

Scheduling Handling Resources: Robotic Flowshops with Circular Layouts and a Practical Railway Problem

Florence Thiard

Jury members

Reviewers: Dr. Safia Kedad-Sidhoum Advisors: Pr. Nadia Brauner

Pr. Ameur Soukhal Dr. Nicolas Catusse

Examiners: Pr. Alessandro Agnetis

Dr. Fabien Mangione

November 21, 2017

UMR 5272

Scheduling and transportation

Scheduling: assigning *tasks* to *resources* submitted to *constraints* to optimize a *performance criteria*

Physical handling or transportation between resources: connectivity, layout, additional specific handling resources

Scheduling and transportation

Scheduling: assigning *tasks* to *resources* submitted to *constraints* to optimize a *performance criteria*

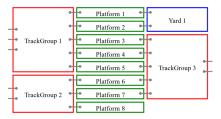
Physical handling or transportation between resources: connectivity, layout, additional specific handling resources

Two contexts:

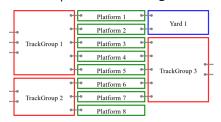
Manufacturing management

Railway management

"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF

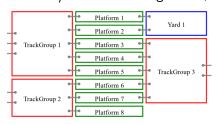


"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF



- Resource capacity
- Resource compatibility
- Conflict between trains
- .

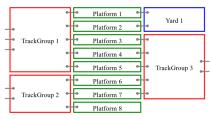
"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF



- Resource capacity
- Resource compatibility
- Conflict between trains
- **.**...

Optimize departure coverage and performance costs

"Trains don't vanish"...except when they do. EURO/Roadef Challenge 2014, SNCF



Horizon: 14 days 200-2000 departures/arrivals 30-90 resources

- Resource capacity
- Resource compatibility
- Conflict between trains

Optimize departure coverage and performance costs

Joint work with H. Joudrier [Joudrier and T. 17]

- Simplify the station's graph by grouping similar resources
- Sophisticated routing algorithm
- (very) simple assignment algorithm
- Up to 40% covered departures...

... And the 1st place in the junior category!

Manufacturing management

Flowshop: the parts must be processed on machine M_1 , then M_2 ...

 M_1

 M_2

 M_3

Manufacturing management

Flowshop: the parts must be processed on machine M_1 , then M_2 ...

 M_1

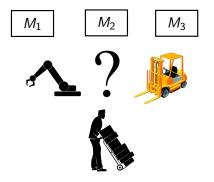
 M_2

 M_3

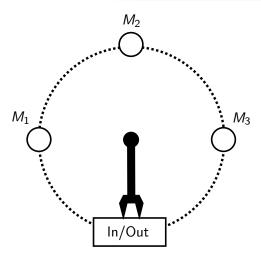
?

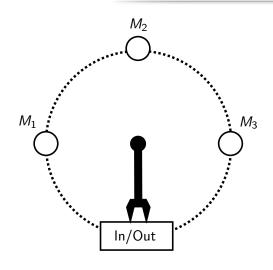
Manufacturing management

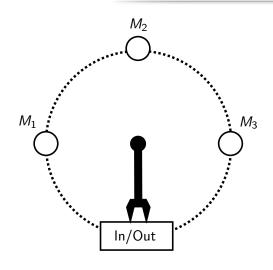
Flowshop: the parts must be processed on machine M_1 , then M_2 ...

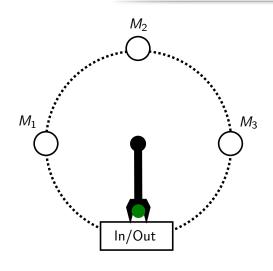


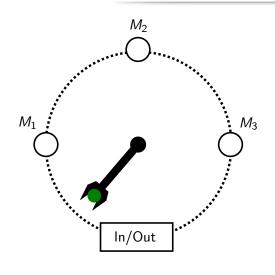
Sufficient model? Operator, tools, handling resources...

