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Chapter 1

Introduction

The only way of discovering the limits of the

possible is to venture a little way past them into

the impossible.

— Arthur C. Clarke, Profiles of the Future:

An Enquiry into the Limits of the Possible

This chapter follows the structure of the Tshwane University of Technol-

ogy’s theses. It is an introductory chapter that lays out the background of the

research field, states the research problem and objective, and summarises the

contribution brought by this work to the research field.

1.1 Background

Brain-computer interfaces (BCI) also called brain machine interfaces (BMI) are

devices that translates measured brain activity into tangible actions, allowing

humans and apes to interact with the physical environment without using their

muscular system. In the last two decades, interest in brain-computer inter-

faces has tremendously grown, with a number of research laboratories working

on the topic. Since the Brain-Computer Interface Project [Vidal, 1973], joint

effort from researchers in electronics, neuroscience, electrical engineering, sig-

nal processing, and machine learning – to name but a few, has promoted the

use of BCI in different applications such as neurofeedback, entertainment, and

assistance. Better understanding, improved measurement and processing of

electroencephalograms (EEG) are at the centre of the growth of non-invasive
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EEG based BCI. These interfaces have brought a complete paradigm shift to as-

sistive technologies. In fact, unlike traditional human machine interfaces, BCI

do not rely on motor abilities. Bypassing the neuromuscular pathways, BCI

constitutes a golden opportunity for people with limited neuromuscular abili-

ties or serious brain injuries. Brain-computer interfaces can be used for control

or communication in replacement of traditional assistive devices [Wolpaw et al.,

2002], or for improved human-machine interaction as a passive user feedback to

the machine [Zander and Kothe, 2011].

BCI systems rely on neurological phenomena that can be measured in the

brain signal – in response to a stimulus or a mental task, then quantified

and interpreted using signal processing and machine learning techniques. Cur-

rently, the most used phenomena are the Steady State Visual Evoked Potential

(SSVEP), Motor Imagery (MI) and P300 event-related potential. They respec-

tively define three types of BCIs, each with limitations and advantages that

can be exploited to achieve reliable brain-computer communication. In each

BCI type, an appropriate experimental protocol is designed to stimulate the

neurological response.

Although there are nowadays various techniques used to measure neuronal

electrical activities in BCI (e.g. electrocorticography (ECoG), spikes and lo-

cal field potentials (LFP), magnetoencephalography (MEG), etc.), EEG is still

the main technique in BCI research. Despite its vulnerability to noise and low

spatial resolution, EEG is appreciated over other techniques for its high tempo-

ral and spectral resolutions, its affordable, mobile and non-invasive acquisition

equipment. Various electrodes types, configurations, and mounting are being

proposed to improve the quality of recorded EEG, improve comfort, and reduce

the setup time [Looney et al., 2012; Badcock et al., 2013].

Advances have been made in the signal processing and machine learning to

extract the signal of interest from the ongoing brain activity and noise recorded

in EEG. Particularly spatial filters are reported to successfully extract the signal

of interest related to the BCI task. They have been used to achieve the most

successful performance in various BCI types [Ang et al., 2012; Rivet et al.,

2009; Spüler et al., 2012; Kalunga et al., 2013; Nakanishi et al., 2014]. Spatial

patterns learned in filters are well captured by the covariance matrices of the
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mutlichannel EEG signal, which are key components in the computation of

spatial filters. Once a spatial filter has been applied, a standard classification

algorithm (e.g. LDA, SVM) can be used.

Both spatial filter and classifier parameters are optimised offline using a

training sample of recorded EEG data. A bias-variance threshold can be achieved

through a cross-validation process. To use a BCI system, depending on the BCI

type, a user might be required to go through a training where he will be trained

to control his brain signals (i.e. elicit appropriate phenomena). The user is

also required to record multiple EEG trials to constitute a training sample for

the machine learning algorithm. The training sample should be large enough

to avoid the problems of overfitting and signal components should be carefully

selected in order to alleviate the curse of dimensionality to which BCI is prone

due to the high dimensional feature space of multichannel EEG data.

Initially designed for clinical as well as rehabilitative and assistive purposes,

brain computer interfaces have gained more grounds with applications to neu-

rofeedback, navigation, training and education, gaming and entertainment, etc.

[Milln and Carmena, 2010; Van Erp et al., 2012; Lotte et al., 2015; Abdulkader

et al., 2015; Mensia, 2016; melomind, 2016].

1.2 Research Problem

Despite the opportunities seen in BCI and the advances made in BCI research,

particularly in brain signal acquisition techniques, signal processing and ma-

chine learning approaches, there have been only a few applications that have

done well in the market [Mensia, 2016; melomind, 2016; g.Tec, 2012]. The tech-

nology has not matured enough for a broad usage by the public in delicate

applications. There is a number of limitations that should be overcome before

BCI applications could be taken outside laboratories. In the current work some

of these problems are addressed.

Problem 1: User’s Physical Specificity

Current BCI systems are built around their potential to bypass the neuromus-

cular system. This perspective results in interfaces that are the sole remedy for
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completely locked-in patients as they cannot use any traditional assistive de-

vices (i.e. muscle dependent). In this approach, all the effort is turned toward

the BCI system and its capacity to classify users intentions. No much attention

is paid to the specificity of the user. Problems with this approach emerge as

users adapt differently to BCI and express different needs. They can be depicted

in three facts. Fist, the problem of BCI inefficiency (or illiteracy). There is a

reported 15 to 30% of people who cannot use brain computer interface [Allison

and Neuper, 2010a]. An important fact, however, is that while they show illiter-

acy with one BCI type (e.g. SSVEP), they can still be efficient in using another

type of BCI (e.g. motor imagery). Secondly, the locked-in patients constitute

a minority of potential BCI users. For rehabilitation and assistive applications,

other than locked-in patients, the majority of people with motor disabilities or

severe brain injuries retain different residual motor skills. Therefore the extend

to which they rely on BCI command might differ. Lastly, there is a high cogni-

tive load that accompanies the command of BCI interface, and can affect users

differently. These facts show that BCI should not be designed as a disruptive

unique solution for all users. There is a need to adapt to each user’s special

skills and needs.

Problem 2: Robustness of EEG Representation and Ma-
chine Learning

The main limitations in EEG based BCI are related to signal quality of EEG,

namely the poor spatial resolution of EEG and its vulnerability to artefacts.

To avoid the influence of noise in the EEG, experiments are conducted in labo-

ratories where the ambient noise is controlled, and tight experimental settings

are used to restrict users’ movements and avoid muscular noise. Environmental

and muscular noise are not the only artefacts; ongoing brain activities that are

not related to the neurological phenomenon used in the BCI task also reduce the

signal-to-noise ratio. To alleviate these challenges, spatial filters are commonly

used to reconstruct the most informative sources and separate signal from arte-

facts. However, spatial filters are fitted to the training data and the artefact

therein. They perform well as long as the conditions in which the training data
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were recorded are kept. In reality however, variations in EEG structure are ob-

served along a recording due both to internal and external factors. Internally,

there are evidences of intra-subject variabilities due to the changing state of

mind and fatigue in users. Externally, environmental noise cannot be controlled

out of laboratories. In such conditions, it becomes crucial to have a feature

representation and learning algorithms that are robust to changing conditions

and artefacts.

Problem 3: Scarcity of Training Samples

The algorithms used in the machine learning pipeline (i.e. spatial filters and

classifiers) require sufficient training data to achieve a sound statistical learning.

The sample of EEG to be classified should be drawn from the same distribution

as the training sample used for the optimisation of machine learning parame-

ters. This is guaranteed by using training and testing samples recorded from

a single subject in similar experimental conditions. The training sample size

is proportional to the dimension of the EEG feature space which is usually

high due to multichannel recording, high temporal and spectral resolutions of

recorded EEG. In BCI, it is difficult to constitute such large training samples

for all subjects, as it requires a rigorous and long recording of EEG trials. It

is a burden for BCI users and it is not always possible to record a sufficient

and well labelled training sample due to different reasons (e.g. fatigue, lack

of concentration). For user convenience, such a process should be kept short,

or better, not required at all. When the training sample is not large enough,

statistical learning is not possible, constrained by the curse of dimensionality,

or over-fitting will be inevitable.

1.3 Research Objectives and Contributions

1.3.1 Objectives

Considering the problems that will be addressed, the objective of this research

is to propose ways of achieving a brain-computer interface that is adapted to

the needs and environment of the user, through leverage of user’s special skills

and robust machine learning.
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1.3.2 Research Contributions

This research contributes to the maturation of brain computer interfaces on two

levels: BCI methodology and machine learning.

On the level of BCI methodology, a new BCI approach in the context of

rehabilitation and assistive technology that takes into account users’ specificities

is proposed. It consists of a hybrid BCI system where cerebral commands

are combined with muscular commands to achieve an adapted human machine

interaction. The muscular interface is designed to fit user’s residual motor

abilities, while the BCI type is selected based on the user’s experience. The

concept is demonstrated for patients with degenerative diseases that affect large

muscles but spare the wrists and hands motor capacities. For such patients, an

adapted 3D touchless interface is used for continuous control and a BCI based

on steady-state visually evoked potential (SSVEP) – i.e a synchronisation of

the brain electrical wave at the frequency of an oscillating visual stimulus, is

used for discrete control (e.g. triggering specific actions). While the touchless

interface allows the subject to use their residual motor abilities, the SSVEP-

based BCI with state-of-the-art signal processing and machine learning [Kalunga

et al., 2013] is able to provide timely intervention for a better control in a

multimodal setup. Experimentally, the concept is evaluated for navigation in a

virtual environment and in the control of a robotic arm exoskeleton designed to

compensate for muscular dystrophy in the shoulder and elbow muscles occurring

in our subjects of interest [Kalunga et al., 2014].

On the machine learning aspect, after establishing the key role played by

covariance matrices of multivariate time series in statistical learning, the study

gives an evaluation of different covariance matrix estimation techniques in terms

of quality of estimation and impact on the classification accuracy yield by the

learning algorithm. Instead of going through estimates of covariance matrices to

compute spatial filters, the current study proposes a new approach that operates

directly on the space on covariance matrices (i.e. a Riemannian manifold)

and classifies them based on their distances from class centres to achieve a

learning that is less prone to overfitting and robust to environmental changes

and noise. It demonstrates that in this framework, it is indeed important to use

Riemannian metrics as they describe the geometry of covariance matrices better
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than the Euclidean ones [Kalunga et al., 2015c]. Metrics that are invariant

to affine transformations are used to measure the distance between covariance

matrices.

An online implementation of the described approach is subsequently pro-

posed for classification in SSVEP based BCI. The algorithm is capable of iden-

tifying epochs where the user is focusing on SSVEP stimulus from epochs where

the user is not, and eventually classify SSVEP epochs with state-of-the-art ac-

curacy [Kalunga et al., 2016].

Finally the last part of the work presented in this PhD contributes to al-

leviating the problem of insufficient training sample in machine learning for

BCI. It contributes with a data augmentation technique where, given a small

training sample, tools from Riemannian geometry are used to generate artificial

data within the convex hull of the original sample, thus enlarging the training

sample [Kalunga et al., 2015a]. It also explores possibilities of transfer learning

on covariance matrices such that training samples from previous BCI users are

used to train a classifier for a new BCI user.

1.4 Thesis Outline

The rest of this thesis is organised as follows: Chapter 2 presents the advances

in brain computer interfaces through a review of literature. It particularly

discusses the state-of-the art in neuroimaging, describing the techniques used

for brain signal measurement. The chapter also presents the main neurological

phenomena captured in brain signals for BCI purposes.

In Chapter 3, signal processing methods as well as machine leaning ap-

proaches that have been commonly used in various BCI types are presented.

The newly introduced Riemannian approach to machine learning is presented

in section 3.2. In section 3.3, new trends in BCI applications are presented.

Major advances in BCI being laid down, the BCI approach proposed in this

thesis is presented in section 3.4. Key choices and positions taken along the

research are explained.

Chapter 4 presents the first contribution of this PhD, i.e. the hybrid BCI,

its motivation and design. It presents the methods and techniques used in its

multiple modalities. The motor modality is described in section 4.3, and the BCI
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modality in section 4.4. Full description of experimental protocol for recording

of EEG data used in subsequent chapters are given here. The experimental

results are presented in section 4.6.

Chapter 5 presents the second contribution, the Riemannian framework used

for EEG representation and learning. It analyses methods of covariance matrix

estimation in section 5.2. The Riemannian classification framework is presented

in sections 5.3 and 5.4. An experimental validation of the proposed approach is

given in section 5.5.

Chapter 6 discusses perspectives of Riemannian approaches in BCI machine

learning. It presents a data augmentation technique in section 6.2, and a transfer

learning technique in section 6.3. They both use Riemannian tools to address

the problem of data insufficiency in BCI. Chapter 7 concludes the work with a

summary of contributions and future perspectives.
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Chapter 2

Neurobiological Aspects of
Brain-Computer Interfaces

Whenever you remove any fence, always pause

long enough to ask yourself, ‘Why was it put

there in the first place?’

— G.K. Chesterton

2.1 Introduction

Brain-computer interfaces also called brain-machine interfaces (BMI) are de-

vices that translates measured brain activity into tangible actions, allowing

humans and other animals to interact with the physical environment without

using their muscular system. From the 1980s this technology has received grow-

ing attention. Researchers from various fields including neurology, neuroscience,

computer science and electrical engineering have multiplied their effort to move

brain-computer interfaces from proof of concept to working prototypes.

Ideas of reading into the human brain were steered up for the first time in

1929 when Hans Berger [Berger, 1929] published his work on the recoding of

brain electrical activities, electroencephalograms (EEG). For decades that follow

this breakthrough, EEG was used for the diagnosis of neurological diseases and

the study of brain functions [Wolpaw et al., 2002; Daly and Wolpaw, 2008].

A further step was taken when EEG was explored for therapeutic possibili-

ties. People could learn to intentionally control their EEG to limit frequency
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of seizures in epilepsy, to treat hyperactivity and other disorders [Daly and

Wolpaw, 2008].

Despite the ability of recording and analysing brain signal, no dive was taken

into deciphering brain signals for interaction purposes. The idea of reading

human thought from brain was contemplated more in fiction than in science.

Relying on brain signals to interact would require detecting human intention

from the recorded EEG that was not possible with the early understanding of

EEG and its quality. It was impossible to recognise a brain activity induced

by a specific intention from the vast electrical activity of neurons. Moreover a

detection of intention would require a real-time analysis of EEG which was not

foreseeable with the technology at hand.

The first attempt of using measured brain signals as carriers of informa-

tion in man-computer communication or for the purpose of controlling external

devices came in the 1970s, with the Brain-Computer Interface project [Vidal,

1973]. The project benefited from the advances made in EEG studies providing

the evidence that beside the continuous ongoing activity, EEG waves contained

time-locked disturbance in response to brief stimuli, and could also be altered

by conscious decision [Donchin, 1969; Vidal, 1973]. With very limited compu-

tational power at the time, the project constituted a proof of concept that the

authors believed would be achievable in the future given considerable advances

in neurophysiology, in signal analysis techniques, and in computer science.

After the Brain-Computer Interface project, there were four factors that

triggered advances toward brain-computer interface [Wolpaw et al., 2002]: the

first factor is the advances made in neurophysiology particularly the progress in

EEG measurement techniques, the understanding of how EEG was affected by

conscious as well as unconscious experience, and better understanding of brain

functions. The second factor is the development in computing technology and

computational power allowing complex and online treatment of EEG. The third

factor is the increasing social need of assisting people with severe motor disabil-

ities especially locked-in people who could not use tradition assistive devices

that rely on muscular functions. The final factor is the finding that EEG could

be used to affect activity-dependent plasticity and contribute to the recovery of

motor functions.
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Indeed, BCI can be used as a replacement for deficient muscular functions

in people with severe motor disabilities who cannot use conventional assistive

methods that depend on voluntary muscle control [Wolpaw et al., 2002]. The

targeted population include people suffering from neuromuscular disorders such

as ALS, severe cerebral palsy, brainstem strokes, severe muscular dystrophy

or peripheral neuropathy, and other acute disorders causing extensive paral-

ysis [Daly and Wolpaw, 2008]. BCI can also be useful for the rehabilitation

of functions that have been lost after accidents that damage the nervous sys-

tem [Silvoni et al., 2011].

Brain-computer interfaces translate measured brain signals into tangible ac-

tions for a specific application. The functionality of such a system requires at

least 3 components: a signal acquisition component that measures brain activ-

ity, a signal processing component that decipher the measured signal, and an

application interface where the deciphered brain activity is used as command.

Figure 2.1: A standard BCI system with signal acquisition, signal processing
and application components. The system provides feedback to the user.

In this chapter, signals used in BCI are presented, along with their measure-

ment techniques, as well as their underlying neurological phenomena.

2.2 Signal Acquisition

To measure brain activity, BCI relies on brain imaging techniques used in neuro-

physiology. The existing methods for brain imaging used in BCI can be grouped
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in three: electric signals, magnetic signals and hemodynamic signals. Electric

and magnetic signals are two sides of the same coin and can be grouped under

the term electromagnetic signals.

2.2.1 Local Field Potentials

The brain is made of billions1 of interacting neurons constituting a neural net-

work. A neuron is made of three major parts: a cell body, an axon, and

dendrites [Purves, 2008]. Each neuron can be connected up to thousands

other neurons. The connection between neurons is made at a junction called

synapse. These junctions are often between an axon of one neuron and dendrites

of the next neuron, and are referred to as axon-dendrite synaptic junctions

(various other connections exist, e.g. axon-axon, dendrite-dendrite, dendrite-

axon). The presynaptic neuron is passing information to the postsynaptic neu-

ron [Herculano-Houzel, 2009; Purves et al., 2001].

Figure 2.2: Neuron structure: showing main components of a neuron and its
axon-dendrite synaptic connection to a neighbouring neuron [Purves et al., 2001]

The information sent between two neurons is mediated by a transient modifi-

cation of voltage potential called action potential or spike. An activated neuron

fires an action potential that is sent through its synapses to its postsynaptic

partners. The excitatory and inhibitory postsynaptic potentials (EPSPs and

IPSPs) cause a flow of charged ions between point at different potentials within

and outside the neurons producing an electrical current, called Local Field Po-

tential (LFP). Inside the neuron, positive ions propagate from the subsynaptic

1The human brain contains about 85 billion neurons [Herculano-Houzel, 2012].
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Figure 2.4: A cut through cortical layers. Electric activities can be measured
from different layers. [Reproduced from Daly and Wolpaw, 2008]

low. It contains no depth information about the source. Moreover due to the

dipole-like propagation of the electric potential of the source, the maximum of

the distribution does not coincide with the source localisation [Proverbio and

Zani, 2003]. The volume conduction affects the potential field as different bio-

logical layers do not have the same electrical properties and are inhomogeneous.

The spatial resolution of EEG is affected by this, as the measured electrical field

travels through different layers of the skull. EEG can measure brain electrical

activities in spectral bands from 0 to 100 Hz. In BCI, it usually measures ac-

tivities of up to 40 Hz, i.e lower gamma band [Schalk and Leuthardt, 2011].

Activities in the upper gamma band, i.e. from 35 Hz to 100 Hz, have been

measured mostly in emotion analysis [Li and Lu, 2009; Müller et al., 1999].

Electrocorticography measures the same activity as EEG, but the elec-

trodes that measure electrocorticogram (ECoG) are placed directly on the ex-

posed surface of the cortex. For this reason it is also referred to as intracranial

electroencephalography (iEEG). EcoG were recorded in humans and animals

since the late 19th century [Caton, 1875]. Since then, ECoG has been used

more in animals due to the fact that the placement of electrodes requires a

skull surgery. The study of ECoG in humans is mostly done in epileptic sub-

jects who await surgery. ECoG electrodes are temporarily placed to monitor
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epileptic seizures and locate their focus zone [Ritaccio et al., 2012]. It is only

very recently that ECoG has been considered for BCI [Huggins et al., 1999;

Pfurtscheller et al., 2003]. The first BCI using ECoG in humans was done

by Leuthardt et al. [2004]. Most BCI research is done on epilepsy patients

and should coincide with the time ECoG electrodes are implanted for surgi-

cal purposes. This limit the number of ECoG-based BCI. There are few rare

cases where ECoG electrodes have been implanted exclusively for research pur-

poses [Wang et al., 2013; Sutter, 1992].

ECoG electrodes are usually in the form of electrodes array on a grid (Figure

2.5(b)) placed above (epidural) or below (subdural) the dura mater, i.e. the

tough layer between the skull and the cortex [Schalk and Leuthardt, 2011].

The location of electrodes array is determined by the clinical need in epilepsy

patients [Bundy et al., 2016]. For patients who have the ECoG electrodes im-

planted exclusively for research purposes, a fMRI is done prior to the placement

to determine the cortical zone of interest for the BCI task [Wang et al., 2013].

ECoG is recorded at rates higher than 1 kHz, giving it a very high time

resolution. The fact that the electrodes are placed directly on the surface of the

cortex gives ECoG higher spatial resolution (i.e. 1.25 mm for subdural record-

ing and 1.4 mm for epidural recording [Schalk and Leuthardt, 2011]), wider

frequency bandwidth (0 to 500 Hz), and higher amplitude (i.e. 50 to 100 µV )

than EEG [Schalk and Leuthardt, 2011; Leuthardt et al., 2004; Spüler et al.,

2014]. With a wider bandwidth, ECoG can capture neural electrical activity

in the γ-band – which ranges from 30 Hz up, with higher precision than EEG.

ECoG BCI research has shown that activity in the γ-band provide deeper infor-

mation about movement and movement imagery such as direction and velocity

both 2-dimensional and 3-dimensional [Bundy et al., 2016; Leuthardt et al.,

2004].

Spikes and Local Field Potentials are intracortical measures of neural

activities. The purpose is to measure the activity of a single neuron via its

spikes, or the sum of activities of a small population of neurons local to a region

– the local field potentials. Recording of neuronal spikes done approximately 50

years ago has shown that movement intent modulates spike timing from neurons

of the motor cortex.
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2.2.3 Magnetic Signal Acquisition

Electric and magnetic signals are two side of the same coin. They are both

created by the same synaptic exchange between neurons 2.2.1. The magnetic

effect of electric currents in neurons generates a magnetic field that propagates

orthogonally to the flow of current [Gazzaniga et al., 2013; Proverbio and Zani,

2003].

Magnetoencephalography (MEG) is the measure of neurons magnetic

field on the scalp. It is a neuroimaging technique used in neuroscience and

clinical applications. It is very related to EEG as both are measured on the

scalp. Both magnetic and electric fields propagate through different cranial

layers before being measured on the scalp. Nonetheless MEG has an advantage

over EEG; the magnetic field is not as influenced by the medium as is the

electrical field. A drawback in measuring the magnetic activity of brain is that

it is 8 orders of magnitude bellow the earth’s magnetic field (in the order of

10−15 Tesla). Due to this, it cannot be measured in “open air”. Electromagnetic

isolation chambers are needed, making the MEG acquisition equipment bulky

and expensive. MEG sensors are usually made of a magnetometer and two

orthogonal planar gradiometers. Ranging from 64 to more than 300, MEG

sensors are immersed in liquid helium and attached on a concave bottom of a

container, where they typically lie at a distance of 3 - 4 cm from the cortex. The

weak extracranial magnetic fields are amplified and transformed into a voltage

[Paetau, 2002].

MEG has similar temporal resolution to EEG, but has a higher spatial, and

can better capture modulations in brain signals, thus improving control and

information transfer rates in BCI. EEG and MEG can also be co-recorded in

BCI tasks and used in to improve BCI performances [Mellinger et al., 2007;

Henson et al., 2011; Foldes et al., 2015].

2.2.4 Hemodynamic Techniques

While EEG, ECoG, LFP, spikes, and MEG measure the direct electromagnetic

activities of neurons, there are other neuroimaging techniques that measure the

metabolic effect of neurons electrical activities. In fact there is a relationship,

i.e. neurovascular coupling, between neuronal activity and subsequent regional

17



(a) (b)

Figure 2.6: Elekta MEG acquisition system. (a) A MEG shield chamber for
electromagnetic isolation (b) MEG sensors configuration. Each sensor loca-
tion is equipped with three sensors: a magnetometer that measures normal
field component, and two orthogonal planar gradiometers that measure gradi-
ent components [Team, 2016].

blood volume and flow. This coupling is explained by the fact that firing neurons

involved in a neurological task requires more energy and oxygen, resulting in an

increase of blood flow and oxygenation. The active neurons in the region do not

use the totality of the provided oxygen. This results in a change in the ratio

between oxygenated (oxyHb) and deoxygenated (deoxyHb) hemoglobin. This

metabolic response to neuron activities is called the hemodynamic response and

can be measured using different techniques such as Magnetic Resonance Imag-

ing (MRI), Functional Magnetic Resonance Imaging (fMRI), Positron Emission

Tomography (PET), Near Infrared Spectroscopy (NIRS), and Functional Near

Infrared Spectroscopy (fNIRS). fMRI, NIRS, and fNIRS have a possibility of

real time recording required for brain-computer interfaces.

fMRI or Blood-oxygen-level-dependent (BOLD) fMRI uses magnetic reso-

nance to measure the concentration of oxyHb and deoxyHb making use of the

difference in their magnetic properties [Matthews and Jezzard, 2004; Gosseries

et al., 2008; Huettel et al., 2004; Sitaram et al., 2008]. fMRI consist of multiple
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scans of MRI to capture brain activity. A transmitter coil covering the head is

needed to generate a magnetic field responsible for the resonance and relaxation

in oxyHb and deocyHb. fMRI have high spatial resolution (i.e few millimetres)

and low temporal resolution (i.e. few seconds) compared to electromagnetic

brain signals. fMRI-BCI capitalises on the ability of fMRI to locate brain ac-

tivity to the millimetre, to characterise different spatial distribution of brain

functions as BCI commands [Sitaram et al., 2007; Yoo et al., 2004]. Though

fMRI-BCI can achieve high classification accuracy, they are held back by the

low temporal resolution that limit the speed of MRI scans and the informa-

tion transfer rate of the interface. Furthermore, the size and setup of fMRI

acquisition equipment limit the mobility of users.

NIRS and fNIRS are recent hemodynamic techniques introduced in the late

1980s. They measure the intensity of light propagated through brain tissues.

Since the concentrations of oxyHb and deoxyHb in brain tissues are indicators of

neural activity, f/NIRS use the relationship between transmitted light and the

concentration of the medium (i.e chromophores such as oxyHb and deoxyHb)

to calculate these concentrations by shining near-infrared light on the head and

measuring the intensity of the exiting light as shown in Figure 2.7.

Figure 2.7: Trajectory of near-infrared light in the human brain. [Reproduced
from Gervain et al., 2011].

f/NIRS has a good spatial resolution (few millimetres), better compared to

electromagnetic signals measured on the scalp (i.e. EEG and MEG), but lower

than fMRI. The acquisition equipment is lighter, easy to use, and enhances

mobility of the subject. NIRS is tolerant to movement whereas other signals’

recording techniques either does not allow user movement (e.g. fMRI, MEG)

19



or the signal quality is distorted by movement (e.g. EEG). As with fMRI-

BCI, f/NIRS-BCI also relies on the ability to separate brain function based on

their spatial distribution. Although the spatial resolution of f/NIRS is lower

than the resolution of fMRI, f/NIRS-BCIs are easier to use than fMRI-BCIs.

