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Chapter 1

Introduction

1.1 Outline of the Work

This section contains a brief outline of the thesis, describing the focus of
my studies and the structure of my work.

In recent years, the great progress achieved in the field of cold atom

experiments has drawn closer the domains of Atomic and Condensed

Matter physics. The link between these two domains is given by the

concept of quantum simulation, i.e. the creation of an experiment which

implements a Hamiltonian of interest (such as, e.g., a candidate model

for an unexplained phenomenon) in a clean and controllable fashion.

The perspective of quantum simulation has increased the interest in

the study of strongly correlated Hamiltonians, which was already of con-

siderable importance due to the connection between the latter and some

of the most intriguing scenarios in Condensed Matter physics (such as,

e.g., high-Tc superconductivity). Due to the complexity of strongly cor-

related problems, numerical techniques usually offer the most reliable

approach to treat them.

The focus of my thesis is the investigation, via state-of-the-art nu-
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merical approaches, of strongly correlated models of bosons and fermions,

of interest for Atomic and Condensed Matter physics.

I study bosonic lattice Hamiltonians with extended-range interac-

tions. I perform my investigations via Path Integral Monte Carlo simu-

lations with Worm Updates, using an implementation of the algorithm

written by myself. My main result is the demonstration of a superglass

(i.e., a disordered supersolid) in the absence of frustration sources in

the system, usually employed to generate glassy physics. These phases

should be of direct relevance for experimental realizations with cold

Rydberg-dressed atoms.

I also study the fermionic t − J model in the presence of two mobile

holes via the Variational Monte Carlo approach with the Entangled Pla-

quette States Ansatz. My study is foundational to the extension of this

approach in order to study other fermionic problems of considerable in-

terest, where the physical picture is still under debate (such as, e.g., the

t− J model in the case of finite hole concentration).

Finally, I discuss my work on Diagrammatic Monte Carlo, a recently

introduced technique for the study of strongly correlated fermionic sys-

tems. I illustrate the approach and offer details about my implementa-

tion of this algorithm, motivating the chosen strategies and discussing

possible future developments.

The remainder of the thesis is organized as follows. In section 1.2

and 1.3 I offer a quick overview of strongly correlated systems and cold

atom experiments, respectively. In section 1.4 I give a brief outline of my

results. The numerical techniques used to obtain the latter are intro-

duced in chapter 2, and an in-depth discussion of my findings is offered

in chapter 3. I offer in chapter 4 details about the Diagrammatic Monte

Carlo method and discuss the state and possible future developments of

my implementation of the approach. Finally, I draw the conclusions of

my thesis in chapter 5.
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1.2 Strongly Correlated Systems

This section contains a quick introduction to strongly correlated systems.
I briefly illustrate some examples of many-body phenomena occurring in
bosonic and fermionic systems, and describe the related research direc-
tions followed in the thesis.

Physical systems known as strongly correlated (i.e., in which the

behaviour of the degrees of freedom cannot be described effectively in

terms of noninteracting entities) offer the possibility to observe some of

the most interesting scenarios in Condensed Matter Physics. In partic-

ular, the latter include several examples of Macroscopic Quantum Phe-
nomena (MQP), i.e. large-scale manifestation of the quantum nature of

the system components.

A prominent example of MQP observed in bosonic systems is su-
perfluidity, i.e. the property of a material sustaining persistent and

dissipation-free flow. Superfluid behavior was first observed in 4He, in

which a second-order phase transition between a normal liquid phase

and a superfluid state occurs at a critical temperature Tλ ' 2.17 K [1,

2]. A well-established theoretical framework for the physics of super-

fluids exists nowadays (see, e.g., [3], sec. A2 and references therein),

and experimental observations of superfluidity have been reported in

systems other than 4He, such as cold atoms (see, e.g., [4]).

Superfluid phenomena also appears in supersolids (see for instance

[3] and references therein), i.e. phases in which a crystalline struc-

ture coexists with superflow. The theoretical possibility of a supersolid

phase in solid 4He was first considered decades ago, and different mech-

anisms for its appearance were proposed (see, e.g., [3], sec. A3 and

references therein). The most relevant among these is the Andreev-

Chester-Lifshitz scenario [5, 6], which explains supersolidity as the ef-

fect of the presence, with respect to a commensurate crystal, of defects

such as vacancies or excess particles which can delocalize, giving rise

to superfluidity. Despite early reports of experimental observation of
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this phenomenon in solid 4He [7, 8], its possibility was ruled out by sub-

sequent numerical [9, 10] and experimental [11] studies. Numerical

simulations have however proven the existence of supersolid phases in

several bosonic systems, ranging from lattice Hamiltonians (e.g. [12]) to

free-space models with extended-range interactions (e.g. [13]).

The theoretical search of supersolid phases in systems of experimen-

tal interest is therefore an active field of research, as well as the investi-

gation for phases which (like supersolids) show coexistence of different

order parameters. My studies in this direction [14] will be briefly intro-

duced in section 1.4.1 and thoroughly discussed in section 3.1.

Another example of MQP, observed in fermionic systems, is super-
conductivity, i.e. the loss of electric resistance and the appearance of

anomalous magnetic behaviors which may be observed below a critical
temperature Tc in some materials.

In many of these, known as conventional superconductors, the prop-

erties of the superconducting state are described very well by the Bardeen-
Cooper-Schrieffer (BCS) theory [15], which identifies electronic pairing

as the key mechanism behind superconductivity.

Despite its successes, the BCS theory cannot reproduce the features

of the superconducting behavior observed in some materials (for reviews

on this topic see, e.g., [16, 17, 18]). As an example, superconducting

behavior has been observed at temperatures of up to ∼ 130 K, against

a maximum theoretical prediction of the order of 30 K within the BCS

framework.

Materials showing these anomalous features are known as high-Tc
superconductors, and it is believed that their physics can be modeled

by strongly correlated electronic Hamiltonians: candidates include the

two-dimensional (2D) Hubbard and the so-called t− J models [19]. The

former is the simplest model for interacting electrons on a lattice, com-

prising only a uniform, nearest-neighbor hopping term and an on-site

interaction between electrons of opposite spins. A strong-coupling ex-

pansion of the Hubbard model yields the t − J Hamiltonian, which is
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studied as an independent model on its own right due to its capability

to reproduce some features of a particular class of high-Tc superconduc-

tors, known as cuprates. For instance, the model reproduces the antifer-

romagnetic ground state observed in the cuprate phase diagram at zero

doping.

Nevertheless, the relation between effective models such as the Hub-

bard or t− J and the physics of high-Tc superconductors is still not well

established. One of the reasons for this lack of understanding is the

fact that the aforementioned models do not generally admit exact an-

alytical treatment, and most commonly used approximated analytical

approaches (such as, e.g., mean field) fail to treat them, as well as many

numerical methods.

As an example, exact diagonalization studies offer useful insight on

the physics of the system, but are limited to relatively small system

sizes (of the order of 30 sites for a spin system). This usually does not

allow to obtain results which reliably approximate the thermodynamic

limit. Similarly, Path Integral Quantum Monte Carlo (PIMC), one of the

most important numerical methods in 2D, cannot be applied to simulate

models like the Hubbard or t − J at large sizes and low temperatures

due to numerical instabilities arising from the fermionic nature of the

Hamiltonian, collectively known as sign problem [20].

Given the aforementioned analytical and numerical difficulties in

the study of strongly correlated fermionic systems, the investigation

of the latter, as well as the development of new tools and methods to

this end, is an important avenue of research. My studies in this di-

rection [21] will be briefly introduced in section 1.4.2 and thoroughly

discussed in section 3.2. Furthermore, in chapter 4 I will introduce a

recently developed numerical technique for the study of strongly corre-

lated fermionic systems, known as Diagrammatic Monte Carlo (DMC)

(see, e.g., [22]). I will also discuss my implementation of the method,

motivating the chosen strategies and illustrating possible future devel-

opments.
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In recent years, interest in strongly correlated models has renewed

due to the great progress achieved in the field of quantum simulation
(see, e.g., [23, 24]). The idea behind this approach, first introduced in

[25], is to study a Hamiltonian of interest (which may, for instance, be

proposed to model a phenomenon of unknown origin) by implementing

it in a controlled experiment. This approach therefore emerges as a

promising tool to study systems where analytical and numerical tech-

niques are not applicable. One of the most promising experimental se-

tups for the purpose of quantum simulation are cold atoms, which will

be introduced in the next section.
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1.3 Cold Atoms

This section offers a quick overview of some of the techniques used to
implement lattice models of strongly correlated particles in cold atom
experiments. I also introduce Rydberg and Rydberg-dressed atoms as
a tool to engineer Hamiltonians with extended-range interactions. The
results for bosonic systems discussed in this thesis are of interest for this
kind of experiments.

In the most basic cold atom experiment (for reviews see, e.g., [26,

27]) an ensemble of atoms (or molecules) confined in a trapping poten-

tial (usually of optical or magnetic nature) is cooled to very low temper-

atures, of the order of 10−6 ÷ 10−9 K. In these conditions, the quantum-

mechanical properties of the atoms become important, allowing to di-

rectly observe macroscopic quantum effects such as Bose-Einstein con-

densation (BEC) ([28, 29, 30]) or superfluidity ([4, 31]).

In recent years, a great degree of controllability and tunability has

been achieved in cold atom experiments. This kind of experimental

setup has therefore become a great candidate for quantum simulation,

with some realizations of the latter already achieved (including, e.g.,

the observation of the Superfluid-Mott Insulator transition in the Bose-

Hubbard model [32]).

In particular, an important step made towards the experimental en-

gineering of lattice Hamiltonians like the Hubbard or t − J is the pos-

sibility to create optical lattices. The latter are periodic, lattice-like po-

tentials for the atoms, constructed via the use of counter-propagating

laser beams creating a standing wave. The light-matter interaction be-

tween the atoms and the interference pattern of the lasers generates an

effective potential with regularly spaced regions of minimum potential

energy. The latter act as effective lattice sites for the atoms, which may

”hop” between them if the energy barrier between two minima is low

enough.

The depth of the potential minima, and therefore the strength of the
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effective hopping amplitude, can be easily modified by changing the in-

tensity of the laser beams, while changing their relative angle modifies

the geometry of the potential (allowing to construct essentially any lat-

tice structure).

In addition to the possibility of engineering lattice structures in a

clean and controllable way, cold atoms are regarded as good systems for

quantum simulation also due to the degree of control achievable on the

interparticle interaction.

At low enough temperature, short-range interactions between neu-

tral atoms in the ground state can be effectively approximated as an

effective contact interaction Vc(r) ∼ aδ(r), where a is the atomic scatter-

ing length and r is the interatomic distance. In many experiments this

interaction can be widely tuned by taking advantage of a physical phe-

nomenon called Feshbach Resonance (see, e.g., [33]). In this scenario,

the low-energy scattering channel for the two-atom collision process en-

ergetically approaches another channel, which leads to the formation of

a two-atom bound state. In the case most commonly employed in the ex-

periments, the two channels have different magnetic moments, and can

be resonantly coupled by a magnetic field B. The effect of this coupling

can be described by an effective value of the atomic scattering length

aeff(B), which can be tuned to have different sign and magnitude with

respect to the off-resonant value a.

The possibility of tuning the interaction value allows the direct re-

alization of phenomena such as the BCS-BEC crossover (see, e.g., [34]

for a review, [35] for an experimental observation). In this scenario,

the interactions in a fermionic system are tuned to pass from a BCS

superconducting state (in the weakly attractive regime) to a BEC of di-

fermionic molecules (in the strongly attractive regime).

An interesting recent avenue of research is the study of atomic and

molecular systems interacting via extended-range potentials, which may

in principle lead to the observation of novel physical phenomena. Avail-

able experimental platforms to this end include dipolar atoms [36], cold
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molecules [37] and Rydberg atoms, on which the rest of this section will

focus.

Rydberg atoms (see, e.g., [38, 39, 40]) i.e. atoms in states of high

principal quantum number n, display several outstanding properties:

for instance, a large atomic size (of the order of 10−6 m for n ∼ 100), a

long lifetime, scaling as n−3, and a large dipole moment µ ∼ n2.

Rydberg states of alkali metal atoms possess a rich fine and hyper-

fine structure, which make them highly tunable and addressable using

external fields. This addressability can be used to engineer the interac-

tion potentials between atoms. For example, the presence of an exter-

nal electric field can induce permament electric dipole moments in the

excited states, and the resulting Rydberg-Rydberg interaction scales as

r−3. In the absence of external fields, the dominant contribution is given

by Van-der-Waals forces, scaling as V (r) ∼ C6/r
6 with C6 ∼ n11. The re-

sulting interactions are orders of magnitude larger than those in the

between atoms in the ground state. Experimentally, the sign of these

potentials can be changed utilizing different Rydberg states: in the fol-

lowing, repulsive Van-der-Waals interactions will be assumed. A further

assumption which will be made in this section is the the description of

Rydberg atoms as two-level systems with ground state | g 〉 and excited

state | e 〉, driven by a laser of Rabi frequency Ω and detuning ∆. In this

section, and in the rest of the thesis, ~ = 1 will be set.

Rydberg atoms allow to observe characteristic phenomena such as

the Rydberg Blockade, i.e. the suppression of the simultaneous excita-

tion of two atoms to the Rydberg state within a certain distance of each

other. In a schematic picture, this is due to the fact that the energy

level of the state of the system with two excited atoms is shifted of an

amount given by the Rydberg-Rydberg interaction V (r). In the case of

red detuning (i.e. ∆ < 0) and for large enough shifting (i.e. for small

enough r) the aforementioned level becomes off-resonance with respect

to the laser used to drive the excitation. One can then define a block-
ade radius rb below which simultaneous excitations are forbidden. The

energy level scheme of the blockade phenomenon is depicted in Figure
1.1.
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Figure 1.1: Energy level scheme for the Rydberg blockade phenomenon. The
relevant states of the system are | ge 〉 and | ee 〉, with one and
two excited atoms, respectively. Setting as zero the energy of the
former, the energy of the latter becomes Eee(r) = ω0 + V (r) (red
curve), where V (r) is the Rydberg-Rydberg potential defined in
the text and ω0 is the frequency of the Rydberg transition. The
laser frequency is ωL < ω0 (i.e. red detuning).rb is the blockade
radius. The transition from | ge 〉 to | ee 〉, mediated by a photon
of frequency ωL (black arrows) is allowed (suppressed) for r > rb
(r < rb) because the corresponding energy level Eee(r) lies inside
(outside) of the laser linewidth (blue curve).

