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de moi-même.

Je remercie ma famille, mon père, ma mère, mon frère et sa petite famille, ma soeur et

sa petite famille, mes deux soeurs Fati et Meriem d’être là pour moi et de m’apporter

toujours un soutien très chaleureux.
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Abstract

The advent of ”big data” has tremendous repercussions on a broad range of data related

domains, and it has impelled the use of novel techniques that achieve the best tradeoff

between computational cost and precision.

In the graph theory field, graphs represent a powerful tool for data and problem modeling

where all kinds of problems, starting from the very simple to the very complicated, can

be effectively formalized. To resolve NP-complete or NP-hard problems in this field,

research is being directed to approximation algorithms and heuristic solutions rather

than exact solutions, which exhibit a very high computational cost that makes them

impossible to use for massive graph datasets.

In this thesis, we tackle two main problems: first, the graph partitioning problem is

studied in the context of ”big data”, where the focus is put on large graph streaming

partitioning. In fact, the graph partitioning is an important and challenging problem

when performing computation tasks over large distributed graphs, the reason is that a

good partitioning leads to faster computations.

We studied and proposed several streaming partitioning models and heuristics, and we

studied their performances theoretically and experimentally as well.

The second problem that we tackle in this thesis, is the querying of partitioned/dis-

tributed graphs. In fact, querying graph datasets proves to be an important task as

most of the real-life datasets are represented by networks of labeled entities.

In this context, we study the problem of ”aggregated graph search” that aims to answer

queries on several graph fragments, and has the task to build a coherent final answer

such that it forms an ”approximate matching” to the initial query. We proposed a new

method for ”aggregated graph search”, and we studied its performances theoretically

and experimentally on different real word graph datasets.

Key words: Balanced graph partitioning, Streaming partitioning, Streaming heuristics,

Graph querying, Graph matching, Graph similarity metric, Aggregated search.
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Résumé

Avec l’avènement du ”big data”, de nombreuses répercussions ont eu lieu dans tous les

domaines de la technologie de l’information, préconisant des solutions innovantes rem-

portant le meilleur compromis entre coûts et précision. En théorie des graphes, où les

graphes constituent un support de modélisation puissant qui permet de formaliser des

problèmes allant des plus simples aux plus complexes, la recherche pour des problèmes

NP-complet ou NP-difficil se tourne plutôt vers des solutions approchées, mettant ainsi

en avant les algorithmes d’approximation et les heuristiques alors que les solutions ex-

actes deviennent extrêmement coûteuses et impossible d’utilisation.

Nous abordons dans cette thèse deux problématiques principales: dans un premier

temps, le problème du partitionnement des graphes est abordé d’une perspective ”big

data”, où les graphes massifs sont partitionnés en streaming. En effet, le partitionnement

de graphe est une tâche cruciale et importante lors de la mise en place des graphes de

données distribuées, pour la principale raison est qu’un bon partitionnement permet

d’accélerer les calculs sur ces graphes de données distribuées.

Dans ce contexte, nous étudions et proposons plusieurs modèles et heuristiques de

partitionnement en streaming et nous évaluons leurs performances autant sur le plan

théorique qu’empirique.

Dans un second temps, nous nous intéressons au requêtage des graphes distribués ou par-

titionnés. En effet, une grande majorité de données est modélisée sous formes d’entités

étiquetées et interconnectées, ce qui fait du requêtage des graphes distribués une tâche

importante dans une large liste d’applications.

Dans ce cadre, nous étudions la problématique de la ”recherche agrégative dans les

graphes” qui a pour but de répondre à des requêtes interrogeant plusieurs fragments de

graphes et qui se charge de la reconstruction de la réponse finale tel que l’on obtient un

”matching approché” avec la requête initiale.

Mots clés: Requête de graphes, Matching de graphes, Mesure de similarité dans les

graphes, Recherche agrégative dans les graphes, Partitionnement des graphes, Partition-

nement en streaming, Heuristiques de streaming, Partitionnement équilibré des graphes.
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Chapter 1

Introduction

Graphs are the core subject of study in graph theory. The trivial structure of a graph,

which consists of nodes and edges, was first used by J. J. Sylvester in 1878 [3].

An inclusive definition of graphs is found onWikipedia: ”a graph is a structure amounting

to a set of objects in which some pairs of the objects are in some sense ”related”. The

objects correspond to mathematical abstractions called vertices (also called nodes or points)

and each of the related pairs of vertices is called an edge (also called an arc or line).

Typically, a graph is depicted in diagrammatic form as a set of dots for the vertices, joined

by lines or curves for the edges.” [4]. Two major types of graphs exist: the undirected

and directed graphs (see Figure 1.1). The undirected graphs represent nodes that share

mutual relations represented by edges, whereas the directed graphs represent nodes with

directed relations, i.e., not reciprocal. A simple example of a directed graph is a graph

where nodes represent father and son, and the relation ”is the father of ”is represented

by a directed edge, from the father node to the son node. An example for undirected

graphs is where nodes represent siblings, and two nodes representing sister and brother

have a mutual relation ”is the sibling of” represented by an undirected edge.

Figure 1.1: An example of directed and undirected graphs.

1



Introduction 2

Formally, graphs are usually defined as follows: we consider a graph G = (V,E), where

V denotes the vertex set (or the nodes set), and E denotes the edge set, where each

edge is represented by two vertices and we have E = V × V .

After this brief introduction to graphs, let us discuss on how graphs became so popular

and what are the main surrounding challenges in the field.

Since the 19th century, graphs have attracted the interest of many researchers, and a

rich literature has arisen throughout the years. In fact, graphs have been proved as an

effective way of representing objects and modeling structured data [5]. Moreover, they

represent a pervasive and flexible representation formalism suitable for a broad range of

problems in intelligent information processing.

With the advent of big data, recent years have witnessed a sheer increase in the size of

graph datasets emerging in different applications such as social networks. For instance,

Facebook amounts to 1.284 billion of daily active users [6] and Twitter totals up to 328

millions of active users [7], not to mention the world wide web consisting of 4.61 billion

of hyperlinks [8].

1.1 Scope of the thesis and contributions

The scope of this thesis could be seen as the intersection of the graph theory with big

data in two main problems: the Graph Partitioning problem and the distributed graph

querying problem, also known as Aggregated Graph Search.

The actual sheer increase in data has led to a plethora of graph datasets, which has

attracted the interest in creating new frameworks for big graph processing: Graphlab

[9], Microsoft’s Trinity [10], Pregel [11] and its open-source version Giraph [12], to name

but a few. These platforms usually perform a partitioning of the graph as a preprocessing

step, i.e., it distributes the graph dataset across several machines and performs parallel

computation afterward. However, graph processing frameworks use a hash function to

partition the graph, which gives balanced partitions but incurs a big communication

volume causing the computations to slow down.

The graph partitioning problem tackles this issue, it aims to divide the graph data into

several distinct sets of equal sizes with the constraint of minimizing the number of edges

crossing these sets. In fact, balancing the partition ensures that each machine is given

the same workload, and the minimized number of crossing edges reduces the network

overhead which ultimately makes the graph partitioning an essential preprocessing step

aiming to speed up the computations on graph datasets.



Introduction 3

In parallel, data proliferation favors the use of graphs as a storage support, and as a

result, graphs become a popular data model that enables efficient data processing. In

considering this matter, graph querying has attracted the interest of many researchers

as it represents a crucial task to explore the knowledge in these datasets.

Personal contributions during this thesis are as follows: we introduce a new heuristic

for streaming partitioning that brings significant improvements over the state-of-the-art

heuristics. We also introduce the partial restreaming partitioning which is a hybrid

streaming model that improves the overall performances and lowers the computational

costs.

In addition, we present a novel streaming heuristic for graph partitioning, termed

Streaming METIS Partitioning (SMP), based on an adaptation of the well-known of-

fline METIS [2]. The new heuristic extends METIS to online setting and brings about

significant benefits to streaming graph partitioning.

Last but not least, we propose a framework for approximate graph matching called Label

and Structure Similarity Search (LaSaS). The proposed framework enables an effective

RDF graph querying using the aggregated search paradigm in the context of graphs.

Organization of the thesis. The first part of this thesis, from Chapter 2 to 4 is about

massive graph partitioning. In Chapter 2, we present the graph partitioning problem,

introduce many of the underlying concepts, and give an overview of the literature on

the Graph Partitioning problem as well.

In Chapter 3, we present our proposed heuristic for streaming graph partitioning named

Fractional Greedy, and present our proposed partial restreaming partitioning model.

In Chapter 4, we present our proposed approach called Streaming METIS Partitioning

(SMP), intended for the streaming graph partitioning problem.

The second part of the thesis, from Chapter 5 through 7, is about the Aggregated

Graph Search. In Chapter 5, we give a general overview of the general aggregated search

concept. In Chapter 6, we review foremost algorithms and frameworks for the graph

querying or the graph search task. Chapter 7 presents our proposed framework for

performing aggregated graph search. Finally, in Chapter 8, we give a summary of the

thesis and raise important future work directions and perspectives.





Part I

Massive Graph Partitioning
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Graph partitioning (GP) is a crucial task as a preprocessing step on large-scale

graph processing frameworks. There is a broad range of applications for the graph par-

titioning problem, and the well-known is in parallel computing, where GP plays a key

optimization role by accelerating computations and balancing the workload among par-

allel processors or machines. Another reason for the GP to have gained such popularity

is the advent of big data in the last decades, which gave rise to a plethora of datasets

that are being stored and exploited as graphs.

In this part of the thesis, we will focus on the graph partitioning problem for massive

graphs. The first chapter focuses on introducing the graph partitioning problem along

with surrounding notions and concepts. We also give definitions and reviews on foremost

works on the problem.

Chapter 3 and 4 present personal contributions on the field of large graph partitioning.

Precisely, in Chapter 3, we present our proposed heuristic and model for the streaming

graph partitioning, the latter being a partitioning setting that is suitable for processing

massive graphs.

In Chapter 4, our proposed method called Streaming Metis Partitioning in presented.

The novelty of this approach is that it has a hybrid feature, from both the offline and

the online setting in graph partitioning, which makes it a well-performing heuristic for

GP solving.

5



Chapter 2

Graph Partitioning Problem

This chapter is dedicated to introducing the graph partitioning problem, and give def-

initions about underlying concepts, along with a synoptic list of foremost works and

methods for solving the graph partitioning problem. Section 2.1 introduces the graph

partitioning, and gives a formal definition of the problem. Section 2.2 reviews related

work on graph partitioning within the offline class of methods, while in Section 2.3, we

review related works belonging to the online class of methods. Section 2.4 summarizes

the chapter and outlines important arisen ideas.

2.1 Graph Partitioning: Problem Definition and Applica-

tion

This section is dedicated to introduce and present the graph partitioning problem, and

related notions as well. We identify different variants of the problem, give definitions

of related notions, and we finally give important applications of the problem of graph

partitioning.

2.1.1 Notations

We will be using the following notations throughout the chapter. Let G be a graph, and

we have G = (V,E), where V is the vertex set and E the edge set with |V | = n (the

number of vertices in G) and |E| = m (the number of edges in G). Let k be a positive

integer that represents the number of parts into which the graph G is partitioned. We

define the partition P of graph G as the partition of V into k subsets of equal size,

(i.e.{V1, V2, · · · , Vk} such that Vi
⋂
Vj = ∅ for i �= j and

⋃
Vi = V ) .

6
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We refer to the k sets as parts, clusters or machines interchangeably. Let [k] denotes

the set of positive integers {1, · · · , k}.

In the partition P , the cut or edge cut refers to the number of edges in E whose incident

vertices belong to different subsets Vi and Vj with i �= j. We denote by λ the cut ratio,

which is the fraction of the edge cut over the total number of edges in the graph.

2.1.2 Problem Definition

Graph partitioning is a well-studied problem, and it is commonly known as the k-way

graph partitioning. It asks to divide a given graph into k balanced parts while minimizing

the number of edges running across these parts.

In other words, given a graph G = (V,E), the balanced k-way partitioning aims to

partition V into k subsets ({V1, V2, · · · , Vk}) of equal size such that they form a partition

P of V , which minimizes the edge cut.

Cut Objective function. The partition that is often sought in the graph partitioning

problem, adheres to an objective function that should be either minimized or maximized.

The prominent and mostly used objective function is the edge cut.

Let P be a partition of V . The edge cut is the number of edges in E whose incident

vertices belong to different subsets of the partition P . Let e(Vi, V −Vi), i ∈ [k] be the set

of edges with ends belonging to different clusters. We define λ =
∑k

i=1
|e(Vi,V−Vi)|

m , i ∈ [k]

as the fraction of edge cut or cut ratio. In most cases, λ should be minimized during

partitioning.

Another formulation of the graph partitioning problem is (k, ν)-balanced graph parti-

tioning, where ν represents the imbalance factor and we have ν = 1 + ε, where ε is a

positive real number. For a partition to be balanced, each part among the k ones, has

to be of size ν × �nk �. Moreover, the edge cut should be minimized.

2.1.2.1 Balanced & Unbalanced Graph Partitioning

Also known as the constrained and unconstrained graph partitioning, the balanced and

the unbalanced graph partitioning problems are two variants of the original problem.

The main difference between these two problem variants, is that the balanced graph

partitioning adheres to a strict constraint regarding the balance, i.e., the parts should

be of equal sizes and imbalances are tolerated to a tight and firm extent.
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On the contrary, the unbalanced graph partitioning relaxes the constraint of strict bal-

ance, and aims to solely minimize or maximize an objective function. In a way, unbal-

anced graph partitioning problem can be seen as a clustering problem, where the priority

is given to minimizing (or maximizing) an objective function regardless of the clusters’

sizes to be balanced or not.

2.1.2.2 Hardness Results and Approximation

As a decision problem, the k-way graph partitioning was proved to be NP-Complete

[13, 14]. Moreover, the balanced graph partitioning was proven to be NP-Hard in [15],

as an optimization problem. In fact, if we consider the setting of (k, ν)-balanced graph

partitioning, when k = 2 and ν = 1 (every part has to be of size ν×�nk �), then balanced

graph partitioning problem is reduced to the problem of minimum bisection, which is

also an NP-hard problem [16]. Due to the hardness of the problem, research works are

mostly directed toward approximation algorithms and mainly toward heuristic solutions.

Andreev et al. have shown, in [16], that there is no constant-factor approximation for the

exactly balanced version (when ν = 1+ ε and ε = 0) of this problem on general graphs.

If the balance constrained is slightly relaxed by tolerating some imbalance, particularly

if ε ∈ (0, 1], then an O(log2n) factor approximation can be achieved. If the imbalance is

larger, i.e. ε > 1, an approximation ratio of O(logn) is possible [17].

Several studies have suggested algorithms with approximation guarantees [16, 18, 19]. In

[18], authors present an approximation algorithm with a polylogarithmic approximation

guarantee.

Other contributions inspired from tasks settings propose more effective approximations:

In [16], anO(ε−2log1.5n) approximation is proposed for a chosen and fixed ε > 0. Besides,

another O(
√

log(k)log(n)) approximation algorithm is proposed based on semidefinite

programming [19].

In the practical point of view, most of the approximation algorithms are not imple-

mented, and if so, they show poor performances and are particularly too slow when

used for large graphs. Therefore, mostly heuristic solutions are used in practice.

2.1.3 Hypergraph Partitioning

Hypergraphs represent a generalization of simple graphs, where an edge can connect not

only two nodes, but a group of them. Let H = (V ′, E′) be a hypergraph, then V ′ is

the set of nodes, and E′ is the set of hyperedges (also called net). In Figure 2.1, we
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present an example of a hypergraph, where e1, · · · , e5 represent the hyperedges, and

they connect several groups of vertices.

Figure 2.1: Example of a hypergraph [1].

Similarly to simple graph partitioning, hypergraph partitioning aims to find a partition of

nodes into different subsets of equal size. However, the corresponding objective function

expression is different. The edge cut in hypergraphs is called the hyperedge cut, and

it represents the number of hyperedges connecting different subsets of nodes. A metric

used to solve the hypergraph partitioning is called (λ− 1) metric, where (λ− 1) metric

=
∑

e∈E′ λe where λe is the number of subsets connected by the hyperedge e.

Compared to simple graph partitioning, hypergraph partitioning has a major drawback

of using complex algorithms due to the model complexity. Therefore, hypergraph par-

titioning should be used solely when the hypergraph model significantly benefits the

underlying application.

In this thesis, we focus on the simple graph partitioning problem and therefore, omit

giving more detailed information about the hypergraph partitioning. However, it is

noteworthy to mention that many methods for simple graph partitioning have been

translated to hypergraph partitioning [20–23], and the main application domain for

hypergraph partitioning is VLSI design (Subsection 2.1.4.5).

2.1.4 Graph Partitioning Applications

The graph partitioning problem has many applications in different domains. In the

following, we list some of the important and well-known applications of the problem.



Graph Partitioning Problem 10

2.1.4.1 Parallel Processing

The k-way graph partitioning has major importance in distributed computation systems

as it directly affects their performance: the k-way partitioning aims to reduce the overall

runtime of the application, by assigning to each processor (or machine) the same amount

of data while reducing the communication overhead by minimizing the edge cut.

2.1.4.2 Complex networks

Processing involving complex networks that arise in many domains benefit significantly

from the graph partitioning problem. In the following, we focus on three well-known

types of complex networks: social networks, power grids and biological networks.

Social Networks. A trivial problem that is studied in social network domain is the

identification of community structure, also known as the community detection problem.

In the context of these kinds of problems, the number of desired clusters is not specified

as an input, unlike the graph partitioning problem, where the number of desired parts or

clusters is fixed a priori. Even though, graph partitioning technics have largely inspired

the community detection algorithms [24], and graph partitioning methods are usually

used to give a first approximation of them. Readers interested in more examples of

graph partitioning methods used for the community detection problem are directed to

[25].

Power grids. In the realm of power grids, two major concerns are cascading failures

and disturbances, which if controlled, can avoid calamitous blackouts. To prevent the

propagation of failures in power grids, there is an approach that consists in partitioning

the grid into independent subsets [26]. This partitioning uses an objective function that

is combined with other optimization components such as the load shedding to intensify

robustness and lessen the impact of cascading failures [27].

Biological Networks. A wide range of complex biological systems are modeled by

graph representations, for instance, we can cite the protein-protein interactions network

and gene co-expression network. In graph representation of a biological network, nodes

correspond to biological entities (proteins, genes), and edges to a common feature in some

biological process. The partitioning of these networks can have numerous goals. For

example, the partitioning gathers, in one cluster, nodes that exhibit identical behavior

to each other, which can be used for data reduction. Moreover, partitioning can help in

the detection of some biological processes by identifying clusters of nodes participating

in the process. Additional information about the biological networks could be found in

[28].
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2.1.4.3 Road networks

In such networks, nodes usually correspond to places, and edges represent road segments.

In this context, graph partitioning is widely used for route planning speed up [29–33]. An

algorithm called arc-flags was proposed in [29], which performs geometric partitioning as

a preprocessing step to reduce the search space of Dijkstra’s algorithm. In fact, finding

good partitions in road networks plays a crucial role in reducing the post-processing

costs.

2.1.4.4 Image Segmentation

In the field of image processing, image segmentation corresponds to the task of parti-

tioning the pixels of an image into several groups that correspond to distinct objects,

where the graph partitioning have been widely used as solution technique.

Since early 90’s, representing images as graph structures was very popular, and many

cut-based methods for image processing have arisen in this context. The representation

of an image as a graph is such that a vertex corresponds to a pixel or group of pixels,

and edges, usually weighted, represent similarities between them. Usually, the edge

weights quantify a similarity or dissimilarity degree between nodes, like the difference

of color intensity between the two pixels. Hence, the objective function used in graph

partitioning in this context can be expressed differently depending on the applications

and the explicitness needed to distinguish segments. Additional information about graph

partitioning and image segmentation could be found in [34, 35].

2.1.4.5 VLSI Physical Design

Physical design of digital circuits for very large-scale integration (VLSI) systems are

known for having intensively used graph partitioning technics for achieving general per-

formance optimization. The graph representation of such circuits is such that nodes

represent the cells, which correspond to atomic units of the circuit (gates), and edges

represent the wires (cables). The main goal of partitioning these circuits is to reduce

the VLSI design complexity, by partitioning it into smaller components and keeping

the overall length of all the wires (cables) short. Moreover, there are additional con-

straints for the circuits partitioning to ensure even better results such as: fixing the set

of nodes that should end up in the same part (cluster), and fixing a firm threshold on

the maximum cut size between parts (clusters). However, it is noteworthy to point out

that hypergraphs (see 2.1.3) model the circuit more precisely, as the gates (nodes) are
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connected with wires (edges) with more than two endpoints. Further information about

VLSI circuits partitioning can be found in [36].

2.2 Offline Partitioning

The offline partitioning designates a typical feature of all early proposed methods for

graph partitioning. This feature refers to the fact that in order to partition a graph,

the latter should be entirely memory resident. In other words, traditional or classical

methods for graph partitioning necessitate complete information of the whole graph to

be partitioned, which is justifiable since graph datasets used at the time were relatively

of small sizes. However, with the advent of the internet and big data, using such meth-

ods for graph partitioning becomes extremely challenging, which has led to design new

methods and technics that we refer to as the ”online partitioning” (see the following

section).

The practical importance and NP-hardness of the graph partitioning problem have

caused many heuristics and methods to be proposed: the spectral methods, known

to produce excellent partitions for a wide class of problems despite their high expense.

Geometric methods which use geometric information about the graph to partition it.

These algorithms are known to be fast but usually produce partitions of worse quality

compared to spectral methods. There is also the local spectral partitioning methods,

e.g., EvoCut [37], but it still requires information about large portions of the graph and

performs large computations after loading the graph data. Multilevel methods such as

METIS [2], are known to be fast and achieve high-quality partitioning.

2.2.1 Spectral Partitioning

The spectral method is an ancient way of partitioning a graph. It was first used by W.

Donath and A. Hoffman [38, 39]. By this time, the spectral method was very popular,

and was widely used to solve graph partitioning problems before multilevel methods

took over.

The spectral method uses the Laplacian matrix, the Fiedler vector, eigenvalues to achieve

a partitioning of the graph. We define in the following each of the aforementioned

elements.

Definition 2.1. Laplacian matrix. To define the Laplacian matrix, let us first define

the adjacency and the degree matrices of a graph G.
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Adjacency matrix. Let A be the adjacency matrix of G = (V,E). Let w(i, j) be the

weight on edge (i, j) in E, for a simple graph, we have w(i, j) = 1 . Then A is a square

matrix n × n, and for every i, j ∈ {1, · · · , n}2, we have the element ai,j in the ith line

and jth column in the matrix:

ai,j =

{
0 if i = j

w(i, j) else

Degree matrix. The degree matrix D of the graph G is defined as follows:

di,j =

{
deg(i) =

∑n
l=1w(i, l) if i = j

0 else

Where deg(i) is the degree of the ith node.

Laplacian matrix. Finally, the Laplacian matrix L of G is defined as follows:

L = D −A

In order to partition a graph, the spectral method uses the eigenvectors of the Laplacian

matrix along with their corresponding eigenvalues. Let us define the eigenvectors and

eigenvalues.

Definition 2.2. Eigenvector and Eigenvalue. Let E be a vector space on a division

ring K ′. Let u be an endomorphism of E. Assume a vector x of E and θ in R such that

u(x) = θx, then u(x) = θx is called eigenvector of u. And θ is called eigenvalue of u.

Let consider a matrix M of an endomorphism on real numbers; then we call eigenvector

of M every vector x (column matrix) of real numbers that verifies ∃θ ∈ IR,Mx = θx.

The spectral partitioning method uses the Fiedler eigenvector and eigenvalue of the

Laplacian matrix L to find a bisection of G. Nevertheless; the spectral method can

perform k-way partitioning through recursive bisections, where k = 2i.

Fiedler eigenvectors and eigenvalues. M. Fiedler was the first one to study the

properties of these eigenvectors and values [40]. Therefore, this group of eigenvectors

is usually called the Fiedler vectors. The first Fiedler vector is the unit vector, and its

eigenvalue is 0. The second Fiedler vector has the smallest non-zero eigenvalue of this

eigenvalues group. Particularly, it is the second Fiedler vector that is used to find a

bisection of the graph.
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There are several methods that can be used to find the eigenvectors of a matrix, we cite:

the Lanczos iterative algorithm, the Rayleigh quotient iteration method, the Jacobi iter-

ative algorithm and the QR decomposition algorithm. All these methods are presented

in [41]. The Lanczos iterative algorithm was widely used [42–44]. However, the Rayleigh

quotient iteration method is also used [45], and has gained some popularity when it is

coupled with a multilevel method, which turns out to accelerate the computations [46].

