
HAL Id: tel-01708299
https://theses.hal.science/tel-01708299

Submitted on 13 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed criticality management into real-time and
embedded network architectures : application to

switched ethernet networks
Olivier Cros

To cite this version:
Olivier Cros. Mixed criticality management into real-time and embedded network architectures :
application to switched ethernet networks. Operations Research [math.OC]. Université Paris-Est,
2016. English. �NNT : 2016PESC1033�. �tel-01708299�

https://theses.hal.science/tel-01708299
https://hal.archives-ouvertes.fr

THESE
en vue de l’obtention du titre de

DOCTEUR
de l’université Paris-Est Marne-La-Vallée

Spécialité: Informatique

Olivier Cros

Mixed criticality management into real-time and embedded
network architectures: application to switched Ethernet

networks

Gestion de la criticité mixte dans les réseaux temps-réel
embarqués et application à Ethernet commuté

soutenue le 8 décembre 2016

Directeur Laurent George ESIEE, Paris
Rapporteurs Claire Pagetti ONERA, Toulouse

Christian Fraboul IRIT, Toulouse
Examinateurs Cherif Larouci ESTACA, Saclay

Rami Langar UPEM, Marne-La-Vallée
Xiaoting Li ECE, Paris

Invité Matthieu Jan CEA, Saclay

Mixed criticality management into real-time and embedded
network architectures: application to switched Ethernet

networks

Gestion de la criticité mixte dans les réseaux temps-réel
embarqués et application à Ethernet commuté

Olivier Cros

PhD prepared in ECE Paris - LACSC
Laboratoire d’Analyse et de Contrôle des Systèmes Complexes
Ecole Centrale D’Electronique
37 quai de Grenelle, CS 71520
75725 Paris CEDEX 15

PhD in collaboration with UPEMLV
Université Paris-Est Marne-La-Vallée
5, boulevard Descartes
77454, Champs Sur Marne
Marne-la-Vallée Cedex 2

PhD in collaboration with LIGM
Laboratoire de l’Institut Gaspard Monge (UMR 8049 CNRS)
5, boulevard Descartes
77454, Champs Sur Marne
Marne-la-Vallée Cedex 2

PhD in collaboration with ESIEE
Ecole Supérieure d’Ingénieurs en Electrotechnique et Electronique
2 boulevard Blaise Pascal
93162, Noisy-le-Grand Cedex

All we need is somebody to lean on

RĊĒĊėĈĎĊĒĊēęĘ

”C’est curieux, chez les marins, ce besoin de faire des phrases.” [1]

Et pourtant, si l’on veut n’oublier personne, force est de constater que l’on ne peut pas tout boucler en
une seule ligne. Parce que chacun a compté, à sa manière. Tout au long de cette thèse, chaque rencontre a
été un moyen unique de s’émerveiller et de s’épanouir à nouveau. Par l’échange, par le partage, connais-
sances lointaines ou amis de longue date, par leur suivi quotidien ou par leur intervention ponctuelle,
toutes les personnes citées ici ont été pour moi d’une importance vitale au cours de cette thèse. A défaut
de tous vous remercier individuellement, ces quelques lignes vous sont dédiées.

Le jury

Il n’y a pas de thèse sans encadrement. C’est pourquoi dans ces remerciements, mes premières pensées
vont à mes encadrants. A Laurent George, tout d’abord, pour avoir accepté de diriger ce doctorat. Ce
fut un réel privilège de travailler sous sa direction. La rigueur et la maîtrise dont il fait preuve n’ont
pas été des freins1 mais bien des moteurs de progression, me poussant à toujours chercher d’avantage,
creuser un peu plus profond. Merci d’avoir su prendre le temps d’écoutermes idées, d’avoir eu la patience
proverbiale d’expliquer les mêmes choses dix fois et de m’avoir permis de mener cette thèse à son terme.

Merci à Xiaoting Li, pour ses compétences, son niveau d’exigence et son soutien. Merci de m’avoir
montré qu’arriver au bout de tout cela était possible, même dans les moments les plus délicats. Merci
de m’avoir fait profiter de son expertise tout au long de cette thèse. Merci enfin pour son humour2 et sa
bonne humeur permanente qui furent une source de motivation tout au long de ces trois ans.

Ensuite, je tiens à témoigner de mon plus profond respect aux membres de mon jury3. A Claire
Pagetti tout d’abord, pour la pertinence de ses relectures. Merci d’avoir pris le temps d’identifier les
aspects tout autant négatifs que positifs de ce manuscrit afin de me permettre des modifications essen-
tielles quant à sa présentation. Mais aussi pour avoir pris le temps de faire émerger les questions laissées
en suspens par mon travail en suggérant des recherches plus approfondies.

Merci à Christian Fraboul, relecteur également, pour avoir accepté de corriger le manuscrit et de
m’avoir fait profiter de son expérience. Ses retours, tout aussi pertinents qu’importants, ont permis de
structurer l’ensemble et de lui donner d’avantage de cohérence. Si ce manuscrit ressemble à quelque
chose, c’est grâce à lui.

Merci à Mathieu Jan, Rami Langar et Chérif Larouci pour leur aide et leurs conseils dans la relec-
ture du manuscrit et la préparation de la soutenance. Me faire l’honneur de leur présence au sein du jury
représente une marque de confiance qui me touche profondément.

1Contrairement à ses affirmations
2Sur ma silhouette fine et athlétique entre autres
3Notamment parce que ce sont eux qui m’évaluent

A tous, merci.

Cette thèse a été une source d’épanouissement sans précédent grâce aux nombreses personnes que j’ai
pu croiser au cours de ces trois ans. Merci à tous, doctorants et docteurs accomplis, enseignants motivés
et professeurs motivants de m’avoir guidé par votre présence et votre implication. Vous avez tous été de
grandes sources d’inspiration et d’idées. Dans le désordre 4, merci à Frédéric pour ses connaissances,
sa pédagogie et pour avoir accepté d’apprendre la langue de bois avec moi, Pierre Courbin qui fut un
modèle durant ces trois ans et dont les conseilsm’ont permis de garder confiance enmoi, Pierre Sauvage
sans qui je ne connaîtrais pas les plus beaux coins de Paris, Clément à qui je souhaite toutes les chances de
réussite au MIT, Thomas pour son ouverture d’esprit, son dynamisme et ses récits de voyage, Rafik pour
sa finesse et sa gentillesse et enfin Tristan, sans qui je serais totalement dépourvu de culture musicale.

Pour leur soutien et leur bonne humeur, merci à Waleed et ses références cinématographiques,
Houari et sa générosité légendaire, François Saïdi et son aide lorsque j’ai du commencer à enseigner,
François Muller pour ses conseils sur le monde académique, et enfin Ermis et Célia dont le tour de
soutenir viendra bientôt ! Merci aussi à toute l’équipe duLACSC, notammentAssia, Benaoumeur, Sebti,
Jean-François, Manolo, Aakash, Jae Yun, Noura et Mustapha .

Au cours de cette thèse, être amené à enseigner fut tout autant une source d’inspiration que de ren-
contres. Aussi, je remercie Geoffrey, Lucie et Vladimir sans qui ARTEMIS n’aurait jamais pu voir le
jour et qui m’ont beaucoup aidé à consolider les bases de ce projet.

Concevoir une thèse est difficile, mais c’est aussi la conséquence logique d’une longue phase de réflex-
ion préalable. Durant cette phase de réflexion, de nombreuses personnes m’ont aiguillé vers la recherche
et l’enseignement par leurs conseils et leur expérience. Aussi, je remercie Kévin, Jérôme, Christophe et
Cécile pour leur aide à ces moments particuliers.

Faire une thèse a toujours un côté improbable, décalé, surtout aux yeux des autres. Un côté frustrant,
aussi, de ne pas toujours pouvoir décrire ou expliquer les problèmes que l’on rencontre. Aussi je dois
beaucoup à mes amis, dont les efforts de tolérance et de solidarité ont été bien au-delà de ce qu’un être
humain normal peut supporter comme lamentations. Pour avoir enduré les crises de nerfs comme pour
avoir partagé des bières et des manettes après les mauvaises journées, merci à Nicolas, Antoine-Ali,
Thomas, Antoine, Camille, Myrina et Marine. Je ne m’étendrai pas sur ce que chacun d’entre vous
m’a apporté car je sais que vous êtes déjà conscients individuellement d’à quel point vous comptez pour
moi, en général et dans la réalisation de ce manuscrit.

Lemot de la fin

”On ne peut donner que deux choses à ses enfants : des racines et des ailes.”

A Isabelle et Sébastien, et à leurs familles respectives, un grand merci. Merci d’avoir toujours été là,
dem’avoir supporté. Merci dem’avoir proposé d’autresmoyens de penser, d’autresmoyens de percevoir.
Grâce à vous, je suis un peu plus sage et un peu moins fou.

Merci à mes parents Philippe et Mireille. Merci d’avoir su me faire pousser droit, de m’avoir donné

4Je n’ai pas appliqué d’algorithme d’ordonnancement ici

suffisamment d’ailes pour aller loin, et suffisamment de racines pour savoir vers où revenir. Cette thèse
est aussi un peu la vôtre.

Il faudrait aumoins trois ans de plus pour remercier tout lemonde à sa juste valeur. Pour ceux d’entre
vous qui feraient partie des grands oubliés, n’en prenez pas ombrage5, il ne s’agit que des facéties de ma
piètre mémoire.

Enfin, je souhaite remercier une dernière personne. Parce que sans elle tout ce projet seraitmort dans
l’oeuf. Parce que je ne louerai jamais assez sa patience face à des dingues dans mon genre. Pour m’avoir
dissuadé cent fois de tout laisser tomber, pour m’avoir convaincu cent autres fois de prendre du recul,
de remettre à plat, de repenser les choses. Pour avoir écouté toutes mes sottises, et pour être la source
d’inspiration d’une bonne majorité du contenu de ce manuscrit. Alya, merci à toi.

5Je peux payer une tournée pour compenser

Contents

I General introduction 11

1 Introduction 13

1.1 Résumé . 14

1.2 Abstract . 16

1.3 Problematics . 17

1.4 Outline . 17

1.5 List of publications . 18

2 Concepts and notations 21

2.1 About Real-Time . 22

2.1.1 What is Real-Time? . 22

2.1.2 Real-Time Systems . 23

2.1.3 Domains: What is it good for? . 23

2.2 Real-Time scheduling . 24

2.2.1 Network and processor context . 24

2.2.2 Timing analysis . 26

2.2.3 Transmission time . 27

2.2.4 Flows activation model . 28

2.2.5 Preemption . 29

2.3 Modelling . 30

2.4 Conclusion . 31

II State of the art 33

3 Real-time Networks 35

3.1 General considerations about real-time networks . 36

7

3.2 Ethernet-based solutions . 36

3.2.1 Introduction . 36

3.2.2 Commercial Off The Shelf Switched Ethernet 36

3.2.3 AFDX architecture . 41

3.2.4 AVB architecture . 43

3.2.5 Time-Triggered Protocols . 44

3.3 Clock synchronization with PTP protocol . 46

3.3.1 Synchronization . 47

3.3.2 Frames . 51

3.4 Conclusion . 52

4 End-to-end transmission delay computation 53

4.1 Introduction . 54

4.2 Other computation methods . 54

4.2.1 The holistic method . 54

4.2.2 Network calculus . 54

4.3 Trajectory approach . 55

4.3.1 Presentation . 55

4.3.2 Model with FIFO . 56

4.3.3 Non-preemptive delay . 58

4.3.4 Global delay computation . 58

4.3.5 Serialization effect . 60

4.4 Optimism in the Trajectory Approach . 63

4.4.1 Example . 63

4.4.2 Problem . 65

4.4.3 Correction of the serialization effect . 65

4.5 Notations . 66

4.6 Conclusion . 67

5 Real-Time Simulation 69

5.1 Introduction . 70

5.2 Requirements . 70

5.2.1 Functional requirements . 71

5.2.2 Architectural requirements . 71

5.3 Simulation tools . 72

8

CONTENTS

5.3.1 Functional structure . 72

5.3.2 Simulation models . 72

5.3.3 Multicore simulators . 75

5.3.4 Network simulators . 82

5.4 Task modelling . 90

5.4.1 Execution time simulation . 90

5.5 Random tasks generation . 90

5.5.1 UUniform algorithm . 91

5.5.2 Discarded tasksets correction with UUnifast . 92

5.6 Conclusion . 95

III Mixed criticality management protocols 97

6 Mixed Criticality 99

6.1 Criticality in Real-Time scheduling . 100

6.1.1 What is Mixed Criticality? . 101

6.2 Defining critical and non critical functions . 101

6.3 Mixed criticality integration in networks . 102

6.3.1 Isolation constraints . 102

6.3.2 Mixed criticality for multicore platforms . 103

6.3.3 Weak isolation . 104

6.3.4 Mixed criticality in RT networks . 104

6.4 Mixed criticality model representation . 104

6.4.1 Two solutions for criticality modelling . 105

6.4.2 Mixed criticality in nodes . 107

6.4.3 The hierarchical hypothesis . 107

6.4.4 Criticality level assignment . 109

6.5 Mixed criticality implementations and protocols . 110

6.6 Conclusion . 111

7 Centralized MC management 113

7.1 Introduction . 114

7.1.1 Mixed criticality integration . 114

7.1.2 Requirements . 117

7.2 A two-phase protocol . 118

9

7.2.1 Call phase . 119

7.2.2 Multicast phase . 119

7.2.3 Decreasing the criticality level . 123

7.2.4 Delay computation . 125

7.3 Transition phase . 134

7.3.1 Blocking approach . 135

7.3.2 Non-blocking approach . 137

7.3.3 Comparing the approches . 139

7.4 Conclusion . 142

8 Decentralized MC management 143

8.1 Introduction . 144

8.2 QoS solutions . 144

8.2.1 Example . 145

8.3 Decentralizing the mixed criticality management . 146

8.3.1 Concept . 146

8.3.2 Dual-criticality level . 146

8.3.3 Changing criticality level back to LO level . 149

8.3.4 Extension to multi-criticality levels network . 151

8.4 Conclusion . 152

IV Real-Time Networks simulation with ARTEMIS 155

9 Real Time network simulation with ARTEMIS 157

9.1 What is ARTEMIS? . 158

9.1.1 Introduction . 158

9.1.2 Functional description . 158

9.1.3 Software core . 159

9.1.4 Time-oriented scheduling algorithm . 163

9.2 Provided results . 164

9.3 User Interface . 165

9.3.1 Web-oriented architecture . 165

9.4 Conclusion . 168

10 Integrating MC in ARTEMIS 169

10

CONTENTS

10.1 Introduction . 170

10.2 Criticality management integration . 170

10.2.1 The Criticality Manager . 170

10.2.2 Criticality table . 170

10.2.3 Criticality switch delay . 171

10.3 Message generation . 171

10.3.1 Worst case and real case analysis . 171

10.3.2 Criticality changes detection . 172

10.4 Transmission time generation models . 173

10.4.1 Uniform model . 173

10.4.2 Gaussian model . 173

10.5 Simulation . 178

10.5.1 Centralized approach . 178

10.5.2 Decentralized approach . 182

10.6 Conclusion . 182

11 Mixed criticality modelling in simulation tools 185

11.1 Introduction . 186

11.2 Topology generator . 186

11.2.1 Density rate . 186

11.2.2 Generation algorithm . 187

11.2.3 Performances tests . 187

11.3 Flowset generator . 189

11.3.1 UUnifast-based generation . 190

11.3.2 Path computation . 197

11.3.3 Mixed criticality integration . 199

11.4 Conclusion . 203

12 Protocols simulation results 205

12.1 Introduction . 206

12.2 Centralized protocol . 206

12.2.1 Flowset size . 206

12.2.2 Highest Worst Case Analyzing Time (WCAT) . 207

12.2.3 Blocking and non-blocking approaches . 209

12.2.4 Impact of criticality configuration messages . 210

11

CONTENTS

12.2.5 Criticality rate . 213

12.3 Decentralized protocol . 214

12.3.1 Transmission delay - Static load . 214

12.3.2 Transmission delay - Evolutive load . 215

12.3.3 Impact on QoS . 216

12.3.4 QOS computation . 218

12.4 Conclusion . 219

V Conclusion and perspectives 221

13 Conclusion 223

13.1 Conclusion . 224

13.2 What’s next? Perspectives. 226

13.3 Personal perspectives . 229

14 Annexes 231

14.1 Mixed criticality over Ethernet protocol . 232

14.1.1 Introduction . 232

14.1.2 Criticality level integration in Ethernet . 235

14.2 Conclusion . 239

9

Part I

General introduction

11

Chapter 1

Introduction

”Le silence éternel des espaces infinis m’effraie et la seule chose qu’on puisse lui
opposer, c’est la poésie et la musique.”

”The eternal silence of these infinite spaces frightens me and the only thing we can oppose to
it is music and poetry.”

– Alexandre Astier, quoting Pascal [2]

Contents
1.1 Résumé . 14

1.2 Abstract . 16

1.3 Problematics . 17

1.4 Outline . 17

1.5 List of publications . 18

13

General introduction

1.1 RĴĘĚĒĴ

La criticité mixte est une solution pour intégrer différents niveaux de criticité dans le même système
au sein de mécanismes industriels intégrant des infrastructures réseau différentes. Notre objectif est de
proposer des solutions pour intégrer la criticité mixte dans des domaines industriels hautement con-
traints afin de mélanger des flux de différents niveaux de criticités dans la même infrastructure. Cette
intégration implique des contraintes d’isolation: l’impact du traffic non critique sur le traffic critique
doit être borné et le plus faible possible. C’est une condition indispensable pour assurer le respect des
contraintes de délai de transmission. Afin d’analyser ces délais et de centrer notre travail sur le déter-
minisme de ces transmissions, nous avons recours à une méthode de calcul de délai de bout en bout
appelée l’approche par trajectoires. Dans ce travail, nous utilisons une version corrigée de l’approche par
trajectoires, prenant en compte la sérialisation des messages.

Afin d’assurer le respect des contraintes de délai dans les réseaux à criticité mixte, nous présentons
tout d’abordunmodèle théoriqued’intégrationde la criticitémixte. Cemodèle est issu de l’ordonnancement
temps réel en contexte processeur. Il présente une modélisation des flux considérant que chaque flux
peut être de plusieurs niveaux de criticité.

Pour intégrer la criticité mixte dans les réseaux temps-réel, nous proposons deux protocoles dif-
férents. Le premier est le protocole centralisé. Il est organisé autour de la désignation d’un nœud central
dans le réseau, responsable de la synchronisation des niveaux de criticité de chaque nœud via un mécan-
isme d’émission multiple fiable. Ce mécanisme est chargé de faire changer les niveaux de criticité de tous
les nœuds au même instant. Le second protocole est basé sur une approche distribuée. Il propose une
gestion locale à chaque nœud de la criticité. Chaque nœud gère individuellement son propre niveau de
criticité interne. Ce protocole permet de préserver les transmissions d’une part du trafic non critique au
sein du réseau, même en parallèle de transmissions de flux critiques.

Afin de proposer une implémentation de ces protocoles dans Ethernet, nous détaillons comment
réutiliser la marque de l’en-tête de Etherne 802.1Q pour spécifier le niveau criticité d’un message di-
rectement au sein de la trame. Grâce à cette solution, chaque flux du réseau est marqué de son niveau
de criticité et cette information peut être décodée par les nœuds du réseau afin d’opérer un ordonnance-
ment en conséquence. Deplus, en gestion centralisée, nous proposons une solutionpermettant d’intégrer
les informations de gestion de la criticité directement dans les trames du protocole de synchronization
d’horloge Precision Time Protocol (PTP).

Durant notre travail, nous avons conçu un outil de simulation dénommé Another Real-Time Engine
for Message Integration Simulation (ARTEMIS). Cet outil est utilisé pour l’analyse de délais de transmis-
sion dans des réseaux temps-réel et pour l’analyse de scénarios d’ordonnancement à criticité mixte. Cet
outil, basé sur un mode de développement ouvert et modulaire, a été utilisé tout au long de ce travail afin
de valider les modèles théoriques par la simulation. Nous avons intégré à la fois les protocoles centralisé
et décentralisé dans le noyau d’ARTEMIS. Les résultats de simulation obtenus nous permettent de for-
muler différentes hypothèses sur les garanties de qualité de service offertes par les protocoles de gestion
de la criticité mixte. En termes de transmission de trafic non critique, le protocole décentralisé permet
d’assurer la transmission d’une certaine quantité de messages grâce au fait que certains nœuds du réseau
soient restés en mode non-critique.

14

CHAPTER 1. INTRODUCTION

Pour conclure, nous proposons des solutions d’intégration de la criticité mixte à la fois dans des
contextes industriels critiques et dans des architectures Ethernet grand public. Les solutions proposées
peuvent être à la fois adaptées à des réseaux synchronisés ou non synchronisés. Selon le protocole, la
configuration individuelle à appliquer à chaque nœud peut être réduite afin de proposer des solutions
implémentables sur du matériel moins coûteux.

15

General introduction

1.2 AćĘęėĆĈę

Mixed Criticality (MC) (Mixed Criticality) is an answer for industrial systems requiring different net-
work infrastructures to manage informations of different criticality levels inside the same system. Our
purpose in this work is to find solutions to integrate MC inside safety-critical industrial systems in order
tomix flows of various criticality levels inside the same infrastructure. This integration induces isolation
constraints: the impact of non critical traffic on critical traffic must be characterized and bounded. This
is a condition to respect timing constraints. To analyze transmission delays and focus on the determin-
ism of transmissions, we use an end-to-end delay computation method called the Trajectory Approach.
In our work, we use a corrected version of the Trajectory Approach taking into account the serialization
of messages.

To assure the respect of timing constraints in mixed critical networks, we first present a theoretical
model of MC representation. This model is issued from MC tasks scheduling on processors. This model
proposes a flow modelling which considers that each flow can be of one (low critical flows) or several
criticality levels.

To integrate MC inside Real-Time (RT) networks, we propose two network protocols. The first is
the centralized protocol. It is structured around the definition of a central node in the network, which is
responsible for synchronizing the criticality level change of each node through a reliable multicast pro-
tocol in charge of changing the network criticality level. This centralized protocol proposes solutions to
detect the needs to change the criticality levels of all nodes and to transmit this information to the central
node. The second protocol is based on a distributed approach. It proposes a local MC management on
each node of a network. Each node individually manages its own internal criticality level. This protocol
offers solutions to preserve when possible non critical network flows even while transmitting critical
flows in the network through weak isolation.

In order to propose an implementation of these protocols inside Ethernet, we describe how to use
Ethernet 802.1Q header tag to specify the criticality level of a message directly inside the frame. With
this solution, each flow in the network is tagged with its criticality level and this information can be
analyzed by the nodes of the network to transmit the messages from the flow or not. Additionnally,
for the centralized approach, we propose a solution integrating MC configuration messages into PTP
clock-synchronization messages to manage criticality configuration information in a network.

In this work, we designed a simulation tool denoted as ARTEMIS (Another Real-Time Engine for
Message-Issued Simulation). This tool is dedicated to RT networks analysis andMC integration schedul-
ing scenarios. This tool, based on open and modular development guidelines, has been used all along our
work to validate the theoreticalmodelswepresented through simulation. We integrated both centralized
and decentralized protocols inside ARTEMIS core. The obtained simulations results allowed us to pro-
vide information about the Quality Of Service (QoS) guarantees offered by both protocols. Concerning
non critical traffic: the decentralized protocol, by permitting specific nodes to stay in non critical nodes,
assures a highest success ratio of non critical traffic correct transmission.

As a conclusion, we propose solutions to integrate MC inside both industrial and Commercial Off
The Shelf (COTS) Ethernet architectures. The solutions can be either adapted to clock-synchronized or
non clock-synchronized protocols. Depending on the protocol, the individual configuration required by

16

CHAPTER 1. INTRODUCTION

each switch can be reduced to adapt these solutions to less costly network devices.

1.3 PėĔćđĊĒĆęĎĈĘ

Safety-critical industrial domains, such as spacecraft or avionics, sometimes have to change to critical
phases. These phases correspond to moments when the system increases its needs in terms of accuracy,
performances and reliability. These phases correspond to delicate situations when each parameter of
the system has to be very precisely managed. For example, we can cite the landing phase of a spaceship,
or emergency brakes situations in public vehicles. During these situations, the system enters in specific
modes, modifying its classical way of working. (MC) can be seen as a solution to represent these phases
and to manage the system behavior during them.

Thisworkproposes to integrateMC insideReal-Time (RT)networks,moreparticularly inRT switched
Ethernet networks. In industrial domains concerned by this integration problem, the purpose is to be
able to extend the MC concepts (issued from RT processor scheduling domain) to RT networks. Inte-
grating MC answers, basically, to the following question: how to privilege and assure the transmission
of specific messages in a network during critical phases? In order to provide solutions to answer to this
problem, we propose to organize our work in three different levels of abstraction.

• Modelling: How can we represent and manage MC inside RT networks? Through models which
have to be proven reliable, we want to extend MC concepts to networks and propose protocols
and methods to manage it.

• Implementation: How can we concretely implement MC in Switched Ethernet? After designing
protocols for MC management, we want to propose concrete solutions to implement these proto-
cols inside industrial infrastructures.

• Simulation: How can we build software and hardware solutions to verify our work? We want to
detail our work about RT network simulation and MC integration inside RT softwares.

In this work, we propose to detail the answers we found to these questions. All of this work is de-
signed to answer to the following global question: What is MC applied to Switched Ethernet networks?

1.4 OĚęđĎēĊ

Part II presents the state of the art of this work. It presents all the fundamental required knowledge
about RT networks we used all along our work. It is composed of three chapters. The first details the
basics of RT networks and switched Ethernet. It presents the fundamental applications of these tech-
nologies inside various industrial contexts. In the second chapter, we focus on the methods to compute
end-to-end transmission delays and measure timeliness and performances in these RT architectures.
Eventually, in the last chapter, we present the RT simulation context we focused on. By presenting vari-
ous tools and implementations, we want to propose a clear overview of RT simulation and analysis tools
and the design choices they are based on.

17

General introduction

Part III presents the different solutions for integrating MC inside RT networks. Through a first
chapter, it presents what is MC and details its meaning in RT context. It presents the different solutions
or concepts proposed in the litterature in processor context. Eventually, the chapter proposes solutions
to transform this modelling to network context. Through the two following chapters, this part presents
and details two main protocols to integrate MC inside switched Ethernet networks. These protocols,
based on centralized or decentralized management of MC information, are compared through various
simulation configurations in order to determine their performances and how do they satisfy end-to-end
transmission delay constraints.

Part IV is about RT simulation. During our work, we designed an analysis and simulation tool
called ARTEMIS. First, this part details the functional perimeter and constraints of ARTEMIS. Its de-
sign choices are detailed, and also the different architectural parameters which represent the core of the
tool. Next, we present how we did adapt ARTEMIS to MC context and how we represent MC manage-
ment inside the tool. The last chapter of this part presents two main modules of ARTEMIS, which can
be seen as external tools not necessarily linked to ARTEMIS core itself. These parts are the topology and
flowset generators of ARTEMIS. Starting from the existing algorithms proposed in processor context
and detailed in the state of the art, we present here how we adapted them to network simulation context.

Part V This part concludes our work. It synthesizes the different topics we focused on and presents
potential perspectives of evolution. It identifies the main point brought by this work and answers to the
different problematics we had. Finally, it points out new emerging questions induced by this work.

1.5 LĎĘę Ĕċ ĕĚćđĎĈĆęĎĔēĘ

The Trajectory approach for AFDX FIFO networks revisited and corrected
Xiaoting Li, Olivier Cros, Laurent George
RTCSA 2014, Real-Time Computing Systems and Applications
We consider the problem of dimensioning realtime AFDX FIFO networks with a worst case end-to-end delay anal-
ysis. The state-of-the-art has considered several approaches to compute these worst case end-to-end delays. Among
them, the Trajectory approach has received more attention as it has been shown to provide tight end-to-end delay
upper bounds. Recently, it has been proved that current Trajectory analysis can be optimistic for some corner cases,
leading in its current form, to certification issues. In this paper, we first characterize the source of optimism in the
Trajectory approach on detailed examples. Then, we provide a correction to the identified problems. Two problems
are solved: the first one is on the root cause of the underestimated time interval to compute delays of competing
flows and a problem in the definition of the end-to-end delay computation. The second one is on the way that
serialized frames are taken into account in the worst case delay analysis.

Mixed criticality over switched Ethernet networks
Olivier Cros, Frédéric Fauberteau, Xiaoting Li
WMCIS 2014, Workshop on Mixed Criticality for Industrial Systems, Ada Europe Conference
In this paper, we focus on real-time switched Ethernet networks with mixed criticality constraints. We are inter-

18

CHAPTER 1. INTRODUCTION

ested in (i) exploiting IEEE 1588 Precision Time Protocol (PTP) to implement criticality propagation techniques
in such networks and (ii) analyzing delay of criticality switching. This work presents how to integrate criticality
concepts for messages sent on Ethernet networks using PTP protocol. Concerning the delay of criticality switching,
we consider FIFO and Fixed- Priority scheduling policies.

A protocol for mixed criticality management in switched Ethernet networks
Olivier Cros, Laurent George, Xiaoting Li
WMC-RTSS 2015, Workshop on Mixed Criticality, Real-Time Systems Symposium
In real-time industrial networks, providing timing guarantees for applications of different criticalities often re-
sults in building separate physical infrastructures for each type of network at the price of cost, weight and energy
consumption. Mixed Criticality (MC) is a solution first introduced in embedded systems to execute applications
of different criticality on the same platform. In order to apply MC scheduling to off-the-shelves Switched Ether-
net networks, the key issue is to manage the criticality change information at the network level. The objective of
this work is to propose a criticality change protocol for MC applications communicating over Switched Ethernet
networks. The protocol relies on a global clock synchronization, as provided by the IEEE-1588v2 protocol, and a
real-time multicast based upon it, to preserve the consistency of the criticality level information stored in all the
Ethernet switches. We characterize the worst case delay of a criticality change in the network. Simulation results
show how the criticality change delay evolves as a function of the network load.

Simulating real-time and embedded networks scheduling scenarios with ARTEMIS
Olivier Cros, Laurent George, Frédéric Fauberteau, Xiaoting Li
WATERS 2014, Workshop on Analysing Tools for Embedded and Real-time Systems
Real-time industrial domains are subject to strong constraints in terms of performance and reliability that directly
increase the costs of their infrastructures. In order to build these infrastructures and to test them, we propose to
implement ARTEMIS: Another Real-Time Engine for Message-Issued Simulation. Its aim is to manage all real-
time networks like CAN or AFDX and to simulate their behaviors in terms of scheduling and performance delay.
To model this tool and to make it usable, we use a modular way of development, building modules on a twoparts
kernel. This architecture allows our software to be generic. Moreover, many interfaces can be easily integrated for
several network implementations.

Mixed criticality management of Networked Real-Time Systems with ARTEMIS Simulator
Olivier Cros, Laurent George
WATERS 2015, Workshop on Analysing Tools for Embedded and Real-time Systems
Nowadays, providing guarantees of performances and reliability in real-time systems implies having simulation
tools in order to test and emulate the systems. The real-time network infrastructures are not an exception to this
rule, and needs their own simulators too. Our goal here is to present a new network simulator, ARTEMIS, which
is designed to integrate mixed criticality management and real-time networked systems. Our point here is to show
simulation results of ARTEMIS, especially in mixed criticality context, and to present the different main modules
of this software.

Dynamic criticality management with ARTEMIS

19

General introduction

Olivier Cros, Laurent George, Geoffrey Ehrmann
WATERS 2016, Workshop on Analysing Tools for Embedded and Real-time Systems
In this work, we propose to detail the mixed criticality integration inside our network simulator ARTEMIS. The
objective here is to propose a solution to manage and simulate concrete criticality level changes inside network
infrastructures, in order to focus on a network topology reconfiguration w.r.t to critical and non critical messages
evolutions. Through a transmission time computation model based on a probabilistic approach, we propose a solu-
tion to generate flowsets integrating mixed criticality, in order to simulate the scheduling of these flowsets through
different topologies.

FIFO* scheduling in clock-synchronized switched Ethernet networks
Olivier Cros, Xiaoting Li, Laurent George
WIP-RTSS 2014, Work In Progress Session, Real-Time Systems Symposium
For real-time applications, reliable and efficient communication on safety-critical networks has to be guaranteed
for certification reasons. In order to ensure worst case transmission delay, we propose to focus on switched Ether-
net networks with a particular FIFO scheduling policy denoted FIFO* that requires clock synchronization. Clock
synchronization is now available in off-the-shelves switched Ethernet (e.g. AVB switches). FIFO* is the scheduling
based on a tag in the frame containing their release time at their source node. We want to explore the benefits
of FIFO* compared to classical FIFO scheduling in term of end-to-end response time and for providing reliable
multicast services.

20

Chapter 2

Concepts and notations

”Quand tout semble aller contre vous, souvenez vous que les avions décollent
toujours face au vent.”

”When everything seems to be going against you, remember that the airplane takes off against
the wind.”

–Henry Ford

Contents
2.1 About Real-Time . 22

2.2 Real-Time scheduling . 24

2.3 Modelling . 30

2.4 Conclusion . 31

21

General introduction

2.1 AćĔĚę RĊĆđ-TĎĒĊ

2.1.1 What is Real-Time?

”Real-Time (not comparable): computing of a system that responds to events or signals within a pre-
dictable time after their occurrence; specifically the response timemust bewithin themaximum allowed,
but is typically synchronous.” [3]

In the common sense, the expression of RT is often understood as a synonym of ”dynamic” or either
”simultaneous”: the different actors of a real-time event are synchronized. In daily life, when things are
done ’in real-time’, it usually implies the concept of not being interrupted, and being checkable at any
time. It also implies for things, tasks or jobs, to be finished in a finite and observable time. When the
television says us ’This match will be streamed in real time’, we understand the notion of ’we will see at
home what happens on the playground at exactly the same time’. In fact, ’in real-time’ implies things to
be simultaneous. Real-time, in that case, can be understood as ’on-live’.

Of course, as we (computer scientists and scientific researchers) like to complexify all the simple
things in life, we propose more detailed and complex definition to it. Executing a job in real-time means
that we are able to specify the date when it starts, the delay it will long and to observe if it will be finished
before a precise time (that is what we call a ’deadline’). We do not just want to execute things, but to be
able to compute the time it takes, and the dates of start and stop.

Doing things ’in real-time’ does not necessarily mean doing things as quickly as possible. It is a com-
mon error to mix ”performances” and RT. If we want to employ a common metaphor, RT does not mean
to answer to the question of ’how fast can you run?’ but more of ’How can you guarantee me that, even
if you are sick, injured or upset, whether it is rainy or if the ground is wet, you are sure you will be able
to arrive before this precise instant? How can you assure me that there won’t be a day, at any time or
specific circumstances, where you won’t be able to run correctly and not assure your guarantees?”. My
job, as a young pretending PhD in real-time, is (first of all) to modestly try to answer to this question.
That is why I need to start by the beginning with this question: what is real-time?

According to [4], a real-time system is the combination of ’real’ and ’time’:

• ’real’ means that the reaction of the system to external eventsmust happen at the timewhen events
happen. Even if there is a delay or an additional waiting between an event and its consequence,
this delay is quantifiable and can be evaluated and bounded.

• ’time’ means that the correctness and precision of the system does not only depend on the system
state, but also of the system state at a given date.

We extracted the following example from the litterature [5]: We suppose a car, waiting for a traffic
light at a crossroad. The traffic light can be either green, or red. Observing the traffic light system from
the point of view of real-time will consist in adding the time as valuable information. The question to
ask will no longer be ”Is the traffic light red or green?” but ”how long will the traffic light stay green?”. At
a given instant, the light can be green, it does not present a sufficient solution to consider the system in
its globality.

22

CHAPTER 2. CONCEPTS AND NOTATIONS

In order to assure the safety of the car’s driver and people passing by the crossroad, all the timing evo-
lution of the traffic light must be analyzed, and all red and green-light periods have to be time-bounded.
The traffic light can be considered here as a real-time system.

2.1.2 Real-Time Systems

A RT system is a system (vehicle, computer, aircraft, ...) or an infrastructure (embedded network, elec-
tronical board,microcontroller chipset, ...) having to respect timing constraints. Assuring the integration
of these constraints inside the design and design of a system is the purpose of the RT analysis. As a de-
duction, RT is basically the domain of constrained computing. The RT domain consists in analyzing,
testing, verifying and certifying systems at different levels in order to integrate and validate the respect
of the defined constraints. Its design is to test, assure and analyze performances of hardware and soft-
ware systems for the purpose of reliability, safety, security and performance of each subsystem inside
a global architecture (for example, the reliability of mechanical functions inside a personal car). Each
RT system can (and has to) be certified at different levels of certification depending on its needs and
purposes. The higher importance we attach to a subsystem, the higher certification level it needs. For
example, the safety constraints in a car will require high certification levels on brake design and control
while our expectations on less important functions like the air conditioner will be lower.

Defining a RT system corresponds to integrate the pre-defined constraints into the design and design
steps during its building process. When it comes to define these constraints and their sources, it can
be of different nature: costs (managing the best performances with the cheapest materials), space and
weight (reducing the size needed by the system, for example for avionics purposes), energy consumption
(optimizing and reducing the energy cost of the system), etc... The point of RT design is to be able tomake
systems respect their constraints while being manageable and affordable.

2.1.3 Domains: What is it good for?

Inmost of safety-critical domains, particularly thosewith high needs in terms of reliability and safety, the
costs introduced by errors can be dramatic. There is noneed for anyone to detail the problem represented
by the human and financial cost when an error occurs in the mechanical controls of an aircraft. As
a result, in order to satisfy the constraints and assure reliability and safety inside their systems, safety-
critical domains imply defining systems which are offering levels of guarantees and certification in terms
of error management, detection and in assuring the respect of constraints inside these systems. That is
the purpose of defining RT systems: building systems and concepts to offer guarantees in terms of timing
constraints respect and integration.

Integrating RT models and processes inside a system increases its cost and complexity of implemen-
tation. It implies defining and using specific tool licences, to increase the test potentials, to find experts
dedicated to substystems analyses, to certify the techniques, to assure the models, etc... That is why the
use of RT systems has to be justified by the necessity of offering guarantees and precise evaluations to
prevent errors, failures, and to be able to estimate the value of these errors. The higher the cost of an
error, the more a system is constrained in its size and infrastructural cost, the more it is going to need

23

General introduction

RT implementations and processes.

The main domains where RT is basically the mostly used are safety-critical ones, like defense (trans-
port, trajectory anticipation, automatic piloting, ...), public transports, smart cars, Internet of Things
(IoT), but we can also mention avionics or even aerospace.

Especially with safety and reliability constraints, RT has been proved to be proved correct by con-
struction. In order to make the systems able to respect the needed constraints, we need to define infras-
tructures and models satisfying the constraints. But RT is not just a matter of safety and reliability. In
order to satisfy objectives of performance in terms of space, weight, costs or energy consumption, we
need to implement RT models inside systems.

The goal of RT systems is to be able to manage wide quantities of data in short amount of time and to
guarantee that each task will be executed on time, conformly to specifications and constraints. In infras-
tructures constrained in terms of weight, spaces and energy, integrating these constraints often implies
defining two different problematics: First, we need to compute the size of the needed infrastructure we
have to use, and then we have to set parameters for the behavior of the different elements in the system
in order to respect the constraints. RT constraints appliance does not just imply to drastically increase
the size of an infrastructure, but more to learn how to adapt the correct infrastructure and protocols to
the needs of the system.

RT can be applied to various industrial domains such as defense (Thales), avionics (Airbus), aerospace
(Nasa, TTTech), robotics, etc...

2.2 RĊĆđ-TĎĒĊ ĘĈčĊĉĚđĎēČ

Thepurpose of RT scheduling is to focus on timing constraintsmanagement into systems. RT scheduling
regroups the list of methods, solutions and models to manage task executions in a system to be done
on time, w.r.t. to various constraints [6]. Usually, constraints inside a system are defined to respect
guarantees and performances purposes. This allows the system to be conform to different standards
and specifications. Depending on the context of use, these standards and external constraints could be
defined by different sources. We can mention ARINC for aeronautics, for example, which is defined and
maintained by various actors of the aircraft domain (Boeing, Goodyear, General Motors, etc...).

2.2.1 Network and processor context

In this work, we operate a split between two different subdomains of RT: processor context and network
context. The major part of our work is focused around network context, but some basic definitions we
need come from the RT processor context. We introduce here these two contexts.

Processor context

A RT system is composed of a physical device made of one or several cores and clusters [7], each one
composed of one or several processors responsible for executing all the tasks of a system. For example,

24

CHAPTER 2. CONCEPTS AND NOTATIONS

a car’s dashboard has to display regularly the vehicle speed, while computing the current fuel consump-
tion and displaying all the needed alerts to inform the driver. The dashboard is composed of different
elementswhich send orders and tasks to do to a central unit. This central unit is a set of several processors
(organized in cores) and is responsible for executing all the ordered tasks.

Focusing on the scheduling of all the tasks inside a set of cores and processors is the purpose of
processor-oriented RT scheduling. This domain focuses on the execution of tasks during a given time
interval with different timing constraints.

In terms of modelling, constraints of performances and guarantees can be represented differently in
processor-context: either it is constraints about tasks (preemptivity, deadlines, activation instants, ...) or
constraints imposed to the platform (scheduling policies, architectures, materials, memorymanagement,
...). Thepurpose is to focus on the timing analysis for a given taskset on a given architecture and to analyze
the timing results provided by such an execution.

RT scheduling has been studied first in a uniprocessor and multiprocessor contexts. These contexts
are the contexts of performance and relabilitymanaging inside systems integrating embedded processors
and chipsets with a central memory. On the opposite, RT networks is a domain based on communicat-
ing systems with a distributed memory. In terms of RT basic definitions, both processor and network
contexts are submitted to the same models.

In processor context, we represent a systemas a set of tasks to execute on a givenpre-definedplatform
(a device composed of cores and processors, all submitted to various implementation constraints). For
example, a personal computer can be represented as a set of 50 tasks to execute, each task linked to one
or several softwares. These tasks can be: referesh the screen, launch the web browser, display a message,
etc...

Network context

A RT global system like a car or an aircraft is composed of different elements communicating with each
other. For example, a car is composed of sensors (wheel position, speed, direction, temperature, ...) which
directly transmits informations to computation units through network intermediate commuters (called
switches). Each sensor, each command can be seen as input or output for the network and we can define
one or several information flows between the same sensors.

Definition: Node
A node represents a data transmission device in a network. In can be an end-system (sensor) or a switch.

When it comes to integrate and model constraints in these systems, we focus on message transmis-
sion. The purpose is to understand how to transmit information from an end-system to another, and to
compute the end-to-end delay needed for a message to transit through the network, defined as a set of
interconnected nodes. This part of RT scheduling is the network-oriented context.

There is many distinctions between these two branches of RT scheduling which we specify all along
this work. But we can basically synthesize that the purpose of RT scheduling in processor context is to

25

General introduction

execute a set of tasks in a static computation unit, whereas RT network context consists in transmitting
information through different computation units linked by physical links.

In network context, task execution is no more relevant: we do not consider anymore a machine as a
processor (or a set of processors). Our work is focused on integrated network topologies composed of
a set of end-systems communicating and transmitting messages with each other. These communicating
machines can be sensors, displaying screens, user-oriented commands... They are all parts of the net-
work, defined as its input our output points, called end-systems. All the end-systems of a network are
linked with physical wires to commuters (network switches) whose role is to route information from
their source end-system to their destination end-system. Each of the nodes (end-systems and switches)
can also be called nodes when we do not need to differentiate them.

Each electronical command (brakes, paddle, headlights command) and each sensor (speed, pression,
temperature) is represented as a node. If it measures and sends informations (sensor), it is considered as
an input node. On the contrary, if it is configured to receive information (screen, Light-Emitting Diode
(LED)), it is called an output node. In our network modelling, we consider these input and outputs nodes
as end-systems. The path of a message should start and end in an end-system. Basically, we consider that
an end-system can both transmit and receive network flows.

2.2.2 Timing analysis

For both network and processor contexts, RT scheduling focuses on how to schedule events correspond-
ing to task releases or message transmission requests on time. In order to analyse these scheduling prob-
lems, we introduce different fundamental concepts we will use all along this work. In processor context,
each task is defined with different parameters. The basic parameters defining a RT task τi are:

• Theworst case execution time (WCET)Ci : each task needs a specific time to be done. The execution
time of a task is precisely the time needed to run it.

• The period Ti : A task is not necessarily unique and can be released several times over time. Each
release of a task is called a job. Sometimes, the release time of a job can be randomly defined,
sometimes it is constrained by a minimum inter-arrival time.

• The deadline Di : We distinguish relative and aboslute deadlines of a task. Deadlines are the most
pertinent representant of timing constraints applied to aRT system. Wehave the relative deadlines,
first, which represent the maximum delay between the release date of a job and its execution end.
A relative deadline can be defined according to different models. We have deadline on requests
(Di =Ti) when job execution should be finished before the release time of the next job, constrained
(Di ≤ Ti) or abitrarywhen there is no constraint betweenTi and Di . Secondly, we note the absolute
deadline, which is the latest date at which a job has to be finished.

These concepts are illustrated by the figure 2.1.

In order to manage and prioritize the different jobs of a task, we can apply one or several task man-
agement policies called scheduling policies. There exist many different scheduling policies defined in RT

26

CHAPTER 2. CONCEPTS AND NOTATIONS

Ti
Rel. deadline

Di

Ci
0 50

Figure 2.1: Example of a periodic task

The purpose of RT scheduling is to
providemodels and scheduling poli-
cies to test and assure the schedula-
bility of a system. A system is said
schedulable if each task is able to re-
spect its deadlines given the differ-
ent constraints applied to the sys-
tem.

scheduling. We can mention famous ones like First In First Out (FIFO), Fixed Priority (FP) (arbitrary-
defined priorities), Rate-Monotonic (RM) [8] (priorities computed based on period), Earliest Deadline
First (EDF) [9] (priority based on absolute deadlines), etc...

Whenwe focus ondeadline definition, there are twodifferent approaches inRT scheduling. Eitherwe
consider that there is no possible deadline miss in the system (Hard RT) or that deadline miss is possible
and has to be characterized in terms of impact and costs (Soft RT). We can also consider a potential
mix of these two hypotheses, depending on the task. For example, in an airplane, executing braking on
time is a hard-defined constraint, whereas periodically informing the passengers can suffer from some
slight delays or deadline misses. Introducing soft RT does not necessarily mean that all deadlines can be
exceeded.

In this work, we consider that we areworking in hard RT context: we do not consider that a deadline
miss is acceptable.

2.2.3 Transmission time

Worst case analysis

Each job from the same task may have a different execution time, varying according to different param-
eters. For example, depending on the day, doing the dishes will take me 20, 25, 40 or 10 minutes. These
are the different execution times provided by myself for the task ”do the dishes”.

In RT scheduling analysis, providing guarantees and reliability inside a system implies defining sys-
tems which are proved to be reliable and stable in any execution case. It means that RT scheduling anal-
ysis has to be based on a model which takes into account all potential execution times. We base our work
on a worst case approach of each task. It means that we do not consider the real execution time of each
job, but the worst case one each time (in that case, 40minutes is the real worst case execution time of my
task).

We have to provide guarantees of reliability on task scheduling. It means that we consider that, at
each execution, a task took the maximum possible time, called the Worst Case Execution Time (WCET).
Modelling and computation of the WCET have been presented in works like [10], [11] and are more
detailed below in 2.2.3.

According to the circumstances, a task execution time can vary. It can be slowed by electrical and

27

General introduction

electronical performances of the machine, submitted to several external parameters. It means that, dur-
ing repetitive executions of the same task, the obtained execution time cannot be the same each time. In
order to obtain WCET computations based on experimental results, we use specific algorithms [12] to
extrapolate the obtained results and establish reliable WCET values (see figure 2.5).

Best ET Real WCET Theoretical WCET

O
cc

ur
en

ce
s

Figure 2.2: WCET computation model of a task

In order to model the worst-case execution time of a task, we introduce the concept of WCET in
processor context. The WCET of a task is computed according to its execution profile. It corresponds to
an execution time that will never be exceeded by the task execution at run time. Thisworst case approach
introduces pessimism in delay and performances computation, but it allows us to affirm that, if a system
is schedulable in the worst case situation, it will be schedulable in all execution cases if it is sustainable
w.r.t. WCETs [13].

Given the execution profile of a task, we can deduce its real-WCET, based on an experimental ob-
servation of its execution. But, in order to be reliable, the expression of a WCET has to be computed
and guaranteed and not just based on empiric experimentation observations. Works like [11] proposed
mathematical models to compute task WCETs.

But this theoretical computation of WCETs introduces a pessimism between the theoretical WCET
and the real WCET of a task. This gap has been treated in different works like [14]. This gap introduces
pessimism in the timing analysis of a system [10], [15].

This pessimism is illustrated in figure 2.5. We observe in the figure a clear difference between the real
WCET (computed based on a probabilistic cumulative expression of a set of executions of the same task)
and the theoretical WCET, computed through mathematical models.

2.2.4 Flows activation model

In this work, we introduced the concept of period, corresponding to the delay between two activations
of the same message. This period model is only viable when messages activations of a flow are periodic.
In RT scheduling, the task activation model is a concept that needs to be properly defined. We present
here major activation models: periodic, sporadic and aperiodic. This presentation is based on previous
works done on activation models [4].

28

CHAPTER 2. CONCEPTS AND NOTATIONS

Network modelling consists in a set of flows sent through static paths inside a network. Each flow
producesmessages, consisting in a set of bytes, following differentMedia Access Control (MAC) network
protocols (Ethernet, for example). This is the basics of message emission in the RT network modelling.

But emitting messages from a source node can be done according to different models. Each flow can
produce several messages, and the activation model between messages has to be precisely defined. In
the RT paradigm, there exist plenty of possible activation models: periodic, aperiodic, sporadic, strictly
periodic, according to a scheduling table, etc...

In our work, we consider different possible activation models of messages. We integrate specifi-
cally these because they correspond to the implementations we can find in the network architectures we
focused our work on. We consider different potential activation models, detailed as follows.

Periodic

In periodic model, the time interval between two successive messages emission requests (from the same
flow) is constant. This time interval is called a period. The period is defined by the systemdesigner during
network implementation. See [16], [17] for details about RT scheduling of period tasks. According to the
period, we can determine the flow realease times among time (see figure 2.3).

Sporadic

The sporadic flow activation model means that there is no identifiable periodic behavior in messages
emission requests from a flow. But we can guarantee a minimum delay (starting from a message sending
instant) duringwhich there is no additional message emission requests. This delay is called theminimum
inter-arrival time of the flow (see figure 2.3).

Sporadic

min

Periodic

Figure 2.3: Sporadic and periodic flows activation
models

We consider that eachflowproducesmes-
sages as often as possible, generating the
highest quantity of traffic it can. As a re-
sult, the minimum inter-arrival time of a
flow can be assimilated as the period of a
sporadic flow. Sporadic flows are often
considered as periodic flows in the worst
case analysis. For further details, the spo-
radic model was detailed in [18].

There exists different other activation models, such as aperiodic [19]. They will not be considered in
this work.

2.2.5 Preemption

The hypothesis of the preemption or non-preemption of the transmission of a message consists in an-
swering the following question: is it possible, during a message transmission inside a node, to stop its
transmission, start transmitting another message, then resume the transmission?

29

General introduction

The first hypothesis in RT network context is about the non-preemptivity of a message transmission.
It means that once the transmission of a message has been started in a node, it cannot be interrupted in
that node.

Imposing the non-preemptivity of amessage transmission induces that there is no partial emission of
a message. There is no risk of potential reception of a incomplete frame, and we do not have to consider
the potential transmission of a malformed frame. Each frame is necessarily compliant to the different
tags induced by the network standards we defined. We consider non-preeemptivity as a fundamental
hypothesis in all our work.

Figure 2.4 shows a simple example of preemptivity in processor context. If we suppose two tasks τ1
and τ2 defined by a respective WCET of C1 = 15 and C2 = 20 µs and a respective priority of 0 and 1 (τ2
has a higher priority).

Preemptive τ1 τ2 τ1

Non
preemptive τ1 τ2

0 20 40 60

Figure 2.4: Non-reemptive and preemptive tasks

We consider that τ1 activates at
t = 0µs while τ2 activates at t =
15µs. The system is composed
of a unique processor sched-
uled with FP policy. We have
an illustration of preemptive
and non-preemptive schedul-
ing in the results shown in fig-
ure 2.4.

2.3 MĔĉĊđđĎēČ

RT scheduling applied to networks consists in characterizing the worst case end-to-end transmission
delay of a message in a network topology, starting from its source node to its final destination node. To
compute this delay and being able to propose reliable methods to guarantee it, we first need to define the
network model we use all along this work.

We consider a network N defined by a topology and a set of flows. The topology is represented
by a set of end-systems ES1, ...,ESn−1,ESn and a set of switches S1, ..., Sm−1, Sm. In order to assure the
continuity of the network, each switch and each end-system in the topology is connected to at least one
another node.

In our modelling, we also have to introduce the modelling of flows. A flow vi is considered as a
producer of messages with a periodic or sporadic model. We note a flow period Ti . Periodically or spo-
radically, a flow vi produces a message mi of a specific size in bytes. Each produced message is supposed
to have a specific size but, as we are working on worst case analysis, we consider that each produced
message has the longest possible size, defined by the properties of the flow.

Each message mi from a flow vi follows the same statically defined path. The nodes path of flow vi is
denoted as P⃗i . This path is acyclic (not the same node twice). It is composed of an end-system (as source),
as set of switches and, eventually, another end-system.

30

CHAPTER 2. CONCEPTS AND NOTATIONS

Definition: Worst Case Analyzing Time
TheWCAT of a message is the ratio between its size and the network bandwidth.

S

WCAT

Figure 2.5: WCAT of a flow

In the following work, we make the assump-
tion that the WCAT of a message is the same in
all nodes of the network. This is based on the
hypothesis that a network has a global band-
width.

Definition: Flow
A flow is a set of messages, periodically or sporadically produced. All these messages are dedicated to the same
functional purpose. A flow is characterized by the 3-tuple : {P⃗⟩,Ci,Ti} (path, WCAT vector, period).

Each flow is characterized by a path of nodes, going from an end-system to another one through a
set of switches. In order to guarantee the determinism of transmissions, we do not rely on an automatic
calculation of a flow path. It means that we suppose, all along our work, that each flow path is statically
defined by the network designer.

Each flowproducesmessages of a specific size. TheWCATof amessage is computed on ratio between
the message size and the network bandwidth. Each message is conformed to specific network standards
(in our case, Ethernet) which means that each message is bounded in terms of minimum and maximum
size (and, as a result, in terms of minimum and maximum WCAT).

2.4 CĔēĈđĚĘĎĔē

Considering the different definitions we made, we assume the following hypotheses in our work :

• Each message has a maximum size

• A flow can be either sporadic or periodic

• The path of flow through the network is statically defined by the designer

• There is no potential transmission error in the network, neither in the links or in switches

• All network links are considered as full-duplex

31

Part II

State of the art

33

Chapter 3

Real-time Networks

”Je sais que je ne sais rien”

”As for me, all I know is that I know nothing”

– Socrates [20]

Contents
3.1 General considerations about real-time networks . 36

3.2 Ethernet-based solutions . 36

3.3 Clock synchronization with PTP protocol . 46

3.4 Conclusion . 52

35

State of the art

3.1 GĊēĊėĆđ ĈĔēĘĎĉĊėĆęĎĔēĘ ĆćĔĚę ėĊĆđ-ęĎĒĊ ēĊęĜĔėĐĘ

One main characteristic of a RT network is its determinism [21]. A RT network is called deterministic
if each transmission time of each message in the network can be bounded. In our work, concerning
network modelling, we consider the following hypotheses :

About the network structure, we consider :

• The network architectures we consider are offering full-duplex connections. It means that we do
not consider collisions nor collision management protocol integration inside the network archi-
tectures we focus on. Collision management protocols such as such as CSMA/CA [22], [23] for
Wi-Fi, CSMA/CR [24] and CSMA/CD [25] will not be detailed in this work.

• There is no redundancy in messages transmissions. If a message transmission has failed or if the
message is dropped out of the network, there is no potential retransmission of this message in the
network.

• The networks we consider do not integrate fault-tolerant mechanism.

3.2 EęčĊėēĊę-ćĆĘĊĉ ĘĔđĚęĎĔēĘ

3.2.1 Introduction

The purpose of our work is to integrate MC inside RT network architectures. In order to have an ex-
haustive point of view of what had been done in terms of RT integration, we first need to present the
different network architectures we based our work on. All the network architectures presented below
are based on an Ethernet infrastructure.

Our work is based on a the analysis of two different contexts of RT Ethernet implementations. First,
we focus on industrial-oriented technologies (Avionics Full DupleX switched Ethernet (AFDX), Time-
Triggered Ethernet (TTEthernet)). These technologies are costly and introduce a wide set of implemen-
tation constraints (availability of the materials, requiring a high degree of expertise, ...) but they offer
a very high level of potential configuration of the different devices. Second, we focus on open COTS-
oriented architectures, which privilege the costs but offer a relatively poor potential of configuration.
Our purpose is to present both these approaches through different Ethernet implementations, in order
to provide a general description of RT networks potentials.

3.2.2 Commercial Off The Shelf Switched Ethernet

What is COTS switched Ethernet?

