
HAL Id: tel-01709554
https://theses.hal.science/tel-01709554

Submitted on 15 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability Analysis of Uncertain Max Plus Linear
Systems

Renato Markele Ferreira Cândido

To cite this version:
Renato Markele Ferreira Cândido. Reachability Analysis of Uncertain Max Plus Linear Systems.
Automatic. Université d’Angers; Universidade estadual de Campinas (Brésil), 2017. English. �NNT :
2017ANGE0014�. �tel-01709554�

https://theses.hal.science/tel-01709554
https://hal.archives-ouvertes.fr

Renato Markele FERREIRA CÂNDIDO

Mémoire présenté en vue de l’obtention du
grade de Docteur de l'Université d'Angers
Docteur de l’Université de Campinas sous le
sceau de l’Université Bretagne Loire

École doctorale : Sciences et Technologies de l’Information, Mathématiques (STIM)

Discipline : 61
Spécialité : Sciences de l’Ingénieur
Unité de recherche : Laboratoire Angevin de Recherche en Ingénierie des Systèmes

Soutenue le 23/06/2017
Thèse N° : (10)

Analyse d’atteignabilité de systèmes max-plus

incertains

JURY

Rapporteurs : Isabel DEMONGODIN, Professeur des Universités, Université Aix-Marseille

José Eduardo RIBEIRO CURY, Professeur des Universités, Université Fédérale de Santa Catarina

Examinateurs : Paulo Augusto VALENTE FERREIRA, Professeur des Universités, Université de Campinas

Isabel DEMONGODIN, Professeur des Universités, Université Aix-Marseille
José Eduardo RIBEIRO CURY, Professeur des Universités, Université Fédérale de Santa Catarina
Mehdi LHOMMEAU, Maitre de Conférences, Université d’Angers

Directeur de Thèse : Laurent HARDOUIN, Professeur des Universités, Université d’Angers

Co-directeur de Thèse (13) : Rafael SANTOS MENDES, Professeur des Universités, Université de Campinas

* (instructions page en annexe)

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Renato Markele Ferreira Cândido

Reachability Analysis of Uncertain Max Plus Linear Systems

Análise de Alcançabilidade em Sistemas Max Plus Incertos

Campinas

2017

Renato Markele Ferreira Cândido

Reachability Analysis of Uncertain Max Plus Linear Systems
Análise de Alcançabilidade em Sistemas Max Plus Incertos

Thesis presented to the School of Electrical
Engineering of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Electrical Engineering, in
the area of Automation under the Cotutelle
Agreement between Unicamp and the Univer-
sity of Angers (France).

Tese apresentada à Faculdade de Engenharia
Elétrica e de Computação da Universidade
Estadual de Campinas como parte dos req-
uisitos exigidos para a obtenção do título de
Doutor em Engenharia Elétrica, na Área de
Automação no âmbito do Acordo de Cotutela
firmado entre a Unicamp e a Universidade de
Angers (França)

Supervisors/Orientadores: Prof. Dr. Rafael Santos Mendes, Prof. Dr. Laurent Hardouin Co-
Supervisor/Coorientador: Prof. Dr. Mehdi Lhommeau

Este exemplar corresponde à versão
final da tese defendida pelo aluno
Renato Markele Ferreira Cândido,
e orientada por Prof. Dr. Rafael
Santos Mendes e Prof. Dr. Laurent
Hardouin.

Campinas
2017

Agência(s) de fomento e nº(s) de processo(s): CNPq, 164765/2013-1; CAPES,
99999.002340/2015-01

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

 Cândido, Renato Markele Ferreira, 1988-
 C161r C_oReachability analysis of uncertain max plus linear systems / Renato

Markele Ferreira Cândido. – Campinas, SP : [s.n.], 2017.

 C_oOrientadores: Rafael Santos Mendes e Laurent Hardouin.
 C_oCoorientador: Mehdi Lhommeau.
 C_oTese (doutorado) – Universidade Estadual de Campinas, Faculdade de

Engenharia Elétrica e de Computação.

 C_oEm cotutela com: Université d'Angers.

 C_o1. Sistema a eventos discretos. 2. Sistemas incertos. 3. Verificação formal.

I. Mendes, Rafael Santos,1957-. II. Hardouin, Laurent. III. Lhommeau, Mehdi.
IV. Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e
de Computação. VI. Título.

Informações para Biblioteca Digital

Título em outro idioma: Análise de alcançabilidade em sistemas max plus incertos
Palavras-chave em inglês:
Discrete event systems
Uncertain systems
Formal verification
Área de concentração: Automação
Titulação: Doutor em Engenharia Elétrica
Banca examinadora:
Rafael Santos Mendes [Orientador]
José Eduardo Ribeiro Cury
Laurent Hardouin
Mehdi Lhommeau
Isabel Demongodin
Paulo Augusto Valente Ferreira
Data de defesa: 23-06-2017
Programa de Pós-Graduação: Engenharia Elétrica

Powered by TCPDF (www.tcpdf.org)

COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidato: Renato Markele Ferreira Cândido RA: 123228

Data da Defesa: 23 de junho de 2017

Título da Tese: “Reachability Analysis of Uncertain Max Plus Linear Systems” / "Análise
de Alcançabilidade em Sistemas Max Plus Incertos”

Prof. Dr. Rafael Santos Mendes (Presidente, FEEC/UNICAMP)
Prof. Dr. José Eduardo Ribeiro Cury (UFSC)
Prof. Dr. Laurent Hardouin (Université d’Angers)
Prof. Dr. Mehdi Lhommeau (Université d’Angers)
Profa. Dra. Isabel Demongodin (Aix-Marseille Université)
Prof. Dr. Paulo Augusto Valente Ferreira (FEEC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,
encontra-se no processo de vida acadêmica do aluno.

To my little nephew Guilherme, to whom I wish wisdom and strength to face the difficulties
and reach his goals.

To the people of Nelson de Sena, MG, Brasil. May this be the first of many PhD thesis in
town.

Acknowledgements

I thank you God for this amazing journey of personal and professional growth. For
putting amazing people in my path, whom I also owe thanks to.

I thank my supervisors Rafael, Laurent and Mehdi for giving me the precious op-
portunity to go to France to pursue my PhD, for the efforts they have made to solve all
bureaucratic issues, for the priceless reception in France, for the valuable comments and dis-
cussions that helped me develop my research and, of course, for the great dinners we had,
the French cuisine is really wonderful.

I would like to thank to the people from LARIS-ISTIA, where I had a good environ-
ment to develop my research, and to the professors from FEEC-UNICAMP, for the great
courses offered.

I thank to the Brazilian funding agencies CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico
e Tecnológico), for the financial support.

During my stay in Angers-France, I met very special people. I thank to the cou-
ple Nicolás and Patricia, for all the happy times we spent together, to everyone at Gym
Pulse/Angers, where I had good times. In special, I owe a lot of thanks to my friend and ex-
housemate Javier, who always helped me when I was in need and who was a great traveling
companion.

My stay in Campinas would not be so happy if I had not met my housemates. I would
like to thank them for the support, laughter, joking and for the tasty weekend lunches.

I owe a lot of thanks to my beloved parents Geraldo and Maria da Luz, whose im-
measurable effort allowed me to get here. Thanks to my sisters Cristiane and Camila, to my
uncles Corina and José Márcio, to my cousin Paulo César, to my brother-in-law Willian and
to my girlfriend Bianca, for all the support and love that you all gave me on this long journey.

Difficult to see. Always in motion is the future.
(Yoda)

Abstract
Discrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics are
entirely driven by the occurrence of asynchronous events over time. Linear equations in the
max-plus algebra can be used to describe DEDS subjected to synchronization and time delay
phenomena. The reachability analysis concerns the computation of all states that can be
reached by a dynamical system from an initial set of states. The reachability analysis problem
of Max Plus Linear (MPL) systems has been properly solved by characterizing the MPL
systems as a combination of Piece-Wise Affine (PWA) systems and then representing each
component of the PWA system as Difference-Bound Matrices (DBM). The main contribution
of this thesis is to present a similar procedure to solve the reachability analysis problem
of MPL systems subjected to bounded noise, disturbances and/or modeling errors, called
uncertain MPL (uMPL) systems. First, we present a procedure to partition the state space
of an uMPL system into components that can be completely represented by DBM. Then we
extend the reachability analysis of MPL systems to uMPL systems. Moreover, the results on
reachability analysis of uMPL systems are used to solve the conditional reachability problem,
which is closely related to the support calculation of the probability density function involved
in the stochastic filtering problem.

Keywords: Reachability Analysis; Conditional Reachability Analysis; Max Plus Linear Sys-
tems; Piece-Wise Affine Systems; Difference-Bound Matrices.

Resumo
Os Sistemas a Eventos Discretos (SEDs) constituem uma classe de sistemas caracterizada por
apresentar espaço de estados discreto e dinâmica dirigida única e exclusivamente pela ocor-
rência de eventos. SEDs sujeitos aos problemas de sincronização e de temporização podem ser
descritos em termos de equações lineares usando a álgebra max-plus. A análise de alcançabi-
lidade visa o cálculo do conjunto de todos os estados que podem ser alcançados a partir de
um conjunto de estados iniciais através do modelo do sistema. A análise de alcançabilidade
de sistemas Max Plus Lineares (MPL) pode ser tratada por meio da decomposição do sis-
tema MPL em sistemas PWA (Piece-Wise Affine) e de sua correspondente representação por
DBM (Difference-Bound Matrices). A principal contribuição desta tese é a proposta de uma
metodologia similar para resolver o problema de análise de alcançabilidade em sistemas MPL
sujeitos a ruídos limitados, chamados de sistemas MPL incertos ou sistemas uMPL (uncertain
Max Plus Linear Systems). Primeiramente, apresentamos uma metodologia para particionar
o espaço de estados de um sistema uMPL em componentes que podem ser completamente
representados por DBM. Em seguida, estendemos a análise de alcançabilidade de sistemas
MPL para sistemas uMPL. Além disso, a metodologia desenvolvida é usada para resolver
o problema de análise de alcançabilidade condicional, o qual esta estritamente relacionado
ao cálculo do suporte da função de probabilidade de densidade envolvida no problema de
filtragem estocástica.

Palavras-chaves: Análise de Alcançabilidade; Análise de Alcançabilidade Condicional; Sis-
temas Max Plus Lineares; Sistemas PWA; DBM.

List of Figures

Figure 1 – Railway network model (precedence graph). 24
Figure 2 – The precedence graph of 𝐴 (left) and corresponding critical graph (right). 28
Figure 3 – Region (left) and directed graph representation (right) of 𝐷 31
Figure 4 – Directed graph representation of 𝐷 (left) and its canonical form (right). 33
Figure 5 – A PWA system generated by an MPL system. 38
Figure 6 – reach tube for 𝑘 = {1, 2, 3} and backward reach tube for 𝑘 = {1, 2}. . . . 60
Figure 7 – Railway network model with uncertain travel times. 63
Figure 8 – A partitioned uMPL system. 69
Figure 9 – reach tube for 𝑘 ∈ {1, 2} (autonomous uMPL system). 85
Figure 10 – cyclic behavior of an uMPL system. 86
Figure 11 – reach tube for 𝑘 ∈ {1, 2} (nonautonomous uMPL system). 93
Figure 12 – backward reach tube for 𝑘 ∈ {1, 2} (autonomous uMPL system). 97
Figure 13 – backward reach tube for 𝑘 ∈ {1, 2} (nonautonomous uMPL system). . . 101
Figure 14 – Inverse image of x(1). 108
Figure 15 – conditional reach sets. The circles represent the real state values obtained

via simulation. 115
Figure 16 – Conditional reach sets for 𝑘 ∈ {1, ..., 59}. 116

List of Tables

Table 1 – Idempotent Semirings . 19
Table 2 – computation time to partition an uMPL system (average over 10 experiments) 73
Table 3 – Simulated state and measurement sequences. 113
Table 4 – Two uMPL systems. 116

Contents

1 Introduction . 14
2 Preliminaries . 18

2.1 Idempotent Semirings . 18
2.2 Linear Equations in Complete Dioids . 21
2.3 Max-Plus Linear Systems . 23
2.4 Difference Bounds Matrix . 29

2.4.1 Canonical Form Representation and Checking for Emptiness 32
2.4.2 Orthogonal Projection and Cartesian Product of DBM 34

2.5 Piece-Wise Affine Systems . 36
2.5.1 DBM Representation of PWA Systems 43

3 Reachability Analysis of MPL Systems . 48
3.1 Forward Reachability Analysis . 51

3.1.1 Forward Reachability Analysis of Autonomous MPL systems 52
3.1.2 Forward Reachability Analysis of Nonautonomous MPL systems . . . 53

3.2 Backward Reachability Analysis . 54
3.2.1 Backward Reachability Analysis of Autonomous MPL systems 55
3.2.2 Backward Reachability Analysis of Nonautonomous MPL systems . . 56

4 Uncertain Max-Plus Linear Systems . 62
4.1 Interval Analysis . 63
4.2 Partitioned Uncertain MPL systems . 66

4.2.1 DBM Representation of Partitioned uMPL systems 71
5 Reachability Analysis of uMPL systems . 77

5.1 Forward Reachability Analysis . 81
5.1.1 Forward Reachability Analysis of Autonomous uMPL systems 81
5.1.2 Forward Reachability Analysis of Nonautonomous uMPL systems . . 88

5.2 Backward Reachability Analysis . 93
5.2.1 Backward Reachability Analysis of Autonomous uMPL systems . . . 94
5.2.2 Backward Reachability Analysis of Nonautonomous uMPL systems . 97

5.3 Image and inverse image of a Point . 102
5.3.1 Image of a Point . 102
5.3.2 Inverse Image of a Point . 103

6 Application: Conditional Reachability Analysis of uMPL Systems 110
6.1 The Conditional Reachability Problem . 110

6.2 The Solution . 111
7 Conclusion . 117

Bibliography . 118

14

1 Introduction

Discrete Event Dynamic Systems (DEDS) are discrete-state systems whose dynamics
are entirely driven by the occurrence of asynchronous events over discrete time instants
(CASSANDRAS; LAFORTUNE, 2009, Sec. 1.3.2). Examples of DEDS include computer
systems, telecommunication networks, manufacturing lines and transportation systems. The
dynamics of such systems is often subjected to conflict, synchronization and time delay
phenomena. In a manufacturing line, for instance, a conflict appears when two or more parts
needs to be processed in a machine, at the same time, and it is necessary to decide which
part will be processed first. Synchronization requires the availability of several parts at the
same time. In a railway station, synchronization appears when a departing train must wait
for certain incoming trains in order to allow changeover of passengers. Time delay can be
associated to processing or traveling times, for instance.

DEDS subjected only to synchronization and time delay phenomena can be described
in terms of linear equations using the Max-Plus Algebra. The max-plus algebra is an idem-
potent semiring, an algebraic structure also called dioid (BACCELLI et al., 1992), in which
the operations of sum (⊕) and product (⊗) are defined as the maximization and addition,
respectively. Synchronization phenomena are modeled thanks to maximization: the start of a
task waits for the completion of the preceding tasks, while the delay phenomena are modeled
thanks to the classical sum: the completion time of a task is equal to the starting time plus
the task duration. Consider a railway station in which a departing train must wait for all
incoming trains. Assuming that the trains leave as soon as possible, the departure time of a
train is given by the maximum of the arrival times of all incoming trains. The arrival time at
a station is the sum of the departure time from the previous station plus the traveling time,
assumed to be known.

The linearity property has advantaged the emergence of a specific theory for the
performance analysis (HEIDERGOTT et al., 2006) and the control of these systems, e.g.,
optimal open loop control (COHEN et al., 1999; LHOMMEAU et al., 2005) and optimal
state-feedback control. Among closed-loop strategies we can cite the model matching prob-
lem (LHOMMEAU et al., 2003) and the control strategies allowing the state to stay in a
specific state subspace or semimodule (AMARI et al., 2012; KATZ, 2007; MAIA et al., 2011;
NECOARA et al., 2009; GONÇALVES et al., 2016).

The entries of Max-Plus Linear (MPL) system matrices are associated to system
delays such as processing or traveling times. These parameters are often subjected to noise

Chapter 1. Introduction 15

and disturbances, which should be taken into account in order to avoid tracking error or
closed loop instability (van den Boom; De Schutter, 2002). In general, these perturbations
are max-plus-multiplicative and appear as uncertainties in the max-plus model parameters.
As a result the system matrices are uncertain. The Stochastic Max-Plus Linear (SMPL)
systems are defined as MPL systems where the matrices entries are characterized by random
variables (OLSDER et al., 1990; HEIDERGOTT, 2006; van den Boom; De Schutter, 2002;
DILORETO et al., 2010; HARDOUIN et al., 2010).

To assess whether the system reaches a certain state from a set of initial conditions
is of great interest in many applications and concerns the reachability analysis. Consider for
instance the safety analysis problem (MITCHELL, 2007): given a system and a set of initial
states, the safety analysis aims to determine if the system can enter a specified set of unsafe
states. The reachability analysis can be used to determine whether trajectories of the given
system can reach the unsafe set from the initial set. Gazarik et al. (1999) use residuation
to determine if a state is reachable, via an MPL model, from a single initial condition and
to generate a control sequence to reach it. Gaubert e Katz (2003), show that if the initial
set is a rational semimodule the reachable set is also a rational semimodule. These authors
mention that this set has a “simple shape” and suggest that an efficient numerical method
remains to be designed. In Lu et al. (2012) reachability analysis of timed automata is tackled
by considering max-plus polyhedra, a more general class of sets than semimodules. For a
more exhaustive presentation on max-plus polyhedra, see Allamigeon et al. (2008). However,
it is not possible to employ related techniques for reachability analysis of MPL systems since
the two modeling frameworks are not comparable.

Under the requirement that the set of initial states is a max-plus polyhedron, forward
reachability analysis can be performed over max-plus algebra. Similarly, under the same
requirements, backward reachability analysis can be performed over the max-plus algebra,
where in addition the system matrix has to be max-plus invertible. Computationally, the
approach based on max-plus polyhedra can be advantageous since its time complexity is
polynomial. However, the requirements limit the applicability of the approach. To the best
of the author’s knowledge there exist no general approach for reachability analysis over max-
plus algebra. In Adzkiya et al. (2014b), forward reachability analysis of autonomous MPL
systems is alternatively addressed by characterizing the MPL system as a Piece-Wise Affine
(PWA) system and then representing the PWA system as a collection of Difference Bound
Matrices (DBM) (DILL, 1990). It is shown that, if the initial set is depicted as the union of
finitely many DBM, then the set of all states that can be reached via the model dynamics, at
any given event step, can also be depicted as the union of finitely many DBM, and therefore
it is possible to map DBM-sets through MPL systems. The authors state that any max-plus

Chapter 1. Introduction 16

polyhedra can be depicted as a union of DBM and claim that their approach is more general
than the one using max-plus polyhedra, the price to pay being a potential explosion in the
number of DBM during computations. Moreover in Adzkiya et al. (2014a), the approach has
also been applied to backward reachability analysis of autonomous MPL systems considering
a final set depicted as union of DBM despite the non invertibility of the max-plus linear
system. In Adzkiya et al. (2015), these results have been extended to nonautonomous MPL
systems. Experiments carried out in Adzkiya et al. (2015, Sec. 5) suggest that the potential
explosion in the number of DBM is not a problem and allows claiming the applicability of
the approach.

To describe an MPL system by means of DBM it is necessary to express it as a Piece-
Wise Affine System (PWA). This is always possible (HEEMELS et al., 2001) and it is done
by partitioning the state space into regions in which the system can be modeled by affine
equations (in classical algebra). The PWA system is the union of these affine subsystems
and the key point is that each affine system and its corresponding active state space region
can be independently represented by one DBM (see section 2.5.1). The main advantage of
this representation is the existence of many efficient algorithms for DBM manipulation and
its drawback is the upsizing of the representation of a MPL system from one compact state
equation to multiple DBM.

In this work, we aim to use a similar approach to analyze systems where the uncertain
parameters can vary over a known interval, herein defined as uncertain MPL (uMPL) systems,
as detailed in chapter 4. We do not seek to provide any stochastic analysis of these systems.
Thus, for the purposes of this work, the uMPL systems are treated as non-deterministic
systems (rather than stochastic systems). The approach is synthesized as follows. First, we
present a procedure to partition the uMPL systems into subsystems that can be fully repre-
sented by DBM. Then, we show that the image and the inverse image of a DBM w.r.t. each
subsystem of the partitioned uMPL system is again a DBM. This result made it possible to
extend most of the results presented in (ADZKIYA et al., 2014b; ADZKIYA et al., 2014a;
ADZKIYA et al., 2015) to uMPL systems. Then, for the forward reachability analysis, given a
set of initial conditions represented by a union of finitely many DBM, we present a procedure
to compute the sets of all states that can be reached at each event step, which can also be
represented by a union of finitely many DBM. Similarly, for the backward reachability anal-
ysis, given a set of final conditions represented by a union of finitely many DBM, we present
a procedure to compute the sets of all states that may lead to the set of final conditions in a
given number of steps. We also present a residuation-based procedure to compute the inverse
image of a point that is less expensive than the procedure based on the system partitioning.

Furthermore, we use the results on reachability analysis of uMPL system to solve the

Chapter 1. Introduction 17

conditional reachability problem. The conditional reachability analysis concerns the compu-
tation of the set of all states that may be reached from a set of initial states, in a given
event step, conditioned to a sequence of measures related to the state through an uMPL
equation. Closely related to conditional reachability is the filtering problem. Bayesian meth-
ods provide a rigorous general framework for filtering problem (GORDON et al., 1993). The
objective of the Bayesian state estimation is to construct the posterior Probability Density
Function (PDF) of the states based on all information available. In this context, the con-
ditional reachability analysis corresponds to the support calculation of the posterior PDF
of the uMPL system states. However, it should be noted that the conditional reachability
problem is not stochastic since it does not lead to an estimate of any probabilistic measure.
As an example of application, the conditional reachability analysis could be useful to improve
Particle Filtering algorithms. Particle Filters, or Sequential Monte Carlo methods, are subop-
timal Bayesian algorithms based on weighted-particle approximation of probability densities
(ARULAMPALAM et al., 2002; DOUCET et al., 2000). Particle filters applied to Max-Plus
systems have been studied in Silva et al. (2011), CÂNDIDO et al. (2013), CÂNDIDO e
MENDES (2014).

This work is organized as follows: Chapter 2 recalls the MPL systems and their de-
compositions as PWA systems, as well as the DBM representation of PWA systems generated
by MPL systems. Chapter 3 gives an overview of the methods for reachability analysis of
MPL systems presented in Adzkiya et al. (2014b), Adzkiya et al. (2014a), Adzkiya et al.
(2015). The main contribution appears in Chapter 4 which introduces the uMPL systems
and their descriptions by means of DBM. Chapter 5 extends reachability analysis to uMPL
systems. Chapter 6 defines and solve the conditional reachability problem by using the results
on reachability analysis for uMPL. Finally, Chapter 7 concludes the work. We shall remark
that chapters 4, 5 and 6 are based on a paper submitted to Automatica (Journal of IFAC),
which is, currently, in the third round of review (CÂNDIDO et al., 2017, Under Review to
Automatica).

18

2 Preliminaries

2.1 Idempotent Semirings
This section recall some basic concepts of idempotent semirings, an algebraic structure

also known as dioids (COHEN et al., 1989; BACCELLI et al., 1992).

Definition 2.1 (Idempotent semirings (COHEN et al., 1989, Def. 1)) A set 𝑆, en-
dowed with two internal operations: ⊕ (sum) and ⊗ (product); is an idempotent semiring or
dioid if the following axioms are verified:

Axiom 2.1 (Associativity)

∀𝑎, 𝑏, 𝑐 ∈ 𝑆

⎧⎪⎨⎪⎩(𝑎⊕ 𝑏)⊕ 𝑐 = 𝑎⊕ (𝑏⊕ 𝑐)

(𝑎⊗ 𝑏)⊗ 𝑐 = 𝑎⊗ (𝑏⊗ 𝑐)

Axiom 2.2 (Commutativity of addition)

∀𝑎, 𝑏 ∈ 𝑆 𝑎⊕ 𝑏 = 𝑏⊕ 𝑎

Axiom 2.3 (Distributivity of multiplication w.r.t addition)

∀𝑎, 𝑏, 𝑐 ∈ 𝑆

⎧⎪⎨⎪⎩(𝑎⊕ 𝑏)⊗ 𝑐 = (𝑎⊗ 𝑐)⊕ (𝑏⊗ 𝑐)

𝑐⊗ (𝑎⊕ 𝑏) = (𝑐⊗ 𝑎)⊕ (𝑐⊗ 𝑏)

Axiom 2.4 (Existence of a zero element 𝜀 and an identity element 𝑒)

∃𝜀 ∈ 𝑆 : ∀𝑎 ∈ 𝑆, 𝑎⊕ 𝜀 = 𝑎

∃𝑒 ∈ 𝑆 : ∀𝑎 ∈ 𝑆, 𝑎⊗ 𝑒 = 𝑎

Axiom 2.5 (Absorbing zero element)

∀𝑎 ∈ 𝑆, 𝑎⊗ 𝜀 = 𝜀⊗ 𝑎 = 𝜀

Axiom 2.6 (Idempotency of addition)

∀𝑎 ∈ 𝑆, 𝑎⊕ 𝑎 = 𝑎

Chapter 2. Preliminaries 19

Table 1 – Idempotent Semirings

𝑆 ⊕ ⊗ 𝜀 𝑒 Application Notation
R ∪ {+∞} min + +∞ 0 shortest path R𝑚𝑖𝑛

R ∪ {−∞} ∪ {+∞} min + +∞ 0 shortest path R𝑚𝑖𝑛

R ∪ {−∞} max + −∞ 0 widest path R𝑚𝑎𝑥

R ∪ {−∞} ∪ {+∞} max + −∞ 0 longest path R𝑚𝑎𝑥

R+ ∪ {−∞} max min 0 +∞ max capacity R+
𝑚𝑎𝑥,𝑚𝑖𝑛

[0, 1] max × 0 1
R+ max × 0 1 R+

𝑚𝑎𝑥,×
{0, 1} ∪ ∩ 0 1 logic B

In Table 1, taken from (QUADRAT, 1999, Chap. 1), are some examples of idempotent
semirings and its applications.

As in the classical algebra, the 𝑘𝑡ℎ power of 𝑎 ∈ 𝑆, denoted by 𝑎⊗𝑘, is defined as
𝑎⊗𝑘 = 𝑎⊗𝑘−1 ⊗ 𝑎, with 𝑎⊗0 = 𝑒.

In a dioid 𝑆, one has the following equivalence (BACCELLI et al., 1992, Th. 4.28):

∀𝑎, 𝑏 ∈ 𝑆, 𝑎 = 𝑎⊕ 𝑏⇐⇒ ∃𝑐 ∈ 𝑆 : 𝑎 = 𝑏⊕ 𝑐. (2.1)

This equivalence defines a partial order relation noted by ⪰ as follows:

𝑎 ⪰ 𝑏⇐⇒ 𝑎 = 𝑎⊕ 𝑏. (2.2)

This relation is compatible with sum and with left and right product, i.e.:

𝑎 ⪰ 𝑏 =⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎⊕ 𝑐 ⪰ 𝑏⊕ 𝑐, (sum)

𝑎⊗ 𝑐 ⪰ 𝑏⊗ 𝑐, (right product)

𝑐⊗ 𝑎 ⪰ 𝑐⊗ 𝑏, (left product)

Definition 2.2 (Complete dioid (BACCELLI et al., 1992, Def. 4.32)) A dioid is com-
plete if it is closed for infinite sums and Axiom 2.3 extends to infinite sums.

In a complete dioid the top element, denoted ⊤, exists and it is equal to the sum of
all elements in 𝑆 (BACCELLI et al., 1992, Sec. 4.3.3):

⊤ =
⨁︁
𝑥∈𝑆

𝑥. (2.3)

This element is absorbing for addition since ∀𝑎, ⊤⊕ 𝑎 = ⊤. Besides, according to axiom 2.5
⊤⊗ 𝜀 = 𝜀.

Chapter 2. Preliminaries 20

For a complete dioid, a new inner operation representing the lower bound of the
operands, denoted by ∧, can be constructed (BACCELLI et al., 1992, Sec. 4.3.4). The partial
order relation presented in (2.2) can be expressed as:

𝑎 ⪰ 𝑏⇐⇒ 𝑎 = 𝑎⊕ 𝑏⇐⇒ 𝑏 = 𝑎 ∧ 𝑏. (2.4)

This operation is associative, commutative, idempotent and has ⊤ as neutral ele-
ment: ∀𝑎, ⊤ ∧ 𝑎 = 𝑎. This operation has also a property called absorption law (DUBREIL;
DUBREIL-JACOTIN, 1964, p. 184), given by:

∀𝑎, 𝑏 ∈ 𝑆, 𝑎 ∧ (𝑎⊕ 𝑏) = 𝑎⊕ (𝑎 ∧ 𝑏) = 𝑎. (2.5)

Moreover, ⊗ is “subdistributive” w.r.t. ∧ (BACCELLI et al., 1992, Sec. 4.3.4):

∀𝑎, 𝑏, 𝑐 ∈ 𝑆,

⎧⎪⎨⎪⎩𝑐⊗ (𝑎 ∧ 𝑏) ≤ (𝑐⊗ 𝑎) ∧ (𝑐⊗ 𝑏),

(𝑎 ∧ 𝑏)⊗ 𝑐 ≤ (𝑎⊗ 𝑐) ∧ (𝑏⊗ 𝑐).
(2.6)

Neither the operation ∧ necessarily distribute over ⊕ or ⊕ necessarily distribute over
∧. However, ⊕ is “subdistributive” with respect to ∧, and ∧ is “superdistributive” with
respect to ⊕ (BACCELLI et al., 1992, Sec. 4.3.5), (COHEN et al., 1989, Sec. 2.2):

∀𝑎, 𝑏, 𝑐 ∈ 𝑆,

⎧⎪⎨⎪⎩(𝑎 ∧ 𝑏)⊕ 𝑐 ≤ (𝑎⊕ 𝑐) ∧ (𝑏⊕ 𝑐),

(𝑎⊕ 𝑏) ∧ 𝑐 ≥ (𝑎 ∧ 𝑐)⊕ (𝑏 ∧ 𝑐).
(2.7)

Definition 2.3 (Distributive dioid (BACCELLI et al., 1992, Def. 4.39)) A dioid 𝑆

is distributive if it is complete and, for all subsets 𝐶 of 𝑆,

∀𝑎 ∈ 𝑆,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︃⋀︁
𝑐∈𝐶

𝑐

)︃
⊕ 𝑎 =

⋀︁
𝑐∈𝐶

(𝑐⊕ 𝑎),(︃⨁︁
𝑐∈𝐶

𝑐

)︃
∧ 𝑎 =

⨁︁
𝑐∈𝐶

(𝑐 ∧ 𝑎).

Note that, if 𝑆 is distributive, the equality holds in (2.7).

The sum and product of matrices are defined as follows: If 𝐴, 𝐵 and 𝐶 are, respectively,
𝑛× 𝑝, 𝑛× 𝑝 and 𝑝× 𝑞 matrices with entries in a dioid 𝑆, then:

(𝐴⊕𝐵)𝑖𝑗 = 𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗, 𝑖 ∈ {1, ..., 𝑛}, 𝑗 ∈ {1, ..., 𝑝} (2.8)

(𝐴⊗ 𝐶)𝑖𝑗 =
𝑝⨁︁

𝑘=1
(𝑎𝑖𝑘 ⊗ 𝑏𝑘𝑗) , 𝑖 ∈ {1, ..., 𝑛}, 𝑗 ∈ {1, ..., 𝑞}. (2.9)

Chapter 2. Preliminaries 21

Example 2.4 Consider the matrices 𝐴, 𝐵 and 𝐶 with entries in R𝑚𝑎𝑥 (see Table 1), where:

𝐴 =

⎛⎜⎜⎜⎝
2 3 𝑒

𝜀 𝑒 4
4 1 𝜀

⎞⎟⎟⎟⎠ , 𝐵 =

⎛⎜⎜⎜⎝
1 𝜀 𝑒

3 4 2
3 1 𝑒

⎞⎟⎟⎟⎠ and 𝐶 =

⎛⎜⎜⎜⎝
1
𝑒

2

⎞⎟⎟⎟⎠ .

Then:

𝐴⊕𝐵 =

⎛⎜⎜⎜⎝
2⊕ 1 3⊕ 𝜀 𝑒⊕ 𝑒

𝜀⊕ 3 𝑒⊕ 4 4⊕ 2
4⊕ 3 1⊕ 1 𝜀⊕ 𝑒

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
2 3 𝑒

3 4 4
4 1 𝑒

⎞⎟⎟⎟⎠ ,

𝐴⊗ 𝐶 =

⎛⎜⎜⎜⎝
2⊗ 1⊕ 3⊗ 𝑒⊕ 𝑒⊗ 2
𝜀⊗ 1⊕ 𝑒⊗ 𝑒⊕ 4⊗ 2
4⊗ 1⊕ 1⊗ 𝑒⊕ 𝜀⊗ 2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
3
6
5

⎞⎟⎟⎟⎠ .

The set of 𝑛× 𝑛 matrices endowed with these two operations is also a dioid which is
denoted by 𝑆𝑛×𝑛 (COHEN et al., 1989, Sec. 2.3). The identity matrix of 𝑆𝑛×𝑛, denoted by
𝑒𝑛×𝑛, has entries equal 𝑒 on the diagonal and 𝜀 elsewhere. The null matrix, denoted by 𝜀𝑛×𝑛,
has all entries equal 𝜀.

The 𝑘𝑡ℎ power of 𝐴 ∈ 𝑆𝑛×𝑛 is denoted by 𝐴⊗𝑘, or equivalently 𝐴𝑘, and corresponds
to 𝐴𝑘 = 𝐴𝑘−1 ⊗ 𝐴. It should be noted that 𝐴0 corresponds to the identity matrix 𝑒𝑛×𝑛.
Moreover, the star operation is given by:

𝐴* =
⨁︁
𝑘∈N

𝐴𝑘. (2.10)

The partial order relation in 𝑆𝑛×𝑛 is defined as:

𝐴 ⪰ 𝐵 ⇐⇒ {𝑎𝑖𝑗 ⪰ 𝑏𝑖𝑗, ∀𝑖, 𝑗}. (2.11)

Since addition of matrices simply involves the addition of similar entries, 𝑆𝑛×𝑛 is
complete whenever 𝑆 is so (COHEN et al., 1989, Sec. 2.3). Moreover, if 𝑆𝑛×𝑛 is complete, for
any 𝐴 ∈ 𝑆𝑛×𝑛 and 𝐵 ∈ 𝑆𝑛×𝑛 it follows that:

(𝐴 ∧𝐵)𝑖𝑗 = 𝑎𝑖𝑗 ∧ 𝑏𝑖𝑗. (2.12)

2.2 Linear Equations in Complete Dioids
This section briefly review some basic concepts on solving linear equations in complete

dioids (BACCELLI et al., 1992) (COHEN et al., 1989). The most general system of linear

Chapter 2. Preliminaries 22

equations in a dioid is given by:

𝑎⊗ x⊕ 𝑏 = 𝑐⊗ x⊕ 𝑑, (2.13)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑆 and x ∈ 𝑆 is the unknown of the equation. The dioid 𝑆 is assumed to
be complete.

We are especially interested in a subclasse of this general equation given by:

𝑎⊗ x⊕ 𝑏 = 𝑑 (2.14)

Equation (2.14) admits a solution if and only if 𝑏 ⪯ 𝑑 and, even in this case, existence
and uniqueness are not guaranteed. However, if 𝑏 ⪯ 𝑑, it is possible to find the greatest
subsolution of equation (2.14). A subsolution of equation (2.14) is an x such that 𝑎⊗x⊕𝑏 ⪯ 𝑑.
Moreover, from (COHEN et al., 1989, Theorem 5) we have that, if x is the greatest subsolution
of (2.14) then x is also the greatest subsolution of :

𝑎⊗ x = 𝑑. (2.15)

Definition 2.5 (Residuation (COHEN et al., 1989, Def. 7)) The (left) residue of 𝑑

by 𝑎, denoted by 𝑎∖∘𝑑, is defined as the greatest subsolution of equation (2.14).

In (COHEN et al., 1989, Theorem 5) it is demonstrated that the following equalities
and inequalities hold true.

𝑎⊗ (𝑎∖∘𝑏) ≤ 𝑏 (2.16)

𝑎∖∘𝑎 ≥ 𝑒 (2.17)

𝑎⊗ (𝑎∖∘𝑎) = 𝑎 (2.18)

𝑒∖∘𝑎 = 𝑎 (2.19)

𝜀∖∘𝑎 =∞ (2.20)

(𝑎∖∘𝑏)⊗ 𝑐 ≤ 𝑎∖∘(𝑏𝑐) (2.21)

𝑎∖∘(𝑏∖∘𝑐) = (𝑏⊗ 𝑎)∖∘𝑐 (2.22)

(𝑎∖∘𝑏)⊕ (𝑎∖∘𝑐) ≤ 𝑎∖∘(𝑏⊕ 𝑐) (2.23)

(𝑎∖∘𝑏)⊕ (𝑐∖∘𝑏) ≤ (𝑎 ∧ 𝑐)∖∘𝑏 (2.24)

(𝑎∖∘𝑏) ∧ (𝑐∖∘𝑏) = (𝑎⊕ 𝑐)∖∘𝑏 (2.25)

(𝑎∖∘𝑏) ∧ (𝑎∖∘𝑐) = 𝑎∖∘(𝑏 ∧ 𝑐) (2.26)

Chapter 2. Preliminaries 23

The operator ∖∘ can be extended to matrices (see (BACCELLI et al., 1992, Lemma
4.83)). Let 𝐴 ∈ 𝑆𝑛×𝑝 and 𝐵 ∈ 𝑆𝑛×𝑚, then:

(𝐴∖∘𝐵)𝑖𝑗 =
𝑛⋀︁

𝑘=1
𝑎𝑘𝑖∖∘𝑏𝑘𝑗. (2.27)

Remark 2.6 Note that computing 𝐴∖∘𝐵 corresponds to perform a kind of matrix product
𝐴𝑇 ⊙𝐵, where 𝐴𝑇 is the transpose of 𝐴 and ⊙ is a new matrix product where the operations
⊕ and ⊗ are replaced by ∧ and ∖∘, respectively (COHEN et al., 1989, Theorem 8).

Therefore, the system of linear equations given by:

𝐴⊗ x = b, (2.28)

where 𝐴 ∈ 𝑆𝑛×𝑝 and b ∈ 𝑆𝑛×1, admits a greatest subsolution given by 𝐴∖∘b.

2.3 Max-Plus Linear Systems
The Max-Plus Linear (MPL) systems are discrete-event dynamic systems with con-

tinuous state space representing the dates of occurrence of the events involved in the system
modeling. The MPL systems are subject to synchronization phenomena and described in
terms of "linear" equations in the max-plus semiring (or max-plus algebra) (BACCELLI et
al., 1992, Chap. 3). The max- plus semiring, noted by R𝑚𝑎𝑥, is a complete idempotent semir-
ing and is defined as the set R ∪ {−∞} ∪ {∞} and the operations:

𝑎⊕ 𝑏 ≡ max{𝑎, 𝑏}. (2.29)

𝑎⊗ 𝑏 ≡ 𝑎 + 𝑏. (2.30)

Moreover, the operations ∧ and ∖∘ are defined as follows:

𝑎 ∧ 𝑏 ≡ min{𝑎, 𝑏}, (2.31)

𝑎∖∘𝑏 ≡ 𝑏− 𝑎. (2.32)

The identity and the zero element of the Max-Plus semiring are, respectively, 𝑒 = 0
and 𝜀 = −∞, the top element is ⊤ = ∞. According to (2.4), in this algebraic structure, a
partial order relation is defined by:

𝑎 ⪰ 𝑏⇔ 𝑎 = 𝑎⊕ 𝑏⇔ 𝑏 = 𝑎 ∧ 𝑏. (2.33)

Chapter 2. Preliminaries 24

S2S1

3

5

2 3

Figure 1 – Railway network model (precedence graph).