Spectral method. The spectral partitioning aims to find a 2i-partition (with i ≥ 1)

for a graph using the eigenvalues and eigenvectors of the laplacian matrix of the graph.

Actually, we focus on the second smallest eigenvalue and the corresponding eigenvector,

called Fiedler vector. The fiedler vector is of size n (the degree of the graph), and we

take the median m′ of the vector and use it as a splitting value to get a bisection of the

graph, such that: Let v(i) be the ith component of the Fiedler vector v, then we have:

• If v(i) ≤ m′ then place the ith vertex in V1

• Else place the ith vertex in V2

Where V1 and V2 are the two parts of the bisection.

For partitioning into 2i parts where i > 1, the spectral method recursively partitions the

graphs into successive bisections. For instance, when i = 2, i.e., we want to partition a

graph into 4 parts, then the graph is first partitioned into 2 parts, then each obtained

part is considered a graph, where the laplacian matrix is computed to find the second

fiedler vector and obtain the second 2 parts.

Though they are known for achieving good quality results, the spectral methods suffer

the major problem of high expense, the reason is that the algorithms used for finding

eigenvectors are computationally very expensive. Even though the process is faster when

coupled with a multilevel method, they are still too expensive to use for large actual

graphs.

2.2.2 Multilevel Partitioning

Multilevel graph partitioning approaches are considered as the most successful heuristics

for partitioning graphs. This type of methods is a combination of several borrowed algo-

rithms that could be used independently in other contexts. These algorithms correspond

to local optimization methods, called refinement methods in the graph partitioning con-

text, and also direct partitioning methods such as the spectral method or region growing

method. The multilevel method consists of three main phases: i) coarsening phase, ii)
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partitioning phase and iii) uncoarsening/refinement phase. The coarsening phase aims

to contract the graph nodes to reduce the overall size of the graph. Then, a partitioning

of the coarse graph is done using some algorithms for partitioning, e.g., the spectral

method. Finally, the uncoarsening phase maps the found partition to the original graph

and perform a refinement on the partition through local optimization swaps on parts.

The multilevel partitioning is depicted in Figure 2.2.

In the following, we detail each of the three phases along with algorithms used.

Figure 2.2: Multilevel Graph Partitioning [2].

2.2.2.1 Coarsening phase

The coarsening phase aims to successively reduce the size of the graph to be partitioned.

Let G0 denote the original graph; then during coarsening, a series of smaller graphs

G1, G2, · · · , Gq will be created such that V0 > V1 > V2 > · · · > Vq where Gq is called the

coarsest graph and consists of fewer vertices.

Usually, this can be achieved by finding a maximal matching of the graph, the reason

is that a maximal matching of the graph has the ability to preserve many properties of

the original graph [2, 47].

Definition 2.3. Maximal matching. The matching of a graph, also known as the

independent edge set, is a set of edges without common vertices. Moreover, a matching
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M of a graph G is maximal if every edge in G has a non-empty intersection with at least

one edge in M [48].

There are several ways to compute the maximal matching: Random matching (RM),

Heavy edge matching (HEM), Light edge matching (LEM), Heavy clique matching

(HCM).

Random matching (RM). Random matching consists in finding a matching using a

randomized algorithm as follows: A vertex u is randomly selected. If u is not matched

yet, then an unmatched neighbor v is randomly selected. Once v selected, the edge (u, v)

is added to the matching, and vertices u and v are marked as matched. In the case of

not finding the unmatched neighbor v, the vertex u is then marked unmatched in the

final matching.

Heavy edge matching (HEM). HEM is similar to RM, however, it aims at finding

a maximal matching with the higher edge-weight, which in turn, will result in a coarse

graph with a lower edge-weight. The reason is that a graph with a low edge-weight has

a low edge-cut as shown in an analysis given in [49].

HEM is computed using a randomized algorithm similarly to RM described earlier, the

vertices are selected randomly. However, a vertex u is matched with vertex v such

that the weight of the edge (u, v) is maximum overall incident edges. Though the

algorithm does not guarantee that the matching obtained will have maximum weight

(overall possible matchings), experiments showed that it works well. The complexity of

computing a HEM is O(m) (m is the number of edges).

Light edge matching (LEM). Contrarily to the HEM, the LEM aims to maximize

the total edge-weight of the coarser graph. This is achieved by finding a matching with

the smallest edge weight, leading to a small reduction in the edge weight of the coarser

graph Gi+1. It might be surprising to use LEM knowing that it will not reduce the

edge-cut during partitioning, however, having a graph with a high average degree is

suitable for some algorithms such as KL [50] in order to produce good partitions faster.

In order to compute LEM, there is only a minimal modification to do in the algorithm

for computing HEM. Instead of selecting an edge (u, v) that has the largest weight, the

edge that has the smallest weight is selected. Hence, the complexity of computing LEM

is also O(m).

Heavy clique matching (HCM). In the heavy clique matching, vertices that have

high edge density are collapsed. In other words, vertices that form cliques (or almost)

will form a multinode and hence, such a clique will not be cut during the partitioning

phase, which results in a good partition.
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Assuming we have a coarse graph Gi = (Vi, Ei), and we have u and v two vertices in

Gi, which means that u and v are multinodes (several vertices are collapsed into them

during previous coarsenings) . The edge density between u and v is as follows:

2(Ce(u) + Ce(v) +We(u, v))

(Vw(u) + Vw(v))(Vw(u) + Vw(v)− 1)
(2.1)

Where Vw(u) (respectively Vw(v)) is the total weight on multinode u (respectively v),

which is the sum of weights on vertices that have been collapsed into u (respectively v).

And Ce(u) (respectively Ce(v)) represents the weight of collapsed edges within multinode

u (respectively v), and We(u, v) is the weight on the edge (u, v) which corresponds to

the sum of the weights on all edges collapsed into (u, v).

The HCM is computed using a randomized algorithm that works as follows: Vertices are

randomly selected. The algorithm matches an unmatched vertex u with its unmatched

neighbor v, such that the density of the multinode formed by u and v has the largest

edge density among all possible multinodes involving v.

It is noteworthy that HCM is similar to the HEM scheme. However, HEM matches

vertices regarding only if they are connected with a heavy edge, while HCM matches

two vertices if they are connected using a heavy edge and also if each of these two vertices

has high contracted edge-weight within.

After the maximal matching is computed, the two vertices of each edge in the matching

set are collapsed into one node, thereby reducing the graph size. The process of coars-

ening is iterated until the coarse graph reaches the desired small size of hundred vertices

for example.

2.2.2.2 Partitioning phase

During the partitioning phase, the coarsest graph Gq is partitioned, precisely, the vertex

set Vq is partitioned into k parts. And since the coarsest graph Gq consists of few

vertices, it is possible to use expensive methods for graph partitioning such as spectral

partitioning method to give optimal partitions.

By the same time, various algorithms can be used in this phase, such as spectral method

[51], KL algorithm [50], GGP and GGGP algorithms[2].

KL algorithm. The KL algorithm [50] is an iterative algorithm that starts with an

initial bipartition of the graph, and through each iteration, it aims at finding a subset of

vertices such that if swapped, the overall edge-cut of the partition will be reduced. When

these vertices are swapped, they form the partition for the subsequent iteration. The
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same process repeats until no vertices to swap could be found. The complexity of each

iteration of the KL algorithm in [50] is O(mlog(m)), where m is the number of edges in

the graph, and it was improved in [52] where the use of special data structures reduced

the complexity to O(m). Moreover, the KL algorithm achieves optimal partitions when

the initial partition is good and the average degree of the graph is large [53]. If there is

any good partition to start with, KL algorithm performs several instances (runs) where

each instance starts with a randomly generated partition, and the final partition that

achieves the lowest edge-cut is selected. Though it might seem expensive to perform

multiple runs of the KL algorithm when the graph in question is large, it is relatively

inexpensive since the partitioning is done on the coarse graph which consists of fewer

vertices.

Graph Growing Partitioning algorithm (GGP).

GGP algorithm is another alternative to partition the graph. GGP algorithm starts

from a vertex and builds a region around it following a breadth-first expansion, until

the fixed number of vertices per part have been included [54, 55]. The final result of

GGP algorithm depends on the choice of the start vertex, and each start vertex leads to

a different partition with a different edge-cut. In order to alleviate this issue, the GGP

algorithm is usually used with several different starting vertices, and the best partition

(with the smallest edge-cut) is selected. Then, the partition found is refined by passing it

as an input to the KL algorithm. Finally, the overall cost if this partitioning is relatively

low since it processes the coarsest graph.

Greedy Graph Growing Partitioning algorithm (GGGP). Similarly to the GGP

algorithm described in the previous subsection, the GGGP algorithm starts for a vertex

and grows a region around, but not in a breadth-first search way. It rather computes an

ordering of the vertices to include in the region according to improvements they bring

to the partition. In other words, the vertex that will be first included in the region is

the one that brings the largest decrease in the edge-cut. The GGGP algorithm is less

sensitive to the choice of the start vertex than the GGP algorithm. Moreover, GGGP

yields better partitions results compared to GGP algorithm.

2.2.2.3 Uncoarsening and refinement phase

Once the partition on the coarse graph Gq is obtained, it is projected back to G0 passing

through intermediate graphs Gq−1, Gq−2, · · · , G1. Moreover, a refinement is performed

to enhance the partition quality in the finer graph. The refinement task consists in

swapping any two nodes positions whenever it leads to a lower edge cut while preserving

the balance of the partition. The Kernighan-Lin (KL) algorithm, described in subsection
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2.2.2.2 is usually used for this purpose. In other words, the partition of the graph Gi+1

is mapped onto the graph Gi, and it is used as the initial partition for the KL algorithm.

In fact, the KL algorithm as used in this case will converge to a better partition faster

as it starts from a good partition.

2.2.3 Geometric Partitioning

Another class of partitioning technics is called ”geometric partitioning”. The geometric

feature refers to the fact that in some special graphs, spatial coordinates of the nodes

can be used to perform a partitioning. This is the case of meshes, which are grids that

approximate a geometric domain by dividing it into smaller subdomains. In other words,

a mesh could be defined as ”the scaffolding upon which a function is decomposed into

smaller pieces” [56].

In such partitioning methods, coordinates information about the graph are used to

project or to make an embedding of the nodes on a geometric line or plane, and use a

geometric technique to make a partitioning, e.g., project the nodes into a line, and use

a median of this line to make a bisection.

The simplest geometric method for graph partitioning is recursive coordinate bisection

RCB [43], where in each step of the recursion, RCB projects graph nodes onto the

coordinate axis and bisects them through the median of their projections. In case

of RCB, the bisecting plane is orthogonal to the coordinate axis, which can lead to

partitions with large separators in case of meshes with skewed dimensions. The inertial

partitioning [57, 58] alleviates this issue. In inertial partitioning, the bisecting plane is

orthogonal to a plane L that minimizes the moments of inertia of nodes. That is to say,

the plane L is chosen such that the sum of squared distances to all nodes is minimized.

Another interesting algorithm is the random spheres algorithm [59, 60]. It consists

on projecting the d dimensional nodes to a random d + 1 dimensional sphere, and bi-

secting it by a plane L through its center point. This method is a generalization of the

RCB method, and has performance guarantees for k-nearest neighbor graphs and planar

graphs.

We give in the following, a highlight of a novel and recently proposed method in the

geometric class.
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2.2.3.1 Geometric partitioning: Linear Embedding based Graph Partition-

ing

A recent work in [61], tackles the balanced graph partitioning problem in a distributed

setting by using linear embedding technics. The proposed algorithm starts by embedding

the nodes onto a line and then processes them in a distributed manner based on the

embedding order and using several technics such as minimum cuts and local swaps.

In other words, Aydin et al. proposed in [61], a three steps algorithm:

1. The first task is to find a mapping of the graph vertices to a line, where a map-

ping gives an ordering of the vertices that presumably places neighbors close to

each other, which could reduce the minimum-cut partitioning problem to a local

optimization problem. The mapping task could be achieved either through ran-

dom mapping, Hilbert curve mapping or affinity-based mapping. We give a brief

description of these mapping technics in the following:

Random mapping. A näıve method to produce an ordering of vertices is to give

random permutation of them. This method does not help in finding good cuts

even if it could be very fast.

Hilbert curve mapping. In the Hilbert curves mapping, geographic/geometric

information is needed to construct an ordering using a space-filling curve. This

method is known to capture proximity well, that is to say, nodes that are close in

space are assumed to be placed nearby on the line. Although there are no theoreti-

cal guarantees on the cut generated from Hilbert curves, numerous assumptions on

the distributions of edge lengths and node positions enable to bound the cut ratio,

showing show that it is significantly less than the cut ratio of random ordering

[62–64].

Affinity-based mapping. The affinity method takes into account the affinity of

vertices. Informally, every node starts in a singleton cluster, and then, vertices

that are closely connected are grouped into the same cluster, therefore building a

tree of connections. The similarity between constructed clusters is computed by a

given function of similarities between vertices in the clusters.

The final ordering is produced by sorting the vertex labels as follows: Let the label

for each cluster be the concatenation of vertices IDs strings from the root to the

corresponding leaf. Sorting the constructed labels places the vertices belonging to

the same cluster in a contiguous piece on the line.

2. The second step consists in improving the ordering obtained through local vertices

swapping, such that nodes will be placed next to their most neighbors.
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3. The final step is about finding the cut points and refining the partition to improve

the cut size. To do so, authors use local post-processing optimization in the “split

windows” ( a split window is a small interval around the cut points, taking into

account permissible imbalance).

2.3 Online Partitioning: Streaming Graph Partitioning

The graph partitioning problem is a well-studied problem with a rich history which

witness the importance of this problem and its relevance in solving a wide range of

domain-related problems. Nowadays, with the advent of the big data, traditional meth-

ods for graph partitioning are not tailored to process big sized graphs and incur an

exorbitant cost when dealing with such graphs. In order to alleviate this problem, the

streaming graph partitioning problem was introduced in 2012 by Stanton et. al..

In this section we introduce the streaming graph partitioning problem and present the

surrounding notions and concepts, then we discuss related work. This section is orga-

nized as follows: in Subsection 2.3.1, we first present and describe the streaming model

used in the streaming graph partitioning and we give the streaming graph partitioning

problem definition. Then, Subsection 2.3.2 reviews and discusses the one-pass streaming

heuristics for graph partitioning. And in Subsection 2.3.3, we discuss the the restreaming

graph partitioning problem, which is derived method from the streaming partitioning

that intends to refine and optimize partitions quality. Finally, we give a brief summary

at the end of the section.

2.3.1 Problem Setting & Definition

This section is dedicated to giving definitions surrounding the problem of streaming

graph partitioning. First, we define the streaming model, i.e., the setting of the stream-

ing process. Then, we give the definition of the streaming graph partitioning problem.

2.3.1.1 Streaming Model

Streaming graph partitioning was first introduced by Stanton and Kliot [65]. It consists

on processing the graph stream in one pass (see Defnition 2.4), where the graph vertices

arrive in a certain order (Random, Breadth First Search, Depth First Search · · · see

Definition 2.5), and each vertex is accompanied by its adjacency list.
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Definition 2.4. One-pass streaming partitioning. The streaming partitioning is

said to be ”one-pass” iff the partitioning process performed only one-pass on the graph

data stream, i.e., all vertices have been seen no more than once.

Definition 2.5. Stream ordering. The stream ordering represents the ordering in

which the vertices of the graph being streamed are explored. We cite three main stream

orderings that are usually used in the graph streaming partitioning problem:

• Breadth-First Search BFS: is obtained by randomly selecting a node on each con-

nected component of the graph and starting a breadth-first search from the given

node. Component ordering is done at random in case of multiple connected com-

ponents in the graph.

• Depth-First Search DFS: is similar to BFS but a depth-first search is performed

instead of BFS.

• Random: is given by a random permutation of the vertex set.

Figure 2.3: The streaming model used in the streaming graph partitioning problem.

As depicted in Figure 3.1, the streaming model used in streaming graph partitioning

consists of three components: (i) the data stream, (ii) the partitioner and (iii) the target

machines. In the following, we provide further details about these three components.

i) Data Stream. The data stream that represents the input of the whole partitioning

system, consists of data structures that correspond to the graph vertices along with their

adjacency lists. In other words, each data item in the stream is nothing but a vertex

accompanied by its adjacency list, where the adjacency list of a vertex v is the list of its

neighbors. Particularly, the adjacency list in the item structure includes the references

of the neighbors solely, to avoid large size structures to store and increase the processing
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speed. In the following, we will refer to data items in the stream as vertices to avoid

cluttered sentences.

ii) Partitioner. The vertices in the data stream are serially loaded into the partitioner.

The partitioner is a program that has the task of assigning each vertex in the stream,

to a one selected machine. Precisely, the partitioner selects the one machine where the

current vertex will be placed according to the adjacency of the vertex and the available

capacity on machines. This machine selection task as performed by the partitioner will

be further detailed in section 2.3.2.

iii) Target Machines. As depicted in Figure 3.1, there are k target machines, accord-

ing to k-way partitioning, where the aim is to partition the graph data being streamed

into k parts, where each part is going to be stored in one machine. Suppose that each

machine has a storage capacity C, then the total capacity of the k machines should be

large enough to handle the whole graph being streamed. In other words, if the size of the

graph being streamed is n (the number of vertices), then there is an essential condition

for the streaming model to be operational and it is that n ≤ k × C.

2.3.1.2 Problem Definition

The streaming partitioning is as follows: when a vertex is loaded on the partitioner

(along with its adjacency list), a program called the partitioner decides on which cluster

the vertex will be placed and never relocates it once the assignment is done. The

partitioning process is done on the fly without having an access to the whole graph, i.e.,

the graph does not have to be memory resident. In fact, streaming partitioning uses

very limited computational resources in terms of memory and computation time. This

property makes the streaming model very suitable when it comes to partitioning billion

node graphs, which neither the approximation algorithms nor the heuristics proposed

for classical graph partitioning are tailored to process.

2.3.2 One Pass Streaming Partitioning

In this section, we review the core proposed methods in the literature for streaming par-

titioning in one pass. We highlight in the following three heuristics: Linear Deterministic

Greedy heuristic (LDG), FENNEL heuristic and Fractional Greedy heuristic. For each

heuristic, we present and explain the objective function used, as well as a discussion on

the performances achieved by each heuristic.
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2.3.2.1 Linear Deterministic Greedy heuristic

In [65], Stanton and Kliot proposed the first and foremost work in streaming graph

partitioning. The authors propose a variety of online partitioning heuristics and conduct

a comparative analysis of their performances concluding that the Linear Deterministic

Greedy (LDG) remains the most promising heuristic.

As aforementioned in the previous section, the partitioning heuristic is run in the parti-

tioner and has to select the machine where the currently loaded vertex will be located.

The LDG heuristic aims at selecting the machine that maximizes the objective function

in LDG. In other words, LDG greedily assigns the vertices to machines (clusters) while

adding a penalization for big clusters to emphasize balance. The objective function to

maximize in LDG is as follows:

LDG =argmax
i

(P t
i ∩N(v)) ∗ (1− |P t

i |
C

) (2.2)

Where i ∈ [k] is the index of a given machine, C is the capacity of a machine, v is the

current vertex to place, whereas N(v) is its adjacency list. P t
i is the part of index i at

time t, and it refers to the vertices set in machine having the idex i. Given a vertex

v, the LDG heuristic works as follows: it selects the machine that has the maximum

number of v neighbors, and in the same time, that has available free space to receive

additional data.

LDG yields the best results in terms of edges cut in Finite Element Mesh (FEM) datasets,

this is due to the structure of FEMs, their edges are highly local which make it possible

to obtain very good partitions. However, performances achieved by LDG are far from

being optimal. In fact, in a theoretical study on streaming partitioning algorithms [66],

Stanton shows that it is impossible for online algorithms to approximate the optimal cut

on a single pass over the graph stream within O(n) (where n is the number of vertices

of the graph to be partitioned) whatever the streaming order is.

2.3.2.2 FENNEL heuristic

Besides, Tsourakakis et al. proposed in [67] an online greedy heuristic for streaming

partitioning named FENNEL.

A method proposed by Tsourakakis et al. [67], introduces another greedy heuristic

approach for graph partitioning FENNEL. This heuristic achieves good performances

due to an adjustable objective function.
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The objective function of FENNEL is as follows:

FENNEL =argmax
i

(P t
i ∩N(v))− αγ(|P t

i |)γ−1 (2.3)

From the objective function, we can see that the first term is similar to LDG (see

Equation 3.4), that is FENNEL selects a machine that has the most neighbors of the

vertex to be assigned, but has a different second term with two parameters α and γ,

that are used for tuning the FENNEL heuristic, and where the best performance values

were fixed empirically. FENNEL outperforms LDG by giving partitions of a lower edge

cut, however, the balance in LDG is more accurate and respected. This represents the

main drawback of FENNEL, as the balance criterion in the graph partitioning problem

is extremely important and can cause the computations to slow down as not all the

machine will have the same workload.

2.3.2.3 Fractional Greedy heuristic

Another greedy heuristic named Fractional Greedy (FG) for streaming partitioning was

proposed in [68]. It aims to enhance the partition quality and yields exactly balanced

partitions due to a special penalizing term. The Fractional Greedy heuristic was pro-

posed and developed in the context of this thesis and will be further detailed in Chapter

3.

2.3.3 Restreaming Partitioning

In order to get better partitions, Nishimura et al. [69] relaxed the constraint of a single

pass over the graph stream and introduced the restreaming graph partitioning as a

variant of the original problem which allows for multiple passes over the graph stream.

Indeed, the restreaming model enhances the partition quality by reducing the cut and

emphasizing the balance.

The restreaming process consists in performing several passes over the data stream. In

other words, the first streaming partitioning is done, and a second streaming partitioning

is repeated by exploring the graph stream for the second time; and results of the previous

partitioning is stored and used in the current partitioning to improve and enhance the

final partition quality.

Performances achieved by restreaming methods compete with METIS, a well-known of-

fline method for graph partitioning. However, if restreaming partitioning leads to exact

balance - guaranteed for FENNEL - it can be too expensive for partitioning massive
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graphs, since it must restream the whole graph several times which incurs a high com-

putational time and memory. Thus, the tradeoff is to be done between computational

cost and desired partitions quality.

2.3.3.1 Restreaming the one-pass streaming partitioning heurtistics

The authors took the two streaming heuristics LDG and FENNEL and tweaked them

in order to perform a restreaming partitioning. In the following, we give the objective

functions for LDG and FENNEL in the restreaming setting:

ReLDG =argmax
i

(P t−1
i ∩N(v)) ∗ (1− |P t

i |
C

) (2.4)

ReFennel =argmax
i

(P t−1
i ∩N(v))− αγ(|P t

i |)γ−1 (2.5)

In both aforementioned equations for restreaming LDG and FENNEL respectively, only

the first term is different from the original objective function in the one-pass setting.

In the one-pass setting, this term computes the number of neighbors of the current

vertex in part (machine) of index i, but in the restreaming setting, the term computes

the number of neighbors in the previously obtained partition. This can be viewed as

a learning process, where the previously obtained partitioning is exploited in order to

enhance and improve the actual partitioning. The second term of the objective function,

also called the penalizing term, is unchangeable and it is relative to the current part

(machine) at iteration t.

Although the restreaming partitioning has the strong point of refining the partitions

quality, by reducing the edge cut and improving the balance among parts, it actually

suffers an important weakness, such that it incurs a high cost as a considerable memory

space is needed in order to store information about the partitioning iterations, as well

as the computational time being consumed.

Partial Restreaming Partitioning. In order to alleviate the cost incurred by the

whole graph restreaming setting, we have proposed and developed in the context of this

thesis another variant of the problem named the partial restreaming partitioning [68, 70],

where several passes over the graph stream are allowed on a portion of the graph, and

the rest of the graph stream is processed in one pass. This work will be further detailed

and explained in chapter 3.

Summary. The actual data proliferation is correlated to a sheer increase in size of

actual graph datasets, which impels the use of distributed graph processing frameworks
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that should consider a good partitioning of the graph dataset, for their performances

to be enhanced. In considering this matter, the graph partitioning task turns out to

be crucial and important and as a result, recent research in the field is focused on big

graph adapted methods. For this reason, the streaming graph partitioning problem was

introduced to alleviate the excessive cost being incurred by traditional graph partitioning

methods, which are well suited for relatively small graphs.

In this section, we defined the problem of Streaming graph partitioning. We highlighted

the streaming setting, and discussed the main advantages of such streaming model. We

presented and reviewed recent and leading studies on the Streaming Graph Partitioning

problem. We discussed the one-pass streaming heuristics for graph partitioning. Besides,

we presented the restreaming partitioning model as a way to improving the partitioning

quality given by the one-pass streaming partitioning.