The Rydberg blockade phenomenon plays a crucial role in Rydberg-
dressed states [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. The latter are

superpositions of the ground state | g 〉 and the excited (Rydberg) state

| e 〉 of the atom, which can be experimentally engineered via the use of

laser beams. In the far-off-resonant regime (Ω � ∆), the ground-state

of the atom-light Hamiltonian is a dressed state in the form

| d 〉 = | g 〉+ α | e 〉 α =

(
Ω

2∆

)
(1.1)

This kind of states has notable properties, such as a lifetime α−2

times longer than the bare excited Rydberg states. The interaction be-

tween Rydberg-dressed atoms in the far-off-resonant regime and for red
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Figure 1.2: Two-body interaction (1.2) between Rydberg-dressed atoms as a
function of the interatomic distance r.

detuning can be obtained via a perturbative expansion in (Ω/∆): the

result up to sixth order [41, 51, 44] is the two-body potential

Vdd(r) =

(
Ω

2∆

)4
C6(

C6
2|∆|

)
+ r6

=
V0

1 +
(
r
rc

)6 , (1.2)

with V0 = Ω4/8∆3 and rc = 6
√
C6/2|∆|, represented in Figure 1.2,

where r is the interatomic distance. The experimental realization of

this interaction between atomic spins has been reported [48, 49].

For large r, the interatomic potential (1.2) reduces to the Van-der-

Waals interaction between excited Rydberg atoms, weighted by the prob-

ability α4 of exciting both atoms at the same time. For small r, instead, a

blockade-like phenomenon strongly inhibits the probability of simulta-

neous excitation: the competition between this effect and the increase in

V (r) makes the interaction Vdd(r) approach a constant value for r → 0.

Due to the possibility of fine-tuning the details of the potential (1.2)
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(by changing the laser parameters Ω and ∆) as well as the aforemen-

tioned experimental realizability of Rydberg-dressed states, the latter

are a promising tool for quantum simulation of systems with extended-

range interactions.

The experimental realizability of Rydberg-dressed states has moti-

vated the numerical study of systems interacting via the potential (1.2),

demonstrating the appearance of physical phenomena of considerable

interest, such as free-space supersolid phases described by the Andreev-

Lifshitz-Chester mechanism [13]. One of the goals of this thesis is to

proceed in this direction, investigating (via state-of-the-art numerical

techniques) the existence of exotic many-body phenomena in systems

of interest for experimental realizations with Rydberg-dressed atoms

[14].
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1.4 Outline of the Results

This section contains a brief outline of the results exposed in the thesis.
Subsection 1.4.1 focuses on the study, via PIMC simulations, of lattice
systems of hardcore bosons of interest for Rydberg-dressed experimental
setups. Subsection 1.4.2 outlines the results obtained, via VMC simula-
tions, for the fermionic t − J model in the presence of two holes. Subsec-
tion 1.4.3 outlines my work on Diagrammatic Monte Carlo.

1.4.1 Equilibrium and Out-of-Equilibrium phases of Interaction-
Blockade Gases on a lattice

In section 3.1 I present my results [14] for a model of strongly correlated

hardcore bosons on a triangular lattice. The system is described by the

Hamiltonian

Ĥ = −t
∑
{i,j}

(
b̂†i b̂j + h.c.

)
+

∑
i<j;rij≤rc

V ninj (1.3)

where b̂i is the annihilation operator for a hardcore boson on the site

i, n̂i = b̂†i b̂i is the occupation of the site i, {i, j} denotes nearest-neighbor

pairs, and rij is the distance between sites i and j. The density-density

interaction in (1.3) yields a contribution V > 0 if two occupied sites lie

within a distance rc of each other, and zero otherwise. This interaction

reproduces the main features of the potential between Rydberg-dressed

atoms (1.2).

My primary goal is to investigate the interplay of different order

parameters, associated to various physical behaviors. In particular, I

focus on superfluid, crystalline and glassy properties. Due to the lack

of reliable analytical treatment for the model of my interest, I employ

numerical methods to investigate the behavior of the system. In par-

ticular, I perform numerically exact PIMC simulations using Worm Up-

dates [52], a state-of-the-art method for systems of unfrustrated bosons,

which I introduce in section 2.2. I personally wrote the implementation
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of the algorithm used in my work.

My simulations demonstrate the existence, for intermediate values

of the interaction strength V , of an equilibrium supersolid phase, show-

ing simultaneously structural order and superfluidity. The former van-

ishes for small V , leading to a homogeneous superfluid phase, while the

latter disappears in the opposite limit, leading to a crystalline phase.

In order to investigate the out-of-equilibrium scenario, I perform

simulated temperature quenches. The latter lead, in the large-V regime,

to the appearance of a disordered, inhomogeneous phase, i.e. a glass.

For intermediate V , glassy physics coexists with a sizeable superfluid

fraction: such a state is known as a superglass (the disordered equiva-

lent of a supersolid).

As opposed to many studies demonstrating (super)glassy physics,

in which this kind of phenomenon is generated via artificially-induced

frustration (e.g. [53]), the Hamiltonian used in my work is translation-

ally invariant and frustration-free. Here, glassy physics arises from the

formation of self-assembled particle clusters, which induce an effective

polidispersity in the system. Given the simplicity and generality of the

model (1.3), the phases demonstrated in my study should be of direct

experimental relevance for state-of-the-art experiments with Rydberg-

dressed atoms in optical lattices.

I also study the model (1.3) with rc = 2
√

2 on a square lattice, up to

system sizes of N = 48 × 48 and temperatures T/t = 1/20. Preliminary

results [54] show for these parameters a phase transition between a SS

and a disordered, non-superfluid phase where the density matrix shows

a power-law decay for long distances. Large-scale and low-temperature

simulations are currently running to understand if, e.g., structural or-

der and superfluidity disappear at the same time or if an intermediate

phase is present, and to investigate possible temperature and size de-

pendences of the aforementioned physical picture.
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1.4.2 Variational Studies of the t−J model with two holes

In section 3.2 I present my results [21] on the study of the two-dimensional

t− J Hamiltonian,

Ĥ = −t
∑
{i,j},σ

(
Ĉ†iσĈjσ + h.c.

)
+ J

∑
{i,j}

(
Ŝi · Ŝj −

n̂in̂j
4

)
(1.4)

in the presence of two mobile holes. In (1.4), Ĉiσ is the annihilation

operator for a spin-1/2 fermion with spin component σ on the site i, Ŝi
is a shorthand notation for the spin projection operators on site i, i.e.

Ŝi =
(
Ŝ
x

i , Ŝ
y

i , Ŝ
z

i

)
, n̂i =

∑
σ Ĉ
†
σiĈσi, {i, j} denotes sum over nearest-

neighbor sites, and double occupancy of lattice sites is forbidden.

I focus on a square lattice comprising up to N = 256 sites in the

parameter range 0.4 ≤ J/t ≤ 2.0. I perform my study using the Varia-

tional Monte Carlo (VMC) method with the EPS ansatz, both introduced

in section 2.3.

Ground state energies are obtained via the optimization of a wave

function in which the weight of a given configuration is expressed in

terms of variational coefficients associated with square and linear en-

tangled plaquettes. My estimates are in excellent agreement with exact

results available for the N = 16 lattice.

By extending my study to considerably larger systems I find, based

on the analysis of the long distance tail of the probability of finding

two holes at spatial separation r, and on my computed two-hole binding

energies, the existence of a two-hole bound state for all the values of J/t

explored here. It is estimated that d-wave binding of the two holes does

not occur for J/t < Jc/t ' 0.19.

These results agree with the general picture provided by previous

studies [55, 56, 57]. The numerical method used in my work, however,

allows to obtain higher accuracy results with respect to the other ap-

proaches employed in the literature.

Given the offered accuracy, as well as the flexibility of the VMC

method in conjunction with the EPS ansatz, this study is foundational

to the extension of this approach in order to study other fermionic prob-
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lems of considerable interest, such as the t − J model (1.4) in the case

of finite hole concentration, in which the physical picture is still unclear

[58, 59, 60].
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1.4.3 Diagrammatic Monte Carlo

In chapter 4 I expose my work on DMC (for an introduction on the

method see, e.g., [22]). This numerical technique has been recently

the subject of intense theoretical work (see, e.g., [61, 62] and references

therein) and has seen applications to challenging problems such as, e.g.,

the determination of the phase diagram of the 2D Hubbard Model [63].

After introducing the general concepts behind the method, I offer de-

tails about my implementation of this algorithm, discussing the chosen

approaches and outlining possible future developments.



Chapter 2

Numerical Methods

This chapter contains a quick overview of the numerical methods used
to obtain the results shown in chapter 3. Section 2.1 discusses the basic
ideas underlying underlying Monte Carlo sampling, which are later used
in sections 2.2 and 2.3 and chapter 4 to introduce the Path Integral,
Variational and Diagrammatic Monte Carlo approaches, respectively.

2.1 Monte Carlo Algorithms

In statistical physics, the thermodynamical mean value of an observable

O for a classical system is computed as

〈O〉 =

∑
C O(C) exp (−βE(C))∑
C′ exp (−βE(C ′))

=
∑
C

O(C)

(
e−βE(C)

Z

)
=
∑
C

O(C)W (C)

(2.1)

where C and C ′ run over all the possible configurations of the sys-

tem, O(C), E(C) are the values of the observable and of the energy for

the configuration C, respectively, β = 1/T is the inverse temperature

(here and in the rest of the thesis the Boltzmann constant will be set

to 1), Z is the partition function, and W (C) = exp(−βE(C))/Z will be

referred to as configuration weight.

26
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To reliably approximate the thermodynamic limit, mean values like

(2.1) usually need to be computed at large enough system sizes. How-

ever, the dependence on the latter of the number of configurations is

usually exponential (e.g., 2N configurations for a system of N spin-1/2).

This in general dooms any attempt to compute sums like those in (2.1)

exactly for sizes of interest.

Monte Carlo methods (for a general introduction see, for instance,

[64]) compute (2.1) via stochastic sampling, estimating 〈O〉 as the av-

erage of the contributions given by a large enough set of randomly se-

lected configurations. The contribution O(C) of each configuration C is

weighted in the average with the configuration weight W (C).

The advantage in using stochastic sampling is that the estimate will

asymptotically converge to the exact result, with a statistical uncer-

tainty which scales asymptotically with the number of sampled config-

urations M as M−1/2. The uncertainty is therefore independent on the

system size (which may however influence the time required to reach

the asymptotic regime). This usually allows to analyze systems large

enough to obtain a reliable approximation of the thermodynamic limit.

Sampling uniformly-distributed configurations may result in slow

convergence to the exact result if the weight function W (C) is sharply

peaked (as in the case of (2.1)), because most sampled configurations

will have small weight. A more efficient approach is to sample config-

urtions distributed according to the weight function W (C), interpreted

as a distribution. This naturally yields more often configurations with

larger weight.

In the most commonly used family of Monte Carlo methods, known

as Markov chain Monte Carlo approaches, this task is performed by cre-

ating a Markov chain of configurations sampled according to the weight

function. Each element of the chain is generated from the previous one

via application of modifications called updates: the transition from a

configuration C1 to any configuration C2 has a probability P (C1 → C2)

to happen. Two conditions are usually imposed in this process:

• The detailed balance condition is a relation involving the transi-
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tion probability, which ensures the configurations will be sampled

according to the weight function W (C). It is a sufficient condition

(less stringent ones can in principle be found) which reads

P (C1 → C2)

P (C2 → C1)
=
W (C2)

W (C1)
(2.2)

Usually the transition probability P (C1 → C2) ≡ P12 is decom-

posed as the product of a proposition probability A12 (selecting the

particular update that will lead from C1 to C2) and an acceptance
probabilityQ12 (the probability of actually performing the change).

A possible choice of Q12 respecting the condition (2.2) is the one

employed in the Metropolis-Hastings (MH) sampling [65],

Q12 = min

(
1,
A21W (C2)

A12W (C1)

)
(2.3)

Accepting or rejecting the update with probability (2.3) ensures

the configurations in the Markov chain are asymptotically dis-

tributed according to W (C). Since this expression only contains

ratios of configuration weights, it is not required to compute the

partition function present in the definition of the weight function

(2.1), simplifying the sampling considerably.

• In order to sample the configuration space properly, the selected

set of updates must be ergodic: any configuration must be reach-

able from any other through a finite number of updates. If an up-

date scheme is not ergodic, sectors of the configuration space may

not be sampled, yielding incorrect results.

Since the configuration weight is already kept into account in the

choice of the configurations, (2.1) is simply approximated as

〈O〉 ∼=
∑

C∈{C1,...,CM}O(C)

M
(2.4)

where the sum is performed over configurations chosen via a MH

process according to the distribution W (C).
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Quantum Monte Carlo approaches are techniques which study the

behavior of quantum systems via stochastic sampling of quantities of in-

terest. Some of the latter work at finite temperature, like Path Integral

Monte Carlo (PIMC), which will be discussed in section 2.2, while oth-

ers work in the ground state, such as Variational Monte Carlo (VMC),

introduced in section 2.3.
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2.2 Path Integral Monte Carlo

In order to introduce the PIMC method, it will be supposed, without loss

of generality, that the system of interest is bosonic, and described by a

lattice Hamiltonian

Ĥ =
N∑

i,j=1

Uijn̂in̂j︸ ︷︷ ︸
Ĥ0

+
N∑

i,j=1

Vij b̂
†
i b̂j︸ ︷︷ ︸

V̂

= Ĥ0 + V̂ (2.5)

where N is the number of sites, b̂i is the bosonic annihilation opera-

tor on site i and n̂i = b̂†i b̂i. It will also be assumed that Vij ≤ 0 for all i, j,

as well as periodic boundary conditions in space.

The starting point of PIMC algorithms (see for instance [52, 66]) is

the expansion of the partition function Z for the quantum system as

Z =

∞∑
n=0

∫ β

0
dτn

∫ τn

0
dτn−1 . . .

∫ τ2

0
dτ1 tr

[
(−1)ne−βĤ0 V̂ (τn) . . . V̂ (τ1)

]
(2.6)

Where τ ∈ [0, β], tr denotes the trace over the Hilbert space, and

V̂ (τ) = eτĤ0 V̂ e−τĤ0 . Inserting sums over the set of eigenvectors S of,

e.g., the site occupation operators n̂i allows to rewrite the trace in (2.6)

as

∑
| i0 〉,...,| in−1 〉∈S

W (| i0 〉 , τ1, | i1 〉 , τ2, . . . , | in−1 〉 , τn) (2.7)

where

W (| i0 〉 , τ1, | i1 〉 , τ2, . . . , | in−1 〉 , τn) = (−1)n
〈
i0 | e−βĤ0eτnĤ0 V̂ e−τnĤ0 | in−1

〉
×

×
〈
in−1 | eτn−1Ĥ V̂ e−τn−1Ĥ0 | in−2

〉
× . . .×

〈
i1 | eτ1Ĥ0 V̂ e−τ1Ĥ0 | i0

〉
= e−(τ1−τn+β)E0

〈
i0 | V̂ | in−1

〉
e−(τn−τn−1)En−1

〈
in−1 | V̂ | in−2

〉
×

× e−(τn−1−τn−2)En−2

〈
in−2 | V̂ | in−3

〉
. . . e−(τ2−τ1)E1

〈
i1 | V̂ | i0

〉
(2.8)
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In (2.8), the exponential terms can be interpreted as Schrödinger

time-evolution operators in the imaginary time τ = it between the states

| i 〉 at times 0 < τ1 < . . . < τn < β; at these times, the hopping oper-

ators V̂ are applied, changing the site occupations and therefore the

state. The evolution follows periodic boundary conditions in time (i.e.,

the states at τ = 0 and τ = β must be identical). Due to the choice of

Vij ≤ 0, (2.8) is always positive.

