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Mention Automatique, Traitement du Signal et des Images, Génie
Informatique

Soutenue le 05 Décembre 2017
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Examinateurs: Dr Estelle Rikir
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Abstract: EEG source localization is becoming an important tool for
treating epileptic patients by localizing the epileptogenic zones before
performing a resection surgery. Given a forward head model, EEG source
localization is performed by solving the inverse problem. The forward head
model is a biophysical model which describes the electrical distribution in
the human head. When considering the propagation as the only way for
the current distribution to move in the head, the focus is directed primarily
on two parameters for having an accurate forward head model. These
parameters are: the geometry of the head model and the conductivity
value of each compartment of the head model. Due to the recent advances
in computers and imaging techniques (like MRI and CT), it is possible
to generate human head models that represent with a high accuracy the
geometry of the real head. However, there is still an argument about the
conductivity values and the method by which it should be estimated. In
literature, the common values for conductivities come mostly from in-vitro
experiments. In this work we are performing in-vivo conductivity estimation
by considering the data of three epileptic patients. This data consists
of MR images and CT scans for building a five-compartment FEM head
model for each patient along with SEEG and EEG recordings that were
acquired in simultaneous with intracerebral electrical stimulation (IES).
The originality of this work lies in evaluating the performance of in-vivo
conductivity estimation by EEG and/or SEEG measurements in function
of different spatial parameters and locations of the IES. The following work
consists of three major parts: the first part aims to determine the most
robust optimization algorithm among common algorithms for optimizing
the forward head model. The objective of the second part is to analyze
the sensitivity of the conductivity values given different conditions on
stimulation position, measurement positions and number of compartments.
While in the final part, the conductivities of an isotropic and homogeneous
five-compartment FEM head model were estimated with previously selected
parameters for three drug-resistant epileptic patients. Finally the effect
of changing the stimulation frequency on the estimated conductivities was
determined.

Key words: Conductivity estimation, Forward problem, Intracerebral elec-
trical stimulation, Propagation model, SEEG/EEG.





Table of Contents

Table of Contents i

List of Figures v

List of Tables ix
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Estimation de conductivités
cérébrales in-vivo chez l’homme
à partir de la stimulation
électrique et de mesures EEG
intracérébrales et de scalp:
Résumé

La localisation de sources cérébrales est un problème inverse souvent mal
posé [1]. Elle s’effectue à partir de mesures EEG/SEEG et un modèle de
tête plus ou moins complexe qui dépend de la géométrie et des valeurs de
conductivités de différents compartiments cérébraux. Des études récentes
ont montré que des erreurs dans les valeurs de conductivités dans le modèle
de tête conduisent à des erreurs non négligeables de localisation de sources
[2, 3]. Les études actuelles de localisation de sources considèrent des valeurs
de conductivités mesurées in-vitro chez l’homme ou chez l’animal [4, 3].
Or les conductivités différent in-vivo et in-vitro, mais également entre
individus. Une méthode d’estimation des conductivités in-vivo est réalisée
en optimisant les valeurs des conductivités en minimisant l’erreur entre les
potentiels électriques mesurés lors d’un protocole de stimulation électrique
cérébrale et les potentiels générés par le modèle pour cette même source
exogène et parfaitement déterministe. Par conséquent, la géométrie du
modèle de tête doit être le plus réaliste possible. La géométrie des différentes
structures cérébrales peut être segmentée de l’IRM et du CT-scan de chaque
patient. En effet les images IRM permettent de détecter les frontières entre
les différents types de tissus mous. Les contours de la boite crânienne plus
hautement résistive peuvent être segmentés plus précisément par les images
générées par le scanner CT.

xi



xii RÉSUMÉ

Les potentiels dans le modèle de tête réaliste peuvent être déterminés par
des méthodes numériques de types BEM ou FEM [5]. La supériorité d’une
méthode par rapport à l’autre est discutable selon le type d’application.
Cependant, la méthode FEM peut être appliquée aux éléments volumétriques
et les conductivités peuvent être soient homogènes soient inhomogènes et
isotropes ou anisotropes. En plus de la géométrie, la source dans la tête
réelle doit être déterminée afin d’être représentée par une source modélisée
dans le modèle de tête. Or les sources physiologiques réelles sont d’une
grande complexité selon les échelles spatiale et temporelle auxquelles on
souhaite travailler. Du point de vue modélisation elles sont très souvent
assimilées à des dipôles ponctuels spatialement. La source spécifiée dans le
modèlede tête doit décrire les sources biophysiologiques du cerveau qui sont
situées dans le cortex (ou la matière grise).

Une application clinique de la localisation de la source EEG est la
localisation de la zone épileptogène chez les patients épileptiques. La
crise d’épilepsie se caractérise par une activité paroxystique spontanée ou
provoquée d’une population de neurones. Si l’origine de la crise appelée zone
épileptogène est focale, le processus peut très vite se généraliser à d’autres
structures cérébrales. Les électrodes de scalp telles que l’EEG mesurent
l’activité cérébrale qui par son passage par la boite crânienne est atténuée.
De plus l’EEG de surface peut être soumise à de nombreux artefacts tels que
les artefacts musculaires, oculaires . . . . Lorsqu’il est nécessaire de localiser
parfaitement la zone épileptogène dans des structures relativement pro-
fondes en vue d’une exérèse chirurgicale de l’origine de la crise, il est parfois
nécessaire d’implanter des électrodes en intracérébrale : c’est la SEEG [6].
En plus d’estimer la zone épileptogène, les électrodes intracérébrales peuvent
être utilisées comme générateur de courants entre deux plots successifs afin
de stimuler certaines structures pour en déterminer leur fonctionnalité par
excitation ou par inhibition de processus cérébraux. Les données acquises
chez les patients épileptiques qui contiennent: images RM, images CT
(pour déterminer les positions des électrodes intracérébrales), stimulation
électrique intracérébrale (IES), en plus des enregistrements EEG et SEEG
simultanés, fournissent pour cette étude de nouvelles possibilités qui n’ont
pas été considérés dans des études précédentes pour l’estimation de la
conductivité in-vivo en optimisant les conductivités du modèle direct.

Dans cette étude, l’estimation de la conductivité in-vivo en optimisant le
modèle direct a été réalisée sur trois patients épileptiques pharmaco-résistants
en considérant leurs mesures SEEG et EEG acquises en même temps que
la stimulation intracérébrale effectuée à divers localisations spatiales. Les
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mesures EEG et SEEG ont ensuite été comparées aux potentiels d’un modèle
FEM de tête réaliste à cinq compartiments afin d’estimer la conductivité de
ces différents milieux considérés isotrope et homogène: le scalp, le crâne,
le liquide céphalorachidien (LCR), la matière grise (MG) et la substance
blanche (SB). La procédure globale pour l’estimation de la conductivité in-
vivo est montrée à la Figure 1. A notre connaissance, à ce jour, aucune
étude n’a été faite sur l’estimation des conductivités in-vivo en considérant
un modèle de tête FEM à cinq compartiments en plus des mesures EEG et
SEEG acquises simultanément avec l’IES. Cette thèse traite de la précision
des estimations des conductivités du modèle direct en fonction de la configu-
ration et du conditionnement des mesures, de la localisation de la stimulation
électrique.

Figure 1: La procédure globale du traitement du signal et de l’image pour
l’estimation de la conductivité in-vivo.

Introduction

Le premier chapitre de la thèse donne une brève introduction à l’anatomie
du cerveau et à son électrophysiologie. Ensuite, les méthodes de localisa-
tion de la source EEG sont détaillées avec un intérêt particulier pour le
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traitement des patients épileptiques pharmaco-résistants pour lesquels la
réponse thérapeutique est la résection de la zone épileptogène. Après cela,
les différents systèmes de mesure électrophysiologies (EEG, MEG, ECoG et
SEEG) sont présentés, ainsi que des techniques d’imageries cérébrales (IRM,
CT, PET et IRMf) et des techniques de stimulation (EIT, DBS, TMS et
tDCS). Enfin, l’importance de l’attribution des valeurs de conductivités
précises dans le modèle direct est décrite pour motiver l’objectif de la thèse.

Le cerveau humain peut être étudié à différentes échelles spatiales et tem-
porelles comme le montre la Figure 2. La nature de l’étude détermine les
résolutions temporelles et spatiales des mesures à prendre en compte, puis le
cerveau et la tête sont modélisés en conséquence à ces résolutions spécifiques.
Lors de la construction d’un modèle de tête, il existe un compromis entre la
complexité de calcul et la précision, c’est-à-dire que le modèle doit être sim-
ple pour éviter les charges de calcul et aussi précis que possible. La Figure
3 montre les modèles les plus communs décrits dans la littérature. Dans
le domaine de la localisation de source EEG et de l’estimation des conduc-
tivités, l’échelle temporelle considérée est l’échelle temporelle des signaux
EEG d’environ une milliseconde et l’échelle spatiale est égale à la résolution
des images IRM de 1-2 mm.

Modèles de tête

Le chapitre 2 montre le processus de modélisation de la tête en fonction de ces
résolutions spatiale et temporelle ; l’hypothèse de propagation quasi-statique
basée sur les équations de Maxwell est considérée parce que les fréquences
des signaux sont inférieures à 1 kHz [8]. Compte tenu de l’hypothèse quasi
statique, l’équation générale de la méthode des éléments finis a été dérivée
compte tenu des définitions de la source (modèle dipolaire), de la géométrie
et des valeurs de conductivités (isotropes et homogènes pour chaque com-
partiment). Ensuite, la génération de la géométrie du modèle de tête à cinq
compartiments a été présentée. La robustesse de notre méthode de génération
de la géométrie se base sur la similarité du nombre d’éléments et de sommets
des modèles de tête générés des différents patients, comme indiqué dans le
Tableau 1.
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Figure 2: Les différentes échelles spatiales et temporelles considérées pour
modéliser le cerveau humain [7].
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Figure 3: De gauche, un modèle de tête sphérique résolu analytiquement
mais pas exactement, un modèle de tête réaliste représenté par des surfaces
et résolu par BEM où les conductivités peuvent seulement être isotrope
et homogènes et un modèle de tête réaliste représenté par des éléments
volumétriques et résolu par FEM où les conductivités peut être soit homogène
soit inhomogène, isotrope ou anisotrope.

Table 1: Le nombre d’éléments et de sommets obtenus dans un modèle FEM
pour chaque patient épileptique.

Tissu Nombre de Patient(1) Patient(2) Patient(3)
Scalp Eléments 1763818 1766024 1793602

Sommets 304777 305203 310251
Crâne Eléments 669167 679459 716531

Sommets 129580 131348 137640
LCR Eléments 719507 727154 726315

Sommets 149420 151160 150933
MG Eléments 676420 678839 661217

Sommets 154534 155142 152073
SB Eléments 713401 697771 707475

Sommets 137163 134560 136130
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Comparaison de méthode d’optimisation pour

estimation des conductivités in-vivo

L’estimation de la conductivité in-vivo dépend de l’estimation des valeurs
de conductivités dans le modèle de la tête en fonction des potentiels réels.
Ce processus s’appuie sur des algorithmes d’optimisation qui minimisent
l’erreur d’estimation entre les valeurs de conductivité dans le modèle de
tête afin de réduire l’erreur entre les potentiels réels et les potentiels du
modèle. Par conséquent, le choix d’un algorithme d’optimisation robuste
pour l’estimation de la conductivité in-vivo est essentiel. Dans la littérature,
de nombreux algorithmes d’optimisation ont été considérés pour l’estimation
des conductivités [9, 10, 11, 12, 13, 14, 15]. Dans cette étude, la méthode
numérique FEM a été considérée pour déterminer les potentiels de sortie
dans le modèle de tête réaliste. Etant donné que la méthode FEM ne
peut être résolue analytiquement, l’accent a été mis sur les algorithmes
d’optimisation à dérivation libre. Le Chapitre 3 présente une méthode pour
comparer trois algorithmes différents d’optimisation de dérivés libres: le
simplex de Nelder-Mead, l’algorithme génétique et le simulating annealing.
Ces algorithmes ont été considérés car ils sont faciles à mettre en œuvre
et relativement communs. De plus, ces algorithmes d’optimisation ont été
testés ou recommandés dans des études antérieures sur l’estimation de la
conductivité in-vivo. En général, les algorithmes d’optimisation sont testés à
partir de différents points initiaux (procédure multistart) pour s’assurer que
la performance de l’algorithme d’optimisation est indépendante du choix des
conditions initiales. En plus de la procédure multi-start, cette étude a testé
les algorithmes d’optimisation avec différentes mesures, différentes positions
de stimulation et en considérant du bruit gaussien blanc additif ou du
bruit à structure physiologique. Dans tous ces scénarios, les performances
des algorithmes Nelder-Mead simplex ont surpassé les performances des
deux autres algorithmes en termes de convergence et de temps. De plus,
le simplex de Nelder-Mead a donné des résultats robustes lorsque du bruit
à structure électro physiologique réel a été ajouté aux potentiels. Cette
performance de Nelder-Mead simplex a conduit à être considéré en analyse
réelle pour estimer les conductivités in-vivo.

L’estimation de la conductivité in-vivo dépend de la minimisation de
l’erreur entre les potentiels du modèle direct et les potentiels réels en itérant
les valeurs des conductivités dans le modèle direct. Afin d’avoir une estima-
tion robuste des conductivités in-vivo, la fonction d’erreur doit être sensible
aux variations des valeurs de conductivité assignées dans le modèle de tête
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direct. Par conséquent, il est essentiel d’effectuer une analyse pour mesurer
la sensibilité de la fonction d’erreur en fonction des valeurs de conductivité
avant d’effectuer une estimation réelle de la conductivité in-vivo.

Analyse de Sensibilité

Dans le Chapitre 4, une analyse de sensibilité a été réalisée en considérant
deux fonctions d’erreur différentes: l’erreur relative et le RDM [16] comme
le montre l’Equation 1. En comparant les fonctions d’erreur, il a été montré
à partir des résultats que la fonction d’erreur commune dans le domaine du
modèle de tête humaine, qui est le RDM, donnait un modèle de sensibilité
plus adapté que le modèle de sensibilité de l’erreur relative. De plus, l’analyse
de sensibilité a été effectuée compte tenu des différentes positions de stimu-
lation et des différentes positions de mesure et du nombre de mesures en pro-
fondeur et en surface. Les positions de stimulation ont été classées en fonction
de leur distance de scalp en tant que stimulations profondes, intermédiaires
et latérales. Il était évident à partir des résultats que le changement de
la distance de la stimulation du scalp change les résultats de sensibilité.
De plus, différentes positions de stimulations ayant une profondeur similaire
conduisent à une analyse de sensibilité différente comme cela a été noté à
partir des résultats de lateral1 et latéral2. La différence entre les résultats de
lateral1 et latéral2 peut être expliquée par la différence de l’orientation des
dipôles de stimulation qui attache une importance à l’anisotropie du modèle
de la tête, ou elle peut s’expliquer par la différence des tissus dans ces posi-
tions qui présente une importance à l’inhomogénéité du modèle de tête. En
changeant les positions de mesure, on a trouvé que la fonction d’erreur, en
général, est plus sensible à la conductivité du scalp et à la boite crânienne
lorsqu’on considère les potentiels EEG du scalp. Cela confirme l’importance
des mesures EEG du scalp pour estimer les conductivités du scalp et les con-
ductivités de la boite crânienne comme le montre la Figure 4. Il a été montré
dans ce chapitre que les résultats sont similaires pour deux patients différents,
et que négliger les électrodes les plus éloignées de la stimulation notamment
va pas modifier considérablement les résultats. De plus, la différence entre le
modèle de tête à trois compartiments et le modèle de tête à cinq comparti-
ments montre qu’il existe une dépendance entre les valeurs de conductivité.
En général, il ressort de cette analyse que l’estimation des conductivités in-
vivo dépend de la position de la stimulation, du nombre de compartiments
et du nombre d’électrodes de mesure, donc pour que l’étude ait des résultats
non biaisés, plus d’une position dipolaire devrait être pris en compte pour
l’estimation de la conductivité, et les conductivités obtenues devraient être
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assignées dans le modèle de tête avec le même nombre de compartiments.

RDM =

√∑( V1

||V1||2
− V2

||V2||2

)2

, V : Potentiels (1)

Figure 4: Effet l’attribution d’une valeur de conductivité du scalp erronée
(à gauche) et d’une valeur de conductivité du crâne erronée (à droite) sur le
RDM de sortie en fonction de différentes mesures.

Estimation des conductivités in-vivo

Au chapitre 5, l’estimation des conductivités in-vivo en optimisant le modèle
de tête direct a été réalisée en comparant les potentiels réels (SEEG /
EEG) avec les potentiels du modèle, puis en estimant les conductivités
assignées dans le modèle de tête jusqu’à ce que l’erreur entre les potentiels
du modèle et les potentiels réels atteignent leur valeur minimale. Dans
cette étude, le modèle de tête a été supposé isotrope et homogène et
contient cinq compartiments (scalp, crâne, LCR, MG et SB). L’estimation
des conductivités in-vivo a été réalisée pour trois patients épileptiques
pharmaco-résistants différents où les IES ont été classés en trois classes en
fonction de leur profondeur: profonde, intermédiaire et latérale. En général,
les conductivités estimées dans cette étude se situaient dans la gamme des
conductivités que l’on trouve dans la littérature. Sans validation possible
car les conductivités des 5 compartiments pour les deux patients ne sont
pas connues. La grande difficulté ici est de trouver un critère qui valide
les estimations car nous travaillons sans ‘golden standard’ si ce n’est les
valeurs publiées dans la littérature. Nous avons choisi les écarts types des
estimations des conductivités obtenus respectivement pour les différentes
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localisations des stimulations. En effet, les écarts-types permettent d’évaluer
la stabilité des estimations pour plusieurs fichiers de mesures. En fonction
des conditionnements et de la localisation de la stimulation les écarts-types
varient beaucoup. Les résultats montrent que les estimations sont moins
dispersées pour les conductivités des compartiments les plus proches de la
stimulation. Ce qui était plus ou moins attendu. En effet par exemple les
estimations des conductivités de la boite crânienne et du scalp sont beaucoup
moins dispersées et beaucoup plus proche des valeurs de la littérature lorsque
la stimulation est latérale. Ceci est d’autant plus vrai lorsque on utilise les
données SEEG/ EEG synchrones. En dehors de la variance élevée et de la
différence basée sur les mesures et les patients, des conclusions générales
peuvent être tirées de cette étude: 1) La conductivité du crâne est plus
faible et plus proche des valeurs de la littérature lorsqu’on considère les
mesures EEG du scalp avec la SEEG ou EEG seule que lorsqu’on considère
la mesure SEEG uniquement. 2) L’écart-type de la conductivité estimée est
plus faible lorsque la stimulation est plus proche des compartiments pour
lesquels on estime les conductivités. De manière similaire à l’analyse de
sensibilité, le fait de négliger les mesures des électrodes les plus éloignées n’a
pas modifié de façon notable le résultat de l’estimation de la conductivité.
On peut donc restreindre les mesures à injecter dans l’estimateur à la sphère
centrée sur la stimulation et d’un de rayon de 50mm. Ce qui signifie que
les mesures les plus éloigner n’apportent pas d’information car elles sont
suffisamment faibles énergétiquement.

L’équation de Poisson, sur laquelle repose l’estimation de la conductivité
in-vivo, dépend de la condition de propagation quasi-statique, ce qui signifie
que la conductivité des tissus n’est pas dépendante de la fréquence. Cepen-
dant, il y a quelques études qui ont montré que les conductivités estimées
dépendraient de la fréquence [17, 18]. En toute fin du chapitre résultats,
nous nous sommes intéressés à la décomposition fréquentielle de la stimula-
tion. En effet si le fondamental de la stimulation périodique est à 55Hz, la
stimulation par des pulses génère des harmoniques. Nous avons donc filtré les
mesures et donc élimination des activités physiologiques pour ne conserver
qu’une composante harmonique et cela pour les deux premières harmoniques
des décompositions de la stimulation. Les résultats de cette étude montrent
qu’il y a un changement dans les conductivités estimées moyenne en fonction
des fréquences des harmoniques, cependant, la variance des estimations est
également élevée. Il est donc difficile de conclure avec précision sur l’influence
de la fréquence sur l’estimation des conductivités. De plus il est possible que
l’effet capacitif entre les électrodes de stimulation et le milieu cérébral joue
un rôle non négligeable.
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Conclusion

Cette thèse a introduit l’estimation de la conductivité in-vivo en optimisant
le modèle de la tête avec une méthodologie relativement innovante. Les
matériaux considérés comprenaient les enregistrements SEEG et EEG
simultanés de stimulations électriques intracérébrales. En dehors de
l’introduction, quatre sujets principaux ont été couverts dans ceux-ci. La
première partie présentait la génération d’un modèle de tête FEM homogène
et isotrope à cinq compartiments (scalp, crne, LCR, MG et SB) segmentées
à partir du CT et de l’IRM d’un patient épileptique. Nous avons choisi
d’affiner le modèle en cinq compartiments anatomiques alors que d’autres
études en localisation de source ont considéré un modèle sphérique ou un
nombre de compartiments inférieur. Evidemment, notre modèle est très
complexe mais en plus de l’estimation des conductivités, notre objectif était
de calculer la sensibilité du modèle vis à vis de ses paramètres telles que la
position de la stimulation. La deuxième partie a effectué une comparaison
entre les algorithmes d’optimisation communs afin d’optimiser le modèle
de tête. La troisième partie a analysé la sensibilité des potentiels par les
conductivités avec les différentes conditions de la position de stimulation, les
positions de mesure et le nombre de compartiments dans le modèle de tête.
Alors que la quatrième partie a fourni des résultats des conductivités in-vivo
basés sur les conditions qui ont été appliquées dans l’analyse de sensibilité.

Pour résumer, les points majeurs que nous avons abordés sont donc:

• Le simplex de Nelder-Mead est le plus robuste parmi les algorithmes
choisis pour estimer les conductivités dans un modèle de tête FEM.

• Les mesures EEG de surfaces sont importantes pour estimer le scalp et
le crâne, tandis que les mesures SEEG sont importantes pour estimer
les conductivités des structures profondes.

• L’estimation des conductivités d’un compartiment en optimisant le
modèle de la tête dépend fortement de la position de stimulation et des
positions des mesures. Mais en, général, les écarts types des valeurs
des conductivités sont beaucoup plus réduits quand la stimulation est
proche du compartiment considéré.
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Chapter 1

Introduction

The human brain is believed to be the most complex structure in the uni-
verse. It contains billions of neurons in a small volume, where each neuron
has thousands of connections. The research in human brain has faced a fast
progress in the last 20 years thanks to the evolution of the brain imaging
techniques (like the MRI, PET, ... etc.), in addition to the development
of algorithms for processing the recorded brain signals (like EEG, MEG,
... etc.). The development of these technologies and methods had opened
the door wide for researchers to start new studies related to the brain. One
example of brain studies is the brain-computer interface (BCI) in which the
acquired brain signals are interpreted by computer algorithms in order to
translate the human thoughts into actions. Even though the main purpose
for BCI is producing systems that can facilitate the life of the disabled pa-
tients, it is still hard to move the BCI systems out of the laboratory in most
cases because such systems are not consistent to work with all the subjects,
and because the performance of the BCI systems fluctuate over time [1].
Another research that has been evolved is the localization of brain sources.
In this research the regions of the brain that are responsible of specific tasks
are localized. There are different measurements that are considered for
source localization, however, one major problem is the lack of a non-invasive
measurement which provides both high temporal and spatial resolution
of the brain [2]. The above mentioned studies are just two examples of
the huge number of researches that are related to the brain which have
been evolved since the invention of the non-invasive measurement techniques.

The brain can be described briefly as the central part of the nervous
system from where it controls most of the actions overall the body. The
largest part of the brain in which most of actions, thoughts and senses
are processed is called the cerebrum. The cerebrum is divided into two

1
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hemispheres and each hemisphere consists of four different sections (or
lobes) as shown in Fig.1.1. These lobes are: The frontal, the parietal, the
occipital and the temporal lobe. Each of these lobes has its own functions.
The other two parts of the brain are the cerebellum which coordinates the
movements and preserved the balance of the body, and the brainstem which
connects the spinal cord with the other parts of the brain.

Figure 1.1: The human brain consists of: The cerebrum (which is divided
into four lobes), the cerebellum and the spinal cord [3].

In human brain there are around 100 billion neuron cells. Each cell,
as shown in Fig.1.2, consists of a cell body (or a soma), dendrites and an
axon. The dendrites act as receivers of information while the axon acts as
a transmitter. The movement of information occurs due to the movement
of the K+ and Na+ ions in one neuron and from one neuron to another,
and this movement of ions generates potentials. There are two kinds of
potentials that are generated in the neurons of the brain: The post-synaptic
potentials and the action potentials. The post-synaptic potentials are the
potentials that are received by the dendrites of one neuron from the axon
terminals of another neuron. The name of the post-synaptic potential comes
from the synapse which forms the junction between the axon terminals of
one cell and the dendrites of another cell. While the action potentials are
the potentials that are spiked by a neuron cell through its axon as a result of
the accumulating post-synaptic potentials which exceed a threshold known
by the soma of the neuron.

The movement of ions synchronously in a relatively large area (around
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Figure 1.2: The neuron in the human brain [4].

62cm [5]) of the brain generates primary currents. These primary currents
are mostly due to the post-synaptic potentials that move in well oriented
dendritics axes of pyramidal cells, and not due to the action potentials that
move in varied oriented neocortical axons [5]. The reflection of these pri-
mary currents, as return currents, at the scalp surface generates a potential
difference which can be measured by scalp electrodes as shown in Fig.1.3.
In addition, a magnetic flux is generated from both the primary currents
and the return currents. This magnetic flux can be measured by special
coils placed around the head known as SQUID (Superconducting QUantum
Interface Device). The measurement of the scalp potentials by electrodes
is known as the electroencephalography (EEG), while the measurement of
the magnetic flux by the SQUID is known as the magnetoencephalography
(MEG) [6].

Since the discovery of EEG signal recordings (which appeared before
MEG) the interest in determining the location of the acquired signals have ap-
peared as a special field of research known as electroencephalography (EEG)
source localization [8]. Source localization is mainly considered in clinical
applications for localizing the origin of the brain disease [9], but it is also
applied in other applications like the brain-computer interface in order to
reduce the recording sites for such systems [10]. However, one of the main
challenges that EEG source localization faces is the lack of precise knowledge
of the regions’ conductivities through which the electric field propagates to
reach the recording electrodes. In the literature, it was found that assigning
erroneous conductivity values lead to localization errors of more than 30 mm
[11, 12]. Given that one cubic millimeter of human necortex contains around
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Figure 1.3: The wide arrow represents the primary current while the narrow
arrows (to the left) represent the secondary currents. The secondary currents
are measured by EEG (to the left) and the magnetic field of the primary
currents are measured by MEG (to the right) [7].

105 neurons and 109 synapse [9], this 30 mm error cannot be neglected. In
this chapter, we introduces source localization, then we describe the epilepsy
as a common clinical application for source localization, after that we intro-
duce some of the common techniques that are considered in the literature
for source localization and conductivity estimation. Finally, we discuss the
importance of having accurate conductivity values in source localization.

1.1 EEG Source Localization

EEG source localization is a research field that aims to determine the loca-
tion of electric current sources from their resulted potentials. For performing
EEG source localization, two fundamental problems should be solved: The
forward problem and the inverse problem. The forward problem is solved by
defining a number of specifications (the shape, the number of compartments
and the conductivity values) in the volume conduction model or the head
model. The solution of the forward problem determines the potentials at
the recording electrodes which are resulted from the propagation of the
electric field from a given source through the different compartments. In the
inverse problem the recorded potentials are given, and it is required to know
the location of the generating source. The inverse problem is an ill-posed
problem since an infinite number of source permutations can give the same
potential distribution, and because the solution has a high sensitivity to the
noisy data [13]. However, the inverse problem can be solved by adding some
constrains to the problem related to the sources which are represented by
current dipoles. These constrains could be fixed by limiting the number of
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sources or assuming that one or more of the dipoles’ parameters (position,
moment and orientation) is/are known or fixed [14].

The forward model is a biophysical model linking the sources with the
generated potentials. It forms an essential factor for solving the inverse
problem, however, acquiring the information about the parameters of the
forward head model is very complicated since the head compartments
are anatomically complex, inhomogeneous and non-isotropic. Also the
neuroscience techniques, which provides such information, differ in their
temporal and spatial resolution. Moreover, each research has a different view
of the brain, for example, in connectivity studies the propagation occurs
through the axons while in conductivity estimation studies, the propagation
of the electrical and magnetic field takes place in every direction from the
sources to the electrodes. In addition, brain sources are complex to model
due to their temporal dynamics and organizations. Yet, by considering
the quasi-static assumption (when the frequency of the acquired signals is
less than 1 kHz) [5], the problem of modeling the human head is reduced
to depend only on two important parameters: The geometry of the head
model, and the conductivity of each compartment of the head model.

Due to the availability of the MRI, nowadays most of the research depends
on accurate realistic head models instead of considering simple spherical mod-
els. Unlike the spherical head model in which the potentials can be solved
analytically, the numerical Boundary Element Method (BEM), Finite Ele-
ment Method (FEM) and Finite Difference Method (FDM) are considered to
determine the potentials in the realistic head models. With the development
of realistic geometries, the forward model is believed to reach a mature stage
in terms of geometry. Unlike the geometry of the forward model which has
reached a well-developed stage, the considered conductivity values in recent
work [9, 12] come from studies that were performed around 50 years ago, like
the common study of Geddes and Baker [15]. Most of the common conduc-
tivity values that are considered in recent researches are coming from in-vitro
conductivity estimation studies. However, the fact that the properties of the
tissues change after being removed from their environment [16] urges the
researchers to perform new studies for estimating the human conductivities
in-vivo.
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1.2 Epilepsy

According to the World Health Organization (WHO), epilepsy is defined
as: “A chronic disorder characterized by recurrent seizures, which may
vary from a brief lapse of attention or muscle jerks to severe and prolonged
convulsions” [17]. Epileptic seizures are divided into two categories: The
first is the partial or focal seizures which originate in circumscribed part
of the brain. The second category is the generalized seizures where the
discharge involves bilaterally and synchronously the two hemispheres or the
entire gray matter. Partial seizures are divided into two parts: Simple, in
which the memory and the awareness are not affected, and complex in which
the memory and the awareness are affected before, during or immediately
after the seizure.

