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Titre : Des changements ploïdie-dépendant dans l’épigénome de cellules symbiotiques sont 

corrélés avec des profils spécifiques d’expression génique 

Mots clés : Symbiose rhizobium-legumineuse, peptides NCR, polyploïdie, endoréplication, 

Medicago truncatula Gene Expression Atlas (MtGEA), épigénétiques 

Résumé Les légumineuses peuvent interagir 

avec les bactéries du sol de la famille des 

Rhizobiaceae. Cette interaction aboutit à la 

formation d'un organe spécialisé appelé 

nodosité. Au sein des cellules symbiotiques des 

nodosités, les rhizobia sont capables de fixer 

l'azote atmosphérique et de la convertir en 

ammoniac, qui est une source d'azote 

assimilable par les plantes. Chez la 

Légumineuse Medicago truncatula, les cellules 

symbiotiques produisent une large famille de 

peptides riches en cystéines appelées (NCRs) 

spécifiquement exprimés dans les nodosités. 

Ces NCRs induisent la différenciation des 

bactéroïdes qui se traduit par un allongement 

cellulaire couplé à une forte endoréplication du 

génome (les bactéroïdes deviennent 

polyploïdes) contribuant ainsi à une 

augmentation importante de la taille des 

cellules, ainsi qu’une perméabilité membranaire 

accrue et une perte de toute capacité 

reproductrice. Les peptides NCRs ressemblent à 

des défensines, des peptides antimicrobiens, 

acteurs clés de l’immunité innée. L'analyse de 

l'expression de 334 gènes NCR dans 267 

différentes conditions expérimentales en 

utilisant la base de données MtGEA (Medicago 

truncatula Gene Expression Atlas) a révélé que 

l'ensemble des gènes NCR testés (sauf quatre) 

n'est exprimé que dans les nodosités, ils ne sont 

pas exprimés dans d’autres organes de la plante, 

ni lors d’une infection par des agents 

pathogènes. De plus l’expression des NCRs 

n’est induite en réponse à aucune interaction 

biotique ou abiotique testée ou à des facteurs 

Nod. Les gènes NCR sont activés en vagues 

successives au cours de l’organogenèse 

nodulaire et ce profil temporel est en corrélation 

avec une localisation spatiale spécifique de leurs 

transcrit de la zone apicale à la partie proximale 

de nodosités. En outre, nous avons montré que 

les NCRs ne sont pas induites pendant la 

sénescence des nodules. Ces analyses 

expérimentales ensemble avec des calculs  

d’entropie de Shannon, une métric pour la 

spécificité d’expression, montrent que les gènes 

NCR sont parmi les gènes les plus fortement et 

le plus spécifiquement exprimés chez M. 

truncatula. Ainsi, l'expression des NCRs est 

soumise à une régulation extrêmement stricte et 

ils sont activés exclusivement pendant 

l’organogenèse et au cours du développement 

nodulaire dans les cellules symbiotiques 

polyploïdes. Cette analyse a suggéré 

l'implication de la régulation épigénétique des 

gènes NCR. La formation des cellules 

symbiotiques s'exerce par une endoreplication et 

est associée à une reprogrammation 

transcriptionnelle. En utilisant le tri par 

cytométrie en flux des noyaux, en fonction de 

leur contenu en ADN, nous avons montré que 

les vagues transcriptionnelles sont en 

correlation avec les niveaux croissants de 

ploïdie et resultent des modifications 

épigénétiques durant les cycles 

d’endoréplication. Nous avons étudié la 

méthylation de l'ADN génomique et 

l'accessibilité à la chromatine, ainsi que la 

présence des marqueurs répresseurs 

(H3K27me3) ou activateurs transcriptionnels 

(H3K9ac) sur des gènes spécifiques des 

nodosités. La méthylation différentielle de 

l'ADN n'a été trouvée que dans un petit sous-

ensemble de gènes symbiotiques spécifiques 

aux nodosités. Néanmoins, plus que la moitié 

des gènes NCR était différentiellement 

méthyles. D'autre part, l'expression des gènes 

était corrélée avec la décondensation de la 

chromatine (ouverture), un enrichissement du 

marqueur H3K9ac et une diminution du 

marqueur H3K27me3. Nos résultats suggèrent 

que l’endoréplication, pendant la différenciation 

cellulaire dans les nodosités, fasse partie des 

mécanismes qui lèvent l’inactivation 

transcriptionnelle des gènes spécifiques des 

nodosités, ceci résultant de modifications des 

codes épigénétiques au niveau de la chromatine. 
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Abstract: Legume plants are able to interact 

with soil bacteria from the Rhizobiaceae family. 

This interaction leads to the development of a 

specialized organ called root nodule. Inside the 

symbiotic nodule cells, rhizobia are capable to 

fix atmospheric nitrogen and convert it to 

ammonia, which is a usable nitrogen source for 

the plant. In the legume Medicago truncatula 

the symbiotic cells produce high amounts of 

Nodule-Specific Cysteine-Rich (NCR) peptides 

which induce differentiation of the rhizobia into 

enlarged, polyploid and non-cultivable bacterial 

cells. NCRs are similar to innate immunity 

antimicrobial peptides. The NCR gene family is 

extremely large in Medicago with about 600 

genes. The expression analysis of 334 NCR 

genes in 267 different experimental conditions 

using the Medicago truncatula Gene Expression 

Atlas (MtGEA) revealed that all the NCR genes 

except five are exclusively expressed in 

nodules. No NCR expression is induced in any 

other plant organ or in response to biotic, abiotic 

stress tested or to Nod factors. The NCR genes 

are activated in consecutive waves during 

nodule organogenesis, which correlated with a 

specific spatial localization of their transcripts 

from the apical to the proximal nodule zones. 

Moreover, we showed that NCRs are not 

induced during nodule senescence. According 

to their Shannon entropy, a metric for tissue 

specificity, NCR genes are among the most 

specifically and highest expressed genes in M. 

truncatula. 

Thus, NCR gene expression is subject to an 

extreme tight regulation since they are only 

activated during nodule organogenesis in the 

polyploid symbiotic cells. This analysis 

suggested the involvement of epigenetic 

regulation of the NCR genes. The formation of 

the symbiotic cells is driven by 

endoreduplication and is associated with 

transcriptional reprogramming. Using sorted 

nodule nuclei according to their DNA content, 

we demonstrated that the transcriptional waves 

correlate with growing ploidy levels and 

investigated how the epigenome changes during 

endoreduplication cycles. We studied genome-

wide DNA methylation and chromatin 

accessibility as well as the presence of 

repressive H3K27me3 and activating H3K9ac 

histone tail modifications on selected genes. 

Differential DNA methylation was found only 

in a small subset of symbiotic nodule-specific 

genes, including over half of the NCR genes, 

while in most genes DNA methylation was 

unaffected by the ploidy levels and was 

independent of the genes’ active or repressed 

state. On the other hand, expression of these 

genes correlated with ploidy-dependent opening 

of the chromatin and in a subset of tested genes 

with reduced H3K27me3 levels combined with 

enhanced H3K9ac levels. Our results suggest 

that endoreduplication-dependent epigenetic 

changes contribute to transcriptional 

reprogramming in differentiation of symbiotic 

cells.  
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RÉSUMÉ 

Les plantes légumineuses peuvent interagir avec les bactéries du sol de la famille des 

rhizobiacées. Cette interaction conduit au développement d'un organe spécialisé appelé nodule 

racinaire. À l'intérieur des cellules végétales symbiotiques, les rhizobiums sont capables de 

fixer l'azote atmosphérique et de le convertir en ammoniac, qui est une source d'azote utilisable 

pour la plante. Les cellules symbiotiques proviennent de la division des cellules progénitrices 

dans le méristème nodulaire. Pendant la différenciation cellulaire symbiotique, les cellules post-

méristématiques sortent du cycle de division cellulaire et entrent dans un cycle 

d'endoréduplication, un cycle cellulaire modifié avec réplication répétée du génome sans mitose 

et cytocinèse, conduisant à des cellules polyploïdes avec une teneur en ADN accrue (ploïdie de 

2C à 64C) et l'agrandissement des cellules jusqu'à 80 fois par rapport à la cellule méristématique 

(Vinardell et al. 2003). Les cellules symbiotiques de différenciation sont progressivement 

infectées et remplies de symbiomes formant des rhizobiums, des structures ressemblant à des 

organites fixant l'azote. Les nodules de Medicago truncatula sont de type indéterminé, 

contenant un méristème apical persistant (ZI), une zone d'infection (ZIId distale et ZIIp 

proximale), une interzone (IZ) et une zone de fixation d'azote (ZIII) et dans des nodules plus 

âgés une zone de sénescence (ZIV). Les cellules matures de la zone III sont entièrement 

remplies de symbiomes et leur physiologie est adaptée à la symbiose, alimentant les 

microsymbiontes et assimilant l'azote fixé. 

La génération de cellules symbiotiques différenciées dans la légumineuse Medicago 

truncatula implique une reprogrammation massive du transcriptome nodulaire avec l'activation 

de gènes spécifiques des nodules dans des ondes spatio-temporelles successives (Maunoury et 

al. 2010). Beaucoup de gènes induits par les nodules sont également exprimés dans d'autres 

tissus végétaux, mais une grande partie du transcriptome nodulaire est composée de gènes 

exclusivement exprimés dans les nodules et maintenus silencieux dans tous les autres tissus 

végétaux. Parmi les gènes activés, on trouve la famille NCR, produisant des centaines de 

peptides NCR différents qui guident la différenciation terminale des endosymbiotes, les 

convertissant en grands bactéroïdes polyploïdes non-cultivables fixateurs d'azote. Les gènes 

NCR sont soumis à un contrôle transcriptionnel strict car ils sont exclusivement exprimés dans 

les cellules nodulaires symbiotiques et leur activation nécessite la présence intracellulaire de 

rhizobiums (Van de Velde et al. 2010, Maunoury et al. 2010, Mergaert et al. 2003). L'expression 

des gènes NCR dans les cellules symbiotiques suggère une connexion directe entre 

l'endoréduplication et l'expression des gènes NCR. Comment endoreduplication ou l'état 
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polyploïde du génome contrôle l'expression des gènes est entièrement inconnue. La spécificité 

stricte des nodules et le lien possible entre l'expression génique et les niveaux de ploïdie des 

cellules symbiotiques suggèrent que les modifications épigénétiques le long des cycles 

d'endoréduplication pourraient jouer un rôle crucial dans la régulation transcriptionnelle des 

NCR et d'autres gènes spécifiques des nodules. La reprogrammation récemment rapportée de la 

méthylation de l'ADN dans le développement du nodule de M. truncatula, régulée par le gène 

DEMETER de l'ADN déméthylase (MtDME), est en accord avec cette hypothèse (Satgé et al. 

2016). 

Les changements dans la méthylation de la 5-cytosine de l'ADN et dans les 

modifications de la queue des histones, seuls ou en combinaison, sont des déterminants 

importants de la structure de la chromatine et de l'expression des gènes. Le contexte de la 

séquence (CG, CHG, CHH, où H = A, C ou T) et la localisation de la méthylation de l'ADN 

dans le promoteur, le corps du gène ou la région régulatrice 3 'peuvent avoir des effets différents 

sur la transcription génique. En général, il existe une forte corrélation entre la méthylation de 

l'ADN dans la région du promoteur et la diminution de l'expression génique (Zhang et al. 2006, 

Zilberman et al. 2007, Cokus et al. 2008, Garg et al. 2015). Parmi les modifications des queues 

d'histones, la triméthylation de l'histone H3 lysine 27 (H3K27me3) (Feng & Jacobsen 2011) 

entraîne également un faible niveau d'expression et une haute spécificité tissulaire (Zhang et al. 

2007) alors que l'histone H3 lysine 9 acétylation (H3K9ac) activation (Kurdistani et al. 2004, 

Schubeler et al. 2004, Roh et al. 2005, Zhou et al. 2010). 

Ainsi, les cellules nodulaires symbiotiques de Medicago truncatula constituent un 

excellent système modèle pour étudier la reprogrammation transcriptionnelle au niveau 

spécifique du stade de développement car la différenciation cellulaire symbiotique implique 

une endoréduplication et une reprogrammation massive de leur transcriptome. De plus, les 

nodules indéterminés de M. truncatula contiennent des cellules à tous les stades de 

différenciation symbiotique, à partir des cellules méristématiques indifférenciées (2C / 4C), au 

stade post-mitotique lorsqu'elles ont arrêté la division cellulaire et ont une ploïdie 4C et 

l'intermédiaire, stades de différenciation avec des niveaux de ploïdie de 8C-16C, jusqu'aux 

cellules matures fixatrices d'azote avec des niveaux de ploïdie de 32C-64C. Cette propriété de 

ces nodules facilite l'échantillonnage de toutes les étapes possibles de différenciation des 

cellules symbiotiques. 

De la spécificité élevée des gènes spécifiques des cellules nodulaires symbiotiques et du 

lien apparent de leur activation transcriptionnelle lors de l'endoréduplication dans les cellules 

symbiotiques, nous avons supposé que des mécanismes épigénétiques impliquant des 
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modifications spécifiques des histones et / ou des méthylations d'ADN pourraient être impliqués 

dans la détermination du gène programme d'expression dans les cellules symbiotiques. Les 

structures de la chromatine répressive peuvent garder les gènes silencieux pendant toutes les 

étapes du développement de la plante. L'inversion de ces marques dans les cellules 

symbiotiques de différenciation serait nécessaire pour les rendre compétentes pour la 

transcription par des facteurs de transcription spécifiques. De plus, nous proposons que 

l'endoréduplication des cellules nodulaires symbiotiques sert de mécanisme pour contrôler 

l'expression des gènes. L'endoréduplication pourrait mener activement à l'activation des 

"effaceurs" des marques répressives de la chromatine. Alternativement, les marques 

répressives, qui sont normalement fidèlement transmises au cours du cycle cellulaire, pourraient 

être perdues passivement par dilution au cours des endocycles consécutifs. Ces hypothèses 

constituent la base de mon travail de thèse. 

 

OBJECTIFS 

A. Caractériser en détail le comportement d'expression d'une famille de gènes 

NCR (Nodule-Specific Cysteine-Rich). 

1. La base de données du transcriptome fournie par l'Atlas d'expression génique 

Medicago truncatula (MtGEA) (Benedito et al. 2008; He et al. 2009) est générée avec le génome 

entier Affymetrix Medicago Gene Chip et compile les données de la puce de M. truncatula. 

gènes (50 900 ensembles de sondes) sur un large ensemble d'expériences (267 expériences 

différentes) comprenant différents organes végétaux, biotiques, conditions de stress abiotique 

et différents types de tissus. La base de données MtGEA est actuellement la ressource la plus 

riche pour analyser le profil d'expression et la spécificité des gènes NCR de M. truncatula dans 

diverses conditions. 

2. Les nodules de M. truncatula sont de type indéterminé; par conséquent, les nodules 

matures sont organisés en zones histologiques bien définies. Cette structure nodulaire suggère 

que les profils d'expression NCR temporels pourraient être corrélés avec un profil d'expression 

spatial dans les tissus nodulaires. Pour tester cette possibilité, nous avons analysé des données 

de transcriptome à partir de nodules de 4 semaines (28 jour apré inoculation, dpi) qui ont été 

sectionnés à la main dans cinq parties différentes (ZI, ZIId, ZIIp, IZ et ZIII). 
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3. Afin de confirmer les données d'expression de MtGEA, des lignées de M. truncatula 

R108 transgéniques stables ont été générées portant des constructions de fusion promoteur-β-

glucuronidase reporter (GUS) pour 3 gènes NCR différents, représentant différentes classes 

temporelles de NCR, ainsi qu'un anticorps spécifique pour un peptide NCR. 

4. En outre, le recueil MtGEA contient des ensembles de données provenant de 

différentes interactions pathogènes, mais il s'agit exclusivement de pathogènes racinaires. Pour 

confirmer la spécificité des profils d'expression NCR dans diverses conditions, en particulier 

lors d'infections foliaires ou pathogènes englobant également d'autres interactions trophiques 

(bio / hémibio / nécrotrophe), des lignées de M. truncatula R108 transgéniques stables portant 

des constructions de fusion rapporteur NCR-GUS ont été utilisées. 

 

B. L'implication de la régulation épigénétique dans la reprogrammation 

transcriptionnelle au cours de la différenciation cellulaire symbiotique a été étudiée à la 

résolution du stade de différenciation des cellules symbiotiques en purifiant les noyaux 

nodaux de niveau de ploïdie défini avec un cytomètre en flux couplé à un trieur cellulaire. 

Ces expériences démontrent si les changements d'expression génique sont liés à la ploïdie 

croissante au cours de la différenciation des cellules nodulaires symbiotiques. 

5. L'expression in situ de divers gènes spécifiques de NCR et de nodules suggère que 

leur expression pourrait être couplée à des niveaux de ploïdie spécifiques des cellules 

nodulaires. Pour confirmer un lien possible entre l'expression de gènes spécifiques de nodules 

dans les ondes transcriptionnelles successives et les niveaux de ploïdie des cellules 

symbiotiques différenciées, le niveau d'expression des gènes sélectionnés différentiellement 

exprimés a été mesuré dans les noyaux 4C, 8C, 16C et 32C cytomètre. 

6. Comme la majorité des gènes spécifiques des nodules sont exprimés dans les cellules 

symbiotiques matures (32C) et réprimés dans les cellules non infectées (4C), nous avons 

analysé les différences de génome de l'ADN (5-mC) dans les noyaux isolés 4C et 32C et les 

profils de méthylation de l'ADN ont été appariés aux données d'ARN in situ publiées sur les 

zones de nodules obtenues par microdissection par capture laser (Roux et al. 2014). De plus, la 

méthylation différentielle des gènes spécifiques des nodules et des nodules exprimés dans les 

noyaux 4C, 8C, 16C et 32C a été analysée. 
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7. Pour savoir comment le compactage de la chromatine et l'accessibilité changent au 

cours de la différenciation des nodules et comment cela influence l'expression des gènes, nous 

avons étudié l'accessibilité de la chromatine dans les noyaux 4C, 8C, 16C et 32C. Les profils 

des modifications de la chromatine ont été appariés aux données publiées in situ sur l'ARN-seq 

des zones de nodules obtenues par microdissection par capture laser (Roux et al. 2014). 

8. Pour analyser la corrélation entre les modifications de la chromatine et l'expression 

des gènes, nous avons étudié comment les marques de chromatine antagonistes H3K27me3 et 

H3K9ac sont en corrélation avec l'activation et la répression de gènes sélectionnés, 

différentiellement exprimés dans différents noyaux de ploïdie. 

 

RÉSULTATS 

1. À partir de l'extraction de données du transcriptome et de la confirmation 

expérimentale de l'expression de NCR, nous pouvons conclure que, à quelques exceptions près, 

les centaines de gènes NCR codant des peptides de type défensine ne sont activés que pendant 

la formation des nodules. Le profil d'expression de 334 gènes NCR a été analysé sur 267 

expériences différentes incluant 9 organes végétaux, des conditions de croissance biotiques et 

abiotiques et différents stades de développement en utilisant le MtGEA et d'autres données de 

transcriptome publiées. Les gènes NCR sont exprimés dans les nodules, mais dans aucun autre 

organe de la plante ou en réponse aux phytohormones ou à la sécheresse et au stress salin. 

Pendant la symbiose, aucun des gènes NCR n'est induit par les facteurs Nod et ils ne sont pas 

activés dans les nodules avant que les rhizobiums soient libérés dans les cellules hôtes et que 

les cellules symbiotiques ne se forment pas. Nous avons également montré que les gènes NCR 

ne sont pas impliqués dans la dégradation des cellules nodulaires symbiotiques et des 

bactéroïdes durant la sénescence nodulaire puisque leur expression a été arrêtée lorsque la 

sénescence est initiée; par conséquent, les peptides NCR n'ont aucun rôle dans la mort et la 

désintégration des rhizobiums dans les cellules végétales sénescentes. Les NCR ressemblent à 

des peptides antimicrobiens tels que les défensines de l'immunité innée et de nombreux peptides 

NCR. In vitro, les peptides cationiques particulièrement à haute charge positive ont une forte 

activité antimicrobienne contre une diversité de bactéries Gram négatif et Gram positif incluant 

les pathogènes humains et végétaux ainsi que les champignons (Van de Velde et al. 2010, Tiricz 

et al. 2013, Ördögh et al. 2014). Malgré cela, les gènes NCR ne sont pas induits lors d'une 

attaque pathogène par des bactéries, des champignons, des oomycètes ou des nématodes. Ils ne 
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sont exprimés ni dans les organes «sensibles à l'infection» comme les feuilles, les graines et les 

fleurs qui expriment souvent des niveaux élevés de peptides antimicrobiens à immunité innée 

(Sels et al. 2008). Par conséquent, il semble que les peptides NCR n'ont aucune fonction dans 

l'immunité innée. Les gènes NCR ne sont pas activés par les facteurs Nod ou durant les tout 

premiers stades de l'organogenèse des nodules avant la formation des cellules infectées (ce 

travail, Nallu et al. 2013, Maunoury et al. 2010). En outre, quantifier la spécificité de 

l'expression avec le facteur d'entropie de Shannon révèle que les gènes NCR, et plus 

généralement, les gènes spécifiques des nodules sont parmi les gènes les plus spécifiquement 

exprimés chez M. truncatula. De plus, lorsqu'il est activé dans les nodules, leur niveau 

d'expression est parmi les plus élevés de tous les gènes. Ensemble, ces données montrent que 

l'expression du gène NCR est soumise à une régulation extrêmement stricte et n'est activée que 

pendant l'organogenèse des nodules dans les cellules symbiotiques. 

2. Nous avons montré que les gènes NCR sont activés au cours du développement des 

nodules dans au moins trois ondes temporelles correspondant à des modèles d'expression 

spatiale spécifiques. Les gènes activés précocement dans le développement des nodules sont 

exprimés dans les parties les plus distales des nodules (proches de l'apex, ZII) tandis que les 

gènes activés tardivement au cours du développement sont exprimés dans les tissus des nodules 

proximaux (IZ-ZIII). De plus, certaines grappes de gènes, une fois activées, conservent leur 

activité au cours du vieillissement des cellules nodulaires, tandis que d'autres sont caractérisées 

par une absence d'expression dans les cellules nodulaires plus âgées. Notre analyse spatiale de 

l'expression de NCR est en bon accord avec une étude récemment publiée qui utilisait la LCM 

des zones nodulaires couplées au séquençage de l'ARN (Roux et al. 2014). 

3. En accord avec sa régulation temporelle au cours de la nodulation, l'expression de 

NCR121 a été induite chez de jeunes primordia nodulaires dès 5 dpi et restée exprimée dans 

toute la zone d'infection II et la zone de fixation III des nodules matures. NCR084 expression a 

été détectée à partir de 11 dpi sur et a été principalement confinée à la zone d'infection 

proximale, l'interzone II-III et à la partie distale de la zone de fixation III. L'expression de 

NCR001 était détectable à partir de 11 dpi dans la zone de fixation en développement III et son 

expression s'étendait les jours suivants lorsque la zone de fixation se développait. Les 3 gènes 

sont seulement exprimés dans les cellules nodulaires symbiotiques. L'expression de GUS dans 

les trois lignées transgéniques n'a pas été détectée dans les extrémités des racines ou d'autres 

parties de la racine. Dans les nodules plus âgés, à 30 dpi, présentant une zone de sénescence, 

l'expression de NCR n'a jamais été détectée dans les tissus sénescents et leur expression dans la 
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zone proximale adjacente au tissu sénescent n'a pas été confirmée, confirmant que les gènes 

NCR ne sont pas impliqués dans le sénescence.  

Le profil d'expression particulier de NCR122 avec sa spécificité tissulaire relâchée et 

son expression apparente dans les cellules nodulaires non infectées nous a incités à analyser 

spécifiquement la localisation du peptide NCR122 dans les nodules avec l'anticorps anti-

NCR122. L'immunolocalisation du peptide révèle en effet une présence spécifique de NCR122 

dans les cellules non infectées de la zone centrale d'un nodule mature ainsi que dans les cellules 

corticales non infectées du nodule. 

4. Les résultats des essais pathologiques sont en accord avec une étude récente montrant 

que l'expression de NCR n'a pas été détectée lors de l'interaction entre M. truncatula et le 

pathogène biotrophique du sol Phytophtora medicaginis, le pathogène hémibiotrophique des 

feuilles Colletotrichum trifolii (Tesfaye et al. 2013) et le champignon nécrotrophique gris 

causant la moisissure Botrytis cinerea. Nos données sont en accord avec l'ensemble de données 

MtGEA et élargissent la conclusion que les NCR ne sont pas impliquées dans la réponse aux 

agents pathogènes, quel que soit le système trophique (bio / hémibio / nécrotrophe). De plus, 

en tant qu'herbivorie et plus généralement, l'effet de la blessure mécanique, qui peut induire des 

défenses de la plante, a également été testé, mais encore une fois, aucune expression de NCR 

n'a pu être détectée dans le feuillet blessé. 

5. Nous avons montré dans cette étude que l'organogenèse des nodules s'accompagne de 

changements majeurs dans le programme d'expression génique (Maunoury et al. 2010, Roux et 

al. 2014, ce travail). La localisation des transcrits in situ, les fusions de gènes promoteurs-

reporters ont révélé que les gènes précoces sont activés dans les jeunes cellules symbiotiques 

différenciées alors que les gènes tardifs dans les cellules fixatrices d'azote matures (Mergaert et 

al. 2010; Van de Velde et al. 2010, Farkas et al. 2014, Roux et al. 2014, ce travail) et ce modèle 

suggère que leur expression pourrait être couplée à des niveaux de ploïdie spécifiques. En 

utilisant des noyaux de nodules triés en fonction de leur teneur en ADN, le profil d'expression 

de gènes spécifiques de nodules exprimés et de nodules spécifiques était corrélé avec leur profil 

d'expression spatiale dans les nodules (Roux et al. 2014). Nous avons trouvé que l'activation 

des premiers gènes se produit dans les cellules post-méristématiques 4C tandis que les gènes de 

la deuxième vague sont activés dans les parties distales et proximales de ZII avec 8C et 16C 

tandis que les gènes tardifs de la troisième onde transcriptionnelle sont induits stades plus 

avancés du développement des nodules dans les IZ et ZIII dans les cellules de niveau élevé de 
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ploïdie de 32C et 64C. Nous avons trouvé une très bonne corrélation entre les profils 

d'expression NCR spatiaux connus et les profils d'expression dans les noyaux de différents 

niveaux de ploïdie. 

6. En réponse aux molécules de signal de Rhizobium, les facteurs Nod, la prolifération 

des cellules corticales des racines conduit à l'établissement du méristème nodulaire. La 

méthylation de l'ADN des cellules méristématiques représente le statut initial et probablement 

le plus méthylé de l'ADN. La dynamique de la méthylation de l'ADN à la résolution d'une seule 

base a été évaluée dans des cellules non infectées (4C) et symbiotiques (32C). La plus forte 

fraction de mCs a été observée dans un contexte de séquence CG (75%) suivie par CHG (20%) 

et CHH (5%) dans les deux types de cellules, ce qui était cohérent avec les études précédentes. 

La méthylation différentielle de l'ADN n'a été trouvée que dans un petit sous-ensemble de gènes 

spécifiques des nodules symbiotiques, dont plus de la moitié des gènes NCR, alors que la 

méthylation de l'ADN n'était pas affectée par les niveaux de ploïdie. Cette découverte indique 

que l'état de méthylation de l'ADN des cellules 4C a été copié au cours des cycles répétés 

d'endoréduplication. Contrairement à la plupart des gènes codant pour les protéines, les NCR 

se comportaient différemment car sur 375 gènes, 164 devenaient hypométhylés, ce qui 

correspond à la régulation à la hausse de la déméthylase de l'ADN MtDME spécifique des 

nodules dans les cellules interzone ainsi qu'à la régulation négative des gènes NCR dans le 

MtDME. Lignes d'interférence ARN (Satgé et al. 2016). Les modèles de méthylation 

différentielle que nous avons observés pourraient être en grande partie la conséquence de 

l'action de MtDME. Pourquoi l'activation de certains gènes NCR est associée à la déméthylation 

et pas les autres, nécessite une enquête plus approfondie. Une possibilité intéressante de 

l'importance de la méthylation différentielle de l'ADN pour l'expression d'un sous-ensemble de 

gènes NCR pourrait être liée à la présence d'éléments transposables (TE) (Satgé et al. 2016). 

Les génomes végétaux sont riches en TE, qui sont habituellement maintenus silencieux 

transcriptionnellement par la méthylation de l'ADN. Cette extinction de TE peut également 

affecter les gènes voisins et l'activation du gène NCR peut donc nécessiter une déméthylation 

médiée par MtDME. 

7. Nous avons trouvé que 44% des gènes NCR étaient hypométhylés dans les cellules 

symbiotiques 32C par rapport à 4C et cela a également été validé avec MeDIP, suggérant que 

la diminution de la méthylation de l'ADN, en particulier dans leur région 1-kb amont, contribue 

à leur expression. Mais environ 53% des gènes NCR ne diffèrent pas dans la méthylation de 

l'ADN à 4C et 32C. Cela signifie que ces gènes pourraient être actifs dans les cellules 8C et 
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16C et afficher une hypométhylation dans ces noyaux. Nous avons testé cette hypothèse sur des 

gènes sélectionnés le long de leurs régions amont et aval à 1 kb du site de départ de traduction 

(TSS), mais l'étendue de la méthylation de l'ADN n'a pas été affectée par les niveaux de ploïdie 

confirmant les résultats du Séquençage de bisulfite à représentation réduite (RRBS). Cela 

pourrait signifier que la méthylation de l'ADN ne joue pas un rôle central dans leur régulation 

et que les gènes dont la méthylation de l'ADN n'est pas modifiée pourraient nécessiter des 

modifications de la chromatine. 

8. La structure de la chromatine a été impliquée dans la régulation développementale et 

tissulaire d'un certain nombre de gènes de plantes et d'animaux. L'ouverture et la fermeture 

dynamiques de la chromatine à différents niveaux de ploïdie des cellules nodulaires étaient bien 

corrélées avec l'état d'expression actif / réprimé des gènes. Nous avons également constaté que 

la chromatine ouverte seule n'était pas suffisante pour l'activation du gène. Bien que 

l'accessibilité de la chromatine ait montré de petites variations aux niveaux de 4 ploïdies, l'état 

de chromatine moins condensée a été trouvé dans les cellules symbiotiques matures avec 32C. 

Ainsi, des profils d'expression spécifiques au tissu et au stade de développement dans le nodule 

s'accompagnent d'altérations dynamiques de la structure de la chromatine. La réorganisation de 

la chromatine était particulièrement importante à proximité ou sur le site de démarrage de la 

traduction. Les gènes précoces présentaient une accessibilité maximale dans les cellules 4C et 

8C, tandis que les gènes tardifs dans les cellules 16C et 32C. Nous avons également constaté 

que la modification de l'accessibilité de la chromatine n'était pas étroitement liée à la 

méthylation de l'ADN, car elle se produisait également lorsque l'état de méthylation de l'ADN 

n'était pas affecté par la ploïdie. De plus, le degré d'ouverture de la chromatine n'a pas toujours 

montré une corrélation directe avec le niveau de méthylation de l'ADN. 

9. En outre, nous avons analysé la répression H3K27me3 et le profil d'activation 

H3K9ac des gènes spécifiques de la symbiose sélectionnés à partir de différentes classes 

d'expression spatiales et temporelles dans les noyaux de ploïdie en croissance. Les marques 

H3K27me3 étaient prédominantes dans les cellules 4C et sont probablement essentielles pour 

l'état réprimé des NCR et d'autres gènes symbiotiques dans ces cellules. En cas de gènes 

précoces, les marques H3K27me3 ont été radicalement réduites dans les cellules 8C et 16C et 

augmentées à nouveau dans les cellules 32C corrélées avec leur répression, tandis que dans le 

cas des gènes tardifs, les marques H3K27me3 réduites combinées à la présence des marques 

actives H3K9ac et accessibles. la structure de la chromatine a contribué à l'activation du gène. 

Les NCR dans les cellules symbiotiques sont habituellement exprimées à des niveaux très élevés 
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qui, en plus de H3K27me3 réduit, ont également les marques actives H3K9ac dans le corps du 

gène et dans le promoteur. Le rôle principal de la marque H3K27me3 dans la régulation de ces 

gènes est conforme aux observations précédentes selon lesquelles le dépôt et la régulation 

dynamique de la marque H3K27me3 sont importants pour contrôler l'expression génique 

spécifique des tissus et la différenciation des plantes (Lafos et al. 2011). 