Remark 2.7 Note that R𝑚𝑎𝑥 is linearly ordered with respect to ⊕ and the order ⪰ in R𝑚𝑎𝑥

coincides with the usual linear order ≥ (LITVINOV; SOBOLEVSKIĪ, 2001).

The basic max-plus operations can be extended to matrices as presented in (2.8),
(2.9), (2.12) and (2.27).

The autonomous model of an MPL system is given by:

x(𝑘) = 𝐴⊗ x(𝑘 − 1), (2.34)

where 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 is a matrix that represents the minimal delay between two events. The
entries of 𝐴 are the parameters of the model. The variable 𝑘 ∈ N is an event-number and
the state vector x ∈ R𝑛

𝑚𝑎𝑥 is a dater, i.e, x(𝑘) contains the 𝑘-th date of occurrence of each
event of the system.

The MPL systems are used to model a wide range of discrete-event systems subject to
synchronization phenomena, such as, manufacturing systems, telecommunication networks,
railway networks, and parallel computing (BACCELLI et al., 1992, Sec. 1.2).

Example 2.8 (see (CASSANDRAS et al., 1995, Sec. 0.1)) Consider a public trans-
portation system consisting of two stations 𝑆1 and 𝑆2 and four rail tracks. The structure of
the system is given in Figure 1. It is assumed that the train company operates one train on
each track initially; the travel times are fixed as indicated on the arcs; trains scheduled to de-
part must wait for all arriving trains before departing to allow for changeover of passengers;
and departures occur as soon as possible. Thus, departures from a station 𝑆𝑖, 𝑖 = {1, 2} will
occur at the same time, denoted by 𝑥𝑖(𝑘). The first departure times are assumed to be known
and given by x(0). The 𝑘-th departure times are given by x(𝑘), where x(𝑘) = (𝑥1(𝑘) 𝑥2(𝑘))𝑇 .

Given these conditions, departures from 𝑆1 must wait for the train arriving from the
same station, which takes 2 time units of time, as well as the train arriving from 𝑆2, which
takes 5 units of time. Similarly, departures from 𝑆2 must wait for the train arriving from the
same station as well as the train arriving from 𝑆1. Therefore, the earliest departure times are

Chapter 2. Preliminaries 25

given by: ⎛⎝𝑥1(𝑘)
𝑥2(𝑘)

⎞⎠ =
⎛⎝max{2 + 𝑥1(𝑘 − 1), 5 + 𝑥2(𝑘 − 1)}

max{3 + 𝑥1(𝑘 − 1), 3 + 𝑥2(𝑘 − 1)}

⎞⎠ .

This system is nonlinear in the conventional algebra, however it can be expressed as
the following linear system in the max-plus algebra.

⎛⎝𝑥1(𝑘)
𝑥2(𝑘)

⎞⎠ =
⎛⎝2 5

3 3

⎞⎠⊗
⎛⎝𝑥1(𝑘 − 1)

𝑥2(𝑘 − 1)

⎞⎠ ,

= 𝐴⊗ x(𝑘 − 1). (2.35)

The nonautonomous model of an MPL system is defined by considering an external
input u in (2.34):

x(𝑘) = 𝐴⊗ x(𝑘 − 1)⊕𝐵 ⊗ u(𝑘), (2.36)

where 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥, 𝐵 ∈ R𝑛×𝑚

𝑚𝑎𝑥 .

A nonautonomous MPL system can be transformed into an augmented autonomous
MPL model by considering 𝐹 = (𝐴 𝐵) ∈ 𝑅̄𝑛×(𝑛+𝑚)

𝑚𝑎𝑥 and y(𝑘 − 1) =
(︁
x(𝑘 − 1)𝑇 u(𝑘)𝑇

)︁𝑇

(BACCELLI et al., 1992, Sec. 2.5.4).

x(𝑘) = 𝐹 ⊗ y(𝑘 − 1). (2.37)

Example 2.9 Consider a nonautonomous MPL system given by:

x(𝑘) =

⎛⎜⎜⎜⎝
3 2 2
𝑒 1 3
2 1 𝑒

⎞⎟⎟⎟⎠⊗ x(𝑘 − 1)⊕

⎛⎜⎜⎜⎝
𝑒 𝜀

𝜀 𝑒

𝜀 𝜀

⎞⎟⎟⎟⎠⊗ u(𝑘),

where x(𝑘) ∈ R3
𝑚𝑎𝑥 and u(𝑘) ∈ R2

𝑚𝑎𝑥.

The corresponding augmented autonomous MPL model is given by:

x(𝑘) =

⎛⎜⎜⎜⎝
3 2 2 𝑒 𝜀

𝑒 1 3 𝜀 𝑒

2 1 𝑒 𝜀 𝜀

⎞⎟⎟⎟⎠ 𝑣y(𝑘 − 1),

where y(𝑘 − 1) = [𝑥1(𝑘 − 1) 𝑥2(𝑘 − 1) 𝑥3(𝑘 − 1) 𝑢1(𝑘) 𝑢2(𝑘)]𝑇 ∈ R5
𝑚𝑎𝑥.

Chapter 2. Preliminaries 26

In the following, the classical concepts of eigenvalue and eigenvector are exported to
max-plus systems (BACCELLI et al., 1992, Sec. 3.2.4), i.e., given a matrix 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 we
consider the problem of existence of eigenvalues 𝜆 and eigenvectors 𝜉 such that:

𝐴⊗ 𝜉 = 𝜆⊗ 𝜉. (2.38)

The solution of this problem depends on the notion of matrix irreducibility, which
follows from the definition of precedence graph and strongly connected graph. Moreover, we
present the notions of critical graph and cyclicity of a graph.

Definition 2.10 For a matrix 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥, the following notions are defined:

Precedence graph: The precedence graph of a matrix 𝐴 is a weighted directed graph
with vertices 1, ..., 𝑛 and an arc (𝑗, 𝑖) with weight 𝑎𝑖𝑗 for each 𝑎𝑖𝑗 ̸= 𝜀 (BACCELLI et
al., 1992, Def. 2.8).

Strongly connected graph: The precedence graph of 𝐴 is called strongly connected
if for any two different nodes 𝑖 and 𝑗 there exists a path from 𝑖 to 𝑗 (BACCELLI et
al., 1992, Sec. 2.2).

Irreducible matrix: The matrix 𝐴 is called irreducible if its precedence graph is
strongly connected (BACCELLI et al., 1992, Th. 2.14).

Length of a path: A path in a graph is a sequence of nodes (𝑖1 → 𝑖2 → · · · → 𝑖𝑘).
The length of a path is equal to the sum (in the classical algebra) of the lengths of the
arcs of which it is composed, the lengths of the arcs being 1 unless otherwise specified
(BACCELLI et al., 1992, Sec. 2.2).

Cycle mean: The mean weight of a path in the precedence graph of 𝐴 is defined as the
sum of the weight of the individual arcs of this path, divided by the length of this path.
If such a path is a circuit (𝑖1 → 𝑖2 → · · · → 𝑖1) one talks about the mean weight of the
circuit, or simply the cycle mean (BACCELLI et al., 1992, Def 2.18). The maximum of
these cycle means is called maximum cycle mean. All the operations are in the classical
algebra.

Critical circuit: A circuit of the precedence graph of 𝐴 is critical if its mean weight
attains the maximum cycle mean in the precedence graph of 𝐴 (BACCELLI et al., 1992,
Def. 3.94).

Critical graph: The critical graph of 𝐴 consists of those nodes and arcs which belong
to a critical circuit of the precedence graph of 𝐴, the weights are set to be equal to 𝑒

(BACCELLI et al., 1992, Def. 3.94).

Chapter 2. Preliminaries 27

Cyclicity: The cyclicity of a strongly connected graph is the greatest common divisor
g.c.d of the lengths of all its circuits. The cyclicity of a general graph is the least
common multiple of the cyclicities of all its strongly connected subgraphs (BACCELLI
et al., 1992, Def. 3.94).

Proposition 2.11 (see (BACCELLI et al., 1992, Th. 3.23)) If 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 is irreducible
there exists one and only one eigenvalue (but possibly several eigenvectors). This eigenvalue
corresponds to the maximum cycle mean of the precedence graph of 𝐴 and is equal to:

𝜆 =
𝑛⨁︁

𝑗=1

(︁
𝑡𝑟𝑎𝑐𝑒(𝐴𝑗)

)︁1/𝑗
. (2.39)

Where, for any 𝐵 ∈ R𝑛×𝑛

𝑚𝑎𝑥 and 𝑎 ∈ R𝑚𝑎𝑥:

𝑡𝑟𝑎𝑐𝑒(𝐵) =
𝑛⨁︁

𝑖=1
𝑏𝑖𝑖, (𝑎𝑗)1/𝑗 = 𝑎.

The following result can be found in the proof of (BACCELLI et al., 1992, Th. 3.23).

Proposition 2.12 Let 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 be an irreducible matrix and define 𝐵 = 𝜆−1 ⊗ 𝐴 and
𝐵+ = 𝐵 ⊗𝐵*, where 𝜆 is the eigenvalue of 𝐴. Then, the matrix 𝐵+ has at least one column
with diagonal entry equal to 𝑒 (the maximum circuit weight in the precedence graph of 𝐵 is
𝑒) and this (these) column(s) is (are) eigenvector(s) of 𝐴 corresponding to the eigenvalue
𝜆. The set of all eigenvectors corresponding to the eigenvalue 𝜆 is the eigenspace noted by
𝐸(𝐴) = {𝑥 ∈ R𝑛

𝑚𝑎𝑥 : 𝐴⊗ 𝑥 = 𝜆⊗ 𝑥}.

It should be noted that, given a matrix 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 with maximum cycle mean 𝜆,
the matrix 𝐵 = 𝜆−1 ⊗ 𝐴 (which corresponds to 𝐵 = −𝜆 + 𝐴 in the classical algebra) has
maximum cycle mean equal to 𝑒. Therefore, since there are no circuits in the precedence
graph of 𝐵 with positive weight, the existence of 𝐵* is guaranteed (see (BACCELLI et al.,
1992, Th. 3.20)).

Proposition 2.13 follows from the cyclicity theorem of the max-plus algebra (BAC-
CELLI et al., 1992, Sec. 3.7), (GAUBERT; PLUS, 1997, Th. 14), (HEIDERGOTT et al.,
2006, Th. 3.9).

Proposition 2.13 Let 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 be an irreducible matrix. There is an integer 𝐾0(𝐴) such
that:

𝑘 ≥ 𝐾0(𝐴)⇒ 𝐴𝑘+𝑐 = 𝜆𝑐𝐴𝑘, (2.40)

where 𝑐 is the cyclicity of the critical graph of 𝐴 and 𝜆 is the eigenvalue of 𝐴. The smallest
𝐾0(𝐴) verifying this proposition is called the transient time of 𝐴.

Chapter 2. Preliminaries 28

S2S1

3

5

2 3 S2S1

e

e

Figure 2 – The precedence graph of 𝐴 (left) and corresponding critical graph (right).

Proposition 2.13 implies the existence of a periodic behavior of an MPL system.

Corollary 2.14 (see (HEIDERGOTT et al., 2006, Sec. 3.1)) Given an MPL system
characterized by an irreducible matrix 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 and an initial conditions x(0), there exists
a finite integer 𝑘0(x(0)) such that:

𝑘 ≥ 𝑘0(x(0))⇒ x(𝑘 + 𝑐) = 𝜆𝑐x(𝑘), (2.41)

where 𝑐 is the cyclicity of the critical graph of 𝐴 and 𝜆 is the eigenvalue of 𝐴.

Remark 2.15 Notice that for a given set of initial conditions x(0), it is possible to seek for
a specific length of the transient part 𝑘0(𝑥(0)), which is, in general, less conservative than the
global 𝐾0(𝐴), i.e, 𝑘0(𝑥(0)) ≤ 𝐾0(𝐴).

Example 2.16 In Example 2.8 we described the railway network model as a MPL system
x(𝑘) = 𝐴⊗ x(𝑘 − 1), with

𝐴 =
⎛⎝2 5

3 3

⎞⎠ .

In Figure 2 we recall the precedence graph of 𝐴 and present the corresponding critical
graph. According to Definition 2.10, the precedence graph of 𝐴 is strongly connected, and
therefore the matrix 𝐴 is irreducible. The precedence graph of 𝐴 has three circuits: (𝑆1 → 𝑆1)
with length 1, (𝑆1 → 𝑆2 → 𝑆1) with length 2 and (𝑆2 → 𝑆2) with length 1. Thus, the cyclicity
of 𝐴 is given by 𝑔.𝑐.𝑑(1, 2, 1) = 1. The critical graph of 𝐴 has one circuit (𝑆1 → 𝑆2 → 𝑆1)
with length equal to 2. Therefore the cyclicity of the critical graph of 𝐴 is 𝑐 = 2.

The maximum cycle mean of the precedence graph of 𝐴, or equivalently, the eigenvalue
of 𝐴 is given by (2.39):

𝜆 =
2⨁︁

𝑗=1

(︁
𝑡𝑟𝑎𝑐𝑒(𝐴𝑗)

)︁1/𝑗
= 𝑡𝑟𝑎𝑐𝑒(𝐴)1 ⊕ (𝑡𝑟𝑎𝑐𝑒(𝐴2))1/2,

Chapter 2. Preliminaries 29

since

𝐴2 =
⎛⎝2 5

3 3

⎞⎠⊗
⎛⎝2 5

3 3

⎞⎠ =
⎛⎝8 8

6 8

⎞⎠ ,

we have that:
𝜆 = (2⊕ 3)1 ⊕ (8⊕ 8)1/2 = 3⊕ (8)1/2 = 3⊕ 4 = 4.

According to Corollary 2.14, it follows that there exists a 𝐾0(𝐴) such that:

𝑘 ≥ 𝐾0(𝐴)⇒ x(𝑘 + 2) = 42 ⊗ x(𝑘) = 8⊗ x(𝑘).

Indeed, for x(0) = (𝑒 𝑒)𝑇 , the following sequence x(𝑘), 𝑘 = 1, 2, · · · is observed:⎛⎝𝑒

𝑒

⎞⎠ ,

⎛⎝5
3

⎞⎠ ,

⎛⎝8
8

⎞⎠ ,

⎛⎝13
11

⎞⎠ ,

⎛⎝16
16

⎞⎠ ,

⎛⎝21
19

⎞⎠ ,

⎛⎝24
24

⎞⎠ ,

⎛⎝29
27

⎞⎠ , · · ·

Therefore, one can conclude that for all 𝑘 ≥ 0, x(𝑘 + 2) = 8𝑥(𝑘), 𝑥(0) = [𝑒 𝑒]𝑇 and 𝑥(1) =
[5 3]𝑇 .

To calculate the eigenvector(s) corresponding to the eigenvalue 𝜆 = 4 we define the
matrix:

𝐵 = 𝜆−1 ⊗ 𝐴 = 4−1 ⊗

⎛⎝2 5
3 3

⎞⎠ = −4⊗
⎛⎝2 5

3 3

⎞⎠ =
⎛⎝−2 1
−1 −1

⎞⎠ .

The matrices 𝐵* and 𝐵+ are:

𝐵* = 𝑒⊕𝐵 =
⎛⎝𝑒 𝜀

𝜀 𝑒

⎞⎠⊕
⎛⎝−2 1
−1 −1

⎞⎠ =
⎛⎝ 𝑒 1
−1 𝑒

⎞⎠ .

𝐵+ = 𝐵 ⊗𝐵* =
⎛⎝−2 1
−1 −1

⎞⎠⊗
⎛⎝ 𝑒 1
−1 𝑒

⎞⎠ =
⎛⎝ 𝑒 1
−1 𝑒

⎞⎠ .

From Proposition 2.12 it follows that 𝜉 = [𝑒 − 1]𝑇 and 𝜉 = [1 𝑒]𝑇 are eigenvectors of
𝐴 corresponding to the eigenvalue 𝜆 = 4. According to (2.38), if we set the initial conditions
of the system to be equal to an eigenvector of 𝐴, the periodic behavior of the system will be
given by x(𝑘 + 1) = 𝐴x(𝑘) = 𝜆x(𝑘) = 4x(𝑘) for all 𝑘 ≥ 0. Indeed, for x(0) = [1 𝑒]𝑇 the
following sequence is observed:⎛⎝1

𝑒

⎞⎠ ,

⎛⎝5
4

⎞⎠ ,

⎛⎝9
8

⎞⎠ ,

⎛⎝13
12

⎞⎠ ,

⎛⎝17
16

⎞⎠ ,

⎛⎝21
20

⎞⎠ ,

⎛⎝25
24

⎞⎠ ,

⎛⎝29
28

⎞⎠ , · · ·

2.4 Difference Bounds Matrix
The Difference Bounds Matrices (DBM) are an effective data structure to represent

regions defined by a finitely many number of linear inequalities (DILL, 1990).

Chapter 2. Preliminaries 30

The DBM are square matrices with entries in the complete idempotent semiring noted
by ℬ (bounds algebra) and defined as the set of ordered pairs (R, on) ∪ (∞, <) ∪ (−∞, <)
(where on∈ {<, ≤} and < is assumed to be strictly less than ≤) and the operations of sum
and product defined, respectively, as the intersection and sum of the usual algebra:

(𝑎,on𝑎)⊕ℬ (𝑏,on𝑏) =

⎧⎪⎨⎪⎩(𝑎,on𝑎) if 𝑎 < 𝑏 or (𝑎 = 𝑏 and on𝑎≤on𝑏),

(𝑏,on𝑏) otherwise.
(2.42)

(𝑎,on𝑎)⊗ℬ (𝑏,on𝑏) = (𝑎 + 𝑏, 𝑚𝑖𝑛(on𝑎,on𝑏)). (2.43)

The identity and the zero element in ℬ are, respectively, 𝑒ℬ = (0,≤) and 𝜀ℬ = (∞, <), the
top element is ⊤ℬ = (−∞, <).

According to (2.4), in this algebraic structure, a partial order relation is defined by:

(𝑎,on𝑎) ⪰ℬ (𝑏,on𝑏)⇔ (𝑎,on𝑎) = (𝑎,on𝑎)⊕ℬ (𝑏,on𝑏)⇔ (𝑏,on𝑏) = (𝑎,on𝑎) ∧ (𝑏,on𝑏). (2.44)

Remark 2.17 The order ⪰ℬ in ℬ coincides with the usual lexicographic order ≤ (DILL,
1990, Sec. 3.1), i.e.,

(𝑎,on𝑎) ⪰ℬ (𝑏,on𝑏)⇔ (𝑎,on𝑎) ≤ (𝑏,on𝑏).

Equivalently, the order ⪯ℬ coincides with ≥.

Example 2.18 Consider the sets 𝐴 = {𝑥 ∈ R : 𝑥 ≤ 3}, 𝐵 = {𝑥 ∈ R : 𝑥 < 4} and
𝐶 = {𝑥 ∈ R : 𝑥 < 3}. These sets can be represented, respectively, by the following elements
in the bounds algebra: 𝑎 = (3,≤), 𝑏 = (4, <) and 𝑐 = (3, <). Thus, we have that 𝑐 ⪰ℬ 𝑎 ⪰ℬ 𝑏,
and

𝐴 ∩𝐵 = {𝑥 ∈ R : 𝑥 ≤ 3} ≡ 𝑎⊕ℬ 𝑏 = (3,≤),

𝐴 ∩ 𝐶 = {𝑥 ∈ R : 𝑥 < 3} ≡ 𝑎⊕ℬ 𝑐 = (3, <),

𝐵 ∩ 𝐶 = {𝑥 ∈ R : 𝑥 < 3} ≡ 𝑏⊕ℬ 𝑐 = (3, <),

𝐴 + 𝐵 = {𝑥 ∈ R : 𝑥 < 7} ≡ 𝑎⊗ℬ 𝑏 = (7, <),

𝐴 + 𝐶 = {𝑥 ∈ R : 𝑥 < 6} ≡ 𝑎⊗ℬ 𝑐 = (6, <),

𝐵 + 𝐶 = {𝑥 ∈ R : 𝑥 < 7} ≡ 𝑏⊗ℬ 𝑐 = (7, <).

The star operation is given by:

(𝑎,on𝑎)* = 𝑒ℬ ⊕ℬ (𝑎,on𝑎)⊕ℬ (𝑎,on𝑎)2... =

⎧⎪⎨⎪⎩𝑒ℬ if (𝑎,on𝑎) ⪯ℬ 𝑒ℬ,

⊤ℬ otherwise.
(2.45)

Chapter 2. Preliminaries 31

x2

(-1
,
)

(1
0
0
,<
)

x0=0

(-1,�)

(120,�)

x1

-50 0 50 100 150

x
2

-40

-20

0

20

40

60

80

100

120

140

160

180

x 2
=
x 1
+
1

x2= 100
x 2
=
x 1
+
12
0

x
1
=
1

x1

Figure 3 – Region (left) and directed graph representation (right) of 𝐷 .

A DBM is a square matrix 𝐷 ∈ ℬ𝑛+1×𝑛+1, with diagonal entries 𝑒ℬ, representing a
system of linear inequalities that constrain single variables in a set {𝑥1, 𝑥2, ..., 𝑥𝑛} and their
differences within the limits identified by 𝑑𝑖+1 𝑗+1 = (𝛼𝑖𝑗,on𝑖𝑗) (DILL, 1990, Sec. 4.1), (RIDI
et al., 2012): ⎧⎨⎩ 𝑥𝑖 − 𝑥𝑗 on𝑖𝑗 𝛼𝑖𝑗

𝑥0 = 0
𝑖 ̸= 𝑗 and 𝑖, 𝑗 ∈ {0, ..., 𝑛} . (2.46)

The artificial value 𝑥0 is assumed to be always equal 0 and is used to represent bounds over
a single variable, e.g., 𝑥𝑖 ≤ 𝛼𝑖,0 ⇔ 𝑥𝑖−𝑥0 ≤ 𝛼𝑖,0 or 𝑥𝑖 ≥ −𝛼0,𝑖 ⇔ 𝑥0−𝑥𝑖 ≤ 𝛼0,𝑖. The solution
set of (2.46) is the region of 𝐷, or ℛ(𝐷).

The identity DBM in ℬ𝑛×𝑛, denoted by 𝑒𝑛×𝑛
ℬ , has entries equal (0,≤) on the diagonal

and (∞, <) elsewhere. The null matrix, denoted by 𝜀𝑛×𝑛
ℬ , has all entries equal (∞, <).

Remark 2.19 We can also look at a DBM as a directed graph in which inequality bounds
become arc weights.

Example 2.20 Consider the following DBM:

𝐷 =

⎛⎜⎜⎜⎝
𝑒ℬ (−1,≤) 𝜀ℬ

𝜀ℬ 𝑒ℬ (−1,≤)
(100, <) (120,≤) 𝑒ℬ

⎞⎟⎟⎟⎠

Chapter 2. Preliminaries 32

The region of 𝐷 is given by ℛ(𝐷) = {x ∈ R : 𝑥1 ≥ 1, 1 ≤ 𝑥2 − 𝑥1 ≤ 120, 𝑥2 < 100} as
presented in Figure 3.

Given two DBM in ℬ𝑛×𝑛, 𝐷(𝑋) and 𝐷(𝑌), according to (2.11) the partial order relation
can be defined as:

𝐷(𝑋) ⪰ℬ 𝐷(𝑌) ⇐⇒ 𝐷(𝑋) = 𝐷(𝑋) ⊕ℬ 𝐷(𝑌) ⇐⇒ {𝑑(𝐴)
𝑖𝑗 ⪰ 𝑑

(𝐵)
𝑖𝑗 , ∀𝑖, 𝑗}. (2.47)

Remark 2.21 The sum (in ℬ) of DBM is equivalent to the intersection of its regions, e.g,
let 𝐷(𝑋) and 𝐷(𝑌) be two DBM in ℬ𝑛×𝑛. Then, 𝐷(𝑋) ⊕ℬ 𝐷(𝑌) ≡ ℛ(𝐷(𝑋)) ∩ ℛ(𝐷(𝑌)). From
now on, the sum of DBM will be referred as the intersection of DBM.

Remark 2.22 In general, the union of DBM is not a DBM. However, if 𝐷(𝑋) = 𝐷(𝑋)⊕ℬ𝐷(𝑌)

then 𝐷(𝑋) ∪ 𝐷(𝑌) = 𝐷(𝑌). Note that 𝐷(𝑋) ⊕ℬ 𝐷(𝑌) corresponds to the intersection of 𝐷(𝑋)

and 𝐷(𝑌).

2.4.1 Canonical Form Representation and Checking for Emptiness

In general, a region can be represented by several DBM. However, each DBM admits
an equivalent and unique representation in canonical form, given by (DILL, 1990, Th. 2):

𝑐𝑓(𝐷) = 𝐷*. (2.48)

By definition 𝐷*[𝑖, 𝑗] is the cost of the shortest path1 in the precedence graph of 𝐷

from node with index 𝑖 to 𝑗 (DILL, 1990, Sec. 4.1). Therefore, the Floyd-Warshall algorithm
(FLOYD, 1962) (see also algorithm 2.1) can be used to obtain the canonical-form represen-
tation of a DBM with a complexity that is cubic w.r.t. its dimension. Note that, if there is a
cycle of cost less than (0,≤) in the precedence graph of a given DBM 𝐷, a path of arbitrarily
small cost can be obtained by repeating the negative cost cycle. In the limit we would obtain
𝐷*[𝑖, 𝑗] = (−∞, <) ⇒ 𝑥𝑖 − 𝑥𝑗 < −∞, for some (𝑖, 𝑗) ∈ {0, · · · , 𝑛} × {0, · · · , 𝑛}, and there-
fore the system represented by 𝐷 is inconsistent, or equivalently ℛ(𝐷) = ∅. Thus, a simple
way to decide if 𝐷 has empty region is to check if a negative-cost cycle appears during the
computation of the shortest-path matrix using the Floyd-Warshall algorithm (DILL, 1990,
Sec. 4.1).

Algorithm 2.1 presents the Floyd-Warshall algorithm with a checking for emptiness
step. The algorithm works as follows: at the first iteration, it is computed the shortest path
among all pairs of nodes with the restriction that only the node with index 0 can be visited
1 The longest path in ℬ (see remark 2.17)

Chapter 2. Preliminaries 33

as intermediary nodes; at the second iteration, it is computed the shortest path among all
pairs of nodes with the restriction that only nodes with index in {0, 1} can be visited as
intermediary nodes. Finally, at the 𝑛-th iteration, it is computed the shortest path among all
pairs of nodes using any node in the precedence graph of 𝐷 as intermediary node. Note that
step 6 checks for negative-cost cycles. If a negative-cost cycle is detected, 𝐷*[1, 1] is actualized
with the value ⊤ℬ = (−∞, <) to signalizes that 𝐷 has empty region and the algorithm is
stopped.

Algorithm 2.1: Floyd-Warshall algorithm (operations in ℬ).
input : 𝐷 ∈ ℬ𝑛+1×𝑛+1

output: 𝐷*

1 𝐷* ← 𝐷;
2 for 𝑘 = 1→ 𝑛 + 1 do
3 for 𝑖 = 1→ 𝑛 + 1 do
4 for 𝑗 = 1→ 𝑛 + 1 do
5 𝐷*[𝑖, 𝑗]← 𝐷*[𝑖, 𝑗]⊕ℬ (𝐷*[𝑖, 𝑘]⊗ℬ 𝐷*[𝑘, 𝑗]);
6 if 𝑖 == 𝑗 and 𝐷*[𝑖, 𝑗] ≻ℬ 𝑒ℬ then
7 𝐷*[1, 1]← ⊤ℬ, 𝑘 ← 𝑛, 𝑖← 𝑛 , 𝑗 ← 𝑛;
8 end
9 end

10 end
11 end

x2x1

(-1
,
)

(1
0
0
,<
)

x0

(-1,)

(120,)

x0

(-1
,
)

(1
0
0
,<
)

x2x1

(-1,)

(99,<)

(-
2
,
)(9

9
,<
)

Figure 4 – Directed graph representation of 𝐷 (left) and its canonical form (right).

Chapter 2. Preliminaries 34

Example 2.23 The canonical form representation of the DBM of example 2.20 is given by:

𝐷* =

⎛⎜⎜⎜⎝
𝑒ℬ (−1,≤) (−2,≤)

(99, <) 𝑒ℬ (−1,≤)
(100, <) (99, <) 𝑒ℬ

⎞⎟⎟⎟⎠ .

In figure 4, are the precedence graphs of 𝐷 and 𝐷*.

Definition 2.24 (stripe) A stripe is defined as a DBM 𝐷 ∈ ℬ(𝑛)×(𝑛), whose canonical
form representation 𝐷* is such that 𝐷*[1, 𝑗] = 𝐷*[𝑗, 1] = 𝜀ℬ for all 𝑗 ∈ {1, ..., 𝑛}.

Remark 2.25 Note that, according to Definition 2.24, a stripe is a DBM that does not con-
strain single variables, and therefore does not require the artificial variable 𝑥0. In (ADZKIYA
et al., 2015, Sec. 2.3) a stripe is defined as a DBM that does mot contain the variable 𝑥0.

2.4.2 Orthogonal Projection and Cartesian Product of DBM

This section presents two important operations with DBM: the Orthogonal Projection
onto a subset of its variables and the Cartesian (or cross) product of DBM.

Given a DBM 𝐷 ∈ ℬ𝑛×𝑛, which constrain the variables {𝑥1, ..., 𝑥𝑛} and their differ-
ences, the orthogonal projection of 𝐷 onto a subset {𝑥𝑖1 , ..., 𝑥𝑖𝑝}, written 𝐷⌈{𝑥𝑖1 ,...,𝑥𝑖𝑝 }, is such
that ℛ(𝐷⌈{𝑥𝑖1 ,...,𝑥𝑖𝑝 }) = {(𝑥𝑖1 , ..., 𝑥𝑖𝑝)𝑇 ∈ R𝑝 : (𝑥1, ..., 𝑥𝑛)𝑇 ∈ ℛ(𝐷)}. If the DBM is in the
canonical form, its orthogonal projection onto a subset of its variables can be find by deleting
the rows and columns corresponding to the complementary variables, i.e, the variables 𝑥𝑗

such that 𝑗 /∈ {𝑖1, ..., 𝑖𝑝} (DILL, 1990, Sec. 4.1).

Given two DBM 𝐷(𝑋) ∈ ℬ(𝑝+1)×(𝑝+1) and 𝐷(𝑌) ∈ ℬ(𝑛+1)×(𝑛+1), the Cartesian product
of its regions is given by ℛ(𝐷(𝑋)) × ℛ(𝐷(𝑌)) = {

(︁
x𝑇 , y𝑇

)︁𝑇
∈ R𝑝+𝑛 : x ∈ ℛ(𝐷(𝑋)), y ∈

ℛ(𝐷(𝑌))}. From the DBM point of view, the Cartesian product 𝐷(𝑋) × 𝐷(𝑌) can be repre-
sented by an augmented DBM 𝐷(𝑋×𝑌) ∈ ℬ(𝑝+𝑛+1)×(𝑝+𝑛+1) such thatℛ(𝐷(𝑋×𝑌)) = ℛ(𝐷(𝑋))×
ℛ(𝐷(𝑌)). Algorithm 2.2 constructs 𝐷(𝑋×𝑌) with complexity 𝒪(𝑛2).

Example 2.26 Consider the following DBM:

𝑥0 𝑥1

𝐷(𝑋) =
⎛⎝ 𝑒ℬ 𝑒ℬ 𝑥0

⎞⎠
(80,≤) 𝑒ℬ 𝑥1

𝑥0 𝑦1 𝑦2

𝐷(𝑌) =

⎛⎜⎜⎜⎝
𝑒ℬ (−1,≤) (−2,≤) 𝑥0

⎞⎟⎟⎟⎠(99, <) 𝑒ℬ (−1,≤) 𝑦1

(100, <) (99, <) 𝑒ℬ 𝑦2

The Cartesian product of the DBM is given by:

Chapter 2. Preliminaries 35

Algorithm 2.2: Cartesian product of DBM.
input : 𝐷(𝑋) ∈ ℬ(𝑝+1)×(𝑝+1) and 𝐷(𝑌) ∈ ℬ(𝑛+1)×(𝑛+1)

output: 𝐷(𝑋×𝑌) = (𝐷(𝑋) ×𝐷(𝑌)) ∈ ℬ(𝑝+𝑛+1)×(𝑝+𝑛+1)

1 𝐷(𝑋×𝑌) ← 𝑒
(𝑝+𝑛+1)×(𝑝+𝑛+1)
ℬ ;

2 for 𝑖 = 1→ 𝑝 + 1 do
3 for 𝑗 = 1→ 𝑝 + 1 do
4 𝐷(𝑋×𝑌)[𝑖, 𝑗]← 𝐷(𝑋)[𝑖, 𝑗];
5 end
6 end
7 for 𝑖 = 2→ 𝑛 + 1 do
8 𝐷(𝑋×𝑌)[1, 𝑝 + 𝑖]← 𝐷(𝑌)[1, 𝑖];
9 𝐷(𝑋×𝑌)[𝑝 + 𝑖, 1]← 𝐷(𝑌)[𝑖, 1];

10 for 𝑗 = 2→ 𝑛 + 1 do
11 𝐷(𝑋×𝑌)[𝑝 + 𝑖, 𝑝 + 𝑗]← 𝐷(𝑌)[𝑖, 𝑗];
12 end
13 end

𝑥0 𝑥1 𝑦1 𝑦2

𝐷(𝑋×𝑌) = 𝐷(𝑋) ×𝐷(𝑌) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ (−1,≤) (−2,≤) 𝑥0

⎞⎟⎟⎟⎟⎟⎟⎠
(80,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

(99, <) 𝜀ℬ 𝑒ℬ (−1,≤) 𝑦1

(100, <) 𝜀ℬ (99, <) 𝑒ℬ 𝑦2

The canonical form of 𝐷(𝑋×𝑌) is given by:

𝑥0 𝑥1 𝑦1 𝑦2

𝑐𝑓(𝐷(𝑋×𝑌)) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ (−1,≤) (−2,≤) 𝑥0

⎞⎟⎟⎟⎟⎟⎟⎠
(80,≤) 𝑒ℬ (79,≤) (78,≤) 𝑥1

(99, <) (99, <) 𝑒ℬ (−1,≤) 𝑦1

(100, <) (100, <) (99, <) 𝑒ℬ 𝑦2

The orthogonal projection of 𝑐𝑓(𝐷(𝑋×𝑌)) over the variables x is obtained by deleting
the rows and columns corresponding to the variables y. Thus

𝑥0 𝑥1

𝑐𝑓(𝐷(𝑋×𝑌))⌈x=
⎛⎝ 𝑒ℬ 𝑒ℬ 𝑥0

⎞⎠
(80,≤) 𝑒ℬ 𝑥1

Equivalently, the orthogonal projection of 𝑐𝑓(𝐷(𝑋×𝑌)) over the variables y is given by.

Chapter 2. Preliminaries 36

𝑥0 𝑦1 𝑦2

𝑐𝑓(𝐷(𝑋×𝑌))⌈y=

⎛⎜⎜⎜⎝
𝑒ℬ (−1,≤) (−2,≤) 𝑥0

⎞⎟⎟⎟⎠(99, <) 𝑒ℬ (−1,≤) 𝑦1

(100, <) (99, <) 𝑒ℬ 𝑦2

2.5 Piece-Wise Affine Systems
This section discusses Piece-Wise Affine (PWA) systems generated by a generic (au-

tonomous or nonautonomous) MPL system (ADZKIYA et al., 2015, Sec. 2.2). The PWA sys-
tems (SONTAG, 1981) are described by a collection of state space equations associated with
a given region of activity, which is given by a finite number of linear inequalities. They can
model a large number of physical processes and can approximate nonlinear dynamics with
arbitrary accuracy. PWA systems have been studied in (SONTAG, 1981; CHUA; DENG,
1988; VANDENBERGHE et al., 1989; KEVENAAR; LEENAERTS, 1992; JOHANSSON;
RANTZER, 1997; BEMPORAD et al., 2000; HEEMELS et al., 2001; JULIAN, 2003; WEN;
MA, 2011).

Consider a generic MPL system given by:

z(𝑘) = 𝐴⊗ x(𝑘 − 1), (2.49)

where 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥 and z and x are vectors of appropriate dimensions.

Remark 2.27 Equation (2.49) is generic in the sense that it can represent either an au-
tonomous MPL system (𝑝 = 𝑛, see (2.34)) or an nonautonomous MPL system (𝑝 = 𝑛 + 𝑚,
see (2.37)).

This system can be expressed as a PWA system in the event domain2 (HEEMELS et al.,
2001):

z(𝑘) = 𝐴gx(𝑘 − 1) + fg for x(𝑘 − 1) ∈ 𝑅g, (2.50)

where the collection of all 𝑅g, g = (𝑔1, · · · , 𝑔𝑛) ∈ {1, ..., 𝑝}𝑛, forms a partition of the state
space, fg is a vector of constants and 𝐴g is a matrix of suitable dimensions.

Each g is associated with a dynamics and a region 𝑅g such that, for all x ∈ 𝑅g, the
element 𝑔𝑖 corresponds to the index of the maximum term of the 𝑖-th system equation of
(2.49), which can be expressed as:

𝑧𝑖(𝑘) =
𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)}. (2.51)

2 Operations in the classical algebra

Chapter 2. Preliminaries 37

Thus,

𝑎𝑖𝑔𝑖
⊗ 𝑥𝑔𝑖

(𝑘 − 1) =
𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)}. (2.52)

From (2.33), equation (2.52) can be expressed as:

𝑎𝑖𝑗 + 𝑥𝑗(𝑘 − 1) ≤ 𝑎𝑖𝑔𝑖
+ 𝑥𝑔𝑖

(𝑘 − 1) ∀𝑗 ∈ {1, · · · , 𝑝}. (2.53)

Therefore, the region 𝑅g which represents the set of all x ∈ R𝑝

𝑚𝑎𝑥 that satisfies (2.53),
is given by:

𝑅g =
𝑛⋂︁

𝑖=1

𝑝⋂︁
𝑗=1
𝑗 ̸=𝑔𝑖

{︁
x ∈ R𝑝

𝑚𝑎𝑥 : 𝑥𝑗 − 𝑥𝑔𝑖
≤ 𝑎𝑖𝑔𝑖

− 𝑎𝑖𝑗

}︁
. (2.54)

From, (2.52), the affine dynamics that is active in 𝑅g is given by:

𝑧𝑖(𝑘) = 𝑥𝑔𝑖
(𝑘 − 1) + 𝑎𝑖𝑔𝑖

, 𝑖 ∈ {1, ..., 𝑛}. (2.55)

Therefore, the generic MPL system (2.49) can be expressed as the PWA system given
in (2.50) where, for each g, the region 𝑅g is given by (2.54), the matrix 𝐴g is such that, for
all (𝑖, 𝑗) ∈ {1, ..., 𝑛} × {1, ..., 𝑝}:

𝐴g(𝑖, 𝑗) =

⎧⎪⎨⎪⎩1 if 𝑗 = 𝑔𝑖

0 otherwise
, (2.56)

and the vector of constants fg is given by:

fg =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎1𝑔1

𝑎2𝑔2

· · ·
𝑎𝑛𝑔𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.57)

Example 2.28 Consider the autonomous MPL system given by:

x(𝑘) =
⎛⎝8 5

4 3

⎞⎠⊗ x(𝑘 − 1).

