Scheduling Handling Resources:

 Robotic Flowshops with Circular Layouts and a Practical Railway ProblemFlorence Thiard
Jury members
Reviewers: Dr. Safia Kedad-Sidhoum
Pr. Ameur Soukhal
Advisors: Pr. Nadia Brauner
Dr. Nicolas Catusse
Examiners: Pr. Alessandro Agnetis
Dr. Fabien Mangione
November 21, 2017

G.iscop

Scheduling and transportation

Scheduling: assigning tasks to resources submitted to constraints to optimize a performance criteria

Physical handling or transportation between resources: connectivity, layout, additional specific handling resources

G.iscop

Scheduling and transportation

Scheduling: assigning tasks to resources submitted to constraints to optimize a performance criteria

Physical handling or transportation between resources: connectivity, layout, additional specific handling resources

Two contexts:

- Manufacturing management

- Railway management

Railway management

"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF

Railway management

"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF

- Resource capacity
- Resource compatibility
- Conflict between trains
- ...

Railway management

"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF

- Resource capacity
- Resource compatibility
- Conflict between trains
- ...

Optimize departure coverage and performance costs

Railway management

"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF

Horizon: 14 days
200-2000 departures/arrivals
30-90 resources

- Resource capacity
- Resource compatibility
- Conflict between trains
- ...

Optimize departure coverage and performance costs

Railway management

Joint work with H. Joudrier [Joudrier and T. 17]

- Simplify the station's graph by grouping similar resources
- Sophisticated routing algorithm
- (very) simple assignment algorithm
- Up to 40% covered departures...
... And the 1st place in the junior category!

Giscop

Manufacturing management

Flowshop: the parts must be processed on machine M_{1}, then $M_{2} \ldots$

M_{1}	M_{2}
M_{3}	

Giscop

Manufacturing management

Flowshop: the parts must be processed on machine M_{1}, then $M_{2} \ldots$

Sufficient model?

Giscop

Manufacturing management

Flowshop: the parts must be processed on machine M_{1}, then $M_{2} \ldots$

Sufficient model? Operator, tools, handling resources...

Giscop

Robotic cell - Example

Giscop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

G. SCDP

Robotic cell - Example

"Short processing times, slow robot"

G:Scop

Robotic cell - Example

"Short processing times, slow robot"

G. SCDP

Robotic cell - Example

"Short processing times, slow robot"

G. SCDP

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

G. SCDP

Robotic cell - Example

"Short processing times, slow robot"

G. SCDP

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

Giscop

Robotic cell - Example

"Short processing times, slow robot"

G.'scop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

G.'scop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

G.'scop

Robotic cell - Example

"Long processing times, fast robot"

G:Scop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

G. SCDP

Robotic cell - Example

"Long processing times, fast robot"

G. SCDP

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

G.'scop

Robotic cell - Example

"Long processing times, fast robot"

G.'scop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

G. SCDP

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

G:Scop

Robotic cell - Example

"Long processing times, fast robot"

G:Scop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

Giscop

Robotic cell - Example

"Long processing times, fast robot"

And in-between?

That's where the problem is

Balancing

- Total travel time
- Waiting time

Giscop

Objective

Given the processing times and travel time between machines, find a robot programmation which optimizes the throughput:

$$
\text { Maximize } \frac{k}{\text { Time to produce } k \text { parts }}
$$

Minimize $\frac{\text { Time to produce } k \text { parts }}{k}$

G.'scop

Models: Layouts

Linear

Circular

G.SCDP

Models: cell parameters

Waiting policy

- No-wait [Agnetis, 00 ; Kats et al ; 09, Che et al, 12]
- Unbounded [Crama et al, 97 ; Rajapakshe et al., 11]
- Time-window (HSP) [Dawande et al, 09; Zhou et al, 12]

Travel metric

- General
- Additive
regular

Gis SCOP

Machine and robot capacity

Classical model (blocking)

Few studies for the circular layout [Rajapakshe et al., 11]

Relaxing the blocking constraint

- Dual-gripper
[Sethi et al., 01 ; Jung et al., 15 ; Drobouchevitch et al., 06]
- Swapping [Jolai et al]
- Machine buffers [Drobouchevitch et al., 06]

G.iscIPDescribing the robot moves: Activities

[Crama et al, 97]
Activity A_{i}

G. "sCOPDescribing the robot moves: Activities

[Crama et al, 97]

Activity A_{i}

- Go to M_{i}

G. "sCOPDescribing the robot moves: Activities

[Crama et al, 97]
Activity A_{i}

- Go to M_{i}
- Wait?

