
HAL Id: tel-01707522
https://theses.hal.science/tel-01707522v2

Submitted on 13 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling handling resources: robotic flowshops with
circular layout and a practical railway problem

Florence Thiard

To cite this version:
Florence Thiard. Scheduling handling resources: robotic flowshops with circular layout and a practical
railway problem. Operations Research [math.OC]. Université Grenoble Alpes, 2017. English. �NNT :
�. �tel-01707522v2�

https://theses.hal.science/tel-01707522v2
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE LA 
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Florence THIARD

Thèse dirigée par Nadia BRAUNER,  
codirigée par Nicolas CATUSSE 

préparée au sein du Laboratoire des Sciences pour la 
Conception, l'Optimisation et la Production de Grenoble
dans l'École Doctorale Mathématiques, Sciences et 
technologies de l'information, Informatique

Ordonnancement de ressources de 
transports : flow-shops robotisés circulaires 
et un problème pratique de gestion 
ferroviaire

Scheduling handling resources: robotic 
flowshops with circular layout and a 
practical railway problem

Thèse soutenue publiquement le 21 novembre 2017,
devant le jury composé de :

Monsieur Alessandro AGNETIS
Professeur, Université de Sienne, Italie, Président
Madame Safia KEDAD-SIDHOUM
Maître de conférences, Université Pierre et Marie Curie, Rapportrice
Monsieur Ameur SOUKHAL
Professeur, École polytechnique de l'université de Tours, Rapporteur
Monsieur Fabien MANGIONE
Maître de conférences, Grenoble INP, Examinateur
Madame Nadia BRAUNER
Professeur, Université Grenoble Alpes, Directrice de thèse
Monsieur Nicolas CATUSSE
Maître de conférences, Grenoble INP, Co-encadrant de thèse





The idea is like grass. It craves light,
likes crowds, thrives on crossbreeding,
grows better for being stepped on.

Ursula K. Le Guin, The Dispossessed



ii



Contents

Remerciements vii

Introduction et guide de lecture xi

1 An introduction to robotic cells 1
1.1 Robotic cells: generalities . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Processing and pick-up criterion . . . . . . . . . . . . . . . . 3
1.1.2 Travel metric and layout . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Throughput optimisation and cyclic scheduling . . . . . . . 5

1.2 No-Wait condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Solved and open problems for small-dimension cells . . . . . 8
1.2.2 Identical part production . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Multi-robot cells . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Unbounded waiting times . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Small scale cells . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Multiple part types . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Identical part production . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Relaxing blocking constraints . . . . . . . . . . . . . . . . . 16

1.4 Flexibility and cost optimization . . . . . . . . . . . . . . . . . . . . 18
1.5 Scope of this work and notations . . . . . . . . . . . . . . . . . . . 19

2 Tools for analysis in circular layouts 23
2.1 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Classical bounds . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Minimum waiting time . . . . . . . . . . . . . . . . . . . . . 24

2.2 Classical Cycles and Representation . . . . . . . . . . . . . . . . . . 25
2.2.1 Graphical representation . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Some classical cycles . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Cycle time of the odd-even Cycle . . . . . . . . . . . . . . . . . . . 29
2.3.1 Balanced case . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Non balanced case . . . . . . . . . . . . . . . . . . . . . . . 32

iii



iv CONTENTS

2.4 Cycle time computation . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 One-cycles and small cells analysis 35
3.1 Regions of optimality for the classical cycles . . . . . . . . . . . . . 35
3.2 Necessary properties of optimal 1-cycles . . . . . . . . . . . . . . . 37
3.3 Best 1-cycles for m ≤ 8 . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 m ≤ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 m ≥ 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 A counter-example to the 1-cycle conjecture . . . . . . . . . . . . . 45
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Dominant structures for large cells 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Region of optimality of the classical cycles . . . . . . . . . . . . . . 50
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Set of dominant 1-cycles . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Structure of dominant 1-cycles . . . . . . . . . . . . . . . . . 53

4.4 General structure of performant cycles . . . . . . . . . . . . . . . . 58
4.4.1 Two turns... . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.2 ...Waves... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 ... And still waters . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Wavelets (h = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Cycle π2w . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Generalization: (πnw)n . . . . . . . . . . . . . . . . . . . . . 73
4.5.3 Dominance relations within (πnw) family . . . . . . . . . . . 79

4.6 Smooth Sea or Heavy Swell ? . . . . . . . . . . . . . . . . . . . . . 83
4.7 A conjecture on the best 1-cycle problem . . . . . . . . . . . . . . . 88
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 A rolling stock management problem 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Simplified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.4 Objective function . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Data Structures and Pre-processing . . . . . . . . . . . . . . . . . . 102
5.4 Routing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Multi-interval variables . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS v

5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Greedy Assignment Algorithm . . . . . . . . . . . . . . . . . . . . . 110
5.6 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusion 117

Conclusion (Français) 119

Notations 123

List of Figures 127

List of Tables 129

Bibliography 131



vi CONTENTS



Remerciements

Une thèse, c’est comme l’éternité : un peu long, surtout vers la fin. En revanche,
c’est sans doute moins solitaire. Dans ces pages, déjà trop longues et malgré tout
trop courtes pour remercier toutes celles et ceux qui ont eu leur rôle à jouer, inutile
de chercher un plan, fut-il chronologique, thématique, encore moins didactique.
Lecteur, lectrice : débrouillez-vous.

Commençons par la fin : je tiens à remercier Safia Kedad-Sidhoum et Ameur
Soukhal d’avoir accepté de rapporter ce travail et de lire avec attention mes di-
vague-ations (c’était facile) en pleine période de rentrée. Merci à Fabien Mangione
d’avoir replongé dans sa petite enfance pour faire partie de mon jury, et merci à
Alessandro Agnetis de m’avoir fait l’honneur de présider celui-ci. Grazie anche per
il tuo accoglio, et per avere corretto i miei congiuntivi. A tou·te·s, merci pour vos
remarques, vos questions, votre intérêt et votre bienveillance qui ont contribué à
faire de la clôture de ces années un bon souvenir.

On recommencerait presque ? Quand même pas. Revenons tout de même aux
débuts, et donc à Nadia Brauner et Nicolas Catusse. Nadia, la toute première fois
que tu m’as parlé de cellules robotisées avec des pièces de 5 centimes, elles tour-
naient déjà en rond : ce n’est que plus tard que j’ai compris pourquoi. Merci de
m’avoir fait confiance quand je ne l’aurais pas fait moi-même, et d’avoir inlassa-
blement tenté de me convaincre que ma thèse est une thèse (maintenant, je vais
bien finir par le croire). Merci aussi d’avoir patiemment repris mes « s » et mes
calculs – pour les virgules, par contre, je ne céderai pas. Merci Nicolas pour ton
enthousiasme contagieux, tes intuitions bluffantes et ton pragmatisme salutaire.
Merci à tou·te·s les deux pour votre disponibilité touchante (malgré la rude com-
pétition avec Caseine). Et surtout, si finir une thèse, c’est avoir appris, alors grâce
à vous celle-ci est réussie.

Quatre ans de thèse dont deux d’enseignement, et il faut croire que j’y ai pris
goût : merci à toute l’équipe du département MMI, Vanda Luengo, Jean-François
Berdjugin et Vincent Lestideau avec qui j’ai eu le plaisir de travailler, et merci
bien sûr à mes étudiant·e·s toujours là pour me rappeler que « mais Madame, c’est
pas logique ! » – c’était pour voir si vous suiviez.

* * *

vii



viii REMERCIEMENTS

Avant l’histoire, il y a la préquelle : sans remonter à ma première pâte à sel
(encore que...), je tiens à remercier Madame Cornet pour avoir fait des « maths »
un joli monde traversé de petites et grandes histoires parsemées de ponctuations
interrogatives, suspendues ou enthousiastes, sans jamais sacrifier une rigueur qui
m’a fait gagner beaucoup de temps par la suite.

Suivent les ami·e·s qui ont balisé mon chemin jusqu’ici. Cécile, bien sûr : après
tout c’est pour le plaisir de ta conversation (et pas pour la science ni les beaux
yeux de Justin !) que j’ai atterri dans mon premier cours de « Combinatoire et
Graphes ». Pour reprendre tes mots, on n’aurait pas cru à l’époque, il y a 8 ou
9 ans d’ici, finir un jour en haut de la tour Zamansky (ou dans mon cas, plus
modestement, du bâtiment F) « pompettes, et doctoresses » ! Tu remercieras aussi
Thomas pour ses « conseils de vieux » que je n’ai, bien évidemment, jamais suivis
(je ne dis pas que ce n’était pas un tort). Je n’oublie pas Sophie, à qui je pense
encore à chaque fois que ma bouilloire chauffe pour une tasse de thé nocturne
(sur ces dernières années, ça veut dire « souvent » !), Laure sans qui la prépa est
beaucoup moins drôle, Mélissa avec qui j’ai (énergiquement !) fait mes armes et
mes griffes de bébé-informaticienne et qui s’entête malgré tout à me supporter
régulièrement le temps d’une pause en bord de mer.

A propos de binôme, Eli : sans nos démêlées avec la coloration de Juliette, la
décomposition de Benders et même une transformée de Laplace égarée, sans nos
doutes partagés, je ne me serais sans doute pas dit que peut-être, après tout...
une thèse... tu crois qu’on peut ? Enfin, voilà le reste de la dream-team : Hugo, co-
auteur, co-équipier, co-ADOC, co-procrastinateur, co- à peu près tout sauf bureau,
en fait, et Lucas, co-bureau adoptif aux talents de portraitiste incontestés (mais pas
que). Depuis les après-midi à élaborer des plans de carrière alternatifs entre deux
preuves par déchargement sur les tableaux de l’UFR IM2AG, on a pas mal grandi,
et les plans ont changé1. Je suis heureuse d’avoir commencé et de terminer cette
histoire à vos côtés – à ce propos, Hugo : c’est bon, tu peux soutenir maintenant.

* * *
Me voilà avec vous revenue aux portes de G-SCOP : merci Maria et Marie-

Laure d’y avoir accompagné mes premiers pas – quelque peu maladroits. Merci à
mes co-bureau successifs et simultanés, d’abord Boris et Saleh Eddine tout au bout
du bout du 2C, puis Michaël qui a placé la barre drôlement haut, enfin Kean et
ses implacables 10 pages/semaine qui n’empêchent pas de rigoler pour autant, et
puis Nicolas qui entre ses deux trains, ses quatre stagiaires et ses vingt problèmes
à gérer trouve toujours le temps pour une petite bataille de chansons agaçantes à
se coincer en tête.

Hors des bureaux, il y a des couloirs animés, une kfet pleine à craquer (et
parfois d’autres lieux mieux irrigués : selon votre génération, Saint-Vincent, Re-

1Alors, ce labo indépendant dans le Trièves, on s’y met quand ?



ix

naissance ou Sun Valley). J’ai pu y faire la connaissance, au gré de discussions
plus ou moins scientifiques, plus ou moins échauffées, d’un paquet de personna-
lités. Permanentes : entre autres Bernard, Hadrien2, Louis, Nicolas (encore un),
Olivier, Vincent (préviens-moi quand même si tu casses ma conjecture), Zoltán...
et moins permanentes : les matheux qu’il ne faut pas placer côte-à-côte dans les
dîners où l’on cause, Quentin, Rémi, Yohann, les coincheur·se·s qui m’ont tolérée
malgré tout et tout·e·s les autres, Alex, Clément, Élodie, Franck, Justine, Lisa,
Matthieu, Nico la tête me tourne et j’en oublie. Merci Tom de lire mes mails-
presque-sérieux, merci Aurélie et Lucie grâce à qui je me suis parfois sentie moins
seule, et bon courage à mon p’tit frère Florian pour venir à bout du cas 4.2.42bis
(hein que c’est chouette, les preuves d’ordonnancement ?).

Pour rester en famille, un merci à part (désolée) pour mon très-grand frère de
thèse, Pierre avec et sans initiale, d’avoir relevé ces années de nouveaux paysages,
de jolies découvertes, et même de (vrais) petits lutins dansant entre les lignes de
LATEX3. De m’avoir, aussi, prêté un peu de sa bienveillance quand la mienne me
faisait défaut. Et puisqu’il a bien fallu penser à « l’après », merci à Julie pour ses
conseils (parfois par procuration), et sur une autre note, la franchise d’un sourire
contagieux (même si ses Gourdon, eux, me regardent un peu de travers).

Un labo peuplé uniquement de chercheur·se·s (fussent-illes enseignant·e·s) som-
brerait vite dans le chaos. Merci donc à celles et ceux qui font que pourtant, il
tourne : Marie Jo grâce à qui je sais maintenant (entre autre) charger correcte-
ment une agrafeuse, Fadila, Myriam, ainsi que les membres passés et présents des
services informatique et financier – en particulier Amandine et Christine pour leur
aide lors de l’organisation des journées G-SCOP.

* * *
Repassons la porte. Merci aux Grenobloi·se·s, Téo qui n’a jamais abandonné

la bière du vendredi soir malgré mes réponses sporadiques en 3ème année et plus,
Quentin pour la pastèque (désolée, pour cette soutenance-ci ce n’était plus la
saison), Kévin pour nos trop rares synchronisations compensées par la densité des
discussions, Irina, toujours une bonne raison pour faire le trajet jusqu’au campus,
et bien sûr Seb, malgré ses infidélités avec la Savoie et l’Ardèche.

Dézoomons encore un peu : de leurs labos français ou européens (ou d’un ba-
teau en Antarctique), un grand merci aux habituées du topic doctorat, et tout
particulièrement au « bureau » des Licornes à Paillettes (voilà, c’est dit) : Anaïs,
Cori, Dom, Emilie, Léa... de râlages en verbalisations, de soutien moral en digres-
sions, on n’a pas toujours fait avancer la Science et la Recherche, mais depuis qu’ils
jouent gentiment entre eux, nos Gonzague, Charles-Henri, Gérard et autres Raichu
nous fichent un peu plus la paix, non ?

2Si, si, Hadrien, tu es bien un permanent.
3Même si pour rédiger ce manuscrit, il a fallu se passer de \faeries...



x REMERCIEMENTS

Allez, tant qu’on y est, traversons l’Atlantique : Emeline, tu rentres dans tel-
lement de catégories à la fois (et en même temps aucune) que je ne sais pas où te
placer. Merci d’être là depuis maintenant 13 ans, pour ta fenêtre ouverte malgré le
décalage horaire, pour ton fauteuil encore mieux qu’un canapé-lit et tes tentatives
de nourrir « une thésarde en rédaction » ; merci à Émile de te maintenir en forme
parce que sinon je serais quand même super embêtée. Et puis courage : on dirait
pas comme ça, mais c’est bientôt fini.

* * *
Retour aux sources (géographiquement instables). « Mieux vaut Thiard que

jamais », dit l’adage, et cette thèse n’y échappe pas. Merci à ma maman qui ne
s’est pas trop fichue de moi en me voyant traîner de mois d’août en mois d’août
un chapitre 1 toujours à commencer, à mon papa sans qui je n’aurais pas poussé
si loin la métaphore maritime (et me serais contentée en bonne Grenobloise de
parler de montagnes et de cols), et à tou·te·s deux de m’avoir envoyée dans le
vaste monde équipée, en sus d’une trousse à couture, d’un tournevis et de conseils
plus ou moins avisés, du réconfort de se savoir soutenue. Renaud, Jérôme, Sophie :
si je peux parler 45 minutes d’affilée déguisée en madame presque sans rougir,
c’est sans doute grâce à Rires en Folies. Et si ces remerciements commencent à
déborder, c’est bien sûr à cause de la propension familiale au discours plutôt qu’à
la synthèse. Merci enfin Grand-maman de m’avoir accueillie pendant mes études
parisiennes, et ne t’inquiètes pas : je crois que cette thèse n’a mis personne au
chômage (sauf moi). Je n’oublie pas non plus les additions, Anne, Céline, J.-B. (ni
la multiplication, Alice qui m’a gentiment attendue), ainsi que la famille adverse :
merci Félix, Sophie pour votre accueil chaleureux et vos encouragements, et Sacha
d’avoir supporté mes humeurs de fin de rédaction.

* * *
Il y en aurait bien d’autres (Guillaume pour m’avoir aidé à résoudre ce problème

crucial : « le jury, deuxième ou troisième rang ? », MamieCaro pour la meilleure
citation de tableau au monde, et même un plombier bio pas étranger à ma décision
de commencer une thèse...), mais pour ne pas précéder ce manuscrit d’un roman, il
va falloir conclure. Je finirai donc en mêlant ici et peut-être ailleurs, passé, présent
et je l’espère futur : merci David, d’avoir été, d’être et de rester, celui auprès de
qui j’ai envie de me réveiller chaque matin et de m’endormir chaque soir (mais
jamais sur mes lunettes). Eh, monsieur, tu sais quoi ? T’es quand même chouette.



Introduction et guide de lecture

Ordonnancer consiste à décider quand et comment allouer des ressources (ma-
chines, processeurs...) à un ensemble de tâches, en respectant certaines contraintes
(capacité, précédence...), afin d’optimiser un ou plusieurs objectif ou indicateurs
de performance (temps d’achèvement, retards, coûts de traitement...).

Dans le cas de ressources physiques, si les tâches sont constituées de plusieurs
opérations s’effectuant sur différentes ressources, on est amené à se poser la ques-
tion du transport des objets ou matériaux impliqués entre les ressources affectées.
La prise en compte du transport génère alors des contraintes propres, liées à l’uti-
lisation éventuelle de ressources spécifiques pour assurer les déplacements, et à la
disposition physique des ressources de traitement : temps de déplacements, capa-
cités et disponibilités des ressources de transport, connexions et accessibilité d’une
ressource de traitement depuis une autre...

Dans ce travail, nous nous intéressons à deux problèmes associant ordonnance-
ment et transport, dans deux contextes différents : la production manufacturière
(Chapitres 1 à 4) et la gestion ferroviaire (Chapitre 5).

Le premier problème concerne les cellules robotisées : il s’agit d’un modèle
d’atelier en ligne (flow-shop), où le transport des pièces entre les machines est
assuré par un bras robotisé. Les pièces à produire doivent être récupérées à l’entrée
de la cellule, être transportées sur chacune des machines pour y être traitées, et
enfin déposées à la sortie de la cellule. On cherche à déterminer une programmation
cyclique du robot afin d’optimiser le débit de la cellule. En fonction du type de
robot utilisé et de la disposition des machines, on peux distinguer deux types
de configuration : linéaire et circulaire. Dans le cas de la configuration linéaire,
l’entrée et la sortie de la cellule sont séparées, le robot ne peut se rendre de l’une à
l’autre sans traverser l’ensemble de la cellule (cas, par exemple, d’un robot circulant
sur un rail rectiligne). Dans le cas circulaire, l’entrée et la sortie de la cellules
sont jointes ou très proches, et le robot peut faire le tour complet de la cellule
(cas de machines disposées en cercle et desservies par un bras robotisé situé au
centre) : ceci permet d’économiser du temps de transport, au prix, semble-t-il,
d’une plus grande complexité. En effet, les principaux résultats théoriques établis
pour la configuration linéaire ne s’appliquent pas à la configuration circulaire, et

xi



xii INTRODUCTION ET GUIDE DE LECTURE

celle-ci demeure moins bien comprise. Notre objectif est donc d’en d’améliorer la
compréhension théorique ; nous nous intéressons pour cela à un cas particulier,
celui des cellules régulières et équilibrées.

Les Chapitres 1 à 4 sont consacrés à ce premier problème. Le Chapitre 1 pré-
sente une introduction aux cellules robotisées : nous y exposons les concepts néces-
saires à la modélisation d’une cellule robotisée, les principales questions théoriques
ainsi qu’un état de l’art sur le sujet ; nous y précisons ensuite le cadre choisi pour
les travaux menés dans les chapitres suivants. Le Chapitre 2 présente des outils
utilisés par la suite pour l’analyse des programmations (cycles) possibles : sa lec-
ture est recommandée avant d’aborder les Chapitres 3 et 4. Ces deux chapitres
abordent, dans le cas des cellules robotisées circulaires régulières et équilibrées,
deux problèmes théoriques classiques (introduits dans le Chapitre 1) concernant
les cycles de production d’une pièce exactement (1-cycles) : la conjecture des 1-
cycles et le problème des meilleurs 1-cycles. Dans le Chapitre 3 nous établissons
certaines propriétés des cycles performants, qui nous permettent de fermer le pro-
blème du meilleur 1-cycle pour des cellules de petite taille (jusqu’à 8 machines) ;
nous donnons également un contre-exemple à la conjecture des 1-cycles pour 6-
machines. Dans le Chapitre 4 nous nous intéressons aux cellules arbitrairement
grandes (plus de 8 machines), et cherchons à dégager des propriétés structurelles
des programmations dominantes. Sans trop en dévoiler, disons qu’on y parle de
vagues – et qu’il vaut mieux bien s’amarrer.

Le Chapitre 5 est consacré au second problème, concernant la gestion ferro-
viaire – il peut donc être lu indépendamment des précédents. Il s’agit d’un pro-
blème industriel présenté dans le cadre du Challenge EURO/ROADEF 2014 ; ce
chapitre présente notre contribution. On s’intéresse à la gestion des trains au sein
d’une gare. Une gare est constituée de ressources de différents types : ressources de
traitement (plate-forme pour le traitement des arrivées et des départs, ressources
de maintenance), de stockage (parkings et voies de garage) et enfin ressources
de transition (aiguillages). Le déplacement des trains sur et entre ces ressources
obéit à des contraintes liées aux ressources elles-mêmes (capacité, temps de par-
cours), à leur disposition (adjacence et connexité des ressources), et aux autres
trains (collisions et blocages). La formulation originale mêle un grand nombre de
sous-problèmes (affectation des départs et arrivées, affectation des plateformes,
routage, maintenance des trains, jonctions et disjonction des rames), contraintes
et objectifs (nombre de départs satisfaits, coûts de performance et d’occupation des
ressources, de maintenances...) reflétant la complexité du problème en pratique.
Nous simplifions la formulation originale afin de nous concentrer sur le problème du
routage, pour lequel nous proposons un algorithme par propagation de contraintes
multi-intervalles, suffisamment souple pour permettre, couplé à un algorithme d’af-
fectation glouton, d’obtenir une solution réalisable.



Chapter 1

An introduction to robotic cells

Scheduling consists in deciding how and when to allocate available resources (servers)
to a set of tasks (or jobs) to be performed, subject to certain constraints (capacity,
precedence between tasks...) in order to optimize one or more objective function
(total completion time, cycle time, lateness, cost...). In the context of manufac-
turing production, the tasks may be parts to be produced, and the resources the
machines on which the processing takes place.

Classical scheduling theory distinguishes between scheduling problems on par-
allel servers, and on dedicated servers. The second class is itself divided into
3 categories: job-shops, open-shops and flow-shops. Several operations have to
be performed on a job: in a flow-shop, the operations sequence is fixed and
is the same for all the jobs; in a job-shop, it is still fixed but job-dependent;
in an open-shop, the operations sequence is up to the scheduler to decide. In
terms of manufacturing production, in a flow-shop, all parts are processed on the
machines in the same order. The minimization of the makespan in a flow-shop
with 3 machines or more is NP-Hard, with and without buffer between machines
(Garey et al., 1976, Hall and Sriskandarajah, 1996). For 2 machines, it is poly-
nomial both for the case with unlimited buffering capacity (Johnson, 1954) and
the no-buffer case (Gilmore and Gomory, 1964, Hall and Sriskandarajah, 1996).
However, it is NP-hard when the buffer is of limited non-zero capacity (Papadim-
itriou and Kanellakis, 1980)). Pinedo (2008) and Leung et al. (2004) are, for in-
stance, reference books on classical scheduling theory and algorithms; the web page
http://www2.informatik.uni-osnabrueck.de/knust/class/ maintains an in-
ventory of classical scheduling problems and their complexity status.

However, classical scheduling theory (and, specifically, the classical flow-shop
model) does not fully account for modern manufacturing systems. Additionally
to the processing machines, auxiliary resources must be considered for example
human operators in the case of semi-automated systems, and handling resources
such as automated guided vehicles or mobile robots.

1
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Section 1.1 presents robotic cells, one of the models which take into account
handling resources (namely handling robots). Section 1.2, Section 1.3 and Sec-
tion 1.4 present a literature review on three types of robotic cells: with no-wait
condition, with unbounded waiting times, and with flexibility. Section 1.5 states
the scope of our work and the notations used throughout this document.

1.1 Robotic cells: generalities
A robotic cell consists of a flow-shop where the m machinesM1, . . . ,Mm are served
by one or several robotic arms. The cell also contains an input buffer, where parts
to be processed are usually supposed to be available in infinite quantity, and an
output buffer of similarly infinite capacity where fully processed parts are to be
transferred. The input and output buffer are generally represented by two auxiliary
machines M0 = In and Mm+1 = Out. Figure 1.1 shows two examples of three-
machine cells with two different layouts, semi-circular (where the input and input
buffers are separated) and circular (where the input and output buffers coincide).

Out

M1

M2

M3

In

(a) semi-circular layout

M1

M2

M3

In/Out

(b) circular layout

Figure 1.1: Three-machine robotic cells

Each part must be taken from the input buffer, transferred successively on
each machine (M1, then M2, etc. until Mm) to complete their processing, then it
is transferred to the output buffer.

The model was first introduced by Asfahl (1985) to describe a production cell
for truck differentials, while Sethi et al. (1992) provided the first formal study for
small dimension cells.
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In the general case, where multiple part types must be produced, two types of
decisions must be made: sequencing the parts, and scheduling the robot moves.
In the case where only one type of part is to be produced, there is no decision to
make for the part sequencing: the problem reduces to finding an optimal robot
move schedule.

In the classical model, the cell is equipped with a single robot able to handle
only one part at a time (single gripper), the machines are specialized and can
only carry out one type of operation (non-flexibility), and machines are without
buffer facility. In this set-up, a blocking constraint is enforced: the robot has to be
empty in order to pick-up a part, and any machine (except for the input and output
buffers) has to be unloaded before it can be loaded again. Hall and Sriskandarajah
(1996) presents a survey of flow-shop problems with blocking constraints.

Other models allow to relax this blocking constraint, by using different types
of robots (multi-gripper robot, robot with swapping ability), or adding machine
buffers.

The following two sections describe the different models for processing policies
and travel policies in robotic cells. They are largely extracted from the survey
(Brauner, 2008).

1.1.1 Processing and pick-up criterion

The processing starts as soon as a part is loaded on a machine. The processing
time represents the minimum time a part must remain on a machine. If all parts
are different, pij denotes the processing time of part j on machineMi. If one wants
to produce one large batch of identical parts, the processing times of the parts on
machine Mi are pi = pij. In the balanced case1, all processing times are equal, i.e.,
pij = pj, or, for the production of identical parts, pi = p for all i.

Once the part is finished, two policies may apply. In the no-wait case, the part
must be removed immediately from the machine and transferred to the following
machine. In the unbounded case (also denoted as free pick-up), the part can remain
on the machine waiting for the robot.

A classical extension of those two cases is the so-called Hoist Scheduling Prob-
lem (HSP); in this case, the processing time is described by an interval, and the
no-wait policy applies. This means that the time part j may remain on machine
Mi lays in the specified interval. This applies to chemical treatments were the
machines correspond to chemical baths. The HSP is NP-hard even for identical
parts and very simple (additive, as defined in the next section) configurations of
cells (Crama and van de Klundert, 1997b).

1Also called proportionate flowshop.
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Loading and unloading times

During the loading of a part onto a machine from the robot or the unloading of a
part from a machine onto the robot, both the machine and the robot are occupied.
The time necessary to perform these operation is often assumed to be part- and
machine-independant, and denoted by ε. Lehoux-Lebacque (2007) showed that in
bufferless robotic cells, loading and unloading times can be dismissed without loss
of generality.

Note however that the problem of robotic cells with sequence-dependent loading
times has been investigated recently (see e.g. Majumder and Laha, 2016, Zarandi
et al., 2013).

1.1.2 Travel metric and layout
There are different classical metrics for the travel times of the robot depending on
the physical configuration of the cell and on the characteristics of the robot. We
denote by δi,j, the travel time of the robot (empty or loaded) from Mi to Mj. It
is natural, and in practice desirable, to assume that the travel times satisfy the
classical properties of a metric:

• the travel time from a machine to itself is zero, that is, δi,i = 0;

• the travel times satisfy the triangle inequality, that is, δi,k + δk,j ≥ δi,j for all
i, k and j;

• The travel times are symmetric, that is δi,j = δj,i for all i and j.

Travel times verifying those three assumptions are called general (or sometimes
“euclidean”, e.g. in Dawande et al. (2005b)). Special configurations of cells have
been studied in the literature.

For additive times, to travel between distant machines, the robot passes through
all intermediate machines and its speed is constant. This metric is the most popular
since, in practice, it is applicable if the machines are on a circle or on a line and
if the cell is dense (the robot does not have time to speed up between distant
machines). In this case, one has the triangle equality δi,j = δi,k +δk,j = ∑j−1

k=i δk,k+1
for any i ≤ k < j. By symmetry, this also defines δi,j for i > j. Some authors (e.g.
Hall et al. (1997), Logendran and Sriskandarajah (1996)) consider an extension of
this case having a constant gain γ when travelling between distant machines, i.e.,
δi,j = ∑j−1

k=i δk,k+1 − (j − i− 1)γ for i < j. We assume γ = 0.
In the regular case, the machines are equidistant and we denote δi,i+1 = δ.

This constraint can be added to the additive constraint (as in the seminal paper
by Sethi et al. (1992)).
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For constant travel times (introduced in Dawande et al. (2002)), δ is the time
for the robot to travel between any two distinct machines Mi and Mj: δi,j = δ.

Finally, depending on the type of robot used, the machines and the input and
output stations can be disposed in several ways. Two main configurations are
used: on the one hand, linear or semi-circular layouts (Figure 1.1a), where the
input and output buffers are separated and located respectively at each end of the
line (Crama and van de Klundert, 1997a), and on the other hand, circular layouts
(Figure 1.1b), where the machines are arranged in a circle, with the input and
output buffers either occupying the same spot (M0 = Mm+1), or very close (Jung
et al., 2015, Rajapakshe et al., 2011). In this case, the robot chooses the shortest
path along the circle formed by the machines. Then, the travel times verify δi,j =
min(∑j−1

k=i δk,k+1,
∑m
k=j δk,k+1 + ∑i−1

k=0 δk,k+1) for any i < j. This can be combined
with the additive and regular constraints.

