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Abstract 

Fluidic oscillators which can generate periodic excitations are very promising for active 

flow control applications, due to their reliability and robustness, as their internal flow 

oscillation is totally self-induced and self-sustained. The main objective of this work is to 

identify the underlying mechanisms controlling the dynamics of this kind of fluidic oscillator 

and to propose guiding lines for the design of oscillators. Experimental analysis of several 

oscillator prototypes and associated numerical simulations have permitted to explain that the jet 

switching in this kind of oscillator is controlled by pressure gradients in two critical parts of the 

device. From these analyses, a simple function has been proposed to estimate the oscillation 

frequency. Two synchronization methods, allowing the control of the phase lag between the 

actuators, have been proposed and validated experimentally and by numerical simulations. An 

array of micro-fluidic oscillators has then been designed and tested on a ramp separated flow, 

showing much higher efficiency compared to other kind of fluidic actuators tested on similar 

wall flows in previous studies. 
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Résumé 

Les oscillateurs fluidiques qui peuvent générer des excitations périodiques sont des 

actionneurs très prometteurs pour des applications de contrôle actif des écoulements. Les 

oscillations sont en effet complètement auto-induites et produites en l'absence de parties 

mobiles ce qui rend ces actionneurs très intéressants en termes de fiabilité et de robustesse. Ce 

travail de thèse avait pour objectif principal d'identifier les mécanismes physiques qui 

contrôlent la dynamique de fonctionnement de ce type d'oscillateurs fluidiques et de proposer 

des lignes directrices pour la conception d'oscillateurs dont les performances soient adaptées 

aux applications de contrôle d'écoulements envisagées. L'analyse expérimentale de plusieurs 

prototypes couplée à des simulations numériques a permis de mettre en évidence que le 

mécanisme de basculement du jet dans ce type d'oscillateurs est contrôlé par les gradients de 

pression existants au niveau de deux parties critiques de ces actionneurs. A partir de cette 

analyse, une relation simple a été établie permettant d'estimer la fréquence des oscillations. 

Deux méthodes de synchronisation, permettant le contrôle du déphasage entre les actionneurs, 

ont été proposées et validées expérimentalement ainsi qu'à l'aide de simulations numériques. 

Une matrice de micro-oscillateurs fluidiques a été conçue, fabriquée et finalement intégrée sur 

une rampe installée en soufflerie. L'analyse expérimentale de son efficacité pour le contrôle de 

l'écoulement séparé a mis en évidence un gain important par rapport aux résultats obtenus lors 

de travaux précédents sur des écoulements de paroi similaires à l'aide d'autres types 

d'actionneurs fluidiques. 

 

MOTS CLES:  

Oscillateur fluidique, Effet Coanda, Contrôle actif d'écoulement, PIV, Ecoulement sur une 

rampe, OpenFoam, Anémométrie Fil Chaud





Résumé long en français 

Au cours des dernières décennies, de nombreux travaux ont concerné l'étude des 

actionneurs pour le contrôle actif d’écoulement, avec différents objectifs tels que la réduction 

de la traînée sur les corps non profilés 1, l'augmentation de la portance des surfaces portantes 2,3 

ou encore l'amélioration du mélange dans les chambres de combustion 4,5, etc. De nombreux 

travaux de recherche (par ex. Greenblatt and Wygnansky 6) ont montré que, comparativement 

aux méthodes de contrôle passives traditionnelles ou aux méthodes d'aspiration ou de soufflage 

continu, le contrôle actif d’écoulement basé sur des excitations fluidiques périodiques est 

beaucoup plus efficace, avec un gain de deux ordres de grandeur en termes de quantité de 

mouvement ajoutée. Ces perturbations périodiques peuvent être fournies par différents types 

d'actionneurs tels que les actionneurs ZNMF (Zero Net Mass Flow), les actionneurs plasma et 

les MEMS (Micro-Electro-Mechanical-Systems)7. Parmi eux, les oscillateurs fluidiques 

peuvent émettre des jets oscillants dans une grande plage de fréquence et de vitesse de 

fonctionnement lorsqu'ils sont alimentés en fluide sous pression, sans nécessiter de partie 

mobile car leurs oscillations sont totalement auto induites et auto-entretenues et ne dépendent 

que de la dynamique interne de l’écoulement, ce qui constitue un excellent avantage en termes 

de fiabilité et de robustesse 8-10.  

Le comportement d'un oscillateur fluidique à double boucle de rétroaction produisant deux 

jets pulsés est tout à fait différent de celui d'autres types d'oscillateurs basés sur l'effet Coanda, 

comme l'oscillateur fluidique sonique 37 ou l'oscillateur fluidique à jet balayant 43 et ne peut pas 

être clairement expliqué par les théories existantes. Ce travail de thèse s'est ainsi focalisé sur la 

clarification des mécanismes sous-jacents qui contrôlent la dynamique de ce type d'oscillateur 

fluidique dans le but de proposer des outils d'aide à la conception d'oscillateurs offrant les 

performances (fréquence et vitesse du jet pulsé) attendues pour les applications de contrôle 

auxquelles ils sont destinés. A partir de cette analyse, une matrice d'oscillateurs a aussi été 

développée et testée pour contrôler un écoulement séparé sur une rampe. 

Après une brève introduction sur les différentes stratégies de contrôle des écoulements et 

sur les actionneurs fluidiques typiques, l'étude bibliographique a porté sur les différents types 

d'oscillateurs fluidiques, soulignant l'intérêt d'utiliser des oscillateurs fluidiques à double 

boucle de rétroaction générant deux jets pulsés pour les applications de contrôle d'écoulements 

et mettant en évidence le manque de connaissances sur les mécanismes physiques régissant leur 

comportement. Le cœur de ce travail de thèse a ensuite été présenté en quatre parties principales, 



concernant respectivement l'analyse expérimentale des performances de 4 prototypes 

d'oscillateurs, la simulation numérique des écoulements instationnaires dans ces oscillateurs 

pour identifier les principaux mécanismes physiques contrôlant leur dynamique de 

fonctionnement, le développement de procédés de synchronisation d'un ensemble d'oscillateurs 

et l'application de ce réseau d'actionneurs fluidiques à la commande de l'écoulement séparé sur 

une rampe. 

Quatre nouveaux prototypes d'oscillateurs ont été conçus et caractérisés 

expérimentalement à la fois par anémométrie fil chaud et à l'aide de capteurs de pression à 

large bande passante. Ces mesures ont confirmé que la vitesse moyenne des jets pulsés 

générés est contrôlée par l'aire de la section du col de la buse d'alimentation et la pression 

totale d'entrée. Cependant, l'amplitude de la vitesse de sortie et son évolution avec le temps 

peuvent également être affectées par la section du col de la buse ainsi que par d'autres facteurs 

géométriques internes tels que la symétrie interne du dispositif. En outre, la longueur et le 

diamètre de la boucle de rétroaction jouent un rôle important sur les performances de 

l'oscillateur, en particulier sa réponse en fréquence. Une relation, déduite des mesures 

expérimentales, a été proposée pour estimer la fréquence d'oscillation en fonction de la 

longueur de ces boucles de rétroaction.  

Les modèles numériques développés sous OpenFOAM ont permis une estimation assez 

précise de la fréquence de fonctionnement. Une analyse détaillée des résultats des simulations a 

montré que, dans ce type d'oscillateur fluidique, la déviation du jet principal est provoquée non 

seulement par la différence de pression entre les ports de contrôle de l'oscillateur, mais aussi par 

la différence de pression entre ses branches. Dans les configurations étudiées, la valeur seuil de 

la différence de pression entre les ports de contrôle permettant de provoquer par elle-même la 

déviation du jet est beaucoup plus élevée que la différence de pression nécessaire entre les 

branches. Cependant, lors de la combinaison de ces deux effets, le basculement du jet devient 

beaucoup plus facile.  

On a montré que le mécanisme de commutation était lié à la propagation aller-retour des 

ondes de pression dans les branches de l'oscillateur et ses boucles de rétroaction: juste après la 

commutation du jet, une onde de compression à haute pression se propage dans la branche 

dans laquelle le jet est attaché et dans la boucle de rétroaction correspondante tandis qu'une 

onde de détente basse pression se propage dans l'autre branche et l'autre boucle de retour. 

