
HAL Id: tel-01708824
https://theses.hal.science/tel-01708824v1
Submitted on 14 Feb 2018 (v1), last revised 14 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending convolutional neural networks to irregular
domains through graph inference

Bastien Pasdeloup

To cite this version:
Bastien Pasdeloup. Extending convolutional neural networks to irregular domains through graph
inference. Machine Learning [cs.LG]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017.
English. �NNT : 2017IMTA0048�. �tel-01708824v1�

https://theses.hal.science/tel-01708824v1
https://hal.archives-ouvertes.fr

THÈSE / IMT Atlantique

sous le sceau de l’Université Bretagne Loire

pour obtenir le grade de

DOCTEUR D'IMT Atlantique

Mention : Informatique

École Doctorale Mathématiques et STIC

Présentée par

Bastien Pasdeloup
Préparée dans les départements Electronique, Signal &

communications, Image & traitement de l’information

Laboratoire Labsticc

Extending Convolutional Neural

Networks to Irregular Domains

through Graph Inference

Thèse soutenue le 12 décembre 2017

devant le jury composé de :

Christine Guillemot
Directrice de recherche, Inria – Rennes / présidente

Pascal Frossard
Associate Professor, Ecole Polytechnique de Lausanne / rapporteur

Pierre Borgnat
Directeur de recherche, Ecole normale supérieure de Lyon / rapporteur

Rémi Gribonval
Directeur de recherche, Inria – Rennes / examinateur

Vincent Gripon
Chargé de recherche, IMT Atlantique / examinateur

Dominique Pastor
Professeur, IMT Atlantique / directeur de thèse

Michael G. Rabbat
Permanent Researcher, McGill University / invité

3 Table des matières

Table des matières

Acknowledgments 7

Résumé 11

Abstract 19

1 Introduction 25
1.1 Context . 26
1.2 Problems: F.A.Q. 30

1.2.1 Which graph corresponds to my signals? 30
1.2.2 I know how to move signals in time, but how does it work on a

graph? . 31
1.2.3 Can graph signal processing help me classify signals? 31

1.3 Outline . 32

2 Signal processing on graphs 33
2.1 Elements of graph theory . 34

2.1.1 What is graph theory? . 34
2.1.2 Extensions of the graph model and operations on graphs 37
2.1.3 Matrix representation of graphs 41
2.1.4 Some families of graphs . 46

2.2 Elements of signal processing . 50
2.2.1 What is signal processing? . 51
2.2.2 Operations on signals . 53

2.3 Graph signal processing . 55
2.3.1 From signal processing to graph signal processing 56
2.3.2 The underlying graph and the signals 61
2.3.3 The uncertainty principle on graphs 66

2.4 Summary of the chapter . 77

3 From signals to graphs 79
3.1 Problem formulation and related work . 80

3.1.1 Problem formulation . 81
3.1.2 The covariance matrix and its estimates 82
3.1.3 Related work . 84

3.2 The simplified case of the monomial graph filter 87
3.2.1 Problem simplification . 87
3.2.2 Identifying the missing eigenvalues 88
3.2.3 A complete example . 90
3.2.4 Removing some constraints . 93

3.3 Graph inference from stationary signals 95

Table des matières 4

3.3.1 Characterization of the set of admissible solutions 95
3.3.2 Experiments on a dataset of temperatures in Brittany 100

3.4 Adaptation of other strategies to stationary signals 101
3.4.1 Introduction of the method . 101
3.4.2 Application to the method from Kalofolias 103
3.4.3 Additional experiments on the dataset of temperatures 105
3.4.4 Application of regularization to graph hypothesis testing 106

3.5 Summary of the chapter . 108

4 From graphs to translations 109
4.1 Existing translation operators on graphs 112

4.1.1 The graph shift approach . 112
4.1.2 The convolutive approach . 113
4.1.3 The isometric approach . 113
4.1.4 Neighborhood-preserving translations 113

4.2 Transformations, translations and isometries on graph 114
4.2.1 Transformations on graphs . 114
4.2.2 Translations on graphs . 117
4.2.3 Isometries on graphs . 121

4.3 Results on translations on graphs . 122
4.3.1 Results on generic graphs . 123
4.3.2 Results on the torus graph . 125
4.3.3 Results on the grid graph . 128
4.3.4 Extension to generic graphs . 135

4.4 Finding translations on complex graphs 137
4.4.1 Experiments on the grid graph . 138
4.4.2 Translations on random graphs . 141

4.5 Summary of the chapter . 147

5 Application to signals classification 149
5.1 Convolutional neural networks . 151

5.1.1 Some methods for classification of signals 151
5.1.2 Convolutional neural networks . 152
5.1.3 Related work in extending convolutional neural networks to ir-

regular domains . 154
5.2 A complete example on images . 156

5.2.1 Graph inference from data . 157
5.2.2 Identification of translations on the graph 158
5.2.3 Definition of the convolution matrix of a convolutional neural

network . 158
5.2.4 Classification results . 160
5.2.5 Perspectives: the interest of identifying circulant matrices 162

5.3 Summary of the chapter . 163

6 Conclusions 165
6.1 Summary of the manuscript . 166

6.1.1 From signals to graphs. 166
6.1.2 . . . to translations. 166
6.1.3 . . . to signals classification . 167

6.2 Contributions . 167
6.2.1 Graph inference from signals . 167
6.2.2 Translations identification on graphs 168

5 Table des matières

6.2.3 Classification of signals using graph signal processing and con-
volutional neural networks . 168

6.3 Perspectives . 169

A Implementation of our convolutional neural networks 171

Bibliography 173

Index 183

Table des matières 6

7 Acknowledgments

Acknowledgments

So. . . it is now time for what I believe to be one of the most complicated parts in the
redaction of this manuscript: trying not to forget anyone. Honestly, I already know that
I will since this manuscript wouldn’t exist without countless persons, so please forgive
me if it is the case for you. Anyway, in order to try to be as close as possible to an
accurate list of acknowledgments, I believe I should slightly organize this chapter:

Family

First of all, all my thanks go to my parents, Nicole and Gilles, who continuously sup-
ported me during my life/studies, and for countless other obvious reasons. Also,
thanks to my sisters, Pauline and Marion, and to their relatives, Mathilde and Adrien,
for being here and for trying to understand at least the summary of my manuscript :)

Then, all my love goes to my wife Lauren, as well as to my newborn daughter Ambre.
Thank you Lauren for everything, and thank you Ambre for everything to come. When
you’re old enough to read this, please note that it was a great decision to prevent me
from sleeping the night before the submission deadline for this manuscript. I could find
some remaining typos that I corrected in due time, so thanks for your encouragement!

Obviously, I’d also like to thank the rest of my family, past or present. May you live
far away from the distant lands of Finistère, it is great to have you. Similarly, thanks to
Lauren’s side of the family, and especially her parents, Arlette and Patrick.

Friends

I would obviously not be the same without all the friends I made across the years.
In particular, I would like to thank Pascal (Papy), for once saying to me "You should
try computer science. It’s just like playing Magic: the Gathering, so you should be
okay with it". Well, not sure the argument was the best, but that was definitely a good
idea! Not completely unrelated, I’d like to thank all the guys I’ve been playing Magic
(among other games) with since I’m a kid (by the way, I’d like to thank Richard Garfield,
eventhough I do not know him personnally). Hard to stay in contact with each and
every one of you after all these years, but you had a strong impact on my ability to use
my brain.

I would also like to thank all my band mates, and particularly the guys from Tenval
and Aboriscor, for sharing so many nice moments during the shows and rehearsals.
Continuing with music companions, thanks to the debarkators for the great discoveries
and for all the fun, including Michale’s B6 menus, Steven’s T9 and Benjamophagher’s

Acknowledgments 8

13th birthday (don’t we have a problem with numbers?). See you next year in Tilburg
and Glasgow!

I would also like to thank all the friends I made during my studies, and particularly my
mates from ENS Rennes. Thanks to Simon and Malfoy for the laughs, and for the best
birthday cake of my life. Thanks to Justine, Aurore, Hugo and Gurvan for all the great
moments, and sorry for being so bad at playing League of Legends. I hope your future
projects will bring more gratitude than ÜberML!

Education

I would like to thank the various schools I studied in during my postgraduate years, in
addition to the associated teachers and staff.

In chronological order, thanks to my teachers at Charles de Foucauld, who helped me
acquire strong programming skills, and to Cyrille Baudouin, my internship advisor
at the Centre Européen de Réalité Virtuelle (CERV), who contributed to my taste for
research. More generally, I would like to thank all the researchers from the CERV for
the nice environment and help, and to the teachers from École Nationale d’Ingénieurs
de Brest (ENIB), where I studied the next year.

Then, I would like to express my appreciation to all the teachers and staff at École
Normale Supérieure (ENS) Rennes, formerly ENS Cachan — Antenne de Bretagne. In
particular, thanks to Luc Bougé for welcoming me there, and having faith in my ability
to succeed. To all of my teachers there, thank you for your patience and for everything
I learned from you. Simultaneously, I would like to thank my teachers from Université
de Rennes 1, particularly Isabelle Puaut and Steven Derrien for the interesting projects
and human aspects.

Finally, I would like to thank IMT Atlantique, formerly Télécom Bretagne, for trusting
me so much during my Ph.D. Thanks for the great research context, and for all the
responsabilities concerning the PyRat course, which was a great opportunity for a Ph.D.
student. In particular, my thanks go to Philippe Picouet (and more generally to all those
thanks to whom the project was born), to all the teachers that accepted to participate in
this course, and to the students I supervised during these three years.

Research

First of all, I would like to express all my gratitude to my Ph.D. advisor, Vincent Gripon,
without whom I would probably not be doing research at this time. Thank you for
everything you did for me, may it be during my studies at ENIB, during these three
years of Ph.D in which you taught me a lot, or for the PPP/SSS ;) I hope I can pay you
back someday for all of this!

More generally, I would like to thank all the researchers and staff from the Electronics
department, as well as the interns that passed some time there. In particular, thanks
to Nicolas Grelier who made hell of a job during his internship, and to each and every
member of the Neucod/Brain teams for the inspiring discussions and great moments.
I would also like to thank Catherine Blondé for helping me going through the tangle of
administration, and Michel Jézéquel for the continuous support.

9 Acknowledgments

Then, I would like to thank Dominique Pastor (and more generally the SC department),
and formerly Grégoire Mercier, for directing my Ph.D. This was great working with
you. To Grégoire, I hope you are having fun in your new employment!

I would also like to thank Pierre Vandergheynst and his team at École Polytechnique
Fédérale de Lausanne (EPFL) for welcoming me there at the beginning of my Ph.D. The
ideas that emerged from this visit lead to important parts of this manuscript! Again at
EPFL, I would like to address my thanks to Pascal Frossard for accepting to review my
manuscript, and for offering me to work in your team next year!

More generally, I would like to thank all the members of the jury. Thanks to Pierre
Borgnat for accepting to review my manuscript as well, and for all the nice moments
across these years. It is always a pleasure! Thanks to Rémi Gribonval and Christine
Guillemot for accepting to participate in my jury. I hope you enjoyed my work!

Finally, I would like to express particular thanks to Michael (Mike) G. Rabbat, for the
continuous support and wise suggestions all along my Ph.D. Additionally, thank you
and the McGill University for welcoming me in Montréal for two awesome months.

To conclude my acknowledgments, I would like to thank the editors, associate editors
and reviewers of my research papers, for helping me improving my work, as well as
the GdR ISIS for financially helping me go to Montréal. Also, I would like to thank
the organizers of the Graph Signal Processing (GSP) Workshop for putting this up, and
Mike Rabbat for the Barbados seminar on GSP, which was a real dream!

Participants to the Barbados meeting. Photo c© Benjamin Girault. Standing, from left to
right: Jonathan Mei, Augustin-Alexandru Saucan, Siheng Chen, Vincent Gripon, Anto-
nio G. Marques, José M. F. Moura, Michael G. Rabbat, Mark Coates, Benjamin Girault,
Gonzalo Mateos. Sitting, from left to right: Nicolas Farrugia, Pierre Borgnat, Bastien
Pasdeloup, Paulo Gonçalves.

Acknowledgments 10

11 Résumé

Résumé

Contexte

Le traitement de signal sur graphe

Il y a quelques années, le traitement de signal sur graphe est né de l’observation suivante :
un signal défini dans le domaine temporel peut être représenté par un vecteur de réels
dont chaque entrée correspond à la valeur du signal à un instant donné. Ce temps, s’il
est périodique, peut être modélisé par un graphe prenant la forme d’un anneau (voir
la Figure 4), où chaque sommet représente un instant d’échantillonage, et où une arête
existe entre deux sommets si les instants représentés sont contigus dans le temps.

Sous ce formalisme, on manipule donc deux types d’objets : un graphe modélisant le
support des signaux, et un signal sur ce support. Le traitement de signal sur graphe est
le domaine de l’analyse de tels signaux, observés sur des graphes aux structures variées.
Entre autres exemples de signaux sur graphes, on trouve des images portées par des
grilles de pixels, ou encore des observations de signaux électro-encéphalographiques
évoluant sur un graphe modélisant le cerveau ou la surface du crâne.

L’intérêt de passer par le formalisme du traitement de signal sur graphe est qu’il per-
met de prendre en compte la structure sur laquelle évolue un signal, ce qui apporte
donc plus d’information que de considérer le signal seul. En particulier, l’un des résul-
tats marquants du domaine est une analogie entre les vecteurs propres d’une matrice
représentant le graphe, le Laplacien, et les modes de Fourier. En effet, si l’on considère
un graphe anneau, que l’on calcule ses vecteurs propres judicieusement, et qu’on les or-
donne par ordre croissant des valeurs propres associées, on remarque que ces vecteurs
prennent la forme d’un cosinus, puis d’un sinus, d’un cosinus de fréquence double, etc.
La Figure 5 offre une représentation graphique de ces vecteurs propres.

Ainsi, on observe que les vecteurs propres du Laplacien du graphe sont analogues aux
modes de Fourier, et les valeurs propres aux fréquences correspondantes. Projeter un si-
gnal sur graphe dans la base des vecteurs propres du Laplacien revient donc à effectuer
une transformée de Fourier de ce signal. Il est ensuite possible par exemple d’atténuer
les composantes associées aux plus hautes valeurs propres, ce qui a pour effet de lisser
le signal, à la manière d’un filtre passe-bas en traitement de signal classique. De même,
il est possible de définir de nombreux autres opérateurs permettant le traitement de ces
signaux, comme la modulation, la convolution, la translation, etc.

Au delà de l’analogie avec le graphe anneau, le formalisme du traitement de signal
sur graphe s’applique à tout type de graphe, et les notions présentées précédemment y
sont parfaitement définies. Par exemple, la Figure 19 illustre la propriété de lissage du
signal par un filtre passe-bas sur un graphe aléatoire. Le traitement de signal sur graphe
permet donc l’étude de signaux évoluant sur des structures complexes, apportant de

Résumé 12

nouvelles perspectives en termes de compréhension de ces signaux, et permettant des
tâches plus concrètes telles que leur classification.

Quel graphe utiliser ?

Comme indiqué précédemment, le traitement de signal sur graphe permet l’étude de
signaux grâce à la connaissance de la structure sur laquelle ils évoluent. En particulier,
les vecteurs propres de la matrice Laplacienne définissent une transformée de Fourier
adaptée aux signaux, à partir de laquelle de nombreux autres opérateurs sont définis.

Toutefois, s’il est facile d’imaginer que des images sont des signaux portés par des
graphes prenant la forme de grilles de pixels, ou qu’un signal temporel évolue sur un
graphe ligne ou sur un anneau, il est plus difficile de s’accorder sur une structure repré-
sentant le cerveau humain, ou de modéliser le support d’observations sismiques. Une
première solution pour pouvoir traiter ces signaux serait d’avoir recours aux outils clas-
siques du traitement de signal plutôt qu’à ceux du traitement de signal sur graphe, car
non applicables pour cause d’absence d’une représentation du support. Une seconde
option, plus satisfaisante, est d’inférer un graphe à partir des données, afin de recons-
truire la structure permettant l’étude de tels signaux.

Toutefois, le nombre de graphes pondérés possibles est infini, et il est nécessaire de faire
des suppositions sur les signaux ou sur le graphe. Entre autres suppositions classiques,
on trouve la parcimonie du graphe, sa régularité, le fait que ses poids soient binaires,
ou que les signaux soient lisses sur le graphe, etc. Dans ce manuscrit, nous considérons
un modèle de signaux stationnaires, et proposons plusieurs stratégies d’inférence de
graphe permettant l’obtention de propriétés choisies sur ce graphe.

Quelle définition pour la translation d’un signal sur un graphe ?

De nombreux opérateurs de manipulation de signaux portés par des graphes découlent
de la transformée de Fourier sur graphe, donc du graphe. En particulier, la notion de
translation d’un signal n’est pas intuitive lorsque l’on considère une structure abstraite
et irrégulière, sur laquelle la notion de distance n’est pas bien définie. L’opérateur de
translation sur graphe a donc été défini par analogie avec une propriété de la trans-
lation en traitement de signal classique. En effet, translater un signal dans le domaine
temporel est équivalent à le convoluer avec une impulsion de Dirac localisée en un ins-
tant choisi. La convolution sur graphe étant définie comme un produit dans le domaine
spectral, la translation d’un signal sur graphe est introduite comme telle. Ainsi, un si-
gnal sur graphe n’est pas réellement translaté dans une direction, mais relocalisé en un
endroit par une impulsion de Dirac en un sommet.

Toutefois, la structure du signal dans le domaine du graphe n’est pas préservée par
cet opérateur de translation. Ainsi, un signal très localisé dans le domaine du graphe
pourra s’étaler sur un grand nombre de sommets une fois convolué avec une impulsion
de Dirac localisée en un sommet du graphe. À titre d’exemple, la Figure 41 présente une
image, ainsi que sa translation par cet opérateur, démontrant que les motifs de l’image
ne sont plus identifiables après translation.

L’un des objectifs de ce manuscrit est de proposer une définition alternative de la trans-
lation utilisant uniquement le domaine du graphe, et non le domaine spectral associé.
Une telle définition devrait préserver la structure d’un signal lors de sa translation,
permettant la préservation de motifs dans le signal.

13 Résumé

En quoi le traitement de signal sur graphe peut-il aider à la classification ?

La classification de signaux est un problème classique, aux applications multiples. Par
exemple, pour des observations de signaux cardiaques, on aimerait pouvoir classifier le
patient comme à risque ou non. Dans le développement des voitures autonomes, établir
si un signal fourni par les différents capteurs représente un piéton, une voiture, un feu
de signalisation. . . est une opération capitale.

À l’heure actuelle, les algorithmes les plus efficaces pour effectuer des tâches de clas-
sification à partir d’images sont les réseaux de neurones convolutifs. De tels réseaux
utilisent la localité des objets dans les images afin de mieux les détecter. Technique-
ment, ces réseaux fonctionnent grâce à une fenêtre de quelques pixels sur l’image à
classifier, qui est translatée en tout point de l’image. Pour cette raison, si l’opérateur de
translation n’est pas défini car les signaux sont plus complexes que des images, de tels
réseaux ne peuvent être créés.

C’est précisément en cela que le traitement de signal sur graphe peut aider. Dans ce
manuscrit, nous proposons une extension des réseaux de neurones convolutifs à des
domaines irréguliers de la manière suivante :

1. À partir d’un ensemble de signaux d’apprentissage, nous inférons un graphe ;

2. Ensuite, nous identifions des translations sur ce graphe ;

3. Enfin, nous utilisons ces translations pour définir un réseau de neurones convo-
lutif adapté aux données à classifier.

Principales contributions et résultats

L’objectif de ce manuscrit est de proposer une extension des réseaux de neurones convo-
lutifs à des domaines irréguliers, basée sur les signaux, grâce à des outils issus du trai-
tement de signal sur graphe. Nous procédons en trois étapes :

Inférence de graphes à partir de signaux

Pour un ensemble de signaux à étudier, il est fréquent que l’on ne dispose pas d’un
graphe expliquant la structure sur laquelle ils évoluent. Une approche permettant de
se ramener au formalisme du traitement de signal sur graphe, malgré cette difficulté,
consiste en l’inférence d’un graphe à partir des données. Toutefois, si le nombre de som-
mets est connu, car correspondant au nombre de variables pour lesquelles on observe
des valeurs de signal, définir un ensemble d’arêtes reliant ces sommets implique de
faire des choix.

Dans ce manuscrit, nous avons choisi de considérer un modèle de signaux stationnaires.
De tels signaux peuvent être générés synthétiquement à partir d’un bruit blanc, que
l’on diffuse sur le graphe par une matrice définie à partir de celui-ci. Un tel processus
de diffusion tend à modifier les entrées du signal, le colorant par la structure du graphe,
tout en conservant sa stationnarité. Les signaux diffusés encodent donc partiellement
des informations sur la structure du graphe, que nous voulons extraire afin de retrouver
la matrice ayant servi à diffuser le bruit blanc et, par extension, le graphe.

Dans ce manuscrit, nous avons montré la propriété suivante : les vecteurs propres de la
matrice de covariance des signaux sont aussi ceux de la matrice ayant servi à leur diffusion

Résumé 14

sur le graphe. Afin de parfaitement caractériser le graphe, il reste donc à déterminer les
valeurs propres à associer à ces vecteurs propres. Nous avons distingué deux cas :

1. Si le processus de diffusion est simple, et que chaque signal est diffusé un nombre
connu et constant de fois, nous avons montré qu’il est possible de caractériser
les valeurs propres manquantes. Celles-ci peuvent être obtenues par calcul d’une
racine des valeurs propres de la matrice de covariance, puis par obtention de leur
signes via la résolution d’un problème d’optimisation ;

2. Dans le cas plus générique d’un processus de diffusion quelconque, aucune in-
formation sur les valeurs propres n’est disponible.

Dans le second cas, il convient donc d’ajouter un certain nombre d’hypothèses sur la
matrice à inférer. Considérant des processus de diffusion, les matrices qui nous inté-
ressent contiennent des entrées positives, car représentant une quantité de signal pro-
pagée à chaque étape. Grâce aux vecteurs propres connus, nous pouvons donc définir
un ensemble convexe de points, correspondant à des vecteurs de valeurs propres ad-
missibles respectant ce critère. Un exemple d’un tel ensemble convexe est donné en
Figure 33.

La recherche de valeurs propres à associer aux vecteurs propres de la matrice de cova-
riance dépend donc ensuite d’un choix, correspondant à des suppositions sur le graphe.
Nous avons proposé trois approches pour choisir un point dans cet ensemble convexe :

1. Inférer une matrice simple, c’est-à-dire à la diagonale nulle, qui représente donc
un processus maximisant la diffusion des signaux ;

2. Inférer un graphe parcimonieux, contenant peu d’arêtes ;

3. Utiliser une méthode de l’état de l’art, et l’adapter à un a priori de stationnarité
en sélectionnant le plus proche point dans l’ensemble convexe.

Nous avons appliqué ces solutions à des données synthétiques, ainsi qu’à des données
réelles issues d’observations météorologiques en Bretagne, France. De plus, la troisième
stratégie offre des applications potentielles au problème de choisir, pour un ensemble
de graphes donnés, lequel est le plus adapté à la représentation d’un ensemble de
signaux stationnaires. Enfin, nous avons observé lors de la définition de réseaux de
neurones convolutifs à partir de données, que la régularisation d’une solution d’infé-
rence avec a priori de lisseur des signaux permet l’obtention d’un graphe offrant les
meilleures performances de classification.

Identification de translations sur graphe

Les définitions existantes pour l’opérateur de translation sur graphe ne préservent pas
la structure du signal dans le domaine du graphe. En effet, ces opérateurs sont définis
grâce au domaine spectral associé aux vecteurs propres de la matrice Laplacienne. Dans
sa définition la plus simple, la translation d’un signal est effectuée par une convolution
avec une impulsion de Dirac localisée en un sommet, et non par suite de transferts
d’information d’un sommet à l’autre. D’autres opérateurs de translation existent, mais
des problèmes similaires sont observés.

Dans ce manuscrit, nous avons proposé une nouvelle définition de l’opérateur de trans-
lation sur graphe, analogue à la notion de translation sur des espaces Euclidiens. Nos
translations consistent en une orientation d’un sous-ensemble des arêtes du graphe, et
se résument par trois propriétés :

1. Une translation est une fonction injective des sommets vers les sommets ;

15 Résumé

2. Chaque sommet ne peut être envoyé que sur un sommet adjacent ;

3. Les voisins d’un sommet doivent être envoyés sur les voisins de la destination de
ce sommet, i.e., les voisinages doivent être conservés.

Ces propriétés simples permettent de conserver la forme d’un signal défini sur le graphe
lors de sa translation. Toutefois, de telles translations n’existent que sur des graphes ex-
trêmement réguliers. Nous avons donc introduit dans ces critères la possibilité qu’une
valeur de signal sur un sommet soit perdue lors de l’application d’une translation, mo-
délisant ainsi des problèmes tels que les effets de bord lors de la translation d’une image
sur un graphe grille non torique.

Considérant un tel graphe grille, nous avons montré que les translations minimisant la
perte d’information sont celles envoyant chaque sommet dans une direction correspon-
dant à chacun des points cardinaux, représentées en Figure 48. Cela correspond exac-
tement aux translations Euclidiennes classiques sur des domaines où une telle notion
de direction existe. Les critères définissant nos translations n’utilisent pas cet espace
métrique, ce qui rend les rend applicables à tout type de graphe.

Toutefois, identifier les meilleures translations sur un graphe (au sens de la perte de
la translation) n’est pas une tâche aisée. En effet, nous avons montré que leur identi-
fication est un problème NP-complet. Cela nécessite donc la définition d’une stratégie
approchée, permettant l’obtention de pseudo-translations, respectant en partie les trois
critères précédemment énoncés. En détails, nous avons choisi de sacrifier en partie la
préservation des voisinages, et avons formulé notre problème sous la forme d’un pro-
blème d’optimisation. Ainsi, nous avons pu obtenir des pseudo-translations intéres-
santes sur des graphes issus de modèles aléatoires, comme présenté en Figure 50.

Extension des réseaux de neurones convolutifs à des domaines irréguliers

Les réseaux de neurones convolutifs ont montré un fort intérêt dans des tâches telles
que la classification d’images. De tels réseaux définissent les connexions entre couches
grâce à un noyau convolutif, c’est-à-dire une petite fenêtre de pixels centrée en un point.
Ce noyau est translaté en tout point de l’image, et des arêtes sont créées entre les neu-
rones associés aux pixels couverts par le noyau, et celui correspondant à son centre.
L’opérateur de translation permet donc de décaler un point de vue local sur l’image, et
donc d’y détecter des objets, car généralement portés par des pixels adjacents.

Comme une notion de translation analogue n’était pas définie dans le domaine du
graphe pour le cas de graphes irréguliers, il n’était pas possible d’étendre simplement
de tels réseaux pour des signaux évoluant sur des structures complexes. L’identifica-
tion de translations telle que nous l’avons proposée a permis d’effectuer cela, et donc de
translater un noyau en différents points d’un graphe, permettant donc la définition de
réseaux de neurones convolutifs pour le traitement de signaux portés par des graphes.
Combinée à nos travaux sur l’inférence de graphe, cette technique permet donc la défi-
nition de réseaux convolutifs adaptés aux signaux à classifier.

Nous avons illustré nos résultats sur la base de données CIFAR-10 d’images de dix
classes différentes. Sans utiliser l’information que ces signaux sont des images, la mé-
thode d’inférence nous permet de retrouver un graphe proche d’une grille de pixels, et
donc d’obtenir des performances comparables à des réseaux convolutifs utilisant cette
information. Inférer le graphe, puis les translations sur celui-ci, nous a permis d’obte-
nir un gain en performances de 13.11 points sur cette base de données par rapport aux

Résumé 16

méthodes de l’état de l’art n’utilisant pas non plus cette information, avec un réseau
convolutif simple et facilement améliorable par une recherche de ses paramètres.

Notre méthode est donc une réelle extension des réseaux de neurones convolutifs, qui
peuvent être vus comme un cas particulier de notre approche, où un graphe grille est
considéré. La méthode proposée dans ce manuscrit offre donc de très nombreuses pos-
sibilités d’applications, dans des domaines aussi variés que la vision par ordinateur,
les voitures autonomes, l’intelligence artificielle, la détection de problèmes dans des
signaux cardiaques, ou encore la compréhension de l’activité cérébrale.

Perspectives

Chacune des trois parties décrites précédemment peut être étendue de nombreuses ma-
nières, décrites ci-dessous dans les sections correspondantes :

Inférence de graphes à partir de signaux

Nous avons introduit plusieurs méthodes afin d’inférer un graphe à partir de signaux
stationnaires. Si toutes ces méthodes ont en commun de forcer les vecteurs propres de
la matrice de covariance, elles diffèrent par la stratégie de sélection des valeurs propres
à y associer. De nombreuses autres méthodes pour opérer cette sélection pourraient être
développées, afin de reconstruire par exemple une matrice binaire.

Une autre extension possible serait de trouver une caractérisation des contraintes utiles
dans la définition de l’ensemble convexe. En effet, de nombreuses contraintes sont re-
dondantes, et leur suppression permettrait d’accélérer la recherche d’un point dans
l’ensemble convexe, donc l’inférence d’un graphe.

Dans nos expérimentations sur des données réelles, nous avons choisi de considérer
la matrice de covariance empirique comme estimateur de la matrice de covariance.
D’autres matrices pourraient être utilisées à la place, offrant possiblement de meilleures
propriétés de convergence de leurs vecteurs propres vers ceux de la matrice de cova-
riance, à mesure que le nombre d’observations augmente.

Enfin, la distance à l’ensemble convexe utilisée par notre stratégie de régularisation
fournit une méthode permettant de choisir parmi un ensemble de graphes donnés celui
le plus adapté à un ensemble de signaux stationnaires. Complémenter ces expériences
en considérant des versions bruitées des graphes est une extension intéressante.

Identification de translations sur graphe

Nos travaux sur l’identification de translations sur les graphes ont aussi de nombreuses
extensions possibles. Tout d’abord, la NP-complétude du problème implique la possi-
bilité/nécessité de définir de nouvelles heuristiques pour approximer les translations.
Dans ce manuscrit, nous avons choisi de sacrifier en partie la conservation des voisi-
nages, mais il serait possible de faire de même avec la restriction aux arêtes par exemple.

Aussi, nous avons observé qu’identifier des translations dans le cas de graphes très
irréguliers est un problème difficile. Approximer une telle topologie par une structure
plus régulière, sur laquelle inférer les translations, est une piste très prometteuse. Une

17 Résumé

solution à ce problème se trouve peut-être dans les propriétés des matrices circulantes,
comme expliqué en Section 5.2.5.

Extension des réseaux de neurones convolutifs à des domaines irréguliers

Enfin, si nos travaux ont démontré l’intérêt de l’identification de translations pour la
création de réseaux de neurones convolutifs adaptés aux données, de nombreuses ex-
tensions sont encore possibles. En effet, les réseaux actuels les plus performants uti-
lisent des mécanismes plus complexes, tels que du max-pooling ou des strides, qu’il n’est
pas naturel de définir quand le support de l’information est irrégulier. Définir de tels
opérateurs est une continuité de nos travaux qui améliorera très certainement les per-
formances de classification sur des bases de données de tests, comme sur des cas d’ap-
plication réels.

De même, nous avons considéré dans nos expériences une architecture de réseau très
simple, constituée de quelques couches convolutives seulement, suffisant à illustrer nos
résultats. Varier la taille des noyaux, et trouver les meilleurs paramètres définissant le
réseau convolutif devrait permettre à nouveau un gain en performances.

Résumé 18

19 Abstract

Abstract

Context

Graph signal processing

Few years ago, graph signal processing emerged from the following observation: a signal
defined over time can be represented by a vector of real numbers, of which each entry
corresponds to the signal amplitude at a given time. This time, if periodical, can be
modeled by a graph taking the form of a ring (see Figure 4), where each vertex rep-
resents a sampling instant, and where an edge exists between vertices that represent
adjacent instants in time.

Using this formalism, we manipulate two types of objects: a graph modeling a support
for signals, and a signal on this support. Graph signal processing is the field that con-
sists in analyzing such signals, observed on graphs with various topologies. Among
examples of signals on graphs, images are defined on pixel grids, or observations of
electro-encephalographic signals evolve on a graph modeling the brain or the skull.

The interest of using the formalism of graph signal processing is that it allows to take
into account the structure on which a signal evolves, which provides more information
than considering the signals alone. In particular, one of the main results of the field is
an analogy between the eigenvectors of a matrix representing the graph, the Laplacian,
and the Fourier modes. As a matter of fact, if we consider a ring graph, compute its
eigenvectors soundly, and sort them in increasing order of the corresponding eigenval-
ues, we remark that these eigenvectors are a cosine, then a sine, then a cosine of higher
frequency, etc. Figure 5 offers a graphical representation of these eigenvectors.

Therefore, we observe that the eigenvectors of the graph Laplacian are analogous to the
Fourier modes, and its eigenvalues to the frequencies. Projecting a signal on a graph
into the basis formed by the eigenvectors of the Laplacian thus corresponds to perform-
ing the Fourier transform of this signal. It is then possible for instance to reduce the
signal entries associated with the highest eigenvalues, which has for effect to smoothen
the signal in the manner of a low-pass filter in classical signal processing. Similarly, it
is possible to define numerous other operators to process signals on graphs, such as
modulation, convolution, translation, etc.

Beyond this analogy with the graph ring, the framework of graph signal processing can
be used for any kind of graph, for which the previously introduced notions are perfectly
defined. As an example, Figure 19 illustrates the remark on smoothing a signal with a
low-pass filter on a random graph. Graph signal processing thus allows the study of
signals evolving on complex structures, bringing new perspectives in terms of under-
standing these signals, and allowing more concrete tasks such as their classification.

Abstract 20

Which graph to use?

As indicated previously, graph signal processing allows the study of signals thanks to
the knowledge of the structure on which they evolve. In particular, the eigenvectors
of the Laplacian matrix define a Fourier transform that is adapted to the signals, from
which numerous other operators are defined.

However, if it is easy to imagine that images are signals defined on a graph taking
the form of a grid, or that time signals evolve on a line graph or a ring, it is more
complicated to agree on a particular topology to model the human brain or the support
of seismic observations. A first solution to process these signals is to use the classical
signal processing tools in place of the graph signal processing ones, because they are
not applicable due to the lack of a graph. A second preferable option is to infer a graph
from the data, in order to build a structure that enables the study of these signals.

However, the number of possible weighted graphs is infinite. Therefore, it is neces-
sary to make some assumption, either on the signals or on the graph. Among classical
assumptions are the sparsity of the graph, its regularity, the binarity of its weights,
smoothness of signals on it, etc. In this manuscript, we consider a model of stationary
signals, and we propose multiple graph inference strategies that enforce chosen prop-
erties on this graph.

How do we define translation of signals on a graph?

Numerous operators to manipulate signals on graphs are defined thanks to the graph
Fourier transform, which depends on the graph. In particular, translation of a signal on
an irregular, abstract structure is not intuitive, as the notion of distance is not well de-
fined on graphs. The translation operator on graphs has then been defined analogously
with a property in classical signal processing. As a matter of fact, translating a signal
in the graph domain is equivalent to convolving it with a Dirac impulse located at a
chosen time instant. As convolution of signals on graphs is defined as a product in the
spectral domain, translation of a signal is defined the same way. Therefore, a signal is
not really translated in a particular direction, but relocated on a chosen vertex using a
Dirac signal on this vertex.

However, the signal structure in the graph domain is not preserved when translated
this way. As a matter of fact, a signal that is quite localized in the graph domain can
spread on a large number of vertices once convolved with a Dirac impulse on a vertex.
As an example, Figure 41 depicts an image, and its translation using this operator. It
shows that the patterns in the image cannot be found after application of the translation.

One of the objectives of this manuscript is to propose an alternate definition for a trans-
lation operator that uses the graph domain instead of the spectral domain. Such a def-
inition should preserve the signal structure, thus allowing the conservation of patterns
in a signal as it is translated.

How can graph signal processing help in a classification task?

Classifying signals is a classical problem with many applications. For example, when
monitoring heart activity, one may want to be able to classify the patient as at risk or
not. In the development of autonomous cars, establishing whether a signal provided by
the various sensors represents a pedestrian, a car, a sign. . . is of paramount importance.

21 Abstract

Nowadays, the most efficient algorithms to perform classification tasks of images are
convolutional neural networks. Such networks use the locality of objects in images in
order to detect them. Technically, these networks work thanks to a window of a few
pixels that is shifted to every possible location of an image to classify. For this reason, if
the translation operator is not defined, due to signals being more complex than images,
then such networks cannot be created.

This is precisely where graph signal processing can help. In this manuscript, we pro-
pose an extension to convolutional neural networks to irregular domains as follows:

1. From a set of training signals, we infer a graph;

2. Then, we identify translations on this graph;

3. Finally, we use these translations to define a convolutional neural network that is
adapted to the data to classify.

Main contributions and results

The objective of this manuscript is to propose an extension to convolutional neural
networks to irregular domains, based on the signals, thanks to graph signal processing
tools. We proceed in three steps:

Graph inference from signals

For a given set of signals to study, it is frequent that no graph is available that explains
the structure on which they evolve. An approach that allows one to use the graph signal
processing tools in spite of this limitation consists in inferring a graph from the data.
However, if the number of vertices is known, because corresponding to the number
of variables of which we observe realizations, defining a set of edges between these
vertices implies to make some choices.

In this manuscript, we have chosen to consider a model of stationary signals. Such sig-
nals can be synthetically generated from white noise, by diffusion on the graph using a
matrix that is compliant with its structure. Such a diffusion process tends to modify the
signal entries, thus coloring it with the graph structure, while preserving its stationar-
ity. Diffused signals therefore partially encode information on the graph, that we want
to extract in order to find the matrix that was used to diffuse the white noise and, by
extension, the graph.

In this manuscript, we have shown the following property: the eigenvectors of the covari-
ance matrix of the signals are also those of the matrix that was used to diffuse them on the graph.
Perfect characterization of the graph thus reduces to finding a vector of eigenvalues to
associate with those eigenvectors. We have distinguished two situations:

1. If the diffusion process is simple, i.e., if each signal is diffused a constant and
known number of times, we have shown that it is possible to find the missing
eigenvalues. Their absolute values can be obtained by computing a particular
square root of the eigenvalues of the covariance matrix, and the missing signs can
be found by solving an optimization problem;

2. In the more general case of any diffusion process, no information on the eigenval-
ues is available.

Abstract 22

In the second case, it is therefore necessary to make some hypotheses on the matrix to
infer. Considering diffusion processes, the matrices we are interested in contain pos-
itive entries only, as they represent a signal quantity that is propagated at each step.
Thanks to the eigenvectors being known, we can define a convex set of elements, cor-
responding to vectors of eigenvalues that are admissible according to this criterion. An
example of such a convex set is given in Figure 33.

The search for eigenvalues to associate with the eigenvectors of the covariance matrix
thus depends on a choice, corresponding to some assumptions on the graph. We have
proposed three approaches to choose an element from this convex set:

1. Infer a simple matrix, i.e., with an empty diagonal. This corresponds to a process
that maximizes the diffusion of signals;

2. Infer a sparse graph, i.e., with few edges;

3. Use an inference method from the literature, and adapt it to have it match a sta-
tionarity assumption by selecting the closest element in the convex set.

We have applied these solutions to synthetic data and to a real-life dataset of weather
observations in Brittany, France. Moreover, the third strategy offers potential applica-
tions to the problem of choosing, from a set of given graphs, which is the most adapted
to a set of stationary signals. Finally, we have observed during the creation of convo-
lutional neural networks from data that regularization of an inference solution with a
smoothness prior on signals allows acquisition of a graph that offers the best perfor-
mance in a classification task.

Identification of translations on a graph

Existing definitions for the translation operator on graph do not preserve the structure
of the signal in the graph domain. As a matter of fact, these operators are defined using
the spectral domain associated with the eigenvectors of the Laplacian matrix. In its
simplest definition, translation of a signal is performed by a convolution with a Dirac
signal located on a vertex, rather than by a succession of information transfers from a
vertex to another. Other translation operators exist, but similar problems are observed.

In this manuscript, we have proposed a novel definition for the translation operator on
graphs that is analogous to the notion of translation in Euclidean spaces. Our trans-
lations consist in orienting a subset of the edges of the graph, and can be summed up
with three properties:

1. A translation is an injective function from the vertices to the vertices;

2. Every vertex can only be sent to one of its neighbors;

3. The neighbors of a vertex must be sent to the neighbors of the destination of this
same vertex, i.e., neighborhoods should be preserved.

These simple properties allow the conservation of the shape of a signal defined on the
graph as it is translated. However, such translations only exist on very regular graphs.
We have thus adapted these criteria to allow the possibility for a signal entry on a ver-
tex to be lost during translation. This models problems such as border effects when
translating an image on a non-toric grid graph.

Considering such a grid graph, we have shown that translations that minimize the in-
formation loss are those that send every vertex in one of the cardinal directions, as
depicted in Figure 48. This corresponds exactly to the classical Euclidean translations

23 Abstract

on domains where such a notion of direction exists. The criteria that define our transla-
tions do not use this metric space, which makes them applicable to any kind of graph.

However, identifying the best translations on a graph (considering the loss of the trans-
lations) is not an easy task. As a matter of fact, we have shown that their identification
is an NP-complete problem. This therefore requires the definition of an approximate
strategy to obtain pseudo-translations, which partly respects the three criteria above.
In details, we have chosen to partly sacrifice the neighborhood preservation property.
To do so, we have written our problem in the form of an optimization problem. This
way, we have been able to identify interesting pseudo-translations on graphs following
a random model, as presented in Figure 50.

Extension of convolutional neural networks to irregular domains

Convolutional neural networks have proven to outperform other methods in tasks such
as image classification. Such networks define the connections between their layers us-
ing a convolutional kernel, i.e., a window of a few pixels centered on a particular lo-
cation of the image. This kernel is shifted to every point in the image, and edges are
created between the neurons that are associated with the pixels covered by the kernel,
and the neuron corresponding to its center. The translation operator thus allows to
shift a local point of view on the image, thus to detect objects in it, as such objects are
generally defined on neighboring pixels.

As an analogous notion of translation was not defined in the graph domain for irregular
topologies, it was not possible to simply extend such networks for signals evolving on
complex graphs. Identification of translations as we have proposed has allowed us to
do this, as we could translate a convolutional kernel to various places of a graph, thus
enabling the creation of a convolutional neural network for the processing of signals on
graphs. Combined with our work on graph inference, this technique allows the creation
of convolutional networks that are adapted to the signals they want to classify.

We have illustrated our results on the CIFAR-10 dataset of images belonging to ten
different classes. Without using the knowledge that the signals are images, graph in-
ference has allowed us to find a graph that is close to a grid of pixels, and therefore
to obtain performance that are comparable with convolutional neural network using
this information. Inferring the graph, then identifying translations on it, allowed us to
obtain a correct classification rate 13.11 points higher than state of the art methods that
also do not use this information, while using a simple network only, which could easily
be improved through a grid search of its parameters.

Our method is a real extension to convolutional neural networks, which can be seen
as a particular case of our approach in which a grid graph is considered. The method
we propose in this manuscript offers numerous possibilities of applications, in fields
including computer vision, autonomous cars, artificial intelligence, heart monitoring
or understanding the human brain.

Perspectives

Each of the three parts of our approach can be extended in many ways, described as
follows in the corresponding sections:

Abstract 24

Graph inference from signals

We have introduced multiple methods to infer a graph from stationary signals. While
all these methods have in common to enforce the eigenvectors of the covariance matrix,
they differ by the selection strategy for the eigenvalues. Numerous other methods to
make this selection could be developed, in order to infer a binary matrix for instance.

Another possible extension would be to characterize which constraints are useful in the
definition of the convex set. As a matter of fact, numerous constraints are redundant,
and their suppression could accelerate the search for an element in the convex set, thus
the graph inference process.

In our experiments on real-life data, we have chosen to consider the sample covariance
matrix as an estimate for the covariance matrix. Other matrices could be used in place,
thus possibly offering better convergence properties of their eigenvectors to those of
the covariance matrix, as the number of observations increases.

Finally, the distance to the convex set we use in our regularization strategy gives us a
method for choosing among a set of graphs which one is the most adapted to stationary
signals. Complementing these experiments by considering noisy versions of the graphs
is an interesting direction for future work.

Identification of translations on a graph

Our work on identifying the translations on graphs also has numerous possible ex-
tensions. First, NP-completeness of the problem implies the possibility/necessity to
define new heuristics in order to approximate the translations. In this manuscript, we
have chosen to partly sacrifice the neighborhood preservation property, but the same
could be done for example with the restriction to the edges.

Also, we have observed that identifying translations in the case of very irregular graphs
is a difficult problem. Approximating such a topology with a more regular structure on
which to infer the translation is a very promising direction. A solution to this problem
probably lies in the properties of circulant matrices, as explained in Section 5.2.5.

Extension of convolutional neural networks to irregular domains

Finally, if our work has demonstrated the interest of translations identification for the
creation of convolutional neural networks that are adapted to the data, numerous ex-
tensions are still possible. As a matter of fact, the best networks use more complex
mechanisms, such as max-pooling or strides, which are not natural to define when the
information support is not regular. Defining such operators is a continuity of our work
that will certainly improve the classification performance on datasets, as well as on
real-life application cases.

Also, we have considered in our experiments a very simple network topology, con-
sisting of a few convolutional layers only, that was sufficient to illustrate our results.
Varying the kernels sizes, and finding the best parameters defining the convolutional
neural network should again provide a gain in performance.

25

Chapter 1

Introduction

Contents
1.1 Context . 26
1.2 Problems: F.A.Q. 30

1.2.1 Which graph corresponds to my signals? 30
1.2.2 I know how to move signals in time, but how does it work on

a graph? . 31
1.2.3 Can graph signal processing help me classify signals? 31

1.3 Outline . 32

Chapter 1. Introduction 26

1.1 Context

The way we perceive and understand the world surrounding us is mostly a matter of
signals and sensors. Information is created by various objects, and propagated in the
world by some emitters in the form of signals. It is then perceived by some receptors
attached to other objects which can draw their own model of the initial information.

