
HAL Id: tel-01708420
https://theses.hal.science/tel-01708420

Submitted on 13 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the mapping of distributed applications onto
multiple Clouds

Pedro Paulo de Souza Bento da Silva

To cite this version:
Pedro Paulo de Souza Bento da Silva. On the mapping of distributed applications onto multiple
Clouds. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Lyon, 2017. English.
�NNT : 2017LYSEN089�. �tel-01708420�

https://theses.hal.science/tel-01708420
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2017LYSEN089

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée par

l’Ecole Normale Supérieure de Lyon

Ecole Doctorale N° 512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat :
Informatique

Soutenue publiquement le 11/12/2017, par :

Pedro Paulo DE SOUZA BENTO DA SILVA

On the mapping of distributed applications onto

multiple Clouds

Contributions au placement d'applications distribuées sur multi-clouds

Devant le jury composé de :

JEANNOT, Emmanuel Directeur de Recherche Inria Bordeaux Rapporteur

PASCAL-STOLF, Patricia Maître de Conférences IUT de Blagnac Rapporteure

ELMROTH, Erik Professeur University of Umeå, Suède Examinateur

MORIN, Christine Directeur de Recherche Inria Rennes Examinatrice

PEREZ, Christian Directeur de Recherche Inria Grenoble Rhône-Alpes Directeur de thèse

DESPREZ, Frédéric Directeur de Recherche Inria Grenoble Rhône-Alpes Co-encadrant de thèse

Acknowledgements / Agradecimentos

First of all I would like to thank my advisors Christian Perez and Frédéric Desprez for
helping me passing over the many obstacles of this scientific journey.

I also would like to express my deepest gratitude to the members of the jury, Christine
Morin, Patricia Pascal-Stolf, Emmanuel Jeannot and Erik Elmroth for their presence at
the defense of this thesis. I also would like to thank the revisors of this thesis, Emmanuel
Jeannot and Patricia Pascal-Stolf for taking their time to read and evaluate this text and
for sharing with me their very important comments.

It was a pleasant experience to work at the LIP and at Inria all those years. I’m very
grateful for the support and infrastructure made available which allowed me to develop
my research and participate on many conferences and workshops. Clearly, none of that
would be possible without LIP’s staff composed by assistants, Evelyne Bleslé, Marie
Bozo, Chiraz Benamor, Laetitia Lécot, Sylvie Boyer, Catherine Desplanches and Nelly
Amsellem, and the team of (ex-)engineers Laurent Pouilloux, Simon Delamare, Mathieu
Imbert, Jean Christophe Mignot, Serge Torres and Dominique Ponsard.

I also would like to thank all the PhD students from the LIP. In special, I would like
to thank those that became close friends and with whom I shared many happy moments
(and eventually some not so happy ones).

I start thanking all the people that survived sharing the same office with me. In spe-
cial, I would like to thank Violaine VV, Liovaine LV and Radu Carpa. Thanks Violaine
VV, my dearest officemate for 2 years long and holder of the “Palme d’or des Co-bureaux”,
who has always been there for me whenever I needed. Basically you helped me in almost
everything since day one: movings (yes, in plural), e-mail and report reviews, adminis-
trative stuff, snowboarding, etc. Thanks a lot, VV!!! I must also thank Radu for our long
discussions about algorithm ideas, Linux administration (not exactly discussions because
the guy is a damn hacker), and existential dilemmas. Also thanks for all the adminis-
trative help you gave me during our teachings at Lyon 1. I hope one day we will get
over not having bought bit coins when they were cheap. Thanks Liovaine LV, for all the
private French classes and sorry for being such a bad student. Hopefully now I have a
good enough French “rhythme”.

Laurent Pouilloux, thanks for teaching me how to develop a decent environment for
running my experiences and for introducing me to Grid’5000.

Marcos Assunção, grazzie for all the many professional, philosophical and existential
discussions. Also thanks a lot for reviewing and correcting all my articles and the text of
this thesis.

Aurélien Cavelan and Maroua Maalej, thank you for being part with me of the or-

iii

ganization committee of the “Journée des Doctorants du LIP 2016”. It was a really nice
experience.

Fabrice Mouhartem, thanks for helping to keep the PhD seminars alive!
Anthony “Ton-ton-thony”, thanks for presenting me the “incontournables” of French

music. When I’m at a party and “Le Bal Masqué” starts playing, everyone is astonished
when I sing along word by word.

Helène Coullon, thanks a lot for the many discussions and advice! Let’s embrace the
Bretagne!

Thanks Alexandre for all the very interesting related work about stream processing
and for taking the time to discuss that with me.

Thank you, Aurélie for all the delicious grandma-made “confitures”!
Jad, thank you for accepting to cross the France with me for our movings! Again,

let’s embrace the Bretagne!

I also would like to thank the many wonderful people I met during my thesis outside
the gates of the ENS-Lyon.

Thanks Simon, Cécile and Garance for always being there, for the wonderful trips,
barbecues and soirées!

Thanks Ton-ton-thony and Seb, my almost-neighbors, for the many picnics and
soirées!

Barbara, it was really cool to share the same city with you again!
Adelha, Mayroquera, M, DJ Rodragson, Renata, Tiago, Rafa and Lina, thank you

for the many “voz e violão” parties, discussions and trips. Mainly, thank you for your
friendship and for being there!

Christophe, Fanny, Pierre, Antoniette and Mo, the “Le Briey” crew, thanks for all the
wine and French culinary classes, and for making our Friday and Saturday nights unique.

Of course I cannot forget to thank the good old friends who stayed in Brazil (but were
still very present in my life) and those who I met again in France after four years.

To my high school friends from CEFET-SP, thank you for helping me keeping the
moral! Also, thank you for finding the time to go around with me during my flash visits
to Brazil! Love you, guys.

The “Caravana da Depressão” will not be forgotten! Thank you Dani Mingatos (have
you drank your CBB today?), Leo Takuno, Renato Ramalho, Cris Ikenaga, Fábio Franco,
Anderson Borbulhas e Marcelo Hashimoto!

Mylena and D. Montana, thank you for the night long philosophical and existential
discussions! Thank you for being there!

Karine, I’m still grateful for the very first ski and snowboard lesson you gave me!
Thank you, Fábio, Sato and Antoine, for our unforgettable adventure in the start-up

world! We still have a couple of years to became millionaires before 35, isn’t, Fábio?
Thanks a lot Corinne, Arthur, Leonard and the De Decker family, in special Antoine

and Agnès, for adopting me so many times during my stay in France, specially during
holidays. I will never forget the Christmas of 2014!

Finally, I would like to thank my family, the main supporters of this very special
chapter of my academic life. This part of the text will be in Portuguese.

iv

Em primeiro lugar, eu gostaria de agradecer aos meus pais Pedro e Marlene, que, desde
minha infância, me ensinaram a importância da busca pela conhecimento. Sou muito
grato por vocês terem acreditado no meu potencial mesmo quando falsos educadores lhes
diziam que eu seria incapaz de aprender. Obrigado pelos sacrifícios pelos quais vocês
passaram para que eu chegasse aqui. Agradeço também às minhas irmãs Luana e Mayra
pelo apoio.

Faço também um agradecimento especial à minha avó Natália, que sempre foi um
grande exemplo para mim desde criança. Sua vontade de aprender e dedicação aos
estudos sempre me inspirou. Estendo (REF) meu agradecimento à todos os membros da
família Souza, aos meus queridos tios e tias, primos e primas. Faço um agradecimento
especial à minha tia Marli que foi minha primeira professora de francês e que plantou em
mim a vontade de conhecer a França.

Não posso deixar também de agradecer aos queridos tios e tias, primos e primas
da família Bento. Em especial, agradeço minhas queridas tias Fia, Rosa e Márcia, pelas
mensagens virtuais de carinho e preocupação que me enviam frequentemente e por sempre
estarem dispostas a me receber com festa durante minhas visitas relâmpago ao Brasil.

Por fim, faço um agradecimento especial à minha companheira Huana que desde
meus primeiros passos na vida acadêmica tem me apoiado e motivado. Obrigado por
responder com amor e companheirismo os meus frequentes episódios de ausência, mau
humor e frustação. Aproveito também para agradecer aos membros da família Ota e em
especial à Dona Hatsuyo e à Dona Emiko, por sempre terem me feito sentir parte de suas
famílias.

v

Abstract

The Cloud has become a very popular platform for deploying distributed applications.
Today, virtually any credit card holder can have access to Cloud services. There are many
different ways of offering Cloud services to customers. In this thesis we specially focus
on the Infrastructure as a Service (IaaS), a model that, usually, proposes virtualized
computing resources to costumers in the form of virtual machines (VMs). Thanks to
its attractive pay-as-you-use cost model, it is easier for customers, specially small and
medium companies, to outsource hosting infrastructures and benefit of savings related to
upfront investments and maintenance costs. Also, customers can have access to features
such as scalability, availability, and reliability, which previously were almost exclusive for
large companies.

To place a distributed application on the Cloud, a customer must first consider the
mapping between her application (or its parts) to the target infrastructure. She needs
to take into consideration cost, resource, and communication constraints to select the
most suitable set of VMs, from private and public Cloud providers. However, defining
a mapping manually may be a challenge in large-scale or time constrained scenarios
since the number of possible configuration explodes. The large offer of Cloud providers
in the market and eventual advantages of having an application deployed over different
Cloud sites, like redundancy and reachability, for example, make this challenge even more
complex. Furthermore, when automating the mapping definition, scalability issues must
be taken into account since this problem is a generalization of the graph homomorphism
problem, which is NP-complete.

In this thesis we address the problem of calculating initial and reconfiguration place-
ments for distributed applications over possibly multiple Clouds. Our objective is to
minimize renting and migration costs while satisfying applications’ resource and commu-
nication constraints. We concentrate on the mapping between applications and Cloud
infrastructures. Using an incremental approach, we split the problem into three different
parts and propose efficient heuristics that can compute good quality placements very
quickly for small and large scenarios. First we model the problem as a communication
oblivious problem and propose vector packing based heuristics able to calculate initial
placement solutions. Then, we extend our application and infrastructure models by intro-
ducing communication constraints, and propose a graph homomorphism based heuristic
to calculate initial placement solutions. In the last part, we introduce application recon-
figuration to our models and propose a heuristic able to calculate communication and
reconfiguration aware placement solutions.

These heuristics have been extensively evaluated against state of the art approaches
such as MIP solvers and meta-heuristics. We show through simulations that the proposed
heuristics manage to compute solutions in a few seconds that would take many hours or

vii

days for other approaches to compute.

viii

Résumé

Le Cloud est devenu une plate-forme très répandue pour le déploiement d’applications dis-
tribuées. Aujourd’hui, virtuellement tout titulaire d’une carte bancaire peut avoir accès
à des services provenant d’un Cloud. De plus en plus d’entreprises peuvent sous-traiter
leurs infrastructures d’hébergement et, ainsi, éviter les dépenses d’investissements initi-
aux en infrastructure et de maintenance. Beaucoup de petites et moyennes entreprises,
en particulier, ont désormais accès à des fonctionnalités comme le passage à l’échelle, la
disponibilité et la fiabilité, qui avant le Cloud étaient presque réservées à des grandes en-
treprises. Son modèle attractif de coûts “pay-as-you-go”, qui permet aux clients de payer
sur demande les services et ressources utilisés, a un rôle important dans la popularisation
du Cloud.

Les services du Cloud sont offerts aux utilisateurs de plusieurs façons. Dans cette
thèse, nous nous concentrons sur le modèle d’Infrastructure sous Forme de Service. Ce
modèle permet aux utilisateurs d’accéder à des ressources de calcul virtualisés sous forme
de machine virtuelles (MVs).

Pour placer une application distribuée sur le Cloud, un client doit d’abord définir
l’association entre son application (ou ses modules) et l’infrastructure. Il est nécessaire
de prendre en considération des contraintes de coût, de ressources et de communica-
tion pour pouvoir choisir un ensemble de MVs provenant d’opérateurs de Cloud (Cloud
providers) publiques et privés le plus adapté. Cependant, étant donné le nombre ex-
ponentiel de configurations possibles, la définition manuelle de l’association entre une
application et une infrastructure est un défi dans des scénarios à large échelle ou ayant
de fortes contraintes de temps.

La multitude d’opérateurs de Cloud et les avantages d’un placement pertinent d’une
application distribuée sur plusieurs sites du Cloud, comme la redondance et l’accessibilité,
par exemple, rendent ce challenge encore plus complexe. En outre, pour automatiser ce
processus, le passage à l’échelle d’un algorithme d’association ne peut être ignoré. En
effet, le problème de calculer une association entre une application et une infrastructure
est une généralisation du problème de homomorphisme de graphes, qui est NP-complet.

Dans cette thèse, nous adressons le problème de calculer des placements initiaux
et de reconfiguration pour des applications distribuées sur potentiellement de multiples
Clouds. L’objectif est de minimiser les coûts de location et de migration en satisfaisant
des contraintes de ressources et communications. Pour cela, nous utilisons une approche
incrémentale en divisant le problème en trois sous-problèmes et proposons des heuristiques
performantes capables de calculer des placements de bonne qualité très rapidement pour
des scénarios à petite et large échelles.

Premièrement, nous modelons le problème en tant qu’un problème de placement sans
communication et proposons des heuristiques basés sur des algorithmes de vector packing

ix

pour calculer des solutions de placements initiaux. Deuxièmement, nous étendons nos
modèles d’applications et d’infrastructures par l’introduction de contraintes de commu-
nication et proposons une heuristique basé sur des algorithmes de homomorphisme de
graphes pour calculer des solutions de placements initiaux conscients des communica-
tions. Troisièmement, nous introduisons le concept de reconfiguration d’applications à
nos modèles et proposons une heuristique capable de calculer des solutions de placements
conscients des communications et de reconfiguration.

Ces heuristiques ont été évaluées en les comparant avec des approches de l’état de
l’art comme des solveurs exactes et des meta-heuristiques. Nous montrons en utilisant
des simulations que les heuristiques proposées parviennent à calculer des solutions de
bonne qualité en quelques secondes tandis que des autres approches prennent des heures
voir des jours pour les calculer.

x

Contents

1 Introduction 1
1.1 The Challenge of Placing Applications 1
1.2 Motivation: Cloud Computing . 3
1.3 Objective . 4
1.4 Approach to the Problem . 4
1.5 Summary of Contributions . 5
1.6 Publications and Communications . 5

1.6.1 Peer reviewed conferences . 5
1.6.2 Workshop Presentations (Invited Talks) 5
1.6.3 Poster Presentation . 6

1.7 Thesis Structure . 6

2 Context 7
2.1 Distributed Systems . 7
2.2 Cloud Computing . 8

2.2.1 Defining the Cloud . 8
2.2.2 Deployment Models . 9
2.2.3 Service Models . 9
2.2.4 IaaS Revisited . 10
2.2.5 Containers . 12
2.2.6 Cloud Infrastructure . 13
2.2.7 Discussion . 14

2.3 Distributed Applications . 14
2.3.1 Component-Based Software Paradigm 15
2.3.2 Component-Based Models . 16
2.3.3 Discussion . 17

2.4 Placement on the Cloud . 17
2.4.1 Placement in Application Life Cycle 18
2.4.2 Strategies for Performing an Automated Placement 19

2.5 Conclusion . 21

3 Problem Definition and Methodology 23
3.1 Objective and Problem Definition . 23

3.1.1 Distributed Applications . 23
3.1.2 Cloud-Based Infrastructure . 24
3.1.3 Placement . 25

xi

CONTENTS

3.2 Approach . 28
3.3 Evaluation Methodology . 30

3.3.1 Strategy . 30
3.3.2 Experiment . 30
3.3.3 Baseline Algorithms . 32
3.3.4 Evaluation Metrics . 32

3.4 Conclusion . 32

4 Initial Cost-Aware Placement 33
4.1 Introduction . 33
4.2 Problem Statement . 33

4.2.1 Optimization Problem Formulation 34
4.3 Related Work . 35

4.3.1 The Multi Dimensional Bin Packing Problem 36
4.3.2 Strategies Based on Exact Algorithms 36
4.3.3 Strategies Based on Meta-Heuristics 37
4.3.4 Strategies Based on Greedy Heuristics 37
4.3.5 Discussion . 40

4.4 Improved Greedy Heuristics . 41
4.4.1 Choice Of Greedy Heuristics to be Adapted 41
4.4.2 Adding Cost-Awareness . 41
4.4.3 Heterogeneous Bins . 42
4.4.4 The Greedy Group . 43

4.5 Evaluation . 46
4.5.1 Methodology . 46
4.5.2 MIP Solver and Simulated Annealing Analysis 47
4.5.3 Greedy Heuristics . 49

4.6 Conclusion . 55

5 Initial Communication and Cost-Aware Placement 57
5.1 Introduction . 57
5.2 Communication-Aware Placement of Distributed Applications on Multiple

Clouds . 58
5.2.1 Problem Statement . 59
5.2.2 CAPDAMP as Graph Homomorphism Problem 60
5.2.3 Optimization Problem Formulation 60

5.3 Related Work . 61
5.3.1 Exact Algorithms . 61
5.3.2 Meta-heuristics . 62
5.3.3 Heuristics . 62
5.3.4 Discussion . 63

5.4 Modeling the Cloud Infrastructure and Distributed Applications 64
5.4.1 Cloud Network Topology . 64
5.4.2 Distributed Application Communication Topology 65

5.5 Two Phase Communication-Aware Heuristic 65
5.5.1 Phase 1: Decomposition . 66

xii

CONTENTS

5.5.2 Phase 2: Composition . 69
5.5.3 2PCAP Algorithm . 70
5.5.4 Discussion . 72
5.5.5 2PCAP Complexity . 72

5.6 Examples . 73
5.6.1 Example #1 . 73
5.6.2 Example #2 . 74

5.7 Evaluation . 74
5.7.1 Methodology . 77
5.7.2 2PCAP Performance on Small Problems 78
5.7.3 2PCAP Performance on Large Problems 80

5.8 Conclusion . 82

6 Communication and Cost-Aware Placement With Reconfiguration 85
6.1 Introduction . 85
6.2 Problem Statement . 85

6.2.1 Distributed Application and Cloud Computing Models 86
6.2.2 Predicted Duration of Application Execution 86
6.2.3 Reconfiguration Specificities . 86
6.2.4 Placement Objective . 87
6.2.5 Optimization Problem Formulation 87

6.3 Related Work . 89
6.3.1 Migrating Components . 90
6.3.2 Modeling Migration Costs . 90
6.3.3 Discussion . 91

6.4 The 2PCAP-REC Heuristic . 91
6.4.1 Application and Cloud Model . 92
6.4.2 Reconfiguration Model . 93
6.4.3 2PCAP-REC – Two Phase Communication and Reconfiguration

Aware Placement Heuristic . 93
6.4.4 2PCAP-REC Algorithm . 95
6.4.5 2PCAP-REC Complexity . 96

6.5 Evaluation . 98
6.5.1 Methodology . 98
6.5.2 Small Problems (Class A Experiment) 100
6.5.3 Medium and Larger Problems (Class B and C Experiments) . . . 100
6.5.4 Discussion . 104

6.6 Conclusion . 104

7 Conclusion and Perspectives 105
7.1 Perspectives . 106

7.1.1 Different Use Case Perspectives 106
7.1.2 Improvement of Application and Constraint Model Perspectives . 107
7.1.3 Multi-objective Optimization . 108

xiii

List of Figures

1.1 Web application placement example. 2
1.2 Generic view of a placement. 3

2.1 Comparison between VM and container environments. 13
2.2 Application life cycle. 15
2.3 Simple component-based application. 16
2.4 More complex example of component based application. 16
2.5 Topology model from TOSCA as implemented by Winery. 17
2.6 Representation of the “Production/Placement” step. 18

3.1 Distributed application and Cloud infrastructure models. 24
3.2 Example of scenario from Hypothesis 7 26
3.3 Examples of resource constraint problems. 27
3.4 Examples of communication constraint problems. 29

4.1 Initial placement of distributed applications on multiple clouds problem. 34
4.2 MIP solver vs. S.A. – Class A – cost distances. 49
4.3 MIP solver vs. Greedy Group – Class A – cost distances. 50
4.4 S.A. vs. Greedy Group – Class A – cost distances. 50
4.5 S.A. vs. Greedy Group – Class B – cost distances. 51
4.6 Cumulated S.A. vs. Greedy Group – Class B – cost distance. 52
4.7 Executions times from S.A. and Greedy Group. 52
4.8 Execution time ration between S.A. and Greedy Group. 53
4.9 Greedy Group solution ranking. 53
4.10 Distribution of solutions from Greedy Group. 54

5.1 Communication-aware placement example. 59
5.2 Cloud topology and application graph. 64
5.3 Placement example. 67
5.4 Complete Placement Example #1 (cf. Section 5.6.1). 75
5.5 Complete Placement Example #2 (cf. Section 5.6.2). 76
5.6 Application topology schemes. 78
5.7 MIP solver vs. 2PCAP – Class A – cost distances. 79
5.8 Sum of execution times in seconds from 2PCAP and SCIP solver. 79
5.9 Relaxed CAPDAMP vs. 2PCAP – Classes B and C – cost distances. . . 80
5.10 S.A.1 vs. 2PCAP – Classes B and C – cost distances. 81
5.11 S.A.2 vs. 2PCAP – Classes B and C – cost distances. 82

xiv

LIST OF FIGURES

5.12 2PCAP’s execution times. 83

6.1 Reconfiguration placement scenario. 88
6.2 Application and Cloud topologies. 92
6.3 Reconfiguration placement example. 94
6.4 S.A.1 vs. 2PCAP-REC – Classes B and C – cost distances. 101
6.5 S.A.2 vs. 2PCAP-REC – Classes B and C – cost distances. 102
6.6 S.A.3 vs. 2PCAP-REC – Classes B and C – cost distances. 103
6.7 Migration cost amortization – Classes B and C – cost distances. 103
6.8 2PCAP-REC execution times for Classes B and C experiments. 104

xv

List of Tables

2.1 Part of the catalog of Rackspace’s IaaS services. 10
2.2 Part of the catalog of Amazon EC2’s IaaS services. 11
2.3 Part of the catalog of Google Cloud Platform’s IaaS services. 11
2.4 Example of Amazon EC2’s data transfer costs. 12

3.1 Example of experiment class parameters. 31
3.2 Example of intervals of data generation for dimensions. 31

4.1 Summary of variables used in Equation 4.1. 36
4.2 Rank matching example of First Fit Windowed Multi-Capacity. 40
4.3 Experience classes. 47
4.4 Intervals of data generation. 47
4.5 Execution times from greedy heuristics 54
4.6 Greedy Group potential compositions. 55

5.1 Summary of variables used in this section and in Equation 5.2. 61
5.2 Parameters of experiment classes. 77
5.3 Intervals of dimension data generation. 78

6.1 Summary of variables used in in Equation 6.2. 89
6.2 Problem classes and their parameters. 98
6.3 Intervals of dimension data generation. 99

xvi

List of Algorithms

1 Simulated Annealing . 21
2 First Fit Decreasing . 38
3 Function assign called inside Algorithm 2 38
4 First Fit Decreasing Priority . 43
5 Dot Product . 44
6 First Fit Windowed Multi-Capacity . 45
7 2PCAP . 71
8 calculate . 96
9 2PCAP-REC (Differences to Algorithm 7 are highlighted) 97

xvii

LIST OF ALGORITHMS

xviii

Chapter 1

Introduction

Cloud computing has become a popular platform for deploying applications as it provides
an attractive pay-per-use model and enables customers to tap into features that in the
past were available only to large corporations, including fast scalability, availability, and
reliability. Cloud computing services can be accessed in multiple ways. This includes
Infrastructure as a Service (IaaS), a very common service model that consists of providing
computing resources to costumers, usually as a virtual environment composed of virtual
machines (VMs), onto which they can deploy their applications.

Before deploying applications, users need to define which Cloud providers – organi-
zations responsible for providing Cloud based infrastructures to users – to contract and
which Cloud computing resources to rent. Today, this task is challenging. To deal with
the increasing demand for Cloud computing services, the number of Cloud providers has
grown very quickly. Consequently, the number of possible infrastructure configurations
for deploying an application explodes. Thus, in many cases, the process of choosing a set
of computers (or VMs) that best suits a distributed application becomes impractical in
terms of time complexity.

1.1 The Challenge of Placing Applications

We call application placement the two-step process of installing an application on a
hosting infrastructure (such as the Cloud). The first step involves defining a hosting
infrastructure and logically mapping the application or its parts onto it. The second step,
the actual deployment of the application on the infrastructure, follows the logical map
defined in the first step.

Application placement embodies initial and reconfiguration placements. The former
consists in placing an application that has not been previously deployed onto an infras-
tructure. The latter considers reconfiguring an application, or its parts, that has already
been placed.

Usually, a hosting infrastructure must satisfy previously defined application con-
straints in order to successfully deploy and run an application. Other placement ob-
jectives may apply, such as renting cost minimization, data transfer minimization, and
energetic consumption minimization.

Figure 1.1, illustrates the placement of a simple Web application. The mapping and
deployment of machines m1 as host of “Http Server", m2 as host of “Application Server”

1

CHAPTER 1. INTRODUCTION

Application
Server

Http
Server

E-mail
Server Database

N-tier Web Application

Hosting Infrastructure

m1 m2 m3

Figure 1.1: Web application placement example. The gray rectangle represents the Web
application as a whole, i.e. the way users see it. Inside the rectangle we illustrate
as circles the programs necessary to make the application work. Solid arrows indicate
communication between programs and hosting infrastructure. Dashed arrows illustrate
the hardware onto which those programs were installed.

and “E-mail server”, and m3 as the “Database” host represent, together, the application
placement. Notice that m1, m2 and m3 could be three VMs, for example. It is also
important to observe that any of the Web application parts could have been deployed on
other machines before being assigned to m1, m2, or m3. In this case, instead of an initial
placement, we would have a reconfiguration placement.

Placements can be either manually performed or automated. In large scenarios, how-
ever, as the number of possible configurations explodes, it becomes difficult for an appli-
cation manager to take into account all application constraints manually. In this type of
situation, automation is an interesting option. Nevertheless, the problem of placing an
application onto an infrastructure is NP-Complete [54]. This means that there is not a
known polynomial time algorithm that can solve it optimally. Consequently, scalability
issues must be taken into consideration.

We illustrate a more general case of application placement in Figure 1.2. It summarizes
the placement process by representing a distributed application, a hosting infrastructure,
the mapping between application and infrastructure parts, and the deployment of ap-
plication parts on the infrastructure. As application parts could have been previously
deployed on other infrastructures, this figure is representative of initial and reconfigura-
tion placements.

2

1.2. MOTIVATION: CLOUD COMPUTING

Cluster 1

Cluster 2 Super
computer

Cloud

=

Distributed Application Hosting Infrastructure Placement

Figure 1.2: Generic view of a placement. The circle to the left represents a distributed ap-
plication (the subparts of the distributed application are represented in small connected
colored circles), the rectangle in the middle represents the available hosting infrastruc-
tures and, to the right, the connected rectangles filled with colored circles represent the
placement of the distributed application over one of the available hosting infrastructures.

1.2 Motivation: Cloud Computing

When choosing an environment to host a distributed application, a manager must choose
among possibly thousands of VM types, from multiple private and public Cloud providers,
those that are capable of hosting each application part considering application require-
ments, VM prices, and VM resources. If the scenario involves an application that is
already running but whose requirements have changed, the application manager also has
to consider the trade-off between benefits of moving parts of the application – in terms
of performance or renting costs, for example – and migration costs – stemming from un-
availability of the application during the moving, for example. Considering those issues
manually may not be an option since the number of possible configurations is exponential.

Due to the potential size of problems and the time taken by a manager to manually
analyze all possible configurations of placement, the challenge is more evident when we
consider scenarios where an application must be placed in narrow time constraints.

Users may be faced with short-term deadlines to execute their large-scale applications
due to economic advantages, position on marketplace, internal strategy, etc.. We list some
examples where manually calculating a placement may be a time consuming obstacle:

• A manager wants to quickly deploy an application to benefit of less expensive host-
ing infrastructure during a resource auction, such as AWS Spot Instances1 auctions.

• Under a sudden increase in the number of requests to an N-tier Web application, it
may be necessary to quickly react and deploy replicas of some of the tiers.

• Large crisis management systems, such as large-scale simulation, data analysis or

1https://aws.amazon.com/ec2/spot

3

CHAPTER 1. INTRODUCTION

information management systems, may have to be deployed immediately after a
disaster.

• The launch of a more cost effective hosting infrastructure could trigger the mov-
ing/migration of an entire application. To avoid impacting clients, the new place-
ment must be performed quickly.

Hence, automating application placement is therefore crucial. As we discuss in the
next sections, there is an extensive literature on this subject but in spite of the important
contributions made by previous work, there are still many open issues concerning scala-
bility of proposed solutions. Most related work concentrates on solving small to medium
sized problems, i.e., few VM types or small applications. They usually propose solutions
based on exact algorithms, which do not scale, or meta-heuristics, which in spite of be-
ing able to give solutions for large problems in feasible time, have their solution quality
dependent on the amount of time used to compute it.

1.3 Objective

We are interested in the problem of calculating a mapping of parts of a distributed appli-
cation onto multiple Cloud-based infrastructures with the objective of minimizing costs
while meeting resource and communication constraints. Costs stem from VM renting or
from migrating previously deployed distributed application parts to other VMs.

We consider placement problems whose settings are beyond the limits of exact al-
gorithms and meta-heuristics. Consequently, we consider that placement problems may
involve hundreds of Cloud provider sites and thousands of different VM types. Hence,
in this thesis, we concentrate on the study of efficient heuristics, which are scalable and
able to compute good quality placement solutions very quickly.

Our interest is in the mapping step of the placement, but we will use the terms
placement and mapping interchangeably.

1.4 Approach to the Problem

We used an incremental approach to model the placement problem and to design and
develop scalable heuristics able to deal with large-scale scenarios.

We started with a simplified version of the placement problem which did not take
into consideration communication constraints. Our solution was based on vector packing
heuristics able to compute initial placements, i.e. we considered that applications would
be deployed for the first time and there were not previously deployed parts of applica-
tions. Then, we incremented our model by adding communication constraints. For this
problem, we proposed a divide and conquer communication-aware placement heuristic
which uses the previous heuristic. Finally, we added migration costs and the ability to
represent reconfiguration scenarios (i.e. situations where previously deployed applica-
tions parts may need to be moved to other hosts) to the placement model, and proposed
a reconfiguration-aware extension of the previous communication-aware heuristic.

4

1.5. SUMMARY OF CONTRIBUTIONS

1.5 Summary of Contributions

In this thesis we proposed three primary contributions and a secondary contribution. The
primary contributions are the efficient placement heuristics briefly discussed in Section 1.4
and the secondary contribution is the extensive evaluation process that each of those
heuristics had to undergo to be validated. We organize these contributions as follows:

• Cost-Aware Placement Heuristics: Set of heuristics based on efficient multi-
dimensional bin packing heuristics that can calculate initial solutions for commu-
nication oblivious placement problems.

• Cost and Communication-Aware Heuristics: Divide and conquer communication-
aware heuristic able to calculate initial solutions for placement problems.

• Cost, Communication and Reconfiguration-Aware Heuristics: Divide and
conquer communication-aware heuristic that can calculate solutions for placement
problems. It is able to compute initial and reconfiguration placements.

• Heuristic Evaluation: We individually evaluate the proposed heuristics by com-
paring them to baseline algorithms based on state of the art approaches, namely
Mixed Integer Programming solvers and Simulated Annealing meta-heuristics.

1.6 Publications and Communications

The contributions discussed in this thesis were published or presented in several scientific
articles and workshops.

1.6.1 Peer reviewed conferences

1. P. Silva, C. Perez, and F. Desprez, Efficient Heuristics for Placing Large-Scale Dis-
tributed Applications on Multiple Clouds. In 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid’16), May 2016, Cartagena,
Colombia, pp. 483–492.

2. P. Silva and C. Perez, An Efficient Communication Aware Heuristic for Multiple
Cloud Application Placement. 23rd International European Conference on Parallel
and Distributed Computing (Euro-par 2017), August 2017, Santiago de Compostela,
Spain, pp. 372–384.