[Crama et al, 97]

Activity A_{i}

- Go to M_{i}
- Wait?
- Unload M_{i}

[Crama et al, 97]

Activity A_{i}

- Go to M_{i}
- Wait?
- Unload M_{i}
- Go to M_{i+1}

G. 'sCOPDescribing the robot moves: Activities

[Crama et al, 97]

Activity A_{i}

- Go to M_{i}
- Wait?
- Unload M_{i}
- Go to M_{i+1}
- Load M_{i+1}

G.isCOPDescribing the robot moves: Activities

[Crama et al, 97]

Activity A_{i}

- Go to M_{i}
- Wait?
- Unload M_{i}
- Go to M_{i+1}
- Load M_{i+1}

$$
A_{0}, A_{1}, \ldots, A_{m}
$$

G. SCOP

Cyclic programmation

Dominance [Dawande et al, 05]
Cycle

- Feasible sequence of activities
- Leaves the cell in the same state

G. SCDP

Cyclic programmation

Dominance [Dawande et al, 05]
Cycle

- Feasible sequence of activities
- Leaves the cell in the same state
- k-cycle: produces k parts
- 1-cycle: produces 1 part

Giscop

Cyclic programmation

Dominance [Dawande et al, 05]

Cycle

- Feasible sequence of activities
- Leaves the cell in the same state
- k-cycle: produces k parts
- 1-cycle: produces 1 part

1-cycles \Leftrightarrow permutations of the m activities $A_{1} \ldots A_{m}$

G.'scop

Cyclic programmation

Dominance [Dawande et al, 05]

Cycle

- Feasible sequence of activities
- Leaves the cell in the same state
- k-cycle: produces k parts
- 1-cycle: produces 1 part

1-cycles \Leftrightarrow permutations of the m activities $A_{1} \ldots A_{m}$

Objective function

$$
\max \text { throughput } \longleftrightarrow \min \frac{\text { cycle time }}{\text { number of parts produced }} \longleftrightarrow \min \frac{T\left(C_{k}\right)}{k}
$$

G.scop

Best 1-cycle problem

1-cycles are...

- easy to describe
- easy to implement

But not necessarily optimal!

- better known and more studied

Giscop

Best 1-cycle problem

1-cycles are...

- easy to describe
- easy to implement

But not necessarily optimal!

- better known and more studied

Finding the best 1-cycle...

- ...in linear regular cells: P
[Crama et al., 97]
(balanced [Brauner et al., 99])
- ...in circular regular cells: NP-hard [Rajapakshe et al, 11] ($\frac{5}{3}$ approx).

Giscop

Best 1-cycle problem

1-cycles are...

- easy to describe
- easy to implement

But not necessarily optimal!

- better known and more studied

Finding the best 1-cycle...

- ...in linear regular cells: P
[Crama et al., 97]
(balanced [Brauner et al., 99])
- ...in circular regular cells: NP-hard

$$
\text { (} \frac{5}{3} \text { approx). }
$$

- ...in circular regular balanced cells: ??

Dominance?

1-cycle conjecture

1-cycles dominate all cycles

Giscop

Dominance?

1-cycle conjecture

1-cycles dominate all cycles

Linear layout

- Valid for regular cells, 2- to 3-machine

Giscop

Dominance?

1-cycle conjecture

1-cycles dominate all cycles

Linear layout

- Valid for regular cells, 2- to 3-machine
[Crama et al., 97]
- False for regular cells, 4-machine

Giscop

Dominance?

1-cycle conjecture

1-cycles dominate all cycles

Linear layout

- Valid for regular cells, 2- to 3-machine [Crama et al., 97]
- False for regular cells, 4-machine [Brauner et al., 01]
- Valid for regular balanced cell up to 15 machines [Brauner, 08]

Giscop

Dominance?

1-cycle conjecture

1-cycles dominate all cycles

Linear layout

- Valid for regular cells, 2- to 3-machine
- False for regular cells, 4-machine
- Valid for regular balanced cell up to 15 machines

Circular layout

Giscop

Dominance?