2.4 Chapter Summary

In this chapter, we give an overview of the graph partitioning problem, including defi-

nitions of related key notions and reviews on foremost works in the literature as well.

We also present different variants of the problem, and present the hardness results and

approximation guarantees that were proposed so far. Moreover, we present two main

classes of solving methods for the graph partitioning problem: the offline and the online

partitioning methods. The offline partitioning is the traditional class of methods, and it

is suitable for processing relatively small graphs, since the methods under this class are

known to be computationally expensive. The online partitioning was recently proposed,

and it exhibits the possibility to handle actual large graphs in a streaming fashion, i.e.,

the graph to be partitioned, usually of massive size, does not have to be memory resi-

dent. This feature makes the online partitioning very efficient to partition large graphs

as it does not incur any cost in memory consumption. Moreover, online methods are

equally known for being faster than the offline methods for graph partitioning.





Chapter 3

Fractional Greedy Heuristic &

Partial Restreaming Partitioning

The graph partitioning problem is a well studied problem with an active present and

a rich history. The broadness of this research field witnesses the importance of the

graph partitioning problem in a wide range of application domains. In this chapter, we

present two of our contributions to the graph partitioning problem, named the Frac-

tional Greedy heuristic and the Partial Restreaming partitioning model. The Fractional

Greedy heuristic was proposed in the context of this thesis to address the shortcoming

of partition balance in other state-of-the-art heuristics and also to improve the edge-cut

among partitions. On the other hand, the Partial Restreaming partitioning model re-

duces the computational cost that is incurred in full restreaming partitioning settings

while achieving competitive performances.

The chapter is organized as follows: in Section 1, we start by presenting our proposed

Fractional Greedy heuristic. In Subsection 1, we introduce and give definitions of key

concepts in the streaming graph partitioning problem, we also outline the motivation

behind the proposal of a new heuristic for streaming graph partitioning such Fractional

Greedy. Subsection 2 presents the Fractional Greedy (FG) heuristic, we first describe

and explain the objective function of the heuristic, then we describe the FG algorithm.

Finally, Subsection 3 presents the experimental evaluation and discusses the obtained

results.

In Section 2, we present the Partial Restreaming Partitioning model. We first start by

defining the restreaming model, and then we define and present the Partial Restreaming

Partitioning model in its two proposed versions: the simple partial restreaming and

the selective partial restreaming models. The same section continues by presenting the

28
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experimental evaluation of the partial restreaming model. Finally, we summarize the

chapter in Section 3.

3.1 Fractional Greedy: a proposed streaming partitioning

heuristic for large graphs

In this section, we present our proposed method called Fractional Greedy (FG). First,

we introduce the streaming model concept and reveal the motivation behind the pro-

posal of such heuristic. Second, we present the actual FG heuristic by presenting the

objective function used, and the whole FG algorithm. Last but not least, we present

our experimental evaluation of FG over numerous graph datasets and compare it with

state-of-the-art heuristics for streaming graph partitioning.

3.1.1 Preliminaries

The Fractional Greedy (FG) heuristic is a streaming graph partitioning method intended

to process large graphs in a streaming fashion. Therefore, we begin by briefly explaining

the streaming model used in such methods. Then, we give the context related to our

proposed FG method and give the motivation behind it.

Notations. We will be using the following notation throughout the chapter. We con-

sider a simple undirected graph G = (V,E), let|V | = n be the number of vertices in

G and |E| = m be the number of edges of G. Let the current vertex loaded be v, and

N(v) represents his neighbors. k is the number of clusters or parts we wish to divide

the graph to. Let P t = (P t
1, . . . , P

t
k) be a partition of the graph. Pi, · · · , Pk are called

clusters such that Pi ⊆ V and Pi ∩ Pj = ∅ for every i �= j.

Let e(P, V − P ) be the set of edges with ends belonging to different clusters. We define

λ = |e(P, V − P )|/m as the fraction of edge cut and it should be minimized during

partitioning. We define ρ as the maximum load normalized, it expresses the balance

between clusters’ size and we have ρ = maximumload
n/k , maximumload representing the

size of the biggest cluster. Each part Pi is of size C. In our work we set C = �n/k�.

3.1.1.1 Streaming Model

Streaming graph partitioning was first introduced by Stanton and Kliot [65]. In this

work, the authors presented the streaming model used such that it consists on process-

ing the graph stream in one pass, where the graph vertices arrive in a certain order
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(Random, Breadth First Search, Depth First Search), and each vertex is accompanied

by its adjacency list. In figure 3.1, we depict the streaming model: it consists on a

graph stream, a partitioner, and k machines, provided that the goal is to partition the

streamed graph into k parts.

Partitioner.When a vertex is loaded (along with its adjacency list), a program called

the partitioner decides on which cluster the vertex will be placed and never relocates it

once the assignment is done. The partitioning process is done on the fly without having

an access to the whole graph, i.e., the graph does not have to be memory resident.

In fact, streaming partitioning uses very limited computational resources in terms of

memory and computation time. This property makes the streaming model very suitable

when it comes to partitioning billion node graphs.

A natural and evident constraint for such streaming models, is that if the size of the

streamed graph is n, then the whole capacity of the k machines, denoted by k × C

(where C is the maximal capacity of one machine), should be greater or equal to n for

the partitioning process to be feasible.

Figure 3.1: Streaming model used in the streaming graph partitioning problem.

3.1.1.2 Motivation

The streaming graph partitioning is a fair alternative for partitioning large graphs, the

main reason is that it considerably lowers the computational cost when compared to the

traditional offline setting for graph partitioning, i.e., the whole graph has to be memory

resident in order to perform the partitioning. Since introduced in [65], the streaming

partitioning won the interest of many researchers. We cite the Linear Deterministic

Greedy LDG heuristic [65], the FENNEL heuristic [67] and the restreaming partitioning
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model [69]. The LDG heuristic is known to yield good quality partitions, where a good

quality partition has a low edge cut and is exactly balanced. Although LDG achieves ex-

act balance in partitions, it, however, incurs an important edge cut. FENNEL, achieves

a lower edge cut compared to LDG, but at the same time, it allows for a deviation in

the partition balance, which could be very problematic and present a potential cause

for computations to slow down, as not all the machine are assigned the same workload.

Taken this into consideration, we proposed the Fractional Greedy heuristic, that achieves

lower edge cut and exact balance among partitions. We will detail in the following how

FG outperforms the state-of-the-art heuristics due to its special objective function.

3.1.2 Fractional Greedy Heuristic

Used in the context of a streaming model, the FG heuristic partitions the graph by

processing each vertex in the stream in a sequential manner. The processing of each

vertex consists in finding the target machine, i.e. the machine to which the vertex will

be assigned. In other words, FG computes the index of the target machine using limited

information access, which are the adjacency list of the vertex, and the indexes of vertices

of each one of the k parts.

3.1.2.1 Objective function

Our proposed heuristic is designed for the constrained graph partitioning problem, which

aims to balance the size of the parts as a priority, then to minimize the crossing edges

between parts [71]. Formally, the Fractional Greedy heuristic maximizes the following

objective function:

f(v, P t
i ) = (P t

i ∩N(v))− g(P t
i ) (3.1)

In other words, for each vertex loaded, denoted by v, we compute the index ind of the

part (or the cluster) as follows:

ind =argmax
i

(P t
i ∩N(v))− g(P t

i ) (3.2)

The objective function f has two components: the first component computes the intra-

parts edges, and the second g computes the penalization cost with regard to the size

of the part. The main idea is to assign the loaded vertex v to a part that contains the

most of its neighbors and that does not attain the maximal capacity. The cost function

g is computed as follows:

g(P t
i ) =

1

1− |P t
i |
C

(3.3)



Fractional Greedy Heuristic & Partial Restreaming Partitioning 32

Figure 3.2: Cost function g. The x-axis represents the size of a part and the y-axis
represents the cost value.

The cost function g penalizes the parts of large sizes. For a given vertex v, the objective

function f is computed for each part or machine (among k ones), if the parts/machines

that have the most neighbors of v have reached the maximal capacity C, then this

part/machine should not be selected. In other words, the corresponding value of the

objective function should not be maximal. For that reason, we designed the cost function

of FG such that it rapidly penalizes large size parts even though they may contain the

most neighbors of the vertex v.

As seen in figure 3.2, the cost function increases gradually as the part’s size increases.

When the size is high and reaches C, the cost is reaching infinity making sure that parts

with size C will never be assigned additional vertices.

3.1.2.2 Fractional Greedy algorithm

We describe the Fractional Greedy algorithm in Algorithm 1. The input parameters are

the number of parts k, the graph stream, the maximal capacity of each machine/part

denoted by C. Initially, the parts are empty. Then, FG begins the processing of the

streaming. It starts by sequentially loading vertices from the stream, such that when a

vertex v is loaded along with its adjacency listN(v), the objective function f is computed

for every part. Then, we compute the index ind of the machine to which the vertex v

will be assigned. The index ind is the index of the part/machine that maximizes the

function f (line 6 in Algorithm 1). Then the partition is updated by adding the vertex

v to the selected part/machine. The same process is repeated for each vertex in the

stream. Ultimately, FG outputs the final partition P = (P1, P2, · · · , Pk).
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Algorithm 1 Fractional Greedy

Input: k machines represented by k parts P t
i at time t and i ∈ [k], the maximal

capacity of each machine C, the graph stream represented sequentially by vertex v and
its adjacency list N(v).
Output: Partition P = (P1, P2, · · · , Pk).

1. Initialization: t = 0;P1 = P2 = · · · = Pk = ∅;
2. for each v in the stream

3. for each part P t
i

4. compute f(v, P t
i ) = (P t

i ∩N(v))− 1

1− |Pt
i
|

C

;

5. end for

6. Select the index ind of the appropriate machine : ind =argmax
i

f(v, P t
i );

7. Assign v to Pind: Pind = Pind
⋃

v;

8. t++;

9. end for

10. return P ;

3.1.3 Experimental Evaluation

In this section, we present our experimental evaluation of the FG heuristic. First,

we present the experimental set up, i.e., the graph datasets used and the evaluation

methodology as well. Second, we dicuss the obtained results.

3.1.3.1 Experimental Set up

1. Evaluation datasets:

Two types of graph datasets were used: web and social. We tested our methods

on ten graph datasets listed in Table 3.1, all obtained from the SNAP repository

[72]. Vertices with 0 degree and self-loops were removed. All the graphs were

made undirected by reciprocating the edges. Graph datasets were chosen in order

to be small enough so that we can find offline solutions with METIS and still big

enough to capture the behavior of the online heuristics.

2. Methodology:

We first run FG, LDG and Fennel in one pass stream setting on our graph datasets

for k = 40 in order to compare the fraction of edge cut represented by λ and the

balance represented by ρ. For Fennel, the parameter γ was empirically set to 5 in



Fractional Greedy Heuristic & Partial Restreaming Partitioning 34

Table 3.1: Graph Datasets used for our tests.

Graph |N | |M | Avgdeg type

wikivote 7115 100762 14.16 social
enron 36692 183831 5.01 social
Astro ph 18771 198050 10.55 social
slashdot 77360 469180 6.06 social
Web nd 325729 1090108 3.34 web
stanford 281903 1992636 7.06 web
Web google 875713 4322053 4.93 web
Web berkstan 685230 6649470 9.7 web
Live journal 4846609 42851237 8.84 social
orkut 3072441 117185085 38.14 social

order to give as balanced parts as those given by FG and LDG. We compare FG

to the other online heuristics LDG and Fennel and to the offline METIS heuristic

which is used as a baseline.

3.1.3.2 Experimental results

Obtained results show that Fractional Greedy outperforms LDG and Fennel in most

cases with exactly balanced clusters and lower edge cut.

Table 3.2: Fraction of edge cut λ and maximum load normalized ρ for 3 streaming
heuristics LDG and FENNEL and FG and METIS,(1.001) indicates that the slackness

allowed is 001. Results are obtained for 10 graph datasets where k = 40 .

Graphs FG LDG Fennel Metis(1.001)

λ ρ λ ρ λ ρ λ ρ

wikivote 0.844 1 0.867 1 0.862 1 0.822 1.001
enron 0.589 1 0.610 1 0.612 1 0.855 1.001
astro ph 0.555 1 0.619 1 0.578 1 0.535 1.001
slashdot 0.758 1 0.787 1 0.777 1 0.711 1.001
webnd 0.249 1 0.261 1 0.270 1 0.036 1.001
stanford 0.349 1 0.392 1 0.347 1.043 0.123 1.001
webgoogle 0.310 1 0.308 1 0.313 1.023 0.009 1.001
web berkstan 0.386 1 0.342 1 0.367 1.023 0.117 1.001
live journal 0.442 1 0.462 1 0.546 1.009 0.309 1.001
orkut 0.627 1 0.639 1 0.696 1.076 0.376 1.001

Performance discussion. Our proposed heuristic Fractional Greedy outperforms LDG

and Fennel in terms of balance and also of edge cut. In Table 3.2 we show our results, we

see that FG yields partitions of exact balance (ρ = 1) and lower edge cut. However, LDG

outperforms FG in web-google (0.310 vs 0.308) and web-berkstan (0.368 vs 0.342). Our

proposed heuristic is the most adapted for the setting of constrained graph partitioning,

it yields exact balanced partitions and also minimizes the edge cut.



Fractional Greedy Heuristic & Partial Restreaming Partitioning 35

Figure 3.3: Average fraction of edge cut λ for FG,LDG,Fennel and METIS over
ten graph datasets.

In figure 3.3 we show average results of comparison between FG,LDG,FENNEL and

METIS in terms of fraction of edge cut over 10 graph datasets. METIS is the best

performing heuristic due to the offline setting, while FG is the second best heuristic

outperforming LDG and Fennel.

3.2 Partial Restreaming Partitioning

In this section, we introduce the partial restreaming partitioning. First, we give a brief

introduction to the restreaming partitioning model. Then, we present the partial re-

streaming model used. Afterward, we present the instance of the partial restreaming

partitioning model using Linear Deterministic Greedy LDG [65], Fennel [67] and Frac-

tional Greedy [68] as heuristics for partitioning. Finally, we give another variant of the

partial restreaming, called Selective Partial Restreaming partitioning, where portions to

be restreamed are selected depending on their degree and density.

Notations. The following notations are used in this section, in addition to notations in

Section 3.1.1. Let s be the number of the streaming iterations. P t−1 = (P t−1
1 , · · ·P t−1

k )

represents the partition obtained from the precedent stream iteration. C represents also

the size of the portion to be restreamed (C represents also the maximal capacity of a

part/machine). We can choose that several portions of the graph should be restreamed,

then β is the number of portions to be restreamed (each portion is of size C).
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3.2.1 Restreaming Partitioning: a brief introduction

In order to get better partitions, Nishimura et al. [69] relaxed the constraint of a single

pass over the graph stream and introduced the restreaming graph partitioning as a

variant of the original problem, which allows for multiple passes over the graph stream.

The restreaming process consists in performing several passes over the data stream. In

other words, the first streaming partitioning is done, and a second streaming partitioning

is repeated by exploring the graph stream for the second time; and results of the previous

partitioning is stored and used in the current partitioning to improve and enhance the

final partition quality. Indeed, according to experimental results, the restreaming model

enhances the partition quality by reducing the cut and emphasizing the balance. The

restreaming partitioning is further defined in Chapter 2, Section 2.3.3.

3.2.2 Simple Partial Restreaming Partitioning

In this section, we present the Simple Partial Restreaming Partitioning. First, we

present the partial restreaming model, then, we present and explain the simple partial

restreaming setting.

Partial Restreaming Model. We consider a simple streaming model as described in

subsection 3.1.1.1, where vertices arrive in a random order along with their adjacency

lists. The heuristic used for partitioning must make a decision about the machine/part

to place the current vertex within. In the partial restreaming model, two major phases

exist: the restreaming phase and the one pass streaming phase. Namely, a first loaded

portion of the graph dataset of size β×C is going to be restreamed and the rest is going

to be processed in the simple streaming phase. In other words, in this model, multi-

passes of the stream is allowed for only a part of the dataset. Let P t be the partition

obtained at time t, P t−1 represents the partition obtained at the precedent iteration

of the restream. When we attain the number of restreaming iterations allowed for the

portion concerned, we continue streaming the rest of the graph dataset normally, such

that we don’t use information about the last partitioning to build a new one. In the

following, we describe the partitioning heuristics used in our model.

Partial Restreaming Partitioning. As a partitioning strategy, we use the state-of-

the-art heuristics [65, 67] in order to compare them with our proposed heuristic FG. In

this section, we describe how we adapt these heuristics (LDG, FENNEL, FG) to our

partial restreaming model.
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1. Linear Deterministic Greedy

LinearDeterministicGreedyLDG is the best performing heuristic in [65]. It

greedily assigns the vertices to clusters while adding a penalization for big clusters

to emphasize balance. LDG assigns vertices to clusters that maximize:

LDG =argmax
i

(P t
i ∩N(v)) ∗ (1− |P t

i |
C

) (3.4)

In our streaming model, we consider 2 phases: the restreaming phase and the

simple streaming phase, which consists in one pass. In the first phase, the LDG

function will use information about the last partitioning to decide about the place-

ment of the current vertex such that:

PartLDG =argmax
i

(P t−1
i ∩N(v)) ∗ (1− |P t

i |
C

) (3.5)

Where PartLDGmakes a reference to partial LDG for partially restreaming LDG.

In the second phase (the one pass streaming phase) the vertices are assigned fol-

lowing the LDG function as follows:

PartLDG =argmax
i

(P t
i ∩N(v)) ∗ (1− |P t

i |
C

) (3.6)

2. Fennel

Fennel yields partitions of good quality compared to LDG, with a lower fraction

of edge cut and also emphasizes balance [67]. We adapt Fennel function to the two

phases of our streaming model. In the first restreaming phase, PartFennel is as

follows:

PartFennel =argmax
i

(P t−1
i ∩N(v))− αγ|P t

i |γ−1 (3.7)

Where PartLDG makes a reference to partial Fennel for partially restreaming

Fennel. While in the second phase, PartFennel is as follows:

PartFennel =argmax
i

(P t
i ∩N(v))− αγ|P t

i |γ−1 (3.8)

The parameter setting of γ will be presented in Section 4.

3. Fractional Greedy 1

The adaptation of FG to the partial restreaming model is as follows:

1Refer to Section 3.1 for FG description.



Fractional Greedy Heuristic & Partial Restreaming Partitioning 38

In the restreaming phase, PartFG corresponds to:

PartFG =argmax
i

(P t−1
i ∩N(v))− 1

1− |P t
i |
C

(3.9)

And in the second phase, PartFG is defined as:

PartFG =argmax
i

(P t
i ∩N(v))− 1

1− |P t
i |
C

(3.10)

3.2.3 Selective Partial Restreaming Partitioning

Instead of restreaming the first loaded portion of the graph dataset, we try to select

portions of size C that would lead to a good quality partitioning. We set degree and

density parameters to be the criteria for selecting portions to be restreamed in the first

phase of the model. In other words, when a portion is loaded, we check its average de-

gree and its average density, if it is higher than the average degree (respectively average

density) of the whole graph, we select this portion for restreaming, otherwise, it will be

processed in the second phase of one-pass streaming.

selection criteria. In order to select a portion for restreaming, two criteria are con-

sidered:

1. Average degree: The average degree of a portion is the average of vertices degrees

inside the portion. Notice that the degree of a vertex is the number of its neighbors

no matter they are inside or outside the portion concerned. We take the average

degree as a criterion to make sure that the portion which is going to decide for

the partitioning of the graph must influence the partitioning decision of a large

number of vertices due to its elevated average degree.

2. Average density: The average density of a portion represents the number of edges

within the portion. It is important to have edges inside the portion to make better

partitioning decision as the objective functions used makes decisions depending on

edges, otherwise, the partitioning of the portion will be done at random and it will

definitely lead to a lower partitioning quality of the whole graph.

The average degree and density of the whole graph is an information which is not always

available, we can substitute this by progressively adding degree and density information

as the data is loaded. A portion with high density and high degree vertices should act like

a kernel to yield partitions of good quality. In fact, portions with vertices having high

degree would attract and influence the partitioning of a large number of other vertices,

and the density criterion inside the portion makes sure to take into consideration the
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edges to make better decisions for the partitioning. In our experimental evaluation,

we show that by selecting portions of high degree average and high-density average we

obtain partitions with better quality than those obtained by simply restreaming the first

loaded portion.

3.2.4 Experimental Evaluation

In this section, we present the experimental evaluation of the partial restreaming parti-

tioning model. First, we present the experimental set up, i.e., the graph datasets used

and the evaluation methodology as well. Second, we discuss the obtained results.

3.2.4.1 Experimental Set up

1. Datasets:

Graph datasets used for the following experimentations are the same as the ones

used in subsection 3.1.3, and are all listed in Table 3.1 .

2. Methodology:

We vary the restreamed portion size to assess an eventual correlation between the

restreamed portion size and the cut. In other words, we examine results of edge

cut for different values of β, provided that the portion size is beta× C. We begin

by running PartLDG and PartFennel and PartFG (partially restreaming LDG,

Fennel and FG respectively) on WebGoogle and LiveJournal for different values

of β and see how the fraction of edge cut reacts to the change in β. After that,

we run our methods on the ten graph datasets, for k = 40, s = 10 and β = k/2.

Notice that the ordering of vertices is done at random. β = k/2 means that we

are restreaming half of the graph.

We compare our results to the whole graph restreaming methods [69] and to

METIS, which represents the offline methods and considered as our baseline. After-

wards, we evaluate the partial restreaming methods (PartLDG,PartFennel) and

the partial selective restreaming methods (PartSLDG,PartSFennel) on seven

graphs. Last but not least, we show the running time gain for the partial methods

(PartLDG, PartFennel and PartFG) over the ten graphs for k = 40 and s = 10.

The Runtime gain is computed as follows:

GainPartLDG =
ReLDG− PartLDG

ReLDG− LDG
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Where ReLDG refers to the execution time of the version of LDG where the whole

graph is restreamed, LDG is the one pass streaming version.

GainPartFennel =
ReFENNEL− PartFENNEL

ReFENNEL− FENNEL

Same as GainPartLDG, ReFENNEL refers to the execution time of the version of

FENNEL, where the whole graph is restreamed and FENNEL is the one pass stream-

ing version.

GainPartFG =
ReFG− PartFG

ReFG− FG

GainPartFG is the runtime gain for Fractional Greedy, where ReFG refers to restreaming

FG and FG is the one pass streaming version. PartFG is the partial restreaming version

of FG. We note that the runtime computed includes solely the partitioning runtime.

3.2.4.2 Experimental results

In the following, we present and discuss our results. And before we delve in the results

we give a brief summary about it.

Summary of our results

• Results that were obtained show that by augmenting β, i.e., by augmenting the

size of the portion to be restreamed, we obtain better quality partitions.

• By restreaming the first loaded half of a graph, we obtain partitions of similar

quality than those yielded by restreaming the whole graph.

• The partial selective restreaming method preserves the quality of a partition, un-

like the partial methods which depend on the stream order. The reason is that

no matter the order, the selective methods always pick the good portions to be

restreamed.

• Restreaming only a portion of a graph dataset incurs lower computational cost

than restreaming the whole graph, for example, restreaming only the half of the

graph takes half of the runtime taken by restreaming the whole graph, while the

results are almost the same.

Performance discussion. In Figure 3.4, we see that the bigger the size of the streamed

portion β is, the lower the fraction of edge cut. This shows that the information about the

precedent stream iteration allows vertices to be more oriented toward the best cluster

leading to lower edge cut. In other words, the more information we have about the

precedent streaming iteration the better is the edge cut.
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Figure 3.4: Variation of λ with the growing size of the portion being restreamed
represented by β for Webgoogle graph and LiveJournal. On the left PartFennel and

on the right PartLDG and at the bottom PartFG.

Table 3.3: Comparison of the fraction of edge cut λ and the normalized maximum load
ρ for ReFG and PartFG, ReLDG and PartReLDG, ReFennel and PartFennel. k = 40

and s = 10 and β = k
2 .