1.6.2 Workshop Presentations (Invited Talks)

• Hot Topics in Distributed Computing, Flaine, France, March 2015: Presen-
tation of “Efficient heuristics for the placement of component-based applications on
the Cloud”;

• New Challenges in Scheduling Theory, Aussois, France, April 2016: Presen-
tation of “Efficient Heuristics for Placing Large-Scale Distributed Applications on
Multiple Clouds”;

5

CHAPTER 1. INTRODUCTION

• GdR RSD Journées Cloud, Nice, France, September 2016: Presentation of “Ef-
ficient Communication-Aware Heuristics for Placing Large-Scale Distributed Appli-
cations on Multiple Clouds”;

• 11th Cloud Control Workshop, Stockholm, Sweden, June 2017: Presentation
of “An Efficient Communication Aware Heuristic for Multiple Cloud Application
Placement”.

1.6.3 Poster Presentation

• Conférence Parallélisme, Architecture et Système (COMPAS 2015), Lille,
France, July 2015: Poster “Efficient heuristics for the placement of multi-tier appli-
cations on the Cloud”.

1.7 Thesis Structure

This thesis is organized as follows. In Chapter 2, we present the necessary context
and basic concepts related to distributed systems, distributed applications, and Cloud
computing that will be used throughout this thesis. In Chapter 3, we describe our
objective, hypothesis, and evaluation methodology.

We describe our contributions in Chapters 4, 5, and 6. In Chapter 4, we propose com-
munication oblivious heuristics able to calculate initial placement solutions. In Chapter 5,
we propose communication-aware heuristics that can calculate initial placement solutions.
In Chapter 6, we introduce communication-aware solutions to calculate initial and recon-
figuration placement solutions.

We conclude this thesis and discuss perspectives in Chapter 7.

6

Chapter 2

Context

In this chapter we discuss key concepts related to the placement of distributed applications
on the Cloud. The objective is to contextualize our contributions (Chapters 4, 5, and 6)
and create a common ground for definitions and vocabulary.

We discuss in more detail some of the placement challenges introduced in Chapter 1.
First we characterize the main aspects related to hosting infrastructures and distributed
systems, focusing on Cloud Computing, which is the target platform of this thesis. Then,
we briefly describe the main properties of distributed applications, and conclude this
chapter with a discussion about the challenges and specificities of placing applications on
the Cloud.

2.1 Distributed Systems

In this section we introduce the concept of distributed systems, which characterizes the
hosting infrastructure of distributed applications.

Definition 1. “A distributed system is a collection of independent computers that appears
to its users as a single coherent system” [106].

Essentially, distributed systems (cf. Definition 1) are the underlying systems that
host distributed applications. They are composed of several autonomous computation
entities (such as virtual or physical machines) connected over a network. The way in
which machines communicate and the fact that processes and resources may be physically
distributed across multiple computers should be hidden from users of hosted applications.
In the same way, failures in individual computers should be treated by the distributed
system without impacting hosted applications.

An infrastructure composed of resources from Cloud providers as well as computer
clusters and grids is a good example of distributed system.

For the reader interested in a more extensive discussion on distributed systems, please
refer to [106].

7

CHAPTER 2. CONTEXT

2.2 Cloud Computing

Cloud computing is a model that appeared commercially in early 2000s and through which
customers could access computing services over the Internet and pay for what they use.
Its popularization in late 2000s pushed by very large enterprises, such as Amazon [6],
Microsoft [77] and Google [45], changed the way companies managed their computing
infrastructures.

In the next sections, we discuss in more detail the main characteristics of Cloud
Computing and present its most usual service and deployment models.

2.2.1 Defining the Cloud

There are many Cloud Computing definitions available in the literature [109]. In this the-
sis we use the definition proposed by the National Institute of Standards and Technology
of the U.S. Department of Commerce [74] (cf. Definition 2).

Definition 2. “The Cloud Computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction” [74].

Before expanding Definition 2, we need to present two key actors from Cloud com-
puting: cloud computing service providers and cloud service customers .

A Cloud computing service provider (Cloud provider for brevity) is the entity, person
or organization responsible for making a service available to cloud service customers.
It is also responsible for managing the necessary infrastructure to correctly deliver its
services to cloud service customers. For example, Google [42], Amazon [6], Microsoft [77],
Rackspace [95] and IBM [57] are examples of cloud providers.

A Cloud service customer (customer for brevity) is “a person or organization that
maintains a business relationship with, and uses services from, cloud providers”[18].

From Definition 2 we highlight the words “on-demand”, “shared pool” and “rapidly
provisioned and released” because they summarize some of the main characteristics of
Cloud Computing.

Cloud computing services are served on-demand and accessed on the Internet. This
means that customers may require computing capabilities from Cloud providers at any
time. Furthermore, as computing capabilities must be rapidly provisioned, this process
must be completely automated. Computing capabilities can also be elastically provi-
sioned and released at any time by customers. Elasticity provisioning means a dynamic
adaptation of provisioned computing capabilities commonly without service interruption
[27].

The contract between a costumer and a Cloud provider is called Service Level Agree-
ment (SLA) and establishes prices and quality of services. To satisfy SLAs, Cloud
providers resources are pooled to serve multiple customers. Those resources, can be
physical or virtual and are dynamically assigned and reassigned to customers according
to their demand.

8

2.2. CLOUD COMPUTING

Finally, Cloud providers also must dispose ways of measuring, controlling, and re-
porting precise resource usage from customers. The cost of services are usually based on
those metrics, thus, users pay only for what they consume.

2.2.2 Deployment Models

A Cloud Computing Infrastructure may be deployed according to three main types of
models: Private, Public, and Hybrid. The difference between them lies in the level of
access they provide for customers.

A private Cloud (or corporate Cloud) infrastructure has its services offered to cus-
tomers who belong to a single organization. On the other hand, public Cloud offers its
infrastructure to the general public. Hybrid Clouds mix private and public Clouds. In
this case, a Hybrid Cloud is composed of two or more Cloud infrastructures, with different
deployment models, that bind together logically to form one Cloud.

Most of the main companies offering Cloud Computing services propose Public Cloud
services, such as Amazon EC2 [4] or Microsoft Azure [78], and Private Cloud services,
such as Amazon Virtual Private Cloud [5] or Microsoft Azure Stack [79].

2.2.3 Service Models

There are three main types of Cloud Computing service models: Software as a Ser-
vice (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [74].
The main difference between them is the way computing capabilities are offered to cus-
tomers, nevertheless all service models share the characteristics previously discussed in
Section 2.2.1.

SaaS – Software as a Service

In the Software as a Service (SaaS) model, Cloud providers offer access to applications
running on their infrastructure. Usually customers connect to those applications over
the Internet, frequently using a web browser, while the provider is responsible for all the
underlying infrastructure necessary to run the application with the appropriate service
agreement. Online e-mail clients, calendars, file hosting services or text editing tools are
examples of SaaS applications. The main advantages of this model is the ease of access
specially for data oriented applications and the possibility of paying on-demand (pay as
you use) licenses for expensive or sophisticated applications. For example, Evernote [32]
and Google Apps [44] allow users to access productivity software over the Internet for free.
Autodesk’s Fusion 360 [11], offers less expensive on-demand online licences to computer-
aided design (CAD) programs.

PaaS – Platform as a Service

In the Platform as a Service (PaaS) model, providers offer instant computing infrastruc-
tures as in IaaS and also offer the necessary software layer for a specific objective. For
example, a user may want to rent a server ready to run a Map-Reduce application, so
it could have Hadoop [9], Cassandra [8] and other related software ready to use. The

9

CHAPTER 2. CONTEXT

Name RAM vCPUs System Disk Bandwidth Raw Infra Managed Infra

General1-1 1GB 1 20GB SSD 200Mb/s $0.032/hr $0.005/hr
General1-2 2GB 2 40GB SSD 400Mb/s $0.064/hr $0.01/hr
General1-4 4GB 4 80GB SSD 800Mb/s $0.128/hr $0.02/hr
General1-8 8GB 8 160GB SSD 1600Mb/s $0.256/hr $0.04/hr

Table 2.1: Reproduction of part of the catalog of Rackspace’s IaaS services as of available
16/07/2017 at https://www.rackspace.com/cloud/servers/pricing

main advantage of this model is that software licensing and resource elasticity are usu-
ally managed by the service providers, letting users concentrate only on the application.
One example of PaaS is “HDInsight” [80] which provides full configured and maintained
machines ready to run Big Data related applications. Another one is the Google App
Engine [43] which provides the necessary environment to the development of Web appli-
cations.

IaaS – Infrastructure as a Service

In the Infrastructure as a Service (IaaS) model, Cloud providers offer instant comput-
ing infrastructures to customers. These infrastructures commonly consist of computing
servers hosted in virtual machines (VMs). While Cloud providers are in charge of the
maintenance and management of the physical infrastructure, it is up to the customers
to purchase, install, configure, and manage software to be deployed on the provisioned
computing infrastructure. Table 2.1 illustrates a list of VMs offered by Rackspace [95].
For example, a customer could rent five “General1-1” servers with 1GB of RAM, 20GB
of storage, 1 virtual CPU and network bandwidth of 200Mb/s and pay US$0.032 per
hour, per server, totalizing US$0.16 per hour. The main advantage of this model is that
it allows users to deploy or outsource their applications without having to invest on data
centers. As this service model is central to the this thesis, it will be presented in more
detail in the next section.

2.2.4 IaaS Revisited

As the IaaS model has a central role in this thesis, we discuss in more detail some
characteristics of this service model.

Virtual Machines

In Section 2.2.3 we used the term “computing infrastructure” to describe services offered to
IaaS customers by Cloud providers. Throughout this thesis, we consider that computing
infrastructures are virtual machines (cf. Definition 3).

Definition 3. A virtual machine (VM) is a computer program capable of running an
operating system and applications [30]. It must be “an efficient, isolated duplicate of the
real machine”[94].

VMs are hosted in physical machines. There can be several VMs running at the same
time in the same physical machine, however, each VM is isolated from the others, i.e. a

10

https://www.rackspace.com/cloud/servers/pricing

2.2. CLOUD COMPUTING

vCPU ECU RAM (GiB) Storage (GB) Linux/Unix Usage

t2.nano 1 Variable 0.5 EBS Only $0.0059 per Hour
t2.micro 1 Variable 1 EBS Only $0.012 per Hour
t2.small 1 Variable 2 EBS Only $0.023 per Hour
t2.medium 2 Variable 4 EBS Only $0.047 per Hour
t2.large 2 Variable 8 EBS Only $0.094 per Hour
t2.xlarge 4 Variable 16 EBS Only $0.188 per Hour
t2.2xlarge 8 Variable 32 EBS Only $0.376 per Hour
m4.large 2 6.5 8 EBS Only $0.1 per Hour
m4.xlarge 4 13 16 EBS Only $0.2 per Hour
m4.2xlarge 8 26 32 EBS Only $0.4 per Hour
m4.4xlarge 16 53.5 64 EBS Only $0.8 per Hour
m4.10xlarge 40 124.5 160 EBS Only $2 per Hour
m4.16xlarge 64 188 256 EBS Only $3.2 per Hour

Table 2.2: Reproduction of part of the catalog of Amazon EC2’s IaaS services as of
available 16/07/2017 at https://aws.amazon.com/ec2/pricing/on-demand/

Machine type Virtual CPUs Memory Price (USD) Preemptible price (USD)

n1-standard-1 1 3.75GB $0.0475 $0.0100
n1-standard-2 2 7.5GB $0.0950 $0.0200
n1-standard-4 4 15GB $0.1900 $0.0400
n1-standard-8 8 30GB $0.3800 $0.0800
n1-standard-16 16 60GB $0.7600 $0.1600
n1-standard-32 32 120GB $1.5200 $0.3200
n1-standard-64 64 240GB $3.0400 $0.6400

Table 2.3: Reproduction of part of the catalog of Google Cloud Platform’s IaaS services
as of available 16/07/2017 at https://cloud.google.com/compute/pricing

VM is not aware from other VMs existence. VMs have access to virtualized resources
(e.g. memory, storage, computing) which provide the same functionality as the physical
hardware. The piece of software responsible for managing resources and isolation of VMs
in the same physical machine is called a virtual machine monitor [94] or hypervisor.

Usually, Cloud providers dispose of a catalog of multiple VM types. Each VM type
has distinct resource configurations and price, and it is up to the customers to find the
most adapted VM types for their business. We illustrate in Tables 2.1, 2.2, and 2.3 part
of the catalog of VM types from Rackspace [95], Amazon EC2 [4], and Google Cloud
Platform [45]. Even if we used only small samples from each catalog, it is possible to
notice the amount and variety of available VM types.

At customers request, VMs with characteristics of their respective types are started
or instanced on physical machines from Cloud provider’s infrastructure. In general, it is
of the interest of Cloud providers to install multiple VMs per physical machine as this
allows for fewer hardware, smaller data center foot print, and indirectly reduced power
consumption [111]. This process is called consolidation.

11

https://aws.amazon.com/ec2/pricing/on-demand/
https://cloud.google.com/compute/pricing

CHAPTER 2. CONTEXT

Data Transfer OUT From Amazon EC2 To Internet

First 1GB / month US$ 0.000 per GB
Up to 10 TB / month US$ 0.090 per GB
Next 40 TB / month US$ 0.085 per GB
Next 100 TB / month US$ 0.070 per GB
Next 350 TB / month US$ 0.050 per GB

Table 2.4: Reproduction of amazon EC2’s data transfer costs as of available at 16/07/2017
(https://aws.amazon.com/ec2/pricing/on-demand/)

The cost of renting and using VM depends on the contract between customer and
Cloud provider. Usually, customers pay for the amount of hours a VM was available
and sometimes for some specific resource usage. For example, in Table 2.2 (in the first
line), renting an Amazon VM “t2.nano”, would cost US$0,0059 per hour. Furthermore,
following the prices available at Table 2.4, if the amount of data transfered from the VM
to the Internet (outside Amazon) in one month is superior to 1GB the customer would
have to pay US$0.09 per transfered GB over the surplus (up to 10TB).

Sometimes it is necessary to move a VM from a physical machine to another. This
moving is called migration and may be needed because of lack or excess of resources in
the host physical machine, or energetic issues, for example. Migrations can be done live,
i.e. without service interruption, or offline, i.e. with service interruption [25].

Live VM migration is usually only possible inside the same Cloud provider. This
happens mainly because of vendor lock-in, a consequence of hypervisor or VM image in-
compatibility which prevents users from moving their VMs to alternative Cloud providers.
A VM image is a file containing a serialized copy of an entire VM with its state that can
be used by a hypervisor to instantiate it. Very commonly hypervisors or VM image
formats are proprietary to Cloud providers.

2.2.5 Containers

Definition 4. “Containers are a method of operating system virtualization that allows
users to run applications and their dependencies in resource-isolated processes” [100].

Containers run container images, which are executable packages of a piece of soft-
ware [14, 101] containing necessary system configurations, runtime, and code. The main
characteristic of containers is that they run on top of a single kernel instance [101],
thus sharing host’s operating system and, where appropriate, libraries and binaries [14].
Thanks to that, in general, container images have reduced sizes and containers do not
have to deal with the complexity of operating systems. This results in fast instantiation,
deployment and boot up [101] of containers.

In this context, containers can be seen as lightweight VMs. As we discussed in Sec-
tion 2.2.4, VMs run their own operating systems and have hypervisors managing their
isolation from host’s operating systems and from other deployed VMs. We illustrate that
difference in Figure 2.1. Observe that VMs run their different operating systems over a
hypervisor while containers share host’s operating system.

Sharing host’s operating system results in a dependency between containers and host

12

https://aws.amazon.com/ec2/pricing/on-demand/

2.2. CLOUD COMPUTING

Infrastructure

Host OS

Hypervisor

Bins/Libs

App A

OS 1

Infrastructure

Host OS

Container Engine

Bins/Libs

App D

Bins/Libs

App F

Bins/Libs

App E

Bins/Libs

App C

OS 3

Bins/Libs

App B

OS 2

Figure 2.1: Comparison between VM and container environments.

machines. As a consequence, there is a smaller level of isolation between containers
sharing the same host machine. However, depending on the application, this shortcoming
may be acceptable and applications may benefit from container’s lightweight features.

Similarly to VMs, container can be moved from a host machine to another through
migrations and live migrations. However, as containers share the operating system kernel,
the destination host machine must have the same operating system characteristics of the
source host machine.

There are many Cloud providers, as Google [45] and Amazon [3], offering container-
based solutions on the Cloud [1, 89]. In summary, customers provide container images
and, Cloud providers the necessary infrastructure to deploy and run those images. As for
VMs, Cloud providers also assure fast scalability, availability and reliability and follow a
pay-as-you-use fashion.

2.2.6 Cloud Infrastructure

Usually Cloud providers have one or more data centers, spread across Cloud provider
sites or regions, where physical machines are concentrated.

Commonly, customers can select the Cloud provider sites where their required re-
sources will be hosted. This is usually done to reduce latency between application users
and Cloud infrastructure. Although internal data center topology or details about VMs’
hosting physical machines are normally hidden from customers, machines inside a same
Cloud provider site are interconnected by fast networks. On the other hand, data centers
from different Cloud providers are usually connected over Internet and generally do not
have special or dedicated connections.

In spite of that, customers may require resources from different Cloud providers or
sites to balance workload among different regions, to reduce the risk of application un-
availability due to disasters, or to reduce reliance on a single vendor, for example. The
term multiple Clouds is used to characterize situations where a customer requires re-
sources from more than one Cloud provider or site.

13

CHAPTER 2. CONTEXT

2.2.7 Discussion

Cloud computing brings interesting service and deployment models which allow costumers
to outsource their infrastructures and applications. In this section, we summarized the
concept of Cloud computing specially focusing on the IaaS service model which is central
for the contributions of this thesis. We presented the main concepts and actors related to
VMs, namely Cloud providers, Cloud provider sites, and VM types, and we also discussed
some important related issues such as VM type heterogeneity, connection latency and
vendor lock-in.

2.3 Distributed Applications

In this section, we introduce the concept of distributed applications and component-based
applications. Both are essential for describing our contributions (Chapters 4, 5 and 6)
and placement scenarios.

Throughout this thesis we use the definition of distributed application described in
Definition 5.

Definition 5. A distributed application is a computer program installed over and capable
of being executed on a distributed system. It is composed of one or more sub-programs
that cooperate with one another to reach a common goal. In spite of that, it appears to
its users as a single coherent application.

Web applications similar to the one described in Figure 1.1 are examples of dis-
tributed applications. Furthermore, we can also cite distributed databases such as Cas-
sandra [8] and MongoDB [82], big data processing frameworks such as Hadoop [9] and
Spark [10], and multi-player gaming applications such as Pokemon GO [83] and World of
Warcraft [17].

Distributed Application Life Cycle

We summarize in Figure 2.2 a simplified distributed application life cycle. In a first
interaction, an application is designed based on previously gathered requirements. Once
the project is ready, the application is developed and tested. After that, the next step is
to put the application in production by placing it on a distributed infrastructure, then get
feedback from application users to, finally, based on that, restart the cycle by designing
new features.

To materialize this life cycle, specially the development and placement steps (cf.
Figure 2.2), it is necessary to describe applications somehow. Very commonly, specific
custom-made software is developed to interconnect application parts and to prepare them
for the specific hardware onto which they will be deployed. Clearly, the result of this pro-
cedure is a coupled distributed application which is strongly dependent on the way its
parts are connected and on the deployed infrastructure.

The main objective of this thesis is to understand and propose solutions for the prob-
lem of placing distributed applications on the Cloud. We seek a higher level of abstraction
and flexibility for our distributed application model so our solutions can be applied to
a wider range of situations. We found those two characteristics in the component-based
paradigm [104].

14

2.3. DISTRIBUTED APPLICATIONS

Project/Design

Feedback/
Requirements

Production/
Placement

Development

Testing

Figure 2.2: Application life cycle. Each rectangle is a step of the application life cycle.
Arrows indicate the order of steps.

2.3.1 Component-Based Software Paradigm

In the component-based software paradigm, applications are described as composite sys-
tems composed of software components. The main objective of component-based software
is to ease reusable software development by reducing application coupling.

Definition 6. “A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties” [104].

Components (cf. Definition 6) are the basic building blocks of component-based soft-
ware. They hide details of their implementation and, through interfaces, they expose
their dependencies. Commonly, interfaces are use ports or provide ports, which roughly
describe input and output dependencies. By linking components using their interfaces
it is possible to build complex composite applications formally called component assem-
blies. Furthermore, as components interact with one another via well-defined interfaces,
coupling is drastically reduced. With well defined interfaces and hidden implementation,
components may be seen as an independent unit of computing and can be reused in
third party projects. Figure 2.3 depicts an example of a very simple component-based
application.

In Figure 2.4, we present a more complex example than Figure 2.3 illustrating a
holiday reservation system modeled as a component-based application. Notice that com-
ponents connect among themselves using their require and provide interfaces to form a
graph.

15

CHAPTER 2. CONTEXT

Product Order

Figure 2.3: Simple component-based application described using Unified Modeling Lan-
guage 2.0 (UML 2.0) [49]. There are two components with their ports connected. “Order”
is consuming the output of “Product”.

Loyalty Program

Hotel Reservation Credit Card BillingHoliday Reservation

Car Reservation

Flight Reservation

Figure 2.4: Example of a holiday reservation system modeled as a component-
based application described using UML 2.0 [49]. This figure was based on
the public domain figure available at https://commons.wikimedia.org/wiki/File:

Component-based-Software-Engineering-example2.png (last accessed 30/09/2017).

2.3.2 Component-Based Models

The model which defines the semantics of interfaces and composition is called component
model. There are many different component models proposed in the literature [21, 65,
104] such as Corba [48], Fractal [22], and TOSCA [15]. In this thesis we do not adopt
any specific component-based model and a more detailed discussion is out of the scope
of this work. Nevertheless, we briefly introduce TOSCA [15], a component-based model,
to exemplify this concept and its advantages.

TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications) [15] is a com-
ponent model and a standard from the Organization for the Advancement of Structured

16

https://commons.wikimedia.org/wiki/File:Component-based-Software-Engineering-example2.png
https://commons.wikimedia.org/wiki/File:Component-based-Software-Engineering-example2.png

2.4. PLACEMENT ON THE CLOUD

Information Standards (OASIS). It was conceived “to describe composite (Cloud) appli-
cations and their management” [15]. In summary, when deploying an application on a
distributed infrastructure, such as the Cloud, it is necessary to manage the configuration
of the infrastructure. This is an error-prone task since, very commonly, it is based on
badly documented procedures, manual intervention, and scripts. TOSCAS’s addresses
these weakness by featuring fully automated deploying related procedures and further
management functionalities.

Figure 2.5: Topology model from TOSCA as implemented by Winery [63] a Web based
modeling tool. This example was originally published in [63].

To achieve this, TOSCA uses two sub-models: application topology models (Fig-
ure 2.5) and manage plans. In the application topology model, hardware, computer
programs and their possible relationships are described. In the management plans, the
description of how to deploy and manage the application is described in Business Process
Management Notation (BPMN) [47] or Business Process Execution Language (BPEL)
[103]. Figure 2.5 illustrates an example of TOSCA’s topology model.

2.3.3 Discussion

In this section we introduced the concept of distributed applications and discussed the
modeling of this type of application using the component-based paradigm. These two
points are important throughout the thesis because we need to characterize distributed
applications when discussing our placement algorithms in Chapters 4, 5, and 6.

2.4 Placement on the Cloud

In Section 1.1, we concisely introduced the placement of distributed applications on dis-
tributed infrastructures and discussed scalability issues and placement automation. In

17

CHAPTER 2. CONTEXT

Deployment Over
Infrastructure

Profiling Mapping

Production/
Placement

Figure 2.6: Representation of the “Production/Placement” step from Figure 2.2 in detail.
Rectangles are sub-steps and arrows indicate the order between them.

this section, we discuss the usage of Cloud based infrastructures – i.e. a distributed
systems composed of VMs – as a target for placing distributed applications.

2.4.1 Placement in Application Life Cycle

In this section, we discuss in more detail the step “Production/Placement” from the
application life cycle (cf. Figure 2.6).

We decompose this step in Figure 2.2. Before the placement, it is necessary to know
what are the requirements of the application and what are the capacities of the infras-
tructure. The meaning of requirements and capacities depend on the type and objectives
of the application. They can be related, for example, to resource usage (CPU, RAM,
disk, etc.), energetic consumption, physical location, software possibilities, etc.

We call application profiling the step responsible for gathering requirements from
the application and infrastructure profiling the step responsible for gathering capacities,
aligned to application objectives, from a distributed system. We generically call profiling
the step where both application and infrastructure profiling are performed.

The profiling step is essential for the placement to be performed, however, it is out
of the scope of this thesis to propose or discuss in more detail profiling methods or
techniques. There is a wide bibliography about this and we direct the reader interested
in more details to [71, 112].

Once requirements and capacities are gathered, the mapping step (cf. Figure 2.6) can
be performed. The output of this process is a mapping between parts of the application
and machines from the infrastructure. This mapping will be a road map for the actual de-

18

2.4. PLACEMENT ON THE CLOUD

ployment and configuration of the application (cf. “Deployment Over Infrastructure” step
in Figure 2.6). We do not discuss deployment methods in detail. For readers interested
in this subject, we recommend [7].

2.4.2 Strategies for Performing an Automated Placement

Calculating a placement can be an issue when application and infrastructure become
larger. In this thesis we consider that there is a large offer of VM types from many different
Cloud providers. Because of that, the number of possible infrastructure configuration
explodes. In those cases, performing placements manually may not be an option and
automation emerges as a necessity. However, the placement problem is NP-Complete [54],
thus, scalability must be considered.

In the following paragraphs, we briefly analyze some of the main strategies found in
the state of the art of placement automation. In this section, we do not discuss it in
detail because it largely varies depending on the way placement problems are defined.
We prefer to discuss it more extensively in Sections 4.3, 5.3, and 6.3 after presenting and
formalizing our placement problem models.

We divide the approaches available in the state of the art on placement automation
in three groups: exact algorithms, heuristics and meta-heuristics.

Exact approaches

Exact approaches are those aiming at calculating optimal solutions for a problem. The
most common exact approach is the usage of mixed integer problem optimization (MIP)
solvers such as SoPlex [113], CPLEX [56] or CBC [87]. For that, it is necessary to
model the placement problem using an optimization problem formulation which consists
of describing the problem as a set of equalities or inequalities called constraints and an
objective function. One example of an optimization problem formulation is represented
in Equation 2.1, where x is a vector of variables, c and b vectors of known coefficients
and A a matrix of known coefficients.

Maximize/Minimize cTx

subject to:

Ax ď b

x ě 0

(2.1)

From that formulation, using linear or nonlinear integer programming techniques,
solvers manage to calculate optimal solutions. However, mixed integer programming is
NP-Hard [33] and, consequently, solvers are not scalable. To circumvent this issue, many
solvers implement heuristics including branch and bound [26] or branch and cut [88] to
improve time complexity, however, in the worst case, these heuristics are still bounded
by solving complexity.

Hence, using solvers for calculating solutions for placement problems is an option
that should be carefully analyzed as execution time can explode as problem sizes grow.
We refer to [37, 41] for readers interested in a deeper discussion about mixed integer
programming.

19

CHAPTER 2. CONTEXT

Heuristics

A heuristic is an approach to solve a problem without guaranteeing optimal solutions as
a result. It is commonly used to calculate approximate solutions to NP-Hard, NP, or NP-
Complete problems which do not have known polynomial time algorithms to optimally
solve them. It is considered to be a trade-off approach because despite usually being
capable of computing solutions faster than exact approaches, heuristic approaches cannot
guarantee optimality or completeness (capacity of calculating all possible solutions).

Heuristics are extensively used for solving placement related problems [38, 59, 34, 107].
Greedy heuristics [38], graph clustering [59], and graph partition algorithms [120] are
examples of these approaches. We discuss this related work in more detail in Sections 4.3,
5.3, and 6.3.

Meta-heuristics

Meta-heuristics are problem independent approaches used to calculate approximate so-
lutions to hard (NP-Hard, NP, or NP-Complete) optimization problems. The main char-
acteristics of meta-heuristics are (i) not having to deeply adapt to each problem [20] and
(ii) their capacity of effectively reducing large solution search spaces by exploring them
efficiently [105].

There are many consolidated meta-heuristics in the state of the art [20], including
genetic algorithms, simulated annealing and ant colony optimization, for example. How-
ever, in this thesis, we are specially interested in the simulated annealing meta-heuristic
because it is simpler to implement, we were already familiar with it, it does not require
lots of parameter tuning to adapt it to our placement scenarios, and it managed to achieve
good results in similar contexts [52].

In Chapters 5 and 6 we modify some aspects of the simulated annealing algorithm,
namely solution initialization and partial solution generation. Thus, in the next para-
graphs, we discuss this algorithm in more detail.

Simulated Annealing

Simulated annealing is based on the annealing process by which the slowly cooling of a
hot substance is applied to obtain a strong crystalline structure [76, 105]. This is done
through the simulation of the energy changes in a system subjected to a cooling system
until convergence to equilibrium, i.e. the steady frozen state.

Algorithm 1 illustrates a basic implementation of simulated annealing. The algorithm
receives as input an initial solution, a maximal and minimal temperature and a maximal
number of steps. The initial solution is specific to a concrete problem. For example, it
could be a representation of a valid placement. The maximal and minimal temperatures
represent system’s temperatures and interfere on the level of search space exploration
and, consequently, on the duration of executions. The number of steps represents how
many interactions by temperature grade will be done. The output of the algorithm is a
valid solution to the problem.

The core part of Algorithm 1 is described between Lines 5 and 11 where for each
interaction step in a given temperature temp, the energy of newly generated solution
new_solution is compared to the current energy of solution. If new_solution has less

20

2.5. CONCLUSION

Algorithm 1 Simulated Annealing
Input: initial_solution, tempmax, tempmin, stepmax

Output: solution

1: temp Ð tempmax

2: solution Ð initial_solution

3: while temp ą tempmin do
4: step Ð 0

5: while step ă stepmax do
6: step Ð step ` 1

7: new_solution Ðgenerate_solution()
8: ∆energy Ð energy(new_solution) - energy(solution)

9: if ∆energy ď 0 or e
´∆energy

temp ă random_int() then
10: solution Ð new_solution

11: end if
12: end while
13: temp Ðupdate(temp)
14: end while
15: return solution

energy (is colder) than solution, then, a better solution is found. Also, to avoid local

optima, solution may be updated with a probability e
´∆energy

temp (Boltzmann distribution).
After stepmax interactions, the temperature is updated.

The way designers model functions generate_solution and energy is the key to
adapt simulated annealing to concrete problems. For example, energy function must be
able to transform a placement representation to energy representation. One possibility
is to consider the price of a placement as energy so, a solution that costs less has less
energy and, therefore, will be better than a more expensive one.

2.5 Conclusion

In this chapter, our objective was to discuss and define basic concepts concerning dis-
tributed application placement approaches which are important for understanding the
contributions of this thesis (cf. Chapters 4, 5, and 6).

First, we discussed the Cloud Computing and presented its main characteristics, spe-
cially its deployment and service models. Then, we presented in more detail the IaaS
service model, which allowed us to discuss Cloud infrastructure and virtualization char-
acteristics.

In a second time, we introduced the concepts of distributed application and distributed
systems. We also briefly explained the component-based software paradigm and how its
decoupling and reuse properties fit our needs to represent distributed applications.

Finally, we characterized the placement of distributed applications over VMs rented
from Cloud providers and described the challenges of automating this procedure. This is
the core of this thesis and we will discuss this subject in more detail with an extensive
related work in Chapters 4, 5, and 6.

21

CHAPTER 2. CONTEXT

22

Chapter 3

Problem Definition and Methodology

There are many challenges related to calculating the placement of distributed applications
on Cloud-based infrastructure. Just to cite a few, there are issues related to profiling of
application and hosting infrastructure, mapping of application parts to hosting infras-
tructure, deployment, enactment mechanisms, system monitoring, Cloud provider price
evolution, etc.. In this chapter, we precisely characterize our problem of interest and the
hypotheses taken to solve it. We also describe our approach to the problem and delineate
our evaluation methodology.