When it comes to human perception, we have access to a certain number of such sen-
sors, traditionally denoted by senses. According to Aristotle 1, hearing lets us perceive
the sounds, sight allows the physical representation of the world, and touch, taste and
smell give information on the nature of the objects. All these senses allow the extrac-
tion of information from the surrounding world, which is then analyzed by our brain
to perceive and understand our environment. Still, we are only able to perceive what
we can sense, making our model of the world an approximate of what it really is.

Figure 1 – The Five Senses by Hans Makart. Series of five paintings from 1972 to 1979.

Perception of our world has passionated philosophers, scientists and artists across the
ages. Countless theories were developed to try to infer a general model of informa-
tion. Among these, one in particular had a very strong impact on our understanding of
the world: Fourier analysis. During the XIXthcentury, by observing heat propagation,
Fourier drew a generic model of representation of signals as series of sines, allowing
the representation of information as a composition of various frequencies [Fou22]. This
theory allowed numerous discoveries in fields such as electricity, vibrations, acoustics
or observation of the greenhouse effect [Esc+01], and eventually led to the the emer-
gence of a new field of mathematics and physics named signal processing.

1. Scientific results suggest that the number of human senses reaches approximately twenty [Dra05].

27 1.1. Context

From there, signal processing developed to allow the rise of new technologies such as
modern telecommunications, music or video processing, or computer networks such
as the Internet. However, until a few years ago, signal processing tools were only de-
signed to process information defined on regular domains, such as time or Euclidean
spaces. In numerous practical domains, signals evolve on more complex topologies,
such as information propagating in the human brain. Analyzing such signals remains
a challenge, and solutions require an adaptation of the classical signal processing tools.

Graph signal processing then arose as a possible solution to this challenge, proposing
an extension of Fourier analysis to signals defined on any particular discrete topology.
To understand well the main idea from which this domain developed, let us study a
simple example, in which we want to analyze the periodic time signal given in Figure 2:

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time

A
m

p
lit

u
d

e

Figure 2 – Example of a periodical signal we want to analyze.

While the theory of Fourier applies to continuous signals, discretizing the signals can
be very convenient to process them with computers, or send them through a network
as a finite series of bytes. Let us sample the signal in Figure 2 as depicted in Figure 3:

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time

A
m

p
lit

u
d

e

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

Time

A
m

p
lit

u
d

e

Figure 3 – A possible sampling of the example signal in Figure 2. By keeping the signal
entries corresponding to regular moments in time, we obtain a discrete approximate of
the continuous signal.

Chapter 1. Introduction 28

After sampling, the signal becomes discrete, and can be represented by a vector in RN ,
where N is the number of samples that approximate the signal. Now, let us represent
the periodic time by a graph such that every time instant is represented by a vertex,
and is linked to the previous and next instants in time. Figure 4 depicts such a graph,
on which the discretized signal can be seen as a single observation for every vertex:

Figure 4 – Representation of the discretized signal in Figure 3 as a signal on a graph.
Periodic time is represented by a graph of N vertices, and vertices corresponding to
adjacent instants in time are linked by an edge. Note that location of the vertices in the
picture has no importance, and only adjacency matters.

Note that, by taking this point of view, we distinguish the signal from the domain on
which it evolves. Thus, we manipulate two distinct objects: a graph — modeling the
support of information — and some signals evolving on the graph.

Without entering too much into details, graph structures as in Figure 4 can be repre-
sented by their adjacency matrix A, i.e., by a two-dimensional array in which the entry
at the intersection of row i and column j is equal to 1 if the ith vertex is linked to the
jth one by an edge in the graph, and 0 otherwise. From this particular matrix, one can
compute the Laplacian matrix of the graph, which is a real and symmetric matrix, thus
diagonalizable in an orthonormal basis. Let us consider the eigenvectors {χ1, . . . ,χN}
of the Laplacian matrix associated with the graph in Figure 4. Figure 5 depicts the first
few of these eigenvectors:

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
1
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
2
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
3
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
4
[i
]

29 1.1. Context

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
5
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
6
[i
]

Figure 5 – First eigenvectors of the Laplacian of the graph in Figure 4.

Interestingly, the eigenvectors of the Laplacian matrix are exactly the sines that decom-
pose time signals in classical Fourier analysis. Therefore, projecting a time signal to the
basis formed by the eigenvectors of Laplacian matrix corresponds to projecting it to a
basis of sines. This motivating example provides a comprehensive link between the
time domain in which signals are defined, and the frequency domain in which they can
be decomposed.

The entire field of graph signal processing developed from this observed analogy be-
tween the classical Fourier basis and the eigenvectors of the Laplacian matrix. By rep-
resenting the support of signals under study by a graph, one can determine an adapted
basis of frequencies in which the signals can be represented.

As an example, Figure 6 depicts a complex graph, representing a domain on which
signals we want to study are evolving. This graph can represent a network of sensors,
measuring for instance seismic activity. Such seismic signals can then be decomposed
into frequencies through the eigenvectors of the Laplacian matrix, and can be analyzed
as if they were simple time signals:

Chapter 1. Introduction 30

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
1
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
2
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i

χ
3
[i
]

0 10 20 30 40 50

−0.4

−0.2
0

0.2

0.4

i
χ
4
[i
]

Figure 6 – Example of a complex topology on which signals we want to study are ob-
served (top). The first few eigenvectors {χ1, . . . ,χN} of the associated Lapacian matrix
are depicted (bottom). They represent the equivalent for this graph to the Fourier sines
depicted in Figure 4.

Using the paradigm of graph signal processing, it is therefore possible to study sig-
nals evolving on complex domains. Researchers have successfully developed tools for
graph signal processing, inspired from those existing in classical Fourier analysis. Op-
erations such as filtering of signals, convolution or wavelets are now possible, and have
already proven to be efficient in image denoising or analysis of heat diffusion [Shu+13].

1.2 Problems: F.A.Q.

1.2.1 Which graph corresponds to my signals?

As stated before, graph signal processing is a powerful generalization of classical Fourier
analysis, that allows the study of signals evolving on very complex structures, modeled
by graphs. This opens the way to applications such as comprehension of signals evolv-
ing in the brain, or analysis of signals observed by sensor networks, which was not
possible before. However, while it is quite intuitive to represent the time by a graph as
in Figure 4, it is harder to imagine which graph correctly represents things such as the
human brain.

In fact, in most situations in which we want to study signals, the underlying graph
topology is not available, leading to the impossibility to determine the adapted basis
providing a frequency representation of signals. This is a real problem, since without
the eigenvectors of the Laplacian matrix, it is just impossible to study signals using the
graph signal processing framework.

A possible solution is graph inference from signals. Obviously, signals defined on the
vertices of a particular domain have a certain connection with this domain. For exam-
ple, when considering time signals, it is in general the case that two adjacent instants in
time — i.e., two vertices in the graph representing time — share similar signal entries.

31 1.2. Problems: F.A.Q.

Therefore, signals partially encode information on the underlying topology on which
they evolve, and extracting this information can help finding the graph.

Graph inference from signals is one of the problems we study in this document. More
particularly, we consider the specific model of stationary signals, and propose strategies
to infer an adapted graph to process them.

1.2.2 I know how to move signals in time, but how does it work on a graph?

Shifting signals in time is a cornerstone of classical signal processing. This allows op-
erations such as convolution with a filter, which in turn contribute to applications such
as signal denoising or detection of anomalies.

When considering time signals, translation is quite easy to understand. If a signal needs
to be advanced by τ seconds, one can just replace every signal entry at time t by the
signal entry at time t − τ . Similarly, to translate images, one can just move every pixel
in a 2D direction.

In the general context of graphs, translating a signal from a vertex to another is not
as natural. This is due to the absence of an underlying Euclidean space as for time
signals or images. Efficient solutions to translate filters on graphs have been developed,
allowing the localization of such signals to various places of the graph. However, these
classical solutions do not apply to signals that have a certain organization, like images
for instance in which a pixel has a link with its surroundings. As a matter of fact, these
solutions consider translation as a particular case of convolution, which has the effect
to modify the signal entries while translating it.

To be able to retain the overall organization of the signal, another possible solution
we propose is to infer translations from the graph. When considering the case of the
graph representing time as in Figure 4, a natural translation on such graph consists of
an orientation of the edges as in Figure 7:

Figure 7 – Natural translation on a graph representing time. Advancing a signal in time
using this graph can be done by replacing every signal entry by the one on the previous
vertex, following the edges orientations.

The same approach can be taken in the case of any graph, by considering a translation
on a graph as an orientation of a carefully chosen subset of the edges of the graph.

1.2.3 Can graph signal processing help me classify signals?

Classification of signals consists in saying, for a given signal, whether it belongs or not
to a certain class. For example, if the signal to classify is a photo of a dog, an expected
classification for this signal would be the class dog.

Chapter 1. Introduction 32

There are numerous techniques to classify signals, among which the now well-known
neural networks, on which deep learning is based. A particular type of neural network
is of interest for us. Convolutional neural networks are very efficient to detect objects in
images, and have the very interesting property to be invariant by translation of these
objects, which through a slight misuse of language indicates that an object location in
the image does not alter the performance of the network.

If we are able to identify translations on underlying graphs, then we can adapt these
networks to locate some signal patterns on very complex topologies. Therefore, con-
volutional neural networks can then be used to classify signals on the graph, even if
observed on an irregular domain.

1.3 Outline

In this document, we propose solutions to the problems introduced in Section 1.2. We
start from a set of signals that we assume to evolve on an unknown graph. From these
signals, we infer a graph using some priors. Then, we propose an approach to infer
translations on this graph, and use these translations to define an adapted convolu-
tional neural network. This network is then trained to classify the signals from which
the whole process started.

This Ph.D. dissertation is organized as follows:

• First, Chapter 2 introduces all the notions that are necessary for a complete un-
derstanding of our work. This includes, among others, elements of graph theory,
signal processing, and graph signal processing;

• Then, Chapter 3 studies the problem of graph inference from signals, as presented
in Section 1.2.1. More specifically, we present multiple methods, and propose
strategies to infer a graph from stationary signals;

• Chapter 4 then presents the notion of translations on graphs, and provides an in-
depth study of the problem introduced in Section 1.2.2. We show that intuitive
translations of time signals or images can be modeled by an orientation of some
edges of a particular graph, and extend our observations to any graph, allowing
the definition of translations that preserve the signal shape when translating it;

• Once a graph has been inferred from signals, and translations have been found on
the graph, Chapter 5 proposes an application of our work to signals classification.
In particular, we consider a dataset of images — without using the information
that such signals are images — and show that inferring a graph and translations
allows us to improve the classification rate of these images by 13.11 points com-
pared to state of the art methods;

• Finally, Chapter 6 summarizes the various contributions of this document, and
concludes this Ph.D. dissertation.

33

Chapter 2

Signal processing on graphs

Contents
2.1 Elements of graph theory . 34

2.1.1 What is graph theory? . 34
2.1.2 Extensions of the graph model and operations on graphs 37
2.1.3 Matrix representation of graphs 41
2.1.4 Some families of graphs . 46

2.2 Elements of signal processing . 50
2.2.1 What is signal processing? . 51
2.2.2 Operations on signals . 53

2.3 Graph signal processing . 55
2.3.1 From signal processing to graph signal processing 56
2.3.2 The underlying graph and the signals 61
2.3.3 The uncertainty principle on graphs 66

2.4 Summary of the chapter . 77

Chapter 2. Signal processing on graphs 34

This chapter introduces numerous notions that are necessary for a complete under-
standing of the contributions presented in this manuscript. The context of this work
being the field of graph signal processing, this chapter is divided into three parts, cor-
responding to the three words naming the domain: Section 2.1 provides elements of
graph theory, Section 2.2 gives notions of classical signal processing, and finally Sec-
tion 2.3 presents the field of graph signal processing.

2.1 Elements of graph theory

2.1.1 What is graph theory?

Graph theory is a subfield of discrete mathematics and computer science, that consists
in the study of graphs, which are mathematical objects that can be used to model prob-
lems. The first contribution to graph theory is an article by Euler dating from 1736, in
which he studies the following problem:

Problem 1: The seven bridges of Königsberg

There are seven bridges in the city of Königsberg. Is there a walk in this city that
crosses every bridge once and only once?

Figure 8 – Map of the city of Königsberg. The Pregel River crossing the city is high-
lighted in blue, and the bridges are highlighted in red.

Using a formalism that led to the emergence of graph theory, Euler showed that Prob-
lem 1 cannot be solved. A first step in his reasoning consisted in simplification of the
problem by considering only the elements that have importance to model the problem:

• The four parts of the city of Königsberg that are separated by the Pregel River;

• The bridges that link these parts.

35 2.1. Elements of graph theory

This formalism of modeling a problem by two sets — a set of elements of interest, and
a set of relations between them — forms the basis of graph theory. More precisely, a
graph is defined as follows:

Definition 1: Graph

A graph is a tuple G = 〈V, E〉, where:
• V is a set of vertices;

• E is a multiset of pairs of vertices, called edges.

Remark 1

Throughout this document, we call pair a set of two elements, given in no par-
ticular order, noted {v1, v2}. Contrary to pairs, we term couple a set of two ele-
ments, in which order matters, noted (v1, v2).

The number of vertices in the graph is called its order, and the number of edges is called
its size. Additionally, for a given vertex v ∈ V , the set of vertices it is linked to by an
edge in E is called its neighborhood, noted N (v).

This model allows a simplified visual representation of the problem. Graphical repre-
sentations of graphs have already been provided in Figure 4 or Figure 6. When consid-
ering Problem 1, the graph associated with the city of Königsberg is given in Figure 9:

Figure 9 – Graph associated with the city of Königsberg. Vertices represent the locations
of interest, i.e., the four parts of the city. Edges link two vertices if there is a bridge
allowing to go from one to another.

Graph theory developed around this modelization, providing an abstract model of
problems on which numerous results have been found. Algorithms on graphs have
then been applied to countless domains, allowing for instance development of GPS
systems, resolution of games, networking, optimization of trajectories for production
elements, social media. . . Figure 10 shows a few examples in which graph theory has
been used:

Chapter 2. Signal processing on graphs 36

(a) Partial graph of the Internet, on the 15th

of January, 2005 [Opt]. Every vertex repre-
sents a terminal, and edges model connec-
tions between these terminals.

(b) PyRat, a serious game to learn pro-
gramming, in which two characters con-
trolled by programs compete to grab more
pieces of cheese than the opponent [PK17].
Every vertex represents a location in the
maze, and edges model accessibility be-
tween these locations.

(c) In genetics, upstream similarity net-
work is a graph used to analyze the possi-
ble regulatory role of genes [RMC08]. Ev-
ery vertex represents a gene, and edges
model similarity between these genes.

(d) Road graph of the city of Montpellier,
used to analyze traffic blockages [AL07].
Every vertex represents a crossroad, and
edges model streets going from one cross-
road to another.

(e) AlphaGo had a strong impact on society, when researchers from Google DeepMind managed
to defeat the professional players Fan Hui (in 2015), Lee Sedol (in 2016) and Ke Jie (in 2017) at
the game of Go [Sil+16]. AlphaGo makes extensive use of graph theory, in particular through
the use of deep learning and Monte-Carlo tree searches.

Figure 10 – Examples of applications of graph theory. Abstracting details to model
them in the framework of graph theory allows the application of similar algorithms in
all these cases.

37 2.1. Elements of graph theory

2.1.2 Extensions of the graph model and operations on graphs

A graph in Definition 1 provides a minimal model for problems, which can be enriched
depending on the information to model. In this section, we first present a few classical
extensions and properties of graphs as defined in Definition 1. Then, we introduce the
notion of paths on graphs that we will need in this manuscript.

Classical extensions and properties of graphs

A first classical extension of graphs are weighted graphs.

Let us consider for example the modelization of the roads of a country by a graph, in
which vertices represent cities, and edges link two cities if a road exists between them.
An important information that is not encoded in Definition 1 is the distance between
these cities. Weighted graphs are given a weighting function, that associates a certain
quantity with the edges:

Definition 2: Weighted graph

A weighted graph is a tuple G = 〈V, E , f〉, where:
• V is a set of vertices;

• E is a multiset of pairs of vertices, called edges;

• f :

{
E → W

{v1, v2} 7→ w
is a function associating a weight with every edge.

Frequently, Z, R or C are used for the codomain W of f , depending on the problem to
model. Note that unweighted graphs can be considered as particular cases of weighted
graphs, in which the weight function is disregarded.

Graphically, the edge weight is indicated along the corresponding edge, and is often
dropped when it is equal to 1. An example of a weighted graph is given in Figure 11:

5

3 10

−8
6

0.1

4

−0.5

2

6

8

4

6

11

√
2

Figure 11 – Example of a weighted graph.

Chapter 2. Signal processing on graphs 38

A second classical extension of graphs are directed graphs. Such models encode the
information that access to a vertex from another one can be unidirectional, which can
be useful for instance to represent one direction roads:

Definition 3: Directed graph

A directed graph, or digraph, is a tuple
−→G = 〈V,−→E 〉, where:

• V is a set of vertices;

• −→E is a multiset of couples of vertices, called directed edges, or diedges.

Note that, contrary to Definition 1, the order in which vertices are given in the diedges
has a lot of importance. For this reason, elements of

−→E are couples (v1, v2), meaning that
there is a relation from v1 to v2. Again, note that undirected graphs can be considered
as particular cases of digraphs, in which (v1, v2) ∈

−→E if and only if (v2, v1) ∈
−→E .

Graphically, diedges are depicted with an arrow on one side of the edge, indicating the
direction. However, when both (v1, v2) ∈

−→E and (v2, v1) ∈
−→E , the arrows are generally

dropped. An example of a directed graph is given in Figure 12:

Figure 12 – Example of a directed graph.

Of course, graphs can be both weighted and directed if the problem under study re-
quires so. Numerous additional extensions of the graph model exist, but we are only
interested in these two extensions in this manuscript.

To conclude with this section, we introduce a few properties of graphs. A first one is
simplicity of the graph:

Definition 4: Simple graph

A graph is said to be simple if no vertex is linked to itself by an edge — i.e., there
are no self-loops — and if no edge has a duplicate in the set of edges.

39 2.1. Elements of graph theory

Remark 2

In the remaining of this document, we will restrict our study to graphs that do
not have duplicates in the set of edges. Therefore, we can simplify the definitions
so that E is a set of pairs, and

−→E is a set of couples.

Another property of interest is sparsity of the graph, that measures the number of edges
it contains:

Definition 5: Sparse graph

A graph is said to be sparse if the number of edges it contains is low relatively
to the number of edges it could contain. In the case of an undirected graph G =
〈V, E〉, this is measured by the following quantity:

2|E|
|V|(|V| − 1)

, (1)

where |·| is the cardinality operator. In the case of a directed graph
−→G = 〈V,−→E 〉,

this is measured by the following quantity:
∣∣∣−→E
∣∣∣

|V|(|V| − 1)
. (2)

Finally, we call an induced subgraph of a graph a subset of its vertices, and the edges that
link two vertices in this subset:

Definition 6: Induced subgraph

An induced subgraph G− = 〈V−, E−〉 of a graph G = 〈V, E〉 is defined as follows:
• V− ⊆ V ;

• ∀{v1, v2} ∈ E : {v1, v2} ∈ E− ⇔ v1 ∈ V− ∧ v2 ∈ V−.

Paths on graphs

Once a problem is modeled in the form of a graph, algorithms on graphs can be used to
answer some questions about the graph, hence about the problem. Numerous of such
questions involve computation of paths on the graph. Paths on graphs represent se-
quences of vertices, and can represent for example a process, or a trajectory, depending
on the modeled problem:

Definition 7: Path

A path on a graph G = 〈V, E〉 is a (possibly empty) sequence p = (vi)i, vi ∈ V
such that:

• ∀i ∈ J1, |p| − 1K : {vi, vi+1} ∈ E , where |·| is the cardinality operator, indi-
cating the number of vertices composing the path;

• Every vertex of V appears at most once in p, with the possible exception of
the first and the last vertices of p;

Chapter 2. Signal processing on graphs 40

• Every unordered pair of two vertices {vi, vi+1} that are consecutive in p
appears at most once in p.

In this manuscript, we choose to consider paths as sequences of vertices. Equivalently,
a path can be defined as a sequence of edges. We denote the set of all paths in a graph
by P(G). Additionally, we call length of a path p ∈ P(G) the number of edges that
compose it, i.e., |p| − 1.

Definition 7 tells us that vertices must appear at most once along a path, with the pos-
sible exception of the first one, that can be identical to the last one. Paths verifying this
latter property are called cycles. We denote the set of cycles in the graph by C(G).
Using the notion of paths, we can introduce the notion of connected component as follows:

Definition 8: Connected component

A connected component in a graph G = 〈V, E〉 is a subset V− ⊆ V of its vertices
such that:

∀v1, v2 ∈ V− : ∃(v1, . . . , v2) ∈ P(G) . (3)

A graph that has only one connected component is said to be connected.

Remark 3

In the remaining of this document, we consider connected graphs only.

As for graphs, paths have numerous properties. In particular, the notion of shortest path
is useful in multiple situations. For example, consider a graph representing roads in
a city. Finding a shortest path from a vertex representing a source location to another
vertex representing a target location is something of real interest in the development of
GPS systems:

Definition 9: Shortest path

A shortest path from v1 ∈ V to v2 ∈ V is a path p1 ∈ P(G) of first element v1
and last element v2 such that no other path p2 ∈ P(G) of first element v1 and last
element v2 has a strictly smaller length than p1.

Length of the shortest paths between two vertices v1 and v2 is called the geodesic
distance between them, noted dgeo(v1, v2).

Algorithms to find shortest paths in graphs exist, depending on some graph properties.
Knowing how such algorithms perform is not necessary to understand our work. Still,
the interested reader may consult [Cor09] for more details.

Remark 4

In the rest of this manuscript, we are only interested in graphs with positive
weights. A shortest path between two vertices can then be found using a breadth
first search algorithm [Cor09].

When determining translations on graphs later in this manuscript, we will be interested
in Hamiltonian paths:

41 2.1. Elements of graph theory

Definition 10: Hamiltonian path

A path p ∈ P(G) on a graph G = 〈V, E〉 is said to be Hamiltonian if all vertices of
V appear in p.

Finally, let us consider a small adaptation of Definition 7 in which we allow vertices
to be repeated in the path (we call this a trail). We say that a trail is Eulerian if every
edge in the graph appears as an unordered pair of two adjacent vertices in the trail.
The name of this property comes from Problem 8, since Eulerian trails are the expected
solutions of the problem introduced by Euler.

2.1.3 Matrix representation of graphs

Modeling a graph by a matrix

It is often convenient to index vertices from 1 to N = |V|, with |·| being the cardinality
operator. We note JC1, C2K the set of all integers between C1 ∈ Z and C2 ∈ Z, both
included. Using indexation of vertices, we can write V = J1, NK, thus making no dis-
tinction between the vertices and their index. Therefore, a graph can be modeled by a
two-dimensional array — a matrix — in which the entry at the intersection of row v1
and column v2 (v1, v2 ∈ V) indicates if an edge exists between v1 and v2.

Remark 5

In order not to make a confusion between variable vi ∈ V = J1, NK and the vertex
of index i, we choose to represent the latter by i©.

The matrix representing the graph structure is called its adjacency matrix:

Definition 11: Adjacency matrix of a graph

The adjacency matrix A of a graph G = 〈V, E〉 as defined in Definition 1 is an
N ×N matrix with:

∀v1, v2 ∈ V : A[v1, v2] =

{
1 if {v1, v2} ∈ E
0 otherwise

. (4)

In this manuscript, we note A[v1, v2] the entry of matrix A at the intersection of row v1
and column v2. Additionally, we use the notations A[v1, :] and A[:, v2] to represent the
complete v1th row and v2th column of A, respectively.

The adjacency matrix of a graph in Definition 1 has the following interesting properties:

• It is binary, i.e., every entry A[v1, v2] is either 0 or 1;

• It is symmetric, i.e., ∀v1, v2 ∈ V : A[v1, v2] = A[v2, v1];

• If G is simple, then the diagonal entries — those at the intersection of row v and
column v — of A are all 0. The example graph in Figure 13 is not simple:

Chapter 2. Signal processing on graphs 42

1 2

3

4

5

6

7

8

9

10

11

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11©





1© 0 1 0 1 0 0 0 0 0 0 0
2© 1 0 1 1 0 0 0 0 0 0 0
3© 0 1 0 0 1 0 0 1 0 0 0
4© 1 1 0 0 0 1 1 0 0 0 0
5© 0 0 1 0 0 0 1 1 0 0 0
6© 0 0 0 1 0 0 0 0 1 0 0
7© 0 0 0 1 1 0 0 1 1 1 0
8© 0 0 1 0 1 0 1 0 0 0 0
9© 0 0 0 0 0 1 1 0 0 0 0

10© 0 0 0 0 0 0 1 0 0 0 1
11© 0 0 0 0 0 0 0 0 0 1 1

Figure 13 – Example of a graph (left), and associated adjacency matrix (right).

Extensions of this graph model introduced in Section 2.1.2 can also be represented by
matrices. In the case of a weighted graph, we call this matrix weights matrix:

Definition 12: Weights matrix

The weights matrix W of a graph G = 〈V, E , f〉 is an N ×N matrix with:

∀v1, v2 ∈ V : W[v1, v2] =

{
f({v1, v2}) if {v1, v2} ∈ E

0 otherwise
. (5)

Contrary to the adjacency matrix, the weights matrix is in general not binary. However,
remember that graphs are particular cases of weighted graphs. For this reason, the
adjacency matrix of an unweighted graph is sometimes written W.

Considering the second extension introduced in Section 2.1.2, the adjacency matrix of a
directed graph is defined as follows:

Definition 13: Adjacency matrix of a digraph

The adjacency matrix A of a digraph
−→G = 〈V,−→E 〉 is an N ×N matrix with:

∀v1, v2 ∈ V : A[v1, v2] =

{
1 if (v1, v2) ∈

−→E
0 otherwise

. (6)

As we can see, breaking the bidirectionality of edges by using a digraph corresponds
to breaking the symmetry of the adjacency matrix.

Figure 14 gives the matrix representations of the graphs in Figure 11 and Figure 12:

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11©





1© 0 5 0 3 0 0 0 0 0 0 0
2© 5 0 −8 10 0 0 0 0 0 0 0
3© 0 −8 0 0 6 0 0 0.1 0 0 0
4© 3 10 0 0 0 4 −0.5 0 0 0 0
5© 0 0 6 0 0 0 2 6 0 0 0
6© 0 0 0 4 0 0 0 0 8 0 0
7© 0 0 0 −0.5 2 0 0 4 6 11 0
8© 0 0 0.1 0 6 0 4 0 0 0 0
9© 0 0 0 0 0 8 6 0 0 0 0
10© 0 0 0 0 0 0 11 0 0 0 1
11© 0 0 0 0 0 0 0 0 0 1

√
2

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11©





1© 0 1 0 1 0 0 0 0 0 0 0
2© 0 0 1 0 0 0 0 0 0 0 0
3© 0 0 0 0 1 0 0 1 0 0 0
4© 0 1 0 0 0 1 1 0 0 0 0
5© 0 0 1 0 0 0 1 0 0 0 0
6© 0 0 0 0 0 0 0 0 1 0 0
7© 0 0 0 0 1 0 0 1 1 1 0
8© 0 0 0 0 1 0 0 0 0 0 0
9© 0 0 0 0 0 0 1 0 0 0 0
10© 0 0 0 0 0 0 0 0 0 0 1
11© 0 0 0 0 0 0 0 0 0 0 1

Figure 14 – Weights matrix associated with the weighted graph in Figure 11 (left), and
adjacency matrix associated with the digraph in Figure 12 (right). Vertices are labeled
in the same order as in Figure 13.

43 2.1. Elements of graph theory

Again, note that both representations are not incompatible, and that a weighted digraph
can easily be represented by a non-symmetric, non-binary matrix.

Some operations on matrices

Matrices are very classical mathematical tools, on which numerous operations can be
performed. In this section, we recall the ones we will need in this manuscript. For more
operations and results on matrices, the reader may be interested in [Ber05].

Let us first start with simple arithmetic operations on matrices:

Definition 14: Addition of matrices

Let M1 and M2 be two C1 × C2 matrices. Addition of matrices M1 + M2 is
performed as follows:

∀i ∈ J1, C1K, ∀j ∈ J1, C2K : (M1 +M2)[i, j] = M1[i, j] +M2[i, j] . (7)

Addition of matrices is a commutative and associative operation. Subtraction of ma-
trices is defined the same way, and multiplying a matrix by a scalar is also performed
entrywise. Product of two matrices, however, is defined as follows:

Definition 15: Product of matrices

Let M1 be a C1 × C2 matrix, and M2 be a C2 × C3 matrix. The result of the
product of matrices M1M2 is a C1 × C3 matrix, obtained as follows:

∀i ∈ J1, C1K, ∀j ∈ J1, C3K : (M1M2)[i, j] =

C2∑

k=1

M1[i, k]M2[k, j] . (8)

This is also an associative operation but, contrary to addition, it is in general not com-
mutative. The identity element for matrix product is the identity matrix. We say that a
matrix is diagonal if non-null values can only be found in its diagonal entries:

Definition 16: Identity matrix

The identity matrix IC is a C × C diagonal matrix defined as follows:

∀v1, v2 ∈ V : IC [v1, v2] =

{
1 if v1 = v2
0 otherwise

. (9)

Now, here are a few operations on a single matrix that will also be needed:

Definition 17: Transposition of a matrix

Let M be aC1×C2 matrix. Its transposed matrix M⊤ is aC2×C1 matrix, defined
as follows:

∀i ∈ J1, C2K, ∀j ∈ J1, C1K : M
⊤[i, j] = M[j, i] . (10)

Chapter 2. Signal processing on graphs 44

Definition 18: Matrix inverse

We call inverse of an N ×N matrix M, a matrix M−1 such that:

MM−1 = IN . (11)

Note that if the columns of M are orthonormal, then M−1 = M⊤.

An operation that will be extensively used in this manuscript is matrix diagonalization:

Definition 19: Matrix diagonalization

Let M be a C ×C matrix. Diagonalization of M consists in its decomposition in
the following form:

M = Xdiag(λ)X−1 , (12)

where X is an orthonormal matrix, λ ∈ CN is a vector, and diag(·) is a function
that creates a diagonal matrix with entries in the order of the given vector:

diag :





CN → CN×N

v 7→




v[1] 0 . . . 0
0
.
0 v[N]




. (13)

The matrix X and vector λ are respectively denoted eigenvectors and eigenvalues of
M. Eigenvectors of a C × C matrix are vectors (χ1, . . . ,χC) in CC , and eigenvalues
are associated scalars (λ1, . . . , λC) such that ∀i ∈ J1, CK : Mχi = λiχi. They have the
following properties:

• The eigenvalues are the same for any diagonalization of M;

• If the eigenvalues are pairwise distinct then, in absolute value, the eigenvectors
are the same for any diagonalization of M.

Diagonalization of a matrix can be seen as a transformation of its representation to
represent a vector of coordinates (its eigenvalues) in a particular basis (its eigenvectors).
In this manuscript, we consider without loss of generality that eigenvalues are sorted
by increasing value, i.e., λ1 ≤ λ2 ≤ · · · ≤ λC .

Remark 6

In all the situations we will consider in this manuscript, matrices are real-valued
and symmetric, thus diagonalizable by an orthonormal matrix of eigenvectors in
RC . This result is known as the spectral theorem [Wei58]. Still, note that there exist
solutions to decompose non-symmetric matrices similarly using Jordan decom-
position [Gan98].

Additionally, we only consider matrices such that every eigenvalue is unique
in λ. Repetition of eigenvalues leads to numerous difficulties, as there can be
multiple diagonalizations of the same matrix. For this reason, we do not study
this particular case.

45 2.1. Elements of graph theory

Diagonalization allows us to write matrix power as follows:

Definition 20: Matrix power

Let M be a square matrix. Putting M at power C is equivalent to the following:

MC = Xdiag(λ)CX⊤ . (14)

Since the matrix is diagonal, the power distributes on all entries of diag(λ).

Similarly, multiplication of a matrix by a constant is equivalent to multiply its eigenval-
ues by this constant.

Then, let M1 and M2 be two square matrices with same dimensions, with eigenvalues
λ1 and λ2, respectively. If M1 and M2 have the same eigenvectors X , then we have the
following properties:

• M1M2 = X (diag(λ1)diag(λ2))X
⊤ = X (diag(λ2)diag(λ1))X

⊤ = M2M1;
• M1 +M2 = X (diag(λ1) + diag(λ2))X

⊤.
Following from these results, an interesting property we will use later in this manuscript
is that linear combinations of matrices with the same eigenvectors yields a matrix with
these eigenvectors.

To conclude with eigenvalues-related properties, we notice that the trace of a matrix —
i.e., the sum of its diagonal entries, noted Tr(·) — is equal to the sum of its eigenvalues.

As for vectors, matrices are given some norms. In particular, let M be a C1×C2 matrix.
Throughout this manuscript, we are interested in the following matrix norms:

• Matrix L0,1 norm: ‖M‖0,1 = |{(i, j) | M[i, j] > 0, i ∈ J1, C1K, j ∈ J1, C2K}|;
• Matrix L1,1 norm: ‖M‖1,1 =

∑
i∈J1, C1K

∑
j∈J1, C2K

|M[i, j]|;

• Matrix Frobenius norm: ‖M‖F =
∑

i∈J1, C1K

∑
j∈J1, C2K

|M[i, j]|2.

A few interesting matrices

Using matrix notation to represent graphs allows the definition of other interesting
matrices, that will have a lot of importance later in this manuscript. A first matrix we
are interested in is the indegrees matrix, which indicates for each vertex the total weight
of incident edges:

Definition 21: Indegrees matrix

The indegrees matrix Din of a weighted digraph
−→G = 〈V,−→E , f〉 of order N and

weights matrix W is an N ×N diagonal matrix with:

∀v1, v2 ∈ V : Din[v1, v2] =

{ ∑
v3∈V

W[v3, v1] if v1 = v2

0 otherwise
. (15)

Similarly, the outdegrees matrix Dout of a graph can be obtained by summing the weights
of diedges that have v1 as first element, i.e., by replacing W[v3, v1] by W[v1, v3] in Def-
inition 21. In the case of undirected graphs, these matrices are the same, and are gener-
ally denoted degrees matrix, written D.

Chapter 2. Signal processing on graphs 46

Now, let us consider a simple graph, positively weighted and directed. The Laplacian
matrix of this graph is a very important matrix, which can be used to provide a lot of
information on the graph. The term Laplacian comes from the similarity between this
matrix and the Laplacian operator used in multivariate calculus. This matrix measures
how much a vertex differs from the vertices it is linked to. It is defined as follows:

Definition 22: Laplacian matrix

The Laplacian matrix L of a simple weighted digraph of orderN , weights matrix
W and degrees matrix D is an N ×N matrix computed as follows:

L = D−W . (16)

If the graph is undirected, then L is symmetric and real-valued, thus diagonalizable
by an orthonormal matrix. Let us denote its eigenvalues λ = (λ1, . . . , λN), sorted by
increasing value. This matrix has numerous interesting properties, among which the
following ones [Chu97]:

• ∀i ∈ J1, NK : λi ≥ 0;

• The number of occurrences of eigenvalue 0 is called algebraic multiplicity of the
graph, and corresponds to the number of connected components in the graph;

• λ2 is called algebraic connectivity of the graph, and measures how connected a
graph is.

The Laplacian matrix can also be given in its normalized version as follows:

Definition 23: Normalized Laplacian matrix

The normalized Laplacian matrix L of a simple weighted digraph of order N ,
weights matrix W and degrees matrix D is anN×N matrix computed as follows:

L = IN −D− 1
2WD− 1

2 . (17)

Let us denote its eigenvalues λ = (λ1, . . . , λN), sorted by increasing value. As for its
non-normalized version, the normalized Laplacian has numerous interesting proper-
ties, among which the following ones (see [Chu97] for more properties and details):

• ∀i ∈ J1, NK : λi ∈ [0, 2];

• λN = 2 if and only if the graph is bipartite, i.e., if its vertices can be partitioned in
two disjoint sets such that all edges link vertices in distinct sets.

As presented in the introduction, these two matrices will be extensively used later in
this manuscript, when considering graph signal processing.

2.1.4 Some families of graphs

Until now, most graphs that were presented in the various figures were either arbitrary,
for the sake of demonstration, or were modeling some particular domains. Considering
some particular graphs can be very useful in many situations, for example to take profit
of their properties, or to model some situations using certain random models. In this
section, we introduce the families of graphs that we will use in this manuscript.

47 2.1. Elements of graph theory

Deterministic graphs

To ease the definition of some graphs, let us introduce the quotient ring Z/CZ. In this
ring, addition is performed modulo C. To distinguish operators on this ring from clas-
sical addition or subtraction, we will denote them +C and −C . Therefore, when con-
sidering a set of N vertices, we can write N© +N 1 = 1© or 1© −N 1 = N©, indicating a
difference of 1 between indices of the first and last vertex.

The first graph we introduce was already presented in the introduction, without nam-
ing it. We define a K-ring graph as follows:

Definition 24: K-ring graph

A K-ring graph Gr = 〈Vr, Er〉 of order N is a graph such that every vertex is
linked to the K following and K previous vertices, following indices order, i.e.:

∀i ∈ J1, NK, ∀k ∈ J1,KK : { i©, i© +N k} ∈ Er ∧ { i©, i© −N k} ∈ Vr . (18)

When K = 1, we classically call the corresponding graph a ring graph. As presented in
Figure 4, a ring graph offers a good model for periodical time.

It is interesting to notice that the adjacency matrices of K-ring graph are circulant, i.e.,
are such that every row is equal to the following one, shifted by one column.

Generalizing the idea of the ring graph to higher dimensions, we introduce the torus
graph in D dimensions as follows:

Definition 25: Torus graph

Let d ∈ N∗D. The torus graph Gt = 〈Vt, E t〉 yielded by the dimensions vector d
is the graph such that:

• Vt = J1,d[1]K × J1,d[2]K × · · · × J1,d[D]K;

• ∀v1,v2 ∈ Vt : {v1,v2} ∈ E t ⇔
∃i ∈ J1, DK :

{
and

|v1[i] −d[i] v2[i]| = 1
∀j ∈ J1, DK, j 6= i : v1[j] = v2[j]

.

Note that elements in Vt are vectors of D integers, representing the Euclidean coordi-
nates of the vertices. When D = 2, the torus graph offers a good model for the domain
of periodic images. Each pixel is represented by a vertex, and edges link adjacent pixels.

Chapter 2. Signal processing on graphs 48

Similar to the torus graph, we define the grid graph as follows:

Definition 26: Grid graph

Let d ∈ N∗D. The grid graph Gg = 〈Vg, Eg〉 yielded by the dimensions vector d is
the graph such that:

• Vg = J1,d[1]K × J1,d[2]K × · · · × J1,d[D]K;

• ∀v1,v2 ∈ Vg : {v1,v2} ∈ Eg ⇔
∃i ∈ J1, DK :

{
and

|v1[i]− v2[i]| = 1
∀j ∈ J1, DK, j 6= i : v1[j] = v2[j]

.

The only difference with the torus graph is that the subtraction of coordinates to define
the edges is not performed modulo the dimension. The resulting graph is therefore a
good model for non-periodic images.

Figure 15 depicts an example of a two-dimensional torus graph, and a two-dimensional

grid graph, both yielded by the vector of dimensions d =

[
6
5

]
:

Figure 15 – Example of a grid graph (left) and torus graph (right). Each of these graphs

is described by the dimensions vector d =

[
6
5

]
.

Interestingly, the ring graph can be seen as a unidimensional torus graph. Similarly, a
unidimensional grid graph is generally called a line graph.

Another graph we will use at some points in this manuscript is the complete graph. This
graph can be useful to prove some properties, as any graph has its edges included in
the set of edges of a complete graph of the same order:

Definition 27: Complete graph

The complete graph Gc = 〈Vc, Ec〉 of N vertices is the graph such that each vertex
is connected to every other one, i.e.:

∀v1, v2 ∈ Vc : {v1, v2} ∈ Ec . (19)

49 2.1. Elements of graph theory

Finally, a last graph we consider in this manuscript is the star graph:

Definition 28: Star graph

The star graph Gs = 〈Vs, Es〉 ofN vertices is the graph such that one single vertex
v1 ∈ V is connected to every other vertex, i.e.:

∃v1 ∈ V, ∀v2, v3 ∈ Vs : {v2, v3} ∈ Es ⇔ v2 = v1 . (20)

As examples, Figure 16 depicts a complete graph and a star graph, both of orderN = 5:

Figure 16 – Example of a complete graph (left) and star graph (right).

Random graphs

Additionally, random graphs can be useful to make simulations, allowing evaluation
of an algorithm on controlled examples. In this manuscript, we consider three models
of random graphs. The first one is the Erdős-Rényi model [ER59]:

Definition 29: Erdős-Rényi graph

A graph Ger = 〈Ver, Eer〉 following an Erdős-Rényi model of parameter P is a
random graph in which every edge has a probability P of existence, i.e.:

∀v1, v2 ∈ Ver :
{

{v1, v2} ∈ Eer with probability P
{v1, v2} 6∈ Eer with probability 1− P

. (21)

In such graph, the edges exist or not independently from each other. The following two
models we consider take the vertices into consideration when creating the edges. In
particular, a random geometric graph is built from a set of randomly generated locations:

Definition 30: Random geometric graph

A graph Grg = 〈Vrg, Erg〉 of order N following a random geometric model of
parameter R is a graph such that every vertex is given a random location in a
two-dimensional unit square, and is connected to other vertices that are located
under a certain radius, i.e.:

• Vrg = {v1, . . . ,vN}, with ∀i ∈ J1, NK : vi ∈ [0, 1]2;

• ∀v1,v2 ∈ Vrg : {v1,v2} ∈ Erg ⇔ ‖v1 − v2‖2 < R, where ‖·‖2 measures the
ℓ2 norm of a vector.

Chapter 2. Signal processing on graphs 50

Note that random geometric graphs are sometimes defined using coordinates on a two-
dimensional unit torus. In this case, distance between them is computed accordingly.
Since edges between vertices indicate a certain geographic proximity between them,
such graphs can be very convenient to model networks [Nek07].

Finally, the third model of random graphs we consider is the Watts-Strogatz model [WS98]:

Definition 31: Watts-Strogatz graph

A graph Gws = 〈Vws, Ews〉 following a Watts-Strogatz model of parameters K
and P is built iteratively from a K-ring graph Gr = 〈Vr, Er〉, by rewiring edges
with probability P and avoiding self-loops and duplicates, i.e.:

• Vws = Vr;
• ∀{v1, v2} ∈ Er :

{
{v1, v2} ∈ Ews with probability 1− P
∃v3 ∈ Vws, v1 6= v3, {v1, v3} 6∈ Ews : {v1, v3} ∈ Ews with probability P

.

In this model, K controls the original neighborhood of every vertex, and P controls the
quantity of disorder in the graph. For P = 0, the graph is a K-ring, and for P = 1, it is a
completely randomized simple graph.

All the random graph models introduced in this section are unweighted. However,
it is sometimes interesting to consider weighted graphs. When the random graph is
built from vertices that have Euclidean coordinates, weights can be added to edges
considering the distance separating them.

From Definition 12, note that absence of an edge is represented by a 0 in the correspond-
ing entry in the weights matrix. However, a low value indicates existence of an edge
with a small weight in the graph. If weights represent distances, this causes a disconti-
nuity in the weights function, since 0 represents infinite distance, and ε > 0 represents
high similarity between vertices.

To correct this discontinuity, a classical approach to add weights to a random graph is to
consider a function that decreases with the distance. The most common such function
is a decreasing exponential of the distance, as follows:

∀v1, v2 ∈ V : W[v1, v2] =

{
exp

(
−d(v1,v2)2

2θ2

)
if A[v1, v2] 6= 0

0 otherwise
, (22)

where d(v1, v2) is the Euclidean distance using the coordinates associated with the ver-
tices, and θ is a parameter controlling the decrease.

Numerous other solutions exist, some of which can be found in [GP10]. Also, when
considering graphs for which vertices are not associated with coordinates, the weights
can for example be drawn randomly using a chosen distribution.

2.2 Elements of signal processing

As presented in the introduction of this manuscript, signal processing on graphs devel-
oped as an extension of classical signal processing, with the aim to generalize it to more
complex domains than classical tools could handle. In this section, we review a few
notions of signal processing. Their equivalents from a graph signal processing point of
view will be introduced in the next section.

51 2.2. Elements of signal processing

2.2.1 What is signal processing?

The Fourier transform of signals

Hearing music, or making a phone call for instance, are operations that involve time.
Every time instant is associated with a signal quantity, corresponding in these cases to
the level of sounds that can be heard at this particular instant. As time is a continuous
domain, such signals can be defined as continuous functions as follows:

Definition 32: Continuous signal

A continuous signal over R is a function s :
{

R → R
t 7→ s(t)

.

Signal value at instant t is called amplitude of the signal.

Analysis of such objects is the objective of continuous signal processing. One of the key
tools allowing this is the Fourier transform of signals, allowing the representation of
time signals as a continuous sum of sines, or complex exponentials:

Definition 33: Fourier transform

The Fourier transform ŝ = FT(s) of a continuous, integrable, signal s(t) is:

FT(s) :

{
R → C
ω 7→ ŝ(ω) =

∫
R s(t) e

−i2πωt dt
, (23)

with t in seconds, and ω the frequency in Hz.

The Fourier transform of a signal gives a frequency representation for it called its spec-
trum, allowing its manipulation in a different context. Spectrum value at frequency ω
is called amplitude of the spectrum.