In order to perform an efficient treatment of epilepsy, an accurate
diagnosis of epilepsy should be done. Diagnosis gives information about
weather the patient has really an epileptic seizures and what kind of epilepsy
he/she has. The diagnosis of epilepsy takes many forms; like questions to
the patient about the seizures and the effect of seizures on him/her, physical
exams, measuring EEG and MEG, producing MRI and PET for the brain
of the candidate, in addition to genetic testing [18]. WHO found that 70%
of the epilepsy patients can be treated by inexpensive daily drugs. These
drugs are not taken forever, after 2 to 5 years of being seizure-free, the
patient can reduce his/her consumption of drugs. However there are still
a percentage of patients who respond poorly to drug treatments, for such
patients the only option is the surgical treatment where the epileptic tissue
is removed [17]. In order to remove the epileptogenic zone, it is important to
locate it precisely before the surgery in order to avoid affecting other neurons.

Seizures distinguishes epilepsy from the other brain diseases since seizures
can be detected by electric or magnetic sensors. Even though non-invasive
scalp EEG electrodes are being considered to give a general information about
the position of the epileptogenic zone (like its position in the right or the left
hemisphere), it is still necessary to implement intracerebral electrodes for
performing a precise localization of the origin of the epileptic seizure ac-
tivity [19]. Moreover, the electrical stimulation which is generated by the
implanted intracerebral electrodes in a specific region helps to detect the
function of that region before performing a resection surgery [18]. However,
the intracerebral electrodes are expensive and implanting them requires a
surgery. In addition, the acquired signals from intracerebral electrodes are
limited in spatial sampling [20]. In order to avoid the surgery that is re-
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quired for implanting the intracerebral electrodes, it is important to enhance
the EEG source localization which depends on building a head model with
accurate conductivity values.

1.3 Electrophysiological Measurements

The electrical properties of the biological cells are studied in a domain called
electrophysiology. In the human body it is common to study the electro-
physiology of the heart and the brain. The current study is related to the
electrophysiology of the human brain which can be measured in-vivo in var-
ious ways. In this study, in-vivo conductivity estimation was based on the
acquired EEG and SEEG signals which are common electrophysiological mea-
surements. This section introduces EEG and SEEG measurements that are
considered in this research for in-vivo conductivity estimation. In addition,
for the purpose of comparison, it introduces MEG and ECoG measurements
which are considered in literature for in-vivo conductivity estimation and
source localization.

1.3.1 Electroencephalography

The electroencephalogram (EEG) is the measurement of electric potential
differences on the scalp resulted from the return currents at the scalp surface,
as shown in Fig.1.3. EEG measurements have started since the discovery of
Hans Berger (1929) about the ability to measure brain potentials by surface
electrodes connected to the scalp [21]. Currently, EEG measurements
become very popular in both research and clinics. In addition to be a
way for detecting the deepness of sleep by the alpha rhythms [5], EEG
signals are considered as one of the most important measurements for
diagnosis neurological diseases such as brain tumor [22], Alzheimer [23]
and epilepsy [24]. Moreover, it is considered in other applications like the
Brain-Computer Interface [25]. EEG is famous due to its simplicity, low
cost and high temporal resolution (around 1 millisecond [26]). However, the
spatial resolution of EEG is low (around 100 mm [26]). This low spatial
resolution is due to the fact that EEG are acquired from the surface of the
head. However, the spatial resolution can be enhanced by increasing the
number of electrodes that covers the head or by applying other techniques
like the surface Laplacian method [27]. In addition to its low spatial
resolution, EEG measurements have another disadvantage of being prone
to noise and artifacts. These artifacts have many sources like the power
supply frequency, the movement of the subject or the patient, the eye blinks
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and even the heart pulses (ECG). Many of the artifacts can be detected
by observation so the trails which have such artifacts like the epilpetic
seizures are eliminated because they cannot be processed. However, other
artifacts like the eye movements can be removed from the data segments by
methods like the auto-regression, the principal component analysis and the
independent component analysis [28, 29].

In order to be able to compare the EEG measurements that are acquired
at different times or from different subjects, an international standard has
been defined for placing the EEG electrodes on the scalp, this standard is
known as the 10-20 system [30]. In the 10-20 system the nasion (the front
of the skull), the inion (the back of the skull), the left preauricular and
the right preauricular act as landmarks of the skull. The distance between
the nasion and the inion, and the distance between the right and the left
preauricular (passing through the top of the skull) are divided into 10% and
20% of the total distance representing the interelectrode distances as shown
in Fig.1.4. For this reason the system is called the 10-20 system. In the
10-20 system, the letters C,F, Fp, O, P and T stand for Central, Frontal,
Fronto-polar, Occipital, Parietal, and Temporal respectively. The electrodes
with even numbers are placed in the right hemisphere, whereas, those with
odd numbers are placed on the left hemisphere, and the electrodes with the
letter z are placed on the mid-line of the skull. Moreover, there are two
auricular electrodes that are placed on the earlobes. An extension to the
10-20 system was found by placing the electrodes AF in the middle between
the electrodes F and Fp, FC between F and C, FT between F and T, CP
between C and P, TP between T and P and PO between P and O. This
extension which is shown in Fig.1.5, is known as the 10-10 system. Other
extensions are also found in the literature [31].

Recording the EEG potentials can be performed by a bipolar montage in
which a differential potential between two electrodes is recorded. Another
well-known montage is the referential montage where one cephalic electrode
acts as a common reference for all the other electrodes. Cephalic electrodes
are usually chosen to be the nasion, the inion, the occipital area or the pre-
auricular points. Moreover, the common reference can be non-cephalic like
the average reference montage which is based on the assumption that the
sum of the potentials in the brain is equal to zero. [32, 33]. The conventional
clinical bandwidth of the EEG potentials ranges from under 1 Hz to 50 Hz
[34]. In this bandwidth some EEG signals are labelled according to the
frequency as shown in Table 1.1. Even though these waves are common in
the EEG field, there are other waves that could be found in these ranges of
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Figure 1.4: From the left: Lateral, frontal, and superior view of the head
showing the way of determining the electrodes placement [30].

Figure 1.5: A single plane projection of the head showing the electrodes’
positions in the 10-10 system. The dark electrodes T7, T8, P7 and P8 have
the names T3, T4, T5 and T6 respectively in the 10-20 system [30]
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Table 1.1: Some examples of the EEG waves that are classified according to
their frequencies and their corresponding states in adults [5, 34]

Wave name Frequency State
Delta 1-4 Hz Deep sleep.
Theta 4-8 Hz Sleep.
Alpha 8-13 Hz Relaxing state with closed eyes.
Beta 13-30 Hz Consciousness state.

Gamma ≥ 30 Hz Hyper-brain activity.

frequency like the epilepsy seizures which occupy the frequency bands below
the 40 Hz [35]. In addition other evoked potentials could be found in these
frequency ranges depending on the application like the steady state visually
evoked potentials. Because the EEG signals have a low bandwidth, it is
possible to record these signals with devices which have a low sampling rate
like 256 or 512 sample/second. However, some studies have recorded EEG
activity above the 50 Hz [36]. Sampling rate of the recorded EEG signals
can goes up to 1024 sample/second which makes it have a high temporal
resolution, however, it spatial resolution is limited by the number of the
electrodes.

1.3.2 Magnetoencephalography

The Magnetoencephalography (MEG) is the measurement of the magnetic
flux which is generated according to the right hand rule from the net effect of
the ionic currents (represented by primary currents) and their returns from
the surface of the scalp (represented by return currents) as shown in Fig.1.3
[6]. Unlike the low-cost EEG recordings, MEG requires costly sensitive
devices known as superconducting quantum interference devices or SQUID
for short. Moreover, the MEG measuring system should be installed in a
magnetically shielded room. MEG signals are insensitive to radial sources
[37] and to the change in conductivity between the different compartments
of the head. However, they are sensitive to the tangential and superficial
sources [38, 37]. As EEG, MEG is applied in Brain-Computer Interface [39],
detection of Alzheimer [40] and epilepsy [41].

Because MEG is less sensitive than EEG to the conductivities of the
head and especially the skull and the scalp [42] it cannot be considered alone
for in-vivo conductivity estimation but as an additional measurement to the
EEG [43]. However, MEG is common in source localization because it is
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not affected by the high resistive skull compartment, so it can give more
accurate results. Nevertheless, because MEG cannot detect the deep and
radial sources, it was recently considered as an additional measurement to
EEG for enhancing source localization [37, 44].

1.3.3 Stereo-electroencephalography

The Stereo-electroencephalograhy (SEEG) measurements are recorded from
electrodes that are implanted inside the brain. Implanting SEEG electrodes
requires a special surgery. Due to this, SEEG recording is not performed for
healthy subjects but for patients [45]. As EEG, SEEG has a high temporal
resolution (around 1 millisecond [46]) and measures the potential difference
due to the return current at the different compartments. However, the SEEG
signals has a higher signal to noise ratio and higher spatial resolution in the
region of interest (around 1 mm [47]) compared to EEG signals. SEEG was
first presented by a group in the St. Anne Hospital - Paris [48]. In addition of
being a robust method for localizing the epileptogenic zones, the intracerebral
electrodes that are considered to acquire SEEG are considered to generate
Intracerebral Electrical Stimulations (IES) in order to give information about
the function of the tissues that are situated around the harmful tissue before
performing the resection surgery [49, 50]. SEEG signals are acquired by
contacts that are placed in multi-contact electrodes as shown in Fig.1.6.

Figure 1.6: The shape intracerebral electrode considered in the CHU Hospital
of Nancy [47].

1.3.4 Electrocorticogram

The electrocorticogram (ECoG) measurement is performed by placing the
electrodes directly on the surface of the brain under the dura matter. ECoG
electrodes are less invasive than the SEEG electrodes, because ECoG elec-
trodes are attached to a grid that is placed on the surface of one compartment
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of the brain, while the SEEG electrodes can have contacts in several compart-
ments. ECoG signals were first recorded by the British physician Richard
Caton (1875) on exposed brains of animals [51]. ECoG has a similar tem-
poral resolution to EEG (around 1 millisecond), but it has a higher spatial
resolution (around 1 mm). Due to the proximity of the ECoG electrodes
to the cortical sources, the signal-to-noise ratio of the ECoG is higher than
that of the scalp EEG. Thus, ECoG recordings improves the applications
in which EEG recordings are applied like the Brain-Computer Interface [52]
and source localization [53, 54].

1.4 Brain Imaging

Brain imaging techniques made it possible for clinicians and researches to
study the structural information and/or the functional information of the
living brain non-invasively. The availability of these information gave the
scientists the ability to understand the relationships between the different
areas in the brain, and locate the dysfunctional structures. In this study,
two brain imaging techniques (MRI and CT-scan) which were acquired from
the drug-resistant epileptic patients were considered for generating a head
model for each patient. In the following subsections some of the common
brain imaging methods are summarized.

1.4.1 Computed Tomography

The computed tomography scan or the CT scan is an imaging technique
which depends on X-rays and the computer technology to produce a much
more detailed image of the organ than the traditional X-ray imaging. Unlike
the X-ray which applies a beam that crosses the body and reaches a plate
that captures its energy; in CT scan, the beam turns around the body then it
is entered to a computer in order to have different views of the same organs.
CT scans have a high spatial resolution (0.5-0.625 mm), however, they have
a low temporal resolution (83-135 milliseconds) [55]. They are considered to
detect tumor [56], lesions [57] and blood clots [58]. In this study, the CT
scans of each head was considered to give a good description of the hard-
tissue skull compartment in the head model. In addition, because CT scans
can be acquired while the invasive electrodes are implanted in the brain of the
patient, they were considered to determine the positions of these electrodes
in order to assign them in the head model [59]. Fig.1.7 shows one horizontal
CT slice of one of our epileptic patients. As shown in the figure, the limits of
the skull compartment in addition to the positions of the invasive electrodes
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can be determined easily from the CT.

Figure 1.7: A horizontal CT slice of one of our patients showing the SEEG
electrodes and the skull of the head. From CT scans, the border of the skull
compartment and the positions of the SEEG electrodes can be determined.

1.4.2 Magnetic Resonance Imaging

The Magnetic Resonance Imaging (MRI) is an imaging technique which is
based on a combination of powerful magnets and radio waves for generating
images that describe the soft tissues of the head. It bases on the Nuclear
Magnetic Resonance (NMR) in which the protons of a specific nuclei (the
protons of the hydrogen of water molecules in the MRI case) are aligned
uniformly, under the effect of a strong external magnetic field to create a
magnetic vector along the axis of that external magnetic field. When the
external magnetic field is switched off, the vector returns to its resting state,
as shown in Fig.1.8, releasing energy in the form of signal. This emitted
signal is detected by coils which are placed around the body, then the
signal’s intensity, which depends on the concentration of the hydrogen ions,
is plotted on a gray scale as a volume element called voxel. At the end of
this process a 3-dimensional image is produced describing the distribution
of hydrogen in the scanned object [60].

After its invention in 1972 [61], MRI devices spread very fast. In 2011,
one person out of 10 was scanned with the MRI in USA [62]. Nowadays,
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Figure 1.8: The alignment of the hydrogen’s protons in the resting state (left)
and under the effect of the external magnetic field (right). [60]

the MRI is applied in many applications, like detecting cancers in the brain
[63] and the breast [64], investigating soft tissue damages [65] and for seg-
mentation and classification the different tissues [66]. Although the MRI has
a high spatial resolution (1-2 mm), it has a low temporal resolution (20-50
millisecond) [55]. In this study, T1-weighted 3D Bravo MRI images of the
head of three drug-resistant epileptic patients were considered to build a re-
alistic head model for each patient. From the MR images, the head model
gets two important information: The size of the head and the limits between
the different compartments in the head model. Fig.1.9 shows an example of
MRI of one of our patients.

Figure 1.9: From the left: The horizontal, the coronal, and the sagittal planes
of the MRI of one of our epileptic patients.
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1.4.3 Positron Emission Tomography

The Positron Emission Tomography (PET) is one type of nuclear imaging
which is based on injecting the body by positron-emitting radionuclide sub-
stances, then detecting the gamma waves resulted from this radioactive sub-
stances. Although the temporal resolution for PET is poor (around 30 sec),
it has a good spatial resolution (around 10 mm) [67]. PET is considered
in many applications like the brain cognition [68], breast cancer [69] and
detecting epilepsy, Alzheimer and Parkinson as shown in Fig.1.10

Figure 1.10: Two PET images showing the difference between the brain of a
healthy subject and the brain of a patient with Parkinson disease [70]

1.4.4 Functional Magnetic Resonance Imaging

The Functional Magnetic Resonance Images (fMRI) give a description of
the brain activity by measuring the oxygen percentage in the blood. It is
based on the fact that an active area in the brain requires more energy and
hence more oxygen. This method is helpful to know which part of the brain
is involved in a particular event [71]. Fig.1.11 shows an example of fMR
images. The fMRI, similar to the MRI, has a high spatial resolution (around
1 mm) while it has a low temporal resolution (1-4 seconds) [67].

1.5 Brain Stimulation

Brain stimulation was first introduced as a method of treatment for different
diseases. However, nowadays it is being considered as way to have an infor-
mation about the parameters of the head and how it is possible to model
them. In this study, the diagnostic stimulations which were generated by the
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Figure 1.11: The yellow color in the fMRI images show the areas related to
different tasks: Speech (left), finger tap (middle) and listening (right) [72].

intracerebral electrodes (or the intracerabral electrical stimulation IES) in
drug-resistant epileptic patients were considered. However, there are other
stimulation methods that are found in the literature. In the following sub-
sections, some of the common brain stimulation methods are presented.

1.5.1 Electrical Impedance Tomography

Electrical Impedance Tomography or EIT is a technique for stimulating the
brain from over the scalp by injecting a current through two electrodes while
measuring the resulted potentials via an array of scalp electrodes. EIT has
the advantage of being safe, inexpensive, fast and portable and it has been
considered for many purposes like detection of the breast cancer [73], moni-
toring the brain functions [74] and conductivity estimation [75]. Even though
the EIT does not require a surgery as the IES, stimulating the brain from
the scalp does not give accurate information about the deep structures when
these stimulations are acquired again by EEG electrodes because the current
has to pass by the high-resistive skull compartment twice.

1.5.2 Deep Brain Stimulation

The Deep Brain Stimulation (DBS) is a method that is applied for stim-
ulating the brain by implanting stimulating electrodes. This method was
first introduced by Alim-Louis Benabid in 1980’s as a treatment method for
Parkinson’s disease [76]. Short after its invension, DBS became a tool for
treating chronic pain, tremor, and dystonia [77]. Unlike the diagnostic IES
which is considered to stimulate the different parts of the gray matter whether
they are deep or lateral, the DBS is considered to stimulate the thalamus in
the human brain.
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1.5.3 Transcranial Magnetic Stimulation

When talking about electrophysiological measurements, there is the EEG
which measures the electric potentials on the scalp, and there is also the
MEG which measures the magnetic field generated from the brain. And when
talking about brain stimulation, there is the electrical stimulation which is
achieved by placing stimulating electrodes on the scalp (EIT), and there is
the magnetic stimulation, known as the Transcranial Magnetic Stimulation
(TMS), which is performed by placing a coil around the head. As shown
in Fig.1.12, TMS stimulate the region of the brain under the coil by an
electromagnetic induction. As EIT, TMS is considered in many applications
like the treatment of auditory hallucinations [78], the treatment of depression
[79] and the diagnosis of epilepsy [80]. However, the TMS cannot represent
a real source as the IES which stimulates inside the human brain.

Figure 1.12: The Transcranial Magnetic Stimulation (TMS) [81].

1.5.4 Transcranial Direct Current Stimulation

Transcranial Direct Current Stimulation (tDCS) is a common technique in
clinics and neuro-scientific research for stimulating the brain non-invasively
and is considered for the treatment of depression [82] and stroke [83]. tDCS is
based on applying weak electrical currents to the head via scalp, to generate
an electric field which influences the activity of neurons. The idea of tDCS
come from the treatment of the headache by the physician Claudius Galen
who was applying torpedo fish to the forehead of the patient. When the
treatment was failed, he noticed that he was using a dead fish and the key
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element of treating was the electrical current that is generated by the torpedo
fish [84]. Other form of Transcranial Current Stimulation (tCS) has appeared
based on the idea of tDCS such as transcranial Alternate Current Stimulation
(tACS) and transcranial Random Noise Stimulation (tRNS) which provide
varied set of tools for clinicians and researchers. As EIT, tDCS is considered
to stimulate the brain from the scalp, however, the tDCS is performed by
large electrodes which make it difficult to consider it in simultaneous with
EEG measurements.

1.6 The Conductivity of the Head Model

As mentioned previously, the head model depends on two important factors:
The geometry of the head model and the conductivity values. In this section,
we describe the effect of the conductivity values on source localization. Then
we mention some of the works that have been performed for estimating the
head conductivities. And finally, we describe our work that has been per-
formed for estimating in-vivo conductivity while highlighting the difference
between our method and the methods which were considered in the literature.

1.6.1 The Effect of Conductivity on Source Localiza-
tion

The effect of conductivity on source localization was found in different stud-
ies with different techniques. In an analytic study, Cuffin et al. found that
adding a bubble of a different conductivity in the brain sphere in a spherical
head model caused a maximum error of 0.36 cm in EEG source localization,
while its effect on MEG source localization was much smaller [11]. In a real
analysis of localizing the determined subdural stimulating electrodes in three-
compartment BEM head models of two patients, Homma et al. found that
changing the skull’s relative conductivity to the brain’s from 1/1 to 1/120
caused a maximum localization error of 0.306 cm, while the best relative con-
ductivity (given that the brain conductivity equals to scalp conductivity) was
found to be 1/80 or 1/100 [85]. In a simulation study of localizing a dipole
in a four-compartment template BEM head model, Acar et al. found that
changing the brain-to-skull reference conductivity from 25:1 to 80:1 caused
localization errors up to 0.31 cm with a median of 12 mm [12]. When a
four-compartment FEM head model was considered in a simulation study,
Pohlmeier et al. stated that an error of more than 20% of the skull conduc-
tivity causes unacceptable localization error [86]. All the above mentioned
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studies show that assigning an erroneous conductivity values leads to errors
in localization whether the geometry of the head model is simple or realistic.

1.6.2 State of the Art

The first attempts to measure the conductivities of human head were per-
formed in-vitro by taking samples of the head’s tissue and allow an electrical
current to pass through in order to measure the voltage drop across these
samples. In such studies, the conductivities of the scalp, the skull, the cere-
brospinal fluid (CSF), the gray matter (GM), and the white matter (WM)
were found to be in the ranges of 0.33−1.0 S/m, 0.0042−0.05 S/m, 0.33−3.0
S/m, 0.33−1.0 S/m and 0.14−0.48 S/m respectively [15, 42, 87, 88, 89, 90].
Yet, most of in-vitro studies have found that the conductivity of the tissue
does not depend on the current frequency [15, 88, 89, 90], or change slightly
with the frequency [91]. Even though the conductivity values which were
found in in-vitro studies are still common in recent researches [9, 12], these
values are believed to be inaccurate since it was found that the conductivity
of the tissue changes after its death [16]. Therefore it was important to carry
out a research for estimating the conductivities of the different tissues in-vivo.

One way of performing in-vivo conductivity estimation is achieved by
optimizing the forward head model when the other parameters are known
and when the electrophysiological measurements of the real head are given.
In-vivo conductivity estimation by optimizing the conductivity parameters
of the forward head model has been performed by modeling the physiological
brain sources. In one study of estimating the brain-to-skull conductivity
ratio by modeling the physiological brain sources, Acar et al. considered
isotropic and homogeneous four-compartment FEM head models of two
subjects with their scalp projection maps of near dipolar sources identified by
independent component analysis. The resulted brain-to-skull conductivity
ratio was 34 for one subject and 54 for the second [92]. In a similar study,
Lew et al. estimated the brain conductivity as 0.43 S/m and the skull
conductivity as 0.004 S/m for one subject considering his somatosensory
evoked response and an isotropic and homogeneous four-compartment FEM
head model [93]. Even though such studies do not require any technology
for stimulating the brain, they are not as precise as the studies in which the
positions of the sources are well-determined.

Another form of in-vivo conductivity estimation by optimizing the
forward model has been performed by the Electrical Impedance Tomography
(EIT) technique in which the brain is stimulated by scalp electrodes. In one
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study, Goncalves et al. have found that the mean brain resistivity (which
was assumed to be equal to the scalp resistivity in their study) equal to
301 Ω.cm (which is equal to a conductivity of 0.33 S/m) with a relative
standard deviation of 13% over 6 subjects in three-compartment BEM head
models. While the skull resistivity was estimated as 12230 Ω.cm (0.008
S/m) with a relative standard deviation of 18% [94]. In another EIT-based
study, Dabek et al. estimated the skull conductivity over nine subjects in
a three-compartment BEM head model as 0.0066 S/m with a confidence
interval [0.0034,0.0126] S/m, and the brain conductivity (which was equal
to the scalp conductivity) was estimated as 0.34 S/m with a confidence
interval [0.25,0.47] S/m [95]. Dabek et al. found that the conductivity value
has a significant dependent on the subject, in addition, they found that
the estimated conductivity depends on the stimulation frequency of the
current, especially the skull conductivity [95]. Although in-vivo conductivity
estimation by EIT does not require a surgery or a complex technology, it
could not lead to accurate results since stimulating the brain from the scalp
and measuring the resulted potentials on the scalp means that this current
have to cross the high-resistive skull twice which may affect the accuracy of
the results.

To avoid making the current pass through the skull tissue twice as in
the EIT, some works have been performed by stimulating the brain with
invasive electrodes. Zhang et al., considered the subdural electrodes for
stimulation and found an average brain-to skull conductivity ratio of 18.7 ±
2.1 in inhomogeneous three-compartment FEM head model of two patients
[96]. Whereas, Lai et al. found the average of the estimated brain-to-skull
conductivity ratio in 5 patients as 25 ± 7 by considering a three-shell head
model and a subdural stimulation. Even though the stimulation by the
subdural electrodes are better than the scalp electrodes, still the subdu-
ral electrodes does not go deep enough inside the different tissues of the brain.

In order to avoid making the current pass through the high-resistive skull
twice as in the EIT application, and in order to avoid the consideration of
undetermined physiological brain sources for in-vivo conductivity estimation,
the Intracerebral Electrical Stimulation (IES) was considered in this study
for in-vivo conductivity estimation. The IES is a diagnostic stimulation that
is generated by intracerebral electrodes which are placed in the gray matter of
the drug-resistant epileptic patients. IES are considered for epileptic patients
in order to verify, before the resection surgery, whether the epileptogenic zone
is surrounded by tissues that have important functions like memory, visual
functions, auditory function, ... etc. Even though IES has been considered
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for in-vivo conductivity estimation in the study of Koessler et al. [97], in
that study the conductivity estimation was performed by a Radio Frequency
device of 50 kHz and only for the gray matter and the white matter com-
partments. However, in the current study, and for the first time to the best
of our knowledge, the IES in addition to the simultaneous EEG and SEEG
recordings were considered for estimating in-vivo conductivities of the scalp,
the skull, the CSF, the GM and the WM in the homogeneous and isotropic
five-compartment FEM head model. Estimating in-vivo conductivity con-
sidering the SEEG and EEG acquired in simultaneous with IES makes it
possible to study the different parameters that should be considered in in-
vivo conductivity estimation and gives an explanation for the large variance
of conductivity values which are found in the literature.

1.7 Summary

EEG source localization is based on having an accurate forward model
which depends on both the geometry and the conductivity values of the
head model. Errors in the conductivity values in the head model leads to
non-negligible source localization errors. Recent source localization studies
consider conductivity values that were measured in vitro either in humans or
in animals. Since the conductivity of the tissue changes after being removed
from its environment, the need for estimating the conductivities of the head
in-vivo becomes necessary. One way of in-vivo conductivity estimation is
carried out by optimizing the forward model until its potentials become
comparable to the potentials of the real head.

When performing in-vivo conductivity estimation by optimizing the
forward model, the other parameters of the head model should represent
accurately the real head in order to assume that the error between the
potentials of the real head and the potentials of the model is only due to
the error in the conductivity values of the head model. Hence, the geometry
of the head model should be realistic. Realistic head models are generated
based on the MR images of the head. MR images provide the size and the
limits of the soft tissues, but it cannot give a description of the hard tissues.
The hard tissue in the head is represented by the skull which is one of the
most important tissues since it has a high resistivity compared to the other
compartments. The skull can be represented accurately by the CT-scan of
the head, however, this CT-scan cannot be applied on healthy subjects.

The potentials in the realistic head model can be determined by the
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BEM method or the FEM method. The superiority of one method over the
other is arguable. However, the FEM method can be applied to volumetric
elements the conductivities can be either homogenous or inhomogenoeous
and isotropic or anisotropic, so the FEM is more feasible for in-vivo conduc-
tivity estimation. In addition to the geometry, the source in the real head
should be determined in order to represent by a similar source in the head
model. The determined source in the real head should represent the real
biophysiological sources of the brain which are situated in the cortex (or the
gray matter). Even though EIT-EEG can be applied on healthy subjects,
it is not feasible since the source is situated on the scalp and the current
has to cross the high resistive skull twice before reaching the EEG electrodes.

One clinical application of EEG source localization is localizing the
epilptogenic zone in epileptic patients. Epilespy is distigingused from other
brain deseases by having siezures which can be detected by EEG electrodes.
Since EEG source localization does not provide accurate localization results,
currently epileptogenic zones are localized by applying intracerebral SEEG
electrodes. In addition to detecting the seizures, intracerebral electrodes
perform diagnosis by stimulating the region around the harmful tissue in
order to generate sezures and to know the function of the region near the
harmful tissue. The data that are acquired from the epileptic patients which
contains: The MR-images, the CT-images (for determining the positions of
the intracerebral electrodes), the intracerebral electrical stimulation (IES),
in addition to the simultaneous EEG and SEEG recordings provides new
information which has not been considered before, for in-vivo conductivity
estimation by optimizing the forward model.

In this study, in-vivo conductivity estimation by optimizing the forward
model was performed on three-drug resistant epileptic patients by consider-
ing their SEEG and EEG measurements that were acquired in simultaneous
with IES. The EEG and SEEG measurements were then compared to the
potentials of the realistic five compartment FEM head model in order to
estimate the isotropic and homogeneous conductivity of each compartment
(Scalp, skull, CSF, GM, WM). To the best of our knowledge, no study have
been done on estimating in-vivo conductivity in a five-compartment FEM
head model with EEG and SEEG measurements acquired in simultaneous
with IES. This thesis treats many topics that are related to in-vivo conduc-
tivity estimation by optimizing the forward model. These topics are divided
into the following chapters as follows:

• Chapter 2: Provides the background on the forward head model and
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the mathematical formulation for determining the potentials from a
dipolar source in a realistic FEM head model.

• Chapter 3: Introduces three common optimization algorithms in the
field of in-vivo conductivity estimation and compares their performance
by simulation given different parameters. Comparing different opti-
mization algorithms for in-vivo conductivity estimation has not been
performed before to the best of our knowledge.

• Chapter 4: Introduces a method for estimating the sensitivity of the
potentials to the change in the conductivity values. This sensitivity
analysis was performed in simulation given different parameters in the
head model. The chapter shows that the change in a conductivity value
has different effects on the potentials depending on the measurement
setup and the stimulation position.

• Chapter 5: Provides the results of in-vivo conductivity estimation on
three drug-resistant epileptic patients and discusses these results. In
addition, it shows some results on the effect of estimating conductivities
with different frequency components of the stimulation.





Chapter 2

Head Models

2.1 Background

The human brain can be studied at different spatial and temporal scales as
shown in Fig.2.1. The nature of the study decides the temporal and the
spatial resolutions of the measurements that should be considered, then the
brain and the head are modeled accordingly in these specific resolutions.
When building a head model, there is a trade-off between the computation
complexity and the accuracy, i.e., the model should be as simple as possible
to avoid computational loads and as accurate as possible to represent
the real head. In the field of EEG source localization and conductivity
estimation, the considered temporal scale is the temporal scale of the EEG
signals which is around 1 millisecond.