3.1 Objective and Problem Definition

Objective. The objective of this thesis is to develop an approach for calculating the place-
ment of distributed applications, modeled as component-based applications, on a Cloud-
based infrastructure, composed of virtual machines (VMs) rented from possibly multiple
Cloud providers. This placement must satisfy resource and communication constraints
defined by the application while minimizing VM renting and reconfiguration costs.

In this thesis, we concentrate our efforts on the challenge of mapping a distributed
application onto a Cloud-based infrastructure. Other placement related issues are out of
the scope of this work. In the next sections, we describe our design choices and hypothesis
for the modeling of distributed applications, Cloud-based infrastructures and placement.

3.1.1 Distributed Applications

Throughout this work, we model distributed applications using the component-based
paradigm (cf. Chapter 2). Figure 3.1(a) illustrates an example of a distributed ap-
plication modeled with a simplified component-based modeling language. We consider
that components have requirements which must be satisfied by the hosting infrastructure
in order to be executed.

Hypothesis 1. A description of the requirements of each component is available.

Requirements can be described in terms of resource demands, such as RAM, disk,
number of CPU cores or flops. Each resource requirement from a component is called a
dimension. It is also possible that connections between components establish connection
or communication requirements.

23

CHAPTER 3. PROBLEM DEFINITION AND METHODOLOGY

c1
3

c2

(a)

t3

4

2 3

t1

5

t2

5

5

(b)

Figure 3.1: In (a), we represent a distributed application as a graph. Circles are ap-
plication components, edges are connections among components, and edge weights are
communication requirements. In (b), we represent a Cloud infrastructure also as a graph.
Colored cylinders are VM types, edges are possible connections among instances of VM
types, and edge weights are communication capacities.

Hypothesis 2. Communication requirements are defined in terms of communication
quality.

Communication quality is a metric introduced in Chapter 5 which allows the descrip-
tion of latency in an approximative fashion.

Hypothesis 3. Resource and communication requirements from a component have a
numeric representation1.

Describing requirements using a numeric representation is a simplification needed by
the proposed algorithms presented in Chapters 4, 5 and 6. Figure 3.1(a) illustrates a
simple distributed application describing communication requirements.

3.1.2 Cloud-Based Infrastructure

In this thesis, a Cloud-based infrastructure means an infrastructure composed of inter-
connected virtual machines (VMs) rented from possibly different cloud providers. VMs
must satisfy requirements imposed by hosted application components. To do that, VM
capacities must be larger than application requirements.

Hypothesis 4. A description of the capacities and renting prices of each VM type is
available.

Capacities, in a similar fashion as component requirements, are described in terms of
resource availabilities, including RAM, disk, number of CPU cores or flops. Latencies of
connections among VMs and among Cloud provider sites can be described in terms of
communication quality.

1It suffices that requirements have an ordered representation.

24

3.1. OBJECTIVE AND PROBLEM DEFINITION

Each resource capacity from a VM type is also called dimension. Latency capacities
are called communication capacities.

The following hypothesis concerning Cloud-based infrastructures are used to simplify
issues we do not address in this thesis, allowing us to concentrate on the application
mapping problem.

Hypothesis 5. Resource capacities from VM types and communication capacities from
VM connections have a numeric representation.

Figure 3.1(b) illustrates an example of a Cloud infrastructure model where it is pos-
sible to observe resource and communication capacities from VM types and VM connec-
tions, respectively.

Hypothesis 6. Prices practiced by Cloud providers will hold until the end of placement
computation.

We consider that once we started calculating solutions for a given placement problem,
Cloud providers’ renting prices will not change.

Hypothesis 7. VMs can be instanced as many times as necessary.

Let C be the set of components in the application. Each VM type available can be
instantiated up to |C| times. A VM type can be used to instantiate sufficient VMs to
host all application components, in the case where there is only one component per VM.
Figure 3.2 illustrates this hypothesis. Observe that VM type t1 is instantiated exactly
|C| times.

Hypothesis 8. We do not take into consideration the possibility of vertically scaling,
i.e. increasing a VM’s resource capacities.

Whenever a component requires more resources than what is available in a VM, it is
necessary to instantiate a larger one from a different VM type.

Hypothesis 9. If part of the application is already deployed in the infrastructure and
a reconfiguration is needed, it is possible to interrupt the execution of hosted application
components at any time.

Hypothesis 10. VM instantiation is instantaneous.

3.1.3 Placement

In this thesis, the terms application placement and application mapping will be used
interchangeably.

Resource constraints are a collection of constraints generated from component require-
ments. Rented VMs must satisfy resource constraints from the components they host. A
resource constraint is satisfied when the dimensions of the hosting VM are larger than or
equal to the sum of hosted components dimensions.

25

CHAPTER 3. PROBLEM DEFINITION AND METHODOLOGY

t1

c2c1

v1 v1

c3

v1

Figure 3.2: Scenario where the maximum number of VMs is instanced from VM type t1.
Notice that the number of VMs is equal to the number of components.

Hypothesis 11. Resource constraints are hard constraints, i.e. VMs must satisfy re-
source constraints from hosted components.

Figure 3.3 illustrates an example of this hypothesis. Components c1 and c2 have
dimensions p1, 3, 1q and p2, 1, 3q, respectively. VM types t1 and t2 have dimensions p4, 6, 5q
and p3, 6, 3q, respectively. VMs v1 and v2 are instanced from VM types t1 and t2,
respectively.

Components c1 and c2 could be assigned individually to v1 or v2 since both compo-
nents have requirements smaller than v1’s or v2’s capacities. They could also be assigned
together to v1 given that the sum of each dimension of c1 and c2 is smaller than the
capacity of v1 (4 ě 3, 6 ě 4, 5 ě 4). However, they cannot be assigned together to v2

since the sum of their third dimensions is larger than v2’s third capacity (4 ą 3).

We call communication constraints the set of communication requirements defined
by the application that must be satisfied by rented VMs. For any pair of connected
components, their hosting VM communication capacities must be smaller than or equal
their individual communication requirements.

Hypothesis 12. Communication constraints are also hard constraints, hence, a valid
placement must have every communication requirement satisfied.

Figure 3.4 illustrates examples of placements regarding communication constraints.
Components c1 and c2 are connected and their connection has a communication require-
ment x

comp
1,2 “ 3. Consider that any of the VMs can host both components so we can

concentrate on communication constraint issues.
VMs v1, v2, and v3 which can be instanced from types t1, t2 and t3, respectively,

describe communication capacities xvm
1,1 “ 5; xvm

1,2 “ 4; xvm
1,3 “ 2; xvm

2,2 “ 5; xvm
2,3 “

26

3.1. OBJECTIVE AND PROBLEM DEFINITION

c1
(1, 3, 1)

c2
(2, 1, 3)

c1
(1, 3, 1)

c2
(2, 1, 3)

(a)

c1
(1, 3, 1)

c2
(2, 1, 3)

(b)

t1
(4, 6, 5)

t2
(3, 6, 3)

v1
(3, 3, 4)

v2
(1, 5, 0)

t1
(4, 6, 5)

v1
(1, 2, 1)

c1
(1, 3, 1)

c2
(2, 1, 3)

(c)

t1
(4, 6, 5)

t2
(3, 6, 3)

v1
(2, 5, 2)

v2
(2, 3, 2)

t2
(3, 6, 3)

(d)

v2
(0, 2, -1)

Figure 3.3: Possible placements of application components c1 and c2 on VMs instanced
from VM types t1 and t2. Components c1 and c2 are represented as circles, having
3-dimensional resource requirements (1, 3, 1) and (2, 1, 3), respectively. VM types
t1 and t2 are represented as colored cylinders and have resource capacities (4, 6, 5)
and (3, 6, 3), respectively. Colorless cylinders v1 and v2 are VMs instanced from the
VM types indicated by dashed arrows. Their available capacities – difference between
the total VM capacity and the sum of resources required by components – are also
illustrated. Solid arrows indicate components’ host VMs. Situations (a), (b) and (c)
illustrate valid placements and situation (d) an invalid one – observe that the sum of
components requirements is larger than the capacities of the hosting VM.

27

CHAPTER 3. PROBLEM DEFINITION AND METHODOLOGY

3 and xvm
3,3 “ 5. In this context, the only possible configurations that do not satisfy

communication requirements defined by the application would be those represented in
Figures 3.4(h) and 3.4(i). In these cases, assigning c1 to v1 and c2 to v3 or c2 to v1

and c1 to v3 is not possible because the component communication requirement between
v1 and v2 (xcomp

1,2 “ 3) is larger than the communication capacity between v1 and v3

(xvm
1,3 “ 2).

Hypothesis 13, 14 and 15 are necessary to ease the generation of placement problems
during the evaluation phase. Nevertheless, it is straightforward to modify the proposed
heuristics in order to add or remove costs not currently taken in consideration.

Hypothesis 13. Placement costs are composed of renting costs and migration costs.

Hypothesis 14. The only cost associated to renting a VM is the result of the VM’s
renting price multiplied by the period, in unit of times, that the VM will be available.
We do not take into consideration any other renting related costs (e.g. specific resource
usage, data transfer, number of access, etc.).

Hypothesis 15. Migration costs are defined by an application manager.

The notion of migration costs may vary depending on application objectives or cus-
tomer constraints. For example, transferring data from a Cloud provider to another one
may be charged or not, depending on customer’s contract with the Cloud provider. As
another example, the consequences of application unavailability during a migration may
have different financial impacts on different customers. Thus, as those costs are specific
to applications or customers, in Chapter 6, we model migration costs as functions defined
by an application manager which are called inside our heuristics.

Finally, the following hypotheses are used to simplify the placement problem. Those
issues are very interesting research directions to follow from this thesis.

Hypothesis 16. We do not take into consideration any interference effects that may be
consequence of multiple components sharing the same VM.

Hypothesis 17. We consider that latency capacities are not affected by multiple compo-
nents sharing the same connection. This means that latency will be the same no matter
how many application components are sharing a connection.

3.2 Approach

The problem of calculating the placement of a distributed application on a Cloud-based
infrastructure, as stated in Section 3.1, is NP-Complete because it can be seen as a
generalization of the graph homomorphism problem [54]. To avoid impractical execution
times, in this thesis, we propose heuristics able to calculate solutions to that problem.

In summary, we used an incremental modeling approach to design and develop those
heuristics. While aiming at the placement problem and objective defined in Section 3.1,

28

3.2. APPROACH

t1

c1 c2

5

3

(c)

t1 t2
4

c1 c2
3

(f)

t1
2

t3

c1c2
3

(i)

t1
2

c1 c2
3

t3

(h)

t1 t2
4

c1c2
3

(g)

(d)

t3

c1 c2
3

5

(e)

t2

c1 c2
3

5

v1 v3 v2 v1 v2

55

v1 v2 v1 v3 v1 v3

c1
3

c2

(a)

t3

4

2 3

t1

5

t2

5

5

(b)

Figure 3.4: Possibilities of placement of a distributed application, described in (a), on
a Cloud-based infrastructure described in (b). Circles are application components and
edges connecting those circles are communication requirements/capacities. Colored cylin-
ders represent VM types, colorless cylinders, VM instances, and dashed arrows indicate
VM types from which VMs were instanced from. Solid arrows indicate the VM to which
an application component is assigned. Any of the available VM types could host both c1
and c2, thus we omit resource requirements/capacities and concentrate on communica-
tion constraints. All placements illustrated in situations (c) to (g) are valid placements.
However, situations (h) and (i) are invalid because they do not satisfy communication
constraints. Observe that in both cases the communication capacity is smaller than the
communication requirement (2 ă 3).

29

CHAPTER 3. PROBLEM DEFINITION AND METHODOLOGY

we started with a simplified model of the placement problem and incremented it as
heuristics were being developed.

First we proposed four heuristics capable of computing initial communication-oblivious
placements of component-based application on Cloud-based infrastructures with the ob-
jective of minimizing renting costs and satisfying resource constraints. These heuristics
are presented in Chapter 4.

In a second moment, we developed a heuristic capable of computing initial communication-
aware placements of component-based application on Cloud-based infrastructures with
the objective of minimizing renting costs and satisfying resource and communication con-
straints. The proposed heuristic makes use of the communication oblivious heuristics and
is presented in Chapter 5.

Finally, we proposed a heuristic capable of computing communication and reconfiguration-
aware placements of component-based application on Cloud-based infrastructures with
the objective of minimizing renting costs while satisfying resource and communication
constraints. This heuristic, which is an extended version of the previous communication-
aware heuristic, manages to take into consideration previously deployed components and
to use component migration techniques to reconfigure applications. This heuristic is pre-
sented in Chapter 6.

3.3 Evaluation Methodology

In this section we briefly introduce the methods employed to evaluate the performance
and accuracy of our contributions.

3.3.1 Strategy

The evaluation of the heuristics proposed in this thesis is done by comparing them to
baseline algorithms. The basic idea is to generate a representative set of problems, solve
them by the proposed heuristics and baseline algorithms, and then compare their solu-
tions. A solution is the composite of a valid mapping between application components
and VMs, and the time taken to compute that solution. From a placement solution it is
possible to derive its cost, which comprises renting costs and potential migration costs.

In the next sub-sections we discuss our approach to generate the input problems,
baseline algorithms, and metrics of comparison used for evaluation.

3.3.2 Experiment

An experiment is the resolution of a set of placement problem instances by a set of algo-
rithms within a given timeout. A problem instance is a placement problem characterized
by parameters, application components, VM types, Cloud provider sites, etc., which vary
depending on the modeling being used. As discussed in Section 3.2, in this thesis, the
placement problem model was designed incrementally.

We organize problem instances in experiment classes. Experiment classes are sets of
representative placement problem instances used during the evaluation process as input
for proposed heuristics and baseline algorithms. Representative in this case, means that

30

3.3. EVALUATION METHODOLOGY

A B C

dimensions 4 5 6
components 3,5,7,10 10,20,30,40,50 60,80,100,120,140
vm types 100,250,500,700 500,1000,1500,2000 2500,5000,7500,10000
sites 25,50,100 100,300,500 500,750,1000
tree height 3,5 5 7
application topology l,s,f,r l,s,f,r l,s,f,r

connection schema u d,a,u d,a,u

problem instances 384 720 720

Table 3.1: Example of experiment class parameters. This table is identical to Table 5.2.

Dimension Requirements Capacities

(i) 800 to 3000 1000 to 3500
(ii) 1 to 16 2 to 32
(iii) 1 to 32 2 to 40
(iv) 50 to 3500 150 to 4000
(v) 5 to 30 10 to 80
(vi) 1 to 8 1 to 16

Table 3.2: Example of intervals of data generation for dimensions. This table is identical
to Table 5.6.

different types and sizes of problems are generated resulting in a better observation of
the performance and general behavior of evaluated algorithms.

Problem instances are generated following values previously defined by the experiment
classes to which they belong. Application component and VM type dimensions are ran-
domly generated following previously defined intervals of data generation for dimensions.
Communication requirements and capacities are generated similarly.

Tables 3.1 and 3.2 illustrate examples of experiment class parameters and intervals
of dimension’s values generation, respectively. Both tables are used in the evaluation of
communication-aware heuristics presented in Chapter 5.

Each line of Table 3.1 represents an experiment parameter and each column, the value
of a parameter for a given experiment class, which may be A, B or C, in this example. The
last line indicates the number of problem instances in each class. In Table 3.2, dimension
values for component requirements are picked uniformly from the range defined in the
second column (Requirements) and values for VM type capacities are picked uniformly
from the range defined in the third column (Capacities).

Having different classes helps us organize and group problem instances with similar
characteristics. In this thesis, experiment classes are specially used to classify problem
instances by size. The size of a problem instance relates to the magnitude of its experiment
class’s problem parameters.

The heuristics proposed in this thesis are designed for large-scale scenarios. However
running them also on smaller problems allows us to understand their general behavior in
different situations and to examine them with respect to less scalable baseline algorithms.

31

CHAPTER 3. PROBLEM DEFINITION AND METHODOLOGY

For example, in Chapter 5, we used three different experiment classes A, B, and C (cf.
Table 3.1). Small problems from Class A were used to compare the proposed heuristics to
exact baseline algorithms. Since this type of exact algorithm does not scale well, it would
be impractical to do that analysis using larger problems. Class B problems were used
to compare the proposed heuristics to meta-heuristic based algorithms, which scale way
better than exact algorithms but still would take too much time to calculate solutions for
very large problems. This type of problem is present in Class C and was used to compare
the proposed heuristics to scalable baseline heuristics.

3.3.3 Baseline Algorithms

As we discussed throughout this chapter, to evaluate the heuristics proposed in this thesis,
we compare their solutions to baseline algorithms. In summary, in this thesis we use two
different categories of baseline algorithms: a MIP solver, capable of computing optimal
solutions, but not scalable, and a simulated annealing meta-heuristic, a more scalable
algorithm which manages to calculate good quality solutions if it is given enough time.

Depending on the modeling of the placement problem (cf. Section 3.2), baseline
algorithms parameters may vary (e.g. solver timeout or strategy of computing an initial
solution for simulated annealing).

3.3.4 Evaluation Metrics

A solution calculated by a proposed heuristic or baseline algorithm is composed of three
elements: the mapping between components and VMs, the cost of this mapping, and the
execution time taken to compute the solution. In summary, the evaluation objective is
to indicate that the proposed heuristics manage to compute good quality solutions very
quickly. To do so, we observe two metrics: cost distances and cumulated execution time.

Cost distances are the difference between the cost of the solution calculated by a
proposed heuristic and that calculated by a baseline algorithm. For example, if the
heuristic solution has cost h and the baseline algorithm’s solution has cost b, the cost
distance will be h´ b. We prefer to format this value as a percentage of baseline solution,
thus h´b

b
. This indicates that the heuristic solution is 100.h´b

b
% worst than the baseline.

For example, if h “ 10 and b “ 5, thus h is 100.10´5

5
“ 100% worse than b.

Cumulated execution times describe the time taken by a given algorithm to solve a
set of problem instances.

3.4 Conclusion

In this chapter we presented the objective of this thesis and the hypothesis used during
the design, development, and evaluation of the proposed heuristics. We also have briefly
discussed our evaluation methodology, by delineating the process of evaluation, and have
presented how experiments are organized, the employed baseline algorithms, the main
metrics and the vocabulary used in the next chapters.

32

Chapter 4

Initial Cost-Aware Placement

In this chapter, we describe a first approach for the problem of placing a distributed appli-
cation over multiple Clouds. As we discussed in Section 3, at this moment we concentrate
on issues associated to mapping application components to virtual machines without con-
sidering communication or reconfiguration constraints. The resulting heuristics are used
as building blocks for more sophisticated approaches able to take into consideration com-
munication or reconfiguration constraints. Those approaches are described in Chapters 5
and 6.

4.1 Introduction

This chapter investigates efficient algorithms to compute an initial placement for dis-
tributed applications on multiple clouds. In this context, automating the application
placement is crucial and has been vastly explored in the literature [61], specially in pre-
vious works about cloud brokering [50]. We consider that we are dealing with thousands
of VM types from tens or hundreds of different cloud providers and tens or hundreds of
application components. We consider that components do not communicate with each
other. Due to the potential size of placement scenarios and to the NP-hardness [54, 90]
of the problem, scalability is a central concern.

In this chapter we present heuristics capable of calculating good quality placements
of distributed applications on multiple clouds. Those heuristics, based on First Fit de-
creasing greedy heuristic, manage to calculate placements equivalent to state of the art
solutions using considerable less time.

The characterization of the placement problem is presented in Section 4.2 and an
extensive related work on the domain is discussed in Section 4.3. The proposed heuristics
are detailed in Section 4.4 and their evaluation in Section 4.5.

4.2 Problem Statement

An instance of the distributed application placement on multiple clouds comprises a set
of application components, or just components, for short, that must be placed on virtual
machines (VM) rented from possibly multiple cloud providers which offer a set of VM
types. There is a cost associated to renting a VM.

33

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

Cloud Providers

Component based
application

Figure 4.1: Initial Placement of Distributed Applications on Multiple Clouds Problem:
mapping components from a distributed component based application to virtual machines
instanced from virtual machine types originating from possibly different cloud providers.
The objective is to minimize renting costs and to satisfy application’s performance con-
straints.

Each component has requirements that must be satisfied by the capacities of a rented
virtual machine on which it will be placed. To satisfy a placement constraint, a capacity
must be larger than or equal to a requirement. Examples of requirements or capacities
are: 100 MB of RAM, 10 GB of disk storage, 200 flops of processing, etc. Requirements
and capacities are also called dimensions of a component or VM, respectively.

We consider that there is no limit on the number of VM instances for any VM type.
No component can be assigned to more than one VM, but each VM may hold various
components. The objective is to assign all components to VMs so that requirements of
each component are met, the capacities of each VM are respected, and renting costs are
minimized. This is illustrated in Figure 4.1.

In this chapter, we do not take into consideration network/communication constraints
neither a priori information concerning expected workload, dynamic actors that would
allow online modifications of the placement, and renting times.

Throughout this chapter we refer to the described problem as the Initial Placement
of Distributed Applications on Multiple Clouds Problem or IPDAMP.

4.2.1 Optimization Problem Formulation

In this section we formalize the IPDAMP using an optimization problem formulation.
The result is described in Equation 4.1 and will be used as input to a MILP solver in

34

4.3. RELATED WORK

Section 5.7.
Consider I a set of components, T a set of virtual machine types and D dimensions

of interest. Let ri,d be the value of requirement (or dimension) d ď D of component i P I,
ct,d the value of capacity (or dimension) d ď D of VM type t P T and pt the price of
renting an instance of t per unit of time.

Let vk,t be the k-th rented VM instanced from type t. Notice that 1 ď k ď |I|.
If we consider that only VMs of type t are rented, then at most |I| of them will be
needed. This is the case where there is only one component per VM. Hence, the set
V “ tvk,t | 1 ď k ď |I|, t P T u containing all VMs from type t that could be rented has
size |V | “ |I| ˆ |T |.

Let v P V and cv,d be the capacity of dimension d ď D of rented VM v, i.e., cv,d “ ct,d
and pv is the price paid for renting VM v, i.e., pv “ pt.

Let mi,v “ 1 if a component i is assigned to a rented VM v, and 0 on the contrary.
Let av “ 1 if v were assigned to at least one component and 0 on the contrary.

We formalize this placement problem using an optimization problem formulation in
Equation 4.1. It will be used as input for a MIP (Mixed Integer Programming) solver in
the evaluation section (cf. Section 4.5) for calculating optimal solutions. A summary of
variables defined in this section and used in Equation 4.1 is available in Table 4.1.

Minimize
ÿ

vPV

pv.av

s.t.
ÿ

vPV

mi,v “ 1 @i P I piq
ÿ

iPI

mi,v.ri,d ď cv,d @v P V piiq

1 ď d ď D

av “
!

1 if
ř

iPI mi,v ą 0

0 otherwise
@v P V piiiq

mi,v P t0,1u
av P t0,1u

(4.1)

Constraint (i) guarantees that each component is assigned to at most one VM, (ii)
ensures that no instantiated VM has more components than it can host, (iii) guarantees
that av “ 1 when there is at least one component assigned to v.

4.3 Related Work

In this section, the IPDAMP (cf. Section 4.2) is described as a generalization of the
classic multi-dimensional bin packing problem (also known as vector packing problem).
This way a much wider range of related work, beyond Cloud related bibliography, is
reached allowing for a richer state of the art study.

35

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

I Set of components.
T Set of VM types.
V Set containing all potential VMs.
D Number of resources/dimensions.
vk,t k-th rented VM instanced from type t P T

pt Price of VM type t P T .
pv Price of VM v P V .
av av “ 1 if v P V is being used, 0 otherwise.
mi,v mi,v “ 1 if component i P I is assigned to VM v P V , 0 otherwise.
ri,d Requirement of component i P I on dimension d.
cv,d Capacity of VM v P V on dimension d.

Table 4.1: Summary of variables used in Equation 4.1.

4.3.1 The Multi Dimensional Bin Packing Problem

The IPDAMP is an instance of the cost-aware multi-dimensional bin packing problem
with heterogeneous bins, which is a generalization of traditional multi-dimensional bin
packing problem (MDBPP).

In the classic MDBPP, given a set of n-dimensional items and a set of identical n-
dimensional bins, it is necessary to assign all items to bins using the least number of
bins possible. In its cost-aware version, each bin has an opening price, and the objective
becomes spending the least possible.

The mapping between the cost-aware MDBPP with heterogeneous bins and the IP-
DAMP is direct. Items are components, bins are VM types, item dimensions are compo-
nent requirements and bin dimensions are VM capacities. The opening price of a bin is
the price of renting a VM.

To the best of our knowledge, no work discusses the IPDAMP as presented in Sec-
tion 4.2, but since bin packing and more specifically the MDBPP and their applications
have been vastly explored, there is interesting related work that can be used as start-
ing point to design a solution to our problem. We divided the related work into three
groups based on their solution strategies: exact algorithms, meta-heuristics and greedy
heuristics.

4.3.2 Strategies Based on Exact Algorithms

Strategies based on exact algorithms (cf. Chapter 2) are able to calculate optimal place-
ment solutions. However, as the MDBPP is NP-Hard [90], impractical execution times
become an issue to be taken into account.

In [52], a solver which uses column generation and branch and bound algorithms to
solve multiple type two dimensional bin packing problems is presented. [98] uses a mixed
integer programming (MIP) solver to calculate application placements on VMs, VM re-
source allocation and consolidation, meeting SLA constraints. In the latter, the number
of dimensions is raised to four (CPU, memory, I/O, and bandwidth) in comparison to
the former, however only experiences with at most 20 VM types are performed during
the evaluation. On the same subject, authors of [108] utilize a MIP solver to the problem

36

4.3. RELATED WORK

of VM consolidation aiming at satisfying application SLAs and limiting the number of
VM migrations. Also, they allow for a large number of dimensions, approximating their
problematic to ours. In [118], a MIP solver is used on a control theory based approach
to dynamically calculate the resource allocation for adaptive applications.

Despite optimal solutions, all approaches described in this section suffer from scala-
bility issues. Depending on the size of the problem, the execution time from an exact
algorithm can easily be in the scale of days, as discussed in Section 4.5.2. Also, except
for [98], the cited work is not cost-aware, i.e. none of the solutions considers a price
associated to opening a bin. We address this limitation in our approach and use a MIP
solver to generate optimal solutions to evaluate the proposed heuristics.

4.3.3 Strategies Based on Meta-Heuristics

A common approach to address bin packing, and consequently placement related prob-
lems, is the usage of meta-heuristic strategies (cf. Chapter 2), including genetic algo-
rithms, simulated annealing, particle swarm optimization, ant colony optimization, etc.

The work in [52], [23], and [72] discuss genetic and simulated annealing based heuris-
tics. They describe their placement problems as linear programming problems and use
their objective functions as fitness or energy functions and their constraints as selection
criterion or cooling strategy.

In [46], an approach to do the placement of workflow tasks on the Cloud using a
genetic algorithm is presented. However, in spite of considering the problem of data
locality, it models only two resources and it is implicit that workflow tasks and virtual
machine types must be homogeneous. On the same subject, but addressing the task and
virtual machine homogeneity issues, authors in [96] propose a particle swarm optimization
based strategy. However, the very high computation complexity of the algorithm is not
adequate to our objectives. The same issue characterizes [35], which uses an ant colony
optimization approach to calculate workload placement on the cloud.

In [36] another ant colony based approach for VM consolidation with the objective of
minimizing resource wastage or energy consumption is presented and compared to other
state of the art algorithms. The time consuming of the proposed algorithm is relatively
small, however at the price of using homogeneous physical machines (the VM hosts).

Meta-heuristic based strategies have their solution quality constrained to the available
execution time, meaning that, for large problems, the necessary time to calculate a near
optimal or good quality solution may be impractical. Also, this type of algorithm usually
heavily depends on several application specific tuning parameters to work well. We
address large problem instances that must be solved in feasible time, consequently, this
solution may not be adequate. Furthermore, despite meta-heuristics being possibly orders
of magnitude slower (seconds versus hours) than greedy heuristics, often the quality of
solutions does not follow this proportion, as discussed in [52] and [35].

4.3.4 Strategies Based on Greedy Heuristics

The usage of greedy heuristics and more specifically First Fit decreasing based approaches
are known to be good options to calculate good solutions to the bin packing problem in
feasible time [90, 116].

37

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

An implementation of First Fit decreasing is illustrated in Algorithm 2. First, items
are sorted in decreasing order of size (cf. Line 2) and bins are shuffled (cf. Line 3). Then,
items are assigned to the first bin they fit into (cf. Lines 4 to 11). In this manner, it tries
to assign largest items first. Function “assign”(cf. Line 7) is described in Algorithm 3.
Notice that it tries to assign items to open bins before opening new ones.

Algorithm 2 First Fit Decreasing
Input: items, bins

Output: open_bins

1: open_bins Ð r s
2: sort(items, decreasing)
3: shuffle(bins)
4: for i in items do
5: for b in ropen_bins, binss do
6: if fits(i, b) then
7: assign(i, b, open_bins)
8: break
9: end if

10: end for
11: end for
12: return open_bins

Algorithm 3 Function assign called inside Algorithm 2
Input: item, bin, open_bins

1: if bin is open then
2: addpitem, binq
3: else
4: b Ð openpbinq
5: addpitem, bq
6: open_bins Ð open_bins ` b

7: end if

First Fit has a approximation ratio of 11

9
[116] for one-dimensional bin packing prob-

lems. However, this result does not apply in the multi-dimensional case. When the
number of dimensions is greater than two, it is known that there is no asymptotic poly-
nomial time approximation scheme for the problem, unless P “ NP [13]. Other work [62]
shows that the best possible approximation for this problem would be a p1 ` lnD ` ǫq-
approximation for D ě 2, where D is the number of dimensions, and any ǫ ą 0. Finally,
[114] does an analysis on execution times and concludes that an algorithm with time
complexity Opn log nq cannot do better than a D-approximation. In spite of that, there
are many approaches which does not have formal guarantees but perform well in practice.
We concentrate our state of the art analysis on this type of work.

In the next sections, we present approaches from the state of the art that propose
greedy heuristics able to deal with MDBPP with heterogeneous bins.

38

4.3. RELATED WORK

Measuring Multi-Dimensional Items

First Fit decreasing heuristics depend on sorting one-dimensional items. When dealing
with a multi-dimensional problem, sorting those elements is not straightforward. One
approach to tackle this problem, presented in [90], describes different procedures for mea-
suring or giving a score to multi-dimensional items. In summary, the authors proposed
functions that receive a multi-dimensional element as input and returns a scalar. This
type of function would later be named measure in [38].

We illustrate this concept with very simple measure functions. Let i1, i2 P I be two
items having dimensions d1 “ p3, 5, 2q and d2 “ p4, 3, 3q. The function “size” of those
elements could be simply the sum of their dimensions: sizepi1q “ 3 ` 5 ` 2 “ 10 and
sizepi2q “ 4 ` 3 ` 3 “ 10. It could also be the euclidean norm of their dimensions, thus
sizepi1q “

?
32 ` 52 ` 22 “

?
38 and sizepi2q “

?
42 ` 32 ` 32 “

?
34, for example.

[38], [39], and [90] present Weighted Sum, Average Sum, Exponential Sum, and Priority
measures. They are described in detail bellow.

Let id and bd be the values of dimension 1 ď d ď D of item i P I and bin b P B

respectively. We deliberately use the same nomenclature of sets used in Section 4.2
because, at the end of the day, components can be described as items, VM types as bins,
and VMs as open bins.

• Measure Average Sum [90]: This measure uses the average sum of dimension
values.

Maspiq “
D

ÿ

d“1

p 1

|I| .
jPI
ÿ

jdq.id (4.2)

• Measure Exponential Sum [90]: This measure uses the exponential of average
sum.

Mespiq “ exppǫ.Maspiqq (4.3)

For some constant ǫ.

• Measure Weighted Sum [38, 90]: This measure uses the weighted sum of dimen-
sion values.

Mwspiq “
D

ÿ

d“1

αd.id, 1 ď d ď D (4.4)

αd is a scaling vector that can assume the following values: 1, 1

Cd
, 1

Rd
, and Rd

Cd
where

Cd “ ř

bPB
bd and Rd “ ř

iPI id.

• Measure Priority [38]: This measure uses the maximal normalized value of di-
mensions.