Using inverse Fourier transform, it is then possible to bring the signal back to the time
domain as follows:

Definition 34: Inverse Fourier transform

The inverse Fourier transform s = FT−1(ŝ) of an integrable spectrum ŝ(ω) is:

FT−1(ŝ) :

{
R → C
t 7→ s(t) =

∫
R ŝ(ω) e

+i2πωt dω
. (24)

From continuous signals to discrete signals

As introduced before, spectral analysis of continuous signals can be done thanks to
the Fourier transform. However, computers can only manipulate discrete objects, and
processing signals with such tools requires to sample the signals:

Chapter 2. Signal processing on graphs 52

Definition 35: Signal sampling

Signal sampling is the process of approximating a continuous signal by a discrete
signal with entries taking their values in a finite set S . It is done in two steps:

1. Discretization of the signal consists in dividing it into equal intervals of
time, each interval being represented by a single amplitude;

2. Quantization of the discretized signal consists in approximating the am-
plitude by a finite value in S .

Discretized signals are then vectors — potentially infinite — taking their values in S .
Manipulating discrete signals can then be done similarly to continuous signals, using
the discrete Fourier transform and the inverse discrete Fourier transform:

Definition 36: Discrete Fourier transform

The discrete Fourier transform t̂ = DFT(t) of a discrete signal t[t] of N samples
is defined by:

DFT(t) :





R → C

ω 7→ t̂[ω] =
N∑
t=1

t[t] e−i2πωt
, (25)

where t̂ can be seen as a vector with non-integer indices associated with the
various frequencies.

Definition 37: Inverse discrete Fourier transform

The inverse discrete Fourier transform t = DFT−1(t̂) of a spectrum t̂[ω] is:

DFT−1(t̂) :





R → C

t 7→ t[t] =
N∑
ω=1

t̂[ω] e+i2πωt
, (26)

where t can be seen as a vector with non-integer indices associated with the
various sampling instants.

Manipulating discrete signals as an approximate for continuous signals suggests a loss
in details. However, the Nyquist-Shannon sampling theorem [Sha49] states that a signal
can be fully determined by a correct subsampling:

Theorem 1: Nyquist-Shannon sampling theorem

A signal s(t) of highest frequency ωmaxHz is fully determined by subsampling it
with a period of 1

2ωmax
.

This theorem justifies subsampling as a very powerful tool to manipulate signals. How-
ever, in the case when the signal bandwidth — i.e., the difference between its maximal
and minimal frequencies — is infinite, then Theorem 1 does not apply, and reconstruc-
tion of the initial signal from its sampled version necessarily exhibits imperfections.

53 2.2. Elements of signal processing

2.2.2 Operations on signals

Using Fourier transform and its inverse simplifies manipulation of signals. In this sec-
tion, we introduce some classical tools to process time signals. The tools we introduce
here are defined for continuous signals. However, the results also apply for discrete
signals by replacing integrals with discrete sums.

Filtering signals

Filtering signals allows to remove unwanted components from them such as noise, or
to extract information located in particular frequencies. One of the cornerstone tools
allowing this manipulation of signals is convolution, defined as follows:

Definition 38: Convolution of signals

Convolution of two signals, noted s1 ∗ s2, is a function that associates with each
time instant the sum of one signal, weighted by the other around origin, i.e.:

(s1 ∗ s2)(t) =
∫

R
s1(t− τ)s2(t) dτ =

∫

R
s1(t)s2(t− τ) dτ . (27)

What makes convolution an essential tool to filter signals is the fact that convolv-
ing signals in the time domain is equivalent to multiplying their spectrums:

s1 ∗ s2 = FT−1(FT(s1)FT(s2)) = FT−1(ŝ1ŝ2) . (28)

Using this property, one can then build a signal in the time domain such that it has de-
sirable properties in the spectral domain, thus creating a filter to convolve with another
signal of interest. The most common such signals are the following, each given with an
example spectral representations:

• High-pass filter: The highest frequencies are kept, and the others are attenuated:

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

ω

ĥ
(ω

)

• Low-pass filter: The lowest frequencies are kept, and the others are attenuated:

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

ω

ĥ
(ω

)

Chapter 2. Signal processing on graphs 54

• Band-pass filter: An interval of frequencies is kept, and the others are attenuated:

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

ω

ĥ
(ω

)

To illustrate filtering, let us consider the following example. It is well known that noise
in a signal is located in the high frequencies. Therefore, it is easier to identify — and re-
move — noise on a signal when considering its spectrum. Figure 17 depicts an example
of a noisy signal from which we have removed the 25% highest frequencies:

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

t

s 1
(t
)

ŝ1 = FT(s1)

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

ω

ŝ 1
(ω

)

s2 = FT−1(ĥŝ1)

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

t

s 2
(t
)

Figure 17 – Example of denoising of a signal, represented both in the time domain
(top) and in the frequency domain (middle). Frequencies that are depicted in blue are
removed using a low-pass filter h. Inverse Fourier transform of the corrected signal
shows that it is now more regular (bottom).

55 2.3. Graph signal processing

Additionally, a particular signal is of interest for convolution:

Definition 39: Dirac delta signal

A Dirac delta signal at time t is a signal δ(t) such that:

δ(t) =

{
+∞ if t = 0
0 otherwise

. (29)

This particular signal has the interesting property to have an equal contribution of all
its frequencies. Therefore, convolving it with an unknown filter allows to identify the
spectrum of this filter.

A few other operators on signals

Filtering is only one possible operation on signals. Signal processing defines a lot of
other operators that can help process such objects. One particular operation that was
implicitly used in Definition 38 is translation:

Definition 40: Signal translation

Translation of a signal s(t) by a quantity τ is performed by a change of variable,
i.e., by replacing s(t) with s(t− τ).

This operator allows to shift a signal in time. The corresponding operation in the spec-
tral domain is modulation:

Definition 41: Signal modulation

Modulation of a signal s(t) by a frequency ξ is performed as follows:

Mξs(t) = ei2πξts(t) . (30)

This operation corresponds in the spectral domain to the following:

M̂ξs(ω) = ŝ(ω − ξ) . (31)

Numerous other operations on signals exist, allowing for instance to dilate, scale or
reverse signals. For more information on such operators, the interested reader may
consult [Pri90] for instance.

2.3 Graph signal processing

As indicated in the introduction of this manuscript, the objective of graph signal pro-
cessing is to generalize the classical signal analysis framework in order to make it ap-
plicable to more complex signals, evolving on elaborate topologies. In this section, we
introduce in more details the link between the Laplacian matrix — normalized or not
— and show how classical tools from signal processing can be transported to graphs.
Then, we introduce some properties of the underlying graph used to provide a fre-
quency representation of signals.

Chapter 2. Signal processing on graphs 56

2.3.1 From signal processing to graph signal processing

Signals and graphs

As shown before, a discretized time signal can be seen as a vector of real entries, carried
by vertices of a ring graph modeling time. We therefore manipulate two distinct objects:
a graph, and some signals on this graph:

Definition 42: Signal on a graph

A signal x on a graph of order N is a column vector in RN .

When considering a ring graph, we have seen in Figure 5 that the eigenvectors X =
(χ1, . . . ,χN) of the Laplacian matrix correspond to the sines that are used to provide
a spectral representation for signals in classical Fourier analysis. Additionally, the fre-
quencies of these sines increase as the eigenvalues associated with the corresponding
eigenvectors increase.

As a consequence, projection of a signal x to the basis formed by X corresponds to
projecting it to a basis of sines. This leads to the following definition of the graph Fourier
transform, introduced in [Shu+13]:

Definition 43: Graph Fourier transform

The graph Fourier transform x̂ = GFT(x) of a signal x on a graph is:

x̂ = X
⊤x . (32)

Conversely, retrieving the graph signal from its spectrum can be done by projecting it
back to the graph domain using the inverse graph Fourier transform:

Definition 44: Inverse graph Fourier transform

The inverse graph Fourier transform x = GFT−1(x̂) of the spectrum x̂ of a signal
on a graph is:

x = X x̂ . (33)

Note that orthonormality of the eigenvectors makes this function a valid inverse
of the graph Fourier transform:

GFT−1(GFT(x)) = XX
⊤x = x . (34)

Note that alternative definitions exist for the graph Fourier transform and its inverse.
In particular, it is possible to use another basis to provide a spectral representation
of signals. Classical alternatives to the Laplacian matrix are its normalized version
[Shu+13], or the adjacency matrix of the graph [SM13; SM14].

To illustrate graph Fourier transform, Figure 18 depicts a random geometric graph,
on which a signal is observed. Using the eigenvectors of the Laplacian matrix, the
spectrum of the signal is provided:

57 2.3. Graph signal processing

−0.2 0 0.2

0 2 4 6 8 10 12 14 16 18

−0.4

−0.2

0

0.2

0.4

λ

x̂
[λ
]

Figure 18 – Example of a random geometric graph, on which a signal x is observed
(top). Entries of the signal on the vertices are represented with colors according to the
given color map. The spectral representation of the signal is given by its graph Fourier
transform using the Laplacian matrix (bottom). As for discrete signals in classical signal
processing, we use the notation x̂[λ] for the amplitude of the spectrum at eigenvalue λ.

An interesting observation is that the spectrum of the signal is not defined for every
frequency, and that spacing of these frequencies is not regular. This is due to the dis-
tribution of the eigenvalues of the Laplacian matrix of the graph. More information on
the distributions of random graphs can be found for example in [DJ+10].

This irregular spacing is characteristic of the problems one may encounter when trying
to define tools on such graphs to process signals. This is also true in the graph domain,
in which finding regular patterns is not an easy task. For these reasons, definition of
operators such as translation or modulation is not straightforward.

Chapter 2. Signal processing on graphs 58

Operators on signals on graphs

Porting the convolution operator in Definition 38 to signals defined on a graph is not
an evident operation. As a matter of fact, its definition requires being able to shift a
signal by a quantity τ , which has no real meaning in the irregular domain of the graph.
In the spectral domain, however, we do not have this particular limitation, as two sig-
nals on a graph share the same domain for their spectrum. Therefore, multiplying the
corresponding entries can be done easily.

Definition 45: Convolution of signals on a graph

Convolution of two signals on a graph is performed in the spectral domain anal-
ogously to classical convolution. The corresponding signal in the time domain is
then obtained by inverse graph Fourier transform:

x1 ∗ x2 = GFT−1(GFT(x1)⊙GFT(x2)) = GFT−1(x̂1 ⊙ x̂2) , (35)

where ⊙ is the entrywise product of vectors.

Filtering of signals on graphs can then be done as for classical ones, by convolving them
with a filter that has interesting spectral properties. As an example, let us consider again
the signal x in Figure 18. Figure 19 depicts the same signal, convolved with a signal h
which spectrum is defined as follows:

ĥ[λ] = e−Cλ , (36)

where C is a controlling parameter, for all eigenvalue λ of the Laplacian matrix of the
graph in Figure 18. As all eigenvalues of the Laplacian matrix are positive (see Sec-
tion 2.1.3), this corresponds to a low-pass filter on the graph:

−1 0 1 2

·10
−2

0 5 10 15

0

0.5

1

λ

ĥ
[λ
]

0 5 10 15
−5

0

5

·10−2

λ

ĥ
[λ
]x̂
[λ
]

59 2.3. Graph signal processing

−0.5 0 0.5 1

·10
−2

0 5 10 15

0

0.5

1

λ

ĥ
[λ
]

0 5 10 15
−5

0

5

·10−2

λ

ĥ
[λ
]x̂
[λ
]

Figure 19 – Convolution of the signal x from Figure 18 with a low-pass filter h defined
for C = 0.5 (top) and C = 1 (bottom) in (36). The filtered signal is represented on the
graph (left), and details on its spectrum and on the filter used are also given (right).

As it can be seen from this figure, applying a low-pass filter to a signal on a graph also
tends to make it more regular, as it was the case for time signals in Figure 17.

This process of finding equivalences with classical signal processing — either in the
graph domain or in the spectral domain — is the key idea to define most operators for
signal processing on graphs.

In particular, translation of signals on a graph cannot simply be defined by associating
an index to each vertex and replacing the signal entry at vertex v by the signal entry at
vertex v −N 1, except for the ring graph. Therefore, translation of signals on graphs is
defined using the property in classical signal processing that translation of a time signal
corresponds to convolution with a Dirac delta signal at a target time instant. To apply
this to graphs, let us first introduce the Dirac delta signal on the graph:

Definition 46: Dirac delta signal on a graph

A Dirac delta signal on a graph G = 〈V, E〉 of N vertices at vertex v1 ∈ V is a
signal δv1 ∈ RN such that:

δv1 [v2] =

{
1 if v2 = v1
0 otherwise

. (37)

Chapter 2. Signal processing on graphs 60

Using this particular signal, we can translate a signal to a particular vertex as follows:

Definition 47: Translation of a signal on a graph

Let us consider a graph G = 〈V, E〉 of order N . Translation of a signal x to a
particular vertex v1 ∈ V , as introduced by Shuman et al. in [Shu+13], is defined
as follows:

Tv1x[v2] =
√
N(x ∗ δv1)[v2] . (38)

In this equation,
√
N ensures preservation of the mean of the signal.

Note that this translation operator moves the whole signal around a target vertex,
rather than reaching it with a series of small shifts. As an example, Figure 20 depicts a
graph, on which a signal is translated to various locations:

0

1

2

3

(a)

−1

0

1

2

·10
−2

(b)

−2

0

2

4

6

·10
−2

(c)

−1

0

1

2

·10
−2

(d)

Figure 20 – Reproduction of an experiment performed in [Shu+13]. This graph repre-
sents the roads of Minnesota. An initial signal (a), defined in the spectral domain using
(36) with C = 5, is translated to vertices v100 (b), v200 (c), and v2000 (d).

Also, this operator does not preserve the ℓ2 norm of the translated signal in the general
case. For this reason, other definitions for translation on graphs have been proposed.
Since translation of signals is an important part of this manuscript, these methods will
be presented in Chapter 4.

Similarly to translation, that was not straightforward to define due to irregularity of

61 2.3. Graph signal processing

the graph domain, modulation suffers from the irregularity of the spectrum, i.e., the
variable space between consecutive eigenvalues of the Laplacian matrix. As introduced
in Definition 41, modulation can be defined in the graph domain, by multiplying the
signal to modulate with a complex exponential of a certain frequency. Noticing that
this exponential is in fact an eigenvector of the Laplacian matrix of the ring graph,
modulation of a signal on a graph is defined in the graph domain as follows:

Definition 48: Modulation of a signal on a graph

Let us consider a graph G = 〈V, E〉 of order N , and let (χ1, . . . ,χN) be the eigen-
vectors of its Laplacian matrix. Modulation of a signal x on a graph by a fre-
quency λi (of associated eigenvector χi) is performed as follows:

Mλix[v] =
√
Nχi[v]x[v] . (39)

Contrary to time signals, modulation of a signal on a graph is not exactly a translation in
the spectral domain. However, Shuman et al. have shown in [SRV12] that modulating
a signal which spectrum is localized at eigenvalue 0 by an eigenvalue λ causes the
spectrum of the modulated signal to be localized around λ.

Other tools from classical signal processing such as modulation of a signal also have
their equivalents in the framework of graph signal processing. Examples include dilata-
tion of a signal, or wavelets on graphs. Since they will not be used in this manuscript,
we refer the interested reader to [HVG11] or [Shu+13].

2.3.2 The underlying graph and the signals

Obviously, the underlying graph topology has a lot importance in graph signal pro-
cessing. We already established that the eigenvectors of its Laplacian matrix define a
graph Fourier transform, and that the distribution of its eigenvalues impacts the design
of filters for signals defined on the graph. In this section, we review some additional
properties of signals defined on the graph.

Smoothness of a signal on a graph

In Figure 19, we have implicitly established that keeping only the lowest frequencies
of a signal on a graph tends to make it more regular on the graph, analogously to time
signals. More formally, this property of regularity is measured by the smoothness of the
signal on the graph as follows:

Definition 49: Smoothness of a signal on a graph

Smoothness of a signal x on a graph G = 〈V, E〉, of weights matrix W and Lapla-
cian matrix L, measures the total difference between signal entries on adjacent
vertices, as follows:

S(x) = 1
2

∑
v1∈V

∑
v2∈N (v1)

W[v1, v2](x[v1]− x[v2])
2

=
∑

{v1, v2}∈E
W[v1, v2](x[v1]− x[v2])

2

= x⊤Lx

. (40)

Chapter 2. Signal processing on graphs 62

Since L is diagonalizable by an orthonormal matrix of eigenvectors in RC , we
can rewrite this equality as follows:

S(x) = x⊤Xdiag(λ)X⊤x

= x̂⊤diag(λ)x̂

=
∑
λ∈λ

λx̂[λ]2
, (41)

where X and λ are the eigenvectors and eigenvalues of the Lalacian matrix.

Considering the first part of the computation, note that S(x) can only be null when the
signal x is constant. Also, this quantity is low when the signal entries on vertices that
are linked by an edge with a strong weight are close. For this reason, a low smoothness
value indicates more regularity on the graph.

Additionally, the second part of the computation in Definition 49 tells us that for a
signal to be smooth, most of the signal energy should be located on the smaller eigen-
values. To illustrate this, let us consider again the signal x in Figure 18, and its filtered
versions in Figure 19. For these signals, we obtain the following smoothness values:

• S(x) = 12.037;

• For C = 0.5: S(h ∗ x) = 7.81 · 10−3;

• For C = 1: S(h ∗ x) = 2.13 · 10−3.

This confirms the observation that application of a low-pass filter, as in the case of time
signal, make signals on graphs more regular.

Stationarity of signals on a graph

In statistics, a stationary process is defined as follows:

Definition 50: Stationary process

A stochastic process is said to be stationary if its joint probability distribution
does not change when shifted, i.e., if its moments are invariant by translation.

This strict definition of stationarity — also called strong-sense stationarity — is quite
restrictive, and is generally relaxed to consider a weaker form of stationarity, defined
as follows:

Definition 51: Weak-sense stationary process

A stochastic process is said to be weak-sense stationary if its two first moments
— mean and autocovariance — are invariant by translation.

As an example, Figure 21 depicts two signals s1(t) and s2(t). The first one is an in-
stantiation of a strong-sense stationary process, and corresponds to white noise, i.e.,
i.i.d. realizations of a zero-mean, fixed variance random process. The second one is an
instantiation of a process that is not stationary, and represents the selling price of the
Magic: the Gathering card Serra Angel, in edition Alpha [Mag]:

63 2.3. Graph signal processing

0 100 200 300 400 500 600 700 800 900 1,000

−0.4

−0.2

0

0.2

0.4

t

s 1
(t
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

100

200

300

t

s 2
(t
)

Figure 21 – Example of a stationary signal s1(t) corresponding to white noise obtained
from i.i.d. realizations of a N (0, 0.1) distribution (top). Additionally, a non-stationary
signal s2(t) is provided (bottom), corresponding to the average selling price (in Euro)
of the Magic: the Gathering card Serra Angel, in edition Alpha between the months of
February 2013 and May 2017.

Considering (weak-sense) stationary processes is a frequent assumption in signal pro-
cessing, as it simplifies numerous operations. Therefore, it has applications to fields
such as detection theory, reliability or filtering [Lin12].

When considering graphs, stationarity of processes is defined analogously to Defini-
tion 50 [Gir15b; PV17; Mar+16], but replacing invariance by translation with invariance
by application of a graph shift operator:

Definition 52: Graph shift operator

A graph shift operator on a graph G = 〈V, E〉 of adjacency matrix A is a matrix S

such that:
∀v1, v2 ∈ V : S[v1, v2] 6= 0 ⇔ A[v1, v2] 6= 0 . (42)

Examples of such graph shift operators have already been encountered in this manuscript,
in the form of the adjacency matrix, the Laplacian matrix, or its normalized version. Ap-
plication of a graph shift operator S to a signal x1 to obtain a signal x2 is therefore done
as follows:

x2 = Sx1 . (43)

Intuitively, performing this computation replaces any entry v in x2 by a linear combi-
nation of the entries N (v) of x2. More generally, the various powers of a graph shift
operator can be considered to model combination of values at more distant neighbor-
hoods. For this reason, and by analogy with classical filtering, the corresponding matrix
is often called graph filter:

Chapter 2. Signal processing on graphs 64

Definition 53: Graph filter

A graph filter on a graph G = 〈V, E〉, for which we consider a graph shift operator
S, is a polynomial of S:

H =
∑

i∈I⊆Z

CiS
i , (44)

for some constant values Ci.

Note from Section 2.1.3 that all the powers of a given matrix share the same eigenvec-
tors. Therefore, a graph filter has the same eigenvectors as the graph shift operator it is
built from.

Using the definitions above, we define stationarity on a graph as follows:

Definition 54: Strong-sense stationary process on a graph

Using the definition in [Mar+16], a stochastic process on a graph is said to be
strong-sense stationary if its joint probability distribution does not change when
shifted in the graph, i.e., if its moments are invariant by application of a graph
shift operator on the graph.

Similarly to Definition 51, a weak-sense stationary process on a graph is defined by
considering only its two first moments.

Again, white noise on a graph, defined as a process of zero-mean and controlled vari-
ance, is a strong-sense stationary process. Also, for a graph filter H and a white noise
signal x, the signal Hx is stationary, since H is a polynomial of a graph shift operator.

Diffusion of signals

Diffusion of a signal on a graph is the process of propagating a signal across the edges
of the graph. Numerous diffusion models can be considered, but all have in common
to be representable by graph shift operators. A particular graph shift operator we are in-
terested in is the one that represents the diffusion process measured by the normalized
Laplacian matrix:

Definition 55: Diffusion matrix associated with the normalized Laplacian

Let us consider a graph G = 〈V, E〉 of weights matrix W and degrees matrix D.
The diffusion matrix associated with the normalized Laplacian of this graph is:

T = D− 1
2WD− 1

2 . (45)

Note that this matrix differs from the normalized Laplacian in Definition 23 by an iden-
tity matrix. Therefore, it can be understood as a diffusion operator which impact is
measured by the graph Laplacian. In more details, let us consider a signal x on the
graph. We have the following equality:

Lx =
(
IN −D− 1

2WD− 1
2

)
x = INx− T x . (46)

65 2.3. Graph signal processing

Considering the properties of the normalized Laplacian matrix introduced in Section 2.1.3,
and noticing that the eigenvalues of IN are all 1, we obtain the following properties:

• The eigenvalues of T are in [−1, 1], with −1 being an eigenvalue if and only if the
graph is bipartite;

• The eigenvectors of T and L are the same;

• The eigenvector associated with eigenvalue 0 of L is also associated with eigen-
value 1 of T .

For these reasons — and considering a non-bipartite graph — diffusion of a signal n
times using T

n shrinks the contribution of the eigenvalues that are not 1. Therefore, as
n grows to infinity, any signal eventually converges to a stable state corresponding to
the eigenvector χ associated with eigenvalue 1, which is equal to:

∀i ∈ J1, NK : χ[i] =

√√√√√
D[i, i]

N∑
j=1

D[j, j]

. (47)

Since this eigenvector is associated with the lowest frequency of the graph Laplacian,
diffusion of a signal with T eventually converges to a highly regular signal on the
graph. As a consequence, T corresponds to the matrix that models heat propagation
on the graph. Figure 22 illustrates this process on a graph corresponding to the 3D
mesh of a bunny:

−2 0 2

−1 −0.5 0 0.5 1

−1

0

1

λ

x̂
[λ
]

−0.5 0 0.5

−1 −0.5 0 0.5 1

−1

0

1

λ

T̂
x
[λ
]

Chapter 2. Signal processing on graphs 66

−0.1 0 0.1

−1 −0.5 0 0.5 1

−1

0

1

λ

T̂
1
0
x
[λ
]

−2 0 2 4

·10−2

−1 −0.5 0 0.5 1

−1

0

1

λ

T̂
1
0
0
x
[λ
]

Figure 22 – Graph of a 3D mesh representing a bunny. For clarity, edges — linking
neighboring angles of the mesh — are not represented. An initial signal, defined in the
spectral domain such that every frequency contributes equally, is then diffused on the
graph with T , T 10, and T

100.

In the general case, diffusion of a signal does not eventually converge to a stable value,
since the eigenvalues of the graph shift operator may not respect the criteria above. In
particular, if one eigenvalue is larger than 1 in magnitude, i.e., in absolute value of its
amplitude, then the signal will diverge. Still, as signals are diffused on the graph using
a graph filter H, the eigenvalue of H with the highest magnitude takes more impor-
tance relatively to the others. Therefore, H

n
x

‖Hn
x‖2

eventually converges to the eigenvector
associated with the eigenvalue of H with the highest magnitude, as n grows to infinity.

This observation is important for later work in this manuscript. It is interesting to notice
that a random signal on a graph is not linked to its support at all. Contrary, once
it is diffused upon convergence, it becomes the eigenvector of the graph filter used
for diffusion associated with the eigenvalue of largest magnitude. For intermediary
numbers of diffusions, the signal thus adapts progressively to the graph on which it is
diffused, through the graph filter that is used.

2.3.3 The uncertainty principle on graphs

Heisenberg’s uncertainty principle applied to signal on graphs

In classical signal processing, there is well-known result that states that a signal cannot
be localized both in the time and in the spectral domain. This result is known as Heisen-

67 2.3. Graph signal processing

berg’s uncertainty principle [Hei25]. Before defining this principle, we need to introduce
the notion of spread of a signal, measuring how localized the signal is in the time or
spectral domain:

Definition 56: Time spread of a signal

Let us consider a signal s(t) of unitary ℓ2 norm. The time spread around time
instant t• ∈ R, noted ∆t•(s), is a local quantity measuring the localization of a
signal in the time domain:

∆t•(s) =

∫

R
(t− t•)2|s(t)|2 dt . (48)

From this quantity, the time spread of the signal, noted ∆t(s), measures its local-
ization in the time domain:

∆t(s) = min
t•∈R

∆t•(s) . (49)

The smaller this quantity, the more concentrated s(t). The spectral version of the spread
is defined similarly as follows:

Definition 57: Spectral spread of a signal

Let us consider a signal s(t) of unitary ℓ2 norm. The spectral spread around
frequency ω• ∈ R, noted ∆ω•(s), is a local quantity measuring the localization of
a signal in the spectral domain:

∆ω•(s) =
1

2π

∫

R
(ω − ω•)2 |̂s(ω)|2 dω . (50)

From this quantity, the spectral spread of the signal, noted ∆ω(s), measures its
localization in the spectral domain:

∆ω(s) = min
ω•∈R

∆ω•(s) . (51)

Again, the smaller this quantity, the more concentrated ŝ(ω). Using these two quanti-
ties, the uncertainty principle is given as follows:

Theorem 2: Uncertainty principle

For any unit-norm signal s(t), the following inequality holds:

∆t(s)∆ω(s) ≥
1

4
. (52)

An extreme case for this uncertainty principle is the Dirac delta signal δ(t), which is
completely localized in time. When considering its Fourier transform, we obtain the
following development:

δ̂(ω) =

∫

R
δ(t) e−i2πωt dt = 1 . (53)

As a consequence, the most localized function in the time domain has a spectrum in
which every frequency has amplitude 1.

Chapter 2. Signal processing on graphs 68

In the general case, not all signals have the same value ∆t(s)∆ω(s), and we can find
some signals that minimize this product and are therefore Pareto optima in terms of
concentration. Finding such signals has applications for example in analysis of phase
synchrony of brain signals, in which interesting signals are localized in time and are
bandlimited [Lac+99].

Porting this uncertainty principle to graph signal processing was done by Agaskar and
Lu in [AL12; AL13]. By analogy with the definitions above, they define notions of
spreads in the graph and in the spectral domains, as follows:

Definition 58: Graph spread of a signal on a graph

Let us consider a signal x of unitary ℓ2 norm on a graph G = 〈V, E〉. The graph
spread around vertex v• ∈ V , noted ∆G,v(x), is a local quantity measuring the
localization of a signal in the graph domain:

∆G,v•(x) =
∑

v∈V
dgeo(v, v•)2|x[v]|2 . (54)

From this quantity, the graph spread of the signal, noted ∆G,v(x), measures its
localization in the graph domain:

∆G,v(x) = min
v•∈V

∆G,v•(x) . (55)

Using this definition, if we note Pv• the diagonal matrix of geodesic distances to vertex
v•, the graph spread can be rewritten as follows:

∆G,v(x) = min
v•∈V

x⊤P2
v•
x . (56)

Definition 59: Spectral spread of a signal on a graph

Let us consider a signal on a graph G = 〈V, E〉 with spectrum x̂ of unitary ℓ2
norm. The spectral spread around eigenvalue λ• ∈ λ of the normalized Lapla-
cian matrix, noted ∆G,λ•(x), is a local quantity measuring the localization of a
signal in the spectral domain of the graph:

∆G,λ•(x) =
∑

λ∈λ
(λ− λ•)2|x̂[λ]|2 . (57)

From this quantity, the spectral spread of the signal, noted ∆G,λ(x), measures its
localization in the spectral domain of the graph:

∆G,λ(x) = min
λ•∈λ

∆G,λ•(x) . (58)

Definition 59 is not exactly the spectral spread as introduced in [AL12]. In particular,
noticing that all eigenvalues of the normalized Laplacian matrix are positive, and con-
sidering only the spread around eigenvalue 0 — by analogy with the symmetry of the
spectrum in classical signal processing — the authors simplify the definition as follows:

∆G,λ(x) =
∑
λ∈λ

λ|x̂[λ]|2

= x⊤Lx
. (59)

69 2.3. Graph signal processing

Using these definitions of spreads in the graph domain and in the spectral domain,
Agaskar and Lu then propose a characterization of the feasibility region:

Definition 60: Feasibility region

The feasibility region DG,v• of a graph G = 〈V, E〉 is defined as follows:

DG,v• = {(g, s) | ∆G,v•(x) = g ∧∆G,λ(x) = s} , (60)

for any unit-norm signal x on the graph.

This region characterizes the possible compromises between graph spread and spectral
spread. It has the following noticeable properties, for which proofs are given in [AL13]:

• DG,v• is a closed subset of [0, λN]×
[
0,max

v∈V
dgeo(v•, v)

]
;

• DG,v• intersects the vertical axis at a single point (1, 0);
• DG,v• intersects the horizontal axis at a single point

(
0,χ⊤

1 P
2
v•
χ1

)
;

• The points
(
1,max

v∈V
dgeo(v•, v)

)
and

(
λN ,χ

⊤
NP

2
v•
χN
)

belong to DG,v• ;

• If N ≥ 3, then DG,v• is a convex set.
To summarize this properties, Figure 23 depicts the feasibility region of a graph:

0 1 λN
0

χ⊤
1 P

2
v•
χ1

χ⊤
NP

2
v•
χN

max
v∈V

dgeo(v•, v)

DG,v•

Figure 23 – Example of a feasibility region of a graph G = 〈V, E〉, for a vertex v• ∈ V . In
this figure, eigenvectors and eigenvalues are those of the normalized Laplacian matrix.
Every point of the region in red corresponds to the spreads of a signal, and therefore
delimits DG,v• . The noticeable points of the domain are highlighted with blue dots.

Considering Figure 23, the points we are the most interested in are those that lie in the
lower left part of the convex set, as they correspond to signals that are Pareto optima in
terms of locality. This part of the curve is denoted uncertainty curve:

Definition 61: Uncertainty curve

The uncertainty curve γv•(s), of a graph G = 〈V, E〉, for a vertex v• ∈ V , is:

γv•(s) = min
x∈RN
‖x‖2=1

∆G,v•(x) s.t. ∆G,λ(x) = s . (61)

Chapter 2. Signal processing on graphs 70

Obviously, this curve depends on the graph topology, as well as on the vertex that is
chosen for reference. For example, Figure 24 depicts the uncertainty curve we obtain for
a complete graph, and for a star graph for which v• is chosen to be the most connected
vertex. In particular, it was shown by Rabbat and Gripon in [RG14] that this latter
graph is the one that minimizes the graph spread for s = 0:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

∆G,λ(x)

∆
G,
v
•
(x
)

Complete graph
Star graph

Figure 24 – Example of uncertainty curves for a complete graph, and for a star graph
for which v• is chosen to be the most connected vertex. Both graphs consist of N = 100
vertices. Interestingly, it is possible to show that the uncertainty curve of this latter
graph is the same for every N , contrary to most graphs.

Considering the particular cases of the complete graph and star graph with v• chosen
as the most connected vertex, Agaskar and Lu have shown in [AL13] that for such
configurations, signals x∗ reaching the uncertainty curve are of the following form:

x∗ =




x∗[1]
x∗[2]
. . .
x∗[2]


 . (62)

Since we are only considering unit-norm signals, such Pareto optima can be translated
to polar coordinates as follows:

x∗ =




cos(θ)
sin(θ)√
N − 1
. . .

sin(θ)√
N − 1



, (63)

for some parameter θ. As a consequence, by developing from the following equality:

cos2(θ) + sin2(θ) = 1 , (64)

we obtain that the uncertainty curve for the complete graph is part of an ellipse defined
as follows:

(2∆G,v•(x)− 1)2 + (N − 1)

(
∆G,λ(x) +

N − 2

N − 1
∆G,v•(x)− 1

)2

= 1 . (65)

71 2.3. Graph signal processing

Similarly, for the star graph with v• chosen as the most connected vertex, the uncer-
tainty curve is part of the following ellipse:

(∆G,λ(x)− 1)2 + (2∆G,v•(x)− 1)2 = 1 . (66)

For more complex graphs, Agaskar and Lu introduce an approximate algorithm, called
the sandwich algorithm. More information on this can be found in [AL13].

To conclude with this section, it is worth noting that in the general case, an uncertainty
principle is defined by some compromise between quantities defined in the graph do-
main, and in its spectrum. The uncertainty principle introduced by Agaskar and Lu is
inspired by Heisenberg’s results. Other definitions have been introduced, but are not
studied in this manuscript. The interested reader may consult [TBDL16] or [TV16] for
additional uncertainty principles.

Contribution: characterization of signals reaching the uncertainty curves

In the previous section, we introduced numerous definitions about the uncertainty
principle, based on the work by Agaskar and Lu in [AL12; AL13]. Now, we review
our contributions in relation with their work.

First, we have proposed in [Pas+16] a method to extend the class of graphs for which it
is possible to formally characterize the signals that reach the uncertainty curve, in the
manner of (65) or (66). To propose such a characterization, we extended the work of
Agaskar and Lu in [AL13], Appendix C. This latter work was originally made to show
the results in (62). In [Pas+16], we have shown the following result:

Proposition 1

Let us consider a graph G = 〈V, E〉, and a vertex v• ∈ V . Let Pv• be the diagonal
matrix of geodesic distances to vertex v•, and let L be the normalized Laplacian
matrix of the graph. Let M(s) = P2

v•
− sL be a matrix defined for a fixed s.

If M(s) is of the form:

M(s) =

(
M1 M2

M3 M4

)
, (67)

where:

• M1 is a C × C square matrix;

• M2 is a matrix that is constant by line, i.e., M2 = x1⊤C , for x ∈ RC , and for
1C a vector of C entries all equal to 1;

• M3 is any matrix;

• M4 is an (N − C)× (N − C) circulant matrix.

then any signal x∗ reaching the uncertainty curve is of the form:

x∗ =




x∗[1]
. . .

x∗[C]
x∗[C + 1]

. . .
x∗[C + 1]



. (68)

Chapter 2. Signal processing on graphs 72

For the need of the proof, we recall the following result from [AL13], Proposition 2:

[AL13], Proposition 2

Every signal x∗ reaching uncertainty curve is the eigenvector associated with the
lowest eigenvalue of a matrix M(s) = P2

v•
− sL.

Proof: Proposition 1

Since M4 is circulant, we have that 1N−C is an eigenvector for M4. By construc-
tion of M(s), M4 is symmetric, and can thus be diagonalized. Let

(
χ1, . . . ,χN−C−1

)

be the eigenvectors of M4 orthogonal to 1N−C , associated with the eigenvalues
(λ1, . . . , λN−C−1). By construction, we have ∀i ∈ J1, N − C − 1K : χ⊤

i 1N−C = 0.

For all i ∈ J1, N − C − 1K, we build a vector as follows:

χ+
i =

[
0C
χi

]
, (69)

for 0C a vector of C entries all equal to 0. Using the fact that M2 is constant by
line, we obtain that ∀i : M(s)χ+

i = λiχ
+
i . Therefore, every χ+

i is an eigenvector
of M(s). Using the methodology of [AL13], appendix C (Rayleigh inequality),
we obtain that the eigenvector associated with the smallest eigenvalue of M(s)
must be orthogonal to χ+

i for all i ∈ J1, N − C − 1K.

By noting that the C first entries of vectors χ+
i are null, and by application of

[AL13], Proposition 2, we obtain that every signal x∗ reaching the uncertainty
curve is of the form in (68).

It is interesting to remark that the application of Proposition 1 can be made recursively
on M1, allowing one to refine the characterization of the entries x∗[1] . . .x∗[C] of signals
that reach the uncertainty curve, and thus to reduce the search space of solutions.

To illustrate the characterization of signals x reaching the uncertainty curve, let us con-
sider a star graph, but this time with v• taken as one of the least connected vertices of the
graph. We obtain that M(s) can be decomposed in a way such that an (N −2)× (N −2)
circulant submatrix M4 appears. Using Proposition 1, we obtain that, for this graph
and this choice of v•, all signals x∗ are of the following form:

x∗ =




x∗[1]
x∗[2]
x∗[3]
. . .
x∗[3]



. (70)

In order to iterate over the solution signals x∗, we can consider the set of unit-norm
signals defined on an hypersphere of dimension equal to the number of distinct entries
in the characterization of x∗. In the considered example, we can thus reduce the set of

73 2.3. Graph signal processing

potential solutions to signals characterized by two parameters θ and φ as follows:

x∗ =




cos(θ)
sin(θ) cos(φ)
sin(θ) sin(φ)√

N − 2
. . .

sin(θ) sin(φ)√
N − 2




. (71)

Figure 25 represents the pairs (∆G,v•(x),∆G,λ(x)) for signals x obtained by iterating
over possible values of θ and φ in the interval [0, 2π], with a step of 0.05. We also depict
the uncertainty curves obtained using the sandwich algorithm, and observe that they
match the frontier of the set of explored signals:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

∆G,λ(x)

∆
G,
v
•
(x
)

Star graph, v• most connected
Star graph, v• most connected (sandwich)
Star graph, v• least connected
Star graph, v• least connected (sandwich)

Figure 25 – Sub-sampling of the space of potential solutions for a star graph, for differ-
ent choices of v•. The lower left frontier of the set of explored signals is the uncertainty
curve. Approximation through the sandwich algorithm matches the obtained results.

Since the signals verifying the uncertainty curve are part of an hypersphere, it is inter-
esting to notice that Figure 25 is a 3D plot, for which we have a 2D interpretation.

Contribution: extending the uncertainty principle to weighted graphs

The uncertainty principle introduced by Agaskar and Lu in [AL12] was defined for un-
weighted graphs only. In [Pas+15b], we have proposed an extension of their definition
to weighted graphs.

While it is possible to compute a graph spread in the manner of Definition 58, and a
spectral spread as in Definition 59, thus allowing the computation of an uncertainty

Chapter 2. Signal processing on graphs 74

curve as in Definition 61, we have shown that a simple application of theses definitions
leads to a discontinuity problem. To illustrate the problem, let us consider the weighted
graph G1 = 〈V1, E1, f1〉 in Figure 26:

1 2

3

1

ε

2 W =

1© 2© 3©
[]1© 0 ε 1

2© ε 0 2
3© 1 2 0

Figure 26 – Example of a weighted graph (left), and associated weights matrix (right).
In this graph, ε represents a very small weight.

Let us choose v• = 1©. We obtain the following matrix of geodesic distances to v•:

Pv• =



0 0 0
0 ε 0
0 0 1


 . (72)

Additionally, the normalized Laplacian matrix of this graph is given as follows:

L =




1 − ε√
(1+ε)(2+ε)

− 1√
(1+ε)3

− ε√
(2+ε)(1+ε)

1 − 2√
(2+ε)3

− 1√
3(1+ε)

− 2√
3(2+ε)

1


 . (73)

Let us consider a unit norm signal x such that every entry equals 1√
3
. Using Defini-

tion 58 and Definition 59, we compute the graph and spectral spreads of this signal on
the graph:

• ∆G,v•(x) = x⊤P2
v•
x = ε2+1

3 ;

• ∆G,λ(x) = x⊤Lx = 1
3

(
3− 2ε√

(1+ε)(2+ε)
− 2√

3(1+ε)
− 4√

3(2+ε)

)
.

It seems reasonable to expect that as ε tends to 0, both spreads tend to the limit case
where ε = 0. In particular, these quantities should be robust to measurement noise in
scenarios where the weights matrix is not known. Let us now compute these limits:

• ∆G,v•(x) =
ε2+1
3 −→

ε→0

1
3 ;

• ∆G,λ(x) = 1
3

(
3− 2ε√

(1+ε)(2+ε)
− 2√

3(1+ε)
− 4√

3(2+ε)

)
−→
ε→0

1
3

(
3− 2√

3
− 4√

6

)
.

Let us now consider the weighted graph G2 = 〈V2, E2, f2〉 associated with the limit
case, given in Figure 27:

1 2

3

1 2 W =

1© 2© 3©
[]1© 0 0 1

2© 0 0 2
3© 1 2 0

Figure 27 – Weighted graph (left) — and associated weights matrix (right) — corre-
sponding to the limit of G1 in Figure 26 as ε tends to 0.

75 2.3. Graph signal processing

Now, for v• = 1©, we obtain the following matrix of geodesic distances to v•:

Pv• =



0 0 0
0 3 0
0 0 1


 . (74)

Additionally, the normalized Laplacian matrix of this graph is given as follows:

L =




1 0 − 1√
3

0 1 − 2√
6

− 1√
3

− 2√
6

1


 . (75)

Considering the same signal x as before, and using Definition 58 and Definition 59, we
obtain the following spreads:

• ∆G,v•(x) = x⊤P2
v•
x = 10

3 ;

• ∆G,λ(x) = x⊤Lx = 1
3

(
3− 2√

3
− 4√

6

)
.

While the spectral spread obtained for G2 corresponds to the one computed for G1 as ε
tends to 0, we notice that it is not the case for the graph spread.

As a matter of fact, existence of an edge is represented in the weights matrix of a graph
with a non-null entry at the corresponding row and column. Contrary, absence of an
edge corresponds to the associated entry being zero. It follows that reducing the weight
of an edge to 0 can cause a discontinuity, as the shortest path from a vertex to v• may
then change.

To highlight the cause problem, let us consider the equation of smoothness in Defini-
tion 49. For S(x) to be low, vertices that are linked with an edge associated with a strong
weight must share similar signal entries. It follows that the weights matrix encodes in-
formation about similarity between vertices, rather than distance between them. Using
the geodesic distance in the computation of Definition 58 then makes a misuse of this
information if used on a weighted graph.

To correct this discontinuity problem, we introduced in [Pas+15b] an alternate defini-
tion for the graph spread. Let us consider a weighted graph G = 〈V, E , f〉, of weights
matrix W. We want a measure that respects the following properties:

1. ∆G,v•(x) should be small if x is localized around v•, and should increase as the
distance between v• and the vertices carrying x increases;

2. The only situation leading to ∆G,v•(x) = 0 should be when the signal has only
one non-null entry, located on v•;

3. The graph spread should be similar for graphs with similar weights, i.e., G 7→
∆G,v•(x) should be a continuous function.

Proposition 2

In order to be compliant with the above desirable properties, the acceptable func-
tions d are as follows:

1. ∀v1, v2 ∈ V : d(v1, v2) ≥ 0;

2. ∀v1, v2 ∈ V : d(v1, v2) = 0 ⇔ v1 = v2;

3. d is continuous, and if we increase f({v1, v2}) for a single edge {v1, v2} ∈ E ,
then, ∀v3, v4 ∈ V : f({v3, v4}) does not increase.

Chapter 2. Signal processing on graphs 76

It is interesting to remark that the squared geodesic distance used in Definition 58 does
not respect the third property in Proposition 2.

Numerous functions can be used to replace it. In particular, we propose to replace the
computation of squared geodesic distances on W, by computation of squared geodesic
distances on the inverse weights matrix, defined as follows:

Definition 62: Inverse weights matrix

The inverse weights matrix W of a weighted graph G = 〈V, E , f〉 of weights
matrix W is defined as follows:

∀v1, v2 ∈ V : W[v1, v2] =





∞ if W[v1, v2] = 0
0 if v1 = v2

1
W[v1, v2]

otherwise
. (76)

Using W, the inverse geodesic distance, noted dgeo, is the geodesic distance on a graph
of weights matrix W:

Proposition 3

The squared inverse geodesic distance d2geo is compliant with the properties in
Proposition 2.

Proof: Proposition 3

Let us consider the three properties in Proposition 3 in the same order:
1. Since we consider the squared inverse geodesic distance, this property is

trivially true;

2. Following Remark 4 that we consider in this manuscript graphs with pos-
itive weights, this second property is enforced by construction of W, since
no path between two distinct vertices can have length 0;

3. Let G = 〈V, E , f〉 be the weighted graph of weights matrix W. Let p1 ∈
P(G) be a path between two vertices of V , and let {v1, v2} ∈ E be an edge
along p1. If we increase f({v1, v2}), then by construction of W, we obtain
that f({v1, v2}) decreases, and that all other weights remain the same. Note
that this is also the case if increasing f({v1, v2}), leads to the creation of an
edge in the graph. As a consequence, if we increase a weight in W, then
∀v3, v4 ∈ V : d2geo(v3, v4) does not increase.

Additional functions such that the diffusion distance [SHR15], the resistance distance [KR93]
or the commute distance [AM12] can also be used, as well as replacing the inverse in Def-
inition 62 with any decreasing function. However, we will not enter into the details
of these alternate solutions. Experiments using the diffusion distance however can be
found in [Pas+15b].

