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INTRODUCTION 

 

Since the discovery of the [2.2]paracyclophane pCp (Figure 1) in 1949,
1
 this type of 

derivatives have been the focus of much attention. Indeed, the challenge of synthesising such 

constricted molecular structure first interested a great number of organic chemists like the Nobel prize 

laureate Donald J. Cram who even described the [2.2]paracyclophane derivatives as “internally 

tortured molecules with inherent suicidal tendencies that skirt a fine line between isolability and self-

destruction”.
2
 The proximity of the two benzene rings in this system leads to unique structural and 

electronic properties which have been intensively studied over the past decades. Therefore, in this 

work we propose to synthesise a series of cyclophane-based molecules in order to exploit the peculiar 

inter-ring interactions for applications in surface functionalisation and to design new types of 

fluorophores. 

The first part of the Chapter 1 (Bibliography) will be focused on detailing the properties and 

applications of the [2.2]paracyclophane and their dithia[3.3]paracyclophane analogues (dtpCp, Figure 

1) in the field of catalysis,
3
 organic electronics,

4
 optics

5
 and semiconducting polymers 

6
. The second 

and third parts of the same chapter will present the two main topics of this research thesis: the 

nanostructuration of surfaces by supramolecular self-assembly of three-dimensional tectons and the 

development of specifically-designed molecules to enhance the efficiency of organic light-emitting 

diodes (OLEDs).  

 

Figure 1: Molecular structure of the [2.2]paracyclophane pCp and the dithia[3.3]paracyclophane dtpCp 

The second chapter will be centred on one of the most investigated research topics in the field of 

surface science: the nanostructuration of surfaces. Two methods are currently used to control matter at 

the nano-scale: the top-down and the bottom-up approaches.
7
 The top-down strategy consists in 

downsizing a bulk material to the nano-scale by using different physical treatments such as 

lithography or electron-beam writing. In contrast, the bottom-up methods are based on the assembly of 

atomic or molecular building blocks into organised surface structures. One of the most commonly 

employed strategies in the bottom-up route resides in creating two-dimensional hierarchical structures 

that exploit the supramolecular interactions between planar molecules. In this context, numerous 

avenues have been explored to generate highly ordered networks on surfaces by targeting specific 

supramolecular interactions such as van der Waals forces and hydrogen, coordination and halogen- 

bonding, etc.
8
 However, by functionalising conducting or semi-conducting substrates (such as metallic 

surfaces or graphite), the strong interactions that occur between molecules and substrate tend to 

quench any electronic properties of the molecules.
9
 To overcome this, our group has focused its 

research on the functionalisation of substrates by using three-dimensional molecules called “Janus-

tectons”.
10

 Such molecules basically present two “faces” linked by a cyclophane bridge (pCp or 

dtpCp) where one face is responsible for the self-assembly on the surface and the second bears an 

active or “functional” component. The role of the cyclophane core in these tectons is to lift up the 
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active component and thus allow the electronic decoupling from the metallic surface. The first 

generation of Janus-tectons permitted the physisorption of supramolecular self-assemblies on graphite 

and graphene substrates by using molecular clip functions attached to the lower benzene ring of the 

cyclophane. These clips, composed of alkyl chains, were very efficiently adsorbed on carbon sp
2
-

hybridised substrates but became ineffective when applied on pure metallic surfaces such as gold 

Au(111). Thus the first objective of this thesis is, as reported in chapter 2, the design, synthesis and 

characterisation of a second generation of Janus tectons. The concept of the non-versatile molecular 

clip was then abandoned and replaced with the use of pyridine-based units. Such units co-deposited on 

a surface with the right molecules might allow for multiple supramolecular bonding such as 

coordination, hydrogen or halogen bonds. The new generation of Janus tectons incorporating such 

pyridine units is represented in Figure 2 a along with the target molecule bearing a benzothiadiazole-

based fluorescent moiety in 2b. 

 

 

Figure 2: Molecular structure of the new generation of Janus tecton 

 

The third and last chapter will present the first investigations performed in our lab on new cyclophane-

based light-emitting materials developed for third generation OLEDs. Since the pioneering work of 

Tang and van Slyke,
11

 and later on of Friend et al.,
12

 fluorescence-based OLEDs have been intensively 

studied for applications such as flat-panel displays for TV screens.
13

 However, this first generation of 

OLED was mainly limited by the proportion of singlet and triplet excited charges injected in the 

device, resulting in 25 % of singlet and 75 % of triplet excitons. Indeed, due to spin statistics, the 

electronically-induced fluorescence is basically limited to only 25 % of internal quantum efficiency 

(IQE), corresponding to the amount of singlet excitons recombinating in the device. In contrast, the 

second generation of OLEDs based on phosphorescent materials were investigated due to the fact that 

it is possible to harvest both singlet and triplet excitons through heavy atom-enhanced intersystem 

crossing (ISC), and therefore approach the 100 % of internal quantum efficiency.
14

 However, the high 

cost of such molecules, composed generally of noble metal-based complexes (such as iridium and 

platinum), drastically hinders the applications of this kind of phosphorescent emitters. This is the 

reason why recently, a third generation of OLED was proposed, based on thermally activated delayed 

fluorescence (TADF).
15

 This phenomenon is capable of achieving 100% of IQE through up-

conversion from the triplet excited state to the singlet excited state. Both singlet and triplet excited 

states are thus harvested leading to 100 % of fluorescence. It is important to note that the emission is 

then separated into two different phenomena known as prompt fluorescence (or “classic” fluorescence) 

and delayed fluorescence (resulting from the up-conversion from the triplet state). This electronic 

process has been known for decades, but only recent studies have revealed that highly efficient 

delayed fluorescence can be achieved by optimising the molecular design in order to reduce the energy 

a) b) 
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difference between singlet and triplet excited states (ΔEST) whilst maintaining a high 

electroluminescence efficiency. In general, the key method is to decrease the overlap occurring 

between the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO, 

respectively). The HOMO and the LUMO are generally distributed onto the electron-donating and 

electron-accepting units, respectively. Thus, the common strategy when designing TADF emitters 

consists in incorporating such electron-donating and electron-accepting groups onto a separating 

central core. This separation generally occurs by twisting the molecular bonds linking the two acceptor 

and donor moieties,
16

 or by linking the two of them with a ζ-bond based structure.
17

 The aim of our 

research is thus to use the dithia[3.3]paracyclophane dtpCp as a separator. Indeed, by grafting the 

donor and acceptor on each opposing benzene ring, the conjugation between them should be highly 

reduced, but the special interactions between the two opposite benzene rings should allow enough 

conjugation to achieve good electroluminescent properties.  The new type of emitter is represented in 

Figure 3 along with the target emitter E; composed of a cyclophane core with two nitrile units (acting 

as electron-acceptors) grafted on the lower benzene ring and one ditolylphenylamine (acting as 

electron-donor) on the opposite benzene ring. 

 

Figure 3: Molecular structure of the new type of emitter (a) and the target emitter E (b) 

 

                                                      
1
 Brown, C. J.; Farthing, A. C. Nature 1949, 164, 915–916. 

2
 Cram, D. J.; Cram, J. M. Acc. Chem. Res. 1971, 4, 204–213. 

3
 Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 

6207-6208. 
4
 Seferos, D. S.; Trammell, S. A.; Bazan, G. C.; Kushmerick, J. G. Proc. Natl. Acad. Sci. 2005, 102, 8821–8825.  

5
 Bazan, G. C. J. Org. Chem. 2007, 72, 8615–8635. 

6
 Morisaki, Y.; Chujo, Y. Macromolecules 2002, 35, 587–589. 

7
 Biswas, A.; Bayer, I. S.; Biris, A. S.; Wang, T.; Dervishi, E.; Faupel, F. Adv. Colloid Interface Sci. 2012, 170, 

2–27. 
8
 Kudernac, T.; Lei, S.; Elemans, J. A. A. W.; De Feyter, S. Chem. Soc. Rev. 2009, 38, 402–421. 

9
 Repp, J.; Meyer, G.; Stojković, S. M.; Gourdon, A.; Joachim, C. Phys. Rev. Lett. 2005, 94 (2), 26803. 

10
 Bléger, D.; Mathevet, F.; Kreher, D.; Attias, A. J.; Bocheux, A.; Latil, S.; Douillard, L.; Fiorini-Debuisschert, 

C.; Charra, F. Angew. Chemie - Int. Ed. 2011, 50, 6562–6566. 
11

 Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913–915. 
12

 Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; 

Holmes, A. B. Nature 1990, 347, 539–541. 
13

 News release of Sony Corporation, 1 October 2007. https://www.sony.net/SonyInfo/News/Press/200710/07-

1001E/. 
14

 Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048–5051. 
15

 Adachi, C. Jpn. J. Appl. Phys. 2014, 53, 60101. 
16

 Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234–238. 
17

 Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun. 2012, 48, 9580. 

a) b) 



20 

 

  



21 

 

CHAPTER 1:  

BIBLIOGRAPHY 

 

I. Cyclophanes 

“Cyclophane” is a general term to name any cyclic compounds containing aromatic ring(s) as 

part of their ring structure. As expected, with this definition, a huge amount of molecules can be 

referenced as cyclophanes. However, our work essentially focused on studying the 

[2.2]paracyclophanes (pCp) and its sulphur-based homologue the dithia[3.3]paracyclophanes (dtpCp) 

( Figure 4). 

 

Figure 4: Representation of the [2.2]paracyclophane (pCp)  and its homologue the dithia[3.3]paracyclophane (dtpCp) 

 

A. [2.2]paraCyclophane 

The pCp was first isolated by Brown and Farthing in 1949 as a by-product of the polymerisation 

of p-xylene by low pressure pyrolysis.
1
 Two years later, Cram and Steinberg published an article 

discussing about a different way to synthesise the pCp (by intramolecular Wurtz reactions using 

metallic sodium on dibromide precursors) and developed a more detailed study of the crystal 

structure.
18

 The X-ray measurements have highlighted an unusual behaviour: the two benzene rings 

(also named “decks”) have lost their flatness in favour of a more puckered conformation; the carbon 

atoms bearing the methylene bridges were bent out of the plan of the other four carbon atoms, forming 

an angle of 12.6° (also known as boat conformation). Moreover, the distance between the two benzene 

cores was 3.09 Å, which is lower than the ideal -stacking distance between two organic aromatic 

entities (3.4 Å, in graphite 
19

) and thus proving the strong overlap of the two aromatic systems. Finally, 

the C-C bond of the methylene is slightly longer (1.55 Å) compared to a normal H2C-CH2 (between 

1.516 and 1.532 Å)
20

; this confirms the distortion within this molecule, and also the electronic 

repulsion between the too-close benzene rings. The parameters of the structure are summarised in 

Figure 5 below. 

 
Figure 5: Molecular structure of the pCp, by Cram et al.2 



22 

 

Furthermore, Cram et al. have synthesised several derivatives in order to observe the evolution of the 

overlap properties versus the bridge‟s length.
5
 Some of these derivatives are represented in Figure 6. 

 
Figure 6: Representation of the pCp derivatives (1a-e) and their acyclic analogue (2) 

They measured the absorption spectra of the different derivatives and compared them with the acyclic 

molecule acting like a reference. Their measurements have shown several changes in the UV part of 

the spectra for the lowest bridge‟s length. Above 5 carbons per chains (n = 3), the spectra obtained 

were almost identical with the spectrum of the acyclic molecule. The conclusion was quite obvious: 

increasing the number of carbons in the bridge was allowing the benzene rings to recover their normal 

planarity, and they were thus losing the special interactions they had with each other.  

In addition to their atypical electronic behaviour, the two decks of the pCp were allowing another 

property to emerge: the planar chirality. The standard rules of chirality established by Cahn, Ingold 

and Prelog allow defining the absolute conformation of the cyclophanes.
21

 The most simple carboxylic 

acid derivated from the [2.2]paraCyclophane is used as an example in Figure 7:  

 

Figure 7: Absolute conformation of the pCp derivatives 

The selection rule for planar chirality has been enounced by Cahn, Ingold and Prelog:  

“Of atoms directly bound to atoms in the plane, that most preferred by the Standard 

Sub-rules, the pilot atom, marks the side of the plane from which, under the Chirality Rule, an 

in-plane sequence is observed; and the sequence starts with the in-plane atom directly bound to 

the pilot atom (a), and continues, to and through other atoms (b and c), by way of a succession 

of bonds along that in-plane path, which at each branch leads to the atom more preferred by the 

Standard Sub-rules”.  

All of these results describe the pCp as a distorted but chiral molecule with an interesting electronic 

communication between the two benzene rings. However, despite the advances in chemistry, the 

synthesis of the pCp and its derivatives remains difficult. On one hand, the cyclisation is currently 

performed in harsh conditions, using high temperature
1
 or strong reagents like metallic sodium

18
. In 

contrast, the post functionalisation was not easily controlled: as described by Cram et al. with the 

dibromination reaction
22

, a mixture of products is always obtained, as shown in Figure 8. 
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Figure 8: Dibromination of the pCp results in the formation of 4 isomeric species 

Another pathway mentioned in several articles described an easier synthesis of pCp, based on a key 

precursor: the dithia[3.3]paracyclophane (dtpCp). The chemistry around the dtpCp and its properties 

will be discussed in the next part. 

 

B. Dithia[3.3]paraCyclophane 

One of the first paracyclophane including sulphur-based bridges was accidentally synthesised by 

El-Hewehi et al. in 1959.
23

 They were originally targeting a cyclic diaryl-trithiocarbonate by reaction 

of potassium trithiocarbonate on 9,10-bis(dichloromethyl)anthracene; but they obtained instead two 

different cyclophanes 5 and 6 represented in Figure 9. The molecule 6 was an anthracene-based 

paracyclophane where its two bridges were including one and two sulphur atoms. On the contrary, the 

cyclophane synthesised by Millar et al.
24

 several years later, represented as 7 (cf. Figure 9), was a real 

[3.3]dithiacyclophane, though still based on anthracene moieties. 

 
Figure 9: Representations of El-Hewehi‟s cyclophanes (5 and 6) and Millar‟s (7) 

The dtpCp have been used from the 1970‟s as a precursor in the pCp synthesis.  This new route
25,26

 

consists in the coupling of 1,4-bis[halogenomethyl]benzene with 1,4-bis(mercaptomethyl)benzene 

followed by the photodesulphurisation in triethylphosphite, as displayed below in Figure 10. 

 
Figure 10: A new route to synthesise the pCp, via the dtpCp 

These reactions not only allow the synthesis of the dtpCp under smooth condition (and one step 

forward, the pCp), but also permit the pre-functionalisation of each precursors before coupling them 

in order to obtain dissymmetric cyclophanes.  

A crystal structure of a dtpCp derivative bearing two bromides on one side of the cyclophane is given 

Figure 11.
27

 The detailed study of this structure showed that the presence of sulphur atoms has a 

significant impact on the cyclophane architecture. Indeed, the sulphurs act like ball joints and allow a 

higher mobility of the atoms, leading to the relaxation of a part of the system constraints. More 

precisely, the distance between the two benzene rings increases from 3.04 Å for the pCp to around 

3.24 Å in the dtpCp and their boat conformation almost disappears as well. Nevertheless, even though 
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the inter-cycles distance increases to 3.24 Å, this value is still lower than the normal π-stacking 

distance between two organic aromatic entities (3.4 Å)
19

 and consequently the overlap of the π-

conjugated systems is still maintained in dtpCp derivatives despite the addition of sulphur atoms in 

the cyclophane bridge.  

              

Figure 11: Crystal structure of the p-dibrominated dtpCp 

The work of Wang et al.
28

 on the fluorene-dithia[3.3]paracyclophane copolymers (Figure 12) have 

also proven the presence of significant transannular - interactions in their polymers. It has been 

essentially demonstrated by comparing two sets polymers (with or without a cyclophane incorporated 

to the electronic system): emission shifts in solution and in solid state were observed, and also in some 

case a photoluminescence quantum yield enhancement, which confirmed the overlap of the  -systems. 

 
Figure 12: Representation of the fluorene-dithia[3.3]paracyclophane of Wang et al. 

In conclusion, the dtpCp is easily synthesised in comparison with the pCp, but the transannular - 

interactions slightly decreases, albeit they are never completely deleted. Thus, in the same way as the 

pCp, the dtpCp should have his own load of potential applications. 

 

C. Properties and applications of cyclophane derivatives 

The unique properties of the cyclophanes have been studied over the past 50 years and a large 

amount of articles have been published. Among these, a wide range of applications have been 

investigated including chiral catalysis, molecular electronics, optoelectronics, polymer materials, ... 

The followings parts will succinctly describe some interesting results related to those applications.  

1. Chiral catalysis 

Despite the early discovery of the planar chirality of the pCp, its uses in catalysis were almost 

non-existent until 1990 with the work of Rossen, Pye et al. on the 4,12-bis(diphenylphosphino)-[2.2]-

paracyclophane, also known as PHANEPHOS, represented in Figure 13.
3
 Inspired by the good 

efficiency of the well known 2,2‟-bis(diphenylphosphino)-1,1‟-binaphtyle (BINAP) ligand
29

, also 

planar chiral (Figure 13), they described this new ligand paracyclophane-based, suitable for Rhodium-

catalysed hydrogenations.  
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Figure 13: PHANEPHOS (12) and BINAP (13) 

The catalyst, synthesised from Rh(COD)2
+
OTf 

–
 and PHANEPHOS, made possible the hydrogenation 

of dehydroamino acid methyl esters 14 at -45°C in methanol with very good enantiomeric excess (ee) 

up to 99% with complete conversion in less than 1 hour. Then, Rossen, Pye et al. have successfully 

investigated several catalyses: the Buchwald-Hartwig coupling with a palladium-based catalyst on a 

dibromo-pCp
30

 15 and the hydrogenation of -ketoesters 16 with a ruthenium-based catalyst.
31

  These 

three catalyses, summed up in Figure 14, were compared with the BINAP catalyses efficiencies, and 

the PHANEPHOS ligand has shown at least equivalent performances.  

 

Figure 14: Different uses of PHANEPHOS as catalyst for: a) hydrogenation with rhodium catalyst, b) Buchwald-Hartwig 

coupling with palladium catalyst and c) hydrogenation with ruthenium catalyst 

As the PHANEPHOS was described as the cyclophane-based analogue of the BINAP, Braddock et al. 

decided to apply the same rule for the BINOL, and synthesised the PHANOL in 2002
32

; they are both 

represented Figure 15. 

 
Figure 15: PHANOL (17) and BINOL (18) 

The PHANOL was first used as catalyst of the Diels-Alder reaction between cyclopentadiene and ,-

unsaturated aldehydes or ketones
33

. They accurately described the effects of hydrogen bonding within 

the catalysis, but the results were not satisfying: despite acceptable catalysis efficiency (rate 

acceleration up to 30 fold), the enantiomeric excess was low (up to 77%) and unpredictable. 

Later, the same authors have also published their work on the epoxyde ring-opening catalysis.
34

 The 

speed of the reaction increased, but the enantioselectivity of the catalyst was still fickle. We can now 

assume that PHANOL have never been raised to the enantioselective catalyst status: no article was 

published since then. 
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In addition to these two examples, several ligands were designed, based on the paracyclophane 

backbone. We can quote for instance the N,O-ligand 21 which is very efficient for asymmetric 

alkenylzinc additions to aldehydes
35

 and imines
36

, as represented in Figure 16. 

 

Figure 16: Asymmetric alkenylzinc additions to a) aldehydes, and b) imines 

Finally, most of the researches on the cyclophane-based catalyst were done at the end of the 

1990‟s/beginning of the 2000‟s. But, as proven by Han et al.
37

, new and very efficient ligands are still 

synthesised: the [2.2]paracyclophane-derived monodentate phosphoramidite ligand 22 have presented 

high conversion (above 90 %) and high selectivity (up to 95%) for the enantioselective conjugate 

addition of ZnEt2 to substituted chalcones, as shown in Figure 17. 

 
Figure 17: Asymetric addition to substituted chalcones 

 

2. Molecular electronics 

The inter-rings distance within the pCp and the dtpCp is lower than the ideal -stacking 

distance between two aromatic entities, thus interesting electronic interactions can be expected through 

the cyclophane bridge.  

Seferos et al. have published several results about the electronic communications through pCp by 

comparing the conductivity of simple cyclophane-based molecule 23 with the benzene analogue 24, as 

depicted in Figure 18.
4
 



27 

 

 
Figure 18: Representation of the molecules (23) and (24) studied by Seferos et al. 

By using the terminal thiol, they were able to create a self-assembled monolayer (SAM) of each 

compound between two electrodes of gold. It appeared that the measured conductivity of the pCp-

based molecule was only half of that of the benzene-based molecule. Considering that the packing 

density of 23 was twice that of 24, a surprising conclusion was deduced: the pCp through-space -

interactions are as effective as the simple -delocalisation in benzene for electron-transport. Later on, 

they performed some additional experiments under single-molecule conductive atomic force 

microscopy (C-AFM).
38

 The conductivity measurements were in total agreement with the previous 

report.  

The electron-transfert through pCp bridges has also been studied by Wielopolski et al. in molecular 

wires of different sizes based on donor/acceptor systems.
39

 In those systems, the donor (fullerene) and 

the acceptor (zinc-porphyrin) are connected by paracyclophane-oligophenylenevinylene bridges as 

represented in Figure 19.  

 
Figure 19: Molecular wires of three different sizes 

The molecular modelling studies, and later on the photochemistry experiments, have shown that a 

charge-transfer was occurring through the bridge: the cyclophanes were able to accept holes and 

donate electrons, thus leading to an easy charge-transport, successively from the fullerene to the bridge, 

and then from the bridge to the porphyrin.  

Finally, to conclude this topic, the study of dtpCp-bridged binuclear ruthenium alkynyl complexes
40

 

has highlighted an interesting fact: the non-innocent character of the dtpCp moiety. The cyclophane-

based complex is represented in Figure 20 with its benzene-based analogue.  

 
Figure 20: The cyclophane-based ruthenium complex (27) and its analogue benzene-based (28) 
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The electrochemistry studies of the analogue have shown that two consecutive one-electron-oxidation 

processes were localised on the ruthenium moiety. On the contrary, for the dtpCp-based complex the 

oxidations were substantially supported by the alkynyl-cyclophane bridge, thus acting as a non-

innocent ligand. In this case, as demonstrated by the Infra-Red studies, relatively intense transitions 

can be attributed to metal-ligand charge-transfert (MLCT) and also thioether S to bridging ligand 

charge transfer; in other word, the electronic interactions were, for once, not between the two decks, 

but mainly directed by the sulphur atoms. 

 

3. Chromophores and Non-Linear Optics 

The early work of Bazan et al.
5 
on the pCp-based chromophores was not first focused on the 

cyclophane properties by themselves: it was use to study stilbenes in excimer-like conformations
41

. 

The cyclophane‟s upper and lower decks were grafted with phenylvinylene groups in order to observe 

their interactions at close range; the designed molecules are represented with the cyclophane-free 

analogue in Figure 21. 

 
Figure 21: Representation of the pCp-based pseudo-excimers (28 and 29), the 2,5-dimethylstilbene (30) and the push-pull 

derivative (31)  

 

However, as shown vide supra, the cyclophane is not a simple bond between two molecular moieties. 

In 28 and 29, the absorbance band was split because, unlike excimers, there are ground state electronic 

interactions between the two units. Moreover, a bathochromic shift can be observed on the emission 

spectra, easily explainable by the cyclophane„s short inter-ring distance (compared with the 

intermolecular -stacking of an excimer) leading to a more stable excited state. For a complete study, 

they decided to synthesise the derivative 31, expecting from this push-pull molecule to have two-

photon absorption (TPA) properties.
42

 The hyperpolarisability , representing factor of TPA, was 

measured to be thrice higher than the parallel polar superposition of the two monosubstituted stilbene 

subunits, once again proving the though-space charge transfer between the two cyclophane‟s decks.  

Carrying on the stilbene-pCp derivatives, they designed the molecule 32 represented in Figure 22 

which has presented equilibrium between through-bonds conjugation (i.e. the stilben parts) and 

through-space (i.e. the pCp core)
43

 in opposition with the molecules represented in Figure 21 where 

the conjugation was mainly centered on the stilbene moieties. Several donor-acceptor derivatives were 

synthesised
44

, and their TPA properties studied
45

.  



29 

 

 
Figure 22: Representation of the multipolar compounds (33-38) synthesised by Bazan et al., and their apolar analogue 32 

As represented above, the electron-donor (D) an acceptor (A) groups were organised through different 

ways: DD/DD (33), AA/DD (34), AD/AD (35), AD/DA (36), DD/AD (37) and AD/AA (38). Such 

molecules as 34-38 were combining dipolar and octupolar behaviours, in opposition with 33 which 

were almost only active as octupole. The hyperpolarisability measurements have confirmed the 

multidirectional through-space character of dipolar and octupolar contributions for all compounds. The 

pCp was thus confirmed to be a good candidate for Non-Linear Optical applications. 

 

4. Polymer materials 

The first -conjugated polymer containing [2.2]paracyclophane was synthesised by Morizaki 

et al.
6
 by Sonogashira coupling. Compared with the model compounds 40 and 41, the optical 

properties of the polymer 39 have presented a red shift of the absorption band. These results indicated 

the extension of the π-delocalisation length via the cyclophane through-space interactions. The 

polymer and its models have been represented below in Figure 23. 

 

 

Figure 23: Representation of the first -conjugated polymer containing [2.2]pCp 39, and its models 40 and 41, with R = 

alkyl chain 

Morizaki et al. followed their investigations by synthesising several new cyclophane-based polymers 

represented in Figure 24, using Heck coupling and Wittig reaction.
46

 The so-synthesised polymers 

have shown the same kind of shift on the absorption spectra, and also a very strong fluorescence, 

confirming their precedent results. They summed up their whole results on those -conjugated 

polymers in this review.
47
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Figure 24: Synthesis of new cyclophane-based -conjugated polymers, with R = alkyl chain 

As mentioned above in part 2), several cyclophane-based polymers have also been synthesised by 

Wang et al.
28

; each of them are represented in Figure 25. In opposition with Morizaki et al.‟s work, 

they first decided to study the dithia[3.3]paracyclophane effects on a fluorine-based polymer. The 

cyclophane has been kept out of the conjugation length in order to functionalise the outside-deck with 

donor groups (-OMe) or acceptor groups (-CN), and to measure its impact on the optical properties of 

the polymer.  

 
Figure 25: Polymers studied by Wang et al., with R = alkyl chain and X = -H, -OMe or -CN 

Once again, they have confirmed the strong transannular interactions through the cyclophane 

moiety. Indeed, adding donor or acceptor groups on the cyclophane was quenching the fluorescence of 

the whole polymer
48

, whereas grafting two phenyl or two biphenyl groups was enhancing the 

photoluminescence properties
49

.  

Finally, they have replaced the linker between the cyclophane moieties: ethynylfluorene and 

bisthiophene were used instead of fluorene. Both linkers increased the rigidity of the structure, thus 

enhanced the conjugation through-bond and decreased the through-space interaction. As a 

consequence, the copolymers 45 and 46 did not show any difference with or without the introduction 

of the dtpCp moieties inside his structures.   
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II. Supramolecular self-assembly confined on surface 

Surface science plays a crucial role as most emerging nanotechnologies will likely need to be 

supported on a surface. As a consequence, controlling the spatial arrangement of nano-objects on 

surfaces attracts considerable attention. The characterisation of such modified substrates requires 

atomic-scale resolution. It is therefore commonly performed by scanning probe microscopy such as 

atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). However, the AFM is 

mainly utilised for topological studies of surface while the STM is centred on measuring the electronic 

density of nano-objects and is thus the most used technique of surface characterisation. 

 

A. Scanning Tunneling Microscopy 

 

1. Working principle
50

 

Scanning tunneling microscopy was invented in 1981
51

 by G. Binnig and H. Rohrer who were 

awarded with the Nobel Prize of physics in 1986. 

With this apparatus, a sharp metallic tip is scanned over a surface at a distance of less than ten 

Ångströms. This tip is hold by a piezoelectric material which will be responsible of its height, thus of 

the surface-tip distance. If this distance is short enough, applying a bias voltage between tip and 

sample will cause electrons to tunnel through the vacuum barrier. According to the feedback output 

voltage, the piezoelectric material can move the tip backward or forward, thus keeping the tunneling 

current constant during the acquisition (this operation mode is called “constant current mode”). A 

schematic representation of the apparatus is represented in Figure 26. 

 

Figure 26: Schematic diagram of the scanning tunneling microscope 

The probing tips have to be carefully prepared before any STM experiments. Different ways are 

possible, the first recipe being an electrochemistry treatment in sodium hydroxide solution, also called 

“etching”, as showed in Figure 27. Another way consists in carving the tips (platinum or iridium) 

using simple clippers; not as efficient as the electrochemistry pathway, it is however a very fast 

method, which roughly gives the same results.  
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Figure 27: Scanning Electron Microscopy (SEM) picture of a tunneling tip prepared by electrochemical etching technique 

 

Several modes of experiments can be used. To image the surface, under STM for instance, it is 

possible to work at constant current mode (as mentioned above) which allows the tip to go up and 

down in order to keep the tunnel current constant. At the constant height mode the tip is forbidden to 

move upward or downward thus allows the variations of current to be measured (this mode must be 

chosen only for very plane surface, or the tip may hit some nano-objects). In both experiments, the 

data (tip height or tunnel current, depending of the mode) are gathered by the computer which gives 

back an image of the scanned area, as presented Figure 28 with a Cu(111) substrate.  

a) 

 

b) 

 

Figure 28: STM images of the Cu(111) surface in constant current mode under ultra-high vacuum. (a) An overview image 

with some monoatomic steps (775 nm scale) and (b) the atomic resolution of Cu(111) (1.8 nm scale) 

Our interest is focusing on the imaging aspect of the STM, however other methods are also available 

allowing to observe the density of electrons as a function of their energy (spectroscopic modes) or to 

directly manipulate atoms to create nano-object on surface (manipulations modes).  

 

2. Effect of temperature, pressure and environment 

The first STM experiments were performed under ultra-high vacuum (UHV) at ultra-low 

temperature (Figure 29).  Nowadays, it is also possible to analyse samples at room temperature, at the 

air/solide interface or even in solvents.  

Working under UHV conditions allows very high resolution because of the absence of any 

interference between tip and substrate. Tuning the temperature permits the observation of dynamic 

behaviour (RT or higher temperature) in contrary with 77K or 4K experiments where the structure is 

kept still in order to obtain the highest resolution. However, the preparation of such experiments might 

take days and the cost of the apparatus is very high, that is why numerous studies are performed at 

room temperature in air or in solvent. 
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Figure 29:  Scanning tunneling microscope, equipped for UHV experiments (CEA Saclay, IRAMIS Group) 

At the liquid/solid interface, the molecules observed under the tip are solubilised in a solvent (as 

apolar as possible, to avoid too much interference). On the surface, the adsorption will be in 

competition with solvatation of the molecule, hence the worst solvent equals to the best adsorption 

(Figure 30). Finally, the drop of solvent on the substrate must not be volatile: the experiment may last 

several hours, and the concentration needs to be kept constant. Furthermore, this drop will act as a 

protection for the tip against the atmosphere, and thus must stays immerged.  

 

Figure 30: Scheme of Scanning tunneling experiment at the liquid/solid interface 

In opposition with this technique, the air/solid interface leaves the tip out in the atmosphere. As a 

consequence, the tip might get slowly oxidised by the oxygen; thus the imaging might not be constant 

over several hours. However, this method avoids any solvatation problem or any interference from the 

solvent during the experiment. Moreover, this pathway allows the use of any polar or volatile solvent 

to solubilise and deposit the molecules on the substrate, the solvent being evaporated before 

experiment. 

 

B. Surface nanostructuration 

In the field of nanotechnology, surface science plays a crucial role as most (nano)devices 

eventually need to be supported on surface. Therefore, controlling the adsorption on surface is utterly 

required. Many different approaches exist and it is commonly known that they can be categorised in 

two contrasting strategies: the top-down and the bottom-up approaches.  

On one hand, the top-down approach consists in downsizing bulk material by physical treatment in 

order to reach the nano-scale. Over the years, several techniques have been developed to create two-

dimensional patterns like soft lithography or electron-beam lithography (photolithography). Other 
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surface treatments can also be performed by using scanning probe microscopy, like local oxidation 

nanolithography 
52

 or dip-pen nanolithography
53

 technique. 

 

Figure 31: Top-down and bottom-up approaches, by Barth et al.54 

On the other hand, the bottom-up strategy consists in creating a macro-scale object from molecular 

building blocks. From a simple substrate, two ways are possible in order to obtain new functionalities: 

the chemisorption and the physisorption. The difference between these two approaches remains in the 

way that the molecules are “bonded” to the substrate: the chemisorption is based on strong irreversible 

covalent bonds whereas the physisorption is focused on weaker reversible supramolecular interactions.  

 

1. Chemisorption
55

 

Specific strong bonds between a surface and a molecule lead to robust chemisorbed structures. 

The bonding is typically fully covalent which tends to anchor the molecule to the substrate, generally 

in a quasi-perpendicular tendency. Moreover, the adsorption is mainly kinetically determined, thus 

imperfections usually occur. The main example of chemisorbed structures is the self-assembled 

monolayers (SAMs). The description of the most important characteristics of SAMs follows the 

representation of their ideal organisation on surface in Figure 32.  

 

Figure 32: Ideal single-crystalline SAM organisation on metal substrate with alkanethiolate molecules as example55 

From the bottom to the top, four parameters are essential in the design of self-assembled monolayers: 

the substrate, the head group, the spacer and the functional group.  
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a. Substrate 

As the bonding process occurs like a non-reversible coordination, the surface needs to be 

metallic. Most of the common metals can be used for this process: gold, silver, copper, palladium, 

platinum and even mercury (SAMs on liquid substrate in that case). However, deposition on non-

metallic substrate like glass or quartz is also possible: a thin adhesion layer of titanium, chromium or 

nickel (1-5 nm) is deposited on the insulating substrate, followed by an active layer of metal (10-200 

nm). The adhesion layer is used to improve the attachment of the second metallic layer that do not 

form oxides easily like gold.  

Nonetheless, Gold surfaces remain the most studied substrates. Five parameters make it a good choice: 

first, it is easily obtained by physical vapour deposition or electrodeposition. Second, it is easy to 

pattern by a combination of lithographic tools. Third, gold is a quite inert substrate: it does not oxidise 

(below its melting point), does not react with atmospheric oxygen and does not react with most 

chemicals. Fourth, it is the common substrate used for several spectroscopies and analytical techniques. 

Finally fifth, gold is compatible with cells without evidence of toxicity. 

 

b. Head group 

For coordination to occur on a metallic substrate the molecule has to be a ligand. Numerous 

functions have been tested (alcohols, acids and carboxylates, amines, nitriles,...) but most of the 

experiments are carried on using organosulphur derivatives (thiols, disulphides, sulphides). 