To simplify the notation, a configuration C of order n will be defined

as the set of n states {| i0 〉 , . . . , | in−1 〉} and n times of application of the

nondiagonal operators {τ1, . . . , τn} which define each term of the sum in

(2.7). The function W in (2.8) will be referred to as configuration weight.
Combining (2.6), (2.7) and (2.8), the partition function then becomes

Z =

∞∑
n=0

∑
C∈Ln

W (C) (2.9)

where Ln is the set of all configurations of order n.

A configuration can be graphically represented as in Figure 2.1. The

red lines in the figure, marking the evolution in space and time of the

particles, are known as worldlines. Kinks (points in which the system

state changes, and worldlines move between sites) correspond to the

application of an operator V̂ .

0

1

2

3

4

i

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 β
τ

Figure 2.1: Graphical representation of a configuration on a 4-site chain for
the Hamiltonian (2.5) with nearest-neighbor hopping. i marks
the site index. The worldlines (red lines) mark the occupied sites
at each imaginary time. The times at which hopping operators
are applied are marked. The dashed line marks a jump which
wraps around the system.
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In this representation, quantum effects become geometrical features

of the configuration. For instance, particle exchanges are represented

by worldline permutations between the states at τ = 0 and τ = β (as

in Figure 2.1). Due to the indistinguishability of the particles, these

exchanges do not break the periodic boundary conditions in time, as

long as the state does not change.

Through repeated particle exchanges, worldlines can wind around

the periodic boundary conditions in space. The number of times world-

lines wrap around the system is known as winding number, and is con-

nected to the presence of superfluidity: for instance, the configuration

shown in Figure 2.1 has winding number w = 3.

In this formalism, in order to compute the thermodynamical mean

value for an observable Ô, i.e.

〈
Ô
〉

=
tr
(
Ôe−βĤ

)
Z

(2.10)

one can expand (2.10) in the same way used for the partition func-

tion, obtaining expressions similar to (2.6) – (2.8) (the only difference is

the presence of an additional Ô in one of the matrix elements).

Assuming Ô to be diagonal on the set S, and performing the same

steps used to obtain (2.9), the mean value of Ô becomes

〈
Ô
〉

=
+∞∑
n=0

∑
C∈Ln

ÔCP (C) (2.11)

where P (C) = W (C)/Z and ÔC =
〈
ik | Ô | ik

〉
is the mean value of

the operator on one of the states of the configuration (due to the cyclic

property of the trace, all choices are equivalent).

The sum over the configurations in (2.11) is usually impossible to

compute exactly for large enough system sizes to reliably approximate

the thermodynamic limit. PIMC methods compute (2.11) via stochastic

sampling: in particular, configurations are sampled via a MH process

(see section 2.1) according to the function P (C) in (2.11). The updates of

the MH process change the position in time of the kinks, their number
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and the sites they link. Usually, instead of computing the quantity ÔC
in (2.11) on a single state of C, the average in τ of the mean values of Ô

computed on all states is used to improve the collected statistics.

The updates chosen for the MH process have to conserve periodic

boundary conditions in τ : with this restriction, the simplest possible

moves are the insertion of pairs of kinks in which a particle jumps from

a site to another and back, or the motion in time of a kink. However,

this simple set of updates is not ergodic, since it cannot change the net

winding number of the system. More sophisticated updates are there-

fore required to measure important quantities such as the superfluid

density.

An example of ergodic update scheme are the worm updates [52].

The first update of the worm scheme creates an open worldline, by

”deleting” a part of a worldline [as shown in panel (a) of Figure 2.2]

or by inserting a new worldline with open ends. The discontinuities

created in this fashion in the worldlines are named worm heads.

After the insertion, updates may move the worm heads in time [panel

(b) of Figure 2.2] or in space: the latter movement may result in par-

ticle exchanges being performed [panel (d)] or not [panels (c) and (e)].

If the two worm heads are on the same site, and no kinks are between

them, an update may be performed to ”close” the worm [panel (f)].

Using worm updates, two configurations spaces are sampled simul-

taneously:

• The configurations where the worm is closed are weighted accord-

ing to (2.8), and allow to measure observables like the site occu-

pation n̂i and the density-density correlations n̂inj . These in turn

give access to quantities like the total density (ρ = N−1
∑

i 〈n̂i〉),
the potential energy (〈U〉 =

∑
ij Uij 〈n̂inj〉) or the structure factor

S(k) (the Fourier transform of the density-density correlations).

The latter is connected to the presence of structural order in the

system.

Some nondiagonal operators can also be computed via this expres-

sion, if they are connected to another diagonal operator or quantity
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.2: Example updates in the worm scheme. Jumps wrapping around
the system are denoted by dashed lines. The black dots are the
worm heads. The final configuration for each panel is the start-
ing configuration for the following one.

which can be measured in their place. For instance, the kinetic

energy K, the mean value of the operator V̂ , can be easily com-

puted since it is related to the average number of kinks 〈Nk〉 as

K = −〈Nk〉 /β.

The superfluid fraction ρs, which indicates the percentage of par-

ticles involved in superfluid motion, can also be straightforwardly

measured as a function of the squared winding numberw2 (usually

averaged over the spatial directions). The proportionality constant

depends on the dimensionality and on the lattice geometry: e.g.,

for a system described by the Hamiltonian (2.5) with hopping re-

stricted to nearest-neighbor sites and uniform hopping coefficient

t on a hypercubic lattice in d dimensions [67],
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ρs =
1

ρ

〈
w2
〉
N

2−d
d

2tβ
(2.12)

• When the worm is open, i.e. for discontinuous worldlines, the con-

figuration contributes to the partition function of a different con-

figuration space, given by

ZG = tr
[
Tτ

(
b̂i(τ1)̂b†j(τ2)e−βĤ

)]
(2.13)

Tτ denotes a time-ordered product in imaginary time (operators

are ordered, via commutations, from left to right with decreasing

τ ). The two Fock operators correspond to the two worm heads. The

same expansion used for the partition function can be performed

here, leading to a configuration weight with the same structure of

(2.8) but two additional states at each order, generated by the ap-

plication of the worm head operators, and the corresponding ma-

trix elements. The MH process for the worm updates is performed

using this extended configuration weight.

Sampling of this extended configuration space allows to measure

the single particle imaginary time Green function, defined as

G(i, j, τ1, τ2) = −
〈
Tτ

(
b̂i(τ1)̂b†j(τ2)

)〉
(2.14)

which is difficult to measure using other update schemes. Further-

more, relaxing the condition of having continuous worldlines al-

lows to naturally create long particle-exchange cycles with nonzero

winding number, as in Figure 2.2. These cycles will remain in the

configuration when the worm is closed, ensuring an ergodic sam-

pling of the configuration space.

Worm updates also allow to naturally work in the grandcanoni-

cal ensemble, since the worm closure can happen at a different

particle number than the worm creation (canonical results can be

obtained by only measuring closed-line observables when the par-

ticle number has the desired value).
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The PIMC method with worm updates is a state-of-the-art numeri-

cal technique which allows to reliably approximate the thermodynami-

cal limit in a large number of systems, both for T > 0 and in the ground

state (via extrapolation to T = 0). Furthermore, the results of this ap-

proach are numerically exact, i.e. they are free from systematic errors

and biases, converge to the exact result in the limit of infinite simula-

tion, and the uncertainty on the results can be reduced at will by simply

increasing the number of sampled configurations (i.e., the simulation

time).

For these reasons, PIMC with worm updates has been chosen as the

method of investigation for my work on bosonic systems illustrated in

section 3.1. The implementation of the algorithm used in this study has

been written by myself.

PIMC, however, encounters severe difficulties when applied to sys-

tems of bosons or spins with positive hopping terms (usually referred

to as frustrated) and fermions, due to the presence of positive matrix

elements of the nondiagonal term V̂ in (2.8). These result in some

configurations having negative weight: since the MH procedure uses

the weight function as a part of the acceptance probabilities, stochas-

tic sampling cannot be directly performed. This issue is referred to as

sign problem (see, e.g., [20] for an introduction) and can in principle be

treated using numerical workarounds: however, the latter cause heavy

numerical instabilities, and ultimately fail to provide reliable results at

large sizes and low temperatures.

Numerical techniques which do not suffer from the sign problem

are therefore important tools to study systems of frustrated bosons and

fermions. Two such approaches (namely, Variational Monte Carlo and

Diagrammatic Monte Carlo) will be introduced in sections 2.3 and chap-

ter 4, respectively.
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2.3 Variational Monte Carlo

VMC (see, e.g., [68] for a review) is a numerical approach which al-

lows to investigate the ground state (GS) properties of a given model

Hamiltonian. Without loss of generality, I will consider a collection of N

spin-1/2 on an N -site lattice. Provided a trial state | ψ 〉, expressed as

a weighted superposition of all possible system configurations |m 〉 =

| S1
z , . . . , S

N
z 〉 as

| ψ 〉 =
∑
m

W (m) |m 〉 (2.15)

the expectation value of the Hamiltonian on | ψ 〉 can be written as

E =

∑
mW 2(m)EL(m)∑

m′W
2(m′)

=
∑
m

P (m)EL(m) (2.16)

where the local energy EL(m) is defined as

EL(m) =
∑
m′′

W (m′′)

W (m)

〈
m′′ | Ĥ |m

〉
(2.17)

and

P (m) =
W 2(m)∑
m′W

2(m′)
(2.18)

Here W (m) = W ∗(m) is assumed for simplicity. According to the

variational principle, for any choice of weights E is an upper bound of

the GS energy: the best possible approximation to the latter can be

found by minimizing (2.16) with respect to the weights W .

Usually, due to the large number of system states |m 〉, the sum in

(2.16) cannot be computed exactly. In VMC, the latter are estimated

via stochastic sampling: in particular, a MH process (see section 2.1) is

employed to sample the states |m 〉 with respect to the function P (m)

in (2.18). Since the latter is always positive, VMC methods do not suffer

from the sign problem.

Once the optimization process for the weights is terminated, observ-

ables can be computed by decomposing their mean value in a similar
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fashion to (2.16).

In this method, the choice of ansatz is crucial to obtain accurate re-

sults. A good trial WF should be systematically improvable and easy to

program. The one used in this thesis is the Entangled Plaquette States
(EPS), introduced in [69].

The general idea of the EPS ansatz is to express the weight W (m) of

a generic global configuration |m 〉 in terms of variational coefficients

in biunivocal correspondence with the configuration of different groups

of sites i.e., plaquettes.

The simplest (non entangled) plaquette ansatz consists in choosing

W (m) =

N∏
P=1

C
mi1,P

P (2.19)

where the C
mi1,P

P are variational coefficients associated with the con-

figuration of the single site, labeled by mi1,P , of the Pth plaquette. This

choice results in a mean-field-like WF where correlations are neglected.

However, they can be promptly incorporated in the ansatz by increas-

ing the plaquette size. While in the case of non overlapping plaquettes

correlations are well described for distances of the order of the plaque-

tte size, a reliable description of long range correlations is obtainable,

even with relatively small plaquettes, when the latter overlap (i.e., are

entangled). Clearly, any EPS ansatz is a legitimate variational choice

regardless of the size of the plaquette used.

In other words, one can adopt a given plaquette size and provide

variational estimates with an accuracy related to the given dimension

of the plaquettes. The EPS WF is systematically improvable by enlarg-

ing the size of the plaquettes and/or by including plaquettes of various

shapes correlating specific groups of sites, being exact in the limit of a

single plaquette as large as the system.

This trial wavefunction has been used to study quantum antiferro-

magnets [70, 71] and fermionic Hamiltonians such as the t−J model in

the presence of one mobile hole [72]. VMC with the EPS ansatz allowed

to obtain results of comparable or better accuracy than those obtainable
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with other wavefunctions or variational techniques for these problems.

My work on fermionic systems [21] illustrated in section 3.2 aims

to apply this ansatz to the t − J model in the presence of two holes,

where most other techniques suffer from different limitations or require

approximations. Also in this case, the results I obtain are of accuracy

comparable or better than those in the literature. This confirms the

validity of the EPS ansatz which, due to its flexibility, can be adapted to

study some of the most interesting and challenging lattice models, such

as, e.g., the t− J model at finite hole concentration.



Chapter 3

Results

This chapter contains an in-depth discussion of the results of my studies.
In particular, section 3.1 is devoted to my investigation of lattice systems
of hardcore bosons [14, 54] while section 3.2 discusses my work on the
fermionic t − J model in the presence of two holes via VMC simulations
with the EPS ansatz [21].

3.1 Equilibrium and Out-of-Equilibrium phases
of Interaction-Blockade Gases on a lattice

It is well established that bosonic and fermionic systems subjected to a

disordered external potential feature localization phenomena [73, 74].

The interplay between disorder, interactions and many-body quantum

effects such as superfluidity is now a subject of intense research [75, 76,

77], as, e.g., bosons in random environments occur in a variety of exper-

imentally relevant systems ranging from cold atoms [78, 79, 80, 81, 82],

to superconductors [83] and quantum liquids [84]. Usually, the com-

bination of disorder and repulsive interactions inhibits the emergence

of superfluidity and Bose-Einstein condensation (BEC) and leads to an

insulating gapless phase, known as Bose glass [85, 86, 87].

Remarkably, results of quenched Monte Carlo simulations in the

40
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context of 4He have shown that superfluidity and BEC may coexist

with structural disorder and inhomogeneity (i.e., glassy physics) in the

absence of any random external potentials [88]. The resulting out-of-

equilibrium state was termed superglass (SG), as a disordered analog of

the supersolid (SS) phase [3]. While experiments have so far remained

inconclusive [89, 90], this proposal has spurred considerable theoretical

activity to derive possible microscopic models of a SG [91, 53, 92, 93].

Exact numerical results for bosons on lattices have shown that a ther-

modynamic SG phase can indeed emerge as a result of a competition of

quantum fluctuations and externally induced frustration. For attractive

interactions the latter can be induced via a random chemical potential

[92], while for repulsive ones a SG can occur in theoretical models where

either a self-disordered environment is induced by geometrical frustra-

tion (e.g., on random graphs) [53] or where disorder is a consequence

of properly chosen random inter-particle interactions [93]. In this con-

text, main open questions are whether it is possible to obtain a SG in

any theoretical models where frustration is not artificially built in the

Hamiltonian, and if this new phase of matter may be experimentally

observable in any physical system.

In my work [14] I show that the SG phase can exist for a large class

of bosonic lattice Hamiltonians. The latter are of the extended Bose-

Hubbard type, featuring a soft-shoulder interaction potential. Surpris-

ingly, glassy behavior is obtained in the absence of any externally im-

posed frustration e.g., in the lattice geometry, or in the interactions.