77 2.4. Summary of the chapter

2.4 Summary of the chapter

In this chapter, we have introduced numerous definitions, that are necessary for a com-
plete understanding of our work. Still, additional related work will be provided in
the next chapters, to highlight contributions on more particular subdomains of graph
signal processing, namely graph inference, and translations on graphs.

The key points of this chapter are:

• The definitions of graphs, their matrix representations, and the notion of paths on
such structures. We remind that in the rest of this manuscript, we only consider
connected, positively weighted graphs with no edge duplicates;

• The matrices that can be computed from graphs, and their properties. In particu-
lar, graph shift operators such as the Laplacian matrix will be of interest all along
this document;

• The link between the graph domain, and the spectral domain associated with the
eigenvectors of one of its graph shift operators. This link is the cornerstone from
which graph signal processing has developed;

• The links between the graph and the signals that are defined on it. In particular,
notions such as diffusion, smoothness and stationarity of signals will be of broad
interest in the next chapter.

Chapter 2. Signal processing on graphs 78

79

Chapter 3

From signals to graphs

Contents
3.1 Problem formulation and related work 80

3.1.1 Problem formulation . 81
3.1.2 The covariance matrix and its estimates 82
3.1.3 Related work . 84

3.2 The simplified case of the monomial graph filter 87
3.2.1 Problem simplification . 87
3.2.2 Identifying the missing eigenvalues 88
3.2.3 A complete example . 90
3.2.4 Removing some constraints . 93

3.3 Graph inference from stationary signals 95
3.3.1 Characterization of the set of admissible solutions 95
3.3.2 Experiments on a dataset of temperatures in Brittany 100

3.4 Adaptation of other strategies to stationary signals 101
3.4.1 Introduction of the method . 101
3.4.2 Application to the method from Kalofolias 103
3.4.3 Additional experiments on the dataset of temperatures 105
3.4.4 Application of regularization to graph hypothesis testing 106

3.5 Summary of the chapter . 108

Chapter 3. From signals to graphs 80

As we have shown in the previous chapter, many tools from graph signal process-
ing exploit knowledge of the underlying graph structure. In particular, the graph
Fourier transform is a key tool to provide a spectral representation for signals defined
on graphs, which requires obtainment of the eigenvectors of a graph shift operator
(generally the Laplacian matrix or its normalized version).

In the case when no graph is available, graph signal processing tools cannot be used
anymore. As a matter of fact, this situation arises in many cases. While modeling time
with a ring graph, or images with a grid graph is intuitive due to the underlying metric
space, choosing a correct topology to model the domain on which brain signals evolve
is not trivial. Numerous other situations can be found in which vertices are known, but
not the edges linking them. Examples of such situations include seismic sensors ran-
domly placed on the ground, or weather stations making temperature measurements
at different locations of a country, and even more abstract domains such as social net-
works or word embeddings.

To circumvent this problem, researchers have proposed approaches to infer a graph
topology from observations of signals on its vertices. Since the problem is ill-posed,
these approaches make assumptions, such as smoothness of the signals on the graph,
or sparsity of the graph [LT10; Don+16; Kal16].

The contents of this chapter is mainly based on two contributions [Pas+15a; Pas+17a].
We focus here on graph inference from signals that are stationary, as introduced in
Section 2.3.2. To simplify exposition, we choose to focus on diffusion of white noise on
the graph using a graph filter, which is a particular case of stationary processes.

This chapter is organized as follows:

1. First, we present the problem we consider in details, and introduce related work
on graph inference from signals;

2. Second, we study the particular case where the graph filter used for diffusion is a
monomial (of known power) of a graph shift operator. We show that recovery of
the missing eigenvalues is possible with some assumptions;

3. Third, we consider the general case where the graph filter is completely unknown,
and can be any power of a graph shift operator. We propose a characterization of
the set of solutions, and illustrate selection of a solution based on a sparsity prior;

4. Finally, we propose a method to correct the solutions provided by existing graph
inference strategies, so that they can be used to infer graph from stationary sig-
nals. We illustrate how this method can be used to select a graph that is most
adapted to stationary signals, among a set of candidate graphs.

3.1 Problem formulation and related work

As introduced in the previous lines, inferring a graph from signals is a possible ap-
proach to obtain a graph, and thus enable use of the graph signal processing tools on
such signals. Let us consider the case of observed signals of N dimensions — i.e., vec-
tors x ∈ RN — corresponding to values observed on N elements of interest. From
these signals, we know that the corresponding graph has N vertices. Then, since edges
between these vertices are unknown, we have to choose an edge configuration among

the 2
N(N−1)

2 possible configurations, when restricting the search to simple, unweighted,
undirected graphs.

81 3.1. Problem formulation and related work

Since the number of potential solutions is huge, the problem is ill-posed. Therefore,
it is necessary to add some priors on the inferred graph or on the signals. Here is a
non-exhaustive list of such priors:

• Priors on the inferred graph: sparsity, simplicity, correspondence of the graph
with a partially known ground truth. . . ;

• Priors on the signals: smoothness on the graph, stationarity, assumption that the
signals were Dirac vectors before diffusion on the graph. . .

3.1.1 Problem formulation

In this work, we choose to study the case of stationary signals, as defined in Sec-
tion 2.3.2. Since stationarity of signals is invariant by application of a graph shift op-
erator, it is also invariant by application of a polynomial of this operator. Therefore,
diffusion of white noise through a graph filter is a particular case of stationary pro-
cesses. To simplify exposition, we focus on these settings. Still, note that all the results
introduced in this chapter apply to the more generic class of stationary processes.

In this chapter, we are interested in answering the following question:

Problem 2: Graph inference from stationary signals

Given a set of stationary signals observed after diffusion on a graph, how can one
characterize the graph shift operator used for the diffusion, hence the graph?

In more details, we choose to focus on graph shift operators such that edges are as-
sociated with a positive weight only (see Remark 4). A possible graph shift operator
corresponding to these settings is the diffusion matrix associated with the normalized
Laplacian, introduced in Definition 55. Again, note that this choice aims at simplify-
ing exposition, and that the results presented in this chapter apply for any graph shift
operator, possibly with some adaptations as explained later in this chapter.

More formally, we study the following settings:

• Let G = 〈V, E〉 be a graph of N vertices, and let T be the diffusion matrix associ-
ated with the normalized Laplacian of G;

• We are given a sequence of M signals (x1, . . . ,xM) in RN . Without loss of gener-
ality, we consider signals that are zero-mean and of unit norm;

• Let (H1, . . . ,HM) be a sequence of M graph filters, each a polynomial of T ;

• Let (y1, . . . ,yM) be M realizations of a zero-mean white noise process;

• We assume that the observed signals (x1, . . . ,xM) were observed after diffusion
of signals (y1, . . . ,yM) using these graph filters, i.e., we suppose the following:

∀i ∈ J1,MK : xi = Hiyi ; (77)

• Then, from the knowledge of (x1, . . . ,xM), and assuming that these signals are
issued from the diffusion of i.i.d. signals on a graph, can we find the graph shift
operator T used to diffuse the signals?

Chapter 3. From signals to graphs 82

3.1.2 The covariance matrix and its estimates

The covariance matrix

Before introducing the methods from the literature to infer a graph from signals, we
first need to introduce a particular matrix, called the covariance matrix, as numerous
graph inference techniques make use of it:

Definition 63: Covariance matrix

Let X be a vector of N random variables. The covariance matrix of these vari-
ables, noted Σ, measures the pairwise covariances between these random vari-
ables, as follows:

Σ = E
[
(X− E [X])(X− E [X])⊤

]
. (78)

The covariance matrix is symmetric. When considering zero-mean signals — which is
the case of diffused zero-mean white noise, since the mean is invariant by application
of the graph filter — the equality in Definition 63 simplifies to:

Σ = E
[
XX⊤

]
. (79)

It is interesting to note that the covariance matrix of i.i.d. white noise is the identity
matrix. Using the settings introduced in Section 3.1.1, we make this development:

Σ = E
[
XX⊤]

= (E [H] E [Y])(E [H] E [Y])⊤ // Using the fact that ∀i ∈ J1,MK : xi = Hiyi

= E [H] E [Y] E
[
Y⊤] E

[
H⊤]

= E [H] E
[
YY⊤] E

[
H⊤]

= E [H] IN E
[
H⊤] // Using the fact that E

[
YY⊤] = IN

= E
[
H2
]

// Using the symmetry of H
(80)

This development tells us that there is a strong link between the graph filters used for
diffusion, and the covariance matrix. More precisely, we have the following result:

Proposition 4

The eigenvectors of the covariance matrix are exactly the eigenvectors of the
graph shift operator used for diffusion.

Proof: Proposition 2

All graph filters are polynomials of the same variable, which is the graph shift
operator used for diffusion. Therefore, any graph filter has the same eigenvectors
as this graph shift operator (see Section 2.1.3).

Since Σ = E
[
H2
]
, we conclude that the covariance matrix has the same eigen-

vectors as the graph shift operator used for diffusion.

83 3.1. Problem formulation and related work

This result is very strong, as it reduces the candidate graphs to represent stationary sig-
nals from O(N2) variables (the whole matrix) to N variables (the missing eigenvalues).
In the rest of this chapter, we will make extensive use of this result. This means that
obtainment of the covariance matrix is a cornerstone of our approach.

The sample covariance matrix

Since the covariance matrix is not obtainable in practical cases, a common approach
involves estimating Σ using the sample covariance matrix Σ̃:

Definition 64: Sample covariance matrix

Let {x1, . . . ,xM} be a set of M signals in RN , given in matrix form such that
every signal is a column of an N ×M matrix X. The sample covariance matrix

of these signals, noted Σ̃, approximates the covariance matrix as follows:

Σ̃ =
1

M − 1
(X−M)(X−M)⊤ , (81)

where M is an N ×M matrix with each row containing the mean signal value
for the associated vertex:

∀i ∈ J1, NK, ∀j ∈ J1,MK : M[i, j] =
1

M

M∑

k=1

X[i, k] . (82)

Again, considering signals obtained by diffusion of zero-mean white noise, we simplify
this expression as follows:

Σ̃ =
1

M − 1
XX⊤ . (83)

Finally, remember from Section 2.1.3 that 1
M−1 distributes on the eigenvalues of XX⊤.

Therefore, we can drop the constant when interested in the eigenvectors of the sample
covariance only.

Again, we could develop the expression of Σ̃ as in (80) to show that as M grows to
infinity, the sample covariance tends to a function of the graph filters used for diffusion
[Pas+17a]. However, we are more interested in the link between the eigenvectors of
the sample covariance matrix, and those of the graph shift operator. In more details,
we study the convergence of the eigenvectors of the sample covariance matrix X̃Σ =
(χ̃1, . . . , χ̃N) to the eigenvectors of the covariance matrix XΣ = (χ1, . . . ,χN), as M
grows to infinity.

Asymptotic results on this convergence are provided by Anderson [And63], which ex-
tends earlier related results by Girshick [Gir39] and Lawley [Law56]. Let ei = XΣ

⊤χ̃i
be the vector of cosine similarities between χ̃i and all eigenvectors of the covariance
matrix. Anderson [And63] states that, as the number of observations tends to infinity,
entries in ei have a Gaussian distribution with a known variance. In particular, when
all eigenvalues are distinct, the inner product between χi (for all i) and χ̃j (for all j) is
asymptotically Gaussian with zero mean and variance:

λiλ̃j

(λi − λ̃j)2
, λi 6= λj , (84)

Chapter 3. From signals to graphs 84

where λi is the eigenvalue associated with χi, and λ̃j is the eigenvalue associated with
χ̃j . Therefore, the variance depends on the squared difference between λi and λ̃j . Ad-

ditionally, Anderson [And63] shows that the maximum likelihood estimate λ̃∗i of λi (for
all i) is:

λ̃∗i =
M − 1

M

1

#(λi)

i+#(λi)∑

j=i

λ̃j , (85)

where #(λi) is the multiplicity of eigenvalue λi. In the simple case when all eigenvalues
are distinct, (85) simplifies to:

λ̃∗i =
M − 1

M
λ̃i . (86)

Additionally, Anderson [And63] provides a similar result for the more general case
when eigenvalues may be repeated. The eigenvalues of the sample covariance matrix
thus converge to the eigenvalues of the covariance matrix asM increases. AsM tends to
infinity, (84) tells us that ei thus tends to the ith canonical vector, indicating collinearity
between χ̃i and χi.

Other covariance estimators

The sample covariance matrix is not the only estimator of the covariance matrix.

Among other estimators, some methods for retrieving a sparse covariance matrix based
on properties of its spectral norm are described in [CL11] and [CZ12]. However, these
works do not provide any information on the convergence rate of the eigenvectors of
their solutions to the eigenvectors of the covariance matrix.

Similarly, [WP09] and [XW+12] retrieve covariance matrices that converge in operator
norm or in distribution. An intensive study of covariance estimation methods could be
interesting to find techniques that improve the convergence of eigenvectors.

This paper focuses on the use of the sample covariance matrix.

3.1.3 Related work

Numerous solutions to infer a graph from signals have been proposed in the literature.
In this section, we review the methods that can possibly have a connection with our
stationarity assumption.

Additional approaches exist but consider different signal models such as time series
[MM15; SBG17], band-limited signals [SBDL16], combinations of localized functions
[Tha+16; PMTF17], or more recently opinions of agents in a network [SSJ17].

The graphical lasso

A widely-used approach to provide a graph is the graphical lasso [FHT08], which recov-
ers a sparse precision matrix — i.e., inverse covariance matrix — under the assumption
that the data are observations from a multivariate Gaussian distribution. The core of
this method consists in solving the following problem:

Θ∗ = argmin
Θ≥0

(
Tr(Σ̃Θ)− log det(Θ) + α‖Θ‖1,1

)
, (87)

85 3.1. Problem formulation and related work

where α is a regularization parameter controlling sparsity of the solution.

Numerous variations of this technique have been developed [Rot+08; WFS11; MH12;
TWS15], and several applications have been using graphical lasso-based methods for
inferring a sparse graph. Examples can be found for instance in the fields of neuroimag-
ing [Hua+09; Yan+15] or traffic modeling [SHG12].

What makes this method interesting, in addition to its fast convergence to a sparse so-
lution, is a previous result from Dempster [Dem72]. In the covariance selection model,
Dempster proposes that the inverse covariance matrix should have numerous null off-
diagonal entries. An additional result from Wermuth [Wer76] states that the non-null
entries in the precision matrix correspond to existing edges in a graph that is represen-
tative of the studied data.

Therefore, in the experiments we perform later in this chapter, we evaluate whether
considering the result of the graphical lasso as a graph makes it admissible or not to
model a diffusion process. However, when considering (87), we can see that the method
does not impose any similarity between the eigenvectors of the covariance matrix and
those of the inferred solution. For this reason, we do not expect this method to provide
a solution that is admissible in our settings.

Close to the graphical lasso, [PO16] and [EPO16] propose an algorithm to infer a pre-
cision matrix by adding generalized Laplacian constraints. While this allows for good
recovery of the precision matrix, it proceeds in an iterative way by following a block
descent algorithm that updates one row/column per iteration. As for the graphical
lasso, it does not force the eigenvectors of the retrieved matrix to match those of the
covariance matrix, and therefore does not match our stationarity assumption.

Interestingly, these methods could also be mentioned in the next section, dedicated
to smoothness-based methods. In particular, [PO16] has pointed out that minimizing
the quantity Tr(Σ̃Θ) promotes smoothness of the solution when Θ is a graph Lapla-
cian. Additionally, [Rab17] promotes sparsity of the inferred graph by applying a soft
threshold to the precision matrix, and shows that the solution matches a smoothness
assumption on signals.

Smoothness-based methods

Another approach to infer a graph is to assume that the signal entries should be similar
when the vertices on which they are defined are linked with a strong weight in W, thus
enforcing signals on this graph to be low-frequency (smooth). From Section 2.3.2, we
know that for a signal x, the smaller S(x), the more regular the entries of x on the graph.

A first work taking this approach has been proposed by Lake and Tenenbaum [LT10],
in which they solve a convex optimization problem to recover a sparse graph from
data to learn the structure best representing some concepts. More recently, Dong et al.
[Don+16] have proposed a similar method that outperforms it.

In order to find a graph Laplacian that minimizes S in Definition 49 for a set of signals,
the authors propose an iterative algorithm that converges to a local solution, based on

Chapter 3. From signals to graphs 86

the resolution of the following problem:

L∗ = argmin
L,Y

‖X−Y‖2F + αTr(Y⊤LY) + β‖L‖2F

s.t.





Tr(L) = N
∀i, j ∈ J1, NK, i 6= j : L[i, j] = L[j, i] ≤ 0

∀i ∈ J1, NK :
N∑
j=1

L[i, j] = 0
,

(88)

where Y is a matrix in RN×M that can be considered as a noiseless version of signals
X, and α and β are regularization parameters controlling respectively the distance be-
tween X and Y, and the sparsity of the solution.

Kalofolias [Kal16] proposes a unifying framework to improve the previous solutions of
Lake and Tenenbaum, and Dong et al., by proposing a better prior and reformulating
the problem to optimize over entries of the (weighted) adjacency matrix rather than the
Laplacian. An efficient implementation of his work is provided in the Graph Signal
Processing Toolbox [Per+14]. His approach consists in rewriting the problem as an L1,1

minimization, that leads to naturally sparse solutions. Moreover, the author has shown
that the method from Dong et al. could be encoded in his framework.

Graph inference with smoothness priors continues to receive a lot of interest. Recently,
Chepuri et al. [Che+17] have proposed to infer a sparse graph on which signals are
smooth, using an edge selection strategy.

Finally, enforcing the smoothness property for signals defined on a graph has also been
considered by Shivaswamy and Jebara [SJ10], where a method is proposed to jointly
learn the kernel of an SVM classifier and optimize the spectrum of the Laplacian to
improve this classification. Contrary to our approach, Shivaswamy and Jebara [SJ10]
study a semi-supervised case, in which the spectrum of the Laplacian is learned based
on a set of labeled examples.

Diffusion-based methods

As indicated in the introduction of this chapter, it contents is mainly based on two
contributions. In [Pas+15a], we study the case of graph inference from signals diffused
on a graph, under a simplified diffusion model. Then, [Pas+17a] generalizes this first
work, by removing some of its assumptions, and rephrasing it in the more general
context of stationary signals. As these contributions will be extensively described in
the next sections, they are not summarized here.

Independently from the two pieces of work introduced above, the group of Segarra
et al. obtained similar results as ours, by taking the same direction [Seg+16; Seg+17a;
Seg+17b]. The authors propose a two-step approach, where they first retrieve the eigen-
vectors of a graph shift operator, and then infer the missing eigenvalues based on some
criteria. They also study the case of stationary graph processes, for which the covari-
ance matrix shares the same eigenbasis as the graph shift operator used for diffusion,
and use this information to infer a graph based on additional criteria.

However, while the characterization of the set of solutions is identical to ours, our
works differ in the matrix selection strategy. The authors of [Seg+17a] solve a slightly
different problem, where they minimize the L1,1 norm of the inferred matrix under
more constraints than ours, which describe a valid Laplacian matrix. In particular, they

87 3.2. The simplified case of the monomial graph filter

enforce the diagonal elements of the solution to be null, thus considering graphs that do
not admit self-loops. In more details, they solve the following optimization problem:

S∗ = argmin
S,λ1,...,λN

‖S‖0,1

s.t.





S =
N∑
i=1

λiχiχ
⊤
i

S ∈ S

, (89)

where S is the set of admissible solutions, delimited by some constraints, and (χ1, . . . ,χN)
are the eigenvectors of the covariance matrix.

Contrary to their approach, we aim at inferring a matrix that can be simple or sparse,
rather than selecting a sparse matrix from the restricted set of simple matrices. Among
other differences, we propose in [Pas+17a] a method to approximate the solution of
any graph inference strategy to make it match our stationary assumption on signals.
Our work also explores how the set of solutions can be used to evaluate which graph,
among a set of given graphs, is the most adapted to given signals.

Other related work

Shahrampour and Preciado [SP13; SP15] study the context of network inference from
stimulation of its vertices with noise. However, their method implies a series of node
knockout operations that need to individually intervene on the vertices.

Also, we note that there exist methods that aim to recover a graph from the knowledge
of its spectrum [IM02]. However, we do not assume that such information is available.

Finally, a recent work by Shafipour et al. [Sha+17] has started to explore the problem
of graph inference from non-stationary graph signals, which is a direct continuation of
the work presented in this chapter and of the work by Segarra et al..

3.2 The simplified case of the monomial graph filter

3.2.1 Problem simplification

In this chapter, we present the main results from [Pas+15a]. In this first work, we con-
sider a simplified case of graph filters, namely monomials of the graph shift operator.
Additionally, we consider here a single filter for all signals.

In more details, we adapt the problem formulation in Section 3.1.1 as follows:

• Let G = 〈V, E〉 be a graph of N vertices, and let T be the diffusion matrix associ-
ated with the normalized Laplacian of G;

• We are given a sequence of M signals (x1, . . . ,xM) in RN . Without loss of gener-
ality, we consider signals that are zero-mean and of unit norm;

• Let H = T
K be a monomial graph filter of variable T , with K ∈ R known;

• Let (y1, . . . ,yM) be M realizations of a zero-mean white noise process;

• We assume that the observed signals (x1, . . . ,xM) were observed after diffusion
of signals (y1, . . . ,yM) using this graph filter, i.e., we suppose the following:

∀i ∈ J1,MK : xi = Hyi ; (90)

Chapter 3. From signals to graphs 88

• Then, from the knowledge of (x1, . . . ,xM) andK, and assuming that these signals
are issued from the diffusion of i.i.d. signals on a graph, can we find the graph
shift operator T used to diffuse the signals?

Using these simplified settings, the development in (80) gives us that:

Σ = E
[
H2
]

= T
2K

. (91)

Using Proposition 4, we know that the eigenvectors of the covariance matrix are the
eigenvectors of the graph shift operator we want to find. Additionally, since power
distributes on the eigenvalues of a matrix, we obtain that:

Σ = XT diag(λT)2K XT
⊤ , (92)

where XT and λT are the eigenvectors and eigenvalues of T , respectively.

3.2.2 Identifying the missing eigenvalues

From the eigenvectors of the covariance matrix

Using the simplification in (92), the problem of retrieving T from the signals falls down
to identifying its eigenvalues.

A possible idea to do so consists in taking the 2K-square root of the eigenvalues of the
covariance matrix. However, since 2K is an even power, we would be missing the sign
of the eigenvalues of T by doing so.

In [Pas+15a], we propose to take this direction, and to find the missing signs. Let λ 2K√
Σ

be a vector of N entries such that:

∀i ∈ J1, NK : λ 2K√
Σ
[i] =

∣∣∣ 2K
√

λΣ[i]
∣∣∣ , (93)

where λΣ are the eigenvalues of the covariance matrix. Additionally, let s be a vector
of signs, i.e., such that its entries are in {−1, 1}.

We can thus characterize the graph shift operator used to diffuse the signals as follows:

T = XΣ diag
(
s⊙ λ 2K√

Σ

)
XΣ

⊤ . (94)

Also, individual entries of T can be written as linear combinations of N variables, cor-
responding to the missing signs:

∀i, j ∈ J1, NK : T [i, j] =
N∑

k=1

XΣ[i, k] XΣ[k, j] λ 2K√
Σ
[k] s[k] . (95)

Even in this simplified framework, there are 2N solutions corresponding to the possible
signs of the eigenvalues. Therefore, we need to make assumptions on the graph shift
operator we want to find.

Let us assume that the given signals X are obtained after diffusion on a positively
weighted graph (see Remark 4). Additionally, let us assume that the graph is sim-
ple. Under these settings, we know that the weights of the graph shift operator used to

89 3.2. The simplified case of the monomial graph filter

diffuse the signals are positive. Also, the simplicity assumption gives us that entries on
the diagonal of the graph shift operator are null.

Using (95), these properties can be translated into a set S of constraints as follows:

• Positivity of the off-diagonal entries yields the following N(N+1)
2 constraints:

∀i, j ∈ J1, NK, i ≥ j :

(
N∑

k=1

XΣ[i, k] XΣ[k, j] λ 2K√
Σ
[k] s[k] > 0

)
∈ S ; (96)

• Simplicity of the matrix yields the following N constraints:

∀i ∈ J1, NK :

(
N∑

k=1

XΣ[i, k] XΣ[k, j] λ 2K√
Σ
[k] s[k] = 0

)
∈ S . (97)

Note that off-diagonal constraints are only necessary for the triangular upper part of
the matrix, as symmetry is enforced by (94).

Then, we propose to solve S using a linear equations solver. Examples of such tools in-
clude MATLAB [MAT12] framework CVX [GBY08], used alongside with SDPT3 [TTT99]
or Gurobi [GO15] solvers. However, such solvers generally consider real variables,
which is not our case as signs take their values in {−1, 1}.

To cope with this problem, we relax our settings by performing a change of variable as
if λ 2K√

Σ
were not known. In details, let λ ∈ RN be a vector of variables. We update (96)

and (97) by replacing λ 2K√
Σ
[k] s[k] with λ[k].

By doing this modification, the trivial solution λ = 0N satisfies the new set of con-
straints. Therefore, noticing that the eigenvalue associated with the constant-sign eigen-
vector of T is equal to 1 (see Section 2.3.2), we impose a scale to the solution with the
following constraint:

(λ[1] = 1) ∈ S , (98)

if χ1 is the constant-sign eigenvector of T .

Our problem can then be written as follows:

λ∗ = solve
λ

S , (99)

where S follows from (96), (97) and (98).

As a matter of fact, due to the important number of constraints, and especially the
equality constraints for the diagonal entries, the solution of S appears to be unique in
most situations. Therefore, in most cases, solving S allows for perfect retrieval of λT ,
the eigenvalues of the graph shift operator. Still, note that the unique solution of S
is λT only in the case when the eigenvectors used in the constraints are those of the
covariance matrix.

The constraints defined above encode properties of the graph shift operator we want
to retrieve, namely a positively weighted simple matrix. When considering different
assumptions on the signals, such as diffusion using a graph Laplacian for instance,
these constraints need to be adapted accordingly.

Chapter 3. From signals to graphs 90

From the eigenvectors of the sample covariance matrix

In practical cases, the eigenvectors of the sample covariance are used instead of those
of the covariance matrix, which requires a slight adaptation of the set of constraints.
As the eigenvectors of the sample covariance matrix are not exactly those of the covari-
ance matrix, the equality constraints (97) along the diagonal are nearly impossible to
match. Therefore, when considering the sample covariance matrix, we consider a set of
constraints S in (99) that contains (96) and (98) only, in which X̃Σ replace XΣ.

Still, to keep the simplicity assumption, we use the property that the trace of a matrix is
equal to the sum of its eigenvalues (see Section 2.1.3). Since the positivity constraints in
(96) enforce the diagonal entries to be non-negative, this sum cannot be negative. Our
problem thus becomes an optimization problem, stated as follows:

λ∗ = argmin
λ∈RN

N∑

i=1

λ[i] s.t. λ verifies S , (100)

Equation (100) is a linear program for which it is known that polynomial-time algo-
rithms exist. The main bottleneck of this method is the definition of the N(N+1)

2 linear
constraints in (96), that are computed in O(N3) time and space.

Under these settings, the solution found by the solver is not exactly λT , but a defor-
mation of it due to imprecisions in the eigenvectors of the sample covariance matrix.
However, if these imprecisions are small — i.e., if the number of signals from which the
sample covariance matrix is computed is high enough — then the eigenvectors of the
sample covariance matrix are close to those of the covariance matrix (see Section 3.1.2
for details). As a consequence, the retrieved eigenvalues are also close to λT , and are
probably of the same sign.

Therefore, one possible method to improve the result of the solver is to keep only the

signs of λ∗, and to inject them in λ̃ 2K√
Σ

, the 2K-square roots of the eigenvalues of the
sample covariance matrix. Reconstruction of the graph shift operator is thus performed
as follows:

T
∗ = X̃Σ diag

(
sign(λ∗)⊙ λ̃ 2K√

Σ

)
X̃Σ

⊤
, (101)

where sign(·) is a function that returns the sign of the given scalar:

sign :





R → {−1, 1}
x 7→

{
−1 if x < 0
1 otherwise

. (102)

Note that when the equality constraints (97) along the diagonal entries are removed
due to the use of the eigenvectors of the sample covariance matrix, the space solutions
to inequalities S is very unlikely to be a singleton. As a matter of fact, intersection of
multiple inequality constraints is most probably a subspace of RN rather than a single
point in RN . This particular subspace will be studied in more details when considering
the more general case of graph inference from stationary signals in Section 3.3.

3.2.3 A complete example

To illustrate the method introduced in this section, let us consider a ground truth graph
that we want to infer from signals diffused on it. Figure 30 depicts the random geomet-
ric graph we work with:

91 3.2. The simplified case of the monomial graph filter

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

W =

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15©





1© 0 0 0.58 0 0.689 0 0 0 0.726 0 0 0 0 0 0.678
2© 0 0 0 0.805 0.636 0.711 0 0.803 0.696 0.515 0.765 0.569 0 0.961 0
3© 0.58 0 0 0 0 0 0.498 0 0.536 0 0 0 0 0 0.938
4© 0 0.805 0 0 0 0 0.668 0.87 0.607 0.819 0.734 0.818 0.753 0.925 0.453
5© 0.689 0.636 0 0 0 0 0 0 0.866 0 0 0 0 0.512 0.459
6© 0 0.711 0 0 0 0 0 0.513 0 0 0.606 0 0 0.583 0
7© 0 0 0.498 0.668 0 0 0 0 0 0.594 0 0.507 0.87 0.44 0.561
8© 0 0.803 0 0.87 0 0.513 0 0 0 0.844 0.964 0.906 0.59 0.904 0
9© 0.726 0.696 0.536 0.607 0.866 0 0 0 0 0 0 0 0 0.649 0.745
10© 0 0.515 0 0.819 0 0 0.594 0.844 0 0 0.734 0.985 0.86 0.681 0
11© 0 0.765 0 0.734 0 0.606 0 0.964 0 0.734 0 0.825 0.443 0.832 0
12© 0 0.569 0 0.818 0 0 0.507 0.906 0 0.985 0.825 0 0.773 0.726 0
13© 0 0 0 0.753 0 0 0.87 0.59 0 0.86 0.443 0.773 0 0.525 0
14© 0 0.961 0 0.925 0.512 0.583 0.44 0.904 0.649 0.681 0.832 0.726 0.525 0 0
15© 0.678 0 0.938 0.453 0.459 0 0.561 0 0.745 0 0 0 0 0 0

Figure 28 – Random geometric graph of N = 15 vertices (top) serving as a continu-
ing example in this section. Weights on the edges (bottom) are set using a decreasing
function of the distance, as in (22), for θ = 0.4, rounded at 10−3.

From the adjacency matrix of this graph, we compute T , the diffusion matrix associated
with the normalized graph Laplacian. The eigenvectors and eigenvalues of this graph
shift operator are given as follows:

XT =




0.189 0.439 −0.371 0.061 0.064 0.411 −0.484 −0.023 −0.027 0.048 −0.061 0.143 −0.037 −0.221 0.379
0.294 −0.08 −0.243 0.39 −0.247 0.331 0.166 0.177 −0.187 −0.036 −0.27 −0.537 −0.016 0.158 −0.208
0.185 0.39 0.546 −0.229 −0.081 0.307 0.126 0.282 0.117 −0.14 0.129 −0.126 0.442 0.054 0.055
0.316 −0.102 0.241 −0.129 −0.021 0.153 −0.353 −0.192 −0.072 0.165 −0.142 0.275 −0.159 0.663 −0.189
0.206 0.297 0.493 0.299 0.051 −0.046 0.198 −0.396 −0.146 0.079 −0.109 −0.04 −0.442 −0.317 0.006
0.18 −0.133 0.184 0.366 0.062 −0.337 −0.475 0.031 −0.106 0.035 −0.162 0.035 0.522 −0.275 −0.225
0.236 0.027 −0.195 −0.478 0.546 0.114 0.079 −0.214 −0.113 0.028 −0.042 −0.192 0.087 −0.217 −0.455
0.293 −0.23 −0.052 0.102 0.243 0.017 0.281 −0.141 −0.147 −0.63 −0.175 0.303 0.163 0.089 0.338
0.254 0.352 −0.116 0.19 0.39 −0.393 0.078 0.553 0.114 −0.004 0.068 0.098 −0.243 0.217 −0.1
0.285 −0.203 0.062 −0.206 −0.032 −0.179 −0.162 −0.033 0.679 −0.073 −0.316 −0.336 −0.163 −0.093 0.239
0.281 −0.222 −0.055 0.148 0.162 0.086 0.354 −0.044 0.13 0.693 0.125 0.119 0.266 0.008 0.295
0.286 −0.208 0.066 −0.164 −0.015 −0.204 −0.224 0.048 −0.425 −0.037 0.547 −0.375 −0.138 0.013 0.327
0.254 −0.17 0.021 −0.355 −0.365 −0.024 0.105 0.425 −0.258 0.113 −0.272 0.358 −0.179 −0.372 −0.052
0.322 −0.117 −0.114 0.177 −0.242 0.165 0.003 −0.096 0.371 −0.207 0.567 0.249 −0.088 −0.184 −0.371
0.227 0.422 −0.303 −0.172 −0.44 −0.46 0.169 −0.357 −0.046 0.026 −0.034 −0.003 0.246 0.153 0




λT
⊤ =

[
1 0.723 −0.405 0.359 −0.315 −0.291 −0.261 −0.215 −0.169 −0.158 −0.154 −0.129 0.094 −0.06 −0.018

]

Figure 29 – Eigenvectors (top) and associated eigenvalues (bottom) of the matrix T

obtained from the graph in Figure 30, rounded at 10−3. Eigenvectors are sorted by
decreasing modulus of the corresponding eigenvalues.

Using the knowledge that X are also the eigenvectors of the covariance matrix of sig-
nals diffused on the graph using the graph shift operator T , we create the set of con-

Chapter 3. From signals to graphs 92

straints S as explained in Section 3.2.2. Solving this system of constraints gives us the
following vector of eigenvalues:

λ∗⊤ =
[
1 0.723 −0.405 0.359 −0.315 −0.291 −0.261 −0.215 −0.169 −0.158 −0.154 −0.129 0.094 −0.06 −0.018

]
,

(103)
which is exactly the vector of eigenvalues of T in Figure 30.

Now, let us consider the practical case of the sample covariance matrix. We create an
N × M (M = 500) matrix Y of i.i.d. signals such that every signal entry follows a
N (0, 1) distribution,. Then, we diffuse each signal K = 4 times to obtain a matrix of
diffused signals, i.e.:

X = T
4Y . (104)

Figure 30 depicts the eigenvectors and eigenvalues of the sample covariance matrix
obtained from a realization of X:

X̃Σ =




0.187 0.441 0.358 −0.062 −0.093 0.398 −0.5 −0.019 0.042 −0.064 0.05 0.139 −0.037 −0.221 0.379
0.295 −0.076 0.243 −0.383 0.261 0.34 0.143 0.174 0.153 0.004 0.275 −0.547 −0.026 0.157 −0.208
0.183 0.389 −0.541 0.243 0.101 0.304 0.118 0.281 −0.146 0.156 −0.097 −0.124 0.438 0.048 0.055
0.317 −0.102 −0.248 0.127 −0.001 0.132 −0.362 −0.184 0.107 −0.197 0.1 0.264 −0.141 0.666 −0.189
0.204 0.299 −0.496 −0.288 −0.038 −0.038 0.208 −0.393 0.163 −0.081 0.096 −0.04 −0.446 −0.311 0.006
0.181 −0.13 −0.192 −0.381 −0.102 −0.346 −0.444 0.048 0.104 −0.066 0.148 0.015 0.52 −0.282 −0.225
0.235 0.026 0.195 0.484 −0.537 0.116 0.096 −0.213 0.114 −0.01 0.038 −0.198 0.08 −0.219 −0.455
0.294 −0.227 0.054 −0.096 −0.218 0.034 0.297 −0.144 0.055 0.554 0.358 0.318 0.177 0.087 0.338
0.252 0.355 0.122 −0.194 −0.39 −0.372 0.132 0.549 −0.124 0.002 −0.069 0.112 −0.239 0.221 −0.1
0.286 −0.203 −0.06 0.196 0.016 −0.188 −0.166 −0.048 −0.701 −0.096 0.266 −0.321 −0.172 −0.09 0.239
0.282 −0.22 0.058 −0.14 −0.141 0.107 0.36 −0.057 −0.017 −0.645 −0.322 0.087 0.264 0.005 0.295
0.288 −0.208 −0.067 0.156 −0.002 −0.218 −0.213 0.072 0.422 0.267 −0.486 −0.363 −0.149 0.014 0.327
0.256 −0.17 −0.01 0.353 0.374 −0.034 0.083 0.427 0.258 −0.173 0.257 0.346 −0.174 −0.369 −0.052
0.323 −0.114 0.112 −0.177 0.244 0.168 −0.021 −0.107 −0.366 0.296 −0.509 0.282 −0.089 −0.183 −0.371
0.225 0.423 0.309 0.163 0.44 −0.466 0.14 −0.359 0.054 −0.029 0.024 −0.014 0.249 0.15 0




λ̃Σ

⊤
=
[

1 0.616 −0.336 0.281 −0.261 −0.278 −0.21 −0.183 −0.155 −0.151 −0.146 −0.112 0.076 −0.08 −0.045
]

λ̃ 2K√
Σ

⊤
=
[

1 0.713 0.4 0.349 0.312 0.288 0.256 0.209 0.165 0.156 0.152 0.128 0.092 0.059 0.018
]

Figure 30 – Eigenvectors (top) and associated eigenvalues (middle) of the sample co-
variance matrix Σ̃ obtained from the signals X (104), rounded at 10−3. Eigenvalues of
λ̃Σ are normalized so that the highest eigenvalue has amplitude 1. The 2K-square root
of these eigenvalues are also given (bottom).

Then, we consider the set of constraints S that contains (96) and (98) only, and solve
(100) using the sample covariance matrix:

λ∗⊤ =
[
1 0.616 −0.336 0.281 −0.261 −0.278 −0.21 −0.183 −0.155 −0.151 −0.146 −0.112 0.076 −0.08 −0.045

]
.

(105)

Finally, to provide a better approximate of the eigenvalues of the graph shift operator,

we keep only the signs of λ∗, and inject them into λ̃ 2K√
Σ

:

(
sign(λ∗)⊙ λ̃ 2K√

Σ

)⊤
=
[
1 0.713 −0.4 0.349 −0.312 −0.288 −0.256 −0.209 −0.165 −0.156 −0.152 −0.128 0.092 −0.059 −0.018

] .
(106)

To check whether use of the 2K-square roots improves the result, we compute the ℓ2
norm of the difference with the ground truth eigenvalues:

• ‖λT − λ∗‖2 = 0.1762;

•
∥∥∥λT − sign(λ∗)⊙ λ̃ 2K√

Σ

∥∥∥
2
= 0.0183.

93 3.2. The simplified case of the monomial graph filter

Finally, we retrieve T
∗, our estimate for T , using (94) with the eigenvectors of the

sample covariance matrix:

T
∗ =

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15©





1© 0.002 0.002 0.217 0 0.233 0.002 −0.001 0 0.2 0 0 0.001 0 0.002 0.211
2© 0.002 −0.003 −0.002 0.118 0.137 0.179 0.003 0.121 0.125 0.086 0.119 0.094 0.003 0.133 0.004
3© 0.217 −0.002 0.002 0.003 −0.001 −0.004 0.154 0.002 0.151 0.001 0.001 −0.001 0.005 −0.001 0.295
4© 0 0.118 0.003 0 −0.001 0.002 0.119 0.127 0.099 0.121 0.112 0.121 0.125 0.122 0.085
5© 0.233 0.137 −0.001 −0.001 −0.003 0 0.004 −0.002 0.219 0.004 −0.002 0.004 0.003 0.101 0.134
6© 0.002 0.179 −0.004 0.002 0 0.005 −0.006 0.13 0.003 0 0.157 0 0.001 0.136 0.003
7© −0.001 0.003 0.154 0.119 0.004 −0.006 0.003 0.004 −0.002 0.115 0.003 0.099 0.194 0.078 0.136
8© 0 0.121 0.002 0.127 −0.002 0.13 0.004 0.003 0 0.135 0.155 0.145 0.107 0.126 0.003
9© 0.2 0.125 0.151 0.099 0.219 0.003 −0.002 0 0.003 0.002 0.001 0 0 0.106 0.172

10© 0 0.086 0.001 0.121 0.004 0 0.115 0.135 0.002 0 0.125 0.16 0.158 0.102 −0.002
11© 0 0.119 0.001 0.112 −0.002 0.157 0.003 0.155 0.001 0.125 −0.001 0.138 0.085 0.122 0.003
12© 0.001 0.094 −0.001 0.121 0.004 0 0.099 0.145 0 0.16 0.138 0.001 0.141 0.106 −0.002
13© 0 0.003 0.005 0.125 0.003 0.001 0.194 0.107 0 0.158 0.085 0.141 0 0.087 −0.003
14© 0.002 0.133 −0.001 0.122 0.101 0.136 0.078 0.126 0.106 0.102 0.122 0.106 0.087 0.001 0.003
15© 0.211 0.004 0.295 0.085 0.134 0.003 0.136 0.003 0.172 −0.002 0.003 −0.002 −0.003 0.003 −0.002

.

(107)

As we can see, this matrix is not exactly equal to the graph shift operator used to diffuse
the signals. However, entries that were equal to 0 in T are very low in T

∗, and setting
to 0 all entries T ∗[i, j] such that |T ∗[i, j]| > 10−2, and the others to 1, allows for a perfect
reconstruction of the adjacency matrix of the ground truth graph.

3.2.4 Removing some constraints

As indicated in Section 3.2.2, the solution of (99) is in most cases unique. This means
that multiple constraints are probably not informative, and do not restrict the set of
solutions. To confirm this hypothesis, in [Pas+15a], we tried to remove random con-
straints (chosen uniformly) from (96).

In the following experiment, we use the eigenvectors X̃Σ of the sample covariance
matrix of M = 500 signals, obtained after K = 4 diffusions on Erdős-Rényi graphs of
N = 15 vertices, with weights drawn uniformly in [0, 1]. We restrict our analysis to
graphs such that all eigenvalues of T have a distinct modulus (see Remark 6). As a
matter of fact, in the case where modulus of eigenvalues may be repeated, finding their
missing signs in cannot be done uniquely.

Figure 31 studies the ℓ2 norm of the difference between the eigenvalues of the ground
truth graph shift operator and their estimates, as a function of the number of removed
constraints. In more details, each constraint is given a probability to appear in S .

The obtained results show that, for every edge probability, the error increases as the
average number of off-diagonal constraints in S reduces. However, this error does not
grow much, which indicates that suppression of constraints is possible to accelerate the
solver used, without a strong impact on the results.

The results also show that the graph sparsity has some impact on the results. As a
matter of fact, graphs with more edges tend to have a larger error, due to the fixed
number of diffusions K. Since the average shortest path length between two vertices
is smaller for denser graphs, convergence of diffused signals to a stable state occurs
faster than for less connected graphs. Therefore, the signals from which the sample
covariance matrix is computed encodes less information on the graph topology than if
diffused on a sparser graph.

Chapter 3. From signals to graphs 94

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8

11

2

3

Edge probability (P) Constr
aint probabilit

y

∥ ∥ ∥s
ig
n
(λ

∗)
⊙
λ̃

2
K√

Σ
−
λ
T

∥ ∥ ∥ 2

Figure 31 – Impact of the number of kept positivity constraints on the retrieved eigen-
values. Constraints are created out of the eigenvectors of the sample covariance matrix
of M = 500 signals, diffused K = 4 times on ground truth graphs using T . The de-
picted results are obtained from 100 Monte-Carlo simulations, each one considering an
Erdős-Rényi graph of N = 15 vertices, with weights drawn uniformly in [0, 1]. The ℓ2
norm of the difference between the inferred eigenvalues sign(λ∗)⊙ λ̃ 2K√

Σ
and those of

the ground truth matrix T is given as a function of P (in the Erdős-Rényi model) and
of the individual probability for a constraint to appear in S .

This is confirmed by the smaller median distance between eigenvalues for denser graphs,
as depicted in Figure 32. Therefore, convergence of the eigenvectors of the sample co-
variance matrix to those of the covariance matrix is imprecise (see Section 3.1.2):

0.2 0.4 0.6 0.8 1
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Edge probability (P)

M
ed

ia
n

d
is

ta
nc

e

Figure 32 – Median distance between consecutive eigenvalues of the
ground truth graphs in Figure 30, as a function of the edge probability
of the Erdős-Rényi model. The median distance is computed as follows:
median ({‖λi − λi+1‖2 | ∀i ∈ J1, N − 1K : λi < λi+1}).

95 3.3. Graph inference from stationary signals

3.3 Graph inference from stationary signals

We have seen in Section 3.2 that under simplified settings, it is possible to retrieve
a ground truth graph on which signals have been diffused, provided that the eigen-
vectors of the covariance matrix are known or correctly approximated. Additionally,
knowledge of K — the number of diffusions per signal — helps improving the quality
of the inferred solution, since the ground truth graph shift operator used for diffusion
is a root of the covariance matrix.

Also, we have made the assumption that observed signals were obtained after diffu-
sion on a simple graph with non-negative weights. Under these assumptions, we were
able to define a set of constraints S encoding these properties. When using the eigen-
vectors of the covariance matrix to define these constraints, the solution was in most
cases unique, mostly due to the strong equality constraints along the diagonal of the
inferred matrix. When removing these equality constraints, and using the eigenvectors
of the sample covariance matrix instead of those of the covariance matrix, the space of
solutions was generally not a singleton anymore.

In this section, we consider the more general case introduced in Section 3.1.1, in which
the observed signals can be diffused using different graph filters of the same variable,
which details are not known. Note that under these more general settings, the result in
Proposition 4 still holds.