1.1.3 Throughput optimisation and cyclic scheduling
A possible optimization goal is to minimize the makespan of a lot (total completion
time of the lot). Makespan optimization in robotic flow-shops is addressed for
example by Carlier et al. (2010), Hurink and Knust (2001), Kise (1991), Soukhal
and Martineau (2005), Yang et al. (2016).

However, for large-scale production, the maximization of the throughput rate of
the cell, with infinite horizon, may be considered as the objective. In this context, it
seems operationally relevant to prefer a cyclic programmation. This means that the
robot repeats indefinitely the same move sequence, each iteration leaving the cell in
the same state, with the same machines loaded, the same machines empty and the
robot in the same place. Indeed, cyclic programmations are dominant (Dawande
et al., 2005a), which means that, for any set of parameters, there always exists an
optimal programmation which is cyclic. The elementary sequence is called a cycle.

Robot move sequences (and thus cycles) can be described using the concept
of activities, defined by Sethi et al. (1992). Activities are elementary robot moves
defined as such: for i ∈ {0 . . .m}, activity Ai refers to the following sequence of
events:

1. The robot unloads a part from Mi;

2. The robot travels to Mi+1;

3. The robot loads the part onto Mi+1.

In the classical model, a cycle is entirely specified by a sequence of activity.
Cycles which produce exactly k parts are called k-cycles (or k unit cycles). Thus,
1-cycles are particular cycles which produce one part exactly: during one iteration,
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exactly one part enters the cell at M0, and one processed part leaves the cell at
Mm+1.

Maximizing the throughput of the cell equates to minimizing its cycle time, or
more accurately, its cycle time in regards to the number of part produced by one
iteration (k for a k-cycle). The cycle time might not be the same for each repetition
of the cycle, therefore we consider the long run average cycle time. More detail on
the computation of the long run average cycle time and an example can be found
in Chapter 2, page 32.

Sethi et al. (1992) establish that in an m-machine cell, the number of 1-cycles
is m!. Using the concept of activity, all the 1-cycles can be obtained by consider-
ing the permutations of the m activities A1 . . . Am (Sethi et al., 1992). Formally,
1-cycles are of the form π = A0, Ai1 , Ai2 . . . Aim where (i1, i2...im) is a permutation
of {1, 2...m}. More generally, k-cycles are characterized as the sequences of activ-
ity such that each activity occurs exactly k times, and between two consecutive
occurrences (in a cyclic sense) of an activity Ai with i /∈ 0,m+ 1, there is exactly
one occurrence of the activities Ai−1 and Ai+1 (Crama and van de Klundert, 1999).
Among 1-cycles, two common (and intuitive) permutations are the identity (or up-
hill) permutation A0A1A2 . . . Am, and the downhill permutation A0AmAm−1 . . . A1.
They will be described in more detail in Chapter 2.

One-cycles are easy to describe and enumerate using the concept of activities,
as they are exactly the permutations of the m activities (Sethi et al., 1992). They
are also easier to implement operationally. As a consequence, it is convenient to
restrict the possible move sequences to 1-cycles only (this problem is known as
the best 1-cycle problem). But does this allow to find an optimal sequence? Sethi
et al. (1992) formulate the 1-cycle conjecture:

Conjecture 1.1 (1-cycle conjecture Sethi et al. (1992)). The set of 1-cycles is
dominant (for any set of parameters, there always exists a 1-cycle which is opti-
mal).

This conjecture has been settled in some cases, which we expose later in Sec-
tion 1.2 and Section 1.3.

For the case where multiple part types are to be produced, the cyclic production
of a Minimal Part Set (MPS) is considered. A MPS is defined as a minimum
cardinality set such that the relative proportion of each type of part is the same
as in the overall demand (Dawande et al., 2007). A MPS-cycle is a cycle during
which all the parts in a MPS are produced: all parts in the MPS enter the cell
and all parts in the MPS exits the cell. The idea of 1-cycles can be extended to
multiple part type production by considering Concatenated Robot Move (CRM)
cycles: CRM-cycles are MPS-cycles consisting of the repetition of a same 1-cyclic
sequence as many times as there are parts in the MPS.
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When considering relations between cycles, we will use these meanings of “op-
timality” and “dominance”:

• A cycle c is optimal for a given instance (or set of instances) if it performs
at least as well as any possible cycle for this instance (or for each instance
of the set).

• A cycle c is optimal within a set of cycles S for a given instance or set of
instances, if it performs at least as well as any cycle in S on this instance or
set of instances (in other words, it is optimal for the problem restricted to
the cycles in S).

• A set of cycles S is dominant if, for every possible instance, an optimal cycle
can be found in S.

• A set of cycles S is dominant over a set of cycles T , or S dominates T , if for
every possible instance, an optimal cycle within T can be found in S.

• A cycle c dominates a cycle g (or g is dominated by c) for a given set of
instances, if c performs at least as well as g for all these instances.

• A cycle c is non-dominated by a set of cycle S on a given set of instances if
there exist an instance within this set for which c strictly outperforms every
cycle in S.

Several synthetic efforts provide useful insights about cycling scheduling in robotic
cells. Levner et al. (2010) present an overview of the complexity status of cyclic
scheduling problem, including robotic cyclic scheduling. Dawande et al. (2007)
have written a book on throughput optimization in robotic cells both with single
and dual gripper robots. Crama et al. (2000) present a survey on bufferless robotic
cells and Brauner (2008) on the cyclic production of identical part in classical
robotic cells. Bagchi et al. (2006) present a survey of TSP-based approaches for
contemporary flow-shop problems, including the robotic flow-shop model.

In the following, we present an overview of the existing work on robotic cells
with no-wait condition (Section 1.2), cells with unbounded waiting times (free-
pickup) (Section 1.3), and finally, cells with flexibility (Section 1.4). In this last
case, the allocation of operations to machines has to be decided, jointly with the
robot move sequence and, if relevant, the part sequencing. We do not develop
the more complex case of cells with interval or time window condition (HSP).
Remember that in this configuration, the problem is NP-hard even in simple cases
(Crama and van de Klundert, 1997b); existing literature focuses on Mixed Integer
Programming (MIP) formulation, branch and bound and heuristic algorithms (see
e.g. Kats et al., 2008, Phillips and Unger, 1976, Zhou et al., 2012). Unless otherwise
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specified, the work presented here deals with cyclic optimization. We also do not
develop the case of hybrid robotic flow-shops with parallel machines at each stage (
(see e.g Elmi and Topaloglu, 2014, Geismar et al., 2004, Soukhal, 2001, Zabihzadeh
and Rezaeian, 2016).

1.2 No-Wait condition
Production constraints may require for the parts to be picked up immediately
after the end of their processing (Levner et al. (1997)). This classical scheduling
constraint can model, for example, the case where the processing stations are
chemical baths which must last a precise amount of time (Song et al. (1993)). It is
referred to as no-wait condition, constant processing times or zero-width processing
time windows. Note that for a given instance and move cycle, there might not
exist a schedule satisfying the no-wait constraint: contrary to the unbounded case,
feasibility must be considered. In the case of identical part production, a schedule
is completely specified by the input time of the parts from which the robot move
sequence can be deduced (Agnetis, 2000).

This section presents major results on no-wait robotic cells. All the models
considered have a linear layout (where the input and output buffer are separated,
as in Figure 1.1a), although results given for 2- and 3-machine cells can also be
applied to circular layout cells.

1.2.1 Solved and open problems for small-dimension cells
Agnetis (2000) considers general production cycles for 2-machine cells produc-
ing multiple part-types, and 2- or 3-machine cells producing identical part types.
Travel times are assumed to satisfy the triangle inequality. For identical part
production, the author notes that the 2-machine no-wait case is similar to the
2-machine case with unbounded waiting times solved by Sethi et al. (1992). For
the 3-machine case, Agnetis (2000) shows that the optimal cycle is either a 1-cycle
or a 2-cycle and he provides an algorithm to compute it in constant time, using
a forbidden region approach which is not easily extensible to a higher number of
machines. The author gives an example of a non-dominated 2-cycle thus proving
false the 1-cycle conjecture.

For multiple part-types production, Agnetis (2000) shows that the 2-machine
case may be reduced to a classical 2-machine no-wait flowshop problem and hence
solved in O(n log n) using the Gilmore-Gomory algorithm (Gilmore and Gomory,
1964) for special TSP cases, while the NP-hardness of the problem for 3 machines
and more ensues of the NP-hardness of the corresponding classical no-wait flowshop
problem (Röck, 1984).
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Subsequently, Agnetis and Pacciarelli (2000) focus on multiple part-types pro-
duction on 3-machine cells and consider only repetitions of the same 1-cyclic se-
quences (defined as CRM cycles by Sriskandarajah et al. (2004)). For each of the
six possible cycles, they study both the feasibility and optimization aspects of the
part sequencing problem. For two of these six cycles, both problems are polyno-
mially solvable. For two others, even the feasibility problem is shown to be unary
NP-complete (this is proven using a reduction from Numerical Matching with Tar-
get Sum). For the last two, the feasibility problem equates to a classical 2-machine
flowshop problem and can thus be solved by Gilmore-Gomory algorithm, but the
optimization problem is a special case of the Traveling Salesman Problem (TSP)
which complexity status is still open.

1.2.2 Identical part production
In this section, we present works addressing identical part production in cells of
arbitrary dimension, whether restricted to 1-cyclic schedules or more general 2-
cyclic or k-cyclic schedules.

1-cycles

Levner et al. (1997) and Kats and Levner (1997) consider identical part production
in m-machine cells, with general travel-times, and provide polynomial algorithms
for finding the best 1-cycle in the no-wait case. Kats and Levner (1997) provide
an algorithm based on a forbidden intervals approach, running in O(m4 logm),
which also solves the more general problem of reentrant robotic cells (where the
number of operations to be performed is greater than the number of machines,
meaning that the part has to reenter the cell to complete its processing). Levner
et al. (1997) give an improved algorithm for the classical model, finding the best
1-cycle in O(m3 logm).

As 1-cycles are generally not optimal (as noted e.g. by Agnetis (2000)), subse-
quent works focus on multi-cyclic schedules.

2-cycles

Che et al. (2003) consider 2-cyclic robot move sequences in conditions similar to
Levner et al. (1997). The polynomiality of finding an optimal 2-cycle had been con-
jectured by Levner et al. (1996). Che et al. (2003) derive a O(m8 logm) algorithm,
subsequently improved by Chu (2006) to O(m5 logm). The authors’ numerical ex-
periments show that considering 2-cycles leads to a significant improvement of the
optimal cycle time compared to considering only 1-cycles, which increases with the
number of machines, and decreases when the time necessary to perform the robot
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moves increases. With m = 10 fixed, the experiments show that the improvement
is smaller for very small ( di,i+1 < 2 or very large di,i+1 > 7 ) travel times. Kats
and Levner (2009) extend this results to the non-euclidean case where the travel
times don’t satisfy the triangle inequality.

k-cycles

Kats et al. (1999) study cycles of arbitrary degree but only instances with integer
input data, and integer schedules. They show that the number of integer solu-
tions for a given degree k is finite, and provide a sieve procedure performing an
exhaustive search in order to output an optimal k cycle. The algorithm runs in
O(km3mk) and is therefore polynomial in m for a given k, but exponential in k.

Agnetis’ conjecture

As stated in section 1.2.1, Agnetis (2000) proves that the optimal cycle for a 3-
machine cells is either a 1-cycle or a 2-cycle. The author conjectures that this
may be extended to an arbitrary number of machines; formally, that an optimal
cycle can be found within the set of k-cycles with k ≤ (m− 1). Mangione (2003)
explores the validity of this conjecture for the special case of regular balanced cells
and proves it is true for 4-machine cells, by studying possible configurations of the
cells state graph. For m-machine cells, Mangione et al. (2003) states a conjecture
on the structure of optimal cycles which, if proven, confirms Agnetis’ conjecture,
and proves it for some values of k and of the processing time p. Pavlov (2013)
appears to prove the remaining cases for 5-machine cells2.

To this day, Agnetis’ conjecture is still open for no-wait robotic cells, even in
the regular balanced case.

1.2.3 Multi-robot cells
More recent works consider cells with several robots. Robots can evolve on parallel
tracks or on a single track. In the latter case, collision-avoidance constraints are
added to the problem, while the former might be reduced to an extension of the
single-robot problem coupled with an assignment problem.

Kats and Levner (2002) extend the results from Kats and Levner (1997) to the
problem with several robots on parallel tracks, with robot-dependent travel-times,
providing a O(m3 logm) algorithm for finding the best 1-cycle.

In the single track case, collision-avoidance constraints change the structure of
the problem. Considering identical parts, identical robots and 1-cyclic schedules

2Due to a lack of Russian reading skills, this statement relies heavily on blind trust in auto-
mated translation tools.
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only, Leung and Levner (2006) compute the minimum number of robots necessary
to achieve a given cycle time in O(m2). Their algorithm operates by defining
a partial order on robot moves based on the notion of conflicting moves, then
finding the longest chain in the corresponding graph. Based on this, they suggest
an algorithm for computing the minimum number of robots necessary to achieve
any cycle time in O(m5), and note that it is not strictly decreasing with the cycle
time. Assuming similar hypothesis, Che and Chu (2008) give a mathematical
formulation of the problem and devise an algorithm which finds the best 1-cycle
for a given number of robots R inO(m6R). Liu and Jiang (2005) and Jiang and Liu
(2007) consider a more general problem where the part flow does not necessarily
coincide with the order of the machines in the cell, respectively with 2 robots
and an arbitrary number of robots, and solve it in polynomial time (respectively
O(m4logm) and O(m6R), where R is the number of robots). These algorithms are
based on the identification of threshold cycle times where the feasibility condition
changes. Che et al. (2012) solve the problem in O(m5) for any number of robots
on the more general model of reentrant cells, although contrary to Jiang and Liu
(2007), they do not enforce the upkeep of a safe distance between the robots.

Multi-cyclic production with several robots on parallel tracks are studied by
Che and Chu (2005, 2009), respectively with 2 robots and an arbitrary number of
robots. The proposed algorithms run in polynomial time in m for a given degree
k, but are exponential in k.

The case of several robots on a single track is addressed by Che et al. (2011),
who propose an algorithm for finding the best 2-cycle in O(m7).

1.3 Unbounded waiting times

In this section we consider the case where the parts’ pickup is not submitted to
a time-window constraint. This is referred to as unbounded waiting times or free
pickup criterion. Contrary to the no-wait case, once processed, a part might stay
on a machine until the robot is free to pick it up. If there are no machine buffers,
the machine is blocked until the part has been unloaded and transferred to the
next machine. Models including machine buffers, robot buffers or robots with
several gripper allow to release this constraint increasing the complexity of the
problem. In the case of multiple part production, the problems to solve are the
part sequencing and the robot moves scheduling. In the case of identical part
production, contrary to the no-wait case, a schedule is not entirely specified by
the input times of the parts: the robot moves sequence has to be determined.
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1.3.1 Small scale cells

Sethi et al. (1992), Hall et al. (1997) and Hall et al. (1998) consider additive semi-
circular 2- and 3-machine cells with linear layout. The identical part production
problem on 2-machine cells is solved by Sethi et al. (1992): the authors show that
the optimal robot move sequence is one of the two possible 1-cycles A0A1A2 or
A0A2A1. The proof relies on the fact that while the robot is transferring a part
between the 2 machines, both machines are empty, and this does not depend on
the configuration of the cell. It is therefore also valid for the circular case. For
production of multiple parts on 2-machine cells, Sethi et al. (1992) study the part
sequencing problem when the robot move sequence is set to either one of the two
possible CRM sequence: the repetition of A0A1A2, or the repetition of A0A2A1,
and show it can be solved using the Gilmore and Gomory algorithm (Gilmore
and Gomory, 1964). However, Hall et al. (1997) show that CRM cycles are not
generally optimal, by giving a counter-example for the 2-machine case. In this
case, finding an optimal robot move sequence consist in deciding which part are to
be produced under which of the two possible sequence, and how to switch from one
to another. The authors give a O(m4) algorithm that outputs jointly the robot
move schedule and the part sequencing leading to the optimal cycle time, using
the Gilmore and Gomory algorithm as a subroutine, improved later on by Aneja
and Kamoun (1999), who provide a O(m logm) algorithm.

Sethi et al. (1992) define the 6 possible 1-cycles for 3-machine cells producing
identical parts, derive their cycle time and provide a decision tree for determining
the best one. However, for multiple part-type production, Hall et al. (1998) show
that for 2 of the 6 possible CRM-cycle, the part sequencing problem is unary NP-
complete, as well as the general part sequencing problem not restricted to any robot
cycle (even for the regular case). For these two cycles, Chen et al. (1997) propose
a branch-and bound algorithm (extensible to m machines), using the Gilmore and
Gomory algorithm to provide a lower bound. Hall et al. (1997) show that for the
4 other CRM-sequences the part sequencing problem is polynomially solvable and
deduce special cases for which the best 1-cycle problem is polynomially solvable.
Kamoun et al. (1999) propose simple heuristics for some of the other cases. More
recently, Zahrouni and Kamoun (2012) propose a constructive heuristic for the
three-machine case not restricted to CRM cycles which outperform the latter in
most of the tested instances. Kamalabadi et al. (2008) propose a metaheuristic
approach using a swarm particle optimization algorithm and a formulation of the
problem based on Petri nets.

Steiner and Xue (2005) extend the results of Sethi et al. (1992) and Hall et al.
(1997) to the model of reentrant regular cells (as described for example in (Midden-
dorf and Timkovsky, 2002)), showing that CRM cycle are not generally optimal
for 2-machine reentrant cells, and that in 3-machine loop-reentrant cell (where the
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processing must be finalized on the first machine), the part sequencing problem is
strongly NP-hard for two of the possible CRM-cycles, and for the general problem
not restricted to any robot move sequence.

1.3.2 Multiple part types
As for cyclic production of multiple part types, Sriskandarajah et al. (1998) extend
the complexity results of Hall et al. (1997) to m machine cells. The authors
classify the m! possible CRM-cycles into four categories according to the structure
and complexity of the associated part scheduling problem: trivial, polynomially
solvable modeled as a special case of TSP, unary NP-hard modeled as a TSP,
unary NP-hard without TSP structure. They show that only 2m − 2 of the m!
possible cycle fall in the first two categories, while for all the remaining CRM-
cycles, the part scheduling problem in NP-hard. Dawande et al. (2007) explains
how to extend the heuristic proposed in Kamoun et al. (1999) to the m-machine
case.

Makespan optimization Other works consider non-cyclic production, with the
makespan of a given set of part as the objective function. Soukhal and Martineau
(2005) propose a Mixed Integer Linear Programming (MILP) model (for additive
travel times); they derive a lower bound and propose a genetic algorithm. Carlier
et al. (2010) propose a decomposition of the problem into a flowshop problem
(integrating transportation times and blocking problem) and a single machine
problem with precedence constraints, both of which are solved using a branch and
bound procedure. They also propose a genetic algorithm. Kharbeche et al. (2011)
give a MILP formulation for the problem with general (euclidean) travel time, and
new lower bounds. They describe a branch and bound algorithm, using a genetic
algorithm to provide an initial upper bound.

1.3.3 Identical part production
In this section we present the works addressing identical part production in classical
(single-gripper, bufferless) robotic cells.

Brauner et al. (2003) show, by a reduction from a TSP problem, that with
general (euclidean) travel time, the problem is strongly NP-hard. Geismar et al.
(2005b) provides a 4-approximation. More recently, a metaheuristic approach is
presented by Elmi and Topaloglu (2016) for solving the problem with multiple
robots.

In the following, we expose the results concerning, on the one hand, cells with
constant and linear additive travel time (which are quite similar), and on the other
hand, cells with circular additive time (as in Figure 1.1b).
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Constant travel times and linear layout with additive travel times

Finding a best 1-cycle is proven to be polynomial in constant and linear addi-
tive cells respectively by Dawande et al. (2002) and Crama and van de Klundert
(1997a). Crama and van de Klundert (1997a) result relies on the dominance of
pyramidal permutation over 1-cycles. A 1-cycle is said to be pyramidal if its se-
quence of activities, starting with A0, is strictly increasing, then strictly decreasing.
Formally, a 1-cycle π = (A0, Ai1 , Ai2 . . . Aim) where (i1, i2...im) is a permutation of
{1, 2...m}, is pyramidal if there is a p such that 1 ≤ i1 < . . . < ip = m and
m > ip+1 > . . . > im ≥ 1. Crama and van de Klundert (1997a) prove their domi-
nance over other permutation and deduce a O(m3) algorithm for finding the best
1-cycle.

We have seen that, for the production of multiple part types, CRM-sequences
are not dominant even for 2 machines (Hall et al. (1997)). However, in the case
of production of identical parts, Hall et al. (1997) show that in 3-machine regular
cells, 2-cyclic sequences are dominated by 1-cycles. This is extended to k-cycles by
Crama and van de Klundert (1999), proving the 1-cycle conjecture for 3-machine
additive cells. Brauner and Finke (1999) propose a shorter and simpler proof of
this result. However, the conjecture was proven false for 4-machines by Brauner
and Finke (2001), who provide a 3-cycle which performs better than any 1-cycle on
a specified instance in a regular additive 4-machine cell. The conjecture formulated
by Agnetis (2000) (for no-wait cells), stating that an optimal cycle can be found
within the set of k-cycles with k ≤ m − 1 was also proven false in 4-machine
regular additive and constant cells by Brauner and G.Finke (2005). In the case
of regular additive balanced cells, however, the 1-cycle conjecture is proven valid
until 6 machines by Brauner and Finke (2001); Brauner (2008) claims the proof
can be extended for m ≤ 15.

Thus, 1-cycles are generally not dominant, and the complexity of finding the
best k-cycle with k ≥ 2 is still open, both in the constant and additive cases.
However Geismar et al. (2008, 2005b, 2007) provide bounds on the performance of
1-cycles over k-cycles (and thus approximation algorithm with guaranteed perfor-
mance). Geismar et al. (2005b) expose how to construct in linear time a 1-cycle
with a performance ratio of 1.5, both in the constant and regular additive case.
Geismar et al. (2008, 2007) improve this ratio respectively to 10

7 in the regular
additive case, and 9

7 in the constant case, both ratios being tight.
Finally, the complexity status of the best 1-cycle problem in the balanced case

(where all processing times are equal) is not settled by the algorithm proposed by
Crama and van de Klundert (1997a). Indeed, in this case, the input consists in
only 3 or 4 numbers: the number of machines m, the processing times p, the travel
time between consecutive machines (for the regular additive case) or between any
pair of machines (for the constant case), and possibly the loading/unloading time ε.
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Thus, the algorithm of Crama and van de Klundert (1997a) is exponential with
respect to the input size. Brauner (1999, 2008) address this issue. The author
shows that the best k-cycle in the constant balanced case, and the best 1-cycle
in the regular additive balanced case can be found in polynomial time. In the
constant balanced case, the optimal k-cycle is one of the two simple permutations:
the uphill cycle or the downhill cycle; so the 1-cycle conjecture is true in this case,
for any number of machine.

Circular layout with additive travel times

Major results for classical linear cells rely on the dominance of pyramidal permu-
tations over 1-cycles. However this no longer holds for cells with circular layout:
a counter-example can easily be found (see for example Rajapakshe et al. (2011)
or Brauner (1999)). Geismar et al. (2005a) note that in this case, the 1-cycle
conjecture is still open, and no polynomial algorithm is known for finding the best
1-cycle.

The two machine case is solved, as the proof presented in Sethi et al. (1992) is
also valid in the circular case.

Brauner (1999) determines the dominant 1-cycles for 3 and 4 machines cells in
the regular additive case. The author introduces the odd-even production cycle,
which takes advantage of the cell’s circular arrangement by making the robot circle
the cell twice, serving even machines on the first round and odd machines on the
second, and conjectures its properties for an m-machine regular balanced cells.

For cells with m ≥ 3, Rajapakshe et al. (2011) consider a circular layout with
additive regular travel times and generic processing times. Note that the input and
output buffers are not in the same place, but separated by δ. However we believe
this difference does not qualitatively impact the results. The authors first prove
the NP-hardness of the best 1-cycle problem for this layout, then seek to provide
approximations in order to assess the performance of a circular layout as opposed
to the linear one. They show the odd-even cycle provides a 2-approximation of the
best 1-cycle, and provide a 5

3 approximation by introducing a class of cycles called
loop cycles, formed by alternating uphill and downhill segments3. For some cases,
depending on the number of short, medium, and long processing times compared to
the distance between consecutive machines, a 3

2 approximation or even an optimal
1-cycle is given. No specific results are derived for the balanced case, in particular,
the complexity status of the best 1-cycle problem is still open.

As a follow up to this work, Jung et al. (2015) extends these results to k-unit
cycles.

3The authors appear to use a lower bound instead of the cycle time for the aforementioned
odd-even cycle. In Chapter 2 we derive another expression of the cycle time.
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Multi-function robot

Foumani et al. (2014) suggest to replace circular m-machine cells where odd-
numbered machines perform similar operation by a m−1

2 -machine cell served by
a multifunction robot able to perform those operations. For 1, 2 and 3 machine
cells, the author give the exact parameter for which this model allows to decrease
the cycle-time. For m machines, they give a sufficient condition: the cycle time is
improved if pi ≤ δ for all 1 ≤ i ≤ m. They also give a TSP-based formulation of
the problem.

1.3.4 Relaxing blocking constraints
Although the classical setup is generally studied on linear cells, models relaxing
some of the blocking constraints under additive travel time assumption mostly
consider circular layouts.

A way to release this constraint is the use of a dual gripper robot: the robot can
handle two parts. The robot can then, for example, use one gripper to transport
the part, keep one gripper empty to unload the next machine, then rotate its
gripper to load it with the part. This kind of set up is perceived as much more
complex than the single gripper one, as the number of possible cycles is much
greater: Sethi et al. (2001) show there are 52 possible 1-cycles for the two machine
case (as opposed to 2 cycles only for the single gripper case), 13 of which are
non-dominated. Sriskandarajah et al. (2004) extend the study to the production
of multiple part types, showing that for 6 of the 13 undominated cycles, the part
sequencing problem is NP-hard. For those cases, Drobouchevitch et al. (2004)
provide a heuristic with a 3

2 performance ratio.
For the production of identical parts in m-machine cells, Sethi et al. (2001)

shows that, if the gripper rotating time is smaller than the travel and processing
times, then a very simple cycle which circles the cell once, stopping at each machine
to unload then reload it is optimal within 1-cycles. Geismar et al. (2006) shows a
similar result in the case of constant travel time, for which Geismar et al. (2008),
provide a linear 9

7 -approximation for the optimal multi-unit cycle.
Another way to release the blocking constraint is to add input or output buffers

at each machine. Drobouchevitch et al. (2010) study 1-cyclic production of iden-
tical parts in single gripper circular cells with input and output machine buffers.
They show that this model allows no improvement compared to a single gripper
cell with output machine buffers only. For buffers sufficiently close to the machines,
they prove that 1-cycles are dominant.

Drobouchevitch et al. (2006) compare the performance of these two models.
The study is limited to 1-cycles, and the authors consider both dual gripper cells
with bufferless machines and single gripper cell with outputs buffers. The travel
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times are additive and regular. First, they derive all active 1-cycles (“active”
meaning that the robot doesn’t carry a part without ever unloading it during a
full cycle) and construct a polynomial algorithm for finding an optimal 1-cycle
in the case where the gripper rotation time is less than the distance between
two consecutive machines. Under this assumption, they show that a dual gripper
cell performs at least as well as a single gripper cell with output buffers at each
machine, and show an example where the improvement is strictly positive. The
intuition is that although dual grippers and machine buffers serve the same purpose
of temporarily storing parts to free the machines, the dual gripper solution is more
time efficient because it potentially reduces the robot travel time.

Note that the equivalence of these two models for an arbitrary number of
machines has later been shown by Dawande et al. (2008) for the production of
multiple parts type, restricted to CRM cycles (which are formed by the repetition
of 1-cycles), by establishing a bijection between the dominant CRM cycles for each
model, based on the cycle time.

Jung et al. (2015) study regular additive circular cell with a dual gripper robot.
As in Rajapakshe et al. (2011), the input and output stations are not at the same
place, but separated by δ. Contrary to previous works, the study is not limited to
1-cycles: the authors seek to provide algorithms with performance guarantee for
the problem of the optimal k-cycle. To this end, they introduce a class of 2-unit
dual gripper cycles called epicyclic cycles providing a 3

2 -approximation, and an
optimal k-cycle for some special cases.

Geismar et al. (2012) introduce a new model, a circular robotic cell served by
a dual armed robot. They study the cyclic scheduling for 2 and 3 machine cells
and compare the performance with single or dual gripper single armed robot cell.

Jolai et al. (2012) study circularly configured cell where the robot has an addi-
tional ability: it can swap the part it holds with the part loaded on the machine.
Thus, the robot can load a part on a non-empty machine (and unload the pre-
vious part at the same time), which is not possible in the single-gripper classical
case. The author derive a formulation of the 1-cycles cycle time depending on the
waiting time at the machines, and give a lower bound on the cycle time of any
k-cycle.

Gundogdu and Gultekin (2016) consider identical-part production on a 2-
machine linear regular additive model with a self-buffered robot (where the ma-
chines are bufferless but the robot has a dedicated buffer). For a buffer of ca-
pacity one, they find the best 1-cycle; for a buffer of capacity 2, they give a
5
4 -approximation algorithm for a case where the loading time of the buffer is small
enough (smaller than the travel time between consecutive machines). For buffer
of infinite capacity, they study a particular class of cycles. They compare their
model with the dual-gripper and swap model via a computational study.
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1.4 Flexibility and cost optimization
In flexible installations, the operations constituting a job can be performed in any
order (operational flexibility), and any machine is capable of performing any type
of operation (process flexibility). The change of operation type performed for a
machine may usually generate a cost. In this model, the allocation of operations
to machines must be solved jointly with the robot move sequence, which makes it
closest to the open-shop model.

Geismar et al. (2005a) consider a circular layout with input and output buffers
at the same position, with regular additive travel times. In this study, the as-
signment of an operation type to a machine is decided before processing a lot,
and cannot be changed until the end of the lot’s processing. Therefore, once this
assignment is decided, the setup is similar to a classical robotic cell. Note that this
type of flexibility has no interest in the balanced case, where the processing times
are equal for all operations. The authors provide a bound of the performance gain
that can be achieved by changing the operation assignment for 3 and 4 machines,
and prove that changing the assignment is never profitable for 2 machines. They
note that the bound is the same for 3 and 4 machine cells, but are not sure it could
be extended to cells with m ≥ 5.

