 80

5.1 Parameter settings of testing CPP-P3. 93
5.2 Computation results on instances of Groups I and II of our CPP-P3, ITS and SGVNS algo-

rithms. 94
5.3 Computation results on instances of Group III of our CPP-P3, ITS and SGVNS algorithms. 96
5.4 Computation results on new instances of our CPP-P3, ITS and SGVNS algorithms. 98
5.5 Comparison results of CPP-P3-X and CPP-P3 . 99
5.6 Computational results of FD-TS on 20 large networks from the SNAP Collection and the

10th DIMACS Implementation Challenge . 112
5.7 Computational results of FD-TS on 28 benchmark instances of the 2nd DIMACS Imple-

mentation Challenge . 113

109

Appendix

5.6 Computational results of MsPlex on additional instances
This section includes additional results of our FD-TS algorithm and CPLEX for 48 instances from the

three benchmark sets. Note that these instances have not been tested previously by any s-plex algorithm.
Only lower bounds (from the best-known maximum clique sizes [Verma et al., 2015; Wu and Hao, 2015a])
are available. Table 5.6 contains the 20 large SNAP and 10th DIMACS Challenge instances while Table 5.7
includes the remaining 28 instances of 2nd DIMACS Challenge.

111

112 LIST OF TABLES

Ta
bl

e
5.

6:
C

om
pu

ta
tio

na
lr

es
ul

ts
of

FD
-T

S
on

20
la

rg
e

ne
tw

or
ks

fr
om

th
e

SN
A

P
C

ol
le

ct
io

n
an

d
th

e
10

th
D

IM
A

C
S

Im
pl

em
en

ta
tio

n
C

ha
lle

ng
e

In
st

an
ce

|V
|

|E
|

ω
[V

er
m

a
et

al
.,

20
15

]

s=
2

s=
3

s=
4

s=
5

m
ax

tim
e

|V
′ |

cp
le

x
m

ax
tim

e
|V

′ |
cp

le
x

m
ax

tim
e

|V
′ |

cp
le

x
m

ax
tim

e
|V

′ |
cp

le
x

p2
p-

G
nu

te
lla

30
36

68
2

88
32

8
3

5
0.

01
12

09
7

N
/A

7
0.

04
97

79
4

8
0.

01
97

79
5

10
0.

02
14

58
10

p2
p-

G
nu

te
lla

31
62

58
6

14
78

92
4

5
0.

04
19

76
5

N
/A

6
0.

02
19

76
5

N
/A

8
0.

02
16

17
4

N
/A

10
0.

04
10

04
10

*

A
m

az
on

03
02

26
21

11
89

97
92

7
8*

0.
24

0
-

9*
0.

53
0

-
10

*
0.

24
0

-
11

*
0.

25
0

-

kr
on

_g
50

0-
si

m
pl

e-
lo

gn
16

65
53

6
24

56
07

1
13

6
14

0
0.

89
68

85
N

/A
14

4
0.

92
68

85
30

14
8

1.
22

68
84

N
/A

15
2

1.
38

68
83

18

ci
ta

tio
nC

ite
se

er
26

84
95

11
56

64
7

10
13

2.
49

67
31

N
/A

14
0.

54
67

31
N

/A
16

0.
72

27
79

4
18

0.
81

11
50

17

eu
-2

00
5

86
26

64
16

13
84

68
38

7
38

8
4.

73
40

5
38

8*
39

0
5.

17
40

5
39

0*
39

1
7.

57
40

5
39

1*
39

3*
9.

08
0

-

in
-2

00
4

13
82

90
8

13
59

14
73

48
9

49
0*

3.
51

0
-

49
1*

6.
90

0
-

49
1*

7.
54

49
1

-
49

1*
8.

89
49

1
-

rg
g_

n_
2_

21
_s

0
20

97
15

2
14

48
79

95
19

19
*

2.
83

19
-

19
2.

82
11

5
19

*
20

2.
62

11
5

20
*

22
*

2.
53

19
-

rg
g_

n_
2_

22
_s

0
41

94
30

4
30

35
91

98
20

20
*

5.
67

20
-

21
*

5.
64

20
-

22
*

5.
38

20
-

23
*

5.
29

20
-

rg
g_

n_
2_

23
_s

0
83

88
60

8
63

50
13

93
21

22
*

12
.5

5
0

-
22

*
11

.1
7

22
-

23
*

12
.1

6
22

-
24

*
11

.5
0

22
-

rg
g_

n_
2_

24
_s

0
16

77
72

16
13

25
57

20
0

21
22

*
24

.9
4

0
-

23
*

25
.3

3
0

-
24

*
21

.8
4

0
-

25
*

24
.9

5
0

-

uk
-2

00
2

18
52

04
86

26
17

87
25

8
94

4
94

4*
45

.0
0

94
4

-
94

4*
44

.2
3

94
4

-
94

4*
47

.0
5

94
4

-
94

4*
47

.1
3

94
4

-

G
_n

_p
in

_p
ou

t
10

00
00

50
11

98
3

5
3.

95
98

96
1

N
/A

5
0.

03
99

73
4

N
/A

7
42

.9
6

98
96

1
N

/A
8

26
.2

9
98

96
1

N
/A

pr
ef

er
en

tia
lA

t
ta

ch
-

m
en

t
10

00
00

49
99

85
6

7*
0.

02
0

-
8*

0.
03

0
-

9*
0.

06
0

-
10

*
0.

09
0

-

sm
al

lw
or

ld
10

00
00

49
99

98
5

7
0.

00
99

98
2

N
/A

8
0.

00
99

98
2

N
/A

9
0.

00
99

98
2

N
/A

10
0.

00
99

98
2

N
/A

lu
xe

m
bo

ur
g.

os
m

11
45

99
11

96
66

2
4*

0.
02

0
-

5*
0.