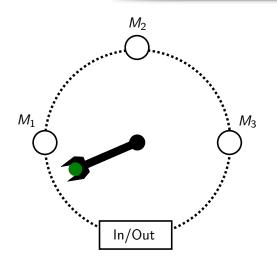


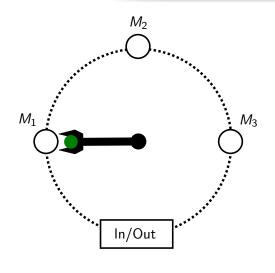


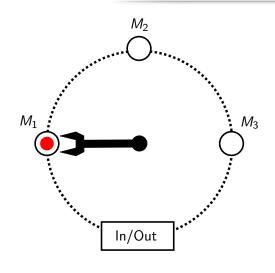


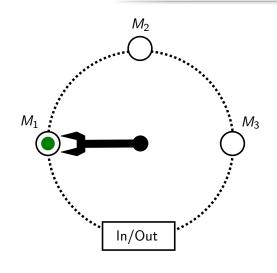


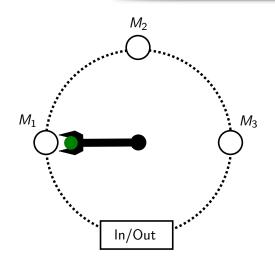


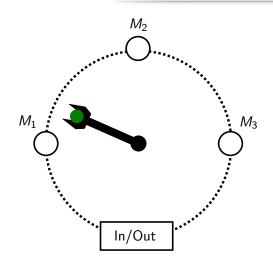


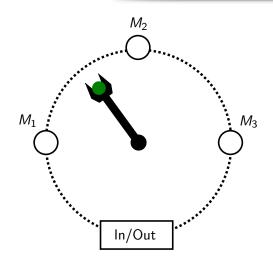


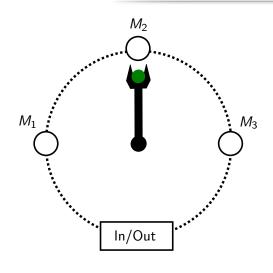


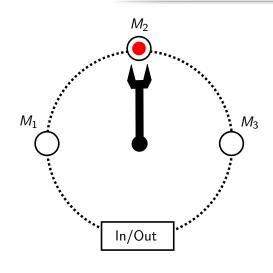


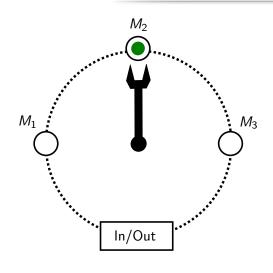


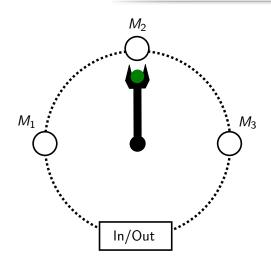


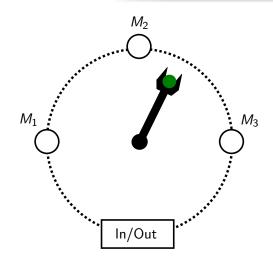


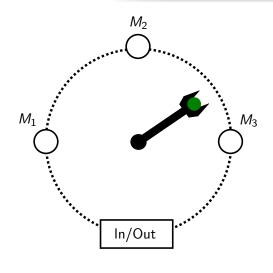


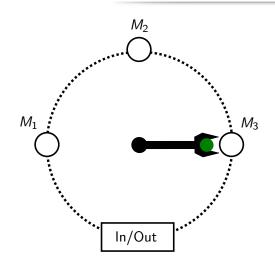


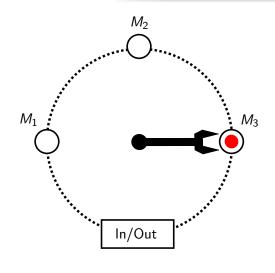


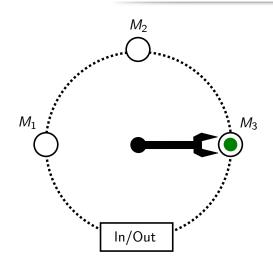


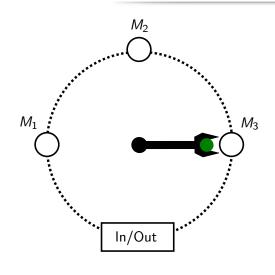


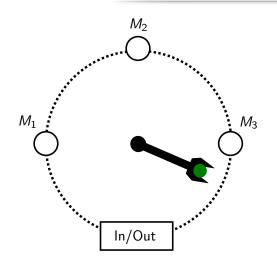


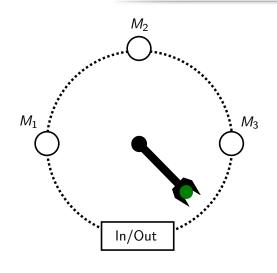


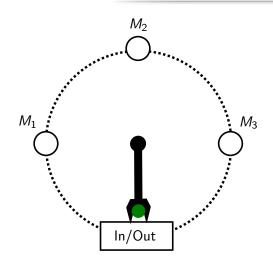


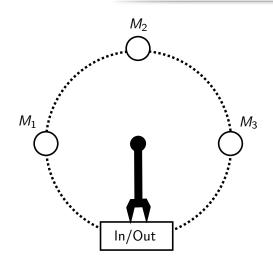




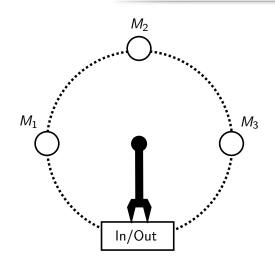


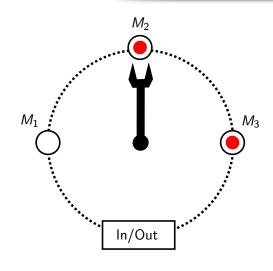


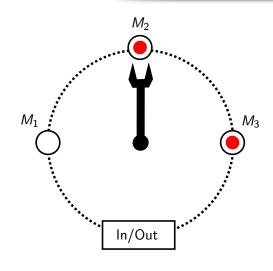


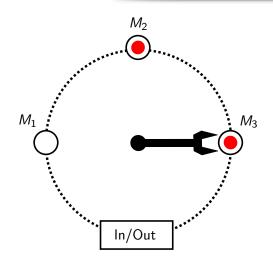


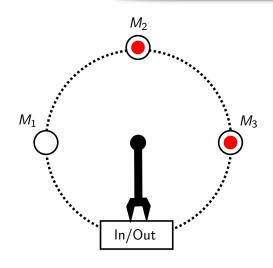
"Short processing times, slow robot"