En identifiant la méthylation de l'ADN spécifique à la ploïdie, l'H3K27me3 répressive 

et l'activation des marques d'histones H3K9ac et les profils d'accessibilité de la chromatine des 

gènes différentiellement exprimés, nous obtenons une première vue d'un contrôle épigénétique 

multicouche de la différenciation cellulaire symbiotique. Nos résultats constituent un pas en 

avant dans la compréhension de la régulation extrêmement stricte des gènes NCR. De plus, les 

changements dynamiques observés dans l'épigénome suggèrent que l'accessibilité de la 

chromatine et les modifications de la queue d'histone régulent l'état transcriptionnellement actif 

ou inerte des gènes. 
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1. INTRODUCTION 

1.1. The Rhizobium-legume symbiosis 

1.1.1. The agronomic and ecological importance of legume plants 

Leguminosae (or Fabaceae) is the third largest family in the plant kingdom (Delprete & 

Mabberley 1998) with 946 genera and over 24,500 species worldwide (The Plant List 2013). 

Legumes are second to grasses (Poaceae) in agricultural importance. Moreover, they have a 

tremendous ecological impact through their major input of combined (fixed) nitrogen (N) in the 

biosphere, which results from symbiotic nitrogen fixation (SNF). N, together with carbon (C), 

oxygen (O) and hydrogen (H) is a major elemental component, essential for proper cellular 

functioning and its adequate supply is crucial for plant growth and development (Zheng 2009). 

Plants can obtain unlimited C by photosynthesis, O and H from water or air while sources of N 

are limited. Physiological and biochemical studies showed that N deficiency has negative 

impact on photosynthetic output of plants, which could be recovered by added N (Coruzzi & 

Zhou 2001; Coruzzi & Bush 2001). Similarly, increasing C supply promoted N uptake and 

assimilation. Plants take up N in the form of nitrate (NO3
-) and ammonium (NH4

+) from soil 

and/or added fertilizers. Since the weathering of rocks releases these ions slowly, it has a 

negligible effect on the availability of combined N in soils. In agriculture, the N demand is 

compensated by the use of nitrogen fertilizers, which increases greenhouse effect, nitrate 

pollution of waters and represent significant expense for growth of crop plants and thus food 

production. To overcome the problem of N starvation, legumes can access N2 through a 

beneficial symbiosis with α- and β-proteobacteria collectively referred as rhizobium or rhizobia 

(Chen et al. 2003; MacLean et al. 2007) which can convert N2 into ammonia. Therefore, 

rhizobia-legume symbiosis is a major source of fixed N for plant growth. Worldwide, SNF 

contributes approximately 40 million tonnes of N each year (Herridge et al. 2008). Improved 

understanding of the rhizobia-legume symbiosis has implications for sustainable agriculture 

and the ecosystem. Since the identification of rhizobia as the source of fixed N (Hellriegel & 

Wilfarth 1888) in legume root nodules, scientists have wondered whether plants outside the 

Fabaceae could be manipulated to associate with rhizobia for improvement and future 

extension of the eco-friendly biological nitrogen fixation. As the human population grows and 

the need for agricultural production increases, the engineering of non-fixing food crops such as 



 

24 

 

cereals to associate with suitable microbes to access atmospheric nitrogen is becoming more 

and more important.  

Legume plants, besides their contribution to SNF, are for humans and animals a 

significant source of protein, dietary fibre, carbohydrates and minerals. Grain legumes are 

cultivated for their seeds, which are important for human and animal consumption. The major 

commercial species are soybean (Glycine max), pea (Pisum sativum), peanut (Arachis 

hypogaea), chickpea (Cicer arietinum), faba bean (Vicia faba) and lentil (Lens culinaris). 

Moreover, legumes such as lucerne (Medicago sativa) are used as livestock forage, silage, and 

as soil-enhancing green manure. 

The legume family is extremely diverse and found in most terrestrial environments. The 

Leguminosae are divided in three subfamilies: Caesalpinioideae, Mimosoideae, and 

Papilionoideae. The Papilionoideae is the largest of the three subfamilies containing 

economically important crop species and the major model legumes like Medicago truncatula 

and Lotus japonicus (Fig. 1) (Doyle & Luckow 2003).  

 

Figure 1. Schematic phylogenetic tree of the legume family (modified from Gepts et al. 2005). The 

three subfamilies (Caesalpinioideae, Mimosoideae, and Papilionoideae) and the major subclades are 

shown in bold and their positions are indicated by black circles.  
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The four important clades within Papilionoideae are the genistoid clade with the genus 

Lupinus, the aeschynomenoid/dalbergioid clade represented by peanut (Arachis hypogaea) and 

Aeschynomene species and two other clades that share a common ancestor: the 

phaseoloid/millettioid clade and the Hologalegina clade. The phaseoloid/millettioid clade is 

composed of tropical and subtropical legumes such as common bean (Phaseolus vulgaris), 

cowpea (Vigna unguiculata), pigeon pea (Cajanus cajan), and soybean (Glycine max). The 

Hologalegina clade includes most of the temperate herbaceous species including clover 

(Trifolium), faba bean (Vicia faba), pea (Pisum sativum), lentil (Lens culinaris) and the most 

important model legumes like Lotus japonicus, Medicago truncatula and alfalfa (Medicago 

sativa).  

1.1.2. Forms of mutual dependence: Nitrogen-fixing symbiotic associations  

The driving force of symbiosis is the N limitation in the soil for plant growth and later 

the nutrient exchange between the host plant and the microsymbiont. The plant in return for the 

fixed N provides the symbiont carbon compounds as energy source to sustain metabolism 

including N fixation (Mus et al. 2016; Lodwig et al. 2003). Both organisms change considerably 

their metabolism during symbiosis (Lodwig et al. 2003): the plant provides amino acids to the 

symbiont enabling the shutdown of its ammonium assimilation and therefore the release of N, 

while the nitrogen-fixing bacterium (bacteroid) acts like plant organelle and provides the host 

with ammonium. Reduction of N2 to ammonia (NH3) using the nitrogenase enzyme complex 

can be performed only by some prokaryotes. Breaking the stable triple bond of N2 is a highly 

energy demanding, oxygen-sensitive process (Mylona et al. 1995). There are free-living 

nitrogen-fixing bacteria (e.g. Azotobacter, purple- and green sulphur bacteria) and SNF 

organisms such as Rhizobium. Leguminous plants can form symbiosis with α-proteobacteria 

including the genera Rhizobium, Ensifer (Sinorhizobium) Mesorhizobium, Bradyrhizobium, and 

Azorhizobium, as well as members of the β-proteobacteria genera Burkholderia, Cupriavidus 

and Herbaspirillum (Velázquez et al. 2010). Under N limiting conditions, rhizobia infect the 

legume roots, induce the formation of root nodules, which later host and feed the bacterial 

symbionts.  

The role of the nodule is to provide microaerobic conditions for nitrogen fixation. The 

plant accomplishes this by the production of a heme-containing protein called leghemoglobin 

(Lb), which gives the pink color of the functioning nodule. Lb is an O2-scavanger that binds 

oxygen and transfers it to the bacterial electron transport chain. In addition, a bacteroid terminal 
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oxidase with a high affinity for O2 (i.e., fixNOPQ) also contributes to low free-oxygen 

concentration in the host cell for proper nitrogenase functioning (Delgado et al. 1998). The NH3 

produced by nitrogenase can diffuse through the bacteroid membranes and enter the plant 

cytoplasm. During diffusion through the symbiosome membranes (acidic 

intramembrane/peribacteroid space) NH3 becomes protonated and assimilated by the plant into 

amino acids, via the action of the glutamine synthetase-glutamate synthase (GS-GOGAT) 

pathway (Gene et al. 1981; Cordoba et al. 2003). Nodules export the assimilated ammonia in 

the form of glutamine, which is metabolised in leaves (Mus et al. 2016). Some legume nodules 

produce and export ureides (allantoin and allantoic acid) rather than glutamate (Tajima et al. 

2004). The plant provides carbon to the bacteroids as dicarboxylic acids, such as malate, which 

is catabolised through the tricaboxylic acid (TCA) cycle to produce ATP for nitrogen fixation 

(Finan et al. 1988) (Fig. 2). Moreover, the high-energy demand of the nitrogen fixation is also 

supported by ATP synthesis during oxidative phosphorylation. The nitrogenase enzyme 

complex contains two metalloproteins, the iron (Fe) protein and the molybdenum-iron (MoFe) 

protein. While these proteins are encoded by the bacterium, in some legumes the homocitrate 

component of the iron-molybdenum cofactor derives from the host cells. Interestingly, the 

homocitrate synthase gene is absent from most rhizobial species, indicating the indispensable 

relationship and molecular complementation between rhizobia and the host plant (Hakoyama 

et al. 2009). Some rhizobia however, particularly those that can fix N also in free-living state 

can produce homocitrate and therefore do not rely on host-supply (Nouwen et al. 2017). 

Rhizobium strains can nodulate only particular legumes and not all legumes are able to 

form nitrogen-fixing symbiosis with a given rhizobium strain. The specificity of symbiotic 

interactions depends on the repertoire of bacterial and plant signalling molecules. For example, 

Mesorhizobium muleiense CCBAU 83963T only forms an association with Cicer arietinum 

(Zhang et al. 2012) while other strains, such as Rhizobium fredii NGR234 or Rhizobium fredii 

USDA257 (Pueppke & Broughton 1999) have a broad host range and can nodulate plants from 

the three distinct subfamilies of Leguminosae (136 and 66 species of legumes, respectively). 

Similarly to rhizobia, some legumes, like Astragalus sinicus (Wang et al. 2014) and Medicago 

truncatula (Barker et al. 1990) are specific for certain Rhizobium species or strains. Others, 

such as Phaseolus vulgaris (common bean) (Michiels et al. 1998), Sophora flavescens (Jiao et 

al. 2015) and Vigna unguiculata (Guimaraes et al. 2012) has been described as promiscuous 

hosts. In the majority of legumes, host specificity and nodule initiation depend on host 

flavonoids and Rhizobium Nod factor production (Perret et al. 2000). Moreover, other 

molecular signals like extracellular polysaccharides needed for nodule invasion as well as 
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proteins secreted directly into the host cytoplasm by type III secretion systems (T3SS) are 

important for the nodulation process. However, even within compatible interactions, both the 

genotype of the host plant and the bacterial symbiont will influence the efficiency of the nodule 

functioning and the nitrogen-fixation activity (Sugawara et al. 2013; Kazmierczak et al. 2017).  

 

Figure 2. Schematic representation of metabolite exchange between the bacterial symbiont and 

the host plant cell during nitrogen-fixing symbiosis. In the nodules, bacteria differentiate into 

bacteroids and reduce diffused nitrogen gas (N2) into ammonia (NH3) by the nitrogenase enzyme 

complex (N2ase). The microaerobic condition required for nitrogenase functioning is provided by the 

nodule structure and by leghemoglobin (Lb), which binds and transports oxygen (O2). NH3 produced by 

nitrogenase becomes protonated (NH4
+) when it diffuses through the bacteroid membranes. In the plant 

cytoplasm, NH4
+ is converted to glutamine (Glu) by glutamine synthetase (GS) and into glutamate (Gln) 

by glutamate synthase (GOGAT) using 2-oxoglutarate (2OG) in the plastid. The produced Gln is 

transported to the leaf. The plant provides malate to the bacteroids, which in the tricarboxylic acid (TCA) 

cycle produce ATP for nitrogen fixation. Nitrogen-fixing bacteroids use a high-affinity symbiosis 

specific terminal oxidase encoded by the fixNOPQ operon that transfer electrons to O2. Oxidative 

phosphorylation leads to ATP synthesis in the bacteroid membrane and provides energy for nitrogenase 

functioning.  

SNF is best studied within the legume family, but some other plant groups can also form 

nitrogen-fixing symbioses. The only known non-legume plant genus forming nitrogen-fixing 

nodules upon infection with rhizobia is Parasponia (Ulmaceae) (Trinick 1979; Behm et al., 

2014). Frankia, filamentous bacteria that live in symbiosis with actinorhizal plants, similarly 
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to legumes able to induce formation of root nodules (Callaham et al. 1978). In some species of 

Gunnera, a symbiotic cyanobacterium (Nostoc puntiforme) resides in stem glands and fix 

nitrogen. This association is usually not considered as a true form of bacterial endosymbiosis 

since no novel organ is formed (Gualtieri & Bisseling 2000). The common feature of all three 

symbiotic systems is the intracellular nitrogen fixation by the prokaryote, and the host-derived 

membrane, which separates the microsymbiont from the plant cytoplasm.  

Thus, nitrogen-fixing symbiosis has evolved in several lineages during evolution 

(Kistner & Parniske 2002) and nodulation has arisen several times independently (Doyle & 

Luckow 2003). 

1.1.3. Rhizobial infection and nodule development 

Even if the symbiotic interaction is beneficial for both partners, it follows rules that are 

strictly dictated by the plant. Because billions of microorganisms are present in the soil and 

particularly around the root system, legumes and rhizobia must recognize each other. The signal 

exchange is important for the plant to distinguish between compatible symbionts, non-

symbionts and pathogens and for rhizobia as well to distinguish their hosts from other legumes. 

The plant initiates symbiosis by releasing flavonoids and isoflavonoids that are 

chemoattractants for the microsymbiont, but more importantly, they bind the transcriptional 

regulator NodD and activate expression of rhizobial nodulation genes in their symbiotic partner 

(Kondorosi et al. 1986). There have been common nodulation genes (nodABC and D) identified 

that are conserved in all rhizobia, both functionally and at the DNA level (Kondorosi et al. 

1985, Mulligan & Long 1985) while other sets of genes (hsnABC and D) determine the host-

specificity of nodulation (Horvath et al. 1986). The activation of nod genes leads to the 

synthesis of Nod factors (NFs) by rhizobia that are lipo-chitooligosaccharides (LCOs). The 

strain-specific chemical structures (length of the oligosaccharide backbone, modifications, size 

and saturation of the fatty acid chain) of the NFs are the primary determinants of host specificity 

(Oldroyd & Downie 2008; Denarie et al. 1996; Schultze & Kondorosi 1998). Additional 

bacterial components such as exopolysaccharides, type III and type IV secretion systems are 

also required for an effective infection (Perret et al., 2000; Saeki, 2011). The specific structure 

of LCOs is important for recognition by NF receptors (NFR) which are LysM domain receptor 

kinases (Radutoiu et al. 2007). Moreover, NFs also play important role to suppress plant 

immunity and thus permit rhizobial invasion and persistence in the host cell (Liang et al. 2013, 

Gourion et al. 2015). Upon recognition of NFs by NFRs in the compatible legume host initiates 
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a complex signalling pathway leading to nodule formation. The process begins with a series of 

signaling events triggered in the root cells, including nuclear calcium-oscillations (calcium 

spiking), followed by curling of the root hairs around the invading rhizobia (Esseling et al. 

2003). Concomitantly, cell divisions are activated in the root cortex underlying the activated 

root hairs, leading to the formation of a nodule primordium (Downie & Walker 1999). Rhizobia 

enter the plant cells through infection threads (ITs), which are initiated in root hairs and grow 

onward into the root cortex transporting the bacteria to the nodule primordium. When the IT 

reaches the nodule primordium, rhizobia enter into the plant cells (Oldroyd & Downie 2008) 

and form organelle-like structures called symbiosomes. The symbiosome contains single or 

multiple bacterial cells, depending on the host plant, surrounded by a plant-derived 

peribacteroid membrane and the peribacteroid space. The rhizobia in the symbiosomes 

differentiate into nitrogen-fixing bacteroids, which are physiologically distinct from the free-

living bacteria form. In some legumes, the formation of bacteroids is accompanied with a plant-

guided morphological differentiation process, such as genome amplification and membrane 

alteration (see Section 1.2.2). In parallel with the formation of the bacteroids, also the host cells 

differentiate into a distinct cell type, called the symbiotic nodule cell, highly adapted to the 

symbiotic process, housing large quantities of rhizobia and assimilating NH4
+. 

There are two morphological nodule types: the spherical, determinate and the elongated 

indeterminate nodule types. The type of the nodule that will be formed is dependent on the host 

plant (Kondorosi et al. 2013). The main difference between them is the origin and the activity 

of their meristem (Fig. 3). Determinate nodules lose their meristem at an early stage of 

development. The differentiation of the infected cells is synchronous, therefore there is no 

developmental gradient and the nodule shape is spherical. The mature nodules contain a 

homogenous central tissue composed of infected cells fully packed with nitrogen-fixing 

bacteroids and also some uninfected cells (Szczyglowski et al. 1998). The symbiotic cells of 

Lotus japonicus are filled with rod shaped bacteroids, which are able to multiply within the 

symbiosome and when released back into the soil after nodule senescence, they can revert to 

the free-living lifestyle. Legumes that form determinate nodules are mainly tropical and 

subtropical species, such as soybean (Glycine max), bean (Phaseolus vulgaris), and Lotus 

japonicus (Fig. 3, left). In contrast to determinate nodules, indeterminate nodules contain a 

persistent meristem at the nodule apex that originates from inner cortical root cells. The 

meristem produces continuously new cells that enter the nodule differentiation program. 

Therefore, the form of the nodule is elongated or cylindrical. Indeterminate nodules are 
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composed of different zones: the meristem (ZI), the invasion zone (ZII), the interzone (IZ), the 

nitrogen-fixing zone (ZIII), and in older nodules the senescence zone (ZIV) (Fig. 3, right). 

Post-meristematic cells leaving ZI enter endoreduplication cycles in ZII (Vinardell et al. 

2003) and become infected and filled with rhizobia. In ZIII the differentiation of both the plant 

and the bacterial cells is terminated, the symbiotic cells have reached their final size and are 

fully packed with differentiated bacteroids. ZIII is interspersed with uninfected cells (Xiao et 

al. 2014). In M. truncatula bacteroids inside the symbiotic cells are elongated and/or branched 

and they are terminally differentiated because they have lost their reproductive capacity. 

 

Figure 3. Differences between determinate and indeterminate nodules of two model legumes 

(modified from Kondorosi et al. 2013). (Left) In determinate nodules of Lotus japonicus, meristematic 

activity is lost in mature nodules and they become spherical. The central zone III region contains a 

mixture of uninfected cells and nitrogen-fixing symbiotic cells. Enlargement of the symbiotic cells (blue 

brackets) show the presence of unmodified, rod shaped bacteroids in the host cytoplasm. (Right) 

Indeterminate nodules of Medicago truncatula have an apical meristem (ZI), below a differentiation 

zone (ZII) were symbiotic cells are formed; zone II-III is an interzone (IZ) and finally a nitrogen-fixation 

zone (ZIII) with mature symbiotic cells and, in older nodules, a senescent zone (ZIV). The zone III is 

interspersed with uninfected, specialized cells.  

Temperate legumes including alfalfa (Medicago sativa), clover (Trifolium repens), pea 

(Pisum sativum) and M. truncatula form indeterminate nodules. However, it should be noted 

that the nodule type not necessarily reflects the bacteroid morphotype, since morphological 

differentiation of the endosymbiont is also seen in determinate nodules, or inversely, reversibly 

differentiated bacteroids can be found in the indeterminate nodules of some legume species, 

indicating that bacteroid fate is controlled by the plant (Czernic et al. 2015; Kondorosi et al. 

2013) (see Section 1.2.2).  

Besides these two main nodule types, lupinoid nodules represent a unique subclass of 

indeterminate nodules (Lotocka et al. 2000; Gonzalez-Sama et al. 2006). Lupinoid nodules are 
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formed by legumes of the genus Lupinus interacting with Bradyrhizobium sp. They are 

considered indeterminate because of their meristem, which can cause the nodule to grow until 

it surrounds the root. This nodule type does not show zonation and is spherical like determinate 

nodules. The central tissue only contains infected symbiotic cells and no uninfected cells 

(Lotocka et al. 2000). Rhizobium infection occurs in the outer cortex, and the meristematic 

region contains bacteroids. There are no ITs, rhizobia enter at the junction of the root hair base 

and the symbiotic cells originate from a single infected cortical cell (Gonzalez-Sama et al. 

2006). 

1.1.4. Polyploidisation of symbiotic cells is a prerequisite for nodule 

organogenesis 

During nodule formation, both the symbiotic plant cell and in certain legumes also the 

endosymbiont (see Section 1.2.2) undergo drastic cellular modifications, involving cell 

enlargement and polyploidisation of the genome through endoreduplication (ENR) cycles. 

Polyploid eukaryotic cells contain multiples of the typical diploid genome and are found in a 

wide variety of cell types and organs in insects, animals, and plants. Functional specialization 

of plant cells is generally coupled to cell enlargement and ENR, like in the case of elongation 

of hypocotyl cells, branching of trichomes, nutrient storage in the endosperm of seeds and 

pericarp of fruits, nematode-infected giant cells in galls and in symbiotic nodule cells hosting 

endosymbiotic bacteria (Wildermuth 2010; Sabelli & Larkins 2009; Chevalier et al. 2011). 

Forming of large polyploid symbiotic cells is essential in both determinate and indeterminate 

nodule organogenesis of all legumes that have been tested (Cebolla et al. 1999; Vinardell et al. 

2003; Gonzalez-Sama et al. 2006).  

The diploid M. truncatula exhibits various degrees of endoploidy in different organs 

with the highest level in root nodules (Cebolla et al. 1999). The tissue-specific pattern of 

endopolyploidy in different organs indicates that ENR constitutes an integral part of the 

developmental programs. During symbiosis, the host plant has the ability to reset and alter the 

fate of the differentiated root cortical cells to form a new root organ. Nodule organogenesis is 

induced by rhizobia-derived NFs, which mitotically reactivate cortical cells to proliferate and 

form the nodule primordium. The nodule grows by the activity of the meristem that produces 

continuously new cells, which enter the nodule differentiation programme by cell division 

arrest, followed by several rounds of ENR cycles. ENR arises from the transition of a mitotic 

cell cycle into endocycles, where the genome doubles in each cycle resulting from the diploid 
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2C to 4C, 8C, 16C, 32C, 64C genomes (C is the haploid DNA content). In the classical mitotic 

cell cycle, the DNA duplicates during the S (synthesis) phase and subsequently divides equally 

in the mitosis (M) phase and thus each of the two daughter cells has a 2C DNA content. In 

contrast, there is no M phase during the ENR cycle and repeated S- and gap (G) phases result 

in consecutive doublings of the genome (Fig. 4).  

 

 

Figure 4. In Medicago truncatula, the symbiotic cell undergoes several rounds of 

endoreduplication during differentiation. M. truncatula nodule zones (ZI-ZIII) and the genome copy 

number (C) of nodule cells: Cells in meristem (ZI) are in a mitotic cell cycle, they have 4C DNA content 

after the S phase and 2C after division. In contrast, cells in ZII do not divide and by endocycles, they 

become polyploid. ZIId: distal, younger 4C/8C symbiotic cells, ZIIp: proximal, older symbiotic cells 

8C/16C. The switch from mitotic to endocycle is controlled by the Ccs52A protein that provokes 

degradation of mitotic cyclins and thereby inhibits M phase and cell division (Cebolla et al. 1999; 

Vinardell et al. 2003). Mature symbiotic cells have a 32C or 64C DNA content. ZIII also contains 

uninfected, low ploidy (4C/8C) level cells. 

Two cell cycle switch genes - Ccs52A and Ccs52B - have been identified in M. 

truncatula and A. thaliana encoding for the anaphase-promoting complex (APC) activator 

(Tarayre et al. 2004; Cebolla et al. 1999; Vinardell et al. 2003). Ccs52A is a major regulator of 

symbiotic cell differentiation in the indeterminate nodule of M. truncatula, whereas Ccs52B is 

expressed in shoot apices but not in the symbiotic organ (Vinardell et al. 2003). Ccs52A 

promotes the exit of meristematic cells from the cell division cycle by inactivating mitotic 

cyclin dependent kinase (M-CDK) through ubiquitin-dependent degradation of cyclin B, which 

leads to G2-M-phase inhibition and switch to ENR cycle (Fig. 4). Ccs52A antisense nodules, 
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in which ENR is blocked, were arrested in the nodule primordium phase and underwent early 

senescence (Vinardell et al. 2003). The Ccs52A is highly conserved in the plant kingdom and 

its expression in determinate and indeterminate nodules indicate important role in cell 

enlargement and polyploidisation in different nodule types (Cebolla et al. 1999; Gonzalez-Sama 

et al. 2006). Phylogenetic analysis of the Ccs52A proteins suggests that the Lupinus Ccs52A 

and Lotus Ccs52A proteins are orthologues of the Medicago Ccs52A protein and that they are 

involved in control of ENR in these legumes as well (Gonzalez-Sama et al. 2006). In M. 

truncatula, Ccs52A expression is detected during nodule initiation, in the central region of the 

nodule primordium before cell differentiation starts, and is maintained in the ZI and ZIId of 

mature nodules (Cebolla et al. 1999; Vinardell et al. 2003). In contrast, in Lupinus albus, 

Ccs52A expression is detected in proliferating root cortical cells; and maximum expression is 

reached in the nodule primordia. In the fully differentiated nitrogen-fixing symbiotic cells of 

either nodule types, no expression of Ccs52A was detected. In Lotus, its expression was 

maximal in young nodules, but transcripts were present in mature nitrogen-fixing nodules as 

well (Gonzalez-Sama et al. 2006).  

Recently, a vagrant infection thread 1 (VAG1) gene was identified in Lotus that plays 

an important role in the onset of ENR in cortical cells during early nodule development. VAG1 

encodes for a component of plant DNA topoisomerase VI complex that is involved in the 

control of ENR (Suzaki et al. 2014). The vag1 mutant plant could form nodules, but the 

proportion of endoreduplicated cells (>4C) and the number of rhizobium-colonized infected 

cells were reduced compared to wild type. The loss of ENR in vag1 mutant caused misguided 

elongation of IT and failure in ploidy-dependent cell growth of rhizobial-infected cells (Suzaki 

et al. 2014). Thus, ENR of cortical cells have important role in guiding ITs and therefore 

rhizobia to host cells.  

By measuring the DNA content of root and nodule tissues in L. japonicus, M. truncatula 

and L. albus, the highest endoploidy was detected in nodules, although there were differences 

among the three legumes (Fig. 5). Root tissue and nodule primordia contained cells with 2C/4C 

DNA content corresponding to G1 and G2 cell cycle phases, and a low proportion of 8C cells. 

Young nodules contained cells with increased 16C ploidy, and in mature nodules 32C or even 

64C cells have been detected (Cebolla et al. 1999; Vinardell et al. 2003; Gonzalez-Sama et al. 

2006). Medicago and Lotus have a higher percent of 32C nuclei than lupin nodules, but lupin 

contained a high proportion of intermediate ploidy level 8C/16C cells. These differences likely 

indicate different nodule developmental programs. In Medicago and Lotus, the 

endoreduplicated and enlarged cells are invaded by rhizobia, while diploid cells that do not 
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enter the endocycles remain small and uninfected. In contrast, during lupin nodule 

development, dividing cortical cells/primordium cells (4C) are infected then ENR cycles and 

symbiotic cell differentiation takes place. Altogether, high endoploidy and formation of huge 

symbiotic cells are common features of nitrogen-fixing root nodules. 

 

Figure 5. Ploidy levels in Lotus japonicus, Medicago truncatula, and Lupinus albus plants. Fraction 

(%) of nuclei with different DNA content (from 2C up to 64C) in nodule and root measured by flow 

cytometry (Cebolla et al. 1999; Vinardell et al. 2003; Gonzalez-Sama et al. 2006). 

In M. truncatula, polyploid symbiotic nodule cells change dramatically their gene 

expression programs involving the activation of a large number of symbiosis-specific genes and 

the repression of others (Maunoury et al. 2010). This suggests that ENR of the symbiotic nodule 

cells may serves as a mechanism in controlling gene expression, since the polyploid genome 

content of symbiotic cells appears to be a prerequisite for proper nodule organogenesis and for 

the expression of most symbiotic plant genes (Maunoury et al. 2010). Duplication of the 

genome without mitosis is believed to result in multiplication of gene copy number and 

decondensation of the chromatin leading to higher transcriptional activity of the cell, although 

this has never been convincingly demonstrated or disproven. 

1.2. The Nodule-specific Cysteine-Rich (NCR) peptide family 

1.2.1. NCR genes are specific for the IRLC and Dalbergioid clade legumes 

Parallel to the host cell maturation, the endosymbiotic partner also undergoes 

differentiation to adapt to the symbiotic lifestyle. In some legume clades, the differentiation 

process of the nitrogen-fixing bacteroids is accompanied by morphological and cytological 
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metamorphosis, including cell enlargement, different cell shape, loss of cell division capacity, 

genome amplification by ENR cycles, and alteration of the membrane. Such changes of the 

bacteroids are irreversible, i.e. the bacteroids are unable to revert to a free-living lifestyle 

(Mergaert et al. 2006). In M. truncatula, a large family of peptides named NCRs (Nodule-

specific Cysteine-Rich peptides) control the bacteroid differentiation (Van de Velde et al. 

2010). The NCR peptides are produced by the infected symbiotic cells and are transported to 

the bacteroid-containing symbiosomes. More than 600 NCR genes were identified in Medicago 

encoding for small (60-70 amino acids) secreted symbiotic peptides (Mergaert et al. 2003; 

Alunni et al. 2007). Despite the fact that the mature NCR peptides are highly divergent, they 

share several common features: (i) NCRs are usually composed of two exons (400-700 bp) 

separated by ~70-100 bp intron sequence; (ii) the first exon codes for a conserved signal peptide 

(that directs the NCRs to the secretory pathway) and the second one for the mature cysteine-

rich peptides (Mergaert et al. 2003); (iii) the processed mature NCR peptides contain 4 or 6 

conserved cysteines in conserved positions with well-defined spacing. NCR genes are scattered 

over the 8 Medicago chromosomes but they are found within genomic clusters from 7 up to 364 

kb (Alunni et al. 2007). Genes of the same cluster are the most homologous to each other and 

they likely arose from gene duplication events. It was noticed that NCR genes are often in the 

vicinity of transposable elements suggesting that their multiplication in the genome during 

evolution arose by co-transfer with activated transposons (Satgé et al. 2016).  

Members of the NCR gene family have been found in legumes of the Inverted Repeat-

Lacking Clade (IRLC) (Wojciechowski et al. 2004) like Medicago spp. (Fedorova et al. 2002; 

Graham et al. 2004; Gyorgyey et al. 2000; Mergaert et al. 2003), Pisum sativum (Kardailsky et 

al. 1993; Kato et al. 2002; Scheres et al. 1990), Trifolium repens (Crockard et al. 2002), 

Astragalus sinicus (Chou et al. 2006), Galega orientalis (Kaijalainen et al. 2002), Vicia faba 

(Fruhling et al. 2000) Cicer arietinum (Kant et al. 2016), Astragalus canadensis, Onobrychis 

viciifolia, Ononis spinosa, Oxytropis lamberti, and Glycyrrhiza uralensis (Montiel et al. 2017). 

Recently, NCR-like genes were also identified in legumes such as Aeschynomene afraspera, 

Aeschynomene evenia, Aeschynomene indica and Arachis hypogea belonging to the more 

ancient Dalbergioid lineage (Czernic et al. 2015). However, it should be noted that the 

Dalbergioid NCR-like peptides form a distinct family, unrelated to the NCR family of the IRLC 

indicating an independent convergent evolutionary origin. Aeschynomene NCR-like peptides 

play a similar role in bacteroid differentiation to those described in IRLC species (Czernic et 

al. 2015). In legumes with reversible fate of bacteroids like L. japonicus, G. max, P. vulgaris 

and in any other plants, no homologues of NCRs have been identified.  
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NCRs are targeted to the bacteroids and ~150 of them were found in the bacteroids (Van 

de Velde et al. 2010; Durgo et al. 2015). Some of these peptides provoke symptoms of terminal 

differentiation by inhibiting cell division, inducing cell elongation and polyploidization of 

Rhizobium (Van de Velde et al. 2010) e.g. NCR247 can specifically block bacterial cell division 

and cause endoreduplication (Penterman et al. 2014). Some peptides accumulate in the cytosol 

of mature bacteroids, indicating that they may affect bacteroid metabolism as well (Van de 

Velde et al. 2010; Kereszt et al. 2011; Durgo et al. 2015; Farkas et al. 2014). The structure and 

gene organization of the NCR peptides are similar to defensin-type of antimicrobial peptides 

that are part of innate immunity in animals and plants (Maroti et al. 2011). Certain NCR 

peptides indeed exhibit in vitro antimicrobial activity and when applied at high concentration 

they can kill Rhizobium or other bacteria (Van de Velde et al. 2010; Tiricz et al. 2013). The 

Sinorhizobium meliloti bacA gene (bacteroid development factor A) was identified to be 

essential to counteract the antimicrobial activity of the NCR peptides during symbiosis in M. 

truncatula. In the absence of this protein, the bacteroids are immediately killed by the NCR 

peptides in the nodule cells (Haag et al. 2011). Although, the BacA protein belongs to the ABC 

transporter family, how it contributes to resistance against NCR peptides is unknown. In 

symbiosis with Aeschynomene legumes, the Bradyrhizobium BclA protein, a BacA-like peptide 

transporter is required for bacteroid differentiation likely in a similar way as the BacA protein 

of S. meliloti in symbiosis with Medicago (Guefrachi et al. 2015). 