Rather, frustration is here induced by cluster formation for large parti-

cle density, similar to the conditions of SS formation in soft-core models

[41, 42]. As an example, I consider a simple triangular lattice with

isotropic two-body interactions. I analyze the phases and, following a

quench in the temperature T or in the interaction strength, demon-

strate the existence of both a glass (G) and a SG at low enough T . The

latter are the out-of-equilibrium counterparts of a floating stripe solid

(S) and a SS, respectively. These glass and superglass phases should

be observable in experiments with Rydberg-dressed alkali atoms loaded

into optical lattices.
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The relevant Hamiltonian for hard-core bosons on a triangular lat-

tice reads

Ĥ = −t
∑
{i,j}

(
b̂†i b̂j + h.c.

)
+

∑
i<j;rij≤rc

V ninj (3.1)

Here the b̂ are the annihilation operators for hardcore bosons, n̂i =

b̂†i b̂i is the occupation of the site i, {i, j} denotes nearest-neighbor pairs,

and rij is the distance between sites i and j. The lattice spacing a and

the tunneling rate t are used as units of energy and length, respectively.

The step-wise interaction in (3.1) (which yields a contribution V > 0 if

two occupied sites lie within a distance rc of each other, and zero oth-

erwise) aims to reproduce the main features of the interaction (1.2) be-

tween two Rydberg-dressed atoms discussed in section 1.3. It will be

later shown that using the full potential (1.2) does not change the phys-

ical picture. The additional onsite hard-core constraint can be enforced

using, e.g., Feshbach resonances.

The quantum phases of (3.1) with rc = 1 (i.e., nearest-neighbor in-

teractions) are well known [94, 95, 96, 97, 12]: for densities ρ < 1/3

(ρ > 2/3), ρ = 1/3 (ρ = 2/3) and ρ > 1/3 (ρ < 2/3) the low-energy phase

is a superfluid (SF), a gapped lattice S, or a gapless SS, respectively. The

latter is an exotic state of matter where density correlations (here with
√

3 ×
√

3 ordering) coexist with a finite superfluid fraction ρs, which is

a result of doping the solid with interstitials (vacancies). The SS phase

is generally robust against perturbations to the Hamiltonian (3.1), and

may be observed experimentally, e.g., with cold quantum gases trapped

in optical lattices and interacting via dipolar interactions [98, 99, 100].

I study the Hamiltonian (3.1) for rc > 1. In this parameter range, the

interaction in (3.1) belongs to a large class of potentials that support the

formation of clusters of particles for density ρ such that rc
√
ρ > 1 [101,

102]. Such a phenomenon is essentially independent of the details of

the interactions, as long as the latter display a negative Fourier com-

ponent [103]. In the classical regime (i.e., t = 0) cluster formation has

been shown to lead to frustration, which is manifested in an exponen-
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tial growth of the ground state degeneracy as a function of the system

size [104]. In the quantum regime (i.e., t > 0) this leads to several novel

exotic phenomena at equilibrium: anomalous Luttinger-Liquid behav-

ior [104] and emergent supersymmetry in 1D lattice geometry [105] as

well as free-space supersolidity in 2D [13, 41, 42]. The latter occurs, for

appropriate values of interaction strength, at any density fulfilling the

clusterization condition rc
√
ρ > 1 [13]. In the following I consider, as a

way of example, the simplest cluster forming potential with rc = 2 and

incommensurate particle densities consistent with such a condition. My

main focus is the demonstration of a G and SG emerging when a crys-

tal and a SS are driven out of equilibrium via a temperature quench,

respectively. Glassy phases for different ρ, rc and quench protocols are

also discussed.

I study the Hamiltonian in (3.1) by means of PIMC simulations based

on the worm algorithm: this method has been described in section 2.2.

The implementation of the algorithm used in the calculations has been

written by myself. This technique is numerically exact for bosonic sys-

tems and allows for accurate estimates of the superfluid fraction on the

triangular lattice

ρs =

〈
w2
x + w2

y

〉
6βρ

(3.2)

and the static structure factor

S(k)

N
=

1

N2

∑
i,j

e−ik·(ri−rj) 〈n̂inj〉 (3.3)

The latter measure superfluidity and diagonal crystalline order, re-

spectively. Here,N is the number of sites, β = 1/T is the inverse temper-

ature, wi is the winding number in the i-th direction, k is a lattice wave-

vector, and 〈. . .〉 stands for statistical average. In addition, I compute

the renormalized Edwards-Anderson order parameter q̃EA = qEA/q
max
EA ,

which, in the absence of crystalline order, is the well-accepted observ-

able to identify glassy behavior on a lattice [53, 106]. Here,
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qEA =

N∑
i=1

〈n̂i − ρ〉2 (3.4)

and qmax
EA = Nρ(1− ρ) is its maximum value, obtained for a perfectly

localized system. I perform large-scale simulations with up to N = 2304

lattice sites and temperatures as low as T/t = 1/12. For each N and T ,

numerical values for the observables above are obtained by averaging

over a minimum of 32 and a maximum of 100 different realizations of

the quench.

Panel (a) of Figure 3.1 shows example results for the superfluid frac-

tion ρs and the renormalized Edwards-Anderson parameter q̃EA as a

function of the interaction strength V/t for N = 900 and T/t = 1/12.

Within the interesting range of interaction (5.0 . V/t . 6.0), ρs is found

to decrease monotonically with increasing V/t from approximately 0.25

to about 0.05. In the same parameter range, q̃EA increases up to val-

ues of the order of ∼ 0.2. I remark that in this regime the system does

not feature crystalline order, i.e., the computed structure factor S(k)/N

vanishes for any non trivial wave vector k 6= 0 in the thermodynamic

limit, as proven in the inset of Figure 3.1, where I show the scaling

with N−1/2 of Smax/N , the average of the largest peaks of the structure

factor over several quench realizations. In the same limit the superfluid

fraction and the Edwards-Anderson parameter remain finite and show

a finite coexistence region.

These data demonstrate one of the main results of my study, namely

the existence, in an extended region of parameters, of a SG, correspond-

ing to an inhomogeneous non-crystalline superfluid. The dependence on

T/t of both q̃EA and ρs is shown in panel (b) of Figure 3.1. For the

specific value of the interaction strength in the panel superglassiness is

realised below T/t ' 0.2.

For weak interactions, the SG phase quantum melts into a regular

homogeneous superfluid (SF) with ρs > 0 and q̃EA ' S(k) = 0. For the

parameters of panel (a) of Figure 3.1 this is obtained by decreasing the

interaction strength below V/t ' 4.8. On the other hand, sufficiently

large interaction strengths are found to inhibit superfluidity and turn
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Figure 3.1: (a): Superfluid fraction ρs and renormalized Edwards-Anderson
parameter q̃EA as a function of V/t, for T/t = 1/12. (b): ρs and
q̃EA as a function of T/t, for V/t = 5.4. In both panels the density
is ρ = 13/36 and the lattice size is N = 900. Solid lines are guides
to the eye. Inset: maximum value of the structure factor Smax/N
as a function of 1/

√
N for ρ = 13/36, V/t = 5.4 and T/t = 1/12;

the dashed line is a linear fit for the three largest system sizes.

the SG into an insulating G. The latter is characterized by a finite value

of q̃EA and ρs ' S(k) = 0 (i.e., V/t & 6.2 in the figure). Within this

glass phase quantum effects are largely suppressed. While glasses are

well known to appear in disordered spin models, as well as in certain

polydispersed systems of particles [106], here I demonstrate that glassy

physics may emerge in a simple and rather general model of immediate

experimental interest for bosons on a regular lattice.

The computed phase diagram of (3.1) is shown in Figure 3.2 for

a choice of particle density ρ = 13/36 as a function of T/t and V/t.
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At high temperatures I find a normal liquid (L) phase independently

of the values of V/t, as expected. For sufficiently small interaction

strength V/t . 4.8, this normal phase turns into a homogeneous su-

perfluid by decreasing T/t, via a phase transition which is consistent

with the Berezinskii-Kosterlitz-Thouless scenario. On the other hand,

for large enough V/t and following a quench to low T the system dis-

plays a marked insulating glassy behavior with q̃EA 6= 0, S(k) = ρs = 0

(panel (a) in Figure 3.3 and full symbols in the corresponding inset).

The interplay between glassy physics and superfluidity is mostly evi-

dent for values of T/t below the dotted lines in Figure 3.2, resulting in

the SG scenario discussed above.

T
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Figure 3.2: Phase diagram of model (3.1) with rc = 2 as a function of
temperature T/t and interaction strength V/t, for particle den-
sity ρ = 13/36. Equilibrium phases: normal liquid (L), super-
fluid (SF), stripe-crystal (S), and supersolid (SS). A temperature
quench to final values of T/t below the dashed line leads to a
glass (G). The existence of a superglass (SG) is demonstrated be-
low the dotted line using the same quench protocol.
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Interestingly, we find that thermal fluctuations can restore crys-

talline order for sufficiently large T . This is shown for intermediate

temperatures in Figure 3.2, where a S (SS) phase intervenes between

the low-temperature G (SG) and the high-temperature normal L. Here,

the crystal is a floating stripe solid, with finite diagonal long range or-

der in the thermodynamic limit. Examples for the finite size scaling

of the maximum value of the structure factor Smax/N in the S and G

phases are shown in the inset of panel (a) of Figure 3.3 (empty and full

symbols, respectively). While in the S phase Smax/N is essentially in-

dependent of the system sizes investigated in my study, in the G phase

Smax/N vanishes in the thermodynamic limit. In both phases ρs ' 0.

The difference between the glassy and crystalline phases is shown in

panel (c) of Figure 3.3, where I plot the maximum value of the structure

factor S(R)
max/N for each individual realization of a temperature quench

at a given V/t and final T/t. In the crystalline phases, S(R)
max/N is es-

sentially identical in all realizations and Smax/N remains finite in the

thermodynamic limit. However, within the glassy phases, S(R)
max/N can

fluctuate widely and in average decreases to zero with the system size.

As shown in panel (b) of Figure 3.3 the dependence of S(R)
max/N on the

realization for the SG and the SS phase is similar to that for the G and

the S ones, respectively.

Further insight into the phases of Hamiltonian (3.1) is given by the

analysis of the averaged site-density maps in Figure 3.4. Specifically,

I show results for a portion of the system and for a choice of T/t and

V/t such that the system is a SF [panel (a)], a SG [panel (b)], and a G

[panels (c-e)]. For comparison, panel (f) shows a cluster-type crystalline

phase (i.e., S(k) 6= 0) stabilizable at a density ρ = 1/3, for V/t = 10 and

T/t = 1. In the homogeneous SF the average occupation number at each

site equals the density ρ of the system, as expected. The resulting value

of q̃EA is thus negligible. Conversely, when V/t is large [panel (c)] the

spatial density is highly inhomogeneous: particles form self-assembled

clusters characterized by different numbers of constituents and spatial

orientations, as well as by varying inter-cluster distances. These fea-

tures lead, in the thermodynamic limit, to the absence of diagonal long
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Figure 3.3: (a): Normalized Edwards-Anderson order parameter q̃EA for
model (3.1) as a function of T/t for V/t = 10, N = 900 and
ρ = 13/36. The solid line is a guide to the eye. Inset: Size depen-
dence of Smax/N for V/t = 10. T/t = 1/12 and T/t = 3/2 for full
and empty symbols, respectively. Dashed lines are fits to numer-
ical data. (b-c): Maximum value of the structure factor S(R)

max/N
obtained in a given realization of a quench, plotted as a function
of the number of different quench realizations. The latter only
differ in the (random) initial condition and in the thermalization
seed. The corresponding phases in the thermodynamic limit are
indicated. Fluctuations in the values of S(R)

max/N indicate glassy
behavior. The parameters are: N = 1764, T/t = 1/2.5, V/t = 5
(SS), N = 2304, T/t = 1/9, V/t = 5.4 (SG), N = 1296, T/t = 1/0.7,
V/t = 10 (S), N = 1296, T/t = 1/12, V/t = 10 (G).

range order, similarly to an (emergent) polydispersity. Noticeably, the

occupation number of lattice sites between clusters is here substantially

suppressed, signaling particle localization. The resulting glass phase is

insulating, similarly to, e.g, a regular Bose glass obtained by externally

induced disorder [85].

Panel (b) shows that cluster formation and inhomogeneity persists

even at intermediate values of V/t, leading to a nonzero value of q̃EA in
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Figure 3.4: Averaged site density for a portion of the system. Black circles
depict the lattice sites. Density values are proportional to the
size of red circles. Panel (a) shows an homogeneous superfluid
phase (T/t = 1/9 and V/t = 4); panels (b) and (c), refer to a SG
(T/t = 1/12, V/t = 5.4), and to a normal G (T/t = 1/12, V/t = 10),
respectively. In panels (a-c) the density is ρ = 13/36. Panels
(d) and (e) show the glassy density map obtained for ρ = 0.401
(V/t = 10, T/t = 1/12), and for the same density of panels (a-c),
using the purely repulsive potential (1.2) with V0/t = 30, T/t =
1/3, respectively. Panel (f): a crystalline structure stabilizable at
ρ = 1/3, V/t = 10 and T/t = 1.

the absence of crystalline order. The occupation of inter-cluster lattice

sites is here enhanced with respect to panel (c). Such an enhancement is

due to the presence of quantum fluctuations and exchanges of identical

particles, responsible for the finite value of ρs and thus of superglassi-

ness.

While the main focus of this study is the Hamiltonian (3.1) with
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rc = 2 and ρ = 13/36, in the following I discuss the dependence of the

observed glassy behavior on the radius rc of the interaction potential

of Hamiltonian (3.1), on the particle density ρ satisfying the clusteri-

zation condition and on the details of the cluster-forming potential and

of the quenching protocol. I also investigate the relation between the

appearance of glassiness and cluster formation.

• Panel (a) of Figure 3.5 shows results for the maximum value

of the structure factor S(R)
max/N for different realizations of a low-

temperature quench for interaction radius rc = 3 (larger than that

above) with particle density ρ = 13/36 (same as above). The inter-

action strength is chosen V/t = 10, the temperature T/t = 1/12,

and the system size N = 1296. I find that, despite the relatively

small value of N , S(R)
max/N clearly fluctuates between different re-

alizations.

In addition, panel (b) shows that the structure factor averaged

over the individual realizations Smax/N vanishes in the thermod-

inamic limit. In the same limit, the superfluid fraction is ρs '
0, while the (realization averaged) Edwards-Anderson parameter

q̃EA stays finite. These results demonstrate the existence of a glass

phase with rc = 3. Here I have utilized the same parameters of the

glass phase for rc = 2 in the phase diagram in Figure 3.2, show-

ing that in this case an increase of rc does not alter the physical

scenario.

• Figure 3.6 shows values of the Edwards-Anderson parameter q̃(R)
EA

and S(R)
max/N for different realizations of a temperature quench with

target T/t = 1/12, V/t = 5.4, rc = 2 and ρ = 0.3650. The latter cor-

responds to a variation at the percent level of the density value of

Figure 3.2 (i.e., ρ = 13/36). The system size is N = 2304.