The organosulphur-based compounds are spontaneously absorbed on materials via two main processes: 

the physical vapour deposition (PVD) and from a dilute solution. The PVD demands an expensive 

equipment (evaporators, pumps to go down to UHV,...) and raises the problem of post 

functionalisation of the monolayers, which usually occurs in solution. In contrast, the solution pathway 

requires control of several parameters: solvent, temperature, concentration and immersion time. SAMs 

are formed from common solvents (tetrahydrofuran, dimethylformamide, acetonitrile, cyclooctane and 

toluene) but ethanol is the solvent of choice because it is inexpensive, not (so) toxic, available in high 

purity and also easily solubilises most of the organosulphur derivatives.  The temperature control is 

also important: above 25°C, the kinetics are improved and the system is allowed to cross the activation 

barriers for processes such as chain reorganisation and lateral rearrangements. Finally, concentration 

and immersion time are inversely related: high concentration requires short immersion time.  

 

c. Spacer 

With the coordination to the surface, the spacer is also responsible for the packing of the layer.  

To minimise the free energy, the molecules adopt conformations that allow high degree of van der 

Waals interactions and sometime hydrogen bonds.  Some of the best assemblies can even be adsorbed 

on the surface in a crystal like structure.  

With efficient interactions, the density of the layer increases and as a consequence so does the number 

of functional groups at the top of the layer. Once again, numerous structures are available: alkanes, 

alkenes, alkynes, polyaryls,... Considering the case of alkanethiolates on gold for instance, the spacer 

can be defined by two parameters displayed in Figure 33: its angle of tilt from the surface () and its 

angle of rotation along the long axis of the molecule ().   
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Figure 33: Schematic view of a single chain alkanethiolate absorbed on surface 

The angles of the alkanethiolates are very surface-dependent. Concerning the tilt angle, its absolute 

maximum value is obtained on gold (30°) and its minimum on mercury (0°). About the rotation angle, 

the average for gold lies near 50°, whereas on other metal the data are generally near 45°.  

 

d. Functional groups 

The desired functionalities are generally introduced on the SAMs after adsorption by post-

functionalisation on the surfaces. Indeed, the synthesis of functional thiol (or other head groups) is 

usually laborious especially when the molecules have to be linked to peptides, proteins, metals,... In 

this perspective, multiple reactive groups, depicted in Figure 34, have been introduced as terminal 

groups on the SAMs. 

 

Figure 34: Potential reactive groups for SAMs post-functionalisation 

This approach possesses several advantages: it uses common and simple synthetic procedures, it 

allows the incorporation of functions incompatible with thiol groups, multiple samples can be generate 

from the same process and it also preserves the underlying structure of the SAM. Nonetheless, this 

strategy also presents three major inconvenients: the extent of surface coverage remains unknown, the 

reactions can produce a mixture of functional groups on the surface and the structure of the resulting 

layer is also unknown (as it is usually unknown with others procedures).   

e. Conclusion 

The SAMs concept is a very efficient method to functionalise substrates. The resulting 

network is strongly linked to the surface and it can receive a large range of functionalities. Because of 

its robustness, it has been the most used method for numerous applications, for example biosensors or 

captors. 

Nevertheless, some inconvenient are restricting its uses: the random post-functionalisation with no 

means to check the new structure, or the almost exclusive use of alkanethiolates which limits the 

flexibility of the technique. Furthermore, the chemisorption strategy forbids any molecular dynamics 

or reorganisations because the bonds with the substrate are too strong to be easily broken. And finally, 

creating a covalent bond with the surface can modify its entirety, thus may change its intrinsic 

properties. 
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2. Physisorption 

This strategy is entirely based on the spontaneous organisation of molecules into stable and 

structurally well-defined networks on surface. In contrast to chemisorption, physisorption occurs by 

reversible supramolecular bonds between molecules and substrates and is called supramolecular self-

assembly. As a consequence, the molecules will tend to lay parallel to the surface, in order to optimise 

their interactions with it. Moreover, the molecule can have its packing influenced by the surface: the 

orientations and intermolecular distances may be different from the crystal structure. This behaviour is 

called epitaxial growth.
56

 It is led by two sets of interactions: molecule/substrate and 

molecule/molecule interactions.  

On the one hand, the supramolecular bond between molecule and substrate depends on the nature of 

both, for example the van der Waals interactions between alkyl chains and highly oriented pyrolytic 

graphite (HOPG) 
57

 or the coordination-like interactions between π-systems and metallic substrates 
58

. 

On the other hand, the main interactions between molecules (electrostatic bond, halogen bond, 

hydrogen bond, coordination bond and finally van der Walls interactions) will be described in the 

following parts.  

a. Coordination bond 

Metal-organic coordination networks (MOCNs) have been intensively studied because of their 

high robustness: the strength of the coordination bond can be considered as an intermediary between 

covalent and non-covalent bond. The self-assembly can be performed by evaporation of the organic 

molecule and the metal (palladium, copper, iron,...) under UHV condition, or by simple co-adsorption 

of both derivatives at the liquid/solid interface. Moreover, it is also possible to use the atoms directly 

from the surface which, incorporated to the network, are called “adatoms”. Most coordination 

processes can occur on surface, but the studies have mainly focused on carboxylic acid and nitrogen-

containing ligands.  

The self-assembly of co-adsorbed bis(4-pyridyl)-1,4-benzene 47 and (2,2‟-bipyridine)-5,5‟-

dicarboxylique acid 48, depicted in Figure 35 , on Cu(100) is a good example regarding different kind 

of bonding on surface.
59

 The two molecules were co-deposited by thermal evaporation under UHV 

conditions. Using the free copper adatoms present on the surface, the two ligands form a dumbbell-

like complex which self-assembles by hydrogen bonds between carboxylate functions and aryl C-H. 

The obtained network is displayed in Figure 35 with the molecular representation of the different 

supramolecular bonds.  

 

 

Figure 35: Structure of bis(4-pyridyl)-1,4-benzene 47 and (2,2‟-bipyridine)-5,5‟-dicarboxylique acid 48 and their co-

adsorbed self-assembly on Cu(100) under UHV (33 x 14 nm) 
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The coordination process can also present several pattern structures, depending of the conditions of the 

experiment. For example, the terephthalic acid 49 (TPA) depicted in Figure 36, have been well 

described in the literature, especially by Kern, Barth and co-workers on Cu(111)
 60 , 61

. The co-

adsorption of these carboxylic acids with Fe under UHV can self-assemble in various patterns.  

The same procedure was carried on for all experiments: the adsorption of the TPA on the surface, then 

the Fe atoms at different concentration (compare to the TPA) and finally the annealing. First, the self-

assemblies are studied with different ratios of Fe atoms per molecules of TPA(0, 0.3, 0.8 and 1.2), and 

then they described the influence of the annealing temperature over the networks (400 and 450K). 

The TPA self-assembles by itself on Cu(111) by forming well-ordered two-dimensional domains, as 

represented in Figure 36. It is important to note that in this example, immediate deprotonation occurs 

on the surface due to the catalytic activity of the substrate.  

 

 

Figure 36: Structure of the terephthalic acid and its self-assemble network on Cu(111) under UHV 

The first MOCN pattern appears as a cloverleaf phase, at the concentration of 0.3 Fe atoms per TPA 

molecules: each Fe atom is surrounded by four TPA molecules. Increasing the concentration of Fe 

atoms per TPA molecule changes the structure: at 0.8, a ladder phase appears where each Fe atoms is 

linked to three molecules: two double-rows and one spacer. It is interesting to notice that two different 

types of phase may be distinguished, depending on how the rows are linked by the spacer.  

 

Then a single-row phase is observed at the Fe/TPA ratio of 1.2, where the Fe atoms are adsorbed in 

pairs. Once again two phases are observed, depending on the orientation of the pairs of Fe atoms. 

Finally, by increasing the temperature of annealing from 400 to 450 K, they observed a new pattern at 

the 0.9 ratio; an interlocked phase. In this case, the surface is saturated, and acts like a broken single-

row phase, when TPA makes as much coordination bonds with the Fe atoms as hydrogen bonds with 

its neighbours. The STM pictures of all four patterns are depicted Figure 37. 

 

Figure 37: Terephthalic acid patterns on Cu(111) at 400K with different Fe/TPA ratios: 0.3, 0.8, 1.2, and 0.9 after annealing 

at 450 K (respectively from the left to the right), under UHV 
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In addition to this polymorphic behaviour, the authors have found a potential application for the ladder 

phase pattern. As depicted in Figure 38, the cavities are large enough to act as host; for example, the 

fullerene (C60) was successfully adsorbed in the cavities.  

 

Figure 38: STM image of fullerenes trapped in the TPA network on Cu(111) under UHV 

 

b. Electrostatic bond 

After coordination, the electrostatic interactions are the strongest amongst the non-covalent 

bonds. In this case, the self-assembly mainly occurs by interactions between cationic and anionic 

species, leading to robust networks on surface.  

For example, a family of pseudo-ionic molecules has been intensely studied by Stawasz et al.: the 

squaraines.
62

 These compounds are so named because of the square central carbon ring, as represented 

in Figure 39.  

 

Figure 39: Representation of the squaraine structure 50, and its zwitterionic behaviour 

These molecules possess an interesting Donor-Acceptor-Donor structure leading to the zwitterionic 

specie represented above. As displayed in Figure 40, the adsorption of 50 on HOPG in phenyloctane 

leads to several networks. The most stable self-assembly occurs by interactions between the anionic 

oxygens and the hydrogen atoms born by the dimethylamine donor moieties. 

  

 

Figure 40: STM images of 50 at the phenyloctane/HOPG interface. a) 3 networks are observed (30 x 30 nm), b) Zoom on the 

network 1 (15 x 15 nm) and c) the herringbone structure corresponding to 1 as a molecular model 

5 nm 

b) a) c) 
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The packing structure of this network gives very interesting information about the nature of the self-

assembly: this herringbone pattern implies that the interactions between molecules are so strong that it 

does not need the underlying hexagonal graphite network to self-assemble.  

 

c. Hydrogen bond 

The hydrogen bond (H-bond) is one of the strongest interactions among the non-covalent 

bonds. Therefore, its use in supramolecular self-assemblies has been widely studied. A large panel of 

functions can form H-bond on surface (alcohol
63

, carboxylic acids
64

, amines
65

,...). Like other 

supramolecular interactions, different parameters can modify or tune the self-assembled network on 

surface, as presented in the two examples below.  

This change of behaviour on surface can be illustrated by the work of Ciesielski et al. on 1,3,5-

tris(pyridine-4-ylethynyl)benzene 51 (depicted in Figure 41) at the phenyloctane/HOPG interface.
66

 

Using both experimental STM imaging and theoretical calculations, they demonstrated the high 

concentration dependence of the self-assembly: at low concentration (5 to 20. 10
-3

M), the molecules 

form the hexagonal porous network represented in Figure 41a while at high concentration (20 to 200 

10
-3

M), the network changes to a more packed supramolecular structure displayed in Figure 41b. 

 

a)  

 

b)  

Figure 41: Molecular structure of 1,3,5-tris(pyridine-4-ylethynyl)benzene 51 and its self-assembled network at low (a) and 

high (b) concentration 

Another interesting example have been published by Ruben et al. with the benzene-1,3,5-triyl-

tribenzoic acid 52 (BTA) as displayed in Figure 42.
67

  The authors studied the supramolecular 

assemblies at several ranges of temperatures on Ag(111), both by STM under ultra high vacuum 

(UHV) and by computational modelings.  

The BTA molecules were first sublimated on the surface held at 200-250K. The first annealing to 270-

300K led to a 2D honeycomb network (Figure 42a); in this assembly, the supramolecular 

interconnections are simply achieved by symmetric hydrogen bonds of carboxylic acid dimers of 

neutral BTA. However, increasing the temperature above 320K modified the network to equal-spaced 

one-dimensional ribbons; in this case, each molecule is singly deprotonated but is still linked to 

neighbouring molecules (Figure 42b). Finally, heating over 420 K takes off one more proton per 
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molecule; the acidic hydrogens left are then not sufficient to keep the lead on the network. A closely 

packed structure is formed, where the H-bond occurs between the pyridines and the aromatic C-H 

protons of the inner pocket of the molecule (Figure 42c). It is interesting to remark that further 

increase of temperature does not deprotonate the last acid function: as shown by calculations, the 

repulsive charges would become too high for the system to remain stable. 

 

 

a) 

 
 

 

 

c) 

 

Figure 42: Molecular structure of the benzene-1,3,5-triyl-tribenzoic acid 52, and STM images of its self-assembly on Ag(111) 

at 300K (a), 320 K (b) and 420 K (c) (images at 30 x 20 nm) 

d. Halogen bond 

Despite its important influence on the crystal structure of several molecules
68

, the halogen 

bond (X-bond) has not yet been intensively studied for the two-dimension self-assembly on surface. 

Nevertheless, the peculiar behaviour of the halogen atoms should lead to an increase of research on the 

topic. Indeed, the halogen bond occurs due to polarisation of the halogen atom in a C-X bond resulting 

in a non-spherical charge distribution. As depicted in Figure 43
69

, the charge depletion of the tip of the 

halogen atom produces a positive partial charge 
+
, while an equatorial ring around the C-X bond is 

partially negatively charged 
-
.  

 
Figure 43: X-bond interaction schemes. Charge distribution in C-X bond (a) and general X-bond interaction (b) 

As a consequence, the halogen atom can make bonds with other halogens, but also with any 

electrophilic or nucleophilic atoms. For example, Chung et al. have published their results on 

supramolecular self-assembly of porous network on Ag(111) under ultra high vacuum (UHV) 
70

 at 

150K. The adsorption has shown an interesting bonding system of 4,4-dibromo-p-terphenyl (DBPT), 

following a triangular motif of one Br···Br bond and one Br···H bond, represented as dotted lines in 

Figure 44a. This combination of bonds leads to three different networks on surface: square, 

rectangular and hexagonal, as displayed in Figure 44b. By calculations, Chung and co-workers 

established that square and rectangular networks were the more energetically favourable to occur. 

However, the hexagonal lattice covers 70% of the surface (against 20% and 10% for the rectangular 

and square networks, respectively). As their calculations were not taking into account the effects of the 
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surface, they concluded that the hexagonal structure may allow more energy gains than others when 

the molecules are absorbed directly on the hexagonal lattice of Ag(111). 

 

 

Figure 44: Schematic of a triangular motif bonding two DBTP and STM topography of the three porous networks 

One of the main applications of the halogen bond is the possibility of building covalent organic 

framework (COF) from a supramolecular network. The experiment have been tried several times with 

1,3,5-tri(4-bromophenyl)benzene (TBB) under UHV
71

 or at the liquid/solid interface
72

. As represented 

in Figure 45, the molecules were adsorbed on surface. When the self-assembly had occurred, the 

sample was annealed at 300°C. After heating, the distance between two interconnected molecules was 

reduced from 1.49 nm to 1.24 nm, proving the creation of the covalent bond by Ulmann coupling
73

 

confined on surface. 

a) 

 

b) 

 

c) 

 

Figure 45: Structure of TBB under UHV on graphite (a), Cu(111) before (b) and after (c) annealing at 300°C 

 

e. Van der Waals interactions 

The van der Waals interactions mainly occur between alkyl chains; they are part of the 

weakest supramolecular interactions. However, the epitaxial adsorption on HOPG compensates the 

weakness, which results in relatively stable networks. The number and the length of the alkyl chains 

play an important role: numerous long chains lead to strong bonds between molecules because of the 

increase of interactions. Thus, the modification of these two parameters can directly impact on the 

stability of the network or completely change the self-assembly pattern.
74

 

The work of Xu et al. is a good example to illustrate this aspect. The (E,E,E)-1,3,5-tris[2-(3,4,5-

trialkoxyphenyl)ethenyl]benzene 52 depicted in Figure 46 have been synthesised with different chains, 

deposited on surface in toluene and left to dry.
75

 The STM studies were then performed at the 

air/HOPG interface.  

b) a) 
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Figure 46: Structure of the (E,E,E)-1,3,5-tris[2-(3,4,5-trialkoxyphenyl)ethenyl]benzenes 52 

 

Several networks appeared, stabilised by interdigitation of the nine alkyl chains. As represented in 

Figure 47, the dodecyloxyl derivative forms a honeycomb network (a) and the 14-carbons derivative 

self-assembles with the alkyl chain nearly parallel to each other (b). However, the 16-carbons network 

was not stable enough to procure an image of the assembly.  

 

                   

Figure 47: STM images of the self-assembly of (E,E,E)-1,3,5-tris[2-(3,4,5-trialkoxyphenyl)ethenyl]benzenes at the 

HOPG/phenyloctane interface, a) 12-carbons and b) 14 carbons derivatives (images of 28 x 28 nm) 

 

The early work of Xu et al. was presenting different well-defined networks, but the self-assembly was 

only explained a posteriori.
75

 In order to predict the adsorption pattern a priori, our group decided to 

design a new molecular unit acting as a functional linking group able to form strong surface-assisted 

intermolecular “clips”.
76

 By interdigitation, this clip would strictly mimic the atomically precise 

organisation of n-alkanes on HOPG, as depicted in Figure 48.  

 

Figure 48: Clip design and principle 

This figure shows one of the simplest clip structures using a π-conjugated bis-stilbene-like bridge. 

Based on these designs, the authors synthesised three molecules, displayed in Figure 49. Those 

compounds were functionalised with 1, 2 and 3 molecular clips. As proven by the STM images, the 

a) 
b) 
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three predicted self-assemblies were obtained on HOPG. The compound (a) was presenting a dimer-

like structure, (b) was forming polymers and the last compound (c) was self-assembling as a 

supramolecular 2D-network (honeycomb) on surface. 

 

 
Figure 49: Realisation of dimer-, polymer- and 2D-network-like topologies from a given rigid core with 1 (a, 7.8 x 7.3 nm2), 

2 (b, 8.1 x 7.5 nm2) and 3 clips (c, 8.9 x 8.3 nm2) at the HOPG/phenyloctane interface 

 

 

Later on, the 10-carbons derivative 53 (Figure 50a) was later studied with only 6 alkyl chains in meta-

positions by Schull and co-workers at the phenyloctane/HOPG interface.
77

 It appeared that the 

honeycomb network was a good candidate in the design of host-guest materials. The network confined 

on surface may act as a sieve to molecule with the proper size. The cavity was 1.3 nm wide, thus for 

this study the coronene 54 (1 nm) and hexabenzocoronene 55 (1.3 nm) played the role of guest 

molecules. The STM images presenting the results are displayed in Figure 50. 

 

 

 

 

 

a) b) c) 
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a) b) c) 

   
 

 

 

 

 

 

 

Figure 50: STM images of the host-guest study at the HOPG/phenyloctane interface. The empty honeycomb network (a) and 

with the guest molecules coronene (b) and hexabenzocoronene (c) are represented. 

The efficiency of the molecular sieve is proven by the images above. In addition, the authors also 

studied the dynamics of the guest diffusion: it was possible to observe the hopping of the guests from 

one cavity to an empty adjacent one. 

Whatever the method, many well-designed self-assemblies have been published, mainly using those 

five kinds of supramolecular interactions.  

However, one problem was still remaining: by using semi-conducting or conducting substrates, 

charge-transfer and hybridisation between the molecules and the substrate might significantly alter the 

electronic properties of the adsorbed molecules. As a consequence, the fluorescence is generally 

quenched. To preserve the electronic properties, the molecule has to be decoupled from the substrate. 

This is achieved by “lifting” the molecule, as describe in the following part. 

 

3. Decoupling molecules from the substrate 

To recover and use the intrinsic electronic properties of an adsorbed entity, a degree of 

decoupling from the metallic surface must be performed. Indeed, a molecule adsorbed on a conductive 

or semi-conductive substrate will undergo a hybridisation of its molecular orbitals with those of the 

surface. As a consequence, in photonics any excited molecule is quickly deactivated by an energy-

transfer process. Two electronic phenomena can thus occur: the Dexter
78

 and the Förster
79

 processes.  

First, the Dexter energy-transfer follows an electron-transfer mechanism, as displayed in Figure 51. 

Considering two molecular entities D and A (Donor and Acceptor), the Dexter process can occur if the 

two molecules are close enough for their orbitals to overlap (up to 10 Å). In this case, when D is 

excited (D*), the electron in the lowest unoccupied molecular orbital (LUMO) can go in A‟s LUMO, 

while the reverse process occurs in the highest occupied molecular orbitals.  
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Figure 51: Mechanism of Dexter energy-transfer 

In contrast, the Förster energy-transfer, also known as Förster resonance energy transfer (FRET), 

consists in a dipole-dipole interaction between the two entities D* and A, as represented in Figure 52. 

This phenomenon takes place at relatively long range (up to 100 Å) when the emission spectra of D 

overlap the absorption spectra of A. Moreover, as it is occurring by classical Coulombic interaction 

between the two molecules, there is no exchange of electrons: the electron in the LUMO of D* comes 

back in its HOMO while an electron in the HOMO of A is excited to its LUMO. 

 
Figure 52: Mechanism of Förster energy-transfer 

Those two processes are also viable on metallic surface when D corresponds to the adsorbed molecule 

with its HOMO and LUMO, and A to the substrate with its conduction and valence bands (separated 

by a band gap if semi-conducting). Then, the same mechanisms occur, as represented in Figure 53.  

 

Figure 53: Mechanism of electronic quenching of molecules adsorbed on semi-conducting substrate (CB: conduction band, 

and VB: valence band) 
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Thus, in order to limit these quenching phenomena, the active molecule must be removed from the 

surface. Effective ways of decoupling have been studied by using multilayers of molecules, ultra-thin 

insulating layers onto the conducting surface or by chemically modifying the structure of the adsorbed 

molecule.  

a. Multilayers 

Insulating molecules from the substrate can be achieved by stacking them high enough for the 

decoupling to occur. Working on the nanocavity plasmons on Au(111), Dong and co-workers studied 

the luminescence induced by the STM tip on tetraphenylporphyrins 56 (depicted in Figure 54).
80

 In 

this case, they had the role of spacer as much as emitter. The STM imaging was first used to monitor 

the layer-by-layer growth of molecules on the surface.  When the stacks had reach 5 layers high, the 

STM induced luminescence was possible on the well-decoupled top layer, as represented in Figure 54. 

This method demands expensive apparatus and delicate STM manipulations, but is proven to be 

effective.    

                       

Figure 54: Representation of the tetraphenylporphyrins 56 molecular structure and the schematic of the multilayers stacking 

under the STM tip 

b. Ultra-thin insulating layers 

Another way to decouple molecules from surfaces is by using ultra-thin insulating layers 

deposited on the metallic substrate. A thickness of just a few atomic layer provide sufficient electronic 

decoupling of the molecules and at the same time still allows the electron to tunnel through, and thus 

to image by STM. Several examples exist in the literature, like alumina film on NiAl(110)
81

 or NaCl 

on Cu(100) and Cu(111)
82

. This last example perfectly represents the efficiency of the insulating layer. 

Repp et al. were studying the thickness of this layer by imaging pentacene 57 represented in Figure 

55a. The experiments were carried on under UHV at 5 K. The NaCl was thermally evaporated to form 

islands of (100)-terminated NaCl of up to three atomic layers. The pentacene was adsorbed, and the 

imaging by STM was possible (Figure 55b).  

      
 

Figure 55: Representation of the pentacene structure and its STM image on NaCl/Cu(111)  

One again, this technique requires high cost apparatus, and very good manipulation skills of 

the microscope. However, the results may be worth it: by picking up a molecule with the tip, they 

could even use this pentacene-tip to image the HOMO and LUMO of other pentacenes on the surface 

with very high resolution, as described in Figure 56.  

a) b) 
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 HOMO LUMO 

 STM 

 
 

 
 

DFT 

  

Figure 56: HOMO and LUMO of pentacene observed by STM with a pentacene-tip and calculated by DFT. 

 

c. Spacers part of the molecule‟s structure 

The two first techniques were isolating the active molecules by tuning the parameters of the 

experiments. This third method aims to chemically modify the active molecule to lift up the active 

moiety. Several pathways are possible; for example by attaching a bulky group to the molecule, 

working with a tripodal motif or by using a pillar such as a paracyclophane.  

 

i. Bulky groups 

Comstock and co-workers wanted to observe the photoisomerisation of azobenzene on 

Au(111). As for any electronic property, the isomerisation could not occur with the molecule directly 

in contact with the metallic surface, thus the authors proposed to graft four tert-butyl groups on the 

molecule, as depicted in Figure 57. 

 

 
 

Figure 57: Photoisomerisation of 3,3‟,5,5‟-tetra-tert-butyl-azobenzene 58: chemical process observe on Au(111) at 30 K 

The sublimation of the azobenzene derivative 58 on the surface led to islands uniformly composed of 

the planar trans isomer. Upon illumination with UV-light, several molecules underwent the 

photoisomerisation. As a consequence, the non-planar cis compound emerged from the plan, easily 

identified by bright dots observed under STM, thus proving the efficiency of the decoupling with the 

surface. 
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ii. Tripodal motif 

This method has been first described for chemisorption by using thiol groups on gold surface
83

 

but Mann et al. adapted it to the physisorption pathway on graphene by grafting pyrene feet to the 

structure, as represented in Figure 58.
84

 The self-assembly was not characterised by STM imaging, but 

by cyclic voltammetry; the adsorption on a graphene electrode was verified by the effective 

oxidation/reduction process of the cobalt complex. 

 

Figure 58: Lift up the active moiety by means of a tripodal architecture 

iii.  Cyclophane-based pillar 

Following the work of the molecular clip, a new kind of three-dimensional molecule was 

recently proposed by our group: the “Janus tecton”. This molecule is doubly functionalised, exposing 

two faces linked by a cyclophane-based rigid spacer. One side of this cyclophane derivative is acting 

like a pedestal and substituted with molecular clips to allow the self-assembly on surface. The other 

side is supporting the desired active moiety, like a fluorophore (60)
10

 or a coordinating function (61)
85

, 

as depicted in Figure 59. This molecular design permits the active component to be free from any 

Dexter energy-transfer process by grafting it far enough from the surface. As the Förster resonance is a 

long-range process, it is required to finely tune the absorption of our pedestal and the emission of the 

active moiety in order to avoid the overlapping of the spectra. 

 

Figure 59: Molecular structures of several Janus tectons 60, 61, 62 and the pedestal 63 

A good example of Janus tecton was recently published by Le Liepvre et al., where the fluorophore 

was a 3,4,9,10-perylenetetracarboxylic diimide (PTCDI), and the substrate was graphene.
86

 The 
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structure 62 is displayed in Figure 59, with the pedestal 63 (cyclophane-free molecule) on the right. 

The self-assembly was performed by co-adsorbing the Janus tecton with the pedestal at different ratios. 

The images displayed in Figure 60 show the evolution of the pattern while the concentration of Janus 

tecton was increased compared with the pedestal.  

 

Figure 60: STM images at the liquid/HOPG interface at room temperature. First a 1:4 mixture of Janus tecton and pedestal 

molecule (60 x 60 nm) (a), then a mixture 1:1 (50 x 50 nm)  (b) and finally a pure solution of Janus tecton (50 x 50 nm) (c). 

The long alkyl chain linked to the PTCDI allowed a high degree of mobility; thus the molecule tended 

to move quickly in solution and to aggregate. As a consequence, the photoluminescence studies 

described the system as mainly aggregated. Nevertheless, the “graphene-dye” hybrid system was 

emitting light, as proven by the emission spectra displayed in Figure 61. 

 

Figure 61: Emission spectra of the self-assembled PTCDI-based Janus tecton (PTCDI-JT) on graphene (blue), compared to 

the reference compound PTCDI-C13 also on graphene (dark green), in toluene (light green) and at the solid state on SiO2 

(red). 

In this figure, the blue spectrum represents the emission of the surface functionalised by the PTCDI-

based Janus tectons. This spectrum presents an emission relatively similar to that observed with the 

reference compound PTCDI-C13 on SiO2 or in toluene (red and light green spectra). The fluorophore 

was thus partially emitting, which proves the efficiency of the Janus tecton concept.  
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III. Thermally Activated Delayed Fluorescence 

In the field of organic electronics, the development of highly efficient organic light-emitting diodes 

(OLED) is one of the trending topics. Recently, a new type of compounds has permitted to drastically 

enhance the electrically-induced fluorescence efficiency of OLEDs (from 5% to 25% of theoretical 

external quantum yield). Indeed, the molecular structure of these compounds allows the phenomenon 

called thermally activated delayed fluorescence (TADF) to occur. Thus in this part, the 

electroluminescence principle in an OLED will be first describe in order to explain more accurately 

the changes brought by the TADF mechanism within precisely designed molecules.
12

 

A. Organic electroluminescence 

The electroluminescence phenomenon was first observed in organic materials by Helfrich and 

Schneider in 1965 when they applied a high voltage (up to 1000 V) to a 5-millimeter-thick anthracene 

single-crystal and observed fluorescence.
87

 Despite the great importance of the discovery, the 

applications were scarce: the difficulties of crystal-growth as well as the large bias necessary were two 

limiting factor for macroscale development. Later on, Tang and van Slyke bypassed these limitations 

by making a device by vapor deposition of 8-hydroxyquinoline aluminum (Alq3) and detected 

fluorescence at low bias (2.5 V).
11

 From this point, the concept of OLED started to attract much 

attention because of their potential lighting applications.  

 

1. Principle of luminescence  

The luminescence process can be described as a radiation emitted by a material after 

absorption of the necessary energy to go to an excited state. Two radiative pathways can be 

responsible for such emission: the fluorescence and the phosphorescence. The mechanisms of 

excitation/emission are displayed in the Jablonksi diagram
88

 represented in Figure 62. 

 
Figure 62: Jablonski diagram of luminescence phenomena 

This figure presents the different electronic states of a molecule, each one of them degenerated into 

several vibrational states. When the molecule undergoes the excitation process, an electron leaves the 

ground state S0 to reach the excited singlet state S1. The excited electron will then experience several 
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relaxation processes towards the lower vibrational state of S1.  From there, several actions can occur. If 

the electron goes back to the ground state, it can do so via a non-radiative way (thermal relaxation), or 

by emitting a photon i.e. by fluorescence. It is also possible for an electron to jump from the singlet to 

the triplet state T1 by means of a conversion process named intersystem crossing. From this triplet 

state, the electron relaxes toward the lowest energy level of T1 and then either non-radiative 

deactivation or phosphorescence occurs. 

The fluorescence phenomenon have been studied for more than a hundred years, thus a tremendous 

amount of examples have been discovered. Using photoexcitation, the efficiency of each compound 

could be determined by the photoluminescence quantum yield (PLQY), which corresponds to the ratio 

of the number of emitted photons over the number of absorbed photons. At room temperature, PLQYs 

up to 100% were often measured for fluorescent compounds.
89

  

 

2. Limitations in OLED materials 

 

a. Fluorescence-based OLED 

The electroluminescence phenomenon was first observed in organic materials by Helfrich and 

Schneider in 1965 when they applied a high voltage (up to 1000 V) to a 5-millimeter-thick anthracene 

single-crystal and observed fluorescence.
90

 Despite the great importance of the discovery, the 

applications were scarce: the difficulties of crystal-growth as well as the large bias necessary were two 

limiting factor for macroscale development. Later on, Tang and van Slyke bypassed these limitations 

by making a device by vapor deposition of 8-hydroxyquinoline aluminum (Alq3) and detected 

fluorescence at low bias (2.5 V).
11

 Shortly thereafter, Friend et al. developed a single-layer polymer 

electroluminescent device represented in Figure 63.
12

 From this point, the concept of OLED started to 

attract much attention because of their potential lighting applications.  

 

Figure 63: Single-layer polymer electroluminescent device developed by Friend et al.91 

Nevertheless, a compound used within an OLED is electrically excited. The charges are injected from 

the anode and cathode to form polarons. These species migrate through the device in order to meet and 

then to form the exciton which is able to perform the recombination and thus to emit light. In the 

device (Figure 64), additional layers are usually incorporated in order to facilitate the injection and the 

movement of the polarons towards the emitting layer. Thus, the efficiency of the chromophore resides 

in its ability to effectively recombine the exciton species.
92
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Figure 64 : A typical structure of OLEDs 

In such multi-layer structure, the various layers play different key roles. Apart from cathode and anode 

which inject holes and electrons, the hole injection layer (HIL) and the hole transport layer (HTL) 

assist the transport of holes from the anode to the emission layer (EML). From the cathode, the 

electron injection layer (EVL) and the electron transport layer (ETL) are responsible of the transport of 

electron to the same emission layer. The ideal OLED should transport the polarons (holes and 

electrons) at the same “speed” in order to quickly recombine the excitons in the EML and thus to 

maximise the efficiency of the device. 

Now, it is necessary to take into account the nature of the spin of both polarons before recombination. 

It will define the multiplicity of the exciton, and thus determine if the emission will occur from the 

singlet or the triplet state. Due to the spin statistics represented in Figure 65, the resulting 

recombination shall potentially emit 25% of fluorescence and 75% of phosphorescence.  

 

Figure 65 : Spin statistics: the recombinations occur with spins and phases in two potential directions, thus 4 excitons are 

possible, 1 singlet and 3 triplets  

Apart from the spin of the excited state, the light out-coupling efficiency tends to reduce the 

performance of the device.
93

 The external quantum efficiency (EQE) of an fluorescence-based OLED 

can be determined as:  

EQE = χF ФF ηr ηe  ≤  
1

4
 × 1 × 1 × 

1

2𝑛2 

where χF is the fraction of recombination that results in singlet excitons, ФF represents the intrinsic 

fluorescence efficiency, ηr is the fraction of polarons that recombines in the emissive layer and ηe 

corresponds to the light out-coupling efficiency. Thus, as mentioned before, the spin statistics give χF 

as only 25% for fluorescence, and internal quantum yield ФF can easily reach 100% for the best 

molecules. Moreover, considering the advances in the OLED development, the recombination can be 

ideally performed in the emissive layer with the highest yield of 100%. Finally, the out-coupling 

efficiency ηe is the fraction of emitted photons that escapes the device. Hence it is limited by the 
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internal reflexion of the photons and thus is dependent of the reflexion index of the emissive layer. For 

a glass substrate, the index of reflexion is around n = 1,5 which limit the fraction of escaping photons 

to only 22%. As a consequence, a fluorescence-based and a phosphorescence-based OLED would be 

limited to 5.5% and 22% respectively of external quantum efficiency.
  

Fluorescence is still the most used process to achieve suitable OLED because of the high stability of 

the materials over time and temperature. Every colour has been obtained from fluorescent devices: 

blue
94

, green
95

, and red
96

 are now achieved with acceptable external quantum efficiency. As a 

consequence, new devices are nowadays commercialised, based on the concept of OLED.
13

 Examples 

of emitters are depicted in Figure 66. 

                  

Figure 66 : Molecular structure of blue 64, green 65 and red emitter 66 

Pure fluorescence-based OLED were widely developed because of their low costs but, apart from 

exceptions, they are still inconveniently limited around 5 to 6% of EQE.  

 

b. Phosphorescence-based OLED 

In contrast with fluorescence, the phosphorescence phenomenon at room temperature was 

rarely measured because the non-radiative deactivation from the triplet excited state to the singlet 

ground state becomes dominant by increasing the temperature.
97

 However, by using the intersystem 

crossing to harvest the 25% of singlet excitons, several organometallic complexes have presented high 

yield phosphorescence near 100%.
14 

As a consequence, phosphorescent-based OLEDs (or PHOLED) 

can theoretically achieve high EQE near 25%.  