They have good classification accuracy, but are still slower than BCI that use

electromagnetic signals. The BCI tasks are also limited to brain functions that

can be measured close to the scalp. In fact f/NIRS cannot measure deep brain

activity, because of light penetration which is limited to 15 mm and 5 mm into

the cortex, for infants and adults respectively.

2.2.5 Discussion

Several neuroimaging techniques have the potential of being used in BCI. Each

has characteristics that can be used to successfully classify brain functions.

One requirement that all should meet to be considered as an input signal in

BCI applications is the ability of near real time recording/scanning.

Neuroimaging techniques such as fMRI and MEG limit the mobility of the

user and limit brain-computer interface to few applications. Moreover fMRI is

not real time. Despite their good spatial resolution and temporal resolution

(for MEG), they are not adapted for daily life interaction. f/NIRS is a good

trade-off between user mobility and spatial resolution of the acquired signal.

However, the fact that, as fMRI, it relies on hemodynamic response implies a

low temporal resolution that might not be enough to capture transient brain

responses to stimuli used in BCI, and exposes it to physiological noise such

as cardiac cycle and respiratory effect that alter blood oxygenation more than

other measurement techniques. In terms of user mobility and ability to capture

fast brain response, electrical signals (EEG, ECoG and intracortical signals)

remain so far the best options. It is proven that intracortical BCIs offer high

interaction performances by decoding complex brain activities. However the risk

and uncertainties surrounding the intracortical implantation of electrodes are

still an issue for its recognition by the public. It is judged to be too invasive. The

intracranial version of EEG – ECoG, alleviates many problems of EEG-based

BCI, namely its vulnerability to noise (i.e. ocular, muscular and environmental).

Although it is less invasive compared to intracortical measurement, ECoG still
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requires surgery for electrodes placement.

Despite its relatively low spatial resolution and vulnerability to noise, EEG

remains the sole technique that offers fast tracking of neural activities, affordable

and light recording equipment allowing BCI users’ mobility, safety and ease of

use. It is vastly adopted as the input signal for BCI. However, some researchers

believe that the future of BCI lies in invasive techniques. They argue that non-

invasive techniques can only represent a limited number of brain responses –

thus limited degrees of freedom, and that EEG weaknesses are hardly overcome.

Another argument is that, for the same neurological phenomenon, non-invasive

BCI requires longer training periods for the users to learn to produce a particular

brain response voluntarily, and despite the training non-invasive BCI still have

high error rates. A further argument is that although non-invasive medically,

EEG measurement technique can also be seen as invasive in terms of human

machine interaction: the gel, the tight electrode cap, the restriction to blink

eyes during recording, etc. might be seen as invasive. These arguments have not

stopped the EEG-based BCI community from pushing the limits. Wolpaw and

McFarland disapproved the argument against non-invasive BCI by showing that

with a comprehensive user training and good learning algorithms, EEG-based

BCI could provide multidimensional point-to-point movement control that falls

within the range of invasive BCI performances [Wolpaw and McFarland, 2004].

Research on improving EEG-based BCI performance has increased all the more,

with better tools for the processing of EEG signals [Gramfort et al., 2014], and

encouraging results [Mattout et al., 2013; Kalunga et al., 2016].

In conclusion, while other neuroimaging might be adequate for some BCI

applications (e.g. neurofeedback), EEG constitutes a reasonable choice for sig-

nal input in BCIs for assistive purposes (e.g. communication and mobility).

EEG-based BCIs are well tolerated with their limitations by patients with the

need to communicate without their muscular systems [Kübler et al., 2005; Gr-

bler et al., 2014]. With effort from different fields involved in BCI research, it

is possible to reach better performance and tend toward those reported with

invasive BCIs.
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2.3 Neurological Phenomena

In deciphering brain signals, brain-computer interfaces identify a specific fea-

ture – a neurological phenomenon, from the signal that is associated with a

given user’s intention. Neurological phenomena are variations in the brain sig-

nals associated with a cognitive activity (i.e. cognitive conscious information

processing), or in response to a physical stimulus. Neurological phenomena in-

duced by cognitive activities are said to be endogenous, while those triggered

by external physical stimulus are said to be exogenous. Respectively, BCIs that

rely on exogenous neurological phenomena are classified as exogenous or depen-

dent BCIs as they dependent on an external stimulus, and their counterparts

that rely on endogenous phenomena are classified as endogenous or independent

BCIs as no external stimulus is needed. BCI research has mainly focused on

the following phenomena: Event Related Desynchronisation (ERD) and Event

Related Synchronisation (ERS), Event Related Potential (ERP), and visually

Evoked Potential (VEP). There are discussed in the details in the next lines.

2.3.1 Event-Related Synchronisation-based BCI

Event-Related Desynchronisation and Synchronisation

Event related (de)synchronisation are either a decrease –event-related desyn-

chronisation (ERD), or an increase – event-related synchronisation (ERS), of

power in a given frequency band during a cognitive activity[Pfurtscheller, 1977;

Pfurtscheller and Aranibar, 1977; Pfurtscheller and Neuper, 1994]; they are en-

dogenous phenomena.

Pfurtscheller and Lopes da Silva [1999] interpret ERD as an electrophysio-

logical correlate of activated cortical areas involved in processing of sensory or

cognitive information or production of motor behaviour. ERD/ERS is mainly

observed in the α rhythm, the µ rhythm also referred to as the upper α rhythm,

the β rhythm and the γ rhythm. The α rhythm ranges from 8 to 12 Hz, the µ

between 10 and 12 Hz, the β rhythm between 12 and 30 Hz, and the γ rhythm

between 30 and 60 Hz. The low frequencies of oscillations in the brain signal are

caused by synchronous neural activities that involve a large number of neurons.

Hence slow oscillations are measurable in a large area of the brain. On the other
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side, assemblies of only small numbers of neurons in synchrony oscillate at high

frequencies [Singer, 1993]. The amplitudes of oscillations being proportional

to the number of synchronous neurons, low frequencies have higher amplitude

and high frequencies smaller ones. Therefore ERD/ERS in α-rhythm are more

visible than in any other frequency bands.

Though easily measurable, lower α wave ERDs cannot be used to discrimi-

nate between tasks due to their wide topographical distribution. Moreover they

might be obtained in response to any task. µ rhythm ERDs, however, are to-

pographically restricted to some brain areas and happen only in response to

specific activities. µ-rhythm ERD provoked by a given task will be observed

mainly in the brain cortex in charge of the task. This specificity to tasks offers

a possibility of discrimination amongst them [Pfurtscheller and Lopes da Silva,

1999].

Motor Imagery BCI Systems

The cognitive tasks used in current ERD/ERS-based BCI systems include motor

imagery [Pfurtscheller and Neuper, 2001], mental tasks, e.g. sitting idle, doing

a multiplication, composing a song [Kumar et al., 2010], composing letters,

counting, rotating objects [Faradji et al., 2009]), or a combination of mental

tasks and motor imagery tasks [Penny et al., 2000; Ozmen and Ktu, 2011].

A user performs a cognitive task while his brain signals are being recorded,

for further processing and classification. The majority of studies conducted

in ERD/ERS-based BCI are carried out on synchronous systems. Figure 2.8

illustrates a synchronous ERD/ERS-based BCI paradigm. The mental task is

performed from the cue onset for a specific period of time. The trial starts with

a beep. The user looks at the screen – where a fixation cross is displayed –

waiting for the cue that will indicate the mental task to be performed.

Motor imagery provides the most intuitive and affordable cognitive task for

the large population of users and has therefore dominated BCI research. It also

has a record of best classification accuracy. The tasks that induces the most

separable features in the EEG are the imagery of right-hand movement, the

imagery of left-hand movement, the imagery of foot movement and the imagery
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Figure 2.8: Standard ERD/ERS-based BCI system paradigm. The break before the next
trial should last at least a second to allow the changes in the ongoing EEG/MEG to recover.

of tongue movement [Ang et al., 2012]. When a person is at rest (i.e. not in-

volved any motor activity), there is a high activity in the 8-12 Hz band (i.e. µ

rhythm) and the 18-26 Hz band (i.e. β rhythm) in the motor cortex. This ac-

tivity is also known as sensory motor rhythm (SMR). It has been shown that for

right hand movement there is a decrease, ERD, of SMR in the left hemisphere

of the sensory-motor cortex, and the ERD occurs prior to the actual move-

ment, during the preparation phase preceding the movement [Pfurtscheller and

Lopes da Silva, 1999]. It has also been established that motor imagery (mental

imagination of movements) activates similar brain areas (functions) to those

activated during the preparation phase of actual movement [Jeannerod, 1995;

Roland et al., 1980]. In general, voluntary hand movement results in bilateral

ERD in the hand area and ERS in the foot area (see homunculus in 2.9); while

a simple mental imagination of the same movement results in the contralat-

eral β ERD and ipsilateral β ERS, both in the hand area [Pfurtscheller et al.,

1997; Pfurtscheller and Neuper, 1994; Toro, C. and Deuschl, G and Thatcher,

R and Sato, S. and Kufta, C and Hallett, M., 1994]. The fact that in men-

tal imagination of one-sided hand movements the ERD remains mostly limited

to the contralateral hemisphere is of key value in the classification of motor

imagery-based BCI. Several studies [Lotte et al., 2007] have focused on the im-

agery of right hand and left hand movement – since these two tasks present the

most discriminative characteristics because of their asymmetrical electrocorti-

cal responses – to build a 2-class BCI and have the best classification accuracy

achieved in ERD/ERS-based BCI [Zhang et al., 2012]. It is to be mentioned

that ERD elicited by motor imagery of different parts of an upper limb cannot

be discriminated [Pfurtscheller and Lopes da Silva, 1999]. For instance, the im-

agery of left wrist movement and any left finger movement will activate the same
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brain region (contralateral ERD and ipsilateral ERS in the hand region) as the

one activated during the imagery of the left hand. For lower limbs, imagination

of either foot movement results in a µ or β ERD in the foot area between both

hemispheres such that it becomes impossible to discriminate between imagery

of the left foot and of the right foot [Pfurtscheller and Lopes da Silva, 1999]. It

is expected that the imagery of foot movement activates the foot area and the

imagery of the tongue, the tongue area. However it is generally observed that

the area activated by these two tasks are mixed up and not easily interpretable.

BCI systems must therefore use some complex algorithms to extract the

most discriminative features and achieve a multiclass discrimination, e.g. 4-

class: right hand, left hand, feet, and tongue [Dornhege et al., 2004b; Brunner

et al., 2007].
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Figure 2 The motor and
sensory homunculus: the first
map. Penfield and
Rasmussen, 1950. Reprinted
with permission of
Macmillan Publishing
Company from The cerebral
cortex of man by Wilder
Penfield and Theodore
Rasmussen. Copyright 1950
Macmillan Publishing
Company; copyright renewed
1978 Theodore Rasmussen.
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bral hemispheres in which were drawn solid bars at the
periphery, the length of the bars giving an indication of
the relative cortical areas from which the corresponding
responses were elicited. This implies somewhat different
information was being illustrated compared with the
1937 illustration. A few pages later, overlying the bars is
superimposed the homunculus, which is again "brought
forth" by the same artist, but in a different and even
more familiar form, draped along the cortical surface and
interhemispheric fissure. In this homunculus, however,
the motor and sensory representations have been separat-
ed, slightly modified and corrected (fig 2). These draw-
ings are so memorable and have been reproduced so
often that it is difficult to appreciate that here, even more
so than with the first homunculus, a new concept in rep-
resentation and imagery had been created. Moreover, for
the first time the homunculus can be considered as some
form of "map" of human cortical representation, being
more or less precisely in relation to actual brain areas
identified at surgery. This compares with the first
homunculus, which was not drawn in relation to the
hemispheres at all. It is unclear whether the authors
appreciated the visual significance of the homunculi, but
these figurines created a precedent which has had a major
influence on subsequent forms of related graphic illustra-
tion.

Degradation of the homunculus subsequently ensued,
with the appearance in 1954 of multiple homunculi.
Penfield and Jasper now illustrated three sets of homun-
culi (fig 3), the first set (motor and sensory) in relation to
the Rolandic fissure, a second apparently purely sensory
homunculus in the secondary sensory area near the
Sylvian fissure, and a third homunculus (virtually only
motor) in the supplementary motor cortex.3 The homun-
culi change considerably in this process; for instance the
fingers and toes are made to seem important in the sec-
ondary sensory figurine, which is crouched, and is to
some extent bilateral, whereas the supplementary
homunculus is straight and extremely vaguely represent-
ed. The precision intended in the earlier homunculi has
been almost completely lost; indeed Penfield and Jasper
stated that "the exact position of the parts must not be
considered topographically accurate. They are aids to
memory, no more". And again, "the figurines.. .have the
defects, and the virtues, of cartoons in that they are inac-
curate anatomically...". It suggests that the homunculus
has taken over from its authors, and illustration has out-

stripped the scientific evidence available. Indeed, the
bilateral leg movements that can be elicited by stimula-
tion of medial structures led Bates to denigrate the con-
cept of the homunculus thus: "May it not be, in other
words, that in depicting the 'average' representation the
motor homunculus should have two back legs?"4

Homunculi now appeared in other areas of the brain,
such as the thalamus, and Penfield and Jasper3 were the
first to place a homunculus in this subcortical region (fig
4). Whilst they stated a precise topographical organisa-
tion is present in the somatic relay nuclei of the thala-
mus, the homunculus drawn there "makes no pretence to
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Figure 3 Mulltiple sets of homunculi. Penfield and Jasper, 1954.
Reprinted from Epilepsy and the functional anatomy of the human brain,
with permission of Churchill Livingstone.

330

Figure 2.9: Sensory homunculus on the left and Motor homunculus on the
right. The cortical homunculus initially developed by Dr. Wilder Penfield
shows a disproportionate human body laid on the cortex from the prefrontal
cortex(top) to the cerebellum (bottom). The size of a given body part of the
homunculus is descriptive of the amount of cerebral tissue or cortex devoted
to the specific body region which is proportional to how richly innervated that
region is. This image is taken from [Schoot, 1993]

Challenges in ERD/ERS-based BCI systems

BCIs relying on ERD/ERS face a number of challenges: First is the low signal-

to-noise ratio. ERD/ERS phenomena are submerged in a much larger brain
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activity. It is thus difficult to distinguish a synchronisation or desynchronisation

in a single trial.

Secondly, classification into classes representing different intentions is based

on the topographical distribution (activated brain regions) and the ERD/ERS

frequency range. However, as noted, EEG has poor topographical resolution

and relatively narrow bandwidth. ERD/ERS in ECoG and other signals with

better spatial resolution are reported to possess better signal characteristics for

classification [Wilson et al., 2006; Schalk and Leuthardt, 2011; Power et al.,

2012; Naseer and Hong, 2013; Wang et al., 2013]. Spatial filters are needed to

alleviate the poor topographical resolution. The impact of spatial filtering on

can be seen in [Hill et al., 2006].

Moreover, ERD and ERS areas are not always the same in different sub-

jects due to physiological differences between them. The (de)synchronised fre-

quency band is also not the same amongst subjects. Besides, the time where

(de)synchronisation happens with reference to a cue is not the same either. This

forces the BCI systems to identify the relevant brain area (e.g. spatial filter), the

frequency band, and the time interval of significant (de)synchronisation [Yang

et al., 2014]. The last task becomes even more complex in asynchronous BCI

systems where there is no cue, therefore no reference (baseline). The term ERD

implies that a baseline measured some seconds before the event represents a

larger synchronisation [Pfurtscheller and Lopes da Silva, 1999].

A major problem in ERD/ERS-based BCI systems is the user training re-

quired. Users need to learn how to perform the cognitive tasks such that they

can modulate their brain signals in a way that is detectable by the BCI system.

Even after training, some users still cannot produce signals that are classifi-

able by the system. This phenomenon is known as BCI illiteracy and affects

an estimate of 15 to 20% of BCI users [Allison and Neuper, 2010a]. Though

the problem of BCI is not exclusive to ERD/ERS BCI, it is more prominent

here [Hammer et al., 2012]. There are many attempts to explain the causes of

BCI illiteracy and possible ways of alleviating the problem [Allison and Neuper,

2010a; Hammer et al., 2012; Jeunet et al., 2016].
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2.3.2 Event-Related Potential

Event Related Potentials (ERP) are time-locked deflections in the EEG volt-

age (or electrical activity of a population of neurons) in response to a sensory

stimulus. A commonly accepted hypothesis is that they are the result of a reor-

ganisation of the phases or changes in specific frequency bands in the ongoing

brain signals [Pfurtscheller and Lopes da Silva, 1999]. Having a very small am-

plitude compared to the ongoing brain activity, they are extracted through an

averaging of aligned signal segments of repeated trials. After averaging, only

the time-locked phenomena will remain, and all unrelated EEG will cancel out.

The resulting ERP consists of several positive and negative deflections called

components of the ERP. They are designated with a ‘N’ (for negative compo-

nents) or ‘P’ (for positive components) followed by a number indicating the time

when they happened after the stimulus. Each component reflects a neural pro-

cess involved in the response to the stimulus. The first components are usually

sensory processes (i.e. P120 is the first positive component observed in response

to a visual stimulus). They are then followed by more complex processes such

as decision, recognition, and emotion related processes. N250 reflects the neu-

ral processing of a person’s own face, P300 reflects the processing of an odd

event, N450 marks a processing of conflict, Error Related Potential is negative

component observed after an error committed in a selection task [Luck, 2014].

Only the P300 [Polich, 2007; Donchin, 1981] and the error related potential

(ErrP) [Miltner et al., 1997] components have been explored in BCI applica-

tions. ERPs are mere responses to sensory stimuli. A user would not have

a voluntary control of the ERPs and cannot use them as input to a BCI. The

oddball paradigm has allowed a “pseudo” voluntary control of P300 components,

hence its usability in brain-computer interfaces [Ritter and Vaughan, 1969]. On

the other hand, the ErrP has been used in BCI not as a control input, rather

as a feedback channel. It allows the detection of errors (from the human and

the machine) in human-machine interactions [Perrin et al., 2012].

P300

P300 is a positive deflection in the ERP, typically 300 ms after the perception

of an odd event that creates a surprise effect for the subject [Donchin, 1981].
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Figure 2.10: 2550 P300 trials have been averaged to obtain the enhanced P300 (blue line).
The enhanced P300 is compared to 12750 trials not containing the P300. The data used
are subject A’s recorded signals from the BCI competition III data set II. A visual oddball
paradigm as described in [Donchin et al., 2000] is used to elicit the P300.

Contrary to the intuition that P300 might be an exogenous phenomenon,

Sutton et al. established that it was endogenous. The subject must have

perceived the event, analysed it and established its oddity for a P300 to be

elicited. It is related to the psychological reaction of the subject to the stim-

ulus rather than to the physical characteristics of this stimulus [Sutton et al.,

1965, 1967]. P300 amplitude is proportional to the temporal probability of

the stimulus (e.g. sequential probability) which can roughly be defined as

(1/total number of stimuli). It is also, to a lesser extent, related to the stimulus

probability: (stimulus time/total trial time) [Fitzgerald and Picton, 1967].

P300 has a latency that varies with the difficulty of discriminating the im-

probable stimulus from the standard ones. The 300 ms latency is typical in

young adults. Older subjects and those with decreased cognitive analogies have

smaller P300 with a longer latency. Subjects with a greater ability to solve sim-

ple problems will generally have shorter latency. Within the adult population,

the latency of P300 increases with age. Three positive waves overlap during the

P300 latency: the P3a near 250 ms, the P3b near 350 ms, and a positive slow

wave.

P300-based BCI systems

In BCI, the oddball paradigm is used in a scenario where the subject has a

“pseudo” voluntary control of P300 generation [Ritter and Vaughan, 1969]. In

this paradigm the subject is presented with a sequence of events that can be

classified into two categories, this is the traditional two-stimulus oddball. A

three-stimulus variation of the oddball paradigm can also be used [Polich, 2007].
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In the traditional two-stimulus oddball, events in one of the two categories are

rarely presented, thus eliciting a P300.

Auditory and visual stimuli are used to elicit the P300 with only a few studies

focusing on auditory stimuli [Elshout, 2009]. Subjects in the complete locked-in

state lose all voluntary control and cannot use visual stimuli. For such subjects,

auditory P300-based BCI could be of great importance. Different sounds are

played (e.g. notes, words) and for a given task the subject is asked to focus on

a particular sound. When that sound is played a P300 is elicited around 300 ms

later. Despite the opportunity they represent for people in a complete locked-in

state, auditory P300-based BCI have low information transfer rate and have

been explored by only a few studies [Sellers et al., 2006; Elshout, 2009; Käthner

et al., 2013; Kaufmann et al., 2013b].

The most popular application of P300-based BCI systems is the P300 speller

[Farwell and Donchin, 1988]. The subject is presented with a screen, containing

a metric of characters. Rows and columns of the matrix are flashed one after

the other in a randomised order. The selected character is at the intersection of

the row and column which, when flashed, were followed by a P300. The flashes

are repeated several times to enhance the detection of P300 through averaging.

It was pioneered by Farwell and Donchin when for the first time they used the

oddball paradigm and the flashing matrix to spell words conveyed to a voice

synthesiser. They achieved a communication rate of 12 bits or 2.3 characters

per minute [Farwell and Donchin, 1988]. Since then, several improvements have

been made.

Figure 2.11: A P300-speller screen

A considerable amount of work has been devoted to improving the machine
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learning algorithms for better detection of P300 [Hoffmann et al., 2005; Rako-

tomamonjy et al., 2005; Zhang et al., 2007; Krusienski et al., 2008; Rivet et al.,

2009; Verschore et al., 2012; Lenhardt et al., 2008; Panicker et al., 2010]. They

have significantly contributed to the development of P300-based BCI.

Other stimulation paradigms, different from the row-column flashing matrix

have been proposed, and yield good performances: for example using chequer-

board paradigm where individual characters are flashed randomly. In the che-

querboard paradigm flashing objects or human faces improves ERP-based BCI

[Hoffmann et al., 2008; Kaufmann et al., 2011, 2013b; Chen et al., 2015].

As stated earlier, the detection of P300 is done through averaging of repeated

trials. This slows down the communication rate of the BCI. An important trend

in P300 BCI is the detection of P300 in a single trial. This is being achieved

by experimental paradigms and signal processing technique that enhance the

evoked P300 in a single trial and with adequate machine learning algorithms

[Bayliss and Ballard, 1998; Yin et al., 2013; Ishita et al., 2007; Güçlütürk et al.,

2010; Kaufmann et al., 2013a]

Most of P300 BCI systems are synchronous; the timing is dictated by the

stimulation system. Few implementations of asynchronous P300 BCI have been

made. It is an effort to discriminate between control state (i.e. P300 being

elicited) and rest state (i.e. the subject does not aim at any target), and to

dynamically determine the number of trials needed for P300 detection [Lenhardt

et al., 2008; Zhang et al., 2008; Schettini et al., 2014].

Visual P300 stimulation presented thus far requires a gaze control from the

subject, which is not achievable by locked-in patients. A new paradigm was

therefore developed to allow the use of visual P300 BCI by locked-in patient.

One or several characters are presented in a rapid sequence in the middle of a

screen. In the stream of character, when the intended character is displayed (or

magnified), a P300 should be elicited [Acqualagna et al., 2010; Treder et al.,

2011; Aloise et al., 2012; Acqualagna and Blankertz, 2013]. Tactile P300 has

also been investigated for locked-in patients [Kaufmann et al., 2013a]
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Challenges in P300-based BCI systems

Amongst the limitations in P300-based BCI is the low information transfer rate,

due to the repetition of trials required to enhance P300 extraction. Acceptable

classification is obtained after more than 5 repetitions. In [Rakotomamonjy

et al., 2005] for instance 15 repetitions are used and make a trial duration

(i.e. character epoch) of 35.4 seconds. This makes P300-based BCIs very slow.

Single-trial detection approaches are a solution to this problem, but are hardly

achievable.

The amplitude of the P300 decreases with time. The first occurrences of

the rare stimuli will elicit a larger P300 [Courchesne et al., 1975] than the later

occurrences will. This decrease might be explained by the local versus global

probability of the rare stimulus. While the local probability of the rare stimuli

within an oddball paradigm trial is the same over the entire BCI experiment,

their global probability increases, creating a sense of habituation. In a P300

speller paradigm, this is first observed at the character epoch level as the user

gets used to the stimuli that are being repeated, and then over the sessions as

the user becomes used to the nature of the rare stimulus. The amplitude of P300

will decrease with the habituation, thus deteriorating the BCI performance. A

potential solution would be to consider the inter-trial variability of the P300

while training the classifier [Rakotomamonjy et al., 2005].

On the subject’s side, although P300-based BCI systems do not require

initial training, they require continuous attention from the user, who should

pay close attention to stimuli and notice every time the rare stimulus occurs.

Over the long run, this might be tiring for some subjects or just not achievable

for those with attention disorders [Szuromi et al., 2010; Krusienski et al., 2008].

Error-Related Potential

The neural processing of incorrect response generate a negative going deflection

(Ne) in the ERP. The Ne has been observed in experiences with multiple-choice

selection with tasks. Once a person observes an erroneous response, the error-

related potential is elicited [Gehring et al., 1993].
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The error-related potential could thus improve the performance of non in-

vasive BCI. The erroneous action can either be automatically corrected or sim-

ply undone, as proposed by Perrin et al. [2012]. The erroneous command is

automatically replaced by the second most probable output of a probabilistic

classifier.

2.3.3 Visual Evoked Potential

A Visual Evoked Potential (VEP) is an electrophysiological potential in the

primary visual cortex in response to a visual stimulus. In general, a VEP

contains three components illustrated in figure 2.12: a negative deflation at

around 75 ms from the stimulus referred to as N75, a positive deflation at 100

ms from the stimulus referred to as P100, and a second negative deflation 135

ms after the stimulus called N135.

Figure 2.12: A Standard Visual Evoked Potential

VEP can be either transient or steady, i.e. Steady-State Visually Evoked

Potential (SSVEP). Transient VEP can be defined as the response to an iso-

lated or infrequent stimulus that provides enough time for the system to return

to its initial state before onset of the next stimulus. The steady state response

of SSVEP corresponds to a periodic succession of transient evoked potentials

[Capilla et al., 2011]. Neuronal activity in the primary visual cortex is syn-

chronised at the stimulation’s fundamental frequency and its harmonics. This

phenomenon is being increasingly used in brain-computer interfaces.

Figure 2.13 is very expressive with regards to the nature of SSVEP. While

all three major voltage deflation (i.e. N75, P100, and N135 ) are observable
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Figure 2.13: Visual evoked potentials at stimulation frequency of 2.7 Hz, 4.5 Hz, 7.1 Hz,
12.5 Hz, and 20 Hz. A illustrates the signal in time domain and B illustrates the frequency
spectrum. [Reproduced from Capilla et al., 2011] .

in steady state responses at lower frequencies (e.g. 2.7 and 4.5 Hz) – making

them very similar to transient evoked responses, they are less visible when the

frequency of the stimuli train is increased. Only the P100 is still present at all

stimulation frequencies. The amplitude of the steady state response appears

to be attenuating as the stimulation frequency increases. This attenuation can

be explained by latent inhibition, meaning that the transient excitation of the

neural generators responding to the first stimulus in a sequence spreads to neu-

rons that, in turn, feed back to them, attenuating the response to an incoming

stimulus. High stimulation frequencies, with periods far shorter than the width

of a P100, will suffer more from this inhibition.