02
0

-
6*

0.
02

0
-

7*
0.

02
0

-

w
av

e
15

63
17

10
59

33
1

5
9

0.
68

11
97

47
N

/A
9

0.
85

15
50

74
N

/A
11

1.
57

11
97

47
N

/A
12

0.
81

11
97

47
N

/A

au
di

kw
1

94
36

95
38

35
40

76
36

36
1.

08
93

77
79

N
/A

39
34

.8
3

93
60

15
N

/A
45

69
.7

9
87

53
49

N
/A

45
75

.7
7

92
98

20
N

/A

ld
oo

r
95

22
03

22
78

51
36

21
21

0.
00

95
22

03
N

/A
21

0.
01

95
22

03
N

/A
21

0.
01

95
22

03
N

/A
23

0.
10

95
22

03
N

/A

ec
ol

og
y1

10
00

00
0

19
98

00
0

2
4*

0.
00

0
-

4
0.

00
10

00
00

0
N

/A
6*

0.
01

0
-

7*
0.

00
0

-

5.6. COMPUTATIONAL RESULTS OF MSPLEX ON ADDITIONAL INSTANCES 113

Ta
bl

e
5.

7:
C

om
pu

ta
tio

na
lr

es
ul

ts
of

FD
-T

S
on

28
be

nc
hm

ar
k

in
st

an
ce

s
of

th
e

2n
d

D
IM

A
C

S
Im

pl
em

en
ta

tio
n

C
ha

lle
ng

e

in
st

an
ce

|V
|

ω
[W

u
an

d
H

ao
,2

01
5a

]

s=
2

s=
3

s=
4

s=
5

cp
le

x
m

ax
(a

ve
)

tim
e

cp
le

x
m

ax
(a

ve
)

tim
e

cp
le

x
m

ax
(a

ve
)

tim
e

cp
le

x
m

ax
(a

ve
)

tim
e

C
12

5.
9

12
5

34
43

*
43

0.
00

51
*

51
1.

89
58

58
0.

07
65

*
65

0.
38

C
25

0.
9

25
0

44
53

55
8.

43
63

65
22

.2
9

75
75

4.
81

84
84

4.
72

C
50

0.
9

50
0

57
63

69
10

.6
7

74
81

(8
0.

95
)

57
.7

2
84

92
(9

1.
75

)
55

.1
1

97
10

3(
10

2.
25

)
36

.6
5

D
SJ

C
10

00
_5

10
00

15
15

18
26

.6
1

18
21

25
.3

5
21

24
(2

3.
05

)
5.

63
24

27
(2

6.
25

)
32

.1
4

D
SJ

C
50

0_
5

50
0

13
15

16
0.

29
17

19
2.

81
20

21
0.

12
23

24
1.

07

M
A

N
N

_a
81

33
21

11
00

21
62

*
21

62
(2

11
3.

90
)

13
9.

35
32

40
*

32
40

(3
12

5.
35

)
13

8.
36

32
40

*
32

40
(2

78
8.

70
)

14
7.

51
32

40
*

31
35

(2
66

0.
75

)
19

0.
01

br
oc

k4
00

_3
40

0
31

28
30

0.
35

33
36

6.
59

38
41

5.
90

43
46

(4
5.

90
)

55
.9

5

ge
n2

00
_p

0.
9_

44
20

0
44

53
53

0.
14

66
66

0.
09

76
76

0.
03

84
84

0.
05

ge
n2

00
_p

0.
9_

55
20

0
55

57
57

0.
02

64
64

0.
14

73
73

0.
12

80
80

0.
19

ge
n4

00
_p

0.
9_

55
40

0
55

64
68

(6
7.

70
)

65
.7

6
85

87
26

.6
2

10
8

11
2

0.
19

12
4

12
4

0.
16

ge
n4

00
_p

0.
9_

65
40

0
65

73
73

(7
1.

60
)

28
.0

1
10

0
10

1(
10

0.
45

)
10

.6
8

13
2

13
2

0.
25

13
8

13
8

0.
15

ge
n4

00
_p

0.
9_

75
40

0
75

78
79

(7
8.

05
)

30
.6

2
11

2
11

4
0.

35
13

6
13

6
0.

10
13

6
13

6
0.

12

jo
hn

so
n3

2-
2-

4
49

6
16

21
21

0.
02

32
32

0.
05

38
38

0.
38

48
48

0.
09

ke
lle

r5
77

6
27

31
31

0.
09

41
45

8.
19

46
53

(5
2.

75
)

53
.6

7
58

61
5.

04

p_
ha

t5
00

-2
50

0
36

42
42

0.
02

49
50

0.
12

55
57

0.
07

62
62

0.
25

p_
ha

t5
00

-3
50

0
50

60
62

0.
18

71
72

1.
24

80
81

1.
94

88
89

1.
73

sa
n2

00
_0

.7
_1

20
0

30
31

31
0.

59
46

46
(4

5.
70

)
1.

51
60

60
0.

01
75

*
75

0.
01

sa
n2

00
_0

.9
_2

20
0

60
71

71
2.

47
10

5*
10

5
0.

02
10

5*
10

5
0.

02
10

5*
10

5
0.

03

sa
n2

00
_0

.9
_3

20
0

44
53

54
(5

3.
95

)
72

.3
1

73
73

7.
48

96
*

96
0.

08
10

0*
10

0
0.

03

sa
n4

00
_0

.5
_1

40
0

13
15

15
1.

24
22

22
3.

61
29

29
4.

92
35

36
(3

5.
70

)
55

.4
0

sa
n4

00
_0

.7
_1

40
0

40
41

41
0.

20
61

61
2.

49
80

81
(8

0.
45

)
17

.5
4

10
0

10
0

0.
06

sa
n4

00
_0

.7
_2

40
0

30
32

32
7.