Lorsque ces ondes arrivent au niveau des ports de contrôle, elles se réfléchissent et le jet est 

déstabilisé par l'inversion de la différence de pression à sa base. La commutation se produit 

lorsque les ondes de pression réfléchies ont atteint la base des branches provoquant l'inversion 



de la différence de pression entre les branches. Les ondes de pression se propageant 

approximativement à la vitesse du son Co, la période d'oscillation T peut être liée à la 

longueur de boucle de retour Lf par la relation nouvellement proposée T = 4Lf / Co , ce qui 

confirme la relation empirique déduite des résultats expérimentaux. Une relation plus précise a 

également été proposée pour calculer la fréquence d'oscillation, en tenant compte de la vitesse 

de l'écoulement dans les branches et les boucles de rétroaction de l'oscillateur. Ces simulations 

numériques ont également permis d'expliquer la non-dépendance de la fréquence d'oscillation à 

la pression d'alimentation. 

Deux nouvelles méthodes, basées sur des interconnexions entre les boucles de rétroaction, 

ont été proposées pour synchroniser deux oscillateurs similaires. Ces deux méthodes ont été 

validées expérimentalement et numériquement. La première conduit à une fréquence proche de 

celle des oscillateurs fonctionnant séparément et les jets pulsés générés par ces deux dispositifs 

sont quasiment en opposition de phase. La deuxième méthode conduit à une fréquence 

beaucoup plus faible et une différence de phase entre les actionneurs proche d'un quart de 

période. Les simulations numériques ont également permis d'expliquer le comportement 

dynamique des oscillateurs synchronisés et de prouver la faisabilité de la synchronisation d'un 

réseau de 4 oscillateurs fluidiques en utilisant la première méthode d'interconnexion. 

Dans la dernière partie de ce travail, 12 oscillateurs fluidiques identiques ont été intégrés 

dans une rampe pour tester leur capacité à contrôler la séparation de l’écoulement. La 

synchronisation de ce réseau d'oscillateurs fluidiques en utilisant la première méthode 

d'interconnexion a été validée expérimentalement. Les champs d'écoulement moyen et 

fluctuant sur la rampe, avec et sans action de ce réseau d'oscillateurs fluidiques, ont été acquis 

par PIV dans une soufflerie. Les résultats obtenus montrent que ce réseau d'oscillateurs 

fluidiques est très prometteur, compte tenu du faible coefficient de quantité de mouvement Cμ 

nécessaire pour éliminer totalement la séparation, comparativement aux valeurs optimales 

trouvées dans la littérature. L'analyse du champ moyen turbulent a montré que les 

mécanismes de contrôle sous-jacents étaient liés à une augmentation de la turbulence dans la 

région de la rampe due aux jets pulsés générés par les oscillateurs, conduisant à une 

augmentation nette par rapport au cas sans actionnement, de la force transférée de 

l’écoulement principal vers la couche de cisaillement.  

 





 

I 
 

Contents 

Contents ................................................................................................................................................... I 

Nomenclature ........................................................................................................................................ V 

Introduction ........................................................................................................................................... 1 

Chapter 1.  Background of the Study and Literature Review ..................................................... 3 

1.1  Phenomenon of boundary layer separation ............................................................................ 3 

1.2  Separation control methods .................................................................................................... 6 

1.3  Introduction to fluidic oscillators ........................................................................................... 8 

1.4  Coanda oscillators: the state of art ........................................................................................11 

1.4.1  Sonic fluidic oscillator ................................................................................................ 12 

1.4.2  Sweeping jet Coanda fluidic oscillator ........................................................................ 15 

1.4.3  Pulsing jet relaxation fluidic oscillator ........................................................................ 16 

1.4.4  Other kinds of Coanda oscillator ................................................................................. 20 

1.5  Efficient separation control by periodic jets ........................................................................ 21 

1.6  Conclusions .......................................................................................................................... 24 

Chapter 2.  Design and Experimental Characterization of Fluidic Oscillator Prototypes ..... 27 

2.1  Design of new prototypes .................................................................................................... 27 

2.2  Hot wire characterization of Osc.1 and Osc.2 ...................................................................... 30 

2.2.1  Description of the test bench ....................................................................................... 30 

2.2.2  Frequency response ..................................................................................................... 31 

2.2.3  Sample velocity signals of Osc.1 ................................................................................ 32 

2.2.4  Sample velocity signals of Osc.2 ................................................................................ 34 

2.2.5  Sensitivity of the internal geometry ............................................................................ 35 

2.2.6  Remarks and comments .............................................................................................. 36 

2.3  Frequency characterization of Osc.3 .................................................................................... 36 

2.3.1  Influence of FBL on the oscillation frequency ............................................................ 37 

2.3.2  First observations of the influence of feedback loops diameter/width ........................ 40 

2.4  Conclusions .......................................................................................................................... 41 

Chapter 3.  Numerical Tools and Validation ............................................................................... 43 

3.1  Introduction to OpenFOAM................................................................................................. 43 

3.2  Numerical settings ............................................................................................................... 45 

3.3  Validation of the numerical models ..................................................................................... 46 

3.3.1  Measurement of the oscillators' internal geometry by X-ray tomography .................. 46 

3.3.2  Frequency prediction capability .................................................................................. 47 



II 

3.3.3  Velocity prediction capability ...................................................................................... 48 

3.4  Conclusions .......................................................................................................................... 50 

Chapter 4.  Numerical Analysis of Oscillation Dynamics .......................................................... 51 

4.1  Identification of the key factors controlling the oscillations ................................................ 52 

4.1.1  Qualitative analysis of the switching process inside the oscillator ............................. 52 

4.1.2  Detailed study of the oscillation process inside the device ......................................... 55 

4.2  Numerical study of the effects of two pressure differences ................................................. 59 

4.2.1  Isolated effect of the pressure difference between the control ports ........................... 60 

4.2.2  Isolated effect of the pressure difference between the two branches .......................... 61 

4.2.3  Combined effects of both pressure differences ........................................................... 61 

4.3  Numerical study of the influence of inlet pressure on the oscillation dynamics .................. 63 

4.3.1  First analysis on a simplified geometry ....................................................................... 63 

4.3.2  Detailed numerical analysis of the inlet pressure effects ............................................ 64 

4.4  Conclusions .......................................................................................................................... 67 

Chapter 5.  Synchronization Study of Fluidic Oscillators ......................................................... 69 

5.1  Synchronization of two oscillators ....................................................................................... 69 

5.1.1  Inter-connection patterns for the synchronization of two oscillators .......................... 69 

5.1.2  Description of the test bench ....................................................................................... 70 

5.1.3  Test results ................................................................................................................... 71 

5.2  Numerical analysis of the flow dynamics in synchronized configurations .......................... 73 

5.2.1  Simulation of two separated oscillators ....................................................................... 73 

5.2.2  Simulation of two oscillators synchronized with 1st inter-connection pattern ............ 74 

5.2.3  Simulation of two synchronized oscillators with 4th inter-connection pattern ............ 80 

5.3  Synchronization of an array of fluidic oscillators ................................................................ 85 

5.4  Conclusions .......................................................................................................................... 86 

Chapter 6.  Efficiency of the Oscillator Array in Controlling Separated Flow in a Ramp ..... 87 

6.1  Design and Characteristics of an array of fluidic oscillators ............................................... 87 

6.1.1  Design of the oscillator array ...................................................................................... 87 

6.1.2  Preliminary tests on a single fluidic oscillator ............................................................ 88 

6.1.3  Synchronization test of the array ................................................................................. 92 

6.2  Description of the ramp flow test bench .............................................................................. 94 

6.2.1  Wind tunnel and ramp ................................................................................................. 94 

6.2.2  Measurement devices .................................................................................................. 96 

6.3  Measured flow field ............................................................................................................. 97 

6.3.1  Mean field of baseline flow ......................................................................................... 98 

6.3.2  Mean flow fields with fluidic oscillator actuation ..................................................... 100 



 

III 
 

6.4  Discussion about the control mechanisms ......................................................................... 102 

6.4.1  Momentum equations governing the mean flow: ...................................................... 103 

6.4.2  Pressure gradient field of both baseline case and controlling case ........................... 103 

6.4.3  Focus on analysis of pressure gradient in x direction: ............................................... 105 

6.4.4  Turbulent Kinetic Energy and turbulence production analysis ................................. 108 

6.5  Conclusions ......................................................................................................................... 111 