At lower frequencies ( ≤ 7 Hz), the frequency component corresponding

to the stimulation frequency is very weak. From 7 Hz up, this component is

predominant. In both cases, harmonics of the stimuli frequency are visible es-

pecially for intermediate frequencies. The presence of harmonics is explained by

the number of positive and negative voltage deflation found in a single VEP. At

higher stimulation frequencies, the late deflation of preceding VEP cancel out

(or overlap with) the early deflations of the ongoing VEP, leaving out a single

VEP component per VEP. This explains the absence of harmonics in SSVEP

from higher stimulation frequencies. With regards to amplitude of response,

Pastor [2003] reached similar conclusions in their studies. They show that re-

sponses to low and high stimulation frequencies are less visible than responses

to intermediate frequencies (see Figure 2.14). Another factor affecting the at-

tenuation of responses to high simulation frequencies is the low pass filtering
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Figure 2.14: Average of the mean values of the amplitude of the FFT fundamental frequency
of the SSVEP recorded at the three occipital leads (Oz, O1, O2) at the different stimulation
frequencies. The amplitude of the occipital SSVEP, expressed in microvolts, reached a max-
imum at 15 Hz and then fell, with a plateau up to 27 Hz, declining at higher frequencies.
[Reproduced from Pastor, 2003].

characteristics of the skull [Nunez and Srinivasan, 2005; Bédard et al., 2006].

SSVEP-based BCI systems

There are various techniques to design stimulus for SSVEP in BCI. They are

reported in [Zhu et al., 2010]. Different simulation frequencies are used to build

multiple BCI commands.

As in other BCI systems, offline applications of SSVEP-based BCI are

used to investigate the parameters influencing the performance of the system.

SSVEP-based BCI, especially synchronous systems, have the advantage of fo-

cusing on EEG activity that occurs at known frequencies. Making use of this

feature, many studies have reduced the feature extraction methods to a simple

frequency spectrum quantification, e.g. Fourier transforms-based methods. The

target whose stimulation frequency has the largest amplitude in the frequency

spectrum of the brain signal recorded in the occipital region is considered to

be the one that the subject is gazing at [Muller-Putz and Pfurtscheller, 2008;

Pfurtscheller et al., 2010]. Due to inter-trial and inter-subject variability of

the frequency spectrum features, parameters optimisation methods are intro-

duced or classifiers such as support vector machines that can be trained and
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used to classify the frequency spectrum features into classes [Kalunga et al.,

2013]. Methods using canonical correlation analysis are very successful in the

identification target’s stimulus frequency [Lin et al., 2006; Kalunga et al., 2013;

Nakanishi et al., 2014].

Over the past years, interest in SSVEP-based BCI has increased due to the

advantages it presents over other BCI systems. SSVEP have a higher signal-

to-noise ratio, leading to higher classification accuracy, and a fast information

transfer rate [Nakanishi et al., 2014]. Moreover, due to the fact that SSVEP is

an inherent response of the brain, SSVEP-BCIs’ users do not need to go through

intensive training.

It should be mentioned that the highest performances have been achieved

in synchronous systems. Even in some asynchronous systems, the subjects are

supposed to be continuously gazing at one target stimulus. This keeps the clas-

sification simpler as it avoids the complexity of discriminating between inten-

tional control (IC) state and no-control (NC) state. To alleviate the complexity

of having to discriminate continuously between NC and IC, some BCI systems

activate the SSVEP target stimuli only when needed. Once the stimuli are ac-

tivated, the system is invariably in the IC state, and when deactivated, it is in

NC state [Cheng et al., 2002; Pfurtscheller et al., 2010].

SSVEP-based BCI is often employed as a dependent BCI [Wolpaw et al.,

2000], that is, some residual muscular capabilities are required to move the eye

toward the blinking stimulus as opposed to independent BCI, such as Motor

Imagery (MI), where the communication does not rely on any motor capability.

It has been shown that SSVEP could be used as an independent BCI [Morgan

et al., 1996; Mller et al., 2006] as the brain oscillations are strongly related to

the focus of attention. Using covert attention, i.e. shifting the focus of attention

without moving the eyes, subjects can generate different SSVEP responses.

Visual stimulus plays a crucial role, affecting the BCI performance, and

should be designed carefully. An in-depth review of the literature shows that

LED stimuli provide better results than those obtained on computer screen [Zhu

et al., 2010; Oralhan and Tokmaki, 2016]. A cognitive study indicates that any

stimulation between 2 and 50 Hz induces visible oscillations in the visual cortex

[Herrmann, 2001]. Common values employed in SSVEP studies are between 12
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and 25 Hz, as they induce oscillations with higher amplitudes [Zhu et al., 2010].

One should note that safety of the subject should be taken into account as some

frequency ranges of the stimulation could trigger epileptic seizure [Fisher et al.,

2005].

The phase of the stimulation signal can also be modulated, enhancing the

BCI performance by boosting the Information Transfer Rate (ITR) [Pan et al.,

2011; Nakanishi et al., 2014]. An important constraint in that case is that exper-

imental setup requires a synchronization between the display and the recording

system, to ensure the correct estimation of the stimulus’ phase. Better alter-

natives are available when considering systems with such constraints: code-

modulated VEP (c-VEP) has yield the highest ITR in BCI [Spüler et al., 2012;

Bin et al., 2011]. In c-VEP, the sole difference is that the stimulus flickering is

based on pseudorandom sequences instead of the fixed frequencies of SSVEP.

Challenges in SSVEP-Based BCI Systems

Although SSVEP relies on the perception of the subject rather than eye move-

ment, the majority of current SSVEP-based BCI paradigms requires eye move-

ments for the perception of stimuli. To operate such systems, the subject must

possess a functional visual system which should, moreover, entirely be devoted

to the BCI application. Nonetheless, studies are investigating the possibility of

an SSVEP-based BCI without the need of gazing [Lopez-Gordo et al., 2010].

This limitation is due to the fact that SSVEP can only be elicited within a

limited frequency band. Also, due to the fact that harmonics of a stimulation

frequency cannot be used in other target stimuli. Applications using computer

monitors are faced with another limitation in usable frequencies due to the

monitors refresh rates. The refresh rate must be a multiple of the stimulation

frequency to avoid discrepancies in the generated frequency. Jia et al. [2011]

proposed a stimuli coding method that combines frequency and phases. On a

single frequency many stimuli can be coded using different phases, thus increas-

ing the number of targets. c-VEP is an alternative to SSVEP that does not

have this constraint [Spüler et al., 2012].

The implementation of asynchronous systems that can discriminate between

IC and NC with minimal false positive still poses a challenge. This is crucial
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for real life applications, yet studies investigating the matter and evaluating the

performance of such systems are very few in number when compared to the

attention SSVEP-based BCI have drawn in recent years.

2.3.4 Discussion

The presented neurological phenomena have all been used with considerable

success in BCI. They each have advantages and drawbacks. The choice of a

neurological phenomenon will depend on the specific needs in the BCI appli-

cation. An adequate threshold should be found between the efficiency of the

system and the comfort of the BCI user. Indeed the neurological phenomenon

used in the BCI impact both the system’s performance and the comfort of users.

In general, there is a duality or complementarity between endogenous and

exogenous BCIs, the strengths found in one are usually the weaknesses found

in the other. While exogenous BCIs suffer from the fact that they depend

on the muscular functions and on an external stimulus, endogenous BCI are

free from this dependency; except visual P300 that might need gaze control.

Endogenous BCIs require that the user be trained, while exogenous BCI can be

used with no training. Endogenous BCI have very low signal amplitude, while

their counterpart enjoy a relatively stronger signal amplitude. Endogenous BCI

are flexible; the user can shift between several mental tasks in a single BCI

application. That is usually not possible with exogenous BCI.

Hence, BCIs that rely on exogenous BCI cannot be used by patients in

a complete locked-in state. With no muscular function left, they still retain

sensory and cognitive abilities that can be leveraged in endogenous BCI. There

is however a vast population of patients who do retain gaze control, for whom

visual techniques can still be used. Moreover, SSVEP and P300 are related

to attention and perception rather than to gaze control. An appropriate BCI

paradigm leverage this characteristic for their application in locked-in patients.

The dependence to perception and attention also marks the difference between

evoked potential-based BCI (i.e. P300 and SSVEP) and muscular devices such

as eye-trackers, devices that rely on eye-fixation and saccades.

BCI illiteracy can be observed with any type of BCI. 15 to 20% of users

cannot generate neurological responses necessary to control a particular BCI.
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Allison and Neuper [2010b] discussed the possible causes of illiteracy and pro-

posed few potential solutions that mainly consist of improving BCI accuracy

in general. An interesting observation is that a subject who is illiterate in one

BCI modality (e.g. SSVEP) might effectively use another modality (e.g. ERD).

Different neurological modalities could be combined in a hybrid interface, where

their impact is weighted depending on the user’s abilities. There are also ques-

tions being raised about changing current approaches to BCI altogether. For

example, recently Jeunet et al. [2016] challenged the standard training protocol

used in MI-based BCI. They used the protocol followed in BCI tasks to train

users on non-BCI task. They found that about the same rate 17% of users

could not perform the learnt task, which is about the rate of BCI illiteracy.

Their findings suggest that the training protocol used in BCI is not optimal

and might by a influential factor in BCI illiteracy. These results will surely

prompt more digging in approaches used in BCI.
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Chapter 3

Signal Processing and Machine
Learning for Brain-Computer
Interfaces

It is not by trying to improve the candle that

we invented electricity.

— Niels Bohr

3.1 Signal Processing for Cognitive Functions

Brain-computer interfaces translate brain signals into control or communication

signal; the signal processing and machine learning component is therefore fun-

damental. The usual steps in the translation of brain signals consist of signal

preprocessing, feature extraction, and finally a feature classification (or regres-

sion).

Signal preprocessing is fundamentally a cleaning up of data. The operations

involved vary depending on the authors. They are usually generic operations

such as epoching and removal of non-EEG signal added during the recording.

Bashashati et al. [2007] report on techniques used to this end.

Feature extraction aims at identifying the characteristics in the EEG signals

that bear relevant information for the classification task. Thus, it plays an im-

portant role in the design and choice of appropriate classifiers. The performance

of BCI depends as much on the features used as on the classifier. Feature ex-

traction techniques are a set of operations or transformations applied on the raw
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EEG such that the neurological phenomenon induced by the BCI task is either

enhanced or adequately represented. From the EEG signal they can extract:

• time features e.g. EEG signal amplitudes, signal power [Rivet et al., 2009],

• frequency features e.g. band power, power spectral density [Bhattacharyya

et al., 2010],

• parametric features e.g. Auto Regressive (AR) and adaptive AR (ARR)

parameters [Zhang et al., 2015a],

• time-frequency features e.g. wavelet transforms [Kumar et al., 2010; Dingyin

et al., 2011; Zhang et al., 2015b], short-time Fourier transform [Kumar

et al., 2010], empirical mode decomposition [Gaur et al., 2015; Wang et al.,

2011; Liu et al., 2011],

• spatial features e.g. Independent Component Analysis (ICA) [Wang and

James, 2006; Wang and Jung, 2013; Brunner et al., 2007], Common Spa-

tial Patterns (CSP) [Ang et al., 2012; Barachant et al., 2010a; Blankertz

et al., 2008], Canonical Correlation Analysis (CCA) [Nakanishi et al., 2014;

Kalunga et al., 2013], Principal Component Analysis (PCA) [Kottaimalai

et al., 2013; Yu et al., 2014], xDAWN [Rivet et al., 2009].

Detailed reviews of classic feature extraction methods can be found in [Lotte

et al., 2007; Nicolas-Alonso et al., 2012; Bashashati et al., 2007; Khorshidtalab

and Salami, 2011; Krusienski et al., 2011]. The choice of feature extraction tech-

niques is guided by the neurological phenomenon used in the BCI. For instance,

in SSVEP, relevant information will be contained in the spectral features while

in P300, temporal features will suffice. Fukunaga [1990] defines feature extrac-

tion for classification as a search, among all possible singular transformations,

for the best subspace which preserves class separability as much as possible in

the lowest possible dimensional space.

Spatial filters (from which spatial features are extracted) have proven to be

successful tools in extracting (or enhancing) the neurological phenomenon from

the EEG signal. The information of interest is hidden in the recorded EEG, a

mixture of simultaneous active brain sources and noise sources in the recording
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neural ensembles to which noise is added:

X = AS +R (3.1.1)

whereX ∈ R
C×N is the EEG recorded on C channels overN samples, S ∈ RK×N

are the brain sources, A ∈ R
C×K is a matrix defining the mixture of the brain

sources, and R ∈ R
C×N is the additive noise, with C ≤ K. Spatial filters are

designed to extract signal of interest (3.1.1) based on a priori knowledge on the

neurological phenomenon of interest or knowledge deduced from pre-recorded

data.

3.1.1 Motor Imagery Processing

Common Spatial Patterns are spatial filters that has been particularly designed

for motor imagery tasks classification [Koles et al., 1990]. CSP extracts EEG

spatial components that are common to two imagery tasks, but maximising the

variance of the signal recorded during one task while minimising the variance

in the other task. The distribution of filtered samples belonging to one imagery

task has maximal variance, while the distribution of samples in the other task

has minimal variance, or vice-versa as illustrated in Figure 3.2. CSP should

capture the contralateral effect of ERS versus ERD induced by motor imagery

tasks.

CSP has been successfully coupled with linear discriminant analysis clas-

sifiers [Dornhege et al., 2004a; Popescu et al., 2007]. Indeed like CSP, LDA

also relies on data class scatter. LDA projects samples into a space where the

within-class covariance matrices are minimised, while the between-class covari-

ance matrix is maximised. Here the covariance matrices are proportional to the

class scatter.

Common Spatial Patterns

CSP model is given by:

S = WX (3.1.2)

CSP finds the filter W ∈ R
C×C that minimises the variance of the filtered

signal S in one condition and maximises it in the other. Neglecting additive
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(a) (b)

Figure 3.2: CSP effect on class distribution. CSP is applied on a 2D toy data
set containing samples from two classes marked with red crosses and blue cir-
cles. (a) Samples distribution is shown before CSP filtering. The ellipses show
estimates of each class covariance. It can be seen that the two classes are
highly correlated. The dashed lines show the direction of the CSP projections
wj (j = 1, 2). (b) Distributions after CSP projections. The two distributions
are orthogonal, showing that the two classes are uncorrelated. Each axis gives
the largest variance in one class and the smallest in the other. [Image from
Blankertz et al., 2008].

noise in Equation (3.1.1), the CSP model is equivalent to finding the inverse of

A: W = A−1. In EEG modelling, A is called the forward model or the mixing

matrix and W the reverse model or de-mixing matrix. A describes the spatial

pattern.

Let Xi ∈ R
C×N be a band-pass filtered signal of EEG recorded at epoch i.

An estimate of its covariance matrix Σ̂i ∈ R
C×C can be computed as:

Σ̂i =
XiX

T
i

trace(XiXT
i )

(3.1.3)

A class covariance matrix is obtained as:

Σ̂(c) =
1

Nc

Nc∑

i=1

Σ̂i (3.1.4)

In a two imagery task, c ∈ {+,−}, and Nc is the number of epochs in class c.
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CSP solves the following problem:

maximise
W

trace(W T Σ̂(+)W )

subject to W T (Σ̂(+) + Σ̂(-))W = I.
(3.1.5)

The constraint in (3.1.5), where I is the identity matrix, forces W T Σ̂(-)W to

Figure 3.3: Effect of CSP filtering. A continuous EEG signal containing two right-hand
imagery epochs and one left-hand imagery is filtered using four CSP filters (wj): csp:R1,
csp:R2, csp:L1, and csp:L2. The resulting signals from csp:R1 and csp:R2 have large variance
during left hand imagery, while signals from csp:L1 and csp:L2 have large variance during
right hand imagery. [Image from Blankertz et al., 2008].

be minimal when W T Σ̂(+)W is maximal. There are many ways of solving this

problem. A simple way is to solve it as a generalised eigenvalue problem [Koles

et al., 1990; Blankertz et al., 2008]:

Σ̂(+)w = λΣ̂(-)w , (3.1.6)

where wj (j = 1, . . . , C) are the generalised eigenvectors that constitute the

vectors of the matrix W , and λj = λ
(+)
j /λ

(−)
j , with λ

(c)
j = wT

j Σ̂(c)wj where 0 ≤
λ
(c)
j ≤ 1 and λ

(+)
j +λ

(−)
j = 1. λ

(c)
j is the variance in the filtered signal sj = wT

j X

in the epochs corresponding to class (c). Thus filtering (i.e. projecting) the

EEG signal Xi with wj that corresponds to the largest λ
(+)
j → 1, will maximise

the variance in class (+) while minimising it in class (−) as illustrated in Figures

3.3 and 3.2.
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This discussion of CSP is limited to two-class motor imagery. The appli-

cation of CSP has been extended to multi-class cases [Dornhege et al., 2004a;

Grosse-Wentrup and Buss, 2008].

Linear Discriminant Analysis

Given a set of n C-dimensional samples x1, x2, . . . , xn (xi ∈ R
C) , LDA finds a

lower dimensional space (typically C−1) where the data are the most separable.

In a two-class case (c ∈ {+,−}), n(+) samples belong to the positive subset X (+),

and n(−) samples belong to the negative subset X (−) LDA finds a projection

vector w that will achieve the mapping

y = wTx (3.1.7)

that obtains the n (C−1)-dimensional samples y1, . . . , yn (yi ∈ R
d−1), where the

positive subset of the projected data Y(+) is separable from the negative subset

Y(−). If the original C-dimensional samples are highly overlapped, not even the

best w could separate them in a lower dimension. A successful application of

CSP will avoid such problems.

For separability brings the idea of distance between subsets, LDA uses the

difference of projected samples means:

|m̃(+) − m̃(−)|
If m(c) is the C-dimensional class mean,

mc =
1

n(c)

∑

x∈X (c)

x, (3.1.8)

m̃(c) is the mean of projected samples belonging to Y(c) and is given by

m̃(c) =
1

n(c)

∑

y∈Y(c)

y

=
1

n(c)

∑

y∈Y(c)

wTx = wTmc,
(3.1.9)

Maximising the distance between class means does not ensure class separability.

If both subset are very scattered, their samples can still be highly overlapped
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3.1.2 SSVEP Processing

Canonical Correlation Analysis (CCA) was recently introduced to classification

of SSVEP signal [Lin et al., 2006]. It has since been used in the most successful

SSVEP-based BCI [Bin et al., 2009; Nakanishi et al., 2014]. It is known that

flickering visual stimuli induced an SSVEP that is correlated to the stimuli,

i.e. the phase and frequency of the signal of interest are known. Using this

information about the signal of interest, CCA will extract the EEG spatial

components that correlate the most with the SSVEP stimuli. When used as

spatial filters, CCA works well when coupled with Support Vector Machine

(SVM) classifiers [Spüler et al., 2012; Kalunga et al., 2013].

Canonical Correlation Analysis

Let Y ∈ R
H×N be a multivariate signal representing the stimulation signal used

in recording the EEG signal X. Per SSVEP principle, X is expected to be

correlated to Y . Thus CCA will find two projection directions wX and wY such

that wT
XX and wY Y have maximal correlation. wX and wY maximises the

correlation function ρ(wX ,wY ):

ρ(wX ,wY ) = corr(wT
XX,wY Y )

=
wT

XΣXYwY√
wT

XΣXwXwT
YΣYwY

,
(3.1.15)

where ΣXY is the between-set covariance matrix; ΣX and ΣY are the within-set

covariance matrices. CCA can be solved [as in Hardoon et al., 2004]:

maximise
wX ,wY

wT
XΣXYwY

subject to wT
XΣXwX = 1,

wT
YΣYwY = 1.
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A common way of generating the representation of the simulation signal at

frequency f is:

Yf =




sin(2πf)

cos(2πfn)
...

sin(2πNhfn)

cos(2πNhfn)




, n =
1

fs
,
2

fs
, . . . ,

N

fs
(3.1.16)

Where fs is the EEG sampling frequency, Nh is the number of harmonics, and

N the number of sampling points. Nh is a parameter that can be defined by

cross validation.

Support Vector Machine

Support Vector Machines (SVM) have been successfully used in classification of

SSVEP signal, and in BCI in general. The binary SVM decision function is of

the form:

y = f(x) = sgn

(
m∑

i=1

yiαik(x, xi) + b

)
, y ∈ {±1} (3.1.17)

where x is the sample variable, xi a sample in the training data with the label

yi ∈ {±1}. m is the number of data samples in the training set, αi the weight

of sample xi and b an offset. k(·, ·) is a kernel, i.e. a function that returns a

real number characterising the similarity between its inputs. In a Euclidean

space, the dot product would often be used as a linear kernel (3.1.21). Function

(3.1.17) defines a hyperplane of decision boundary that separates samples in

the negative class from samples in the positive class. SVM ignores the influence

of training samples xi that are very far away from the decision boundary by

setting their corresponding weight αi to zero. Thus, it only relies on a subset

of data close to the decision boundary. They are called Support Vectors. This

reduces model complexity and improves generalisation. Thought there could

possibly exist many hyperplanes that accurately separate data into their spe-

cific classes, SVM finds the unique hyperplane that has maximum margin of
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Details on various implementations of SVM classifiers can be found in [Chang

and Lin, 2011]

3.1.3 P300 Processing

P300 as well as other ERP components are time-locked deflections in the EEG

voltage in response to a sensory stimulus. The time-lock factor is the only

known parameter in ERP signals and has been a key factor in their processing.

Indeed other information about ERP components – such as phase, amplitude,

and period, are either unknown or changing. They are influenced by concurrent

or overlapping components.

Having a very small amplitude compared to the ongoing brain activity, ERP

components are analysed using their occurrence time information. They are

extracted through an averaging of many aligned signal segments of repeated

trials. After averaging, phenomena that are time-locked to the stimulus will

remain while unrelated EEG will cancel out. This requires that the experiment

be repeated a couple of time [Rakotomamonjy et al., 2005].

A spatial filter that builds upon the time-locked characteristic of ERP was

introduced by Rivet et al. [2009] and called xDAWN. It enhances a specific com-

ponent in ERP by extracting spatial components that best describe the ERP

features reconstructed through averaging of past trials. It is a major advance

in P300-based BCI and ERP analysis in general [Rivet et al., 2011]. Several

machine learning competition winners have relied on this approach [Barachant

and Congedo, 2014; Barachant et al., 2015]. Using xDAWN, P300 can be pro-

cessed online with a reduced number of trial repetitions, or even a single trial

for ERP identification.

xDAWN spatial filters can be coupled with any binary classifier used in P300

identification. Classification algorithms based on SVM and LDA described in

sections 3.1.1 and 3.1.2 have been particularly used in many successful P300

machine learning [Rakotomamonjy et al., 2005; Krusienski et al., 2008; Rivet

et al., 2009; Jrad et al., 2011; Cecotti et al., 2011; Mak et al., 2011].
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xDAWN

The first assumption made in xDAWN modelling is that the recorded EEG

signal is composed of two typical patterns P1 and P2, one evoked by the ERP

stimuli ( P1), and another evoked by any stimulus including ERP stimuli (P2).

The second assumption is that the ERP patterns lie in an evoked subspace,

hence could be enhanced by a spatial filter.

The first assumption yield the model

X = D1P1 +D2P2 +N, (3.1.24)

where D1 ∈ R
Nt×N1 and D2 ∈ R

Nt×N2 are Toeplitz matrices with first column

entries set to one at samples corresponding to ERP stimuli indexes and are zeros

otherwise. They define a sort of ERP response temporal distribution in over all

recorded EEG samples. N1 and N2 are the number of time samples considered

for P1 and P2 respectively. N is the residual noise.

Based on the second assumption, xDAWN searches for a spatial filter u∗
1 ∈

R
Ns that maximises the signal-to-signal-plus-noise ratio (SSNR) ρ(u):

u∗
1 = argmax

u

ρ(u), (3.1.25)

where the SSNR is estimated with

ρ̂(u) =
uT Σ̂1u

uT Σ̂Xu
, (3.1.26)

where Σ̂1 is the estimation of the covariance matrix of the matrix D1P1 and Σ̂X

is the estimation of the covariance matrix of the EEG signal X. The estimations

of covariances are based on estimations of both P1 and P2 [Rivet et al., 2011,

as described in ].

In practice (3.1.26) can be solved for an estimate of the spatial filter û1 with

the generalised eigenvalue decomposition (GEVD) of Σ̂1 and Σ̂X to obtain

Σ̂1û1 = λ1Σ̂Xû1, (3.1.27)

where λ1 is the largest eigenvalue returned by the GEVD, and û1 the associated

eigenvector.
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P1 can be factorised as P1 = a1w
T
1 where a1 ∈ R

N1 is the temporal pattern and

w1 ∈ R
Ns is its spatial distribution over channels. w1 is estimated as

ŵ1 = Σ̂Xû1. (3.1.28)

As a side note, the appellation xDAWN came from the initial method mod-

elling of the EEG signal X obtained in by Rivet et al. [2009]:

X = DAW T +N (3.1.29)

where A is the pattern of the synchronised response to the ERP stimulus, D is

the Toeplitz matrix defining the samples of the EEG epoch where the pattern

of the synchronised response are active (like a temporal distribution), W is the

spatial distribution of the ERP over channels, and N is the ongoing EEG.

3.1.4 Discussion

There is a variety of machine learning techniques that have been explored for

classification in brain-computer interfaces [Lotte et al., 2007; Nicolas-Alonso

et al., 2012; Bashashati et al., 2007; Khorshidtalab and Salami, 2011; Krusien-

ski et al., 2011]. The ones described in this section are among the most successful

and have thus been used recurrently in BCI research. While the design or the

choice of spatial filters is guided by the neurological phenomenon used in a par-

ticular BCI type, the classification is achieved using standard classifiers that

best separate the extracted features. Thus classifiers can be used interchange-

ably over various BCI types.

A remarkable fact about the discussed methods is that they all involve in a

way or another, an estimate of covariance matrices or scatter matrices. Indeed,

covariance matrices and scatter matrices capture a great deal of information

about the signal of interest in the EEG. They contain information such as spatial

patterns of neuronal activities involves in mental tasks, data distribution, and

data variance, which are all crucial for the classification task. It is also noticed

that nearly all algorithms – with the exception of kernel SVM are developed

from vector space or Euclidean space point of view. As has been said in chapter

1, and will be discussed in detail in chapter 5, covariance matrices lie on a

curved space where Euclidean geometry is not suitable [Congedo et al., 2013].
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BCI learning algorithms often face the curse of dimensionality, a phenomenon

that describes the relationship between the sample size (i.e. number of obser-

vations in training set) and dimensionality (i.e. dimension of feature space):

the amount of data needed to achieve sound statistical learning grows exponen-

tially with the dimensionality [Fukunaga, 1990; Foley, 1972; Kanal and Chan-

drasekaran, 1971; Raudys and Jain, 1991]. If the sample size to dimensionality

ratio is not large enough, the algorithms will be strongly biased. Although this

is a general problem in machine learning, it is particularly present is EEG-based

BCI, where a single observation is described by many features (e.g. time sam-

ples, frequency bands) from multiple sources. Such a big feature space would

require very large training samples which are not usually attainable. The sam-

ples are recoded through thorough experiment protocols that can be conducted

only for a relatively short period of time. A common way of alleviating the

curse of dimensionality is through feature selection and dimensionality reduc-

tion techniques such as PCA and ICA.