22
46

47
(4

6.
10

)
0.

46
61

61
0.

57
76

76
10

.3
4

sa
n4

00
_0

.7
_3

40
0

22
27

27
(2

6.
30

)
12

.2
7

38
38

11
.1

7
50

50
(4

9.
45

)
24

.7
1

61
61

0.
29

sa
n4

00
_0

.9
_1

40
0

10
0

10
2

10
2(

10
1.

30
)

9.
09

15
0

15
0

0.
09

20
0*

20
0

0.
12

20
0*

20
0

0.
15

sa
nr

20
0_

0.
7

20
0

18
22

22
0.

01
25

26
0.

03
30

30
0.

14
33

33
0.

05

sa
nr

20
0_

0.
9

20
0

42
51

51
0.

61
60

61
2.

25
69

69
0.

07
76

77
5.

74

sa
nr

40
0_

0.
5

40
0

13
14

15
0.

02
18

18
0.

09
20

21
0.

56
23

24
1.

63

sa
nr

40
0_

0.
7

40
0

21
25

26
1.

03
28

30
0.

45
32

35
5.

31
35

39
31

.0
1

List of Publications

Published/accepted journal papers
– Yi Zhou, Jin-Kao Hao, Adrien Goëffon. A three-phased local search approach for the Clique Parti-

tioning problem. Journal of Combinatorial Optimization 32(2): 469-491, 2016.
– Yi Zhou, Jin-Kao Hao, Adrien Goëffon. PUSH: a generalized operator for the maximum weight

clique problem. European Journal of Operational Research 257(1): 41-54, 2017.
– Yi Zhou and Jin-Kao Hao. Frequency-driven tabu search for the maximum s-plex problem. Computer

& Operations Research, 86: 65-78, 2017.

Submitted journal papers
– Yi Zhou, André Rossi and Jin-Kao Hao. Towards effective exact algorithms for the maximum bal-

anced biclique problem. European Journal of Operational Research. Submitted Jan. 2017, revision
May 2017.

– Yi Zhou and Jin-Kao Hao. Combining tabu search and graph reduction to solve the maximum bal-
anced biclique problem. Expert Systems with Applications. Submitted April 2017, revised in July
2017.

115

References

[Abello et al., 2002] James Abello, Mauricio GC Resende, and Sandra Sudarsky. Massive quasi-clique
detection. In Proceedings of the Latin American Symposium on Theoretical Informatics, pages 598–612.
Springer, 2002. 43, 64, 105

[Al-Yamani et al., 2007] Ahmad A. Al-Yamani, Sundarkumar Ramsundar, and Dhiraj K. Pradhan. A defect
tolerance scheme for nanotechnology circuits. IEEE Transactions on Circuits and Systems I: Regular
Papers, 54(11):2402–2409, 2007. 9, 57, 66, 83, 104

[Alidaee et al., 2007] Bahram Alidaee, Fred Glover, Gary Kochenberger, and Haibo Wang. Solving the
maximum edge weight clique problem via unconstrained quadratic programming. European Journal of
Operational Research, 181(2):592–597, 2007. 17

[Alon et al., 1994] Noga Alon, Richard A Duke, Hanno Lefmann, Vojtech Rodl, and Raphael Yuster. The
algorithmic aspects of the regularity lemma. Journal of Algorithms, 16(1):80–109, 1994. 7, 57

[Bader et al., 2012] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. Graph
partitioning and graph clustering. In Proceedings of the 10th Dimacs Implementation Challenge Work-
shop, 2012. 11

[Balasundaram et al., 2011] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V Hicks. Clique relax-
ations in social network analysis: The maximum k-plex problem. Operations Research, 59(1):133–142,
2011. 6, 7, 10, 11, 36, 43, 48, 49

[Ballard and Brown, 1982] Dana H Ballard and Christopher M Brown. Computer Vision. Prentice-Hall
Englewood Cliff., 1982. 8, 17

[Benlic and Hao, 2013a] Una Benlic and Jin-Kao Hao. Breakout local search for maximum clique prob-
lems. Computers & Operations Research, 40(1):192–206, 2013. 10, 11, 17, 18, 19, 20, 21, 22, 23, 26,
27, 40, 105

[Benlic and Hao, 2013b] Una Benlic and Jin-Kao Hao. Breakout local search for the quadratic assignment
problem. Applied Mathematics and Computation, 219(9):4800–4815, 2013. 91

[Boginski et al., 2014] Vladimir Boginski, Sergiy Butenko, Oleg Shirokikh, Svyatoslav Trukhanov, and
Jaime Gil Lafuente. A network-based data mining approach to portfolio selection via weighted clique
relaxations. Annals of Operations Research, 216(1):23–34, 2014. 8, 105

[Bomze et al., 2000] Immanuel M Bomze, Marcello Pelillo, and Volker Stix. Approximating the maximum
weight clique using replicator dynamics. IEEE Transactions on Neural Networks, 11(6):1228–1241,
2000. 17

[Bourjolly et al., 2000] Jean-Marie Bourjolly, Gilbert Laporte, and Gilles Pesant. Heuristics for finding
k-clubs in an undirected graph. Computers & Operations Research, 27(6):559–569, 2000. 8, 105

[Brimberg et al., 2015] Jack Brimberg, Stefana Janićijević, Nenad Mladenović, and Dragan Urošević.
Solving the clique partitioning problem as a maximally diverse grouping problem. Optimization Let-
ters, pages 1–13, 2015. 10, 87, 93, 94, 96, 98

[Brunato et al., 2007] Mauro Brunato, Holger H Hoos, and Roberto Battiti. On effectively finding maximal
quasi-cliques in graphs. In Proceedings of the International Conference on Learning and Intelligent
Optimization, pages 41–55. Springer, 2007. 8