The first PHOLED was developed by Suzuki et al. by using benzophenone.
98

 The device was only 

active at low temperature (100 K) but it was a good proof of concept. Later on, Baldo and co-workers 

published their work on 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum 67.
99

 At room 

temperature, the device was emitting red light with an EQE of 23% which was a great improvement of 

efficiency. However, several inconveniences were mentioned, especially the too long life time of 

emission (> 10 µs) making the device unsuitable for potential applications. Thereafter, several other 

materials have been described, mainly presenting iridium complexes like Ir(ppy)3 68, represented in 

Figure 67.
100
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Figure 67 : Structure of phosphorescent platinum- and iridium-based complexes  

With these complexes, very high EQE were obtained (up to 19%) with life-time of emission down to 

1µs. However, there were two main issues in the direct application of PHOLEDs: the relatively short 

life-time of the device, and the high cost of the emitter based on noble and expensive metals.  

As a consequence, combining the high stability of the fluorescence-based OLED and the excellent 

efficiency of the PHOLED is one of the most studied research topic. Recently, a new type of 

compounds has been proposed where several finely design molecules have presented delayed emission 

via thermally activated delayed fluorescence (TADF). 

 

B. Thermally Activated Delayed Fluorescence 

During the process of electroluminescence, 75% of the excitons are lost in non-radiative 

processes from the triplet to the ground state. The thermally activated delayed fluorescence is a 

process harvesting these 75% of triplet exciton in order to convert them into singlets, and thus 

enhancing the fluorescence towards higher yield.  

  

1. First results 

 Despite the drastic increase of articles published on TADF molecules for the past 10 years, 

this “new” pathway toward high-yield fluorescence has been known for more than 70 years. In 1941, 

Lewis et al. have published their study of two different phosphorescence states of fluorescein 69 in 

boric acid glass.
101

  

 

Figure 68 : Fluorescein structure in acid solution 

Fluorescein dissolved in acid solutions, as represented in Figure 68, emits strong blue fluorescence at 

room temperature and pure yellow phosphorescence at low temperature. However, as displayed in 

Figure 69, the phosphorescence spectrum showed a first strong blue band at room temperature ( band, 

lifetime = 4s) upon which is superimposed a fainter yellow band ( band, lifetime =11s). By 

lowering the temperature, the  band disappears to the benefit of the  band which remains stronger. 

 

Figure 69: Emission spectra of fluorescein in boric acid depending of the temperature: 1 at 20°C (fluorescence) and 2 at -

40°C (phosphorescence) 
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Using the at-the-time controversial Jablonski diagram, Lewis explained the mechanism of this delayed 

blue fluorescence by a round trip of the excited electrons from the fluorescence state (singlet state) to 

the phosphorescence state (triplet state), whereas the yellow band was attributed to the classic 

phosphorescence (from the triplet state to the ground state). 

The pioneering work of Lewis et al. on their long-lived luminescence allowed a better understanding 

of the phenomenon of delayed fluorescence. However, the first breakthrough only occurred in the 

1960s, with Parker and Hatchard‟s work on eosin, represented below in Figure 70, in glycerol and 

ethanol.
102

 

                

Figure 70 : Structure of Eosin B 70 and Eosin Y 71, as disodium salts 

(the type of eosin chosen for the study is not mentioned in the article) 

Parker et al. have accurately described the unusual long-lived fluorescence of eosin in glycerol and 

ethanol. The spectra of luminescence were first measured at several temperatures ranging from -70°C 

to +70°C to prove the presence of a delayed fluorescence: the fluorescence band increases with 

temperature whereas the phosphorescent band decreases, with a photoluminescence quantum yield up 

to 87% in ethanol. So, by using a high sensitivity spectrophosphorimeter, Parker et al. were the first to 

describe the parameters of the TADF phenomenon by proving the existence of a reverse intersystem 

crossing from the triplet state to the singlet state.  

Continuing their work on delayed luminescence, Parker and co-workers published several articles on 

other molecules.
103,104

 The study of aromatic compounds, especially pyrene, has surprisingly shown a 

different mechanism of delayed fluorescence.
105

 When two molecules were excited to the triplet state, 

a mechanism of “triplet-triplet quenching” was occurring, leading to an excited dimer which 

dissociated rapidly into excited and ground-state singlet molecules; the excited molecules being 

responsible for the delayed fluorescence. 

In order to make a clear distinction between those two long-live fluorescences, Parker et al. have 

chosen to name these phenomena eosin-type (E-type) delayed fluorescence and pyrene-type (P-type) 

delayed fluorescence now known as TADF (Thermally Activated Delayed Fluorescence)
106

 and TTA 

(Triplet-Triplet Annihilation)
107

 respectively. 

Over the years, several examples of TADF molecules have been published: benzyl
108

, 

benzophenones
109

, thiones
110

, fullerene
111

,... However, the properties of delayed fluorescence were still 

determined a posteriori. Thus, the development of TADF-based device required the implementation of 

rules and methods to design such materials. 

 

2. Description of the TADF phenomenon 

Nowadays, the mechanism of thermally activated delayed fluorescence is well established: as 

represented in Figure 71, an electron is excited from the ground state to the singlet excited state and 

then undergoes the intersystem crossing toward the triplet state. However, instead of deactivating 
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through non-radiative or phosphorescence processes, the electron goes back to the singlet state by 

means of a reverse intersystem crossing, and finally emits fluorescence in order to reach the ground 

singlet state.  

 
Figure 71 : Simplified energy diagram of the TADF process 

Accordingly, as part of an OLED, this mechanism should theoretically allow a molecule to harvest the 

triplet excitons in order to reach 100% of internal quantum efficiency only with fluorescence. This 

concept has been first proven by Endo et al. in 2009, by incorporating a Sn
IV

-porphyrin complexe 72 

(Figure 72a) as emitting layer of an OLED.
112

 Shortly afterwards in 2010, Deaton et al. confirmed the 

high potential of this new emitting pathway by using a Cu
I
-complex 73 (Figure 72) to obtain a very 

efficient OLED with an EQE of 16,1%.
113

 

                           

Figure 72 : Representation of the molecular structures of the first two TADF complexes part of OLED: the SnIV-porphyrin 

complex of Endo 72 and the CuI-complex of Deaton 73 

Nonetheless, equal or better performances were already achieved with organometallic materials in 

PHOLEDs. The significant breakthrough on TADF really occurred when Endo and co-workers 

published their new OLED based on pure organic materials with an external quantum efficiency of 

5,3%, approaching the theoretical limitation of conventional  fluorescent devices.
114

 

Despite the low EQE compared with the best PHOLEDs, these results allowed to establish the first 

rules to obtain TADF properties. On one hand, the gap between singlet and triplet energy levels, so 

called ΔEST, has to be as small as possible. One way to achieve this is to reduce the overlap of the 

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), 

thus to separate electron-donating from electron-accepting substituents on the molecule. In contrast, 

the fluorescence rate must be kept as high as possible by maintaining the whole conjugation effective 

within the molecule. Because these parameters are conflicting, fine molecular design is required to 

realise them simultaneously.  

a) b) 
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The first route to match those two parameters was to induce one or several twists of the molecular 

structure in order to interrupt the conjugation between donor and acceptor group. For example, 

Uoyama et al. designed and synthesised a series of carbazolyl dicyanobenzene derivatives, the most 

efficient being the 4CzIPN represented in Figure 73.
16

 

                              

Figure 73 : Molecular structure of 4CzIPN 74 and representation of its highest occupied a) and lowest unoccupied b) natural 

transition orbitals 

In the molecular structure, the electron-donating substituents (carbazol groups) were too bulky to 

remain plan, thus a twist is induced and the HOMO and LUMO are separated from one another. The 

DFT calculations of the highest occupied and lowest unoccupied natural transition orbitals
115

 

performed on 4CzIPN were confirming the partial decoupling, as represented in Figure 73 (a and b).  

A natural transition orbital analysis is an efficient way to correlate ground and excited state electronic 

structures via diagonalisation of the transition density matrix. In other words, the analysis permits to 

create unique particle-hole pairs which show where in the system the electron came from and where it 

went to as a result of the transition.  

A small ΔEST was thus obtained for 4CzIPN (0.27 eV) with a PLQY of 94%. An EQE of 19.3% was 

measured, which corresponded to the best efficiency of a pure organic-based OLED (metal free).  

Numerous examples of twisted TADF molecules have been published showing efficient results. 

However, another route to separate the HOMO from the LUMO was also recently studied by 

Nakagawa et al.: instead of twisting the donor-acceptor connection, they proposed to physically 

separate them by means of a spirobifluorene unit.
17

 As a consequence, the weak coupling between the 

electron-donating and electron-accepting groups was mainly due to through-space interactions.  

Their best results were obtained by studying the Spiro-CN 75 which is represented in Figure 74 along 

with the DFT calculations results on the HOMO and LUMO.  

 

Figure 74 : Molecular structure of Spiro-CN 75 and representation of its highest occupied (a) and lowest unoccupied (b) 

molecular orbital 

A ΔEST value of 57 meV was calculated and the photoluminescence quantum yield measured at 27%. 

Finally, with values up to 4.4%, the EQE was largely exceeding the highest EQE values for common 

fluorescence-type materials with a PL efficiency of 27%.  

a) b) 

75 

a) b) 
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In conclusion, two effective methods have been proposed to obtain TADF properties from an organic 

molecule. The twist has allowed to reach high PLQY results whereas the through-space pathway was 

more efficient in lowering the ΔEST. Both have presented interesting results, and TADF materials are 

now catching up with the PHOLEDs efficiencies. However, the research is still focusing on materials 

with higher quantum yield of fluorescence. As a consequence, new concepts are currently developed 

in order to facilitate the commercialisation of TADF materials.  

3. Extension of the TADF concept 

As mentioned above, new materials are always investigated in order to develop further 

applications of the TADF concept. Indeed, two main research topics have emerged to simplify the 

potential manufacture of highly efficient OLED. The first method consists in using TADF molecules 

as dopant of a conventional fluorescent molecule of an OLED in order to transfer the high yield 

fluorescence to a less efficient emitter. A second pathway aims at synthesising TADF-based polymers 

which might facilitate the making of devices. 

a. TADF materials as dopant 

The development of TADF emitters requires a fine tuning of the molecular design in order to 

obtain high PLQY and low ΔEST. However, these two parameters are always in conflict, making it 

difficult to develop high-performance materials. In contrast, various conventional fluorescent 

molecules with high PLQY are well known to emit light in most of the light spectrum, but are limited 

by their performance in OLEDs.  

Recently, Nakanotani et al. proposed a method to enhance conventional fluorescent emitters by using 

the TADF molecules as assistant dopant of the emitting layer of an OLED.
116

 As described in Figure 

75, the emitting molecule is thus allowed to harvest by Förster process (FRET) the singlet excitons 

recovered by the TADF mechanism of the dopant, and then to emit fluorescence in high yield.  

 

Figure 75: Representation of the Förster process between the TADF dopant and the fluorescent emitter 

With this approach, it is thus possible to separately increase the PLQY of the conventional fluorophore 

and to reduce the ΔEST of the TADF molecule without any conflicting effects. Moreover, allowing the 

use of conventional fluorescent molecules drastically expand the panel of available emitters. The 

authors were then able to develop an OLED based on the TADF molecules 76 and on the emitter 77, 

represented in Figure 76. In this figure, the absorption and emission spectrum of the different actors of 

the emission are also represented. 
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Figure 76: Molecular structures of 76 and 77, and their absorption/emission spectra 

The emitter 77 displays a PLQY of 86% whereas 76 presents a ΔEST of 0.071 eV. Moreover, the 

spectra represented in Figure 76 show the overlap of the absorption spectrum of 77 and the emission 

spectrum of 76. Thus, the FRET mechanism could take place and the device was built up to afford an 

EQE of 18 %.  

As a conclusion, this pathway allows the use of a large range of conventional fluorophores and still 

conserves the TADF efficiency. However, some defects of the electronic mechanism can be mentioned: 

the direct fluorescence of the TADF dopant, and the transfer of the triplet exciton to the emitter by 

Dexter energy-transfer leading to non-radiative deactivation. 

b. Polymer-based TADF materials 

Numerous efficient TADF-based fluorophores have recently been published: blue
117

, green
118

 and 

red
119

 emitters are now obtained with good EQE, respectively 19.5%, 28.5% and 12.5 %. However, the 

manufacture of such devices requires high cost evaporated deposition process and results in disordered 

structures.  So, to get around this limitation, Luo et al. proposed to design a TADF-based polymer.
120

 

Indeed, such polymer would permit the use of simpler and cheaper solution-deposition process. 

Therefore, the authors decided to graft a TADF-emitter onto the side chain of a poly-carbazol as 

represented in Figure 77.  

 

Figure 77: Molecular structure of the TADF-based polymer of Luo et al. 

The polymer was synthesised by Suzuki cross-coupling, and a PLQY of 33.7% was determined. The 

polymer light emitting diode (PLED) was made by solution-process deposition and achieved a good 

EQE of 4.3%. To conclude, the general design strategy to achieve high EQE have been successful, 

considering the low PLQY measured. Moreover, this new pathway towards TADF-based devices can 

open access to other solution process depositions, such as the very efficient roll-to-roll process.
121

  

TADF emitter 
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Emitter 
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CHAPTER 2:  

SUPRAMOLECULAR CHEMISTRY ON SURFACES 

 
One objective of this work is to create supramolecular self-assemblies on different kinds of 

metallic surfaces. As presented earlier, the supramolecular functionalisation of carbon sp
2
-hybridised 

substrates (highly oriented pyrolytic graphite (HOPG) and graphene) has already been performed in 

our lab by using planar molecules equipped with clip functions self-assembling in stable and well-

organised networks. The concept was even extended to three-dimensional (3D) molecules called Janus 

tectons in which an active component is grafted on the upper deck of a dtpCp while molecular clips 

are borne by the lower deck. To date, the evolution of our molecules‟ designs is displayed in Figure 78 

with both their structures and their behaviours on surface. From now on, the aim of this thesis is to 

prepare a 3D-tecton able to work on various substrates by replacing the molecular clips with 

functional groups targeting supramolecular interactions like halogen bonds, hydrogen bonds or 

coordination bonds.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78: Evolution of the molecular designs developed in our group over the years, with the corresponding STM images (a: 

8.9 x 8.3 nm2, b: 50 x 50 nm2) 

The first part of this chapter will present the synthetic pathways used over the years to obtain 

functionalised pCp and its derivative dtpCpB, from its first characterisation by Brown and Farthing
1 

to the recent work done in our lab
86

. Then, the second part will focus on the different syntheses carried 

out during this PhD thesis and will discuss the different routes tested to obtain the target molecules. 

Finally, the third and last part will present the characterisations on these molecules (Nuclear Magnetic 

resonance, Infra-red, UV/Vis and fluorescence spectroscopy) and the first images of supramolecular 

self-assemblies on surface.  

First concept: 

The molecular clip 

Steered supramolecular 

2D self-assembly 

Functional 3D Janus tecton 

a) 

b) 

c) 
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I. Paracyclophane’s chemistry 

 The chemistry related to the paraCyclophane derivatives will be presented in the following 

two grand axes: the cyclisation of the molecule leading to the cyclophane moiety, and the different 

pathways developed in our lab to functionalise or post-functionalise this synthon. 

 

A. Synthetic step toward cyclophanes 

Since its discovery by Brown and Farthing in 1949,
1 
the chemists have described several synthetic 

routes towards the paraCyclophane (pCp). The first one ever published was definitely developed by 

the discoverers of the molecule, and was based on the pyrolysis of p-xylene at low pressure as 

represented in Figure 79. The pyrolysis of p-xylene led to the p-xylylene monomer A1, highly reactive 

and thus polymerised immediately. Apart from several polymers, the reaction also gave different by-

products including the pCp with very low yield. The pCp was also obtained as a by-product with very 

low yield by Errede et al. who tried to slow down the polymerisation of p-xylene monomer by radical 

initiation (down to -78°C).
122

 

 
Figure 79: Synthesis of pCp by pyrolysis of p-xylene. 

Later on, Cram et al. proposed an alternative way to synthesise the paracyclophane.
18

 As represented 

in Figure 80, a Grignard reaction was first accomplished by action of metallic magnesium on benzyl 

chloride to afford A2. The bromomethylation of this biphenyl derivative A2 was then carried on with 

bromic acid and formic acid to afford the dimethylbromide compound A3. Finally, an intramolecular 

Wurtz reaction was performed at high dilution in p-xylene with metallic sodium to lead to the pCp in 

less than 1% of overall yield. This pathway was however interesting because it was henceforth 

possible to modify the length of the alkyl bridges.  

 
Figure 80: Synthesis of pCp with tunable alkyl bridges 

An easier pathway was subsequently developed by Hopf to overcome the extremely low yield of 

Cram‟s synthesis.
123

  The reaction was based on a [2+4] cycloaddition between a diene and an alkyne 

in benzene at 65°C. As shown in Figure 81, the alkyne had to be substituted with two dienophiles 

(esters groups) in order to favour the [2+4] addition over the [2+2] on the allene group. The pCp was 

obtained as a syn- or anti- tetra-ester isomer in 32% yield.  
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Figure 81: Hopf‟s route based on a [2+4]-cycloaddition leading to pCp derivatives 

Shortly after, Winberg and Fawcett developed an alternative route towards pCp based on a two-steps 

reaction represented in Figure 82.
124

 The first step was implying the nucleophilic substitution of 

trimethylamine on the bromobenzyl derivative and second a 1,6-Hofmann elimination leading to the 

pCp with the acceptable yield of 17 to 19%. This yield was lower than that of the Hopf‟s pathway, 

however the choice of reactants is wider because of the simplicity of the mechanism compared to the 

cycloaddition.  

 

Figure 82: Winberg and Fawcett„s pathway towards the pCp synthesis, via an Hofmann elimination 

The last route to synthesise pCp is based on the prior preparation of the dithia[3.3]paracyclophane 

(dtpCp). This new approach was first proposed by Vögtle for the synthesis of the metacyclophane 

depicted in Figure 83. He developed two possible pathways: either by using 1,3-

bis(bromomethyl)benzene A8 and sodium sulphide to synthesise the symmetrical 

dithia[3.3]metacyclophanes A10, or from 1,3-bis(bromomethyl)benzene A8 and 1,3-

bis(mercaptomethyl)benzene A9 for the asymmetrical cyclophanes.
125

 The extrusion of the sulphur 

atoms was then described as an oxidation of the dithiacyclophane with hydrogen peroxide followed by 

a pyrolysis at 350°C. This pathway led to the metacyclophane A11 with a global yield lower than 2% .   

 

Figure 83: Vögtle‟s routes towards metacyclophanes, via dithia[3.3]metacyclophane intermediate 

Finally, the most efficient pathway was published by Brink in 1975: inspired by Vögtle‟s work on 

dithia[3.3]metacyclophane, the dtpCp was simply synthesised from the 1,4-bis(bromomethyl)benzene 

A12 and 1,4-bis(mercaptomethyl)benzene A13, followed by the photodesulphurisation using 

triethylphosphite with an overall yield of 51%.
25

 This synthetic route, described in Figure 84, was not 

only efficient but was hence allowing the synthesis of asymmetric pCp. 
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Figure 84: Brink‟s efficient pathway toward pCp 

B. Janus tectons: state of the art 

As mentioned in the first chapter, our group focused on functionalising sp
2
-hybridised carbon 

surfaces by physisorption of organic materials.
86

 In our case, the cyclophane has been used as a mean 

to electronically decouple the active moieties (attached to the upper deck) from the surface in order to 

limit the fluorescence quenching induced by the substrates. Thus, the cyclophane unit represents the 

central pillar of our molecules on which the upper deck is functionalised with the active component 

while molecular clips grafted on the lower deck are responsible for the self-assembly on HOPG or 

graphene. The whole molecule is called a “Janus tecton”, and a schematic representation is depicted in 

Figure 85. The pCp and dtpCp molecular architectures have both been tested but to decrease the 

number of synthetic steps as well as to avoid too much through-space interactions, our group mainly 

centred its studies on the dtpCp derivatives.
126

  

 

Active component 

 

 

 

    Decoupling pillar 

 
         
        Molecular clip 

  

Figure 85: Original design of the Janus tecton 

The synthesis of these three-dimensional tectons can be described in two main steps: the preparation 

of the cyclophane core and then its functionalisation.  

The best strategy to synthesise the dtpCp core was developed by Bakhma et al.
127

 and consisted in 

building up the dibromo-dtpCp-dialdehyde B4 as represented in Figure 86. On one hand, the 1,4-

dibromo-2,5-p-xylene was first brominated by NBS to form the dibromo derivative B1 and then turned 

into the bis-thiol B2 by action of thiourea and potassium hydroxide. On the other hand, six steps were 

necessary to synthesise the dialdehyde B3 from the p-xylene. Finally, the cyclisation of B2 and B3 to 

give the cyclophane B4 occurred by nucleophilic substitution of the B3 bromides by the bis-thiolate 

obtained after deprotonation of B2 under basic conditions. This last step was carried on at very high 

dilution in order to avoid polymerisation side reaction and to favour the dtpCp formation.  
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Figure 86: Synthesis of B4 according to Bakhma et al. strategy 

Therefore, the dibromo-dtpCp-dialdehyde B4 has been used as a molecular building block on which 

different components were grafted. As represented in Figure 87, the distyrylbenzene phosphonate unit 

(molecular clip for absorption on surface) was added on the cyclophane by using the Wittig-Horner 

reaction while the active entity was added via palladium-catalysed cross-couplings: Stille coupling for 

the oligothiophene
127

 (B5) and Suzuki coupling for the styrylbenzene derivative
10

 (B6).  

 

Figure 87: Functionalisation of dtpCp for HOPG-confined self-assembly 

Several Janus tectons were synthesised with acceptable overall yields up to 20%. The design was 

proven quite efficient: highly stable self-assembled networks were obtained on HOPG. However, 

this approach based on molecular clips is only viable for sp
2
-hybridised carbon substrates such as

 

graphite or graphene. Therefore, to move on toward new types of substrates such as metals, the 

molecular clip must be replaced by a more suitable function and drastic modifications of the 

tecton‟s structure are thus required. A new design of the cyclophane‟s lower deck is therefore 

needed to allow the adsorption on such surfaces. 
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II. Designing new cyclophane-based molecules 

As previously discussed, the molecular design of the first generation of Janus tectons must be 

modified to allow their self-assembly on larger variety of substrates such as HOPG, gold,... The van 

der Waals interactions are not viable for metallic substrates, the adsorption should thus occur by π-

interactions with the metal atoms in a coordination-like process. 

As a consequence, we proposed to design a new type of 3D Janus tectons suitable for different kind of 

supramolecular interactions on surface such as coordination, halogen bond or hydrogen bond. The 

schematic representations of the new target molecular architectures are represented in Figure 88. 

                       

Figure 88: Schematic representations of our three molecular architectures: (a) pedestal, (b) naked pillar and (c) new 3D 

Janus tecton 

The first architecture (a) represents the pedestal (only) to demonstrate the proper self-assembly of the 

molecules on surfaces. Then, the second architecture (b) named “naked pillar” represents the pedestal 

incorporating a cyclophane core to verify that the presence of a central nanopillar does not change the 

self-assembly on the substrate. Finally, the third molecular architecture (c) represents the new 

generation of Janus tecton incorporating an active unit (emitter) at the upper deck of the cyclophane. 

This latter architecture should self-assemble on several surfaces and should also be able to emit light 

from the decoupled active moiety. 

 

We based our molecular design on functional units already known to self-assemble on metallic 

substrates such as pyridine groups. As described by Tait et al. on copper
128

 or by Surin et al. on 

HOPG
129

, the pyridine can be used as a function of coordination on surface.  Such units can also make 

hydrogen-bonds with carboxylic acid derivatives
130

 or halogen bonds with compounds bearing iodide 

atoms
131

. The chemical structures of these new pyridyl end-capped molecules are given in Figure 89. 

The synthesis of each molecule will be described afterwards in the following parts. 

 

 

Figure 89: Chemical structures of our target pyridyl end-capped molecules: (a) pedestals, (b) naked pillar and (c) Janus 

tecton 

 

a) c) b) 

a) c) b) 
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A. Synthesis of the pedestal 

           

             

The pedestal molecule must replicate the lower deck (base) of our 3D Janus tecton responsible 

for the self-assembly on surface. Thus, the p-xylene moiety acts as the core of the molecule and 

pyridine units are linked to it by means of alkyne spacers. The synthetic route of this molecule is 

described in Figure 90.  

 

Figure 90: Synthetic route of the pedestal molecule P1 

The Sonogashira cross-coupling
132

 between 1,4-dibromo-p-xylene and a large excess of 

trimethylsilylacetylene (TMSA) by using a palladium catalyst (Pd(PPh3)2Cl2) and copper iodide (CuI) 

in triethylamine led to the compound 1 in 99% yield. Then, the quantitative deprotection of the 

trimethylsilyl group by potassium fluoride
133

 gave the intermediate 2 and finally a second Sonogashira 

coupling in diisopropylamine (DiPA) using the Pd(PPh3)2Cl2/CuI catalyst was carried out with p-

iodopyridine to form the target pedestal P1 with a yield of  71%. 

Furthermore, the option of the alkyne unit as spacer was first decided because of the simplicity of the 

Sonogashira cross-coupling. However, another interest resides in its tunable length. Indeed, from the 

compound 2, it is also possible once to couple it again with TMSA by Glaser-Hay coupling
134,135

 in 

order to obtain butadiyne derivatives. The synthesis is then the same as that with the ethynyl spacers. 

Thus, we took advantage of the versatility of this synthetic route to prepare a longer pedestal P2 as 

described in Figure 91. 

 

 

Figure 91: Synthetic route of the pedestal P2 

 

The Glaser-Hay coupling occurred in dichloromethane by action of a copper chloride-

tetramethylenethylenediamine (TMEDA) catalyst on 2 and TMSA (in large excess) to afford the 

compound 3 in 75% yield. For this reaction, oxygen was bubbled into the reaction mixture in order to 
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regenerate the catalyst at each cycle. Then, as for the ethynyl derivative, the compound 3 is 

deprotected with potassium fluoride to afford 4 in quantitative yield. However, the so-obtained 

compound 4 imperatively needs to be kept in an oxygen-free environment: its high unstability makes it 

turned from pure white to dark grey after few seconds of exposition to air. Finally, the palladium-

catalysed Sonogashira coupling of p-iodopyridine and 4 led to the pedestal P2 in 40% yield. 

It is worth noticing that the synthesis of compounds of different length (P1 and P2) would also allow 

us to tune the network lattice size on the surface, or eventually to use bulkier active components on the 

top of the pillar without risks of changing the underlying network. Nonetheless, before testing several 

active moieties, it was important to develop the chemistry on a pedestal molecule incorporating a 

naked cyclophane as discussed in the next part. 

 

B. Synthesis of the naked pillar 

 

               

Numerous reactions have been attempted in order to obtain the desired naked cyclophane. 

Five different strategies were tested and the main intermediary products are represented in the 

retrosynthetic pathways depicted in Figure 92.  

 

Figure 92: Retrosynthetic pathways toward the naked pillar 
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1. The bromide menace (Route 1) 

The aim of the first pathway was to graft the alkyne moieties to the p-xylene core before “closing” 

the cyclophane. As represented in Figure 93, starting from the 1,4-dibromo-p-xylene, two synthetic 

routes are possible: either to first synthesise the compound 1 by Sonogashira cross-coupling and then 

to brominate the methyl groups with NBS, or to start with the bromination and then to carry on with 

the palladium catalysed coupling to connect the alkyne moieties. 

 

Figure 93: Representation of the two different routes towards the building block 5 

First developed by Wohl and Ziegler
136

, the bromination reaction with NBS follows a radical pathway 

where AIBN is the radical initiator. The compound 1, previously synthesised by Sonogashira coupling 

(Figure 90), was bis-brominated in these conditions to afford the derivative 5 in very variable yields: 

the first reaction of bromination gave 5 with a yield of 37 %, and then any other attempt never gave 

the product with more than 12% yield. The main reason for these low yields is the multiple by-

products afforded by the radical reaction. Indeed, it was possible to isolate multi-brominated 

compounds (the methyl groups being able to support 1 or 2 bromides each). In addition, several other 

unidentified by-products were observed, supposedly coming from the bromination of the alkyne 

groups, as discussed by Jin et al.
137

.  

On the other hand, the bromination of the 1,4-dibromo-p-xylene afforded the compound 6 in 

reasonable yield of 60%. However, the Sonogashira coupling carried out on 6 never gave the expected 

product 5, but a mixture of unknown compounds impossible to separate. Indeed, this cross-coupling is 

known for its high reactivity on halogens borne by Csp
2
 carbons, but the benzylic positions (-CH2-Br) 

are also activated enough to participate to the coupling. Therefore, the mixture of numerous products 

was certainly due to four reactive sites on the molecule, instead of the two Csp
2
-Br initially expected.    

In conclusion, the prior grafting of the alkyne moieties appearing to be ineffective, another pathway 

was proposed based on the prior synthesis of the cyclophane core before performing the addition of 

the rest of the pedestal.  

2. Attacks on the cyclophane (Route 2) 

Based on previously reported syntheses (Figure 86), the cyclophane was synthesised in 4 steps, as 

described in Figure 94. 
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Figure 94: Synthesis of the cyclophane building block 9 

The p-xylene was first brominated in the same condition as previously described for 6 to give the 

derivative 7 with a good yield of 87%. Then, thiourea was added on 7 in boiling ethanol and the 

intermediary bis-isothiouronium salt was obtained. This salt was solubilised in a solution of potassium 

hydroxide in refluxing water to form the bis-thiolate compound, and then the medium was acidified to 

obtain the product 8 in 79% yield.
138

 The compounds 6 and 8 were then solubilised in dichloromethane 

and slowly added to a highly diluted solution of potassium hydroxide in methanol to afford the 

cyclophane derivative 9 with a very good yield of 89%. It is noteworthy that the high dilution 

parameter is very important in order to limit unwanted polymerisation side-reactions of the reactants, 

as represented in Figure 95. 

 

Figure 95: Exemples of oligomer by-products possibly formed during the reaction of cyclisation 

Several attempts of Sonogashira coupling were then carried on the cyclophane 9 and TMSA by using 

the usual conditions (palladium catalyst (Pd(PPh3)2Cl2) and copper iodide in triethylamine) to prepare 

the derivative 10, as depicted in Figure 96. However, even by adding toluene to increase the solubility 

of the starting materials, the yield of the reaction never went above 10%, and the cyclophane 

derivative 10 could not be separated from the mono-substituted compound. 

 

Figure 96: Sonogashira coupling on the cyclophane 9 

As a conclusion, the Sonogashira coupling could not be efficiently performed either before or after the 

closure of the dtpCp. This reaction might still be improved by tuning the catalyst, but additional 

tedious tests would have been necessary to study the effects of other ligands. Thus, we decided to 

move to another strategy based on the preparation of the bis-thiol derivative from the compound 6, and 

the protection of the sulphur in order to perform the cross coupling.  
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3. Revenge of the thiol (Route 3) 

As the two first strategies were not working, we decided to try another pathway based on the 

insertion of the thiol functions on the bottom of our pillar. The sulphurs were then protected in order to 

achieve the Sonogashira coupling. Thus, the bis-thiol derivative 11 have been synthesised according to 

the previous procedure used to prepare 8: thiourea was first added on 6, then the intermediary salt was 

recovered and subsequently treated by potassium hydroxide and sulphuric acid in order to obtain the 

bis-thiol compound 11. The synthesis of 11, as well as the different tested protection reactions of the 

thiol units are represented in Figure 97.  

 
Figure 97: Synthesis of 11, and the four different attemps to protect the thiol units 

In this figure, four successful protections are presented using different groups: benzyl
139

 12, 

isopropyl
140

 13, methoxymethyl (MOM)
141

 14 and benzoyl groups
142

 15. Among those, benzyl was not 

considered as a good candidate because of the very low yield of reaction, and isopropyl was not 

selected either because it was impossible to cleave the function after protection. Thus, the next 

reactions were carried out with both MOM and benzoyl groups. 

a. Protection with the MOM group  

The MOM has been commonly used to protect alcohol functions, and then has been 

successfully adopted here for thiols. The protection was carried on 11 in 88% yield by using low-

valent titanium species prepared by addition of TiCl4 on metallic zinc in methoxymethyl ether to give 

the protected derivative 14 with a quantitative yield. The TMSA was then grafted on 14 by 

Sonogashira coupling as described earlier to form the derivative 16 (84% yield) and the trimethylsilyl 

groups were then removed by potassium fluoride to obtain the bis-alkyne 17 with a yield of 64%. The 
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second Sonogashira coupling of 17 and p-iodopyridine was then carried out and 18 was recovered in 

67% yield. The reaction pathway is reported in Figure 98. 

 
Figure 98: Reaction pathway using MOM as a protecting group 

The last key step before cyclisation was the deprotection of the MOM groups to obtain the bis-

thiol building block 19. According to the literature,
140

 the treatment of 18 with hydrochloric acid 2M in 

methanol at room temperature should lead to the thiol units. The expected mechanism of deprotection 

is described in Figure 99. 

 

Figure 99: Expected mechanism of deprotection of the building block 18 with hydrochloric acid and methanol 

However, despite the increase of temperature or acid concentration, the deprotection completely failed. 

Inspired by the deprotection of alcohol functions, several other reagents were tried like trifluoroacetic 

acid, boron trifluoride and hydrobromic acid in methanol or acetonitrile without any recovery of the 

thiol functions.
140

 As the sulphur atom is a less effective attractor than oxygen, we can suppose that the 

S-CH2-O moiety was less activated than O-CH2-O in the alcohol protected function, and thus was 

preventing the deprotection of the thiol. 

In conclusion, the MOM was not the best protection for the thiol group or our building block 19; we 

thus decided to change it for a benzoyl groupement. 

 

b. Protection with the benzoyl group 

The use of benzoyl as a protection group for thiol was first described by Fowelin et al. on 

anthracenethiol derivatives.
142 

The procedure was successfully adapted to our synthesis as depicted in 

Figure 100: the compound 11 was added to a solution of benzoyl chloride and pyridine in THF to 

obtain the bis-thioester 15 in 95% yield.    
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Figure 100: Reaction pathway using benzoyl as a protecting group 

The Sonogashira cross-coupling was then performed on 15 with TMSA to afford the derivative 20 in 

low yield: the best results were 31%, but most of the reactions were giving less than 10% yield. The 

deprotection was nonetheless performed with potassium fluoride to obtain the bis-alkyne 21 with the 

very good yield of 95%. Finally, the second Sonogashira coupling with p-iodopyridine gave the 

thioester 22 in 40% yield. The deprotection of 22 was then attempted with sodium methanolate to 

afford a low quantity of a red insoluble powder. Unfortunately, this red product could not be 

characterised by common spectroscopic techniques like NMR because of its absence of solubility in 

any solvent.  

In conclusion, the strategy of the thiol protection appeared as an unproductive way to prepare the 

building block 19. Thus we decided to come back to the first route to prepare the derivative 5, and 

tried several modifications to improve the low yield of the reaction. 