In the industrial domains concernedbyRTnetworks and subjected to strong implementation constraints,
network protocols have to be proved reliable. In order to satisfy their functional needs and offer their

36

CHAPTER 3. REAL-TIME NETWORKS

safety and reliability guarantees, each protocol has to be certified and proved adequate to various stan-
dards. That is this context which led to build dedicated network infrastructures such as TTEthernet,
Audio-Video Bridging (AVB), Controller Area Network (CAN), etc...

Implementing these industrial network infrastructures requires specific physical devices. This im-
plies a strong problematic of costs and availability. That leads to the following question: What about the
implementation of RT network protocols in cheapest network architectures?.

The first question that comes in mind is ”Why should we?”. Even if ressources costs are a burning
issue in every system design, we can make the hypothesis that defense or spacecraft domains can afford
dedicated budgets even for specific network infrastructures. Butwhen it comes to domains such as home
automation, personal vehicles or public transports, increasing the costs of network infrastructures in
such domains can have a direct financial impact on public applications. That is the purpose of COTS
infrastructures: proposing reliable and efficient network protocols inside simple physical devices which
can be massively produced at a reduced cost.

In our work, we consider COTS Ethernet as a very important architecture to focus on. Beyond the
problematic of costs, designing a protocol compliant with COTS Ethernet induces more genericity: if a
protocol is compliant to COTS Ethernet, it will be compliant to all the more specific protocols based on
it. COTS switched Ethernet devices provides several advantages compared to specific network imple-
mentations:

• The devices are spread among all application domains, the commercial availability of the devices
is not a problem and the delays to obtain it are short.

• It is a generic solution, implemented for a long time. As a conclusion, is has been proved reliable
through the time by different kind of services.

• Commercially speaking, costs are reduced also by the potential concurrence between the different
manufacturors. On the contrary, specific solutions belonging to a dedicated industry allows them
to keep a commercial monopole.

Standard details

The cheapest network Ethernet standard is the public commercial version of Ethernet: IEEE 802.3 [26]
standard. It is the common network implementation of the ISO model we can find in many public and
private implementations (personal houses, companies, administrations, etc...). It integrates the 802.1
standard, and especially the Local Area Network (LAN) specifications and MAC addresses management.
Each device is attached to a dedicated MAC address, used for forwarding the messages inside the net-
work.

IEEE 802.3 specifies the standard for Ethernet networking. It concerns the physical and link layers
of the OSI model. Concerning the physical layer, a COTS Ethernet network is represented as a set of
interconnected devices. In this work, we make a difference between end-systems (computer, sensor,
...) and network-management dedicated devices (switches). Each device is connected to others through
copper or fiber wires.

37

State of the art

Concerning the link layer, IEEE 802.3 specifies different needed elements to establish a network
connection through an Ethernet network. This layer is responsible for message transmission. Particu-
larly in RT networks, proving the timeliness of the transmission is a strong constraint. It means that the
end-to-end transmission time of each message in the network has to be upper-bounded.

There is awide subset of standardswhich are based on IEEE 802.3, improving it in terms of reliability,
bandwidth or structure. Depending on the architecture, IEEE802.3 and these subsets can provide a panel
of different bandwidths. COTS Ethernet is based on a 100 Mb/s bandwidth, but this bandwidth can be
increased up to 10 Gb/s in such protocols like 802.3ae [27].

Commercial Off The Shelf Ethernet frame

In Ethernet frame, datas are encapsulated in a formatted frame. This frame contains all the needed infor-
mations to send and forward the message from its source node to its final destination node. We consider
that a message data is a set of bytes (maximum size: 1500 bytes). The IEEE 802.3 LLC frame format is
detailed in figure 3.1. We can split this frame in distinct parts:

• A preamble of 8 bytes, which is not directly part of the frame.

• A header, composed of 20 successive bytes containing: the MAC source and destination addresses
of the message, and the type of the message. Several Ethernet-based protocols (like 802.1Q) will
modify this header by adding bytes, but basical IEEE 802.3 header is composed of this 20 bytes.
The structure is detailed in figure 3.1.

• A 4-bytes suffix: a frame-check sequence (called the CRC) and an interpacket gap of 12 bytes.

• Two successive frames are separated by a silence of emission of a 12 bytes size.

7B

Preamble

Frame
delimiter

1B

MAC
destination

6B

MAC
source

6B

Type

2B

Data

46-1500B

CRC

4B

Interpacket
gap

12B

Header

64B (min) - 1518B (max)

Figure 3.1: Ethernet 802.3 frame

Figure 3.1 details the structure of an IEEE 802.3 Ethernet frame. The data field size can change from
one message to another, but all the other fields sizes are static, and the structure cannot be changed. The
different fields composing the header and the suffix have all their specific role in Ethernet forwarding,
detailed as follows:

38

CHAPTER 3. REAL-TIME NETWORKS

• Preamble: This set of 7 bytes is composed of the byte pattern repeated seven times. It corresponds
to an alternated succession of 0 and 1 on 56 bits. It is not strictly a part of the message, but it is
needed by the switch for eventual clock-synchronization.

• Frame delimiter: This symbolizes the beginning of the frame itself. The frame delimiter is built in
order to break the preamble alternated pattern. The value of the frame delimiter is always equal
to 0xD5 (10101011, or 171 in decimal).

• MAC destination: This is the MAC address of the final destination node. It can be a unique iden-
tifier of the physical network interface attached to the destination of the message (unicast con-
text [28]). In other cases (broadcast, multicast), this can identify a whole group of devices. More
details about the MAC address formatting and representation are given in [29], [30]. In IEEE 802.3
Ethernet, this address is represented with 6 bytes.

• MACsource: This is theMACaddress from thenode that emitted themessage. Like the destination
address, this is a unique identifier of the physical interface of the node, encoded on 6 bytes.

• Type: This represents (on 2 bytes), the type of Ethernet protocol used.

• CRC: This field is used for error detection and integrity control. The computation of this field is
detailed in [31]. It is encoded on 32 bits (4 bytes) and its value is based on the message content.

• Interpacket gap: This is an idle period, without any transmission. This period is constrained in
its minimum duration by the bandwidth of the network (0.96µs for 100 Mb/s Ethernet). This
corresponds to a 12 byte size gap. This silence introduces a recovery time for each message before
preparing to send the next message. This gap allows the device to recover its clock.

Ethernet frame format implies each frame size to be upper and lower bounded in terms of byte size.
The minimum size of a message happens when the data field is equal to its minimum size 64 bytes. This
corresponds to a minimum data payload size (46 bytes). In the case we want to send a message shorter
than 46 bytes, we put padding bytes at the end of the payload, to complete it up to 46 bytes. On the
contrary, the maximum size is reached when the data field is equal to 1518 bytes. These limits do not
take into account preamble, delimiter and interpacket gap fields, which are not directly part of the frame
or data to send, but are just dedicated for bit rate synchronization.

Given the direct relation between the size of a message and its WCAT, these limits of size means
that in Ethernet networks the WCAT of each message is bounded and depends of the bandwidth. As a
conclusion, in a classical IEEE 802.3 100 Mb/s bandwidth, a WCAT is bounded between 5,1µs (64∗8

100∗106)
and 121µs (1518∗8

100∗106) (see [32] for details). This constraint has to be taken into account, specifically for
simulation purposes when the bandwidth has to be indicated.

VLANmanagement

Onemain problem in RTEthernet infrastructures is to be able to provide high performances with strong
constraints of space occupation. In fact, the size of an aircraft is constrained and so are the different

39

State of the art

subsystems inside it. The quantity of wires and network devices to install inside the airplane has to be
accurately defined and constrained.

On the reception port, an end-system associates a waiting queue to each Virtual Local Area Network
(VLAN), in a statically-defined order of priority, and then applies a FIFO scheduling policy to each queue.
Each time an end-system receives a message, it is in charge of controlling if it is not redundant. In order
to integrate VLAN management and identification, Ethernet proposes the 802.1Q frame format. It is
an improved alternative version of Ethernet 802.3 (see 3.2.2), built for VLAN support and integration.
The point is to add 4 new bytes to Ethernet header, after the MAC source address. This tag identifies the
VLAN a message belongs to. The structure of these bytes is detailed in figure 3.2.

7B

Preamble

Frame
delimiter

1B

MAC
destination

6B

MAC
source

6B

802.1Q tag

4B

Length

2B

Data

42-1500B

CRC

4B

Interpacket
gap

12B

Header
Suffix

Figure 3.2: Ethernet 802.1Q frame

The 4 bytes of Ethernet 802.1Q are splitted in different parts:

• TPI: TagProtocol Identifier. Thefirst twobytes of theEthernet 802.1Qheader allows to specifically
tag an Ethernet frame as 802.1Q compliant, adding the 0x8100 tag to it. These two tags are used
only for 802.1Q identification.

• Priority Code Point (PCP): This set of 3 bits is used to attribute a dedicated priority value to each
message, from 0 to 7.

• Drop Eligible Indicator (DEI): It allows to tag a message to decide whether it can be dropped out
of waiting queues or not in case of network congestion.

• Tag Control Information (TCI): The two last tags of 802.1Q header are used for priority manage-
ment and VLAN identification. These bytes are splitted as described in figure 3.3.

The TCI field of Ethernet 802.1Q is com-
posed of 16 bits, splitted in 3 different
fields. The first field (3 bits) is the PCP
field. It associates a dedicated priority
value to each message.

TPID

16b

DEI

1b3b

PCP

12b

VLAN ID

TCI

Figure 3.3: Ethernet 802.1Q tag details

Each message is associated to a priority from 0 to 7. It means that even in the same VLAN, messages
can have different priorities.

40

CHAPTER 3. REAL-TIME NETWORKS

The second field is the DEI (1 bit). It is a indicating if the message can be dropped out of the network
in case of congestion. It is a first solution to tag a message if it can be ignored or if it has to be transmitted
to its destination even in case of high network traffic.

Finally, the 12 last bits of the TCI field are used to store the VLAN identifier of the message. In AFDX
and 802.1Q-based networks, each physical network can be subdivided in a maximum of 212 = 4096

different VLANs, each one identified by a unique integer. The VLAN identifier allows to specify to which
VLAN the message should be sent to. In association with the PCP field, the VLAN identifier allows us to
integrate priority management in the network.

3.2.3 AFDX architecture

General concepts

Avionics is a safety-critical domain requiring specific RT networks standards [33]. AFDX (Avionics Full
DupleX) is a switched Ethernet network protocol first designed for avionics purposes, and especially for
Airbus, embedded in airplanes and aeronefs. Its first (and currently used) version has been designed by
Airbus in 1998 in compliance with the ARINC 664 chart [34] as a new RT standard for avionics commu-
nication. AFDXwas the part 7 of ARINC664 andwas finally published in 1999. The job on AFDX started
from the lack of performance of ARINC 429 [35]s, whose bandwidth was limited to 100Kb/s. When de-
signing ARINC 429 and then, ARINC 664, the first main constraint was to define a new communication
standard based on reliability and performance of data exchange, especially in terms of error control. Like
ARINC 429, ARINC 664 was only designed for internal communication between elements which are al-
ready part of the aircraft. ARINC 664 standard does not cover communications with external which are
not a direct part of the aircraft.

AFDX is designed for reliable RT communication. As a conclusion, it has to be certified at the highest
level, specifically to assure deterministic delay computations and precise integration of time constraints
in the system. Based of these constraints, the main purpose of AFDX was to assure reliability of the
network communications.

AFDX internal network architecture is basedonCOTSEthernet switches. TheAFDXprotocol emerged
then from two different technologies combination: Ethernet 802.3 (for network forwarding) and Asyn-
chronous Transfer Mode (ATM) (for communication). AFDX is a reliable RT network protocol designed
for high-constrained industrial applications, and based on low-cost COTS infrastructres.

Application domains

AFDX standardwas initially the property of Airbuswho implemented it in long-courrier aircrafts (A380)
which had more performance needs than the smaller A320. Nevertheless, the structure of AFDX, which
is based on standardized network protocols and COTS switches, allows it to be portable and poten-
tially implemented in a large panel of infrastructures requiring RT constraints, without needing clock-
synchronization.

41

State of the art

Topology management

AFDX is a full-duplex link (contrary to basic Ethernet 802.3 which is half-duplex). This full-duplex stan-
dard allow the netword connection to not having to face with collision management problems.

In order to avoid the problem of colli-
sionswithout breaking determinism con-
straints, each AFDX link between two
nodes is full-duplex. It is defined with a
twisted pair (Tx for transmission, and Rx
for reception). As a conclusion, each link
(Tx or Rx) is defined for a specifical way
of communication and there is no possi-
ble collision (see figure 3.4).

End-system

Port A

Port B

Tx

Rx

Rx

Tx

Tx

Rx

Switch A

Rx

Tx

Switch B

Figure 3.4: AFDX full-duplex implementation

Each defined VLANs relies on a system of specific max bandwidth allowation (based on global band-
width). This dedicated bandwidth is computed with the end-systems by a system of contracts, applied
by each emitting end-system of the VLAN. Thus, each message is limited to a maximum size, and the
time interval between two messages is constrained. These different constraints allow us to maintain a
maximum transmission rate and network traffic in each VLAN, to assure VLAN isolation.

AFDX integrates redundancy in the transmission of messages, through the definition of two physical
links for each end system. Each end-system gets two output Ethernet port, each one connected to a
dedicated switch. It means that the network infrastructure is doubled, and each system is built with
two Ethernet ports (A and B). So, each end-system is always connected to two identical switches, port
A to switch A, and port B to switch B (see figure 3.4). Each message sent by the end-system is sent to
both ports (to both switches, then) and the destination end-system is then responsible for getting them,
eliminating the potential duplicatemessages (each network link is doubled, so eachmessage is sent twice,
once per network copy) and, eventually, destroy redundant messages. To identify this redundance, each
message is tagged with a bit indicating the network copy it belongs to.

Theprinciple is simple: each end-system can be connected to eachVLAN (up to amaximum if 128 per
end-system) and each connection can be for transmission, or reception. The transmission of messages in
each VLAN is done according to a multicast method: each reception-connected end-system will receive
the emitted message, forwarded by the different switches.

Protocol description

As it has been said, AFDX is based on Ethernet 802.3 protocol. Basically, it needs to manage source and
destination addresses and operates mainly at the first four layers of the ISO model (Physical, Link, Net-
work, Transport). We propose here to focus on the precise definition and structure of AFDX according
to each one of these layers.

Physical layer:(layer 1) Each Rx port (designed for reception) is linked to an input buffer. That allows

42

CHAPTER 3. REAL-TIME NETWORKS

an incoming message to be stored before being transmitted to the switch, instead of being dropped out
because of an overload. Then, when the transmission of the current message is finished, the switch can
pick the next waiting message in the input buffer corresponding to the port.

Link layer:(layer 2) In terms of addressing, a MAC destination address (statically defined by the de-
signer) is assigned to each VLAN. This MAC (48 bits size) is splitted in two parts [36]: The 32 first bits is
a constant, identical for each end-system in the network, and the 16 other bits are the VLAN identifier.
It means that an AFDX topology can contain, at the most, 216 = 65536 different VLANs.

3.2.4 AVB architecture

What is AVB?

AVB (Audio-Video Bridging) is a network protocol based on Ethernet [37]. It is issued from a global re-
flexionof the IEEE802.3 ’Residential Ethernet StudyGroup’work in 2004. Itwas originally built as a low-
cost improvement for COTS Ethernet in order to assure QoS in multimedia communications through
Ethernet. Its internal mechanisms of traffic shaping allows us to manage various network traffics with
high constraints of QoS and timeliness.

This protocolwas originally conceived formultimedia flowsmanagement due to its potential to cover
high needs in terms of QoS management, but an industrial implementation was proposed in [38].

AVB defines two classes of messages (A, B) and proposes a solution for traffic shaping of both trans-
missions of flows from these classes. In order to privilege class A and class B flows, the point is to base
their transmission on credit level management. As long as the credit of a node is positive, we send class A
messages. During idle phases (when credit is negative), we send class B messages if the credit of class B is
positive or null. During both class A and class B transmission phases, the credit is respectively increasing
or decreasing at pre-defined rates. It means that class A and class B messages transmission are mutually
exclusive.

Finally, all flows which are not part of class A or B are sent with following a 802.1Q best effort policy
(no traffic shaping): if there is a free time slot with negative credit or no class A/B messages waiting, we
use this slot to send these best efforts messages.

Message classes

In terms of message management, AVB defines two classes of messages. Message transmission with AVB
standards is based on the definition of different classes of messages, each one linked with a dedicated ob-
jective in terms of latency in the transmission andwith a limited number of possible hops in the network.
These classes are organized as follows:

• Class A messages: these messages are defined as the most important to send first in AVB network.
infrastructure. They are defined as messages with high objectives of latency (2 ms of end-to-end
delay), and a maximum of 7 hops along their path in the network. Usually, we consider class A
messages in AVB as the most constrained one to privilege.

43

State of the art

• Class B messages: Objectives of latency (depending on the network bandwidth) are slightly lower
compared to class A messages (50 ms of latency). These class B messages are considered as global
traffic to assure with specific constraints.

• Best effort (Class Z): Another class based on 802.1Q protocol is also available for best effort. These
regroup all the other messages of the infrastructure, integrating not any particular constraint in
terms of reliability or latency management.

AVB is a clock-synchronized network protocol designed as IEEE 802.1BA [39]. It was initially con-
ceived as a protocol for RT media communication over Ethernet. Video transmission (cameras, stream-
ing, ...), audio communication (VoIP), and other media communicaiton protocols are based on this stan-
dard to share data. AVB provides its own clock-synchronization protocol [40].

3.2.5 Time-Triggered Protocols

The time-triggered protocol defines time slots and allows only one node to transmit messages per time
slot. For each node, the length of the interval can be configured by the system designer.

TDMA collision management

With this protocol, there will not be
conccurence in message transmission be-
tween the different network nodes. Two
nodes cannot send a message at the same
time, so this avoids collisions. Time
Division Multiple Access (TDMA) colli-
sion management protocol represents the
fundamentals of time-triggered architec-
tures [41].

Node 1 Node 2 Node 3

Time-slot 1 Time-slot 2

TDMA round time

Figure 3.5: TDMA time slots

Time-triggered protocols are based on a mono-master/multi-slave architecture. There is one single
node defined as the master, which is responsible for determining the duration of the transmission time
interval for each slave node. In TDMA, determining these durations is based on a polling system, which
was detailed in [42].

Each node must have the exact same value for each time slot and subslot bound. As a result, time-
triggered protocols suppose that all the nodes in the topology are clock-synchronized. Depending on
the implementation of TDMA, the infrastructure can rely on different clock-synchronization protocols.

Time Triggered Ethernet

TTEthernet [43], [44] is an industrial commercial-licenced implementation of the time-triggered pro-
tocol. It is mainly used in spaceship design and public-oriented real-time networks (personal vehicles,

44

CHAPTER 3. REAL-TIME NETWORKS

public transport). TTEthernet is an implementation in Ethernet 802.1 of the TDMA collision manage-
ment protocol. It provides the same time-triggered mechanism, based on splitting the time in discrete
slots, and each of this slot subsplitted for guaranteeing it to a dedicated node.

The purpose of TTEthernet is to use the time-triggered slot splitting to allow all the nodes in the
network to transmit important messages (mechanical control, radar, ...), safety messages (oxygen man-
agement, passengers protection, ...) and comfort messages (air conditioner, entertainment, ...) inside the
same infrastructure. The TDMA protocol allows the network to answer to the isolation problems which
are induced by such mixed transmissions.

Similarly to AFDX, TTEthernet integrates VLAN management. The TTEthernet implementation
allows the messages to be isolated in their transmission and thus, this induces a reliable priority man-
agement during flows scheduling.

In TDMA, we suppose that each node is associated to a specific time slot for message emission. In
TTEthernet, each network switch has its own dedicated time slot. In order to make this association
between nodes, messages and time slots, TTEthernet proposes to define different classes of messages.
During a time slot dedicated to a specific node, messages are organized according to classes of differ-
ent importances. Implementing these classes and the TDMA structure applied to messages transmission
assures the timeliness and safety different guarantees required by the network. We can represent TTEth-
ernet messages accoring to 3 different classes(see figure 3.6).

• Time-triggered messages (TT): messages with the highest constraints. These messages must be
transmitted with the highest accuracy. We can define static priorities and dedicated VLAN for
TT messages in order to differentiate them in terms of priority. Each transmission of a TT mes-
sage guarantees that, during the time slot, the source and destination nodes are entirely available
specifically for this message transmission.

• Rate-constrained messages (RC): these messages have lower constraints in terms of performances
and transmission delay, but still must be transmitted in a bounded time. The transmission of these
messages relies on bandwidth allocation for each node (same as TT messages) but RC messages
can suffer for waiting delays. Several RC messages can be sent to the same destination node and
be queued before transmission. There is no lock on the destination port.

• Best-effort messages (BE): Classically following standard Ethernet, the transmission of these mes-
sages does not rely on any determinism nor maximum delay. These messages are treated with a
lower priority than TT and RC messages and should be transmitted when possible, with no guar-
antee.

The figure 3.6 shows a simple example of
message classes repartion among differ-
ent time slots. Obviously, TT messages
are transmitted first in the node, con-
sidered as the one with highest priority
among all the rest of the node traffic.

TT RC TT BE RC TT RC TT

Time slot Time slot Time slot

Figure 3.6: Time-triggered Ethernet messages

45

State of the art

FTT-SE

Flexible Time Triggered Switched Ethernet (FTT-SE) is a time-triggered protocol designed for Ethernet
networks. It was first introduced in [33], [45], and it is mostly used in industrial domains like auto-
motive or avionics. Contrary to the TTEthernet, FTT-SE does not rely on specific protocol-compliant
materials. It requires a clock-synchronized Ethernet network, but network devices do not have to be
specifically dedicated to its implementation. It improves the genericity of the network, its reusability
and decreases its cost. This allows us to integrate open time-triggered solutions even in public-oriented
industrial products (personal vehicles, public transport, ...).

In terms of architecture, FTT-SE is a master-slave protocol: the master transmits a message from
class TM (Trigger Message) to all the slaves. This message defines the duration and schedule of the next
time slot. This allows the network nodes to propose a dynamic time-slot management and to provide
different repartition of subslots to each node, depending on the network configuration and contraints.
Each TM message indicates to all the slaves the beginning of a new time slot of duration dsync.

Like we can see in figure 3.7, we
can have a period between two TM
messages which is longer than dsync.
The exceeding time can be used to
transmit messages with lower im-
portance classes during the created
asynchronous time interval.

TM
dsync

Sync. win.Sync. win. Async. win.

TM

Figure 3.7: FTT-SE synchronous and asynchronous transmis-
sion

FTT-SE allows the transmission of different classes of network traffic:

• Synchronousmessages, controlled and automatically triggered by the network, synchronizedwith
TM messages durations (dsync).

• Asynchronous messages, launched by external applications and transmitted with Best Effort pol-
icy.

Through synchronous and asynchronous messages classes, FTT-SE integrates the distinction be-
tween RT and non-RT traffic. It provides guarantees on the transmission time of RT messages. Through
the management of more than 8 levels of priority (based on 802.1D [46]) and the integration of a QoS
manager, it can assure QoS guarantees, even on non-RT traffic.

3.3 CđĔĈĐ ĘĞēĈčėĔēĎğĆęĎĔē ĜĎęč PTP ĕėĔęĔĈĔđ

In thiswork,we established a split between twomaindifferent network architectures: clock-synchronized
architectures (TTEthernet, AVB) and non-synchronized architectures (AFDX, COTS Ethernet).

Mainly, there exist two major clock synchronization protocols which are considered as standards in
networks and RT domains. These protocols are Network Time Protocol (NTP) [47] (for global uses) and

46

CHAPTER 3. REAL-TIME NETWORKS

PTP[48] (for high constraints of accuracy). Each one of this protocol is based on the same hypothesis:
one clock is defined as the time reference and the protocols assures the synchronization of other clocks
to the reference.

In order to define the clock reference in the network, each protocol integrates different processes.
These processes can be based on priority assignment, dynamic polling decision, or other solutions. More
details about the clock reference definition were given in [49].

These protocols define the stratum of each clock (distance between the clock and its reference clock).
This allows todefine a relative clock accuracy fornetworkwithhighnumberof nodes (NTPover Internet,
for example). In our work, we rely on high accuracy requirements (magnitude µs) in terms of clock-
synchronization. To do this, we focused on the PTP protocol.

3.3.1 Synchronization

PTP-ETE

PTP is a high-precision clock-synchronization protocol, used in RT and industrial networks. It offers
precision of 100 ns [49]. In classical Ethernet context with 100 Mb/s (or 1Gb/s) of bandwidth, usually
the WCAT has values between 0.05 and 100 µs. PTP is then a protocol of adequate precision for this
context.

PTP protocol operates at the application layer of the OSI model (see figure 3.8). It means that, inde-
pendently of the network latency, clock synchronization precision suffers from two different delays:

• Network delay, which represents the delay to transmit the PTP messages between master and
slaves.

• Protocol delay, which corresponds to the software latency induced by all the layers of the OSI
model. This delay needs to be taken into account in each side (master and clock) to compute the
jitter between the two clocks.

The purpose of PTP is to synchronize the clocks of all slave nodes with the master clock. In or-
der to do this, we use the protocol described below. Clock synchronization through PTP is based on
the approach of synchronizing individually each slave directly with the master. Both master and slave
clocks exchange a set of messages in order to synchronize themselves. Each one of this synchronization
messages has its own size and transmission delay. We can detail these messages as:

• Announce message: used to indicate the clock configuration to other nodes in the network. This
message is sent on PTP implementation in order to integrate the master-slave architecture and
indicate which node is the current master.

• Synchronization message Sync: this message is used to call a slave to synchronize itself with the
master. This message initiates a synchronization phase between the master and a slave clock. In
terms of data, this message contains the emission time T1 of the master clock, and different other
clock properties used for configuration purposes.

47

State of the art

Phys

Link

Netw

Tran

App(PTP)

Protocol delay

Master clock

Network delay

Network Phys

Link

Netw

Tran

App(PTP)

Slave clock

Protocol delay

Figure 3.8: PTP clock jitter

According to the master-
slave architecture, select-
ing the master (most ac-
curate clock) in the net-
work is done in PTP ac-
cording to a specific al-
gorithm called the Best
Master-Clock Algorithm
(BMCA).This algorithm is
detailed in [50].

The synchronization phase of master and
clock is detailed in figure 3.9. First, the
master transmits a Sync in order to call
a slave to synchronize its clock with the
master. Then, the master transmits to
the slave the emission instant T1 of Sync,
through the Fup message. The Sync mes-
sage has a transmission time of t , and
we suppose its clock jitter with the slave
equal to δ.

Master

Slave

Sync Fup Dreq Dresp

Sync Fup Dreq Dresp

T1 T ′1 T2 T ′2

Figure 3.9: PTP end-to-end synchronization

• Follow up message Fup: this message is transmitted as a confirmation of the Sync message. Fup is
used to transmit the emission timestamp (T1) of Sync message from the master clock to its slave
and to confirm the value of T1 to the slave.

• Delay request message Dreq: the slave answers to the master once the slave received a Sync mes-
sage. At the emission of Delayreq , the value T1 and the value T ′1 corresponding to the emission
instant of Delayreq, are stored in the slave’s internal memory.

• Delay response message Dresp:. The master answers to Delayreq. This Delayresp message con-
tains the value of the date T2 at which the master received the Delayreq message.

As soon as it got the Fup message, the slave sends a Dreq message to themaster, emitted at dateT2. The
value of T2 is stored in the slave’s memory. Once the master gets the Dreq message, it stores its reception
instantT ′2, and sends it back to the slave with a Dresp message. At the reception of the Dresp message, the
slave gets the following values: T1,T ′1,T2,T

′
2.

ThePTPclock-synchronizationprocess is basedon the assumption that, between twodifferent nodes,
the transmission time of a message is constant (supposing no additional delay due to waiting queues). It

48

CHAPTER 3. REAL-TIME NETWORKS

means that both Sync and Dreq messages are supposed to be transmitted in the same time t. Based on
this hypothesis, we obtain:

T ′1−T1 = t + δ

T ′2−T2 = t − δ

δ =
T ′1+T2−T1−T ′2

2
3.1

According to the computation of δ, we can correct the clock value of the slave and eliminate the
existing jitter δ existing between the two clocks. Finally, the slave has to adjust its internal clock by
correcting it with δ value.

When synchronizing twodifferent clockswhich are separated by, at least, one intermediate node, this
intermediate nodewill be defined as a transparent clock for PTP. It means that this transparent clockwill
just have the role to forward the synchronization messages from master to slave, and reversely.

Slave S

∆(S) T ′1

Transparent clock Si

∆(Si)

Master

T1

Figure 3.10: PTP-ETE transparent clocks

In PTP-End To End (PTP-ETE), the syn-
chronization of two clocks separated by,
at least, one intermediate node, induces
addition clock jitter to correct (see fig-
ure 3.10). For each transparent clock TCi
in an intermediate switch Si , we add to the
synchronization delay the transmission
time (between the current switch and the
previous one) which is denoted as δ(TCi)
and the clock jitter induced by the current
node, denoted as ∆(Si).

Basically, computing the value of δ and of different transmission times T1, T ′1, T2 and T ′2 is based on
the assumption that the transmission delay betweenmaster and slave is induced by two different sources:
the transmission time induced in each intermediate transparent clock, and the clock jitter introduced by
each intermediate transparent clock. Considering an number n of transparent clocks in intermediate
nodes, we can compute the following expression:

T ′1 = T1+
∑

i∈[0;n]
(δ(TCi)+∆Si) 3.2

49

State of the art

PTP-P2P

In PTP-ETE, when there is more than one physical link between the slave and the master, we need to
forward the synchronization messages through the intermediate nodes. These nodes are considered as
transparent in the synchronization process, forwarding the synchronization message between the mas-
ter and the slave. Even if PTP-ETE can manage the clock synchronization between two nodes separated
from many intermediate nodes, the successive forwarding through intermediate nodes can induce a lack
of accuracy in the synchronization process. By adding successive different jitters, we multiply the num-
ber of approximations when computing the transmission time of a message.

PTP-ETE is based on the assumption that the value of δ is constant for all transmissions, which could
appear to be false in case of a high number of successive transitions. Increasing the distance and the
number of intermediate nodes between master and slave make the hypothesis of constant transmission
delay unreliable. In order to answer to this problem, PTP-Peer ToPeer (PTP-P2P) proposes an alternative
way to synchronize clocks in the network.

PTP-P2P is an alternative solution for clock synchronization with PTP. Contrary to the slave master
architecture which defines one master clock to the whole network to synchronize to, PTP-P2P is based
on a peer-to-peer approach. Each synchronization of a clock is done only with its closest neighbours. It
allows us to limit the transmission delay computation to two directly connected nodes. PTP-P2P does no
longer rely on the different evaluations of timestamps computed by the master and the slave, but directly
on the transmission time needed to transmit the message from peer to peer.

Requestor

Responder

Pdelay_Req Dreq Dresp

Pdelay_Req Dreq Dresp

T1 T ′1 T2 T ′2

Figure 3.11: PTP peer-to-peer synchronization

The synchronization
process of PTP-P2P is
described in figure 3.11.
Each peer transmits a
Pdelay_Req to the closest
neighbor, which answers
with a Pdelay_Resp
containing its current
timestamp.

Eventually, we apply the same timestamp comparison as for PTP-ETE to compute clock jitter be-
tween master and slave. In case of non-deterministic networks with an automatic route computation
(spanning tree algorithm), PTP-P2P has been proven to be more reliable [48]. The transmission delay be-
tween master and slave has not necessarily to be the same in both ways to allow a clock synchronization.

As a conclusion, PTP-ETE implies only the master and the slave to be PTP-compliant, whereas PTP-
P2P implies all the encountered nodes to be able to identify a PTP message. It means that PTP-P2P
implies all the switches in the network to be able to manage clock synchronization. In RT networks,
we assume that we are working mainly on closed topologies with static-defined paths (see section 3.1).
PTP-P2P could seem more convenient to our purposes but, as it implies strong constraints on the infras-
tructure, PTP-ETE appears as a costless solution.

50

CHAPTER 3. REAL-TIME NETWORKS

3.3.2 Frames

PTP frames were detailed in the PTP specification [48] and some other works [49]. We do not want to
make an exhaustive description here, but only explain the fundamentals we need in our work in terms
of frame modelling and clock-synchronization integration.

All PTP frames are based on a common frame structure composed of a header (34 bytes, detailed
in [48]). a body and an optional suffix. In order to fully understand the structure of PTP frames, we detail
here the model of each type of PTP message.

34B

Header

10B

Origin Timestamp

Figure 3.12: PTP body - Fup, Sync and Drep messages

Each PTP message has a different
body structure, depending on its
role. Itmeans that eachPTPmessage
has a dedicated size in bytes.

In terms of frame model, Sync, Followup, and Dreq messages are built on the same frame model,
containing the timestamp of the sender (see figure 3.12).

34B

Header

10B

Received Timestamp

10B

RPI

Figure 3.13: PTP body - Delayresp message

The Dresp message contains a times-
tamp, but also a Requesting Port
Identifier (RPI). The RPI identifier is
used to identify the emission port of
the message from the master node
(see figure 3.13)

Following the same structure, we detail here two frames of PTP-P2Pmode. We detail here the frames
for Pdelayreq , PdelayrespFup (see figure 3.14) and Pdelayresp (see figure 3.15) messages.

34B

Header

10B

Origin Timestamp

10B

Reserved

Figure 3.14: PTP body - PDelayreq frame

This frame from PDelayreq is com-
posed of 10 bytes of reserved field.
This field is used in order to adjust
the message size to be the same as
PDelayresp size (padding).

ThePTP-P2Pprotocol relies on a symmetric exchangeofmessages, implying PDelayreq and PDelayresp

to be of the same size.

34B

Header

10B

Received Timestamp

10B

RPI

Figure 3.15: PTP body - PDresp and PDresp_Fup frames

Apart from these padding bytes,
we can affirm that PDelayreq
has a very comparable struc-
ture to Delayreq. Similarly, the
PDelayresp frame structure is the
same as for Delayresp.

51

State of the art

3.4 CĔēĈđĚĘĎĔē

In this chapter, we presented the fundamentals of RT networks and especially the different RT Ether-
net infrastructures. Some of these infrastructures rely on clock-synchronization, which represents an
additional constraint in terms of costs and devices configuration. Depending on the context (avionics,
automotive, public transports), this synchronization can be seen as a global parameter to implement ev-
erywhere in the network, or just in a set of precisely selected nodes.

Our purpose in the following chapters would be to analyze and propose solutions to guarantee the
timeliness and safety of these clock-synchronized and not clock-synchronized architectures, particu-
larly in terms of transmission delays. That is why we propose, in the next chapter, to detail the existing
transmission delay computation methods.

52

Chapter 4

End-to-end transmission delay
computation

”L’homme qui déplace les montagnes commence par les petites pierres”

”The man who moves a mountain begins by carrying away small stones.”

–Confucius [51]

Contents
4.1 Introduction . 54

4.2 Other computation methods . 54

4.3 Trajectory approach . 55

4.4 Optimism in the Trajectory Approach . 63

4.5 Notations . 66

4.6 Conclusion . 67

53

State of the art

4.1 IēęėĔĉĚĈęĎĔē

How to propose deterministic methods to compute worst case transmission delay of a message inside
a network?. We present here the existing methods to answer to this question and their limits. In this
chapter, we detail three major computation methods applicable to RT networks: the holistic method,
the network calculus method and the Trajectory Approach. The purpose of each is to compute the worst
case response time Ri of a message m, issued from a flow vi .

4.2 OęčĊė ĈĔĒĕĚęĆęĎĔē ĒĊęčĔĉĘ

4.2.1 The holistic method

The holistic delay computation method [52], [53] is considered as the ”historical” method. It can be con-
sidered as a default solution for delay computation in processor-oriented context and RT networks. It
is based on a generic modelling of a network: this solution has been extracted from RT processor con-
text [54]. The delay computation through the holistic method has been first defined for distributed ar-
chitectures, and then extended to network context.

Computing transmission delaywith the holistic approach consists applying the computationmethod
to a specific node, then extending the computation progressively to all nodes of the network by following
an iterative process. At each encountered node along a message path, we compute the smallest and the
highest release time of the message. These time instants depend on the delay induced by network traffic.

The holistic approach considers that, at each node, a message can be delayed by a specific jitter due
to other messages. In order to compute the worst case end-to-end transmission delay of a message, the
holistic approach proposes to bound this jitter and to make a worst case evaluation of it on each node.
Then, we can deduce the transmission delay of a message as the combination of all the computed jitters.

Limits

The holistic approach considers that each message that can pass through a node and delay the transmis-
sion of m will do it. This is safe but it can lead to a very pessimistic evaluation of the delay. The holistic
approach takes into account all potential cases of network and messages configuration when computing
transmission delay, which implies to take into consideration physically impossible situations. This can
integrate pessimism in the method.

4.2.2 Network calculus

Concept

Network Calculus has been introduced [55] as a delay computation solution in RT networks. It has been
presented [56] as a network performances computation tool. Network Calculus is a set of mathematical

54

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

tools used to verify performances and assure guarantee satisfaction in network topologies. A detailed
application of the method for avionic networks can be found in [57]. Computing worst case end-to-end
transmission delay with Network Calculus has been treated in [58].

In Network Calculus, we consider each node in a network topology as a computing unit, which gets
data as input at a specific rate and produces data as output at another rate. Themodel of network calculus
is not based on the distinction of flows like for Holistic Approach, but directly on amounts of produced
data for each node. Considering this approach, we can compute the delay induced by a message in all en-
countered node along its path. We can provide an expression of the worst case end-to-end transmission
delay of a message in the network.

Limits

Network Calculus presents several problems. First, it is complicated to model and implement: its appli-
cability to all network contexts makes it difficult to adapt to concrete cases.[57] showed the complexity
to represent and compute the bounds of transmission delay with Network Calculus. More specifically,
the Network Calculus computation time tend to strongly increase when applying the method to nodes
interconnected through various topologies [59].

Network Calculus is costly to use in terms of time and ressources. As a conclusion, we want to
introduce an end-to-end delay computationmethodwhich has been defined specifically forRT industrial
networks and costs less to use. This method is called the Trajectory Approach and is detailed below.

4.3 TėĆďĊĈęĔėĞ ĆĕĕėĔĆĈč

4.3.1 Presentation

The Trajectory Approach was presented in [60]. It is an end-to-end transmission delay computation
approach which proposes a delay analysis based on the trajectory of a flow instead of each node in the
trajectory (unlikeHolistic approach andNetworkCalculus). TheTrajectoryApproach is based on its own
network modelling. This modelling consists in representing a network as a set of interconnected nodes,
and representing the data as flows following statically-defined paths.

[52] introduced the Trajectory Approach as an alternative of the holistic approach in the list of delay
computation methods. The principle is as follows: we model a network as a set of flows (see figure 4.1),
and the worst case transmission delay of a message (from a given flow) is computed according to each
node encountered along its path. The computation of the worst case transmission delay of a message
does not anymore consider all the nodes in the network but only the node in the path of a flow.

This approach solves two issues: First, we do not anymore consider physically impossible situations
taking into account irrelevant nodes: we only focus on flows likely to impact the delay computation
. Secondly, as we consider less nodes than the previous methods, it eases the computation of the final
expression of delay computation.

The Trajectory Approach is a retro-processing method: we do not analyze the delay starting from

55

State of the art

S2

S1

S3

S4

S5

ES1

ES2

ES3

ES4

ES5

v1

v2

v1, v2

v3, v4

v5,v6

v7

v1, v2, v3

v4

v5, v7

v6

ES6

ES7

Figure 4.1: Network flows modelling

Modelling a network with the Tra-
jectory Approach relies on the flows
definition. Each flow is defined with
its source and destination nodes
in the network (end-systems). The
method is applicable to various
topologies, as long as the network
flow paths do not integrate loops:
they cannot cross twice the same
node.

the first node in the path of a message. On the contrary, we start from the flow destination node, and we
add one by one all the possible delays induced by network traffic in the other nodes, until we reach the
source node of the flow.

The Trajectory Approach is built for periodic and sporadic flows. A flow vi is characterized by the
parameters {P⃗i,Ci,Ti}, repespectively the flow path, WCAT and period (or minimum inter-arrival time
for sporadic flows).

The Trajectory Approach relies on the notion of busy period. A busy period (see figure 4.2) in a node
is a time interval during which there is no idle time.

From its start to its end, there is a continuous
transmission of messages. A busy period is a pe-
riod of time during which a node is entirely busy
transmitting successive flows of data.

BP1 BP2
Node

Figure 4.2: Busy periods

4.3.2 Model with FIFO

The transmission of a message m from a flow vi can be delayed by different sources. In Trajectory Ap-
proach like for all other delay computation methods, this switching latency is considered as an upper-
bounded constant for all the links in the networks. It is denoted as sl .

When the message m arrives in a given node, the worst case assumption implies considering that it
will be delayed by all messages with a higher or equivalent priority. We consider that all messages with
a higher or equal priority as m will be transmitted before m.

All the messages transmitted before m represent a delay which needs to be bounded. This delay is
expressed, for each delaying flow v j , as the result of the flow WCAT(Cj) and the number of transmitted
messages from v j which will have an impact on the transmission delay of message m.

56

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

During the focused time interval, each flow with a higher than or equal priority to vi will produce a
certainnumber ofmessages likely to delay the transmissionof m. Thepurpose of theTrajectoryApproach
is to compute the number of transmitted messages during this time interval, for each flow. To do so, we
introduce the following concepts:

• FTn
min is the smallest WCAT among the messages transmitted during the busy period on node n.

It is computed by: FTn
min = min

j∈{1,2,...,n},n∈P⃗j

(Cj).

• Sn
maxi and Sn

min j
are the maximum and the minimum delays experienced by flow vi from its source

node f ir sti to the output port o of node n.

• Mn
i is considered as the earliest arrival time of the firstmessage thatwill delay flow vi on the output

port o of node n. It is computed by: Mn
i =

n−1∑
j= f ir sti

(FT j
min+ sl).

• V is the set of flows likely to be transmitted in the network.

• n f is the number of flows in the networkN . We have |V | = n f .

Aswe areworkingwith periodic and sporadic flows, the delay induced by each flow can be computed
by knowing the time interval when all the transmitted messages are likely to delay m. For messages
from a flow v j likely to delay m in node k , the time interval corresponds to the following value Ai, j =

Sk
maxi − Sk

min j
−M k

i + Sk
max j

, with: with k the first encountered node of vi and v j along their respective
path. The computation of this value has been detailed in [61].

Knowing the length of the time interval, we can compute the number of transmitted messages from
flow v j with (1+ ⌊ t+Ai, j

Tj
⌋). This value allows us to determine, for each flow v j encountered by vi , the po-

tential delay induced by v j on the transmission ofmessage m. As a conclusion, we can express the impact
of higher and equal priority flows on vi end-to-end transmission delay with the following expression:

∑
j∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
1+

⌊ t + Ai, j

Tj

⌋)+
∗Cj 4.1

Added to the delay represented by the network traffic, we have to consider the WCAT of message
m, which is added once per encountered node along P⃗i . But, in each node, the length of the different
messages can occur to represent an additional delay. To represent this, we have to consider the longest
message in each encountered node. We obtain the following expression :

∑
k∈P⃗i

(
max

j∈{1,2,...,n}
k∈P⃗j

(Cj)
)

4.2

57

State of the art

4.3.3 Non-preemptive delay

When m arrives in a node, there could be a message which is being already currently transmitted. No
matter the priority of thismessage, its transmission cannot be stopped, which could induce an additional
delay, called the non-preemptive delay. This delay is integrated in the Trajectory Approach computation.

We considermessage2with a lower priority
than message 1. Nevertheless, when 1 ar-
rives in node S1, 2 is being already currently
transmitted. The delay induced by the end
of the transmission of 2 is an illustration of
the non-preemptive delay. N P1

S1 is the non-
preemptive delay applied to the transmis-
sion of message 1 on node S1.

S1

ES2

ES1
1

2

2 1

N P1
S1

Figure 4.3: Non-preeemptive effect

For aworst case analysis, we consider the longest possible non-preemptive delay in the node. In FIFO
context, there is no priority management in this context. But, messages from other VLAN, inducing in
each node the message with the longest WCAT as a non-preemptive effect. As a conclusion, we can
express the non-preemptive delay µi

n in node n of flow vi with the following expression:

µi
n = max

P⃗i∩P⃗j,∅
(Cj) 4.3

In order to represent the whole non-preemptive delay induced in each node of the network, we add
the potential non-preemptive delay induced to the transmission delay of m, in all nodes from P⃗i (see
expression 4.8). We obtain:

∑
k∈P⃗i\{lasti}

µi
k =

∑
k∈P⃗i\{lasti}

(
max
k∈P⃗j

(Cj)
)

4.4

The non-preemptive delay computation in the Trajectory Approach is detailed in [62], [63].

4.3.4 Global delay computation

In our application of the Trajectory Approach, we consider FIFO scheduling of messages : the priority in
FIFO in indexed on a message arrival time. Considering the previously computed delays (due to higher

58

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

priority traffic and non-preemptive delay) we can establish the delay induced by network traffic on the
transmission of a message m from flow vi . Computing worst case delay transmission with the Trajectory
Approach consists in computing the delay experienced by a message m along the path of the flow vi m
belongs to.

The end-to-end transmission delay of a message could be summarized by the combination of ex-
pressions 4.7 and 4.9. But this delay is not complete. It must take into account the switching latency
experienced by m. This latency is upper-bounded by sl for each transmission link encountered along the
path of vi . We can summarize the expression of this switching latency as |P⃗i | ∗ sl .

Combining these expressions, we can express the latest starting time of m from the last node lasti in
the path of vi . This delay is illustrated in figure 4.4. We note this delay as W lasti

i,t , considering that m was
emitted at time instant t in its source node.

lasti

k

k −1

f ir sti m

t

mbpk−1

W k−1
i,t

mbpk

W k
i,t

bplasti

W lasti
i,t

m

0

Figure 4.4: Trajectory approach details

In order to compute the response time Ri of m from vi , we first compute the latest starting time of m
from the last node in its path (denoted as lasti). This delay is denoted as W lasti

i,t and relies on the release
time t of m from its source node f ir sti . Considering the previous work, we can express W lasti

i,t with the
following expression:

59

State of the art

W lasti
i,t =

∑
j∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
1+

⌊ t + Ai, j

Tj

⌋)+
∗Cj

+
∑

k∈P⃗i\{lasti}

(
max

j∈{1,2,...,n}
k∈P⃗j

(Cj)
)

+
∑

k∈P⃗i\{lasti}
µi

k

+ (|P⃗i | −1) ∗ sl

− Ci 4.5

When computing the end-to-end transmission delay, we often use W lasti
i,t as a reference. In fact,

starting from the last node in its path to its destination, m will not suffer from additional delay due
to network traffic. It means that the difference between the response time Ri (t) of m and W lasti

i,t only
depends on t. We note that Ri (t) =W lasti

i,t − t+Ci . The complete end-to-end transmission time of m can
be computed by considering the worst case value of Ri (t). This delay is denoted as Ri and is represented
as follows:

Ri =max
t≥0

(Ri (t)) =max
t≥0

{
W lasti

i,t − t +Ci
}

4.6

4.3.5 Serialization effect

Basically, we assume that competing messages from different flows can arrive at the same input port of
a node at the same time. In practical situations, competitive messages sharing the same link have to be
serialized before being transmitted. [64] showed that minimizing the serialization by 0 was a source of
pessimism in the Trajectory Approach. We detail here the computation of the serialization effect.

Martin et al. [61] ignored the serialization of frame sharing the same links (due to flow representa-
tion) in their approach. They minimized this delay by 0. In more recent works, Bauer et al. [65] showed
that this minimization induced a strong pessimism in the approach. They proposed a new bound to the
serialization term, which reduced this pessimism.

There is an induced serialization delay at each input link of a node h. All the flows connected as input
of h are all connected to a specific input port of h, denoted as IPh

jh
, with jh the number of the input port.

Each competing message connected to an input port IPh
j comes from another output port OPh−1, with

h−1 the node before in the path P⃗j . As a conclusion, OPh−1 is a different output port for each flow.

Each message transits through a link between OPh−1 (the previous node) and OPh (the output port

60

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

of node h) via the input port IPh
jh
. Then, on the output queue, each message is selected and transmitted

to its destination, according to the scheduling policy of node h (FIFO, fixed priority, etc...).

In order to explain the serialization effect, we introduce the respective terms FTq
min,FTq

max , which

are theminimumandmaximumWCATpresent in the busy period of output portOPh, and FT
IPh

j
max , which

is the maximum WCAT from the busy period in input port IPh
j .

As shown in figure 4.5, competitive ar-
rival of successive flows from different in-
put ports and transiting to the same output
port can represent an additional delay in the
transmission of a message m from flow vi .
This phenomemnon is called the serializa-
tion effect and is represented, in each node h
for each flow vi , with the term∆h

i (t) (where
t is the emission date of message m from vi
at its source node).

OPh

Sbph

FT
IPh

2

min
m

IPh
jh

FT
IPh

jh

min

IPh
2

FT
IPh

2

min

IPh
1

FT
IPh

1

min

IPh
0

mFTh−1
max

∆hi

bph
θtδ

Figure 4.5: Serialization effect

Due to serialization, messages are likely to arrive in output port OPh before the date tδ . tδ represents
the arrival date of the first message from the busy period of the input port IPh

0 . All messages arriving in
OPh before date tδ are not likely to delay m. These messages have to be substracted from the Trajectory
Approach expression. This optimization of the Trajectory Approach was detailed in [65].

According to figure 4.5, the serialization effect ∆h
i in node h is the delay between the beginning of

bph and the arrival of the first message (m) from IPh
0 . As we search for the worst case transmission delay

of m, wewant tominimize the value of∆h
i . According to [65], the smallest value of∆h

i is computedwhen:

• The first message of bph is the smallest message of bph−1.

• The first message of each input port IPh
j has the longest WCAT in the busy period bpIPh

j .

Both these conditions are illustrated in figure 4.5. In order to compute the serialization effect, we
have to consider the potential effect induced in each input port, of each node. In each input port IPh

n , the
number of generated messages are represented by the number of flows v j transitting through this port.
This is indicated by:

∑
vj∈IPh

x

(⌊
1+

t + Ai, j

Tj

⌋)+
∗Cj 4.7

61

State of the art

Each flow from each input port can generate a potential non-preemptive effect, which has to be sub-
stracted from the serialization term. As a conclusion, in an output port IPh, the flows transitting through
this port are responsible of the following serialization effect:

∑
vj∈IPh

x

(⌊
1+

t + Ai, j

Tj

⌋)+
∗Cj − max

vj∈IPh
x

(Cj) 4.8

The expression of the serialization effect is computed on each input port. Then, we consider the
maximum delay among all input ports. We obtain:

∆
h
i,t = max

x∈{1,2,..., jh}


∑
vj∈IPh

x

(⌊
1+

t + Ai, j

Tj

⌋)+
∗Cj − max

vj∈IPh
x

(Cj)
 4.9

Eventually, we substract the delay induced by messages from the same input port as m. These mes-
sages delay the transmission of m. Considering this, we obtain the following expression of ∆h

i :

∆
h
i,t = max

x∈{1,2,..., jh}


∑
vj∈IPh

x

(⌊
1+

t + Ai, j

Tj

⌋)+
∗Cj − max

vj∈IPh
x

(Cj)


−
∑

vj∈IPh
0

(⌊
1+

t + Ai, j

Tj

⌋)+
∗Cj − min

vj∈IPh
0

(Cj) 4.10

Considering this serialization term for each flow vi and each node h in the network N , we obtain
the corrected expression of the latest response time computed by the Trajectory Approach:

62

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

W lasti
i,t =

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
1+

⌊ t + Ai, j

Tj

⌋)+
∗Cj

+
∑

k∈P⃗i\{lasti}

(
max

j∈{1,2,...,n}
k∈P⃗j

(Cj)
)

+
∑

k∈P⃗i\{lasti}
µi

k

+ (|P⃗i | −1) ∗ sl

−
∑

k∈P⃗i\ f ir sti

(∆k
i,t)

− Ci 4.11

4.4 OĕęĎĒĎĘĒ Ďē ęčĊ TėĆďĊĈęĔėĞ AĕĕėĔĆĈč

In recent works [62], [66], it has been shown that there exist corner cases where the delay computation
proposed by the Trajectory Approach appeared to be optimistic compared to real cases. This means that
the Trajectory Approach in its current form can be considered as a non reliable method for end-to-end
delay computation. Based on the work presented in [63], we want to expose the sources of this optimism
and to propose a correction to the expression of the Trajectory Approach.

4.4.1 Example

We illustrate the optimism problem through an example. We consider the network topology and set of
flows presented in figure 4.6. This network is composed of a set of 8 end-systems {ES1,ES2, ...,ES8} and
3 switches {S1, S2, S3}with 7flows {v1,v2, ...,v7} transmitted through the network. Wewant to compute
the end-to-end transmission time of a message m from flow v1. Its path P⃗1 is equal to {ES1, S3,ES8} in
the topology (see figure 4.6).

63

State of the art

ES5
v7

ES4
v4, v5

S2 v4, v5, v7

S1 v3, v6ES6
v6

ES3
v3

ES2
v2

ES1
v1

S3
ES8

v1,v2,v3,v4

ES7
v5,v6,v7

Figure 4.6: Illustrative topology for the Trajectory Ap-
proach

We suppose the switching latency sl =
0µs. We suppose that we are working
with periodic and sporadic flows. The pa-
rameters of the different flows are given
in the table below:

Flow v1 v2 v3 v4
Ci (µs) 40 20 20 40
Ti (µs) 4000 4000 60 120
Flow v5 v6 v7

Ci (µs) 30 40 50
Ti (µs) 4000 4000 4000

ES1

ES2

ES3

ES4

S1

S2

S3

m

t = 40µs

2

3′ 3

5 4′ 4

6 3′ 3

5 7 4′ 4

4′ 3′ 4 3 2 m

-150 -100 -50 0 50 100 150 200

Figure 4.7: Transmission time of message m from v1

The worst case scheduling scenario of m is represented in figure 4.7. We compute the latest starting time
of m as the delay when m is transmitted from S3 to its final destination (W S3

i,t). The worst end-to-end
transmission delay of m is the duration between t and the arrival insant of m in ES8 (destination node).
We compute R1 =max

t≥0
(R1(t)) = R1(40) = 180µs.

If we apply the expression 4.11 of the Trajectory Approach, we obtain R1 = max
t≥0

(W S3
1,t − t +C1). We

compute the different values:

A1,2 A1,3 A1,4

0 40 80
In order to compute R1 with the Trajectory Approach, we compute the
different values of Ai, j for the competing flows v2,v3,v4.

We obtains the value R1 = 140−0+20 = 160µs (the detail of the computation can be found in [62]). This
result is 20µs below the real transmission time. This leads to the following conclusion: in that case, the
Trajectory Approach led to an optimistic result, representing an error margin of nearly 10 %. We want
to explain the source of this optimism, and then to propose a correction to it.

64

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

4.4.2 Problem
In the work done in [63], we showed that the Trajectory Approach considers that message transmissions
during the time interval [M lasti

i ;M lasti
i + t] are not likely to delay the transmission of message m.

When computing the transmission delay with the Trajectory Approach expression on the scenario de-
scribed in figure 4.9,

ES3
v2,v9

ES4
v3 S3 v9

v2, v3

ES5 ES2
v4,v5,v6
v7,v8

ES1
v1

S1
v1, v2, v3

S2

v1, v2, v3
v4, v5, v6
v8, v9 ES6

Figure 4.8: Topology for the characterization of the optimism due
to serialization effect

Flow Ci (µs) Ti (µs)
v1 40 4000
v2 40 120
v3 40 4000
v4 40 320
v5 40 4000
v6 40 4000
v7 40 4000

ES1
t

m

S3 2′
3

2

S1 3 2′ 2 m

ES2 4′
5
6
7
8

4

S2
MS2

1

8 7 6

MS2

1 + t

3 5 4′ 2′ 2 4 m

0 200 400

Figure 4.9: Serialization effect details

Considering these parameters, we obtain
(with the classical approach) the results
detailed in figure 4.9. The Trajectory Ap-
proach considers that different messages
from different flows can arrive at the
same time and delay m. On the contrary,
it does not take into account the mini-
mum temporal time between two consec-
utive messages of the same flow (contrary
to the classical approach).
Combining this, it can lead to the point
that all messages transmitted during
the interval [M lasti

i ;M lasti
i + t] are

substracted twice from the Trajectory
Approach delay computation expression:
once because the serialization term over-
laps the time interval [M lasti

i ;M lasti
i + t],

and once because that classical approach
already substracts these messages. This
double substraction leads to an optimistic
result.

4.4.3 Correction of the serialization effect
As shown, the optimism in the Trajectory Approach comes from a mis-evaluation of the serialization
term bound proposed in [65]. According to the classical approach, all messages likely to delay m are
transmitted in node k after M k

i . However, due to the serialization effect, some messages are transmitted
before M k

i and their impact on the end-to-end transmission delay of m should be substracted from the
serialization delay. As a result, there is an overlap between the two intervals.