The spatial resolution of the head model, in the field of EEG source
localization and conductivity estimation should be in the scale of 1 mm
so that the different brain regions and tissues can be studied. In order
to get an accurate and a realistic head model, MR images, which has a
spatial resolution of 1-2 mm, are considered. In these realistic head models,
conductivity tensors are assigned for each region, so that, in general, one
compartment of the head model has more than one conductivity value
(inhomogeneous model) and these conductivities depend on the direction
of the current (anisotropic model). The direction of the conductivities are
obtained from the diffusion tensor magnetic resonance imaging (DTI) which
measures the self-diffusion tensor of water in the tissue [98]. However, in
order to reduce the complexity of the model, the local variations and/or
the direction-dependency of the conductivity can be neglected so that the
generated model becomes homogeneous and/or isotropic. In addition, a

25
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Table 2.1: Maxwell’s equations: E is the electric field (V/m), ρ is the free
charge density (C/m2), εo the permitivity of the empty space (8.84×10−12S ·
s/m), D is the electric displacement vector (C/m2), B is the magnetic in-
duction (T ) ,J is the free current density (A/m2), c is the velocity of the
light (m/s), and H is the magnetic field (A/m) [5]

Microscopic fields Macroscopic fields
∇ ·E = ρt/εo ∇ ·D = ρ
∇×E = −∂B

∂t
∇×E = −∂B

∂t

∇ ·B = 0 ∇ ·B = 0
∇×B = Jt

εoc2 + 1
c2

∂E
∂t
∇×H = J + ∂D

∂t

more simpler head model can be generated without the requirement of the
MR images by assigning a sphere corresponding to each compartment. This
model is known as the spherical head model which can be only isotropic and
homogeneous.

In EEG source localization, the head model which is a volume conduction
model is defined as a biophysiological model that links an assigned source
(representing a real source) with the generated potentials. In contrary to the
field of connectivity, the generated potentials are resulted due the current
distribution of the source and not due to the movement of the potentials
through the axons. The theory of volume conduction models, on which
all head models are based, originates from Maxwell’s equations which are
shown in Table 2.1. If the fields in Maxwell’s equations are constant with
time, the time derivatives vanishes. In this case the electric fields can be
calculated without considering the magnetic fields (as if the magnetic fields
do not exist), which is known as electrostatics. Moreover, the magnetic fields
can be calculated as if the electric fields do not exist, which is known as
magnetostatic. A less restricting condition is found in Maxwell’s equations
when the fields are changing with time but at low frequency (f ≤ 2000Hz
[6]), in this case, which is known as a quasi-static approximation, the electric
fields and the magnetic fields can be assumed as uncoupled, in addition,
the time derivatives vanishes and the capacitive component of the tissue
impedance and the inductive effect can be neglected [5].

The quasi-static approximation can be applied to the Maxwell’s equations
in our study because the frequencies of the brain electrophysiological signals
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Figure 2.1: The different spatial and time scales which can be considered for
modeling the human brain [99].
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are less than 2000Hz [34], and the fundamental frequency of the intracerebral
electrical stimulation, which were generated in the brains of the epileptic
patients, was equal to 55Hz. By considering the quasi-static approximation,
the infinitesimal rotation of the electric field, or mathematically, the curl of
the electric field (∇ × E) would be zero. However, the curl of gradient of
any scaler f (∇ × ∇f) is equal to zero. Hence, the electric field E can be
defined as a gradient of a scalar. This scalar is defined to be the potential V
as shown in Eq.2.1

E = −∇V (2.1)

The negative sign in Eq.2.1 is due to the decrease in the potential as the
electric field moves from the positive charge toward the negative charge. The
total current density inside the brain (J) can be expressed as the sum of the
primary current density (Jp) representing the activity of the brain and the
conduction current σE, as shown in Eq.2.2

J = Jp + σE = Jp − σ∇V (2.2)

Due to the quasi-static condition, the total current density should be
solenoidal, i.e., its divergence should be equal to zero. By taking the diver-
gence of Eq.2.2, the resulted equation would be:

∇ · Jp = ∇ · (σ∇V ) (2.3)

Eq.2.3 is known as the Poisson equation which forms the basis for esti-
mating the electrical potentials in the volume conduction model. In the case
of head models, the Poisson’s equation should be solved inside a boundary
describing the shape of the head. Therefore, in order to solve the potentials
(V ) in Eq.2.3 when the current source (Jp) is defined, the geometry and the
conductivity (σ) of the head model should be defined. The geometry of the
head model can be simple (like a single sphere), or complex describing the
real shape of the head. Moreover, the conductivity of the head model can be
defined to be equal for different compartments or different for different com-
partments in the homogeneous head model. However, in the inhomogeneous
head model one compartment can have several conductivity values. In addi-
tion, the conductivity can be fixed for all the directions of the current in the
isotropic head model, or it can have different values for different directions
of the current in the anisotropic head model. In this chapter, the different
geometries that were considered in the literature for estimating in-vivo con-
ductivities are discussed. Then the geometry and the mathematical method
which were considered in this study are described.
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2.2 The Source Model

In order to determine the output potentials resulted from an electrical source
in the volume conduction model, a mathematical model of the electrical
source should be obtained to represent the primary current density Jp in
Eq.2.3. As was mentioned in Chapter 1, the primary currents in the brain
are mostly due to the post-synaptic potentials that move in a well oriented
dendritic axes of pyramidal cells, and not due to the action potentials
that have a short period of time and move in varied oriented neocortical
axons. Post-synaptic potentials could be excitory or inhibitory. Excitory
post-synaptic potentials increases the probability of the neuron to fire an
action potential while inhibitory post-synaptic potentials decreases the
probability of the neuron to fire an action potential as shown in Fig.2.2.

Figure 2.2: The effect of the action potentials coming to the neuron through
the different synapses could be exitory or inhibitory [100].

The excitory and the inhibitory post-synaptic potentials are generated
due to the movement of ions through the cellular membranes. The excitory
post-synaptic potentials are carried by the positive sodium ions Na+

inwards from the dendrite, while the inhibitory post-synaptic potentials
are carried by the positive potassium K+ ions outwards. Since there is no
accumulation of charge anywhere in the medium, the currents that flow
in or out of the neuron are compensated by currents which follow in the
opposite direction elsewhere. Therefore, in the case of excitory post-synaptic
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potentials, besides the sinks that are generated in the level of the synapse,
distributed sources are generated along the soma-dendritic membrane, while
the opposite happens in the case of inhibitory post-synaptic potentials as
shown in Fig.2.3 [101].

Figure 2.3: The generation of sources and sinks in the case of exitory postsy-
naptic potentials (left) and inhibitory postsynaptic potentials (right) [101].

The synchronous movement of the ions in a relatively large area of the
brain (around 62cm [5]) generates primary currents. The generators of the
primary currents could be modeled as a source-sink or as a current dipole.

The Source-Sink Model The primary current Jp at a point r which is
resulted from a source and a sink due to the post-synaptic potentials can be
determined by:

Jp = (δ(r − r+)− δ(r − r−))q (2.4)

Where δ is the Dirac delta function, r+ is the position of the source, r−
is the position of the sink, and q is the moment of the source-sink (defined as
the magnitude of the source current times the distance between the source
and the sink). However, if the distance between the source and the sink is
very small compared to the distance from the source-sink to the point r, then
the source and the sink can be modeled as a current dipole.

The Current Dipole The current dipole is defined to have an infinite
current exiting one pole and entering the other [102]. The resulted current
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density at a position r away from dipole is determined by the following
equation:

Jp = δ(r − ro)q (2.5)

Where δ is the Dirac delta function, ro is the midpoint between the source
and the sink and q is the moment of the dipole (defined as the magnitude
of the current times the distance between the source and the sink). In
order to consider the dipole representation, the distance between r and ro
should be much larger than the distance between the source and the sink,
hence the source and the sink can be viewed as a point relative to the point r.

In this study, the real source was represented by the IES which is gener-
ated by two adjacent contacts in one intracerebral electrode shown in Fig.1.6.
In order to model the IES source, the dipole model was considered because
the measurements of the contacts on the same electrode that produced the
IES were neglected. Hence the distance from the two contacts generating
the IES to all other measuring contacts were much larger than the separa-
tion between the two contacts that generate the IES.

2.3 The Geometry of the Head Model

The geometry of the head model can be classified into spherical and realistic
geometries. The spherical geometry, whether it is a single sphere or multiple
spheres, cannot give an accurate representation of the head model. More-
over, the gray matter and the white matter cannot be modeled by spheres.
However, the forward problem of the spherical head model can be solved
analytically. On the other hand, the realistic head models give a lifelike
representation of the head by considering the segmented MR images. Yet,
the segmentation of these MR images into different homogeneous compart-
ments is based on another field of study known as image segmentation. The
segmentation of MR images used to be performed manually by an expert.
Nevertheless, the difference between the experts’ vision of the image and the
long time periods which were consumed for performing manual segmentation
urged the scientists to generate an algorithms of MR image segmentation.
Nowadays, MR image segmentation is performed on computers based on
different algorithms. Nevertheless, these segmenting algorithms are prone
to errors and it is recommended to check the performance of the computer
segmentation by an expert [103].
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Unlike spherical head models which can be solved analytically, realistic
head models are solved numerically by different numerical methods. If the
realistic head model is represented by surfaces, then the Boundary Element
Method (BEM) is usually considered to find the potentials on these surfaces.
But if the head model is represented by volumetric 3D elements (voxels),
then the Finite Element Method (FEM) or the Finite Difference Method
(FDM) are considered to determine the potentials at each element. The
FEM and FDM have a higher computational complexity than the BEM.
However, when applying the FEM or the FDM, the conductivity can be
either homogeneous or inhomogeneous, isotropic or anisotropic, whereas in
the BEM, the conductivity can be only homogeneous and isotropic. Even
though the BEM, FEM and FDM are mathematical methods that are utilized
to solve realistic geometries, people in the research field may say “BEM head
model” or “FEM head model” meaning that the realistic head model that is
solved by the BEM or the FEM. A good review of the different methods for
solving the head models is found in the work of Hallez et al. [104].

2.3.1 State of the Art

In the literature, most of the recent work that has been performed on
in-vivo conductivity estimation has considered realistic head models solved
by the BEM method [94, 95] and the FEM method [93, 92, 96]. In
addition, spherical head models have been considered for estimating in-vivo
conductivities [105, 106, 107]. However those who have considered the
spherical head model in their in-vivo conductivity studies have proposed the
estimation of in-vivo conductivities in realistic head models [107, 106]. The
most common realistic head models are solved by the FEM method and the
BEM method. The BEM has been considered in the literature because it
has a simpler geometry and a lower computational cost [95], while the FEM
offers the most flexibility for assigning detailed conductivity attributes and
an accurate geometry to the model [93].

Some previous studies have worked on the comparison between the BEM
and the FEM, however, their results cannot be generalized to all the different
cases. In one study, M. Clerc et al. [108] concluded that for equivalent
triangulation, the FEM was significantly faster than BEM and provided a
better or similar accuracy. However, in another work from the same group,
G. Adde et al. [109] found that the symmetric BEM outperformed the
FEM model for deep dipole positions. In our laboratory, J. Hofmanis in
his PhD thesis [47] found that the performance of a three-compartment low
resolution FEM outperformed a three-compartment symmetric BEM when
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considering a tangential dipole but not a radial dipole as shown in Fig.2.4.
In the same study a single compartment FEM head model outperformed
a single compartment BEM head model for both tangential and radial
dipole. From these studies, it is hard to decide on a numerical method for
solving the realistic head model. However, since the goal of this study is to
estimate in-vivo conductivities, we considered the FEM method for solving
the head model, because the FEM realistic model can be extended to have
anisotropic and inhomogeneous conductivities. Nevertheless, for simplifying
the computations, we assumed that the conductivities in the FEM head
model are isotropic and homogeneous. as was assumed in previous studies
for estimating conductivities [93, 92].

Figure 2.4: The resulted RE% (RDM · 100%) when comparing a symmetric
BEM model (upper row) and a low resolution FEM model (lower row) with
a three-compartment FEM reference head model [47].

The previous studies on in-vivo conductivity estimation have built three-
compartment (Scalp, skull, brain) [94, 95, 105, 106] or four-compartment
(Scalp, skull, cerebrospinal fluid, brain) head models [93, 92, 96, 107]. How-
ever, Ramon et al. found that separating the cerebrospinal fluid from the
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brain compartment had a significant effect on the head model [110]. In ad-
dition, Vorwerk et al. found that considering the gray matter and the white
matter as two separate compartments was as important as considering the
CSF as separate compartment [111]. Thus, in this study, and for the first time
to the best of our knowledge, a homogeneous and isotropic five-compartment
(Scalp, skull, cerebrospinal fluid (CSF), gray matter (GM), white matter
(WM)) FEM head model was considered for in-vivo conductivity estimation.

2.3.2 The Finite Element Head Model

In this work a homogeneous and isotropic five-compartment realistic FEM
head model was considered for performing in-vivo conductivity estimation.
Building this realistic head model was based on the work that has been
done by J. Hofmanis in his PhD thesis [47]. The following subsection shows
the derivation of the general equation according to which the potentials are
determined in the realistic head model due to a dipolar source by the FEM
method.

Mathematical Background

Eq.2.3 shows the basic equation for estimating the potentials due to a de-
termined source in any volume conduction model. However, solving this
equation in a surface or a volume representing the head requires boundary
conditions to be defined for this equation. The first boundary condition
states that if there is a surface S separating two regions i and j, where the
first region has a conductivity σi and the second region has a conductivity σj,
then the current density that leaves the region i towards the region j will be
equal to the current density that enters the region j from the region i. This
condition which is shown in Eq.2.6, is known as the Neumann’s boundary
condition.

Ji · n(r) = Jj · n(r) (2.6)

From Eq.2.3, Eq.2.6 can be written as:

(σi∇V ) · n(r) = (σj∇V )n(r) (2.7)

However, as shown in Fig.2.5, after crossing the outermost surface of the
head, the current faces the air region which has a zero conductivity (σair = 0).
From this, Eq.2.7 can be reduced for the outermost region to Eq.2.8:

(σN∇V ) · n(r) = 0 (2.8)
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Figure 2.5: Each region (or compartment) in the head model has a specific
conductivity and the conductivity of the air which bounds the head is zero.

Where N represent the air region which bounds the head.

When solving the potentials in a realistic head model by the FEM method,
the volume representing the head model is tessellated into a number of vol-
umetric elements ∆j where j = 1, ..., ntet. The volumetric elements that are
considered in this work has a tetrahedron form where each tetrahedron is
represented by four nodes. Due to this tessellation, the potential V in Eq.2.3
will be approximated by the sum of the potentials over all the nodes which
forms one mesh in the head model as shown in Eq.2.9

V (r) ≈ V̂ (r) =

nnode∑
i=1

Viφi (2.9)

Where V (r) is the potential of the r mesh, Vi is the potential at each
node pi, and φ is the 3D piece-wise linear shape function defined for each
element. When the approximated potential (V̂ (r)) is substituted in Eq.2.3,
the result would have an error term η due to this approximation as shown in
Eq.2.10

∇ · Jp −∇ · (σ∇V̂ ) = η (2.10)

One method to minimize this error η is known as weighted residual
method [112] in which the integral of the error factor η multiplied by a
weighting function (W ) over all the domain Ω is set to zero as shown in
Eq.2.11. In this study, the Galerkin’s method is considered. In Galerkin’s
method, the weighting function (W) is defined to be equal to the linear
shape function φ that is defined for each node.

∫
Ω

Wjη dΩ = 0, j = 1, 2, · · · , nnode (2.11)
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By substituting Eq.2.10 in Eq.2.11 we get:

∫
Ω

Wj(∇ · Jp −∇ · (σ∇V̂ )) dΩ = 0, j = 1, 2, · · · , nnode (2.12)

By substituting W = φ in Eq.2.12 then solving it by the product rule and
the divergence theorem, we get:

−
∫

Ω

∇φj·(σ∇V̂ ) dΩ+

∫
dΩ

φj(σ∇V̂ )·n dS =

∫
Ω

φj(∇·Jp) dΩ, j = 1, 2, · · · , nnode

(2.13)
Because we deal only with the interface Ω, the second term in Eq.2.13

vanishes. Then, the final equation, after substituting the V̂ from Eq.2.9,
would have the following form:

nnode∑
i=1

Vi

∫
Ω

∇φj ·(σ∇φi) dΩ = −
∫

Ω

φj(∇·Jp) dΩ, j = 1, 2, · · ·nnode (2.14)

Finally, Eq.2.14 can be written in the following matrix form:

AV = B (2.15)

Where A is the called the “stiffness matrix” and has the form:

aji =

∫
Ω

∇φj · (σ∇φi) dΩ (2.16)

And B is the “force vector” and has the form

bj = −
∫

Ω

φj(∇ · Jp) dΩ (2.17)

The system in Eq.2.15 is solved in this study by the preconditioned con-
jugate gradients algorithm (with successive over-relaxation). As shown in
Eq.2.16, the stiffness matrix depends only the shape function and the con-
ductivity of the region. While the force vector B, as can be noted in Eq.2.17,
depends on the source Jp. The stiffness matrix A is symmetric such that
aij = aji for all i and j.
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The stiffness matrix

Solving the stiffness matrix in Eq.2.16, requires the determination of the
shape function φ and the conductivity σ. When choosing the weighted
residual method, the definition of the linear shape function, which is defined
locally for each element ∆k, should be:

• Continuous on the transition from one element to another.

• At least one time differentiable within each element.

If the tetrahedron element ∆k, which is shown in Fig.2.6, with its four
nodes (vertices) pkj , j = 1, 2, 3, 4 are given, then the local linear shape function
is defined as:

Figure 2.6: The tetrahedron element with its four nodes

φk
t (r) = ckt · r̂, t = 1, 2, 3, 4 (2.18)

where r̂ = (1, x, y, z) is the augmented position vector and ckt is the 4D
coefficient vector which is found by making φk

t equal to 1 at the tth vertex
and decreases to zero at all other vertices of ∆k:

φk
t (pkj ) =

{
1 if t = j
0 if t 6= j

(2.19)

From the above, the system can be summarized as:

P̂ ckt = d̂t (2.20)
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where

P̂ =


1 pk1
1 pk2
1 pk3
1 pk4

 =


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

 (2.21)

is the augmented matrix with the positions of all the nodes forming the
element ∆k, and d̂t is a vector of four entries, three of them is equal to zero
and the tth element is equal to one. By solving Eq.2.20, ckt is found, then it
can be considered to solve Eq.2.18.

The calculation of the stiffness matrix coefficients aij is performed for
each node-pair that has the same tetrahedron element ∆k. While for the
other node-pairs the coefficients alm∀l 6= i,m 6= j are set to zero because the
local shape function φk

t is zero outside the element ∆k for all t. Since the
shape functions φk

i and φk
j are linear, their gradient would be constant, then

the integration in Eq.2.16 for the node-pair (i, j) would be:

aji =
∑

∀k,{pj ,pk}∈∆k

Γk∇φk
j · (σk∇φk

i ) (2.22)

where Γk is the volume of the tetrahedron element ∆k and determined
by:

Γk =
1

6
|P̂ | (2.23)

and P̂ is found by Eq.2.21.

In general, the conductivity σk is a tensor function, and it is defined
locally for each element ∆k. In this general case, the model is an anisotropic
(the conductivity is defined as a tensor) and inhomogeneous (the conductivity
is defined locally for each element ∆k). However, if the model is an isotropic
where the conductivity is defined as a scaler σk, then Eq.2.22 can be simplified
as:

aji =
∑

∀k,{pj ,pk}∈∆k

σkΓk(∇φk
j · ∇φk

i ) (2.24)

Moreover, if the conductivity is defined to be constant for all the element
∆k in one region Ωh, where h is the number of the regions, then in this
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homogeneous model, Eq.2.15 can be rewritten as:

σ · AV = B (2.25)

where

ahji =
∑

∀k,{pj ,pk}∈∆k

Γk(∇φk
j · ∇φk

i ) if ∆k ∈ Ωh (2.26)

In this study, for determining the potentials in the homogeneous and
isotropic head model, the open source library SciRUN [113] was considered
to solve the stiffness matrix A. It can be seen from Eq.2.25 that in the homo-
geneous case the potentials can be determined for new conductivity values
in a faster manner than the inhomogeneous case because there is no need to
re-estimate the stiffness matrix for new conductivity values. Since our goal
in this study is to estimate in-vivo conductivities by optimizing the forward
model which depends on iterating the conductivity values, considering the
homogeneous head model made our computations simpler and faster.

The force vector

The force vector, as shown in Eq.2.17, depends on the shape function which
was described when talking about the stiffness matrix, and the current source
∇·Jp which depends on the representation of the sources in the brain. In this
study the current dipole model was considered for representing the primary
currents. When simplifying Eq.2.17 by the product rule and the divergence
rule, the force vector becomes:

bj = −
∫
∂Ω

φjJ
p · ndS +

∫
Ω

∇φj · JpdΩ (2.27)

By substituting the dipole representation (Eq.2.5) in Eq.2.27 while noting
that the integration over ∂Ω is zero, the final form of the force vector becomes:

bj = q · ∇φj(ro) (2.28)

From Eq.2.28, it can be noted that if ro is located within a tetrahe-
dron element ∆k that is shown in Fig.2.6; the same shape function φk

j will
be considered whatever the location of ro within this tetrahedron element.
However, if the dipole position ro is located on the edge of the tetrahedron
or a node, then all the local shape functions of all the elements that share
the same edge or node should be considered.
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2.3.3 Realistic Head Model for Three Patients

In this study, for building a realistic head model for each drug-resistant
epileptic patient the T1-weighted 3D Bravo MR images in addition to the
3D CT scans were considered. The realistic head model was chosen to be
isotropic and homogeneous consisting of five different compartments: The
scalp, the skull, the cerebrospinal fluid (CSF), the gray matter (GM) and
the white matter (WM). Considering the isotropic and homogeneous head
model is a key factor for reducing the computational time when estimating
in-vivo conductivities by optimizing the forward model. In addition, M.
Dannhauer et al. found that considering anisotropic FEM head model
does not yield a significant improvement for source localization [114]. For
generating the realistic head model in this study, the MR images were first
segmented into scalp, skull, CSF, gray matter (GM) and white matter (WM)
by the freesurfer software. Freesurfer performs an automated labelling of
each voxel of the MRI by anisotropic Markov random field (MRF) after
aligning the subject surface to a probabilistic atlas [115]. This probabilistic
atlas was generated by a training set of 41 manually labelled brains.

Many of the previous studies on conductivities have considered only
the MRI to build the realistic head model [116, 92]. However in order to
determine the position of the SEEG electrodes inside the brain the CT
images were considered because it is not possible to acquire MRI images
while the SEEG electrodes are inside the head of the patients [59]. In
addition, the CT images give a better description of the hard tissues like
the skull than the MRI. In a study of the effect of segmentation on dipole
localization, Montes-Restrepo et al. have showed that a CT-based segmented
skull give a better localization results than the MRI-based segmented skull
[117]. In another study, Huiskamp et al. found that incorrect skull modeling
due to not considering the CT scan of the head leads to errors comparable
to those generated when considering wrong skull conductivity [118]. In this
work, segmenting the CT-scan was based on intensity-based segmentation
as shown in Fig.2.7, while the localization of intracerebral electrodes was
done by an algorithm that have been designed in the CRAN laboratory [59].

As shown in Fig.2.8, after the segmentation, the CT and the MRI are co-
registered by maximizing the mutual information [119], then the tetrahedrons
which forms the elements of the realistic head model are generated as shown
in Fig.2.9. These tetrahedrons are generated by the TetGen program which
is based on the Delaunay triangulation technique [120]. Table 2.2 shows
the number of elements (tetrahedrons) and the number of nodes (vertices)
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Figure 2.7: Increasing the threshold of intensity extracts the hard tissue of
the skull and the intracerebral electrodes [47].

Figure 2.8: The segmented MRI is registered with the segmented CT images,
then the tetrahedrons are generated in each different compartment.
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that we got for each epileptic patient. It can be noted from Table 2.2 that
the number of elements and the number of nodes are similar for the three
patients. These number are determined by the Tetgen after fixing the radius-
edge ratio (Q) to 1.414 and the maximum volume of tetrahedrons to 1 mm3

[47]. The radius-edge ratio is defined as the ratio between the bounding
sphere radius and the smallest edge length of the tetrahedron [120].

Figure 2.9: (A) Sagittal (B) Horizental and (C) Coronal views of the gener-
ated head model.

2.4 Summary

Modeling the head depends on the spatial and the temporal information
which are considered for the modeling. In EEG source localization head
modeling is based on the volume conduction model in which the current
moves in all directions from the source to the measuring electrodes. The
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Table 2.2: The number of elements (tetrahedrons) and the number of nodes
(vertices) for each epileptic patient

Tissue Number of Patient(1) Patient(2) Patient(3)
Scalp Elements 1763818 1766024 1793602

Nodes 304777 305203 310251
Skull Elements 669167 679459 716531

Nodes 129580 131348 137640
CSF Elements 719507 727154 726315

Nodes 149420 151160 150933
GM Elements 676420 678839 661217

Nodes 154534 155142 152073
WM Elements 713401 697771 707475

Nodes 137163 134560 136130

movement of the current in a volume conduction model is derived from the
well-known Maxwell’s equations. Since the brain signals have frequencies less
than 2000 Hz, it is possible to consider the quasi-static assumption in which
the capacitive component of the tissue impedance and the inductive effects
can be neglected. In general, the head model has different conductivities for
one compartment (inhomogeneous), and different conductivities for different
current directions (anisotropic). However, this general model cannot
be applied to simple spherical geometries but to volumetric geometries.
Since this research is dealing with in-vivo conductivity estimation, the
volumetric FEM head model is considered because it can be extended to
have anisotropic and inhomogeneous conductivities.

This chapter showed the derivation of the equations for estimating the
potentials in a homogenous and isotropic FEM head model resulting from a
dipolar source. Considering the homogenous and isotropic FEM head model
has an advantage of simplifying the computational load since there is no
need to re-estimate the stiffness matrix and the force vector when iterating
the conductivities for optimizing the forward model for estimating in-vivo
conductivities. For generating the FEM head model, the following softwares
and packages were considered in this study:

• SciRUN open library source [113]: Calculation of the stiffness matrix.

• CGAL 3.6 (Computational Geometry Algorithms Library) [121]: Ex-
traction the surfaces from labeled images.
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• Tetgen 1.4 [120]: Tetrahedron generation and refinement.

• Iso2mesh toolbox [122]: Mesh visualization.



Chapter 3

A Comparison of Optimization
Methods for in-vivo
Conductivity Estimation

From the previous chapter, it was shown that for determining the potentials
resulted from a current source in a volume conduction model the Poisson
equation (shown in Eq.3.1) is considered.

∇ · Jp = ∇ · (σ∇Vmodel) (3.1)

For performing in-vivo conductivity estimation, the model potentials
Vmodel are compared to real potentials Vreal which are acquired from the
subject for whom the model is built. If Vreal does not equal Vmodel, then
the unequality is allocated to the error in the conductivity values bmσ.
Therefore, new conductivity values are assigned in Eq.3.1, then the new
Vmodel is determined for repeating the comparison between Vmodel and Vreal.
Ideally, this process is repeated until Vmodel becomes equal to Vreal as shown
in Fig.3.1. This iterative method for estimating conductivities is performed
by optimization.

In Latin, the word optimum means “the ultimate ideal”, and the word
optimus means “the best”. From these terms, the optimization can be
defined as “trying to bring what we deal with toward its ultimate state”
[123]. In engineering and economics, optimization is applied to solve
decision making problems by finding the “best” alternative between various
alternatives. The goodness of the alternatives is measured by the objective
function or the performance index [124], while the domain of various alter-
natives is known as the decision variable. An objective function could be

45
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Figure 3.1: A flowchart showing the iterative method for estimating in-vivo
conductivities. In this problem, all the parameters of the head model are
chosen to resemble the parameters of the real head. The method starts by
assigning initial conductivities in the head model.
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multi-variable linear or non-linear, differentiable or non-differentiable. Due
to this variety, there are many optimization algorithms which are found in
the field of optimization. One way of classifying the optimization algorithms
depends on the definition of the problem and its decision variable. If there
are constrains on the decision variable that should be considered; then the
problem needs a constrained optimization method, otherwise unconstrained
optimization methods are considered. In addition, the optimization methods
are classified according to the optimal solution that they calculate. If the
solution is optimal among all the points on which the problem is defined;
then the method is known as a global optimization method. However, if the
solution is optimal among a local range; then the method is known as a local
optimization method. Another class of optimization method is known as the
direct or the free-derivative. The methods that are defined as free-derivative
are distinguished by the ability to solve the optimization problem without
the need to determine the derivatives of the objective function. Such
methods are useful when it is hard to determine the derivatives of the
objective function.

The field of optimization is full of different methods that are applied to
different types of problems. Therefore, it is impossible to confirm the supe-
riority of a chosen optimization algorithm on a specific application without
performing a comparison among the feasible algorithms for that application.
In this study, the FEM method was considered to determine the resulted
potentials in the human head model. Since the FEM method is solved nu-
merically and not analytically, the chosen optimization algorithms were all
free-derivative algorithms. From local optimization algorithm the Nelder-
Mead simplex (NMS) was chosen since it is robust, easy to be programmed
and fast. In addition, NMS was considered in many studies which performed
in-vivo conductivity estimation [85, 94, 96, 105, 107], so the motivation is to
validate or refute their choice. On the other hand, from the global optimiza-
tion algorithms, the genetic algorithm (GA) and the simulating annealing
(SA) were chosen. The GA was chosen because of its ease of implementa-
tion, intuitiveness and ability to solve highly nonlinear optimization problems
[125]. While the SA was chosen because it is effective in localizing multiple
parameters and because it prevents the search to be trapped in a local mini-
mum [126], in addition, it was considered for in-vivo conductivity estimation
in the work of S. Lew et al. [93]. This chapter introduces first the chosen
optimization algorithms, then it shows the procedure that was considered for
comparing the optimization algorithms and finally, it presents and discusses
the results which were obtained in this study.
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3.1 Theoretical Background: The Optimiza-

tion Algorithms

In this study, three derivative-free optimization algorithms were considered:
The genetic algorithm (GA), the Nelder-Mead Simplex (NMS) and the Sim-
ulating Annealing (SA). These optimization algorithms are described in the
following subsections.

3.1.1 The Genetic Algorithm

The Genetic algorithm (GA) is a well-known optimization algorithm
classified as one of the derivative-free methods. Even though there is no
general theory to prove that the GA converges always to the global optima
(or even to a local optima), GA is often described as a global search method
[127]. The idea of GA, which first appeared in 1975 in an article by Holland
and his student [128], originated from the evolution theory, where good
individuals are selected to be parents for the next generations while bad
individuals die out.

The GA consists of three main steps: Selection, crossover and mutation.
The algorithm starts by generating an initial random population from the
range of the solution where each individual of the population represents a
chromosome consisting of many genes in a form of vector. The genes of the
chromosome could be either binaries or real numbers (in this study, the genes
are real numbers representing the conductivities of the five-compartment
FEM). Each chromosome of the initial population is assigned with a
value called fitness value. This fitness value represents how good is the
corresponding chromosome when it is substitute in the objective function
of the problem. Therefore, the chromosome with a high fitness value has a
high probability for being a parent in the next generation.