 

4. A new solvated hope (Route 4) 

As mentioned before, the first attempts to synthesise 5 were affording the desired compounds with 

erratic yields. The reaction was then performed in various conditions: changing the solvent from 

acetonitrile to chloroform or dichloromethane and thus modifying the temperature of the refluxing 

mixture, modulating the amount of NBS from 2 to 5 equivalents, switching from AIBN to BPO 

(dibenzoylperoxide) as radical initiator or tuning the duration of the reaction... Unfortunetly, no 

relevant improvement was observed: the yields were still low and the purification still painful because 

of the presence of different by-products. Finally, the real breakthrough occurred by using carbon 

tetrachloride as solvent of the reaction and DBO as radical initiator. The CCl4 is commercially hard to 

obtain because of its high toxicity for the humans as much as for the environment, but it is also the 

solvent of choice for a reaction of bromination. Inspired by Hennrich et al.
143

, the reaction depicted in 

Figure 101 was carried out with a better yield (52 % versus 37 %). 
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Figure 101: Successful bromination of 5 with 52% yield. 

However, the reaction presented good yield for the three first attempts (above 40%), before backing 

down to 10% yield for the next ones. The first three reactions were carried out by using the carbon 

tetrachloride from an old container, while the next ones were using a newly ordered bottle. We thus 

assumed that over the years, part of the solvent evolved into Cl2 species which might have catalysed 

the reaction or prevented secondary reactions to occur.  

A solution of compounds 5 and 8 in dichloromethane was then slowly added to potassium hydroxide 

in methanol to afford the cyclophane 23 with a yield of 43%. It is interesting to note that two reactions 

were performed in the same reacting mixture: the cyclisation of the dtpCp and the deprotection of the 

alkyne units. Then, as displayed in Figure 102, the compound 23 was finally added to a mixture of p-

iodopyridine, Pd(PPh3)2Cl2 and copper iodide in diisopropylamine to carry out the Sonogashira 

coupling and afford the naked pillar NP in 44% yield.  

 

Figure 102: Final steps of the synthesis of the naked pillar NP 

The desired naked cyclophane was finally obtained in 4 steps with an overall yield of 9%. However, as 

previously discussed, the reaction of bromination is still giving irregular results. This overall yield can 

thus fluctuate from 2 to 9%. As a consequence, another pathway was proposed in order to increase and 

stabilise the efficiency of the synthetic route. 

 

5. The bromide strikes back (Route 5) 

This last synthetic part is focused on obtaining the cyclophane 23 with a better yield by increasing 

the efficiency of synthetic route toward the bis-brominated derivative 5. As depicted in Figure 103, we 

decided to start from the compound 6, and the benzylic positions were first protected with methoxy 

units. The reaction was carried out in methanol, and sodium methanolate was added on 6 to afford 24 

in quantitative yield. The Sonogashira coupling was then performed with the usual mixture of catalysts 

and TMSA to afford the protected derivative 25 in 84% yield.  

 
Figure 103: Protection of the benzylic position by adding methoxy units, and the following Sonogashira coupling 

The deprotection lately occurred by slowly adding boron tribromide (BBr3) to a solution of 25 in 

dichloromethane at 0°C.
144

 However, the BBr3 reagent was not only efficient in substituting the 

methoxy units to form 26, it also started to partially deprotect the TMS groups of the alkynes chains. 
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As a consequence, we decided to proceed to the deprotecting step directly on the crude. The reaction 

was carried out in a solution of potassium fluoride in methanol to afford the bis-alkyne 27 with an 

overall yield on the two reactions of 47%. The cyclisation was finally performed as usual by adding 

the bis-brominated compound 27 and the di-thiol 8 to a solution of potassium hydroxide to afford 23 

with a yield of 81%. These last few steps are represented in the following Figure 104. 

 

Figure 104: Synthesis of the cyclophane derivative 23 starting from 25 

The final Sonogashira coupling was then performed on the cyclophane building block 23 to conclude 

the synthesis of the naked cyclophane NP, as presented before (Figure 102).  

In conclusion, this new synthetic pathway successfully led to the final product NP with an overall 

yield of 8% for seven steps. The previous strategy was erratically affording NP with various global 

yields of 2 to 9% (depending on the quite uncertain success of the bromination step). Thus by using 

this novel and more reliable strategy, the synthesis of the final product in 8% yield was definitely 

insured. The synthesis of the functionalised cyclophane, so-called Janus Tecton, was then investigated. 

C. Synthesis of the Janus tecton 

                      
              

 

The synthesis of the naked pillar NP provided guidelines to develop the Janus Tecton‟s synthetic 

pathway. However, the incorporation of the active function atop of the cyclophane may alter the 

established course of the previous reactions. Thus, a new strategy was proposed where the first step 

consisted of synthesising a NP derivative which would allow the grafting of any desired active 

component. Then the second step was to prepare the fluorophore F able to react with the pillar. Finally, 

the third step was centred on the last reactions to synthesise and graft F to the cyclophane, and thus to 

obtain the Janus tecton JT.  

1. Return of the cyclophane 

Considering the structure of the NP, adding a bromide atom atop of the cyclophane would have 

perfectly fit with the syntheses previously develop. Moreover, it would have also authorised an 

organometallic cross-coupling to graft the active component. However, as detailed in the second 
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strategy above, couplings like Sonogashira‟s are not so effective on the dtpCp. As a consequence, an 

alternative pillar nsNP (not so Naked Pillar) was proposed, where the bromide atom is separated from 

the cyclophane by a spacer phenyl ring, as represented in Figure 105. 

 
Figure 105: Representation of the not so Naked Pillar (nsNP) 

The synthesis of nsNP is a 5 steps pathway starting with the palladium catalysed Suzuki-Miyaura 

cross-coupling between the 2-iodo-p-xylene and the 4-bromophenylboronic acid. The reaction was 

carried on in a solution of Pd(PPh3)2Cl2 and K2CO3 in a mixture of dioxane and water to afford 28 in 

94% yield. It is important to note that a precise equal amount of reactants is needed in order to avoid 

multiple Suzuki couplings on the bromide unit. A bromination reaction was then performed with NBS 

and AIBN in acetonitrile to obtain 29 in a surprisingly good yield of 90%: note that very few multi-

brominated by-products were recovered. Later on, the thiolation was carried out as usual by addition 

of thiourea in ethanol and then potassium hydroxide in water to afford 30 in 83% yield. These three 

first steps are presented in Figure 106. 

 

Figure 106: First steps towards the synthesis of the nsNP 

As depicted in Figure 107, the cyclisation of the cyclophane was achieved by slow addition of a 

solution of 27 and 30 in dichloromethane to a large volume of a potassium hydroxide solution in 

methanol to afford 31 in 60% yield. Finally, the Sonogashira cross-coupling between 31 and p-

iodopyridine was performed with the usual catalyst Pd(PPh3)2Cl2 and CuI in DiPA to afford nsNP in 

84% yield. It is important to note that both 31 and nsNP were obtained as a mixture of two structural 

isomers, the staggered (sta) and the eclipsed (ecl) derivatives. 

 

Figure 107: Final steps of the nsNP synthesis, obtained as a mixture of two structural isomers nsNP-sta and nsNP-ecl 
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The nsNP was mainly synthesised in very good yield. The next step consisted in preparing the active 

component with the right grafting function allowing Suzuki or Stille cross-coupling reactions with 

nsNP.  

2. The fluorescence awakens 

The target fluorophore was chosen according to recent article from the literature,
145

 and also 

from recent work in our lab. A benzothiadiazole derivative was thus chosen for its very small size 

which should prevent any perturbation of the underlying self-assembled network on surface. Moreover, 

despite its small size, it also presents an efficient fluorescence in the yellow area of the spectra.   

Two molecules were thus targeted: the model fluorophore F and its derivative Fp which corresponds 

to the precursor that will be grafted atop the cyclophane core of the nsNP; both molecules are 

represented in Figure 108. 

 

Figure 108: Representation of the fluorophore F and the fluorophore precursor Fp 

The preparation of the targeted fluorescent molecules was performed by using two similar and 

successful synthetic routes. As represented in Figure 109, the route A first consisted in a Williamson 

reaction between the p-bromophenol and the ethylhexylbromide in refluxing DMF. The addition of 

potassium carbonate afforded the derivative 32 with a yield of 77%. Later on, the bromide was 

substituted by a pinacolborane function by cross-coupling reaction, using a [1,1‟-

bis(diphenylphosphino)ferrocene]dichloropalladium (Pd(dppf)Cl2) catalyst in a solution of potassium 

acetate and bis(pinacolato)diboron in dry dioxane to afford the compound 33 with 86% yield. It is 

important to note that using a dry solvent is mandatory to avoid the homocoupling due to Suzuki 

cross-coupling between the reactant 32 and the product 33 during the preparation. The intermediate 33 

was then grafted on the dibromobenzothiadiazole 34 (prepared by brominating the commercial 

benzothiadiazole) by Suzuki coupling using PdCl2(PPh3)2 and potassium carbonate to afford the 

building block 35 in 76% yield.  

 
Figure 109: Synthetic route A 
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The Suzuki coupling leading to 35 was carefully carried out in order to avoid the functionalisation of 

both bromide units. After several attempts, the reaction was successfully carried out to obtain 35 with 

a yield of 76%.   

The route B was directly focused on the Suzuki cross coupling with the dibromobenzothiadiazole 34 

and p-hydroxyphenylboronic acid as depicted in Figure 110. The reaction was carried out using 

PdCl2(PPh3)2 and potassium carbonate to afford 36 with a yield of 59%. The Williamson reaction was 

then performed on 36 using the ethylhexylbromide and potassium carbonate in DMF. This reaction 

was tried several times before obtaining the derivative 35, the key parameter being the temperature: at 

room temperature the reaction was not happening, under reflux (Teb = 153 °C) the reactant 36 was 

decomposing. As a consequence, using DMF at 110°C led to 35 with a good yield of 76%.  

 

Figure 110: Synthetic route B 

The two synthetic pathways allowed to obtain the product 35 with overall yield of 50% for A (3 steps) 

and 45% for B (2 steps).  

However, the synthesis of the fluorophore F has not been performed yet, but a simple Suzuki coupling 

between 35 and phenylboronic acid should be carried out soon. Indeed, the synthon Fp was recently 

obtained in 88% yield by substituting the bromide unit of 35 with a pinacolborane with the same 

procedure as before (Pd(dppf)Cl2 and potassium acetate in dioxane), as displayed in Figure 111. 

 
Figure 111: Synthesis of the fluorophore precursor Fp 

Unfortunately, the final step consisting of grafting Fp on nsNP could not be performed yet because of 

time issues. Nonetheless, the final step being a common Suzuki cross-coupling, the reaction should be 

successful. The whole synthesis of the Janus tecton seems thus ready and will be finalised soon. 

 

To summarize this part, the pedestal and the naked pillar were successfully synthesised, according to 

the synthetic pathway represented Figure 112 (a and b, respectively). Moreover, the synthetic route 

towards the Janus tectons is now effective and ready to be ended, as depicted in the Figure 112c. The 

next part will thus be focused on the characterisation of the so-synthesised molecules P1 and NP. 
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Figure 112: Representation of the definitive synthetic pathways of the pedestal (a), the naked pillar (b) and the unfinished 

Janus tecton (c)  

b) 

c) 

a) 
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III. Characterisations 

 This third and last part will focus on the characterisation of the target molecules P1 and NP. 

On the one hand, the properties of these molecules were studied by various spectroscopic methods: 

NMR, IR, UV-vis and fluorimetry. On the other hand, further experiments were performed on surface 

by using different techniques of scanning probe microscopy (STM, AFM) in order to study the 

supramolecular self-assembly of the molecules on different substrates.  

A. Spectroscopic studies 

 

1. Nuclear Magnetic Resonance  

The NMR spectrum of P1 was then recorded in deuterated chloroform, as displayed in Figure 

113.  

 

Figure 113: NMR spectrum of the pedestal P1 in chloroform, on a 300 MHz spectrometer 

On this simple spectrum, in addition to the peak of the solvent at 7.26 ppm, four other signals are 

displayed. The first peak at 2.48 ppm integrating for 6 corresponds to the methyl groups 1. Then the 

singlet at 7.38 ppm and the doublet at 7.40 ppm correspond to the protons 2 and 3, respectively, both 

integrating for 6. Finally, the last doublet at 8.61 ppm is attributed to the 4 protons 4 close to the 

nitrogen and thus deshielded.  

The NMR spectrum of NP was then recorded in deuterated chloroform and is depicted in Figure 114. 

 
Figure 114: NMR spectrum of the pedestal NP in deuterated chloroform, on a 300MHz spectrometer 

4 

1 

1 

2 
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The attribution of the aromatic part of this spectrum was made easy by the previous study of the 

pedestal‟s NMR spectrum. Thus, the pyridine‟s protons 1 and 2 respectively correspond to the wide 

singlet at 8.69 ppm and to the doublet at 7.48 ppm, both integrating for four protons. Then the protons 

3 borne by the lower deck of the cyclophane are represented by a peak at 7.22 ppm, integrating for 2. 

Finally, 6, 6’, 7 and 7’ are attributed to the close pair of doublet with a chemical shift of 7.06 ppm 

integrating for 4 protons. These signals are undergoing a “roof-top effect” which indicates the second 

order coupling occurring between 6 and 6’, and between 7 and 7’. This slight coupling might occur 

because in each pair, one is located above the alkyne (6 and 7’) and the other above a simple proton (6’ 

and 7). As a consequence, the deshielding of the alkyne would slightly affect one of each pair, making 

them lightly different. A representation of the deshielding area of the alkyne is represented in Figure 

115. 

 

Figure 115: Deshielding effect of the alkyne unit in the naked pillar NP 

The attribution of the second part of the spectrum, concerning the CH2 protons of the cyclophane-

bridge, is entirely based on second order couplings. Four doublets with a roof-top shape can be 

observed at the chemical shifts of 4.32, 3.90, 3.85 and 3.70 ppm, integrating for 2 protons each. The 

protons 4’ and 5’ should thus be deshielded compared to their homologues 4 and 5. However, since 4’ 

is closer to the alkyne than 5’, the effect would be enhanced. As a consequence, 5 and 5’ are 

respectively attributed to the pair of doublets located at 3.85 and 3.90 ppm, 5’ being slightly more 

deshielded than 5. The protons 4 are the more shielded of all, and correspond to the doublet at 3.70 

ppm. Finally 4’, the most deshielded of all, is located at 4.32 ppm.  

 

2. Infra-red  

The infra-red analysis was then carried out on P1 at the solid state, in attenuated total reflectance mode 

(ATR); the spectrum is displayed in Figure 116. 
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Figure 116: Infra-red spectrum of P1 in ATR 
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In this spectrum, two main stretching bands are representative of the pedestal: ν = 2219 cm
-1

 

corresponds to the alkyne bonds stretching whereas ν = 1591 cm
-1

 is attributed to the C-N bond 

stretching in the pyridine units. 

The infra-red analysis was then carried out on the naked pillar NP at the solid state (ATR), and the 

spectrum is displayed in Figure 117. 
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Figure 117: Infra-red spectrum of NP in ATR 

In this spectrum, several stretching bands are representative of the naked pillar NP, such as ν = 2219 

cm
-1

 and ν = 1589 cm
-1

 which respectively correspond to the alkyne bonds and C-N bonds‟ stretching 

bands, respectively. The incorporation of the cyclophane core did not imply much changes in these 

stretching bands to compared to the pedestal (νalkyne = 2219 cm
-1

 and νC-N = 1589 cm
-1

). However, the 

bands representing the stretching of the Csp3-H bonds within the cyclophane bridge are clearly visible 

at ν = 2988 and 2899 cm
-1

. 

3. UV-Vis and fluorimetry 

Later on, the absorption spectra of the pedestal P1 and the naked pillar NP were recorded in 

dichloromethane as represented Figure 118. 
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Figure 118: Absorption spectra of P1 (a) and NP (b) in dichloromethane at different concentrations 
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In Figure 118a, the absorption spectra of P1 were measured at different concentrations in order to 

calculate the molar attenuation coefficient ε of this compound. The spectra presented four transition 

bands at 318, 331, 347 and 380 nm and the band at λmax = 331 nm was used to estimate the ε (35 500 

L.mol
-1

.cm
-1

). 

The Figure 118b presents the spectra of absorption at several concentration from 5.18 10
-5

 to 6.5 10
-6

 

mol.L
-1

. However, the maximum of absorption is not constant over the concentration and a redshift 

can be observed from 333 nm (at 5.18 10
-5

 M) to 345 nm (at 1.94 10
-5

 and lower concentrations). An 

aggregation thus takes place at concentrations above 1.94 10
-5 

M. The molar attenuation coefficient 

was then calculated at λmax = 345 nm from the low concentrations to give ε = 18 000 L.mol
-1

.cm
-1

.  

The incorporation of the cyclophane core to the pedestal seems to reduce the molar attenuation 

coefficient from 35 500 to 18 000 L.mol
-1

.cm
-1 

without any significant effects on the maxima of 

absorption value (λmax
P1

 = 331 nm and λmax
NP

 = 345 nm).  

The emission spectra of both pedestal P1 and naked pillar NP were then recorded, as represented in 

the Figure 119, along with the absorption spectra. 
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Figure 119: Absorption and emission spectra of P1 (a) and NP (b) in dichloromethane 

As displayed in the Figure 119a, the pedestal P1 emits in blue with a λmax of emission at 362 nm. The 

Stoke‟s shift value (difference between maxima of emission and absorption) was thus 31 nm (1100 

cm
-1

). 

The emission spectrum of the naked pillar NP was measured at low concentration (5.9 10
-6

 M) in order 

to avoid any concentration effects (Figure 119b). The fluorescence of the naked pillar is redshifted 

from the pedestal (λmax = 378 nm) and emits at λmax = 434 nm. This redshift is in accordance with the 

increase of conjugation due to the cyclophane core. However, the Stokes shift value of 89 nm (5900 

cm
-1

) was calculated, which indicates a higher degree or reorganisation of the naked pillar NP‟s 

excited state in comparison with that of the pedestal P1 (1100 cm
-1

). 

 a. Concentration-dependent emission of NP 

Due to concentration effects previously observed on the absorption spectra of the naked pillar 

NP, additional concentration-dependent fluorescence studies were also carried out, as displayed in 

Figure 120. 

a) b) 
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Figure 120: a) Spectra of emission from 9.40 10-5 to 4.7 10-5 mol.L-1, b) Spectra of emission from 4.70 10-5 to 2.2 10-6 mol.L-

1. The peak at 620 nm corresponds to the second harmonic of excitation  

In the first series of spectra ranging from 9.40 10
-5

 to 4.7 10
-5

 M and depicted in Figure 120a, the 

dilution induced an increase of the intensity of fluorescence at the wavelength of 405 nm while an 

additional band was observed at 770 nm. Decreasing the concentration reduced the emission intensity 

and redshifted the maximum of emission from 404 to 434 nm where it stabilised for 5.9 10
-6

 M and 

lower concentrations, as displayed in the Figure 120b. Moreover, the dilution also impacted on the 

second band of emission which was diminished until full disappearance at the same concentration of 

5.9 10
-6

 M.  

This behaviour suggests that at the highest concentrations, the spectra were measured on the 

aggregated molecules: the proximity of the molecules would then induce a blueshift of the absorption. 

By diluting, the concentration quenching is reduced and the fluorescence enhanced (Figure 120a). 

Then, the dilution slowly diminishes the aggregation and thus the spectra are shifted toward the 

spectrum of the isolated molecule. At 5.9 10
-6

 M (Figure 120b), the molecule could be considered as 

isolated, and the intensity decreases with the concentration at the same maximum of emission λ = 434 

nm.  

The second emission has not been clearly identified: it can be attributed either to the formation of an 

excimer, slowly disappearing with the dilution, or to an artefact of the spectrometer because it 

corresponds to ca. twice the wavelength of the main emission. Anyhow, the aggregation would thus 

occurred for concentrations higher than 5.9 10
-6

 M which is in accordance with the previously values 

calculated from the absorption studies (6.5 10
-6

 M). 

b.  pH-dependent absorption and emission of P1 

The pyridine units are commonly used as bases in organic reactions, thus addition of acid in 

the medium should protonate the pyridines and thus modify the absorption and emission spectra. A 

pH-dependent study was carried out (in dichloromethane) by successive additions of a solution of 

trifluoroacetic acid (TFA) in dichloromethane. Each addition corresponded to 0.1 equivalent of P1 in 

the quartz cell, and the results are represented in Figure 121. 
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Figure 121: pH-dependent study of P1 with (a) the spectra of absorption from the addition of 0 to 1 equivalent of TFA and 

(b) from 1 to 2 equivalents. (c) represents the emission spectra from the addition of 0 to 1 equivalent of TFA, and (d) from 2 

to 20 equivalents 

The addition of acid in the solution drastically increased the absorption band intensity at 380 nm and 

also reduced the two bands at 318 and 331 nm (Figure 121a) with the isobestic point located at 350 nm. 

Then, the increasing addition of acid allowed observing a slight blueshift of the absorption maximum 

from 380 to 360 nm. This hypsochromic shift was attributed to the second protonation (Figure 121b). 

In the Figure 121c, the addition of acid quenched the emission of the neutral pedestal at both 

wavelengths 362 and 378 nm in favour of a new redshifted band at λ = 439 nm corresponding to the 

molecule mono-protonated. In this case, the isobestic point was located at λ = 419 nm. In accordance 

with the study on the absorption, the Figure 121d presents the apparition of a bis-protonated specie 

with a slight blueshift of the maxima of emission from 439 to 427 nm.   

As expected, the protonation of the pyridine units have a strong impact on the absorption and emission 

spectra of the molecule. Later on, it could be interesting to study the effect of such protonation on 

surface at the liquid/solid interface. The addition of acid might favour or modify the supramolecular 

self-assembly of the pedestal P1. 

 

4. Study of the pedestal P1 as part of a supramolecular system 

As mentioned before, the aim of this work was to create self-assemblies based on the co-

adsorption of P1 with different additives, depending of the targeted interaction. Therefore, preliminary 

studies on bulk materials were performed. The hydrogen bonding (H-bond) was expected with the 

terephtalic acid (TPA) while the coordination was tried with the bis(benzonitrile) palladium (II) 

a) 

c) 
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chloride (Pd
II
). Finally, the attempts of halogen bonding (X-bond) were performed using 1,4-

diiodobenzene (IPhI). All three expected supramolecular entities are represented in Figure 122 along 

with the predicted supramolecular bonds with the pedestal P1.  

 

Figure 122: Expected supramolecular bonds between the pedestal P1 and a) terephtalic acid TPA (H-bond), b) 

bis(benzonitrile)PdCl2 PdII (coordination bond) and c) 1,4-diiodobenzene IPhI (X-bond) 

The synthesis of each supramolecular assembly was performed using equimolar quantities of both 

reactants. P1 and TPA were heated under reflux for 30 minutes in tetrahydrofuran (THF). The 

solution was then evaporated in vacuo to directly afford the supramolecular entity P1-TPA. The 

preparation of P1-Pd
II

 was carried out by simple addition of Pd
II
 to a solution of P1 in 

dichloromethane. The immediate precipitation of the desired complex allowed recovering the product 

by simple filtration. Finally, the P1-IPhI was obtained by simple evaporation in vacuo of a solution of 

dichloromethane containing both precursors.  

Unfortunately, the common characterisation of the supramolecular assemblies by NMR could not be 

performed: P1 and TPA were only both soluble in polar solvent such as THF or methanol, which 

favoured the breaking of the H-bonds. The coordination complex P1-Pd
II
 was completely insoluble 

which limited the choice of characterisation techniques. Finally, even if P1-IPhI was easily 

solubilised in most common solvent, the pyridine unit is not a very strong acceptor of X-bond and thus 

hardly detected by NMR.
146

 As a consequence, the simplest way to study the supramolecular bonds 

was to carry out the Infra-red analyses on bulk materials by ATR.  

The IR spectra were then recorded as reported in Figure 123 along with the spectrum of the pedestal 

P1 alone.  
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Figure 123: a) Infra-red spectra of P1, P1-PdII, P1-TPA and P1-IPhI, and b) zoom in on the C-N bond stretching 

In this figure, the peak representative of the C-N stretching (1519 cm
-1

 for P1) within the pyridine unit 

is shifted in the different supramolecular assemblies. Thus, as described for different coordination 
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complexes in the literature,
147

 it was possible to observe and measure the relative strength of the 

supramolecular bonds in each system. The values of the C-N stretching for each supramolecular entity 

are reported in the Table 1. 

 P1 P1-Pd
II
 P1-TPA P1-IPhI 

ν C-N  (cm
-1

) 1591 1609 1591 1589 

Table 1: Values of the C-N bond stretching for each supramolecular system  

The stretching bond value of the C-N bond is shifted of 18 cm
-1 

in the P1-Pd
II

 compared to the 

pedestal alone. We can thus conclude to the effective formation of the coordination bonds. However, 

considering the weak evolution of the stretching bond value in P1-IPhI, the halogen bonding is only 

suspected. Unfortunately, the hydrogen bond in P1-TPA could not be observed. There are two 

possible explanations for this absence of shift: first, the procedure to prepare the compound may not 

be efficient and thus the expected supramolecular product was not obtained. Second, the pedestal may 

naturally display hydrogen bonds between the pyridine unit and the methyl group of its p-xylene core. 

As a consequence, the pedestal alone could already present the signal of a hydrogen bonded pyridine. 

This second hypothesis would be in accordance with the negative shift for the halogen bond (weaker 

than the H-bond) and the positive shift of the coordination bond (stronger than the H-bond).  

The observation of the supramolecular entities at the liquid/solid interface should be carried out by 

STM in order to confirm the presence of hydrogen-bonding in P1-TPA and also to observe the 

potential self-assembly of P1-Pd
II

 and P1-IPhI on surface. 

 

B. Scanning probe microscopy 

 

1. Self-assembly of the pedestal P1 on HOPG 

 

The scanning tunneling microscopy (STM) was first used to observe the self-assembly of the 

pedestal P1 at the liquid/solid interface. The experiments were performed in collaboration with Dr. 

Fabrice CHARRA at the CEA of Saclay. A solution of P1 was first prepared at a concentration of 10
-3

 

mol.L
-1

 and was then deposited on the surface. The sample was heated at 80 °C for ten minutes and 

then a drop of phenyloctane was added onto the dried sample before starting the experiments. This last 

drop of phenyloctane was necessary to keep the tip of the microscope inside the solution and avoid its 

oxidation by the air. A clear picture of the self-assembly on surface is depicted in Figure 124. 

 

 

Figure 124: STM pictures of P1 on HOPG. a) 50 x 70 nm, Vbias= 670 mV, I = 14 pA, b) 25 x 15 nm, Vbias= 1370 mV, I = 14 

pA 

a) b) 
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The Figure 124a shows ordered 2D domains formed by assembly of the pedestal P1. The bright dots 

represent the molecules organised as quasi-square unit cells. The lattice could be observed more 

accurately by zooming on the monolayer as depicted by Figure 124b. The unit cell dimensions are a = 

2.1 nm, b = 2.2 nm and the angle α = 94°.  

In Figure 125a, the space-filling molecular model of P1 self-assembly is stacked to the previous STM 

image in order to have a better view of molecular organisation on HOPG. In contrast, the Figure 125b 

represents the molecular structures superimposed on the graphite‟s first layer. 

              

Figure 125: a) Space-filling molecular model of P1 self-assembly superimpose to the STM image, and b) representation of 

the pedestal‟s network on HOPG 

As presented by the Figure 125a, the horizontal pedestals are easily detectable as bright yellow dot. 

However, the vertical molecules are almost indiscernible. This phenomenon can be explained by 

looking at the Figure 125b where the graphite structure is represented below the network of P1. The 

horizontal molecules are well stacked on the underlying structure in contrast with the vertical ones 

which seem to be adsorbed without any special interactions with the surface. As a consequence, when 

the tip of the STM scanned the surface, the horizontal molecules were conducting the current in a 

better manner than their vertical homologues and thus the signal was stronger, as proven by the 

brightness of the dots.  

Considering the organised system absorbed on the surface, the network seems to be driven by 

hydrogen bonds between the pyridine units and the methyl groups on the core of the molecule. 

Moreover, due to the squared-lattice, the 2D-structure does not follow the hexagonal underlying 

network of the graphite. This suggests that the self-assembly is stable enough to occur without 

additional assistance of the substrate. This type of behaviour has already been observed in other type 

of molecules such as the squaraines, mentioned before (Chapter 1, Figure 37).
62

 These molecules 

represented in Figure 126a are known to self-assemble in the same manner due to strong hydrogen 

bonds between its proton-donor extremities and its negatively charged core. The model of the 2D 

network based on squaraines is depicted in Figure 126b. 

a) b) 
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a) b) 

             

Figure 126: a) Molecular structure of the dimethyl hydroxylated squaraines and b) Molecular model of the herringbone 

structure 

The pedestal P1 is thus self-assembling as 2D-monolayered domains on HOPG by hydrogen bonding 

without any assistance of the substrate. This behaviour indicates the presence of strong intermolecular 

interactions and thus the self-assembly pattern might not be affected by the substrate.  

Later on, the supramolecular entity P1-Pd
II
, previously studied by infra-red spectroscopy, was 

deposited on HOPG. However, the necessity of solubilising the molecules before deposition on 

surface has complicated the preparation of the samples. The on-surface complexation was then 

attempted by the successive additions of P1 and then Pd
II
, separately dissolve in dichloromethane. 

However, until now, no clear picture of 2D-monolayers could be recovered. 

 

2. Self-assembly of the naked pillar NP on Au(111) 

Several attempts of supramolecular self-assembly of the naked pillar NP were performed on 

Au(111) surface. Based on the previous results using the pedestal P1, the concentration of the NP 

solution was precisely calculated for one drop to correspond to a monolayer of molecules on surface 

(1.8 10
-6

 M). We have then carried out preliminary studies of the self-assembly by Atomic Force 

Microscopy (AFM) in collaboration with Dr. Imad Arfaoui in the Monaris laboratory (UPMC).  

The AFM studies are commonly carried out to observe the topography of a substrate. In the case of 

organic molecules, an ultra-thin tip had to be used in order to detect such fragile layer ontop of the 

Au(111) substrate. The first picture so-obtained are represented in Figure 127. 

        

Figure 127: AFM picture of a) the Au(111) surface and b) the same surface after deposition of the NP solution using an 

ultra-thin tip (65 kHz, 0.5 N/m). 

a) b) 
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The Figure 127a depicts the Au(111) surface before deposition of the organic layer. The resolution 

allows observing the different mono-atomic layer terraces of the substrate. On the second figure, the 

same substrate was imaged after deposition of the NP layer. The topography of the surface drastically 

changes and the terraces are no longer observable. The layer of naked pillar is definitely adsorbed on 

the surface but the self-assembly is hardly observable. The black square drawn on the Figure 127b 

presents some parallel lines which could not be attributed to the underlying substrate. Moreover, the 

height of these lines reaches 0.4 Å, which corresponds to the height of the cyclophane core (0.3-0.4 Å). 

The resolution of the AFM was not high enough to observe these objects at the atomic scale. However, 

these images are consistent with the presence of a supramolecular self-assembly on Au(111). 

Additional studies by STM will be carried out to confirm this hypothesis.  
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Conclusion 

 

In this chapter, we designed and synthesised new molecular architectures based on the 3D 

Janus tecton concept, suitable for self-assembly on surface by supramolecular interactions such as 

coordination, halogen bond or hydrogen bond. We proposed three different pyridyl end-capped 

molecules: the pedestal P1, the pedestal incorporating a cyclophane core NP and the Janus tecton JT 

incorporating an active unit at the upper deck of the cyclophane. After the attempt of several synthetic 

routes, the pedestal P1 and the naked pillar NP were finally obtained in four and nine steps with an 

overall yield of 71% and 8%, respectively. The synthesis of the Janus tecton JT could not be achieved 

in time to report the final step which will be carried out soon. 

The pedestal P1 was then characterised by NMR and infra-red spectroscopies, and the absorption and 

emission properties were then studied. The maxima of absorption and emission were measured at 331 

nm and 362 nm, respectively. The pH-dependent absorption and emission were also studied on the 

pedestal. The first protonation of the pyridine unit could be easily observed as a redshift of the maxima 

of the absorption (331 → 380 nm) and the emission (362 → 439 nm) with an isobestic point a 350 and 

419 nm, respectively. The second protonation was then detected as a slight blueshift of the absorption 

(380 → 360 nm) and the emission (439 → 427 nm) but the isobestic point could not be accurately 

estimated.  

The complexation of P1 with complementary entities (palladium II dichloride, terephtalic acid and 

1,4-diodobenzene) to form supramolecular network was also investigated by infrared spectroscopy in 

solid state. As a conclusion, the coordination with Pd
II

 was observed by as strong shift of the C-N 

bond stretching of the pyridine unit compared to the pedestal alone (1591→1609 cm
-1

). The halogen 

bond interactions with 1,4-diiodobenzene was slightly observed (1591→1589 cm
-1

) which would be 

consistent with the very weak character of such bond. Finally no shift of the stretching bond could be 

observed from the hydrogen-bond, which would imply the absence of such supramolecular 

interactions or more probably that the pedestal already makes hydrogen bonds with itself in solid state.   

The naked pillar NP was also studied by NMR and infra-red spectroscopies. The NMR studies 

presented an interesting deshielding of the protons located directly above the alkyne groups on the 

upper deck of the cyclophane core. The absorption and emission spectra of NP presented the maxima 

at 345 and 434 nm, respectively. However, by increasing the concentration, and aggregation induced 

hypsochromic shift of the maxima of absorption (345→333 nm) and emission (434→405 nm) was 

observed, as well as an additional emission band at 770nm attributed the emission of an excimer of NP.  

Finally, different attempts of supramolecular self-assemblies were carried out on surface. The 

behaviour of the pedestal P1 was first investigated by STM at the liquid/solid interface. The 

arrangement of the molecules on HOPG presented a quasi-square lattice (a = 2.1 nm, b = 2.2 nm, α = 

94°) self-assembled by hydrogen bonds between the pyridine unit and the methyl groups borne by the 

p-xylene core. The quasi-square lattice was indicating strong intermolecular interactions between the 

molecules P1 leading to a supramolecular self-assembly independent of the underlying HOPG 

structure.  

Second, the naked pillar NP was deposited on gold substrate (Au(111)) and some preliminary 

observation were performed by AFM. The supramolecular self-assembly could be assumed by 

meticulous study of the images and the observation of small domains of long parallel lines.  
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To conclude, the first results of self-assembly on surface of both pedestal P1 and naked pillar NP on 

HOPG and Au(111), respectively, are encouraging. We are thus confident that the future Janus tecton 

JT might also self-assemble on the same substrates.  

In the perspective of future work, the synthesis of both naked pillar NP and Janus tecton JT allows the 

easy tuning of the function responsible of the self-assembly. The pyridine units could therefore be 

replaced by a benzoic acid derivative for example. The main objective of such replacement would be 

the co-adsorption of both acid- and pyridine-derivated Janus tectons, leading to a well-defined 2D-

alternating copolymer on surface. Then, the grafting of electron-donor and acceptor groups atop of the 

pyridine- and acid-derivatives, respectively, would allow the well-defined alternation of donor and 

acceptor groups upon the surface, as represented in Figure 128. Surface quenching being limited by 

the design of the Janus tectons, the electronic properties of such copolymers could be studied, like on-

surface intermolecular charge transfer.  