According to equation (2.54), the regions corresponding to each g ∈ {1, 2}2 = {(1, 1),
(1, 2), (2, 1), (2, 2)} are given by:

Chapter 2. Preliminaries 38

x1

-3 -2 -1 0 1 2 3

x
2

-1

0

1

2

3

4

5

R (1
,1
)

x 2
(k
) =

4
+
x 1
(k
−

1)

R (1
,2
)

x 1
(k
) =

8
+
x 1
(k
−

1)

x 2
(k
) =

3
+
x 2
(k
−

1)

x 1
(k
) =

8
+
x 1
(k
−

1)

x 2
(k
) =

3
+
x 2
(k
−

1)

x 1
(k
) =

5
+
x 2
(k
−

1)R (2
,2
)

Figure 5 – A PWA system generated by an MPL system.

𝑅(1,1) =
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 3
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 1
}︁

=
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 1
}︁

,

𝑅(1,2) =
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 3
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −1
}︁

=
{︁
x ∈ R2

𝑚𝑎𝑥 : 1 ≤ 𝑥2 − 𝑥1 ≤ 3
}︁

,

𝑅(2,1) =
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −3
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ −1
}︁

= ∅,

𝑅(2,2) =
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −3
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −1
}︁

=
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≥ 3
}︁

.

Thus, according to equations (2.56) and (2.57), the corresponding PWA system, de-
fined by (2.50), is given by:

x(𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1 0
1 0

⎞⎠x(𝑘 − 1) +
⎛⎝8

4

⎞⎠ if x(𝑘 − 1) ∈ 𝑅(1,1),⎛⎝1 0
0 1

⎞⎠x(𝑘 − 1) +
⎛⎝8

3

⎞⎠ if x(𝑘 − 1) ∈ 𝑅(1,2),⎛⎝0 1
0 1

⎞⎠x(𝑘 − 1) +
⎛⎝5

3

⎞⎠ if x(𝑘 − 1) ∈ 𝑅(2,2),

Chapter 2. Preliminaries 39

Figure 5 depicts the PWA system generated by 𝐴.

Example 2.29 Consider the nonautonomous MPL system given by:

x(𝑘) =
⎛⎝2 4

3 𝑒

⎞⎠⊗ x(𝑘 − 1)⊕
⎛⎝𝑒

𝜀

⎞⎠⊗ u(𝑘).

According to (2.37), the corresponding augmented autonomous MPL system is given by:

x(𝑘) =
⎛⎝2 4 𝑒

3 𝑒 𝜀

⎞⎠⊗ y(𝑘 − 1), where y(𝑘 − 1) =

⎛⎜⎜⎜⎝
𝑥1(𝑘 − 1)
𝑥2(𝑘 − 1)

𝑢1(𝑘)

⎞⎟⎟⎟⎠ .

According to equation (2.54), the regions corresponding to each g ∈ {1, 2, 3}2 = {(1, 1),
(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}are given by:

𝑅(1,1) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ 2
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 3
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2, 𝑦3 − 𝑦1 ≤ 2
}︁

,

𝑅(1,2) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ 2
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −3
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ ∞
}︁

= ∅,

𝑅(1,3) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ 2
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −∞
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −∞
}︁

= ∅,

𝑅(2,1) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ 2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 3
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : −2 ≤ 𝑦2 − 𝑦1 ≤ 3, 𝑦3 − 𝑦2 ≤ 4
}︁

,

𝑅(2,2) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ 2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −3
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≥ 3, 𝑦3 − 𝑦2 ≤ 4
}︁

,

Chapter 2. Preliminaries 40

𝑅(2,3) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ 2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −∞
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −∞
}︁

= ∅,

𝑅(3,1) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 3
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2, 𝑦2 − 𝑦3 ≤ −4, 𝑦2 − 𝑦1 ≤ 3
}︁

,

𝑅(3,2) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −3
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2, 𝑦2 − 𝑦3 ≤ −4, 𝑦2 − 𝑦1 ≥ 3
}︁

,

𝑅(3,3) =
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −∞
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −∞
}︁

= ∅.

Thus, according to equations (2.56) and (2.57), the corresponding PWA system, de-
fined by (2.50), is given by:

x(𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝1 0 0
1 0 0

⎞⎠y(𝑘 − 1) +
⎛⎝2

3

⎞⎠ if y(𝑘 − 1) ∈ 𝑅(1,1),⎛⎝0 1 0
1 0 0

⎞⎠y(𝑘 − 1) +
⎛⎝4

3

⎞⎠ if y(𝑘 − 1) ∈ 𝑅(2,1),⎛⎝0 1 0
0 1 0

⎞⎠y(𝑘 − 1) +
⎛⎝4

0

⎞⎠ if y(𝑘 − 1) ∈ 𝑅(2,2),⎛⎝0 0 1
1 0 0

⎞⎠y(𝑘 − 1) +
⎛⎝0

3

⎞⎠ if y(𝑘 − 1) ∈ 𝑅(3,1),⎛⎝0 0 1
0 1 0

⎞⎠y(𝑘 − 1) +
⎛⎝0

0

⎞⎠ if y(𝑘 − 1) ∈ 𝑅(3,2).

Given a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥, Algorithm 2.3 (taken from (ADZKIYA et al., 2015, Sec.
2.2)) describes a general procedure to generate the corresponding PWA system.

The algorithm works as follows. In step 1, the output variables are initialized. Then,
for each g ∈ {1, ..., 𝑝}𝑛 (step 2), the region 𝑅g (step 6), the matrix 𝐴g and the vector 𝑓g

Chapter 2. Preliminaries 41

Algorithm 2.3: Expressing an MPL system as a PWA system using a bactracking
technique. The assignment 𝑧𝑒𝑟𝑜𝑠(., .) generates a matrix of specified dimensions, with
entries equal to 0.

input : 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥

output: R, A, f

1 R← ∅, A← ∅, f← ∅;
2 for all g = (𝑔𝑖, ..., 𝑔𝑛) ∈ {1, ..., 𝑝}𝑛 do
3 𝑅g ← R𝑝, 𝐴g ← 𝑧𝑒𝑟𝑜𝑠(𝑛, 𝑝), 𝑓g ← 𝑧𝑒𝑟𝑜𝑠(𝑛, 1);
4 for all 𝑖 ∈ {1, ..., 𝑛} do
5 for all 𝑗 ∈ {1, ..., 𝑝} do
6 𝑅g ← 𝑅g ∩ {x ∈ R𝑝 : 𝑥𝑗 − 𝑥𝑔𝑖

≤ 𝑎𝑖𝑔𝑖
− 𝑎𝑖𝑗} ; // define regions (2.54)

7 end for
8 𝐴g(𝑖, 𝑔𝑖)← 1, 𝑓g(𝑖)← 𝑎𝑖𝑔𝑖

; // see equations (2.56) and (2.57)
9 end for

10 if 𝑅g ̸= ∅ then
11 R← R ∪ {𝑅g}, A← A ∪ {𝐴g}, f← f ∪ {𝑓g};
12 end if
13 end for

(step 8) are constructed according to equations (2.54), (2.56) and (2.57), respectively. If 𝑅g

is not empty (step 10), the procedure saves the region and corresponding affine dynamics to
the output variables (step 11). The worst-case complexity of the algorithm is 𝒪 (𝑝𝑛(𝑛𝑝 + 𝑝3))
(see (ADZKIYA et al., 2015, Sec. 2.3)).

Remark 2.30 The bottleneck of Algorithm 2.3 resides in the worst-case cardinality of the
collection of regions 𝑅g, given by 𝑝𝑛. Practically, each row 𝑖 of an 𝑛 × 𝑝 matrix has 𝑝′

𝑖 ≤ 𝑝

non-𝜀 elements, thus the worst-case cardinality reduces to ∏︀𝑛
𝑖=1 𝑝′

𝑖 ≤ 𝑝𝑛. Besides, as many
regions can be empty, the complexity of the algorithm is often drastically smaller than the
worst-case bound. In (Adzkiya et al. 2015a., Sec. 5.1), some experiments were carried out in
order to test the efficiency of the approach: for any given 𝑛 it was generated an 𝑛×𝑛 matrix
𝐴 with 2 non-𝜀 elements randomly placed in each row. The finite elements were randomly
generated integers between 1 and 100. They claim that the test over a number of randomly
generated dynamics goes against biasing the experimental outcomes and allows claiming the
applicability of the technique over general MPL systems. Over 10 experiments, for 𝑛 = 10,
the average number of regions was 700.80 [regions] and the average time to generate the
PWA system was 4.73 [sec]. Note that in this case the worst-case cardinality for the number
of regions is ∏︀10

𝑖=1 2 = 210 = 1024, since there are only 2 non-𝜀 elements in each row. The
experiments were run in a 12-core Intel Xeon 3.47 GHz PC with 24 GB of memory.

Chapter 2. Preliminaries 42

In (ADZKIYA et al., 2015, Sec. 2.2) it is proposed a backtracking technique to improve
the performance of Algorithm 2.3. The technique is based on the partial coefficients (𝑔1, ..., 𝑔𝑘)
for 𝑘 ∈ {1, ..., 𝑛}, and corresponding region given by:

𝑅(𝑔1,...,𝑔𝑘) =
𝑘⋂︁

𝑖=1

𝑝⋂︁
𝑗=1
𝑗 ̸=𝑔𝑖

{︁
x ∈ R𝑛

𝑚𝑎𝑥 : 𝑥𝑗 − 𝑥𝑔𝑖
≤ 𝑎𝑖𝑔𝑖

− 𝑎𝑖𝑗

}︁
. (2.58)

Note that, for 𝑘 > 1, the partial regions (2.58) can be recursively constructed as:

𝑅(𝑔1,...,𝑔𝑘) = 𝑅(𝑔1,...,𝑔𝑘−1)

𝑝⋂︁
𝑗=1
𝑗 ̸=𝑔𝑖

{︁
x ∈ R𝑛

𝑚𝑎𝑥 : 𝑥𝑗 − 𝑥𝑔𝑘
≤ 𝑎𝑘𝑔𝑘

− 𝑎𝑘𝑗

}︁
. (2.59)

Thus if the region associated with some partial coefficient (𝑔∅
1, ..., 𝑔∅

𝑘) is empty, then, for all
coefficients (𝑔1, ..., 𝑔𝑛) such that 𝑔𝑖 = 𝑔∅

𝑖 for all 𝑖 ∈ {1, ..., 𝑘}, the corresponding regions are
also empty. Therefore, the computations associated to these coefficients can be skipped, which
improves the performance of Algorithm.

Example 2.31 Given the MPL system described by:

x(𝑘) =

⎛⎜⎜⎜⎝
2 1 4
5 2 3
4 3 1

⎞⎟⎟⎟⎠⊗ x(𝑘 − 1),

one can verify that the regions associated to the partial coefficients g∅ ∈ {(1, 2), (1, 3), (2, 3)}
are empty. Thus, for all coefficients g ∈ {(1, 2, 𝑔∅

3), (1, 3, 𝑔∅
3), (2, 3, 𝑔∅

3)}, where 𝑔∅
3 ∈ {1, 2, 3},

the corresponding region is also empty and the computations associated to these coefficients
can be skipped. Indeed, the coefficients with corresponding nonempty region are given by g ∈
{(1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), (2, 2, 2), (3, 1, 2), (3, 2, 2), (3, 3, 1), (3, 3, 2), (3, 3, 3)}.

Given a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥, Algorithm 2.4 describes a general procedure to generate
the corresponding PWA system using this backtrack technique.

Algorithm 2.4 works as follows. In setp 1 the output variables are initialized. In step
5 the regions 𝑅(𝑖), 𝑖 ∈ {1, ..., 𝑝} are computed. If 𝑅𝑖 is not empty the procedure saves the
partial coefficient 𝑖 to the variable 𝐺1 (step 9). In step 17, the partial regions 𝑅(𝑔1,...,𝑔𝑘−1,𝑖),
𝑖 ∈ {1, ..., 𝑝} are recursively computed according to (2.59). If 𝑅(𝑔1,...,𝑔𝑘−1,𝑖) is not empty the
procedure saves coefficient (𝑔1, ..., 𝑔𝑘−1, 𝑖) to the variable 𝐺𝑘 (step 9). Note that, if the region
associated to the partial coefficient (𝑔1, ..., 𝑔𝑘−1, 𝑖) is empty, then the coefficient is skipped in
the next recursive steps. The affine dynamics (equations (2.56) and (2.57)) are computed in
steps 7 and 19. In the last recursive step (𝑘 = 𝑛, step 22) the procedure saves the nonempty
regions and corresponding dynamics to the output variables (step 23).

Chapter 2. Preliminaries 43

Algorithm 2.4: Expressing an MPL system as a PWA system. The assignment
𝑧𝑒𝑟𝑜𝑠(., .) generates a matrix of specified dimensions, with entries equal to 0.

input : 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥

output: R, A, f

1 R← ∅, A← ∅, f← ∅, 𝐺𝑖|𝑛𝑖=1 ← ∅ ;
2 for all i ∈ (1, ..., 𝑝) do
3 𝑅(𝑖) ← R𝑝, 𝐴(𝑖) ← 𝑧𝑒𝑟𝑜𝑠(𝑛, 𝑝), 𝑓(𝑖) ← 𝑧𝑒𝑟𝑜𝑠(𝑛, 1);
4 for all j ∈ {1, ..., 𝑝} do
5 𝑅(𝑖) ← 𝑅(𝑖) ∩ {x ∈ R𝑝 : 𝑥𝑗 − 𝑥𝑖 ≤ 𝑎1𝑖 − 𝑎1𝑗} ;
6 end for
7 𝐴(𝑖)(1, 𝑖) = 1, 𝑓(𝑖)(1) = 𝑎1𝑖;
8 if 𝑅𝑖 is not empty then
9 𝐺1 ← 𝐺1 ∪ {𝑖} ;

10 end if
11 end for
12 for all 𝑘 ∈ {2, ..., 𝑛} do
13 for all 𝑔 = (𝑔1, ..., 𝑔𝑘−1) ∈ 𝐺𝑘−1 do
14 for all i ∈ {1, ..., 𝑝} do
15 𝑅(𝑔1,...,𝑔𝑘−1,𝑖) ← 𝑅(𝑔1,...,𝑔𝑘−1), 𝐴(𝑔1,...,𝑔𝑘−1,𝑖) ← 𝐴(𝑔1,...,𝑔𝑘−1),

𝑓(𝑔1,...,𝑔𝑘−1,𝑖) ← 𝑓(𝑔1,...,𝑔𝑘−1);
16 for all j ∈ {1, ..., 𝑝} do
17 𝑅(𝑔1,...,𝑔𝑘−1,𝑖) ← 𝑅(𝑔1,...,𝑔𝑘−1,𝑖) ∩ {x ∈ R𝑝 : 𝑥𝑗 − 𝑥𝑖 ≤ 𝑎𝑘𝑖 − 𝑎𝑘𝑗} ;
18 end for
19 𝐴(𝑔1,...,𝑔𝑘−1,𝑖)(𝑘, 𝑖) = 1, 𝑓(𝑔1,...,𝑔𝑘−1,𝑖)(𝑘) = 𝑎𝑘𝑖 ;
20 if 𝑅(𝑔1,...,𝑔𝑘−1,𝑖) is not empty then
21 𝐺𝑘 ← 𝐺𝑘 ∪ {(𝑔1, ..., 𝑔𝑘−1, 𝑖)};
22 if 𝑘 == 𝑛 then
23 R← R ∪ {𝑅(𝑔1,...,𝑔𝑘−1,𝑖)}, A← A ∪ {𝐴(𝑔1,...,𝑔𝑘−1,𝑖)},

f← f ∪ {𝑓(𝑔1,...,𝑔𝑘−1,𝑖)};
24 end if
25 end if
26 end for
27 end for
28 end for

2.5.1 DBM Representation of PWA Systems

In this section, the DBM data structure is used to represent PWA systems generated
by MPL systems. It is recalled that each component of the PWA system can be represented
by a DBM.

As presented in section 2.4 the DBM can represent intersections of finitely many linear
inequalities. Thus, in order to represent the PWA systems as DBM, each component of the

Chapter 2. Preliminaries 44

PWA system must be expressed as an intersection of linear inequalities. From (2.54) each
region 𝑅g is an intersection of linear inequalities. Furthermore, the affine dynamics (2.55)
can be expressed as:

𝑝⋂︁
𝑖=1
{𝑧𝑖(𝑘)− 𝑥𝑔𝑖

(𝑘 − 1) ≤ 𝑎𝑖𝑔𝑖
} ∩

𝑝⋂︁
𝑖=1
{𝑥𝑔𝑖

(𝑘 − 1)− 𝑧𝑖(𝑘) ≤ −𝑎𝑖𝑔𝑖
} . (2.60)

Therefore, each component of the PWA system can be represented by an (𝑛+𝑝+1)×
(𝑛 + 𝑝 + 1) DBM, noted by 𝐷(g), which constrains the variables z(𝑘) = (𝑧1(𝑘) · · · 𝑧𝑛(𝑘))𝑇

and x(𝑘 − 1) = (𝑥1(𝑘 − 1) · · · 𝑥𝑝(𝑘 − 1))𝑇 and their differences. Algorithm 2.5 generates
MPL systems as PWA systems using DBM as data structure. The output of the algorithm is
a collection of DBM given in the variable D. It should be noted that this algorithm is based
on the procedure given in Algorithm 2.3, and therefore has the same worst-case cardinality,
i.e, 𝒪 (𝑝𝑛(𝑛𝑝 + 𝑝3)). Moreover, the backtracking technique presented in Algorithm 2.4 can be
used in order to improve the performance of the algorithm.

Example 2.32 Consider the autonomous MPL system given by:

x(𝑘) =
⎛⎝8 5

4 3

⎞⎠⊗ x(𝑘 − 1).

Using 𝐴 as the input of Algorithm 2.5, the output is the collection of DBM D = {𝐷(1,1),

𝐷(1,2), 𝐷(2,2)}, where3:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (8,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (4,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−8,≤) (−4,≤) 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ (1,≤) 𝑒ℬ 𝑥2

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(1,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (8,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ (3,≤) 𝑥′
2

𝜀ℬ (−8,≤) 𝜀ℬ 𝑒ℬ (−1,≤) 𝑥1

𝜀ℬ 𝜀ℬ (−3,≤) (3,≤) 𝑒ℬ 𝑥2

3 Notation: x′ ≡ x(𝑘) and x ≡ x(𝑘 − 1)

Chapter 2. Preliminaries 45

Algorithm 2.5: Expressing an MPL system as a PWA system using DBM as data
structure. The assignment 𝑑𝑏𝑚𝐸𝑦𝑒(·) generates a square matrix of specified dimension,
with entries 𝑑𝑖𝑗 = 𝑒ℬ if 𝑖 = 𝑗 and 𝑑𝑖𝑗 = 𝜀ℬ if 𝑖 ̸= 𝑗. The assignment 𝑑𝑏𝑚𝑁𝑢𝑙𝑙(·, ·)
generates a matrix of specified dimension, with entries 𝑑𝑖𝑗 = 𝜀ℬ.

input : 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥

output: D // A collection of DBM representing the PWA system;

1 D← ∅ ;
2 for all g ∈ {1, ..., 𝑝}𝑛 do
3 𝑅g ← 𝑑𝑏𝑚𝐸𝑦𝑒(𝑛), 𝑑𝑦𝑛𝑆𝑢𝑝← 𝑑𝑏𝑚𝑁𝑢𝑙𝑙(𝑛, 𝑝), 𝑑𝑦𝑛𝐼𝑛𝑓 ← 𝑑𝑏𝑚𝑁𝑢𝑙𝑙(𝑝, 𝑛);
4 for all 𝑖 ∈ {1, ..., 𝑛} do
5 if 𝑎𝑖,𝑔𝑖

̸= 𝜖 then
6 for all 𝑗 ∈ {1, ..., 𝑛} do
7 if 𝑎𝑖,𝑗 ̸= 𝜖 then
8 𝑅g[𝑖, 𝑔𝑖]← (min {𝑅g[𝑖, 𝑔𝑖], 𝑎𝑖,𝑔𝑖

− 𝑎𝑖,𝑗} ,≤) // define 𝑅g (see
(2.54))

9 end if
10 end for
11 𝑑𝑦𝑛𝑆𝑢𝑝[𝑖, 𝑔𝑖]← (𝑎𝑖,𝑔𝑖

,≤) // represents 𝑧𝑖 ≤ 𝑥𝑔𝑖
+ 𝑎𝑖,𝑔𝑖

12 𝑑𝑦𝑛𝐼𝑛𝑓 [𝑔𝑖, 𝑖]← (−𝑎𝑖,𝑔𝑖
,≤) // represents 𝑧𝑖 ≥ 𝑥𝑔𝑖

+ 𝑎𝑖,𝑔𝑖

13 end if
14 end for
15 if 𝑅g is not empty then
16 𝐷(g) ← 𝑑𝑏𝑚𝐸𝑦𝑒(𝑛 + 𝑝 + 1) //
17 𝐷(g)[2 : 𝑛 + 1, 𝑛 + 2 : 𝑛 + 𝑝 + 1]← 𝑑𝑦𝑛𝑆𝑢𝑝 //
18 𝐷(g)[𝑛 + 2 : 𝑛 + 𝑝 + 1, 2 : 𝑛 + 1]← 𝑑𝑦𝑛𝐼𝑛𝑓 //
19 𝐷(g)[𝑛 + 2 : 𝑛 + 𝑝 + 1, 𝑛 + 2 : 𝑛 + 𝑝 + 1]← 𝑅g //
20 D← D ∪ {𝐷(g)};
21 end if
22 end for

𝑥0 𝑧1...𝑧𝑛 𝑥1...𝑥𝑝

𝐷(g) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ...𝜀ℬ 𝜀ℬ...𝜀ℬ 𝑥0
⎞⎟⎟⎟⎟⎟⎟⎠

𝜀ℬ
...

𝜀ℬ

𝑒𝑛×𝑛
ℬ

𝑑𝑢𝑛𝑆𝑢𝑝
(step 17)

𝑧1
...

𝑧𝑛
𝜀ℬ
...

𝜀ℬ

𝑑𝑢𝑛𝐼𝑛𝑓
(step 18)

𝑅g
(step 19)

𝑥1
...

𝑥𝑝

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(2,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (5,≤) 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ (3,≤) 𝑥′
2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (−3,≤) 𝑥1

𝜀ℬ (−5,≤) (−3,≤) 𝜀ℬ 𝑒ℬ 𝑥2

Example 2.33 Consider the nonautonomous MPL system of example 2.29:

x′ =
⎛⎝2 4

3 𝑒

⎞⎠⊗ x⊕
⎛⎝𝑒

𝜀

⎞⎠⊗ u.

Chapter 2. Preliminaries 46

The corresponding augmented autonomous MPL system is characterized by the matrix:

𝐴 =
⎛⎝2 4 𝑒

3 𝑒 𝜀

⎞⎠ .

Thus, using 𝐴 as the input of Algorithm 2.5, the output is the collection of DBM
D = {𝐷(1,1), 𝐷(2,1), 𝐷(2,2), 𝐷(3,1), 𝐷(3,2)}, where4:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (3,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ (−2,≤) 𝑒ℬ 𝜀ℬ 𝑥2

𝜀ℬ 𝜀ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝑒ℬ 𝑢1

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(2,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (3,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ (−3,≤) 𝑒ℬ (2,≤) 𝜀ℬ 𝑥1

𝜀ℬ (−4,≤) 𝜀ℬ (3,≤) 𝑒ℬ 𝜀ℬ 𝑥2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝑒ℬ 𝑢1

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(2,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (−3,≤) 𝜀ℬ 𝑥1

𝜀ℬ (−4,≤) 𝑒ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝑒ℬ 𝑢1

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(3,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (3,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ (−3,≤) 𝑒ℬ 𝜀ℬ (−2,≤) 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ (3,≤) 𝑒ℬ (−4,≤) 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑢1

4 Notation: x′ ≡ x(𝑘), x ≡ x(𝑘 − 1) and u ≡ u(𝑘)

Chapter 2. Preliminaries 47

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(3,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (−3,≤) (−2,≤) 𝑥1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑒ℬ (−4,≤) 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑢1

48

3 Reachability Analysis of MPL Systems

This chapter summarizes the results on reachability analysis of MPL systems pre-
sented in (ADZKIYA et al., 2014b; ADZKIYA et al., 2014a; ADZKIYA et al., 2015). It will
be shown that it is possible to map DBM-sets through MPL systems. Then, forward and
backward reachability analysis will be introduced.

Proposition 3.1 is the basis for the reachability analysis of MPL systems using the
PWA-DBM approach.

Proposition 3.1 (ADZKIYA et al., 2015, Th. 1) The image and the inverse image
of a set represented by a DBM w.r.t. a subsystem of a PWA system generated by an MPL
system is a set that can be represented by a DBM.

Proof:

The proof will be given for the image instance. The proof for the inverse image is
similar. Each subsystem of a PWA system can be represented by1:

𝑥𝑖(𝑘) = 𝑎𝑖𝑔𝑖
+ 𝑥𝑔𝑖

(𝑘 − 1) if x(𝑘 − 1) ∈ 𝑅g, ∀𝑖 ∈ {1, ..., 𝑛} ∪ {0},

where, for all g, 𝑔0 is set to 0, 𝑎00 = 0, 𝑎0𝑗 = 𝜀 for all 𝑗 ∈ {1, ..., 𝑝} and 𝑎𝑖0 = 𝜀

for all 𝑖 ∈ {1, ..., 𝑛}.

Note that, given a set 𝑋𝑘−1, only the points in the intersection 𝑋𝑘−1 ∩ 𝑅g are
governed by this dynamics i.e.:

𝑥𝑖(𝑘) = 𝑎𝑖𝑔𝑖
+ 𝑥𝑔𝑖

(𝑘 − 1) if x(𝑘 − 1) ∈ 𝑋𝑘−1 ∩𝑅g, ∀𝑖. (3.1)

If 𝑋𝑘−1 can be represented by a DBM, the intersection 𝑋𝑘−1 ∩ 𝑅g can also be
represented by a DBM that will be noted by 𝐷(𝑋𝑘−1∩𝑅g), with entries 𝑑

(𝑋𝑘−1∩𝑅g)
𝑖𝑗 =

(d(𝑋𝑘−1∩𝑅g)
𝑖𝑗 , ≤). Since computing the canonical form does not change the region

represented by a DBM, it will be assumed that 𝐷(𝑋𝑘−1∩𝑅𝑢
g) is in the canonical form.

Therefore, for all x(𝑘 − 1) ∈ 𝑋𝑘−1 ∩ 𝑅g we have that the tightest possible upper
bound for 𝑥𝑖(𝑘 − 1)− 𝑥𝑗(𝑘 − 1) is given by:

𝑥𝑖(𝑘 − 1)− 𝑥𝑗(𝑘 − 1) ≤ d(𝑋𝑘−1∩𝑅g)
𝑖𝑗 , ∀𝑖, 𝑗.

1 This model considers an additional equation corresponding to the artificial variable: 𝑥0 = 0 + 𝑥0

Chapter 3. Reachability Analysis of MPL Systems 49

In particular:
𝑥𝑔𝑖

(𝑘 − 1)− 𝑥𝑔𝑗
(𝑘 − 1) ≤ d(𝑋𝑘−1∩𝑅g)

𝑔𝑖𝑔𝑗
, ∀𝑖, 𝑗.

Adding 𝑎𝑖𝑔𝑖
− 𝑎𝑗𝑔𝑗

in both sides of the inequality one obtains:

𝑥𝑖(𝑘)⏞ ⏟
𝑎𝑖𝑔𝑖

+ 𝑥𝑔𝑖
(𝑘 − 1)−(

𝑥𝑗(𝑘)⏞ ⏟
𝑎𝑗𝑔𝑗

+ 𝑥𝑔𝑗
(𝑘 − 1)) ≤ d(𝑋𝑘−1∩𝑅g)

𝑔𝑖𝑔𝑗
+ 𝑎𝑖𝑔𝑖

− 𝑎𝑗𝑔𝑗
, ∀𝑖, 𝑗.

Thus, the tightest possible upper bound for 𝑥𝑖(𝑘)− 𝑥𝑗(𝑘) is given by:

𝑥𝑖(𝑘)− 𝑥𝑗(𝑘) ≤ d(𝑋𝑘−1∩𝑅g)
𝑔𝑖𝑔𝑗

+ 𝑎𝑖𝑔𝑖
− 𝑎𝑗𝑔𝑗

, ∀𝑖, 𝑗. (3.2)

It should be noted that all points in the image of 𝑋𝑘−1 w.r.t. the subsystem g of
the PWA system must satisfy (3.2). Otherwise, at least one of the restrictions
defined by the dynamics (3.1) would be violated. Moreover, all the points that
satisfy (3.2) can be reached from 𝑋𝑘−1 ∩ 𝑅g. Therefore the image of 𝑋𝑘−1 w.r.t.
the subsystem g of a PWA system is given by the region defined by (3.2), which
can be represented by a DBM 𝐷(𝑋𝑘|g) with entries:

𝑑
(𝑋𝑘|g)
𝑖𝑗 = (d(𝑋𝑘−1∩𝑅g)

𝑔𝑖𝑔𝑗
+ 𝑎𝑖𝑔𝑖

− 𝑎𝑗𝑔𝑗
, ≤). (3.3)

Given a DBM 𝐷(𝑋𝑘−1) representing a set 𝑋𝑘−1, Algorithm 3.1 computes the image of
𝑋𝑘−1 w.r.t. a subsystem of a PWA system generated by an MPL system.

In the following is a discussion on how Algorithm 3.1 yields the region defined (3.3),
which represents the image of a set 𝑋𝑘−1 w.r.t. a subsystem g of the PWA system. Note
that, the DBM 𝐷(𝑋𝑘) obtained in step 3 of algorithm 3.1 exactly represents (3.1). Moreover,
by definition, the DBM obtained in step 4 (which is the canonical form representation of
𝐷(𝑋𝑘)) has the tightest possible bounds. Therefore, the DBM 𝐷(𝑋𝑘|g), obtained in the step 5
as orthogonal projection of the canonical form over the variables x(𝑘), is the DBM defined
by (3.3).

Similarly, given a DBM 𝐷(𝑋−𝑘+1) representing a set 𝑋−𝑘+1, Algorithm 3.2 computes
the inverse image of 𝑋−𝑘+1 w.r.t. a subsystem of a PWA system generated by an MPL system.

The worst-case complexity of Algorithms 3.1 and 3.2 critically depends on comput-
ing the canonical form representation of a DBM in ℬ(𝑛+𝑝+1)×(𝑛+𝑝+1) (step 4 for both algo-
rithms), which has cubic complexity w.r.t its dimensions. Thus, the worst-case complexity is
𝒪((𝑛 + 𝑝)3) (ADZKIYA et al., 2015, Sec. 2.3).

Chapter 3. Reachability Analysis of MPL Systems 50

Algorithm 3.1: Computing the image of a DBM w.r.t a PWA system generated by an
MPL system

input : 𝐷(𝑋𝑘−1) ∈ ℬ(𝑝+1)×(𝑝+1) // a DBM representing a region 𝑋𝑘−1 ∈ R𝑝.
: 𝐷(g) ∈ ℬ(𝑛+𝑝+1)×(𝑛+𝑝+1) // a DBM representing a subsystem of a PWA

system generated by a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥.
output: 𝐷(𝑋𝑘|g) ∈ ℬ(𝑛+1)×(𝑛+1) // a DBM representing the image of 𝑋𝑘−1

w.r.t. the subsystem g of the PWA system.

1 𝐷(R𝑛) ← 𝑒ℬ𝑛+1×𝑛+1 // a DBM representing R𝑛

2 𝐷(R𝑛×𝑋𝑘−1) ← 𝐷(R𝑛) ×𝐷(𝑋𝑘−1) // compute the cart. product (see section
2.4.2)

3 𝐷(𝑋̄𝑘) ← 𝐷(R𝑛×𝑋𝑘−1) ⊕ℬ 𝐷g // compute the intersection (see remark 2.21).
4 𝐷(𝑋̄𝑘) ← 𝑐𝑓(𝐷(𝑋̄𝑘)) // compute the canonical form (see section 2.4.1).
5 𝐷(𝑋𝑘|g) ← 𝐷(𝑋̄𝑘)⌈𝑥′

1,...,𝑥′
𝑛

// compute the orthogonal projection over x(𝑘) (see
section 2.4.2).

Algorithm 3.2: Computing the inverse image of a DBM w.r.t a PWA system generated
by an MPL system

input : 𝐷(𝑋−𝑘+1) ∈ ℬ(𝑛+1)×(𝑛+1) // a DBM representing a region 𝑋−𝑘+1 ∈ R𝑛.
: 𝐷(g) ∈ ℬ(𝑛+𝑝+1)×(𝑛+𝑝+1) // a DBM representing a subsystem of a PWA

system generated by a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥.
output: 𝐷(𝑋−𝑘|g) ∈ ℬ(𝑝+1)×(𝑝+1) // a DBM representing the inverse image of

𝑋−𝑘+1 w.r.t. the subsystem g of the PWA system.

1 𝐷(R𝑝) ← 𝑒ℬ𝑝+1×𝑝+1 // a DBM representing R𝑛

2 𝐷(𝑋−𝑘+1×R𝑝) ← 𝐷(𝑋−𝑘+1) ×𝐷(R𝑛) // compute the cart. product (see section
2.4.2)

3 𝐷(𝑋̄−𝑘) ← 𝐷(𝑋−𝑘+1×R𝑝) ⊕ℬ 𝐷g // compute the intersection (see remark 2.21).
4 𝐷(𝑋̄−𝑘) ← 𝑐𝑓(𝐷(𝑋̄−𝑘)) // compute the canonical form (see section 2.4.1).
5 𝐷(𝑋−𝑘|g) ← 𝐷(𝑋̄−𝑘)⌈𝑥1,...,𝑥𝑛 // compute the orthogonal projection over x(𝑘 − 1)

(see section 2.4.2).

Corollary 3.2 (ADZKIYA et al., 2015, Cor. 5) The image of a union of finitely many
DBM w.r.t. a PWA system generated by an MPL model is a union of finitely many DBM.

Given a PWA system generated by a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥, computing the image (or the
inverse image) of a union of 𝑞 DBM can be done by computing the image (or the inverse image)
of each DBM w.r.t each subsystem of the PWA system. Thus the worst-case complexity
depends on the number of DBM (considered to be 𝑞), on the worst-case cardinality of the
collection of subsystem, given by 𝑝𝑛 and on the complexity of computing the image (or the
inverse image) of each DBM w.r.t. each subsystem of a PWA system, which is 𝒪((𝑛 + 𝑝)3).

Chapter 3. Reachability Analysis of MPL Systems 51

Therefore, the worst-case complexity is 𝒪(𝑞𝑝𝑛(𝑛 + 𝑝)3) (ADZKIYA et al., 2015, Sec. 2.3).

Remark 3.3 For autonomous MPL systems, parameter 𝑝 equals 𝑛, and therefore the worst-
case complexity of computing the image (or the inverse image) of 𝑞 DBM w.r.t the system is
𝒪(𝑞𝑛𝑛+3). For nonautonomous MPL systems, parameter 𝑝 equals 𝑛 + 𝑚, and therefore the
worst-case complexity is 𝒪(𝑞(𝑛 + 𝑚)𝑛+3).

Sections 3.1 and 3.2 introduce forward and backward reachability analysis, respec-
tively. It will be assumed that the set of initial/final conditions 𝑋0 ⊆ R𝑛 and the set of
control at each event step 𝑈𝑘 ⊆ R𝑚 can be represented by a union of 𝑞0 and 𝑟𝑘 DBM, respec-
tively. Moreover, the cardinality of the DBM union set representing 𝑋𝑘 at event step 𝑘 will
be noted by 𝑞𝑘.

3.1 Forward Reachability Analysis
The forward reachability analysis of MPL systems concerns the computation of the

set of all states that can be reached from a set of initial states via MPL dynamics, at a
particular event step (the reach set) or over a set of consecutive events (reach tube). Formal
definitions of reach sets and reach tube are given in the following.

Definition 3.4 (reach set (ADZKIYA et al., 2014b, Def. 3)) Given an MPL system
and a nonempty set of initial conditions 𝑋0 ⊆ R𝑛, the reach set 𝑋𝑁 at the event step
𝑁 > 0 is the set of all states {x(𝑁) : x(0) ∈ 𝑋0} obtained via the MPL dynamics, possibly
by application of controls.

Definition 3.5 (reach tube (ADZKIYA et al., 2014b, Def. 4)) Given an MPL sys-
tem and a nonempty set of initial conditions 𝑋0 ⊆ R𝑛, the reach tube is defined by the
set-valued function 𝑘 ↦→ 𝑋𝑘 for any given 𝑘 > 0 where 𝑋𝑘 is defined.

Given a set of initial conditions 𝑋0 ⊆ R𝑛, the reach tube can be computed by using
the one-step dynamics for autonomous and nonautonomous MPL systems iteratively: at
each event step, the PWA system (and corresponding DBM representation) generated by the
MPL system is used to compute the successive reach set. Section 3.1.1 presents a procedure
to compute, recursively, the reach tube with focus on autonomous MPL systems (ADZKIYA
et al., 2014b) and section 3.1.2 presents a generalization of the approach to nonautonomous
MPL systems (ADZKIYA et al., 2015).

Chapter 3. Reachability Analysis of MPL Systems 52

3.1.1 Forward Reachability Analysis of Autonomous MPL systems

Given an autonomous MPL system and a nonempty set of initial conditions 𝑋0, the
reach set 𝑋𝑘 at the event step 𝑘 can be recursively calculated as the image of the reach set
𝑋𝑘−1 w.r.t the MPL dynamics:

𝑋𝑘 = ℐ𝐴{𝑋𝑘−1} = {𝐴⊗ x : x ∈ 𝑋𝑘−1}. (3.4)

From Corollary 3.2, if 𝑋𝑘−1 can be represented by a union of 𝑞𝑘−1 DBM, then 𝑋𝑘 =
ℐ𝐴{𝑋𝑘−1} can be represented by a union of 𝑞𝑘 DBM. Thus, by induction, it can be concluded
that if 𝑋0 can be represented by a union of 𝑞0 DBM, then 𝑋𝑘 can be represented by a union
of 𝑞𝑘 DBM, for each 𝑘 ∈ N.

Given the set of initial conditions 𝑋0, computing the reach tube for 𝑘 ∈ {1, ..., 𝑁}
can be done as follows: first, construct PWA system generated by 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥; then, for each
𝑘, compute the image of 𝑋𝑘−1 w.r.t. the PWA system. The reach tube is then obtained
by aggregating the reach sets. The worst-case complexity to characterize MPL systems via
PWA dynamics is 𝒪(𝑛𝑛+3) (see algorithm 2.5). Furthermore, the worst-case complexity to
compute ℐ𝐴{𝑋𝑘−1}, for each 𝑘 is 𝒪(𝑞𝑘−1𝑛

𝑛+3) (see remark 3.3). Thus, the overall complexity
to compute the reach tube is 𝒪(𝑛𝑛+3∑︀𝑁

𝑘=1 𝑞𝑘−1).

Remark 3.6 Given the cardinality 𝑞𝑘−1 of the DBM union set at event step 𝑘−1, the worst-
case cardinality 𝑞𝑘 is 𝑞𝑘−1𝑛

𝑛, which corresponds to the maximum possible number of nonempty
DBM representing the image of the intersection of each DBM at 𝑘 − 1 and each region of
the partitioned system. In practice, many regions are empty, and even for nonempty regions,
many intersections of DBM and regions are also empty, then the cardinality 𝑞𝑘 is drastically
smaller than its worst-case bound. However, in general, it is not possible to quantify the exact
cardinality 𝑞𝑘 a priori (ADZKIYA et al., 2015, Sec. 5).