Also in this parameter regime the maximum value of the structure

factor [panel (b)] depends on the quench realization, showing the

same glassy behavior we observed at ρ = 13/36 [see panels (b-c)

of Figure 3.3]. The fluctuations of q̃(R)
EA are much less pronounced
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Figure 3.5: (a): Maximum value of the structure factor S(R)
max/N for different

realizations. The system size is N = 1296. (b): size dependence
of the average structure factor Smax/N . In both panels ρ = 13/36,
T/t = 1/12 and V/t = 10. The Hamiltonian of the system is (3.1)
with rc = 3.

[panel (a)] and the values remains large. In addition, I find that

here structural disorder and inhomogeneity coexist with finite su-

perfluid fraction, demonstrating the existence of a superglass.

At sufficiently large V/t, the existence of glassy phases for the

cluster-forming potential in (3.1) has also been verified for val-

ues of the particle density fulfilling the clusterization condition

rc
√
ρ > 1 as high as ρ ' 0.4. For this value of ρ, an example of

structural disorder and cluster formation is given in panel (d) of

Figure 3.4.

Given the results above, as (3.1) is particle-hole symmetric, one

may expect that glass behavior could be observable for essentially

all densities with rc
√
ρ > 1, rc = 2 and an appropriate choice of

V/t.

• To underline how cluster formation plays a crucial role for the ob-

servation of the glassy scenarios investigated here, I show in Fig-
ure 3.7 estimates of q̃(R)

EA and S
(R)
max/N for different realizations of

a temperature quench with target T/t = 1/12, V/t = 10, N = 2304

and rc = 1. With this choice of parameters the interaction poten-

tial does not support clusterization and the equilibrium phase is a
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Figure 3.6: Edwards-Anderson parameter q̃
(R)
EA (a) and maximum value of

the structure factor S(R)
max/N (b) for different realizations. The

system size is N = 2304, ρ = 0.3650, T/t = 1/12 and V/t = 5.4.
For these parameters and the density ρ = 0.3611 the system is a
superglass in the thermodynamic limit (see Figure 3.2).

supersolid [88].

As shown in the figure, the values of q̃(R)
EA and S

(R)
max/N are essen-

tially identical in all realizations, i.e., the quench is ineffective and

the equilibrium physics is restored. Conversely, at the same tem-

perature, for rc = 2 and particle density satisfying the clusteriza-

tion condition, I find that the quenched counterpart of a supersolid

is a superglass (see Figure 3.2). This indicates that cluster forma-

tion enhances frustration in the system, favoring glassy behavior.
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Figure 3.7: Same observables as in Figure 3.6 for T/t = 1/12, V/t = 10,
N = 2304 and rc = 1.
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• Since in experiments it should be easier to perform a quench in V/t

(which, e.g., with Rydberg atoms would entail modifying the laser

parameters for Rydberg dressing, changing V , or for the depth of

the confinement to the optical lattice, changing t) than in T/t, I

have investigated whether the glassy behavior described above is

also found upon a quench in the interaction strength.

I find that similar behavior of q̃(R)
EA and S

(R)
max/N to the one in the

superglass and glass phases described above is obtained when,

starting from a value at which the system is superfluid, V/t is

abruptly increased to an intermediate or large value (Figure 3.8).

Following this simulation protocol at fixed (low enough) T/t (i.e., a

quench in V/t) I find no crystalline order and inhomogeneity in the

thermodynamic limit. Specifically, the system is a superglass or a

normal glass for intermediate or large values of V/t, respectively.

This is entirely analogous to what found in the above results for a

quench in T .

• I check that glassy phases similar to those described above can be

obtained replacing the soft-shoulder interaction in (3.1) with the

interparticle interaction between Rydberg-dressed atoms Vdd(r) in

(1.2), for interaction strength V0 sufficiently large. As an example,

panel (e) in Figure 3.4 shows results for the density within the

glass phase with V0/t = 30.

I also study [54] the system described by the Hamiltonian (3.1) for

rc = 2
√

2 on a square lattice. I perform the calculations using my PIMC

code with Worm updates, as well as an implementation of the Stochastic

Green Function (SGF) algorithm [107]. The latter is a PIMC method

with a different set of updates.

I consider sizes of up to N = 48 × 48 and temperatures as low as

T/t = 1/20. For given sets of system parameters, I run independent

simulations to avoid possible effects of metastability due to the large

low-energy degeneracy discussed above.

My simulations are performed at fixed density ρ = 5/36. I mea-

sure the superfluid fraction ρs using the estimator (2.12) for d = 2, the
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Figure 3.8: Same observables as in Figure 3.6 when the simulation
protocol is based on a quench in the interaction strength.
Here ρ = 13/36, N = 2304 and T = 1/12. The final value of
the interaction strength is V/t = 5.4 [panels (a) and (b)] and
V/t = 10 [panels (c) and (d)]. In the thermodynamic limit
the former choice of V/t leads to a superglass, the latter, to
a normal glass.

structure factor defined in (3.3), as well as the equal-time, site-averaged

single-particle Green function (2.14), i.e.

G(r) = − lim
τ2→τ+1

1

N

N∑
i=1

〈
Tτ

(
bi(τ1)b†i+r(τ2)

)〉
(3.5)

Initial results show that for small V/t . 2.5, the system equilibrates

to a superfluid phase, while a SS phase is encountered for intermediate

interaction strength (i.e., 2.5 . V/t . 4.5). Example results for the

behaviour of the order parameters ρs and S(k) are shown in Figure 3.9.

In particular, panel (a) shows the dependence of ρs on V/t for L = 36 and

T/t = 1/20. Here ρs is shown to decrease monotonically from a constant

finite value at V/t . 2.5 to zero at V/t & 4.5. Panel (b) shows that for
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V/t = 4 S(k) has a finite, size-independent value, signaling crystalline

order consistent with SS behaviour (green down-pointing triangles).
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Figure 3.9: (a) Superfluid density ρs as a function of V/t, for βt = 20 and
L = 36. In panels (a) and (b), dots and triangles correspond to
data obtained with the SGF and worm algorithms, respectively.
(b) Maximal value of the static structure factor S(k) as a function
of 1/L. Green down-pointing triangles: V/t = 4. Red dots and
black up-pointing triangles: V/t = 6. Full and empty symbols
denote βt = 20 and 4, respectively. Dashed lines are guides to
the eye.

For V/t = 6 (black up triangles and red dots in Figure 3.9), S(k)

vanishes in the thermodynamic limit. This same behaviour is obtained

for values of the interaction strength V/t & 4.5. Therefore, I find a phase

transition from a SS to a disordered, non superfluid phase. Surprisingly,

we find that in the latter the Green function decays algebraically at long

distances, as shown in Figure 3.10.

This unusual behavior is characteristic of an exotic phase known



3.1. Equilibrium and Out-of-Equilibrium phases of
Interaction-Blockade Gases on a lattice 56

1e-05

1e-03

1e-01

4 8 12 16 20

G
x
y
(r

)

r

Figure 3.10: Green function Gxy(|r|), defined as (3.5) averaged over the x
and y direction vs distance, for V/t = 6, L = 36, βt = 20 and
density ρ = 5/36. The black continuous line is a fit to a power-
law function ar−b, with a = 1.1(1) and b = 3.79(6).

as Bose Metal [108, 109, 110, 111], a state describing conducting, yet

non-superfluid bosons in two dimensions. Calculations at very large

system sizes (up to N = 96 × 96) and very low temperatures (down to

T/t = 1/96) are currently running, to investigate possible temperature

and size dependences of the aforementioned physical picture.

In conclusion, I demonstrate that glassy phases can be realized for

a broad class of simple bosonic, frustration-free Hamiltonians of the ex-

tended Bose-Hubbard type. For intermediate interaction strength the

interplay between quantum fluctuations, statistics and glassy physics

gives rise to an exotic SG scenario, where glassiness coexists with super-

fluidity, in contrast to a conventional Bose glass. In the model studied

by me, frustration arises from the self-assembling of clusters, which is a

direct consequence of the (isotropic) inter-particle interaction potential

at high enough density.

I also study the model (3.1) with rc = 2
√

2 on a square lattice, up to

system sizes of N = 48 × 48 and temperatures T/t = 1/20. Preliminary

results show in this parameter range a phase transition between a SS

and an intriguing disordered and non-superfluid phase. The nature of

this phase transition is under investigation, via large-scale and low-



3.1. Equilibrium and Out-of-Equilibrium phases of
Interaction-Blockade Gases on a lattice 57

temperature simulations, to understand if, e.g., structural order and

superfluidity disappear at the same time or if an intermediate phase is

present, and to investigate possible temperature and size dependences

of the aforementioned physical picture.

The physics described in my study should be directly relevant for

experiments with ultracold Rydberg-dressed atoms in optical lattices

(see section 1.3). I hope that my results will provide new insights for

unveiling mechanisms for frustration-induced phenomena.



3.2. Variational Studies of the t− J Model with two holes 58

3.2 Variational Studies of the t − J Model with
two holes

The theoretical investigation of the ground state properties of strongly

correlated systems is one of the hardest problems in condensed mat-

ter physics. Many relevant models lack an analytical solution, and the

exact diagonalization (ED) of the Hamiltonian matrix, while certainly

offering useful insights, remains restricted to system sizes in general

too small to provide a reliable description of the physical scenarios in

the thermodynamic limit. In order to overcome this limitation a vari-

ety of numerical techniques have been developed, each of which has an

optimal realm of applicability. For example, PIMC methods, as well as

other QMC approaches [112] provide essentially exact results for un-

frustrated bosonic problems in any spatial dimension. However, as pre-

viously mentioned, QMC is hardly applicable without approximations

to frustrated bosonic or fermionic systems, where the sign problem re-

sults in an exponential loss of accuracy of the results when decreas-

ing temperature or increasing the number of particles [20]. Conversely,

variational approaches based on the optimization of a trial wavefunc-

tion (WF) are sign-problem free; however, their accuracy ultimately de-

pends on the choice and flexibility of the adopted ansatz for the WF. Re-

cently, impressive effort has been devoted to the development of tensor-

network WF’s able to describe strongly correlated systems in two spatial

dimensions (2D: see, e.g., [113] for a review) i.e., where the applicabil-

ity of Matrix Product States [114, 115, 116, 117] and Density Matrix

Renormalization Group [118] methods, extremely accurate in 1D, ap-

pears problematic.

One of the fundamental models used to characterize the behavior of

strongly correlated electrons in 2D is the t− J model, which is thought

to provide an effective Hamiltonian description of the basic features of

superconducting copper oxides. Key properties of the insulating copper-

oxide planes at half-filling are reproduced by the spin-1/2 antiferromag-

netic Heisenberg model i.e., the limiting case of the t−J Hamiltonian in

the absence of holes [19]. The presence of mobile holes that may change
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the nature of the copper-oxide planes from insulating to superconduct-

ing is described in the t − J model via an additional nearest-neighbor

hopping term. The resulting Hamiltonian reads

Ĥ = −t
∑
{i,j},σ

(
Ĉ†iσĈjσ + h.c.

)
+ J

∑
{i,j}

(
Ŝi · Ŝj −

n̂in̂j
4

)
(3.6)

Ĉiσ is the annihilation operator for a spin-1/2 fermion with spin com-

ponent σ on the site i, Ŝi is a shorthand notation for the spin projection

operators on site i, i.e. Ŝi =
(
Ŝ
x

i , Ŝ
y

i , Ŝ
z

i

)
, and n̂i =

∑
σ Ĉ
†
σiĈσi, {i, j} de-

notes sum over nearest-neighbor sites, and double occupancy of lattice

sites is forbidden. In (3.6), J > 0 is the antiferromagnetic coupling, and

t > 0 the hopping amplitude, taken in the following as energy unit. The

lattice spacing is taken as length unit.

Aside from its physical interest related to its possible direct rele-

vance to high-temperature superconductivity, the model Hamiltonian

in (3.6) constitutes one of the most challenging benchmarks to assess

the accuracy of a given variational approach/WF. For this problem “ex-

act” QMC techniques are applicable at half-filling [119], where the t−J
model does not have fermionic character, as well as to the static single-

hole scenario. Accurate QMC strategies are also possible in the case of

a single mobile hole [120]. The addition of a second hole, however, in-

troduces a severe sign problem that calls, in the QMC framework, for

various, hardly controllable approximations and workarounds. A valid

option to tackle the two-hole problem in (quasi-) 1D ladder geometries is

DMRG [121] while in 2D the optimization of a suitable WF that allows

for the investigation of system sizes larger than those treatable with ED

likely represents a preferable choice. In this framework the estimated

ground state energy, as a strict upper bound of the actual value, con-

stitutes a natural figure of merit to evaluate the accuracy of different

ansatze.

In my work [21] I study the ground state of two holes in the t − J
model by using the VMC approach with the EPS wavefunction, de-

scribed in section 2.3. As previously mentioned, this ansatz has been
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successfully employed to investigate different unfrustrated and frus-

trated models providing results of comparable or better accuracy than

those obtainable with alternative WF’s or techniques [69, 70, 71, 72].

In the case of a single mobile hole [72], for example, it provides es-

timates of ground state energy and hole spectral weight in excellent

agreement with the most accurate results available in literature, based

on QMC [120]. Here, I show that an EPS WF including both square and

linear plaquettes of limited sizes is able to faithfully describe the ground

state of two holes in the t−J model. The error on the obtained estimates

of the ground state energies for (3.6) relative to the exact ones available

for the N = 4× 4 lattice is of the order or less than 0.1% for all values of

J/t explored in this work. By considering square lattices of much larger

size (i.e., up to N = 256) I show that binding of the two holes occurs for

all of the analyzed values of J/t; specifically, I find an exponential decay

of the probability of finding two holes at distance r in the large-r limit

and that the two-hole binding energy, although with an absolute value

considerably smaller than the one of the system with N = 16, stays neg-

ative in the thermodynamic limit. I estimate Jc/t ' 0.19 as the critical

value below which the existence of a bound state characterized by the

dx2−y2 symmetry, predicted by previous studies in the chosen parameter

range, is excluded.

The accuracy of the presented findings for the two-hole t − J model

is a fundamental step towards the design of an EPS WF for the finite

hole concentration scenario where the physics is still not completely un-

derstood. It is worth mentioning that relevant states proposed for the

many-hole problem have a straightforward representation in terms of

EPS [122] and essentially every WF may systematically be improved by

taking advantage of the peculiar characteristics of the EPS ansatz.

The adopted wavefunction for the study of the t − J model is the

EPS ansatz, introduced in section 2.3, with plaquettes of two different

types: along with simple square ones, linear plaquettes connecting the

positions of the two holes are also employed. The considered size for the

plaquettes of both types is 9 sites. I carry out independent optimiza-

tions of the state in (3.6) for each lattice size and value of J/t considered
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here via the VMC algorithm described in section 2.3, and I use the same

numerical approach to estimate the observables of my interest. In par-

ticular, for 0.4 ≤ J/t ≤ 2.0, I compute:

• The two-hole ground state energy δE2/t = (E2 − E0)/t, where E2

(E0) is the ground state energy obtained for the Hamiltonian (3.6)

in the presence of two holes (at half-filling).

• The probability distribution P (r) =
∑

i<j δ(rij − r)n̂hi n̂hj of finding

the two holes at a distance r, where n̂hi is the number of holes on

the site i.