Let us consider again heat diffusion of signals using T on positively-weighted graphs.
However, contrary to the previous section, we do not assume the graph shift operator
to be a simple matrix for the moment. Under these settings, the set of constraints T can
be built using (96) and (98). In this section, we propose to study in more details the set
of solutions to these constraints.

3.3.1 Characterization of the set of admissible solutions

The admissible solutions lie in a convex set

Due to the absence of equality constraints, the admissible solutions lie in a convex space
delimited by affine inequalities. Additionally, noticing that eigenvalues of T are located
in [−1, 1], we can add the following constraints:

∀i ∈ J1, NK : (−1− ε ≤ λ[i] ≤ 1 + ε) ∈ S , (108)

where ε allows a controlled margin to cope with the imprecisions of the eigenvectors
of the sample covariance matrix. Adding these constraints has the effect to cause the
space of solutions to be closed. Still, note that these constraints are not necessary in all
situations, since the positivity constraints in (96) can already yield a closed set.

In general, it is interesting to note that this convex set is not a singleton. As a matter of
fact, the covariance matrix belongs to the set of admissible matrices, along with all its
powers, which are different if the covariance matrix is not the identity matrix. When
additional constraints delimit the polytope, for example when enforcing the matrices
to be simple, the solution may be unique (see [Seg+17a] for more information).

To illustrate this, let us consider the following weights matrix:

W =



0.417 0.302 0.186
0.302 0.147 0.346
0.186 0.346 0.397


 . (109)

Chapter 3. From signals to graphs 96

We compute the diffusion matrix T associated with the normalized Laplacian of W,
and its eigenvectors XT . This simulates a perfect retrieval of the eigenvectors of the
covariance matrix of signals diffused by any graph filter of variable T on the graph.
Using these eigenvectors, we plot in Figure 33 the pairs (λ2, λ3) (using a step of 10−2)

such that XT diag





1
λ2
λ3




 XT

⊤ contains non-negative entries only:

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ2

λ
3

Figure 33 – Pairs (λ2, λ3) ∈ [−1, 1] × [−1, 1] (using a step of 10−2) that, when used
as eigenvalues along with XT , allow inference of a matrix with non-negative entries
only (in red). The eigenvalues of the matrix T are located using a green dot, and the
positivity constraints in (96) are depicted with black lines.

Our problem of recovering the correct set of eigenvalues to reconstruct the graph shift
operator thus becomes a problem of selecting a vector of dimension N − 1 (since one
eigenvalue is set to 1 due to the imposed scale) in a convex polytope. Since the number
of solutions is possibly infinite, it is an ill-posed problem. To cope with this issue,
one then needs to incorporate additional information or a selection criterion to enforce
desired properties on the reconstructed matrix. A first example, enforcing simplicity
of the solution, was already studied in Section 3.2.2. Section 3.3.1 introduces another
method to select a point from the polytope, based on a sparsity criterion.

Characterization of the convex set using the sample covariance matrix

Figure 33 depicts a polytope delimited by affine constraints, computed from the eigen-
vectors of the covariance matrix. In practical case, the eigenvectors of the sample co-
variance matrix are used instead, which leads to deformations of the polytope.

In Figure 34, we consider the matrix in (109), and we diffuseM ∈
{
10, 102, 103, 104, 105

}

signals using graph filters of variable T , the diffusion matrix associated with the nor-
malized Laplacian of (109). Here, we consider random graph filters with maximum

97 3.3. Graph inference from stationary signals

degree 5. This value is chosen not too high to prevent signals to be stable before obser-
vation. Then, from these diffused signals, we compute X̃T , from which we compute
the set S of constraints including (96), (98) and (108). As for Figure 33, we iterate over
the pairs (λ2, λ3) ∈ [−1, 1] × [−1, 1] (using a step of 10−2) to identify those that allow
inference of a positively-weighted matrix:

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ2

λ
3

2

4

6

8

10

(a) M = 10.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ2

λ
3

2

4

6

8

10

(b) M = 102.

Chapter 3. From signals to graphs 98

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ2

λ
3

2

4

6

8

10

(c) M = 103.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ2

λ
3

2

4

6

8

10

(d) M = 104.

99 3.3. Graph inference from stationary signals

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ2

λ
3

2

4

6

8

10

(e) M = 105.

Figure 34 – Histograms of the number of times a pair (λ2, λ3) (using a step of 10−2)
allows the inference of a graph shift operator respecting the constraints in S , when
used jointly with the eigenvectors of a sample covariance matrix, for 10 such matrices.
The positivity constraints in (96) defined from the eigenvectors of T are depicted using
black lines.

As it can be seen from these plots, experimental results confirm the study in Section 3.1.2
about convergence of the eigenvectors of the sample covariance matrix to those of the
covariance matrix, as M increases. This indicates that, provided that the eigenvectors
of the covariance matrix are approximated with sufficient precision, any particular se-
lection strategy from the ground truth polytope can also apply to the polytope defined
from the eigenvectors of the sample covariance matrix.

Selecting a point from the convex set of solutions using a sparsity assumption

Once the set of solutions is delimited using equations corresponding to the assump-
tions on the underlying graph shift operator, one needs to select a point from this set
to use as eigenvalues. As stated in Section 3.3.1, when considering diffusion on a pos-
itively weighted graph, the set of solutions contains an infinite number of elements. It
is therefore necessary to use additional priors on the matrix to recover.

A first strategy enforcing simplicity of the solution was already studied in Section 3.2.2
(equation (100)) when considering the simplified case of a monomial graph filter. As a
matter of fact, numerous graphs are simple, which makes it a very common assump-
tion. In the case of a diffusion process for example, a simple matrix models a process
that maximizes signal propagation over a graph.

Another property of broad interest is sparsity of the solution. In many applications one
may believe the graph underlying the observations is sparse. Similar to the case when

Chapter 3. From signals to graphs 100

trying to recover a simple graph, finding a sparse admissible solution can be formulated
as a linear program.

Since the inequalities in (96) enforce entries to be greater or equal to zero, any vector
of eigenvalues located on one such constraint will cause the inferred matrix to feature
at least one null entry. Therefore, in order to find a sparse solution, we seek the set of
admissible eigenvalues for which the maximum number of constraints in (96) are null.
This reduces to minimizing the L0,1 norm of the inferred matrix, which is known to be
an NP-hard problem [AK98].

A common approach to circumvent this problem is to approximate the minimizer of the
L0,1 norm by minimizing the L1,1 norm instead [CDS01; GN03; Rin09]. In our case, we
use the L1,1 matrix norm, which is the sum of all entries, since they are all positive. In
this section, we adopt this approach and consider again a linear programming problem
as follows:

λ∗ = argmin
λ∈RN

1⊤N X diag(λ) X⊤ 1N s.t. λ verifies S , (110)

where S is the set of constraints including (96), (98) and — if needed — (108).

3.3.2 Experiments on a dataset of temperatures in Brittany

Throughout this section, we study an open dataset 1 of temperature observations from
37 weather stations located in Brittany, France [Gir15a]. Figure 35 presents the various
locations of these stations:

Figure 35 – Locations of the 37 weather stations in Brittany from the dataset in [Gir15a].
These stations can be considered as vertices of a graph, on which signal entries are
temperature observations.

1. In http://data.gouv.fr.

101 3.4. Adaptation of other strategies to stationary signals

Our inference methods in (100) and (110), as well as other existing methods, are eval-
uated on this dataset in terms of L1,1 sparsity, trace of the solution, and smoothness.
Since all methods do not impose the same scale on the inferred matrices, these quanti-
ties are computed for the inferred diffusion matrices after normalization such that their
first eigenvalue equals one, as in constraint (98).

When applying our methods Simple (100) and Sparse (110), as well as those of Kalofo-
lias [Kal16], Segarra et al. [Seg+17a] and the graphical lasso [FHT08] on the dataset of
temperatures, we have obtained the results in Table 1:

L1,1 Tr S(X)

Simple (100) 36.9974 0.0013 0.0551

Sparse (110) 36.9971 0.9093 0.0585

Kalofolias [Kal16] 36.9979 0 0.0751

Segarra et al. [Seg+17a] 36.9993 1.97× 10−5 0.0245

Graphical lasso [FHT08] 35.3539 13.4977 32.8421

Table 1 – Sparsity, trace and smoothness obtained for the dataset of temperatures. The

last column indicates the total smoothness for all signals, i.e., S(X) =
M∑
i=1

S(X[:, i]).

Interestingly, the methods we introduced in this chapter appear not to perform as well
as other graph inference methods. We will see in the Section 3.4.3 that this is not exactly
the case.

Still, while the methods we introduced do not provide the best results in Table 1, it is
still interesting to remark that the Simple method infers a graph with a low trace, as ex-
pected. Similarly, the Sparse method allow inference of a graph with the second lowest
L1,1 norm. Also, both methods lead to inference of matrices with a low smoothness
value, which is something expected when assuming diffusion of signals, due to the
remarks in Section 2.3.2.

3.4 Adaptation of other strategies to stationary signals

The two linear programs introduced in (100) and (110) allow selection of a vector of
eigenvalues from a convex set of admissible solutions, delimited by inequalities derived
from the eigenvectors of the (sample or not) covariance matrix. They distinguish from
each other by the priors they make on the inferred graph, as the first enforces simplicity
of the solution, while the second favors sparsity.

In this section, we take a different point of view to select a vector of eigenvalues from
the set of admissible solutions. Many graph inference techniques exist (see Section 4.1),
all enforcing different properties of the graph that is retrieved. However, most of them
do not impose the eigenvectors of the inferred solution to match those of the covariance
matrix. The idea here is to adapt these solutions to stationary signals.

3.4.1 Introduction of the method

Let us consider an inference method m providing an adjacency or a Laplacian matrix
Mm from a set of stationary signals X = {x1, . . . ,xM}. Let T m be a matrix derived from

Chapter 3. From signals to graphs 102

Mm that represents the diffusion process on the graph (for example, the one derived
from the normalized Laplacian). Let XT m and λT m be the eigenvectors and eigenval-
ues of T m, and let XΣ be the eigenvectors of the covariance matrix.

The idea here is to consider T m as if it were expressed in the eigenbasis of XΣ, to check
whether it belongs or not to the polytope of admissible solutions. In other words, we
want to find a matrix Λm such that:

T m = Xm diag(λm) Xm
⊤

=
(
XΣXΣ

⊤)
Xm diag(λm) Xm

⊤ (
XΣXΣ

⊤) // Since
(
XΣXΣ

⊤) = IN

= XΣ

(
XΣ

⊤
Xm diag(λm) Xm

⊤
XΣ

)
XΣ

⊤

= XΣ Λm XΣ
⊤

.

(111)
Again, using the fact that XΣ forms an orthonormal basis, we have:

Λm = XΣ
⊤
T m XΣ . (112)

Unless eigenvectors of XT m and XΣ are pairwise orthogonal, Λm is not necessarily a
diagonal matrix. Therefore, Λm lies in a space of dimension N2, while the polytope is
defined by N variables.

Let us call diag−1(Λm) the vector of elements on the diagonal of Λm. Since the polytope
of admissible diffusion matrices is defined in RN , diag−1(Λm) is the point of this set
that forms the best estimate for Λm, defined in RN

2
, after dimensionality reduction.

In other words, diag−1(Λm) is the orthogonal projection of Λm in the dimensions of
the polytope. If diag−1(Λm) does not belong to the polytope of admissible diffusion
matrices characterized by XΣ, then the method m provides a solution that does not
satisfy the conditions to be a diffusion process. To find the point in the polytope that
is the closest to diag−1(Λm) in the sense of the Euclidean norm, we solve the following
problem:

λ∗ = argmin
λ∈RN

∥∥λ− diag−1(Λm)
∥∥
2

s.t. λ verifies S , (113)

where S is the set of constraints describing properties of the matrix to infer, i.e., (96),
(98) and — if needed — (108) in the case of heat diffusion.

The solution to (113) gives us a set of eigenvalues λ∗ that represent the best approxima-
tion of Λm when restricting the search to diffusion matrices. Therefore, the matrix:

T
∗
m = XΣ diag(λ∗) XΣ

⊤ (114)

is the adaptation of the solution of method m to stationary signals.

We measure the distance between Λm, the projection of T m in the space defined by
XΣ, and λ∗, the closest point in the polytope, as follows:

‖Λm − diag(λ∗)‖F . (115)

103 3.4. Adaptation of other strategies to stationary signals

Figure 36 provides a graphical illustration of the various steps to compute this distance:

Λm

λ∗

diag−1(Λm)

Figure 36 – Correction of the result of an inference method m to match the stationarity
hypothesis on the observed signals. The eigenvalues of the result of m are expressed in
the space defined by XΣ as a matrix Λm. Then, Λm is approximated by diag−1(Λm),
its orthogonal projection in the space of the polytope. The closest point in the polytope
(in the sense of the Euclidean norm), λ∗, is then found by solving (113). Finally, the
distance between Λm and its estimate in the polytope is given by the measure in (115).
This corresponds to the norm of the vector in green.

3.4.2 Application to the method from Kalofolias

This section explores the application of the regularization strategy in Section 3.4.1 to the
method of Kalofolias [Kal16], and shows that it provides matrices that do not belong to
the polytope of solutions. To correct this, the closest point in the polytope is therefore
considered, and evaluation on a dataset shows that the result has interesting similarities
with the original matrix.

The method from Kalofolias has two major qualities: it recovers a graph in a very short
amount of time, and encourages smoothness of the solution, which can be a desirable
property. To evaluate whether the retrieved solution happens to match a diffusion pro-
cess, let us consider the following experiment:

1. Let G be a random geometric graph of N = 10 vertices (R = 0.6), and let T be the
diffusion matrix associated with its normalized Laplacian. Using this matrix, we
diffuse N = 106 i.i.d. signals using various graph filters of variable T to obtain a
matrix X. Using Principal Component Analysis on X [Pea01], we obtain X̃Σ, an
estimate for the eigenvectors of T . This set of eigenvectors yields a polytope of
admissible solutions;

2. Then, we use the method from Kalofolias to infer a graph GK from X, and com-
pute the associated matrix T K . Since the log method from Kalofolias depends on
parameters α and β, we keep the minimal distance obtained for values of α and
β ranging from 0.01 to 2, with a step of 10−2. Equation (115) gives us the distance
between the polytope and the inferred solution;

3. Additionally, we generate a random geometric graph Grg (independent from the
ground truth one), using the same settings as for G (N = 10, R = 0.6). This
gives us a baseline of how close a random graph with the same edges distribution
can be to the ground truth one, and gives information on whether the results
of Kalofolias are closer to the ground truth than a random matrix. Again, (115)
measures the distance between the polytope and the associated matrix T rg.

Chapter 3. From signals to graphs 104

We perform these three steps for 105 occurrences of random geometric graphs. Let dK
be the vector of distances (115) to the polytope obtained for each ground truth graph
using the method of Kalofolias, and drg the vector of distances to the polytope for the
baseline random graphs. In Figure 37, we plot a histogram of the number of times each
distance was observed:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

100

200

300

400

Distance to polytope

O
cc

u
rr

en
ce

s

Kalofolias (dK)
Random (drg)

Figure 37 – Number of times a distance (115) to the ground truth polytope was ob-
served using either the method from Kalofolias [Kal16] (dK), or a random geometric
graph (drg). Distances are grouped in bins of size 10−2. Tests were performed for 105

occurrences of graphs per method, with M = 106 signals.

From these results, a first observation is that neither the methods from Kalofolias nor
the random method ever returned a graph that was located in the polytope of solu-
tions. Two direct interpretations of this result can be made: first, it implies that the
set of admissible matrices per ground truth graph is small relatively to the set of ran-
dom graphs. Second, it implies that the method from Kalofolias does not succeed in
recovering a graph that matches diffusion priors on the signals.

Mann-Whitney U test [MW47] on dK and drg shows that the distributions differ sig-
nificantly (U = 9.9813 × 107, P < 10−5 two-tailed). This implies that the results ob-
tained with the method from Kalofolias are most of the time closer to an admissible
matrix than random solutions. This observation can be explained by the remarks in
Section 2.3.2. Diffusion of signals on a graph tends to smoothen them, as the low fre-
quencies are attenuated slower than higher ones. Since the method of Kalofolias re-
trieves a graph on which signals are smooth, the observation that it provides solutions
that are closer to the polytope than random solutions is quite natural.

The question is then whether the closest point to the retrieved solution in the polytope
has interesting properties. Let us evaluate this solution on the dataset of temperature
introduced in Section 3.3.2. Figure 38 depicts the 10% most significant connections
in the adjacency matrix of the graph GK retrieved by Kalofolias, as well as those of
the matrix associated with the closest point in the polytope in (114), where λ∗ is the
solution to (113):

105 3.4. Adaptation of other strategies to stationary signals

Figure 38 – Most significant connections in the adjacency matrix of the graph GK re-
trieved by the method from Kalofolias (left), and most significant connections from the
matrix associated with the closest point in the polytope, T ∗ (right).

The method from Kalofolias retrieves a matrix that has stronger connections between
stations with similar locations. There is a strong connectivity among stations located
on the south coast of Brittany. Stations located more in the land also tend to be linked
to close inland stations. The regularized matrix appears to keep these properties: the
strong links on the coasts still appear, and the result also still gives importance on the
coastal versus inland aspect of the stations. Still, differences can be seen, as the regular-
ized matrix appears to give more importance to the relations between stations on the
north coasts. Such relations also exist in the original matrix, but are not depicted due to
the threshold.

When computing the total smoothness of the signals with both matrices, we obtain that

the solution from Kalofolias has a higher total smoothness
(∑M

i=1 S(X[:, i]) = 0.0751
)

than the closest point in the polytope
(∑M

i=1 S(X[:, i]) = 0.0548
)

. This implies that
the signals are smoother on the approximate matrix than on the one recovered by
the method of Kalofolias. This may seem counter-intuitive, since the solutions of the
method by Kalofolias are not restricted to the polytope. However, the method from
Kalofolias imposes inference of a matrix with an empty diagonal, which is not the case
of the approximate one.

These measurements, in addition to those below, suggest that inferring a graph using
the method from Kalofolias, and considering the closest point in the polytope, is an
interesting method to infer a valid graph on which signals are smooth.

3.4.3 Additional experiments on the dataset of temperatures

Let us consider again the dataset of temperatures introduced in Section 3.3.2. In these
first experiments, it appeared that other graph inference methods performed better than
the methods (100) and (110) we introduced in this chapter. In these additional experi-
ments, we enrich Table 1 with the closest solutions from the polytope using the method
in Section 3.4.1, as we detailed in Section 3.4.2 for the method of Kalofolias [Kal16]. The
obtained results are given in Table 2:

Chapter 3. From signals to graphs 106

polytope L1,1 Tr S(X)

Simple (100) X 36.9974 0.0013 0.0551

Sparse (110) X 36.9971 0.9093 0.0585

Kalofolias [Kal16] 0.0313 36.9979 0 0.0751

Kalofolias closest X 36.9974 0.0298 0.0548

Segarra et al. [Seg+17a] 0.0062 36.9993 1.97× 10−5 0.0245

Segarra et al. closest X 36.9974 0.0046 0.0551

Graphical lasso [FHT08] 1.3730 35.3539 13.4977 32.8421

Graphical lasso closest X 36.9984 13.3584 0.0335

Table 2 – Sparsity, trace and smoothness obtained for the dataset of temperatures. El-
ements in bold denote the method performing best among those that return a solution
located in the polytope. If a method provides a solution that does not belong to the
polytope, the distance (115) to the closest point is indicated in the first column. The last

column indicates the total smoothness for all signals, i.e., S(X) =
M∑
i=1

S(X[:, i]).

First, we notice that the method from Segarra et al. [Seg+17a] returns a matrix that is
at a distance of 0.0062 from the polytope. As the polytope description is the same for
their method and for ours, we would expect this distance to be 0. This small difference
comes from their implementation. In order to keep their equality constraints enforcing
the elements in the polytope to have an empty diagonal, while coping with the noise
in the eigenvectors, they allow small deviations from the polytope. In more details,
they do not return a matrix S∗ (see (89)) that shares the eigenvectors of the covariance

matrix, but a matrix S∗
approx such that

∥∥∥S∗ − S∗
approx

∥∥∥
F

≤ ε. Here, experiments were

performed for ε = 10−3. For this reason, the matrix they return can be located slightly
outside of the polytope of solutions. When considering the closest point to this result in
the polytope, it appears to be very close to the solution returned by the Simple method.

Contrary to the experiments in Section 3.3.2, we consider here the best solutions among
those that return a point located in the polytope. Under these settings, the Sparse
method recovers the matrix with the lowest L1,1 norm. It is also interesting to remark
that the projection of the solution of the graphical lasso on the polytope is smoother
than the projection of the solution obtained by the method from Kalofolias. This echoes
the remark in Section 3.1.3 that minimization of the quantity Tr(Σ̃Θ) in (87) tends to
promote smoothness of the signals on the graph when Θ is a Laplacian matrix, which
appears to be encouraged by the regularization algorithm. Note that the method from
Kalofolias infers a graph which projection on the polytope gets the second best smooth-
ness score, while having a small trace. On the other hand, the solution inferred by the
graphical lasso appears to have most of its energy on the diagonal entries. This is con-
firmed by the traces of the matrices, both for the original solution and its approximate
in the polytope. Therefore, these two solutions provide interesting ways to find a graph
on which stationary signals are smooth, with different simplicity assumptions.

3.4.4 Application of regularization to graph hypothesis testing

To evaluate the practical interest of the regularization strategy, let us consider the situ-
ation where some signals are observed, and various graph shift operators are provided

107 3.4. Adaptation of other strategies to stationary signals

by inference methods to explain these signals. The objective is to determine which of
the proposed solutions matches the signals best under a stationarity assumption.

In the following experiment, we proceed as follows: let (T 1 . . .T 20) be a set of 20 diffu-
sion matrices corresponding to graphs ofN = 10 vertices, equally divided into random
geometric graphs (with R drawn uniformly in [0.2, 0.6]) and Erdős-Rényi graphs (with
P drawn uniformly in [0.2, 0.6]). For each of these matrices T i, let us diffuseM random
signals using various graph filters of variable T i to obtain observations (X1 . . .X20),
where Xi is the set of signals obtained after diffusion by T i. From these sets, we can

compute the eigenvectors of the sample covariance matrices
(
X̃Σ1 . . . X̃Σ20

)
.

For each matrix of eigenvectors X̃Σi
, i ∈ J1, 20K, and for each diffusion matrix T j , j ∈

J1, 20K, we compute the distance between the polytope yielded by X̃Σi
and the projec-

tion of T j in the space of the polytope (see Section 3.4.1) using (115). The graph that
minimizes the distance is then selected as the most appropriate. Figure 39 depicts the
ratio of times T i is selected as the most appropriate diffusion matrix when considering
signals Xi, for various values of M :

20 40 60 80 100 120 140 160 180 200
0.4

0.5

0.6

0.7

0.8

0.9

1

M

Su
cc

es
s

ra
ti

o

Figure 39 – Ratio of times when the diffusion matrix T i was chosen by the algorithm
as the most adapted to signals Xi among a set of 20 possible diffusion matrices, for
i ∈ J1, 20K. Mean results for 100 iterations of the experiment.

The results show that the regularization strategy selects the matrix used to diffuse the
signals in most cases, even when M is low. Additional experiments were performed
for larger graphs, and similar results were observed. Also, increasing the number of
signals eventually leads to a selection of the correct diffusion matrix in all cases. This
experiment illustrates that the regularization strategy introduced in Section 3.4.1 can be
successfully used to select the graph that is the most adapted to given signals among a
set of candidates.

An interesting direction for future work includes evaluation of the performance of the
method when considering noisy versions of T i.

Chapter 3. From signals to graphs 108

3.5 Summary of the chapter

In this chapter, we have presented a methodology to infer a graph from stationary sig-
nals, that we summarize as follows:

1. Compute or approximate the eigenvectors of the covariance matrix of the signals.
This can be done by diagonalizing the (sample) covariance matrix, or using Prin-
cipal Component Analysis [Pea01] on the signals;

2. Identify a set of essential properties of the matrix to infer and, with the help of
the eigenvectors of the (sample) covariance matrix, create a set S of constraints
encoding these properties. These constraints delimit a convex set of admissible
eigenvalues, to use with the eigenvectors of the (sample) covariance matrix to in-
fer a matrix modeling a diffusion process for the signals on the underlying graph.
In the case of heat diffusion on graphs using the matrix T associated with the nor-
malized Laplacian matrix, such properties are positivity of the entries (constraints
(96)) and some additional information on the eigenvalues of such matrices (con-
straints (98) and (108));

3. Using additional priors on the matrix to infer, select a vector of eigenvalues such
that the constraints S are satisfied. In this chapter, we have presented two priors,
namely simplicity of the solution in (100) and sparsity of the matrix in (110).

Additionally to this methodology, we have introduced in this chapter a technique to
correct the solutions of other graph inference methods, in order to make them applica-
ble to stationary signals. We have shown that this particular method could be useful
to select the most appropriate matrix among a set of candidates, to model a diffusion
process for given signals on an unknown graph.

Also, experiments on a dataset of temperatures in Brittany have experimentally shown
that this correction appears to keep the particularities of these methods, allowing the
definition of strategies with new priors to select eigenvalues from the polytope. Addi-
tional experiments on synthetic data can be found in [Pas+17a], and present with more
details the performance of the methods we introduced in this chapter.

There are numerous possible extensions to this work:

• Obtainment of a good estimate for the eigenvectors of the covariance matrix is a
cornerstone of our approach. In this chapter, we have considered the sample co-
variance estimator only. A complete review of covariance estimation techniques
would therefore be very interesting to identify those that favor convergence of the
eigenvectors;

• We could also explore new strategies to select a point in the polytope, for example
by enforcing the reconstruction of a binary matrix;

• Definition of the polytope requires N(N+1)
2 constraints in (96). While we have ex-

perimentally observed in Section 3.2.4 that some of these constraints were unnec-
essary, a more formal identification of these constraints would lead to acceleration
of the solvers used;

• In Section 3.4.4, we have shown that the regularization strategy could select the
ground truth matrix among a set of candidates to represent a diffusion process
for given signals. An interesting extension of this work would be to consider
identification of noisy versions of the ground truth matrix.

109

Chapter 4

From graphs to translations

Contents
4.1 Existing translation operators on graphs 112

4.1.1 The graph shift approach . 112
4.1.2 The convolutive approach . 113
4.1.3 The isometric approach . 113
4.1.4 Neighborhood-preserving translations 113

4.2 Transformations, translations and isometries on graph 114
4.2.1 Transformations on graphs . 114
4.2.2 Translations on graphs . 117
4.2.3 Isometries on graphs . 121

4.3 Results on translations on graphs . 122
4.3.1 Results on generic graphs . 123
4.3.2 Results on the torus graph . 125
4.3.3 Results on the grid graph . 128
4.3.4 Extension to generic graphs . 135

4.4 Finding translations on complex graphs 137
4.4.1 Experiments on the grid graph 138
4.4.2 Translations on random graphs 141

4.5 Summary of the chapter . 147

Chapter 4. From graphs to translations 110

Translation of signals is a natural operation when the signals are evolving on an Eu-
clidean space. As examples, translating a signal of τ seconds in time falls down to
replacing every signal entry s(t) with the entry at instant t± τ , where the sign indicates
direction in time (see Definition 40). Similarly, translating a signal representing an im-
age can be done by sending every pixel up, down, left or right using the information
that the image is two-dimensional.

These natural translations can intuitively be ported to graphs, since periodical time can
conveniently be represented using a ring graph, and since a periodical pixel grid can be
represented using a torus. The possible directions for Euclidean translations of signals
on such graphs are given by the graph orientations in Figure 40:

Definition 65: Orientation of a graph

Let G = 〈V, E〉 be an undirected graph. An orientation of G is a digraph
−→G =

〈V,−→E 〉 such that ∀(v1, v2) ∈
−→E : {v1, v2} ∈ E .

We choose to represent an orientation
−→G of G by a graph in which the edges of E

are depicted with dotted lines, and diedges of
−→E with red arrows.

(a) (b)

(c) (d)

(e) (f)

Figure 40 – Natural translations on a two-dimensional torus graph of dimensions

d =

[
6
4

]
(a-d), and on a ring graph of N = 6 vertices (e-f). These translations use the

underlying metric space, as for every vertex of coordinates v, the vertex of coordinates
v +d[i] δi exists, where δi is the Dirac vector of ith non-null entry (see Section 2.1.4).

111

However, graphs in general do not have an associated Euclidean space. Also, if we
consider a grid graph and move its vertices to random locations, this does not change
its adjacency matrix, which makes it strictly equivalent to the regular grid graph.

For this reason, translations on graphs have been defined not to take this underlying
metric space into account. As introduced in Section 2.3.1, Shuman et al. in [Shu+13]
uses the property that translation of time signals is equivalent to convolution with a
Dirac signal located at a particular time instant. Analogously, translations on graphs
consist in a convolution with a Dirac signal located on a target vertex, thus localizing
the translated signal around this particular vertex.

While this definition of convolution allows to move localized signals to various places
of a graph, thus providing a fine tool for filtering operations, it does not apply well to
signals that have a certain local coherence. As an example, Figure 41 depicts an image
on a two-dimensional torus, which is then translated to a particular vertex:

(a) (b)

(c) (d)

Figure 41 – Original album cover for Let Mortal Heroes Sing Your Fame by Summoning
(a), and its representation as a signal on a two-dimensional torus graph of dimensions

d =

[
50
50

]
(b) (edges are not depicted for readability). Images (c) and (d) represent

localizations of the original signal to the vertices circled in red and blue, respectively.

Chapter 4. From graphs to translations 112

This experiment illustrates that translations as defined in Definition 47 do not match
the classical definition of translations on metric spaces. As a matter of fact, most signals
have interesting neighborhood properties, that are not kept when convolving it with a
Dirac signal. Additionally, performing such operation allows modification of the signal
entries when translating it, which does not occur in classical translation.

In this chapter, we are interested in finding a way to infer translations on a graph that
match classical Euclidean translations, without using information on the underlying
metric space. Such translations should offer multiple properties:

1. The translation of a localized signal should be localized;

2. In regular cases, translating a signal to a vertex should have similar effect to mov-
ing the observer’s point of view to this same vertex.

In previous work several definitions have been proposed, but none of them satisfy both
1. and 2. Here, we introduce results from two of our works [Gre+16; Pas+17b] that
define translations based on neighborhood preservation properties. In more details,
the chapter is organized as follows:

1. First, we review existing work on translations on graphs;

2. Then, we introduce numerous definitions, and propose a characterization of trans-
lations on graphs that matches the properties above;

3. In a third part, we show some properties on these translations, and demonstrate
that they are equivalent to classical Euclidean translations on the ring and on the
torus. Among other results, we show that identification of desired translations
on an arbitrary graph is an NP-complete problem, and we propose a relaxation of
the problem to approximate them;

4. Finally, we discuss the identification of translations on small variations of regular
graphs, as well as on randomly generated graph.

4.1 Existing translation operators on graphs

4.1.1 The graph shift approach

Studying the case of the ring graph, Püschel and Moura [PM06], followed by Sandri-
haila and Moura [SM13], propose to use a graph shift operator as a translation operator,
and choose the adjacency matrix of the graph on which signals are defined. In particu-
lar, when considering the directed ring graph — i.e., the orientation of all edges of the
ring graph in the same direction as in Figure 40 (e-f) — as a graph shift, multiplication
of a signal by this shift has the effect to advance it in time.

In the general case, considering an adjacency matrix as a translation operator has the
effect to diffuse a signal as it is translated. Note that this is also the case where the
adjacency matrix is normalized by its eigenvalue with the highest magnitude [SM14],
in which case the signal energy only decreases as it is translated (see Section 2.3.2).

For this reason, translation of signals with this approach cannot match our objective of
conserving the signal entries during translation. However, our approach is similar to
this one in the sense that we identify translations by finding a subset of non-null entries
of the adjacency matrix, which can be interpreted as an orientation of a subset of edges
in the graph. In particular, the directed ring graph is a valid translation on the ring
graph according to our definitions.

113 4.1. Existing translation operators on graphs

4.1.2 The convolutive approach

In the context of applying wavelets to graph signals, Hammond et al. [HVG11] propose
to define translation as a localization function to move a wavelet at a particular location
of the graph. This is done by applying the wavelet to an impulse, i.e., a signal that has
all its energy concentrated at a single vertex.

As already introduced in Definition 47, the same approach is taken by Shuman et al.
[SRV12; Shu+13], who propose a definition of translation of a signal to a vertex v, by
convolution of this signal with an impulse located on v. This is done with analogy to
the classical result in Fourier analysis that states that convolution in the time domain
(in our case the graph) is equivalent to multiplication in the frequency domain (in our
case the spectral domain of the graph).

With this approach, the signal is moved to a particular location rather than by a certain
quantity. The convolution operation does not take the neighborhood in consideration,
and allows modification of the signal when translating it, as shown in Figure 41.

4.1.3 The isometric approach

Girault et al. [GGF15; Gir15a] propose a translation operator for graphs that is isometric
with respect to the ℓ2 norm, i.e., that does not change the signal energy as it is translated.
Their approach consists in changing the phase of the signal in the spectral domain to
move it in the graph domain. Additionally to keeping the signal norm unchanged,
this operator has the property to preserve the signal localization, i.e., to have its energy
located around a target vertex [Gir+16].

This approach can also be considered as convolutive, since the translation is performed
by convolving the signal with complex exponentials. Therefore, it suffers from the same
drawback as the method introduced before.

Gavili and Zhang [GZ15] take a similar direction, and propose a phase change for trans-
lation. Contrary to the approach of Girault et al., their solution does not consider the
graph spectrum. Again, this method does not have preserve neighborhoods.

4.1.4 Neighborhood-preserving translations

The translation operators we introduce in this chapter have first been defined in [Gre+16].
In this first work, we have explored translations on grid and torus graphs, and have
shown that Euclidean translations of images are equivalent to neighborhood preserv-
ing properties on these graphs.

In [Pas+17b], we have reformulated and extended the results in [Gre+16] to make them
more general and comprehensive. Additionally, we have provided properties of our
translations, and have shown that identifying them is an NP-complete problem. Then,
we have proposed a relaxation of this problem to identify pseudo-translations, and have
illustrated our results on grid graphs as well as on graphs following a random model.

This chapter gives the details of these two articles.

Chapter 4. From graphs to translations 114

4.2 Transformations, translations and isometries on graph

In this section, we introduce some functions on graphs. In particular, we define trans-
formations on graphs with various properties, and introduce translations as transfor-
mations with particular neighborhood-preserving properties.

4.2.1 Transformations on graphs

Let us consider a graph G = 〈V, E〉. Additionally, we introduce an element ⊥ such that
⊥ /∈ V . We define a transformation on a graph as follows:

Definition 66: Transformation on a graph

A transformation on a graph G = 〈V, E〉 is a function φ : V → V ∪ {⊥} such that:

∀v1, v2 ∈ V : (φ(v1) = φ(v2) 6= ⊥) ⇒ (v1 = v2) . (116)

We denote the set of transformations on G by ΦG .

Informally, a transformation φ ∈ ΦG on a graph is a function that is injective for every
vertex whose image is not ⊥.

The number of vertices that have their image equal to ⊥ by a transformation give the
loss of this transformation:

Definition 67: Loss of a transformation

We call loss of a transformation φ ∈ ΦG on a graph G = 〈V, E〉 the quantity:

loss(φ) = |{v ∈ V | φ(v) = ⊥}| . (117)

In the case where loss(φ) = 0, we say that φ is lossless, and we note it φ∗. We
denote the set of lossless transformations on G by Φ∗

G .

In the case of lossless transformations, every vertex has an image in V . Therefore, they
are bijective from V to V .

It is also interesting to notice that every graph G = 〈V, E〉 admits a transformation of
loss N , defined as follows:

φ⊥ :

{
V → V ∪ {⊥}
v 7→ ⊥ . (118)

Note that transformations do not take into consideration the edges of the graph. To
add the constraint that vertices should be mapped to vertices in their neighborhood,
we introduce edge-constrained transformations:

Definition 68: Edge-constrained (EC) transformation

A transformation φ ∈ ΦG on a graph G = 〈V, E〉 is said to be edge-constrained if
it is a function φ : V → V ∪ {⊥} such that:

({v, φ(v)} ∈ E) ∨ (φ(v) = ⊥) . (119)

115 4.2. Transformations, translations and isometries on graph

We denote the set of EC transformations on G by EC(ΦG), and the set of lossless
EC transformations on G by EC

(
Φ∗
G
)
.

Since EC transformations restrict the set of image vertices to the set of neighboring
vertices, an EC transformation can be represented by an orientation of the graph on
which it is defined:

Proposition 5

An EC transformation φ ∈ EC(ΦG) on a graph G = 〈V, E〉 injectively defines an
orientation of G, with the possible exclusion of vertices of which image is ⊥.

Proof: Proposition 5

Let A be the adjacency matrix of G, and let Aφ be the following N ×N matrix:

∀v1, v2 ∈ V : Aφ[v1, v2] =

{
1 if v2 = φ(v1)
0 otherwise

. (120)

Remind that A and Aφ take their values in {0, 1}. First, we show that ∀v1, v2 ∈
V : Aφ[v1, v2] ≤ A[v1, v2]. Let us consider a vertex v1 ∈ V . There are three
possible cases:

1. φ(v1) = ⊥. In that case, ∀v2 ∈ V : Aφ[v1, v2] = 0;

2. ∃v2 ∈ N (v1) : (v2 = φ(v1)) ∧ (v1 = φ(v2)). In that case, Aφ[v1, v2] =
Aφ[v2, v1] = A[v1, v2] = 1, and ∀v3 ∈ V, v3 6= v2 : Aφ[v1, v3] = Aφ[v3, v1] =
0 (due to the injectivity of φ);

3. ∃v2 ∈ N (v1) : (v2 = φ(v1)) ∧ (v1 6= φ(v2)). In that case, Aφ[v1, v2] =
A[v1, v2] = 1, and Aφ[v2, v1] < A[v2, v1], and ∀v3 ∈ V, v3 6= v2 : Aφ[v1, v3] =
Aφ[v3, v1] = 0 (due to the injectivity of φ).

In all cases, entries of Aφ are lower or equal than those of A. Additionally, due
to case 3), there may exist v1, v2 ∈ V : Aφ[v1, v2] < A[v1, v2]. Therefore, Aφ is
not necessarily symmetric, and corresponds to a digraph in which every diedge
contains elements that form an edge in E .

Additionally, if Aφ1
= Aφ2

, then ∀v ∈ V : φ1(v) = φ2(v), i.e., φ1 = φ2. So the
mapping φ 7→ Aφ is injective.

The proof of Proposition 5 shows that it is possible to represent an EC transformation

φ ∈ EC(ΦG) on a graph G = 〈V, E〉 by a digraph
−→G φ

= 〈V,−→E φ〉, with:

∀v ∈ V : (φ(v) 6= ⊥) ⇔
(
(v, φ(v)) ∈ −→E φ

)
. (121)

This allows a visual representation of EC transformations on a graph, where edges of

E are depicted with dotted lines, on top of which edges of
−→E φ

are drawn with plain
arrows. Additionally, we mark the vertices that have their image being ⊥ by coloring
them in black. Figure 42 depicts an EC transformation on an example graph:

Chapter 4. From graphs to translations 116

Figure 42 – Example of a graph (left) and an associated EC transformation with loss 1
(right). This graph is the Petersen graph [Pet98].

Using this correspondence with a digraph, we can reformulate the loss of an EC trans-
formation as follows:

Proposition 6

Let φ ∈ EC(ΦG) be an EC transformation on a graph G = 〈V, E〉, with digraph
−→G φ

= 〈V,−→E φ〉. Let Aφ be the adjacency matrix associated with
−→G φ

. We have:

loss(φ) = N −
∣∣∣∣
{
{v1, v2} ∈

(V
2

) ∣∣∣∣ Aφ[v1, v2] = 1

}∣∣∣∣ , (122)

where
(V
2

)
denotes the set of unordered pairs of distinct elements of V .

Proof: Proposition 6

Let v1 ∈ V . If φ(v1) ∈ V , then due to injectivity, there is a unique v2 ∈ V such that
Aφ[v1, v2] = 1. If φ(v1) = ⊥, then ∀v2 ∈ V : Aφ[v1, v2] = 0. Therefore, loss(φ) is
N minus the number of vertices that have an image in V .

Not all graphs admit lossless EC transformations. Indeed, we can derive a few sufficient
properties as well as necessary ones for an EC transformation to be lossless:

Proposition 7

Consider a graph G = 〈V, E〉. In order to have EC
(
Φ∗
G
)
6= ∅, we have the follow-

ing properties:
1. (Necessary): ∀v ∈ V : |N (v)| > 0;

2. (Necessary): No vertex is the unique neighbor for two other vertices;

3. (Sufficient): There exists an Hamiltonian cycle in G;

4. (Sufficient): There exists a perfect matching between all vertices in V , i.e.,
there is a subset E− of E such that every vertex appears exactly once in the
edges of E−.

117 4.2. Transformations, translations and isometries on graph

Proof: Proposition 7

Let φ ∈ EC(ΦG) be an EC transformation. Let us consider the properties in the
same order as above:

1. Let v ∈ V . If |N (v)| = 0, then the case {v, φ(v)} ∈ E of Definition 68 is never
matched, therefore φ(v) = ⊥;

2. Let v1, v2, v3 ∈ V , with N (v1) = {v3} and N (v2) = {v3}. To avoid the
case where a vertex has its image equal to ⊥, we must have φ(v1) = v3 and
φ(v2) = v3. However, this contradicts injectivity of transformations;

3. Let v1 → v2 → · · · → vN → v1 be an Hamiltonian cycle in the graph. The
transformation that associates with every vertex its successor in the cycle
is EC, and lossless;

4. If a perfect matching exists, we can determine E− ⊂ E with
∣∣E−∣∣ = N

2 such
that ∀v1 ∈ V : ∃v2 ∈ V : {v1, v2} ∈ E−. In this case, the transformation that
associates with v1 its neighbor v2 is EC and lossless.

Among all transformations, we are in particular interested in translations. Since their
definition is not straightforward, we introduce the following properties:

Definition 69: Weakly neighborhood-preserving (WNP) transformation

We say that a transformation φ ∈ ΦG on a graph G = 〈V, E〉 is weakly neighborhood-
preserving if:

∀{v1, v2} ∈ E : ({φ(v1), φ(v2)} ∈ E) ∨ (φ(v1) = ⊥) ∨ (φ(v2) = ⊥) . (123)

We note WNP(ΦG) the set of WNP transformations on G, and WNP
(
Φ∗
G
)

the set
of lossless WNP transformations on G.

Informally, WNP transformations conserve existing neighborhoods. However, note
that two vertices that are not neighbors may be associated with neighboring vertices
through a WNP transformation. Transformations that do not create additional neigh-
borhoods are characterized as follows:

Definition 70: Strongly neighborhood-preserving (SNP) transformation

We say that a transformation φ ∈ ΦG on a graph G = 〈V, E〉 is strongly neighborhood-
preserving if:

∀v1, v2 ∈ V : ({v1, v2} ∈ E ⇔ {φ(v1), φ(v2)} ∈ E) ∨ (φ(v1) = ⊥) ∨ (φ(v2) = ⊥) .
(124)

We denote the set of SNP transformations on G by SNP(ΦG), and the set of loss-
less SNP transformations on G by SNP

(
Φ∗
G
)
.

4.2.2 Translations on graphs

Using the definitions of transformations and their properties in Section 4.2.1, we can
now define translations on graphs as follows:

Chapter 4. From graphs to translations 118

Definition 71: Translation on a graph

A translation ψ on a graph G = 〈V, E〉 is an EC and SNP transformation. We call
the set of translations on G ΨG , and the set of lossless translations on G Ψ∗

G .

Figure 43 depicts two examples of translations on a graph. Again, note that the function
φ⊥ introduced in (118) is a translation for any graph G = 〈V, E〉:

Figure 43 – Examples of transformations that are translations on the Petersen graph
introduced in Figure 42.

Additionally, we observe the following property:

Proposition 8

Let ψ ∈ ΨG be a translation on a graph G = 〈V, E〉, with associated digraph
−→G ψ

= 〈V,−→E ψ〉. Edges of
−→E ψ

can be partitioned into directed cycles, and directed
paths that have one vertex for which the image is ⊥.

Proof: Proposition 8

By injectivity of transformations, any vertex v1 ∈ V has an image by ψ which is
either a vertex v2 ∈ V with no other inverse image, or ⊥. Therefore, every vertex
belongs either to a path v1 → v2 → · · · → ⊥, or a cycle v1 → v2 → · · · → v1.
Additionally, the associated digraph restricts the existence of these paths and
cycles to paths and cycles that exist in E .

It is also interesting to notice that every translation admits an inverse translation with
the same loss:

Proposition 9

Let ψ ∈ ΨG be a translation on a graph G = 〈V, E〉, with associated digraph
−→G ψ

=

〈V,−→E ψ〉 of adjacency matrix Aψ. Let us callψ−1 the inverse translation associated

with the digraph
−→G ψ−1

= 〈V,−→E ψ−1

〉, with (v1, v2) ∈
−→E ψ−1

⇔ (v2, v1) ∈
−→E ψ

. We
have the relation loss(ψ) = loss(ψ−1).

119 4.2. Transformations, translations and isometries on graph

Proof: Proposition 9

First, let us notice that
−→E ψ−1

is the exact same set of edges as in
−→E ψ

, but with re-
verse direction. Therefore, since ψ is EC, it is also the case for ψ−1. Additionally,
since ψ is SNP, it preserves the existing neighborhoods and does not create addi-
tional ones. Therefore, it is also the case for the converse, and ψ−1 is thus SNP.
From Definition 71, ψ−1 is therefore a translation. Finally, from Proposition 6,

and noticing that the adjacency matrix associated with
−→G ψ−1

is the transpose of
Aψ, we conclude.