In general, in order to compute 𝑋𝑁 , it is necessary to compute 𝑋1, ..., 𝑋𝑁−1. However,
there are cases in which the structure of the MPL dynamics leads to savings for the compu-
tation of the reach tube. Consider the case in which the state matrix of an autonomous MPL
system is irreducible. According to corollary 2.14 there exists 𝑘0(𝑋0) = maxx∈𝑋0 𝑘0(x) such
that, for all 𝑘 ≥ 𝑘0(𝑋0), 𝑋𝑘+𝑐 = 𝜆𝑐 ⊗𝑋𝑘, where 𝑐 is the cyclicity of the critical graph of 𝐴

and 𝜆 is the max-plus eigenvalue of 𝐴. In this case, in order do compute 𝑋𝑁 , 𝑁 > 𝑘0(𝑋0),
it is only necessary to compute 𝑋1, ..., 𝑋𝑘0(𝑋0). Furthermore, if 𝑋0 can be represented by a
union of finitely many stripes2, the infinite-horizon reach tube is also a union of finitely many
stripes and can be computed explicitly in finite time (ADZKIYA et al., 2014b, Th. 1). The
2 A stripe is an unbounded region, i.e., for each 𝑗, −∞ ≤ 𝑥𝑗 ≤ ∞ (see definition 2.24).

Chapter 3. Reachability Analysis of MPL Systems 53

claim follows by noticing that the image of a union of finitely many stripes w.r.t. a PWA
system generated by an MPL model is a union of finitely many stripes. Then, since a stripe
is a collection of equivalence classes (HEIDERGOTT et al., 2006, Sec 1.4), 𝛼 ⊗ 𝑋𝑘 = 𝑋𝑘

for all 𝛼 ∈ R. Thus it follows from corollary 2.14 that 𝑋𝑘+𝑐 = 𝑋𝑘 for all 𝑘 ≥ 𝑘0(𝑋0), and
therefore the infinite-horizon reach tube is ⋃︀∞

𝑖=0 𝑋𝑖 = ⋃︀𝑘0(𝑋0)+𝑐−1
𝑖=0 𝑋𝑖.

The reach set for a specific event step 𝑁 can be computed using a one-shot procedure.
Given a nonempty set of initial conditions 𝑋0, the reach set 𝑋𝑁 at the event step 𝑁 is given
by:

𝑋𝑁 = ℐ𝐴⊗𝑁{𝑋0} = {𝐴⊗𝑁 ⊗ x : x ∈ 𝑋0}. (3.5)

A general procedure for computing 𝑋𝑁 is: 1) compute 𝐴⊗𝑁 ; then, 2) construct the
PWA system generated by 𝐴⊗𝑁 ; and, 3) compute the image of 𝑋0 w.r.t. the obtained PWA
system. The overall complexity of this procedure is 𝒪([log2(𝑁)]𝑛3 + 𝑞0𝑁

3) (see, (ADZKIYA
et al., 2014b, Sec. 3.2)), where 𝑞0 is the cardinality of the DBM union set representing 𝑋0.

3.1.2 Forward Reachability Analysis of Nonautonomous MPL systems

A similar procedure for forward reachability analysis of nonautonomous MPL systems
can be defined. First, the nonautonomous MPL system is represented as an augmented au-
tonomous MPL system (see equation 2.37); then, given a nonempty set of initial conditions
𝑋0 and the set of inputs 𝑈𝑘 for 𝑘 ∈ {1, ..., 𝑁}, the reach set 𝑋𝑘 at the event step 𝑘 can be
recursively calculated as the image of 𝑋𝑘−1 × 𝑈𝑘 w.r.t the augmented MPL system:

𝑋𝑘 = ℐ𝐹{𝑋𝑘−1 × 𝑈𝑘} = {𝐹 ⊗ y : y ∈ 𝑋𝑘−1 × 𝑈𝑘}. (3.6)

If 𝑋𝑘−1 can be represented by a union of 𝑞𝑘−1 DBM and 𝑈𝑘 can be represented by
a union of 𝑟𝑘 DBM, then 𝑋𝑘−1 × 𝑈𝑘 can be represented by a union of 𝑞𝑘−1 = 𝑞𝑘−1𝑟𝑘 DBM.
Thus, from Corollary 3.2, 𝑋𝑘 = ℐ𝐹{𝑋𝑘−1 × 𝑈𝑘} can be represented by a union of 𝑞𝑘 DBM.
By induction, it can be concluded that if 𝑋0 can be represented by a union of 𝑞0 DBM and
𝑈𝑘 can be represented by a union of 𝑟𝑘 DBM for each 𝑘 ∈ N, then 𝑋𝑘 can be represented by
a union of 𝑞𝑘 DBM, for each 𝑘 ∈ N.

Given a nonautonomous MPL system, the set of initial conditions 𝑋0 and set of
inputs 𝑈𝑘 for each 𝑘 ∈ {1, ..., 𝑁}, computing the reach tube for 𝑘 ∈ {1, ..., 𝑁} can be
done as follows: first, construct the PWA system generated by 𝐹 ∈ R𝑛×(𝑛+𝑚)

𝑚𝑎𝑥 ; then, for each
𝑘 ∈ {1, ..., 𝑁}, compute the image of 𝑋𝑘−1×𝑈𝑘 w.r.t. PWA system. The worst-case complexity
to characterize the MPL system via PWA dynamics is 𝒪((𝑛 + 𝑚)𝑛+3 (see algorithm 2.5).

Chapter 3. Reachability Analysis of MPL Systems 54

Furthermore, the worst-case complexity to compute ℐ𝐹{𝑋𝑘−1 × 𝑈𝑘}, for each 𝑘 ∈ {1, ..., 𝑁}
is 𝒪(𝑞𝑘−1(𝑛 + 𝑚)𝑛+3) (see remark 3.3). Thus, the overall complexity to compute the reach
tube is 𝒪((𝑛 + 𝑚)𝑛+3∑︀𝑁

𝑘=1 𝑞𝑘−1).

For nonautonomous MPL systems, the reach set for a specific event step 𝑁 can also
be computed using a one-shot procedure. Given a nonempty set of initial conditions 𝑋0, the
reach set 𝑋𝑁 at the event step 𝑁 is given by:

𝑋𝑁 = (𝐴⊗𝑁 , 𝐴⊗(𝑁−1) ⊗𝐵, ..., 𝐵)⊗ (𝑋0 × 𝑈1 × ...× 𝑈𝑁). (3.7)

Given the matrices 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 and 𝐵 ∈ R𝑛×𝑚

𝑚𝑎𝑥 , a set of initial conditions 𝑋0 (rep-
resented by a union of 𝑞0 DBM) and a sequence of input sets 𝑈1, ..., 𝑈𝑁 , a general pro-
cedure for computing 𝑋𝑁 is given by: 1) generate the matrix (𝐴⊗𝑁 , 𝐴⊗(𝑁−1) ⊗ 𝐵, ..., 𝐵);
then, 2)Construct the PWA system generated by this matrix; and, 3) compute the image of
𝑋0 × 𝑈1 × ... × 𝑈𝑁 w.r.t the obtained PWA system. The complexity of steps 1, 2 and 3 is,
respectively, 𝒪(𝑁𝑛3 + 𝑁𝑛2𝑚), 𝒪((𝑛 + 𝑚𝑁)𝑛+3) and 𝒪(𝑞0(𝑛 + 𝑚𝑁)𝑛+3). Note that , this
approach is not tractable for problems over long event horizons, since the maximum number
of regions of the PWA system is (𝑛 + 𝑚𝑁)𝑛 and grows polynomially w.r.t. the event horizon
𝑁 (ADZKIYA et al., 2015, Sec. 3.2).

3.2 Backward Reachability Analysis
The backward reachability analysis of MPL systems concerns the computation of the

set of all states that leads to a set of initial states via MPL dynamics, at a particular event
step (backward reach set) or over a set of consecutive events (backward reach tube).

Definition 3.7 (backward reach set (ADZKIYA et al., 2014a, Def. 7)) Given an MPL
system and a nonempty set of final positions 𝑋0 ⊆ R𝑛, the backward reach set 𝑋−𝑁 is
the set of all states x(−𝑁) that leads to 𝑋0 in 𝑁 steps of the MPL dynamics, possibly by
application of controls.

Definition 3.8 (backward reach tube (ADZKIYA et al., 2014a, Def. 8)) Given an
MPL system and a nonempty set of initial conditions 𝑋0 ⊆ R𝑛, the reach tube is defined
by the set-valued function 𝑘 ↦→ 𝑋−𝑘 for any given 𝑘 > 0 where 𝑋−𝑘 is defined.

Similar to the forward reachability instance, given a set of final conditions 𝑋0 ⊆ R𝑛,
the reach tube can be computed by using the one-step dynamics for autonomous and nonau-
tonomous MPL systems iteratively. Section 3.2.1 presents procedure to compute, recursively,

Chapter 3. Reachability Analysis of MPL Systems 55

the backward reach tube with focus on autonomous MPL systems (ADZKIYA et al., 2014a)
and section 3.2.2 presents an generalization of the approach to nonautonomous MPL systems
(ADZKIYA et al., 2015).

3.2.1 Backward Reachability Analysis of Autonomous MPL systems

Given a autonomous MPL system and a nonempty set of final conditions 𝑋0, the
backward reach set 𝑋−𝑘 can be recursively calculated as the inverse image of the reach set
𝑋−𝑘+1 w.r.t the MPL dynamics:

𝑋−𝑘 = ℐ−1
𝐴 {𝑋−𝑘+1} = {x ∈ R𝑛 : 𝐴⊗ x ∈ 𝑋−𝑘+1}. (3.8)

From Corollary 3.2 it can be shown that if 𝑋0 can be represented by a union of 𝑞0

DBM, then 𝑋−𝑘 can be represented by a union of 𝑞−𝑘 DBM, for each 𝑘 ∈ N.

Given the set of final conditions 𝑋0, computing the backward reach tube for 𝑘 ∈
{1, ..., 𝑁} can be done as follows: first, construct the PWA system generated by 𝐴; then,
for each 𝑘 ∈ N, compute the inverse image of 𝑋𝑘−1 w.r.t. the PWA system. The worst-
case complexity to compute ℐ−1

𝐴 {𝑋−𝑘+1}, for each 𝑘 ∈ N is 𝒪(𝑞−𝑘+1𝑛
𝑛+3). Thus, the overall

complexity is 𝒪(𝑛𝑛+3∑︀𝑁
𝑘=1 𝑞−𝑘+1).

Similarly to the forward reachability instance, there are cases in which the infinite-
horizon backward reach tube can be explicitly computed. If the MPL system is irreducible
and 𝑋0 is not intersected with the complete periodic behavior3, i.e., 𝑋0 ∩𝐸(𝐴⊗𝑐) = ∅, there
exists a finite 𝑘𝜑 such that 𝑋−𝑘 is empty for all 𝑘 ≥ 𝑘𝜑 (ADZKIYA et al., 2014a, Prop. 9).
Note that, if 𝑋0∩𝐸(𝐴⊗𝑐) = ∅, all x ∈ 𝑋0 belongs to the transient behavior of the system, and
therefore the minimum length of the transient part of 𝑋0 is positive, i.e. 𝑚𝑖𝑛x∈𝑋0𝑘0(x) > 0.
Furthermore, if the backward reach set 𝑋−𝑘 is not empty, all x ∈ 𝑋−𝑘 is also in the transient
behavior of the system and the minimum length of the transient part of 𝑋−𝑘 is increasing
with 𝑘 as follows: 𝑚𝑖𝑛x∈𝑋−𝑘

𝑘0(x) = 𝑘 + 𝑚𝑖𝑛x∈𝑋0𝑘0(x). However, the maximum length of the
transient part of 𝑋−𝑘 is bounded by minx∈𝑋−𝑘

𝑘0(x) ≤ maxx∈𝑋−𝑘
𝑘0(x) ≤ 𝐾0(𝐴) (see Remark

2.15) whenever 𝑋−𝑘 is not empty. Therefore, 𝑋−𝑘 is empty if 𝑘 > 𝐾0(𝐴), which would imply
minx∈𝑋−𝑘

𝑘0(x) > 𝐾0(𝐴).

The set of all states that can lead to a given set of final positions 𝑋0 in 𝑁 event steps
(i.e., the backward reach set 𝑋−𝑁) can be computed using a one-shot procedure. Given a
nonempty set of final conditions 𝑋0, the backward reach set 𝑋−𝑁 is given by:

𝑋−𝑁 = ℐ−1
𝐴⊗𝑁{𝑋0} = {x ∈ R𝑛 : 𝐴⊗𝑁 ⊗ x ∈ 𝑋0}. (3.9)

3 The complete set of periodic behaviors is given by the eigenspace of 𝐴⊗𝑐, i.e. 𝐸(𝐴⊗𝑐) where 𝑐 is the
cyclicity of the critical graph of 𝐴 (recall the definition of eigenspace in Proposition 2.12)

Chapter 3. Reachability Analysis of MPL Systems 56

A general procedure for computing 𝑋−𝑁 is: 1) compute 𝐴⊗𝑁 ; then, 2) construct the
PWA system generated by 𝐴⊗𝑁 ; and, 3) compute the inverse image of 𝑋0 w.r.t. the obtained
PWA system. the overall complexity of the one-shot computation of the backward reach set
is the same as the forward instance for autonomous uMPL systems.

3.2.2 Backward Reachability Analysis of Nonautonomous MPL systems

To proceed with the backward reachability analysis of nonautonomous MPL systems,
the system is first represented as an equivalent augmented autonomous MPL system (see
equation (2.37)); then, given a set of final conditions 𝑋0 and the set of inputs 𝑈−𝑘 for each
𝑘 ∈ N, the backward reach set 𝑋−𝑘 can be recursively calculated as the inverse image of
𝑋−𝑘+1:

𝑋−𝑘 = ℐ−1
𝐹 {𝑋−𝑘+1} = {x ∈ R𝑛 : ∃u ∈ 𝑈−𝑘+1 : 𝐹 ⊗ (x𝑇 u𝑇)𝑇 ∈ 𝑋−𝑘+1}. (3.10)

Given a nonautonomous MPL system, the set of final conditions 𝑋0 and set of inputs
𝑈−𝑘 for each 𝑘 ∈ {0, ..., 𝑁 −1}, computing the backward reach tube for 𝑘 ∈ {1, ..., 𝑁} can be
done as follows: first, construct the PWA system generated by [F] = ([A] [B]); then, for each
𝑘 ∈ {1, ..., 𝑁}, compute the inverse image of 𝑋𝑘−1 w.r.t. the PWA system; next, intersect the
inverse image with R𝑛 × 𝑈−𝑘+1; and finally, project the intersection over the state variables.

From Corollary 5.2, it can be shown that 𝑋−𝑘 can be represented by a union of finitely
many DBM. The worst-case complexity to compute ℐ−1

𝐹 {𝑋−𝑘+1} is 𝒪(𝑞−𝑘+1(𝑛 + 𝑚)𝑛+3),
where: 𝑞−𝑘+1 = 𝑞−𝑘+1𝑟−𝑘+1 and 𝑞−𝑘+1 and 𝑟−𝑘+1 are, respectively, the cardinality of the DBM
union set representing 𝑋−𝑘+1 and 𝑈−𝑘+1. Thus, the overall complexity to compute 𝑋−𝑁 is
𝒪((𝑛 + 𝑚)𝑛+3∑︀𝑁

𝑘=1 𝑞−𝑘+1).

In the following it is presented a one-shot procedure for computing the backward reach
set 𝑋−𝑁 , for a particular index 𝑁 . Given a nonempty set of final conditions 𝑋0, the set of
all states that are able to enter 𝑋0 in 𝑁 event steps is given by:

𝑋−𝑁 = {x(−𝑁) ∈ R𝑛 : ∃u(−𝑁 + 1) ∈ 𝑈−𝑁+1, ..., u(0) ∈ 𝑈0

: (𝐴⊗𝑁 , 𝐴⊗(𝑁−1) ⊗𝐵, ..., 𝐵)⊗ (x(−𝑁)𝑇 u(−𝑁 + 1)𝑇 u(0)𝑇)𝑇 ∈ 𝑋0}.(3.11)

Given the matrices 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 and 𝐵 ∈ R𝑛×𝑚

𝑚𝑎𝑥 , a set of final positions 𝑋0 and a sequence
of input sets 𝑈−𝑁+1, ..., 𝑈0, a general procedure for computing 𝑋−𝑁 is given by: 1) generate
the matrix [𝐴⊗𝑁 , 𝐴⊗(𝑁−1)⊗𝐵, ..., 𝐵]; then, 2) Construct the PWA system generated by this

Chapter 3. Reachability Analysis of MPL Systems 57

matrix; 3) compute the inverse image of 𝑋0 w.r.t the obtained PWA system; 4) intersect the
inverse image with R𝑛 × 𝑈1 × ...× 𝑈𝑁 ; and finally, 5) project the intersection over the state
variables. The complexity of this procedure is the same as the one-shot procedure for the
forward case presented in section 3.1.2.

Example 3.9 Consider the autonomous MPL system given by:

x(𝑘) =
⎛⎝8 5

4 3

⎞⎠⊗ x(𝑘 − 1).

In example 2.32 this system was represented as a collection of DBM D(PWA) = {𝐷(1,1),

𝐷(1,2), 𝐷(2,2)}.

Let us now compute the reach sets 𝑋𝑘 for 𝑘 ∈ {1, 2, 3} and the backward reach sets
𝑋−𝑘 for 𝑘 ∈ {1, 2} given 𝑋0 = {x ∈ R2

𝑚𝑎𝑥 : 0 ≤ 𝑥1 ≤ 2, −4 ≤ 𝑥2 ≤ 6}. Note that the set 𝑋0

can be represented by the following DBM4:

𝑥0 𝑥1 𝑥2

𝐷(𝑋0) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ (4,≤)

⎞⎟⎟⎟⎠
𝑥0

(2,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(6,≤) 𝜀ℬ 𝑒ℬ 𝑥2

To compute the reach set 𝑋1 = ℐ𝐴{𝑋0}, we must compute the image of 𝑋0 w.r.t each
component g of the PWA system. According to algorithm 3.1, the image of 𝐷(𝑋0) w.r.t. 𝐷(1,1)

can be computed as follows: first, we compute the Cartesian product of 𝐷(R2) and 𝐷(𝑋0):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(R2×𝑋0) = 𝐷(R2) ×𝐷(𝑋0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (4,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥′
2

(2,≤) 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥1

(6,≤) 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥2

Then, we compute the intersection of 𝐷(R2×𝑋0) and 𝐷(1,1):
4 Notation: x′ ≡ x(𝑘) and x ≡ x(𝑘 − 1).

Chapter 3. Reachability Analysis of MPL Systems 58

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(R2×𝑋0) ⊕ℬ 𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (4,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (8,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (4,≤) 𝜀ℬ 𝑥′
2

(2,≤) (−8,≤) (−4,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(6,≤) 𝜀ℬ 𝜀ℬ (1,≤) 𝑒ℬ 𝑥2

Next, we compute the canonical form representation of the intersection:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(R2×𝑋0) ⊕ℬ 𝐷(1,1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ (−8,≤) (−4,≤) 𝑒ℬ (4,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(10,≤) 𝑒ℬ (4,≤) (8,≤) (14,≤) 𝑥′
1

(6,≤) (−4,≤) 𝑒ℬ (4,≤) (10,≤) 𝑥′
2

(2,≤) (−8,≤) (−4,≤) 𝑒ℬ (6,≤) 𝑥1

(3,≤) (−7,≤) (−3,≤) (1,≤) 𝑒ℬ 𝑥2

Finally, we compute the orthogonal projection of the canonical form over the variables
𝑥′

1 and 𝑥′
2:

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(1,1)) = 𝑐𝑓(𝐷(R2×𝑋0) ⊕ℬ 𝐷(1,1))⌈x′=

⎛⎜⎜⎜⎝
𝑒ℬ (−8,≤) (−4,≤)

⎞⎟⎟⎟⎠
𝑥0

(10,≤) 𝑒ℬ (4,≤) 𝑥′
1

(6,≤) (−4,≤) 𝑒ℬ 𝑥′
2

Therefore, image of 𝑋0 w.r.t the component g = (1, 1) is 𝑋1|g=(1,1) = {x′ ∈ R2 : 8 ≤
𝑥′

1 ≤ 10, 4 ≤ 𝑥′
2 ≤ 6, 𝑥′

1 − 𝑥′
2 = 4}. Applying the same procedure for 𝐷(1,2) and 𝐷(2,2) we

obtain:

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(1,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−8,≤) (−4,≤)

⎞⎟⎟⎟⎠
𝑥0

(10,≤) 𝑒ℬ (4,≤) 𝑥′
1

(8,≤) (−2,≤) 𝑒ℬ 𝑥′
2

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(2,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−8,≤) (−6,≤)

⎞⎟⎟⎟⎠
𝑥0

(11,≤) 𝑒ℬ (2,≤) 𝑥′
1

(9,≤) (−2,≤) 𝑒ℬ 𝑥′
2

Chapter 3. Reachability Analysis of MPL Systems 59

Thus, 𝑋1|g=(1,2) = {x′ ∈ R2 : 8 ≤ 𝑥′
1 ≤ 10, 4 ≤ 𝑥′

2 ≤ 8, 2 ≤ 𝑥′
1 − 𝑥′

2 ≤ 4}
and 𝑋1|g=(2,2) = {x′ ∈ R2 : 8 ≤ 𝑥′

1 ≤ 11, 6 ≤ 𝑥′
2 ≤ 9, 𝑥′

1 − 𝑥′
2 = 2}. The reach set

𝑋1 is the union of the images of 𝑋0 w.r.t. each component of PWA system, i.e., 𝑋1 =
𝑋1|g=(1,1) ∪ 𝑋1|g=(1,2) ∪ 𝑋1|g=(2,2) = {x′ ∈ R2 : 8 ≤ 𝑥′

1 ≤ 10, 4 ≤ 𝑥′
2 ≤ 8, 2 ≤ 𝑥′

1 − 𝑥′
2 ≤

4} ∪ {x′ ∈ R2 : 8 ≤ 𝑥′
1 ≤ 11, 6 ≤ 𝑥′

2 ≤ 9, 𝑥′
1 − 𝑥′

2 = 2}.

Note that 𝐷(𝑋1|g=(1,1)) = 𝐷(𝑋1|g=(1,1)) ⊕ℬ 𝐷(𝑋1|g=(1,2)), thus 𝐷(𝑋1|g=(1,1)) ∪ 𝐷(𝑋1|g=(1,2)) =
𝐷(𝑋1|g=(1,2)) (see remark 2.22). Therefore the reach set 𝑋1 is represented by the collection of
DBM given by D(𝑋1) = {𝐷(𝑋1|g=(1,2)), 𝐷(𝑋1|g=(2,2))}.

The reach set 𝑋2 is obtained by computing the image of each DBM in D(𝑋1) w.r.t each
DBM in D(PWA) = {𝐷(1,1), 𝐷(1,2), 𝐷(2,2)}, which yields 𝑋2 = {x′ ∈ R2 : 16 ≤ 𝑥′

1 ≤ 19, 12 ≤
𝑥′

2 ≤ 15, 𝑥′
1 − 𝑥′

2 = 4}.

Moreover, we observe that the system matrix has eigenvalue 𝜆 = 8 and cyclicity
𝑐 = 1, and for 𝑘 ≥ 2, we obtain 𝑋𝑘+1 = 8⊗𝑋𝑘. Thus, the reach set 𝑋3 is simply obtained by
computing 8⊗𝑋2, which yields 𝑋3 = {x′ ∈ R2 : 24 ≤ 𝑥′

1 ≤ 27, 20 ≤ 𝑥′
2 ≤ 23, 𝑥′

1 − 𝑥′
2 = 4}.

The reach tube for 𝑘 ∈ {1, 2, 3} is shown in Figure 6.

To compute the backward reach set 𝑋−1 = ℐ−1
𝐴 {𝑋0}, we must to compute the inverse

image of 𝑋0 w.r.t each component g of the PWA system. According to algorithm 3.2, the
inverse image of 𝐷(𝑋0) w.r.t. 𝐷(1,1) can be computed as follows: first, we compute the cartesian
product of 𝐷(𝑋0) and 𝐷(R2):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(𝑋0×R2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (4,≤) 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(2,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
1

(6,≤) 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥2

Then, we compute the intersection of 𝐷(𝑋0×R2) and 𝐷(1,1):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(𝑋0×R2) ⊕ℬ 𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (4,≤) 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(2,≤) 𝑒ℬ 𝜀ℬ (8,≤) 𝜀ℬ 𝑥′
1

(6,≤) 𝜀ℬ 𝑒ℬ (4,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−8,≤) (−4,≤) 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ (1,≤) 𝑒ℬ 𝑥2

Next, we compute the canonical form representation of the intersection:

Chapter 3. Reachability Analysis of MPL Systems 60

−20 −15 −10 −5 0 5 10 15 20 25 30

−15

−10

−5

0

5

10

15

20

25

x1

x
2

R (1
,1
)

R (2
,2
)

R (2
,1
)

X0

X1

X2

X3

X−1

X−2

Figure 6 – reach tube for 𝑘 = {1, 2, 3} and backward reach tube for 𝑘 = {1, 2}.

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(𝑋0×R2) ⊕ℬ 𝐷(1,1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (4,≤) (8,≤) 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(2,≤) 𝑒ℬ (4,≤) (8,≤) 𝜀ℬ 𝑥′
1

(−2,≤) (−4,≤) 𝑒ℬ (4,≤) 𝜀ℬ 𝑥′
2

(−6,≤) (−8,≤) (−4,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(−5,≤) (−7,≤) (−3,≤) (1,≤) 𝑒ℬ 𝑥2

Finally, we compute the orthogonal projection of the canonical form over the variables
𝑥1 and 𝑥2:

Chapter 3. Reachability Analysis of MPL Systems 61

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(1,1)) = 𝑐𝑓(𝐷(𝑋0×R2) ⊕ℬ 𝐷(1,1))⌈x=

⎛⎜⎜⎜⎝
𝑒ℬ (8,≤) 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

(−6,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(−5,≤) (1,≤) 𝑒ℬ 𝑥2

Therefore, inverse image of 𝑋0 w.r.t the component g = (1, 1) is 𝑋−1|g=(1,1) = {x ∈
R2 : −8 ≤ 𝑥1 ≤ −6, 𝑥2 ≤ −5, 𝑥1 − 𝑥2 ≥ −1}. Applying the same procedure for 𝐷(1,2) and
𝐷(2,2) we obtain:

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(1,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ (8,≤) (7,≤)

⎞⎟⎟⎟⎠
𝑥0

(−6,≤) 𝑒ℬ (−1,≤) 𝑥1

(−3,≤) (3,≤) 𝑒ℬ 𝑥2

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(2,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ (5,≤)

⎞⎟⎟⎟⎠
𝑥0

(−6,≤) 𝑒ℬ (−3,≤) 𝑥1

(−3,≤) 𝜀ℬ 𝑒ℬ 𝑥2

Thus, 𝑋−1|g=(1,2) = {x ∈ R2 : −8 ≤ 𝑥1 ≤ −6, −7 ≤ 𝑥2 ≤ −3, −3 ≤ 𝑥1 − 𝑥2 ≤ −1}
and 𝑋−1|g=(2,2) = {x ∈ R2 : 𝑥1 ≤ −6, −5 ≤ 𝑥2 ≤ −3, 𝑥1 − 𝑥2 ≤ −3}. The backward reach
set 𝑋−1 is the union of the inverse images of 𝑋0 w.r.t. each component of PWA system, i.e.,
𝑋−1 = 𝑋−1|g=(1,1)∪𝑋−1|g=(1,2)∪𝑋−1|g=(2,2). Observe that 𝑋−1 is represented by the collection
of DBM given by D(𝑋−1) = {𝐷(𝑋−1|g=(1,1)), 𝐷(𝑋−1|g=(1,2)), 𝐷(𝑋−1|g=(2,2))}.

The backward reach set 𝑋−2 is obtained by computing the inverse image of each DBM
in D(𝑋−1) w.r.t each DBM in D(PWA) = {𝐷(1,1), 𝐷(1,2), 𝐷(2,2)}, which yields 𝑋−2 = {x ∈ R2 :
−16 ≤ 𝑥1 ≤ −14, 𝑥2 ≤ −13, 𝑥1 − 𝑥2 ≥ −1} ∪ {x ∈ R2 : −16 ≤ 𝑥1 ≤ −14, −15 ≤ 𝑥2 ≤
−11, −3 ≤ 𝑥1 − 𝑥2 ≤ −1} ∪ {x ∈ R2 : 𝑥1 ≤ −14, −13 ≤ 𝑥2 ≤ −11, 𝑥1 − 𝑥2 ≤ −3}.

62

4 Uncertain Max-Plus Linear Systems

As presented in section 2.3, the MPL systems matrices are associated to system delays
and transport times. In practice, these parameters may be subjected to noise and distur-
bances, which should be taken into account in order to avoid tracking error or closed loop
instability (van den Boom; De Schutter, 2002). In general, these perturbations are max-plus-
multiplicative and appear as uncertainties in the max-plus model parameters. The Stochastic
Max-Plus Linear (SMPL) systems are defined as MPL systems where the matrices entries are
characterized by random variables (OLSDER et al., 1990; RESING et al., 1990; HEIDER-
GOTT, 2006; van den Boom; De Schutter, 2002; DILORETO et al., 2010; HARDOUIN et al.,
2010). In this work, although the stochastic systems are not considered1, we are interested in
systems where the uncertain parameters can vary over a known interval. Formally, we define
the uncertain Max-Plus Linear (uMPL) systems as nondeterministic MPL systems where,
at each event step, the entries of the system matrices can, independently, take an arbitrary
value within an real interval.

The autonomous model of an uMPL system is given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), (4.1)

where the entries of 𝐴(𝑘) ∈ R𝑛×𝑛

𝑚𝑎𝑥 are considered to be in a real interval at each event step 𝑘,
i.e., 𝑎𝑖𝑗(𝑘) ∈ [𝑎𝑖𝑗, 𝑎𝑖𝑗].

Remark 4.1 To assure the FIFO (first in, first out) rule the matrix 𝐴(𝑘) must satisfy
𝐴(𝑘) ⪰ 𝑒.

Example 4.2 In the public transport system of example 2.8, the travel times are assumed to
be fixed. Now, let us consider that the travel times are in a real interval as indicated on the
graph of figure 7.

The system can be described by the following uMPL system:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), where 𝐴(𝑘) ∈
⎛⎝[2, 3] [5, 6]

[3, 4] [3, 4]

⎞⎠ .

The nonautonomous model of an uMPL system is given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1)⊕𝐵(𝑘)⊗ u(𝑘), (4.2)
1 The probabilistic aspects of the uncertainties are not considered.

Chapter 4. Uncertain Max-Plus Linear Systems 63

S2S1[2, 3] [3, 4]

[3, 4]

[5, 6]

Figure 7 – Railway network model with uncertain travel times.

where the entries of where 𝐴(𝑘) ∈ R𝑛×𝑛

𝑚𝑎𝑥 and 𝐵(𝑘) ∈ R𝑛×𝑚

𝑚𝑎𝑥 are considered to be in a real
interval at each event step 𝑘.

Equivalently to the deterministic case, any nonautonomous uMPL system can be
transformed into an augmented autonomous uMPL model by considering 𝐹 (𝑘) = (𝐴(𝑘) 𝐵(𝑘)) ∈
𝑅̄𝑛×(𝑛+𝑚)

𝑚𝑎𝑥 and y(𝑘 − 1) =
(︁
x(𝑘 − 1)𝑇 u(𝑘)𝑇

)︁𝑇
.

x(𝑘) = 𝐹 (𝑘)⊗ y(𝑘 − 1). (4.3)

4.1 Interval Analysis
This section introduces some basic concepts of Interval Analysis and its applications

to the uMPL systems (MOORE; BIERBAUM, 1979; LITVINOV; SOBOLEVSKĪI, 2001;
GNING et al., 2012; BRUNSCH et al., 2012; HARDOUIN et al., 2009; LHOMMEAU et al.,
2005).

An interval is defined as a closed set of real numbers (MOORE; BIERBAUM, 1979):

[x] = [𝑥, 𝑥] = {𝑥 ∈ R : 𝑥 ≤ 𝑥 ≤ 𝑥}. (4.4)

A degenerate interval is an interval consisting of a single real number. Thus, an interval
[x] is degenerate if 𝑥 = 𝑥.

Remark 4.3 By convention a degenerate interval [𝑥, 𝑥] is identified with the real number 𝑥.

Remark 4.4 The notation [X] will be used for matrices of intervals, i.e., matrices whose
entries are intervals:

[X] = [𝑋, 𝑋] = ([x𝑖𝑗])1≤𝑖≤𝑛
1≤𝑗≤𝑝

. (4.5)

The intersection and union operations can be applied to intervals (MOORE; BIER-
BAUM, 1979). The intersection of two intervals [x] and [y] is always an interval, defined by:

[x] ∩ [y] = [max{𝑥, 𝑦}, min{𝑥, 𝑦}]. (4.6)

Chapter 4. Uncertain Max-Plus Linear Systems 64

Thus, the intersection is empty if either 𝑥 > 𝑦 or 𝑥 < 𝑦. On the other hand, the union of two
intervals is not, in general, an interval. However, if the intervals have nonempty intersection,
their union is again an interval defined by:

[x] ∪ [y] = [min{𝑥, 𝑦}, max{𝑥, 𝑦}]. (4.7)

Example 4.5 Consider the intervals: [x] = [0, 4], [y] = [2, 5] and [z] = [5, 7]. Then,

[x] ∩ [y] = [max{0, 2}, min{4, 5}] = [2, 4],

[x] ∩ [z] = [max{0, 5}, min{4, 7}] = [5, 4] = ∅,

[y] ∩ [z] = [max{2, 5}, min{5, 7}] = [5, 5].

Since [x] ∩ [y] and [y] ∩ [z] are not empty we have that:

[x] ∪ [y] = [min{0, 2}, max{4, 5}] = [0, 5],

[x] ∪ [z] = [0, 4] ∪ [5, 7],

[y] ∪ [z] = [min{2, 5}, max{5, 7}] = [2, 7].

Note that the intersection of [x] and [z] is empty, and therefore [x] ∪ [z] is not an interval.

The binary operations + and - can be extended to intervals (MOORE; BIERBAUM,
1979):

[x] + [y] = {𝑥 + 𝑦 : 𝑥 ∈ [x] , 𝑦 ∈ [y]} = [𝑥 + 𝑦, 𝑥 + 𝑦], (4.8)

[x]− [y] = {𝑥− 𝑦 : 𝑥 ∈ [x] , 𝑦 ∈ [y]} = [𝑥− 𝑦, 𝑥− 𝑦]. (4.9)

Example 4.6 Let [x] = [4, 8] and [y] = [3, 5]. Then

[x] + [y] = [4 + 3, 8 + 5] = [7, 13],

[x]− [y] = [4− 5, 8− 3] = [−1, 5].

We can also extend the max-plus operations to intervals (BRUNSCH et al., 2012;
HARDOUIN et al., 2009; LHOMMEAU et al., 2005):

[x]⊕ [y] = {𝑥⊕ 𝑦 : 𝑥 ∈ [x] , 𝑦 ∈ [y]} = [𝑥⊕ 𝑦, 𝑥⊕ 𝑦], (4.10)

[x]⊗ [y] = {𝑥⊗ 𝑦 : 𝑥 ∈ [x] , 𝑦 ∈ [y]} = [𝑥⊗ 𝑦, 𝑥⊗ 𝑦]. (4.11)

Chapter 4. Uncertain Max-Plus Linear Systems 65

Moreover, if [A], [B] and [C] are 𝑛×𝑝, 𝑛×𝑝 and 𝑝×𝑞 matrices of intervals, respectively,
we have that:

([A]⊕ [B])𝑖𝑗 = [a𝑖𝑗]⊕ [b𝑖𝑗]

= [𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗, 𝑎𝑖𝑗 ⊕ 𝑏𝑖𝑗], (4.12)

([A]⊗ [C])𝑖𝑗 =
𝑝⨁︁

𝑘=1
([a𝑖𝑘]⊗ [c𝑘𝑗])

=
𝑝⨁︁

𝑘=1

{︁
[𝑎𝑖𝑘 ⊗ 𝑐𝑘𝑗, 𝑎𝑖𝑘 ⊗ 𝑐𝑘𝑗]

}︁

=
[︃ 𝑝⨁︁

𝑘=1

{︁
𝑎𝑖𝑘 ⊗ 𝑐𝑘𝑗

}︁
,

𝑝⨁︁
𝑘=1
{𝑎𝑖𝑘 ⊗ 𝑐𝑘𝑗}

]︃
, (4.13)

or, equivalently:

[A]⊕ [B] = [𝐴⊕𝐵, 𝐴⊕𝐵], (4.14)

[A]⊗ [C] = [𝐴⊗ 𝐶, 𝐴⊗ 𝐶]. (4.15)

Thus, the 𝑘𝑡ℎ power of a matrix of intervals is given by:

[A]⊗𝑘 = [𝐴⊗𝑘, 𝐴
⊗𝑘]. (4.16)

A partial order for intervals in R𝑚𝑎𝑥 can be defined as:

[x] ⪰ [y]⇔ [x] = [x]⊕ [y]⇔ 𝑥 ⪰ 𝑦 and 𝑥 ⪰ 𝑦. (4.17)

In particular,
[x] = [y]⇔ 𝑥 = 𝑦 and 𝑥 = 𝑦. (4.18)

Moreover, the max-plus sum can be extended to a finitely many number of intervals:
𝑛⨁︁

𝑖=1
[x]𝑖 =

{︃
𝑛⨁︁

𝑖=1
𝑥𝑖 : 𝑥𝑖 ∈ [x𝑖]

}︃
=
[︃

𝑛⨁︁
𝑖=1

𝑥𝑖,
𝑛⨁︁

𝑖=1
𝑥𝑖

]︃
. (4.19)

Consider now a generic uMPL system given by:

z(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), 𝐴(𝑘) ∈ [A] (4.20)

where z(𝑘) ∈ R𝑛

𝑚𝑎𝑥 and x(𝑘 − 1) ∈ R𝑝

𝑚𝑎𝑥.

The 𝑖-th equation of (4.20) can be expressed as:

𝑧𝑖(𝑘) =
𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗(𝑘)⊗ 𝑥𝑗(𝑘 − 1)}, 𝑎𝑖𝑗(𝑘) ∈ [a𝑖𝑗] . (4.21)

Chapter 4. Uncertain Max-Plus Linear Systems 66

Therefore, given x(𝑘 − 1), and by using equations (4.11) and (4.19), 𝑧𝑖(𝑘) is in the
interval defined by:

[z𝑖] (𝑘) =
𝑝⨁︁

𝑗=1
{[a𝑖𝑗] (𝑘)⊗ 𝑥𝑗(𝑘 − 1)}

=
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)},

𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)}

⎤⎦ . (4.22)

Example 4.7 Consider the following uMPL system:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), 𝐴(𝑘) ∈ [A] ,

where

[A] =
⎛⎝[2, 7] [4, 5]

[4, 6] [2, 6]

⎞⎠ .

Given x(0) = (0 1)𝑇 , then x(1) ∈ [x] (1) = ([x1] (1) [x2] (1))𝑇 , where:⎛⎝[x1] (1)
[x1] (2)

⎞⎠ =
⎛⎝[(2⊗ 0)⊕ (4⊗ 1), (7⊗ 0)⊕ (5⊗ 1)]

[(4⊗ 0)⊕ (2⊗ 1), (6⊗ 0)⊕ (6⊗ 1)]

⎞⎠ =
⎛⎝[5, 7]

[4, 7]

⎞⎠ .