Mppiq “ maxp id
ř

bPB
bd

q, 1 ď d ď D (4.5)

The heuristics visited in this section describe very interesting ways of solving multi-
dimensional bin packing problems. Furthermore, evaluation of the discussed measures
available in the related work indicate that they are an effective way to deal with multi-
dimensionality and heterogeneity. However, before applying those heuristics to IPDAMP
it is necessary to address bin opening costs issues.

39

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

Heuristics that do not use measures

Dot Product [90, 38] is a greedy heuristic which assigns items to bins that maximize a
dot product between an item and all bins, as described in Equation 4.6

DP piq “
D

ÿ

d“1

id.bd, @b P B, 1 ď d ď D (4.6)

The Dot Product heuristic tackles multi-dimensionality and heterogeneity issues, and
has promising results, however, it is not cost-aware, preventing its usage on IPDAMP.

A First Fit based algorithm called First Fit Ordered Deviation is discussed in [52]. Its
strategy manages to efficiently solve the MDBPP, however it is limited to two-dimensional
bin packing problems and only homogeneous bins are considered.

First Fit Windowed Multi-Capacity [66] is a First Fit based algorithm which aims at
balancing residue capacities of open bins. As it has an important role in this chapter,
we explain it in more detail. This heuristic assigns items to bins with the objective of
balancing the usage of dimensions through a rank matching mechanism. It considers that
bins are homogeneous and item requirements are described in terms of percentage of bin’s
capacities. For example, dimensions 1, 2, and 3 of a three-dimensional item i could be
described as i1 “ 0.67b1, i2 “ 0.42b2, and i3 “ 0.8b3, indicating that the values of item’s
dimensions are 67%, 42% and 80% of corresponding dimensions of bin b. For each item,
a rank, based on the magnitude of each dimension, is constructed. The rank of item i

would be r2,1,3s, meaning that the largest dimension is in the third position. Open bin
ranks are also constructed as items are assigned to them. The objective, then, is to find
open bins that match item’s ranks. In the Choose Pack [66] variation of this heuristic, in
which we are interested, matching a bin rank means that, given a window of size w ď D,
the smallest dimension of a bin must be one of the w largest dimensions of an item. If
no open bin can hold the item, then, it is assigned to a new bin. Table 4.2 illustrate an
example of the ranking system.

item / bins r1,2,3s r1,3,2s r2,1,3s r2,3,1s r3,1,2s r3,2,1s
r2,1,3s match match – match – match

Table 4.2: Rank matching example of First Fit Windowed Multi-Capacity (Choose Pack)
for w “ 2. Item ranking is illustrated in the left side and bin rankings in the upper part.
As the two largest dimensions of the item are in positions one and three, the heuristic
will match every bin having a “1” in position one or three.

Preliminary results from First Fit Windowed Multi-Capacity are promising [66], how-
ever, before applying it to the IPDAMP, it would be necessary to address its heterogeneity
issues and cost obliviousness.

4.3.5 Discussion

The discussed literature has shown that the cost-aware MDBPP with heterogeneous bins
and its applications have important open challenges. We discussed an extensive bibliog-
raphy about the MDBPP, a subproblem of IPDAMP, and despite the many contributions

40

4.4. IMPROVED GREEDY HEURISTICS

from related work, we identified a range of issues that limit the usage out of the box of
the proposed algorithms, namely, the cost-obliviousness of all discussed work and homo-
geneity of bins of some heuristics.

4.4 Improved Greedy Heuristics

In Section 4.3.4, we discussed a set of greedy heuristics created to solve the MDBPP.
Due to their limitations, namely cost-obliviousness and homogeneity of bins, however, it
is not possible to use those heuristics directly for solving the IPDAMP.

Our strategy for this issue is, instead of developing new algorithms from scratch, to
adapt existing MDBPP heuristics to the IPDAMP. In the next sections we describe the
heuristics chosen for adaptation and the implemented modifications. In Section 4.4.1 we
list the algorithms chosen for being improved to support IPDAMP placement scenarios,
in Section 4.4.2 we explain the adaptations applied to the heuristics to add cost-awareness
to them, and in Section 4.4.3, we present the necessary modifications to add bin hetero-
geneity to the problem. Finally, in Section 4.4.4, we present the resulting heuristics and
discuss their algorithms.

4.4.1 Choice Of Greedy Heuristics to be Adapted

The algorithms chosen for adaptation with their respective measures (if applicable),
are First Fit Decreasing Priority [38] (FFDP), First Fit Windowed Multi-Capacity [90]
(FFWMC), and Dot Product [90] (DP). The measure Weighted Sum [90, 38] (WS) will
be employed inside FFD-WMC. The criteria for implementation was reproducibility of
the algorithm, promising results concerning execution time and solution quality in the
source article, and consistent performance in our preliminary tests (the latter were based
on the methodology described in Section 4.5.1).

4.4.2 Adding Cost-Awareness

In the traditional MDBPP, the objective is to minimize the number of bins used to
allocate items. Hence, the cost of a solution is associated to the number of open bins.
However, in the cost-aware MDBPP, there is a price for opening bins and they may vary.

To adapt First Fit based greedy heuristics to the IPDAMP, one option is to change
the way bins are sorted. In classic First Fit decreasing (cf. Algorithm 2), the list of bins
is usually shuffled and items are assigned to the first bin they fit into. In a cost-aware
environment with the objective of minimizing bin opening costs, one approach would be
to sort the bin list by decreasing profitability. In this way, the algorithm would try to
assign items to the most profitable bins first.

One way to quantify profitability is to use the ratio capacity

price
. For example, in the

cost-aware MDBPP, a solution with ten $1 bins of size s ą 0 is better than a solution
with one $20 bin of size 10s. Both solutions successfully assign all items to bins, but the
former costs $10 and the latter $20. The ratio capacity

price
of the first bin (s

1
) is larger than

that of the second one (10s
20

).

41

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

Another important point to minimize costs is to open bins the least often possible,
hence, using the capacities of already open bins is imperative. To do so, before looking
for new bins, we verify if items can be assigned to any of already open bins.

For the heuristics using measures, namely FFDP, DP, and WS, first, it is necessary
to adapt their functions so they can be used to measure bins, too. For that, it is enough
to replace id by bd, the capacity of bin b P B over dimension 1 ď d ď D. To include the
profitability ratio, we multiply the metric by 1

pb
where pb is the cost of opening bin b.

This process is described bellow for Weighted Sum and Priority measures.

• Weighted Sum

M
bin
ws ptq “ 1

pb

D
ÿ

d“1

αd.bd (4.7)

Coefficient αd “ Rd

Cd
“

ř

iPI
id

ř

bPB
bd

is a scaling vector [39].

• Priority

M
bin
p ptq “ max

ˆ

1

pb
.

bd
ř

bPB
bd

˙

(4.8)

For the Dot Product (DP) heuristic, it is also necessary to consider bin prices when
calculating the dot product. As described in Equation 4.9, we introduce the profitability
ratio by multiplying each dot product by 1

pt
. In this way, dot products of cheaper bins

will be larger than those of more expensive ones. To be able to explore open bins before
opening new bins, a dot product between unassigned items and open bins is calculated
before opening a bin.

DP binpiq “ 1

pb

D
ÿ

d“1

id.bd, @b P B (4.9)

To make First Fit Decreasing Windowed Multi-Capacity (FFD-WMC) cost-aware,
bins are sorted using the cost-aware version of measure Weighted Sum (Equation 4.7).
Hence, more profitable bins would be scanned first. At this point, however, FFD-WMC
does not have heterogeneous bins, thus all bins have the same opening price. This issue
will be addressed in the next section.

4.4.3 Heterogeneous Bins

Among the heuristics in which we are interested, First Fit Decreasing Windowed Multi-
Capacity (FFD-WMC), considers that bins are homogeneous. As discussed in Sec-
tion 4.3.4, items requirements are described in terms of percentage of bin’s capacities
and it is essential that item’s dimensions share the same base so they can be compared.
Our strategy to allow for heterogeneous bins, is to construct a maximal bin, which is com-
posed of the largest dimension capacities from all bins combined and use it as basis of
comparison. Thus, ranks dimensions become percentages of this maximal bin dimensions.

For example, consider a scenario with three different bins e, f , g having dimensions
r2, 4, 5s, r2, 2, 3s, and r6, 3, 4s, respectively. The reference maximal bin bmax would have
dimensions r6,4,5s containing the largest dimensions from e, f , g : first dimension from

42

4.4. IMPROVED GREEDY HEURISTICS

g, and second and third dimensions from e. In this manner, dimensions r3, 1, 4s of an
item i would be described as r3, 1, 4s “ r0.5 ˆ bmax

1
, 0.66 ˆ bmax

2
, 0.8 ˆ bmax

3
s and i’s rank

would be r1,2,3s.

4.4.4 The Greedy Group

In Sections 4.4.2 and 4.4.3 we described procedures to add cost awareness and bin het-
erogeneity to four different heuristics/measures: First Fit Decreasing Priority (FFDP),
First Fit Windowed Multi-Capacity (FFWMC), Dot Product (DP), and Weighted Sum
(WS), which is used by FFWMC.

In this section we present the pseudo-code of the three resulting heuristics FFDP,
FFWMC, and DP in Algorithms 4, .5, and 6, respectively.

First Fit Decreasing Priority (FFDP)

Algorithm 4 illustrates the heuristic FFDP. It makes use of function sort_using_measure
(Lines 2 and 3) which takes as input a set of multi-dimensional items or bins, a measure
function, and a sorting parameter. The sorting function uses the measure function to
calculate the size of the set of items or bins and them sort it using the sorting parameter
(increasing or decreasing order). Notice, that the way items and bins are sorted is the
only difference between FFDP and the classical First Fit Decreasing (cf. Section 2).

In Algorithm 4, items are sorted decreasingly using Priority measure Mp (cf. Equa-
tion 4.5) in Line 2. Similarly, in Line 3, bins are sorted decreasingly using the cost-aware
Priority measure (cf. Equation 4.8).

Algorithm 4 First Fit Decreasing Priority
Input: items, bins

Output: open_bins

1: open_bins Ð r s
2: sort_using_measure(items, Mp, decreasing)
3: sort_using_measure(bins, Mbin

p , decreasing)
4: for item P items do
5: for bin P ropen_bins, binss do
6: if fits(item, bin) then
7: assign(item, bin)
8: break
9: end if

10: end for
11: end for
12: return open_bins

Dot Product (DP)

Algorithm 5 illustrates the heuristic DP. In summary, the objective of this heuristic is to
assign items to bins or open bins that maximize dot product function DP bin. It uses two

43

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

important functions compute_dot_prods (cf. Lines 2 and 4) and
get_bin_with_max_dot_prod (Lines 9 and 5).

Function compute_dot_prods receives a set of items, a set of bins, and a “dot
product” function as parameters. It outputs a matrix containing the result of the appli-
cation of the “dot product” function between each item and bin. Function
get_bin_with_max_dot_prod receives a “dot product” matrix and an item as in-
put, and outputs the bin with the largest “dot product” value which has sufficient space
to host the input item.

The algorithm works as follows. First, compute_dot_prods is called (cf. Line 2),
with all items, all bins and the cost-aware “dot product” function DP bin (described in
Equation 4.9) as parameters. The matrix with all results is stored in variable dot_products.
Then, the heuristic will go through the set of items (between Lines 3 and 12). For each
item, it will try to assign it to open bins first and, if it does not fit to any of them, to a
new bin.

When checking open bins, the heuristic first needs to calculate the “dot product”
function DP bin between the item being assigned and all open bins. The results are
stored in vector open_bin_dot_prods (cf. Line 4). Then, this vector is searched by
function get_bin_with_max_dot_prod (cf. Line 5) in order to find an open bin
that can host the item being assigned and which maximizes the “dot product” function
DP bin. If an open bin with these characteristics is found, the item is assigned to it.
Otherwise, the heuristic will have to open a new bin.

A new bin that can host the item being assigned and whose “dot product” function
DP bin is maximized is the result of a call to function get_bin_with_max_dot_prod
(cf. Line 9). The item can finally be assigned to that bin (cf. Line 10).

This process is repeated until all items are assigned to bins.

Algorithm 5 Dot Product
Input: items, bins

Output: open_bins

1: open_bins Ð r s
2: dot_prods Ð compute_dot_prods(items, bins, DP bin)
3: for item in items do
4: open_bin_dot_prods Ð compute_dot_prods(item, open_bins, DP bin)
5: open_bin Ð get_bin_with_max_dot_prod(open_bin_dot_prods, item)
6: if D open_bin then
7: assign(item, open_bin)
8: else
9: new_bin Ð get_bin_with_max_dot_prod(dot_prods, item)

10: assign(item, new_bin)
11: end if
12: end for
13: return open_bins

44

4.4. IMPROVED GREEDY HEURISTICS

First Fit Windowed Multi-Capacity (FFDWMC)

Algorithm 6 illustrates an implementation of the FFDWMC heuristic. There are four
functions which are called inside FFDWMC: create_max_bin, calc_rank,
sort_using_measure, and match.

Functions sort_using_measure and assign are explained in Sections 4.4.4 and
4.3.4, respectively.

Algorithm 6 First Fit Windowed Multi-Capacity
Input: items, bins

Output: open_bins

1: open_bins, item_ranks, bin_ranks Ð r s
2: max_bin Ð create_max_bin(bins)
3: for item P items do
4: item_ranksritems Ð calc_rank(item, max_bin)
5: end for
6: for bin P bins do
7: bin_ranksrbins Ð calc_rank(bin, max_bin)
8: end for
9: sort_using_measure(bins, Mbin

ws , decreasing)
10: for item P items do
11: stop Ð False

12: for open_bin P open_bins do
13: if fits(item, open_bin) then
14: if match(item_ranksritems, open_bin_ranksropen_bins) then
15: assign(item, open_bin)
16: open_bin_ranksropen_bins Ð calc_rank(open_bin, max_bin)
17: stop Ð True

18: break
19: end if
20: end if
21: end for
22: if stop then
23: break
24: end if
25: for new_bin P bins do
26: if fits(item, bin) then
27: assign(item, bin)
28: open_bin_ranksrbins Ð calc_rank(bin, max_bin)
29: break
30: end if
31: end for
32: end for
33: return open_bins

Function create_max_bin takes as input all bins being considered and returns a

45

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

maximal bin which will be used to build item and bin rankings, as described in Sec-
tion 4.4.3.

Function calc_rank takes as parameter one item/bin and the maximal bin and
returns the ranking of its dimensions in relation to the maximal bin (cf. Section 4.3.4).

Function match receives the ranks of items and a set of bins/open bins, as input. It
outputs “True” if there is a match between item and bins/open bins rankings and “False”
otherwise. The procedure behind rank matching is explained in Section 4.3.4.

The algorithm is straightforward. First, in Line 2, a maximal bin is created and used
to calculate rankings for each item (cf. Line 4) and bin (cf. Line 7). Then, bins are
sorted decreasingly using measure Mbin

ws . The core of the heuristic is represented between
Lines 10 and 32. In summary, the heuristic will try to first assign items to open bins.
The latter are chosen following the dimension ranking matching of each item with each
potential open bin. If an open bin matches the ranking of an item, it will be assigned to
that bin. Otherwise, that item will be assign to the first bin it fits into as in traditional
First Fit Decreasing heuristics (cf. Section 4.3.4).

4.5 Evaluation

This section evaluates the performance of the greedy heuristics described in Section 4.4
which are able to calculate solutions for the IPDAMP. This is done through a comparative
analysis between the proposed heuristics to two state of the art solutions, namely, a MIP
solver and a simulated annealing meta-heuristic.

Before that, it is important to present how the evaluation experiments were performed
and how their input data were generated.

4.5.1 Methodology

In this section we discuss the methodology used to evaluate the proposed greedy heuris-
tics. In Chapter 3 we have discussed in detail the methodology, notation, and metrics
used for evaluating our contributions. Hence, in this section, we summarize concepts
previously presented and focus on particularities of proposed heuristics’ evaluation, such
as experiment format, problem classes parameters or test platform characteristics.

As we discussed in Section 3.3, an experiment is the resolution of a set of placement
problem instances by a set of algorithms within a given timeout. A problem instance is
composed of a group of components and a group of virtual machine types, both describing
dimensions requirements and capacities, respectively.

We define two classes of experiments, A and B, distinguished by problem instances
sizes as described on Table 4.3. The small problem instances from Class A are used to
evaluate the performance of greedy and meta heuristics against an exact algorithm, as the
latter presents scalability issues. Class B is composed of large problem instances which
are used to evaluate the greedy heuristics against meta-heuristics.

To construct problem instances it is necessary to generate the values of VM capac-
ities, prices, and component requirements. The procedure we use is the generation of
pseudo-random values picked uniformly inside an interval using the method randint from
Python’s module random. Table 4.4 presents those intervals in detail.

46

4.5. EVALUATION

Class A Class B

dimensions 1,2,3, . . . ,8 1,2,3, . . . ,8

components 1,2,3, . . . ,19 10,20,30, . . . ,100

vm types 100,200,300, . . . ,1000 1000,2000,3000, . . . ,10000

problem instances 1520 800

Table 4.3: Experience classes.

Dimension Requirements Capacities

(i) 800 to 3000 1000 to 3500
(ii) 1 to 16 2 to 32
(iii) 1 to 32 2 to 40
(iv) 50 to 3500 150 to 4000
(v) 5 to 30 10 to 80
(vi) 1 to 8 1 to 16
(vii) 1 to 10 5 to 40
(viii) 10 to 80 10 to 80

Table 4.4: Intervals of data generation.

To generate the VM renting prices, we use the capacities from the first 4 VM type
dimensions, in a way that the larger they are, the more expensive is the renting price. We
simulate different prices from different cloud providers through the generation of pseudo-
random coefficients, as before, using the method randint, from predefined intervals. The
price of a VM type pt “ α`β`γ`δ where α “ ci,1ˆrandintp1,3q; β “ ci,2ˆrandintp8,20q;
γ “ ci,3 ˆ randintp5,8q; δ “ ci,4 ˆ randintp10,15q, if ci,4 ď 500, otherwise δ “ ci,4 ˆ
randintp20,25q.

Our test platform and greedy heuristics were developed in Python and experiments
were conducted on Dell PowerEdge R720 (2 CPUs, 6 cores) and AMD Opteron 6164 HE
1.7GHz (2 CPUs, 12 cores) from Taurus and Stremi clusters from Grid’5000 [12].

4.5.2 MIP Solver and Simulated Annealing Analysis

We are interested in evaluating the performance of our greedy heuristics with the very
large problem instances from Class B (cf. Table 4.3). It would be interesting to compare
the solutions from greedy heuristics to the optimal of each problem instance, however, as
we are dealing with a NP-Hard problem, this is impractical.

Our strategy, then, is try to calculate the optimal solution of each problem instance
from a Class A experiment (cf. Table 4.3) giving the MIP solver 30 hours per instance to
do this task. Using these data, we validate the performance of our simulated annealing
implementation and use it as a baseline algorithm to analyze the performance of the
greedy heuristics on the large Class B problem instances.

47

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

MIP Solver

To evaluate the performance of MIP solvers, we integrated to our test platform the SCIP
solver [2], a framework for constraint integer programming and branch-cut-and-price (the
formulation of the placement problem is described in Section 4.2.1).

We conducted one Class A experiment using SCIP with a timeout of 30 hours. The
framework managed to calculate the optimal for around 34% of all Class A problem
instances. These solved problem instances are mainly characterized by having a small
number of application components, virtual machine types, and dimensions. This perfor-
mance is expected as we are dealing with a NP-Hard problem. Even if we consider that
there is room for improvement of the solver performance by optimizing the modeling or
by using a faster solver, we would still expect a low rate of solved instances due to the
nature of the problem we are dealing with.

Simulated Annealing

As discussed in Section 4.3, using meta-heuristics to solve problems similar to the bin
packing problem is a very common approach. Among all algorithms of this type, including
genetic algorithms, particle swarm optimization, ant colony optimization and others, we
choose the simulated annealing because, in addition to successful experiences in other
similar contexts [52], it has less configuration parameters, thus it is easier to apply it to
our problem.

We used the Simanneal [91] module, which is written in Python and was easily inte-
grated to our test platform. Also, we conducted Class A and Class B experiments using
a 10 minutes timeout per problem resolution. We use 10 minutes instead of the 30 hours
given to SCIP solver because 10 minutes is more realistic and also because during our
tests we noticed that, in most of cases, after this time, the solution improvements became
scarcer.

We observed that simulated annealing managed to output solutions for all problem
instances in less than ten minutes. Furthermore, it managed to compute optimal solutions
for around 97% of the problems where the optimal was known. As SCIP managed to
calculate the optimal for around 34% of Class A problems, this totalizes around 33% of
all problems.

We illustrate in Figure 4.2 the distances between simulated annealing solutions and
optimal solutions. To construct this graph, we grouped all Class A problem instances
by number of components and plotted, in form of box plot, the distances (or differences)
between solution costs from MIP solver and simulated annealing. Throughout this chap-
ter we group solutions by number of components because this parameter showed to be
the one that most interferes on solution cost in a consistent way. We can notice that in
spite of the small variation observed as the number of components grows, the distance
is always smaller than 3% and the median is always zero, except when the number of
components is 17.

Even if it was only possible to compare the solutions from simulate annealing to the
optimal in a reduced portion of the problems, we have a promising indication of the
capabilities of this meta-heuristic. This justifies the usage of simulated annealing as
baseline in our further analysis.

48

4.5. EVALUATION

1110 1312 14 17161 32 54 76 98
Components

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
st

 D
is

ta
nc

e
%

Figure 4.2: Distances between solution costs from MIP solver and simulated annealing
aggregated by number of components for Class A experiment.

4.5.3 Greedy Heuristics

In this section, our objective is to evaluate the performance of proposed greedy heuristics.
The main goal is evaluating them using the large Class B experiences, however, we also
investigate the performance of the greedy heuristics using the 34% of Class A problems
whose optimal solution is known.

The evaluation strategy is, at first, analyzing the performance of the greedy heuristics
together, i.e., comparing them in group to other algorithms and then, in a second mo-
ment, evaluating them individually. We consider that the greedy heuristics are executed
sequentially, thus, when group comparing, the execution time is the sum of the execution
times from all involved greedy heuristics. Then, we keep only the best placement – less
expensive – among all solutions calculated by greedy heuristics.

We use data gathered from Class A and B experiments with a timeout of 10 minutes
to solve each problem instance. Class A and B experiments are used to evaluate greedy
heuristics against the MIP solver and simulated annealing respectively.

Greedy Group Analysis – Class A Experiment

At first we compare solutions from the group of heuristics to the available 34% of optimal
solutions from Class A problem instances. Figure 4.3 illustrates cost distances (cf. 3.3.4)
between the group of greedy heuristics solutions and optimal values.

The first thing to notice is that despite giving very few optimal solutions (about 3.4%),
the greedy heuristics group managed to output solutions at most 30% more expensive
than the optimal with medians varying between 5.52% and 22.25%.

As simulated annealing managed to calculate optimal solutions in 97% of cases, we
do not plot the distances between the greedy group and simulated annealing as the
results will be essentially the same as illustrated in Figure 4.3. Nevertheless, we plot the
distances between the greedy group and simulated annealing considering 100% of Class
A problems. This is illustrated in Figure 4.4. In this case, medians vary between 5.56%
and 24.88%, and distances between -8.22% and 45.86%. Notice that this is consistent
with medians interval found when comparing the greedy group against optimal solutions

49

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

1110 1312 14 17161 32 54 76 98
Components

0

5

10

15

20

25

30

Co
st

 D
is

ta
nc

e
%

Figure 4.3: Distances between optimal solution costs and greedy heuristic group’s aggre-
gated by number of components for Class A experiment.

1110 1312 1514 1716 19181 32 54 76 98
Components

10

0

10

20

30

40

50

Co
st

 D
is

ta
nc

e
%

Figure 4.4: Distances between solution costs from simulated annealing and greedy heuris-
tic group aggregated by number of components for Class A experiment.

(medians varying between 5.52% and 22.25%). Negative distances (around 3.18%) refer
to situations where greedy heuristics group managed to output a better solution than
simulated annealing.

Finally, in both graphs it is possible to identify a degradation of greedy heuristics
group solutions as the number of components raises, specially when the number of com-
ponents is greater than 12.

To complete this first analysis, it is important to analyze all algorithms execution
times. The solver was given a timeout of 30 hours per problem instance to solve all Class
A problems and was able to solve only about 34% of them. Simulated annealing was
given a 10 minutes timeout per problem instance but managed to calculate solutions for
all Class A problems in around 2.47 hours (average of about 7 seconds per problem). The
greedy block, was given a 10 minutes timeout, however, they took only 23.21 seconds
to calculate solutions for all Class A problems (average of 20 milliseconds per problem
instance).

There are some preliminary conclusions taken from this first analysis. The quality
of solutions is at most 30% worst than the optimal but they are calculated much faster,

50

4.5. EVALUATION

10010 3020 5040 7060 9080
Components

20

10

0

10

20

30

40

Co
st

 D
is

ta
nc

e
%

Figure 4.5: Distance between simulated annealing solution costs and greedy heuristic
group aggregated by number of components.

indicating a reasonable solution quality. Also, when comparing Figures 4.3 and 4.4 it is
possible to identify that cost distance medians follow a similar pattern, which indicates
that simulate annealing would be an interesting choice as a baseline algorithm.

Greedy Group Analysis – Class B Experiment

Figure 4.5 illustrates the cost distance between the group of greedy heuristics and sim-
ulated annealing. Solutions are aggregated by the number of components from solved
problem instances. It is possible to observe that the greedy heuristic group managed to
output a better solution than simulated annealing to around 15% of problem instances.
One can notice that it happens more frequently when the number of components is bigger
than 70. This is observed because the timeout of 10 minutes is not sufficient for simulated
annealing to calculate a better solution as the size of problem instances grows.

In the remainder 85% of problem instances, where simulated annealing outputs better
solutions, we can also observe that although the distances are always smaller than 40%,
the median never exceeds 30%.

Figure 4.6 helps us to have a better understanding on how worse was the solution
cost of greedy heuristics on these 85% of problem instances where simulated annealing
calculated better solutions. The Y-axis is the percentage of solved problem instances
and the X-axis is the cost distance between the greedy heuristic group and simulated
annealing. The solid curve is the aggregated percentage of problem instances. We can
observe that around 40% of solutions are between 11% and 20% worse than simulated
annealing and, most importantly, that around 95% of solutions are at most 30% worse
than simulated annealing’s ones. This clearly indicates that, depending on the application
requirements, the degradation of solution quality may not be very significant, especially
when taking into account the difference between execution times from the group of greedy
heuristics and the simulated annealing which will be discussed in the following lines.

51

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

0~10 10~20 20~30 30~40 40~50
% distance to s.a. solution

0

10

20

30

40

50

60

70

80

90

100

%
 p

ro
bl

em
 in

st
an

ce
s

Aggregated
Absolute

Figure 4.6: Distance between solution costs from simulated annealing solutions and
greedy heuristics group on problem instances where simulated annealing solutions were
better.

In Figure 4.7 the execution times to solve problems with the same number of com-
ponents are summed up. While the sum of execution times from greedy heuristics vary
from 25 to 210 seconds, simulated annealing’s ranges from 26200 to 42185 seconds, i.e.
from 7.3 to 11 hours.

Figure 4.7: Sum of execution times from greedy heuristics group (above) and simulated
annealing (bellow) to solve all problem instances. Results are aggregated by number of
components.

This can be better seen in Figure 4.8, which aggregates the ratio between greedy
heuristics group and simulated annealing execution times by number of components and
plot this data as a box plot. We are using ratios instead of distances percentages because
of the huge gap between values. The sum of greedy heuristic group execution times is at
least 96 times and at most around 4046 times faster than simulated annealing’s.

It is well known that the usage of heuristics involves a trade-off between solution

52

4.5. EVALUATION

10 20 30 40 50 60 70 80 90 100
Components

26

27

28

29

210

211

212

Pr
op

or
tio

n

Figure 4.8: Ratio between simulated annealing and greedy heuristics execution times
aggregated by number of components.

Figure 4.9: Percentage of best, second best and third best solutions by greedy heuristic.

quality and execution time. The analysis of the performance of our greedy heuristics as a
block indicated that even with an execution time between 96 to 4046 times smaller, the
greedy heuristics managed to output comparable and sometimes better solutions than
simulated annealing’s for large problems.

Individual Analysis

In this section, we evaluate the greedy heuristics individually using a Class B experiment.
Our objective is to understand their behavior and also to investigate how the reduction
of the group of greedy heuristics would affect solution quality.

Figure 4.9 illustrates the percentage of best, second best, and third best solutions
per greedy heuristic. We notice that First Fit Decreasing Priority (FFD-P), First Fit
Decreasing Windowed Multi-Capacity (FFD-WMC), and Dot Product (DP) have the
best solutions for around 56%, 29%, and 30% of problem instances respectively. Even
if DP has a relatively small number of best solutions, it manages to output second best
solutions to almost 57% of problems. Thus, DP gives the best or second best solution to
around 74% of all problems. FFD-P and FFD-WMC manage to do the same to 76% and
50% of problem instances, respectively.

53

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

Figure 4.10: Distance in % from best greedy heuristic solution per algorithm and number
of occurrences in % of problem instances.

Figure 4.10, which illustrates the percentage of problems where a greedy heuristic
did not have the best solution and the distance to it, helps us understand the behavior
of solutions that were not the best ones. The most important aspect to notice in this
graph is that, for all considered algorithms, the maximum distance to the best solution is
bellow 25% and that, in most of the cases, it is bellow 10%. Also, one can notice that DP
manages to give a solution at most 10% worst than the best greedy solution for 99.20%
of problem instances where it does not output the best solution.

This first analysis based only on solution cost quality indicates the superiority of
FFD-P and DP against FFD-WMC, however, to have a better understanding, it is nec-
essary to verify their individual execution times too.

Table 4.5 summarizes the individual execution times from the considered greedy
heuristics. Those values are the sum of the execution times used to compute solutions
to all Class B problem instances. We can observe that despite giving good solutions,
DP responds for around 90.78% of the sum of greedy heuristics execution times, followed
by FFD-WMC and FFD-P, responsible for around 6% and 2.44% respectively. This in-
dicates that it may be interesting to reduce the size of the greedy heuristics group to
have a smaller execution time. However, it is also important to verify the impact of this
reduction on the solution quality.

Algorithm Time (s) Participation
B.F. Dot Product 1012.535 90.78%
F.F.D. Priority 27.25 2.44%
F.F.D. Windowed Multi-Capacity 75.57 6%

Table 4.5: Execution times from greedy heuristics

Table 4.6 presents metrics related to possible combinations of greedy heuristics groups.
It is possible to verify that using only FFD-P improves the execution time in 97.55%.
However, doing so also degrades 43.47% of solutions in about 17.38%. Also, we can
verify that it is possible to improve the execution time in 90% with a smaller impact over
solution quality when using FFD-P and FFD-WMC together. In this case, we observe
that around 19.02% of solution costs would suffer a degradation between 0.87% and 4%,

54

4.6. CONCLUSION

MAX AVG MIN MED DEG IMP
DP 9.93 4.46 0.02 4.64 41.08 9.21
FFD-P 17.38 3.73 0.01 1.97 43.47 97.55
FFD-WMC 16.34 7.07 0.01 5.56 69.58 93.22
DP & FFD-P 6.20 2.07 0.02 1.38 18.61 6.77
DP & FFD-WMC 9.93 4.72 0.02 4.73 50.13 2.44
FFD-P & FFD-WMC 4.00 0.87 0.01 0.58 19.02 90.78
DP & FFD-P & FFD-WMC 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.6: MAX, AVG, MIN and MED are maximum, average, minimum, and median of
solution costs distances, in percentage of solutions from the original group of heuristics.
DEG is the percentage of solutions that were degraded and IMP is the execution time
improvement in percentage of original execution time.

in average. Thus, clearly, if it is necessary to improve execution time, the best option is
to remove DP from the group of heuristics.