Graph ReFG PartFG ReLDG PartLDG ReFENNEL PartFENNEL

λ ρ λ ρ λ ρ λ ρ λ ρ λ ρ

wikivote 0.812 1 0.828 1 0.835 1 0.850 1 0.813 1.023 0.826 1.022
enron 0.479 1 0.509 1 0.475 1 0.507 1 0.476 1.098 0.482 1.087
astro ph 0.433 1 0.475 1 0.418 1 0.501 1 0.413 1.019 0.443 1.019
slashdot 0.711 1 0.705 1 0.713 1 0.722 1 0.703 1.041 0.692 1.106
webnd 0.164 1 0.207 1 0.113 1 0.207 1 0.143 1.048 0.193 1.056
stanford 0.200 1 0.267 1 0.204 1 0.319 1 0.193 1.025 0.216 1.109
webgoogle 0.163 1 0.219 1 0.161 1 0.217 1 0.160 1.087 0.222 1.012
web berkstan 0.241 1 0.276 1 0.212 1 0.276 1 0.254 1.037 0.282 1.073
live journal 0.325 1 0.331 1 0.313 1 0.331 1 0.330 1.006 0.319 1.018
orkut 0.398 1 0.503 1 0.395 1 0.503 1 0.410 1.005 0.451 1.017

Table 3.3 shows results in terms of fraction of edge cut and balance. The difference be-

tween edge cut of fully restreaming methods and partial restreaming methods is minimal

in most cases.

Table 3.4 shows the difference between performances of partial restreaming methods

and selective partial methods on seven different datasets. The results show that in most

cases, selective partial restreaming methods yield better quality partitions by leading to

a lower edge cut. However, in some datasets, portions that conform to the criteria do
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Table 3.4: Comparison of the fraction of edge cut λ and the normalized maximum load
ρ for Partial restreaming methods and Selective partial restreaming methods PartFG
vs PSelectFG, PartLDG vs PSelectLDG, PartFennel vs PSelectFennel. Results

are obtained for 7 graph datasets where k = 40 .
Graphs PSelectFG PartFG PSelectLDG PartLDG PSelectFENNEL PartFENNEL

λ ρ λ ρ λ ρ λ ρ λ ρ λ ρ

wikivote 0.826 1 0.828 1 0.849 1 0.850 1 0.845 1.005 0.826 1.022
enron 0.503 1 0.509 1 0.502 1 0.507 1 0.509 1.003 0.482 1.008
astro ph 0.475 1 0.475 1 0.501 1 0.501 1 0.468 1.008 0.443 1.019
slashdot 0.703 1 0.705 1 0.722 1 0.722 1 0.716 1.011 0.692 1.106
webnd 0.213 1 0.207 1 0.214 1 0.207 1 0.217 1.013 0.193 1.056
stanford 0.271 1 0.267 1 0.339 1 0.319 1 0.258 1.024 0.216 1.109
webgoogle 0.189 1 0.219 1 0.188 1 0.217 1 0.187 1.009 0.222 1.012

Table 3.5: Runtime gain computed for PartLDG and PartFennel and PartFG over
executions on ten graphs with k = 40 and s = 10.

Graphs PartLDG Gain PartFennel Gain PartFG Gain

Wikivote 47.2% 58.5% 45.9%
Enron 50% 48.3% 47.6%

Astro ph 44.5% 44% 47.4%
Slashdot 39.6% 47.5% 45.2%
Web nd 51.4% 49.5% 56.2%
Stanford 54.5% 52.4% 56.8%

Web google 57.5% 52.7% 56.1%
Web berkstan 50.6% 49.6% 65%
Live journal 40.5% 45.6% 42.1%

Orkut 52.7% 51.2% 39.9%

not exist, which hinders the selective partial method to give the best results. For this

reason, the simple partial restreaming method could be a better alternative for both

speeding up computations and imporving partitions quality.

The Runtime gain is represented in Table 3.5. In all our graph datasets, PartFennel has

an average gain of 49.93%, PartLDG 48.85% and PartFG 50.26%. It shows that the

partial restreaming model reduces the runtime by half.

3.3 Chapter summary

In this chapter, we discuss our proposed methods for the balanced graph partitioning

problem. Specifically, we introduce a new online heuristic for streaming partitioning and

we show that we improve the partitions quality by partially restreaming several portions

of the graph. We showed that our proposed heuristic produces partitions of significantly

enhanced quality in terms of balance and edge cut: partitions that were produced are

exactly balanced and have a lower edge cut.
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We also introduced the partial restreaming graph partitioning, that aims to restream

several portions of the graph in order to improve the partition quality. We evaluate our

proposed methods on ten different graph datasets and compare it with the state-of-the-

art partitioning heuristics (Fennel, LDG and METIS). We showed that our proposed

partial restreaming methods produce partitions of similar quality than those produced

by fully restreaming methods with the advantage of incurring lower runtime and mem-

ory cost.

We also present another variant of the partial restreaming partitioning, called selective

partial restreaming partitioning, and showed that selecting relevant portions of the graph

using degree and density as selection criteria, does improve the quality of the partitions.





Chapter 4

Streaming METIS Partitioning:

an Online version of METIS

Heuristic for Big Graph

Partitioning

Graph datasets being generated and stored nowadays consist of several terabytes which

makes the task of processing and even storing them so challenging. Eventhough there

exist efficient tools for graph partitioning, they fall outdated when facing the big data

issue. Thus, there is a pressing need to come with and design new tools that would

achieve simultaneously effectiveness and efficiency while handling this kind of graph

datasets. In this chapter, we present an online alternative, called Streaming METIS

Partitioning (SMP), to the offline METIS heuristic for graph partitioning, known to be

fast and effective. We show theorectically and experimentally that SMP yields results

of similar quality to the original METIS, whereas the time complexity of SMP is lower

than for METIS, leading to SMP being faster than METIS.

This chapter is organized as follows: Section 1 introduces and gives general context

for the SMP approach. We highlight the METIS algorithm in Section 2, and in Sec-

tion 3 we introduce the Streaming METIS Partitioning approach. Section 4 shows the

experimental evaluation of SMP, and finally, Section 5 gives a chapter summary.

44
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4.1 Introduction & Context

The last two decades have witnessed a sheer increase in the size of graph datasets that

emerge in different applications such as social networks, mobile applications to name

but a few. For example, the world wide web consists of at least one trillion of hyperlinks

[8], The well known social network Facebook amounts to 1.083 billion of daily active

users [6] and Twitter totals up to 305 millions of users [7].

This graph datasets plethora has directed many researchers into creating new frameworks

for big graph processing: Pregel [11] and its open-source version Giraph [12], Graphlab

[9] and Microsoft’s Trinity [10] to name a few. The aforementioned platforms perform a

partitioning of the graph as a pre-processing step where the graph dataset is distributed

across several machines, and then parallel computations are run on each machine.

Even though these graph processing platforms seem to be considerably efficient, they

use a hash function to partition the graph, i.e., the graph nodes are assigned to the

machines uniformly at random, which leads to a perfectly balanced partitions but incurs

an important inter-machine communication overhead that causes the computations to

slow down.

The graph partitioning problem addresses this issue, having the main goal of dividing

the graph data into several distinct sets of equal size with the constraint of minimizing

the number of edges crossing these sets.

In fact, the reason of having these two constraints (balance and minimum edge cut) is

that: (i) balancing the partition (parts of equal size) ensures that each machine is given

the same workload, and (ii) the minimized number of crossing edges reduces the network

overhead which ultimately makes the graph partitioning an essential pre-processing step

in order for the upcoming computations to speed up.

What is the difference between parts and partitions? It is worth mentioning and

clearing up the difference between parts and partitions. A partition is the set of parts

which are subsets of the graph vertices; at the end of a partitioning task, we obtain a

partition of the graph consisting of several parts.

In its formal form, the graph partitioning problem is known as k-way balanced graph

partitioning and is an NP-hard problem [15]. It is a problem that has been well studied

and has a rich history, and though many works and heuristics have been proposed in the

literature, a wide range is cumbersome and not tailored to process large scale graphs.
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Nevertheless, a new variant of graph partitioning which enables fast and efficient big

graph partitioning was introduced recently and is known as streaming graph partitioning

(SGP).

Having this motivation in mind, we proposed in the context of this thesis, a novel stream-

ing heuristic for graph partitioning, termed Streaming METIS Partitioning (SMP) [73].

and based on an adaptation of the well known offline METIS [2]. The new heuristic ex-

tends METIS to the online setting and brings significant enhancements to the streaming

graph partitioning.

On the one hand, SMP adapts a high quality partitioning heuristic to an online setting

to reduce the computational cost on large scale graphs, while achieving near-optimal

quality partitioning.

On the other hand, SMP performs graph partitioning using METIS, known to be one of

the most powerful offline partitioning methods as seen in a number of recent experimental

studies over a wide range of graph datasets ([65, 67, 68]).

In a nutshell, the main idea of SMP is to apply the METIS partitioning method on

small subgraphs in order to reduce computations and fit to the limitations of memory

capacity on the partitioner, and also, to extend a powerful offline partitioning method

to a steaming setting while ensuring simultaneously a balanced partition along with a

minimal edge cut.

The use of METIS algorithm promotes the quality of the partition (i.e. number of

crossing edges) and leads to minimal crossing edges within the partition. And to en-

sure balance within the partition, the size of parts is controlled through a multinode

weight update strategy that controls the partition growth. Besides, we show through a

complexity analysis of the new SMP approach, that its computational time complexity

is lower than METIS, and it maintains competitive performances compared to offline

METIS. Last but not least, we conducted extensive experiments on various benchmark

graph datasets, and the obtained results demonstrate that the SMP method is enjoying

considerable advantages compared to state-of-the-art methods [65, 67, 68].

4.2 METIS: Multilevel Graph Partitioning Heuristic

This section is dedicated to introducing the multilevel methods mechanism for graph

partitioning. To do so, we focus on the METIS multilevel heuristic [2], which consists

of three main phases: A) Coarsening phase, B) Partitioning phase and C) Uncoarsen-

ing/Refinement phase.
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4.2.1 Coarsening phase

The coarsening phase aims to successively reduce the size of the graph to be partitioned.

Let G0 denote the original graph; then during coarsening, a series of smaller graphs

G1, G2, · · · , Gq will be created such that V0 > V1 > V2 > · · · > Vq where Gq is called the

coarsest graph ad consists of fewer vertices.

Usually, this can be achieved by finding a maximal matching of the graph, the reason

is that a maximal matching of the graph has the ability to preserve many properties of

the original graph [2, 47].

Definition (Maximal matching). The matching of a graph, also known as the

independent edge set, is a set of edges without common vertices. Moreover, a matching

M of a graph G is maximal if every edge in G has a non-empty intersection with at least

one edge in M [48].

After the maximal matching is computed, the two vertices of each edge in the matching

set are collapsed into one node, thereby reducing the graph size. The process of coars-

ening is iterated until the coarse graph reaches the desired small size of hundred vertices

for example.

We encourage readers interested in more details to consult [2] as well as references

therein.

4.2.2 Partitioning phase

During the partitioning phase, the coarsest graph Gq is partitioned, precisely, the vertex

set Vq is partitioned into k parts. And since the coarsest graph Gq consists of few

vertices, it is possible to use expensive methods for graph partitioning such as spectral

partitioning method to give optimal partitions.

By the same time, various algorithms can be used in this phase, such as spectral method

[51], KL algorithm [50], GGP and GGGP algorithms[2].

4.2.3 Uncoarsening and refinement phase

Once the partition on the coarse graph Gq is obtained, it is projected back to G0 passing

through intermediate graphs Gq−1, Gq−2, · · · , G1. Moreover, a refinement is performed

to enhance the partition quality in the finer graph. The refinement task consists in

swapping two nodes positions whenever it leads to a lower edge cut while preserving the
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balance of the partition. The Kernighan-Lin algorithm is usually used for this purpose

[2].

4.3 Streaming METIS Partitioning Approach

This section presents our proposed Streaming METIS Partitioning Heuristic. First, we

define key notations used along the section and give an overview of the heuristic. Then,

we detail the different phases of SMP, and we finally give a complexity analysis of the

approach.

4.3.1 Notations

Let G be the graph to be partitioned such that G is simple and G = (V,E) where V is

the vertex set with size n = |V | and E the edge set with size m = |E|. Assuming that

u and v are vertices in G, w(v) denotes the weight on vertex v, and w(u, v) the weight

on edge (u, v). Let k be the desired number of parts.

We denote by P t = (St
1, · · · , St

k) the partition of the graph at time/iteration t where

St
1, · · · , St

k are called parts, and are represented by a set of multinodes M t
1, · · · ,M t

k such

that at the final iteration we have:

i) Si ⊆ V , ii) Si ∩ Sj = ∅ for every i �= j and iii)
k⋃

i=1
Si = V . We define the fraction

of edge cut to be minimized during the partitioning process as λ = |Ec|
m , where Ec =

{e(Si, V \Si), i ∈ {1, · · · , k}} represents the set of edges with ends belonging to different

parts. The normalized maximum load is defined by ρ which represents the balance of

the partition: ρ = maximumload
n
k

; where maximumload is the size of the biggest part.

Finally, we denote by p the number of vertices loaded from the graph data stream at

each iteration.

4.3.2 Overview of the method

The proposed method SMP is a natural extension of the well-known METIS to the online

setting. It aims to partition the full graph into k parts in an online fashion, i.e., the

graph is not memory resident but arrives in a stream where each vertex is accompanied

by its adjacency list.

SMP builds an accurate partition of the streamed graph using the METIS heuristic over

small subgraphs loaded from the graph data stream. In other words, at each iteration
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of the method, SMP loads a graph portion of p vertices from the data stream, where p

remains constant during the overall execution of the algorithm and we have p << n.

For each newly loaded subgraph, SMP first builds a weighted graph connecting new

loaded nodes to previously obtained partitions (multinodes Mi). This intermediate

graph is called the atomic graph, and is weighted on both edges and vertices. Then,

METIS is used to partition the atomic graph, where multinodes update their weights.

Until the end of the data stream, the same process is performed: p vertices are loaded,

the atomic graph is constructed, then METIS is used to partition it and multinodes

weights are updated. In the following, we elaborate these steps in more details.

4.3.3 Streaming METIS Partitioning Approach

The SMP method works in two main stages. The first is specific to the graph partition

a t = 0, and the second concerns subsequent operations where t ≥ 1.

At t = 0, p vertices are loaded from the graph data stream, that we call simple nodes.

METIS is then used to partition the subgraph and produce k parts S1, · · · , Sk, corre-

sponding respectively to multinodes M1, · · · ,Mk. Then, SMP assigns a weight to each

multinode Mi that represents the number of vertices in Si. Finally, the cut λ0 for the

first iteration t = 0 is recorded.

At t ≥ 1, SMP processes two node groups (i.e. the previously obtained k multinodes

and the p new loaded simple nodes). To address this case, SMP considers jointly the two

groups as an atomic graph, which is a weighted graph, with weights on both vertices and

edges. Weight on edges connecting a simple node v to multinode Mi is measured as the

number of direct neighbors of v in Si. Besides, edges connecting two simple nodes are

weighted 1. On another side, edges between two multinodes are intentionally omitted

(see subsections 1) Atomic graph construction and 2) Partitioning). Then, METIS is

used to partition the new weighted graph of p + k vertices. Finally, the multinodes

weights are updated according to the partition obtained.

4.3.3.1 Atomic graph construction

As aforementioned, the atomic graph is constructed for t ≥ 1, which is a weighted

graph that is going to be partitioned using METIS. The atomic graph consists of the

multinodes obtained from previous iteration and a p new nodes loaded from the graph

data stream. The new p nodes are simple nodes with weight equal to 1 since that the

original streamed graph G is simple. On the other hand, the k multinodes have weights
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referring to the size of their corresponding parts. Multinodes update their weights after

each partitioning, meaning that their weights increase along the iterations.

Edges connecting the p simple nodes are weighted by 1 as they constitute a subgraph of

G. Besides, edges connecting simple nodes to multinodes are weighted according to the

number of neighbours in multinode, e.g., for a new loaded vertex v with 5 neighbours

in part Si which is represented by multinode Mi, the edges connecting v to Mi is rated

w(v,Mi) = 5. Figure 4.1 illustrates the process of creating the atomic graph.

Inter-multinode edges are omitted because they represent the cut obtained on the pre-

vious partitioning λt−1. Moreover, considering those edges in the atomic graph would

skew the partitioning process: as stated in section 4.2, the coarsening phase of METIS

uses the heavy edge matching strategy which starts on a random vertex u and matches

it with a neighbor v such that (u, v) has the largest weight among the adjacency list.

Inter-multinode edges have high weight compared to other edges in the atomic graph, if

they are not omitted, there is a high probability that two multinodes will be selected and

added to the matching and hence the partition balance will be compromised. Therefore,

inter-multinode edges are omitted in the atomic graph.

4.3.3.2 Partitioning

Once the atomic graph constructed, it is partitioned using METIS where the coarsening,

partitioning and uncoarsening phases of METIS are performed (as explained in section

4.2).

However, at every iteration, the partitioning should satisfy a partitioning condition:

each part should contain one multinode plus several simple nodes, in other words, sim-

ple nodes are assigned to the k existing parts which are represented by multinodes.

Moreover, placing two multinodes in the same part is equivalent to merging two parts,

which is not allowed in order to prevent high imbalance among the partition and also

to avoid replacing nodes. In fact, two multinodes can end up in the same part due to

either the coarsening or partitioning phase.

To address this shortcoming, two constraints will be added to the algorithm: (i) the

atomic graph should not consider inter-multinodes edges and (ii) the coarsening phase

of METIS is skipped or executed once.

Constraints.

This subsection will explain how these two constraints ensure the partitioning condition

(each obtained part consists of one multinode and several simple nodes) at each iteration,

at the coarsening and the partitioning phases.
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Figure 4.1: Constructing the atomic graph at iteration t.

At the coarsening phase, a maximal matching is found using heavy edge matching strat-

egy which starts from a random vertex u and matches its neighbor v if the edge (u, v)

has the largest weight on the adjacency list of u [2]. Every edge in the matching is

collapsed, and the two correspondent vertices are combined to form one node.

Thus, to avoid collapsing edges connecting two multinodes, we explicitly ignore them

while constructing the atomic graph. Nevertheless, the problem still persists as several

coarsening iterations are performed. For instance, in figure 4.2, at the first iteration of

coarsening, starting from node d, the edge (d,M2) is selected and added to the matching

since it has a large weight, then nodes d and M2 are combined to form d-M2 node, but at

the second coarsening iteration, the edge (d-M2,M3) will be selected and added to the

matching set because of its large weight, and then the two multinodes M2 and M3 will

end up placed in the same part. Hence, we either allow only one iteration of coarsening

or completely skip the coarsening phase since the atomic graph processed is of a small

size (p+ k << n).

The partitioning phase in METIS can lead to a similar issue (more than one multinode

in one part) without incurring partition imbalance. In fact, the partitioning algorithm

used (Graph Growing Partitioning GGP [2]) starts from a random vertex and grows a

region around it until the sum of vertices weights reaches the maximum allowed weight,

then it selects randomly another vertex from the remaining ones and repeats the same

process until k parts are obtained. This partitioning algorithm could place two or more

multinodes in the same part if the sum of their weights is lower than the maximum

weight per part. Hence no partition imbalance would occur but still, the nodes will be

replaced which is not allowed in our setting.

Proposition 4.1. Given a positive integer t that denotes the iteration of the algorithm

(t = 0 refers to the initial iteration), at t > 1, no two (or more) multinodes will be

assigned to the same part using the SMP method.
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Proof. Let k be the number of parts and P t
i be the part of index i at iteration t (initial

iteration is 0), p is the block size of loaded vertices at each iteration, k the number of

parts. Let w(P t
i ) be the weight of P t

i , then w(P t
i ) = p∗t

k . The weight of two parts P t
i

and P t
j is then w(P t

i ) + w(P t
j ) =

2p∗t
k since the partition is balanced.

The GGP algorithm used by METIS, yields an exactly balanced partition, which means

that in our case, at time t, each part should be of weight
∑k−1

i=0 w(P t
i )

k .

Two multinodes representing P t
i and P t

j won’t be assigned to the same part at t+1 after

running the GGP algorithm if the sum of their weights exceeds the maximum allowed

weight per part, in other words:

(i, j ∈ {0, .., k − 1} , i �= j) w(P t
i ) + w(P t

j ) >

∑k−1
i=0 w(P t+1

i )

k

⇔ 2p ∗ t
k

>
p ∗ (t+ 1)

k
⇔ t > 1

Therefore, at t > 1 no two (or more) multinodes will be placed in the same part, which

is tolerable because the parts’ weight at t = 1 (equal to p
k ) is a minimum compared to

parts’ weight in further iterations, and as a result, the partition balance would not be

skewed and nodes replacing operations would not be costly.

For the uncoarsening phase, several vertices may switch parts if that is going to improve

the cut and preserve the balance, or just improve the balance without improving the

cut. Thus, it is not possible for two (or more) multinodes to end up in the same part

because it directly affects the partition balance.

• Multinode weight update

After METIS partitioning is done at iteration t, the weights on multinodes are

updated. As aforesaid, each part obtained at time t consists of one multinode Mi

and α simple nodes where α is a positive integer. The weight on multinode Mi is

incremented by α.

• Edge cut

The final edge cut is represented by λ, and we have λ =
tf∑
t=0

λt where λt is the

cut obtained at iteration t, and tf is the final iteration by which the graph data

stream ends, and we have tf = �np �.
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Figure 4.2: Coarsening phase: an example with a focus on nodes d, M2 and M3.

4.3.3.3 Complexity Analysis

The aim of extending METIS to an online/streaming setting was to enable high-quality

METIS partitioning for large scale graphs in a streaming setting, i.e., with a cheaper

computational cost.

• Time complexity

Originally, the complexity of METIS is O(n + m + klog(k)) [74]. In our setting,

the algorithm has the following atomic complexity (according to the atomic graph):

O(ni+mi+ klog(k)) where ni and mi are the the number of vertices and edges in

the atomic graph, k is the number of parts. Please note that ni is fixed to a constant

value such that ni << n and mi << m, and we have ni = p + k. However, the

algorithm performs METIS partitioning several times, as long as it takes to process

all the graph. Specifically, it takes � n
ni
� times until all the graph is processed, hence

the complexity of the SMP algorithm would be: O(n + n
ni
(mi + klog(k))). The

highest will be the complexity when the processed graph is complete, i.e., m =
n(n−1)

2 and mi =
ni(ni−1)

2 for the atomic graph. Let f(n) (resp fi(n)) represents

the complexity of METIS (resp SMP): f(n) = n + n(n−1)
2 + klog(k) and fi(n) =

n+ n
ni
(ni(ni−1)

2 + klog(k)). We have lim
n→+∞

fi(n)
f(n) = 0, thus, O(fi(n)) < O(f(n)), so

we can state that SMP has lower time complexity than METIS.

• Space complexity

The space complexity of both METIS and SMP are the same since SMP uses

METIS to partition the graph. However, it is apparent that SMP requires smaller

memory space than METIS, the reason is that SMP processes the graph in small

portions during several iterations, whereas METIS processes the whole graph at

once.
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4.4 Experimental Evaluation

We conducted an extensive experimental evaluation to assess the performance of our

proposed SMP method on various real graph datasets and compared it to alternative

methods. In this section, we first give a description of the evaluation settings such as

the datasets used and the evaluation methodology. Also, we present the performance

metrics used and finally, we present and discuss the obtained results.

4.4.1 Settings

Datasets.

We used 11 real graphs for our experiments, all obtained from the SNAP repository [72].

The graph datasets were chosen to be small enough so that we can find offline solutions

with METIS and still big enough to capture the behavior of the online heuristics, whereas

the largest graph considered in this work is ComFriendster with more than 65 millions

of nodes. Table 4.1 summarizes basic statistics of the graph datasets: the number of

vertices (|V |), the number of edges (|E|) and also the graph type where two types of graph

datasets were used, web and social. All graphs were made undirected by reciprocating

the edges, and vertices with 0 degree and self-loops were removed.

Methodology.

Through all experiments, k is set to 40.

We first run our SMP method on all graph datasets listed in Table 4.1, and compare it to

its offline counterpart METIS to assess whether the same partition quality is conserved.

Secondly, we compare SMP to the state-of-the-art streaming partitioning heuristics:

LDG, FENNEL and FG. The comparison is also extended to restreaming methods:

ReLDG, ReFENNEL and ReFG where the number of restreaming iterations is set to

10.

In order to verify the stability of our method, we run SMP on all graph datasets with

three different streaming orders:

• Breath First Search BFS: is obtained by randomly selecting a node on each con-

nected component of the graph and starting a breath first search from the given

node. Component ordering is done at random in case of multiple connected com-

ponents in the graph.
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• Depth First Search DFS: is similar to BFS but a depth-first search is performed

instead of BFS.

• Random: is given by a random permutation of the vertex set.