4.2 Partitioned Uncertain MPL systems
This section presents the main contribution of this work. We aim to use the DBM

data structure for the reachability analysis of uMPL systems. In Section 2.5.1 we have seen
that every MPL system can be expressed as a PWA system and Chapter 3 shows how DBM
representation of PWA systems is efficient for reachability analysis. Seeking for generality,
we observe that the reachability analysis of an MPL system through the DBM approach
is possible because each affine system (2.55) and its corresponding active state space region
(2.54) can be independently represented by one DBM. In the following, we propose a partition
of the state space of uMPL systems that satisfies this property. On this purpose let us express
interval (4.22) as:

𝑧𝑖 ∈

⎡⎣ 𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗},

𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗}

⎤⎦⇐⇒ 𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗} ⪯ 𝑧𝑖 ⪯

𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗} (4.23)

Observe that ⨁︀𝑝
𝑗=1{𝑎𝑖𝑗 ⊗ 𝑥𝑗} ⪯ 𝑧𝑖 can be alternatively expressed as ⋂︀𝑝

𝑗=1{𝑥𝑗(𝑘− 1)−
𝑧𝑖(𝑘) ≤ −𝑎𝑖𝑗}, and therefore the lower bound of (4.23) can be depicted in a single DBM. On
the other hand, the term 𝑧𝑖 ⪯

⨁︀𝑝
𝑗=1{𝑎𝑖𝑗 ⊗ 𝑥𝑗} is equivalent to ⋃︀𝑝

𝑗=1{𝑧𝑖(𝑘)− 𝑥𝑗(𝑘− 1) ≤ 𝑎𝑖𝑗}.

Chapter 4. Uncertain Max-Plus Linear Systems 67

Note that, each term of this union can be represented by a DBM. However, in general, the
union of DBM is not a DBM. Therefore, the upper bound of (4.23) cannot be depicted in a
single DBM. The main contribution of this work is to propose a partition of the state space
in which (4.23) can be expressed as a DBM suitable form.

Following the later arguments, we must search for regions in which the upper bound
of (4.23) can be expressed as a DBM. Then, let us consider the problem of finding the region
where [z𝑖] can be expressed as:

[z𝑖] =
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗}, 𝑎𝑖𝑔𝑖

⊗ 𝑥𝑔𝑖

⎤⎦ ∀𝑖 ∈ {1, ..., 𝑛}, (4.24)

where g = (𝑔1, · · · , 𝑔𝑛) ∈ {1, ..., 𝑝}𝑛 has the same interpretation as in (2.54).

This problem corresponds to find a region where the following equality holds:⎡⎣ 𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗}, 𝑎𝑖𝑔𝑖

⊗ 𝑥𝑔𝑖

⎤⎦ =
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗},

𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗}

⎤⎦ ∀𝑖 ∈ {1, ..., 𝑛}. (4.25)

From (4.18), the equality holds if:

𝑎𝑖𝑔𝑖
⊗ 𝑥𝑔𝑖

=
𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗} ∀𝑖 ∈ {1, ..., 𝑛}. (4.26)

According to (2.33), equation (4.26) can be expressed as:

𝑎𝑖𝑔𝑖
⊗ 𝑥𝑔𝑖

⪰ 𝑎𝑖𝑗 ⊗ 𝑥𝑗 ∀𝑖, 𝑗, (4.27)

which is equivalent to:
𝑥𝑗 − 𝑥𝑔𝑖

≤ 𝑎𝑖𝑔𝑖
− 𝑎𝑖𝑗 ∀𝑖, 𝑗. (4.28)

The region corresponding to (4.28) is given by:

𝑅𝑢
g =

𝑛⋂︁
𝑖=1

𝑝⋂︁
𝑗=1
𝑗 ̸=𝑔𝑖

{︁
x ∈ R𝑝

𝑚𝑎𝑥 : 𝑥𝑗 − 𝑥𝑔𝑖
≤ 𝑎𝑖𝑔𝑖

− 𝑎𝑖𝑗

}︁
. (4.29)

Region (4.29) defines a partition for uMPL systems. Moreover, if x ∈ 𝑅𝑢
g then 𝑧𝑖(𝑘)

is in the interval defined in (4.24). i.e.,

𝑧𝑖 ∈

⎡⎣ 𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗}, 𝑎𝑖𝑔𝑖

⊗ 𝑥𝑔𝑖

⎤⎦ ∀𝑖, if x ∈ 𝑅𝑢
g. (4.30)

Chapter 4. Uncertain Max-Plus Linear Systems 68

Example 4.8 Consider the following autonomous uMPL system:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), where 𝐴(𝑘) ∈
⎛⎝[4, 6] [3, 5]

[3, 7] [4, 5]

⎞⎠ .

According to equation (4.29), the regions corresponding to each component g ∈ {1, 2}2 =
{(1, 1), (1, 2), (2, 1), (2, 2)} are given by:

𝑅𝑢
(1,1) =

{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 1
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 2
}︁

=
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 1
}︁

,

𝑅𝑢
(1,2) =

{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 1
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −2
}︁

= ∅,

𝑅𝑢
(2,1) =

{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −1
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 2
}︁

=
{︁
x ∈ R2

𝑚𝑎𝑥 : 1 ≤ 𝑥2 − 𝑥1 ≤ 2
}︁

,

𝑅𝑢
(2,2) =

{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −1
}︁
∩
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥1 − 𝑥2 ≤ −2
}︁

=
{︁
x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≥ 2
}︁

.

Then, according to (4.30) the corresponding partitioned uMPL system is2:

x′ ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝[(4⊗ 𝑥1)⊕ (3⊗ 𝑥2) , 6⊗ 𝑥1]
[(3⊗ 𝑥1)⊕ (4⊗ 𝑥2) , 7⊗ 𝑥1]

⎞⎠ if x ∈ 𝑅𝑢
(1,1),⎛⎝[(4⊗ 𝑥1)⊕ (3⊗ 𝑥2) , 5⊗ 𝑥2]

[(3⊗ 𝑥1)⊕ (4⊗ 𝑥2) , 7⊗ 𝑥1]

⎞⎠ if x ∈ 𝑅𝑢
(2,1),⎛⎝[(4⊗ 𝑥1)⊕ (3⊗ 𝑥2) , 5⊗ 𝑥2]

[(3⊗ 𝑥1)⊕ (4⊗ 𝑥2) , 5⊗ 𝑥2]

⎞⎠ if x ∈ 𝑅𝑢
(2,2),

Figure 8 depicts the generated partitioned uMPL.

Example 4.9 Consider the following nonautonomous uMPL system:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1)⊕𝐵(𝑘)⊗ u(𝑘),

where,

𝐴(𝑘) ∈
⎛⎝ 2 [2, 4]

[3, 5] [3, 4]

⎞⎠ and 𝐵(𝑘) ∈
⎛⎝𝑒

𝜀

⎞⎠ .

2 Notation: x′ ≡ x(𝑘) and x ≡ x(𝑘 − 1).

Chapter 4. Uncertain Max-Plus Linear Systems 69

x1

-1.5 -1 -0.5 0 0.5 1 1.5

x
2

0

0.5

1

1.5

2

2.5

3

x
′
2
∈
[3
⊗

x 1
⊕

4
⊗

x 2
,
7
⊗

x 1
]

R
u
(2
,1
)

x
′
1
∈
[4
⊗

x 1
⊕

3
⊗

x 2
,
6
⊗

x 1
]

R
u
(1
,1
)

x
′
2
∈
[3
⊗

x 1
⊕

4
⊗

x 2
,
7
⊗

x 1
]

x
′
1
∈
[4
⊗

x 1
⊕

3
⊗

x 2
,
5
⊗

x 2
]

x
′
2
∈
[3
⊗

x 1
⊕

4
⊗

x 2
,
5
⊗

x 2
]

x
′
1
∈
[4
⊗

x 1
⊕

3
⊗

x 2
,
5
⊗

x 2
]

R
u
(2
,2
)

Figure 8 – A partitioned uMPL system.

This system can be expressed as the following augmented autonomous uMPL system:

x(𝑘) = 𝐹 (𝑘)⊗ y(𝑘 − 1), where y(𝑘 − 1) =

⎛⎜⎜⎜⎝
𝑥1(𝑘 − 1)
𝑥2(𝑘 − 1)

𝑢1(𝑘)

⎞⎟⎟⎟⎠ and 𝐹 (𝑘) ∈
⎛⎝ 2 [2, 4] 𝑒

[3, 5] [3, 4] 𝜀

⎞⎠ .

In order to express the uMPL system as a partitioned uMPL system we must compute
the regions corresponding to each component g ∈ {1, 2, 3}2 = {(1, 1), (1, 2), (1, 3), (2, 1),
(2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. Since the matrix entry [f23] is null (in the max-plus sense)
we have that the regions corresponding to the components {(1, 3), (2, 3), (3, 3)} are empty.
According to equation (4.29), the regions corresponding to the components g ∈ {(1, 1), (1, 2),
(2, 1), (2, 2), (3, 1), (3, 2)} are given by:

Chapter 4. Uncertain Max-Plus Linear Systems 70

𝑅𝑢
(1,1) =

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ 2
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ 2
}︁

,

𝑅𝑢
(1,2) =

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ 2
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ ∞
}︁

= ∅,

𝑅𝑢
(2,1) =

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ 2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : −2 ≤ 𝑦2 − 𝑦1 ≤ 1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁

,

𝑅𝑢
(2,2) =

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ 2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ 4
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −1
}︁

,

𝑅𝑢
(3,1) =

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁

∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦1 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦1 ≤ 1
}︁

,

𝑅𝑢
(3,2) =

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁

{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −1
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦3 − 𝑦2 ≤ ∞
}︁

=
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦3 ≤ −2
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦2 − 𝑦3 ≤ −4
}︁
∩
{︁
y ∈ R3

𝑚𝑎𝑥 : 𝑦1 − 𝑦2 ≤ −1
}︁

.

Then, according to (4.30) the corresponding partitioned uMPL system is3

x′ ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝[(2⊗ 𝑦1)⊕ (2⊗ 𝑦2)⊕ (𝑒⊗ 𝑦3) , 2⊗ 𝑦1]
[(3⊗ 𝑦1)⊕ (3⊗ 𝑦2)⊕ (𝜀⊗ 𝑦3) , 5⊗ 𝑦1]

⎞⎠ if y ∈ 𝑅𝑢
(1,1),⎛⎝[(2⊗ 𝑦1)⊕ (2⊗ 𝑦2)⊕ (𝑒⊗ 𝑦3) , 4⊗ 𝑦2]

[(3⊗ 𝑦1)⊕ (3⊗ 𝑦2)⊕ (𝜀⊗ 𝑦3) , 5⊗ 𝑦1]

⎞⎠ if y ∈ 𝑅𝑢
(2,1),⎛⎝[(2⊗ 𝑦1)⊕ (2⊗ 𝑦2)⊕ (𝑒⊗ 𝑦3) , 4⊗ 𝑦2]

[(3⊗ 𝑦1)⊕ (3⊗ 𝑦2)⊕ (𝜀⊗ 𝑦3) , 4⊗ 𝑦2]

⎞⎠ if y ∈ 𝑅𝑢
(2,2),⎛⎝[(2⊗ 𝑦1)⊕ (2⊗ 𝑦2)⊕ (𝑒⊗ 𝑦3) , 𝑒⊗ 𝑦3]

[(3⊗ 𝑦1)⊕ (3⊗ 𝑦2)⊕ (𝜀⊗ 𝑦3) , 5⊗ 𝑦1]

⎞⎠ if y ∈ 𝑅𝑢
(3,1),⎛⎝[(2⊗ 𝑦1)⊕ (2⊗ 𝑦2)⊕ (𝑒⊗ 𝑦3) , 𝑒⊗ 𝑦3]

[(3⊗ 𝑦1)⊕ (3⊗ 𝑦2)⊕ (𝜀⊗ 𝑦3) , 4⊗ 𝑦2]

⎞⎠ if y ∈ 𝑅𝑢
(3,2),

3 Notation: x′ ≡ x(𝑘) and y ≡ y(𝑘 − 1).

Chapter 4. Uncertain Max-Plus Linear Systems 71

4.2.1 DBM Representation of Partitioned uMPL systems

Each region (4.29) can be represented by a (𝑝 + 1) × (𝑝 + 1) DBM, see Section 2.4.
From (4.24), 𝑧𝑖(𝑘), 𝑖 ∈ {1, ..., 𝑛}, is in the set defined by the following inequalities:

𝑧𝑖(𝑘) ⪯ 𝑎𝑖𝑔𝑖
⊗ 𝑥𝑔𝑖

(𝑘 − 1), (4.31)

𝑧𝑖(𝑘) ⪰
𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)} ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑧𝑖(𝑘) ⪰ 𝑎𝑖1 ⊗ 𝑥1(𝑘 − 1),
...

𝑧𝑖(𝑘) ⪰ 𝑎𝑖𝑝 ⊗ 𝑥𝑝(𝑘 − 1).

(4.32)

From this set, the following region can be defined:
𝑛⋂︁

𝑖=1
{𝑧𝑖(𝑘)− 𝑥𝑔𝑖

(𝑘 − 1) ≤ 𝑎𝑖𝑔𝑖
} ∩

𝑛⋂︁
𝑖=1

𝑝⋂︁
𝑗=1
𝑗 ̸=𝑖

{︁
𝑥𝑗(𝑘 − 1)− 𝑧𝑖(𝑘) ≤ −𝑎𝑖𝑗

}︁
(4.33)

Therefore, it is straightforward to see that the dynamics of a partitioned uMPL system
can be represented by a (𝑛 + 𝑝 + 1)× (𝑛 + 𝑝 + 1) DBM.

Remark 4.10 Each component of a partitioned uMPL system (region plus corresponding
dynamics) can be fully characterized by the intersection of (4.29) and (4.33). This intersec-
tion can be represented by a (𝑛 + 𝑝 + 1) × (𝑛 + 𝑝 + 1) DBM which constrains the variables
[𝑧1, . . . , 𝑧𝑛, 𝑥1, . . . , 𝑥𝑝] and their differences.

Given [A] = [𝐴, 𝐴], where 𝐴, and 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥, Algorithm 4.1 describes a procedure to
generate a partitioned uMPL system represented by a collection of DBM D.

Algorithm 4.1 works as follows: In step 1 the output and auxiliary variables are initial-
ized. Step 5 generates a 𝑛× 𝑝 matrix (𝑑𝑦𝑛𝐼𝑛𝑓)4 representing the bounds for the differences
defined in the right side of intersection (4.33). As can be observed in (4.33), these differences
does not depends on g, therefore they can be calculated before the main loop (step 9). Then,
for each g: step 13 generates an 𝑝 × 𝑛 matrix (𝑑𝑦𝑛𝑆𝑢𝑝)5 representing the bounds for the
differences defined in the left side of intersection (4.33); step 16 computes the DBM repre-
sentation of region 𝑅𝑢

g; if the obtained DBM is not empty (step 21) the matrices 𝑑𝑦𝑛𝐼𝑛𝑓 ,
𝑑𝑦𝑛𝑆𝑢𝑝 and the region 𝑅𝑢

g are used to generate a DBM 𝐷g ∈ R𝑛+𝑝 (steps 22 to 25) and step
26 saves 𝐷g in D.
4 Note that 𝑑𝑦𝑛𝐼𝑛𝑓 is not a DBM because it is not a square matrix.
5 𝑑𝑦𝑛𝑆𝑢𝑝 is not a DBM.

Chapter 4. Uncertain Max-Plus Linear Systems 72

Algorithm 4.1: Expressing an MPL system as a PWA system using DBM as data
structure. The assignment 𝑑𝑏𝑚𝐸𝑦𝑒(·) generates a square matrix of specified dimension,
with entries 𝑑𝑖𝑗 = 𝑒ℬ if 𝑖 = 𝑗 and 𝑑𝑖𝑗 = 𝜀ℬ if 𝑖 ̸= 𝑗. The assignment 𝑑𝑏𝑚𝑁𝑢𝑙𝑙(·, ·)
generates a matrix of specified dimension, with entries 𝑑𝑖𝑗 = 𝜀ℬ.

input : [A] = [𝐴, 𝐴], where 𝐴, 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥

output: D

1 D← ∅, 𝑑𝑦𝑛𝐼𝑛𝑓 ← 𝑑𝑏𝑚𝑁𝑢𝑙𝑙(𝑛, 𝑛) ;
2 for all 𝑖 ∈ {1, ..., 𝑛} do
3 for all 𝑗 ∈ {1, ..., 𝑝} do
4 if 𝐴[𝑖, 𝑗] ̸= 𝜖 then
5 𝑑𝑦𝑛𝐼𝑛𝑓 [𝑗, 𝑖]← (−𝑎𝑖𝑗,≤)// represents 𝑧𝑖 ≥ 𝑥𝑗 + 𝑎𝑖𝑗

6 end if
7 end for
8 end for
9 for all g ∈ {1, ..., 𝑝}𝑛 do

10 𝑅𝑢
g ← 𝑑𝑏𝑚𝐸𝑦𝑒(𝑛), 𝑑𝑦𝑛𝑆𝑢𝑝← 𝑑𝑏𝑚𝑁𝑢𝑙𝑙(𝑛, 𝑝);

11 for all 𝑖 ∈ {1, ..., 𝑛} do
12 if 𝑎𝑖𝑔𝑖

̸= 𝜖 then
13 𝑑𝑦𝑛𝑆𝑢𝑝[𝑖, 𝑔𝑖]← (𝑎𝑖𝑔𝑖

,≤) // represents 𝑧𝑖 ≤ 𝑥𝑔𝑖
+ 𝑎𝑖𝑔𝑖

14 for all 𝑗 ∈ {1, ..., 𝑝} do
15 if 𝑎𝑖,𝑗 ̸= 𝜖 then
16 𝑅𝑢

g[𝑖, 𝑔𝑖]← (min
{︁
𝑅𝑢

g[𝑖, 𝑔𝑖], 𝑎𝑖𝑔𝑖
− 𝑎𝑖𝑗

}︁
,≤) // define 𝑅𝑢

g, see
(4.29)

17 end if
18 end for
19 end if
20 end for
21 if 𝑅𝑢

g is not empty then
22 𝐷g ← 𝑑𝑏𝑚𝐸𝑦𝑒(𝑛 + 𝑝 + 1) //
23 𝐷g[2 : 𝑛 + 1, 𝑛 + 2 : 𝑛 + 𝑝 + 1]← 𝑑𝑦𝑛𝑆𝑢𝑝 //
24 𝐷g[𝑛 + 2 : 𝑛 + 𝑝 + 1, 2 : 𝑛 + 1]← 𝑑𝑦𝑛𝐼𝑛𝑓 //
25 𝐷g[𝑛 + 2 : 𝑛 + 𝑝 + 1, 𝑛 + 2 : 𝑛 + 𝑝 + 1]← 𝑅𝑢

g //
26 D← D ∪ {𝐷g};
27 end if
28 end for

𝑥0 𝑧1...𝑧𝑛 𝑥1...𝑥𝑝

𝐷g =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ...𝜀ℬ 𝜀ℬ...𝜀ℬ 𝑥0
⎞⎟⎟⎟⎟⎟⎟⎠

𝜀ℬ
...

𝜀ℬ

𝑒𝑛×𝑛
ℬ

𝑑𝑢𝑛𝑆𝑢𝑝
(step 23)

𝑧1
...

𝑧𝑛
𝜀ℬ
...

𝜀ℬ

𝑑𝑢𝑛𝐼𝑛𝑓
(step 24)

𝑅g
(step 25)

𝑥1
...

𝑥𝑝

The worst-case complexity is calculated as follows. The maximum number of iterations
in steps 9, 11 and 14 is 𝑝𝑛, 𝑛 and 𝑝 respectively. The complexity of the checking for emptiness
of a DBM is cubic w.r.t. its dimension (see section 2.4.1), thus the complexity of step 21 is
constant and equal to 𝒪 (𝑝3). Moreover, the number of iterations in steps 2 and 3 is constant
and amounts to 𝑛𝑝. Thus, the worst-case complexity is 𝒪 (𝑝𝑛(𝑛𝑝 + 𝑛3)). As for the classical

Chapter 4. Uncertain Max-Plus Linear Systems 73

case (section 2.5), the bottleneck resides in the worst-case cardinality of the collection of
coefficients g, given by 𝑝𝑛. It should be noted that the performance of the algorithm can also
be improved by using the backtracking technique discussed at the end of section 2.5.

In order to test the efficiency of the approach an experiment was carried out: for each
𝑛 ∈ {10, 12, 14, 16, 18, 20} it was generated an 𝑛× 𝑛 matrix [A] with exactly 2 non-𝜀 entries
randomly placed in each row. The upper bound of the non-𝜀 entries was randomly generated
between 1 and 100 and the lower bound was set to6 0. In table 2 are average number of
regions and the average time to generate the DBM representation over 10 experiments. The
experiments were run in a Intel Core i7-6700HQ CPU @ 2.60 GHz with 16 GB of memory.

Table 2 – computation time to partition an uMPL system (average over 10 experiments)

𝑛 number of regions time to generate the DBM representation
10 7.16× 102 0.17(𝑠)
12 2.92× 103 0.75 (𝑠)
14 1.05× 104 3.05 (𝑠)
16 4.66× 104 14.64 (𝑠)
18 2.05× 105 71.82 (𝑠)
20 6.13× 105 4.41 (𝑚𝑖𝑛)

Example 4.11 In this example, the uMPL system of example 4.8 is alternatively represented
as a collection of DBM. For each g ∈ {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)}, we compute a
DBM 𝐷g which represents the region 𝑅𝑢

g and the corresponding dynamics. The DBM 𝐷(1,1)

is constructed as follows. From (4.29), we have that: 𝑅𝑢
(1,1) = {x ∈ R2

𝑚𝑎𝑥 : 𝑥2 − 𝑥1 ≤ 1⏟ ⏞
𝑑

(1,1)
54

}.

And, from (4.33), the dynamics active in 𝑅𝑢
(1,1) is given by: {𝑥′

1 − 𝑥1 ≤ 6}⏟ ⏞
𝑑

(1,1)
24

∩{𝑥′
2 − 𝑥1 ≤ 7}⏟ ⏞

𝑑
(1,1)
34

∩{𝑥1 − 𝑥′
1 ≤ −4}⏟ ⏞

𝑑
(1,1)
42

∩{𝑥2 − 𝑥′
1 ≤ −3}⏟ ⏞

𝑑
(1,1)
52

∩{𝑥1 − 𝑥′
2 ≤ −3}⏟ ⏞

𝑑
(1,1)
43

∩{𝑥2 − 𝑥′
2 ≤ −4}⏟ ⏞

𝑑
(1,1)
53

.

Thus, 𝐷(1,1) is given by:
6 Note that the complexity of the algorithm critically depends on the number of regions and the regions

only depends on the upper bounds of the matrix entries then setting the lower bounds to 0 does not
interfere in the results of the experiment.

Chapter 4. Uncertain Max-Plus Linear Systems 74

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (6,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (7,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−4,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ (−3,≤) (−4,≤) (1,≤) 𝑒ℬ 𝑥2

Similarly, the DBM 𝐷(2,1) is constructed as follows. From (4.29), we have that: 𝑅𝑢
(2,1) =

{𝑥1 − 𝑥2 ≤ −1}⏟ ⏞
𝑑

(2,1)
45

∩{𝑥2 − 𝑥1 ≤ 2}⏟ ⏞
𝑑

(2,1)
54

. And, from (4.33), the dynamics active in 𝑅𝑢
(2,1) is given by:

{𝑥′
1 − 𝑥2 ≤ 5}⏟ ⏞

𝑑
(2,1)
25

∩{𝑥′
2 − 𝑥1 ≤ 7}⏟ ⏞

𝑑
(2,1)
34

∩{𝑥1 − 𝑥′
1 ≤ −4}⏟ ⏞

𝑑
(2,1)
42

∩{𝑥2 − 𝑥′
1 ≤ −3}⏟ ⏞

𝑑
(2,1)
52

∩{𝑥1 − 𝑥′
2 ≤ −3}⏟ ⏞

𝑑
(2,1)
43

∩{𝑥2 − 𝑥′
1 ≤ −4}⏟ ⏞

𝑑
(2,1)
53

.

Thus, 𝐷(2,1) is given by:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(2,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (5,≤) 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (7,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−4,≤) (−3,≤) 𝑒ℬ (−1,≤) 𝑥1

𝜀ℬ (−3,≤) (−4,≤) (2,≤) 𝑒ℬ 𝑥2

Using the same procedure, we obtain:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(2,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (5,≤) 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ (5,≤) 𝑥′
2

𝜀ℬ (−4,≤) (−3,≤) 𝑒ℬ (−2,≤) 𝑥1

𝜀ℬ (−3,≤) (−4,≤) 𝜀ℬ 𝑒ℬ 𝑥2

Example 4.12 The uMPL system of example 4.9 can be represented by the following collec-
tion of DBM.

Chapter 4. Uncertain Max-Plus Linear Systems 75

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (5,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

𝜀ℬ (−2,≤) (−3,≤) (−2,≤) 𝑒ℬ 𝜀ℬ 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝑒ℬ 𝑢1

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(2,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (5,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ (2,≤) 𝜀ℬ 𝑥1

𝜀ℬ (−2,≤) (−3,≤) (1,≤) 𝑒ℬ 𝜀ℬ 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝑒ℬ 𝑢1

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(2,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ (−1,≤) 𝜀ℬ 𝑥1

𝜀ℬ (−2,≤) (−3,≤) 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝑒ℬ 𝑢1

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(3,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (5,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ 𝜀ℬ (−2,≤) 𝑥1

𝜀ℬ (−2,≤) (−3,≤) (1,≤) 𝑒ℬ (−4,≤) 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑢1

Chapter 4. Uncertain Max-Plus Linear Systems 76

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(3,2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ (−1,≤) (−2,≤) 𝑥1

𝜀ℬ (−2,≤) (−3,≤) 𝜀ℬ 𝑒ℬ (−4,≤) 𝑥2

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑢1

Remark 4.13 If 𝑎𝑖𝑗 = 𝑎𝑖𝑗 ∀𝑖, 𝑗 (deterministic case), region 𝑅𝑢
g , given by (4.29), is equal

region 𝑅g, given by (2.54) (𝑎𝑖𝑗 = 𝑎𝑖𝑗 = 𝑎𝑖𝑗 ∀𝑖, 𝑗). In this case, for all x ∈ 𝑅𝑢
g , inequality (4.32)

can be expressed as 𝑧𝑖(𝑘) ⪰⨁︀𝑝
𝑗=1{𝑎𝑖𝑗⊗𝑥𝑗(𝑘−1)} = ⨁︀𝑝

𝑗=1{𝑎𝑖𝑗⊗𝑥𝑗(𝑘−1)} = 𝑎𝑖𝑔𝑖
⊗𝑥𝑔𝑖

(𝑘−1).
Therefore, it is straightforward to see that the set (4.33) is equal the set (2.60).

77

5 Reachability Analysis of uMPL systems

In chapter 4, it was introduced a procedure to partition the state space of an uMPL
system into components that can be completely characterized by DBM. In this chapter, this
result is used to extend most of the results on reachability analysis, presented in (ADZKIYA et
al., 2015; ADZKIYA et al., 2014b; ADZKIYA et al., 2014a), to uMPL systems. The algorithms
proposed have the same worst-case complexity as the corresponding for deterministic MPL
systems. In the following, it is shown that the image and the inverse image of a set represented
by a DBM through each subsystem of a partitioned uMPL system can be represented by a
DBM, and therefore the DBM approach is useful for reachability analysis of uMPL systems.

Proposition 5.1 is an extension to uMPL systems of Proposition 3.1.

Proposition 5.1 The image and the inverse image of a set represented by a DBM w.r.t. a
subsystem of a partitioned uMPL system is a set that can be represented by a DBM.

Proof:

The proof will be given for the image instance. The proof for the inverse image is
similar. Each subsystem of a partitioned uMPL system can be represented by1:

𝑥𝑖(𝑘) ∈
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)}, 𝑎𝑖𝑔𝑖

⊗ 𝑥𝑔𝑖
(𝑘 − 1)

⎤⎦ , if x(𝑘 − 1) ∈ 𝑅𝑢
g ,

where: 𝑖 ∈ {1, ..., 𝑛} ∪ {0} and, for all g, 𝑔0 is set to 0, 𝑎00 = 0, 𝑎0𝑗 = 𝜀 for all
𝑗 ∈ {1, ..., 𝑝} and 𝑎𝑖0 = 𝜀 for all 𝑖 ∈ {1, ..., 𝑛}.

Note that, given a set 𝑋𝑘−1, only the points in the intersection 𝑋𝑘−1 ∩ 𝑅𝑢
g are

governed by this dynamics i.e.:

𝑥𝑖(𝑘) ∈
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)}, 𝑎𝑖𝑔𝑖

⊗ 𝑥𝑔𝑖
(𝑘 − 1)

⎤⎦ ∀𝑖, if x(𝑘 − 1) ∈ 𝑋𝑘−1 ∩𝑅𝑢
g .

(5.1)
If 𝑋𝑘−1 can be represented by a DBM, the intersection 𝑋𝑘−1 ∩ 𝑅𝑢

g can also be
represented by a DBM that will be noted by 𝐷(𝑋𝑘−1∩𝑅𝑢

g), with entries 𝑑
(𝑋𝑘−1∩𝑅g)
𝑖𝑟 =

(d(𝑋𝑘−1∩𝑅g)
𝑖𝑟 , ≤). Since computing the canonical form does not change the region

represented by a DBM, it will be assumed that 𝐷(𝑋𝑘−1∩𝑅𝑢
g) is in the canonical form.

1 This model considers an additional equation corresponding to the artificial variable: 𝑥0 = 0 + 𝑥0

Chapter 5. Reachability Analysis of uMPL systems 78

Therefore for all x(𝑘 − 1) ∈ 𝑋𝑘−1 ∩ 𝑅𝑢
g we have that the tightest possible upper

bound for 𝑥𝑖(𝑘 − 1)− 𝑥𝑗(𝑘 − 1) is given by:

𝑥𝑖(𝑘 − 1)− 𝑥𝑟(𝑘 − 1) ≤ d(𝑋𝑘−1∩𝑅𝑢
g)

𝑖𝑟 , ∀𝑖, 𝑟. (5.2)

According to (5.1) we have that2:

𝑥𝑖(𝑘)− 𝑥𝑟(𝑘) ∈
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)} − 𝑎𝑟𝑔𝑟 ⊗ 𝑥𝑔𝑟(𝑘 − 1),

𝑎𝑖𝑔𝑖
⊗ 𝑥𝑔𝑖

(𝑘 − 1)−
𝑝⨁︁

𝑗=1
{𝑎𝑟𝑗 ⊗ 𝑥𝑟(𝑘 − 1)}

⎤⎦ , ∀𝑖, 𝑟.(5.3)

From (5.3) we have that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥𝑖(𝑘)− 𝑥𝑟(𝑘) ≥

𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)} − 𝑎𝑟𝑔𝑟 ⊗ 𝑥𝑔𝑟(𝑘 − 1), ∀𝑖, 𝑟, (5.4)

𝑥𝑖(𝑘)− 𝑥𝑟(𝑘) ≤ 𝑎𝑖𝑔𝑖
⊗ 𝑥𝑔𝑖

(𝑘 − 1)−
𝑝⨁︁

𝑗=1
{𝑎𝑟𝑗 ⊗ 𝑥𝑟(𝑘 − 1)}, ∀𝑖, 𝑟. (5.5)

Inequality (5.4) can be expressed as:

𝑥𝑟(𝑘)− 𝑥𝑖(𝑘) ≤ min
𝑗
{𝑥𝑔𝑟(𝑘 − 1)− 𝑥𝑗(𝑘 − 1) + 𝑎𝑟𝑔𝑟 − 𝑎𝑖𝑗}, ∀𝑖, 𝑟. (5.6)

From (5.2) we have that:

𝑥𝑟(𝑘)− 𝑥𝑖(𝑘) ≤ min
𝑗
{d(𝑋𝑘−1∩𝑅𝑢

g)
𝑔𝑟𝑗 + 𝑎𝑟𝑔𝑟 − 𝑎𝑖𝑗}, ∀𝑖, 𝑟. (5.7)

Similarly, inequality (5.5) can be expressed as:

𝑥𝑖(𝑘)− 𝑥𝑟(𝑘) ≤ min
𝑗
{d(𝑋𝑘−1∩𝑅𝑢

g)
𝑔𝑖𝑗 + 𝑎𝑖𝑔𝑖

− 𝑎𝑟𝑗}, ∀𝑖, 𝑟. (5.8)

Inequalities (5.7) and (5.8) define the same region. This can be checked by noticing
that replacing 𝑖 with 𝑟 and 𝑟 with 𝑖 in (5.8) one obtains (5.7). Therefore, inequal-
ities (5.4) and (5.5) are completely represented by (5.8). Thus, tightest possible
upper bound for 𝑥𝑖(𝑘)− 𝑥𝑗(𝑘) is given by:

𝑥𝑖(𝑘)− 𝑥𝑟(𝑘) ≤ min
𝑗
{d(𝑋𝑘−1∩𝑅𝑢

g)
𝑔𝑖𝑗 + 𝑎𝑖𝑔𝑖

− 𝑎𝑟𝑗}, ∀𝑖, 𝑟. (5.9)
2 From the interval analysis theory: [x]− [y] = [𝑥− 𝑦, 𝑥− 𝑦]

Chapter 5. Reachability Analysis of uMPL systems 79

Following the same arguments given in the proof for deterministic systems, note
that all points in the image of 𝑋𝑘−1 w.r.t. a subsystem g of a partitioned uMPL
system must satisfy (5.9). Otherwise, at least one of the restrictions defined by
the dynamics (5.1) would be violated. Moreover, all the points that satisfy (5.9)
can be reached from 𝑋𝑘−1 ∩ 𝑅𝑢

g . Thus, the image of 𝑋𝑘−1 w.r.t. the subsystem g
of a partitioned uMPL system is given by the region defined by (5.9), which can
be represented by a DBM 𝐷(𝑋𝑘|g) with entries defined by:

𝑑
(𝑋𝑘|g)
𝑖𝑟 = (min

𝑗
{d(𝑋𝑘−1∩𝑅𝑢

g)
𝑔𝑖𝑗 + 𝑎𝑖𝑔𝑖

− 𝑎𝑟𝑗}, ≤). (5.10)

Given a DBM 𝐷(𝑋𝑘−1) representing a set 𝑋𝑘−1, Algorithm 5.1 computes the image of
𝑋𝑘−1 w.r.t. a subsystem of the partitioned uMPL system.

Algorithm 5.1: Computing the image of a DBM w.r.t a subsystem of a partitioned
uMPL system

input : 𝐷(𝑋𝑘−1) ∈ ℬ(𝑝+1)×(𝑝+1) // a DBM representing a region 𝑋𝑘−1 ∈ R𝑝.
: 𝐷(g) ∈ ℬ(𝑛+𝑝+1)×(𝑛+𝑝+1) // a DBM representing a subsystem of a

partitioned uMPL system generated by a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥.
output: 𝐷(𝑋𝑘|g) ∈ ℬ(𝑛+1)×(𝑛+1) // a DBM representing the image of 𝑋𝑘−1

w.r.t. the subsystem g of the partitioned system.

1 𝐷(R𝑛) ← 𝑒ℬ𝑛+1×𝑛+1 // a DBM representing R𝑛

2 𝐷(R𝑛×𝑋𝑘−1) ← 𝐷(R𝑛) ×𝐷(𝑋𝑘−1) // compute the cart. product (see section
2.4.2)

3 𝐷(𝑋̄𝑘) ← 𝐷(R𝑛×𝑋𝑘−1) ⊕ℬ 𝐷g // compute the intersection (see remark 2.21).
4 𝐷(𝑋̄𝑘) ← 𝑐𝑓(𝐷(𝑋̄𝑘)) // compute the canonical form (see section 2.4.1).
5 𝐷(𝑋𝑘|g) ← 𝐷(𝑋̄𝑘)⌈𝑥′

1,...,𝑥′
𝑛

// compute the orthogonal projection over x(𝑘) (see
section 2.4.2).

In the following, is a discussion on how Algorithm 5.1 yields the region defined (5.10),
which represents the image of a set 𝑋𝑘−1 w.r.t. a subsystem g of the partitioned uMPL sys-
tem. Note that, the DBM 𝐷(𝑋𝑘) obtained in step 3 of Algorithm 5.1 exactly represents (5.1).
Moreover, by definition, the DBM obtained in step 4 (which is the canonical form represen-
tation of 𝐷(𝑋𝑘)) has the tightest possible bounds. Therefore, the DBM 𝐷(𝑋𝑘|g), obtained in
the step 5 as orthogonal projection of the canonical form over the variables x(𝑘), is the DBM
defined by (5.10).

Similarly, given a DBM 𝐷(𝑋−𝑘+1) representing a set 𝑋−𝑘+1, Algorithm 5.2 computes
the inverse image of 𝑋−𝑘+1 w.r.t. a subsystem of the partitioned uMPL system.

Chapter 5. Reachability Analysis of uMPL systems 80

Algorithm 5.2: Computing the inverse image of a DBM w.r.t a subsystem of a parti-
tioned uMPL system

input : 𝐷(𝑋−𝑘+1) ∈ ℬ(𝑛+1)×(𝑛+1) // a DBM representing a region 𝑋−𝑘+1 ∈ R𝑛.
: 𝐷(g) ∈ ℬ(𝑛+𝑝+1)×(𝑛+𝑝+1) // a DBM representing a subsystem of a

partitioned uMPL system generated by a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥.
output: 𝐷(𝑋−𝑘|g) ∈ ℬ(𝑝+1)×(𝑝+1) // a DBM representing the inverse image of

𝑋−𝑘+1 w.r.t. the subsystem g of the partitioned system.

1 𝐷(R𝑝) ← 𝑒ℬ𝑝+1×𝑝+1 // a DBM representing R𝑛

2 𝐷(𝑋−𝑘+1×R𝑝) ← 𝐷(𝑋−𝑘+1) ×𝐷(R𝑝) // compute the cart. product (see section
2.4.2)

3 𝐷(𝑋̄−𝑘) ← 𝐷(𝑋−𝑘+1×R𝑝) ⊕ℬ 𝐷g // compute the intersection (see remark 2.21).
4 𝐷(𝑋̄−𝑘) ← 𝑐𝑓(𝐷(𝑋̄−𝑘)) // compute the canonical form (see section 2.4.1).
5 𝐷(𝑋−𝑘|g) ← 𝐷(𝑋̄−𝑘)⌈𝑥1,...,𝑥𝑛 // compute the orthogonal projection over x(𝑘 − 1)

(see section 2.4.2).

The worst-case complexity of Algorithms 5.1 and 5.2 critically depends on comput-
ing the canonical form representation of a DBM in ℬ(𝑛+𝑝+1)×(𝑛+𝑝+1) (step 4 for both algo-
rithms), which has cubic complexity w.r.t its dimensions. Thus, the worst-case complexity is
𝒪((𝑛 + 𝑝)3).

Corollary 5.2 The image of a set represented by union of finitely many DBM w.r.t. a par-
titioned uMPL system can be represented by union of finitely many DBM.

Given a partitioned uMPL system generated by a matrix 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥, computing the
image (or the inverse image) of a union of 𝑞 DBM can be done by computing the image (or the
inverse image) of each DBM w.r.t each subsystem of the partitioned uMPL system. Thus the
worst-case complexity depends on the number of DBM (considered to be 𝑞), on the worst-case
cardinality of the collection of subsystem, given by 𝑝𝑛, and on the complexity of computing
the image (or the inverse image) of each DBM w.r.t. each subsystem of a partitioned uMPL
system, which is 𝒪((𝑛 + 𝑝)3). Therefore, the worst-case complexity is 𝒪(𝑞𝑝𝑛(𝑛 + 𝑝)3).