 

Figure 128: Towards well-defined alternation of donor/acceptor (D/A) groups upon surface 
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CHAPTER 3: 

TOWARD CYCLOPHANE-BASED TADF MATERIALS  

As previously mentioned, the TADF concept aims at enhancing the electroluminescence of a 

molecule by harvesting both singlet and triplet excitons (Chapter 1, Figure 71). This phenomenon may 

occur if two main prerequisites are gathered: a high photoluminescence quantum yield (PLQY) and a 

low electronic gap between first excited singlet and triplet state (ΔEST < 0.4 eV). These conditions are 

usually fulfilled by using finely tuned donor-acceptor molecules where the overlap of the HOMO and 

LUMO is reduced by separating the electron-donor from the acceptor of the molecule. However, the 

low overlap of the frontier orbitals contributes to lower the oscillator strength f of the absorption 

transition, leading to an ineffective absorption and thus to a low brightness (defined as the product of 

the absorption capability by the PLQY). As a consequence, finely tuning the molecular structure of the 

TADF emitter is required in order to have a balance between high PLQY and low ΔEST. This objective 

is usually achieved by using different structural approaches for the design of molecules; for example 

the twist of the carbazolyl units in the multi-carbazolyl dicyanobenzene of Uoyama et al.
16

, or the ζ-

bond in the spirobifluorene of Nakagawa et al.
17

, both represented in Figure 129.  

 

 

Figure 129: Representation of the molecular structure of Uoyama16 (a) and Nakagawa17 (b) TADF molecules 

 

In this context, we propose to test the cyclophane as key unit to induce small energy gap between 

singlet and triplet states in donor-acceptor molecules to try to obtain TADF property: indeed, our 

previous work on surface demonstrated the effective decoupling of one deck of the cyclophane from 

the other (Chapter 1, Figure 59) while other articles from the literature illustrate through-space 

conjugation between the two phenyls (Figure 18). Thus, by grafting donor and acceptor units on 

different decks of the cyclophane, we expected to separate HOMO and LUMO while maintaining a 

slight conjugation between the two entities through the cyclophane unit. The design of the target 

molecule has been first intensively studied by theoretical calculations by tuning the nature of the 

electron-donor and acceptor in order to reach the lowest theoretical ΔEST. One of the best candidates 

was then chosen as the emitter E depicted in Figure 130a. One deck of the cyclophane core is bearing 

the donor moiety (ditolylphenylamine unit) whilst the opposite deck bears the nitrile functional groups 

acting as acceptors. In this molecule, the frontier orbitals (HOMO and LUMO) are efficiently 

separated as represented by the Figure 130b. 

 

a) b) 
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Figure 130: Structure of the emitter E with its calculated HOMO and LUMO representations 

 

From these structures a high reverse inter-system crossing (RISC) was expected because of the very 

low ΔEST (estimated at 0.02 eV). The full synthetic pathway is developed in the first part of this 

chapter. Then, the second part describes the characterisations (NMR, X-ray and photophysics studies) 

and the theoretical calculations carried out on the molecule.  

  

a) 

b) 
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I. Design and synthesis 

The synthesis of the emitter E has not been straightforward: several synthetic pathways were 

attempted before finally succeeding. The chemistry routes can be regarded as two main strategies A 

and B detailed in the following pages: the first one was using palladium cross-coupling catalyses on 

different synthons in order to graft the donor moiety on the top of the cyclophane core. The second 

strategy consisted in playing with halogen substituents (fluoride, bromide and iodide) to attach the 

donor unit on the rest of the molecule. Both strategies are depicted in Figure 131. 

 

Figure 131: Retrosynthetic pathways towards the emitter E (Y= Br or SnBu3, X= I, Br, or F, Z= Br, SnBu3 or B(OH)2)  

 

Strategy A. Palladium forever 

This first strategy can be divided in two parts: on one hand, the synthesis of the cyclophane 

core and in a second stage the use of palladium cross-coupling reactions to make the donor moiety and 

to finally graft it onto the core to form the target emitter E. Following the route A, the synthetic 

pathway towards the desired cyclophane core can be described by a succession of four steps: the 

preparation of the lower deck, then the upper deck before closing the cyclophane, and finally the 

synthesis of the electron-donor moiety and its grafting to the rest of the molecule.    

1. Synthesis of the lower deck building block 

The synthesis of the lower deck started by the cyanation of the 1.4-dibromo-p-xylene with copper 

cyanide in refluxing DMF, as represented in Figure 132.
148

 Iron trichloride in diluted hydrochloric acid 

was then added to quench any trace of copper cyanide. Later on, we first followed the procedure 

described in the literature consisting in a painful extraction of the compound with ethyl acetate and a 

washing with water before purification by chromatography to afford the compound 37 in 30 to 50% 

yield. However, simply pouring the solution into a large amount of water was enough to make the 

desired compound to precipitate. The mixture was thus filtered off, and the crude solubilised in 

dichloromethane and washed with water to afford 37 in 91% yield.  
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The next step depicted in the same figure was targeting the bis-brominated derivative 38. As studied 

by Huang et al., this reaction is known to give a mixture of the mono-, bis-, and tris- brominated 

derivatives in various yields and hard to separate.
149

  

 

Figure 132: Synthesis of the lower deck 38, with the by-products of the bromination of 37 by Huang et al. 

According to Huang and co-workers, the desired bis-brominated compound was obtained with a 

HPLC yield of 30%, in the best conditions depicted in the first line of the following Table 2. However, 

after purification by chromatography, 38 was isolated in 10 to 20% yield. Thus, several conditions 

were tried in order to optimise the efficiency of the reaction. The results of the conditions screening 

are summarise in the Table 2. 

Bromide 

source 

Number of 

equivalents 

Assistant of 

bromination 

Percentage 

of assistant 
Solvent Conditions Yield (%) 

NBS 2.1 BPO 5 CCl4 Reflux 10-20 

NBS 2.5 to 5 AIBN 5-10 CHCl3 or CH3CN Reflux 0 to 40 

NBS 2,2 TiCl4 10 to 80 CH2Cl2 Reflux 0 to 4 

NBS 2.5+2.5 - - CHCl3 Reflux 20 

Br2 5 to 12 - - 1,2,4-trichlorobenzene Reflux 0 to 20 

NBS 2.5 AIBN 5 CHCl3 UV 10 

NBS 2.5 - - CHCl3 UV 6 to 37 

NBS 2+1.5 - - CHCl3 UV 14 to 23 

NBS 2.5+2.5 - - CHCl3 UV 10 to 52 

Table 2: Reaction conditions of the bromination of 37 into 38 

In this table, most reactions were carried out using NBS as source of bromides because pure bromine 

has never given any viable results. The NBS amount was either directly added when the reaction was 

initiated, or in two small portions at the beginning and in the middle of the reaction. Some assistant of 

bromination were first used like AIBN, BPO (benzoyl peroxide) or TiCl4 but it seemed that the NBS 

did not need any additional activation: the reflux or the UV radiations were enough.  

In conclusion, the highest yields were obtained in a sealed Schlenk tube under UV, using 37 in 

chloroform without radical initiator and by introducing NBS at the beginning and in the middle of the 

1 hour-reaction under UV irradiation. 38 was then recovered in variable yields, from 10 to 52%; by 

this method, higher but irregular yields were obtained but this new pathway was also affording an 

additional tetrabromo-substituted by-product. Nevertheless, careful chromatography purification 

afforded the pure product 38 and thus the next steps could be carried out. 
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The third and last step of synthesis of the lower deck of E was the thiolation. The reaction was 

performed as previously mentioned by using thiourea, then potassium hydroxide and sulphuric acid to 

afford 39 in 90 % yield, as depicted in Figure 133. However the extremely low solubility of 39 made 

any further reaction difficult to carry on, thus it was decided to mainly use the derivative 38 to form 

the cyclophane with the thiol derivative of the upper deck yet to synthesise.  

 

Figure 133: Synthesis of 39 

2. Synthesis of the upper deck building block and cyclophane formation 

The synthetic route for the preparation of the upper deck was using classic reactions 

previously developed: first the bromination with NBS and AIBN in refluxing acetonitrile affording 40 

in 72% yield, and then the thiolation with thiourea and potassium hydroxide giving the bis-thiol 41 in 

50% yield. These two reaction steps are depicted in Figure 134. 

 
Figure 134: Synthesis of the upper deck of the cyclophane core 

The cyclophane is then obtained by adding dropwise the bis-brominated compound 38 and the bis-

thiol derivative 41 into a large volume of a solution of potassium hydroxide in methanol to afford the 

cyclophane 42 as a mixture of two structural isomers (staggered 42-sta and eclipsed 42-ecl) in 82 % 

yield, as represented in Figure 135. The cyclophane 42 was finally attacked at low temperature by n-

butyl lithium followed by tributyltin chloride to afford 43 (sta and ecl). These tin-derivatives will be 

useful to try the palladium catalysed Stille reaction. As the products were used for the next step 

without further purification, the yield was not calculated but estimated to be quantitative. 

 

Figure 135: Cyclisation of the cyclophane 42, and preparation of the tributyltin derivative 43. (only the staggered isomers are 

represented) 

The next steps concern the synthesis of first the ditolylphenylamine donor and then the final grafting 

on the cyclophane previously synthesised. These reactions were carried out by organometallic 

couplings using copper chloride or palladium
 
(II) derivatives as catalysts.  
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3. Synthesis of the electron-donor ditolylphenylamine building block 

As previously mentioned in the Chapter 1, the reactivity of the cyclophane derivatives is 

reduced by the steric hindrance of the benzene rings π-stacking. As a consequence, several donor units 

were synthesised in order to investigate different synthetic pathway (Ullmann, Still and Suzuki 

couplings) towards the final molecule E.  

The first synthons was prepared from ditolylamine and 1-bromo-4-iodobenzene by using a copper-

phenanthroline catalyst and potassium hydroxide in a Ullmann-type reaction to afford the brominated 

amine 44 (67% yield).  Then, the treatment of 34 by n-butyl lithium and tributyltin chloride afforded 

the stannane derivative 45 in quantitative yield, as presented in Figure 136. Finally, the boronic acid 

synthon 46 was synthesised from ditolylamine and p-iodophenylboronic acid once again by Ullmann-

type reaction in 25% yield.   

 
Figure 136: Preparation of the different electron-donor units 44, 45 and 46  

4. Disappointing cross-couplings 

Once the last synthons were prepared, we tried to couple them in order to obtain E. The 

different tested cross-coupling reactions are summarised in Figure 137. 

 

Figure 137: Palladium catalysed cross-coupling toward E (only the staggered isomers of E, 42 and 43 are represented) 
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The reaction of Stille was first tried between the derivatives 42 and 45 using PdCl2(PPh3)2 or 

Pd(OAc)2 + PPh3 as catalyst in THF or toluene without any success: thin layer chromatography was 

showing rainbows of fluorescent products, but the 
1
H NMR analyses were not giving any clear 

information about the structure of the so-obtained molecules. The only identified compound recovered 

was the product of homocoupling of the ditolylphenylamine represented in Figure 138. 

 
Figure 138: Homocoupling product of the Stille reaction 

The second coupling, once again of Stille type, between 43 and 44 showed equivalent results: 

numerous fluorescent products, but in too little quantity to really characterise them. However, some 

reactant 44 was recovered after purification by chromatography.  

Finally, the Suzuki coupling of 42 and 46 in a mixture of dioxane and water allowed us only to recover 

half of the reactant 42 introduced for the reaction. 

To conclude, what was proven in the Chapter 2 is also confirmed here: the cyclophane derivatives are 

not good candidates for direct organometallic couplings. Thus, a second route was proposed in order 

to avoid doing cross-coupling reactions directly on the upper deck of the molecule.  

 

Strategy B. The halogens game 

As introduced above in the retrosynthetic scheme in Figure 131, this strategy aims at removing 

the reactive site from the upper deck by inserting the phenyl spacer before finally grafting the 

ditolylamine on the molecule. This final step could be performed using several reactions: nucleophilic 

aromatic substitution, Ullmann-type reaction or palladium-catalysed Buchwald-Hartwig coupling. One 

halogen derivative was thus chosen according to the targeted reaction, as described in the following 

parts.  

 

1. Good old fashioned fluoride 

Using the nucleophilic aromatic substitution reaction, some TADF-molecules were 

synthesised by direct attack of the electron-donor amines on the molecule‟s core substituted by 

fluorides.
16

 The same procedure was thus attempted to obtain the target molecule E. Therefore the 

synthesis of the upper deck had to be modified from the beginning to introduce the fluorophenyl unit 

as presented in Figure 139. 

The compound 47 was first obtained in quantitative yield by Suzuki coupling between 2-bromo-p-

xylene and p-fluorophenylboronic acid using PdCl2(PPh3)2 as catalyst. The bromination of 47 was then 

carried out in acetonitrile using NBS and AIBN to afford 48 in 66% yield. Later on, the thiolation was 

performed as usual, using thiourea, potassium hydroxide and diluted sulphuric acid to afford the bis-

thiol 49 in 73% yield.  Finally, 38 and 49 were dissolved in dichloromethane and slowly added to a 

large volume of potassium hydroxide in methanol to afford the cyclophane 50 as a mixture of two 

inseparable positional isomers 50-sta (staggered) and 50-ecl (eclipsed) in 52% yield.  
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Figure 139: Synthesis of the cyclophane 50 (only the staggered isomer of 50 is represented) 

Finally, the compounds 50 (sta and ecl) were added to a solution of ditolylamine and sodium hydride 

(NaH) in dimethylformamide, as depicted in Figure 140. However, no trace of the cyclophanes 50 or 

the target emitter E was observed at the end of the reaction. We thus concluded that the cyclophane 

may not be able to endure such aggressive environment of NaH in solution. 

 
Figure 140: Final step: nucleophilic aromatic substitution on the cyclophane 50 (only the staggered isomers of 50 and E are 

represented) 

As the nucleophilic aromatic substitution seemed not effective enough, another pathway was proposed 

by using an Ullmann-type reaction, as described in the next part. 

2. Iodine, you’re my best friend 

The Ullmann-type coupling was already successfully used in the first strategy (preparation of 

44 and 46, Figure 136): it consists of the coupling between an aromatic derivative bearing a halogen 

(commonly iodide) and an amine, catalysed by copper (I) (commonly copper chloride). Thus the 

synthesis of the cyclophane derivative similar to 50, and bearing an iodide instead of a fluoride, was 

tested in order to increase the chances of success of the Ullmann-type reaction.  

However, grafting the phenyliodide instead of phenylbromide was not possible because of selectivity 

problems of the Suzuki coupling. As a consequence, the bromide derivative 28 was first synthesised 

using 2-iodo-p-xylene and p-bromophenylboronic acid in quantitative yield (Chapter 2, Figure 106). 

The trans-halogenation reaction was then carried out in diethylether at 0°C using n-butyl lithium and 

iodine to afford 51 in quantitative yield. The bromination of the methyl groups was then performed 

using the common procedure (acetonitrile, NBS and AIBN) to obtain 52 in 74% yield. 

Later on, the next step of thiolation was performed as usual (thiourea, potassium hydroxide and diluted 

sulphuric acid) but the product was not recovered. The reaction was tried several times: the first 
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reaction of thiourea on 52 was proven effective. However, the conversion of the bis-isothiourenium 

salt into bis-thiolate and then bis-thiol was unsuccessful, and the product could not be isolated.   

 

Figure 141: Synthesis of the iodide derivatives 

As the iodide derivative could not be synthesised, we thus proposed to start from the bromide 

derivative 28 to graft the ditolylamine on the cyclophane. However, as the Ullman-type reaction is not 

very efficient with bromide derivative, another type of reaction was then chosen: the Buchwald-

Hartwig reaction. 

3. Bromide rhapsody 

The last pathway towards the target molecule E includes the use of the palladium-catalysed 

Buchwald-Hartwig cross-coupling. This reaction is mainly used to couple aryl halides (mainly 

bromides) and amines.  In contrast with the Ullmann-type reaction, the conditions are currently 

smoother and the selectivity should be higher.  

First, the bis-thiol upper deck 30 was synthesised according to the procedures previously developed 

and was obtained from 2-iodo-p-xylene and p-bromophenylboronic in 3 steps with an overall yield of 

75%. The cyclisation to form the cyclophane 53 was then performed in high dilution using 30 and 38 

in 42% yield. The complete synthesis is represented in Figure 142. 

 

Figure 142: Synthesis of the cyclophane 53 

The cyclophane 53 was recovered as a mixture of two structural isomers which were separated by 

chromatography to afford the eclipsed (ecl) and the staggered (sta) in respectively 12% and 30% 

yields. These isomers were then used separately for the final step as 53-ecl and 53-sta, as depicted in 

Figure 143. 

 

Figure 143: Representation of the structural isomers of the cyclophane 53 (eclipsed and staggered) 
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The last step was a Buchwald-Hartwig coupling between 53 (ecl or sta) and ditolylamine. This 

coupling is very efficient when strong electron-donor ligands are used with a strong base. The best 

conditions were thus first evaluated by coupling ditolyamine and bromobenzene: the palladium acetate 

was tested with the ligands tri-tert-butylphosphine (P(t-Bu)3) and diphenylphosphinoferrocene (dppf), 

and also with different bases : potassium tert-butoxide and cesium carbonate.  

 
Figure 144: Buchwald-Hartwig coupling between 53 and ditolyamine 

As represented in Figure 144, the reaction between 53 (ecl or sta) and ditolylamine was successfully 

carried out in a mixture of tetrahydrofurane and toluene, using palladium acetate and tri-tert-

butylphosphine as catalyst and cesium carbonate as base to afford E-sta in 35% yield and E-ecl in 97% 

yield.  

The emitter E was finally synthesised, as represented in Figure 145, with an overall yield of 5% and 

5.5% for E-sta and E-ecl. This yield is mainly limited by the bromination step of 37 (Figure 132), and 

also by the cyclophane synthesis affording 53 as two isomers. So, these two reactions might need 

further works to optimise the whole synthesis. The characterisations of the photophysical properties of 

both emitter E-ecl and E-sta will be carried out in the next part of this chapter.  
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Figure 145: Definitive synthesis of the emitter E-ecl and E-sta 
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II. Characterisations of the staggered and eclipsed emitters 

 

The preparation of the two positional isomers E-ecl and E-sta offered the opportunity to study 

the effects of the cyclophane core isomerisation on the electronic and luminescence properties.  

In this section, we first characterised the two isomers by Nuclear Magnetic Resonance (NMR) 

and X-ray radiocrystallography. Then we performed theoretical calculations to determine some 

important parameters before studying the photophysic properties of both isomers in solution and in the 

solid state. 

 

A. Nuclear Magnetic Resonance and X-ray radiocrystallography 

  

1. Nuclear Magnetic Resonance 

The first interest of the NMR is here to truly identify the emitters as eclipsed and staggered 

compounds. The two NMR spectra (recorded in deuterated dimethylsulfoxide (DMSO)) are displayed 

in Figure 146. 

 

 

Figure 146: 1H NMR spectra of the isomers A and B, in deuterated DMSO on a 600 MHz spectrometer (the crosses indicate 

the residual solvent and water traces) 

Haromatic Hbridge Htolyl 

Isomer B 

Isomer A 
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Apart from the peak of the NMR solvent (2.50 ppm) and of some traces of residual solvents (water at 

3.33 ppm and dichloromethane at 5.76 ppm), the spectra can be divided in three parts. First, the peak 

at 2.28 ppm represents the six protons borne by the tolyl groups of the donor. Then, we can observe 

eight protons of the CH2-S-CH2 cyclophane‟s bridges from 3.29 to 4.11 ppm. Finally, the aromatic 

area (6.87 to 7.81 ppm) shows the signals of the different phenyl groups (17 protons).  

The assignment of each spectrum to its eclipsed or staggered structure was performed by looking at 

the aromatic signals, more precisely the protons of the cyclophane‟s lower deck. However, the 

complexity of the aromatic system first demands to assign each peak to its proton(s), as displayed in 

Figure 147.   

                             

 

Figure 147:a) Representation of the emitter‟s structures and b) zoom on the aromatic part of the 1H NMR spectrum of the 

two isomers A and B 

In these spectra, the protons 8 and 9 can only correspond to the two doublets integrating for 4 protons 

each. Then the two doublets integrating for two are attributed to 6 and 7. The three protons of the 

upper deck are then identified by their coupling constants J: the lonely 5 corresponds to the doublet 

with a J-constant near zero (1.3 Hz), then 3 is a simple doublet and finally 4 is a doublet of doublet 

a) 

b) 
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2 

with the same J-constant as 3 and 5 (the near-zero constant is almost not observable on the figure). 

The last two aromatic protons 1 and 2 are easily identified as two singlets integrating for one each.   

In the spectrum B, the proton 2 is shielded compared to the same proton in the spectrum A (7.35 ppm 

in B versus 7.63 ppm in A). This spectrum B is thus attributed to the staggered isomer, in which the 

proton 2 is located directly under the phenyl ring. As represented in Figure 148, in this position the 

proton is directly localised under the shielding cone of the upper phenyl unit; as a consequence, its 

chemical shift is reduced. 

 

Figure 148: Shielding cone in the staggered derivative 

We can thus definitely assign the spectrum A to the emitter E-ecl and the spectrum B to E-sta. The 

full attribution of each signal is hence possible. However, considering the complexity of the spectra 

(especially the protons from the cyclophane-bridges), different two-dimensional NMR experiments 

were carried out.  

These additional 2D-NMR analyses were carried out in collaboration with Claire Troufflard (research 

engineer at the IPCM): correlation spectroscopy (COSY, shows the proton-proton couplings), 

heteronuclear single quantum coherence spectroscopy (HSQC, shows the 
1
J couplings between carbon 

and hydrogen atoms), heteronuclear multiple bond correlation (HMBC, shows the 
2
J and 

3
J couplings 

between carbon and hydrogen atoms) and nuclear Overhauser effect spectroscopy (NOESY, shows the 

through-space interactions between protons). These 2D-NMR spectra are given in the Appendices 4 

and 5 and the resulting attributions of the protons‟ signals are depicted in Figure 149. 

               

Figure 149: Full attribution of the 1H NMR spectrum, deduced from 13C NMR, COSY, HSQC, HMBC and NOESY 

experiments 

Every proton could be attributed to its signal.  Moreover, the multitude of second order couplings in 

the cyclophane core confirms the high rigidity of such structure, where every proton is almost fixed in 

only one position.  
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2. X-ray crystallography 

The structure of the staggered emitter E-sta was investigated by X-ray diffraction on 

monocrystals obtained by slow evaporation of a solution of compound in a mixture of isopropyl 

alcohol and n-hexane (1/1). The crystal structure is represented in Figure 150, and additional 

parameters are reported in Appendix 5. 

 

 
Figure 150: X-ray crystal structure of E-sta represented as an ORTEP drawing 

The structure shows that the distance between the two parallel decks of the cyclophane is about 3.35 Å, 

which is slightly higher than that usually observed within the “naked” dithiacyclophane (3.24 Å) as 

described in the chapter 1 (Figure 11). This difference could be attributed to the functionalisation of 

the cyclophane‟s benzene rings with bulky groups such as the ditolylphenylamine for instance. 

However, this distance is smaller than the ideal -stacking distance between two aromatic entities 

(3.40 Å, in graphite)
19

 and therefore a slight overlap of the molecular orbitals between the upper and 

lower decks could be expected. Nevertheless, the benzene rings are not entirely planar: the carbon 

atoms bearing the methylene bridges are bent out of the plan of the other four carbon atoms, forming 

an angle of 3° to 8°. The distorted structure of the cyclophane is thus confirmed by the benzenes‟ boat 

conformation. 

The 3D packing of the molecules is displayed in Figure 151. 

 

 
 

  
Figure 151: Representation of the packing structure of E-sta where (a) depicts the intermolecular interactions (Htol: hydrogen 

borne by the tolyl unit and Hmeth: hydrogen borne by the methylene bridge) along the b axis and (b) depicts the bilayer 

structure along the c axis. 

a) b) 

Monoclinic C 2/c 

a = 25.2831(7) Å 

b = 10.3041(3) Å 

c = 23.9742(5) Å 

α = 90° 

β = 103.010(2)° 

γ = 90° 

Volume = 6085.4(3) Å3 

Z = 8 
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The emitter E-sta crystallised in a monoclinic crystal system, space group C2/c, and the density was 

calculated to be 1.296. Each cyclophane moiety is linked to its neighbours by strong interactions as 

displayed by the view along the b axis represented in Figure 151a. The shortest intermolecular S···S 

distance between two cyclophane entities equals to 3.26 Å, which is smaller than twice the van der 

Waals radius of the sulphur atom (1.8 Å) and thus indicates a strong overlap of the atoms‟ orbitals. 

Moreover, each nitrile unit displays strong interactions with the hydrogens of the nearest methyl 

bridge (close by 2.47 Å) and of the nearest tolyl unit borne by the amine group (close by 2.51 Å), both 

corresponding to strong hydrogen bonding (2.2 to 2.5 Å)
150

. 

The sum of these interactions induces a bilayer structure within the crystal by alternating electron-

acceptor (nitrile-functionalised lower deck) and donor units (ditolylphenylamine groups), as shown by 

the view along the c axis given in the Figure 151b.  

 

B. Calculations 

The theoretical calculations were performed on E-ecl and E-sta derivatives in collaboration with Pr. Q. 

Zhang at Zhejiang University to evaluate their properties. First, density functional theory calculations 

(DFT) with the most popular functional B3LYP were used to simulate the ground-state geometries. 

Then the TD-DFT/B3LYP (time-dependent DFT) calculations were performed to estimate various 

electronic parameters related to the excited states. However, the results of these common calculations 

are not always accurate when predicting the energy levels of complex excited states like in TADF 

molecules. Thus, other calculations were performed by mixing TD-DFT with a certain amount of the 

older but more accurate Hartree-Fock theory (HF). The resulting calculations are part of the hybrid 

functional BMK (Boese-Martin for Kinetics) where the optimised parameters are carefully chosen by 

tuning the percentage of HF theory within the simulation.
151

   

The use of hybrid functional is not common because of its complexity and its time-consuming 

calculations. However, this technique allows a rather sharp determination of the percentage of charge-

transfer in the singlet state, and also the energy levels of the locally-excited (LE) and charge-transfer 

(CT) triplet states. The results of these calculations are summarised in the Table 3 along with the 

HOMO and LUMO representations. 

 E-ecl E-sta 

Molecular structure 

 

 

CT amount (%) 93 94 

OHF (%) 39.1 39.5 

LUMO (eV) -1.74 -1.74 

HOMO (eV) -5.56 -5.50 

ΔEHOMO-LUMO (eV) 3.82 3.76 

μ Ground State (Debye) 1.100 1.280 
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S1(
1
CT) (eV) 2.63 2.74 

S2(
1
LE) (eV) 3.55 3.52 

T(
3
CT) (eV) 2.61 2.73 

T(
3
LE) (eV) 2.75 2.72 

ΔEST (eV) 0.02 0.02 

f 0.019 0.000 

HOMO 

 

 

LUMO 

 
 

Table 3: Results of theoretical calculations performed by BMK on the emitters E-ecl and E-sta, CT: charge-transfer 

percentage, OHF: Optimised Hartree-Fock parameter, μ Ground State: dipole moment, S1(
1CT) = charge-transfer singlet excited 

state, S2(
1LE) = locally-excited singlet state, T1(

3CT): charge-transfer triplet excited state, T1(
3LE): locally-excited triplet 

state, ΔEST: electronic gap between first  singlet and triplet state (= S1 - T1), f: oscillator strength of the S0 → S1 transition 

In this table, the CT amount depicts the estimated percentage of charge-transfer in the singlet state 

which is, considering the results, almost completely in a CT configuration. The OHF parameter 

(Optimised Hartree-Fock) represents the percentage of HF theory within the hybrid functional BMK; 

it is an important factor for the reproducibility of the calculation.
152

 The HOMO and LUMO energy 

levels were also estimated and the electronic gaps imply that both isomers should be green emitters. 

Small values of dipole moments of the ground state were obtained and it will be interesting to compare 

those values with the ones of the excited state. The calculated excited states are represented in the 

energy diagram depicted in Figure 152. 

         
Figure 152: Energy diagrams representing the calculated energy levels of the excited states of both isomers E-ecl (a) and E-

sta (b) 
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a) E-ecl 

The simulation of the excited states announces a small ΔEST of around 0.02 eV for both isomers which 

is smaller than the theoretical limit of 0.4-0.3 eV generally observed to obtain TADF. However, 

according to the literature
153

, the staggered‟s lowest triplet state is locally-excited (LE) which might 

prevent efficient RISC towards the charge-transfer (CT) singlet state S1, and thus reduce the potential 

delayed emission. The calculated oscillator strengths f are quite low, especially for E-sta which is 

around zero. Therefore we can expect a low absorption efficiency of the emitters and thus the 

brightness might be limited to low values. Finally, the HOMO and LUMO representations display a 

small overlap, which is consistent with the low oscillator strengths previously mentioned. Based on 

these results, and more particularly the small calculated ΔEST, we could assume that both derivatives 

may present TADF properties and could be good candidates to prove the potential interest of the 

cyclophane unit in the design of a new type of TADF emitter. 

 

C. Spectroscopic properties 

The steady-state and the time-resolved fluorescence of the two emitters E-sta and E-ecl were 

studied in solution using different solvents and in the solid state (thin films). These experiments were 

performed in collaboration with the OPERA laboratory of Pr. Chihaya Adachi of Kyushu University. 

1. Studies in solution 

E-ecl and E-sta are both donor-acceptor molecules, also named “push-pull” molecules. As a 

consequence, solvatochromic effects usually occur; it is thus interesting to study the compounds in 

different solvents (polar and apolar).  

a. Steady-state measurements 

The absorption and emission spectra of both emitters were first recorded in two solvents of 

opposite polarities: toluene (apolar) and dichloromethane (polar), as depicted in Figure 153. 

 

       

200 300 400 500 600 700 800 900

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

    1
CT

400 nm 

603511

In
te

n
s
it
y
 (

n
o

rm
a
lis

e
d

)

A
b

s
o

rb
a
n

c
e
 (

n
o

rm
a
lis

e
d

)

Wavelength (nm)

 Abs DCM

 Abs Tol

 Em Tol

 Em DCM
    1

LE

314 nm 

 



117 

 

b) E-sta 
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Figure 153: Spectra of absorption (Abs) and emission (Em) of E-ecl (a) and E-sta (b) in toluene (Tol) and dichloromethane 

(DCM) 

Both emitters‟ absorption were recorded at different concentrations in order to calculate the molar 

absorption coefficient ε of the compounds, evaluated at 23 000 L.mol
-1

.cm
-1

 for both of them. E-ecl 

presents one large absorption band at λmax = 314 nm corresponding to the local transition from HOMO 

to LUMO+1, and a very small band at ca. 400 nm corresponding to the charge-transfer (CT) transition 

from HOMO to LUMO (attributions based on theoretical calculations). This small CT-band is 

consistent with the calculated small oscillator strength for the transition S0→S1 (f = 0.019). In the case 

of E-sta, the spectra display two close absorption bands at λ1
max

 = 303 nm and λ2 = 338 nm. Based on 

the calculations, the band at λ2 = 338 nm could be attributed to the local transition HOMO to 

LUMO+1. However, no CT-band was observed experimentally which is consistent with the predicted 

calculations. Indeed, the f was calculated to be 0 which seems to indicate that this transition is 

forbidden (i.e. explaining the absence of absorption). 

The fluorescence spectra of E-ecl presented a first emission band in toluene at 511 nm which is 

strongly redshifted in dichloromethane (603 nm). In the same way, the emission of E-sta was detected 

at 508 and 610 nm in toluene and dichloromethane. The Stokes shift was thus calculated for both 

emitters in both solvents. The values of 197 nm (12200 cm
-1

) and 289 nm (15200 cm
-1

) for E-ecl, and 

205 nm (9900 cm
-1

) and 307 nm (12900 cm
-1

) for E-sta were respectively determined in toluene and 

dichloromethane. The Stokes shift values thus depend on the polarity of the solvent, which is 

consistent with the donor-acceptor character of the emitters. 

The photoluminescence quantum yields (PLQY) were then studied in the presence of oxygen and in 

oxygen-free solvents. Indeed, the oxygen would quench the triplet excited state emission (by 

collisional quenching since the oxygen ground state is a triplet) and the reverse intersystem crossing 

from triplet to singlet state (if E-ecl and E-sta are TADF emitters). The measured PLQYs are reported 

in the Table 4. 

Solvents 
E-ecl E-sta 

λmax (nm) PLQY (%) λmax (nm) PLQY 

Dichloromethane 
632 

0.8 
650 

0.8 

Degassed dichloromethane  2.0 0.8 

Toluene 
520 

16.6 
522 

0.8 

Degassed toluene 61.1 2.0 

Table 4: PLQY and maxima of emission of E-ecl and E-sta in toluene and dichloromethane 
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The staggered isomer E-sta presents a low PLQY in both solvent, slightly increased by the degassing. 

In contrast, despite the low efficiency in dichloromethane, the eclipsed compound shows significant 

exaltation of its emission in toluene with values of 16.6 and 61.1 % in non-degassed and degassed 

solvents, respectively. The emission properties are thus dependent of the oxygen present in the 

medium which indicates that the triplet states are involved in the luminescence process. This 

behaviour is therefore in accordance with the potential TADF property of both emitters.   

The effect of solvent polarity was then investigated in more detail and the absorption and fluorescence 

spectra were recorded in a large range of solvents as reported in Figure 154. At the low concentration 

used (ca. 1.10
-6 

M), no aggregation was observed.  
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Figure 154: Absorption and emission spectra of E-ecl (a and b) and E-sta (c and d) in different solvents (CycloH: 

cyclohexane, Bu2O: dibutylether, Et2O: diethylether, AcOEt: ethyl acetate, THF: tetrahydrofuran, DCM: dichloromethane, 

DCE: dichloroethane) 

The absorption spectra of the staggered and eclipsed emitters show little changes with a maximum 

moving from 301 to 304 nm and from 310 to 315 nm respectively. However, the increase of polarity 

of the medium leads to a remarkable redshift of the emission band: from 471 nm in cyclohexane to 

655 nm in dichloromethane for the staggered, and from 474 to 637 nm for the eclipsed. These 

important shifts indicate the high polarity of the excited state of both emitters compared to their 

ground states. 

The Bilot-Kawski-Bakshiev
154

 formalism was used to estimate experimentally the ground state dipole 

moment and the values of 0.3 and 0.2 Debye were measured for E-ecl and E-sta (see Appendix 6 for 

calculation details) which is slightly smaller than tthe calculated values but clearly shows that the 

ground state dipole moment are negligeable. The excited state dipole moments were then estimated by 

using the Lippert-Mataga formalism.
154

 In comparison with the ground state, higher values were 

(a) (b) 

(c) (d) 
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calculated such as 19.6 and 20.2 Debye for E-ecl and E-sta, respectively. Such important shift of 

dipole moments between ground and excited state is common in donor-acceptor molecules such as 

TADF molecules, even if usually the polarity of the ground-state is higher than that estimated for E-

ecl and E-sta.
155

   

b. Time-resolve measurements 

In common fluorophores, the lifetime of fluorescence does not exceed 10-20 nanoseconds; it 

is thus called “prompt fluorescence” (PF). In the case of TADF molecules, an additional emission 

process named “delayed fluorescence” (DF) occurs and can last for tens or hundreds of microseconds. 