A small training set may also lead to the problem of overfitting. When the

training set is too small to represent the entire population, the model trained on

such data will describe a separating line that is dependent on processes specific

to the observed data rather than the global underlying discriminating factors

[Hill et al., 2006]. This also happens when the model is overtrained or too

complex for the task at hand. The fact that both spatial filter and classifier

parameters are learned from the same training sample increases the risks of

overfitting. In machine learning when the training set is deemed too small (or

non-existent) to train a statistical model, notions of domain adaptation and

transfer learning are used [Pan and Yang, 2010]. In domain adaptation, exiting

data drawn from a different distribution are adapted and used to train a task

on data from another distribution. In transfer learning, knowledge learned from

previous data is used to lighten the learning process and alleviate the lack of

training data. These two options are being investigated in machine learning for

BCI [Kang et al., 2009; Wang et al., 2015].
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3.2 Riemannian Approaches in Machine Learn-

ing

Information geometry provides useful tools for various machine learning and

optimisation problems. In machine learning, Symmetric Definite-Positive (SPD)

matrices have been used in various applications where features and data are only

considered in the Euclidean space. A typical case where SPD could be found in

machine learning is in covariance matrices which are of paramount importance

in feature representation (Section 3.1). The covariance matrices are constrained

to a special topology by their properties namely symmetry, positive definiteness,

strict positivity of the diagonal elements, and the Cauchy-Schwarz inequalities

(further discussed in Section 5.3.2). Indeed, covariance matrices lie in the space

of SPD matrices which is a subset of the Euclidean space when considered

with the scalar product. But the same space of SPD matrices, endowed with a

differential structure, induces a Riemannian manifold.

Riemannian geometry can improve machine learning algorithms, taking into

consideration the underlying structure of the considered space explicitly. Three

kinds of approaches in the literature use the data geometry in machine learning.

The first one relies on the mapping of the Riemannian manifold onto a Euclidean

vector space. One such mapping, called logarithmic mapping, exists between the

manifold and its tangent space, which is a Euclidean space, and has been used

in classification tasks for BCI [Barachant et al., 2012b, 2013b]. Other kernels

have been applied successfully to this end: Stein kernel, Log-Euclidean kernels

as well as their normalised versions [Yger, 2013]. The main idea is to map the

input data to a high-dimensional feature space, providing a rich and hopefully

linearly separable representation. The so-called kernel trick is to provide a

kernel function, which computes an inner product in the feature space directly

from points lying in the input space, defining a Reproducing Kernel Hilbert

Space (RKHS). The family of kernels defined on the Riemannian manifold allows

implementing extension of all kernel-based methods, such as SVM, kernel-PCA

or kernel k-means [Jayasumana et al., 2013]. Apart from the kernel approaches,

once the data are mapped onto a vector space, any machine learning algorithm

working in Euclidean space, such as LDA, could be applied [Barachant et al.,

2012a].
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A second kind of machine learning approach exploit the underlying geometry

of the data. Instead of mapping the data to a Euclidean space, either a tan-

gent space or an RKHS, the algorithms are adapted to Riemannian space. For

instance, sparse coding algorithm has been adapted to Riemannian manifold,

using the geodesic distance to estimate the data point and its sparse estimate

[Xie et al., 2013]. Similarly nonlinear dimensionality reduction techniques have

been adapted to Riemannian manifold, such as Laplacian Eigenmaps (LE), Lo-

cally Linear Embedding (LLE), and Hessian LLE. This adaptation was used to

cluster data using their pdfs [Goh and Vidal, 2008b] or covariance matrices [Goh

and Vidal, 2008a] as a feature. Another example is the adaptation of interpo-

lation and filtering of data to Riemannian space performed in [Pennec et al.,

2006], where an affine-invariant Riemannian metric is also proposed to offer a

geodesically complete manifold i.e. a manifold with no edge and no singular

point that can be reached in a finite time.

In the last kind of approach, instead of adapting existing algorithms from

Euclidean to Riemannian geometry, new algorithms are developed directly for

Riemannian manifolds. The minimum distance to Riemannian mean (MDRM)

relies on a Riemannian metric to implement a multi-class classifier and have

been applied on EEG. New EEG trials are assigned to the class whose average

covariance matrix is the closest to the trial covariance matrix [Barachant et al.,

2012a]. The MDRM classification can be preceded by a filtering of covariance

matrices, like in [Barachant et al., 2010b] where covariance matrices are filtered

with LDA component in the tangent space, then brought back to the Rieman-

nian space for classification with MDRM. Another example is the Riemannian

Potato [Barachant et al., 2013a], an unsupervised and adaptive artifact detec-

tion method, providing an online adaptive EEG filtering (i.e outlier removal).

Incoming signals are rejected if their covariance matrix lies beyond a predefined

distance z-score from the mean covariance matrix, computed from a sliding

window. With the same objective of achieving robustness to noise that affect

covariance matrices, Riemannian geometry is used to solve divergence functions

of pdfs [Amari, 2010]. This allows to reformulate the CSP as the maximisation

of the divergence between the distributions of data from two different classes

corresponding to two cognitive states [Samek et al., 2013; Samek and Muller,
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2014]. Using the beta divergence the obtained CSP is robust to outliers in sam-

ple covariance matrices and this algorithm is successfully applied to the EEG

filtering for BCI. Riemannian metrics are also used for the EEG channel selec-

tion [Barachant and Bonnet, 2011] and the selection of the most discriminatory

spatial filters in CSP [Barachant et al., 2010a].

Applications of Riemannian geometry to BCI mentioned thus far are focus-

ing on motor imagery (MI) paradigm. In MI experiments, the subject is asked

to imagine a movement (usually hand, feet or tongue), generating Event-Related

Synchronisation and Desynchronisation (ERD/ERS) in pre-motor brain area.

Riemannian BCI is well suited for MI experiments as the spatial information

linked with synchronisation is directly embedded in covariance matrices ob-

tained from multichannel recordings. However, for BCI that rely on Evoked

Potential such as SSVEP or Event Related Potential (ERP), as P300, both

frequential and temporal information are needed; the spatial covariance matrix

does not contain this information. To apply Riemannian geometry to SSVEP

and ERP, the sample covariance matrices can be defined from a rearrangement

of the recorded data. The rearrangement is done such that the temporal or

frequency information is captured [Congedo et al., 2013]. With similar motiva-

tions, Li et al. [2009, 2012] defined a new Riemannian distance between SPD

matrices that would take into account a weighting factor on matrices. They use

this new distance as a dissimilarity between weighted matrices of power spectral

density to classify EEG into different sleep state by k-nearest neighbours.

3.3 New Trend in BCI Systems

From the current state-of-the-art in BCI for control and communication (Chap-

ter 2), it has become clear that the limitations in this field are such that BCI

cannot replace traditional input modalities for human machine interface, nor

match their performance. This restrains the use of BCI to a population with

limited residual muscular ability to use traditional input devices.

Recently, research has been exploring ways of extending the use of BCI to a

larger population – including healthy subject, in applications that will suffer less

from BCI limitations such as the limited bandwidth (low information transfer

rate), the BCI illiteracy, the training required to intentionally alter or generate
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patterns of brain signals, as well as the cognitive workload involved in per-

forming the BCI tasks. This effort has resulted in applications (or modalities)

that tend to move away from fully relying on BCI as the sole input modal-

ity for human machine interfaces. The prominent examples in this trend are

hybrid brain-computer interfaces (hBCI) [Millan et al., 2010] and passive brain-

computer interfaces (pBCI) [Zander and Kothe, 2011]. In the following lines

both of them are further discussed.

3.3.1 Hybrid BCI systems

One way of alleviating limitations in BCI is to combine multiple modalities or

neurological phenomena. This has the potential of achieving higher information

transfer rate and increasing degree of freedom. It is also a way to compensate a

weakness in a particular type of brain-computer interface by relying on another

one. Many combinations are possible: SSVEP and motor imagery, P300 and

error related potential, etc. This has been suggested as a solution to BCI

illiteracy as a subject who is illiterate toward a particular BCI type, e.g. SSVEP,

might show efficiency in using another BCI type e.g. motor imagery.

The existing hBCI can be categorised according to (1) the type of signals

combined and (2) how the signals are combined to achieve the desired task.

According to the type of signal used, two types of hBCI are distinguished. In

the first type, different brain signals (e.g. motor imagery, evoked potentials)

are combined [Ferrez and Millan, 2008; Allison et al., 2010; Finke et al., 2011],

while in the second a brain signal is combined with other biosignals e.g. ECG

[Scherer et al., 2007] or EMG [Leeb et al., 2010]. The hBCI combining EMG and

a brain signal is the only case where the residual muscular functionalities of the

patients are used. Apart from this approach, residual muscular functionalities

have been combined with BCI in a neuroprosthesis where the patient uses arm

movement for reaching positions and BCI for grasping objects [Millan et al.,

2009, 2004]. Though in this approach BCI is used as an additional channel

to assistive technologies, using residual muscular functionality, BCI literature

refers to it also as hBCI [Millan et al., 2010].

Depending on the combination of interfaces (or control channel), several

control strategies are possible. The first one is to assign one specific task per
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interface. Another possibility is to merge all interfaces in a weighted combina-

tion to achieve a unique task with higher accuracy. Finally, they can be used

alternatively so as to allow users to smoothly switch from one interface to an-

other depending on their performance or preference. The work of Millan et al.

[2010] provides a comprehensive review of the existing hBCI approaches and

their applications.

3.3.2 Passive BCI

While BCI relies on brain activities intentionally controlled by the user, there is

a lot more information related to the user’s states not intentionally expressed,

that can be obtained from a real-time brain signal decoding (RBSD) and used

in human computer/machine interaction (HCI or HMI). For decades, RBSD

has been used for cognitive monitoring providing a way of looking into one’s

cognitive and affective states [Zander and Kothe, 2011]. Passive BCI uses this

implicit information as an additional input modality in HCI. Thus, the objective

of BCI is moved from control and communication to improving HCI by using

brain information not intentionally generated by the user. This opens BCI to

all HCI applications and to a larger population.

In BCI for communication and control, the brain activities are consciously

generated by the user either directly or indirectly resulting in a considerable

cognitive workload which is not present in pBCI. Zander and Kothe [2011]

categorises BCI in active, reactive, and passive. Active BCI and reactive BCI

are used for control and communication. In the first, the brain patterns are

directly and consciously controlled by the user (e.g. motor imagery). In the

second, they are indirectly generated with the help of external stimulus (e.g.

SSVEP).

pBCI does not require training users to generate specific patterns in brain

signals, and thus not affected by problems of BCI illiteracy and heavy cognitive

workload. Moreover pBCI does not suffer from the bandwidth limitation as it

is used on top of other HCI input modalities. pBCI uses various brain signal

features to infer information about the cognitive and affective state of the user

[George and Lécuyer, 2010]. Using this information, pBCI has been deployed

in many HCI applications. In gaming for instance, pBCI has been used to
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adapt the game interface and difficulty level to the affective and cognitive state

of the player. This has crucial importance as the whole point of recreational

activities such as games themselves is to relax, engage and entertain the user.

With pBCI it is possible to measure this information and adapt while the user

is still playing to ensure a balance between frustration, rewards, pleasure, etc.

for overall satisfaction [Cutrell and Tan, 2008; Girouard et al., 2013].

Similarly, pBCI can be used for adaptive control in delicate applications such

as aeroplane piloting, driving semi-autonomous cars, and automated industries.

As control can be shared between man and machine, pBCI can detect when man

control is likely to be defective–due to stress, fatigue, somnolence, etc., and allow

the machine to take over [Cutrell and Tan, 2008; George and Lécuyer, 2010].

pBCI can also be used to detect and correct errors in HCI. When a user

notices an erroneous response of a machine, an error related potential is evoked

in their brain, and can be used in pBCI to correct the error. Errors are very

common in active BCI and are more machine-made than human-made. With

pBCI, BCI systems can fix their own mistakes [Ferrez and del R. Millan, 2008;

Ferrez and Millan, 2008; George and Lécuyer, 2010].

pBCI is not only limited to human-machine interactions. Other applica-

tions include prevention of epileptic seizures [Liang et al., 2010], neurofeedback

[Huster et al., 2014; Hao et al., 2014], and music creation [Yuksel et al., 2015],

etc.

3.4 Proposed Approach

To address BCI problems raised in Section 1.2, namely user specificity, robust-

ness of EEG representation and learning, and sufficiency of training data, two

main avenues are explored: a hybrid BCI approach and a machine learning ap-

proach based on Riemannian geometry. The first aims at giving a solution to

the problem of BCI users’ specificity while the second tackles problems of EEG

representation and data sufficiency.
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A Hybrid BCI Approach

The hybrid approach taken in this work combines brain signals (cerebral com-

mands) with haptic command from user’s residual motor skills. This approach

offloads or takes a part of the control away from BCI by allowing the use of resid-

ual motor skills. The cerebral command limited by BCI state-of-the-art and the

haptic command limited by user residual abilities complement each other. It

has the advantage of reactive BCI systems; they only require the user to be

attentive to the external stimuli; the pattern generated are merely a natural

brain response. Thus, less training requires from the user, and lower cognitive

workload involved. A touchless interface is used as the input modality for hap-

tic commands. It is designed for a comfortable 3-D navigation, particularly for

users with limited hand control.

The concept of hybrid BCI has been known mostly as a combination of

various neurological phenomenon, combining various BCI types in one system.

In the largest sense, hybrid BCI has combined brain signals and other biosignals

[Millan et al., 2010]. In this work, the concept of hybrid BCI is stretched further

to include muscular commands. A SSVEP based BCI is used for the cerebral

command.

Machine Learning with Riemannian Framework

The proposed approach uses covariance matrices of EEG signals in a Rieman-

nian framework. The covariance matrices are key in the representation of in-

formation contained in the EEG signal and constitute an important feature in

their classification. They are handled with tools provided by the Riemannian

geometry to alleviate difficulties in current BCI machine learning. Using covari-

ance matrices as features, the machine learning pipeline depicted in Figure 3.8

is adopted. It consists of three main phases: offline model selection, training

phase, and classification. Unlike the one in Figure 3.1, it does not include a

spatial filtering phase.
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Chapter 4

Hybrid Brain-Computer
Interface

Anybody who has been seriously engaged in

scientific work of any kind realises that over

the entrance to the gates of the temple of

science are written the words: Ye must have

faith. It is a quality which the scientist cannot

dispense with.

— Max Planck

4.1 Introduction

Rehabilitation and assistive technologies aim at developing solutions adapted to

the subjects’ disabilities. A crucial aspect is to take into account the specifici-

ties of each person and to propose technical solutions which make use of their

residual motor capabilities. As a simple example, an electric wheelchair will not

interest someone who has still some strength in his upper limbs but the same

person could be interested by the assistance of an electric motor for driving a

manual wheelchair.

BCI, in their essence, overlook the muscular system. They do not rely on

subjects’ residual motor capabilities. But because of the limited performances of

current BCI systems, patients might desire to use their residual motor abilities.

In this case a system that allows patients to use both their brain signals and
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their residual motor abilities would be adequate and in-line with rehabilitation

principles.

Hence, in this work, we propose a new methodology for disabled people,

using a hybrid approach where a physical interface is complemented by a brain-

computer interface.

The contribution is threefold : we define a new methodology for a shared

control system, we introduce a new learning scheme for BCI and we propose

an implementation of the whole system in two applications of rehabilitation

robotics.

The proposed system makes use of user’s residual motor abilities and of-

fers BCI as an optional choice: the user chooses when to rely on BCI and

could alternate between the muscular- and brain-mediated interface at the ap-

propriate time. The hybrid system integrates a 3D touchless interface based

on IR-sensors [Martin et al., 2012] that captures hand poses and an SSVEP-

based BCI. Such an approach combines these two interfaces in a multimodal

BCI-motor system that takes advantage of both the user’s brain signals and her

residual motor ability.

Regarding the touchless interface, the IR-based interface does not need to

be held by the user, thus not requiring any grasping capability. It provides a

three degrees of freedom controller. On the neural side, an SSVEP-based BCI

is used and a novel algorithm based on Canonical Correlation Analysis (CCA)

is used to classify SSVEP epochs.

4.2 Proposed Hybrid Interface

The proposed hybrid approach is illustrated in Figure 4.1. The user – a person

with motor disabilities – is given two modalities to control the system. The

first modality is an input device that takes a signal generated by users’ motor

action. This might be any type of device that is adapted to the subject’s

disability, allowing her to use her residual motor ability. This modality is used

for the continuous control of the system.

The second modality, which is based on the EEG, is used to provide an

additional command, giving alternative control options to the user, or a special

command to activate a common and repetitive task. In this work, the continuous
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six positions for a number of times.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.2: The 3D touchless interface and a user’s hand positions for different
commands: (a) left, (b) right, (c) up, (d) down, (e) forward, (f) backward,
(g) rest. The IR-sensors are in the black plastic housing on the right side of
the hand and around the wrist. Another symmetrical plastic housing has been
realised for left-handed users.

The control system relies on an iterative k-Nearest Neighbours (kNN) scheme

to learn hand poses of each user. Firstly, the iterative kNN scheme requires a

fast calibration phase to learn the different hand poses, here seven (six for

the directions and one for the resting position). The outliers and ambiguous

examples are excluded from the training examples. Secondly, the algorithm

continuously adapts to the received signal, labelling new examples change the

set of neighbours. This algorithm is able to track the changes of the user’s hand

pose, providing an online adaptation to the behavioural modifications induced
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by tiredness. For more details on the algorithm, see[Martin et al., 2012]. The

six hand positions recognised by IR-interface is used to control a four degrees-of-

freedom robotic arm exoskeleton developed in the ESTA project [Baklouti et al.,

2008] to compensate for motor deficiency in the upper limb (Figure 4.4). More

generally, it can be used by patients as well as healthy subjects in applications

where navigation in a 3D Euclidean space is needed.

4.4 SSVEP-based BCI

4.4.1 Material and EEG Recording

The g.Mobilab+ device (shown in Figure 4.3) is used for recording EEG at

256 Hz on 8 channels.

Figure 4.3: Acquisition material, the EEG is recorded with electrodes, the signal is amplified
and sent to a computer running OpenVIBE.

For SSVEP stimulation, flash stimulus technique has been chosen. To avoid

limitations imposed by refresh rate of computer screens, a microcontroller is

set up to flash stimuli with light-emitting diodes (LED) at frequencies F =

{13, 17, 21} Hz. The device has been controlled and the LED blinking is precise

up to the millisecond. The eight electrodes are placed according to the 10/20

system on Oz, O1, O2, POz, PO3, PO4, PO7 and PO8. The ground was placed

on Fz and the reference was located on the right (or left) ear lobe.

In this study, 12 male and female subjects aged between 20 and 32 years par-

ticipated in the experiment. Informed consent was obtained from all subjects,

each one has signed a form attesting their consent. The subject sits in an elec-

tric wheelchair, his right upper limb is resting on the exoskeleton (Figure 4.4).

The exoskeleton is functional but is not used in the offline recordings.

A panel of size 20x30 cm is attached on the left side of the chair, with three

groups of four LEDs blinking at different frequencies. Despite the panel being on
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Figure 4.4: Experimental setting: subject sitting on an electric wheelchair
equipped with a robotic arm exoskeleton. During offline recordings, the ex-
oskeleton and the touchless interface are disabled; the subject performs the
SSVEP task as prompted by audio cues.

the left side, users can see it without moving their head. The subjects were asked

to sit comfortably in the wheelchair and to follow the auditory instructions, they

could move and blink freely. A sequence of trials is proposed to the user. A

trial begins by an audio cue indicating which LED to focus on, or to focus on

a fixation point set at an equal distance from all LEDs for the reject class. A

trial lasts five seconds and there is a three second pause between each trial. The

evaluation is conducted during a session consisting of 32 trials, with 8 trials for

each frequency and 8 trials for the reject class (or resting class), i.e. when the

subject is not focusing on any specific blinking LED.

The experiments were conducted at the Laboratoire d’Ingénierie des Systèmes

de Versailles (LISV) of the Université de Versailles Saint-Quentin-en-Yvelines,

Paris-Saclay.

4.4.2 Signal Processing

The measured EEG signal is treated with a processing pipeline that offers state-

of-the art BCI performance. EEG epochs of three seconds are gathered every

0.5 second. Each epoch is filtered between 12 Hz and 45 Hz to discard irrelevant
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bands while allowing all stimulation frequencies and their first harmonics.

A spatial filter is then designed based on CCA method described in Sec-

tion 3.1.2. Unlike the work of [Lin et al., 2006], which propose to rely on the

correlation coefficient of CCA for processing SSVEP signals, in this work CCA

is only applied to determine the spatial filter wX .

With the signal being recorded at 256 Hz with eight electrodes, the size of a

3-second EEG trial is 8×768 (X ∈ R
8×768). And let Y ∈ R

H×N be a multivariate

signal representing the SSVEP stimulation signal. As described in Section 3.1.2,

CCA finds the mappings wX ,wY ∈ R
8 that maximises the correlation between

the wT
XX, and wT

Y Y . The signal x = wT
XX is a linear combination of all the

electrodes and is expected to maximise the correlation with a hypothetically

perfect neural response, that is the sinusoids of Y . A similar approach can be

found in [Spüler et al., 2012] but in a different context and using x to generate

exemplars for supervised learning. After filtering, a multiclass SVM classifier

with RBF kernels is used for classification (refer to Section 3.1.2). It is given as

input the power spectral densities extracted from the spatially filtered signal x,

and output a class k ∈ {13Hz, 17Hz, 21Hz, resting}. The LIBSVM [Chang and

Lin, 2011] package is used for SVM implementation.

4.5 Applications

The described approach is validated in two contexts: a Virtual Environment

(VE) for the navigation of a helicopter shown in Figure 4.7, and an exoskeleton

arm control task shown in Figure 4.8. In the VE, the user is asked to reach

three waypoints. Three specific locations are identified in the VE to serve

as shortcuts. In previous works, locations of this nature have been used as

a predefined final destination [Lotte et al., 2010], while we only use them as

shortcuts. After reaching these locations using BCI commands, the user could

reach any position using the 3D-touchless interface.

The approach with the exoskeleton arm bears some similitude with the VE

navigation task. The arm is controlled with the 3D-touchless interface. Com-

mon arm movements performed by the user are predefined (e.g. reaching the

mouth or a resting position). The BCI shortcut trigger the automatic arm

movement to these positions.
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The hybrid scheme is especially well suited for exoskeleton arm control task:

as the arm is continuously controlled by the 3D touchless interface, once the

user has grabbed an object (e.g. a glass of water), she will no longer be able

to move her hand freely to control the touchless interface. The BCI command

allows to overcome this limitation by activating predefined movements.

4.6 Experimental Results

This section describes the results obtained with the proposed system. Out of

twelve subjects who participated in the offline EEG recording, only five partici-

pated in the online experiment in the virtual environment. One of the subjects

is hemiplegic and the four others are healthy. The first section is dedicated

to the assessment of the proposed online detection of SSVEP algorithm. The

second section provides the results obtained using the hybrid system for a navi-

gation task in a virtual environment. The last section explained how the system

has been implemented on an embedded system for an exoskeleton arm control

task.

4.6.1 Validation of Proposed SSVEP Algorithm

Before using the BCI subsystem in online mode, a calibration phase is needed

to compute the CCA spatial filter and training the SVM classifier. During

the calibration phase, a sequence of trials is proposed to the user. The online

classification is done every 0.5 second, using a tW = 3 s window of EEG signals.

An audio feedback indicates the predicted class to the user.

Figure 4.5 shows the online BCI classification performances for each predic-

tion made every 0.5 second, starting at t = t0 + tW , that is three seconds after

the beginning of the trial t0. The y-axis indicates the error rate for each of

the five subjects. The results demonstrate that the proposed algorithm is very

robust and provides a very reliable response after t + 2 s with a small mean

error rate for all subjects.

To further evaluate the algorithm, it is important to consider that the loss

function is not uniform. If the algorithm detects a reject class instead of a spe-

cific class, the consequences are not as bad as a wrong prediction: e.g. detecting

71



Table 4.1: Comparison with other algorithms

Subject1 Subject2 Subject3 Subject4 Subject5

Baseline 81.3 88.3 80.0 75.0 79.2

ICA 100 88.3 91.7 93.3 95.0

CCA 100 100 97.5 93.3 96.7

13 Hz instead of 17 Hz, as the user needs only to concentrate half a second on

the chosen LED before the system make another prediction. Thus we propose

the following accuracy measure, similar to a precision score. For each trial,

we consider the first class prediction at time t: if this is correct the accuracy

is increased, if this is false the accuracy is decreased. If the prediction is the

reject class, the accuracy measure is only postponed on the next time segment.

Figure 4.6 displays the results of this measure for all subjects. The accuracy is

above 70% for almost all subjects and it can be seen that the algorithm provides

almost immediately the correct answer.

At last, we compare the proposed algorithm with classical SSVEP approaches

in Table 4.1, using an offline evaluation for each subject. The baseline is a com-

parison with a SVM using the PSD of the EEG signal, that is without applying

the CCA spatial filter. A classical methodology is to rely on ICA to extract the

main components of the signal and to provide these components to the SVM

classifier. Table 4.1 shows that the proposed algorithm yields the best results.

4.6.2 Experiments in Virtual Environment

For the navigation task in the virtual environment, the assessment is based on

the time spent and the distance travelled during the experiment for four sub-

jects. These results are shown in Table 4.2. The time is indicated in seconds

and the distance in metric units. Each subject has performed three experi-

ments: in the first experimental condition, the subject should rely only on the

3D touchless interface (‘None’ in Table 4.2). In the second one, shortcuts are

available and are triggered by the BCI subsystem (BCI-S). In the last experi-

mental condition, the subject could trigger a shortcut using a keyboard (KB-S).

The fourth subject is hemiplegic and she could not use the keyboard with her
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Figure 4.5: Evaluation of the online performances of the proposed BCI algo-
rithm. The error rates for all five subjects are indicated as a function of time,
with t+0 indicating the first prediction made (after tW = 3 s). The error rates
are averaged on all classes.

spare hand. Thus, her results do not include the last experimental condition.

In Table 4.2, next to the BCI and keyboard shortcut, a percentage indi-

cates the relative improvement compared to the reference experiment (without

shortcut). It could be seen that distance covered is almost equivalent with BCI

shortcuts and keyboard shortcuts, which is the expected results as users have

activated the shortcut each time it was possible. When the shortcuts are acti-

vated by the BCI, the task is slower than when using the keyboard. This effect

is mainly caused because the subject need to focus at least three seconds on a

blinking LED before triggering the shortcut.

4.6.3 Application to Exoskeleton Arm Control

The proposed system has been applied to the ESTA exoskeleton arm control.