Chapter 7.  Conclusions and Perspectives .................................................................................. 113 

References ........................................................................................................................................... 117 

Annex 1.  Preliminary Study of a First Oscillator Prototype .................................................... 123 

Annex 2.  Sensitivity Study of the Numerical Schemes in OpenFOAM .................................. 135 

Annex 3.  Components of turbulent flow measured by PIV ..................................................... 147 

 





 

V 
 

Nomenclature 

Roman Symbols 

Ao outlet slot area (m2) 

At throat section area (m2) 

c wave propagation velocity (m s) 

ca bulk propagation velocity (m s) 

C average pressure wave propagation velocity inside the oscillator (m s) 

CCFL cell courant number 

Cd drag coefficient 

Cl lift coefficient 

Co speed of sound in ambient environment (m s) 

C   injection momentum coefficient 

D diameter of feedback tube (m) 

D’ width of feedback channel (m) 

F+ non-dimensional oscillation frequency  

f oscillation frequency (Hz) 

fm measured oscillation frequency (Hz) 

fs-s oscillation frequency simulated from scanned geometry (Hz) 

fs-d oscillation frequency simulated from designed geometry (Hz) 

H depth of a fluidic oscillator (m) 

h ramp step height (m) 

K constant for air (m s-1
 K

-0.5) 

l length or distance (m) 

L characteristic length (m) 

Lr recirculation region length (m) 

Lt  length of feedback loop connection tube (m) 

Lf  feedback loop length (m) 

m mass flux (kg) 

m  mass flow rate (kg/s) 

mb blowing mass flow rate (kg/s) 

Ma Mach number 



 

VI 

P pressure (Pa) 

Pcr critical pressure (Pa) 

Patm atmosphere pressure (Pa) 

Pi inlet total pressure (Pa) 

ΔP pressure difference (Pa) 

P production of turbulent kinetic energy (m2 s-3) 

R aerodynamic force on an airfoil (N) 

Rd drag force on an airfoil (N) 

Rl lift force on an airfoil (N) 

Rg specific gas constant (J kg−1 K−1) 

Re Reynolds number 

S surface area of an airfoil (m2) 

Sr Strouhal number 

Srm modified Strouhal number 

t time (s) 

td deflection time (s) 

t   basic time unit (s) 

T oscillation period (s) 

aT   temperature (K) 

Tatm  atmosphere temperature (K) 

Ti* inlet total temperature (K) 

T   time difference or time duration (s) 

u local fluid velocity (m s) 

u’ fluctuation of velocity in x direction (m s) 

U velocity (m s) 

U   free stream velocity (m s) 

bU   blowing jet velocity (m s) 

max
bU  maximum velocity of unsteady blowing jet (m s) 

rms
bU  root mean square value of the velocity of unsteady blowing jet (m s) 

Ux velocity in x direction (m s) 

Uy velocity in y direction (m s) 

Ua area-averaged velocity (m s) 



 

VII 
 

v’ fluctuation component of velocity in y direction (m s) 

RV   velocity ratio 

w throat section width of a fluidic oscillator (m) 

Y+ dimensionless wall distance 

Greek Symbols 

τt  transmission time (s) 

τs switching time (s) 

ξ empirical constant  

γ heat capacity ratio 

λ dimensionless velocity coefficient 

δ  boundary layer thickness (m) 

μ  dynamic viscosity (kg m−1 s−1) 

ν  kinematic viscosity (m2 s−1) 

η  incidence angle of an airfoil (o) 

ω  span width of a controlled flow (m) 

ρ density (kg m-3) 

χ expansion rate of shear layer thickness 

ψ force loss or force gain approximation (m s-2) 

Φ gradient of stagnation pressure in streamwise direction (Pa m-1) 

Abbreviations 

AFC Active Flow Control 

BC Boundary Condition 

CFL Courant-Friedrichs-Lewy 

FBL Feedback Loop Length 

HPCW High Pressure Compression Wave 

LPEW Low Pressure Expansion Wave 

MEMS Micro-Electro-Mechanical-Systems 

PIV  Particle Image Velocimetry 

RMS Root Mean Square 

RANS Reynolds-averaged Navier–Stokes 

TKE Turbulent Kinetic Energy 

ZNMF Zero Net Mass Flow 
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Introduction 

The study of actuators for active flow control has been in rapid expansion in the last several 

decades, pursuing different goals such as reducing drag on bluff bodies1, increasing lift of 

airfoils2, 3 or enhancing mixing in combustion chambers4, 5, etc. Compared to traditional passive 

control methods or steady blowing methods, the active flow control based on periodic fluidic 

excitations is much more efficient, with a gain of two orders of magnitude in terms of added 

momentum, as demonstrated by numerous researches (e.g., Greenblatt and Wygnanski 6). 

These periodic fluidic disturbances can be provided by various kinds of actuators such as 

ZNMF (Zero Net Mass Flow) actuators, plasma actuators and MEMS 

(Micro-Electro-Mechanical-Systems)7. Among them, fluidic oscillators can emit oscillating 

jets in a large operating frequency and velocity range when supplied with a pressurized fluid 

without requiring any moving part, since their oscillations are totally self-induced and 

self-sustained and only depend on the internal flow dynamics, which is a great advantage in 

terms of reliability and robustness8-10. 

Compared to the other kinds of oscillators based on the Coanda effect, like the sonic fluidic 

oscillator or sweeping jet fluidic oscillator, the behavior of a pulsing jet relaxation fluidic 

oscillator is quite different and cannot be clearly explained by the existing theories. The present 

thesis is thus focusing on making clear the underlying mechanisms controlling the dynamics of 

this kind of fluidic oscillator with the objective to propose guiding lines for the design of 

oscillators providing the performances (pulsed jet frequency and velocity) requested by flow 

control applications. It is also intended, from this analysis, to develop and test oscillator 

prototypes to control a ramp separated flow. 

In the first chapter, a general description of the boundary layer separation phenomenon is 

given and various separation control methods are introduced. A detailed review about all kinds 

of fluidic oscillators, including their classifications, their operating dynamic, etc. is also 

presented. The typical separation control applications on ramp or hump flows are also briefly 

reviewed with a focus on the optimal configurations identified.  

In the second chapter, four oscillator prototypes are designed and experimentally 

characterized. The outlet velocity temporal evolution patterns are presented. The influence of 

the feedback loop length and diameter on the oscillation frequency is examined.  
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Numerical modeling of the oscillators based on an open source code is presented in the 

third chapter. The optimal numerical schemes are identified after a sensitivity study and 

validated by comparison with experimental data. 

A detailed numerical study of the internal flow patterns of a fluidic oscillator is then 

conducted in chapter four. The influence of the inlet pressure on the fluidic oscillator’s 

performances is also analyzed.  

Since the fluidic oscillator’s performances are very sensitive to internal and external 

parameters, some methods have to be developed to force an "in phase" running of a series of 

oscillators, which is very important for analyzing their control efficiency. Chapter five is thus 

fully devoted to introduce two synchronization methods that have been both experimentally and 

numerically validated and analyzed in detail.  

An array of miniaturized fluidic oscillators, synchronized by one of the proposed methods, 

is then tested in a wind tunnel to control a separated flow on a ramp. The experimental 

characterization of the ramp flow without and with control is performed for various operating 

conditions thanks to hot wire and PIV measurements and the efficiency of the oscillator array is 

analyzed and presented in chapter six.  

Finally, the main conclusions and the major perspectives of this work are summarized in 

chapter seven. 
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Wing fences, also called boundary layer fences, are fixed aerodynamic devices attached to 

the aircraft wings. They are often used to obstruct span-wise airflow along the wing and prevent 

the entire wing from stalling at once. They are often seen on swept-wing aircrafts as shown in 

Figure 1-5b.  

Active flow control techniques 

On the contrary, active control methods permit to modify the boundary layer in relation 

with the flow configuration and need energy supply. Thus, these methods necessarily require 

actuators to interact with the flow. Many different types of actuators, such as thermal actuators, 

electromagnetic actuators, pneumatic actuators, synthetic jets, oscillators, etc.17, 18, have been 

developed for active flow control applications. A detailed summary and comparison of various 

actuators have been proposed by Cattafesta et al. 7 as shown in Table 1-1. 