1-cycle conjecture

1-cycles dominate all cycles

Linear layout

- Valid for regular cells, 2- to 3-machine
- False for regular cells, 4-machine
- Valid for regular balanced cell up to 15 machines

Circular layout

Counter-example for regular balanced cells with 6 machines

G. SCOP

Our problem

Circular, identical parts, regular, balanced: (m, δ, p)

Small enough to fit in a Shadok's head!

Giscop

Representing the robot moves

Gis SCOP

Representing the robot moves

A_{1}

Gis SCOP

Representing the robot moves

A_{1}

Gis SCOP

Representing the robot moves

A_{1}

Gis SCOP

Representing the robot moves

$A_{1} A_{0}$

Giscop

Representing the robot moves

$A_{1} A_{0}$

Giscop

Representing the robot moves

$A_{1} A_{0}$

G. SCDP

Representing the robot moves

$A_{1} A_{0}$

Giscop

Representing the robot moves

$A_{1} A_{0}$

G. SCDP

Representing the robot moves

$A_{1} A_{0} A_{4}$

G. SCDP

Representing the robot moves

$A_{1} A_{0} A_{4}$

G. SCDP

Representing the robot moves

$A_{1} A_{0} A_{4}$

G. SCDP

Representing the robot moves

$A_{1} A_{0} A_{4}$

G. SCDP

Representing the robot moves

$A_{1} A_{0} A_{4}$

G. SCDP

Representing the robot moves

$A_{1} A_{0} A_{4}$

Giscop

 Some usual 1-cycles: Identity cycleIdentity cycle $\pi_{\text {id }}$
$\pi_{i d}: A_{0} A_{1} \ldots A_{m}$

Cycle time
$T\left(\pi_{i d}\right)=(m+1) \delta+m p$

G.'SCDP Some usual 1-cycles: Downhill cycle

Downhill cycle π_{d}
$\pi_{d}: A_{0} A_{m} A_{m-1} \ldots A_{1}$

Cycle Time
$T\left(\pi_{d}\right)=3(m+1) \delta+\max (0, p-(3 m-1) \delta)$

G.isCOP Some usual 1-cycles: Odd-even cycle

Odd-Even cycle $\pi_{\text {oe }}$
$\pi_{o e}: A_{0} A_{2} \ldots A_{1} A_{3} \ldots$

Cycle time

$$
T\left(\pi_{o e}\right)=? ?
$$

Giscop

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

G. SCDP

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

$20+$

Giscop

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

$20+$

Giscop

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

$20+$

G. SCDP

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

$20+$

Giscop

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

Giscop

Odd-even's cycle time

$$
\begin{aligned}
T\left(\pi_{o e}\right) & =2(m+1) \delta+\max \left(0, \frac{2 \alpha-1}{\alpha}(p-(m+1) \delta)\right) \quad \alpha=\left\lfloor\frac{m+1}{2}\right\rfloor \\
& \leq 2 p
\end{aligned}
$$

Finding the best 1-cycle

Giscop

Best 1-cycles?

Lower bounds

G.scop

Best 1-cycles?

Lower bounds
$L B_{1}$ [Crama, 97]
$T(\pi) \geq p+4 \delta$

Giscop

Best 1-cycles?

Lower bounds

$$
\begin{aligned}
& L B_{1}[\text { Crama, 97] } \\
& T(\pi) \geq p+4 \delta
\end{aligned}
$$

$L B_{2}$ [Dawande et al, 02]
$T(\pi) \geq(m+1) \delta$
$+m \min (\delta, p)$

G:'sCOP

Best 1-cycles?

Lower bounds

$$
\begin{aligned}
& L B_{1}[\text { Crama, } 97] \\
& T(\pi) \geq p+4 \delta
\end{aligned}
$$

$L B_{2}$ [Dawande et al, 02]
$T(\pi) \geq(m+1) \delta$
$+m \min (\delta, p)$
$L B_{3}$ (1-cycles only)
$T(\pi) \geq 2(m+1) \delta$

G.'sCOP

Best 1-cycles?

Lower bounds

$$
\begin{aligned}
& L B_{1}[\text { Crama, } 97] \\
& T(\pi) \geq p+4 \delta
\end{aligned}
$$

$$
\begin{aligned}
& L B_{2}[\text { Dawande et al, 02] } \\
& T(\pi) \geq(m+1) \delta \\
&+m \min (\delta, p)
\end{aligned}
$$

$L B_{3}$ (1-cycles only)
$T(\pi) \geq 2(m+1) \delta$

G.'sCOP

Best 1-cycles?