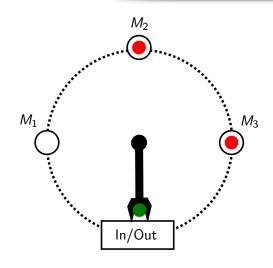


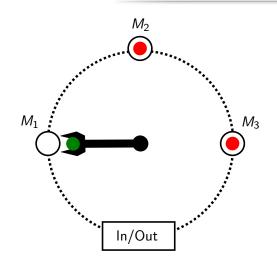


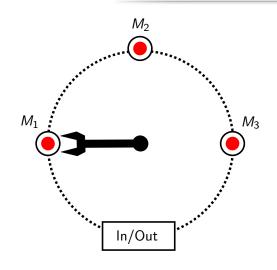


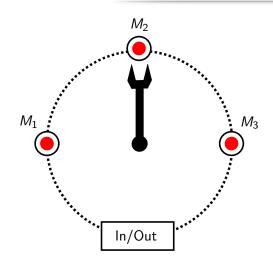


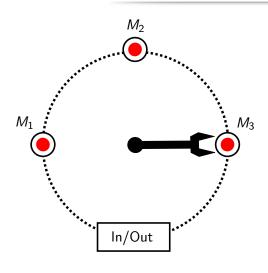


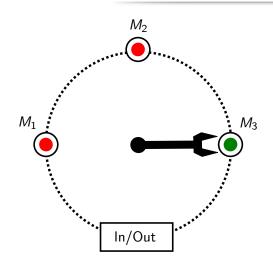


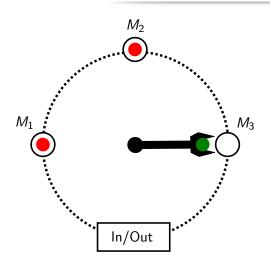


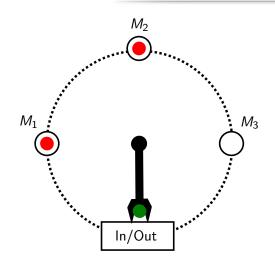


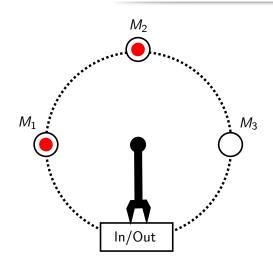


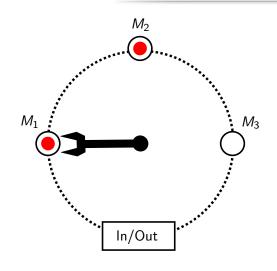


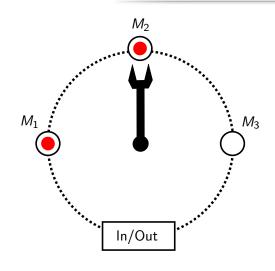


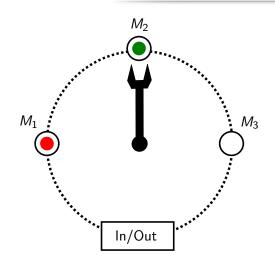


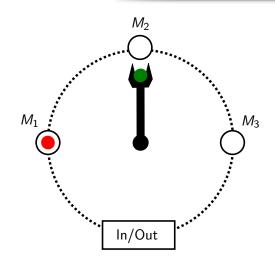


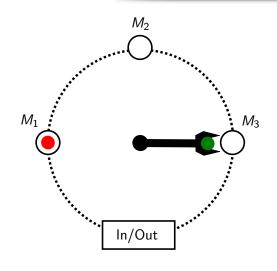


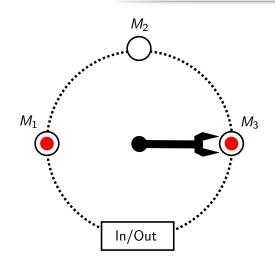


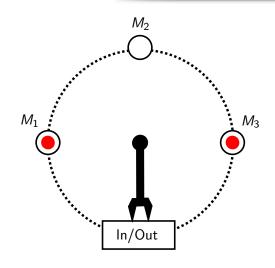


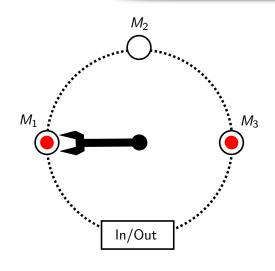


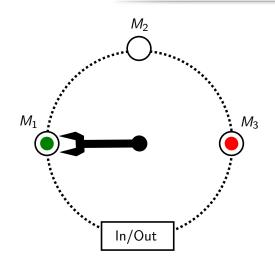


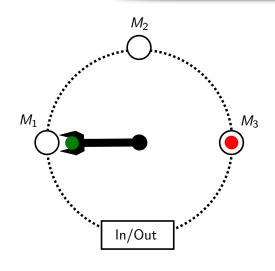


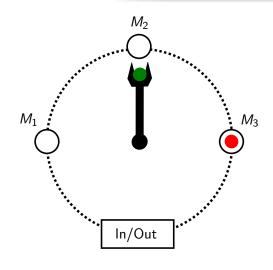


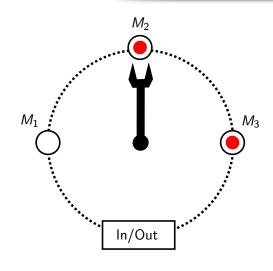












And in-between?

That's where the problem is

Balancing

- Total travel time
- Waiting time

Objective

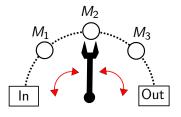
Given the processing times and travel time between machines, find a robot programmation which optimizes the throughput:

Maximize $\frac{k}{\text{Time to produce } k \text{ parts}}$

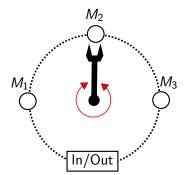
Minimize $\frac{\text{Time to produce } k \text{ parts}}{\text{Time to produce } k}$

Models: Layouts

Linear



Circular



Models: cell parameters

Waiting policy

- No-wait [Agnetis, 00; Kats et al; 09, Che et al, 12]
- Unbounded [Crama et al, 97; Rajapakshe et al., 11]
- Time-window (HSP) [Dawande et al, 09; Zhou et al, 12]

Travel metric

- General
- Additive regular
- Constant

Processing times

Identical parts

- General
- Balanced

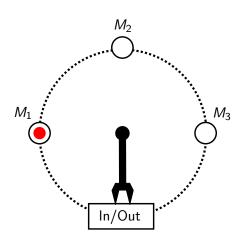
Machine and robot capacity

Classical model (blocking)

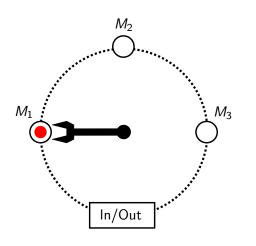
Few studies for the circular layout [Rajapakshe et al., 11]

Relaxing the blocking constraint

- Dual-gripper [Sethi et al., 01; Jung et al., 15; Drobouchevitch et al., 06]
- Swapping [Jolai et al]
- Machine buffers [Drobouchevitch et al., 06]

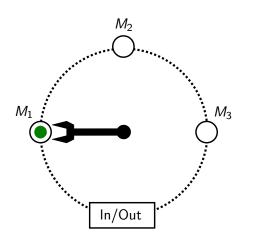


[Crama et al, 97]



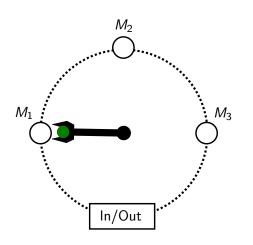
[Crama et al, 97]

• Go to M_i



[Crama et al, 97]

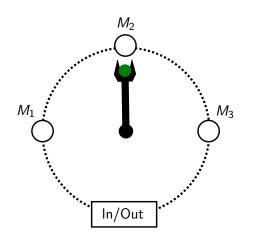
- Go to Mi
- Wait?



[Crama et al, 97]

- Go to Mi
- Wait?
- Unload M_i

G. SCOP Describing the robot moves: Activities

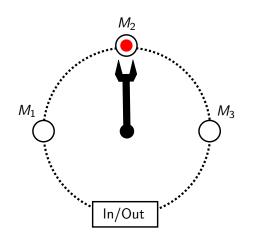


[Crama et al, 97]

Activity A_i

- Go to Mi
- Wait?
- Unload M_i
- Go to M_{i+1}

G. SCOP Describing the robot moves: Activities

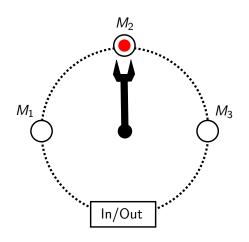


[Crama et al, 97]

Activity A_i

- Go to Mi
- Wait?
- Unload M_i
- Go to M_{i+1}
- Load M_{i+1}

G. SCOP Describing the robot moves: Activities



[Crama et al, 97]

Activity A_i

- Go to Mi
- Wait?
- Unload M_i
- Go to M_{i+1}
- Load M_{i+1}

 A_0, A_1, \ldots, A_m

Dominance [Dawande et al, 05]

Cycle

- Feasible sequence of activities
- Leaves the cell in the same state

Dominance [Dawande et al, 05]

Cycle

- Feasible sequence of activities
- Leaves the cell in the same state
- k-cycle: produces k parts
- 1-cycle: produces 1 part

Dominance [Dawande et al, 05]

Cycle

- Feasible sequence of activities
- Leaves the cell in the same state
- k-cycle: produces k parts
- 1-cycle: produces 1 part

1-cycles \Leftrightarrow permutations of the *m* activities $A_1 \dots A_m$

Dominance [Dawande et al, 05]

Cycle

- Feasible sequence of activities
- Leaves the cell in the same state
- k-cycle: produces k parts
- 1-cycle: produces 1 part

1-cycles \Leftrightarrow permutations of the m activities $A_1 \dots A_m$

Objective function

 $\max \text{ throughput} \longleftrightarrow \min \frac{\text{cycle time}}{\text{number of parts produced}} \longleftrightarrow \min \frac{T(C_k)}{k}$

Best 1-cycle problem

1-cycles are...

- easy to describe
- easy to implement
- better known and more studied

But not necessarily optimal!

Best 1-cycle problem

1-cycles are...

- easy to describe
- easy to implement

- But not necessarily optimal!
- better known and more studied

Finding the best 1-cycle...

• ...in linear regular cells: P

[Crama et al., 97] (balanced [Brauner et al., 99])

• ...in circular regular cells: NP-hard

[Rajapakshe et al, 11]

 $(\frac{5}{3} \text{ approx}).$

Best 1-cycle problem

1-cycles are...

- easy to describe
- easy to implement
- better known and more studied

But not necessarily optimal!

(balanced [Brauner et al., 99])

Finding the best 1-cycle...