This assistive device is designed to compensate shoulder and elbow deficiencies

occurring in degenerative diseases. The subject controls the exoskeleton arm

73



t+0 t+0.5 t+1 t+1.5 t+2 t+2.5 t+3 t+3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Trial time (s)

 

 

Subject1
Subject2
Subject3
Subject4
Subject5

Figure 4.6: Assessment of the accuracy of classification depending on the time
of the prediction. On x-axis, t+0 indicates the first prediction made three
seconds after the start of a trial. The results are averaged on all trials for each
subject. Subject 1 is the only one to present a slight increase of the classification
accuracy. For all other subjects, the algorithm proposes a correct answer as the
first prediction.

with the touchless interface and the BCI shortcuts allow to reach predefined

positions, such as a resting or a close-to-mouth positions. In the case of the

hemiplegic subject (who cannot use her left arm and hand), the BCI subsystem

is the only possibility to control the exoskeleton with an object in hand. This

example illustrates the complementary aspect of the two interfaces, the physical

and the brain one.

Figure 4.8 illustrates an application of the proposed hybrid interface on the

ESTA chair. The user is seated in an environment where he can perform daily

life routine. In this case, next to a table where a phone and a glass of water are

placed on (to represent objects that are commonly used). The user can reach to

the table, and pick an object of his choice and manoeuvre it around. His arm is

supported with the robotic exoskeleton and he is given the touchless interface

and the BCI in the hybrid multimodal framework to control it. As with in the
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Figure 4.7: Experiment in the virtual environment. Here the subject is using
the 3D touchless interface with his right hand and the SSVEP LEDs are put
in front of him. The screen displays a helicopter in the virtual environment.
The subject should pass through all waypoints, materialised by red (or grey)
disks on the screen. When the subject triggers a shortcut, the helicopter is
automatically moved to a location materialised by the transparent ball.

VR environment, regions of interest can be defined in a daily life environment.

These regions are the most visited and trajectories leading to them can be

optimised and recorded. In the current experiment, the table and the user’s

face (mouth), and the resting positions are defined as regions of interest. Their

trajectories are optimised, recorded and can be triggered automatically. In this

way, the user can use BCI commands to trigger movement to regions of interest.

The touchless interface can then be used for it continuous control to reach local

positions. The IR interface can be turned on and off using a BCI command.

This will allow the user to move his hand even when he does not intend to send

a command to the touchless interface.
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Table 4.2: Distance covered and duration of experiments, without shortcuts
(None), with BCI-activated shortcuts (BCI-S) and with keyboard-activated
shortcuts (KB-S).

None BCI-S (inc. %). KB-S (inc. %).

Subject 1
Time 108.9 68.3 (37.3%) 53.56 (50.8%)

Distance 1367.7 538.2 (60.6%) 535.0 (60.9%)

Subject 2
Time 99.2 74.7 (24.7%) 50.5 (49.1%)

Distance 1469.4 529.1 (64.0%) 549.0 (62.6%)

Subject 3
Time 105.5 63.4 (39.9%) 50.4 (52.2%)

Distance 1447.3 627.6 (56.6%) 542.1 (62.5%)

Subject 4
Time 125.6 70.4 (43.9%) –

(hemiplegic) Distance 1490.8 598.9 (59.8%) –

4.7 Conclusion

In this chapter a new methodology for designing hybrid systems was proposed.

It uses a brain interface and physical interface specifically design to fit the

user’s needs. The main goal of this hybrid system is to assist people with motor

disabilities or muscular diseases, by proposing a system that adapts to their

individual needs, and makes use of their residual abilities. The BCI is integrated

in the system as a secondary modality, which is used to trigger specific behaviour

or predefined actions.

A first contribution is to propose an implementation of such a system using

a 3D touchless interface and a SSVEP-based BCI. This implementation gathers

the two interfaces in a multimodal system which benefits from both the brain

and motor signals. The second contribution is to describe a novel algorithm for

processing SSVEP-based EEG signals, with stable results, even when computed

in an online setup. This algorithm is compared to other existing solutions and

an experimental assessment of its validity is conducted.

The full system is evaluated on a 3D navigation task in virtual environment.

The results demonstrate that the system is functional and could be used to

assist people in various contexts. The system is lastly used to control the ESTA

arm exoskeleton: the system is functional and could be adapted for controlling
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(a) (b)

(c) (d)

Figure 4.8: Subject sitting on the ESTA wheelchair. His arm is supported by
the exoskeleton, and the left hand is lying on the touchless interface. On his
right-hand side is the SSVEP stimulation board. He is fitted with an EEG cap
for brain signals recording. Next to the exoskeleton, an object is put on a table.
(a) The subject is in resting position. He is gazing at the 17 Hz LED to trigger
an automatic trajectory to the table. (b) Subject has reached the table and is
using the touchless interface to reach and grab the glass (c) Glass in hand, the
user gazing at the 13 Hz LED to activate the automatic trajectory to mouth.
(d) The arm reaches the mouth while the touchless interface is deactivated.

other assistive devices.

Although a good classification accuracy is achieved with the proposed method

based on CCA and SVM, this work focuses more on BCI framework to im-

prove the BCI usability and adaptability to the physical needs of subjects. The

proposed framework answers the problem of variability in physical aptitude
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amongst patients and users of BCI. Future work will be focused on the signal

processing and machine learning methods that tackle variability in the brain

response and in the experimental environment.
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Chapter 5

Riemannian Geometry for
Brain-Computer Interfaces

The history of science has proved that

fundamental research is the lifeblood of

individual progress and that the ideas that lead

to spectacular advances spring from it.

— Sir Edward Appleton

5.1 Riemannian Manifold of Symmetric Positive-

Definite Matrices

A m-dimensional manifold M is a Hausdorff space for which every point has

a neighbourhood that is homeomorphic to an open subset of Rm [Jost, 2011].

When a tangent space is defined at each point, M is called a differential mani-

fold. A geodesic γ is the shortest smooth curve between two points, Σ1 and Σ2.

The tangent space TΣM at point Σ is the vector space spanned by the tangent

vectors of all geodesics on M passing through Σ. A Riemannian manifold is a

manifold endowed with an inner product defined on the tangent space, which

varies smoothly from point to point.

For the rest of this chapter, we will restrict to the analysis of the manifold

MC of the C × C symmetric positive-definite (SPD) matrices, defined as:

MC =
{
Σ ∈ R

C×C : Σ = Σ⊺ and x⊺Σx > 0, ∀x ∈ R
C\0

}
.
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The tangent space TΣMC is identified to the Euclidean space of symmetric

matrices:

SC =
{
Θ ∈ R

C×C : Θ = Θ⊺
}

.

The dimension of the manifold MC , and its tangent space TΣMC , is m =

C(C + 1)/2.

The mapping from a point Θi of the tangent space to the manifold is called

the exponential mapping ExpΣ(Θi): TΣMC → MC and is defined as:

ExpΣ(Θi) = Σ
1
2 Exp(Σ− 1

2ΘiΣ
− 1

2 )Σ
1
2 . (5.1.1)

Its inverse mapping, from the manifold to the tangent space is the logarithmic

mapping LogΣ(Σi): MC → TΣMC and is defined as:

LogΣ(Σi) = Σ
1
2 Log(Σ− 1

2ΣiΣ
− 1

2 )Σ
1
2 . (5.1.2)

Exp(·) and Log(·) are the matrix exponential and matrix logarithm respectively.

The computation of these operators is straightforward for SPD matrices of MC .

They are obtained from their eigenvalue decomposition (EVD):

Σ = U diag(λ1, . . . , λC)U
⊺ ,

Exp(Σ) = U diag(exp(λ1), . . . , exp(λC))U
⊺ ,

Log(Σ) = U diag(log(λ1), . . . , log(λC))U
⊺ ,

where λ1, . . . , λC are the eigenvalues and U the matrix of eigenvectors of Σ. As

any SPD matrix can be diagonalised with strictly positive eigenvalues, Log(·)
is always defined. Similarly the square root Σ

1
2 is obtained as:

Σ
1
2 = U diag(λ

1
2
1 , . . . , λ

1
2
C)U

⊺ ,

and is unique. The same goes for Σ− 1
2 .

The tangent vector of the geodesic γ(t) between Σ1 and Σ2, where γ(0) = Σ1

and γ(1) = Σ2 is defined as:

v =
−−−→
Σ1Σ2 = LogΣ1

(Σ2) . (5.1.3)
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5.2 Covariance Matrix Estimation

When working with covariance matrices, a crucial point is to correctly estimate

the covariance when the number of samples is small or heavily corrupted by

noise. Several approaches have been proposed to build the covariance matri-

ces, relying on normalisation or regularisation of the sample covariances. To

assess the quality of the covariance matrices obtained from EEG samples, a

comparative study of these estimators is conducted.

Let xn ∈ R
C , n = 1, . . . , N , denotes a sample of a multichannel EEG trial

recorded on C electrodes. N is the trial length. Let X ∈ R
C×N be the EEG

trial such as X = [x1, . . . , xN ]. Under the hypothesis that all N samples xn are

randomly drawn from a distribution, it follows that x is a variable of random

vectors and its expected vector is ω = E{x} [Fukunaga, 1990]. The covariance

matrix of the random variable x is defined by Σ = E{(x− ω)(x− ω)⊺} and is

unknown, thus an estimate Σ̂ should be computed. The choice of the appropri-

ate estimator is crucial to verify that the obtained covariance matrices fulfil the

following properties: they should be accurate, SPD, and well-conditioned. The

last property requires that the ratio between the maximum and minimum sin-

gular value is not too large. Moreover, to ensure the computational stability of

the algorithm, the estimator should provide full-rank matrices, and its inversion

should not amplify estimation errors.

5.2.1 Sample Covariance Matrix Estimator

The most usual estimator is the empirical sample covariance matrix (SCM),

defined as:

Σ̂scm =
1

N − 1

N∑

n=1

(xn − x̄)(xn − x̄)⊺

=
1

N − 1
X

(
IN − 1

N
1N1

⊺

N

)
X⊺ ,

(5.2.1)

where x̄ ∈ R
C is the sample mean vector x̄ = 1

N

∑N
n=1 xn. In the matrix

notation, IN is the N ×N identity matrix and 1N is the vector [1, . . . , 1]. The
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SCM is often normalised as [Fukunaga, 1990]:

Σ̂nscm =
C

N

N∑

n=1

(xn − x̄)(xn − x̄)⊺

σ2
xn

, (5.2.2)

with the inter-channel variance at time n defined as σ2
xn

= (xn − x̄)⊺(xn − x̄).

Another normalisation techniques could be used.

This estimation is fast and computationally simple. However when C ≈ N ,

the SCM is not a good estimator of the true covariance. In the case C > N ,

the SCM is not even full rank.

5.2.2 Shrinkage Covariance Matrix Estimators

To overcome the shortcomings of SCM, the shrinkage estimators have been

developed as a weighted combination of the SCM and a target covariance matrix,

which is often chosen to be close to the identity matrix, i.e. resulting from

almost independent variables of unit variance.

Σ̂shrink = κΓ + (1− κ)Σ̂scm , (5.2.3)

where 0 6 κ < 1. This estimator provides a regularised covariance that outper-

forms the empirical Σ̂scm for small sample size, that is C ≈ N . The shrinkage

estimator has the same eigenvectors as the SCM, but the extreme eigenvalues

are modified, i.e. the estimator is shrunk or elongated toward the average.

The different shrinkage estimators differ in their definition of the target

covariance matrix Γ. Ledoit and Wolf [Ledoit and Wolf, 2004] (Σ̂shrink ledoit on

Figure 5.2) have proposed Γ = vIC , with v = Tr(Σ̂scm). Blankertz [Blankertz

et al., 2011] (Σ̂shrink blank) defines Γ also as vIC but with v = Tr(Σ̂scm)
C

. Schäfer

(Σ̂shrink schaf) proposes several ways of defining Γ depending on the observed

Σ̂scm [Schfer and Strimmer, 2005].

5.2.3 Fixed-Point Covariance Matrix Estimator

The fixed-point covariance matrix [Pascal et al., 2005] is based on the maximum

likelihood estimator ℓ̂ which is a solution to the following equation:

Σ̂fp = ℓ̂ =
C

N

N∑

n=1

(
(xn − x̄)(xn − x̄)⊺

(xn − x̄)⊺ℓ̂−1(xn − x̄)

)
. (5.2.4)
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As there is no closed form expression to Eq. (5.2.4), it can be written as a

function of ℓ̂: g(ℓ̂) = Σ̂fp. g admits a single fixed point ℓ̂∗, where g(ℓ̂∗) = ℓ̂∗,

which is a solution to Eq. (5.2.4). Using ℓ̂0 := Σ̂nscm as the initial value of ℓ̂, it

is solved recursively as ℓ̂t −→
t→∞

ℓ̂∗.

5.3 Classification of SSVEP Covariance Matri-

ces

5.3.1 Machine Learning Approach for Classification

From multiple labelled observations, belonging to two or more classes, and a new

unlabelled observation, the classification task objective is to assign to the class

whose elements share similar properties with the considered observation. In

this article, we make two hypotheses that are commonly acknowledged in EEG:

the data distribution is Gaussian and classes have identical dispersions. Given

labelled observations xi drawn from two classes (yi = 1 or yi = −1), a simple

classification algorithm consists in assigning a previously unseen observation to

the class with the closest mean. This simple algorithm requires only to define a

computable distance and mean. Assuming that the observations are embedded

into a dot product space, e.g. Euclidean space, the mean can be expressed as:

c+ =
1

m+

∑

{i|yi=+1}

xi , (5.3.1)

c− =
1

m−

∑

{i|yi=−1}

xi , (5.3.2)

where yi ∈ {+1,−1} is the label of the training observation xi, m+ and m− the

number of positive and negative observations respectively. An unseen observa-

tion x is assigned to the class whose mean is the closest. This simple geometric

classification framework is the founding principle of more complex algorithms

such as support vector machines. It can be formulated in terms of the dot prod-

uct 〈·, ·〉. If c = (c+ + c−)/2 is the point lying halfway between c+ and c−, and

w = c+ − c− the vector connecting c+ to c−, the class label y of the unseen

observation x is determined by checking whether the vector x− c connecting c
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to x make an angle α < π/2 with w. This is expressed as:

y = sgn 〈(x− c), w〉

= sgn 〈(x− (c+ + c−)/2), (c+ − c−)〉

= sgn(〈x, c+〉 − 〈x, c−〉+ b)

(5.3.3)

where sgn is the sign function. The offset b vanishes if class means are equidis-

tant to the origin Scholkopf and Smola [2001].

This thesis focuses on a simple classification scheme, which assigns a previ-

ously unseen observation to the class with closest mean. The observations are

considered in a different feature space, through their covariance matrices, which

is not usual in signal processing for BCI. Most approaches favour more or less

complex scheme relying on the estimation of covariance matrices, but consider

only Euclidean metrics for the practical computations. The proposed approach

is built upon Riemannian metrics and divergences, and their associated mean.

5.3.2 Means of Covariance Matrices

The covariance matrix of X which can be estimated with the sample covariance

estimator as

Σ̂ =
1

N
XX⊺ (5.3.4)

is symmetric positive-definite (SPD). Other estimators seen in Section 5.2 are

also producing SPD matrices. The properties of SPD matrices constrain them

to a convex cone:

(i) Symmetry: Σ = Σ⊺

(ii) Positive definiteness: x⊺Σx > 0, ∀x ∈ R
C\0

(iii) Strict positivity of diagonal elements: Σij > 0|i = j, ∀i, j ∈ {1, . . . , C} i.e.

positive variance.

(iv) Cauchy-Schwarz inequalities: |Σij| ≤ (ΣiiΣjj)
1/2, ∀i, j ∈ {1, . . . , C}

The mean of SPD matrices can be computed as a centre of mass: given a set

of covariance matrices {Σi}i=1,...,I , the centre of mass Σ̄ is the covariance matrix
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that minimises the dispersion of matrices Σi:

Σ̄ = µ(Σ1, . . . ,ΣI) = arg min
Σ∈MC

I∑

i=1

dp(Σi,Σ) , (5.3.5)

where dp(·, ·) can either be a distance (p = 2) between two matrices, or a

divergence (p = 1).

In the literature, this mean is shown to have a unique solution and is at times

designated as the geometric mean, Cartan mean, Frechet mean, or Karcher mean
1 Ando et al. [2004]; Lim and Pálfia [2012]. Depending on the divergence or

distance used, different means can be defined from (5.3.5). Those considered in

this study are presented below and summarised in Table 5.1.

Distances and Divergences

Divergences and distances are measures of dissimilarity between two points in

a space. Here the Riemannian space will be considered. A distance function

d : M×M → R
+ has the following properties for all Σ1,Σ2,Σ3 ∈ M:

(i) d(Σ1,Σ2) ≥ 0 non-negativity

(ii) d(Σ1,Σ2) = 0 iff Σ1 = Σ2 identity

(iii) d(Σ1,Σ2) = d(Σ2,Σ1) symmetry

(iv) d(Σ1,Σ3) ≤ d(Σ1,Σ2) + d(Σ2,Σ3) triangular inequality

Divergences are very similar to distances with the difference that properties

(iii) and (iv) do not have to be satisfied. In the context of Covariance matri-

ces, divergences and distances should both induce a Riemannian metric on the

manifold of SPD matrices.

In this work, we consider several existing distances and their associated

mean, namely the Euclidean distance, the Harmonic distance Lim and Pálfia

[2012], the Affine-invariant Riemannian distance Pennec et al. [2006], the Log-

Euclidean distance Arsigny et al. [2007], the Wasserstein distance Villani [2008],

and divergences, such as the Kullback-Leibler divergence Nielsen and Nock

[2009], the S-divergence Sra [2016], the α-divergence Nielsen et al. [2014], the

Bhattacharyya divergence Chebbi and Moakher [2012].

1This appellation has been recently criticised by Karcher himself Karcher [2014].
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Euclidean Distance

The Euclidean distance between two matrices is represented by the Frobenius

norm of their difference:

dE(Σ1,Σ2) = ‖Σ1 − Σ2‖F =
√
tr ((Σ1 − Σ2)T (Σ1 − Σ2)) . (5.3.6)

In (5.3.5), this yields the arithmetic mean:

Σ̄E =
1

I

I∑

i=1

Σi . (5.3.7)

The arithmetic mean is drawn from a family of power means Lim and Pálfia

[2012], defined as:

Σt =

(
1

I

I∑

i=1

Σt
i

) 1
t

, t ∈ [−1,+1] . (5.3.8)

and could be expressed as Σ̄E = Σt|t=1. From the same family, one can also

define the harmonic mean as Σ̄H = Σt|t=−1.

We consider the arithmetic mean Σ̄E, as a baseline. This arithmetic mean

is not adequate in the space of SPD matrices for two main reasons. First, the

Euclidean distance and the arithmetic mean does not guarantee invariance under

inversion know as duality, and thus could not guarantee that a matrix and its

inverse are at the same distance from the identity matrix. Second, the arithmetic

mean of covariance matrices leads to a swelling effect : the determinant of the

arithmetic mean of SPD matrices can be larger than the determinant of its

individual components. And since the determinant of a covariance matrix is

a direct measure of the dispersion of the multivariate variable, the swelling

effect introduces a large distortion of the data dispersion Arsigny et al. [2007].

For these reasons, it is more appropriate to rely on a mean that adapt to the

geometry of the SPD matrices.

Affine-Invariant Riemannian Distance

The convex cone of SPD matrices is a manifold that can be endowed with

a Riemannian metric; such manifolds are called Riemannian manifold. The
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affine-invariant Riemannian (AIR) distance between two points is defined by

the length of the curve connecting these points on the Riemannian manifold

known as the geodesic Pennec et al. [2006].

Let M be a Riemannian manifold, and TΣM its tangent space defined on

the point Σ. A Riemannian metric d is a family of inner product defined on

the tangent space defined on each point Σ of the manifold. This inner product

varies smoothly from point to point on the manifold,

dΣ : TΣM× TΣM → R

d is a function that assigns, for each point Σ ∈ M, an inner product in the

tangent space TΣM . The Riemannian metric allows to compute the length of

vectors or distance between two points on the tangent space.

The affine-invariant Riemannian distance is the distance between two points

of a Riemannian manifold and is defined as:

dAI(Σ1,Σ2) = ‖Log(Σ−1/2
1 Σ2Σ

−1/2
1 )‖F =

(
C∑

c=1

log2 λc

)1/2

, (5.3.9)

where Log is the matrix logarithm and λc, c = 1, . . . , C, are the eigenvalues of

Σ−1
1 Σ2. This expression is obtained by solving the geodesic equations on the

space of SPD matrices.

Inserting (5.3.9) in (5.3.5) yields the mean Σ̄AI associated to the affine-

invariant Riemannian metric. It is the solution to:

I∑

i=1

Log(Σ̄
−1/2
AI ΣiΣ̄

−1/2
AI ) = 0 . (5.3.10)

It has no closed form solution and can be solved iteratively through a gradient

descent algorithm Fletcher et al. [2004].

This distance and mean are invariant to affine transformations. Some of

these invariances are particularly interesting for the SPD matrices Let f be

an affine-invariant Riemannian function defined on M × M (e.g. distance or

mean), it displays the following properties:

(i) Invariance under congruent transformation, for any invertible matrix W

f(Σ1,Σ2) = f(W ⊺Σ1W,W ⊺Σ2W ) (5.3.11)
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(ii) Invariance under inversion

f(Σ, I) = f(Σ−1, I) (5.3.12)

implying self-duality

f(Σ1,Σ2) = f(Σ−1
1 ,Σ−1

2 ) (5.3.13)

Another interesting property of the affine-invariant Riemannian metric is its

invariance to left- and right-multiplication by a positive matrix Arsigny et al.

[2007]:

f(Σ1,Σ2) = f(ΣΣ1,ΣΣ2) = f(Σ1Σ,Σ2Σ) . (5.3.14)

Log-Euclidean Distance

The Log-Euclidean is another distance that takes into consideration the topol-

ogy of Riemannian manifold. It was introduced to alleviate the complexity

involved in the computation of the affine-invariant Riemannian distance and its

related mean Arsigny et al. [2007]. The mean associated to the Log-Euclidean

distance corresponds to an arithmetic mean in the domain of matrix logarithms.

The distance between two SPD matrices is expressed as:

dLE(Σ1,Σ2) = ‖Log(Σ1)− Log(Σ2)‖F , (5.3.15)

and its associated mean is defined explicitly:

Σ̄LE = Exp

(
1

I

I∑

i=1

Log(Σi)

)
. (5.3.16)

Unlike the affine-invariant Riemannian mean, the Log-Euclidean mean has a

closed form expression, providing a large computational advantage. Moreover,

the obtained mean is, to a large extent, similar to the affine-invariant Rieman-

nian mean:

(i) they have the same determinants which correspond to the geometric mean

of the determinants of their matrices [Arsigny et al., 2007]:

det Σ̄LE = det Σ̄AI =
I∏

i=1

(detΣi)
1/I = exp

(
1

I

I∑

i=1

log(detΣi)

)
;
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(ii) they are similar, in some cases identical, and if not, tr Σ̄LE > tr Σ̄AI ;

(iii) Log-Euclidean mean has properties close to affine-invariance, i.e. similarity-

invariance instead of congruent-invariance.

Wasserstein Distance

The Wasserstein distance, also known as the earth mover’s distance, is a mea-

sure of distance between two probability distributions. It is the optimal cost of

moving one probability distribution into another. If the two probability distri-

butions are pictured as two different ways of piling up a mass of sand, then the

Wasserstein distance can be seen as the optimal cost involved in transporting

sand from one piling to another Villani [2008].

Let P (X ) and P (Y) two spaces of probability measures, the optimal trans-

port between two masses (or probability distributions) η ∈ P (X ) and ν ∈ P (Y)

is defined as Villani [2008]:

C(η, ν) = inf
π∈Π(η,ν)

∫
c(x, y)dπ(x, y) , (5.3.17)

where Π(η, ν) is the set of all joint probabilities on X × Y ; and c(x, y) is the

cost for transporting one unit of mass from x to y. In the Wasserstein distance,

the cost c(x, y) is defined as a distance. The Wasserstein distance of order p is

defined as:

Wp(η, ν) =

(
inf

π∈Π(η,ν)

∫
d(x, y)pdπ(x, y)

)1/p

. (5.3.18)

Following the development in Barbaresco [2011], the Wasserstein distance be-

tween multivariate Gaussian measures, with means µ1 and µ2 and covariance

matrices Σ1 and Σ2, which are noted N (µ1,Σ1) and N (µ2,Σ2), is expressed as:

dW (N (µ1,Σ1),N (µ2,Σ2)) = |µ1−µ2|2+trΣ1+trΣ2−2 tr

((
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
.

(5.3.19)

Considering that µ1 = µ2 = 0, the Wasserstein distance between two covariance

matrices is:

dW (Σ1,Σ2) = trΣ1 + trΣ2 − 2 tr

((
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
. (5.3.20)
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where the seed function f is combined with a function g : M → R
C that maps

an SPD matrix to a vector containing its eigenvalues: ϕ = f ◦ g. g can also

be the trace function, g : M → R that maps an SPD matrix to its trace. For

convenience, f ◦ g will be referred to as f(X) or f(Σ) for matrices.

Depending on the seed function used, various divergences can be defined

from the Bregman divergence. However, the mean induced by a Bregman di-

vergence is independent of the seed function. It always correspond to the center

of mass, i.e. the arithmetic mean Nielsen and Nock [2009].

Euclidean divergence

A first Bregman divergence could be defined from the Frobenius norm Dhillon

and Tropp [2007], with f(x) = 1
2
‖x‖2F :

DE(Σ1,Σ2) =
1

2
‖Σ1 − Σ2‖2F . (5.3.23)

In the Euclidean case, this divergence is equivalent to the square distance and

consequently the mean of SPD matrices based on the Euclidean divergence cor-

responds to their arithmetic mean, see Eq. (5.3.7).

Kullback-Leibler divergence

Using the negative Shannon entropy f(x) =
∑

i xi log xi yields the Kullback-

Leibler divergence Nielsen and Nock [2009]. It is also known as the relative

entropy or discrimination information. The Kullback-Leibler divergence was

introduced in information theory to measure the difference between two proba-

bility distributions over the same alphabet. Given a set X = {x,X, P}, where:

• x ∈ R
C is a variable,

• X ∈ R
C×N is the set of all possible values of x, i.e. the alphabet, and

• P is the probability distribution of x over X

The Kullback-Leibler divergence measure the different between P1(x) and P2(x),

both defined over X:

DKL(P1(x),Σ2(x)) =
N∑

i

P1(xi) log
P1(xi)

P2(xi)
(5.3.24)
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if both distribution are normal,

P (x) = N (µ,Σ) =
1

(2π)C/2 det(Σ)1/2

{
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)}

(5.3.25)

(5.3.25) in (5.3.24),

DKL(P1(x), P2(x) =
1

2

(
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2)− log det(Σ−1

2 Σ1) + tr(Σ−1
2 Σ1)− C

)
.

(5.3.26)

When P1(x) and P2(x) are zero-centered, (5.3.26) becomes:

DKL(P1(x), P2(x) =
1

2

(
log det(Σ−1

1 Σ2) + tr(Σ−1
2 Σ1)− C

)
(5.3.27)

The Kullback-Leibler divergence correspond to the Bregman divergence of co-

variance matrices with the seed function f(Σ) = − log det(Σ):

DKL(P1(x), P2(x) = DKL(Σ1,Σ2 =
1

2

(
log det(Σ−1

1 Σ2) + tr(Σ−1
2 Σ1)− C

)
.