Lower bounds

$$
\begin{aligned}
& L B_{1}[\text { Crama, } 97] \\
& T(\pi) \geq p+4 \delta
\end{aligned}
$$

$L B_{2}$ [Dawande et al, 02]

$$
T(\pi) \geq(m+1) \delta
$$

$$
+m \min (\delta, p)
$$

$L B_{3}$ (1-cycles only)
$T(\pi) \geq 2(m+1) \delta$

G:'sCOP

Best 1-cycles?

Lower bounds

$$
\begin{aligned}
& L B_{1}[\text { Crama, } 97] \\
& T(\pi) \geq p+4 \delta
\end{aligned}
$$

$L B_{2}$ [Dawande et al, 02]

$$
T(\pi) \geq(m+1) \delta
$$

$$
+m \min (\delta, p)
$$

$L B_{3}$ (1-cycles only)
$T(\pi) \geq 2(m+1) \delta$

Giscop

The unknown region

Best 1-cycle

$$
\text { - } p \leq \frac{m+1}{m} \delta
$$

$\pi_{i d}$

Giscop

The unknown region

Best 1-cycle

$$
\text { - } p \leq \frac{m+1}{m} \delta
$$

$\pi_{i d}$

- $p>\frac{m+1}{m} \delta$
$p \leq(m+1) \delta$
$\pi_{\boldsymbol{o e}}$

G. SCDP

The unknown region

Best 1-cycle

$$
\begin{aligned}
& \text { - } p \leq \frac{m+1}{m} \delta \\
& \boldsymbol{\pi}_{\boldsymbol{i d}} \\
& \quad p>\frac{m+1}{m} \delta \\
& p \leq(m+1) \delta \\
& \boldsymbol{\pi}_{\boldsymbol{o b}} \\
& p \geq(3 m-1) \delta \\
& \boldsymbol{\pi}_{\boldsymbol{d}}
\end{aligned}
$$

Giscop

The unknown region

Best 1-cycle

$$
\begin{aligned}
& -p \leq \frac{m+1}{m} \delta \\
& \boldsymbol{\pi}_{\text {id }} \\
& -p>\frac{m+1}{m} \delta \\
& \quad p \leq(m+1) \delta
\end{aligned}
$$

$$
\pi_{o e}
$$

$$
\text { - } p \geq(3 m-1) \delta
$$

$$
\pi_{d}
$$

between $(m+1) \delta$ and $(3 m-1) \delta$?

G.scop

Exploring the unknown region

Best 1-cycles: $\left\{\pi_{i d}, \pi_{o e}, \pi_{d}\right\}+? ?$

Introducing π^{*}

- π^{*} is a 1-cycle
- π^{*} crosses the yellow area (meaning: for some $(m+1) \delta \leq p \leq(3 m-1) \delta$, π^{*} does strictly better than both $\pi_{o e}$ and π_{d})

G.'scop

Exploring the unknown region

Best 1-cycles: $\left\{\pi_{i d}, \pi_{o e}, \pi_{d}\right\}+? ?$
Introducing π^{*}

- π^{*} is a 1-cycle
- π^{*} crosses the yellow area
(meaning: for some $(m+1) \delta \leq p \leq(3 m-1) \delta$, π^{*} does strictly better than both $\pi_{o e}$ and π_{d})

Who is π^{*} ?

What can we say about it? Does it exist?

Giscop

Is there anybody in there?

Size of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven
$\left\{\pi_{i d}, \pi_{o e}, \pi_{d}\right\} \cup ?$
computed

G.iscop

Is there anybody in there?

Size of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

```
proven
computed
```

$\left\{\pi_{i d}, \pi_{o e}, \pi_{d}\right\} \cup ?$
[Brauner, 99]

G.iscop

Is there anybody in there?