1.2.2. Bacteroid morphotypes: NCRs direct irreversible bacteroid 

differentiation 

The morphology and physiology of bacteroids display striking differences according to 

the host plant. Bacteroids in the IRLC legumes differ from free-living bacteria because they are 

adapted for an intracellular, in planta life-style with a specialized metabolic activity and 

capability for nitrogen fixation. Besides this physiological differentiation, which is common to 

bacteroids in all legumes, bacteroids can also display a striking morphological differentiation. 

Different bacteroid morphotypes were described in legumes: the U-morphotype bacteroids 

(unmodified) are rod-shaped, similar to free-living rhizobia, the S-morphotype bacteroids are 

swollen/spherical compared to free-living rhizobia and the elongated E-morphotype bacteroids 

are sometimes elongated Y-shaped, branched cells (Mergaert et al. 2006; Montiel et al. 2016; 

Czernic et al. 2015; Guefrachi et al. 2015; Oono et al. 2010; Montiel et al. 2017). U-morphotype 

bacteroids are able to revert to free-living lifestyle, but the differentiation of the other 
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morphotypes is irreversible and terminal. U-type bacteroids are typical in Phaseolus, Glycine, 

Vigna, Lotus and Sesbania species; whereas terminally differentiated bacteroids develop in 

legumes like Medicago, Pisum, Vicia, Trifolium, Cicer, Galega, Ononis, Onobrychis, 

Astragalus, Glycyrrhiza and Aeschynomene species (Fig. 3, Fig. 6).  

 

Figure 6. Bacteroid morphotypes (modified from Montiel et al. 2017). Phylogenetic tree and 

morphotype of bacteroids in legumes from the IRLC. Phylogenetic tree modified from Wojciechowski 

et al. 2004 to highlight the studied species. Scanning electron microscopy images of S- and E-

morphotype bacteroids isolated from nodules of the above indicated species. 

Besides morphological changes, terminally differentiated bacteroids undergo drastic 

cytological modifications during differentiation, such as genome amplification by ENR (this is 

a remarkable similitude in the cytological organization of the bacteroids and their eukaryotic 

host cells described above), and alteration of their membranes which may contribute to their 

uncultivable nature. The DNA content can be from 4 to 24 fold higher in the differentiated 

bacteroids, depending on the host plant and the bacterial species (Mergaert et al. 2006; Montiel 

et al. 2016; Czernic et al. 2015; Guefrachi et al. 2015). In vitro increased membrane 

permeability of bacteroid membranes is obvious by the slow penetration of propidium iodide 

in the cytosol which is normally excluded from living cells (Mergaert et al. 2006). Although, 

morphology and the degree of cell enlargement can vary among terminally differentiated 

bacteroids, the genome amplification is a common feature.  

The diverse morphology of bacteroids in determinate and indeterminate nodules 

indicates that the nodule type not necessarily reflects the bacteroid morphotype (Fig. 6). The 

distinct behaviour of the same Rhizobium strain in different legume hosts (Sen & Weaver 1980; 

Bonaldi et al. 2011; Mergaert et al. 2006) led to the conclusion that plant factors influence the 

bacteroid differentiation and determine the morphotype. Until now, different studies 
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demonstrated in the IRLC and Dalbergioid legumes forming E- and S-type bacteroids, that NCR 

peptides guide irreversible terminal differentiation of the endosymbionts (Van de Velde et al. 

2010; Montiel et al. 2016; Czernic et al. 2015).  

It is currently not known why some legumes induce morphological modifications of 

their microsymbiont. It is not a prerequisite for a functional symbiosis since many legumes do 

not produce NCR peptides and do not impose this particular differentiation. Phylogenetic 

analysis (Oono et al. 2010) shows that the unmodified U-morphotype is the ancestral bacteroid 

form and the E- and S-morphotype appeared several times independently during evolution, 

suggesting that the process provides a selective advantage. In agreement with this, some studies 

indicate superior nitrogen-fixation performance of terminally differentiated bacteroids 

compared to the reversible, U-morphotype bacteroids of the same strain (Sen & Weaver 1980; 

Oono et al. 2010). However, a shortcoming in these studies is that the nitrogen-fixation 

efficiency was compared in different host plants and therefore it is unclear what are the effects 

of bacteroid type and other host factors. At present, no firm experimental proof of a selective 

advantage for bacteroid differentiation has been delivered, even if this seems to be very 

plausible. 

1.2.3. Possible mode of action and intracellular targets of the NCR peptides 

The NCR peptide family is very large (>600 genes) suggesting an extensive functional 

redundancy among them but their amino acid composition and their isoelectric point (ranging 

from 3,2 to 11,25, anionic to cationic, respectively) is very diverse, indicating that they could 

have multiple activities during different stages of bacteroid differentiation and functioning. This 

is supported by the spatio-temporal expression of the NCR genes, which are active in different 

nodule zones, overlapping with different stages of bacteroid development or functioning (see 

Section 1.2.4). The ex planta effects of certain synthetic cationic NCRs on cell elongation have 

been demonstrated on the free-living S. meliloti cultures. At high concentrations, NCRs disrupt 

bacterial cell envelope acting both on the outer and inner membranes of the bacteria, via 

forming pores and destroying the membrane potential (Nagy et al. 2015; Mikuláss et al. 2016), 

which leads to stress responses, including the slowdown of the cell metabolism and cell division 

arrest (Tiricz et al. 2013). The high concentrations of and/or longer exposure to cationic NCRs 

lead to cell death of a wide variety of Gram-negative and Gram-positive bacterial strains (Tiricz 

et al. 2013; Farkas et al. 2017) as well as unicellular and filamentous fungi (Ördögh et al. 2014). 

At low concentration the fluorescein isothiocyanate (FITC) labelled NCR247 peptide enter the 
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bacterial cytosol without membrane damage (Farkas et al. 2014). In planta, different cocktails 

of NCRs are produced and the neutral and anionic peptides could attenuate the in vitro killing 

effect of cationic NCRs and result loss of cell division capacity (Montiel et al. 2017). In L. 

japonicus nodules, where NCR genes are absent, expression of NCR035 induced bacteroid 

elongation, reminiscent of terminally differentiated bacteroids of Medicago (Van de Velde et 

al. 2010). 

Although, the first and most general mode of the NCR action is the disruption of the 

microbial membranes, a growing body of evidence suggests that the peptides are taken up by 

the bacterial cells and they can have intracellular targets. NCR247 is the best characterized 

NCR peptide with strong in vitro antimicrobial activity (Tiricz et al. 2013). NCR247 has been 

shown to interact with a remarkably wide range of bacterial proteins like the GroEL chaperon, 

the cell division protein FtsZ, the ribosome, nitrogenase and energy metabolism proteins 

(Farkas et al. 2014). Moreover, NCR peptides affect the bacterial cell cycle, treatment of S. 

meliloti with NCR247 down-regulates the S. meliloti gcrA and ctrA cell cycle regulator genes 

(Penterman et al. 2014). CtrA may be a central target of the NCR activity because this protein 

is a principal regulator of the cell cycle in α-proteobacteria, promoting cell division and 

inhibiting DNA replication. Indeed, it has been shown that in bacteroids CtrA expression is 

downregulated to undetectable levels and its repression in cultured cells results in polyploid, 

enlarged cells resembling bacteroid cells (Pini et al. 2013; Pini et al. 2015). In addition, 

treatment of NCR247 activated the expression of rpoH1 and several RpoH1-regulated genes 

involved in cytoplasmic stress response (Penterman et al. 2014) suggesting mechanisms 

through which S. meliloti adapts to NCR peptide-mediated stress in vitro and in planta.  

Genetic evidence have been provided that not all NCRs are redundant but that on the 

contrary, some peptides are essential and cannot be substituted by any of the other members of 

the family. NCR211 (Kim et al. 2015) and NCR169 (Horvath et al. 2015) have been shown to 

be essential for bacterial persistence in planta. In dnf4 mutant plants lacking NCR211 and in 

dnf7 mutants lacking NCR169 bacteroid differentiation is incomplete, there is no nitrogen 

fixation and early nodule senescence is induced (Horvath et al. 2015; Kim et al. 2015). Thus, 

NCR peptides besides provoking stress responses, also target intracellular regulatory pathways 

to drive S. meliloti genome amplification and differentiation during symbiosis. The high 

number and diversity of the NCR peptides might ensure that the symbiont cannot escape the 

differentiation process imposed by the plant. 

In addition, two recent studies demonstrated rhizobia-specific effects of individual 

NCRs in M. truncatula (Yang et al. 2017; Wang et al. 2017). NFS1 and NFS2 encoding NCRs 
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control discrimination against incompatible microsymbionts by provoking bacterial cell death 

and early nodule senescence (Yang et al. 2017, Wang et al. 2017). The negative effect of the 

two NFS loci on symbiotic performance is proved to be strain-specific. The bacterial 

components that are responsible for the differential responses to the specific NCR peptides 

remain to be determined.  

The opposing roles of the different NCRs may indicate an evolutionary mechanism for 

fine-tuning the symbiotic performance and could explain the high number and diversity of the 

NCR peptides in M. truncatula. 

1.2.4. NCRs are specifically induced during nodulation: Early and late genes  

Besides the size of the family, another surprising feature of the NCR family is that all 

NCR genes are specifically and only expressed in the nodules. The expression of NCR genes 

has been studied - mostly in M. truncatula but also in some other IRLC and Dalbergioid 

legumes - at the level of individual genes by RT-PCR, in situ hybridization, immuno-

localization and promoter-reporter gene fusions (Mergaert et al. 2003; Alunni et al. 2007; Van 

de Velde et al. 2010; Nallu et al. 2013) or at the family level by EST-analysis, macroarrays, 

dedicated microarrays or whole-genome microarrays (Mergaert et al. 2003; Graham et al. 2004; 

Maunoury et al. 2010; Moreau et al. 2011; Nallu et al. 2013; Tesfaye et al. 2013). For example, 

analysis of 120,000 expressed sequence tags (ESTs) in 26 different cDNA libraries which 

together covered most plant organs, different growth conditions including biotic and abiotic 

stresses, demonstrated that ESTs of the 311 analysed NCRs were only found in nodule libraries 

(Mergaert et al. 2003). In addition, this analysis revealed that all NCRs together constitute 

almost 5% of the total mRNA population in nodules. A more recent work assessing the 

expression of more than 500 NCR genes with dedicated Affymetrix chips confirmed the nodule 

specificity of the NCR gene family (Tesfaye et al. 2013; Nallu et al. 2013). In situ detection of 

NCR expression by immunolocalization, in situ hybridization, or promoter-GUS/GFP/mCherry 

analysis has demonstrated for all the tested genes that they are expressed in the symbiotic 

nodule cells but different subsets of NCR genes are activated at different stages of 

differentiation of these host cells (Mergaert et al. 2003; Van de Velde et al. 2010; Nallu et al. 

2013). Transcriptome analysis with microarrays or Affymetrix chips extended this pattern to 

the whole NCR gene family (see below, Chapter 1 of the results). The Medicago truncatula 

Gene Expression Atlas (MtGEA) (Benedito et al. 2008; He et al. 2009) is generated with the 

whole genome Affymetrix Medicago Gene Chip and compiles microarray data for the majority 
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of M. truncatula genes (50,900 probe sets) over a large set of experiments (254 different 

experimental conditions).  

During nodule organogenesis, two major waves of transcriptional reprogramming have 

been described resulting in repression and massive induction of hundreds of genes (Fig. 7). The 

first transcriptional wave occurs along with the establishment of an incipient nodule containing 

differentiating plant cells, housing the dividing rhizobia, while a second wave takes place when 

rhizobia differentiate into nitrogen-fixing bacteroids (Maunoury et al. 2010). These two 

transcriptional waves were defined with the use of custom-made microarrays and the analysis 

of wild-type nodules at different age (primordia, immature, mature nodule) as well as a 

collection of bacterial and plant symbiotic mutants forming non-functional nodules. 

 

Figure 7. Transcriptome switch during nodule organogenesis. (Left panel) Different stages of 

nodule development from early to late (nodule primordium, immature nodule and mature nodule). 

(Middle panel) A dramatic transcriptome switch revealed by transcriptome analysis and seen on the heat 

map accompanies the symbiotic cell differentiation (Maunoury et al. 2010). The expression profile in 

columns correspond to the developmental stage of the nodule. The transcriptome is activated in two 

consecutive waves. The cluster of genes activated during the first wave (early genes) in differentiating 

symbiotic cells in zone II are indicated with red bracket, while the second wave genes (late genes) are 

activated in mature symbiotic cells of interzone and zone III and are indicated with blue bracket. (Right 

panel) M. truncatula nodule section shows the tissue organisation of the nodule with at the top meristem 

(ZI), below the differentiation zone (ZII) where symbiotic cells are formed, the transition zone II-III 

(IZ) and zone III (ZIII) with mature symbiotic cells. Only the upper part of zone III is seen. Examples 

of in situ transcript detection of nodule-specific genes, which are expressed in young symbiotic cells 

(early genes) and in mature cells (late genes).  
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A more recent study, employing laser-capture microdissection of wild-type nodules coupled to 

RNA-seq analysis, was able to define more precisely the transcriptional changes that take place 

in differentiating nodule cells and could show the activation of nodule-specific genes in 

multiple successive spatio-temporal waves (Roux et al. 2014; Maunoury et al. 2010). 

Among the activated genes, the NCR family with hundreds of members takes the most 

prominent place, which are all exclusively expressed in the symbiotic nodule cells. Their 

activation requires intracellular presence of rhizobia (Mergaert et al. 2003; Maunoury et al. 

2010; Van de Velde et al. 2010). Along the maturation of symbiotic cells, different subsets, tens 

or hundreds of NCR genes are expressed during the early, the middle and later stages. Thus, the 

NCR genes are under an extremely tight transcriptional control. 

1.2.5. Transcriptional regulation of NCRs: Epigenetic mechanisms might be 

involved 

How the nodule specific spatio-temporal regulation of the NCRs in the symbiotic nodule 

cells is achieved is currently not known. NCR expression correlates with bacterial infection of 

the host cells, which suggests the involvement of components of the bacterial envelope in their 

activation. Several transcription factors (TFs) have been reported to be specifically upregulated 

in nodules (El Yahyaoui 2004). For example, the ethylene response factor group (EFD) 

transcription factor that is required for the formation of functional nitrogen-fixing nodules may 

control, directly or indirectly, the expression of the NCR genes. In efd-1 mutant nodules many 

NCRs are downregulated and bacteroid differentiation is impaired (Vernie et al. 2008). Another 

TF is the IPD3/CYCLOPS (Singh et al. 2014; Limpens & Bisseling 2014) which is co-

expressed with the NCRs (Messinese et al. 2007). In the ipd3 mutant nodules, symbiotic cells 

are not formed and the symbiotic cell-specific genes, including the NCRs, are not activated 

(Maunoury et al. 2010). Potential cis-elements in the promoters of NCR genes were identified. 

The five different conserved motifs of 41 to 50 bp are specifically enriched in the 1000 bp 

promoter regions of NCRs (Nallu et al. 2013). Some of these motifs show resemblance to 

previously described motifs conferring nodule-specific gene expression. However, these data 

are fragmentary and the transcription factors that bind these elements are unknown. 

Interestingly, some of these motifs comprise Auxin Response Factor binding sites that may 

suggest a role for auxin in NCR regulation (Nallu et al. 2013).  

The very tight regulation of the NCR genes indicates that besides cis- and trans-acting 

factors, regulation at the level of chromatin might also be involved in their activation. Genes 
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with high tissue-specific expression can be actively silenced during most of the plant growth. 

Gene silencing can be achieved by different epigenetic mechanisms such as small RNAs, DNA 

methylation but also by chromatin compaction mediated by trimethylation of histone H3 lysine 

27 (H3K27me3) and Polycomb group (PcG) protein complexes. The latter mechanism seems 

to be particularly important for tissue-specific genes like the NCRs. Hundreds of genes have 

been shown to gain or lose H3K27me3 upon leaf differentiation in Arabidopsis (Lafos et al. 

2011). H3K27me3 is correlated with gene repression, and its removal has been shown to be 

required for the proper expression of developmentally important genes in Arabidopsis (Zhang 

et al. 2007). Moreover, ENR seems to be a prerequisite for the activation of the NCR genes 

(Maunoury et al. 2010). It is unknown how successive ENR cycles and the polyploid state of 

the genome affect transcriptional reprogramming. The strict nodule specificity and the possible 

linkage between gene expression and ploidy levels of symbiotic cells suggested that epigenetic 

modifications along the ENR cycles might play a critical role in transcriptional regulation of 

NCRs and other nodule-specific genes. 

The nodule-specific expression of retrotransposons, which are usually epigenetically 

silenced (Guefrachi et al. 2014; Satgé et al. 2016; see Section 4.1.7), the DNA demethylase 

gene DEMETER (Satgé et al. 2016) and the Dicer 1-like ribonuclease III gene, which encode 

both enzymes that may have a role in epigenetic regulation, as well as the identification of small 

RNAs potentially targeting NCR genes (Lelandais-Briere et al. 2009) are all in agreement with 

such an epigenetic control of the symbiotic cell-specific genes. Interestingly, the fungal plant 

pathogen Leptosphaeria maculans produces an arsenal of small secreted proteins, often 

cysteine-rich peptides acting as effector proteins. The genes encoding these effectors are up-

regulated upon plant infection, requiring the removal of chromatin-mediated repression (Soyer 

et al. 2014). If the hypothesis related to the regulation of NCR and other nodule-specific genes 

is true, then the epigenetic chromatin marks for silencing must be reversed during the 

differentiation of the symbiotic cells in which ENR could be involved. 

1.3. Epigenetic control of gene expression 

Epigenetics define mitotically or meiotically heritable modifications which change gene 

expression and genome structure without altering the primary DNA sequence (Russo et al. 

1996). The epigenome comprises alternative chromatin states that can affect gene activity by 

altering the accessibility of regulatory DNA elements, including promoter and more distal 

enhancer elements at which both positive- and negative-acting TFs can bind and control 
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transcription during cell differentiation and development, as well as coordinating transcriptional 

responses to environmental change (Vergara & Gutierrez 2017; Ong & Corces 2011; Roudier 

et al. 2009). Packaging DNA into chromatin represents a highly dynamic structure that relies 

on covalent modification of the DNA by methylation, posttranslational modifications (PTMs) 

of histones, deposition of histone variants, nucleosome remodelling and small RNAs (Feng & 

Jacobsen 2011). Upon perceiving a relevant cue, enzyme complexes (that establish, maintain, 

read, and erase specific epigenetic modifications) can alter the existing chromatin state, thereby 

defining where and when the transcriptional machinery can access the DNA. Together the 

different epigenetic modifications, which can be dynamically modulated during development 

and in response to external signals, serve as recruitment platforms for gene expression 

regulators or affect chromatin compaction and accessibility for TFs and RNA polymerases. 

In recent years, advances have been made to understand the highly dynamic nature of 

the chromatin, which affects not only transcription but also processes such as genome 

replication, transposition, DNA repair, recombination and chromosome segregation (Vergara 

& Gutierrez 2017). Moreover, epigenetic mechanism have the potential to memorize cell 

identity or establish new cell fate by reprogramming the epigenome. The potential existence of 

an epigenetic memory requires mechanisms that actively remove persistent chromatin marks 

by enzymes or passively through replication-coupled dilution of a repressive modification 

during cell fate reprogramming (Birnbaum & Roudier 2017). In Medicago, root nodule 

formation is initiated by mitotic reactivation of the root cortical cells in response to rhizobial 

NF, which implies that first the root cell fate needs to be erased. The cortical cell 

dedifferentiation and proliferation will lead to the establishment of the nodule meristem. In ZI 

the post-meristematic cells enter ENR cycle and became infected by rhizobia, which represents 

the second reprograming phase towards nitrogen-fixing symbiotic cell differentiation. DNA 

replication during the consecutive ENR cycles could provide a mechanism to modify the 

chromatin state and reset or reprogram cell fate. 

1.3.1. DNA methylation dynamics 

DNA methylation in eukaryotes is a process by which mostly cytosine bases in the 

genome are modified with a methyl group to form methylcytosine. Adenine methylation, which 

is frequent in bacteria, is also observed in plants and animals but has received little attention 

until now (Low et al. 2001; Wu et al. 2016; Greer et al. 2015). Cytosine DNA methylation is 

involved in various biological processes in plants and is generally associated with 
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heterochromatin formation and transcriptional gene silencing. It is an important epigenetic 

mark for transcriptional repression of transposable elements (TEs) and repetitive sequences, 

stress response and genomic imprinting (Bird 2002; Goll & Bestor 2005; Dowen et al. 2012). 

DNA methylation occurs primarily at CG dinucleotides but in plants cytosine methylation in 

CHG, and CHH (H = A, C, or T) context have been found also (Henderson & Jacobsen 2007). 

DNA methyltransferases catalyse the de novo formation of 5-cytosine methylation (5-mC) or 

maintain pre-existing cytosine methylation patterns. Three families of DNA methyltransferases 

are found in plants. DNA methylation de novo is catalysed by DOMAINS REARRANGED 

METHYLTRANSFERASE 2 (DRM2) and maintained by three different pathways: CG 

methylation by DNA METHYLTRANSFERASE 1 (MET1), CHG methylation by 

CHROMOMETHYLASE (CMT3) and CHH methylation by CHROMOMETHYLASE 2 

(CMT2) (Chan et al. 2005; Law & Jacobsen 2010; Garg et al. 2014). DRM2 can be targeted to 

a sequence by small interfering RNAs (siRNAs) termed as RNA-directed DNA methylation 

(RdDM) (Wassenegger et al. 1994). Although in most cases DNA methylation is a stable 

epigenetic mark, reduced level of methylation is observed during development in both plants 

and animals. Methylation can be lost either passively by the failure of maintenance methylation 

during replication or DNA repair or actively by demethylation enzymes. In Medicago, active 

demethylation is catalysed by DEMETER (DME) and REPRESSOR OF SILENCING 1 

(ROS1) probably in combination with the base excision repair pathway (Ikeda & Kinoshita 

2009; Zhu 2009; Choi et al. 2002; Gong et al. 2002; Satgé et al. 2016).  

DNA methylation is an important epigenetic mechanism in regulating gene 

transcription, directing deposition of chromatin modifications or chromatin remodelling 

(Zilberman et al. 2007). However, even if DNA methylation is conserved in eukaryotes, 

including plants, animals and fungi (although it is lost in some groups including in 

Saccharomyces, Drosophila and Caenorhabditis), the methylation pattern and level vary 

drastically among different organisms (Goll & Bestor 2005; Feng et al. 2010). In Arabidopsis 

thaliana, the genome-wide DNA methylation level is 24%, 6.7% and 1.7% for CG, CHG and 

CHH contexts, respectively (Cokus et al. 2008). The largest fraction of methylated DNA 

sequences in plants are predominantly represented by TEs and repetitive sequences which are 

heavily and evenly methylated along their entire length, whereas non-TE genes can be 

methylated at their promoter, in their transcribed coding region, or at the 3’ end (Zhang et al. 

2006; Zilberman et al. 2007; Cokus et al. 2008). CG methylation at the promoter and gene body 

has different effects on the gene expression: promoter methylation usually represses gene 

expression (Bell & Felsenfeld 2000; Suzuki & Bird 2008) while methylation in gene bodies 
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does not seem to cause silencing and body methylated genes even tend to be constitutively 

active (Zhang et al. 2006). Currently, the significance of gene body methylation is not clear, 

but its enrichment within exons suggests a potential role in pre-mRNA splicing (Lev Maor et 

al. 2015) or prevention of aberrant transcription from cryptic promoters (Zilberman 2017). In 

Arabidopsis, promoter methylation is more frequent than gene body methylation and genes 

methylated within their coding sequence are less likely to have tissue-specific expression 

(Zilberman et al. 2007; Zhang et al. 2006).  

Importantly, the methylation level of genetic loci is not a fixed condition but it can 

change in the course of development or in response to environmental stimuli. It is now well 

established that the position and the hyper- (increase in methylation) or hypomethylated 

(undermethylated) status of differentially methylated regions (DmRs) can regulate the 

expression of proximal genes (Song et al. 2013; Garg et al. 2015). DmRs are generally found 

at regulatory elements such as enhancers and promoters and display lineage- or cell-type 

specific methylation patterns. DmRs are more likely to be found near (2 kb upstream and 

downstream) the genes (42–45%), but less frequently within the gene body (16–18%) (Garg et 

al. 2015). In addition, genes proximal to hyper-DmRs exhibit lower transcript levels 

(downregulation), while genes proximal to hypo-DmRs display similar or higher transcript 

levels (upregulation) compared to all genes (Garg et al. 2015). Since DNA methylation inhibits 

transcription and spreading of transposons to protect the genome (Kato et al. 2003; Hsieh et al. 

2009) this also affects expression of neighbouring genes (Song et al. 2013; Satgé et al. 2016; 

Garg et al. 2015). Demethylation by DME glycosylase is required to activate gene expression 

during different plant development processes by establishing a hypomethylated state (Gehring 

et al. 2006; Satgé et al. 2016), whereas ROS1 demethylation prevents transcriptional gene 

silencing by maintaining a locus free of methylation (Gong et al. 2002; Zhu et al. 2007). The 

effect of DNA methylation on gene expression may be mediated either directly or indirectly via 

transcriptional regulatory proteins, which recognize 5-mCs in the promoter regions or via 

mechanism involving the recruitment of methyl CG-binding proteins to remodel the chromatin 

(Nan et al. 1998; Ng & Bird 1999; Watt & Molloy 1988; Medvedeva et al. 2014). The 

persistence and reversibility of cytosine methylation makes it an ideal mechanism of controlling 

response to biotic or abiotic stress (Yu et al. 2013; Dowen et al. 2012; Bilichak et al. 2012) or 

plant developmental processes including gametogenesis, embryo, seed and root nodule 

development (Saze et al. 2003; Gehring et al. 2009; Zemach et al. 2010; Satgé et al. 2016; Hsieh 

et al. 2009). As a general rule, the extent of genomic methylation is in inverse relationship to 

developmental potential since pluripotent genomes are highly methylated, whereas 
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differentiated cells from a variety of lineages display reduced levels of global DNA methylation 

in animal and plant cells (Gehring et al. 2009; Popp et al. 2010). These data indicate that there 

is a progressive loss of methylation during differentiation. 

To date, much of our understanding about DNA methylation mechanism in plants relies 

on the research on A. thaliana, while methylation analysis in Medicago have been published 

only recently (Satgé et al. 2016). Increasing evidence suggests that investigating DNA 

methylation alone is not sufficient to get a global picture about the epigenetic landscape of the 

genome since interplay between DNA methylation and histone modifications is well 

documented.  

1.3.2. Chromatin modifications: The histone code 

In the nuclei of all eukaryotic cells, genomic DNA is folded into nucleosomes composed 

of histone (H3, H4, H2A, H2B) and non-histone proteins, that are the fundamental building 

blocks of chromatin. Nucleosomes likely evolved to protect and compact large eukaryotic 

genomes (Malik & Henikoff 2003). The distinct levels of chromatin organization are dependent 

on the dynamic structure of nucleosomes, which can restrict the access of DNA-binding 

transcription factors and RNA polymerases (Li et al. 2007). PTMs of histone tails are important 

determinants of the higher order chromatin structure (Wolffe & Hayes 1999). PTMs alone or 

in combination form a “histone code” that is read by other proteins and regulate changes 

between transcriptionally repressive/structurally condensed- and transcriptionally 

active/structurally accessible states of the genes and many other cellular processes such as 

repair, replication and recombination (Strahl & Allis 2000). The histone code considerably 

extends the information potential of the DNA. Histones can be covalently modified on different 

amino acid residues, like arginine (R), serine, threonine, tyrosine but mostly on lysine (K) (Fig. 

8). So far, >60 PTMs of the four core histones have been identified (Kouzarides 2007). Among 

various kinds of histone PTMs such as acetylation (Ac), methylation (Me), phosphorylation, 

sumoylation, biotinylation, citrullination, acetylation and methylation of histone H3 and H4 are 

the best characterized in plants (Grunstein 1997; Kurdistani et al. 2004; Zhou et al. 2010; Zhang 

et al. 2007). Since the histone proteins and their covalent modifications can alter higher order 

structure of chromatin, they can influence indirectly the transcriptional “ON/OFF” states of the 

genes.  

Mechanisms for “writing”/depositing, “reading”/translating and “erasing”/removing the 

histone code is directed by various kind of histone-modifying enzymes encoded by large gene 
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families in plants and which are highly specific for particular amino acid positions (Berr et al. 

2011). The effect of the different histone modifications on transcription in higher eukaryotes 

are well documented but several modifications appear to have contradictory roles. Therefore 

we have chosen in our experimental work (see Section 4.2.4) to focus on two widely studied 

and highly conserved modifications, which play a role in transcriptional activation or in 

repression, namely the H3 lysine 9 acetylation (H3K9ac) and H3 lysine 27 tri-methylation 

(H3K27me3), respectively (Feng & Jacobsen 2011; Kurdistani et al. 2004; Schubeler et al. 

2004; Roh et al. 2005; Zhou et al. 2010; Zhang et al. 2007). However, as the histone code 

hypothesis states, histone marks can cooperate and in combination or sequentially they will 

specify the downstream biological function. 

 

Figure 8. The core histone proteins of nucleosomes and their amino tail modifications (modified 

from Keating 2015). Histones are designated as histone H2A, histone H2B, histone H3 and histone H4. 

The DNA (black) is wrapped around the histone octamer (each histone is present in two copies) building 

the nucleosome. The N-terminal tails of histones H2A, H2B, H3 and H4 are potential target sites for 

histone-modifying enzymes. Histone H3 lysine 9 (H3K9) and histone H3 lysine 27 (H3K27) residues 

are among the best-characterized modifications. K: lysine; R: arginine, a: acetylation of histones; m: 

methylation of histones or DNA; N: amino terminus. (Top) Open/accessible chromatin conformation. 

(Bottom) Closed/inaccessible chromatin.  

1.3.2.1. H3K9ac marks active genes 

The acetylation of lysine residues neutralizes the positive charge of the histone tails and 

decreases their affinity for negatively charged DNA, thereby promoting the binding of TFs to 

regulatory DNA sequences. The reduction of DNA-nucleosomal interaction leads to chromatin 

decondensation and transcription, while deacetylation reverses this effect (Wolffe & Hayes 

1999). The level of histone acetylation is regulated by the activity of both histone acetyl 

transferases (HATs) and histone deacetylases (HDACs), which acetylate and deacetylate lysine 
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residues of histone tails, respectively. Acetylation of histone H3K9 generally marks active 

genes and participates in numerous developmental and biological processes in both plants and 

animals (He et al. 2003; Benhamed et al. 2006; Grunstein 1997; Qiao et al. 2014; Zhou et al. 

2010). Histone acetylation is shown to play important roles in the regulation of plant cell cycle, 

flowering time, response to environmental conditions and hormone signals. H3K9ac is enriched 

downstream of transcription start site of target genes in Arabidopsis, but it can span the gene 

body and promoter as well. Arabidopsis genes containing only H3K9ac modification are highly 

expressed, while genes with H3K9ac and repressive DNA methylation or H3K27me3 exhibited 

lower expression level. Furthermore, Arabidopsis hda19 (histone deacetylase 19) mutant 

seedlings showed significant increase of the H3K9ac modification level which also resulted in 

an increased expression level of the target genes (Zhou et al. 2010).  

1.3.2.2. H3K27me3 marks developmentally regulated genes 

While stable silencing of transposons is mediated by DNA methylation, silencing of 

genes during cell differentiation is mediated by Polycomb-group proteins (PcG) that are 

composed of two major enzyme complexes: the Polycomb Repressive Complex 1 (PRC1) and 

PRC2. PcG represses gene expression at the chromatin level in eukaryotes. PRC1 catalyses 

monoubiquitination on histone H2A (Wei et al. 2006), and PRC2 deposits trimethylation marks 

on histone H3K27 (H3K27me3) (Schwartz et al. 2006; Lee et al. 2006). H3K27 has a key role 

in gene repression and is critical for normal development of animals and plants (Hennig & 

Derkacheva 2009; Lee et al. 2006). The silencing of TF- and other regulatory genes during 

development by H3K27me3 is a conserved mechanism. In mammals, histone H3K27 

methylation is catalysed by the histone lysine methyltransferase (HKMT) Enhancer of Zeste 2 

(EZH2) (Kuzmichev et al. 2002) which is part of the PRC2 and involved in the repression of 

many genes involved in development and cell differentiation (Boyer et al. 2006; Bracken et al. 

2006). Loss of plant PcG proteins leads to loss of organ identity. PRC1 and PRC2 collectively 

establish and maintain H3K27me3, respectively while it is removed by KDM6a and KDM6b 

histone demethylases (Agger et al. 2008). In Arabidopsis EZH2 homologs like CURLY LEAF 

(CLF), MEDEA (MEA) and SWINGER (SWN) are H3K27me3 methyltransferases (Hennig & 

Derkacheva 2009; Zheng & Chen 2011). However, phylogenetic analysis did not reveal any 

homolog of KDM6. The RELATIVE OF EARLY FLOWERING 6 (REF6), has been shown to 

specifically demethylate H3K27me3 in Arabidopsis (Lu et al. 2011). The classic recruitment 

model of PcG complexes in which PRC2-mediated H3K27 trimethylation recruits PRC1 was 
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recently challenged by data showing that PRC1 activity can also recruit PRC2 (Blackledge et 

al. 2015; Zhou et al. 2017). 