65

State of the art

Some messages transmitted during the interval [M lasti
i + t;W lasti

i] are likely to be substracted twice from
the final expression. Our solution to the presented problem is to exclude this overlap from the serializa-
tion term. We proved in [63] that the overlapped time interval duration was equal to the smallest value
between ∆h

i and t. the serialization term can be corrected as follows:

*..,
∑

k∈P⃗i\ f ir sti

(∆k
i,t)− t

+//-
+

4.12

As a conclusion, we propose the following expression to compute the end-to-end last response time of a
message m from flow vi :

W lasti
i,t =

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
1+

⌊ t + Ai, j

Tj

⌋)+
∗Cj

+
∑

k∈P⃗i\{lasti}

(
max

j∈{1,2,...,n}
k∈P⃗j

(Cj)
)

+
∑

k∈P⃗i\{lasti}
µi

k

+ (|P⃗i | −1) ∗ sl

−
*..,

∑
k∈P⃗i\ f ir sti

(∆k
i,t)− t

+//-
+

− Ci 4.13

4.5 NĔęĆęĎĔēĘ

• P⃗i is the path of the flow vi .

• Ci is the WCAT of the flow vi .

• Ti is the period (or minimum inter-arrival time) of the flow vi .

• vi is a network flow, characterized by the properties {P⃗i,Ci,Ti}.
• f ir sti and lasti are respectively the first and last node of the path P⃗i from flow vi .

• f ir sti, j is the first common node in the paths P⃗i and P⃗j from flows vi and v j .

66

CHAPTER 4. END-TO-END TRANSMISSION DELAY COMPUTATION

• µk
i represents the non-preemptive effect induced bymessages fromother VLANand likely to delay

message from flow vi in node k .

• *, ∑
k∈P⃗i\ f ir sti

(∆k
i,t)− t+-

+

is the serialization effect of messages transmission delay, introduced in [63]

and detailed chapter 4.

• W lasti
i,t is the latest emission date amessage fromflow vi in the last node lasti frompath P⃗i , emitted

at a date t in the first node f ir sti in P⃗i .

• sl is the switching latency induced in each node of the network.

• Nn
i, j is the number of messages produced by flow v j likely to delay message from vi in the node n.

We note Nn
i, j =

(
1+

⌊
t+Ai, j

Tj

⌋)+
.

4.6 CĔēĈđĚĘĎĔē

The Trajectory Approach, in its corrected form, represents a reliable delay computation method. It
presents the advantage of being specifically designed for RT networks. It means that its implementa-
tion cost is reduced, compared to Network Calculus. This represents a main advantage, especially when
defining simulation and computation algorithms.
Thus, the corrected Trajectory Approach is oriented around the flow modelling of data inside a network.
We only consider, when computing a transmission delay, the different nodes encountered by a message
along its path. Contrary to the holistic approach, we are not likely to consider impossible situations or
irrelevant additional delays leading to high pessimism in the results.
As a result, we use the Trajectory Approach as the end-to-end transmission delay computation method
in our work.

67

Chapter 5

Real-Time Simulation

”Un robot ne peut porter atteinte à un être humain, ni, en restant passif, permettre
qu’un être humain soit exposé au danger.”

”A robot may not injure a human being or, through inaction, allow a human being to come to
harm.”

– Isaac Asimov’s First Law of Robotics [67]

Contents
5.1 Introduction . 70

5.2 Requirements . 70

5.3 Simulation tools . 72

5.4 Task modelling . 90

5.5 Random tasks generation . 90

5.6 Conclusion . 95

69

State of the art

5.1 IēęėĔĉĚĈęĎĔē

In software and hardware development, each new module has to be tested. For anyone involved in en-
gineering or industrial design, it seems obvious to have to validate the functionalities and the reliability
of new elements before deploying them. More specifically in safety critical domains, each piece of code,
each new module has to be tested through different tools: automatic test generators, simulation envi-
ronments, test planifications.
Implementing these tests is costful, in termsof time and ressources. The stronger the constraints to check,
the higher the cost of testing it. When deploying a tool among a production environment, operating
all tests directly in this environment can induce constraints of ressources and availability. Especially
in the context of iterative tries, well known in software development, repeating the same test on an
infrastructure a wide number of times can require to monopolize this infrastructure for long periods of
time.
For example, requiring a real A380 cockpit for each AFDXnetwork performance test canmake the result
of each error costful. Particularly for tests occuring during the beginning of development phases, the
results of failing tests can happen to be unpredictible and implies a high fault-tolerance rate in simulation
environments. What if the test fails during development phase and makes the whole test environment
corrupted and necessary to destroy?
In order to answer to this problematic of availability and cost of test environment implementation, we
need to define specific test environments, abstracting the highest possible number of physical infrastruc-
tures. This will allow us, for a certain number of tests, to reproduce them in an environment which is
easy to setup and costless to reboot in case of failures. We need to integrate all real constraints in this test
environment in order to be as close as possible to a real infrastructure. These test architectures rules out
some costs and risks (human safety, mass production, ...) allowing us to increase the tolerance to faults
during design and development phases of a system.
In conclusion, it appears to be necessary to conceive RT software simulators. We need to define software
tools to model and represent real cases at the closest, in order to implement and test the major part of
the models in virtualized environments. Once the modules have been proved fully reliable on software
platforms, we can switch and start testing them on real infrastructures. This way, real infrastructures
availability increased as they are needed only at the last moment of the design phase (when all tests run
on virtual test environments have been validated).
In this chapter, wepropose to detail the actual environment ofRTandnetwork simulation tools currently
used. We want to focus on these specific tools in order to make a complete description of all constraints
and needs which had to be taken into account during the simulation phase of a RT architecture. In order
to be compliant to our functional requirements, we want to focus on both RT and network approaches
integrated in these tools.

5.2 RĊĖĚĎėĊĒĊēęĘ

We want to get a network simulation tool in order to test and validate MC models integration inside RT
networks. To do this, we want to dispose of tool fulfilling specific functional and architectural require-
ments. Our approach in this chapter is to focus on already existing RT simulation tools and to check

70

CHAPTER 5. REAL-TIME SIMULATION

whether or not they satisfy our needs.

5.2.1 Functional requirements
Functionally speaking, the tool we want to use must fullfill the following requirements :

• Schedulability analysis : We need to focus on the schedulability of simulation scenarios. We want
to check if a system is able to satisfy timing constraints and the end-to-end transmission delay of a
message in various cases. That also implies the system to integrate a solution to modify scheduling
policies of flows.

• Network modelling : The tool main purpose should be to represent and simulate a network at
runtime. That includes to propose solutions to create a graph of nodes and manage the bandwidth
of the structure.

• Graphical interface and genericity : Usually, simulation tools are designed to be generic and adapt-
able to various kind of situations. This permits a generic approach of network simulation. But this
can also represent a problem in terms of usability. In the first case, the tools are dedicated to spe-
cific uses, which makes them irrelevant when out of their context of use. In the other case, several
tools are trying to adopt an approach covering a wide functional perimeter. But, usually, this ap-
proachmakes the tools very complicated to use, as the user has to specify every single hypothesis of
use. This problematic is common in computer science: knowing how tomake balance between the
size of the functional perimeter and the complexity of Graphical User Interface (GUI). We focus
pedagogical purposes and so we require an intuitive GUI.

• Data modelling : To be compatible with external tools and to allow users to design simulation
scenarios corresponding to their ownneeds, wewant the tool to rely on an easy to read andmodify
datamodelling layer. Itmeans that the toolmust integrate a solution tomodel simulation scenarios
in an understable format and that this modelling files have to be editable.

5.2.2 Architectural requirements
We group here various guidelines we want to integrate in the software.

• Easy to use : The tool is designed to verify and check RT simulation scenarios. Its use has to be
the simplest as possible, for the user to spend the less time in software management and more in
configuration of its simulation scenario.

• Free : The tool we want to use is meant to be used for reasearch and pedagogical purposes. More-
over, our approach is not to build a commercial tool but to provide an open developement frame-
work for RT network simulation to be used by many different developer communities. As a result,
the tool has to be free.

• Open-Source : To provide scalability and to propose to each developer to adapt the solution to its
own needs, we want an open-source tool.

71

State of the art

• Portable : We want the tool to be implemented and used on various operating systems. Portability
and easiness of installation are a cornerstone of its design.

5.3 SĎĒĚđĆęĎĔē ęĔĔđĘ

5.3.1 Functional structure
RT simulation tools are oriented to various functional contexts: performances tests, dimensioning, ped-
agogic approach, timing analysis, etc... In this work, we make a presentation of the main existing simu-
lators. We want to detail their structure in order to clarify the structural and architecture choices which
are common to all tools. We can regroup the different contexts of use of RT simulation tools according
to the results it provides.

• The first kind of tools are designed for performance tests and benchmarking: focusing on delay
analysis. This is used to establish QoS standards and to verify if timing constraints can be satisfied
by a system or not. These tools are used in contexts like dimensioning infrastructures, load tests,
etc...

• The second purpose is certification: the purpose is to validate the respect of constraints inside a
system and provide worst case evaluations. Like performance objectives which are designed to
evaluate the potential of a system, certification and constraints integration are more oriented for
validating and dimensioning an infrastructure.

• A third option concerns model-checking tools, like PRISM [68] or Kronos [69]. Their role is to
verify the respect of safety and reliability constraints inside a virtually modeled system. Model-
checking tools were detailed in several different works like [70].

In this work, we operate a clear split between processor-oriented and network-oriented tools. The
processor-oriented tools are designed for architecture simulation, containing all the tools designed to
simulate and test the management of different task models in an embedded processor architecture. De-
pending on the tool, they can manage different hypothese of simulation (mono/multicore, shared data
management). These tools are detailed in section 5.3.3.
The network simulation tools (see section 5.3.4) are designed for simulating different layers of the Open
Systems Interconnection (OSI) model. In our work, we focus on an implementation of our model in
Ethernet so we need an OSI layers support and integration. But we can suppose a more generical ap-
proach not relying on this hypothesis. Simulation tools can integrate dimensioning, performances and
guarantees purposes. These tools are not necessarily designed to integrate RT constraints.

5.3.2 Simulation models
All RT simulation tools rely on the same fundamental model in order to model their architecture and to
emulate its behavior during runtime, and this model can be detailed as composed of three different parts:

72

CHAPTER 5. REAL-TIME SIMULATION

• The architecture: This contains all general parameters which are common to the differentmodules
of the system. This allowsus to define a global scheduling policy and configuration, sharedmemory
spaces and data, etc... The architecture part of RT simulation tools modelling is responsible for
defining and containing all informations which represents the meta-data of the system. This is
also where we define the different external constraints to apply to the simulation context.

• The platform: This contains and describes the set of cores, processors and clusters which are go-
ing to be used inside the simulation environement (in processor context). On the opposite, this
contains all the topology (nodes and links) description to model a network. The platform is the
virtualizated representation of the physical devices layer that we have to simulate. The platform
is responsible for the abstraction of the different hardware layers of the target system (virtual ma-
chines, drivers simulators). In this part, we can define more specifically the configuration and
scheduling policies dedicated to specific subsystems or nodes and organize clusters of processors
and groups of nodes.

• The data: This is the description of all tasks (grouped by tasksets) to be executed and scheduled by
the system. In case of network simulation, tasks are replaced by flows. The data represents the
processes to run on the system. This contains all parameters of the task and flow model (deadlines,
activation models, WCET, periods, ...). The data modelling are part of the input informations of
the system: it can be generated before simulation (static) or dynamically generated at runtime.

There exist two main simulation models in RT simulation: event-based and time-based. Choosing a
simulation model when defining a new tool is the first important choice to make in terms of software
architecture. It will impact all the representation of data and algorithmic structure of the simulation core
we have to design. We propose here to detail each one of these models.

Time-based model

The time-based model, presented in [71], consists in representing a system simulated behavior according
to a step-by-step evolution of the time. The implementation of the model is based on a central clock
algorithm which manages the time evolution, and each new loop of the algorithm represents a new date
in the system. At eachnew time instant, we check all the differentmodules of the platform (cores, network
nodes) to simulate their behavior during one single time step.
The step-by-step evolution of time requires to define a time granularity for the simulation, which will
represent the duration of one time step of the algorithm. This granularity can be statically-defined by
the developer or can be defined at simulation configuration (pre-runtime) by the final user. As a matter,
it means that time-based simulation supposes a discretization of the time model used in the simulation.
We consider a fundamental time granularity which we set in the program clock (1µs step, for example),
and we suppose that no event can happen between two different time sequences. The structure of a time-
based simulator core is detailed in figure 5.1.
The figure 5.1 shows that the clock provides time-granularity. This granularity can be completely simu-
lated (in RT simulation tools) or based on a real clock connected as an input point to the system. This pro-
cess is frequently used in monitoring tools for industrial contexts, or in RT supervisors like PikeOS [72].

73

State of the art

Tasks

Platform

Architecture

C
lo

ck Granularity

Ti
m

e
m

an
ag

er

Time events

C
or

e
si
m

ul
at

or

Figure 5.1: Time-based simulation

As shown, the optimism in the Trajectory Approach comes from a mis-evaluation of the serialization
term bound proposed in [65]. According to the classical approach, all messages likely to delay m are
transmitted in node k after M k

i . However, due to the serialization effect, some messages are transmitted
before M k

i and their impact on the end-to-end transmission delay of m should be substracted from the
serialization delay. As a result, there is an overlap between the two intervals.
The time-based modelling process presents the advantage to be closer to a classic algorithmic represen-
tation. It is easier to develop and to implement inside a RT software simulator, because its modelling is
closer to classical modellings based on algorithmic loops. On the contrary, the hypothesis of discretiza-
tion of the timemodel, and the fact that it is possible to have time instants duringwhich nothing happens,
implies a lack of performance inside the tool.

Event-basedmodel

In order to solve the lack of performances of time-based modelling and to propose a more dynamic
model, many RT simulation tools are based on a second solution called the event-based model. This
model is based on the trigger-event pattern frequently used in programmation [73].
The trigger-event pattern links an external event (message incoming, new task to execute, deadline miss,
execution finished, ...) to one or several dedicated function. Each module (task manager, scheduler) of
the system is attached to an event handler, which triggers specific functions (control deadlines, warn the
user) depending on the event triggered by the attached module. Each time an event is detected by an
handler, the role of the handler is to make a link with a dedicated function in order to call it once the
event trigger is detected.
Usually, event-basedRT simulation tools are designedwith a global eventmanager, connected to all event
handlers. When a handler detects an event, it sends the information to the event manager, which orga-
nizes all potential events in the system. At each new incoming event, the event detector is responsible for
connecting the source handler of this event to eventual destination functions. This global event detec-
tor has the role of filtering the events, and organizing them. The structure of an event-based simulation
toolchain is detailed in figure 5.2.
Event-based simulation is based on a clear listing of the different events which is called the event table.
This table includes and describes all events detected by the different handlers. This table can be internally

74

CHAPTER 5. REAL-TIME SIMULATION

computed by the system, given the simulation context description, or it can provided by external sources
through an intermediate formalization layer. For example, a sensor network connected as input to the
simulator can provide regular external events, represented in a XML file. This representation of events
creates an abstraction layer between the system (providing events) and the simulator (triggering corre-
sponding functions). The figure 5.2 shows the connection between the system (Architecture, Platform,
Tasks) and the event manager.

Tasks

Platform

Architecture

Event detection engine

Events

Lo
gg

er Event table

Ev
en

tfi
lte

rs

H
an

dl
er

s

Figure 5.2: Event-based simulation

The system is connected through handlers to the event manager, which parses the event table conformly
to pre-established rules. Once this parsing has been done, each event is filtered and then triggers one or
different handlers. The event-based can appear to be dynamic and can propose to base a simulation on
discrete or continuous time modelling. This is the simulation model of Cheddar (see section 5.3.3). This
model can appear to be more convenient to simulation contexts oriented for making interfaces between
real physical systems and virtualized contexts.

5.3.3 Multicore simulators
In order to understand the different RT simulation tools that are currently used, we present here major
RT simulation tools. Multicore simulators do not respect the basic fundamental requirement of network
modelling we need. Nevertheless, as they are a common type of simulation tool in RT domain, we want
to present some of them to present some architectural approaches we want to adopt in our simulation
tool.

Cheddar

Cheddar [74] is a framework designed to offer scheduling analysis and design model improvement in RT
systems. Its guidelines are oriented around modularity and open-source development, making the tool
easy to use and integrate inside different simulation contexts.
Cheddar has been mainly designed for two different uses: first providing timing simulation of various
tasksets execution on pre-configured platforms. Each task τi inside Cheddar is represented as a simpli-
fied 3-tuple (WCET Ci , period Ti , deadline Di). Based on a XML formalization of the system (taskset

75

State of the art

and processors), Cheddar can provide a worst case execution model simulation of the taskset inside the
presented architecture of processors.
On the second point, Cheddar has been designed to evaluate the schedulability of a system: compute if a
taskset is schedulable or not given a set of constraints.

Scheduling algorithms
Application description

XML Input files

XML Conversion

Parsing

Scheduling Event table

Event analyzers

Results

XML Output files

Figure 5.3: Cheddar simulator internal structure

The internal structure of cheddar (see 5.3) shows that the core is splitted in two different submodules.
First, the scheduler itself, which consumes an XML representation of the system (cores and tasksets) to
model. Its role is to produce the event table to give to the simulator. Starting from informations given
by the system designer (the final user), the core builds a scheduling table represented by the event table.
This table is encoded into XML format and then integrated into Cheddar’s core.
The second part of Cheddar’s core is the event table analyzer. This part contains a set of parsers and
analyzers (based on rules pre-defined by the user). It parses the event table in order to represent the
system behavior through the object-oriented model. Each of the used analyzers rule can be configured
at each run, or predefined in the software to implement a default behavior. In both cases, Cheddar uses
the analysers to extract XML data representing the final results.
XML formalization inside Cheddar’s core allows us to define standard data modelling for inputs and
outputs. XML formalization allows the developer to connect Cheddarwith several othermodelling tools
such as Modeling and Analysis of Real-Time and Embedded systems (MARTE) [75]. These connections
with external plugins have already been discussed in relatedworks like [76]. This data formalization layer
is the input point of all the different modules of Cheddar. It it splitted in different parts:

• The description of each processor in the system, with its different properties: preemptivity
management, scheduling policies (global or local to each core), clock quantum (used for clock-
synchronization [77]). This part belongs to the platform modelling.

• The specification of address spaces, which represent the address ressources and potentials of each
core (text, stack, data and heap memory size, mainly). This corresponds to the description of each
processor structure and architecture. This part also contains all the common properties (configu-
ration purposes). This memory addressing part also integrates the properties used for shared data
definition.

76

CHAPTER 5. REAL-TIME SIMULATION

• The global description of each task in the system, with all the corresponding parameters to define
each task in the scheduling context: deadline, activation model, WCET model and values, name
and identifier, potential jitter, etc... This represents the task model to schedule and integrate inside
the simulation core.

More details about data modelling in Cheddar can be found in related works [78], [79], [80]. The open-
source and pedagogical approach of Cheddar makes it convenient for processor constraints. Its modular
structure allows us to design dedicated modules to add new functionalities in its core, such as MC inte-
gration and distributed systems modelling. But that would require to modify a massive part of the data
structure of Cheddar.

STORM

Simulation Tool for Real-time Multiprocessor Simulation (STORM) [81] is RT scheduling simulator
written in Java. STORM is a standalone software with a GUI connected to a simulation core. It can-
not be plugged to different other modules for information exchange. STORM is built to analyze the
schedulability of RT systems. The modelling of a RT system with STORM consists in splitting a system
in two different layers:

• The hardware layer, representing the set of processors, buses and other devices used for the sim-
ulation. This is a virtualization layer, representing different physical devices and architectures
and reproducing their behavior programmatically. This layer allows us, as soon as we defined the
process to virtualize an architecture, to simulate different target platforms in order to perform
schedulability analysis on various architectures.

• The software layer, containing all the virtual modelling of tasks (generated by applications) and
memory management. This layer is connected to the scheduling units (modeled cores and proces-
sors provided by the hardware layer) and acts as a set of virtualized drivers. Coming from these
drivers, the software layer provides the simulation events to the simulation kernel. This layer also
integrates all the event managers and time modelling processes inside the simulation core.

STORM integrates in its core a modulable interface based on Java modelling. This interface allows us
to represent a generic scheduling policy in order to make a new external scheduler class possible to
integrate in STORM core. As soon as the external class respects the pre-defined Java interface, every
user of STORM can define and integrate its own scheduling policy in the tool.
Modelling input data in STORM is based on an XML representation of the information. STORM sim-
ulation parameters can be defined with a step-by-step process using this XML file. According to a root
tag called simulation, the input file of STORM is splitted in four parts (see listing 5.1):

• The scheduling model: it links the java scheduler class to the simulation core. It describes the
scheduling unit, and the scheduling algorithm used in the kernel. All the scheduling process is
directly described and implemented in the external class.

• The CPU tag, describing each of the processors: java class (to implement their behavior), name, id,
etc... Each tag is responsible for the individual configuration of each core.

77

State of the art

• The taskset: each task is represented as a set of data to execute on the pre-defined platform. De-
pending on the system constraints, we canmodify the task individual definition ormake it globally
by assigning global properties to the whole taskset.

• The shared data. Each task can have to rely on conccurent access to commondata and this common
data has to be defined properly.

<SIMULATION du r a t i o n = ” 75 ” p r e c i s i o n = ” 1 . 0 ” >
<SCHED c la s sName= ” package . RM_Scheduler ” > </SCHED>
<CPUS>

<CPU ClassName= ” s torm . P r o c e s s o r s . CT11MPCore ”
name = ”CPU A” i d = ” 1 ” > </CPU>

<CPU ClassName= ” s torm . P r o c e s s o r s . CT11MPCore ”
name = ”CPU B ” i d = ” 2 ” > </CPU>
</CPUS>
<TASKS>

<TASK c la s sName= ” s torm . Tasks . TaskN ” name = ”
PTASK T1 ” i d = ” 1 ” p e r i o d = ” 5 ”

a c t i v a t i o n D a t e = ” 0 ” WCET= ” 1 ” p r i o r i t y = ” 1 ” > </
TASK>

<TASK c la s sName= ” s torm . Tasks . TaskN ” name = ”
PTASK T2 ” i d = ” 2 ” p e r i o d = ” 10 ”

a c t i v a t i o n D a t e = ” 2 ” WCET= ” 1 ” p r i o r i t y = ” 1 ” > </
TASK>
</TASKS>
<DATAS>

<DATA A sou r c e = ” 2 ” d e s t i n a t i o n = ” 1 ” r a t e = ” 4 ”
s i z e = ” 8 ” > </DATA>
</DATAS>

</SIMULATION>

Listing 5.1: XML STORM Configuration file

The listing 5.1 shows XML data
modelling in STORM. As men-
tioned, we can clearly iden-
tify the different parts, split-
ted between the tags sched
(scheduling model in external
Java class), Computing Unit
(CPU) (definition of each pro-
cessor), tasks (the processes to
execute, with each deadline,
period, WCET parameter) and
data (defining the shared data
among tasks).
The configuration integrates
either a global configuration
applicable to all CPUs (by
applying, for example, a global
scheduling policy) or to indi-
vidually precise the parameters
of specific CPUs.

MAST

Modeling and Analyzing Suite for Real-TimeApplications (MAST) [82] is a bunch of RT simulation tools,
dedicated for both processor or network RT simulation. It is composed of a simulation kernel linked
with different external tools. The global structure of MAST (see figure 5.4) shows that MAST is, by itself,
an interconnection of several subtools communicating either internally or through an XML modelling
layer.
MAST integrates its ownXML additional layer for datamodelling. Similar towhat we can found in tools
like Framework fOr Real-Time Analysis and Simulation (Fortas) or Cheddar. The XML data description
of MAST is not composed as a description of the system like for STORM, but as a listing of the different
constraints to integrate in the simulation. A detailed description of this specification can be found in [82].
The internal architecture of MAST is detailed as follows:

• Data management: Dedicated graphical editor. This layer contains all the needed modules to op-
erate a standalone usable version of MAST, able to run by itself and provide results to the user

78

CHAPTER 5. REAL-TIME SIMULATION

GUI XML data

Data management

MARTE UML

Design tools

Model data

Logs

Tool

launcher

Simulation

Schedulability

Priority

Sensitivity

Figure 5.4: MAST Suite structure

The software architecture of MAST is detailed
in figure 5.4. The core of the software is splitted
in four different modules organized according
to their role in the tool: Data management,
Model data, Design tools and Tool launcher.
We observe that the simulation core of MAST,
contained in the tool launcher, is isolated from
other modules. MAST also integrates, addi-
tionnaly to the GUI, a detailed log generator.
It allows the user to manually detail the sim-
ulation process when the GUI is not accurate
enough.
MAST is built with Ada, which integrates an
object-oriented module representing the fun-
damental of all the software structure.

through a GUI. This part also contains the conversion module from XML and pre-formatted data
into object-oriented structure.

• Design tools: This parts converts all externalUMLdata into a reliable softwaremodel. Thismodule
regroups all the elements to represent RT constraints and modelling of a system. We can build
a bridge between MARTE modelling and MAST through this module, interfacing MAST to all
MARTE-compliant tools. Mainly, the Data management and Design tools are required to convert
external represented data into an exploitable format for the simulation core.

• Model data: Data representation and results description. This layer operates as an intermediate
between the kernel and all the external interface tools (GUI, parsers). Isolating the kernel behind a
modelling layer allows the architecture tomake it fully independant. This is useful tomaintain this
functional independance, especiallywhendefining separated development teams about toworkon
the tools. The model data is responsible for converting the described system into a RT schedulable
element set.

• Tool Launcher: Analyze and simulation kernel. It contains all the elements needed to operate
a scheduling simulation according to the data model represented. This part contains all the RT
simulation processes and schedulability analysis tools.

MAST is based on the trigger-event development pattern, which makes the kernel based on an event-
oriented modelling. This model requires an event handling mechanism, in order to detect the different
events inside a system and to trigger appropriate functions.
There are several types of event handlers in MAST. We have the activity, which acts as a link between a
unique event and a unique output function. Activities of executing a dedicated process (linked to a piece
of code) according to the detection of a specific event. MAST also integrates the multicasts, which links
an event with a bunch of activities.
We can mention the multicast events and all the handlers which are responsible for manipulating and
analyzing events and, on the other part, the Activities, which are responsible for execution a process (a
piece of code) according to the detection of a specific event.

79

State of the art

Figure 5.5: MAST event-driven model

Each event handler (Activity, Multicast) can
be modeled as an analyzing box, with one
input event and, potentially, one output
event. Of course, the succession of events
produced by successive handlers will pro-
ceed to execute different transactions rep-
resenting the simulation process of MAST
(see figure 5.5).

As a conclusion, we can mention that the event-driven model integrated in MAST and the high modu-
larity inside the core allows us to model a wider set of RT and embedded systems. Mainly, MAST is a
processor-oriented simulation tool, but its internalmodelling allows us to do networkmodelling by sup-
porting distributed systems management. Thus, the object-oriented modelling makes the development
process compliant to high-level requirements, such as specific design patterns and complex functional
modelling.

Other tools

Cheddar, STORM and MAST allow us to present the major design choices made when building a RT
simulation. In terms of software architecture, simulation modeling, data formalization, these tools re-
group a synthesis of all the potential design choices made in RT simulation. But, of course, there exist
plenty of additional tools. Those who are detailed below are dedicated to more specific contexts of use:
specific architecture simulation, specific scheduling policies integration, etc...
Depending on its needs and on the context of use, each laboratory, each industry designed its own tool,
paying a variable attention to the existing ones. Some of these tools are public and others are totally kept
as private inside institutions (either built for commercial purposes, or only internally-used). Such works
like [83] tried to make an exhaustive list of existing RT processor-oriented simulation tools.
We list here complementary simulation tools which need to be mentioned, as for their importance in RT
simulation tool domain or for the originality they offer in their functional approach. All these tool are
designed for schedulability analysis.

• SimSO [84] is an Open-Source RT simulator for multiprocessor context. Unlike Cheddar, SimSo
is based on a Python architecture, modelling input and output data flows as Python instances and
classes. It is designed to be an easy-to-use simulator, with a fundamental representation of a RT
system which can be entirely configured.

The main representation of a system in SimSO is based on presenting a RT multicore context as
a set of tasks to be run on a specific platform. Tasks are represented by their unique identifier,
WCET, period and activation date, according to the model presented in chapter 2.

In SimSo, each processor is basically represented as a couple (id, name). Considering that SimSO is
oriented for overheadmanagement, processors can be individually configured to integrate switch-
ing time and scheduling decisions. SimSO allows the user to upload its own scheduling policies,
written as Python classes, dynamically in the simulation engine.

80

CHAPTER 5. REAL-TIME SIMULATION

Basically, SimSO is based on a discret-event simulation framework made in Python and called
Simpy [85]. Simpy is a framework which embeds all the basic modelling needed in the RT
paradigm. Simpy allows the user to implement the task and job modelling required in SimSo to
operate a scheduling simulation.

• Fortas [86] is a Java-oriented framework designed to analyze and compare the schedulability of
RT systems, based on analytical test results. The internal architecture of Fortas makes it able to
consider partitioned and semi-partitioned approach in multiprocessor simulation context.

Fortas is a an Open-Source test-oriented tool, designed for reasearch and educational purposes
first. The duality between Java and XML in its core integrates high interoperability inside the
software.

• SchedMCore [87] is also an Open-Source set of tools designed for schedulability analysis and
performances evaluation inside RT systems. SchedMCore is based on an internal formalization
model, generated from Uppaal [87] network modellings. It proposes to configure each scenario
through a light-syntax file format. This increases the usability of the tool and limits its ressources
cost (the input files are light weight).

The interoperability between SchedMCore and Uppaal allowed the developers to conceive an easy
to use tool. SchedMCore has been designed for simple access to simulation and schedulability
results. The results provided by the core are easy to read and parse in order to be integrated as
input to external tools. This integrates interoperability and, also, the results are easy to compare
when targetting benchmarking purposes.

Comparative approach

In order to compare different RT simulation tools in terms of architecture and data modelling, we based
ourwork on different extracts from the litterature to build the following comparative table (see table 5.6).
This table centralizes all the RT simulation tools which are still maintained and which could be used as a
reference in terms of RT simulation and data modeling.
Based on these results, these are the different elements we want to have in our simulation process :

• XML data modelling : Presented in STORM and Cheddar, it appears that XML is a proper format
to model data, even if it is not the lightest one. It presents the advantage on being easily read-
able and it offers modularity. This will allow developers to define specific formalization standards
depending on their own needs.

• Inter-operability : Mostly found in MAST, the potential to connect a simulation tool to various
external tools (MARTE, user interface) is a fundamental requirement.

• Java development : Most of the tools we presented are based on Object-oriented languages
(Python, Java, Ada, C++). To fullfill portability and to open to a high number of developer com-
munities, Java appears to be the most relevant choice.

81

State of the art

Name Data Modelling Language Analysis Simulation Open-Source References
Cheddar XML/AADL Ada/C++ Yes Yes Yes [74]
Fortas XML Java Yes Yes Yes [86]
Yartiss XML Java No Yes Yes [88]
MAST XML/XSD Ada Yes Yes Yes [82]
STORM XML Java No Yes No [81]
CPAL CPAL CPAL No Yes No [89]
SchedMCore Internal C Yes Yes Yes [87]
pyCPA Internal Python Yes No Yes [90]
SimSO Internal Python No Yes Yes [84]
SymTA/S Internal Commercial Yes Yes No [91]
TIMES Internal Java Yes Yes No [92]

Figure 5.6: RT Simulation and Analysis tools

5.3.4 Network simulators
We detail here major network simulators, based on the previous work established in [93]. RT simulation
and network simulation are not necessarily related, especially in simulation tools. The tools we present
here do not all integrate RT network architectures nor rely on RT protocols like AVB, AFDX or CAN.
In network simulation context, the main tools tend to focus around performance and infrastructure
dimensioning, more than scheduling analysis.
Additionnally, the presented tools could be more industry oriented and less designed for pedagogical or
research purposes. This can involve a lack of configuration solutions, logs reachability and modularity.
Ourwork is to focus on these different tools in order to extract their simulation andmodelling solutions,
in order to combine them with the RT approach we need to adopt in our work.

NS

Network Simulator (NS) [94] is an open-source network simulator designed to interface virtualized
topologies with physical infrastructures, in order to provide network virtualization and to simulate net-
work dimensioning problems. It is based on open modelling standards, making it generic and easy to
plug with different network tools: traffic generator, network listener, etc... The virtualization model of
NS and the different communication interfaces it provides integrates various network devices inside the
simulation core, making it compliant even to specific or emerging technologies.
NS is based on an object-oriented structure (C++/Python), which implies a hierarchical class organiza-
tion. Its internal class structure is based on a duality betweenC++ andOTcLobjects [95]. OTcL is a library
designed especially for NS. It is an extension of the TcL library [96] built for scripting integration into
real-time and embedded systems simulation. NS is based on the combination of these two languages:
C++ is used for runtime management and efficiency, as OTcL is used for simulation management and
configuration. This duality can appear to add more complexity in NS at the first time, but it assures
a clear separation between network protocol implementation (written in C++) and simulation context
(OTcL). This makes the tool easier to main and to improve: dedicated developers can be attached to each

82

CHAPTER 5. REAL-TIME SIMULATION

module, without requiring to master both C++ and OTcL technologies.
The recent versions of NS (NS-3) integrates communication interfaces with python scripting modules,
allowing us to model simulation configuration directly with Python classes, which is more compliant to
open-source standards. NS can be used in different contexts: industrial, commercial, research... As a
conclusion, its users are not necessarily familiar with configuration files edition. In order to answer to
this problem, NS integrates a light dedicated syntax to define simulation scenarios.
Themain purpose inNSdesign is to integrate performance tests and trafficmanagement inside a network
infrastructure (see figure 5.7). Like it was showed in [97], precision and performance improvements have
been integrated intoNS to emulate dynamically a networkbehavior, converting real infrastructure inside
the discrete event-oriented kernel of the software.

NS allows to define a node and its behavior on dif-
ferent layers of the OSI model, mainly dedicated to
define standards between physical and session lay-
ers. Each node can be configured at a different level
of details, allowing the user to create subnetworks
of various genericity. As shown in figure 5.7, each
software-created node can be interfaced with a vir-
tual driver and then plugged as an input or output in
a port of a real network commuter.
This hardware simulation integrated in NS also
makes a conversion between the discrete time mod-
elling in NS kernel and RT communication through
nodes inside a real physical topology.

Hardware emulation

GUI

Ev
en

tS
ch

ed
ul

er

N
et

w
or

k
co

m
po

ne
nt

s

O
Tc

L
O

bj
ec

ts

C
++

O
bj

ec
ts

Real network

Figure 5.7: NS emulation model

The figure 5.7 shows the global architecture of NS (detailed in [94]). The network modelling in splitted
between oTCL and C++ objects. All objects behavior are scheduled and time-organized according to the
event scheduler, whose role is to manage events handling and triggering during runtime.
NS is an open-source software which represents switches and nodes corresponding to all kind of net-
work protocols in the different layers of the ISO model [97]. It can simulate different network physical
mediums (wire, wifi, cellular), and implement specific protocols on each. Classical standards of IP net-
works are already included in the standalone version, and themodular structure of the software allows to
integrate different other protocols andmediums. NS represents and simulates specific network architec-
tures designed for RT domain, such as CAN, AFDX or AVB by integrating dedicated external modules.
It means that NS is not a real-time simulator by itself, but it can integrate RT constraints. For exam-
ple, we can simulate IEEE-1588 compliant switches with specific IEEE-1588 modules integrated in the
hardware simulation layer.

83

State of the art

Why not NS ?

Thus,NS is not dedicated to schedulability analysis. Itsmodelling of networks implies defining each node
at its physical level and each flow at frame level. This can represent an unnecessary loss of time. Thus, the
hardware layer relies on the implementation of virtual drivers to model specific physical devices, which
implies disposing of the complete specifications of each device we want to implement.

OMNeT++

OMNeT++ [98], [99] is an open-source tool. It is a C++ object-oriented modelling framework used for
network simulation. It is based on a component-approach structure: each part of the tool is developed
separately. The architecture of these components is detailed in figure 5.8. Its structure is comparable to
Cheddar: it contains its own GUI which induces an ergonomical use but is modeled as a set of indepen-
dent tools (simulation framework) and not as a standalone simulation software.

Ex
ec

ut
in

g
m

od
el

Si
m

ul
at

io
n

C
or

e

EN
VI

R

C
M

D
EN

V
TK

EN
V

Model Component Library

Figure 5.8: OMNeT++ architecture

The figure 5.8 details the internal architecture
of OMNeT++, detailed in [100]. This architec-
ture is based on a dual communication inter-
facewith the user. OMNeT++ integrates aGUI
based onTK library [101] and also a command-
line interface allowing to directly create TCL
objects.

The architecture of OMNeT++ tool is composed of the following main components:

• ENVIR:Thismodule is responsible for analyzing and parsing all the input informations destinated
to the core. Its role is to build all the network topology and integrate the modelling constraints.

• CMDENV/TKENV: These modules are the two potential user interfaces. CMDENV integrates a
command-line TCL configuration, as TKENV provides a GUI for a more ergonomical approach.
The GUI is a totally independant module which can be splitted from the OMNeT++ core without
impact on other modules.

• Model Component Library: Additional libraries with component-oriented structure like
INET [102] and Castalia [103].

• Executing model: This contains all the constraints and configuration related to runtime manage-
ment and simulation implementation.

• SIM: this represents the simulation core, emulating the network behavior during runtime.

84

CHAPTER 5. REAL-TIME SIMULATION

OMNeT++ is built with a component-by-component approach to improve its modularity. In order to
simplify the network configuration in OMNeT++, topology modelling is based on a dedicated language,
called Network DEscription (NED). NED is a description language which was presented in [104], [105].
The purpose of NED is to improve the accuracy and configuration potential of OMNeT++ without im-
pacting the ergonomy and usability of the tool. In order to do this, NED relies on a component descrip-
tion interface, allowing to describe each node through a dedicated NED file, and to connect it to other
nodes like LEGO bricks, by defining each element connected as input or output to others. Through a
simple and verbose syntax (see listing 5.2), each component of the topology can be precisely and easily
configured.
The purpose of the NED language is to define, describe and assemble all network components through
a set of predefined-properties. Each node, link, data frame of the network can be defined through NED
language. TheNED language integrates a structure extracted fromobject-oriented development. We can
cite, among all, inheritance, prototyping, hierarchical structure and interfaces. NED is a fundamental
component from OMNeT++ core as it allows the tool to connect all the parts together and to model the
simulations to run.

network Network
{

t y p e s :
c h ann e l C e x t e n d s ned .

D a t a r a t eCh ann e l {
d a t a r a t e = 10Mbps ;

}
submodu le s :

node1 : Node ;
node2 : Node ;
. . .

c o n n e c t i o n s :
node1 . p o r t ++ <−−> C <−−> node2 .

p o r t ++ ;
. . .

}

Listing 5.2: NED syntax example

NED is similar to Architecture Analysis and
Design Language (AADL) in terms of design.
It is an object-oriented description language
based on a hierarchical structure. In integrates
such concepts as inheritance, interfaces, pack-
ages organization and metadata management.
An example of a basic twonodes networkmod-
elling is given in the example 5.2.
The example of listing 5.2 shows a simple net-
work composed on two nodes (Node1, Node2)
linked through a 100Mb/s channel. Each node
behavior is described by another NED file of
type Node.

OMNeT++ integrates user-oriented solutions to manage simulations, particularly through the GUI and
the intuitiveness of the NED syntax. Either the context is simple and it can designed through the GUI,
or the user can have more specific needs and edit manually the NED configuration files. In that case, the
presence of theNED language allows the designer to create an communication interface to the simulation
core which opens a wider potential of simulation configuration.

Why not OMNeT++ ?

OMNeT++ is designed as a framework for network simulation tool. It can be seen as an Integrated
Development Environment (IDE) for network simulation, with a very high modularity. Nevetheless, the
tool is not designed to integrate RT constraints such as the potential to modify the scheduling policy of
network devices.

85

State of the art

OPNET

OPNET [106] is a commercial network simulator, designed for industrial and commercial purposes. It
can be assimilated as the commercial alternative of OMNeT++ [98]. OPNET has been designed for the
management of awide range of potential networks frompersonal LAN to global satellite networks. Sim-
ilarly to NS, it allows the user to create interactions between networks based on different mediums. For
example, we can focus on the ressources costs implied by the interaction between a national cellular net-
work dedicated to GPRS/GSM implementation and a LAN dedicated for configuration inside a specific
phone company.
The main purpose of OPNET is to provide an easy-to-use commercial tool to propose implementation
and dimensioning solutions to industrial problems. The design of OPNET does not necessarily orient it
to IP or even wired networks. On the contrary, it is not designed to cover all the different layers of the
ISO model [106]. The network simulation model of OPNET targets allows the user to act at each level of
theOSImodel, making him able tomodify essential physical parameters of the topology implementation.

OPNET design has been designed to privilege
the user experience, in order to open the us-
ability of the tool to non-specialists. Additon-
nally, this design choice allows to focus directly
on simulation results without implying a po-
tential traduction phase from the user. All pro-
vided results are explotable directly through a
GUI (see figure 5.9).
Unlike NS or OMNeT++ which were struc-
tured as modular frameworks, OPNET has
been designed as a turnkey tool. This has been
detailed in terms of precision, performances
and ergonomy, but the functional perimeter is
limited by the updates the developer team can
provide, depending on the commercial support
of the tool.

Figure 5.9: OPNET User Interface

In order to be easy tomanage by the user, configuring a simulationwithOPNEThas to be done following
a specific sequential process. This keeps the configuration environment clear and easy to structure. This
process is detailed as follows:

• Define problem: We specify the system architecture and the simulation problem we have to solve.
This first step consists in defining the functional perimeter of the problem.

• Build model: Starting from the previously defined informations, we model and integrate them
inside OPNET through the GUI (see figure 5.9). We transpose the constraints into software func-
tionalities configuration.

• Simulation: Once the model has been clearly defined, we launch the simulation on runtime. We
can then observe the evolution of the network along time. OPNETprovides runtimemanagement
functionalities (pause, resume), mainly for analysis and debug purposes.

86

CHAPTER 5. REAL-TIME SIMULATION

• Analyse results: Once the simulation is stopped, we exploit the results to compare them to the de-
fined model. These results implies defining a clear way to model and represent the results through
a specific logger module. OPNET provides different additional modules to complete the results
analysis (grapher, stats, logs).

• Make decisions: Once the results have been exploited and analyzed, we can decide to implement
the described topology, or to adapt the simulation context in order to integrate additional con-
straints or modify the given configuration.

This sequential executionmodel is common tomanyRTsoftware tools and,more generally, to awide part
of commercial simulation softwares. This simulation process comes from project management methods
like Plan Do Check Act (PDCA). It is well adapted when working on dimensioning on performances
purposes (where we want to adjust input paramters until the right configuration can be found), but it is
not designed for certification. It would requiremore details on decisions tomake and integrate solutions
to run successive similar simulations for benchmarking and validation purposes.

Why not OPNET ?

OPNET can be considered as a simulator dedicated to help network designers to take specific decisions
before and during physical implementations. Even if this is detailed, this is far from the schedulability
analysis and RT design we want to focus on. Thus, the virtualization of the concepts does not allow to
edit specific frames format, forbidding personal protocols. The tool does not fullfill data modelling and
open-source requirements.

AFDX Tool

Cheddar, STORM or NS are adopting the approach of increasing genericity at the expense of ergonomy.
The tool we present below proposes a web-oriented ergonomical tool for AFDX network monitoring.
This AFDX monitoring tool was presented in [107]. We detail here some major points of its design. The
tool is based on a web-oriented architecture. This assures a portability of the software on any potential
server and it allows the user to integrate technologies dedicated to ergonomy, such as the CSS language.
The web-oriented architecture allows the AFDX monitoring tool to make independant the network sim-
ulation core and the GUI part of the software, run on the web clients.
The architecture of the tool is detailed in figure 5.10. The server part is connected the the AFDX through
a free port of a given switch in the AFDX topology (see chapter 3.2 for details about AFDX topology). This
connection between the web server and the AFDX allows the tool to get online data about the network’s
behavior and state.
The second purpose of the web-oriented architecture is to allow users to simultaneously access to the
same data at the same time. The AFDX monitoring tool can be used and configured by several users at
the same time. All computers connected to the same LAN as the webserver can access to the monitoring
data through a GUI called the visualizer. This visualizer is the client-oriented part of this web-oriented
monitoring tool.
The role of the visualizer is to parse the file sent by the server (formatted in JSON [108]), got from a set
of asynchronous requests sent with AJAX. The server provides a dynamic live JSON Application Pro-

87

State of the art

Network configuration

Off-line On-line

Monitoring server

AFDX
Network

Live data

LAN

JSON API

Visualizer

Web Browser

Figure 5.10: AFDX Monitoring tool architecture

grammable Interface (API) for the different clients, which act as JSON parsers to organize and displays
data on client browsers. This API allows the tool to propose a mix between the efficiency and potential
performances of an object-oriented language, and at the same time to offer the ergonomy proposed by
web-oriented design. As long as the server’s access is reachable, each client can connect and communi-
cate with the JSON API.
The architecture of the tool splits the information in AFDX network in two classes: off-line (configu-
ration, network description) description and on-line live information (messages transmission, topology
information).

• The off-line informations are uploaded in the tool by the user through the visualizer. It contains
all the network configuration and description of the different constraints applied on the network
traffic. It is the static modelling of the network model.

• On the opposite, the on-line part contains a detailed description (generated at runtime directly by
the AFDX network) of all data managed by the network at a given instant, or according to specific
events. These data are dynamically generated during the simulation.

All these informations (on-line and off-line) are stored in the dynamically generated JSON files. This
files are an interface betweeen AJAX functions (for the web part) and Java functions (for the core) [109].
The JSON files are generated with a algorithmic kernel and these files are used as a link between final
application and data sets (database or computation results). This structure presents the advatange of
abstracting the kernel from all the external module and applications: no matter the role and design of
the external modules, the kernel is not impacted by their architecture. The developer just has to design
the format of exchange files.
The purpose of the tool is to monitor and manage an AFDX network. It means that the user is authorized
to upload its own configuration data to the server through the visualizer, data which will be sent then to

88

CHAPTER 5. REAL-TIME SIMULATION

the AFDX network at runtime. These datas uploaded by the user are considered, from the server, as off-
line network configuration informations. The server is then responsible for mixing on-line data (from
AFDX) and off-line data (from the user), as shown in figure 5.10. This approach also allows developers to
split the different teams (PHP/Java/Ergonomical design) working for the tool, in order to simultaneously
simultaneously the different parts of the software.
As a conclusion, relying on client-server architecture for usermanagement and on object-oriented struc-
ture for simulation and monitoring integrates a strong functional and architectural separation between
the different services of the software: configuration, data management, traffic and network control, er-
gonomical display. This approach can be reused in order to be applied to other tools.

Why not AFDX Tool ?

The architectural choices made for this tool are convenient to our requirements. Nevertheless, it is
strictly designed for AFDX architectures and, as a result, does not respect the generic approach we want
to fullfill.

Conclusion

In network simulation, the usability and ergonomy takes a strong place inside this context. Moreover,
we can observe that all the presented tools have these elements in common:

• Data modelling is standardized (XML, JSON, ...). Each representation of a data (network, message,
node, ...) is defined in a specific language and respects a clear enounced structure. This differenti-
ates each independant module by creating a sub-api dedicated to module communication.

• There is a clear separation between the runtime environment manager and the simulation mod-
eler. It means that the modules in the software responsible for modelling are separated from the
modules which are responsible for simulation. This integrates and models data independently of
the simulation.

• Communication interfaces and exploitability of the results are specifically detailed. Each tool in-
tegrates a GUI, log managers and specific parsers in order to be able to translate the input and
output from various set of sources: XML, internal language, graphical definition, etc...

In order to focus on MC impacts in RT networks and more specifically to analyze scheduling scenarios
integrating MC, we want to use a simulation tool able to mix these different approaches. Even if the
presented approaches can be reused, each presented tool presents specific lacks in terms of modelling,
usability or ressources costs which makes it unusable for our specific context.
Considering this state of the art about RT and network simulation tools, we designed our own tool based
on some of their architectural and functional choices, but dedicated to our need. The design and devel-
opment of this tool has been a major part of our work. It has been detailed in part IV.

89

State of the art

5.4 TĆĘĐ ĒĔĉĊđđĎēČ

The representation of tasks and flows, respectively for processor simulation and network simulation, re-
lies on the definition of specific parameters. For example, each task can be represented by a fundamental
couple {Ci,Ti}. These are the basic properties of a task. In the following part, we propose to focus on
solutions to model and create tasks (or flows) in RT simulation tools.

5.4.1 Execution time simulation
To assure reliability and guarantees, the most common model to represent a task is to model it with its
WCET. This allows tools to provide simulation results showing the worst case analysis of a system. But
modelling a task delay just as its WCET is not complete: all simulations contexts are not necessary ori-
ented forworst case studies. There exist different simulation contextswhereWCETvalue is not sufficient
to characterize a task execution delay.
As a result, one additional information which is commonly added to the task model is its Best Case
Excution Time (BCET). BCET and WCET of a task are the respective bounds of a task execution time
in the model. It means that, during runtime, we can guarantee that there is no situation where a task
execution time will be below its BCET, or beyond its WCET.
Worst case analysis provides simulation results which are reliable and useful for certification purposes.
But, when targetting different purposes, results provided by worst case analysis can appear to be very
pessimistic. In terms of modelling, introducing BCET implies modifying the model of a task: its execu-
tion time is no more static, but the execution time of each job is bounded. In our work, we model a task
execution time according to various values, all indexed on the WCET of a task. The BCET and WCET
values model an interval in which we define different values corresponding to different criticality levels.
This approach has been detailed in chapter 6.
Even if this occurs to be comparable mechanics inside software simulation kernels, considering different
approaches in terms of execution time represents a real functional difference. This does not correspond
the same analytical approach to do on the results: this provided results which could be closer to real
implementations, and more far to theoretical modellings. Also, integrating this solution implies defining
models to decide what is the value of each execution time, at each job or task release time.

5.5 RĆēĉĔĒ ęĆĘĐĘ ČĊēĊėĆęĎĔē

The simulation structure of a tool can be synthesized, basically, as composed of schedulers (CPUs) and
elements to schedule (tasks, flows). Depending on the context, these elements can integrate various con-
straints and additional hypothesis, but this is the basics to find in any RT scheduling simulator.
It means that above all else, we need to be able to define tasks (or flows, for network context) which
are supposed to be executed (or transmitted) on the defined CPUs (or nodes). When defining a simple
example for simulation, these tasks can be statically defined by the user. We focused on this previously:
by using dedicating files or through a GUI, the user can define the taskset of its simulation. In that case,
the user will define one by one each parameter of eacha task (deadline, period, WCET). This context of
use is mainly used to build an demonstration example or focus on a typical case of simulation.

90

CHAPTER 5. REAL-TIME SIMULATION

Creating manually simulation scenarios and filling task parameters can quickly appear to be tedious,
particularly when generating successive tasksets. Basically, the main purpose of these simulation tools is
to offer reliability and performance on their results, for example with experiencing hundred thousands
different tasksets (with different parameters) on the same platform, in order to analyze amore exhaustive
field of results. To obtain these results, we have to generate mass of tasksets. It is obvious that we cannot
anymore build them manually, for time and accuracy reasons. That is why we have to define tasksets
generators which will operate as tasksets builders for our simulation context and platform. The point
we want to focus here is about the methods used to generate random tasksets in RT simulation tools and
how to apply these methods to flow generation for networks.

5.5.1 UUniform algorithm

Intialization

The RT simulation mentioned previously mentioned, particularly SimSo [84], Cheddar [74] and For-
tas [86], based their taskset generation model on the UUnifast algorithm [110]. This is a common taskset
generation algorithm based on a uniform approach. We want to present here the fundamentals of this
algorithm. It is a major generation algorithm in RT simulation.
The main goal of UUniform is to generate a valid taskset of size n for a RT simulation. To be considered
valid, a taskset must correspond to several different constraints:

• The size of the set has to be of n tasks, with n a static user-defined value.

• Each generated task ti must be defined by a period Ti and a WCET Ci , and must respect the con-
dition Ci ≤ Ti .

• The global utilisation represented by the taskset to generate, computed as L =
n∑

i=1

Ci

Ti
, has to be

statically defined by the user and initially fixed before the generation process. The value of L is
called the load of the taskset.

• The period of each task must be upper-bounded. This bound has to be lower or equal to the length
of the time interval during which the simulation occurs. We note this bound as T , and we have:
∀i ∈ [1;n],Ti ≤ T . This applies only for sporadic and periodic flows.

The input parameters needed to generate a valid taskset are: the size n of the set, the targetted load L
and the maximum period length T . These are the input parameters of UUniform.

Generation process

In terms of model, UUniform generates a set of n tasks, each task represented by a couple {Ci,Ti}. The
purpose of the algorithm is to generate a set of n tasks, all defined by a specific period and WCET. We
suppose that the simulation context we focus is based on a discretization of the simulation time interval.
Itmeans that this time interval is defined by a time granularityTg . It implies that: ∀i ∈ [1;n],∃k ∈N,∃Ti =

k ∗Tg .

91

State of the art

The first step of UUniform algorithm is to generate a set of n periodsT1,T2, ...,Tn−1,Tn. These periods are
generated according to a uniform lawU . They are all included between aminimumTmin and amaximum
Tmax , statically defined as inputs. According to what we defined previously, we assume that T = Tmax .
First, in order to generate a task τi , we compute a value ri , which is the fundamental expression of the
period, extracted from a uniform distribution. Then, we deduce the value of periodTi with the following
expression:

ri =U (log(Tmin), log(T +Tg))

Ti = ⌊
eri

Tg
⌋ ∗Tg 5.1

Based on the randomly uniformly-generated periods we obtained, we do not directly compute the value
of the WCET of each task. We first compute the utilization value ui of each task. This utilization is
generated according to a uniform law included between 0 and 1. Each value of ui is computed with:

ui =U (0,1)

This value gives us the individual utilization represented by each task. In order to check the validity of

the taskset, we check the value of U =
n∑

i=1
(ui). If we have the following constraint verified: U = L, the

taskset is validated. Otherwise, we discard the taskset and we regenerate a new set of utilizations.
If the generated taskset is validated, we finally have to deduce the different WCET from the following
expression:

Ci = Ti ∗ui

Considering this expression, we finally obtain a set of n couples {Ci,Ti}. This corresponds to the algo-
rithm 5.11.
As a conclusion, UUniform algorithmprovides an easy to implement solution to generate a taskset of size
n. UUniform algorithm is based on a discarding logic when generating the tasksets. The current process
adopted in UUniform is to generate a complete taskset according to the input parameters and, finally, to
focus on the taskset. If it complies to the needed constraints in terms of load, we keep the taskset. If the
final load is not correct, we discard the taskset before re-generating a totally new one.

5.5.2 Discarded tasksets correction with UUnifast

Uuniform generation process allows the tasksets generators to be accurate and reliable. We can assure
that the generated taskset will be of the correct the load and number of tasks, asked as inputs. But, the
current generation process of UUniform has a high number of discarded tasksets per generation loop.

92

CHAPTER 5. REAL-TIME SIMULATION

Data: nt , n, Lmin, Lmax
1 T←
2 U ← 0
3 while U , L do
4 U ← 0
5 for i← 1 to i ≤ n do
6 ri ←U (log(Tmin), log(T +Tg))
7 Ti ← ⌊ eri

Tg
⌋ ∗Tg

8 ui ←U (0,1)
9 Ci ← ui ∗Ti

10 τi ← {Ci,Ti}
11 U ←U +ui
12 T← T+{τi}
13 end
14 end

Figure 5.11: UUniform taskset generation

The UUniform taskset generation algorithm is built on a
task-by-taskmodel. Each task is generated independantly
and corresponds to a randomly computed period. De-
pending on the uniform lawU , we generate a specific uti-
lization for each task, and then we deduce the WCET of
the task.
The value of ri has been detailed in [110]. ri is a ran-
dom value, computed according to the uniform law U .
All the generated values of ri are included in the interval
[log(Tmin); log(Tmax +Tg)]]. The value of Tmin has to be
defined before generation. It represents the lowest value
of a potential period. This value can be set, defaultly, to
Tg .
The expression ofTi , depending of the value of ri is: Ti

eri
Tg
∗

Tg . Given the interval to which ri belongs to, this expres-
sion guarantees that Ti will verify Tmin ≤ Ti ≤ Tmax for
each task τi . The uniform law guarantees a heterogeneity
in the generated periods. All the generated tasks will have
a different execution time profile, with periods of variable
length.

This can happen to be very costly in terms of performances and time. On a single taskset generation, this
cost is hardly noticeable, as the generation time of just one taskset is low (from the point of view of the
user). Each generation time can be of an average time of 10miliseconds. A difference of a fewmilisecond
won’t majorly impact the user experience.
But in RT simulation context, the process used in simulation tools such as SimSo or Fortas implies gener-
ating wide group of tasksets, which can be composed of 100.000 tasksets or even more. As a conclusion,
the discarding logic can strongly impact the performances of the generator. Each few milisecond differ-
ence can, in this context, represent a huge impact in terms of simulation performances as this difference
will be reproduced for each generated taskset.
SimulatingRT scheduling scenarios implies relying on a discretization of the timemodel. This discretiza-
tion can introduce a potential error margin, making useless to reasearch a too high precision in WCET
evaluations. FFor example, a gap of load of 0.001 can represent, in a concrete case, a difference of trans-
mission time lower then 0.6µs in WCET evaluation, which is below the minimum size of a message (on
a classical 100 Mb/s Ethernet network) and can be considered as negligible.
As a conclusion, one possible solution introducing lack a accuracy would be to permit an error margin
on the computed utilization. This errormargin ϵ will induce that the condition onU will be thenL−ϵ ≤
U ≤ L+ϵ . As soon as ϵ can be strictly defined and its value staysmanageable, this can reduce the tasksets
generation time.
But integrating an error margin is not a reliable solution in terms of efficiency and reliability of the gen-
erationmodel. Thus, this errormargin integrationwill quickly show its limits andwill not be sufficient to
significantly increase the taskset generator performances. In order to solve this problem, an alternative
algorithm to UUniform has been introduced. This algorithm, called UUnifast, is detailed below.