The GA algorithm that was considered in this study [129] starts by
generating an initial population of 20 random 5-element vectors of conduc-
tivities in the range of the solution. One of these vectors is set by the user
while the others 19 are generated according to a uniform distribution. Each
of these vectors represents the five conductivity values of the scalp, the
skull, the CSF, the GM and the WM. The number of the population in each
iteration was chosen to be 20 in order to have a search that covers a wide
range with low computational cost. From the 20 vectors, the two vectors
that have highest fitness values are selected to pass to the new generation
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(the generation of the second iteration) without any modification. These
two selected vectors are known as the elite. While the other 18 vectors in
the new generation are generated by crossover and mutation.

In crossover, each parent vector is separated into two off-spring vectors in
order to be connected with other two off-spring vectors from another parent
vector. In this study, 80% of the remaining number of vectors (after selection)
perform the crossover, while the rest perform the mutation. The crossover
depends on a stochastic uniform operation, in which each parent is given a
section in a line in proportion to 1/

√
(r), where (r) represents the rank of the

vector according to the fitness value. Then, the GA moves along a line in a
uniform steps (each has a size of 1/N) and at each step it allocates a parent.
If the vector has a high rank, it will have a high probability of being chosen
as a parent for more than one time. While in mutation, the GA randomly
generates directions (vectors of 1, 0 and -1) and added them to the parents
in order to generate the new vectors for the new generation.

3.1.2 The Nelder-Mead Simplex Algorithm

The Nelder-Mead simplex (NMS) algorithm is one of the most common
algorithms in the optimization field. According to Google Scholar, the
article of J. A. Nelder and R. Mead was cited around 1200 times since
2015. Even though the NMS is different than the simplex method which
is found in linear programming, the NMS had taken its basics from there.
In mathematics, a simplex is defined in the Rn space as the (n + 1)
points in that space. For example in the 2D dimension, the simplex is a
triangle; while in the 3D, the simplex is a tetrahedron. The NMS algorithm
depends on an adaptive simplex that walks and shrinks smoothly to find
the minimum of any non-linear function. In this study the simplex is
defined by 6 points where each point is a five element vector representing
the five conductivity values. In the first iteration of the NMS, the simplex
is defined from 6 vectors where one vector is given by the user while the
other 5 vectors are generated to be near the user defined vector. Each
of the 5 other initial vectors is generated by changing one element of the
user-defined vector while keeping the other elements equal to the values of
the user-defined elements as shown in Fig.3.2. The vector of conductivities
which has the largest objective output (the worst vertex) is then determined
and reflected in the centroid of the other n vertices, according to Eq.3.2 [130].

xreflected = 2 ∗ x− xl (3.2)
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Where, xl is the worst vector and x is the centroid, which is defined as
the average overall the points n that define the simplex as shown in Eq.3.3.
By the reflection, a new simplex is formed. Then, the objective function is
determined at this new vertex and the process continued.

x =
1

n

n∑
i=1

xi (3.3)

Figure 3.2: The process of generating the five initial vectors from the user-
defined vector in the NMS algorithm, where each letter represents a real-
value. If one of the elements in the user-defined vector is zero then instead
of multiplying by 1.05, 0.00025 is added to the zero value.

However if the new vertex of the simplex has also the largest objective
value in the new simplex, then the reflection would cause that algorithm to
return to the previous point that had the largest value in the previous sim-
plex, this will end up in an infinite oscillation. To avoid this oscillation, the
simplex shrinks by replacing all the vectors, except the vector with smallest
objective value, by new ones half the way along the distance to the smallest
vector [131]. That is, if the smallest vertex is xs, then in the shrinkage pro-
cess all the vertices xi will be replaced by new ones x∗i according to Eq.3.4
[130].

x∗i ←
xi + xs

2
∀{i ∈ n, i 6= s} (3.4)

3.1.3 The Simulating Annealing

Simulating annealing (SA) is a heuristic that depends on an iterative im-
provement strategy. In the iterative improvement strategy, the optimization
algorithm makes its steps according to the value of the cost function related
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to these steps: The new chosen point will be accepted only if it gives a
smaller cost. However, as shown in Fig.3.3, if this strategy finds a local
minimum point, then it will stuck with it. In order to avoid this problem,
the SA accepts points that give larger cost with a given probability. The
SA, which was introduced in the work of Kirkpatrick et al., 1983 [132],
took its idea from annealing the solids. In general, to put a material at its
low-energy state, it should be heated first then cooled gradually in order to
make it reach the thermal equilibrium state at each temperature. Heating
the material to put it to its low-energy state is similar to accepting high cost
values in order to find the global minimum point.

Figure 3.3: This graph shows the problem of being trapped in a local min-
imum point. “x” shows a local minimum point while “o” shows a global
minimum.

In this study, the SA algorithm was set to search for the optimal
conductivity values, so each point was represented by a five-element vector.
The algorithm starts from an initial vector that the user provides (xi), then
in the first iteration (k = 1) a new point (xr) is generated according to Eq.3.5.

xr =
y

||y||
× T + xc (3.5)

Where the elements of the y vector are drawn from a standard normal
distribution, xc is the current vector which is the initial vector (xi) in the
first iteration. And T is called the temperature coefficient. The SA then
compares the resulted objective output (f(·)) from the current vector and
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the new vector as shown in Eq.3.6.

∆f = f(xr)− f(xc) (3.6)

If the conductivities xr gives a lower cost than the current conductivities
xc (∆f < 0), xr is accepted and the iteration continues. If not, the
boltzmann distribution (Eq.3.7) is compared to a random number R that
is generated uniformly between 0 and 1. If h > R, the point xr will be
accepted, if not, it will be rejected.

h =
1

1 + exp
∆f
T

(3.7)

Since the algorithm was set to search in the domain of positive real num-
bers, if the new vector of conductivities contains negative elements, these
negative elements are replaced by zeros then the vector is modified as shown
in Eq.3.8. The defined temperature factor T , was chosen to start as 100, so
that the probability of accepting the new vector is equal to the probability
of rejecting it. Then in each iteration k, the temperature factor T is reduced
according to Eq.3.9, so that the probability of accepting bad points becomes
smaller as the algorithm continue [126].

xr = R× xr + (1−R)× xc (3.8)

Tnew = Told × 0.95k (3.9)

3.2 Materials and Methods

In this work a simulation analysis for comparing the optimization algorithms
was performed on an isotropic and homogeneous five-compartment FEM
head model of a 23 years old male drug-resistant epileptic patient: Patient(1).
For generating the head model, the MRI and the CT of Patient(1) were seg-
mented (into five compartments), co-registered, and then discretized into
tetrahedron elements so that the potential can be determined at each node
of the generated elements. Two head models of the Patient(1) were built: a
reference head model and a test head model as shown in Fig.3.4. In the ref-
erence head model the conductivity values that are common in the literature
were assigned. These common conductivities are 0.33 S/m for scalp, 0.008 for
skull, 1.79 S/m for CSF, 0.33 S/m for GM and 0.14 S/m for WM [15, 87, 88].
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While in the test head model, initial conductivity values were assigned and
were set to variate by the optimization algorithm in order to estimate the
reference conductivities. In order to have an unbiased comparison, each opti-
mization algorithm was set to start from three different initial conductivities:
multi-start approach. The multi-start approach is important to ensure that
the performance of the algorithm is independent of the chosen initial point.
Moreover, in order to ensure that the performance of the algorithm is inde-
pendent of the stimulation position and the measurements’ positions, each
algorithm was set to estimate the reference conductivities given three dif-
ferent stimulation positions: Deep, intermediate and lateral, and given two
different measurement setups: SEEG and SEEG-EEG. In addition, to make
sure that the performance of the optimization algorithms would not change
when applying them to real data, each optimization algorithm was set to
optimize in-vivo conductivities without additional noise and with additional
white Gaussian noise. The combination of these different conditions (three
initial points × three stimulation positions × two measurement setups × two
noise configurations) generated 36 cases for each optimization algorithms as
described below:

Figure 3.4: A scheme shows the procedure along with the three stimulation
positions that were considered to compare the optimization algorithms. The
error function that was considered in this study is the RDM which is shown
in Eq.3.10

.

• The position of measurements: The SEEG (107 measurements) and
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SEEG-EEG (107+19 measurements). Considering first the SEEG mea-
surements then adding the EEG shows if the performance of algorithm
is enhanced or not by adding the EEG measurement positions.

• The initial conductivities : In order to verify whether the performance
of the optimization algorithm is independent of the choice of the initial
conductivities, three different initial points were considered. The first
and the second initial points ([0.38, 0.0158, 3.50, 0.49, 0.25], [0.42,
0.1190, 2.66, 0.49, 0.21] S/m) were generated by initial = ref ∗ rand+
ref , while the third initial point ([0.11, 0.0077, 0.27, 0.02, 0.05] S/m)
was generated by initial = ref − ref ∗ rand, where ref represents the
conductivities that are assigned in the reference model and rand is a
random number generated uniformly between 0 and 1.

• The position of the stimulation: The robustness of each optimization
algorithm was tested considering three different stimulation positions:
Deep, intermediate and lateral. In order to estimate the deepness of
the stimulation, the contacts of the intracerebral electrodes were di-
vided into three classes as shown in Fig.3.5. Since the objective of
the optimization algorithm is to search for the conductivity values, the
performance of the algorithm was tested for different stimulation posi-
tions, to ensure that this performance is independent of the stimulation
position.

• Additional noise: Even though the comparison of the optimization al-
gorithms is performed by simulation, the main purpose was to apply the
most robust optimization algorithm to real signals which are affected
by different kind of noise. Therefore, the optimization algorithms were
tested without additional noise, and with additional white Gaussian
noise which makes the SNR of the generated potentials 80 dB. The
reason behind choosing the SNR as 80 dB is to represent the noise that
rests with the stimulation signal after filtering it with SSA-GEVD ??.
This resting noise is assumed to be small compared to the signal power.

The Error Function The objective function or the error function
between the two models was chosen to be the Relative Error Measurement
(RDM) (Eq.3.10) [133] which estimates the topographic error by comparing
the distribution of the generated potentials. It has a minimum value of zero
and a maximum value of 2. The RDM which is common in the field of head
models [92, 111, 116, 114] was considered here because it is not sensitive
to amplitude difference as the MAG function [111, 114], and the amplitude
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Figure 3.5: An image shows how the contacts are divided into deep, inter-
mediate and lateral. The contacts of the intracerebral electrodes are given
number starting from the deepest contact, i.e., the deepest contact is given
number 1, the next is 2,... etc.
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does not hold any useful information for EEG source localization [116, 114].

RDM =

√∑( Vo(σ)

||Vo(σ)||2
− Vref
||Vref ||2

)2

(3.10)

Where Vo is the output potentials of the test model, Vref is the output
potentials of the reference model, || · || is the l2 norm, and σ is a vector of the
five-compartment conductivities. In order to have an unbiased comparison,
all the optimization algorithms were set to search in the positive range
and they were set to stop if the number of iteration reached 1000 or if the
tolerance of the output function became 10−4.

After the comparison, the robustness of the successful optimization al-
gorithm was tested in the presence of real noise which was added to the
potentials of the head model. The real noise represents the filtered signals
from the acquired stimulation that are acquired from Patient(1). As in the
case of adding the white Gaussian noise, the SNR was chosen to be 80 dB.
Again, the optimization in the presence of real noise has been performed by
the successful optimization algorithm for 18 different times given the combi-
nations of the following conditions:

• The position of measurements: SEEG (107 measurements) and SEEG-
EEG (107+19 measurements).

• The initial conductivities : Three different initial points.

• The position of the stimulation: Deep, intermediate and lateral.

3.3 Results

The chosen optimization algorithms were set to search for the reference con-
ductivity values in the test head model given the potentials of the reference
head model. In order to have an unbiased comparison among the chosen op-
timization algorithms, the stopping criteria and the boundary of the search
were set to be equal for the optimization algorithms. It should be noted
that if x is a vector of the five-compartment conductivity values, then x and
(constant · x) will give the same voltage distribution as shown in Fig.3.6.
Since the RDM which measures the topological error is chosen as an er-
ror function, to compare the resulted conductivities, the following operation
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was applied to the resulted conductivity vector c before comparing it to the
reference conductivity:

cnew = (0.33 · c)/c(1) (3.11)

Figure 3.6: Two voltage distributions generated by the reference conductiv-
ities and the reference conductivity times 5. The RDM between the two
distributions is zero.

Table 3.1, Table 3.2 and Table 3.3 show the results of optimization
considering only the SEEG potentials by the NMS, the GA and the SA
respectively. It can be noted from the tables that the NMS converges always
to the reference conductivity values. In addition, in terms of the time
required to find the optimal conductivities, it can be noted from the tables
that the NMS is the fastest algorithm compared to the GA and the SA.
Both the GA and the SA failed to find the reference conductivity although
they required much more time than the NMS. However, the GA, in terms of
RDM, did better optimization than the SA. It can be noted also that the
SA in some cases returned the same initial value after finishing the search,
this indicates that it could not find better conductivities than the initial
conductivities. In addition, it can be noted from the tables that the initial
RDM are different for different stimulation position (Deep, intermediate
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and lateral). This indicates that in-vivo conductivity estimation depends
on the stimulation position. The dependency between in-vivo conductivity
estimation and the position of the stimulation is described in the next
chapter.

The results of the comparison given the SEEG plus EEG measurements
and given an additional white Gaussian noise does not differ form the results
shown in Table 3.1, Table 3.2 and Table 3.3. In all the different conditions,
the NMS outperformed both the GA and the SA in convergence to the
solution and speed. Therefore the NMS was chosen to perform the opti-
mization for in-vivo conductivity estimation. However, before performing
real in-vivo conductivity estimation, the performance of the NMS was tested
in simulation for estimating the reference conductivity when the reference
potentials are perturbed by additional real biophysiological noise.

The biophyiological noise which was acquired from Patient(1) was added
to the reference potentials so that the SNR of the resulted potential became
equal 80 dB. This 80 dB was chosen to represent the noise that rests in the
acquired IES signal after the filter in real in-vivo conductivity estimation.
The results of estimating the reference conductivities by the NMS considering
the SEEG potentials and the SEEG-EEG potentials of the reference model
when real noise was added to the reference potentials are shown in Table
3.4 and Table 3.5 respectively. It can be noted from the tables that the
NMS converged always to the reference conductivity values given the different
initial points and the different stimulation positions. This indicates that the
NMS is robust for performing in-vivo conductivity estimation in the five-
compartment FEM head model.

3.4 Discussion

Estimating the conductivity parameters in the forward head model according
to real potentials depends on the optimization algorithms. Many studies
have performed in-vivo conductivity estimation using different optimization
algorithms [92, 93, 85, 94, 96, 105, 107], and many has considered the
Nelder-Mead simplex algorithm [85, 94, 96, 105, 107], but no study has
checked the superiority of the chosen optimization algorithm over the
other feasible algorithms. The lack of information about the superiority
of the considered optimization algorithm has opened the way for the
researchers to propose testing other optimization algorithms in future
studies like Ferree et al. who considered the Nelder-Mead simplex for
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optimizing the forward model then recommended the investigation of other
global methods like the simulating annealing and the genetic algorithm [107].

In this study, and for the first time to the best of our knowledge, three
common optimization algorithms were compared for optimizing the forward
head model in the purpose of estimating in-vivo conductivities. These op-
timization algorithms are: the Nelder-Mead simplex, the genetic algorithm
and the simulating annealing. These optimization algorithms were chosen
because of their robustness and easiness to implement. In addition, as they
were considered or recommended in previous studies on in-vivo conductivity
estimation, the purpose was to validate or refute their consideration. In
general, to test a robustness of an optimization algorithm, it is set to start
the search from more than one initial point to ensure that the performance of
the optimization algorithm is independent of the choice of the initial point.
In this research three different initial points were considered, and from these
initial points the NMS converged always to the reference conductivity val-
ues while the GA and the SA gave different results for different initial points.

The nature of the current study urges to consider other parameters, in
addition to the starting point, for checking the performance of the optimiza-
tion algorithms. These parameters are: the number of measurements and
the stimulation position. In real analysis, IES occurs at different anatomical
position in the head of the epileptic patient, so in simulation these stimu-
lation position are chosen accordingly. In addition, there are two different
measurement that are acquired while performing the IES: the scalp EEG
measurements and the intracerebral SEEG measurements. Therefore, the
optimization algorithms were tested considering three different stimulation
positions classified according to their deepness (their distance from the
scalp), and considering the two different measurement setups: SEEG and
SEEG-EEG. In these different setups, the NMS converged always to the
reference conductivity in smaller period of time than the GA and the SA,
while the GA and the SA did not converge to the reference conductivity
values although they required more time compared to NMS.

Simulation analysis acts as an ideal case for real analysis, because real
analysis includes uncontrolled factors like the noise. In simulation analysis,
these uncontrolled factors do not appear unless they are added by the user.
So it is not guaranteed that the performance of an optimization algorithm
in the real analysis is as good as its performance on simulation analysis.
However, in order to ensure that the performance of an optimization
algorithm in real analysis is as close as possible to its performance in the
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simulation analysis an extra noise (mostly white Gaussian noise) is added to
the simulated data [134, 107]. For the purpose of comparing the optimization
algorithms in this study, a white Gaussian noise was added to the output
potentials of the forward model in a way to make the SNR of the output
potential 80 dB. The performance of the NMS in converging to the reference
conductivity was as good as its performance when no noise was added.
As expected, the NMS outperformed the GA and SA in both the solution
and the speed in searching for the reference conductivity when additional
noise was added as it outperformed them when no noise was considered.
Moreover, the performance of the NMS was inspected in simulation analysis
when real noise was added. The real noise is filtered from the acquired
stimulations by the EEG and the SEEG electrodes. In the presence of real
noise, the NMS was found to converge always to the reference conductivity.

Due to the superiority of the NMS over the GA and SA, it was considered
to perform real in-vivo conductivity estimation. This study considered the
NMS for optimizing the forward head model as many studies in the field did
[85, 94, 96, 105, 107]. However, no study before did perform a comparison
of the different optimization algorithm on the forward head model, this lack
of comparison could be due to the computation complexity that the forward
head models require especially because most of the studies considered either
the BEM or the FEM. Yet, it is important to note that the superiority of the
NMS over the GA and the SA was found on fixing the stopping criteria to be
the same for the three algorithms. However, there are more parameters that
are special for each optimization algorithm which should be fixed according
to the problem of the study. In this work, these specific parameters (like
the temperature factor for SA and the number of elite vectors in GA) were
chosen to have a search that does not trapped in a local minimum and cover
a wide range, but in order to obtain the best parameters for this problem, an
additional study should be performed. Likely, because no additional param-
eters should be fixed in the NMS compared to GA and SA, most of previous
studies chose the NMS for performing the estimation in their forward head
model studies.

3.5 Summary

In-vivo conductivity estimation depends on correcting the conductivity
values in the forward head model based on the real potentials. This process
is leaned on optimization algorithms which modify the conductivity values
in the head model in order to reduce the error between the real potentials



66 CHAPTER 3. A COMPARISON OF OPTIMIZATION METHODS

and the model potentials. Hence, the choice of a robust optimization
algorithm for in-vivo conductivity estimation is essential. In the literature,
many optimization algorithms were considered for estimating conductivities,
however, no study gave strong arguments on their consideration. This lack
of information on the superiority of an optimization algorithm over the
others has left the door open for other researchers to try or recommend
different optimization algorithms.

In this study, the numerical FEM method was considered to determine
the output potentials in the realistic head model. Since the FEM method
cannot be solved analytically, the talk was focused on free-derivative opti-
mization algorithms: The Nelder-Mead simplex, the genetic algorithm and
the simulating annealing. These algorithms were considered because they are
easy to implement and common. In addition, these optimization algorithms
were tested or recommended in previous studies on in-vivo conductivity es-
timation, so the aim was to validate or refute the consideration of previous
studies. In general, optimization algorithms are tested from different initial
points (multi-start procedure) to ensure that the performance of the opti-
mization algorithm is independent of the choice of the starting point. In
addition to the multi-start procedure, this study has tested the optimization
algorithms given different measurements, different stimulation positions and
when considering white Gaussian noise. In all these scenarios, Nelder-Mead
simplex outperformed the other two algorithms in terms of convergence and
time. Moreover, Nelder-Mead simplex gave a robust results when real noise
was added to the model’s potentials. This performance of Nelder-Mead sim-
plex leaded it to be considered in the real analysis for estimating in-vivo
conductivities.



Chapter 4

Sensitivity Analysis

The accuracy of the EEG forward head model depends on the geometry and
the conductivity values which are assigned to the different compartments
in the head model. Since the FEM head model is solved numerically,
the influence of the conductivities on the model’s output is still not well
understood. In this study, a sensitivity analysis is performed to determine
the effect of changing or perturbing the conductivity values on the generated
potentials and how much the generated potentials are sensitive to the input
conductivities. Estimating in-vivo conductivities by optimizing the forward
model requires the output potentials to be sensitive to the conductivity
values. This explains why EEG potentials are considered for estimating
the in-vivo conductivity of the skull and not MEG, because EEG is more
sensitive to the skull conductivity than MEG. In this study, due to the new
materials (SEEG/EEG in simultaneous with IES) that we considered, the
sensitivity of the generated potentials to the conductivities are determined
given different intracerebral stimulation positions and given different
measurement setups. Performing the sensitivity analysis given different
stimulation positions and given different measurement setups is important
for examining the dependency of the sensitivity to the stimulation position
and the measurement setup.

The purpose of this work is to show under which conditions in-vivo con-
ductivity estimation of the different head compartments is possible and to
evaluate the confidence of the estimated values according to conditioning the
measurements and the location of the intracerebral electrical stimulation.
This chapter presents the sensitivity analysis of the SEEG/EEG forward
problem with respect to the conductivities. The analysis is performed on
the intracerebral SEEG and the scalp EEG topographies, by considering two
error functions: The RDM which is common in the field of head models and

67
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measures the topographic error, and the relative error which is common in
many fields of science. The results presented in this chapter are generated by
simulation where the spatial conditioning of the electrodes is only imposed
by structuring the brain’s digitization. The objective from this analysis is
to show the spatial limits and also to heuristically discuss the best condition
depending on the real localisation of the SEEG electrodes.

4.1 Materials and Method

In this study, a one-at-a-time sensitivity analysis was performed in which
the sensitivity of the output to each input conductivity value is determined
independently of the other conductivity values. For implementing the sen-
sitivity analysis, two head models of the same patient were generated. The
first head model acted as a reference head model and its output potentials
Vref (as shown in Eq.4.1) are determined based on fixed conductivity values
σ = [σ1, σ2, · · · , σN ] where N is the number of the compartments in the head
model (in this sensitivity analysis we consider N as five in one case and three
in another case).

∇ · Jp = ∇ · (σ∇Vref ) (4.1)

The conductivity values in the second head model (test head model) are
set equal to the reference conductivity values except one conductivity value
which is set to change linearly in order to determine the effect of that change
in the output error between the reference model and the test model as shown
in Eq.4.2.

error = f(Vref , Vtest) (4.2)

Where

∇ · Jp = ∇ · (bmσ∗∇Vtest) (4.3)

And

σ∗ = [σ1, · · · , σ∗r , · · · , σN ] (4.4)

Where

σ∗r = σr(0.5 + 0.1 ∗ n) ∀r ∈ [1, N ], n ∈ [1, 10] (4.5)

Since the purpose of the analysis is to determine the sensitivity of
the output error only to conductivity values, the other parameters of
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the test head model were set to be equal to those of the reference head
model. Therefore, the resulted error in Eq.4.2 is only due to the change
in one conductivity value. The sensitivity analysis was performed given
different conditions (Different number of head compartments, different
stimulation positions and different measurement positions) different error
functions (Relative difference measurement and relative error) and for two
different drug-resistant epileptic patients (Patient(1): male, 23 years old
and Patient(2): female, 34 years old). Carrying out the sensitivity given
different conditions and different patients enabled us to determine the effect
of these parameters on in-vivo conductivity estimation.

For performing the sensitivity analysis in a FEM head model, the data
which generates the stiffness matrix A and the force vector B was considered.
This data includes the the T1-weighted MR images in addition to the CT
scans of each patient for generating homogeneous and isotropic FEM head
models. From the CT scans the positions of the SEEG contacts were de-
tected. Two of the SEEG contacts were chosen to represent the IES. While
the positions of the scalp EEG electrodes were chosen according to the 10-20
and 10-10 standards.

4.2 Standard Measurement Positions

For estimating in-vivo conductivities, the scalp EEG and the intracerebral
SEEG measurements which were acquired in simultaneous with IES in drug-
resistant epileptic patients were considered. However, for obtaining a robust
estimation of the conductivity values by optimizing the forward model, the
output of the forward model should be sensitive to these conductivity values.
Hence, it is important to perform a sensitivity analysis based on these real
measurement positions of the scalp EEG and the intracerebral SEEG. In our
study, the positions of the SEEG electrodes were obtained from the CT-scans
[59], so they were fixed equal to their real positions for each patient, while
the scalp EEG measurements were acquired by an average of 21 scalp elec-
trodes (over three patients). Yet, it is important to examine the sensitivity
of the output for different numbers of EEG electrodes since other studies
have considered a larger number of EEG channels for estimating in-vivo con-
ductivities like Acar et al. who considered 128 EEG channels [92] and Lew
et al. who considered 63 EEG channels [93]. Thus, by considering different
EEG placements for sensitivity analysis, the effect of increasing the num-
ber of EEG channel can be examined in simulation analysis. Moreover, the
sensitivity analysis was performed considering the SEEG measurements in
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addition to EEG measurements to find out if the sensitivity of the output is
affected by adding the EEG measurements to the SEEG measurements. The
measurement positions which were considered for performing the sensitivity
analysis were as follows:

• 24-channel EEG measurements.

• 32-channel EEG measurements.

• 64-channel EEG measurements.

• 128-channel EEG measurements.

• SEEG measurements.

• SEEG measurements plus 24-channel EEG measurements.

• SEEG measurements plus 32-channel EEG measurements.

• SEEG measurements plus 64-channel EEG measurements.

• SEEG measurements plus 128-channel EEG measurements.

Where the EEG positions were according to th 10-20 and 10-10 standards
[135]. Each intracerebral electrode contains many SEEG contacts, some of
them are close to the skull and the scalp while the others are deeper and
close to the white matter as shown in Fig.3.5. In order to study the sensitiv-
ity of the output to the conductivity values given these different stimulation
positions, three different stimulations were considered for each sensitivity
analysis: Deep, intermediate and lateral stimulation. These three stimula-
tion positions were chosen from the same electrode, so their orientation were
the same. However, in order to check the effect of changing the orientation of
the stimulation, another lateral stimulation was considered. To differentiate
between the two lateral stimulations, the one which has the same orienta-
tion as deep and intermediate stimulations was called: lateral1, while the
other lateral stimulation was called: lateral2. The positions of the chosen
stimulations are shown in Fig.4.1

4.2.1 Sensitivity of the RDM: Five-compartment Head
Model of Patient(1)

Since the purpose of the in-vivo conductivity estimation is to enhance source
localization. The RDM is considered in this study, because it is not affected
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Figure 4.1: The anatomical positions of the deep, intermediate and lateral
stimulation which where considered in this study. The blue cross shows the
position of the stimulation.



72 CHAPTER 4. SENSITIVITY ANALYSIS

by the amplitude which does not influence source localization. However, in-
vivo conductivity estimation depends on the sensitivity of the RDM to these
conductivity values. Thus for predicting the performance of real conductivity
estimation, sensitivity analysis was implemented on a five-compartment FEM
head model of Patient(1). In the reference head model of this one-at-a-time
sensitivity analysis, the conductivity values were fixed as: 0.33 S/m for scalp,
0.008 S/m for skull, 1.79 S/m for CSF, 0.33 S/m for GM and 0.14 S/m for
WM [15, 87, 88].

Scalp electrodes

Fig.4.2 shows the sensitivity of the RDM to the five conductivities when 24
scalp EEG electrodes were considered. It can be noted from the figure that
in the case of deep, intermediate and lateral1 stimulations, the sensitivity
of the RDM to the GM and WM conductivities is low compared to the
sensitivity to the scalp, the skull and the CSF. This is not surprising
since the scalp measurements are acquired far from the WM and the GM
compartments. However, the sensitivity to the WM in lateral2 stimulation
is comparable to the sensitivity to the skull and the scalp. The difference
between the sensitivity pattern in lateral1 and lateral2 indicates that the
deepness is not the only factor that leads to differences in the resulted
in-vivo conductivities. Fig.4.3 shows the sensitivity of the RDM to the five
conductivities when 32 scalp EEG electrodes were considered. As in Fig.4.2,
in the case of deep, intermediate and lateral1 stimulations, the sensitivity
of the RDM to the GM and WM conductivities is low compared to the
sensitivity to the scalp, the skull and the CSF. The increase in the number
of EEG electrodes from 24 to 32 cause a slight drop in the sensitivity
to the scalp and the skull in the case of deep, intermediate and lateral1
stimulations. While the increase in the number of EEG electrodes caused a
slight increase in the sensitivity to the GM and the WM in the case of deep,
intermediate and lateral1 stimulations. The decrease in the RDM sensitivity
to the scalp and the skull conductivities can be explained by the decrease
in the RDM between the test model and the reference model as more EEG
data are considered. Therefore, the increase in EEG sensors reduces the
error which is resulted from an erroneous conductivity assignment.

Increasing the number of EEG measurements from 32 to 64 did not change
the pattern remarkably as can be seen in Fig.4.4. As in Fig.4.3, Fig.4.4
shows that the sensitivity of the RDM to the GM and WM conductivities
is low compared to the sensitivity to the scalp, the skull, and the CSF in
the case of in the case of deep, intermediate and lateral1 stimulations. The



4.2. STANDARD MEASUREMENT POSITIONS 73

Figure 4.2: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the 24 EEG positions for Patient(1).

Figure 4.3: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the 32 EEG positions for Patient(1).
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Figure 4.4: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the 64 EEG positions for Patient(1).

Figure 4.5: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the 128 EEG positions for Patient(1).
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sensitivity of the RDM to the skull and the scalp decreases notably (except
for lateral2) as more EEG electrodes are added (from 32 to 64). While the
sensitivity of the RDM to the GM decreases in the case of intermediate and
lateral1 stimulation as the number of electrodes increases from 32 to 64. The
decrease in sensitivity is due to the increase in accuracy as more electrodes
are considered. When more EEG electrodes are added (from 64 to 128)
as shown in Fig.4.5, the sensitivity pattern change similarly to the change
from 32 to 64 in the case of deep, intermediate and lateral1 stimulations.
However, there is a notable jump in the sensitivity of the RDM to all the
conductivities except the WM in the case of lateral2 stimulation. On the
contrary to the deep, intermediate and lateral2 stimulations in which the
sensitivity has a smooth change to the WM, the change in the sensitivity in
the case of lateral1 stimulation was sharp and notable when the number of
EEG electrodes increased from 64 to 128.