In subsequent works, machines are considered to have the ability to switch
operations very quickly by changing tools, so that several operations for a single
part may be performed on the same machine, if the adequate tools are available.

Akturk et al. (2005) consider the case of identical part production on 2 ma-
chines; they show that the optimal cycle is either a 1-cycle or a 2-cycle (disproving
the 1-cycle conjecture for this case). Gultekin et al. (2006) extend the study to
the case where the available tools are limited (tooling constraint): some operations
can only be performed on the first machine, and some only on the second.

Gultekin et al. (2007, 2008, 2009) consider identical part production in linear
cells, without tooling constraint. They introduce pure cycles, a class of production
cycles which take advantage of the operational and process flexibility: each part
is loaded on a single machine where it will be entirely processed. Gultekin et al.
(2007) study the 3-machine case and show that pure cycles dominate all classical
1- and 2- unit cycles except one. Gultekin et al. (2008) focus on a particular simple
pure cycle where the robots loads every machines from 1 to m, then unloads them
in the same order, evaluating its performance compared to classical robot move
cycle. They also compare the performance of this cycle in linear and circular 2-
machine cells, showing that its cycle time is reduced in the circular layout. Finally,
Gultekin et al. (2009) show that pure cycles dominate classical flow shop cycles
(thus further publications focus on this type of cycle). They also formulate the
problem of finding the best pure cycle in an m machine cell as a TSP where some
distances are decision variables. Gultekin et al. (2017) extend the study to dual-
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gripper cells: they define a framework to study pure cycles for cells with dual
gripper robots; for the 2-machine case, they show that only 5 of them dominate
the others. Jolai et al. (2012) and Foumani and Jenab (2013) look into the case
of a robot with swap ability. Jolai et al. (2012) shows that in this case too, pure
cycles dominate over classical robot move cycles, while Foumani and Jenab (2013)
introduce "improved pure cycles", where some machines are left idle, showing that
in some instances they perform better than standard pure cycles.

Most studies focus on identical part production. Multiple part type production
is addressed by Batur et al. (2012) in 2-machine cells. Like Gultekin et al. (2009)
they model the problem as a generalized form of TSP, and propose a heuristic.

The problem of minimizing jointly the cycle time and the manufacturing costs
is studied by Gultekin et al. (2008, 2010) and Yildiz et al. (2012). The flexibility
of the machines allow to vary their parameters (such as their speed) to adjust the
processing times, with associated costs: thus processing times may be considered
as decision variables. Gultekin et al. (2008) study this problem in 2 and 3-machine
linear cells, determining sets of non-dominated cycles. Gultekin et al. (2010) pro-
vides a Mixed Integer Non-Linear Model (MINLP) for the 2-machine case. Yildiz
et al. (2012) consider a circular layout with regular additive time. The authors also
assume that the total processing time is machine-independent. For an arbitrary
number of machines, they give a lower bound on the cycle time of pure cycles, and
study the dominance regions and performance limitations of 2 specific pure cycles.
The 3-machine case is completely solved. They perform a similar analysis with
controllable processing times and similar results: in this case too the 3-machine
case is completely solved.

1.5 Scope of this work and notations
As exposed in Section 1.3.3, the classical robotic flowshop problems with additive
time in a linear layout (Figure 1.1a) and in a circular layout (Figure 1.1b), though
very similar in formulation, appear very different in structure and complexity. For
the production of identical parts, with unbounded waiting times, finding the best
1-cycle of production has long been known4 to be of polynomial complexity in
linear cells (Crama and van de Klundert, 1997a), while the exact same problem
in circular cell (Rajapakshe et al., 2011) was recently proven NP-hard. However,
the existing proof (a reduction from 2-Partition) is rather technical, so that it
does not make clear the intuition of the difference between the two models. The
1-cycle conjecture, closed for linear layouts (true for m ≤ 3 and false for m > 4) is
still open for the circular layout. Though dual-gripper cells have been historically

4To anyone who suddenly felt not so young anymore reading this sentence, my apologies.
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studied in circular layouts, few work have considered this layout in the classical,
single gripper setup. The authors who consider this case, appear to make a sim-
plifying assumption on the cycle time of a crucial robot move cycle. Aside for the
theoretical matter, this makes the comparative evaluation of different models in
order to decide on the more appropriate structure and equipment for a cell more
complicated.

This work aims to be a step towards a better understanding of cyclic opti-
mization in robotic cells with circular layouts. For this purpose, we mostly focus
on the special balanced case (where all processing times are equal) which is well
understood in linear layouts (Brauner, 1999, 2008), but largely open for m ≥ 3 in
circular layouts. In particular, the complexity of finding the best 1-cycle is still
open in circular regular balanced cells, as well as the 1-cycle conjecture (which is
proven true for m ≤ 15 for the linear balanced configuration)

In the following, we consider cyclic production of identical parts in a circular
robotic cell (as in Figure 1.1b), with a single gripper, no machine buffer, unbounded
waiting times, and regular additive travel times. We use the following notations:

• m the number of machines,

• M1 . . .Mm the m machines,

• M0 the input buffer (IN), and Mm+1 the output buffer (OUT),

• δ the travel time between any two consecutive machines Mi and Mi+1 (both
ways) with i ∈ {0, . . . ,m}. As the input and output buffers are in the same
place, the travel time between M0 and Mm+1 is 0.

• pi for i ∈ {1, . . . ,m} the processing time on machineMi (in the non balanced
case), and p the processing time on any machine in the balanced case.

Consistently with Lehoux-Lebacque (2007), and to simplify calculations, we
assume the loading and unloading times to be zero. Thus, in the balanced case,
an instance of the problem is specified by (m, δ, p), and in the non-balanced case
by (m, δ, p1, . . . , pm).

Our objective is the minimization of the long run average cycle length. Cycles
are specified by their sequence of activities, denoted Ai with i ∈ {0, . . . ,m}. We
use the following notation for cycles:

• π (for permutation) is used to denote a 1-cycle,

• c is used to denote a generic cycle (a k-cycle where k is not necessarily 1),

• For any cycle c, Tc is the (long run average) cycle time of c. When useful,
the cycle time may be expressed as a function of p and denoted Tc(p). If c
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is a k-cycle, its cycle length is given by Tc
k

(obviously, the cycle length of a
1-cycle π is simply Tπ).

Other useful notations will be introduced as need be; they are recapitulated
page 125.

As the cell is circular, with regular additive travel times, the travel time between
any two machines Mi and Mj is given by

δi,j = min(|i− j|,m+ 1− |i− j|)δ (1.1)

Chapter 2 presents tools that will be used throughout this work to analyze pro-
duction cycles in circular layouts; its reading is recommended before undertaking
Chapter 3 and Chapter 4. Chapter 3 adresses the best 1-cycle problem and the
1-cycle conjecture in small cells. By deriving properties of interesting production
cycles, we settle the best 1-cycle problem form ≤ 8 and provide a counter-example
to the 1-cycle conjecture for m = 6. In Chapter 4, we consider the best 1-cycle
problem in large cells (any m > 8). We identify, define and study a new interesting
family of cycles, which lead us to conjecture its dominance over 1-cycles (and thus
the polynomiality of the best 1-cycle problem in circular regular balanced cells),
proven for m ≤ 11. Chapter 5 is an opening toward a more practical problem, also
combining scheduling and transportation.5

5Although not exactly with the same exact meaning.
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Chapter 2

Tools for analysis of production
cycles in circular layouts

Notre tête est ronde pour permettre à
la pensée de changer de direction.

Francis Picabia

This chapter presents tools that are used throughout this document to bound,
visualize and compute cycle times. Section 2.1 expose classical lower bounds for the
cycle time. Section 2.2 presents relevant cycles together with practical graphical
representations. One of this cycle is specific to circular layouts and so far its cycle
time was not fully understood: in Section 2.3, we give and prove a formulation
of its cycle time. Finally, Section 2.4 presents a method and tool to numerically
compute cycle times.

2.1 Lower bounds
In this section, we first present two classical lower bounds on the cycle time of
any k-cycle, valid both for linear and circular layout. For each one, we give the
formulation adapted to the regular case, and the formulation adapted to the regular
balanced case.

2.1.1 Classical bounds
The following bound (LBM) considers the cell from the machine’s point of view.
It conveys the minimum time between two loadings of the same machine.

23
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Proposition 2.1. LBM (Crama and van de Klundert, 1997a)
In a regular cell, any k-cycle c satisfies

Tc ≥ k(max
i
pi + 4δ) (2.1)

In the balanced case, this simplifies to

Tc ≥ k(p+ 4δ) (2.2)

The following bound (LBR) considers the cell from the robot’s point of view.
It counts the minimum travel time of the robots refined by the respective position
of consecutive activities.

Proposition 2.2. LBR (Dawande et al., 2002)
In a regular cell, any k-cycle c satisfies

Tc ≥ k((m+ 1)δ +
∑

i∈{1,...,m}
min(pi, δ)) (2.3)

In the balanced case, this simplifies to

Tc ≥ k((m+ 1)δ +mmin(p, δ)) (2.4)

Each one of the (m+1) activities must be performed exactly k times: the loaded
robot moves add up to a travel time of k(m + 1)δ. Additionally, any activity Ai
is either immediately followed by the subsequent activity Ai+1, in which case the
robot must wait p time units at machine Mi+1 for the part to be processed, or by
any other activity, in which case the robot performs an empty move immediately
after Ai, adding at least δ to the travel time.

2.1.2 Minimum waiting time
We now introduce the following notations, for every cycle c:

• ∆c is the total travel time of the robot,

• di,l(c) is the travel time of the robot between the l-th loading of machine
Mi and its subsequent unloading (in a cyclic sense). For a 1-cycle, as each
machine is loaded (and unloaded) exactly one time, the second index is
unnecessary and we simply use the notation di(π).

• dmin(c) = min
i,l

(di,l(c))
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For example, consider the cycle c = A0A3A2A4A1, represented later on Fig-
ure 2.1. One can verify that ∆c = 13δ, d1 = d3 = 9δ, d2 = 8δ d4 = 4δ, thus
dmin(c) = 4δ.

The following lower bound is actually a lower bound on the cycle time of a
given cycle, depending on the values ∆ and dmin.

Proposition 2.3. For any cycle c, the cycle time verifies

T (c) ≥ ∆(c) + max(0, p− dmin(c)) (2.5)

Proof. It is easy to see that T (c) ≥ ∆(c).
Let (i0, l0) = arg min

i,l
(di,l(c)). Between the l0-th loading of Mi0 and its sub-

sequent unloading, the robot travels dmin, but there must be at least p units of
time for the part to be processed. So, if p ≥ dmin, somewhere between the loading
and the unloading, the robot must wait (additionally to its travel time) at least
p− dmin units of time. Hence T (c) ≥ ∆(c) + max(0, p− dmin(c))

2.2 Classical Cycles and Representation
In this section we introduce three relevant cycles in circular cells (Section 2.2.2).
To describe them, we rely on the two types of graphical representations of cycles
that are exposed in Section 2.2.1.

2.2.1 Graphical representation
The first representation is classical and describes the movement of the robot within
the cell during the unfolding of a cycle. The second one is new and specific to the
balanced case: it allows to compare cycle times of different cycles while varying
the cell’s parameters.

Representation of the robot moves

The unfolding of a cycle in space and time can be graphically represented on a
chronogram. The vertical axis represents the cell, each graduation standing for a
machine, from the input buffer to the output buffer. Note that on a circular cell
where the output and input buffer occupy the same location, the first and last
graduation are virtually equivalent. The horizontal axis represents time.

On this graph, loaded robot moves are represented by a solid line and empty
robot moves are represented by a dashed line. When needed, we also represent
parts being processed by a red solid line. Figure 2.1 presents an example. Without
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processing times (or with p = 0), this representation can also be used to visualize
the general structure of the cycle.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
IN

OUT

1
2
3
4

time

machines

Figure 2.1: One iteration of cycle (A0A3A2A4A1) on instance (m = 4, p = 5, δ =
1).

Representation of the cycle time in the balanced case

In the balanced case, a cell is characterized by three parameters, the number of
machines m, the processing p and the travel time δ. Without loss of generality,
we can consider that δ is one time unit (by dividing p and δ by δ). For a given m,
and by setting δ to 1, we can look at cycle times and lower bounds as functions
of p. Seen that way, the cycle time of any cycle is an increasing piecewise linear
function.

In order to highlight the performances and optimality regions of cycles, the
cycle time functions can be represented on a graph where the horizontal axis
represents p and the vertical axis represents time. For example, Figure 2.2 shows
lower bounds LBM (Equation (2.2)) and LBR (Equation (2.4)) on such a graph.

2.2.2 Some classical cycles
In this section, we present three classical 1-cycles. The first two, the identity
cycle and downhill cycle were formalized and studied by Sethi et al. (1992). We
give their cycle time formulation adapted to circular regular cells. The third one,
the odd-even cycle is only of interest in circular cells. It has for example been
considered by Geismar et al. (2005a), Rajapakshe et al. (2011), who uses in their
papers a lower bound as its cycle time: they only consider one iteration of the
cycle, while deriving the precise cycle time requires to consider several consecutive
iterations. This makes the cycle time derivation more complex than for the two
former cycles: we give a formulation and proof in Section 2.3.
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Figure 2.2: For m = 6, δ = 1, lower bounds LBM (Equation (2.2)) and LBR

(Equation (2.4)) on the cycle time of 1-cycles, as functions of p.

For each of these three cycles, we give an execution example on instance I :
(m = 4, p = 3, δ = 1) (see respectively Figures 2.3, 2.4 and 2.6).

Identity cycle

We call identity cycle (also named uphill permutation or forward cycle in the
literature) the cycle πid = A0A1...Am, represented on Figure 2.3. In this cycle,
the robot circles the cell once, doesn’t perform any empty move and waits at each
machine during the full length of the processing. We have ∆πid = (m + 1)δ and
di(πid) = 0 for all i ∈ {1, . . . ,m}, thus dmin(πid) = 0. The corresponding cycle
time, respectively in the non-balanced and balanced case, is:

Tπid = (m+ 1)δ +
∑

i∈{1,...,m}
pi (2.6)

Tπid = (m+ 1)δ +mp (2.7)

Intuitively, this cycle is interesting for instances for which p is much smaller
than δ. From the lower bound LBR (Proposition 2.2), one can derive the following
classical result:

Proposition 2.4. In a regular balanced cell, if p ≤ δ, then the identity cycle πid
is optimal.
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Figure 2.3: One iteration of πid on instance I = (m = 4, p = 3, δ = 1)

Downhill cycle

We call downhill cycle (also named reverse cycle) the cycle πdh = A0AmAm−1...A1,
represented on Figure 2.4. We have ∆πdh = 3(m+ 1)δ and di(πdh) = (3m− 1)δ for
all i ∈ {1, . . . ,m}, thus dmin(πdh) = (3m− 1)δ. Its cycle time, respectively in the
non-balanced and balanced case, is:

Tπdh = 3(m+ 1)δ + max
i∈{1,...,m}

(0, pi − (3m− 1)δ) (2.8)

Tπdh = 3(m+ 1)δ + max(0, p− (3m− 1)δ) (2.9)
In this cycle, each spot is visited by the robot three times. Intuitively, this

cycle is interesting for instances for which p is much larger than δ. From the lower
bound LBM (Proposition 2.1), one can derive the following classical result:
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Figure 2.4: One iteration of πdh on instance I = (m = 4, p = 3, δ = 1)

Proposition 2.5. If p ≥ (3m− 1)δ, then the downhill cycle πid is optimal.

Figure 2.5 shows the cycle times of πid and πdh as function of p, as well as lower
bounds from LBM and LBR, highlighting their regions of optimality.
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Figure 2.5: For m = 6, δ = 1, lower bounds LBM and LBR, (respectively Equa-
tions 2.2 and 2.4), and cycle times of πid and πdh as functions of p.

Odd-Even cycle

In circular cells, a third 1-cycle of particular interest is the odd-even cycle, defined
as such:
For m even,

πoe = A0A2A4 . . . AmA1A3A5 . . . Am−1

And for m odd,
πoe = A0A2A4 . . . Am−1A1A3A5 . . . Am.

In this cycle, the robot circles around the cell twice: the first time performing even
activities (thus loading odd machines), the second time performing odd activities
(thus loading even machines). Is overall travel time is ∆πoe = 2(m + 1)δ and we
have di(πoe) = (m+ 1)δ for all i ∈ {1, . . . ,m}, thus dmin(πoe) = (m+ 1)δ.

Note that contrary to πid and πdh, this cycle is not a pyramidal permutation
as defined in (Crama and van de Klundert, 1997a), therefore it is dominated in
linear cells.

2.3 Cycle time of the odd-even Cycle
In order to understand the cycle time of πoe, it is necessary to consider several
iterations. In this section, we give and prove the formulation of its cycle time in
the balanced case as well as lower and upper bounds for the non-balanced case.
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Figure 2.6: One iteration of πoe on instance I = (m = 4, p = 3, δ = 1)

2.3.1 Balanced case
Proposition 2.6. The cycle time for the odd-even cycle is

Tπoe = 2(m+1)δ+ 2α− 1
α

max(0, p− (m+1)δ) with m =

2α if m even
2α− 1 if m odd

Proof. Consider α consecutive iterations of πoe. The robot travels 2(m + 1)αδ,
circling the cell 2α times. Let us follow the path of one same part in the cell.
Figure 2.7 presents an example in a 4-machine cell.
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Figure 2.7: Two consecutive iterations of cycle πoe in a 4-machine cell.

Each iteration is constituted by two loops around the cell. During the first loop
of the first iteration, machine M1 is loaded with A0. It is then unloaded during
the second loop with A1. Between the loading and the unloading of M1, the robot
travels (m+1)δ and the part must remain onM1 at least p time units, so the robot
must wait max(0, p− (m+ 1)δ). Similarly, during any loop, the part is loaded on
a machine, then unloaded and taken to the next machine during the next loop,
and the robot must wait max(0, p− (m+ 1)δ). If m is odd, the part exits the cell
on the last loop. If m is even, it is loaded on Mm during the last loop.
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Eventually, for this one part, the robot must wait at least (2α− 1) max(0, p−
(m+ 1)δ) over α iterations of the cycle. Therefore,

Tπoe ≥ 2(m+ 1)δ + 2α− 1
α

max(0, p− (m+ 1)δ) (2.10)

Now, let us call wji the waiting time of the robot at machine Mj during the i-th
iteration of cycle πoe, and W i = (wi1, . . . , wim). Let a = p− (m+ 1)δ.

Case 1: m odd πoe = (A0A2A4 . . . Am−1A1A3A5 . . . Am) The waiting times at
iteration i are:

wi2j = max(0, a−
α∑

k=1+j
wi−1

2k−1 −
j−1∑
k=1

wi2k)

wi2j−1 = max(0, a−
α−1∑
k=j

wi2k −
j−1∑
k=1

wi2k−1)

If a ≤ 0 then all waiting times are zero, and the cycle time is 2(m+ 1)δ.
If not, we can easily check that the vector W0 = ( a

α
, . . . a

α
) is a fixed point of

W . The corresponding cycle time is 2(m+ 1)δ + 2α−1
α
a.

Case 2: m even πoe = (A0A2A4 . . . AmA1A3A5 . . . Am−1)
Similarly, the waiting times at iteration i are


wi2j = max(0, a−

α∑
k=1+j

wi−1
2k−1 −

j−1∑
k=1

wi2k)

wi2j−1 = max(0, a−
α∑
k=j

wi2k −
j−1∑
k=1

wi2k−1)

If a ≤ 0 then W = 0, and the cycle time is 2(m+ 1)δ.
If not, we can check that the vector W0 = (0, a

α
, . . . a

α
) is a fixed point of W .

The corresponding cycle time is 2(m+ 1)δ + 2α−1
α
a

In both cases the lower bound (2.10) is tight, so the cycle time is:

Tπoe = 2(m+ 1)δ + 2α− 1
α

max(0, p− (m+ 1)δ) (2.11)

Figure 2.8 completes Figure 2.5 with the cycle time of πoe.
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Figure 2.8: For m = 6, δ = 1, lower bounds LBM and LBR, (respectively Equa-
tions 2.2 and 2.4), and cycle times of πid, πdh, and πoe as functions of p.

2.3.2 Non balanced case
In the non-balanced case, one can derive in a similar way a lower and an upper
bound for πoe’s cycle time, depending on pmin = min

i∈{1,...,m}
pi and pmax = max

i∈{1,...,m}
pi

Proposition 2.7.

(i) Tπoe ≥ 2(m+ 1)δ + max
(
0, 2α−1

α
(pmin − (m+ 1)δ)

)
(ii) Tπoe ≤ 2(m+ 1)δ + max

(
0, 2α−1

α
(pmax − (m+ 1)δ)

)
Proof.

(i) The proof is similar to the balanced case, considering that the necessary
waiting time between the loading and unloading of a part on any machine is at
least pmin − (m+ 1)δ.

(ii) The waiting time needed between the loading and unloading of a part
on any machine is at most pmax − (m + 1)δ), which is ensured by the wait-
ing times vector Wmax =

(
pmax−(m+1)δ

α
, . . . pmax−(m+1)δ

α

)
for m odd or Wmax =(

0, pmax−(m+1)δ
α

, . . . pmax−(m+1)δ
α

)
for m even.

2.4 Cycle time computation
(Brauner, 1999) proved that for any cycle, independently of the initial state, the
cell reaches a periodic steady state, after a finite number of cycle iterations. This
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means that there exists a number of iterations (a period) that leaves the cell in
exactly the same state, as defined above. Note that if the minimum period is
strictly greater than one, cycle time may differ between consecutive iterations.
Therefore, to compute the long run average cycle time, it is necessary to consider
a whole period.

For example, Figure 2.9 shows 4 consecutive iterations of πoe on instance J :
(m = 4, p = 6, δ = 1) once reached a periodic steady state. Iterations 3 and 4 are
identical to iterations 1 and 2, which shows the execution is 2-periodic. Looking
at the first two iterations, we can see that they unfold differently: during the first
one, the robot waits one time unit at machineM2 andM3, while during the second
one, waiting is only needed at M4. Consequently, the first iteration lasts 12 time
units, while the second one lasts 11 time units. Looking at the duration of a single
iteration leads to an over- or under-estimation of the long run cycle time: to get
an accurate measure, it is necessary to consider the average execution time over 1
period, here 2 iterations, which gives the correct cycle time of 11.5.1
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Figure 2.9: Two periods (four iterations) of πoe operating in periodic steady state
on instance J : (m = 4, p = 6, δ = 1)

We developed a tool in Java allowing to simulate the behavior of the cell and
therefore experimentally compute cycle times. The input consists in the size of
the cell, travel times and processing times, either integer or fractional.

The state of the cell is represented by the position of the robot, and a vector of
fractional values representing the state of the machines. If the value for a machine
is non-negative, it represents the remaining processing time on this machine. If not,
it means the machine is free. Given a cycle, a feasible initial state is automatically
computed by loading the machines which need to be loaded with a remaining
processing time of 0. To compute the cycle time, the program first performs several

1Mutatis mutandis, this example also works for linear cells (consider p = 9, for example).
However, note that πoe is not a pyramidal permutation. Brauner (1999) conjectures that pyra-
midal permutations (which dominate 1-cycles in linear cells, but not in circular cells) are stable,
meaning that no matter the initial state, the steady state of these cycles has a period of 1. The
author proves this property for linear cells with 2, 3 and 4 machines.
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initialization iterations to ensure the cell is running in a periodic steady state (the
number of initial iterations can be set by the user). The period is then calculated
by monitoring the cell’s state after each subsequent iteration and comparing it to
the state it was in immediately after the initialization. The programs then outputs
the average value of the cycle time over one period.

2.5 Conclusion
In this chapter, we presented tools that serves as a basis for studying cyclic pro-
duction in circular cells, including lower bounds on the cycle time, graphical rep-
resentations and three particular cycles.

We showed that for cycle which exploits the circular structure of the cell by
circling it twice, as the odd-even cycle πoe, derivation of the cycle time formulation
is not trivial as the cycle has to be considered over several iterations. This cycle
structure is especially important in Chapter 4, where we study families of cycles
formed by altering the odd-even cycle.



Chapter 3

Properties of 1-cycles and small
cells analysis

The objective of this chapter is to settle properties for 1-cycles in order to find
interesting production cycles. We first study the region of optimality within 1-
cycles of the three classical 1-cycles introduced in Chapter 2 (Section 3.1). Then,
we establish necessary properties for the best 1-cycles (Section 3.2), which allow
to conclude for small cells (m ≤ 8) in Section 3.3. The best 1-cycle problem for
larger cells will be studied in Chapter 4. As the 2-machine case is solved (Sethi
et al., 1992), we consider m ≥ 3.

In regular additive linear balanced cells, the 1-cycle conjecture is valid for
m < 16 (Brauner, 2008). In regular additive circular balanced cell, for m = 6 we
exhibit a 2-cycle that is strictly better than any 1-cycle for a given instance, thus
disproving the 1-cycle conjecture for circular balanced cells (Section 3.4).

To make the proofs more readable, we use this notation for activities:

Ai = Ai mod (m+1)

3.1 Regions of optimality for the classical cycles
In this section, within the set of 1-cycle, we seek for the best ones. Here “optimal-
ity” is in the sense of optimality within 1-cycles. We consider the three classical
cycles {πid, πdh, πoe} and describe characteristics of instances for which they are
optimal. We use the lower bounds on the cycle time LBM and LBR described
in Chapter 2 (page 23), to which we add a new lower bound (LBD) specific to
1-cycles, by considering the direction of the robot:

Proposition 3.1. (LBD) If p ≥ δ, and π is a 1-cycle with π 6= πid, then

Tπ(p) ≥ 2(m+ 1)δ (3.1)

35
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Proof. Let π be a 1-cycle different from the identity cycle πid.

Case 1: If π contains a sequence AiAj with j 6= i+2 and j 6= i+1, then, following
a reasoning similar to the one behind Proposition 2.2 page 24, we have

Tπ(p) ≥ (m+ 1)δ + (m− 1) min(p, δ) + 2δ ≥ 2(m+ 1)δ

It takes the robot (m+ 1)δ time units to perform all activities, then at least
min(p, δ) between any pair of consecutive activities except for AiAj, and at
least 2δ to travel from Mi+1 to Mj while performing AiAj.

Case 2: If not, then π contains at least a sequence AiAi+2 (as π 6= πid), and every
other 2-element sub-sequence in π can be written AjAj+1 or AjAj+2. Then,
we know that:

• The robot always travels in the same direction, forward: with m ≥ 3,
the shortest circular path from a machine Mj to Mj+1 never requires to
go backward.
• The robot travels at least twice between Mi+1 and Mi+2. Once loaded,

while performing activity Ai+1 and once empty, while performing the
sequence AiAi+2.

Hence the robot circles the cell at least twice:

Tπ(p) ≥ 2(m+ 1)δ

The following proposition specifies the regions of optimality of {πid, πdh, πoe}.

Proposition 3.2.

(i) if p ≤ m+1
m
δ, then the identity permutation πid dominates 1-cycles.

(ii) if (m+1)
m

δ ≤ p ≤ (m+ 1)δ, then the odd-even cycle πoe dominates 1-cycles.

(iii) if p ≥ (3m−1)δ, the downhill permutation πdh dominates 1-cycles (and even
all k-cycles).

Proof. Recall that the the cycle times of πid, πoe and πdh are given by

Tπid(p) = (m+ 1)δ +mp

Tπoe(p) = 2(m+ 1)δ + 2α− 1
α

max(0, p− (m+ 1)δ) where α =
⌊m+ 1

2
⌋

Tπdh(p) = 3(m+ 1)δ + max(0, p− (3m− 1)δ)
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Claim (iii) is a classical result that follows directly from Proposition 2.1. For
p ≥ (3m− 1)δ, Tπdh(p) = p+ 4δ, hence by Proposition 2.1 (LBM), πdh dominates
all k-cycles thus proving (iii).

For p ≤ δ, then from Proposition 2.2 (LBR), for any k-cycle c, one has
Tc(p) ≥ k(m+ 1)δ +mp = kTπid(p), hence πid is optimal.

For δ ≤ p ≤ m+1
m
δ, we have

Tπid(p) = (m+ 1)δ +mp ≤ 2(m+ 1)δ

and, from Proposition 3.1 (LBD), for any 1-cycle π 6= πid:

Tπ(p) ≥ 2(m+ 1)δ ≥ Tπid(p) (3.3)

which implies (i).
Finally, for (m+1)

m
δ ≤ p ≤ (m+ 1)δ, we have

Tπoe(p) = 2(m+ 1)δ
Tπid(p) = (m+ 1)δ +mp ≥ 2(m+ 1)δ

and for any 1-cycle π 6= πid, from Proposition 3.1 (LBD):

Tπ(p) ≥ 2(m+ 1)δ ≥ Tπoe(p)

which implies (ii).

Proposition 3.2 settles the case of p ≤ (m+ 1)δ and p ≥ (3m− 1)δ, as summa-
rized by Figure 3.1. In this graphic, we can see that in their regions of optimality
the corresponding cycles fit with a lower bound. Now remain the instances with
(m+ 1)δ < p < (3m− 1)δ. This is the issue addressed in the next section.

3.2 Necessary properties of optimal 1-cycles
In this section, we assume that (m + 1)δ < p < (3m − 1)δ since other cases are
settled in Proposition 3.2. We establish some properties (Propositions 3.3 to 3.6)
that a 1-cycle must satisfy in order to do strictly better than both the odd-even
cycle and the downhill permutation. We will use these properties later on in
Section 3.3 to determine the best 1-cycles for m ≤ 8.

Let π∗ be such a 1-cycle, thus verifying for some (m+ 1)δ ≤ p ≤ (3m− 1)δ,{
Tπ∗(p) < Tπoe(p)
Tπ∗(p) < Tπdh(p) = 3(m+ 1)δ (3.4)

Unless otherwise specified, the following properties are valid for m ≥ 3. Propo-
sitions 3.3 to 3.4 are valid for m ≥ 5.
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Figure 3.1: Lower bounds and cycle times of πid, πoe and πdh, showing their regions
of optimality

Proposition 3.3.
If m ≥ 5, the cycle π∗ contains no sequence of the form AiAi+1 with i 6= m.