Translations can be given an arbitrary well-founded relation ≺:

∀ψ1, ψ2 ∈ ΨG : (ψ1 ≺ ψ2) ⇔ (loss(ψ1) > loss(ψ2)) ∧ (∃v ∈ V : ψ1(v) = ψ2(v)) . (125)

Proposition 10

Let ψ1, ψ2, ψ3 ∈ ΨG . The relation ≺ has the following properties:
1. It is irreflexive, i.e., ψ1 ≺ ψ1 is not true;

2. It is antisymmetric, i.e., it is not possible to have both ψ1 ≺ ψ2 and ψ2 ≺ ψ1;

3. It is intransitive, i.e., it is not true that ((ψ1 ≺ ψ2)∧(ψ2 ≺ ψ3)) ⇒ (ψ1 ≺ ψ3).

Proof: Proposition 10

Let us consider the three properties separately:
1. By definition, ψ1 is comparable to itself, since there exists at least one edge

in common. Comparison is then made using <, which is an irreflexive
order on Z;

2. In the case where ∄v ∈ V : ψ1(v) = ψ2(v), then ψ1 and ψ2 are not com-
parable (noted ψ1 ∼ ψ2). In the case where such an edge exists, < is an
antisymmetric order on Z;

3. Let us consider the following graph:

Let ψ1, ψ2, ψ3 be the following translations:

ψ1 :

ψ2 :

ψ3 :

In this example, we observe that ψ1 ≺ ψ2 and ψ2 ≺ ψ3. However, ψ1 and
ψ3 have no edge in common, thus ψ1 ∼ ψ3. Still, note that ψ−1

3 , the inverse
translation of ψ3, is comparable with ψ1 and ψ2. As a consequence, ≺ is not
an antitransitive relation.

Chapter 4. From graphs to translations 120

Using this relation, we define minimal translations:

Definition 72: Minimal translation

A translation ψ1 ∈ ΨG is minimal if there is no ψ2 ∈ ΨG such that ψ1 ≺ ψ2, i.e., if
it minimizes the loss.

Indeed, lossless translations ψ∗ ∈ Ψ∗
G are necessarily minimal. Additionally, we define

pseudo-minimal translations as follows:

Definition 73: Pseudo-minimal translation

Pseudo-minimal translations are defined inductively. A translation ψ1 ∈ ΨG is
pseudo-minimal if one of the following holds:

1. ψ1 is minimal;

2. Any translation ψ2 ∈ ΨG such that ψ1 ≺ ψ2 is not pseudo-minimal.

The following result gives that minimal translations can be found on any graph:

Proposition 11

Any graph G = 〈V, E〉 admits at least one minimal translation ψ ∈ ΨG . Addition-
ally, ψ−1 is minimal.

Proof: Proposition 11

In order to show that a minimal translation exists, we study the following cases:
1. In the case where |E| = 0, the only possible translation is φ⊥ (118), which is

thus minimal;

2. In the more general case, let us consider an edge {v1, v2} ∈ E . The function
ψ1 such that ψ1(v1) = v2, and ∀v3 6= v1 : ψ1(v3) = ⊥ is obviously a trans-
lation. Now, consider a maximal sequence (ψi)i of translations of which
first element is ψ1 and such that ∀i : ψi ≺ ψi+1. This sequence is necessar-
ily finite, since loss(ψi) decreases and < is a well-founded order on Z. By
definition, the last element ψj of this sequence is a maximal translation.

Now, let us show that ψ−1
j — the inverse translation as defined in Proposi-

tion 9 — is also minimal. From Proposition 9, we have loss(ψj) = loss(ψ−1
j).

Now, let us imagine that there existsψk such thatψ−1
j ≺ ψk. Using the same

reasoning as above, and noticing that ψ−1
j and ψk share at least one edge,

we obtain that ψj ≺ ψ−1
k . Since ψj is minimal, we reach a contradiction. As

a consequence, both ψj and ψ−1
j are minimal translations. It is interesting

to notice that a special case occurs when ψj is a perfect matching between
all vertices in V . In this situation, we have ψj = ψ−1

j .

121 4.2. Transformations, translations and isometries on graph

To sum up the various sets we introduced in this section, Figure 44 presents the corre-
sponding Venn diagram:

ΦG

WNP(ΦG)

SNP(ΦG)

EC(ΦG)

ΨG

Figure 44 – Venn diagram summarizing the various types of transformations intro-
duced in this section.

4.2.3 Isometries on graphs

Translations on Euclidean spaces are isometries. When it comes to graphs, we also want
the translations to be distance-preserving functions. However, since in the general case
there is no Euclidean space associated with the graph, we consider here the geodesic
distance dgeo:

Definition 74: Isometry on a graph

A transformation φ ∈ ΦG on a graph G = 〈V, E〉 is an isometry if:

∀v1, v2 ∈ V :
(
dgeo(v1, v2) = dgeo(φ(v1), φ(v2))

)
∨ (φ(v1) = ⊥) ∨ (φ(v2) = ⊥) .

(126)
We denote the set of isometries on G by ISO(ΦG), and the set of lossless isometries
on G by ISO

(
Φ∗
G
)
.

Examples of isometries are the translations presented in Figure 43.

In the previous section, some of the sets that were introduced are isometries. In partic-
ular, we have the following property:

Proposition 12

Let G = 〈V, E〉 be a graph. SNP
(
Φ∗
G
)
⊂ ISO

(
Φ∗
G
)
.

Proof: Proposition 12

Let v1, v2 ∈ V . For a lossless SNP transformation φ∗ ∈ SNP
(
Φ∗
G
)
, we distinguish

the following cases:
1. There is no path between vertices v1 and v2, i.e., dgeo(v1, v2) is infinite. This

corresponds to the case where they belong to different connected compo-
nents. By contradiction, let dgeo(φ

∗(v1), φ∗(v2)) be finite. This implies that
there exists a path φ∗(v1) → φ∗(vi1) → φ∗(vi2) → · · · → φ∗(vik) → φ∗(v2) in
the graph. Since φ∗ is SNP, we have that v1 → vi1 → vi2 → · · · → vik → v2
is also a path in the graph, therefore we reach a contradiction. As a conse-

Chapter 4. From graphs to translations 122

quence, dgeo(v1, v2) and dgeo(φ
∗(v1), φ∗(v2)) are both infinite;

2. A shortest path v1 → vi1 → vi2 → · · · → vik → v2 exists. Since φ∗ is
lossless, φ∗(v1) → φ∗(vi1) → φ∗(vi2) → · · · → φ∗(vik) → φ∗(v2) is also
a path (no intermediary vertex has its image equal to ⊥). Additionally,
φ∗ being SNP, it does not create nor remove neighborhoods, so φ∗(v1) →
φ∗(vi1) → φ∗(vi2) → · · · → φ∗(vik) → φ∗(v2) is also a shortest path from
φ∗(v1) to φ∗(v2). Therefore, we have dgeo(v1, v2) = dgeo(φ

∗(v1), φ∗(v2)).

The previous result simply implies the following:

Corrolary 1

Let G = 〈V, E〉 be a graph. Ψ∗
G ⊂ ISO

(
Φ∗
G
)
.

Proof: Corrolary 1

Ψ∗
G ⊂ SNP

(
Φ∗
G
)
⊂ ISO

(
Φ∗
G
)
.

Note that Proposition 12 holds for lossless SNP transformations only. In the more gen-
eral case of SNP transformations φ ∈ SNP(ΦG), having a vertex that has its image equal
to ⊥ may cause dgeo(φ(v1), φ(v2)) and dgeo(v1, v2) to be different.

As an example, Figure 45 depicts an SNP transformation φ ∈ SNP(ΦG) for which
dgeo (1©, 2©) < dgeo (φ (1©) , φ (2©)). When considering the inverse transformation
φ−1, we have dgeo (1©, 2©) > dgeo

(
φ−1 (1©) , φ−1 (2©)

)
:

1 2

Figure 45 – Example of a SNP transformation φ ∈ SNP(ΦG) with a non-zero loss that
is not an isometry. In this example, dgeo (1©, 2©) = 4, dgeo (φ (1©) , φ (2©)) = 6 and
dgeo

(
φ−1 (1©) , φ−1 (2©)

)
= 2.

Still, it is interesting to note that some transformations with a non-zero loss are isome-
tries. Examples of such are depicted in Figure 43.

4.3 Results on translations on graphs

In this section, we are interested in identifying translations on arbitrary graphs. Af-
ter introducing some generic results, we study the case of the torus graph, on which
defining a notion of translation is intuitive. This gives us intuition on how to find these
translations without considering the underlying Euclidean space. Then, we show that
we are able to find the translations on a grid graph, and extend our results to families
of graphs that are more generic.

123 4.3. Results on translations on graphs

4.3.1 Results on generic graphs

As stated before, the function φ⊥ introduced in (118) is a translation for any graph.
However, it is not very interesting, since it destroys all signal information when trans-
lating it. Therefore, we need to identify more complex translations that keep most of the
signal entries. As a consequence, we are particularly interested in minimal translations.

Before trying to identify translations, we provide bounds on the number of translations:

Proposition 13

A graph with order N cannot admit more than:

N∑

k=0

1

(N − k)!

k∑

j=0

(−1)j
(
k

j

)
(N − j)! (127)

translations. This is reached for the complete graph Gc = 〈Vc, Ec〉.

Proof: Proposition 13

Every EC transformation on Gc is necessary SNP, since all vertices are pairwise
linked and therefore share the same neighborhood. However, not every trans-
formation on such graph is EC, since transformations can map vertices to them-
selves, and we consider simple graphs only. Therefore, for a fixed loss N − k
(k ≤ N), the set of translations of loss N − k is exactly the set of injective func-
tions that have no fixed points of k elements to N . The cardinal of such a set is
given by the solution of the (N, k)-matching problem in [HSW83] as follows:

1

(N − k)!

k∑

j=0

(−1)j
(
k

j

)
(N − j)! . (128)

By summing for every possible value of k, corresponding to the number of ver-
tices that have an image different to ⊥, we obtain the number of translations.
Then, note that any graph G = 〈V, E〉 of order N has its edges E ⊂ Ec. As a con-
sequence, since any EC transformation is a translation on Gc, it follows that any
translation on G is also a translation on Gc. Therefore, a graph of order N cannot
admit more translations than the complete graph.

This characterization of the number of translations gives us the following result on the
number of minimal translations:

Proposition 14

A graph of order N cannot admit more than:

N !

N∑

j=0

(−1)j

j!
(129)

minimal translations. This is reached for the complete graph Gc = 〈Vc, Ec〉.

Chapter 4. From graphs to translations 124

Proof: Proposition 14

Minimal translations on Gc are necessarily lossless, since any translation shares
at least a diedge with an Hamiltonian cycle on this graph, which is lossless. By
particularizing (128) for k = N , we obtain the number of lossless translations on
Gc, which is exactly the number of derangements of a set of N elements, i.e., the
number of permutations of N elements with no fixed points [Mon13].

Using the same reasoning as in the proof of Proposition 13, any minimal transla-
tion on a graph G is included in a minimal translation on Gc. Therefore, a graph
of order N cannot admit more minimal translations than the complete graph.

The number of translations on graphs is therefore exponential in the general case. Ad-
ditionally, we prove that identifying translations is a complex problem:

Proposition 15

The problem of deciding, for an input graph G = 〈V, E〉 and two subsets V1 and
V2 of V , if there is a translation for which the image is exactly V2 and with inverse
images only in V1 is NP-complete.

Proof: Proposition 4.3.1

We first prove that the problem is NP, and then that it is NP-hard.

All possible transformations with inverse image set V1 and image set V2 can be
generated non-deterministically by induction:

1. φ⊥ ∈ ΦG ;

2. If we have a transformation φ1 ∈ ΦG , and two vertices v1 ∈ V1, v2 ∈ V2

such that φ1(v1) = ⊥ and ∄v3 ∈ V1 : φ1(v3) = v2, then define φ2 ∈ ΦG as
follows:

• φ2(v1) = v2;

• ∀v3 ∈ V1, v3 6= v1 : φ2(v3) = φ1(v3).

Furthermore, determining whether any such transformation is a translation or
not can be done by checking EC and SNP constraints, which can be done in
polynomial time. So the problem is NP.

Then, we prove the problem is NP-hard by reduction from the subgraph isomor-
phism problem. Consider two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉. Without
loss of generality, we consider that V1 ∩ V2 = ∅. The more general case where
V1 ∩ V2 6= ∅ can be included by duplication of the vertices in the intersection.

From these graphs, we build the graph G3 = 〈V1 ∪ V2, E3〉, where E3 = E1 ∪
E2 ∪ {{v1, v2}, v1 ∈ V1, v2 ∈ V2}. Note that this construction is at most quadratic
in the order of G. Then, we show that answering our problem on G3 solves the
problem of subgraph isomorphism between G1 and G2.

To this end, consider the following properties, that we prove to be equivalent:

1. There is a translation of which image set is V2 and inverse images are in V1;

2. There is a subgraph of G1 isomorph to G2.

125 4.3. Results on translations on graphs

We prove this in two steps. First, consider there exists such a translation. Then,
since it is SNP, the subgraph corresponding to the inverse images of vertices in
V2 is isomorph to G2.

Conversely, consider that there exists an isomorphism, then the transformation
that associates each vertex in V2 with its corresponding vertex in V1 is a trans-
lation. indeed, it is EC because of the complete bipartite subgraph connecting
vertices in V2 to vertices in V1, and it is SNP as a particularization of the isomor-
phism property.

As a consequence, the problem of deciding, for an input graph G = 〈V, E〉 and
two subsets V1 and V2 of V , if there is a translation for which the image is exactly
V2 and with inverse images only in V1 is at least as difficult as the subgraph
isomorphism problem. Since it is also NP, it is NP-complete.

These results tell us that finding the translations on a graph is a hard problem. There-
fore, one may need to establish approximate methods to identify interesting transla-
tions on a given graph. In the following subsections, we focus on the particular case of
highly regular graphs, namely the torus graph and the grid graph. We develop generic
results on these graphs and extend them to any class of graphs.

4.3.2 Results on the torus graph

Let us first consider the case of the torus graph Gt = 〈Vt, E t〉 yielded by a dimensions
vector d ∈ N∗D. Such graphs are highly regular, and are often used to model classical
domains, such as the periodical time with a 1-dimensional torus graph, or the pixels of
a periodical image with a 2-dimensional torus graph. Additionally, what makes these
graphs interesting is the fact that they are constructed using an Euclidean space (see
Definition 25), associating each vertex with coordinates.

In this section, we aim to find a relation between translations defined on an Euclidean
space, and those defined on the graph, with no reference to the underlying metrics. To
do so, let us first formalize the notion of Euclidean translation on Gt:

Definition 75: Euclidean translation on the torus graph

An Euclidean translation ψEt on the torus graph is such that:

∃γ ∈ ND : ∀v ∈ Vt : ψEt(v) = v +d γ , (130)

where +d means ∀i ∈ J1, DK : v[i] +d[i] γ[i].

By construction of the torus graph, we have that ∀v ∈ Vt, ∀i ∈ J1, DK : {v,v +d δi} ∈ E t.

Remark 7

Note that this is also true for the negative Dirac vectors, defined to contain a
single non-null entry i being −1. As a consequence, the following results also
apply using such vectors.

Chapter 4. From graphs to translations 126

Using the coordinates associated with the vertices of the torus graph, we can show that
lossless translations on this graph consist in moving all vertices to the same direction:

Lemma 1: Contamination lemma on the torus graph

Let ψ ∈ Ψ∗
Gt be a lossless translation on the torus graph, with ∀i ∈ J1, DK :

d[i] ≥ 5. Let v1 ∈ Vt. Let us consider the Dirac vector δj = ψ(v1) −d v1. Then,
∀v2 ∈ Vt : ψ(v2) = v2 +d δj .

Proof: Lemma 1

We proceed in two steps:
1. First, let us show that ψ(v1 −d δj) = v1. By construction of the torus graph

in Definition 25, we have that {v1 −d δj ,v1} ∈ E t. Since ψ is EC, we must
have ψ(v1 −d δj) ∈ N (v1 −d δj). Also, since ψ is SNP, we must have
ψ(v1 −d δj) ∈ N (ψ(v1)). As a consequence, ψ(v1 −d δj) ∈ N (v1 −d δj) ∩
N (ψ(v1)).
The neighborhood of ψ(v1) is:

N (ψ(v1)) = N (v1 +d δj) = {v1 +d δj +d δ1,v1 +d δj −d δ1,

v1 +d δj +d δ2,v1 +d δj −d δ2,

. . . ,

v1 +d 2δj ,v1,

. . . ,

v1 +d δj +d δD,v1 +d δj −d δD} .

(131)

Similarly, the neighborhood of v1 −d δj is:

N (v1 −d δj) = {v1 −d δj +d δ1,v1 −d δj −d δ1,

v1 −d δj +d δ2,v1 −d δj −d δ2,

. . . ,

v1,v1 −d 2δj ,

. . . ,

v1 −d δj +d δD,v1 −d δj −d δD} .

(132)

Since ∀i ∈ J1, DK : d[i] ≥ 3, we have v1 +d δj +d δk 6= v1 −d δj +d δk (j 6=
k). Therefore, vertices with coordinates that differ by an entry in dimension
k 6= j cannot belong to the intersection by construction of the torus graph.
Similarly, because ∀i ∈ J1, DK : d[i] ≥ 5, we obtain that v1 +d 2δj cannot
be the same vertex as v1 −d 2δj , since they differ by αδj (α > 1). As a
consequence, N (v1 −d δj) ∩N (ψ(v1)) = {v1}, and thus ψ(v1 −d δj) = v1;

2. Now, let us consider a vertex v2 ∈ N (v1)\{v1 −d δj , v1 +d δj}. Let us show
that ψ(v2) = v2 +d δj . As in the step 1., comparing the neighborhoods of
v2 and ψ(v1) gives us N (v2) ∩ N (ψ(v1)) = {v1,v2 +d δj}. However, step
1. gives us that v1 is necessarily the image of v1 −d δj . Since ψ is injective,
it follows that ψ(v2) = v2 +d δj .

By induction, we conclude that for every vertex v2 ∈ Vt : ψ(v2) = v2 +d δj .

The constraint of having all dimensions in d being larger than 5 allows any lossless

127 4.3. Results on translations on graphs

translation to verify ∀v ∈ Vt : ψ(v) = v +d δj . For smaller graphs, lossless translations
can be found for which this property is not true. As an example, Figure 46 depicts

lossless translations on a torus of dimensions d =

[
4
4

]
that are not translations by a

Dirac vector. Still, note that any translation ψ such that ∀v ∈ Vt : ψ(v) = v +d δj is
lossless even for smaller grid graphs:

Figure 46 – Examples of lossless translations on a torus of dimensions d =

[
4
4

]
that are

not translations by a Dirac vector.

Note that a direct consequence of Lemma 1 is that there are as many lossless translations
as there are neighbors for a given vertex. By composing the lossless translations on the
torus graph, we obtain more complex functions, that induce the following monoid:

Definition 76: Monoid induced by Ψ∗
Gt

We call monoid induced by Ψ∗
Gt the minimum monoid containing Ψ∗

Gt with the
composition of functions as inner law.

Proposition 16

For torus graphs with ∀i ∈ J1, DK : d[i] ≥ 5, the monoid induced by Ψ∗
Gt is exactly

the set of Euclidean translations on the torus graph.

Proof: Proposition 16

A direct consequence of Lemma 1 is that lossless translations ψ ∈ Ψ∗
Gt on the

torus graph can be obtained by choosing a Dirac vector for a dimension i ∈ J1, DK
and applying the contamination. Therefore, ∀i ∈ J1, DK : ∃!ψ ∈ Ψ∗

Gt : ∀v ∈ Vt :
ψ(v) = v +d δi. We obtain that γ in Definition 75 is a linear combination of
vectors in {δ1, δ2, . . . , δD}. As a consequence, any Euclidean translation on the
torus graph can be written as a composition of lossless translations on the torus
graph, which are elements of the monoid induced by Ψ∗

Gt .

Chapter 4. From graphs to translations 128

4.3.3 Results on the grid graph

Let us now proceed with grid graphs Gg = 〈Vg, Eg〉 yielded by a dimensions vector
d ∈ N∗D. We can adapt the definition of Euclidean translation on the torus graph in
Definition 75 to grid graphs as follows:

Definition 77: Euclidean translation on the grid graph

An Euclidean translation ψEg on the grid graph Gg = 〈Vg, Eg〉 of dimensions
d ∈ N∗D is such that:

∃γ ∈ ND : ∀v ∈ Vg : ψEg(v) =
{

v + γ if v + γ ∈ Vg
⊥ otherwise

. (133)

Restricting the translation to Dirac vertices, we have the following loss:

Proposition 17

Let us consider the translation ψ ∈ ΨGg such that:

∀v ∈ Vg : ψ(v) =
{

v + δi if v + δi ∈ Vg
⊥ otherwise

, (134)

for δi the Dirac vector for dimension i. We have:

loss(ψ) =
∏

j∈J1, DK
j 6=i

d[j] . (135)

Proof: Proposition 17

By construction of the grid graph, two vertices are neighbors if their coordinates
differ by 1 or −1 along a single dimension. In particular, it is true for dimension i.
Therefore, any vertex v such that v+δi 6∈ Vg is such that v[i] = d[i]. The product
of dimensions that are different from i gives us the number of such vertices,
hence the loss of ψ.

Remark 8

As for torus graphs, note that all the results in this section also apply when con-
sidering negative Dirac vectors containing a single non-null entry i being −1.

As for torus graphs, we can introduce the monoid induced by the translations on the
grid graph as follows:

Definition 78: Monoid induced by ΨGg

We call monoid induced by ΨGg the minimum monoid containing ΨGg with the
composition of functions as inner law.

129 4.3. Results on translations on graphs

Proposition 18

The monoid induced by ΨGg includes the set of Euclidean translations on the
grid graph.

Proof: Proposition 18

Translations by Dirac vectors introduced in Proposition 17 exist for every dimen-
sion i. It follows that γ in Definition 4.3.3 is a linear combination of vectors in
{δ1, δ2, . . . , δD}. As a consequence, any Euclidean translation on the grid graph
can be written as a composition of translations on the grid graph, which are ele-
ments of the monoid induced by ΨGg .

However, contrary to the case of torus graphs in Proposition 16, translations in-
troduced in Proposition 17 are only a subset of ΨGg . Therefore, Euclidean trans-
lations are included in the monoid induced by ΨGg , but the converse is not true.

As an counterexample, for a Dirac vector δ1 and a grid graph such that ∀i ∈
J1, DK : d[i] ≥ 3, the translation ψ ∈ ΨGg such that:

∀v ∈ Vg : ψ(v) =





v + δ1 if (v + δ1 ∈ Vg) ∧


v 6=



1
. . .
1






⊥ otherwise

(136)

is not an Euclidean translation on the grid graph.

Now, we are interested in showing that Euclidean translations by δi (or −δi) are pseudo-
minimal on the grid graph. We restrict our study to a subclass of grid graphs such that
each dimension is large compared to the following ones, i.e.:

d[D] ≥ 3 ∧ ∀i ∈ J1, D − 1K : d[i] ≥ 2 + 2

D∏

j=i+1

d[j] . (137)

This hypothesis is necessary for the subsequent proofs. However, we conjecture the
following result:

Conjecture 1

The forthcoming results apply for grid graphs such that ∀i ∈ J1, DK : d[i] ≥ 6.

To ease exposition of the following results, we introduce the notion of slice of a grid graph
as follows:

Definition 79: Grid graph slice

We call slice of a grid graph, noted V i,jg the subset of vertices Vg such that have
their i coordinate equal to j, i.e.:

V i,jg = {v ∈ Vg | v[i] = j} . (138)

Chapter 4. From graphs to translations 130

This notion of graph slices, along with the upper bound on the loss, allows us to show
that some particular vertices necessarily have an image by a minimal translation:

Lemma 2

Let Gg be a grid graph respecting assumption (137). If ψ ∈ ΨGg is a minimal
translation, then:

∃i : ∀v ∈ V1,i
g ∪ V1,i+1

g : ψ(v) 6= ⊥ . (139)

Proof: Lemma 2

By Proposition 17, we have an upper bound on the loss of minimal translations
when translating vertices along a single dimension. When considering dimen-
sion 1, any minimal translation has therefore at most

∏
j∈J2, DK d[j] vertices that

have their image through ψ being ⊥. From assumption (137), we have that
d[1] ≥ 2 + 2

∏
j∈J2, DK d[j]. Since d[1] − 2

∏
j∈J2, DK d[j] + 1 > 1, there cannot

be a strict alternation of vertices with image in Vg, and vertices with image equal
to ⊥, as it would violate the upper bound on the loss. Therefore, there exist two
slices V1,i

g and V1,i+1
g that contain no vertex v such that ψ(v) = ⊥.

Additionally, we can characterize some of the vertices that have an image different from
⊥ as follows:

Lemma 3

Let Gg be a grid graph respecting assumption (137), and let ψ ∈ ΨGg be a minimal
translation. If V1,i

g and V1,i+1
g are two slices containing no vertex which image by

ψ is ⊥, then:
ψ(V1,i

g ∪ V1,i+1
g) 6⊂ V1,i

g ∪ V1,i+1
g . (140)

Proof: Lemma 3

Let us consider a vertex v1 ∈ V1,i
g ∪ V1,i+1

g . Proposition 8 tells us that there are
two cases to consider:

1. ∃n : ψn(v1) = ⊥. Since no vertex in V1,i
g ∪ V1,i+1

g has its image being ⊥, the
sequence (ψn(v1))n necessarily contains a vertex v2 6∈ V1,i

g ∪ V1,i+1
g ;

2. ∃n : ψn(v1) = v1. In this case, we distinguish the following situations,

illustrated on a
[
8
3

]
grid graph:

(a) Every vertex from V1,i
g is sent to its neighbor in V1,i+1

g , and every ver-
tex from V1,i+1

g is sent to its neighbor in V1,i+2
g .

V1,i
g V1,i+1

g

In this situation, there cannot exist a cycle such that ψn(v1) = v1 due

131 4.3. Results on translations on graphs

to injectivity of ψ. Note that this situation also applies in the case
where every vertex from V1,i

g is sent to its neighbor in V1,i−1
g , and every

vertex from V1,i+1
g is sent to its neighbor in V1,i

g ;

(b) Every vertex from V1,i
g is sent to its neighbor in V1,i+1

g , and every ver-
tex from V1,i+1

g is sent to its neighbor in V1,i
g .

V1,i
g V1,i+1

g

This causes all vertices in V1,i−1
g ∪ V1,i+2

g to be sent to ⊥, leading to a
loss twice higher than the upper bound for minimal translations given
in Proposition 17. Therefore we reach a contradiction;

(c) There exists a vertex v2 ∈ V1,i
g such that ψ(v2) ∈ V1,i+1

g , and a vertex
There exists a vertex v3 ∈ V1,i+1

g ∩ N (ψ(v2)) such that ψ(v3) ∈ V1,i
g .

Necessarily, ψ2(v2) = v3 and ψ2(v3) = v2, causing apparition of a
cycle of 4 vertices.

V1,i
g V1,i+1

g

Then, since all dimensions are larger than 3, at least one of the vertices
from this cycle has a neighbor v4 ∈ V1,i

g ∪ V1,i+1
g for which neighbor-

hood cannot be preserved. As a consequence, there exists a vertex in
V1,i
g ∪V1,i+1

g that has its image equal to ⊥, and we reach a contradiction.
Additionally, note that in the case where the diedges of opposite di-
rections are not adjacent, there is necessarily at least a vertex of which
image is ⊥ between them;

(d) Every vertex from V1,i
g (resp. V1,i+1

g) is sent to a neighbor in V1,i
g (resp.

V1,i+1
g). If the corresponding diedges are of opposite directions, this

eventually leads to a turn, in this case situation (c) concludes. If they
take the same direction, then due to border effects, at least a vertex in
V1,i
g ∪ V1,i+1

g has its image equal to ⊥, leading to a contradiction.

Chapter 4. From graphs to translations 132

V1,i
g V1,i+1

g

V1,i
g V1,i+1

g

V1,i
g V1,i+1

g

Note that all these situations lead to a contradiction. Therefore, a minimal
translation ψ cannot lead to the creation of a cycle such that ψn(v1) = v1.
As a consequence, only case 1. applies, and ψ(V1,i

g ∪V1,i+1
g) 6⊂ V1,i

g ∪V1,i+1
g .

The enumeration of cases in the proof of Lemma 3 gives us a characterization of the
orientation of the edges between these vertices:

Corrolary 2

Let Gg be a grid graph respecting assumption (137), and let ψ ∈ ΨGg be a minimal
translation. Let V1,i

g and V1,i+1
g be two slices containing no vertex of which image

through ψ is ⊥. Every vertex from V1,i
g is sent to its neighbor in V1,i+1

g , and every
vertex from V1,i+1

g is sent to its neighbor in V1,i+2
g .

Proof: Corrolary 2

This is a direct consequence of the proof of Lemma 3. Any other case corresponds
to the situations described by cases 2.(b), 2.(c) and 2.(d) of the proof of Lemma 3,
leading to existence of vertices of which image through ψ is ⊥ in V1,i

g ∪ V1,i+1
g .

133 4.3. Results on translations on graphs

Using these results, we can show that all vertices located before these two adjacent slices
do not have their image equal to ⊥:

Lemma 4

Let Gg be a grid graph respecting assumption (137), and let ψ ∈ ΨGg be a minimal
translation. Let V1,i

g and V1,i+1
g be two slices containing no vertex of which image

by ψ is ⊥:
∀j ∈ J1, i+ 1K : ∀v ∈ V1,j

g : ψ(v) 6= ⊥ . (141)

Proof: Lemma 4

From the proof of Lemma 3, there cannot exist any cycle including vertices in
V1,i
g ∪V1,i+1

g . As a consequence, for every vertex v1 ∈ V1,i
g , the sequence (ψn(v1))n

eventually leads to ⊥. Since the cardinal of V1,i
g is

∏
j∈J2, DK d[j], there cannot

exist a vertex v2 in slices V1,j
g (j < i) such that ψ(v2) = ⊥, since ψ would not be

minimal, thus leading to a contradiction.

Using this result, it follows that translations by Dirac vectors along the first dimension
of the grid are minimal:

Proposition 19

Let ψ1 ∈ ΨGg be the Euclidean translation by δ1 as introduced in Proposition 17
on a grid graph Gg respecting assumption (137). We have that ψ1 is minimal.

Proof: Proposition 19

Let ψ2 ∈ ΨGg be a minimal translation on Gg. Let V1,i
g and V1,i+1

g be two slices
containing no vertex of which image through ψ2 is ⊥. Lemma 4 tells us that no
vertex v in slices V1,j

g (j ≤ i+1) has its image equal to ⊥. Additionally Lemma 3
and Corrolary 2 indicate that for these vertices, ψ2(v) = v + δ1.

Now, let us consider the minimum k > i + 1 such that ∃v1 ∈ V1,k
g : ψ2(v1) = ⊥.

Corrolary 2 tells us that every vertex from V1,k−1
g has its image through ψ2 in

V1,k
g . Now, let us distinguish two cases:

1. If k = d[1], then ψ2 = ψ1, for which the loss is equal to the upper bound on
losses for minimal translations;

2. If k < d[1], then we proceed by contradiction. By Corrolary 2, we have
that ψ2(v1 − δ1) = v1. Since N (v1 − δ1) ∩ N (v1 + δ1) = {v1}, and since
ψ2(v1) = ⊥, we obtain that v1 + δ1 cannot be the image of any vertex.
As a consequence, we have a sequence (ψn2 (v1 + δ1))n that ends with ⊥.
Therefore, the loss of ψ2 is at least 1+

∏
j∈J2, DK d[j], and ψ2 is not minimal.

Chapter 4. From graphs to translations 134

Similarly, we can show that translations by Dirac vectors along the other dimensions of
the grid are pseudo-minimal:

Corrolary 3

Let Gg be a grid graph respecting assumption (137). Euclidean translations by δi
(i ∈ J1, DK) are pseudo-minimal.

Proof: Corrolary 3

Let us denote by ψi the translation of every vertex by δi as introduced in Propo-
sition 17. Proposition 19 shows that ψ1 is minimal, hence pseudo-minimal.

Now, let us consider a translation ψ ∈ ΨGg such that ∀v ∈ Vg : ψ(v) 6= v + δ1.
For such translations, we can perform the same reasoning as above, leading to
ψ2 being pseudo-minimal. However, in the case where such a vertex exists, we
can have the situation where ψ2 ≺ ψ. The following illustration depicts such a
possible ψ:

In this situation, ψ is not pseudo-minimal since ψ ≺ ψ1. It follows that ψ2 is
pseudo-minimal. The same reasoning can be made for all higher dimensions.

Finally, recall from Conjecture 1 that we believe all the results in this section apply for
grid graphs such that ∀i ∈ J1, DK : d[i] ≥ 6. Interestingly, for smaller dimensions,
counterexamples as depicted in Figure 47 can be found. The depicted translations are
minimal, while not being Euclidean translations by δi as introduced in Proposition 17:

Figure 47 – Counterexamples for grid graphs of dimensions
[
3
3

]
(left),

[
4
4

]
(middle) and

[
5
5

]
(right). For such graphs, the translations that are depicted are minimal, while not

being Euclidean translations by δi as introduced in Proposition 17.

135 4.3. Results on translations on graphs

4.3.4 Extension to generic graphs

In Proposition 4.3.1, we have shown that finding translations is an NP-complete prob-
lem. However, Section 4.3.2 and Section 4.3.3 have shown that in some particular
cases, identifying the minimal or pseudo-minimal translations is possible in a mini-
mum amount of time.

In this section, we are interested in generalizing the results we obtained for grid graphs
to generic graphs. To do so, let us first show the following result:

Proposition 20

Let G = 〈V, E〉 be a graph of adjacency matrix A, and let ψ ∈ ΨG be a translation

on G. Let
−→G ψ

= 〈V,−→E ψ〉 be the digraph associated with ψ, of adjacency matrix
Aψ. The following propositions are equivalent:

1. For every connected component of vertices V1 ⊆ V in G, we have either
∀v ∈ V1 : ψ(v) = ⊥, or ∀v ∈ V1 : ψ(v) 6= ⊥;

2. AAψ = AψA.

Proof: Proposition 20

Without loss of generality, let us consider that G is connected, i.e., has only one
connected component.

1.⇒ 2.:

• If ψ = φ⊥, then Aψ is a matrix full of zeros, and the equality in 2. holds;

• If ψ is lossless, let us consider a vertex v1 ∈ V . The equality in 2. is the
matrix representation of N (ψ(v1)) = {ψ(v2) | v2 ∈ N (v1)}. Since transla-
tions are SNP, necessarily we have that {v1, v2} ∈ E ⇔ {ψ(v1), ψ(v2)} ∈ E ,
unless ψ(v1) = ⊥ or ψ(v2) = ⊥. Since we consider here lossless transla-
tions, we have the equivalence. As a conclusion, for any vertex v1 ∈ V , the
translation of neighbors of v1 (which in matrix notation translates to AψA)
are the neighbors of the translation of v1 (which translates to AAψ);

2.⇒ 1.: If ψ is not lossless, there exists v such that ψ(v) = ⊥. To verify equality 2.,
all neighbors of v must have their image equal to ⊥. By contamination, ψ = φ⊥.

Following Proposition 20, and except for translation φ⊥, it is interesting to note that
the number of non-null entries of AAψ − AψA is low when the loss of ψ is low. In
particular, we remark the following properties:

1. For every vertex v1 ∈ V such that ∄v2 ∈ V : ψ(v2) = v1, we have:

∀v3 ∈ V : (AAψ)[v3, v1] = 0 ; (142)

2. For every vertex v1 ∈ V such that ψ(v1) = ⊥, we have:

∀v2 ∈ V : (AψA)[v1, v2] = 0 . (143)

Basically, AAψ is a reorganization of the columns of A, except for vertices that start
a path, for which the associated column becomes null (item 1). Similarly, AψA is a
reorganization of the rows of A, except for vertices that have their image equal to ⊥,
for which the associated row becomes null (item 2). It follows that there are a number

Chapter 4. From graphs to translations 136

of non-null entries in AAψ −AψA proportional to the number of neighborhoods that
are lost (due to a neighbor having its image equal to ⊥) or created (due to a neighbor
having no inverse image by ψ).

From these remarks, we can derive a method to estimate translations that minimize the
loss, through the following optimization problem, where A∗

ψ is the adjacency matrix
of the digraph associated with the target translation, C is a constant, and ‖·‖1 is the
entrywise ℓ1 norm for matrices:

A∗
ψ = argmin

Aψ∈{0, 1}N×N

‖AAψ −AψA‖1 s.t.





∀i, j ∈ J1, NK : Aψ[i, j] ≤ A[i, j]

∀j ∈ J1, NK :
N∑
i=1

Aψ[i, j] ≤ 1

∀i ∈ J1, NK :
N∑
j=1

Aψ[i, j] ≤ 1

‖Aψ‖1 = C

.

(144)

The first constraint imposes non-null entries of Aψ to be a subset of non-null entries of
A, thus enforcing the EC property of translations. Additionally, the constraints enforc-
ing rows and columns to sum to at most 1 force injectivity of the solution. Finally, the
fourth constraint is necessary to avoid the trivial solution where Aψ is a matrix full of
zeros. Since ψ is injective, we have C ∈ J0, NK.

Note that no constraints enforce the SNP property of the solution, which can thus be a
transformation that is not a translation. Still, minimizing the sacrifice of this property
is the objective of the problem, as explained above. The solution of (144) is therefore an
EC transformation that is as close as possible to being SNP. We will thus call solutions
to (144) pseudo-translations.

Due to the sacrifice of SNP, and because it is necessary to fix a norm for Aψ, we need a
measure to describe which value of C is the correct one. In practice, we solve (144) for
every possible value of C in J0, NK, and keep the associated pseudo-translation ψC that
minimizes the following quantity:

|E lost ∪ Ecreated| , (145)

with:

E lost = {{v1, v2} ∈ E | (ψC(v1) = ⊥) ∨ (ψC(v2) = ⊥) ∨ ({ψC(v1), ψC(v2)} 6∈ E)} ,
(146)

and:

Ecreated = {{v1, v2} 6∈ E | (ψC(v1) 6= ⊥) ∧ (ψC(v2) 6= ⊥) ∧ ({ψC(v1), ψC(v2)} ∈ E)} .
(147)

The quantity measured by (145) is the exact error of the pseudo-translation ψC , i.e., it
is the total number of neighborhoods that are lost or created by ψC , and should not be.
Note that this quantity does not depend on C. Therefore, it provides a way of selecting
the best pseudo-translation found, without a bias related to the imposed norm in (144).

Once a pseudo-translations ψ1 is found by solving (144) with the value ofC minimizing
(145), we add additional constraints to (144) in order to prevent subsequent solutions
to share edges with ψ1. While this prevents some pseudo-minimal translations to be
found in the general case — consider for instance the case of the complete graph —
this gives us a greedy and efficient algorithm to find a set of pseudo-translations, by
increasing progressively the set of constraints to restrict the possible neighborhood of

137 4.4. Finding translations on complex graphs

previously found pseudo-translations. In more details, let {ψ1, . . . , ψi} be the i first
translations found by solving (144). For an optimization variable Aψ, such constraints
are as follows:

∀ψ ∈ {ψ1, . . . , ψi}, ∀v ∈ V : Aψ[v, ψ(v)] = 0 . (148)

Algorithm 1 summarizes the whole process to identify pseudo-translations on a graph:

Algorithm 1: findPseudoTranslations (G)
result := {};
do

ψbest := φ⊥;
errorbest := ∞;
foreach C ∈ J0, NK do

ψ := solve (144) with ‖Aψ‖1 = C;
error := compute (145) for ψ and C;
if error ≤ errorbest then

ψbest := ψ;
errorbest := error;

result := result ∪ {ψbest};
Update (144) with constraints (148) using result;

while ψbest 6= φ⊥;
return result;

Although we will not study the following, it is interesting to remark that the constraints
in (144) can be relaxed more to sacrifice the EC property in some extent. This would
allow pseudo-translations to artificially create edges in the graph in order to minimize
the overall error. In such case, the corresponding optimization problem can be written
as follows:

A∗
ψ = argmin

Aψ∈{0, 1}N×N

‖AAψ −AψA‖1 + α‖A−Aψ‖1

s.t.





∀j ∈ J1, NK :
N∑
i=1

Aψ[i, j] ≤ 1

∀i ∈ J1, NK :
N∑
j=1

Aψ[i, j] ≤ 1

‖Aψ‖1 = C

,

(149)

where α is a regularization parameter, and ‖A−Aψ‖1 replaces the constraint enforcing
non-null entries of Aψ to be a subset of those of A, by encouraging it in the objective
function. Note that it also requires to update (145) to take the number of violations of
the EC property into consideration.

4.4 Finding translations on complex graphs

In this section, we first evaluate the results obtained with Algorithm 1 for various fam-
ilies of graphs. We illustrate that it finds the pseudo-minimal translations on a grid
graph, and then we study the impact of small transformations of such graph on the
translations that are found. Finally, we apply Algorithm 1 to identify translations on
randomly generated graphs following a Watts-Strogatz model. In our experiments, Al-
gorithm 1 is implemented using CVX [GBY08] package for MATLAB [MAT12].

Chapter 4. From graphs to translations 138

4.4.1 Experiments on the grid graph

First, we consider a grid graph of dimensions d =

[
15
5

]
respecting assumptions (137).

Figure 48 depicts the errors (145) obtained for each value of C on this graph, as well as
the pseudo-translations that correspond to the norm minimizing this error:

0 10 20 30 40 50 60 70
0

50

100

C

E
rr

or

(a) First pseudo-translation found by Algorithm 1 for C = 70: ψ
1
.

0 10 20 30 40 50 60 70
0

50

100

C

E
rr

or

(b) Second pseudo-translation found by Algorithm 1 for C = 70: ψ−1

1
.

139 4.4. Finding translations on complex graphs

0 10 20 30 40 50 60 70
0

50

100

C

E
rr

or

(c) Third pseudo-translation found by Algorithm 1 for C = 60: ψ
2
.

0 10 20 30 40 50 60 70
0

50

100

C

E
rr

or

(d) Fourth pseudo-translation found by Algorithm 1 for C = 60: ψ−1

2
.

Figure 48 – Pseudo-translations found by Algorithm 1 on a grid graph of dimensions

d =

[
15
5

]
. The fifth pseudo-translation found, φ⊥, is not depicted. The left column

depicts the error in (145) as a function of C. Values of (145) for which no solution exists
are not depicted on the curve. The right column represents the translation associated
with the value of C minimizing this quantity.

As expected, the algorithm finds all the pseudo-minimal translations on the grid graph.
Similar results have been observed for grid graphs of different dimensions, provided
that all dimensions are larger than 6, corresponding to Conjecture 1.

Chapter 4. From graphs to translations 140

To evaluate whether the algorithm is robust to small variations of the graph, we con-

sider a deformation of the grid graph Gg = 〈Vg, Eg〉 of dimensions d =

[
6
6

]
. More

precisely, we build a deformed grid graph Ggσ = 〈Vgσ, Egσ〉 as follows:

• ∀v ∈ Vg : v + ǫ ∈ Vgσ, where ǫ ∼ N
(
0, σ2ID

)
;

• ∀{v1,v2} ∈
(Vgσ

2

)
: ({v1,v2} ∈ Egσ) ⇔

(
d(v1,v2) <

√
2+1
2

)
, where d(v1,v2) is the

Euclidean norm between vertices v1 and v2.

Then, we solve (144) once on this deformed grid to find a pseudo-translation ψ, of
associated matrix Aψ. Let ψi be a translation by δi on a non-deformed grid graph as in-
troduced in Proposition 17, of associated matrix Aψi

. The following quantity measures
the difference between ψ and the closest translation ψi (or ψ−1

i):

min
i∈J1, DK,j∈{−1, 1}

∥∥∥Aψ
j
i
−Aψ

∥∥∥
1

(150)

where j allows the consideration of inverse Dirac translations.

Figure 49 depicts the difference (150) between ψ and the closest translation by a Dirac,
as a function of the standard deviation σ controlling the deformation of the grid. For
every value of σ ∈ [0.03, 0.12] with a range of 0.005, we compute the mean difference
for 100 randomly deformed grid graphs:

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

5

10

15

20

25

30

σ

M
ea

n
va

lu
e

Difference
Added edges
Removed edges

Figure 49 – Mean difference (150) between the first solution of (144) and a translation

by a Dirac vector, as a function of the deformation of a grid of dimensions d =

[
6
6

]
.

From Figure 49, we can see that small modifications on the grid do not strongly impact
the translations that are found on it. In particular, around locations in the graph where
an edge has been suppressed, we have observed that the solution of (144) tends to favor
sending close vertices to ⊥ rather than modifying the whole translation. However,
when the modifications become too strong, the best solution becomes a translation that
is not related to any translation by a Dirac vector, and we observe a strong increase of
the difference (150).

141 4.4. Finding translations on complex graphs

In our observations, we have noticed that addition of edges has a smaller impact on
the difference than suppression. This can easily be explained by the fact that relaxation
of the problem by solving (144) sacrifices the SNP property, but still enforces pseudo-
translations that are found to be EC. Therefore, when an edge is added, it results in a
slightly larger loss in neighborhood, that may not change the overall result. On the con-
trary, when an edge is removed, as the EC property must be met, this implies sending
vertices to ⊥ or changing the whole solution.

4.4.2 Translations on random graphs

In the previous experiments, we considered grid graphs, or small variations of it. In this
section, we apply Algorithm 1 to randomly generated graphs in order to find pseudo-
translations on different structures.

More particularly, we study the Watts-Strogatz model (see Definition 31). Figure 50
depicts the pseudo-translations that are found for a Watts-Strogatz graph of N = 20
vertices with K = 2 and P = 0.1:

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(a) P = 0.1, first pseudo-translation found for C = 18.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(b) P = 0.1, second pseudo-translation found for C = 17.

Chapter 4. From graphs to translations 142

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(c) P = 0.1, third pseudo-translation found for C = 18.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(d) P = 0.1, fourth pseudo-translation found for C = 13.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(e) P = 0.1, fifth pseudo-translation found for C = 4.