Intracerebral electrodes

Figure 4.6: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the SEEG positions for Patient(1).

Fig.4.6 shows the sensitivity of the RDM to the five-compartment conduc-
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tivities when considering the intracerebral SEEG measurements. In contrast
to the sensitivity results when considering the EEG scalp measurements,
when considering the SEEG, the RDM is less sensitive to the scalp and the
skull than to the CSF, the GM and the WM conductivities. This result makes
sense since the current distribution does not pass through the scalp and the
skull conductivities before reaching the SEEG electrodes. Even though the
sensitivity to the WM in case of deep stimulation is the highest compared
to the other conductivities (which is expected since the deep stimulation is
the nearest to the WM compartment), this sensitivity is relatively low. The
sensitivity to the CSF conductivity is the highest when considering the in-
termediate stimulation, since the intermediate stimulation is performed close
to the CSF compartment. The order of the pattern in lateral1 is similar
to the order of the pattern in lateral2, however, the sensitivity to the deep
compartments in lateral2 is higher than the sensitivity to the deep compart-
ments in lateral1 which indicates that other factors than the deepness of the
stimulation do affect in-vivo conductivity estimation.

Intracerebral and Scalp Electrodes

Adding 24 EEG electrodes to the SEEG electrodes did change the pattern
of the sensitivity analysis notably as shown in Fig.4.7. The change in the
pattern is only due the increase of the sensitivity of the scalp and the
skull compartments. The sensitivity to the scalp and the skull became
the highest in lateral1 stimulation since the lateral stimulation is the
nearest to these compartments. However, this was not the case in lateral2
stimulation. Adding 24 EEG electrodes did not change the sensitivity to
the deep compartment in general except for the intermediate stimulation in
which the sensitivity to the CSF, the GM and the WM decreases slightly
after adding the measurements of the 24 EEG electrodes. On the other
hand, increasing the number of EEG measurements (from 24 EEG to 32
electrodes) as shown in Fig.4.8 did not change the pattern of the sensitivity
in general. There is only a slight increase in the sensitivity to the scalp and
the skull compartments in all stimulations, in addition to a vague decrease
in the sensitivity of the RDM to the CSF, the GM and the WM in the case
of intermediate stimulation.

Increasing the number of EEG scalp electrodes from 32 to 64 while consid-
ering the SEEG measurements as shown in Fig.4.36, increases the sensitivity
of the RDM to the scalp and the skull conductivities. This increase in the
sensitivity pattern to the scalp and the skull is very significant in intermediate
and lateral1 stimulations because they are nearer to the scalp and the skull
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Figure 4.7: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-24 EEG positions for Patient(1).

Figure 4.8: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-32 EEG positions for Patient(1).
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Figure 4.9: The error function RDM resulted from changing one conductivity
value in a five-compartment FEM head model compared to the reference
model when considering the SEEG 64 EEG positions for Patient(1).

Figure 4.10: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-128 EEG positions for Patient(1).
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compartments than the deep stimulation. However, the increase of the sen-
sitivity to the scalp and the skull compartment after increasing the number
of EEG electrodes from 32 to 64 is slight in the case of lateral2 stimulation.
Yet, when the EEG scalp electrodes are increased from 64 to 128, as shown
in Fig.4.10, the sensitivity to the scalp and the skull compartments increases
notably in both the deep and lateral2 stimulations but slightly in the case
of intermediate and lateral1 stimulations. In general, the increase of RDM
sensitivity to the scalp and the skull compartment makes sense as more EEG
electrodes are considered. However, the difference in the increase pattern in
the different stimulations (specially between lateral1 and lateral2) indicates
that there are other factors than the deepness which affect the sensitivity.

4.2.2 Sensitivity of the Relative Error: Five-
compartment Head Model of Patient(1)

For performing in-vivo conductivity estimation by optimizing the forward
head model an error measurement function should be considered. Since the
purpose of estimating accurate conductivities is to enhance source localiza-
tion, the RDM was considered because it is not affected by the magnitude
which does not affect source localization [116, 114]. However, in order to
check if other error measurements give a better sensitivity profile, the relative
error function, which is shown in Eq.4.6, was considered for performing the
sensitivity analysis on the five-compartment FEM head model of Patient(1)
given the different measurement positions and the different stimulation po-
sitions. In the reference head model, the conductivity values were fixed as:
0.33 S/m for scalp, 0.008 S/m for skull, 1.79 S/m for CSF, 0.33 S/m for GM
and 0.14 S/m for WM. ∑

(|Vo − Vref |)∑
(|Vref |)

(4.6)

Scalp Electrodes

Fig.4.11 shows the sensitivity of the relative error to the five-compartments
conductivities when considering the 24 EEG scalp electrodes. As expected,
since the EEG electrodes are located over the scalp, the sensitivity of the
relative error to the scalp and the skull conductivities is higher than the
sensitivity to the WM and the GM, this can be noted in the case of deep
and lateral2 stimulations. However, in both the intermediate and lateral1
stimulation, the sensitivity to the GM is larger than the sensitivity to the
scalp and the skull compartments. In addition, it can be noted that the
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Figure 4.11: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the 24 EEG positions for Patient(1).

Figure 4.12: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the 32 EEG positions for Patient(1).
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sensitivity of the relative error to the CSF compartment is the highest in
all the stimulations except the lateral2 stimulation. Adding more EEG
scalp electrodes, change the pattern of the sensitivity slightly as shown in
Fig.4.12. In general, the sensitivity of the relative error to the scalp and the
skull compartment decreases as more EEG electrodes are added (this can
be noted in the case of lateral2 stimulation). Adding more EEG electrodes,
reduces the relative error due to an erroneous conductivity assignment in
the scalp and the skull. While the sensitivity to the CSF, the GM and the
WM conductivities does not have a uniform change as more EEG electrodes
are added. The sensitivity to the CSF decreases notably as more EEG
electrodes are added in both intermediate and lateral2 stimulations. While
the sensitivity to the GM increases as more EEG electrodes are added
in both deep and intermediate stimulation but decreases in both lateral1
and lateral2 stimulations. When considering the WM conductivity, the
sensitivity of the relative error to it increases as more EEG electrodes are
added in lateral2 stimulation while it decreases in lateral1 stimulation.

In contrast to the decrease in the sensitivity to the scalp and the skull
conductivities as EEG scalp electrodes increases from 24 to 32, in Fig.4.13
it can be noted that the sensitivity of the relative error to the scalp and the
skull conductivities in all the stimulations (except lateral2) increases as the
EEG scalp electrodes increases from 32 to 64. The decrease in the sensitivity
to the scalp and the skull conductivities from 24 EEG to 32 EEG and then its
increase from 32 EEG to 64 EEG makes it hard to make a conclusion about
the sensitivity of the relative error as more EEG electrodes are considered.
For the deep compartments, as the number of EEG electrodes increases from
32 to 64, the sensitivity of the relative error to the WM increases slightly for
all stimulations. The sensitivity of the relative error to the CSF conductivity
increases for lateral1 while it decreases for lateral2 as shown in Fig.4.13.
Fig.4.14 shows the sensitivity of the relative error to the five-compartment
conductivities when 128 EEG electrodes are considered. When comparing
the sensitivity pattern in Fig.4.13 to the sensitivity pattern in Fig.4.14 it can
be noted that the sensitivity of the relative error to the scalp and the skull
conductivities increases notably in the case of deep and lateral2 stimulations
as the EEG scalp electrodes increases from 64 to 128.

Intracerebral Electrodes

Fig.4.15 shows the sensitivity of the relative error to the five-compartment
conductivities when the intracerebral SEEG measurements are considered.
It can be noted that the sensitivity of the relative error to the scalp and the
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Figure 4.13: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the 64 EEG positions for Patient(1).

Figure 4.14: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the 128 EEG positions for Patient(1).
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skull conductivities drops remarkably when Fig.4.15 is compared to previous
Fig.4.14. The drop in the sensitivity to the scalp and the skull when consid-
ering only the SEEG measurements is expected since the current distribution
does not pass through the scalp and the skull compartments. However, the
sensitivity of the relative error to the CSF compartment did not change
(or change slightly for some stimulations) when the Fig.4.15 is compared to
Fig.4.14. The constant pattern of the sensitivity to the CSF conductivity
despite the total change in the measurements is unexpected.

Figure 4.15: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the SEEG positions for Patient(1).

Intracerebral and Scalp Electrodes

Adding 24 EEG scalp electrodes to the SEEG electrodes change the
sensitivity of the relative error to the scalp and the skull conductivities
as shown in Fig.4.16. Since the EEG electrodes are placed over the scalp
compartment, adding EEG electrodes is expected to change the sensitivity
to the scalp and the skull compartments. As expected, when Fig.4.15 is
compared to Fig.4.16 the sensitivity of the relative error to the scalp and
the skull compartment increases notably (especially for the intermediate
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Figure 4.16: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the SEEG-24 EEG positions for Patient(1).

Figure 4.17: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the SEEG-32 EEG positions for Patient(1).
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and lateral1 stimulations). However, adding more EEG electrodes (from 24
to 32) does not change the pattern remarkably. When considering 32 scalp
EEG electrodes, the sensitivity to the scalp and the skull conductivities
change very vaguely as shown in Fig.4.17.

On the contrary to the slight change in the sensitivity of the relative error
to the scalp and the skull compartment as EEG electrodes increase from
24 to 32, the sensitivity to the scalp and the skull compartments increases
notably (especially for intermediate and lateral1 stimulations) as EEG elec-
trodes increases from 32 to 64 as shown in Fig.4.18. However, when Fig.4.18
that represents the 64 EEG with SEEG measurements case is compared to
Fig.4.13 that represents 64 EEG measurements, it can be noted that the
sensitivity to the scalp and the skull conductivities when there is no SEEG
measurements is higher. Increasing the number of EEG scalp electrodes from
64 to 128 while considering the SEEG intracerebral electrodes increases the
sensitivity of the relative error notabley to the scalp and the skull conduc-
tivity as shown in Fig.4.19. However, the sensitivity to the CSF and the GM
conductivities is larger when the SEEG are considered with 128 EEG than
when only the 128 EEG measurements are considered as is shown in Fig.4.14.

In general, the relative error was found to have a high and fixed sensitiv-
ity to the CSF conductivity. In addition, the sensitivity of the relative error
did not have a uniform increase or decrease as EEG scalp electrodes were
increasing. When EEG scalp electrodes increased from 24 to 32, the sensi-
tivity to the scalp and the skull compartment decreased, however, when the
EEG electrodes increased from 32 to 24, the sensitivity to the scalp and the
skull conductivities increased. Yet, similar to the sensitivity of the RDM, the
sensitivity of the relative error to the five-compartment conductivities were
biased toward the small conductivity values, that is the relative error was
found to be more sensitive to small conductivity assignment than to larger
conductivity assignment.

4.2.3 Sensitivity of the RDM: Three-compartment
Head Model of Patient(1)

In the literature, it was found that separating the CSF compartment from
the brain, and the GM from the WM is important for performing an accu-
rate source localization [110, 111]. However, there are many work which were
based on three-compartment head model since the three-compartment head
model can be solved analytically (when a sphere is considered) or numeri-
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Figure 4.18: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the SEEG-32 EEG positions for Patient(1).

Figure 4.19: The relative error resulted from changing one conductivity value
in a five-compartment FEM head model compared to the reference model
when considering the SEEG-128 EEG positions for Patient(1).
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cally (when a realistic head model is considered). In this study, and for the
purpose of examining the difference between the five-compartment and the
three-compartment head models, the sensitivity analysis was performed on
a three-compartment FEM head model of Patient(1). In this analysis, the
conductivities which were assigned in the reference head model were: 0.33
S/m for scalp, 0.008 for skull and 0.33 S/m for brain.

Scalp Electrodes

Fig.4.20 shows the sensitivity of the RDM to the three-compartment
conductivities when considering 24 EEG scalp electrodes. It can be noted
from the figure that the sensitivity of the RDM to the scalp and the
skull conductivities in all stimulations is higher than the sensitivity of
the RDM to the brain compartment. The high sensitivity to the scalp
and the skull conductivities when considering only scalp EEG electrodes
is expected since the current distribution passes by these compartments
before reaching the scalp EEG electrodes. As the EEG electrodes increases
from 24 to 32, the sensitivity to the scalp and the skull conductivities
increases, however, this increase is not remarkable. Yet, increasing the
number of EEG electrodes from 24 to 32 for the five-compartment head
model decreases the sensitivity of the RDM to the scalp and the skull
compartment, which was explained by the decrease in the effect of assign-
ing erroneous conductivity values as the number of EEG electrodes increases.

Fig.4.22 shows the sensitivity of the RDM to the three-compartment con-
ductivities when considering 64 EEG scalp electrodes. When increasing the
number of EEG scalp electrodes from 32 to 64, a very slight change appears
in the sensitivity of the RDM to the three-compartment head model. How-
ever, when the number of EEG scalp electrodes increases from 64 to 128 as
shown in Fig.4.23 , the sensitivity of the RDM to the scalp and the skull com-
partments increases notabley especially for the lateral2 stimulation. It can be
noted also from Fig.4.23 that the sensitivity of the RDM to the scalp and the
skull conductivities are very similar in the case of lateral1 and lateral2 stim-
ulations, but the difference between lateral1 and lateral2 is more significant
when considering the sensitivity of the RDM to the brain conductivity.

Intracerebral Electrodes

Fig.4.24 shows the sensitivity of the RDM to the three-compartment conduc-
tivities when considering the intracerebral SEEG electrodes. As expected,
the sensitivity of the RDM to the brain compartment is higher than the sen-



88 CHAPTER 4. SENSITIVITY ANALYSIS

Figure 4.20: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the 24 EEG positions for Patient(1).

Figure 4.21: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the 32 EEG positions for Patient(1).
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Figure 4.22: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the 64 EEG positions for Patient(1).

Figure 4.23: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the 128 EEG positions for Patient(1).
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sitivity of the RDM to both the scalp and the skull compartment. However,
the sensitivity of the RDM to the scalp and the skull compartment is higher
in lateral2 stimulation than in other stimulations, which indicates that lat-
eral2 stimulation has a larger effect on the scalp and the skull conductivities
than the other stimulations.

Figure 4.24: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the SEEG positions for Patient(1).

Intracerebral and Scalp Electrodes

Fig.4.25 shows the sensitivity of the RDM to the three-compartment
conductivities when considering the 24 scalp EEG electrodes in addition
to the intracerebral SEEG electrodes. When it is compared to Fig.4.24 it
can be noted that the sensitivity of the RDM to the scalp and the skull
conductivities increases remarkably as the 24 EEG electrodes are added
to the SEEG measurements. Even though the number of the added EEG
electrodes (24) is small compared to the number of the SEEG contacts
(107), the sensitivity of to the scalp and the skull compartments become
comparable to the sensitivity to the brain compartment in all stimulations
except lateral2. Adding 24 EEG electrodes to the EEG did not change
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Figure 4.25: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the SEEG-24 EEG positions for Patient(1).

Figure 4.26: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the SEEG-32 EEG positions for Patient(1).
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the sensitivity of the RDM to the brain conductivity except for lateral1
stimulation where there is a notable decrease in the sensitivity to the brain
conductivity. As shown in Fig.4.26 The change in the sensitivity of the
RDM to the three-compartment conductivities when the number of EEG
electrodes increases from 24 to 32 is very slight and is hard to notice.
However, the increase in the sensitivity of the RDM to the scalp and the
skull conductivities when the number of EEG electrode increases from 32
to 64 is remarkable and for all the stimulations as shown in Fig.4.27. This
increase in the sensitivity to the scalp and the skull compartments is also
notable when the number of EEG electrodes increases from 64 to 128 as
shown in Fig.4.28.

When the sensitivity results of the five-compartment head model are com-
pared to the results of the three-compartment head model, it can be noted
that the sensitivity to the change in the scalp and the skull are smaller when
considering the three-compartment head model. For example, when com-
paring the sensitivity to the skull conductivity when considering 24 EEG
measurement position and deep stimulation as shown in Fig.4.20 for the
three-compartment head model and Fig.4.2 for the five-compartment head
model, it can be noted that the sensitivity to the skull conductivity is larger
when considering the five-compartment head model. This indicates that the
conductivity of a compartment depends on the conductivity values of the
other compartments.

4.2.4 Sensitivity of the RDM: Five-compartment Head
Model of Patient(2)

Even though, the head models of the different patients were similar to each
other regarding the number of nodes and elements, as was shown in Table
2.2, the sensitivity analysis was performed on the data of Patient(2) in order
to examine if the results obtained on Patient(1) can be generalized to other
patients. The sensitivity analysis on Patient(2) was performed considering
the five-compartment FEM head model with the RDM as an error function.
In the reference head model the conductivity values were fixed as: 0.33 S/m
for scalp, 0.008 S/m for skull, 1.79 S/m for CSF, 0.33 S/m for GM and 0.14
S/m for WM.

Scalp Electrodes

Fig.4.29 shows the sensitivity of the RDM to the five-compartment con-
ductivities of Patient(2) when considering 24 EEG scalp electrodes. It can
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Figure 4.27: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the SEEG-64 EEG positions for Patient(1).

Figure 4.28: The error function RDM resulted from changing one conductiv-
ity value in a three-compartment FEM head model compared to the reference
model when considering the SEEG-128 EEG positions for Patient(1).
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Figure 4.29: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the 24 EEG positions for Patient(2).

Figure 4.30: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the 32 EEG positions for Patient(2).
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be noted from the figure that the sensitivity of the RDM is the highest
for the scalp and the skull conductivities in the case of all stimulations.
Since the current distribution of the source passes by the scalp and the
skull compartments before reaching the measuring electrodes, having a high
sensitivity to the scalp and the skull conductivities is expected. When
the number of EEG scalp electrodes increases from 24 to 32, as shown in
Fig.4.30, there is an insignificant change in the sensitivity of the RDM to
the scalp and the skull compartments for all stimulations except for lateral1
where the sensitivity to the skull and the scalp face a slight increase.

Doubling the number of EEG scalp electrodes (from 32 to 64), as shown in
Fig.4.31, decreases the sensitivity of the RDM to the scalp and the skull con-
ductivities in all the stimulations except lateral2 where there is a remarkable
increase in the sensitivity of the RDM to the scalp and the skull compart-
ments. The difference change in the pattern from stimulation position to
another stimulation as the number of measurements changes indicates that
the importance of considering the stimulation position when performing in-
vivo conductivity estimation. Increasing the number of EEG scalp electrodes
from 64 to 128, as shown in Fig.4.32, change the sensitivity of the RDM to
the scalp and the skull slightly for deep and intermediate stimulations. How-
ever, for lateral1 and lateral2 stimulations there is a notable increase in the
sensitivity of the RDM to the scalp and the skull conductivities.

Intracerebral Electrodes

Fig.4.33 shows the sensitivity of the RDM to the five-compartment conduc-
tivities of Patient(2) when considering the SEEG intracerebral electrodes.
Strikingly, the sensitivity of the scalp and the skull is still the highest in
the case of lateral1 stimulation even though there is no EEG scalp elec-
trodes. The closeness of this lateral stimulation to the scalp and the skull
compartment makes its effect on the scalp and the skull compartments more
significant than the other compartments. In addition, in the case of deep and
intermediate stimulation, there is no remarkable increase in the sensitivity of
the RDM to the deep compartments (CSF, GM and WM) even though these
stimulations are near to these compartments.

Intracerebral and Scalp Electrodes

The effect of adding 24 EEG scalp electrodes to the SEEG electrodes
on the sensitivity of the RDM is shown in Fig.4.34. As expected, the
sensitivity of the RDM to the scalp and the skull compartments increases
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Figure 4.31: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the 64 EEG positions for Patient(2).

Figure 4.32: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the 128 EEG positions for Patient(2).
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Figure 4.33: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the SEEG positions for Patient(1).
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Figure 4.34: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-24 EEG positions for Patient(2).

Figure 4.35: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-32 EEG positions for Patient(2).



4.3. BRAIN NODES AS MEASUREMENTS 99

notable as the 24 EEG electrodes are added for deep, intermediate and
lateral2 stimulations. However, in the case of lateral1, the effect of adding
24 EEG scalp electrodes can be noted on the sensitivity of the RDM to
the scalp conductivity which become unbiased as the scalp electrodes are
added. By unbiased sensitivity to a conductivity, we mean that assigning
larger conductivity values than the true value will lead to an error equal
to assigning smaller conductivity values than the true value. By increasing
the number of EEG scalp electrodes from 24 to 32 while considering the
SEEG scalp electrodes, the change in the sensitivity to of the RDM to the
five-compartment conductivity is very vague as shown in Fig.4.35.

Fig.4.36 shows the sensitivity of the RDM to the five-compartment
conductivities of Patient(2) given the SEEG measurements in addition
to 64 EEG scalp measurements. As expected, increasing the number of
EEG electrodes from 32 to 64 increases the sensitivity of the RDM to the
scalp and the skull compartment for all the stimulations except for lateral1
where there is a notable decrease in the sensitivity of the RDM to all the
conductivities. However, as the number of EEG electrodes increases from
64 to 128 while considering the SEEG measurements, the sensitivity of
the RDM to the scalp and the skull compartments increases in the case of
lateral1 stimulation as for all the other stimulations.

Even though there are many differences between Patient(1) and Pa-
tient(2) like the number of the SEEG measurement positions, the positions
of the stimulations, and the distance between the stimulation and the mea-
surement positions, the similarities between the patterns can be noted when
comparing the results of the sensitivity of Patient(1) and Patient(2). As the
results of Patient(1), it can be noted from the results which were obtained
from Patient(2), as shown in Fig.4.29 to Fig.4.32, that the RDM is most
sensitive to the change of the scalp and the skull compartments in the cases.
When considering only the SEEG measurement positions, in all cases, except
lateral1, the sensitivity to the change in the scalp and the skull conductivities
is the lowest, however, this sensitivity increases as more EEG measurement
positions are added.

4.3 Brain Nodes As Measurements

Considering only the real measurement positions for determining the
sensitivity analysis gave an important insight before performing in-vivo
conductivity estimation. However, the differences in the results between
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Figure 4.36: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-64 EEG positions for Patient(2).

Figure 4.37: The error function RDM resulted from changing one conductiv-
ity value in a five-compartment FEM head model compared to the reference
model when considering the SEEG-128 EEG positions for Patient(2).
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the stimulation positions, especially between lateral1 and lateral2 could be
due to the variety of the distances between the measurement positions and
the stimulation position. Therefore, in order to neglect the effect of the
distance from the stimulation electrode, another sensitivity analysis was
performed in which all the nodes of the brain (CSF, GM and WM) were
considered. This unrealistic scenario was applied to the five-compartment
FEM head model of Patient(1) with the RDM as the error function. As
in the real measurement positions case, four different stimulation positions
(deep, intermediate, lateral1 and lateral2) were considered in addition to
5 different setups for EEG positions (24-channel EEG, 32 channel EEG,
64-channel EEG and 128-channel EEG). Two five-compartment FEM head
models of Patient(1) were generated where the reference model has the
conductivity values: 0.33 S/m for scalp, 0.008 S/m for skull, 1.79 S/m for
CSF, 0.33 S/m for GM and 0.14 S/m for WM.

Fig.4.38 shows the sensitivity of the RDM to the five-compartment
conductivities when the nodes of the CSF, the GM and the WM are
considered as measurement positions. Adding EEG scalp electrodes to this
configuration does not affect the sensitivity pattern as shown in Fig.4.39
when 128 EEG scalp electrodes are added. Since the number of EEG scalp
electrodes are smaller than the number of the brain nodes ( 300 000), it
is expected to have low influence from adding the EEG scalp electrodes.
However, when these results are compared to the results when the real SEEG
and EEG positions were considered, it can be noted that the sensitivity in
general is low for all the conductivities when considering all the nodes of the
brain. This may be due to considering the measurements of the neighbour
nodes to the stimulation which have large amplitudes compared to the far
nodes. Moreover, the current may be not affected by the conductivity when
it passes from the stimulation node to the neighbour nodes. In order to
examine these assumptions, the previous method was repeated but without
considering the measurements of the nearest 1000 nodes.

Fig.4.40 shows the sensitivity of the RDM to the five-compartment
conductivities when considering all the potentials at the nodes of the deep
compartments (CSF, GM and WM). In contrary to Fig.4.38, the RDM in
Fig.4.40 has a high sensitivity to the deep compartments (CSF, GM and
WM) especially for intermediate, lateral1 and lateral2 stimulations. Adding
the 24 scalp EEG electrodes to the measurements, as shown in Fig.4.41
increases the sensitivity to the scalp and the skull slightly. In addition
to the slight change in the scalp and the skull compartments, there is a
notable increase in the sensitivity to the GM conductivity in both lateral1
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Figure 4.38: The sensitivity to the change in each conductivity value in a
five-compartment FEM head model when considering the brain nodes as
measurement positions for Patient(1) given the RDM as the error function

Figure 4.39: The sensitivity to the change in each conductivity value in a five-
compartment FEM head model when considering the brain nodes and the
128-channel EEG as measurement positions for Patient(1) given the RDM
as the error function
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Figure 4.40: The sensitivity to the change in each conductivity value in a five-
compartment FEM head model when considering the brain nodes except the
nearest 1000 nodes as measurement positions for Patient(1) given the RDM
as the error function

Figure 4.41: The sensitivity to the change in each conductivity value in a
five-compartment FEM head model when considering the brain nodes except
the nearest 1000 nodes and the 24-channel EEG as measurement positions
for Patient(1) given the RDM as the error function
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and lateral2 stimulations while it decreases in the intermediate stimulation.
Moreover, the sensitivity of the WM increases notably when the 24 scalp
EEG electrodes are added in the case of lateral1 stimulation.

When the number of scalp EEG electrodes increases to 32 and then
to 64 while considering the measurements of all the nodes of the deep
compartments, the sensitivity of the RDM to the scalp and the skull
changes very slightly while the sensitivity to the CSF, the GM and the
WM change remarkably as shown in Fig.4.42 and Fig.4.43. The sensitivity
of the RDM to the brain compartments increases in the case of deep
stimulation while it decreases in the case of intermediate and lateral1
stimulations. While the sensitivity to the CSF and to the GM decreases
as the number of EEG scalp electrodes increases from 24 to 32 and to
64, the sensitivity to the WM increases remarkably as shown in Fig.4.42
and Fig.4.43. Increasing the number of EEG scalp electrodes to 128 while
considering the potentials of all the nodes of the brain compartment has
again a slight effect on the sensitivity of the RDM to the scalp and the
skull compartment as shown in Fig.4.44. While there is a notable decrease
in the sensitivity to the CSF, the GM and the WM in the case of inter-
mediate and lateral1 stimulations. But in the case of lateral2 stimulation,
the sensitivity of the RDM to the WM increases notably as shown in Fig.4.44.

In general, Fig.4.40 to Fig.4.44 shows the results of the sensitivity anal-
ysis of the RDM to the change of the five conductivities of Patient(1) when
considering all the nodes of the brain except the nearest 1000 nodes from the
stimulation in addition to the EEG measurement positions. It can be noted
when comparing these results with the previous results shown in Fig.4.38 to
Fig.4.39 that in order to increase the sensitivity of the RDM to the change
of the conductivities, the nearest measurements of the stimulation position
should not be considered. However, the change in the sensitivity of the RDM
when adding and changing the number of the EEG positions to the scalp and
the skull conductivities as shown in Fig.4.40 to Fig.4.44 indicates that the
EEG positions does not have an effect on changing the sensitivity because
their number is small compared to the number of the brain nodes. Neverthe-
less, increasing or adding the EEG measurement position did have an effect
on the sensitivity of the brain compartments.



4.3. BRAIN NODES AS MEASUREMENTS 105

Figure 4.42: The sensitivity to the change in each conductivity value in a
five-compartment FEM head model when considering the brain nodes except
the nearest 1000 nodes and the 32-channel EEG as measurement positions
for Patient(1) given the RDM as the error function

Figure 4.43: The sensitivity to the change in each conductivity value in a
five-compartment FEM head model when considering the brain nodes except
the nearest 1000 nodes and the 64-channel EEG as measurement positions
for Patient(1) given the RDM as the error function
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Figure 4.44: The sensitivity to the change in each conductivity value in a
five-compartment FEM head model when considering the brain nodes except
the nearest 1000 nodes and the 128-channel EEG as measurement positions
for Patient(1) given the RDM as the error function
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4.4 Local Measurements

The results which were obtained when considering all the nodes of the brain
indicated that the neighbour nodes should not be considered. However,
considering the local measurements around the stimulation may give better
sensitivity results since the far measurements are assumed to be not affected
by the stimulation electrodes as the near measurements. In order to
examine this assumption, a simulation was performed by considering the the
SEEG measurement positions within the 50 mm range from the stimulation
in addition to the 128-channel EEG measurement positions which are
within 50 mm distance from lateral1 stimulation. From the 107 SEEG
measurement positions, 40 were considered for the deep stimulation, 45 for
the intermediate, 39 for lateral1 and 74 for lateral2. The EEG measurement
positions were fixed for all stimulations as 17 positions.

Fig.4.45 shows the sensitivity results of Patient(1) when considering the
SEEG the measurement positions within the 50 mm range from the stim-
ulation in addition to the 128-channel EEG measurement positions which
are within 50 mm distance from lateral1 stimulation. It can be noted that
there is no big difference between Fig.4.45 and Fig.4.10 when all the SEEG
and the 128-channel EEG positions are considered. This similarity between
these results gives an indication that there is no effect of considering the local
measurement positions for in-vivo conductivity estimation.

4.5 The Effect of Changing the Measurement

Positions

The previous results of the sensitivity analysis show that the output depends
on the measurement positions in addition to the stimulation positions. This
was noted as the sensitivity of the error function to a specific compartment
changes when the number of measurement changes. In order to have an
overall view of the effect of changing the measurement positions on the RDM
when assigning an erroneous conductivity, another simulation was performed
by considering two five-compartment FEM head model of Patient(1). The
reference head model has the common conductivity values: 0.33 S/m for
scalp, 0.008 S/m for skull, 1.79 S/m for CSF, 0.33 S/m for GM and 0.14
S/m for WM. In the test head model, each time one conductivity value was
assigned by multiplying it with 0.5 of its reference value while the other
conductivities were set equal to the reference conductivities. Then the RDM
was determined between the two head models for different measurement
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Figure 4.45: The sensitivity to the change in each conductivity values when
considering the SEEG measurement positions within 50 mm distance from
the stimulation in addition to the EEG measurement position within 50 mm
distance from lateral1 stimulation for Patient(1)
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positions.