Proof. First, π∗ contains at most one sub-sequence of two consecutive activities
(except from the sequence AmA0). Otherwise, as the robot waits p time units
at each machine Mi such that π∗ contains AiAi+1 and travels at least (m + 1)δ
(performing all activities), we have Tπ∗(p) ≥ (m+ 1)δ+ 2p ≥ 3(m+ 1)δ = Tπdh(p),
which contradicts Equation (3.4).

Let us assume now that there exists exactly one i 6= m so that AiAi+1 is a
sub-sequence of π∗. The robot waits (m+ 1)δ at machine Mi+1. It travels at least
(m+1)δ while loaded (performing the m+1 activities), and (m−1)δ while empty
(after performing each one of the activities Aj, j /∈ i,m, the robot travels at least
δ to get to the next machine to unload). Thus, we already have

T ∗π (p) ≥ 2(m+ 1)δ + (m− 1)δ (3.5)

We show that the robot travels at least an additional 2δ, leading to T ∗π (p) ≥ 3(m+ 1)δ.
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Case 1: π∗ is of the form A0A1 . . . Am.
In this case, for m ≥ 5, either π∗ contains the subsequence Am−1A2, or there
exist indices j, k /∈ {m, 0, 1} so that Am−1Aj and AkA2 are two distinct sub-
sequences of π∗. In both cases, the robot travels at least an additional 2δ
compared to Equation (3.5).

Case 2: π∗ is of the form A0 . . . Am−1Am.
In this case, for m ≥ 5, either π∗ contains the subsequence Am−2A1, or
there exist indices j, k /∈ {m − 1,m, 0} so that Am−2Aj and AkA1 are two
distinct sub-sequences of π∗. Again, in both cases, the robot travels at least
an additional 2δ compared to Equation (3.5).

Case 3: π∗ is of the form A0 . . . AiAi+1 . . . Am, with 1 ≤ i ≤ m− 2.
In this case, either π∗ contains the subsequence Ai−1Ai+2, or there exist
indices j, k /∈ {i, i + 1} so that Ai−1Aj and AkAi+2 are sub-sequences of π∗.
In the second case, the robot travels an additional 2δ. In the first case, π∗
can be written in one of the following ways:

π∗ = A0 . . . AiAi+1SAi−1Ai+2 . . . Am (3.6)

π∗ = A0 . . . Ai−1Ai+2SAiAi+1 . . . Am (3.7)

Where S is an activity sequence, including the empty sequence.
The robot already travels an additional δ while performing Ai−1Ai+2. In
order to have no additional travel time, the sequence Ai+1SAi−1 in (3.6) or
Ai+2SAi in (3.7) must be one of the following sequences (in the cyclic sense):

A0A2A4 . . . Am−1 or A1A3A5 . . . Am if m is odd
A0A2A4 . . . AmA1A3A5 . . . Am−1 if m is even

which is impossible as S cannot contain A0 or Am. So, the robot travels at
least an additionnal 2δ compared to Equation (3.5)

Case 4: π∗ is of the form . . . AiAi+1 . . . and π∗ does not contain AmA0.
In this case, there exist indices j, k /∈ {i, i + 1} and l 6= 0 so that Ai−1Aj,
AkAi+2 and AmAl are subsequences of π∗, with at least 2 of these subse-
quences distinct. In both cases, the robot travels at least an additional 2δ.

In all cases, we have Tπ∗(p) ≥ (m+ 1)δ + (m+ 1)δ + (m− 1)δ + 2δ = 3(m+ 1)δ,
thus any cycle containing a sequence of the form AiAi+1 with i 6= m is dominated
by πdh.
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Proposition 3.4.
If m ≥ 5, the travel time ∆π∗ associated with π∗ verifies ∆π∗ > 2(m+ 1)δ.

Proof. First, we show that ∆π∗ ≥ 2(m + 1)δ. This is a consequence of Proposi-
tion 3.3. As π∗ contains no sequence of the form AiAi+1 with i 6= m, there are two
possibilities:

Case 1: There exists a sub-sequence AiAj with j 6= i + 2 in π∗. Then the travel
time of the robot is at least (m+ 1)δ +mδ + δ = 2(m+ 1)δ

Case 2: π∗ contains only subsequences of the form AiAi+2 and maybe AmA0.
Similarly to the proof of Proposition 3.1, we can say that the robot always
travels forward, and circles the cell twice: ∆π∗ ≥ 2(m+ 1)δ.

Now, let us show that the only cycle such that ∆π∗ = 2(m+1)δ is the odd-even
cycle πoe. We already know that π∗ can have no sub-sequences AiAi+1 except for
AmA0.

Case 1: π∗ does not contain the sequence AmA0. Then all sub-sequences
have to be of the form AiAi+2: the only possible cycle is of the form
A0A2A4 . . . AmA1A3 . . . Am−1, which is πoe if m is even, and not possible
if m is odd.

Case 2: π∗ contains the sequence AmA0. The cycle π∗ contains only one sequence
of the form AiAi+3 or AiAi−1. The others are of the form AiAi+2. The cycle
π∗ contains a sequence Am−1Aj with j 6= 0, and a sequence AlA1 with l 6= m.
Thus, π∗ must contain the sequence Am−1A1. The only possible cycle is of
the form A0A2A4 . . . Am−1A1A3 . . . Am, which is πoe if m is odd, and not
possible if m is even.

Proposition 3.5. The travel time ∆π∗ associated with π∗ verifies ∆π∗ < 3(m+1)δ

Proof. Otherwise, we would have Tπ∗(p) ≥ 3(m+ 1)δ = Tπdh(p)

The following proposition links the total travel time of π∗, ∆π, with the min-
imum travel time between the loading and unloading of a machine dmin(π∗). Re-
call from Proposition 2.3 page 25 that the cycle time of any cycle c is at least
∆c + max(0, p − dmin(c)). Note that this lower bound is a piece-wise linear func-
tion of p whose slope changes for p = dmin (the slope is 0 for p ≤ dmin and 1
otherwise).

Proposition 3.6. dmin(π∗) > ∆π − 3α−2
2α−1(m+ 1)δ, where α =

⌊
m+1

2

⌋
.
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Figure 3.2: Illustration of the proof of Proposition 3.6, representing cycle times of
πoe, πdh, f (Equation (3.8)) and the lower bound on the cycle time Tπ∗ given by
Proposition 2.3.

Proof. Assume δ is fixed, and call Tc(p) the cycle time of any cycle c depending
on p. We assume p ≤ (3m− 1)δ.

Let p∗ = 3α−1
2α−1(m+ 1)δ be the value of parameter p for which πdh and πoe have

the same cycle time.

Tπoe(p∗) = Tπdh(p∗) = 3(m+ 1)δ

Let f be the linear function with coefficient 1 verifying f(p∗) = Tπoe(p∗) =
Tπdh(p∗) = 3(m + 1)δ (see Figure 3.2 for a graphical representation). The ex-
pression of f is

f(p) = p+ 3α− 2
2α− 1(m+ 1)δ (3.8)

For (m+ 1)δ ≤ p ≤ p∗,
Tπdh(p) ≥ f(p) ≥ Tπoe(p)

For p∗ ≤ p ≤ (3m− 1)δ,

Tπoe(p) ≥ f(p) ≥ Tπdh(p)

Suppose that dmin(π∗) ≤ ∆π∗− 3α−2
2α−1(m+1)δ. This is the situation schematized



42 CHAPTER 3. ONE-CYCLES AND SMALL CELLS ANALYSIS

on Figure 3.2a. By Proposition 2.3,

Tπ∗(p) ≥ ∆π∗ +max(0, p− dmin(π∗)) (3.9)

≥ ∆π∗ +max(0, p−∆π∗ + 3α− 2
2α− 1(m+ 1)δ) (3.10)

For p ≤ ∆π∗ − 3α−2
2α−1(m+ 1)δ, we get

Tπ∗(p) ≥ ∆π∗ ≥ p+ 3α− 2
2α− 1(m+ 1)δ = f(p)

and for p > ∆π∗ − 3α−2
2α−1(m+ 1)δ,

Tπ∗(p) ≥ ∆π∗ + p−∆π∗ + 3α− 2
2α− 1(m+ 1)δ = p+ 3α− 2

2α− 1(m+ 1)δ = f(p)

Tπ∗ ≥ f and thus π∗ is dominated by {πoe, πdh} for (m+ 1)δ < p < (3m− 1)δ
So necessarily, dmin(π∗) > ∆π∗− 3α−2

2α−1(m+1)δ (this is the situation represented
on Figure 3.2b).

3.3 Best 1-cycles for m ≤ 8
We know that 1-cycles are permutations of activities. Given a 1-cycle, it is easy to
check if it complies with the conditions exposed in the previous section. Of course
this can only be done for small numbers of machines as the number of 1-cycles is
exponential (m!). In this section, we use these properties to prove the following
theorem, establishing dominant sets over 1-cycles for m ≤ 8.

Theorem 3.1. Dominance within 1-cycle for m ≤ 8
For regular balanced cells with m = 3 or 6 ≤ m ≤ 8 the set {πid, πdh, πoe}

dominates all 1-cycles.
For regular balanced cells with m = 4, the set {πid, πoe, π∗4, πdh}, where π∗4 =

A0A3A2A1A4 dominates all 1-cycles.
For regular balanced cells with m = 5, the set {πid, πoe, π∗5, πdh}, where π∗5 =

A0A3A2A5A1A4 dominates all 1-cycles.

3.3.1 m ≤ 4
For m = 3 and m = 4, we use Proposition 3.5 and Proposition 3.6 to filter
out cycles. Among the six possible cycles for m = 3, only πoe and πid satisfy
both conditions, thus {πid, πdh, πoe} dominates 1-cycles. This confirms the result
presented in Brauner (1999).

Thus the best 1-cycles for m = 3 are given by:
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Figure 3.3: Cycle π∗4 = A0A3A2A1A4

• for p ≤ 4
3δ, πid is optimal within 1-cycle;

• for 4
3δ < p ≤ 20

3 δ, πoe is optimal within 1-cycles

• for p > 20
3 δ, πdh is optimal within 1-cycles.

Among the 24 possible 1-cycles for m = 4, πoe, πdh as well as another per-
mutation π∗4 = A0A3A2A1A4, represented on Figure 3.3 satisfy both conditions.
The best 1-cycle for m = 4 can be determined by comparing the cycle times of
{πid, πdh, πoe} and π∗4.

Proposition 3.7. Best 1-cycles for m=4
The best 1-cycles for m = 4 are given by:

• for p ≤ 5
4δ, πid is optimal within 1-cycle;

• for 5
4δ < p ≤ 7δ, πoe is optimal within 1-cycles

• for 7δ < p ≤ 10δ, π∗4 is optimal within 1-cycles

• for p ≥ 10δ , πdh is optimal within 1-cycles.

Proof. For p ≤ 5δ, and p ≥ 11δ, this is a direct consequence of Proposition 3.2.
The characteristics of π∗4 are as follows: ∆π∗4

= 13δ, d1(π∗4) = d4(π∗4) =
dmin(π∗4) = 8δ and d2(π∗4) = d3(π∗4) = 9δ.

For 5δ < p < 11δ, the cycle time of πoe and πdh are given by

Tπoe(p) = 3
2p+ 5

2δ (3.11a)

Tπdh(p) = 15δ (3.11b)
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By Proposition 2.3, we have

Tπ∗4 (p) ≥ 13δ +max(0, p− 8δ) (3.12)

For p ≥ 10, from Equation (3.11b) and Equation (3.12), π∗4 is dominated by πdh.
We can show that for p ≤ 10, the bound given by Equation (3.12) is tight. For
p ≤ 8δ, no waiting time is necessary. For 8δ < p ≤ 9δ the bound is reached
by waiting exactly p − 8δ at machine M1; for 9δ < p ≤ 10δ, it is reached by
waiting exactly p− 9δ at machine M2 and 1δ at M1. We can easily verify that no
other waiting time is necessary. Together with Equation (3.11a), we get the final
result.

3.3.2 m ≥ 5
Form ≥ 5, we can use Proposition 3.4, Proposition 3.5 and Proposition 3.6 to filter
out cycles. Note that Proposition 3.4 and Proposition 3.6 imply Proposition 3.3:
if ∆π > 2(m + 1)δ, then the condition in Proposition 3.6 implies that if π is
non-dominated by {πid, πdh, πoe}, dmin(π) > 0. Thus no loading of a machine is
immediately followed by its unloading, which means that π contains no sequence
AiAi+1 with i 6= m.

Thus, we seek cycles satisfying:

2(m+ 1)δ <∆π∗ < 3(m+ 1)δ (3.13)

dmin(π∗) > ∆π∗ −
3α− 2
2α− 1(m+ 1)δ (3.14)

For m = 5, only the cycle π∗5 = A0A3A2A5A1A4, represented on Figure 3.4
satisfies these conditions, as can be verified by simple enumeration of the 120
1-cycles.

Proposition 3.8. Best 1-cycles for m=5
The best 1-cycles for m = 5 are given by:

• for p ≤ 6
5δ, πid is optimal within 1-cycles;

• for 6
5δ < p ≤ 42

5 δ, πoe is optimal within 1-cycles;

• for 42
5 δ < p ≤ 12δ, π∗5 is optimal within 1-cycles;

• for p ≥ 12δ, πdh is optimal within 1-cycles.
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Figure 3.4: Cycle π∗5 = A0A3A2A5A1A4

Proof. For p ≤ 6δ, and p ≥ 14δ, this is a direct consequence of Proposition 3.2.
The characteristics of π∗5 are as follows: ∆π∗5

= 16δ, d1(π∗5) = d2(π∗5) = d4(π∗5) =
d5(π∗5) = dmin(π∗5) = 10δ and d3(π∗5) = 12δ. For 6δ < p < 14δ, the cycle times of
πoe and πdh are given by

Tπoe(p) = 5
3p+ 2δ (3.15a)

Tπdh(p) = 18δ (3.15b)

By Proposition 2.3, we have

Tπ∗5 (p) ≥ 16δ +max(0, p− 10δ) (3.16)

For p ≥ 12δ, from Equation (3.15b) and Equation (3.16), π∗5 is dominated by πdh.
We can show that for p ≤ 12δ, the bound given by Equation (3.16) is tight: for

p ≤ 10δ, no waiting time is necessary; for 10δ < p ≤ 12δ, the bound is reached by
waiting exactly p−10δ at machine M2. We can easily verify that no other waiting
time is necessary. From this and Equation (3.15a), we get the final result.

For 6 ≤ m ≤ 8, no 1-cycle satisfies the conditions (this can be verified by
enumerating them! possible 1-cycles), thus {πid, πdh, πoe} dominates 1-cycles. This
completes the proof of Theorem 3.1.

For m > 8, this filtering does not seem sufficient to rule out all dominated
1-cycles. This case will be the topic of Chapter 4.

3.4 A counter-example to the 1-cycle conjecture
In (Brauner, 2008), the author claims that in linear balanced cells, the 1-cycle
conjecture is valid at least for m < 16. We state, by the following theorem, that
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in circular balanced cells it is false for m = 6. For m ≤ 5, it is still open but using
the simulation tool presented in Chapter 2, we did not find any 2-cycle performing
strictly better than the best 1-cycles.
Theorem 3.2. In a regular balanced unbounded 6-machine cell with circular lay-
out, the 2-cycle

Ĉ = (A0A2A5A4A1A6A0A3A2A5A1A4A3A6)

dominates all 1-cycles for the following instance:

δ = 1 ε = 0 p = 11

.
Proof. Let us consider a 6-machine circular cell, with p = 11, δ = 1, ε = 0. From
Theorem 3.1, we know that the set {πid, πdh, πoe} dominates all 1-cycles.

For these parameters, one has

Tπid = 7 + 66 = 73 (3.17)

Tπoe = 14 + 5
34 = 20 + 2

3 (3.18)

Tπdh = 21 (3.19)

We just need to show that T (Ĉ)
k

< Tπoe = 20+ 2
3 . An iteration of Ĉ is represented

on Figure 3.5.
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Figure 3.5: An iteration of C, for p = 11 and δ = 1

During one iteration of Ĉ, the robot travels ∆Ĉ = 39.
We have d6,1 = d2,1 = 10, and for all other (i, k), di,k ≥ 11. As the first

unloading of M6 takes place between the first loading of M2 and its subsequent
unloading, the robot only needs to wait one unit of time, before unloadingM6 (see
Figure 3.5).

Thus, we have TĈ = 39 + 1 = 40
TĈ
2 = 20 < T (πoe)
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In conclusion, Ĉ is strictly better than all 1-cycles on this instance. We proved
Theorem 3.2, thus showing that the 1-cycle conjecture is false for 6 machines in
circular balanced cells. The problem is still open for m ≤ 5 (although we think it
is valid).

3.5 Conclusion
In this chapter, we focused on 1-cycles. Using the lower bounds and the cycle time
of the odd-even cycle πoe derived in Chapter 2, we settled values of parameters
p and δ for which one of the classical cycles {πid, πdh, πoe} is optimal. Together
with necessary properties of optimal 1-cycles we were able to solve the best 1-
cycle problem for cells with up to 8 machines. However, we showed that the
1-cycle conjecture is false for circular balanced cells, by exhibiting a 2-cycle which
performs strictly better than any 1-cycle for a given instance of 6 machines. The
best k-cycle even for k ≤ 2 is still open for circular regular balanced cells with
m ≥ 3.

The properties established in this chapter are not sufficient to conclude on the
best 1-cycle problem for m ≥ 9. In the next chapter, we look into the structure of
optimal 1-cycles for large cells.
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Chapter 4

Dominant structures for large
cells

Life was a lot less complex before you
tried to explain.

Jasper Fforde, Shades of Grey

4.1 Introduction
In this chapter, we study the best 1-cycle problem in regular balanced cells with
any number of machine m. One-cycles are not necessarily optimal among general
cycles, even for cells with circular layout: an instance for which a 2-cycle is better
than any 1-cycle is described in the previous chapter. Still, finding the best 1-cycle
remains a problem of interest due to their operational convenience. Interestingly,
the layout of the cell has an impact on this problem’s complexity. While it has been
shown polynomial in linear additive cells (Crama and van de Klundert, 1997a),
this result, based on the dominance of pyramidal permutations, does not stand
for circular layouts: Rajapakshe et al. (2011) showed that finding the best 1-cycle
turns to be NP-hard in a circular additive cell, even assuming regularity (regularly
spaced machines). Yet for the simpler model of circular regular balanced cell
(where processing times are equals for all machines), the complexity of finding the
best 1-cycle is still unknown. Studying structural properties of good cycles in this
simpler case might lead to progress on this issue and to a better understanding
of the difference of complexity between both layouts in the more general regular
case.

For small-scale regular balanced cells (m ≤ 8), the best-1-cycle problem has
been solved in the previous chapter. We showed in particular that for 6 ≤ m ≤ 8,

49
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the three classical cycles introduced in Chapter 2, {πid, πdh, πoe}, dominate 1-cycles
(meaning that for any instance, one of these three cycles performs at least as well
as any 1-cycle). However, the proof cannot be extended to larger cells. In this
chapter, we are interested in cells with an arbitrarily large number of machine m,
and thus assume m > 8.

Section 4.2 recalls the optimality regions of the classical cycles {πid, πdh, πoe}.
In Section 4.3, we present observations resulting from numerical computation of
cycle times for 9 ≤ m ≤ 14. Section 4.4 investigates general structural properties
of cycles likely to dominate {πid, πdh, πoe}. In Section 4.5, we focus on a family
of cycles generalizing observations in Section 4.3 and derive their cycle times.
Section 4.6 compares this family to more general cycles obeying the dominant
structure presented in Section 4.4. Based on this, in Section 4.7, we conjecture
that the family presented in Section 4.5 dominates 1-cycles. This conjecture is
proven valid for m ≤ 11 and holds up with numerical computation for m ≤ 14. If
proven valid for any m, it would imply that the best 1-cycle problem in circular
regular balanced cells is polynomial.

4.2 Region of optimality of the classical cycles
The three classical 1-cycles, namely the identity cycle πid = A0A1 . . . Am,
the downhill cycle πdh = A0AmAm−1 . . . A1 and the odd-even cycle
πoe = A0A2A4 . . . A1A3A5 . . . have been introduced in Chapter 2, page 26. Some
regions of optimality of these cycle have been established in Chapter 2, page 28
and Chapter 3, page 36:

(i) if p ≤ m+1
m
δ, then the identity permutation πid dominates 1-cycles;

(ii) if (m+1)
m

δ ≤ p ≤ (m+ 1)δ, then the odd-even cycle πoe dominates 1-cycles;

(iii) if p ≥ 3(m− 1)δ, then the downhill permutation πd dominates 1-cycles.

Thus, in this chapter, we only consider the remaining case, where (m + 1)δ <
p < (3m− 1)δ. Recall that for these values of p, cycle πid is dominated by πoe and
need not be considered, while the cycle times of πdh and πoe are given by:

Tπdh(p) = 3(m+ 1)δ (4.1)

Tπoe(p) = 2(m+ 1)δ + 2α− 1
α

(p− (m+ 1)δ) with α =
⌊
m+ 1

2

⌋
(4.2)

Recall also that p∗ denotes the value of the processing time such that Tπoe(p∗) =
Tπdh(p∗). Its value is p∗ = 3α−1

2α−1(m + 1)δ. Over the considered interval, p∗ is
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the smallest value for which min(Tπoe , Tπdh) reaches its maximum (see Figure 4.1
to visualize this property). Potential best 1-cycles must be non-dominated by
{πid, πdh, πoe}, meaning that there exists at least a value of p for which their cycle
time is smaller than the cycle time of any member of {πid, πdh, πoe}. The following
proposition further restricts the interval to consider to find such a value of p and
to show that a cycle is non-dominated by {πid, πdh, πoe}, using this property of p∗.

Proposition 4.1. If a cycle c is non-dominated by {πoe, πdh} over
](m+ 1)δ, (3m− 1)δ[ then it is non-dominated by {πoe, πdh} over ](m+ 1)δ, p∗].

Proof. This is a direct consequence of the cycle time being an increasing function
of the processing time and min(Tπoe(p), Tπdh(p)) reaching its maximum in p∗. Con-
sider p ∈ ](m+ 1)δ, (3m− 1)δ[ such that Tc(p) < min{Tπoe(p), Tπdh(p)}. If p > p∗,
then

Tc(p∗) ≤ Tc(p) < min(Tπoe(p), Tπdh(p)) ≤ 3(m+ 1)δ = min (Tπoe(p∗), Tπdh(p∗))

and hence Tc(p∗) < min (Tπoe(p∗), Tπdh(p∗)).

Figure 4.1 summarizes the results presented in this section. This diagram shows
the cycle times of {πid, πdh, πoe} and the lower bounds presented in Chapter 2
(LBM , LBR) and Chapter 3 (LBD), outlining parameters regions for which the
optimal cycle is known, and the remaining region p ∈ ](m+ 1)δ, (3m− 1)δ[ which
we focus on in this chapter. We are looking for potential optimal cycles other than
{πid, πdh, πoe}, thus dominating {πoe, πdh} for some value of p: Proposition 4.1
indicates that the cycle times of such cycles necessarily take some values in the
hatched area shown on Figure 4.1.

4.3 Experiments
Propositions 3.3 to 3.6 (pages 38 to 40) state that any cycle π dominating
{πid, πdh, πoe} for some p in the considered region satisfies the following three struc-
tural properties:

∀i 6= m, AiAi+1 /∈ π (4.3)
2(m+ 1)δ < ∆π < 3(m+ 1)δ (4.4)

dmin(π) > ∆π −
3α− 2
2α− 1(m+ 1)δ where α =

⌊m+ 1
2

⌋
(4.5)

where ∆π is the total travel time during one iteration of the cycle, and dmin(π) is
the minimum travel time between the loading and unloading of a same machine
(dmin = min

i∈{1,...,m}
di).
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Figure 4.1: Cycle times and known regions of optimality of {πid, πdh, πoe}.

For 6 ≤ m ≤ 8, no 1-cycle satisfies these conditions; however for m > 8, they
do not rule out all 1-cycles. We call filtered(m) the set of 1-cycles satisfying
the conditions; Table 4.1 shows the number of such cycles for 9 ≤ m ≤ 14. For
m ≥ 15, the total number of 1-cycles is too high for an exhaustive filtering.

m 9 10 11 12 13 14
#filtered(m) 26 23 32 41 63 63

Table 4.1: number of cycles in filtered(m) for 9 ≤ m ≤ 14

Using the simulation tools presented in Section 2.4, page 32, we numerically
computed the cycle times of these cycles while varying the processing time p. This
section presents an overview of the resulting observations.

Although ergodicity of the cycle time is often assumed when studying robotic
cells, it has not been formally proven in general. Thus, as the periodic steady state
reached by the simulated cell depends on its initial state, so might the resulting
mean cycle time, and these numerically computed values are only upper bounds
on the cycle time. The following numerical observations should therefore be taken
with caution: they only serve as a motivation for the subsequent formal study.
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4.3.1 Performance
For each 9 ≤ m ≤ 14, some cycles of filtered(m) appear to slightly dominate
{πoe, πdh} in the neighborhood of p∗, as can be seen for example in Figure 4.2 for
9 and 10 machines.

Table 4.2 shows the computed performance ratio of {πoe, πdh} for p = p∗, based
on the computed cycle times of members of filtered(m), at p∗ where it appears
to be the worst. Note the higher ratio for m = 13.

m 9 10 11 12 13 14
max

π∈filtered(m)

Tπdh (p∗)
Tπ(p∗) 1.015 1.028 1.005 1.026 1.050 1.005

Table 4.2: Performance ratio of {πoe, πdh} for δ = 1, p = p∗, using the computed
cycle times of cycles in filtered(m).

4.3.2 Set of dominant 1-cycles
Many of the cycles in filtered(m) are equivalent or strictly dominated by others
within the considered area. Looking closer, it appears that few cycles (1 or 2)
need to be added to the set {πid, πdh, πoe} to form a dominant set within 1-cycles.
This is apparent on Figure 4.3, which shows computed cycle times for members of
filtered(m) in p∗ neighborhood.

Table 4.3 shows, for 9 ≤ m ≤ 14, a possible dominant set and the numerical
optimality regions, computed using a step of 0.01 for p. It seems that only one or
two cycles need do be added to {πid, πdh, πoe} to form a dominant set. Note that
the set is not unique, except for m = 13.

4.3.3 Structure of dominant 1-cycles
One-cycles which outperform {πid, πdh, πoe} are similar in structure. Like πoe, one
iteration consists of 2 turns of the cell, but with additional backward sequences
(two for 9 ≤ m ≤ 11 and m = 14, two or three for m = 12, three for m = 13).
Examples are presented in Figure 4.4. These sequences add to the total travel
time but also increases the time travelled between the loading and unloading of
any machine (increasing dmin to dmin = (m + 5)δ for 9 ≤ m ≤ 11 and m = 14;
dmin = (m+5)δ or dmin = (m+9)δ form = 12; dmin = (m+9)δ form = 13). When
several cycles appear to be equivalent, the relative placement of the backward
sequences is the same.
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Figure 4.2: πdh, πoe and computed cycle times of all members of filtered(m) as
functions of p. The step used for p is 0.1. Notice that many cycles have the same
cycle times.
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m+ 1 ≤ p ≤ 15.00 πoe
15.00 ≤ p ≤ 16.00 A0A3A2A5A8A1A4A7A6A9

16.00 ≤ p ≤ 3m− 1 πdh

(a) m = 9 (p∗ ≈ 15.56)

m+ 1δ ≤ p ≤ 16.00 πoe
16.00 ≤ p ≤ 18.00 A0A3A2A5A8A10A1A4A7A6A9

18.00 ≤ p ≤ 3m− 1 πdh

(b) m = 10 (p∗ ≈ 17.11)

m+ 1δ ≤ p ≤ 18.00 πoe
18.00 ≤ p ≤ 18.66 A0A3A2A5A8A10A1A4A7A6A9A11

18.67 ≤ p ≤ 3m− 1 πdh

(c) m = 11 (p∗ ≈ 18.55)

m+ 1 ≤ p ≤ 19.00 πoe
19.00 ≤ p ≤ 19.66 A0A3A2A5A8A10A12A1A4A7A6A9A11
19.67 ≤ p ≤ 21.66 A0A3A2A5A8A11A10A1A4A7A6A9A12

21.67 ≤ p ≤ 3m− 1 πdh

(d) m = 12 (p∗ ≈ 20.09)

m+ 1 ≤ p ≤ 20.46 πoe
20.47 ≤ p ≤ 23.33 A0A3A2A5A8A11A10A13A1A4A7A6A9A12*

23.34 ≤ p ≤ 3m− 1 πdh

(e) m = 13 (p∗ ≈ 21.54) (*unique)

m+ 1 ≤ p ≤ 22.0 πoe
22.0 ≤ p ≤ 23.20 A0A3A2A5A8A10A12A14A1A4A7A6A9A11A13

23.20 ≤ p ≤ 3m− 1 πdh

(f) m = 14 (p∗ ≈ 23.08)

Table 4.3: Best 1-cycle depending on p, for 9 ≤ m ≤ 14 and δ = 1.
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Figure 4.3: πoe, πdh and computed cycle times of all members of filtered(m) as
functions of p, zoomed around p∗. The step used for p is 0.1.
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Figure 4.4: Some 1-cycles which outperform {πid, πdh, πoe} in the neighborhood of
p∗. For 12 machines, note that the two cycle presented are not equivalent: one has
two backward sequences and the other has three.
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4.4 General structure of performant cycles
The experimental results obtained in Section 4.3 suggest that any cycle dominating
{πid, πdh, πoe} consists in two forward turns around the cell, similarly to the odd-
even cycle, altered by a number of backward sequences AiAi−h. We will call such
alterations “waves”, referring to their aspects on the cycle graphical representation.
In this section, we define formally such cycles and derive some of their properties.

4.4.1 Two turns...
In the following, unless otherwise specified, m > 8 and (m+ 1)δ < p < (3m− 1)δ
and π refers to a 1-cycle dominating {πid, πdh, πoe} for some (m + 1)δ < p <
(3m− 1)δ. In this interval, cycle time values for πdh and πoe are given respectively
by Equation (4.1) and Equation (4.2). Note that the cycle time of πoe satisfies:

Tπoe(p) < 2p (4.6)

Remember (inequality (4.4)) that the total travel time (denoted by ∆π) over
one iteration of cycle π must be comprised between two and three times the time
necessary to circle the cell once:

2(m+ 1)δ < ∆π < 3(m+ 1)δ (4.7)

This relation alone is not sufficient to conclude that the robot effectively circles
the cell twice. This section aims at showing this is indeed the case; formally, that
there is at least one spot where the robot passes exactly twice, both times while
traveling in the forward direction.