These actuators can be classified into three main categories: fluidic actuators, moving 

surface actuators and plasma actuators. In each category, some sub-categories can also be 

found. Among those, the fluidic oscillators are drawing more and more attention because they 

can operate in a large operating frequency and velocity range when supplied with a pressurized 

fluid, without requiring any moving part. Their oscillations are totally self-induced and 

self-sustained and only depend on the internal flow dynamics, which is a great advantage in 

terms of reliability and robustness. 

 

Table 1-1. Summary of common unsteady flow control actuators proposed by Cattafesta et al. 7 

Type Subtype Advantages Disadvantages 

Fluidic 

 ZNMF Requires no external fluid source Peak velocities typically limited to low 
to moderate subsonic speeds 

Amenable to various types of drivers and 
sizes 

Resonant devices 

Suitable for feedback control  

Unsteady 
valves 

Capable of high velocities with either fast 
time response or high bandwidth but 
generally not both 

May not be amenable to feedback 
control 

 Requires an external flow source 

Oscillators  Capable of producing large disturbances Standard versions not suitable for 
feedback control 

Amenable to a range of sizes and hence 
frequencies 

Requires an external flow source 

Potential extensions possible to enable 
independent control of frequency and 
velocity 

 

Combustion  Capable of producing large perturbations 
in high-speed flows 

Currently limited to relatively low 
frequencies (a few hundred hertz) 

 Requires combustion 
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Moving surface 

 Piezoelectric 
flaps 

Simple design amenable to different 
frequency ranges of interest 

Has constant product of max deflection 
and bandwidth 

Can produce spanwise or streamwise 
vorticity 

Susceptible to fluid loading 

Suitable for feedback control Resonant devices 

Active 
dimples 

Potentially suitable for feedback control 
of turbulent wall-bounded flows 

Further development needed to achieve 
required size and frequency response 

Plasma  

 SDBD Easily installed on models Limited velocity output 

Low mass Requires high voltage (kV) 

Fast time response  

No moving parts  

Sparkjet  All solid-state device capable of 
producing large perturbations in 
high-speed flows 

Potential issues associated with EMI, 
acoustic level, and high temperature 

Abbreviations: EMI, electromagnetic interference; SDBD, single dielectric barrier discharge; ZNMF, zero-net mass flux 

 

1.3 Introduction to fluidic oscillators 

Fluidic oscillators were originally developed in the 1960s as amplifiers for fluidic logic 

applications, as detailed in the works of Morris19, Foster20 and Kirshner21. The comprehensive 

introduction and overview of the fluidic amplifier technology can be found in the book of 

Kirshner22 and NASA report23, 24.  

Fluidic oscillators have also been widely used as flowmeter devices since their operating 

frequency can be directly related to the flow rate in some operation conditions25-28. During the 

last decade however, the interest for fluidic oscillators has been renewed, notably due to the 

possible application of this kind of actuator for flow control. Fluidic oscillators are very 

attractive within the aerodynamic community for flow control purpose for the reason that they 

are able to produce unsteady blowing within a wide range of operating frequency and without 

moving parts, which reduces reliability and lifetime issues and facilitates their implementation 

in harsh environments such as high temperature. An overview of the works recently conducted 

on fluidic oscillators for flow control applications can be found in the review papers of Gregory 

and Tomac29, and Raghu30. 

According to Gregory and Tomac29, these devices can be classified into two main 

categories related to different underlying operating mechanics: Wall-attachment fluidic 

oscillators and jet-interaction fluidic oscillators. However, in his review paper30, Raghu Surya 

separates the oscillators into "pulsing jet fluidic oscillators" and "sweeping jet fluidic 

oscillators" depending on the properties of the generated jets. 
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a) A free jet (solid lines) passes through a narrow pass opening into a large chamber where 

it entrains fluid molecules (dashed lines) from both sides. 

b) In the chamber, less air is available for entrainment on the left side of the jet than on the 

right side because of the angle of the nearby surface. Thus a partial vacuum or low 

pressure area forms at the left of the jet and tends to attract the jet towards the angled 

surface 

c) As long as the supply of molecules on the other side remains constant the low pressure 

area continues to attract the jet and forces it to flow closely to the angled surface until 

additional molecules can be introduced into the low pressure area.  

d) The effect only works when the curvature or angle is not too sharp. If both sides of the 

nozzle are angled the low pressure area tends to form on the side with smallest angle. 36 

1.4.1 Sonic fluidic oscillator 

The sonic fluidic oscillator was firstly patented by Warren37, but it was made famous by the 

study of Spyropoulos38. After the studies of Tippetts et al. 25, Viets39, Hayashi et al.40 and 

Raman et al. 41, it has been illustrated that there exists a critical value of Re under which no 

fluctuation would occur. The feedback loop length, diameter, operating medium and the size of 

control ports all play important roles in determining the oscillation frequency. The longer the 

feedback loop length is, the lower the frequency is because of the longer wave propagation time 

along the tube. Moreover, the smaller the diameter is, the lower the frequency is because of the 

higher fluidic resistance. It has been found that there exists a pressure difference threshold 

between the control ports to deflect the jet, and only above this threshold value can the jet 

deflection happen. 42 

Tesař et al.31 studied a sonic fluidic oscillator which can generate hybrid-synthetic jet with 

suction effect, as shown in Figure 1-10. The authors argued that the oscillator operates in two 

regimes: one is the constant Strouhal number regime at low inlet Re conditions and the other 

one is the constant propagation velocity regime at high inlet Re conditions. 
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magnitude in terms of added momentum coefficient compared to control based on steady 

blowing. For the purpose to evaluate and compare the efficiency of an injection jet on the 

separation control, two dimensionless numbers, the injection momentum coefficient Cμ and the 

velocity ratio VR, are defined. 

For steady blowing,  

 21
2

b b
μ

m U
C

ρU Lω


  (1-8) 

 
b

R

U
V

U

   (1-9) 

where ω is the span width of the controlled flow, mb is the blowing mass flow rate, Ub is the 

blowing velocity, and L is the flow characteristic length. For unsteady injection, the mean 

values of momentum added are used to calculate Cμ, while the maximum blowing velocity 

max
bU  is used to calculate VR : 

 21
2

b b
μ

m U
C

ρU Lω

   (1-10) 

 
max

R
bV

U

U

   (1-11) 

In most of the previous works, L is the distance between the injection location and the 

diffuser trailing edge 69 or the reattachment point70-72, but it may also be defined as the ramp 

heights73, 74. In the present work, L will be defined as the length between the ramp slant edge 

and the separation point. 

In the unsteady injection case, a dimensionless injection frequency F+ is also defined: 

 /F fL U
   (1-12) 

where f is the oscillation frequency, U∞ is the free stream velocity.  

Since the fluidic oscillators developed in this thesis aims to be applied to the flow 

separation control on a ramp, the key parameters of some representative works on ramp or 

hump flows are listed in Table 1-3. Large discrepancies can be observed between the optimal 

values of some of these parameters, especially Cμ, found by the different groups, which can be 

explained by the differences in the studied configurations(e.g., geometry of the ramp or the 

hump, position and orientation of the controlling jets, etc.). However, the optimal values found 

for the velocity ratio VR are between 2 and 3 for all the studies and the optimal F+ is about 1 in a 

majority of cases. It was also found in the study of Seifert et al 70, that the superposition of weak 

suction on the periodic excitation enhances the control efficiency. 
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1.6 Conclusions 

The study of actuators for active flow control has been in broad expansion in the last 

decades, with different goals such as reducing drag on bluff bodies, increasing lift on airfoils or 

enhancing mixing in combustion chambers. Compared to traditional passive control methods or 

steady blowing methods, the active flow control based on periodic fluidic excitations is much 

more efficient. Various kinds of actuators which can provide periodic fluidic disturbances have 

been summarized. Among them, fluidic oscillators can emit oscillating jets when supplied with 

a pressurized fluid without requiring any moving part. Their oscillations are indeed totally 

self-induced and self-sustained and only depend on the internal flow dynamics, which shows a 

great advantage in terms of reliability and robustness.  