…in linear regular cells: P

[Crama et al., 97]

• ...in circular regular cells: NP-hard

[Rajapakshe et al, 11]

 $\left(\frac{5}{3} \text{ approx}\right)$.

• ...in circular regular balanced cells: ??

1-cycle conjecture

1-cycles dominate all cycles

[Sethi et al., 92]

1-cycle conjecture

1-cycles dominate all cycles

[Sethi et al., 92]

Linear layout

• Valid for regular cells, 2- to 3-machine

[Crama et al., 97]

1-cycle conjecture

1-cycles dominate all cycles

[Sethi et al., 92]

Linear layout

- Valid for regular cells, 2- to 3-machine
- False for regular cells, 4-machine

[Crama et al., 97]

[Brauner et al., 01]

1-cycle conjecture

1-cycles dominate all cycles

[Sethi et al., 92]

Linear layout

• Valid for regular cells, 2- to 3-machine

[Crama et al., 97]

False for regular cells, 4-machine

[Brauner et al., 01]

• Valid for regular balanced cell up to 15 machines [Brauner, 08]

1-cycle conjecture

1-cycles dominate all cycles

[Sethi et al., 92]

Linear layout

Valid for regular cells, 2- to 3-machine

[Crama et al., 97]

False for regular cells, 4-machine

[Brauner et al., 01]

Valid for regular balanced cell up to 15 machines [Brauner, 08]

Circular layout

???

1-cycle conjecture

1-cycles dominate all cycles

[Sethi et al., 92]

Linear layout

Valid for regular cells, 2- to 3-machine

[Crama et al., 97]

False for regular cells, 4-machine

[Brauner et al., 01]

• Valid for regular balanced cell up to 15 machines [Brauner, 08]

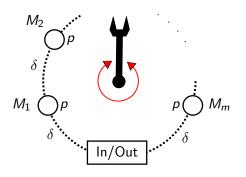
Circular layout

Counter-example for regular balanced cells with 6 machines

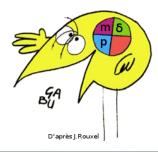
[T. et al. MIM 16]

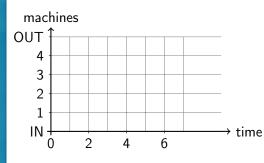
Our problem

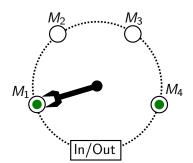
Circular, identical parts, regular, balanced: (m, δ, p)

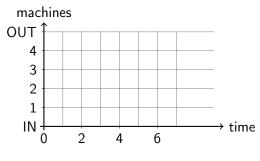


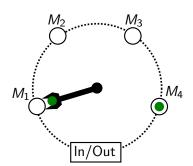
Small enough to fit in a Shadok's head!