117

118 REFERENCES

[Brusco and Köhn, 2009] Michael J Brusco and Hans-Friedrich Köhn. Clustering qualitative data based
on binary equivalence relations: neighborhood search heuristics for the clique partitioning problem.
Psychometrika, 74(4):685, 2009. 10, 12, 87, 89, 93, 95, 99

[Busygin, 2006] Stanislav Busygin. A new trust region technique for the maximum weight clique problem.
Discrete Applied Mathematics, 154(15):2080–2096, 2006. 17

[Cai and Lin, 2016] Shaowei Cai and Jinkun Lin. Fast solving maximum weight clique problem in massive
graphs. In Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI’16,
pages 568–574. AAAI Press, 2016. 105

[Cai, 2015] Shaowei Cai. Balance between complexity and quality: Local search for minimum vertex
cover in massive graphs. In Proceedings of the 24th International Conference on Artificial Intelligence,
IJCAI’15, pages 747–753. AAAI Press, 2015. 6, 24

[Carraghan and Pardalos, 1990] Randy Carraghan and Panos M Pardalos. An exact algorithm for the max-
imum clique problem. Operations Research Letters, 9(6):375–382, 1990. 9, 17, 36, 64, 73

[Charon and Hudry, 2001] Irène Charon and Olivier Hudry. The noising methods: A generalization of
some metaheuristics. European Journal of Operational Research, 135(1):86–101, 2001. 10, 87

[Charon and Hudry, 2006] Irène Charon and Olivier Hudry. Noising methods for a clique partitioning
problem. Discrete Applied Mathematics, 154(5):754–769, 2006. 10, 12, 87, 89, 93, 95, 99

[Chen and Hao, 2015] Yuning Chen and Jin-Kao Hao. Iterated responsive threshold search for the
quadratic multiple knapsack problem. Annals of Operations Research, 226(1):101–131, 2015. 89

[Cheng and Church, 2000] Yizong Cheng and George M. Church. Biclustering of expression data. In
Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, pages
93–103. AAAI Press, 2000. 7, 9, 57

[Cramton et al., 2006] Peter Cramton, Yoav Shoham, and Richard Steinberg. Combinatorial Auctions.
MIT Press, 2006. 6

[Dawande et al., 2001] Milind Dawande, Pinar Keskinocak, Jayashankar M Swaminathan, and Sridhar
Tayur. On bipartite and multipartite clique problems. Journal of Algorithms, 41(2):388–403, 2001.
11, 58, 68, 72, 76, 78, 83

[De Amorim et al., 1992] Saul G De Amorim, Jean-Pierre Barthélemy, and Celso C Ribeiro. Clustering
and clique partitioning: simulated annealing and tabu search approaches. Journal of Classification,
9(1):17–41, 1992. 10, 87, 89, 99

[Dijkhuizen and Faigle, 1993] G Dijkhuizen and U Faigle. A cutting-plane approach to the edge-weighted
maximal clique problem. European Journal of Operational Research, 69(1):121–130, 1993. 17

[Dorndorf and Pesch, 1994] Ulrich Dorndorf and Erwin Pesch. Fast clustering algorithms. ORSA Journal
on Computing, 6(2):141–153, 1994. 8, 10, 87, 92

[Dorndorf et al., 2008] Ulrich Dorndorf, Florian Jaehn, and Erwin Pesch. Modelling robust flight-gate
scheduling as a clique partitioning problem. Transportation Science, 42(3):292–301, 2008. 9, 87

[Etzion and Ostergard, 1998] Tuvi Etzion and Patric RJ Ostergard. Greedy and heuristic algorithms for
codes and colorings. IEEE Transactions on Information Theory, 44(1):382–388, 1998. 6

[Fahle, 2002] Torsten Fahle. Simple and fast: Improving a branch-and-bound algorithm for maximum
clique. In Proceedings of the 10th European Symposium on Algorithms (Algorithms – ESA 2002), pages
485–498. Springer Berlin Heidelberg, 2002. 9

[Fang et al., 2016] Zhiwen Fang, Chu-Min Li, and Ke Xu. An exact algorithm based on maxsat reasoning
for the maximum weight clique problem. Journal of Artificial Intelligence Research, 55:799–833, 2016.
10, 11, 17, 26, 27

[Feige and Kogan, 2004] Uriel Feige and Shimon Kogan. Hardness of approximation of the balanced com-
plete bipartite subgraph problem. Technical report, Weizmann Inst. Sci, 2004. 57

REFERENCES 119

[Feo and Resende, 1995a] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6(2):109–133, 1995. 10, 36

[Feo and Resende, 1995b] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6(2):109–133, 1995. 92

[Fu and Hao, 2015] Zhang-Hua Fu and Jin-Kao Hao. A three-phase search approach for the quadratic
minimum spanning tree problem. Engineering Applications of Artificial Intelligence, 46:113–130, 2015.
88

[Galinier and Hao, 1999] Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph
coloring. Journal of Combinatorial Optimization, 3(4):379–397, 1999. 91

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. 7, 57

[Glover and Laguna, 2013] Fred Glover and Manuel Laguna. Tabu Search. Springer, 2013. 21, 23, 24, 36,
42, 63, 87, 89, 91

[Grosso et al., 2008] Andrea Grosso, Marco Locatelli, and Wayne Pullan. Simple ingredients leading to
very efficient heuristics for the maximum clique problem. Journal of Heuristics, 14(6):587–612, 2008.
18, 20, 21, 22, 23

[Grötschel and Wakabayashi, 1989] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algo-
rithm for a clustering problem. Mathematical Programming, 45(1):59–96, 1989. 7, 9, 10, 87

[Grötschel and Wakabayashi, 1990] Martin Grötschel and Yoshiko Wakabayashi. Facets of the clique par-
titioning polytope. Mathematical Programming, 47(1):367–387, 1990. 7, 87