143 4.4. Finding translations on complex graphs

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(f) P = 0.1, sixth pseudo-translation found for C = 6.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(g) P = 0.1, seventh pseudo-translation found for C = 2.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(h) P = 0.1, eighth pseudo-translation found for C = 2.

Figure 50 – Pseudo-translations found for random graphs following a Watts-Strogatz
model with parameters K = 2 and P = 0.1. Error is computed according to (145). The
translation that sends every vertex to ⊥ is not depicted.

It appears that Algorithm 1 first finds pseudo-translations that are very significant.
In particular, since P is low, the graph is close to a ring graph, and the first pseudo-
translations that are found tend to follow edges along the border of the graph. After the

Chapter 4. From graphs to translations 144

first few, pseudo-translations that are found appear to be residuals, as they can only use
the edges that do not appear in the previously found ones, due to the greedy strategy of
Algorithm 1. Still, these residual pseudo-translations favor edges linking vertices that
belong to subsets of higher connectivity when it is possible, resulting in appearance of
small cycles or small paths.

Figure 51 depicts the results we obtain for Watts-Strogatz graphs associated with larger
probabilities P ∈ {0.3, 0.5, 0.7, 0.9}. Obviously, the results are not as good as for low
values of P , as it can be seen from the curves in Figure 51. However, it is interesting
to notice that the pseudo-translations continue to consist of paths in most cases and
therefore make sense, as vertices sharing common neighbors tend to be sent from one
to another:

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(a) P = 0.3, first pseudo-translation found for C = 17.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(b) P = 0.3, third pseudo-translation found for C = 14. The second pseudo-translation found
was the inverse of the first.

145 4.4. Finding translations on complex graphs

0 5 10 15 20
0

20

40

C

E
rr

or

(c) P = 0.5, first pseudo-translation found for C = 13.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(d) P = 0.5, second pseudo-translation found for C = 12.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(e) P = 0.7, first pseudo-translation found for C = 17.

Chapter 4. From graphs to translations 146

0 5 10 15 20
0

20

40

C

E
rr

or

(f) P = 0.7, third pseudo-translation found for C = 14. The second pseudo-translation found
was the inverse of the first.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(g) P = 0.9, first pseudo-translation found for C = 16.

0 5 10 15 20
0

10

20

30

40

C

E
rr

or

(h) P = 0.9, second pseudo-translation found for C = 14.

Figure 51 – Pseudo-translations found for random graphs following a Watts-Strogatz
model with parameters K = 2 and P ∈ {0.3, 0.5, 0.7, 0.9}. Error is computed according
to (145). For each value of P , only the two first distinct pseudo-translations that are
found are depicted.

147 4.5. Summary of the chapter

4.5 Summary of the chapter

In this chapter, we have proposed a definition of translations on graphs that, contrary
to existing definitions, matches the intuitive translations on Euclidean spaces. Such
translations are defined to match some neighborhood-preserving properties, thus keep-
ing the overall coherence of the signal that is translated, if possible without altering it.
When the signal cannot be altered, we have relaxed our definition to allow the disap-
pearance of some signal entries, as one would expect when translating an image on a
non-toric grid of pixels for instance.

However, we have shown in this chapter that identification of these translations on
graphs is an NP-complete problem. To circumvent this, we have introduced the notion
of pseudo-translations, that sacrifice as little neighborhoods as possible. Finding these
pseudo-translations can be done by solving an optimization problem for various matrix
norms, and keeping the best norm found. Algorithm 1 details the whole process to
identify them.

Finally, we have illustrated these translations on various graphs. On grid graphs, Al-
gorithm 1 succeeds at finding the Euclidean translations introduced in Definition 4.3.3.
Also, when studying small variations of the grid, our experiments have shown that the
same translations could still be found, making them resistant to small noise. Finally,
translations on partially regular graphs — such as Watts-Strogatz random graphs with
low rewiring probability — appear to be quite regular, which is a desirable behavior.

We believe this work to have applications in tasks such as classification. Identifying
translations on arbitrary graphs could allow the definition of adapted kernels for con-
volutional neural networks, in order to identify a same object at various locations of the
graph. This idea is explored in the next chapter.

Chapter 4. From graphs to translations 148

149

Chapter 5

Application to signals classification

Contents
5.1 Convolutional neural networks . 151

5.1.1 Some methods for classification of signals 151
5.1.2 Convolutional neural networks 152
5.1.3 Related work in extending convolutional neural networks to

irregular domains . 154
5.2 A complete example on images . 156

5.2.1 Graph inference from data . 157
5.2.2 Identification of translations on the graph 158
5.2.3 Definition of the convolution matrix of a convolutional neural

network . 158
5.2.4 Classification results . 160
5.2.5 Perspectives: the interest of identifying circulant matrices . . . 162

5.3 Summary of the chapter . 163

Chapter 5. Application to signals classification 150

In this chapter, we explore the combination of the two previous chapters to improve
classification of signals on graphs.

Classification is a classical task in machine learning, consisting in associating a label
— from a given set of labels — with a signal to classify. In more details, classification
is an instance of supervised learning problems. In supervised learning, a function is
learned from some labeled data (the training set), and is then applied to new unlabeled
examples (the test set). In the case of classification, the function learned is generally
called a classifier, as it takes a signal as an input and outputs a label for it indicating
what the signal represents.

Examples of applications of classification are numerous, and are widely diffused in sci-
entific vulgarization platforms nowadays. A well known example of classifier is Google
Inception [Sze+16]. This classifier is based on deep learning, a particular subfamily of ar-
tificial neural networks, consisting in numerous layers as depicted in Figure 52:

Figure 52 – Deep convolutional neural network used by the Google Inception classifier
[Sze+16]. Figure taken from [Shl16].

In this chapter, a subfamily of neural networks we are particularly interested in are
convolutional neural networks [LB+95]. These networks have proven to be very efficient
in object classification thanks to the ability to learn representations from different lo-
cations in input signals, which through a slight misuse of language is generally called
shift invariance.

The idea of this chapter is to explore how graph inference from data, followed by trans-
lations identification on the inferred graph, can help in a classification procedure of the
initial signals. In few words, convolutional neural networks perform their detection by
translating a kernel on the image under study. Identifying translations on a non-regular
graph thus allows the same approach for signals evolving on complex topologies.

This chapter is organized as follows:

1. First, we introduce convolutional neural networks. In particular, we explain how
they perform and introduce some related work on extending such networks to
study data on irregular graphs;

2. Then, we study a complete example, in which a graph is inferred from images
taken from the CIFAR-10 dataset [KH09]. Translations on this graph are then
identified (see Chapter 4), and are used to move a kernel on the graph to define
an adapted convolutional neural network. We show that in the case of image
signals, our approach performs classification better than other methods that also
do not use the information that signals are images. Additionally, we highlight
that the performance we obtain does not suffer from shuffling the pixels of the
input images, contrary to classical convolutional neural networks.

151 5.1. Convolutional neural networks

5.1 Convolutional neural networks

5.1.1 Some methods for classification of signals

Methods for classifying signals are numerous, as the problem has received a lot of in-
terest since its inception in the work of Fisher [Fis36; Fis38]. Among the most classical
methods (see [Kot07] for a more complete review of existing methods), we distinguish
the following ones:

• K-nearest neighbors (K-NN): For each signal to classify, we find the K closest
signals from the training set according to a certain distance function. The label
associated with this signal is then the one appearing most in these close samples;

• Support vector machines (SVM): This method aims at finding an hyperplane in
the space where data is defined, to create a delimitation between samples of the
various classes. Signals to classify are then associated with a label by considering
the side of the hyperplane they lie on;

• Classification trees: The training data is recursively partitioned into homoge-
neous subsets, thus forming a tree of which leaves correspond to the various
classes. When a signal is to be classified, search is performed starting from the
root of the tree, and edges are taken iteratively in the direction of the subset that
corresponds the most to the data to classify. Finally, once a leave is reached, the
corresponding label is associated with the signal;

• Random forests: This is an extension of classification trees. A certain number of
trees are — partly randomly — created from the training data. Classification of a
signal is then performed on each tree, and a majority vote decides the final label
to associate with the signal;

• Naive Bayes: This approach computes the probability for each feature of the train-
ing data to be representative of each class. Classification of unknown examples
is then performed by finding the class with the maximum likelihood for every
signal to classify.

There are numerous other methods, and additionally dozens of declinations of these
methods. Additionally, learning can also be done using cross-validation, meaning that
the training set is splitted into two parts: the training set and the validation set. In this
case, learning is performed on a smaller set of samples, but the ability of the classifier
to generalize to unseen examples is evaluated on the validation set.

Another family of classifiers we are interested in is the family of artificial neural net-
works. In their most simple form, such classifiers consist of three main parts:

• An input layer, consisting of as many vertices — sometimes called neurons 1 due
to the analogy with biological neural networks — as there are entries in the data
to classify;

• Some hidden layers, of which number and sizes — i.e., numbers of neurons per
layer — are chosen arbitrarily;

• An output layer, generally [Tig+16] consisting of one neuron per class.

1. When referring to vertices in layers of neural networks, we will use this term not to confuse with
vertices of a graph.

Chapter 5. Application to signals classification 152

Classically, each neuron is connected to all neurons of the next and previous layers with
edges. Figure 53 presents an example of an artificial neural network, built to classify
data defined in R8 into 6 distinct groups:

Input Hidden Output

Figure 53 – Example of an artificial neural network. The input layer corresponds to
signals in R8, which are to be classified between six labels. The network consists of four
hidden layers, each containing a variable number of neurons.

Training of such network is performed by associating weights to the various edges.
Generally, this is done using a method called back-propagation, consisting in a correc-
tion of the weights to reduce the classification error during the training process.

Then, a signal is classified by feeding it to the network, and advancing from the input
layer to the output one. At each layer, each neuron computes a linear combination
of the signal entries at the previous layer, weighted using the connections between
these layers. Once the output layer is reached, the neuron that has the maximum value
activates, which gives the label to associate with the input signal.

Note that the description above is a highly simplified presentation of the process. As
a matter of fact, there are numerous other specificities, such as the activation function
used, or the presence of non-linearities when computing the activation score. Addi-
tionally, the initial weights distribution, or the number and sizes of layers, as well as
the stop condition for the back-propagation also impact the classifier’s performance.

5.1.2 Convolutional neural networks

Convolutional neural networks are in many aspects similar to the generic description
of artificial neural networks given in Section 5.1.1. Such networks were designed to

153 5.1. Convolutional neural networks

process images, and therefore use the information that input signals are defined on
a grid of pixels to drastically reduce the number of edges in the network, hence the
number of variables.

Convolutional neural networks use the property that objects in images are very local-
ized. Therefore, detection of a pattern can be performed by shifting a small, localized
kernel on the image. In such networks, neurons from convolutional layers represent a
local point of view. Therefore, a complete connection pattern as in Figure 53 is not nec-
essary, which reduces the connectivity between all convolutional layers in the network.

As an example, Figure 54 depicts a portion of a convolutional neural network, obtained
by translation of a 3× 3 kernel on an input image:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Input Hidden Output

Figure 54 – Example of a portion of a convolutional neural network. Connections be-
tween the input layer and the first hidden layer are defined such that every neuron
from the input layer associated with a pixel located in a 3× 3 kernel is connected to the
neuron in the first hidden layer associated with the center of the kernel.

Again, there are numerous details that will not be introduced in this manuscript. The
interested reader may consult Stanford’s CS231n course on convolutional neural net-
works for visual recognition [LJY17] for a more complete description of the mechanisms
used in convolutional neural networks.

Still, it is important to notice that in many convolutional neural networks, there are
some non-linearities between layers, that have proven to improve the learning process
of the network. In particular, max-pooling is a non-linear, sample-based discretization
process that allows one to reduce the dimension of information between two consec-

Chapter 5. Application to signals classification 154

utive layers. When it comes to images, the sliding kernel is generally a rectangle of a
few pixels, that can easily be divided into smaller rectangles. Then, for each of these
smaller windows, the maximal output of the covered pixels is kept as a single value
representing the window. Figure 55 illustrates this notion:

Figure 55 – Pooling reducing the dimension of the image from 224×224 pixels to 112×64
pixels, while keeping the same number of attributes per pixel (left). Max-pooling, in
which a 4 × 4 window is reduced to 2 × 2, with entries represented by the maximal
value in a part of the larger window (right). Figure taken from [LJY17].

Max-pooling however is not easy to define if the sliding kernel is not regular, which will
be the case when we replace square kernels with custom ones on irregular graphs later
in this chapter. An interesting option based on graph signal processing tools would be
to use downsampling, which is a common dimensionality reduction technique consist-
ing in selecting a subset of the vertices of a graph. However, this is left for future work,
and we choose in this chapter to consider convolutional neural networks that do not
feature any max-pooling function.

The parameters defining the structure of a neural network are generally found using a
grid search, which can be understood as a near-exhaustive search in the space of param-
eters. For cost and time reasons, we do not have the ability to perform this search in our
experiments. Therefore, in the subsequent sections, we perform our tests on a convo-
lutional neural network found by hand, by tweaking the various network parameters.
Our results appear to be interesting enough, but we believe they could be improved
using a more complex architecture found through a grid search on the parameters.

5.1.3 Related work in extending convolutional neural networks to irregular
domains

Being able to extend convolutional networks to generic graphs is currently receiving a
lot of interest, as the potential applications are countless due to the observed perfor-
mance of convolutional architectures for images or time signals. For this reason, some
methods have recently been developed (see [Bro+17] for an overview of methods), that
we group according to the convolution used. Note that none of the following methods
defines translations on the graph, and therefore need a new definition for the convolu-
tion operator that allows the creation of the convolutional neural network. Since our
method uses translations inferred on the graph, convolution can be done exactly as in
the classical case [VGM16].

155 5.1. Convolutional neural networks

Convolution in the spectral domain

The missing results that would allow a proper definition of convolutional layers for
graphs are a correct translation, or a proper convolution operator. We have shown
in Section 2.3.1 that such operators were defined analogously to some properties in
classical signal processing. As a reminder, translation is defined as a convolution with
a Dirac delta signal on the graph, and convolution of signals on graphs is performed by
doing an entrywise product in the spectral domain.

Using these graph signal processing tools in place of their Euclidean equivalents is the
approach taken by Bruna et al. in [Bru+13], followed by Henaff et al. in [HBL15]. While
their work provides an interesting idea on how to generalize convolutional neural net-
works to irregular data, the convolution is done using the spectral domain [Shu+13],
and does not preserve the values and locality of the filter, as illustrated in Figure 41.

Following the same line, Defferrard et al. [DBV16] correct this locality problem by con-
sidering polynomial filters, which have the property to keep the localization properties
after application of the translation operator presented in Definition 47. Still, the con-
volution used does not enforce the entries of the filters used to remain identical, as
operations are performed in the spectral domain.

Convolution in the graph domain

More recently, Puy et al. [PKP17] have proposed a method that performs in the graph
domain only. Convolution is performed by considering small patches around a vertex
and performing a scalar product in the manner of [NAK16; Mon+16].

Translation however is not performed, and kernels are generated in various places of
the graph by considering a given number of hops around a chosen center vertex. This
is a problem, since by doing this, the authors cannot make a mapping between the
vertices that belong to the various kernels, thus making the method not invariant by
translation. Such a mapping can be decided arbitrarily [AT15], with random walks
[HCQ17], or can be learned simultaneously [VGC17].

Puy et al. [PKP17] consider a slightly different problem, where the graph can change
over time, and its various forms are known a priori. For this reason, they use a convolu-
tional neural network architecture that takes a signal to classify as an input, as well as
a graph on which the signal is defined. Other methods exist that only take a graph as
an input [Duv+15; NAK16], which is a different problem.

In our approach, we do not assume knowledge of the underlying graph, which we infer
from the data to classify. The convolutional neural network we define has therefore a
more classical shape, as it takes a signal to classify as an input, and outputs a label for
it. Also, the mapping is directly implied by the translation, which makes it equivalent
to classical convolution on images.

The method we propose

Contrary to the methods above, the one we propose consists in inferring a graph, then
identifying translations on the graph, and using these translations to determine a con-
volution operator for a convolutional neural network in the manner of classical images
[VGM16]. It has the following properties:

Chapter 5. Application to signals classification 156

• It performs in the graph domain only;

• Since our translations enforce neighborhood preservation properties, a translated
kernel keeps the same shape and the same mapping, except for pixels having no
image through the translation. It is then possible to define a tensor representing a
convolution-like operator exactly as one would do for images.

5.2 A complete example on images

In this section, we apply our method in Section 5.1.3 to improve classification of signals.
We consider here the CIFAR-10 dataset [KH09], consisting of a training set of 50.000
images of 32 × 32 images, and evaluated on a test set of 10.000 images. In this dataset,
there are ten classes of objects, as summarized in Figure 56:

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure 56 – Examples of images representing the ten classes from the CIFAR-10 dataset.

On this dataset, when using the information that signals are images, numerous solu-
tions exist that reach high correct classification rates (96.53% for [Gra14], or more re-
cently, 97.28% for [DPQ17]). However, state of the art methods that do not use this
information reach a correct classification rate of 72.7% at most [CCM16]. Methods that
do not use convolutions can reach 78% accuracy when adding deformations on the im-
ages, but reach 70% only when they do not consider any prior on the signals [LMK15].

In our approach, we do not use the information that signals are images. For this reason,
we aim to show that inferring the underlying topology, and using translations to create
an adapted convolutional neural network can improve classification of signals without
using prior information on their nature.

157 5.2. A complete example on images

5.2.1 Graph inference from data

Since we do not use the assumption that signals are images, a first step in our method
is to find the structure on which the signals evolve. We choose here to consider four
graphs, inferred with various graph inference techniques.

Direct use of the sample covariance matrix

The sample covariance matrix gives interesting information on the signal entries that
tend to be similar. When considering the task of finding objects in signals, it is in many
cases safe to assume that such elements to find are spread on multiple vertices. As an
example, an object in an image will be spread across multiple pixels of the image.

We proceed by setting the four highest off-diagonal entries per row of the sample co-
variance matrix of the training set images to 1, and dropping the others. The matrix is
then symmetrized so that the obtained graph is undirected 2. This binarization method
favors the creation of a graph with a minimal degree per vertex. In the remaining of
this chapter, this graph will be denoted by G

Σ̃
.

Using the method of Kalofolias

Since the method of Kalofolias [Kal16] introduced in Section 3.1.3 promotes smoothness
of the signals on the inferred graph, it should provide a graph in which vertices carrying
smooth patterns are linked together. Therefore, for the same reasons as above, it may
provide a graph on which a localized kernel covers an object to find in the signals.

In the experiments we perform in this chapter, we consider a graph inferred using this
method, obtained for values α = β = 10−3. Then, we keep the four highest entries per
row as in Section 5.2.1 and symmetrize the matrix. This graph will be denoted by GK.

Additionally, we also consider the regularized version of this matrix for stationary sig-
nals as introduced in Section 3.4. It is obtained by selecting the closest point from the
polytope to the matrix inferred using the method by Kalofolias (before binarization).
The same vertex selection process as for other methods is then performed to obtain a
binary matrix. We denote this latter matrix by G∗

K.

Using our Sparse method

Finally, we also evaluate one of our graph inference methods on this dataset. We first
infer a graph using the eigenvectors of the sample covariance matrix of the images
from the training set, and perform the same selection of entries as for the two other
inference methods to be able to find translations on sparse, unweighted graphs. The
graph inferred using the Sparse method in (110) will be denoted by Gsparse.

Interestingly, all four methods manage to find graphs that are highly similar to a grid
graph. As we have observed in Figure 49 that translations on slightly deformed grids
were still very close to Euclidean translations, we expect the convolutional neural net-
work we define using these graphs to perform quite well on the CIFAR-10 dataset.

2. Note that our algorithm to search for translations does not require the graph to be undirected. Still,
we want to be able to slide a kernel to every possible vertex of the graph, which may not be possible if
considering a directed graph.

Chapter 5. Application to signals classification 158

5.2.2 Identification of translations on the graph

We have shown in Proposition 4.3.1 that identification of translations on an arbitrary
graph is an NP-complete problem. In the current experiment however, we are trying to
translate some localized kernels, that we define as follows:

Definition 80: Convolutional kernel on a graph

A convolutional kernel of parameter K on a graph G = 〈V, E〉, centered on a
vertex v1 ∈ V , is the subset of vertices V− ⊂ V such that:

∀v2 ∈ V : v2 ∈ V− ⇔ dgeo(v1, v2) ≤ K . (151)

For this reason, we consider induced subgraphs of limited orders (large enough to in-
clude the convolutional kernel), centered on the vertices of the graph, on which we
compute translations. This gives us sufficient information to translate a kernel as, for a
vertex v, both the kernel centered on v and its translations do have null entries on any
vertex that does not belong to the induced subgraph centered on v.

5.2.3 Definition of the convolution matrix of a convolutional neural network

To define the edges between two layers, we perform as for classical convolutional neu-
ral networks, by instantiating a convolutional kernel on the graph. We choose to ini-
tially localize this kernel to the most central vertex of the graph, considering the prox-
imity centrality of vertices [Bav50; Sab66]. A vertex v1 is said to be the most central
according to this measure if it maximizes the following quantity:

C(v1) =
1∑

v2∈V
dgeo(v1, v2)

. (152)

Then, we translate the kernel to all other vertices upon saturation. If a kernel is centered
on a vertex v, then we apply all possible translations previously found on the induced
subgraph centered on v. This gives us new possible localizations of the kernel, with
centers on the neighbors of v. We then apply this procedure upon convergence, keeping
the kernel minimizing the loss in case of multiple kernels centered on a single vertex.

Finally, once the kernel has been translated to every possible vertex, we build a convo-
lutional layer in our network by adding an edge between neurons associated with all
vertices under the kernel range and the neuron associated with the center of the ker-
nel, as presented in Figure 54. Implementation of the convolution operator using our
translations is made as in Vialatte et al. [VGC17].

Using this procedure with convolutional kernels of parameter K = 3, we obtain the
Python/Keras [Cho15] code given in Appendix A, corresponding to the network de-
picted in Figure 57:

159 5.2. A complete example on images

Input image
1024× 3

N = 96 K = 2

ReLU

1024× 96

N = 96 K = 2

ReLU

1024× 96

N = 96 K = 2

ReLU

1024× 96

N = 192 K = 2

ReLU

1024× 192

N = 192 K = 2

ReLU

1024× 192

N = 192 K = 2

ReLU

1024× 192

N = 96 K = 2

ReLU

1024× 96

Dense (10)

SoftMax

Output
(10 classes)

XXX Data
XXX Convolutional layer
XXX Batch normalization
XXX Non-linearity
XXX Dropout (0.5)

Figure 57 – Graphical representation of the convolutional neural network implemented
by the Python/Keras [Cho15] code given in Appendix A. The network consists of seven
convolutional layers using our translations — N denotes the number of filters, and K
the number of hops in Definition 80 defining the kernel — followed by one output
dense — fully connected — layer. Dropout and batch normalization are added in order
to prevent overfitting, i.e., to favor generalization to unseen examples.

Chapter 5. Application to signals classification 160

5.2.4 Classification results

Results on CIFAR-10

As indicated earlier in this chapter, state of the art methods that do not use the in-
formation that signals are images reach a correct classification rate of 72.7% [CCM16].
Using the network in Appendix A, we obtain the correct classification rates in Table 3,
depending on the graph inference method used:

Gg G
Σ̃

GK G∗
K Gsparse

85.98% (193) 85.03% (246) 85.33% (195) 85.81% (277) 77.54% (169)

Table 3 – Correct classification rates obtained with our method, as a function of the
graph inference technique used. Values into parentheses indicate the number of the
epoch at which the best value was found. The classification result obtained for a grid

graph Gg of dimensions

[
32

32

]
indicates an upper bound on the results we expect to

obtain with our architecture when using inferred graphs.

For the convolutional neural network architecture used, it is interesting to notice that
using the graphs that encode some smoothness assumptions — i.e., G

Σ̃
, GK and G∗

K —
perform best. This is an expected result, as elements to classify are generally smooth
across adjacent pixels in images. Additionally, it appears that regularization of the
method of Kalofolias — to have it match a stationarity assumption on the signals —
improves the results, which makes it an interesting assumption to consider in addition
to smoothness.

The Sparse method however does not make any particular prior on the smoothness of
the signals, and performs slightly worse than the two other graphs. Still, the correct
classification rate remains higher than the results of Cheng et al. in [CCM16]. When
looking in details at the kernel after translation, it appears that it reduces more in size
than for the other graphs as it is translated, due to a larger loss of the translations found.
In details, Table 4 gives the mean number of vertices covered by the kernel (per kernel
center) for all considered methods:

Gg G
Σ̃

GK G∗
K Gsparse

Initial kernel size 13 (495) 13 (527) 13 (528) 13 (495) 13 (530)

Mean kernel size 12.433 11.523 11.27 12.194 8.137

Table 4 – Mean number of vertices covered by a 2-hops convolutional kernel, after
translation to all possible vertices. The initial kernel size indicates the number of ver-
tices covered by the kernel at initialization, i.e., when created on the most central vertex,
given into parentheses.

These results illustrate that inference of a graph from data — even if not the best graph
— allows the definition of a convolutional neural network that improves classification
of this data. Also, it highlights that the prior used to infer the graph has a strong im-
portance in the process. As a matter of fact, if the translations found on the graph nec-
essarily have a large loss, it has some impact on the performance, as the convolutional
kernel cannot be efficiently translated to all vertices.

161 5.2. A complete example on images

Still, in all cases, our method manages to perform better than state of the art methods
that do not use the information that signals are images, even with a simple convolu-
tional neural network architecture found by hand. While the gain in performance is
already quite high (+13.11 points when using G∗

K), we believe that it could be increased
with a more complex architecture found thanks to a grid search over all parameters. In
particular, when considering a perfect grid graph to define the connections of a con-
volutional neural network, we obtain a classification rate of 85.98% with our network
architecture, which is nearly achieved using the graph G∗

K. As more complex architec-
tures can reach 97.28% correct classification when using the information that signals
are images, we believe that using an inferred graph with such networks could reach
slightly lower performance, while not using the information that signals are images.

Behavior of the method on scrambled CIFAR-10

Scrambled CIFAR-10 is a transformed version of the CIFAR-10 dataset. In this dataset,
every pixel is associated with a new location, chosen randomly. Note that all images are
shuffled using the same permutation of pixels. Therefore, objects to recognize are no
longer localized in the image. On such scrambled images, the classical convolutional
neural networks do not work anymore, as the sliding windows now cover pixels that
can belong to various elements of the images.

As an example, we consider in Figure 58 a random permutation of the pixels of all
images in the CIFAR-10 dataset. Replacing the convolutional layers in Figure 57 with
regular 2D convolutional layers using kernels of size 3× 3, we obtain a correct classifi-
cation rate of 56.74% (obtained at epoch 187):

Figure 58 – Some images from the CIFAR-10 training set, given in their normal form
(left) and in their scrambled version using a random permutation matrix (right). The
same permutation is applied to all images of the training and test sets.

Chapter 5. Application to signals classification 162

An interesting thing about our approach is that the edges in the inferred graph depend
on the graph inference method, and not on the localization of the pixels. If all images
are shuffled identically, then the sample covariance matrix remains exactly the same
except for a relabeling of vertices.

Therefore, the various graphs computed in Section 5.2.1 remain exactly the same as
those obtained when studying the regular CIFAR-10 dataset. Since the graphs are the
same, so are the translations found, thus the convolutional layers. As a conclusion, our
method performs exactly the same on the scrambled version of the dataset as it does on
the regular one, provided that the graph inference method makes use of the covariance
matrix or another matrix that does not depend on the labeling.

5.2.5 Perspectives: the interest of identifying circulant matrices

In some of the experiments we performed on other type of data — that are not depicted
here — we have observed that strong irregularities in the inferred graph can prevent
the translations from being computed. As a matter of fact, neighboring vertices that
do not share any other neighborhood cause the kernel to reduce to its center only once
translated, thus causing a high loss in the signal entries. Due to this high loss, transla-
tion of a convolutional kernel to all vertices of the graph is not possible without losing
most of the kernel energy. This leads to the impossibility to define the convolutional
layers of the neural network.

We believe that a possible solution to this problem lies in the properties of circulant
matrices. As a matter of fact, if a matrix is circulant, it corresponds to a graph that
is highly regular. A simple example is to consider the adjacency matrices of the ring
graph and of the two-dimensional torus graph, given in Figure 59:

2 4 6 8 10 12 14 16 18 20 22 24

5

10

15

20

25
0

1

2 4 6 8 10 12 14 16 18 20 22 24

5

10

15

20

25
0

1

Figure 59 – Adjacency matrices of a ring graph of N = 25 vertices (left), and of a torus

graph of dimensions vector d =

[
5
5

]
(right). The first matrix is circulant, and the second

one is circulant by blocks.

Inferring translations on circulant matrices is a particular case of inferring translations
on graphs, as one can simply follow the labeling order to obtain lossless translations.
Therefore, a possible idea to apply our method on irregular graphs would be to proceed
in three steps:

1. Given the binary adjacency matrix A of a graph, find a binary circulant matrix C

such that ‖A−C‖0,1 is minimized;

163 5.3. Summary of the chapter

2. Infer translations on C;

3. Either directly use these translations to define a convolutional neural network, or
use an adaptation of these translations to account for the existing edges in A.

The main idea behind this possible solution is to approximate the irregular graph with
a close regular topology to simplify the problem. However, finding this circulant matrix
appears to be a very difficult problem, due to two main limitations:

1. Let us consider the adjacency matrix of the ring graph in Figure 59. This matrix is
circulant, due to a correct labeling of the various vertices. However, for a different
labeling, it is no longer circulant, as the ith is no longer a shift of the i− 1th one.
Still, we know there exists a permutation of the labels such that the matrix is
circulant, thus solving our problem. However, there is no obvious strategy to
find this particular permutation;

2. Another problem is that, in the cases we want to consider, the adjacency matrix is
not circulant. Therefore, for a chosen labeling, we need to be able to compute the
closest circulant matrix, in the sense of edge addition or subtraction.

At the moment, it is not clear for us if these two problems should be considered sequen-
tially, of simultaneously. Additionally, we may also be interested in finding matrices
that are circulant by blocks as in Figure 59 (right), which complicates the problem even
more. Still, this is a very promising direction for future work, as it would provide new
methods to infer translations on irregular graphs.

We believe this problem to have connections with (and applications to) other domains,
such as the cyclic bandwidth sum problem, which consists in finding a labeling of
vertices such that the total difference between labels of adjacent vertices is minimized
[Jia01]. Interestingly, circulant matrices appear to have a low such sum, which makes
us believe we can make profit of the various heuristics used in this field.

5.3 Summary of the chapter

In this chapter, we have explored how combination of the previous two chapters could
help in machine learning tasks such as classification. We have proposed a method that,
for a given training set of signals, performs as follows:

1. Infer a graph from the signals;

2. Infer translations on this graph;

3. Using these translations, shift a convolutional kernel — initialized at the center of
the graph — to all possible vertices;

4. Define a convolutional neural network accordingly;

5. Train the convolutional neural network using the training set.

Our method has proven to be very effective on images, as inference methods could
retrieve a graph that is very close to a grid graph. Translations on the inferred graph are
also very close to Euclidean translations, which allows the creation of a convolutional
neural network that resembles a network one could build when using the information
that signals are images. Using our method, we have achieved a correct classification of
85.81% on CIFAR-10, where state of the art methods reached 72.7%. Additionally, since
our approach infers a graph from data, it performs as well on scrambled datasets as on
their regular versions, contrary to standard convolutional neural networks.

Chapter 5. Application to signals classification 164

Most importantly, our approach is a real generalization of convolutional neural net-
works to irregular domains. While most existing approaches use a convolution oper-
ator that performs in the spectral domain and thus does not preserve the shape of the
convolutional kernel, our approach work in the graph domain only. Once translations
are inferred, then classical convolution can be performed again, making convolutional
neural networks on images a particular case of our model.

Our work has a wide range of possible improvement, among which the following:

• The architecture we considered in Figure 57 — with code given in Appendix A
— was found by hand. A grid search on the various parameters would probably
improve the results consequently;

• We only considered one kernel size. Numerous convolutional neural networks
vary the size of the convolutional kernel used at each layer. This is another pa-
rameter that should be taken into consideration in the grid search;

• There are no max-pooling or stride layers. Again, these operators appear to highly
improve the classification task in classical convolutional neural networks. Find-
ing equivalents to these operators is one of the main directions of our future work;

• We have observed that identification of translations on highly irregular topologies
is a problem. We believe the approach detailed in Section 5.2.5 to be a promising
direction to tackle this problem. This would allow the application of our method-
ology to more complex datasets.

165

Chapter 6

Conclusions

Contents
6.1 Summary of the manuscript . 166

6.1.1 From signals to graphs. 166
6.1.2 . . . to translations. 166
6.1.3 . . . to signals classification . 167

6.2 Contributions . 167
6.2.1 Graph inference from signals . 167
6.2.2 Translations identification on graphs 168
6.2.3 Classification of signals using graph signal processing and con-

volutional neural networks . 168
6.3 Perspectives . 169

Chapter 6. Conclusions 166

6.1 Summary of the manuscript

The work presented in this Ph.D. manuscript focuses on some aspects of graph signal
processing, a subfield of signal processing that emerged a few years ago from the will
to generalize Fourier analysis to signals evolving on irregular domains. In this context,
numerous tools were defined to process such signals, based on an analogy between the
Fourier modes in classical signal processing and the eigenvectors of the Laplacian ma-
trix of the ring graph. In details, these eigenvectors define an adapted spectral basis for
signals evolving on the associated graph, and projection of signals on these eigenvec-
tors gives a spectral representation of them. The notion of frequencies from classical
signal processing can be found again in these spectral signals, as the entries associated
with the lowest eigenvalues encode regularity of the signals on the graph, while the
highest correspond to strong variations. This observation allows definition of filters on
graphs, analogously to those issued from classical signal processing, as well as numer-
ous other operators on signals.

6.1.1 From signals to graphs. . .

Knowledge of the graph on which the observed signals evolve is a cornerstone of graph
signal processing. While one can intuitively think of a grid graph to model the support
of images, or a ring graph to model periodical time, in most situation however such
information is not available. Examples include electroencephalographic sensors placed
on the head of a patient, or seismic sensors thrown on a field, for which the notion of
vertex is intuitive, but edges are not easy to choose. Under such settings, graph signal
processing tools cannot be applied anymore, and one needs to infer a graph to enable
their use.

In some situations, information on the vertices — such that their geographical location
— can be used to define a graph, for example by linking vertices under a certain radius
with an edge. In some other cases however, this is not possible, or it may not reflect the
real topology on which data evolves. A possible solution is therefore to infer a graph
from the observed data. This problem is however ill-posed, as there is a huge number of
potentially admissible graphs matching the given signals. One thus needs to add some
priors on the graph to infer (such as simplicity, sparsity, binarity of the weights. . .), or
on the signals (including stationarity, observation after diffusion of Dirac deltas on the
graph, smoothness on the graph. . .).

6.1.2 . . . to translations. . .

Once a graph is inferred from data, it can then be used to process the signals. In par-
ticular, a very common task on signals is to classify them. Applications of classification
are countless, and some well-known examples include face recognition, heart attack
detection, as well as more common tools such as Google Images.

In this context, knowledge of the underlying topology can help a lot in the classification
task. In the simple case of images, the underlying grid indicates that two adjacent pixels
are generally similar, and local kernels can be translated on the image to detect some
patterns in the signal. In the more general case when the graph is inferred from data,
translation of such kernels is not an easy task, since notions such as to the left, or forward
in time do not exist due to the absence of an underlying metric space.

167 6.2. Contributions

Inferring translations on such graphs that are similar to translations on metric spaces is
a possible method to allow this kernel-based approach again. As a matter of fact, Eu-
clidean translations of signals on a graph can be understood as shifting the observer’s
point of view to a different place: when translated, the signal should globally look the
same as before. This implies that, when a signal entry is translated from a vertex to
another, the signal entries carried by neighboring vertices should also be translated to
neighbors of the target vertex.

6.1.3 . . . to signals classification

Objects to identify in signals — for instance, a cat in a picture, or a particular activity in
the brain — are generally dispatched on multiple vertices, that we expect to be adjacent
— or at a short distance considering the number of edges — from one another. This is
the reason why localized kernels in images perform well in classification tasks, and this
is the approach taken by convolutional neural networks. When considering images, the
connections in such networks are created by translating a localized kernel on the image.
This encodes some locality properties in the network structure, which has proven to
improve classification of objects in images.

In this manuscript, we have extended this principle to signals defined on irregular
graphs. Once a graph is inferred from data, and once translations are found on this
graph, we use these translations to shift a local kernel, in order to define the connec-
tions between the layers of a convolutional neural network.

6.2 Contributions

This section summarizes the contributions of the main articles from which this manuscript
is built. Additional contributions to the field of graph signal processing, that are not di-
rectly related to the main line of this manuscript, are not detailed. Still, information on
the uncertainty principle [Pas+15b; Pas+16] can be found in Section 2.3.3, and applica-
tion of graph inference to neural signals classification through dimensionality reduction
can be found in [Mén+17].

6.2.1 Graph inference from signals

Graph inference from signals is the main concern of Chapter 3. We have studied the
particular case of stationary signals, and have proposed methods to infer a graph shift
operator adapted to such signals, which is equivalent to finding the edges of the graph.

In particular, we have shown that any graph shift operator adapted to stationary sig-
nals should have the same eigenvectors as the covariance matrix of the signals. These
eigenvectors define a particular convex set of eigenvalues, from which every element
is a possible solution. The problem then becomes how to select a point from this set,
using additional criteria.

We have first studied a simplified problem, where every signal is diffused once [Pas+15a],
for which we have shown that we could find the eigenvalues of the ground truth ma-
trix. Then, we have extended this work to the more general case of signals diffused
by any graph filter [Pas+17a], and have proposed approaches enforcing simplicity or
sparsity of the solution. Finally, we have introduced a third approach allowing the

Chapter 6. Conclusions 168

correction of the solution provided by a given inference method, to have it match the
stationarity assumption on signals.

Experiments were performed on synthetic data, as well as on real temperature measure-
ments in Brittany. The graphs inferred using our strategies have appeared to feature the
properties corresponding to the selection criteria used Additionally, correction of other
methods also provided interesting results, with possible applications to graph selection
from a set of candidates.

6.2.2 Translations identification on graphs

Identification of translations on an arbitrary graph has been presented in details in
Chapter 4. We have introduced numerous functions on graphs, that have eventually
led to translations on graphs. Such translations have the interesting property to retain
the neighborhoods of all vertices when translating them, thus causing a signal to look
similar once it is shifted on the graph.

In addition to introducing such translations in [Gre+16], we have shown in [Pas+17b]
that their identification on an arbitrary graph is an NP-complete problem. To cope
with this complexity issue, we have relaxed the problem to allow small deformations
of the translated signal, and have proposed an approximate algorithm based on an
optimization problem.

This algorithm has proven to be able to find the expected translations on grid and
torus graphs, and has allowed the identification of pseudo-translations on irregular
graphs, such as random graphs following a Watts-Strogatz model. Additionally, our
experiments have shown that, under small deformations of a grid graph, the pseudo-
translations found were very close to Euclidean translations on the grid.

6.2.3 Classification of signals using graph signal processing and convolu-
tional neural networks

In Chapter 4, we have proposed to use graph inference and translations identification to
help classifying signals. We have designed a method based on graph signal processing
to create a convolutional neural network that is adapted to the signals to classify. In
few words, the method consists in the following steps:

1. From a set of signals to classify, infer a graph;

2. Find translations on this graph;

3. Use these translations to shift a local kernel on the graph, thus defining a connec-
tivity tensor between the layers of a convolutional neural network;

4. Train this network with the initial signals.

Contrary to simple convolutional neural networks, our method does not use the coordi-
nates of the vertices — for example a 3× 3 sliding window on an image — to define the
connections. Kernels are defined by considering a central vertex and a small portion of
its neighborhood. Therefore, if the graph is a grid and signals to classify are images, we
obtain results that are very close to those of a classical convolutional neural network.

When considering a permutation of the pixels of the images to classify, sliding windows
from which convolutional neural networks are built cannot detect objects in images
anymore, since they are no longer localized in the image. Our method however can find

169 6.3. Perspectives

the links between the initially adjacent pixels thanks to the graph inference method,
and the retrieved graph is simply a relabeling of the one obtained from unshuffled
images. Therefore, the network we build using our techniques performs as well as for
regular images. More generally, since our method does not use prior information on the
topology on which signals evolve, it allows the detection of patterns in signals evolving
on complex topologies.

As a conclusion, our method is a generalization of convolutional neural network based
on graph signal processing. Without any localization information on the vertices, it is
able to detect objects in the input signals, whatever their location in the graph. This has
numerous applications, including improvement of classification techniques, as well as
fault detection in a network, or analysis of brain/seismic activity.

6.3 Perspectives

As indicated in the respective conclusions of the chapters of this manuscript, each part
of our work can be extended in numerous ways.

Considering graph inference from signals, numerous other methods could be intro-
duced to select a vector of eigenvalues from the polytope, enforcing properties such as
binarity of the retrieved graph. Also, complexity of the definition of the polytope of
acceptable solutions can be an issue, as the number of constraints delimiting it is of the
order ofN2, among which some constraints are not informative, and could be removed
if a method to identify were to be found. Then, the number of signals required to obtain
a sufficiently correct approximate of the eigenvectors of the covariance matrix is quite
high when using the sample covariance matrix as an estimator. Other covariance esti-
mators could be studied to obtain a faster convergence of these eigenvectors. Finally,
our experiments on graph selection from a set of candidates could be complemented
by considering noisy versions of the ground truth matrix.

Our work on identification of translations also opens some new perspectives. NP-
completeness of the problem of identifying minimal translations forced us to propose
a relaxed version of the problem, through the resolution of an optimization problem.
Alternative solutions could also be explored, for example with greedy approaches. Ad-
ditionally, we have chosen in this relaxation to sacrifice the SNP property, while still
enforcing pseudo-translations to be EC. Accepting a partial sacrifice of this property
as well could lead to the definition of interesting pseudo-translations, especially when
considering graphs inferred with some noise.

Finally, we believe our work on convolutional neural networks to have many applica-
tions in signals processing and analysis. Still, state of the art convolutional neural net-
works use more complex mechanisms, such as max-pooling or stride layers. Defining
such operators is a great direction for future work, as it would probably improve the
classification results significantly. Also, improving the translations detection method
for highly irregular graphs is a challenging problem, that would allow the considera-
tion of new problems with potential important applications.

Chapter 6. Conclusions 170

171

Appendix A

Implementation of our
convolutional neural networks

The following Python/Keras code [Cho15] is an implementation of the convolutional
neural network using our translations. For space reasons, the files containing the trans-
lations found on the various graphs are not provided, but are available upon request:

! / usr / b i n / env python3
−∗− c o d i n g : u t f−8 −∗−

###
INITIALIZATION
###

I m p o r t s
import sys
import a s t
import numpy
import tensorf low
from t e r n a r y _ l a y e r import ∗

from keras . models import Sequent ia l
from keras . d a t a s e t s import c i f a r 1 0
from keras . l a y e r s import Reshape , Dense , Dropout , F l a t t e n , Act iva t ion
from keras . l a y e r s . normal izat ion import BatchNormalization
from keras . opt imizers import Adam
from keras . u t i l s . n p _ u t i l s import t o _ c a t e g o r i c a l

Arguments
i f len (sys . argv) != 2 :

print (" Usage : " + sys . argv [0] + " < t r a n s l a t i o n s F i l e >")
qui t ()

t r a n s l a t i o n s F i l e = sys . argv [1]

P r o c e s s i n g t h e t r a n s l a t i o n s f i l e
with open (t r a n s l a t i o n s F i l e , " r ") as f i l e O b j e c t :

f i l e C o n t e n t s = a s t . l i t e r a l _ e v a l (f i l e O b j e c t . read ())
nbVert ices = len (f i l e C o n t e n t s)
m a x F i l t e r S i z e = max ([value for value in max ([l i s t (c n n F i l t e r . values ()) for c n n F i l t e r in f i l e C o n t e n t s])])

Custom l a y e r us ing t h e s e t r a n s l a t i o n s
S = numpy . zeros ((maxFi l terS ize , nbVert ices , nbVert i ces))
i = 0
for c n n F i l t e r in f i l e C o n t e n t s :

for ver tex in c n n F i l t e r :
S [c n n F i l t e r [ver tex] − 1 , vertex , i] = 1

i += 1
i n i t i a l i z e r = tensorf low . c o n s t a n t _ i n i t i a l i z e r (S)

We l o a d t h e d a t a s e t
(X_train , Y_tra in) , (X_test , Y _ te s t) = c i f a r 1 0 . load_data ()
imgWidth = X_tra in . shape [1]
imgHeight = X_tra in . shape [2]
imgChannels = X_tra in . shape [3]
nbClasses = len (s e t ([l a b e l [0] for l a b e l in Y_tra in]))

###
CNN DESCRIPTION
###

Input o f t h e model
model = Sequent ia l ()
model . add (Reshape ((nbVert ices , imgChannels) , input_shape =(imgWidth , imgHeight , imgChannels)))

Custom l a y e r 1
n b F i l t e r s = 96
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())

Appendix A. Implementation of our convolutional neural networks 172

model . add (Act iva t ion (" r e l u "))

Custom l a y e r 2
n b F i l t e r s = 96
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())
model . add (Act iva t ion (" r e l u "))

Custom l a y e r 3
n b F i l t e r s = 96
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())
model . add (Act iva t ion (" r e l u "))
model . add (Dropout (0 . 5))

Custom l a y e r 4
n b F i l t e r s = 192
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())
model . add (Act iva t ion (" r e l u "))

Custom l a y e r 5
n b F i l t e r s = 192
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())
model . add (Act iva t ion (" r e l u "))
model . add (Dropout (0 . 5))

Custom l a y e r 6
n b F i l t e r s = 192
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())
model . add (Act iva t ion (" r e l u "))
model . add (Dropout (0 . 5))

Custom l a y e r 7
n b F i l t e r s = 96
model . add (TernaryLayer (maxFi l terS ize , nbVert ices , n b F i l t e r s , s c h e m e _ i n i t i a l i z e r = i n i t i a l i z e r , train_scheme=Fa l se))
model . add (BatchNormalization ())
model . add (Act iva t ion (" r e l u "))
model . add (Dropout (0 . 5))

Dense o u t pu t l a y e r
model . add (F l a t t e n ())
model . add (Dense (nbClasses , a c t i v a t i o n =" softmax "))

###
CNN TRAINING
###

F i r s t 150 e p o c h s with l e a r n i n g r a t e o f 0 .001
model . compile (l o s s =" c a t e g o r i c a l _ c r o s s e n t r o p y " , opt imizer=Adam(l r =0 .001 , decay=1e−6) , metr i cs =[" accuracy "])
model . f i t (X_tra in / 2 5 5 . 0 , t o _ c a t e g o r i c a l (Y_tra in) , b a t c h _ s i z e =32 , s h u f f l e =True , epochs =150 , v a l i d a t i o n _ d a t a =(X _t e s t

→֒ / 2 5 5 . 0 , t o _ c a t e g o r i c a l (Y _ t e s t)) , verbose =1)

Next 75 e p o c h s with l e a r n i n g r a t e o f 0 .0001
model . compile (l o s s =" c a t e g o r i c a l _ c r o s s e n t r o p y " , opt imizer=Adam(l r =0 .0001 , decay=1e−6) , metr i cs =[" accuracy "])
model . f i t (X_tra in / 2 5 5 . 0 , t o _ c a t e g o r i c a l (Y_tra in) , b a t c h _ s i z e =32 , s h u f f l e =True , epochs =75 , v a l i d a t i o n _ d a t a =(X _t e s t

→֒ / 2 5 5 . 0 , t o _ c a t e g o r i c a l (Y _ t e s t)) , verbose =1)

F i n a l 75 e p o c h s with l e a r n i n g r a t e o f 0 .00001
model . compile (l o s s =" c a t e g o r i c a l _ c r o s s e n t r o p y " , opt imizer=Adam(l r =0 .00001 , decay=1e−6) , metr i cs =[" accuracy "])
model . f i t (X_tra in / 2 5 5 . 0 , t o _ c a t e g o r i c a l (Y_tra in) , b a t c h _ s i z e =32 , s h u f f l e =True , epochs =75 , v a l i d a t i o n _ d a t a =(X _t e s t

→֒ / 2 5 5 . 0 , t o _ c a t e g o r i c a l (Y _ t e s t)) , verbose =1)

Additionally, the code below depicts the important part of the TernaryLayer.py file,
implementing the propagation formula:

c l a s s TernaryLayer (Layer) :

. . .