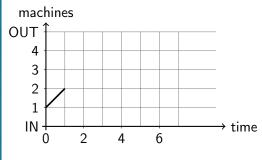


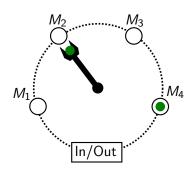


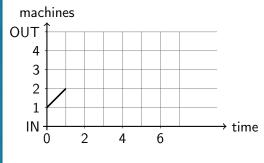


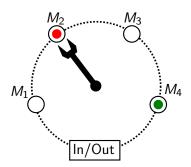


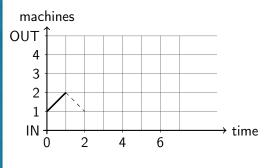


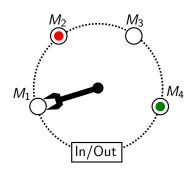


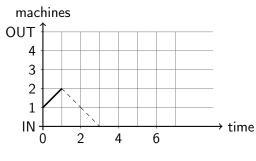


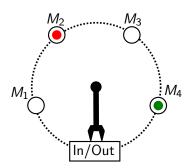


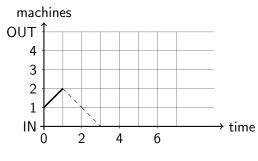


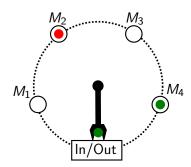


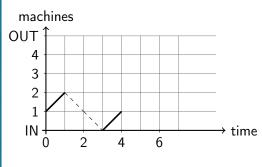


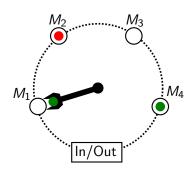


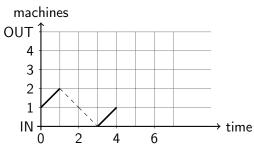


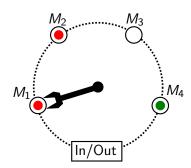


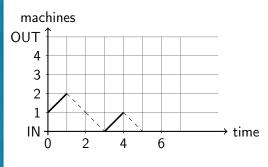


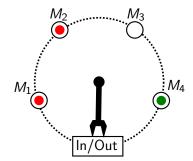




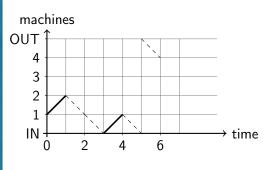


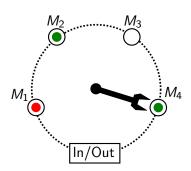




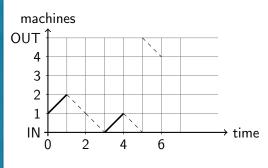


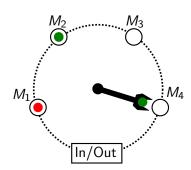
 $A_1A_0A_4$



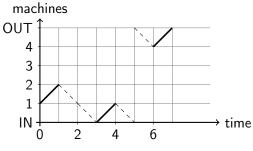


 $A_1A_0A_4$

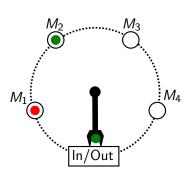


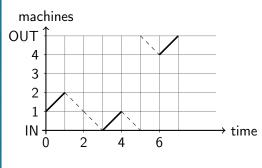


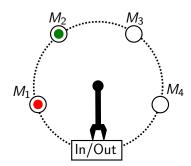
 $A_1A_0A_4$



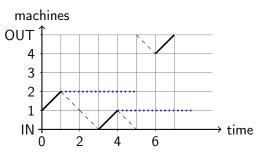
 $A_1A_0A_4$

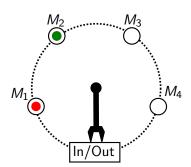






 $A_1 A_0 A_4$



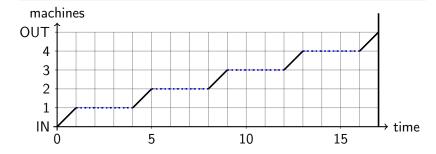


 $A_{1}A_{0}A_{4}$

Some usual 1-cycles: Identity cycle

Identity cycle π_{id}

 π_{id} : $A_0A_1 \dots A_m$



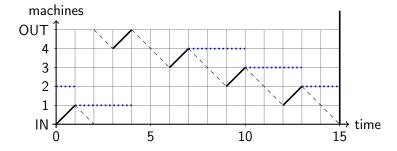
Cycle time

 $T(\pi_{id}) = (m+1)\delta + mp$

G. SCOP Some usual 1-cycles: Downhill cycle

Downhill cycle π_d

 π_d : $A_0A_mA_{m-1}\dots A_1$



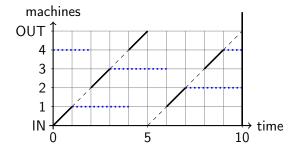
Cycle Time

$$T(\pi_d) = 3(m+1)\delta + \max(0, p - (3m-1)\delta)$$

G.SCOP Some usual 1-cycles: Odd-even cycle

Odd-Even cycle π_{oe}

$$\pi_{oe}$$
: $A_0A_2 \dots A_1A_3 \dots$



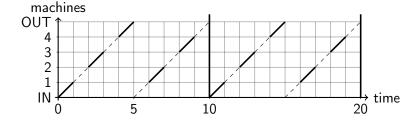
Cycle time

$$T(\pi_{oe}) = ??$$

Odd-even's cycle time

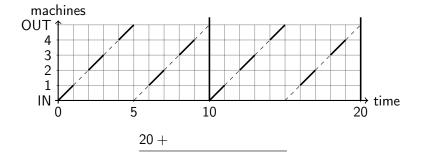
$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha - 1}{\alpha}(p - (m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor$$

$$\leq 2p$$



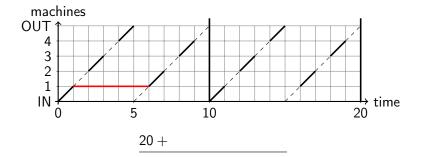
$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha-1}{\alpha}(p-(m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor$$

$$\leq 2p$$



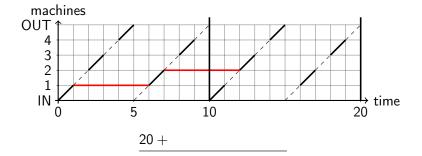
$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha-1}{\alpha}(p-(m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor$$

$$\leq 2p$$



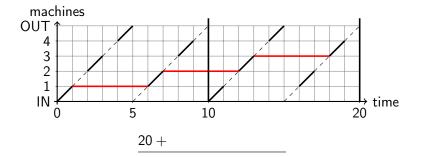
$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha-1}{\alpha}(p-(m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor$$

$$\leq 2p$$



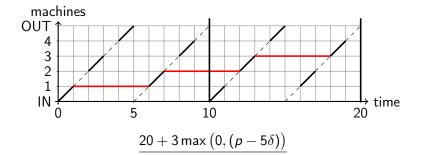
$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha-1}{\alpha}(p-(m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor$$

$$\leq 2p$$

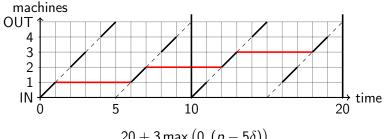


$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha-1}{\alpha}(p-(m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor$$

$$\leq 2p$$

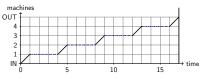


$$T(\pi_{oe}) = 2(m+1)\delta + \max\left(0, \frac{2\alpha-1}{\alpha}(p-(m+1)\delta)\right) \quad \alpha = \lfloor \frac{m+1}{2} \rfloor \leq 2p$$

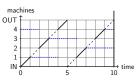


Finding the best 1-cycle

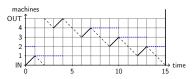
Identity



Odd-Even

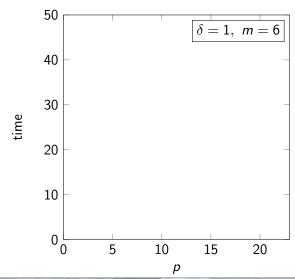


Downhill

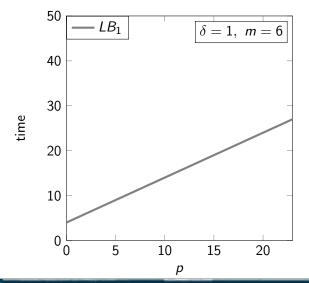


7

Which is the best 1-cycle?

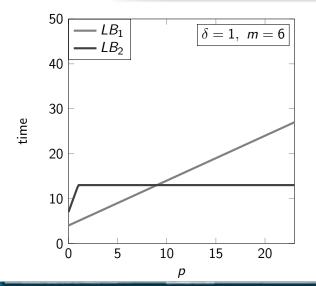


Lower bounds



Lower bounds

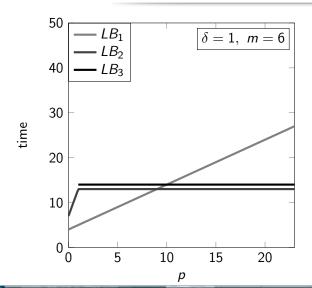
 $LB_1 \text{ [Crama, 97]}$ $T(\pi) \ge p + 4\delta$



Lower bounds

 $LB_1 \text{ [Crama, 97]}$ $T(\pi) \ge p + 4\delta$

 LB_2 [Dawande et al, 02] $T(\pi) \ge (m+1)\delta + m \min(\delta, p)$



Lower bounds

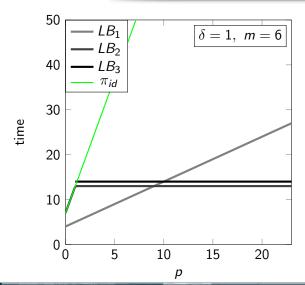
 LB_1 [Crama, 97]

 $T(\pi) \ge p + 4\delta$

LB₂ [Dawande et al, 02]

 $T(\pi) \ge (m+1)\delta + m\min(\delta, p)$

 LB_3 (1-cycles only)



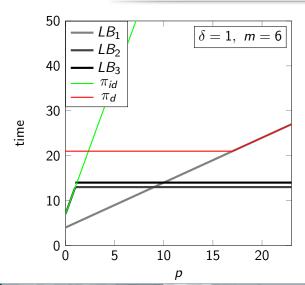
Lower bounds

 $LB_1 \text{ [Crama, 97]}$ $T(\pi) \ge p + 4\delta$

 (LB_2) [Dawande *et al*, 02]

 $T(\pi) \ge (m+1)\delta + m\min(\delta, p)$

 LB_3 (1-cycles only)



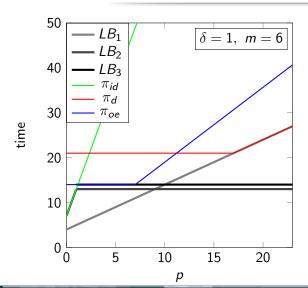
Lower bounds

 $LB_1 \text{ [Crama, 97]}$ $T(\pi) \ge p + 4\delta$

 LB_2 [Dawande *et al*, 02]

 $T(\pi) \ge (m+1)\delta + m\min(\delta, p)$

 LB_3 (1-cycles only)