Remark 5.3 For autonomous uMPL systems, parameter 𝑝 equals 𝑛, and therefore the worst-
case complexity of computing the image (or the inverse image) of 𝑞 DBM w.r.t the system is
𝒪(𝑞𝑛𝑛+3). For nonautonomous uMPL systems, parameter 𝑝 equals 𝑛 + 𝑚, and therefore the
worst-case complexity is 𝒪(𝑞(𝑛 + 𝑚)𝑛+3). Note that this is the same worst case complexity of
computing the image (or the inverse image) of 𝑞 DBM w.r.t a PWA system generated by an
MPL system (see Remark 3.3).

Chapter 5. Reachability Analysis of uMPL systems 81

Note that, the procedures for computing the image and the inverse image of a DBM
w.r.t a subsystem of a partitioned uMPL system (Algorithms 5.1 and 5.2, respectively) have,
essentially, the same steps of the procedures for computing the image and the inverse image
of a DBM w.r.t a subsystem of a PWA system generated by an MPL system (Algorithms
3.1 and 3.2, respectively). Consequently, as presented in the following sections, forward and
backward reachability analysis of uMPL systems can be performed by using a procedure that
is quite similar to the procedures presented in sections 3.1 and 3.2.

In the following sections, it will be assumed that the set of initial/final conditions
𝑋0 ⊆ R𝑛 and the set of control 𝑈𝑘 ⊆ R𝑚, at each event step, are a union of 𝑞0 and 𝑟𝑘 DBM,
respectively. Moreover, the cardinality of the DBM union set representing 𝑋𝑘 at event step
𝑘 will be noted by 𝑞𝑘.

5.1 Forward Reachability Analysis
Similarly to the classical case presented in chapter 3, the forward reachability analysis

of uMPL systems concerns the computation of the set of all states that may be reached from
a set of initial states via the uMPL dynamics, at a particular event step (the reach set) or
over a set of consecutive events (reach tube). In the following, we recall the definitions of
reach set and reach tube.

Definition 5.4 (reach set) Given an uMPL system and a nonempty set of initial con-
ditions 𝑋0 ⊆ R𝑛, the reach set 𝑋𝑁 at the event step 𝑁 > 0 is the set of all states
{x(𝑁) : x(0) ∈ 𝑋0} that can be reached via the uMPL dynamics, possibly by application
of controls.

Definition 5.5 (reach tube) Given an uMPL system and a nonempty set of initial condi-
tions 𝑋0 ⊆ R𝑛, the reach tube is defined by the set-valued function 𝑘 ↦→ 𝑋𝑘 for any given
𝑘 > 0 where 𝑋𝑘 is defined.

5.1.1 Forward Reachability Analysis of Autonomous uMPL systems

Given an autonomous uMPL system and a nonempty set of initial conditions 𝑋0, the
reach set 𝑋𝑘 at the event step 𝑘 can be recursively calculated as the image of the reach set
𝑋𝑘−1 w.r.t the uMPL dynamics:

𝑋𝑘 = ℐ[A]{𝑋𝑘−1} = {𝐴⊗ x : x ∈ 𝑋𝑘−1, 𝐴 ∈ [A]} = [A]⊗𝑋𝑘−1. (5.11)

Chapter 5. Reachability Analysis of uMPL systems 82

From Corollary 5.2, if 𝑋𝑘−1 can be represented by a union of 𝑞𝑘−1 DBM, then 𝑋𝑘 =
ℐ[A]{𝑋𝑘−1} can be represented by a union of 𝑞𝑘 DBM. Thus, by induction, it can be concluded
that if 𝑋0 can be represented by a union of 𝑞0 DBM, then 𝑋𝑘 can be represented by a union
of 𝑞𝑘 DBM, for each 𝑘 ∈ N.

Given the set of initial conditions 𝑋0, computing the reach tube for 𝑘 ∈ {1, ..., 𝑁} can
be done as follows: first, construct the partitioned uMPL system generated by [A]; then, for
each 𝑘 ∈ {1, ..., 𝑁}, compute the image of 𝑋𝑘−1 w.r.t. the partitioned uMPL system. The
worst-case complexity to compute ℐ[A]{𝑋𝑘−1}, for each 𝑘 ∈ {1, ..., 𝑁} is 𝒪(𝑞𝑘−1𝑛

𝑛+3) (see
remark 5.3). Thus, the overall complexity is 𝒪(𝑛𝑛+3∑︀𝑁

𝑘=1 𝑞𝑘−1).

Remark 5.6 As in the deterministic case, in general , it is not possible to quantify the exact
cardinality 𝑞𝑘 of the DBM union set at event step 𝑘 a priori (see remark 3.6). The worst-case
cardinality depends on the cardinality of the DBM union set at event step 𝑘−1, given by 𝑞𝑘−1,
and on the worst-case cardinality of the number of regions of the partitioned uMPL system,
given by 𝑛𝑛. Therefore the worst-case cardinality is 𝑞𝑘−1𝑛

𝑛. In practice, many regions and
intersections of DBM and regions are empty, then the cardinality 𝑞𝑘 is drastically smaller
than its worst-case bound.

In the following, we extend the one-shot procedure presented in section 3.1.1 to uMPL
systems. Given a nonempty set of initial conditions 𝑋0, the reach set 𝑋𝑁 at the event step
𝑁 can be computed, in a one-shot procedure, by using the following formula:

𝑋𝑁 = ℐ[A]⊗𝑁{𝑋0} = {𝒜 ⊗ x : x ∈ 𝑋0, 𝒜 ∈ [A]⊗𝑁} = [A]⊗𝑁 ⊗𝑋0. (5.12)

A general procedure for computing 𝑋𝑁 is: 1) compute [A]⊗𝑁 (see (4.16)); then, 2)
construct the partitioned uMPL system generated by [A]⊗𝑁 ; and, 3) compute the image of 𝑋0

w.r.t. the obtained partitioned system. The complexity of this procedure is 𝒪([log2(𝑁)]𝑛3 +
𝑞0𝑁

3), the same as the one-shot procedure presented in section 3.1.1.

Example 5.7 Consider the autonomous uMPL system given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), where 𝐴(𝑘) ∈
⎛⎝[4, 6] [3, 5]

[3, 7] [4, 5]

⎞⎠ .

In example 4.11 this system was represented as a collection of DBM D = {𝐷(1,1),

𝐷(2,1), 𝐷(2,2)}.

Given 𝑋0 = {x ∈ R2
𝑚𝑎𝑥 : 0 ≤ 𝑥1 ≤ 1, 1 ≤ 𝑥2 ≤ 3}, the reach sets 𝑋𝑘 for 𝑘 ∈ {1, 2}

are computed in the following. Note that the set 𝑋0 can be represented by the following DBM:

Chapter 5. Reachability Analysis of uMPL systems 83

𝑥0 𝑥1 𝑥2

𝐷(𝑋0) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ (−1,≤)

⎞⎟⎟⎟⎠
𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(3,≤) 𝜀ℬ 𝑒ℬ 𝑥2

To compute the reach set 𝑋1 = ℐ[A]{𝑋0}, we must compute the image of 𝑋0 w.r.t each
component g of the partitioned uMPL system. According to algorithm 5.1, the image of 𝐷(𝑋0)

w.r.t. the component g = (1, 1) can be computed as follows: first, we compute the Cartesian
product of 𝐷(R2) (a DBM representing R2) and 𝐷(𝑋0):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(R2×𝑋0) = 𝐷(R2) ×𝐷(𝑋0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (−1,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥′
2

(1,≤) 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥1

(3,≤) 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥2

Then, we compute the intersection of 𝐷(R2×𝑋0) and 𝐷(1,1):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(R2×𝑋0) ⊕ℬ 𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ (−1,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (6,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (7,≤) 𝜀ℬ 𝑥′
2

(1,≤) (−4,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(3,≤) (−3,≤) (−4,≤) (1,≤) 𝑒ℬ 𝑥2

Next, we compute the canonical form representation of the intersection:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(R2×𝑋0) ⊕ℬ 𝐷(1,1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ (−4,≤) (−5,≤) 𝑒ℬ (−1,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(7,≤) 𝑒ℬ (2,≤) (6,≤) (6,≤) 𝑥′
1

(8,≤) (3,≤) 𝑒ℬ (7,≤) (7,≤) 𝑥′
2

(1,≤) (−4,≤) (−4,≤) 𝑒ℬ 𝑒ℬ 𝑥1

(2,≤) (−3,≤) (−4,≤) (1,≤) 𝑒ℬ 𝑥2

Finally, we compute the orthogonal projection of the canonical form over the vari-
ables 𝑥′

1 and 𝑥′
2. The image of 𝑋0 w.r.t the component g = (1, 1) is noted by 𝑋1|g=(1,1) and

represented by the following DBM.

Chapter 5. Reachability Analysis of uMPL systems 84

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(1,1)) = 𝑐𝑓(𝐷(R2×𝑋0) ⊕ℬ 𝐷(1,1))⌈x′=

⎛⎜⎜⎜⎝
𝑒ℬ (−4,≤) (−5,≤)

⎞⎟⎟⎟⎠
𝑥0

(7,≤) 𝑒ℬ (2,≤) 𝑥′
1

(8,≤) (3,≤) 𝑒ℬ 𝑥′
2

Applying the same procedure for 𝐷(2,1) and 𝐷(2,2) we obtain:

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(2,1)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−4,≤) (−5,≤)

⎞⎟⎟⎟⎠
𝑥0

(8,≤) 𝑒ℬ (1,≤) 𝑥′
1

(8,≤) (3,≤) 𝑒ℬ 𝑥′
2

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(2,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−5,≤) (−6,≤)

⎞⎟⎟⎟⎠
𝑥0

(8,≤) 𝑒ℬ (1,≤) 𝑥′
1

(8,≤) (2,≤) 𝑒ℬ 𝑥′
2

The reach set 𝑋1 is the union of the images of 𝑋0 w.r.t. each component of partitioned
uMPL system and it is represented by the collection of DBM given by D(𝑋1) = {𝐷(𝑋1|g=(1,1)),

𝐷(𝑋1|g=(2,1)), 𝐷(𝑋1|g=(2,2))}. However, note that, 𝐷(𝑋1|g=(2,1)) ⊕ℬ 𝐷(𝑋1|g=(2,2)) = 𝐷(𝑋1|g=(2,2)), and
therefore, according to remark 2.22, 𝐷(𝑋1|g=(2,1)) ∪𝐷(𝑋1|g=(2,2)) = 𝐷(𝑋1|g=(2,1)). Then, the DBM
union set can be simplified to D(𝑋1) = {𝐷(𝑋1|g=(1,1)), 𝐷(𝑋1|g=(2,1))}. Therefore, 𝑋1 = ℛ(𝐷(𝑋1|g=(2,1)))∪
ℛ(𝐷(𝑋1|g=(2,1))) = {x′ ∈ R2 : 4 ≤ 𝑥′

1 ≤ 7, 5 ≤ 𝑥′
2 ≤ 8, −2 ≤ 𝑥′

2 − 𝑥′
1 ≤ 3} ∪ {x′ ∈ R2 : 4 ≤

𝑥′
1 ≤ 8, 5 ≤ 𝑥′

2 ≤ 8, −1 ≤ 𝑥′
2 − 𝑥′

1 ≤ 3}

The reach set 𝑋2 is obtained by computing the image of each DBM in D(𝑋1) w.r.t each
DBM in D = {𝐷(1,1), 𝐷(2,1), 𝐷(2,2)}, which yields 𝑋2 = {x′ ∈ R2 : 8 ≤ 𝑥′

1 ≤ 14, 9 ≤ 𝑥′
2 ≤

15, −3 ≤ 𝑥′
2 − 𝑥′

1 ≤ 3}. The reach sets 𝑋1 and 𝑋2 are shown in Figure 9.

Remark 5.8 In general, the uMPL systems are expansive in the sense that, given 𝑋0, the
hyper-volume3 of the reach sets 𝑋𝑘 tends to increase with 𝑘 (see Figure 9 for instance).

In the following it is shown that under specific conditions the structure of the uMPL
dynamics leads to savings for the computation of the reach tube. Consider a matrix of
intervals [A] = [𝐴, 𝐴] such that: 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 is an irreducible matrix with cyclicity 𝑐1 and
3 the hyper-volume of a set 𝑋𝑘 ∈ R𝑛 is given by 𝑉 =

∫︀
𝑋𝑘

𝑑x

Chapter 5. Reachability Analysis of uMPL systems 85

x1

0 5 10 15

x
2

2

4

6

8

10

12

14

R
u
(1
,1
)

X2

R
u
(2
,1
)

X1

R
u
(2
,2
)

X0

Figure 9 – reach tube for 𝑘 ∈ {1, 2} (autonomous uMPL system).

max-plus eigenvalue 𝜆1; and 𝐴 ∈ R𝑛×𝑛

𝑚𝑎𝑥 is an irreducible matrix with cyclicity 𝑐2 and max-plus
eigenvalue 𝜆2. From equation (4.16), we have that:

[A]⊗𝑘 = [𝐴⊗𝑘, 𝐴
⊗𝑘]. (5.13)

From Proposition 2.13, there exist integers 𝐾0(𝐴) and 𝐾0(𝐴) such that:

𝑘 ≥ 𝐾0(𝐴) ⇒ 𝐴⊗(𝑘+𝑐1) = 𝜆⊗𝑐1
1 ⊗ 𝐴⊗𝑘, (5.14)

𝑘 ≥ 𝐾0(𝐴) ⇒ 𝐴
⊗(𝑘+𝑐2) = 𝜆⊗𝑐2

2 ⊗ 𝐴
⊗𝑘

. (5.15)

In the special case where 𝑐1 = 𝑐2 and 𝜆1 = 𝜆2, there exists an integer 𝐾0(𝐴, 𝐴) = max{𝐾0(𝐴),
𝐾0(𝐴)} such that:

𝑘 ≥ 𝐾0(𝐴, 𝐴)⇒ [A]⊗(𝑘+𝑐1) = [𝐴⊗(𝑘+𝑐1), 𝐴
⊗(𝑘+𝑐1)]

= [𝜆⊗𝑐1
1 ⊗ 𝐴⊗𝑘, 𝜆⊗𝑐1

1 ⊗ 𝐴
⊗𝑘]

= 𝜆⊗𝑐1
1 ⊗ [𝐴⊗𝑘, 𝐴

⊗𝑘]

= 𝜆⊗𝑐1
1 ⊗ [A]⊗𝑘 . (5.16)

Chapter 5. Reachability Analysis of uMPL systems 86

Therefore, in this special case, given a set of initial positions 𝑋0 there exists 𝑘0(𝑋0) =
𝑚𝑎𝑥{𝑘0(𝑥)} such that,

𝑘 ≥ 𝑘0(𝑋0)⇒ 𝑋𝑘+𝑐1 = 𝜆𝑐1
1 ⊗𝑋𝑘. (5.17)

Thus, in order do compute 𝑋𝑁 , 𝑁 > 𝑘0(𝑋0) + 𝑐− 1, it is only necessary to compute 𝑋1, ...,

𝑋𝑘0(𝑋0)+𝑐−1.

Example 5.9 Consider the uMPL system characterized by the following matrix of intervals:

[A] =
⎛⎝[0, 2] 5

3 [0, 3]

⎞⎠ .

or equivalently,

[A] = [𝐴, 𝐴], where: 𝐴 =
⎛⎝0 5

3 0

⎞⎠ and 𝐴 =
⎛⎝2 5

3 3

⎞⎠ .

Both matrices, 𝐴 and 𝐴, have cyclicity 𝑐 = 2 and max-plus eigenvalue 𝜆 = 4 (see
section 2.3). Moreover, as can be observed in Figure 10, given 𝑋0 = {x ∈ R2 : 0 ≤ 𝑥1 ≤
1, 1 ≤ 𝑥2 ≤ 3}, for all 𝑘 ≥ 1 we have that 𝑋𝑘+2 = 4⊗2 ⊗𝑋𝑘 = 8⊗𝑋𝑘.

x1

0 5 10 15 20 25

x
2

5

10

15

20

25

X6

X5

X4

X3

X2

X1

X0

Figure 10 – cyclic behavior of an uMPL system.

Chapter 5. Reachability Analysis of uMPL systems 87

Remark 5.10 The column space or image of a matrix of intervals [A] ∈ R𝑛×𝑝

𝑚𝑎𝑥 can be defined
as 𝐼𝑚 [A] = {x′ = 𝐴⊗x : x ∈ R𝑝, 𝐴 ∈ [A]}. Note that, 𝐼𝑚 [A] can be computed as the image
of R𝑝

𝑚𝑎𝑥 w.r.t. the partitioned uMPL system generated by [A]. According to algorithm 5.1,
the image of R𝑝

𝑚𝑎𝑥 w.r.t. each subsystem of the partitioned uMPL system can be calculated by
computing the DBM 𝐷(R𝑛×R𝑝) = 𝐷(R𝑛+𝑝), which represents R𝑛×R𝑝 (step 2); then computing
𝑐𝑓(𝐷(R𝑛+𝑝) ⊕ℬ 𝐷(g)) (steps 3 and 4); and finally projecting the canonical form over x′ (step
5). However, note that 𝐷(R𝑛+𝑝) ⊕ℬ 𝐷(g) = 𝐷(g), then the image of [A] can be computed by
computing the canonical form of each DBM representing the the partitioned uMPL system
generated by [A] and then projecting the canonical form over x′.

Example 5.11 Consider the matrix

[A] =
⎛⎝[4, 6] [3, 5]

[3, 7] [4, 5]

⎞⎠ .

The partitioned uMPL system generated by this matrix is represented by the collection of
DBM D = {𝐷(1,1), 𝐷(2,1), 𝐷(2,2)}, computed in example 4.11.

The image of [A] is computed as follows: First we compute the canonical form of the
DBM 𝐷(1,1), 𝐷(2,1) and 𝐷(2,2):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(1,1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ (3,≤) (6,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ (3,≤) 𝑒ℬ (7,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−4,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ (−3,≤) (−4,≤) (1,≤) 𝑒ℬ 𝑥2

,

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(2,1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ (1,≤) (7,≤) (5,≤) 𝑥′
1

𝜀ℬ (3,≤) 𝑒ℬ (7,≤) (6,≤) 𝑥′
2

𝜀ℬ (−4,≤) (−5,≤) 𝑒ℬ (−1,≤) 𝑥1

𝜀ℬ (−3,≤) (−4,≤) (2,≤) 𝑒ℬ 𝑥2

,

Chapter 5. Reachability Analysis of uMPL systems 88

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(2,2)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ (1,≤) 𝜀ℬ (5,≤) 𝑥′
1

𝜀ℬ (2,≤) 𝑒ℬ 𝜀ℬ (5,≤) 𝑥′
2

𝜀ℬ (−5,≤) (−6,≤) 𝑒ℬ (−2,≤) 𝑥1

𝜀ℬ (−3,≤) (−4,≤) 𝜀ℬ 𝑒ℬ 𝑥2

.

Then, we project the canonical form over the variables x′:

𝑥0 𝑥′
1 𝑥′

2

𝑐𝑓(𝐷(1,1))⌈x′=

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

𝜀ℬ 𝑒ℬ (3,≤) 𝑥′
1

𝜀ℬ (3,≤) 𝑒ℬ 𝑥′
2

,

𝑥0 𝑥′
1 𝑥′

2

𝑐𝑓(𝐷(2,1))⌈x′=

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

𝜀ℬ 𝑒ℬ (1,≤) 𝑥′
1

𝜀ℬ (3,≤) 𝑒ℬ 𝑥′
2

,

𝑥0 𝑥1 𝑥2

𝑐𝑓(𝐷(2,2))⌈x′=

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

𝜀ℬ 𝑒ℬ (1,≤) 𝑥1

𝜀ℬ (2,≤) 𝑒ℬ 𝑥2

.

The image of [A] can be represented by D(𝐼𝑚[A]) = {𝑐𝑓(𝐷(1,1))⌈x′ , 𝑐𝑓(𝐷(2,1))⌈x′ , 𝑐𝑓(𝐷(2,2))⌈x′}.
However, note that, 𝑐𝑓(𝐷(1,1))⌈x′⊕ℬ𝑐𝑓(𝐷(2,1))⌈x′= 𝑐𝑓(𝐷(2,1))⌈x′ and 𝑐𝑓(𝐷(1,1))⌈x′⊕ℬ𝑐𝑓(𝐷(2,2))⌈x′=
𝑐𝑓(𝐷(2,2))⌈x′. Thus, D(𝐼𝑚[A]) = {𝑐𝑓(𝐷(1,1))⌈x′} (see remark 2.22). Then, 𝐼𝑚 [A] = {x′ ∈ R2 :
−3 ≤ 𝑥2 − 𝑥1 ≤ 3}.

5.1.2 Forward Reachability Analysis of Nonautonomous uMPL systems

For nonautonomous uMPL systems, forward reachability analysis can be performed
by first representing the systems as an augmented autonomous uMPL system (see equation
(4.3)), then given a nonempty set of initial conditions 𝑋0 and the set of inputs 𝑈𝑘 for each
𝑘 ∈ N, the reach set 𝑋𝑘 at the event step 𝑘 can be recursively calculated as:

𝑋𝑘 = ℐ[F]{𝑋𝑘−1 × 𝑈𝑘} = {𝐹 ⊗ y : y ∈ 𝑋𝑘−1 × 𝑈𝑘, 𝐹 ∈ [F]}. (5.18)

where [F] = ([A] [B]) and y =
(︁
x𝑇 u𝑇

)︁𝑇
.

Chapter 5. Reachability Analysis of uMPL systems 89

If 𝑋𝑘−1 and 𝑈𝑘 can be represented by a union of 𝑞𝑘−1 and 𝑟𝑘 DBM , respectively, then
𝑋𝑘−1 × 𝑈𝑘 can be represented by a union of 𝑞𝑘−1 = 𝑞𝑘−1𝑟𝑘 DBM. Thus, from Corollary 5.2,
𝑋𝑘 = ℐ[F]{𝑋𝑘−1 × 𝑈𝑘} can be represented by a union of 𝑞𝑘 DBM. By induction, it can be
concluded that if 𝑋0 can be represented by a union of 𝑞0 DBM and 𝑈𝑘 can be represented
by a union of 𝑟𝑘 DBM for each 𝑘 ∈ N, then 𝑋𝑘 can be represented by a union of 𝑞𝑘 DBM,
for each 𝑘 ∈ N.

Given a nonautonomous uMPL system, the set of initial conditions 𝑋0 and set of
inputs 𝑈𝑘 for each 𝑘 ∈ {1, ..., 𝑁}, computing the reach tube for 𝑘 ∈ {1, ..., 𝑁} can be done
as follows: first, construct the partitioned uMPL system generated by [F] = ([A] [B]); then,
for each 𝑘 ∈ {1, ..., 𝑁}, compute the image of 𝑋𝑘−1×𝑈𝑘 w.r.t. the partitioned uMPL system.
The worst-case complexity to compute ℐ𝐹{𝑋𝑘−1×𝑈𝑘}, for each 𝑘 ∈ N is 𝒪(𝑞𝑘−1(𝑛 + 𝑚)𝑛+3)
(see remark 5.3). Thus, the overall complexity is 𝒪((𝑛 + 𝑚)𝑛+3∑︀𝑁

𝑘=1 𝑞𝑘−1).

The set of all states that can be reached in 𝑁 event steps can be computed using a
one-shot procedure. Given a nonempty set of initial conditions 𝑋0, the reach set 𝑋𝑁 at the
event step 𝑁 is given by:

𝑋𝑁 = ([A]⊗𝑁 , [A]⊗(𝑁−1) ⊗ [B] , ..., [B])⊗ (𝑋0 × 𝑈1 × ...× 𝑈𝑁). (5.19)

Given the matrices [A] and [B], a set of initial conditions 𝑋0 (represented by a union
of 𝑞0 DBM) and a sequence of input sets 𝑈1, ..., 𝑈𝑁 , a general procedure for computing 𝑋𝑁

is given by: 1) generate the matrix ([A]⊗𝑁 , [A]⊗(𝑁−1) ⊗ [B] , ..., [B]); then, 2) Construct
the partitioned uMPL system generated by this matrix; and, 3) compute the image of 𝑋0 ×
𝑈1 × ... × 𝑈𝑁 w.r.t the obtained partitioned system. The complexity of steps 1, 2 and 3 is,
respectively, 𝒪(𝑁𝑛3 + 𝑁𝑛2𝑚), 𝒪((𝑛 + 𝑚𝑁)𝑛+3) and 𝒪(𝑞0(𝑛 + 𝑚𝑁)𝑛+3). Note that , this
approach is not tractable for problems over long event horizons, since the maximum number
of regions of the partitioned uMPL system is (𝑛 + 𝑚𝑁)𝑛 and grows polynomially w.r.t. the
event horizon 𝑁 .

Example 5.12 Consider the nonautonomous uMPL system given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1)⊕𝐵(𝑘)⊗ u(𝑘),

where,

𝐴(𝑘) ∈
⎛⎝ 2 [2, 4]

[3, 5] [3, 4]

⎞⎠ and 𝐵(𝑘) ∈
⎛⎝𝑒

𝜀

⎞⎠ .

In example 4.12 this system was represented as a collection of DBM D = {𝐷(1,1),

𝐷(2,1), 𝐷(2,2), 𝐷(3,1), 𝐷(3,2)}.

Chapter 5. Reachability Analysis of uMPL systems 90

Given 𝑋0 = {x ∈ R2
𝑚𝑎𝑥 : 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 3}, and the sequence of controls

𝑢1(1) = 2.5 and 𝑢1(2) = 8, the reach sets 𝑋𝑘 for 𝑘 ∈ {1, 2} are computed in the following.

The set of initial positions 𝑋0 and the control input 𝑢1(1) can be represented by the
following DBM:

𝑥0 𝑥1 𝑥2

𝐷(𝑋0) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ 𝑒ℬ

⎞⎟⎟⎟⎠
𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(3,≤) 𝜀ℬ 𝑒ℬ 𝑥2

𝑥0 𝑢1

𝐷(𝑈1) =
⎛⎝ 𝑒ℬ (−2.5,≤)

⎞⎠𝑥0

(2.5,≤) 𝑒ℬ 𝑢1

To compute the reach set 𝑋1 = ℐ[F]{𝑋0 × 𝑈1}, we must to compute the image of
𝑋0 × 𝑈1 w.r.t each component g ∈ {𝐷(1,1), 𝐷(2,1), 𝐷(2,2), 𝐷(3,1), 𝐷(3,2)} of the partitioned
uMPL system generated by [F]. The Cartesian product 𝑋0 × 𝑈1 can be represented by:

𝑥0 𝑥1 𝑥2 𝑥3

𝐷(𝑋0×𝑈1) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ 𝑒ℬ (−2.5,≤)

⎞⎟⎟⎟⎟⎟⎟⎠
𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

(3,≤) 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥2

(2.5,≤) 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥3

According to algorithm 5.1, the image of 𝐷(𝑋0×𝑈1) w.r.t. the component g = (1, 1) can
be computed as follows: first, we compute the Cartesian product of 𝐷(R2) (a DBM representing
R2) and 𝐷(𝑋0×𝑈1):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(R2×𝑋0×𝑈1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑒ℬ (−2.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
2

(1,≤) 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

(3,≤) 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥2

(2.5,≤) 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑢1

Then, we compute the intersection of 𝐷(R2×𝑋0×𝑈1) and 𝐷(1,1):

Chapter 5. Reachability Analysis of uMPL systems 91

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(R2×𝑋0×𝑈1) ⊕ℬ 𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑒ℬ (−2.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (5,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

(1,≤) (−2,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

(3,≤) (−2,≤) (−3,≤) (−2,≤) 𝑒ℬ 𝜀ℬ 𝑥2

(2.5,≤) 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝑒ℬ 𝑢1

Next, we compute the canonical form of the intersection:

𝑐𝑓(𝐷(R2×𝑋0×𝑈1) ⊕ℬ 𝐷(1,1)) =
𝑥0 𝑥′

1 𝑥′
2 𝑥1 𝑥2 𝑢1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⊤ℬ (−2,≤) (−3,≤) 𝑒ℬ 𝑒ℬ (−2.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(3,≤) 𝑒ℬ (−1,≤) (2,≤) (3,≤) (0.5,≤) 𝑥′
1

(6,≤) (3,≤) 𝑒ℬ (5,≤) (6,≤) (3.5,≤) 𝑥′
2

(1,≤) (−2,≤) (−3,≤) 𝑒ℬ (1,≤) (−1.5,≤) 𝑥1

(−1,≤) (−4,≤) (−5,≤) (−2,≤) (−1,≤) (−3.,≤) 𝑥2

(2.5,≤) 𝑒ℬ (−1,≤) (2,≤) (2.5,≤) 𝑒ℬ 𝑢1

Note that, this is an empty DBM due to the fact that the set 𝑋0×𝑈1 is not intersected
with region 𝑅𝑢

(1,1) (see example 4.9). Therefore, the image of 𝑋0 w.r.t the component g = (1, 1)
is empty.

Now, let us compute the image of 𝑋0 w.r.t the component g = (2, 1). The intersection
of 𝐷(R2×𝑋0×𝑈1) and 𝐷(2,1) is given by:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(R2×𝑋0×𝑈1) ⊕ℬ 𝐷(2,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑒ℬ (−2.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ (4,≤) 𝜀ℬ 𝑥′
1

𝜀ℬ 𝜀ℬ 𝑒ℬ (5,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

(1,≤) (−2,≤) (−3,≤) 𝑒ℬ (2,≤) 𝜀ℬ 𝑥1

(3,≤) (−2,≤) (−3,≤) (1,≤) 𝑒ℬ 𝜀ℬ 𝑥2

(2.5,≤) 𝑒ℬ 𝜀ℬ (5,≤) (4,≤) 𝑒ℬ 𝑢1

The canonical form of the intersection is:

Chapter 5. Reachability Analysis of uMPL systems 92

𝑐𝑓(𝐷(R2×𝑋0×𝑈1) ⊕ℬ 𝐷(1,1)) =
𝑥0 𝑥′

1 𝑥′
2 𝑥1 𝑥2 𝑢1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ (−2.5,≤) (−3,≤) 𝑒ℬ 𝑒ℬ (−2.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(6,≤) 𝑒ℬ (1,≤) (5,≤) (4,≤) (3.5,≤) 𝑥′
1

(6,≤) (3,≤) 𝑒ℬ (5,≤) (6,≤) (3.5,≤) 𝑥′
2

(1,≤) (−2,≤) (−3,≤) 𝑒ℬ (1,≤) (−1.5,≤) 𝑥1

(2,≤) (−2,≤) (−3,≤) (1,≤) 𝑒ℬ (−0.5,≤) 𝑥2

(2.5,≤) 𝑒ℬ (−5,≤) (2.5,≤) (2.5,≤) 𝑒ℬ 𝑢1

The image of 𝑋0 w.r.t the component g = (2, 1), noted by 𝑋1|g=(2,1), is given by the orthogonal
projection of the canonical form over the variables 𝑥′

1 and 𝑥′
2, which is given by:

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(2,1)) = 𝑐𝑓(𝐷(R2×𝑋0×𝑈1) ⊕ℬ 𝐷(1,1))⌈x′=

⎛⎜⎜⎜⎝
𝑒ℬ (−2.5,≤) (−3,≤)

⎞⎟⎟⎟⎠
𝑥0

(6,≤) 𝑒ℬ (1,≤) 𝑥′
1

(6,≤) (3,≤) 𝑒ℬ 𝑥′
2

The image of 𝑋0 w.r.t the component g = (2, 2) can be computed by applying the same
procedure, which yields:

𝑥0 𝑥′
1 𝑥′

2

𝐷(𝑋1|g=(2,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−3,≤) (−4,≤)

⎞⎟⎟⎟⎠
𝑥0

(7,≤) 𝑒ℬ (1,≤) 𝑥′
1

(7,≤) (2,≤) 𝑒ℬ 𝑥′
2

The set 𝑋0 × 𝑈1 is not intersected with the regions 𝑅𝑢
(3,1) and 𝑅𝑢

(3,2). Therefore, the image of
𝑋0 w.r.t these components is the empty set.

Thus, the image of 𝑋0 w.r.t uMPL system is represented by D(𝑋1) = {𝐷(𝑋1|g=(2,1)),

𝐷(𝑋1|g=(2,2))}. Therefore, we have that 𝑋1 = ℛ(𝐷(𝑋1|g=(2,1))) ∪ ℛ(𝐷(𝑋1|g=(2,2))) = {x′ ∈ R2 :
2.5 ≤ 𝑥′

1 ≤ 6, 3 ≤ 𝑥′
2 ≤ 6, −1 ≤ 𝑥′

2 − 𝑥′
1 ≤ 3} ∪ {x′ ∈ R2 : 3 ≤ 𝑥′

1 ≤ 7, 4 ≤ 𝑥′
2 ≤ 7, −1 ≤

𝑥′
2 − 𝑥′

1 ≤ 2}.

The reach set 𝑋2 is obtained by computing the image of each DBM in D(𝑋1) w.r.t each
DBM in D = {𝐷(1,1), 𝐷(2,1), 𝐷(2,2), 𝐷(3,1), 𝐷(3,2)}, which yields 𝑋2 = {x′ ∈ R2 : 𝑥′

1 = 8, 6 ≤
𝑥′

2 ≤ 10} ∪ {x′ ∈ R2 : 8 ≤ 𝑥′
1 ≤ 11, 7 ≤ 𝑥′

2 ≤ 12, −1 ≤ 𝑥′
2 − 𝑥′

1 ≤ 3}. The reach sets 𝑋1 and
𝑋2 are shown in Figure 11.

,

Chapter 5. Reachability Analysis of uMPL systems 93

x1

0 2 4 6 8 10

x
2

0

2

4

6

8

10

12

X2

X1

X0

Figure 11 – reach tube for 𝑘 ∈ {1, 2} (nonautonomous uMPL system).

5.2 Backward Reachability Analysis
Backward reachability analysis of uMPL systems concerns the computation of the set

of all states that may lead to a given set of final positions via the uMPL dynamics, at a
particular event step or over a set of consecutive events. The uMPL systems are defined in
an uncertainty context in which the definitions of backward reach sets and backward reach
tube are given by:

Definition 5.13 (backward reach set) Given an uMPL system and a nonempty set of
final positions 𝑋0 ⊆ R𝑛, the backward reach set 𝑋−𝑁 is the set of all states x(−𝑁) that
may lead to 𝑋0 in 𝑁 steps of the uMPL dynamics, possibly by application of controls.

Definition 5.14 (backward reach tube) Given an uMPL system and a nonempty set of
initial conditions 𝑋0 ⊆ R𝑛, the reach tube is defined by the set-valued function 𝑘 ↦→ 𝑋−𝑘

for any given 𝑘 > 0 where 𝑋−𝑘 is defined.

Remark 5.15 Note that the definition of backward reach set presented here differs from that

Chapter 5. Reachability Analysis of uMPL systems 94

presented in section 3.2 (see definition 3.7). Consider, for example, that 𝑋−1 is the backward
reach set of a given set of final positions 𝑋0. In the deterministic context (MPL systems),
for all x ∈ 𝑋−1 we have that 𝐴 ⊗ x ∈ 𝑋0, and therefore ℐ𝐴{𝑋−1} ⊆ 𝑋0. In the uncertain
context (uMPL systems), for all x ∈ 𝑋−1 it is assured that it is possible to reach 𝑋0 from x,
i.e., there is at least one 𝐴 ∈ [A] such that 𝐴 ⊗ x ∈ 𝑋0. However, in general, this does not
hold for all 𝐴 ∈ [A], i.e, it may exists some 𝐴 ∈ [A] such that 𝐴⊗x ̸∈ 𝑋0. Therefore, in the
general case, we have that ℐ[A]{𝑋−1} ̸⊆ 𝑋0.

Sections 5.2.1 and 5.2.2 present a procedure to compute the backward reach tube for
autonomous and nonautonomous uMPL systems, respectively.

5.2.1 Backward Reachability Analysis of Autonomous uMPL systems

For autonomous uMPL systems, given a set of final positions 𝑋0, the backward reach
set 𝑋−𝑘 at the event step 𝑘 can be recursively calculated as the inverse image of the reach
set 𝑋−𝑘+1 w.r.t the uMPL dynamics:

𝑋−𝑘 = ℐ−1
[A]{𝑋−𝑘+1} = {x ∈ R𝑛 : ∃𝐴 ∈ [A] : 𝐴⊗ x ∈ 𝑋−𝑘+1}. (5.20)

From Corollary 5.2 it can be shown that if 𝑋0 can be represented by a union of 𝑞0

DBM, then 𝑋−𝑘 can be represented by a union of 𝑞−𝑘 DBM, for each 𝑘 ∈ N.

Given the set of final conditions 𝑋0, computing the backward reach tube for 𝑘 ∈
{1, ..., 𝑁} can be done as follows: first, construct the partitioned uMPL system generated
by 𝐴(𝑘); then, for each 𝑘 ∈ {1, ..., 𝑁}, compute the inverse image of 𝑋𝑘−1 w.r.t. the parti-
tioned uMPL system. The worst-case complexity to compute ℐ−1

[A]{𝑋−𝑘+1}, for each 𝑘 ∈ N is
𝒪(𝑞−𝑘+1𝑛

𝑛+3) (see remark 5.3). Thus, the overall complexity is 𝒪(𝑛𝑛+3∑︀𝑁
𝑘=1 𝑞−𝑘+1).

The set of all states that may lead to a given set of final positions 𝑋0 in 𝑁 event steps
can be computed using a one-shot procedure. Given a nonempty set of final conditions 𝑋0,
the backward reach set 𝑋−𝑁 is given by:

𝑋−𝑁 = ℐ−1
[A]⊗𝑁{𝑋0} = {x ∈ R𝑛 : 𝒜 ∈ [A]⊗𝑁 : 𝒜⊗ x ∈ 𝑋0}. (5.21)

A general procedure for computing 𝑋−𝑁 is: 1) compute [A]⊗𝑁 ; then, 2) construct
the partitioned uMPL system generated by [A]⊗𝑁 ; and, 3) compute the inverse image of 𝑋0

w.r.t. the obtained partitioned system.

Chapter 5. Reachability Analysis of uMPL systems 95

Example 5.16 Consider the autonomous uMPL system given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), where 𝐴(𝑘) ∈
⎛⎝[4, 6] [3, 5]

[3, 7] [4, 5]

⎞⎠ .

In example 4.11 this system was represented as a collection of DBM D = {𝐷(1,1),

𝐷(2,1), 𝐷(2,2)}.