Various kinds of fluidic oscillators have been reviewed and three sub-categories of Coanda 

fluidic oscillator have been highlighted: including the sonic fluidic oscillator, the sweeping jet 

Coanda fluidic oscillator and the pulsing jet relaxation fluidic oscillator.  

For both of sonic fluidic oscillators and sweeping jet oscillators, with fixed geometry and 

operating medium, the frequency increases with the inlet flow rate at low Re conditions. This 

increases the complexity in determining the factors optimizing the flow control efficiency since 

the frequency is correlated to the injection momentum which is proportional to the inlet mass 

flowrate. However, in a pulsing jet relaxation fluidic oscillator, it is possible to have a 

quasi-constant frequency response, independent of the inlet pressure or flowrate while keeping 

all the advantages of other kinds of fluidic oscillators, such as a high velocity and frequency 

range, the facility to control the oscillation frequency, the possibility to synchronize an array 

of more than two oscillators, etc. 

It has been demonstrated that the jet switching in a sonic fluidic oscillator is controlled by 

the wave propagation along the feedback loop, and it that operates in two regimes: the constant 

Strouhal number regime at low inlet Re conditions and the constant propagation velocity 

regime at high inlet Re conditions. The jet switching process inside a sweeping jet Coanda 

fluidic oscillator is rather controlled by the growing of the recirculation bubble in the mixing 

chamber which is fueled by the feedback channel flow. However, the pulsing jet relaxation 

fluidic oscillator operates differently compared to the two other kinds of fluidic oscillator. 

Despite the tentatives made by several researchers to identify the physical mechanisms 

governing the dynamic behaviors of these devices, no clear consensus has been found yet in 

the literature. 
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The main objective of the present work will thus be to study in detail the working 

dynamics of a pulsing jet relaxation fluidic oscillator in order to propose guiding rules for its 

design and its application to active flow control.  
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Chapter 2. Design and Experimental 

Characterization of Fluidic Oscillator 

Prototypes 

A first oscillator prototype designed during the work of W. Ghozlani 12, has been tested in 

the framework of two experimental campaigns. However, these measurements have evidenced 

important assembly difficulties leading to leakages and possible modifications of the device's 

internal dimensions, making it very difficult to analyze the behavior of this oscillator in relation 

with the geometrical and operation parameters. In addition, numerical models built on the CFD 

software ANSYS/FLUENT have shown an important sensibility to critical settings such as the 

transient discretization scheme and the time step, not allowing their exploitation for an in-depth 

analysis of the actuator's behavior. This part of our work is detailed in Annex 1. 

As a consequence, four new oscillator prototypes have been developed, solving the 

identified assembly problems, in order to get more accurate experimental data which could help 

in identifying and understanding the relation between the actuator's performances and the 

geometrical parameters as well as operating conditions. 

These four actuators have the same designed central part in order to better compare their 

performances. However, two of them have a fully 2D shape (i.e., large ratio of depth to 

transversal dimensions), including the feedback loops, in order to facilitate the validation of the 

2D numerical models presented in chapter 3, while the two other ones have changeable 

feedback loops permitting the analysis of the influence of the length and volume of the 

feedback tubes on the oscillator's performances. 

2.1 Design of new prototypes 

The first and second prototypes have feedback loops of rectangular sections with the same 

depth (10 mm) as for the central part, ensuring a two-dimensional behavior of the flow in the 

whole device. The feedback loops of these two prototypes have the same volume but different 

widths (1.26 mm and 3.2 mm) and lengths. These two devices are named Osc.1 and Osc.2 

respectively and their detailed sketches and dimensions are shown separately in Figure 2-1 and 

Figure 2-2. The feedback loop length of Osc.1 (from section A1 to section P1) is  Lf  = 391 

mm, while that of Osc.2 is Lf  = 163 mm. The third and fourth prototypes, named Osc.3 and 
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A first analysis of the frequency response of the oscillator, as shown in Figure 2-12, 

suggests that when the sonic regime is reached at the nozzle, i.e., when the inlet pressure Pi is 

higher than 0.17 MPa, the frequency f can be approximated by the equation 

  / 4o ff C L    (2-4) 

where Co is the sound velocity at ambient conditions (340 m/s) and Lf is the FBL from 

section A to section P (cf. Figure 2-1 and Figure 2-2), including the connecting tube length and 

the internal channel length (86 mm). In Table 1, the measured frequencies, for a supply pressure 

of 0.2 MPa, are compared to the frequencies calculated according to Eq.(2-4). Deviations 

between calculated and experimental values of the frequency are always smaller than 15%. 

Table 2-1. Comparison between the measured and estimated frequencies at Pi = 0.2 MPa 

 Lf (mm) Co/(4 Lf ) (Hz) f (Hz) deviation 

Osc.3 286 297 263 13% 

Osc.3 386 220 208 5.8% 

Osc.3 486 175 174 0.6% 

Osc.3 586 145 150 -3.3% 

Osc.3 686 124 132 -6.1% 

Osc.3 852 100 110 -9.1% 

 
With the purpose to further explore the relationship between the frequency response and the 

FBL, the oscillation period is drawn in Figure 2-13 as a function of the FBL for five values of 

the inlet pressure (0.115, 0.13, 0.15, 0.2 and 0.25 MPa as indicated by the vertical black lines in 

Figure 2-12). A linear fitting of these curves is performed and the regression equations are 

presented in Figure 2-13, in which T is the oscillation period. 
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inlet pressure, which could be a great advantage for flow control application. However, the 

underlying mechanisms of the observed behaviors still need more exploration. 

2.4 Conclusions  

According to the experimental studies described in this chapter, it can be concluded that the 

outlet average velocity is controlled by the oscillator’s throat section and inlet pressure. 

However, the outlet velocity amplitude and temporal evolution profile can be affected also by 

the throat section and/or other internal geometrical factors. With a small throat width (Osc.1), a 

suction flow phenomenon has been observed and the velocity amplitude is about 2 times the 

average velocity value. The ejected flow is similar to a typical pulsed jet in which the 

maximum velocity keeps nearly constant during the ejection phase. With a larger throat width 

(Osc.2) however, the velocity amplitude is of the same order as the average velocity value, and 

no suction appears.  

Both the feedback loop length and diameter play important roles on the oscillator’s 

performances, in particular its frequency response. An equation, deducted from the acquired 

experimental data, has been proposed to estimate the oscillation frequency as a function of the 

feedback loops length. However, the validity of the assumptions made to obtain this equation is 

still unclear, in particular concerning the role played by the pressure waves in the switching 

mechanism. In addition, further investigations should be conducted to better understand the 

influence of the feedback loops diameter on the oscillation frequency and on the minimal 

supply pressure needed to initiate the oscillating mechanism. In order to better understand the 

physical phenomena controlling the dynamics of the oscillator's internal unsteady flow, and due 

to the very small dimensions of the studied devices making it very difficult to visualize internal 

flows or to get local velocity or pressure data, numerical simulations have thus been 

implemented and are presented in the following chapters. 
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Chapter 3. Numerical Tools and Validation 

In order to complete the experimental analysis of the oscillators' behavior and thus to better 

understand the physical phenomena controlling the dynamics of their internal unsteady flow, 

numerical models of these actuators have been developed and tested. Due to the tiny 

dimensions of the studied devices, the very short time scales of the involved unsteady flows, as 

well as their transonic characteristics, it was indeed very difficult to get local experimental data, 

such as velocity or pressure. 

As detailed in Annex 1, first numerical models built on the CFD software 

ANSYS/FLUENT have shown an important sensibility to critical settings such as the transient 

discretization scheme and the time step, not allowing their exploitation for the detailed analysis 

of the oscillator's behavior. New numerical simulations have then been performed on the open 

source CFD package OpenFOAM because of its free license, high parallel capacity efficiency 

and flexibility. This chapter, after a brief presentation of this CFD code, will thus be focused on 

the description of the developed numerical models and their validation thanks to comparisons 

with the experimental measurements previously performed. 

3.1 Introduction to OpenFOAM 

OpenFOAM (Open source Field Operation And Manipulation) is a free, open source 

software for computational fluid dynamics (CFD), based on the Finite Volume Method, written 

in C++, fully objective-oriented, developed primarily by CFD Direct, on behalf of the 

OpenFOAM Foundation. The code has been used to solve problems in CFD, electromagnetics, 

solid mechanics and even finances. OpenFOAM can serve both the engineering use because of 

various integrated solvers and free license, and academic research because of its flexibility to be 

modified and expanded 78. 