We use the following notations: for any i ∈ {0, . . . ,m}, mπ(i) denotes the
number of times the robot travels betweenMi andMi+1 in either direction (forward
or backward) during one iteration of cycle π. Similarly, m+

π (i) (respectively m−π (i))
denotes the number of times the robot travels forward (respectively backward) from
Mi and Mi+1. When there is no ambiguity as for the referenced cycle, we omit it
and simply use m(i), m+(i) and m−(i).

Note that ∆π = δ
∑

i∈{0,...,m}
mπ(i).

Proposition 4.2. Let π be a 1-cycle such that Tπ(p) < min(Tπoe(p), Tπdh(p)) for
some p ∈ ](m+ 1)δ, 3(m+ 1)δ[. Then:

∀i ∈ {0, . . . ,m} mπ(i) ≥ 2

and
∃j ∈ {0, . . . ,m} mπ(j) = 2
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Proof. First, we show that if m(i) = 1 for some i, then π is dominated by πoe or
πdh.

Case 1. i /∈ {0,m}. Looking at π’s sequence starting with Ai, we consider
cases depending on the respective positions of Ai+1 and Ai−1.

Case 1.1. If Ai+1 precedes Ai−1, then Tπ(p) ≥ 2p > Tπoe : processing on ma-
chinesMi+1 andMi do not overlap, and both require p time units (see Figure 4.5a).

Case 1.2. If Ai−1 precedes Ai+1, then (see Figure 4.5b):

• Between the beginning of Ai and the end of Ai−1, the robot cannot pass a
second time between Mi and Mi+1 (otherwise mi ≥ 2), hence it has to travel
forward between Mi+1 and Mi, thus circling the whole cell and traveling at
least (m+ 1)δ.

• Likewise, between the end of Ai−1 and the beginning of Ai+1, the robot circles
the cell backward, traveling at least mδ.

• Likewise, between the beginning of Ai+1 and the beginning of the next iter-
ation, the robot circles the cell forward, traveling at least mδ.

Moreover as the fastest path from Mi to Mi+1 is forward, and the robots must
take the fastest path to join subsequent activities, at least one activity is performed
between Ai−1 and Ai+1, adding at least 2δ travel time compared to a straight
backward route.

Finally, ∆π ≥ (m+ 1)δ + 2mδ + 2δ = 3(m+ 1)δ, and π is dominated by πdh.
Case 2. i = 0. Looking at π’s sequence starting with A0, we consider cases

depending on the respective positions of A1 and Am.
Case 2.1. Am precedes A1. This case is similar to Case 1.2; see Figure 4.5c.
Case 2.2. A1 precedes Am. Let Ak be the highest activity (largest k) performed

between A0 and A1.
Case 2.2.1. k < m − 2. Activities higher than Ak occur after A1 and there-

fore must be performed in decreasing order, otherwise Tπ(p) ≥ 2p ≥ Tπoe(p) (see
Figure 4.5d). We have m(0) = 1, m(j) ≥ 3 for 0 < j ≤ k + 1, m(j) ≥ 4 for
k + 1 < j < m and m(m) ≥ 3 (see Figure 4.5e). Thus ∆π ≥ 3(m + 1)δ, and π is
dominated by πdh.

Case 2.2.2. k = m−2. Likewise, Am−1 andAm must be performed in decreasing
order. m(0) = 1 and m(j) ≥ 3 for 0 < j ≤ m, which leads to ∆π ≥ (3m + 1)δ.
Additionally, as the fastest path from Mm−2 to M1 is forward (m − 2 − 1 >
m + 1 − (m − 2 − 1)), at least one activity is performed between Am−2 and A1,
adding at least 2δ travel time, leading to ∆π ≥ 3(m+ 1)δ (see Figure 4.5f). Thus
π is dominated by πdh.
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Case 2.2.3. k = m − 1. We have m(0) = m(m) = 1 and m(j) ≥ 3 for
0 < j < m, thus ∆π ≥ (3m − 1)δ. If A2 is after Am−1 (Figure 4.5g), then
m(2) ≥ 4. Additionally, at least one activity is performed between Am−1 and A2,
since otherwise the robot would have gone forward from Mm to M2. This adds an
additional 2δ, leading to ∆π ≥ 3(m + 1)δ. On the other hand, if A2 takes place
before Am−1, then, the robot travels at least 2mδ between the beginning of A2 and
the end of A1, and travels or waits at least p between A1 and the next unloading of
M1 (see Figure 4.5h). The cycle time (calculated from the beginning of A2) Tπ(p)
is at least 2mδ + p. If p ≥ (m + 3)δ, then Tπ(p) ≥ 3(m + 1)δ and π is dominated
by πdh. Otherwise, (m+ 1)δ < p < (m+ 3)δ: then, Tπ(p) ≥ 2p and π is dominated
by πdh.

Case 3. i = m. This case is symmetrical to the case where i = 0.
Finally, if π dominates {πoe, πdh} for some p ∈ ](m+ 1)δ, (3m− 1)δ[, then for

all i ∈ {0, . . . ,m}, mπ(i) ≥ 2. Moreover, inequality (4.7) implies that there exist
j ∈ {0, . . . ,m} such that mπ(j) = 2 (otherwise, ∆π ≥ 3(m+ 1)δ).

Proposition 4.3.
For i ∈ {0, . . . ,m}, if mπ(i) = 2, then m+

π (i) = 2 and m−π (i) = 0.

Proof. For the sake in simplicity, we give the proof for i = 0, but it can be adapted
to any i in {0, . . . ,m}. Let us assume that m+(0) = 1 and m−(0) = 1. This means
that cycle does not take advantage of the circular layout of the cell. We consider
the cycle sequence starting with A0. It can be decomposed into two parts: the
part between A0 and Am, and the rest of the sequence following Am. For any j in
{1, . . . ,m}, m(j) = 2 only if the 3 following conditions are satisfied:

(i) Aj is performed between A0 and Am

(ii) No activity Ak with k < j is performed between Aj and Am

(iii) There is no pair of activities Ak, Al such that k < j < l and Ak and Al both
take place after Am in that order.

In all other cases, m(j) ≥ 4:

• If condition (i) is not satisfied, then the robot travels at least twice forward
between Mj and Mj+1 (once between A0 and Am and once to perform Aj,
and twice backwards (once between Am and Aj (to get to Mj or a previous
machine), and once after Aj (to get back to the input station).

• Otherwise, if (ii) is not satisfied, the robot travels between Mj and Mj+1 at
least once forward performing Aj, once backward between Aj and Ak, once
forward between Ak and Am, and once backward after Am.
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Figure 4.5: For the proof of Proposition 4.2.
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Figure 4.6: For the proof of Proposition 4.3: cycle
A0A2 . . . Am−2AmAm−1Am−3 . . . A1 (here for m = 10)

• Otherwise, if (iii) is not satisfied, the robot travels between Mj and Mj+1 at
least once forward performing Aj, once backward between Am and Ak, once
forward between Ak and Al, and once backward after Al.

As π does not contain any subsequence of consecutive activities, at most dm+1
2 e

activities satisfy these conditions. If at most bm+1
2 c do so (in particular, this is

the case if m is odd), then Tπ(p) ≥ 2bm+1
2 cδ + 4dm+1

2 eδ ≥ 3(m + 1)δ and π is
dominated by πdh.

Otherwise, the only possible cycle is π = A0A2 . . . Am−2AmAm−1Am−3 . . . A1

(see Figure 4.6). Then we have Tπ ≥ 2
(
dm+1

2 e − 1
)
δ + p + 4

(
bm+1

2 c − 1
)
δ ≥

3(m+ 1)δ (as p ≥ (m+ 1)δ)), thus π is dominated by πdh.

Definition 4.1. Consider i0 ∈ {0, . . . ,m} such thatm+
i0(π) = 2. The robot travels

twice between Mi0 and Mi0+1: once loaded while performing Ai0 , and once empty.
Starting an iteration of the cycle with Ai0 , we define all robot moves from Ai0
included, to the empty travel between Mi0 and Mi0+1 excluded as constituting the
first turn of the cycle. All subsequent moves form the second turn. Each turn
entails at least (m+ 1)δ units of travel time.

The following Proposition extends Equation (4.3):

Proposition 4.4. Two activities Ai and Ai+1 cannot be performed during the
same turn of π in increasing order.

Proof. Let i ∈ {0,m− 1} such that Ai and Ai+1 take place during a same turn in
increasing order. Then, Tπ(p) ≥ 2(m+ 1)δ+ p ≥ 3(m+ 1)δ as p ≥ (m+ 1)δ. Thus
π is dominated by πdh.
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4.4.2 ...Waves...
In the next two sections, we restrict ourselves to cycles satisfying Proposition 4.3,
meaning that there is at least one spot in the cell which the robot crosses exactly
twice, both times forward. Graphically, these cycles can be seen as two forward
climbs (representing the two turns) altered by “waves” formed by backwards se-
quences of activities of type AiAi−h. We call h the size of the wave: for example
A6A5 is a wave of size 1, and A7A4 a wave of size 3. Intuitively, these sequences,
at the cost of an additional travel time, increase the amount of travel between
the loading of some machines and their subsequent unloading, thus reducing the
waiting time.

Figure 4.7 shows how one wave of size h affects the travel time and waiting
times.

i− h

i

above

under (m+ 1)δ + 2(h+ 1)δ

(m+ 1)δ

(m+ 1)δ

(m+ 1)δ + 2(h+ 1)δ

2(h+ 1)δ

Figure 4.7: One wave

Compared to πoe, 2(h+1)δ is added to the total travel time by one wave of size h.
Recall that dj is the time traveled by the robot between the loading and unloading
of machine Mj, j ∈ {1, . . . ,m}. These values are also affected depending on when
machine Mj is loaded relatively to the sequence AiAi−h ("under" or "above" in
Figure 4.7):

• if Mj is loaded before performing AiAi−h, during the same turn (“under”),
dj is increased by 2(h+ 1)δ.

• if Mj is loaded after performing AiAi−h, during the same turn (“above”), dj
doesn’t change.

• ifMj is loaded “under” the sequence AiAi−h, during the other turn, dj doesn’t
change.

• if Mj is loaded “above” the sequence AiAi−h, during the other turn, dj is
increased by 2(h+ 1)δ.
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Number

Note that in order to increase dj by at least 2(h+ 1)δ for all j ∈ {1, . . . ,m}, it is
necessary to add two waves, one on each turn, or one at each extremity of a turn.

More generally, for m arbitrarily large, 2n waves of size h are required to
increase dj by n(2(h + 1))δ for all j ∈ {1, . . . ,m}, adding 4n(h + 1)δ to the total
travel time.

Placement

Let i1 < i2 ∈ {0, . . . ,m}. In order to increase each dj value by at least 2(h + 1)δ
with only the sequences Ai1Ai1−h and Ai2Ai2−h, the indices i1 and i2 must verify:

i2 − i1 ≤ h+ 3 (4.8)
Otherwise, di1+3 is unchanged (see Figure 4.8): if Ai1 takes place on the first

turn, then by Proposition 4.4, Ai1+2 takes place on the first turn, after the first
wave, and Ai1+3 takes place on the second turn before the second wave. Thus the
travel between the loading and unloading of Mi1+3 doesn’t contain any of the two
waves and is not impacted.

i1 − h

i1
i1 + 1
i1 + 2
i1 + 3

i2 − h

i2

(m+ 1)δ

Figure 4.8: Placement.

More generally, to increase every dj value by at least n(2(h + 1))δ using the
sequences Ai1Ai1−h, . . . , Ai2nAi2n−h with i1 < i2 · · · < i2n, Equation (4.8) must be
verified by each pair (ik, ik+1) for 1 ≤ k ≤ 2n− 1.

Notation

Here, we introduce notations to describe in a compact fashion cycles formed with
waves of uniform size h.

For h = 1, the number and position of the waves is sufficient to specify the
full activity sequence of the cycle, as by Proposition 4.4 no consecutive activities
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may take place on the same turn in increasing order, so the only consecutive
activities taking place on the same turn are the wave sequences, all the others are
alternated. We denote v(i1, i2, . . . , in), the cycle formed with the waves Ai1Ai1−1,
Ai2Ai2−1 . . .AinAin−1. To build the full expression of the cycle, on can proceed
as follows: starting with two empty turns, take the activities in increasing order
starting with A0. Each activity Ai is inserted sequentially into one of the two
turns following these rules: if i ∈ {i1, . . . in} then Ai is inserted just before Ai−1,
on the same turn, otherwise Ai is appended to the other turn. For example, on a
10-machine cell, v(3, 7) = A0A3A2A5A8A10A1A4A7A6A9. This cycle, represented
in Figure 4.12, is studied with more detail in Section 4.5.

For h > 1, the specification of the waves is not sufficient to deduce the com-
plete sequence: we denote by Vh(i1, i2, . . . , in) the set of cycles containing waves
Ai1Ai1−h, Ai2Ai2−h, . . . , AinAin−h.

4.4.3 ... And still waters

Graphically, the unfolding in the cell of the cycles considered in this chapter is made
of “turbulence zones”, where the robot moves are altered by the waves’ backward
sequences, and “still waters”, where the robot behaves as when executing πoe,
moving forward and serving one machine in two.

Such a decomposition is represented on Figure 4.9, with two still water areas,
surrounding one turbulence zone. For machines located in the still water areas,
the distance traveled by the robot between the loading and unloading depends
solely on the size and number of waves in the turbulence zone. More precisely, for
machines in the lower still area loaded during the first turn, and machines in the
upper still area loaded during the second turn, this value (da, represented in blue)
is identical, and determined by the waves carried on the first turn. Likewise, for
machines in the lower still area loaded during the second turn and machines in the
upper still area loaded during the first turn, this value (db, represented in green)
is identical, and determined by the waves carried on the second turn.

If both turns carry the same number and size of waves, then da = db, making
the cycle structure in these still water areas similar to the one of πoe. In this
section, we exploit this similarity to give a lower bound on the cycle time, more
precisely on the waiting time.

From now on, for any cycle c, we use the notation Wc(p) to denote the long
run average total waiting time of the robot for the cycle c, depending on p. Recall
that the cycle time of c is the sum of its travel time and waiting time, thus
Tc(p) = ∆c(p) +Wc(p).
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...

...Turbulences

Still waters

Still waters

da
db

db
da

Figure 4.9: Decomposition of a cycle in still waters and turbulences

Definition 4.2. For any n > 0, p ≥ 0, d ≥ 0, we define:

Ŵ (n, d, p) = 2α(n)− 1
α(n) max(0, p− d), where α(n) =

⌊
n+ 1

2

⌋

and for n = 0, Ŵ (n, d, p) = 0.

In particular, Ŵ
(
m, (m+ 1)δ, p

)
= Wπoe(p). More generally, Ŵ (n, d, p) would

be the waiting time of a cycle similar to πoe on n machines, with di = d for all
i ∈ {0, . . . ,m + 1}. Note that for a given d and p, the function Ŵ (n, d, p) is
increasing in n while for a given n and p, Ŵ (n, d, p) is decreasing in d.

The following Proposition uses Ŵ to bound the cycle time of a cycle based
on the part that is similar to the odd-even cycle. For convenience, we denote
SEi,j (respectively SOi,j) the ordered sequence of all activities Al with l even
(respectively odd), i ≤ l ≤ j. For instance, SE3,8 = A4A6A8.

Proposition 4.5. Let π be a 1-cycle verifying Proposition 4.3.

(i) If there exists i, l, d such that

• π contains both sequences SEi,i+l and SOi,i+l,

• ∀j ∈ {i+ 1, . . . i+ l}, dj = d

Then Wπ(p) ≥ Ŵ (l, d, p).
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(a) l=3
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p

p
p

(b) l=4

Figure 4.10: Proposition 4.5 (i): example for l = 3 and l = 4. Two iterations are
represented. During each of the three intervals represented in red, at most d unit
of travel time occur, and p time units must have gone by in order for the part to
be available. Thus at least max(0, p− d) units of waiting time are necessary. On
average, 3

2 max(0, p− d) units of waiting time by iteration are necessary.

(ii) More generally, if there exists d, i1, i2, l1, l2, with i2 > i1 + l1, such that

• π contains both sequences SEi1,i1+l1 and SOi1,i1+l1

• π contains both sequences SEi2,i2+l2 and SOi2,i2+l2

• ∀j ∈ {i1 + 1, . . . i1 + l1} ∪ {i2 + 1, . . . i2 + l1}, dj = d

Then, Wπ(p) ≥ Ŵ (l1 + l2 − 1, d, p)

Proof.
(i) Similarly to the proof of πoe’s cycle time, we consider α(l) iterations of the

cycle, and follow the path of one part in the cell, from its loading on Mi+1 (Ai)
during the first iteration up to its unloading from Mi+l with Ai+l (if l odd), or
from Mi+l−1 (if l even). Figure 4.10 shows an example, respectively for l = 3
(Figure 4.10a) and l = 4 (Figure 4.10b). Between each consecutive loading and
unloading of the same machine, the waiting time is at least max(0, p− d), leading
to a total waiting time of at least (2α(l)− 1) max(0, p− d) over α(l) iterations.

(ii) Ai2 and Ai2+1 are not performed during the same turn, so one of them is
performed during the same turn as Ai1+l1 . If it is Ai2 , the proof is similar to case (i)
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(b) Ai1+l1 and Ai2+1 on the same turn

Figure 4.11: Proposition 4.5 (ii)

with l = l1 + l2, following the path of one part from its loading on Mi1+1 to its
unloading fromMi1+l1 , then from the loading ofMi2+1 to its unloading fromMi2+l2
(see Figure 4.11a). If not, the proof is similar to case (i) with l = l1+l2−1, following
the path of one part from its loading on Mi1+1 to its unloading from Mi1+l1 , then
from the loading of Mi2+2 to its unloading from Mi2+l2(see Figure 4.11b).

If the number/size of waves carried on each turn is different, the cycle
might contain πoe-like sequences with alternating di values (see Figure 4.9, with
da 6= db). Proposition 4.5(i) can be extended to this case:

Proposition 4.6.
Let π be a 1-cycle verifying Proposition 4.3. If the following conditions are

verified:

• π contains both sequences SEi,i+l and SOi,i+l,

• ∀j ∈ {i+ 1, . . . i+ l} with j − i = 1 mod 2, dj = da

• ∀j ∈ {i+ 1, . . . i+ l} with j − i = 0 mod 2, dj = db

Then Wπ(p) ≥ max
(
0, p− da, p− db, p− da + α(l)−1

α(l) (p− db)
)
.
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Proof. The proof is similar to the proof of Proposition 4.5(i). We follow the path
of one part in the cell between Ai and Ai+l (if l odd) or Ai+l−1 (if l even), over α(l)
iterations of the cycle. The part is processed on α(l) machines for which di = da
and α(l) − 1 machines for which di = db. If p ≥ max(da, db), this leads to a total
waiting time of at least α(l)(p− da) + (α(l)− 1)(p− db).

4.5 Wavelets (h = 1)
The observations reported in Section 4.3 on the simulations performed for 9 ≤ m ≤
14 highlighted two types of cycles which outperform {πoe, πdh}, both containing
only size-1 waves. The first type contains two waves, and outperforms {πoe, πdh}
for every tested value of m. The second type contains 3 waves and appeared
to be interesting only for m = 12 and m = 13. In this section, we formalize and
generalize these experimental results by defining a new family of cycles, containing
only evenly spaced size-1 waves. We study the properties of this family and its
dominance over the classical cycles set {πid, πdh, πoe}. Section 4.5.1 presents a
direct generalization of the 2-waves type for m machines, and a proof of its cycle
time and dominance over {πoe, πdh}. In Section 4.5.2 this form is generalized to
an arbitrary number of waves, either even or odd. In section Section 4.5.3, we
compare these cycles.

4.5.1 Cycle π2w

For any m ≥ 9, let us consider the cycle π2w = v(3, 7). More precisely, π2w is
defined as follows:

For m even,

π2w = A0A3A2A5A8 . . . A2i . . . AmA1A4A7A6A9 . . . A2i+1 . . . Am−1

and for m odd,

π2w = A0A3A2A5A8A10 . . . A2i . . . Am−1A1A4A7A6A9A11 . . . A2i+1 . . . Am

Similarly to the odd-even cycle, this sequence consists of the robot circling the
cell twice, loading one machine in two, but each of the two turns is altered by a
backward sequence AiAi+1. Figure 4.12 shows an example on a 10-machine cell.
We call first turn the part of the cycle from A0 to Am (respectively Am−1) for m
even (respectively odd), and second turn the rest of the cycle.

Compared to πoe, each wave adds 4δ to the total travel time, but for all i ∈
{0, . . . ,m+ 1}, di is increased by at least 4δ, hence we have

∆π2w = 2(m+ 1)δ + 8δ = 2(m+ 5)δ
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Figure 4.12: cycle π2w on a 10-machine cell.

dmin(π2w) = (m+ 5)δ
The simulations described in Section 4.3 showed that for 10 ≤ m ≤ 14, cycle π2w
appears to dominate {πid, πdh, πoe} for some parameter values; by algebraically
establishing its cycle time, we prove that this is indeed valid for any m ≥ 9.

Proposition 4.7. Cycle time of π2w
For (m+ 1)δ ≤ p ≤ (m+ 5)δ + 4

⌊
m+7

2

⌋
δ, the cycle time of π2w is:

Tπ2w(p) = 2(m+ 5)δ + Ŵ (m− 8, (m+ 5)δ, p)

In particular, this is true for p∗, since p∗ < (m+ 5)δ + 4
⌊
m+7

2

⌋
δ

As the cycle time is increasing in p, for p > (m+ 5)δ + 4
⌊
m+7

2

⌋
δ:

Tπ2w(p) ≥ 2(m+ 5)δ + Ŵ (m− 8, (m+ 5)δ, p)

Proof.
The total travel time of π2w is 2(m + 5)δ; we show that in the first case its

waiting time is exactly Ŵ (m− 8, (m+ 5)δ, p).

• For j = 1 and j ∈ {9, . . . ,m}, dj(π2w) = dmin(π2w) = (m + 5)δ, and π2w
contains the four sequences SE0,1; SO0,1; SE8,m and SO8,m. As a consequence
of Proposition 4.5:

Wπ2w(p) ≥ Ŵ (m− 8, (m+ 5)δ, p)

• To show that Wπ2w(p) ≤ Ŵ (m − 8, (m + 5)δ, p), we provide a repartition
of waiting times between machines so that the sum of the waiting times is
Ŵ (m− 8, (m+ 5)δ, p), and no additional waiting time is necessary.
If p ≤ (m+ 5)δ, then no waiting time is necessary.
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Let us consider p > (m + 5)δ. Between machines M10 and M1 (in a cyclic
sense), the cycle behaves in a similar way to πoe on (m − 8) machines with
dmin = (m + 5)δ. We place waiting times on these machines only, similarly
to the waiting times of the corresponding odd-even cycle.
More precisely, waiting time are distributed this way for m even (wi being
the waiting time at machine Mi):

wi =

0 for 1 ≤ i ≤ 9
p−(m+5)δ
α(m−8) for 10 ≤ i ≤ m

and for m odd:

wi =

0 for 2 ≤ i ≤ 9
p−(m+5)δ
α(m−8) for i = 1 and 10 ≤ i ≤ m

Figures 4.13a and 4.13b show an example respectively for m = 11 and m =
12.

– The sum of all waiting times is:
2α(m− 8)− 1
α(m− 8) (p− (m+ 5)δ) = Ŵ (m− 8, (m+ 5)δ, p).

– For i = 1 or 10 ≤ i ≤ m: di = (m + 5)δ, and between the load-
ing and unloading of machine Mi the robot waits α(m− 8) times

1
α(m−8)(p− (m+ 5)δ), so no additional waiting time is necessary.

– For 2 ≤ i ≤ 9, if Mi is loaded during the first turn: di ≥ (m + 5)δ,
and between the loading and unloading of machine Mi the robot waits
α(m− 8) times 1

α(m−8)(p − (m + 5)δ), so no additional waiting time is
necessary.

– For 2 ≤ i ≤ 9, if Mi is loaded during the second turn: di = (m + 9)δ,
and between the loading and unloading of machine Mi the robot waits
α(m− 8)− 1 times 1

α(m−8)(p− (m+ 5)δ).
For this waiting time to be sufficient, the following must be satisfied:

(m+ 9)δ +
(

1− 1
α(m− 8)

)
(p− (m+ 5)δ) ≥ p

which is equivalent to:
p ≤ (m+ 5)δ + 4α(m− 8)δ

p ≤ (m+ 5)δ + 4
⌊
m− 7

2

⌋
δ.
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Figure 4.13: Waiting times during one iteration of π2w. The value α(m − 8) is
denoted β.

In other words:

p ≤ 3m− 9 for m odd
p ≤ 3m− 11 for m even

(4.9)

Note that for m > 8, condition (4.9) is verified in particular for any
p ≤ p∗.

Finally, for (m+ 1)δ ≤ p ≤ (m+ 5)δ + 4
⌊
m+7

2

⌋
,

Tπ2w(p) = 2(m+ 5)δ + Ŵ (m− 8, (m+ 5)δ, p). (4.10)
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In particular one can verify that Tπ2w(p∗) < Tπoe(p∗). Hence π2w is not strictly
dominated by {πoe, πdh}. In the next section, we introduce a more general family of
cycle, including among others πoe and π2w, and detail their dominance relationships
depending on the values of p.

4.5.2 Generalization: (πnw)n
In this section, we define and study πnw, a generalization of cycle π2w formed by
placing n waves alternately on each turn, spaced adequately to uniformly increase
travel time between subsequent loading and unloading operations. Cycles πnw for
various value of n and of the number of machines m are compared in Section 4.5.3,
basically showing that cycles πnw with the highest possible values of n perform
better.

Formally, for n ≥ 0 and m ≥ 4n− 1, we define:

πnw = v(3, 7, . . . , 4i− 1, . . . , 4n− 1)

For example, π4w = v(3, 7, 11, 15). For 18 machines, its full expression is:
π4w = A0A3A2A5A8A11A10A13A16A18A1A4A7A6A9A12A15A14A17. In particular,
π0w = πoe.

A representation of πnw form even (respectivelym odd) is shown on Figure 4.14
(respectively Figure 4.15). We call first turn the part of the cycle from A0 until
the robot reaches the output station and second turn the rest of the cycle. The
total travel time of πnw is:

∆πnw = 2(m+ 2n+ 1)δ

In particular, form = 4n−1 one has ∆πnw = 3(m+1)δ. Thus πnw is dominated
by πdh for m = 4n − 1. Consequently, in the following we only consider m ≥ 4n.
As properties of πnw depend on the parity of n, we consider separately both cases;
for n even we give an expression of the cycle time; for n odd, a lower bound on
the cycle time, and an expression of the cycle time for the special cases m = 4n
and m = 4n+ 1.

For n even

For n even, πnw satisfies:

dmin(πnw) = (m+ 2n+ 1)δ

Proposition 4.8 gives an expression for πnw cycle time, generalizing Proposi-
tion 4.7.
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Figure 4.14: Representation of πnw, with n even

Proposition 4.8. Cycle time of πnw with m ≥ 4n and n even
For (m+ 1)δ ≤ p ≤ (m+ 2n+ 1)δ + 4

⌊
m+4n−1

2

⌋
δ, the cycle time of πnw is:

Tπnw(p) = 2(m+ 2n+ 1)δ + Ŵ
(

max(1,m− 4n), (m+ 2n+ 1)δ, p
)

(4.11)

As the cycle time is increasing in p, for p > (m+ 2n+ 1)δ + 4
⌊
m+4n−1

2

⌋
δ:

Tπnw(p) ≥ 2(m+ 2n+ 1)δ + Ŵ
(
m− 4n, (m+ 2n+ 1)δ, p

)
(4.12)

Proof. For p ≤ dmin(πnw) = (m+ 2n+ 1)δ, there is no waiting time and the cycle
time is Tπnw(p) = ∆πnw = 2(m+ 2n+ 1)δ.

For p > (m+2n+1)δ, the proof is similar to the one of Proposition 4.7. We use
Proposition 4.5 to bound the waiting time, then we provide an adequate waiting
time vector to show equality.

For m = 4n, by Proposition 4.5(i) with i = 0, l = 1, d = (m + 2n + 1)δ:
Wπnw(p) ≥ Ŵ (1, (m+ 2n+ 1)δ, p).

For m ≥ 4n+1, by Proposition 4.5(ii) with i1 = 0, i2 = 4n, l1 = 1, l2 = m−4n,
d = (m+ 2n+ 1)δ: Wπnw(p) ≥ Ŵ (m− 4n, (m+ 2n+ 1)δ, p).
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To prove the equality, we consider the following waiting time vectors:

wi =

0 for 2 ≤ i ≤ 4n
p− (m+ 2n+ 1)δ for i = 1

for m = 4n

wi =

0 for 1 ≤ i ≤ 4n+ 1
p−(m+2n+1)δ
α(m−4n) for 4n+ 2 ≤ i ≤ m

for m ≥ 4n+ 2,m even

wi =

0 for 2 ≤ i ≤ 4n+ 1
p−(m+2n+1)δ
α(m−4n) for i = 1 or 4n+ 2 ≤ i ≤ m

for m ≥ 4n+ 1,m odd

In each case, the sum of all waiting times is exactly:

Ŵ
(

max(1,m− 4n), (m+ 2n+ 1)δ, p
)

.
Noticing that:

• for machines Mi, 2 ≤ i ≤ 4n + 1, loaded during the first turn: di = (m +
2n+ 1)δ,

• for machines Mi, 2 ≤ i ≤ 4n + 1, loaded during the second turn: di =
(m+ 2n+ 5)δ,

And using the same arguments as in Proposition 4.7, one can verify that these
waiting times are sufficient for

p ≤ (m+ 2n+ 1)δ + 4
⌊
m−4n+1

2

⌋
δ.

As (m+ 2n+ 1)δ+ 4
⌊
m−4n+1

2

⌋
δ ≤ (3m− 1)δ, Proposition 4.8 does not give the

exact cycle time over the entire considered interval ](m+ 1)δ, (3m− 1)δ[. How-
ever, once the cycle time reaches 3(m+ 1)δ, the corresponding cycle is dominated
by πdh and need not be considered anymore. Let us define the value of p for which
the lower bound given by Proposition 4.8 reaches 3(m+ 1)δ:

Definition 4.3. For n even, we call p∗n the value of p such that

2(m+ 2n+ 1)δ + Ŵ
(

max(1,m− 4n), (m+ 2n+ 1)δ, p∗n
)

= Tπdh(p∗n) = 3(m+ 1)δ.