Given 𝑋0 = {x ∈ R2
𝑚𝑎𝑥 : 0 ≤ 𝑥1 ≤ 1, 1 ≤ 𝑥2 ≤ 3}, the backward reach sets 𝑋−𝑘

for 𝑘 ∈ {1, 2} are computed in the following. Note that the set 𝑋0 can be represented by the
following DBM:

𝑥0 𝑥1 𝑥2

𝐷(𝑋0) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ (−1,≤)

⎞⎟⎟⎟⎠
𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(3,≤) 𝜀ℬ 𝑒ℬ 𝑥2

To compute the backward reach set 𝑋−1 we must compute the inverse image of 𝑋0

w.r.t each component g ∈ {(1, 1), (2, 1), (2, 2)} of the partitioned uMPL system. According
to algorithm 5.2, the inverse image of 𝐷(𝑋0) w.r.t. a component g of the partitioned uMPL
system can be computed as follows: first, we compute the Cartesian product of 𝐷(𝑋0×𝑈1) and
𝐷(R2):

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(𝑋0×R2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (−1,≤) 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
1

(3,≤) 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑥2

Then we compute the intersection of 𝐷(𝑋0×R2) and 𝐷g; next we compute the canonical
form of the intersection and finally we project the canonical form over the state variables 𝑥1

and 𝑥2. For the component g = (1, 1) we have that interserction of 𝐷(𝑋0×R2) and 𝐷(1,1) is
given by:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝐷(𝑋0×R2) ⊕ℬ 𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (−1,≤) 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ (6,≤) 𝜀ℬ 𝑥′
1

(3,≤) 𝜀ℬ 𝑒ℬ (7,≤) 𝜀ℬ 𝑥′
2

𝜀ℬ (−4,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝑥1

𝜀ℬ (−3,≤) (−4,≤) (1,≤) 𝑒ℬ 𝑥2

Chapter 5. Reachability Analysis of uMPL systems 96

The canonical form of the intersection is given by:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2

𝑐𝑓(𝐷(𝑋0×R2) ⊕ℬ 𝐷(1,1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (−1,≤) (6,≤) 𝜀ℬ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(1,≤) 𝑒ℬ 𝑒ℬ (6,≤) 𝜀ℬ 𝑥′
1

(3,≤) (3,≤) 𝑒ℬ (7,≤) 𝜀ℬ 𝑥′
2

(−3,≤) (−4,≤) (−4,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(−2,≤) (−3,≤) (−4,≤) (1,≤) 𝑒ℬ 𝑥2

And the orthogonal projection over the states variables 𝑥1 and 𝑥2 is given by:

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(1,1)) = 𝑐𝑓(𝐷(𝑋0×R2) ⊕ℬ 𝐷(1,1))⌈x=

⎛⎜⎜⎜⎝
𝑒ℬ (6,≤) 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

(−3,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(−2,≤) (1,≤) 𝑒ℬ 𝑥2

Applying the same procedure to the components g = (2, 1) and g = (2, 2) we obtain:

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(2,1)) =

⎛⎜⎜⎜⎝
𝑒ℬ (6,≤) (5,≤)

⎞⎟⎟⎟⎠
𝑥0

(−3,≤) 𝑒ℬ (−1,≤) 𝑥1

(−2,≤) (2,≤) 𝑒ℬ 𝑥2

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(2,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ (4,≤)

⎞⎟⎟⎟⎠
𝑥0

(−4,≤) 𝑒ℬ (−2,≤) 𝑥1

(−2,≤) 𝜀ℬ 𝑒ℬ 𝑥2

Thus, the backward reach set 𝑋−1 can be represented by the collection of DBM given by D𝑋−1 =
{𝐷(𝑋−1|g=(1,1)), 𝐷(𝑋−1|g=(2,1)), 𝐷(𝑋−1|g=(2,2))}. Moreover, we have that 𝑋−1 = ℛ(𝐷(𝑋−1|g=(1,1)))∪
ℛ(𝐷(𝑋−1|g=(2,1)))∪ℛ(𝐷(𝑋−1|g=(2,2))) = {x ∈ R2 : −6 ≤ 𝑥1 ≤ −3, 𝑥2 ≤ −2, 𝑥2−𝑥1 ≤ 1}∪{x ∈
R2 : −6 ≤ 𝑥1 ≤ −3, −5 ≤ 𝑥2 ≤ −2, 1 ≤ 𝑥2 − 𝑥1 ≤ 2} ∪ {x ∈ R2 : 𝑥1 ≤ −4, −4 ≤ 𝑥2 ≤
−2, 𝑥2 − 𝑥1 ≥ 2}.

The backward reach set 𝑋−2 can be obtained by computing the inverse image of each
DBM representing 𝑋−1 w.r.t each component g ∈ {(1, 1), (2, 1), (2, 2)} of the partitioned
uMPL system, which yields 𝑋−2 = {x ∈ R2 : −12 ≤ 𝑥1 ≤ −7, 𝑥2 ≤ −6, 𝑥2− 𝑥1 ≤ 1}∪ {x ∈
R2 : −13 ≤ 𝑥1 ≤ −7, −11 ≤ 𝑥2 ≤ −6, 1 ≤ 𝑥2 − 𝑥1 ≤ 2} ∪ {x ∈ R2 : 𝑥1 ≤ −8, −11 ≤ 𝑥2 ≤
−6, 𝑥2 − 𝑥1 ≥ 2}. The backward reach sets 𝑋−1 and 𝑋−2 are shown in Figure 12.

Chapter 5. Reachability Analysis of uMPL systems 97

x1

-16 -14 -12 -10 -8 -6 -4 -2 0 2

x
2

-14

-12

-10

-8

-6

-4

-2

0

2

X0

R (1
,1
)

R (2
,1
)

X
−2

R (2
,2
)

X
−1

Figure 12 – backward reach tube for 𝑘 ∈ {1, 2} (autonomous uMPL system).

5.2.2 Backward Reachability Analysis of Nonautonomous uMPL systems

For non-autonomous uMPL systems, given a set of final conditions 𝑋0 and the set
of inputs 𝑈−𝑘+1 for each 𝑘 ∈ N, the backward reach set 𝑋−𝑘 at the event step 𝑘 can be
recursively calculated as the inverse image of 𝑋−𝑘+1:

𝑋−𝑘 = ℐ−1
𝐹 {𝑋−𝑘+1}

= {x ∈ R𝑛 : ∃u ∈ 𝑈−𝑘+1, ∃𝐹 ∈ [F] : 𝐹 ⊗ y ∈ 𝑋−𝑘+1}. (5.22)

where [F] = ([A] [B]) and y =
(︁
x𝑇 u𝑇

)︁𝑇
.

Given 𝑋−𝑘+1 and 𝑈−𝑘+1 the backward reach set 𝑋−𝑘 = ℐ−1
[F]{𝑋−𝑘+1} can be computed

as follows: 1) compute de Cartesian product 𝑋−𝑘+1×R𝑛×𝑈−𝑘+1; then, 2) intersect the Carte-
sian product with each component of the partitioned uMPL system generated by [F]; next,
3) compute the canonical form of the intersections, and finally, 4) project the canonical form
over the state variables at event step −𝑘. The worst-case complexity to compute ℐ−1

[F]{𝑋−𝑘+1}
critically depends on the canonical form computation (step 3) and is 𝒪(𝑞−𝑘+1(𝑛 + 𝑚)𝑛+3),

Chapter 5. Reachability Analysis of uMPL systems 98

where: 𝑞−𝑘+1 = 𝑞−𝑘+1𝑟−𝑘+1; and 𝑞−𝑘+1 and 𝑟−𝑘+1 are, respectively, the cardinality of the DBM
union set representing 𝑋−𝑘+1 and 𝑈−𝑘+1.

Remark 5.17 Note that, the Cartesian product of finitely many DBM is a collection of
finitely many DBM, the intersection of finitely many DBM is a collection of finitely many
DBM, the canonical form of a DBM is a DBM and the projection of a DBM onto a subset of
its variables is a DBM. Therefore, if 𝑋−𝑘+1 and 𝑈−𝑘+1 can be represented by collections of
finitely many DBM then 𝑋−𝑘 can also be represented by a collection of finitely many DBM.
By induction, if 𝑋0 and 𝑈−𝑘+1, for each 𝑘 ∈ N, can be represented by collections of finitely
many DBM, then 𝑋−𝑘 can also be represented by a collection of finitely many DBM for all
𝑘 ∈ N.

Given 𝑋0 and the set of control inputs 𝑈−𝑘+1 for each 𝑘 ∈ N, the backward reach tube
for 𝑘 ∈ {1, ..., 𝑁} can be computed by calculating 𝑋−𝑘 = ℐ−1

[F]{𝑋−𝑘+1} for 𝑘 = 1, 2, ..., 𝑁 .
Thus, the overall complexity to compute backward reach tube is 𝒪((𝑛 + 𝑚)𝑛+3∑︀𝑁

𝑘=1 𝑞−𝑘+1).

The following is an extension to uMPL systems of the one-shot procedure for com-
puting the backward reach set 𝑋−𝑁 presented in section 3.2.2. Given a nonempty set of final
conditions 𝑋0, the set of all states that may lead to 𝑋0 in 𝑁 event steps is given by:

𝑋−𝑁 = {x(−𝑁) ∈ R𝑛 : ∃u(−𝑁 + 1) ∈ 𝑈−𝑁+1, ..., u(0) ∈ 𝑈0 : ([A]⊗𝑁 ,

[A]⊗(𝑁−1) ⊗ [B] , ..., [B])⊗ (x(−𝑁)𝑇 u(−𝑁 + 1)𝑇 u(0)𝑇)𝑇 ∈ 𝑋0}. (5.23)

Given the matrices [A] and [B], a set of final positions 𝑋0 and a sequence of input sets
𝑈−𝑁+1, ..., 𝑈0, a general procedure for computing 𝑋−𝑁 is given by: 1) generate the matrix
([A]⊗𝑁 , [A]⊗(𝑁−1)⊗ [B] , ..., [B]); then, 2) Construct the partitioned uMPL system generated
by this matrix; and, 3) compute the inverse image of 𝑋0 w.r.t the obtained partitioned
system; 4) intersect the inverse image with R𝑛 × 𝑈1 × ... × 𝑈𝑁 ; and finally, 5) project the
intersection over the state variables. The complexity of this procedure is the same as the
one-shot procedure for the forward case presented in section 5.1.2.

Example 5.18 Consider the nonautonomous uMPL system given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1)⊕𝐵(𝑘)⊗ u(𝑘),

where,

𝐴(𝑘) ∈
⎛⎝ 2 [2, 4]

[3, 5] [3, 4]

⎞⎠ and 𝐵(𝑘) ∈
⎛⎝𝑒

𝜀

⎞⎠ .

Chapter 5. Reachability Analysis of uMPL systems 99

In example 4.12 this system was represented as a collection of DBM D = {𝐷(1,1),

𝐷(2,1), 𝐷(2,2), 𝐷(3,1), 𝐷(3,2)}.

Given 𝑋0 = {x ∈ R2
𝑚𝑎𝑥 : 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 3}, and the sequence of controls

𝑢1(0) = −0.5 and 𝑢1(−1) = −7.5, the backward reach sets 𝑋−𝑘 for 𝑘 ∈ {1, 2} are computed
in the following.

The set of final positions 𝑋0 and the control input 𝑢1(0) can be represented by the
following DBM:

𝑥0 𝑥1 𝑥2

𝐷(𝑋0) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ (−2,≤)

⎞⎟⎟⎟⎠
𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(5,≤) 𝜀ℬ 𝑒ℬ 𝑥2

𝑥0 𝑢1

𝐷(𝑈0) =
⎛⎝ 𝑒ℬ (0.5,≤)

⎞⎠𝑥0

(−0.5,≤) 𝑒ℬ 𝑢1

In order to compute 𝑋−1 we must, first, compute the Cartesian product 𝑋0×R2×𝑈0,
which can be represented by:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(𝑋0×R2×𝑈0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (−2,≤) 𝜀ℬ 𝜀ℬ (0.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
1

(5,≤) 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝜀ℬ 𝑥2

(−0.5,≤) 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝜀ℬ 𝑒ℬ 𝑢1

Then, for each g ∈ {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2)}, we compute the intersection
of 𝐷(𝑋0×R2×𝑈0) and 𝐷g, the DBM that represents the component g; next, we compute the
canonical form representation of the intersection; and finally, we compute the orthogonal
projection of the canonical form over the variables 𝑥1 and 𝑥2.

For the component g = (1, 1) we have that the intersection of 𝐷(𝑋0×R2×𝑈0) and 𝐷(1,1)

is given by:

𝑥0 𝑥′
1 𝑥′

2 𝑥1 𝑥2 𝑢1

𝐷(𝑋0×R2×𝑈0) ⊕ℬ 𝐷(1,1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (−2,≤) 𝜀ℬ 𝜀ℬ (0.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝜀ℬ 𝑥′
1

(5,≤) 𝜀ℬ 𝑒ℬ (5,≤) 𝜀ℬ 𝜀ℬ 𝑥′
2

𝜀ℬ (−2,≤) (−3,≤) 𝑒ℬ 𝜀ℬ 𝜀ℬ 𝑥1

𝜀ℬ (−2,≤) (−3,≤) (−2,≤) 𝑒ℬ 𝜀ℬ 𝑥2

(−0.5,≤) 𝑒ℬ 𝜀ℬ (2,≤) 𝜀ℬ 𝑒ℬ 𝑢1

Chapter 5. Reachability Analysis of uMPL systems 100

The canonical form is given by:

𝑐𝑓(𝐷(𝑋0×R2×𝑈0) ⊕ℬ 𝐷(1,1)) =
𝑥0 𝑥′

1 𝑥′
2 𝑥1 𝑥2 𝑢1⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒ℬ 𝑒ℬ (−2,≤) (2,≤) 𝜀ℬ (0.5,≤)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑥0

(1,≤) 𝑒ℬ (−1,≤) (2,≤) 𝜀ℬ (1.5,≤) 𝑥′
1

(4,≤) (3,≤) 𝑒ℬ (5,≤) 𝜀ℬ (4.5,≤) 𝑥′
2

(−1,≤) (−2,≤) (−3,≤) 𝑒ℬ 𝜀ℬ (−0.5,≤) 𝑥1

(−3,≤) (−4,≤) (−5,≤) (−2,≤) 𝑒ℬ (−2.5,≤) 𝑥2

(−0.5,≤) (−0.5,≤) (−2.5,≤) (1.5,≤) 𝜀ℬ 𝑒ℬ 𝑢1

And the orthogonal projection of the canonical form over the state variables 𝑥1 and
𝑥2 is given by:

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(1,1)) = 𝑐𝑓(𝐷(𝑋0×R2×𝑈0) ⊕ℬ 𝐷(1,1))⌈x=

⎛⎜⎜⎜⎝
𝑒ℬ (2,≤) 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

(−1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(−3,≤) (−2,≤) 𝑒ℬ 𝑥2

Applying the same procedure to the components g = (2, 1), g = (2, 2), g = (3, 1) and
g = (3, 2) we obtain:

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(2,1)) =

⎛⎜⎜⎜⎝
𝑒ℬ (3,≤) (4,≤)

⎞⎟⎟⎟⎠
𝑥0

(−1,≤) 𝑒ℬ (2,≤) 𝑥1

(−1,≤) (1,≤) 𝑒ℬ 𝑥2

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(2,2)) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ (2,≤)

⎞⎟⎟⎟⎠
𝑥0

(−2,≤) 𝑒ℬ (−1,≤) 𝑥1

(−1,≤) 𝜀ℬ 𝑒ℬ 𝑥2

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(3,1)) =

⎛⎜⎜⎜⎝
⊤ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

(−1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(−1,≤) (1,≤) 𝑒ℬ 𝑥2

Chapter 5. Reachability Analysis of uMPL systems 101

𝑥0 𝑥1 𝑥2

𝐷(𝑋−1|g=(3,2)) =

⎛⎜⎜⎜⎝
⊤ℬ 𝜀ℬ 𝜀ℬ

⎞⎟⎟⎟⎠
𝑥0

(−1,≤) 𝑒ℬ (−1,≤) 𝑥1

(−1,≤) 𝜀ℬ 𝑒ℬ 𝑥2

Note that 𝐷(𝑋−1|g=(3,1)) and 𝐷(𝑋−1|g=(3,2)) are empty DBM, and therefore the inverse
image of 𝑋0 w.r.t. the components g = (3, 1) and g = (3, 2) is empty. Thus, the backward
reach set 𝑋−1 can be represented by the collection of DBM given by D𝑋−1 = {𝐷(𝑋−1|g=(1,1)),

𝐷(𝑋−1|g=(2,1)), 𝐷(𝑋−1|g=(2,2))}. Moreover, we have that 𝑋−1 = ℛ(𝐷(𝑋−1|g=(1,1)))∪ℛ(𝐷(𝑋−1|g=(2,1)))∪
ℛ(𝐷(𝑋−1|g=(2,2))) = {x ∈ R2 : −2 ≤ 𝑥1 ≤ −1, 𝑥2 ≤ −3, 𝑥2−𝑥1 ≤ −2}∪{x ∈ R2 : −3 ≤ 𝑥1 ≤
−1, −4 ≤ 𝑥2 ≤ −1, −2 ≤ 𝑥2 − 𝑥1 ≤ 1} ∪ {x ∈ R2 : 𝑥1 ≤ −2, −2 ≤ 𝑥2 ≤ −1, 𝑥2 − 𝑥1 ≥ 1}.

The backward reach set 𝑋−2 can be obtained by computing the inverse image of each
DBM representing 𝑋−1 w.r.t each component g ∈ {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2)} of the
partitioned uMPL system, which yields 𝑋−2 = {x ∈ R2 : −7 ≤ 𝑥1 ≤ −4, 𝑥2 ≤ −4, 𝑥2−𝑥1 ≤
0} ∪ {x ∈ R2 : 𝑥1 ≤ −4, −7 ≤ 𝑥2 ≤ −4, 𝑥2 − 𝑥1 ≥ 0}. The backward reach sets 𝑋−1 and
𝑋−2 are shown in Figure 13.

x1

-10 -8 -6 -4 -2 0

x
2

-10

-5

0

5

X0

X
−2

X
−1

Figure 13 – backward reach tube for 𝑘 ∈ {1, 2} (nonautonomous uMPL system).

Chapter 5. Reachability Analysis of uMPL systems 102

5.3 Image and inverse image of a Point
Every point in R𝑛 can be represented by a DBM in ℬ(𝑛+)×(𝑛+1), and therefore the

procedures presented in sections 5.1 and 5.2 can be used to compute the image and the
inverse image of a point w.r.t. an uMPL system. However computing the image and the
inverse image of a point w.r.t. an uMPL system can be done by considering a less expensive
approach.

In the following sections, we present alternative procedures to compute the image and
the inverse image of a point w.r.t. a generic uMPL system given by:

z(𝑘) = 𝐴⊗ x(𝑘 − 1), 𝐴 ∈ [A] , 𝐴 ∈ R𝑛×𝑝 (5.24)

5.3.1 Image of a Point

In section 4.1 it was demonstrated that given x(𝑘 − 1) then 𝑧𝑖(𝑘) is in the interval
defined by:

[z𝑖] (𝑘) =
⎡⎣ 𝑝⨁︁

𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)},

𝑝⨁︁
𝑗=1
{𝑎𝑖𝑗 ⊗ 𝑥𝑗(𝑘 − 1)}

⎤⎦ .

Therefore, it is straightforward to see that the image of a point x w.r.t the uMPL
system is given by:

ℐ[A]{x} =
𝑛⋂︁

𝑖=1

⎧⎨⎩z ∈ R𝑛 :
𝑝⨁︁

𝑗=1
𝑎𝑖𝑗 ⊗ 𝑥𝑗 ≤ 𝑧𝑖 ≤

𝑝⨁︁
𝑗=1

𝑎𝑖𝑗 ⊗ 𝑥𝑗

⎫⎬⎭ (5.25)

Or equivalently,

ℐ[A]{x} =
{︁
z ∈ R𝑛 : 𝐴⊗ x ≤ z ≤ 𝐴⊗ x

}︁
(5.26)

Remark 5.19 Note that the image of a point w.r.t an uMPL system is a hyperrectangle.
Although this kind of set can be represented and manipulated using a simpler data structure,
we will keep the DBM. This can be useful if we have a set of initial positions 𝑋0 given by
a single point and we want to compute a reach set for some 𝑘 > 1. In this case we could
compute the reach set 𝑋1 using equation (5.25) and the next reach sets would be calculated
using the procedure presented in section 5.1.

Example 5.20 Consider the following uMPL system:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), 𝐴(𝑘) ∈ [A] ,

Chapter 5. Reachability Analysis of uMPL systems 103

where

[A] =
⎛⎝[1, 3] 2

[2, 4] [3, 6]

⎞⎠ .

Given x(0) = (0 0)𝑇 , we have that,

ℐ[A]{x(0)} =
{︁
x ∈ R2 : (1⊗ 0)⊕ (2⊗ 0) ≤ 𝑥1 ≤ (3⊗ 0)⊕ (2⊗ 0)

}︁
∩
{︁
x ∈ R2 : (2⊗ 0)⊕ (3⊗ 0) ≤ 𝑥2 ≤ (4⊗ 0)⊕ (6⊗ 0)

}︁
=

{︁
x ∈ R2 : 2 ≤ 𝑥1 ≤ 3

}︁
∩
{︁
x ∈ R2 : 3 ≤ 𝑥2 ≤ 6

}︁

Moreover, this set can be represented by the following DBM:

𝑥0 𝑥1 𝑥2

𝐷(𝑋1) =

⎛⎜⎜⎜⎝
𝑒ℬ (−2,≤) (−3,≤)

⎞⎟⎟⎟⎠
𝑥0

(3,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(6,≤) 𝜀ℬ 𝑒ℬ 𝑥2

5.3.2 Inverse Image of a Point

The inverse image of a given point z w.r.t. an uMPL system is defined as:

ℐ−1
[A]{z} = {x ∈ R𝑝 : ∃𝐴 ∈ [A] : 𝐴⊗ x = z}. (5.27)

Equivalently, it can be stated that x ∈ ℐ−1
[A]{z} if and only if z is in the image of x w.r.t the

uMPL system , i.e.,
x ∈ ℐ−1

[A]{z} ⇔ 𝐴⊗ x ≤ z ≤ 𝐴⊗ x. (5.28)

Thus, x has to satisfy two restictions:

𝐴⊗ x ≤ z, (5.29)

𝐴⊗ x ≥ z. (5.30)

Then, the inverse image of a point z can be represented by the intersection of two
sets:

ℐ−1
[A]{z} = 𝑈 ∩ 𝐿 (5.31)

where 𝑈 is the set of all x that satisfies (5.29) and 𝐿 is the set of all x that satisfies (5.30).

By using residuation (see section 2.2), it can be demonstrated that the set 𝑈 is given
by:

𝑈 = {x ∈ R𝑝 : x ≤ 𝐴∖∘z} . (5.32)

Chapter 5. Reachability Analysis of uMPL systems 104

where ∖∘ is the residuation operator.

On the other hand, the set 𝐿 can be expressed as:

𝐿 =
𝑛⋂︁

𝑖=1

{︁
x ∈ R𝑝 : 𝑧𝑖 ≤ 𝐴[𝑖, :]⊗ x

}︁
, (5.33)

where 𝐴[𝑖, :] is the 𝑖-th row of matrix 𝐴.

We seek for a representation of 𝐿 in which x is not implicit. In this sense, we compute
the complement of 𝐿, which is given by:

𝐿𝑐 =
𝑛⋃︁

𝑖=1

{︁
x ∈ R𝑝 : 𝐴[𝑖, :]⊗ x < 𝑧𝑖

}︁
(5.34)

By using residuation we have that:

𝐿𝑐 =
𝑛⋃︁

𝑖=1

{︁
x ∈ R𝑝 : x < 𝑋(𝑖)

}︁
(5.35)

where,
𝑋(𝑖) = 𝐴[𝑖, :]∖∘𝑧𝑖. (5.36)

Equivalently, equation (5.35) can be expressed as:

𝐿𝑐 =
𝑛⋃︁

𝑖=1

⎛⎝ 𝑝⋂︁
𝑗=1

{︁
x ∈ R𝑝 : 𝑥𝑗 < 𝑋

(𝑖)
𝑗

}︁⎞⎠ . (5.37)

The set 𝐿 can be obtained by computing the complement of 𝐿𝑐, i.e., 𝐿 = (𝐿𝑐)𝑐. The
complement of 𝐿𝑐 is computed in the following.

Consider the intersection of 𝑛 sets noted by ⋂︀𝑛
𝑗=1𝒜𝑗. The complement of the inter-

section is given by: ⎛⎝ 𝑛⋂︁
𝑗=1
𝒜𝑗

⎞⎠𝑐

=
𝑛⋃︁

𝑗=1
𝒜𝑐

𝑗. (5.38)

However, if we want to represent the complement by a union of pairwise disjoint sets, equation
(5.38) can be expressed as:⎛⎝ 𝑛⋂︁

𝑗=1
𝒜𝑗

⎞⎠𝑐

= 𝒜𝑐
1 ∪ [𝒜1 ∩ 𝒜𝑐

2] ∪ [𝒜1 ∩ 𝒜2 ∩ 𝒜𝑐
3] ∪ · · · ∪

[︃(︃
𝑛−1⋂︁
𝑘=1
𝒜𝑘

)︃
∩ 𝒜𝑐

𝑛

]︃

=
𝑛⋃︁

𝑗=1

⎡⎣⎛⎝𝑗−1⋂︁
𝑘=1
𝒜𝑘

⎞⎠ ∩ 𝒜𝑐
𝑗

⎤⎦ . (5.39)

where ⋂︀0
𝑘=1𝒜𝑘 is set to R𝑝.

Chapter 5. Reachability Analysis of uMPL systems 105

Example 5.21 Let us compute the complement of the set {x ∈ R3 : x <
(︁
0 0 0

)︁𝑇
}.

This set can be expressed as {x ∈ R3 : 𝑥1 < 0}⏟ ⏞
𝒜1

∩{x ∈ R3 : 𝑥2 < 0}⏟ ⏞
𝒜2

∩{x ∈ R3 : 𝑥3 < 0}⏟ ⏞
𝒜3

. Thus,

according to (5.39), we have that:

{x ∈ R3 : x <
(︁
0 0 0

)︁𝑇
}𝑐 = {x ∈ R3 : 𝑥1 ≥ 0}

∪
[︁
{x ∈ R3 : 𝑥1 < 0} ∩ {x ∈ R3 : 𝑥2 ≥ 0}

]︁
∪
[︁
{x ∈ R3 : 𝑥1 < 0} ∩ {x ∈ R3 : 𝑥2 < 0} ∩ {x ∈ R3 : 𝑥3 ≥ 0}

]︁

Therefore, according to (5.39), the complement each term of union (5.37) can be
computed as:⎛⎜⎜⎜⎝

𝑝⋂︁
𝑗=1

{︁
x ∈ R𝑝 : 𝑥𝑗 < 𝑋

(𝑖)
𝑗

}︁
⏟ ⏞

𝒜𝑗

⎞⎟⎟⎟⎠
𝑐

=
𝑝⋃︁

𝑗=1

⎡⎢⎢⎢⎣
⎛⎜⎜⎝𝑗−1⋂︁

𝑘=1

{︁
x ∈ R𝑝 : 𝑥𝑘 < 𝑋

(𝑖)
𝑘

}︁
⏟ ⏞

𝒜𝑘

⎞⎟⎟⎠ ∩ {︁x ∈ R𝑝 : 𝑥𝑗 ≥ 𝑋
(𝑖)
𝑗

}︁
⏟ ⏞

𝒜𝑐
𝑗

⎤⎥⎥⎥⎦
(5.40)

where ⋂︀0
𝑘=1

{︁
x ∈ R𝑝 : 𝑥𝑘 < 𝑋

(𝑖)
𝑘

}︁
is set to R𝑝.

Then, the complement of 𝐿𝑐 is:

𝐿 = (𝐿𝑐)𝑐 =
⎡⎣ 𝑛⋃︁

𝑖=1

⎛⎝ 𝑝⋂︁
𝑗=1

{︁
x ∈ R𝑝 : 𝑥𝑗 < 𝑋

(𝑖)
𝑗

}︁⎞⎠⎤⎦𝑐

=
𝑛⋂︁

𝑖=1

⎡⎣⎛⎝ 𝑝⋂︁
𝑗=1

{︁
x ∈ R𝑝 : 𝑥𝑗 < 𝑋

(𝑖)
𝑗

}︁⎞⎠𝑐⎤⎦
=

𝑛⋂︁
𝑖=1

⎛⎝ 𝑝⋃︁
𝑗=1

⎡⎣⎛⎝𝑗−1⋂︁
𝑘=1

{︁
x ∈ R𝑝 : 𝑥𝑘 < 𝑋

(𝑖)
𝑘

}︁⎞⎠ ∩ {︁x ∈ R𝑝 : 𝑥𝑗 ≥ 𝑋
(𝑖)
𝑗

}︁⎤⎦⎞⎠ (5.41)

Defining:

𝑠𝑒𝑡𝑖
𝑗 =

𝑗−1⋂︁
𝑘=1

{︁
x ∈ R𝑝 : 𝑥𝑘 < 𝑋

(𝑖)
𝑘

}︁
∩
{︁
x ∈ R𝑝 : 𝑥𝑗 ≥ 𝑋

(𝑖)
𝑗

}︁
, (5.42)

we have that:

𝐿 =
𝑛⋂︁

𝑖=1

𝑝⋃︁
𝑗=1

𝑠𝑒𝑡𝑖
𝑗

=
(︁
𝑠𝑒𝑡1

1 ∪ · · · ∪ 𝑠𝑒𝑡1
𝑝

)︁
∩
(︁
𝑠𝑒𝑡2

1 ∪ · · · ∪ 𝑠𝑒𝑡2
𝑝

)︁
∩ · · · ∩

(︁
𝑠𝑒𝑡𝑚

1 ∪ · · · ∪ 𝑠𝑒𝑡𝑛
𝑝

)︁
=

(︁
𝑠𝑒𝑡1

1 ∩ 𝑠𝑒𝑡2
1 ∩ · · · ∩ 𝑠𝑒𝑡𝑛

1

)︁
∪
(︁
𝑠𝑒𝑡1

1 ∩ 𝑠𝑒𝑡2
1 ∩ · · · ∩ 𝑠𝑒𝑡𝑛

2

)︁
∪ · · · ∪

(︁
𝑠𝑒𝑡1

𝑝 ∩ 𝑠𝑒𝑡2
𝑝 ∩ · · · ∩ 𝑠𝑒𝑡𝑛

𝑝

)︁
(5.43)

Chapter 5. Reachability Analysis of uMPL systems 106

Now, let us define:

𝑆𝐸𝑇 g =
𝑛⋂︁

𝑖=1
𝑠𝑒𝑡𝑖

𝑔𝑖
, 𝑔𝑖 ∈ {1, ..., 𝑝} (5.44)

Thus, from (5.43), the region 𝐿 can be expressed as:

𝐿 =
⋃︁

g∈{1,...,𝑝}𝑛

𝑆𝐸𝑇 g (5.45)

Then, from (5.31), we have that:

ℐ−1
[A]{z} = 𝑈 ∩

⋃︁
g∈{1,...,𝑝}𝑛

𝑆𝐸𝑇 g

=
⋃︁

g∈{1,...,𝑝}𝑛

(𝑆𝐸𝑇 g ∩ 𝑈) , (5.46)

where 𝑈 is defined by (5.32).

Note that, the inverse image of a point w.r.t. an uMPL system can be represented by
a collection of pairwise disjoint hyperrectangles.

Example 5.22 Consider the autonomous uMPL system given by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1),

where,

𝐴(𝑘) ∈
⎛⎝[1, 4] [2, 3]

[1, 2] [0, 4]

⎞⎠ .

Given x(1) = (5, 4)𝑇 , let us compute 𝑋0 = ℐ−1
[A]{x(1)} =

⋃︁
g∈{1,2}2

(𝑆𝐸𝑇 g ∩ 𝑈). Accord-

ing to equation (5.32), the set 𝑈 is given by: 𝑈 = {x ∈ R2 : x ≤ 𝐴∖∘x(1)} , where,

𝐴∖∘x(1) =
⎛⎝1 2

1 0

⎞⎠ ∖∘
⎛⎝5

4

⎞⎠ =
⎛⎝(5− 1) ∧ (4− 1)

(5− 2) ∧ (4− 0)

⎞⎠ =
⎛⎝3

3

⎞⎠ .

Thus, 𝑈 = {x ∈ R2 : 𝑥1 ≤ 3, 𝑥2 ≤ 3}. In order to compute the sets 𝑠𝑒𝑡𝑖
𝑗, 𝑖, 𝑗 ∈ {1, 2} , we

must compute first 𝑋(𝑖) = 𝐴[𝑖, :]∖∘𝑥𝑖(1), for 𝑖 ∈ {1, 2}:

𝑋(1) = 𝐴[1, :]∖∘𝑥1(1) =
(︁
4 3

)︁
∖∘
(︁
5
)︁

=
⎛⎝(5− 4)

(5− 3)

⎞⎠ =
⎛⎝1

2

⎞⎠
𝑋(2) = 𝐴[2, :]∖∘𝑥2(1) =

(︁
2 4

)︁
∖∘
(︁
4
)︁

=
⎛⎝(4− 2)

(4− 4)

⎞⎠ =
⎛⎝2

0

⎞⎠ .

Chapter 5. Reachability Analysis of uMPL systems 107

According to (5.42), the sets 𝑠𝑒𝑡𝑖
𝑗, 𝑖, 𝑗 ∈ {1, 2}, are given by:

𝑠𝑒𝑡1
1 =

{︁
x ∈ R2 : 𝑥1 ≥ 1

}︁
𝑠𝑒𝑡1

2 =
{︁
x ∈ R2 : 𝑥1 < 1, 𝑥2 ≥ 2

}︁
𝑠𝑒𝑡2

1 =
{︁
x ∈ R2 : 𝑥1 ≥ 2

}︁
𝑠𝑒𝑡2

2 =
{︁
x ∈ R2 : 𝑥1 < 2, 𝑥2 ≥ 0

}︁

Now, for each g ∈ {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)} we compute the sets 𝑆𝐸𝑇 g

as follows:

𝑆𝐸𝑇 (1,1) = 𝑠𝑒𝑡1
1 ∩ 𝑠𝑒𝑡2

1 =
{︁
x ∈ R2 : 𝑥1 ≥ 2

}︁
,

𝑆𝐸𝑇 (1,2) = 𝑠𝑒𝑡1
1 ∩ 𝑠𝑒𝑡2

2 =
{︁
x ∈ R2 : 1 ≤ 𝑥1 < 2, 𝑥2 ≥ 0

}︁
,

𝑆𝐸𝑇 (2,1) = 𝑠𝑒𝑡1
2 ∩ 𝑠𝑒𝑡2

1 = ∅,

𝑆𝐸𝑇 (2,2) = 𝑠𝑒𝑡1
2 ∩ 𝑠𝑒𝑡2

2 =
{︁
x ∈ R2 : 𝑥1 < 1, 𝑥2 ≥ 2

}︁
.

Finally we compute 𝑋0 = ⋃︀
g∈{1,...,𝑝}𝑛 (𝑆𝐸𝑇 g ∩ 𝑈) (see (5.46)):

𝑋0 = (𝑆𝐸𝑇 (1,1) ∩ 𝑈) ∪ (𝑆𝐸𝑇 (1,2) ∩ 𝑈) ∪ (𝑆𝐸𝑇 (2,2) ∩ 𝑈)

=
{︁
x ∈ R2 : 2 ≤ 𝑥1 ≤ 3, 𝑥2 ≤ 3

}︁
∪
{︁
x ∈ R2 : 1 ≤ 𝑥1 < 2, 0 ≤ 𝑥2 ≤ 3

}︁
∪
{︁
x ∈ R2 : 𝑥1 < 1, 2 ≤ 𝑥2 ≤ 3

}︁

The invserse image of x(1) can be observed in Figure 14. Note that 𝑋0 is a union of
pairwise disjoint hyperrectangles.

Remark 5.23 Back to the discussion presented in remark 5.19, we will keep the DBM data
structure to represent the hyperrectangles. If a DBM 𝐷 ∈ ℬ𝑛×𝑛 represent a hyperrectangle
then all non-redundant constraints are in its first row/column. In this case, the checking for
emptiness can be performed by verifying if exists an 𝑖 ∈ {1, ..., 𝑛} such that4 𝑑1𝑖⊗ℬ𝑑𝑖1 ≻ℬ 𝑒ℬ. If
so, there will be a constraint 𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 such that 𝑥𝑖 > 𝑥𝑖 and therefore the DBM represents
an empty region. Note that if a DBM represents a hyperrectangle the checking for emptiness
does not require the computation of the canonical form representation, therefore the complexity
reduces from cubic to linear w.r.t. its dimension. Furthermore, the intersection of two DBM
representing a hyperrectangle can be done with linear complexity w.r.t. its dimension, instead
of the quadratic complexity for general DBM.

Algorithm 5.3 describes a general procedure for computing the inverse image of a
point w.r.t an uMPL system using the DBM data structure. The worst-case complexity
4 The order ≻ in ℬ coincides with the usual lexicographic order < (see remark 2.17)

Chapter 5. Reachability Analysis of uMPL systems 108

x1

-3 -2 -1 0 1 2 3 4

x
2

-3

-2

-1

0

1

2

3

4

S
E
T

(1
,1
)
∩
US
E
T

(1
,2
)
∩
USET (2,2)

∩ U

Figure 14 – Inverse image of x(1).

of the Algorithm critically depends on step 18 and is calculated as follows: the worst-case
complexity of step 19 is 𝒪(𝑝𝑛), the complexity of steps 21 and 22 amounts to 𝒪(𝑛𝑝) and the
complexity of step 25 is 𝒪(𝑝) (see remark 5.23). Therefore, the worst-case complexity of the
Algorithm is 𝒪(𝑛𝑝𝑛+1).

Remark 5.24 For autonomous uMPL systems, parameter 𝑝 equals 𝑛, and therefore the
worst-case complexity of Algorithm 5.3 is 𝒪(𝑛𝑛+2). For nonautonomous uMPL systems, pa-
rameter 𝑝 equals 𝑛 + 𝑚, and therefore the worst-case complexity is 𝒪(𝑛(𝑛 + 𝑚)𝑛+1). Note
that the worst case complexity of computing the inverse image of a DBM w.r.t a partitioned
uMPL system generated by an uMPL system is 𝒪(𝑛𝑛+3) for autonomous uMPL systems and
𝒪((𝑛 + 𝑚)𝑛+3) for nonautonomous uMPL systems (see Remark 5.3).

Chapter 5. Reachability Analysis of uMPL systems 109

Algorithm 5.3: Inverse image of a point w.r.t an uMPL system
input : z ∈ R𝑛

𝑚𝑎𝑥, 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥, 𝐴 ∈ R𝑛×𝑝

𝑚𝑎𝑥

output: D // A collection of DBM representing ℐ−1
[A] {z};

1 begin // Compute the set 𝑈 and represent it as the DBM 𝐷(𝑈);
2 𝑋 ← 𝐴∖∘{z} // see (2.27)
3 𝐷(𝑈) ← 𝑒(𝑝+1)×(𝑝+1);
4 for 𝑗 ∈ {1, ..., 𝑝} do 𝐷(𝑈)[𝑗 + 1, 1]← (𝑋𝑗,≤);
5 end
6 begin // Compute the sets 𝑠𝑒𝑡𝑖

𝑗 and represent them as DBM 𝐷(𝑠𝑒𝑡𝑖
𝑗);

7 for all 𝑖 ∈ {1, ..., 𝑛} do
8 𝑋(𝑖) ← 𝐴[𝑖, :]∖∘{z} // see (2.27)
9 for all 𝑗 ∈ {1, ..., 𝑝} do

10 𝐷(𝑠𝑒𝑡𝑖
𝑗) ← 𝑒(𝑝+1)×(𝑝+1);

11 𝐷(𝑠𝑒𝑡𝑖
𝑗)[1, 𝑗 + 1]← (−𝑋

(𝑖)
𝑗 ,≤) ; // represents

{︁
x ∈ R𝑝 : 𝑥𝑗 ≥ 𝑋

(𝑖)
𝑗

}︁
;

12 for all 𝑘 ∈ {1, ..., (𝑗 − 1)} do // represent
⋂︀𝑗−1

𝑘=1

{︁
x ∈ R𝑝 : 𝑥𝑘 < 𝑋

(𝑖)
𝑘

}︁
;

13 𝐷(𝑠𝑒𝑡𝑖
𝑗)[𝑘 + 1, 1]← (𝑋(𝑖)

𝑘 , <);
14 end for
15 end for
16 end for
17 end
18 begin // Compute the DBM union set D representing

⋃︀
g∈{1,...,𝑝}𝑛 (𝑆𝐸𝑇 g ∩ 𝑈);

19 for all 𝑔 ∈ {1, ..., 𝑝}𝑛 do
20 𝐷(𝑆𝐸𝑇 g) ← 𝑒(𝑝+1)×(𝑝+1);
21 for all 𝑖 ∈ {1, ..., 𝑛} do // represent 𝑆𝐸𝑇 g = ⋂︀𝑛

𝑖=1 𝑠𝑒𝑡𝑖
𝑔𝑖

22 𝐷(𝑆𝐸𝑇 g) ← 𝐷(𝑆𝐸𝑇 g) ⊕ℬ 𝐷(𝑠𝑒𝑡𝑖
𝑔𝑖

);
23 end for
24 𝐷(𝑆𝐸𝑇 g∩𝑈) ← 𝐷(𝑆𝐸𝑇 g) ⊕ℬ 𝐷(𝑈)// represent 𝑆𝐸𝑇 g ∩ 𝑈, see (5.46);
25 if 𝐷(𝑆𝐸𝑇 g∩𝑈) is not empty then
26 D← D ∪ {𝐷(𝑆𝐸𝑇 g∩𝑈)};
27 end if
28 end for
29 end

110

6 Application: Conditional Reachability Analy-
sis of uMPL Systems

This chapter presents an application of reachability analysis of uMPL systems. We
define the conditional reachability problem and then we show that this problem can be solved
by using the results presented in chapter 5.