Figure 4.46: The effect of changing the number of the measurement positions
on the RDM when the scalp conductivity in the testing head model equals
to 0.5 of its value in the reference model of Patient(1). The numbers in the
x-axis indicates the number of the EEG measurement positions (24 means 24
EEG scalp electrodes) while the S indicates the SEEG measurement positions
(S means SEEG and S24 means SEEG plus 24 EEG scalp electrodes).

Fig.4.46 shows the effect of changing the number of measurements on
the RDM when assigning 0.17 S/m as a scalp conductivity value in the
test model. Except for lateral2, as the number of EEG scalp electrodes
increases, the RDM decreases, when considering only EEG scalp electrodes.
The decrease in the RDM as the number of EEG scalp electrodes increases
can be explained by the fact that a larger number of scalp EEG electrodes
reduces that error that is generated due to assigning an erroneous scalp
conductivity. However, for lateral2, increasing the number of scalp EEG
electrodes have the inverse effect on the RDM. The RDM has its lowest value
in Fig.4.46 for all stimulations when considering only the SEEG intracerebral
electrodes. The low effect of assigning an erroneous scalp conductivity on the
intracerebral SEEG potentials is expected since the current distribution that
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Figure 4.47: The effect of changing the number of the measurement positions
on the RDM when the skull conductivity in the testing head model equals
to 0.5 of its value in the reference model of Patient(1). The numbers in the
x-axis indicates the number of the EEG measurement positions (24 means 24
EEG scalp electrodes) while the S indicates the SEEG measurement positions
(S means SEEG and S24 means SEEG plus 24 EEG scalp electrodes).
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is generated from IES does not pass through the scalp compartment. When
both the SEEG and the EEG are considered (from S24 to S128 in Fig.4.46,
the RDM increases with the increase in the number of EEG measurements
that are considered in simultaneous with SEEG measurements. The increase
in the RDM with the increase in the number of EEG scalp measurements is
expected since the SEEG and EEG do not have the same information about
the scalp compartment, so increasing the number of EEG scalp electrodes
will increase the difference between the two information. It can be noted
that the effect of changing the measurement position on the RDM when
assigning 0.004 S/m skull conductivity in the test head model, as shown in
Fig.4.47 has the same pattern that is shown in Fig.4.46 when assigning an
erroneous scalp conductivity. The fact that both the scalp and the skull
compartments lie between the stimulation and the scalp EEG measurements
makes the their pattern similar.

Figure 4.48: The effect of changing the number of the measurement positions
on the RDM when the CSF conductivity in the testing head model equals
to 0.5 of its value in the reference model of Patient(1). The numbers in the
x-axis indicates the number of the EEG measurement positions (24 means 24
EEG scalp electrodes) while the S indicates the SEEG measurement positions
(S means SEEG and S24 means SEEG plus 24 EEG scalp electrodes).
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Fig.4.48 shows the RDM versus the number of measurements when
assigning 0.90 S/m CSF conductivity in the test model while assigning 1.79
S/m in the reference model. It can be noted from the figure that there is a
slight change in the RDM when considering only the EEG scalp measure-
ment in all the stimulations. The slight change in the RDM is expected
since these scalp EEG measurements are far from the CSF compartment
and there is a high resistive skull between the EEG scalp measurements and
the CSF. When considering only the SEEG measurements the RDM gets its
highest value for both intermediate and lateral2 stimulations. However, since
the intermediate stimulation is the nearest to the CSF compartment, then
having the highest RDM when considering only the SEEG compartment
in the case of intermediate stimulation is not surprising. In contrast to
intermediate and lateral2 stimulations, in the case of deep stimulation, the
RDM has its minimum value when considering the SEEG measurements.
Since the deep stimulation lies beneath the CSF compartment, its effect
will be similar to the effect of all stimulations to the scalp and the skull
compartments, so it is normal to have the minimum RDM value when
considering only the SEEG measurements. When considering both the
SEEG and the EEG measurements, the RDM decreases slightly in the
case of intermediate stimulation while it increases slightly in the case
of deep stimulation. Nevertheless, for lateral1 stimulation, changing the
measurement positions did not change the RDM value. The difference
between the pattern of lateral1 and lateral2 in Fig.4.48 shows that electrodes
of similar deepness may have different patterns.

When assigning 0.17 S/m as a GM conductivity value in the testing
model while assigning 0.33 S/m in the reference model, the effect of this
erroneous conductivity value does not appear in the RDM before considering
the SEEG measurements for all stimulations (except the deep stimulation)
as shown in Fig.4.49. Since the EEG measurements are far from the GM
compartment their effect does not appear in the RDM before considering
the SEEG measurements. It can be noted that as the number of EEG
electrodes increases, while considering the SEEG, the pattern of lateral1
does not change, but the pattern of the intermediate and the lateral1
stimulations decreases slightly. Since the EEG measurements and many
of the SEEG measurements are located above the GM, the information
that are coming from the EEG and the SEEG measurement are the same,
due to this, the RDM decreases as the number of the EEG measurements
increases while considering the SEEG measurements. In the case of
deep stimulation, the RDM has its minimum value when considering the
SEEG measurements, as in the CSF case, since the deep stimulation lies in
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Figure 4.49: The effect of changing the number of the measurement positions
on the RDM when the GM conductivity in the testing head model equals
to 0.5 of its value in the reference model of Patient(1). The numbers in the
x-axis indicates the number of the EEG measurement positions (24 means 24
EEG scalp electrodes) while the S indicates the SEEG measurement positions
(S means SEEG and S24 means SEEG plus 24 EEG scalp electrodes).
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Figure 4.50: The effect of changing the number of the measurement positions
on the RDM when the WM conductivity in the testing head model equals
to 0.5 of its value in the reference model of Patient(1). The numbers in the
x-axis indicates the number of the EEG measurement positions (24 means 24
EEG scalp electrodes) while the S indicates the SEEG measurement positions
(S means SEEG and S24 means SEEG plus 24 EEG scalp electrodes).
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the bottom of the GM, its effect will be the opposite to the other stimulations.

Fig.4.50 shows the RDM versus the measurement positions when assign-
ing 0.07 S/m conductivity value for the WM compartment. On the con-
trary to the assigning erroneous GM conductivity, the RDM is affected by
assigning erroneous WM conductivity when considering only EEG measure-
ment positions (except for intermediate stimulation). However, the RDM has
its highest value for all stimulations except lateral1 when considering only
SEEG measurement positions. While considering the SEEG measurements,
as the number of EEG scalp electrodes increases, the RDM decreases for
intermediate simulation while it increases slightly for both deep and lateral1
stimulations.

4.6 Discussion

In this study, in-vivo conductivity estimation depends on optimizing the
parameters of the forward model given the real data. However, for having
a robust in-vivo conductivity estimation, the error function which estimates
the error between the forward model and the real data should have a high
sensitivity to the conductivity values. If the error function is not sensitive
to the conductivities, two different conductivity values of one compartment
can lead to the same resulted error. In other words, if the error function
is not sensitive to the conductivities, the optimization algorithm could find
more than one conductivity value as an optimal solution. Therefore, in this
chapter, a simulation study was performed to determine the sensitivity of
the error function to the conductivities.

The first obvious result that can be observed from this analysis is the
importance of the EEG scalp electrodes for in-vivo conductivity estimation
of the scalp and the skull compartments. This was noted by the increase in
the sensitivity of the error functions to the scalp and the skull conductivities
when the EEG potentials are added. A similar results were found by S.
Vallaghé [116] and J. Haueisen et al. [136] who concluded that the most
effect on the EEG potentials of the forward model is coming from the skull
and the scalp compartments which are located between the dipole and the
measurement positions. In addition, Vairis Caune have found in his PhD
thesis that localization of the sources is more accurate when considering the
nearer measurements when he performed source localization by intracerebral
electrodes [137]. However, when considering only the EEG measurements,
the sensitivity of the output error to the scalp and the skull conductivity
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were decreasing as more EEG electrodes were added. This decrease
(specially in RDM sensitivity) confirms the importance of a high number
of EEG scalp electrodes for performing an accurate source localization
[138] because the low sensitivity indicates that an erroneous scalp or skull
conductivity assignment does not affect significantly the output error if the
number of EEG electrodes is large. On the other hand, while considering
the SEEG measurements, adding more EEG measurements increases the
sensitivity of the error function to the scalp and the skull compartments,
this increase in the sensitivity which was caused by an increase in the error
can be explained by the different information that are coming from the deep
SEEG measurements and the scalp EEG measurement, so that as more
EEG electrodes are added to the SEEG the difference between the two
measurements leads to a higher error and a higher sensitivity.

Even though the RDM is very common in source localization and con-
ductivity estimation field [116, 13, 92], other error measurement functions
were considered like the relative error function [96]. When comparing the
sensitivity results of the relative error function to the sensitivity results of
the RDM, similarities do exists like the low sensitivity of the error function
to the scalp and the skull compartment when the EEG measurement are
not considered. However, the high and fixed sensitivity pattern to the
CSF compartment for different measurement positions cannot be explained.
Even though a fixed sensitivity pattern is important to get a robust in-vivo
conductivity estimation, this high sensitivity to the CSF change compared
to other compartments is not expected especially when the EEG measure-
ments are added. In one previous study for estimating the brain-to-skull
ratio in a FEM head model, Zhang et al. considered the relative error
and found that different stimulation positions, by subdural electrodes in
two epileptic patients, leads to different brain-to-skull conductivity ratio [96].

The sensitivity of the RDM to the scalp and the skull conductivities
was larger when considering the the five-compartment FEM head model
compared to the three-compartment FEM head model for the same mea-
surement positions. This indicates that there is dependency between the
conductivities of the different compartments, and the higher sensitivity
to the scalp and the skull conductivities which happened when the brain
compartment is divided into three different compartments (CSF, GM and
WM) is better for in-vivo conductivity estimation. Moreover, it was found
that these sensitivity results can be generalized to other subjects as shown
when the results of Patient(1) compared to the results obtained from the
head model of Patient(2). On the other hand, when performing in-vivo
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conductivity estimation, the neighbour nodes of the stimulation should not
be considered since these near nodes have large amplitudes compared to the
other nodes and because the current is not affected by the conductivity to
reach the near nodes. Even though the number of measurement positions
affect the sensitivity results, performing the sensitivity analysis for local
region around the stimulation did not change the results in a notable way.

In general, it can be said that the the brain compartments affect the
RDM when the SEEG measurement positions are considered, while the scalp
and the skull affect the RDM when the scalp EEG are considered. Even
though other studies have performed sensitivity analysis like the study of
G. Marin [13] and the study of S. Vallage [116], the different between the
results obtained from lateral1 and lateral2 in Patient(1) indicates that it is
not possible to do a comparison between different studies without knowing
the anatomical positions of the stimulation and the measurements. However,
this study strengthen the conclusion that J. Haueisen had stated in his study
that the output potentials is sensitive to the tissues that are close to the
measurement electrodes [136].

4.7 Summary

In-vivo conductivity estimation depends on minimizing the error between
the potentials of the forward head model and the real potentials by iterating
the conductivities in the forward head model. In order to have a robust
in-vivo conductivity estimation, the error function should be sensitive to
the changes in the conductivity values which are assigned in the forward
head model, otherwise more than one conductivity value can be the optimal
solution of in-vivo conductivity estimation. Hence, performing a sensitivity
analysis to measure the sensitivity of the error function to the conductivity
values is essential before performing real in-vivo conductivity estimation.
One way of performing the sensitivity analysis is known as “one-at-a-time”
sensitivity analysis in which each parameter (conductivity value) is set to
change to inspect its effect on the output error independently of the other
parameters.

In this work, a one-at-a-time sensitivity analysis was performed consid-
ering two different error functions: the relative error and the RDM. When
comparing the error functions, it was found that the RDM, gave a sensitivity
pattern more reasonable than the sensitivity pattern of the relative error. In
addition, the sensitivity analysis was performed given different stimulation
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positions and different measurement positions. The stimulation position
were classified according to their relative distance from scalp as deep,
intermediate and lateral stimulations. It was obvious from the results
that changing the distance of the stimulation from the scalp changes the
resulted sensitivity pattern. In addition, different positions for stimulations
of similar deepness leads to different sensitivity analysis as it was noted from
the results of lateral1 and lateral2. The difference between the results of
lateral1 and lateral2 can be explained by the difference of their orientation
which gives an importance to the anisotropy of the head model, or it can be
explained by the difference of the tissues in these positions which gives an
importance to the inhomogeneity of the head model. When changing the
measurement positions, it was found that the error function, in general, is
more sensitive to the scalp and the skull compartments when considering
the scalp EEG potentials. This confirms the importance of the scalp EEG
measurements for estimating the scalp and the skull conductivities.

It was shown in this chapter that the results are similar for two different
patients, and that neglecting the far electrodes from the stimulation does not
change the results notably. In addition, the difference between the pattern of
three-compartment head model and the five-compartment head model shows
that there is dependency between the conductivity values. In general, it is
concluded from this analysis that in-vivo conductivity estimation depends
on the position of the stimulation, the number of compartments and the
number of measuring electrodes, so in order for the study to have unbiased
results, more than one dipole position should be considered for conductivity
estimation and the estimated conductivities should be assigned in the head
model having the same number of compartments as the model considered for
estimation.



Chapter 5

In-vivo Conductivity
Estimation

It was shown in the first two chapters that EEG source localization depends
mostly on the geometry and the conductivity properties of the different
head tissues of the head model. Still, the conductivity values which are
found in the literature have large variances due to the different methods
by which they are obtained and due to the dependence of conductivity
values on the subject [92]. However, the materials which are considered for
localizing the epeliptogenic zone in epileptic patients provide new data which
can be exploited to discover other variables on which in-vivo conductivity
estimation depends. In addition, the intracerebral electrical stimulation
(IES) which are performed in the head of the epileptic patients provides a
determined source in the gray matter since its location, direction and time
course are known precisely. The stimulation is considered to move through
the different structures of the head only by propagation and not by axons.
Still there are limits for this method since the the head remains imperfect
with the reduced parameters and presents some geometric inaccuracies
and the power of the stimulation does not lead to a high signal-to-noise
ratio. However, the greatest difficulty of in-vivo conductivity estimation
that there is no possible validation because there is no actual values of
these conductivities. Therefore, the only option is to compare the estimated
conductivities with the values proposed in the literature and to discuss the
variations of the estimates given the different.

This chapter describes the analysis that were performed for in-vivo con-
ductivity estimation given the real measurements. The objective is to es-
timate the conductivities in the heads of three epileptic patients which are
assumed to contain five different structures. This estimation was based on the

119
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analysis of the SEEG/EEG data which were recorded in simultaneous with
IES in the head of each epileptic patient. The first section shows the the
results of in-vivo conductivity estimation of homogeneous and isotropic five-
compartment head models for three drug-resistant epileptic patients. Then
the analysis continued with specific conditions to examine if reducing the
number of electrodes gives more accurate results. After that, an analysis was
performed to find out if the compartments of the head are pure resistors or
if they have some capacitive effects. Finally, the a source localization of the
stimulation was performed given the estimated conductivity values as a way
to examine the robustness of our method.

5.1 Materials

In this study, in-vivo conductivity estimation was performed in a homoge-
neous and isotropic five-compartment FEM head model by an optimization
algorithm given the SEEG and the EEG measurements which were acquired
in simultaneous with IES as shown in Fig.5.1. For this purpose, the data
of three drug-resistant epileptic patients were considered: Patient(1) (male,
23 years old), Patient(2) (female, 34 years old) and Patient(3) (female, 21
years old). These patients were considered in a previous study by CRAN
laboratory for estimating in-vivo conductivity values in the head using the
radio frequency (50 kHz) and only for the gray matter and the white matter
[97]. From the acquired MRI and CT-scans of each patient, an isotropic
and homogeneous five-compartment (scalp, skull, CSF, GM and WM) FEM
head model was generated. In addition, EEG and SEEG measurements were
recorded in simultaneous with IES at different positions. The positions of
the stimulations were classified into three classes: Deep, intermediate and
lateral as shown in Fig.3.5. For each patient, a specific number of EEG and
SEEG electrodes were placed as shown in Table 5.1. Each IES was set to
five-second period. From the recorded five-second data, two seconds from the
beginning and one second from the end were neglected in order to decrease
the effect of the system baseline [139].

5.2 Preprocessing and Denoising

SEEG/EEG Signals

The acquired SEEG and EEG signals contain the stimulation, evoked poten-
tials due to stimulation, and physiological signals. In order to remove the
undetermined physiological and evoked signals from acquired signals, the
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Table 5.1: The number of SEEG electrodes, SEEG contacts and EEG
electrodes along with the position of the epileptogenic zone for each drug-
resistant epileptic patient.

Patient SEEG SEEG EEG Epileptogenic
electrodes contacts electrodes zone

Patient(1) 10 Left 107 19 Left basal temporal
and parahippocampal regions

Patient(2) 10 Right 106 20 Right mesial
and 2 Left temporal lobe

Patient(3) 14 Right 157 24 Right anterior
insular cortex

Figure 5.1: The overall procedure of signal and image analyses for in-vivo
conductivity estimation.
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singular spectrum analysis (SSA) in addition to the generalized eigenvec-
tor decomposition (GEVD) were considered. The combination of SSA and
GEVD was considered in this study because Hofmanis et al. have found in a
similar data that SSA/GEVD gave the best performance than other filtering
approaches for separating the stimulation from the brain activity [139]. This
signal processing method is briefly presented in the following:

Singular Spectrum Analysis

The SSA is a mono-dimensional non-parametric technique in which a se-
quence generated by a stochastic process {x(1), x(2), · · · , x(N)} is decom-
posed into a sum of independent components as shown in Fig.5.2. These
components can be classified as a trend, slowly oscillating components and
highly oscillating components. The decomposition can be summarized in
four main steps:

1. Generating a trajectory matrix T from the input signal.

2. Computing the eigenvalues and the eigenvectors of the covariance ma-
trix of T

3. Selection of the eigenvectors which corresponds to the desired compo-
nents.

4. Reconstruction of the one-dimensional vector

The acquired SEEG and EEG signals are ordered in a matrix form X of
M ×N dimension, where M is the number of channel while N is represents
the time elements. Each row vector x, representing a signal from one channel,
is entered to the SSA filter. The input sequence or signal is first converted
to a trajectory matrix T as shown in Eq.5.1, where the dimension of the
trajectory matrix depends on the selected window size L. In this study, the
window size was chosen in a way to have each pulse of the stimulation in a
separate vector (L = round(F

f
)) where F is the sampling frequency and f is

the frequency of the stimulation).

T =


x(1) x(2) · · · x(L)
x(2) x(3) · · · x(L+ 1)

...
...

. . .
...

x(N − L+ 1) x(N − L+ 2) · · · x(N)

 (5.1)

Then, the eigenvalues λ and eigenvectors U are calculated for the tra-
jectory matrix T . The eigenvalues are then ordered from the highest to
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the lowest. These eigenvalues indicate if the eigenvector is highly oscillat-
ing (small eigenvalue) or slowly oscillating (large eigenvalue). From these
eigenvectors the number I of components are considered and the trajectory
matrix is again constructed as shown in Eq.5.2.

T̂ = UIVI (5.2)

Where V = TU . Usually, as in here, the vector corresponding to the
highest eigenvector (I = 1) is chosen which corresponds to the trend of input
sequence. However, this filtered trend is then removed by the GEVD. Finally,
the components of the resulted matrix T̂ are averaged according to Eq.5.3.

y =


1
n

∑n
m=1 T̂ (m,n−m+ 1), 1 ≤ n ≤ L

1
L

∑L
m=1 T̂ (m,n−m+ 1), L+ 1 ≤ n ≤ N − L

1
N−n+1

∑N−L+1
m=1 T̂ (m,n−m+ 1), L+ 1 ≤ n ≤ N

(5.3)

Figure 5.2: The input signal to the SSA (left) is decomposed into signals
from slow oscillating to high oscillating (middle), the output (right) is the
output of the SSA after choosing the first component (I = 1) in Eq.5.2.

SSA decomposes the input signal into one non-periodic component corre-
sponding to biophysiological sources and the baseline, while the other compo-
nents are periodic corresponding to the stimulation as shown in Fig.5.2. How-
ever, in order to ensure that the eigenvalues of the biophysiological sources
are higher than those of stimulation source, a trend line ([-1500,1500] mi-
crovolt) was added to the input signal before applying the SSA, then it was
subtracted from the output signal after the filter [47].

Generalized Eigenvector Decomposition

The Generalized Eigenvector Decomposition (GEVD) is a filtering approach
that spatially filters mixed sources based on given information. This filter-
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ing method has been considered for electrocardiogram (ECG) decomposition
[140], MRI artifacts removal [141] and for filtering IES from background EEG
activity [139]. The GEVD solution depends on two matrices. The first ma-
trix corresponds to the correlation matrix (Eq.5.4) of the input signals Y
which has the dimension of M × N . While the second correlation matrix
(Eq.5.5) is calculated from the output of a temporal filtering function that
is applied to each row of the input matrix of the signals: S = H(Y ).

RY =
1

N
Y Y T (5.4)

RS =
1

N
SST (5.5)

The solution of the GEVD, gives the maximum of the Rayleigh quotient
as shown in Eq.5.6. Maximizing the Rayleigh quotient implies maximizing
the variance of the filtered SEEG/EEG signals while minimizing the variance
of the unfiltered SEEG signals. Maximizing the Rayleigh quotient leads the
two formulas that are shown in Eq.5.7

Q(E) =
ETRSE

ETRYE
(5.6){

ETRSE = Λ

ETRYE = IM
(5.7)

Where Λ is a matrix of the eigenvalues ordered in a descending order, E
is the M ×M matrix of the generalized eigenvectors and IM is the M ×M
identity matrix. The decomposed sources by the GEVD are given by V =
ETY . However, in order to remove the unwanted components from these
decomposed sources, the decomposed sources are multiplied by a diagonal
matrix of 0’s and 1’s where the 0’s corresponds to the unwanted components
while the 1’s corresponds the considered components. Finally the matrix
is multiplied by E−T in order to get the matrix of the signals without the
unwanted components as shown in Eq.5.8.{

Z = E−TGETY (5.8)

Where Z is the output of the GEVD filtering. In this study, the eigen-
vector that corresponds to the largest eigenvalue is considered to reconstruct
the filtered signals [47]. The magnitude of reconstructed signal or the propa-
gation coefficients were represented by the first row vector of the matrix E−T

as shown in Fig.5.3. The result of applying the SSA/GEVD to some SEEG
channels is shown in Fig.5.4.
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Figure 5.3: The propagation coefficients which are extracted from the mea-
surements. Where N is the number of the measuring electrodes.

Figure 5.4: A Sample of SEEG signals before preprocessing (upper left) after
SSA (upper right) and after SSA-GEVD (lower)
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Table 5.2: The number of considered stimulations for each drug-resistant
epileptic patients.

Patient Deep Intermediate Lateral
Patient(1) 6 3 3
Patient(2) 13 4 0
Patient(3) 4 4 4

5.3 Optimizing the Conductivities in the For-

ward FEM Head Model

The real potentials corresponding to the first row vector of E−T in GEVD
were compared to the potentials of the five-compartment FEM head models
by the RDM function as shown in Fig.5.1. The Nelder-Mead simplex, which
gave the best performance in simulation (as was found in Chapter 3), was
considered to find the optimal conductivities. Conductivity estimation was
carried out under constraints: the Nelder-Mead simplex was set to estimate
conductivities in the range of [0.03,0.99] S/m for scalp, [0.0008,0.0240] S/m
for skull, [0.18,5.73] for CSF, [0.03,0.33] S/m for GM and [0.01,0.42] S/m
for WM. These ranges were considered to cover the values that are found
in the literature for human head conductivities [15, 42, 97]. Estimating the
conductivities of the head compartments was performed for the three patients
considering:

• The potentials of the SEEG electrodes.

• The potentials of the SEEG and EEG electrodes.

• The potential of the EEG electrodes.

These different scenarios were performed in order to find out whether
adding the scalp EEG electrodes enhances the estimation when they are
added to the SEEG electrodes. Moreover, considering only the EEG elec-
trodes give an idea of whether the conductivities of the deep compartments
can be estimated by considering only the scalp measurements. Stimulations
were divided into deep, intermediate and lateral according to their positions
in the gray matter as shown in Fig.3.5. Table 5.2 shows the number of
stimulations which were considered for each patient. The results of in-vivo
conductivity estimation for the three patients is discussed in the following
subsection.
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Table 5.3: Resulted conductivities of Patient(1) given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.99 0.0082 0.18 0.64 0.10 0.23
0.22 0.0198 5.36 0.04 0.01 0.86

Deep 0.99 0.0071 0.18 0.78 0.11 0.23
0.99 0.0240 0.18 0.05 0.07 0.75
0.99 0.0059 0.18 0.04 0.06 0.29
0.99 0.0097 0.18 0.06 0.06 0.18
0.99 0.0050 0.18 0.13 0.37 0.17

Intermediate 0.99 0.0100 0.18 0.04 0.08 0.22
0.03 0.0008 0.20 0.06 0.42 0.50
0.99 0.0141 0.18 0.04 0.02 0.44

Lateral 0.95 0.0240 0.23 0.05 0.01 0.40
0.87 0.0208 0.27 0.05 0.01 0.49

5.3.1 SEEG-based in-vivo Conductivity Estimation

In-vivo conductivity estimation was performed for three drug-resistant
epileptic patients in an isotropic and homogeneous five-compartment FEM
head model for each patient given the SEEG signals which were acquired
in simultaneous with IES. The IES stimulations were acquired by 107
SEEG contacts, 106 SEEG contacts, and 157 SEEG contacts for Patient(1),
Patient(2) and Patient(3) respectively. These stimulations were divided
according to their depth in the brain as deep, intermediate and lateral as
shown in Fig.3.5.

Table 5.3 shows the results of in-vivo conductivity estimation for
Patient(1) considering the acquired SEEG potentials. The table shows that
the scalp value is equal to its upper bound value in most of the cases. This is
expected since the SEEG signals are recorded under the scalp compartment,
then it is not expected to have an accurate estimation for this compartment.
However, as the stimulation goes more lateral, as shown in the last two rows,
the scalp conductivity started to have lower values than the upper boundary.
When considering the RDM which is the main criteria for stopping the
optimization, it can be noted that the lower RDM (0.17) happened when
the conductivity of the gray matter is equal to 0.13 S/m which is the nearest
value to the common gray matter conductivity (0.33 S/m). Having the
greatest effect on the RDM by the gray matter conductivity is expected
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Table 5.4: The means (S/m) and the relative standard deviations (RSD% =
SD×100
mean

) of the resulted conductivities over all the selected stimulations of
Patient(1) considering the SEEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.86 0.0125 1.04 0.27 0.07
RSD% 36.6 60.6 202.9 128.8 49.6

Intermediate Mean 0.67 0.0053 0.19 0.08 0.29
RSD% 82.3 87.6 7.3 68.3 62.6

Lateral Mean 0.94 0.0196 0.23 0.05 0.02
RSD% 6.6 25.8 20.5 15.6 13.9

Table 5.5: The means (S/m) and the relative standard deviations (RSD% =
SD×100
mean

) of the resulted conductivities over all the selected stimulations of
Patient(2) considering the SEEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.40 0.0134 1.01 0.23 0.25
RSD% 95.8 64.3 163.5 75.7 63.1

Intermediate Mean 0.83 0.0197 0.18 0.50 0.32
RSD% 39.1 21.5 0.0 92.8 31.2

since the stimulation and most of the other SEEG contacts are situated
in the gray matter. Table 5.3 gives us information about the values which
have high resulted RDM, and which values are equal to the boundary of
the optimization algorithm. However, in order to get an overall view of the
resulted conductivities given the different stimulation positions and for the
different patients, the mean and the standard deviation over each deepness
were determined and compared with the other deepness and with the results
of the sensitivity analysis. While we kept the detailed results for all the
subjects in the appendix.

Table 5.4 shows the mean and the standeard deviation results of in-vivo
conductivity estimation for Patient(1) considering the acquired SEEG
potentials. It can be noted that the estimated scalp and skull conductivities
are in the range of the values which are found in the literature ([0.33-1.0]
S/m for scalp and [0.0042-0.05] for skull [42, 136]). Moreover, the variances
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Table 5.6: The means (S/m) and the relative standard deviations (RSD% =
SD×100
mean

) of the resulted conductivities over all the selected stimulations of
Patient(3) considering the SEEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.71 0.0190 0.32 0.12 0.08
RSD% 45.7 44.7 51.0 45.9 56.2

Intermediate Mean 0.20 0.0190 0.63 0.18 0.20
RSD% 66.3 40.4 90.7 63.4 74.5

Lateral Mean 0.59 0.0155 0.92 0.05 0.13
RSD% 80.4 63.4 160.9 72.4 153.3

of the estimated scalp and skull conductivities decrease as the stimulation
goes more lateral. The decrease in variances of the estimated scalp and
skull is expected since the sensitivity analysis in Fig.4.6 showed that the
sensitivity of the RDM to the scalp and the skull conductivities increases
when considering the lateral stimulation. In agreement with the sensitivity
analysis shown in Fig.4.6, the variance of the estimated CSF has its
lowest value when considering the intermediate stimulation. However, the
estimated CSF conductivity when considering the intermediate stimulation
is not similar to the common values which are found in the literature
(around 1.79 S/m [88]). Even though considering the deep stimulation
gives the highest variance of the estimated CSF, the estimated CSF when
considering the deep stimulation is similar to the CSF conductivity value
in the literature ([0.33-3] S/m [42, 136]). The GM and the WM have their
lowest variance when considering the lateral stimulation which agrees with
the sensitivity analysis results, since the RDM has a high sensitivity to
the GM and the WM when considering the lateral stimulation (as shown
in Fig.4.6 for lateral2 stimulation). However, the resulted GM and WM
conductivities when considering the lateral stimulation are far from the
common values which are found in the literature ([0.33-1] S/m for GM
and [0.14-0.48] for WM [42, 136]). The nearest estimated GM value to the
common GM conductivity (0.33 S/m [87]) was obtained when considering
the deep stimulation, although the estimated GM conductivity has a high
variance when considering the deep stimulation.