Random ordering is a standard ordering in streaming literature and a general assumption

when theoretically analyzing streaming algorithms. On the other hand, BFS and DFS

orderings have the main advantage of allowing to see edges immediately in the stream,

unlike adversarial orders.

Finally, we check the impact of the atomic graph size on SMP performances: we run

SMP on two graph datasets while varying p, the number of nodes loaded from the graph

data stream at each iteration.

All algorithms have been implemented in C++, and all experiments were performed

on a single machine, with Intel Xeon(R) CPU at 1.9GHz, and 16GB of main memory,

except for Comfriendster graph dataset (file size of 63GB) where a machine of 100GB

of main memory has been used to find the offline solution (METIS). Reported runtime

includes only the partitioning execution, excluding the required time to load the graph

into memory.

Table 4.1: Graph Datasets used for our tests.

Graph |V | |E| type

Wikivote 7115 100762 social
Enron 36692 183831 social

Astro ph 18771 198050 social
Slashdot 77360 469180 social
Web nd 325729 1090108 web
Stanford 281903 1992636 web

Web google 875713 4322053 web
Web berkstan 685230 6649470 web
Live journal 4846609 42851237 social

Orkut 3072441 117185085 social
ComFriendster 65608367 1806067137 social

4.4.2 Performance Metrics

Three metrics are used to show and compare performances of our proposed method SMP

and other competitors:

• λ refers to the fraction of edge cut and should be minimized for optimal results.
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• ρ represents the partition balance (see section 4.3.1); when it is equal to 1, the

partition is said exactly balanced, i.e., the closest ρ to 1, the more balanced is the

partition.

• Texec reports the partitioning execution time without considering other program

tasks, e.g., loading the graph into memory.

4.4.3 Experimental Results

SMP vs. METIS. Table 4.2 reports the fraction of edge cut obtained by SMP and

METIS, the online vs. the offline version.

As expected, METIS outperforms SMP, due to the offline setting (in METIS) where the

whole graph is memory resident which allows it to give optimal results.

However, results of both methods are comparable and the average difference of the

obtained cut between SMP and METIS over all datasets is 26%.

Moreover, SMP outperforms METIS in Wikivote, 0.761 vs 0.770. The remaining results

in the table show the closeness between the two methods, e.g., for Slashdot, SMP cuts

only 7% more edges than METIS. However, the worst performances of SMP are obtained

in Web google and Stanford, where SMP cuts more than 50% of edges compared to

METIS.

Table 4.2: Fraction of edge cut λ given by SMP vs METIS. The balance ρ is 1.001 for
both methods.

Graph SMP METIS

Wikivote 0.761 0.770
Enron 0.612 0.412

Astro ph 0.557 0.372
Slashdot 0.761 0.694
Web nd 0.200 0.034
Stanford 0.650 0.114

Web google 0.585 0.014
Web berkstan 0.256 0.108
Live journal 0.443 0.300

Orkut 0.672 0.347
ComFriendster 0.460 0.283

SMP vs. Online methods. Results in table 4.3 show that our proposed SMP method

outperforms all other online competitors (LDG, FENNEL and FG) for almost all graph

datasets.
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Nevertheless, FG outperforms SMP in Enron, Astro ph and Slashdot with a slight

difference, i.e., for Enron resp.(Astro ph, Slashdot), FG cuts 2.3% resp.(0.2%, 0.3% )

less edges than SMP. For Stanford and Web google, SMP gives the worst results, cutting

up to 20% of additional edges.

In table 4.4, we report the results of SMP vs restreaming methods ReLDG, ReFENNEL

and ReFG. The table shows comparable performances of SMP and restreaming methods

where the average difference between SMP and restreaming methods is 17%.

Table 4.3: Fraction of edge cut λ and normalized maximum load ρ given by SMP vs.
online competitors: LDG, FENNEL and FG.

2*Graphs SMP LDG FENNEL FG
λ ρ λ ρ λ ρ λ ρ

Wikivote 0.761 1,001 0.867 1 0.862 1.000 0,844 1
Enron 0.612 1,001 0.610 1 0.612 1.000 0,589 1

Astro ph 0.557 1,001 0.619 1 0.578 1.000 0,555 1
Slashdot 0.761 1.001 0.787 1 0.777 1.000 0,758 1
Web nd 0.200 1.001 0.261 1 0.270 1.000 0,249 1
Stanford 0.650 1.001 0.392 1 0.347 1.043 0,349 1

Web google 0.585 1.001 0.308 1 0.313 1.023 0,310 1
Web berkstan 0.256 1.001 0.342 1 0.367 1.023 0,386 1
Live journal 0.443 1.001 0.462 1 0.546 1.009 0,442 1

Orkut 0.672 1.001 0.639 1 0.696 1.076 0,627 1
ComFriendster 0.460 1.001 0.619 1 0.535 1.095 0,582 1

Stream orders. In order to investigate the stream order impact on SMP performances,

we run SMP on eight datasets each with three different orders: BFS, DFS and Random.

Reported results in table 4.5 reveal the considerable influence of the stream order on

SMP. For example, for Web google, on the random order, it cuts 58.5% of edges whereas

only 7.7% of edges are cut on DFS order.

According to Table 4.5, SMP gives optimal results when it is run under DFS order: it

actually outperforms all other online methods (FG, FENNEL, FG) and is the closest to

METIS, with an average difference of 4.3% (instead of 26% on a random order). On the

other hand, BFS order doesn’t improve the results w.r.t. the random order, it makes

the results even worst for some datasets, e.g., Web nd and Web berkstan.

SMP and online competitors were all run under a DFS order to assess their performances.

Reported results in table 4.6

show that SMP outperforms all competitors (LDG, FENNEL and FG) on all datasets

when they are run under DFS order. For some datasets, the difference is so important:
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Table 4.4: Fraction of edge cut λ and normalized maximum load ρ given by SMP vs.
restreaming methods: ReLDG, ReFENNEL and ReFG.

2*Graphs SMP ReLDG ReFENNEL ReFG
λ ρ λ ρ λ ρ λ ρ

Wikivote 0.761 1.001 0.835 1 0.813 1.023 0.812 1
Enron 0.612 1.001 0.475 1 0.476 1.098 0.479 1

Astro ph 0.557 1.001 0.418 1 0.413 1.019 0.433 1
Slashdot 0.761 1.001 0.713 1 0.703 1.041 0.711 1
Web nd 0.200 1.001 0.113 1 0.143 1.048 0.164 1
Stanford 0.650 1.001 0.204 1 0.193 1.025 0.200 1

Web google 0.585 1.001 0.161 1 0.160 1.087 0.163 1
Web berkstan 0.256 1.001 0.212 1 0.254 1.037 0.241 1
Live journal 0.443 1.001 0.313 1 0.330 1.006 0.325 1

Orkut 0.672 1.001 0.395 1 0.41 1.005 0.398 1
ComFriendster 0.460 1.001 0.425 1 0.431 1.001 0.428 1

for Stanford, SMP cuts 11.8% of edges whereas LDG cuts 48.2%, FENNEL 35.1% and

FG 37.6%. On average, competitors cut 16% more edges than SMP on DFS order.

DFS order enables SMP to have great performances mainly because it sends connected

portions of the graph to SMP and in fact, this allows SMP to conduct a better parti-

tioning process hence giving low edge cut partitions.

On the contrary, when there are no edges in the stream, i.e., the atomic graph is made of

a set of isolated vertices, where the best SMP can do is to balance the partition, and in

later iterations when edges will finally arrive, the atomic graph will be highly connected

such that a high edge cut partition becomes unavoidable.

Table 4.5: Fraction of edge cut λ given by SMP in the BFS, DFS and Random orders.

Graph BFS DFS Random

Wikivote 0.955 0.752 0.761
Enron 0.687 0.463 0.612

Astro ph 0.588 0.496 0.557
Slashdot 0.897 0.719 0.761
Web nd 0.678 0.078 0.200
Stanford 0.426 0.118 0.650

Web google 0.481 0.077 0.585
Web berkstan 0.312 0.093 0.256

Impact of parameter p. We run SMP on Enron and Slashdot graph datasets while

varying p (the size of the graph portion loaded from the data stream at each iteration)

to see the impact on the obtained cut. In figure 4.3, one can clearly see that the cut



Streaming METIS Partitioning: an Online version of METIS Heuristic for Big Graph
Partitioning 59

Table 4.6: Fraction of edge cut λ given by SMP vs. online competitors: LDG, FENNEL
and FG under the DFS streaming order.

Graph SMPDFS LDGDFS FENNELDFS FGDFS

Wikivote 0.752 0.863 0.841 0.822
Enron 0.463 0.726 0.555 0.583

Astro ph 0.496 0.813 0.540 0.537
Slashdot 0.719 0.848 0.737 0.761
Web nd 0.078 0.204 0.148 0.141
Stanford 0.118 0.482 0.351 0.376

Web google 0.077 0.545 0.174 0.195
Web berkstan 0.093 0.391 0.280 0.286

decreases when p is bigger for both Enron and Slashdot. In other words, when we process

big portions of the graph at each iteration, the cut is more likely to be minimal,

with the best cut being obtained necessarily when p = n (METIS).
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Figure 4.3: SMP method: Variation of λ for different values of p for Enron and
Slashdot graph datasets.

Runtime. In Table 4.7 we show the execution time of SMP and METIS over all datasets

except Comfriendster which was run on a different machine. Results show that for

small graphs, i.e., Wikivote, Enron, Astro ph, Web nd, Stanford, Web google and Web

berkstan, METIS is faster though it has higher complexity compared to SMP. However,

when n (number of vertices) grows and approaches values in the order of millions, SMP

is faster than METIS. Hence, SMP is faster for big instances of n, i.e., large graphs.

Those results confirm our complexity analysis in section 4.3.
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Table 4.7: Execution runtime Texec of SMP and METIS given in seconds.

Graph SMP METIS

Wikivote 0.472 0.260
Enron 0.684 0.315

Astro ph 0.496 0.275
Slashdot 1.367 1.766
Web nd 1.244 0.660
Stanford 3.900 1.194

Web google 9.387 3.647
Web berkstan 7.522 2.590
Live journal 59.630 165.100

Orkut 97.220 354.709

4.5 Chapter Summary

In this chapter, we present our proposed streaming graph partitioning heuristic based

on the offline de facto METIS and called SMP: Streaming METIS Partitioning [73]. We

investigated the expansion of the offline multilevel heuristic METIS to an online setting

(where the graph dataset is streamed) in order to obtain approximate partition quality

and also to alleviate the challenging computational cost incurred when processing large

scale graphs in the offline setting.

Our complexity analysis showed that SMP has a lower time complexity than METIS

and conducted experiments confirm it. Moreover, SMP gives high-quality partitions

that are competitive to METIS, especially when it is run within a Depth-First Search

(DFS) streaming order. In fact, the streaming order of the graph has a considerable

impact on SMP performances and DFS order allows it to give optimal results.

On the other hand, experiments showed that SMP outperforms all online competitors

by giving minimal edge cut.





Part II

Aggregated Graph Search

61



This part of the thesis is about the Aggregated Search in Graphs (ASG). The novelty

brought by this work is that the ASG enables simultaneous querying of multiple graphs,

a deeper granularity graph search and building an answer or a match from multiple

graph fragments.

Organization of the part. This part consists of three chapters: in the first chapter

we give a general definition of the aggregated search and gives an overview of related

research disciplines and all research work related to the keyword aggregation encountered

in the literature. The second chapter focuses on the search methods in graphs. It gives

definitions of related concepts, as well as a taxonomy of graph search methods. It gives

a defined context of the aggregated search in graphs among other graph search proposed

in the literature. The third chapter presents the core contribution work. We propose

and present a new framework for graph search based on aggregated search.
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Chapter 5

Aggregated search: General

definition and overview

Aggregated search was first introduced as a new search paradigm in information retrieval

(IR) domain. The need for such a search framework is to bring more focus and relevance

to user query answering. In other words, when a user submits its query in classical web

search engines, the latter give back a ranked list of links which is to the user to go

through in order to find an answer. For some queries, the answer is definite and could

be widely found in one link (e.g. eiffel tower construction year). However, for other

types of queries, finding an answer in one document would be striking (e.g. Mariah

Carey ) because of the ambiguity carried by the query due to the user confusedness

about its information need. For such queries, it would be interesting to give the user a

short biography about the artist, a photo, several videos and related news. The building

of the answer makes the search engine very effective as the user won’t have to scroll

all the list of links and try to summarize his or her information need. The aggregated

search enables this feature of answer building from multiple sources of information to

enhance and improve the effectiveness.

In addition to the aforementioned aggregated search concept, the keyword aggregation

is encountered in literature with a meaning of summarization [75–77].

This chapter will cover the aggregated search paradigm in the realm of Information

Retrieval (IR) First, we will give a definition of the aggregated search, then we give an

overview about related (IR) disciplines and tools.
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5.1 Aggregated search: Motivation and definition

Aggregated search is a novel search paradigm that arose in the IR field. It presents

numerous advantages and opens a wide range of functionalities to improve the search

engines performances in a way that better results (results are more precise and more

relevant) would be given in response to a user query. This section starts by giving

an introduction about IR, what is IR, and we describe the main trends in this field

of research as well. Then, we give the main motivation behind the use of aggregated

search in IR and for the aggregated search paradigm in general. Then, we give a formal

definition of the aggregated search as a novel and promising paradigm search in IR.

A brief introduction to Information Retrieval (IR). Information Retrieval could

be any action taken to extract information from given resources. For instance, it could

be just the simple act of checking the weather of the day in a smart phone. But,

Information Retrieval as an academic and research field could be defined as:

• ”Information retrieval is often regarded as being synonymous with document re-

trieval, and nowadays, with text retrieval, implying that the task of an IR

system is to retrieve documents or texts with an information content

that is relevant to a user’s information need.” (Sparck Jones and Willett

1997)

• ”Information retrieval (IR) is finding material (usually documents) of an unstruc-

tured nature (usually text) that satisfies an information need from within large

collections (usually stored on computers).” (Manning et al. 2008)

These two definitions agree that IR is the task of finding some information material

that is relevant to an information need expressed by the user, from a large collection of

information resources.

Definition 5.1. Information material. The information material is the output of

an IR system following an information need expressed by the user. The information

material is defined by its format, which could be a textual document, a video, an image

· · · ; and is also defined by its granularity: a whole document or a paragraph, a video

sequence, an image portion, etc.

Definition 5.2. Information need and User query. The information need of a user

is the abstract form of information he intends to obtain, and the query is a representation

or an expression of this need. The query is usually on a textual form for web search

engines for example, or it could in any structured form or special language, e.g., the
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query could be in SPARQL language in order to retrieve information from an RDF

graph.

One of the main challenges in IR is the maintaining of the large collections of resources,

especially with the advent of big data and the repercussion that it implies in the storing

and the processing task. Also, building efficient indexing such that the retrieval task

will result in high efficiency and effectiveness is another main challenge in IR.

5.1.1 Motivation

Classical web search engines select a list of relevant documents or links and return it to

the user, who should go through it in order to find an answer to his query. Nowadays, this

task of scrolling the list of documents could be very cumbersome as the most majority

of users are using mobile devices and on the other hand, the plethora of information

available on internet in this era of big data, makes the list really long which makes these

classical engines out dated with regard to the satisfaction of users information need.

Furthermore, the matching between the query and the document, or the document rank-

ing task in classical IR engines is done on a document-level, i.e., the whole document is

said to be relevant or not; and this is achieved by using several models for documents

scoring like the vector space model [78], the probabilistic model [79] and language mod-

els [80]. For instance, in the vector space model [78], the query and documents are

represented by vectors and the angle between these vectors represents their similarity.

Specifically, the cosine of the angle is used instead of computing the angle itself, and it

is given by the dot product of the two vectors.

The document-level ranking, as discussed above, might not suit the information need

of the user, as it might be just a section of a document, a mix of some multimedia

and text content or an overlap of several documents. Thus, there is a need of more

in-depth search methods that (i) go in a deeper granularity level than the document

level and that (ii) enable building an answer by aggregating several documents parts.

The aggregated search paradigm gathers these two main features (i & ii), which will be

elucidated in the following section.

5.1.2 Aggregated search definition

Aggregated search was defined for the first time in [81] as ”the task of searching and

assembling information from a variety of sources, placing it into a single interface”.
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Figure 5.1: Example of an Aggregated search result in Google web search engine.

In other words, aggregated search is a process that retrieves fragments of information

from different sources and build a consistent answer to be returned to the user, where the

information fragments could be of any granularity (document, paragraph, image, video

sequence,...) or format(text, video, image,...). Figure 5.1 gives an example of aggregated

search result in Google search, where the red rectangle represents the aggregated search

result, which consists of images, name and role of the entity ”Paul Bowles” in the

example, as well as a brief extract from his biography along with a short list of his most

famous artwork. Moreover, the aggregated search is also seen as a threefold process [82]:

(1) Query dispatching, (2) Fragment retrieval and (3) Result aggregation, which will

be detailed in the following.

1. Query dispatching: This step refers to the preliminary processing of the query

before proceeding to the query matching. This includes three main operations:

source selection, query interpretation and query reformulation. Each of these

operations is detailed in the following:

• Source selection: is about the selection of the sources that are prone to answer

the query given a set of sources. One usual way to select the appropriate

source is the identification of special keywords in the user query. It is true

that special keywords are useful to predict the kind of answers the user is
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expecting [82], for example, if the query is like ”what is the weather like in

Bali in ten days ?”, then relevant words would be weather and Bali, and they

will be used as special keywords for selecting relevant sources fast.

• Query interpretation: is the task of analyzing the query to discover the intent

of the question which is useful in order to determine the type of the question

(e.g. what, where, when, ...) and also to identify semantic relations between

the query and potential answers. For instance, from the query ”what is

happening now in Paris ?”, the word Paris will be matched semantically

with the Paris entity (in RDF graphs), and all related triples will be selected.

Also, the words what and now will also give indications about the intent of

the query: what would expect that the user is expecting an answer that is

different from a time or a location type answer, and now gives an indication

about actuality and news.

• Query reformulation: When the user submits its query to a general web search

engine, and after selecting the source, it is necessary to add some features to

the query to adapt it to the source format that will be queried. To illustrate

this, consider a search engine that interrogates an RDF graph, then the user

query that is usually typed in a textual format should be translated to a

SPARQL format by adding special keywords.

2. Fragment retrieval: As depicted in figure 5.2, Fragment retrieval is the task

that follows the Query dispatching where the selected source(s) matches the query

to potential information fragments. The task of fragment retrieval depends on the

type of the fragment to be returned, i.e., there is a distinction between document

retrieval when the whole document is expected to be retrieved and passage/focused

retrieval which corresponds to a section of a document. Also, fragment retrieval

depends on the multimedia type of the fragment (text, image, ...) as there is a

difference between textual retrieval and multimedia retrieval. Upon completion,

this step is supposed to output information fragments that will form the final

answer to be returned to the user.

3. Result aggregation: Once the fragments are given, the task is to put them

together in a coherent way to build the final result that will be returned to the

user: this task is called result aggregation. There are numerous ways of aggregating

content, here we cite five among them and which will be further detailed in the

following: grouping, merging, sorting, splitting and extracting.

• Grouping: Like the ”groupBy” operation in SQL (Structured Query Lan-

guage) [83] which tends to make group of results that share some features,

the grouping task in result aggregation aims at grouping together fragments
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that have several features in common, e.g., same multimedia format, same

location, etc.

• Merging: Slightly similar to grouping, the merging consist in merging all the

fragments into one aggregate output, e.g., one document; unlike the grouping,

where the output is a set of fragments groups.

• Sorting: the sorting action takes the list of information fragments and sorts

it according to some feature, e.g., relevance score, time, etc. The output of

the sorting action is also a list of fragments.

• Splitting: given a list of information fragments, the goal is to split the frag-

ments into an even more smaller ones. This action is the opposite of the

merging action, and its output is a list of even more smaller fragments. The

splitting task is used when the fragments involved presents a relatively ele-

vated size, and is usually accompanied by another action, like the sorting or

grouping.

• Extracting: This step is often used in conjunction with another actions and it

consists in identifying the main semantic information in the fragments. The

output of this action could be a named entity (Paris, Michael Jackson...),

images, videos or pronouns, verbs in a textual fragment.

Figure 5.2: Aggregated search framework.

5.2 Aggregated search: related research and IR disciplines

Aggregated search finds its roots in numerous disciplines in IR such as federated search,

vertical search, to name a few. It is straightforward that aggregated search is not a fully

novel research area but rather a conjunction of many existing ones. In the following, we

explain how federated search, query answering and natural language generation areas

are related to the aggregated search.
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5.2.1 Federated search

Federated search, also known as distributed information retrieval, is an IR paradigm with

multiple distributed data sources and search algorithms [84–86]. As for the aggregated

search framework, the query dispatching step of federated search has to select appropriate

sources that are most likely to answer the query. Besides, to make this source selection

task fast and lightweight, every source has its own local representation or summary

which is used to swiftly identify potential sources. Finally, the obtained results from

each source are assembled into a ranked list.

It is worth mentioning thatMetasearch is considered as the equivalent of Federated search

in Web search context [87], and uses multiple web search engines as an intermediary to

query different sources on the web. Then, the obtained results from each engine are

assembled into one single interface.

Federated and aggregated search are similar in a way that they both have to query

distributed multi-sources and have to assemble the final result. Federated search tools

do not bring an improvement over mono-source IR tools, however, they are preferred

when the available sources are too heterogeneous to be assembled into one central source.

5.2.2 Question answering

Instead of giving a ranked list of documents as in traditional IR engines, Question

Answering (QA) paradigm aims to provide a set of answers [88] that are made up

through information extraction and assembling.

Similar to the query dispatching step in the aggregated search framework, the queries in

QA are in the form of questions with different taxonomies/types, e.g., ”what”, ”when”,

”yes/no” etc. Also, QA uses technics for identifying named entities and facts present

in the question to help in understanding the query type which is useful for determining

potential sources. The fragment retrieval step in QA consists in having a set of matching

documents and the main task is to extract text sections and build the answers which is

usually a critical and error prone process. Finally, for the result aggregation step, QA

returns a list of answers supported with text passages extracted from the matching doc-

uments. Interested readers are referred to [89] for an interesting study of the similarities

between aggregated search and QA.
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5.2.3 Natural language generation

The similarity between aggregated search and Natural Language Generation (NLG) is

that the expected output is a document built by using information fragments rather than

a list of ranked documents, as in the setting of classical IR engines. Specifically, NLG

is a research area that focuses on content aggregation using predefined ways to organize

textual information in a consistent linguistic way [90]. Consequently, tasks of query

dispatching and fragments retrieving are absent in NLG as the information fragments are

given beforehand from search engines or databases [91]. Once the information fragments

given, NLG uses different ways of information organization called discourse strategies.

Those strategies could be either predefined/static, e.g., organizing the information using

a cause-effet or chronological form; or learned/dynamic through the use of learning

models on example documents that serve as a training base. However, the learning

strategy is concept dependent and should be specific to one known domain [92], and

that clearly explain why the NLG is successful solely in specific domain applications.

Further information about NLG could be found in an interesting survey in [90] and

references therein.

5.2.4 Composite retrieval

Composite retrieval is similar to the aggregated search in a way that it avoids returning

a list of ranked documents but rather a coherent built result, represented by a set of

item bundles. Composite retrieval was first introduced in [93], and is defined as the

problem of returning k bundles of complementary items, where each bundle adheres to

a budget constraint, and the k bundles have to be diverse.

Let us depict the composite retrieval process in the light of the following application

scenario: consider a user that intends to plan a trip; he has to check for flights, hotels,

important places to visit in the corresponding city, restaurants, the weather, etc. The

task of composite retrieval will be to return k bundles (k is a user fixed parameter) of

complementary items, e.g., within one bundle we need to have items such as a flight to

Paris, a hotel, a restaurant, etc; whereas each bundle should be valid provided a budget

constraint that could be for example a time interval of the trip or literally a budget

(money). Moreover, the whole answer should present diversity where each bundle should

be about a different destination city in the context of our example.

Authors in [93] show that the composite retrieval problem is NP-hard and propose two

distinct heuristic approaches to solve it: first, the Produce and Choose (PAC) approach

produces many valid bundles and selects k among them accordingly to the problem of
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Maximum edge subgraph. Second, the Cluster and Pick approach finds a k-clustering

of bundles, then select one valid bundle from each cluster. It was shown through ex-

periments in [93], that the CAP approach is more appropriate when diversity among

bundles is highly required, otherwise, the PAC approach would be more appropriate.