93

State of the art

Discarding rate improvement

As shown in [111], the probability for the utilization U of a taskset generated with UUniform to not
exceed L is lower than 1/n−1!. This is strongly impacting the performances of the generator. It means
that, in average, only 1/n−1! among all generated tasksets are validated.
If we work with small tasksets for demonstration purposes (n ≤ 10), this can stay manageable. But if
we suppose that we want to generate tasksets of 50 tasks, the number of discarded tasksets (and so, of
useless algorithm loops) will be of 30.1063. It seems obvious that this is way too high, even for an efficient
generator.
In order to answer to this problem, a improved version of UUniform has been designed, which is called
UUnifast. UUnifast generation relies on the following observation: as the probability to generate a valid
taskset is higher, the time needed is lower. The purpose is to provide a taskset generation algorithm with
a lower discarding rate.
UUnifast taskset generation is based on a sequence S intialized to L and where each successive term
is computed with a random uniform value, depending on the task index. To do this, we operate on the
computation of the value of ui for each task τi , which is no more generated according to a simpleU (0,1)
uniform law.

Sn =

n∑
i=1

∗ui

Si−1 = Si ∗U (0;1/(n− i)

ui = Si − Si−1 5.2

The more i increases, the highest is the potential value ofU (0;1/(n− i). But, on the contrary, the se-
quence S tends to decrease with the value of i. As a conclusion, the value of ui tends to be balanced and
less purely random as for UUniform.
Oncewe generate the utilization ui for each task τi , we just have to deduce the corresponding values of Ci

with the expressionCi =Ui ∗Ti (same asUUniform). Next, we can compute the global utilizationU of the
generated taskset, and check the individual utilization of each task. If we have sn = L then we consider
the taskset as valid. In the other case, the constraints are not respected, we discard the generated taskset
and we create a new one, keeping the previous discarding process.

Simulation results

The difference of discarded messages rate between UUniform and UUnifast is shown in figure 5.12. We
can observe that the number of discarded tasksets drastically incrases in UUniform as we need to gen-
erate a bigger taskset. As shown in [111], the acceptance ratio of UUniform can be upper bounded by
100

(n−1)! . Figure 5.12 shows a comparison between UUnifast and UUniform algorithm for generation of
tasksets between 3 and 10 tasks. Each point is the result of 100 algorithm loops.
The curves of figure 5.12 show that, for small tasksets (n ≤ 6), Uuniform algorithmhas a better acceptance
ratio. But, as soon as we target to generate tasksets of size n > 7, the acceptance ratio of UUniform tends

94

CHAPTER 5. REAL-TIME SIMULATION

Figure 5.12: UUniform and UUnifast acceptance ratios

to decrease below 0.5 %. Thus, UUnifast tends to assure a stable acceptance ratio, around 17 %.
We also tested that, when n exceeds 15, the acceptance ratio of UUniform decreases below 10−8 which is
far too low and represents a strong impact on execution time of the taskset generation program. That is
why UUnifast strictly improves the generation process, keeping a reliable acceptance ratio even at high
taskset sizes.
As a conclusion, UUnifast is a reliable taskset generation algorithm, which is less likely impacted by the
targetted taskset size in termsof performances. It iswell adapted to generatingwide tasksets. Particularly
in network context when generated flowsets can increase to 50 and beyond, its generation process has
to be kept.

5.6 CĔēĈđĚĘĎĔē

There exist RTandnetwork simulation tools andmodels based ondifferent approaches of theRTdomain.
Performances, analysis, dimensioning are all functional targets, based on different simulation models.
But, despite this wide set of tools, MC has not been integrated in any of these tools as an highlighted
functionality.
Thepurpose of ourworkwould to be to integrateRTandnetwork simulation tools architectural concepts
inside a new tool, designed for schedulability analysis in MC scenarios.

95

Part III

Mixed criticalitymanagement
protocols

97

Chapter 6

Mixed Criticality

”Si vous n’êtes pas capable de l’expliquer à un enfant de six ans, c’est que vous ne le
comprenez pas.”

”If you can’t explain it to a six year old, you don’t really understand it.”

– Richard Feyhnman

Contents
6.1 Criticality in Real-Time scheduling . 100

6.2 Defining critical and non critical functions . 101

6.3 Mixed criticality integration in networks . 102

6.4 Mixed criticality model representation . 104

6.5 Mixed criticality implementations and protocols . 110

6.6 Conclusion . 111

99

Mixed criticality management protocols

6.1 CėĎęĎĈĆđĎęĞ Ďē RĊĆđ-TĎĒĊ ĘĈčĊĉĚđĎēČ

The purpose of priority assignement is to attach a level of importance to each flow. Priority assignment
and priority-based scheduling represent the fundamentals of RT scheduling and RT networks schedul-
ing. This topic has already been discussed in various works like [16], [112].
In RT domain, assigning a priority to each flow consists in defining a value pi ∈ R+ for each flow vi . We
assign a different priority to each flow according to policies and scheduling constraints, and we schedule
the flowset transmission order in a node according to this priority assignment. This is the same process
as in processor context. There exist in RT networks many different scheduling policies, many of them
inherited from RT processor context: FIFO, Fixed-Priority [112], Rate-Monotonic [4], Earliest Deadline
First [113], etc... each policy belonging to different needs and design constraints.
As soon as all flows with a higher priority have been transmitted, a flow can be forwarded by a node.
Each flow can be considered, at each instant, as more or less important to transmit compared to other
flows in the node, depending on its priority value.
In our work, we suppose that the definition and specification of each message in the network, and the
different criticality levels it belongs to, have already been defined. We consider message specifications
and properties as static input informations in the network. We assume that it cannot be changed at
runtime. That is also true for the criticality levels of a system, that we suppose to be statically-defined. It
means that, during system utilization, we cannot dynamically add a new criticality level to the system or
change the criticality levels a flow belongs to.
In safety-critical systems, the constraints applied to a systemcan correspond to specific critical situations.
An airplane starting its landing, a spaceship during takeoff, a car during emergency braking phase are
systems which will act out of their basical context. During these critical phases, the system needs more
information acquisition, more frequently (more precise speed, more accurate position, more frequent
fuel measurement, ...). As a conclusion, this critical behavior has to be properly defined, and we have to
propose solutions to manage the system behavior during these phases.
During these critical phases, the flows which has been defined critical have to be guaranteed in their
transmissions. It is not a matter of priority: the critical flows are not necessarily considered having
higher priority than other non critical flows. It is the system designer who decides which flow is critical
and which is not. It depends on what functionality has been determined as critical for the current phase.
For example during the landing of an aiplane, landing gears deployment have to be not only assured, but
also to be done in a finite delay even if there are competing flows. All the functions related to it will be
designed as critical.
That concept goes beyond the notion of priority. Critical flows transmission must be assured, but also
we must guarantee that non critical flowsmanagement will have a characterized and bounded impact on
critical flows. That is what we call weak isolation constraints: the impact of non critical flows on critical
flows is limited and can be computed. That leads to a question: how can we guarantee the scheduling
and isolation of specific flows during critical phases of a system?

100

CHAPTER 6. MIXED CRITICALITY

6.1.1 What is Mixed Criticality?
MC was first mentioned by its name in [114] and was presented for proccesor-oriented RT context. It
consists in defining, implementing and managing different criticality levels inside RT systems. Current
works onMCpropose solutions to answer to these purposes in processor-orientedRT systems. Focusing
on MC problems consists in solving design and scheduling problems due to the integration of different
criticality levels inside the same system.
In order to satisfy the constraints of each critical level, MC works imply proposing delay computation
models, scheduling techniques and criticality management protocols. RT scheduling integrating mixed
critical approaches implies assuring that the timeliness, performance and isolation constraints due to
each criticality level are satisfied.
In processor context, for each possible critical situation in a system, the system designer defines a specific
set of tasks which have all to be guaranteed in their execution. It means that their worst case execution
time has to be proved bounded. Each different set of tasks defined for a specific critical situation im-
plies defining a different criticality level for the system. A mixed-critical system is a constrained system
able to manage flows of different levels of criticality inside the same infrastructure: there is no physical
isolation. This solution can be done by using weak isolation solutions: characterizing and bounding the
impact of non critical flows on critical flows. The network can be dual-critical (Low (LO)-critical , High
(HI)-critical) or it can integrate several different levels of criticality. A system submitted to MC levels
integration is called multi-critical system.
MC has been introduced in RT systems with the objective of reducing costs, weight and energy con-
sumption inside systems by mixing different functionalities of different criticality levels inside the same
physical infrastructure.
Current criticality level is an information attached to a whole network. Each network can manage a cer-
tain number of criticality levels. Each flow in the network can belong to one or several of these criticality
levels. The higher amount of criticality levels a flow belongs to, the more it would be a vital flow for the
network. The number of criticality levels a flow can belong to depends on the number of criticality levels
which had been defined by the system designer during the design phase. When a network is in a specific
critical phase (landing mode for an airplane, for example), a specific criticality level corresponds to this
phase. As a result, during this critical phase, we have to assure that all flows belonging to the current
criticality level will be transmitted in a finite time.

6.2 DĊċĎēĎēČ ĈėĎęĎĈĆđ Ćēĉ ēĔē ĈėĎęĎĈĆđ ċĚēĈęĎĔēĘ

Each flow transmission in the system will be defined for a certain certification level, depending of the
criticality levels the flow belongs to. We have to compute the worst case end-to-end transmission delay
of the flow in order to validate the weak isolation solution and, then, to meet certification requirements.
It means that the more we define different criticality levels, the more we add constraints of certification
to satisfy in order to prove the system reliability.
The integration of MC in RT networks implies defining a specific representation mode to illustrate the
criticality levels of a network, and the different criticality levels a flow can belong to. For example in a
personal car: all messages attached to Global Positioning System (GPS) tracking are critical for the driv-

101

Mixed criticality management protocols

ing control (mission-critical), but not in the case of crash avoidance or passenger protection which are
situations where they are likely to be dropped. As the opposite, airbag triggering should be guaranteed in
all the criticality levels. As a conclusion, each flow will belong to a various number of different criticality
levels. Usually, we call a flow as ”non critical” when it only belongs to the lowest criticality level of the
network.

6.3 MĎĝĊĉ ĈėĎęĎĈĆđĎęĞ ĎēęĊČėĆęĎĔē Ďē ēĊęĜĔėĐĘ

6.3.1 Isolation constraints
Each subnetwork is composed of different materials and is associated to a specific class of flows: one
subnetwork for mechanical functions, one for comfort management, etc... This is a common solution for
isolation: creating dedicated infrastructures for critical and non critical flows.
Dedicating a specific subnetwork for each class of flows allows us to guarantee a total isolation between
flowswhich are not of the same criticality level. This assures a total isolation of each subnetwork: critical
flows will not be blocked, cancelled or delayed because of non critical ones. This is a model we can find
in several industrial architectures: for example, automotive constructors like BMW integrates different
CAN buses in their vehicles in order to dedicate each one to specifc classes of flows (see figure 6.1).

Figure 6.1: BMW mixed CAN buses

In the architecture presented in figure 6.1, we can distinguish dedicated communication buses for the
different electronical commands embedded in a vehicle. We have functions such as EWS (electronical

102

CHAPTER 6. MIXED CRITICALITY

start controller), doors blocking and CDC (Compact Disc Changer) associated to different CAN buses.
Also, one bus is dedicated to car diagnosis and recovery for technical purposes. All this network archi-
tecture is centralized around the embedded computing unit present in the board computer, controlled
by the driver.
This solution of physical isolation represents several problems. First, it has a strong financial impact.
Multiplying the different network infrastructures implies multiplying the number of buses, wires, sen-
sors and materials. It also implies building a new infrastructure for each class of needs and functions.
Secondly, having a dedicated subnetwork for each class of flows represents an increase in terms ofweight
and size. That implies designing the systems sufficiently big to find space to store each infrastructure.
In embedded and mobility-oriented systems, each system is constrained in terms of size and weight,
and certification authorities impose to satisfy specific constraints. As a conclusion, this process of just
increasing the infrastructures sizes cannot be adopted.
Last but not least, multiplying the number of physical subsystems has a strong impact on energy effi-
ciency. Each hardware has to be supplied, and as a result, the more materials we implement, the more
energy ressources we need.
As a conclusion, we observe that increasing the size of a network cannot be presented as a global solution
to timeliness, safety and performances problems. That is the purpose ofMC: proposing a reliable solution
to critical management while respecting ressources, size and energy constraints.

6.3.2 Mixed criticality for multicore platforms
In 2007, [114] presented MC in RT scheduling in processor context. It was described as a solution for
deadline misses management and fault tolerance integration inside preemptive scheduling contexts for
RT systems. At this time, MC was presented as a solution to certify task execution isolation. There has
been several major works about MC in RT systems since then. We can mention [115] and [116] which
were published in 2008.
The solution presented in these previous works, or in more recent works such as [117], consists in pre-
senting MC integration in RT systems as a solution to classify tasks and manage the different criticality
levels to implement in systems. Most of theseworks focused on new schedulability problems introduced
by MC management. More recently, the work done in [118] concluded about the complexity of MC in-
tegration in RT systems. [119] focused also on the complexity represented by such new problems. This
paper concluded that MC integration inside RT processor context, starting at 2 criticality levels, was
NP-hard in the strong sense. This property represents one fundamental point of this work.
All the presented litterature, representing most of work done in MC domain, presents MC integration
solutions in processor context. There has not been such a work today proposing MC modelling and
integration inside RT networks. Nevertheless, some works like [120] proposed solution for criticality
management and mode change integration inside RT systems. All these works consider MC level of a
network as a static constant not likely to change. They do not focus on the potential dynamic evolution of
the criticality level of a network, depending on its context of use. Eventually, the global shared hypothesis
about MC in network context considers the criticality level as a static value in the network, which does
not tend to change without specific intervention of the user or the system designer.
Thepurpose of ourwork is to propose solutions to extendMC integration toRTnetworks, first. Wewant

103

Mixed criticality management protocols

to propose a flow modelling integrating MC constraints, and to offer MC management protocols inside
RT networks. Additionally, we want to focus on how to determine the criticality level of a network, and
the conditions to modify it.

6.3.3 Weak isolation
In this work, we introduce the concept of weak temporal isolation between flows. It is defined by the
logical isolation of critical flows from non-critical ones, without physical isolation. Flows from different
levels of criticalitywill be temporally isolated but are sharing the same infrastructure. Thisweak isolation
allows us tomix flows of different criticality levels on the samenetworkwhile guaranteeing that the delay
induced by non-critical flows transmission on critical flows transmisison will be bounded.

6.3.4 Mixed criticality in RT networks
Till now, there has not been any concrete implementation ofMCmanagement inside RTnetworks. Nev-
ertheless, several solutionswere proposed to integrateMC in specific contexts such as TTEthernet archi-
tectures [121], [122]. But these solutions only rely on costly clock-synchronized architectures. Similarly,
a protocol was proposed in [123] to integrate MC inside Network-on-Chip (NoC) context. Neverthe-
less, this solution only considers dual-criticality level networks and do not focus on how to return to
non criticality levels after a critical phase.
Another solution consists in isolating critical and non critical functions relies on creating dedicated sub-
nets for each class of functions. This solution can be found, for example, inCANand automation domain.
Each dedicated subnet has its own bandwidth design. But, as in processor context, this method is very
costful in terms of ressources. MC integration with weak isolation is the solution we propose.
Each function in a system corresponds a set of commands, lights, screens to accomplish it. These elec-
tronical andmechanical devices correspond to a various set of sensors, responsible for sending data flows
corresponding to the function. As a result, each function of a system can be accomplished by a set of spe-
cific flows. IntegratingMCmanagement in RTnetwork context allows us tomix all network flows inside
the same infrastructure, in order to reduce the costs and ressources consumption of an embedded net-
work. As all messages uses the same devices and topology, we can reduce the needs in terms of physical
materials implementation.

6.4 MĎĝĊĉ ĈėĎęĎĈĆđĎęĞ ĒĔĉĊđ ėĊĕėĊĘĊēęĆęĎĔē

Our main goal in this work is to propose solutions to integrate and manage MC in RT networks. In
order to do this, we need first to present the MC model we use along this work. In network context,
we consider a network topology N composed of a set of flows v1,v2, ...,vn. The network modelling is
detailed in chapter 3.
All works aboutMC integration inRT systems consider the criticality level of a system as a global integer.
This hypothesis has been detailed in such works like [117]. In order to represent MC inside a network
topology N , we first need to define the concept of a criticality level. A criticality level, denoted as γ,
symbolizes one specific criticality level a RT network can switch to.

104

CHAPTER 6. MIXED CRITICALITY

We suppose that the network is able to manage γmax different criticality levels. If we note these different
levels as {γ1, ..., γγmax−1, γγmax}, we obtain: γmax = |{γ1, ..., γγmax−1, γγmax}|. The current criticality level
of a networkN is denoted as Γ and can change among a finite set of possible levels between γ1 and γγmax .
For example in avionics or defense context, γmax is usually contained between 2 (low, high) and 5 (non
critical, performance-critical, mission-critical, vehicle-critical, safety-critical) [119].
In this work, we suppose that a switch has a unique MC level at any time. This level can dynamically
change according to specific conditions (detailed further in this work). On the opposite, we consider
that each network flow can belong to different criticality levels.
The complexity of the schedulability analysis of a RT network is directly linked to γmax . Nevertheless,
in order to be generic, we consider basically that a network can adopt any possible number of different
criticality levels. We do not focus on the optimality of a scheduling algorithm in this work, but more
on MC integration in networks. As a result, we can assume that γmax is not limited by the model we
propose. In this work, in the case of specific schedulability problems, our approach is to propose solution
applicable to all situations whereas providing simple examples. That is why in this work, when applying
our solutions to application examples, we suppose (without further details) that γmax = 2 in order to limit
the complexity of our implementations.

6.4.1 Two solutions for criticality modelling
In terms of flow model, integrating MC in network context implies to propose an improved model of
flows. This can be done with two different potential modellings. We detail below these two different
approaches, which can be used indifferently when focusing on MC integration inside RT networks.

Definition: WCAT-oriented model
A critical flow is modelled according to WCAT-oriented model when we consider that its WCAT increases with its
criticality level.

Example

We suppose that a plane needs to land on a close airport after a travel. At the beginning, the pilot is
initiating the landing phase, and the aircraft is starting to plummet progressively. As it is losing altitude
and approaching the ground, the pilot needs more accurate information. It is obvious that making the
difference between 20 and 50 feet altitude is more important in that case than differentiating 36000 and
36030 feet. That is why the different altitude sensors need to sendmore frequentmessages about altitude
information during landing. As the aircraft is approaching the ground, we need to measure its position
more frequently to be prepared to the touch.
This example represents the first approach: increasing the frequency of messages transmissions in the
case of higher criticality. This increase in the frequency of measures is represented by a decrease in the
period (orminimum inter-arrival time) of a flow. Thismodel is called a period-oriented criticalitymodel.
We consider in this model that, during critical phases, the period (or minimum inter-arrival time) of a
flow will be modified. An end-system in our topology starts to transmit messages more frequently, with
the same deadline. The altitude measurement by flow vi can be represented as:

105

Mixed criticality management protocols

vi = {P⃗i,Ci, T⃗i}

with T⃗i = {Tγ1i ,T
γ2
i , ...,T

γγmax

i }, the different
minimum inter-arrival time depending on the
different criticality levels γ1, γ2, ..., γγmax .

LO→ HI

0 100

Figure 6.2: Period-oriented criticality management

In the case that the flow vi does not belong to the criticality level γk , we set Tγki = −1.

Definition: Period-oriented model
A critical flow is modelled according to period-oriented model when we consider that its period decreases with its
criticality level.

Example

The second solution for criticality level modelling is indexed on different WCAT for each criticality level.
Let us come back to our example. During the same landing phase, the pilot will need more precise in-
formation in order to be more reactive and to have a more precise control over the plane. To answer to
this need, the sensors (the speed detection one for example) will start to send more precise information
(500.32mph instead of 500mph). It means that the sensors will start to send messages containing more
information. As a conclusion the size of the message will increase (32 bytes for a int compared to 64

bytes for double).
This representation is modeled by attributing a specific size to the flow for each possible criticality level.
We know that the WCAT and the size of a flow are related through the bandwidth of the network. As a
conclusion, this second approach consists in attributing a specific WCAT to the flow for each criticality
level. This method is called the WCAT-oriented method. The corresponding flow vi representation is as
follows:

LO→ HI

0 100

Figure 6.3: WCAT-oriented MC management

vi = {P⃗i, C⃗i,Ti}

with C⃗i = {Cγ1i ,C
γ2
i , ...,C

γγmax

i }. This is the
WCAT-oriented hypothesis: in critical situa-
tions, frames can contain longer messages than
in non critical situatons and represent a longer
WCAT.

In the case that vi does not belong to the criticality level γk , we note Cγki = −1.
These two approaches can be used indifferently in order to representMC integration insideRTnetworks.
They correspond to a different flow model, but they correspond to the same implementation. In terms of

106

CHAPTER 6. MIXED CRITICALITY

MC integration, we represent in this work the representation with both models. In previous MC works
such as [114], the default used model is the WCAT-oriented one.

6.4.2 Mixed criticality in nodes

Each flow has a specific WCAT for each criticality level. For the criticality levels it does not belong to,
this WCAT is equal to −1. In a related work [124], we proposed a solution to tag each Ethernet message
with its highest criticality level. This work is detailed in annexe (see section 14.1).
In order to manage MC, we define the criticality level of a switch. It corresponds to the criticality level of
messages a switch is authorized to transmit. If a message criticality level tag is lower than the criticality
level of a switch in its path, this switch will drop out the message.

Definition: Switch criticality level
The criticality level of a switch corresponds to the minimum required criticality level for a message to be transmitted
by this switch.

6.4.3 The hierarchical hypothesis

In RT networks, infrastructures can have to model more than 2 different criticality levels. For example
in a vehicle, it is common to integrate a specific criticality level for all functions dedicated to mission
or process execution (mission-critical), functions responsible for the physical integrity of the system
(integrity-critical) and finally only functions to assure the safety of its occupants (safety-critical). We
represent the number of criticality levels of a system as γmax

Our work is based on the following hypothesis: no matter the number of criticality levels managed by a
system, each level can be defined as ’more’ or ’less’ critical than another one. Assuring themission-critical
messages transmission is more critical than assuring the transmission of non critical messages but it is
less critical for the network than assuring the safety of vehicle’s occupants.
Based on this observation, we extracted the following hypothesis: all criticality levels in a network can
be organized following a hierarchical structure. In his work, Vestal [114] formulated this hypothesis in
processor context by supposing that the ’more’ critical a level, the higher the level of certification it has
to be compliant to. This has various implications in our work.
First, it means that the estimation of a flow WCAT is more and more pessimistic with the increase of
the hierarchical importance of a criticality level. This hypothesis about the hierarchical structure among
all criticality levels inside a network represents the fundamentals of MC modelling in our work, and we
propose to expose here its application to RT network context.
In terms of modelling, the Vestal hypothesis (in processor context) supposes a system composed of γmax

levels of criticality, denoted as {γ1, ..., γγmax−1, γγmax}. If we suppose a system composed of a set of n
tasks τ1, ...τn−1, τn, each task τi can be represented by a 2-tuple {C⃗i,Ti}, with C⃗i = {C1

i ,C
2
i , ...,C

γmax

i }
(WCAT-oriented model). Given the Vestal hierarchical hypothesis, we can make this assumption: if γa is
less critical than γb, we note γa < γb. It that case, Ca

i will be shorter than Cb
i for all tasks τi in the system.

The application of this hypothesis gives us (in the case where Cγai , −1 and Cγbi , −1):

107

Mixed criticality management protocols

∀a,b ∈ [1, ..., γmax −1, γmax], γa < γb =⇒ ∀i ∈ [1,n],Cγai ≤ Cγbi 6.1

If we want to apply to network context, we suppose a networkN composed of n flows {v1, ...,vn−1,vn}
and γmax criticality levels {γ1, ..., γγmax−1, γγmax}. We represent each flow vi as a 3-tuple {P⃗i, C⃗i,Ti}
(WCAT-orientedmodel). We obtain the exactly same hypothesis forWCAT-oriented networkmodelling
(in the case where Cγai , −1 and Cγbi , −1):

∀a,b ∈ [1, ..., γmax −1, γmax], γa < γb =⇒ ∀vi ∈ [v1, ...,vn−1,vn],C
γa
i ≤ Cγbi 6.2

This hypothesis is a fundamental assumption in our work for MC modelling and integration. Consider-
ing the actual representations of criticality inside RT industrial networks, this hypothesis is representa-
tive of real implementations. Each class of messages (in independant subnets) is considered as more or
less important to others. Thus, modelling criticality without integrating this hypothesis can be consid-
ered as equivalent to a classification problem, answering to the following question: which flow belongs
to which level? Answering this question is not the purpose of this work. In our work, we suppose that
determining the criticality level of each flow is done at network design phase (see section 6.2).
In our modelling, the direct application of the Vestal’s hypothesis is only partially complete. The pro-
posed hypothesis only considers WCAT-oriented modelling and does not include the period-oriented
modellingwe introduced. Considering a networkN composed of a set of flows {v1,v2, ...,vn}, each flow
vi chararacterized by vi = {P⃗i,Ci, T⃗i}. We suppose that the more critical a criticality level, the shorter the
period of each message (defined for this level). We can represent Vestal’s hypothesis applied to period-
oriented modelling as:

∀γa, γb ∈ [1, ..., γmax −1, γmax],a < b =⇒ ∀i ∈ [1,m],Tγai ≥ Tγbi 6.3

Considering the WCAT-oriented and period-oriented approaches in MC modelling, the hypothesis of
Vestal allows us to build a hierarchical structure among each criticality level γ1, ..., γγmax−1, γγmax in the
network. We adapted the hypothesis of Vestal to RT networks context by combining the two previously
made assumptions. We obtain the following result:

∀a,b ∈ [1, ..., γmax −1, γmax],a < b =⇒ ∀vi ∈ N ,


Cγai ≤ Cγbi

Tγai ≥ Tγbi

6.4

This hypothesis means that, for every criticality levels γa and γb in the network, as soon as γb is consid-

108

CHAPTER 6. MIXED CRITICALITY

ered as more critical than γa , all flows from γb have necessarily a longest WCAT and a shorter period (or
equal). This leads to consider of a hierarchical organization of the criticality levels inside a network.

6.4.4 Criticality level assignment

In the following work, when there is no specific hypothesis, we consider that we are working with the
WCAT-oriented approach. Wemake the hypothesis that each message is defined with a dedicated WCAT
for each γ1, γ2, ..., γm criticality level it belongs to.
Considering the hypothesis we formulated previously on the hierarchical structure of MC levels, we
deduce another assumption from it. In criticality levels design and modelling, we consider that if a flow
vi is a defined for a criticality level γm with Cγmi ,−1, then the flowwill also belong to all criticality levels
γ1, ..., γm−2, γm−1. It means that, if a flow is defined for a specific criticality level, it also belongs to all the
lower criticality levels.
Concretely, this hypothesis makes sense. We consider that if a message is considered as critical for the
safety of the occupants of a vehicle, the message is also critical for the structural integrity of the vehicle
(if we consider the vehicle-critical level as lower than the safety-critical level). This assumption is issued
from the hierarchical hypothesis we formulated previously.
In order to focus on the impact of this assumption in criticality level management, we show it on a dual-
criticality level network example. This example is detailed below.

Application to a dual-criticality level network

We want to show on a dual-criticality level network that, in worst case analysis, if a flow is defined for
a criticality level, it also belongs to all lower criticality levels. In order to do this, we suppose a network
N composed of a set of n flowsV = {v1, ...,vn−1,vn}. We suppose the network as composed of a set of
2 criticality levels LO and HI. We consider that all flows from v1 to vk are LO-critical flows (CHI

i = −1)
and, on the opposite, we suppose that all flows from vk+1 to vn are HI-critical flows (CHI

i ≥ CLO
i > 0).

We start by supposing that flows from HI level (vk+1, ...,vn−1,vn) only belong to HI level. It means that
we consider∀v j ∈ HI,CLO

j = −1. To measure the impact in the network, we compute the respective LO
uLO

LO and HI uHI
HI network utilizations represented by the flows in the network. We express their value as

follows:

uLO
LO =

∑
vi<HI

(
CLO

i

Ti
)

uHI
HI =

∑
vi∈HI

(
CHI

i

Ti
) 6.5

We define LO uHI
LO and HI uHI loads, respectively corresponding to :

109

Mixed criticality management protocols

uLO
HI =

∑
vi∈γHI

(
CLO

i

Ti
)

uLO = uHI
LO +uLO

LO

uLO =
∑

vi∈γHI

(
CLO

i

Ti
)+

∑
vi<HI

(
CLO

i

Ti
) 6.6

Considering our hypothesis, we have uLO
HI = 0 and uLO =

∑
vi<HI

(
CLO
i

Ti
).

In a second time, we consider the opposite hypothesis : we suppose that all messages from HI level have
also a dedicatedWCAT in LO level. It means that all flows {v1, ...,vn−1,vn} verify the propertyCLO

i ,−1.
For an identical network static definition of flows, the value of uHI

HI and uHI
LO are strictly the same, which

mean that the assumption we made has no impact on HI flows traffic computation. On the contrary, for
LO-critical flows, we have

uLO −uLO
LO = uLO

HI =
∑

vi∈γHI

(
CLO

i

Ti
) ≥ 0 6.7

As a result, we obtain that uLO
HI ≥ 0 and uLO ≥

∑
vi<HI

(
CLO
i

Ti
). It means that our second hypothesis provides

solutions including the result of the first case. It means that supposing that all flows from a level also
belong to less critical levels is an hypothesis which is more pessimistic. The worst case analysis of these
situations includes situations where there is no LO-WCAT for HI messages.
We generalize this to a system of γmax different criticality levels by computing the dedicated load uγk for
each criticality level γk in the network, and comparing it with uγkγk . It means that, in worst case analysis,
considering that critical flows also belong to lower criticality levels represents a higher amount of low
critical traffic and a more pessimistic analysis. As a result, we assume as true the following assumption :

∀k ∈ [1;γmax],C
γk
i > 0 =⇒ (∀ j ∈ [1; k −1],Cγ j

i ≥ 0) 6.8

6.5 MĎĝĊĉ ĈėĎęĎĈĆđĎęĞ ĎĒĕđĊĒĊēęĆęĎĔēĘ Ćēĉ ĕėĔęĔĈĔđĘ

The goal of MC management protocols is to provide solutions to verify and change the criticality level
of a network, depending on the topology and flow constraints. In processor context concerned by RT
scheduling, criticality is supposed as a global information which can be changed instantly in the system,
with no memory ressources nor time costs. It means that MC integration in processor context implies
that criticality management by itself has no impact on scheduling or network performances and relia-

110

CHAPTER 6. MIXED CRITICALITY

bility. This is the hypothesis we can find in works like [117], [125].
In network context, this hypothesis is not relevant anymore. We cannot assume that changing and syn-
chronizing the criticality level of all nodes in a topology does not cost time. Transmitting a message
containing criticality management informations from one node to another takes a certain delay, due to
switching latency, WCAT management and network traffic additional induced delay. That is why we
have to propose, based on the MC integration model we detailed in this chapter, solutions to integrate
MC management inside RT networks. This solutions will have to take into account the particular con-
straints and context of use due to network design (distributed context architectural limits).
It means that, in our work, we have to provide solutions to estimate the different delays induced by MC
management inside a network. In order to be compliant with our certification purposes, these delay
would have to be computed in a worst case analysis approach (detailed in chapter 7 and 8).

6.6 CĔēĈđĚĘĎĔē

Proposing integration of MC in network context has not been much investigated in the state of the art .
The purpose of this work is precisely to focus on MC modelling and integration inside RT networks. In
order to answer to this problematic, we propose to detail in the following chapters different protocols
for MC integration inside Ethernet networks.
We already proposed in previous work [126] a potential concrete implementation of MC management
inside Ethernet. We detail this integration protocol in the next chapter.

111

Chapter 7

Centralized MC management

”Nous ne vivons que pour trouver la beauté. Tout le reste n’est qu’attente.”

”We only live to discover beauty. All else is a form of waiting.”

–Kahlil Gibran [127]

Contents
7.1 Introduction . 114

7.2 A two-phase protocol . 118

7.3 Transition phase . 134

7.4 Conclusion . 142

113

Mixed criticality management protocols

7.1 IēęėĔĉĚĈęĎĔē

7.1.1 Mixed criticality integration

Context

In [126], we describe a concrete implementation of MC management inside Ethernet. The following
work is a detailed version of what was presented.
The needs for comfort and reliability in such domains like automation, avionics and public transports
(see section 2.1.3) are increasing. This induces an increase in the number of functionalities to manage at
the same time, in embedded networks. In these industrial domains concerned by RT, we have to man-
age different type of messages coming from subnetworks: mechanical commands (brakes, acceleration,
wheel control), displaying driving information (current speed, GPS trajectory, time and date), comfort
management (air conditioner, music and multimedia players).
In classical RT and embedded networks each class of functions is treated in a separate infrastructure in
order to guarantee the isolation between messages of different criticality. In that case, each indepen-
dant subnetwork relies on a specific physical infrastrure, designed with its own constraints in terms of
bandwidth and materials.
This solution implies increasing costs as we need to implement dedicated infrastructures. Thus, this so-
lution also implies a loss of space and energy consumption: each independant infrastructure occupies its
own space, plus the eventual gaps to manage heat dissipation between materials and minimum distance
to avoid electrical interferencies. The solution of dedicating a specific network infrastructure for each
class of function can quickly appear to be costful and complicated to manage. That is why we propose to
implement MC management inside RT networks.
See chapter 6, MC was already been introduced in processor context to answer these problems [119].
We want to propose MC management for RT networks. But this implies defining a specific protocol to
manage MC. In the following chapter, we detail such a protocol.

Modelling

We make the assumption (see chapter 6) that, in a common infrastucture, critical and non critical flows
cannot be transmitted simultaneously without network overload. But certification purposes implies
guaranteeing no overload.
We want to implement weak isolation with MC integration, to provide a solution to guarantee that crit-
ical flows will not be delayed or bothered by non critical flows. It seems obvious to suppose that, when
there is no overload in network traffic, not any message in the network is delayed because of another
message transmission. The integration of MC was proposed as a solution to manage these overloads in
RT networks, in order to guarantee critical messages transmissions even during critical phases. It means
thatMC integration has to guarantee critical flows scheduling. That leads to the following question: how
do we assure critical messages transmission and avoid network overloads?
An overload in node from network N is characterized by the instant when the input traffic rate of a
node is too high to manage all incoming messages with the common bandwidth. An overload can be

114

CHAPTER 7. CENTRALIZED MC MANAGEMENT

characterized by computing the utilization of messages in a node. For a given criticality level γ, the
utilization represented by messages of γ level in node s, is represented by the load of messages from
which γ are their highest possible criticality level. We note this utilization as uγ (s). If we suppose that
γ < γmax −1, we obtain:

uγγ (s) =
∑
vi ∈γ

vi<γ+1

(
Cγi
Ti

) 7.1

If we suppose a network composed of γ1, ..., γγmax−1, γγmax different levels of criticality, we characterize
an overload in node s by the following condition:

γmax∑
j=1

uγjγj > 1 7.2

If we apply the following condition on a dual criticality level network, composed of LO and HI levels, we
obtain the following condition: uHI (s)+uLO (s) > 1. That gives us, in a specific node s: uHI

HI +uLO
LO > 1.

As long as network traffic stays manageable in all the nodes i of networkN (
k∑

j=1
(uγji) < 1), we can assure

that any message will be transmitted in a finite time. This delay can be computed with the Trajectory Ap-
proach. This delay depends on the different waiting delay induced by the transmission of othermessages.
As long as the nodes queue size decreases with time, we can assure that there is a time instant when our
message will be necessarily transmitted.
The main goal of MC management is to assure the transmission of all critical messages, especially dur-
ing critical phases triggered by a change to a higher criticality level. As an hypothesis of this work, we
conside that the LO-critical messages (messages belonging to the lowest criticality level) do not have any
constraint in terms of transmission time. Messages from LO level can be managed with best effort, or
dropped out during critical phases without impact (except from potential non-preemptive effect) on the
safety or reliability of the network.
The ability to send all the criticalmessages implies a second constraint in the network. For each criticality
level γ, we must verify uγi ≤ 1. It means that the set of only γ-critical messages should be manageable by
itself in terms of traffic. If this condition is not verified, it means that there is a conflict between several
messages of the same criticality level, which is a design problem.

Problem statement

We want to focus on the importance of MC management inside systems. We focus on the basic exam-
ple of a public transport bus. We suppose that we have different subnetworks connected to the same
final switch (see figure 7.1). We represent this network traffic with flow modelling issued from the Tra-
jectory Approach. In this network, the first subnetwork concerns mechanical functions of the vehicle,

115

Mixed criticality management protocols

which have to be transmitted and are considered as critical. The two other subnetworks are for ticket
management and passenger information, and are not considered as critical for the vehicle.

S1,1 S1,2 S2,1 S2,2

S1,3 S2,3

S

ES1

v1

ES2

v2

ES3

v3

ES4

v4

ES5

v5

ES6

v6

ES7

v7

ES8

v8

ES9

v9

ES10

v10

ES11

v11

ES12

v12

v1,v2,v3 v4,v5,v6 v7,v8,v9 v10,v11,v12

v1,v2,v3,v4,v5,v6 v7,v8,v9,v10,v11,v12

Figure 7.1: Subnetworks connection

In our example, we suppose a dual-criticality level network, composed of LO and HI levels. Starting
from this description of the flows, we can deduce the LO and HI utilization rates for each switch, with
the following expression in switch S: uLO = uLO

LO +uHI
LO , uHI = uLO

HI +uHI
HI . We suppose the different flows

characterized by the following parameters:

Flow CLO
i (µs) CHI

i (µs) Ti(µs) uLO uHI
v1 10 20 100 0.1 0.2
v2 20 - 200 0.1 -
v3 10 - 100 0.1 -
v4 10 20 100 0.2 0.2
v5 10 20 200 0.05 0.1
v6 50 - 500 0.1 -
v7 10 - 200 0.05 -
v8 20 - 400 0.05 -
v9 20 40 400 0.05 0.1
v10 10 20 200 0.05 0.1
v11 20 - 400 0.05 -
v12 20 50 200 0.1 0.25

Switch uLO uHI uLO
LO +uHI

S1,1 0.3 0.2 0.4
S1,2 0.35 0.3 0.4
S1,3 0.65 0.5 0.8
S2,1 0.15 0.1 0.2
S2,2 0.2 0.35 0.55
S2,3 0.35 0.45 0.75
S 1.0 0.95 1.55

As we can see, the combined LO and HI utilizations of LO messages in HI messages in HI mode
(uLO

LO +uHI) exceed the maximum possible utilization in switch S. This prevents the messages from being
schedulable in a finite amount of time (uLO +uHI > 1).
During HI-critical phases, we cannot guarantee both the transmissions of LO and HI-critical messages.
In standard Ethernet withoutMCmanagement, this is a situation of overload. This overload represents a
problem : potentially, HI-critical flows in the network will not be transmitted on-time because of a non-
bounded induced delay due to LO-critical flows transmission. It means that the weak temporal isolation
will not be respected.

116

CHAPTER 7. CENTRALIZED MC MANAGEMENT

To solve this problem, we want to implement solutions to guarantee HI critical traffic transmission. That
implies, if we want to use a global topology, implementing a protocol to manage MC different critical-
ity levels. With this protocol, we will be able to guarantee HI critical messages transmission inside the
topology.

7.1.2 Requirements

Central node

In processor-context, for integrating MC management among scheduling models, we make the hypoth-
esis that the criticality information is a global information suitable to all cores [117], [125]. It integrates
a global and centralized management of the criticality information, which is considered as common all
over the system. In network context, this hypothesis of centralization supposes a consistant criticality
level management among all nodes in the network. We have to consider criticality changes and synchro-
nization costs in our approach.
The objective of the MC management protocol that we present is to reproduce MC processor-oriented
management in network context. We propose here to build a MC management protocol based on a
central node for managing the criticality level. As we are in network context, we need to precisely define
how to share the criticality level information among all the network.
In order to integrate consistency in criticality level management for all switches of the network, we pro-
pose to introduce the concept of a central node of the network. Usually, the different network topologies
are organized conformly to a specific network topology: a tree-oriented topology, composed of inter-
connected nodeswith no loop. That is the case of such industrial networks such as AFDX,CAN for public
vehicles, for example, which are organized based on a tree structure.
The network topologies we based our work on are organized following this rule: the topology should
have a node which could be considered as a ”central” node. This central node is defined by the network
designer. Additionnally, as we base ourwork on the Trajectory Approach, we consider that the networks
we focus on do not contain any loop. This implies the following conditions:

• Each path between two nodes is unique. There is no possibility of building several different paths
between two nodes in the network.

• You cannot build a path from a node to itself without using at least twice the same link.

Depending on the topology shape (tree or star for example) the choice of the central node can be either
arbitrarily designed, or built according to a specific logic. The central node in the network has a cer-
tain number of intermediate nodes between itself and any node in the network. By scanning each node
in the network, we keep the highest number of intermediate nodes we found for a given node, which
corresponds to the distance between the central node and its farest node. As shown later (see 7.2.4) the
delay to change the criticality level increases as a function of this distance. It means that the choice of
the central node should be done in order to minimize this value.
The central node will be responsible for storing the criticality current value of the network in its internal
memory, and keeping the consistency of criticality level in the network. The protocol presented below
is based on the approach of defining this central node.

117

Mixed criticality management protocols

Clock synchronization

We are working in RT network context. Transmission delays must be bounded inside the network, and
that includes delay needed to change the criticality level of the network. Consistency and determinism
constraints on the transmission delay implies having a global time reference among all the nodes in the
network. This global time can be assured only with clock synchronization. As a result, our MC man-
agement protocol implies implementing clock synchronization in the network. All the nodes should
integrate a clock synchronization protocol, and the devices used as switches should be compliant with
this protocol. In order to rely on a standard synchronization protocol, we suppose that the network is
composed of IEEE-1588 switches, integrating PTP (see section 3.3 on part I).
In terms of modelling, we suppose that the networkN is composed of a set of switches {S1, S2, ..., So},
all defined as PTP compliant. Any switch Sn has an internal clock Cl (Sn). We define a global clock in
the network, which will be used as a reference. PTP offers a poll-based algorithm to define the refer-
ence clock in the network. For more details about the clock reference definition, see details in the PTP
specification [48].
If we suppose that the global clock denoted as Clc, it means that each clock has its own clock jitter JSn

ϵ

computed with:

JSn
ϵ =| (Cl (Sn)−Clc) | 7.3

We want to evaluate the worst case transmission delays for the protocol integration, meaning that we
consider only the worst jitter in the network. We note as follows the clock accuracy in the network:

ϵ = max
Sn∈N

(JSn
ϵ) 7.4

We use this expression of ϵ in all the following work. This expression allows us to provide a worst case
delay analysis while taking into account all potential clock accuracies in the network. This allows us to
assure the determinism of transmissions in the network, required by certification authorities.

7.2 A ęĜĔ-ĕčĆĘĊ ĕėĔęĔĈĔđ

Wedefine aMCmanagement protocol for RTnetworks. This protocol is based on a centralized approach
of MC management. The centralized MC-management protocol is a network protocol whose role is
to assure the transmission and consistency of the criticality level and criticality changes informations
among a dedicated network topology. This protocol is in charge of maintaining the same criticality level
in every node in the network. In order to do this, the protocol is designed to share criticality information
among all the nodes in case of a need to increase the current level. The working mode of this protocol
to change the current criticality level of the network is based on two different phases. We detail below
each one of these phases.

118

CHAPTER 7. CENTRALIZED MC MANAGEMENT

7.2.1 Call phase
Thefirst phase of the protocol is the call phase. We consider a networkN in a current criticality level γanc.
The call phase includes the detection of a need to change the criticality level, and the transmission of this
information to the central node of the network. First, we detail the conditions to trigger a criticality level
change. The detection of a need to change the criticality level can happen in any switch of the network.
This detection is based on two different events: detecting a message WCAT overrun (or higher criticality
level) and deciding if the switch needs to call for a criticality level change or not.
Detecting a message exception consists in detecting that a received message in the node corresponds to
a different criticality level than the current one. This can correspond to two situations:

• Either a message of a given flow starts to have a longer WCAT than its γanc-WCAT (see figure 6.3).

• Or the flow starts to produce messages with a shorter period (or inter-arrival time) (see figure 6.2).

If one of these events is detected, it means that the node received a message which corresponds to a
higher criticality level than the current one and needs to call for a change. The current node is called the
triggering node.
The criticality level the node wants to change to is computed according to the transmission delay of
the exception message. This computation is based on a threshold mechanism. The switch detects the
transmission delay C of this message and we compute the WCAT value corresponding to the closest
threshold. Corresponding to this WCAT, we deduce the criticality level to change to.
In other words, if we suppose a message m characterized by a vector of WCAT {Cγ1m , ...,C

γk−1
m ,Cγkm }, we

search for the smallest value of u verifying Cγum ≥ C. This supposes that all nodes in the path of the flow
are aware of the flow properties. This implies configuring the different nodes of the network.
Once we detect WCAT overrun or shorter period, this triggers the transmission of a message from the
current node to the central node. Thismessage is named a Switch-Criticality Call (SCC), and has aWCAT
denoted as Cc. SCC message contains the computed value γ j of the criticality level the current node calls
to change to. The detection of the event and the transmission of the SCC message corresponds to the call
phase.
The SCC message is transmitted to the central node. As it is a message dedicated for configuration and
important for transmission of criticalmessages, we attribute it the highest possible priority (dedicated for
configurationmessages like PTPmessages) according to Ethernet 802.1Q protocol. In switched Ethernet
context, applying a fixed-priority to amessage is possible according to a structure ofVLAN.Each physical
link between two nodes is splitted into several different VLAN (max 4096), and each VLAN is associated
to a given priority. In each node, then, each incoming message on a given VLAN is queued up according
to the priority of the VLAN it belongs to. We transmit the SCC message to the VLAN associated with
the highest priority (see figure 7.2).

7.2.2 Multicast phase
Once the central node gets the SCC message, it gets the new criticality level γnew detected by the trigger-
ing node. The central node has then to decide whether or not to change the current criticality level of the
network. This decision is based on several hypothese made based on the criticality level organization.

119

Mixed criticality management protocols

MChas been introduced inRTdomain to define classes ofmessageswhich have to be assured. We already
discussed in section 6.4.3 about the hierarchical structure of criticality levels. For example, the safety of
occupants is more critical than safety of the mission, which is more critical than safety of the vehicle,
etc... In this centralized MC management protocol, we reuse this hypothesis. No matter the number k
of criticality levels, we can define a hierarchical order of importance between the criticality levels of a
network. The more critical a level, the higher the level of requirements.
In case that a flow is not defined for a specific criticality level, then we denote its WCAT as equal to −1,
and same for its period. Based on this hypothesis (detailed in [117]) we can establish an algorithm to
determine whether or not we need to order criticality level change in the network. We can distinguish
two situations:

In the first situation, the new level
γnew is higher to the ancient level
γanc (γnew > γanc), meaning that the
new level is more critical than the
previous one. In that case the cen-
tral node immediately orders a criti-
cality level change to all nodes in the
network. This context corresponds
changing, for example, from LO to
HI for a two criticality level network
(see figure 7.2).

Detecting
node

Other
nodes

Central
node

mi arrival
with Ci > CΓi

Detect
level γu

SCC(γu)

Wait until
tchange

Γ = γu

Switch to γu
Switch to γu

Wait until
tchange

Γ = γu

Wait until
tchange

Γ = γu

Figure 7.2: Increase criticality level

In the second situation, he new level γnew is lower to the ancient level γanc. This corresponds to a need
to decrease the criticality level, and we detail this specific case in section 7.2.3.
In both cases, the criticality level change relies on a reliable multicast protocol, allowing the central node
to transmit the same message to all nodes in the topology. We need to prove the reliability of this multi-
cast.

Total order

The MCmanagement protocol we present here is based on the centralization of criticality level informa-
tion. We define a global criticality level (stored in the central node) andwe propose solutions to share and
modify it simultaneously (with an accuracy of ϵ) on all nodes of the topology. To assure coherency in the
criticality level management, we need to assure the total order [128] of criticality orders management.
Total order in an embedded or distributed system consists in assuring that a sequential set of actions
will be executed in the same order in all the nodes of a network. If we suppose a piece of information
distributedon several nodes (for redundance purposes, for example), the different actions likely tomodify

120

CHAPTER 7. CENTRALIZED MC MANAGEMENT

this piece of information must be executed in the same order in all nodes, in order to guarantee the
consistency of information in the network.
We illustrate this phenomenon through a simple example. We suppose three switches: {S, S1, S2}, orga-
nized according to the topology described in figure 7.3. We suppose that S1 and S2 store the value of a
numeric variable, denoted as a. Basically, we note the value of a in S1 as Sa

1 and the value of a in S2 as
Sa
2 .

At two different dates t1 and t2, S transmits the following actions: A and B. As shown in figure 7.4, if
there is no assumption about total order in the network, there is no guarantee that actions A and B will
be executed in the same order in S1 and S2. As a result, this can lead in obtaining different values of a in
the nodes S1 and S2, breaking the consistency constraint of the network.

S S1 S2

Figure 7.3: Example topology

A B
S

S1 A B

AB
S2

Figure 7.4: Scheduling without total order

Assuring the total order of criticality change upate in a network consists precisely in assuring that suc-
cessive criticality level changes will be executed in the same order in all nodes of the network. That is a
constraint we have to respect in our MC management approach. In order to assure the respect of this
constraint, we provide a solution guaranteeing that actions A and B will be executed at the same in-
stant in all the nodes. To implement this in MC centralized management protocol, we propose a reliable
multicast protocol to share criticality level information in the topology.

Reliable multicast

We suppose that there is a need to change the criticality level. Our goal with the centralized MC man-
agement protocol is to assure the transmission of the new criticality level information γnew to all nodes
in the topology, in a bounded delay and preserving the consistency of the criticality level. Thus, in order
to preserve the consistency of the current criticality level in all the nodes, we need to guarantee a total
order in the criticality updates: two consecutive criticality changes have to be executed in the same order
in all the nodes.
A reliable real-time multicast is a method to send the same information to all nodes in a network, pro-
viding total order for the update of the criticality level in all nodes. In [129], the authors show how to
build a real-time reliable multicast, provided that worst case messages end-to-end transmission delays
can be upper bounded. Based on this proposition, we built a solution adapted to the context of MC
management.
As we areworking on deterministic networks, eachworst case end-to-end transmission delay in the net-
work is bounded. In order to compute this upper bound for each message from each flow, we based our
work on the Trajectory Approach. Since we can assure a bounded transmission delay for MC informa-
tion in each physical link of the network, we can provide guarantees on transmission delays in the whole

121

Mixed criticality management protocols

network.
Figure 7.5 presents the MC centralized protocol criticality level change process. We observe the two
phases of the mode change and their corresponding configuration message (SCC, multicast).

First, we have the calling phase dur-
ing which there is a transmission of
an SCC message from the triggering
node to the central node. In a second
step, the central node multicasts the
new criticality level to all the nodes
in the network, in the casewhere the
criticality level has increased. Central nodeCritical message detection

SCC
Multicast

ES1

ES2

ES4

ES5

ES3

S1

S2
S3

S4

Figure 7.5: MC management centralized protocol

Once a node gets themulticastmessage, it does not change its criticality level instantly. We have to assure
that the criticality level stays the same in each node of the network, at each instant (with an accuracy equal
to the clock accuracy ϵ). It means that the criticality level change happens at the same date tchange in all
the nodes. This can happen only when the last node received the multicast message. At this moment,
we change the criticality level to γnew in all nodes. Considering the potential clock accuracy, it means
that we can guarantee that, at a date tchange + ϵ , all the nodes in the network will have increased their
criticality level to γnew .
We want to illustrate this through an example, in a dual-criticality level network (LO, HI). If we focus on
the example topology described in figure 7.5, we obtain the scenario described in figure 7.6.

The multicast message m is emitted from cen-
tral node S4. It is received and analyzed at dif-
ferent dates by each node. As a result, each
node will be ready at a different date (respec-
tively t1 for S1, t2 for S2, t3 for S3 and t4 for S4)
to change to γnew criticality level.
At date t1, we are sure that all nodes received
the multicast message m. Given that there is a
potential clock jitter of ϵ between all nodes, the
date tchange is not exactly the same in all nodes
(compared to the clock reference). It means
that there is a time window of size ϵ during
which each node is likely to change its criti-
cality level. As a conclusion, we can guarantee
that, at date tchange + ϵ , all nodes will have in-
crease their criticality level to γnew .

S4
t4

m

γanc

γnew

tchange

S3
t3

m

γanc

γnew

tchange

S2
t2

m

γanc

γnew

tchange

S1
t1

m

γanc

γnew

tchange tchange + ϵ

Figure 7.6: Switch criticality level date

This defines a multicast solution assuring that, at a precision based on clock accuracy ϵ , all nodes in

122

CHAPTER 7. CENTRALIZED MC MANAGEMENT

the network change at almost the same instant tchange. The computation of this instant is detailed in
section 7.2.4.

7.2.3 Decreasing the criticality level
The opposite case to analyze is when the new level γnew is less critical than γanc. This supposes that the
triggering node transmitted a message to the central node which has a lower criticality level. Basically,
our protocol assumes that all messages from lower criticality level are dropped out from queues. But,
the situation of γnew < γanc suggests that the protocol has to take into account the situation when the
γanc critical phase is ended, and we have to decrease the criticality level of the network.
Detecting a message with a higher criticality level is an exception. When this exceptional situation hap-
pens, there is no alternative solution: it means that the network has to increase its criticality level. On
the contrary, receiving a message with a lower criticality level, or a low transmission time, does not nec-
essarily means that we need to decrease the current criticality level on the network. For example, we
can receive a critical message whose transmission delay does not exceed the WCAT corresponding to
the current criticality level. We can have short messages corresponding to high criticality levels.
That is why changing back to a lower criticality level implies to determine if there is still higher critical
messages in the topology, and if these messages necessarily induce to maintain the criticality level at
its highest. We propose two different solutions to manage this information: the full-centralized MC
management mode and the half-centralized MC management mode.

Full-centralized management

Full-centralized management proposes to manage MC with an information management entirely done
in the central node. It is a solution to integrate criticality level decrease inside a network. This solution
is based on the following assumption: all nodes have to keep the central node informed, permanently, of
the criticality messages they receive.
The problem is as follows: we want to change the criticality level of all nodes in the network from γand

to γnew , and γnew is considered as a lower criticality level compared to γanc. That means we must define
a process to decide whether or not we can decrease the criticality level of the network to γnew by sending
a multicast criticality change message.
The solution proposed in full-centralized management is based on the following assumption: critical
messages exceeding their γanc-WCAT are rare. At each time a node receives a γanc message, the node
transmits a SCC message to the central node. This SCC must contain the value of γanc. By following
this process, the central node will be kept informed permanently if there is still γanc-critical traffic in the
network. As long as the central node gets SCC for γanc level, it means that the node who transmitted
these SCC is calling to stay in γanc level.
As far as the central node does not receive, from a specific node n, any γanc message during a certain
period of time, it means that there is no more γanc-critical traffic in n. The criticality level of the network
can change back to γnew . Thewaiting delaywithout any reception of a γanc SCC should be representative
of all the network flows. For periodic flows, we propose to express this waiting timeTw as the maximum
period of each flows in the network. It is represented with the following expression:

123

Mixed criticality management protocols

Tw (γnew) =max
vi∈N

(Ti) 7.5

Once there has been no γanc SCC message during this delay in the central node, we multicast a criticality
level change to γnew . With the reliable multicast protocol, all nodes change their criticality level to γnew .
For sporadic flows, we cannot guarantee any maximum delay between two messages emission. It means
that the delay Tw (γnew) is not necessarily sufficient to manage criticality level switches back to lower
levels in the case of sporadic flows. Except from an arbitrary solution (for example indexing Tw (γnew)
value on minimum inter-arrival values) we cannot guarantee criticality level changes delay (to lower
levels) for sporadic flows.
Nevertheless, this full-centralized solution represents a problem: each time anode receives a γanc-critical
message, the node has to transmit a SCCmessage to the central node. This represents additional network
traffic, particularly when managing a high amount of flows. As a result, centralizing all criticality level
change descisions in the central node can strongly impact the network performances. As a conclusion,
the full-centralized method can appear to be efficient for dual-criticality levels networks, but its imple-
mentation will quickly appear as costful when there is more different levels.