Table 5.5 shows the results of in-vivo conductivity estimation for
Patient(2) considering the acquired SEEG potentials. Even though the
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sensitivity analysis results (shown in Fig.4.33) did not show a remarkable
increase in the sensitivity of the RDM to the scalp and the skull conduc-
tivities between the deep and the intermediate stimulation, the resulted
variances of the scalp and the skull conductivities are lower when considering
the intermediate stimulation than when considering the deep stimulation.
However, the lower standard deviations of the estimated scalp and the skull
conductivities is expected when the stimulation becomes more closer the
scalp and the skull compartments. Moreover, the estimated scalp and skull
conductivities when considering both the deep and the intermediate stimu-
lation are in the range of common values in the literature ([0.33-1.0] S/m for
scalp and [0.0042-0.05] for skull [42, 136]). Even though the variance of the
estimated CSF conductivity is higher when considering the deep stimulation
(in contrary to the sensitivity results shown in Fig.4.33), the estimated CSF
value when considering the deep stimulation is similar to the common CSF
conductivity value ([0.33-3] S/m [42, 136]). In the case of intermediate
stimulation, the optimization return always the boundary of search for the
CSF conductivity (0.18 S/m), due to this the variance of the estimated CSF
conductivity is 0. The estimated GM and WM conductivities in both deep
and intermediate stimulation are in the range of the common conductivities
in the literature ([0.33-1] S/m for GM and [0.14-0.48] S/m for WM [42, 136]).

Table 5.6 shows the results of in-vivo conductivity estimation for Pa-
tient(3) considering the acquired SEEG potentials. It can be noted that the
estimated scalp and skull conductivities are in the range of the values which
are found in the literature ([0.33-1.0] S/m for scalp and [0.0042-0.05] for skull
[42, 136]). However, in contrary to the results of Patient(1) (shown in Table
5.4) the variances of the estimated conductivity have their highest values
when considering the lateral stimulation. In addition, the variance of the
estimated CSF conductivity has its lowest value when considering the deep
stimulation. Yet, all the estimated CSF conductivities are in the range of
the common conductivity values which are found in the literature ([0.33-3]
S/m [42, 136]). In contrast to the results of Patient(1) (shown in Table 5.4)
the variances of the estimated GM and WM conductivities have their highest
values when considering the lateral stimulation. The estimated GM conduc-
tivity for Patient(3) is not in the range of common GM conductivity values
([0.33-1] S/m [42, 136]). However, the estimated WM conductivities are in
the range of the common WM conductivity values ([0.14-0.48] S/m).
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Table 5.7: The means (S/m) and the relative standard deviations (RSD% =
SD×100
mean

) of the resulted conductivities over all the selected stimulations of
Patient(1) considering the EEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.54 0.0047 1.88 0.47 0.11
RSD% 46.4 200.0 93.7 76.6 143.7

Intermediate Mean 0.43 0.0009 2.70 0.77 0.25
RSD% 106.3 11.2 37.0 16.2 77.0

Lateral Mean 0.88 0.0037 3.77 0.15 0.04
RSD% 20.7 135.8 73.6 53.0 107.1

Table 5.8: The means (S/m) and the relative standard deviations (RSD% =
SD×100
mean

) of the resulted conductivities over all the selected deep stimulations
of Patient(2) considering the EEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.63 0.0046 1.97 0.37 0.17
RSD% 46.3 135.7 81.8 95.7 89.8

Intermediate Mean 0.73 0.0093 0.94 0.39 0.04
RSD% 33.3 37.3 140.8 105.8 46.7

5.3.2 EEG-based in-vivo Conductivity Estimation

In order to find out if considering the EEG signals give different results than
considering the SEEG signals, in-vivo conductivity estimation was performed
in isotropic and homogeneous five-compartment FEM head models of the
three drug-resistant epileptic patients given their EEG signals which were
acquired in simultaneous with IES. The IES were acquired by 19 EEG elec-
trodes, 20 EEG electrodes and 24 EEG electrodes for Patient(1), Patient(2)
and Patient(3) respectively. For each patient, the same stimulations which
were considered with SEEG recordings were considered with EEG recordings.

Table 5.7 shows the results of in-vivo conductivity estimation for
Patient(1) considering the EEG potentials. It can be noted that the
estimated scalp conductivities are in the range of the values which are
found in the literature ([0.33-1.0] S/m [42, 136]). Moreover, the variances
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Table 5.9: The means (S/m) and the relative standard deviations (RSD% =
SD×100
mean

) of the resulted conductivities over all the selected stimulations of
Patient(3) considering the EEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.82 0.0017 2.79 0.47 0.27
RSD% 23.5 81.7 75.8 84.6 72.0

Intermediate Mean 0.87 0.0022 1.42 0.54 0.10
RSD% 13.8 67.9 63.6 70.1 144.0

Lateral Mean 0.99 0.0008 1.91 0.51 0.30
RSD% 0.0 7.4 128.1 107.9 64.1

of the estimated scalp conductivities decrease as the stimulation goes more
lateral. Having smaller variances for the estimated scalp conductivities
agrees with the results of the sensitivity analysis which showed that the
sensitivity of the RDM to the scalp conductivity in the case of EEG
electrodes is largest when considering the lateral stimulation (as shown
in Fig.4.2 in the case of lateral1). The estimated skull conductivities in
Table 5.7 when considering the EEG recordings are in general smaller than
the estimated skull conductivities when considering the SEEG recordings
shown in Table 5.4. Having smaller estimated skull conductivities when
considering the EEG channels can be also noted in the results of Patient(2)
and Patient(3) (when comparing Table 5.8 to Table 5.5 and Table 5.9 to
Table 5.6). Getting smaller estimated skull conductivities when considering
the EEG recordings is expected since the signals pass by the highly resistive
skull compartment before being recorded by the EEG electrodes, while
the SEEG recordings do not pass by the skull compartment. Even though
the estimated skull conductivity has its lower variance in Table 5.7 when
considering the intermediate stimulation, its value is not in the range of
the estimated conductivities in the literature ([0.0042-0.05] S/m). However,
the estimated skull conductivities in the both the deep stimulation and the
lateral stimulation are in the range of the estimated skull conductivities in
the literature, and the variance of estimated skull conductivity is smaller
when considering the lateral stimulation which agrees the results of the
sensitivity analysis (shown in Fig.4.2).

The estimated CSF conductivities for Patient(1) when considering the
EEG recordings have the smallest variance when considering the intermedi-
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ate stimulation, these results are in accordance with the sensitivity analysis
results which showed that the sensitivity of the RDM to the CSF is higher
when considering the intermediate stimulation (as shown in Fig.4.2). In
general, the values of the estimated CSF conductivities when considering
the EEG recordings are in the range of the CSF conductivity which are
found in the literature ([0.33-3] S/m [42, 136]), and they are larger than
the estimated CSF conductivities when considering the SEEG recordings.
Since the stimulations were performed in the GM compartment, getting
accurate values of the CSF when considering the EEG electrodes is expected
since in this case the CSF compartment occurs between the stimulation
and the recordings. The GM has its lowest variance when considering
the intermediate stimulation which agrees the sensitivity analysis results,
since the RDM has a high sensitivity to the GM and when considering
the intermediate stimulation (as shown in Fig.4.6). However, although the
RDM has a higher sensitivity to the WM in the lateral stimulation than
in the intermediate stimulation, the estimated WM conductivity in lateral
stimulation has a high variance and does not fit in the range of the estimated
conductivities of the literature [0.14-0.48] S/m.

Table 5.8 shows the results of in-vivo conductivity estimation for
Patient(2) considering the acquired EEG potentials. It can be noted that
the estimated scalp and skull conductivities are in the range of the values
which are found in the literature ([0.33-1.0] S/m for scalp and [0.0042-0.05]
for skull [42, 136]). Even though the sensitivity of the RDM does not change
remarkably between the deep and the intermediate stimulation, the variance
of the estimated scalp and skull conductivities decreases when considering
the lateral stimulation. The estimated CSF and GM conductivities are in
the range of the conductivity which are found in the literature ([0.33-3]
S/m for CSF and [0.33-1] S/m for GM). In addition, in agreement with the
sensitivity results shown in Fig.4.29, the variances of the estimated CSF and
GM conductivities are smaller when considering the deep stimulation. In
spite of the fact that the estimated WM conductivity has smaller variance
when considering the intermediate stimulation, its value when considering
the intermediate stimulation does not fit in the range of the estimated
conductivities which are found in the literature (0.14-0.48 S/m [42, 136]).

Table 5.9 shows the results of in-vivo conductivity estimation for
Patient(3) considering the acquired EEG potentials. Even though the
estimated scalp conductivity has its smallest variance when considering
the lateral stimulation, its estimated value is equal to the boundary of the
optimization. However, the estimated scalp conductivities in the case of deep



134 CHAPTER 5. IN-VIVO CONDUCTIVITY ESTIMATION

and intermediate stimulations have small variance and fit in the range of
the estimated conductivities which are found in the literature. Similarly, the
estimated skull conductivity in the case of lateral stimulation is equal to the
boundary of the optimization, so this value cannot be considered. However,
in contrast to the scalp estimated values, the estimated skull conductivities
in the case of deep and intermediate stimulations do not fit in the range of
the estimated conductivities which are found in the literature. Nevertheless
these skull conductivity values are small compared to the estimated skull
conductivities when considering the SEEG recordings (shown in Table 5.6).
In agreement with the sensitivity analysis shown in Fig.4.2, the estimated
CSF and GM conductivities have the lowest variance when considering
the intermediate stimulation. In addition, all the estimated CSF and GM
conductivities fit in the range of the estimated conductivities which are
found in the literature ([0.33-3] S/m for CSF and [0.33-1] S/m for GM).
Similarly, in accordance with the sensitivity analysis shown in Fig.4.2 the
estimated WM conductivity has the lowest variance when considering the
lateral stimulation. Moreover, its values, in general, fit in the range of the
estimated values which are found in the literature.

5.3.3 SEEG+EEG-based in-vivo Conductivity Estima-
tion

Since the purpose of this work is to verify whether considering the SEEG
recording do enhance the conductivity estimation, in-vivo conductivity
estimation in isotropic and homogeneous five-compartment FEM head
models was performed for three drug-resistant epileptic patients given their
SEEG and EEG signals which were acquired in simultaneous with IES. The
IES stimulations were acquired by 107 SEEG/19 EEG, 106 SEEG/20 EEG,
and 157 SEEG/24 EEG sensors for Patient(1), Patient(2) and Patient(3)
respectively.

Table 5.10 shows the results of in-vivo conductivity estimation for
Patient(1) considering the acquired SEEG+EEG potentials. It can be noted
that the estimated scalp and skull conductivities are, in general, in the range
of the values which are found in the literature ([0.33-1.0] S/m for scalp and
[0.0042-0.05] for skull [42, 136]). Moreover, the variances of the estimated
scalp and skull conductivities decrease as the stimulation goes more lateral.
The decrease in variances of the estimated scalp and skull is expected since
the sensitivity analysis in Fig.4.6 showed that the sensitivity of the RDM to
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Table 5.10: The means (S/m) and the relative standard deviations
(RSD% = SD×100

mean
) of the resulted conductivities over all the selected stimu-

lations of Patient(1) considering the SEEG and the EEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.60 0.0152 0.22 0.30 0.14
RSD% 56.8 58.9 32.8 125.9 95.6

Intermediate Mean 0.31 0.0084 0.24 0.14 0.40
RSD% 77.9 78.5 30.5 52.7 6.3

Lateral Mean 0.95 0.0209 0.24 0.05 0.02
RSD% 7.4 26.0 27.0 18.0 14.2

Table 5.11: The means (S/m) and the relative standard deviations
(RSD% = SD×100

mean
) of the resulted conductivities over all the selected stimu-

lations of Patient(2) considering the SEEG and the EEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.53 0.0096 0.73 0.23 0.28
RSD% 75.7 71.3 178.4 73.8 55.0

Intermediate Mean 0.87 0.0187 0.18 0.47 0.30
RSD% 27.6 21.7 0.0 91.4 33.9

Table 5.12: The means (S/m) and the relative standard deviations
(RSD% = SD×100

mean
) of the resulted conductivities over all the selected stimu-

lations of Patient(3) considering the SEEG and the EEG potentials.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.38 0.0082 1.12 0.32 0.24
RSD% 119.7 123.4 86.3 87.0 74.9

Intermediate Mean 0.21 0.0183 0.64 0.19 0.20
RSD% 72.6 42.3 96.0 68.5 81.8

Lateral Mean 0.81 0.0127 0.94 0.29 0.08
RSD% 19.4 83.2 133.2 158.3 166.4
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the scalp and the skull conductivities increases when considering the lateral
stimulation. The estimated CSF conductivities do not fit in the range of the
estimated conductivities which are found in the literature, and they are sim-
ilar to the values obtained when considering the SEEG electrodes as shown
in Table 5.4 due to the large number of the SEEG electrodes compared to
the EEG electrodes. Even though the variance of the estimated GM conduc-
tivity becomes smaller as the stimulation goes more lateral, the estimated
GM conductivities when considering the the lateral and the intermediate
stimulations are not similar to the common conductivity values found in the
literature. As shown in Fig.4.7 the sensitivity of the RDM to the WM is
larger when considering the intermediate stimulation than when considering
the deep stimulation, in agreement to that result, it can be noted that the
variance of the estimated WM conductivity is smaller when considering the
intermediate stimulation. However, when considering the lateral stimulation,
the estimated WM conductivity value does not fit in the range of the con-
ductivities which are found in the literature even though its variance is small.

Table 5.11 shows the results of in-vivo conductivity estimation for
Patient(2) considering the acquired SEEG+EEG potentials. Even though
the sensitivity analysis results (shown in Fig.4.34) did not show a remarkable
increase in the sensitivity of the RDM to the scalp and the skull conduc-
tivities between the deep and the intermediate stimulation, the resulted
variances of the scalp and the skull conductivities are lower when considering
the intermediate stimulation than when considering the deep stimulation.
However, the lower variance of the estimated scalp and the skull conductivi-
ties is expected when the stimulation becomes more closer the scalp and the
skull compartments. Moreover, the estimated scalp and skull conductivities
when considering both the deep and the intermediate stimulation are in
the range of common values in the literature ([0.33-1.0] S/m for scalp and
[0.0042-0.05] for skull [42, 136]). The estimated CSF conductivity has a zero
variance when considering the intermediate stimulation, yet, the estimated
values are equal to the boundary of the optimization, therefore this mean
should not be considered. The estimated GM and WM conductivities are, in
general, in the range of the common conductivities in the literature ([0.33-1]
S/m for GM and [0.14-0.48] S/m for WM [42, 136]). Nevertheless, the
estimated WM conductivity has a smaller variance when considering the
intermediate stimulation although there is no remarkable difference between
the sensitivity results in the deep and intermediate case as shown in Fig.4.34.

Table 5.12 shows the results of in-vivo conductivity estimation for Pa-
tient(3) considering the acquired SEEG+EEG potentials. It can be noted
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that the estimated scalp and skull conductivities are, in general, in the range
of the values which are found in the literature ([0.33-1.0] S/m for scalp and
[0.0042-0.05] for skull [42]). In accordance with the sensitivity results shown
in Fig.4.7, the variance of the estimated scalp conductivity has its smallest
value when considering the lateral stimulation (in the sensitivity analysis the
RDM is sensitivity to the scalp conductivity in lateral1 stimulation). In ad-
dition, the variance of the estimated skull conductivity has its lowest value
when considering the intermediate stimulation which agrees the results of the
sensitivity analysis shown in Fig.4.7, since the RDM is sensitive to the skull
conductivity in the case of intermediate stimulation. The estimated GM con-
ductivity has its smaller variance in the case of intermediate stimulation, but
its value is not close to the conductivity values which are found in the liter-
ature. In addition, in contrast to the sensitivity analysis, which are shown
in Fig.4.7, the variance of the estimated GM conductivity is smaller when
considering the deep stimulation. For the WM conductivity, in contrary to
the sensitivity analysis, the variance of the estimated WM conductivity has
its largest value when considering the lateral stimulation. Yet, the estimated
WM conductivity fit in the range of the estimated conductivities which are
found in the literature when considering the stimulations which are nearer
to the WM (deep and intermediate stimulations).

5.4 Conductivity Estimation Given the

SEEG Measurements Within 50 mm

from IES

From the previous results, it was found that in order to have a robust
estimation of the compartment’s conductivity, the stimulation should be
close to that compartment. This can be explained by the fact that the
propagated stimulation potentials are inversely proportional to the square
of distance, so that the spatial energy decay is relatively fast and therefore
the measurements which are away from the stimulation are not significant
in the estimation process. In addition, previous results had a large variance
which may be due to the large number of measurements that are spread
over all the head of the patient. Hence, to find out whether reducing the
number of measurements reduces the variance of the resulted conductivities,
or enhances in-vivo conductivity estimation for some compartments; the
SEEG contacts which are within 50 mm distance from the stimulation were
considered for performing in-vivo conductivity estimation of Patient(1).
The 50 mm distance was chosen in order to have a sufficient number of
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measurements for performing in-vivo conductivity estimation.

Table 5.13 shows the results of in-vivo conductivity estimation for Pa-
tient(1) considering the acquired SEEG potentials within 50 mm of the stim-
ulation. It can be noted that the estimated scalp and skull conductivities
are, in general, in the range of the values which are found in the literature
([0.33-1.0] S/m for scalp and [0.0042-0.05] for skull [42, 136]). Although
the estimated scalp conductivity in the case of deep stimulation has a zero
variance, it cannot be considered since the estimated value is equal to the
boundary of the optimization. However, the variances of the estimated scalp
and the skull conductivities decrease as the stimulation goes more lateral as
found in Table 5.4. Similarly, the estimated CSF conductivity in the case of
deep stimulation is equal to the boundary of the optimization, so this value
cannot be considered even though its variance is equal to zero. In general,
the values of the estimated CSF are smaller than the common conductivity
value (1.79 S/m [88]), this can be explained by the fact that the stimulation
in addition to the measuring contacts are placed beneath the CSF compart-
ment, so its conductivity value cannot be well-estimated. In spite of having
a lower variance of the GM and WM when considering the lateral stimula-
tion (in agreement with the results found in Table 5.4), the estimated values
when considering the lateral stimulation are out of the range of the con-
ductivity values which are found in the literature ([0.33-1] S/m for GM and
[0.14-0.48] S/m for WM [42, 136]). However, the estimated GM and WM
conductivities when considering the deep stimulation fit in the range of the
values in the literature. This indicates the importance of having the stimula-
tion near the compartment in order to estimate its conductivity. In general,
the results found when considering the SEEG measurements within the 50
mm distance are similar to the results found when considering all the SEEG
measurements. This similarity had been found in the previous chapter when
the sensitivity pattern given all the measurements was compared with the
sensitivity pattern when considering the measurements which are within 50
mm of the stimulation. However, there are changes in the values of standard
deviations for some estimated conductivities (Skull, GM and WM) in the
vicinity of the stimulation: they are clearly smaller.

5.5 Head Conductivity Frequency Response

As was shown in Chapter 2, Poisson’s equation, Eq.2.3, is considered to solve
the forward problem for all head geometries. However to solve the Poisson’s
equation, the conductivity values should be first estimated. In the previous
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Table 5.13: The means (S/m) and the relative standard deviations
(RSD% = SD×100

mean
) of the resulted conductivities over all the selected stim-

ulations of Patient(1) considering the SEEG potentials within 50 mm from
the stimulation.

Position Resulted Conductivities
Scalp Skull CSF GM WM

Deep Mean 0.99 0.0093 0.18 0.57 0.13
RSD% 0.0 83.6 0.0 73.4 29.7

Intermediate Mean 0.88 0.0082 0.22 0.10 0.16
RSD% 22.1 23.9 34.0 31.7 33.3

Lateral Mean 0.93 0.0197 0.26 0.06 0.02
RSD% 11.2 23.1 45.6 23.3 18.9

section, we provide the resulted conductivity values that were obtained for
three epileptic patients assuming that the head conductivity does not depend
on the frequency of the stimulation. However, if the conductivity depends
on the stimulation frequency, then the Poisson’s equation would be written
in the form:

∇ · Jp = ∇ · (σ(f)∇V ) (5.9)

Where f is the frequency of the stimulating current. In the literature,
some publications have found that the conductivity values were not affected
by changing of the frequency [88], while others have found that the con-
ductivity values depend on the frequency of the stimulating current [95].
In this study, to examine the effect of changing the stimulation frequency
on the conductivity; conductivity estimation was performed for Patient(1)
considering the fundamental frequency of the IES (55 Hz) in addition to
its two harmonics (110 Hz and 165 Hz) as shown in Fig.5.5. Here instead
of considering the SSA to separate the stimulation signals from the noise;
a narrow band band-pass filter was applied to get the desired frequency
component of the stimulation signal.

As shown in Fig.5.6, for performing in-vivo conductivity estimation
for Patient(1), a head model with initial conductivities was built and its
simulated potentials were compared with the real potentials acquired from
the patient. The initial conductivities of the head model were chosen as:
0.33 S/m for scalp, 0.008 S/m for skull, 1.79 S/m for CSF, 0.33 S/m for
GM and 0.14 S/m for WM. The real potentials acquired from the patient
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Figure 5.5: A scheme showing the procedure for estimating the conductivities
in Patient(1) by considering the fundamental frequency (55 Hz) and the first
two harmonics (110 and 165 Hz).

were represented by the amplitude of the target frequency component. The
Nelder-Mead simplex algorithm was considered to estimate the conductivity
values by minimizing the RDM between the real potentials and the model’s
potentials. The Nelder-Mead simplex algorithm was set to search in the
positive values less than or equal to: 1 S/m for the scalp, 0.1 S/m for the
skull, 3 S/m for the CSF, 1 S/m for the GM and 1 S/m for the WM. For
each frequency component, conductivity estimation was performed first
considering the SEEG potentials and then considering both the SEEG and
EEG potentials. Fig.5.5, Table 5.14 and Table 5.15 show the resulted mean
and the standard deviation for each frequency component while the detailed
results are listed in the tables from Table A.11 to Table A.16.

From the results, it can be noted that, in general, the mean of the esti-
mated conductivities changes with changing the stimulation frequency. The
pattern of the scalp, the GM and the WM compartments did not change
after adding the EEG potentials to the SEEG. As shown in Fig.5.6, the scalp
conductivity increased with increasing the frequency, this support the con-
clusion of Dabek et al. about the increase in the scalp conductivity with
frequency [95]. The increase pattern is also noted in the GM conductivity.
However, the WM conductivity decreases with increasing the frequency while
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Figure 5.6: Resulted conductivities for Patient(1) given his SEEG and EEG
data.

Table 5.14: The means ± the standard deviations of the resulted conductivi-
ties over all the selected stimulations of Patient(1) given the SEEG potentials
and considering the fundamental frequency and the first two harmonics.

Resulted Conductivities
(Hz) Scalp Skull CSF GM WM
55 0.27 ± 0.33 0.0572 ± 0.0409 0.54 ± 0.80 0.11 ± 0.19 0.17 ± 0.35
110 0.51 ± 0.40 0.0225 ± 0.0263 0.55 ± 0.65 0.27 ± 0.34 0.14 ± 0.21
165 0.67 ± 0.35 0.0136 ± 0.0245 0.34 ± 0.24 0.30 ± 0.37 0.10 ± 0.09
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Table 5.15: The means ± the standard deviations of the resulted conduc-
tivities over all the selected stimulations of Patient(1) given the SEEG and
the EEG potentials and considering the fundamental frequency and the first
two harmonics.

Resulted Conductivities
(Hz) Scalp Skull CSF GM WM
55 0.06 ± 0.15 0.0343 ± 0.0397 0.63 ± 0.91 0.14 ± 0.15 0.31 ± 0.39
110 0.26 ± 0.38 0.0218 ± 0.0314 0.92 ± 0.90 0.42 ± 0.37 0.18 ± 0.27
165 0.30 ± 0.39 0.0385 ± 0.0405 0.89 ± 0.95 0.39 ± 0.34 0.16 ± 0.13

the patterns of the skull and the CSF are not uniformly changing. These re-
sults must be carefully interpreted because the standard deviations are large
with respect to the measurements. Even though there is a change in the
estimated conductivity values given the different frequency components of
the stimulation, this change may be due to the capacitive effect between the
stimulation electrode and the tissue of the head [5].

5.6 Localization of the IES with the Esti-

mated Conductivities

This part is included in this manuscript as an example of application. The
estimation of head conductivities has a definite interest in solving the inverse
problem, as has been specified in the first chapter, for performing source
localization. Since the main objective of this thesis is to provide conduc-
tivity values based on different conditions and parameters for improving
source localization, the robustness of these estimates can be examined by
performing source localization of the IES. The location of the stimulation
was estimated in the five-compartment FEM head model given the estimated
conductivities and the reference conductivities in the literature in order to
examine if the estimated conductivity outperform the reference conductivity.
For this purpose, the stimulation positions which gave RDM less than or
equal 0.25 in Patient(1) were considered. The estimated conductivities
with the resulted RDM of these stimulation positions are shown in Table 5.16.

In order to compare the estimated conductivities with the common con-
ductivities for source localization, the eLORETA (exact low resolution elec-
tromagnetic tomography) method was considered. The eLORETA has at-
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Table 5.16: The estimated conductivities along with their RDM which were
considered for performing source localization in Patient(1).

Index Signals IES position Resulted Conductivities Resulted
Scalp Skull CSF GM WM RDM

1 0.99 0.0082 0.18 0.64 0.10 0.23
2 SEEG Deep 0.99 0.0071 0.18 0.78 0.11 0.23
3 0.99 0.0097 0.18 0.06 0.06 0.18
4 SEEG Intermediate 0.99 0.0050 0.18 0.13 0.37 0.17
5 0.99 0.0100 0.18 0.04 0.08 0.22
6 SEEG-EEG Deep 0.67 0.0041 0.36 0.77 0.12 0.25

tained zero localization errors in ideal noiseless conditions [142]. In the for-
ward head model, the generated potentials are determined by the following
equation [142]:

Ji = (AT
i CAi)

−1/2AT
i CV (5.10)

Where Ji is the current density of each source i ∈ 3N , V is a (M × 1)
column vector of the recorded potentials and Ai is the ith column of the
(M × 3N) leadfield matrix. The lead field matrix contains the generated
potentials at the recording positions from each source. At each position, three
different sources can be generated by assigning three different orientations.
Therefore, the size of the leadfield matrix would be M × 3N where N is the
number of sources and M is the number of the measurements. The vector C
in Eq.5.10 is calculated by the following equation:

C = (AW−1AT + αH)+ (5.11)

Where W is a diagonal matrix of wii = 1, α is a constant greater than
zero, and (·)+ represent a psedu-inverse operation and H an (M × M)
matrix calculated by the following equation:

H = I − 11T

1T1
(5.12)

Where I is a M × M identity matrix and 1 is a M × 1 vector of one
elements. Since the number of elements in the FEM head model is large,
it is hard to generate a leadfield matrix considering all the elements in the
cortex. Due to this, the distance separating two arbitrary source positions
were chosen as 10 mm. By doing so, the number of arbitrary source positions
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Table 5.17: The resulted distances in mm between real source positions
and the source positions with the greatest amplitude given the estimated
conductivities and the reference conductivities. The index column indicates
to which stimulations in Table 5.16 these results correspond.

Index Estimated Conductivities Reference Conductivities
1 23.24 87.98
2 12.02 12.02
3 8.16 70.55
4 5.78 75.86
5 25.54 78.60
6 11.33 15.41

was 1106 in the GM of the head model as shown in Fig.5.7. From the
beginning of the columns of the matrix A, each three columns correspond to
three orthogonal orientation of one source position, due to this the number
of columns are 3318.

Figure 5.7: Left: The blue circles show the positions of the arbitrary sources
in the head model of Patinet(1). Right: The tetrahedron elements which
contains the arbitrary sources in the head model of Patient(1).

In this work, for each source position shown in Table 5.16, the leadfield
matrix was calculated twice: given the estimated conductivities, and given
the common conductivities [0.33, 0.008, 1.79, 0.33, 0.14] S/m. Normally, the
source which corresponds to the largest current density (i.e. max(J)) will
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have the nearest distance to the stimulation position. Therefore the posi-
tion of the source which has the maximum current density was compared
to the real position of the IES. Table 5.17 shows the distance in millimeters
between the determined source position by eLORETA and the real source
position given the estimated conductivities and the common conductivities.
The results in Table 5.17 shows that the performance of the estimated con-
ductivities is superior to the common conductivities for localizing the IES.
In addition, the small localization errors shown in Table 5.17 given the es-
timated conductivity indicates the accuracy of the eLORETA algorithm in
source localization. Moreover, the large localization errors resulted when
considering the common conductivities shows the importance of estimating
in-vivo conductivities before performing source localization.

5.7 Discussion

This chapter showed the results that were obtained from in-vivo conductivity
estimation of three drug-resistant epileptic patients. Most of the estimated
conductivities were in the range or close to the conductivity values which are
found in the literature [42, 136]. Although the ranges of the conductivities
which is found in the literature are very wide for comparing the results, when
an estimated conductivity lies in that range, it indicates that the method
which was considered for in-vivo conductivity estimation is reasonable.

As was found in many studies [92, 96, 105], we found that the mean
of the estimated conductivity values where different for different patients.
In addition, it was found here that the estimated mean conductivities
are different for the same patient when considering different stimulation
positions and different measurements. Moreover, the variances which were
determined given the same stimulation level (deep, intermediate and lateral)
were large. The large variance is due to the difference of the anatomical
position between two IES of one deepness since the distance between two
deep (intermediate or lateral) IES is at least 2 mm. Moreover there are
datasets for which estimates are not feasible; for which the RDM is greater
than 1. This means that the correlation between data and model is less than
or equal to 0.5. We believe that it is preferable to reject these solutions.
Such high RDM could be due to different reasons like: the data are still
disturbed despite the preprocessing and denoising, the segmentation of
the structures in the MRI is not optimal, the location of the IES and the
defined anatomical structures may not be optimal for the tools which are
implemented.
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Even though this study could not give precise values of conductivities to
be considered for future work, there are general conclusions and guidelines
which can be drawn from the obtained results. In general, and for all mea-
surements (SEEG, EEG and SEEG+EEG), the variances of the estimated
scalp and skull conductivites were decreasing for more lateral stimulations.
This decrease in the variance agrees with the results obtained from the
sensitivity analysis. Since the RDM is sensitive to the scalp and skull
conductivities given the lateral stimulation, a minimum conductivity value
is found, so the optimization can stuck most of the time with this minimum
value due to which the variance between the estimated conductivities would
be small. In addition, since lateral stimulation is nearer to the scalp and
the skull compartment, having a small variance of the estimated scalp and
the skull when considering the lateral stimulation is expected. However, the
sensitivity analysis results does not always agree with the obtained variances,
as for the GM and WM which have high variances when considering the
deep stimulation even though the RDM is not sensitive to the GM and
WM when considering the deep stimulation. Yet, the estimated GM and
WM conductivities when considering the deep stimulation were closer to
the conductivity values which are found in the literature since the deep
stimulation is closer to the GM and the WM compartments.