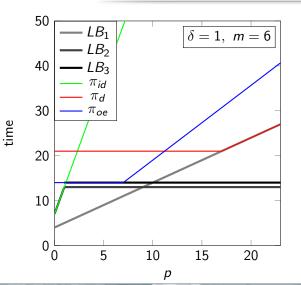
Lower bounds

 $LB_1 \text{ [Crama, 97]}$ $T(\pi) \ge p + 4\delta$

. LB₂ [Dawande *et al*, 02]

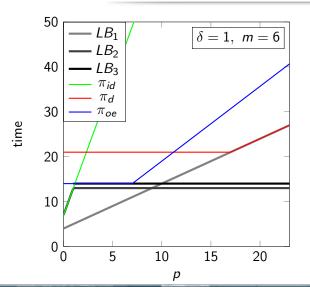
 $T(\pi) \ge (m+1)\delta + m\min(\delta, p)$

 LB_3 (1-cycles only)



Best 1-cycle

 $p \leq rac{m+1}{m}\delta$ π_{id}



Best 1-cycle

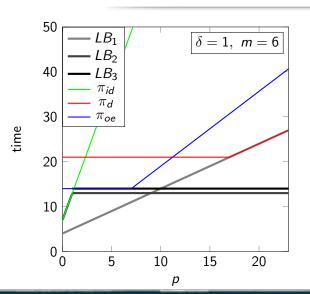
•
$$p \leq \frac{m+1}{m}\delta$$

$$\pi_{id}$$

$$p > \frac{m+1}{m} \delta$$

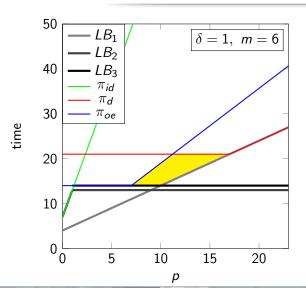
$$p \le (m+1) \delta$$

$$\pi_{oe}$$



Best 1-cycle

- $p \leq \frac{m+1}{m}\delta$
 - π_{id}
- $p > \frac{m+1}{m}\delta$ $p \leq (m+1)\delta$ π_{oe}
- $p \ge (3m 1)\delta$ π_d



Best 1-cycle

•
$$p \leq \frac{m+1}{m}\delta$$

 π_{id}

$$p > \frac{m+1}{m} \delta$$

$$p \le (m+1) \delta$$

$$\pi_{oe}$$

•
$$p \geq (3m-1)\delta$$
 π_d

between $(m+1)\delta$ and $(3m-1)\delta$?

Exploring the unknown region

Best 1-cycles : $\{\pi_{id}, \pi_{oe}, \pi_d\}$ + ??

Introducing π^*

- π^* is a 1-cycle
- π^* crosses the yellow area (meaning: for some $(m+1)\delta \leq p \leq (3m-1)\delta$, π^* does strictly better than both π_{oe} and π_d)

Exploring the unknown region

Best 1-cycles : $\{\pi_{id}, \pi_{oe}, \pi_d\}$ + ??

Introducing π^*

- π^* is a 1-cycle
- π^* crosses the yellow area (meaning: for some $(m+1)\delta \leq p \leq (3m-1)\delta$, π^* does strictly better than both π_{oe} and π_d)

Who is π^* ?

What can we say about it? Does it exist?

Is there anybody in there?

Size of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven

 $\{\pi_{id}, \ \pi_{oe}, \ \pi_d\} \cup ?$

computed

Is there anybody in there?

Size of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven

computed

$$\{\pi_{id}, \pi_{oe}, \pi_d\} \cup ?$$
[Brauner, 99]

Is there anybody in there?

Size of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven

computed

 $\{\pi_{id},\ \pi_{oe},\ \pi_d\} \cup ?$ Properties on the total travel time

Notations (last ones...)

 $\Delta(\pi)$: total travel time

 $d_i(\pi)$: travel time between the loading and unloading of machine M_i

 $d_{min}(\pi)$: min $d_i(\pi)$

e.g $d_{min}(\pi_{oe}) = (m+1)\delta$

Lower bound $LB_4(\pi)$

$$T(\pi) \ge \underbrace{\Delta(\pi)}_{\text{Total travel time}} + \underbrace{\max(0, p - d_{min}(\pi))}_{\text{Minimum waiting time}}$$

 d_{min} is the minimum value of p for which waiting is necessary.

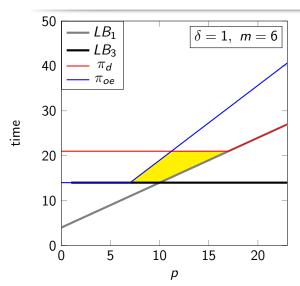
If π^* exists:

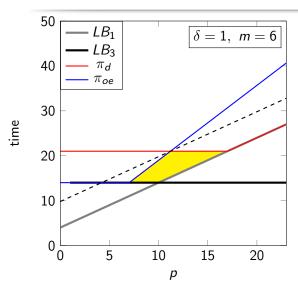
• The robot travels between 2 and 3 times the size of the cell:

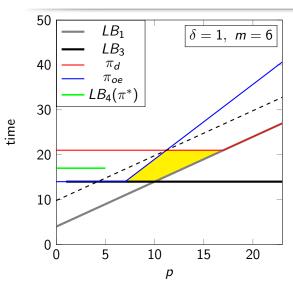
$$2(m+1)\delta < \Delta(\pi^*) < 3(m+1)\delta$$

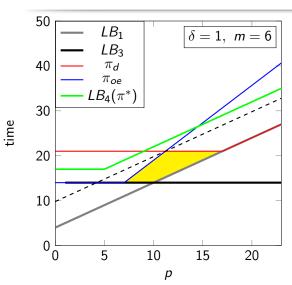
• No waiting time if *p* is "small" relatively to the travel time:

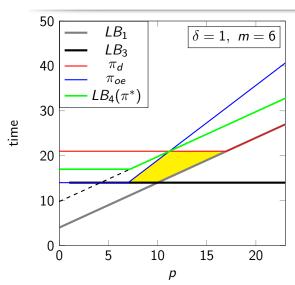
$$d_{min}(\pi^*) > \Delta(\pi^*) - \frac{3\alpha - 2}{2\alpha - 1}(m+1)\delta$$

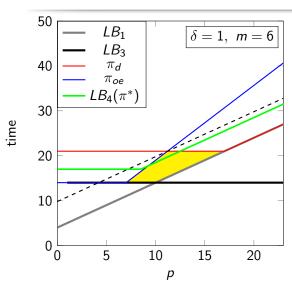












And for m > 8?

Cardinal of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven

computed

And for m > 8?

Cardinal of a minimum dominant set within 1-cycles:

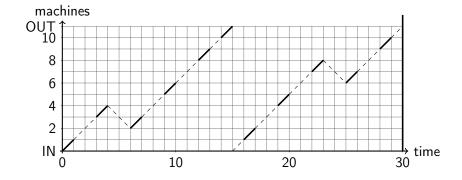
m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

proven

computed

Two wavelets (π_{2w}) ...

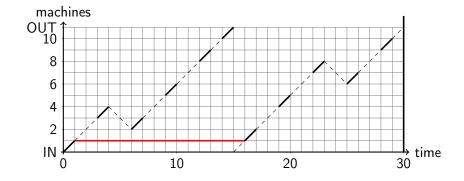
For m > 8, this guy...