To run a simulation, OpenFOAM should be installed in a LINUX environment, and a main 

folder is needed, containing three sub-folders: 

Folder 0 or time directories, which contains the boundary conditions and initial fields to 

begin the simulation. 

Folder constant, which contains the mesh folder and the files for fluid and turbulence 

properties. 

Folder system, which contains the solver specifications, numerical discretization schemes 

and calculation control parameters.  
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3.2 Numerical settings 

The solver chosen here is sonicFoam which is integrated in OpenFOAM as a transient 

solver for transonic/supersonic flow of a compressible gas.  

Given the complexity of the internal geometry and the turbulent flow, a series of numerical 

sensitivity studies have been carried out to find out the optimal numerical settings considering 

both accuracy and cost. This study is detailed in Annex 2.  

Discretization schemes 

Table 3-1 summarizes the discretization schemes adopted after the sensibility study. 

Table 3-1. Adopted discretization schemes 

 Scheme Precision 

ddt backward 2nd order 

gradSchemes Gauss linear 2nd order 

LaplacianSchemes Gauss linear corrected 0.5 Blend of 1st and 2nd order 

divSchemes Gauss linearUpwind grad( ) 2nd order 

 
 

Boundary conditions 

Similarly, Table 3-2 summarizes the type of boundary conditions used for each equation.  

Table 3-2. Boundary conditions used in the simulations for each equation 

equation inlet wall outlet 

p totalPressure zeroGradient fixedValue 

U pressureInletVelocity fixedValue zeroGradient

T inletOutlet zeroGradient inletOutlet 

k 
turbulentIntensity-KineticEnergyInlet 

intensity 0.05; 
kqRWallFunction zeroGradient

epsilon 
turbulentMixingLength-DissipationRateInlet

mixingLength 0.0005; 
epsilonWallFunction zeroGradient

omega 
turbulentMixingLength-FrequencyInlet 

mixingLength 0.0005; 
omegaWallFunction zeroGradient

 
Turbulence model and other related schemes 

Considering the calculation precision and efficiency, the realizable k-epsilon turbulent 

model, with moderate mesh density (average Y+ ≈ 10, cf. Figure A2-2, Annex 2) and normal 
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3.3.3 Velocity prediction capability 

For an inlet pressure of 0.2 MPa, the evolution with time of the outlet velocity magnitude 

in the center of both left and right outlet slots for Osc.1 and Osc.2, obtained from the numerical 

simulations on the scanned internal geometry, are presented in Figure 3-4 and Figure 3-5 

respectively, and are compared to those obtained from hot wire measurements.  

The simulated maximum velocity for Osc.1(cf. Figure 3-4) is about 110 m/s, which is 

much higher than the measured 70 m/s. The simulated maximum suction velocity is about 25 

m/s which is also a little higher than the measured 20 m/s. This deviation of about 57% on 

maximum velocities could be partially explained by the possible errors made on the throat 

width due to the measurement problems described in section 3.3.1. Assuming a uniform 

velocity on the outlet section, it is indeed possible to calculate the ejected flowrate on a period 

from the velocity temporal evolution curve and thus to deduce a throat width of 0.073 mm, 

which is 27% smaller than the value used in the simulation. 

In both measured and simulated results, the suction velocity can be obviously observed and 

the suction duration in one period in the left outlet slot is shorter than that in the right because of 

the asymmetry observed in the throat region. In addition, the simulated velocity evolution 

profile doesn’t present a plateau as in the experimental case (cf. Figure 3-4b), showing that in 

the simulations, the jet switching process is long compared to the oscillation period. 
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4.1 Identification of the key factors controlling the oscillations 

4.1.1 Qualitative analysis of the switching process inside the oscillator 

The switching process can be examined by comparing at the same time the pressure and 

velocity magnitude contours, as shown in Figure 4-2, Figure 4-3 and Figure 4-4. It can be 

clearly observed that the jet oscillation is mainly caused by the pressure wave propagation in 

the two feedback loops alternatively. In each of the following figures, the top left (window I) is 

a global view of the pressure contours and the top right (window Ⅱ) is a zoom of the pressure 

contours in the interaction zone. The down windows of these figures are their counterparts for 

the velocity magnitude contours (down left window Ⅲ and down right window Ⅳ). In the 

global views, a large part of the feedback loop in each side is not represented but symbolized by 

a blank space in the loop in order to save space. Six important times during the oscillation 

period T, which is equal to 4.3 ms in these simulations, have been chosen to highlight the 

dynamics of the jet switching process:  

t = 0: at this time, the main jet is just starting to switch from the right branch to the left 

branch as it can be observed on the velocity contours in window Ⅳ in Figure 4-2a. The main 

part of the flowrate is still leaving the oscillator through the right outlet, although the main jet 

has already been deviated in the left branch. The pressure in the right feedback loop is 

approximately 4×104 Pa higher than that in the left loop, especially between the control ports. 

This pressure difference between the control ports at the base of the jet is particularly important.  

t = 0.03 T: the switching time duration is quite short compared to the whole period T, as 

discussed in section 2.3.1. Just 0.03 T after its initial deflection, the main jet has totally attached 

to the left branch as shown in window Ⅳ in Figure 4-2b. In addition, as the main jet switches 

toward the left side, a high pressure wave propagates in the left side simultaneously to fill in the 

left feedback loop. Meanwhile, in the right side, air is evacuated from the right loop through the 

right branch. At this time, since the pressure at the right control port P2 is significantly higher 

than at the left one P1, the main jet is perfectly attached to the left branch.  
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constant at sections A1, A2, P1, P2 until the pressure waves reach section P1 and P2 leading to 

a sudden inversion of the pressure difference between both sides of the jet base. Even if this 

pressure difference is not sufficient to provoke the jet switching in the other direction, it induces 

a destabilization of the jet which is clearly evidenced by the strong chaotic temporal variations 

of the velocity (cf. Figure 4-8) and of the pressure (cf. Figure 4-6) at the branch inlets. The 

velocity increase in the left branch observed just after t = 0.225T (cf. Figure 4-8) is due to the 

flow coming from the left control port and entrained by the main jet.  

The velocity of the order of 30 m/s observed in Figure 4-8 at section A2 (blue diamond line 

between 0 T and 0.225 T) when the jet is attached to the left wall is due to the strong suction 

effect of the jet, the velocity in the right branch being directed towards the nozzle. During the 

same time interval, the velocity at section P1 is only of the order of 5 m/s (black hexagon 

between 0 T and 0.225 T) which indicates that the flow is blocked by the main jet attached to the 

left wall, while the velocity of the order of 70 m/s at section P2 (green star line between 0 T and 

0.225 T) is due to the rapid emptying of the right feedback loop helped by the suction effect of 

the main jet. 

The reflection of the pressure wave once it reaches the control port is shown in Figure 4-5 

by the additional pressure jump occurring, between t = 0.225T and t = 0.5T, in each section of 

the feedback loop with a time lag depending on the wave propagation velocity. The total 

propagation time after reflection along the feedback loop: ΔT = ΔT3 + ΔT4 = 1.14 ms, implies a 

propagating velocity: U3 = lCE/ΔT = (lCD + lDE)/ΔT = 317 ms-1,which is approximately equal to 

the difference between the sound velocity and the local fluid velocity (15 m/s) which is opposite 

to the wave propagation direction. At the end of this half period, when the pressure wave 

reaches section B1 leading to a sudden pressure increase in this section (cf. Figure 4-5, t = 0.5 

T), the main jet is finally pushed toward the other side of the device and the second half period 

begins. 

According to the above analysis, the jet oscillation frequency has a direct relationship with 

the forth and back propagation of the pressure wave in the branch and the feedback loop, from 

section A to section P.  