Therefore, time-resolve studies must be performed in order to identify the luminescence lifetime of 

each process. It is to be noticed that the singlet real lifetime in DF is not that long but the appearance 

of such component is due to the RISC process which slowly repopulate the singlet excited state. 

 To observe both emissions lifetimes, a pulse of excitation light is applied and the luminescence‟s 

intensity versus time is then recorded to obtain the spectrum of photoluminescence‟s decay.The study 

of E-ecl and E-sta was first carried out in non-degassed solvents (toluene and dichloromethane). The 

photoluminescence‟s decay curves are depicted in Figure 155. 
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Figure 155: Photoluminescence decay curves of E-sta (a, b) and of E-ecl (c, d) in non-degassed dichloromethane and 

toluene 

 

In this figure, each curve shows one single peak representing the prompt fluorescence; no delayed 

emission could be observed. Additional measurements were then performed on lower time scale (20ns) 

in order to obtain well resolved curves of prompt fluorescence decays (Figure 156). 

 

(a) (b) 

(c) 
(d) 
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Figure 156: Photoluminescence decay curves of prompt fluorescence of E-sta (a, b) and of E-ecl (c, d) in non-degassed 

dichloromethane and toluene  

The prompt fluorescence is not affected by the presence of oxygen. It was thus possible to extract the 

emission lifetimes τPF in each medium and then to deduce the decay rate constants of prompt 

fluorescence kPF. The results are summed up in the Table 5. 

 E-ecl E-sta 

Solvents Dichloromethane Toluene Dichloromethane Toluene 

PLQY 2.0 61.1 0.8 2.0 

Lifetime τPF (ns) 2,75 8.83 2.79 8.82 

Rate of PF (kPF =1/τPF) 3.6 10
8
 1.1 10

8 
1.1 10

8
 3.6 10

8
 

Table 5: Lifetimes and decay rate constants of the prompt fluorescence with the associated PLQY  

 

The lifetime values are calculated from an exponential fit of the luminescence‟s decay. The fit used 

corresponds to the equation: y = A1*exp(-x/τPF). In this equation, A1 is the amplitude of the signal and 

τPF corresponds to the lifetime of the luminescence. The results so-obtained are in the same order of 

magnitude with previous results of prompt fluorescence in TADF-based materials.
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The same studies was then performed in oxygen-free mediums. For that purpose, the solvents were 

degassed by bubbling nitrogen for 10 to 20 minutes. The photoluminescence decay curves in these 

conditions are represented in Figure 157. 

d) E-ecl, toluene 

Toluene 

c) E-ecl, dichloromethane 

a) E-sta, dichloromethane b) E-sta, toluene 
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Figure 157: Photoluminescence decay curves of E-sta (a, b) and of E-ecl (c, d) in degassed dichloromethane and toluene 

 

In oxygen-free media, a different behaviour occurs depending of the solvent. In dichloromethane, no 

changes were observed: only the prompt fluorescence was recorded as a sharp and intense peak. 

However in toluene, a clear delayed luminescence can be easily observed with the appearance of a 

long lifetime in addition to the prompt one. E-ecl and E-sta thus present a prompt fluorescence (τPF = 

8.8 ns) immediately followed by another emission with a lifetime of 2.30 and 1.65 μs, respectively. 

This delayed phenomenon, previously quenched by oxygen, could be assigned to several luminescence 

processes such as phosphorescence or delayed fluorescence. However, considering that the 

experiments were performed at room temperature and in solution, the phosphorescence phenomenon 

was quite unlikely. This second process of luminescence could thus be attributed to thermally 

activated delayed fluorescence. By fitting the decay curves with mono-exponential functions, the 

lifetime of these long decays could be estimated in toluene along with the decay rate constants of 

delayed luminescence, as reported in the Table 6. 

 E-ecl E-sta 

Solvents Toluene Toluene 

Lifetime τDF (μs) 2,30 1,65 

Rate of DF (kDF =1/τDF) 4.5 10
5 

6.1 10
5 

Table 6: Lifetimes and decay rate constants of the delayed luminescence of E-ecl and E-sta 

These first characterisations in solution strongly suggest that the two emitters E-ecl and E-sta present 

the properties of TADF. However, further studies such as temperature dependent measurements in 

solution would be necessary to confirm this hypothesis and to definitely rule out, for instance, the 

phosphorescence. Moreover, the final objective being the elaboration of OLEDs, additional studies in 

solid state were then carried out.  

 

d) E-ecl, toluene c) E-ecl, dichloromethane 

a) E-sta, dichloromethane b) E-sta, toluene 
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2. Studies in solid state 

The photophysical studies in solid state are usually performed on thin films prepared by 

vacuum vapour deposition or solution processing. However, in neat films, the emitting molecules tend 

to aggregate in such way that part of the emission is quenched through so-called aggregation caused 

quenching (ACQ) which is due to reabsorption of the emitted light. To avoid this phenomenon, the 

molecular structures are generally dispersed in a matrix (so-called host) to form a blend. In that case, 

the emitters (so-called guests) are “diluted” inside the host and isolated from each other, which usually 

enhances the emission properties by avoiding this reabsorption phenomenon. 

 

a. Measurements on blends  

The choice of the host matrix is important in order to have its S0-S1 energy gap larger than that 

of the guest to allow energy-transfer from the guest to the host. Furthermore, attention must be paid to 

the HOMO-LUMO gap of the guest compared to the one of the host which could result in the 

formation of exciplex (electron transfer from the matrix to the emitter or from the emitter to the 

matrix). In addition, in the case of emitters exhibiting delayed luminescence (TADF, 

phosphorescence,…), the triplet excited state level of the matrix must be higher than that of the emitter 

to avoid the triplet quenching (by energy transfer). Finally, the ideal host must also present high 

charge carrier mobility. The energy diagram of an ideal host matrix and its corresponding emitting 

guest is displayed in Figure 158. 

 

Figure 158: Energy level diagram of an ideal emitting blend 

Two blends of the emitter E-ecl were prepared using DPEPO (bis[2-(diphenylphosphino)phenyl] ether 

oxide) and PMMA (polymethylmethacrylate) as matrices. The DPEPO is a common host for blue-

TADF emitters and have been used in a large amount of OLED designs because of its good charge 

transport properties, and also its high S1 and T1 energy levels usually preventing the backward excited 

energy transfer from the guest to the host.
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 In contrast, PMMA presents a very low mobility of 

charge and an extremely high S1 energy level: despite its unsuitability for any OLED elaboration, it 

should be a good host to disperse and study the emitter. However, despite the large HOMO-LUMO 

energy gap of the DPEPO and PMMA matrices, E-ecl still presents a higher LUMO energy level as 

displayed in the host-guest blend energy diagram in Figure 159. 
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Figure 159: Energy diagram of E-ecl blends with DPEPO and PMMA matrices 

As a consequence, a quenching of the E-ecl emission might occur by the formation of exciplex 

(electron transfer from the guest to the host). The measurements of PLQYs were then carried out on 

the two blends DPEPO/E-ecl and PMMA/E-ecl films from 3 wt% to 80 wt% and the results are 

depicted in the Table 7. 

Weight % 
PLQY of 

PMMA/E-ecl 

PLQY of 

DPEPO/E-ecl 

100 26.5 26.5 

80 21,6 - 

60 22,5 27.1 

40 20,6 26.9 

20 17,9 21.8 

10 15,2 18.3 

6 13,2 16.8 

3 12,9 20.4 

Table 7: PLQYs of the DPEPO/E-ecl films at different concentration 

The PLQYs of the blends is clearly lowered when the concentration of emitter decreases. As suspected 

based on the blend energy diagram, the emission is probably quenched by the host matrix. Despite all 

our efforts, no suitable matrix was found up to now and we thus focused our work on net film studies.  

 

 

b. Measurements on neat films 

 

i. Steady-state measurements 

Neat films of E-ecl and E-sta were first deposited on substrates by spin-coating from 1%wt 

solution (percent of weight) of each emitter in dichloromethane. The absorption and emission spectra 

were then recorded, and are displayed in Figure 160. 
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Figure 160: Spectra of absorption (Abs) and emission (Em) of E-ecl (a) and E-sta (b) in solid state 

 

The absorption spectra are quite similar to those obtained in solution, with λmax peaking at 314 and 305 

nm for E-ecl and E-sta, respectively. From these absorption maxima, it is possible to deduce the 

theoretical HOMO-LUMO energy gap thus equal to 3.95 and 4.07 eV, which are close to those 

obtained by theoretical calculations (3.82 and 3.76 eV).
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 In solid state as well, the charge-transfer 

band is observed only for E-ecl (λ = 400 nm). 

The maxima of emission in neat films were detected at 540 nm for both isomers, giving a green-

yellow fluorescence with PLQYs measured inert atmosphere of 26.5 and 11.4 % for the eclipsed and 

staggered emitters, respectively. Thus, the eclipsed compound appears to be a more efficient emitter 

than its staggered homologue in both solid and solution phases. 
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ii. Time-resolved measurements 

Time-resolved measurements were performed by using a streak camera apparatus. The streak 

camera images of the isomer E-ecl, recorded at room temperature on a 50 µs and 20 ns timescales 

under vacuum, are depicted in Figure 161 (a and b). 
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Figure 161: Streak camera images of E-ecl at room temperature with timeframes of 50 μs (a) and 20 ns (b), and the 

corresponding photoluminescence decay curves (c and d) 

The streak camera image on 50 μs timescale (Figure 161a) shows two different decay regimes. First a 

fast component can be seen just after excitation, followed by a longer component slowly decreasing 

for 40 μs. The first component can be assigned to the prompt fluorescence (PF) while the long one to 

delayed luminescence (DL). The streak camera image (Figure 161b) recorded on 20 ns timeframe 

shows that the prompt fluorescence only lasts for a few nanoseconds which is a consistent with 

classical fluorescence phenomenon. 

The photoluminescence decay on 50 μs and 20 ns timescales can be extracted from the previous streak 

camera images as represented in the Figure 161 (c and d), respectively. The lifetime value τPF of the 

prompt fluorescence was calculated by fitting the decay curve of the Figure 161d with a simple 

exponential fit (y = A1*exp(-x/τPF) + y0). However, the delayed luminescence decay in the Figure 161 

c) could not be fitted properly with a simple mono-exponential but only with a bi-exponential function. 

That indicates that the delayed emission presents two delayed components (DL1 and DL2) and the 

amplitudes A1 and A2 are thus representing the contribution of each luminescence phenomenon (DL1 

and DL2) to the whole emission.  

 

The Table 8 reports the photoluminescence lifetime values and decay rate constants for the three 

distinct emissions (one prompt fluorescence (PF) and two delayed luminescences (DL1 and DL2)) of 

E-ecl and E-sta. 

 

 

(a) (b) 

(c) (d) 
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 E-ecl E-sta 

τPF (ns) 8.2 9.8 

τDL1 (μs) 2.0 1.8 

DL2 (μs) 5.2 4.7 

kPF (s
-1

) 1.2 10
8 

1.1 10
8
 

kDL1 (s
-1

) 5.0 10
5 

5.6 10
5
 

kDL1 (s
-1

) 1.9 10
5 

2.1 10
5
 

Table 8: Photoluminescence lifetime values (τ) and decay rate constants (k=1/τ) of the three processes of luminescence 

(prompt fluorescence PF, and delayed luminescences DL1 and DL2) 

The data obtained by the streak camera experiments also allows to extract the photoluminescence 

spectra of any timescale during the emission. The spectra of prompt fluorescence (from 0 to 50 ns) and 

delayed luminescence (from 2 to 40 μs) were recovered and those of E-ecl are represented in Figure 

162. 
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Figure 162: Emission spectra of prompt fluorescence and delayed luminescence of E-ecl (normalised) 

In this figure, the two emission spectra are not overlapping: the maximum of the delayed emission 

spectrum is redshifted of about 15 nm compared to that of the prompt fluorescence. These results 

suggest that a component of the delayed luminescence involves a direct relaxation from the triplet state 

(phosphorescence), located at lower energy than the singlet state and thus emitting at higher 

wavelength. 

In order to get more insights on the two components of the delayed emission, the time-resolved 

measurements were performed at 77 K on a 50 μs timescale, as displayed for E-ecl in Figure 163. 
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Figure 163: Streak camera image at 77K (a) and the decay curves at 77 K and 300 K (b) of the E-ecl neat film on a 50 μs 

timeframe 

(a) (b) 
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The streak camera image given in Figure 163a shows a drastic increase of the emission at 77 K 

compared to that at room temperature (300 K). Moreover, the decay curves (at 77 and 300 K) depicted 

in the Figure 163b presents an interesting increase of lifetime of the delayed luminescence (much 

slower compound) induced by the decrease of temperature. The global emission is thus enhanced by 

lowering the temperature.  

iii. Temperature-dependent measurements 

To better understand this enhancement of emission at low temperature, we performed the 

time-resolved measurements on a large range of temperature: 300, 250, 200, 150, 100, and 70 K. As 

the decrease of temperature can lead to drastic modifications of the absorption of organic molecules, 

we first check the absorption behaviour of the absorption versus temperature. Indeed, the oscillator 

strength of any transition may be enhanced on cooling, leading to an increase of the intensity of the 

corresponding absorption band. If this phenomenon happens on the emitter E-ecl, the luminescence 

could be consequently enhanced in the same way. The temperature-dependent absorption study was 

thus carried out at the Institut des NanoSciences de Paris (INSP) in collaboration with Dr. Thierry 

Barisien and the spectra are displayed in Figure 164. 
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Figure 164: Absorption spectra of E-ecl at different temperatures: 297, 244, 200, 160, 120, 100, 80 and 12 K 

The absorption spectra at different temperatures show no significant changes. The large absorption 

band was still centred on 314 nm and no exaltation of the absorption occurred. Consequently, the 

increase of delayed luminescence‟s intensity observed on cooling cannot be a assigned to an 

absorption change. 

The same temperature-dependent study was performed on the photoluminescence of the dyes in 

vacuum. The extracted decay curves show an evolution of the luminescence decays versus the 

temperature (Figure 165). 
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Figure 165: Photoluminescence decay curves of E-ecl at 300, 250, 200, 150, 100, and 70 K on a 100 μs timeframe 

For the latter experiment, relevant changes of the lifetimes of the delayed luminescence could be 

observed. Three series of measurements were thus carried out: one series was performed on a 20 ns 

timescale in order to obtain the lifetimes of the prompt fluorescence by using mono-exponential fits. 

Then in a second series, different timescales (from 100 µs to 10 ms) were used in order to include the 

whole delayed emission and to extract the lifetime of the second delayed luminescence τDL2 by mono-

exponential fit on the most delayed part of the curves. The third and last series was performed on a 

100 µs timescale in order to finally obtain the τDL1 by a bi-exponential fits. This last series (on a 100 

µs timescale) should also give some insights about the contribution of each delayed luminescence by 

comparing their relative amplitudes A1 and A2. However, considering the small timescale (100 µs), it 

is important to mention that the amplitude of the second delayed luminescence (A2) is strongly 

underestimated. The temperature dependence of the prompt fluorescence (PF) and delayed 

luminescence (DL1 and DL2) lifetimes and the amplitudes ratio of A1 and A2 are reported in Figure 

166. 
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Figure 166: Representation of the lifetime evolutions of the prompt fluorescence (PF) and the delayed luminescences (DL1 

and DL2) (a), and the amplitude ratio (A1 and A2) of each delayed luminescence (b) versus the temperature (300, 250, 200, 

150, 100 and 70 K) for E-ecl 

Observation of the lifetimes (Figure 166a) shows firstly that, as expected, the prompt fluorescence 

lifetime is not affected by the decrease of the temperature with a constant value of 7.5 ns. Concerning 

the delayed components, the first delayed luminescence DL1 presents a slight increase of its lifetime 

on cooling from 3.6 to 10.9 µs. Finally, the second and longer delayed luminescence DL2 shows a 

large increase of its lifetime from 18 µs to 2.1 ms (two orders of magnitude). In addition, the evolution 

a) b) 
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of the amplitude ratios of delayed luminescence (DL1 and DL2) on cooling shows a concomitant 

decrease of DL1 and increase of DL2 contributions in the global delayed emission (Figure 166b). 

iv. Potential pathways of deactivation 

Based on the conscientious study of the energy diagram of E-ecl, several potential 

desexcitation processes for the delayed components could therefore be expected as represented in 

Figure 167. 

 

Figure 167: Potential luminescence process for the delayed emission of E-ecl 

As two delayed components are observed, we can thus propose five different couples of possible 

processes: 

- (1) + (2) → DF (
3
LE) + TADF (

3
CT) 

- (1) + (3) → DF (
3
LE) + Phospho (

3
CT) 

- (1) + (4) → DF (
3
LE) + Phospho (

3
LE) 

- (2) + (3) → TADF (
3
CT) + Phospho (

3
CT) 

- (2) + (4) → DF (
3
LE) + Phospho (

3
LE) 

 

If (1) + (4) and (2) + (3) would occur, that would mean that two excitation pathways were coming 

from the same excited state: (
3
LE) for (1) + (4) option and (

3
CT) for (2) + (3) option which is not 

consistent with the two lifetimes obtained by photophysical measurements. This allows the exclusion 

of both (1) + (4) and (2) + (3). For (2) + (4), this coupled pathway can also be ruled out since it would 

have been observed by the streak camera experiments. Indeed, the phosphorescence from the 
3
LE state 

would have emitted light at higher energy compared to the prompt fluorescence and as we showed in 

Figure 162, only an emission at higher wavelength was observed in the delayed component. 

Thus two potential pathways are remaining: (1) + (2) → DF (
3
LE) + TADF (

3
CT) and (1) + (3) → DF 

(
3
LE) + Phospho (

3
CT). However as previously mentioned, the shift of emission of the delayed 

luminescence compared to the prompt fluorescence strongly suggests a direct relaxation from the 

triplet state 
3
CT (phosphorescence). As a consequence, DL1 corresponding to DF (1) and DL2 

corresponding to Phospho (
3
CT) (3) is the most likely couple of deactivation pathway describing the 

delayed luminescence of E-ecl based on the available data to date. In addition to the low temperature 

promoting the phosphorescence, this attribution would also explain the longer and more intense DL2 

at low temperature. 

To conclude this part on the neat film study, an experimental value of ΔEST can be calculated from the 

spectra of the prompt and delayed emissions recorded at low temperature. Based on the previous 
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discussion, the spectra of the prompt and delayed phenomena can be attributed to the deactivation 

coming from singlet (S1) and triplet (T1) states, respectively. 

 

If we consider the spectra of emission at 77 K, represented in Figure 168, the prompt emission is still 

attributed to the prompt fluorescence while the delayed component is mainly attributed to DL2, and 

thus probably phosphorescence. 
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Figure 168: Spectra of emission of the prompt fluorescence and the longer delayed luminescence DL2 (phosphorescence) of 

E-ecl at 77K 

Thus, the ΔEST could be easily calculated by measuring the lowest emission wavelengths of both 

luminescence spectra. The same experiments were also carried out on the staggered isomer, thus the 

parameters of both emitters are resumed in the Table 9. 

 E-ecl E-sta 

Wavelength (nm) λS = 458.28 λT =472.64 λS = 462.17 λT = 476.23 

Energy level (eV) ES = 2.71 ET = 2.63 ES = 2.68 ET = 2.60 

ΔEST (eV) 0.08 0.08 
Table 9: Singlet and triplet energy levels extracted from the streak camera experiments 

The singlet and triplet energy levels were calculated from the highest wavelength of emission (i.e. 

edge of the band) of prompt fluorescence (λS) and phosphorescence (λT) shown in Figure 168. The 

ΔEST of E-ecl and E-sta were both estimated at 0.08 eV. These results are slightly higher than 

calculated by the BMK (0.02 eV), but are still in a good agreement with the simulated values. 

 

c. Measurements on OLED 

The performance of an OLED containing E-ecl was studied. As discussed previously, no 

blend of E-ecl was considered and only devices based on neat films and presenting a PLQY of 26.5 % 

were elaborated. The HOMO energy level of E-ecl was first determined on neat film by photoelectron 

spectroscopy, as represented in Figure 169. 
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Figure 169: Photoelectron spectrum on the neat film of E-ecl (cps: count per second) 

The experimental HOMO energy level was found around -5.80 eV which is in the same order of 

magnitude of the BMK calculations values (-5.56 eV).  

The OLED was then fabricated by depositing the organic layers and cathodes on pre-cleaned indium 

tin oxide (ITO) glass substrate. The structure of the OLED is: ITO/PEDOT:PSS/E-

ecl/PPT/TPBi/LiF/Al, as represented in Figure 170. The poly(3,4-ethylenedioxythiophene) : 

poly(styrene sulfonic acid) (PEDOT: PSS) was spin-coated on top of the ITO (the anode) and served 

as a hole-injecting layer. Then the emissive layer made of E-ecl neat film was spin-coated on top of 

the PEDOT layer, the layer thickness being typically in the range between 50 and 60 nm. The hole 

blocking layer was composed of a 10 nm thick film of 2,8-bis(dipheylphoshoryl) 

dibenzo[b,d]thiophene (PPT) onto which was deposited a 40 nm thick of the electron transport layer 

2,2‟,2‟‟-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TBPi). Finally, the cathode consisting 

of a thin LiF layer and a 100 nm thick Al overlayer was prepared on top of the device to produce a 

good electron injecting contact by thermal evaporation through a shadow mask.  

 

Figure 170: Energy level structure of the OLED based on E-ecl 

The electroluminescence spectrum was first recorded at different current intensities (1, 10 and 100 mA) 

to evaluate the device efficiency, as represented in Figure 171 (in addition to the photoluminescence 

spectrum) along with the pictures of the OLED device (on and off mode). 
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Figure 171: Electroluminescence spectra of the OLED at 1, 10 and 100 mA of current intensity and photoluminescence 

spectrum of E-ecl in neat film (a) and picture of the device in off (b) and on (c) mode 

The OLED presents a yellow electroluminescent (Figure 171a) at λmax = 545 nm which is consistent 

with the previous photoluminescence reported on the neat film (λmax = 540 nm), confirming that the 

emission was generated solely from the emitters themselves through the same radiative decay 

processes.  

The Figure 172 presents the electrical characteristics such as the external quantum efficiency (EQE) 

versus current-plots and the current-density-voltage-luminance (J-V-L) characteristics.  
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Figure 172: External quantum efficiency (EQE) versus current-plots (a) and the current-density-voltage-luminance (J-V-L) 

characteristics (b) 

The yellow-emitting device displayed an EQE of 2.0 % at low current density, a maximum luminance 

(Lmax) of 600 cd.cm
2 

and a turn-on voltage at 1 cd.cm
-2

 of 3.5 V. Note that this device is not very 

efficient yet and several parameters will need to be adjusted in order to increase its efficiency. Indeed, 

as depicted in the energy diagram (Figure 170), the electron transport bilayer (PPT + TPBi) is not well 

adapted and presents a very low LUMO energy level compared to the emitter, and induces a non-

optimised charge carrier injection. Moreover, this OLED have been prepared using a neat film of E-ecl, 

thus the incorporation of the emitter in a well-adapted matrix with high LUMO energy level should 

allow to increase the PLQY of the molecule and therefore the EQE of the device.  

(a) (b) 

(c) 

(a) (b) 
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Conclusion 

 

Two emitting donor-acceptor charge-transfer isomers based on a cyclophane central core were 

prepared. This design was proposed to induce a small energy gap between the singlet and triplet states 

and a potential reverse intersystem crossing process, both leading to TADF properties. After having 

attempted fruitless synthetic routes, the successful synthesis of the two isomers E-ecl and E-sta was 

carried out in seven steps with an overall yield of 5 and 5.5 %, respectively. The molecules have been 

characterised by detailed NMR spectroscopy studies and X-ray crystallography. Theoretical 

calculation were also performed to estimate various electronic parameters related to the ground and 

excited states.  

 

The study of the absorption and emission solvatochromic properties of both E-ecl and E-sta allowed 

to evaluate the dipole moments of each molecule at the ground state (0.3 and 0.2 Debye) and at the 

excited state (19,6 and 20.2 Debye) using Bilot-Kawski-Bakshiev and Lippert-Mataga formalisms. 

Later on, the steady-state measurements showed that the photoluminescence quantum yields were 

dependant of the presence of oxygen in the medium. As a consequence, the best results were obtained 

in toluene, with PLQYs increasing with the degassing from 16.6 to 61.1 % for E-ecl and from 0.8 to 

2.0 % for E-sta. This behaviour proved the contribution of the triplet excited state to the whole 

emission process. The time-resolved measurements were then carried out and both emitters have 

presented a dual emission of one prompt fluorescence and one delayed luminescence in degassed 

toluene. The lifetime values of both emission phenomena were thus measured in toluene for E-ecl 

(τPF= 8.8 ns, τDL= 2.3 μs) and E-sta (τPF= 8.8 ns, τDL= 1.7 μs). These results described a delayed 

phenomenon dependant of the triplet excited state. Therefore, the phosphorescence being unlikely in 

solution and at room temperature, we proposed to attribute this delayed emission to thermally 

activated delayed fluorescence (from the charge-transfer excited triplet state T1(
3
CT)). However, 

considering the last experiments performed in solid state, the delayed component could also 

correspond to delayed fluorescence DF (from the locally-excited triplet state T2(
3
LE)); additional 

temperature-dependant measurements should be carried out soon to confirm one desexcitation 

pathway or the other.  

 

Finally, the two emitters were studied in solid state. Due to that high LUMO level energy the first 

attempts of dispersing the emitter with DPEPO or PMMA in a blend were inefficient and the 

photophysic properties had to be measured on neat films. The PLQYs were measured at 26.5% and 

11.4% for E-ecl and E-sta, respectively. The time-resolved experiments demonstrated the presence of 

one prompt fluorescence and two delayed luminescence phenomena (DL1 and DL2) at room 

temperature. The lifetime values were then measured for E-ecl (τPF= 8.2 ns, τDL1= 2.0 μs, τDL2= 5.2 μs) 

and E-sta (τPF= 9.8 ns, τDL1= 1.8 μs, τDL2= 4.7 μs). The processes of absorption and emission were 

then studied versus temperature: 300, 250, 200, 150, 100, and 70 K. This study showed on cooling that 

the first and second delayed component (DL1 and DL2) lifetimes increase and also that the DL1/DL2 

ratio decreases significantly. Among the different possible desexcitation pathways, we proposed to 

attribute the first delayed emission to simple delayed fluorescence (DF) and the second delayed 
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component to phosphorescence. From these conclusions, we evaluated the ΔEST of E-ecl and E-sta 

(0.08 eV for both emitters) by measuring the shift of maxima of emission at 77 K between prompt and 

delayed emissions.  

Finally, we fabricated a first OLED device based on the eclipsed isomer E-ecl. Despite the low 

efficiency of the device (external quantum yield of 2.0 % and maximum luminance of 600 cd.cm
2
) the 

results are encouraging. Further modifications of the different layers of the device should be 

performed soon in order to increase its efficiency. 

 

The short-term goal of this project is to validate the hypotheses about the mechanism of delayed 

emission of the eclipsed emitter E-ecl, and to carry out the photophysical study in solid state on the 

staggered isomer E-sta. A detailed comparison of both isomers should be performed to explain the 

influence of the isomerism on the phenomena of emission. The long-term goal should be focused on 

investigating the electronic properties of the cyclophane core itself in order to explain the different 

emissions observed, and especially to obtain more insights about the phosphorescence phenomenon 

observed at room temperature.  
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GENERAL CONCLUSION 

 

The [2.2]paracyclophane and its analogue dithia[3.3]paracyclophane were first satirically 

described by Cram as constricted molecules with “inherent suicidal tendencies”. After dozens of 

unsuccessful reactions carried out on the cyclophane unit, I can only agree with the first part of this 

definition: a constricted molecule indeed, but acting as a rock when it comes to reacting with any 

chemical. After the first attempts of catalyses in smooth conditions, several harsh reactants were tried 

out. The cyclophane unit was able to endure sodium hydride, bromine, sulphuric acid or even n-butyl 

lithium treatments and was still standing at the end of the reaction. Therefore, I had to resort to 

alternative side-routes in order to arrive to the cyclophane precursors, whilst leaving the cyclophane 

synthesis to the end of the synthetic route. Asides from the targeted Janus tecton JT, the synthesis of 

the pedestal P1 (and P2), the naked pillar NP and the two isomers E-ecl and E-sta were finally carried 

out with relatively good overall yields, considering the difficulties encountered along the reaction 

pathways.  

 

The first objective of this PhD thesis was to continue the work of previous students by developing new 

cyclophane-based molecules capable of self-assembling on surfaces. The whole design, previously 

described with the molecular clip functions, had to be entirely re-thought in order to create a new 

“universal” pedestal capable of self-assembling on any substrate by any supramolecular bond. As a 

consequence, the majority of the previous reactions developed in the lab were unfit for the new design. 

Thus, developing the synthesis and finding time to actually test the self-assembly on surface proved 

difficult, and I was able to only spend a few weeks at the CEA of Saclay working with Dr. Fabrice 

Charra under the STM. However, this gave me the opportunity to work with physicists and thus to 

learn more about the physical aspects of my work on surfaces. With the help of Dr. Charra, we were 

able to analyse and understand the peculiar square lattice resulting from  the pedestal‟s network on 

HOPG. These preliminary results obtained with the pedestal P1 are very promising, and the required 

additional tests using the naked pillar NP on HOPG and gold will be carried out soon.  

 

The second objective of this thesis was about exploring a new use of the cyclophane unit in the field of 

organic emitting materials for OLEDs. This brand new subject was quite challenging because, firstly it 

was developed in parallel to the first subject, and thus additional reactions were required. Secondly, 

the required characterisations demanded a quick learning of the theory base of photophysics. As part 

of this project, I had the great opportunity to work for a few weeks in the laboratory of Prof. Chihaya 

Adachi (OPERA Laboratory) at Kyushu University in Fukuoka (Japan). In OPERA, I carried out the 

photophysical experiments by myself using specific apparatus (like the Streak camera) acquiring 

enough theoretical and practical knowledge to understand the electronic processes involved in the 

photoluminescence of the emitters E-ecl and E-sta. In this project, I was able to follow the whole 

course of the molecules from the molecular design and synthesis to the photophysical investigations 

and finally the elaboration of the OLED device. Despite the apparent low efficiency of these emitters 

in the solid state or as part of the device, the results are actually very encouraging. Indeed, these 

studies are the very first investigations for thermally activated delayed fluorescence performed on 

cyclophane-based molecules and thus, the parameters of the experiments have not been fully 

optimised yet. In addition, these emitters also present a rare, room temperature metal-free 
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phosphorescence in the solid state. There are to date, very few examples of materials presenting this 

phenomenon and it is of great interest to study these materials further. 

To conclude the work undertaken during my PhD, I would like to point out the amount and variety of 

new skills and knowledge that I acquired during these three years. In addition to the many new 

reactions that I performed, this project also allowed me to learn a lot about the inner workings in 

Science, about research in general and also about myself.  I arrived in this laboratory as a newly-

graduated organic chemist and I have ended up now with new competences in self-assembly on 

surfaces, theoretical calculations and photophysics. Moreover, I fully understand now the importance 

of working as part of a team: when the chemistry went wrong, nothing was more useful than the help 

from colleagues to envisage other approaches and routes.. My PhD journey now comes to an end, and 

now I am just waiting for a new “easy” subject to work on! 
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APPENDIX 1: EXPERIMENTAL DETAILS 

All solvents and reactants were purchase from commercial supplier. The reactants were used 

without further purification. When necessary, the solvent were dried by using a MBraun solvent 

purification system (MB SPS-800).  

The purifications performed by chromatography were either carried out by gravity column 

chromatography using silica gel (Si 60, 40-63 μm, Merck) or by flash chromatography (Combiflash 

Companion).  

The nuclear magnetic resonance experiments were recorded at 300 or 600 MHz (Bruker, BBFO probe 

for the 2D-experiments). The proton and carbon chemical shifts (δ) are reported in ppm and are 

referenced to the residual solvent signal: CDCl3 (7.26, 77.16) and DMSO (2.50, 39.52). The 

abbreviations used to describe the multiplicity of the signals are: s for singlet, d for doublet, t for 

triplet, q for quartet and m for multiplet.  

The Infra-red spectra were recorded with a ThermoFisher Nicolet iS10 FT-IR spectrometer. 

The UV/Vis spectra were recorded with a Varian Cary WinUV spectrophotometer. The cells were in 

quartz with two faces (thickness: 1cm). The photoluminescence spectra were recorded with a Varian 

Cary Eclipse fluorescence spectrophotometer.  

STM images were acquired at the CEA of Saclay in the team of Dr. Fabrice Charra, at room 

temperature with a homemade digital system. The fast scan axis was kept perpendicular to the sample 

slope. Images acquired simultaneously in both fast scan directions are systematically recorded and 

compared. All images are corrected for the drift of the instrument by combining two successive 

images with downward and upward slow-scan directions. The solvent was phenyl- octane (Aldrich, 

98%), which avoids the co-adsorption often observed with linear alkanes. The substrate was HOPG 

(Goodfellow) and the tips were mechanically formed from a 250mm Pt–Ir wire (Pt80/Ir20, 

Goodfellow). The monolayers were formed by drop casting a droplet (ca. 10 μL, in dichloromethane) 

of solution immediately after cleaving the substrate. The samples were heated at 80°C for 10 minutes 

before immersing the STM junction in an additional droplet of phenyloctane (ca. 10 μL) and 

approaching the STM tip.  

The AFM images were acquired on an AFM 5100 equipped with a 90 µm Keysight scanner in the 

MONARIS lab (UPMC) with Dr. Imad Arfaoui. The images were recorded in contact mode using an 

ultra-thin tip (65 kHz, 0.5 N/m). 

The X-ray crystallography was performed on a Bruker APEX-II CCD diffractometer. 

At the INSP, the UV-Vis absorption spectra at low temperature were recorded on a Varian Cary 

WinUV equipped with a homemade cryostat. 

In the lab Pr. Adachi in OPERA, the UV-Vis absorption spectra were recorded on a Shimadzu UV-

2501 recording spectrophotometer. PL spectra were recorded on a Hitachi F-4600 fluorescence 

spectrophotometer. The PL lifetimes was measured by a single photon counting spectrometer from 

Edinburgh Instruments (FLS920) with a Picosecond Pulsed UV-LASTER (LASTER377) as the 

excitation source. Absolute PLQYs were obtained using a Quantaurus-QY measurement system 

(C11347-11, Hamamatsu Photonics) and all the samples were excited at 330 nm. Fluorescence and 

delayed luminescence characteristics in solid states were measured under vacuum using a streak 
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camera system (C4334, Hamamatsu Co.). A nitrogen gas laser (MNL200, LASERTECHNIK BERLIN) 

with an excitation wavelength of 337nm was used. Excitation light was absolutely cut off by putting a 

370 nm long band-pass filter (SCF-50S-37L, SIGMA KOKI CO., LTD.) in front of the photo-detector. 

The current density-voltage-luminance (J-V-L) characteristics of the OLED were measured using a 

semiconductor parameter analyzer (Agilent Co., HP4155C) with an optical power meter (Newport, 

Model 1835-C).  



145 

 

APPENDIX 2: PROCEDURES 
 

Synthesis of the 1,4-Bis[(trimethylsilyl)ethynyl]-2,5-dimethylbenzene 1
159

 

 

 
Under Argon. 