[Gujjula et al., 2014] Krishna Reddy Gujjula, Krishnan Ayalur Seshadrinathan, and Amirhossein Meisami.
A hybrid metaheuristic for the maximum k-plex problem. In Examining Robustness and Vulnerability of
Networked Systems. NATO Science for Peace and Security Series - D: Information and Communication
Security, volume 37, pages 83–92, 2014. 10, 36

[Gutierrez-Rodríguez et al., 2015] Andrés Eduardo Gutierrez-Rodríguez, J Fco Martínez-Trinidad, Milton
García-Borroto, and Jesús Ariel Carrasco-Ochoa. Mining patterns for clustering on numerical datasets
using unsupervised decision trees. Knowledge-Based Systems, 82:70–79, 2015. 9

[Hardiman and Katzir, 2013] Stephen J Hardiman and Liran Katzir. Estimating clustering coefficients and
size of social networks via random walk. In Proceedings of the 22nd International Conference on World
Wide Web, pages 539–550. ACM, 2013. 12

[Hutter et al., 2014] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence, 206:79–111, 2014. 105

[Jaehn and Pesch, 2013] Florian Jaehn and Erwin Pesch. New bounds and constraint propagation tech-
niques for the clique partitioning problem. Discrete Applied Mathematics, 161(13):2025–2037, 2013.
87

[Ji and Mitchell, 2007] Xiaoyun Ji and John E Mitchell. Branch-and-price-and-cut on the clique partition-
ing problem with minimum clique size requirement. Discrete Optimization, 4(1):87–102, 2007. 87

[Jin and Hao, 2015] Yan Jin and Jin-Kao Hao. General swap-based multiple neighborhood tabu search for
the maximum independent set problem. Engineering Applications of Artificial Intelligence, 37:20–33,
2015. 40, 43

[Jones and Forrest, 1995] Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of
problem difficulty for genetic algorithms. In Proceedings of the 6th International Conference on Genetic
Algorithms, pages 184–192. Morgan Kaufmann Publishers Inc., 1995. 99

[Karp, 1972] Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations. Springer, 1972. 9, 17, 36

120 REFERENCES

[Kernighan and Lin, 1970] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for parti-
tioning graphs. The Bell System Technical Journal, 49(2):291–307, 1970. 87

[Kirkpatrick et al., 1983] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983. 10, 87

[Kumlander, 2004] Deniss Kumlander. A new exact algorithm for the maximum-weight clique problem
based on a heuristic vertex-coloring and a backtrack search. In Proceedings of the 5th International
Conference on Modelling, Computation and Optimization in Information Systems and Management Sci-
ences, pages 202–208. Citeseer, 2004. 9, 17

[Kunegis, 2013] Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, WWW ’13 Companion, pages 1343–1350, New York,
NY, USA, 2013. ACM. 11

[Leskovec and Sosič, 2016] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016. 11

[Li and Quan, 2010] Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on
MaxSAT for the maximum clique problem. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence, AAAI’10, pages 128–133. AAAI Press, 2010. 9

[López-Ibánez et al., 2011] Manuel López-Ibánez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro
Birattari. The irace package, iterated race for automatic algorithm configuration. Technical report,
Citeseer, 2011. 65

[Malod-Dognin et al., 2010] Noël Malod-Dognin, Rumen Andonov, and Nicola Yanev. Maximum cliques
in protein structure comparison. In Proceedings of the International Symposium on Experimental Algo-
rithms, pages 106–117. Springer, 2010. 6

[Mannino and Sassano, 1996] Carlo Mannino and Antonio Sassano. Edge projection and the maximum
cardinality stable set problem. DIMACS series in discrete mathematics and theoretical computer science,
26:205–219, 1996. 10

[Mannino and Stefanutti, 1999] Carlo Mannino and Egidio Stefanutti. An augmentation algorithm for the
maximum weighted stable set problem. Computational Optimization and Applications, 14(3):367–381,
1999. 11, 17, 27

[McClosky and Hicks, 2012] Benjamin McClosky and Illya V Hicks. Combinatorial algorithms for the
maximum k-plex problem. Journal of combinatorial optimization, 23(1):29–49, 2012. 9, 11, 36, 48, 49

[McCreesh and Prosser, 2014] Ciaran McCreesh and Patrick Prosser. An exact branch and bound algo-
rithm with symmetry breaking for the maximum balanced induced biclique problem. In Proceedings of
the International Conference on AI and OR Techniques in Constriant Programming for Combinatorial
Optimization Problems, pages 226–234. Springer, 2014. 57, 58, 72, 73, 74, 78, 83

[Miao and Balasundaram, 2012] Zhuqi Miao and Balabhaskar Balasundaram. Cluster detection in large-
scale social networks using k-plexes. In Proceedings of the IIE Annual Conference, page 1. Institute of
Industrial and Systems Engineers (IISE), 2012. 10, 36

[Moradi and Balasundaram, 2015] Esmaeel Moradi and Balabhaskar Balasundaram. Finding a maximum
k-club using the k-clique formulation and canonical hypercube cuts. Optimization Letters, pages 1–11,
2015. 105

[Moser et al., 2012] Hannes Moser, Rolf Niedermeier, and Manuel Sorge. Exact combinatorial algorithms
and experiments for finding maximum k-plexes. Journal of Combinatorial Optimization, 24(3):347–373,
2012. 11, 36, 48, 49

[Mubayi and Turán, 2010] Dhruv Mubayi and György Turán. Finding bipartite subgraphs efficiently. In-
formation Processing Letters, 110(5):174–177, 2010. 57

[Nemhauser and Trotter, 1974] George L Nemhauser and Leslie E Trotter. Properties of vertex packing
and independence system polyhedra. Mathematical Programming, 6(1):48–61, 1974. 10