The oscillation period can thus be estimated by the following function: 
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where Lf is the FBL, Co is the sound velocity, u1 is the local fluid velocity in front of the wave in 

the first quarter of the period while u2 is the local fluid velocity in front of the reflected wave in 
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4.2.2 Isolated effect of the pressure difference between the two branches 

In the third step, also starting from the simulation results of case 0, the inlet total pressure of 

0.25 MPa is unchanged, PG1, PE1 and PE2 are kept at 0.1 MPa while PG2 is gradually increased 

from 0.1 to 0.2 MPa in order to generate a pressure gradient between the two branches. A total 

of 8 values of PG2 have been tested: 0.11, 0.12, 0.125, 0.135, 0.145, 0.16, 0.18 and 0.2 MPa.  

The obtained results are presented in Table 4-1. For low pressures (0.11 or 0.12 MPa) in the 

section G2, the jet does not switch to the opposite branch within the simulation time which was 

higher than half a period of the complete oscillation (T/2 = 2.15 ms; cf. section 4.1). Higher 

pressure differences between the branches lead to the jet deflection but with a dynamics 

strongly dependent on the pressure difference. The deflection time decreases when the pressure 

difference increases, to reach a minimal value of 0.01T for pressure differences between section 

G1 and G2 higher or equal to 0.18 MPa. The deflection time td is defined as the time needed for 

the jet totally entering the left branch from the beginning of the simulation. 

Table 4-1. Time needed for jet switching as a function of the pressure difference between the two branch outlets 

 PE1 (MPa) PE2 (MPa) PG1 (MPa) PG2 (MPa) dt  (ms) dt  / T 

Case 2-1 0.1 0.1 0.1 0.11 -- -- 

Case 2-2 0.1 0.1 0.1 0.12 -- -- 

Case 2-3 0.1 0.1 0.1 0.125 0.78 0.18 T 

Case 2-4 0.1 0.1 0.1 0.135 0.58 0.13 T 

Case 2-5 0.1 0.1 0.1 0.145 0.22 0.05 T 

Case 2-6 0.1 0.1 0.1 0.16 0.22 0.05 T 

Case 2-7 0.1 0.1 0.1 0.18 0.06 0.01 T 

Case 2-8 0.1 0.1 0.1 0.2 0.06 0.01 T 

4.2.3 Combined effects of both pressure differences  

In this series of simulations, the combined effects of the two pressure differences are 

explored. Firstly, the pressures in the two control ports and the left outlet are fixed, and only the 

pressure in the right outlet is modified leading to an increasing value of ΔPG2-G1 and a fixed 

value of ΔPE2-E1 = 0.035 MPa. Then, the pressure difference between the two outlets ΔPG2-G1 is 

kept constant as 0.01 MPa while the pressure difference between the control ports ΔPE2-E1 is 

gradually increased.  
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4.2.3.1 Increasing ΔPG2-G1 with fixed ΔPE2-E1 

The right outlet pressure is modified gradually from 0.1 to 0.14 MPa. The inlet total 

pressure is still 0.25 MPa, the pressures at sections E1 and E2 are fixed to 0.09 and 0.125 MPa, 

respectively, while the left outlet pressure is 0.1 MPa as in the first series of simulations. The 

simulation result of case 1-1 is used as an initial condition for all tested configurations in this 

series of simulations. The time needed to complete the switching process in each case is 

presented in Table 4-2.  

As observed in Figure 4-10 (case 1-1), an isolated ΔPE2-E1 = 0.035 MPa is not sufficient to 

provoke the jet switching. However, if in addition a pressure difference ΔPG2-G1 exists between 

the two branches, the jet switches to the other branch in a very short time, even when this 

difference is as low as 0.01 MPa (Case 3-1), which cannot trigger the switching process by 

itself as shown by case 2-1. When the right outlet pressure increases, the time needed to 

complete the switching decreases quickly to reach a minimum value for pressure differences 

between the branches higher than 0.14 MPa. 

Table 4-2. Time needed to complete the switching process with increasing ΔPG2-G1 and fixed ΔPE2-E1 

 PE1 (MPa) PE2 (MPa) PG1 (MPa) PG2 (MPa) dt  (ms) dt  / T 

Case 3-1 0.09 0.125 0.1 0.11 0.53 0.12 T 

Case 3-2 0.09 0.125 0.1 0.12 0.16 0.04 T 

Case 3-3 0.09 0.125 0.1 0.13 0.13 0.03 T 

Case 3-4 0.09 0.125 0.1 0.14 0.10 0.02 T 

 

4.2.3.2 Increasing ΔPE2-E1 with fixed ΔPG2-G1 

The pressure in right control port PE2 is increased from 0.1 to 0.125 MPa, while the 

pressure in left control port PE1 is kept constant as 0.09 MPa. The inlet total pressure is still 0.25 

MPa and the pressures at sections G1 and G2 are fixed to 0.1 and 0.11 MPa, respectively. The 

simulation result of case 2-1 is used as an initial condition for all tested configurations in this 

series of simulations. The time needed to complete the switching process in each case is 

presented in Table 4-3. 

As presented in case 2-1, the jet switching cannot be provoked just by a pressure difference 

of 0.01 MPa between sections G1 and G2. Nevertheless, if in addition a pressure difference 
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ΔPE2-E1 exists between the two control ports, even when this difference is as low as 0.035MPa 

which cannot trigger the switching process by itself as shown by case 1-1, the behavior of the 

jet is totally changed: it switches to the other branch in a very short time, except in the case 

where there is only a pressure difference of 0.01 MPa between the two control ports (case 4-1). 

The time needed to complete the switching decreases as the ΔPE2-E1 value increases.  

Compared to case 3-1, case 4-3 needs shorter time to complete the switching process, even 

though the same value of ΔPE2-E1 and ΔPG2-G1 are applied in both cases. In case 3-1, ΔPG2-G1 is 

applied on the final configuration of Case1-1 for which ΔPE2-E1 has played a role for a 

duration of T/2; on the contrary, in case 4-3, ΔPE2-E1 is applied on the final configuration of 

case 2-1 for which ΔPG2-G1 has played a role for a comparable duration. This implies that the 

switching process is also sensitive to the sequential order in which the pressure differences are 

applied between the two branches and between the two control ports.  

Table 4-3. Time needed to complete the switching process with increasing ΔPE2-E1 and fixed ΔPG2-G1  

 PE1 (MPa) PE2 (MPa) PG1 (MPa) PG2 (MPa) dt  (ms) dt  / T 

Case 4-1 0.09 0.1 0.1 0.11 > 3 ms  

Case 4-2 0.09 0.11 0.1 0.11 0.45 ms 0.105 T 

Case 4-3 0.09 0.125 0.1 0.11 0.35 ms 0.081 T 

 

All preceding simulation results thus confirm the hypothesis that the oscillation dynamics 

is not only controlled by the pressure difference between the two control ports ΔPP2-P1, but also 

by the pressure difference between the two branches ΔPA2-A1 or ΔPB2-B1. 

4.3 Numerical study of the influence of inlet pressure on the 
oscillation dynamics 

4.3.1 First analysis on a simplified geometry 

With the same simplified geometry as in section 4.2, the isolated effect of the inlet pressure 

on the oscillator dynamics has been studied. The two pressure differences (between the 

branches and between the control ports) are applied separately with a fixed value. The pressure 

difference between the branches ΔPG2-G1 is set to 20 kPa, with PG1 = 0.1 MPa, while PG2 = 0.12 

MPa. The pressure difference between the control ports ΔPE2-E1 is set to 35 kPa, with PE1 = 0.09 

MPa, while PE1 = 0.125 MPa. The initial status is obtained after a simulation duration of 5 ms 

with uniform boundary conditions PG1 = PG2= PE1 = PE2 = 0.1 MPa in each case in order to get 
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a fully converged initial flow field. The time needed to complete the switching process from the 

initial status in each case is shown in Table 4-4. The time averaged velocity Ut and Mach 

number Mat at the middle point of the throat section are also shown.  

The velocity of the nozzle jet and the Mach number logically increase with the inlet 

pressure. Values of the Mach number higher than 1 at the throat can be explained by the fact that 

the sonic line shape is very complex due to the jet bending downstream from the nozzle exit. As 

the flow has more inertia with higher velocity, it becomes more difficult to be deflected to the 

other side. When a pressure difference ΔPG2-G1 = 20 kPa is applied between the branches, no 

switching is indeed observed within the 3 ms simulation duration if the inlet pressure is higher 

than 0.2 MPa, while the switching time decreases to 0.2 ms when the inlet pressure is decreased 

from 0.2 MPa to 0.13 MPa. When the pressure difference is applied between the control port 

(ΔPE2-E1 = 35 kPa), a similar behavior can be observed.  