(5.3.28)

S-divergence

An example of a symmetric divergence is the S-divergence. It is obtained from

the Jensen-Shannon divergence which is a symmetrised Bregman divergence:

DJ-S(Σ1,Σ2) =
1

2

(
Df(Σ1,

Σ1 + Σ2

2
) +Df(

Σ1 + Σ2

2
,Σ2)

)

=
1

2
(tr f(Σ1) + tr f(Σ2))− tr f(

Σ1 + Σ2

2
) .

(5.3.29)

The S-divergence is obtained by using the logarithmic barrier function for the

positive-definite cone f(Σ) = − log det(Σ) as seen in DJ-S, and the S-divergence

between two SPD matrices corresponds to the Bhattacharyya divergence be-

tween them Sra [2016]:

DS(Σ1,Σ2) = log det(
Σ1 + Σ2

2
)− 1

2
log det(Σ1Σ2) . (5.3.30)

Despite its symmetry, S-divergence is not a metric: it does not satisfy the

triangular inequality criterion. However, its squared root has been shown to be

a distance Sra [2016].
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Other symmetric divergences can be obtained in the same fashion; for in-

stance, the Jeffreys divergence which is a symmetrised Kullback-Leibler diver-

gence: DJ(Σ1,Σ2) = DKL(Σ1,Σ2) +DKL(Σ2,Σ1) Sra [2016].

Log-det α-divergence

Another family of divergence is defined when the right- and left-sided diver-

gences are mixed in a weighted manner. One such family is the α-divergence Nielsen

et al. [2014], and it is defined in this work by Chebbi and Moakher [2012]:

Dα
f (Σ1,Σ2) =

4

1− α2

[
1− α

2
f(Σ1) +

1 + α

2
f(Σ2)− f

(
1− α

2
Σ1 +

1 + α

2
Σ2

)]
, α2 6= 1

(5.3.31)

Dα
f can be expressed in terms of Bregman divergence as:

Dα
f =

4

1− α2

[
1− α

2
Df

(
Σ1,

1− α

2
Σ1 +

1 + α

2
Σ2

)
+

1 + α

2
Df

(
Σ2,

1− α

2
Σ1 +

1 + α

2
Σ2

)]
, α2 6=

(5.3.32)

α-divergences at α = ±1 are obtained through the limit values limα→±1 D
α
f .

Using the logarithmic-barrier function yields:

Dα
LD(Σ1,Σ2) =

4

1− α2
log det

(
1− α

2

(
Σ1Σ

−1
2

) 1+α
2 +

1 + α

2

(
Σ2Σ

−1
1

) 1−α
2

)
, −1 < α < 1

D1
LD(Σ1,Σ2) = tr

(
Σ−1

2 Σ1 − I
)
− log det

(
Σ−1

2 Σ1

)

D−1
LD(Σ1,Σ2) = tr

(
Σ−1

1 Σ2 − I
)
− log det

(
Σ−1

1 Σ2

)
.

(5.3.33)

D1
LD and D−1

LD are right- and left-sided Bregman divergences respectively. At

α = 0, the log-det α divergence yields a symmetric divergence corresponding to

the Bhattacharyya divergence Chebbi and Moakher [2012]; Sra [2016].

All these distances and divergences are summed up in Table 5.1.

5.3.3 Minimum Distance to Mean Classifier for SSVEP

The considered classifier is described in section 5.3.1. It is given the name

Minimum Distance to Mean or MDM, and was inspired by [Barachant et al.,

2012a] where it is limited to Riemannian mean. The covariance matrices of
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Distance/Divergence Mean References

Euclidean dE(Σ1,Σ2) = ‖Σ1 − Σ2‖F Σ̄E = 1
I

∑I
i=1 Σi

Harmonic dH(Σ1,Σ2) = ‖Σ−1
1 − Σ−1

2 ‖F Σ̄H =
(

1
I

∑I
i=1 Σ

−1
i

)−1

Lim and Pálfia [2012]

Log-Euclidean dLE(Σ1,Σ2) = ‖log(Σ1)− log(Σ2)‖F Σ̄LE = exp
(

1
I

∑I
i=1 log(Σi)

)
Arsigny et al. [2007]

Affine-invariant dAI(Σ1,Σ2) = ‖log(Σ−1
1 Σ2)‖F Algorithm 3 in Fletcher et al. [2004] Moakher [2005]; Fletcher et al. [2004]

Kullback-Leibler DKL(Σ1,Σ2) =
1
2

(
log det(Σ−1

1 Σ2) + tr(Σ−1
2 Σ1)− C

)
Σ̄KL = 1

I

∑I
i=1 Σi Chebbi and Moakher [2012]; Kang et al. [2009]

S-divergence DS(Σ1,Σ2) = log det(Σ1+Σ2

2
)− 1

2
log det(Σ1Σ2) Eq. (17-20) in Cherian et al. [2011] Sra [2016]; Cherian et al. [2011]

α-divergence Dα
LD(Σ1,Σ2) from Eq. (5.3.33) Algorithm 1 in Chebbi and Moakher [2012] Chebbi and Moakher [2012]

Bhattacharyya DB(Σ1,Σ2) =
(
log

det 1
2
(Σ1+Σ2)

(det(Σ1) det(Σ2))1/2

)1/2
Algorithm 1 in Chebbi and Moakher [2012] Nielsen and Bhatia [2012]; Chebbi and Moakher [2012]

Wasserstein dW = tr

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
Eq. 6.2 in Agueh and Carlier [2011] Agueh and Carlier [2011]; Barbaresco [2011]

Table 5.1: Distances, divergences and means considered in the experimental
study.

EEG trials are classified based on their distance to the centres of the classes

(i.e. means or centroids). To embed frequency information in the covariance

matrices, we use a construction of matrices proposed in [Congedo et al., 2013].

Let X ∈ R
C×N be an EEG trial measured on C channels and N samples in

an SSVEP experiment with F stimulus blinking at different frequencies. The

covariance matrices are estimated from a modified version of the input signal

X:

X ∈ R
C×N →




Xfreq1
...

XfreqF


 ∈ R

FC×N , (5.3.34)

where Xfreqf is the input signal X band-pass filtered around frequency freqf ,

f = 1, . . . , F . Thus the resulting covariance matrix Σ belongs to MFC . Hence-

forth, all SSVEP EEG signals will be considered as filtered and modified by

Eq. (5.3.34).

For ERP paradigm with a number E of different ERPs, the modified sig-

nal is the concatenation of the original signal and the grand averages of trials

containing the target ERPs X̄e, e = 1, . . . , E:

X ∈ R
C×N →




X̄1

...

X̄E

X



∈ R

(E+1)C×N , (5.3.35)
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The resulting covariance matrix will be of size ((E + 1)× C)2.

For SSVEP classification,K = F+1 classes are considered: one class for each

target frequency, and one for the resting state. As described in Algorithm 1,

from I labelled training trials {Xi}Ii=1 recorded per subject, K centres of classes

Σ̄(k) are estimated (step 3). In this step, outliers matrices are removed to have

a reliable mean estimation [Barachant et al., 2013a]. A new unlabelled test trial

Y is predicted to belong to the class whose mean Σ̄(k) is the closest to the trial

covariance matrix, w.r.t. one of the distances from Table 5.1 (step 5).

Algorithm 1 Minimum Distance to Mean Classifier

Inputs: Xi ∈ R
FC×N , for i = 1, . . . , I, a set of labelled EEG trials.

Inputs: I(k), a set of indices of trials belonging to class k.
Input: Y ∈ R

FC×N , an unlabelled test EEG trial.
Output: k∗, the predicted label of Y .

1: Compute covariance matrices Σi of Xi

2: for k = 1 to K do
3: Compute centre of class : Σ̄(k) = µ(Σi : i ∈ I(k))
4: end
5: Compute covariance matrix Σ of Y , and classify it : k∗ = argmink d(Σ, Σ̄

(k))

6: return k∗

where Xfreqf is the input signal X band-pass filtered around frequency freqf ,

f = 1, . . . , F .

From I labelled training trials {Xi}Ii=1 recorded per subject, K centres of

class Σ
(k)
µ are estimated using Algorithm 2. When an unlabelled test trial Y is

given, it is classified as belonging to the class whose centre Σ
(k)
µ is the closest to

the trial’s covariance matrix (Algorithm 1, step 5).

5.4 Online Classification

5.4.1 Curve-Based Online Classification

In offline synchronous BCI paradigm, cue onset is used as reference for the lo-

calisation of a brain response, e.g. an evoked potential. Nonetheless most of

the BCI applications are online and asynchronous; cue onsets are not known,
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Algorithm 2 Offline Estimation of Riemannian Centres of Classes

Inputs: Xi ∈ R
FC×N , for i = 1, . . . , I, a set of labelled trials.

Inputs: I(k), a set of indices of trials belonging to class k.

Output: Σ
(k)
µ , k = 1, . . . , K, centres of classes.

1: Compute covariance matrices Σ̂i of Xi

2: for k = 1 to K do
3: Σ

(k)
µ = µ(Σ̂i : i ∈ I(k)) , Eq. (5.3.5)

4: end
5: return Σ

(k)
µ

Algorithm 3 Curve-based Online Classification

Inputs: hyper-parameters w, ∆n, D, and ϑ.
Inputs: Σ

(k)
µ , k = 1, . . . , K, centres of classes from Algorithm 2 (offline training).

Inputs: Online EEG recording χ(n).
Output: k̃(n), online predicted class.

1: d = 1
2: for n = w to N step ∆n
3: Epoch Xd, Eq. (5.4.1), and classify it with Algorithm 1
4: if d ≥ D
5: Find the most recurrent class in K = k∗

j∈J (d): k̄ = argmaxk ρ(k),

Eq. (5.4.2)
6: if ρ(k̄) > ϑ

7: Compute δ̃k̄, Eq. (5.4.3)

8: if δ̃k̄ < 0
9: return k̃ = k̄
10: end
11: end
12: end
13: d = d+ 1
14: end
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thus designing online version of BCI algorithms is not a trivial task. The ap-

proach introduced here identifies a period (i.e. time interval) in the online EEG

χ ∈ R
FC×N , where N is the number of recorded samples, associated with a high

probability (above the threshold) of observing an SSVEP at a specific frequency,

as illustrated in Algorithm 3.

To locate this interval, we focus on the last D recorded EEG overlapping

epochs
{
Xj ∈ R

FC×w
}
j∈J (d)

, with the set of indices J (d) = d−D+1, . . . , d−1, d;

where d is the index of the current epoch Xd in the online recording χ(n).

Epochs have size w, and the interval between two consecutive epochs is ∆n,

with w > ∆n:

Xd = χ(n− w, . . . , n) . (5.4.1)

To obtain the first D epochs Xj ∈ J (d), at least w + (D − 1)∆n samples of χ

should be recorded (step 4).

The classification outputs k∗
j∈J (d) obtained in step 3 by applying Algorithm 1

on Xj ∈ J (d) are stored in a vector K, which always contains the latest D classifi-

cation outputs. The class that occurs the most in K (step 5), with an occurrence

probability ρ(k) above a defined threshold ϑ, is considered to be the class, de-

noted k̄, of the ongoing EEG recording χ(n). The vector ρ is defined as:

ρ(k) =
#{k∗

j∈J (d) = k}
D

, for k = 1, . . . , K, (5.4.2)

with k̄ = argmaxk ρ(k); then ρ(k̄) is compared to the threshold ϑ. If ϑ is not

reached within the last D epochs, the classification output is held back, and

the sliding process continues until ϑ it is reached. In the last D epochs, once a

class k̄ has been identified, a curve direction criterion is introduced to enforce

the robustness of the result. For class k̄ to be validated, this criterion requires

that the direction taken by the displacement of covariance matrices Σ̂j∈J (d) be

toward the centre of class Σ
(k̄)
µ . Hence δ̃k̄, the sum of gradients (i.e. differentials)

of the curve made by distances from Σ̂j∈J (d) to Σ
(k̄)
µ should be negative (step 8):

δ̃k̄ =
∑

j∈J (d)

∆δk̄(j)

∆j
=

d∑

j=d−D+2

δk̄(j)− δk̄(j − 1) < 0

with δk̄(j) =
δ(Σ̂j,Σ

(k̄)
µ )

∑K
k=1 δ(Σ̂j,Σ

(k)
µ )

.

(5.4.3)
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The occurrence criterion is inspired by the dynamic stopping of [Verschore

et al., 2012]; there is no fixed trial length for classification. The occurrence

criterion ensures that the detected user intention is unaffected by any short time

disturbances due to noise or subject inattention, as presented in Algorithm 3.

This approach offers a good compromise to obtain robust results within a short

and flexible time.

The curve direction criterion solves both the problems of latency in the

EEG synchronisation and of the delays inserted by the EEG epochs processing.

Indeed, some EEG epochs gather signals from different classes and might be

wrongfully classified if the decision is solely based on the distance with the

centre of the class. This situation and the effect of the curve direction criterion

are well shown in Section 5.5.4. Ensuring that the covariance matrices are

displaced toward the centre of the detected class provides a guaranty that it

matches with the current EEG state. Inversely, if the direction of the curve is

moving away from the centre of the detected class, it might indicate that there

have been a change in the EEG state that has not been detected.

The Algorithm 3 has four hyperparameters: w, ∆n, D, and ϑ. The values of

w, D, and ϑ are set through cross validation and are given in Section 5.5.4. Al-

though a large window size w is expected to increase the classification accuracy,

it increases the response time, thus reducing the time resolution, and extends

the overlap between different EEG states. The step size ∆n should be set to a

minimum value to allow a maximum number of overlapping epochs (D) within

a short time. However, it should be large enough to avoid too many calcula-

tions within a time interval with small or inexistent changes in EEG states. If

the number of the epoch D is too small, the classification will be sensitive to

non-intentional and abrupt changes in the EEG. A too large D will increase the

momentum and reinforce the influence of the past EEG signals. It should also

be mentioned that both the occurrence and the curve direction criteria cannot

have a significant impact if the value of D is too small. The probability thresh-

old parameter ϑ acts like a rejection parameter: high ϑ values correspond to

high rejection rate.
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5.4.2 Outliers Removal with Riemannian Potato

Outliers in the training data might affect the Riemannian mean of classes in

the MDRM classification scheme. To alleviate this effect, an approach called

the Riemannian potato, introduced in [Barachant et al., 2013a], is exploited.

In this approach, all trials are represented by their covariance matrices Σi. A

reference covariance matrix is estimated, e.g. Riemannian mean of all trials Σµ.

The Riemannian distances δi between each Σi and Σµ are computed. Any trial

that lies too far, i.e. beyond a certain threshold, from the reference matrix Σµ

in terms of Riemannian distance is rejected. In [Barachant et al., 2013a], the

distance z-score thresholding is defined as:

z (δi) =
δi − µ

σ
> zth (5.4.4)

where µ and σ are respectively the mean and standard deviation of distances

{δi}Ii=1. In other words, any trial Σi whose z-score z (δi) is larger than the

threshold zth = 2.5 is rejected.

In this work, we propose a slightly different application of the Riemannian

potato where the outliers are removed per class. Hence for K class, K Rie-

mannian potatoes are defined
{
Σk

µ, µ
k, σk

}K
k=1

. Since Riemannian distances to

geometric mean do not have a Gaussian distribution, we make use of the geo-

metric mean for µ, the geometric standard deviation for σ and the geometric

z-score. They are defined as follows [Congedo, 2013]:

µk =exp

(
1

I

∑

i

ln(δki )

)

σk =exp

(√
1

I

∑

i

(
ln
(
δki /µ

k
))2
)

z (δki ) =
ln
(
δki /µ

k
)

ln(σk)
.

(5.4.5)

Through cross-validation, the z-score threshold is set to zth = 2.2. Moreover,

outliers are removed iteratively. Each time outliers are rejected, a new centre

of class is computed and used as reference for the next iteration. The iterations

continue until convergence, i.e. no more outlier found.
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5.5 Experimental Validation

5.5.1 Covariance Estimators Comparison
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Figure 5.2: Comparison of covariance estimators in terms of classification ac-
curacy obtained with MDRM with increasing EEG trial length. For each trial
length, the average accuracy across all subjects and across all replication is
shown. Bars indicate the error of the mean, i.e. standard deviation divided by
the square root of n− 1, n = number of samples.

In this section, the effectiveness of covariance matrix estimators is evaluated

for SSVEP signals. The evaluation is done in terms of classification accuracy

and integrated discrimination improvement (IDI), obtained by each estimator

(see Section 5.2) with respect to the SCM estimator while using the offline

MDRM classifier. The different conditioning of covariance matrices are also

investigated.
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A bootstrapping with 1000 replications is performed to assess the perfor-

mances of each estimator. Estimators are compared on 10 trial lengths t ∈
{0.5, 1.0, . . . 5.0} seconds, as these are known to affect the estimators perfor-

mance. Here N ∈ {128, 256, . . . , 1280} is computed as N = t× Ts.

Figure 5.2 shows the classification accuracy of each estimator. The increase

in the accuracy can be attributed to the fact that the relevant patterns in EEG

accumulate with the trial length, producing better estimation of the covariance

matrices. This is known to be particularly true for the SCM estimator and it

could be seen in Figure 5.2. It appears that shrinkage estimators (especially

Ledoit and Schäfer) are less affected by the reduction of epoch sizes than the

other estimators. This is a direct consequence of the regularisation between the

sample covariance matrices and the targeted (expected) covariance matrix of

independent variables.

For computational purposes, it is important to look at the matrix condition-

ing. Figure 5.3(a) shows the ratio C between the largest and smallest eigenval-

ues: in well-conditioned matrices, C is small. Shrinkage estimators offer better

conditioned matrices whereas the SCM, NSCM, and Fixed Point matrices are

ill-conditioned below two seconds of trial length, and may result in singular

matrices.

On Figure 5.3(b), the Integrated Discrimination Improvement (IDI), as de-

fined in Pencina et al. [2008], is computed for the different estimators and trial

lengths. The SCM is used as a reference for improvement, as this is the most

popular estimator in the literature. Negative IDI means a deterioration in the

method discrimination ability. It is clear that shrinkage estimators increase the

discrimination power of the classifier. However, despite being more complex

than the SCM, the NSCM and the Fixed Point estimators decrease the discrim-

ination ability of classifiers. From Figures 5.2 and 5.3(b), it is apparent that the

difference in performance between the SCM and shrinkage estimators reduces as

the trial length increases. The simplicity of the SCM plays a favourable role: it

is an attractive method for longer trials. The p-values under the hypothesis that

there is no improvement (i.e. IDI = 0) from one estimator to another are all

inferior to 10−47, (p < 10−3 indicating a statistically significant discriminatory

improvement); hence the improvement is significant. It should be noted that
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Figure 5.3: (a) Covariance matrices condition expressed as the ratio C between
largest and smallest eigenvalues for the different covariance estimators. The
comparison is made for increasing EEG trial length. (b) Integrated discrimina-
tion improvement brought to the classification task by various estimators along
varying trail length. The indicated IDI values are multiplied by 102. Σ̂scm is
used as a baseline.

the estimation of covariance matrices is a trade-off between the quality of the

estimate and the computation time required; this should be considered for real

time processing.

102



5.5.2 Effect of Outliers on Centre Estimation

Outliers can affect the offline training of the K centres of class Σ
(k)
µ by Al-

gorithm 2, which is crucial for the evaluation phase and online application.

Figure 5.4 shows representations of training covariance matrices Σi in the tan-

gent space (Θi), projected at the mean of all training trials, for the subjects

with the lowest (5.4(a) and 5.4(b)) and the highest (5.4(c) and 5.4(d)) BCI

performance. To obtain this visualisation, the first two principal components

of a PCA applied on {Θi}Ii=1 are selected. In Figures 5.4(b) and 5.4(d), the

Riemannian potato presented in Section 5.4.2 is applied; outliers in each class

are removed. The interest of using a Riemannian potato is well seen in Figure

5.4(a) and 5.4(b). In 5.4(a), the outliers are so distant from the rest of the class

matrices that the centre of class is stretched away. Applying a Riemannian

potato removes the outliers, and the centre of class is better estimated (5.4(b)).

When training trials are not noisy, their covariance matrices are compact

around their Riemannian mean. In this case the removal of outliers by the Rie-

mannian potato does not influence, at least not significantly, the Riemannian

mean. This is the case in Figure 5.4(c) and 5.4(d). Thus, applying the Rie-

mannian potato is crucial for noisy data and will have a limited effect on clean

data. The impact of the Riemannian potato on the classification accuracy is

discussed in Section 5.5.4.

5.5.3 From Euclidean to Riemannian Centres of Class

The covariance matrices obtained from SSVEP data extended with Eq. (5.3.34)

have interesting features, allowing the discrimination between signals of identi-

cal sources but with different frequencies. Figure 5.5 shows the K classes mean

covariance matrices Σ̄(k) from subjects with the highest (a) and lowest (b) clas-

sification accuracy. The three 8×8 diagonal blocks hold the covariance matrices

of the F = 3 target frequencies. Inter-frequencies covariance blocks are almost

null. In each mean covariance matrix, the block holding the covariance of the

target frequency has the largest values. For the resting class, all F blocks tend

to have similar and small values. These features are more visible in the subject

with the highest classification accuracy, and less visible in the one with lowest

classification accuracy. It is interesting to see that features used for classification

103



have a physiological meaning allowing an intuitive understanding, as opposed

to black-boxes approaches such as LDA or SVM. EEG processing complexity is

encoded by the distance and not by machine learning.
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Figure 5.4: Scatter plot of covariance matrices for all trials mapped on the
tangent space. The distance between each trial covariance matrix Σi and its
Riemannian mean class Σ

(k)
µ is shown as connection line. The black star repre-

sents the Riemannian mean of all trials. Subject with lowest BCI performance,
(5.4(a)) before and (5.4(b)) after Riemannian potato filtering. Subject with
highest BCI performance, (5.4(c)) before and (5.4(d)) after Riemannian potato
filtering.
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Figure 5.5: Representation of covariance matrices: each image is the covariance
matrix mean Σ̄(k) of the class k, for one session of the recording. The diagonal
blocks show the covariance in different frequency bands, i.e. 13 Hz in the upper-
left block, 21 Hz in the middle, and 17 Hz in the bottom-right. Subjects with
highest (a) and lowest (b) BCI performance.

Based on those covariance matrices, the different distances and means of

Table 5.1 are compared in terms of classification accuracy and average CPU

time elapsed on a trial classification, which involves the computation of four

means of class and a distance to each mean. Table 5.2 summarises results ob-

tained for each subject and each distance/divergence. Euclidean distance yields

drastically low accuracy. This support the fact that using Euclidean distance

and Arithmetic mean on SPD matrices is not appropriate. This is generally

attributed to the invariance under inversion and the fact that the determinant

of the Arithmetic mean of SPD matrices can be larger than the determinant of

its parts; it is referred to as the swelling effect. Since the value of the determi-

nant is a direct measure of dispersion of the multivariate variables (i.e. EEG

channels and frequency bands), it leads to poor discrimination in the classifi-

cation task. The swelling effect of Arithmetic mean is shown in Figure 5.6(a):

the determinant of the Arithmetic mean is strictly larger than other means, the

Log-Euclidean, Affine-Invariant and Bhattacharyya ones yielding similar deter-

minants, close to trial values. Another observation is that the Bhattacharyya

distance and the S-divergence yield similar results. In the S-divergence section,

it was stipulated the the square root of the S-Divergence was a distance, and it

105



is seen here that it correspond to the Bhattacharyya distance.
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Figure 5.6: (a): Swelling effect of Arithmetic mean shown through log-
determinant values. Training trials are taken from the 13 Hz class of the subject
with the highest BCI performance. Log-determinant values are given for each
trial covariance (points), and for means of Table 5.1 (horizontal lines). (b): Clas-
sification accuracy and CPU time, obtained with α-divergence for −1 6 α 6 1.

Riemannian distances significantly improve classification performances, with

α-divergence yielding the best results (81.56%). The value of α was set to 0.6

through cross-validation. This procedure lasted 225.42 seconds and makes α-

divergence the most costly method, due to the optimisation of its parameter α.

Log-Euclidean yields lower classification accuracy (average 78.98%) but could

be computed faster than α-divergence or Affine-Invariant distance. However,

the Bhattacharyya distance has the lowest computational cost of the consid-

ered Riemannian distances (average CPU time 0.140s), with a higher average

accuracy of 80.51%. So, it is a good trade-off between efficiency and speed.

The accuracy and CPU time of the α-divergence at different values of α are

shown in Figure 5.6(b). It is seen that for α = ±1, where α-divergence repre-

sents a Bregman divergence associated with the log-determinant function, the

classification accuracy are at the lowest accuracy (25%). For all other values of

alpha, the expected accuracy is 78.85±3.3% and one can choose −1 < α < 1

without any major impact on classification results. This experiment on real

EEG data shows that it is crucial to process covariance matrices with dedicated
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Riemannian tools, impacting the efficiency of the classification.

5.5.4 Classification Results and Analysis

In this section, the performance of the proposed method is presented. First,

the performance of the MDRM approach in an offline setup is analysed, then

the results of the online algorithm are presented. In the offline analysis, the

relevance of identifying the latency between cue onset and SSVEP response is

shown. The results of the MDRM approach are compared to two state-of-the-art

methods, [Lin et al., 2006] and [Nakanishi et al., 2014]. The online evaluation

is divided in two parts: in the first one the algorithm discriminates between

K = F = 3 SSVEP classes (i.e. 13, 17 and 21 Hz) and in the second one is

applied on K = 4 classes, i.e. the F = 3 SSVEP class and the resting class.

Offline Analysis

A close inspection of the filtered signals shows that almost all signals are syn-

chronised with the trial frequency 2 seconds after cue onset τ0 = 0, as shown

in Figure 5.7. This delay is mainly due to protocol design and user-specific

cognitive processes. The protocol is aimed to provide an asynchronous setup

close to real applications. The user is not required to look at a fixation point or

to directly gaze toward the target, as in [Kimura et al., 2013; Nakanishi et al.,

2014], during inter-trial periods. This is a tentative explanation for the higher

delay observed in our study and it is consistent with literature observations

[Vialatte et al., 2010; Bakardjian et al., 2010]

In fact, before τ0 + 2s, for some users the signal could still be synchronised

with the previous trial frequencies. An important increase in average classi-

fication accuracy (almost 10%) could be obtained by taking the trial from 2

seconds after cue onset. It is therefore crucial to consider the latency between

the cue onset of trial and the actual synchronisation of SSVEP at stimulus fre-

quency. Thus in the offline synchronous processing, the confident window for

classification is set 2 seconds after the cue onset (τ0 + 2).