REFERENCES 121

[Neveu et al., 2004] Bertrand Neveu, Gilles Trombettoni, and Fred Glover. ID Walk: A candidate list strat-
egy with a simple diversification device. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming, pages 423–437. Springer, 2004. 24

[Oosten et al., 2001] Maarten Oosten, Jeroen HGC Rutten, and Frits CR Spieksma. The clique partitioning
problem: facets and patching facets. Networks, 38(4):209–226, 2001. 9

[Östergård, 1999] Patric RJ Östergård. A new algorithm for the maximum-weight clique problem. Elec-
tronic Notes in Discrete Mathematics, 3:153–156, 1999. 9, 17

[Östergård, 2002] Patric RJ Östergård. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1):197–207, 2002. 9, 17, 36, 48

[Padberg, 1973] Manfred W Padberg. On the facial structure of set packing polyhedra. Mathematical
programming, 5(1):199–215, 1973. 10

[Pajouh et al., 2014] Foad Mahdavi Pajouh, Zhuqi Miao, and Balabhaskar Balasundaram. A branch-and-
bound approach for maximum quasi-cliques. Annals of Operations Research, 216(1):145–161, 2014. 8,
105

[Palubeckis et al., 2014] Gintaras Palubeckis, Armantas Ostreika, and Arūnas Tomkevičius. An iterated
tabu search approach for the clique partitioning problem. The Scientific World Journal, 2014, 2014. 10,
12, 87, 89, 92, 93, 94, 96, 97, 98, 99

[Pattillo et al., 2012] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. Clique relaxation models in
social network analysis. In Handbook of Optimization in Complex Networks, pages 143–162. Springer,
2012. 8, 36

[Pattillo et al., 2013a] Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski. On
the maximum quasi-clique problem. Discrete Applied Mathematics, 161(1):244–257, 2013. 8, 105

[Pattillo et al., 2013b] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. On clique relaxation models
in network analysis. European Journal of Operational Research, 226(1):9–18, 2013. 8, 36

[Pullan and Hoos, 2006] Wayne Pullan and Holger H Hoos. Dynamic local search for the maximum clique
problem. Journal of Artificial Intelligence Research, 25:159–185, 2006. 21, 40

[Pullan, 2008] Wayne Pullan. Approximating the maximum vertex/edge weighted clique using local
search. Journal of Heuristics, 14(2):117–134, 2008. 10, 11, 17, 19, 23, 26, 27

[Rand, 1971] William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association, 66(336):846–850, 1971. 100

[Ravetti and Moscato, 2008] Martín Gómez Ravetti and Pablo Moscato. Identification of a 5-protein
biomarker molecular signature for predicting alzheimer’s disease. PloS One, 3(9):e3111, 2008. 6

[Ravi and Lloyd, 1988] S.S. Ravi and Errol L. Lloyd. The complexity of near-optimal programmable logic
array folding. SIAM Journal on Computing, 17(4):696–710, 1988. 9

[Rebennack et al., 2012] Steffen Rebennack, Gerhard Reinelt, and Panos M Pardalos. A tutorial on branch
and cut algorithms for the maximum stable set problem. International Transactions in Operational
Research, 19(1-2):161–199, 2012. 10

[Role and Nadif, 2014] François Role and Mohamed Nadif. Beyond cluster labeling: Semantic interpreta-
tion of clusters’ contents using a graph representation. Knowledge-Based Systems, 56:141–155, 2014.
9

[San Segundo et al., 2011] Pablo San Segundo, Diego Rodríguez-Losada, and Agustín Jiménez. An exact
bit-parallel algorithm for the maximum clique problem. Computers & Operations Research, 38(2):571–
581, 2011. 9

[Sandholm, 2002] Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence, 135(1-2):1–54, 2002. 27

122 REFERENCES

[Seidman and Foster, 1978] Stephen B Seidman and Brian L Foster. A graph-theoretic generalization of
the clique concept. Journal of Mathematical sociology, 6(1):139–154, 1978. 7, 36

[Shahinpour and Butenko, 2013] Shahram Shahinpour and Sergiy Butenko. Algorithms for the maximum
k-club problem in graphs. Journal of Combinatorial Optimization, 26(3):520–554, 2013. 105

[Singh and Gupta, 2006] Alok Singh and Ashok Kumar Gupta. A hybrid heuristic for the maximum clique
problem. Journal of Heuristics, 12(1-2):5–22, 2006. 17, 27

[Soto et al., 2011] María Soto, André Rossi, and Marc Sevaux. Three new upper bounds on the chromatic
number. Discrete Applied Mathematics, 159(18):2281–2289, 2011. 72

[Tahoori, 2006] Mehdi B. Tahoori. Application-independent defect tolerance of reconfigurable nanoarchi-
tectures. ACM Journal on Emerging Technologies in Computing Systems (JETC), 2(3):197–218, 2006.
9, 57, 66

[Tahoori, 2009] Mehdi B. Tahoori. Low-overhead defect tolerance in crossbar nanoarchitectures. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 5(2):11, 2009. 9

[Tomita and Kameda, 2007] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound algo-
rithm for finding a maximum clique with computational experiments. Journal of Global Optimization,
37(1):95–111, 2007. 9

[Tomita and Seki, 2003] Etsuji Tomita and Tomokazu Seki. An efficient branch-and-bound algorithm for
finding a maximum clique. In Discrete Mathematics and Theoretical Computer Science, pages 278–289.
Springer, 2003. 9

[Trukhanov et al., 2013] Svyatoslav Trukhanov, Chitra Balasubramaniam, Balabhaskar Balasundaram, and
Sergiy Butenko. Algorithms for detecting optimal hereditary structures in graphs, with application to
clique relaxations. Computational Optimization and Applications, 56(1):113–130, 2013. 9, 11, 36, 37,
38, 43, 45, 47, 48, 49, 50