Size of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

```
proven
computed
```

$\left\{\pi_{i d}, \pi_{o e}, \pi_{d}\right\} \cup ?$
Properties on the total travel time

Giscop

First properties

Notations (last ones...)
$\Delta(\pi)$: total travel time
$d_{i}(\pi)$: travel time between the loading and unloading of
machine M_{i}
$d_{\text {min }}(\pi): \min d_{i}(\pi)$
e.g $d_{\text {min }}\left(\pi_{o e}\right)=(m+1) \delta$

Lower bound $L B_{4}(\pi)$
$T(\pi) \geq \underbrace{\Delta(\pi)}_{\text {Total travel time }}+\underbrace{\max \left(0, p-d_{\min }(\pi)\right)}_{\text {Minimum waiting time }}$
$d_{\text {min }}$ is the minimum value of p for which waiting is necessary.

Giscop

First properties

If π^{*} exists:

- The robot travels between 2 and 3 times the size of the cell:

$$
2(m+1) \delta<\Delta\left(\pi^{*}\right)<3(m+1) \delta
$$

- No waiting time if p is "small" relatively to the travel time:

$$
d_{\min }\left(\pi^{*}\right)>\Delta\left(\pi^{*}\right)-\frac{3 \alpha-2}{2 \alpha-1}(m+1) \delta
$$

G: SCOP

First properties

Gis SCOP

First properties

G. Scop

First properties

G. Scop

First properties

G. SCDP

First properties

G. Scop

First properties

Giscop

And for $m>8$?

Cardinal of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven
computed

Giscop

And for $m>8$?

Cardinal of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven
computed

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...

...always (slightly) crosses the yellow area

Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...
 Two wavelets $\left(\pi_{2 w}\right) \ldots$

For $m>8$, this guy...
$d_{\text {min }}\left(\pi_{2 w}\right)=(m+5) \delta$
(One turn and one wave)
machines

...always (slightly) crosses the yellow area

 Three wavelets $\left(\pi_{3 w}\right) \ldots$

For $m=12$ and $m=13 \ldots$
 Three wavelets $\left(\pi_{3 w}\right) \ldots$

For $m=12$ and $m=13 \ldots$
 Three wavelets $\left(\pi_{3 w}\right) \ldots$

For $m=12$ and $m=13 \ldots$

G.iSCOP

 Three wavelets $\left(\pi_{3 w}\right) \ldots$For $m=12$ and $m=13 \ldots$

G.iSCOP

 Three wavelets $\left(\pi_{3 w}\right) \ldots$For $m=12$ and $m=13 \ldots$
 Three wavelets $\left(\pi_{3 w}\right) \ldots$

For $m=12$ and $m=13 \ldots$

G.iSCOP

 Three wavelets $\left(\pi_{3 w}\right) \ldots$For $m=12$ and $m=13 \ldots$

G.iSCOP

 Three wavelets $\left(\pi_{3 w}\right) \ldots$For $m=12$ and $m=13 \ldots$
 Three wavelets $\left(\pi_{3 w}\right) \ldots$

For $m=12$ and $m=13 \ldots$

G.iSCOP

 Three wavelets $\left(\pi_{3 w}\right) \ldots$For $m=12$ and $m=13 \ldots$

G.iSCOP

 Three wavelets $\left(\pi_{3 w}\right) \ldots$For $m=12$ and $m=13 \ldots$
 Three wavelets $\left(\pi_{3 w}\right) \ldots$

For $m=12$ and $m=13 \ldots$
$d_{\text {min }}\left(\pi_{2 w}\right)=(m+9) \delta$
(One turn and two waves)
machines
 Three wavelets $\left(\pi_{3 w}\right)$...

For $m=12$ and $m=13$...
$d_{\text {min }}\left(\pi_{2 w}\right)=(m+9) \delta$
(One turn and two waves)
machines

G: Sccop

 ...n wavelets $\left(\pi_{n w}\right)$(here for n even)
$d_{\text {min }}\left(\pi_{n w}\right)=(m+2 n+1) \delta$
(One turn and n waves)

G.'SCOP $m \geq$ 8: A proposition and a conjecture

Proposition: best cycles within $\left\{\pi_{i d}, \pi_{d}, \pi_{o e}\right\} \cup\left(\pi_{n w}\right)_{n}$

- Three classical 1-cycles $\pi_{i d}, \pi_{d}, \pi_{o e}$
- +One $\pi_{n w}$ with the highest even value of n possible And/or
- +One $\pi_{n w}$ with the highest odd value of n possible