6.1 The Conditional Reachability Problem
Bayesian methods provide a rigorous general framework for dynamic state estimation

problems (GORDON et al., 1993). Consider the following system:

x(𝑘) = 𝑓𝑘−1 (x(𝑘 − 1), w(𝑘)) , (6.1)

z(𝑘) = ℎ𝑘 (x(𝑘), v(𝑘)) . (6.2)

Where x ∈ R𝑛 and z ∈ R𝑙 are, respectively, the state and measurement vectors; w ∈ R𝑚 and
v ∈ R𝑟 are independent identically distributed (iid) process noise sequence; 𝑓𝑘−1 : R𝑛×R𝑚 →
R𝑛 is, in general, a nonlinear transition function and ℎ𝑘 : R𝑛 ×R𝑟 → R𝑙 is the measurement
function.

In the Bayesian approach, one aims to construct the posterior Probability Density
Function (PDF) 𝑝(x𝑘|z1, ..., z𝑘), which is the PDF of the states x(𝑘) given all the available
information z(1), ..., z(𝑘) at the event step 𝑘. The posterior PDF may be obtained recursively
in two stages: prediction and update (GORDON et al., 1993). In the prediction stage it is
assumed that the required PDF 𝑝(x𝑘−1|z1, ..., z𝑘−1) is available at the event step 𝑘−1. Using
the system model and the Chapman-Kolmogorov equation it is possible to obtain the prior
PDF 𝑝(x𝑘|z1, ..., z𝑘−1) based on all information available at the event step 𝑘−1. In the update
stage, the required PDF 𝑝(x𝑘|z1, ..., z𝑘) is obtained by updating the prior PDF, via the Bayes
rule, based on the new available information z𝑘 and on the measurement model.

In this work, the system described by equations (6.1) and (6.2) are assumed to be an
uMPL system, i.e:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1), 𝐴(𝑘) ∈ [A] , (6.3)

z(𝑘) = 𝐶(𝑘)⊗ x(𝑘), 𝐶(𝑘) ∈ [C] . (6.4)

The elements of matrices 𝐴(𝑘) ∈ R𝑛×𝑛 and 𝐶(𝑘) ∈ R𝑙×𝑛 are associated to stochastic processes
with supports in real intervals. No further assumptions are made on these processes.

Chapter 6. Application: Conditional Reachability Analysis of uMPL Systems 111

The calculation of the support of 𝑝(x𝑘|z1, ..., z𝑘) is closely related to the conditional
reachability problem. The conditional reachability analysis concerns the computation of the
set of all states that may be reached from a set of initial states, conditioned to a sequence of
measures. This set will be called the conditional reach set and is formally defined as follows:

Definition 6.1 (conditional reach sets) Given a set of initial positions 𝑋0 and a se-
quence of measures {z(1), ..., z(𝑁)}, the conditional reach set 𝑋𝑁 |𝑁 , at event step 𝑁 , is
the set of all states that may be reached from 𝑋𝑁−1|𝑁−1 (the conditional reach set at 𝑁 − 1)
via the uMPL transition model (6.3) and that may lead to z(𝑁) via the uMPL measurement
model in one event step(6.4).

Note that the conditional reach set 𝑋𝑘|𝑘, at event step 𝑘, corresponds to the exact
support of 𝑝(x𝑘|z1, ..., z𝑘). Moreover, note that the conditional reachability problem is not
stochastic since it does not lead to an estimate (in the estimation theory sense) of any proba-
bilistic parameter. Although not stochastic, the conditional reachability analysis could come
in handy, for instance, in the improvement of particle filtering algorithms. Particle Filters,
or Sequential Monte Carlo methods, are suboptimal Bayesian algorithms based on weighted-
particles approximation of probability densities (ARULAMPALAM et al., 2002; DOUCET
et al., 2000). Particle filters applied to Max Plus systems have been studied in (SILVA et al.,
2011; CÂNDIDO et al., 2013; CÂNDIDO; MENDES, 2014). In the particle filtering process
is common to obtain a set of weighted-particles representing an approximation for a PDF, in
which several particles have null weight. These particles does not contribute to the approx-
imation of the PDF. Indeed, particles with null weight are characterized to be outside the
support of the PDF. In this context, conditional reachability analysis could be used in the
development of procedures to obtain particles inside the support of the PDF, which improves
the approximation quality.

As will be shown in the following section it is possible to compute the conditional
reach sets by using reachability analysis of uMPL systems.

6.2 The Solution
Assuming that conditional reach set 𝑋𝑘−1|𝑘−1 is known at the event step 𝑘 − 1, and

given the measurement z(𝑘), the conditional reach set 𝑋𝑘|𝑘 can be calculated in two stages:
In the first stage it is computed the image of 𝑋𝑘−1|𝑘−1 w.r.t. the uMPL transition model,
which can be calculated via (5.11) for autonomous uMPL sytems:

𝑋𝑘|𝑘−1 = ℐ[A]{𝑋𝑘−1|𝑘−1} = {𝐴⊗ x : x ∈ 𝑋𝑘−1|𝑘−1, 𝐴 ∈ [A]}, (6.5)

Chapter 6. Application: Conditional Reachability Analysis of uMPL Systems 112

and via (5.18) for nonautonomous uMPL systems:

𝑋𝑘|𝑘−1 = ℐ[F]{𝑋𝑘−1|𝑘−1 × 𝑈𝑘}

= {𝐹 ⊗ y : y ∈ 𝑋𝑘−1|𝑘−1 × 𝑈𝑘, 𝐹 ∈ [F]}. (6.6)

Remark 6.2 Note that the set 𝑋𝑘|𝑘−1 corresponds to the support of the prior PDF 𝑝(x𝑘|z1, ..., z𝑘−1).
In this sense, the first stage can be associated to the prediction stage of the Bayesian approach.

The second stage is subdivided in two sub-stages: In the first sub-stage, it is computed
the inverse image of z(𝑘) w.r.t. the uMPL measurement model, which can be calculated via
(5.27) :

𝑋̃𝑘|𝑘 = ℐ−1
[C]{z𝑘} = {x ∈ R𝑝 : ∃𝐶 ∈ [C] : 𝐶 ⊗ x = z(𝑘)}. (6.7)

Remark 6.3 Note that 𝑋̃𝑘|𝑘 is the set of all states that may lead to z𝑘 via the measurement
model in one event step.

In the second sub-stage, the conditional reach set 𝑋𝑘|𝑘 is obtained by intersecting the
sets 𝑋𝑘|𝑘−1 and 𝑋̃𝑘|𝑘, thus:

𝑋𝑘|𝑘 = 𝑋𝑘|𝑘−1 ∩ 𝑋̃𝑘|𝑘. (6.8)

This intersection can be calculated by computing the canonical form representation of the
intersection of each DBM representing 𝑋𝑘|𝑘−1 with each DBM representing 𝑋̃𝑘|𝑘.

Remark 6.4 In the second stage the new information z𝑘 is used to update the set 𝑋𝑘|𝑘−1.
This can be associated to the update stage of the Bayesian approach.

If the set 𝑋𝑘−1|𝑘−1 can be represented by union of 𝑞𝑘−1|𝑘−1 DBM, then 𝑋𝑘|𝑘−1 can
be represented by a union of 𝑞𝑘|𝑘−1 DBM. The inverse image of a point z𝑘 can always be
represented by a union of 𝑞𝑘|𝑘 DBM (see section 5.3.2). Moreover, the intersection of two
sets represented by the union of finitely many DBM is again a union of finitely many DBM.
Therefore, 𝑋𝑘|𝑘 can be represented by a union of 𝑞𝑘|𝑘 DBM. Therefore, it can be proved that
if 𝑋0 can be represented by a union of finitely many DBM, then 𝑋𝑘|𝑘 can also be represented
by a union of 𝑞𝑘|𝑘 DBM for each 𝑘 ∈ N.

The complexity of each stage is given in the following. The worst-case complexity
to compute 𝑋𝑘|𝑘−1 is 𝒪(𝑞𝑘−1|𝑘−1𝑛

𝑛+3) for autonomous systems and 𝒪(𝑞𝑘−1|𝑘−1(𝑛 + 𝑚)𝑛+3)
for nonautonomous systems (see section 5.1). The worst-case complexity to compute 𝑋̃𝑘|𝑘 is
𝒪(𝑙(𝑙 + 𝑛)𝑙+1) (see section 5.3.2). Given 𝑋𝑘|𝑘−1 and 𝑋̃𝑘|𝑘, assumed to be represented by a

Chapter 6. Application: Conditional Reachability Analysis of uMPL Systems 113

union of 𝑞𝑘|𝑘−1 and 𝑞𝑘|𝑘 DBM, respectively, the worst-case complexity to compute 𝑋𝑘|𝑘 via
equation (6.8) is 𝒪(𝑞𝑘|𝑘−1𝑞𝑘|𝑘𝑛3).

Example 6.5 In this example the conditional reach sets of an uMPL system is computed.
The system considered is described by:

x(𝑘) = 𝐴(𝑘)⊗ x(𝑘 − 1),

z(𝑘) = 𝐶(𝑘)⊗ x(𝑘).

Where,

𝐴(𝑘) ∈
⎛⎝[1, 3] [3, 4]

[2, 3] [2, 4]

⎞⎠ and 𝐶(𝑘) ∈
⎛⎝[1, 3] [1.5, 2.5]

1 [1, 3]

⎞⎠ .

The simulated1 state and measurement sequences are given in Table 3. Using the
measurement sequence and the set of initial positions 𝑋0 = {x ∈ R2 : 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤
1, }, the conditional reach set 𝑋1|1 is computed in the following.

Table 3 – Simulated state and measurement sequences.

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

x(𝑘)
(︃

0.661
0.019

)︃ (︃
3.783
3.635

)︃ (︃
7.121
6.999

)︃ (︃
10.160
9.791

)︃ (︃
13.146
13.362

)︃

z(𝑘) −
(︃

6.148
6.349

)︃ (︃
9.530
8.555

)︃ (︃
13.001
11.160

)︃ (︃
15.351
14.629

)︃

First, note that the set of initial positions 𝑋0 and the measurement z(1) can be rep-
resented by the following DBM:

𝑥0 𝑥1 𝑥2

𝐷(𝑋0) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝑒ℬ 𝑒ℬ

⎞⎟⎟⎟⎠
𝑥0

(1,≤) 𝑒ℬ 𝜀ℬ 𝑥1

(1,≤) 𝜀ℬ 𝑒ℬ 𝑥2

𝑥0 𝑧1 𝑧2

𝐷(𝑍1) =

⎛⎜⎜⎜⎝
𝑒ℬ (−6.148,≤) (−6.349,≤)

⎞⎟⎟⎟⎠
𝑥0

(6.148,≤) 𝑒ℬ 𝜀ℬ 𝑧1

(6.349,≤) 𝜀ℬ 𝑒ℬ 𝑧2

1 For the simulation, it was considered that the entries of the matrices 𝐴(𝑘) and 𝐶(𝑘) are uniformly
distributed in the given intervals. For example, for each 𝑘, the element 𝑎11(𝑘) is uniformly distributed
between 1 and 3.

Chapter 6. Application: Conditional Reachability Analysis of uMPL Systems 114

In the first stage we compute 𝑋1|0 = ℐ[A]{𝑋0}, which can be represented by the collection of
DBM given by D(𝑋1|0) = {𝐷(𝑋1

1|0)}, where:

𝑥0 𝑥′
1 𝑥′

2

𝐷
(𝑋1

1|0) =

⎛⎜⎜⎜⎝
𝑒ℬ (−3,≤) (−2,≤)

⎞⎟⎟⎟⎠
𝑥0

(5,≤) 𝑒ℬ (2,≤) 𝑥′
1

(5,≤) (1,≤) 𝑒ℬ 𝑥′
2

In the second stage we compute 𝑋̃1|1 = ℐ−1
[C]{z1}, which can be represented by the collection

of DBM given by D(𝑋̃1|1) = {𝐷(𝑋̃1
1|1)

, 𝐷
(𝑋̃2

1|1)}, where:

𝑥0 𝑥′
1 𝑥′

2

𝐷
(𝑋̃1

1|1) =

⎛⎜⎜⎜⎝
𝑒ℬ (−3.147,≤) (−3.349,≤)

⎞⎟⎟⎟⎠
𝑥0

(5.147,≤) 𝑒ℬ 𝜀ℬ 𝑥′
1

(4.647,≤) 𝜀ℬ 𝑒ℬ 𝑥′
2

𝑥0 𝑥′
1 𝑥′

2

𝐷
(𝑋̃2

1|1) =

⎛⎜⎜⎜⎝
𝑒ℬ 𝜀ℬ (−3.647,≤)

⎞⎟⎟⎟⎠
𝑥0

(3.147, <) 𝑒ℬ 𝜀ℬ 𝑥′
1

(4.647,≤) 𝜀ℬ 𝑒ℬ 𝑥′
2

Finally, we compute 𝑋1|1 = 𝑋1|0 ∩ 𝑋̃1|1. This can be done by computing the canonical
form representation of the intersection of each DBM in D(𝑋1|0) with each DBM in D(𝑋̃1|1),
which yields:

𝑥0 𝑥′
1 𝑥′

2

𝐷
(𝑋1

1|1) = 𝑐𝑓(𝐷(𝑋1
1|0) ⊕ℬ 𝐷

(𝑋̃1
1|1)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−3.147,≤) (−3.349,≤)

⎞⎟⎟⎟⎠
𝑥0

(5,≤) 𝑒ℬ (1.651,≤) 𝑥′
1

(4.647,≤) (1,≤) 𝑒ℬ 𝑥′
2

𝑥0 𝑥′
1 𝑥′

2

𝐷
(𝑋2

1|1) = 𝑐𝑓(𝐷(𝑋1
1|0) ⊕ℬ 𝐷

(𝑋̃2
1|1)) =

⎛⎜⎜⎜⎝
𝑒ℬ (−3,≤) (−3.647,≤)

⎞⎟⎟⎟⎠
𝑥0

(3.147, <) 𝑒ℬ (−0.5, <) 𝑥′
1

(4.147, <) (1,≤) 𝑒ℬ 𝑥′
2

The conditional reach sets 𝑋𝑘|𝑘 for 𝑘 ∈ {1, 2, 3, 4, 496, 497, 498, 499} are shown in
Figure 15. Note that the conditional reach set 𝑋29|29 can be represented by a single DBM
which illustrates that the number of DBM does not necessarily increases with 𝑘.

Chapter 6. Application: Conditional Reachability Analysis of uMPL Systems 115

x1

0 2 4 6 8 10 12 14

x
2

0

2

4

6

8

10

12

14

X0

X4|4
X3|3

X2|2

X1|1

x1

1594 1596 1598 1600 1602 1604 1606 1608

x
2

1594

1596

1598

1600

1602

1604

1606

1608

X 499|499

X 498|498

X 497|497

X 496|496

Figure 15 – conditional reach sets. The circles represent the real state values obtained via
simulation.

As discussed in remark 5.8, the uMPL systems are expansive, i.e., the hyper-volume
of the reach sets 𝑋𝑘 tends to increase with 𝑘. However, the conditional reachability analysis
uses the measurement model as a feedback mechanism which may avoid a potential explosion
in the hyper-volume of the conditional reach sets. For the system considered in Example 6.5,
for instance, it seems that the potential explosion will not happen (see Figure 15). However,
as illustrated in Example 6.6, it is not the case for all systems.

Example 6.6 Consider two uMPL systems characterized by the matrices presented in Table
4

Considering 𝑋0 = {x ∈ R2
𝑚𝑎𝑥 : 0 ≤ 𝑥1 ≤ 1, 0 ≤ 𝑥2 ≤ 1}, the conditional reach

sets 𝑋𝑘|𝑘, for 𝑘 ∈ {1, ..., 59}, were computed (for both systems). In order to observe if the
conditional reach sets expand with 𝑘, they were plotted in Figure 16.

Chapter 6. Application: Conditional Reachability Analysis of uMPL Systems 116

Table 4 – Two uMPL systems.

System 1 System 2

[A]
(︃

[3, 5] 𝜀
𝜀 [1, 11]

)︃ (︃
[3, 5] [0, 2]

𝜀 [1, 11]

)︃
[C]

(︁
[0, 2] 𝜀

)︁ (︁
[0, 2] 𝜀

)︁

x1

0 50 100 150 200

x
2

0

100

200

300

400

500

600

700

System1

x1

0 50 100 150 200 250 300 350

x
2

0

50

100

150

200

250

300

350

400

System2

Figure 16 – Conditional reach sets for 𝑘 ∈ {1, ..., 59}.

Note that, the conditional reach sets corresponding to System 1 clearly expand with
𝑘 while System 2 seems to be nonexpansive. However, a question remains to be answered:
under which conditions the system will be guaranteed nonexpansive? A sufficient condition
is that the transition matrix [A] = [𝐴, 𝐴] be cyclic, i.e., the matrices of lower and upper
bounds, 𝐴 and 𝐴, respectively, must to be irreducible matrices with the same cyclicity and
max-plus eigenvalue (see section 5.1.1). However, it may not be a necessary condition as can
be observed in Example 6.5, where the matrix [A] is not cyclic and the system seems to be
nonexpansive.

117

7 Conclusion

Reachability analysis of MPL systems can be assessed by characterizing the system as
PWA systems, which can be fully represented by DBM. DBM provide a simple and compu-
tationally advantageous representation of the MPL dynamics. Furthermore DBM are useful
in reachability analysis of MPL systems since they can used to represent reach and backward
reach sets. The main contribution of this thesis is to present a procedure to partition the state
space of an uMPL system into components that can be completely represented by DBM. This
has lead us to be able to present a procedure for computing the image and the inverse image
of a DBM w.r.t. each component of the partitioned uMPL system which is similar to the
procedure of computing the image and the inverse image of a DBM w.r.t. each component of
a PWA system generated by a MPL system. Consequently, most of the previous results on
reachability analysis of MPL systems could be extended to uMPL systems. The algorithms
proposed have the same worst-case complexity as the algorithms proposed in (ADZKIYA
et al., 2014b; ADZKIYA et al., 2014a; ADZKIYA et al., 2015), with the advantage of han-
dling a broader class of MPL systems. We shall note that, although the DBM-approach may
be computationally expensive, it yields the exact reach sets. Therefore, it can be used as a
benchmark to more conservatives and less expensive approaches.

In Chapter 6, we have presented an application of reachability analysis of uMPL
systems. The forward and backward reachability analysis were used to solve the conditional
reachability problem. Closely related to conditional reachability is the filtering problem, where
one aims to construct the the posterior Probability Density Function (PDF) of the states
based on all information available. The conditional reachability analysis corresponds to the
support calculation of the posterior PDF.

As future work we aim to use the conditional reachability analysis to develop efficient
filtering procedures for uMPL systems. Moreover, it seems viable the design of state-feedback
controllers for uMPL systems, based on the knowledge of the support of the posterior PDF
of the uMPL systems states.

118

Bibliography

ADZKIYA, D.; De Schutter, B.; ABATE, A. Computational techniques for reachability
analysis of max-plus-linear systems. Automatica, v. 53, n. 3, p. 293–302, 2015. 16, 17, 34,
36, 40, 41, 48, 49, 50, 51, 52, 54, 55, 77, 117

ADZKIYA, D.; SCHUTTER, B. De; ABATE, A. Backward reachability of autonomous
max-plus-linear systems. In: Proceedings of the 12th IFAC/IEEE Workshop on Discrete
Event Systems. Cachan, France: [s.n.], 2014. p. 117–122. 16, 17, 48, 54, 55, 77, 117

ADZKIYA, D.; SCHUTTER, B. De; ABATE, A. Forward reachability computation for
autonomous max-plus-linear systems. In: Proceedings of the 20th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2014).
Grenoble, France: [s.n.], 2014. p. 248–262. 15, 16, 17, 48, 51, 52, 53, 77, 117

ADZKIYA, D.; ZHANG, Y.; ABATE, A. Verisimpl 2: An open-source software for the
verification of max-plus-linear systems. Discrete Events Dynamical Systems, 2015. 42

ALLAMIGEON, X.; GAUBERT, S.; GOUBAULT, E. Inferring min and max invariants
using max-plus polyhedra. In: Proceedings of the 15th International Symposium on
Static Analysis. Berlin, Heidelberg: Springer-Verlag, 2008. (SAS’08), p. 189–204. ISBN
978-3-540-69163-1. 15

AMARI, S.; DEMONGODIN, I.; LOISEAU, J. J.; MARTINEZ, C. Max-plus control design
for temporal constraints meeting in timed event graphs. IEEE Transactions on Automatic
Control, v. 57, n. 2, p. 462–467, Feb 2012. ISSN 0018-9286. 14

ARULAMPALAM, M.; MASKELL, S.; GORDON, N.; CLAPP, T. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE
Transactions on, v. 50, n. 2, p. 174 –188, feb 2002. ISSN 1053-587X. 17, 111

BACCELLI, F.; COHEN, G.; OLSDER, G.; QUADRAT, J. Synchronization and Linearity
: An Algebra for Discrete Event Systems. [S.l.]: Wiley and Sons, 1992. 14, 18, 19, 20, 21, 23,
24, 25, 26, 27

BEMPORAD, A.; FERRARI-TRECATE, G.; MORARI, M. Observability and
controllability of piecewise affine and hybrid systems. IEEE Transactions on Automatic
Control, v. 45, n. 10, p. 1864–1876, Oct 2000. ISSN 0018-9286. 36

BRUNSCH, T.; HARDOUIN, L.; MAIA, C. A.; RAISCH, J. Duality and interval analysis
over idempotent semirings. Linear Algebra and its Applications, v. 437, p. 2436–2454, 2012.
ISSN 0024-3795. 63, 64

CÂNDIDO, R. M. F.; HARDOUIN, L.; LHOMMEAU, M.; MENDES, R. S. Conditional
reachability of uncertain max plus linear systems. Automatica, 2017, Under Review to
Automatica. 17

Bibliography 119

CÂNDIDO, R. M. F.; MENDES, R. S. Filtro de partículas para sistemas max plus com
densidade de importância Ótima. In: Anais do XX Congresso Brasileiro de Automática.
[S.l.: s.n.], 2014. p. 3413–3420. 17, 111

CÂNDIDO, R. M. F.; MENDES, R. S.; HARDOUIN, L.; MAIA, C. Particle filter for
max-plus systems. European Control Conference, ECC 2013, Zurich, 2013. 17, 111

CASSANDRAS, C.; LAFORTUNE, S. Introduction to Discrete Event Systems. [S.l.]:
Springer US, 2009. (SpringerLink Engineering). ISBN 9780387333328. 14

CASSANDRAS, C. G.; LAFORTUNE, S.; OLSDER, G. J. Introduction to the modelling,
control and optimization of discrete event systems. In: . Trends in Control: A
European Perspective. London: Springer London, 1995. p. 217–291. ISBN 978-1-4471-3061-1.
24

CHUA, L. O.; DENG, A. C. Canonical piecewise-linear representation. IEEE Transactions
on Circuits and Systems, v. 35, n. 1, p. 101–111, Jan 1988. ISSN 0098-4094. 36

COHEN, G.; GAUBERT, S.; QUADRAT, J.-P. Max-plus algebra and system theory: Where
we are and where to go now. Annual Reviews in Control, v. 23, p. 207 – 219, 1999. ISSN
1367-5788. 14

COHEN, G.; MOLLER, P.; QUADRAT, J.-P.; VIOT, M. Algebraic tools for the performance
evaluation of discrete event systems. Proceedings of the IEEE, v. 77, n. 1, p. 39–85, 1989.
ISSN 0018-9219. 18, 20, 21, 22, 23

DILL, D. Timing assumptions and verification of finite-state concurrent systems. In:
SIFAKIS, J. (Ed.). Automatic Verification Methods for Finite State Systems. [S.l.]: Springer
Berlin Heidelberg, 1990, (Lecture Notes in Computer Science, v. 407). p. 197–212. ISBN
978-3-540-52148-8. 15, 29, 30, 31, 32, 34

DILORETO, M.; GAUBERT, S.; KATZ, R.; LOISEAU, J.-J. Duality between invariant
spaces for max-plus linear discrete event systems. SIAM Journal on Control and
Optimization, Society for Industrial and Applied Mathematics, v. 48, n. 8, p. 5606–5628,
dez. 2010. 15, 62

DOUCET, A.; GODSILL, S.; ANDRIEU, C. On sequential monte carlo sampling methods
for bayesain filtering. Statistics and Computing, Statistics and Computing, v. 10, 2000. 17,
111

DUBREIL, P.; DUBREIL-JACOTIN, M. L. Leçons d’Algèbre Moderne. 2. ed. Paris,France:
Dunod, 1964. 20

FLOYD, R. W. Algorithm 97: Shortest path. Communications of the ACM, ACM Press,
v. 5, n. 6, p. 345, 1962. 32

GAUBERT, S.; KATZ, R. Reachability and invariance problems in max-plus algebra. In:
Positive Systems, Proceedings of the First Multidisciplinary International Symposium on
Positive Systems: Theory and Applications (POSTA 2003), Rome, Italy. [S.l.: s.n.], 2003. p.
15–22. 15

Bibliography 120

GAUBERT, S.; PLUS, M. Methods and applications of (max,+) linear algebra. In: .
STACS 97: 14th Annual Symposium on Theoretical Aspects of Computer Science Lübeck,
Germany February 27–March 1, 1997 Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997. p. 261–282. ISBN 978-3-540-68342-1. 27

GAZARIK; MICHAEL, J.; KAMEN; EDWARD, W. Reachability and observability of
linear systems over max-plus. Kybernetika, Institute of Information Theory and Automation
AS CR, v. 35, n. 1, p. [2]–12, 1999. 15

GNING, A.; MIHAYLOVA, L.; ABDALLAH, F.; RISTIC, B. Particle filtering combined
with interval methods for tracking applications. In: MALLICK, M.; KRISHNAMURTHY,
V.; VO, B.-N. (Ed.). Integrated Tracking, Classification, and Sensor Management. [S.l.]:
John Wiley and Sons, 2012. p. 43–74. 63

GONÇALVES, V. M.; MAIA, C. A.; HARDOUIN, L. On the steady-state control of timed
event graphs with firing date constraints. IEEE Transactions on Automatic Control, v. 61,
n. 8, p. 2187–2202, Aug 2016. ISSN 0018-9286. 14

GORDON, N.; SALMOND, D.; SMITH, A. Novel approach to nonlinear/non-gaussian
bayesian state estimation. Radar and Signal Processing, IEE Proceedings F, v. 140, n. 2, p.
107 –113, apr 1993. ISSN 0956-375X. 17, 110

HARDOUIN, L.; COTTENCEAU, B.; LHOMMEAU, M.; CORRONC, E. L. Interval
systems over idempotent semiring. Linear Algebra and its Applications, v. 431, n. 5-7, p.
855–862, ago. 2009. <doi:10.1016/j.LAA.2009.03.039>. 63, 64

HARDOUIN, L.; MAIA, C. A.; COTTENCEAU, B.; LHOMMEAU, M. Max-plus Linear
Observer: Application to manufacturing Systems. In: , WODES’10. [S.l.: s.n.], 2010. p.
171–176. <istia.univ-angers.fr/~hardouin/Observer.html>. 15, 62

HEEMELS, W. P. M. H.; De Schutter, B.; BEMPORAD, A. Equivalence of hybrid
dynamical models. AUTOMATICA, v. 37, p. 1085–1091, 2001. 16, 36

HEIDERGOTT, B.; OLSDER, G.; WOUDE, J. van der. Max Plus at Work: Modeling and
Analysis of Synchronized Systems : a Course on Max-Plus Algebra and Its Applications.
[S.l.]: Princeton University Press, 2006. (Max Plus at work: modeling and analysis of
synchronized systems : a course on Max-Plus algebra and its applications, v. 13). ISBN
9780691117638. 14, 27, 28, 53

HEIDERGOTT, B. F. Max-Plus Linear Stochastic Systems and Perturbation Analysis
(The International Series on Discrete Event Dynamic Systems). Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006. ISBN 0387352066. 15, 62

JOHANSSON, M.; RANTZER, A. Computation of piecewise quadratic lyapunov functions
for hybrid systems. In: Control Conference (ECC), 1997 European. [S.l.: s.n.], 1997. p.
2005–2010. 36

JULIAN, P. The complete canonical piecewise-linear representation: functional form
for minimal degenerate intersections. IEEE Transactions on Circuits and Systems I:

doi:10.1016/j.LAA.2009.03.039
istia.univ-angers.fr/~hardouin/Observer.html

Bibliography 121

Fundamental Theory and Applications, v. 50, n. 3, p. 387–396, Mar 2003. ISSN 1057-7122.
36

KATZ, R. D. Max-plus (a,b)-invariant spaces and control of timed discrete-event systems.
IEEE Transactions on Automatic Control, v. 52, n. 2, p. 229–241, Feb 2007. ISSN 0018-9286.
14

KEVENAAR, T. A. M.; LEENAERTS, D. M. W. A comparison of piecewise-linear model
descriptions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, v. 39, n. 12, p. 996–1004, Dec 1992. ISSN 1057-7122. 36

LHOMMEAU, M.; HARDOUIN, L.; COTTENCEAU, B. Optimal control for (max,
+)-linear systems in the presence of disturbances. In: Positive Systems, Proceedings of
the First Multidisciplinary International Symposium on Positive Systems: Theory and
Applications (POSTA 2003), Rome, Italy, August 28-30, 2003. [S.l.: s.n.], 2003. p. 47–54. 14

LHOMMEAU, M.; HARDOUIN, L.; FERRIER, J.-L.; OUERGHI, I. Interval Analysis in
Dioid : Application to Robust Open Loop Control for Timed Event Graphs. In: and. seville:
[s.n.], 2005. p. 7744–7749. <doi:10.1109/CDC.2005.1583413>. 14, 63, 64

LITVINOV, G. L.; SOBOLEVSKĪI, A. N. Idempotent interval analysis and optimization
problems. Reliable Computing, v. 7, n. 5, p. 353–377, 2001. ISSN 1573-1340. 24, 63

LU, Q.; MADSEN, M.; MILATA, M.; RAVN, S.; FAHRENBERG, U.; LARSEN, K. G.
Reachability analysis for timed automata using max-plus algebra. The Journal of Logic and
Algebraic Programming, v. 81, n. 3, p. 298 – 313, 2012. ISSN 1567-8326. 15

MAIA, C. A.; HARDOUIN, L.; SANTOS-MENDES, R.; LOISEAU, J. J. A super-eigenvector
approach to control constrained max-plus linear systems. In: 2011 50th IEEE Conference
on Decision and Control and European Control Conference. [S.l.: s.n.], 2011. p. 1136–1141.
ISSN 0191-2216. 14

MITCHELL, I. M. Comparing forward and backward reachability as tools for safety
analysis. In: . Hybrid Systems: Computation and Control: 10th International
Workshop, HSCC 2007, Pisa, Italy, April 3-5, 2007. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007. p. 428–443. ISBN 978-3-540-71493-4. Disponível em:
<http://dx.doi.org/10.1007/978-3-540-71493-4_34>. 15

MOORE, R. E.; BIERBAUM, F. Methods and Applications of Interval Analysis (SIAM
Studies in Applied and Numerical Mathematics) (Siam Studies in Applied Mathematics, 2.).
[S.l.]: Soc for Industrial & Applied Math, 1979. ISBN 0898711614. 63, 64

NECOARA, I.; De Schutter, B.; van den Boom, T.; HELLENDOORN, H. Robust control
of constrained max-plus-linear systems. Int. J. of Robust and Nonlinear Control, v. 19, n. 2,
p. 218–242, jan. 2009. 14

OLSDER, G. J.; RESING, J. A. C.; VRIES, R. E. D.; KEANE, M. S.; HOOGHIEMSTRA,
G. Discrete event systems with stochastic processing times. IEEE Transactions on Automatic
Control, v. 35, n. 3, p. 299–302, Mar 1990. ISSN 0018-9286. 15, 62

doi:10.1109/CDC.2005.1583413
http://dx.doi.org/10.1007/978-3-540-71493-4_34

Bibliography 122

QUADRAT, J. Semi-anillos en matematica aplicada. [S.l.]: Universidad Nacional de Rosario,
Facultad de Ciencias Exactas, Ingeniería y Agrimensura, 1999. v. 28. (Cuadernos del
Instituto de Matemática “Beppo Levi”, v. 28). 19

RESING, J.; VRIES, R. de; HOOGHIEMSTRA, G.; KEANE, M.; OLSDER, G. Asymptotic
behavior of random discrete event systems. Stochastic Processes and their Applications,
v. 36, n. 2, p. 195 – 216, 1990. ISSN 0304-4149. 62

RIDI, L.; TORRINI, J.; VICARIO, E. Developing a scheduler with difference-bound
matrices and the floyd-warshall algorithm. IEEE Software, v. 29, n. 1, p. 76–83, 2012. 31

SILVA, D. F.; MENDES, R. S.; HARDOUIN, L.; MAIA, C. A.; COTTENCEAU, B.
Filtragem estocástica aplicada a sistemas max-plus lineares. In: Anais do X Simpósio
Brasileiro de Automação Inteligente. [S.l.: s.n.], 2011. p. 1388–1393. 17, 111

SONTAG, E. D. Nonlinear regulation: The piecewise linear approach. Automatic Control,
IEEE Transactions on, v. 26, n. 2, p. 346–358, Apr 1981. ISSN 0018-9286. 36

van den Boom, T.; De Schutter, B. Model predictive control for perturbed max-plus-linear
systems. Systems & Control Letters, v. 45, n. 1, p. 21–33, jan. 2002. 15, 62

VANDENBERGHE, L.; MOOR, B. de; VANDEWALLE, J. The generalized linear
complementarity problem applied to the complete analysis of resistive piecewise-linear
circuits. In: Circuits and Systems, 1989., IEEE International Symposium on. [S.l.: s.n.],
1989. p. 2155–2158 vol.3. 36

WEN, C.; MA, X. A canonical piecewise-linear representation theorem: Geometrical
structures determine representation capability. IEEE Transactions on Circuits and Systems
II: Express Briefs, v. 58, n. 12, p. 936–940, Dec 2011. ISSN 1549-7747. 36

Reachability analysis of uncertain max plus linear systems

Résumé

Les Systèmes à Evénements Discrets (SED) peuvent
être définis comme des systèmes dans lesquels les
variables d'état changent sous l'occurrence
d'évènements au fil du temps. Les SED mettant en jeu
des phénomènes de synchronisation peuvent être
modélisés par des équations linéaires dans les algèbres
de type (max,+). L'analyse d'atteignabilité est une
problématique majeure pour les systèmes dynamiques.
L'objectif est de calculer l'ensemble des états
atteignables d'un système dynamique pour toutes les
valeurs admissibles d'un ensemble d'états initiaux. Le
problème de l'analyse d'atteignabilité pour les systèmes
Max-Plus Linéaire (MPL) a été, proprement, résolu en
décomposant le système MPL en une combinaison de
systèmes affines par morceaux où les composantes
affines du système sont représentées par des matrices
de différences bornées (Difference Bound Matrix, DBM).
La contribution principale de cette thèse est de
présenter une procédure similaire pour résoudre le
problème de l'atteignabilité pour des
systèmes MPL incertains (uMPL), c'est-à-dire des
systèmes MPL soumis à des bruits bornés, des
perturbations et/ou des erreurs de modélisation. Tout
d'abord, nous présentons une procédure permettant
de partitionner l'espace d'état d'un système uMPL en
parties représentables par des DBM. Ensuite, nous
étendons l'analyse d'atteignabilité des
systèmes MPL aux systèmes uMPL. Enfin, les résultats
sur l'analyse d'atteignabilité sont mis en œuvre pour
résoudre le problème d'atteignabilité conditionnelle, qui
est étroitement lié au calcul du support de la densité de
probabilité impliquée dans le problème
de filtrage stochastique.

Mots clés
Systèmes Max-Plus linéaires, Algèbre Max-Plus,
Analyse d'atteignabilité, Matrices de différences
bornées, condition d'atteignabilité conditionnelle,
Théorie de la résiduation, , Graphes d'événements
temporisés, Systèmes Affines par Morceaux

Abstract

Discrete Event Dynamic Systems (DEDS) are discrete-
state systems whose dynamics are entirely driven by
the occurrence of asynchronous events over time.
Linear equations in the max-plus algebra can be used to
describe DEDS subjected to synchronization and time
delay phenomena. The reachability analysis concerns
the computation of all states that can be reached by a
dynamical system from an initial set of states. The
reachability analysis problem of Max Plus Linear (MPL)
systems has been properly solved by characterizing the
MPL systems as a combination of Piece-Wise Affine
(PWA) systems and then representing each component
of the PWA system as Difference-Bound Matrices
(DBM). The main contribution of this thesis is to present
a similar procedure to solve the reachability analysis
problem of MPL systems subjected to bounded noise,
disturbances and/or modeling errors, called uncertain
MPL (uMPL) systems. First, we present a procedure to
partition the state space of an uMPL system into
components that can be completely represented by
DBM. Then we extend the reachability analysis of MPL
systems to uMPL systems. Moreover, the results on
reachability analysis of uMPL systems are used to solve
the conditional reachability problem, which is closely
related to the support calculation of the probability
density function involved in the stochastic filtering
problem.

Key Words

Reachability Analysis; Conditional Reachability
Analysis; Max Plus Linear Systems; Piece-Wise Affine
Systems; Difference-Bound Matrices.

 L’Université Bretagne Loire

Analyse d’atteignabilité de systèmes max-plus incertains

Renato Markele FERREIRA CÂNDIDO

	thesesFERREIRA.pdf
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Lista de Acrônimos e Abreviações
	Contents
	Introduction
	Preliminaries
	Idempotent Semirings
	Linear Equations in Complete Dioids
	Max-Plus Linear Systems
	Difference Bounds Matrix
	Canonical Form Representation and Checking for Emptiness
	Orthogonal Projection and Cartesian Product of DBM

	Piece-Wise Affine Systems
	DBM Representation of PWA Systems

	Reachability Analysis of MPL Systems
	Forward Reachability Analysis
	Forward Reachability Analysis of Autonomous MPL systems
	Forward Reachability Analysis of Nonautonomous MPL systems

	Backward Reachability Analysis
	Backward Reachability Analysis of Autonomous MPL systems
	Backward Reachability Analysis of Nonautonomous MPL systems

	Uncertain Max-Plus Linear Systems
	Interval Analysis
	Partitioned Uncertain MPL systems
	DBM Representation of Partitioned uMPL systems

	Reachability Analysis of uMPL systems
	Forward Reachability Analysis
	Forward Reachability Analysis of Autonomous uMPL systems
	Forward Reachability Analysis of Nonautonomous uMPL systems

	Backward Reachability Analysis
	Backward Reachability Analysis of Autonomous uMPL systems
	Backward Reachability Analysis of Nonautonomous uMPL systems

	Image and inverse image of a Point
	Image of a Point
	Inverse Image of a Point

	Application: Conditional Reachability Analysis of uMPL Systems
	The Conditional Reachability Problem
	The Solution

	Conclusion
	Bibliography