In general the estimated skull conductivity was larger when considering
the SEEG measurements than when considering the EEG measurements.
Having a lower skull conductivity when considering the EEG scalp electrodes
makes sense, since the current passes by this high-resistive compartment
before reaching the scalp EEG electrodes. From this, the lower brain-to-skull
conductivity ratio of 25 (over five subjects) which was obtained by Lai et
al. when considering the subdural measurements [105] compared to the
ratio of 44 (over two subjects) which was obtained by Acar et al. when
considering scalp EEG measurements [92] can be explained by the lower
skull conductivity which is obtained when considering the scalp EEG
measurements. In addition, the estimated CSF conductivities were closer to
the range found in the literature when considering the EEG measurements,
this is because in the case of the SEEG, both the IES and the measurements
are located beneath the CSF compartment. However, when considering
the EEG measurements, the CSF compartment is located between the
stimulation and the measurements.

Similar to the results which were obtained in Chapter 4, there was no
remarkable difference after reducing the number of measurements around
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the stimulating electrode. In addition, the results obtain when considering
the SEEG+EEG measurements were similar to the results obtained when
considering the SEEG measurements, because the number of the SEEG
measurements is larger than the number of the EEG measurements.
Moreover, when in-vivo conductivity estimation was performed considering
the different frequency components, the estimated means were different
for different frequency components. When considering SEEG or both
SEEG+EEG, the conductivity of the scalp and the GM were increasing as
the frequency increases but the conductivity of the WM was decreasing as
the frequency increases. The increase in the scalp conductivity with the
increase in stimulation frequency support the finding of Dabek et al. [95].
However, as it is emphasized earlier, it is necessary to remain very careful
since the variances are large and the variations of the estimates are not very
significant. Moreover, these changes in the estimated conductivities may
be due to the capacitive effects that are generated between the stimulation
electrode and the tissues of the head [5].

5.8 Summary

Source localization is performed by solving the inverse problem in the
forward head model. Hence, in order to do an accurate source localization
the geometry and the conductivity values of the forward head model should
be accurate. Currently, the geometry of the head model can be very similar
to the real geometries of the human head thanks to the MRI and the CT
scans. However, still the literature is full of different conductivity values
estimated on different subjects and using different methods. The materials
which are considered in this study for localizing the epiliptogenic zones
in the head of epileptic patients (SEEG/EEG + IES) are unprecedented
techniques, in the field of in-vivo conductivity estimation, to the best of our
knowledge.

In-vivo conductivity estimation by optimizing the forward head model is
performed by comparing the real potentials (SEEG/EEG) with the model
potentials, then changing the conductivity assigned in the head model until
the error between the model potentials and the real potentials reaches
its minimum value. In this study, the head model was assumed to be
isotropic and homogeneous and contains five compartments (scalp, skull,
CSF, GM and WM). In-vivo conductivity estimation was performed for
three different drug-resistant epileptic patients where the IES were classified



148 CHAPTER 5. IN-VIVO CONDUCTIVITY ESTIMATION

into three classes according to their deepness: deep, intermediate and
lateral. In general, the estimated conductivities in this study were in the
range of the conductivities which are found in the literature. This indicates
that our method is reasonable. However, the resulted standard deviations
were large in general. The large standard deviation could be due to the
difference in distance between one stimulation and another; even though
the stimulations were divided according to their deepness, still the distance
between one deep stimulation and another deep stimulation is at least 2
mm. The high variance in addition to the difference between the resulted
conductivities given different stimulation and different measurements give
an important remark for future studies. Away from the high variance
and the difference based on measurements and patients, there are general
important general points which can be concluded from this study: 1) The
skull conductivity is lower when considering the scalp EEG measurements
than when considering the SEEG measurement. 2) The standard deviation
of the estimated conductivity is lower when the stimulation is nearer to that
compartment. In a similar manner with the sensitivity analysis, neglecting
the measurements of the farthest electrodes did not change the result of
conductivity estimation notably.

The Poisson equation, on which in-vivo conductivity estimation is based
depends on the quasi-static condition which means that the frequency does
not affect the conductivity of the tissues. However, there are some studies
which have shown that the estimated conductivities change when chang-
ing the current frequency. In order to verify whether the conductivities are
frequency-dependent or not, in-vivo conductivity estimation was performed
given the fundamental frequency of the stimulation and its first two har-
monics. The results of this study shows that there is change in the mean
estimated conductivity as the frequency change. However, this change is ac-
companied with high variance. In addition, when determining the effect of
frequencies on different compartments one should keep in mind the capacitive
effect resulted between the electrodes and the tissues.



Chapter 6

Conclusion and Perspectives

6.1 Summary and Conclusion

This thesis introduced in-vivo conductivity estimation by optimizing the for-
ward head model given relatively new materials. These materials included
the simultaneous SEEG and EEG recordings of intercerebral electrical
stimulations. Apart from the introduction, four major topics were covered
in this these. The first part presented the generation of a homogeneous
and isotropic five-compartment (scalp, skull, CSF, gray matter and white
matter) FEM head model from the CT and the MRI of an epileptic patient.
We chose to refine the model into five anatomical compartments while other
studies in source localization considered spherical model or less number of
compartments. Obviously our model is very complex but in addition to
conductivity estimation our purpose was to calculate the sensitivity of the
model to certain configurations such as the position of the stimulation.
The second part performed a comparison among common optimization
algorithms in order to optimize the forward head model. The third part
analyzed the sensitivity of the output potentials to the input conductivities
given different conditions on the stimulation position, the measurement
positions and the number of compartments in the head model. While the
forth part provided some in-vivo conductivity results based on the conditions
which were applied in the sensitivity analysis. These major topics were
described in detail in the chapters from Chapter 2 to Chapter 5 of this thesis.

Chapter 2 introduces the Poisson equation from which the potentials in
a volume conduction model are determined given the quasi-static condition.
Then the Poisson equation was derived by the FEM method to calculate the
potentials from a dipolar source in a realistic head model generated from

149
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discretizing the head volume into tetrahedrons. In addition, the generation
of the realistic geometries from MRI and CT of the epileptic patients was
introduced. MRI and CT were segmented and registered in order to have a
five-compartment head model along with the positions of the intracerebral
electrodes.

In estimating in-vivo conductivities, the optimization algorithm plays a
major role since estimating in-vivo conductivities is based on optimizing the
forward head model. In order to choose a robust optimization algorithm,
Chapter 3 presented a method for comparing three common optimization
algorithms: the Nelder-Mead simplex algorithm, the genetic algorithm and
the simulating annealing. The comparison was performed in simulation
and given many different conditions on the stimulation position, the
measurement positions and the existence of noise. Given all the different
conditions, the Nelder-Mead simplex outperformed the genetic algorithm
and the simulating annealing in both speed and convergence to the solution.

Apart from the optimization algorithm, for obtaining a robust conduc-
tivity estimation, the error function comparing the model potentials with
the real potentials should be sensitive to the conductivity values, so that the
optimization algorithm can find a minimum solution. If the error function
is not sensitive, more than one result could be obtained as an optimal
solution. In Chapter 4, a one-at-a-time sensitivity analysis was performed
given different conditions on the stimulation positions, the measurement
positions, the error function and the number of compartments. It was found
in this chapter that the measurement positions and the stimulation position
have a great effect on the pattern of the sensitivity. In addition, by changing
the number of compartments, the sensitivity patterns changed indicating
the dependency between the conductivity values assigned in the different
compartments.

In Chapter 5, in-vivo conductivity estimation was performed for three
drug-resistant epileptic patients given the conditions which were considered
in Chapter 4. This chapter showed that in addition to the effect of inter-
subject variability, and method variability, the stimulation position and the
measurement positions lead to variability in the resulted conductivity values.
Moreover, the resulted conductivity values given different frequencies were
different showing that the resulted conductivity depends on the stimulation
frequency, however, this cannot be a decisive conclusion since the capacitive
effect between the electrodes and the tissue is uncontrolled. In general, the
five-compartment head model which were considered in this study is very rich
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compared to the spherical, and the BEM head models which were considered
in the literature. Due to this, the position of stimulation has a great effect
on such model and it is not enough to consider one stimulation position for
estimating in-vivo conductivities.

6.2 Perspectives

This thesis presented new contribution on the effect of considering SEEG
and/or EEG measurements and changing the position of the electrical stimu-
lation on in-vivo conductivity estimation. Even though the work has covered
many aspects, more possible extensions can be applied to this work in terms
of:

• Head Models: The work considered a homogeneous and isotropic
five-compartment FEM head model for estimating conductivities. The
large number of elements in such model is expected to play a major
role in making the resulted conductivities depends on stimulation posi-
tion and measurement position. In order to examine this, simpler head
models (like one-sphere, three-sphere and BEM head models) can be
considered in future studies with similar materials in order to check the
effect of stimulation position and the measurement positions. In simple
models (three-compartment), the different compartments can be sepa-
rated visually, so that the compartment that contains the stimulation
can be determined more easily than in five-compartment head models
where the the difference between the white matter and the gray matter
is very hard to distinguish.

• Stimulation position: Due to medical reasons, stimulation were not
performed more than one time in the same anatomical position. In
addition the positions and the number of intracerebral electrodes were
different for different patients according to their epilepsy. Due to this,
it was hard to fix the position variable while performing real in-vivo
conductivity estimation. It would be possible to check whether con-
ductivity estimation from the same position lead to the same results if
the IES were performed more than one time from the same anatomical
position. In addition, considering two patients with the same positions
and number of intracerebral electrodes will provide a valuable material
for measuring the inter-subject variability more precisely.

• Validation No additional information was considered in this study to
validate our estimated conductivity values. However, since the epileptic
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patients are investigated by a surgery and some of them are operated
by a resection surgery, small samples from their different compartments
can be taken in future studies and measured in-vitro. These measured
samples will form a reference values for in-vivo conductivity estima-
tion so that the purpose would be to obtain the best conditions and
parameters for obtaining such reference values.

• Localization The aim of this study was to provide the source localiza-
tion research with accurate conductivity values for performing source
localization. So, in order to examine the accuracy of estimated conduc-
tivities, source localization should be performed based on the estimated
conductivities and the reference conductivities in order to find out if
the estimated conductivities gives a better performance. However, such
source localization study should consider the position variable since our
estimated conductivities were position-dependent.
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Küpper, Harald Kugel, Marcel Heers, Jörg Wellmer, Christoph Kelling-
haus, Jens Haueisen, Stefan Rampp, et al. Combined eeg/meg can out-
perform single modality eeg or meg source reconstruction in presurgical
epilepsy diagnosis. PloS one, 10(3):e0118753, 2015.

[38] Manfred Fuchs, Michael Wagner, Hans-Aloys Wischmann, Thomas
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[53] Benjamin Lanfer, Christian Röer, Michael Scherg, Stefan Rampp,
Christoph Kellinghaus, and Carsten Wolters. Influence of a silastic ecog
grid on eeg/ecog based source analysis. Brain topography, 26(2):212–
228, 2013.
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and Théo Papadopoulo. Comparison of bem and fem methods for the
e/meg problem. In Proceedings of BIOMAG Conference, 2002.

[109] Geoffray Adde, Maureen Clerc, Olivier Faugeras, Renaud Keriven, Jan
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Table A.1: Resulted conductivities of Patient(1) given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.99 0.0082 0.18 0.64 0.10 0.23
0.22 0.0198 5.36 0.04 0.01 0.86

Deep 0.99 0.0071 0.18 0.78 0.11 0.23
0.99 0.0240 0.18 0.05 0.07 0.75
0.99 0.0059 0.18 0.04 0.06 0.29
0.99 0.0097 0.18 0.06 0.06 0.18
0.99 0.0050 0.18 0.13 0.37 0.17

Intermediate 0.99 0.0100 0.18 0.04 0.08 0.22
0.03 0.0008 0.20 0.06 0.42 0.50
0.99 0.0141 0.18 0.04 0.02 0.44

Lateral 0.95 0.0240 0.23 0.05 0.01 0.40
0.87 0.0208 0.27 0.05 0.01 0.49

Table A.2: Resulted conductivities of Patient(1) given his EEG potentials

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.38 0.0240 1.81 0.40 0.01 0.47
0.38 0.0008 5.18 0.26 0.42 0.88

Deep 0.96 0.0008 0.33 0.08 0.04 0.56
0.27 0.0009 2.25 0.90 0.01 0.77
0.61 0.0009 1.01 0.24 0.15 0.68
0.63 0.0010 0.73 0.90 0.03 0.67
0.95 0.0010 1.86 0.66 0.04 0.77

Intermediate 0.17 0.0008 3.80 0.76 0.29 0.80
0.16 0.0008 2.43 0.90 0.42 0.34
0.67 0.0095 0.57 0.20 0.08 0.29

Lateral 0.99 0.0008 5.37 0.06 0.01 0.79
0.99 0.0008 5.37 0.19 0.01 1.02
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Table A.3: Resulted conductivities of Patient(1) given his SEEG and EEG
signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.67 0.0041 0.36 0.77 0.12 0.25
0.03 0.0240 0.18 0.05 0.42 1.14

Deep 0.75 0.0098 0.18 0.78 0.10 0.26
0.38 0.0240 0.18 0.03 0.06 0.92
0.99 0.0078 0.18 0.05 0.07 0.35
0.76 0.0215 0.22 0.09 0.09 0.40
0.47 0.0118 0.32 0.17 0.37 0.42

Intermediate 0.41 0.0126 0.19 0.20 0.40 0.49
0.03 0.0008 0.20 0.06 0.42 0.51
0.99 0.0146 0.18 0.04 0.02 0.44

Lateral 0.87 0.0240 0.23 0.05 0.01 0.41
0.99 0.0240 0.31 0.06 0.01 0.50

Table A.4: Resulted conductivities of Patient(2) given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.46 0.0008 5.37 0.03 0.10 0.60
0.99 0.0116 0.30 0.16 0.01 0.60
0.03 0.0178 0.57 0.44 0.42 0.36
0.99 0.0130 0.18 0.07 0.42 0.20
0.99 0.0155 0.18 0.07 0.42 0.23
0.37 0.0240 0.18 0.16 0.12 0.53

Deep 0.60 0.0240 0.18 0.45 0.14 0.45
0.12 0.0112 0.65 0.35 0.27 0.26
0.28 0.0211 0.73 0.22 0.23 0.39
0.03 0.0230 0.33 0.09 0.23 0.20
0.08 0.0008 3.94 0.18 0.04 0.32
0.18 0.0105 0.18 0.14 0.42 0.16
0.03 0.0008 0.37 0.57 0.42 0.32
0.99 0.0217 0.18 0.12 0.42 0.22

Intermediate 0.99 0.0189 0.18 0.95 0.34 0.20
0.99 0.0141 0.18 0.08 0.18 0.12
0.34 0.0240 0.18 0.84 0.32 0.76
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Table A.5: Resulted conductivities of Patient(2) given his EEG potentials

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.40 0.0076 1.72 0.43 0.14 0.81
0.57 0.0240 1.10 0.03 0.42 0.73
0.89 0.0034 3.44 0.99 0.01 0.53
0.93 0.0024 4.45 0.12 0.42 0.69
0.47 0.0011 2.10 0.05 0.32 0.67
0.99 0.0041 0.18 0.03 0.06 0.80

Deep 0.99 0.0040 0.18 0.07 0.01 0.71
0.53 0.0008 5.34 0.43 0.15 0.71
0.40 0.0008 0.28 0.74 0.20 0.77
0.99 0.0056 1.75 0.04 0.01 0.65
0.11 0.0010 2.51 0.97 0.01 0.74
0.42 0.0023 1.56 0.35 0.26 0.63
0.52 0.0022 1.00 0.60 0.13 0.79
0.83 0.0132 0.26 0.31 0.04 0.71

Intermediate 0.77 0.0112 2.93 0.18 0.05 0.77
0.38 0.0072 0.18 0.99 0.01 0.78
0.95 0.0057 0.41 0.07 0.04 0.70
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Table A.6: Resulted conductivities of Patient(2) given his SEEG and EEG
signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.99 0.0053 0.18 0.05 0.42 0.57
0.99 0.0124 0.32 0.17 0.01 0.61
0.03 0.0025 0.50 0.37 0.42 0.36
0.99 0.0118 0.18 0.07 0.42 0.24
0.99 0.0137 0.18 0.07 0.42 0.27
0.76 0.0105 0.40 0.12 0.11 0.55

Deep 0.82 0.0240 0.18 0.51 0.15 0.46
0.15 0.0091 0.67 0.35 0.28 0.27
0.31 0.0182 0.75 0.22 0.23 0.40
0.35 0.0118 0.51 0.16 0.31 0.21
0.11 0.0008 4.99 0.24 0.05 0.34
0.24 0.0045 0.21 0.13 0.41 0.18
0.10 0.0008 0.38 0.59 0.42 0.32
0.99 0.0196 0.18 0.13 0.42 0.26

Intermediate 0.99 0.0166 0.18 0.97 0.34 0.23
0.99 0.0146 0.18 0.09 0.21 0.20
0.51 0.0240 0.18 0.70 0.23 0.78

Table A.7: Resulted conductivities of Patient(3) given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.37 0.0218 0.45 0.20 0.14 0.33

Deep 0.50 0.0239 0.47 0.11 0.09 0.33
0.99 0.0240 0.18 0.10 0.04 0.55
0.99 0.0063 0.18 0.07 0.05 0.56
0.03 0.0078 1.37 0.31 0.40 0.47

Intermediate 0.36 0.0203 0.79 0.18 0.15 0.24
0.19 0.0240 0.18 0.20 0.20 0.61
0.23 0.0240 0.18 0.03 0.05 0.43
0.03 0.0240 0.18 0.03 0.01 0.50

Lateral 0.99 0.0067 3.13 0.03 0.06 0.45
0.36 0.0073 0.18 0.11 0.42 0.49
0.99 0.0240 0.18 0.03 0.01 0.89
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Table A.8: Resulted conductivities of Patient(3) given his EEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.62 0.0008 2.82 0.51 0.42 0.70

Deep 0.98 0.0037 0.20 0.04 0.01 0.64
0.69 0.0014 2.76 0.34 0.22 0.67
0.99 0.0008 5.37 0.99 0.42 0.58
0.71 0.0011 2.44 0.54 0.05 0.75

Intermediate 0.86 0.0008 1.41 0.64 0.31 0.74
0.99 0.0028 1.58 0.03 0.01 0.48
0.93 0.0039 0.24 0.94 0.02 0.47
0.99 0.0008 0.18 0.03 0.36 1.03

Lateral 0.99 0.0008 5.37 0.99 0.42 0.37
0.99 0.0008 1.90 0.99 0.42 0.39
0.99 0.0009 0.18 0.03 0.01 0.74

Table A.9: Resulted conductivities of Patient(3) given his SEEG and EEG
signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.03 0.0023 1.54 0.52 0.38 0.70

Deep 0.46 0.0232 0.49 0.11 0.09 0.36
0.03 0.0036 2.29 0.60 0.42 1.17
0.99 0.0035 0.18 0.05 0.08 0.64
0.03 0.0076 1.47 0.34 0.42 0.48

Intermediate 0.41 0.0177 0.72 0.17 0.13 0.28
0.18 0.0240 0.18 0.20 0.19 0.62
0.23 0.0240 0.18 0.03 0.05 0.44
0.88 0.0240 0.18 0.03 0.01 0.97

Lateral 0.71 0.0060 0.61 0.97 0.01 0.47
0.65 0.0017 2.80 0.12 0.29 0.61
0.99 0.0192 0.18 0.03 0.01 1.05
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Table A.10: Resulted conductivities of Patient(3) given his SEEG signals
within 50 mm from stimulation

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.99 0.0010 0.18 0.99 0.12 0.15
0.99 0.0060 0.18 0.75 0.14 0.24

Deep 0.99 0.0072 0.18 0.99 0.18 0.19
0.99 0.0240 0.18 0.05 0.09 0.63
0.99 0.0086 0.18 0.58 0.15 0.19
0.99 0.0089 0.18 0.09 0.08 0.14
0.65 0.0066 0.31 0.11 0.15 0.13

Intermediate 0.99 0.0103 0.18 0.06 0.11 0.19
0.99 0.0076 0.18 0.12 0.21 0.22
0.99 0.0146 0.18 0.04 0.02 0.39

Lateral 0.81 0.0233 0.21 0.06 0.01 0.33
0.99 0.0212 0.40 0.07 0.01 0.57

Table A.11: Resulted conductivities of Patient(1) by the frequency compo-
nent 55 Hz given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.12 0.0170 1.84 0.00 0.00 0.53
0.01 0.0782 0.19 0.00 0.00 0.65

Deep 0.31 0.0713 2.46 0.00 0.00 0.57
0.00 0.0952 0.17 0.00 0.00 0.63
0.60 0.0995 0.06 0.66 0.11 0.37
0.30 0.0986 0.04 0.07 0.89 0.47
0.02 0.0398 0.01 0.01 0.01 0.35

Intermediate 0.17 0.0993 0.05 0.22 0.05 0.38
0.00 0.0000 0.79 0.16 0.96 0.32
0.94 0.0002 0.36 0.07 0.03 0.24

Lateral 0.80 0.0103 0.51 0.06 0.02 0.29
0.00 0.0772 0.02 0.01 0.00 0.39
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Table A.12: Resulted conductivities of Patient(1) by the frequency compo-
nent 110 Hz given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.00 0.0000 0.82 0.91 0.21 0.31
0.03 0.0863 0.24 0.17 0.04 0.47

Deep 0.00 0.0000 0.54 0.99 0.16 0.36
0.57 0.0545 2.38 0.00 0.00 0.67
0.98 0.0000 0.00 0.00 0.00 0.26
0.63 0.0334 0.15 0.28 0.18 0.18
0.53 0.0183 0.51 0.17 0.19 0.18

Intermediate 0.94 0.0326 0.37 0.13 0.13 0.22
0.75 0.0030 0.96 0.37 0.75 0.25
0.98 0.0037 0.21 0.07 0.03 0.18

Lateral 0.76 0.0222 0.42 0.09 0.02 0.28
0.00 0.0156 0.00 0.00 0.00 0.47

Table A.13: Resulted conductivities of Patient(1) by the frequency compo-
nent 165 Hz given his SEEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.54 0.0000 0.44 0.88 0.13 0.25
0.00 0.0000 0.74 0.96 0.18 0.38

Deep 0.47 0.0000 0.49 0.89 0.15 0.29
0.71 0.0117 0.64 0.00 0.00 0.57
0.93 0.0001 0.08 0.07 0.03 0.24
0.90 0.0018 0.07 0.04 0.03 0.14
0.88 0.0087 0.43 0.14 0.18 0.14

Intermediate 0.86 0.0122 0.20 0.06 0.09 0.19
0.87 0.0039 0.45 0.21 0.30 0.23
0.96 0.0817 0.09 0.22 0.06 0.20

Lateral 0.90 0.0421 0.47 0.13 0.03 0.32
0.00 0.0008 0.00 0.00 0.00 0.51
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Table A.14: Resulted conductivities of Patient(1) by the frequency compo-
nent 55 Hz given his SEEG and EEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.00 0.0000 1.30 0.32 0.61 1.00
0.00 0.0178 0.04 0.04 0.99 1.06

Deep 0.00 0.0045 0.01 0.01 0.21 1.02
0.00 0.0000 1.72 0.14 0.84 0.98
0.05 0.0964 0.09 0.27 0.03 0.87
0.07 0.0997 0.04 0.04 0.00 0.94
0.01 0.0164 0.01 0.00 0.00 0.85

Intermediate 0.09 0.0674 0.03 0.11 0.03 0.89
0.00 0.0001 0.68 0.14 0.83 0.64
0.00 0.0000 2.87 0.48 0.21 0.55

Lateral 0.54 0.0308 0.76 0.10 0.03 0.50
0.00 0.0782 0.02 0.01 0.00 0.42

Table A.15: Resulted conductivities of Patient(1) by the frequency compo-
nent 110 Hz given his SEEG and EEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.00 0.0000 1.47 0.99 0.27 0.33
0.00 0.0000 1.58 0.68 0.14 0.48

Deep 0.02 0.0002 0.29 0.99 0.13 0.38
0.00 0.0000 2.19 0.14 0.23 1.04
0.00 0.0369 0.03 0.06 0.01 0.75
0.23 0.0992 0.26 0.89 0.12 0.78
0.00 0.0000 2.78 0.21 0.18 0.69

Intermediate 0.40 0.0466 0.22 0.30 0.20 0.67
0.49 0.0057 0.98 0.38 0.80 0.25
0.99 0.0195 0.52 0.21 0.09 0.19

Lateral 0.98 0.0528 0.73 0.16 0.04 0.43
0.00 0.0011 0.00 0.00 0.00 0.55
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Table A.16: Resulted conductivities of Patient(1) by the frequency compo-
nent 165 Hz given his SEEG and EEG signals

IES position Resulted Conductivities Resulted RDM
Scalp Skull CSF GM WM
0.03 0.0003 0.30 0.88 0.11 0.27
0.00 0.0000 1.59 0.93 0.17 0.40

Deep 0.00 0.0000 0.83 0.99 0.16 0.31
0.00 0.0000 3.00 0.24 0.26 1.00
0.00 0.0898 0.27 0.36 0.08 0.64
0.36 0.0716 0.71 0.07 0.06 0.65
0.17 0.0144 2.39 0.26 0.26 0.58

Intermediate 0.42 0.0249 0.22 0.21 0.24 0.58
0.73 0.0106 0.65 0.32 0.47 0.24
0.99 0.0970 0.10 0.24 0.07 0.21

Lateral 0.94 0.0609 0.55 0.16 0.04 0.43
0.00 0.0930 0.02 0.01 0.00 0.62





In-vivo Human Head Conductivity Estimation by SEEG and EEG Recorded in
Simultaneous with Intracerebral Electrical Stimulation

Abstract: EEG source localization is becoming an important tool for treating epileptic patients by
localizing the epileptogenic zones before performing a resection surgery. Given a forward head model,
EEG source localization is performed by solving the inverse problem. The forward head model is a
biophysical model which describes the electrical distribution in the human head. When considering
the propagation as the only way for the current distribution to move in the head, the focus is directed
primarily on two parameters for having an accurate forward head model. These parameters are: the
geometry of the head model and the conductivity value of each compartment of the head model. Due to
the recent advances in computers and imaging techniques (like MRI and CT), it is possible to generate
human head models that represent with a high accuracy the geometry of the real head. However, there
is still an argument about the conductivity values and the method by which it should be estimated. In
literature, the common values for conductivities come mostly from in-vitro experiments. In this work we
are performing in-vivo conductivity estimation by considering the data of three epileptic patients. This
data consists of MR images and CT scans for building a five-compartment FEM head model for each
patient along with SEEG and EEG recordings that were acquired in simultaneous with intracerebral
electrical stimulation (IES). The originality of this work lies in evaluating the performance of in-vivo
conductivity estimation by EEG and/or SEEG measurements in function of different spatial parameters
and locations of the IES. The following work consists of three major parts: the first part aims to
determine the most robust optimization algorithm among common algorithms for optimizing the forward
head model. The objective of the second part is to analyze the sensitivity of the conductivity values given
different conditions on stimulation position, measurement positions and number of compartments. While
in the final part, the conductivities of an isotropic and homogeneous five-compartment FEM head model
were estimated with previously selected parameters for three drug-resistant epileptic patients. Finally
the effect of changing the stimulation frequency on the estimated conductivities was determined.

Key words: Conductivity estimation, Forward problem, Intracerebral electrical stimulation, Propagation
model, SEEG/EEG.

Estimation de conductivités cérébrales in vivo chez l’homme à partir de la stimulation
électrique et de mesures EEG intracérébrales et de scalp

Résumé: La localisation de source d’EEG devient un outil important pour traiter les patients atteints
d’épilepsie en localisant les zones épileptogènes avant d’effectuer une chirurgie de résection. Compte
tenu d’un modèle de tête direct, la localisation de la source EEG est réalisée en résolvant le problème
inverse. Le modèle de tête direct est un modèle biophysique de tête plus ou moins complexe qui décrit la
distribution électrique. En considérant la propagation électrique expliquant la distribution de potentiels,
outre la numérisation, le modèlenécessite le réglage deux paramètres lesquels sont la géométrie du
modèle de tête et la valeur des conductivités de chaque compartiment du modèle de tête. En raison des
progrès computationnel et des techniques d’imagerie (comme l’IRM et la CT), il est possible de générer
des modèles de tête humaine qui représentent avec une grande précision la géométrie de la tête réelle.
Cependant, il existe une incertitude sur les valeurs de conductivité de chaque compartiment et la méthode
avec laquelle ils devraient être estimés. Dans la littérature, les valeurs communes pour les conductivités
proviennent principalement des expériences in-vitro. Dans ce travail, nous effectuons une estimation de la
conductivité in-vivo à partir de données EEG/SEEG/Stimulation électrique de trois patients épileptiques.
Ces données sont constituées des images IRM et des CT SCAN pour la construction d’un modèle de tête
FEM à cinq compartiments pour chaque patient, ainsi que les enregistrements SEEG et EEG qui ont été
acquis en même temps que la stimulation électrique intracérébrale (IES). L’originalité de ce travail réside
dans l’évaluation de la performance de l’estimation des conductivités in-vivo par des mesures EEG et / ou
SEEG en fonction de différents paramètres spatiaux et de la localisation des IES. Le travail se compose de
trois parties principales: la première partie vise déterminer la méthode d’optimisation sous contraintes
la plus robuste parmi les algorithmes courants pour optimiser les paramètres du modèle direct de tête.
L’objectif de la deuxième partie est d’analyser la sensibilité des valeurs de conductivité à différentes
conditions sur la position de stimulation, le conditionnement du problème avec les positions de mesure
et leur nombre et le nombre de compartiments. Alors que dans la partie finale, les conductivités d’un
modèle de tête FEM isotrope et homogène à cinq compartiments ont été estimées avec des paramètres
précédemment déterminés pour les trois patients. Enfin, l’effet de la fréquence de stimulation sur les
conductivités estimées est analysé.

Mots clés: Estimation de conductivité, électrique intracérébrale stimulation, Modèle de propagation,
Problème direct, SEEG/EEG.
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