• The two-hole binding energy ∆/t = δE2/t− 2δE1/t, where δE1/t =

(E1 − E0)/t is the difference between the one-hole ground state

energy of (3.6), obtained by VMC calculations with the EPS ansatz

with 3 × 3 square plaquettes [72], and the aforementioned half-

filling ground state energy.

It has to be stressed that with 9-site plaquettes I obtain remarkable

agreement with ED calculations [123, 124, 125] for both the single- and

the two-hole problems; similarly, on large lattices the computed esti-

mates of both the single- and the two-holes ground state energies are

in extremely good agreement with the most accurate results available

in literature [120, 55] (see below). This is an important point, since

a consistent increase of the plaquette size e.g., by considering square

plaquettes of 16 sites would be extremely expensive from a computa-

tional point of view due to the dimension (i.e., 3) of the local Hilbert

space of the t − J model. My findings for P (r) obtained for lattices of

up to N = 256 sites, that is, much larger than those treatable with ex-

act methods, demonstrate the existence of a two-hole bound state for

any value of J/t considered here. Estimates of the two-hole binding

energy extrapolated to the thermodynamic limit and for values of J/t

lower than 0.4 suggest that a two-hole bound state does not exist with

the same symmetry characteristic of the range of J/t values explored in

my work for J/t . 0.19.
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While for small system sizes (i.e., up to N ' 16) it is possible to

describe the ground state properties of model (3.6) essentially exactly

by means of an EPS WF based on a single plaquette that correlates all

the lattice sites, such a choice is not a viable option for larger lattices.

My EPS variational state with plaquettes comprising a limited number

of sites provides accurate energy upper bounds for the lattice with N =

16 and is applicable to considerably larger lattice sizes using standard

computational resources. For example, on the 4× 4 square lattice I find,

at J/t = 1.0, E2 = −18.8007(1)t which compares extremely well with the

exact result [123] Eex2 = −18.8061t. The resulting EPS two-hole ground

state energy is δE2/t(J/t = 1.0) = 0.4246(1), which has to be compared

with δEex2 /t(J/t = 1.0) = 0.4223.

It is interesting to contrast my results with those obtained by means

of a Green’s function Monte Carlo (GFMC) approach based on the ex-

trapolation of transient energy estimates generated by the GFMC algo-

rithm starting from a suitable initial state. For the two-hole t−J model,

the GFMC technique is affected by the fermionic sign problem and the

mentioned extrapolation can be performed by using just a few transient

estimates before the occurrence of an uncontrolled growth of the sta-

tistical uncertainty ultimately due to sign instability. Consequently,

the choice of the initial state is crucial in the case of GFMC as it has

to produce reliable estimates in a limited number of algorithm itera-

tions. Although for J/t = 1.0 this procedure gives an extrapolated value

δEGFMC
2 /t(J/t = 1.0) = 0.42(1), in agreement with the EPS result, I re-

mark that the GFMC zero-th, variational, iteration based on the initial

WF provides a two-hole ground state energy more than 3 times larger.

This demonstrates that the EPS ansatz is much more accurate than the

initial variational state adopted in [55] and, more importantly, suggests

my WF as a nearly optimal one to start a GFMC numerical scheme con-

sisting of few iterations. The latter, aside from the above mentioned

possibility of adding variational flexibility to a general EPS WF by in-

cluding larger plaquettes, constitutes a further opportunity to improve

numerical estimates.

Figure 3.11 shows EPS results for the two-hole ground state en-
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ergy δE2/t as a function of the system size N and various values of J/t.

The relative error of my numerical estimates with respect to the exact

results obtainable for the N = 16 lattice (i.e., the smallest considered

here) is of the order of 0.5% or less regardless of the J/t value. On

larger lattices my two-hole ground state energies compare extremely

well with GFMC ones; at J/t = 1.0, for example, the estimated value

for the 8 × 8 system is 0.238(2), in numerical agreement, taking into

account the quoted error bars, with the GFMC result i.e., 0.26(2) [55].

By means of a simple extrapolation of my data to the thermodynamic

limit based on a polynomial expansion in powers of 1/N (dashed lines in

figures) I find that the two-hole ground state energy monotonically de-

creases with decreasing J/t being e.g., δEN=∞
2 /t(J/t = 1.0) ' 0.185 and

δEN=∞
2 /t(J/t = 0.4) ' −3.05. My extrapolated results are in substan-

tial agreement with the estimates for the largest lattice size studied in

this work (i.e., N = 256) pointing out how the EPS ansatz allows, for

the model of my interest, to investigate lattices large enough to provide

a good approximation of the physics emerging in the thermodynamic

limit.

The probability P (r) of finding the two holes at distance r on the

4× 4 lattice for chosen values of J/t = 2.0 and 0.4 is plotted in the inset

of Figure 3.11. This quantity displays an oscillating behavior with a

global maximum at r = 1 for J/t = 2.0. For lower J/t the position of such

a maximum shifts to r =
√

2 and P (r) at larger r increases, signaling an

enhanced propensity of the two holes to reside on distant lattice sites.

This may possibly result for larger system sizes in an “unbound” two-

hole ground state. Conversely, if the two holes form a bound state P (r)

is expected to feature an exponential decay at large distances (see, e.g.,

[126]).

Figure 3.12 shows estimates of P (r) on a lattice of N = 64 sites.

Although the qualitative behavior of the two-hole distribution function

is similar to that found for N = 16 here, as expected, holes are more

separated on average. The smaller is the value of J/t, the larger is

their tendency to increase their relative distance. However, for large r

my data are well described by the simple functional form P (r) ∼ e−r/ξ
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Figure 3.11: Two-hole ground state energy δE2/t as a function of the lattice
size N . Values of J/t are 2.0 (stars), 1.0 (squares), 1/1.5 (trian-
gles), 0.5 (diamonds) and 0.4 (circles). Error bars are smaller
than the symbol size. Exact results [123, 124] available for the
4×4 lattice are also shown (empty squares) for comparison. The
dotted lines are polynomial fitting functions in 1/N for the nu-
merical data. Inset: Two-hole distribution function P (r) for the
4×4 lattice; same symbols correspond to the same values of J/t
in the main panel, solid lines are guides to the eye.

where, for J/t = 0.4 (see inset), I estimate ξ ∼ 0.4. By increasing the

lattice size to N = 256 the value of ξ stays essentially unchanged. On

the basis of this analysis I can conclude that the two holes form a bound

state for all the values 0.4 ≤ J/t ≤ 2.0 examined in my study.

Quantitative information about the two-hole bound state are obtain-

able by computing the binding energy ∆/t defined above. A negative

value of this quantity signals the existence of the bound state. In order

to estimate ∆/t, both the two- and the single-hole ground state ener-

gies are needed. The single-hole ground state energy is plotted as a

function of the system size in Figure 3.13, for several values of J/t.

The binding energy resulting from the combination of data in Figure
3.11 and Figure 3.13 displays a marked dependence on the system
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Figure 3.12: Two-hole distribution function on the 8 × 8 lattice. Values of
J/t are 2.0 (stars) and 0.4 (circles). Error bars are smaller than
the symbol size; solid lines are guides to the eye. Inset: large
distance decay of P (r) for J/t = 0.4; the dashed line is the expo-
nential fitting function adopted to describe the numerical data.

size as well as on the values of J/t. For example, for N = 256 I find

∆/t(J/t = 0.4) = −0.111(3), a value in agreement with the GFMC esti-

mate of −0.12(4), approximately 3 times higher than that for the 4 × 4

lattice. On the other hand, on a 16× 16 lattice when J/t increases from

0.4 to 1.0, the two-hole binding energy decreases down to ∼ −0.39.

Values of the binding energy extrapolated to the thermodynamic

limit are plotted in Figure 3.14. Specifically, for each value of J/t,

∆∞/t = δE∞2 /t − 2δE∞1 /t is computed via the corresponding extrapo-

lations of the two- and single-hole ground state energies (see dashed

lines in Figure 3.11 and Figure 3.13, respectively). By assuming, as

in [55], the functional dependence

t

J
=

t

Jc

[
1− λ∆∞

t
ln

(
∆∞

t
· 1

ε

)]
(3.7)

I estimate the critical value Jc ' 0.19t at which the two-hole bind-

ing energy extrapolated to the thermodynamic limit reaches zero. This

estimate, in agreement with that obtained in the case of the 16× 16 lat-

tice, indicates that for J . Jc a bound state of two holes, if present, is
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Figure 3.13: Single-hole ground state energy δE1/t as a function of the lat-
tice sizeN . Estimates are obtained with the EPS ansatz used in
[72]. Values of J/t are 2.0 (stars), 1.0 (squares), 1/1.5 (triangles),
0.5 (diamonds) and 0.4 (circles). Error bars are smaller than the
symbol size. The dotted lines are polynomial functions in 1/N
used to fit the numerical data. Exact results available for the
4× 4 lattice are also shown (empty squares) for comparison.

characterized by a symmetry different from that (i.e., d-wave) predicted

by several studies in the parameter range of Figure 3.14. Indeed, a

change in the symmetry of the bound state should occur for J/t . 0.18

[56] or (or 0.15 [57]).

In conclusion, I have shown that the entangled-plaquette variational

ansatz can be applied to study the ground state properties of two mo-

bile holes in a two-dimensional quantum antiferromagnet for lattice

sizes considerably larger than those treatable with exact approaches.

Obtained energy estimates are in remarkable agreement with exact re-

sults on a N = 16 lattice. I have extended my analysis to a maximum

system size ofN = 256, demonstrating the existence of a two-hole bound

state for all the values of J/t explored here. An extrapolation of my es-

timated two-hole binding energy in the large N limit to low values of

J/t results in a critical Jc ' 0.19t below which a bound state with d-

wave symmetry is not expected. Including e.g., the p-wave symmetry

in the EPS ansatz to investigate the existence of a different two-hole

bound state in the ground state for J/t . 0.19, as well as studying the
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Figure 3.14: J/t versus opposite binding energy extrapolated to the thermo-
dynamic limit −∆∞/t. The dashed line is a fit to the numerical
data using the function (3.7).

dependence of the physical properties discussed here on the presence of

a next-nearest-neighbor hopping term in (3.6), are possible interesting

extensions of my work.

Furthermore, although specific QMC approaches can still be adopted

for the two-hole t−J model at the price of a large error bar on the result-

ing estimates, in the finite hole density scenario, where the physical pic-

ture remains under debate [58, 59, 60], their applicability is unfeasible

due to an even heavier sign problem. In such a case the EPS ansatz, in

the framework of a simple, by definition sign-problem free, variational

approach (e.g., the one employed here) may constitute a viable option

either via a generalization of the WF employed here or as a systematic

route to improve other relevant wave functions.



Chapter 4

Diagrammatic Monte Carlo

This chapter is devoted to my work on the Diagrammatic Monte Carlo
technique. After a quick overview of the method itself, I discuss the strate-
gies chosen in my implementation of the algorithm, as well as possible
future enhancements and applications for the latter.

Diagrammatic Monte Carlo (DMC) techniques (see, e.g., [22] for a

general introduction) are finite-temperature methods for the study of

fermionic [127, 128, 129, 130, 63] and frustrated spin [61] systems.

These approaches are unbiased, free from sign problems, and allow to

study considerably large sizes at low temperatures. In the following,

their theoretical framework will be illustrated, following the derivation

in [131].

I will discuss the case of a spin-1/2 fermionic system in the grand-

canonical ensemble, described by a Hamiltonian of the form K̂ = K̂0 +

Ĥ1, with

K̂0 ≡ (−t)
∑
σ

∑
{i,j}

(
Ĉ†iσĈjσ + h.c.

)
− µ

∑
σ

∑
i

n̂iσ (4.1)

Ĥ1 ≡
∑
σσ′

∑
ij

Vσσ′(xi, xj)Ĉ
†
iσĈiσĈ

†
jσ′Ĉjσ′ (4.2)
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with the same definitions introduced in section 3.2 for the t − J

Hamiltonian (3.6). K̂0 is therefore the noninteracting part, which can be

solved exactly, while Ĥ1 is a density-density interaction. In the follow-

ing, 〈〉th will denote the thermodynamical average with respect to the

statistical density matrix of the system with Hamiltonian K̂, while 〈〉0
will denote the average with respect to the noninteracting Hamiltonian

K̂0.

Without loss of generality, I will discuss a DMC algorithm sampling

the diagrammatic expansion for the finite-temperature single particle
Green function, the fermionic equivalent of (2.14), i.e.

Gαβ(z1, z2) = −
〈
Tτ

(
Ĉα(z1)Ĉ†β(z2)

)〉
th

(4.3)

where τ is the previously introduced imaginary time, z ≡ (x, τ) is

a space-time coordinate, greek letters denote spin components, Tτ de-

notes time ordering in imaginary time, and time-dependent operators

are defined via the imaginary-time Heisenberg Picture,

Ô(x, τ) = eK̂τ/~Ô(x)e−K̂τ/~, (4.4)

(4.3) can be used to compute many quantities of interest, such as,

e.g., the thermodynamical mean values of energy and density. The stan-

dard interaction picture expansion in powers of the interaction Hamil-

tonian Ĥ1 can be applied to rewrite the single particle Green function

as

Gαβ(x, y) = −

∑∞
n=0(n!)−1

∫ β
0 dτ1 . . .

∫ β
0 dτn

〈
Tτ

(
ĤI

1 (τ1) . . . ĤI
1 (τn)ĈIα(x)ĈI†β (y)

)〉
0∑∞

n=0(n!)−1
∫ β

0 dτ1 . . .
∫ β

0 dτn

〈
Tτ

(
ĤI

1 (τ1) . . . ĤI
1 (τn)

)〉
0

,

(4.5)

where the operators marked with I evolve in imaginary time accord-

ing to the imaginary-time Interaction Picture, i.e.

ÔI(x, τ) = eK̂0τ/~Ô(x)e−K̂0τ/~ (4.6)
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Since Ĥ1 is defined in (4.2) as a product of Fock operators Ĉ and Ĉ†,

any term of the series in (4.5) reduces to a thermal averages of time-

ordered products of Fock operators, which have to be averaged on the

statistical matrix of the noninteracting Hamiltonian.

The terms of the expansion (4.5) can be directly computed taking

advantage of the finite-temperature Wick theorem. Ultimately, all con-

tributions at a fixed order can be written in terms of the interaction

function V appearing in (4.2) and the Green function for the noninter-

acting system G0, which can be computed exactly. Examples of first-

order contributions to the numerator of (4.5) are

G
(a)
αβ (x, y) =

∫
dz1

∫
dz2

(
G0
αλ(x, z1)G0

λβ(z1, y)G0
µµ(z2, z2)Vλµ(z1, z2)

)
(4.7)

G
(b)
αβ(x, y) = −

∫
dz1

∫
dz2

(
G0
αλ(x, z1)G0

λµ(z1, z2)G0
µβ(z2, y)Vλµ(z1, z2)

)
(4.8)

G
(c)
αβ(x, y) = −

∫
dz1

∫
dz2

(
G0
αβ(x, y)G0

λλ(z1, z1)G0
µµ(z2, z2)Vλµ(z1, z2)

)
(4.9)

Where
∫
dz denotes an integration over imaginary time as well as a

sum over the spatial coordinates. Here V(z1, z2) = V (x1, x2)δ(τ1 − τ2) is

introduced to simplify the notation and equal-time Green function are

to be interpreted as

G0(x1, τ,x2, τ) = lim
τ2→τ+1

G0(x1, τ1,x2, τ2) (4.10)

Feynman diagrams are a graphical tool which encodes information

about the terms in the expansion (4.5) in a convenient representation.