Finally, we identify 3 possible configurations for the greedy heuristics group: (i) the
fastest one, which would be composed uniquely of FFD-P, with an improvement of 97.55%
of execution time but with around 43.47% of its solutions degraded, (ii) the medium
term, which would be composed of FFD-P and FFD-WMC, with an improvement of
90.78% of execution time but having 19.02% of solutions degraded and, (iii) the slowest
configuration, composed of FFD-P, DP, and FFD-WMC which give the best solutions.
It is important to notice, however, that “slowest” here means a configuration capable of
solving all Class B problem instances in less than 19 minutes with per problem execution
time averages of 1.4 s, 0.03 s and 0.1 s for DP, FFD-P and FFD-WMC, respectively. We
also observed maximum execution times of 5.7 s, 0.23 s and 0.35 s for DP, FFD-P, and
FFD-WMC, respectively, i.e., very short execution times.

4.6 Conclusion

In this chapter we discussed the problem of calculating initial placements of distributed
applications over Cloud based infrastructures. Applications built upon several compo-
nents have to be deployed over multiple Clouds to benefit from many different VMs with
different renting costs. This is indeed a complicated problem, specially as the complexity
of these applications and the number of parameters and features grows.

Our objective was to describe fast algorithms to solve the problem of calculating an
initial placement for component-based applications over multiple clouds. In addition, we
considered that the parameters of this problem (number of VM types, multiple cloud
providers, number of components, number of dimensions, and objective functions) could
be large, which might prohibit the usage of solutions such as MIP solvers and meta-
heuristics.

To achieve that objective, we adapted efficient greedy heuristics originally conceived
to solve the multi-dimensional bin packing problem to our problem. After a detailed
evaluation, we indicated that our greedy heuristics were capable of calculating solutions
compatible with meta-heuristics solutions but calculated at least 100 times faster. Cer-

55

CHAPTER 4. INITIAL COST-AWARE PLACEMENT

tainly, our approach is better suited for situations where there is space for a light degra-
dation of solution quality in exchange of a reduced execution time. It is also possible to
use our greedy heuristics solutions as a first solution input for meta-heuristics or exact
algorithms. Virtually any application of the cost-aware multi-dimensional bin packing
problem with heterogeneous bins may take advantage of our results and algorithms.

Finally, the heuristics presented in this chapter will be part of the cost and communication-
aware heuristics described in Chapters 5 and 6.

56

Chapter 5

Initial Communication and Cost-Aware
Placement

In this chapter, we improve the application and infrastructure models discussed in Chap-
ter 4 to be able to describe communication constraints. Using the greedy heuristics
discussed in that chapter as building blocks, we introduce communication and cost-aware
heuristics that can quickly calculate initial placements of distributed applications over
Cloud-based infrastructures.

5.1 Introduction

In Chapter 4, we presented greedy algorithms that could compute communication-oblivious
initial placements of distributed applications on multiple Clouds while minimizing renting
costs and satisfying resource constraints. In this chapter, we improve the application and
Cloud models previously introduced to make it possible to describe communication con-
straints. We also propose a heuristic that takes these new constraints into consideration
and can calculate initial placements of distributed applications on multiple Clouds while
minimizing renting costs and satisfying resource and communication constraints.

As we discussed in Section 2.4, placement scenarios can be very large. We consider we
are dealing with thousands of VM types from hundreds of different Cloud providers and
hundreds of application components. Furthermore, we consider that, besides of resource
requirements (cf. Chapter 4), distributed applications may also describe communication
requirements. This results in a NP-complete [54] problem and, consequently, scalability
issues must be taken into consideration.

In this chapter, we introduce 2PCAP, an efficient and scalable heuristic that mixes
graph-based algorithm concepts that can compute good quality initial cost and communication-
aware placements very quickly for small and large scenarios.

In the next section we present the problem in more detail and model it as a mixed
integer programming problem. In Section 5.3 we discuss the state of the art. Section 5.4
presents our application and Cloud models. Section 5.5 details the proposed heuristic
which is evaluated in Section 5.7.

57

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

5.2 Communication-Aware Placement of Distributed Ap-

plications on Multiple Clouds

In this section we characterize the communication-aware placement of distributed appli-
cation on multiple Clouds problem (CAPDAMP). We present distributed application and
Cloud-based infrastructure models and formalize CAPDAMP. For a more extensive dis-
cussion about our hypotheses and application and Cloud models, we refer the interested
reader to Chapter 3.

We model distributed applications as component-based applications (cf. Section 2.3.2).
Each application component has resource requirements and connections between compo-
nents have communication requirements. We consider that there is a description of virtual
machine (VM) types capacities and renting prices. Furthermore, we consider that com-
munication capacities of VMs potentially instanced from these VM types is available.
Resource requirements may be number of CPU cores, RAM or disk usage, for exam-
ple. Our hypothesis is that communication requirements are described to satisfy latency
needs. Hence, in this thesis, we consider that communication requirements are described
in terms of latency.

Our objective is to map each application component to a VM instance in order to
minimize renting costs and satisfy resource and communication constraints. Resource
capacities of a VM instance must be larger than or equal to the sum of resource require-
ments of components it hosts (cf. Section 3.1.3). Similarly, communication requirements
between each pair of components must be less than or equal to the connection capacities
between VMs hosting them (cf. Section 3.1.3). We suppose that connection require-
ments and capacities are used to characterize communication latencies and that they can
be expressed in a numerical way1.

In this chapter we focus on initial placements, i.e., we consider that the application or
part of it is not previously deployed. Reconfiguration scenarios are discussed in Chapter 6.
Figure 5.1 illustrates an example of a CAPDAMP scenario.

In the next sections we formalize the CAPDAMP (cf. Section 5.2.1) and present two
ways of modeling it: as a graph homomorphism problem and as an optimization problem.
Both models will be important for the evaluation of our contribution.

1It is sufficient that requirements have an ordered representation.

58

5.2. COMMUNICATION-AWARE PLACEMENT OF DISTRIBUTED
APPLICATIONS ON MULTIPLE CLOUDS

Component based
application

Cloud Providers

Figure 5.1: Communication-aware placement example. A component-based application is
represented as a graph where nodes represent components and edges represent connections
between components. Colored boxes represent Cloud providers and colored cylinders
inside of them are VM types. Transparent cylinders are VM instances and dashed arrows
indicate the VM type from which a VM was instanced. The color of a VM type indicate
its origin Cloud provider and the black connectors between VM types and Cloud providers
indicate connections. Our placement objective is to map application components to VMs
while minimizing costs and satisfying resource and communication constraints.

5.2.1 Problem Statement

Let I be a set of components, T a set of VM types with D resources (or dimensions) of
interest. Let ri,d be the requirements of component i on dimension d, ct,d the capacity of
VM type t on dimension d and pt the price of renting a VM of type t per unit of time.

Each VM type t P T is hosted in a machine group s P S where S is a set of machine
groups, a set of machines indistinguishable from the connection constraint point of view.
This means that VM types belonging to the same machine group share the same con-
nection capacities. Machines group can be clusters or Cloud provider sites, for example.
Each VM type can be instanced |I| times (cf. Section 3.1.3). A component must be
assigned to exactly one VM but each VM may host several components.

The requirement of a connection between components i P I and j P I is represented
as x

comp
i,j . Similarly, the capacity of a connection between two machine groups s P S and

u P S is represented as xmg
s,u . As we consider that VMs belonging to the same machine

group share the same connection properties, the connection capacity between a VM v P V ,

59

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

that belongs to machine group s, and a VM n P V , that belongs to machine group u, is
represented by xvm

v,n and, furthermore, xvm
v,n “ xmg

s,u .
The objective is to assign all components to VMs in a way that resource and com-

munication requirements of components are satisfied, VMs’ capacities are not exceeded,
and renting costs are minimized.

5.2.2 CAPDAMP as Graph Homomorphism Problem

Graph are recurrently used as a representation of application and infrastructure topolo-
gies. In manner of fact, the CAPDAMP can be modeled as a generalization of the NP-
complete graph homomorphism problem [54, 53]. Formally, let G and H be two graphs,
V pGq and V pHq be the vertices of G and H, and EpGq and EpHq be the edges of G and
H. A homomorphism from a graph G to a graph H is a mapping α : V pGq Ñ V pHq such
that:

px,yq P EpGq ñ pαpxq,αpyqq P EpHq (5.1)

In the context of the CAPDAMP, G would be the application graph, and H a graph
describing the topology of the Cloud. A placement would be the function α.

CAPDAMP is a generalization of the graph homomorphism problem because in the
latter there is no assumption concerning edge weights, vertex weights, or mapping costs.

5.2.3 Optimization Problem Formulation

We model the CAPDAMP as an optimization problem formulation. In this section, we
present a general modeling of that problem as a mixed integer programming (MIP) prob-
lem which will be used as input for a solver in Section 5.7, where we evaluate our contri-
butions.

Let V “ tvk,t | 1 ď k ď |I|, t P T u be the set containing all VMs from type t. The
price of v is pv “ pt and its initial capacity cv,d “ ct,d.

Let mi,v “ 1 if a component i is assigned to a rented VM v, and 0 otherwise. Let
av “ 1 if v hosts at least one component and 0 on the contrary.

The optimization problem is described in Equation 5.2 and variables and constants
are summarized in Table 5.1.

Minimize
ÿ

vPV

pv.av

s.t.
ÿ

vPV

mi,v “ 1 @i P I piq
ÿ

iPI

mi,v.ri,d ď cv,d @v P V , 1 ď d ď D piiq

av “
!

1 if
ř

iPI mi,v ą 0

0 otherwise
@v P V piiiq

mi,n.mj,v.pxvm
n,v ´ x

comp
i,j q ě 0 @v, n P V , @i,j P I pivq

mi,n,mj,v P t0,1u

(5.2)

60

5.3. RELATED WORK

In Equation 5.2, (i) guarantees that each component is assigned to at most one VM; (ii)
ensures that no instantiated VM has more components than it can host; (iii) guarantees
that av “ 1 when there is at least one component assigned to v, and (iv) guarantees that
network requirements are satisfied.

I Set of components.
T Set of VM types.
V Set containing all potential VMs.
D Number of resources/dimensions.
pt Price of VM type t P T .
pv Price of VM v P V .
av av “ 1 if v P V is being used, 0 otherwise.
vk,t k-th VM of type t P T .
mi,v mi,v “ 1 if component i P I is assigned to VM v P V , 0 otherwise.
ri,d Requirement of component i P I on dimension d.
cv,d Capacity of VM v P V on dimension d.
x
comp
i,j Requirement of connection between component i P I and j P I.
xmg
s,u Capacity of connection between machine group s P S and u P S.

xvm
v,n Capacity of connection between VM v P V and n P V .

Table 5.1: Summary of variables used in this section and in Equation 5.2.

5.3 Related Work

We address the CAPDAMP (cf. Section 4.2), which stands for communication-aware
placement of distributed applications on multiple Clouds problem. The CAPDAMP is a
generalization of the graph homomorphism problem. This problem is NP-complete [54]
and, consequently, approaches to this problem must take scalability issues into account.

In the next sections, we discuss state of the art approaches to the CAPDAMP and
related communication-aware problems and position 2PCAP in relation to them. We
divide this literature into three groups based on their approach and ordered by scalability:
exact approaches, meta-heuristic approaches, and heuristic based approaches.

5.3.1 Exact Algorithms

There are many approaches for the CAPDAMP and related problems based on exact
algorithms, but in this section we focus mainly on those based on Mixed Integer Pro-
gramming (MIP) problems and solvers. An important characteristic is the expressiveness
of MIP modeling, which allows for the description of problem details that would not be
possible or would be more difficult to express using other strategies.

In [102], a Mixed Integer Programming (MIP) is proposed for the placement of dis-
tributed applications on the Cloud. The objective is to maximize availability by modeling
fault-tolerance measures. Similarly, [58] proposes a MIP to minimize application down-
time. Both approaches neither consider renting cost minimizations nor allow for more

61

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

than two dimensions of interest. In [68], a very expressive MIP to compute the place-
ment of services on multiple Clouds is presented. Despite allowing for cost optimization,
heterogeneous VM types, and resource constraints, it does not allow for an explicit de-
scription of communication constraints. Finally, in [60], a hierarchical approach to the
process placement in multi-core clusters is presented. However, only the communication
problem is considered and both processes and hosting machines are homogeneous, con-
trary to our work.

In the context of CAPDAMP, despite their ability to calculate optimal solutions, exact
algorithms are not scalable. Consequently, they are an attractive approach only when
placement scenarios are small.

5.3.2 Meta-heuristics

Meta-heuristics such as genetic algorithms, simulated annealing, and ant colony opti-
mization, are very powerful tools for calculating solutions for some variations of the
CAPDAMP thanks to their ability to handle very complex models [70].

In [24] and [117], the authors propose two very similar approaches based on genetic
algorithms to calculate the placement of services on the Cloud targeting cost minimiza-
tion while satisfying CPU, memory, disk and latency constraints. In [55], a simulated
annealing based approach to the VM consolidation problem is presented. In the same
topic, an ant colony algorithm for a multi-objective VM consolidation problem aiming at
minimizing energy consumption and resource waste is described in [40]. In [36] another
ant colony based approach for the VM consolidation problem is proposed.

The main issue of using meta-heuristics for communication-aware problems is that, in
summary, there is a correlation between the time given to a meta-heuristic to calculate
a solution and its quality. Also as they are generic tools, i.e., tools that are not created
for specific problems, their solutions are very sensitive to parameter tuning and other
configurations. Finally, it is important to highlight that depending on the CAPDAMP
characteristics, using meta-heuristics may not be recommended. Specially when search
space is rugged and/or plain [105] (it contains too many local optimal solutions and low
correlation between them).

5.3.3 Heuristics

The CAPDAMP is NP-complete [54] and heuristics may be good options to quickly com-
pute solutions. In this section we describe heuristics based mainly on graph algorithms
and discuss them in regard to CAPDAMP and 2PCAP.

In Section 5.2.1 we discussed that using graphs is a common way of modeling ap-
plication and infrastructure topologies. We also briefly presented the CAPDAMP as a
generalization of a graph homomorphism problem.

In spite of the many existent approaches to problems related to CAPDAMP, to the
best of our knowledge, there are no state of the art heuristics that take into consideration
all CAPDAMP’s constraints and objectives, such as renting costs minimization, resource
and communication constraint satisfaction, or component and VM heterogeneity. Many

62

5.3. RELATED WORK

approaches ignore part of problem parameters and model the placement problem as a
graph partition problem [19] (NP-Hard).

A graph based greedy heuristic for calculating the task mapping on supercomputer
clusters is presented in [28]. Also using a greedy heuristic, an approach to place tasks
on the Cloud is proposed in [64]. Using a max-clique based approach, [16] and [69]
describe algorithms for the consolidation of VM types. A similar problem is addressed
in [84], which adds the challenge of having to place a virtual network aiming at satisfying
resource and network constraints. Using a min cut approach, a hierarchical representation
of the network and a graph modeling of the application, [75] tackles the traffic-aware
virtual machine placement on data centers. A hierarchical approach for the deployment
of distributed scientific applications on the Cloud is presented in [34]. In [120], a graph
matching algorithm based on a graph query approach for the service placement on the
Cloud is proposed. In [119], a game theory approach is proposed to the allocation of
virtual network for VMs from multiple data centers. Finally, [51] presents a heuristic
based on a relaxed MILP to compute a solution for a VM consolidation problem.

The aforementioned articles aim primarily at solving the communication constraint
problem letting the packing problem (resource constraint problem) in second place.
Graph-based modeling can efficiently describe communication constraints. However de-
scribing at the same time resource constraints and renting costs tend to be more diffi-
cult. As a result, issues such as VM/machine heterogeneity, renting costs, and multi-
dimensionality of resources are not addressed.

The authors of [59] propose an approach for placing services onto the Cloud with the
objective of minimizing costs. They employ a hierarchical Cloud topology description
similar to ours, they use clustering heuristics to solve the communication problem and
bin packing heuristics to the packing problem. However, the bin packing algorithms only
consider memory and CPU constraints, the Cloud topology levels are predefined and they
consider communication constraints as soft constraints.

5.3.4 Discussion

As the CAPDAMP is NP-hard, using exact algorithms to calculate optimal placements
is feasible only for very small problem instances. To overcome this limitation there is
a plethora of more scalable approaches based mainly on meta-heuristics and heuristics.
Meta-heuristics have their solution qualities correlated to the time given to process a
problem. Hence, depending on problem size, using a meta-heuristic may still be unfeasi-
ble. Furthermore, as they are generic tools, meta-heuristics tend to be very sensitive to
parameter tuning specific for each scenario.

Other heuristics usually aim primarily at solving the graph partitioning (or communi-
cation constraint) problem letting the packing (or resource constraint problem) in second
place. Graph-based modeling can efficiently describe communication constraints, how-
ever, describing at the same time resource constraints and renting costs tends to be more
difficult. Thus, issues like VM heterogeneity, renting costs and multi-dimensionality are
not addressed at the same time.

In this section, we propose an efficient and scalable heuristic which addresses the afore-
mentioned problems. Using graph clustering and multidimensional bin packing strategies,
it manages to calculate good quality solutions very quickly, as evaluated in Section 5.7.

63

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

Level 0

Level 1

Level 2

Level 3

m1 m2 m3 m4

Application Graph:

2 1
c1 c2 c3

Figure 5.2: Cloud topology (left side) and application graph (right side).

5.4 Modeling the Cloud Infrastructure and Distributed

Applications

In Section 4.2, we discussed application and Cloud infrastructure models including ways
of representing communication constraints. We explained that, in this thesis, communi-
cation requirements and capacities are described in terms of latencies. However, it is still
necessary to address the challenge of how to measure or model latencies in a virtualized
environment such as the Cloud.

In the next sections we discuss that problem in more detail and introduce an approach
of describing communication constraints that will be crucial for the heuristic proposed in
Section 5.5.3.

5.4.1 Cloud Network Topology

An important challenge related to modeling communication constraints for the CAP-
DAMP is gathering precise information from Cloud provider’s networks. Due, particu-
larly, to virtualization, it is difficult to precisely predict latencies or network bandwidth
between machines. This task is even more difficult when machines are hosted in different
Cloud providers.

As discussed in Section 2.1, this issue happens because, commonly, Cloud providers do
not make available details concerning their internal network infrastructure and, usually,
Cloud providers are connected among themselves over Internet and not over any dedicated
network. In spite of that, it is possible to have a more coarse-grained latency prediction.
In general, network latencies are better between machines hosted in the same Cloud
provider than between machines from distinct Cloud providers. The same logic applies
for Cloud provider sites (cf. Section 2.1).

Thus, we are interested in a solution that is able to make use of uncertain or less
precise information from Cloud infrastructure latencies. Our approach to this issue is to
model Cloud based infrastructure as a tree. An example of this modeling is illustrated
in Figure 5.2.

64

5.5. TWO PHASE COMMUNICATION-AWARE HEURISTIC

In the Cloud topology tree, leaves are sets of VM types which we call machine groups.
Each inner node represents a connection to all machine groups available in the sub-tree
having the inner node as root. Finally, the level of each inner node represents the quality
of the machine group connection. Notice that we describe quality in terms of latency,
hence the better the quality, the smaller the latency.

Given two machine groups s1 and s2, we call maximum connection quality the highest
internal node which interconnects s1 and s2. For example, in Figure 5.2, machine groups
m1 and m2 are connected at levels 0, 1, and 2. Thus, their maximum connection quality
is 2. On the other hand, m1 and m3 (also m2 and m3) are connected only at level 0, and
consequently, they have a maximum connection quality of 0.

VM types sharing a same machine group are interconnected with connection quality
equals to the level of the leaves. In the example illustrated in Figure 5.2, VM types’
connections inside the same machine group have quality 3. Thus, the closest an internal
node is to the leaves, the smallest will be the latency between machine groups connected
by it.

5.4.2 Distributed Application Communication Topology

To describe distributed applications we extend the component-based model presented in
Chapter 4 by including an approach to modeling communication requirements in addition
to the previously discussed resource requirement model.

Distributed applications are modeled using the component-based paradigm and rep-
resented as graphs. Components are nodes and connections between components are
weighted edges. Weights are connection requirements, defined in terms of connection
quality as discussed in Section 5.4.1, matching the Cloud topology.

In the example illustrated in Figure 5.2, components c1 and c2 communicate and
require a connection quality of at least 2, while c2 and c3 require at least 1.

5.5 Two Phase Communication-Aware Heuristic

The proposed heuristic named Two Phase Communication-Aware Heuristic (2PCAP)
takes advantage of the tree structure of the multi-cloud topology (cf. Section 5.4.1) to
calculate solutions for initial placements of distributed applications on multiple Clouds.

2PCAP is a divide-and-conquer algorithm which looks for subsets of machine groups
that satisfy connection requirements from subsets of components. Once they are found,
placements of component subsets on machine group subsets, called sub-placements, are
calculated using fast communication-oblivious multi-dimensional bin packing heuristics
(cf. Chapter 4). Finally, the placement of the entire application is obtained by composing
sub-placements.

2PCAP has two phases:

(i) First, it recursively decomposes components and machine groups into subsets, cre-
ating communication-aware sub-placements. This procedure is repeated until sub-
placements that can be calculated by communication-oblivious heuristics are gen-
erated (the bottom of the recursion).

65

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

(ii) Secondly, the computed sub-placements are recursively compared from the leaves
to the root of the tree. Those with the best cost compose the solution for other
sub-placements until the final placement is computed.

Figure 5.3 illustrates an execution of 2PCAP and will used throughout this section.
We use tables to represent the heuristic’s decomposition steps. The name of the tables
refer to the level of decomposition (in Figure 5.3 they are L0, L1 and L2). Component
subsets are represented in the left part of the tables and machine group subsets, in the
upper part.

In the next subsections we explain decomposition and composition phases in detail.

5.5.1 Phase 1: Decomposition

The decomposition phase has fundamentally 2 steps: the decomposition of component
and machine group subsets and the computing of sub-placements. We discuss this phase
in more detail in the next paragraphs.

Component Subset

A component subset is a set of nodes from a connected subgraph from the application
graph. Component subsets have the property that every connection between its compo-
nents has a communication quality requirement superior or equal to ℓ, where 0 ď ℓ ă H

and H is the height of the multi-cloud tree. Iℓ is the set of all component subsets on
level ℓ.

In the example illustrated in Figures 5.3(b) and 5.3(c), there is only one component
subset composed of components c1, c2 and c3, i.e. I0 “ I1 “ ttc1,c2,c3uu. In Fig-
ure 5.3(d), however, there are two component subsets: one composed of c1 and c2 and
another one composed of c3, i.e. I2 “ ttc1,c2u, tc3uu.

Observe that the union of all component subset elements forms the set of components,
i.e. YiℓPIℓ

“ I and 0 ď ℓ ă H.

Machine Group Subset

A machine group subset contains machine groups from sub-trees of the multi-cloud tree
topology. All machine groups contained in the same subset are connected with connection
quality superior or equal to ℓ, where 0 ď ℓ ă H and H is the height of the multi-cloud
tree. Sℓ contains all subsets built on level ℓ.

In Figure 5.3(b), there is only one machine group subset composed of all machine
groups, namely m1,m2,m3 and m4, i.e. S0 “ ttm1,m2,m3,m4uu. In Figure 5.3(c)
(level 1), there are two machine group subsets, one composed of m1,m2 and m3 and an-
other composed of m4, i.e. S1 “ ttm1,m2,m3u,tm4uu. Finally, in Figure 5.3(d) (level 2),
there are three machine groups, i.e. S2 “ ttm1,m2u,tm3u,tm4uu.

Notice that the union of all machine group subset elements forms the set of machine
groups, i.e. YiℓPSℓ

“ S and 0 ď ℓ ă H.

66

5.5. TWO PHASE COMMUNICATION-AWARE HEURISTIC

2

1

L0

l = min(j,k,g,h)

2 1

L2

2

a b c

d e f

L1

2

1

k = c + f
min(a, b)

+
min(d, e)

j =

Level 0

Level 1

Level 2

Level 3

m1 m2 m3 m4

Application Graph:

(a) (b)

(c) (d)

c1 c2 c3

c1

c3

c2

c2 c2

c1

c3

c1

c3

2

1

c1

c3

c2 g h i

Figure 5.3: Placement example. Tables represent heuristics’ decomposition steps. The
name of the tables refer to the level of decomposition (L0, L1 and L2). Component
subsets are represented in the left part of the tables and machine group subsets, in the
upper part.

67

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

Component and Machine Group Decomposition

The process that generates component and machine group subsets is called decomposition.
Machine group subsets are decomposed through gathering all inner nodes from the

Cloud topology tree at a given level ℓ. These nodes actually form a forest of subtrees and
each set of leaves from each subtree is a valid machine group subset. At level 0, there will
always be only one internal node, which happens to be the root of the Cloud topology.

In the example presented in Figure 5.3(b) (level 0), there is only one machine group
subset S0 “ ttm1,m2,m3,m4uu. The decomposition of this subset on level 1, represented
in Figure 5.3(c), has two machine group subsets, i.e. S1 “ ttm1,m2,m3u,tm4uu, given
that there are two subtree roots at that level.

To decompose component subsets, all connections of the original application graph
that require a connection quality smaller than a given level ℓ are removed. The nodes of
each resulting connected sub-graph is a valid component subset. Notice that, at level 0,
there will always be only one component subset which is equal to the application.

In the example depicted in Figure 5.3(b) (level 0), there is only one component sub-
set I0 “ ttc1,c2,c3uu. Given that in the application there is not a connection quality
requirement smaller than one, at level 1 (L1), represented in Figure 5.3(c), there is also
only one component subset I1 “ ttc1,c2,c3uu. However, at level 2 (cf. Figure 5.3(d)),
the decomposition result in two subgraphs and consequently, two component subsets, i.e.
I2 “ ttc1,c2u, tc3uu.

Sub-placement

A sub-placement is the placement of a subset of components on a subset of machine
groups. Similarly to an “usual” placement (cf. Section 5.2) a sub-placement aims at
minimizing VM renting costs while satisfying resource and communication constraints
established by the application. Sub-placements are calculated during decomposition and
are selected during composition (cf. Section 5.5.2) phases.

Let iℓ P Iℓ and sℓ P Sℓ be the sets of all component and machine group subsets,
respectively, constructed on level ℓ, 0 ď ℓ ă H. The sub-placement of iℓ on sℓ can only
be calculated if it is a bottom sub-placement.

A sub-placement is a bottom sub-placement if all sub-placements at level ℓ can be
calculated by communication oblivious heuristics while still satisfying communication
quality requirements. Formally, let x

comp
i,j be the communication requirement between

components i and j and let xmg
m,n be the communication capacity between machine groups

m and n. Formally, a bottom sub-placement has the following property:

x
comp
i,j ď xmg

m,n, @i, j P iℓ, @m,n P sℓ. (5.3)

This means that any pair of VM types from machine groups contained in sℓ will satisfy
the communication requirements from any pair of components contained in iℓ.

In the example illustrated in Figures 5.3(b), 5.3(c), and 5.3(d), each intersection
between machine groups and component subsets is a sub-placement. The sub-placement
at level 0 (cf. Figure 5.3(b)), is the sub-placement of tc1,c2,c3u on tm1,m2,m3,m4u.
One can notice that it is not a bottom sub-placement since the constraint described in
Equation 5.3 does not holds. For instance, if c1 and c2 were placed on m4 and c3 on

68

5.5. TWO PHASE COMMUNICATION-AWARE HEURISTIC

m1, the communication constraints between c2 and c3 would not be satisfied. Likewise,
sub-placements in Figure 5.3(c) are not bottom sub-placements. If c1 were placed on m1

and c2 and c3 on m3, the connection constraint between c1 and c2 would not be satisfied.
Nevertheless, in Figure 5.3(d) (level 2), Equation 5.3 is satisfied by all sub-placement.

Let ℓmax be the highest connection quality requirement present in the component
graph. We can observe that the sub-placement of every iℓ P Iℓ on sℓmax

P Sℓmax
is a valid

bottom sub-placement. Decomposing component and machine group subsets at levels
superior to ℓmax would result in an unnecessary fragmentation. As a consequence, there
would be less components and VM types available per sub-placement which leads to a
reduction of the packing level of sub-placements and, potentially, to higher renting costs.
Hence, there is no reason to continue the decomposition process beyond ℓmax.

In the example illustrated in Figure 5.3(a), the highest communication quality require-
ment is 2. Hence, ℓmax “ 2 and the decomposition stops at level 2 (cf. Figure 5.3(d)).

Packing Improvement

2PCAP heuristic does not compute all possible sub-placements during the decomposition
phase. For example, in Figure 5.3(d), there are no bottom sub-placements computed
using subsets composed of nodes tc1c2,c3u, tc1,c3u, or tc2,c3u. Doing so would result in
an exponential complexity, and would lead to excessively long execution times for large
problems.

To further explore the solution space without increasing too much the algorithm’s
time complexity, 2PCAP calculates sub-placements of every generated component subset
which is not part of a bottom sub-placement on machine group subsets generated at level
ℓmax. This procedure is called packing improvement because, as components subsets are
larger, 2PCAP will try to assign more components to a same VM and this improves
solution packing. Packing improvement is depicted in the last line of Figure 5.3(d).
Sub-placements g, h, and i of tc1,c2,c3u were generated at ℓ “ 0 (cf. Figure 5.3(b)).

Summary

During the decomposition phase, component and machine group subsets are decomposed
until bottom sub-placements are generated. This happens at level ℓmax, which is the
highest communication quality requirement from the application. At that step, efficient
communication-oblivious heuristics calculate each bottom sub-placement.

5.5.2 Phase 2: Composition

Once all necessary bottom sub-placements are calculated, 2PCAP starts the process of
composition of sub-placements. The objective is to choose, at each composition step,
the less expensive solutions among all available sub-placements. Given the set I 1

ℓ`1

containing all component groups decomposed from iℓ P Iℓ and the set S 1
ℓ`1 decomposed

from the machine group sℓ P Sℓ, let uis
ℓ`1

be the sub-placement of iℓ`1 on sℓ`1. Thus, the
solution for the sub-placement of iℓ on sℓ is one of the following:

Case 1: uis
ℓ`1

, if Sℓ`1 “ Sℓ and Iℓ`1 “ Iℓ.

69

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

Case 2:
ř

iPIℓ`1
uis
ℓ`1

for s P Sℓ`1, if |Sℓ`1| “ |Sℓ|
and |Iℓ`1| ą |Iℓ|;

Case 3:
ř

iPIℓ`1
minpuis

ℓ`1
, @s P Sℓ`1q, if |Sℓ`1| ą |Sℓ|;

The decomposed subset of components and machine groups of Case 1 are identical to
the original subsets. In this case, uis

ℓ “ uis
ℓ`1

.
In Case 2, the decomposed subset of machine groups is identical to the original, but

this is not true for the decomposed component subset. In this case, 2PCAP composes
the |Iℓ`1| sub-placements on sℓ`1. This case is illustrated in Figures 5.3(c) and Fig-
ures 5.3(d). Sub-placements c and f (cf. Figure 5.3(d)) compose the sub-placement k

(cf. Figure 5.3(c)).
In Case 3, when |Sℓ`1| ą |Sℓ| machine groups are decomposed in more than one subset.

Thus, for each decomposed component subset there are |Sℓ`1| possible sub-placements,
from which, only the less expensive one is used in the composition process.

For example, level 1 sub-placement j illustrated in Figure 5.3(c) is composed of sub-
placements a, b, d and e calculated at level 2 as depicted in Figure 5.3(d). Level 0 sub-
placement l (cf. Figure 5.3(b)) is composed of sub-placements j and k from Figure 5.3(c).

5.5.3 2PCAP Algorithm

A summarized pseudo-code of 2PCAP is presented in Algorithm 7. It receives as param-
eters a component subset cs, a machine group subset mgs and a level – whose value is
zero in the beginning of execution – and returns a placement of cs over mgs.

The functions used inside Algorithm 7 are calculate, is_calculated, plac, decompose,
compose and size.

• Function calculate takes as arguments a component subset cs and a machine group
subset mgs and calculates the sub-placement of cs over mgs. For that, calculate
calls the multi-dimensional bin packing-based heuristics proposed in Chapter 4.

• Function is_calculated checks if the sub-placement of a component subset cs over
a machine group subset mgs, both subsets passed as arguments to that function, was
previously calculated. This is a very simple optimization which avoids calculating
sub-placements more than once.

• Function plac takes as arguments a component subset and a machine group subset
and returns a placement previously calculated by calculate.