C a l l method impl ement ing t h e p r o p a g a t i o n f o r m u l a
def c a l l (s e l f , x , mask=None) :

x (b , n , p) (d o t) S (w, n ,m) = xS (b , p , w,m)
xS = t f . tensordot (x , s e l f . scheme , [[1] , [1]])

xS (b , p , w,m) (d o t) W (w, p , q) = y (b ,m, q)
y = t f . tensordot (xS , s e l f . kernel , [[1 , 2] , [1 , 0]])
y . set_shape ([x . shape [0] , s e l f .m, s e l f . q])

I f t h e r e i s b i a s
i f s e l f . use_neuron_bias :

y += t f . reshape (s e l f . neuron_bias , (1 , 1 , s e l f . q))

Return with a c t i v a t i o n
return s e l f . neuron_act ivat ion (y)

173 Bibliography

Bibliography

[AK98] Edoardo Amaldi and Viggo Kann. “On the approximability of minimizing
nonzero variables or unsatisfied relations in linear systems”. In: Theoretical
Computer Science 209.1-2 (1998), pp. 237–260.

[AL07] Manuel Appert and Chapelon Laurent. “Measuring urban road network
vulnerability using graph theory: the case of Montpellier’s road network”.
In: La mise en carte des risques naturels (2007), 89p.

[AL12] Ameya Agaskar and Yue M Lu. “Uncertainty principles for signals defined
on graphs: Bounds and characterizations”. In: Acoustics, Speech and Sig-
nal Processing (ICASSP), 2012 IEEE International Conference on. IEEE. 2012,
pp. 3493–3496.

[AL13] Ameya Agaskar and Yue M Lu. “A spectral graph uncertainty principle”.
In: IEEE Transactions on Information Theory 59.7 (2013), pp. 4338–4356.

[AM12] James A Albano and David W Messinger. “Euclidean commute time dis-
tance embedding and its application to spectral anomaly detection”. In:
Proc. SPIE. Vol. 8390. 2012, 83902G.

[And63] T. W. Anderson. “Asymptotic Theory for Principal Component Analysis”.
In: Ann. Math. Statist. 34.1 (Mar. 1963), pp. 122–148. DOI: 10.1214/aoms/
1177704248. URL: http://dx.doi.org/10.1214/aoms/1177704248.

[AT15] James Atwood and Don Towsley. “Search-Convolutional Neural Networks”.
In: CoRR abs/1511.02136 (2015). URL: http://arxiv.org/abs/1511.
02136.

[Bav50] Alex Bavelas. “Communication patterns in task-oriented groups”. In: The
Journal of the Acoustical Society of America 22.6 (1950), pp. 725–730.

[Ber05] Dennis S Bernstein. Matrix mathematics: Theory, facts, and formulas with appli-
cation to linear systems theory. Vol. 41. Princeton University Press Princeton,
2005.

[Bro+17] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. “Geometric deep learning: going beyond euclidean data”.
In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[Bru+13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral
networks and locally connected networks on graphs”. In: arXiv preprint
arXiv:1312.6203 (2013).

[CCM16] Xiuyuan Cheng, Xu Chen, and Stéphane Mallat. “Deep Haar scattering net-
works”. In: Information and Inference: A Journal of the IMA 5.2 (2016), pp. 105–
133.

[CDS01] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic
decomposition by basis pursuit”. In: SIAM review 43.1 (2001), pp. 129–159.

https://doi.org/10.1214/aoms/1177704248
https://doi.org/10.1214/aoms/1177704248
http://dx.doi.org/10.1214/aoms/1177704248
http://arxiv.org/abs/1511.02136
http://arxiv.org/abs/1511.02136

Bibliography 174

[Che+17] Sundeep Prabhakar Chepuri, Sijia Liu, Geert Leus, and Alfred O Hero.
“Learning sparse graphs under smoothness prior”. In: Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE International Conference on. IEEE.
2017, pp. 6508–6512.

[Cho15] François Chollet. Keras. https://github.com/fchollet/keras. 2015.

[Chu97] Fan RK Chung. Spectral graph theory. 92. American Mathematical Soc., 1997.

[CL11] Tony Cai and Weidong Liu. “Adaptive thresholding for sparse covariance
matrix estimation”. In: Journal of the American Statistical Association 106.494
(2011), pp. 672–684.

[Cor09] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[CZ12] T Tony Cai and Harrison H Zhou. “Optimal rates of convergence for sparse
covariance matrix estimation”. In: The Annals of Statistics (2012), pp. 2389–
2420.

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolu-
tional neural networks on graphs with fast localized spectral filtering”. In:
Advances in Neural Information Processing Systems. 2016, pp. 3844–3852.

[Dem72] Arthur P Dempster. “Covariance selection”. In: Biometrics (1972), pp. 157–
175.

[DJ+10] Xue Ding, Tiefeng Jiang, et al. “Spectral distributions of adjacency and
Laplacian matrices of random graphs”. In: The annals of applied probability
20.6 (2010), pp. 2086–2117.

[Don+16] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst.
“Learning laplacian matrix in smooth graph signal representations”. In:
IEEE Transactions on Signal Processing 64.23 (2016), pp. 6160–6173.

[DPQ17] Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled Ensembles
of Neural Networks”. In: arXiv preprint arXiv:1709.06053 (2017).

[Dra05] Steve Draper. How many senses do humans have? http://www.psy.gla.
ac.uk/~steve/best/senses.html. Accessed: 2017-07-27. Depart-
ment of Psychology, University of Glasgow, 2005.

[Duv+15] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bom-
barell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. “Convo-
lutional networks on graphs for learning molecular fingerprints”. In: Ad-
vances in neural information processing systems. 2015, pp. 2224–2232.

[EPO16] Hilmi E Egilmez, Eduardo Pavez, and Antonio Ortega. “Graph learning
from data under structural and laplacian constraints”. In: arXiv preprint
arXiv:1611.05181 (2016).

[ER59] P Erdős and A Rényi. “On Random Graphs I”. In: Publ. Math. Debrecen 6
(1959), pp. 290–297.

[Esc+01] Bernard Escudié, Claude Gazanhes, Henri Tachoire, and Vincenç Torra. Des
cordes aux ondelettes. L’analyse en temps et en fréquence avant et après Fourier.
Un inverseur de l’équation de la chaleur de Fourier : le calorimètre à conduction.
Publications de l’Université de Provence, 2001.

[FHT08] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Sparse inverse
covariance estimation with the graphical lasso”. In: Biostatistics 9.3 (2008),
pp. 432–441.

[Fis36] Ronald A Fisher. “The use of multiple measurements in taxonomic prob-
lems”. In: Annals of human genetics 7.2 (1936), pp. 179–188.

https://github.com/fchollet/keras
http://www.psy.gla.ac.uk/~steve/best/senses.html
http://www.psy.gla.ac.uk/~steve/best/senses.html

175 Bibliography

[Fis38] Ronald A Fisher. “The statistical utilization of multiple measurements”. In:
Annals of Human Genetics 8.4 (1938), pp. 376–386.

[Fou22] Joseph Fourier. Theorie analytique de la chaleur, par M. Fourier. Chez Firmin
Didot, père et fils, 1822.

[Gan98] Feliks Ruvimovich Gantmakher. The theory of matrices. Vol. 131. American
Mathematical Soc., 1998.

[GBY08] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software for disci-
plined convex programming. 2008.

[GGF15] Benjamin Girault, Paulo Gonçalves, and Éric Fleury. “Translation on graphs:
an isometric shift operator”. In: IEEE Signal Processing Letters 22.12 (2015),
pp. 2416–2420.

[Gir+16] Benjamin Girault, Paulo Gonçalves, Shrikanth Narayanan, and Antonio
Ortega. “Localization bounds for the graph translation”. In: CoRR abs/1609.08820
(2016). URL: http://arxiv.org/abs/1609.08820.

[Gir15a] Benjamin Girault. “Signal processing on graphs-contributions to an emerg-
ing field”. PhD thesis. Lyon, École normale supérieure, 2015.

[Gir15b] Benjamin Girault. “Stationary Graph Signals using an Isometric Graph Trans-
lation”. In: Eusipco. Nice, France, Aug. 2015, pp. 1531–1535. URL: https:
//hal.inria.fr/hal-01155902.

[Gir39] M. A. Girshick. “On the Sampling Theory of Roots of Determinantal Equa-
tions”. In: Ann. Math. Statist. 10.3 (Sept. 1939), pp. 203–224. DOI: 10.1214/
aoms/1177732180. URL: http://dx.doi.org/10.1214/aoms/
1177732180.

[GN03] Rémi Gribonval and Morten Nielsen. “Sparse representations in unions of
bases”. In: IEEE transactions on Information theory 49.12 (2003), pp. 3320–
3325.

[GO15] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2015. URL:
\url{http://www.gurobi.com}.

[GP10] Leo J Grady and Jonathan Polimeni. Discrete calculus: Applied analysis on
graphs for computational science. Springer Science & Business Media, 2010.

[Gra14] Benjamin Graham. “Fractional Max-Pooling”. In: CoRR abs/1412.6071 (2014).
URL: http://arxiv.org/abs/1412.6071.

[Gre+16] Nicolas Grelier, Bastien Pasdeloup, Jean-Charles Vialatte, and Vincent Gripon.
“Neighborhood-Preserving Translations on Graphs”. In: GlobalSIP 2016 :
IEEE Global Conference on Signal and Information Processing. Arlington, United
States, 2016, pp. 410–414.

[GZ15] A. Gavili and X.-P. Zhang. “On the Shift Operator, Graph Frequency and
Optimal Filtering in Graph Signal Processing”. In: ArXiv e-prints (Nov. 2015).
arXiv: 1511.03512 [math.SP].

[HBL15] Mikael Henaff, Joan Bruna, and Yann LeCun. “Deep convolutional net-
works on graph-structured data”. In: arXiv preprint arXiv:1506.05163 (2015).

[HCQ17] Yotam Hechtlinger, Purvasha Chakravarti, and Jining Qin. “A General-
ization of Convolutional Neural Networks to Graph-Structured Data”. In:
arXiv preprint arXiv:1704.08165 (2017).

[Hei25] W. Heisenberg. “Über den anschaulichen Inhalt der quantentheoretischen
Kinematik und Mechanik”. In: Zeitschrift für Physik 33 (1925), pp. 879–893.

http://arxiv.org/abs/1609.08820
https://hal.inria.fr/hal-01155902
https://hal.inria.fr/hal-01155902
https://doi.org/10.1214/aoms/1177732180
https://doi.org/10.1214/aoms/1177732180
http://dx.doi.org/10.1214/aoms/1177732180
http://dx.doi.org/10.1214/aoms/1177732180
\url{http://www.gurobi.com}
http://arxiv.org/abs/1412.6071
http://arxiv.org/abs/1511.03512

Bibliography 176

[HSW83] D. Hanson, K. Seyffarth, and J. H. Weston. “Matchings, Derangements,
Rencontres”. In: Mathematics Magazine 56.4 (1983), pp. 224–229. ISSN: 0025570X,
19300980. URL: http://www.jstor.org/stable/2689812.

[Hua+09] Shuai Huang, Jing Li, Liang Sun, Jun Liu, Teresa Wu, Kewei Chen, Adam
Fleisher, Eric Reiman, and Jieping Ye. “Learning brain connectivity of Alzheimer’s
disease from neuroimaging data”. In: Advances in Neural Information Pro-
cessing Systems. 2009, pp. 808–816.

[HVG11] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. “Wavelets
on graphs via spectral graph theory”. In: Applied and Computational Har-
monic Analysis 30.2 (2011), pp. 129 –150. ISSN: 1063-5203. DOI: http://
dx.doi.org/10.1016/j.acha.2010.04.005. URL: http://www.
sciencedirect.com/science/article/pii/S1063520310000552.

[IM02] Mads Ipsen and Alexander S Mikhailov. “Evolutionary reconstruction of
networks”. In: Physical Review E 66.4 (2002), p. 046109.

[Jia01] Hao Jianxiu. “Cyclic bandwidth sum of graphs”. In: Applied Mathematics-A
Journal of Chinese Universities 16.2 (2001), pp. 115–121. ISSN: 1993-0445. DOI:
10.1007/s11766-001-0016-0. URL: https://doi.org/10.1007/
s11766-001-0016-0.

[Kal16] Vassilis Kalofolias. “How to learn a graph from smooth signals”. In: Artifi-
cial Intelligence and Statistics. 2016, pp. 920–929.

[KH09] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of fea-
tures from tiny images”. In: (2009).

[Kot07] Sotiris Kotsiantis. “Supervised Machine Learning: A Review of Classifica-
tion Techniques”. In: 31 (Oct. 2007).

[KR93] Douglas J Klein and Milan Randić. “Resistance distance”. In: Journal of
mathematical chemistry 12.1 (1993), pp. 81–95.

[Lac+99] Jean-Philippe Lachaux, Eugenio Rodriguez, Jacques Martinerie, Francisco
J Varela, et al. “Measuring phase synchrony in brain signals”. In: Human
brain mapping 8.4 (1999), pp. 194–208.

[Law56] D. N. Lawley. “Tests of Significance for the Latent Roots of Covariance
and Correlation Matrices”. In: Biometrika 43.1/2 (1956), pp. 128–136. ISSN:
00063444. URL: http://www.jstor.org/stable/2333586.

[LB+95] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images,
speech, and time series”. In: The handbook of brain theory and neural networks
3361.10 (1995), p. 1995.

[Lin12] Georg Lindgren. Stationary stochastic processes: theory and applications. CRC
Press, 2012.

[LJY17] Fei-Fei Li, Justin Johnson, and Serena Yeung. CS231n Convolutional Neural
Networks for Visual Recognition. http://cs231n.github.io/. Accessed:
2017-09-19. Stanford Vision Lab, 2017.

[LMK15] Zhouhan Lin, Roland Memisevic, and Kishore Reddy Konda. “How far
can we go without convolution: Improving fully-connected networks”. In:
CoRR abs/1511.02580 (2015). URL: http://arxiv.org/abs/1511.
02580.

[LT10] Brenden Lake and Joshua Tenenbaum. “Discovering structure by learning
sparse graphs”. In: Proceedings of the Cognitive Science Society. Vol. 32. 32.
2010.

http://www.jstor.org/stable/2689812
https://doi.org/http://dx.doi.org/10.1016/j.acha.2010.04.005
https://doi.org/http://dx.doi.org/10.1016/j.acha.2010.04.005
http://www.sciencedirect.com/science/article/pii/S1063520310000552
http://www.sciencedirect.com/science/article/pii/S1063520310000552
https://doi.org/10.1007/s11766-001-0016-0
https://doi.org/10.1007/s11766-001-0016-0
https://doi.org/10.1007/s11766-001-0016-0
http://www.jstor.org/stable/2333586
http://cs231n.github.io/
http://arxiv.org/abs/1511.02580
http://arxiv.org/abs/1511.02580

177 Bibliography

[Mag] Magic Card Market – Serra Angel (Alpha). https://fr.magiccardmarket.
eu/Products/Singles/Alpha/Serra+Angel. Accessed: 2017-07-19.
2017.

[Mar+16] Antonio G. Marques, Santiago Segarra, Geert Leus, and Alejandro Ribeiro.
“Stationary Graph Processes and Spectral Estimation”. In: CoRR abs/1603.04667
(2016). URL: http://arxiv.org/abs/1603.04667.

[MAT12] MATLAB. version 7.14.0 (R2012a). Natick, Massachusetts: The MathWorks
Inc., 2012.

[MH12] Rahul Mazumder and Trevor Hastie. “The graphical lasso: New insights
and alternatives”. In: Electronic journal of statistics 6 (2012), p. 2125.

[MM15] Jonathan Mei and José MF Moura. “Signal processing on graphs: Estimat-
ing the structure of a graph”. In: Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE. 2015, pp. 5495–5499.

[Mon+16] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan
Svoboda, and Michael M Bronstein. “Geometric deep learning on graphs
and manifolds using mixture model CNNs”. In: arXiv preprint arXiv:1611.08402
(2016).

[Mon13] Pierre Rémond de Montmort. Essay d’analyse sur les jeux de hazard. chez
Jacque Quillau, imprimeur-juré-libraire de l’Université, rue Galande, 1713.

[MW47] Henry B Mann and Donald R Whitney. “On a test of whether one of two
random variables is stochastically larger than the other”. In: The annals of
mathematical statistics (1947), pp. 50–60.

[Mén+17] Mathilde Ménoret, Nicolas Farrugia, Bastien Pasdeloup, and Vincent Gripon.
“Evaluating Graph Signal Processing for Neuroimaging Through Classifi-
cation and Dimensionality Reduction”. In: arXiv preprint arXiv:1703.01842
(2017).

[NAK16] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning
convolutional neural networks for graphs”. In: International Conference on
Machine Learning. 2016, pp. 2014–2023.

[Nek07] Maziar Nekovee. “Worm epidemics in wireless ad hoc networks”. In: New
Journal of Physics 9.6 (2007), p. 189.

[Opt] Map of the Internet. http://www.opte.org/maps/. Accessed: 2017-07-
04. 2005.

[Pas+15a] Bastien Pasdeloup, Michael Rabbat, Vincent Gripon, Dominique Pastor,
and Grégoire Mercier. “Graph reconstruction from the observation of dif-
fused signals”. In: Communication, Control, and Computing (Allerton), 2015
53rd Annual Allerton Conference on. IEEE. 2015, pp. 1386–1390.

[Pas+15b] Bastien Pasdeloup, Réda Alami, Vincent Gripon, and Michael Rabbat. “To-
ward an uncertainty principle for weighted graphs”. In: Signal Processing
Conference (EUSIPCO), 2015 23rd European. IEEE. 2015, pp. 1496–1500.

[Pas+16] Bastien Pasdeloup, Vincent Gripon, Grégoire Mercier, and Dominique Pas-
tor. “Towards a characterization of the uncertainty curve for graphs”. In:
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Con-
ference on. IEEE. 2016, pp. 4558–4562.

[Pas+17a] Bastien Pasdeloup, Vincent Gripon, Grégoire Mercier, Dominique Pastor,
and Michael G Rabbat. “Characterization and inference of graph diffusion
processes from observations of stationary signals”. In: IEEE Transactions on
Signal and Information Processing over Networks (2017).

https://fr.magiccardmarket.eu/Products/Singles/Alpha/Serra+Angel
https://fr.magiccardmarket.eu/Products/Singles/Alpha/Serra+Angel
http://arxiv.org/abs/1603.04667
http://www.opte.org/maps/

Bibliography 178

[Pas+17b] Bastien Pasdeloup, Vincent Gripon, Nicolas Grelier, Jean-Charles Vialatte,
and Dominique Pastor. “Translations on graphs with neighborhood preser-
vation”. In: arXiv preprint arXiv:1709.03859 (2017).

[Pea01] Karl Pearson. “LIII. On lines and planes of closest fit to systems of points
in space”. In: The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 2.11 (1901), pp. 559–572.

[Per+14] Nathanaël Perraudin, Johan Paratte, David Shuman, Lionel Martin, Vassilis
Kalofolias, Pierre Vandergheynst, and David K Hammond. “GSPBOX: A
toolbox for signal processing on graphs”. In: arXiv preprint arXiv:1408.5781
(2014).

[Pet98] Julius Petersen. “Sur le théoreme de Tait”. In: L’intermédiaire des Mathémati-
ciens 5 (1898), pp. 225–227.

[PK17] Bastien Pasdeloup and Marine Karmann. “PyRat - Un jeu sérieux pour
l’enseignement de l’informatique”. In: QPES 2017 : Questions de Pédagogies
dans l’Enseignement Supérieur. Grenoble, France, 2017.

[PKP17] Gilles Puy, Srdan Kitic, and Patrick Pérez. “Unifying local and non-local
signal processing with graph CNNs”. In: CoRR abs/1702.07759 (2017). URL:
http://arxiv.org/abs/1702.07759.

[PM06] Markus Püschel and José M. F. Moura. “Algebraic Signal Processing The-
ory”. In: CoRR abs/cs/0612077 (2006). URL: http://arxiv.org/abs/
cs/0612077.

[PMTF17] Hermina Petric Maretic, Dorina Thanou, and Pascal Frossard. “Graph learn-
ing under sparsity priors”. In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). EPFL-CONF-224359. 2017.

[PO16] Eduardo Pavez and Antonio Ortega. “Generalized Laplacian precision ma-
trix estimation for graph signal processing”. In: Acoustics, Speech and Sig-
nal Processing (ICASSP), 2016 IEEE International Conference on. IEEE. 2016,
pp. 6350–6354.

[Pri90] Roland Priemer. Introductory signal processing. World Scientific Publishing
Co Inc, 1990.

[PV17] Nathanaël Perraudin and Pierre Vandergheynst. “Stationary signal pro-
cessing on graphs”. In: IEEE Transactions on Signal Processing 65.13 (2017),
pp. 3462–3477.

[Rab17] Michael G Rabbat. “Inferring sparse graphs from smooth signals with the-
oretical guarantees”. In: Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE. 2017, pp. 6533–6537.

[RG14] Michael G Rabbat and Vincent Gripon. “Towards a spectral characteriza-
tion of signals supported on small-world networks”. In: Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE.
2014, pp. 4793–4797.

[Rin09] Francesco Rinaldi. “Mathematical Programming Methods for minimizing
the zero-norm over polyhedral sets”. In: Sapienza, University of Rome. url:
http://www. math. unipd. it/˜ rinaldi/papers/thesis0. pdf (2009).

[RMC08] Angela Re, Ivan Molineris, and Michele Caselle. “Graph theory analysis of
genomics problems: Community analysis of fragile sites correlations and
of pseudogenes alignments”. In: Computers & Mathematics with Applications
55.5 (2008), pp. 1034–1043.

http://arxiv.org/abs/1702.07759
http://arxiv.org/abs/cs/0612077
http://arxiv.org/abs/cs/0612077

179 Bibliography

[Rot+08] Adam J Rothman, Peter J Bickel, Elizaveta Levina, Ji Zhu, et al. “Sparse per-
mutation invariant covariance estimation”. In: Electronic Journal of Statistics
2 (2008), pp. 494–515.

[Sab66] Gert Sabidussi. “The centrality index of a graph”. In: Psychometrika 31.4
(1966), pp. 581–603.

[SBDL16] Stefania Sardellitti, Sergio Barbarossa, and Paolo Di Lorenzo. “Graph topol-
ogy inference based on transform learning”. In: Signal and Information Pro-
cessing (GlobalSIP), 2016 IEEE Global Conference on. IEEE. 2016, pp. 356–360.

[SBG17] Yanning Shen, Brian Baingana, and Georgios B Giannakis. “Topology in-
ference of directed graphs using nonlinear structural vector autoregressive
models”. In: Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE In-
ternational Conference on. IEEE. 2017, pp. 6513–6517.

[Seg+16] Santiago Segarra, Antonio G Marques, Gonzalo Mateos, and Alejandro Ribeiro.
“Network topology identification from spectral templates”. In: Statistical
Signal Processing Workshop (SSP), 2016 IEEE. IEEE. 2016, pp. 1–5.

[Seg+17a] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro. “Network Topology
Inference from Spectral Templates”. In: IEEE Transactions on Signal and In-
formation Processing over Networks PP.99 (2017), pp. 1–1. DOI: 10.1109/
TSIPN.2017.2731051.

[Seg+17b] Santiago Segarra, Antonio G Marques, Gonzalo Mateos, and Alejandro Ribeiro.
“Robust Network Topology Inference”. In: International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2017.

[Sha+17] Rasoul Shafipour, Santiago Segarra, Antonio G Marques, and Gonzalo Ma-
teos. “Network topology inference from non-stationary graph signals”. In:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2017.

[Sha49] Claude Elwood Shannon. “Communication in the presence of noise”. In:
Proceedings of the IRE 37.1 (1949), pp. 10–21.

[SHG12] Shiliang Sun, Rongqing Huang, and Ya Gao. “Network-scale traffic model-
ing and forecasting with graphical lasso and neural networks”. In: Journal
of Transportation Engineering 138.11 (2012), pp. 1358–1367.

[Shl16] Jon Shlens. Train your own image classifier with Inception in TensorFlow. https:
/ / research . googleblog . com / 2016 / 03 / train - your - own -

image - classifier - with . html. Accessed: 2017-08-24. Google Re-
search Blog, 2016.

[SHR15] Santiago Segarra, Weiyu Huang, and Alejandro Ribeiro. “Diffusion and su-
perposition distances for signals supported on networks”. In: IEEE Trans-
actions on Signal and Information Processing over Networks 1.1 (2015), pp. 20–
32.

[Shu+13] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains”. In: IEEE Signal Processing Magazine 30.3 (2013), pp. 83–98.

[Sil+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. “Mastering the game of Go with deep
neural networks and tree search”. In: Nature 529.7587 (2016), pp. 484–489.

https://doi.org/10.1109/TSIPN.2017.2731051
https://doi.org/10.1109/TSIPN.2017.2731051
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html
https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html

Bibliography 180

[SJ10] Pannagadatta K Shivaswamy and Tony Jebara. “Laplacian spectrum learn-
ing”. In: Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer. 2010, pp. 261–276.

[SM13] Aliaksei Sandryhaila and José MF Moura. “Discrete signal processing on
graphs”. In: IEEE transactions on signal processing 61.7 (2013), pp. 1644–1656.

[SM14] Aliaksei Sandryhaila and Jose MF Moura. “Discrete Signal Processing on
Graphs: Frequency Analysis.” In: IEEE Trans. Signal Processing 62.12 (2014),
pp. 3042–3054.

[SP13] Shahin Shahrampour and Victor M Preciado. “Reconstruction of directed
networks from consensus dynamics”. In: American Control Conference (ACC),
2013. IEEE. 2013, pp. 1685–1690.

[SP15] Shahin Shahrampour and Victor M Preciado. “Topology identification of
directed dynamical networks via power spectral analysis”. In: IEEE Trans-
actions on Automatic Control 60.8 (2015), pp. 2260–2265.

[SRV12] David I Shuman, Benjamin Ricaud, and Pierre Vandergheynst. “A win-
dowed graph Fourier transform”. In: Statistical Signal Processing Workshop
(SSP), 2012 IEEE. Ieee. 2012, pp. 133–136.

[SSJ17] Santiago Segarra, Michael T. Schaub, and Ali Jadbabaie. “Network Infer-
ence from Consensus Dynamics”. In: arXiv preprint arXiv:1708.05329 (2017).

[Sze+16] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex A. Alemi.
“Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning”. In: ICLR 2016 Workshop. 2016. URL: https://arxiv.org/
abs/1602.07261.

[TBDL16] Mikhail Tsitsvero, Sergio Barbarossa, and Paolo Di Lorenzo. “Signals on
graphs: Uncertainty principle and sampling”. In: IEEE Transactions on Sig-
nal Processing 64.18 (2016), pp. 4845–4860.

[Tha+16] Dorina Thanou, Xiaowen Dong, Daniel Kressner, and Pascal Frossard. “Learn-
ing heat diffusion graphs”. In: arXiv preprint arXiv:1611.01456 (2016).

[Tig+16] Philippe Tigréat, Carlos Rosar Kos Lassance, Xiaoran Jiang, Vincent Gripon,
and Claude Berrou. “Assembly output codes for learning neural networks”.
In: Turbo Codes and Iterative Information Processing (ISTC), 2016 9th Interna-
tional Symposium on. IEEE. 2016, pp. 285–289.

[TTT99] Kim-Chuan Toh, Michael J Todd, and Reha H Tütüncü. “SDPT3 — a MAT-
LAB software package for semidefinite programming, version 1.3”. In: Op-
timization methods and software 11.1-4 (1999), pp. 545–581.

[TV16] Oguzhan Teke and PP Vaidyanathan. “Discrete uncertainty principles on
graphs”. In: Signals, Systems and Computers, 2016 50th Asilomar Conference
on. IEEE. 2016, pp. 1475–1479.

[TWS15] Kean Ming Tan, Daniela Witten, and Ali Shojaie. “The cluster graphical
lasso for improved estimation of Gaussian graphical models”. In: Compu-
tational statistics & data analysis 85 (2015), pp. 23–36.

[VGC17] Jean-Charles Vialatte, Vincent Gripon, and Gilles Coppin. “Learning Local
Receptive Fields and their Weight Sharing Scheme on Graphs”. In: CoRR
abs/1706.02684 (2017). URL: http://arxiv.org/abs/1706.02684.

[VGM16] Jean-Charles Vialatte, Vincent Gripon, and Grégoire Mercier. “Generaliz-
ing the Convolution Operator to Extend CNNs to Irregular Domains”. In:
CoRR abs/1606.01166 (2016). URL: http://arxiv.org/abs/1606.
01166.

https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1706.02684
http://arxiv.org/abs/1606.01166
http://arxiv.org/abs/1606.01166

181 Bibliography

[Wei58] Karl Weierstraß. Über ein die homogenen Funktionen zweiten Grades betref-
fendes Theorem. Monatsh. Akademie der Wissenschaften, Berlin, 1858.

[Wer76] Nanny Wermuth. “Analogies between multiplicative models in contingency
tables and covariance selection”. In: Biometrics (1976), pp. 95–108.

[WFS11] Daniela M Witten, Jerome H Friedman, and Noah Simon. “New insights
and faster computations for the graphical lasso”. In: Journal of Computa-
tional and Graphical Statistics 20.4 (2011), pp. 892–900.

[WP09] Wei Biao Wu and Mohsen Pourahmadi. “Banding sample autocovariance
matrices of stationary processes”. In: Statistica Sinica (2009), pp. 1755–1768.

[WS98] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-
world’networks”. In: nature 393.6684 (1998), pp. 440–442.

[XW+12] Han Xiao, Wei Biao Wu, et al. “Covariance matrix estimation for stationary
time series”. In: The Annals of Statistics 40.1 (2012), pp. 466–493.

[Yan+15] Sen Yang, Qian Sun, Shuiwang Ji, Peter Wonka, Ian Davidson, and Jieping
Ye. “Structural graphical lasso for learning mouse brain connectivity”. In:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM. 2015, pp. 1385–1394.

Bibliography 182

183 Index

Index

A
Addition of matrices . 43
Adjacency matrix of a digraph 42
Adjacency matrix of a graph 41
Algebraic connectivity . 46
Algebraic multiplicity . 46
Amplitude of a signal . 51
Amplitude of a spectrum.51
Antisymmetric relation . 119
Antitransitive relation . 119
Artificial neural network 151

B
Back-propagation . 152
Band-pass filter . 54
Binary matrix . 41
Bipartite graph .46

C
Circulant matrix . 47
Classification . 150
Classification tree. .151
Complete graph. .48
Connected component . 40
Connected graph . 40
Continuous signal . 51
Convolution of signals . 53
Convolution of signals on a graph58
Convolutional kernel . 158
Convolutional neural network 152
Couple. .35
Covariance matrix . 82
Cross-validation .151
Cycle . 40
Cyclic bandwidth sum problem 163

D
Degrees matrix .45
Diagonal matrix . 43
Diedge . see Directed edge

Diffusion matrix . 64
Digraph . see Directed graph

Dirac delta signal . 55
Dirac delta signal on a graph 59
Directed edge . 38
Directed graph .38
Discrete Fourier transform 52
Discretization of a signal . 52
Downsampling . 154

E
Edge .35
Edge-constrained (EC) transformation 114
Eigenvalue .44
Eigenvector . 44
Entrywise product . 58
Erdős-Rényi random graph model 49
Euclidean translation on the grid graph 128
Euclidean translation on the torus graph . . . 125
Eulerian trail .41

F
Feasibility region . 69
Fourier transform . 51

G
Geodesic distance . 40
Graph . 35
Graph filter . 64
Graph Fourier transform . 56
Graph order . 35
Graph shift operator . 63
Graph size . 35
Graph spread of a signal on a graph 68
Grid graph .48
Grid search .154

H
Hamiltonian path . 41
Hidden layer . 151
High-pass filter . 53

I
Identity matrix .43

Index 184

Indegrees matrix . 45
Induced subgraph . 39
Input layer . 151
Intransitive relation . 119
Inverse discrete Fourier transform.52
Inverse Fourier transform 51
Inverse geodesic distance 76
Inverse graph Fourier transform 56
Inverse matrix . 44
Inverse weights matrix . 76
Irreflexive relation . 119
Isometry on a graph . 121

K
K-nearest neighbors (K-NN) 151
K-ring graph . 47

L
Laplacian matrix . 46
Length of a path . 40
Line graph . 48
Loss of a transformation 114
Lossless transformation 114
Low-pass filter . 53

M
Magnitude of a spectrum 66
Matrix L0,1 norm . 45
Matrix L1,1 norm . 45
Matrix diagonalization . 44
Matrix Frobenius norm . 45
Matrix power . 45
Matrix trace .45
Max-pooling . 153
Minimal translation . 120
Modulation of a signal . 55
Modulation of a signal on a graph61
Monoid induced by Ψ

∗
Gt

. 127
Monoid induced by ΨGg

.128

N
Naive Bayes . 151
Neighborhood . 35
Neuron. .151
Normalized Laplacian matrix 46

O
Orientation of a graph . 110
Outdegrees matrix . 45
Output layer . 151
Overfitting . 159

P
Pair . 35

Path . 39
Precision matrix . 84
Product of matrices . 43
Proximity centrality . 158
Pseudo-minimal translation 120
Pseudo-translation . 136

Q
Quantization of a signal . 52
Quotient ring . 47

R
Random forest .151
Random geometric graph model 49
Ring graph. .47

S
Sample covariance matrix 83
Self-loop . 38
Shortest path. .40
Signal bandwidth . 52
Signal on a graph . 56
Signal sampling .52
Simple graph . 38
Slice of a grid graph . 129
Smoothness of a signal on a graph.61
Sparse graph .39
Spectral spread of a signal67
Spectral spread of a signal on a graph 68
Spectrum of a signal . 51
Star graph . 49
Stationary process . 62
Strong-sense stationarity . 62
Strong-sense stationarity on a graph.64
Strongly-neighborhood preserving (SNP)

transformation 117
Supervised learning . 150
Support vector machine (SVM) 151
Symmetric matrix . 41

T
Test set . 150
Time spread of a signal .67
Torus graph .47
Trail . 41
Training set .150
Transformation on a graph 114
Translation of a signal . 55
Translation of a signal on a graph 60
Translation on a graph .118
Transposed matrix . 43

U
Uncertainty curve .69

185 Index

V
Validation set .151
Vertex . 35

W
Watts-Strogatz random graph model 50
Weak-sense stationarity . 62

Weak-sense stationarity on a graph64
Weakly-neighborhood preserving (WNP)

transformation 117
Weighted graph .37
Weights matrix .42
White noise . 62
White noise on a graph. .64

Index 186

ABSTRACT

∗ ∗ ∗
This manuscript sums up our work on ex-
tending convolutional neural networks to ir-
regular domains through graph inference. It
consists of three main chapters, each giv-
ing the details of a part of a methodology
allowing the definition of such networks to
process signals evolving on graphs with un-
known structures.

First, graph inference from data is explored,
in order to provide a graph modeling the
support of the signals to classify. Second,
translation operators that preserve neigh-
borhood properties of the vertices are iden-
tified on the inferred graph. Third, these
translations are used to shift a convolutional
kernel on the graph in order to define a con-
volutional neural network that is adapted to
the input data.

We have illustrated our methodology on a
dataset of images. While not using any par-
ticular knowledge on the signals, we have
been able to infer a graph that is close to a
grid. Translations on this graph resemble
Euclidean translations. Therefore, this has
allowed us to define an adapted convolu-
tional neural network that is very close what
one would obtain when using the informa-
tion that signals are images. This network,
trained on the initial data, has outperformed
state of the art methods by more than 13
points, while using a very simple and easily
improvable architecture.

The method we have introduced is a gener-
alization of convolutional neural networks.
As a matter of fact, they can be seen as a
particularization of our approach in the case
where the graph is a grid. Our work thus
opens the way to numerous perspectives,
as it provides an efficient way to build net-
works that are adapted to the data.

∗ ∗ ∗
Keywords : Graph signal processing, graph
inference, translations on graphs, convolu-
tional neural networks.

RÉSUMÉ

∗ ∗ ∗
Ce manuscrit résume nos travaux sur l’ex-
tension des réseaux de neurones convolu-
tifs à des domaines irréguliers par l’infé-
rence de graphe. Il consiste en trois grands
chapitres, chacun détaillant une partie d’une
méthodologie nous permettant d’appliquer
de tels réseaux à des signaux évoluant sur
des graphes inconnus.

Tout d’abord, nous présentons des mé-
thodes permettant d’inférer un graphe à par-
tir de signaux, afin de modéliser le support
des données à classifier. Ensuite, des transla-
tions préservant les voisinages des sommets
sont identifiées sur le graphe inféré. Enfin,
ces translations sont utilisées pour dépla-
cer un noyau convolutif sur le graphe, afin
de définir un réseau de neurones convolutif
adapté aux données d’entrée.

Nous avons illustré notre méthodologie sur
une base de données d’images. Sans utili-
ser de connaissances sur les signaux, nous
avons pu inférer un graphe proche d’une
grille. Les translations sur ce graphe sont
proches des translations Euclidiennes, ce qui
nous a permis de définir un réseau de neu-
rones convolutif très similaire à ce que l’on
aurait pu obtenir en utilisant l’information
que les signaux sont des images. Ce réseau,
entraîné sur les données initiales, a dépassé
les performances des méthodes de l’état de
l’art de plus de 13 points, tout en étant
simple et facilement améliorable.

La méthode que nous avons introduite est
une généralisation des réseaux de neurones
convolutifs, car ceux-ci sont des cas parti-
culiers de notre approche quand le graphe
est une grille. Nos travaux ouvrent donc de
nombreuses perspectives, car ils fournissent
une méthode efficace pour construire des ré-
seaux adaptés aux données.

∗ ∗ ∗
Mots-clés : Traitement de signal sur
graphe, inférence de graphe, translations sur
graphes, réseaux de neurones convolutifs.

N◦ d’ordre : 2017IMTA0048

IMT Atlantique
Technopôle Brest-Iroise CS 83818
29238 Brest Cedex 03, France

�� ������� 	
��
��������

Résumé

Tout d'abord, nous présentons des méthodes permettant d'inférer un
graphe à partir de signaux, afin de modéliser le support des données à
classifier. Ensuite, des translations préservant les voisinages des
sommets sont identifiées sur le graphe inféré. Enfin, ces translations
sont utilisées pour déplacer un noyau convolutif sur le graphe, afin de
définir un réseau de neurones convolutif adapté aux données d'entrée.

Nous avons illustré notre méthodologie sur une base de données
d'images. Sans utiliser de connaissances sur les signaux, nous avons
pu inférer un graphe proche d'une grille. Les translations sur ce graphe
sont proches des translations Euclidiennes, ce qui nous a permis de
définir un réseau de neurones convolutif très similaire à ce que l'on
aurait pu obtenir en utilisant l'information que les signaux sont des
images. Ce réseau, entraîné sur les données initiales, a dépassé les
performances des méthodes de l'état de l'art de plus de 13 points, tout
en étant simple et facilement améliorable.

La méthode que nous avons introduite est une généralisation des
réseaux de neurones convolutifs, car ceux-ci sont des cas particuliers
de notre approche quand le graphe est une grille. Nos travaux ouvrent
donc de nombreuses perspectives, car ils fournissent une méthode
efficace pour construire des réseaux adaptés aux données.

Mots clef : Informatique, Inférence de graphe, Traitement de signal 6

Apprentissage, Traitement de signal sur graphe, Réseaux de

neurones, Machine Learning

Abstract

This manuscript sums up our work on extending convolutional neural
networks to irregular domains through graph inference. It consists of
three main chapters, each giving the details of a part of a methodology
allowing the definition of such networks to process signals evolving on
graphs with unknown structures.

First, graph inference from data is explored, in order to provide a graph
modeling the support of the signals to classify. Second, translation
operators that preserve neighborhood properties of the vertices are
identified on the inferred graph. Third, these translations are used to
shift a convolutional kernel on the graph in order to define a
convolutional neural network that is adapted to the input data.

We have illustrated our methodology on a dataset of images. While not
using any particular knowledge on the signals, we have been able to
infer a graph that is close to a grid. Translations on this graph resemble
Euclidean translations. Therefore, this has allowed us to define an
adapted convolutional neural network that is very close what one would
obtain when using the information that signals are images. This
network, trained on the initial data, has outperformed state of the art
methods by more than 13 points, while using a very simple and easily
improvable architecture.

The method we have introduced is a generalization of convolutional
neural networks. As a matter of fact, they can be seen as a
particularization of our approach in the case where the graph is a grid.
Our work thus opens the way to numerous perspectives, as it provides
an efficient way to build networks that are adapted to the
data.

Keywords: Graph signal processing, Graph inference, Translations on

graphs, Convolutional neural networks

	Acknowledgments
	Résumé
	Abstract
	Introduction
	Context
	Problems: F.A.Q.
	Which graph corresponds to my signals?
	I know how to move signals in time, but how does it work on a graph?
	Can graph signal processing help me classify signals?

	Outline

	Signal processing on graphs
	Elements of graph theory
	What is graph theory?
	Extensions of the graph model and operations on graphs
	Matrix representation of graphs
	Some families of graphs

	Elements of signal processing
	What is signal processing?
	Operations on signals

	Graph signal processing
	From signal processing to graph signal processing
	The underlying graph and the signals
	The uncertainty principle on graphs

	Summary of the chapter

	From signals to graphs
	Problem formulation and related work
	Problem formulation
	The covariance matrix and its estimates
	Related work

	The simplified case of the monomial graph filter
	Problem simplification
	Identifying the missing eigenvalues
	A complete example
	Removing some constraints

	Graph inference from stationary signals
	Characterization of the set of admissible solutions
	Experiments on a dataset of temperatures in Brittany

	Adaptation of other strategies to stationary signals
	Introduction of the method
	Application to the method from Kalofolias
	Additional experiments on the dataset of temperatures
	Application of regularization to graph hypothesis testing

	Summary of the chapter

	From graphs to translations
	Existing translation operators on graphs
	The graph shift approach
	The convolutive approach
	The isometric approach
	Neighborhood-preserving translations

	Transformations, translations and isometries on graph
	Transformations on graphs
	Translations on graphs
	Isometries on graphs

	Results on translations on graphs
	Results on generic graphs
	Results on the torus graph
	Results on the grid graph
	Extension to generic graphs

	Finding translations on complex graphs
	Experiments on the grid graph
	Translations on random graphs

	Summary of the chapter

	Application to signals classification
	Convolutional neural networks
	Some methods for classification of signals
	Convolutional neural networks
	Related work in extending convolutional neural networks to irregular domains

	A complete example on images
	Graph inference from data
	Identification of translations on the graph
	Definition of the convolution matrix of a convolutional neural network
	Classification results
	Perspectives: the interest of identifying circulant matrices

	Summary of the chapter

	Conclusions
	Summary of the manuscript
	From signals to graphs…
	…to translations…
	…to signals classification

	Contributions
	Graph inference from signals
	Translations identification on graphs
	Classification of signals using graph signal processing and convolutional neural networks

	Perspectives

	Implementation of our convolutional neural networks
	Bibliography
	Index