In a Schlenk tube were introduced 2,5-dibromo-p-xylene (2 g, 7.6 mmol), PdCl2(PPh3)2 (265 mg, 0.4 

mmol), CuI (70mg, 0.4 mmol) and  triethylamine (40 mL, 300 mmol). Then, trimethylsilylacetylene 

(3.5 mL, 24 mmol) was added, the Schlenk tube was sealed and the mixture was stirred at 100°C for 8 

hours. The solution was diluted with dichloromethane, washed with water and dried over magnesium 

sulfate. After evaporation in vacuo, the residue was purified by flash chromatography (SiO2, 

petroleum ether) to afford 1 as a white powder in 91 % yield. 
1
H NMR (300 MHz, CDCl3) 7.26 (s, 2H), 2.34 (s, 6H), 0.25 (s, 18 H). 

13
C NMR (300 MHz, CDCl3) 137.66, 132.97, 123.18, 104.03, 99.67, 19.97, 0.18. 

 

Synthesis of the 1,4-Diethynyl-2,5-dimethylbenzene 2
159

 

 

 
To a solution of 1 (415 mg, 1.4 mmol) in methanol (25 mL) was added potassium fluoride (350 mg, 

6.0 mmol). The mixture was stirred overnight and then evaporated in vacuo. The residue was purified 

by chromatography (SiO2, dichloromethane) to afford 2 as a light yellow powder in 96 % yield. 
1
H NMR (300 MHz, CDCl3) 7.26 (s, 2H), 3.33 (s, 2H), 2.34 (s, 6H). 

13
C NMR (300 MHz, CDCl3) 137.91, 133.40, 122.48, 82.33, 82.26, 19.94. 

 

 

Synthesis of the 1,4-Bis[(pyridyl)ethynyl]-2,5-dimethylbenzene P1 

 
Under Argon. 

In a Schlenk tube were introduced 2 (200 mg, 1.3 mmol), p-bromopyridine hydrochloride (500 mg, 2.0 

mmol), Pd(PPh3)2Cl2 (46 mg, 0.07 mmol) and CuI (13 mg, 0.7 mmol). Then, DiPA (15 mL, 107.0 

mmol) was added and the mixture was stirred at RT for 8 hours. The solution was diluted with 

dichloromethane, washed with water and dried over MgSO4. After evaporation in vacuo, the residue 

was purified by chromatography (SiO2, petroleum ether: ethyl acetate 9:1) to afford P1 as a white 

powder in 85 % yield. 
1
H NMR (300 MHz, CDCl3) m7.40 (m, 6H), 2.49 (s, 6H). 

13
C NMR (300 MHz, CDCl3) 149.89, 138.03, 133.26, 131.59, 125.59, 122.92, 92.75, 92.18, 20.12. 
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Synthesis of the 1,4-Bis[(trimethylsilyl)butadiynyl]-2,5-dimethylbenzene 3 

 
To a solution of copper chloride (2.2 g, 16.2 mmol) in dichloromethane (20 mL) were added TMEDA 

(4.8 mL, 32.4 mmol). After 1 hour stirring, a solution of TMSA (4.5 mL, 32.4 mmol) and 2 (500 mg, 

3.24 mmol) in dichloromethane (30 mL) was added and dried air was bubbled into the solution. After 

5 hour, the black solution was evaporated, and the crude was dissolved in petroleum ether. The 

mixture was filtered off on silica gel to afford 3 as a white powder in 75% yield. 
1
H NMR (300 MHz, CDCl3) 7.27 (s, 2H), 2.36 (s, 6H), 0.24 (s, 18 H). 

13
C NMR (300 MHz, CDCl3) 139.22, 134.02, 122.31, 95.53, 87.85, 79.66, 75.42, 20.08, 0.26. 

 

 

 

Synthesis of the 1,4-Dibutadiynyl-2,5-dimethylbenzene 4 

 
To a solution of 3 (150 mg, 0.4 mmol) in methanol (75 mL) was added potassium fluoride (125 mg, 

2.1 mmol). The mixture was stirred overnight and then evaporated in vacuo. The residue was purified 

by chromatography (SiO2, dichloromethane) to afford 4 as a light yellow powder in 95 % yield. 
1
H NMR (300 MHz, CDCl3) 7.31 (s, 2H), 2.59 (s, 2H), 2.38 (s, 6H). 

 

 

 

Synthesis of the 1,4-Bis[(pyridyl)butadiynyl]-2,5-dimethylbenzene P2 

 
Under Argon. 

In a Schlenk tube were introduced 4 (100 mg, 0.5 mmol), p-Iodopyridine (510 mg, 2.5 mmol), 

Pd(PPh3)2Cl2 (35 mg, 0.05 mmol) and CuI (10 mg, 0.5 mmol). Then, DiPA (5 mL, 35.0 mmol) was 

added and the mixture was stirred at RT for 8 hours. The solution was diluted with dichloromethane, 

washed with water and dried over MgSO4. After evaporation in vacuo, the residue was purified by 

chromatography (SiO2, petroleum ether: ethyl acetate 9:1) to afford P2 as a white powder in 40 % 

yield. 
1
H NMR (300 MHz, CDCl3) m7.37 (m, 6H), 2.43 (s, 6H). 

13
C NMR (300 MHz, CDCl3) 150.01, 139.36, 134.05, 130.18, 126.16, 122.46, 82.334, 80.14, 78.77, 

78.27, 20.10. 
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Synthesis of the 1,4-Bis[(trimethylsilyl)ethynyl]-2,5-bis(bromomethyl)benzene 5 

 
Procedure 1: 

To a solution of 1 (0.5 g, 1.7 mmol) were added NBS (630 mg, 3.5 mmol) and AIBN (14 mg, 0.08 

mmol). The mixture was refluxed overnight and then allowed to cool down to RT. The solvent was 

evaporated in vacuo and the crude was purified by flash chromatography (SiO2, petroleum ether) to 

afford 5 as a white powder in 5-37 % yield. 

Procedure 2: 

To a solution of 1 (1.0 g, 3.4 mmol) were added NBS (2.7 g, 15,0 mmol) and AIBN (55 mg, 0.35 

mmol). The mixture was refluxed overnight and then allowed to cool down to RT. The solvent was 

evaporated in vacuo and the crude was purified by flash chromatography (SiO2, petroleum ether) to 

afford 5 as a white powder in 12-52 % yield. 
1
H NMR (300 MHz, CDCl3) 7.51 (s, 2H), 4.57 (s, 4H), 0.28 (s, 18H). 

13
C NMR (300MHz, CDCl3)  

 

 

 

Synthesis of the 1,4-dibromo-2,5-bis(bromomethyl)benzene 6 
160

 

 

To a solution of 2,5-dibromo-p-xylene (5 g, 19 mmol) in acetonitrile (75 mL) was added NBS (7.1 g, 

40 mmol) and AIBN (160 mg, 1 mmol). After stirring for 24 hours under reflux, the mixture was 

evaporated in vacuo and washed by hot methanol to afford 6 as a white powder in 60% yield.  

Mp = 161°C 
1
H NMR (300 MHz, CDCl3)  7.66 (s, 2H), 4.51 (s, 4H). 

13
C NMR (300MHz, CDCl3)  

 

 

Synthesis of the 1,4-bis(bromomethyl)benzene 7 

 
To a solution of p-xylene (2 g, 19 mmol) in acetonitrile (60 mL) was added NBS (7.1 g, 40 mmol) and 

AIBN (160 mg, 1 mmol). After stirring for 16 hours under reflux, the mixture was evaporated in vacuo 

and purified by flash chromatography (SiO2, petroleum ether: dichloromethane 1:1) to afford 7 as a 

white powder in 87% yield. 
1
H NMR (300 MHz, CDCl3) 7.37 (s, 4H), 4.48 (s, 4H). 
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Synthesis of the 1,4-bis(mercaptomethyl)benzene 8 
161

 

 

 
Under Argon. 

To a solution of 7 (5 g, 18.9 mmol) in ethanol (75 mL) was added thiourea (3.6 g, 47.4 mmol). The 

mixture was heated at 80°C for 3h and then cool down to RT. After evaporation in vacuo, the residue 

was dissolved in water (20 mL). Sodium hydroxide was added (2.25 g, 56.7 mmol) and the mixture 

was heated to 100 °C overnight. The solution was then extracted with diethylether and dried over 

MgSO4. Evaporation in vacuo gave 8 as colourless crystals in 79% yield.  
1
H NMR (300 MHz, CDCl3) s (d, 4H), 1.75 (t, 2H). 

13
C NMR (300 MHz, CDCl3) 140.07, 128.46, 28.72. 

 

 

Synthesis of the 5,8-dibromo-2,11-dithia[3.3]paracyclophane 9 
162

 

 

 
To a solution of KOH (330 mg, 6.0 mmol) in methanol (1 L) were introduced dropwise (2.5 mL/h) a 

solution of 6 (2.0 g, 4.7 mmol) and 8 (0.8 g, 4.7 mmol) in dichloromethane (100 mL) and another 

solution of KOH (330 mg, 6.0 mmol) in methanol (50 mL).  At the end of the addition, the mixture 

was acidified with dilute H2SO4, extracted with CH2Cl2, washed with water, dried over MgSO4 and 

evaporated in vacuo. The crude was washed by hot ethanol to afford 9 as a white powder in 89 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 7.17 (d, 2H), 7.03 (d, 2H), 4.15-3.57 (m, 8H). 

 

 

Synthesis of the 5,8-bis(trimethylsilyl)ethynyl-2,11-dithia[3.3]paracyclophane 10 
162

 

 
Under Argon. 

In a Schlenk tube were introduced 9 (400 mg, 0.93 mmol), Pd(PPh3)2Cl2 (65 mg, 0.1 mmol), CuI (27 

mg, 0.14 mmol), NEt3 (5 mL, 35 mmol) and toluene (50 mL) were added. Then TMSA (2 mL, 13.8 

mmol) was added and the mixture was stirred at 110°C for 8 hours. The black solution was diluted 

with dichloromethane, washed with water and dried over MgSO4. After evaporation in vacuo, the 

residue was purified by chromatography (SiO2, petroleum ether: dichloromethane 3:1) to afford 10 as 

a white powder in less than 10% yield. The product could not be completely isolated and thus, no 

characterisation could be performed.  
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Synthesis of the 1,4-dibromo-2,5-bis(mercaptomethyl)benzene 11
163

 

 
Under Argon. 

To a solution of 6 (2 g, 4.8 mmol) in ethanol (15mL) was added thiourea (0.9 g, 11.9 mmol). The 

mixture was heated at 80°C for 3h and then cool down to RT. After evaporation in vacuo, the residue 

was dissolved in water (15 mL). Sodium hydroxide was added (0.6 g, 14.2 mmol) and the mixture was 

heated to 100 °C overnight. The solution was then extracted with diethylether and dried over MgSO4. 

Evaporation in vacuo gave 11 as colourless crystals in 85% yield. 
1
H NMR (300MHz, CDCl3) (s, 2H), 3.76 (d, 4H), 1.99 (t, 2H). 

 

Synthesis of the 1,4-dibromo-2,5-bis[(benzylthio)methyl)]benzene 12 

 

To a solution of 11 (580 mg, 1.20 mmol) in toluene (10 mL) were added tertbutylbromide (50 mg, 15 

mmol) and water (10 mL). Benzylbromide (608 mg, 3.70 mmol) was then added and the mixture was 

stirred for 1 hour. The reaction mixture was poured into water, extracted with dichloromethane and 

dried over magnesium sulfate and evaporated in vacuo. The crude was purified by chromatography 

(SiO2, petroleum ether: dichloromethane 1:1) to afford 12 in 5% yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 7.35 (m, 6H), 7.29 (m, 2H), 3.73 (s, 4H), 3.68 (s, 4H). 

13
C NMR (300 MHz, CDCl3)  

 

 

Synthesis of the 1,4-dibromo-2,5-bis[(isopropylthio)methyl)]benzene 13 

 
To a solution of 11 (900 mg, 2.8 mmol) and potassium hydroxide (800 mg, 14.3 mmol) in ethanol (80 

mL) was added 2-bromopropane (1 mL, 10 mmol) and the solution was stirred for 18 hours. The 

mixture was then poured into water, extracted with dichloromethane and dried over MgSO4. The 

residue was purified by flash chromatography (SiO2, petroleum ether: dichloromethane 1:0 to 1:3) to 

afford 13 as colourless crystals in 23% yield.  
1
H NMR (300 MHz, CDCl3) (s, 2H), 3.78 (s, 4H), 2.91 (sept, 2H), 1.28 (d, 12H). 
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Synthesis of the 1,4-dibromo-2,5-bis[(methoxymethylthio)methyl]benzene 14 

 

To a solution of Zinc (90 mg, 1.4 mmol) in MOM (25 mL, 280 mmol) were added TiCl4 (0.1 ml, 0.68 

mmol). The solution was stirred for 30min before adding 11 (200 mg, 0.6 mmol). The mixture was 

stirred for an additional 2h and then hydrolyzed. The solution was extracted with AcOEt, dried over 

MgSO4 and evaporated in vacuo. The residue was purified by chromatography (SiO2, petroleum ether: 

dichloromethane 1:1) to afford 14 as a white powder in 88 % yield. 
1
H NMR (300 MHz, CDCl3) s, 2H), 4.57 (s, 4H), 3.81 (s, 4H), 3.37 (s, 6H). 

 

Synthesis of the 1,4-dibromo-2,5-bis[(benzoylthio)methyl)]benzene 15 

 
Under Argon. 

To a solution of dry pyridine (0.25 mL, 3.35 mmol) in THF (20 mL) was added dry benzoylchloride 

(0.7 mL, 6.1 mmol). Then, 11 (500 mg, 1.55 mmol) was added and the mixture was stirred for 14 

hours. The solution was diluted with methanol and filtrated to afford 15 as a white powder in 95% 

yield. 
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 7.0 Hz, 4H), 7.76 (s, 2H), 7.57 (t, 

3
J = 7.0 Hz, 2H), 7.44 (t, 

3
J = 7.0 Hz, 4H), 4.36 (s, 4H). 

 

Synthesis of the 1,4-bis[(trimethylsilyl)ethynyl]-2,5-bis[(methoxymethylthio)methyl]benzene 16 

 

Under Argon. 

In a Schlenk tube were introduced 14 (200 mg, 0.4 mmol), PdCl2(PPh3)2 (40 mg, 0.06 mmol), CuI (10 

mg, 0.06 mmol) and  DiPA (5 mL, 0.35 mmol). Then, trimethylsilylacetylene (0.8 mL, 5.5 mmol) was 

added and the mixture was stirred at 100°C overnight. The solution was diluted with dichloromethane, 

washed with water and dried over magnesium sulfate. After evaporation in vacuo, the residue was 

purified by flash chromatography (SiO2, petroleum: dichloromethane 1:1) to afford 16 as a white 

powder in 84 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 4.56 (s, 4H), 3.85 (s, 4H), 3.37 (s, 6H), 0.27 (s, 18H). 
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Synthesis of the 1,4-(diethynyl)-2,5-bis[(methoxymethylthio)methyl]benzene 17 

 
To a solution of 16 (540 mg, 1.3 mmol) in methanol (50 mL) was added potassium fluoride (740 mg, 

12.7 mmol). The mixture was stirred overnight and then evaporated in vacuo. The residue was purified 

by chromatography (SiO2, petroleum ether: dichloromethane 1:1) to afford 17 as a red crystals in 64 % 

yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 4.57 (s, 4H), 3.89 (s, 4H), 3.42 (s, 2H), 3.36 (s, 6H). 

 

Synthesis of the 1,4-bis[(pyridyl)ethynyl]-2,5-bis[(methoxymethylthio)methyl]benzene 18 

 
Under Argon. 

In a Schlenk tube were introduced 17 (100 mg, 0.36 mmol), Iodopyridine (370 mg, 1.8 mmol), 

Pd(PPh3)2Cl2 (25 mg, 0.04 mmol) and CuI (8 mg, 0.4 mmol). Then, DiPA (5 mL, 35.0 mmol) was 

added and the mixture was stirred for 8 hours. The solution was diluted with dichloromethane, washed 

with water and dried over MgSO4. After evaporation in vacuo, the residue was purified by flash 

chromatography (SiO2, petroleum ether: ethyl acetate 9:1 to 1:1) to afford 18 as a yellow powder in 

67 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 4H), 7.52 (s, 2H), 7.42 (d, 

3
J= 5.2 Hz, 4H), 4.60 (s, 4H), 3.95 (s, 

4H), 3.37 (s, 6H). 

 

 

Synthesis of the 1,4-bis[(trimethylsilyl)ethynyl]-2,5-bis[(benzoylthio)methyl]benzene 20 

 
Under Argon. 

In a Schlenk tube were introduced 15 (550 mg, 1.0 mmol), PdCl2(PPh3)2 (65 mg, 0.1 mmol), CuI (18 

mg, 0.1 mmol), DiPA (1.3 mL, 9.5 mmol) and THF (10 mL). Then, trimethylsilylacetylene (1.3 mL, 

9.5 mmol) was added and the mixture was stirred at 100°C overnight. The solution was diluted with 

dichloromethane, washed with water and dried over MgSO4. After evaporation in vacuo, the residue 

was purified by flash chromatography (SiO2, petroleum: dichloromethane 1:0 to1:1) to afford 20 as 

white crystals in 31 % yield. 
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 7 Hz, 4H), 7.59 (s, 2H), 7.56 (t, 

3
J = 7 Hz, 2H), 7.43 (t,

 3
J = 

7 Hz, 4H), 4.42 (s, 4H), 0.25 (s, 18H). 
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Synthesis of the 1,4-diethynyl-2,5-bis[(benzoylthio)methyl]benzene 21 

 
To a solution of 20 (110 mg, 0.2 mmol) in methanol (100 mL) was added potassium fluoride (120 mg, 

2.0 mmol). The mixture was stirred overnight and then evaporated in vacuo. The residue was diluted 

with dichloromethane and filtrated over silica gel. The filtrate was evaporated in vacuo to afford 21 as 

white crystals in 95 % yield. 
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 7 Hz, 4H), 7.64 (s, 2H), 7.57 (t, 

3
J = 7 Hz, 2H), 7.44 (t, 

3
J 

= 7 Hz, 4H), 4.44 (s, 4H), 3.45 (s, 2H). 

 

Synthesis of the 1,4-bis[(pyridyl)ethynyl]-2,5-bis[(benzoylthio)methyl]benzene 22 

 
Under Argon. 

In a Schlenk tube were introduced 21 (120 mg, 0.3  mmol), Iodopyridine (360 mg, 1.7 mmol), 

Pd(PPh3)2Cl2 (25 mg, 0.04 mmol) and CuI (8 mg, 0.4 mmol). Then, DiPA (10 mL, 70.0 mmol) was 

added and the mixture was stirred for 20 hours. The solution was diluted with dichloromethane, 

washed with water and dried over MgSO4. After evaporation in vacuo, the residue was purified by 

flash chromatography (SiO2, petroleum ether: ethyl acetate 9:1 to 1:1) to afford 22 as a yellow powder 

in 40 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 4H), 7.96 (d, 

3
J = 7.0 Hz, 4H), 7.76 (s, 2H), 7.50 (t, 

3
J = 7.0 Hz, 

2H), 7.47 (m, 8H), 4.53 (s, 4H). 

 

Synthesis of the 5,8-diethynyl-2,11-dithia[3.3]paracyclophane 23 
162

 

 
To a solution of KOH (100 mg, 1.8 mmol) in methanol (350 mL) were introduced dropwise (4 mL/h) 

a solution of 5 (500 mg, 1.1 mmol) and 8 (187 mg, 1.1 mmol) in dichloromethane (50 mL) and 

another solution of KOH (300 mg, 5.4 mmol) in methanol (50 mL). At the end of the addition, the 

mixture was acidified with dilute H2SO4, extracted with Dichloromethane, washed with water, dried 

over MgSO4 and evaporated in vacuo. The crude was purified by chromatography (SiO2, petroleum 

ether: dichloromethane 1:1) to afford 23 as a white powder in 43 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 7.06 (d, 

3
J = 8 Hz, 2H), 7.02 (d, 

3
J = 8 Hz, 2H), 4.30 (d, 

3
J 

= 15 Hz, 2H), 3.87 (d, 
3
J = 15 Hz, 2H), 3.78 (d, 

3
J = 15 Hz, 2H), 3.59 (d, 

3
J = 15 Hz, 2H), 3.43 (s, 2H). 
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Synthesis of the 5,8-bis[(pyridyl)ethynyl]-2,11-dithia[3.3]paracyclophane NP
 

 
Under Argon. 

In a Schlenk tube were introduced 23 (150 mg, 0.5 mmol), Iodopyridine (480 mg, 2.4 mmol), 

Pd(PPh3)2Cl2 (35 mg, 0.05 mmol) and CuI (10 mg, 0.05 mmol). Then, DiPA (1.5 mL, 10.0 mmol) was 

added and the mixture was stirred for 20 hours. The solution was diluted with dichloromethane, 

washed with water and dried over MgSO4. After evaporation in vacuo, the residue was purified by 

flash chromatography (SiO2, petroleum ether: ethyl acetate 9:1 to 1:1) to afford NP as a yellow 

powder in 44 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 4H), 7.49 (d, 

3
J = 5.5 Hz, 4H), 7.22 (s, 2H), 7.08 (d, 

3
J = 8 Hz, 

2H), 7.05 (d, 
3
J = 8 Hz, 2H), 4.32 (d, 

3
J = 15 Hz, 2H), 3.90 (d, 

3
J = 15 Hz, 2H), 3.85 (d, 

3
J = 15 Hz, 

2H), 3.72 (d, 
3
J = 15 Hz, 2H). 

 

Synthesis of the 1,4-dibromo-2,5-dimethoxymethylbenzene 24 

 
Under Argon. 

In a Schlenk tube were introduced 6 (1 g, 2.4 mmol), degassed MeOH (20 mL). After stirring for 10 

minutes, a solution of sodium (0.14 g, 6.0 mmol) in methanol (20 mL) was added dropwise and the 

reaction was heated at 90°C overnight. The solution was then poured into water, extracted with 

dichloromethane and dried over magnesium sulfate. The dichloromethane was removed in vacuo to 

afford 24 as a white powder in quantitative yield. 

Mp = 70°C 
1
H NMR (300 MHz, CDCl3) (s, 2H), 4.47 (s, 4H), 3.47 (s, 6H). 

13
C NMR (300 MHz, CDCl3) 

 

Synthesis of the 1,4-bis[(trimethylsilyl)ethynyl]-2,5-dimethoxymethylbenzene 25 

 
Under Argon 

In a Schlenk tube were introduced 24 (1.9g, 6 mmol), PdCl2(PPh3)2 (200 mg, 0.3 mmol), CuI (0.1 mg, 

0.3 mmol) and  triethylamine (30 mL, 225 mmol). Then, trimethylsilylacetylene (2.7 mL, 19 mmol) 

was added, the Schlenk tube was sealed and the mixture was stirred at 100°C for 8 hours. The solution 

was diluted with dichloromethane, washed with water and dried over magnesium sulfate. After 

evaporation in vacuo, the residue was purified by flash chromatography (SiO2, petroleum ether) to 

afford 25 as a white powder in 84 % yield. 

Mp = 89 °C 
1
H NMR (300 MHz, CDCl3) (s, 2H), 4.57 (s, 4H), 3.44 (s, 6H), 0.24 (s, 18H). 

13
C NMR (300 MHz, CDCl3)  
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Synthesis of the 1,4-diethynyl-2,5-bis(bromomethyl)benzene 27 

 
Under Argon. 

In a Schlenk tube were introduced 25 (0.45g, 1.2 mmol) and dichloromethane (10 mL). After stirring 

at 0°C for 10 minutes, a solution of BBr3 (3.7 mL, 3.7 mmol) in dichloromethane (10 mL) was added 

dropwise. After stirring for 2 hours, the reaction mixture was poured into water and extracted with 

dichloromethane. The solution was dried over MgSO4 and evaporated in vacuo. The crude was then 

dissolved in methanol (80 mL) and potassium fluoride (340 mg, 6 mmol). The solution was stirred 

overnight at room temperature and then poured in water, extracted with dichloromethane and dried 

over MgSO4. The solution was then evaporated in vacuo to afford 27 as a light yellow powder in 47% 

yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 4.60 (s, 4H), 3.51 (s, 2H). 

13
C NMR (300 MHz, CDCl3)  

 

Synthesis of the 5,8-diethynyl-2,11-dithia[3.3]paracyclophane 23 
162

 

 
To a solution of KOH (100 mg, 1.8 mmol) in methanol (350 mL) were introduced dropwise (4 mL/h) 

a solution of 27 (400 mg, 1.3 mmol) and 8 (200 mg, 1.3 mmol) in dichloromethane (50 mL) and 

another solution of KOH (200 mg, 3.6 mmol) in methanol (50 mL). At the end of the addition, the 

mixture was evaporated in vacuo. The residue was then dissolved in Dichloromethane, washed with 

water, dried over MgSO4 and evaporated again in vacuo. The crude was purified by chromatography 

(SiO2, petroleum ether: dichloromethane 1:1) to afford 23 as a white powder in 43 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 7.06 (d, 

3
J = 8 Hz, 2H), 7.02 (d, 

3
J = 8 Hz, 2H), 4.30 (d, 

3
J 

= 15 Hz, 2H), 3.87 (d, 
3
J = 15 Hz, 2H), 3.78 (d, 

3
J = 15 Hz, 2H), 3.59 (d, 

3
J = 15 Hz, 2H), 3.43 (s, 2H). 

 

Synthesis of the 4'-bromo-2,5-dimethyl-1,1'-biphenyl 28 

 
Under Argon. 

To p-bromophenylboronic acid (860 mg, 4.30 mmol) and Pd(PPh3)2Cl2 (175 mg, 0.25 mmol) was 

added a solution of 2-iodo-p-xylene (0.62 mL, 4.30 mmol) in dioxane (20 mL). Then, K2CO3 (2 g, 

15.00 mmol) in water (5 mL) was added, and the mixture was heated at 110°C for 12 hours. The 

reaction was allowed to cool down to RT and was poured into water. The mixture was then extracted 

with dichloromethane, dried over MgSO4 and evaporated in vacuo. The crude was purified by 

chromatography (SiO2, petroleum ether) to afford 28 as a colourless oil in 94% yield. 
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 8.5 Hz, 2H), 7.27 (d, 

3
J = 8.5 Hz, 2H), 7.25 (d,

 3
J = 8.0 Hz,  

1H), 7.18 (d, 
3
J = 8.0 Hz, 1H), 7.12 (s, 1H), 2.45 (s, 3H), 2.31 (s, 3H). 

13
C NMR (300 MHz, CDCl3) 141.05, 140.56, 135.40, 132.07, 131.26, 130.95, 130.49, 130.38, 

128.40, 130.98, 21.01, 20.00. 
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Synthesis of the 4'-bromo-2,5-bis(bromomethyl)-1,1'-biphenyl 29 

 
Under Argon. 

To a solution of 28 (1 g, 3.8 mmol) in acetonitrile (100 mL) was added NBS (1.4 g, 8,0 mmol) and 

AIBN (60 mg, 0.4 mmol). After stirring for 14 hours at 90 °C, the mixture was evaporated in vacuo 

and purified by flash chromatography (SiO2, Petroleum ether) to afford 29 as a white powder in 90% 

yield.  
1
H NMR (300 MHz, CDCl3)(d, 

3
J = 8.5 Hz, 2H), 7.50 (d, 

3
J = 8.0 Hz, 1H), 7.41 (dd,

 3
J = 8.0 

Hz, 
4
J = 2.0 Hz,  1H), 7.32 (d, 

3
J = 8.5 Hz, 2H), 7.24 (d, 

4
J = 2.0 Hz, 1H), 4.49 (s, 2H), 4.39 (s, 2H). 

 

 

Synthesis of the 4'-bromo-2,5-bis(mercaptomethyl)-1,1'-biphenyl 30 

 
Under Argon. 

To a solution of 29 (900 mg, 2.15 mmol) in ethanol (50 mL) was added thiourea (410 mg, 5.35 mmol). 

The mixture was heated at 80°C in a sealed Schlenk tube for 3h and then cool down to RT. After 

evaporation in vacuo, the residue was dissolved in water (50 mL) and the solution was degassed. 

Potassium hydroxide was added (1.2 g, 21.5 mmol) and the mixture was heated at 100 °C overnight in 

a sealed Schlenk tube. The solution was then extracted with diethylether and dried over MgSO4. The 

evaporation in vacuo gave 30 as colourless crystals in 83% yield. 
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 8.5 Hz, 2H), 7.37 (d, 

3
J = 8.0 Hz, 1H), 7.29 (dd,

 3
J = 8.0 

Hz, 
4
J = 2.0 Hz,  1H), 7.32 (d, 

3
J = 8.5 Hz, 2H), 7.13 (d, 

4
J = 2.0 Hz, 1H), 3.72 (d, 

3
J = 7.5 Hz, 2H), 

3.62 (d,
 3
J = 7.5 Hz, 2H), 1.77 (d, 

3
J = 7.5 Hz, 1H), 1.66 (d, 

3
J = 7.5 Hz, 1H). 

 

 

Synthesis of the 5,8-diethynyl-13-(p-bromophenyl)-2,11-dithia[3.3]paracyclophane 31-ecl and the 5,8-

diethynyl-14-(p-bromophenyl)-2,11-dithia[3.3]paracyclophane 31-sta
 

 

To a solution of KOH (100 mg, 1.8 mmol) in methanol (600 mL) were introduced dropwise (3,5 mL/h) 

a solution of 5 (420 mg, 0.9 mmol) and 30 (300 mg, 0.9 mmol) in dichloromethane (50 mL) and 

another solution of KOH (200 mg, 3.7 mmol) in methanol (50 mL). At the end of the addition, the 

mixture was acidified with dilute H2SO4, extracted with Dichloromethane, washed with water, dried 

over MgSO4 and evaporated in vacuo. The crude was purified by flash chromatography (SiO2, 

petroleum ether: dichloromethane 1:0 to 1:1) to afford two structural isomers 31-ecl and 31-sta as a 

white powder in combined yield of 60 %. 
1
H NMR (300 MHz, CDCl3)(m, 18H), 4.453.46 (m, 16H+ 4H). 
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Synthesis of the 5,8-bis[(pyridyl)ethynyl]-13-(p-bromophenyl)-2,11-dithia[3.3]paracyclophane nsNP-

sta and the 5,8-[(pyridyl)ethynyl]-14-(p-bromophenyl)-2,11-dithia[3.3]paracyclophane nsNP-ecl
 

 
Under Argon. 

In a Schlenk tube were introduced 31 (170 mg, 0.36 mmol), Iodopyridine (370 mg, 1.8 mmol), 

Pd(PPh3)2Cl2 (30 mg, 0.04 mmol) and CuI (8 mg, 0.04 mmol). Then, DiPA (1,5 mL, 10.0 mmol) was 

added and the mixture was stirred for 24 hours. The solution was diluted with dichloromethane, 

washed with water and dried over MgSO4. After evaporation in vacuo, the residue was purified by 

flash chromatography (SiO2, petroleum ether: ethyl acetate 9:1 to 1:1) to afford nsNP as two structural 

isomers (eclipsed nsNP-ecl and staggered nsNP-sta) as a yellow powder in 84 % yield. 
1
H NMR (300 MHz, CDCl3) (m, 8H), (m, 26H), 4.453.46 (m, 16H). 

 

Synthesis of the 1-Bromo-4-(2'-ethylhexyloxy)benzene 32 
164

 

 
To a solution of p-bromophenol (2 g, 11.5 mmol) and ethylhexylbromide (2.66 g, 13.8 mmol) in 

dimethylformamide (30 mL) was introduced potassium carbonate (3.2 g, 23 mmol) and the mixture 

was refluxed overnight. The solution was then poured into water, extracted with petroleum ether and 

dried over MgSO4. After evaporation in vacuo, the crude was purified by flash chromatography (SiO2, 

petroleum ether) to afford 32 in 77 % yield.   
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 9.0 Hz, 2H), 6.81 (d, 

3
J = 9.0 Hz, 2H), 3.81 (d,

 3
J = 6.0 Hz,   

2H), 1.75 (m, 1H), 1.57-1.33 (m, 8H), 0.96 (t, 
3
J = 7.0 Hz, 6H).  

 

Synthesis of the 2-[4′-[(2′′-ethylhexyl)oxy]phenyl]-4,4,5,5,-tetramethyl-1,3,2-dioxaborolane 33
165

 

 
Under Argon. 

In a Schlenk tube were introduced 32 (0.5 g, 1.7 mmol), pinacolborane (0.95 g, 3.8 mmol), potassium 

acetate (1.0 g, 10.1 mmol) and dioxane (10 mL). Pd(OAc)2 (38 mg, 0.17 mmol) and dppf (390 mg, 

0.68 mmol) were then added in THF (5 mL) and the reaction was refluxed 12 hours. The solution was 

then diluted with dichloromethane, washed with water and dried over MgSO4. After evaporation in 

vacuo, the residue was purified by flash chromatography (SiO2, petroleum ether: dichloromethane 1:0 

to 1:1) to afford 33 as a light green oil in 62 % yield. 
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 9.0 Hz, 2H), 6.93 (d, 

3
J = 9.0 Hz, 2H), 3.90 (d,

 3
J = 6.0 Hz,   

2H), 1.75 (m, 1H), 1.60-1.33 (m, 20H), 0.96 (t, 
3
J = 7.0 Hz, 6H). 
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Synthesis of the 4,7-dibromo-2,1,3-benzothiadiazole 34 
145

 

 
A solution of benzothiadiazole (4.0 g, 29.4 mmol) in a mixture of bromine and hydrobromic acid 

(48 %, 60 mL) was refluxed overnight. The solution was then poured into aqueous sodium thiosulfate 

and the mixture was filtrated off. The precipitate was recrystallised in ethanol to afford 34 as white 

needles in 55% yield.  
1
H NMR (300 MHz, CDCl3) (s, 2H). 

 

Synthesis of the 4-bromo-7-[4′-(2′′-ethylhexyloxy)phenyl]-2,1,3-benzothiadiazole 35 

 
Under Argon. 

In a Schlenk tube were introduced 33 (460 mg, 1.4 mmol), 34 (811 mg, 2.8 mmol), Pd(PPh3)2Cl2 (100 

mg, 0.15 mmol) and dioxane (20 mL). Then, K2CO3 (0.78 g, 5.7 mmol) in water (5 mL) was added, 

and the mixture was heated at 110°C for 12 hours. The reaction was allowed to cool down to RT and 

was poured into water. The mixture was then extracted with dichloromethane, dried over MgSO4 and 

evaporated in vacuo. The crude was purified by flash chromatography (SiO2, petroleum ether: 

dichloromethane 1:0 to 1:1) to afford 35 as pale yellow oil in 76% yield. 
1
H NMR (300 MHz, CDCl3) 7.88 (d, 

3
J = 7.0 Hz, 2H), 7.61 (d, 

3
J = 5.0 Hz, 1H), 7.60 (d, 

3
J = 5.0 Hz, 

1H), 7.07 (d, 
3
J = 7.0 Hz, 2H), 3.94 (d,

 3
J = 5.8 Hz,   2H), 1.75 (m, 1H), 1.60-1.33 (m, 8H), 0.96 (t, 

3
J = 

7.0 Hz, 6H). 

 

Synthesis of the 4-(7′-bromo-2′,1′,3′-benzothiadiazol-4′-yl)-phenol 36 

 
Under Argon. 