Genome-wide analysis in Arabidopsis demonstrated that most H3K27me3-marked 

genes exhibited low expression level and high tissue-specificity with expression in one or a few 

specific tissues (Zhang et al. 2007; Turck et al. 2007; Roudier et al. 2011). In Drosophila and 

mammals H3K27me3 forms extensive domains (up to hundreds of kbs) maintaining multiple 

genes in transcriptionally suppressed state, while in Arabidopsis H3K27me3 regions were 

significantly shorter, rarely extended to adjacent genes and mostly marked single transcription 

units (Zhang et al. 2007; Turck et al. 2007; Roudier et al. 2011). In addition, maps of 

H3K27me3 in Arabidopsis revealed different H3K27me3 enrichment profiles with distinct 

regulatory outcomes. A broad domain of H3K27me3 across the body of genes corresponded to 

transcriptional inhibition while an enrichment profile with a peak in the promoter of the target 

genes is associated with active transcription (Young et al. 2011; Zhang et al. 2007). Genes with 

low nucleosome density (LND) regions in their promoters were among the most highly 

expressed genes in Arabidopsis which showed very low tissue specificity and coded in majority 

catalytic enzymes involved in a variety of physiological processes, while H3K27me3 regions 

were not preferentially associated with LND regions (Zhang et al. 2007). Moreover, it was also 

shown that H3K27me3 is a major silencing system that is independent of DNA methylation or 

RNA interference. Although the silencing function of H3K27me3 is conserved, plants and 

animals use distinct mechanisms to regulate H3K27me3 dynamics. Removal of H3K27me3 can 

be achieved by the enzymatic activity of REF6 demethylase or passively by replication-coupled 

dilution (Cui et al. 2016; Lu et al. 2011; Morao et al. 2016).  

The acetylated and methylated lysine residues in histones can be recognized and bound 

by transcriptional co-regulators and chromatin-remodelling factors and change the expression 

pattern of the underlying genes. Collectively, although certain mechanisms that deposit and 

maintain these modifications might differ between plants and animals, the distributions and 

functions of H3K9ac and H3K27me3 seem to be well conserved.  

1.3.3. DNA accessibility and chromatin remodelling 

The accessibility of DNA to regulatory proteins is a major property of the chromatin 

that restricts or enables transcription. The deposition or the removal of specific histone marks 

or DNA methylation is one way in which the chromatin state can affect the transcriptional 

program of the cell but the position of the nucleosomes can also be altered, globally or at the 
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level of individual genes. It has been proposed that a major function of the multiple 

combinations of histone modifications is to fine-tune accessibility of the DNA (Henikoff & 

Shilatifard 2011).  

In 1928 Emil Heitz made the distinction between heterochromatin and euchromatin 

based on their differential compaction in interphase nuclei (Heitz 1928). Heterochromatin 

represented the densely stained, compacted areas, while euchromatin the sparsely stained, less 

compact areas. Histological analysis of the chromatin in progenitor and differentiated cells 

indicated that undifferentiated cells typically have open chromatin conformation and are mostly 

devoid of heterochromatin (Spangrude et al. 1988; Park et al. 2004). However, it was suggested 

that this view might be an oversimplification, since various high-molecular weight probes and 

proteins can enter heterochromatin (Verschure et al. 2003; Görisch et al. 2005) and also 

transcription of repetitive sequences by specific RNA polymerases requires H3K9-methylation 

and heterochromatin assembly (Volpe et al. 2002). In Arabidopsis Shu et al. showed that genes 

without the repressive H3K27me3 are often inaccessible meaning that reduced accessibility is 

not necessarily the result of “visible” compaction but a local property of the chromatin (Shu et 

al. 2012). Inactive genes have an intermediate accessibility, which can be greatly reduced by 

repressive PcG proteins and/or DNA methylation. Conversely, transcription is often associated 

with a local increase in accessibility, which is restricted to promoters and 5’-sequences. It is 

possible that accessibility is locally controlled by neighbouring nucleosomes (Misteli et al. 

2007). Chromatin-remodelling proteins that can modify histone octamer-DNA contacts can 

alter the position of nucleosomes. Remodelers use the energy of ATP hydrolysis to move, insert, 

eject, exchange or restructure nucleosomes. Chromatin remodeling ATPases have been divided 

into four major subfamilies SWI/SNF, CHD, INO80/SWR1 and ISWI (Knizewski et al. 2008; 

Clapier & Cairns 2009; Hargreaves & Crabtree 2011; Narlikar et al. 2013). SWI/SNF chromatin 

remodelers disassemble or slide nucleosomes and interact with ‘activating’ chromatin 

regulators such as the histone acetyl transferase GCN5 (Cosma et al. 1999). However, recent 

studies in mammals and plants have shown that SWI/SNF complexes can also directly repress 

gene expression (Ho et al. 2009; Ho et al. 2011; Hargreaves & Crabtree 2011; Zhao et al. 2015) 

by facilitating the recruitment of sequence-specific binding proteins or chromatin regulators 

with repressive function (Ho et al. 2009) or stabilizing nucleosomes at the transcription start 

site that interfere with transcription (Han et al. 2012). The CHD3-family chromatin remodeller 

PICKLE (PKL) has opposite activities in Arabidopsis (Shen et al. 2015). Many studies have 

implicated PKL in activation of transcription by counteracting Polycomb repression (Fukaki et 

al. 2006; Furuta et al. 2011) but others demonstrated a role for promoting Polycomb-repression 
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(Aichinger et al. 2009; Aichinger et al. 2011; Jing et al. 2013; Zhang et al. 2014) although 

evidence for association of PKL with Polycomb-repressed loci is not demonstrated yet. 

Moreover, recently it was also revealed that mutation of PKL results in defects in DNA 

methylation at a subset of RdDM loci (Yang et al. 2017). Many studies have characterized the 

involvement of SWI/SNF and CHD3 subgroup ATPases in growth, differentiation and in 

developmental phase transitions (Kwon et al. 2005; Aichinger et al. 2009; Aichinger et al. 2011; 

Wagner & Meyerowitz 2002; Wagner, 2003). Arabidopsis SWR1 directs the exchange of the 

canonical histone variant H2A for H2A.Z at the FLOWERING LOCUS C (FLC) which is 

affecting the stability of the nucleosome and plays a role in repression of flowering (Noh & 

Amasino 2003; Deal et al. 2007; Deal & Henikoff 2010). On the other hand, INO80 catalyses 

the opposite reaction by replacing H2A.Z with the canonical H2A (Mizuguchi et al. 2004; Luk 

et al. 2010). Chromatin remodelers in the ISWI families have been linked to DNA methylation 

in plants. DECREASE IN DNA METHYLATION 1 (DDM1) can shift nucleosomes in vitro 

(Brzeski & Jerzmanowski 2003) and its mutation causes loss of DNA methylation from some 

TEs and repeats (Jeddeloh et al. 1999; Zemach et al. 2013) but not from genes (Lippman et al. 

2004). DDM1 enables DNMTs to access H1-containing heterochromatin for stable silencing of 

TEs (Zemach et al. 2013). These findings link nucleosome positioning with the initiation of 

RdDM. The dual functional role of chromatin remodeling factors in regulating plant 

development and silencing repeats by RdDM suggests that both processes are more closely 

connected.  

One of the unique feature of plants is that they maintain pools of pluripotent stem cells 

that can generate new organs from meristems throughout their lives. For this purpose, 

pluripotency needs to be stably maintained while it also needs to be flexible in response to 

differentiation signals. Chromatin remodelers play important roles in controlling switches of 

transcriptional programs and provide an excellent regulatory platform for the plant lifestyle. 

How chromatin organisation of the nodule meristematic cells is reprogrammed during 

symbiotic cell differentiation in Medicago is entirely unknown. 

1.4. Plant processes under epigenetic control  

1.4.1. Epigenetic changes during development 

One way to actively reprogram the epigenome is to remove methylated cytosines either 

passively or actively. In passive demethylation the methylated cytosines are replaced by 
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unmethylated cytosines during DNA replication, while in active demethylation the 5-mC is 

removed by DNA glycosylases (DME) (Choi et al. 2002; Gong et al. 2002). Several studies 

revealed the dynamic nature of DNA methylation in different aspects of plant development. 

Active demethylation of promoters by DME has been shown to be required for the imprinted 

expression of maternal genes such as MEDEA (MEA), FERTILIZATION INDEPENDENT 

SEED 2 (FIS2) and FLOWERING WAGENINGEN (FWA) during female gametogenesis in 

Arabidopsis (Zhang et al. 2010; Choi et al. 2002; Kinoshita 2004). Recently it was also 

demonstrated that DNA demethylation is important in controlling indeterminate nodule 

organogenesis in M. truncatula (Satgé et al. 2016). MtDME regulates the expression of several 

genes involved in plant and bacterial cell differentiation. MtDME is mostly expressed in the 

nodule differentiation zone. The decrease in DME expression resulted in hypermethylation and 

downregulation of genes associated with nodule differentiation. Moreover, demethylation by 

DME also reactivated transposon expression (Satgé et al. 2016). Besides active demethylation 

by MtDME, passive demethylation is also likely to occur in the nodule differentiation zone 

where methylation could be passively lost by dilution during the consecutive endocycles. 

Several studies demonstrated that DNA methylation differs between plant organs and 

tissues (Widman et al. 2014; Song et al. 2013), but the extent of variation between different cell 

types is resolved only recently in Arabidopsis (Kawakatsu et al. 2016). To analyse DNA 

methylome between six root meristematic cell types fluorescence-activated cell sorting (FACS) 

have been used. The experiment revealed that columella cells are the most highly methylated 

in Arabidopsis. This is similar to our experimental approach where the cell-type specific 

isolation of nodule nuclei by flow cytometry was based on the different DNA content (ploidy 

level) of the cells. Kawakatsu et al. (2016) showed that the absence of the chromatin 

remodelling protein DDM1 and loss of heterochromatin formation allow access of RdDM 

factors to the genome, and the production an excess of 24-nt small RNAs lead to CHH 

hypermethylation of TEs in columella cells. Moreover, they showed that genes harbouring TEs 

exhibited low expression level, suggesting that increase in mCHH within protein-coding genes 

might be due to the hypermethylation of nearby TEs (Kawakatsu et al. 2016). Thus, DNA 

methylation has essential roles in the silencing of TEs and imprinted expression of certain loci, 

but loss of DNA methylation is not sufficient per se to induce gene expression (Bestor et al. 

2015). Presumably, the expression of these loci requires additional factors, some of which may 

be related to cell lineage and differentiation. 

In addition to DNA methylation, histone modifications can also be reversed in plants. 

PRC2 is a key regulator of major phase transitions in plants such as embryo-seedling transition 
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(Bouyer et al. 2011) and vegetative growth to flowering (Berry & Dean 2015). It has been 

demonstrated that PRC2 is essential to the reprogramming and to the switch from embryonic 

to seedling phase in Arabidopsis (Bouyer et al. 2011). Homozygous loss of the 

FERTILIZATION INDEPENDENT ENDOSPERM (FIE) gene - component of the PRC2 

complex - in seeds resulted in enhanced dormancy and germination defects. Moreover, several 

genes controlling seed maturation and dormancy were marked by H3K27me3 and were 

upregulated upon loss of PRC2 (Bouyer et al. 2011). Another example for Polycomb-group 

protein based control is the silencing of FLOWERING LOCUS C (FLC) in Arabidopsis that 

regulates flowering (Bastow et al. 2004). The coordinated switch of activating histone 

modifications from H3K4me3/H3K36me3 to repressive H3K27me3 appeared to be important 

in maintaining the ”ON” or “OFF” expression states of FLC. In winter (in annual accessions of 

Arabidopsis) FLC represses flowering. During vernalisation (prolonged cold treatment) FLC 

expression is gradually repressed epigenetically by H3K27me3, and silencing of FLC persists 

until temperatures becomes warmer, therefore Arabidopsis can flower in response to the 

photoperiod. The “ON” expression state of FLC during winter is characterized by the presence 

of H3K4me3, H3K36me3, histone acetylation, and active transcription by RNA polymerase II. 

The PRC2 complex located at FLC is important for the vernalisation response, which comprises 

FIE which specifically recognize H3K27me3 while CLF and SWN catalyses H3K27me3 

formation (Cao et al. 2002). The RNA-binding ability of Polycomb complexes led to the 

hypothesis that long non-coding RNAs may act as ‘recruiters’ of PRC2 (Tsai et al. 2010). 

Indeed, the long non-coding RNA COOLAIR (Heo & Sung 2011) appears to be required during 

cold exposure to ensure removal of activating chromatin marks and to mediate FLC 

transcriptional down-regulation. This raises the possibility of the existence of an H3K36me3 

demethylase (currently hypothetical), whose targeting to FLC depends on antisense COOLAIR 

transcripts (Berry & Dean 2015). The coordinated loss of H3K4me3/H3K36me3 and gain of 

H3K27me3 regulate FLC expression states through Arabidopsis life cycle. During cold 

exposure, the switch from H3K36me3-rich to H3K27me3-rich chromatin mediates FLC 

repression by the PRC2 complex. FLC expression increases throughout embryogenesis, and 

reaches a maximum when the seed has fully formed (Sheldon et al. 2008; Choi et al. 2009). 

H3K27me3 marks on FLC are removed by an unknown mechanism and in the seeds, FLC 

becomes re-activated. Thus, flowering is inhibited by FLC until the next-generation plants 

encounter cold weather. 
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1.4.2. Epigenetic changes in response to biotic and abiotic stress 

Plants are frequently exposed to abiotic stressors, including water deficit, high-salinity, 

temperature fluctuation and nutrition deficiency, and biotic threats, such as insect herbivores or 

microbial pathogens and therefore have evolved sophisticated adaptation and defense 

mechanisms. Epigenetic modifications may provide a mechanistic basis for a stress memory, 

which results in rapid, reversible, or trans-generational heritable changes in gene expression. 

Research over the last decade revealed that plants have stress memory that supports adaptation 

to reoccurring stress and that transcriptional regulation of abiotic stress-responsive genes and 

defense-related genes often involves DNA methylation, histone modifications and ATP-

dependent chromatin remodeling (Ding & Wang 2015; Dowen et al. 2012; Yu et al. 2013; Le 

et al. 2014; Kim et al. 2015; Bilichak et al. 2012; Sani et al. 2013; Kim et al. 2012; Lämke & 

Bäurle 2017). Most responses to biotic or abiotic stress exposure that involve chromatin features 

are transient and return quickly to baseline levels after normal conditions have been restored. 

Global changes in DNA methylation in response to abiotic stress have been reported in several 

plant species (Bilichak et al. 2012; Choi & Sano 2007; Song et al. 2012; Steward et al. 2002). 

Roots of maize seedlings subjected to cold stress reacted by genome-wide demethylation 

(Steward et al. 2002). Oxidative stress induced active demethylation and transcriptional 

activation of NtGPDL (glycerophosphodiesterase-like protein) in Nicotiana tabacum (Choi & 

Sano 2007) leading to higher stress tolerance, while salinity stress triggered hypomethylation 

and activation of salt stress-responsive TFs in soybean (Song et al. 2012). Furthermore, it was 

shown in A. thaliana that progeny of plants exposed to salt stress exhibited changes in DNA 

methylation pattern, histone modifications and gene expression, indicating that such trans-

generational stress adaptation depends on numerous epigenetic marks (Bilichak et al. 2012). 

Chromatin regulators were identified to be involved in the control of stress-responsive genes. 

For example in response to drought, RNA polymerase II was recruited on the drought-inducible 

genes RD20, RD29A and AtGOLS2 in Arabidopsis and rapidly disappeared after rehydration 

(Kim et al. 2012). Histone modifications like H3K9ac were enriched by drought and rapidly 

removed from RD29A, RD20, and AtGOLS2 by rehydration. In contrast, histone H3K4me3 was 

gradually decreased by dehydration but was maintained at low levels after rehydration, 

suggesting that H3K4me3 functions as an epigenetic mark of stress memory (Kim et al. 2012; 

Ding et al. 2012). These results show that the transcriptional activity and chromatin status are 

rapidly changed from an active to inactive state during the stress recovery process. Moreover, 

the transcriptional responsiveness of drought stress-upregulated genes was found to be 
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dependent on the intensity of the stress (Kim et al. 2008; Kim et al. 2012). Under strong drought 

conditions, the histone modifications H3K4me3 and H3K9ac on drought stress-upregulated 

genes were more highly enriched than under moderate drought conditions and nucleosome 

density on the RD20 and RAP2.4 genes was gradually decreased in response to increase in stress 

(Kim et al., 2012). Hyperosmotic priming (“immunisation”) of Arabidopsis seedlings, exposed 

to mild salt treatment followed by an extensive period of growth in control conditions altered 

the H3K27me3 epigenomic landscape (Sani et al. 2013). In salt-primed plants, the HKT1 gene, 

encoding Na-transporter was more strongly induced than in the non-primed (naïve) plants 

during a second salt treatment, indicating a somatic long-term memory of adult plants (Sani et 

al. 2013). 

Innate immunity pathways such as the salicylic acid (SA), jasmonic acid (JA), and 

ethylene (ET) signaling play pivotal roles in plants in defending against biotrophic and 

necrotrophic pathogens (Glazebrook 2005). Profiling DNA methylomes of plants exposed to 

the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) or to the fungal 

pathogen Fusarium oxysporum revealed numerous stress-induced DMRs, many of which were 

associated with differentially expressed genes (Dowen et al. 2012; Le et al. 2014; Yu et al. 

2013). DNA demethylation has been shown to play important role in plant innate immune 

response by the activation of SA-dependent signaling. In response to SA, TE-associated DMRs 

were accompanied by upregulation of 21-nt siRNAs, and often coupled to transcriptional 

changes of the TEs and/or neighbouring genes (Yu et al. 2013). Thus, the primary function of 

DNA demethylases in plants is to regulate the expression of stress response genes by targeting 

TEs or repetitive sequences (Dowen et al. 2012; Yu et al. 2013; Le et al. 2014). Arabidopsis 

histone deacetylase 19 (HDA19) has been also shown to be involved in the ET/JA signaling 

during pathogen attack. Expression of HDA19 is induced by challenge with the necrotrophic 

pathogen Alternaria brassicicola, and by treatment with the plant hormone ET and JA. HDA19 

overexpression resulted in plant lines with increased resistance against the pathogen (Zhou et 

al. 2005). Under unchallenged conditions, HDA19 forms a repressive chromatin environment 

(low histone acetylation level) that ensures a low basal expression of pathogenesis related (PR) 

genes, which might be critical for preventing overstimulation of defense responses (Choi et al. 

2012) while also establishing a chromatin status for rapid PR gene induction when the plant is 

challenged by a pathogen. In contrast, the removal of the repressive histone H3K27me3 by the 

Jumonji C Domain protein JMJ705 in rice also plays important roles in defense-related gene 

expression (Li et al. 2013). During pathogen infection, JMJ705 is involved in the JA-induced 

removal of H3K27me3 and biotic stress-responsive gene activation (Li et al. 2013). Plant 
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defense can also be affected by chromatin-remodeling factors that control specific pathways 

within biotic stress signaling networks. The SWR-1-like chromatin remodelling complex that 

replaces the histone H2A with the histone variant H2A.Z is required for the maintenance of the 

repressed SA-mediated systemic acquired resistance (SAR) response (March-Díaz et al. 2008) 

which is associated with the hypersensitive response, characterized by apoptotic-like cell death 

(Hammond-Kosack 1996). Furthermore, the Arabidopsis SWI/SNF class chromatin remodeling 

ATPase SPLAYED (SYD) is required for resistance against the necrotrophic pathogen Botrytis 

cinerea but not the biotrophic pathogen Pseudomonas syringae, indicating that chromatin 

remodeling is required for selective pathogen resistance (Walley et al. 2008). 

Thus, during abiotic stress DNA demethylation and enrichment of H3K9ac and removal 

of H3K4me3 positively affect gene activation of stress responsive genes. It has been shown that 

stress response is memorized via histone modification on several stress-upregulated genes 

(Ding et al., 2012). At trainable genes, H3K4me3 and RNA polymerase II persist as memory 

marks. During biotic stress, active histone marks enable a basal expression level of defense-

related genes and their effective induction when the plant is challenged by a pathogen, while 

repressive histone modifications can prevent unnecessary activation of defense genes under 

normal growth conditions. Moreover, histone/chromatin changes that occur in response to 

biotic or abiotic stresses can be transmitted to the next generation. Emerging evidence suggests 

that long non-coding RNAs and chromatin remodeling complexes are shaping the dynamic, 

three dimensional genome topology through chromatin loops to regulate gene expression (Ariel 

et al. 2014; Jegu et al. 2014) but currently it remains an unexplored area during biotic and 

abiotic stress response.  
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2. OBJECTIVES OF THE WORK 

The generation of differentiated symbiotic cells in the legume M. truncatula involves a 

massive reprogramming of the nodule transcriptome with the activation of nodule-specific 

genes in successive spatio-temporal waves (Maunoury et al. 2010). Many of the nodule-induced 

genes are also expressed in other plant tissues, but a large proportion of the nodule 

transcriptome is composed of genes that are exclusively expressed in the nodules and are 

maintained silent in all other plant tissues. Among the activated genes are the NCR family, 

producing hundreds of different NCR peptides that guide terminal differentiation of the 

endosymbionts converting them to large polyploid non-cultivable nitrogen-fixing bacteroids. 

The NCR genes are under tight transcriptional control since they are exclusively expressed in 

the symbiotic nodule cells and their activation requires the intracellular presence of rhizobia 

(Van de Velde et al. 2010; Maunoury et al. 2010; Mergaert et al. 2003). The expression of the 

NCR genes in the symbiotic cells suggests a direct connection between the ENR and the 

expression of the NCR genes. How ENR or the polyploid state of the genome controls gene 

expression is entirely unknown. The strict nodule specificity and the possible linkage between 

gene expression and ploidy levels of symbiotic cells suggested that epigenetic modifications 

along the ENR cycles might play a critical role in transcriptional regulation of NCRs and other 

nodule-specific genes. The recently reported reprogramming of DNA methylation in M. 

truncatula nodule development, regulated by the DNA demethylase gene DEMETER 

(MtDME), is in agreement with this hypothesis (Satgé et al. 2016). Changes in 5-cytosin 

methylation of the DNA and in histone tail modifications, alone or in combination, are 

important determinants of the chromatin structure and gene expression. The sequence context 

(CG, CHG, CHH, where H = A, C, or T) and the location of the DNA methylation in the 

promoter, gene body or 3’ regulatory region can have different effects on gene transcription. In 

general, there is a strong correlation between DNA methylation in the promoter region and 

decrease in gene expression (Zhang et al. 2006; Zilberman et al. 2007; Cokus et al. 2008; Garg 

et al. 2015). Among the histone tail modifications, H3K27me3 (Feng & Jacobsen 2011) also 

results in low expression level and high tissue-specificity (Zhang et al. 2007) whereas H3K9ac 

leads to gene activation (Kurdistani et al. 2004; Schubeler et al. 2004; Roh et al. 2005; Zhou et 

al. 2010). 

A picture is emerging that the epigenome is specific for a given cell type or phase of the 

cell cycle and it is important to determine how the epigenome between distinct cell types 

changes during cellular differentiation to fully evaluate the impact of the different epigenetic 
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modifications in the regulation of gene activity. Thus, the symbiotic nodule cells of M. 

truncatula constitute an excellent model system to study transcriptional reprogramming at 

developmental-stage specific level because of the symbiotic cell differentiation involves ENR 

and a massive reprogramming of their transcriptome. Moreover, the indeterminate M. 

truncatula nodules contain cells at all the stages of symbiotic cell differentiation, from the 

undifferentiated meristematic cells (2C/4C), over the post-mitotic stage when they have stopped 

cell division and have a 4C ploidy and the intermediate differentiation stages with ploidy levels 

of 8C-16C, until the mature nitrogen-fixing cells with ploidy levels of 32C-64C. This property 

of these nodules facilitates sampling of all possible differentiation stages of the symbiotic cells.  

From the high specificity of the symbiotic nodule cell-specific genes and the apparent 

link of their transcriptional activation during ENR in the symbiotic cells, we hypothesise that 

epigenetic mechanisms involving specific histone modifications and/or DNA methylations may 

be implicated in the determination of the gene expression program in the symbiotic cells. 

Repressive chromatin structures could keep the genes silent during all stages of plant 

development. Reversal of these marks in the differentiating symbiotic cells would be required 

to make them competent for transcription by specific TFs. The combination of repressive 

chromatin marks, their reversion and the TFs could account for the extremely robust symbiotic 

nodule cell specific expression. Moreover, we propose that ENR of the symbiotic nodule cells 

serves as a mechanism in controlling gene expression. ENR could actively lead to the activation 

of “erasers” of the repressive chromatin marks. Alternatively, repressive marks, which are 

normally faithfully transmitted during the cell cycle, could be passively lost by dilution during 

the consecutive endocycles. These hypotheses form the basis for my thesis work. 

In the first part of the thesis, the transcriptome database provided by the Medicago 

truncatula Gene Expression Atlas (MtGEA) was used to characterize in detail the 

expression behaviour of a Nodule-Specific Cysteine-Rich (NCR) gene family.  

1.  The MtGEA transcriptome database (Benedito et al. 2008; He et al. 2009) is generated 

with the whole genome Affymetrix Medicago Gene Chip and compiles microarray data for the 

majority of M. truncatula genes (50,900 probe sets) over a large set of experiments (267 

different experiments) including different plant organs, biotic-, abiotic stress conditions and 

different tissue types. The MtGEA database is currently the richest resource for analysing 

expression pattern and specificity of the M. truncatula NCR genes in various conditions.  
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2.  Nodules of M. truncatula are indeterminate type therefore, mature nodules are organized 

in well-defined histological zones. This nodule structure suggests that the temporal NCR 

expression profiles could correlate with a spatial expression pattern in the nodule tissues. To 

test this possibility, we analyzed transcriptome data from 4-weeks-old nodules that were hand-

sectioned in five different parts (ZI, ZIId, ZIIp, IZ and ZIII). 

3. In order to confirm the expression data from MtGEA, stable transgenic M. truncatula 

R108 lines were generated carrying promoter-β-glucuronidase reporter (GUS) fusion constructs 

for three different NCR genes, representing different temporal classes of NCRs, as well as a 

specific antibody for one NCR peptide.  

4. The MtGEA compendium contains datasets from different pathogenic interactions but 

these are exclusively root pathogens. To confirm NCR expression pattern specificity in various 

conditions, most particularly during leaf or stem pathogen infection encompassing also other 

trophic interactions (bio/hemibio/necrotrophic), stable transgenic M. truncatula R108 lines 

carrying NCR promoter-GUS reporter fusion constructs were used. 

In the second part of the thesis, the involvement of epigenetic regulation in the 

transcriptional reprogramming during symbiotic cell differentiation was investigated at 

the resolution of the differentiation stage of the symbiotic cells by purifying nodule nuclei 

of defined ploidy level with a flow cytometer coupled to a cell sorter.  

5. In situ expression of various NCR and nodule-specific genes suggested that their 

expression could be coupled to specific ploidy levels of the nodule cells. To confirm a possible 

linkage between the expression of nodule-specific genes in successive transcriptional waves 

and the ploidy levels of differentiating symbiotic cells, the expression level of selected, 

differentially expressed genes was measured in flow-cytometry isolated 4C, 8C, 16C and 32C 

nuclei, by reverse transcription quantitative PCR (RT-qPCR).  

6. As the majority of nodule-specific genes are expressed in the mature symbiotic cells 

(32C) and repressed in the uninfected (4C) cells, we analysed differences in DNA methylation 

(5-mC) genome-wide in isolated 4C and 32C nuclei using Reduced Representation Bisulphite 

Sequencing (RRBS). Patterns of DNA methylation were matched to published in situ RNA-seq 

data of the nodule zones obtained by LCM (Roux et al. 2014). Moreover, differential 

methylation of nodule-specific- and nodule expressed genes in 4C, 8C, 16C and 32C nuclei 

were analysed using Methylated DNA Immunoprecipitation (MeDIP).  
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7. To learn how chromatin compaction and accessibility changes during the course of 

nodule differentiation and how this influences gene expression, we studied genome-wide the 

chromatin accessibility in 4C, 8C, 16C and 32C nuclei using Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-Seq). Patterns of chromatin accessibility changes were 

matched to published in situ RNA-seq data (Roux et al. 2014). 

8. To analyse the correlation between chromatin modifications and gene expression, we 

investigated how the antagonistic chromatin marks H3K27me3 and H3K9ac correlate with 

activation and repression of selected, differentially expressed genes in 4C, 8C, 16C and 32C 

nuclei using Chromatin Immunoprecipitation (ChIP).  

The presented results of my thesis work were published in two papers. The data mining 

study on the NCR expression and the experimental validations was published in BMC 

Genomics: Ibtissem Guefrachi, Marianna Nagymihály, Catalina I Pislariu, Willem Van de 

Velde, Pascal Ratet, Mohamed Mars, Michael K Udvardi, Eva Kondorosi, Peter Mergaert and 

Benoit Alunni. Extreme specificity of NCR gene expression in Medicago truncatula BMC 

Genomics 2014, 15:712. I am co-first author on this paper. The epigenetics study was published 

in the Proceedings of the National Academy of Sciences: Marianna Nagymihály, Alaguraj 

Veluchamy, Zoltán Györgypál, Federico Ariel, Teddy Jégu, Moussa Benhamed, Attila Szűcs, 

Attila Kereszt, Peter Mergaert, and Éva Kondorosi. Ploidy-dependent changes in the 

epigenome of symbiotic cells correlate with specific patterns of gene expression. Proc. 

Natl. Acad. Sci. USA 2017, 114:4543-4548.  

In addition, I contributed during my thesis period to a study of the symbiotic efficiency 

of a collection of Sinorhizobium strains on different M. truncatula accessions and Medicago 

sativa cultivars. This study was motivated in the first place to identify a bacterial strain that has 

a high performance on M. truncatula because the widely used model strain Sm1021 is a 

notoriously bad symbiont of M. truncatula. In this work, we showed that the endoreduplication 

level of the symbiotic nodule cells is a good parameter that correlates with the efficiency of the 

symbiosis. This work was recently published in Molecular Plant-Microbe Interactions and I am 

co-first author of this paper (Kazmierczak, Nagymihály et al., 2017). Also in this study, we 

identified a new strain, Sinorhizobium meliloti FSM-MA, which is uniquely highly performant 

on all tested Medicago hosts. This strain might be useful for the scientific community working 

on M. truncatula. Therefore, we have determined the genome sequence of this strain and this 

work has been submitted recently for publication in Standards in Genomic Sciences. I am first 

author of that paper.  
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3. MATERIALS AND METHODS 

3.1. NCR expression analysis and entropy calculation  

3.1.1. Analysis of the Medicago truncatula Gene Expression Atlas (MtGEA) 

data  

The MtGEA transcriptome compendium was downloaded from the website of the 

Samuel Roberts Noble foundation (http://mtgea.noble.org/v3/). Data were also obtained from 

the NCBI Gene Expression Omnibus (accession n° GSE53406 and GSE43354, respectively) 

(Jayaraman et al. 2014; Limpens et al. 2013). All the data were imported in Excel (Appendix, 

Supplementary information 1; https://static-

content.springer.com/esm/art%3A10.1186%2F1471-2164-15-

712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx) for extracting the expression 

profiles of the 334 NCRs for further analysis. The NCR probe-sets on the Affymetrix Medicago 

GeneChip were obtained by BLASTn searches on the MtGEA website (Appendix, 

Supplementary information 1). Each individual NCR nucleotide sequence resulted in the 

identification of multiple probe-sets due to the homology between NCR gene sequences. In total 

334 different probe-sets were retrieved. This collection represents nearly all NCR probe-sets 

present on the Affymetrix Medicago GeneChip and the remaining genes identified in Young et 

al. (2011) and Zhou et al. (2013) are missing from these arrays because they were not yet 

annotated at the time of array design.  

Cluster analysis of the complete MtGEA dataset was performed using the MeV software 

package. Briefly, the Excel datasheet extracted from MtGEA was analysed using the Euclidean 

distance application with average linkage settings. Heat maps were generated with MeV and 

histograms and graphs with Excel. 

3.1.2. Transcriptome analysis of hand-dissected nodule zones 

Using the leghemoglobin color gradient along the nodule as guideline, five regions (A 

to E) corresponding to meristem-, invasion zone-, interzone-, nitrogen fixation- and senescence 

zone-enriched tissue were hand-dissected from 28 dpi nodules, as previously described (Zhou 

et al. 2011). It should be noted that each hand-dissected sample are enriched for the indicated 

zone but can contain cell layers from the adjacent zones as well.  

http://mtgea.noble.org/v3/
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx
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Total RNA extraction and purification were conducted as described (Benedito et al. 