Table 5.3 shows the offline classification accuracy for each subject obtained

by the application of the MDRM as described in Algorithm 1, with the epochs

taken at τ0+2. Column MDRM(τ0) shows the results obtained when the epochs
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Figure 5.7: Signal amplitude at each stimulus frequency, showing synchronisa-
tion of EEG with respect to time (seconds). The raw signal of the trial measured
on Oz is band filtered using a Butterworth of order 8 at each stimulus frequency
and the resulting signals are shown in blue (dark grey), green (grey), and red
(light grey) for the same signal filtered respectively at 13, 17, and 21 Hz. The
cue onset τ0 at time 0 on the x-axis is shown with a vertical discontinued line.
4 trials are shown, one for each class. Signals are from the subjects with the
highest (5.7(a)) and with the lowest BCI performance (5.7(b)).

are taken from cue onset. The Riemannian potato technique presented in Sec-

tion 5.4.2 was applied for outlier removal (MDRM-Potato). The performance of
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the MDRM approach is compared to two CCA-based state-of-the-art methods

proposed by Lin et al. [2006] and Nakanishi et al. [2014] respectively. In the

implementation of these methods, the epochs are also taken from τ0 + 2.

The MDRM approach outperforms both CCA-based method with an average

classification accuracy of 90.4±7.8 % and ITR of 16.3±5.3 bits/min. Lin et al.

[2006] ranks second with 87.5±15.1 % and 15.5±6.8 bits/min. The method

proposed by Nakanishi et al. [2014], which could be expected to achieve better

results as reported in their work, only ranks third. This is mainly due act that

this method requires information on the phase of the stimuli. In fact, Nakanishi

et al. [2014] use the average of all training trials belonging to a unique class as a

reference signal in the CCA. When SSVEP trials belonging to a unique trial are

not in-phase, which is the case in the current work, averaging them will cancel

the signal.

Within the MDRM approach, it is shown that taking into account the la-

tency between the cue onset and the SSVEP response significantly increases

the classification performances: accuracy and ITR rise from 75.9±11.4% and

6.0±3.1 bits/min to 90.4±7.8% and 16.3±5.3 bits/min. In turn removing out-

liers with the Riemannian potato does not bring significant change. This could

be attributed to the fact that the recording have been conducted in controlled

environment, with small or little external noise.

Online Analysis without Resting Class

In an online asynchronous experiment, there is no cue onset, and the delay before

SSVEP synchronisation might differ from one trial to another and from one

subject to another. To locate the trust EEG region for the classification, D and

ϑ are set respectively to 5 and 0.7 through cross-validation. The performance of

this online setup is analysed and Figure 5.8 shows the results. From the analysis

shown in Figure 5.8(d), the epoch size is set to w = 2.6 seconds. The step size

is set to ∆n = 0.2s, that is a new epoch is classified every 0.2 second.

On Figure 5.8(a), the classification error is plotted against the epoch index.

It shows that the error decreases as epochs move from the beginning of the trial.

The error increases in the last epochs of the trial, corresponding to the end of

the SSVEP task. Figure 5.8(b) details the evolution of the probability for each
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class as epochs index increases. It appears clearly that the class of the EEG

trial (thick-and-star line) has the largest probability only a few epochs after the

beginning of the trial. Moreover, one can see that this is an increasing trend

over the whole trial. Thus by setting an appropriate probability threshold ϑ,

the actual class can be identified with enough confidence. Figure 5.8(c) shows

the influence of the probability threshold ϑ on the classification error. The error

is reduced when the probability threshold ϑ is increased. Figure 5.8(d) shows

how the average online performance varies with respect to the epoch size (w).

Both the classification accuracy and the ITR are shown. With short w values,

the epoch size does not capture enough feature for a correct classification, and

with long w, the epoch losses temporal resolution. The ITR increases with the

classification rate but drops sensibly after a peak value.

The observation of Figure 5.9 provides a visualisation of the principle guiding

the online implementation of Equation (5.4.3). This figure shows the trajectory

on the tangent space taken by covariance matrices during a 4-class SSVEP

experiment, and how they are classified epoch by epoch. It can be seen (encircled

in Figure 5.9(a)) that a change in the SSVEP stimulus might not be detected

instantaneously by the classifier. The trials are erroneously attributed with

confidence to the previous class.

The proposed online algorithm, described in Algorithm 3, mitigates this issue

and increases the classification accuracy as shown in Table 5.4. The “Online

(ρ(k̄) > ϑ)” column shows the results of the online algorithm without the curve

direction criterion (i.e., without steps 6 to 11), and “Online (full algo. 3)” shows

the improvement brought by this criterion. The performances are in terms of

average classification accuracy (acc (%)), average time taken into the trial before

classification (delay (s)), and the ITR (itr (bits/min)).

The curve direction criterion increases the rejection of epochs that could

be wrongly classified, it thus significantly increases the classification accuracy

of the online algorithm (70.8±13 % to 87.3±9.8%), while increasing the delay

(0.7s to 1.1s) before classification. When compared to the state-of-the-art of-

fline MDRM, the online curve-based classification yields better results in terms

of ITR as the delay before classification is much shorter in the latter than the

trial length used in the former; classification outputs are reached faster with
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the online algorithm. Moreover, the online algorithm can be applied in both

synchronous and asynchronous paradigms, whereas the offline algorithms are

limited to synchronous paradigms which provide strongly limited user interac-

tion.

Last, the impact of the Riemannian potato is analysed. A bootstrapping

with 50 replications was performed on the offline data to assess the effect of

applying the Riemannian potato. The results show that for most subjects the

results are unchanged when the Riemannian potato is applied: due to the fact

that data are recorded in a controlled environment, most of them are thus clean.

It does, however, improve the results of few subjects. It was then applied in

the training phase of the online application, and a similar observation is made.

We can conclude that the Riemannian potato can be used as a safety guard to

ensure that the Riemannian mean used in the MDRM classification scheme is

not affected by outliers, especially for BCI used in less controlled environment.

Online Analysis with Resting Class

Using the MDRM approach it is possible to identify the resting class. In fact,

covariance matrices of signals recorded during resting periods can be charac-

terised with their own Riemannian mean. As such, they can be identified as

any other class using the MDRM approach. The state-of-the-art methods, [Lin

et al., 2006] and [Nakanishi et al., 2014], are both based on CCA where a refer-

ence signal is needed. These methods do not handle resting class, since there is

no reference signal for them. In this section, the performance of the proposed

approach including the identification of the resting class is presented. Table 5.5

summarises the classifier performance in the same format as Table 5.4, in terms

of classification accuracy, delay before valid classification and ITR. Like in Ta-

ble 5.4, the best performance is achieved by the complete online algorithm pre-

ceded with outlier removal with the Riemannian potatoes (i.e. Online-Potato).

The identification of the resting class induces a drop of the overall classification

accuracy by 8.2%, and a drop of ITR from 52.5±25.5 to 49.2±18.2.

The effect of the resting class is seen with more details in Figure 5.10. Fig-

ure 5.10(a) shows the classification confusion matrix. There are few misclassifi-

cations between SSVEP classes compared to the misclassifications between the
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resting class and any SSVEP class: the largest percentages are located in the

first row and the first column, apart from the diagonal block. Figure 5.10(b)

displays a ROC curve showing how the classifier performs in discriminating each

class versus the others depending on the value of the ϑ parameter. On this ROC

curve, the performance of the Online-Potato algorithm is indicated in terms of

False Positive Rate (FPR) and True Positive Rate (TPR).

Confirming the observation from the confusion matrix, the ROC curve in-

dicates that the resting is the most prone to false positive. Despite the drop in

performance, the identification of resting class is crucial for online BCI setup,

allowing the subject to use the system at his own pace.

5.6 Conclusion

This chapter investigated the efficiency of Riemannian geometry when dealing

with covariance matrices as classification features. Existing covariance matrix

estimators were investigated and their robustness was assessed on multichannel

SSVEP signals to ensure that the obtained matrices are accurate estimates

of data covariance, are well conditioned, and verify the positive-definiteness

property. The Schäfer shrinkage estimator was found to be the best as it yielded

the highest classification accuracy with the MDRM algorithm. The chapter

demonstrated the interest in moving from Euclidean to Riemannian geometry

in the design of machine learning algorithms applied to EEG signal and SSVEP

in particular. Various distances and divergences as well as their corresponding

means were presented and evaluated. Riemannian metric/divergences and their

means are shown to be more appropriate on the structure of SPD matrices,

and yield better results than their Euclidean counterparts in machine learning

algorithms for classification. A novel algorithm based on MDRM, enhanced

by class probability and the curve direction in the space of covariance EEG

signals, was introduced and applied on a SSVEP classification task for a 4-class

brain-computer interface.

The MDRM approach is first analysed in an offline classification setup. To

prevent the effect of noisy signals on the MDRM approach, outliers in the train-

ing set of are removed using a modified version of the Riemannian potato. This

approach is compared to two CCA-based state-of-the-art methods. The results
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show that offline MDRM achieves better classification performances than any

of the CCA-based methods.

In the online setup, the proposed online algorithm enhances the stability of

the BCI system, balancing between classification speed and prediction accuracy.

The evaluation of the classification confidence over several epochs mitigates the

short term perturbations in the experimental conditions and the attentional

variations of the subject. The curve direction overcomes the misclassification of

EEG trials that are still synchronised with past stimuli frequencies at classifi-

cation time.

Unlike the CCA-based state-of-the-art methods considered in this work, the

proposed online algorithm is capable of identifying the resting periods during

an online EEG recording. These resting periods are considered as an additional

class in the classification task.

All these contributions help to pave the way towards BCI used in non-

controlled, assistive environment.
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Euclidean Riemannian
Arithmetic Harmonic Log-Euclidean Affine-invariant α-divergence Bhattacharyya Kullback-Leibler S-divergence Wasserstein

Sub. acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s) acc (%) time(s)
1 53.12 0.025 40.62 0.030 71.88 0.150 73.44 0.194 59.37 0.155 68.75 0.225 60.94 0.025 68.75 0.220 54.69 0.630
2 43.75 0.020 57.81 0.055 78.13 0.160 79.69 0.190 79.69 0.200 81.25 0.065 73.44 0.020 81.25 0.255 54.69 0.285
3 67.19 0.020 73.44 0.040 85.94 0.120 85.93 0.205 95.31 0.155 85.94 0.100 95.31 0.040 85.94 0.200 76.56 0.280
4 54.68 0.030 50.312 0.030 84.38 0.225 87.50 0.315 89.07 0.250 85.94 0.100 90.62 0.035 85.94 0.120 65.62 0.310
5 37.50 0.020 35.94 0.040 62.50 0.115 68.75 0.290 73.44 0.140 65.62 0.125 70.31 0.035 65.63 0.110 45.31 0.660
6 34.37 0.015 62.50 0.035 84.38 0.120 85.94 0.210 87.50 0.145 82.81 0.100 85.94 0.025 82.81 0.130 53.13 0.300
7 60.42 0.027 67.71 0.037 87.50 0.267 88.54 0.410 91.66 0.417 86.46 0.137 94.79 0.020 86.46 0.243 69.79 0.777
8 67.19 0.035 78.12 0.035 90.63 0.215 92.19 0.290 92.19 0.290 92.19 0.125 95.31 0.030 92.19 0.165 85.94 0.335
9 57.81 0.035 43.75 0.035 70.31 0.275 70.31 0.380 75.00 0.300 67.19 0.134 76.56 0.035 67.19 0.160 62.50 0.310
10 38.28 0.035 42.19 0.035 75.00 0.254 80.47 0.514 82.03 0.510 78.13 0.160 82.81 0.045 78.13 0.263 51.56 0.650
11 48.44 0.025 48.44 0.030 60.94 0.144 65.63 0.235 57.81 0.150 75.00 0.105 48.44 0.030 75.00 0.195 56.25 0.575
12 71.25 0.032 63.12 0.040 96.25 0.292 96.69 0.534 95.62 0.634 96.88 0.300 94.37 0.040 96.88 0.466 82.50 1.042

Avg. 52.83 0.027 55.56 0.037 78.98 0.194 81.27 0.314 81.56 0.279 80.51 0.140 80.74 0.040 80.51 0.210 63.21 0.513

Table 5.2: Subject classification accuracy (acc(%)) and average CPU time (time(s)) elapsed for the classification of
a single trial. Classification is performed with MDM using either Euclidean or Riemannian means (see Table 5.1).
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Offline algorithms
Lin et al. Nakanishi et al. MDRM(τ0) MDRM MDRM-Potato

acc(%) itr(bpm) acc(%) itr(bpm) acc(%) itr(bpm) acc(%) itr(bpm) acc(%) itr(bpm)
S1 91.7 16.3 84.7 12.2 67.6 3.5 84.7 12.2 84.5 12.1
S2 45.8 0.7 47.9 1.0 66.0 3.2 79.4 9.7 79.3 9.6
S3 100.0 23.8 93.0 17.2 90.2 10.3 99.3 22.7 99.3 22.7
S4 97.9 21.3 96.6 20.0 78.3 6.1 89.7 15.0 89.7 15.0
S5 83.3 11.5 82.2 11.0 76.0 5.5 89.5 14.9 89.4 14.9
S6 77.1 8.7 76.2 8.3 72.2 4.5 87.2 13.6 87.2 13.6
S7 98.6 22.0 96.7 20.1 90.0 10.2 99.8 23.5 99.8 23.4
S8 97.9 21.3 65.5 4.7 90.4 10.3 99.7 23.2 99.7 23.2
S9 91.7 16.3 77.9 9.0 64.0 2.8 85.8 12.8 85.7 12.7
S10 80.2 10.0 76.9 8.6 79.2 6.4 93.1 17.3 93.0 17.2
S11 89.6 15.0 82.7 11.2 54.8 1.4 78.2 9.2 78.2 9.1
S12 95.8 19.4 93.8 17.8 82.3 7.4 98.6 22.0 98.6 22.0

Mean 87.5±15.1 15.5±6.8 81.2±14.1 11.8±6.0 75.9±11.4 6.0±3.1 90.4±7.8 16.3±5.3 90.4±7.8 16.3±5.3

Table 5.3: Offline performance in terms of accuracy and ITR. Five methods are
compared: (1) CCA approach introduced by [Lin et al., 2006], (2) CCA approach
introduced by [Nakanishi et al., 2014], (3) MDRM described in Section 5.3.3
(Algorithm 1), (4) MDRM where processed epochs are taken 2 seconds from
the beginning of the trial, and (5) MDRM-Potato, where outliers are removed
using the Riemannian potato approach described in Section 5.4.2.

Online (ρ(k̄) > ϑ) Online (full algo. 3) Online-Potato
acc(%) delay(s) itr(bpm) acc(%) delay(s) itr(bpm) acc(%) delay(s) itr(bpm)

S1 68.8 0.8 26.3 77.1 1.1 27.9 77.1 1.1 27.9
S2 64.6 0.7 21.6 77.1 1.2 26.8 77.1 1.2 26.8
S3 81.2 0.7 54.3 95.8 1.0 73.0 95.8 1.0 73.0
S4 83.3 0.8 53.2 91.7 1.0 58.6 95.8 1.0 69.2
S5 72.9 0.7 37.1 83.3 1.0 42.5 83.3 1.0 42.5
S6 66.7 0.7 24.5 72.9 1.1 24.3 72.9 1.1 24.3
S7 93.1 0.7 89.6 98.6 0.9 87.0 98.6 0.9 86.8
S8 87.5 0.6 76.2 100.0 0.9 95.9 100.0 0.9 95.9
S9 60.4 0.7 15.7 77.1 1.2 27.6 77.1 1.2 27.6
S10 64.6 0.7 21.5 87.5 1.1 45.3 87.5 1.1 45.3
S11 54.2 0.7 9.9 87.5 1.3 38.9 87.5 1.3 38.9
S12 52.5 0.7 8.0 99.2 1.2 71.7 99.2 1.2 71.8

Mean 70.8±13 0.7±0.0 36.5±26.3 87.3±9.8 1.1±0.1 51.6±25.1 87.7±10 1.1±0.1 52.5±25.5

Table 5.4: Classification performances (accuracy in %, delay before valid and
confident classification in seconds, and ITR in bits/min) achieved using the on-
line algorithm. The first column indicates the subjects. The following three
columns show the results obtained without the curve direction criterion (Al-
gorithm 3 up to 6): by stopping at step 6, k̄ is taken to be the valid class.
The next three columns contain the results of the complete online algorithm.
The last three columns report the results obtained when outliers are removed in
the training phase using the Riemannian potato technique described in Section
5.4.2.

115



0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epoch index

A
v
e
ra

g
e
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

(a)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Epoch index

C
la

s
s
 p

ro
b
a
b
ili

ty

 

 
13Hz class

21Hz class

17Hz class

(b)

0 0.2 0.4 0.6 0.8 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

Probability threshold 

A
v
e
ra

g
e
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

(c)

1 2 3 4 5 6 7 8

60

80

A
c
c
u
ra

c
y
 (

%
)

Window size (w) in sec 
1 2 3 4 5 6 7 8

0

20

40

60

IT
R

 (
b
it
s
/m

in
)

(d)

Figure 5.8: Evaluation of the online algorithm parameters. 5.8(a) shows the
decrease of the average classification error over all subjects during the succes-
sive epochs after the beginning of the trial. 5.8(b) is an example taken from the
subject with the best performance showing how the probability of the actual
class varies with epoch position from beginning of trial. The groundtruth class
probability is represented with a thick-and-star line, while other classes prob-
ability lines are thin-and-diamond. 5.8(c) shows the variation of the average
classification error for different probability threshold (0 6 ϑ < 1) and its influ-
ence on the classifier output (Algorithm 3 step 6). 5.8(d) shows how the average
online performance varies with respect to the epoch size (w). It shows both the
classification accuracy (left y-axis) and the ITR (right y-axis). In 5.8(a), 5.8(c),
and 5.8(d), the bars represent the error of the mean i.e. standard deviation
divided by the square root of n− 1, n = number of samples.

116



−4 −2 0 2 4
−4

−2

0

2

4

6
Resting class
13Hz class
21Hz class
17Hz class

Delay

(a)

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

 

 
Resting class
13Hz class
21Hz class
17Hz class

(b)

Figure 5.9: The covariance matrices trajectory during a 4-class SSVEP online
recording. The circles represent class centres. The triangles mark the beginning
of the experiment of a new trial whose class is indicated by the triangle’s colour.
5.9(a) shows the first 7 trials. The first 3 trials are from the resting class, the
remaining are respectively class 13 Hz, 17 Hz, and 21 Hz. 5.9(b) shows the entire
recording. Data are taken from the subject with the highest BCI performance.

Online (ρ(k̄) > ϑ) Online (full algo. 3) Online-Potato
acc(%) delay(s) itr(bpm) acc(%) delay(s) itr(bpm) acc(%) delay(s) itr(bpm)

S1 67.2 0.7 37.6 71.4 1.1 32.4 71.4 1.1 32.4
S2 78.1 0.7 59.0 75.0 1.0 39.2 75.0 1.0 39.2
S3 89.1 0.8 85.2 89.1 1.0 67.6 89.1 1.0 67.6
S4 75.0 0.7 52.2 75.0 0.9 42.9 75.0 0.9 43.4
S5 71.9 0.7 46.7 70.3 1.1 31.0 70.3 1.1 31.0
S6 87.5 0.8 80.2 87.3 1.1 58.7 87.3 1.1 58.7
S7 84.4 0.7 76.3 85.4 1.0 62.5 88.5 1.0 69.1
S8 85.9 0.8 76.4 89.1 1.0 68.1 89.1 1.0 68.1
S9 67.2 0.7 37.2 75.0 1.0 39.6 76.6 1.1 40.3
S10 62.5 0.7 30.3 69.5 1.0 32.0 69.5 1.0 32.0
S11 59.4 0.8 23.5 68.8 1.1 29.1 68.8 1.1 29.1
S12 69.4 0.7 44.8 93.8 1.0 79.4 93.8 1.0 79.9

Mean 74.8±10.2 0.7±0.0 54.1±21.0 79.1±9.1 1.0±0.1 48.6±17.6 79.5±9.3 1.0±0.1 49.2±18.2

Table 5.5: This table summarises the performance achieved with the online
algorithm with resting class identification, as in Table 5.4.
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Figure 5.10: (a) Confusion matrix for K = 4 classes with Online-Potato. (b):
ROC curve indicating the influence of the ϑ parameter.
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Chapter 6

Perspectives for Riemannian
Approaches

Tell me and I forget, teach me and I may

remember, involve me and I learn.

— Benjamin Franklin

6.1 Introduction

For efficient learning in EEG based BCI, as in most machine learning applica-

tions, an important amount of training data is needed. However the amount

of data available within the BCI community is little [Delorme, 2015]. Another

particularity with BCI is that the inter-subject variability requires that data

used for training come from the same subject that the testing ones. Because

of the difficulties in acquiring long signals from users and the need to keep the

calibration time short, such training data are usually not available. Moreover,

in some BCI applications the number of trials per class cannot be determined

by the experimental paradigm, resulting in a class imbalance that disturbs the

learning process.

A possible way of solving these problems related to data scarcity is data

augmentation. In this approach, artificial data are generated by applying a

transformation to the recorded data [Van Dyk and Meng, 2001; Grandvalet,

2000]. This technique has been successfully applied on image classification, when

the number of samples in each class is small. The common practice is to identify
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a set of possible transformations that could affect input images, e.g. rotation,

translation, scaling, flipping, brightness adjustment, and to randomly applied

those transformations to each training example [Dieleman et al., 2015]. In the

context of handwritten character recognition, an elastic distortion emulating

uncontrolled oscillation of hand muscles is applied [Simard et al., 2003]. Figure

6.1 shows an example of images where translation, scaling, rotation and elastic

distortion have been applied. Data augmentation works well when combined

Figure 6.1: Hand-written digits from MNIST dataset. The original data are
on the first row, the other rows are artificially created images from distorted
version of the original digits. [Image taken from Ciresan et al., 2012]

with artificial neural network [Duda et al., 2001; Ciresan et al., 2012; Krizhevsky

et al., 2012]. In BCI applications, a similar approach has been used to reduce

calibration time in a motor imagery based BCI system [Lotte, 2011]. Each

recorded trial is segmented and segments from the original set are randomly

selected and concatenated to form new artificial trials.

In this chapter a novel data augmentation method based on non-Euclidean

geometry is proposed. Unlike those mentioned above, data are not generated in

the input space. Each training trial is represented in the space of SPD matrices

by its covariance matrix. The augmented data lives on the manifold and within

the convex hull defined by their class set. As a result, the convex hull of the class

is densified with transformed versions of the original data. The augmented data

are fed to a classifier, here we consider a multi-layer perceptron. This method is

evaluated on two experimental datasets. The first one is an SSVEP-based BCI

where only a limited number of training examples are available. The second

one is an error detection application of ERP-based BCI to generate artificial
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trials to balance the number of positive and negative trials. In the error related

potential (ErrP) application paradigm, the number of trials with and without

ErrP variable and not controlled.

Other than data augmentation, another way to make up for missing train-

ing data is to use data or parameters learnt from other subjects with sufficient

training data. This is referred to as transfer learning. Machine learning algo-

rithms aim at learning a task from training data. Once a task has been learnt,

it can then be applied to future data (also referred to as test data). These

algorithms work on the assumption that the training data and the future data

are drawn from the same feature space and the same distribution. However, in

real life applications, it is not always possible to have training data available,

which are drawn from the same feature space and same distribution as the test

data. Moreover, the task to be performed on new data can differ from the task

learned from the training (or previous) data. Transfer learning thus aims at

transferring the knowledge learnt from the previous task and data to a new

task and data.

In BCI the need of transfer learning is important due to inter-subject vari-

ability and intersession variability. Inter-subject variability is expressed by the

difference of brain signals recorded from different subjects despite them being

involved in the similar mental activities. This difference is mostly attributed to

anatomical differences among users. BCI algorithms are thus trained on brain

signals recorded from a user to be letter used for the same task and on the same

user. Inter-session variability is manifest between distinct recording sessions of

a unique subject. This variability is attributed to changes in the mental states

of the user, fatigue, and changes in experimental settings e.g. electrodes place-

ment, environment, stimulations, etc. To make up for these setbacks, training

data should be recorded for every BCI user in a controlled environment and

the experimental settings meticulously noted. To have enough training data,

lengthy recordings are needed, which is not always achievable due to BCI illit-

eracy, fatigue and discomfort. Being able to use data recorded from previous

BCI users via transfer learning will

1) eliminate or shorten the recording of training data, and

2) improve BCI performance for users with limited training data.
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6.2 Data Augmentation

This section presents the proposed approach of augmenting training data ex-

amples from their covariance matrices using Riemannian geometry.

6.2.1 Generating Artificial Points on Riemannian Mani-
fold

Each trial’s covariance matrix being represented as a point on the manifold,

artificial trials are generated by interpolating new points between original trials’

covariance matrices belonging to one class. This interpolation is done on the

geodesic connecting each pair of original trials such that the generated point

remains on the manifold and within the convex hull of the set of the class

original data. This approach is similar to tensor linear interpolation introduced

in [Pennec et al., 2006]. Given the definition of the tangent vector
−−−→
Σ1Σ2 between

Σ1 and Σ2 in (5.1.3), the geodesic γ on the manifold can be obtained by the

exponential mapping of
−−−→
Σ1Σ2 defined in (5.1.1) as: γ = ExpΣ1

(LogΣ1
(Σ2)).

Defining t ∈ [0; 1], points lying on the geodesic are defined by:

Σ(t) = ExpΣ1
(t LogΣ1

(Σ2))

= Σ
1
2
1 (Σ

− 1
2

1 Σ2Σ
− 1

2
1 )tΣ

1
2
1

(6.2.1)

with Σ1 = Σ(0) and Σ2 = Σ(1). Remark that the interpolation (6.2.1) is

equivalent to (1 − t)Σ1 + tΣ2 in Euclidean space. Artificial points for data

augmentation are obtained between original points by setting t in (6.2.1) to any

value other than 0 and 1. In our experiments, interpolated matrices between

each pair Σ1,Σ2 are linearly spaced on the geodesic between 0 and 1, and all

possible pairs are considered.

Outliers in the pool of original data covariance matrices can distort the

convex hull of classes, resulting in misclassification of new trials. To alleviate

these effects, outliers are rejected from the original data before the generation

of artificial data using an offline Riemannian potato described in section 5.4.2.

The Riemannian mean of matrices belonging to one class is used as the centre

of the Riemannian potato for that class. For each class, all matrices beyond the
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z-score of 1 from the class centre are rejected. This value has been chosen after

careful cross-validation.

6.2.2 Classification

To evaluate the benefit of applying the proposed data augmentation method,

three classifiers are considered: a multi-layer perceptron (MLP) neural network

[Duda et al., 2001] which is used on original data and then on augmented data,

a tangent space linear discriminant analysis (TSLDA) [Barachant et al., 2012a]

and a Riemannian-kernel support vector machine (RK-SVM) [Yger, 2013]. The

choice for a MLP is motivated by the fact that neural networks are known to

be sensitive to the amount and diversity of examples of data they are presented

with [Ciresan et al., 2012; Krizhevsky et al., 2012]. On the other hand, RK-

SVM and TSLDA are versions of SVM and LDA adapted to data lying on

a Riemannian space. They are arguably the state-of-the-art concerning EEG

covariance classification in tangent space [Barachant et al., 2012a, 2013b]. The

classification features w ∈ R
C(C+1)/2 are obtained projecting matrices on the

tangent space at their mean Σ̄:

Θi = Σ̄− 1
2 LogΣ̄(Σi)Σ̄

− 1
2 = Log(Σ̄− 1

2ΣiΣ̄
− 1

2 ) , (6.2.2)

and then extracting the upper triangular part of a symmetric matrix Θi and

vectorising it (applying
√
2 weight for out-of-diagonal elements). These 3 classi-

fication methods are offline since the feature extraction (6.2.2) requires the pro-

jection on the global mean. However, online extensions are possible [Barachant

et al., 2013b; Kalunga et al., 2015b].