Each term in the series is biunivocally represented by a diagram, and

rules exist to generate all diagrams for the terms of a given order, and

to extract their contribution. For instance, diagrams (a), (b) and (c) in

Figure 4.1 correspond to (4.7), (4.8) and (4.9), respectively.

Dashed lines are referred to as interaction lines, and are associated
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Figure 4.1: Feynman diagrams for the expressions in (4.7)-(4.9).

to interaction terms in the contribution, while straight lines are termed

particle lines, and are associated to noninteracting Green functions G0.

Lines connect points known as vertices, each of which is associated with

a space-time position and a spin component. Each vertex is touched by

one interaction line and two particle lines, except for two of them which

are only connected to a single particle line. These are called external
vertices, and correspond to the coordinates and spin projections in which

the interacting Green function is computed.

The diagrammatic representation allows an easier understanding

and manipulation of the terms in the series. For instance, the effect

of the denominator in (4.5) is to remove from the numerator all contri-

butions from disconnected diagrams (i.e., those with subunits not con-

nected with the rest of the diagram via lines). (4.5) therefore reduces

to

Gαβ(x, y) = −
∞∑
n=0

(n!)−1

∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ

(
ĤI

1 (τ1) . . . ĤI
n(τn)ĈIα(x)ĈI†β (y)

)〉C
0

(4.11)

where the index C indicates that the sum is only restricted to con-

nected contributions. At the first order in the series, for instance, the

only diagrams to contribute are (a) and (b) in Figure 4.1, while dia-

grams like (c) are removed by the denominator. Determining which con-
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tributions have to be summed is trivial in the diagrammatic formalism,

allowing to considerably simplify the analysis.

Analysis of the perturbation series allows to find out the rules to

draw all relevant n-th order diagrams for the imaginary-time Green

function for the Hamiltonian given by (4.1) - (4.2):

• Draw all topologically distinct and connected diagrams containing

n interaction lines and (2n+ 1) directed particle lines.

• Associate a factor G0
λµ(z1, z2) to any particle line running from the

vertex of coordinates z1 and spin λ to the one of coordinates z2

and spin µ. Interpret any noninteracting Green function at equal

times as in (4.10).

• Associate a factor Vλµ(z1, z2) to any interaction line connecting the

vertices of coordinates z1 and z2 and spins λ and µ, respectively.

• Integrate over the space-time position of all internal vertices (as

previously mentioned, these are the vertices which are touched by

two particle lines and one interaction line, and are all but two of

the vertices in the diagram).

• Sum over all repeating spin indices.

• Multiply each contribution by a factor (−1)n(−1)F , where F is

the number of fermionic loops (particle lines which close on them-

selves).

A similar rule scheme can be formulated for diagrams in momentum

space in the case of translationally invariant Hamiltonians (instead of

associating spatial coordinates to the vertices, each line carries a mo-

mentum). An important characteristic of the momentum space dia-

grammatic scheme, which will be of use later, is the conservation of

momentum at each vertex (the sum of the momenta of incoming lines

must balance the sum of the outgoing ones).

The use of rules such as these allows in principle to compute exactly

the Green function for interacting systems. However, the number of
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diagrams at order n scales as n!, which prevents in practice analytical

sums beyond a few orders.

DMC methods compute the sum over the diagrams via stochastic

sampling: in particular, they employ a MH process where each diagram

is weighted by the modulus of the contribution given to the Green func-

tion. Unlike in the PIMC case, the application of this modulus can be

kept into account without causing numerical instabilities. The diagram-

matic expansion of other quantities may also be sampled (for instance,

many algorithms sample the proper self-energy, a quantity related to

the Green function by relations known as Dyson Equations).

The MH process must allow to explore all possible values of the in-

ternal variables (positions and times of the vertices) as well as diagram

topologies (the way the vertices are connected). Sampling both these

quantities is a straightforward approach to ergodicity: this is however

nontrivial, as changing the topology of the diagram usually requires

complex and expensive nonlocal updates if any conservation laws, e.g.

of momentum, have to be respected (even in real space, introducing fic-

titious line momenta and the relative conservation laws is sometimes

useful, as will be explained below).

One possible way to perform an ergodic sampling is to use worm-like
updates [22]. This scheme changes the topology of the diagram with

simple local updates, by extending the configuration space to diagrams

which violate the conservation laws.

In particular, one of the updates introduces two vertices in which mo-

mentum is not conserved, similar in role to the worm heads of the worm

PIMC scheme introduced in section 2.2. Updates allow these heads to

move along the lines and to swap (for instance) the lines which originate

from them. The latter move allows to sample all topologies. Finally,

an update may remove the unphysical vertices, reestablishing momen-

tum conservation laws. The contribution to the Green function (or to

other observables) is only measured in the physical configuration sec-

tor. Other, more trivial updates allow to move the vertices in time and

space and to increase or decrease the order of the diagram.

Bold Diagrammatic Monte Carlo (BDMC) schemes [61, 63, 130] use
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this kind of updates in conjunction with self-consistency techniques which

aim to reduce the number of diagrams to sample. Depending on the

actual self-consistency scheme, checks to avoid double-counting of dia-

grams have to be performed: the latter are considerably easier to ex-

ecute in momentum space, or in real space with the inclusion of ficti-

tious line momenta, justifying the necessity of updates which can take

conservation laws into account. BDMC has been applied to study, e.g.,

frustrated spin systems [61] and fermionic systems like the 2D Hubbard

model [63].

Another possible approach to sample diagram topologies is to use the

Determinant Diagrammatic Monte Carlo (DDMC) scheme [128, 129]. In

a nutshell, the algorithm only samples the space-time positions of the

vertices: for a given set of the latter, the sum over all possible topologies

with those vertex positions is computed exactly. This is accomplished

via an alternative formulation of the Wick theorem, which allows to

write the sum over all topologies (connected and disconnected) in a rel-

atively easy to compute determinantal form (see, e.g., [132]).

This approach has the advantage of keeping into account exactly all

cancellations from diagrams with opposite signs, which have to be sam-

pled if using worm-like updates. Since the number of diagrams scales

factorially with the diagram order, sampling becomes less and less effi-

cient with respect to the determinantal approach for large orders. The

latter allows therefore a considerably improved treatment of topologies.

Due to the presence of both connected and disconnected topologies

in the sum resulting from the determinantal formalism, the most direct

approach [128, 129] is to sample both the numerator and the denomi-

nator in (4.5), removing the disconnected contributions by performing

the ratio. However, both the numerator and the denominator of (4.5) di-

verge in the thermodynamic limit: this implies that very long sampling

times or approximations are required to have accurate results for large

sizes.

A recently introduced improvement for the DDMC approach [62] al-

lows to solve these issues by summing only connected contributions,

eliminating the need to perform the ratio in (4.5). This is accomplished
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by exploiting relations which link the sum of connected diagrams to the

sum of both connected and disconnected contributions. The latter is still

computed using the aforementioned determinantal formalism, and the

relations are employed to remove from it all disconnected diagrams.

This improved approach (which will be denoted by IDDMC for the

sake of clarity) allows to study sizes comparable to those reached via

BDMC, while retaining the more accurate treatment of diagram topolo-

gies; the method has been successfully compared with BDMC [62] in

the context of the 2D Hubbard model, yielding comparable result with

much better accuracy. However, IDDMC suffers from some limitations:

for instance, it is currently restricted to diagrams in coordinate space,

and it does not allow the application of self-consistency techniques.

I have implemented a DMC code following the IDDMC approach.

The latter was chosen for the aforementioned enhanced capability of

sampling diagram topologies, as well as for the considerably simpler

structure of the algorithm. My code is currently under testing, with

many components already fully functioning as intended.

I included in my implementation the necessary instruments to treat

both the case of on-site and of extended-range interactions. While rela-

tively harder to implement, the latter offer the possibility to study sev-

eral fermionic systems of interest (like, e.g., the fermionic counterpart

of the bosonic lattice model studied in section 3.1).

A considerable amount of work is devoted in the DMC community

to find new techniques to keep into account diagram topologies. For

instance, it has been recently pointed out [133] that for small orders

n . 13 (which are usually sufficient to obtain accurate enough results)

an explicit sum over a pre-compiled list of topologies might be more

efficient than the determinantal formalism. My implementation has

been coded in order to allow an easy replacement of the topology-related

routines: this will allow me to keep my code up-to-date with the latest

developments in the field.



Chapter 5

Conclusions

In this section the conclusions of this thesis are drawn, summarizing the
results and outlining directions for my future work.

The focus of my thesis is the study of strongly correlated systems

of interest for both Condensed Matter and Atomic physics. This task is

nontrivial, due to the high complexity of the problems, requiring the use

of powerful numerical techniques.

I employ Path Integral Monte Carlo (PIMC) with worm updates, in

an implementation written by myself, to study a system of hardcore

bosons on a triangular lattice. Here, the interparticle interaction is of

interest for experimental realizations with Rydberg-dressed atoms. The

adopted numerical technique is a state-of-the-art approach for unfrus-

trated bosonic systems, allowing accurate measurements of quantities

such as, e.g., superfluid densities.

In my work [14] I demonstrate the existence of glass and superglass

phases, obtained via temperature quenches in the intermediate- and

strong-interaction regime, respectively. These states appear as the out-

of-equilibrium counterparts of a crystal and supersolid phase, respec-

tively, and are obtained in the absence of built-in frustration sources

in the Hamiltonian, usually employed to obtain glassy behavior. Here,

glassy physics arises from the formation of self-assembled particle clus-
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ters, which ultimately induce an effective polidispersity in the system.

I also study the model of [14] with longer-range interactions on a

square lattice. Preliminary results [54] show a phase transition be-

tween a supersolid and a disordered, non-superfluid phase. Large-scale

and low-temperature simulations are currently running to understand

if, e.g., superfluidity and structural order superfluidity disappear at the

same time or if an intermediate phase is present, and to investigate pos-

sible temperature and size dependences of the aforementioned physical

picture.

The simplicity of the investigated model, as well as its aforemen-

tioned relevance for experiments with cold atoms, should pave the way

for the experimental realization of the phases predicted in my work.

PIMC techniques cannot be used to reliably study fermionic systems,

whose investigation requires other approaches. For instance, Varia-

tional Monte Carlo (VMC) can yield high accuracy results for the ground-

state properties given a powerful ansatz is chosen as trial wavefunction.

I show [21] that the Entangled Plaquette States (EPS) ansatz can

be adapted to investigate the t − J model in the presence of two holes.

I demonstrate the existence of a two-hole d-wave bound state in the

parameter region 0.4 ≤ J/t ≤ 2.0, and I find a critical value Jc/t . 0.19

below which a bound state with the same symmetry does not occur.

The main objective of my study on the t − J model has been that of

unambiguously demonstrate how the EPS wavefunction can faithfully

describe fermionic problems where other approaches suffer from severe

limitations, offering also accurate quantitative predictions on various

observables of interest.

A further approach to the study of fermionic systems is Diagram-

matic Monte Carlo (DMC). This is a finite-temperature numerical tech-

nique which has recently elicited considerable interest (see, e.g., [22, 61,

62]) and has seen application to long-standing problems in condensed

matter physics, such as, e.g., the investigation of the phase diagram of

the 2D Hubbard model [63].

I have coded an implementation of DMC, currently under testing.

While currently specialized for the study of the Hubbard model, with
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the usual on-site interactions, my algorithm allows the study, on the

same footing, of fermionic systems with extended-range interactions.

Problems I am in the position to study in the future include the in-

vestigation of ladder systems with the same interaction adopted for the

model of section 3.1, to observe how the 2D physics emerges from the

one-dimensional scenario [104]. The extension of the EPS ansatz to the

case of finite hole concentration in the t − J model is also a possible di-

rection for my future research. In addition, DMC will offer me a further

possibility to investigate, e.g., the fermionic counterpart of the extended

Bose-Hubbard Hamiltonian studied in section 3.1.

I am very confident that the knowledge about numerical methods

that I acquired during my Ph. D. will allow me to carry on my future

research by means of very accurate, state-of-the-art tools.



Résumé

Introduction

Mon travail de thèse s’axe sur l’étude, par moyen de techniques numériques,

de systèmes fortement corrélés (c’est-à-dire, dont le comportement ne

peut pas être décrit en terme d’entités indépendantes). Ces derniers of-

frent la possibilité d’observer certains des scénarios les plus intéressants

en Physique de la Matière Condensée, qui comprennent en particulier

plusieurs exemples de phénomène quantique macroscopique (PQM), man-

ifestations a grande échelle des propriétés quantiques du système.

La superfluidité, c’est–à–dire la propriété d’un matériel qui soutient

un flux de matière persistant et sans dissipation, est un exemple im-

portant de PQM, observé en systèmes bosoniques. Rencontrée pour la

première fois dans l’Hélium–4 [1, 2], la superfluidité a été ensuite liée

à autres types de scénarios physiques, comme la supersolidité (p. ex.

[3]), la coexistence de superfluidité et ordre structurel dans le matériel.

Cette phase exotique avait été proposée pour l’état fondamental de l’Hélium–

4 solide, mais cette hypothèse a été démentie par plusieurs études, à la

fois numériques [9, 10] et expérimentales [11]. Par contre, supersolides

ont été observés, par moyen de techniques numériques, en plusieurs

systèmes de bosons, allant de modèles sur réseau (p. ex. [12]) à Hamil-

toniens avec interactions à portée étendue en espace libre (p. ex. [13]).

Récemment, l’étude des systèmes fortement corrélés et des scénarios

physique leur associés a été relancée grâce à l’idée de simulation quan-

79



80

tique (p. ex. [23, 24]), c’est–à–dire la création d’une expérience qui met

en place un Hamiltonien d’intérêt (par exemple, un modèle candidat

pour décrire un phénomène inexpliqué) d’une façon contrôlée.

Dans ce domaine, les atomes froids (p. ex. [26, 27]) ont devenu

une des plateformes les plus prometteuses, grâce au haute niveau de

contrôlabilité atteint en leur manipulation expérimentale: un des systèmes

les plus intéressants de ce point de vue sont les atomes froids en états

Rydberg–dressed (p. ex. [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]), c’est–

à–dire en une superposition de l’état fondamental atomique et d’un état

excité avec un nombre quantique principal très élevé [connu sous le nom

d’état Rydberg (p. ex. [38, 39, 40])]. Leur réalisation expérimentale

(p. ex. [48, 49]) offre la possibilité d’effectuer simulations quantiques

de systèmes avec interactions à portée étendue, qui ont déjà été liés à

phénomènes physiques exotiques par études théoriques (p. ex. [13]).