[Veremyev and Boginski, 2012] Alexander Veremyev and Vladimir Boginski. Identifying large robust net-
work clusters via new compact formulations of maximum k-club problems. European Journal of Oper-
ational Research, 218(2):316–326, 2012. 105

[Veremyev et al., 2016] Alexander Veremyev, Oleg A Prokopyev, Sergiy Butenko, and Eduardo L Pasiliao.
Exact mip-based approaches for finding maximum quasi-cliques and dense subgraphs. Computational
Optimization and Applications, 64(1):177–214, 2016. 105

[Verma et al., 2015] Anurag Verma, Austin Buchanan, and Sergiy Butenko. Solving the maximum clique
and vertex coloring problems on very large sparse networks. INFORMS Journal on Computing,
27(1):164–177, 2015. 9, 43, 45, 105, 111, 112

[Wakabayashi, 1986] Yoshiko Wakabayashi. Aggregation of binary relations: algorithmic and polyhedral
investigations. PhD Thesis, Universität Augsburg, 1986. 7, 8, 87

[Wang et al., 2006] Haibo Wang, Bahram Alidaee, Fred Glover, and Gary Kochenberger. Solving group
technology problems via clique partitioning. International Journal of Flexible Manufacturing Systems,
18(2):77–97, 2006. 9

[Wang et al., 2016] Yang Wang, Jin-Kao Hao, Fred Glover, Zhipeng Lü, and Qinghua Wu. Solving the
maximum vertex weight clique problem via binary quadratic programming. Journal of Combinatorial
Optimization, 32(2):531–549, 2016. 10, 11, 17, 26, 27, 30

[Warren and Hicks, 2006] Jeffrey S Warren and Illya V Hicks. Combinatorial branch-and-bound for the
maximum weight independent set problem. Relatório Técnico, Texas A&M University, Citeseer, 2006.
9, 17

[Wolpert and Macready, 1997] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997. 104

REFERENCES 123

[Wu and Pei, 2007] Bin Wu and Xin Pei. A parallel algorithm for enumerating all the maximal k-plexes. In
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 476–483.
Springer, 2007. 36

[Wu and Hao, 2012] Qinghua Wu and Jin-Kao Hao. Coloring large graphs based on independent set ex-
traction. Computers & Operations Research, 39(2):283–290, 2012. 6

[Wu and Hao, 2013a] Qinghua Wu and Jin-Kao Hao. An adaptive multistart tabu search approach to solve
the maximum clique problem. Journal of Combinatorial Optimization, 26(1):86–108, 2013. 40, 89

[Wu and Hao, 2013b] Qinghua Wu and Jin-Kao Hao. A hybrid metaheuristic method for the maximum
diversity problem. European Journal of Operational Research, 231(2):452–464, 2013. 89

[Wu and Hao, 2015a] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique prob-
lems. European Journal of Operational Research, 242(3):693–709, 2015. 17, 36, 48, 59, 111, 113

[Wu and Hao, 2015b] Qinghua Wu and Jin-Kao Hao. Solving the winner determination problem via a
weighted maximum clique heuristic. Expert Systems with Applications, 42(1):355–365, 2015. 8, 10, 11,
17, 19, 27, 30

[Wu and Hao, 2016] Qinghua Wu and Jin-Kao Hao. A clique-based exact method for optimal winner
determination in combinatorial auctions. Information Sciences, 334:103–121, 2016. 8, 9, 11, 17

[Wu et al., 2012] Qinghua Wu, Jin-Kao Hao, and Fred Glover. Multi-neighborhood tabu search for the
maximum weight clique problem. Annals of Operations Research, 196(1):611–634, 2012. 10, 11, 17,
18, 19, 22, 23, 26, 27, 40, 43

[Yu et al., 2006] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. Predicting inter-
actions in protein networks by completing defective cliques. Bioinformatics, 22(7):823–829, 2006. 8,
105

[Yuan and Li, 2011] Bo Yuan and Bin Li. A low time complexity defect-tolerance algorithm for nano-
electronic crossbar. In Proceedings of the 2011 International Conference on Information Science and
Technology (ICIST), pages 143–148. IEEE, 2011. 57, 66

[Yuan and Li, 2014] Bo Yuan and Bin Li. A fast extraction algorithm for defect-free subcrossbar in nano-
electronic crossbar. ACM Journal on Emerging Technologies in Computing Systems (JETC), 10(3):25,
2014. 57, 66

[Yuan et al., 2015] Bo Yuan, Bin Li, Huanhuan Chen, and Xin Yao. A new evolutionary algorithm with
structure mutation for the maximum balanced biclique problem. IEEE Transactions on Cybernetics,
45(5):1040–1053, 2015. 11, 57, 58, 65, 66, 67, 68, 83, 104

[Zhi-Xiao et al., 2016] Wang Zhi-Xiao, Li Ze-chao, Ding Xiao-fang, and Tang Jin-hui. Overlapping com-
munity detection based on node location analysis. Knowledge-Based Systems, 105:225–235, 2016. 9

[Zhou and Hao, 2017a] Yi Zhou and Jin-Kao Hao. Combining tabu search and graph reduction to solve the
maximum balanced biclique problem. Submitted to Expert Systems with Applications, revised in July,
2017. 2

[Zhou and Hao, 2017b] Yi Zhou and Jin-Kao Hao. Frequency-driven tabu search for the maximum s-plex
problem. Computers & Operations Research, 86:65–78, 2017. 2, 35

[Zhou et al., 2016] Yi Zhou, Jin-Kao Hao, and Adrien Goëffon. A three-phased local search approach for
the clique partitioning problem. Journal of Combinatorial Optimization, 32(2):469–491, 2016. 2

[Zhou et al., 2017a] Yi Zhou, Jin-Kao Hao, and Adrien Goëffon. PUSH: A generalized operator for the
maximum vertex weight clique problem. European Journal of Operational Research, 257(1):41–54,
2017. 2, 15, 40, 59, 62, 63

[Zhou et al., 2017b] Yi Zhou, André Rossi, and Jin-Kao Hao. Towards effective exact algorithms for the
maximum balanced biclique problem. Submitted to European Journal of Operational Research, revised
in March, 2017. 2

Thèse de Doctorat

Yi ZHOU
Algorithmes d’Optimisation pour quelques Problèmes de Clique.