6.2.3 Experimental Data Description

The assessment of the proposed data augmentation method is conducted on

two datasets. The first one is from the SSVEP-based experiment described in

section 4.4.1. The second dataset is an error-related potential detection, where

the number of positive examples (the error potential) is smaller than the number

of negative examples, that is a problem with unbalanced classes. Here only the

ERP dataset is described.
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ERP Dataset

The dataset, available for the NER Kaggle competition, was recorded during

an online P300 speller experiment for error detection in the speller Perrin et al.

[2012]. 16 healthy subjects participated in the experiment, the brain activity

was recorded on C = 56 channels. Subjects have to spell a series a letter in

under two spelling conditions: a fast, more error-prone condition (each item is

flashed 4 times), and a slower, less error-prone (each item is flashed 8 times).

The subjects had to go through five spelling sessions. Each session consisted of

twelve 5-letter words, except the fifth which consisted of twenty 5-letter words

making up for a total of 340 letters. For each spelled letter, the feedback of the

result of the speller is displayed on a screen. The time of feedback is recorded

and the label of feedback (correct or incorrect) is also recorded. In case of a

spelling error, an error evoked potential occurs in the EEG. In the current work

we focus on the detection of the error in spelling based on this a priori. The

task of learning algorithms is to detect errors, i.e. to classify trials as incorrect

or correct (K = 2, positive or negative). In such experiments, the number

of positive and negative trials is not balanced. In case of a good speller, the

number of positive trials are very limited. In this dataset the number of positive

trials is largely inferior to the number of negative trials creating a problem of

class unbalance in training set. To balance training set from this experiment,

artificial data can be generated in the class with less number of trials.

6.2.4 Results and Discussion

SSVEP dataset

SSVEP training set is augmented with different numbers of artificial samples for

each class. One to five samples are interpolated between each pair of original

samples belonging to a single class. Figure 6.2 shows the densification effect

resulting from the augmentation process. Original covariance matrices of each

class are projected on the tangent space computed at the mean of all the matri-

ces, and the two principal components (obtained by applying PCA) are shown

on Fig. 6.2(a). Similarly, Fig. 6.2(b) shows the augmented covariance matrices

after interpolation of 5 points between each pair of covariance matrices within

124



each class. The augmented data are within the convex hull of the original data.
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Figure 6.2: Mapping of covariance matrices of trials from each class on the tan-
gent space (5.1.2). Matrices on the tangent space are vectorised and the 2 most
significant components from PCA are used to obtain the 2-D representation.
The covariance matrices of original data (a) and augmented data (b).

The performance of the augmentation approach is evaluated in terms of clas-

sification accuracy obtained with an MLP classifier and the results are compared

with those obtained with TSLDA and RK-SVM classifiers. The MLP inputs

are trial covariance matrices mapped on the tangent space. The MLP has 108

input units, one hidden layer with 50 neurons, and 4 output units. The classi-

fication obtained with each number of interpolated points are compared to the

performance without training set augmentation. Figure 6.3 shows the classifica-

tion performances from zero interpolated point (no training set augmentation)

to 5 points interpolated. Due to the non-convexity of MLP optimisation, re-

sults averaged over subjects, are then averaged over 10 repetitions. Significant

p-values show that average classification across all subjects is improved by the

data augmentation. The effect of data augmentation varies depending on the

quality of training examples from individual subjects. In Figure 6.4, the effect of

augmenting training data in the subject with the lowest BCI performance and

the subject with highest BCI performances are put side by side. In Table 6.1,

the classification accuracy (in %) of the MLP preceded with data augmentation
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are compared with RK-SVM and TSLDA.
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Figure 6.3: Mean classification accuracy in % across all subjects for different
levels of data augmentation. At 0, there is no augmented data. At 1, one
artificial data is interpolated between each pair of original data within each
class, and so forth

ERP Dataset

On the ERP dataset the data augmentation is done to balance the number of

positive trials (incorrect P300 feedback where ErrP is present) and negative

trials (feedback with no error) in the training set. Each subject has 240 or 280

trials in the training set. The number of positive trials can be as low as 2% of

the training set. The number of generated artificial trials g is determined by

the gap between the number of positive trials and negative trials in the training

set. To generate g trials, a covariance matrix is interpolated between g pairs
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Figure 6.4: Classification accuracy of subject with lowest BCI performance
versus subject with highest BCI performance, using original training set and
using augmented training set with 5 interpolated points between each pair of
original data within each class.

of randomly selected original matrices. The effect of balancing classes with

artificial trials is evaluated with the three classifiers (i.e. MLP, TSLDA and

RK-SVM). The MLP has 10 input units, one hidden layer with 50 neurons and

two output units. The number of MLP units is chosen after a cross-validation

phase.

Since the class unbalance is still present in the evaluation set, the classifi-

cation performances are evaluated in terms of sensitivity. Figure 6.5 shows the

performance achieved when classes are balanced by augmenting data in the pos-

itive class. They are compared to the results achieved when using unbalanced
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MLP aug+MLP RK-SVM TSLDA
Sub 1 70.63 70.63 68.75 73.44
Sub 2 71.25 78.28 82.81 76.56
Sub 3 94.22 95.00 93.75 93.75
Sub 4 84.06 86.72 92.19 93.75
Sub 5 73.75 67.50 73.44 71.88
Sub 6 84.84 87.66 82.81 84.38
Sub 7 90.73 91.67 89.58 90.63
Sub 8 89.22 92.19 89.06 90.63
Sub 9 70.78 68.28 62.50 67.19
Sub 10 78.44 76.72 78.91 78.13
Sub 11 63.28 72.97 71.88 70.31
Sub 12 94.62 96.13 95.63 93.13

Average 80.49 81.98 81.78 81.98

Table 6.1: Comparison of classification accuracy (in %) using the MLP on origi-
nal dataset, MLP with data augmentation (aug+MLP), RK-SVM and TSLDA.

training set. A t-test was performed and the p-values reveal significant improve-

ment after data augmentation. Table 6.2 shows details of classifiers performance

per subject in terms of sensitivity with and without data augmentation.

6.3 Transfer Learning

6.3.1 User Specificity as Domain in Transfer Learning

Exposed to the same stimuli, BCI users do not produce similar EEG response.

To users specificities should be added changes induced by different environmen-

tal conditions during recording. In this work, we consider this specificity of the

recorded EEG as being different domains in transfer learning.

Definition 6.3.1. (Transfer Learning) Given a source domain DS and learning
task TS, a target domain DT and learning task TT , transfer learning aims at
improving the learning of the target predictive function fT (·) in DT using the
knowledge in DS and TtrS, where DS 6= DT , or TS 6= TT [Pan and Yang, 2010].

Considering the above definition of transfer learning, a domain is a pair

D = {X , P (X)} consisting of a feature space X and a marginal probability

distribution P (X), where X = {x1, . . . , xn} ∈ X . A task is defined as a pair
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Figure 6.5: Classification performance in terms of sensitivity. For each of the 16
subjects these measures are given for classification based on training on original
unbalance training set and training on augmented and balanced training set.

T = {Y , f (·)} consisting of a label space Y and an objective predictive function

f (·) that can be learned from the training data, which consist of pairs {xi, yi},
where xi ∈ X and yi ∈ Y . From a probabilistic viewpoint, f (x) can be written

as P (y|x). Thus a task can be defined as T = {Y , P (Y |X)}.

6.3.2 Category of Proposed Transfer Learning

In definition 6.3.1, DS 6= DT , implies that either XS 6= XT or P (XS) 6= P (XT );

and TS 6= TT implies that either YS 6= YT or P (YS|XS) 6= P (YT |XT ). Depending

on each case, the following categories of transfer learning are defined [Pan and

Yang, 2010]:

1. TS = TT and DS = DT : Traditional Machine Learning (no transfer)

2. TS 6= TT : Inductive transfer learning and Unsupervised transfer learning

3. DS 6= DT : Transductive transfer learning
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Imbalanced classes Balanced classes
Sub. MLP RK-SVM TSLDA MLP RK-SVM TSLDA
1 0.85 0.76 0.79 0.83 0.77 0.85
2 0.11 0 0.32 0.60 0.07 0.57
3 0.67 0.60 0.72 0.95 0.63 0.95
4 0.41 0.42 0.63 0.69 0.32 0.70
5 0.65 0.51 0.61 0.60 0.49 0.68
6 0.72 0.71 0.74 0.77 0.70 0.76
7 0.79 0.70 0.78 0.88 0.70 0.89
8 0.57 0.33 0.63 0.72 0.25 0.70
9 0.74 0.59 0.77 0.87 0.58 0.89
10 0.51 0.34 0.59 0.82 0.34 0.90
11 0.51 0.27 0.57 0.68 0.27 0.61
12 0.75 0.65 0.82 0.97 0.65 0.99
13 0.24 0 0.57 0.73 0.08 0.75
14 0.52 0.47 0.62 0.80 0.43 0.75
15 0.61 0.51 0.65 0.81 0.60 0.83
16 0.52 0.46 0.54 0.65 0.42 0.53

Average 0.570 0.459 0.648 0.773 0.46 0.772

Table 6.2: Sensitivity analysis of performances obtained with 3 classifiers trained
with imbalanced training set versus trained with balanced training set. The class
imbalance of the ERP dataset is solved with data augmentation.

In BCI classification task, both inductive transfer learning and transductive

transfer learning can be applied. In transductive learning, no labelled data are

needed from the target domain, while few or all unlabelled data are needed at

training time in order to obtain the marginal probability for the target data.

This situation is suitable in offline BCI applications, and completely eliminate

the need for training data, i.e. no recording phase.

In inductive learning few labelled data from the target data are needed to

induce the predictive function. In this case just a small training set is needed

shortening the recording of training data. This type of transfer can be used in

both offline and online applications.

In this work, we are interested in a transductive transfer learning.
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6.3.3 Composite Riemanian Mean

Composite Riemanian Mean is an instance transfer technique, i.e. re-weighting

of labelled data in source domain for use in the target domain [Pan and Yang,

2010], inspired from the composite common spatial patterns method proposed

by [Kang et al., 2009] as a feature representation transfer technique. Data from

subjects in source domain are weighted based on the subject’s similarity to the

subject in the target domain. The measure of subjects’ similarity is based on the

KullbackLeibler divergence (KL-divergence) as proposed by [Kang et al., 2009].

Additionally the Affine Invariant Riemannian metric (AIRM) is also used for

analysis. Other distances and divergences introduced in Section 5.3.2 might be

used. These weights are obtained in an unsupervised way; no labels are required

nor in the target domain, nor in the source domain. We rewrite the definition

of the KL-divergence of multivariate Gaussian distribution X1 and X2, with

covariance matrices Σ1 and Σ2 respectively from (5.3.28) as:

DKL(X1, X2) =
1

2

(
log

detΣ2

detΣ1

− C + tr(Σ−1
2 Σ1) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)

)

In the preprocessing, the DC component of EEG signals is removed: X ∈
N(0,Σ); and the covariance matrices are det-normalized. Therefore the KL-

divergence can be expressed by:

DKL(X1, X2) =
1

2

(
tr(Σ−1

2 Σ1 − C)
)

Where C is the dimension of Σ, and tr(·) denotes the trace of a matrix.

In Section 5.3.2, a symmetrised version of the KL-divergence was presented as

the Jeffreys divergence. It can be expressed as:

Ds
KL(X1, X2) =

√
1

2

(
tr(Σ−1

2 Σ1 + Σ2Σ
−1
1 − 2IC)

)
(6.3.1)

Where IC is the identity matrix of size C.

The AIRM (dAI(Σ1,Σ2)) is defined by (5.3.9)

The similarity between two subjects is defined as the inverse of the KL-

divergence of their recorded EEG signals (or AIRM of their covariance matrix):

sj,k =
1

Zk
· 1

DKL(Xj, Xk)
(6.3.2)
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Where Zk is a normalisation factor for all distances to subject k:

Zk =
∑

l 6=k

1

DKL(Xl, Xk)
(6.3.3)

For the AIRM, DKL(·, ·) is replaced by dAI(·, ·) in Equations (6.3.2) and (6.3.3).

To classify samples from the target subject k using MDRM, composite Rie-

mannian means of classes are obtained as:

C
k
c = (1− λ)Ck

c + λ
∑

j 6=k

sj,kC
j
c (6.3.4)

where Cc is the individual subject’s mean of class c, and λ ∈ [0, 1].

Defining parameter λ

In (6.3.4), the parameter λ defines how much the classification relies on data

from other subjects. When a subject has enough and clean training data, it

might not be necessary to use data from other subject; when the subject has

noisy or little data, or his or her training data cannot be trusted, it might be

safer to rely more on data from other subjects. The balance between this cases

is determined by λ. We identified that λ will depend mainly on the number

of data available for the test subject, and the proximity (or similarity) of this

subject to other subjects. In other words, the proximity is also a measure of

data transferability. We define λ as a flipped logistic function of the similarity of

the test subject to other subjects and the number of training samples available

per class in the training data of the test subject:

λ =
1

1 + eaz(n−n0)
(6.3.5)

a : a ≥ 1, parameters controlling the decay. It can be learnt through cross-

validation process.

z : Normalised z-score used as proximity measure.

n : Number of labelled samples per class.

n0 : n0 > 1 Shift in logistic function. It can be learnt through cross-validation

process.
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6.3.4 Experimental Results
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Figure 6.6: 2-D representation of affinity (or similarity) between subjects
based on the 4 metrics: 6.6(a): Affine Invariant Riemannian distance, 6.6(b):
Kullback-Leibler using forward divergences, 6.6(c): Kullback-Leibler using re-
verse divergences, 6.6(d): the symmetric version of KL divergence.

Grid search

A grid search is performed for λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The number of la-

belled training examples from the test subject – used in the computation of Ck
c

in Eq. (6.3.4), is also varied: n ∈ {4, 8, 12, 16, 20, 24, 28, 32}.
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Figure 6.7: Mean classification accuracy for 12 subjects. Grid search with
different values of n ∈ {4, 8, 12, 16, 20, 24, 28, 32} on the x-axis and different
values of λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} on the y-axis. The results are obtained
using 4 metrics to measure similarity between subjects: 6.7(a) AIRM, 6.7(b)
Dforward

KL , 6.7(c) Dreverse
KL , 6.7(d) Dsymmetric

KL

Evaluation λ

Through the grid search, different values of λ were tested with different numbers

of samples. The optimal performances, i.e. the classification performance ob-

tained with optimal λ, with each number available sample n are compared with

the performance obtained with λ as defined in (6.3.5). To this end a Pareto

analysis is performed, with the Pareto front being the optimal classification

accuracy obtained through a grid search. Figure 6.9 shows the Pareto front

against the performance obtained with λ = 1, meaning only data from other
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Figure 6.8: Individual subject classification accuracy. Grid search with different
values of n ∈ {4, 8, 12, 16, 20, 24, 28, 32} on the x-axis and different values of
λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} on the y-axis. (a) to (l) correspond to subjects 1 to
12 respectively. The results are obtained using Dsymmetric

KL
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augmentation scheme based on the geometry of covariance matrices was intro-

duced. From the geodesics passing through pairs of samples, new samples are

drawn and fed to a neural classifier. The data augmentation allows to enhance

the classification accuracy when there is only a few number of samples per class.

Data augmentation can compensate for dataset with unbalanced classes as it is

often the case in event-related potential paradigm. The choice of the classifier

is important when dealing with this augmented data; neural networks yield the

best results. Future works will focus on the optimisation of the neural networks:

determining the best architecture (in terms of layers and neurons) for processing

covariance matrices and the investigation of common deep learning methods to

improve results (dropouts, ReLU units, etc). The perspective of transfer learn-

ing yield promising results. Further work should be done on the optimisation of

parameters in the logistic function defining lambda through a cross validation

process. Other functions that could better describe the relationship between

lambda, the proximity, and the number of training samples of the test subject

should be explored.
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Chapter 7

Conclusion

Better is the end of a thing than the beginning

thereof

— Ecclesiastes 7:8

This work presented the current state-of-the art in brain-computer interfaces,

and identified the challenges thereof. It focused on improving BCI performances

and adaptivity and address problems related to the adaptability of BCIs to users’

muscular abilities, to the robustness of EEG representation and learning, and

to the insufficiency of samples in the training data. To address the adaptability

to physical needs and muscular abilities of the user, a new methodology for

designing hybrid systems was proposed. It uses a brain interface and motor

interface specifically design to fit the user’s needs and abilities. The main goal

of these hybrid system is to assist people with motor disabilities or muscular

diseases, by proposing a system that adapts to their individual needs, and makes

use of their residual skills. The BCI is integrated in the system as a secondary

modality, which is used to trigger specific behaviour or predefined actions. The

proposed approach is implemented using a 3D touchless interface and a SSVEP-

based BCI. This implementation gathers the two interfaces in a multimodal

system which benefits from both the brain and motor signals. It is validated on a

3D navigation task in virtual environment and on the ESTA chair for the control

of a robotic arm exoskeleton. To ensure robust EEG representation and learning,

this work explores the Riemmanien geometry of covariance matrices. It studies

the necessary tools required for analysis of covariance matrices as elements of a

Riemannian space. Methods of covariance estimation are studied to ensure the
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quality and positive definiteness of the obtained covariance matrices. The notion

of distance and mean being central to classification algorithms, metrics used for

measure of distance (or divergence) and mean of covariance matrices are studied.

The work shows that Riemannian metrics and their mean significantly improves

the classification performances. Using the studied tools, an online algorithm for

SSVEP classification was proposed, and was evaluated successfully. It provides,

for the first time, an online approach to classification of covariance matrices of

EEG in particular, and SPD matrices in general, using Riemannian geometry.

Tools of Riemannian geometry offer many perspectives in BCI machine learning.

This work proposes two other areas where they can be successfully applied,

namely data augmentation and transfer learning. These two techniques address

the problem of insufficient samples in the training data. By generating artificial

training samples that are constrained to the manifold of SDP matrices defined by

the original data, the proposed data augmentation technique can provide larger

and more representative training data, and solve the problem of class imbalance

in EEG classification particularly in ERP BCI. The proposed transfer learning

approached enlarge the training set of a test subject by appropriately using

data from other subjects. It increases the performance of classfiers, particularly

when the test subject has a very small training set.

Seeing the benefit and perspective brought by Riemannian geometry from

simple classification algorithms such as MDM, it is encouraging to apply them

to other methods that are currently designed with linear Euclidean algebra.

They can foreseeably be applied to adapt dictionary learning to Riemannian

geometry, and with further investigation to methods such as artificial neural

networks.
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Congedo, M., Barachant, A., and Andreev, A. (2013). A New Generation of
Brain-Computer Interface Based on Riemannian Geometry. arXiv preprint
arXiv:1310.8115.

Courchesne, E., Hillyard, S. A., and Galambos, R. (1975). Stimulus novelty, task
relevance and the visual evoked potential in man. Electroencephalography and
Clinical Neurophysiology, 39(2):131–143.

Cutrell, E. and Tan, D. (2008). BCI for passive input in HCI. In Proceedings
of CHI, volume 8, pages 1–3. Citeseer.

Daly, J. J. and Wolpaw, J. R. (2008). Brain-Computer interfaces in neurological
rehabilitation. The Lancet Neurology, 7(11):1032–1043.

Delorme, A. (2015). EEG data available for public download.

144



Dhillon, I. S. and Tropp, J. A. (2007). Matrix nearness problems with Bregman
divergences. SIAM Journal on Matrix Analysis and Applications, 29(4):1120–
1146.

Dieleman, S., Willett, K. W., and Dambre, J. (2015). Rotation-invariant convo-
lutional neural networks for galaxy morphology prediction. Monthly Notices
of the Royal Astronomical Society, 450(2):1441–1459.

Dingyin, H., Wei, L., and Xi, C. (2011). Feature extraction of motor imagery
EEG signals based on wavelet packet decomposition. Complex Medical Engi-
neering (CME), 2011 IEEE/ICME International Conference on, pages 694–
697.

Donchin, E. (1969). Discriminant analysis in average evoked response studies:
the study of single trial data. Electroencephalography and clinical neurophys-
iology, 27(3):311–314.

Donchin, E. (1981). Surprise! Surprise? Psychophysiology, 18(5):493–513.

Donchin, E., Spencer, K. M., and Wijesinghe, R. (2000). The mental prosthesis:
assessing the speed of a P300-based brain-computer interface. Rehabilitation
Engineering, IEEE Transactions on [see also IEEE Trans. on Neural Systems
and Rehabilitation], 8(2).

Dornhege, G., Blankertz, B., Curio, G., and Klaus-Robert Muller (2004a). In-
crease information transfer rates in BCI by CSP extension to multi-class.
Advances in Neural Information Processing Systems, pages 733–740.

Dornhege, G., Blankertz, B., Curio, G., and Muller, K.-R. (2004b). Boosting
bit rates in noninvasive EEG single-trial classifications by feature combination
and multiclass paradigms. Biomedical Engineering, IEEE Transactions on,
51(6):993–1002.

Duda, R., Hart, P., and Stork, D. (2001). Pattern classification. Wiley, 2
edition.

Elshout, J. A. (2009). Review of brain-computer interfaces based on the P300
evoked potential. Tech. Rep. PR-TN 2009/00066, Koninklijke Philips Elec-
tronics (2009).

Faradji, F., Ward, R., and Birch, G. (2009). A brain-computer interface based
on mental tasks with a zero false activation rate. Neural Engineering, 2009.
NER ’09. 4th International IEEE/EMBS Conference on, pages 355–358.

145



Farwell, L. A. and Donchin, E. (1988). Talking off the top of your head: Toward
a mental prosthesis utilizing event-related brain potentials. Electroencephalog-
raphy and Clinical Neurophysiology, 70:510–523.

Ferrez, P. and del R. Millan, J. (2008). Error-Related EEG Potentials Gener-
ated During Simulated Brain-Computer Interaction. Biomedical Engineering,
IEEE Transactions on, 55(3):923–929.

Ferrez, P. W. and Millan, J. d. R. (2008). Simultaneous Real-Time Detection
of Motor Imagery and Error-Related Potentials for Improved BCI Accuracy.
Proceedings of the 4th International Brain-Computer Interface Workshop and
Training Course, pages 197–202.

Finke, A., Knoblauch, A., Koesling, H., and Ritter, H. (2011). A hybrid brain
interface for a humanoid robot assistant. Engineering in Medicine and Biology
Society,EMBC, 2011 Annual International Conference of the IEEE, pages
7421–7424.

Fisher, R. S., Harding, G., Erba, G., Barkley, G. L., Wilkins, A., and Epilepsy
Foundation of America Working Group (2005). Photic- and pattern-induced
seizures: a review for the Epilepsy Foundation of America Working Group.
Epilepsia, 46(9):1426–1441.

Fitzgerald, P. G. and Picton, T. W. (1967). Temporal and sequential probability
in evoked potential studies. Canadian Journal of Psychology, 35(2):188–200.

Fletcher, P. T., Lu, C., Pizer, S. M., and Joshi, S. (2004). Principal geodesic
analysis for the study of nonlinear statistics of shape. Medical Imaging, IEEE
Transactions on, 23(8):995–1005.

Foldes, S. T., Weber, D. J., and Collinger, J. L. (2015). MEG-based neurofeed-
back for hand rehabilitation. Journal of NeuroEngineering and Rehabilitation,
12:85.

Foley, D. H. (1972). Considerations of sample and feature size. Information
Theory, IEEE Transactions on, 18(5):618–626.

Friedman, J. H. (1989). Regularized Discriminant Analysis. Journal of the
American Statistical Association, 84(405):165–175.

Fukunaga, K. (1990). Introduction to statistical pattern recognition. Academic
press.

146



Gaur, P., Pachori, R. B., Wang, H., and Prasad, G. (2015). An empirical mode
decomposition based filtering method for classification of motor-imagery EEG
signals for enhancing brain-computer interface. In Neural Networks (IJCNN),
2015 International Joint Conference on, pages 1–7. IEEE.

Gazzaniga, M. S., Ivry, R. B., and Mangun, G. R. (2013). Cognitive Neuro-
science: The Biology of the Mind, 4th Edition. W. W. Norton & Company,
4th edition edition.

Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., and Donchin, E. (1993).
A neural system for error detection and compensation. Psychological science,
4(6):385–390.

George, L. and Lécuyer, A. (2010). An overview of research on” passive” brain-
computer interfaces for implicit human-computer interaction. In International
Conference on Applied Bionics and Biomechanics ICABB 2010-Workshop
W1” Brain-Computer Interfacing and Virtual Reality”.

Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, G., Lloyd-Fox, S.,
Shukla, M., and Aslin, R. N. (2011). Near-infrared spectroscopy: A report
from the McDonnell infant methodology consortium. Developmental Cogni-
tive Neuroscience, 1(1):22–46.

Girouard, A., Solovey, E. T., and Jacob, R. J. (2013). Designing a passive brain
computer interface using real time classification of functional near-infrared
spectroscopy. International Journal of Autonomous and Adaptive Communi-
cations Systems, 6(1):26–44.

Goh, A. and Vidal, R. (2008a). Clustering and dimensionality reduction on
Riemannian manifolds. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–7. IEEE.

Goh, A. and Vidal, R. (2008b). Unsupervised Riemannian clustering of prob-
ability density functions. In Machine Learning and Knowledge Discovery in
Databases, pages 377–392. Springer.

Golub, M. D., Yu, B. M., Schwartz, A. B., and Chase, S. M. (2014). Motor cor-
tical control of movement speed with implications for brain-machine interface
control. Journal of Neurophysiology, 112(2):411–429.

Gosseries, O., Demertzi, A., Noirhomme, Q., Tshibanda, J., Boly, M., Op de
Beeck, M., Hustinx, R., Maquet, P., Salmon, E., Moonen, G., Luxen, A.,
Laureys, S., and De Tige, X. (2008). [Functional neuroimaging (fMRI, PET
and MEG): what do we measure?]. Revue Mdicale De Lige, 63(5-6):231–237.

147



Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brod-
beck, C., Parkkonen, L., and Hmlinen, M. S. (2014). MNE software for
processing MEG and EEG data. NeuroImage, 86:446–460.

Grandvalet, Y. (2000). Anisotropic Noise Injection for Input Variables Rel-
evance Determination. In IEEE TRANSACTIONS ON NEURAL NET-
WORKS, pages 463–468. Springer.

Grosse-Wentrup, M. and Buss, M. (2008). Multiclass common spatial patterns
and information theoretic feature extraction. Biomedical Engineering, IEEE
Transactions on, 55(8):1991–2000.

Grbler, G., Al-Khodairy, A., Leeb, R., Pisotta, I., Riccio, A., Rohm, M., and
Hildt, E. (2014). Psychosocial and Ethical Aspects in Non-Invasive EEG-
Based BCI ResearchA Survey Among BCI Users and BCI Professionals. Neu-
roethics, 7(1):29–41.

g.Tec (2012). intendix.com.
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