5.3 Graph aggregation: Miscellaneous approaches around

”aggregation” in graphs

The keyword ”graph aggregation” have a different meaning in several works encountered

in the literature, where the aim is usually to perform graph summarization or compres-

sion by merging nodes that share common features [75–77]. In [75], ”graph aggregation”

is considered as a process of grouping together nodes that share or have the same feature

value, and the links between these nodes groups exist only if all the nodes in the two

groups are related.

In [76], authors propose and formalize rules, that they called graph aggregation rules, to

best summarize preferences and choices within a group of users. The main idea is, from

N input oriented graphs that all have the same vertex set and that represent preferences

or choices for N users, to build one (oriented) graph that represents all N graphs.

Similarly, numerous works for ontologies aggregating and merging [77] find inspiration

in social choice theory [94] in order to aggregate opinions, preferences and judgments to

optimally summarize and determine the global choice of a group.

5.4 Relational Aggregated Search

In this section, we highlight a special direction in aggregated search field called Relational

Aggregated Search (RAS). In a way, RAS is related to graph search due to the focus given

to relations between entities in RAS which is similar to the graph structure where entities

or vertices are related to each other via edges. Since this thesis is originally situated

in the graph theory research field, we decided to highlight and focus on Relational

Aggregated Search as an intersection between Aggregated Search and Graph Search.

We present key notions used in Relational Aggregated search along with a description

of the according framework.
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5.4.1 Relational Aggregated search framework

Relational Aggregated Search (RAS) considers relations between information fragments,

and uses them to perform an even more coherent result aggregation. RAS has several

benefits such as it gives more relevance and focus by answering some queries directly (for

example, the query ex-president of US? a direct answer of Barack Obama could be given

in a direct way). Moreover, relations between information fragments can help in giving

more structured results, by giving a list of attributes related to the entity in the query

(for the entity ”Paul Bowles”, the attributes like name, date and place of birth/death,

novels... can be returned).

Similarly to the aggregated search framework depicted in Figure 5.2, the Relational

Aggregated Search fits into the same framework, with the same three main steps (Query

Dispatching, Information Retrieval and Result Aggregation), however, RAS uses special

approaches in these steps as it focuses on the relation between entities of information.

For instance, the second step in RAS is called Relation retrieval instead of information

retrieval.

5.4.1.1 Query Dispatching

As mentioned in subsection 5.1.2, the first step in the aggregated search framework is

the query dispatching. The main goal of this first step is to prepare the query before

proceeding to the matching with sources. It consists in selecting the relevant sources,

interpreting and reformulating the query.

Query types. In [95], authors identify and propose a simple taxonomy of query types

that are most likely to benefit from RAS. In the following, we describe the relational

query types that benefit the most from RAS.

1. Attribute query: This type of query is the most succinct, as it asks for a given

value of an attribute, for example ”the birth place of Paul Bowles”, the ”address

of university Claude Bernard”, etc.

2. Instance query: The instance query is about one known instance of a class, and

all related attributes will be returned as an answer. As an example for instance

query, we cite: ”Paul Bowles”, which is an instance of the class Artist, ”MacBook

Pro”, an instance of Laptop class, etc.

3. Class query: This query type has a wider scope than the types above mentioned.

A class query could be as ”amphibious animals”, ”Pop singers”, etc. To this kind
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of query, a more voluminous answer would be returned (the list of all instances in

the class, along with their attributes).

The query type is an important information such that, depending on it, an according

solution for result aggregation will be triggered (see 5.4.1.3).

5.4.1.2 Relation Retrieval

In RAS, relations between information fragments are the core information to be re-

trieved. Hence, the main goal in this step is to retrieve relations between information

fragments. To do so, it is possible to use special sources that have already data items

that are structured as entities along with their inter-relations, these are known as knowl-

edge bases (ontologies). Another possible way to retrieve relation between information

fragments is to borrow techniques of the Information Extraction research field. In a

nutshell, Information Extraction field is about studying techniques and rules that ex-

tract classes, instances and attributes and their relations as well whenever applied to

simple documents or any unstructured information material [96]. We will not focus on

Information Extraction, however, we direct interested readers to [95, 96] and references

therein for additional information about this research field. In the following, review

three types of relations, as a taxonomy that was proposed in [95].

5.4.1.3 Result Aggregation

When the search results or the information fragments are retrieved, they are aggregated

and combined to form one compact answer. In RAS, the aggregation of the search result

depends on the query type as follows:

1. Result aggregation of the Attribute query :

The attribute query type requires the correct value of the attribute being requested.

However, there may be many candidates to answer such a query, while not being

able to decide which one is correct and most relevant. In general, attribute queries

are answered by returning the attribute value right away or to by returning a list

of the candidates along with textual elements with each candidate.

2. Result aggregation of the Instance query :

Generally, the instance queries are answered by giving values of all the attributes

of the instance. The attributes of the instance could be extracted from several

pages and summarized. There are also specific methods that are related to people

search [97], product search [? ], bibliographic search [? ], etc.
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3. Result aggregation of the Class query :

This type of queries is usually answered by a list of instances of the class in the

query. The list of instances could be presented in two-dimensional tables, where

each row represents an instance of the class, and each column the attributes [98].

5.5 Chapter summary

In this chapter, we tackled a general definition of aggregated search. We define the

aggregated search in its original context, the Information Retrieval, as a process of in-

formation retrieval that provides the user with a more exploratory experience by giving

results in a combined manner rather than a ranked list of documents. The main mo-

tivation between aggregated search is to avoid the user the burden of checking all the

documents in the ranked list.

Then, we cite some important and related work to the aggregated search in the IR

context, such as the federated search where the aim is to query multiple sources and

gather the according results in one final list. We also noticed the similarity between

the aggregated search and other research disciplines such as question answering, natural

language generation.

We also explained how aggregated search is similar to the composite retrieval problem,

as the latter aims to provide the user with a number of diverse item bundles that satisfy

several constraints.

We further define the keyword ”graph aggregation” in a more general fashion by citing

other works where the aim of aggregation is different from the context of aggregated

search in IR. In these works, the meaning of graph aggregation is to perform some graph

compression or a graph summary by merging nodes that have features in common. Also,

graph aggregation may refer to the aggregation of choices and opinions of a group of

users accordingly to some rules borrowed from the social choice theory.

The following chart in figure 5.3 gives a brief summary and classification of related works

cited in this chapter. As depicted in figure 5.3, Aata Aggregation can be divided into

two categories: the (semi)structured data aggregation and the unstructured data aggre-

gation. The unstructured data aggregation concern the aggregation in the IR context

and the composite retrieval problem, mainly because the contents being aggregated are

unstructured (text, images, videos). The second category is the semi-structured data ag-

gregation which is about graph aggregation (graph summarization, choices aggregation)

or about performing aggregated search in graphs. The latter problem, i.e., aggregated
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search in graphs, is the main problem considered in this second part of the thesis, and

will be presented along with definitions and related work in the next chapter.

Figure 5.3: A taxonomy of Data Aggregation.





Chapter 6

Graph search methods

Graphs represent an efficient and a broadly used representation formalism in information

processing. The advent of big data in the last two decades results on a plethora of

information that is stored and exploited as graph datasets. For this reason, the graph

querying or the graph search task becomes extremely challenging as traditional methods

incur an exorbitant computational cost. As a result, most of research works in the field

are more concerned about designing and developing new techniques that will achieve the

best tradeoff between results precision and the incurred computational cost (time and

memory). Furthermore, the graph search task is very important as the performances of

most applications significantly relies on the efficiency of the querying technique being

used. In this chapter, we will discuss the graph search task and give an overview of

graph querying methods in the literature. We first give a general definition of the graph

search task. We also give definition about related concepts to the graph search such as

the graph matching problem. Furthermore, we highlight and give a taxonomy of the most

important works and methods related to the graph search task.

Chapter organization. The chapter is organized as follows: Section 1 introduces and

defines the graph search problem and gives a classification of used approaches, also, it

further defines the problem by giving definitions of key concepts related to the graph

search problem. The following sections are dedicated each to define and review related

work to each class of graph search approaches.

6.1 Preliminaries

This section is dedicated to introduce and define key concepts related to graph search

that will be used throughout the chapter. First, we define the problem of graph search

76



Graph search methods 77

in its general form and setting, then we give a classification of methods and approaches

used to search graph databases. We introduce and explain each class as well as the

underlying concepts.

6.1.1 Graph search

In its general definition, graph search is the task of searching a given information, usually

in the form of a query graph, in a large graph, often called the target graph. In other

words, let q be a query graph, and G be a target graph. The graph search task consists

in finding all occurrences of q in G. In a wide range of graph querying frameworks, the

target graph is a set of graphs, and the aim is then to find all graphs within that have the

query as a subgraph. In similar settings, a classical way of querying graph databases is

to perform a sequential scan through all the graphs in the database and check subgraph

isomorphism between each graph and the query which is very costly. Hence, most

of graph querying approaches follow the framework of filtering and verification, which

prunes false candidates in the graph database using an efficient graph indexing technique

in the filtering step, and then perform graph isomorphism to check each remaining

candidate. In the following, we discuss graph indexing as a preprocessing step toward

efficient graph querying.

6.1.1.1 Graph Indexing

Graph indexing is a major step for a large class of graph querying methods. The tech-

nique plays an essential role in query processing and is generally used as a first step in

filtering and verification frameworks. The main aim of the technique is to withdraw, in

the filtering step, false candidate graphs in order to reduce the graph data base, and

thus, to enable an efficient verification step, where (sub)graph isomorphism testing is

performed within a reduced time. The concept of graph indexing is to organize the

graphs in patterns that represent a number of graphs. Specifically, and given a graph

g, a graph index ig of g is a graph or a structure that represents fairly the initial graph

g but with few vertices and edges. The interest of using a graph index in the filtering

step is to accelerate the false candidate graphs detection, i.e., instead of spending time

in comparing the whole query with each graph candidate, one can use an index of the

query and compare it to candidate graphs (see Section 6.2).

There is a variety of works in the literature with regard to the graph indexing [99–102],

and the main challenge in this field is to find effective graph indexes having a lightweight

structure that would be fast to process.
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Moreover, different indexing techniques have been proposed for graph queries. In [103]

Shasha et al. proposed a path-based technique termed GraphGrep where the idea is to

enumerates paths up to a threshold length from each graph. In GraphGrep, the index

table is constructed so that each row stands for a path and each column expresses a

graph. Each entry in the index table is the number of occurrences of the path in the

graph.

In [99], Yan et al. proposed a different indexing alternative in graph querying which

aims to use the frequent patterns as index features. The idea behind is to reduce the

index space as well as improving the filtering rate. Experimental results in [99] showed

that the technique has smaller space index size than the GraphGrep’s space size.

Nevertheless, the index construction requires an exhaustive enumeration of paths or frag-

ments with high space and time overhead. Furthermore, since paths or fragments carry

little information about a graph, this may lead to a loss of information. Furthermore,

they are not adequate for graphs where attributes on edges or vertices are continuous

values, since that the index features requires an exact match with the query.

Berretti et al. [104] proposed a metric based indexing on Attributed Relational Graphs

(ARGs) for content-based image retrieval. The main idea is to cluster the graphs hierar-

chically according to their mutual distances to be indexed by M-trees [105]. The concept

is to route the query along the reference graphs of clusters in a top-down manner.

Besides, [101] proposed the Closure-tree indexing technique. The main goal is to organize

the graphs hierarchically where each node resumes its descendants by a graph closure.

The underlying purpose of using the Closure-tree is to take advantage of their ability

to support both subgraph queries and similarity queries. The Subgraph queries aim to

find graphs containing a specific subgraph, whereas the similarity queries aims to find

similar graphs to a query graph.

6.1.1.2 Graph Matching

Graph matching is the process of finding a mapping between the nodes and the edges of

two graphs that satisfy some (more or less stringent) constraints, ensuring that similar

substructures in one graph correspond to similar substructures in the other.

The graph matching is a crucial process in many applications where the structured

information is represented by graphs. It aims to perform a comparison between two

objects or between an object and a model to which the object could be related.
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In the graph literature, a graph matching between G1 = (V1, E1) and G2 = (V2, E2),

where Vi and Ei are respectively the node set and the edge set, is defined as a mapping

f : V1 → V2 such that ∀(u, v) ∈ E1 we have (f(u), f(v)) ∈ E2.

Graph matching methods are classified into two broad categories. The first category con-

cerns exact matching methods, which require a strict and exact correspondence among

the two graphs to be associated, or at least within their subparts. The second category

represents inexact matching or approximate methods. In this category of methods, a

matching can occur even if the two compared graphs are structurally different to some

extent.

• Exact graph matching

Exact graph matching methods are characterized by the ability of their mapping

to be edge preserving for each mapping for each node of the two graphs. In other

words, if two nodes in the first graph are linked by an edge, their correspondents

in the second graph are also linked by an edge. In the most stringent form of exact

matching, graph isomorphism, this property must be conserved in both directions,

and the mapping is necessary bijective. That said, a one-to-one correspondence

must be found between each node in the first graph and each node in the second

graph to have |V1| = |V2|, i.e., the cardinality of both graphs is even.

A weaker form of graph matching the subgraph isomorphism, which requires that

an isomorphism holds between one of the two graphs and a node-induced subgraph

of the other graph.

The subgraph isomorphism can also be used in a slightly weaker sense as in [106],

where the condition that the mapping function should be edge-preserving in the

both directions is dropped. This resulting matching, also known as monomorphism

[107], requires that each node has a distinct corresponding node in the second

graph and each edge of the first graph has a corresponding edge in the second

graph. However, nothing hinders the second graph to have both extra nodes and

extra edges.

Finally, another interesting matching variant maps a subgraph of the first graph

to an isomorphic subgraph of the second graph. Usually, the goal of the matching

algorithm is to find the largest subgraph for which such a mapping exists. This

problem is commonly known in the literature as finding the maximum common

subgraph (MCS) of the two graphs [108].

It is important to highlight that, though very costly to implement, the graph iso-

morphism has not yet been demonstrated if it belongs or not to NP [108]. For
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particular graph structure, polynomial isomorphism algorithms have been devel-

oped (trees [109], planar graphs [110], bounded valence graphs [111]). However,

no polynomial algorithms are known for the general case.

Therefore, exact graph matching has exponential time complexity in the worst case.

Nevertheless, in many applications, the computation time can be still acceptable,

since that the structure of the graphs encountered in practice are usually different

from the worst cases for the algorithms. Furthermore, the node and edge attributes

can be used to reduce the search time.

• Inexact or approximate Graph Matching

The stringent conditions imposed in the exact matching are in some circumstances

too strict for the association of two graphs. In many application contexts, the

data graphs are subject to deformations due to variation in the data patterns,

noise in the data acquisition process, to missing or incomplete information. These

deformations create some differences between the actual query graph and its ideal

answer graph (i.e., |V1| < |V2|).
Thus, the matching should be able to accommodate such differences by relaxing,

to some extent, the constraints defining the matching scheme. Even when such

deformation is not expected, such robust matching can be useful. Furthermore,

exact graph matching algorithms (except for special classes of graphs) require

exponential time in the worst case. Moreover, it may be more practical to use

algorithms that do not guarantee to give the best solution, but that, at least,

reach a good approximate solution in reasonable time. The two different needs

(which can also be simultaneous), have led to the rise of inexact graph matching

algorithms. Usually, in this category of algorithms, the association between two

nodes that do not satisfy the edge-preservation specification of the matching is not

excluded. Instead, it penalized the cost of the matching, where the matching is

defined as a cost function that takes into account other differences, such as the

difference between the nodes and edges attributes. In this case, the algorithm must

find a mapping that minimizes the matching cost.

Among the approximate graph matching algorithms, the optimal inexact matching

algorithm tries to find the solution achieving the global minimum of the matching

cost. In other words, if any exact solution exists, it will be determined by the

algorithm. These algorithms can be seen as a generalization of exact matching

algorithms.

Alternatively, the approximate or suboptimal matching algorithms, on the other

hand, only ensure to find a local minimum of the matching cost. Usually, the

obtained minimum is not very far from the global one, but there are no guarantees
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to reach the exact solution even if it exists. The suboptimality of the solution is

amply compensated by a shorter, usually polynomial, matching time.

Usually, inexact graph matching algorithms formulate the matching cost based

on the notion of the matching errors, such as missing nodes or edges. These

approximate matching algorithms are known as error-correcting or error-tolerant.

Similarly, the matching cost can be defined as a set of graph edit operations (node

insertion, node deletion, etc.) between the two graphs. Since that each operation

is assigned a cost, the cheapest sequence of operations required to transform one of

the two graphs into the other, is estimated. The cost of this series of transactions

is called the graph edit cost.

Graph Simulation. An alternative to alleviate the prohibitive cost of graph

isomorphism is the graph simulation. It can be solved in quadratic time and is

less restrictive than graph isomorphism so it enables approximate matching which

becomes widely needed in actual applications, e.g., plagiarism detection.

We say that a graph G matches a pattern Q, via subgraph simulation, if there

exists a binary relation M = Vq, such that 1) for each (u, v) ∈ M , u and v have

the same label, and 2) for each node u in Q, there exists v in G such that a)

(u, v) ∈ M and b) for each edge (u,u’) in Q there exists an edge in G such that

(u′, v′) ∈ M .

To reduce the complexity and capture the need of novel applications, graph simu-

lation has been adopted for pattern matching. It is less restrictive than subgraph

isomorphism, and can be determined in quadratic time. Graph simulation and

its extensions play a critical role for the analysis of social positions/roles in social

networks [112, 113]. Several extensions of graph simulation exist and have a cubic

time complexity. In [114], authors propose a new variant of the graph simulation

problem called strong simulation in order to rectify the loss of structural similar-

ity in simple simulation. Strong simulation adds up some constraint in order to

improve the quality of the matching while preserving the cubic time complexity of

graph simulation extensions.

Graph Homomorphism. A still weaker type of matching is the homomorphism,

which releases the condition that first graph nodes have to be mapped to distinct

nodes of the second graph; hence, the correspondence can be many-to-one. Given

two node labeled graphs G1 = (V1, E1) and G2 = (V2, E2), the problem of graph

homomorphism is to find a mapping from V1 to v2 such that each node in V1 is

mapped to a node in V2 with the same label and each edge in E1 is mapped to

an edge in E2. Graph homomorphism has been revisited for graph matching. The

reason is identical label matching is an overkill, and edge to edge mappings only



Graph search methods 82

allow strikingly similar graphs to be matched. These conventional notions are often

too restrictive for graph matching in emerging applications. In a nutshell, graph

matching is to decide whether a graph G matches another graph Gp, although not

necessarily identical.

6.2 Filtering and verification methods

As a consequence to the prohibitive cost of sequential scan of the database, a large class

of graph querying methods follow the framework of filtering and verification [99, 103,

115, 116], where the key idea is to reduce the search space, i.e., the graph database, by

withdrawing all negative candidates quickly based on a graph indexing technique. As a

result, the graph database is reduced, and then the verification step performs subgraph

isomorphism checkings with the remaining graphs in the database after the filtering

step. Those methods, in general, rely on the indexing technique used, as an inefficient

indexing may not filter enough the database resulting in a costly verification step as the

number of graphs in the database won’t decrease considerably.

In the following, we cite some of the well-known filtering and verification techniques.

GraphGrep [103] is a basic filtering and verification method that uses a path-based index

structure, where all existing paths in the graph database are enumerated accordingly

to a threshold length and indexed. Then the path-based index is used to select can-

didate graphs. Although this method showed good performances, it actually suffers a

considerable structural information loss which usually leads to skewed results.

To alleviate this issue, Yan et al. proposed gIndex [99], having a graph-feature based

index which is considered as a more complicated structure index aiming to improve the

index pruning capabilities. Although gIndex outperforms GraphGrep, it actually inccurs

a higher computational cost due to the complicated structure of the index.

Alternatively, Zhang et al. proposed TreePi [115] which uses a tree-feature based index.

Tree graphs are known to be easy to use compared to graphs, and incur a lower com-

putational cost while capturing more structural information about the original graphs

in the database. Zaho et al. proposed Tree+Δ [116], which extends TreePi by adding

some frequent discriminative graphs feature to the tree based index in order to enhance

the index pruning.

While the above-mentioned methods consider the relationship between the index quality

and the runtime cost to be a tradeoff, Gouda et al. proposed an efficient feature-based

indexing approach that improves the pruning capabilities of their index by compressing



Graph search methods 83

multiple features into one feature [117]. Their feature construction technique allows for

effective indexing performances along with efficient performances regarding the runtime

cost.

Interested readers are directed to [100, 118, 119] and references therein for a survey on

graph indexing methods and other filtering and verification graph querying methods.

6.3 Graph querying methods based on graph matching

Graph querying is a crucial task as most of the actual datasets are being stored and

exploited as graphs. Many graph querying techniques exist in the literature and the

proposed framework is closely related to aggregated search and approximate (sub)graph

matching, the latter being considered as an elementary operation in our matching frame-

work. So in this section, we provide a brief description of the graph querying methods

that are based on (sub)graph matching and the aggregated search in graphs with a

highlight on three graph querying methods: SAGA [120], NEMA [121] and BLINKS

[122].

6.3.1 (Sub)graph matching

Subgraph matching is a well-studied problem with a rich literature. Two main categories

fall under the subgraph matching problem, the exact and the inexact subgraph matching.

Exact subgraph matching finds exact answers to the query via graph isomorphism [119,

123]. Approaches in this group are criticized for their intractability [124], their cost

prohibitive characteristic and for being restrictive w.r.t. to the number of obtained

answers to the query.

On the other hand, inexact graph matching allows slight differences between the query

and the matches which is highly suitable for actual needs as graph datasets are usually

noisy, and relevant answers could be found using approximate matching. Under the

category of inexact (sub)graph matching, we find subgraph matching based on graph

simulation [112, 114], which can be determined in quadratic time and is defined as a

relation between the query nodes and the target nodes. However, it suffers a considerable

loss of structural similarity which makes it untailored for many applications such as in

bioinformatics.

Another variant of inexact graph matching is the graph homomorphism [125]. The idea

is to find mappings to the query such that node labels difference falls under a threshold

whereas the query edges are mapped to paths of a given maximum length.
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6.3.2 Graph matching based on similarity metrics

There is another class of (sub)graph matching based on graph similarity metrics [126],

where one aims to measure and quantify the similarity between two graphs which is an

important task in so many applications such as image processing for objects identifica-

tion. Graph similarity metric could be given or computed in different ways [127], e.g.,

by using the error correcting graph matching also known as graph edit distance, where

edit distance is defined as the number of operations to transform a graph into another

one, and these operations include node/edge insertion, deletion and relabelling. Graph

similarity metric could be also given by using maximum/minimum common subgraph

(MCS) where the graph similarity is proportionally given by the size of the maximum

common subgraph, i.e., the bigger the MCS, the more similar are two graphs.

6.3.2.1 SAGA: a subgraph matching tool for biological graphs

Tian et al. proposed a tool for approximate graph matching called SAGA [120]. The

approach allows approximate matching by using a distance measure for similarity com-

puting, and also by breaking the query into subgraphs and finding small hits that are

assembled to form a match.

SAGA relies on an index-based algorithm to accelerate the exploration of graphs in the

database. The algorithm proceeds in three steps: the query is first divided into several

fragments, and the index is probed. Then, the subgraphs that have been found using the

index are assembled to form larger matches to the query. Finally, the matches obtained

are purged to provide the final results.

1. Distance measure for subgraph matching

SAGA uses a distance value to measure graph similarity, such that similar graphs

have smaller distance. Consider two graphsG1 = (V1, E1, o1) andG2 = (V2, E2, o2),

where Vi is the node set, Ei the edge set, and oi is a labeling function which as-

sociates labels to nodes. Let λ be the matching between two graphs G1 and G2,

where λ is a bijection function which maps nodes from G1 to G2, λ : V ′
1 ↔ V ′

2

where V ′
1 ⊆ V1 and V ′

2 ⊆ V2. The subgraph distance, denoted by SGD, with

respect to λ, is as follows:

SGDλ(G1, G2) = we×StructDistλ+wn×NodeMismatchesλ+wg×NodeGapsλ

(6.1)
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In Equation 6.1, we, wn and wg represent the weights for each component Struct-

Dist, NodeMismatches and NodeGaps, and they are mainly used to tune the em-

phasis on the different components of the similarity distance measure. We detail

in the following each component of the distance measure given in Equation 6.1.

The ”StructDist” component. The StructDist component estimates the struc-

tural differences for the matching node pairs in the given two graphs: G1 and G2.

StructDistλ =
∑

u,v∈V ′
1 ,u<v

|dG1(u, v)− dG2(λ(u), λ(v))| (6.2)

The distance between nodes u and v ofG1 is given as the length of the shortest path

between them. The StructDist component examines the distance between each pair

of matched nodes (u, v) in one graph to the distance between the corresponding

nodes in the other graph (λ(u), λ(v)), and add up the differences.