...always (slightly) crosses the yellow area

Two wavelets (π_{2w}) ...

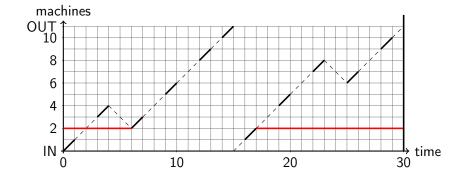
For m > 8, this guy...



...always (slightly) crosses the yellow area

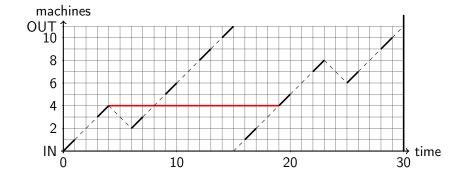
Two wavelets (π_{2w}) ...

For m > 8, this guy...

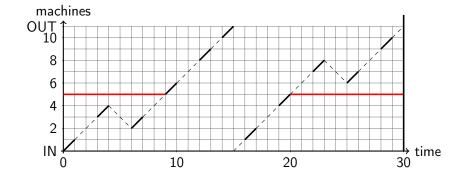


...always (slightly) crosses the yellow area

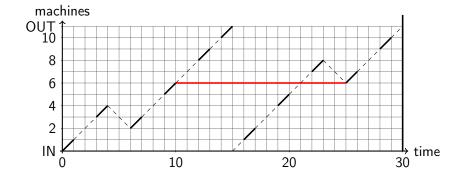
For m > 8, this guy...



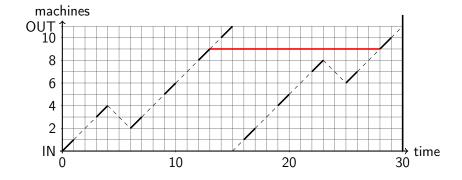
For m > 8, this guy...



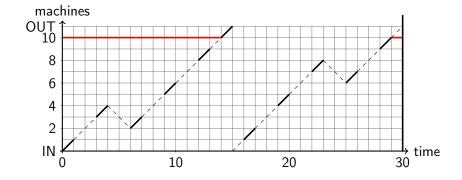
For m > 8, this guy...



For m > 8, this guy...



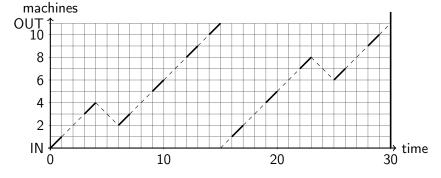
For m > 8, this guy...

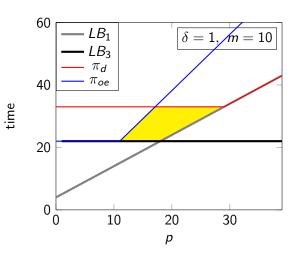


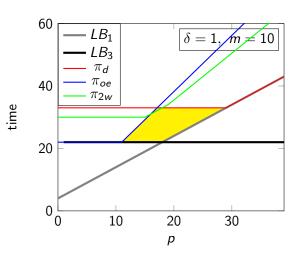
For m > 8, this guy...

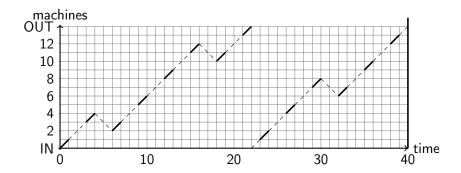
$$d_{min}(\pi_{2w}) = (m+5)\delta$$

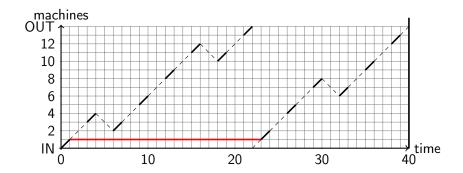
(One turn and one wave)

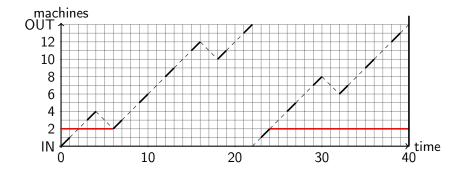


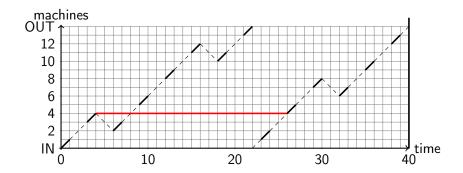


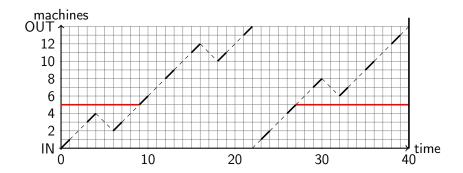


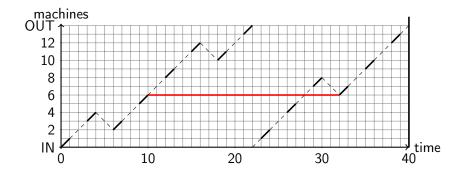


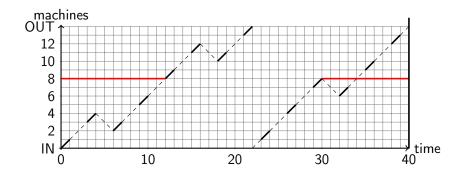


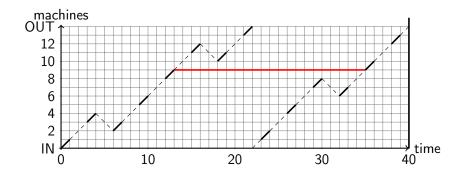


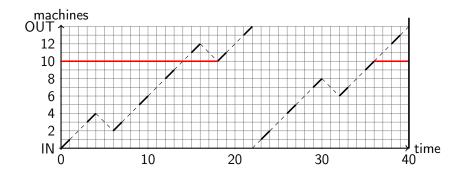


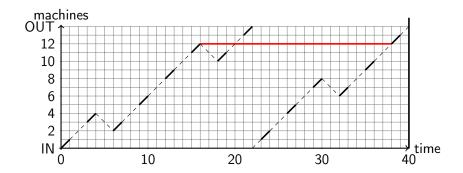


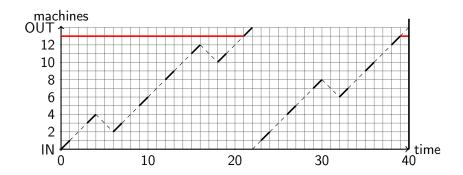








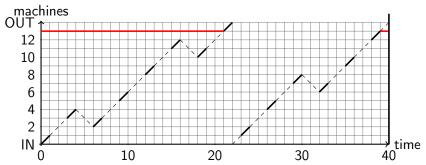




For
$$m = 12$$
 and $m = 13...$

$$d_{min}(\pi_{3w}) = (m+9)\delta$$

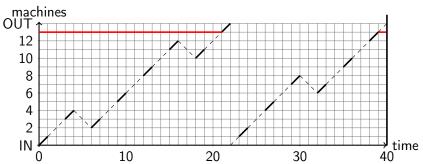
(One turn and two waves)



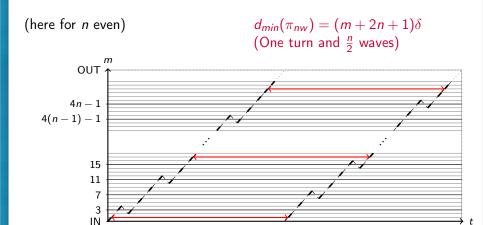
For m = 12 and m = 13...