2008). For hybridization onto the Affymetrix Medicago Genechip Array probes were 

synthesized and labelled from 500 ng RNA using the Gene Chip 3’ IVT express kit following 

manufacturer’s guidelines (Affymetrix). Global normalization of expression was carried out 

using the Robust Multiarray Average Express software (Irizarry et al. 2003). 

3.1.3. Laser-capture microdissection coupled to RNA-Seq (LCM RNA-seq) 

The expression profiles for the NCR gene-set described in this study were extracted from 

the data obtained by LCM RNA-Seq from the website https://iant.toulouse.inra.fr/symbimics 

(Roux et al. 2014).  

3.1.4. Shannon entropy calculations 

Calculations were performed on the MtGEA dataset in Excel. For the normalization of 

expression levels in N tissues, the relative expression Pt/g of a gene g in a tissue t was calculated 

as Pt/g=Wt/g/∑1≤t≤NWt/g where Wt/g is the expression level of the gene g in the tissue t. The 

Shannon entropy Eg of gene g is calculated as Eg=∑1≤t≤N-Pt/glog2(Pt/g). Eg ranges from zero for 

genes expressed in a single tissue to log2(N) for genes expressed uniformly in all tissues 

considered. Heat maps of entropy values were generated by the MeV software package. 

3.2. Transgenic plants and β-glucuronidase reporter (GUS) analysis 

3.2.1. Promoter-GUS constructs  

The promoters of NCR001, NCR084 and NCR121 (respectively 2.5 kb, 1.5 kb and 1 kb 

fragments upstream of the ATG) were obtained by an Amplified Fragment-Length 

Polymorphism (AFLP) based PCR protocol as described (Ratet et al. 2010) and recombined in 

the Gateway vector pDONRP4-P1R according to the manufacturer’s instructions (Invitrogen). 

Primers used for the amplification and cloning of the promoters are listed in Appendix, Table 

1. Entry clones for the GUS ORF and the 35S terminator were obtained in the Gateway vectors 

pDONR221 and pDONRP2R-P3, respectively (Van de Velde et al. 2010). Entry clones were 

recombined in the binary vector pKm43GW (Karimi et al. 2005).  

https://iant.toulouse.inra.fr/symbimics
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3.2.2. Stable transgenic GUS plant lines  

Leaf explants from the M. truncatula line R108 were transformed using Agrobacterium 

tumefaciens according to the method described in Cosson et al. (2006). For GUS analysis, three 

independent T2 transgenic lines were each time analysed to exclude positional effects of the 

transgene insertion. No pattern variations were observed between independent lines. 

Untransformed plants and the constitutive GUS line pG3.3 (35S promoter fused to GUS) 

(Mondy et al. 2014) were used as negative and positive controls, respectively. For nodulation 

kinetics, R108 plants were cultivated on BNM agar plates and inoculated with OD600=0.1 

suspensions of S. meliloti strain FSM-MA (Nagymihaly et al. 2017, submitted) which is an 

excellent symbiont of M. truncatula R108 forming numerous large, nitrogen fixing nodules 

(Kazmierczak et al. 2017).  

3.2.3. GUS staining 

Samples were collected at indicated time points and embedded in 6% agarose. Tissue 

sections of 70 µm were prepared with a Leica VT1200S vibratome. GUS staining was done as 

described (Vanstraelen et al. 2009) and was allowed to proceed for 1h. Overnight staining did 

not alter the expression patterns. 

3.2.4. Pathogen assays 

For all pathogen assays, plants were cultivated on perlite/sand (3/1 vol/vol) substrate 

and watered with a commercial nutrient solution. Six weeks old plants were transferred to a 

growth chamber with saturating humidity the day before the inoculations and stayed in these 

conditions all along the assay. Dickeya dadantii 3937, Pseudomonas syringae pv. tomato 

DC3000 and its hrcC derivative strain were cultivated at 30°C in LB medium. Inocula of 

OD600=0.1 were resuspended in 10 mM MgCl2 and were syringe infiltrated in the terminal 

leaflet of 5-8 leaves per plant. Sterile 10 mM MgCl2 solution was infiltrated as mock control. 

Botrytis cinerea strain B05.10 was cultivated on PDA medium (Amselem et al. 2011) at 20°C. 

Spores were collected in ½ potato dextrose broth with 0.01% Tween 20 and inocula were 

normalized to 106 spores/mL using a Malassez cell. Five microliter drops of mock/inoculum 

were put on 5 to 8 terminal leaflets per plant. Symptoms were scored at 1, 2 or 7 dpi and leaflets 

were collected for GUS staining. For wounding experiments, the terminal leaflet of 5-8 leaves 

per plant were pinched with forceps and collected 24 hours post wounding. Staining for all 
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infections or treatments was allowed for 24 hours in the GUS staining solution at 37°C. The 

leaflets were transferred to bleach to remove chlorophyll before photographing. 

3.3. Antibodies and immunolocalization 

Part of the NCR122 gene coding for the mature peptide was amplified from cDNA and 

cloned into the expression vector pBADgIII/A (Invitrogen). Recombinant proteins were 

purified according to the manufacturer’s instructions and used for immunization of rabbits by 

a commercial service (Agro-bio). Immunolocalizations were done exactly as described before 

(Van de Velde et al. 2010). For the SYTO13 nucleic acid staining, nodules sections were 

incubated for 5 minutes with 1 μM SYTO13 in water. Immuno- or SYTO13-stained sections 

were mounted in deionised water for confocal imaging. Fluorescence images were acquired at 

1024x1024 pixels resolution with the confocal laser scanning microscope TCS SP2 from Leica, 

using 10X water-immersion and 63X oil-immersion objectives and Leica software. Images 

were processed with Adobe Photoshop for adjustment of contrast and brightness. 

3.4. Preparation of plant material for flow cytometry 

3.4.1. Seed sterilisation and germination 

M. truncatula wild-type A17 seed were scarified with sulphuric acid (95-98%) covering 

all seeds, for 8 min. After removing the sulphuric acid with a glass pipette, seeds were washed 

five times with large volumes of ice cold (to avoid heat stress and burning of the seeds) sterile 

water. Then seeds were immersed in 0,1% HgCl2 solution for 30 min. Seeds were washed 

extensively with sterile water at least five times and seeds were germinated on 0,7% water-agar 

(agar with tap water, sterilized) plates up-side-down (agar layer on top) wrapped in aluminium 

foil and incubated at 4°C for two days and one day at room temperature until rootlets were 1 

cm (Boisson-Dernier et al. 2001). 

3.4.2. Plant inoculation with Rhizobium and nodulation 

Sinorhizobium medicae WSM419 strain was grown in YEB medium (0.5% beef extract; 

0.1% yeast extract; 0.5% Peptone; 0.5% sucrose; 0.04% MgSO4.7H2O; pH 7.5) supplemented 

with chloramphenicol (25 μg/mL) at 30°C. Cultures were centrifuged and the bacterial pellets 

re-suspended in water at OD600=0.05 were used for plant inoculation. Seedlings were 

transferred to Perlite/Sand (3:1 v/v) for a week (24°C, photoperiod 16h Light – 8h Dark, 
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humidity 60%) and inoculated with 50 mL bacterial culture per pot, each pot containing 5 

plantlets. Plants were watered with a commercial N-free fertilizer (PlantProd solution (N-P-K: 

0-15-40) at 1 g/L; Fertil, Ref. 211.00). Nodules were harvested at 28 dpi in dry ice and kept at 

-80°C for subsequent nuclei sorting. For ChIP expreriment nodules were collected on ice in 1% 

formaldehyde and crosslinking was performed under vacuum for 15 min. Formaldehide was 

quenched with 125 mM glycine (5 min under vacuum) and nodules were washed twice with 

water, dried and stored at -80°C until further use. 

3.4.3. Flow cytometry sorting of different ploidy level nodule nuclei 

Nodules were chopped with a razor blade in buffer (45 mM MgCl2, 30 mM trisodium 

citrate, 20 mM 3-(N-morpholino) propanesulfonic acid (MOPS), 0.1% triton X-100, pH 7.2-

7.4., stored at 4°C) to break cells and release nuclei. For nuclear RNA isolation the sorting 

buffer was supplemented with 1 unit (U) ribonuclease inhibitor (RNasin, Promega) and for 

chromatin isolation with protease inhibitor cocktail (10 µL/mL) (P9599, Sigma). Suspensions 

were then filtered through 30 µm Celltrics filters (Partec, Germany). Nuclei were stained by 

4’,6-diamidino-2-phenylindole (DAPI) (5 µg/mL) and analysed using a Beckman MoFlow 

Astrios (Beckman Coulter, USA) flow cytometer with a 488-nm laser for scattering and 355-

nm for DAPI excitation. Nuclei were gated in a DNA/side scatter plot (DAPI vs SSC) according 

to their DNA content and granularity and sorted from 2C up to 64C in 6 channels. Different 

ploidy level nuclei were collected at 4°C in 1,5 mL sterile Eppendorf tubes and transferred to -

80°C until further RNA, DNA or chromatin isolation. 1 g nodules (5 mL) yielded 1,8x105 in 

2C, 7x105 nuclei in 4C, 1,7x105 in 8C, 4x104 in 16C 1,3x105 in 32C and 1x104 in 64C. Yields 

of 2C and 64C nuclei were too low for further experimentation. 

3.5. Nuclear RNA isolation, reverse transcription and quantitative PCR 

analysis  

3.5.1. Nuclear RNA extraction  

Nuclear RNA was extracted from 4C, 8C, 16C, 32C ploidy level nuclei (7x105-5x104 

nuclei per sample in sorting buffer) with Tri-Reagent (Sigma). 750 µL Tri-Reagent was added 

to 250 µL nuclei, homogenised, incubated 5 min at room temperature. Afterwards 200 µL 

chloroform was added, mixed, incubated 2 min at room temperature and centrifuged at 12.000 

g for 15 min at 4°C. The aqueous phase with the RNA was removed and transferred to a new 
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tube. RNA precipitation was carried out by adding 20 µg glycogen as carrier (ThermoFisher) 

and 500 µL 100% isopropanol. Samples were incubated 10 min at room temperature and 

centrifuged at 12.000 g 10 min at 4°C. The supernatant was removed, the RNA pellet was 

washed with 1 mL 75% ethanol and centrifuged at 7500 g for 5 min at 4°C. After removing the 

supernatant, the RNA pellet was air dried and dissolved in 50 µL sterile water. 

3.5.2. DNase treatment 

DNase treatment was carried out by TURBO DNase (ThermoFisher) to remove 

contaminating genomic DNA from the RNA sample prior to cDNA transcription. Reaction 

mixtures were composed as follows: 10x DNase Buffer 6 µL; RNase inhibitor (2U) 1 µL; 

TURBO DNase (2U) 1 µL; Nuclear RNA 50 µL; Nuclease-free water 2 µL in a total volume 

of 60 µL. Samples were incubated 30 min at 37°C.  

To remove the DNAse from the RNA sample, 290 µL sterile water and 350 µL 

phenol/chloroform/isoamyl alcohol (25:24:1 v/v) were added, samples were vortexed and 

centrifuged at 16.000 g for 15 min at 4°C. The aqueous phase (350 µL) was removed and mixed 

with 35 µL NaOAc 3 M (1:10 v/v), 20 µg glycogen and 875 µL (1:2.5 v/v) ice cold ethanol 

(ThermoFisher), kept 2h at -20°C and centrifuged at 16.000 g for 30 min at 4°C. After removal 

of the supernatant, the RNA pellet was washed with 500 µL 70% ice cold ethanol, centrifuged 

at 16.000 g for 5 min. The RNA pellet was air dried at room temperature and resuspended in 

20 µL nuclease-free water. 

3.5.3. Reverse transcription 

cDNA was synthesized using 500 ng nuclear RNA (measured by NanoDrop2000 

Spectrophotometer, ThermoFisher) using SuperScript® VILO Master Mix (ThermoFisher). 

The reaction mixture was composed as follows: Nuclear RNA 20 µL; Nuclease-free water 18 

µL; SuperScript Vilo Master Mix 2 µL in a total volume of 40 µL. The samples were incubated 

at 25°C for 10 min, At 42°C for 120 min and at 85°C for 5 min. The cDNA was diluted two 

times and used for quantitative PCR.  

3.5.4. Quantitative PCR (qPCR) 

The synthesized cDNA was analysed by qPCR using PowerUp SYBR Green Master 

Mix (ThermoFisher). Relative quantification (Pfaffl 2001) was used to measure the expression 

level of a target gene compared to the constitutively expressed reference genes Mtc27 
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(Györgyey et al. 1991) and 40S RNA (Van de Velde et al. 2006). The amplification efficiency 

of the primers was between 1.9-2.0. All primer sequences are provided in Appendix, Table 2.  

qPCR mixes were composed as follows: PowerUP Sybr Green Master Mix (2x) 3,5 µL; 

Forward primer (10 µM) 0,5 µL; Reverse primer (10 µM) 0,5 µL; Nuclease-free water 1,5 µL; 

cDNA 1 µL in 7 µL total volume. 

The StepOne Plus System (ThermoFisher) was used for the real-time PCR experiment. 

Two technical replicates of each reaction and a no template control (NTC) reaction were set up. 

The NTC reaction containing all reaction components (PowerUP SYBR Green Master Mix, 

primers, water) except the cDNA sample was used to identify eventual PCR contamination. 

Standard cycling conditions were used as follows: UDG activation* 50°C 2 min hold; 

Polymerase activation 95°C 2 min hold and 40 cycles; Denaturation 95°C 15 sec; Annealing 

/extension 60°C 1 min. To check for nonspecific amplification dissociation/melting curves were 

also included with conditions as follows: Step 1 95°C 15 sec 1,6°C/s ramp increment rate; Step 

2 60°C 1 min 1,6°C/s ramp increment rate; Step 3/dissociation 95°C 15 sec 0,3°C/s ramp 

increment rate; Step 4/UDG inactivation 95°C 10 min. 

*The reaction mixture contains uracil-DNA glycolase (UDG) which prevents carry-over contamination 

of PCRs if the contaminants contain uracils in place of thymines. 

For relative quantitation, the ΔCt model was used (Perkin Elmer, Applied Biosystems):  

Relative expression = 2-[ΔCt (target) – ΔCt (reference)] 

Ct is threshold cycle/crossing point obtained from the exponential phase of the qPCR, target is 

the gene of interest and reference is the constitutively expressed control gene. 

3.5.5. Statistical analysis 

To determine significant expression differences of the target genes between each ploidy 

levels, one-way ANOVA with Student-Newman-Keuls post hoc (multiple comparisons) test of 

three independent biological replicates with two technical replications were performed 

(GraphPad Prism 6). 
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3.6. Genomic DNA extraction and Methylated DNA Immunoprecipitation 

(MeDIP)  

3.6.1. Genomic DNA extraction from sorted nuclei 

Genomic DNA was extracted from 4C, 8C, 16C, 32C nuclei (1,8x106-1,4x105 nuclei per 

sample, 3x105 nuclei per mL) using the DNeasy® Blood and Tissue kit (Qiagen): 1 volume 

nuclei in sorting buffer and 1 volume lysis buffer (Buffer AL) containing Proteinase K (20 

mg/mL) was incubated at 56°C for 10 min. After incubation, 1 volume ethanol was added to 

the lysed nuclei, samples were mixed by vortexing, transferred to the spin-column (1 column/4 

mL nuclei with Buffer AL) and centrifuged at 8000 g for 1 min. The flow through was discarded 

and the spin column washed with 500 µL AW1 Buffer, centrifuged at 8000 g for 1 min, washed 

again with 500 µL AW2 Buffer, centrifuged at 20.000 g for 3 min. DNA was eluted in a clean 

Eppendorf tube with 50 µL elution buffer (AE) for 2 min and centrifuged at 20.000 g for 1 min. 

This step was repeated and the two eluates were combined to obtain a final elution volume of 

100 µL. The DNA concentration was measured with a Qubit 2.0 Fluorometer (ThermoFisher) 

and the DNA was stored at -20°C in elution buffer for further use.  

3.6.2. Shearing the genomic DNA 

Three hundred ng DNA in 100 µL final volume were sheared to ~300 bp by sonication 

using a Covaris S2 ultrasonicator (Covaris, Inc.) as follows: duty cycle 10%, intensity 4, burst 

200 for 40 sec and 2 cycles at 4°C. 

3.6.3. MeDIP 

The methylated DNA was immunoprecipitated (IP) using the Methyl-CpG-binding 

domain protein 2 (MBD2) (NEBNext Microbiome DNA Enrichment Kit, New England 

Biolabs). 80 µL MBD2-Fc protein with Protein A magnetic beads were used per 300 ng sheared 

DNA sample. To prepare the bead-protein mixture, 8 µL MBD2-Fc and 80 µL of Protein A 

Magnetic beads were placed on a rotating mixer for 10 min at room temperature, beads were 

washed on a magnetic rack with 1 mL cold 1x Bind/Wash Buffer and incubated on a rotating 

mixer for 3 min at room temperature. The washing step was repeated. Finally, the MBD2-Fc-

Protein A bead mixture was resuspended in 80 µL 1x Bind/Wash Buffer. To capture the 

methylated DNA 80 µL sheared DNA were mixed with 20 µL 5x Bind/Wash Buffer and 
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incubated on a rotating mixer for 15 min at room temperature with the 80 µL MBD2-Fc-Protein 

A magnetic beads. Moreover, 1 µL methylated DNA (met+) and unmethylated DNA (met-) 

from the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) were also included in the 

IP reaction as internal controls. An aliquot of 8 µL (10% of input) untreated sonicated DNA 

was processed in parallel and used as the total input DNA control. The bead-DNA mixture was 

washed with 1 mL cold 1x Bind/Wash Buffer and the captured methylated DNA was eluted 

using 150 µL 1xTE and 40 µg Proteinase K (ThermoFisher), vortexed and incubated at 65°C 

for 20 min, placed on a magnetic rack and the DNA was transferred into a new Eppendorf tube.  

3.6.4. Methylated DNA clean-up 

Purification of the enriched DNA was performed using Agencourt AMPure XP 

(Beckman Coulter). The IP DNA was cleaned-up and concentrated using Agencourt AMPure 

XP magnetic beads. 160 µL IP DNA (obtained as in Section 3.6.3) was mixed with 289 µL 

AMPure XP beads (1/1.8 v/v) and incubated for 5 min at room temperature on a rotating mixer. 

The 8 µL unenriched control was diluted with 92 µL nuclease-free water and mixed with 180 

µL AMPure beads and purified parallel to the IP sample. After incubation, the beads were 

transferred to a magnetic rack and washed twice with 400 µL of freshly prepared 80% ethanol. 

The ethanol was removed and the magnetic beads with the purified DNA were air dried at room 

temperature. DNA was eluted from the beads with 50 µL 1x TE at room temperature for 5 min 

and transferred to a new Eppendorf tube. The IP DNA was stored on -20°C and diluted 10 times 

before qPCR quantitation. 

3.7. Chromatin isolation and chromatin immunoprecipitation (ChIP) 

3.7.1. Isolation and shearing of the chromatin 

Cross-linked chromatin was isolated from sorted 4C, 8C, 16C, 32C nuclei (3x106-4x105 

nuclei per sample) that were prepared from formaldehyde-fixed nodules (see Section 3.4.2). 

Prior to IP, sorted nuclei were centrifuged at 13.000 g 30 min and washed with 500 µL ice cold 

phosphate buffered saline (PBS; 8 g/L NaCl; 0,2 g/L KCl; 1,44 g/L Na2HPO4; 0,24 g/L 

KH2PO4; pH 7,4; autoclaved), centrifuged at 13.000 g 15 min and resuspended in 110 µL 

freshly prepared Nuclei Lysis Buffer (50 mM Tris-HCl, pH 8; 1% SDS; 10 mM EDTA; 100 

µL Protease inhibitor cocktail (10 µL/mL) for plant cell extracts (P9599, Sigma)). Samples 
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were sonicated to obtain DNA fragments of 300-500 bp using a Covaris S2 ultrasonicator as 

follows: duty cycle 5%, intensity 4, burst 200 for 60 sec, rest 30 sec for 9 cycles at 4°C. 

3.7.2. ChIP 

The 80 µL sonicated chromatin was diluted with 1300 µL ChIP Dilution Buffer (1,1% 

triton X-100; 1,2 mM EDTA; 16,7 mM Tris-HCl, pH 8; 167 mM NaCl) and 

immunoprecipitated with 5 µg anti-H3K27me3 or anti-H3K9ac antibodies (Milipore) overnight 

at 4°C with gentle shaking. Next, samples were incubated for 1 hr at 4°C with 40 μL of Protein 

AG UltraLink Resin (ThermoFisher). Protein AG Magnetic beads were washed in 1 mL of the 

consecutive wash buffers on a rotating device for 5 min at room temperature followed by 

separation from buffer on a magnetic rack. with 1 mL cold Wash Buffer 1. Beads were washed 

twice with 1 mL Wash Buffer 1 (150 mM NaCl; 0,1% SDS; 1% triton X-100; 2 mM EDTA; 

20 mM Tris-HCl; pH 8; stored at 4°C), twice with 1 mL Wash Buffer 2 (500 mM NaCl; 0,1% 

SDS; 1% triton X-100; 2 mM EDTA; 20 mM Tris-HCl; pH 8; stored at 4°C), once with 1 mL 

Wash Buffer 3 (0,25 M LiCl; 1% sodium-deoxycholate; 1% triton X-100; 1 mM EDTA; 10 

mM Tris-HCl; pH 8; stored at 4°C), once 1 mL Wash Buffer 4 (10 mM Tris-HCl; pH 8; 1 mM 

EDTA) and the IP chromatin was finally eluted twice with freshly prepared 250 µL Elution 

Buffer (1%SDS; 0,1 M NaHCO3) at room temperature for 15 min. 500 µL IP chromatin was 

reverse cross-linked with 200 mM NaCl at 65°C overnight and 1 h at 45°C with 8 mM Tris-

HCl (pH 6.5), 10 mM EDTA and 20 mg Proteinase K (ThermoFisher). IP DNA was recovered 

using Agencourt AMPure XP beads (Beckman Coulter) (see Section 3.6.4) and analysed by 

qPCR. IgG antibody (Millipore) was used as a control to measure the background IP signal. An 

aliquot of 8 µL (10% of input) untreated sonicated chromatin was processed in parallel and 

used as the total input DNA control.  

3.8. Quantitative real-time PCR analysis of MeDIP and ChIP DNA 

3.8.1. qPCR 

Input and IP DNA from the MeDIP and ChIP assays on the different ploidy nuclei were 

analysed by quantitative real-time PCR (qPCR). Quantitative PCR was performed using 

PowerUp SYBR Green Master Mix and a StepOne Plus Real-Time PCR System (Applied 

Biosystems) according to previously described protocol in section 3.5.4. Primers were designed 

to amplify 150-200 bp DNA fragments covering 1-kb upstream region (from ATG) of the gene 
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of interest, the gene body and the 0.4-0.6 kb upstream region. Primers are listed in Appendix, 

Table 3.  

3.8.2. Data analysis 

The DNA recovery rate of MeDIP and ChIP experiment of the particular genomic region 

was calculated from Ct values of qPCR data and reported as a percentage of starting input DNA 

taking into account the dilution of the input (1:10 v/v).  

% (DNA-IP/ Total input) = 2[(Ct (10%input) – 3.32) - Ct (DNA-IP)] x 100% 

Here 2 is the amplification efficiency; Ct (DNA-IP) and Ct (10% input) are threshold values 

obtained from the exponential phase of qPCR for the MeDIP or ChIP DNA sample and input 

sample respectively; the compensatory factor (3.32) is used to take into account the dilution of 

the input (1:10 v/v). The recovery is the % (DNA-IP/Total input). 

3.8.3. Statistical analysis 

To determine significance  of differences in methylation level and chromatin 

modification of the target genes between each ploidy levels, two-way ANOVA with Tukey’s 

multiple comparisons test of two independent biological replicates with two technical replicates 

were performed with P-value of <0.01 and <0.05 in case of the MeDIP and ChIP experiments, 

respectively (GraphPad Prism 6). 

3.9. Reduced representation bisulphite sequencing (RRBS) 

To analyse 5-mC methylation of the DNA at single base resolution, the gold-standard 

method is bisulphite sequencing (BS-seq) (Frommer et al. 1992). Due to high costs of whole-

genome BS-seq, Meissner et al. 2005 described a method called reduced representation 

bisulphite sequencing (RRBS) to reduce the amount of nucleotides needed to be sequenced. 

This technique combines enrichment for the areas of the genome that have high CpG content 

and bisulphite sequencing. The DNA fragments that comprise the reduced genome still include 

the majority of the regulatory elements, gene bodies, and repeated DNA sequences. Bisulfite 

treatment of purified DNA leaves methylated cytosines (mCs) unconverted while mediates the 

deamination of non-methylated cytosine (C) into uracil (U) which in subsequent PCR 

amplification is converted into thymine (T) (Fig. 9).  
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Figure 9. DNA fragments converted during bisulphite treatment. Nucleotides in blue are unmethylated 

cytosines (C) converted to uracils (U) by bisulfite, while red nucleotides are 5-methylcytosines (5-

mCs) resistant to conversion.  

Bisulfite reads are transformed into C-to-T on the forward- and to G-to-A on the reverse strand. 

Furthermore, in plants, the surrounding sequences are also taken into consideration to 

discriminate between Cs in CpG, CHG and CHH context. 

3.9.1. Methyl-MidiSeq library construction 

Sequencing library construction was performed by Zymo Research using 4C and 32C 

genomic DNA isolated as described previously in section 3.6.1. Three hundred ng of genomic 

DNA was digested with 40U of BfaI, 40U of MseI, and 80U of MspI and the fragments produced 

were ligated to pre-annealed adapters containing 5’-methyl-cytosine (5mC) instead of cytosine 

(C). Adapter-ligated fragments were filled in and 3’-terminal-A extended, then purified using 

the DNA Clean & Concentrator kit (Zymo Research). Bisulfite treatment of the fragments was 

done using the EZ DNA Methylation Lightning kit (Zymo Research). PCR was performed and 

the size and concentration of the fragments were confirmed on the Agilent 2200 TapeStation, 

then sequenced on the Illumina Hiseq genome analyser. 

3.9.2. Methyl-MidiSeq sequence alignments and methylated cytosine (mC) 

calling 

The bisulfite-treated 4C and 32C DNA libraries were sequenced on Illumina HiSeq 

2000 as paired-end (PE) 50 bp reads (45-50 million reads with median Phred score of > 30). 

Bismark software package was used to map and determine the methylation state of the cytosines 

(Cs) in each read (Krueger & Andrews 2011). Sequence reads were first transformed into fully 

bisulfite-converted forward (C –to- T) and reverse reads (G –to- A) before aligning them by 

Bowtie2 (Langmead & Salzberg 2012) to similarly converted versions of the JCVI Medicago 

Mt4.0v1 indexed reference genome. The number of mismatches in the induced alignment was 

then counted between the unconverted read and reference, ignoring cases in which a T in the 
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unconverted read is matched to a C in the unconverted reference. For a given read, the best 

alignment was kept. If there was more than one best alignment, the read was discarded as non-

unique. To generate the reference methylome, Fisher’s exact test was performed for each C site, 

which has a minimum coverage of five times. Mapping with seed length of 28 bp and mismatch 

of 1 bp resulted in bisulfite conversion rate of 83% each.  

3.9.3. Detection of differentially methylated regions (DmRs) 

A hidden Markov model (HMM) based approach was used for de novo detection of 

differentially methylated regions (DmRs) between 4C and 32C samples (Saito et al. 2014). 

HMM-based detection of DmRs integrates identification of differentially methylated Cs 

(DmCs) between 4C and 32C and grouping them at neighbouring positions into contiguous 

DmRs with a framework called “comparative methylomics” (ComMet). ComMet uses 

automated adjustment of DmC chaining criteria and in addition, ComMet does not require 

biological replicates for DmR detection. The framework uses two modules where bisulphite-

converted reads are aligned to a reference genome and the mC level is estimated as a ratio of 

C-C matches (mCs) by the count of all reads mapped at the same position and a module where 

neighbouring, differentially methylated Cs between 4C and 32C samples are grouped into a 

DmR according to the direction of the state transition: hypermethylated (UP), hypomethylated 

(DOWN) or no change (NoCh). ComMet detects DmRs based on log-likelihood ratio scores 

(log[p(M)/p(N)], where p is probability, M is change in methylation, N is no change in 

methylation. The log-likelihood ratio score represents a probability of the region with the 

corresponding state transition and reflects the difference in methylation between 4C and 32C. 

The higher the score the higher the methylation change between the two samples. The criteria 

for detecting DmRs are as follows: number of training iteration: 500, threshold of 0.01 for log-

likelihood ratio scores.  

3.10. Data of RNA-Seq coupled to laser microdissection of different 

nodule zone 

RNA-seq reads generated previously by Roux et al. 2014 were downloaded 

(https://iant.toulouse.inra.fr/symbimics) and mapped to the reference Medicago truncatula A17 

(JCVI Mt4.0) genome with the CLC Genomics Workbench. To identify up- and downregulated 

genes, RPKM values (reads per kilobase of gene per million mapped reads) were calculated 

and compared between ZI (4C), ZIId (8C), ZIIp (16C) and ZIII (32C).  

https://iant.toulouse.inra.fr/symbimics
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3.11. Assay for transposase-accessible chromatin using sequencing 

(ATAC-Seq) 

The compaction of nucleosomes into chromatin separates inactive genomic regions and 

maintains active regulatory elements accessible to the transcription machinery (Henikoff & 

Shilatifard 2011). As we have seen, on top of this physical compaction, a dynamic epigenetic 

code operates that includes DNA methylation, histone variants, and modification as well as 

TFs, chromatin remodelers, and non-coding RNAs that influence gene expression. Currently, 

the assay of transposase accessible chromatin (ATAC-seq) (Buenrostro et al. 2013) is used for 

genome-wide analysis of chromatin accessibility at regulatory elements. ATAC-seq uses 

hyperactive Tn5 transposase (Goryshin & Reznikoff 1998) to simultaneously cut and ligate 

adapters for high-throughput sequencing at regions of increased accessibility. The prokaryotic 

Tn5 transposase is loaded in vitro with Illumina adaptors for high-throughput DNA sequencing 

and is able to integrate into in vivo open chromatin (marking active regulatory elements). The 

transposase thereby simultaneously fragments and tags the target genome with sequencing 

adaptors (Fig. 10). The amplifiable DNA fragments are preferentially generated at locations of 

accessible chromatin, therefore acting as a probe for measuring chromatin accessibility 

genome-wide. With this approach, we are able to assess how chromatin accessibility changes 

during symbiotic cell differentiation genome-wide and at the level of individual genes. 

 

Figure 10. Schematic representation of the ATAC-seq method (modified from Buenrostro et al. 

2013). Tn5 Transposase (green), loaded with sequencing adaptors (red and blue), inserts between 

nucleosomes (grey) into open chromatin and generates sequencing-library fragments that can be PCR-

amplified. 

3.11.1. Transposition and library preparation 

The transposition was carried out according to a published protocol (Buenrostro et al. 

2013). Unfixed, 4C, 8C, 16C and 32C ploidy level sorted nuclei (2.5x106-3.5x105) were 
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centrifuged at 2600 g for 20 min at 4°C and supernatant was removed. The pellet was 

resuspended in the transposase reaction mix (Nextera, Illumina): 25 µL 2x TD buffer, 2.5 µL 

Tn5 transposase and 22.5 µL nuclease-free water. The transposition reaction was carried out 

for 30 min at 37°C. Directly following transposition the sample was purified using a Qiagen 

MinElute kit and eluted in 11 µL Elution Buffer.  

3.11.2. Library amplification 

Following purification, library fragments were amplified using 1x NEBnext PCR master 

mix and 1.25 µM of custom Nextera PCR primers 1 and 2 (Appendix, Table 4) using the 

following PCR conditions: 72°C for 5 min; 98°C for 30 sec; and 5 cycles at 98°C for 10 sec, 

63°C for 30 sec and 72°C for 1 min. In order to stop PCR amplification before saturation, qPCR 

was used to determine the number of cycles needed for amplification. The full libraries were 

amplified for five cycles, an aliquot of the PCR reaction was taken and ran for 20 cycles to 

determine the additional number of cycles needed for the remaining 45 µL reaction. The 

libraries were purified using a Qiagen PCR cleanup kit yielding a final library concentration of 

~30 nM in 20 µL. Libraries were amplified for a total of 10–12 cycles. During the ATAC-seq 

protocol, the size-selection step was avoided to maximize the library complexity.  

3.11.3. Sequencing and data analysis 

The libraries were sequenced on the Illumina Hiseq as PE 50 base reads (100-145 

million reads with median Phred score of > 30) following Illumina’s instructions. Reads were 

mapped against JCVI Mt4.0v1 reference genome with CLC Genomics Workbench. Genes from 

different clusters were ordered into three quartiles according to the number of reads in the 1 kb 

upstream genic region. The first quartile (0-33th percentile) genes represent the low accessible 

genes while the third quartile (66-100th percentile) genes the highly accessible ones. 