• Function decompose gets a level and subset of components or machine groups and
returns the decomposition of that subset at that level.

• Function compose builds a new sub-placement by combining two sub-placement
passed as argument.

• Function size receives an array of component or machine group subsets as argument
and returns its size.

70

5.5. TWO PHASE COMMUNICATION-AWARE HEURISTIC

Algorithm 7 2PCAP
Input: level, comp_subset,mg_subset

Output: min_cost_plac

1: min_cost_plac Ð 8
2: if is_calculatedpcomp_subset,mg_subsetq then
3: return placpcomp_subset,mg_subsetq
4: else if level “ level_max then
5: calculatepcomp_subset,mg_subsetq
6: return placpcomp_subset,mg_subsetq
7: else if level ă level_max then
8: comp_decomposition Ð decomposepcomp_subset, levelq
9: mg_decomposition Ð decomposepmg_subset, levelq

10: if sizepmg_decompositionq “ 1 then
11: plac Ð null

12: for cs in comp_decomposition do
13: temp_plac Ð 2PCAPplevel ` 1, cs,mg_subsetq
14: plac Ð composepplac ` temp_placq
15: end for
16: min_cost_plac Ð plac

17: else if sizepmg_decompositionq ą 1 then
18: plac Ð null

19: for cs in comp_decomposition do
20: min_plac Ð null

21: for ms in mg_decomposition do
22: temp_plac Ð 2PCAPplevel ` 1, cs,msq
23: if costptemp_placq ă min_plac then
24: min_plac Ð temp_plac

25: end if
26: end for
27: plac Ð composepplac ` min_placq
28: end for
29: min_cost_plac Ð plac

30: end if
31: for ms in mg_decomposition do
32: temp_plac Ð 2PCAPplevel_max, comp_subset,msq
33: if costptemp_placq ă costpmin_cost_placq then
34: min_cost_plac Ð plac

35: end if
36: end for
37: end if
38: return min_cost_plac

71

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

2PCAP (cf. Algorithm 7) is recursive. It decomposes component and machine group
subsets, i.e. break the problem in smaller sub-problems between Lines 7 and 30 until
step ℓmax. Then, bottom sub-placements are calculated between Lines 4 and 6 and their
solutions are used to compose other sub-placement solutions, following the cases discussed
in Section 5.5.2. Case 1 is described between lines 2 and 3, Case 2 between lines 10 and 16,
and Case 3 between lines 17 and 30. A bottom sub-placement may not have a solution.
In this case, 2PCAP marks that bottom sub-placement as invalid and gives it an infinity
cost.

The packing improvement procedure (cf. Section 5.5.1) is described between lines 30
and 36 of Algorithm 7.

5.5.4 Discussion

An important point is that we consider that the application graph is connected. We
do this without loss of generality because it would suffice to add edges – more precisely
bridges – with weight zero connecting disconnected parts of the application graph to build
a communication equivalent connected graph.

We also consider that the Cloud topology is a tree, hence, it has only one root. We
also do this without loss of generality because it is always possible to add a new level to
the Cloud tree by creating a new root, connecting it to the old roots, and incrementing
by one all application’s communication requirements.

5.5.5 2PCAP Complexity

The complexity of 2PCAP is dominated by decomposition operations (decompose func-
tion) and the computation of sub-placements (calculate function).

Function decompose

Let I and S bet the sets of components and machine groups, respectively. The decom-
position of component subset cs at level ℓ breaks the connected subgraph formed by
components of cs, by removing edges having weight larger than ℓ. In the worst case,
decompose will have to verify each edge of this subgraph, hence, it will have to check
|I|.p|I|´1q edges. The complexity of decompose for component subsets is, thus, Op|I|2q.

The decomposition of a machine group subset mg at level ℓ consists of gathering
the leaves, i.e. machine groups, from subtrees with roots at level ℓ. Its complexity is
associated to the number of internal or leaf nodes it has to visit. Hence, the maximum
number of nodes would be Op|S|.pℓmaxqq, the case where the only point of connection
between machine groups in the subtree is its root.

The decompose function is called whenever machine group and component decom-
positions are generated. In the worst case, a component subset could generate at most
|I| component subsets in level ℓmax, |I| ´ 1 in level ℓmax´1, |I| ´ 2 in level ℓmax´2, and
so on. Hence, Op|I|.ℓmaxq component subsets could be generated. The same logic ap-
plies to machine group subset decomposition. In the worst case, a machine group subset
would generate |S| machine group subsets in level ℓmax, |S ´ 1| in level ℓmax´1, |S ´ 2| in

72

5.6. EXAMPLES

level ℓmax´2 and so on. Consequently, Op|S|.ℓmaxq machine group subsets could be gener-
ated. Putting together component and machine group subset decomposition, decompose
would be called Op|S|.ℓmax.|I|.ℓmaxq “ Op|S|.|I|.ℓ2maxq times.

The total complexity of function decompose is the number of times it is called times
its complexity. Hence, it is Op|S|.|I|.ℓ2maxq.pOp|I|2q ` Op|S|.pℓmaxqqq “
Op|I|3.|S|.ℓ2max ` |S|2.|I|.ℓ3maxq.

Function calculate

The calculate function computes a sub-placement and is performed only at level ℓmax. To
do this, calculate makes use of multi-dimensional bin packing based heuristics (discussed
in Chapter 4). Those heuristics have a complexity of Opc.t. log tq, where t is the number
of VM types and c the number of components. Hence, calculate has a complexity
of Op|I|2.|S|.|T |. log |T |q, where T is the set containing all VM types from all Cloud
providers.

Discussion

Putting together the complexities of functions decompose and calculate we find that
the complexity of 2PCAP is Op|I|3.|S|.ℓ2max ` |S|2.|I|.ℓ3max ` |I|2.|S|.|T |. log |T |q.

5.6 Examples

In this section, we present complete examples of simulation of 2PCAP for two placement
scenarios. The main difference between them is application and Cloud topology.

5.6.1 Example #1

In Figure 5.4, we illustrate a complete execution of 2PCAP. It is out of the scope of this
section to explain in detail procedures and concepts related to that algorithm. We invite
the interested reader to refer to Section 5.5.

The algorithm starts its execution at level 0 (Figure 5.4(b)), with one component sub-
set composed of the entire application and a machine group subset composed of the entire
Cloud infrastructure. 2PCAP’s objective is to recursively decompose component and ma-
chine group subset aiming at using them to build sub-placements (cf. Section 5.5.1).
Then, it uses the results of these sub-placements to compose a final placement (cf. Sec-
tion 5.5.2). Notice that sub-placement x is not a bottom sub-placement (cf. Section 5.5.1),
thus 2PCAP must start the decomposition process of component and machine group sub-
sets at level 1. The result of this procedure is illustrated in Figure 5.4(c).

At level 1 (cf. Figure 5.4(c)), the result of component subset decomposition is the
removal of the connection between c1 and c4. The resulting component subset has the
same components as the subset generated at level 0 (cf. Figure 5.4(b)), thus they are
equivalent. With respect to machine group subsets, however, as there are two subtrees
which have root at level 1, two machine group subsets are generated. As sub-placements
u and v are not bottom sub-placements, two calls to component and machine group
decomposition at level 2 are performed. The results are illustrated in Figure 5.4(d).

73

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

The outcome of component subset decomposition at level 2 (cf. Figure 5.4(d)) is the
removal of connections between components c2 and c4, and c3 and c4 from the component
subset illustrated in Figure 5.4(c). The resulting component subset is equivalent to that
generated at level 1. As there are three roots of machine group subtrees at level 2, there
will be three machine group subsets. Sub-placements r, s and t are not bottom sub-
placements, thus three calls to component and machine group decompositions at level 3
are performed. The results are illustrated in Figure 5.4(e).

At level 3 (cf. Figure 5.4(e)), connections between components c1 and c3, and c1 and
c4 from the component subset illustrated at Figure 5.4(d) are removed generating three
different component subsets. As there are four roots of machine group subtrees in the
infrastructure at level 3, there will be four machine group subsets. At this level, all sub-
placement are bottom sub-placements and thus can be calculated using communication
oblivious placement heuristics. Observe that the component subset illustrated in the
fourth line of Figure 5.4(e) was generated at level 0 due to the packing improvement
process described in Section 5.5.1.

At this point, 2PCAP starts the composition phase. In summary, the results of bottom
sub-placements are used to compose intermediary sub-placements, following the compo-
sition phases described in Section 5.5.2, until level 0 is reached and the final placement
is composed.

5.6.2 Example #2

In Figure 5.5, we illustrate the placement of a star topology application. As this example
is similar to Example #1 (cf. Section 5.6.1), we do not discuss it step by step. Notice,
however, that in Example #2 all cases of composition discussed in Section 5.5.2 are
present. Case 1 is illustrated in the compositions of sub-placements o, p, q, and r, Case 2
is illustrated in the composition of sub-placements m and n, and Case 3 in the composition
of sub-placement s.

5.7 Evaluation

It would be interesting to compare the solutions computed by 2PCAP to optimal ones.
However, as we previously discussed in Section 5.3, the communication-aware placement
of distributed applications on the multiple Clouds problem (CAPDAMP) is NP-Complete.
This means that a polynomial time algorithm to solve it is unknown. Consequently,
depending on the size of the problem instance it may not be possible to find an optimal
solution in practicable time.

Our strategy to circumvent this problem is to divide the evaluation in two steps.
First, using small problem instances and a MIP solver, we compare 2PCAP solutions to
optimal. In a second step, using meta-heuristics and a relaxed version of the CAPDAMP
as a baseline algorithm to compute lower bounds, we discuss the performance of 2PCAP
on medium and large problem instances. Before discussing the results, we present how
the experiments were performed and how input data were generated.

74

5.7. EVALUATION

L0

L2

L0

L1

L2

L3

m1 m2 m3 m4

Application Graph:
(a) (b)

(e)

(d)

c1 c2

c3 c4

2 1

c1

c2

c3

1

3

2

c4

1

2 1
3

2

L1

(c)

c1c1 c2

c3 c4

2 3

2
c1c1 c2

c3 c4
1

2 13

2

L3

a b c
c1

c3

c43

c2 e

i

f

j

g

l

c1c1 c2

c3 c4

2 13

2

1

n o p

r = s = c+g+l

t = d+h+mu = r v = min(s,t)

x = min(u,v,n,o,p,q)

0

0

d

h

m

q

min(
a+e+i,
b+f+j
)

Figure 5.4: Complete Placement Example #1 (cf. Section 5.6.1).

75

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

L0

L0

L1

L2

L3

m1 m2 m3 m4

Application Graph:
(a) (b)

c1

c2 c3

c5

s = min(
m+o+q,
n+p+r,

k,
l)

c4 c6

0 0

2
2

1

c1

c2 c3

c5
c4 c6

0 0

2
2

1

c4

L1

(c)

m = min(
a+g,

i)

n = min(
b+h,

j)

c1

c5
c6

2
2

c2

c3

L2

(d)

a b

c1

c5
c6

2
2

c2

c3

c4
1

c1

c5
c6

2
2c4

1

c1

c2 c3

c5
c4 c6

0 0

2
2

1

c

e

g

i

k

d

f

h

j

l

o = c p = d

q = e r = f

Figure 5.5: Complete Placement Example #2 (cf. Section 5.6.2).

76

5.7. EVALUATION

5.7.1 Methodology

In Chapter 3 we have discussed in detail the methodology, notation, and metrics used
for evaluating our contributions. Hence, in this section, we summarize concepts previ-
ously presented and focus on particularities of proposed heuristics’ evaluation, such as
experiment format, problem classes parameters or test platform characteristics.

As discussed in Section 3.3, an experiment is the resolution of a set of placement
problem instances by a set of algorithms within a given time. Each problem instance
has seven parameters: the number of considered resources or dimensions, the number of
components, the number of VM types, the number of sites, the height of the Cloud tree,
the topology of the component-based application and the multi-cloud tree connection
schema.

Experiments are organized in three experiment classes, namely A, B, and C. Small,
and thus easier to solve, problem instances compose Class A; medium-sized problem
instances are present in Class B, and, finally, large problems form Class C. Table 5.2
details the range of problem instance parameters that define each class and the total of
generated problem instances per class.

A B C

dimensions 4 5 6
components 3,5,7,10 10,20,30,40,50 60,80,100,120,140
vm types 100,250,500,700 500,1000,1500,2000 2500,5000,7500,10000
sites 25,50,100 100,300,500 500,750,1000
tree height 3,5 5 7
application topology l,s,f,r l,s,f,r l,s,f,r

connection schema u d,a,u d,a,u

problem instances 384 720 720

Table 5.2: Parameters of experiment classes. Application topologies are: line (l), star (s),
full connected (f), or random (r). Tree connection schemas are: distant(d), agglomerate
(a), or uniform (u).

Component requirements and VM capacities are pseudo-random values, picked uni-
formly from pre-defined intervals (Table 5.3). We consider that VM types are distributed
equally among the sites. We generate three different component communication patterns:
distant, agglomerated, and uniform. The difference between them is the probability of
connecting two or more subtrees. The distant pattern has higher probability to connect
subtrees near the root; agglomerated gives higher connection probabilities to subtrees

near the leaves and the uniform schema gives the same connection probability
´

1

ht

¯

to

every subtree, where ht is the height of the Cloud tree.
The four component-based application topologies we consider are line, star, full con-

nected (cf. Figure 5.6), and random. In the random schema, a pair of components
is connected with a probability of 50%. Communication requirements from component
connections are pseudo-random integers picked uniformly between 0 and ht ´ 1.

Renting prices depend on the resource dimensions of each VM. Let c˚

t,d be the ratio
ct,d
maxd

between the capacity ct,d of dimension d from VM type t and maxd the maximum

77

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

Dimension Requirements Capacities

(i) 800 to 3000 1000 to 3500
(ii) 1 to 16 2 to 32
(iii) 1 to 32 2 to 40
(iv) 50 to 3500 150 to 4000
(v) 5 to 30 10 to 80
(vi) 1 to 8 1 to 16

Table 5.3: Intervals of dimension data generation.

...(a)

...
(b) (c)

...

Figure 5.6: Schemes of part of the generated application topologies. (a) line, (b) star
and (c) full connected.

value for dimension d (cf. Table 5.3). Each dimension is multiplied by a coefficient to
create scenarios where some dimensions are more expensive than others. The values of
those coefficients were chosen in such a way that α,β,γ,δ,ǫ,ζ would roughly reflect prices
practiced by real Cloud providers. α,β,γ and δ could be translated as CPU performance,
number of cores, memory and disk, respectively. ǫ and ζ are randomly chosen.

The price of a VM type pt is α ` β ` γ ` δ ` ǫ ` ζ, where α “ c˚

t,1 ˆ randomp1,3q,
β “ c˚

t,2 ˆ randomp8,20q, γ “ c˚

t,3 ˆ randomp5,8q, δ “ c˚

t,4 ˆ randomp10,15q, if c˚

t,4 ď
500, otherwise δ “ c˚

t,4 ˆ randomp20,25q, ǫ “ c˚

t,5 ˆ randomp5,10q, and ζ “ c˚

t,6 ˆ
randomp2,5q.

The 2PCAP algorithm is implemented in Python. Experiments were conducted on
Dell PowerEdge R630 2.4GHz (2 CPUs, 8 cores) nodes from the Parasilo and Paravance
clusters of the Grid’5000 experimental platform2.

5.7.2 2PCAP Performance on Small Problems

This section makes use of Class A problems instances (cf. Table 5.2) to calculate a set of
optimal points and to compare them to solutions computed by 2PCAP.

We integrated to our test platform the SCIP solver [2], a framework for constraint inte-
ger programming and branch-cut-and-price (the formulation is described in Section 5.2.3).
We conducted a Class A experiment using SCIP with a timeout of 24 hours. This means
that SCIP had 24 hours to solve each problem instance from Class A.

SCIP solver was able to solve only around 48% of Class A problem instances in
time, i.e., around 180 problem instances. Figure 5.7 illustrates the cost distance from
solutions computed by 2PCAP to the optimal ones as a percentage of the latter for

2cf. https://www.grid5000.fr

78

https://www.grid5000.fr

5.7. EVALUATION

Line ConnectedStar Random
Application Topology

0

2

4

6

8

10

12

14

Co
st

 D
is

ta
nc

e
%

Figure 5.7: Cost distances as percentage of optimal between 2PCAP solutions and optimal
solutions aggregated by application topology type. Cost distance averages are illustrated
by brown triangles.

Figure 5.8: Sum of execution times in seconds from 2PCAP and SCIP solver executions
aggregated by application topology. Only the execution time for problem instances suc-
cessfully solved by SCIP are computed. Notice that 100000 seconds are equivalent to
around 28 hours.

problem instances successfully solved by SCIP. Cost distances are grouped by application
topology.

In Figure 5.7 we can see that cost distances vary between 0% and at most 12.3%. The
median is always 0% and the average between 2% and 3%.

Figure 5.8 complements this data. It depicts the sum of the execution times in seconds
that each approach used to calculate the 48% of Class A problem instances solved by
SCIP, grouped by application topology schema. While 2PCAP takes some seconds to
solve all problems, the solver’s execution time is in the scale of days. Hence, in spite of
being much faster than the solver, 2PCAP manages to produce a solution at most around
12% worse than the optimal and, solutions medians are optimal.

79

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

5.7.3 2PCAP Performance on Large Problems

It is impractical to generate optimal solutions for large scenarios. Hence, in this section,
we evaluate 2PCAP by comparing it to more scalable baseline algorithms. We do this
in three steps: first we compare 2PCAP to Simulated Annealing (S.A.) meta-heuristics,
then we compare 2PCAP to heuristics running a relaxed version of the CAPDAMP, and
finally we analyze the improvement of 2PCAP solutions by SA.

We implemented a S.A. meta-heuristic (cf. Section 2.4.2) using the Python module
Simanneal [91] and computed placements for the medium sized Class B problem instances.

Despite giving a timeout of 1 hour per problem instance to SA, the meta-heuristic
managed to solve only around 12% of all Class B problem instances. This happens
mainly because of the size of CAPDAMP’s search space that has a large amount of
invalid solutions and many isolated local optimum solutions.

2PCAP vs. Relaxed CAPDAMP

In Section 5.3, we discussed some heuristics from the state of the art which used relaxed
versions of NP-hard problems to quickly compute solutions. In a similar way, we used a
relaxed version of CAPDAMP as lower bounds to evaluate 2PCAP. The relaxed version
has been obtained by removing all communication constraints from the CAPDAMP,
reducing it to a cost aware multi-dimensional bin packing problem. Then, we use a S.A.
algorithm initialized with the best solution among those calculated by 2PCAP and other
multi dimensional bin packing based heuristics, discussed in Chapter 4, with one hour
timeout per problem instance.

Line ConnectedStar Random
Application Topology

0

5

10

15

20

25

30

Co
st

 D
is

ta
nc

e
%

Line ConnectedStar Random
Application Topology

0

5

10

15

20

25

Co
st

 D
is

ta
nc

e
%

Figure 5.9: Cost distances between 2PCAP and relaxed CAPDAMP solutions for problem
instances from classes B and C. Cost distance averages are illustrated by brown triangles.

Figure 5.9 illustrates the evolution of cost distances between 2PCAP and SA solutions.
From left to right, we describe that metric for problem instances from classes B and C.
We observe a similar pattern in every experiment, with cost distances varying between
0% and 35% but with the median always bellow 16.5%. The observed reducing cost
distances between the experiences are partly due to the drop of the performance of S.A.
as the size of the problem grows, which would require longer execution times to compute
better solutions. Nevertheless, it is possible to notice that the cost distances – medians

80

5.7. EVALUATION

Line ConnectedStar Random
Application Topology

40

30

20

10

0

10

20

Co
st

 D
is

ta
nc

e
%

Line ConnectedStar Random
Application Topology

50

40

30

20

10

0

10

20

Co
st

 D
is

ta
nc

e
%

Figure 5.10: Cost distances between 2PCAP and S.A.1, a S.A. implementation that
uses a modified version of 2PCAP to generate placement solutions. In summary, the
composition phase of this algorithm was changed so it picks sub-placements randomly
instead of the less expensive. Brown triangles indicate cost distance averages.

and averages, particularly – stay within similar intervals, indicating that even on large
scenarios, the performance of 2PCAP is consistent.

Replacing S.A.’s Initialization Algorithm

As described in Section 2.4.2, S.A. builds a solution by improving partial solutions in a
process that simulates the energy changes involved in cooling a material. In our imple-
mentation of S.A., there are two ways of generating a partial solution. It can be generated
from a valid “neighbor solution”, i.e. modifying a placement solution by moving a com-
ponent from a VM to another VM, or it can be generated from scratch.

We observed that during our first tests, S.A. would spend most of its execution time
trying to randomly generate valid partial solutions from the scratch due to the amount
of invalid configurations in the search space.

Initializing S.A. With Random 2PCAP

To improve S.A. we implemented S.A.1, a modified S.A. that can generate partial so-
lutions from the scratch using a modified version of 2PCAP which selects random sub-
placements instead of the less expensive ones during composition phase. This allows for
generating valid configurations very quickly. S.A.1 and 2PCAP were given one hour per
problem instance to solve problems from Classes B and C. Thanks to 2PCAP, S.A.1 man-
aged to generate solutions for 100% of valid problem instances. The results are depicted
in Figure 5.10. We observe that in the worst case 2PCAP solutions are around 16% worse
than S.A.1, and, in the best case, 2PCAP is around 40% better than S.A.1. Averages
vary between around 3.5% and -11.5%, and medians between 4.2% and -11%. Notice
that Class B and C experiments follow similar patterns.

81

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

Line ConnectedStar Random
Application Topology

0

2

4

6

8

10

12

14

16

Co
st

 D
is

ta
nc

e
%

Line ConnectedStar Random
Application Topology

0

2

4

6

8

10

12

Co
st

 D
is

ta
nc

e
%

Figure 5.11: Cost distances between 2PCAP and S.A.2, a S.A. implementation that uses
2PCAP to calculate initial solutions. Brown triangles indicate cost distance averages.

Initializing S.A. With 2PCAP

In this section, we implemented S.A.2, a modified S.A. that uses 2PCAP to calculate its
very first initial solution. Other partial solutions are generated randomly, if needed. This
experience give us an insight about how much S.A. can improve a 2PCAP solution.

S.A.2 and 2PCAP were given one hour per problem instance to solve problems from
Classes B and C. Figure 5.11 illustrates this metric.

S.A.2 managed to improve 2PCAP solutions by at most 14% and the median is always
bellow 4.5%. This small improvement is a good indicator of 2PCAP’s solution qualities.

2PCAP Execution Times

Figure 5.12 depicts execution times from 2PCAP, grouped by application topology, for
Classes B and C. Despite having up to one hour to solve each problem, 2PCAP managed
to compute solutions in at most around 140 seconds. Notice that there is a gap between
execution times from problems with full connected and random application topologies
and those with line and star topologies. This happens because of the high graph density
of full connected and random topologies schemes. As a result, in the decomposition
phase, 2PCAP generates less component subsets, leading to less bottom sub-placements
and fewer calls to the bin packing heuristics.

5.8 Conclusion

In this chapter we presented an approach to calculate initial placements for component-
based applications with the objective of minimizing costs while satisfying resource and
communication constraints. This approach is based on a hierarchical model of the Cloud
topology which allows the introduction of latency requirements despite the uncertainties
inherent to Cloud networks, mainly due to virtualization. This model is used by 2PCAP,
an efficient heuristic which, after an extensive evaluation, was shown to be capable of
computing good quality solutions very quickly.

82

5.8. CONCLUSION

Line Star Connected Random
Application Topology

0

2

4

6

8

10

12

Ex
ec

ut
io

n
Ti

m
e

Line Star Connected Random
Application Topology

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
Ti

m
e

Figure 5.12: Execution times in seconds (per problem instance) aggregated by application
topology taken by 2PCAP to compute solutions for problem instances from classes A, B
and C. Execution time averages are illustrated by brown triangles.

It is important to notice, however, that 2PCAP is only capable of calculating initial
placements. Reconfiguration placement scenarios, i.e. scenarios where parts of a dis-
tributed application have been previously deployed, cannot be solved by 2PCAP. This
issue is addressed in Chapter 6, where we increment our models and propose a extended
reconfiguration-aware version of 2PCAP.

83

CHAPTER 5. INITIAL COMMUNICATION AND COST-AWARE PLACEMENT

84

Chapter 6

Communication and Cost-Aware
Placement With Reconfiguration

In Chapter 5 we introduced the communication-aware placement of distributed applica-
tions on multiple clouds problem (CAPDAMP) and proposed the two phase communication-
aware placement heuristic (2PCAP), a heuristic capable of calculating initial placements
for the CAPDAMP. In this chapter, we extend our modeling of the CAPDAMP and
propose an extension of 2PCAP which is able to calculate initial and reconfiguration
placements.

6.1 Introduction

In Chapters 4 and 5, we proposed efficient heuristics able to calculate initial solutions for
placement problems. Until now, we considered that there were no parts of a distributed
application previously deployed at the moment the placement is computed.

In this chapter, we also consider reconfiguration placement scenarios. A reconfigura-
tion scenario is characterized by the existence of previously deployed application compo-
nents, and, consequently, instantiated VMs, at the moment a placement is computed.
Hence, to achieve the objective of minimizing renting costs, it may be necessary to
migrate, previously deployed application components to other VMs. However, moving
application components involves costs and, to calculate them, it is necessary to take
into account parameters such as connection latencies, amount of data being moved and
expected application execution duration, for example.

In the next sections we present the main characteristics and issues related to reconfig-
uration placement problems and discuss solutions available in the state of the art. Then,
we present a heuristic able to compute cost, communication and reconfiguration-aware
placements called 2PCAP-REC and we close this chapter with its evaluation.

6.2 Problem Statement

In this section we present our modeling of distributed applications, Cloud based infras-
tructures, and reconfigurations. We formalize the problem of calculating cost, communi-
cation and reconfiguration-aware placements and describe our objectives.

85

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

6.2.1 Distributed Application and Cloud Computing Models

The Cloud and distributed application models used in this chapter are the same used in
Chapter 5. Hence, in this section, we only summarize those models.

Distributed applications are modeled as component-based applications. Each compo-
nent has resource requirements (e.g. CPU, memory, etc.) and may establish connection
requirements in terms of latency with other components. Cloud infrastructures are mod-
eled as interconnected sets of machine groups which encapsulate VMs. The latter are
instanced from VM types and describe resource and connection capacities. The objective
is to assign components to VMs aiming at minimizing costs while satisfying resource and
communication constraints.

Let I be a set of components, T a set of VM types with D resources (or dimensions)
of interest. Let ri,d be the requirements of component i P I on dimension d ă D, ct,d the
capacity of VM type t P T on dimension d ă D and pt the price of renting a VM of type
t per unit of time. Let x

comp
i,j be the connection requirement between components i P I

and j P I.
Each VM type t is part of a machine group s P S, where S is a set of machine

groups, a set of machines indistinguishable from the connection constraint point of view.
This means that VMs belonging to the same machine group share the same connection
capacities. Examples of machines group are clusters or cloud provider sites. Machine
groups are interconnected and their connection capacities are represented as xmg

s,u , where
s P S and u P S. The connection capacity between a VM v P V , that belongs to machine
group s, and a VM n P V , that belongs to machine group u, is represented by xvm

v,n and,
furthermore, xvm

v,n “ xmg
s,u .

Let V “ tvk,t | 1 ď k ď |I|, t P T u be the set containing all VMs that could be rented.
Let v P V and cv,d be the capacity of dimension d ď D of rented VM v, i.e., cv,d “ ct,d
and pv is the price paid for renting VM v, i.e., pv “ pt.

6.2.2 Predicted Duration of Application Execution

We consider that an estimate δ of the duration of the execution of the distributed ap-
plication is given in units of time. We also consider that each Cloud provider shares the
same billing time interval of one unit of time. Thus, the cost of renting a VM v P V will
be pv.δ, i.e. its price pv multiplied by the predicted duration δ.

6.2.3 Reconfiguration Specificities

In this chapter, besides initial placement scenarios, we also consider reconfiguration sce-
narios, that is, it is possible that a set of previously instantiated VMs, which host appli-
cation components, may exist at the moment the placement is calculated. This impacts
on placement costs. In our initial placement scenarios, the only source of costs comes
from renting VMs. In reconfiguration scenarios renting costs exists too, however it is also
necessary to take into consideration component migration costs, i.e., the costs of moving
components from one VM to another. Those costs depend on many parameters such as
type of deployed applications, migration technique, and the contract between customers
and Cloud providers. For example, a deployed application unavailable to users due to a
reconfiguration placement might result in extra fees for application owners. There may

86

6.2. PROBLEM STATEMENT

also have extra costs for sending data, originating components or VM images, from a
Cloud provider to another.

Let W Ď V be a set of previously deployed VMs. Each VM w P W hosts at least
one application component. Let H Ď I be the set of application components previously
deployed on VMs.

Let oj,w be the mapping between a component j P H to a VM w P W on which it was
previously deployed. A reconfiguration occurs when j is assigned to another VM v P V .
Besides the cost pv.δ of renting v for the next δ units of time, there is also the cost of
moving i from w to v. The latter is described by a migration function µpj, w, vq.

Function µ, described in Equation 6.1, takes as arguments the component to be moved,
the “source” VM and the “destination” VM.

µpj, w, vq “
ř

dďD ri,d

xvm
w,v

.φ, for j P H, w P W , v P V

φ “
ř

iPI

ř

dPD ri,d

|I| .
1

minppvq, @v P V

(6.1)

φ is a migration cost coefficient. In this work the value of φ is the average of the
sum of all components dimensions divided by the price of the cheapest VM type available
among all Cloud providers.

In this thesis, the value calculated by µ depends on the “size” of a component and
the communication qualities between previous and current host VMs. Hence, we penalize
large components and low latency connections, i.e. the cost of a migration is proportional
to the ratio size and connection quality. We simplify the concept of size by considering
it to be the sum of components’ dimensions. Notice that µ could be easily replaced by
other functions to model more specific placement scenarios.

We do not take into consideration explicit costs related to the interruption of service
during migrations, however, this could be implicitly incorporated to φ. For example, in
the case where each component has different interruption costs and they depend only on
component’s characteristics, µ could be extended to µi where i P I.

6.2.4 Placement Objective

Given the sets I of application components, V of VMs, W of rented VMs and S of machine
groups, we want to compute a placement of all elements from I on VMs from V and W .
The objective is to minimize renting and migration costs while satisfying resource and
communication constraints defined by the application. We illustrate the reconfiguration
placement problem in Figure 6.1.

6.2.5 Optimization Problem Formulation

We formalize the placement problem described in the previous sections in Equation 6.2. A
summary of the variables used in the problem is available in Table 6.1. This optimization
problem formulation will be used as input to a MIP (Mixed Integer Programming) solver
in Section 6.5.

87

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

Cloud Providers

Figure 6.1: Reconfiguration placement scenario. At the bottom, we represent Cloud
providers as rectangles and VM types as colored cylinders. VM instances are represented
as transparent cylinders and dashed arrows indicate the types from which VMs are in-
stanced. On the upper-left part, we illustrate a distributed application as a connected
graph where nodes are application components and edges are connections between com-
ponents. We illustrate the situation where components of the distributed application are
already deployed (i.e. components inside VMs on the left part) and others are waiting
to be deployed (i.e. components outside VMs). The objective, represented on the right,
is to find a placement which minimizes costs originated from renting VMs and migrating
components while satisfying resource and communication constraints.

88

6.3. RELATED WORK

I Set of components.
T Set of VM types.
V Set containing all potential VMs.
W Set of previously deployed VMs (W Ď V).
H Set of previously hosted components (H Ď I).
D Number of resources/dimensions.
pt Price of VM type t P T .
pv Price of VM v P V .
av av “ 1 if v P V is being used, 0 otherwise.
vk,t k-th VM of type t P T .
oi,v oi,v “ 1 if component i P I was previously hosted on v P V , 0 otherwise.
mi,v mi,v “ 1 if component i P I is assigned to VM v P V , 0 otherwise.
ri,d Requirement of component i P I on dimension d.
cv,d Capacity of VM v P V on dimension d.
x
comp
i,j Requirement of connection between component i P I and j P I.
xmg
s,u Capacity of connection between machine group s P S and u P S.

xvm
v,n Capacity of connection between VM v P V and n P V .