La recherche de phases exotiques (supersolides, et en générale phases

qui montrent coexistence de plusieurs paramètres d’ordre) dans systèmes

pertinents pour expériences avec atomes en états Rydberg–dressed est

une des directions de mon travail de thèse. J’expose les résultats que

j’ai obtenu en suivant cette ligne de recherche [14] en Section 1.

Un autre exemple de PQM, observé en systèmes de fermions, est la

supraconductivité: plusieurs matériaux, au–dessous d’une température

Tc, subissent une transition de phase, manifestant une résistance électrique

nulle et des propriétés magnétiques particulières. Certaines entre ces

matériaux (appelés conventionnels) sont bien décrits par la théorie Bardeen–
Cooper–Schrieffer (BCS) [15] : par contre, une théorie pour expliquer le

comportement supraconducteur dans les autres (connus sous le nom de

supraconducteurs à haute température) n’a pas encore été établie (p. ex.

[16, 17, 18]).

Hamiltoniens fermioniques fortement corrélés comme le modèle d’Hubbard

ou le t − J ont été proposés comme candidats [19] pour décrire ces

matériaux : cependant, la relation entre les modèles et le phénomène

physique n’est encore entièrement claire. Une des raisons pour cette

situation est le fait que la grande partie des techniques numériques

utilisées pour étudier les systèmes fortement corrélés ne peuvent pas
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être appliquées dans le cas de ces Hamiltoniens : par exemple, les tech-

niques de Path Integral Monte Carlo (PIMC), très puissants en l’étude

de systèmes de bosons, souffrent des lourdes instabilités numériques,

connues sous le nom de sign problem [20].

L’étude d’Hamiltoniens fortement corrélés de fermions, et le développement

de nouveaux méthodes numériques dans ce but, est une autre direction

de mon travail de thèse : les résultats que j’ai obtenu en suivant cette

ligne de recherche [21] sont exposés en Section 2.

1. Systèmes Bosoniques

L’étude des systèmes désordonnés est très intéressante pour la Physique

de la Matière Condensée: généralement, le désordre est introduit en

utilisant des sources de frustration ajoutées ad-hoc au système, qui

génèrent des phénomènes de localisation et des phases isolantes ([73],

[85]). Par la suite, on appellera verre un état de la matière manifes-

tant de la localisation en l’absence d’ordre structurel (contrairement à

un cristal, qui a une structure ordonnée).

Bien que la majorité des phénomènes causés par le désordre possèdent

un caractère isolant, des études numériques ont montré la possibilité

d’une coexistence entre phases vitreuses et effets quantiques (Conden-

sation de Bose–Einstein ou Superfluidité), comme dans le cas des Super-

solides. Ces nouvelles phases de la matière sont nommées superverres,

et ont été observées numériquement avec de l’Hélium–4 subissant une

procédure de quench [88] et dans systèmes sur réseaux frustrés [53].

Malgré ces résultats numériques, la phase supervitreuse n’a pas

encore été observée expérimentalement, aussi en raison de la grande

valeur de frustration devant être implémentée dans l’Hamiltonien pour

systèmes sur réseau (comme dans [53]). Par conséquent, la possibilité

d’observer des superverres avec un Hamiltonien invariant par transla-

tion (sans sources de frustration ajoutées) ainsi que leur praticabilité

expérimentale, restent encore des questions ouvertes.
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J’ai répondu à ces questions [14] en étudiant un système de bosons

cœur–dur interagissants sur un réseau triangulaire. L’Hamiltonien con-

sidéré est invariant par translations (aucune source de frustration a été

ajoutée) et les bosons interagissent au moyen d’une interaction densité–

densité à portée étendue reproduisant les caractéristiques principales

de l’interaction entre atomes en états Rydberg–dressed [41].

J’ai étudié mon système via des simulations PIMC avec les Worm

Updates [52]. Cette méthode est numériquement exacte pour n’importe

quel système de bosons non frustrés. L’implémentation utilisée dans

mon travail a été effectuée par mes soins. Pour caractériser les phases

que j’ai rencontré j’ai utilisé les paramètres d’ordre suivants:

• La Fraction Superfluide ρs, non nulle en systèmes superfluides.

• Le Facteur de Structure S(k), possédant des pics non triviaux en

présence d’ordre structurel dans le système.

• Le Paramètre d’Edwards–Anderson q̃EA [53], dont une valeur non

nulle en l’absence d’ordre structurel identifie le comportement vit-

reux.

J’ai obtenu un diagramme de phase à l’équilibre comprenant une

phase liquide à haute température et une phase superfluide, un super-
solide et un cristal pour interactions faibles, moyennes et forts respec-

tivement, à basse température.

Le superfluide se distingue du liquide par une valeur de ρs non nulle,

tandis que S(k) et q̃EA sont nuls dans les deux cas. Une valeur in-

termédiaire des interactions provoque l’apparition d’ordre structurel (et

donc un S(k) non nul) en coexistence avec la superfluidité. Pour interac-

tions fortes, la fraction superfluide disparait tandis que S(k) reste non

nul, entrainant une phase cristalline.

Par la suite, j’ai exploré la physique hors d’équilibre du système.

Dans ce but, j’ai effectué des simulations de quench (soudain refroidisse-

ments du système, effectués trop vite pour permettre au système de

s’équilibrer). Pour des quench suffisamment forts, le système ne peut

plus s’équilibrer, et reste “bloqué” dans des états métastables. Cette
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métastabilité est démontré par le fait que différentes réalisations de la

même simulation (avec différentes conditions initiales et suites aléatoires

de thermalisation) conduisent à différents états métastables.

J’ai effectué des simulations de quench dans les régions supersolide

et solide du diagramme de phase d’équilibre. Dans les deux cas, la

valeur moyenne sur les réalisations de maxk S(k) diminue rapidement

avec la taille du système, à cause du nombre croissant de réalisations

qui restent bloquées dans des états métastables désordonnés. En même

temps, q̃EA (dans les deux cas) et ρs (dans la région supersolide à l’équilibre)

restent non nuls.

Ces résultats amènent à la conclusion que, en présence d’un quench,

le système est amené hors d’équilibre, et arrive dans des états localisés

mais désordonnés, isolants (ρs = 0) pour interactions fortes, et superflu-

ides (ρs 6= 0) pour des interactions intermédiaires. Ces états correspon-

dent à la définition donnée auparavant de verre et superverre.

La cause de l’apparition de ces états est la formation spontanée (à

densité suffisamment haute) de clusters. Ces derniers sont groupes de

particules qui prennent le rôle de degrés de liberté efficaces du système.

Ils varient en forme, orientation et nombre de composants : cette variété

génère une polydispersité efficace qui se comporte comme une source

de frustration, en causant l’apparition de (super)verres en l’absence de

sources de frustration externes ajoutées au système.

En conclusion, dans la partie de mon travail consacré à l’étude de

systèmes de bosons j’ai examiné un système avec interactions repro-

duisant les caractéristiques principales de l’interaction entre atomes

de Rydberg. Mon résultat principal est la démonstration de l’existence

de régions où la physique vitreuse et la superfluidité coexistent. Ces

régions de superverre sont obtenues hors d’équilibre, en l’absence de

sources de frustration ajoutées au système et avec un Hamiltonien expérimentalement

pertinent.

J’ai aussi étudié [54] le même modèle sur un réseau carré et avec

une portée d’interaction augmentée, jusqu’à tailles de 48 × 48 sites et

températures de T/t = 1/20 (où t est le paramètre de saut dans l’Hamiltonien).

Résultats préliminaires ont montré une transition de phase entre un su-
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persolide et un état non–superfluide et désordonné avec une fonction de

Green qui montre un comportement à loi de puissance à grande dis-

tance. Simulations à grandes tailles et basses températures sont en

cours pour comprendre si, par exemple, l’ordre structurel et la super-

fluidité disparaissent en même temps ou une phase intermédiaire est

présente, et pour étudier la dépendance en taille et température des

phénomènes susmentionnés.

2. Systèmes Fermioniques

J’ai étudié [21] le modèle t − J sûr le réseau carré en présence de deux

trous par rapport à l’état de demi–remplissage (une particule par site).

Étudier numériquement le modèle t − J est difficile à cause de sa na-

ture fermionique et fortement corrélée: j’ai utilisé la célèbre méthode

de Monte Carlo Variationnel avec l’ansatz EPS (Entangled Plaquette
States) [69]. Mes objectifs principaux ont étés la démonstration de la

possibilité d’application de l’ansatz EPS pour étudier Hamiltoniens de

fermions fortement corrélés, où beaucoup d’autres techniques numériques

sont inapplicables, ainsi que la compréhension du comportement physique

de l’état fondamental du système.

Dans mon travail, j’ai étudié le modèle t − J dans la fourchette de

paramètres 0.4 ≤ J/t ≤ 2.0 (dans l’Hamiltonien, J est le coefficient du

terme d’interaction et t est le paramètre de saut). Mes résultats sont

en très bon accord avec la diagonalisation exacte [123] à petite taille. À

tailles modérées, je trouve bon accord avec les résultats de la méthode

de Green Function Monte Carlo (GFMC) [55] : cette technique peut être

appliqué seulement à prix d’approximations qui limitent la taille maxi-

male d’application et la précision des résultats. Par contre, la méthode

EPS ne souffre pas de ces problèmes, en produisant à tailles relative-

ment grandes des résultats variationnels qui peuvent être compté parmi

les plus précis et fiables pour le modèle t− J .

J’ai démontré, en calculant l’énergie de liaison des trous et la fonc-

tion de distribution de leur distance relative, l’existence d’un état lié de

trous avec symétrie dx2−y2 pour tous les valeurs de J/t que j’ai considéré.
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En utilisant l’énergie de liaison des trous, j’ai estimé qu’un état lié avec

cette symétrie disparaı̂t pour J/t < Jc/t ' 0.19.

Étant donné la précision des résultats obtenus par moyen de l’ansatz

EPS, mon travail est séminal pour l’application de cette technique à

l’étude d’autres systèmes de fermions fortement corrélés, où autres méthodes

comme le GFMC ne peuvent pas être appliqués, comme par exemple le

modèle t − J dans le cas de concentration de trous finie (où différentes

études numériques, p. ex. [59, 60]) sont en contradiction en ce qui con-

cerne la nature de l’état fondamental du système).

Dans mon travail de thèse j’ai aussi programmé une implémentation

de l’algorithme de Monte Carlo Diagrammatique (p. ex. [22]), selon

l’approche proposée en [62]. Cette technique est une des méthodes

les plus prometteuses pour l’étude de systèmes fermioniques fortement

corrélés (p. ex., [63]). Mon code est à présent en phase d’essai ; une fois

complété, il m’offrira la possibilité de traiter interactions à portée à la

fois courte et étendue. Cette capacité me permettra d’étudier plusieurs

modèles fermioniques d’intérêt (par exemple, l’homologue fermionique

du modèle considéré en Section 1, pour comprendre de quelle façon le

diagramme de phase du système est influencé par la statistique des par-

ticules).
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and G. Pupillo, “Cluster luttinger liquids and emergent super-

symmetric conformal critical points in the one-dimensional soft-

shoulder hubbard model,” Phys. Rev. B, vol. 92, p. 045 106, 2015.

[106] K. Binder and A. P. Young, “Spin glasses: Experimental facts,

theoretical concepts, and open questions,” Rev. Mod. Phys., vol. 58,

pp. 801–976, 1986.

[107] V. G. Rousseau, “Stochastic green function algorithm,” Phys. Rev.
E, vol. 77, p. 056 705, 2008.

[108] M. V. Feigelman, V. B. Geshkenbein, L. B. Ioffe, and A. I. Larkin,

“Two-dimensional bose liquid with strong gauge-field interac-

tion,” Phys. Rev. B, vol. 48, pp. 16 641–16 661, 1993.

[109] P. Phillips and D. Dalidovich, “The elusive bose metal,” Science,

vol. 302, pp. 243–247, 5643 Oct. 2003.



Bibliography 97

[110] A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava,

J. Hone, P. Kim, C. R. Dean, and A. N. Pasupathy, “Nature of

the quantum metal in a two-dimensional crystalline supercon-

ductor,” Nature Physics, vol. 12, pp. 208–212, 2016.

[111] O. I. Motrunich and M. P. A. Fisher, “d-wave correlated critical

bose liquids in two dimensions,” Phys. Rev. B, vol. 75, p. 235 116,

2007.

[112] W. von der Linden, “A quantum monte carlo approach to many-

body physics,” Physics Reports, vol. 220, no. 2, pp. 53–162, 1992.
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Adriano ANGELONE
Strongly Correlated Systems of Bosons and Fermions:

a Diagrammatic, Variational 
and Path Integral Monte Carlo study

Résumé
Mon travail de thèse se concentre sur l'étude, à l'aide de techniques numériques, de systèmes de fermions et
bosons fortement corrélés. J'étudie Hamiltoniens de bosons sur réseau avec interactions à portée étendue,
avant un intérêt pour expériences concernant atomes en états Rydberg-dressed, par moyen de simulations
Path Integral Monte Carlo. Mon résultat principal est la démonstration d'un état de superverre en absence de
sources de frustration dans le système. J'étudie également la modèle t-J fermionique avec deux trous par
moyen de simulations Variational Monte Carlo avec l’ansatz Entangled Plaquette States (EPS). Mon étude est
fondamental en la perspective d'appliquer  l'ansatz EPS à autres systèmes fermioniques,  d’intérêt pour la
supraconductivité à haute temperature, dont le comportement n'a pas encore été déterminé. Finalement, je
présente mon travail sur une implémentation de l'algorithme Diagrammatic Monte Carlo.

Mots-Clé:  Physique  de  la  Matière  Condensée,  Methodes  Numériques,  Simulation  Quantique,
Atomes de Rydberg, Path Integral Monte Carlo, Supersolide, Superglass, Supraconductivité à Haute
Temperature, Modèle t-J, Variational Monte Carlo, Diagrammatic Monte Carlo.

Abstract
The focus of my thesis is the investigation, via numerical approaches, of strongly correlated models of bosons
and  fermions.  I  study  bosonic  lattice  Hamiltonians  with  extended--range  interactions,  of  interest  for
experiments with cold Rydberg-dressed atoms, via Path Integral Monte Carlo simulations. My main result is
the demonstration  of  a superglass  in  the absence of  frustration  sources in  the system.  I  also  study the
fermionic $t-J$ model in the presence of two holes via Variational Monte Carlo with the Entangled Plaquette
States Ansatz. My study is foundational  to the extension of this approach to other fermionic systems, of
interest for high temperature superconductivity, where the physical picture is still under debate (such as, e.g.,
the $t-J$ model in the case of fnite hole concentration). Finally, I discuss my work on an implementation of
the Diagrammatic Monte Carlo algorithm.

Keywords : Condensed Matter Physics, Numerical Methods, Quantum Simulation, Rydberg Atoms,
Path Integral Monte Carlo, Supersolid, Superglass, High-Temperature Superconductivity, t-J Model,
Variational Monte Carlo, Diagrammatic Monte Carlo.