Decreasing/increasing accessibility of the selected five genes indicates decreasing/increasing 

sequencing tag density, respectively in the 1 kb upstream region of a given gene compared 

between different ploidy levels. Analysis and visualization of sequencing tracks were 

performed in Genomic viewer IGV. To evaluate the association between expression and 

accessibility, Pearson correlation coefficients were determined between the RPKM values and 

ATAC-seq tag counts for individual genes at 4C to 32C ploidy levels. Random generated data 

sets with mean and variance identical to the experimental data set were used as a baseline 

control. Using Wilcoxon-test the correlations derived from experimental data were found to be 



 

77 

 

significantly higher than correlations generated from comparable randomized samples 

(P<0.0001), indicating positive correlation of gene expression and chromatin accessibility in 

the case of late genes. 
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4. RESULTS 

4.1. Extreme specificity of NCR gene expression in Medicago truncatula 

4.1.1. Global analysis of NCR gene expression 

The Affymetrix Medicago GeneChip microarray probe-sets and the expression data of 

the NCRs (Mergaert et al. 2003; Alunni et al. 2007) were downloaded from the Medicago 

truncatula Gene Expression Atlas MtGEA (version 3) (He et al. 2009; Benedito et al. 2008). 

The expression pattern of 334 NCRs in 267 different experimental conditions (254 from 

MtGEAv3, 5 unpublished conditions, 3 from Jayaraman et al. 2014 and 5 from Limpens et al. 

2013) are summarised in the heat map of Fig. 11. The transcriptome compendium is mostly 

derived from the M. truncatula line A17 but also contains data from the R108 and F83005.5 

plant lines, although all experiments discussed here were obtained with the A17 line. The 

compendium covers the plant’s major organs (root, nodule, leaf, petioles, stem, bud, flower, 

seed, pod), various kinds of abiotic- and biotic stresses and specific cell- and tissue types. 

 

Figure 11. Heat map of NCR gene expression in the MtGEA. The heat map shows the expression of 

334 NCR genes (rows) in 267 experimental conditions (columns). Experiments are ordered as indicated 

above the columns. The color scale bar indicates the expression from background level (blue) to 

maximum level (yellow). The red arrowhead indicates the mycorrhizal sample that is contaminated with 

nodules. The green arrowheads (on the right) locate the NCR genes with relaxed specificity; from top to 

down: NCR247, NCR235, NCR122, NCR218 and NCR077. The dataset of the heat map is provided in 

Appendix, Supplementary information 1. 
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The experiments are organized in three major groups: nodule samples, root samples and 

samples of different other plant organs (Fig. 11, and Appendix, Supplementary information 

1, https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-

712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx). The heat map reveals instantly 

an obvious global expression pattern; the nearly complete 334 NCR gene-set is only expressed 

in nodules except for one experiment marked with the red arrowhead in Fig. 11, which 

corresponds to a sample annotated as a mycorrhizal root sample. The NCR expression in 

mycorrhizal roots was inconsistent with previous results (Mergaert et al. 2003) and also with 

other mycorrhizal samples in the MtGEA in which the NCR genes are not expressed raising the 

possibility that the mycorrhizal roots might have nodules. Moreover, nodulation-specific genes 

were found to be active in this sample as well.  

Previously, NCR expression beside symbiotic conditions was tested by EST analysis 

(Mergaert et al. 2003) and with microarrays (Tesfaye et al. 2013) indicating the absence of 

expression. In the MtGEA database besides nodules, 8 other plant organs were included for 

testing NCR expression (Fig. 12) and in none of these plant organs were NCR genes expressed 

except for the five genes with relaxed expression. 

 

Figure 12. NCR expression in plant tissues. The expression pattern of 334 NCRs is shown for nodules, 

roots, hypocotyls, stems, petioles, leaves, flowers, seed pods and seeds. The graphs for all organs are at 

the same scale (maximum hybridization signal value is 25,000). The small peaks that can be seen in 

some of the organ samples correspond to the NCR genes with relaxed expression (Fig. 11). 

Analysing the expression profiles of individual NCR genes revealed very high expression 

level in the nodule and only background signals in other experiments (examples are in Fig. 13A, 

https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM1_ESM.xlsx
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B). Such expression profile is typical for the large majority of the NCR genes (Appendix, 

Supplementary information 1), however, five exceptions were discovered with atypical, 

relaxed nodule-specific expression patterns (Fig. 11, green arrowheads, Fig. 13C-G). NCR247 

and NCR077 are mainly active in nodules but are also weakly expressed in other conditions. 

The NCR247 is expressed in different root-, stem- and aerial samples although at much lower 

levels than in nodules (Fig. 13C). It is not evident from the available information what signals 

activate its expression. 

 

Figure 13. Expression profile examples of seven NCR genes. (A-G) The expression pattern of seven 

NCR genes in 267 experiments (x-axis) in nodules (N), in roots (R) and in other organs (O). The 

experiments are ordered as in Figure 11. The y-axis is the expression level according to the fluorescence 

hybridization signal and is scaled according to the maximum hybridization signal as indicated on the 

top of the axis. The red arrowheads in panels A and B indicate the mycorrhizal sample that is 

contaminated with nodules.  

NCR077 has a higher than usual background level, possibly because of a less specific probe-

set, but the gene is also expressed in some mycorrhizal samples (Fig. 13D) including a laser-

capture microdissection (LCM) sample of arbuscule-containing cells (Gaude et al. 2012). On 

the other hand, NCR218 and NCR122 have a completely relaxed specificity and they are 
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expressed to similar levels in nodules and in other conditions, mostly roots (Fig. 13E, F). 

NCR122 is also particular in that sense, that it is expressed in the uninfected but not in the 

infected nodule cells. Expression of NCR218 has not been investigated on cellular level yet. 

NCR235 expression is similarly nodule specific as most other NCR genes except for a weak 

expression in stems and shoots, which is about 10- to 100-fold lower than in nodules (Fig. 13G). 

Thus except for these five genes, the complete set of tested NCR genes is only expressed in 

nodules and in none of the other conditions that are present in MtGEA. 

4.1.2. Spatio-temporal expression of NCR genes in nodules 

The MtGEA compendium contains 42 different nodule samples including samples of 

wild type nodules harvested at different days post inoculation (dpi) with S. meliloti and thus at 

different stages of nodule development (Fig. 14).  

 

Figure 14. Successive activation of NCR genes during nodule development. (A) Expression level of 

the 334 NCR genes (x-axis) at 0, 3, 4, 6 and 10 dpi. The y-axis scale is the same for all graphs and is 

25,000 at maximum. (B) Heat map of the same expression data as in (A) and 14 dpi. (C) The ratios of 

NCR expression levels at 4 dpi, 6 dpi or 10 dpi compared to 14 dpi. For each time point, the genes were 
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ordered from high ratio to low ratio. (D) Heat map of the Pearson correlation of the NCR expression 

profiles at 0, 3, 4, 6, 10 and 14 dpi.  

In samples of uninoculated roots and nodule primordia of 3 dpi, none of the NCR genes 

are activated (Fig. 14A, B). The nodule transcriptomes at 0 dpi and 3 dpi have high correlation 

coefficient (Fig. 14D). This suggests that NCRs have no function in the early stages of the 

interaction. In agreement with this, treatments with Nod- or Myc factors also do not activate 

NCR gene expression (Fig. 15). Myc factors are similar to the lipochitooligosaccharide Nod 

factors and are produced by mycorrhizal fungi symbionts, inducing mycorrhiza formation 

(Maillet et al. 2011). 

 

Figure 15. NCR gene expression in response to Nod factors and Myc factors. The expression pattern 

of 334 NCR probe-sets (x-axis) is shown from top to bottom as follows: for nodules 10 dpi, untreated 

control roots, 24h 10-8M Nod factor treatment, 24h 10-7M non-sulfated Myc factor treatment (nsMyc) 

and 24h 10-8M sulfated Myc factor treatment (sMyc) (Czaja et al. 2012). The y-axis represents the 

strength of the hybridization signal and the graphs for all treatments are at the same scale (maximum 

25,000). 

At 4 dpi of rhizobia induced nodulation a subset of ~70 genes is already activated, some 

of them already at their maximal expression level while others are only partially induced (Fig. 

14). At 6 dpi, most genes are activated but many of them not yet at their maximal level (Fig. 

14A-C). At nodulation time points of 10 dpi and 14 dpi the NCR transcriptome is fully activated. 

They have a correlation coefficient close to 1 (Fig. 14D). Together this pattern reveals that NCR 

genes are activated in different waves and indicates a link between NCR activation and the 

progression of bacterial infection in the incipient nodules.  
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Nodules of M. truncatula are of the indeterminate type and therefore, mature nodules 

are organized in well-defined histological zones (Fig. 3). This nodule structure suggests that 

the temporal NCR expression profiles could correlate with a spatial expression pattern in the 

nodule tissues (Fig. 16). To test this possibility, we performed transcriptome analysis of 4-

weeks-old nodules that were hand-sectioned in five different parts (see Section 3.1.2).  

 

Figure 16. Spatio-temporal expression of the NCR gene family in nodules. (A) Heat map and 

hierarchical clustering of the 334 NCRs according to their spatial expression in nodules obtained by 

hand-dissection of nodules in this study. A: meristem, zone I, B: infection and differentiation zone II, 

C: interzone II-III, D: nitrogen-fixing zone III, E: senescence zone IV. Clustering was performed using 

Pearson correlation. (B) Comparison of data (A) to the corresponding profiles obtained by LCM coupled 

to Affymetrix microarray analysis described by Limpens et al 2013. M corresponds to meristem, dIZ to 

the distal zone II or infection zone, pIZ to the proximal zone II, IC to infected cell and UC to uninfected 

cell. (C) The corresponding NCR expression profiles in function of nodule age (dpi) (same data as on 

Fig. 14). For all data sets, the expression patterns in the different dissected nodule zones are expressed 

in percentage from their total. The NCR genes are ordered identically in all three panels according to a 

hierarchical clustering of the dataset from panel (A). 

These five samples correspond to the tissues from the most apical part of the nodule to 

the most proximal part containing the oldest symbiotic cells. Sample A is the meristem and the 

underlying few cell layers of post-meristematic cells, which start the infection and 

differentiation process. Sample B corresponds mainly to the infection and differentiation zone 

II. Sample C corresponds to the interzone II-III. Sample D is the nitrogen-fixation zone III, 

easily characterized by its pink color due to the accumulation of leghemoglobin and finally 

sample E is the senescence zone IV that is recognized by its green color resulting from the 
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accumulation of biliverdin, a product of the catabolism of leghemoglobin-derived heme (Fig. 

16A). It should be noted that each of these hand-dissected samples is enriched for the indicated 

zone but can contain cell layers form the adjacent zones as well. Cluster analysis of the NCR 

abundance profiles in these five samples distinguishes groups of NCR genes that have 

preferential expression in defined nodule zones and that are sequentially activated from nodule 

apex to proximal tissues (Fig. 16A and Fig. 17).  

 

Figure 17. Representative clusters of spatial and temporal NCR expression profiles. Five 

representative spatial (Left) and temporal expression patterns (Right) are shown for clusters 1 to 5. 

Genes in cluster 1 display the highest expression in the sample A, while in sample B are 

still high and then decline rapidly. Cluster 2 genes are already activated in sample A but their 

expression increases in sample B and remains high in the whole nodule. Cluster 3 genes have a 

very sharp peak in sample B due to a specific high expression here that is also visible at the 6 
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dpi sample, while in sample A and C their expression is low and in the samples D and E close 

to zero. The genes of cluster 4 have a similar profile but are expressed in a broader zone with 

high levels of expression in samples B and C. Finally, cluster 5 genes are absent in sample A, 

partially activated in sample B and then fully activated in sample C, D and E.  

The transcriptome of specific nodule tissues and cells was also obtained by laser-capture 

microdissection (LCM) in a French lab (Limpens et al. 2013) and their data are publicly 

available in the MtGEA for further analysis and comparison. The transcriptome was analyzed 

in nodule meristems (M), the distal (dIZ) and the proximal infection zone (pIZ), the infected 

cells of the fixation zone (IC) and the uninfected cells of the fixation zone (UC) (Fig. 16B). 

Although, the type of samples is not entirely overlapping, a good correspondence can be 

observed between the LCM dataset and the hand-dissected dataset (Fig. 16A, B). The LCM 

dataset shows that NCR genes are not expressed in the meristem which is free of rhizobia (Fig. 

16B) and that their activation is coinciding with rhizobia infection. Moreover, it also indicates 

that activation of the early NCR genes in the hand-dissected sample A is coming from the 

presence of cells from the infection zone. NCR genes were reported to be expressed in infected 

cells (Kondorosi et al. 2013). Unexpectedly, the LCM dataset revealed a relatively high 

expression of several NCRs in the uninfected cells including NCR001, NCR084, NCR035 and 

NCR247 (Fig. 16B, sample UC). This sample, however, could contain some infected cells 

because in situ hybridization, promoter-GUS- or mCherry fusion of these genes or 

immunolocalization of peptides demonstrated their specific expression in the infected 

symbiotic nodule cells but not in uninfected cells (Van de Velde et al. 2010; Farkas et al. 2014; 

Mergaert et al. 2003). Possibly, the signal in the sample of the uninfected cells is the result of 

contamination with infected cells or due to background hybridization coming from the RNA 

amplification procedure used with the very low amount of RNA obtained from the LCM 

samples (Limpens et al. 2013). Nevertheless, when comparing the expression level of all NCRs 

in the uninfected and infected cells, only two genes had a significantly higher expression in the 

uninfected cells. Those two genes are NCR218 (9,6 fold higher; t-test P=0,002) and NCR122 

(3,2 fold higher; t-test P=0,018) which are the only 2 NCRs that are consistently expressed to 

high levels in roots (Fig. 13E, F). 

When matching the spatial- and temporal NCR expression patterns, good 

correspondence can be observed: genes expressed in the apex are fully activated in the early 

stages of nodule development at 4 or 6 dpi, while genes expressed in the proximal tissues are 

activated in later stages of nodule development at 10 and 14 dpi (Fig. 16C). The correlation 

between the spatial- and temporal pattern of NCR expression is obvious when considering the 
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NCR gene clusters representing the major expression profiles (Fig. 17). For example, genes of 

clusters 1 and 2 (Fig. 17) are expressed in the most apical part of the nodule and this correlates 

well with their early activation at 4 or 6 dpi in the temporal pattern. On the other hand, genes 

in cluster 5 have maximum expression in sample C and this corresponds with their expression 

later in nodule development at 10 dpi (Fig. 17). 

Together these spatio-temporal patterns reveal that the NCR genes are activated in 

different waves, in agreement with our previous results that identified two key points in nodule 

development associated with major transcriptional activation, one at the formation of symbiotic 

cells and another one when bacteroids differentiate (Maunoury et al. 2010). Nevertheless, the 

present analysis is refining this description and shows that NCR genes are activated in at least 

three waves and they can be distinguished by the maintenance or the decline of their expression 

in the older nodule cells. These analyses of NCR expression during nodule development are 

also in very good agreement with data from a recently published study (Roux et al. 2014) that 

used LCM of nodule zones coupled to RNA-Sequencing (see Section 3.1.1; Fig. 28D) and my 

RT-qPCR analysis of selected NCR genes in purified nodule nuclei with different ploidy levels 

which represent distinct stages of symbiotic nodule cell differentiation (Fig. 28F). 

4.1.3. NCR genes are not directly involved in nodule senescence 

Senescence is a natural process activated in aging nodules at 30-35 dpi involving a 

complete digestion of the bacteroids and later the symbiotic host cells (Van de Velde et al. 

2006). Because NCRs resemble to the defensin-type of antimicrobial peptides (Mergaert et al. 

2003) and because they have in vitro and in vivo antimicrobial activity (Tiricz et al. 2013; Van 

de Velde et al. 2010; Haag et al. 2011; Farkas et al. 2014) it was feasible to predict that part of 

the NCR family could be involved in the killing of the rhizobia during nodule senescence. This 

process is associated with the transcriptional activation of genes that are involved in the 

digestion of macromolecules and the remobilization of the liberated nutrients (Van de Velde et 

al. 2006). Nodule senescence can be induced artificially by nitrate supply to roots, which will 

prefer this new nitrogen source over the energy costly nitrogen fixation or alternatively, by 

keeping plants in the dark or applying a herbicide, cutting off the nutrient supply to nodules.  

Another opportunity in the MtGEA database to test the effect of senescence on NCR 

expression is provided by samples corresponding to a treatment of M. truncatula with nitrate 

and the herbicide phosphinothricin (a.k.a. BASTA) which also induces nodule senescence 

(Seabra et al. 2012) (Fig. 18A, C-E). To test whether NCR genes are induced by senescence, 



 

87 

 

nodules at 14 dpi were compared with nodules of 14 dpi followed by 2 days of nitrate supply 

(Fig. 18A). Beside the NCR genes, 8 senescence marker genes were included in the analysis 

(Appendix, Supplementary information 1) (Van de Velde et al. 2006). The downregulation 

of NCR gene expression is very rapidly detectable, within 4 hours of nitrate application (Cabeza 

et al. 2014) or 8 hours of phosphinothricin treatment (Fig. 18C-E). Both treatments induced 

senescence as indicated by the strong induction of the senescence marker genes. This 

conclusion is also confirmed by comparing the hand-dissected nodule samples D and E, which 

are enriched for the nitrogen fixation zone III and the senescence zone IV respectively. None 

of the NCRs are significantly (t-test, P<0.05) higher expressed in sample E (Fig. 18B). 

 

Figure 18. NCR expression during nodule senescence. (A) Scatter plot of the expression of 334 NCRs 

(blue) and 8 senescence marker genes (red) in 14 dpi nodules (x-axis) and 14 dpi nodules treated with 

nitrate for 2 days (y-axis). (B) Scatter plot of the expression of 334 NCRs (blue) and 8 senescence marker 

genes (red) in hand-sectioned nodule zone D (x-axis) and in hand-sectioned nodule zone E (y-axis). (C-

E) Scatter plot of gene expression levels in 20 dpi nodules compared to 20 dpi nodules 4h (C), 8h (D) 

and 24h (E) post treatment with the herbicide phosphinothricin. The scale of all axes is the same and is 

25,000 at maximum. The red line in the three graphs indicates a ratio of 1 between the two conditions. 

The probe-sets for the senescence marker genes, encoding cysteine proteinases, a chitinase, a nuclease 

a nucleoside transporter and a metal-nicotinamide transporter, are provided in Appendix, 

Supplementary information 1. (F) Heat map of NCR and senescence markers expression before and 

4, 8 and 24 h post phosphinothricin treatment. Expression levels vary from low (blue) to high (yellow). 

The red bar next to the heat map indicates the location of the senescence marker genes. 
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All the NCR genes are reduced in expression by the senescence-inducing treatments, 

suggesting that none of the NCR genes has a direct role in senescence. The down-regulation of 

the NCRs most likely reflects the shut-down of the symbiotic process.  

4.1.4. Promoter-GUS analysis and immunolocalization of selected NCRs in 

nodules 

In order to confirm the expression data from MtGEA, stable transgenic M. truncatula 

R108 lines generated carrying promoter-GUS fusion constructs for three different NCR genes 

of different temporal expression classes (Fig. 19). NCR001 is not activated before the late stages 

of the nodule formation (Fig. 17, cluster 5), while NCR084 is slightly induced in early time 

points (4 dpi) and fully activated at the mature stage of the nodule (Fig 17. cluster 2) and finally 

NCR121 is an early gene, which is already fully activated at 4 dpi (Fig 17, cluster 1).  

 

Figure 19. Promoter-GUS analysis of NCR genes in nodules. Sections (70 µm) of root tips and 

nodules of different ages of transgenic plants carrying promoter-GUS fusions for the NCR121, NCR084 

and NCR001 genes were stained for GUS activity observed as blue color. Scale bars are 50 µm. 



 

89 

 

The transgenic plants were inoculated with S. meliloti strains Sm1021 or with FSM-

MA. GUS expression in the three different transgenic lines was not detected in root tips or other 

root parts (Fig. 19). In agreement with its temporal regulation during nodulation, NCR121 

expression was induced in young nodule primordia as early as 5 dpi and remained expressed 

throughout the experiment in the entire infection zone II and the fixation zone III of mature 

nodules (Fig. 19). NCR084 expression was detected from 11 dpi on and was mainly confined 

to the proximal infection zone, the interzone II-III and to the distal part of the fixation zone III 

(Fig. 19). NCR001 expression was detectable from 11 dpi in the developing fixation zone III 

and its expression extends in the following days as the fixation zone is growing (Fig. 19). All 

three genes are only expressed in the symbiotic nodule cells. In older nodules, at 30 dpi, 

displaying a senescence zone, NCR expression was never detected in the senescing tissues, nor 

was their expression enhanced in the proximal fixation zone adjacent to the senescent tissue 

(Fig. 19), confirming that NCR genes are not involved in the senescence process. Overall, the 

temporal and spatial promoter-GUS expression patterns are in very good agreement with the 

expression profiles deduced from MtGEA. 

The particular expression pattern of NCR122 with its relaxed tissue specificity (Fig. 

13F) and its apparent expression in the uninfected nodule cells prompted us to analyze the 

localization of the NCR122 peptide in nodules with anti-NCR122 antibody (Fig. 20).  

 

Figure 20. Immunolocalization of NCR122 in nodule sections. Sections of nodules were stained with 

the DNA label SYTO13 (green) to reveal the bacteria (A, D) and were immunolabelled with the anti-

NCR122 antibody (red) (B, E). (C, F) Overlays of (A, B) and (D, E) respectively. (D-F) Enlargement 

of the top part of the nodule shown in (A-C). Arrowheads or double asterisks mark NCR122-labeled 

cells in the nodule cortex and the double arrowhead or asterisks mark uninfected cells of the nitrogen 
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fixation zone III labeled by NCR122. II is the infection zone; II-III is the interzone. Scale bars are 200 

µm in panels A-C and 40 µm in panels D-F.  

Immunolocalization of the peptide revealed indeed a specific presence of NCR122 in 

the uninfected cells of the central zone of a mature nodule as well as in the uninfected cortical 

cells of the nodule (Fig. 20). Together with the transcriptome data, this indicates that NCR122 

and most likely NCR218 are the only NCR peptides that are specific to uninfected root and 

nodule cells. 

4.1.5. NCR genes are not expressed after biotic and abiotic stress 

NCRs resemble the defensin-type of antimicrobial peptides and defensins are often 

strongly expressed in “infection-sensitive” organs like flowers or seeds. The complete lack of 

expression of NCRs in these organs (Fig. 12) suggests that they probably do not have a 

defensive function in these organs. Nevertheless, many non-NCR defensin-like genes were 

found to be expressed in seeds, potentially involved in their protection (Tesfaye et al. 2013). 

Defensins are also induced during pathogen infection (Maroti et al. 2011; Sels et al. 

2008; Coninck et al. 2010; De Coninck et al. 2013) therefore expression of the NCR family was 

tested using data from roots infected with different pathogens. (Fig. 21). 

 

Figure 21. Expression of NCR genes during microbial infections and elicitor treatment. (A, B) NCR 

expression in M. truncatula control roots and roots infected with Phymatotrichopsis omnivora 

(Uppalapati et al. 2009), Macrophomina phaseolina (Mah et al. 2012), Glomus intraradices (Hogekamp 

et al. 2011), Aphanomyces euteiches (Rey et al. 2013), Ralstonia solanacearum, Meloidogyne incognita 

(Damiani et al. 2012), Escherichia coli O157:H7 and Salmonella enterica (Jayaraman et al. 2014). (C, 

D) NCR expression in a M. truncatula cell suspension (CS) derived from root cells after treatments for 
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2h or 24h with 50 µg glucose equivalents ml-1 yeast elicitor (YE) or 500 µM methyl jasmonate (MJ) 

(Naoumkina et al. 2007). (A) and (B) on the one hand and (C) and (D) on the other hand represent the 

same data but the scale of the graphs is at relative expression level 25,000 maximum in (A) and (C) and 

at maximum level 500 in (B) and (D).  

Pathogenic fungi Phymatotrichopsis omnivore (Uppalapati et al. 2009) and 

Macrophomina phaseolina (Mah et al. 2012), the symbiotic mycorrhizal fungus Glomus 

intraradices (Hogekamp et al. 2011), the oomycete Aphanomyces euteiches (Rey et al. 2013), 

the bacterial pathogen Ralstonia solanacearum and the nematode Meloidogyne incognita 

(Damiani et al. 2012) and also the human enteric bacterial pathogens Escherichia coli O157:H7 

and Salmonella enterica, which are frequent sources of legume food contamination were also 

included because they are capable of surface and internal colonization of M. truncatula roots 

(Jayaraman et al. 2014) (Fig. 21A, B). In addition, transcriptomes in M. truncatula cell 

suspensions (CS) derived from root cells treated with the defense response-inducing yeast 

elicitor (YE) or methyl jasmonate signals (MJ) (Naoumkina et al. 2007) were also included 

(Fig. 21C, D) as well as, salt and drought stresses that induce defensin genes in plants (De 

Coninck et al. 2013). Thus, transcriptomes in NaCl-treated (Fig. 22) (Li et al. 2009) or drought 

stressed roots (Fig. 23) (Zhang et al. 2014) were also analysed. 

 

Figure 22. Expression of NCR genes during salt stress. (A-D) NCR expression in roots exposed to 

NaCl salt stress (Li et al. 2009). (A) and (B), (C) and (D) represent pairwise the same data but the scale 

of the graphs is at relative expression level 25,000 maximum in (A), (C) and at level 500 in (B), (D). 
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Figure 23. Expression of NCR genes during drought stress. (A-D) NCR expression in roots exposed 

to drought stress (Zhang et al. 2014). (A) and (B), (C) and (D) represent pairwise the same data but the 

scale of the graphs is at relative expression level 25,000 maximum in (A), (C) and at level 500 in (B), 

(D). 

Not considering the five NCR genes with relaxed specificity, none of the NCRs showed 

expression in any of the data sets (with the possible exception of giant cells formed by the 

nematode M. incognita (Fig. 21B). Several NCRs exhibited a hybridization signal in giant cells 

although the level was about 1 to 2 orders of magnitude lower than the signal in nodules for the 

same NCR gene. However, it should be noted that the giant cells were isolated by LCM and 

that the array hybridization was performed with an amplified cDNA sample (Damiani et al. 

2012), which could be a source of background hybridization. In any case, besides the possible 

exception of the giant cells, the data indicate that the NCR genes seem not to be used by the 

plant to control infections other than the Rhizobium bacteria in nodules. 

In the MtGEA data for plant treatments with the auxin 1-naphthaleneacetic acid (NAA), 

the cytokinin 6-benzylaminopurine (BAP) and the auxin transport inhibitors 2,3,5-

triiodobenzoic acid (TIBA) or N-1-naphthylphthalamic acid (NPA) (Fig. 24) are also available 

for testing NCR expression (Imin et al. 2008; Rightmyer & Long 2011). Interestingly, treatment 

of roots with the auxin transport inhibitors TIBA or NPA and also cytokinin leads to the 

formation of nodule-like structures (Rightmyer & Long 2011). However, in none of these 

conditions, NCR genes were expressed except for the five genes with relaxed expression (Fig. 

24).  
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Figure 24. NCR expression in response to phytohormones. (A, B) NCR expression after treatments 

for 1 (1d) or 7 days (7d) of Medicago line A17 roots with the auxin transport inhibitors 

naphthylphthalamic acid (NPA; 200 µM) and 2,3,5-triidobenzoid acid (TIBA; 200 µM) (Rightmyer & 

Long 2011). (C, D) NCR expression after treatments of Medicago line 2HA or Jemalong leaves for 1 

(1wk) or 2 (2wk) weeks with the auxin 1- naphthaleneacetic acid (NAA; 10 µM) or the cytokinin 6-

benzylaminopurine (BAP; 4 µM) (Imin et al. 2008). (A) and (B) on the one hand and (C) and (D) on the 

other hand represent the same data but the scale of the graphs is at relative expression level 25,000 

maximum in (A) and (C) and at maximum level 500 in (B) and (D). 

4.1.6. Promoter-GUS analysis of NCR expression during pathogenic 

interactions 

The MtGEA compendium contains datasets from different pathogenic interactions but 

these are exclusively root pathogens (R. solanacearum, A. euteiches, M. phaseolina and P. 

omnivore). In these datasets, transcription of NCR genes is not detected. To confirm the absence 

of NCR expression during leaf or stem pathogen infection that encompass also other trophic 

interactions and infection strategies, the previously described three NCR promoter-GUS 

reporter lines were used (see Section 4.1.4). Leaflet inoculation of the necrotrophic soft rotting 

bacterium Dickeya dadantii 3937 induced maceration symptoms from 1 dpi on, but failed to 

induce NCR expression (Fig. 25). Similarly, infiltration of the virulent strain Pseudomonas 

syringae pv. tomato DC3000 (Pst) induced necrosis in the infiltrated zone within 2 dpi, whereas 

the hrcC mutant strain that is unable to form a functional T3SS did not induce any visible 

reaction. Although, Pst DC3000 is not described as a natural pathogen of M. truncatula, our 

data suggest that at least some bacterial effector proteins can be specifically recognized by the 
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plant resulting in a necrosis similar to the hypersensitive response of the non-host Nicotiana 

benthamiana plants (Hann & Rathjen 2007). This observation is also in agreement with the 

absence of detectable reaction in plants inoculated by a T3SS mutant strain. NCR expression 

was not detected in the infiltrated leaflets in any condition (Fig. 25). Similarly, inoculation of 

the same M. truncatula lines with the fungus Botrytis cinerea causing necrotrophic grey mold 

yielded symptoms at 7 dpi without any detectable NCR expression (Fig. 25).  

 

Figure 25. Promoter-GUS analysis of NCR genes in infected and wounded leaves. Wild type M. 

truncatula R108 (R108) and transgenic R108 carrying NCR promoter-GUS fusions (NCR001, NCR084, 

NCR121) or a constitutive GUS under the control of the 35S promoter (pG3.3) were mock infected, 

infected with Dickeya dadantii 3937 (Dd 3937), Pseudomonas syringae pv. tomato DC3000 (Pst 

DC3000), the Pseudomonas syringae pv. tomato DC3000 hrcC T3SS mutant (Pst DC3000 hrcC) or 

Botrytis cinerea (B. cinerea), or wounded and then stained for GUS activity, which is observed as blue 

color. Note that in certain leaves, the leaf base and the veins are faintly stained blue. In addition, the 

wounding print is slightly stained (arrows). This staining is also observed in untransformed R108 and 

thus represents background signal. The left panels show the leaf phenotype after treatment and before 

staining. Scale bars are 2 mm.  

The results of the pathoassays are also in line with a recent study showing that NCR 

expression was not detected during the interaction between M. truncatula and the 

hemibiotrophic leaf pathogen Colletotrichum trifolii (Tesfaye et al. 2013). Similarly, they 

reported that the biotrophic soil pathogen Phytophtora medicaginis failed to induce NCR 

expression in host roots (Tesfaye et al. 2013). Altogether, our data and the study of Tesfaye et 
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al. 2013 are in agreement with the MtGEA dataset and broaden the conclusion that NCRs are 

not involved in pathogen response, whatever the trophic- (bio/hemibio/necrotrophic), the 

host/non-host status and the output of the interaction (disease or resistance). Finally, as 

herbivory and more generally, wounding may induce plant defenses around the wounded zone, 

the effect of mechanical wounding of leaflets was also tested but again no NCR expression 

could be detected (Fig. 25). 

4.1.7. NCR genes have very high tissue specificity as measured by Shannon 

entropy 

The above analyses revealed high expression specificity for the NCR gene family: the 

genes are only expressed in nodules and not in any other organ or under any physiological 

condition. To express this specificity quantitatively and to compare it to other types of 

specifically expressed genes, their Shannon entropy was calculated. This parameter is a metric 

for characterizing the uniformity of the expression pattern of a gene over the tested conditions 

(Schug et al. 2005; Zhang et al. 2006). Low entropy values indicate high tissue specificity, 

while high entropy levels on the contrary mean ubiquitous expression. Ten different tissues 

were taken into consideration: leaf, petiole, stem, bud, flower, seed, pod, root, nodule and 

mycorrhiza. In case of nodules, seed and root the mean value was used of different 

developmental stages or experiments (for nodules: 4, 10, 14 and 28 dpi stages; for seeds: 10, 

12, 16, 20, 24 and 36 dap; for root was used the 0 dpi control for nodulation and an independent 

experiment); thus in total 19 experiments were used. The Shannon entropy was calculated as 

described (see 3.1.4) for each of the 50,900 probe sets using these 10 tissue datasets (Appendix, 

Supplementary information 2, https://static-

content.springer.com/esm/art%3A10.1186%2F1471-2164-15-

712/MediaObjects/12864_2014_6439_MOESM3_ESM.xlsx). The 9000 probe-sets with the 

lowest entropy (and therefore the higher tissue specificity) were selected for further analysis 

and hierarchical clustering of these genes was performed (Fig. 26A). Clusters of tissue-specific 

genes could be distinguished for root, seed, pod, flower, aerial tissues, root tissues, nodule and 

mycorrhiza. The seed, flower, mycorrhiza and especially the nodule clusters were enriched in 

genes with low entropy value (Fig. 26A). The strong over representation of nodule-specific 

genes among the low entropy genes became more obvious when the dataset was ordered 

according to increasing entropy levels (Fig. 26B). This analysis showed that in M. truncatula 

the genes with the lowest entropy and thus the highest tissue specificity are mostly nodule-

https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1186%2F1471-2164-15-712/MediaObjects/12864_2014_6439_MOESM3_ESM.xlsx
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specific genes and among them the NCRs are the most represented ones although many other 

known nodule-specific genes also exhibited very low entropy (Appendix, Supplementary 

information 2). These include for example leghemoglobin genes, the glycine-rich peptide 

(GRPs) genes (Kevei et al. 2002; Alunni et al. 2007), the small nodulin acidic RNA-binding 

protein (SNARP) gene family (Laporte et al. 2010), genes encoding a small family of secretory 

calmodulin-like proteins (Mergaert et al. 2003; Liu et al. 2006), the DNF2 (defective in nitrogen 

fixation 2) gene involved in suppression of defence responses in the symbiotic cells (Bourcy et 

al. 2013) and others. Most interestingly, also putative retrotransposons (probe-sets 

Mtr.9294.1.S1_at and Mtr.636.1.S1_at) and a Dicer 1-like ribonuclease III gene (probe-set 

Mtr.41531.1.S1_at) are among the nodule specific low entropy genes (Appendix, 

Supplementary information 2). 