Optimization Algorithms for Clique Problems

Résumé
Cette thèse présente des algorithmes de résolution de
quatre problèmes de clique : clique de poids maximum
(MVWCP), s-plex maximum (MsPlex), clique
maximum équilibrée dans un graphe biparti (MBBP) et
clique partition (CPP). Les trois premiers problèmes
sont des généralisations ou relaxations du problème
de la clique maximum, tandis que le dernier est un
problème de couverture. Ces problèmes, ayant de
nombreuses applications pratiques, sont NP-difficiles,
rendant leur résolution ardue dans le cas général.
Nous présentons ici des algorithmes de recherche
locale, principalement basés sur la recherche tabou,
permettant de traiter efficacement ces problèmes ;
chacun de ces algorithmes emploie des composants
originaux et spécifiquement adaptés aux problèmes
traités, comme de nouveaux opérateurs ou
mécanismes perturbatifs. Nous y intégrons également
des stratégies telles que la réduction de graphe ou la
propagation afin de traiter des réseaux de plus grande
taille. Des expérimentations basées sur des jeux
d’instances nombreux et variés permettent de montrer
la compétitivité de nos algorithmes en comparaison
avec les autres stratégies existantes.

Abstract
This thesis considers four clique problems: the
maximum vertex weight clique problem (MVWCP), the
maximum s-plex problem (MsPlex), the maximum
balanced biclique problem (MBBP) and the clique
partitioning problem (CPP). The first three are
generalization and relaxation of the classic maximum
clique problem (MCP), while the last problem belongs
to a clique grouping problem. These combinatorial
problems have numerous practical applications. Given
that they all belong to the NP-Hard family, it is
computationally difficult to solve them in the general
case. For this reason, this thesis is devoted to develop
effective algorithms to tackle these challenging
problems. Specifically, we propose two restart tabu
search algorithms based on a generalized PUSH
operator for MVWCP, a frequency driven local search
algorithms for MsPlex, a graph reduction based tabu
search as well as effective exact branch and bound
algorithms for MBBP and lastly, a three phase local
search algorithm for CPP. In addition to the design of
efficient move operators for local search algorithms,
we also integrate components like graph reduction or
upper bound propagation in order to deal deal with
very large real-life networks. The experimental tests
on a wide range of instances show that our algorithms
compete favorably with the main state-of-the-art
algorithms.

Mots clés
Problèmes de clique, recherche locale, réseaux
complexes réels, Métaheuristiques, algorithmes
exacts, expérimentations.

Key Words
Clique problems, Local search, Large real-life
networks, Metaheuristics, Exact algorithms,
Computational experiments.

L’UNIVERSITÉ NANTES ANGERS LE MANS

	General Introduction
	Introduction
	Clique problems
	Applications
	Evolution of maximum clique algorithms
	Algorithm assessment
	Benchmarks
	Metaheuristic algorithms evaluation
	Exact algorithms Evaluation

	A Generalized Operator ``PUSH'' for MVWCP
	Introduction
	PUSH: a generalized operator for MVWCP
	Preliminary definitions
	Motivations for the PUSH operator
	Definition of the PUSH Operator
	Special cases of PUSH

	PUSH-based tabu search
	Random initial solution
	Solution reconstruction
	ReTS-I: Tabu search with the largest candidate push set
	ReTS-II: Tabu search with three decomposed candidate push sets
	Fast evaluation of move gains

	Computational experiments
	Benchmarks
	Experimental protocol
	Computational results
	Comparisons with state-of-the-art algorithms

	Effectiveness of restart strategy
	Conclusion

	Frequency-driven tabu search for MsPlex
	Introduction
	FD-TS algorithm for the maximum s-plex problem
	General procedure
	Preliminary definitions
	Move operators
	Constructing the initial solutions
	FD-TS
	Reducing large (sparse) graphs

	Implementation and time complexity
	Computational assessment
	Benchmarks
	Experimental protocol and parameter tuning
	Computational results for very large networks from SNAP and the 10th DIMACS Challenge
	Computation results for graphs from the 2nd DIMACS Challenge
	Impact of frequency information

	Conclusions

	Heuristic and exact algorithms for MBBP
	Introduction
	Heurisitc algorithm with graph reduction
	Preliminary definitions
	Rationale of the proposed approach
	General procedure of TSGR-MBBP
	Computational experiments
	Analysis

	Exact algorithms
	Preliminary definitions
	Review of the BBClq algorithm
	Upper bound propagation and its use to improve BBClq
	The upper bound propagation procedure
	A tighter mathematical formulation
	A novel MBBP algorithm ExtUniBBClq
	Computational experiments
	Analysis

	Conclusion

	A Three-Phased Local Search Approach for CPP
	Introduction
	General procedure
	Search space and evaluation function
	Top Move and restricted neighborhood
	Heap structure
	Generation of initial solution
	Descent search phase
	Exploration search phase
	Directed perturbation phase
	Singularity of CPP-P3

	Computational experiments
	Benchmark instances and parameter settings
	Experiments and comparison

	Analysis
	The effectiveness of Top Move based neighborhood
	Landscape analysis
	Impact of the descent search phase of CPP-P1.03

	Conclusion

	General Conclusion
	List of Figures
	List of Tables
	Computational results of MsPlex on additional instances

	List of Publications
	References