In a schlenk tube were introduced p-hydroxyphenylboronic acid (1 g, 7.25 mmol), 34 (3.2 g, 2;8 

mmol), Pd(PPh3)2Cl2 (100 mg, 0.15 mmol) and dioxane (20 mL). Then, K2CO3 (0,78 g, 5,7 mmol) in 

water (5 mL) was added, and the mixture was heated at 110°C for 12 hours. The reaction was allowed 

to cool down to RT and was poured into water. The mixture was then extracted with dichloromethane, 

dried over MgSO4 and evaporated in vacuo. The crude was purified by flash chromatography (SiO2, 

petroleum ether: dichloromethane 1:0 to 1:1) to afford 36 as pale yellow powder in 76% yield. 
1
H NMR (300 MHz, CDCl3) 7.90 (d, 

3
J = 7.6 Hz, 1H), 7.82 (d, 

3
J = 8.8 Hz, 2H), 7.52 (d, 

3
J = 7.6 Hz, 

1H), 6.99 (d, 
3
J = 8.8 Hz, 2H), 4.96 (s, 1H). 
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Synthesis of the 4-bromo-7-[4′-(2′′-ethylhexyloxy)phenyl]-2,1,3-benzothiadiazole 35 

 

To a solution of 36 (200 mg, 0.6 mmol) and ethylhexylbromide (0.17 g, 1.0 mmol) in 

dimethylformamide (40 mL) was introduced potassium carbonate (0.18 g, 1.3 mmol) and the mixture 

was refluxed overnight. The solution was then poured into water, extracted with petroleum ether and 

dried over MgSO4. After evaporation in vacuo, the crude was purified by flash chromatography (SiO2, 

petroleum ether: dichloromethane 1:0 to 1:1) to afford 35 in 76 % yield.   
1
H NMR (300 MHz, CDCl3) (d, 

3
J = 7.0 Hz, 2H), 7.61 (d, 

3
J = 5.0 Hz, 1H), 7.60 (d, 

3
J = 5.0 Hz, 

1H), 7.07 (d, 
3
J = 7.0 Hz, 2H), 3.94 (d,

 3
J = 5.8 Hz,   2H), 1.75 (m, 1H), 1.60-1.33 (m, 8H), 0.96 (t, 

3
J = 

7.0 Hz, 6H). 

 

Synthesis of the 2-(7′-[4′′-(2′′′′-ethylhexyloxy)phenyl]-2′,1′,3′-benzothiadiazole)-4,4,5,5,-tetramethyl-

1,3,2-dioxaborolane Fp 

 

Under Argon. 

In a Schlenk tube were introduced 35 (80 mg, 0.2 mmol), pinacolborane (0.15 g, 1.0 mmol), potassium 

acetate (0.11 g, 1.1 mmol) and dioxane (20 mL). Pd(OAc)2 (5 mg, 0.02 mmol) and dppf (42 mg, 0.08 

mmol) were then added in THF (5 mL) and the reaction was refluxed 12 hours. The solution was then 

diluted with dichloromethane, washed with water and dried over MgSO4. After evaporation in vacuo, 

the residue was purified by flash chromatography (SiO2, petroleum ether: dichloromethane 1:0 to 1:1) 

to afford Fp as a light green oil in 88 % yield. 
1
H NMR (300 MHz, CDCl3) 7.87 (d, 

3
J = 7.8 Hz, 1H), 7.83 (d, 

3
J = 8.8 Hz, 2H), 7.50 (d, 

3
J = 7.8 Hz, 

1H), 7.05 (d, 
3
J = 8.8 Hz, 2H), 3.92 (d,

 3
J = 5.6 Hz,   2H), 1.77 (m, 1H), 1.59-1.26 (m, 20H), 0.92 (t, 

3
J 

= 7.0 Hz, 6H). 

 

Synthesis of the 2,5-dimethylterephtalonitrile 37 
166

 

 

To a solution of 2,5-dibromo-p-xylene (20 g, 76 mmol) in DMF (400 mL) was added CuCN (27,2 g, 

304 mmol) and the solution was stirred under reflux overnight. The reaction mixture was poured into 

water and filtrated.  The crude was then solubilised by dichloromethane, washed with water and dried 

over MgSO4 to afford 37 as a cotton-light white compound in 91 % yield. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 2.55 (s, 6H). 
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Synthesis of the 2,5-bis(bromomethyl)-terephtalonitrile 38 
149

 

 

In a Schlenk tube were introduced 37 (1.0 g, 6,7 mmol), NBS (2.4 g, 13,2 mmol) and CHCl3 (10 mL). 

The Schlenk was then sealed with a screwed cap. After 30 minutes under UV, the solution was washed 

by water and evaporated in vacuo. The crude was re-introduced in the schlenk tube with NBS (2.4 g, 

13,2 mmol) and CHCl3 (10 mL), and the tube was sealed once again. After an additional 30 minutes 

under UV, the reaction mixture was washed by water, evaporated in vacuo. The crude was finally 

purified by flash chromatography (SiO2, petroleum ether : dichloromethane 1:0 to 1:1) to afford 38 as 

white crystals in 52%. 
1
H NMR (300 MHz, CDCl3) (s, 2H), 4.61 (s, 4H). 

 

Synthesis of the 2,5-bis(mercaptomethyl)-terephtalonitrile 39 

 

To a solution of 38 (730 mg, 2.3 mmol) in degassed ethanol (20mL) was added thiourea (390 mg, 5.1 

mmol). The mixture was heated at 80°C for 3h and then cool down to RT. The solution was poured 

into diethylether and the white precipitate was filtered off. The so-obtained powder was dissolved in 

degassed water (40 mL) and potassium hydroxide (1.3 g, 23 mmol) was added. After stirring at 100°C 

overnight, the solution was acidified with diluted sulfuric acid, extracted with diethylether and dried 

over MgSO4. Evaporation in vacuo afforded 39 as colorless crystals in 90% yield. 
1
H NMR (300 MHz, THF) (s, 

3
J = 8.5 Hz, 2H), 4.06 (d, 4H), 2.35 (t,

 3
J = 8.5 Hz, 2H). 

 

 

Synthesis of the 2-bromo-1,4-bis(bromomethyl)-benzene 40
167

 

 

To a solution of 2-bromo-p-xylene (10 g, 54 mmol) in acetonitrile (300 mL) was added NBS (24 g, 

135 mmol) and AIBN (440 mg, 2,7 mmol). After stirring for 20 hours under reflux, the mixture was 

evaporated in vacuo and washed by hot methanol to afford 40 as a white powder in 72% yield. 
1
H NMR (300 MHz, CDCl3)  7.60 (d, 

4
J = 1.7 Hz, 1H), 7.42 (d, 

3
J = 7.9 Hz, 1H), 7.31 (dd, 

3
J = 7.9 

Hz, 
4
J = 1.7 Hz, 1H), 4.57 (s, 2H), 4.40 (s, 2H). 
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Synthesis of the 2-bromo-1,4-bis(mercaptomethyl)-benzene 41 

 

To a solution of 40 (3 g, 8,75 mmol) in ethanol (75mL) was added thiourea (2,7 g, 35 mmol). The 

mixture was heated at 80°C for 3h and then cool down to RT. After evaporation in vacuo, the residue 

was dissolved in water (15 mL). Sodium hydroxide was added (1,4 g, 35 mmol) and the mixture was 

heated to 100 °C overnight. The solution was then extracted with diethylether and dried over MgSO4. 

Evaporation in vacuo afforded 41 as colorless crystals in 50% yield. 
1
H NMR (300 MHz, CDCl3)  7.52 (d, 

4
J = 1.4 Hz, 1H), 7.32 (d, 

3
J = 7.8 Hz, 1H), 7.23 (dd, 

3
J = 7.8 

Hz, 
4
J = 1.4 Hz, 1H), 3.81 (d, 

3
J = 8.1 Hz, 2H), 3.68 (d, 

3
J = 7.7 Hz, 2H), 1.98 (t, 

3
J = 8.1 Hz, 1H), 1.77 

(t, 
3
J = 7.7 Hz, 1H). 

 

 

Synthesis of the 5,8-dicyano-13-bromo-2,11-dithia[3.3]paracyclophane 42-ecl and ,8-dicyano-14-

bromo-2,11-dithia[3.3]paracyclophane 42-sta 

 
 

To a solution of KOH (110 mg, 2.0 mmol) in methanol (400 mL) were introduced dropwise (1.5 mL/h) 

a solution of 41 (400 mg, 1,6 mmol) and 38 (500 mg, 1,6  mmol) in dichloromethane (50  mL) and 

another solution of KOH (110 mg, 2.0 mmol) in methanol (50 mL).  At the end of the addition, the 

mixture was acidified with dilute H2SO4, extracted with Dichloromethane, washed with water, dried 

over MgSO4 and evaporated in vacuo. The crude was washed by hot ethanol to afford a mixture of two 

structure isomers 42-sta and 42-ecl as a white powder in 82 % yield. 
1
H NMR (300 MHz, CDCl3)(m, 10H), 4.563.61 (m, 16H). 

 

Synthesis of the 5,8-dicyano-13-(tributylstannyl)-2,11-dithia[3.3]paracyclophane 43-ecl and ,8-

dicyano-14-(tributylstannyl)-2,11-dithia[3.3]paracyclophane 43-sta
 

 

Under argon. 

To a -78°C cooled solution of 42 (100mg, 0.26 mmol) in dry THF (5 mL) was added dropwise n-Buli 

(2.5 M in hexane, 0.11 mL, 0.27 mmol). After stirring for 30 min at -78°C, ClSnBu3 (0.08mL, 0.3 

mmol) was added. The mixture was stirred for an additional 30 min, and the reaction was allowed to 

reach room temperature. After stirring overnight, the solution was hydrolysed, extracted with 

dichloromethane, dried over magnesium sulphate and evaporated in vacuo. The crude 43 was used for 

the next reaction without further purification. 
1
H NMR (300 MHz, CDCl3)(m, 10H), 4.183.76 (m, 16H), 1.62 (m, 6H), 1.28 (m, 12H), 

0.92 (t, 
3
J = 8.2 Hz, 9H). 
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Synthesis of the 4-bromo-4',4''-dimethyltriphenylamine 44
168

 

 
Under argon. 

In a schlenk tube were introduced ditolylamine (1 g, 5.05 mmol), 1-iodo-4-bromobenzene (1.56 g, 5.5 

mmol) phenanthroline (180 mg, 1 mmol), copper chloride (100 mg, 1 mmol), potassium hydroxide 

(3.0 g, 4.5 mmol) and degassed toluene (12 mL). The tube was sealed with a screwed cap and the 

reaction was stirred for 20 hours at 125°C. The mixture was then poured into water, extracted with 

toluene, dried over magnesium sulphate and evaporated in vacuo. The crude was purified by 

chromatography (SiO2, petroleum ether) to afford 44 as a white powder in 67% yield. 
1
H NMR (300 MHz, CDCl3)  7.26 (d, 

3
J = 8.7 Hz, 2H), 7.06 (d, 

3
J = 8.3 Hz, 4H), 6.97 (d, 

3
J = 8.3 Hz, 

4H), 6.88 (d, 
3
J = 8.7 Hz, 2H), 2.31 (s, 6H). 

Synthesis of the 4-(tributylstannyl)-4',4''-dimethyltriphenylamine 45 

 
To a -78°C cooled solution of 44 (980 mg, 2.78 mmol) in dry THF (8 mL) were added dropwise n-

Buli (1.6 M in hexane, 1.91 mL, 3.06 mmol). After stirring for 30 min at -78°C, ClSnBu3 (0.91 mL, 

3.34 mmol) was added. The mixture was stirred for an additional 30 min, and the reaction was allowed 

to reach room temperature. After stirring overnight, the solution was hydrolysed, extracted with 

dichloromethane, dried over magnesium sulphate and evaporated in vacuo. The crude 45 was used for 

the next reaction without further purification. 
1
H NMR (300 MHz, CDCl3)  7.28 (d, 

3
J = 8.3 Hz, 2H), 7.03 (d, 

3
J = 8.4 Hz, 4H), 7.01 (d, 

3
J = 8.4 Hz, 

4H), 6.99 (d, 
3
J = 8.3 Hz, 2H), 2.33 (s, 6H), 1.55 (m, 6H), 1.34 (m, 12H), 1.05 (t, 

3
J = 8.2 Hz, 9H). 

 

Synthesis of the B-[4-[bis(4'-methylphenyl)amino]phenyl]boronic acid 46 
169

 

 
Under argon. 

In a schlenk tube were introduced ditolylamine (1 g, 5.05 mmol), p-iodophenylboronic acid (1.5 g, 5.5 

6 mmol) phenanthroline (180 mg, 1 mmol), copper iodide (190 mg, 1 mmol), potassium hydroxide 

(3,0 g, 4.5 mmol) and degassed toluene (12 mL). The tube was sealed with a screwed cap and the 

reaction was stirred for 18 hours at 125°C. The mixture was then poured into water, extracted with 

toluene, dried over magnesium sulphate and evaporated in vacuo. The crude was purified by 

chromatography (SiO2, petroleum ether) to afford 46 as a white powder in 25% yield. 
1
H NMR (300 MHz, CDCl3)  7.22 (d, 

3
J = 7.3 Hz, 2H), 7.19 (d, 

3
J = 7.4 Hz, 4H), 7.08-6.94 (m, 10H), 

2.32 (s, 6H). 
13

C NMR (300 MHz, CDCl3)  148.47, 145.66, 132.44, 129.98, 129.16, 124.63, 123.14, 121.87, 20.92. 
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Synthesis of the 4‟-fluoro-2,5-dimethyl-1,1‟-biphenyl 47
170

 

 

Under Argon. 

To p-fluorophenylboronic acid (2 g, 14,3 mmol) and Pd(PPh3)2Cl2 (230 mg, 0.33 mmol) was added a 

solution of 2-iodobromo-p-xylene (1.8 mL, 13.0 mmol) in dioxane (50 mL). Then, K2CO3 (9 g, 65 

mmol) in water (20 mL) was added, and the mixture was heated at 110°C for 12 hours. The reaction 

was then allowed to cool down to RT and was poured into water. The mixture was extracted with 

dichloromethane, dried over MgSO4 and evaporated in vacuo. The crude was purified by 

chromatography (SiO2, petroleum ether) to afford 47 as a colourless oil in quantitative yield. 
1
H NMR (300 MHz, CDCl3) (m, 2H), 7.10 (m, 5H), 2.36 (s, 3H), 2.22 (s, 3H). 

 

Synthesis of the 4‟-fluoro-2,5-bis(bromomethyl)-1,1‟-biphenyl 48 

 

Under Argon. 

To a solution of 47 (2 g, 10 mmol) in acetonitrile (80 mL) was added NBS (3.74 g, 21 mmol) and 

AIBN (160 mg, 1 mmol). After stirring for 13 hours at 90 °C, the mixture was evaporated in vacuo 

and purified by flash chromatography (SiO2, Petroleum ether) to afford 48 as a white powder in 66% 

yield.  
1
H NMR (300 MHz, CDCl3) δ 7.51 (d, 

3
J = 8.0 Hz, 1H), 7.42 (m,, 3H), 7.26 (s, 1H), 7.15 (m, 2H), 

4.49 (s, 2H), 4.40 (s, 2H). 

 

Synthesis of the 4‟-fluoro-2,5-bis(mercaptomethyl)-1,1‟-biphenyl 49 

 

Under Argon. 

To a solution of 48 (2.38 g, 6.7 mmol) in ethanol (625 mL) was added thiourea (1.26 g, 16.6 mmol). 

The mixture was heated at 80°C in a sealed Schlenk tube for 3h and then cool down to RT. After 

evaporation in vacuo, the residue was dissolved in water (60 mL) and the solution was degassed. 

Potassium hydroxide was added (3.9 g, 70.0 mmol) and the mixture was heated at 100 °C overnight in 

a sealed Schlenk tube. The solution was then extracted with diethylether and dried over MgSO4. 

Evaporation in vacuo gave 49 as colourless crystals in 73% yield. 
1
H NMR (300 MHz, CDCl3) δ 7.42-7.28 (m, 4H), 7.19 – 7.08 (m, 3H), 3.74 (t, 

3
J = 6.6 Hz, 2H), 3.65 

(d, 
3
J = 7.3 Hz, 2H), 1.79 (t, 

3
J = 7.6 Hz, H), 1.68 (t, 

3
J = 7.3 Hz, 1H). 
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Synthesis of the 5,8-dicyano-13-(4'-fluorophenyl)-2,11-dithia[3.3]paracyclophane 50-ecl and ,8-

dicyano-14-(4'-fluorophenyl)-2,11-dithia[3.3]paracyclophane 50-sta
 

 

 

To a solution of KOH (100 mg, 1,8 mmol) in methanol (350 mL) were introduced dropwise (4 mL/h) 

a solution of 49 (168 mg, 0.64 mmol) and 38 (200 mg, 0.64 mmol) in dichloromethane (50 mL) and 

another solution of KOH (100 mg, 1.8 mmol) in methanol (50 mL). At the end of the addition, the 

mixture evaporated in vacuo and the crude was purified by flash chromatography (SiO2, 

dichloromethane) to afford 50 as a white powder in 52 % yield. 
1
H NMR (300 MHz, CDCl3) δ 7.68 – 6.86 (m, 18H), 4.35 – 3.42 (m, 8H). 

 

Synthesis of the 4'-iodo-2,5-dimethyl-1,1'-biphenyl 51 

 

To a 0°C cooled solution of 28 (1.9 g, 7.1 mmol) in dry diethylether (40 mL) was added dropwise n-

Buli (1.6 M in hexane, 5.3 mL, 8.5 mmol). After stirring for 30 min at 0°C, iodine (2.7 g, 10.6 mmol) 

was added. The mixture was stirred for an additional 30 min, and the reaction was allowed to reach 

room temperature. After stirring overnight, the solution was hydrolysed, extracted with 

dichloromethane, dried over magnesium sulphate and evaporated in vacuo. The crude was purified by 

chromatography (SiO2, petroleum ether) to afford 51 as a colorless oil in quantitative yield. 
1
H NMR (300 MHz, CDCl3) δ 7.69 (d, 

3
J = 8.2 Hz, 2H), 7.11 (d, 

3
J = 7.7 Hz, 1H), 7.01 (m, 3H), 2.30 

(s, 3H), 2.17 (s, 3H). 

 

Synthesis of the 4'-iodo-2,5-bis(bromomethyl)-1,1'-biphenyl 52 

 

Under Argon. 

To a solution of 51 (1 g, 3.25 mmol) in acetonitrile (80 mL) was added NBS (1.5 g, 8.1 mmol) and 

AIBN (50 mg, 0.32 mmol). After stirring for 24 hours at 90 °C, the mixture was evaporated in vacuo 

and purified by flash chromatography (SiO2, pPetroleum ether) to afford 52 as a white powder in 74% 

yield.  
1
H NMR (300 MHz, CDCl3) δ 7.82 (d, 

3
J = 8.1 Hz, 2H), 7.53 (d, 

3
J = 8.0 Hz, 1H), 7.40 (dd,

 3
J = 8.0 

Hz, 
4
J = 1.7 Hz, 1H), 7.26 (d,

 4
J = 1.7 Hz, 1H), 7.21 (d, 

3
J = 8.1 Hz, 2H), 4.51 (s, 2H), 4.41 (s, 2H). 
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Synthesis of the 5,8-dicyano-13-(4'-bromophenyl)-2,11-dithia[3.3]paracyclophane 53-ecl and ,8-

dicyano-14-(4'-bromophenyl)-2,11-dithia[3.3]paracyclophane 53-sta
 

 

To a solution of KOH (100 mg, 1,8 mmol) in methanol (600 mL) were introduced dropwise (3 mL/h) 

a solution of 30 (620 mg, 1,9 mmol) and 38 (600 mg, 1,9 mmol) in dichloromethane (60 mL) and 

another solution of KOH (200 mg, 3,6 mmol) in methanol (60 mL). At the end of the addition, the 

mixture was acidified with dilute H2SO4, extracted with Dichloromethane, washed with water, dried 

over MgSO4 and evaporated in vacuo. The crude was purified by flash chromatography (SiO2, 

petroleum ether:dichloromethane 1:0 to 1:1) to afford 53 as a mixture of two isomers staggered (53-

sta) and eclipsed (53-ecl), with respectively 30% in 12 % yield.
  

53-sta:  
1
H NMR (300 MHz, CDCl3) δ 7.57 (d, 

3
J = 8.5 Hz, 2H), 7.54 (s, 1H), 7.29 (d, 

3
J = 8.5 Hz, 2H), 7.14 

(m, 2H), 7.04 (d, 
4
J = 1.5 Hz, 1H), 6.97 (d, 

3
J = 8.0 Hz, 1H), 4.21 (d, 

3
J = 14.8 Hz, 1H), 4.01-3.65 (m, 

6H), 3.59 (d, 
3
J = 15.8 Hz, 1H). 

53-ecl:  
1
H NMR (300 MHz, CDCl3) δ 7.60 (d, 

3
J = 8.6 Hz, 1H), 7.56 (s, 1H), 7.52 (s, 1H), 7.26 (m, 2H), 7.12 

(d, 
4
J = 1.8 Hz, 1H), 7.01 (dd, 

3
J = 7.8 Hz, 

4
J = 1.8 Hz, 1H), 4.29 (d, 

2
J = 15.6 Hz, 1H), 4.13 (d,

 2
J = 

15.8 Hz, 1H), 3.99 (d, 
2
J = 15.2 Hz, 1H), 3.92-3.82 (m, 4H), 3.68 (d, 

2
J = 15.2 Hz, 1H). 

 

Synthesis of the 5,8-dicyano-13-(4'-[bis(4''-methylphenyl)amino]phenyl)-2,11-dithia[3.3] 

paracyclophane E-ecl 

 
Under argon. 

In a schlenk tube were introduced 53-ecl (270 mg, 0.52 mmol), ditolylamine (120 mg, 0.60 mmol), 

cesium carbonate (235 mg, 0.73 mmol) and degassed toluene (40 mL). A solution of palladium acetate 

(16 mg, 0.03 mmol) and tri-tert-butylphosphine (24 µL, 0.12 mmol) in THF (5 mL) was then added 

and the tube was sealed with a screwed cap. After strirring for 18 hours at 120°C, the mixture was 

evaporated in vacuo and the crude was purified by chromatography (SiO2, petroleum 

ether:dichloromethane 1:1) to afford E-ecl as a yellow powder in 97% yield. 
1
H NMR (600 MHz, DMSO) δ 7.73 (s, 1H), 7.63 (s, 1H), 7.30 (d, 

3
J = 8.5 Hz, 2H), 7.16 (d, 

3
J = 8.0 

Hz, 1H), 7.13 (d, 
3
J = 8.2 Hz, 4H), 7.07 (d, 

4
J = 1.3 Hz, 1H), 6.98 (d, 

3
J = 8.3 Hz, 4H), 6.95 (dd,

 3
J = 

8.0 Hz, 
4
J = 1.3 Hz,

 
1H), 6.93 (d, 

3
J = 8.6 Hz, 2H), 4.09 (d, 

2
J = 15.4 Hz, 2H), 4.05 (d, 

2
J = 15.2 Hz, 

2H), 3.99 (d, 
2
J = 15.0 Hz, 1H), 3.98 (d, 

2
J = 14.7 Hz, 1H), 3.91 (d, 

2
J = 14.9 Hz, 1H), 3.85 (d, 

2
J = 

14.6 Hz, 1H), 2.28 (s, 6H). 
13

C NMR (600 MHz, DMSO) δ 146.6, 144.6, 141.2, 140.6, 135.5, 134.8, 134.2, 132.7, 137.3, 131.6, 

131.4, 130.2, 130.0, 129.9, 127.0, 124.4, 121.0, 116.7, 116.2, 115.5, 114.6, 36.5, 35.4, 34.5, 34.2, 20.3. 

 

 



165 

 

Synthesis of the 5,8-dicyano-14-(4'-[bis(4''-methylphenyl)amino]phenyl)-2,11-dithia[3.3] 

paracyclophane E-sta 

 

 
Under argon. 

In a schlenk tube were introduced 53-sta (300 mg, 0.63 mmol), ditolylamine (150 mg, 0.76 mmol), 

cesium carbonate (290 mg, 0.88 mmol) and degassed toluene (40 mL). A solution of palladium (tri-

tert-butylphosphine)2 (16 mg, 0.03 mmol) in THF (5 mL) was then added and the tube was sealed with 

a screwed cap. After strirring for 24 hours at 120°C, the mixture was evaporated in vacuo and the 

crude was purified by chromatography (SiO2, petroleum ether:dichloromethane 1:1) to afford E-sta as 

a yellow powder in 35% yield. 
1
H NMR (600 MHz, DMSO) δ 7.82 (s, 1H), 7.35 (s, 1H), 7.32 (d, 

3
J = 8.5 Hz, 2H), 7.20 (d, 

3
J = 7.8 

Hz, 1H), 7.17 (d, 
3
J = 8.2 Hz, 4H), 7.05 (d, 

4
J = 1.2 Hz, 1H), 7.01 (d, 

3
J = 8.3 Hz, 4H), 6.95 (d, 

3
J = 8.6 

Hz, 2H), 6.87 (d, 
3
J = 7.6 Hz, 1H), 4.10 (d, 

2
J = 14.7 Hz, 1H), 4.01 (d, 

2
J =14.7 Hz, 1H), 4.00-3.90 (m, 

5H), 3.88 (d, 
2
J = 15.2 Hz, 1H), 2.29 (s, 6H). 

13
C NMR (600 MHz, DMSO) δ 146.8, 144.5, 141.0, 140.8, 140.2, 135.5, 135.2, 133.7, 132.8, 132.7, 

132.1, 130.3, 130.1, 129.5, 129.4, 128.4, 124.8, 120.7, 116.9, 116.4, 115.6, 115.4, 79.2, 78.9, 78.7, 

36.1, 35.5, 34.3, 34.2, 20.4. 
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APPENDIX 3: E-ecl, NMR experiments (600 MHz, DMSO-d6) 
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APPENDIX 4: E-sta, NMR experiments (600 MHz, DMSO-d6) 
1
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APPENDIX 5: E-sta, X-ray data 

 

Empirical formula C38H31N3S2 

Formula weight 593.78 

Temperature (K) 120(1) 

Wavelength (Å) 1.54178 

Crystal system Monoclinic 

Space group C 2/c 

Unit cell dimensions 

a = 25.2831(7) Å 

b = 10.3041(3) Å 

c = 23.9742(5) Å 

α = 90° 

β = 13.010(2)° 

γ = 90° 

Cell volume 6085.4(3) Å
3
 

Z 8 

Crystal dimensions 0.11 x 0.09 x 0.02 

Density 1.296 

F(000) 2496 

Absorption coefficient 1.827 

Min. and max. transmission 0.79 and 1.00 

θ range for data collection 3.79° to 66.61° 

Index ranges 

-30 <= h <= 29 

-11 <= k <= 12 

-27 <= k <= 28 

Reflection collected 19716 

R(int) 4.02 % 

Data / parameters / restraints 5375 / 390 / 0 

Goodness-of-fit F
2
 1.032 

Final R indices [I > 2ζ(I)] 
R1 = 4.08 % 

wR2 = 9.99 % 

Final R indices (all data) 
R1 = 5.74 % 

wR2 = 10.77 % 
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APPENDIX 6: DIPOLE MOMENTS CALCULATIONS 
 

By employing the simplest quantum-mechanical second order perturbation theory, Bilot and Kawski 

have obtained expressions for solvent spectral shift given by: 

𝜈𝑎 − 𝜈𝑓 = 𝑚1𝑓 𝜀,𝑛 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

(1) 

𝜈𝑎 + 𝜈𝑓 = −𝑚2 𝑓 𝜀,𝑛 + 2𝑔(𝑛) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

(2) 

where νa is the absorption maximum and νf is the fluorescence maximum, both in wavenumber. ε is the 

permittivity and 𝑛 is the refractive index. 𝑚1 and m
2
 represent the slope plotting relation (1) and (2) 

using Bakshiev polarity function 𝑓(ε, n) and Kawski-Chamma-Viallet polarity function 𝑔 (n): 

𝑓 𝜀,𝑛 =  
2𝑛² + 1

𝑛² + 2
  
𝜀 − 1

𝜀 + 2
−
𝑛² − 1

𝑛² + 2
  

 

(3) 

𝑔 𝑛 =  
3

2
  
𝑛4 − 1

(𝑛 + 2)
  

 

(4) 

Following the Onsager theory, 𝑚1 and m
2
 can be expressed as following: 

𝑚1 =  
2(𝜇𝑒 − 𝜇𝑔)²

𝑕𝑐𝑎3
  

 

(5) 

𝑚2 =  
2(𝜇𝑒

2 − 𝜇𝑔
2)

𝑕𝑐𝑎3
  

 

(6) 

where h is the Planck constant ( h = 6.63 10
-34

 J.s), c is the velocity of light in vacuum (c = 3 10
8
 m.s

-1
) 

and a is the Onsager‟s radius with μg the ground state dipole moment and μe the excited state dipole 

moment. 

Therefore the ground state dipole moment can be found by using the following equation: 

𝜇𝑔 =  
𝑚2 −𝑚1

2
  
𝑕𝑐𝑎3

2𝑚1  

1/2
 

 

(7) 

In this equation, the Onsager radius a is calculated using the equation (8): 

𝑎 =   
3𝑀

4𝜋𝛿𝑁𝐴
 

1/3
 

 

(8) 

where δ is the density if the considered dye (δ = 1.296 for E-sta, obtained by X-ray radio-

crystallography, and we considered that E-ecl would have the same density), M is the molecular 

weight of the dye (593.78 g.mol
-1

) and NA is the Avogadro‟s constant (6.022 10
23

 mol
-1

). The Onsager 

radius a is thus equal to 5.66 Å. 

In addition to these calculations from Bilot and Kawski, Lippert and Mataga proposed the following 

equation to determine the excited state dipole moment μe: 

𝜈𝑎 − 𝜈𝑓 = 𝑚3∆𝑓′ + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (9) 
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with Δf’ and m
3 
defined as following: 

∆𝑓 ′ =  
𝜀 − 1

2𝜀 + 1
−

𝑛² − 1

2(2𝑛2 + 1)
 

 

(10) 

𝑚3 =
2 𝜇𝑒 − 𝜇𝑔 ²

𝑕𝑐𝑎3
 

(11) 

 

The plotting of (1), (2) and (9) for E-ecl and E-sta is represented in Figure 173. 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

11000

12000

13000

14000

15000

16000

17000

Lippert-Mataga

Slope = 20663

 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

47000

48000

49000

50000

51000

52000

53000

54000

 


a
 -

 
f 
(c

m
-1
)


a
 +

 
f 
(c

m
-1
)

Bakhshiev

Slope = 5527

Kawski-Chamma-Viallet

Slope = 5895

Polarity functions' values

 

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

11000

12000

13000

14000

15000

16000

17000

18000


a
 -

 
f 
(c

m
-1
)

Polarity functions' values

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4

48000

49000

50000

51000

52000

53000

54000

55000

Lippert-Mataga

Slope = 23116

Bakhshiev

Slope = 6184


a
 +

 
f 
(c

m
-1
)

Kawski-Chamma-Viallet

Slope = 6403

 

Figure 173: Solvent polarity functions of a) E-ecl and b) E-sta 

The slope of (1) and (2) represents 𝑚1 and m
2
, which used in (7) allowed to determined the ground 

state dipole moments of E-ecl (μg = 0.3 Debye) and E-sta (μg = 0.2 Debye). Then the slope of (9) gives 

m
3
 which reported in (11) along with the values of μg allows to calculate the excited state dipole 

moment of E-ecl (μe = 19.6 Debye) and E-sta (μe = 20.2 Debye). 

a) 

b) 
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Abstracts 

In this work and due to their unique electronic properties, 3D-dithia[3.3]paracyclophane-based 

molecules have been studied for surface nanostructuration applications and as new fluorophore.  

First, the supramolecular self-assembly of molecules is used to create well-organised 2D-networks on 

conducting surfaces. However, the use of such substrates tends to quench any electronic properties of 

the adsorbed molecules. In this context, 3D-dithia[3.3]paracyclophane-based molecules were 

employed to lift up the active moiety from the surface. In this work, new pyridyl end-capped 

molecules were designed to self-assemble on any substrate. Preliminary characterisations were 

performed to study the supramolecular self-assembly of such molecules alone or with co-adsorbers, 

and the first images of organised 2D-networks on graphite and gold have been obtained by scanning 

probe microscopy.  

Second, the design of new and efficient emitter is a hot topic for the fabrication of OLED devices. A 

new type of compounds is currently investigated for their high electroluminescence efficiency due to 

thermally activated delayed fluorescence (TADF). This phenomenon is expected from molecules 

showing low electronic gap between singlet and triplet excited states, which is related to a low overlap 

of the HOMO and LUMO, localised on the electron-door and acceptor moieties of the molecule, 

respectively. In this sense, we propose a new design of donor-acceptor molecules where the HOMO 

(donor) and LUMO (acceptor) are separated by a cyclophane core. We synthesised a couple of 

emitters and their photophysics properties were studied in solution and in solid state.  

Key words: cyclophane, supramolecular self-assembly, surface nanostructuration, thermally activated 

delayed fluorescence, photophysics. 

Dans ce travail, des derivés du dithia[3.3]paracyclophane sont étudiés pour des applications en 

nanostructuration de surfaces et comme nouveaux fluorophores. 

Dans un premier temps, l‟auto-assemblage supramoléculaire de molécules est utilisé pour créer des 

réseaux 2D sur surface. Cependant, l‟utilisation de tels substrats a tendance à annihiler les propriétés 

électroniques des composés adsorbés. Par conséquent, des dérivés 3D du dithia[3.3]paracyclophane 

sont employées afin d‟éloigner le composant actif de la surface. Dans cet optique, de nouvelles 

molécules à base de groupements pyridine ont été conçues pour s‟auto-assembler sur différents 

substrats. Les caractérisations préliminaires ont été effectuées afin d‟étudier les propriétés d‟auto-

assemblage de telles molécules seules ou co-adsorbées, et les premières images de réseaux 2D auto-

organisés sur graphite et or ont été obtenues par microscopie à sonde locale. 

Dans un second temps, de nouveaux composés sont actuellement étudiés pour électroluminescence à 

haute rendement à partir de la fluorescence retardée à activation thermique (TADF). Ce phénomène est 

généralement observé pour des molécules montrant un faible gap électronique entre ses états excités 

singulet et triplet, lié au faible recouvrement des orbitales HOMO et LUMO localisées sur le donneur 

et l‟accepteur, respectivement. Dans ce contexte, nous proposons un nouveau design de molécules de 

type donneur-accepteur où HOMO (donneur) et LUMO (accepteur) sont séparées par un cœur 

cyclophane. Nous avons synthétisé deux émetteurs et leurs propriétés photo-physiques ont été étudiées 

en solution et à l‟état solide.   

Mots clés : cyclophane, auto-assemblage supramoléculaire, nanostructuration de surface, fluorescence 

retardée à activation thermique, photo-physique. 