For m ≥ 4n+ 1, its value is:

p∗n = (m+ 2n+ 1)δ + α(m− 4n)
2α(m− 4n)− 1(m+ 1− 4n)δ
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The following corollary states that, for m ≥ 4n + 1, this value p∗n falls within
the interval for which the exact cycle time of πnw is given by Equation (4.11). This
means that the exact cycle time is really known for the values of p for which it is
worth knowing; it will be useful to compare πnw to other cycles.

Corollary 4.1.
For m ≥ 4n+ 1 and n even, the cycle time of πnw satisfies:

For (m+ 1)δ < p ≤ p∗n,

Tπnw(p) = 2(m+ 2n+ 1)δ + Ŵ
(

max(1,m− 4n), (m+ 2n+ 1)δ, p
)

≤ 3(m+ 1)δ

For p ≥ p∗n, Tπnw(p) ≥ 3(m+ 1)δ.

.

Proof. By definition of p∗n, we know that for p ≥ p∗n, Tπnw(p) ≥ 3(m + 1)δ. To
prove that for (m+1)δ < p ≤ p∗n, the cycle time of πnw is given by Equation (4.11),
we show that p∗n ≤ (m+ 2n+ 1)δ + 4

⌊
m+4n−1

2

⌋
δ. Noticing that:

α(m− 4n)
2α(m− 4n)− 1(m+ 1− 4n)δ ≤ (m+ 1− 4n)δ ≤ 4

⌊
m+ 4n− 1

2

⌋
δ (4.13)

we get:

p∗n = (m+ 2n+ 1)δ + α(m− 4n)
2α(m− 4n)− 1(m+ 1− 4n)δ

≤ (m+ 2n+ 1)δ + 4
⌊
m+ 4n− 1

2

⌋
δ

hence the cycle time of πnw over ](m+ 1)δ, p∗n[ is given by Equation (4.11).

For n odd

Consider πnw with n odd. In this case, one more wave is carried on the first turn
(n−1

2 + 1 waves) than on the second one (n−1
2 waves). As a consequence, machines

in the upper still waters area whose processing takes place between the first and
second turn have a smaller di value than those active between the second and the
first turn (see Figure 4.15). If m is large enough so that the cell contains both
types of machine (m ≥ 4n + 2), then we have dmin(πnw) = (m + 2(n − 1) + 1)δ,
which is the same dmin value as π(n−1)w, but with more total travel time. However,
if m is small enough that there is no machine to load on the first turn after the
last wave (m ≤ 4n+ 1), then dmin(π) = m+ 2(n+ 1) + 1.
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Figure 4.15: Representation of πnw, with n odd.

Remember from simulations presented in Section 4.3 that contrary to π2w which
appears to consistently dominate {πid, πdh, πoe} for some p for 9 ≤ m ≤ 14, the
cycle π3w appears to be interesting for m = 12 and m = 13 but not m = 14,
suggesting that πnw with n odd may be dominated when m ≥ 4n + 2. The
following proposition gives a lower bound of the cycle time for m ≥ 4n+ 2, which
will be used in Section 4.5.3 to show that it is indeed the case. For the case where
m ≤ 4n+1, an exact expression of the cycle time is given later by Proposition 4.10

Proposition 4.9. Lower bound for the cycle time of πnw with n odd andm ≥ 4n+2
For m ≥ 4n+ 2 and n odd, the cycle time of πnw verifies:

Tπnw(p) ≥2(m+ 2n+ 1)δ

+ max
(

0, p− (m+ 2n− 1)δ,

p− (m+ 2n− 1)δ + α(m− 4n− 1)− 1
α(m− 4n− 1)

(
p− (m+ 2n+ 3)δ

)) (4.14)

Proof. For m ≥ 4n+ 2, we have dmin(πnw) = (m+ 2(n− 1) + 1)δ. More precisely,
for i > 4n+ 1 and i even, di = (m+ 2(n− 1) + 1), while for i > 4n+ 1 and i odd,
di = (m+ 2(n+ 1) + 1) (see Figure 4.15).
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Using Proposition 4.6 with i = 4n+ 1, l = (m− 4n− 1), da = (m+ 2n− 1)δ,
db = (m+ 2n+ 3)δ, we get:

Wπnw(p) ≥ max
(

0, p− (m+ 2n− 1)δ,

p− (m+ 2n− 1)δ + α(m− 4n− 1)− 1
α(m− 4n− 1)

(
p− (m+ 2n+ 3)δ

))

Using this bound on the cycle time, the following corollary precise a sufficient
condition on p under which πnw is dominated by πdh:

Corollary 4.2.
For m ≥ 4n+ 2 and n odd, if

p ≥ m+ 2n+ 1 + α(m− 4n− 1)
2α(m− 4n− 1)− 1(m+ 1− 4n)− 2

2α(m− 4n− 1)− 1

then Tπnw(p) ≥ 3(m+ 1)δ (and therefore πnw is dominated by πdh).

Proof. Direct consequence of Equation (4.14).

Recall that for m ≤ 4n, πnw is dominated as its total travel time is greater
than 3(m + 1)δ. For m = 4n and m = 4n + 1, the following proposition gives an
expression of the cycle time.

Proposition 4.10. Cycle time of πnw with n odd and m ≤ 4n+ 1
For m = 4n and for m = 4n+ 1, for (m+ 1)δ ≤ p ≤ (3m− 1)δ, the cycle time of
πnw is given by1:

Tπnw(p) = 2(m+ 2n+ 1)δ + max
(
0, 2n
n+ 1(p− (m+ 2n+ 3)δ)

)
(4.15)

Proof. For m = 4n and m = 4n + 1, as no machine is loaded after performing
A4n−1A4n−2 during the same turn, dmin(πnw) = (m+2(n+1)+1)δ. More precisely,
di = (3m − 2)δ (if m = 4n) or di = (3m − 3)δ (if m = 4n + 1) for all i ∈
{3, 7, . . . , 4n− 1}, and di = (m+ 2(n+ 1) + 1)δ for all others machines Mi.

The processing of a same part on the n machines M2,M4, . . . ,M4i−1, . . .M4n−1
requires n+1

2 iterations of the cycle, thus Tπnw ≥ 2(m+2n+1)δ+ 2n
n+1(p−(m+2n+

3)δ). An example for m = 13 and n = 3 is shown on Figure 4.16. The equality

1Note that in this case 2n
n+1 = 2α(n)−1

α(n) .
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can be proven by considering the following waiting time vector (represented by the
hatched aeras on Figure 4.16):

wi =

0 for i 6= 2 mod 4, i ∈ {1, . . . ,m}
2(p−(m+2n+3)δ)

n+1 for i = 2 mod 4, i ∈ {1, . . . ,m}

The sum of all waiting times is 2n
n+1(p−(m+2n+3)δ), and during each processing,

waiting is performed n+1
2 times, covering all the necessary waiting time.
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Figure 4.16: Cycle time of πnw for n odd and m = 4n + 1: example for m = 13
and n = 3.

The following corollary is a direct consequence of Equation (4.15):

Corollary 4.3. For m = 4n and n odd, Tπnw(p) ≤ 3(m + 1)δ if and only if
p ≤ 3

2m + 7
2 + 2

m
. For m = 4n + 1 and n odd, Tπnw(p) ≤ 3(m + 1)δ if and only if

p ≤ 3
2m+ 7

2 + 4
m−1 .

4.5.3 Dominance relations within (πnw) family
In this section, we draw the consequences of Propositions 4.8 to 4.10 in terms of
dominance between members of (πnw)1≤n≤bm4 c, for any m > 8. We show that at
most 2 of them (depending on the value of m), along with {πid, πdh, πoe}, are suffi-
cient to dominate the entire family. As in the rest of the section, we only consider
(m+ 1)δ < p < (3m− 1)δ, as other cases are already solved (see Section 4.2).

πnw with n even and m = 4n

For n even, m = 4n, one has ∆πnw = 2(3
2m + 1)δ and dmin(πnw) = (3

2m + 1)δ.
Thus, πnw does not verify Equation (4.5) and is therefore dominated by {πoe, πdh}.
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πnw with n odd and m ≥ 4n+ 2

We consider n ≥ 0 odd and m > 4n + 2. A lower bound on πnw is given by
Equation (4.14).

• For (m+ 1)δ < p ≤ (m+ 2n− 1)δ, one has Tπnw(p) ≥ 2(m+ 2n+ 1)δ. Thus,

Tπnw(p)− Tπoe(p) ≥ 4nδ − 2α− 1
α

(p− (m+ 1)δ)

≥ 4nδ − 2α− 1
α

2nδ

≥ 0

and hence πnw is dominated by πoe.

• For (m+ 2n− 1)δ < p < (m+ 2n+ 3)δ,

Tπnw(p) ≥ 2(m+ 2n+ 1)δ + p− (m+ 2n− 1)δ

Thus,

Tπnw(p)− Tπoe(p) ≥ 2n+ 1− α
α

p+ α− 1
α

mδ + 3α− 1
α

δ

As p < (m+ 2n+ 3) and α > 1, we get

Tπnw(p)− Tπoe(p) ≥
2n+ 2
α

≥ 0

Here again, πnw is dominated by πoe.

• For p ≥ (m+ 2n+ 3)δ,

Tπnw(p) ≥ 2(m+2n+1)δ+p−(m+2n−1)+α(m− 4n− 1)− 1
α(m− 4n− 1)

(
p−(m+2n+3)δ

)
We can verify that

p∗ ≥ m+ 2n+ 1 + α(m− 4n− 1)
2α(m− 4n− 1)− 1(m+ 1− 4n)− 2

2α(m− 4n− 1)− 1
Therefore by Corollary 4.2, Tπnw(p∗) ≥ 3(m+ 1)δ = Tπoe(p∗).
Tπnw > Tπoe for both p = m + 2n + 3 and p = p∗, and the cycles Tπnw and
Tπoe are both linear in p over [m + 2n + 3, p∗]. Thus, Tπnw ≥ Tπoe over the
whole interval [m+ 2n+ 3, p∗].
Over [p∗, (3m− 1)δ], one has Tπnw ≥ 3(m+ 1)δ ≥ Tπdh .

Thus, πnw is dominated by {πoe, πdh}.
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πnw and π(n+2)w with n even

We consider n ≥ 0 even and m > 4(n + 2) (so that πnw and π(n+2)w are both
defined and not necessarily dominated by {πoe, πdh}) and compare the cycle times
of πnw and π(n+2)w.

• For p ≤ (m + 2n + 1)δ, there is no waiting time for any of the two cycles:
Tπnw(p) = 2(m + 2n + 1)δ and Tπ(n+2)w(p) = 2(m + 2n + 5)δ, so Tπnw(p) ≤
Tπ(n+2)w(p) and πnw dominates π(n+2)w.

• For (m+2n+1)δ < p ≤ (m+2n+5)δ, waiting is required only for cycle πnw.
The waiting time of πnw is 2α(m−4n)−1

α(m−4n) (p−(m+2n+1)δ). As p ≤ (m+2n+5)
this waiting time is smaller than 8δ, which is the amount of extra travel time
required by π(n+2)w; thus, πnw dominates π(n+2)w.

• For (m+2n+5)δ < p ≤ p∗n, waiting is required for both cycles. Noticing that,
for any number β, one has 2β−1

β
= 2− 1

β
, and that α(m− 4n) = α(m)− 2n

(similarly, α(m − 4(n + 2)) = α(m) − 2(n + 2)), the cycle times difference
simplifies to:

Tπnw(p)−Tπ(n+2)w(p) = 4
(α(m)− 2(n+ 2))(α(m)− 2n)(p− (m+α(m)+1)δ)

Note that as m ≥ 4(n + 2), one has (m + α(m) + 1)δ ≥ (m + 2n + 5)δ, and that
p∗n+2 ≥ p∗n. Thus, we can split the values of p in 4 domains according to the relative
performance of the cycles πnw, π(n+2)w and πdh:

• for (m + 1)δ < p ≤ (m + α(m) + 1)δ we have Tπnw ≤ Tπ(n+2)w < Tπdh , hence
πnw dominates π(n+2)w (and both dominate πdh),

• for (m+α(m) + 1)δ < p < p∗n, we have Tπ(n+2)w < Tπnw < Tπdh , hence π(n+2)w
dominates π(n)w (and both dominate πdh).

• for p∗n ≤ p < p∗n+2, by Corollary 4.1, we have Tπ(n+2)w < Tπdh ≤ Tπnw , hence
π(n+2)w dominates π(n)w (and πdh)

• for p ≥ p∗n+2, both πnw and π(n+2)w are dominated by Tπdh

Note that the threshold value of p from which π(n+2)w starts outperforming πnw
does not depend on n, and that p∗n is increasing in n. So, for a given m, we
get that among all possible cycles πnw with n even, πoe (π0w) is the best one for
(m+ 1)δ < p < (m+α(m) + 1)δ, and πbm−1

4 cw (highest possible value of n) is the
best one for (m+ α(m) + 1)δ < p ≤ p∗bm−1

4 c
.
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πnw and π(n−1)w with n odd and m = 4n

Consider n odd and m = 4n. By Proposition 4.10, for p ≤ (3
2m + 3)δ, Tπnw =

(3m+ 2)δ. In particular, p∗ ≤ (3
2m+ 3)δ thus

Tπnw(p∗) = (3m+ 2)δ < 3(m+ 1)δ = Tπoe(p∗) = Tπdh(p∗)

so contrary to the case where m ≥ 4n + 1, the cycle πnw is not dominated by
{πoe, πdh}. Let us now compare πnw to π(n−1)w; as m = 4n, the cycle time of the
latter, given by Proposition 4.8, simplifies to

Tπ(n−1)w(p) = (3m− 2)δ + max
(

0, 3
2

(
p−

(3
2m− 1

)
δ
))

Thus, for p ≤ (3
2m+ 5

3)δ, one has Tπ(n−1)w(p) ≤ Tπnw(p), while for (3
2m+ 5

3)δ ≤ p ≤
3
2m+ 3)δ, one has Tπnw(p) ≤ Tπ(n−1)w(p).

For p ≥ (3
2m + 3)δ, by Corollary 4.1 the cycle π(n−1)w is dominated by πdh, so

we do not consider it.

πnw and π(n−1)w with n odd and m = 4n+ 1

Consider n odd and m = 4n + 1. For p ≤ (3
2m + 5

2)δ, by Proposition 4.10,
Tπnw = (3m+ 1)δ. In particular,

Tπnw(p∗) = (3m+ 1)δ < 3(m+ 1)δ = Tπoe(p∗) = Tπdh(p∗)

Let us compare πnw to π(n−1)w. As m = 4n+ 1, the cycle time of the latter, given
by Proposition 4.8, simplifies to

Tπ(n−1)w(p) = 3(m− 1)δ + max
(

0, 5
3

(
p−

(3
2(m− 1)

)
δ
))

Thus, for p ≤ 3
2(m+ 1)δ, one has Tπ(n−1)w(p) ≤ Tπnw(p), while for 3

2(m+ 1)δ ≤ p ≤
(3

2m+ 5
2)δ, Tπnw(p) ≤ Tπ(n−1)w(p). Note that 3

2(m+ 1)δ < (m+ α + 1)δ.
For p ≥ (3

2m+ 5
2)δ, by Corollary 4.1, π(n−1)w is dominated by πdh, so we do not

consider it.

Putting everything together

For n odd and m ≥ 4n+ 2, or n even and m = 4n, the cycle πnw is dominated by
{πoe, πdh}. In other cases, πnw outperforms both πoe and πdh for values of p close
to p∗. Using results of this section as well as Corollary 4.1 and Corollary 4.2, we
can deduce the best 1-cycle among {πid, πdh, πoe} ∪ (πnw)n for any instance2. For
any given m, only 4 or 5 cycles are enough to cover all possible values of p; these
results are summed up by Proposition 4.11.

2But not among all 1-cycles (yet)! (For spoilers, jump to Conjecture 4.1.)



4.6. SMOOTH SEA OR HEAVY SWELL ? 83

Proposition 4.11. For m > 8, the best 1-cycles within {πid, πdh, πoe} ∪ (πnw)n≤m4
for (m+ 1)δ ≤ p ≤ (3m− 1)δ are given by the following:

• If m = 4 mod 8 (matches the case n odd and m = 4n)

(m+ 1)δ ≤ p ≤ (3
2m+ 1)δ πoe

(3
2m+ 1)δ ≤ p ≤ (3

2m+ 5
3)δ π(m4 −1)w

(3
2m+ 5

3)δ ≤ p ≤ (3
2m+ 7

2 + 2
m

)δ π(m4 )w
(3

2m+ 7
2 + 2

m
)δ ≤ p ≤ (3m− 1)δ πdh (by Corollary 4.3)

• If m = 5 mod 8 (matches the case n odd and m = 4n+ 1)

(m+ 1)δ ≤ p ≤ 3
2(m+ 1)δ πoe

(3
2m+ 1− 1

2m)δ ≤ p ≤ (3
2m+ 7

2 + 4
m−1)δ π(m−1

4 )w
(3

2m+ 7
2 + 4

m−1)δ ≤ p ≤ (3m− 1)δ πdh (by Corollary 4.3)

• Else

(m+ 1)δ ≤ p ≤ (m+ α + 1)δ πoe
(m+ α + 1)δ ≤ p ≤ p∗2bm−1

8 c
π(2bm−1

8 c)w
p∗2bm−1

8 c
≤ p ≤ (3m− 1)δ πdh (by Corollary 4.1)

with α =
⌊
m+1

2

⌋
and p∗2bm−1

8 c
= (m+ 4

⌊
m−1

8

⌋
+ 1)δ + α−4bm−1

8 c
2α−8bm−1

8 c−1
(m+ 1− 8

⌊
m−1

8

⌋
)δ.

Notice that 2
⌊
m−1

8

⌋
is the largest possible even number n such that

m ≥ 4n+ 1.

In particular for 9 ≤ m ≤ 14, this is consistent with the observations presented
in Table 4.3, which indicated {πid, πoe, πdh, π2w} as a dominant set for 9 ≤ m ≤ 11
andm = 14, respectively {πid, πdh, πoe, π2w, π3w} form = 12 and {πid, πdh, πoe, π3w}
for m = 13.

4.6 Smooth Sea or Heavy Swell ?
In Section 4.5, we presented a family of cycle, (πnw), formed using regularly dis-
posed size-1 waves (sequences AiAi−1). Intuitively, the waves reduce the waiting
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i
i− 1
i− 2

Figure 4.17: Sequence AiAi−2

time by increasing the travel time occurring between the loading and unloading
of machines (di) (and thus the necessary waiting time) at the cost of an overall
increase of the total travel time. The regular spacing of the waves means that
di values are affected uniformly, which makes sense in balanced cells, where all
machines have the same processing time. We showed that the trade-off between
augmentation of the travel time and reduction of the waiting time is adequate for
members of this family to outperform {πid, πdh, πoe} for specific values of p. More-
over, for 9 ≤ m ≤ 15, simulations suggest that a dominant set within 1-cycles can
be formed using only {πid, πdh, πoe} and a couple of cycles from (πnw).

Could cycles similar in structure, but formed with larger waves (sequences
AiAi−h with h > 1), become interesting for larger value of m? Size-2 waves can
be easily dismissed by the following proposition:

Proposition 4.12. Any cycle containing a size-2 wave (sequence AiAi−2) is dom-
inated by πoe.

Proof. If a cycle contains the sequence AiAi−2, then activity Ai−1 is comprised
between Ai−2 and Ai in a cyclic sense (see Figure 4.17). Therefore, the cycle time
is at least 2p (at least p between Ai−2 and Ai−1 and at least p between Ai−1 and
Ai), which is larger than the cycle time of πoe.

However, this proof cannot be extended for h > 3. In this section, we use the
bound defined by Proposition 4.5 to show that cycles formed similarly to members
of (πnw) with waves of size h > 3 are dominated.

Remember from Section 4.4 that potentially interesting cycles are formed by
two turns and a number of waves, and may as such be decomposed in turbulence
zones and still waters areas, which are similar in structure to the odd-even cycle
(see Figure 4.9). Proposition 4.5 uses this decomposition to formulate a bound on
the waiting time of a given cycle, Ŵ (l, d, p). This bound depends on the size of the
still waters areas (l) and the time travelled between the loading and unloadings
of machines located in this area (d). Basically, if two cycles space out successive
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m+ 1 + 2(h+ 1) m+ 1 + 2(h+ 1)

m+ 1 + 2(h+ 1)m+ 1 + 2(h+ 1)

0

m+ 1

l1

h+ 1
≤ 2

h+ 1

l2

Figure 4.18: Representation of a cycle in Vh(i0, i1)

loadings and unloadings similarly (same value for d), then the one with the largest
still water area (largest value of l), has the largest bound on its waiting time.

For cycles πnw with n even, this bound is tight (Proposition 4.8). Thus πnw
performs at least as well as any cycle sharing the same value for d and l, and
better for cycles sharing the same value for d and a larger value for l. For example,
π2w = v(3, 6) performs at least as well as v(5, 8) and better than v(3, 5) or v(5, 7).

In the following, using this bound on the waiting time, we show that cycles
formed with an even number of size-h waves with h > 2, satisfying Equation (4.8)
for every consecutive pair of waves, are always dominated by a member of (πnw).

To better understand the idea, we first consider cycles with only 2 waves, for
h = 3 and h = 4. We show that such cycles are dominated by π4w. Then, we
apply the same reasoning to cycles with an arbitrary even number of waves of size
h, respectively for h odd and h even.

First, recall that for cycles πnw with n even we have:

Wπnw(p) = Ŵ
(
(m− 4n)δ, (m+ 2n+ 1)δ, p

)
(4.16)

Let π ∈ Vh(i0, i1) with h > 2 so that i1− i0−h ∈ {1, 2}. The cycle π is defined
for m ≥ i1 +h; however it is dominated by πdh for m ≤ 2(h+ 1). Indeed, the total
travel time of π is ∆π = 2(m+1)δ+4(h+1), which is greater than Tπdh = 3(m+1)δ
if m ≤ 2(h + 1). Thus, we only consider the case where m > 2(h + 1). For all
machines Mi with i ≤ i0−h or i ≥ i1, di = (m+ 1)δ+ 2(h+ 1)δ (see Figure 4.18).
Then, by Proposition 4.5, we have:

Wπ(p) ≥ Ŵ
(
(m− 2(h+ 3))δ, (m+ 1 + 2(h+ 1))δ, p

)
(4.17)

h = 3 For h = 3, consider π ∈ V3(i0, i1) so that i1 − i0 − 3 ∈ {0, 2}. Let us
compare π with π4w, the cycle formed by four size-one waves. We assume m ≥ 16
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(otherwise π is dominated by πdh), thus π4w is defined. The travel time is identical
for both cycles ∆π(p) = ∆π4w(p) = 2(m + 1)δ + 16δ. The additional spacing
between loading and unloading for machines in the still waters areas is the same
for both cycles, but the the size of these areas is larger for πnw (same value for d,
larger value for l). Formally, by Equation (4.17), the waiting time of π satisfies

Wπ(p) ≥ Ŵ
(
(m− 12)δ, (m+ 9)δ, p

)
while by Equation (4.16), the waiting time of π4w is exactly

Wπ4w(p) = Ŵ
(
(m− 16)δ, (m+ 9)δ, p

)
thus, as Ŵ (l, d, p) is increasing in l, Wπ(p) ≥ Wπ4w(p). Finally π is dominated by
π4w.

h=4 Now for h = 4, consider π ∈ V4(i0, i1) so that i1 − i0 − 4 ∈ {0, 2}. Its
travel time is Tπ(p) = 2(m + 1)δ + 20δ. This case is more complicated than the
previous one, as there is no cycle in the (πnw) family as easily comparable to
π: π4w has less overall travel time, but also adds less travel between subsequent
loadings and unloadings, while π6w adds more travel between subsequent loadings
and unloadings, but also has more overall travel time.

To show that π is indeed dominated by π4w, we show that the potential increase
in waiting time is compensated by the gain in overall travel time.

By Equation (4.17), the waiting time of π satisfies

Wπ(p) ≥ Ŵ
(
(m− 14)δ, (m+ 11)δ, p

)
As Ŵ (l, d, p) is increasing in l, we get

Wπ(p) ≥ Ŵ
(
(m− 16)δ, (m+ 11)δ, p

)
By expanding the expression of Ŵ , we get

Wπ(p)−Wπ4w(p) ≥ Ŵ
(
(m− 16)δ, (m+ 11)δ, p

)
− Ŵ

(
(m− 14)δ, (m+ 9)δ, p

)
≥ −22α(m− 16)− 1

α(m− 16) δ

≥ −4δ

As ∆π −∆π4w = 4δ, Tπ − Tπ4w ≥ 0 and π is dominated by π4w.
We can extend this reasoning to the case of n wave of arbitrary size h > 2 with

n even; this is the following proposition:
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Proposition 4.13. Let h > 2, n even, and i0 < i1 < · · · < in−1 ∈ {0, . . . ,m + 1}
so that for each q ∈ J1, n− 1K, iq − iq−1 − h ∈ {0, 2}. Let π ∈ Vh(i0, . . . , in−1).

If m < 2n(h + 1)δ then π is dominated by πdh; otherwise, π is dominated by
π(nbh+1

2 c)w.

Proof. The travel time of π is ∆π = 2(m + 1)δ + 2n(h + 1). If m < 2n(h + 1)δ,
then ∆π ≥ 3(m+ 1)δ, thus π is dominated by πdh.

Now, we assume m ≥ 2n(h + 1)δ. The cycle π(nbh+1
2 c)w is then defined. Its

travel and waiting time, depending on the parity of h are given respectively by:

∆π(nbh+1
2 c)w

= 2(m+ 1)δ + 2n(h+ 1)δ for h odd (4.18)

∆π(nbh+1
2 c)w

= 2(m+ 1)δ + 2nhδ for h even (4.19)

Wπ(nbh+1
2 c)w

= Ŵ
(
(m− 2n(h+ 1))δ, (m+ n(h+ 1) + 1)δ, p)

)
for h odd (4.20)

Wπ(nbh+1
2 c)w

= Ŵ
(
(m− 2nh)δ, (m+ nh+ 1)δ, p

)
for h even (4.21)

For all machinesMi with i ≤ i0−h or i ≥ in−1, one has di = (m+1)δ+2(h+1)δ.
Then, by Proposition 4.5, we have:

Wπ(p) ≥ Ŵ
(
(m− n(h+ 3))δ, (m+ 1 + n(h+ 1))δ, p

)
(4.22)

For h odd, ∆π = ∆π(nbh+1
2 c)w

. Let us compare the waiting time of both cycles.

As h > 2, we have (m − n(h + 3))δ < (m − 2n(h + 1))δ, thus as Ŵ (l, d, p) is
increasing in l, Wπ ≥ Wπ(nbh+1

2 c)w
, and π is dominated by π(nbh+1

2 c)w.
For n even, one has ∆π − ∆π(nbh+1

2 c)w
= 2nδ. Let us show that

Wπ −Wπ(nbh+1
2 c)w

≥ −2nδ. As h > 2, one has (m−n(h+3))δ < (m−2n(h+1))δ.

Thus as Ŵ (l, d, p) is increasing in l, one has:

Wπ(p) ≥ Ŵ ((m− 2nh)δ, 2(m+ 1 + n(h+ 1))δ, p).

From this, expanding the expression of Ŵ , we get (with β = α(m− 2nh)):

Wπ −Wπ(nbh+1
2 c)w

≥ −2β − 1
β

nδ

≥ −2nδ

Thus Tπ − Tπ(nbh+1
2 c)w

≥ 0 and π is dominated by π(nbh+1
2 c)w.



88 CHAPTER 4. DOMINANT STRUCTURES FOR LARGE CELLS

4.7 A conjecture on the best 1-cycle problem
In Section 4.5, we defined and studied a family of 1-cycles, (πnw). The sequence
of these cycles is formed of two forward turns around the cell, regularly altered by
backwards sequences (waves) AiAi−1, disposed regularly so as to increase di values
at each machine without creating discrepancies. We showed that cycles in this
family outperforms the three classical cycles {πid, πdh, πoe} for adequate instances.
In Section 4.6, we consider cycles with the same regular structure, but with larger
waves (AiAi−h with h ≥ 2), and show that they are dominated by cycles in (πnw):
this suggests that larger waves are not interesting to form dominant cycles. This
leads us to conjecture, consistently with the observations presented in Section 4.3,
that considering only {πid, πdh, πoe} and (πnw) is enough to find a best 1-cycles for
any instance:

Conjecture 4.1. {πid, πdh, πoe} ∪ (πnw)n≤m4 is a dominant set within 1-cycles

Remark 4.1. If Conjecture 4.1 is valid, then the best 1-cycles for m ≥ 8 are given
by Proposition 4.11.

Form small enough (m ≤ 11), the number and size of possible waves of 1-cycles
can be completely described with rather few conditions. Thus, in this case, we can
conclude on the validity of the conjecture. From m > 12, the conditions are more
tricky to describe.

Proposition 4.14. Conjecture 4.1 is valid for m ≤ 11.

Proof. The case for m ≤ 8 has been settled in Chapter 3, so we consider 8 ≤ m ≤
11.

Let π be a 1-cycle such that for some p ∈ ](m+ 1)δ, 3(m+ 1)δ[, Tπ(p) <
min(Tπoe(p), Tπdh(p)). The travel time of π must be strictly less than 3(m + 1)δ.
As π cannot contain any size-two waves, π can contain either 1 size-1 wave (then
∆π = (2(m + 1) + 4)δ), 2 size-1 waves (∆π = (2(m + 1) + 8)δ), 1 size-3 wave
(∆π = (2(m+ 1) + 8)δ).

Case 1: π contains 1 size-1 wave (there exists i such that π = v(i)). The lower
bound of π1w, given by Equation (4.14) also applies to π, thus we can apply
the same reasoning to show that π is as well, dominated by {πoe, πdh}.