Half-centralized management

The second method proposes to manage decreases in the criticality level by delegating a part of the criti-
cality management to each node. Instead of centralizing all the process to the central node, each node is
responsible for deciding towhich criticality level it has to change to. Then, the central node is responsible
for the final decision (see figure 7.7).
Instead of implementing this waiting delay inside the central node, we store it in each node. The process
consists in transmitting a SCC to the central node when a switch did not receive a message of γanc level
during a certain period of time.
This process dedicates a specific waiting delay for each node n in the networkN . We do not need any-
more to assure that the properties of each flow of the networkN are known by the central node. Each
node has to save the WCAT vector and the period (for WCAT-oriented modelling) of each flow that tran-
sits through the node. For each node n, its waiting delay can be defined as the maximum period of all
flows transiting through n:

Tn
w (γ) = max

vi,n∈P⃗i
(Tγi) 7.6

Applying algorithm 1 in the central node, at each SCC message reception, allows us to consider potential
changes to lower criticality levels. As a conclusion, the solution proposed by centralized MC manage-
ment protocolwith half-centralization process among the nodes integrates criticality levelsmanagement
and changes, either to increase or decrease the criticality level of the network. In order to validate the
guarantees offered by such a protocol, we now detail the criticality change delay to change the criticality

124

CHAPTER 7. CENTRALIZED MC MANAGEMENT

We keep the same princi-
ple as for full-centralized
model: we make each
node wait during a cer-
tain period of time with-
out any γanc-critical mes-
sage before triggering any
decision. We dedicate a
specific waiting delay for
each node n.

Node n Other
nodes

Central
node

Criticality
table

No Ci
of Γ level
Wait for
Tn
w (Γ) SCC(γu)

SetLvl (n, γu)

Wait until
all nodes ok

Γstore

Switch to Γstore

Switch to Γstore

Wait until
tchange

Γ = Γstore

Wait until
tchange

Γ = Γstore

Wait until
tchange

Γ = Γstore

Figure 7.7: Decrease criticality level

level in the network.

7.2.4 Delay computation
In order to provide guarantees to high critical messages transmission with this MC management proto-
col, transmission delay of all messages has to be bounded. Also, the maximum delay needed to transmit
a γnew critical message in the network (in case of an increase in the criticality level) has to be bounded
and expressed. In the following part, we want to compute the delay needed to change the criticality level
inside the network, from γanc to γnew level.
Aswe shown, the centralizedMCmanagement protocolworks in two phases: call and share. We propose
to compute the individual delay of each of these phases. In order to do so, we assume the following
statements:

• The SCC is emitted by a node n in the networkN = {S1, S2, ..., Sk}, composed of k switches.

• Sk is designated as the central node in the network.

• We express the delay of the call phase as the delay to detect a WCAT overrun (or shorter period)
and to transmit a SCC message from n to Sk . We note this delay as I (n).

• We express the multicast delay (sharing phase) as the delay to multicast the new criticality level
γnew to all nodes in the network and to eventually change the criticality level of all the nodes. This
delay is the combination of the delay to receive the multicast message in each node. For each node
n, the delay required to be ready to change its criticality level is denoted as M (n).

125

Mixed criticality management protocols

When a node n detects that no message of level γanc was
received during Tn

w (γanc), it transmits a SCC message to
the central node. The central node receives it and stores
the information that node n is currently calling for a crit-
icality level decrease. If node n receives a message of γanc
level, n resets its waiting time.
At each time, the central node has to keep a trace of each
criticality level each node calls to change to. This trace
log is called the criticality table and is stored in the central
node. Each node keeps a trace of each message transiting
through it. As long as the criticality level of these mes-
sages is lower than γanc, we store it. When transmitting a
SCC message to the central node to call for a decrease in
the criticality level, the criticality level information trans-
mitted corresponds to the highest criticality level among
all received messages during the delay Tn

w (γanc).
The criticality table is a log table, showing the different
criticality levels each node called to change to. As soon
as all nodes called for a change to a level lower than γanc,
then the central node multicasts a criticality level change
to all nodes. The level to change to (γnew) is the highest
criticality level stored in the criticality table. When or-
dering this multicast, the criticality table is reset to γnew
for all nodes.
Algorithm 1 manages this criticality switch.

Data: Current criticality level γanc
Result: Criticality management

1 wait← 0
2 Γstore← ΓLO
3 while network up do
4 m← pick (queue)
5 γnew← Criticality(m)
6 if γnew == γanc then
7 wait← 0
8 else
9 if γnew > γanc then

10 γanc← γnew
11 Send(SCC, γanc)
12 Γstore← ΓLO
13 wait← 0

14 else
15 wait← wait +1
16 if γnew > Γstore then
17 Γstore← γnew
18 end
19 if wait == Tn

w (γanc)
then

20 Send(SCC, Γstore)
21 end
22 end
23 end
24 end
Algorithm 1: Storing lower criticality
levels

The global delay to change the criticality level from γanc to γnew , starting from a SCC emitted by node n,
is denoted as S(n). We can express this delay with the following expression:

S(n) = I (n)+M (n) 7.7

Our goal is to compute the worst case transmission delays of critical messages in the network. It means
that we want to compute the worst case value of S(n), depending on all nodes of the networkN . This
worst case delay is denoted as S(N) and represented by:

S(N) =max
n∈N

(S(n)) =max
n∈N

(I (n))+max
n∈N

(M (n)) 7.8

We showed that the protocol does not manage criticality increase and decrease with the same process.
The criticality level switching delay will not be the same in these two situations. We first want to char-

126

CHAPTER 7. CENTRALIZED MC MANAGEMENT

acterize the expression of S(N) when increasing the criticality level from γanc to γnew . Our goal is to
assure the consistency of the criticality level information in all nodes of the network.

Increasing criticality level

Call phase delay I (n) includes the delay to detect the criticality of an incoming message, and the
delay to send a SCC message to the central node. We consider that the delay to read the 802.1Q tag of a
message and detect its criticality level is null.
We also consider that the delay to compute amessage size is null. As a conclusion, I (n) can be represented
as the worst case end-to-end transmission delay of a SCC message from node n to the central node Sk .
The SCCmessage is characterized as amessage c, with the follwing properties: {P⃗c,Cc,Tc}. We consider
that the value of Cc does not depend on the criticality level.
The SCC message is sent in the VLAN of highest priority. This VLAN is dedicated for configuration
purposes and the only messages with a higher priority we can find are PTP messages. It means that the
SCC is likely to be delayed by PTP messages. Considering the delay induced by PTP messages in the
network, the expression of I (n) can be represented as the latest starting date from central node Sk of the
sent SCC message. This delay can be expressed with the Trajectory Approach. We obtain:
The first node of the path P⃗c is denoted as f ir stc. Given that node transmitted message c, we have
f ir stc = n.

I (n) =max
t≥0

{
W Sk

c,t − t +Cc
}

W Sk
c,t =

∑
vj ∈{1,2,...,nf }
P⃗c∩P⃗j,∅

(
1+

⌊ t + Ac, j

Tj

⌋)+
∗max(Cγnewj ,Cγancj) 7.9

+
∑

k∈P⃗c\{Sk}
(max

k∈P⃗j

(Cγancj ,Cγnewj)) 7.10

+
∑

k∈P⃗c\{Sk}
µi

k 7.11

+ (|P⃗c | −1) ∗ sl 7.12

−
*..,

∑
j∈P⃗c\{n}

(∆ j
c,t)− t

+//-
+

7.13

− Cc 7.14

• Term7.9 is the delay induced bymessages arriving sooner or at the same time compared tomessage
c and which path has at least one common node with path P⃗c. Ac, j is equal to the number of
messages transmitted from flow v j likely to delay the transmission of message c.

• Term 7.10 is explained by the required time to transmit message with no additional traffic. This
delay is upper-bounded by the size of each already encountered message in a node.

127

Mixed criticality management protocols

• Term 7.11 is the delay due to non-preemptive effect.

• Term 7.12 is the delay due to switching latency in each link along P⃗c.

• Term 7.13 is the delay due to serialization. The delay due to serialization effect is induced in all
nodes of P⃗c, except from the first one denoted as f ir stc. We have n = f ir stc. Term 7.13 is ex-
plained by the point that we compute the latest response time, in node Sk , and not the global end-
to-end transmission delay. This was detailed in chapter 4.

As mentioned in part II, we consider that messages transmissions in a network are non-preemptive. It
means that SCC message transmission delay must take into account the delay due to non-preemptive
effect.
We mentioned that SCC message was a message dedicated to MC management in the network. These
messages have to be analyzed first and so, attached to the highest possible priority. In order to do so,
we transmit the SCC message in a VLAN associated with the highest priority in the network. This is the
same VLAN used for PTP messages transmission. As a conclusion, only PTP messages can have the same
priority as the SCC message. It means that, as soon as we can compute the number of PTP messages
generated during the transmission of a SCC message, we can propose a simplified expression of I (n).
In order to compute the delay induced by PTP messages, we define FPT P the PTP synchronization fre-
quency (statically-defined by the user), and we consider CPT P the WCAT of a PTP synchronization mes-
sage. In our approach, we consider that all messages related to PTP protocol have the same WCAT.

W Sk
c,t =

∑
h∈P⃗c

(
1+

⌊ t + Ac,PT P

TPT P

⌋)+
∗CPT P

+
∑

k∈P⃗c\{Sk}
max
k∈P⃗j

(Cγnewj ,Cγancj)

+
∑

k∈P⃗c\{Sk}
µi

k

+ (|P⃗c | −1) ∗ sl

−
*..,

∑
j∈P⃗c\{Sk}

(∆ j
c,t)− t

+//-
+

− Cc 7.15

We can assume that PTP synchronization messages and SCC criticality management messages are ded-
icated to the configuration and both based on the same model. This can lead without any major pes-
simism to assume that both messages have the same size (which is of a few bytes of data plus the Ethernet
header). Part II details PTP messages structure. As a conclusion, we assume without loss of generality
that Cc = max(Cc,CPT P).

128

CHAPTER 7. CENTRALIZED MC MANAGEMENT

Reliable multicast delay As soon as we computed the delay to transmit the SCC message, we now
have to characterize the multicast delay M (n). This delay computes the delay needed between the re-
ception of the SCC message and the date when a node n is ready to change its internal criticality level.
Given that the criticality level information is multicasted and all nodes change their criticality level at
a date tchange (with an accuracy of clock ϵ), it means that the effective multicast delay of the protocol is
equal to the worst case of M (n) among all nodes n. We consider that the delay to update the criticality
level value inside a node n is null.
We note the global multicast delay as M (N), and its expression is as follows:

M (N) =max
n∈N

(M (n)) 7.16

For each node n, we need to compute the delay to transmit the multicast message from the central node
to n. This transmission, as it goes in the opposite way as network traffic, is not delayed by network traffic
(assuming that all network links are full duplex). We compute M (n) as the addition of the following
elements:

• The electronical switching latency sl induced by the electronical transmission between two nodes.

• The WCAT of the multicast message, denoted Co.

For a node n in the networkN with a central node Sk , the delay needed to receive the multicast order
directly depends on the distance between n and the central node Sk . We note this distance as dSk

n . We
assume in this work that sl is a worst case evaluation of each switching latency, for each switch, and is
considered as a constant.
It takes a certain delay to transmit the multicast message m to a node n in the network. The reliable
multicast delay in the network is the worst case of all the delays, for all nodes n in the networkN . We
use the Trajectory Approach to express the multicast transmission delay M (n) for each node n.
In the general case, we obtain the following expression:

129

Mixed criticality management protocols

M (n) =max
t≥0

{
W Sk

m,t − t +Cc
}

W Sk
m,t =

∑
j∈{1,2,...,nf }
P⃗m∩P⃗m,∅

N f ir stm, j

m, j ∗Cc 7.17

+
∑

k∈P⃗m\n

max
k∈P⃗j

(Cγnewj ,Cγancj) 7.18

+
∑

k∈P⃗c\{Sk}
µi

k 7.19

−
*..,

∑
j∈P⃗m\{Sk}

(∆ j
m,t)− t

+//-
+

7.20

+ (dSk
n −1) ∗ sl −Cc 7.21

• The term 7.17 is the delay represented by messages arriving sooner or at the same time compared
to the multicast message.

• The term 7.18 is explained by the required time to transmitmessagewith no additional traffic. This
delay is upper-bounded by the size of each already encountered message in a node.

• The term 7.19 represents the potential non-preemptive effect induced by other messages in the
network.

• The term 7.20 is the serialization effect of message. Finally, the term 7.19 is the delay of transmis-
sion of the multicast through all the nodes from Sk to n, including the switching latency sl .

Now, we consider that the multicast message m is sent in the VLAN with the highest connection. It
means that only PTP messages are likely to be with a higher priority as the message m (like it was the
case for SCC). m is characterized by {P⃗m,Cm,Tm}. For readability purposes, we consider that SCC c and
multicast messages m have the same WCAT: Cc = Cm.

130

CHAPTER 7. CENTRALIZED MC MANAGEMENT

W Sk
m,t =

∑
k∈P⃗m

N f ir stm,PTP

m,PT P ∗Cc 7.22

+
∑

k∈P⃗m\n

max
k∈P⃗j

(Cγnewj ,Cγancj) 7.23

+
∑

k∈P⃗m\{n}
µi

k 7.24

−
*..,

∑
j∈P⃗c\{Sk}

(∆ j
m,t)− t

+//-
+

7.25

+ (dSk
n −1) ∗ sl −Cc 7.26

The term 7.22 is the delay induced by PTP messages, having a higher or equivalent priority compared to

message m. We have N f ir stm,PTP

m,PT P =

(
1+

⌊
t+Am,PTP

TPTP

⌋)+
. This term is the number of PTP messages likely to

delay message m in each node.
Aswe are computing themulticast delay, we need to compute the path to each node required tomulticast
the criticality information. Moreover, we have to know which switch is the farthest from the central
node, to know which node will get the multicast MC information at last. At the end of this multicast
delay M (N), we are sure that all the nodes in the network received the criticality change information.
The criticality level change happens on anynode at its local date tm+M (N)+ϵ where tm is the timestamp
sent by the central node in the criticality change multicast message.
To preserve the consistency of the network, we have to wait for all nodes to receive this multicast before
ordering a criticality level switch. At the date tm+M (N)+ ϵ , we can assume that all the nodes switched
their criticality level. Given this and the expressions of I (n) and M (n), we can deduce the expression of
S(N). We consider that Cc and sl are constant in the network. We obtain the following expression:

131

Mixed criticality management protocols

S(N) =max
n∈N

(I (n))+max
n∈N

(M (n))

= max
n∈N
t≥0

(W Sk
c,t − t +Cc)+max

n∈N
t≥0

(W Sk
m,t − t +Cc)

= max
n∈N
t≥0

[∑
h∈P⃗c

(
N f ir stn,PTP

n,PT P ∗Cc
)
+

∑
k∈P⃗c\{Sk}

max
k∈P⃗j

(Cγnewj ,Cγancj)

+
∑

k∈P⃗c\{Sk}
µi

k −
(∑

j∈P⃗c\{n}
(∆ j

c,t)− t
)+
+ (|P⃗c | −1) ∗ sl − t

]

+ max
n∈N
t≥0

[∑
k∈P⃗m

N f ir stn,PTP

n,PT P ∗Cc +
∑

k∈P⃗m\{n}
max
k∈P⃗j

(Cγnewj ,Cγancj)

+
∑

k∈P⃗m\{n}
µi

k −
(∑

j∈P⃗m\{Sk}
(∆ j

n,t)− t
)+
+ (dSk

n −1) ∗ sl − t
]

7.27

We suppose that ∀n ∈ N ,Cn
o = Co = Cc. Based on the expression of S(N), we can assume for all nodes

in the network that, starting from an overrun detection at a date t , we can assure that all nodes in the
networkN will have switch their criticality level from γanc to γnew at a date t + S(N)+ ϵ .
As a conclusion, we show that the delay needed to change the criticality level from a γanc to γnew when
γnew > γanc is upper-bounded by S(N). This assures the reliability of ourmulticast protocol. Depending
on the value of γanc and γnew , the value of I (n) is likely to change. We can bound criticality level changes
delay in all multi-criticality level networks with the proposed protocol. Centralized MC management
protocol is compliant to our requirements in terms of MC management.

Decreasing criticality level

In order to define the delay to decrease the criticality level inside the network N , we need to base our
approachon the followingquestion: starting from themomentwhen there is nomore criticalmessages in
the network (no critical message currently transmitted and no critical message waiting to be transmitted
in any switch queue), how long does it take to change back to a lower criticality level in all nodes?
The two approaches we defined previously (full-centralized and half-centralized, see section 7.2.3) pro-
pose different solutions to manage this criticality level change from γanc to γnew . We detail the delay
required by each approach to operate this switch.

Exemple We want to compare both approaches on a simple example, in order to illustrate the differ-
ences. We consider the topology represented in figure 7.8which flows parameters are detailed below. We
consider a dual-criticality level network (LO, HI), and we set the WCAT of a SCC is equal to 10µs (Cc).
In this example, we suppose that clock synchronization as an accuracy of ϵ = 0 for readability purposes.
Given the detailed parameters, we obtain the results described in figure 7.9. At each reception of a HI-
critical message in a node, the waiting delay is reset to 0. In the central node S4, we change the current
state of each node (S1, S2, S3, S4) in the criticality table: each time we receive a SCC from one node, the

132

CHAPTER 7. CENTRALIZED MC MANAGEMENT

S1

S2

S3
S4

ES2

ES1

ES5

ES4
ES3

ES6

v1

v2

v3
v4

v5

v4,v5

v1,v2

v3,v4,v5
v1,v2

v3,v4,v5

Figure 7.8: Example topology

vi CLO
i (µs) CHI

i (µs) Ti(µs)
v1 20 30 100
v2 20 - 90
v3 20 - 100
v4 20 - 50
v5 20 30 80

state of this node in the criticality table is updated to the criticality level this node calls to change to. The
value of this level is contained in the SCC. Once all nodes sent a SCC to ask for a change back to LO, the
central node triggers a multicast to LO-criticality mode.

S4

S3

S2

S1 5 5 max
v4,v5

(Ti)

max
v1,v2

(Ti)1
max
v3,v4,v5

(Ti)5 5

1 5 5
max

v1,v2,v3,v4,v5
(Ti)

Multicast
emission

RS4
5

0 100

Figure 7.9: Switch criticality from HI to LO

We can see in figure 7.9 that a message which
path is shared among different nodes in the
network can have its period taken into account
several times in the same computation of the
waiting delay. For example, the message 5 is
taken into account for the waiting delay of the
nodes S1, S2 and S4.
In the example, the delay to change back to LO
mode is the instant when the last node (S4) fin-
ished to receive and transmit the SCCmessage.
This date is computed based on the emission of
the latest SCC message to LO mode before ef-
fective multicast emission.

In the example, the delay between the latest SCCmessage emission and the effectivemulticast emission is
computed as the reception instant of the latest SCCmessage in S4 minus RS4

5 , which gives us: 300−170=
130µs. If we apply the multicast computation delay given previously, we obtain a global changing delay
equal to: 130+ (Co+ sl) ∗max

n∈N
(dn

i) = 130+2∗10 = 150µs.
We can assume this delay as the delay during which the network was in HI mode without HI messages
traffic transmission. The longest of these delays among all nodes of the network will give us the total
delay lost in waiting to change back to LO mode.

Delay computation Based on this example, we compute the delay needed to change to a lower crit-
icality level, starting from the instant at which there is no more critical messages transmissions in the
network. The value of the current level γanc has an impact on this delay.
The criticality management protocol we defined allows us to manage criticality level switches even for
decreasing the current criticality level. We need to assure that there is no more critical messages trans-
mission before decreasing the current criticality level, inducing a waiting delay of max

vi∈N
(Tγanci). This

waiting delay has to be taken into account in the criticality level changing delay.
We observe that the multicast delay is exactly the same as when we want to increase the criticality level.
If we focus on a full centralized protocol, we can note the delay Sγanc (N) as the delay needed to change
from γanc criticality level to a lower level. This delay is computed as follows:

133

Mixed criticality management protocols

Sγanc (N) =max
vi∈N

(Tγanci)+ S(N) 7.28

7.3 TėĆēĘĎęĎĔē ĕčĆĘĊ

We want to on how to manage critical messages transmission during the change of criticality level inside
thenework. As shown in section 7.2.4, changing the criticality level inside a networkwith this centralized
MC management protocol requires a delay which had been specified in both situations: when we have
to increase the criticality level, and when we have to decrease it.
When increasing the criticality level, the delay required is the delay to call for a criticality level change
and the time to multicast the new criticality level information. The order to change is directly taken
into account and the multicasted message to increase the criticality level is immediately transmitted (see
section 7.2.4). Nonetheless, the delay to change the criticality level induces a transition phase for the
network, during which there are mixed receptions of critical and non critical messages inside nodes. In
order to assure the transmission of critical messages during this phase, wewant to specify the scheduling
policy in the nodes during the transition.
The transition phase startswhen the criticality level is at γanc and a node detects amessage mi from a flow
vi which exceeds its γanc WCAT. We suppose that we are in the case of a need to increase the criticality
level of the networkN , so

∀vi ∈ N ,Cγanci ≤ Cγnewi 7.29

This WCAT overrun (or shorter period) detection happens in a node Sj ∈ N . In all other nodes in the
network, as long as there is no other γnew message detection, the detection of this overrun has no impact
on their traffic management or scheduling policy. If there is a need to transmit a SCC from another node
which also detected a WCAT overrun, then this node will also be concerned by a potential mix between
flows of different criticality during the induced transition phase. In the following part, we call all the
nodes that are detecting a need to change the criticality level the detecting nodes.
During this transition phase, the nodes in the network are not yet informed that the criticality level of the
network is about to change. It means that we cannot expect from these nodes to modify their behabior.
As a result, critical messages are likely to be delayed by non critical traffic issued from other nodes during
this phase. That leads to the following question: how do we assure the transmission of γnew messages
during criticality transition phase? We propose different approaches to answer to this question.
Thefirst approach is the non-blocking approach. It consists in transmitting γnew criticalmessages as soon
as they are received, even during the transition phase. During the transition phase, these γnew critical
messages are considered part of the traffic as all other messages. They will be seen as WCAT exceeding,
triggering SCC emissions in all nodes along their path. There is no specific reason for these γnew-critical
messages to be transmitted with the highest priority in the network. We have to define the transmission

134

CHAPTER 7. CENTRALIZED MC MANAGEMENT

delay induced to γnew-critical messages during this phase.
The second approach is the blocking approach. It proposes to entirely stop the transmission of γnew-
critical messages from the detecting nodes, and to wait for the end of the transition phase to send the
γnew-critical messages. With this solution, we can assure that γnew-critical messages will not be delayed
by γanc-critical messages still present in the topology. This solution is called the blocking approach.
We expose and detail here both approaches and to compare their impact on γnew critical messages
scheduling. Particularly, we study what approach provides the better worst case end-to-end transmis-
sion delay for γnew-critical messages. In the section below, we detail the two approaches issued from
the application of the centralized protocol and we compute worst case end-to-end transmission delay
resulting from both approaches.

7.3.1 Blocking approach
The blocking approach is the first method. As long as the criticality level of the network is not switched
to γnew in every node of the network, all messages (γnew-critical and γanc-critical) are blocked in the
detecting node.
It means that there is a traffic interruption inside each detecting node, changing them to an idle mode,
waiting for the criticality level of the network to change to γnew .
γnew-critical messages transmission in the blocking approach do not suffer from additional delay in-
duced by γanc-critical level. We add the delay represented by criticality level change to the γnew-message
transmission: this additional delay is represented by the length of the transition phase. Thus, the trans-
mission of γnew-critical messgaes is still delayed by the non-preemptive effect (see section 7.2) induced
by messages from all other nodes.
The purpose of this approach is to be able to bound the transmission delay of γnew-critical messages
during criticality level switches (the transition phrase). The blocking approach assures that any γnew-
critical message will not be delayed more than the duration of the transition phase.

Example

We focus on the results shown in figure 7.10.

SCC emission LO→ HI

4 5S1
SCC

2S2
bpS3

3 4 5S3

3 4 2

M (N)

S4

bpS4

0 100

Figure 7.10: Blocking approach example

With this approach, we obtain a transmission
delay of RS4

2 = 110µs, representing 20µs more
than for the non-blocking approach. We ob-
serve in the node S2 that, as soon as WCAT ex-
ceeding for message 2, the node S2 stops emit-
ting messages (exception for SCC, dedicated
for criticality configuration). Message 2 is not
delayed by messages with a higher or equiva-
lent priority.

135

Mixed criticality management protocols

Delay computation

We want to characterize the worst case end-to-end transmission delay of γnew critical messages during
criticality level change transition phase, managed by the blocking approach. The expression of this delay
is based on two different terms: first, the delay to change the criticality level in the network, according
to the centralized protocol. This delay has been expressed as S(N) in previous section 7.2.4.
Second, we need to add the transmission delay of the critical message itself to the delay. Based on the
Trajectory Approach, we can express this delay. It is expressed depending on the γnew-critical traffic in
the network, expressed with:

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗Cγnewj

)
7.30

Based on this expression, we obtain the worst case end-to-end transmission delay of γnew-critical mes-
sage. This delay considers that all γanc-critical messages can induce a non-preemptive effect which will
be added to the global expression. The delay to transmit a γnew-critical message with the blocking ap-
proach is denoted as RB

i (γanc, γnew). It can be expressed as follows:

RB
i (γanc, γnew) =max

t≥0
{W lasti

i,t − t +Cγnewi }
Wi,t = S(N)

+
∑

vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗Cγnewj

)

+
∑
k∈P⃗i

(
max
k∈P⃗j

(Cγancj ,Cγnewj)
)

+
∑

k∈P⃗i\{lasti}
µi

k

−
(∑

j∈P⃗i\ f ir sti

(∆ j
i,t)− t

)+
+ (|P⃗i | −1) ∗ sl

− Cγnewi 7.31

One first assumption would be to consider this approach as pessimistic compared to the non-blocking
approach.We add to the transmission of each γnew-critical message the delay due to the transition phase
length. This additional delay can be considered as a source of pessimism.
The blocking approach assures the transmission of γnew-critical messages by assuring that their trans-
mission will not be delayed by γanc-critical traffic. It means that the γnew-critical messages are released

136

CHAPTER 7. CENTRALIZED MC MANAGEMENT

later, but will suffer for a shorter delay from network traffic (only due to a potential non-preemptive
effect).
If we focus on the above example, and change CLO

1 = 50µs. We then obtain RB
2 (t) = 50+ (20+20)+20 =

110µs for the blocking approach (the delay does not change, as message 2 is not delayed by message 1),
and RN B

2 (t) = 120µs for the non-blocking approach. What we observe is that, depending on the traffic
configuration in the detecting node, the approaches can provide a shorter delay compared to the other, or
on the opposite appear to be way longer. In order to compare the transmission delay of both approaches,
we expose below criterias of comparison between them.

7.3.2 Non-blocking approach
Thenon-blocking approach is the second proposedmethod to schedule γnew-critical messages transmis-
sion during the criticality change transition phase from γanc to γnew . The non-blocking approach con-
sists in transmitting γnew-critical message like any other message in the network. This creates a mixed
transmission of γnew and γanc-critical messages, until the effective criticality level change to γnew level
becomes effective.
With the non-blocking approach, we do not have to take into consideration the criticality level change
delay as an additional delay in the transmission of γnew-critical messages. As these messages are trans-
mitted during the transition, there is no waiting delay added to the transmission of γnew-critical mes-
sages. There is no addition of the criticality change delay to γnew critical messages worst case end-to-end
transmission time.
On the opposite, γanc-critical messages in the network represent an additional delay which has to be
taken into account when computing γnew-critical messages end-to-end transmission delays.

Example

As an introduction, we want to illustrate the non-blocking approach principle on an example. We con-
sider the network N presented in section 7.8. In this example, we suppose that there are two possible
criticality levels in the network, denoted LO and HI. The details of the different flows in networkN are
indicated below.
We suppose that Cc, the common WCAT of the criticality level changemulticast order and SCC message,
is equal to 10 µs. We consider both these WCAT as equal for readability purposes (see section 7.2.2 for
more details on this point).

vi CLO
i (µs) CHI

i (µs) Ti (µs)
v1 20 - 200
v2 20 30 200
v3 20 - 200
v4 20 - 200
v5 20 - 200

We suppose that sl = 0µs. We consider PTP traf-
fic as negligible for readability purposes, and we fi-
nally assume that all clocks are perfectly synchro-
nized (ϵ = 0). We obtain the results detailed in fig-
ure 7.11.

The computation of the global criticality level change delay from LO to HI is equal to S(N) = I (S4) +
M (N)) = 20+ 40 = 60µs, with a multicast delay M (N) = dS1 ∗Cc = 3 ∗ 10 = 30µs. In this example,
we observe that the transmission of 2 is delayed by LO-critical traffic issued from flow v1 in node S2

137

Mixed criticality management protocols

SCC emission LO→ HI

4 5S1

1 2S2

SCC

bpS3

3 4 5S3

3 1 4 5 2

M (N)

S4

bpS4

0 100

Figure 7.11: Non-blocking approach example

The message 2 is a HI-critical mes-
sage from flow v2. We compute
its worst case end-to-end delay be-
tween its source node ES2 and S4
(the last node in its path). We obtain:
R2 = 90µs. In this end-to-end trans-
mission time, the delay induced by
LO-critical traffic is equal to: CLO

1 +

Cc ∗CLO
3 = 50µs, integrating the de-

lay due to SCC message transmis-
sion (Cc = 10µs).
During the transmissionofmessages
in S4, criticality level change hap-
pens at t = 50µs.

(see figure 7.11). Based on this example, we conclude that the delay experienced by HI-critical messages
during the transition phase depends on the LO-critical traffic. We want to compute the maximum delay
represented by the non critical traffic.

Delay computation

During the criticality level transition phase with the non-blocking approach, the transmission of a γnew-
critical message has to be considered as the transmission of any other message in the network. It means
that despite their higher criticality level, γnew messages have to be considered as potentially delayed by
any message with a higher or equivalent priority. As long as the criticality level of the topology has not
switched from γanc to γnew , a γnew-critical message cannot be specifically transmitted with the highest
priority.
Worst case end-to-end transmission delay computation of a γnew-critical message has to consider, ba-
sically, the lowest possible priority for the γnew message to send. In order to compute to compute this
transition delay, we use the Trajectory Approach. We suppose the networkN composed of a set of flows
v1,v2, ...,vn. We suppose that we detect a γanc-WCAT exceeding at time t in the network, triggering a
SCC to γnew level.
We note RN B

i (γanc, γnew) the worst case transmission delay of a γnew-critical message from a flow vi

during criticality level transition phase, observed with the non-blocking approach. We have to consider,
in our approach, that every potential γnew message will be transmitted with its γnew-WCAT. The worst
case end-to-end delay of a γnew-critical message will be expressed as:

RN B
i (γanc, γnew) =max

t≥0
{W lasti

i,t − t +Cγnewi } 7.32

As shown in the above example, we have to take into consideration that the maximum delay induced
by messages with a higher or equivalent priority is bounded by the duration of the transition phase. At
the end of the transition phase, we stop transmitting γanc-critical messages, and only send γnew-critical

138

CHAPTER 7. CENTRALIZED MC MANAGEMENT

messages. We use the expression of S(N) given in 7.2.4 and obtain the following expression:

W lasti
i =

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗max(Cγancj ,Cγnewj)
)

+
∑
k∈P⃗i

(max
k∈P⃗j

(Cγancj ,Cγnewj))

+
∑

k∈P⃗i\{lasti}
µi

k

+ (|P⃗i | −1) ∗ sl

−
(∑

j∈P⃗i\ f ir sti

(∆ j
i,t)− t

)+
− Cγnewi 7.33

The final expression we obtain is the worst case end-to-end transmission delay of a γnew-critical mes-
sage provided by the Trajectory Approach. This delay supposes that each message in the detecting node
potentially delays messages from vi , either because of higher priority transmission or non-preemptive
effect due to messages with a lower priority. This expression is based on the evaluation of all potential
γanc-critical messages likely to delay the transmission of γnew-critical messages.
If we apply this expression on the example given above, we obtain: Ri (γanc, γnew) = (20+ 30+ 20+
20+ 20+ 10)+ (30+ 20) = 160µs. The provided value is an upper bound of the worst case end-to-end
transmission delay of 2 with the non-blocking approach. It is based on the hypothesis that message 2
suffers from the maximum γanc traffic plus the maximum potential non-preemptive effect.

7.3.3 Comparing the approches

We want to compare the transmission delay of a γnew-critical message obtained with both blocking and
non-blocking approaches. The comparison of these approaches will allow us to decide which approach
to apply on the network traffic during the criticality level transition phase.
We suppose the transmission of a γnew message from a flow vi , characterized by {P⃗i, C⃗i,Ti} (WCAT-
oriented modelling). We suppose that the WCAT exceeding of the message is detected in a node n from
networkN . By combining the results obtained in 7.28 and 7.30, we want to find situations verifying:

RN B
i (γanc, γnew) > RB

i (γanc, γnew) 7.34

As soon as the global network traffic provided by γanc-critical messages (with a higher or same priority
as messages from vi) provides a loger delay than the global criticality level changing delay S(N), then
the non-blocking approach provides a longer transmission delay for critical messages.

139

Mixed criticality management protocols

We consider all nodes as potential detecting nodes. Itmeans that a γanc-WCATexceeding can be detected
in several nodes at once during the transition phase. We combine the expressions of RN B

i (γanc, γnew)
and RB

i (γanc). We make two assumptions: the potential non-preemptive effect in both approaches is the
same, and the delay induced by the serialization effect is the same too. We obtain:

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(N f ir sti, j
i, j ∗Cγancj) > S(N) 7.35

This condition is verified when delay due to the traffic with higher or same priority compared to γnew-
critical message i is superior than the global duration of the transition phase. In order to extract compar-
ison results by simulation from this condition, we need to compute the value of S(N). S(N) depends
on the network size, switch configuration and on the WCAT of the SCC message.
We observe that the value of the WCAT of the SCC message has a strong impact on the decision of which
approach to select. It means that the size of the SCC message has to be detailed and precisely defined.
The details of the SCC frame are given in chapter 14.1.

Correction of the non-blocking approach

The computation of the non-blocking approach delay is based on the characterization of the γanc mes-
sages during the transition phase. This transition phase starts when we detect a γnew-critical message
and ends when all switches did change their criticality level to γnew . If we strictly follow this approach,
comparing blocking and non-blocking approaches is synthesized to compare the duration of the transi-
tion phase, represented by S(N), and the delay induced by other messages in the network, represented
by

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗max(Cγancj ,Cγnewj)
)
.

But the expression of the transmission delay for the non-blocking approach we gave previously (see 7.25
and 7.26) is pessimistic. The computation of this delay is based on the assumption that, for the non-
blocking approach, all the γanc-critical messages received in nodes during the transition phase are likely
to be transmitted, even if the starting time of the individual transmission of each γanc-critical message
starts after the end of the transition phase. This is not correct. In real cases, as soon as the transition phase
is ended and the criticality level switched to γnew , we stop transmitting γanc messages. We propose to
compute the delay RN B

i (γanc, γnew) while taking into account this phenomenon.
If we focus on the example in section 7.3.2 we obtain the results of figure 7.12.
Thedelay computation for γnew-criticalmessages transmissionwith the non-blocking approachhas to be
corrected to take into account this situation and correct a potential source of pessimism. This pessimism
comes from the point that, in some case, the expression of the delay considers a too high quantity of γanc

traffic. This traffic is bounded by the duration of the transition phase. We obtain the following expression
for RN B

i (γanc, γnew):

140

CHAPTER 7. CENTRALIZED MC MANAGEMENT

SCC emission LO→ HI

4 5S1

1 2S2

SCC

bpS3

3 4 5S3

3 1 2

M (N)

S4

bpS4

0 100

Figure 7.12: Non-blocking approach correction

In that case, messages 4 and 5 are
dropped out from S4 because their
release time is after the criticality
switch to HI level. It represents an
induced pessimism of CLO

4 +CLO
5 =

40µs.
As a result, the transmission delay of
message 2 is reduced to 90µs. This
is lower than the transmission de-
lay provided with the blocking ap-
proach (20µs lower).

W lasti
i,t =min

(
S(N),

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗Cγancj
)

7.36

+
∑

vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗Cγnewj
)

7.37

+
∑
j∈P⃗i

(max
k∈Pj

(Cγancj ,Cγnewj))

+
∑

k∈P⃗i\{lasti}
µi

k

+ (|P⃗i | −1) ∗ sl 7.38

−
(∑

j∈P⃗i

(∆ j
i,t)− t

)+
−Cγnewi

)
7.39

• 7.32 is the delay induced by the messages with a higher or same priority as messages from vi . This
delay is bounded, at the maximum, by the duration of the transition phase, computed with S(N).

• 7.33 is the delay due to non-preemptive effect induced by γanc and γnew-critical messages.

• 7.34, 7.35 are delays due to serialization effect and switching latency, already detailed in 7.2.4.

This expression, correcting the initial pessimism of the non-blocking approach, assures that the worst
case end-to-end delay for a γnew-criticalmessage during the transition phase is necessarily lower or equal
to the delay provided with the blocking approach. If we ignore the induced delay due to γnew-critical
messages and potential non-preemptive effect (we consider that it is the same with both approaches), we
have to comparemin

(
S(N),

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗Cγancj

))
and S(N). Obviously, we have the following

141

Mixed criticality management protocols

property:

min
(
S(N),

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(
N f ir sti, j

i, j ∗Cγancj

))
≤ S(N) 7.40

7.4 CĔēĈđĚĘĎĔē

In this chapter, we presented a centralized protocol as a solution forMC integration inside RT networks.
This protocol is based on the centralization of criticality level management in a specific node in the net-
work, considered as a central node. This protocol is based on clock-synchronized architectures, assuring
the reliability and the consistency of criticality levels updates in the network.
Through a model of delay computation provided by an application of the Trajectory Approach, we com-
puted an upper bound on the worst case delay needed to change the criticality level in the network. This
delay depends on several parameters, such as the network traffic (which can induce a non-preemptive
effect) and the switching latency. Given that this delay cannot be considered as null, we had to intro-
duce two approaches, blocking and non-blocking, to propose a solution to guarantee critical messages
transmission the criticality level transition phase.
Both these approaches rely on a different policy: either we stop the transmission of critical messages
during the transition (blocking approach) orwe do not stop them (non-blocking approach). We provided
experimental results on the transmission delay computation for both these approaches. These results can
be found in chapter 12. These results show that, for high loads, the blocking approach provides shorter
transmission delays, especially for critical messages. But, a correction provided for the non-blocking
approach tends to show that, in real cases, the blocking approach provides longer delays, due to the
requirement to take into account the criticality level change delay in the computation.

142

Chapter 8

Decentralized MC management

”Nous vénérons le chaos car nous aimons produire de l’ordre.”

”We adore chaos because we love to produce order.”

–Maurits Cornelis Escher

Contents
8.1 Introduction . 144

8.2 QoS solutions . 144

8.3 Decentralizing the mixed criticality management . 146

8.4 Conclusion . 152

143

Mixed criticality management protocols

8.1 IēęėĔĉĚĈęĎĔē

The centralized protocol presents different problems on which we now focus:

• First, the reliable RT multicast protocol implies a clock-synchronized network. As a result,
it implies using a clock-synchronization protocol with a good accuracy such as PTP. Clock-
synchronization management inside physical devices is not by itself a common functionality. It
means that, in order to integrate the centralized protocol, we should use clock-synchronization
compliant network devices, which has an impact on the financial cost of the infrastructures.

• MC integration implies satisfying and guaranteeing weak temporal isolation (see section 6.3.3)
and timeliness constraints in the network. As a result, the centralized protocol defined for MC
integration in RTnetworks is based on the process of ignoring all non critical traffic during critical
phases. This necessarily represents a loss of data, which drastically decreases the QoS (due to non
transmitted messages) of non critical messages in order to assure the respect of the weak temporal
isolation constraints of critical flows

• During a criticality level switch, the centralized protocol implies managing a transition phase dur-
ing which both critical and non critical messages can be simultaneously transmitted. In order to
guarantee the weak temporal isolation and the bounded transmission delays for critical messages,
we defined specific scheduling approaches for this transition phase.

• Eventually, in order to send and share criticality management informations, the centralized pro-
tocol implies generating additional traffic in the network (SCC messages, reliable multicast trans-
mission). This network traffic is dedicated toMCmanagement. It represents an additional increase
of the network traffic for configuration purposes and this traffic can lead to an additional decrease
of the QoS by delaying messages.

As a conclusion, the centralized protocol has been proved reliable, and it proposes a MC management
solution for RT and embeded network architectures. But it represents several problems of costs andQoS
losses.
But, it appears to be pessimistic in terms of QoS and ressources costs. As a result, we propose in the
following work to present an alternative to this centralized protocol. This alternative protocol is called
the decentralized protocol.

8.2 QĔS ĘĔđĚęĎĔēĘ

Themain purpose ofMCmanagement and integration inside RTnetworks is tomix critical and non crit-
ical functions inside the same infrastructure while guaranteeing the weak temporal isolation and relia-
bility. This can concern dual-critical networks with two different criticality levels (LO, HI), or networks
integrating various criticality levels (at least 3) inside the same infrastructure.
Nowadays, one emerging topic [130] consists in focusing on the feasibility ofmixingHI-critical reliability
constraints and QoS constraints represented by LO-critical traffic, especially during HI-critical phases.
In order to propose an answer to this, we want to introduce a new MC management protocol.

144

CHAPTER 8. DECENTRALIZED MC MANAGEMENT

Thedesign of the centralized protocol comes from the processor-orientedmodelling, where thememory
management is centralized. In this context, all cores from a commonplatform rely on the same criticality
information. But it is not necessary to change all nodes to criticalmode each time a criticalmessage has to
be transmitted. We can provide a solution which would assure critical messages transmissions whereas
only changing to critical mode specific nodes.

8.2.1 Example

The purpose of this example is to focus on the impact of centralized MC management on LO-critical
messages. We build a network topology as described in figure 8.1. This is a tree-oriented topology or-
ganized around a central switch S4. We suppose this network composed of two criticality levels LO and
HI. For all LO-critical flows vi , we assume that CHI

i = −1.
All flows are modeled with WCAT-oriented method: we consider that, no matter the criticality level
of the network, the period of each flow stays the same but each flow has a dedicated WCAT for each
criticality level. Theproposed example canbe easily transposedwithdedicatedperiods for each criticality
level, but we suppose the period as constant for readability issues.
In the topology of figure 8.1, we define a set of {v1,v2,v3,v4,v5} flows. Each flow vi is described by the
parameters which value are given in the table below. Basically, we consider flows without any offset (all
flows are first activated at t = 0µs). We suppose that the switching latency of the physical links in the
network is null (sl = 0µs).

S1

S2

S3
S4

ES2

ES1

ES5

ES4
ES3

ES6

ES7

v1

v2

v3
v4

v5

v4

v1,v2

v5

v3,v4
v1,v2
v3,v4

Figure 8.1: Network topology

vi CLO
i (µs) CHI

i (µs) Ti(µs)
v1 10 20 50
v2 10 - 50
v3 20 30 80
v4 10 - 100
v5 15 - 60

The results are shown in figure 8.2. Conformly to what we presented for the centralized protocol, all
messages from flow v2,v4,v5 are dropped out from the network during the HI-critical phase (starting
at t = 50µs). Concerning the flows v2 and v4, as they share in their path a switch in common with the
HI-critical flow v1, dropping them from the switches queues assures that they will not imply additional
delay in HI-critical messages transmission.
In terms of transmission, we observe that the centralized protocol allows network nodes to transmit
correctly 4 (v1), 1 (v2), 3 (v3), 0 (v4), 1 (v5)messages during the time interval. It represents the transmission
of 100 % of the HI-critical traffic and 1

4 +
0
2 +

1
4 = 20 % of the LO-critical traffic. The global messages

transmission rate of the example is evaluated at 41.17 %.
The observation of the transmission of flow v5 clearly shows that the centralized protocol tends to ignore
and drop non critical traffic, leading to pessimism in the quantity of messages managed in the network.
That leads to our problem: how can we propose a MC management protocol which lowers QoS loss due
to criticality changes?

145

Mixed criticality management protocols

S4

S3

S2

S1 4a 5a

1a 2a 1b 1c 1d

3a 4a 3b 3c

1a 3a 2a 1b 3b 1c 1d

0 50 100 150

Figure 8.2: Scheduling messages

On the contrary, we
observe that the LO-
critical flow v5 does
not share any switch
in its path with a
HI-critical message.
Its transmission
does not impact
HI-critical traffic,
but the flow is still
dropped out of
waiting queues dur-
ing the HI-critical
phase.

8.3 DĊĈĊēęėĆđĎğĎēČ ęčĊ ĒĎĝĊĉ ĈėĎęĎĈĆđĎęĞ ĒĆēĆČĊĒĊēę

8.3.1 Concept
Based on the full-centralized and half-centralized approaches presented in chapter 7, the solution we
propose is to let each node manage its own criticality level independently from other nodes. We want
to propose a decentralized MC protocol where each switch will be responsible for managing its own
criticality level, independently from the other switches. With this protocol, each switch is able to change
its internal criticality level (depending on the same events as for centralized protocol), but there is no
more global criticality synchronization in the network.
The solution is as follows: each switch gets its own criticality level, stored internally in the switch’s mem-
ory. This level can be modified locally in the switch, depending on the received messages. If the switch
receives a message marked as γnew-critical, or when it detects that a message exceeds its WCAT for the
current criticality level, the switch changes its local criticality level.
We consider that, as soon as a switch is in γnew level, it will only transmit messages of γnew level. In
order to verify the timeliness of the protocol, we focus on the transmission delay of critical messages in
the network.

8.3.2 Dual-criticality level

Protocol description

In terms of modelisation, we suppose a networkN , composed of a set of flowV = {v1,v2, ...,vn}. First,
we suppose the integration of decentralized protocol in a dual-criticality level network. The twodifferent
criticality levels are denoted as {LO,HI}. Each flow is defined with a specific WCAT for each criticality
level and we suppose that, for a flow vi which does not belong to level HI, we have CHI

i = −1. For each
switch j ∈ N , we note its local criticality level as Γj .
We use the Ethernet 802.1Q tag to associate a criticality level to eachmessage (see chapter 14.1 for details
on this implementation). In each switch of the network, we implement a message scheduler in order to

146

CHAPTER 8. DECENTRALIZED MC MANAGEMENT

manage the criticality level of the switch and to filter non critical messages.

Data: Incoming message mi , node criticality level Γ
Result: Message filtering, new Γ value

1 if Γ == LO then
2 if Ci > CLO

i then
3 Γtemp← readCriticalityField(mi);
4 if Γtemp == HI then
5 send(mi);
6 Γ← HI ;
7 else
8 // A LO message exceeded its LO-WCAT

reportError(mi);
9 end

10 end
11 send(mi);
12 else
13 Γtemp← readCriticalityField(mi);
14 if Γtemp == HI then
15 send(mi);
16 end
17 end

Algorithm 2: Decentralized MC management

The internal behavior of each switch
is managed by a dedicated schedul-
ing algorithm (see algorithm 2).
The scheduling of messages in each
switch depends on the current
criticality level of the switch. In
LO mode, the switch automatically
detects LO-WCAT exceedings to
change to HI level. On the contrary,
in HI mode, the switch does not
analyze a message WCAT but it
directly reads its criticality field in
order to decide whether to send the
message or not.

This process allows the switches to transmit HI-critical messages even if their size is lower than the size
corresponding to their LO WCAT. The criticality level change inside a network topology is nomore done
at the same time for all switches, but happens at a specific date for each switch. Switches which are still
on LO-mode can continue transmitting LO-critical messages, as long as they do not receive a HI-critical
message. Moreover, switches which do not receive HI-critical traffic can stay in LO mode.
Algorithm2 checks both the size and the criticality level of eachmessage. As long as aHI-criticalmessage
has its real transmission delay lower than its LO-WCAT, a switch can transmit both LO and HI flows.
Thus, as the decentralized protocol does not rely anymore on a synchronization process, criticality level
changes do not imply any delay in criticality changes despite the internal delay to change the criticality
level inside a switch, which is common to both centralized and decentralized protocols. This delay de-
pends on the electronical configuration of the switch and consists in reading and writing in the switch
internal space. In our work, we consider this delay as integrated in the switching latency.

Example

In order to illustrate the impact of the decentralized protocol on LO-critical traffic, we focus on the
example presented in section 8.2.1. We suppose the same topology, flows and parameters as previously
defined, but we assume that MC in the network is managed with the decentralized protocol. We obtain
the results described in figure 8.3.
The number of non critical messages which are transmitted is equal to: 4 (v1), 1 (v2), 3 (v3), 1 (v4), 4
(v5), which represents a total of 76.4 % of guaranteed transmissions (100 % for HI-critical traffic, and
1
4 +

1
2 +

4
4 = 60 % of LO-critical traffic).

147

Mixed criticality management protocols

S4
HI
LO

S3
HI
LO

S2
HI
LO

S1
HI
LO

4a 5a 5b 4b 5c 5d

1a 2a 1b 1c 1d

3a 4a 3b

1a 3a 4a 1b 3b 1c 1d

0 50 100 150

Figure 8.3: Decentralized protocol

The decentralized MC
management proto-
col allows switches to
transmit LO-critical
messages even when
specific switches are on
HI-critical level. As long
as LO-critical messages
path do not cross a HI-
critical message path,
their transmission will
not be stopped. That
is what we observe for
messages from flow v5,
which are still transmit-
ted as long as S1 stays in
LO-mode.

Delay computation

In order to focus on the timeliness of this new decentralized protocol, we need to be able to bound the
worst case delay of any HI-critical transmission. We propose here an evaluation of this delay using the
Trajectory Approach.
Focusing on the end-to-end transmission delay of a message implies taking into account the impact of
HI-critical traffic inside the network. In both protocols (centralized, decentralized), the delay induced
by HI-critical traffic is computed the same way with the Trajectory Approach. It means that the impact
of this traffic, and the additional transmission delay it represents, is the same for both protocols. This
traffic has already been detailed previously (see chapter 7).
We assume that changing the criticality level inside a switch is instantaneous. As soon as a HI-critical
message arrives in a switch, this switch changes its internal criticality level . It means that, as soon as
there is a waiting HI-critical message in a switch, this switch will not have any additional LO-critical
message waiting to be transmitted. Nevertheless, we can still have a non-preemptive effect induced by
LO-critical traffic.
The computation of theworst case transmission delay of a HI-critical message mi fromflow vi consists in
computing the potential non-preemptive delay in each encountered switch along its path. If we suppose
a HI-critical message mi defined by {P⃗i,{CLO

i ,C
HI
i },Ti}, the expression of the non-preemptive delay

applied to end-to-end transmission delay of m is expressed as:

∑
n∈P⃗m

(max
n∈P⃗i

(CLO
i ,C

HI
i) 8.1

148

CHAPTER 8. DECENTRALIZED MC MANAGEMENT

The non-preemptive effect can be induced by any LO or HI-critical traffic. If we focus on the expression
of the switch-criticality delay presented for the centralized protocol (see section 7.2.4), we can see that
the same non-preemptive effect is applicable to the transmission of the SCC message in the centralized
approach.
The expression of this worst case end-to-end transmission delay is based on the hypothesis that there is
no HI-critical traffic in the network. It is based on the assumption that HI-critical messages in HI mode
can only be delayed by LO messages encountered along their path inducing a non-preemptive effect
potentially induced by each LO-critical message, or by other HI-critical messages which can be with a
higher priority.
Nevertheless, in order to establish a reliable worst case end-to-end transmission delay evaluation, we
have to take into account HI-critical trafic and bound the delay induced by this additional traffic. We
consider a FIFO scheduling policy. We obtain the following expression:

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(1+ ⌊
t + Ai, j

Tj
⌋) ∗CHI

j 8.2

The global worst case response delay of flow vi in the last node of its path lasti is computed with the
expression of Trajectory Approach, given in chapter 4. We obtain:

W lasti
i,t =

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅

(1+ ⌊
t + Ai, j

Tj
⌋) ∗CHI

j

+
∑

k∈P⃗i\{lasti}
(max

k∈P⃗j

(CLO
j ,C

HI
j))

+ (|P⃗i | −1) ∗ sl

−
*..,

∑
j∈P⃗i\{ f ir sti}

(∆ j
i,t)− t

+//-
+

− CHI
i 8.3

If we consider the worst case end-to-end transmission delay of a HI-critical message which is the only
HI-critical message in the network, it will only be delayed by LO-critical traffic. In that case, we obtain:

8.3.3 Changing criticality level back to LO level
In a dual-criticality level network, all HI-WCAT of HI-critical flows are necessarily equal or higher
to their LO-WCAT. This hypothesis of the hierarchical structure criticality levels has been formulated
in [114] and detailed in section 6.4.3. It is the same for the period, which is necessarily equal or shorter

149

Mixed criticality management protocols

during HI-critical phases. This hypothesis builds an order of importance among the criticality levels of
a network topology.
Given this hierarchical structure, we defined the following property. As soon as the new criticality level
γnew is more important than the current one γanc, we immediately trigger a criticality level change. On
the contrary, when γnew is less important, we implemented a decision process based on a criticality table
management in order to decide whether or not to change the criticality level in the network.
In the centralized protocol, this process of changing back to a lower criticality level is operated when
each node of the network has not receive any critical message for a certain period of time. With the
decentralized protocol, criticality level is not anymore managed through the criticality table stored in
the central node. As a result, we have to propose an alternative to manage criticality changes to lower
levels. The local criticality management can be used for this. Each node will be configured to be able to
change back to LO level by itself.
We have to characterize the waiting delay before triggering this criticality level switch. We are working
with sporadic and periodic flows. A pertinent evaluation of this waiting delay would be to compute
it from the expression of the different periods (or minimum inter-arrival time) of each flow transiting
through the switch. We propose to implement, in each switch, a waiting delay equal to the highest period
of all flows in the network:

SLO = max
vi ∈V

CHI
i ,−1

(T HI
i) 8.4

We are sure that each periodic flow produced at least one message during SLO . The delay SLO is common
to all switches in the network. This delay is reliable only for periodic flows. For sporadic flows, as we
cannot guarantee a maximum inter-arrival delay between two messages, we cannot guarantee at least
one message emission per flow during SLO . It the same problem as we explained in 7.2.3: for sporadic
flows, the only solution we can provide is to base SLO value on minimum inter-arrival times.
Implementing SLO value in each node implies waiting for a specific delay, computed from different flows
which do not transit through the node. It can represent a potential loss of LO-critical messages: if the
HI-criticality phase is too long, it represents an additional period of time during which there is no LO
message transmission. In order to answer to this problem, a proposed solution is to define a specific
waiting delay dedicated for each node k . This implies, for each node, knowing all the flows which transit
through it (which is not necessarily the case in non-industrial networks, for example).
Spending time in HI mode while there is no HI message transmission represents a loss of ressources.
If we want to improve the QoS by reducing this delay, we can define a delay indexed on the periods of
the flows transiting through each node. This means that a node k will have to wait during a delay Sk

LO ,
defined as:

Sk
LO = max

k∈P⃗i
CHI
i ,−1

(T HI
i) 8.5

150

CHAPTER 8. DECENTRALIZED MC MANAGEMENT

The problem represented by the expression of this delay is that it implies configuring each switch inde-
pendantly. As this delay relies on the different flows which pass through the switch, it implies, for each
switch, knowing the different flows which will transit through it.
As a conclusion, the decentralized MC management protocol proposes a MC management local to each
node. The protocols allows the network nodes to increase and decrease their criticality level. This assures
a bounded delay for HI messages transmission and guarantees isolation between LO and HI traffic.

8.3.4 Extension to multi-criticality levels network
The decentralized protocol has been introduced for dual-criticality level management, with networks
based on LO (non critical) and HI-critical traffic. But, as shown, we often have to define more than two
criticality levels (mission-critical, vehicle-critical, safety-critical for example). We propose to extend the
decentralized protocol to multi-criticality levels networks.
We suppose the network composed of {γ1, ..., γk−1, γk} different criticality levels, with Γj the current
criticality level in node j . The hierarchical structure among criticality levels formulated in section 6.4.3
allows us to assume that each incoming message mi = P⃗i, C⃗i,Ti in node j can be considered with u dif-
ferent levels of criticality. Based on this assumption, we suppose an incoming message m of criticality
level u incoming in node j , of current criticality level Γj . We obtain:

• If u = Γj , the node j stays in its current criticality mode and the message is transmitted.

• If u < Γj , the message m is dropped out.

• If u > Γj , we increase the value of Γj to u and the message is transmitted.

From this assumption, we deduce the MC management algorithm described in algorithm 3.

Delay computation

In a multi-criticality levels network, the worst case end-to-end transmission delay of a message depends
on the current criticality level of each node. According to the hierarchical structure among criticality
levels, when there is a conflict between different messages of different criticality levels, we always privi-
lege the one with the highest criticality level. The transmission delay we will guarantee is the one for the
message with the highest criticality level.
Inside a network N , we can observe a mixed transmission of messages from various criticality levels.
Each message can represent a potential additional delay due to non-preemptive effect. Only messages
with a higher criticality level are likely to induce such non-preemptive effect (in worst case analysis), as
messages with lower criticality level are dropped out from waiting queues.
We suppose a network N composed of a set of n flows {v1, ...,vn−1,vn}, each flow characterized by
{P⃗i, C⃗i,Ti}, with C⃗i = {Cγ1, ...,Cγui−1,Cγui }. It means that each flow vi belongs to a certain number of
criticality levels ui . We note k the number of possible criticality levels in the network, which means
∀i ∈ [1;n],ui ≤ k . We can express the worst case end-to-end transmission delay of a message i from flow
vi , of criticality level γu j with the Trajectory Approach (see chapter 4, expression 4.16). We obtain:

151

Mixed criticality management protocols

The integration of this algorithm in-
tegratesmulti-criticality levelsman-
agementwith the decentralized pro-
tocol. When we have an incoming
message m, the node checks the size
of m.
If this size corresponds to a greater
size than the WCAT of m corre-
sponding to Γj , then we need to
increase the value of Γj . If not,
it means that the message is of
Γj-criticality level and needs to be
transmitted.
In the case where the transmission
delay is lower than the WCAT of Γj
level, the node checks the critical-
ity level of the message, in order to
determine if the node can send the
message or not.