Table 6.1: Summary of variables used in this section and, more specifically, in Equa-
tion 6.2.

Minimize
ÿ

vPV

qv `
ÿ

iPI

gi

s.t.
ÿ

vPV

mi,v “ 1 @i P I piq
ÿ

iPI

mi,v.ri,d ď cv,d @v P V , 1 ď d ď D piiq

mi,n.mj,v.pxvm
n,v ´ x

comp
i,j q ě 0 @n, v P V , @i P I piiiq

gi “ µpi, n, vq.mi,v.oi,n @n,v P V |n ‰ v, @i P H pivq

qv “
!

δ.pv if
ř

iPI mi,v ą 0

0 otherwise
@v P V pvq

mi,n, oi,v P t0,1u pviq

(6.2)

In the above equation, (i) guarantees that each component is assigned to at most
one VM; (ii) ensures that no instantiated VM has more components than it can host;
(iii) guarantees that network requirements are satisfied, (iv) sets migration costs for
components that were migrated and (v) calculates renting costs of VMs for duration δ.

6.3 Related Work

Since we already presented an extensive literature concerning communication-aware place-
ment in Chapter 5, in this section, we discuss related work specific to reconfiguration of

89

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

distributed applications.
In this thesis, our tool of choice for reconfiguring applications is component migrations.

We migrate components instead of VMs because of the multiple Clouds scenario we are
considering. As we discussed in Section 2.2.4, it is rare that different cloud providers share
the same hypervisors or VM images format, causing what is called vendor lock-in [92].
We also concentrate on live migrations. They consist of transferring VM or components
from a host machine to another one causing very short to no interruption of service.

In Section 5.3, we discussed many state of the art communication-aware approaches
for the CAPDAMP. In this section he focus on the validation of our choice of migrating
components instead of VMs (cf. Section 6.3.1) and the proposed migration model and
cost function µ (cf. Section 6.3.2).

6.3.1 Migrating Components

There are many ways of encapsulating components across a distributed infrastructure.
With the recent growth of popularity of containers (cf. Section 2.2.4), including Docker [29],
OpenVZ [86] and LXC [67] among others, we have been observing a very fertile environ-
ment for work on component migration. Those containers, which can be hosted in VMs,
can be used to run components and are capable of live migration similarly to VMs [73].

As examples of live migrations in the context of containers, we can cite two similar
container live migration procedures based on logs [85, 115] to register actions performed
during a migration. In summary, a duplicate of the container image to be moved is
transfered to a new host and actions performed in the source container during the transfer
are logged. Once the transfer is completed, the duplicate perform the action on the new
host and the source container can be turned off. Similarly, in [81], authors propose
a technique based on checkpointing for storing actions performed while transferring a
container image.

It is not in our scope to go deeper into the details of live migration of containers,
however, as established container implementations such as OpenVZ [86] start to natively
allow for live migrations, we observe an indication that our choice of component migration
is not just a theoretical option.

6.3.2 Modeling Migration Costs

Live migration costs are usually related to duration of service interruption [110], which
is proportional to active memory on the source VM or container, available CPU at the
source/destination host machine, co-location interference and dependent on the specific
piece of software being run [110]. However, other parameters, such as software licenses,
server maintenance, human resources, etc. may also have an influence on costs [99]. In
this section we go through the state of the art on VMs and component live migration
models and position our work in respect to them.

We call migration model the set of parameters of a placement problem taken in con-
sideration to compute migration costs.

The migration model used in this chapter (cf. Section 6.2) takes into consideration
components being migrated, source VM, destination VM, and resource and communica-
tion constraints. Furthermore, the proposed function µ (cf. Section 6.1) that compute

90

6.4. THE 2PCAP-REC HEURISTIC

migration costs penalizes the transfer of “large” components over bad latency connections.
In [93], an exact algorithm based approach to calculate initial and reconfiguration

placements with the objective of minimizing data transfer among VMs is proposed. The
amount of data transfered between source and destination physical machine host is the
migration cost. A very similar approach which aims at minimizing energy consumption
of host machines instead of data is described in [31]. In that case, migrations costs
are the difference between the energy consumption of source and destination physical
machines. Another approach based on exact algorithms is proposed in [99]. In its very
expressive VM migration model, the cost of migrating a VM is the predicted duration
of the application execution and additional costs related to the maintenance during the
reconfiguration (software licenses, human resources, etc.) which are previously defined by
a manager. Authors in [97] let the application designers manually define migration costs
for each VM in their approach. Finally, [117] presents a genetic meta-heuristic which is
capable of calculating reconfiguration placements with the objective of minimizing renting
costs of VMs while satisfying resource constraints. The migration cost is proportional to
the memory and storage used by the application host.

We observe that the migration model proposed in Section 6.2 shares most of the
characteristics discussed in the literature. The migration cost function we propose is
dependent on the amount of resources used by the source hosting machine and on the
communication between source and destination hosting machines. Besides of that, our
model is flexible enough to be incremented with new parameters, such as host machine
specific costs, and the migration function can be easily replaced.

Furthermore, our approach is cost and communication-aware and is based on a fast
heuristic. Most of the work discussed in this section is based on exact algorithms or
meta-heuristics. Exact algorithms are not scalable and meta-heuristics have their solution
qualities proportional to the amount of time given to them to calculate. Hence, if there
are narrow time constraints or, if problems are very large, the heuristic we propose may
be an specially interesting option.

6.3.3 Discussion

In this section, our objective was to validate our decision of migrating components instead
of VMs and our migration model. We presented interesting work which indicated that
application components can be run inside of containers and those can be live-migrated
in reconfiguration situations. We also compared the migration model proposed in this
chapter with other migration models from the literature and observed that our model
comprises many of the interesting features and that it could be extended if a more ex-
pressive migration model is needed.

6.4 The 2PCAP-REC Heuristic

In this chapter we propose the Two Phase Communication and Reconfiguration Aware
Placement Heuristic (2PCAP-REC), an extension of the divide and conquer heuristic
2PCAP presented in Chapter 5.

2PCAP-REC computes not only initial solutions for the CAPDAMP, but it can also

91

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

Level 0

Level 1

Level 2

Level 3

m1 m2 m3 m4

2 1
c1 c2 c3

c4
2

?

m1 m2 m3

Figure 6.2: Addition of component c4. In the left part, we illustrate the Cloud topology
and, in the right part, the distributed application modeled as a component-based applica-
tion. Previously deployed components have the machine groups of their current hosting
VMs identified above them (c1, c2, and c3). Non-deployed components have question
marks “?” (c4).

compute solutions for reconfiguration scenarios, i.e. scenarios where part of the dis-
tributed application is deployed on VMs at the moment the placement is calculated.

Before presenting this heuristic in details, we need to discuss the application, Cloud
and migration models used by 2PCAP-REC.

6.4.1 Application and Cloud Model

As 2PCAP-REC is an extension of 2PCAP, it shares the same application and Cloud
models. Consequently, in this section, we briefly recall these models and invite the reader
interested in more detail to refer to Sections 5.4 and 5.5.

Cloud Model

We model the Cloud topology as a hierarchy. In this topology (cf. Figure 6.2), leaves are
machine groups and inner nodes represent connections between machine groups. The
level of a inner node represents the connection quality of the machine groups having that
inner node as sub-tree root. The highest internal node which interconnects two machine
groups define their maximum connection quality.

The objective of representing the Cloud as a tree is to be able to describe latencies be-
tween machine groups even in situations where only uncertain or less precise information
is available.

Distributed Application Model

Distributed applications are modeled using the component-based paradigm and are rep-
resented as a graph. Components are nodes and connection between components are
weighted edges. Connection requirements are described by edge weights. Figure 6.2
illustrates an example of such distributed application.

92

6.4. THE 2PCAP-REC HEURISTIC

6.4.2 Reconfiguration Model

To be able to describe reconfiguration scenarios, it is necessary to represent components
previously deployed on the Cloud. We added this feature to the application model and
also included migration cost functions µ and prevision of execution duration δ to the
input of 2PCAP-REC. A scenario where a new component is added to an application is
illustrated in Figure 6.2.

6.4.3 2PCAP-REC – Two Phase Communication and Reconfig-
uration Aware Placement Heuristic

The Two Phase Communication and Reconfiguration Aware Placement Heuristic (2PCAP-
REC) is an extension of the Two Phase Communication Aware Placement Heuristic
(2PCAP), described in details in Chapter 5. It also has two phases: a decomposition
and composition phases.

The difference between 2PCAP-REC and 2PCAP lies in the decomposition step.
2PCAP-REC must take into consideration possible migrations of components when cal-
culating bottom sub-placements. The rest of the algorithm is essentially the same. Thus,
in this section, we summarize the similar parts and focus on the new ones. For the reader
interested in a more extensive discussion on decomposition and composition phases, please
refer to Section 5.5.

Decomposition

In the decomposition phase, 2PCAP-REC, similarly to 2PCAP, generates, at each level
of the Cloud topology, component and machine group subsets that will serve as input to
sub-placements. The decomposition is propagated until the bottom sub-placement level
ℓmax is found.

The application graph and the Cloud topology form the initial component and machine
group subsets, respectively.

Component subsets are decomposed through the removal of edges weighting less than
a given connection quality, or level, ℓ, from the graph generated by the elements of a
component subset. The nodes of each resulting connected sub-graph is a valid component
subset. An example of a component subset decomposition is illustrated in Figure 6.3(e).

Machine groups subsets are decomposed through the gathering of all inner nodes from
the Cloud topology tree at a given connection quality, or level, ℓ. These nodes form a
forest of subtrees and each set of leaves from each subtree is a valid machine group subset.
Examples of machine group subset decomposition are illustrated in Figures 6.3(c), 6.3(d),
and 6.3(e).

A sub-placement is the placement of a subset of components on a subset of machine
groups. Sub-placements are similar to a “complete” placement since they also have the
objective of minimizing costs while satisfying resource and communication constraints.

A bottom sub-placement is a sub-placement which can be calculated by communi-
cation oblivious heuristics while still satisfying communication requirements. Bottom
sub-placements are generated at level ℓmax, which is the highest communication quality
requirement present in the application. This situation is illustrated in Figure 6.3(e). Ob-

93

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

(a)

L0

l = min(g,h,i,j,k)

(c)

2

1

c1

c3

c2

c4
2

Level 0

Level 1

Level 2

Level 3

L1

j = c + f

min(a, b)
+

min(d, e)
k =

(d)

2

1

c1

c3

c2

c4
2

m1 m2 m3 m4

2 1
c1 c2 c3

c4
2

?

m1 m2 m3

L2

2

(e)

c2

c1

c3

c4
2

a' + μ(c3,m3,[m1 U m2])

d=

2

1

c1

c3

c2

c4
2

b' + μ(c3,m3,m3) c' + μ(c3,m3,m4)

d'
+

μ(c1,m1,[m1 U m2])
+

μ(c2,m2,[m1 U m2])

e=

e'
+

μ(c1,m1,m3)
+

μ(c2,m2,m3)

f=

f'
+

μ(c1,m1,m4)
+

μ(c2,m2,m4)

g=

g'
+

μ(c1,m1,[m1 U m2])
+

μ(c2,m2,[m1 U m2])
+

μ(c3,m3,[m1 U m2])

h=

h'
+

μ(c1,m1,m3)
+

μ(c2,m2,m3)
+

μ(c3,m3,m3)

i=

i'
+

μ(c1,m1,m4)
+

μ(c2,m2,m4)
+

μ(c3,m3,m4)

d= b= c=

(b)

Figure 6.3: Reconfiguration placement example. We simulated the addition of compo-
nent c4. In (a), we illustrate the Cloud topology and in (b) the distributed application
modeled as a component-based application. Previously deployed components have the
machine groups of their current hosting VMs identified above them (c1, c2, and c3). Non-
deployed components have question marks “?” (c4). Tables (c), (d) and (e) illustrate the
decomposition steps. Subtrees of machine groups are illustrated on their top and sub-
graphs on their left side (cf. Section 5.5). As we do not detail host VMs in this example,
we slightly modified the input of µ to µpi,s,uq|i P H and s,u P S. a1, b1,c1,d1,e1 and f 1 are
the costs of placing the respective component subsets on machine group subsets.

94

6.4. THE 2PCAP-REC HEURISTIC

serve that it is not necessary to continue generating sub-placements up to level 3 since
there are no communication requirements above 2.

Computing Bottom Sub-Placements

The last step of decomposition phase consists of calculating bottom sub-placements. The
way it is done by 2PCAP-REC is different from 2PCAP because the former must take
into account potential component migrations.

First, 2PCAP-REC calculates bottom sub-placements using communication oblivi-
ous heuristics similarly to 2PCAP. Then, it checks if there are any previously deployed
components that were assigned to VMs different from their source VMs. If that is
the case, the cost of migrating those component is calculated by a migration function
µpi, n, vq “

ř

dďD ri,d

xvm
n,v

.φ (cf. Section 6.2). Finally, the cost of each bottom sub-placement
will be the cost of renting the VMs added to the cost of eventually migrating application
components. Figure 6.3(e) illustrates the computation of bottom sub-placements a,b,c,d,e
and f .

The packing improvement (Section 5.5.1) is also applied to 2PCAP-REC. It consists
of creating bottom sub-placements of intermediary component subsets (i.e. generated at
levels smaller than ℓmax) on machine groups subsets of level ℓmax. This is illustrated in Fig-
ure 6.3(e). Observe that, in the last line of table L2, the component subset tc1,c2,c3,c4u
was generated at level 0 (cf. Figure 6.3(c)).

Composition

The composition phase of 2PCAP-REC is identical to 2PCAP’s (cf. Section 5.5.2).
After calculating all bottom sub-placements, the objective is to choose, at each step

between levels ℓmax and 0, the less expensive solutions from related sub-placements and
compose them up to the final placement. This process is illustrated in Figure 6.3(d),
whose sub-placements are chosen based on sub-placements calculated at level 2 (cf. Fig-
ure 6.3(e)) and in Figure 6.3(c) whose sub-placements are based on those calculated at
level 1 (cf. Figure 6.3(d)).

6.4.4 2PCAP-REC Algorithm

2PCAP and 2PCAP-REC algorithms are mostly the same. As 2PCAP-REC supports
component migrations, it also receives a duration δ and a migration function µ as input.
Those two parameters are used to calculate potential migration costs stemming from
bottom sub-placements. The function responsible for this task is the function calculate
which is called in Line 5 from Algorithm 9 and illustrated in Algorithm 8.

In function calculate (cf. Algorithm 8), after storing a copy of a potential previous
placement in variable prev_plac (cf. Line 1), a sub-placement is calculated using commu-
nication oblivious heuristics and the result stored in variable sub_placement (cf. Line 2),
which is, then, compared to prev_plac in order to identify any component migrations
(cf. Lines 4 to 9). If this is the case, the migration cost (cf. Section 7) is added to the
cost of the sub-placement (cf. Line 11) and the computed sub-placement is returned.

95

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

Algorithm 8 calculate
Input: comp_subset,mg_subset, δ, µ

Output: sub_placement

1: prev_plac Ð get_prev_placpcomp_subsetq
2: sub_placement Ð com_oblivious_heuristicspcomp_subset,mg_subsetq
3: mig_cost Ð 0

4: for pcomp1, vm1q in sub_placement do
5: for pcomp2, vm2q in prev_plac do
6: if comp1 ““ comp2 AND vm1 ‰ vm2 then
7: mig_cost Ð mig_cost ` µpcomp1, vm1, vm2q
8: end if
9: end for

10: end for
11: set_plac_costpsub_placement, costpsub_placementq ` mig_costq
12: return sub_placement

6.4.5 2PCAP-REC Complexity

The complexity of 2PCAP-REC is mostly the same as 2PCAP (cf. Section 5.5.4). Con-
sequently, it is also dominated by operations of composition (compose function), de-
composition (decompose function) and the computation of sub-placements (calculate
function). 2PCAP’s and 2PCAP-REC’s functions compose and decompose are essen-
tially the same. However, 2PCAP-REC’s function calculate has the overhead of verifying
if component migrations took place.

At level ℓmax (bottom sub-placement level), there are two types of component subsets:
those generated by decomposition at level ℓmax and those which were decomposed at
intermediary levels – a strategy to generate better packed solutions (Algorithm snippet
between Lines 30 and 36).

There is an added complexity of verifying if component migrations were performed
during bottom sub-placements computing. In the worst case, all components of the
application would be previously deployed and there will be as many machine group subsets
as machine groups. Thus, in this case, the complexity would be Op|I|2.|S|q.

When it comes to calculating the added complexity related to component subsets
decomposed at intermediate levels, it is necessary to consider that, in the worst case
all connection requirements would be ℓmax and, thus, every intermediate decomposi-
tion would result in the original application. Hence, the added complexity would be
Op|I|2.|S|.pℓmax ´ 1qq.

Thus, the total complexity overhead of calculating eventual component migrations is
Op|I|2.|S|.ℓmaxq and the total complexity of function calculate will be Op|I|2.|S|.|T |. log |T |q`
Op|I|2.|S|.ℓmaxq. As |T | ě |S| and it is expected that ℓmax ă |T |, the complexity of
calculate will still be Op|I|2.|S|.|T |. log |T |q.

96

6.4. THE 2PCAP-REC HEURISTIC

Algorithm 9 2PCAP-REC (Differences to Algorithm 7 are highlighted)

Input: level, comp_subset,mg_subset, δ, µ

Output: min_cost_plac

1: min_cost_plac Ð 8
2: if is_calculatedpcomp_subset,mg_subsetq then
3: return placpcomp_subset,mg_subsetq
4: else if level “ level_max then
5: calculatepcomp_subset,mg_subset, δ, µq
6: return placpcomp_subset,mg_subsetq
7: else if level ă level_max then
8: comp_decomposition Ð decomposepcomp_subset, levelq
9: mg_decomposition Ð decomposepmg_subset, levelq

10: if sizepmg_decompositionq “ 1 then
11: plac Ð null

12: for cs in comp_decomposition do

13: temp_plac Ð 2PCAP-RECplevel ` 1, cs,mg_subset, δ, µq
14: plac Ð composepplac ` temp_placq
15: end for
16: min_cost_plac Ð plac

17: else if sizepmg_decompositionq ą 1 then
18: plac Ð null

19: for cs in comp_decomposition do
20: min_plac Ð null

21: for ms in mg_decomposition do

22: temp_plac Ð 2PCAP-RECplevel ` 1, cs,ms, δ, µq
23: if costptemp_placq ă min_plac then
24: min_plac Ð temp_plac

25: end if
26: end for
27: plac Ð composepplac ` min_placq
28: end for
29: min_cost_plac Ð plac

30: end if
31: for ms in mg_decomposition do

32: temp_plac Ð 2PCAP-RECplevel_max, comp_subset,msq
33: if costptemp_placq ă costpmin_cost_placq then
34: min_cost_plac Ð plac

35: end if
36: end for
37: end if
38: return min_cost_plac

97

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

6.5 Evaluation

In this section we evaluate the performance of 2PCAP-REC. We do this through simula-
tion and by comparing the proposed heuristic to other baseline algorithms based on state
of the art approaches.

6.5.1 Methodology

In Chapter 3 we have discussed in detail the methodology, notation, and metrics used for
evaluating our contributions. In this section, we summarize the concepts previously pre-
sented and focus on particularities of proposed heuristics’ evaluation, such as experiment
format, problem classes parameters or test platform characteristics.

As discussed in Section 3.3, the evaluation of 2PCAP-REC is based on experiments.
An experiment is the resolution of a set of placement problems by a set of algorithms
within a given time. In this chapter, we perform three experiments. Each one will have
a distinct set of problems which we call problem class.

A problem class assembles problems that share similar characteristics allowing us to
analyze different aspects of the evaluated algorithm.

Parameter Class A Class B Class C

number of dimensions 2,4 4 4
initial number of components 2,3,4,5 10,20,30,40 50,75,100
initial number of VMs 100 1000 1000,5000,10000
number of sites 5 50 100
multi-cloud topology height 5 5 5
application topology line, random line, random line, random
predicted duration 2, 5, 8 5, 10, 500 2, 5, 10, 500
migration cost function f1 f1, f2 f1, f2
added/removed components -1, 1, 2 -50%,-25%, +50%, +100%, -50%, +50%
added/removed VMs 0 0, +50% 0, +50%

total problems 192 384 576

Table 6.2: Problem classes and their parameters.

We propose three classes, A, B, and C (cf. Table 6.2). Fundamentally, smaller and
consequently easier to solve Class A problems are used to compare 2PCAP-REC to
a MIP solver and the medium to large problems from Classes B and C are used to
compare 2PCAP-REC to a Simulated Annealing (S.A.) meta-heuristic implementation.
The metrics used to analyze the results of experiments are cost distances and the difference
between execution times (cf. Section 3.3).

Problem classes’ parameters are mostly the same used in Section 5.7 except for the
last four parameters in Table 6.2: predicted duration, migration cost function, added/re-
moved components and added VM types. Predicted duration refers to an estimate of the
application execution duration in units of time; migration cost function refers to the func-
tion used to generate migration costs; added/removed components refers to the number of
components added or removed in the reconfiguration scenario and added VM types refers

98

6.5. EVALUATION

to the number of VM types added to the reconfiguration scenario. The two migration
functions f1 and f2 use the same base migration cost function µ (cf. Equation 6.1), how-
ever f1 considers that component migrations are free if they involve VMs from the same
machine group and f2 does not. We do this to simulate cost models practiced by many
Cloud providers such as Amazon [4] and Azure [78] which do not charge data transfers
inside the same Cloud provider site.

Essentially, a placement problem is composed of a set of possibly interconnected com-
ponents and a set of VM types organized in interconnected Cloud sites. The parameters
that guide the generation of those problems are defined by each problem class. The
procedure of placement problem parameter generation is the same used in Section 5.7.

Component and VM type dimensions are generated by picking pseudo-random values
from intervals pre-defined in Table 6.3. The price pt of a VM type is dependent on its
first four capacities and is generated as follows:

pt “α ` β ` γ ` δ where

α “c˚

t,1 ˆ randomp1,3q
β “c˚

t,2 ˆ randomp8,20q
γ “c˚

t,3 ˆ randomp5,8q

δ “
!

c˚

t,4 ˆ randomp10,15q if c˚

t,4 ď 500

c˚

t,4 ˆ randomp20,25q , otherwise

c˚

t,d “ ct,d

maxd

and maxd is the upper bound of d’s data generation interval.

(6.3)

The simulation of a reconfiguration situation has three steps. First the necessary
data is generated following the experiment’s problem class parameters and intervals of
dimension data. At this step an initial placement problem is generated and 2PCAP
computes a solution to that problem. Then, a certain number of components or VMs is
added to that placement or removed from it (this amount is also defined by the problem
classes). This constitutes the reconfiguration placement problem and it will be calculated
by 2PCAP-REC and baseline algorithms.

Dimension Requirements Capacities

(i) 800 to 3000 1000 to 3500
(ii) 1 to 16 2 to 32
(iii) 1 to 32 2 to 40
(iv) 50 to 3500 150 to 4000
(v) 5 to 30 10 to 80
(vi) 1 to 8 1 to 16

Table 6.3: Intervals of dimension data generation. .

The 2PCAP-REC algorithm and the program necessary to automate its evaluation
is implemented in Python. We used the SCIP suite [2] in conjunction with IBM’s
CPLEX [56] to generate optimal solutions and Python’s simulated annealing framework
Simaneal [91]. Experiments were conducted on Dell PowerEdge R430 (Intel(R) Xeon(R)

99

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

CPU E5-2620 v4 2.10GHz, 32GB RAM) nodes from cluster Nova of the Grid’5000 ex-
perimental platform1.

6.5.2 Small Problems (Class A Experiment)

Class A problems were designed to be used as input to a MIP solver which would allow
for the generation of optimal points that would be compared to 2PCAP-REC solutions.
After generating the problems, we used the SCIP optimization suite [2] in conjunction
with the MIP solver IBM CPLEX [56] to solve them. The optimization problem formu-
lation is described in Equation 6.2 and was programmed using ZIMPL [2], a high level
language which translates a mathematical model to a format that CPLEX understands.
Each individual problem had 12 hours to calculate a solution. During this time, SCIP
and CPLEX were able to generate around 6% of Class A problems (around 13 problem
instances).

This is an indicator of the difficulty of the problem and forced us to find other strategies
to evaluate the performance of 2PCAP-REC.

6.5.3 Medium and Larger Problems (Class B and C Experiments)

In this section, we evaluate the performance of 2PCAP-REC in the larger scenarios
described by Class B and C problems. To do that, we use as baseline algorithm an
implementation of a simulated annealing meta-heuristic (S.A.), which is more scalable
than the solver used in Section 6.5.2.

We discuss results related to two experiments, one using Class B problems (Class B
Experiment) and another using Class C problems (Class C Experiment) as input. Both
have a one hour timeout and use three S.A. variants as baseline algorithm.

Essentially, S.A. variants differ with regard to the way their partial solutions (cf. Sec-
tion 2.4.2) are generated. In summary, the first variant, S.A.1 generates partial solutions
pseudo-randomly; the second one, called S.A.2, generates solutions calculated by a mod-
ified 2PCAP-REC which, in the composition step, instead of choosing the less expensive
sub-placements, choses them randomly; and the third one, named S.A.3, uses a solution
computed by 2PCAP-REC.

2PCAP-REC vs. S.A.1

As described in Section 2.4.2, S.A. builds a solution by improving partial solutions in a
process that simulates the energy changes involved in cooling a material. In our imple-
mentation of S.A., there are two ways of generating a partial solution. It can be generated
from a valid “neighbor solution”, which consists of moving a component from VM in a
valid placement to another VM, or it can be generated from scratch, i.e. an entire new
placement is generated randomly.

We observed that during our first tests, S.A. would spend most of its execution time
trying to randomly generate valid partial solutions from scratch due to the amount of
invalid configurations in the search space.

1cf. https://www.grid5000.fr

100

https://www.grid5000.fr

6.5. EVALUATION

-50% +50-25% 100%
Added/Removed Components

80

60

40

20

0

20

40

Co
st

 D
is

ta
nc

e
%

-50% +50%
Added/Removed Components

80

70

60

50

40

30

20

10

Co
st

 D
is

ta
nc

e
%

Figure 6.4: Cost distances between solutions from 2PCAP-REC and S.A.1 aggregated by
number of application components. Results for Class B and Class C experiments are on
the left and right sides, respectively. Triangles indicates the average of distances.

S.A.1 implements a different way of generating solutions from scratch. Instead of
trying to generate valid placements randomly across multiple Cloud provider sites, it
tries to place all components on same Cloud provider site. Observe that in this case
all communication requirements would be satisfied. However, as this approach might
miss many possible configurations, algorithm optimality is affected. If there is no site
that could host the entire application, the original random procedure discussed in the
beginning is performed.

The cost distances between 2PCAP-REC and S.A.1 are plotted in Figure 6.4. We
aggregate all solutions by number of added or removed components. In general, most of
distances are negative indicating that 2PCAP-REC managed to calculate better solutions
than S.A.1. The median varies between -40% and -47% and the average between -35%
and -45% for Class B experiment. For the Class C experiment, medians and averages are
between -48% and -47%.

In Figure 6.4, S.A.1 has a better performance when the reconfiguration scenario in-
volves the removal of components from the initial placement. This happens mainly be-
cause, by removing components, the search space becomes smaller and, thus S.A.1 will
be able to explore a larger part of it.

2PCAP-REC vs. S.A.2

To improve that approach and introduce more of Cloud provider site heterogeneity to
partial solutions, we implemented S.A.2, which can generate partial solutions from the
scratch using a modified version of 2PCAP which selects random sub-placements instead
of the less expensive ones during composition phase. This allows for generating valid con-
figurations very quickly. The cost distances between 2PCAP-REC and S.A.2 for a Class
B experiment aggregated by number of added or removed components is represented in
Figure 6.5. We observe smaller and more balanced cost distances than those represented
in Figure 6.4, specially in terms of medians and averages. Notice, however, that the last
quartiles of situations where components are removed are worse than situations where
components are added.

101

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

-50% +50-25% 100%
Added/Removed Components

40

30

20

10

0

10

20

Co
st

 D
is

ta
nc

e
%

-50% +50%
Added/Removed Components

70

60

50

40

30

20

10

0

10

Co
st

 D
is

ta
nc

e
%

Figure 6.5: Cost distances between solutions aggregated by number of application com-
ponents from 2PCAP-REC and S.A.2, a variant of S.A. that uses a randomized version of
2PCAP-REC to calculate partial solutions. Results for Class B and Class C experiments
are on the left and right sides, respectively. Triangles indicates the average of distances.

We managed to improve the performance of S.A., however, 2PCAP-REC is still better
in most of cases.

2PCAP-REC vs. S.A.3

The way initial configurations are calculated directly affects S.A. performance. Figure 6.6
illustrates the cost distance between 2PCAP-REC and S.A.3, a variation of S.A.1 in
which initial solutions are calculated using 2PCAP-REC itself. This analysis helps us to
understand by how much a solution calculated by 2PCAP-REC could be improved in one
hour. It is possible to observe that there is an improvement specially in the last quartile
of situations where components are removed during reconfiguration. In those cases it
can reach an improvement of around 41%, however, the median and average are 0% and
at most 3%, respectively. This reflects the difficulty to improve solutions calculated by
2PCAP-REC in large-scale scenarios.

2PCAP-REC vs. 2PCAP

The predicted duration of execution (δ) is an important reconfiguration problem param-
eter because it characterizes the amortization of migration costs. This amortization is
determined by the ratio migration cost

δ
and indicates the overhead per time unit caused by

migration costs. For example, a $10 migration will cost $10 per time unit if δ “ 1; $1 per
time unit if δ “ 10; or $0.1 per time unit if δ “ 100.

If δ is large enough to make migration costs become insignificant, the costs of recon-
figuration placements and initial placements converge. To analyze that, we compare the
performance of 2PCAP and 2PCAP-REC on Class B and C experiments with varying δ.

The results aggregated by predicted duration are depicted in Figure 6.7. As expected,
cost distances reduce as the predicted duration grows indicating the aforementioned con-
vergence. Notice that it is possible that a reconfiguration placement is cheaper than a
reconfiguration placement calculated as an initial placement. This happens because pre-

102

6.5. EVALUATION

-50% +50-25% 100%
Added/Removed Components

0
5

10
15
20
25
30
35
40
45

Co
st

 D
is

ta
nc

e
%

-50% +50%
Added/Removed Components

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
st

 D
is

ta
nc

e
%

Figure 6.6: Cost distances between solutions from 2PCAP-REC and S.A.3, a version
of S.A. meta-heuristic initialized by 2PCAP-REC aggregated by number of application
components. In this analysis, the distances represent the improvement calculated by S.A.
to a placement computed by 2PCAP-REC. Results for Class B and Class C experiments
are on the left and right, respectively. Triangles indicate the average of distances.

viously deployed components and migration costs may allow for a different exploration
of the search space that would not be considered by 2PCAP. This phenomena can be
observed in Figure 6.7 where predicted duration is 500 for Class C experiment.

5 50010
Duration (time units)

0
5

10
15
20
25
30
35
40
45

Co
st

 D
is

ta
nc

e
%

2 105 500
Duration (time units)

10

0

10

20

30

40

50

Co
st

 D
is

ta
nc

e
%

Figure 6.7: Cost distances aggregated by predicted duration of execution between so-
lutions from 2PCAP-REC and 2PCAP (the reconfiguration placement problem is con-
sidered an initial placement problem in this case). Results for Class B and Class C
experiments are on the left and right sides, respectively. Triangles indicates the average
of distances.

Execution Times

S.A. variants were given one hour per problem to calculate a solution. Likewise, 2PCAP-
REC was given the same timeout, however, as we can see in Figures 6.8, it has never
taken more than 8 seconds per problem from Class B experiment and 80 seconds for
Class C experiment problems. Notice that 2PCAP-REC’s execution times follow the

103

CHAPTER 6. COMMUNICATION AND COST-AWARE PLACEMENT WITH
RECONFIGURATION

-50% -25% +50 100%
Added/Removed Components

0

1

2

3

4

5

6

7

8

Ex
ec

ut
io

n
Ti

m
e

-50% +50%
Added/Removed Components

0

10

20

30

40

50

60

70

80

Ex
ec

ut
io

n
Ti

m
e

Figure 6.8: 2PCAP-REC execution times for Class B and Class C experiments (left and
right sides, respectively). Triangles indicates the average of distances.

same pattern as 2PCAP’s (cf. Section 5.7).