 

Figure 26. Shannon entropy. (A) Hierarchical clustering of the 9000 probe-sets with the highest tissue 

specificity (lowest entropy values Eg). The expression heat map is in green-black-red color scheme. The 

entropy heat map is in blue-black-yellow scheme. (B) The data set of panel (A) was ordered according 

to increasing entropy of the genes. The left panel shows the relative expression level of the 9000 genes 

in the 10 tissues (green-black-red heat map) and the entropy values Eg (blue-black-yellow heat map). 

The location of the NCR genes is indicated with the black-red heat map (NCR): red means NCR, black 

means other gene type. The right panel is an enlargement for the first 1800 genes (entropy values Eg 

from 0.07 to 1.64). The scale bar for the expression level heat map is green: 0, black: 0.5 and red: 1 and 

for the entropy heat map blue: 0, black 1.44 and yellow: 2.88 (maximum entropy in the complete data 

set is 3.32 (log2(N)). 

Besides the high tissue-specificity, another feature in which the NCRs stands out from 

the average M. truncatula genes is the strength of expression. The microarray hybridization 

signal was used to estimate gene expression levels. The maximal signal for each of the 50,900 

probe sets in the 267 experiments was searched. These hybridization signals vary from 33,500 

for the strongest expressed gene to 9 (background) for the weakest. One percent of the probe 
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sets have an expression level higher than 15,000, 3% higher than 10,000 and 10% higher than 

5000. The mean (average) signal is 1687 and the median 459 (Fig. 27A).  

 

Figure 27. NCR genes are among the most actively expressed genes in M. truncatula. (A) Maximum 

expression level of the 50,900 M. truncatula probe-sets. (B) Maximum expression level of 334 NCR 

genes.  

The same analysis on the subset of probes corresponding to the NCR genes gives a 

completely different picture: 5% of NCR genes have signals above 15,000, 30% above 10,000 

and 75% above 5000 with a mean signal of 7982 and a median of 7758 (Fig. 27B). Thus, the 

NCR genes are among both the most specifically expressed and the most strongly expressed 

genes in the genome of M. truncatula. 

4.1.8. Conclusion 

From the transcriptome data mining and experimental confirmation described here, we 

can conclude that apart from very few exceptions, the hundreds of NCR genes encoding 

defensin-like peptides are only activated during nodule formation. They are not expressed in 

other plant organs, during pathogen attack or abiotic stress. In nodules, they are not yet activated 

during the very early stages (initial cell proliferation period or in the meristem) before symbiotic 

nodule cells are formed and rhizobia are released in symbiosomes within the host cells. NCR 

genes are also not involved in symbiosome and bacteroid degradation during nodule senescence 

since their gene expression shuts down when senescence is initiated. However, the expression 

pattern of NCRs in successive waves during nodule formation suggest that the bacteroids are 

the only targets of the peptides and that subsets of the peptides might be involved in bacteroid 

differentiation and other subsets in bacteroid functioning. The NCR genes are among the most 

specifically expressed genes in M. truncatula. Moreover, when activated in nodules, their 

expression level is among the highest of all genes. Together, these data show that the NCR gene 

expression is subject to an extremely tight regulation and is only activated during nodule 



 

98 

 

organogenesis in the symbiotic cells. However, very little is known about how the very specific 

regulation of NCRs is achieved. Since their expression correlates with bacterial infection of the 

symbiotic cells, the perception of bacterial signals such as components of the bacterial envelope 

could be involved. It will be interesting to analyse nodule-specific transcription factors such as 

EFD (Vernie et al. 2008), IPD3 (Messinese et al. 2007) and others as well as cis-regulatory 

elements in the promoters of the NCR genes for their involvement in this particular regulation 

of NCR expression. 

Moreover, the very tight regulation of the NCR genes might indicate that besides control 

by specific transcription factors and cis-regulatory elements, regulation at the level of chromatin 

might also be involved in the activation of the NCR genes. Genes with high tissue-specific 

expression are often actively silenced during most of the plant growth by epigenetic 

mechanisms. Since in M. truncatula the nodule-specific genes display the highest level of 

expression specificity, it might be worthwhile to investigate if epigenetic control is important 

in the regulation of the symbiotic cell-specific genes. The nodule-specific expression of putative 

retrotransposons (this analysis and Satgé et al. 2016), which are usually epigenetically silenced, 

and the Dicer 1-like ribonuclease III gene, which may have a role in epigenetic regulation, as 

well as the identification of small RNAs potentially targeting NCR genes (Lelandais-Briere et 

al. 2009) are all in agreement with such an epigenetic control of the symbiotic cell-specific 

genes. In the next part of my thesis work, I have analysed this hypothesis. 
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4.2. Ploidy-dependent changes in the epigenome of symbiotic cells 

correlate with specific patterns of gene expression  

In the previous chapter, I have described that the formation of symbiotic nodule cells in 

M. truncatula, which is driven by successive endoreduplication cycles, requires a drastic 

transcriptional reprogramming in different temporal waves including the activation of hundreds 

of cysteine-rich NCR genes expressed only in nodules. Based on those results, we have 

postulated that epigenetic mechanisms are involved in this transcriptional reprogramming as 

well as a role for the endoreduplication cycles in mediating epigenetic changes. In this chapter 

I describe the experiments that we have done to test these hypotheses. We show that the 

transcriptional waves indeed correlate with growing ploidy levels and we have investigated how 

DNA methylation, histone modifications and chromatin compaction change during 

endoreduplication cycles. In most Medicago genes DNA methylation was unaffected by the 

ploidy levels and was independent of the genes’ active or repressed state. Differential DNA 

methylation was only found in a small subset of nodule-specific genes but it was detected in 

more than half of the NCR genes. On the other hand, expression of nodule-specific genes 

correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested 

genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results 

suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional 

reprogramming in the differentiation of symbiotic cells.  

The data of this chapter were published in PNAS in 2017. Marianna Nagymihály, 

Alaguraj Veluchamy, Zoltán Györgypál, Federico Ariel, Teddy Jégu, Moussa Benhamed, Attila 

Szűcs, Attila Kereszt, Peter Mergaert, and Éva Kondorosi. Ploidy-dependent changes in the 

epigenome of symbiotic cells correlate with specific patterns of gene expression. Proc. Natl. 

Acad. Sci. USA 2017, 114:4543-4548. 
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4.2.1. Differential expression of nodule-specific genes depends on the ploidy 

levels of the symbiotic cells.  

Mature M. truncatula nodules contain nuclei of 2C, 4C, 8C, 16C, 32C and 64C (Fig. 

28A, B). The high ploidy nuclei result from the ENR-driven differentiation of post-meristematic 

cells into mature symbiotic cells (Fig. 28A) (Vinardell et al. 2003). To confirm a possible 

linkage between the above described expression of nodule-specific genes in successive waves 

and the ploidy levels of differentiating symbiotic cells, the expression level of selected, 

differentially expressed genes was measured in 4C, 8C, 16C and 32C flow-cytometry isolated 

nuclei (Fig. 28B) with quantitative reverse transcription PCR (RT-qPCR). In this and our 

further analyses the 2C and 64C nuclei were not included since they could not be isolated in 

sufficient amounts. Since nuclear and total cellular mRNA pools are comparable (Deal & 

Henikoff 2010) gene expression levels can be faithfully determined using nuclear RNA. 

Published in situ LCM RNA-seq data of nodule zones (Roux et al. 2014) (Fig. 28C, D) were 

correlated with the expression pattern of the selected genes in the nuclei (Fig. 28E). As 

examples of early genes NCR117 and ENOD12 were chosen. NCR117 is one of the earliest 

NCR genes which is active in the distal part of zone II (ZIId) of a mature nodule (Fig. 28E, 

Roux et al. 2014) while ENOD12 is expressed in the root hairs and root epidermal cells as well 

as in ZIId cells (Pichon et al. 1992). As later genes, NCR084, expressing in ZIIp and IZ and 

NCR001, which is activated later and is expressed in the IZ and ZIII cells (Fig. 19) was selected. 

NCR122 was also tested because unlike all other NCRs, this gene is expressed in the root and 

in the uninfected nodule cells but not in the infected ones (Fig. 20).  

Both the early genes, NCR117 and ENOD12 were the most strongly expressed in the 8C 

and 16C nuclei while the late genes NCR084 and NCR001 in the 16C and 32C cells coinciding 

with their later function in symbiotic cell development (Fig. 28F). NCR122 expression was 

maximal in the 4C cells and then decreased with the increasing ploidy levels, in agreement with 

the expression of this gene in the low-ploidy cortical cells and uninfected cells of the IZ and 

ZIII (Fig. 28F). Expression of NCR001 and NCR122 was significantly higher than that of the 

other tested genes.  

Overall, expression of these nodule-specific genes according to the ploidy level 

correlated well with their spatial expression pattern in nodules identified previously with in situ 

hybridization, promoter-GUS gene fusions and LCM RNA-seq (Fig. 19 and Fig. 20) (Pichon 

et al. 1992). Therefore, the nuclei purified by flow cytometry according to the ploidy level are 
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suitable to analyse the dynamics of the epigenetic state associated with the activation and 

inactivation of NCR gene expression. 

 

Figure 28. Differential expression of M. truncatula genes during nodule development and at 

different ploidy levels of the symbiotic cells. (A) M. truncatula nodule zones (ZI-ZIII) and the genome 

copy number (C) of nodule cells in a longitudinal nodule section visualized by autofluorescence. ZI: 

meristem; ZII: invasion zone (ZIId: distal younger 4C/8C symbiotic cells, ZIIp: proximal older growing 

symbiotic cells 8C/16C); IZ: interzone large symbiotic cells (16C/32C) and ZIII: nitrogen-fixing zone 

huge symbiotic cells with large vacuoles (32C/64C) as well as uninfected cells (4C/8C) in the central 

region and nodule cortex. Predominant genome copy number of symbiotic cells is in yellow. (B) Nodule 

ploidy profile (Top) and flow cytometry sorting of different ploidy level nuclei (Bottom). Yellow 

indicates the ploidy of nuclei used for further experiments. (C-E) Hierarchical clustering analysis of M. 

truncatula gene sets (C, clusters I-VIII), NCR genes (D, groups 1-3) and selected genes (E) from RNA-

seq experiment of nodule zones obtained by laser-capture microdissection (Data from Roux et al., 2014). 

Blue-(black)-yellow colors correspond from low to high expression levels. (F) Expression levels 

determined by RT-qPCR of NCR117, ENOD12, NCR084, NCR001 and NCR122 genes in 4C, 8C, 16C 

and 32C nodule nuclei. The expression levels are relative to the constitutive genes Mtc27 and 40S. 

Values are averages ± SEM from three independent experiments. Letters a, b, c indicates significant 

differences (Student-Newman-Kuels test, P < 0.05).  

4.2.2. Only a subset of genes display ploidy-dependent differential DNA 

methylation 

As the majority of nodule-specific genes are expressed in the mature symbiotic cells 

(32C) and repressed in the uninfected (4C) cells, we analysed differences in DNA methylation 

(5-mC) genome-wide in isolated 4C and 32C nuclei with RRBS (Meissner et al. 2005). In total 

461,403 methylated cytosines (mCs) were found in the 4C cells; 80% in CG, 15% in CHG and 

5% in CHH sequence context whereas in 32C cells from the 519,975 mCs 71% were in CG, 
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22% in CHG and 7% in CHH sequence context (Fig. 29A). The number of detected mCs is, 

however, an underestimation due to the RRBS approach, the sequencing coverage and the 

stringent parameters used for mC calling (see Materials and Methods). The 71 to 80% mCs in 

the CG context was higher than reported in other plants in which typically 40 to 55% mCs are 

in the CG context (Garg et al. 2015; Shangguan et al. 2013; Song et al. 2013). The reason for 

this difference is potentially related to the CG enrichment during the library preparation. 

Moreover, the M. truncatula genome has lower GC content (27%) compared to other plant 

species (32-46%) (Lister et al. 2008). The overall distribution of mCGs on the 1 kb upstream 

or downstream regions, exons, introns, intergenic regions or transposons was similar in 4C and 

32C nuclei (Fig. 29B). A considerable number of mCs were observed in the intergenic (34%) 

and gene body regions (22%) as well.  

To investigate the differential methylation in 4C and 32C nuclei, mCs at neighbouring 

positions were grouped and differentially methylated regions (DmRs) and within them DmR-

associated genes (DmRGs) were identified. Most DmRs (7019, 79%) and DmRGs (4295, 74%) 

were found in CG sequences, suggesting the relevance of mCGs in gene regulation (Fig. 29A).  

 

Figure 29. Summary of DNA methylation in 32C versus 4C nodule cells. (A) Percentage and number 

of methylated cytosines (mCs) in 4C and 32C, differentially methylated regions (DmRs) and genes 

(DmRGs) in 32C compared to 4C in CG, CHG and CHH context. (B) Distribution of mCGs on the 1 kb 

upstream (US) and downstream (DS) regions, exons, introns, intergenic regions or transposons (TEs).  

Out of the detected 39,260 protein-coding genes in the M. truncatula genome, 11% 

(4295) showed differential methylation; 6% (2488) being hypo- and 5% (1807) 

hypermethylated in the 32C cells (Fig. 30A). Gene Ontology (GO) term distribution analysis 

of hypo-DmRGs revealed a strong over-representation of the “nodule morphogenesis” 

(GO:0009878; P=1,4E-31; FDR=5,5E-29) and “metal ion binding” (GO:0046872; P=4,50E-07; 

FDR=8,60E-05) GO categories (Appendix, Table 5). In these two categories of hypo-DmRGs, 

the NCRs and other nodule-specific genes accounted for 96.6% and 60.0% of genes, 
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respectively. Out of the 375 detected NCRs, 44% (164) were hypomethylated, and only 4% (14) 

hypermethylated at 32C ploidy level (Fig. 30A). Differential methylation of protein-coding 

genes was observed on the entire coding region including the 1 kb upstream and downstream 

sequences with predominance in the gene body and primarily in the CG context (Fig. 31A) 

while in case of the NCRs differential methylation was predominant in their 1 kb upstream 

regions and in the CG context (Fig. 31B).  

 

Figure 30. Differential methylation of nodule-specific and nodule expressed genes in 32C versus 

4C nodule cells. Percentage and number of protein-coding genes and NCR genes showing hyper- or 

hypomethylation (A) genome-wide and (B) according to the expression profile: clusters I-IV genes 

preferentially expressed in 4C (Left), and clusters VII-VIII and the group 3 NCR genes, preferentially 

expressed in 32C (Right). Hypermethylation is shown in red, no change in grey and hypomethylation in 

blue. 

To investigate the relationship between changes in CG methylation and differential gene 

expression, clusters I-IV protein-coding genes (Fig. 28C) expressed in 4C and downregulated 

in 32C, clusters VII-VIII genes (Fig. 28C) upregulated in 32C and not expressed in 4C and the 

32C expressed NCRs (group 3, Fig. 28D) were analysed (Fig. 30B). In clusters I-IV, 6% (281) 

of the genes were hypomethylated and unexpectedly only 6% (257) were hypermethylated in 

32C suggesting that DNA methylation plays a minor role in their repression. Moreover, these 

methylation changes were mostly visible in the gene body (Fig. 31C). In the case of the 32C 

upregulated genes, the fraction of hypo-DmRGs was significantly higher (P<0.0001, Fisher’s 

exact test): 18% (118) in clusters VII-VIII and 48% (109) in group 3 NCRs (Fig. 30B). These 

changes occurred mostly in the 1 kb promoter region (Fig. 31C). These results suggest that 

decrease in DNA methylation might contribute to their activation or upregulation in 32C.  
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Figure 31. DNA methylation change of protein-coding- and NCR genes in different sequence 

context and genic regions. (A) Genome-wide DNA methylation changes in the protein-coding genes 

and (B) NCR genes in CG/CHG/CHH context in the US, gene body (GB) and DS genic regions. (C) 

DNA methylation changes of protein-coding genes and NCRs from different expression clusters in CG 

sequences in the 1 kb flanking and in the gene body region. Hypomethylation is shown in blue, and 

hypermethylation in red. 

To investigate if differential methylation has quantitative effects on gene expression, 

transcript abundance of hyper- and hypo-DmRGs were compared using the published in situ 

RNA-seq data of the nodule zones (Fig. 32, Appendix, Supplementary information 3, 

http://www.pnas.org/content/suppl/2017/04/12/1704211114.DCSupplemental/pnas.17042111

14.sd01.xlsx). We found that hypo- and hypermethylation or no change in DNA methylation 

affected differently the expression levels of the protein coding- and NCR genes (Fig 32). The 

lower expression levels of protein-coding genes in 32C cells correlated with their 

hypermethylation or no change in their methylation status while the transcript abundance of 

hypomethylated protein-coding genes was significantly higher. This is in agreement with the 

prevailing view that demethylation is a positive regulator of gene expression. However, such a 

correlation was not observed for the group 3 NCR genes and unexpectedly, expression levels 

of the few hypermethylated NCRs were particularly high. Moreover, hypomethylated NCR 

genes exhibited similar expression level than the unmethylated ones. Nevertheless, the 

expression of the group 3 NCR genes, independent of their methylation status, was much above 

the average gene expression of the cluster VII-VIII genes. Taken together, these data suggests 

that demethylation might be involved in the activation of a large subset of NCR genes but is not 

correlated with their extremely high expression level. 

http://www.pnas.org/content/suppl/2017/04/12/1704211114.DCSupplemental/pnas.1704211114.sd01.xlsx
http://www.pnas.org/content/suppl/2017/04/12/1704211114.DCSupplemental/pnas.1704211114.sd01.xlsx


 

105 

 

 

Figure 32. Differential expression of differentially methylated nodule expressed and nodule-

specific genes in 4C and 32C nodule cells. Expression level (RPKM) of protein-coding genes of cluster 

VII-VIII and group 3 NCRs (Roux et al. 2014) showing hyper- or hypomethylation either in their 1 kb 

upstream, gene body or in their 1 kb downstream region. Box plots show the median, upper and lower 

quartiles, while whiskers show the 10-90th percentile expression (RPKM) values of protein-coding 

genes and NCRs. n indicates gene number. Letters indicate significant differences (Mann-Whitney test, 

P<0.05). 

About 53% of the NCR genes did not differ in DNA methylation at 4C and 32C (Fig. 

30A). These genes might be active in the 8C and 16C cells and display hypomethylation in 

these nuclei or alternatively, it could mean that DNA methylation does not play a pivotal role 

in their regulation. In our selected gene set, NCR117, ENOD12, NCR001 and NCR122 belonged 

to this category while NCR084 was in the hypo-DmRG category, which allowed to test these 

possibilities. By carrying out methylated DNA immunoprecipitation coupled to quantitative 

PCR (MeDIP-qPCR) in 4C, 8C, 16C and 32C nuclei and measuring DNA methylation of the 

five selected genes along their 1 kb upstream and the 500-600 bp downstream regions from the 

translational start site (TSS), strikingly different patterns and extent of DNA methylation were 

found (Fig. 33). Despite its high expression, the highest level of DNA methylation was 

observed in the NCR001 gene, between -1000 and -600 bp that peaked at -800 bp and then the 

DNA methylation decreased at -400 bp and even further at -200 bp and was not detectable in 

the coding sequence. This profile was unaffected by the ploidy levels between -1000 bp and -

800 bp and compared to 4C only slight decrease in methylation was observed at -600 bp in the 

higher ploidy nuclei. NCR117 had a lower level of methylation between -600 bp and -200 bp 

with the highest level at -400 bp at all ploidy levels. Significant decrease was observed in 8C 

and 16C at -200 bp. ENOD12 was methylated at low levels in the gene body but not in the 1 kb 

upstream region. In the case of NCR122, neither the upstream region nor gene body was 
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methylated. Also the strongly methylated gene body of NCR084 was unaffected by the ploidy 

levels, unlike its 1000 bp upstream region where DNA methylation decreased significantly by 

the growing ploidy levels in line with the bisulphite sequencing analysis and its expression in 

16C and 32C cells.  

 

Figure 33. Differential methylation of the studied genes in 4C, 8C, 16C and 32C nuclei. DNA 

methylation levels of NCR117, ENOD12, NCR084, NCR001, NCR122 genes and control methylated 

(met+) and unmethylated (met-) DNA at different ploidy levels of nodule cells with MeDIP-qPCR. 5-

mC levels are shown 1 kb upstream and downstream of the translational start site (TSS) as percentages 

of input. Values are averages ± SEM from two independent experiments. Arrows indicate significant 

difference compared to 4C (two-way ANOVA with Tukey’s multiple comparison test, P<0.01). 

Our findings show that the clusters VII-VIII and the NCR genes are overrepresented in 

hypomethylated regions, suggesting that decrease in DNA methylation, particularly in the 1-kb 

upstream region, contributes to their expression while other genes with unaltered DNA 

methylation from these groups might require chromatin modifications. 
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4.2.3. Chromatin accessibility varies with ploidy and correlates with gene 

expression 

To learn how chromatin compaction and accessibility changes during the course of 

nodule differentiation and how this influences gene expression, we studied genome-wide the 

chromatin accessibility in 4C, 8C, 16C and 32C nuclei using the „Assay for Transposase-

Accessible Chromatin sequencing” (ATAC-seq) (Buenrostro et al. 2013) (Fig. 34). At whole-

genome scale the chromatin accessibility showed considerable differences with growing ploidy 

levels. First, the early- and late protein coding- and NCR genes were classified according to the 

accessibility of their chromatin (Fig. 34A). We found that the number of genes with high- or 

low compactness in their 1 kb upstream region correlated well with the up- or downregulation 

of genes in the respective gene clusters.  

 

Figure 34. Differential chromatin accessibility of nodule-specific and nodule expressed genes in 

4C, 8C, 16C and 32C cells. (A) Number of early (I-II, group 1) and late (VII-VIII, group 3) protein 

coding- and NCR genes showing high- (white) or low (dark grey) chromatin accessibility at 4C, 8C, 16C 

and 32C nuclei. # indicates number of genes. (B) ATAC-seq sequencing tag counts in the 1 kb upstream 

region of protein coding- and NCR genes from early (I-II, group 1) and late (VII-VIII, group 3) gene 

clusters at 4C, 8C, 16C and 32C nuclei. Box plots show the median, upper and lower quartiles, while 

whiskers show the 2.5-97.5% percentiles of the accessibility values, respectively. Letters indicates 

significant differences (Wilcoxon’s rank sum test, P<0.05).  

The number of cluster I and II genes with high chromatin accessibility was the largest 

in 4C and 8C and was lower in 16C and 32C, whereas inversely it increased in clusters VII and 

VIII with the growing ploidy levels. The number of early group 1 NCR genes with high 

chromatin accessibility was the highest in the 8C nuclei while that of the late group 3 NCR 

genes was highly accessible in 16C and even more in 32C. Distribution of the ATAC 
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sequencing tag counts displayed only small variations at the 4 ploidy levels in the case of cluster 

I-II genes while the cluster VII-VIII genes have significantly increased numbers of reads in the 

1 kb upstream region in 32C nuclei (Fig. 34B). For NCRs in group 3, the read counts increased 

in 16C and were even more pronounced in the 32C nuclei (Fig. 34B). To evaluate the 

correlation between expression and accessibility, Pearson correlation coefficients (PCC) were 

determined between the RPKM values and ATAC-seq tag counts for protein-coding genes and 

NCR genes belonging to different expression groups from 4C to 32C ploidy levels. No 

correlation was found (PCC=0,28, SEM=0,01, SD=0,51) in case of early expressed protein-

coding genes (clusters I-II) while in case of the late expressed genes (cluster VII-VIII, 

PCC=0,52, SEM= 0,02, SD= 0,44) and in group 3 NCRs (PCC=0,84, SEM=0,01, SD=0,20) the 

correlation was evident.  

Furthermore, the correlation between the methylation status of genes and chromatin 

accessibility was assessed. Late genes of clusters VII-VIII and NCR genes of group 3 showed 

an increase in chromatin accessibility in 32C compared to 4C, independently of their hyper-, 

hypo- or unchanged methylation state (Fig. 35), indicating that chromatin opening can happen 

also in the absence of demethylation of the genes.  

 

Figure 35. Chromatin accessibility of differentially methylated nodule-specific and nodule 

expressed genes in 32C cells. (A) Chromatin accessibility of 32C hyper- and hypomethylated VII-VIII 

cluster protein-coding genes and (B) group three NCRs at 32C. Box plots show the median, upper and 

lower quartiles, while whiskers show the 10-90th percentiles of the accessibility values. Asterisk 

indicates significant differences (Wilcoxon’s rank sum test, P<0.0039). n indicates gene number  

The local chromatin state of the five selected genes is shown in Fig. 36. Based on the 

ATAC-seq sequencing tag frequency, the chromatin shows relative low accessibility in the 

nuclei in which the corresponding gene is not expressed, while the chromatin strongly opens in 

nuclei in which the gene is transcriptionally active. In the NCR117 region, the chromatin was 

relatively the most open in 8C in line with its early expression. ENOD12 is present in a rather 
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open chromatin region where the accessibility was the highest in the 8C and 16C cells. For 

NCR084 and NCR001 the chromatin became highly open in 16C and 32C while in the case of 

NCR122, it was the most accessible in 4C and 8C. The genome viewer at the five selected loci 

revealed that changes in the local chromatin state are not limited to the promoter regions but 

can extend over the neighbouring regions.  

 

Figure 36. ATAC-Seq sequencing tag frequency profile along the NCR117, ENOD12, NCR084, 

NCR001 and NCR122 genes at different ploidy levels. Black indicates repressed state whereas blue 

the active state of the genes.  

Thus taken together, the differential accessibility of chromatin regions at various ploidy 

levels was in line with the activity of the genes as well as with the expression of several 

neighbouring genes in the same chromatin microenvironment. 

4.2.4. Ploidy-dependent variation in H3K27me3 and H3K9ac chromatin 

marks correlates with the expression pattern of NCR genes 

To analyse the correlation between chromatin modifications and gene expression, we 

investigated how the antagonistic chromatin marks H3K27me3 and H3K9ac correlate with 

activation of weakly (NCR117, ENOD12, NCR084) and strongly (NCR001, NCR122) expressed 

genes in different ploidy nuclei, using chromatin immunoprecipitation coupled to quantitative 

PCR (ChIP-qPCR) (Fig. 37). On the NCR117 locus the level of H3K27me3 was relatively high 

in the 4C and 32C nuclei where this gene is repressed while it was very low especially close to 

the TSS in 8C and low in 16C where the gene is active (P<0.05). H3K9ac was observed in the 

4C, 16C and 32C nuclei. In the case of ENOD12, NCR084 and NCR001 the H3K27me3 level 

was high in the 4C cells, then decreased throughout the entire region in the 8C and even further 

in the 16C cells before increasing again in the 32C cells. Similarly to NCR117, at all the three 

loci H3K9ac marks were observed in 4C, 16C and 32C nuclei while 8C was devoid of H3K9ac. 

The extent of H3K9ac in the gene body of NCR084 and NCR001 was particularly important in 
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16C and 32C. In the case of NCR122, low level of H3K27me3 together with high H3K9ac in 

the 4C and 8C nuclei coincided with gene activity while decreasing H3K9ac and increasing 

H3K27me3 with gradual repression of NCR122 in 16C and 32C. As both H3K27me3 and 

H3K9ac contribute to gene regulation, we calculated the ratio of H3K27me3 and H3K9ac for 

these five genes upstream and downstream from the TSS (Fig. 37B). 

 

Figure 37. H3K27me3 and H3K9ac modifications of the NCR117, ENOD12, NCR084, NCR001 and 

NCR122 genes at different ploidy levels (4C-32C) detected with ChIP-qPCR. (A) H3K27me3 (red) 

and H3K9ac (green) levels shown as percentages of input chromatin. X-axis represents the distance 

from TSS. Each column corresponds to a given primer pair used for this analysis. Black arrows at the 

TSS indicate those ploidy levels where the gene is active. Percent (%) of input values are averages ± 

SEM of three independent experiments. (B) High (repression) to low (activation) ratio of H3K27me3 

and H3K9ac levels for the five selected loci (at the indicated gene positions relative to the TSS) is 

indicated with red to green. Asterisks indicate significant difference compared to 4C (two-way ANOVA 

with Tukey’s multiple comparison test, P<0.05).  

In NCR117, the only presence of H3K27me3 in the -400 – TSS region in 4C cells could 

be responsible for gene silencing. In NCR084 and NCR001, the high H3K27me3/H3K9ac ratio 

in 4C and 8C coincides with their repression while the lower values with their activation. The 

same tendency though less pronounced was valid also for ENOD12. In contrast, for NCR122 

the H3K27me3/H3K9ac ratio was low in 4C and 8C in line with high gene expression and an 

increased H3K27me3/H3K9ac ratio in 16C and 32C correlated with decreased expression. In 

general, H3K27me3 modification showed dynamic changes in both the promoter and the gene 

body as a function of ploidy levels while changes in H3K9ac were most important in the gene 

body. The repressed state of the genes coincided with high level of H3K27me3 and chromatin 

compaction while gene activation with a reduced level of H3K27me3 and an increased 
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H3K9ac/H3K27me3 ratio. The increased H3K9ac levels correlated with higher gene expression 

and open chromatin conformation. These data suggest that activities of the NCRs are 

dynamically regulated by their chromatin modifications. 

4.2.5. Conclusions 

These analyses show that the temporal/spatial expression of NCRs in nodules correlate 

with growing ploidy levels and changes in the epigenome during the ENR cycles, contributing 

likely to the regulation of NCR expression. Differential DNA methylation was found in only a 

small subset of symbiotic nodule-specific genes but it was detected in more than half of the 

NCR genes. This suggests that, surprisingly, the NCR genes are regulated differently from other 

nodule-specific genes which is in line with a report showing that the nodule specific MtDME 

DNA demethylase is key for the expression of many NCR genes (Satgé et al. 2016). Expression 

of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, 

in at least a subset of tested genes, with reduced H3K27me3 levels combined with enhanced 

H3K9ac levels. Our results suggest that ENR-dependent epigenetic changes contribute to 

transcriptional reprogramming and differentiation of symbiotic cells.  
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5. DISCUSSION 

In this study, we showed that NCR genes are among the most specifically expressed genes 

in M. truncatula. Moreover, endoreduplication and the intracellular presence of rhizobia is 

required for NCR gene activation. The particular expression pattern of the NCR gene family 

suggested the involvement of epigenetic mechanisms in their transcriptional control and 

therefore, we investigated at whole genome level how DNA methylation, specific histone 

modifications and opening or closing of the chromatin correlate with gene expression. By 

identifying ploidy-specific DNA methylation, repressive H3K27me3 and activating H3K9ac 

histone marks and chromatin accessibility profiles of differentially expressed genes, we get a 

first view of a multi-layered epigenetic control of symbiotic cell differentiation. Our findings 

are a step forward in the understanding of the extremely tight regulation of NCR genes. 

5.1. NCR genes are expressed during symbiosis in the rhizobia infected 

nodule cells 

The NCR genes represent one of the largest and most diverse multigenic families in plants, 

which has been discovered in nodules of M. truncatula (Mergaert et al. 2003). NCR expression 

has been analysed so far with various methods (RT-PCR, in situ hybridization, immuno-

localization, promoter-marker gene fusions, EST-analysis, macro- and microarrays, RNA-seq) 

and these studies detected NCR expression exclusively in nodules (Van de Velde et al. 2010; 

Farkas et al. 2014; Mergaert et al. 2003; Alunni et al. 2007; Nallu et al. 2013; Maunoury et al. 