Data: Incoming message mi , node criticality level Γj
Result: Message filtering, new Γ value

1 if Ci > CΓji then
2 Γtemp← readCriticalityField(mi);
3 if Γtemp > Γj then
4 send(mi);
5 Γj ← Γtemp;
6 else
7 if Γtemp == Γj then
8 send(mi);
9 end

10 end
11 else
12 Γtemp← readCriticalityField(mi);
13 if Γtemp ≥ Γj then
14 send(mi);
15 end
16 end
Algorithm 3: Decentralized MC management for multi-
criticality levels

Ri (γu j) =max
t≥0

{W lasti
i,t (γu j)− t +C

γuj
i }

W lasti
i,t (γu j) =

∑
vj ∈{1,2,...,nf }
P⃗i∩P⃗j,∅ l∈[u j ;k]

(1+ ⌊
t + Ai, j

Tj
⌋) ∗Cγlj

+ max
l∈[1;k]

(Cγlj)

+ (|P⃗i | −1) ∗ sl

−
*..,

∑
j∈P⃗i\{ f ir sti}

(∆ j
i,t)− t

+//-
+

− C
γuj
i 8.6

This expression is an upper-bound of the worst case reception time of a γ j-critical message o is the last
node lasti of its path P⃗i .

8.4 CĔēĈđĚĘĎĔē

The presented decentralized approach is an alternative way for MC integration inside RT Ethernet net-
works. It relies on a distributed management of the criticality level, dedicated to each node in the net-

152

CHAPTER 8. DECENTRALIZED MC MANAGEMENT

work.
This protocol implements independant MC maangement of each node in the network. It allows the
network designer to reduce the criticality level management costs in terms of transmission time. More-
over, dedicating the criticality level management to each node allows the network to be independant
from clock synchronization, contrary to the centralized approach.
The simulations we made confirm the assumption about the benefit of the decentralized approach (see
chapter 12). Its integration does not rely on clock synchronization and induces a better QoS rate for LO-
critical traffic. As a conclusion, it makes this approach better suited for industrial networks where QoS
and usability have to be guaranteed. This concerns particularly domains oriented to public utilisation,
where LO-critical functionalities (oriented to comfort, multimedia, etc...) are the most frequent. We can
mention domains such as automotive, public transports or IoT.
Depending on the utilization context and network infrastructure, both approaches can be adopted for
MC integration inside RT networks.

153

Part IV

Real-TimeNetworks simulationwith
ARTEMIS

155

Chapter 9

Real Time network simulation with
ARTEMIS

”Un bâtiment doit réunir trois caractéristiques: un bon emplacement, des fondations
sûres et une exécution sans faille.”

”Three things are to be looked to in a building: that it stand on the right spot; that it be
securely founded; that it be successfully executed.”

– Johann Wolfgang von Goethe [131]

Contents
9.1 What is ARTEMIS? . 158

9.2 Provided results . 164

9.3 User Interface . 165

9.4 Conclusion . 168

157

Real-Time Networks simulation with ARTEMIS

9.1 WčĆę ĎĘ ARTEMIS?

9.1.1 Introduction
ARTEMIS is a network simulation tool. It simulates the transmission of messages generated for pre-
defined flows. These messages are transmitted through a network topology. ARTEMIS proposes to the
user to model a network topology (input and output points, switches, wires) and to simulate the schedul-
ing of a flowset inside this topology during a given time interval. The internal structure of ARTEMIS and
its functional goals have been presented in previous works [132], [133].
ARTEMIS is organized around several major development axis. The main development guidelines of
ARTEMIS are described as follows:

• Modular: each part of the tool is an individual module which can be launched and used on a stan-
dalone version. This modularity allows us to use ARTEMIS in two different ways: Either it can be
used in a global full version with interconnected modules, or individual modules can be used to
perform specific functionalities.

• Web-oriented: There is a clear separation in ARTEMIS between the graphical interface (which
operates as an XML files generator) and the simulation core. The graphical web interface allows
the user to build and install distributable versions for group of users, including the advantages
of the web context: no individual installation on each working terminal, easiness to update and
maintain.

• Open-Source: ARTEMIS was mainly designed for educational and research purposes. In order
to be easily shared among community of users, ARTEMIS has been chosen to be free and open-
source. Thus, its modular structure makes it easier for external development teams to design and
build new modules for the tool, and the Open-Source aspect reinforces this approach.

• Easy-to-use: We did consider usability and ergonomy as an additional approach to take into ac-
count during the development, particularly by integrating specific efforts in the design of an usable
GUI.

In this chapter, we propose to fully detail the internal structure and functional perimeter of ARTEMIS.

9.1.2 Functional description
ARTEMIS contains, as major modules, a basic simulation kernel, a topology and message generator and
a GUI. All these modules are interconnected through an API, written in XML. The first fundamental
element of ARTEMIS is its simulation core. It iswritten in Java and its role is to compute the transmission
time of each message, from each flow, transmitted in a network topology.
ARTEMIS network modelling is based on the representation of a network with three basic ele-
ments [133]:

• The nodes represent the network operators (switches, entry points). These are the physical devices
responsible for sending, receiving (end-systems) or forwarding data (switches).

158

CHAPTER 9. REAL TIME NETWORK SIMULATION WITH ARTEMIS

• The links represent the bridges between nodes. These allow the nodes to be connected between
each other.

• The flows represent the data. Each flow produces messages and is characterized by a sender, a
receiver, and a static-defined path of nodes between them. This static definition is an external
constraint due to RT networks: each path of each message has to be statically defined. This is a
necessary condition to assure the determinism of transmissions inside a RT network.

Figure 9.1 shows the global structure ofARTEMIS’smodules. ARTEMIS is organized according to differ-
ent layers: the core layer (simulation and computing data), the module layer (plugged to the core through
XML files), the XML layer (used to model data) and finally the user layer which includes the GUI. In this
layer architecture, the XML layer operates as an data interface (API) which models the different aspects
of datas needed by other modules: simulation configuration, graphical parameters, timing analysis de-
scription, etc...
Additionnally to modular structure, this layer organization allows an easier access to each functionality
when debugging: it makes the development work easier to act on a specific functionality or correct a
specific problem in a feature.

User layer

XML Layer

Modules

Core layer

Web-GUI

Input: network configuration Output: traffic simulation

Generators Other modules Grapher

CoreModeler CoreSimulator

Figure 9.1: ARTEMIS functional structure

9.1.3 Software core

Core structure

The core of ARTEMIS consists of two different parts: the CoreModeler and the CoreSimulator. First,
the CoreModeler is the entry point of ARTEMIS core. The role of the CoreModeler is to represent and
model the network, according to the data saved in the XML files. The CoreModeler has to represent
the network topology, messages, and all the network configuration. The CoreModeler is responsible for

159

Real-Time Networks simulation with ARTEMIS

parsing the XML input files and informations, building them as Java objects, in order to build a complete
network simulation context: nodes, links and messages.
In terms of addressing, The CoreModeler is responsible for making the address attribution for all net-
work nodes. Each node is identified by two different elements: the user-oriented identifier (defined in
the GUI) and the network address (computed by the CoreModeler).
The modelling of the network done by the CoreModeler depends on the XML representation of the
network built by the different modules of ARTEMIS. This XML representation is composed of different
files which can either be manually edited by the user (or generated by external tools), generated through
the GUI or automatically generated by ARTEMIS modules. These files are organized as follows:

• network.xml: representation of the topology (nodes and links). It also integrates bandwith rep-
resentation. This file integrates the representation of the network structure, plus all the network
platform description.

• messages.xml: it contains the complete representation of each flow in the network. Each message
is described with the different criticality levels it belongs to. For each criticality level, we define
the different parameters of each message (WCAT, path, period).

• config.xml: This file regroups all the parameters which are supposed to be applied globally on the
topology or on the messages. This includes the MC management models (centralized, decentral-
ized) and the transmission delay computation model (static, dynamic).

• graphconfig.xml: A secondary file used for graphical configuration and display modes in the gra-
pher module. This file is not used by the core itself. It is used by the grapher module for display
management.

The second part of ARTEMIS core is the CoreSimulator. Its role is to simulate the runtime phase of
the network modeled by the CoreModeler. The CoreSimulator is responsible for simulating the time-
oriented environment and for scheduling the flows transmission through the network topology.
The CoreSimulator bases its computation over the object structure built with the CoreModeler. The
CoreSimulator produces XML output files describing the state of each node in the network, at each time
instant of the simulation. In the output XML layer, each node has its own XML file, establishing a timing
description of each node.
This split betweenCoreModeler andCoreSimulator has been operated in the beginning of the ARTEMIS
design, in order to differentiate data parsing and modelling on one side, and timing analysis and RT
scheduling on the other side. This allows us to build a logical process of simulation, which is detailed in
figure 9.2.
In the work below, we detail the role and main structure of each configuration file, in order to detail the
XML interface of ARTEMIS. The modularity and genericity of ARTEMIS are based on this file structure.

Network configuration

The topology description is based on a dedicated XML file. In this file, each node is characterized by a
set of several user-defined properties:

160

CHAPTER 9. REAL TIME NETWORK SIMULATION WITH ARTEMIS

XML Parsing Topology building Traffic flows building

Initializing simulatorScheduling simulationXML producing

Figure 9.2: ARTEMIS core logic

<Network >
<machine i d = ” 0 ” name= ” ES0 ” spe ed = ” 1 ” shape = ”
” ><Conf ig ><name / > </ Conf ig >< Links >< mach in e l i d
= ” 0 ” / > </ Links > </ mach ine l >
<machine i d = ” 2 ” name= ” S1 ” sp e ed = ” 10 ” shape = ”
” ><Conf ig ><name / > </ Conf ig >< Links >< mach in e l i d
= ” 2 ” / > < mach in e l i d = ” 2 ” / > </ Links > </ mach ine l >
<machine i d = ” 3 ” name= ” ES2 ” spe ed = ” 1 ” shape = ”
” ><Conf ig ><name / > </ Conf ig >< Links >< mach in e l i d
= ” 3 ” / > </ Links > </ mach ine l >

</Network >

Figure 9.3: network.xml file example

• Name: This is the label of the node, used on the GUI.

• Rate speed: This is the data analyzing rate of the node, defined in Ms/s.

• Scheduling policy: the policy applied to the messages transiting through the node. Basic policies
have been integrated in theARTEMIS (FIFO, FP) and a generic interface allows theuser to integrate
additional ones.

• Outputs: the list of nodes the current node is connected to, as outputs.

An example of a network configuration file given in 9.3 shows the different description tags used in
ARTEMIS XML formalization. Depending on the database structure, each node definition is linked to
a unique id. Additional parameters (address management policy, for example) can be specified in the
Config tag.
InARTEMIS,we consider that each link between twonodes is oriented: if a node na is connected through
an input link to a node nb, flows through this link can only go from na to nb. It means that if we want to
emit data in the two directions between two nodes, the core will build two different links (full-duplex).
As a result, we consider each node connection in the configured network as a full-duplex connection.

161

Real-Time Networks simulation with ARTEMIS

<Messages >< mes sage i d = ” 244 ” >< c r i t i c a l i t y
l e v e l = ”NC” >< path >0 , 2 , 0 < / path >< p r i o r i t y
>0 </ p r i o r i t y >< pe r i od >100 </ pe r i od >< o f f s e t
>0 </ o f f s e t ><wcet >20 </ wcet > </ c r i t i c a l i t y
> </ message >

<mes sage i d = ” 245 ” >< c r i t i c a l i t y l e v e l = ”NC” ><
path >0 , 2 , 0 < / path >< p r i o r i t y >0 </ p r i o r i t y ><
pe r i od >70 </ pe r i od >< o f f s e t >0 </ o f f s e t ><wcet
>30 </ wcet > </ c r i t i c a l i t y > </ message > </
Messages >

Figure 9.4: message.xml example file

vi P⃗i Ci (µs) Ti(µs)
v1 {ES0, S1,ES2} 20 100
v2 {ES0, S1,ES2} 30 70

Being based on an open well-shared standard like XML allows us to easily modify or add new infor-
mations in each file. Either by modifying a simulation configuration by manually editing the file or, for
future uses, to modify the data representation model. This integrates genericity in the formalization of
data, for example for benchmarking purposes.

Messages description

The messages description file contains all the needed informations to represent each flow likely to be
integrated inside the core during simulation. Each message is produced by a flow and each flow of the
simulation can be configured by the user. We consider in ARTEMIS that each flow is represented by
a generic model: {P⃗i, C⃗i, T⃗i}. For each criticality level in the simulation, each flow can have a different
WCAT and period. An example of a message.xml file is given in figure 9.4.
Similarly to the topologies, ARTEMIS integrates a flowset generator (detailed in chapter 11) to auto-
matically generate flows for the simulation. This module will automatically generate the messages.xml
file
Figure 9.4 shows that each message contains specific properties for each criticality level the network can
manage. The structure of the file is to organize each message according to each criticality level it belongs
to. For each criticality level, we define a set of properties {P⃗i,Ci,Ti}.

Platform configuration

Mainly, the parameters stored in the config file of ARTEMIS are dedicated to be used by externalmodules
through a parsing phase. Timing analyze, flowset and topology generators, simulation pre-configuration
are all simulation steps relying on this data modelling. An example of the file is given in figure 9.5.
The figure 9.5 shows an example of a global configuration file, specifying the duration of the simulation
(200µs) and the electronical latency (0µs). We also note the different parameters used for transmission
time computation: computation model (WCATmodel), computation rate (WCATrate) and MC manage-
ment protocols (switch, protocol). These parameters are detailed further in 11. As a conclusion, this

162

CHAPTER 9. REAL TIME NETWORK SIMULATION WITH ARTEMIS

Example of a messages.xml input file

<? xml v e r s i o n = ” 1 . 0 ” ? >
<Conf ig >

< t ime− l i m i t >200 </ t ime− l i m i t >
< e l a t e n c y >0 </ e l a t e n c y >
<WCATmodel>LIN </WCATmodel>
<WCATrate >10 </WCATrate >
< sw i t ch >D</ sw i t ch >
< p r o t o c o l > D e c e n t r a l i z e d </ p r o t o c o l >

</ Conf ig >

Figure 9.5: config.xml file example

Simulation time 200 µs
Switching latency 0 µs
WCAT Generation Linear (rate: 0.1)
MC changes Dynamic
MC protocol Decentralized

config file is used for the global configuration of the simulation itself.

9.1.4 Time-oriented scheduling algorithm

The CoreSimulator is based upon a time-oriented algorithm, clearly differentiating each step of the pro-
cess ofmessage transmission. This algorithm is detailed in 4. At each instant of the simulation, we trigger
an algorithm loop.

Data: networkN , messages set S, scheduling
policy Sp

Result: Scheduled traffic
1 for time← 0 to limit do
2 foreach machine inN do
3 Generate new messages
4 inputBuffer← new messages
5 message← select(Sp, inputBuffer)
6 analyze(message)
7 if analyze ended then
8 outputBuffer←message
9 end

10 end
11 foreach machine inN do
12 Send(outputBuffer)
13 end
14 end
Algorithm 4: ARTEMIS simulation algorithm

If we summarize, at each time and for each
machine, the simulation algorithm is based on
successive steps:

• Generate: for each end-system, we in-
sert the potential new messages in the
network coming from.

• Load: we load in input buffers all the
incoming messages (generated or trans-
mitted from other nodes).

• Analyze: We schedule the message and
forward it.

• Prepare: Fully-analyzed messages are
put in the output buffer corresponding
to their destination.

• Send: All messages waiting in the output
buffer are sent to the next node in their
path.

163

Real-Time Networks simulation with ARTEMIS

Example

The simulation process of ARTEMIS core is based on the timing simulation of these successive steps for
each machine during a specified time interval. We illustrate this algorithm on an example (see figure 9.6).
This example is based on the configuration described previously. Flow v1 is represented in orange, and
flow v2 in pink.

Figure 9.6: Artemis graphical results

The application of the scheduling algorithm described in 4 gives us the following process. At date 0 :

• Messages from ES0 are generated (va
1 for v1 and va

2 for v2).

• Both messages are put in ESO input buffer.

• We select each node which verifies : input buffer not empty, not currently transmitting a message.
That only leaves ES0.

• In each select node, we pick the message with the highest priority (va
1 for ES0). This message is

loaded inside the node, and the node is marked as ”currently transmitting”. This will prevent the
load of any additional message until the transmission is finished.

At date 1 :

• ES0 is currently transmitting va
1 . The transmission is not finished.

• S1 and ES2 are still empty.

etc... The recurrent application of the algorithm loop gives us the final scheduling simulation result de-
scribed in figure 9.6.

9.2 PėĔěĎĉĊĉ ėĊĘĚđęĘ

ARTEMIS provides timing analysis results about the schedulability of a given network configuration.
We want to focus on the worst case end-to-end transmission time of each message in a given network

164

CHAPTER 9. REAL TIME NETWORK SIMULATION WITH ARTEMIS

topology. This timing analysis allows us to detail also QoS evaluations, for example on the number of
lost messages (in case of multiple criticality levels) and average latency induced by a node.
In order to detail these results, ARTEMIS provides them through two different ways:

• Graphical results: this consists in the graphical expression of the scheduling plan obtained by sim-
ulating during the defined time interval. The grapher module of ARTEMIS is responsible for es-
tablishing this graphical representation. An example of such graphical results is given in figure 9.6.

• Detailed results: ARTEMIS integrates a timing analyzer module which computes and proposes
the transmission time of each message and computes the QoS guarantees offered by the network
configuration. Through an XML file generated by the module, we can access to the detailed trans-
mission analysis provided by the module.

Basically in ARTEMIS, there is a maximum number of 500 input and 500 output ports by node. This is
a constraint used to limit the execution time of algorithms inside the core. ARTEMIS allows the user
to create every kind of network, from small topologies with around 10 end-systems like in small home
automation structures, to wide architectures like we can find in aircrafts systems or spaceship with more
than 100 end-systems.

9.3 UĘĊė IēęĊėċĆĈĊ

The purpose of ARTEMIS is to provide an easy to use network simulation tool. It has to compute results
in a limited time, with a detailed and easy to set up configuration process. In order to implementation
this easiness, we present here the choices we made during the development to respect ergonomy and
improve user experience.

9.3.1 Web-oriented architecture
As said, the GUI of ARTEMIS is based on a web architecture, which can be run by an Apache or any
Hyper Text Transfer Protocol (HTTP) server implementation suite integrating a PHP compiler. Thes
GUI of ARTEMIS is a PHP and HTML bridge between the user and ARTEMIS core. The web-oriented
part for ARTEMIS is composed of set of PHP scripts triggering the main java functions of ARTEMIS
kernel.
The user interface (web layer) in ARTEMIS is used to generate XML input files for the kernel and the
different modules. The purpose of the GUI is to allow the user to quickly generate these files and then to
make the ARTEMIS kernel run one or several simulations based on them.

Why this architecture?

The web-oriented architecture is the first step of ergonomy integration in ARTEMIS. User-friendliness
is a major issue in ARTEMIS development. We wanted the tool to be easy to install and easy to spread
among a group of users. Also, the tool has to propose a generic approach and to be easily adaptable to dif-
ferent kind of network simulation models, so to be adaptable to different kind of users. The client-server

165

Real-Time Networks simulation with ARTEMIS

architecture provided by HTTP servers allows the software to manage multi user concurrent access and
utilization. As a result, a web interface allows to make ARTEMIS a distribuable simulator.
We wanted to extend the usability of the tool beyond the limits of development-familiar users. For ex-
ample, we want the tool to be easy to present and use during pedagogical demonstrations. We picked
web-oriented languages (CSS, HTML5). This allowed the development to integrate complex interaction
and ergonomy functionalities (animations, dynamism) without specific complexity in the development
itself. This represent a strong contrast with classical graphical-oriented libraries such as OpenGL or
JavaFX, which require dedicated development skills. Thus, providing a GUI based on specific libraries
would have implied to install additional pre-requisites on each working machine, implying problems of
accessibility.
Also, web-oriented structure induces easiness of installation. Thus, as the kernel of ARTEMIS relies on
Java, web tools and Java make ARTEMIS portable and installable on various operating systems. Even-
tually, required tools are free and easy to install. We made a public version (recherche.ece.fr/artemis/),
which can be used without installation or infrastructure. Through multi-user managing, each connected
user can manage its own list of different simulations.

Architecture details

The web architecture of ARTEMIS is based on the management of identification and simulation keys,
each one corresponding to a given context and user. Each user can have one or several simulation keys,
and all the simulation keys are stored in a central database (see figure 9.7). At each simulation, we give
the kernel the simulation key, corresponding to a given set of input xml files.
The simulation identification works as follows: First, associated with the PHP session id of each user is a
key manager (on the server side) which generates a simulation key for each new simulation associated to
a session key. It means that each user is identified to the server with a unique id, derived from his session
id. Thus, each couple (session id, simulation id) identifies a simulation in a uniqueway. Using this unicity,
we can deduce the simulation data from its id.
When the user wants to launch a simulation, we sent the simulation id to the kernel. This id is linked
to the simulation XML files. At the end of the kernel simulation, generated xml files are re-associated
with the simulation id, and so with the user. This allows the GUI to find and parse the output XML files
corresponding to the simulation triggered by the user. This provides amulti-user usability for ARTEMIS
and guarantees data isolation among simulation parameters. It also leans two users cannot work on the
same simulation, they will necessary be isolated (even in the same server).
The id association and management in the GUI allows to integrate an import and export solution. This
allows the user to extract simulations and their results, either by transferring them to another implemen-
tation of ARTEMIS, or to exploit themwith external tools (for example, for benchmarking purposes). All
XML files related to a simulation can be automatically integrated into an archive in order to be exported.
This function also allows the user to keep simulations configurations even when session id (used for user
identification) are no longer valid. This is shown in figure 9.7.

166

CHAPTER 9. REAL TIME NETWORK SIMULATION WITH ARTEMIS

Java Kernel

PHP Scripts

MySQL Database

PHP Session manager

Simulation 1 Simulation 2 Simulation 3 Simulation 4

User User

Simulation configuration

Simulation data

Identification

XML Data + Requests XML Results

Configuration

Identification

Figure 9.7: ARTEMIS web architecture

A few words about design

On the client side of the web application, all the development has been made with HTML5 + CSS3, in
order to stay compliant to web standards. These languages are well recognized and interpreted by recent
web browsers. For more details about CSS recognition and interpretation, see [134].
In terms of graphical design, ARTEMIS has been built as a classical software, with a centralized window
regrouping all functionalities. Starting from this central window, we can access all the functionalities of
the tool very easily through a tabs-structured organization.

Figure 9.8: ARTEMIS GUI Tabs

The tabs described in figure 9.8 are defined in order for the con-
figuration of a simulation to be sequential: first, we define the
network topology by creating a set of nodes (switches, end-
systems) interconnected through links. The GUI clearly points
out the different between a switch and an end-system, in order
to the global figure of the network to be easily understandable.
Then, we continue with controlling and eventually modifying
the links. Then, the process guides the user to define the differ-
ent flows of the network (manually or automatically generated)
and to specify their parameters: period, path, WCAT, etc...

The criticality management can be done through a dedicated tab, allowing the user to define the differ-

167

Real-Time Networks simulation with ARTEMIS

ent criticality levels of the simulation. For each defined level, the created flow will be in waiting to be
associated to an eventual WCAT corresponding to this criticality level.
This sequential creation corresponds to the logical network definition process: first we define the model,
and thenwe specify the implementation details. Finally, we run the simulation and detail the results. This
respects the user approach when conceiving a network scheduling problem: starting from the general
modelling and progressively iterating until obtaining a properly defined simulation context.

9.4 CĔēĈđĚĘĎĔē

ARTEMIS is a RT network simulation tool, designed mainly for non-preemptive distributed flows
scheduling through statically-defined network topologies. The functional structure of the tool has been
clearly separated in different parts: user-oriented functions, simulation functions, results analysis func-
tions. Dedicated module have been designed for each one of these class of functionalities. The integrated
module are various: topology and flow generator, GUI, timing analyzer.
ARTEMIS has beenmainly defined for specific RTnetwork context: MC integration scenarios (see chap-
ter 10). The functional structure of ARTEMIS allows the user to quickly define basic simulation results
and obtain detailed results without requiring massive detailed specifications.
Eventually, in this chapter, we detailed the main architectural and design aspects of the tool, in order
to present it from a functional point of view. In the following chapters, we will detail further specific
aspects of ARTEMIS, especially the aspects of MC integration inside RT network simulation contexts.

168

Chapter 10

Integrating MC in ARTEMIS

”Bien que vous puissiez aimer ce que vous ne maîtrisez pas, vous ne pouvez
maîtriser ce que vous n’aimez pas.”

”Though you can love what you do not master, you cannot master what you do not love.”

–Mokokoma Mokhonoana [135]

Contents
10.1 Introduction . 170

10.2 Criticality management integration . 170

10.3 Message generation . 171

10.4 Transmission time generation models . 173

10.5 Simulation . 178

10.6 Conclusion . 182

169

Real-Time Networks simulation with ARTEMIS

10.1 IēęėĔĉĚĈęĎĔē

ARTEMIS has been designed to focus on the simulation ofMC integration scenarios inside RTnetworks.
The functional perimeter of ARTEMIS implies for it to propose a solution to analyze the impact of criti-
cality mode changes in RT networks, particularly in terms of traffic management. We want to show here
the models we designed to answer to this problem. We detail these models in two steps: First, we present
them and how we implement it in ARTEMIS core. In a second time, we run different simulations in
order to prove the reliability of the implementation of these models.

10.2 CėĎęĎĈĆđĎęĞ ĒĆēĆČĊĒĊēę ĎēęĊČėĆęĎĔē

10.2.1 The Criticality Manager
The MC management and the integration of criticality level changes during simulations has been imple-
mented in a dedicated submodule of ARTEMIS. This submodule is a part of the CoreScheduler and is
called the CriticalityManager. Its role is to be responsible for criticality changes integration in the topol-
ogy and to be aware of the criticality level each node wants to change to. In the CriticalityManager, each
node is attached to a current criticality level.
TheCriticalityManager triggers the criticality changes (according to the configuration and to the runtime
events). It assures the link between the CoreScheduler and the entity responsible for traffic management
and transmission time computation. In terms of structure, the CriticalityManager is integrated in the
CoreScheduler. When generating messages, all input and output informations transit through the Crit-
icalityManager.

CoreSimulation

Nodes

Links
Messages

CoreScheduler

XML
Output

CriticalityManager
WCAT

Computation

Figure 10.1: CriticalityManager integration in ARTEMIS

The CriticalityManager analyzes the
different transmission times of mes-
sages to determine their impact
in terms of criticality management
(criticality table update, criticality
level switch). The CriticalityMan-
ager also stores all the static defined
criticality changes configured by the
user.

10.2.2 Criticality table
When defining centralized MC management protocol (see chapter 7), we introduced the concept of crit-
icality table. This is a memory space used to store the criticality table each node is ready to switch to.
This is not used in the case of a criticality level increase (the decision is instantaneous in this case). On
the contrary, the criticality table is used in order to trigger criticality level decreases in mixed critical RT
networks.

170

CHAPTER 10. INTEGRATING MC IN ARTEMIS

In order to respect the protocols implemented in previous chapters, we need to define a model to rep-
resent the criticality table in ARTEMIS. This table does not indicate the current criticality level of each
node (as this information is centralized, this value is the same for all nodes) but it specifies the criticality
level the node wants the whole network to change to.
The criticality table is integrallymanaged by theCriticalityManager. When a node does not get amessage
from the current criticality level during a certain period of time, it updates its state in the criticality table,
mentioning that this node is ready to change back to a lower criticality level. Once the criticality table
indicates that all nodes are ready to change to a lower criticality level, the CriticalityManager orders a
switch back.
The level to change to is not necessarily the same in all nodes (in case of a network managing more than
2 criticality levels). In that case, we pick the most critical level waiting among all nodes, and we reset the
waiting timer for all nodes.

10.2.3 Criticality switch delay
The CriticalityManager is also responsible for integrating and managing the computation of each trans-
mission time of each message, depending on the selected computation model. It is linked with a trans-
mission time computer, allowing the CriticalityManager to filter messages depending on their criticality
level, and associate a criticality level to each message depending on its transmission time.
The criticality switch delay is the combination of the SCC message transmission and reliable multicast
delay (see the details of this expression in chapter 7). The computation of this delay is based on the deter-
mination of the network central node and the computation of the network depth (the longest possible
path between the farest node and the network central node). This supposes a network with no loop.
According to the topology of the network and to the flows parameters, this criticality switch delay is
automatically computed.

10.3 MĊĘĘĆČĊ ČĊēĊėĆęĎĔē

10.3.1 Worst case and real case analysis
In ARTEMIS, when simulation a network scheduling scenario, we generate messages from the different
flows we defined during the configuration phase of the simulation. Each one of these flows is character-
ized by a set of parameters: WCAT, period, path. For each criticality level, a flow has a dedicated WCAT
which can be equal to −1 (the flow does not belong to this level) or to a specific positive value.
During configuration, we define each WCAT value for each criticality level of each message. At runtime,
we can make two hypothesis. Either, each message analyzing time is equal to a WCAT (worst case hy-
pothesis) or we suppose that the analyzing time of amessage can be lower than theWCAT corresponding
to the current criticality level (real case hypothesis). This second hypothesis introduces solutions to com-
pute amessage analyzing time, based on the values of its differentsWCAT.This solution allowsARTEMIS
to propose different delay computation models, like it was presented in SimSo [84].
When we configure a flow vi , we define C⃗i which is the vector of its different WCAT (for each criticality
level). . The different WCAT builds a threshold mechanism. At runtime, each time the flow vi generates

171

Real-Time Networks simulation with ARTEMIS

a message, this message is characterized by an analyzing time Ci . If the current criticality level is Γ, the
two hypotheses we made correspond to :

• Worst case hypothesis : For each message, we have Ci = CΓi .

• Real case hypothesis : For each message, we generate Cbest
i ≤ Ci ≤ CΓi , with Cbest

i the Best Case
Analyzing Time (BCAT) of the flow.

Figure 10.2: WCAT-based model

Figure 10.3: Real transmission time model

We ran a simple simulation examplewith a sin-
gle flow vi (for both real and worst case mod-
ellings). The flow vi was configured in a dual-
criticality (LO, HI) level network, with Ti =

20µs, CHI
i = 10µs andCLO

i = 5µs. we obtained
the results in figure 10.2 and 10.3. We set the
BCAT of the flow to 0 for simulation purposes.

In the example of figure 10.3, the flow vi produces 5 different messages (called m1, m2, ..., m5). The results
shows that, in worst case model, each individual transmission time is rounded to the corresponding
threshold. With worst case modelling, we have Ci = CLO

i for m1, m3, m4, m5, and Ci = CHI
i for message

m2. With real case modelling, we have a different value of Ci for each message. We can guarantee that
0 ≤ Ci ≤ CLO

i for m1, m3, m4, m5, and 0 ≤ Ci ≤ CHI
i for m2.

10.3.2 Criticality changes detection
In order to change the criticality level of the network nodes during simulation, we propose two different
MC management models: static, and dynamic. Static management means that all the criticality changes
are statically defined by the user before runtime. Dynamic detection implies for ARTEMIS to be able to
detect whether a message exceeds its WCAT for the current criticality level, and to trigger a correspond-
ing criticality level switch. We propose to detail both these models below.

Static criticality management

The static criticality management models rely on the centralized MC management protocol (see chap-
ter 7). It is based on proposing to the user tomanually define each date atwhich a criticality level happens.
The user can define the date and the criticality level all the nodes in the network are supposed to change
to. This can be defined through the GUI, or directly in the XML files layer.
This model limits the highest WCAT of each message, depending on the current criticality level. If the
current level is LO, not any message will be able to have a transmission time higher than its LO-WCAT.
Also, this model supposes that the criticality level switch is instant: there is no additional delay between
the criticality switch order commanded by the user, and the effective criticality switch.

172

CHAPTER 10. INTEGRATING MC IN ARTEMIS

Dynamic criticality management

Dynamic criticality management is implemented in ARTEMIS in order for the core to decide by itself
whether it has to change the criticality level of the network or not (depending on centralized or de-
centralized MC management protocols). But, implementing this solution implies for ARTEMIS core to
integrate models to generate transmission times which will potentially exceed the WCAT of a message,
corresponding to the current criticality level. In order to answer to this problem, we defined different
time transmission computation models.
All the proposed models are based on the hypothesis that a message m is defined with several parame-
ters: a WCAT for each criticality level it belongs to (minimum 1), and a BCAT. The BCAT represents the
lowest transmission time a message can have. Usually, this transmission time is defined with the Ether-
net standard size limit. It considers that the data field of a message is at its lowest size (46bytes). This
supposes a minimum size of 64 bytes for eachmessage. The minimumWCAT can be computed from this
size, depending on the network global bandwidth.

10.4 TėĆēĘĒĎĘĘĎĔē ęĎĒĊ ČĊēĊėĆęĎĔē ĒĔĉĊđĘ

10.4.1 Uniformmodel
The uniform model of transmission time computation supposes a uniform distribution law of the differ-
ent transmissions time of a message, in a interval bounded by the BCAT and the highest WCAT of the
flow. The uniform model supposes that all potential transmission times in the interval are equivalently
probable.
The probability distribution and cumulative functions are described in the figure 10.4. This is the repre-
sentation for a message with a best transmission time of 0,61 µ s, and a WCAT of 7 µ s. This is computed
on a 100Mb/s global bandwidth.
In order to configure more accurately the model and to propose different transmission time generation
solutions, the transmission time repartition interval can be reduced in its size. Its upper bound will be
always the highestWCATof themessage, but the lower bound can bemodified by selecting only 90, 80, ...,
10%of the interval. Adjusting this rate allows the user to reduce the variability of generated transmission
times.
During successive generation of messages from the same flow, each possible value of the transmission
time (indexedon the time granularity of the simulation)will tend to be representedwith the samenumber
of occurences as all others. The uniform model is a fundamental to integrate in ARTEMIS, but the linear
cumulative distribution tends to be naive in certain corner cases. In order to represent more specific
cases and to hilight specific values of transmission times, we propose to detail another model.

10.4.2 Gaussian model
The second transmission time generation model integrated in ARTEMIS is based on a gaussian reparti-
tion law. It allows ARTEMIS core to generate different transmission times in the same interval between
best transmission time and WCAT. This generation is based on a gaussian repartition of all the potential-

173

Real-Time Networks simulation with ARTEMIS

Figure 10.4: Transmission time generation / Uniform model

Figure 10.5: Transmission time generation / Uniform model, cumulative probability

transmission times.

174

CHAPTER 10. INTEGRATING MC IN ARTEMIS

Figure 10.6: Uniform generation model

This gaussian model is centralized around the middle of the interval (BCAT, highest WCAT). The devia-
tion of the model can be modified from 0.2 to 0.8 in order to adapt the gaussian model to the generation
needs. We obtain a generation model like described in figure 10.7 detailed below.

Figure 10.7: Transmission time generation / Gaussian model

We observe that a gaussianmodel with a high deviation (> 0.85) can give results comparable to a uniform
model in terms of repartition. The figure 10.9 shows an example of gaussian generation model on the
same flow.
In terms of representation, the gaussian model allows us to take consideration of concrete physical situ-
ations where a message tends to be around a specific value: for example, due to enconding reasons, two
close values of speed (5.555 and 5.5551) can be encoded on a different number of bytes, but represent a
similar situation.
To adapt the gaussian model to various situations, we propose to the user to be able to modify the more
frequent value. These alternative models are based on the gaussian model, and they are detailed below.

175

Real-Time Networks simulation with ARTEMIS

Figure 10.8: Transmission time generation / Gaussian model, cumulative probability

Figure 10.9: Gaussian generation model

The gaussian model privileges the values of the
WCAT which are centered around a specific
value c. The farest a value is from c, the low-
est will be the number of occurences it will get.

Anti-Progressive gaussian

High values of transmission time corresponds to specific utilisations, due to critical cases for example.
During the utilisation of a network, we can suppose that these situations do not represent frequent cases
but, on the contrary, are due to isolated and punctual situations. It means that, during most of utilisation
cases, the transmission time of a message tends to correspond to non critical mode, close to its BCAT
(optimal situation). The anti-progressive gaussian model tends to support this assumption.
Anti-progressive gaussian is based on the same modelling as classical gaussian model, but the most fre-
quent transmission time is supposed to be the message BCAT. The distribution function of the progres-
sive model is given in figure 10.10.

Progressive gaussian

As a conclusion, the generation of transmission times in ARTEMIS integrates different distribution
models. This allows the core to be compliant to various simulation contexts and to represent differ-
ent network configurations. When generating random traffic for simulated network topologies, these
generation models can also be used as traffic shapers by modifying the generation model attached to the

176

CHAPTER 10. INTEGRATING MC IN ARTEMIS

Figure 10.10: Transmission time generation / Anti-progressive gaussian model

Figure 10.11: Transmission time generation / Anti-progressive gaussian model, cumulative probability

messages.

177

Real-Time Networks simulation with ARTEMIS

Figure 10.12: Anti-progressive gaussian generation
model

The figure 10.13 shows that the anti-
progressive model tends to privilege the
lowest possible values when generating a
transmission time. This tends to maintain the
system in lower criticality modes.

Figure 10.13: Progressive gaussian generation
model

At the opposite of the anti-progressive model,
the progressive model has been designed for
simulation purposes. It tends to privilege
the highest possible values when generating a
transmission time. This is used, for example,
when focusing on the resistance of a network
to high-critical loads.

10.5 SĎĒĚđĆęĎĔē

10.5.1 Centralized approach
In order tomodelMCmanagement inside ARTEMIS,we based ourwork on theMCmanagement proto-
cols we previously presented in part III. As a conclusion, we integrated two different solutions tomanage
MC inside ARTEMIS: the centralized and decentralized method.
As shown, the criticality management integrated in ARTEMIS is based on static or dynamic MC man-
agement. We simulated both these modes with the centralized approach.
First, we start with the static centralized model. It is based on the hypothesis that the MC in the network
is managed according to the centralized protocol of MC management in networks. The criticality is
globally managed as a centralized information and is shared in all the nodes of the network through a
reliable multicast protocol. Additionnally, during a specific criticality level, all messages which do not
belong to it are dropped out.
We consider that all criticality changes are statically defined by the user. In thismodel, we donot consider
events such as SCC messages or WCAT-exceeding detection. Once a MC level has been defined at a
specific instant, its implementation is instant. Thus, the static implementation supposes that all criticality
level changes are user-designed during system design. The user defines, for each criticality level switch,
the exact time at which it occurs and the level to change to. The network and the algorithmic core of
ARTEMIS cannot change or modify these informations. It means that there is no switch criticality delay
induced by the platform at runtime in static MC management mode.

Static Example

In order to illustrate the static centralizedmanagement in ARTEMIS, we built a simulation example. The
purpose was to present a simple topology with a small set of flows to clearly identify the reliability of the
protocol and to understand its way of implementation in ARTEMIS core.
In this simulation, we used the ARTEMIS topology builder to implement a simple topology as described
in figure 10.14. This topology is composed of 4 switches and 5 different end-systems. We consider basi-
cally that S3 is the central node of the network.

178

CHAPTER 10. INTEGRATING MC IN ARTEMIS

vi P⃗i Ti (µs) CLO
i (µs) CHI

i (µs)
v1 {ES0, S1, S2, S3} 30 5 8
v2 {ES1, S1, S2, S3} 40 4 7
v3 {ES2, S2, S3} 40 2 -
v4 {ES2, S2, S3} 30 4 8
v5 {ES3, S4, S3} 40 5 8
v6 {ES4, S4, S3} 50 9 -
v7 {ES4, S4, S3} 40 1 4
v8 {ES5, S4, S3} 40 2 -

Figure 10.14: Topology example

We built a network with two different criticality levels (LO, HI), with considering that ∀i ∈ N ,CLO
i <

CHI
i for all HI-critical flows. On the contrary, we consider CHI

i = −1 for all LO-critical flows. In this
simulation, we performed a worst case analysis (each transmission time is rounded according to the
threshold mechanism of WCAT).
In terms of criticality management, we set up two different criticality changes. First, we suppose an
increase of the criticality level from LO to HI at t = 50µs. Secondly, we set a criticality level decrease
from HI to LO at t = 150µs. Considering the topology, the flows and the different criticality parameters,
we set it up into ARTEMIS and ran the simulation. We obtained the results described in the gantt chart
of the figure 10.15.

Figure 10.15: Static centralized simulation - Uniform model

We observe that non critical flows (v3, v6, v8) are filtered and their transmission is stopped during the
critical phase ([50;150]µ s). If we focus on end-systems ES2,ES4,ES5, among the transmitted messages,
the LO-critical messages are not transmitted during the interval [50;150].
The integration of static centralized MC management protocol inside ARTEMIS is effective: the sim-
ulated network nodes are correctly reacting the the criticality mode change, conformly to what was

179

Real-Time Networks simulation with ARTEMIS

defined during the specifications of the centralized MC management protocol. We also observe that the
transmission of the messages is non-preemptive: once a message has been started to be transmitted, it
cannot be stopped, even when a criticality mode change occurs (nodes S3 and S4 at t = 50µs).
The centralized staticmodel used shows that there is a high potential number ofmessages exceeding their
LO-WCAT. The probability to have long periods without a critical message is weak (this probability can
be expressed as a combination of each uniform law managing each flow). In progressive gaussian model,
there is a high probability to stay in HI during the whole time interval. This is confirmed for longest
simulation times (> 1000µs).
We ran the same simulation with anti-progressive transmission time computation model (see fig-
ure 10.16). This results shows that the number of potential criticality changes is lower with this model.
This is coherent: as computed transmissions times tends to be low, LO-WCAT exceedings are not fre-
quent.

Figure 10.16: Dynamic centralized - Anti progressive gaussian model

We spotted that, every time a message exceeds its LO-WCAT (for example in ES2 at t = 60µs), we trigger
the change to HI-level. On the contrary, we have to wait a period of 100µs without exceeding before
going back to LO level (2 times the highest period). There is no such period in this simulation. This
property can be observed in longest simulations (> 1000µs) where we observe criticality changes back
to LO level.

Dynamic example

In order to illustrate the potential of ARTEMIS to trigger criticality level changes by itself and to verify
the reliability of the transmission time computation model, we managed simulations in dynamic MC
management modes. We kept the network parameters previously defined (topology and flows).
Figure 10.18 and figure 10.17 shows the impact of progressive gaussian and linear models on transmis-
sion time computation. Both these models tend to generate high values of transmission times, which is
confirmed by the simulation: there a criticality switch to HI mode directly at the beginning of the sim-

180

CHAPTER 10. INTEGRATING MC IN ARTEMIS

Figure 10.17: Dynamic centralized - Progressive gaussian model

Figure 10.18: Dynamic centralized - Uniform model

ulation, and all the simulation runs in HI mode. That is due to the fact there there is no sufficient idle
delay during which there is no HI message transmission in the network. As a conclusion, the network
stays in HI mode during the whole simulation.
This shows that the rate of the progressive and linear models has to be precisely selected. If this rate is
too high (> 0.8) or too low (< 0.2), generated transmission times tend to be largely below the needed
limits to trigger criticality changes.

181

Real-Time Networks simulation with ARTEMIS

10.5.2 Decentralized approach
In order to focus on the impact of the decentralized approach, we ran another set of simulations (with lin-
ear and gaussianmodels), but based on the decentralizedmanagement ofMC.We obtain the figure 10.19.

Figure 10.19: Dynamic decentralized - Uniform model

This figure shows that, at the reception of message from v5 (in pink), the different criticality levels of
switches S4 and S3 is increased to CR (HI-critical). In S3, this decentralization of criticality manage-
ments allows messages from v3 (violet) to be correctly transmitted in the switch before changing the
internal criticality level of S3 at t = 17µs. The same way, both S4 and S3 switches are changing back to
LO modes at different instants t = 97µs for S4 and t = 120µs for S3). During this interval, LO-critical
flows from v5 (pink) and flow v6 (darkgrey) can be correctly transmitted even in LO-mode, according to
this decentralized MC management.
Anti-progressive gaussian-based simulation with the decentralized approach (figure 10.20) shows that
the end-to-end transmission delays of messages tend to be lower with this model. As a conclusion, po-
tential criticality level changes are triggered later in the simulation. It is due to the point that there is a
lower number of messages likely to trigger a criticality increase. A longer simulation interval shows that,
in this mode, the time spent in LO-mode is longer.
The progressive-gaussian based simulation (figure 10.21) tends to show opposite results, leading to the
same conclusion. With progressive-gaussian model, transmission times tend to be higher than average.
That increases the probability to trigger criticality level changes.

10.6 CĔēĈđĚĘĎĔē

The obtained results shows that the integration of MC management models in ARTEMIS core cover the
different MC integration solutions provided in part III. The transmission time computation models and

182

CHAPTER 10. INTEGRATING MC IN ARTEMIS

Figure 10.20: Dynamic decentralized - Anti-progressive gaussian model

Figure 10.21: Dynamic decentralized - Gaussian model

the different degrees of control the user can adopt to define network simulations through ARTEMIS
allows him to represent a various set of network configurations.
From the point of view of what has been shown in this chapter, ARTEMIS can be considered as a reliable
MC integration simulation. Combined with the modellings solutions previously presented, ARTEMIS
can be used as a solution to validate the dimensioning of an embedded network integrating MC con-
straints. The provided timing and schedulability analysis can be used as a fundamental in industrial and
commercial implementations of RT networks.

183

Chapter 11

Mixed criticality modelling in
simulation tools

”Trop de santé mentale, c’est peut-être ça la folie. Et le plus fou de tout serait de
voir la vie comme elle est, et non comme elle devrait être !”

”Too much sanity may be madness — and maddest of all: to see life as it is, and not as it
should be!”

–Miguel de Cervantes [136]

Contents
11.1 Introduction . 186

11.2 Topology generator . 186

11.3 Flowset generator . 189

11.4 Conclusion . 203

185

Real-Time Networks simulation with ARTEMIS

11.1 IēęėĔĉĚĈęĎĔē

In industrial and research contexts, we need to be able to run successive simulations based on pre-
established parameters. For example, establishing a reliable timing analysis for the performances of the
decentralized MC management approach can imply to run, at least 1000 to 10000 different simulations,
depending on different network topologies and flowsets. It is obvious to mention that all the parameters
for all these simulations cannot be defined by the user in a reasonable time. That is whywe need to define
specific modules to automatically generate topologies.
In order to answer to this need, we defined two different generation algorithms:

• A topology generator, whose role is to generate a given set of a specific number of interconnected
nodes.

• A traffic generator, whose role is to generate randomflows and to link themwith a network topol-
ogy.

In this chapter, we propose to detail the functional and algorithmic choices that were made in order to
build these generation modules.

11.2 TĔĕĔđĔČĞ ČĊēĊėĆęĔė

11.2.1 Density rate
Generating a topology consists in building a link architecture in order to interconnect a set of nodes. As
a result, the first parameter we need to define as an input in our generator is the number of end-systems
we target. Inside the topology generator, we consider an end-system as an abstract flow modeller and
message sender. We do not apply any physical or electronical constraint to the generic definition of
and end-system we provide: an end-system is, basically, only composed of a name, an identifier and a
network address. The virtualization layer provided by the Java virtual machine creates a clear separation
between the physical and the simulation layer.
When we want to generate a topology, we specify the number of end-systems we target. It automatically
builds a set of end-systems and associates a unique identifier to it. In order to create a topology, we need
to define the switches and the links between all the created end-systems and switches.
To do this, we adopted a creation method based on a uniform repartition law. Each node has a pre-
defined probability to be linked to another one. This probability is based on a parameter defined by the
user. This parameter is the density rate α of the topology. This is a ratio 0 < α < 1 which defines the
probability for two consecutive nodes to be directly linked. If we take two consecutive end-systems in
the set, they have a probability α to be directly connected to the same switch.
This set of end-systems is sorted by the identifiers of the end-systems it contains. Each end-system, when
created, is associated to an identifier included in [1;n]. This is the identifier we use when building the
links. If we suppose a generated topology of nES end-systems and two end-systems ESi and ESj , we can
define the probability for them to be directly linked to the same switch as:

186

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

Plink (i, j) = α j−i 11.1

11.2.2 Generation algorithm
The generation of switches is based on a recursive approach. Once we applied the described method on
all end-systems, we obtain a first set of switches. One this has been done, the first created set of switches
has to be considered as a set of points to connect, towhichwe apply again ourmethod. We consider these
created switches as a set of nodes to connect. Two consecutive switchwill be directly connected to a third
one or connected to two different switches, depending on the value of α. The generation algorithm is
detailed in algorithm 5.

Data: Number of end systems ns ,
connection rate α

Result: Network topologyN
1 j ← 0
2 for i← 0 to n do
3 r← random(0, 1)
4 if (r ≥ α || i == 0) then
5 Sj ← new Switch
6 N ←N ∪ S
7 j ← j +1
8 end
9 link(ESi , S)

10 end
11 i← 0
12 while i < j do
13 r←U (0,1)
14 if (r ≥ α || i == 0) then
15 Sj ← new Switch
16 N ←N ∪ S
17 j ← j +1
18 end
19 link(Si , Sj)
20 end
Algorithm 5: Topology generation algorithm

Each node has a probability of α to share a switch
with the previous end system in the list, and a prob-
ability of 1−α to be linked with a new switch. The
loop is based on two indexes, i and j . i represents
the number of nodes which have already been con-
nected to the network, as j represents the total num-
ber of generated nodes. Once we verify the condi-
tion i = j , it means that the generation is terminated.
At each loop, we generate a random value r , accord-
ing to a uniform random generation low. Then, we
verify the condition r > α, we generate at least one
additional node. It means that the generation pro-
cess terminates when all the unconnected nodes are
attached to the same new one. Basically, the value of
r is computed according to a uniform lawU . But,
in a future work, we can suppose alternative distri-
bution laws to compute r .
Once the algorithm is terminated, we can guarantee
that each node is linked, to at least one other node.
One node can has one or zero node as output. The
number of inputs is not limited.

11.2.3 Performances tests
In order to evaluate the impact of α on the generation time, we wanted to test the topology generation
algorithm with different values of α. The purpose was to observe the evolution of the generation time
of a topology depending on the size of the generated network. Our model tends to show that the lower

187

Real-Time Networks simulation with ARTEMIS

α, the higher the number of switches and, as a conclusion, the bigger the network. We implemented a
performance test module to configure and launch successive simulations with the topology generator.
We operated different sets of simulations with topology generator. The results are shown in figure 11.2.
In order to cover wide network architectures contexts (such as AFDX where there is more more than
200 end-systems), we ran simulations up to 300 end-systems as inputs. In order to get coherent and
dense networks, α values were made evoluting between 0.3 and 0.8. Each value of the obtained results
corresponds to 30 successive generations.
The results shows (see figure 11.2) that, as expected, the generation time (inms) tends to increase with the
number of end-systems. The more end-systems, the more loops the algorithm needs to do to connect all
the nodes. Following the same process, the lowest α, the higher the number of generated switches. As a
conclusion, the generation time increases as α tends towards 0.
We also observe that the increasing of the generation time is not linear. Below 120 end-systems, the gen-
eration time stays manageable. But, starting around 150 end-systems, the curve is not anymore linear,
and the growth curve increases, representing longer generation processes. This can cover simulation
purposes, but can appear to be too low when representing very wide topologies (specific avionic config-
urations can increase up to 400 end-systems).

Figure 11.1: Topology generator performances tests with α = 0.7

We observe that when α ≤ 0.6, there is a gap in the generation time. It means that, for high values of
the density rate, it has to be taken into account that the performances of the topology generator quickly
decreases. The generation delays are satisfying when α [0.65;0.85].

188

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

Figure 11.2: Topology generator performances tests

11.3 FđĔĜĘĊę ČĊēĊėĆęĔė

UUnifast algorithm is a taskset generation algorithm, based on two elements: a number nm of tasks to
generate, and a target load l . In order to generate flowsets for network simulation, our first intuition
was to reproduce UUnifast structure in a network oriented algorithm. This quickly led us to a problem:
the modelisation of the load in a set of processors is not simimar to the load modelling in a network
topology.
The global load, in processor context, is the combination of all the utilization of the generated task. This
load also represents the global load the systemhas to schedule during the simulation. In network context,
this is different. Each flow has a dedicated path, which means that the individual utilization of the flow
will have an impact on specific nodes. As a conclusion, in network context, there is a difference between
the global load, represented by the cumulative utilizations of each generated flow, and the individual
load of each node, represented by the cumulative utilization of each flow transiting through this node.
Adapting UUnifast to network context implies to take this constraint into account.
The flowset generation process is splitted in three steps: First, we define a generation algorithm of
flowsets similar to UUnifast, in order to generate a global set of flows for the whole network. Then,
we build a path attribution algorithm in order to share the load homogeneously among all the network
topology. Finally, we show how to integrate MC in this algorithm. We detailed these different steps in
the following work.

189

Real-Time Networks simulation with ARTEMIS

11.3.1 UUnifast-based generation
In our work, we consider that the WCET of a task is represented by the WCAT of a flow. This is the same
for the period parameter. Generating a task or generating a flow can be considered as the same process:
generating a couple {Ci,Ti} for each flow vi (or for each task τi).
UUnifast generation process is based on two input parameters: the size n of the taskset and its targetted
load l . The generation process is as follows: first, we generate the period of each task according to a
uniform law, and then we compute the utilization of each task. Then, we obtain the WCET of each
task and we control the final computed load: if it is compliant to the target load, we keep the taskset.
Otherwise, we restart the generation.
In order to build a flowset generation algorithm, we adopted the same approach as for taskset generation.
We built the generation algorithm detailed in algorithm 6. This algorithm is based on two parameters:
the flowset size nm and the targetted global load l .
This value l is the global load represented by all the generated flows. This load has not the same meaning
as in processor context: it is only representative of the global traffic, but not of the individual load locally
computed in each node. Even if this load has no concrete representation (it is not representative of the
load of the network), we keep it in the algorithm in order to be compliant to UUnifast method.
Contrary to processor context, defining l > 1 does not necessarily induce an overload in the network
traffic. All flows will be spread among the nodes according to their paths, and the global load of the
flowset will be dispatched all over the network. The repartition of the load among the nodes depends
on the path attribution algorithm (see algorithm 9). The generation process is very similar to classical
UUnifast.

Data: Number of messages n, load l
Result: Flow SetV

1 V = ∅
2 for i from 1 to n do
3 ri =U (log(Tmin), log(Tmax +Tg));
4 Ti = ⌊ eTi

Tg
⌋ ∗Tg;

5 if i == n then

6 ui = l −
n−1∑
i=1

(ui);

7 if ui < 0 then
8 V = ∅;
9 discard();

10 end
11 else
12 ui =U (0,1);
13 end
14 Ci = Ti ∗ui vi = {Ti,Ci};
15 V =V + vi ;
16 end

Algorithm 6: Flowset generation algorithm

For each flow vi in the networkN , we generate
a random value ri based on a uniform lawU .
This value ri will be used as a base to compute
the period Ti of the flow. This method guar-
antees an homogeneous generation of periods,
getting periods of various durations. All pe-
riod durations will be included between Tmin
and Tmax .
Once we got the period Ti of a flow, we use a
uniform law to generate its utilization ui . Ex-
cept for the last flow vn, each value of ui is gen-
erated to a uniform lawU (0,1).
At the end, when generating the flow vn, we
compute its utilization un as the difference
between the target load l and the cumula-
tive utilization of all already generated flows
v1,vn−2,vn−1. If we obtain an negative utiliza-
tion un < 0, it means that the generated load
already went beyond the target load l . In that
case, we discard the taskset. In the other case,
the flowset is considered as validated.

190

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

Bounding the values

The flow generator has been designed to be used first in Ethernet simulation. As a result, the generated
flows must respect the Ethernet standards, especially in terms of size. Each generated message size has
to be integrated between 64 and 1518 bytes. These constraints have to be applied to each generated flow.
A naive approach would consist in integrating these constraints directly when executing the generation
algorithmpresented in 6. But thatwould present twoproblems. First, a loss of genericity in the algorithm
itself by designing it for Ethernet purposes. Then, modifying WCAT during generation could impact the
performances of the generation module, particularly in terms of number of discarded flowsets.
As an answer to these problems, we added an additional layer in the generation module, responsible of
applying network standards. The algorithm responsible of bounding the message size is described in 7.

Data: Flow SetV
Result: Flow Set constrainedV

1 for i inV do
2 if Ci > Csup or Ci < Cin f then
3 α← random(Cin f

Ci
,Csup

Ci
)

4 Ci ← Ci ∗α
5 Ti ← Ti ∗α
6 end
7 end
Algorithm 7: Ethernet bounds integration algo-
rithm

For each flow vi , we check if its WCAT Ci is
between the lower and upper bounds Cin f and
Csup. For classical Ethernet 100Mb/s, we have
Cin f = 5,1µs and Csup = 121µs.
IfCi <Cin f orCi >Csup, we generate a random
value alpha (according to a normal distribution
law) included between Cin f

Ci
and Cin f

Ci
. Once this

has been done, we compute Ci = α ∗Ci and
Ti = α∗Ti . The ratio Ci

Ti
is notmodified by these

new values, which means that the individual
utilisation represented by the flow is not im-
pacted by this modification.