6.5.4 Discussion

In this section we evaluated the performance of 2PCAP-REC. This was accomplished
through the comparison of reconfiguration placements calculated by 2PCAP-REC, S.A.
meta-heuristic implementations and a MIP solver. We generated three different problem
classes aiming at having a better understanding about the limitations of 2PCAP-REC. We
observed that, in spite of having very reduced execution times, 2PCAP-REC managed
to compute, most of the time, better placements than state of the art approaches or,
at least, comparable to them. This is an indication that 2PCAP-REC is an interesting
option when reconfiguration problems are large and when there are tight time constraints.

6.6 Conclusion

In this chapter we presented 2PCAP-REC, a communication and reconfiguration-aware
heuristic. Being an extension of 2PCAP (cf. Chapter 5), 2PCAP-REC inherits the ability
of calculating solutions for large-scale CAPDAMP problems and, furthermore, it is able
to calculate solutions for reconfiguration scenarios.

We discussed a detailed related work specially focused on validating the component
migration model presented in Section 6.2 and we evaluated 2PCAP-REC taking into
consideration the main approaches of the state of the art. We observed in the experiments
that 2PCAP-REC is an interesting option to be considered in large-scale scenarios or in
situations where time constraints are tight or in both cases. In addition, 2PCAP-REC is
also a good tool to quickly generate good quality initial solutions for meta-heuristics and
other iterative algorithms.

104

Chapter 7

Conclusion and Perspectives

In this thesis we studied the problem of calculating initial and reconfiguration placements
of distributed applications on multiple Cloud based infrastructures. We were interested
in situations where the placement objective was to minimize renting costs while satisfying
resource and communication constraints. This problem is difficult to solve and automate
due to scalability issues resulting from the large amount of different Cloud providers
and virtual machine (VM) types that we consider in the problem. There are many
interesting approaches in the literature, however, despite their important contributions,
their solutions do not scale well (such as exact algorithms), or may take too much time
to calculate a good quality solution (such as meta-heuristics), or oversimplify placement
scenarios (such as many heuristics).

In this context, we split that problem in three parts and propose heuristic-based
approaches for each part incrementally. Each heuristic was extensively evaluated and
compared to state of the art approaches.

The combination of proposed heuristics and their evaluation are the main contribu-
tions of this thesis. We summarize it as follows:

• Cost + Resource Constraints: In a first moment we considered only cost and
resource constraints of distributed applications and Cloud infrastructure. Commu-
nication constraints were let aside. In this way, we modeled the placement problem
as a generalization of a multi dimensional bin packing problem (or vector packing
problem) and proposed efficient heuristics based on First Fit Decreasing heuristics
which can compute initial placements.

• Cost + Communication and Resource Constraints: In a second moment, the
objective was to improve the previously proposed communication-oblivious heuris-
tics by adding communication constraints to the modeling. To do so, we used a
hierarchical approach to model Cloud topologies and a graph based approach to
model distributed applications. We proposed 2PCAP, a heuristic that uses these
models to calculate communication-aware initial placements of distributed applica-
tions on multiple Clouds. The vector packing based heuristics previously proposed
are part of 2PCAP.

• Cost + Communication and Resource Constraints + Reconfiguration:
The last part of the split placement problem concerns reconfiguration scenarios.

105

CHAPTER 7. CONCLUSION AND PERSPECTIVES

We added ways of expressing migration costs and components which are already
deployed to application and Cloud models. Then, we proposed 2PCAP-REC, an
extension of 2PCAP, that can deal with reconfiguration scenarios, i.e. situations
where part of a distributed application has previously been deployed at the moment
a placement is calculated.

• Evaluation: Those three heuristics where evaluated separately against state of the
art approaches in a very similar way. Placement problems with different sizes and
characteristics were generated and solved by the considered heuristic(s) and baseline
algorithms. The latter were, in summary, variations of mixed integer programming
solvers and simulated annealing meta-heuristics, which are a good sample of state of
the art approaches. The results pointed that the proposed heuristics were capable
of calculating good quality solutions much faster than state of the art approaches,
specially in large-scale placement scenarios.

In conclusion, the heuristics proposed in this thesis are valuable tools to quickly cal-
culate placements for large-scale scenarios or cases where there are tight time constraints.
Furthermore, they are still an interesting option as fast placement solution generators to
be used to initialize algorithms, including branch-and-cut heuristics and meta-heuristics,
or as good quality baseline algorithms.

7.1 Perspectives

The contributions of this thesis could be extended in many different ways. In this section,
we discuss some research directions that could lead to interesting results.

7.1.1 Different Use Case Perspectives

Fog and Edge Computing

Today, a large part of Cloud computing community has its attention turned to the Fog and
Edge computing. In summary, the objective of those platforms is to reduce the latency
between the source of data or requests and service providers. This means that requests do
not have to cross a country to reach a service hosted in a remote data center, but could be
processed by servers (or any other connected computing device), responsible for attending
a local area. Those servers could be hosted in data centers, inside cellphone transmission
stations or even in personal use devices such as personal computers or cellphones. An
example of utilization would be a mobile application delegating the heavy processing of
some data to a near server and just getting its results. Another one would be a local
infrastructure able to receive and process data from many near sensors, and to send them
commands based on data analysis.

The challenge of how to place application components and replicas of application com-
ponents over those Edge virtual servers in a given region is a very interesting placement
problem. This scenario has a lot in common with those visited in Chapter 6, namely
hosting infrastructure heterogeneity, resource, time and communication constraints, and
problem scale. Hence, we think that 2PCAP-REC could be successfully adapted to that

106

7.1. PERSPECTIVES

context. It would benefit from improvements related to the modeling of resource and
communication constraints and also some way of measuring resilience of virtual servers.
In our opinion the core of both placement problems, on multiple Clouds or on the Edge,
are very similar.

Virtual Machine Consolidation

Typically the virtual machine (VM) consolidation problem is characterized by calculating
mappings between sets of VMs and sets of physical machines in a cluster. The objective
is usually minimizing metrics, such as energy consumption or bandwidth usage. Observe
that it may be necessary to reorganize VMs previously running on physical machines to
allocate new VMs, thus VM migration may occur during the process.

2PCAP-REC could be adapted to this scenario. Firstly, because data centers can very
commonly be modeled hierarchically. Furthermore the objective function of minimizing
renting costs could be easily replaced by another one, such as energetic consumption
minimization. Finally, it is possible to replace the current component migration model
to a VM migration model.

7.1.2 Improvement of Application and Constraint Model Per-
spectives

In Chapter 3 we listed the hypotheses that we used to model the placement problems
discussed throughout this thesis and to design our heuristics. In this section we propose
removing or changing some of these hypotheses in order to bring more aspects from
real world placement scenarios to the considered problems. The challenge is to improve
application and infrastructure models while keeping a good performance of the proposed
heuristics.

Performance Constraints

In our application and infrastructure models, we do not consider any interference effects
resulting from components sharing a same VM. Currently it is not possible to describe
performance metrics neither any relation between allocated resources and component per-
formance. Consequently, it is not possible to describe performance requirements or ca-
pacities. Once a resource-performance correlation is established, we believe that 2PCAP-
REC and the proposed application and Cloud models could be adapted or extended to
take into account performance constraints.

Data Transfer Constraints

The proposed application and infrastructure models do not explicitly take into account
data transfers between components. To adapt 2PCAP-REC to this scenario, it would be
necessary to change the meaning of communication constraints. In the current model,
we consider that these constraints are described in terms of latency. Considering that
data transfer requirements are described in therms of throughput, it would be necessary
to introduce the notion of communication bandwidth and correlate it to latency. Also,
it would be necessary to explicitly introduce a “data transfer” dimension to components.

107

CHAPTER 7. CONCLUSION AND PERSPECTIVES

At this point whenever a new component is deployed to a VM, communication capacities
of connections of the hosting VM to other VMs would be impacted. Finally, the way
2PCAP-REC’s decomposition phase is implemented would have to be updated since the
structure of component subsets would affect VM communication capacities.

Controlled SLA Violation

Throughout this thesis we considered that resource and communication constraints are
hard constraints. It could be interesting extending 2PCAP-REC to allow violations of
some constraints in exchange of smaller renting costs, for example. It could be a user de-
fined parameter establishing allowed levels of degradation or minimal cost improvements.

7.1.3 Multi-objective Optimization

The objective of the heuristics presented in this thesis were minimizing renting and mi-
gration (where apply) costs while satisfying resource and communication (where apply)
constraints. A very interesting research direction would be adding other optimization
objectives to the problem, transforming it in a multi-objective optimization problem.
For example, besides minimizing renting costs it could be interesting to also minimize
resource utilization. The heuristics and application and infrastructure models proposed
in this thesis could be a starting point for a solution.

108

Bibliography

[1] M. Abdelbaky, J. Diaz-Montes, M. Parashar, M. Unuvar, and M. Steinder. “Docker
Containers across Multiple Clouds and Data Centers”. In: 2015 IEEE/ACM 8th
International Conference on Utility and Cloud Computing (UCC). 2015.

[2] Tobias Achterberg. “SCIP: Solving Constraint Integer Programs”. In: Mathematical
Programming Computation (2009).

[3] Amazon EC2 Container Service. url: https://aws.amazon.com/ecs.

[4] Amazon Elastic Compute Cloud. url: https://aws.amazon.com/ec2.

[5] Amazon Virtual Private Cloud. url: aws.amazon.com/vpc.

[6] Amazon Web Services. url: https://aws.amazon.com.

[7] Greg R Andrews. Foundations of Parallel and Distributed Programming. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[8] Apache. Apache Cassandra. url: http://cassandra.apache.org/.

[9] Apache Hadoop. url: http://hadoop.apache.org/.

[10] Apache Spark. url: https://spark.apache.org/.

[11] Autodesk Fusion 360. url: ww.autodesk.com/products/fusion-360.

[12] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,
Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nico-
las Niclausse, Lucas Nussbaum, Olivier Richard, Christian Perez, Flavien Ques-
nel, Cyril Rohr, and Luc Sarzyniec. “Adding Virtualization Capabilities to the
Grid’5000 Testbed”. In: CLOSER. 2013.

[13] Nikhil Bansal, José R. Correa, Claire Kenyon, and Maxim Sviridenko. “Bin Pack-
ing in Multiple Dimensions: Inapproximability Results and Approximation Schemes”.
In: Mathematics of Operations Research (2006).

[14] D. Bernstein. “Containers and Cloud: From LXC to Docker to Kubernetes”. In:
IEEE Cloud Computing (2014).

[15] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. “Advanced
Web Services”. In: 2014. Chap. TOSCA: Portable Automated Deployment and
Management of Cloud Applications.

[16] Ofer Biran, Antonio Corradi, Mario Fanelli, Luca Foschini, Alexander Nus, Danny
Raz, and Ezra Silvera. “A Stable Network-Aware VM Placement for Cloud Sys-
tems”. In: CCGrid. 2012.

[17] Blizzard. World of Warcraft. url: https://worldofwarcraft.com/.

109

https://aws.amazon.com/ecs
https://aws.amazon.com/ec2
aws.amazon.com/vpc
https://aws.amazon.com
http://cassandra.apache.org/
http://hadoop.apache.org/
https://spark.apache.org/
ww.autodesk.com/products/fusion-360
https://worldofwarcraft.com/

BIBLIOGRAPHY

[18] Robert B. Bohn, John Messina, Fang Liu, Jin Tong, and Jian Mao. “NIST Cloud
Computing Reference Architecture”. In: Proceedings of the 2011 IEEE World Congress
on Services. 2011.

[19] Adrian Bondy and M. Ram Murty. Graph Theory. Springer-Verlag, 2008.

[20] Ilhem BoussaïD, Julien Lepagnot, and Patrick Siarry. “A Survey on Optimiza-
tion Metaheuristics”. In: Journal Information Sciences: an International Journal
(2013).

[21] Hinde Lilia Bouziane. “De l’abstraction des modèles de composants logiciels pour
la programmation d’applications scientifiques distribuées”. PhD thesis. 2008.

[22] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. “The FRACTAL component model and its support in Java”. In:
Software: Practice and Experience (2006).

[23] Drona Pratap Chandu. “A Parallel Genetic Algorithm for Three Dimensional Bin
Packing with Heterogeneous Bins”. In: International Journal of Computer Trends
and Technology (2014).

[24] W. Chen, X. Qiao, J. Wei, and T. Huang. “A Profit-Aware Virtual Machine De-
ployment Optimization Framework for Cloud Platform Providers”. In: CLOUD.
2012.

[25] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield. “Live migration of virtual
machines”. In: Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2. 2005.

[26] Jens Clausen. Branch and Bound Algorithms – Principles And Examples. Tech.
rep. Department of Computer Science, University of Copenhagen, 1999.

[27] Emanuel Ferreira Coutinho, Flávio Rubens de Carvalho Sousa, Paulo Antonio
Leal Rego, Danielo Gonçalves Gomes, and José Neuman de Souza. “Elasticity
in cloud computing: a survey”. In: Annals of telecommunications - Annales des
télécommunications (2015).

[28] Mehmet Deveci, Kamer Kaya, Bora Uçar, and Umit V. Catalyurek. “Fast and
High Quality Topology-Aware Task Mapping”. In: IPDPS. 2015.

[29] Docker. url: https://www.docker.com/.

[30] Documentation of vmware‘s vSphere. url: https://pubs.vmware.com/vsphere-
50/topic/com.vmware.vsphere.vm_admin.doc_50/GUID-CEFF6D89-8C19-

4143-8C26-4B6D6734D2CB.html.

[31] C. Dupont, T. Schulze, G. Giuliani, A. Somov, and F. Hermenier. “An energy aware
framework for virtual machine placement in cloud federated data centres”. In: 2012
Third International Conference on Future Systems: Where Energy, Computing and
Communication Meet (e-Energy). 2012.

[32] Evernote. url: https://evernote.com.

[33] Ulrich Faigle, Walter Kern, and Georg Still. “Algorithmic Principles of Mathemat-
ical Programming”. In: Spring Netherlands, 2002.

110

https://www.docker.com/
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.vm_admin.doc_50/GUID-CEFF6D89-8C19-4143-8C26-4B6D6734D2CB.html
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.vm_admin.doc_50/GUID-CEFF6D89-8C19-4143-8C26-4B6D6734D2CB.html
https://pubs.vmware.com/vsphere-50/topic/com.vmware.vsphere.vm_admin.doc_50/GUID-CEFF6D89-8C19-4143-8C26-4B6D6734D2CB.html
https://evernote.com

BIBLIOGRAPHY

[34] P. Fan, Z. Chen, J. Wang, Z. Zheng, and M. R. Lyu. “Topology-Aware Deployment
of Scientific Applications in Cloud Computing”. In: CLOUD. 2012.

[35] Eugen Feller, Louis Rilling, and Christine Morin. “Energy-Aware Ant Colony
Based Workload Placement in Clouds”. In: GRID. 2011.

[36] Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N. Calheiros, and Rajkumar
Buyya. “Virtual Machine Consolidation in Cloud Data Centers Using ACO Meta-
heuristic”. In: Europar. 2014.

[37] L. R. Foulds. “Optimization Techniques An Introduction”. In: Springer New York,
1981.

[38] Michaël Gabay and Sofia Zaourar. Variable Size Vector Bin Packing Heuristics -
Application to the Machine Reassignment Problem. Tech. rep. INRIA, 2013.

[39] Michaël Gabay and Sofia Zaourar. “Vector Bin Packing with Heterogeneous Bins:
Application to the Machine Reassignment Problem”. In: Annals of Operations
Research (2015).

[40] Yongqiang Gao, Haibing Guan, Zhengwei Qi, Yang Hou, and Liang Liu. “A Multi-
objective Ant Colony System Algorithm for Virtual Machine Placement in Cloud
Computing”. In: Journal of Computer and System Sciences (2013).

[41] Mukund N. Thapa George B. Dantzig. “Linear Programming 1: Introduction”. In:
Springer New York, 1997.

[42] Google. url: https://www.google.com.

[43] Google App Engine. url: https://cloud.google.com/appengine.

[44] Google Apps. url: https://gsuite.google.com/.

[45] Google Cloud. url: https://cloud.google.com.

[46] Hadi Goudarzi and Massoud Pedram. “Multi-dimensional SLA-Based Resource
Allocation for Multi-tier Cloud Computing Systems”. In: CLOUD. 2011.

[47] Object Management Group. Business Process Modeling And Notation (BPMN).
url: http://www.omg.org/spec/BPMN/.

[48] Object Management Group. Common Object Request Broker Architecture (CORBA).
url: http://www.omg.org/spec/CCM/.

[49] Object Management Group. Unified Modeling Language (UML) Version 2.0. url:
http://www.omg.org/spec/UML/2.0/.

[50] Nikolay Grozev and Rajkumar Buyya. “Inter-Cloud architectures and application
brokering: taxonomy and survey”. In: Software: Practice and Experience (2014).

[51] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu. “A General Communication Cost
Optimization Framework for Big Data Stream Processing in Geo-Distributed Data
Centers”. In: IEEE Transactions on Computers (2016).

[52] BernardT. Han, George Diehr, and JackS. Cook. “Multiple-Type, Two-Dimensional
Bin Packing Problems: Applications and Algorithms”. In: Annals of Operations
Research (1994).

111

https://www.google.com
https://cloud.google.com/appengine
https://gsuite.google.com/
https://cloud.google.com
http://www.omg.org/spec/BPMN/
http://www.omg.org/spec/CCM/
http://www.omg.org/spec/UML/2.0/

BIBLIOGRAPHY

[53] Pavol Hell and Jaroslav Nešetřil. Graphs and Homomorphisms. Oxford University
Press, 2004.

[54] Pavol Hell and Jaroslav Nešetřil. “On the complexity of H-coloring”. In: Journal
of Combinatorial Theory, Series B (1990).

[55] Chris Hyser, Bret Mckee, Rob Gardner, and Brian J Watson. Autonomic Virtual
Machine Placement in the Data Center. Tech. rep. HPL-2007-189. HP Laborato-
ries, 2007.

[56] International Business Machines Corporation (IBM). IBM ILOG CPLEX Opti-
mizer. url: https://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/.

[57] International Business Machines Corporation (IBM). url: https://www.ibm.
com.

[58] Manar Jammal, Ali Kanso, and Abdallah Shami. “High Availability-Aware Opti-
mization Digest for Applications Deployment in Cloud”. In: ICC. 2015.

[59] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible. “Improving
Performance and Availability of Services Hosted on IaaS Clouds with Structural
Constraint-Aware Virtual Machine Placement”. In: SCC. 2011.

[60] Emmanuel Jeannot, Guillaume Mercier, and Francois Tessier. “Process Placement
in Multicore Clusters: Algorithmic Issues and Practical Techniques”. In: IEEE
Transactions Parallel Distributed Systems (2014).

[61] Brendan Jennings and Rolf Stadler. “Resource Management in Clouds: Survey and
Research Challenges”. In: Journal of Network and Systems Management (2014).

[62] David Karger and Krzysztof Onak. “Polynomial Approximation Schemes for Smoothed
and Random Instances of Multidimensional Packing Problems”. In: Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
’07. 2007.

[63] Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann. “Winery - A
Modeling Tool for TOSCA-Based Cloud Applications.” In: Proceedings of the 11th
International Conference on Service-Oriented Computing, ICSOC 2013, Berlin,
Germany. 2013.

[64] Katrina LaCurts, Shuo Deng, Ameesh Goyal, and Hari Balakrishnan. “Choreo:
Network-aware Task Placement for Cloud Applications”. In: IMC. 2013.

[65] Vincent Lanore. “On Scalable Reconfigurable Component Models for High-Performance
Computing”. PhD thesis. Ecole normale supérieure de lyon - ENS LYON, 2015.

[66] William Leinberger, George Karypis, and Vipin Kumar. “Multi-Capacity Bin Pack-
ing Algorithms with Applications to Job Scheduling Under Multiple Constraints”.
In: ICPP. 1999.

[67] Linux Containers. url: https://linuxcontainers.org.

[68] Jose Luis Lucas-Simarro, Rafael Moreno-Vozmediano, Ruben S. Montero, and
Ignacio M. Llorente. “Scheduling Strategies for Optimal Service Deployment across
Multiple Clouds”. In: Future Generation Computer Systems (2013).

112

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www.ibm.com
https://www.ibm.com
https://linuxcontainers.org

BIBLIOGRAPHY

[69] T.V. Lakshman M. Alicherry. “Network Aware Resource Allocation in Distributed
Clouds”. In: INFOCOM (2012).

[70] Zoltán Ádám Mann. “Allocation of Virtual Machines in Cloud Data Centers&Mdash;A
Survey of Problem Models and Optimization Algorithms”. In: ACM Comput. Surv.
(2015).

[71] Sunilkumar S. Manvi and Gopal Krishna Shyam. “Resource management for In-
frastructure as a Service (IaaS) in cloud computing: A survey”. In: Journal of
Network and Computer Applications 41 (2014).

[72] Ching Chuen Teck Mark, Dusit Niyato, and Tham Chen-Khong. “Evolutionary
Optimal Virtual Machine Placement and Demand Forecaster for Cloud Comput-
ing”. In: IEEE AINA (2011).

[73] Violeta Medina and Juan Manuel García. “A Survey of Migration Mechanisms of
Virtual Machines”. In: ACM Computing Surveys (2014).

[74] Peter M. Mell and Timothy Grance. The NIST Definition of Cloud Computing.
Tech. rep. 2011.

[75] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. “Improving the Scalability of Data
Center Networks with Traffic-aware Virtual Machine Placement”. In: INFOCOM.
2010.

[76] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta
H. Teller, and Edward Teller. “Equation of State Calculations by Fast Computing
Machines”. In: The Journal of Chemical Physics (1953).

[77] Microsoft. url: http://www.microsoft.com.

[78] Microsoft Azure. url: https://azure.microsoft.com.

[79] Microsoft Azure Stack. url: https://azure.microsoft.com/en-us/overview/
azure-stack/.

[80] Microsoft HD Insight. url: https://azure.microsoft.com/en-us/services/
hdinsight/.

[81] Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. “Containers checkpointing
and live migration”. In: In Ottawa Linux Symposium. 2008.

[82] Mongo DB. url: https://www.mongodb.com/.

[83] Nintendo. Pokemon Go. url: http://www.pokemongo.com/.

[84] L. Nonde, T. E. H. El-Gorashi, and J. M. H. Elmirghani. “Energy Efficient Virtual
Network Embedding for Cloud Networks”. In: Journal of Lightwave Technology
(2015).

[85] A. Omezzine, S. Yangui, N. Bellamine, and S. Tata. “Mobile Service Micro-containers
for Cloud Environments”. In: 2012 IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. 2012.

[86] OpenVZ – Virtuozzo Containers. url: https://openvz.org/.

[87] Computational Infrastructure for Operations Research (COIN-OR). COIN-OR
Branch and Cut (CBC). url: https://www.coin-or.org/Cbc/cbcuserguide.
html.

113

http://www.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com/en-us/overview/azure-stack/
https://azure.microsoft.com/en-us/overview/azure-stack/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/hdinsight/
https://www.mongodb.com/
http://www.pokemongo.com/
https://openvz.org/
https://www.coin-or.org/Cbc/cbcuserguide.html
https://www.coin-or.org/Cbc/cbcuserguide.html

BIBLIOGRAPHY

[88] Manfred Padberg and Giovanni Rinaldi. “A Branch-and-cut Algorithm for the
Resolution of Large-scale Symmetric Traveling Salesman Problems”. In: SIAM
Review (1991).

[89] C. Pahl and B. Lee. “Containers and Clusters for Edge Cloud Architectures – A
Technology Review”. In: 2015 3rd International Conference on Future Internet of
Things and Cloud. 2015.

[90] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder. Heuristics for Vector Bin
Packing. Tech. rep. Microsoft Research, 2011.

[91] Matthew Perry. Simanneal: Python Module for Simulated Annealing Optimization.
url: https://github.com/perrygeo/simanneal.

[92] Dana Petcu. “Portability and Interoperability between Clouds: Challenges and
Case Study”. In: Towards a Service-Based Internet: 4th European Conference, Ser-
viceWave 2011, Poznan, Poland, October 26-28, 2011. Proceedings. 2011.

[93] Jing Tai Piao and Jun Yan. “A Network-aware Virtual Machine Placement and
Migration Approach in Cloud Computing”. In: Proceedings of the 2010 Ninth In-
ternational Conference on Grid and Cloud Computing. GCC ’10. 2010.

[94] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable
Third Generation Architectures”. In: Communications of the ACM (1974).

[95] Rackspace. url: https://www.rackspace.com.

[96] M.A. Rodriguez and R. Buyya. “Deadline Based Resource Provisioning and Schedul-
ing Algorithm for Scientific Workflows on Clouds”. In: IEEE Transactions on Cloud
Computing (2014).

[97] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. “Efficient Autoscaling in
the Cloud Using Predictive Models for Workload Forecasting”. In: Proceedings of
the 2011 IEEE 4th International Conference on Cloud Computing. CLOUD ’11.
2011.

[98] Cihan Seçinti and Tolga Ovatman. “On Optimizing Resource Allocation and Ap-
plication Placement Costs in Cloud Systems”. In: CLOSER. 2014.

[99] Mina Sedaghat, Francisco Hernandez-Rodriguez, and Erik Elmroth. “A Virtual
Machine Re-packing Approach to the Horizontal vs. Vertical Elasticity Trade-off
for Cloud Autoscaling”. In: Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference. CAC ’13. 2013.

[100] Amazon Web Services. What are Containers? url: https://aws.amazon.com/
containers/.

[101] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. “Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors”. In: SIGOPS Operating Systems Review
(2007).

[102] Bart Spinnewyn, Bart Braem, and Steven Latre. “Fault-Tolerant Application Place-
ment in Heterogeneous Cloud Environments”. In: CNSM. 2015.

114

https://github.com/perrygeo/simanneal
https://www.rackspace.com
https://aws.amazon.com/containers/
https://aws.amazon.com/containers/

BIBLIOGRAPHY

[103] Advancement of Structured Information Standards (OASIS). Web Services Busi-
ness Execution Language. url: http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[104] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
2002.

[105] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley Publish-
ing, 2009.

[106] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd Edition). 2006.

[107] Francois Tessier, Guillaume Mercier, and Emmanuel Jeannot. “Process Place-
ment in Multicore Clusters:Algorithmic Issues and Practical Techniques”. In: IEEE
Transactions on Parallel and Distributed Systems ().

[108] Hien Nguyen Van, F.D. Tran, and J.-M. Menaud. “SLA-Aware Virtual Resource
Management for Cloud Infrastructures”. In: CIT. 2009.

[109] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. “A Break
in the Clouds: Towards a Cloud Definition”. In: SIGCOMM Computer Communi-
cation Review (2009).

[110] A. Verma, G. Kumar, R. Koller, and A. Sen. “CosMig: Modeling the Impact of
Reconfiguration in a Cloud”. In: 2011 IEEE 19th Annual International Symposium
on Modelling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems. 2011.

[111] Werner Vogels. “Beyond Server Consolidation”. In: ACM Queue (2008).

[112] Rafael Weingärtner, Gabriel Beims Bräscher, and Carlos Becker Westphall. “Cloud
resource management: A survey on forecasting and profiling models”. In: Journal
of Network and Computer Applications 47 (2015).

[113] Roland Wunderling. “Paralleler und objektorientierter Simplex-Algorithmus”. PhD
thesis. Technische Universität Berlin, 1996.

[114] Andrew Chi-Chih Yao. “New Algorithms for Bin Packing”. In: J. ACM (1980).

[115] Chenying Yu and Fei Huan. “Live Migration of Docker Containers through Logging
and Replay”. In: 3rd International Conference on Mechatronics and Industrial
Informatics Cite this publication. 2015.

[116] Minyi Yue. “A Simple Proof of the Inequality FFDpLq ď 11

9
OPT pLq`1, @L for the

FFD Bin-Packing Algorithm”. In: Acta Mathematicae Applicatae Sinica (1991).

[117] Z. I. M. Yusoh and M. Tang. “Clustering Composite SaaS Components in Cloud
Computing using a Grouping Genetic Algorithm”. In: CEC. 2012.

[118] Qian Zhu and Gagan Agrawal. “Resource Provisioning with Budget Constraints
for Adaptive Applications in Cloud Environments”. In: HPDC. 2010.

[119] Y. Zhu, J. Xu, Q. Zhang, X. Wang, P. Palacharla, and T. Ikeuchi. “Game Theory
Based Reliable Virtual Network Mapping for Cloud Infrastructure”. In: ICC. 2016.

[120] B. Zong, R. Raghavendra, M. Srivatsa, X. Yan, A. K. Singh, and K. W. Lee.
“Cloud Service Placement via Subgraph Matching”. In: ICDE. 2014.

115

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	Introduction
	The Challenge of Placing Applications
	Motivation: Cloud Computing
	Objective
	Approach to the Problem
	Summary of Contributions
	Publications and Communications
	Peer reviewed conferences
	Workshop Presentations (Invited Talks)
	Poster Presentation

	Thesis Structure

	Context
	Distributed Systems
	Cloud Computing
	Defining the Cloud
	Deployment Models
	Service Models
	IaaS Revisited
	Containers
	Cloud Infrastructure
	Discussion

	Distributed Applications
	Component-Based Software Paradigm
	Component-Based Models
	Discussion

	Placement on the Cloud
	Placement in Application Life Cycle
	Strategies for Performing an Automated Placement

	Conclusion

	Problem Definition and Methodology
	Objective and Problem Definition
	Distributed Applications
	Cloud-Based Infrastructure
	Placement

	Approach
	Evaluation Methodology
	Strategy
	Experiment
	Baseline Algorithms
	Evaluation Metrics

	Conclusion

	Initial Cost-Aware Placement
	Introduction
	Problem Statement
	Optimization Problem Formulation

	Related Work
	The Multi Dimensional Bin Packing Problem
	Strategies Based on Exact Algorithms
	Strategies Based on Meta-Heuristics
	Strategies Based on Greedy Heuristics
	Discussion

	Improved Greedy Heuristics
	Choice Of Greedy Heuristics to be Adapted
	Adding Cost-Awareness
	Heterogeneous Bins
	The Greedy Group

	Evaluation
	Methodology
	MIP Solver and Simulated Annealing Analysis
	Greedy Heuristics

	Conclusion

	Initial Communication and Cost-Aware Placement
	Introduction
	Communication-Aware Placement of Distributed Applications on Multiple Clouds
	Problem Statement
	CAPDAMP as Graph Homomorphism Problem
	Optimization Problem Formulation

	Related Work
	Exact Algorithms
	Meta-heuristics
	Heuristics
	Discussion

	Modeling the Cloud Infrastructure and Distributed Applications
	Cloud Network Topology
	Distributed Application Communication Topology

	Two Phase Communication-Aware Heuristic
	Phase 1: Decomposition
	Phase 2: Composition
	2PCAP Algorithm
	Discussion
	2PCAP Complexity

	Examples
	Example #1
	Example #2

	Evaluation
	Methodology
	2PCAP Performance on Small Problems
	2PCAP Performance on Large Problems

	Conclusion

	Communication and Cost-Aware Placement With Reconfiguration
	Introduction
	Problem Statement
	Distributed Application and Cloud Computing Models
	Predicted Duration of Application Execution
	Reconfiguration Specificities
	Placement Objective
	Optimization Problem Formulation

	Related Work
	Migrating Components
	Modeling Migration Costs
	Discussion

	The 2PCAP-REC Heuristic
	Application and Cloud Model
	Reconfiguration Model
	2PCAP-REC – Two Phase Communication and Reconfiguration Aware Placement Heuristic
	2PCAP-REC Algorithm
	2PCAP-REC Complexity

	Evaluation
	Methodology
	Small Problems (Class A Experiment)
	Medium and Larger Problems (Class B and C Experiments)
	Discussion

	Conclusion

	Conclusion and Perspectives
	Perspectives
	Different Use Case Perspectives
	Improvement of Application and Constraint Model Perspectives
	Multi-objective Optimization