The ”NodeMismatches” component.

NodeMismatchesλ =
∑
u∈V ′

1

mismatch(o1(u), o2((u))) (6.3)

In Equation 6.3, the mismatch() function gives a penalty for nodes with different

labels. Hence, the NodeMismatches component, with regard to the matching λ,

accumulates all the penalties given by matching nodes with different labels.

The ”NodeGaps” component. This component computes the penalties associ-

ated to the gap nodes in the query graph, i.e., nodes that were not matched to any

node in the target graph G2. The gapG1(u) function in equation 6.4 associates a

penalty with each gap node in the query graph G1, and the NodeGaps component

sums up all the penalties of all gap nodes.

NodeGapsλ =
∑

u∈V 1−V ′
1

gapG1(u) (6.4)

Each one of the aforementioned components is minimal when the two graphs G1

and G2 are similar and hence, the subgraph distance SGD is minimal when the

two graphs are similar.

2. The index-based matching algorithm

SAGA uses an index-based algorithm for exploring the target graph database fast,

as the sequential subgraph checking of the query with each graph in the database

is extremely expensive. The algorithm works as follows: an index is computed

for small substructures of graphs in the database. Then, fragments of the query
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are matched to fragments in the database using the index. At the final step, the

fragments obtained are assembled to form larger matches.

The index structures. The index used is referred to as the FragmentIndex. The

FragmentIndex is built as a set of x nodes from the database graphs, where x is a

user fixed parameter, and is usually a small number ranging from 2 to 4. The x

node set is formed by randomly selecting nodes from graphs in the database, and

the distance between a pair of nodes is used to decide whether the node will be

added to the index or not. A parameter dmax is used as when the distance between

two nodes u and v is less than dmax, nodes u and v are added to the fragmentIndex

and connected by a pseudo-edge. And finally, the fragmentIdex is validated when

it is connected by the pseudo edges. The reason of using pseudo edges in the index

is to allow gap nodes to be part of the node selection.

Items in the FragmentIndex have the following structure: [nodeSeq, groupSeq,

distSeq, sumDist, gid], where nodeSeq is a series of node IDs for the fragment

nodes, groupSeq is the list of group labels linked to nodes, distSeq is the sequence

of distances between fragment nodes, sumDist is the sum of these pairwise dis-

tances, and gid denotes a unique graph ID. Another index called DistanceIndex

is additionally used to efficiently estimate the subgraph distance between a query

graph and a database graph. The aim of using this index is to look up the distance

between any pair of nodes in a graph.

The matching algorithm. Once the index computed, the matching algorithm

works as follows: the query is first split into small subgraphs. Then, the hits from

the index probes are combined to provide larger candidate matches. Finally, each

candidate is checked to give the final results. In the following, we give further

details about the algorithm.

• Finding small hits: In this first step, the query is divided into small frag-

ments and the index (FragmentIndex) is investigated to find fragments in

the database that matches or are similar to the query fragments. The query

is divided into fragments by enumerating all k-node sets as done for the

database graphs to build the FragmentIndex. Then, for each query frag-

ment, the groupSeq, nodeSeq, sumDist, and distSeq values are calculated.

Next, each of these query fragments is examined w.r.t. the FragmentIndex

through a multi-level filtering strategy: First, the groupSeq and sumDist

values are used to filter out the non-matching fragments. Then, the can-

didate list is further filtered using the distSeq values. In the first filtering,

database fragments are selected only if they have the same groupSeq as the

query fragment and their sumDist values are within the following bounds:

fq.sumDist± k(k−1)
2 × MaxPairDist

we
, where fq represents the query fragments
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and k the fragment size. The MaxPairDist is a user-fixed parameter that

aims to restrict the weighted pairwise distance difference between the query

and the database fragments as follows: we × |dG1(u, v) − dG2(λ(u), λ(v))| ≤
MaxPairDist. At this point, a list of candidate database fragments for every

query fragment is generated. This list can be even more filtered by using the

distSeq information (that contains the pairwise distances) to verify that all

pairwise distances satisfy the MaxPairDist constraint.

• Assembling small fragments: The set of candidate fragments produced in the

previous step are grouped into bigger matches as follows: First, the fragments

are classified by the database graph IDs. Next, a fragment-compatible graph

is built for each matching graph, where each node in a fragment-compatible

graph represents a couple of matching database and query fragments. Two

nodes in the fragment-compatible graph are connected by an edge iff two

query fragments share zero nodes, or more nodes and the corresponding

database fragments in the fragment-compatible graph also share the same

nodes. An edge connecting two nodes tells us that the two fragments con-

cerned can be joined to form a larger fragment since they have no conflicts

in the union. Therefore, a clique in the fragment-compatible graph repre-

sents a set of fragments that can be joined. Once the fragment-compatible

graph is formed, the fragments assembling problem reduces to the maximal

clique detection problem, and the set of fragments in each maximal clique is

considered as a candidate match.

• Examining candidates: In this step, each candidate match is examined in or-

der to produce a set of final matches. A parameter Pg is defined by the user,

and it denotes the percentage of gap nodes in the match. Once Pg fixed,

the matches having a percentage of gap nodes greater than Pg are elimi-

nated. For the remaining candidate matches, the DistanceIndex is probed,

and the subgraph matching distance SGD defined above is computed, where

the matching to be chosen is the one that minimizes the SGD distance.

Although SAGA method is based on an efficient indexing to speed up the processing,

it actually reduces to solving the maximum clique problem which represents a costly

operation.

6.3.2.2 NEMA

A tool called NeMa (Network Match), proposed by Khan et al. in [121], is a sub-

graph matching technique based on neighborhood information to query real-life network
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datasets.

NeMa consists in finding the (top-k) matches of the query graph with minimum costs

w.r.t the target graph. The cost function used is a metric that estimates the similarity

between the query graph and the target graph and hence, should be minimized. NeMa is

a heuristic that is based on an inference model in order to solve the underlying problem.

Int he following, we describe the cost metric used in NeMa, along with the heuristic used

and the inference model.

1. Cost metric

Before delving into the definition of the cost metric used in NeMa, let us start by

giving notations that will be used throughout the section.

Used notations. A target graph usually represents a network dataset, and is

defined as a labeled undirected graph G = (V, E, L) where V denotes the node set,

E the edge set and L a labeling function that assigns labels to nodes. A query

graph is an undirected, labeled graph denoted by Q = (VQ, EQ, LQ) where VQ

is the node set, EQ the edge set, and LQ is a label function that associates each

query node with a corresponding label LQ(v). Given a query graph Q and a target

graph G, the set M(v) of query node v represents the target nodes candidates

set which is the set of target nodes that are likely to match with query node v.

Formally, a target node u is considered as a candidate for node v (u ∈ M(v)) only

if the difference between their respective labels fall under a given threshold. A

subgraph matching function φ is defined as a many-to-one function: VQ → V ,

such that ∀v ∈ VQ, φ(v) ∈ M(v).

Neighborhood vectorization. Given a node v in a graph G, the neighborhood

of u is represented by a neighborhood vector RG(u) = {< u′, PG(u, u
′) >}, where

u′ is a neighbor of u within h-hops, and PG(u, u
′) denotes the proximity of u′ from

u in G. PG(u, u
′) is defined as follows:

PG(u, u
′) =

{
αd(u,u′) if d(u, u′) ≤ h

0 otherwise.
(6.5)

Where α is a propagation factor anywhere between 0 and 1, and h > 0 is the

hop number of the neighborhood for vectorization. d(u, u′) represents the dis-

tance between node u and u′. The neighborhood vector is to encode the distance

information about node u and its h-hops neighbors.

Neighborhood cost. The neighborhood cost is defined based on neighborhood

vectors, and it corresponds to the cost of matching the neighborhoods of a query

node and a target node. Let the neighbor nodes of v within h-hops be denoted by
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N(v), and let consider a matching function φ. The neighborhood matching cost

between v and u = φ(v), denoted by Nφ(v, u) is defined as:

Nφ(v, u) =

∑
v′∈N(v) dig(PQ(v, v

′), PG(u, φ(v
′)))∑

v′∈N(v) PQ(v, v′)
(6.6)

Where the function dig is as follows:

dig(x, y) =

{
x− y if x > y

0 otherwise.
(6.7)

A function that computes the label difference denoted δl is considered, and it is

supposed to range between 0 and 1. Then, the matching cost for each node given

a matching function φ is defined as the aggregation of the label difference function

and the neighborhood matching cost function. The matching cost for individual

nodes v and u = φ(v) is defined as follows:

Fφ(v, φ(v)) = Λ.δl(LQ(v), L(u)) + (1− Λ).Nφ(v, u) (6.8)

Where Λ is a parameter in [0,1].

The subgraph matching cost. The subgraph matching cost function sums up

all individual matching cost for all query nodes and is defined as follows:

C(φ) =
∑
v∈VQ

Fφ(v, φ(v)) (6.9)

The minimum cost subgraph matching problem. The underlying problem

that NeMa aims to resolve is called the minimum cost subgraph matching MCSM.

The MCSM consists in finding a matching φ that incurs the lowest subgraph

matching cost denoted by C(φ). The MCSM problem was proved to be APX-

hard.In other words, the MCSM problem aims to find a matching Φ given in

Equation 6.10.

Φ =argmin
φ

C(φ) (6.10)

2. Heuristic algorithm

NeMa is based on an inference model, referred to as NemaInfer, to compute

the minimum cost matchings by identification with the Max-sum inference prob-

lem. In a nutshell, the Max-sum inference problem aims to find values of vari-

ables x1, x2, · · · , xM resulting in maximizing p(X) = Πifi(Xi) or logp(X) =
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∑
i logfi(Xi), where p(X) is a joint probability distribution of the set of variables

X = {x1, x2, · · · , xM}. Provided that the goal of the minimum cost subgraph

matching problem is to minimize the overall subgraph matching cost C(φ), one

can see that there is a similarity with the max-sum inference problem.

• NemaInfer algorithm: Consider a query graph Q and a target graph G, first,

NemaInfer calculates the set of candidates for each query node using the

node label similarity function. Then, an inference cost denoted by U0(v, u) is

initialized with the minimum possible value of a node matching cost Fφ(v, u),

considering all possible matching functions φ, where φ(v) = u. Next, the

algorithm computes the inference cost for each query node v and its candidate

matching nodes, and picks the optimal match of v as the candidate u having

the minimum inference cost. It is important to note that NemaInfer records

the optimal matches for each query node. The same process iterates until it

reaches a fixpoint, such that the optimal matches for a fixed number of query

nodes stay the same in two successive iterations.

• Inference cost and Optimal match:

In each iteration, the algorithm NemaInfer enhances the quality of the match-

ing, based on the joint notion of the inference cost and the optimal match

which will be discussed later. The inference cost, computed at every iteration

i of NemaInfer and for each v ∈ VQ and u ∈ M(v) (M(v) is the candidate

nodes set for node v), is denoted by Ui(v, u) and is defined as follows:

U0(v, u) = min
{φ:φ(v)=u}

Fφ(v, u) (6.11)

Ui(v, u) = min
{φ:φ(v)=u}

[Fφ(v, u) +
∑

v′∈N(v)

Ui−1(v
′, u′)] (6.12)

In Equation 6.12, we suppose that i > 0. Then, the inference cost is defined

as the minimum sum of the node matching cost Fφ(v, u) for each node, and

inference costs of the previous iteration Ui1(v, φ(v)) for all neighbors v of v,

considering all possible matching functions φ, where φ(v) = u.

Optimal match. For every iteration, there is a match for each query node

that is called the optimal match. We define the optimal match of a node v

at the ith iteration, denoted by Oi(v), as follows:

Oi(v) =argmin
u∈M(v)

Ui(v, u); i ≥ 0 (6.13)

NEMA proves to be an efficient subgraph matching tool based on a graph matching

cost metric that considers node label similarity, however, it doesn’t address the problem
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of multi-target graphs. Moreover, subroutines in NeMa can be very expensive such as

the neighborhood vectorization process, the neighborhood matching cost, and also the

inference query processing algorithm used NemaInfer.

On another hand, the notion of h-hops neighbors considered in NeMa, unless h = 1, is

irrelevant and adds nothing but complexity and computational expense, especially for

h values that are greater than 1, although it permits a certain form of generalization in

the whole method.

It is also worth mentioning that there are parallel works related to the approximate

graph matching in bioinformatics. This category of methods includes PathBlast [128],

NetAlign [129] and IsoRank [130] to name but a few. These methods are found to be

efficient in tasks related to the application domain such as protein interaction networks

alignment [128, 129]. Besides, a different type of approximate structural matching works

has been proposed in [131, 132]. These works are based on concept propagation [133]

and spreading activation [134] instead of classical matching schemes (graph isomorphism

and similarity metric). Nevertheless, these works consider a strict label node matching,

which is still too restrictive.

Finally, approximate and inexact (sub)graph matching encompasses decades of research

work. Further details about the problem could be found in [135] as well as references

therein.

6.4 Querying semi-structured data (RDF graphs)

In the realm of querying RDF graphs, SPARQL is a widely used query language. It

requires a complete knowledge of the schema of the graph database, i.e., the structure,

node labels and types of entities in the graph. Moreover, writing queries in SPARQL

proves to be a complicated task that requires users to be familiar with the language. In

order to alleviate this, Zou et al. studied the problem of answering SPARQL queries

via subgraph matching and proposed gStore [136], which allows approximate node label

matching but adheres to strict structural matching leading the method to be restrictive.

6.5 Aggregated search in graph databases.

Aggregated search is a familiar search paradigm in Information Retrieval in the context

of documents [82]. However, few works tackled the problem of aggregated search in

graph databases. Elghazel et al. [137, 138] studied the problem of aggregated search in
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labeled graphs. Their method looks for exact matches which is restrictive on the one

hand, and on the other hand very expensive due to the maximum common subgraph

search and the maximum clique detection tasks.

6.6 A taxonomy on graph search methods and discussion

To give a synoptic view of the works around the graph search task and associated

problems, we propose a taxonomy of graph search methods. We derive the graph search

methods into four classes: the filtering and verification frameworks, the (semi)structured

data querying, keyword graph search and the most important class: the graph matching

methods. The graph matching is derived into two sub-categories: the exact matching,

also known as the graph isomorphism problem; and the inexact graph matching which

is the most suitable for actual graph search application as the datasets are huge in size.

Figure 6.1 depicts the proposed taxonomy organized in a hierarchy.

Figure 6.1: A taxonomy of Graph Search methods.
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Most of the aforementioned works (described in previous sections) altogether lack sev-

eral critical points: (i) They present a restrictive tool for query answering either by

imposing a strict node label similarity or by a strict structural similarity, which does not

allow approximate relevant answers to be discovered, (ii) the graph matching is usually

done by checking the maximum common subgraph which is a costly computational task

[139]. (iii) Methods querying semi-structured data requires a complete knowledge of the

graph schema and are often complicated. (iv) Few works considered a query answering

by several graphs in concomitant, and if so, they seek exact matches which is still re-

strictive. To address these shortcomings, we propose a new graph matching framework

that aims to answer a query by allowing approximate label and structural similarity

through a lightweight similarity metric which alleviates the task of maximum common

subgraph search. Moreover, our proposed framework enables efficient RDF graph query-

ing without having any knowledge about the schema of the graph. Last but not least,

our proposed framework is based on the aggregated search to enable a joint query an-

swering by several heterogeneous graphs in order to benefit from the information wealth

within these graphs.

6.7 Chapter summary

In this chapter, we tackled the problem of graph search, also known as graph querying.

We first define the process of graph search as well as the underlying concepts, such as

the graph matching and the graph isomorphism, graph simulation and graph homo-

morphism. We also propose a taxonomy of graph search methods as depicted in figure

6.1.

As the main focus of this part of the thesis is on aggregated search in graph databases,

our proposed method in Chapter 7, named LaSaS (Label and Structure similarity using

aggregated Search) goes under the category of similarity metrics based approximate

graph matching methods.





Chapter 7

LaSaS: A new Approximate

Graph Matching framework

based on Aggregated Search

Querying graph datasets proves to be an important task as most of the real-life datasets

are represented by networks of labeled entities. Moreover, the noisy nature of those

graph datasets makes the approximate graph matching tools highly required in order

to alleviate restrictive query answering. In this chapter, we introduce and propose a

new framework for graph querying based on aggregated search called Label and Struc-

ture Similarity Aggregated Search (LaSaS). First, we give the main motivation behind

the use of the aggregated search paradigm in graph databases. We explain how the

aggregated search in graphs benefits the querying process compared to classical and tra-

ditional graph querying setting. Then we present our proposed aggregated search graph

matching framework in three main sections: we introduce and define theoretical terms

and concepts used in the framework. Then, we present the query processing algorithm

and explain all the underlying routines and steps from the query acquisition to the re-

sult output. We ultimately give an intensive experimental evaluation of our proposed

method by exploring its performance under a variety of settings and by comparing it to

related state-of-the-art works. Results from our experimental evaluation approved the

effectiveness and the stability of the proposed method over different parameter settings.

Besides, results also indicate that LaSaS leads to significant improvement over state-of-

the-art related approaches by finding more precise matches in a shorter amount of time.

Finally, in the last section, we give a chapter summary and outline several perspectives

and future work directions.

94
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7.1 Graph search using Aggregated Search

Recent years have witnessed a sheer increase in data generated from numerous appli-

cations. This data proliferation favors the use of graphs as a storage support to fully

exploit the knowledge within the dataset. In fact, graphs are a popular data model

that enables efficient data processing benefiting from all the graph theory findings and

technics. In considering this matter, graph querying or graph search has attracted the

interest of many researchers as it represents an essential task to exploring the knowledge

in these datasets.

In order to query these graph databases, generally, a graph matching task is performed

using either graph isomorphism to find exact answers to the query, or other technics that

allows approximate graph matching. In the case of graph isomorphism, seeking exact

answers to the query can be very expensive as well as restrictive since actual datasets are

usually noisy. Moreover, it requires the user to have a complete knowledge of the data

structure which is not always the case. To bypass these restrictions, approximate graph

matching is widely used in many real life applications such as web anomaly detection

[140], search result classification [141] and spam detection [142] to name a few.

However, few works on graph querying have addressed the graph matching problem by

building an answer to the query based on the aggregation of heterogeneous graphs. The

idea is to find a matching to a given query by combining together several subgraphs that

when aggregated, they form an approximate match for the query. This search paradigm

is known as aggregated search in graphs [137, 138], i.e., given a query graph q and a set

B of graphs, aggregated search aims to find matches to q by combining or aggregating

subgraphs in B. The aggregated search is different from the classical graph matching

problem where all occurrences of the query are to be found in one target graph G. In

the following, we first give a definition of the aggregated search in graph databases, then

we give the key motivation behind the aggregated search paradigm in graphs.

7.1.1 Aggregated search in graph databases: Definition

Aggregated search is a recent search paradigm that was first introduced in the field of

Information Retrieval [81]. In a nutshell, aggregated search aims at building a result

from several and complementary information shards given a query, where the information

shards represent an elementary piece of information found in a source or document and

could be a paragraph, an image, a video section, etc. Aggregated search is mainly

distinguished by its ability to search for any granularity level of information, and for

merging all these information shards to build a coherent final result. In the realm of
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graph datasets, the aggregated search still refers to the process that retrieves deeper

granularity levels of information and merges it to build a result. However, there are

some particularities as the data being used is in a format and context that is different

from IR. Aggregated Graph Search (AGS) is defined as follows:

Given a query graph q, and a set of fragment graphs B, where each fragment fi has

eventually a common subgraph with q. The aim of the aggregated graph search problem

is to build a graph called the aggregate a that matches with q through exact matching,

i.e., graph isomorphism, or inexact matching, where the graph a is the union of several

fragments fi. In other words, the aggregated graph search is to build an aggregate using

complementary fragments which are all relevant to the query, such that the final aggre-

gate matches with the query exactly or approximately. The aggregated graph search

process will be further detailed and explained in the following sections, nevertheless, we

give an illustration of this process in figure 7.1.

Figure 7.1: Aggregated Graph Search vs. Classical Graph Search.

Figure 7.1 depicts the difference between aggregated graph search and classical graph

search, e.g., graph isomorphism. One can clearly see that with aggregated graph search,

we can still find matches to a given query, whereas with traditional graph search methods,

no results could be found due to the fact that traditional graph search are query wise,

i.e., each graph or fragment is said to contain the query or not, while for aggregated

graph search, each fragment is explored to find substructures of the query.

7.1.2 Aggregated search in graph databases: Motivation

Graph search methods include a broad range of methods: exact algorithms, heuristics

etc. Since the graph model represents a very efficient data storage model, it becomes

widely used in almost all application domains (social networks, the world wide web,

user generated data, institution data etc.). Thus, methods for querying those graphs in
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order to explore knowledge within and to perform processes over these data is neces-

sary. Graph search methods or graph querying methods include a broad set of multiple

approaches varying from exact algorithms to heuristics. A commonly known graph

querying concept is the graph matching problem, where a query graph is to be matched

with several graphs from the target graph database. The graph matching problem gen-

erally supposes a searching for the whole query through performing subgraph matching,

graph isomorphism which are high-cost operations (NP complete [143]) in graphs. This

compels the research work to be directed toward heuristic solutions in order to compute

a graph matching, and several problems were defined in the light of a heuristic approach:

inexact/approximate graph matching where a query graph matches some graphs under

a fixed threshold and does not have to be fully isomorphic. The relevance and useful-

ness of each version (either exact or approximate) of the graph matching problem are

dependant on the application domain and the context on which it is used. For exam-

ple, in biology, exact matching schemes are usually preferred due to the high precision

required by the domain; on the contrary, approximate matching schemes are favored in

querying big graph datasets as in social networks analysis (graph pattern mining · · · )
[121]. On the other hand, few works have tackled the problem of aggregated search in

the graph context [137, 138]. The problem of aggregated search in the context of graphs

can be seen as a graph matching task in the way that it takes a query graph and try to

find corresponding matches, and similarly to the aggregated search in the information

retrieval context, the aggregated graph search aims at finding a matching for a query

graph by building a match from several subgraphs called fragments. While the usual

graph matching setting seeks an answer to a query as a whole, graph aggregated search

consider query subgraphs mining and then building an answer that matches the query.

The motivation behind aggregated graph search is two fold: first, it is a great tool for

supplementing graph query processing frameworks by finding more answers through the

investigation of building matches from graph fragments that match each with a query

subgraph. Secondly, aggregated graph search is very useful for discovering scattered

patterns in distributed or distinct graph datasets. For example, in plagiarism detection,

aggregated graph search could easily detect plagiarism cases where several parts (in text

format) were copied from different sources and combined into a refined and original

looking document.

7.2 Preliminaries

This section is dedicated to introducing notions used in our proposed method. First,

we give the formal definitions of the data structures used in the rest of the chapter: the

query, the target graphs and the answer set. Then we introduce a new graph similarity
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metric and the objective function used in our proposed matching scheme. Finally, the

section ends by giving the formulation of the aggregated graph search problem.

7.2.1 Query, Target graph, Answer

Query. The query q is an undirected labeled graph q = (Vq, Eq, μq) where Vq represents

the vertex set, and Eq the edge set. While μq is a function μq : Vq → LVq associating

the labels to vertices, with LVq the vertex label set.

Target graphs. Target graphs are represented by the set B = {f1, . . . fp} of p graphs

which are referred to as fragments fi, i ∈ [p]. Fragments fi = (Vi, Ei, μi) are undirected

labeled graphs s.t. Vi (resp. Ei) is the vertex set (resp. edge set) of fi. μi is a function

Vi → LVi associating labels to vertices, with LVi is the vertex label set of fi.

Answer set. The expected answer set A is defined as follows: A = {a1, · · · , ak} where

ai are called aggregates and k is the number of aggregates. We have ai =
pi⋃
j=1

fj s.t. pi

is the number of fragments in ai and we have pi ≤ p , i.e., ai is constituted by as few

fragments as possible.

Though our method focuses on undirected labeled graphs, it is straightforward to extend

it to process other kinds of graphs.

7.2.2 Objective function

Graph similarity metric. We first introduce a graph similarity metric that com-

putes the similarity between two graphs based on two main features: (i) the node label

similarity and (ii) the structure similarity. The similarity function is denoted by s(fi, q)

where s : B×{q} → [0, 1] is a function that quantifies the similarity that fi shares with

q in terms of label and structure similarity s.t. the closest s to 1, the more similar are

fi and q. In the following, we present the components of the similarity metric s: label

similarity and structure similarity components.