False for $m \ge 14!$

 $d_{min}(\pi_{3w}) = (m+9)\delta$ (One turn and two waves)



... n wavelets (π_{nw})



Proposition: best cycles within $\{\pi_{id}, \pi_d, \pi_{oe}\} \cup (\pi_{nw})_n$

- Three classical 1-cycles π_{id} , π_{d} , π_{oe}
- +One π_{nw} with the highest even value of n possible And/or
- +One π_{nw} with the highest odd value of n possible

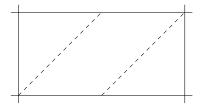
Conjecture: best 1-cycle

These also dominate all 1-cycles

Proven for m < 11

Proof ideas

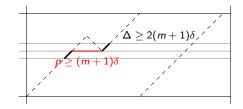
• 2 "turns"



$$T(\pi^*) < 2p$$
 (otherwise, dominated by π_{oe}) $T(\pi^*) < 3(m+1)\delta$ (otherwise, dominated by π_d)

Proof ideas

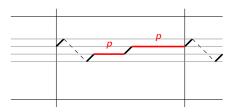
- 2 "turns"
- A_i and A_{i+1} can't be on the same turn in that order



$$T(\pi^*) < 2p$$
 (otherwise, dominated by π_{oe}) $T(\pi^*) < 3(m+1)\delta$ (otherwise, dominated by π_d)

Proof ideas

- 2 "turns"
- A_i and A_{i+1} can't be on the same turn in that order
- no subsequence A_iA_{i-2} (rules out bigger alterations up to 11 machines)



$$T(\pi^*) < 2p$$
 (otherwise, dominated by π_{oe}) $T(\pi^*) < 3(m+1)\delta$ (otherwise, dominated by π_d)

Best 1 cycles for $m \le 11 \dots$

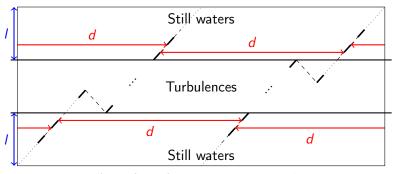
Cardinal of a minimum dominant set within 1-cycles:

m	3	4	5	6	7	8	9	10	11	12	13	14
cardinal	3	4	4	3	3	3	4	4	4	5	4	4

$$6 \le m \le 8$$
: $\{\pi_{id}, \pi_{oe}, \pi_d\}$

$$9 \le m \le 11$$
: $\{\pi_{id}, \pi_{oe}, \pi_d, \pi_{2w}\}$

And for any *m*?

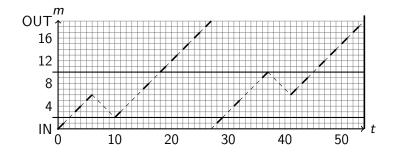


Lower bound on the waiting time: $\nearrow I$, $\searrow d$ (tight for p_{nw} cycles)

And for any *m*?

Not proven Regular disposition of the waves in the "turbulence" areas: seems intuitive but...

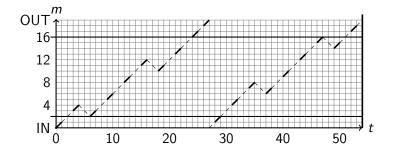
Proven Wavelets preferable to big waves:



And for any *m*?

Not proven Regular disposition of the waves in the "turbulence" areas: seems intuitive but...

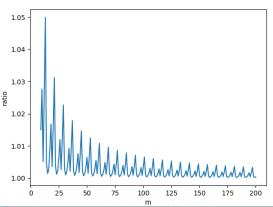
Proven Wavelets preferable to big waves:



If the conjecture is valid...

If the conjecture is valid, then...

- The best 1-cycle problem in circular, regular balanced cell would be polynomial
- Performance ratio of the usual cycles:



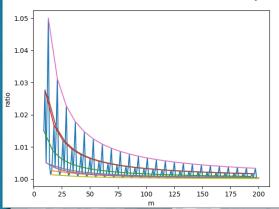
$$\frac{\min(T(\pi_{oe}), T(\pi_d))}{\min_{n}(T(\pi_{oe}), T(\pi_d), T(\pi_{nw}))}$$

(as a function of m)

If the conjecture is valid...

If the conjecture is valid, then...

- The best 1-cycle problem in circular, regular balanced cell would be polynomial
- Performance ratio of the usual cycles:



$$\frac{\min(T(\pi_{oe}), T(\pi_d))}{\min_{n}(T(\pi_{oe}), T(\pi_d), T(\pi_{nw}))}$$

(as a function of m)

Conclusions...

Throughput optimization in robotic cells with **circular layout** was less studied and poorly understood so far. We:

- proposed new tools and specific cycle structures...
- ... leading to a **conjecture** on the best 1-cycle problem.

	Best 1-cycle	1-cycle conjecture
Linear	Р	$m \leq 3$: valid
		m = 4: false
balanced	Р	$m \leq 15$: valid
Circular	NP-hard	
balanced	<i>m</i> ≤ 11: P	m = 6: false
	$m \ge 12$: also P?	

... and perspectives

(Well, aside from settling the conjecture)

Other types of production constraints:

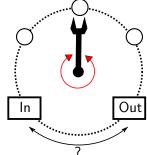
- Non-balanced case: Improving existing approximation...
- Proportionate flow-shop

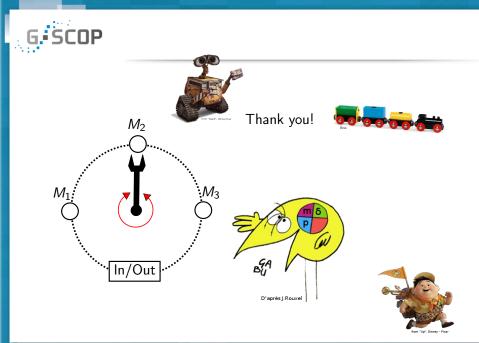
Open questions for regular balanced cells:

- Best 1-cycle for m > 11...
- 1-cycle conjecture for $m \leq 5$
- Cycle function for $m \ge 6$

Relationships with other layouts:

- Comparisons of layouts
- Generalization of the circular layout:





Third party content

- This presentation features some tributes to the following works (short excerpts):
 - Wall-E (Pixar Animation Studios, 2008), slides 1, 4, 8 and 43;
 - Up (Pixar Animation Studios & Walt Disney Pictures, 2009), slides 25 and 43;
 - Les Shadoks (Jacques Rouxel), slides 16 and 43.
- The picture of a toy train featured on slides 1, 2, 3 and 43 is extracted from a Brio commercial.
- Other clipart images (slides 4 and 10) are either public domain or released under a CC0 license.
- The template and backgrounds belong to G-SCOP laboratory.