Case 2: π contains 1 size-3 wave (there exists i such that π ∈ V3(i)).
We have dmin(π) = (m + 1)δ and ∆π = 2(m + 1)δ + 6δ, thus Tπ(p) ≥
2(m+ 1)δ+ 6δ+ (p− (m+ 1))δ. Using this bound and the cycle time of πoe,
we get that if Tπ(p) < Tπoe(p), then p > (m+1)δ+8 α

α−1δ. We can verify that
for m ≤ 11, p∗ < (m+1)δ+8 α

α−1δ, thus Tπ(p) ≥ Tπoe(p) ≥ Tπdh(p) for p ≤ p∗

which contradicts Proposition 4.1. Thus π is dominated by {πoe, πdh}.
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Case 3: π contains 2 size-1 wave (there exists i, j such that π = V1(i, j)).
If j−i−1 ∈ {0, 2}, then by Proposition 4.5Wπ(p) ≥ Ŵ (m−8, (m+5)δ, p) =
Wπ2w , thus π is dominated by π2w. Otherwise, we have dmin(π) = (m+ 1)δ,
thus Tπ(p) ≥ 2(m + 1)δ + 8δ + (p − (m + 1))δ: similarly to Case 2, π is
dominated by {πoe, πdh}.

If Conjecture 4.1 is valid, then the best 1-cycles for m ≥ 8 are given by Propo-
sition 4.11. As an instance of the problem is given by (m, p, δ), this would make
the best 1-cycle problem solvable in linear time (thus polynomial).

Another interesting consequence would be the performance ratio of the classical
cycles {πid, πdh, πoe} within 1-cycles. Compared to cycles in the family (πnw), these
three cycles are easy to describe and understand by an human operator, whereas
πnw cycles do not seem to greatly improve the cycle time. Let R be the performance
ratio of {πid, πdh, πoe} within {πid, πdh, πoe} ∪ (πnw):

R = min(Tπdh , Tπoe , Tπid)
minn(Tπdh , Tπoe , Tπid , Tπnw) (4.23)

As the slope of πoe is 2 and the slope of any cycle πnw is at most 2, this ratio is worst
for p = p∗, where Tπoe(p) = Tπ(p) = 3(m + 1)δ. Figure 4.19 shows the computed
ratio at p∗ for 9 ≤ m ≤ 200, using Proposition 4.11 and the expression of the cycle
time given by Proposition 4.8. We can verify algebrically that, if Rm denotes the
ratio at p∗ for m machines, each one of the sub-sequences (Rm)m=i mod 8 converges
linearly towards 1, and thus the sequence (Rm) converges towards 1.

4.8 Conclusion
In this chapter, we addressed the best 1-cycle problem in arbitrarily large cells
(m > 8, the case m ≤ 8 being settled in Chapter 3). Though known to be
NP-hard for circular regular cells, the complexity of this problem is still open in
the balanced case. Observations of simulations up to m ≤ 14 showed that 1-cycles
non-dominated by {πid, πdh, πoe} appear to follow a constrained structure, which we
subsequently investigated. We first showed that non-dominated cycles necessarily
take advantage of the circular configuration, in a similar way to the odd-even cycle
πoe: during one iteration, the robot circles the cell twice, forward, with scattered
backward sequences (“waves”) along the way which allow to decrease the waiting
time at some machines while increasing the overall travel time. This leaves the
question of the size, number, and placement of the waves in order to optimize the
trade-off between waiting and travel time.
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Figure 4.19: Performance ratio R of {πid, πdh, πoe} within {πid, πdh, πoe} ∪ (πnw)n
for p = p∗, as a function of the number of machines m.

Generalizing our observations, we were able to define and fully study a family of
cycles, (πnw) whose members outperform the classical cycles {πid, πdh, πoe} under
the right conditions, formed with small, regularly disposed waves. We also showed
that similar cycles formed using larger waves are dominated.

This led us to conjecture on the dominance of this family, alongside with the
classical cycles {πid, πdh, πoe}, over 1-cycles. If proven true, this would allow to
settle the best 1-cycle problem in circular regular balanced cell in polynomial
time. The main step to prove this conjecture for any m would be to rule out
cycles with unevenly disposed waves (formally, not satisfying Equation (4.8)), or
unevenly combining several wave sizes; however, for small enough cells, the low
number of possibilities allows to settle it completely, thus describing the optimal
1-cycles for m ≤ 11 machine circular regular balanced robotic cells.



Chapter 5

A Greedy Approach for a Rolling
Stock Management Problem
using Multi-Interval Constraint
Propagation – ROADEF/EURO
Challenge 2014

This chapter, a joint work with Hugo Joudrier, presents our contribution to the
ROADEF/Challenge 2014. The competition gathered 37 teams from 20 countries
for an industrial problem proposed by the french railway transportation company.
We won the first prize in the junior category (see Figure 5.1) and ended up fourth
in the overall ranking1. This chapter reproduces the resulting paper, published in
Annals of Operation Research in June 2017 (Joudrier and Thiard, 2017). Other
contributions to the competition include (Buljubašić et al., 2017, Catusse and
Cambazard, 2014, Geiger et al., 2017).

5.1 Introduction
In this chapter, we present our approach of the Rolling Stock Unit Management
problem presented in the ROADEF/EURO Challenge 2014 (Ramond and Nico-
las, 2014). This problem combines in a single formulation various sub-problems
of rolling stock management, such as assignment of trains to departures, platform
assignment, routing inside the station, planning of maintenance operations... We
propose a greedy algorithm to build an initial solution, allowing an incomplete

1http://challenge.roadef.org/2014/en/prizeResults.php
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Figure 5.1: That was hard to fit in the luggage compartment.

coverage of arrivals and departures. This solution could serve as a basis for an
optimization algorithm. Compared to the proposed problem, we make some sim-
plifications by forbidding maintenance, junction and disjunction operations (note
that train convoys might be used as such), which limits the number of coverable
departures. Our solution is based on a greedy progressive assignment algorithm
to assign arrivals (and corresponding trains) to departures, and a routing algo-
rithm using multi-interval constraint propagation to prevent conflicts with already
scheduled trains while keeping as much flexibility as possible.

The rest of this chapter is organized as follows: Section 5.2 presents a simplified
model of the rolling stock management problem presented in the ROADEF/EURO
Challenge 2014. Section 5.3 describes the pre-processing phase and the model
used to represent the structure of the station. Section 5.4 details the multi-
interval routing algorithm, while Section 5.5 describes the general assignment
procedure. Note that the assignment problem is not treated as a whole, sepa-
rately from the routing problem, but progressively. Finally Section 5.6 presents
an overview of the results and some perspectives. In the following, we will use
the concepts and notations introduced by Ramond and Nicolas (2014) (avail-
able at https://hal.archives-ouvertes.fr/hal-01057324/file/Challenge_
sujet_phaseFinale_140224.pdf).

5.2 Simplified model
The original formulation, as presented by Ramond and Nicolas (2014), aimed at
treating the rolling stock management problem as a whole, integrating constraints
and costs of various nature. Focusing mainly on the routing constraints, we chose

https://hal.archives-ouvertes.fr/hal-01057324/file/Challenge_sujet_phaseFinale_140224.pdf
https://hal.archives-ouvertes.fr/hal-01057324/file/Challenge_sujet_phaseFinale_140224.pdf
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Figure 5.2: Example instance: railway station

to overlook some aspects of the problem in order to work on a simplified model
while still providing valid solutions.

The original industrial problem consists in handling trains within a station
over a biweekly planning horizon, by deciding their route and schedule inside the
station, and assigning them to compatible departures. A station is composed
of resources of several types (track-groups, single tracks and yards for parking,
maintenance facilities for performing maintenance, platforms for arrival and de-
partures), linked by gates. Routing of the trains inside the station must respect the
length and capacity of the resources, as well as the trains’ order on the resources
and train/resource compatibility constraints. To be allowed to circulate, trains
must be submitted to regular maintenance. Therefore, a train might be assigned
to a departure only if it has enough time and mileage left before a maintenance is
required for the journey. Maintenance operations can be performed in the stations
on appropriate resources, at a cost. Some arrivals (joint arrivals) are composed of
several trains joined together; likewise, some departures (joint departures) must
be satisfied by several joint trains. Convoys of several joint trains might be formed
(respectively separated) by performing junction and disjunction operations.

The two main simplifications that were made are described below. Their main
consequence is to avoid modifying characteristics of the trains in the solution.

• Not performing maintenance operations. This choice simplifies the assign-
ment decision process: the compatibility of a given train with a given de-
parture depends only on the instance data (including the time / distance
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remaining before maintenance), and not on the choice to perform mainte-
nance on it.

• Not performing junction nor disjunction operations. That way, trains can
be treated as immutable convoys from their arrivals to their departure. A
convoy might be formed of a single train, or of several trains coming from a
joint-arrival, which might then satisfy a joint-departure.

In this section we first extend the notations defined by Ramond and Nicolas
(2014). Then, we use these new notations to formalize our simplified model.

5.2.1 Definitions
Definition : Convoys
A convoy v is defined by a set of trains t in T . We note V the set of all the convoys.

V := P (T ) (5.1)

where P is the power set operator. The length and size of a convoy v in V can be
accessed with:

size(v) = #v (5.2)
length(v) =

∑
t∈v

length(t) (5.3)

We also define V+, the set of convoys actually used in the solution.

Definitions : About arrivals and departures

As our model treats convoys and not individual trains, joint arrivals (respec-
tively joint departures) can be treated as one single arrival (respectively departure).
Thus, we work with a set of extended arrivals (respectively departures), defined in
this section. An element of this set is either a unitary arrival (an arrival which is
not a member of a joint arrival), or a joint arrival (a set of arrivals joint together,
treated as a single element).

Let Uarr be the set of unitary arrival in opposition with Jarr the set of joint-
arrivals (and similarly the set of unitary departures).

Uarr := {a ∈ A | ∀B ∈ Jarr, a 6∈ B} (5.4)
Udep := {d ∈ D | ∀B ∈ Jdep, d 6∈ B} (5.5)
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Now, we use the sets Jarr and Uarr to build a new set ExtArr called set of all
extended arrivals (and the set ExtDep with Jdep and Udep).

ExtArr := Jarr ∪ {{a} | a ∈ Uarr} (5.6)
ExtDep := Jdep ∪ {{d} | d ∈ Udep} (5.7)

Definitions : compatibility
For each convoy v ∈ V and departure in d ∈ ExtDep, a value Comp(v, d) ∈ {0, 1}
is defined. If Comp(v, d) = 1, v and d are said to be compatible. This value takes
into account several parameters of the initial formulation such as size, categories,
time and distance remaining before maintenance, and so on.

Similarly, a value Comp(v, a) ∈ {0, 1} is defined to express compatibility be-
tween a convoy v ∈ V and an arrival a ∈ ExtArr.

Similarly, for each convoy v ∈ V and resource r ∈ R, Comp(v, r) ∈ {0, 1}
expresses the compatibility of all trains of v with the resource r.

Definition : Connectors
Connectors are couples of gates, representing transition between resources. Using
this concept, we can model the station as a directed graph.

The set of connectors noted CO is defined by

CO =
{

(g, g′) ∈ Gr × Gr′
∣∣∣∣∣ neighg = g′

neighg′ = g

}
(5.8)

Then a connector co ∈ CO is a couple of gates (g, g′) such that a convoy can leave
the resource r (g ∈ Gr) by the gate g to enter the resource r′ by g′ (g′ ∈ Gr′).

It is important to note that the connector (g, g′) is not equivalent to the con-
nector (g′, g). The first one means an exit by g and an entry by g′ whereas the
second one means an exit by g′ and an entry by g.

The train station can then be modeled by a directed graph G(V , E) where the
vertices represent connectors and the arcs represent resources (Figure 5.3). This
allows to represent reverse and non-reverse resources2.

Some values are associated with each edge of the graph G such as the
minTrT ime and the maxTrT ime which are the minimal and the maximal travel-
ing time to go from a connector to an other one through a resource. These parame-
ter values aggregate several parameters from the original problem formulation, de-
pending on the resources type, such as trT ime for trackgroups,maxDwellT ime for
platforms, revT ime for the reverse operations on single tracks, platform, yards...

2All resources have two (opposite) sides. On reverse resources, convoys are allowed to enter
and exit on the same side, whereas this is forbidden on non-reverse resources.
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Figure 5.3: Directed Graph Modelisation

Definition : Path through the station
A path through the station is defined by an alternate sequence of connectors in
CO and resources in R.

p := (co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, con) (5.9)

The size of the path p is accessible via size(p) and returns the number of
resources crossed along the path.

size((co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, con)) = n (5.10)

An n-sized path going through resources r0 . . . rn−1 requires n + 1 connectors
co0 . . . con.

Schedule of a path
The schedule of a path p, noted schedp, is a tuple of instants t in the horizon H
which are in bijection with the connectors of the path. These values describe the
time of transition from a resource to the other. Let p be a path composed by n
resources (Eq. 5.9). Then a schedule for p is defined by

schedp = (t0, t1, t2 . . . tn−2, tn−1, tn) (5.11)
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where ti in schedp is paired with coi in p, meaning that at ti the connector coi is
used to leave resource ri−1 and resource ri.

5.2.2 Decision Variables
Arrival and Departure assignments

A convoy may come from an arrival (all trains composing the convoy enter
the system as elements of this arrival), and be assigned to a departure (all trains
composing the convoy leave the system satisfying elements of this departure).

∀v ∈ V ,
{
∀a ∈ ExtArr, from(v, a) ∈ {0, 1}
∀d ∈ ExtDep, assigned(v, d) ∈ {0, 1} (5.12)

Paths and schedules of convoys
A convoy v in V may be routed, thus associated with a path path(v) which is
paired with a schedule sched(v), of size nv.

path(v) = (co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, conv) (5.13)
sched(v) = (t0, t1, t2 . . . tn−2, tn−1, tnv) (5.14)

5.2.3 Constraints
Convoys paired with Arrivals and Departures

Recall that V+ is the set of all convoys scheduled in the solution. Let v be a convoy
in V . If v is scheduled in the solution then v is paired with an arrival a in ExtArr
and a departure d in ExtDep.

v ∈ V+ ⇒
{ ∑

a∈ExtArr from(v, a) = 1∑
d∈ExtDep assigned(v, d) = 1 (5.15)

Otherwise, v is not an element of V+ and there is no arrival nor departure assigned
to it.

v 6∈ V+ ⇒
{
∀a ∈ ExtArr, from(v, a) = 0
∀d ∈ ExtDep, assigned(v, d) = 0 (5.16)
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A convoy v cannot be assigned to an incompatible arrival a or departure d. In
other words :

Comp(v, a) = 0⇒ from(v, a) = 0 (5.17)
Comp(v, d) = 0⇒ assigned(v, d) = 0 (5.18)

Usage of resources

The usage in term of capacity and length has to be respected. Let v be a convoy,
with the schedule sched(v) associated to the path path(v). For each convoy v in
V+ and each instant t in H, we define use(v, t) the resource r in R used by the
convoy v at t.

use(v, t) =
{
ri ∈ path(v) if ∃ti, ti+1 ∈ schedv, ti ≤ t < ti+1
∅ otherwise (5.19)

Then we define the value use(v, t, r), which is 1 if and only if the resource r
is used at time t in the schedule sched(v) of the path path(v) associated to the
convoy v.

use(v, t, r) =
{

1 if use(v, t) = r
0 otherwise (5.20)

Length and capacity constraints

∀r ∈ R,∀t ∈ H,


∑
v∈V+

(use(v, t, r) ∗ size(v)) ≤ capa(r)
∑
v∈V+

(use(v, t, r) ∗ length(v)) ≤ length(r)
(5.21)

Valid path

Let v be a convoy in V+, and path(v) the associated path, of size nv. To be
valid, the path, defined as in (Eq. 5.13), followed by v must satisfy the following
constraints.

co0 = (∅, ginitial) (5.22)
conv = (gfinal, ∅) (5.23)
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This means the convoy enters the station via the first connector of the path, and
leaves it via the last connector of the path.

Let us now consider the i-th connector coi, composed of two gates gout and
gin. By definition of connectors, neighgout = gin and neigh(gin) = gout. Addition-
ally, for the path to be valid, each resource must be consistent with the adjacent
connectors:

rgout = ri−1 (5.24)
rgin = ri (5.25)

A convoy v cannot use an incompatible resource r:

∀r ∈ R, Comp(v, ri) = 0⇒ ri 6∈ path(v) (5.26)

Since v is a convoy of the solution, it is assigned to an arrival a in ExtArr as
well as a departure d in ExtDep. Then the path followed by the convoy v must
begin with the arrival sequence arrSeqa (Eq. 5.27) and end with the departure
sequence depSeqd (Eq. 5.28).

arrSeqa = (tga0 , . . . , tgan1) (5.27)
depSeqd = (tgd0 , . . . , tgdn2) (5.28)

The arrival (resp. departure) sequence is composed by n1 + 1 (resp. n2 + 1)
track-groups.

∀ri ∈ path(v),

 i ≤ n1 ⇒ ri = tgai

nv − n2 − 1 ≤ i⇒ ri = tgdj with j = nv − n2 − 1 + i
(5.29)

Since the arrival and the departure must take place on a platform, we have:

rn1+1 ∈ P and rnv−n2−2 ∈ P (5.30)

Valid schedule

Let v ∈ V+ be a convoy of the solution. The schedule sched(v) must respect the
delay imposed by the graph G to go from one connector to another through a
resource.

∀ti, ti+1 ∈ sched(v),
{
minTrT ime(coi, coi+1) ≤ ti+1 − ti

ti+1 − ti ≤ maxTrT ime(coi, coi+1)
(5.31)
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The arrival time arrT imea and departure time depT imed must be respected. We
assume the arrival sequence is composed by n1 + 1 track-groups and the departure
sequence by n2 + 1 track-groups.

∀ti ∈ sched(v),
{

i = n1 + 1⇒ ti = arrT imea

i = nv − n2 − 1⇒ ti = depT imed
(5.32)

Conflicts between convoys

On single resources Let v1, v2 in V+ be two convoys of the solution, path(v1) =
(co1

0, r
1
0, . . . , co

1
nv2

), path(v2) = (co2
0, r

2
0, . . . , co

2
nv2

) their respective paths, and
sched(v1) = (t10, . . . t1nv1

), sched(v2) = (t20, . . . t2nv2
) the respectively associated

schedules.
If a same single resource (platform, single track or maintenance facility) belongs

to both path, the associated entry times must be different :

∀r1
i ∈ sched(v1), r2

j ∈ sched(v2), r1
i = r2

j ⇒ t1i 6= t2j (5.33)
Moreover, depending on the entry and exit connectors of both convoys, the

following constraints on their entry and exit times must be enforced to preserve
the order of the convoys on the resource (without loss of generality, we assume
ti1 < t2j) :

∀r1
i ∈ sched(v1), r2

j ∈ sched(v2) | r1
i = r2

j , t
i
1 < t2j ,

(co2
j = co1

i+1 ∧ co2
j 6= co2

j+1)⇒ t2j > t1i+1

(co2
j+1 = co1

i+1 ∧ co2
j 6= co2

j+1)⇒ t2j+1 > t1i+1

(co2
j = co1

i+1 ∧ co2
j = co2

j+1)⇒ (t2j+1 > t1i+1 ∨ t2j > t1i+1)

(5.34)

On track groups On track groups, a specific conflict constraint applies, depend-
ing on the respective order of the entry and exit gates of both convoys. Though
this constraint was implemented in the final solution, we do not reproduce it here
for the sake of simplicity. One can refer to Ramond and Nicolas (2014).

At most one convoy assigned per extended arrival and departure

∀a ∈ ExtArr,
∑
v∈V+

from(v, a) ≤ 1 (5.35)

∀d ∈ ExtDep,
∑
v∈V+

assigned(v, d) ≤ 1 (5.36)
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Example (Figure 5.4)
Let us consider the following instance: the sets of arrivals A = {a1 . . . a5} and de-
partures D = {d1 . . . d6}; The sets Jarr = {{a2, a3, a4}} and Jdep = {{d4, d5, d6}}.
Then

ExtArr = {ea1 = {a1}, ea2 = {a2, a3, a4}, ea3 = {a5}}
ExtDep = {ed1 = {d1}, ed2 = {d2}, ed3 = {d3}, ed4 = {d4, d5, d6}}

The convoys v1 and v2 where

• v1 = {t1}, with from(v1, ea1) = 1 and assigned(v1, ed2) = 1

• v2 = {t2, t3}, with from(v2, ea2) = 1 and assigned(v2, ed4) = 1

are represented on the Figure 5.4.

Figure 5.4: Convoys with provenance and assignment to departures.

5.2.4 Objective function
The original problem featured two optimization criteria assembled in a weighted
sum: maximization of the covered arrival and departures, and minimization of per-
formance costs (platform usage costs, preferred reuse of trains, etc.). We focused
on the maximization of covered arrival and departures (while of course limited by
our choices to disregard maintenance, junction and disjunction operations). With
the formalism defined in this section, maximizing arrivals and departures coverage
comes down to maximizing the number of trains used in the solution:

max
∑
v∈V+

size(v) (5.37)
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5.3 Data Structures and Pre-processing
In the remainder of the chapter, we will use the instance represented on Figure 5.2
as an example.

A maximum amount of convoys needs to be scheduled using the graph G pre-
viously defined. In order to reduce the cost of the routing phase by avoiding
redundant treatment of very similar paths, we need a simplified structure with a
higher aggregation level.

The simplification consists of aggregating resources in groups (Figure 5.5) of
resources sharing the same characteristics and neighborhood (Rogers et al., 1991).
We define the setRG of resources groups such that each resource r ∈ R is contained
in one group rg ∈ RG with the following properties:

∀rg ∈ RG, ∀r1, r2 ∈ rg, neighSetr1 = neighSetr2 ∧ type(r1) = type(r2) (5.38)

where type is defined as follow:

type : r ∈ R →



0 if r ∈ K
1 if r ∈ P
2 if r ∈ S
3 if r ∈ Y
4 if r ∈ F

(5.39)

The goal of this process is to break the systematic and redundant treatment of
similar resources while allowing for a more global reasoning.

Once the simplification is done, we can define a new graph G ′((V ′, E ′)), more
global, enclosing the graph G where vertices are groups connectors GCO and arcs
are resources groups RG. These two graphs represent the station with different
levels of granularity: the level which needs to be used depends on the step of the
algorithm.

To simplify further the routing phase, we choose to consider the shortest path
as the preferred path between two resources depending on the category3. Thus,
shortest paths between any two groups of resources, or rather group connectors, are
computed during the pre-processing phase using Floyd-Warshall algorithm (Floyd,
1962). During the process, a matrix of minimal and maximal travel time along
this path is computed. Each resource r ∈ R can be considered to have a minimum
and a maximum usage time. For any track-group k, the minimum bound is equal
to the maximum one: trT imek. The other resources have a minimum bound equal

3Trains of the same category share similar characteristics (such as length).Some resources may
only be compatible with some trains categories (Ramond and Nicolas, 2014).
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Figure 5.5: Resource Aggregation

to minResT ime or max(minResT ime, revT ime) (in case of similar input/output
side) and the platforms have an upper bound maxDwellT ime.

Let gc1, gc2 be two group connectors and c a category. First, we compute
the shortest path to reach gc2 from gc1. Then we note minTrT imec(gc1, gc2) the
lower time bound and maxTrT imec(gc1, gc2) the upper time bound to travel from
the input connector gc1 to the output connector gc2 on the path found compatible
with category c.

5.4 Routing Procedure
This section deals with the effective scheduling and routing of a train along a given
group-level path. To schedule a train, the routing procedure considers the resource
group-level path computed during the pre-processing phase, then tries to schedule
the train at the resource-level, taking into account resource capacities, maximum
lengths, minimal and maximal transition time, and conflicts with already sched-
uled trains. This is done by constraint propagation on multi-interval variables.
Section 5.4.1 introduce the notion of multi-interval variables in this context, and
Section 5.4.2 details the routing procedure.

5.4.1 Multi-interval variables
We use constraint propagation (Benhamou and Granvilliers, 2006) on hull and
boxes (ILOG, 1999) using multi-intervals variables to filter solutions of the Path
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Scheduling problem. First we introduce the notion of time interval IH (Eq. 5.40)
in the planning horizons H, as defined by Moore (1966):

IH :=

[h, h]

∣∣∣∣∣∣ (h, h) ∈ H2

h ≤ h

 (5.40)

We note [h] the interval [h, h]. Let [h1], [h2] be two intervals, we define the set
operations ∩, ∪:

[h1] ∩ [h2] = [max(h1, h2),min(h1, h2)]
[h1] ∪ [h2] = [min(h1, h2),max(h1, h2)]

(5.41)

A large number of interval arithmetic libraries exist, see (Knüppel, 1994, Lerch
et al., 2006).

A generalization of IH is the power set P(IH). We callMIH = P(IH) the
set of all the time multi-intervals in the planning horizon. Let mi1 and mi2 be two
elements ofMIH, the multi-interval intersection is defined as below:

mi1 ∩mi2 =
⋃

i1∈mi1
i2∈mi2

i1 ∩ i2 (5.42)

We introduce the operators lo and up on intervals and multi-intervals, which
represent the lower and upper bounds of these quantities (see Figure 5.6 for an
example).

∀x ∈ IH
{
lo(x) = x

up(x) = x
and then ∀y ∈MIH


lo(y) = min

x∈y
lo(x)

up(y) = max
x∈y

up(x)
(5.43)

Mathematical comparison operators can be defined to deal with intervals and
multi-intervals. Let x be an interval or a multi-interval quantity. Then the com-
parison of x with a real value y implies conditions over the bounds of x.

x ≤ y ⇔ up(x) ≤ y (5.44)
y ≤ x ⇔ y ≤ lo(x) (5.45)

The inequality constraints are used to reduce the domain of the values through a
set of methods called contractors (Chabert and Jaulin, 2009). Atomic and meta-
contractors can be considered as basic elements of a new paradigm called con-
tractor programming in order to perform efficient global optimization algorithm
(Ninin, 2015) exploiting the properties of groups of constraints. In the next sec-
tion we present a contraction method for the Path Scheduling Problem previously
introduced.
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H

x

lo(x) up(x)

Figure 5.6: Example of a multi-interval, with its lower and upper bounds.

The idea behind the routing procedure, described in the next section, is to
consider scheduling variables as two types of multi-interval variables, transition
variables ti and usage variables ui. That way, for a given convoy’s schedule, the
multi-interval variable ui represents the time intervals during which the corre-
sponding resource of the convoy’s path ri is available for the convoy (with respect,
amongst other, to length and capacity constraints). Similarly, the multi-interval
variable ti represents the time intervals during which the convoy may exit the pre-
vious resource and enter resource ri through connector coi (with respect to other
convoy’s transitions).

The path and schedule definition presented in the simplified model are extended
accordingly, by adding to the schedule usage time variables ui in bijection with
the resources ri in the path:

path(v) = (co0, r0, co1, r1, co2 . . . con−2, rn−2, con−1, rn−1, con) (5.46)
sched(v) = (t0, u0, t1, u1, t2 . . . tn−2, un−2, tn−1, un−1, tn) (5.47)

The procedure consists in refining those multi-intervals by constraint propaga-
tion.

However, propagating constraints on multi-intervals variables is very expensive.
Computing speed may be increased using lazy evaluation (Madsen and Jensen,
1999). Laziness is especially used and developed in functional programming lan-
guages (Johnsson, 1984) such as Haskell (Hudak et al., 2007). It consists into a
set of methods in order to limit the number of computations by non-evaluating
quantities which are not required. This approach is not yet fully implemented in
our solution, so there is still room for progress and potential speed-up.

Definition : Hr,l,s

Let r be in R, and l, s in N. We define the set Hr,l,s as all the instants t in the
planning horizons H such that the resource can be used by a convoy of size s with
a total length l.

Hr,l,s =

t ∈ H
∣∣∣∣∣∣∣∣∣

∑
v∈V+

(use(v, t, r)× size(v)) ≤ capa(r)− s
∑
v∈V+

(use(v, t, r)× length(v)) ≤ length(r)− l

 (5.48)
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5.4.2 Algorithm
In this section, we detail the procedure used to route and schedule a convoy along
a group-level path (Algorithm 1).

Let us consider a m-sized convoy, of total length l, and a group-level path
GlobalPath. GlobalPath is formalized as an alternating list of connector-groups
and resource-groups (gco0, gr0, . . . , gco1, grn−1, gcon).

The procedure returns, if possible, a resource-level path (formalized as an alter-
nating list of connectors and resources (co0, r0, . . . , co1, rn−1, con) and a matching
schedule. A Schedule is an alternate list of transition multi-interval variables, and
usage multi-interval variables (t0, u0, . . . , tn−1, un−1, tn). ti represents the available
intervals for transition between resources ri−1 and ri on connector coi, and ui the
available intervals for usage of resource ri.

Schedule is initialized using InitialSchedule. In practice, we initialize all
multi-interval variables to the full planning horizon, except for the transitions
corresponding to the arrival and departure of the convoy, which are reduced to the
arrival (respectively departure) time (see Figure 5.7a).

Algorithm (Alg. 1) consists of an iteration over every path path := (co0, r1,
. . . , rn−1, con) enclosed in the GlobalPath. Each iteration is divided in 2 steps
(FilterResourceUsagePath, and FilterConnectorPath), described below.

Algorithm 1 : Routing
Input: convoy
Input: globalPath := (gco0, gr0, . . . , gco1, grn−1, gcon)
Input: initSchedule := (t0, u0, . . . , tn−1, un−1, tn)
1: for all path = (co0, r0, . . . , con−1 ,rn−1, con) ∈ globalPath do
2: schedule ← FilterResourceUsagePath(convoy, path, initSchedule)
3: if (schedule) 6= ∅ then
4: schedule ← FilterConnectorPath(convoy, path, schedule)
5: if (schedule) 6= ∅ then
6: return (path, schedule)
7: end if
8: end if
9: end for
10: return (∅, ∅)

1. Refinement of the multi-interval scheduling variables (t0, u0, . . . , tn−1, un−1,
tn) associated with the path p by filtering on each resource rk, taking
into account capacity, length and usage time constraints (Method Filter-
ResourceUsagePath) using the following contractors. An example of this
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step is unfolded (Figure 5.7) on the simplified instance represented on Fig-
ure 5.2, using the parameters given in Tables 5.1 and 5.2, with the parameters
minResT ime = 00 : 02 : 00 and revT ime = 00 : 05 : 00.

uk ⊆ umaxk (5.49)

where umaxk is the minimal multi-interval containing Hrk,l,m. This constraint
(Eq. 5.49) represents the limitation in term of length and/or capacity of the
resource (Figure 5.7a, 5.7b).

lo(tk) ≤ uk ≤ up(tk+1) (5.50)

This constraint (Eq. 5.50) translates the fact that the convoy cannot occupy
the resource before entering it and after exiting it (Figure 5.7b, 5.7c).

minTrTimerk(cok, cok+1) ≤ lo(tk+1)− lo(tk)
up(tk+1)− up(tk) ≤ maxTrTimerk(cok, cok+1)

(5.51)

These two constraints (Eq. 5.51) express the relation between the enter time
tk and the exit time tk+1 depending on the minimal and maximal usage time
of the resource rk (Figure 5.7c, 5.7d).