This algorithm assures that the generatedWCAT conform to Ethernet standards in terms of size. The fig-
ure 11.3 shows the result of 100 successive generations of 80 flows, in a system composed of 5 criticality
levels. These levels are as follows:

• Non-Critical (NONC), with a criticality rate of 0.0 (all flows belong to non-critical level).

• Critical (CRIT), with a criticality rate of 0.2 (80% of flows are critical).

• Mission-Critical (MISS), with a criticality rate of 0.3 (70 % of flows are mission-critical).

• Vehicle-Critical (VEHI), with a criticality rate of 0.5 (50 % of flows are vehicle-critical).

• Safety-Critical (SAFE), with a criticality rate of 0.8 (20 % of flows are safety-critical).

Figure 11.3 shows two results: first, each generated WCAT, for each criticality level of each flow, con-
forms to Ethernet standards in terms of minimum and maximum number of bytes. Second, the average
WCAT of flows (for a specific criticality level) tend to increase as the criticality level is determined as
more critical.

Discarding rate

UUnifast is a taskset generation algorithm. It is based on a discarding logic. It means that if the taskset is
valid from the point of view of the load, we validate it, otherwise we discard the taskset and we generate

191

Real-Time Networks simulation with ARTEMIS

0

20

40

60

80

100

120

T
ra

ns
m

is
si

on
 ti

m
e

(µ
s)

Maximum

Minimum

Average

NONC CRIT MISS VEHI SAFE

Figure 11.3: Ethernet bounds applied on generated flows

another one. If we focus on the algorithm 6, we observe that if the generated flow has a load which is not
equal to the target load, we completely discard the flow set.
The problem of this method is that it is consuming time: generating a totally new taskset implies reset-
ting the generation process from the beginning. This represents a loss of time and ressources. It can be
ignored when generating just a few tasksets (for example purposes). But it has to be taken into account
when we need to generate large amounts of tasksets (100.000 - 1.000.000), which happens frequently
during simulations.
When it comes generating flowsets, we face exactly the same problem. In order to evaluate the loss of
data and time represented by these discards, we generated flowsets automatically for given values of
targetted loads. To do this, we define the acceptance ratio of a generation. This correspond to the ratio
of accepted flowsets compared to all the flowsets which were generated by the algorithm. We obtained
the results described in figure 11.5.
UUnifast provides an acceptance ratio which does not depend on the number of generated flows. Even
for a high number (n ≥ 150), the acceptance ratio stays around 17 %. This simulation (see figure 11.5)
was done for a targetted global load of l = 0.5. Each value of n corresponds to 100 different flowsets. As
a conclusion, UUnifast algorithm provides a solution to generate wide flowsets without increasing the
generation time as the number of flows increases.
We operated different simulations, corresponding to various load values (from 0.5 to 0.8). These sim-
ulations tend to show that the acceptance ratio of the flowsets depends on the load. To confirm this
intuition, we ran successive generations of flowsets with n = 50, for different values of l (from 0.2 to
5.0). The results (see figure 11.5) shows that the acceptance ratio of the algorithm decreases with high

192

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

20 40 60 80 100 120 140 160 180 200

Flowset size

10

12

14

16

18

20

22

A
c
c
e

p
ta

n
c
e

 r
a

te
 (

%
)

Load 0.5

Load 0.6

Load 0.7

Load 0.8

Figure 11.4: Discarded flowsets / Flowset size

1 2 3 4 5

Global load

5

10

15

20

25

30

A
c
c
e

p
ta

n
c
e

 r
a

te
 (

%
)

50 flows

Figure 11.5: Discarded flowsets / Load

values of l .

193

Real-Time Networks simulation with ARTEMIS

As a conclusion, the higher l , the lower the acceptance ratio. In order to answer to this, we want to pro-
pose modifications to UUnifast. These modifications, detailed below, allows us to decrease the number
of discarded flowsets per flowset generation process.

Utilization generation

In UUnifast, there is only one reason to discard a generated flowset: the generated flows led to a global
load exceeding the value of the target l . In the algorithm 6, this situation is represented by getting a flow
of negative utilization.
Uunifast generation process is based on the generation of different utilizations {u1, ...,un−1,un} for all
the n flows of the network N . The computation of each value of ui is, basically, indexed on a uniform
distribution law. In order to increase the acceptance ratio of our algorithm, we propose to modify this
model by replacing it with a gaussian distribution.
Generating an utilization with a uniform law between 0 and 1 could imply to generate flows with high
utilization, representing most of the load of the flowset. The solution we propose is to assure an average
utilization for each flow, to anticipate the global utilization of the flowset. The average utilization for
each flow is designed to be the same, equal to a balanced repartition of l among all flows. As a conclusion,
we propose to build a gaussian distribution G each flow utilization centralized around the mean value
Gmean =

l
n .

Defining a gaussian distribution law implies defining its variance. Each utilization of each flow has to
be bounded: 0 for the lower bound, and l for the upper bound. The variance of the law impacts the
randomness and the homogeneity of the flowset. The higher the variance, the more we can find different
values of ui . When we built the algorithm, we computed the variance effect for different flowsets and
configuration parameters in order to compute variance values making the generated flowsets pertinent
without making the generation time explode.
Weneed to implement a variance that verifies: 0 < ui < l . Given that each value ofui is centered around l

n ,
the variance of the distribution law will be computed as the smallest interval between l

n and the different
bounds. As a conclusion, the variance of the law is computed as follows: Gvar = min(l

n, l −
l
n).

We ran classical uniform-based UUnifast and gaussian-based algorithms during a set of successive simu-
lations. The results are shown in figure 11.6. In order to compare the acceptance ratio of both algorithms,
we ran simulations of flowsets of 50 flows. For each value of the global load (from 0.2 to 2.0), we ran 100
different simulations.
The simulation results shows an increase of the acceptance ratio with the gaussian model. Both models
tend to decrease the acceptance ratio with the increasing global load, whichwas already observed before.
In our model, there is a difference of around 5 % between the models. The variance has a strong impact
of the simulation results, and on the acceptance ratio. The lower the variance, the higher the acceptance
ratio. In that simulation case, the computed variance is varying between 0,004 and 0,04.
As a conclusion, the gaussian model we propose to integrate, as an alternative to classical UUnifast, pro-
vides a higher acceptance ratio: the gaussian-based algoritm provides less discarded generated flowsets.
The uniform-based algorithmprovidesmore heterogeneous results as the gaussian-based algorithmpro-
vides a solution which is more performant, as requiring to discard less generated flowsets. It is up to the
user to choose between these models.

194

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Global load

0

10

20

30

40

A
cc

e
p

ta
n

ce
 r

a
te

 (
%

)

Gaussian

Uniform

Figure 11.6: Gaussian and Linear generation models results

Massive generation

The gaussian model we proposed represents a strict increase in terms of acceptance ratio in the flowset
generation. When requiring to generate high amounts of flowsets of different loads (for simulation and
benchmark purposes, for example), the global acceptance ratio of the algorithm can still be improved.
Our approach is based on the following assumption: most of the discarded flowsets are discarded due to
an overload. Their global load is higher than the target l .
We suppose that wewant to generate a wide set of flowsets (from 100 to 100000), each flowset associated
with a specific target load l . We want, at the end, to generate a set of flowsets for each value of l between
lmin and lmax . Basically, we propose to generate these flowsets with UUnifast. The total utilization of a
flowset is denoted as U .
When the flowset is generated, there is two possibilities: either U = l and the flowset is valid, or U , l .
In that case, instead of discarding the flowset, we propose to keep it as valid for another target load l′. In
other words, the generated flowset may still be compliant to another targetted load, for the same set of
generated tasksets.
We described the generating process integrating this solution in the algorithm below (see algorithm 8).
We suppose that we target to have a set of k tasksets, each taskset belonging to a targetted load Lk . We
want to generate, at least, nt tasksets for each value of Lk , with Lmin ≤ Lk ≤ Lmax .
In order to illustrate this process, we ran a simulation to generate various flowsets from 20 to 50 flows.
We tested this environment with a evoluting load from 0.2 to 1.0 (100 flowsets per load value). We
obtained the results described in figure 11.7. All these simulations have been run with UUnifast based
on a gaussian model.

195

Real-Time Networks simulation with ARTEMIS

Data: nt , n, Lmin, Lmax
1 Li ←Lmin ;
2 for Li ←Lmin to Lmax do
3 while ni < nt do
4 Taskset Ti = UUnifast(Lk , n);
5 if Li == Lk then
6 E (Lk) = E (Lk)+{Ti}
7 nk ← nk +1;
8 else
9 if Li ≤ Lmax && Li > Lk

&& ni < nt then
10 E (Li) = E (Li)+{Ti}
11 ni ← ni +1;
12 else
13 Discard Ti ;
14 end
15 end
16 end
17 end
Algorithm 8: UUnifast-Massive algorithm

We note as E (Li) the set of flowsets generated for
targetted global load Li .
Each time the algorithm generates a flowset Ti , we
check its load li . If it it is equal to its target load l ,
we associate it with the set E (Li). If we have li > l ,
then we keep Ti and we associate it to E (Lk) with
Lk = l .
That allows us to discard a flowset only in the case
that its load is not compliant to any potential target-
ted load. With this solution, we can reduce the num-
ber of discarded flowsets. That increases the perfor-
mances of our generation module by decreasing the
generation time.

20 25 30 35 40 45 50

Flowset size

0

5

10

15

20

A
c
c
e

p
ta

n
c
e

 r
a

te
 (

%
)

UUnifast-Massive

UUnifast

Figure 11.7: UUnifast and UUnifast massive acceptance ratios

We observe a clear difference in the acceptance ratio of both algorithms, particularly between 20 and
40 flows. Beyond this limit, both the acceptance ratios tend towards 0. At the maximum, we observe
a difference of 10 % between the two algorithms. This shows that UUnifast-massive solution is a strict

196

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

improve of basic UUnifast, in terms of acceptance ratio management.
It means that, among all the flowsets generated by UUnifast, approximately 10 % of them (at least) can
be considered as valid for another global load value. We can conclude that the generated flowset is not
corrupted nor irrelevant, as its load is still coherent but not adapted to the target load.
We also observe that, as the number of flows increase, both acceptance ratios decrease to 0, which is co-
herent. The acceptance ratio of UUnifast tends to decrease as the flowset size increases (see section 11.3
for details). Figure 11.7 shows that the acceptance ratio of 30 flows is higher than the one for 20 flows,
which goes against what we showed previously. This phenomenon is due to the gaussian model inte-
grated in UUnifast. This model tends to integrate in UUnifast, for each targetted load, an optimal value
of flows where the targetted utilization (for each flow) is the easiest to reach. This phenomenon induces
a slight increase of the acceptance ratio at low flowset sizes.
As a conclusion, the presented solutions allowed us to build a reliable flowset generation algorithm. The
different solutions are extracted from the model of UUnifast presented in the litterature. This represents
the fundamentals we based our work on when developing the topology and flowset generators. We
showed by successive simulations that it is possible, for our context, to improve the performances of
classical UUnifast by decreasing its discarding rate.

11.3.2 Path computation
Generating a flowset starts by generating the period and WCAT of each flow. But, as mentioned previ-
ously, this is not enough. We need to attribute a path to each flow in the network. Each flow must have
a dedicated path, going from one end-system (as input) to another end-system (as output). That causes a
problem in terms of load management: the global load l of a flowset is not sufficient by itself to repre-
sent the network load. We need to propose an algorithm to compute the path of each flow and assure a
balanced repartition of all the flows among a topology.
In processor context, the load represented by a taskset T is represented by the expression of

∑
i∈T

(Ci

Ti
). In

network context, the expression of the load is different for each switch n in the networkN , expressed
as

∑
n∈N

(Ci

Ti
). Each switch in the network has its own internal load which can be totally different from the

load of its closest neighbours. That leads to the following question: what is an ”overloaded” network?
To answer to this, we need to define an accurate method to control and adapt the repartition of the load
among the network.
Once we generated a flowset with a global load l , we need to associate a path to each flow vi . In order
to manage the individual load of the network and the balanced repartition of flows among a topology,
we need to define specific parameters to measure the network traffic. We introduce these parameters as
follows:

• The individual load of a node n is denoted as l (n) =
∑

n∈P⟩
(Ci

Ti
). This corresponds to the local obser-

vation of the traffic transiting through the node n.

• The global load l of the network is represented as the sum of the individual load of each message
(and not as the individual load of each node). If we suppose a generated flowsetV , we have l =∑
i∈V

(Ci

Ti
). This is the global load used as input parameters in our flowset generation algorithm.

197

Real-Time Networks simulation with ARTEMIS

• The average load L =

∑
n∈N

(Ci
Ti

)

|N | . This parameter is used to observe the global cumulative load of the
networkN . It represents the average load per node.

We assume that these parameters will allow us to evaluate the network traffic globally.

The UUniNet algorithm

Based on these parameters, we built an path computing algorithm called UUniNet [137]. UUniNet is
flowset generation algorithm. Its flow generation process is detailed in section 11.2.2. It integrates a
path computation algorithm, taking as input a network N and a set of flows. That is the part detailed
below.
UUniNet path computation is detailed in algorithm 9. It is based on a credit association to each node.
Initially, each node n is associated with a dedicated credit wn. A naive approach would consist on defin-
ing wn as equivalent for each node. But the structure of the network will tend to make the switches of
network more important than the nodes. As a result, the credit associated to each switch is higher. In
the networkN composed of n nodes, we associate the following credit to each node:

• If the node n is an end-system, we note wn = l ∗ k
n . k is the number of end-systems in the network.

• If the node n is a switch, we note wn = l .

This credit attribution allowsus to balance the attributionof paths to theflow. Inmany classical industrial
architectures, the ratio between end-systems and switches can be high (200 for 8 for AFDX, for example).
Associating a different credit to the two types of nodes forces the flows to pass through different switches
and to create various paths among the network.
At first, we associate a credit to each node by looping to all nodes in networkN .
For each flow, wewant to assure that its pathwill start in an end-system. To do this, we pick the first node
of each path as the end-systemwith the highest remaining credit. In the casewhere two end-systems have
the same credit, we randomly pick one of them. We substract from the selected end-system credit the
utilization of the current flow.

Simulation results

In order to evaluate the maximum and average load in the network provided by UUniNet, we operated
a simulation on various topologies. Each point corresponds to 10 different flowsets generation. Each
flowset contains 50 flows.
Simulation results (see figure 11.8) tend to show that, even when the global load l exceeds 1.0, the maxi-
mum and average load in the network do not tend to exceed 1.0. There is a gap between maximum and
global load. This is coherent: an equality between them will correspond to say that there is a node in
the network where all flows transit through (following the hypothesis that a flow cannont transit twice
through the same node).
Nevertheless, even it is rare, this situation can happen, for example, in tree-oriented topologies where
all flows converge to the same destination. It means that, to assure that there will be no overload in the
network, we have to assure that l ≤ 1.0.

198

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

Data: flow set v1, ...,vi , network topologyN
Result: Path attribution for messages fromV

1 for each flow n inN do
2 if n is a switch then
3 n.credit← l;
4 else
5 n.credit← l ∗ k

n ;
6 end
7 end
8 for each flow vi inN do
9 K ← pick_ES_with_highest_credit ();

10 if K .credit ≥ Ci

Ti
then

11 K .credit← K − Ci

Ti
12 P⃗i ← P⃗i +{K}
13 end
14 while |P⃗i | < 3| or last(P⃗i) is not an ES do
15 K ← pick_neighbour_with_highest_credit();
16 if K .credit ≥ Ci

Ti
then

17 K .credit← K − Ci

Ti
18 P⃗i ← P⃗i +{K}
19 end
20 end
21 end

Algorithm 9: UUniNet path computation

At each iteration of the algo-
rithm, we pick the node with
the heighest credit among all
the closest neighbours of the
current node (the last node of
the flow path). We add this
node to the flow path and we
reduce its credit. If this new
node is an end-system, the al-
gorithm stops for the current
flow, and starts computing the
path of the next flow until the
end of the process.
If the selected node is not an
end-system, the algorithm de-
fines the node as the new cur-
rent node, and restarts a loop.
For each flow vi , each time it is
associated to a dedicated node
n, we substract from wn the
value of the utilization ui from
vi . We assure that wn ≥ 0 for
each node, at each time. This
induces that the credit of each
node represents the maximum
load it can endure.

As a conclusion, UUniNet provides an homogeneous repartition of the flows among the network, due to
the credit repartition defined in the algorithm. Depending on the topology, we can generate flowsetswith
global load exceeding 1.0, but this can lead to potential overloads in the network. UUniNet generation
process is based on UUnifast and, depending on the model, can provide better acceptance ratios than
classical UUnifast, which makes it performant even when generating wide number of flows.
UUniNet flowset generation is functional. We need to improve it by integrating mixed-critical flows
generation inside the algorithm. That is the final point of our work on RT simulation: integrating MC
in flowset automatic generation.

11.3.3 Mixed criticality integration
When defining flows manually, it is up to the system designer to decide which flow belongs to which
criticality levels. But, when generating flows automatically, this decision has to bemade based on specific
parameters.
Generating mixed critical flows can be splitted with two problematics. First, how do we decide the crit-
icality level of each flow? And, then, how do we compute the WCAT of a flow for each criticality level it
belons to? These are the questions we answer in the following part.

199

Real-Time Networks simulation with ARTEMIS

Figure 11.8: Average generated load / target load

Criticality ratio

In order to determine the criticality level of each flow, we define, for each criticality level (except LO
a criticality ratio. According to a uniform distribution, this ratio represents the probability (for each
flow) to have a WCAT corresponding to this criticality level. For each criticality level γ1, ..., γk−1, γk

of the network, we note αγk the corresponding criticality ratio. We have the following assumption:
∀i ∈ [1; k],0 < αγ1 < 1.
In order to respect Vestal’s hypothesis [114], the hierarchical structure among all the criticality levels of
the network implies that, if a flow belongs to γi level, it also belongs to all LOγ1, ..., γi−2, γi−1 levels. We
have to integrate this constraint in our model. It gives us: ∀i, j ∈ [1; k], i < j =⇒ αγi > αγj . It means
that the probability to belong to a criticality level γi is necessarily lower than the probability to belong
to γi−1.
In order to implement this model in UUniNet, we generate a unique ratio αi for each flow vi . For each
αγj which verifies αi > αγj , we generate a WCAT for vi at the level γ j .
The solution was to define a unique static ratio r , and to compare each criticality ratio to it. If the criti-
cality ratio ri is higher than r , then the generated flow belongs to the level γi . This hierarchical structure
implies that we cannot generate more flows of γi level than at γi−1. At the end, each flow will we char-
acterized by a set of WCAT Cγji , with Cγji = −1 if vi does not belong to the level γ j .

200

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

WCATmatrix

The model we propose allows us to define the different criticality levels of each flow. But there is another
problem to solve: how do we determine the WCAT of each criticality level for a flow? First, the hierar-
chical structure among flows allows us to assure that for any flow vi : ∀m, j ∈ [1; k], i < j =⇒ Cγmi ≤ Cγji .
But we need to define a solution to determine, flow by flow or globally, a solution to compute each value
of Cγji .
One first solutionwould have been to propose a static constant, acting as amultiplier between twoWCAT
of the sameflowand consecutive criticality levels. But this solution is not representative of real situations
and, as a result, we propose a solution based on a random evaluation of the value.
Basically, we consider that the highest WCAT for a flow vi is equal to its period Ti . This corresponds to
an utilization ui = 1. It means that, for each flow vi , its WCAT for level γ j will be computed conformly
to a linear distribution, between Cγj−1i and Ti (see algorithm 10 for details).
In order to generate flowsets of different criticality levels, we integrate this algorithm inside the flowset
generation module (see 11.3).

Data: flowsetV , criticality levels{γ1, γ2, ..., γk}
Result: Mixed criticality flowsV

1 for Each flow vi ∈ V do
2 αi = random(0,1);
3 for Each level γ j ∈ {γ1, γ2, ...γu} do
4 if α ≥ αγi then
5 uγji = random(uγj−1i ,1);
6 Cγji = Ti ∗ui

7 else
8 break;
9 end

10 end
11 end
Algorithm 10: MC integration in UUniNet

For each flow vi , we generate the value of αi . It is in-
cludedbetween0 and1 and, the higherαi , the higher
the maximum criticality level of vi . For each criti-
cality level of vi , we generate a dedicated utilization
uγj−1i . From this utilization value, we can deduce the
value of Cγji .
This global solution tends to finally generate a ma-
trix of dimension n ∗ k , with n the number of flows
in the network and k the number of criticality levels.
This matrix, combined with the generated path and
periods, will represent the global description of all
the flows in the network. As a conclusion, UUniNet
generates random flows for a given topology, based
on a number of flows n and a global load l .

Simulation results

In order to validate the possibility to generate flows with multi-criticality levels, we operated a simula-
tion based on successive simulation. We worked on a context with 5 different levels of criticality: non
critical (NONC), critical (CRIT), mission-critical (MISS), vehicle-critical (VEHI), safety-critical (SAFE).
We make the global target load change between 0.2 and 1.5, and each point is the result of 100 successive
generations. The flowsets we designed are all composed of 50 different flows.
Basically, we defined static ratios between all the criticality levels. The defined ratio were defined as
follows:
Criticality Level NONC CRIT MISS VEHI SAFE
Ratio (SIM 1) 0.0 0.4 0.7 0.9 0.95

Ratio (SIM 2) 0.0 0.2 0.3 0.5 0.8

201

Real-Time Networks simulation with ARTEMIS

0.2 0.4 0.6 0.8 1 1.2 1.4

Target load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
o

a
d

NONC

CRIT

MISS

VEHI

SAFE

Figure 11.9: Flowset generation with UUniNet (SIM 1)

0.2 0.4 0.6 0.8 1 1.2 1.4

Target load

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
o

a
d

NONC

CRIT

MISS

VEHI

SAFE

Figure 11.10: Flowset generation with UUniNet (SIM 2)

Both figures 11.9 and 11.10 show that, according to the criticality ratios of each criticality level, the load

202

CHAPTER 11. MIXED CRITICALITY MODELLING IN SIMULATION TOOLS

represented by the flows tend to decrease as the criticality level increases. Even if higher critical flows
tend to have a higher utilization, the reduction of the number of flows is clearly more important.
This reduction of the network load proves that, when increasing the criticality level in the network, we
have to assure the transmission or privileged messages, but representing a lower load. As a conclusion,
it is easier to transmit.
These simulations shows that our implementation of UUniNet generates flowsets of different criticality
levels. The algorithm we designed can be used as a traffic generator for network simulation.

11.4 CĔēĈđĚĘĎĔē

In this chapter, we presented two generation modules: network and flowset. These generators have
been implemented in Java. The model they are based on represents an improve. Being able to generate
mixed-critical flows and associate network path to flows are methods which can be reused as standalone
projects or as parts of external simulation tools. Thus, the focus we did on improving the acceptance
ratio of classical UUnifast allowed us to assure reasonable performances.
To improve this model, a solution could be to propose an algorithm which is able to maintain also a min-
imum load inside a generated flowset. It will offer additional guarantees on the network traffic induced
by the path attribution process.

203

Chapter 12

Protocols simulation results

”Le monde est bien comique, l’humanité en est la blague.”

”The world is indeed comic, but the joke is on mankind”

–Howard Phillips Lovecraft [138]

Contents
12.1 Introduction . 206

12.2 Centralized protocol . 206

12.3 Decentralized protocol . 214

12.4 Conclusion . 219

205

Real-Time Networks simulation with ARTEMIS

12.1 IēęėĔĉĚĈęĎĔē

Using ARTEMIS simulation core and the differentmodules previously presented, (see chapters 9, 10, 11),
we built a simulation context to implement and validate the protocols presented in part III. The details
of these results are presented in this chapter.

12.2 CĊēęėĆđĎğĊĉ ĕėĔęĔĈĔđ

12.2.1 Flowset size
First, we wanted to focus on the impact of the network traffic on S(N) value. Using ARTEMIS (see
part IV) and its internal task generation module, we generated different flowsets of respectively 20, 30
and 40 flows. We considered a dual-criticality network, with LO and HI levels. We wanted to measure
the value of S(N) in case of a change from LO to HI criticality level. During our simulations, we based
our work on the topology described in figure 12.1. We ran then simulations in a dual (LO, HI) criticality
level network.

S14

S11

S12

S13

S2

S4

S6

S8

S10

S1

S3

S5

S7

S9

ES0,ES1,ES2

ES3,ES4

ES5,ES6,ES7,ES8,ES9

ES10,ES11,ES12

ES13

ES14

ES15

ES16

ES17,ES18

ES19

Figure 12.1: Simulation topology

We computed the end-
to-end transmission de-
lay of a HI-critical mes-
sage transmitted during
the transition phase.
In order to apply the
Trajectory Approach, we
worked on the topology
decribed in figure 12.1 re-
specting the tree-oriented
topology constraint. This
topology has been auto-
matically generated and
is composed of 20 linked
by a set of switches.

The depth of this topology is 4. This is obtained by computed the maximum distance max
i

(dh
n) between

the central node h and the node n.
We observe that S(N) increases when the number of flows in the network decreases, even for an equiv-
alent load. This phenomenon is explained by the following point: the lower the number of flows, the
higher the individual generated utilization for each flow. Given that the utilization is directly responsi-
ble for WCAT computation (see chapter 14.1 for more details on this point), it means that the number of
flows has a direct impact of the WCAT of each flow.
The difference between the computed delays with different flowset sizes are due to the non-preemptive
effect, induced by high values ofWCAT.This is the resultswe observe in figure 12.1: the lower the number

206

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

Figure 12.2: Change criticality delay with different number of flows

of flows, the higher the risk to increase thenon-preemptive effect appliedon S(N). This is coherent: ifwe
target the same load with a lower number of flows, the average and highest WCAT will tend to increase.
We wanted to confirm this result, so we ran another set of simulations on the same topology in order to
evaluate the impact of the highest WCAT in the network. This is the simulations detailed in the section
below.

12.2.2 Highest WCAT

In terms of flowset generation, the generation of each WCAT is centered around a value which depends
on 3 parameters: the number of flows in the network |V |, the global load of the flowset l and the simu-
lation time T . We observed the results on a T = 500µs window. According to the algorithms described
in chapter 11, the generated WCAT is computed according to a uniform law.
In order to evaluate the impact of the highestWCAT,we ran 5 different simulations, respectively limiting
the WCAT to 5, 7, 10, 12 and 14,47 (Ethernet 100Mb/s limit) value. We are working in an Ethernet
100Mb/s architecture. We obtained the results described in figure 12.3.
The obtained results show what was expected: the criticality change delay S(N) does not directly de-
pends on the load but on the max WCAT of all flows in the network. This is coherent: the higher the
highest WCAT, the strongest impact on the non-preemptive delay applyied in the computation of S(N).
The result is tough to observe on low values of the load (< 0.6). But we can clearly observe that, at high
loads, S(N) is nearly constant when the WCAT value is tight.
It means that, no matter the network traffic, the delay needed to change the criticality level is bounded.

207

Real-Time Networks simulation with ARTEMIS

Figure 12.3: Change criticality delay depending on the max WCAT in the network

Figure 12.4: Change criticality delay depending on the max WCAT in the network (Zoom)

When the target load of the generated flowsets increases, it means that the average WCAT will increase.

208

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

But, as we limit the highest WCAT of the flowset, all the WCAT will tend to increase. As a conclusion, all
the flows will tend to have a WCAT equal to the bound we fixed. It means that, in each node, the proba-
bility to have the highest WCAT of all flows in this node will tend to increase also, increasing directly the
delay implied by the non-preemptive effect. This phenomenon explains that the increasing of the delay
is not totally constant at high loads (see figure 12.3).

12.2.3 Blocking and non-blocking approaches
In this simulation, our purpose was to compare the end-to-end transmission delays of a γnew-critical
message during the criticality level change transition phase, from γanc to γnew . In order to compare the
γanc-critical traffic to the duration of the criticality level change delay S(N), we based this simulation
on the basic expression of the non-blocking approach, provided in section 7.3.2. We observe that the
correction proposed for the delay expression of the non-blocking approach provides shorter end-to-
end transmission delays.
In order to confirm the impact of both non-blocking and blocking approaches on the end-to-end trans-
mission time of a critical message, we implemented a simulation environment with ARTEMIS. The sim-
ulation context and parameters have been defined with the different tools described in part III and IV:
the topology generator (see section 11.2) and the message generator (see section 11.3).
The generated flowsets were based on several parameters: in order to generate representative flowsets
and keeping the simulation time manageable, we represented random simulations of 50 and 80 flowsets.

Figure 12.5: Non-blocking and blocking approaches - Impact of flowset size

We made this load increase from 0.3 (light-loaded network) to 1.0 (heavy-loaded network). Figure 12.5

209

Real-Time Networks simulation with ARTEMIS

shows that the average worst case end-to-end transmission delay tends to stay the same for 80 and 50

flows size flowsets. As mentioned in the previous section, we observe that the flowset size has no di-
rect impact on the end-to-end transmission time with both approaches, as soon as the highest WCAT is
bounded. In order to reduce the non-preemptive effect induced by the reduction of the flowset size, we
bounded the maximum WCAT to 10µs.
This result is coherent: as the targetted load stays the same, the increasing number of messages will tend
to reduce the individual impact of each one on the network traffic. Based on this result, we ran the next
simulations with flowsets of 50 different flows.
Nevertheless, in real cases, the results provided by both flowset sizes are not the same. Depending on its
path, the WCAT of a flow can strongly impact the network traffic, even if its value is very low according
to the bandwidth. In simulation context, we suppose basically an homogeneous repartition of the traffic
in the topology. In real cases, the repartition of the traffic can be erratic: high loads on specific nodes and
very low on others.
In order to represent this problemand to propose a solution in theflowset generationprocess, we focused
on the problematic of flows path computation and load repartition among the network. This particular
point is detailed in chapter 11.

12.2.4 Impact of criticality configuration messages
The purpose of the simulation is to compare the transmission delay provided by both blocking and non-
blocking approaches, based on different parameters. We showed with the expression 7.31 that the con-
dition to compare blocking and non-blocking approaches was based on S(N).
This means that the value of Cc has a direct impact on the end-to-end transmission time provided by
both approaches. We wanted to verify this by simulation. Given the parameters of the task generation,
we work with WCAT ranging from 0.6 to 14.47 µs in our simulation context (based on Ethernet with
100Mb/s bandwidth). In order to be compliant to these parameters, we ran the simulation with three
different values of Cc: 2µs , 2.5µs and 3µs. We kept the target of 50 generated flows, with load ranging
from 0.3 to 0.995.
We kept generating flowsets of size 50. The load in the network was represented by the expression∑
i∈V

(Ci

Ti
), withV the generated flowset. A more detailed approach about load computation in the net-

work is detailed in section 11.3.2.
We obtained the results described in figures 12.6,12.7, 12.8 and 12.9. We observe that the end-to-end
transmission delay provided with the non-blocking approach is lower than the delay provided by block-
ing approach at low value of loads (0.3 - 0.5). This first assumption is coherent: at low loads, the delay
induced by network traffic is lower. So is the delay computed for non-blocking approach.
The condition verifying RN B

i (LO,HI) > RB
i (LO,HI) is indexed on Cc value. The higher Cc, the higher

load needed to reach this condition. We observe in the obtained results that this condition is verified at
a load equal to 0.4 for Cc = 2µs, and at a load equal to 0.54 for Cc = 3µs.
As a conclusion, the higher Cc, the higher the load value where non-blocking approach starts providing
longer end-to-end transmission delays. That is coherent with our assumptions: S(N) value increases
with Cc, and so the load represented by

∑
j∈P⃗i

j∈{1,2,...,n f }
(N f ir sti, j

i, j ∗Cγancj) has to be higher to exceed this value

210

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

Figure 12.6: End-to-end transmission delay with Cc = 1µs

Figure 12.7: End-to-end transmission delay with Cc = 2µs

and respect the condition 7.31.

211

Real-Time Networks simulation with ARTEMIS

Figure 12.8: End-to-end transmission delay with Cc = 2.5µs

Figure 12.9: End-to-end transmission delay with Cc = 3µs

But criticality management and weak temporal isolation guarantees become particularly important to

212

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

avoid node overloads, which supposes a high global network load. In the case of a high amount of net-
work traffic, the blocking approach provides shorter worst case end-to-end transmission delays.

12.2.5 Criticality rate

When there is a need to change the criticality level inside the network, there is not necessarily one unique
critical message in the network. There can be several of them, inducing additional delay on RB

i (LO,HI),
as shown in section 7.3.1. Based on generated flowsets of 50 flows, we modified the proportion of HI-
critical messages compared to LO-critical messages. This allows us to evaluate the impact of the HI-
critical traffic on the transmission of a HI-critical message during criticality level transition phase.

Figure 12.10: Critical rate impact on blocking approach delay

We show the simulation results on figure 12.10. The proportion of HI-critical messages progressively
changes from 0.2 to 0.35, based on a network managed with the blocking approach. At low loads, there
is no real impact. But for high values of the load (> 0.8), we can observe that the higher the criticality
rate, the higher the end-to-end delay of a HI-critical message.
This is coherent: as we can have parallel transmissions of HI-critical messages starting from the instant
the criticality level had been switched, this can represent a potential delay due to messages with a higher
priority and non-preemptive effect. The γanc and γnew-critical messages have both impacts on the end-
to-end transmission delay of a message during the transition phase.

213

Real-Time Networks simulation with ARTEMIS

Figure 12.11: Critical rate impact on blocking approach delay (Zoom)

12.3 DĊĈĊēęėĆđĎğĊĉ ĕėĔęĔĈĔđ

For LO-critical messages transmission, the worst case situation happens when all switches detect a HI-
criticalmessage, meaning that all switcheswill change their local criticality level at once. In this situation,
there will be no transmission of any LO-critical message. In this situation, both centralized and decen-
tralized protocols provides the same behavior.
Our purpose was to compare centralized and decentralized approach from two different aspects: HI-
critical end-to-end average transmission delay, and QoS guarantees provided by computing the number
of LO-critical messages correctly transmitted.

12.3.1 Transmission delay - Static load

In terms of average delay, we can observe important differences, due to multicast and criticality change
delay (in centralized protocol) which represent a non-negligible additional delay to take into account in
HI-critical message transmission.We want to compare both MC management approaches for randomly
generated scenarios.
In order to compare average transmission delay in both protocols, we simulated tree-oriented topologies
composed of at least 20 end-systems, interconnected through a variable set of switches. The number of
switches cannot be directly set as it depends on the defined network density (ratio between the number
of nodes and number of switches. See details in chapter 11), specified by the user (see chapter 9 for more
details about topology generation in ARTEMIS). In order to preserve consistency in the network, we set

214

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

the network density of the topology generator to 0.6. This can lead to network topologies depths varying
between 3 and 9, and a number of switches in a network between 4 and 15.
In terms of number of flows, we showed in chapter 9 that the simulation time directly depends on the
flowsets sizes. As RT industrial networks can have tomanage at least 50flows, the solution in this context
was to select a sufficiently representative number of flows. We decided to generate flowsets of maximum
size of 50 flows during our simulation protocol.
The MC integration inside a RT network and the performances of each protocol depends on the amount
of HI-critical messages to manage. The end-to-end transmission delays of messages inside this topology
will be impacted. In order to clearly identify the impact of HI-critical traffic, we defined the concept of
HI-critical messages rate, representing the rate of HI-critical messages in the network, compared to the
global number of messages. During this simulation, we set a critical rate in the network at 0.4. It means
that 40 % of the messages in the network are HI-critical (CHI

i , −1).
We ran 20 different topologies and flowsets per potential network size (from 15 to 120). We first sim-
ulated the computation of transmission delay of a message with a path of static size (up to 4 nodes), in
order to evaluate the results given by both approaches on a fundamental hypothesis. The results are given
in figure 12.13.
This simulation set was ran with flowsets of a global load of 0.85, with a cumulated utilizations of all
flows equal to 0.85. The individual repartition of this load depends on the number of switches. The
higher this number, the lower the average individual load on each node.
We observe in figure 12.12 that the transmission delay computed with the decentralized approach tends
to be inferior to the transmission delay providedwith centralized approach. In the centralized approach,
the criticality level switch delay is an additional source of delay which impacts HI-critical messages end-
to-end transmission time.
Thus, we can note that with a constant load, the transmission delay of both approaches is nearly constant.
This tends to make us suppose that there is a balance between two phenomenons: the decrease in the
transmission delay due to lower individual load per node and the additional delay required to change
and manage the criticality level in the network.
As a first conclusion, we observe that the transmission delay computed with decentralized is shorter in
average cases. Thus, a first observation on the figure 12.13 tends to show that the transmission delay
increases with the network size. We want to confirm these assumptions.

12.3.2 Transmission delay - Evolutive load
The centralized protocol clearly depends on the network size in terms of HI-critical messages end-to-
end transmission delay. The reliable multicast delay is based on the network depth (see chapter 7). This
can be explained easily: the wider the network, the higher its depth. As the depth increases, the reliable
multicast delay tends to also increase.
In order to confirm the results of the simulation of figure 12.13, we ran another set of simulations as
a function of the network size, with a varying network load. For each value of the network size, we
simulated different flowsets of loads ranging from 0.2 to 0.95.
We can observe in figure 12.13 that, when keeping the same path in all simulations, the delay given by
the centralized approach tends to increase with the network.

215

Real-Time Networks simulation with ARTEMIS

Figure 12.12: Centralized and Decentralized transmission delays function of the load

This confirms what we assumed in our theoretical work: in small topologies, the criticality change delay
obtainedwith the centralized approach tends to be short, and so the transmission of HI-critical messages
is quickly isolated from LO-critical traffic. Induced delay due to LO-critical traffic is reduced. On the
contrary, when the network size tends to increase, the criticality change delay tends to increase too. This
implie the transmission delay provided by the centralized approach increasing as well.
Given that the message we focus on has a static path, the delay established with the decentralized ap-
proach does not depend on the number of nodes in the network, but just on the number of nodes in the
given path.

12.3.3 Impact on QoS

We focus on LO-critical traffic management with centralized and decentralized MC protocols. We com-
pare the number on LO-critical messages correctly transmitted during both LO and HI critical phases.
In terms of QoS, we ran a set of simulations inside the same context in order to evaluate the QoS guar-
antees obtained by the decentralized protocol. In worst case situations (all messages in HI-mode with
HI-WCAT, and a HI-critical message transiting through each node), both centralized and decentralized
protocol lead to the same transmission delay. As a conclusion, in the worst case, there is no LO-critical
messages transmission with both protocols (during HI phases). It means that, in worst case situations,
there is no QoS provided to LO-critical messages.
In order to evaluate the average QoS provided by this new protocol (the average number of LO-critical
messages correctly transmitted), we ran a simulation to compute the number of LO-critical messages

216

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

Figure 12.13: Centralized and Decentralized transmission delays

that were supposed to be dropped out with the centralized protocol, but correctly transmitted with the
decentralized protocol.
In a dual-criticality network topology, the QoS obtained for the transmission of LO-critical messages
directly depends on the number of HI-critical flows. This traffic is indexed on two elements. First, it
depends of the global network load. It seems obvious that, the higher the global network load (LO and
HI), the higher the HI-critical traffic. This traffic also depends on the repartition between LO and HI
traffic inside the network.
In order to evaluate the QoS of a network configuration, we ran a simulation with different values of
criticality ratio (from 0.1 to 0.4). The criticality ratio is an index of the proportion of HI critical mes-
sages compared to LO critical messages in the network (see details in 11.3.3). During all simulations,
we supposed that there was, at least, one HI-critical message exceeding its LO-WCAT. It means that the
provided results show the LO-critical messages transmitted during HI-critical phases.
We ran this QoS computation simulation in a network composed of 25 end-systems, with a network
density of 0.6. In order to have a homogeneous repartition of the traffic among the topology, we in-
creased the size of generated flowsets to 120 flows. This allow to identify more clearly the impact of
individual messages utilizations, as the global load distribution over the network is more heterogeneous.
We obtained the results showed in figure 12.14.
We observe that the higher the criticality rate, the lower the number of LO-criticalmessageswhich trans-
mission has been assured. We also observe that, for a static load, the rate of correctly transmitted LO-
critical messages tends to stabilise around 20 %, even for high values of the criticality rate. It means that,
while there is no global HI-criticality traffic everywhere in the topology, we can assure at least a gain of

217

Real-Time Networks simulation with ARTEMIS

Figure 12.14: LO-critical messages transmission with decentralized protocol

QoS in terms of LO-critical messages transmission of approximately 20 %.
This simulation shows that, on wide and very wide networks (> 50 nodes), the decentralized protocols
isolates specific parts and subnetworks in the topologywithout impacting theQoS of thewhole network.
Particularly in the case of a high number of flows, this allows the protocol to assure the transmission
of LO-critical traffic even when HI-critical messages are transmitted without impacting the isolation
constraints needed by HI-critical messages transmission.
In order to assure this gain of QoS, we ran a set of simulations to compute the number of LO-critical
messages transmitted during a certain interval of time, splitted between LO and HI critical phases. There
are the results of the simulation shown below (see figure 12.14).

12.3.4 QOS computation

In this context, we fixed a simple topology composed of only 5 end-systems. Working on a small topol-
ogy allowed us to accurately maintain load repartition and homogeneity of the paths when generating
random flows. For each simulation (50 per value of the criticality rate, with a step of 0.01), we generated
a random flowset of 40 different flows, indexed on a global load of 1.0.
We ran a network simulation with ARTEMIS core during a time interval of 10s for each simulation.
This delay is sufficient to be representative of, at least, on a hyperperiod. For each flow, we computed
the number of messages correctly transmitted during simulation. In order to evaluate the impact of the
MC management, we made the criticality rate of the network varying between 0.01 and 0.5. We finally
obtained the results shown in figure 12.15

218

CHAPTER 12. PROTOCOLS SIMULATION RESULTS

Figure 12.15: LO critical messages assured transmissions

The simulation clearly shows that the number of LO-criticalmessages correctly transmitted (not dropped
out) is higher with the decentralized approach. Depending of the flowset and path repartition, the repar-
tition of the flows can be different. This repartition induce criticality level changes which are likely to be
more frequent, and each critical phase to be shorter.
triggering a variable number of criticality level switches during each simulation.
We observe that, when the criticality rate exceeds 20 %, the centralized approach tends to ignore all
LO-critical traffic. On the contrary, decentralized approach tends to assure part of LO-critical traffic
transmission up to a criticality rate of 40 %.

12.4 CĔēĈđĚĘĎĔē

The simulation results confirms the different assumptions that were made : the decentralized protocol
provides a solution to transmit a part of non critical messages, even during critical phases. Moreover, de-
centralized protocol provides better end-to-end transmission delays in average cases (identical in worst
case studies). Eventually, for centralized protocol, the provided results shows that the criticality level
change solution provided is not dependant from the network load.

219

Part V

Conclusionand perspectives

221

Chapter 13

Conclusion

”Un jour pendant lequel vous avez appris quelque chose n’est jamais complètement
perdu.”

”A day in which you learn something isn’t a complete loss.”

–David Eddings [139]

Contents
13.1 Conclusion . 224

13.2 What’s next? Perspectives. 226

13.3 Personal perspectives . 229

223

Conclusion and perspectives

Mixed criticality management into embedded network architectures: application to switched Ethernet
networks has been treated step by step. First, we proposed a theoretical solution to model MC and
two protocols to manage MC in RT networks. Then, we described an implementation solution inside
Ethernet networks. Eventually, we simulated these solutions through ARTEMIS. Our work is a bridge
between processor and network context.

13.1 CĔēĈđĚĘĎĔē

MC in RT networks

The first step in our work was to provide a modelling for mixed critical flows in RT networks. We had to
adapt MC concepts to RT networks, from the modelling of MC in processor context given in the state
of the art. We modified the fundamental representation of a flow (path, WCAT, period) by considering
two potential solutions. One based on dedicated WCATs and one based on dedicated periods for each
criticality level. In both cases, these solutions lead to the same integration proces. This modelling can be
considered the basics of all our work on MC.
Ressources costs and weak isolation (isolation of flows from different criticality levels without physical
isolation of the infrastructures) constraints were two of themajor issues justifying this work. By propos-
ing centralized and decentralized MC management protocols, we offer solutions to potential network
designers to integrate MC in RT networks. We proposed different solutions in order to adapt these pro-
tocols to various contexts, making them configurable (blocking/non-blocking approach, full-centralized
or half-centralized MC management). These solutions create different degrees of configurability be-
tween a full-centralized solution (requiring switches supporting clock-synchronization) and a totally
distributed solution. The distributed solution, as it does not require any clock-synchronization, can be
implemented in more common switches, with less configurability (cheaper, highest availability).
Simulations results show that the centralized protocol is more convenient for small network topologies,
having a small number of switches. This is a protocol particularly designed for networks integrating a
central node (tree-oriented topologies). In that case, we can define a node which can operate as a central
MC management node. We proposed a reliable multicast solution to guarantee a total order in MC level
updates all over the network nodes. This reliable multicast requires clock-synchronization.
The decentralized MC management protocol we proposed is more adapted to wide topologies and does
not require clock-synchronization. Each switch has to be configured independently, but there is no addi-
tional communication forMCmanagement required between the network nodes. This solution provides
betterQoSmanagement for flowswith a low criticality level. As a result, this solution ismore convenient
for COTS Ethernet networks, requiring high levels of QoS such as comfort management functionalities
in personal vehicles, or passenger information in aircrafts.
How can we represent and manage MC inside RT networks? The proposed protocols, based on the flow
representation we introduced, answer to this question. According to centralized and decentralized solu-
tions, we can manage MC level changes and guarantee criticality level consistency inside a RT Ethernet
network.

224

CHAPTER 13. CONCLUSION

Implementation of mixed criticality in switched Ethernet

Nowadays, classical Ethernet presents a cheaper solution for RT networks compared to industrial archi-
tectures such as AFDX or TTEthernet. Additionnally, it is a standard in all network communications,
even for non-industrial uses. In this work, we proposed to implement centralized and decentralized MC
management protocol inside Ethernet networks. This solution relies on the classical frame modelling of
Ethernet to store MC information in the frame. This solution also allows network designers to represent
the criticality level of each message in the frame itself.
In order to model and transmit MC configuration information, we proposed a frame modelling for MC
management messages. This frame modelling is used in centralized protocol, as decentralized protocol
does not rely on any specific MC management message. This modelling is based on a specific encoding
of Ethernet frame, based on the IEEE 802.1Q tag. More generally, the protocol we proposed uses IEEE
802.1Q tag to manage criticality levels information inside network frames.
We propose two different solutions for MC integration in Ethernet, relying or not on clock-
synchronization. In clock-synchronized networks, this solution is based on integratingMC information
inside clock-synchronization frames. We proposed an implementation of this method with PTP frames.
In non clock-synchronized networks, providing solutions for multi-criticality levels integration can ap-
pear to be potentially costly (partial utilization of Ethernet data frame). But, in all cases, we provided
solutions for MC management inside RT Ethernet, even for networks integrating more than 2 different
criticality levels.
How can we concretely implement MC in Switched Ethernet? By using the protocol we proposed, we
can integrate MC management inside a Switched Ethernet architecture.

Simulation

ARTEMIS is a cornerstone of our work in this thesis. The work done with ARTEMIS has two parts. On
one side, we worked on building a RT network simulation platform. On the other side, we did a spe-
cific work around the different modules and, more particularly, on the flowset and topology generation
algorithms. Both aspects of the tools are fundamental in our work, for different reasons.
Our purpose was to cross analytical and engineering approaches when developing the tool. When devel-
oping ARTEMIS, the functional and design constraints (modularity, ergonomy, ...) were anticipated in
order to make the tool easier to maintain. The data API used as input and output can be improved in the
future but, for now, the structure makes the simulation core independant from the different modules.
As a result, each module of ARTEMIS can be used independantly.
The work done on ARTEMIS simulation consisted in building a tool to simulate RT networks schedul-
ing scenarios. Then, we integrated MC management inside this model. In terms of simulation, MC
management solutions integrated inside ARTEMIS core are functional. The tool is entirely able to man-
age network simulations with one, two or more criticality levels. We proved with various simulations
that the model we defined was able to change criticality levels either globally or locally for each network
node, corresponding to the different MC management protocols we designed.
First, the different protocols (centralized, decentralized) are represented in ARTEMIS simulation model.
ARTEMIS has been fundamental in our work to experiment the theoretical model proposed and to run

225

Conclusion and perspectives

different simulations on our work.
In a second part, the topology and flowset generation algorithms can be configured depending on differ-
ent parameters. Each of the generation module can be used as standalone or integrated inside ARTEMIS
whole suite. In the case of flowset generation algorithms, being based on UUnifast assures a potential
standardization in the flow generation process. Both algorithms allowed us to proceed simulations on
wide number of potential situations. It allowed us to run the different simulations used for MC inte-
gration protocols, to verify our solutions, etc... on representative sets of situations. Thus, these tools
proposes improves of actual generation models currently used in processor context.
ARTEMIS development is not supposed to end after this work. During our work, we developed a soft-
ware solution to answer to MC problems, but the open and modular structure of the tool encourage us
and external development teams to improve the tool, either by adding new functionalities or by modi-
fying its usability and integrability.
How can we build software and hardware solutions to verify our work? ARTEMIS is the simulation
solution provided to run MC scheduling scenarios inside RT networks.

General conclusion
To conclude, MC can be integrated in RT and embedded Ethernet networks through dedicated proto-
cols, assuring the timeliness and safety of messages transmissions inside a network. Corresponding to a
correct message tagging and to centralized or decentralized MC management, each node in a network
can trigger a criticality level change along time. The conditions to change the criticality level of a node
will depend on the criticality of each message and on the messages likely to be transmitted through the
node.
So, What is MC applied to Switched Ethernet networks? MC management is a solution to assure the
reliability, safety and security of an embedded network during critical phases. These critical phases are
defined by specific periods when the network input and output starts dealingwith critical messages. This
can be due the message length evolution, or to the IEEE 802.1Q tag indicating the criticality level of the
message.
Critical phases corresponds to tough or demanding situations, when the transmission of all messages
cannot be guaranteed, implying to privilege criticalmessages among allmessages. We guarantee, through
the solutionsweproposed, aweak temporal isolation between critical andnon critical informations. That
is what MC management is: mixing messages of different criticality levels inside the same infrastructure
while guaranteeing temporal isolation and timeliness.

13.2 WčĆę'Ę ēĊĝę? PĊėĘĕĊĈęĎěĊĘ.

Industrial implementation

Industrial platforms

The MC management protocols we proposed were validated by simulations with ARTEMIS. But from
now on, MC inside networks has not been implemented yet on physical platforms. Providing an evolu-

226

CHAPTER 13. CONCLUSION

tion to testMC integration inside Ethernet-based embedded networkswould represent a strong physical
proof of concept of what we presented in this work. Through various real-time operational layers (such
as Xenomai), building an experimental platform to test and validate MC integration solutions represents
an interesting solution to work on.
The centralized and decentralized protocols provides implementable solutions for various network plat-
forms, at various costs. By proposing different protocols applicable to clock-synchronized and non
clock-synchronized networks, we proposed solutionswhich can fit either to safety-critical network Eth-
ernet infrastructures or toCOTSEthernet infrastructures. But all the solutionswe designed still requires
a certain level of configurability. It cannot necessary be found in all switches, particularly the cheapest
one. An interesting potential perspective would be to propose appliability of MC on very basic switches.
This will induce to open MC integration to non deterministic networks.

Hypervising

Assuring different levels of QoS inside a network is an important requirement. Different application
domains, particularly those related to Internet applications, rely on the objective of bringing a high level
of usability and QoS to the user. We can mention, for example, domains such as online gaming, web
applications or home automation. Software-Defined Networks (SDN) [140] are a solution to configure
these networks by creating an intermediate abstraction layer, virtualizing the network management and
offering QoS management solutions through APIs. We can mention different tools to integrate this ab-
straction of physical switch management, such as OpenVSwitch [141].
One perspective of evolution for RT networks would be to integrate MC management inside SDN so-
lutions. This will allow the user to manage criticality levels of switches through an API and dedicated
programmation languages. This can be presented as a solution to avoid an individual and manual config-
uration of criticality management parameters for each network switch. The criticality implementation
inside a network would become global and easier to manage.

MC improvements

Heterogeneous networks

The integration of MC has been proposed for Ethernet-based infrastructures, and more precisely for
IEEE 802.1 Ethernet. But the emergence of various new network infrastructures (wireless networks,
for example) or other industrial infrastructures could require MC integration inside their systems. A
potential evolution of our work would be to propose MC integration solutions for alternative network
architectures.
Based on this integration for different network infrastructures, a potential evolution of this work would
be to propose MC integration for networks mixing different physical implementations. For example,
proposing MC integration for multi-hop networks would represent an interesting evolution of the cur-
rent work.

227

Conclusion and perspectives

Configurability and COTS Ethernet

The MC integration protocols we proposed represents solutions for MC integration inside various Eth-
ernet implementations. These implementations are oriented to different type of devices, from COTS to
high-constrained devices based on industrial protocols such as PTP. But, in all cases, the protocols we
proposed required a high amount in the configurability of the network devices, which could represent a
problem of costs and availability.
A potential evolution to this would be to propose a discrete integration of MC inside Ethernet networks
which will not require specific configuration of the network. This solution can be implemented, for
example, by providing MC-compliant drivers and network protocols inside basic commercial devices.

Multicore switches

One major hypothesis in our work has been to consider that switches in Ethernet networks are all based
on a monocore architecture, which makes them able to process one message at a time. This approach is
reliable, but incomplete. One interesting perspective in the potential future works issued from this work
would be to operator on switches integrating multicore architectures. This would represent a crossover
between RT networks and RT multi-processor platforms.

Simulation tools

Generation tools

In this work, we proposed different solutions to generate network messages for RT network simulation.
These solutions are all based on different adaptations of the model provided by UUnifast: uniform ran-
dom generation, integration of different criticality levels, etc... These models are integrated in tools like
ARTEMIS and can be reused in the future. But, on potential perspective of development around this is-
sue would be to focus on how to provide network traffic generators whose results are based on physical
experiments.
When defining constants such as criticality rate or network density, one source of evolution would be
to provide solutions to evaluate these configuration parameters in order to provide messages generation
tools which results are more representative of physical implementations. In order to do this, we have to
focus on the different solutions used to define the different criticality levels of eachmessage in a network,
for example.

ARTEMIS simulation

ARTEMIS can be improved through various approaches, depending on the aspect we want to develop.
We can mention some potential sources of evolution:

• Simulationmodel: Themodelling of a network is currently generic. The node-link-flowmodelling
can apply to any network scheduling scenario, but it has no specificities to represent dedicated
physical situations. One major source of evolution would be to propose a virtual layer to model

228

CHAPTER 13. CONCLUSION

dedicated hardwares in the tool. This will integrate the representation of specific devices, allowing
the user to fit his simulations to more specific industrial contexts.

• Network tool: At the moment, ARTEMIS is a simulation software with no interaction with real
networks. An interesting source of evolution would be to propose to make it as a network vir-
tualizer. The point would be to connect the network topologies simulated by ARTEMIS to real
network infrastructures. ARTEMIS will then act as a network traffic manager and would be able
to integrate functions like monitoring.

• Modules: several external modules of ARTEMIS (GUI, Grapher, Analyzer) are dedicated to results
exploitability and ergonomy. These modules can be improved by improving their configurability
and the precision of their results. The timing analyzer or the grapher could be modified in order
to provide more detailed results. This will improve the accuracy and ergonomy of the tool by
providing more detailed results, and to provide them quicker.

ARTEMIS is entirely open-source. It means that all these improvements can be brought either by its
current developers, or by new development teams. ARTEMIS is currently available in public platforms
to download and modify. For our part, we will continue to improve it in the future, but we also strongly
invite external actors to participate to the development with us.

13.3 PĊėĘĔēĆđ ĕĊėĘĕĊĈęĎěĊĘ

All along this thesis, I focused on MC integration inside RT and embedded networks, and more partic-
ularly in Switched Ethernet networks. All along this work, I did encounter different people, focused on
different related and unrelated topics, and my participation to the topic through this thesis makes me
ask about this question: so, what’s next?
There is a lot of remaining open doors. RT and, more widely, computer science are boundaries which
cannot explore in their whole globality in a single life. Tolkien said ”All we have to decide is what to do
with the time that is given us” [142]. These emerging topics are part of the different solutions I would
like to explore in the following years.

Around RT
Diving into RT domain and into RT simulation tools made me focus on various software solutions dedi-
cated to RT.There are technologies such as Ada and RT Javawhich appears tome as an interesting source
of potential evolution. These technologies mix RT problematics and object-oriented development. It
represents an interesting balance between engineering and research, and as a result I would like to learn
new skills related to these topics. Thus, concerning ARTEMIS, these technologies represent sources of
new improvements to integrate in the tool.
During the work around ARTEMIS development, I used to build a global data modelling solution to
represent ARTEMIS input and output informations. This data modelling layer have been fully detailed
all along this thesis. Coupled to several external works done with labs like Institut de Recherche en
Informatique de Toulouse (IRIT), I had the privilege to work on data modelling for RT simulation tools.