2010; Tesfaye et al. 2013; Sels et al. 2008; Roux et al. 2014). In this study, the expression 

pattern of 334 NCR genes was analysed over 267 different experiments including 9 plant 

organs, biotic and abiotic growth conditions and different developmental stages using the 

MtGEA and additional published transcriptome data. We showed that the hundreds of NCR 

genes encoding defensin-like peptides are activated only in nodules, except for five NCRs, 

which showed relaxed specificity. Out of these atypically expressed genes, NCR218 and 

NCR122 showed high expression level in uninfected nodule and root cells. Immunolocalization 

of the NCR122 peptide revealed its presence in the uninfected nodule cells. Thus, NCR122 and 

most likely also NCR218 are the only NCR peptides that are specific to uninfected root and 

nodule cells. NCR genes are expressed in nodules but in no other plant organs or in response to 

phytohormones or drought and salt stress. During symbiosis, none of the NCR genes are induced 

by Nod factors and they are not activated in nodules before rhizobia are released in the host 
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cells and symbiotic cells are not formed. We also showed that NCR genes are also not involved 

in degradation of symbiotic host cells and bacteroids during nodule senescence since their 

expression shuts down when senescence is initiated therefore NCR peptides are not used by the 

plant to kill rhizobia.  

5.2. NCRs are not involved in innate immunity 

NCRs resemble antimicrobial peptides such as defensins of the innate immunity and many 

NCR peptides, in particular the most cationic ones, have a strong in vitro antimicrobial activity 

against a diversity of Gram-negative and Gram-positive bacteria including human and plant 

pathogens as well as fungi (Van de Velde et al. 2010; Tiricz et al. 2013; Ördögh et al. 2014; 

Farkas et al. 2017; Balogh et al. 2014). This ex-planta killing effect is associated with pore 

formation and membrane permeabilization (Nagy et al. 2015; Mikuláss et al. 2016). Despite 

this, the NCR genes are not expressed during pathogen attack included interactions with 

bacteria, fungi, oomycetes and nematodes. They are also not expressed in “infection sensitive” 

organs like leaves, seeds and flowers which often express high levels of innate immunity 

antimicrobial peptides (Sels et al. 2008). Therefore, it seems that the NCR peptides have no 

function in innate immunity. 

5.3. NCRs are activated sequentially in different spatio-temporal waves 

The NCR genes are activated in temporal waves during nodule organogenesis, which 

correlated well with bacterial infection of the nodule cells and with a specific spatial localization 

of their transcripts from the apical to the proximal nodule zones. In situ detection of NCR 

expression has demonstrated for all the tested genes that they are specifically expressed in the 

symbiotic nodule cells but different subsets of NCR genes are activated at different 

developmental stages (Van de Velde et al. 2010; Farkas et al. 2014; Mergaert et al. 2003, this 

work). The NCR genes are not activated by Nod factors during the very early stages of the 

nodule organogenesis when infected cells are not yet formed and in the nodule meristem (this 

work, Nallu et al. 2013; Maunoury et al. 2010). During the development of wild-type nodules, 

they are activated in consecutive waves and their first appearance coincides with the formation 

of infected symbiotic cells (Maunoury et al. 2010). We showed that NCR genes are activated 

during nodule development in at least three temporal waves corresponding to specific spatial 

expression patterns. Genes activated early in nodule development are expressed in the more 

distal nodule parts (close to the apex) while genes activated late during development are 
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expressed in the proximal nodule tissues. In addition, certain clusters of genes, once activated, 

maintain their activity when the tissues grow older while other clusters are characterized by a 

decline of their expression in the older nodule cells. Our spatial analysis of NCR expression is 

in strong agreement with a recently published study that used LCM of nodule zones coupled to 

RNA-Sequencing (Roux et al. 2014).  

Transcriptome analysis of non-functional nodules formed by bacterial or plant symbiotic 

mutants arrested at different stages of nodule development, is also in agreement with the 

symbiotic nodule cell specific expression of all NCR genes and their transcriptional activation 

in the polyploid symbiotic cells (Maunoury et al. 2010). For example, in nodules of the M. 

truncatula TE7 mutant which is affected in the IPD3 gene (Horvath et al. 2011; Ovchinnikova 

et al. 2011) and in nodules infected by the S. meliloti exoY mutant, no infected symbiotic cells 

are formed and nodule ploidy is lower, consequently these nodules do not express any of the 

NCR genes (Maunoury et al. 2010). On the contrary, in nodules infected by the S. meliloti bacA 

mutant which contain symbiotic cells with undifferentiated bacteroids, a subset of NCR genes 

is activated. In other mutants, forming normal symbiotic cells with differentiated bacteroids, 

NCR genes are activated to a similar extent as in the wild type (Nallu et al. 2013; Maunoury et 

al. 2010). Together, the expression pattern of the NCR genes suggests that the endosymbiotic 

rhizobia in the host cells are the only targets of the peptides. However, the distinct spatio-

temporal profiles and their high sequence variety clearly indicate that NCR peptides have many 

different roles. Subsets of NCR genes that are expressed during the early stages of symbiotic 

cell formation might be involved in cell division arrest, elongation and polyploidization of the 

bacteroids, while others that are active in later stages of symbiotic cell formation or even after 

the completion of the symbiotic cell differentiation might have other functions in the bacteroids 

like influencing their metabolism (Kereszt et al. 2011).  

5.4. NCR genes are differentially expressed according to the ploidy level of 

the differentiating symbiotic cells 

Among other things, we showed in this study that nodule organogenesis is accompanied 

with major changes in the gene expression program (Maunoury et al. 2010; Roux et al. 2014, 

this work). In situ transcript localization, promoter-reporter gene fusions revealed that early 

genes are activated in young differentiating symbiotic cells while late genes in mature nitrogen-

fixing cells (Mergaert et al. 2003; Maunoury et al. 2010; Van de Velde et al. 2010; Farkas et al. 

2014; Roux et al. 2014, this work) and this pattern suggested that their expression could be 
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coupled to specific ploidy levels. The expression pattern of selected nodule-expressed and 

nodule-specific genes in sorted 4C, 8C, 16C and 32C nuclei was correlated with their spatial 

expression pattern in nodules (Roux et al. 2014). We found that activation of the early clusters 

I-IV genes occurs in the 4C post-meristematic cells whereas cluster V-VI and group 1 NCR 

genes are activated in the distal (ZIId) and proximal parts (ZIIp) of ZII with 8C and 16C while 

the genes in clusters VII-VIII and group 3 NCRs are induced during later stages of nodule 

development in the IZ and ZIII in high ploidy level cells of 32C and 64C. We found very good 

correlation between the known spatial NCR expression patterns and the expression profiles in 

the nuclei of different ploidy levels.  

5.5. NCR genes are among the most specifically expressed genes in M. 

truncatula 

Quantifying the specificity of expression with the Shannon entropy factor reveals that the 

NCR genes, and more generally, nodule-specific genes are among the most specifically 

expressed genes in M. truncatula. This suggests that nodulation in Medicago is in large part 

depending on genes solely dedicated to this symbiotic process. These genes may be the results 

of gene duplications followed by neo-functionalization (for example the DNF2 protein (Bourcy 

et al. 2013) which has non-symbiotic homologues) or they may be unique for the symbiosis 

(possibly the NCRs, GRPs, SNARPs and others). In addition to that, the expression of the NCR 

genes in nodules reaches very high levels. Even if certain NCR genes are expressed at a low 

level, the majority of them are among the highest expressed genes in the whole genome of 

Medicago. This is in agreement with a previous estimation, based on EST counts, that all NCR 

mRNAs together constitute almost 5% of the total mRNA population in nodules (Mergaert et 

al. 2003). Genes with high tissue-specific expression (expression in a single or limited number 

of tissues as opposed to ubiquitous expression in all tissues) are silenced during most of the 

plant growth. Gene silencing can be achieved by different mechanisms such as small RNAs, 

DNA methylation but also by chromatin compacting mediated by H3K27me3 and PcG protein 

complexes.  
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5.6. Differential DNA methylation is rare but predominant in the NCR 

gene family 

Nodules derive from cortical cells in the root elongation-differentiation zone. Induced by 

the Rhizobium signal molecules, the Nod factors, cortical cells dedifferentiate and enter the 

mitotic cycle. Proliferation of these cells leads to the establishment of the meristem. DNA 

methylation in the meristematic cells represents the initial and likely, the most methylated status 

of DNA. Cells leaving the meristem and infected with rhizobia undergo consecutive waves of 

transcriptional reprogramming and this differential gene expression is coupled to ploidy level 

increases. The dynamics of DNA methylation at single-base resolution was assessed in 

uninfected (4C) and symbiotic cells (32C). The highest fraction of mCs was observed in CG 

context followed by CHG and CHH in both cell types, which was consistent with previous 

studies and indicates the importance of CG methylation. The effect of DNA methylation on 

repressing gene expression may be mediated either directly or indirectly via some 

transcriptional regulatory proteins, which can recognize mCs in the promoter regions and via 

recruitment of methyl CG-binding proteins to remodel chromatin and regulate gene expression. 

Another mechanism of gene silencing via inhibition of transcription activator binding due to 

promoter DNA methylation has also been reported (Watt & Molloy 1988; Medvedeva et al. 

2014; Nan et al. 1998). However, evidence is emerging that some TFs can bind to methylated 

DNA and activate gene expression (Zhu et al. 2016). High level of DNA methylation of 

promoters usually provokes gene silencing, while demethylation was expected to play a major 

role in gene activation. In addition, we hypothesised that endoreduplication of the symbiotic 

nodule cells could lead to passive loss of DNA methylation during the consecutive endocycles, 

which is in line with the downregulation of MtMET methyltransferase gene in the symbiotic 

cells. However, only a small subset of early- and late genes exhibited methylation change 

between the 4C and 32C cells, which indicates that the DNA methylation state of the 4C cells 

has been copied for many genes during the repeated endoreduplication cycles. Unlike most 

protein-coding genes, NCRs behaved differently as out of 375 genes 164 became 

hypomethylated. This finding is in line with the recently reported upregulation of the nodule-

specific MtDME DNA demethylase in the interzone cells as well as with downregulation of 

NCR genes in the MtDME RNA interference lines (Satgé et al. 2016). The differential 

methylation patterns that we observed could be in large part the consequence of the action of 

MtDME. Why the activation of certain NCR genes is associated with demethylation and not the 

others requires further investigation.  
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An attractive possibility for the importance of differential DNA methylation for the 

expression of a subset of NCR genes might be related to the presence of TEs (Satgé et al. 2016). 

Plant genomes are rich in TEs, which are usually maintained transcriptionally silent. This 

silencing of TEs may also affect neighbouring genes and NCR gene activation may thus require 

demethylation mediated by MtDME. Similarly, in Arabidopsis active demethylation of TEs 

correlated with up-regulation of neighbouring stress responsive genes (Le et al. 2014). Many 

transposon genes in Medicago are activated concomitantly with the NCRs during symbiotic cell 

differentiation (Satgé et al. 2016). Moreover, TEs can provide cryptic promoters or cis-acting 

regulatory sites behaving as enhancers, which can influence expression patterns or expression 

level of proximal genes.  

5.7. Chromatin accessibility changes with the ploidy levels 

Chromatin structure has been implicated in developmental and tissue-specific regulation of 

a number of genes in both plants and animals. Dynamic opening and closing of the chromatin 

at different ploidy levels of the nodule cells correlated well with the active/repressed expression 

state of the genes. We also found that open chromatin alone was not sufficient for gene 

activation. Although, the chromatin accessibility showed small variations at the 4 ploidy levels 

the less condensed chromatin state was found in mature symbiotic cells with 32C. Thus, tissue-

specific and developmental-stage specific expression patterns in the nodule are accompanied 

by dynamic alterations in chromatin structure. Chromatin reorganisation was particularly 

important close to or at the TSS. Early genes exhibited highest accessibility in 4C and 8C cells 

while late genes in 16C and 32C. Various studies have demonstrated that while increased 

chromatin accessibility generally precedes transcription activation, structural changes alone are 

often insufficient for gene activation (Armstrong & Emerson 1998; Pazin et al. 1994). 

Differential nodule-specific expression patterns are accompanied by discrete changes in local 

chromatin structure of the analysed genes. Growing evidence suggests that DNA methylation 

can influence other epigenetic modifications and can have an effect directly on the chromatin 

structure (Hussein et al. 2014; Lee et al. 2014). We also found that change in chromatin 

accessibility was not tightly linked to DNA methylation, as it occurred also when the DNA 

methylation status was not affected by the ploidy. Moreover, the degree of chromatin opening 

did not always show a direct correlation with the level of DNA methylation. TEs may change 

chromatin modifications in regions near genes, which in turn can influence gene expression 
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levels. Thus, increase in transposable element expression during differentiation further 

supported that reprogramming led to a transient opening of the chromatin. 

5.8. Histone modifications: The level of H3K27me3 is crucial for gene 

expression and is epistatic over H3K9ac 

We analysed the repressive H3K27me3 and the activating H3K9ac profile of selected 

symbiosis-specific genes from different spatial and temporal expression classes in growing 

ploidy nuclei. The H3K27me3 marks were predominant in the 4C cells and are likely essential 

for the repressed state of NCRs and other symbiotic genes. The H3K27me3 marks were 

dramatically reduced in the 8C and 16C cells and increased again in the 32C cells. Such a 

reduction of the H3K27me3 marks could be sufficient for gene activation of the NCR117 and 

ENOD12 genes, which are already activated in 8C cells. For the NCR084 and NCR001 genes, 

which are activated from 16C on, reduced H3K27me3 marks together with the presence of the 

active H3K9ac marks and accessible chromatin structure contributed to gene activation. NCRs 

in 32C cells are usually expressed at very high levels, which in addition to reduced H3K27me3 

have also the active H3K9ac marks in the gene body and the promoter and an open chromatin 

structure. On the other hand, in the case of early genes, the increase of H3K27me3 marks 

correlated with their repression in the 32C cells. The primary role of the H3K27me3 mark in 

regulation of these genes is in line with previous observations that deposition and dynamic 

regulation of the H3K27me3 mark are important in controlling tissue-specific gene expression 

and plant cell differentiation (Lafos et al. 2011). The widespread loss of H3K27me3 was 

accompanied with expression of the H3K27me3 demethylases KDM6a and low expression of 

the PRC2 complex members that catalyse trimethylation of H3K27 and a general opening of 

the chromatin (Hussein et al. 2014). Moreover, the global reduction of H3K27me3 lead to a 

loss of heterochromatin on TEs - since their silencing is linked to heterochromatin formation – 

and their expression was high during reprogramming. The two antagonistic histone 

modifications described here are consistent with previous studies in yeast, mouse, human and 

plants, and support a model in which H3K9ac enhances gene expression, while H3K27me3 

represses it. Moreover, H3K27me3 and DNA methylation can suppress the positive effect of 

H3K9ac on gene expression level and that the combination of the two repressive modifications 

is probably even more effective (Zhou et al. 2010; Zilberman et al. 2007; Zhang et al. 2007).  
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5.9. Epigenome reconfiguration in endoreduplication-driven cell 

differentiation 

Our results are consistent with studies of somatic cell reprogramming and cellular 

differentiation in plants and animals, showing that gene expression is controlled by multiple 

regulatory processes from nucleosome positioning, through histone modification and DNA 

methylation (Hussein et al. 2014; Lee et al. 2014; Huang et al. 2015). We propose that the 

dynamic changes in the chromatin environment that we described here determine the cell-type 

specific transcriptional program by turning on or off the temporally and spatially expressed 

nodule-specific genes and therefore contribute to symbiotic cell differentiation. Importantly, 

these remodelling is associated with the ENR process that drives this differentiation. ENR is 

widespread in plants and can be found in many cell types, especially in those undergoing 

differentiation and expansion (Kondorosi et al. 2000; Larkins et al. 2001; Bramsiepe et al. 

2010). Well studied examples are the endosperm in seeds, the root hairs and trichomes or the 

root cortical cells, which are all formed through ENR (Vanstraelen et al. 2009; Sugimoto-

Shirasu et al. 2005; Bourdon et al. 2012; Wildermuth 2010). Bramsiepe et al. (2010) 

demonstrated that by compromising ENR, trichome fate could change to epidermal pavement 

cell fate and conversely they could restore the trichome fate by promoting ENR. In addition, 

the establishment of many plant-biotrophic interactions, and notably the formation of the plant 

cells that are at the interface with the microbial partner, require ENR. These interactions include 

the nodules discussed here but also mycorrhiza, or pathogenic interactions with powdery 

mildews and nematodes (Wildermuth 2010). Similar epigenetic processes as the ones we 

described here during the differentiation of nodule symbiotic cells could also be of importance 

in these other ENR-mediated differentiation programs. On the other hand, the formation of 

symbiotic nodule cells in M. truncatula involves the activation of a very specific transcriptional 

program, involving genes only expressed in these cells (Roux et al. 2014; Maunoury et al. 2010, 

this work). It is unclear if these other cellular differentiation processes involve a similarly 

profound transcriptional reprogramming and if they therefore require the same strict regulatory 

controls as the symbiotic nodule cells. 

5.10. Concluding remarks 

Symbiotic nodule cells represent an attractive model for studying ploidy-dependent 

epigenetic changes. During symbiotic cell differentiation in M. truncatula, patterns of 
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developmental stage-specific gene expression are established. It is generally assumed that 

tissue-specificity is achieved through the action of selective, cell-type restricted TFs. However, 

additional levels of control in vivo strongly relies on the chromatin structure that restricts access 

to regulatory proteins. We showed that NCR genes are tightly regulated in a spatio-temporal 

manner during nodulation by epigenetic modifications, which play a crucial role in the 

modulation of the chromatin structure.  

In the future by correlating ploidy-specific transcriptomes with the map of open chromatin 

assessed by ATAC-seq will enable to identify potential cis-regulatory elements that operate in 

differentiation-stage specific manner in the nodule cells. By identifying 4C, 8C, 16C and 32C 

specific ATAC-seq peaks overlapping with known TF binding sites or using de novo TF binding 

motif analysis transcriptional regulatory elements such as enhancers involved in the very 

specific regulation of symbiotic cell-specific genes could be discovered.  
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Table 1. Primers used for the amplification and cloning of the promoters. 

attB4FWD_NCR001    GGGGACAACTTTGTATAGAAAAGTTGGTTGTCCTTATTAGAGCGCC 

attB1REV_NCR001     GGGGACTGCTTTTTTGTACAAACTTGTATGTTTCATCCTTTGAACG  

attB4FWD_NCR084    GGGGACAACTTTGTATAGAAAAGTTGGCGAGAAAGGAAGGGAAGAA 

attB1REV_NCR084     GGGGACTGCTTTTTTGTACAAACTTGTATTTTTCTCCCTTTACATG  

attB4FWD_NCR121    GGGGACAACTTTGTATAGAAAAGTTGTCCTTCTATGCATGTTCAAA  

attB1REV_NCR121     GGGGACTGCTTTTTTGTACAAACTTGGTTTTTCCCTCTTTATAGGT 
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Table 2. Primers used for RT-qPCR experiment. 

Mt4.0v1-JCVI  Primer name Primer sequence 

Medtr6g071090 Mtc27_F GGAGGTTGAGGGAAAGTGG 

 Mtc27_R CACCAACAAAGAATTGAAGG 

Medtr3g013635 Mt40S_F CCGCAAGGACTGTTCAAGAT 

 Mt40S_R TATCGGTCCATTCTGGAAGC 

Medtr4g088285 NCR117_F ACGTCAGACGTCAGACAGAGC 

 NCR117_R TCGCGACAATGACAATTACC 

Medtr3g415650 ENOD12_F AAGGAATCACCGACGCATAG 

 ENOD12_R ATGCTCTTGACCTGGCCATA 

Medtr3g065710 NCR084_F AAAGTTTTGCCACGGGTATG 

 NCR084_R TTTCCCAATGGCCAATAGAT 

Medtr6g463200 NCR001_F GAGGACTGAAACTAGAATGCTTACC 

 NCR001_R CACCCACAAAAACCATCAAA 

Medtr6g021615 NCR122_F GCTTCTGTCTTAGCAGTGGCA 

 NCR122_R TTGAGGAGCCCAACTCACAT 
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Table 3. Primers used for MeDIP-qPCR and ChIP-qPCR experiment. 

Primer name Primer sequence 

NCR117-1F TGGCTATAAACATTTTACATACCTTGA 

NCR117-1R GGTATCACTGCACCAAACGA 

NCR117-2F TCGTTTGGTGCAGTGATACC 

NCR117-2R TCCCGACCAAATTTTAGCTG 

NCR117-3F CAGCTAAAATTTGGTCGGGA 

NCR117-3R TGCAACCATATATCCCCATACA 

NCR117-4F TGTATGGGGATATATGGTTGCA 

NCR117-4R CTCACGGCGATACATCACAT 

NCR117-5F ATGTGATGTATCGCCGTGAG 

NCR117-5R CCATATTTTGCCTCCCTTGA 

NCR117-6F TCAAGGGAGGCAAAATATGG 

NCR117-6R AGGCGGCTCTGTCTCTGTAA 

NCR117-7F TTACAGAGACAGAGCCGCCT 

NCR117-7R AAATCCACGGAAGGAACAAA 

NCR117-8F TTTGTTCCTTCCGTGGATTT 

NCR117-8R AAAATCAACATGATCTTTGTTCAAG 

ENOD12-1F   GTATTGGCGCTTTTTGAGGA 

ENOD12-1R  CCCTTCAAGCTTCAGGAAAG 

ENOD12-2F     CGGTTTCCTCAAATTCATGG 

ENOD12-2R  TGGTTGCAAGTACTCGGATG 

ENOD12-3F ATTGCAGGCCTTCCATAAAA 

ENOD12-3R AATTCAATTTTGGCCTTGAAA 

ENOD12-4F ATTCCACGTACACCAATACGTTC 

ENOD12-4R AGTAGTTAGGGGCCTCAATGG 

ENOD12-5F  CCTGATTATTCCCTAAATCCCTA 

ENOD12-5R GTGGTGGCCTATAAGCAGGA 

ENOD12-6F   AAGGAATCACCGACGCATAG 

ENOD12-6R    ATGCTCTTGACCTGGCCATA 

ENOD12-8F    AAACCAAAATGATTTAGCAATGG 

ENOD12-8R GGTTTGATTTCAAATTAATTTATTGC 

NCR084-1F   CGCCATCTTTATCAATCAACAA 

NCR084-1R   TTTTCAGCGGAGACAATTCC 

NCR084-2F GCCTACTCCCTACGTCCATT 

NCR084-2R   GGAAAACATGGGTGAGATGG 

NCR084-3F   TTTCCCATATGCCCTCTTTC 

NCR084-3R   GGCATTTGCCAGTTGAGCTA 

NCR084-4F   TTTTCAGTGGATTACCACTTCATC 

NCR084-4R   TGGCAAAACTTTCTGCAACA 

NCR084-5F   TGAATTTTGTTTTGTGAAGGATTC 

NCR084-5R   TTTCCCAATGGCCAATAGAT 

NCR084-6F   CGGTTTCCATTCATCTACTGTG 

NCR084-6R   AGATCGAGGAGGGAAGATCC 



 

147 

 

NCR084-7F   CACTCCTCGGATTTGAAAAA 

NCR084-7R   TAAACTTCGCCACGAGTTCC 

NCR084-8F   CAACTTGCACTTGACGAACC 

NCR084-8R   AAGCATACATGCCCTTCACC 

NCR001-15F TTGGGGTTTTCAGAAGAGC 

NCR001-15R GGGTTTTGTTGCTGAGTTCC 

NCR001-17F TGAAGAACATGGAGGTGCAA 

NCR001-17R TTCCTCTCCTCGAGCTATGC 

NCR001-19F GATTTTGGATCGTTGAACGC 

NCR001-19R GAGAAAGGGAACCAAACACAA 

NCR001-21F GCTGGTTTGGTAGGTAAGTCG 

NCR001-21R CCAAAAAATAATTCAACTTTATGATG 

NCR001-23F GTTTAATGTGAAATGCATGAAAGA 

NCR001-23R TGCTCTTAGAAGTAACAAAAAGCAA 

NCR001-25F TTCAAAGGATGAAACATATGGC 

NCR001-25R TGGTGTGAAAAATGCTTACG 

NCR001-27F TCCTTGCACTTCTGACGCTA 

NCR001-27R TGTGATATCCCCTGGTTTCG 

NCR001-29F TGTGTATGCTGCACTCTTTTT 

NCR001-29R CTATGCCAAAACCCAAGGAA 

NCR001-31F TGATGCCTATGTACGTCGTTG 

NCR001-31R TGCAATATCTTTAATGACCAAATGA 

NCR122-1F GGACAACCATGACACATCAAA 

NCR122-1R TTGCCTACTCATATTTGTCTCG 

NCR122-2F CGAGACAAATATGAGTAGGCAA 

NCR122-2R CAAAAACAACATGCCATCCTT 

NCR122-4F TTGGAATGCTTTCGTTAAAGA 

NCR122-4R TGTGTAGCAAATAGAAGATTGTTTGA 

NCR122-5F TCAAACAATCTTCTATTTGCTACACA 

NCR122-5R GGAATCTGAGGTCCGGTACA 

NCR122-6F TGTACCGGACCTCAGATTCC 

NCR122-6R ATGCTTCTTTGCCACCTGTC 

NCR122-7F GACAGGTGGCAAAGAAGCAT 

NCR122-7R TTGAGGAGCCCAACTCACAT 

NCR122-8F ATGTGAGTTGGGCTCCTCAA 

NCR122-8R AACCCAGCAAATGCTTGAAC 
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Table 4. ATAC-seq oligos used for PCR. 

Ad1  AATGATACGGCGACCACCGAGATCTACACTCGTCGGCAGCGTCAGATGTG 

Ad2.1  TAAGGCGACAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCGGAGATGT 

Ad2.2  CGTACTAGCAAGCAGAAGACGGCATACGAGATCTAGTACGGTCTCGTGGGCTCGGAGATGT 

Ad2.3  AGGCAGAACAAGCAGAAGACGGCATACGAGATTTCTGCCTGTCTCGTGGGCTCGGAGATGT 

Ad2.4  TCCTGAGCCAAGCAGAAGACGGCATACGAGATGCTCAGGAGTCTCGTGGGCTCGGAGATGT 

Ad2.5  GGACTCCTCAAGCAGAAGACGGCATACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGT 

Ad2.6  TAGGCATGCAAGCAGAAGACGGCATACGAGATCATGCCTAGTCTCGTGGGCTCGGAGATGT 

Ad2.7  CTCTCTACCAAGCAGAAGACGGCATACGAGATGTAGAGAGGTCTCGTGGGCTCGGAGATGT 

Ad2.8  CAGAGAGGCAAGCAGAAGACGGCATACGAGATCCTCTCTGGTCTCGTGGGCTCGGAGATGT 

Ad2.9  GCTACGCTCAAGCAGAAGACGGCATACGAGATAGCGTAGCGTCTCGTGGGCTCGGAGATGT 

Ad2.10  CGAGGCTGCAAGCAGAAGACGGCATACGAGATCAGCCTCGGTCTCGTGGGCTCGGAGATGT 

Ad2.11  AAGAGGCACAAGCAGAAGACGGCATACGAGATTGCCTCTTGTCTCGTGGGCTCGGAGATGT 

Ad2.12  GTAGAGGACAAGCAGAAGACGGCATACGAGATTCCTCTACGTCTCGTGGGCTCGGAGATGT 

Ad2.13  GTCGTGATCAAGCAGAAGACGGCATACGAGATATCACGACGTCTCGTGGGCTCGGAGATGT 

Ad2.14  ACCACTGTCAAGCAGAAGACGGCATACGAGATACAGTGGTGTCTCGTGGGCTCGGAGATGT 

Ad2.15  TGGATCTGCAAGCAGAAGACGGCATACGAGATCAGATCCAGTCTCGTGGGCTCGGAGATGT 

Ad2.16  CCGTTTGTCAAGCAGAAGACGGCATACGAGATACAAACGGGTCTCGTGGGCTCGGAGATGT 

Ad2.17  TGCTGGGTCAAGCAGAAGACGGCATACGAGATACCCAGCAGTCTCGTGGGCTCGGAGATGT 

Ad2.18  GAGGGGTTCAAGCAGAAGACGGCATACGAGATAACCCCTCGTCTCGTGGGCTCGGAGATGT 

Ad2.19  AGGTTGGGCAAGCAGAAGACGGCATACGAGATCCCAACCTGTCTCGTGGGCTCGGAGATGT 

Ad2.20  GTGTGGTGCAAGCAGAAGACGGCATACGAGATCACCACACGTCTCGTGGGCTCGGAGATGT 

Ad2.21  TGGGTTTCCAAGCAGAAGACGGCATACGAGATGAAACCCAGTCTCGTGGGCTCGGAGATGT 

Ad2.22  TGGTCACACAAGCAGAAGACGGCATACGAGATTGTGACCAGTCTCGTGGGCTCGGAGATGT 

Ad2.23  TTGACCCTCAAGCAGAAGACGGCATACGAGATAGGGTCAAGTCTCGTGGGCTCGGAGATGT 

Ad2.24  CCACTCCTCAAGCAGAAGACGGCATACGAGATAGGAGTGGGTCTCGTGGGCTCGGAGATGT 
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Table 5. GO term enrichment of M. truncatula genes with differential DNA 

methylation. 

Hypomethylated genes (n=2488) 

GO ID Term 

type 

Term Query 
item 

Query 

total 

Back-

ground  

item 

Back- 

ground 

total 

P-

value 

FDR 

GO:0009878 biological 

process 

nodule 

morphogenesis 

90 757 378 15474 1,40E-

31 

5,50E-

29 

GO:0046872 molecular 

function 

metal ion 

binding 

145 757 1953 15474 4,50E-

07 

8,60E-

05 

GO:0046039 biological 

process 

GTP metabolic 

process 

5 757 16 15474 0,0024 0,21 

GO:0008238 molecular 

function 

exopeptidase 

activity 

10 757 74 15474 0,0056 0,8 

GO:0051258 biological 

process 

protein 

polymerization 

5 757 22 15474 0,0075 0,59 

GO:0009205 biological 

process 

purine 

ribonucleoside 

triphosphate 

metabolic 

process 

10 757 80 15474 0,0091 0,59 

GO:0043623 biological 

process 

cellular protein 

complex 

assembly 

6 757 37 15474 0,014 0,87 

GO:0003924 molecular 

function 

GTPase activity 13 757 134 15474 0,02 1 

GO:0005529 molecular 

function 

sugar binding 14 757 150 15474 0,021 1 

GO:0016840 molecular 

function 

carbon-nitrogen 

lyase activity 

5 757 30 15474 0,022 1 

GO:0033177 cellular 

component 

proton-

transporting two-

sector ATPase 

complex, proton-

transporting 

domain 

5 757 32 15474 0,028 1 

GO:0030246 molecular 

function 

carbohydrate 

binding 

14 757 163 15474 0,038 1 

GO:0004185 molecular 

function 

serine-type 

carboxypeptidase 

activity 

7 757 61 15474 0,039 1 

GO:0019001 molecular 

function 

guanyl 

nucleotide 

binding 

18 757 230 15474 0,043 1 
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Hypermethylated genes (n=1807) 

GO ID Term 

type 

Term Query 

item 

Query 

total 

Back- 

ground 

item 

Back- 

ground 

total 

P-

value 

FDR 

GO:0016567 biological 

process 

protein 

ubiquitination 

6 534 41 15474 0,0045 1 

GO:0070647 biological 

process 

protein 

modification by 

small protein 

conjugation or 

removal 

6 534 42 15474 0,005 1 

GO:0004842 molecular 

function 

ubiquitin-

protein ligase 

activity 

6 534 43 15474 0,0055 1 

GO:0019787 molecular 

function 

small 

conjugating 

protein ligase 

activity 

6 534 43 15474 0,0055 1 

GO:0016798 molecular 

function 

hydrolase 

activity, acting 

on glycosyl 

bonds 

25 534 412 15474 0,0064 1 

GO:0019748 biological 

process 

secondary 

metabolic 

process 

5 534 32 15474 0,0073 1 

GO:0000151 cellular 

component 

ubiquitin ligase 

complex 

7 534 67 15474 0,012 1 

GO:0043414 biological 

process 

macromolecule 

methylation 

6 534 52 15474 0,013 1 

GO:0004553 molecular 

function 

hydrolase 

activity, 

hydrolyzing O-

glycosyl 

compounds 

23 534 395 15474 0,013 1 

GO:0006730 biological 

process 

one-carbon 

metabolic 

process 

6 534 56 15474 0,017 1 

GO:0016881 molecular 

function 

acid-amino acid 

ligase activity 

9 534 118 15474 0,026 1 

GO:0043234 cellular 

component 

protein 

complex 

28 534 546 15474 0,029 1 

GO:0005975 biological 

process 

carbohydrate 

metabolic 

process 

32 534 651 15474 0,034 1 

GO:0016879 molecular 

function 

ligase activity, 

forming 

carbon-nitrogen 

bonds 

10 534 152 15474 0,045 1 

GO:0016020 cellular 

component 

membrane 85 534 2049 15474 0,045 1 

 

 