7.2.2.1 Label similarity component

Label similarity of fragment fi and query q is denoted by ΔL(fi, q) and is computed as

follows:

ΔL(fi, q) =
1

ni
.
∑
v∈Vfi

J(μ(v), μ(Q(v))) (7.1)
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where ni is the number of vertices in fi, and J is the jaccard similarity coefficient such

that J(l1, l2) =
Wl1

∩Wl2
Wl1

∪Wl2
, with Wl1 (resp. Wl2) is the words set in label l1 (resp. l2).

Q is an application Q : Vi → Vq that associates vertices from the fragment to their

counterpart in the query and we have: Q(v) = u iff J(μi(v), μq(u)) > τ where τ is a

user fixed threshold.

7.2.2.2 Structure similarity component

On the other hand, ΔD(fi, q) denotes the structural similarity between fragment fi and

query q, and is defined as follows:

ΔD(fi, q) =
1

ni
.

∑
u,v∈Vfi

,u<v

δt(d(u, v), d(Q(u), Q(v))) (7.2)

with

δt(x, y)

{
1 if |x− y| < t

0 otherwise.

d(u, v) denotes the distance between vertices u and v, while ΔD computes the structure

similarity in terms of distances in fi and q. ΔD increases each time the distance between

two nodes in the target graph is equal or near to the distance between their corresponding

nodes in the query graph. Precisely, ΔD increases when the distance difference is under

a threshold t called the structure disparity threshold. In practice, threshold t should

be small in order to avoid disparate matches and to preserve the structural similarity.

Besides, t should neither be equal to zero otherwise it would be very restrictive as only

strikingly similar matches will be favored.

Taking these both components into account, we define the similarity function s as follows:

s(fi, q) = λ.ΔL(fi, q) + (1− λ).ΔD(fi, q) (7.3)

where λ is a tunable parameter in [0, 1].

Objective function. Let η denote the matching that associates the aggregates ai in

the answer set A to the query q (matching query nodes to target nodes). Based on the

similarity function s, we define the objective function of the matching η as follows:

Ψ(η) =
1

k
.

k∑
i=1

s(ai, q) (7.4)
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7.2.3 Problem Formulation

Given a set of fragments B, a query q. The aggregated graph search problem consists

in finding the matching η that associates the answer set A of k aggregates to q s.t.

Ψ(η) = 1.

Proposition 7.1. Aggregated graph search problem is NP-Hard.

Proof. Let us consider the simple case of k = 1. That is to say, the expected answer set

consists of one aggregate a1 s.t. a1 =
p1⋃
j=1

fj , where Ψ(η) = 1, i.e., s(a1, q) = 1, with η

is the matching that associates aggregate a1 to q. By definition, the similarity function

s(a1, q) = 1 means that we are looking for minimum elements from B (see section

7.2.1) s.t. their union covers q: label similarity component equals one means that all

nodes are matched and their labels are exactly similar, on the other hand, structure

similarity component should be one, meaning that the query and the aggregate have

similar structure. This reduces to resolving the NP-Hard set cover problem where the

universe is the query q that we aim to cover with minimum elements from B. This ends

the proof.

7.3 Query Processing Algorithm

In this section, we present our query processing algorithm named LaSaS, which is a

heuristic solution intended to solve the problem of aggregated graph search problem.

We expose in details the proposed algorithm and its different steps.

LaSaS algorithm works in three distinct steps: first, the Selection step is the most

important step that aims to select the most relevant fragments from B based on the

similarity metric s (see section 7.2.2). Second, the Aggregation step combines the relevant

fragments found by the Selection step to form the aggregate a. Third, the Refinement

step enhances the quality of the aggregate by pruning irrelevant nodes. Furthermore,

in the case of unmapped edges, this step finds mapping paths of a length under a fixed

threshold. In the following, we present each step in details. Note that this process is

necessary for obtaining one aggregate, whereas in the general case of k aggregates, this

process will repeat k times. LaSaS is described in algorithm 2.

7.3.1 Selection step

The first step consists in selecting the most relevant fragments, as many as necessary

to cover the whole query q. The selection is based on successive iterations of two main
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Algorithm 2 Label and Structure Similarity Aggregated Search

Input: Fragments set B, Query graph q, number of expected aggregates k.
Output: Answer set A.

1. i = 1;

2. while i < k + 1

3. Select potential fragment from B that are similar to q;

4. Add the selected fragments to set S;

5. Aggregate all fragments in S to form an aggregate ai;

6. Refine ai;

7. Prune irrelevant nodes;

8. If there are unmapped edges in ai:

9. Map paths to missing edges;

10. A = A ∪ {ai};
11. i = i+ 1;

12. S = ∅;
13. end while

14. return A;

substeps: (i) similarity checking and (ii) query updating until a stopping condition is

verified. In the similarity checking, a rank is associated with each fragment fi ∈ B which

is given by the similarity metric s(fi, q) (see section 7.2.2), then the fragment fmax having

the maximal similarity is selected and we have fmax =argmax
fi

s(fi, q) where fi ∈ B.

Then, the query is updated according to the best-ranked fragment fmax such that the

query part that has been covered by fmax is withdrawn according to several conditions

detailed in the following. When the query is updated, the selection process repeats:

similarity checking and query update substeps are performed until at least one of the

stopping conditions is verified: (i) |Vq| < ε, meaning that almost all query nodes have

been matched and (ii) the fragment set B is empty, given that a fragment is removed

from B once chosen during the selection step.

Query Update. The foremost role of query update step is to ensure complementarity

among selected fragments. The query is updated by pruning elements that are covered

by the selected fragment to enable subsequent selections to choose fragments covering

complementary parts of the query. The updating can be done in two distinct ways:

using either Maximum Common Subgraph (MCS), or Weight Update (WU).

Query update using MCS. As aforementioned, the query is updated when the best

fragment fmax is found. First, the MCS between q and fmax is computed, then the

MCS is withdrawn from q while keeping the boundary nodes that belong to the MCS

as follows:
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let MCS(q, fmax) denote the maximum common subgraph between q and fmax, and let q′

denote the updated query q. The vertex set of q′ is Vq′ = V1(q
′)∪V2(q

′), where V1(q
′) =

{v|v ∈ Vq & v /∈ MCS(q, fmax} and V2(q
′) = {u|(u, v) ∈ Eq & v /∈ MCS(q, fmax}. On

the other hand, the edge set of q′ is given by Eq′ = {(u, v) ∈ V 2
q′ | (u, v) ∈ Eq}.

Query Update using Weight Update (QUWU). Computing the maximum com-

mon subgraph is known to be NP-complete by reduction from the maximum clique

problem. Hence, it is cost prohibitive to use it in a repetitive operation as the query

update. Alternatively, we perform a weight update on the query vertices with a poly-

nomial time complexity. The QUWU process builds on the assumption that all query

vertices are initially weighted by 1, where a node weighted by 1 stands for an uncovered

query node, and if weighted by 0, the node is said covered. As described in Algorithm

3, QUWU works in 2 steps:

1. Weights on covered vertices are set to 0.5 (line 1 to 6). At this point of QUWU

algorithm, i.e., prior to the weight binarization step, only vertices belonging to the

MCS between q and fmax will be weighted by 0.5. The equivalence of MCS and

this first step of QUWU is further depicted in Figure 7.2. It is straightforward that

this step of QUWU has, in the worst case, a polynomial time complexity (w.r.t.

the number of vertices in the query and the fragment) provided that function Q has

a linear time complexity (w.r.t. the number of query vertices O(nq)). Whereas,

the MCS problem is known to be NP-complete and related algorithms have either

an exponential or factorial time complexity [144].

2. The query q goes through a weight binarization process (described in algorithm 4)

where: the nodes weighted by 0.5 and having adjacent vertices all weighted either

by 0.5 or 0 will have their weights set to 0, and the nodes weighted by 0.5 and

have at least one adjacent vertex weighted by 1 will have their weights set to 1.

The stopping condition of the selection step would be that all vertices of q are weighted

by 0, i.e., W ≤ ε, where W =
∑

v∈Vq
w(v).

Figure 7.2: Vertex weight update vs. Maximum Common Subgraph.
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Since QUWU does not reduce the query size as it does not withdraw vertices but update

their weights, it is necessary to tweak the similarity function s in order to consider only

vertices that are weighted by 1, i.e., not yet covered.

Similarity function using QUWU. The above-mentioned similarity function s is

slightly modified in order to take into account the weight condition on the query when

comparing it to a fragment. In other words, when computing the similarity between

fragment f and query q, the function s should consider only nodes and edges that are

weighted by 1 and omit the remaining ones. Consequently, selected fragments would

be complementary. When using weight update, the two components of the similarity

function, ΔL and ΔD are computed as follows:

ΔL(fi, q) =
1

ni
.

∑
v∈Vfi

w(Q(v)) 	=0

J (μ(v), μ(Q(v))) (7.5)

And ΔD becomes:

ΔD(fi, q) =
1

ni
.

∑
u,v∈Vfi

,u<v

w(Q(v)) 	=0

δt(d(u, v), d(Q(u), Q(v))) (7.6)

Algorithm 3 Query Update using Weight Update (QUWU)

Input: Query graph q, Fragment graph f .
Output: Query graph q with updated weights.

1. foreach (u, v) ∈ Ef :

2. u′ = Q(u), v′ = Q(v);

3. if (u′, v′) ∈ Eq, then :

4. w(u′) = w(v′) = 0.5;

5. end foreach

6. weight binarization(q);

7. return q;

7.3.2 Aggregation step

The fragments obtained upon successful completion of the selection step are stored in

the solution set denoted by S. The aggregation step constructs an aggregate ai from

the solution set S as follows: Vai =
⋃

fi∈S Vi and Eai =
⋃

fi∈S Ei.
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Algorithm 4 Weight binarization

Input: Query graph q.
Output: Query graph q with binary weights.

1. foreach v ∈ Vq:

2. if w(v) = 0.5 and all neighbors of v are weighted either by 0 or 0.5, then:

3. w(v) = 0;

4. end foreach

5. foreach v ∈ Vq:

6. if w(v) = 0.5 and there are neighbors of v weighted by 1, then:

7. w(v) = 1;

8. end foreach

9. return q;

7.3.3 Refinement step

The last step consists in improving the quality of the aggregate ai. This is achieved by

(i) connecting the aggregate whenever it is disconnected, i.e., when there are unmapped

edges, our method maps them to paths of a given length; and (ii) by pruning irrelevant

nodes and edges from ai.

Connecting the aggregate. Cases when A is disconnected may occur when selected

fragments cover disjoint areas of query q leaving some query edges unmapped. Our

algorithm maps these edges to paths by performing a path search in B in order to

interconnect the Connected Components (CCs) in ai. To this end, we search for a path

between any two nodes belonging to different CCs of ai in the graph G, where G is a

weighted graph such that all nodes and edges are weighted by 1, and we have G =
⋃

fi∈B
fi.

The path search stops either when ai becomes connected or when no path could be

found. For the path finding task, we used the Dijkstra algorithm and added a constraint

relatively to the maximal path length s.t. paths having a length that is greater to a

fixed threshold are ignored. That is to say, we consider only paths that have a relatively

small length in order to preserve a semantic relevance (a long path is considered as

semantically irrelevant). As the Dijkstra algorithm searches incrementally for paths,

when a path length exceeds the threshold, the search for this path is abandoned, and as

a result, the algorithm takes lower time to execute.

Pruning. The aggregate ai is further refined by withdrawing irrelevant nodes. To do

so, we iteratively prune irrelevant leaves from ai until no irrelevant leaf is left, where a

leaf is a vertex of degree 1. As depicted in figure 7.3, not all irrelevant nodes are pruned

from A by the end of the pruning process, however, by limiting the pruning to irrelevant
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leaves, the connectivity of the aggregate is preserved as the removal of an irrelevant node

with a degree>1 may disconnect the aggregate.

Figure 7.3: Pruning process of the aggregate.

7.4 Experimental evaluation

In this section, we evaluate the performances of the proposed approach by analyzing

its stability w.r.t. its inner parameters. Then we confront its performances to recently

proposed and related works. We first describe the experimental set up along with the

graph dataset and the evaluation methodology. Then we present the evaluation metrics.

Finally, we present and discuss the obtained results.

7.4.1 Experimental set up

Graph Datasets. In order to evaluate our method, we used three real-life datasets: (i)

DBpedia Knowledge Base [145] that consists of RDF triples extracted from Wikipedia.

We considered a total of 666043 triples from entities of Senator, anime, award, beauty

queen, castle, chess player, film festival, Hollywood cartoons, novel and Olympics data.

(ii) IMDB Network [146] is the internet movie database that consists of entities of

movies, tv series, actors, directors, producers... and their relationships as well. (iii)

YAGO Entity Relationship Graph [147] (Yet Another Great Ontology) is a knowledge

base with information extracted from wikipedia, WordNet and GeoNames with a total

of 120 million triples.

Query generation. Two parameters are necessary to generate a query q: the number

of nodes denoted by n and the query diameter d which represents the largest distance

between any two nodes. A query is then generated by extracting a subgraph from

the dataset and introducing some label and structural noise to it. The label noise is

generated by randomly modifying some words in the original label, while the structural

noise is provided by randomly removing or adding some edges.

Fragments generation. In order to form the fragments set B, we partition each of

the three datasets in such a way that no part is isomorphic to the query q with a size
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randomly ranging from 5 to 10 nodes, and the obtained parts constitute the fragments.

To avoid crossing edges between fragments, nodes belonging to the crossing edges are

duplicated in the fragments involved.

Evaluation metrics. The F1-measure is used as the main evaluation metric to show

the effectiveness of our method. It combines the recall (R) and precision (P) where the

recall shows the ratio of the correctly found node matches overall correct matches, and

the precision is the ratio of correctly found matches overall found matches. F1-measure

is computed as follows:

F1 =
2

(1/R+ 1/P )

In addition to the F1-measure, the runtime is also reported.

Methodology. Our experiments are based on the following guidelines: we create 4

query sets and generate 100 queries under each set. First, we limit LaSaS to select the

top-1 aggregate by fixing the parameter k to 1 to further emphasize the impact of other

parameters over the performances. First, we assess the influence of the label noise on

our method by fixing the structural noise and varying the label noise for all the 4 query

sets. Then, to assess the influence of the structural noise, we fix the label noise and

vary the structural noise and run our method on all the 4 query sets. On the other

hand, we vary the ratio of the matching nodes in the query, i.e., the query nodes that

are surely present in the fragment set B, and see the repercussion on the performances

of our method. Furthermore, we run our method while varying the parameter λ of the

similarity metric (see equation 7.3), to see the influence of the emphasis on either the

label similarity or the structural similarity. Moreover, we run LaSaS and compare it

to state-of-the-art tools: SAGA [120], NEMA [121] and BLINKS [122]. BLINKS is a

ranked keyword graph search method that relies on an extensive indexing technique to

accelerate the search process, and focuses solely on node labels similarity. We decided

to compare our proposed framework LaSaS to BLINKS to show that our framework

is different from keyword graph search and also to show that when labels on nodes

and structure similarities are jointly taken into consideration, it can lead to significant

improvement in the results quality.

Last but not least, we evaluate the performances of our method on different values of

parameter k, i.e., the number of expected aggregates for all query sets and datasets.

All algorithms have been implemented in C++, and all experiments were performed on

a single machine, with Intel Xeon(R) CPU at 1.9GHz, and 16GB of main memory.
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7.4.2 Experimental results

Label noise influence. We vary the label noise and report the F1-measure in figure

7.4-(a). Having the structural noise fixed to 10%, F1-measure does not reach 1 when

label noise equals 0%. Results show that LaSaS maintains the same performances for 0%

to 10% of label noise, meaning that it efficiently discovers the correct matches despite the

noise. However, when the label noise goes up to 30%, F1-measure drops considerably,

which shows that LaSaS is label noise sensitive.

In figure 7.4-(b), we show the runtime for all query sets while varying the label noise.

Results show that for each query set, the runtime is even for different values of label

noise, however, a slight increase of the runtime is noticed when the label noise reaches

30%, which is normal as the method spends additional time to look for other candidate

matches. Altogether, increasing the label noise does not incur a considerable computa-

tional cost. Although not reported here due to space limitation, results on YAGO and

IMDB graphs present similar trends.

Figure 7.4: F1-measure and Runtime (in seconds) reported on DBpedia graph, upon
four different query sets with 100 query within each set while varying the label noise,

having the structural noise set to 10%.

(a) (b)

Structural noise influence. Figure 7.5-(a) reports F1-measure for different values of

structural noise while label noise was set to 10%. When no structural noise is added,

the F1-measure does not attain 1 due to the label noise being set to 10%. Moreover, the

F1-measure does not have an abrupt variation for all query sets (with the lower bound

being 0.8 and the upper bound being 0.86), which translates the capacity of LaSaS to

find the correct matches despite the added noise on the structure.

Figure 7.5-(b) reports the runtime while we vary the structural noise, and results show

that the runtime is almost steady for all query sets, that is to mention that the compu-

tational cost incurred by the added structural noise is negligible.

Ratio of query matching nodes. We refer to the ratio of matching nodes that are

already in the fragments set B by Φ, and we investigate its influence on the perfor-

mances of LaSaS. Figure 7.6-(a) reports the F1-measure, and shows that performances
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Figure 7.5: F1-measure and Runtime (in seconds) reported on DBpedia upon four
different query sets with 100 query within each set while varying the structural noise,

having the label noise set to 10%.

(a) (b)

are optimal when the ratio of the matching nodes is equal to 100%, and it decreases

gradually when the ratio of the matching nodes decreases. This shows the effectiveness

of our method, as it finds the best results when they are available.

The reported runtime as shown in figure 7.6-(b) increases with the ratio Φ, which means

that the method takes more time to process as there are additional relevant answers in

the B set.

Figure 7.6: F1-measure and Runtime (in seconds) reported upon four different query
sets with 100 query within each set while varying the matching nodes ratio in the B set.

(a) (b)

Influence of parameter λ. We investigate the influence of parameter λ of the simi-

larity metric (see equation 7.3).

For all query sets, the F1-measure reported in figure 7.7-(a) increases when λ increases

(We recall that increasing λ means that the emphasis is given to the label difference

ΔL when computing the similarity metric). This is straightforward as the emphasis

on the label similarity will favor nodes that have a similar label, hence increasing the

F1-measure. In figure 7.7-(b), we show F1’ which reports the F1-measure but in terms

of graph matches instead of node matches. We see that we obtain the best performances

when λ equals 0.5, i.e., when the label similarity and structure similarity are equally

considered or given the same importance.
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Figure 7.7-(c) reports the runtime when varying the parameter λ. The runtime is even for

all query sets as it does not incur an additional computational cost. It is also important

to notice that we obtain similar results over IMDB and YAGO datasets.

Figure 7.7: F1-measure in terms of node matches, graphs matches and runtime
reported upon four different query sets with 100 query within each set while varying

the parameter λ.

(a) (b) (c)

LaSaS vs. SAGA, NEMA and BLINKS. In figure 7.8, we show the comparison

results of our method LaSaS to three state-of-the-art tools: (i) SAGA [120] and (ii)

NEMA [121], two subgraph matching tools for approximate graph matching, and (iii)

BLINKS [122], a graph querying tool based on keyword search.

Results in figure 7.8 show that our proposed method LaSaS outperforms all the three

competitors in effectiveness by achieving greater F1-measure (figure 7.8-(a)), and also

in efficiency by finding results faster (figure 7.8-(b)).

Figure 7.8: F1-measure in terms of node matches and runtime of LaSaS, NEMA,
SAGA and BLINKS over all datasets. Results are reported for query set 3 (n=7,d=3),

where k = 1 and label and structural noise were set to 10%.

(a) (b)

Number of aggregates k. In figure 7.9, we report the runtime on all four query sets

over each graph dataset while varying the number of expected aggregates k.

Generally, the runtime increases with the increasing k, as the algorithm takes more time

to search for additional aggregates. However, as the number of fragments in the B set

decreases whenever k increases, the selection step in building the aggregate gets faster,

this is shown by the fact that in the majority of cases, the time for finding k aggregates
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is lower than finding one aggregate k times. We skipped reporting the F1-measure while

varying k, however, we note that the F1-measure decreases with the increasing k as the

B set of fragments runs out of potential fragments for building good aggregates.

Figure 7.9: Runtime reported upon four different query sets for all three datasets
while varying the parameter k (the number of expected aggregates).

(a)
DBpedia

(b)
IMDB

(c)
YAGO

7.5 Chapter summary

In this chapter, we discussed a novel framework for approximate graph matching based

on aggregated search called Label and Structure Similarity Aggregated Search (LaSaS).

The proposed approach enables an effective graph querying without any knowledge of the

schema of the data graph. The framework joins ideas from aggregated search and graph

matching to effectively find approximate matches for a query from a set of heterogeneous

graphs. LaSaS is based on three key ideas: (i) aggregated search strategy in order to

enrich the set of answers, (ii) a lightweight graph similarity metric that takes into ac-

count both the nodes label and graph structure similarity to enable finding approximate

matches and (iii) a graph weight update that replaces the maximum common subgraph

search task and reduces the complexity cost. Our method enables approximate matching

by allowing slight label difference and by mapping edges to paths with a thresholded

length. This feature makes our method unrestrictive and hence enables it to find more

answer results compared to existing strict matching schemes like graph isomorphism.

Empirical evaluation over the three real-life used datasets, illustrates the effectiveness

of our method over different parameter settings and corporates the stability of LaSaS.

Moreover, the experimental results indicate that the proposed method outperforms the

state-of-the-art related approaches by finding more precise matches. Future works will

be conducted to build an index on the query and fragments to further accelerate the

process of the selection step. We also plan to extend the empirical study to compare

our method to additional matching tools.





Chapter 8

Conclusion and Perspectives

In this thesis, we addressed two important problems arising in the graph theory field.

First, we tackled the problem of graph partitioning, specifically for massive graphs and

in a streaming setting, which is a lightweight memory-consuming setting. Second, we

addressed the aggregated graph search problem, which consists in simultaneous query-

ing of several target graphs and provides an answer to the query through a coherent

combination of the target graphs.

Our main contributions are: (i) a new heuristic named Fractional Greedy for streaming

graph partitioning, achieving competitive results with state-of-the-art heuristics. (iii)

A new restreaming model called the Partial Restreaming Partitioning model, which

is a hybrid streaming model that combines a one-pass and multiple-passes streaming

partitioning strategies, with the goal of reducing the computation costs while maintain-

ing similar performances as in the full restreaming setting. (iv) We proposed a novel

heuristic named Streaming Metis Partitioning (SMP). The proposed heuristic combines

two powerful features for optimal graph partitioning: the accurateness of the multilevel

method Metis, and the lightness of the streaming setting. (v) Last but not least, we

proposed a new graph querying framework named LaSaS (Label and Structure similarity

using aggregated Search), that is based on the concept of aggregated search.

We would like to point out that the objective function in streaming partitioning heuris-

tic really influences the overall performances of the heuristic. For this reason, our pro-

posed Fractional Greedy heuristic outperforms other state-of-the-art streaming heuris-

tics, where its special penalizing term (in the objective function) plays an essential role

in reducing the edge-cut while preserving exact balance.

An important finding in the thesis is regarding the partial restreaming partitioning.

Instead of restreaming th whole graph, one can restream just a part of it and still
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can achieve almost similar results, with the important advantage of reducing time and

memory consumption considerably. Moreover, the streaming partitioning results depend

on the first nodes being processed, as they will influence the partitioning of the remaining

nodes by attracting their neighbors. This is shown in the selective partial restreaming

model, where the results considerably improve when restreamed portions are selected

based on sensed criteria.

It is noteworthy that, in the context of graph partitioning, the combination of a powerful

offline heuristic and a lightweight and fast online setting into one hybrid approach that

we call SMP, has achieved a fair tradeoff between precision and computation cost. In

fact, studies in this thesis showed that SMP is faster than its offline counterpart Metis,

theoretically and empirically. Moreover, the results quality between the offline Metis

and SMP are closely similar.

Furthermore, the theoretical and empirical studies on the LaSaS framework, stresses the

fact that the application of aggregated search concept in graph databases brings many

benefits to classical graph querying task. In fact, the query dispatching on several graphs

and the answer building from numerous fragments allows additional relevant answers to

be found.

An interesting follow-up to our work would be to extend our theoretical and experi-

mental results on the streaming graph partitioning problem, especially on investigating

performance guarantees under a given streaming order for the SMP method. Another

interesting direction for future work would be the study of the convergence of the partial

retreaming model, as well as the investigation on other selection criteria for the selective

partial restreaming partitioning. For the aggregated graph search framework LaSaS, it

would be interesting to extend the empirical study by using additional graph datasets,

and by comparing with more graph querying tools.
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