∀u ∈ uk, {u} ∩ tk 6= ∅ ∧ {u} ∩ tk+1 6= ∅ (5.52)

This constraint (Eq. 5.52) means that the resource rk is able to welcome the
convoy from its entrance to its exit (Figure 5.7d, 5.7e).

tk ⊆ uk

tk+1 ⊆ uk
(5.53)

This constraint (Eq. 5.53) means that the convoy can enter and exit the
resource rk only when rk is able to receive it (Figure 5.7e, 5.7f).

2. Similarly, procedure FilterConnectorPath contracts the multi-interval vari-
ables (t0, u1, . . . , un−1, tn) associated with path by computing for each
resource rk the conflicts of enter time tk−1 and exit times tk+1 with already
scheduled convoys occupying rk and propagating the associated constraints.
This step also propagates again, when necessary, some of the previous con-
straints (Eq. 5.51, 5.52).

After both filtering procedures, if schedule is non-empty (which means it is
possible to schedule the train along path), the algorithm returns, if not, it moves
on to the next path.



108 CHAPTER 5. A ROLLING STOCK MANAGEMENT PROBLEM

Id arrTrain Time Sequence Platform idealDwell maxDwell
Arr1 Train1 08:00:00 TrackGroup1 Platform1 00:03:00 00:12:00
Dep1 08:17:00 TrackGroup1 Platform2 00:04:00 00:10:00

Table 5.1: Example instance: arrivals/departures listing

Resource Begin End
Yard1 08:01:00 08:02:00
Yard1 08:08:00 08:09:00
Yard1 08:15:00 08:16:00

Table 5.2: Example instance: imposed consumptions listing

Finally, the train is scheduled according to an “earliest possible time” strategy
within the allowed time intervals : each transition multi-interval is contracted to its
lower bound, and usage multi-intervals are contracted accordingly. Note that the
malleability of the structure leaves the possibility of implementing other strategies
to avoid conflict with subsequent train schedules or optimize the enter and exit
time on each resource to reduce penalty.

Example of propagation (Fig 5.7)
Figure 5.7 illustrates an example of propagation. Each line represents a multi-

interval variable; lines labeled “Exit/Enter” are transition variables, and lines la-
beled with a resource name are usage variables.

Initially (Figure 5.7a), none of the variables are restricted, except for the tran-
sitions corresponding to the arrival and departure (first and last “Exit/Enter”),
which are restricted to the exact arrival and departure times. Then, in Figure 5.7b
the usage of resource Y ard1 is restricted according to the imposed consumptions
listed in Table 5.2. In Figure 5.7c, usage of resources Platform1 and TrackGroup1
are restricted according to the preceding “Exit/enter” transition variables: the con-
voy cannot use a resource before it enters it. Then, the transition variables are
restricted to allow sufficient time between the entry and the exit on each resource
(Figure 5.7d).

Let us now focus on resource Y ard1: the last interval of its usage variable
doesn’t intersect with the following transition variable, so the yard cannot be
used during this interval. It is thus removed in Figure 5.7e. The enter and exit
transitions are adjusted accordingly in Figure 5.7f, as the convoy may not enter or
exit the yard at a given instant if it is not available for use.

Figure 5.7g shows the result once a similar propagation has been performed on
Platform1 and Platform2.
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(a) Initialization (b) Propagation Eq. 5.49

(c) Propagation Eq. 5.50 (d) Propagation Eq. 5.51

(e) Propagation Eq. 5.52 (f) Propagation Eq. 5.53

(g) Constraint Propagation Result

Figure 5.7: Multi-Interval Filtering on the example instance, from Arr1 to Dep1
(see Table 5.1) with the consumptions indicated in Table 5.2.
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5.5 Greedy Assignment Algorithm
The problem is complex due to the routing problem in the station. Resource usage
is crucial and we should avoid to engorge one resource of the station. This idea
leads to the strategy of the greedy algorithm we present in this section.

We call immediate arrivals-departure arrivals immediately followed by a de-
parture on the same platform. In this case, the convoy only has to be routed
through the arrival sequence and departure sequence, so the path is set except for
the platform, and the convoy occupies few resources.

If a departure is not an immediate departure, the convoy has to be routed to a
parking spot and parked between its arrival and its departure. We chose to park
on yards only.

Our objective is the maximization of covered arrivals and departures as stated
in Section 2. However, to comply with the multi-criteria objective of the original
problem and limit penalties, considerations on trains reuses, preferred platform
and platform usage penalties are implemented in the solution.

The algorithm is composed of three main steps.

1. First, we try to schedule immediate arrivals-departures while considering train
reuses as hard constraints.

2. Then, we relax these constraints and try to schedule immediate arrivals-
departures.

3. Finally, we try to schedule remaining trains from the arrival to departure with
a parking phase (on yards only) in-between, first considering train reuses as
hard constraints, then relaxing these constraints.

To improve coverage of joint departures without performing junctions nor dis-
junctions, each of these three main assignment phase follows the three steps de-
scribed below.

(i) Try and assign joint arrivals to joint departures. Both departures and arrivals
are taken in decreasing order of convoy size. Between a given joint arrival and
a given joint departure, simple dynamic programming allows to compute an
assignment maximizing the number of arrivals and departures satisfied, while
respecting compatibility and trains order. When at least some members of a
joint arrival/departure have been assigned, all the other members are locked
and cannot be used in the subsequent assignment steps.

(ii) Try and assign unitary arrivals to unitary departures.
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(iii) Try and assign members from remaining joint arrivals to remaining unitary
departures (joint or not) and symmetrically remaining unitary arrivals to
members of remaining joint departures. When one member is assigned, the
other members are locked.

Formally, these sub-steps are described by Alg. 2, using the following defini-
tions:

• J +
arr (respectively J +

dep) the set of joint arrivals (respectively departures) used
in the solution,

J +
arr = {a ∈ Jarr|∃j = jointArra,∃a′ ∈ jaListj, a′ ∈ A+}
J +
dep = {d ∈ Jdep|∃j = jointDepd,∃d′ ∈ jdListj, d′ ∈ D+}

• A+ (respectively D+) the set of unitary arrivals (arrivals which are not mem-
bers of any joint arrival) used in the solution,

A+ = {a ∈ A|arrTraina ∈ T +} ∪ J +
arr

D+ = {d ∈ D|depTraind ∈ T +} ∪ J +
dep

• by complement, the sets of joint / unitary arrivals (respectively departures)
not used in the solution: A− = A−A+, D− = D −D+, J −arr = Jarr −J +

arr,
J −dep = Jdep − J +

dep.

Algorithm 2 Assignment Greedy Algorithm Step
1: Assign(J −arr,J −dep)
2: Assign(A− − J −arr,D− − J −dep)
3: Assign(A−,D−)

Non-assigned departures and compatible arrivals are taken in increasing order.
Each time, the Routing procedure is used to schedule the corresponding convoy.
This continues until an arrival with a feasible routing has been found (then the
arrival is assigned to the departure), or until there is no more fit arrivals (then the
departure remains unsatisfied).

To limit the number of infeasible attempts, arrivals and departures are filtered,
taking into account compatibility characteristics such as category and remaining
time/distance before maintenance, but also existence of a path between two ar-
rival/departure sequences and time between arrival and departure.

arrT imea +minTrT imecatTa (Pa, Pd) ≤ depT imed (5.54)
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The routing algorithm (Alg. 1) is used inside the greedy subroutine Assign
(Alg. 2). The latter consists in a serie of attempts, iterating on the arrivals
and the departures sets. For each couple arrival/departure, a compatible convoy
is selected and a resource group-level path (computed during the pre-processing
phase) is selected to link the arrival sequence with the departure sequence. Thus,
the routing algorithm is applied to this convoy and global path. If the process fails
to provide a valid resource-level path (Alg. 1, line 10), we move on to the next
compatible couple. Otherwise, the convoy is scheduled along the path, thus the
arrival and the departure are respectively removed from the available arrivals and
the available departures sets.

Figure 5.8: Greedy Algorithm : example

Figure 5.8 shows a simplified example on an instance with three arrivals and
four departures. A departure is compatible with an arrival if they are represented
using the same shape (disc, square) and if the arrival takes place before the de-
parture on the time line. On Figure 5.8, a line from an arrival to a departure is
an attempt to route and schedule a convoy through the station from the arrival to
the departure. A red dotted line is a failure while a solid green line is a success.
Here, the couple arr1/dep1 is compatible and is succesfully routed and scheduled.
The couple arr2/dep2 is compatible but the routing procedure fails, so the next
compatible couple arr2/dep3 is considered. The routing procedure successfully
returns a valid schedule, so arr2 and dep3 are assigned to each other, and the con-
voy is routed and scheduled. The last arrival, arr3, does not have any compatible
departure, so no routing attempt is made.

In order to limit platform assignment penalties, when scheduling a convoy from
an arrival to a departure, the preferred platform is tried in priority. To limit the
platform usage penalties, we limit the time that a train can spend on a platform.
For immediate departures, this amount of time is computed using the ideal dwell
times of the departure and the arrival, and the costs defined in parameters, in
order to ensure that the platform usage cost for this train does not exceed the
Uncov penalty for not covering the arrival. We filter the arrivals verifying this
condition. For arrivals and departures separated by a parking phase, we ensure
during the routing phase that the ideal dwell times are exactly respected.
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5.6 Results and Conclusions
The experiments were performed on a computer featuring an Intel Core 2 Duo
E8400 3.00GHz CPU with 4Go RAM, running Xubuntu 64 bits. Table 5.3 presents
the results obtained on instance set B, provided by the challenge organizers. The
execution was stopped after 10 minutes of running time. Table 5.3 reports the
results obtained when stopping after the first two stages of the algorithm (which
means allowing only immediate departures), and the results obtained after full
execution of the algorithm (which allows parking during the last stage). In each
case, we give the number and proportion of covered departures. We also give,
for information purposes, the value of the objective function used in the original
formulation of the ROADEF Challenge problem (Ramond and Nicolas, 2014),
which aggregates various performance costs as well as penalties for uncovered
departures and arrivals. However, within our simplified model, the number of
covered departures alone is a more pertinent indicator.

immediate departures only with parking phase (complete algorithm)
t (s) objective covered dep t (s) objective covered dep

B1 24 1812600 35% (443/1235) t/o 1749000 38% (474/1235)
B2 23 1682080 39% (490/1235) t/o 1656180 40% (503/1235)
B3 21 1711330 38% (472/1235) t/o 1665330 40% (495/1235)
B4 71 2578160 36% (649/1780) t/o 2561360 36% (657/1780)
B5 136 3190890 34% (747/2153) t/o 3155790 35% (764/2153)
B6 72 2584130 36% (645/1780) t/o 2559330 36% (657/1780)
B7 2 456112 34% (105/304) 68 420112 40% (123/304)
B8 2 473484 31% (96/304) 83 439884 37% (113/304)
B9 72 2978598 29% (590/1967) t/o 2858098 32% (649/1967)
B10 < 1 364594 18% (36/196) 226 321794 29% (57/196)
B11 3 1984144 16% (190/1122) t/o 1858544 22% (250/1122)
B12 1 1031864 16% (94/570) t/o 982164 20% (118/570)

Table 5.3: Summary of the results on set instance B. The first 3 columns present
the results for the algorithm limited to immediate departures only, the last 3 when
subsequently allowing an intermediate parking phase in yards between arrival and
departure. For each case, we give the execution time in seconds, the value of the
ROADEF Challenge objective function and the proportion of covered departures.
“t/o” means that the execution has reached the timeout, set to 10 minutes.

The solutions provided within the allowed time cover 20% to 40% of departures
(and as much arrivals). Of course, this is very few and not suited for a practical
application. Although, considering the complexity of the problem and the size of
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the search space, it is actually quite reasonable for a simple greedy assignment
algorithm. Moreover, given that our approach does not allow maintenance, junc-
tion and disjunction operations, the number of departures which can be covered is
limited. This suggests that the routing algorithm itself is quite powerful, and that
paired with a more advanced assignment optimization algorithm, it could lead to
interesting results.

From Table 5.3, one can notice that most covered departures are “immedi-
ate departures”, which are departures following directly the arrival on the same
platform, assigned during the first two stages of the algorithm. The next stage,
allowing trains to change platforms between arrival and departure by transiting
through yards, gains only a few percent and is time consuming. Thus, considering
only immediate departures seems a suitable approach to compute rather quickly
an initial solution.

When considering immediate departures, the path and timing is already pre-
cisely defined by the arrival and departure sequences. In this case, the Routing
procedure only serves to determine the feasibility of this path and timing for a
given couple arrival/departure and select a platform, given the current state of
the solution and avoiding conflict with other trains. When allowing parking, ad-
ditional decisions must be made, namely the selection of the parking yard and
the duration of stay. Thus, in this case the exploration performed by the Routing
procedure is heavier and more time consuming.

Total execution times appear shorter for instances with few departures and ar-
rivals (B7, B8, B10), as less routing attempts need to be made. The comparatively
high execution time for instance B10 might result of the high proportion of joint
departures and arrivals in this instance, as members of a joint arrival or departure
may be tentatively routed several time, as convoys and as unitary trains.

The most interesting point in the solution exposed is without any doubt the
association of the three-level routing algorithm with the greedy algorithm. Indeed,
the multi-interval constraint propagation is flexible, efficient and return a set of
possible range-value to enter and exit from each resource, allowing to find non-
trivial routes within the range of possibilities.

Note that as a canonical path between any pair of resources is computed during
the preprocessing phase, trains traveling with a given origin and destination are
always routed along the same path. Choosing among a set of preferred paths, or
computing on the fly alternative paths forbidding certain resources could be useful
to avoid engorgement.

However the solution we propose here is robust, and the optimizer always return
a feasible solution. An important aspect of the greedy algorithm is the ability to
build a correct solution really fast on all the instances and to build a better solution
if more time is available.



5.6. RESULTS AND CONCLUSIONS 115

A simple optimization process could merely consist of choosing a random train,
then removing it from the solution and finally try to build another schedule. Rather
than just choosing randomly, one could select the train which generates the most
conflicts: each time the algorithm tries and fails to schedule a train, the conflict
value of the trains which prevented the scheduling is incremented ; at the end, the
train with the highest conflict value is removed from the solution. This could be
used as the basis for a local search optimization procedure.
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Chapter 6

Conclusion

I don’t need you to agree with me. I’ll
go away happy with a little bit of
doubt. Doubt is good. It’s an emotion
we can build on. Perhaps if we feed it
with curiosity it will blossom into
something useful, like suspicion – and
action.

Jasper Fforde, Shades of Grey

This work presented two takes on problems mixing scheduling and transporta-
tion.

In the first (and main) part of this work, we studied, from a theoretical view-
point, cyclic production of identical parts in robotic cells. This model allows to
take into account handling resources in the form of a robotic arm handling parts
between machines. Of the two main possible arrangements of the cell, linear and
circular, the latter is less understood and appears to be more complex. Our goal
was to improve the understanding of the circular configuration, by focusing on the
special case of regular balanced cell, where the problem description is particularly
compact (3 numbers). Some of the results appeared in the proceedings of the 8th
IFAC Conference on Manufacturing Modelling, Management & Control (Thiard
et al., 2016).

We considered two classical problems of robotic cells, still open for this con-
figuration: the dominance of the one-part production cycles (1-cycle conjecture)
over all production cycles, and finding the best 1-cycle (NP-hard for circular cells,
but still open in the balanced case).

We derived the exact expression of cycle time of a crucial 1-cycle specific to
circular cells, the odd-even cycle, which was not correctly understood until now,
highlighting the specificity of its structure. Lower and upper bounds of its cycle
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time can be deduced for the non-balanced case, although in this case the full
algebraic expression is yet to determine. In the balanced case, this expression
allowed us to delimit parameters regions where the best 1-cycle is one of three
classical cycles: the aforementioned odd-even cycle, and two cycles also used in
linear cells, the identity cycle and downhill cycle.

By studying simple structural properties of performant cycles in the remaining
parameters regions, we were able to completely settle the best 1-cycle problem for
small cells (up to 8 machines). We were also able to exhibit a 2-cycle outperforming
1-cycles on a given instance of a 6 machine circular balanced cell, thus proving
false the 1-cycle conjecture in this case (interestingly, the same conjecture is on
the contrary valid for the linear counterpart of this configuration). The 1-cycle
conjecture is still open for smaller circular cell: although we did not find, by
numeric computation, any 2-cycle outperforming 1-cycles for 3 ≤ m ≤ 5 machines,
a formal proof of this is still needed, still leaving the question of higher degree
cycles.

For larger cells (more than 8 machines), numeric simulations of remaining 1-
cycles led us to define and fully study a new, easy to describe, family of cycles
formed by specific alterations of the odd-even cycle, whose members outperform
the classical cycles in some instances. Studying variations of this structure led us
to a conjecture on the dominance of this family, along with classical cycles, over
1-cycles, which we settled for up to 11 machines. If proven valid, this conjecture
would allow to settle the best 1-cycle problem on circular regular balanced in
polynomial time.

The cyclic structures developed in this work could also be applied to improving
approximation for non-balanced circular cell: for instance, the current approxima-
tion algorithm uses a combination of the identity and downhill sequences, which
is efficient for a mix of short and long tasks; combining the odd-even and downhill
structure seems a better fit for a mix of medium and long tasks.

The methods developed and the family of cycles derived in this document
could also be extended to other layouts close to the circular one or with similar
properties.

The last part of this work is devoted to a practical rolling stock management
problem, proposed within the scope of the EURO/ROADEF Challenge 2014. The
contribution presented, published in Annals of Operation Research (Joudrier and
Thiard, 2017), is a joint work with Hugo Joudrier. The goal is to manage trains
within a station; to achieve this, the original formulation mixes several problems
and constraints of routing, scheduling and resources assignment. By simplifying
the formulation, we were able to propose a flexible routing algorithm based on
multi-interval constraint propagation. Coupled with a greedy assignment algo-
rithm, it allows to quickly compute a feasible solution, which can serve as basis
for further optimization.



Conclusion (Français)

Dans ce travail, nous avons présenté deux types de problèmes mêlant ordonnance-
ment et transport.

La majeure partie de ce travail était dédiée à une approche théorique de la
production cyclique de pièces identiques dans les cellules robotisées. Ce modèle
permet de prendre en compte le transport de pièces au sein d’un atelier de pro-
duction par le biais d’un bras robotisé, chargé de déplacer les pièces d’une machine
à l’autre. Parmi les deux principales dispositions physiques de l’atelier, linéaire ou
circulaire, la seconde est moins bien comprise et semble plus complexe. Notre ob-
jectif était donc d’approfondir la compréhension de la configuration circulaire :
pour y parvenir nous nous sommes concentré·e·s sur le cas particulier de cellules
régulières et équilibrées, dans lequel la description d’une instance est particulière-
ment compacte (3 nombres). Certains de nos résultats apparaissent dans les actes
de la conférence IFAC MIM 2016 (Thiard et al., 2016).

Nous nous sommes intéressé·e·s à deux problèmes classiques des cellules ro-
botisées, toujours ouverts pour la configuration choisie : la dominance des cycles
de production d’une pièce (conjecture des 1-cycles) sur l’ensemble des cycles de
production, et la recherche des meilleurs 1-cycles (NP-difficile dans les cellules
circulaires, mais de complexité inconnue dans le cas équilibré).

Nous avons développé l’expression algébrique du temps de cycle du cycle pair-
impair, un cycle classique crucial, propre aux cellules circulaires et jusqu’ici incor-
rectement compris, en mettant en évidence sa structure spécifique. Dans le cas non
équilibré, nous pouvons en déduire des bornes inférieures et supérieures du temps
de cycle, mais l’expression exacte reste à déterminer. Dans le cas équilibré, cette
expression nous a permis de préciser des intervalles de paramètres ou le meilleur
cycle est l’un de trois cycles classiques : le cycle pair-impair mentionné ci-dessus et
deux cycles de base également pertinents dans les cellules linéaires, le cycle identité
et le cycle descendant.

Pour les intervalles restants, l’étude de simples propriétés structurelles des
cycles performants nous ont permis de fermer complètement le problème du
meilleur 1-cycle pour les petites cellules circulaires équilibrées (jusqu’à huit ma-
chines). Nous avons également identifié un 2-cycle strictement plus performant que
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le meilleur 1-cycles sur certaines instances pour une cellule de 6 machines, réfu-
tant ainsi la conjecture des 1-cycles dans ce cas (à noter que cette conjecture est
en revanche valide pour la configuration linéaire correspondante). La conjecture
des 1-cycles est toujours ouverte pour de plus petites cellules circulaires : bien que
les simulations numériques n’aient mis en évidence aucun 2-cycle plus performant
que les 1-cycles pour des cellules de 3 à 5 machines, il manque encore une preuve
formelle, ainsi que la question des cycles d’ordre supérieur à deux.

Pour des cellules arbitrairement grandes (plus de huit machines), la simulation
des 1-cycles restants nous a mené vers la définition et l’étude complète d’une
nouvelle famille de cycles, facile à décrire, dont les membres sont plus performants
que les cycles classiques sur certaines instances. L’étude de variations de cette
structure nous a conduit à la formulation d’une conjecture sur la dominance de
cette famille, associée aux cycles classiques, sur l’ensemble des 1-cycles. La preuve
de cette conjecture permettrait de résoudre le problème du meilleur 1-cycle en
temps polynomial.

Les structures de cycles développées dans ce travail pourraient également per-
mettre une meilleure approximation pour les cellules ciculaires non-équilibrées :
par exemple, l’algorithme actuel utilise une combinaison des séquences montantes
(identité) et descendantes, qui est efficace lorsques les tâches sont de durées courtes
et longues ; combiner les séquences paire-impaires et descendantes semble une
meilleure approche dans le cas ou les taches sont de durées moyennes et longues.

La dernière partie de ce travail était dédiée à un problème pratique de ges-
tion ferroviaire, proposé dans le cadre du Challenge EURO/ROADEF 2014. La
contribution présentée, publiée dans Annals of Operation Research (Joudrier and
Thiard, 2017), est un travail commun avec Hugo Joudrier. Le but était de gérer
les train au sein d’une gare ; à cette fin, la formulation originale mêlait divers
problèmes et contraintes de routage, ordonnancement et affectation de ressources.
En simplifiant la formulation, nous avons pu proposer un algorithme de routage
souple, basé sur de la propagation de contraintes multi-intervalles. Associé à un
algorithme d’affectation glouton, celui-ci permet de calculer une première solution
réalisable qui peut servir de base à une optimisation.
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Notations

These are the notations used throughout Chapters 1 to 4 (robotic cells). For each
notation, we give the page where it is first introduced and defined.

Chapter 5 is independent and uses its own set of notations (please refer to the
chapter itself or to Ramond and Nicolas (2014)1).

Ai for i ∈ {0 . . .m}, activity Ai, i.e. the elementary sequence of moves where the
robot unloads a part from machine Mi, travels to machine Mi+1 and loads
the part on to machine Mi+1. 5

α
⌊
m+1

2

⌋
, where m is the number of machine. 30

α(n) for any n ∈ N ,
⌊
n+1

2

⌋
. 66

c denotes a generic cycle. 20

δ the travel time between any two consecutive machinesMi andMi+1 (both ways)
with i ∈ {0, . . . ,m}. 20

∆c the total travel time of the robot during one iteration of the specified cycle c.
24

di(π) the travel time of the robot between the loading of machine Mi and its
subsequent unloading (in a cyclic sense) for the specified 1-cycle π. 24

di,l(c) the travel time of the robot between the l-th loading of machine Mi and its
subsequent unloading (in a cyclic sense) for the specified cycle c. 24

dmin(c) minimum value of di,l: min
i,l

di,l(c), or for a 1-cycle, min
i∈{1,...,m}

di(c). 24

m the number of machines. 20
1https://hal.archives-ouvertes.fr/hal-01057324/file/Challenge_sujet_

phaseFinale_140224.pdf
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M0 the input buffer. 20

Mm+1 the output buffer. 20

M1 . . .Mm the m machines. 20

m(i) the number of times the robot travels between machines Mi and Mi+1 in
either direction (forward or backward). 58

m−(i) the number of times the robot travels backward between machines Mi and
Mi+1. 58

m+(i) the number of times the robot travels forward between machines Mi and
Mi+1 during one iteration. 58

pi for i ∈ {1, . . . ,m}, the processing time on machine Mi (in the non balanced
case). 20

p the processing time on any machine M1 . . .Mm (in the balanced case). 20

p∗ the value of parameter p for which πdh and πoe have the same cycle time
(Tπoe(p∗) = Tπdh(p∗) = 3(m + 1)δ. Its expression is p∗ = 3α−1

2α−1(m + 1)δ.
41

p∗n for n even, the value of parameter p for which πnw and πdh have the same cycle
time (Tπnw(p∗) = Tπdh(p∗) = 3(m + 1)δ). Its expression is p∗ = (m + 2n +
1)δ + α(m−4n)

2α(m−4n)−1(m+ 1− 4n)δ. 75

π denotes a 1-cycle. 20

πdh the downhill cycle A0AmAm−1...A1. 28

πid the identity cycle A0A1 . . . Am. 27

πoe the odd-even cycle A0A2A4 . . . A1A3A5 . . . . 29

π2w the cycle defined by π2w = v(3, 7), which expands to
πnw = A0A3A2A5A8 . . . A2i . . . A1A4A7A6A9 . . . A2i+1; special case of πnw. 69

πnw for n ∈ N , the cycle defined by πnw = v(3, 7, . . . , 4i− 1, . . . , 4n− 1); general-
ization of π2w. 73

SEi,j the ordered sequence of all activities Al with l even, i ≤ l ≤ j. 66

SOi,j the ordered sequence of all activities Al with l odd, i ≤ l ≤ j. 66
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Tc the long run average cycle time of the specified cycle c. When useful, the cycle
time may be expressed as a function of p and denoted Tc(p). If c is a k-cycle,
its cycle length is given by Tc

k
(obviously, the cycle length of a 1-cycle π is

simply Tπ). 20

v(i1, i2, . . . , in) the cycle defined by the n waves of size 1: Ai1Ai1−1, Ai2Ai2−1
. . .AinAin−1. 65

Vh(i1, i2, . . . , in) the set of cycles containing the n waves of size h:
Ai1Ai1−h, Ai2Ai2−h, . . . , AinAin−h. 65

Wc(p) the long run average total waiting time of the robot for the specified cycle
c, depending on p. The cycle time of c can be decomposed as Tc(p) =
∆c(p) +Wc(p). 65

Ŵ (n, d, p) for any n > 0, p ≥ 0, d ≥ 0, Ŵ (n, d, p) = 2α(n)−1
α(n) max(0, p − d). By

convention, Ŵ (0, d, p) = 0. 66

wi the waiting time of the robot at machine Mi of the cycle. 71

wji the waiting time of the robot at machine Mj during the i-the iteration of the
cycle (when several consecutive iterations are considered).. 31
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Résumé La première partie de ce travail concerne la production cyclique pour l’optimisa-
tion du taux de production dans les flowshops robotisés, où un robot est chargé du transport
des pièces. Les cellules robotisées peuvent être disposées de façon linéaire ou circulaire. Les
principaux résultats théoriques concernant la disposition linéaire ne peuvent être étendus à la
configuration circulaire. En particulier, trouver le meilleur cycle de production de une pièce (1-
cycle) est un problème polynomial dans le cas des cellules linéaires additives, mais NP-difficile
pour la configuration correspondante circulaire.

Nous nous concentrons principalement sur le cas des cellules circulaires équilibrées, où le
temps d’usinage est identique sur toutes les machines. Après avoir présenté des outils pour
l’analyse cyclique dans les cellules circulaires, nous établissons des propriétés nécessaires des
1-cycles performants, ce qui permet de conclure sur le problème du meilleur 1-cycle jusqu’à
8 machines. Toutefois, nous fournissons un contre-exemple pour 6 machines à la conjecture
classique des 1-cycles, toujours ouverte dans cette configuration.

Ensuite, nous étudions la structure des 1-cycles performants pour des cellules circulaires
équilibrées arbitrairement grandes. Nous définissons et étudions les propriétés d’une nouvelle
famille de cycles basée sur cette structure et formulons une conjecture sur sa dominance sur les
1-cycles qui conduirait à un algorithme polynomial pour le problème du meilleur 1-cycle dans
ce cas. Cette structure permet de déterminer le meilleur 1-cycle jusqu’à 11 machines.

Dans la deuxième partie, nous présentons le travail réalisé sur un problème industriel proposé
par la SNCF dans le cadre du challenge ROADEF/EURO. Nous proposons un algorithme glouton
pour ce problème combinant divers aspects de la gestion des trains au sein d’une gare.

Mots-clefs Ordonnancement, Flow-shop, Cellule robotisée, Ressource de transport, Produc-
tion cyclique, Gestion de matériel ferroviaire

Abstract The first part of this work deals with cyclic production for throughput optimization
in robotic flow-shops, where a robot is in charge of the material handling of parts. Robotic cells
may have a linear or a circular layout. Most theoretical results for the linear layout do not hold
for the circular layout. In particular, the problem of finding the best one part production cycle
(1-cycle), which is a polynomial problem for linear additive cells, has been proved NP-hard for
the corresponding circular configuration.

We mainly focus on a special case of circular balanced cells, where the processing times are
identical for all machines. After presenting tools for cyclic analysis in circular cells, we study
necessary properties of efficient 1-cycles. These results allow to conclude on the best one part
production cycle for any parameters in circular balanced cells up to 8 machines. However, we
provide a counter-example to the classical 1-cycle conjecture, still open for this configuration.

Then, we study the structure of efficient one part production cycles in arbitrarily large
circular balanced cells. We introduce and study a new family of cycles based on this structure,
and formulate a conjecture on its dominance over one part-production cycles, which would lead
to a polynomial algorithm for finding the best 1-cycle for circular balanced cells. This structure
allows to settle the best one part production cycle for cells with up to 11 machines.

In a second part, we present work on an industrial problem of railway stock scheduling
proposed by the French railway company in the context of the ROADEF/EURO competition.
We propose a greedy algorithm for this problem combining the various aspects of trains handling
inside a station.

Keywords Scheduling, Flowshop, Robotic cell, Material Handling System, Cyclic Production,
Circular Layout, Railway Stock Management
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