229

Conclusion and perspectives

That opened a potential project of providing standardized data modelling format on which I would like
to work in the future. This work, initiated with actors like Claire PAGETTI, Sophie QUINTON and Loïc
FEJOZ is representing for me a strong source of potential evolution.
Eventually, I would like to work on QoS management for mixed critical RT networks. The work we
did with the decentralized protocol particularly directed me to ask myself how to manage non critical
messages and assure QoS guarantees inside RT networks.

A few words about teaching
”To teach is to learn twice” said Joseph Joubert. During this thesis, I began towork as a fellowship teacher
in computer science. That has been a real revelation tome. Frommypoint of view, teach and research are
the two faces of the same coin. During these 3 years, I used to teach various domains around computer
science, development and integration. In the future, I would like to continue this by openingmy research
work to students.
Through publication, conferences or dedicated lessons, I would like to introduce RT scheduling and em-
bedded networks to my future students. An important project I would like to build is to publish various
teaching books about computer science and development skills. It would allow me to train pedagogi-
cal approaches while keeping the habit of writing through the time. That would be an opportunity to
continue working on both research and teaching sides.
Thank you for reading.

230

Chapter 14

Annexes

”Ne dites pas trop de mal de vous-même: on vous croirait.”

”Do not say too much harm of yourself: one would believe you.”

– Amélie Nothomb [143]

Contents
14.1 Mixed criticality over Ethernet protocol . 232

14.2 Conclusion . 239

231

Conclusion and perspectives

14.1 MĎĝĊĉ ĈėĎęĎĈĆđĎęĞ ĔěĊė EęčĊėēĊę ĕėĔęĔĈĔđ

14.1.1 Introduction
Based on our previous work [124], we want to propose concrete solutions of MC implementation in
Ethernet. Depending on the MC management protocol and on the number of criticality levels we want
to manage, the solution to use is different. First, we introduce a solution to dual MC representation in
PTP clock-synchronized networks. Then, we apply this solution to non clock-synchronized networks.
Eventually, we extend this solution to multi-criticality levels.

Mixed criticality over PTP Ethernet

IEEE 1588 PTP is a clock synchronization protocol for switched-Ethernet networks (see section 3.3).
The IEEE 1588 clock synchronization protocol is used, for example, by industrial manufacturers like
CISCO or MOXA for integration inside various domains: defense, aerospace, etc... From the point of
view of software, the PTP daemon is an implementation of IEEE-1588 protocol, mainly designed for
Unix-based and embedded architectures.
PTP is based on dedicated frames used for clock synchronization. These frames are based on User
Datagram Protocol (UDP), with an integration of a dedicated PTP header in the frame, used for time-
synchronization. These frames are usually sent with the highest priority in the network, by attaching
them to a dedicated VLAN used for configuration purposes. PTP daemon proposes two solutions: PTP-
ETE andPTP-P2Pmodes. In PTP-ETE, only the end-systems tomanage clock-synchronizationwhereas,
in PTP-P2P, all nodes in the network manage PTP frames.
In both end-to-end and peer-to-peer modes, PTP frames are modelled following the same structure [49]
(detailed in section 3.3). Briefly, this structure is organized as follows: a header of 34 bytes describing
the specificities of PTP protocol, a body of varying size containg timestamp, and an optional suffix.
PTP frames are periodically sent in the network with a high priority. Criticality level information needs
also to be sent with a high priority in the network, specifically in order to respect the constraints of
the centralized protocol. Thus, the synchronization of criticality information in all the network nodes
implies transmitting criticality information without being delayed by the network traffic. The solution
we propose is, instead of creating messages dedicated to criticality information transmission, to modify
the structure of PTP frames in order to integrate criticality level management directly inside them. This
will define a common time reference and criticality synchronization with an already defined standard.
This also assures that criticality information is transmitted with the highest priority.
The centralized protocol for MC management is based on a clock-synchronized architecture. As men-
tioned in chapter 7, MC is considered as a configuration information in the network. This information is
shared among all nodes through the reliable multicast protocol we detailed (see chapter 7). We proposed
to send MC level in a dedicated VLAN (based on Ethernet 802.1Q) attached to the highest priority (same
as PTP) in order for the SCC and switch-level order messages to not be delayed by other messages in the
network. The centralized protocol proposes two types of messages to manage MC:

• The SCC message, which is a call from a central node to change to a criticality level, which value
is indicated in the message frame.

232

CHAPTER 14. ANNEXES

• The switch order, which forces all nodes to change their internal criticality level.

The two different MC management messages are transiting through the same nodes. Even associated
with the VLAN with the highest priority, SCC messages can still be delayed by PTP messages. On the
contrary, multicast messages are transmitted in the opposite way, from the central node to other nodes,
and are supposed to not suffer from network traffic.
A solution to MC implementation was proposed in [124]. This solution is based on mixing PTP synchro-
nization messages and MC configuration messages inside the same frame. In other words, it consists in
modifying PTP frames in order to integrate criticality information inside it.
We propose here to dedicate a byte in PTP frame to specify the criticality information. With this solution,
we can broadcast the criticality level frequently, but this is not entirely synchronous: as we rely on PTP
synchronization frequency to share criticality information, this can imply an additional delay in MC
information transmission (through reliable multicast, in the hypothesis of a centralized approach). This
additional delay impacts the global delay of criticality switch, adding to it a delay equal to 1

FPTP
, with

FPT P the PTP synchronization frequency.

Mixed criticality integration in PTP frames

The first point to notice is that we do not have to use all PTP messages for MC integration: the criticality
information transmission does not necessarily imply to be udpated at the same frequency as PTP emis-
sions. It means that we need to be able to tag each PTP message to determine whether or not it contains
MC information. As a result, MC integration inside PTP implies defining 1 dedicated byte: 4 bits to tag
the PTP frame as containing MC information, and 4 bits to store the MC information itself.

Header SuffixTimestamp

10B

MC information

1B

Figure 14.1: Criticality integration in PTP frame

The PTP body is composed
of 10 bytes, representing the
timestamp to send, used for
clock-synchronization. We
add a byte to this PTP body in
order to represent criticality
information. The figure 14.1
shows the structure of the new
PTP frame.

With this solution, we can integrate criticality level inside PTP frames, but we cannot differentiate PTP
frames integrating MC information from those who are not. A solution to this would be to measure the
size of the PTP body: if its 10 bytes, it is a simple PTP message. If the size of PTP body is 11 bytes, it
is a PTP message integrating criticality information. We need to adapt the proposed format in order to
integrate these new constraints.

Mixed criticality tags

In terms of structure, MC integration in PTP frames is operated on one byte (8 bits). This byte has to
contain two different informations: the type of the message, and the value of the criticality level the
message belongs to.

233

Conclusion and perspectives

4 bits to encode the criticality level is sufficient. The twoMCdescription bytes are used to tag a PTP frame
and to specify criticality information in the network. As a result, we obtain the PTP frame structure
detailed in figure 14.2.

MC ID tag

4b

MC level

4b

PTP SuffixPTP Body

Figure 14.2: PTP body with MC integration

We propose to split the byte in-
tegrated in PTP frame in two
equal parts of 4 bits. We dedi-
cate the 4 first bits to message
type designation, and the 4 last
bits to criticality level defini-
tion. This allows the protocols
tomanage, atmost, 24 = 16 dif-
ferent criticality levels.

Each type of MC configuration message should be possible to identify (SCC or switch order). According
to the centralized protocol (see chapter 7), we can enumerate two different MC management messages:
A SCC or a criticality level switch order. Both messages are linked with a specific criticality level: The
SCC is attached to the criticality level a specific node calls to change, and the switch criticality level order
(multicasted) is linked to the criticality level the nodes have to change to.
In order to integrate MC inside Ethernet, a MC configuration message has to be tagged according to its
type. We propose to attach a specific binary value to each type of message, and to encode this value into
the MC-dedicated byte of PTP frames. We have 4 bits to specify this value. We propose to follow the
following process:

Binary Value type
0000 0x00 Error management
0001 Ox1 SCC
0010 Ox2 Switch criticality order
− Others Future uses

The specification is done according to the values de-
scribed in this table. Basically, we defined only two spe-
cific tags (0x1 and 0x2) for the different message types
we want to use. All potential other values (0x3 to 0xF)
could be used for potential improvements of the central-
ized protocol (for example, to determine if nodes should
behave according to blocking or non-blocking approach
while receiving the message).

This solution does not necessarily imply each PTP message to be formatted with criticality information.
It means that we need to integrate the possibility to identify PTP messages containing criticality infor-
mation and those which are not.

Criticality information management

In terms of scheduling, modifying PTP frames structure implies redefining the algorithm to schedule and
detect MC-tagged frames. We propose an algorithm to take into account criticality information and to
trigger associated actions. The potential actions associated to the reception of a MC message are:

• Update the criticality table: In the central node of the network, in case of the reception of a SCC
from a lower criticality level than the current one, we node that the transmitting node sent a mes-
sage to downgrade the criticality level (for centralized protocol).

234

CHAPTER 14. ANNEXES

• Change the criticality level: this will change the value of the integer representing the criticality
level of the current node.

• Multicast a criticality level switch order (for centralized protocol).

We suppose an Ethernet network architecture composed of a set of interconnected switches. Once there
is an incoming PTP message in a switch, it identifies the frame as containing criticality synchronization
information or not. Next, depending on whether or not the switch is defined as the central node in the
network, the node will perform different actions depending on the type of the received message. At each
reception of a MC management message in a given switch, we can define the behavior of a node with the
algorithm detailed below (see algorithm 11).

Data: Criticality message m, current
criticality level Γ

Result: criticality level managed
1 b = read_4_bits(m);
2 γ = read_4_bits(m);
3 if node is central node then
4 if b == 0x1 then
5 if γ > Γ then
6 Multicast (γ);
7 end
8 if γ < Γ then
9 e = get_sender_o f _message();

10 change_sender_state(e, γ);
11 end
12 if all senders are in γ state then
13 Multicast (γ);
14 end
15 end
16 end
17 if b == 0x2 then
18 Wait for criticality change date

tm +M (N)
19 Change criticality level in the node to γ;
20 end
Algorithm 11: MC message reception algorithm

When receiving a message, we read the first
byte containing both criticality information
and message criticality type. If the message is
an SCC, its impact will be different depending
if the current node is the central node or not.
In the central node, the SCC message triggers a
reliable multicast emission (when γ > Γ) or an
update of the criticality table in the other case.
In an other node, SCC messages are just for-
warded to the central node.
Depending on the current state of the critical-
ity table, an update of its informations can in-
duce a multicast message, to a lower criticality
level.
When receiving amulticastmessage, a node re-
ceived the order to change its internal criti-
cality level. The node will wait until the date
to change this level (tm +M (N), described in
chapter 7). At the date tm +M (N), the node
will change its criticality level.

14.1.2 Criticality level integration in Ethernet
The proposed solution consisting in integrating MC management inside PTP frames can only work with
clock-synchronized networks. This assures a solution to share criticalitymanagementmessages required
by the centralized protocol. But, this solution does not specify how we determine the criticality level of
each message inside a network. Particularly in our work, we focus on MC integration in COTS Ethernet
architectures. In order to do so, we provide a solution to indicateMC information of eachmessage inside
an Ethernet frame.

235

Conclusion and perspectives

We propose to tag each message with its highest level of criticality, in order to determine to which level it
is able to increase. This will also specify that a message can belong to the lowest criticality levels, thanks
to the hypothesis about the hierarchical structure of criticality levels made by Vestal in [114] and detailed
in part II. As a conclusion, the issue here remains in being able to tag each Ethernet 802.1Q message with
its criticality level.

Dual-criticality level networks

First, we want to focus on a dual criticality network, characterized by LO and HI levels. In this case,
a message can have two different levels: non critical (LO) or critical (HI). This can be represented by a
boolean value, indicatingwhether themessage is critical or not. The criticality level of amessage specifies
if a message can be transmitted or not during specific criticality phases. A HI message can be transmitted
during LO and HI phases, whereas LO messages can only be transmitted during LO phases.
The criticality level for HI messages indicates that a message can have a LO and HI WCAT, and a LO and
HI period (or minimum inter-arrival time). A constraint of a HI message is to have a longer WCAT or a
shorter period than its equivalent LO message. Being HI-critical specifies that the message is part of the
HI message set in the network, and so that its LO-WCAT can be exceeded.
In order to integrate MC management, the solution we propose is to add a field in Ethernet frames,
through the IEEE 802.1Q tag, in order to tag and represent a message criticality state (HI or LO) directly
in its Ethernet header. The solution is to modify the network frame of a message in order to dedicate a
specific set of bits containing the criticality value. Contrary to PTP messages which are based on the IP
structure, we cannot make the assumption of a specifical frame structure in our network. We showed
that each protocol and layer (IP, UDP, ...) adds its own header and structure to the Ethernet frame. As a
conclusion, we have to integrate the criticality information of amessage at the lowest possible level of the
OSImodel. In order to be compliantwith our constraints, we propose to integrate criticality information
directly in the Ethernet frame layer.
Ethernet is based on network layer of the OSI model, on top of the physical layer. An Ethernet frame
conforms to a specific format, which was detailed in chapter 3.2. We propose to add the MC level of a
message inside its 802.1Q tag (see figure 14.3).
The Ethernet header is based on 14 bytes. All these bytes are dedicated to a specific role and cannot be
modified. Our solution for MC integration inside COTS Ethernet is to modify the PCP field in order to
use the most-significant bit to indicate whether the message is HI-critical (1) or LO-critical (0).
Using this solution, the priority assignment of Ethernet 802.1Q is only defined on 2 bits instead of 3. The
figure 14.3 shows the proposed modification of Ethernet 802.1Q tag.
This implementation implies increasing the size of Ethernet frame by 4 bytes (IEEE 802.1Q tag size) to
integrate MC information (see figure 14.3). It is sufficient for a basic criticality integration, as a single bit
is sufficient to determine if a message is critical or not.
In order to illustrate the 802.1Q tag structure, we detail the structure of a 802.1QEthernet frame through
an example. We suppose that an incoming message m arrives in a node n of the network. In order to
focus on the criticality attribution of this message, we suppose that the frame header is composed of the
following data frame: 10000001000000001010000110110000. We detail below the organization of the
frame (see figure 14.4).

236

CHAPTER 14. ANNEXES

4b

TPID

16b

VLAN ID

12b

PCP DEI

1b

MC level

1b

Priority value

2b

Figure 14.3: Ethernet 802.1Q tag with dual-criticality management

The purpose is to change
the first of the three bits
dedicated for priority
value definition by MC
level specification. If it
is 0, the message is in
LO mode. If it is 1, the
message in in HI mode.

1000000100000000

0x81, TCI identifier

1

HI-critical mode

01

Priority 1

0

Non droppable

000110100000

VLAN 0x1B0

Figure 14.4: Ethernet 802.1Q header with MC

We can observe the different parts of the 802.1Q
tag: The TCI identifier (used to indicate that the fol-
lowing bytes correspond to 802.1Q protocol), the
criticality level indicator, the priority value bit (01),
the drop elligible indicator (1) and finally the VLAN
identifier the message belongs to (00110110000).

The analysis of the first 4 bits of the PCP field determines if the message is a HI-critical message. This
analysis is likely to trigger a SCC emission in the node where the message arrives, during LO-critical
level phases. When a node will receive this message, it will have to compute the criticality level of the
message and its size, in order to compute its current WCAT and detect to which criticality level the node
may call to change to.
Theproposed implementation integrates dual-criticality levelmanagement insideRTEthernet networks,
even in non clock-synchronized networks. With this implementation, we can manage criticality for
centralized and decentralizedMCmanagement protocols. The criticality level of eachmessage is directly
indicated in its header. But the representation of the criticality level is limited to 2 values (as it is encoded
on 1 bit). In the following work, we propose a solution to extend this implementation to multi-criticality
levels networks.

Multi-criticality levels

In RT and embedded networks, it can become necessary to define more than two criticality levels inside
a topology. As a result, we need to propose a solution for MC integration inside RT Ethernet networks
allowing us to manage more than just LO and HI levels.
This represents a conflict with the previously presented solution: a single bit is not enough to represent 6
different levels of criticality (ormore). One naive solution could consist in using the 3 bits of the PCPfield
to represent criticality information, but that would imply to delete priority information inside Ethernet

237

Conclusion and perspectives

802.1Q header, which is not acceptable.
802.1Q tag and Ethernet formats are standardized and correspond to specific standards. In order to
integrate MC value management, we need 4 bit to be able to model an integer value included between 0

and 15. This value will represent the criticality level of a message.
To implement this, we use the Vestal’s hypothesis [114] introduced in chapter 6. We consider a hierar-
chical order among all criticality levels. It allows us to associate an integer value to each criticality level,
and to consider each criticality level as more or less critical than another one. With this hypothesis, we
can affirm that a message of a γi level of criticality can be analyzed and sent in all {γ1, γ2, ...γi−1, γi} lev-
els. The solution to attach an integer value (representing the criticality level) to a message allows the MC
management protocol to define the highest criticality message it can transmit.
The remaining problem, detailed below, is to find a specific spot in Ethernet frame to store these 4 bits.
The solution presented before cannot be extended by using Ethernet format and a single 802.1Q tag. We
cannot either integrate MC information in Ethernet frame payload: it would require to modify all the
different OSI layers (starting from network layer) to take into account this information. We propose to
focus on a new approach.
802.1Q-in-Q [144] is a solution introduced in Ethernet to add successive tags in Ethernet headers. By
using this solution, we can provide to add two 802.1q tags inside Ethernet header, and to dedicate the
first to MC management. The constraint implied by IEEE 802.1Q-in-Q is to add another Ethertype in
Ethernet header in order to distinguish the different tags in Ethernet header (see figure 14.5).

7B

Preamble

Frame
delimiter

1B

MAC
destination

6B

MAC
source

6B

802.1Q tag

4B

Length

2B

802.1Q tag

4B

Length

2B

Ethernet Header

Data

Figure 14.5: MC management with Ethernet 802.1Q-in-Q

First, we add a 802.1Q tag dedicated to MC management. Then, we add a second 802.1Q tag used for
VLAN attribution and priority management.In the case where we want to manage several different crit-
icality levels (at least 3), we will add a second IEEE 802.1Q tag in Ethernet header. We will use all 4 bits
(PCP, DEI) to indicate a potential criticality level (see figure 14.6). It means that, we will be able to
manage 24 = 8 different criticality levels.
In a way, this process represents an extension of the Ethernet 802.1Q header: we add another 802.1Q to
the header for criticality management purposes. This implies redefining the Ethernet header structure
inside the switches of the network. Itmeans that all the switches in the networkwill have to be configured
specifically for criticality management, in order to be compliant with this new protocol and to be able
to read the MC data contained in a message header. This reconfiguration can be done in 802.1Q and
802.1Q-in-Q compliant switches. It means that we will not have to change the materials composing
the topology. This approach is important to integrate in order to satisfy MC integration inside COTS
networks.

238

CHAPTER 14. ANNEXES

6B

MAC Dest.

6B

MAC Source

4B

802.1Q tag

2B

Length

4B

802.1Q tag

2B

Length

TPID

16b

MC Level

4b

VLAN ID

12b 16b

TPID

3b

PCP

1b

DEI

12b

VLAN ID

Figure 14.6: 802.1Q-in-Q tags for MC integration inside Ethernet

14.2 CĔēĈđĚĘĎĔē

Besides the presented solution proposes a solution to integrate MC tagging inside Ethernet networks,
we rely on concrete implementations inside benchmarking platforms to provide simulation results.

239

References

[1] M. Audiard and G. Lautner, Les tontons flingueurs. Gaumont, 1963.

[2] B. Pascal, Pensées. Guillaume Després, 1669.

[3] Collective, Oxford dictionary of english. Oxford University Press, 2006.

[4] G. Buttazzo,Hard real-time computing systems: Predictable scheduling algorithms and applications, 3rd.
Springer Publishing Company, Incorporated, 2011, isbn: 1461406757, 9781461406754.

[5] H. Kopetz, Real-time systems. Springer, 1998.

[6] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard real-time scheduling: The
deadline-monotonic approach,” in Workshop on real-time operating systems and software, ser.
RTOSS, IEEE, 1991, pp. 133–137.

[7] N. Audsley and A. Burns, “Real-time system scheduling,” Tech. Rep., 1990.

[8] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact characteriza-
tion and average case behavior,” in Real time systems symposium, ser. RTSS, IEEE, 1989, pp. 166–
171. doi: 10.1109/REAL.1989.63567.

[9] M. Kargahi and A. Movaghar, “Non-preemptive earliest-deadline-first scheduling policy: A per-
formance study,” in International symposium on modeling, analysis, and simulation of computer and
telecommunication systems, ser. MASCOTS, IEEE, 2005, pp. 201–208.

[10] B. Guillem, A. Colin, and S. Petters, “Wcet analysis of probabilistic hard real-time systems,” in
Real-time systems symposium, ser. RTSS,Washington,DC,USA: IEEE, 2002, pp. 279–, isbn: 0-7695-
1851-6.

[11] C. Ferdinand and R. Heckmann, “Worst-case execution time prediction by static program analy-
sis,” in International federation for information processing, ser. IFIP, vol. 156, Springer, 2004.

[12] L. Yue, I. Bate, T. Nolte, and L. Cucu-Grosjean, “A new way about using statistical analysis of
worst-case execution times,” in Special issue related to the wip session of the 23rd euromicro conference
on real-time systems (ecrts’11), vol. 8, ACM, 2011, pp. 11–14.

[13] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in International real-time systems sympo-
sium, 2006, pp. 159–168. doi: 10.1109/RTSS.2006.47.

[14] C. Ferdinand, R. Heckmann, L. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm, Reliable and precise wcet determination for a real-life processor. Springer, 2001, pp. 469–
485.

241

Conclusion and perspectives

[15] A. Colin and S. Peters, “Experimental evaluation of code properties for wcet analysis,” in Real time
systems symposium, IEEE, 2003, pp. 190–199.

[16] J. Lehoczky, “Fixed priority scheduling of periodic task sets with arbitrary deadlines,” in Real time
systems symposium, ser. RTSS, IEEE, 1990, pp. 201–209.

[17] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and A. Wiese, “Scheduling peri-
odic tasks in a hard real-time environment,” in International colloquium on automata, languages, and
programming, ser. ICALP, Springer, 2010, pp. 299–311.

[18] B. Sprunt, “Aperiodic task scheduling for real-time systems,” PhD thesis, 1990.

[19] J. L. B. Sprunt L. Sha, “Scheduling sporadic and aperiodic events in a hard real-time system,” Soft-
ware Engineering Institute, Tech. Rep., 1989.

[20] Plato, Republic. Plato, 354BC.

[21] M. T. J. Jasperneite P. Neumann and K. Watson, “Deterministic real-time communication with
switched ethernet,” inWorkshop on factory communication systems, ser. WFCS, IEEE, 2002, pp. 11–
18.

[22] E. Ziouva and T. Antonakopoulos, “Csma/ca performance under high traffic conditions:
Throughput and delay analysis,” Computer communcations, no. 25, pp. 313–321, 2022.

[23] A. Colvin, “A. with collision avoidance,” Computer communications, no. 6, pp. 227–235, 1983.

[24] G. Leen, D. Heffernan, and A. Dunne, “Digital networks in the automotive vehicle,”Computing and
control engineering journal, vol. 10, vol. 10, no. 6, pp. 257–66, 1999.

[25] J. Meditch and C.-T. Lea, “Stability and optimization of the csma and csma/cd channels,” Ieee
transactions on communications, vol. 31, vol. 31, no. 6, pp. 763–774, 1983.

[26] Ieee standard for management information base (mib) definitions for ethernet, 501 Hoes Lane 3rd Floor
Piscataway NJ 08855: IEEE, 2013.

[27] G. Ungerboeck, “10gbase-t: 10gbit/s ethernet over copper,” Broadcom, Tech. Rep., 2013.

[28] D. D. Chowdhury, High speed lan technology handbook. Springer, 2000.

[29] IEEE, “Guidelines for 48-bit global identifier (eui-48),” IEEE, Tech. Rep., 2015.

[30] The universal administration of lan mac addresses began with the xerox corporation administering block
identifiers (block ids) for ethernet addresses. 501 Hoes Lane 3rd Floor Piscataway NJ 08855, 2002.

[31] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Ire, vol. 1, pp. 228–235, 1961.

[32] C. Systems, “Design best practices for latency optimization,” Cisco, Tech. Rep., 2007.

[33] A. Mifdaoui, “Spécification et validation d’un réseau de communication de type ethernet com-
muté pour systèmes avioniques militaires de nouvelles générations,” PhD thesis, 2007.

[34] Arinc 664, 501 Hoes Lane 3rd Floor Piscataway NJ 08855: ACCE, 2002-2008.

[35] Arinc 429, 501 Hoes Lane 3rd Floor Piscataway NJ 08855: ACCE, 1983.

[36] I. Land and J. Elliott, “Architecting arinc 664, part 7 (afdx) solutions,” Tech. Rep., 2009.

242

REFERENCES

[37] G. Garner, F. Feng, K. D. Hollander, and H. Jeong, “Ieee 802.1 avb and its application in carrier-
grade ethernet,” Eee communications magazine, vol. 45, pp. 126–134, 2007.

[38] L. H. J. Imtiaz J. Jaspernelte, “A performance study of ethernet audio video bridging (avb) for
industrial real-time communication,” inConference on emerging technologies and factory automation,
ser. ETFA, IEEE, 2009, pp. 1–8.

[39] Audio-video bridging, 501 Hoes Lane 3rd Floor Piscataway NJ 08855, 2011.

[40] J. J. J. Park B. Cheoun, “Worst-case analysis of ethernet avb in automotive system,” in International
conference on information and automation, ser. ICIAfS, IEEE, 2015, pp. 1696–1699.

[41] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the ieee, vol. 91, pp. 112–
126, 2003.

[42] S. Choi, “Cyclic polling-based dynamic bandwidth allocation for differentiated classes of service
in ethernet passive optical networks,” Photonic network communications, vol. 7, pp. 87–96, 2004.

[43] M. Plankensteiner, “Ttethernet: A powerful network solution for all purposes,” Tech. Rep., 2010.

[44] E. Gavrilut, D. Tämas-Selicean, and P. Pop), “Fault-tolerant topology selection for ttethernet net-
works,” in Safety and reliability of complex engineered systems conference, ser. ESREL, Citeseer, 2015.

[45] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communication over cots ethernet
switches,” inWorkshop on factory communication systems, ser.WFCS, vol. 6, Citeseer, 2006, pp. 295–
302.

[46] Ieee standard for local and metropolitan area networks: Media access control (mac) bridges, 501 Hoes
Lane 3rd Floor Piscataway NJ 08855, 2011.

[47] D. L. Mills, “Internet time synchronization: The network time protocol,” Ieee transactions on com-
munications, vol. 39, pp. 1482–1493, 1991.

[48] Precision time protocol (ptp) version 2 specification, 501 Hoes Lane 3rd Floor Piscataway NJ 08855,
2008.

[49] C. S. Ltd, “Implementing ieee1588v2 for use in the mobile blackhaul,” IEEE, Tech. Rep.

[50] M. Ouellette, K. Ji, S. Liu, and H. Li, “Using ieee 1588 and boundary clocks for clock synchroniza-
tion in telecom networks,” Ieee communications magazine, vol. 49, no. 2, pp. 164–171, 2011.

[51] Confucius,The analects. c. 4th century BC, 475BC.

[52] S. Martin, P. Minet, and L. George, “End-to-end response time with fixed priority scheduling:
Trajectory approach versus holistic approach,” International journal of communication systems, vol.
18, no. 1, pp. 37–56, 2005.

[53] K. Tindell, A. Burns, andA.Wellings, “Calculating controller area network (can)message response
times,” Control engineering practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[54] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed hard real-time systems,”
Microprocessing and microprogramming - parallel processing in embedded real-time systems, vol. 40,
pp. 117–134, 1994.

243

Conclusion and perspectives

[55] F. Ridouard, J. Scharbarg, andC. Fraboul, “Stochastic network calculus for end-to-end delay eval-
uation of avionics multi-hop virtual links,” Ifac proceedings volumes, vol. 40, no. 22, pp. 383–390,
2007.

[56] J. L. Boudec and P. Thiran,Network calculus, a theory of deterministic queuing systems for the internet.
Springer Science & Business Media, 2012, vol. 2050.

[57] M. Boyer and C. Fraboul, “Tightening end to end delay upper bound for afdx network calcu-
lus with rate latency fifo servers using network calculus,” in Workshop on factory communication
systems, ser. WFCS, IEEE, 2008, pp. 11–20.

[58] A. J. A. Bouillard, “Worst-case delay bounds with fixed priorities using network calculus,” in Inter-
national conference on performance evaluationmethodologies and tools, ser. ICST, ICST, 2011, pp. 381–
390.

[59] J. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under arbitrary multiplexing: When net-
work calculus leaves you in the lurch...,” inConference on computer communications, ser. INFOCOM,
IEEE, 2008, pp. 1669–1677.

[60] S. Martin, “Maîtrise de la dimension temporelle de la qualité de service dans les réseaux,” PhD
thesis, Université Paris XII, 2004.

[61] S. Martin and P. Minet, “Schedulability analysis of flows scheduled with FIFO: Application to
the expedited forwarding class,” in International parallel and distributed processing symposium, ser.
IPDPS, Rhodes Island, Greece: IEEE, 2006, 8–pp.

[62] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard, “Optimistic problem in the trajectory approach
in FIFO context,” in Conference on emerging technologies and factory automation, ser. ETFA, IEEE,
2013, pp. 1–8.

[63] O. Cros, X. Li, and L. George, “The trajectory approach for afdx fifo networks revisited and cor-
rected,” in International conference on embedded and real-time computing systems and applications, ser.
RTCSA, IEEE, 2014, pp. 1–10.

[64] X. Li, J. Scharbarg, andC. Fraboul, “Analysis of the pessimismof the trajectory approach for upper
bounding end-to-end delay of sporadic flows sharing a switched ethernet network,” in Real-time
networks symposium, ser. RTSS, IEEE, 2011, pp. 149–158.

[65] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst case delay analysis of an afdx
network using and optimized trajectory approach,” Ieee transactions on industrial informatics, vol.
6, pp. 521–533, 2010.

[66] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard, “Optimismdue to serialization in the trajectory
approach for switched ethernet networks,” in Junior workshop on real-time computing, ser. JRWRTC,
IEEE, 2013, pp. 13–16.

[67] I. Asimov, I, robot. Gnome Press, 1950.

[68] M. Kwiatkowska, G. Norman, and D. Parker, “Verification of probabilistic real-time systems,” in
Ecole temps reel, ser. ETR, ACM, 2011, pp. 585–591.

244

REFERENCES

[69] M Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine, “Kronos: A model-checking
tool for real-time systems,” in Workshop on formal techniques in real-time and fault tolerant system,
ser. FTRTFT-FORMATS, Springer, 1998, pp. 298–302.

[70] D. D. R. Alur C. Courcoubetis, “Model-checking for probabilistic real-time systems,” in Interna-
tional colloquium on automata, languages, and programming, ser. ICALP, Springer, 1991, pp. 115–
126.

[71] J. Nutaro, Building software for simulation: Theory and algorithms, with applications in c++. 2010.

[72] R. Kaiser and S. Wagner, “Evolution of the pikeos microkernel,” in International workshop on mi-
crokernels for embedded systems, ser. MIKES, NICTA, 2007, p. 50.

[73] B. Michelson, “Event-driven architecture overview,” Patricia Seybold Group, Tech. Rep., 2006.

[74] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: A flexible real time scheduling frame-
work,” inThe special interest group on ada, ser. SIGAda, vol. 24, ACM, 2004, pp. 1–8.

[75] O. M. Group, “Uml profile for marte: Modeling and analysis of real-time embedded systems,”
Tech. Rep., 2011.

[76] E. Maes, “Validation de systèmes temps-réel et embarqué à partir d’un modèle marte,” Tech. Rep.,
2007.

[77] I. Chuang, “Quantum algorithm for distributed clock synchronization,” Physical review letters, vol.
85, 2006.

[78] P. H. Feiler, B. A. Lewis, and S. Vestal, “The sae architecture analysis and design language (aadl)
a standard for engineering performance critical systems,” in International conference on computer
aided control system design, international conference on control applications, international symposium on
intelligent control, ser. CACSD, IEEE, 2006.

[79] F. Singhoff, J. Legrand, and L. Nana, “Aadl resource requirements analysis with cheddar,” Tech.
Rep., 2005.

[80] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina: An environment for aadl models anal-
ysis and automatic code generation for high integrity applications,” in Ada-europe international
conference, ser. Ada-Europe, Springer, 2009, pp. 237–250.

[81] R. Urunuela, A. Déplanche, and Y. Trinquet, “Storm: A simulation tool for real-time multiproces-
sor scheduling evaluation,” inConference on emerging technologies and factory automation, ser. ETFA,
IEEE, 2009, pp. 1–8.

[82] J. Drake, M. Harbour, J. Gutierrez, P. L. Martinez, J. Medina, and J. Palencia, “Mast: Modeling and
analysis suite for real time applications,” Tech. Rep., 2014.

[83] P. Munk, “Visualization of scheduling in real-time embedded systems,” PhD thesis, Institute of
Software Technology, University of Stuttgart, 2012.

[84] M. Chéramy, P. Hladik, and A. Déplanche, “Simso: A simulation tool to evaluate real-time mul-
tiprocessor scheduling algorithms,” in International workshop on analysis tools and methodologies for
embedded and real-time systems, ser. WATERS, Euromicro, 2014.

245

Conclusion and perspectives

[85] K. Muller and T. Vignaux, “Simpy: Simulating systems in python,” Onlamp. com python devcenter,
2003.

[86] P. Courbin and L. George, “Fortas: Framework for real-time analysis and simulation,” inWorkshop
on analysis tools and methodologies for embedded and real-time systems, ser. WATERS, 2011, pp. 21–
26.

[87] P. Pettersson and K. Larsen, “Uppaal2k,” Bulletin of the european association for theoretical computer
science, vol. 70, pp. 40–44, 2000.

[88] Y. Chandarli, M. Qamhieh, F. Fauberteau, and D. Masson, “Yartiss: A generic, modular and
energy-aware scheduling simulator for real-time multiprocessor systems,” in Laboratoire de
l’institut gaspard monge, ser. LIGM, 2014.

[89] S. Altmeyer, N. Navet, and L. Fejoz, “Using cpal to model and validate the timing behaviour of
embedded systems,” inWorkshop on analysis tools for embedded and real-time systems, ser. WATERS,
Euromicro, 2015.

[90] K. Diemer, P. Axer, and R. Ernst, “Compositional performance analysis in python with pycpa,” in
Workshop on analysis tools for embedded and real-time systems, ser. WATERS, Euromicro, 2012.

[91] A. Hamann, R. Henia, R. Racu,M. Jersak, K. Richter, and R. Ernst, “Symta/s-symbolic timing anal-
ysis for systems,” inWip proc. euromicro conference on real-time systems 2004 (ecrts’04), Citeseer, 2004,
pp. 17–20.

[92] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times: A tool for schedulability
analysis and code generation of real-time systems,” in International workshop on formal modeling
and analysis of timed systems), ser. FORMATS, Springer, 2003, pp. 60–72.

[93] M. Köksal, A survey of network simulators supporting wireless networks. Graduate School of Natural
and Applied Sciences, 2008.

[94] M. Karl, “A comparison of the architecture of network simulators ns-2 and tossim,” Institut für
Parallele und Verteilte Systeme, Tech. Rep., 2005.

[95] K. Harju and S. Korventausta, “Network simulation and protocol implementation using network
simulator 2,” TTKK, Tech. Rep., 2001.

[96] J. Ousterhout, “Tcl: An embeddable command language,” EECS Department, University of Cali-
fornia, Berkeley, Tech. Rep. UCB/CSD-89-541, 1989.

[97] D. Mahrenholz and S. Ivanov, “Real-time network emulation with ns-2,” in International sympo-
sium on distributed simulation and real-time applications, ser. DS-RT, IEEE, 2004, pp. 29–36.

[98] A. Varga and R. Hornig, “An overview of the omnet++ simulation environment,” in International
conference on simulation tools and techniques for communications, networks and systems and workshops,
ser. SIMUTOOLS, ICST, 2008, p. 60.

[99] A. Varga, “The omnet++ discrete event simulation system,” in European simulation multiconference,
ser. ESM, vol. 9, SN, 2001, p. 65.

[100] ——, “Omnet++ user guide,” OpenSim, Tech. Rep., 2014.

[101] J. Outerhout, “Tcl and the tk toolkit,” Tech. Rep., 1994.

246

REFERENCES

[102] T. Steinbach, H. Kenfack, F. Korf, and T. Schmidt, “An extension of the omnet++ inet framework
for simulating real-time ethernet with high accuracy,” in 4th international icst conference on simu-
lation tools and techniques, ser. SIMUTOOLS, ICST, 2011, pp. 375–382.

[103] D. Pediaditakis, S. H. Mohajerani, and A. Boulis, “Poster, the difference of accurate simulation in
wireless sensor networks,” in European conference on wireless sensor networks, ser. EWSN, ACM,
2007.

[104] C. Morgan, Discrete-event system simulation. Pearson, 2012.

[105] A. Varga, “Parameterized topologies for simulation programs,” in Communication networks and
distributed systems, ser. CNDS, 1998, pp. 11–14.

[106] X. Chang, “Network simulations with opnet,” in Conference on winter simulation: Simulation—a
bridge to the future, ser. WSC, ACM, 1999, pp. 307–314.

[107] T. M. R. Coelho M. Szczepanski and G. Fohler, “A web based monitoring tool for afdx networks,”
inWorkshop on analysis tools for embedded and real-time systems, ser. WATERS, Euromicro, 2015.

[108] D. Crockford, “The application/json media type for javascript object notation (json),” Network
Working Group, Tech. Rep., 2006.

[109] G. Murray, “Asynchronous javascript technology and xml (ajax) with the java platform,” Tech.
Rep., 2005.

[110] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis of multiprocessor tasksets,”
in Workshop on analyzing tools and methodologies for embedded and real-time systems, ser. WATERS,
Euromicro, 2010, pp. 6–11.

[111] E. Bini and G. Buttazzo, “Measuring the performance of schedulability tests,” Real-time systems,
vol. 30, no. 1-2, pp. 129–154, 2005.

[112] J. Leung and J. Whitehead, “On the complexity of fixed-priority scheduling of periodic, real-time
tasks,” Performance evaluation, vol. 2, pp. 237–250, 1982.

[113] H. Hoang, M. Jonsson, U. Hagstrom, and A. Kallerdahl, “Switched real-time ethernet with ear-
liest deadline first scheduling protocols and traffic handling,” in Parallel and distributed processing
symposium, ser. IPDPS, IEEE, 2001, 6–pp.

[114] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance.,” in Real time systems symposium, ser. RTSS, IEEE, 2007, pp. 239–243.

[115] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with multiple criticality specifi-
cations,” in Euromicro conference on real-time systems, ser. ECRTS, Euromicro, 2008, pp. 147–155.

[116] B. Huber, C. E. Salloum, and R. Obermaisser, “A resource management framework for mixed-
criticality embedded systems,” inConference of industrial electronics society, ser. IECON, IEEE, 2008,
pp. 2425–2431.

[117] A. Burns and R. Davis, Mixed criticality systems: A review. Department of Computer Science, Uni-
versity of York, 2013, vol. Tech. Rep.

[118] S. Baruah, “Mixed criticality schedulability analysis is highly intractable,” 2009-08-25.
http://www.cs.unc.edu/baruah/pubs.shtml, 2009.

247

Conclusion and perspectives

[119] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable mixed-criticality systems,” in
Real-time and embedded technology and applications symposium, ser. RTAS, IEEE, 2010, pp. 13–22.

[120] J. Real and A. Crespo, “Mode change protocols for real-time systems: A survey and a new pro-
posal,” Real-time syst., vol. 26, no. 2, pp. 161–197, Mar. 2004, issn: 0922-6443. doi: 10.1023/B:
TIME.0000016129.97430.c6.

[121] M.Abuteir andR.Obermaisser, “Mixed-criticality systems based on time-triggered ethernetwith
multiple ring topologies,” in International symposium on industrial embedded systems, ser. SIES, IEEE,
2014, pp. 170–178.

[122] M. Jakovljevic, “Synchronous/asynchronous ethernet networking for mixed criticality systems,”
in Digital avionics systems conference, ser. DACS, IEEE, 2009, 1–E.

[123] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole noc protocol for mixed criticality systems,”
in Real-time systems symposium, ser. RTSS, IEEE, 2014, pp. 184–195.

[124] O.Cros, F. Fauberteau, X.Li, and L.George, “Mixed-criticality over switched ethernet networks,”
Ada user journal, vol. 35, pp. 138–143, 2014.

[125] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie,
“Scheduling real-timemixed-criticality jobs,” Ieee transactions on computers , vol. 61, pp. 1140–1152,
2012.

[126] X. L. O. Cros L. George, “A protocol for mixed-criticality management in switched ethernet net-
works,” inWorkshop on mixed criticality - real time systems symposium, ser.WMC-RTSS, IEEE, 2015.

[127] K. Gibran, Sand and foam. Will Jonson, 1926.

[128] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algorithms: Taxonomy
and survey,” Acm comput. surv., vol. 36, no. 4, pp. 372–421, Dec. 2004, issn: 0360-0300. doi: 10.
1145/1041680.1041682.

[129] L.George and P.Minet, “A fifo worst case analysis for a hard real-time distributed problem with
consistency constraints,” in International conference on distributed computing systems, ser. ICDCS,
IEEE, 1997, pp. 441–448.

[130] B. Hu, K. Huang, G. Chen, L. Cheng, andA. Knoll, “Adaptive runtime shaping formixed-criticality
systems,” in International conference on embedded software, ser. EMSOFT, 2015, pp. 11–20.

[131] J. W. von Goethe, Elective affinities, book i. J. G. Cottaische Buchhandlung, Berlin, 1809.

[132] O. Cros, F. Fauberteau, L. George, and X. Li, “Simulating real-time and embedded networks
scheduling scenarios with artemis,” in Workshop on analysis tools for embedded and real-time sys-
tems, ser. WATERS, 2014, p. 43.

[133] L. G. O. Cros, “Mixed-criticality management of networked real-time systems with artemis sim-
ulator,” in Workshop on analysis tools for embedded and real-time systems, ser. WATERS, Euromicro,
2015.

[134] C. Grannell, Css and html web design. friendsof, 2007.

[135] M. Mokhonoana,The confessions of a misfit: Reasons why i suck so much. Two Way, 2011.

248

REFERENCES

[136] M. de Cervantes, El ingenioso hidalgo don quixote de la mancha. Francisco de Robles, 1615.

[137] G. E. O. Cros L. George, “Dynamic criticality management with artemis,” inWorkshop on analysis
tools for embedded and real-time systems, ser. WATERS, Euromicro, 2016.

[138] H. P. Lovecraft,The defence remains open ! Collected Essays, 1921.

[139] D. Eddings, Pawn of prophecy. Ballantine Books, 1982.

[140] F.G. T.Humernbrumand S.Gorlatch, “Using software-defined networking for real-time internet
applications,” in International multiconference of engineers and computer scientists (imecs’14), vol. I,
2014, pp. 150–155.

[141] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer, P.
Shelar, K. Amidon, and M. Casado, “The design and implementation of open vswitch,” in 12th
usenix symposium on networked systems design and implementation (nsdi’15), Oakland, CA: USENIX
Association, May 2015, pp. 117–130, isbn: 978-1-931971-218.

[142] J. Tolkien,The lord of the rings: The fellowship of the ring. George Allen & Unwin, 1954.

[143] A. Nothomb, Stupeur et tremblements. Albin Michel, 1999.

[144] C. Systems, “Ieee 802.1q-in-q vlan tag termination,” Tech. Rep., 2009.

249

Acronyms

AADL Architecture Analysis and Design Language. 81, 82, 91

AFDX Avionics Full DupleX switched Ethernet. 34, 40–43, 46–49, 74, 88, 89, 93, 94, 122, 179, 183, 192,
208, 212, 231, 250

API Application Programmable Interface. 93, 94, 201, 233

ARTEMIS Another Real-Time Engine for Message Integration Simulation. 12, 14, 16, 164, 182, 183,
193, 194, 197, 200–212, 214–218, 220–222, 224, 226, 227, 230–235

ATM Asynchronous Transfer Mode. 40

AVB Audio-Video Bridging. 35, 43–46, 49, 88, 89

BCET Best Case Excution Time. 96

. 217, 218, 220

BMCA Best Master-Clock Algorithm. 51

CAN Controller Area Network. 35, 88, 89, 105, 110, 122, 179, 208, 212

COTS Commercial Off The Shelf. 14, 34–36, 40, 41, 43, 49, 171, 175, 176, 178, 179, 230, 233, 234

CPU Computing Unit. 83, 96

CRIT Critical. 186

CSMA Carrier-Sense Multiple Access. 46

DEI Drop Eligible Indicator. 39, 40

EDF Earliest Deadline First. 26

FIFO First In First Out. 26, 39, 65, 67, 104, 204

Fortas Framework fOr Real-Time Analysis and Simulation. 84, 86, 87, 98

FP Fixed Priority. 26, 29, 65, 204

251

Conclusion and perspectives

FTT-SE Flexible Time Triggered Switched Ethernet. 49

GPS Global Positioning System. 22, 109, 110, 119

GUI Graphical User Interface. 82, 84, 87, 90–93, 95, 96, 201–203, 205, 209–212, 217, 235

HI High. 107, 115, 116, 120, 121, 125, 127, 135, 136, 140, 141, 145, 150, 155–167, 175–177, 216, 222–
225, 251

HTTP Hyper Text Transfer Protocol. 209

IoT Internet of Things. 22, 168

IRIT Institut de Recherche en Informatique de Toulouse. 235

LAN Local Area Network. 35, 36, 38, 91, 93

LED Light-Emitting Diode. 111

LO Low. 107, 115, 116, 120, 121, 125, 127, 135, 136, 140, 141, 145, 150, 155–163, 165–168, 175–177,
194, 216, 217, 222–225, 251, 252

MAC Media Access Control. 28, 29, 39, 42

MARTE Modeling and Analysis of Real-Time and Embedded systems. 75, 76, 81, 84, 87

MAST Modeling and Analyzing Suite for Real-Time Applications. 83–85, 87

MC Mixed Criticality. 14–16, 34–36, 82, 87, 95, 101, 103, 106–114, 116, 117, 119–123, 125, 126, 128–
130, 132, 134, 135, 137, 151, 152, 154–156, 158, 161, 162, 164, 165, 167, 168, 171–179, 181, 184,
194, 195, 212, 214–217, 220–222, 224–227, 230–235, 252, 254

MISS Mission-Critical. 186

NED Network DEscription. 90, 91

NoC Network-on-Chip. 212

NONC Non-Critical. 186

NS Network Simulator. 88, 89, 91–93

NTP Network Time Protocol. 50

OSI Open Systems Interconnection. 77, 87, 92, 171, 176, 178

PCP Priority Code Point. 39, 40

PDCA Plan Do Check Act. 93

252

Acronyms

PTP Precision Time Protocol. 12, 14, 35, 49–55, 123, 124, 131–134, 140, 154, 171–176, 179, 231, 234

PTP-ETE PTP-End To End. 52–54, 171

PTP-P2P PTP-Peer To Peer. 53–56, 171

QoS Quality Of Service. 14, 43, 44, 46, 49, 76, 106, 154–156, 161, 163, 165–168, 207, 230, 233, 236

RM Rate-Monotonic. 26

RPI Requesting Port Identifier. 55

RT Real-Time. 14–16, 20–30, 34–36, 38–41, 44–46, 49, 50, 54, 55, 58, 60, 62, 72, 74–89, 92, 93, 95–101,
103, 104, 106–114, 116, 119, 122, 123, 125, 151, 152, 154, 155, 164, 168, 171, 177, 183, 194, 200,
201, 203, 212, 214, 215, 227, 230–236

SAFE Safety-Critical. 186

SCC Switch-Criticality Call. 124, 126–133, 135–137, 139–141, 143, 154, 159, 172, 174, 175, 177, 215,
221

SDN Software-Defined Networks. 233

STORM Simulation Tool for Real-time Multiprocessor Simulation. 82–85, 87, 93

TCI Tag Control Information. 39, 40

TDMA Time Division Multiple Access. 47, 48

TTEthernet Time-Triggered Ethernet. 34, 35, 47–49, 179, 208, 231

UDP User Datagram Protocol. 171, 172, 176

UML Unified Modeling Language. 75

VEHI Vehicle-Critical. 186

VLAN Virtual Local Area Network. 39–42, 47, 48, 124, 131–133, 171, 172, 177, 178

WAN Wide Area Network. 35

WCET Worst Case Execution Time. 26, 27, 29, 77, 80, 81, 83, 86, 96–99, 184

WCAT Worst Case Analyzing Time. 31, 38, 44, 48, 50, 59, 63–65, 67, 68, 108, 111–116, 124, 125, 128–
130, 132, 133, 135, 137, 139–143, 146–148, 155, 157, 158, 160, 162, 166, 176, 177, 184–186, 191,
194, 195, 202, 204, 211, 215–218, 220–223, 230

[type=acronym]

253

List of Figures

2.1 Example of a periodic task . 27
2.2 WCET computation model of a task . 28
2.3 Sporadic and periodic flows activation models . 29
2.4 Non-reemptive and preemptive tasks . 30
2.5 WCAT of a flow . 31

3.1 Ethernet 802.3 frame . 38
3.2 Ethernet 802.1Q frame . 40
3.3 Ethernet 802.1Q tag details . 40
3.4 AFDX full-duplex implementation . 42
3.5 TDMA time slots . 44
3.6 Time-triggered Ethernet messages . 45
3.7 FTT-SE synchronous and asynchronous transmission 46
3.8 PTP clock jitter . 48
3.9 PTP end-to-end synchronization . 48
3.10 PTP-ETE transparent clocks . 49
3.11 PTP peer-to-peer synchronization . 50
3.12 PTP body - Fup, Sync and Drep messages . 51
3.13 PTP body - Delayresp message . 51
3.14 PTP body - PDelayreq frame . 51
3.15 PTP body - PDresp and PDresp_Fup frames . 51

4.1 Network flows modelling . 56
4.2 Busy periods . 56
4.3 Non-preeemptive effect . 58
4.4 Trajectory approach details . 59
4.5 Serialization effect . 61
4.6 Illustrative topology for the Trajectory Approach . 64
4.7 Transmission time of message m from v1 . 64
4.8 Topology for the characterization of the optimism due to serialization effect 65
4.9 Serialization effect details . 65

5.1 Time-based simulation . 74
5.2 Event-based simulation . 75

255

Conclusion and perspectives

5.3 Cheddar simulator internal structure . 76
5.4 MAST Suite structure . 79
5.5 MAST event-driven model . 80
5.6 RT Simulation and Analysis tools . 82
5.7 NS emulation model . 83
5.8 OMNeT++ architecture . 84
5.9 OPNET User Interface . 86
5.10 AFDX Monitoring tool architecture . 88
5.11 UUniform taskset generation . 93
5.12 UUniform and UUnifast acceptance ratios . 95

6.1 BMW mixed CAN buses . 102
6.2 Period-oriented criticality management . 106
6.3 WCAT-oriented MC management . 106

7.1 Subnetworks connection . 116
7.2 Increase criticality level . 120
7.3 Example topology . 121
7.4 Scheduling without total order . 121
7.5 MC management centralized protocol . 122
7.6 Switch criticality level date . 122
7.7 Decrease criticality level . 125
7.8 Example topology . 133
7.9 Switch criticality from HI to LO . 133
7.10 Blocking approach example . 135
7.11 Non-blocking approach example . 138
7.12 Non-blocking approach correction . 141

8.1 Network topology . 145
8.2 Scheduling messages . 146
8.3 Decentralized protocol . 148

9.1 ARTEMIS functional structure . 159
9.2 ARTEMIS core logic . 161
9.3 network.xml file example . 161
9.4 message.xml example file . 162
9.5 config.xml file example . 163
9.6 Artemis graphical results . 164
9.7 ARTEMIS web architecture . 166
9.8 ARTEMIS GUI Tabs . 167

10.1 CriticalityManager integration in ARTEMIS . 170
10.2 WCAT-based model . 172
10.3 Real transmission time model . 172

256

LIST OF FIGURES

10.4 Transmission time generation / Uniform model . 174
10.5 Transmission time generation / Uniform model, cumulative probability 174
10.6 Uniform generation model . 175
10.7 Transmission time generation / Gaussian model . 175
10.8 Transmission time generation / Gaussian model, cumulative probability 176
10.9 Gaussian generation model . 176
10.10Transmission time generation / Anti-progressive gaussian model 177
10.11Transmission time generation / Anti-progressive gaussian model, cumulative probability 177
10.12Anti-progressive gaussian generation model . 178
10.13 Progressive gaussian generation model . 178
10.14Topology example . 179
10.15 Static centralized simulation - Uniform model . 179
10.16Dynamic centralized - Anti progressive gaussian model 180
10.17Dynamic centralized - Progressive gaussian model . 181
10.18Dynamic centralized - Uniform model . 181
10.19Dynamic decentralized - Uniform model . 182
10.20Dynamic decentralized - Anti-progressive gaussian model 183
10.21Dynamic decentralized - Gaussian model . 183

11.1 Topology generator performances tests with α = 0.7 . 188
11.2 Topology generator performances tests . 189
11.3 Ethernet bounds applied on generated flows . 192
11.4 Discarded flowsets / Flowset size . 193
11.5 Discarded flowsets / Load . 193
11.6 Gaussian and Linear generation models results . 195
11.7 UUnifast and UUnifast massive acceptance ratios . 196
11.8 Average generated load / target load . 200
11.9 Flowset generation with UUniNet (SIM 1) . 202
11.10 Flowset generation with UUniNet (SIM 2) . 202

12.1 Simulation topology . 206
12.2 Change criticality delay with different number of flows 207
12.3 Change criticality delay depending on the max WCAT in the network 208
12.4 Change criticality delay depending on the max WCAT in the network (Zoom) 208
12.5 Non-blocking and blocking approaches - Impact of flowset size 209
12.6 End-to-end transmission delay with Cc = 1µs . 211
12.7 End-to-end transmission delay with Cc = 2µs . 211
12.8 End-to-end transmission delay with Cc = 2.5µs . 212
12.9 End-to-end transmission delay with Cc = 3µs . 212
12.10Critical rate impact on blocking approach delay . 213
12.11Critical rate impact on blocking approach delay (Zoom) 214
12.12Centralized and Decentralized transmission delays function of the load 216
12.13Centralized and Decentralized transmission delays . 217

257

Conclusion and perspectives

12.14 LO-critical messages transmission with decentralized protocol 218
12.15 LO critical messages assured transmissions . 219

14.1 Criticality integration in PTP frame . 233
14.2 PTP body with MC integration . 234
14.3 Ethernet 802.1Q tag with dual-criticality management 237
14.4 Ethernet 802.1Q header with MC . 237
14.5 MC management with Ethernet 802.1Q-in-Q . 238
14.6 802.1Q-in-Q tags for MC integration inside Ethernet 239

258

List of Algorithms

1 Storing lower criticality levels . 126

2 Decentralized MC management . 147
3 Decentralized MC management for multi-criticality levels 152

4 ARTEMIS simulation algorithm . 163

5 Topology generation algorithm . 187
6 Flowset generation algorithm . 190
7 Ethernet bounds integration algorithm . 191
8 UUnifast-Massive algorithm . 196
9 UUniNet path computation . 199
10 MC integration in UUniNet . 201

11 MC message reception algorithm . 235

259

Gestion de la criticité mixte dans les réseaux temps-réel embarqués et
application à Ethernet commuté

Résumé

Dans les domaines industriels tels que les transports publics, le spatial ou l’aéronautique, toutes les com-
mandes du système sont centralisées via l’ordinateur de bord du véhicule. L’exécution de commandes est
alors assurée par la transmission de messages via un réseau embarqué. Lors de situations critiques (dé-
tection de chocs, phase de décollage, etc...) la transmission des messages critiques (liés aux fonctions cru-
ciales pour l’appareil telles que les commandes de pilotage, la mesure de vitesse, etc...) doit être garantie.
L’objectif de cette thèse est de proposer une solution garantissant dans un même réseau la gestion des
messages de différentes criticités. Ainsi, durant les phases critiques, les messages de plus haute critic-
ité seront transmis dans un temps borné et ne seront pas retardés par la transmission des informations
moins critiques. Cette thèse traite le problème en trois phases : proposer des protocoles de gestion de la
criticité dans un réseau et valider ce protocole par un modèle de calcul de délai, montrer la fiabilité de
ces protocoles via la conception d’un outil de simulation et enfin proposer une implémentation dans les
réseaux Ethernet.

Mixed criticality management into real-time and embedded network
architectures: application to switched Ethernet networks

Abstract

In safety-critical industrial domains such as public transports, spacecraft or avionics, all commands have
been centralized in the system’s dashboard. During critical situations (crash detection, landing phase,
etc...) crucial functions (piloting functions, speed measurement, etc...) transmission has to be guaran-
teed. The purpose of this thesis is to propose criticality management protocols in order to mix messages
of different criticalities inside the same infrastructure. Then, non-critical functions transmissionwill not
delay critical messages transmission. This thesis is splitted in three different parts : proposing criticality
management protocols for embedded networks and validating critical messages end-to-end transmis-
sion time, validating the reliability of these protocols through the conception of a simulation tool and
eventually proposing an implementation of these protocols inside Ethernet networks.