Conjecture: best 1-cycle

These also dominate all 1-cycles
Proven for $m \leq 11$

Proof ideas

- 2 "turns"

$$
T\left(\pi^{*}\right)<2 p
$$

$$
\text { (otherwise, dominated by } \pi_{o e} \text {) }
$$

$T\left(\pi^{*}\right)<3(m+1) \delta$
(otherwise, dominated by π_{d})

Proof ideas

- 2 "turns"
- A_{i} and A_{i+1} can't be on the same turn in that order

$$
T\left(\pi^{*}\right)<2 p
$$

$$
\text { (otherwise, dominated by } \pi_{o e} \text {) }
$$

$$
T\left(\pi^{*}\right)<3(m+1) \delta
$$

(otherwise, dominated by π_{d})

Proof ideas

- 2 "turns"
- A_{i} and A_{i+1} can't be on the same turn in that order
- no subsequence $A_{i} A_{i-2}$
(rules out bigger alterations
 up to 11 machines)
$T\left(\pi^{*}\right)<2 p$
(otherwise, dominated by $\pi_{o e}$)
$T\left(\pi^{*}\right)<3(m+1) \delta$
(otherwise, dominated by π_{d})

G. SCDP

Best 1 cycles for $m \leq 11$...

Cardinal of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

$6 \leq m \leq 8:\left\{\pi_{i d}, \pi_{o e}, \pi_{d}\right\}$
$9 \leq m \leq 11:\left\{\pi_{i d}, \pi_{o e}, \pi_{d}, \pi_{2 w}\right\}$

And for any m ?

And for any m ?

Not proven Regular disposition of the waves in the "turbulence" areas: seems intuitive but...

Proven Wavelets preferable to big waves:

And for any m ?

Not proven Regular disposition of the waves in the "turbulence" areas: seems intuitive but...

Proven Wavelets preferable to big waves:

If the conjecture is valid...

If the conjecture is valid, then...

- The best 1-cycle problem in circular, regular balanced cell would be polynomial
- Performance ratio of the usual cycles:

$$
\begin{gathered}
\frac{\min \left(T\left(\pi_{o e}\right), T\left(\pi_{d}\right)\right)}{\min _{n}\left(T\left(\pi_{o e}\right), T\left(\pi_{d}\right), T\left(\pi_{n w}\right)\right)} \\
\text { (as a function of } m \text {) }
\end{gathered}
$$

If the conjecture is valid...

If the conjecture is valid, then...

- The best 1-cycle problem in circular, regular balanced cell would be polynomial
- Performance ratio of the usual cycles:

$$
\begin{gathered}
\frac{\min \left(T\left(\pi_{o e}\right), T\left(\pi_{d}\right)\right)}{\min _{n}\left(T\left(\pi_{o e}\right), T\left(\pi_{d}\right), T\left(\pi_{n w}\right)\right)} \\
\text { (as a function of } m \text {) }
\end{gathered}
$$

G.SCDP

Conclusions...

Throughput optimization in robotic cells with circular layout was less studied and poorly understood so far. We:

- proposed new tools and specific cycle structures...
- ... leading to a conjecture on the best 1 -cycle problem.

	Best 1-cycle	1-cycle conjecture
Linear	P	$m \leq 3:$ valid $m=4:$ false
\| balanced	P	$m \leq 15:$ valid
Circular	NP-hard	
\| balanced	$m \leq 11: \mathrm{P}$	
	$m \geq 12:$ also P?	$m=6:$ false

... and perspectives
(Well, aside from settling the conjecture)

Other types of production constraints:

- Non-balanced case:

Improving existing approximation...

- Proportionate flow-shop

Open questions for regular balanced cells:

- Best 1 -cycle for $m>11 \ldots$
- 1-cycle conjecture for $m \leq 5$
- Cycle function for $m \geq 6$

Relationships with other layouts:

- Comparisons of layouts
- Generalization of the circular layout:

G.SCDP

Third party content

- This presentation features some tributes to the following works (short excerpts):
- Wall-E (Pixar Animation Studios, 2008), slides 1, 4, 8 and 43;
- Up (Pixar Animation Studios \& Walt Disney Pictures, 2009), slides 25 and 43;
- Les Shadoks (Jacques Rouxel), slides 16 and 43.
- The picture of a toy train featured on slides $1,2,3$ and 43 is extracted from a Brio commercial.
- Other clipart images (slides 4 and 10) are either public domain or released under a CCO license.
- The template and backgrounds belong to G-SCOP laboratory.