Table 4-4. Time needed to complete the switching process for various values of supply pressure Pi, and various 
values of ΔPE2-E1 and ΔPG2-G1 

 Pi / MPa Ut (m/s) Mat 
ΔPE2-E1=35 kPa 

PG1=PG2=0.1 MPa
ΔPG2-G1=20 kPa 

PE1=PE2=0.1 MPa 

Case 5-1 0.30 342.5 1.1 > 3 ms > 3 ms 

Case 5-2 0.25 334.5 1.068 > 3ms > 3 ms 

Case 5-3 0.20 312 0.98 0.6 ms > 3 ms 

Case 5-5 0.15 250 0.763 0.52 ms 0.3 ms 

Case 5-6 0.13 205 0.613 0.05 ms 0.2 ms 

 

4.3.2 Detailed numerical analysis of the inlet pressure effects 

Numerical simulations performed on the designed geometry of Osc.2(cf. the right part of 

Figure 2-1), for inlet pressure ranging from 0.11 MPa to 0.30 MPa show that the oscillation 

frequency is nearly constant at about 510 Hz. To explain this result, the pressure differences 

between the two sides of the oscillator in sections A (branch inlets), B (branch centers) and P 

(control ports) are analyzed for different values of inlet pressure.  

In the case of 0.25 MPa inlet pressure, the variations of area-averaged velocity in y 

direction Uy in sections A1 and A2, as well as the above mentioned pressure differences are 

shown in Figure 4-11.  

As it has been discussed at the end of section 4.1.2, the oscillation period can be roughly 

predicted by a simple function Eq.(4-2).  
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  (4-2) 

Under this assumption and for analysis the relation between the oscillation dynamics and 

the FBL, the period of a working oscillator can be divided into four basic time units which are 

equal to: 

 /f ot L C    (4-3) 
At time t0 which can be viewed as the beginning of a period, the main jet is switching from 

the left side to the right side since the area-average velocity Uy in section A1 is decreasing while 

that in section A2 is increasing dramatically. Just before this time, the value of ΔPA1-A2 becomes 

positive and reaches its highest value. Immediately after time t0, both the values of ΔPA1-A2 and 

ΔPB1-B2 drop down severely because of the sudden switch of the main jet. As this jet has been 

switched and attached to the right side branch, the values of ΔPA1-A2 and ΔPB1-B2 becomes 

positive and steady again, since the flow velocity in the right branch becomes much higher 

than that of left branch.  

At time t1, i.e., one basic time unit Δt after t0, as the high pressure compression wave 

(HPCW) arrives in section P2 and the low pressure expansion wave (LPEW) arrives in section 

P1 almost simultaneously, the pressure difference ΔPP1-P2 evolves suddenly from its highest 

positive value to a negative value inducing a destabilization of the main jet which explains the 

chaotic fluctuations observed on the area-averaged velocity Uy in sections A1 and A2, and on 

the pressure difference ΔPA1-A2. The HPCW and LPEW are then reflected back and continue 

propagating along the feedback loops. When they arrive in sections B2 and B1, respectively, the 

value of ΔPB1-B2 decreases quickly. Then the waves reach sections A2 and A1 leading to a 

similar decrease of ΔPA1-A2 and provoke the main jet switching from the right side to the left 

side at time t2 which is just the half point of a period. Then, the other half period takes place 

similarly until time t3. 
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high pressure compression wave and a low pressure expansion wave in the two branches and 

feedback loops, which leads to a new function to estimate the oscillation period  

 
41

2 f
t

o

L
T τ

f C
    (4-2) 

in which a coefficient of 4 appears, contrary to the coefficient 2 in the relation proposed by 

Simoes et al.59. This new function deduced from numerical analysis, has also been obtained 

from the experimental results presented in section 2.3.1 (cf. Eq.(2-4) and Eq.(2-5)). 

 is exactly the same as the empirical formula Eq.(2-5) obtained from measured results. 

Finally, we have shown that the maximal pressure differences between the branches and 

between control ports increase approximately linearly with the inlet pressure, and that the 

evolution of these pressure difference with time were similar whatever the inlet pressure, 

which leads to an almost constant frequency response. On the other hand, when the inlet 

pressure increases, the mass flowrate and momentum of the main jet become larger and, as a 

consequence, higher pressure differences between the control ports and between the branches 

are needed to provoke the jet switching. The balance between these two effects explains the 

non-dependence of the oscillation frequency to the supply pressure. 
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Chapter 5. Synchronization Study of Fluidic 

Oscillators 

In order to use fluidic oscillators for controlling a separated flow, for instance on a ramp, an 

array of these fluidic actuators will be needed. However, even if all the devices have the same 

designed dimensions there exists minor differences because of the machining and assemblage 

dispersions, which lead to discrepancies on the working frequency and the time evolution 

profile of the jet velocity. In addition, it would be interesting to control the phase difference 

between the pulsed jets generated in the array in order to test the efficiency of various 

configurations (random phase lag, no phase lag, fixed phase lag,..). Therefore, efforts must be 

done to find some ways to synchronize similar but non-identical fluidic oscillators. 

In the patents of Ciro et al.83 and Koklu84, methods to synchronize an array of both pulsed 

jets and sweeping jets wall-attached fluidic oscillators have been proposed using the concept of 

shared feedback accumulator which is complex to be controlled or to be modified. In this study, 

new and simpler methods to synchronize a fluidic oscillators array are proposed and studied 

both experimentally and numerically in order to clearly identify the underlying mechanisms 

governing the dynamics of synchronized oscillators.  

5.1 Synchronization of two oscillators 

First experimental tests have been performed on two oscillators, which is the simplest 

configuration. Different inter-connection patterns have been proposed and tested for validation. 

5.1.1 Inter-connection patterns for the synchronization of two oscillators 

The objective of this work was to verify if the synchronization of two oscillators was 

possible, simply thanks to inter-connections between their connectors, or, in other words, by 

sharing their feedback loops. The two oscillators are Osc.3 and Osc.5 which are identical in 

design as described in section 2.1 (cf. Figure 2-3). 

Four inter-connection patterns have been proposed and are presented in Figure 5-1. In all 

these configurations, the lengths and diameters of the connecting tubes are the same.  
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Several critical times are chosen for better analyzing the flow patterns inside the oscillators 

and explaining the synchronization dynamics. These times are defined according to the 

evolutions of velocity Uy in the branch inlet sections of each oscillator which are shown in 

Figure 5-10.  

t0 is defined when the main jet in Osc.3s is switching from the left branch to the right one, 

i.e. when the positive velocity Uy in the left branch inlet section A1 crosses the negative 

velocity Uy in the right branch inlet section A3. This time is assumed to be the beginning point 

of an oscillation period in our analysis. In the same time, the main jet in Osc.4s is attached to the 

right branch, which is indicated by the positive value of Uy in section A4 while Uy is negative in 

section A2.  

t1 is chosen when the main jet in Osc.4s is switching from the right branch to the left one. 

while the main jet in Osc.3s is attached to the right branch. 

t2 and t3 are defined as one basic time unit Δt later than t0 and t1, respectively. In these 

simulations, the basic time unit, already defined in section 4.3.2 (cf. Eq.(4-3)), is Δt = Lf / Co = 

0.2245 ms.  

t4 is defined as the mid-point of a period which means t4 = t0 + 0.5T ≈ t0 + 2Δt ≈ t1 + 

ΔT. In the second half period, it can be clearly observed that the pressure and velocity 

variation profiles are similar to those in the first half period, thus, detailed analysis is focused 

on this first half period. 

Figure 5-11 presents the evolution of the pressure differences between the branch inlet 

sections A1 and A3, ΔPA1-A3, and between the control port sections P1 and P2, ΔPP1-P2, in 

Osc.3s together with their counterparts in Osc.4s, ΔPA2-A4 and ΔPP3-P4. 

For each of the critical times defined above, a simplified sketch showing the main jets 

direction and the propagation of pressure waves along the feedback loops in each oscillator is 

also presented in Figure 5-12. The pressure levels in section A, D and P in each side of each 

oscillator are schematically represented by a level in a cylinder: an empty cylinder means that 

the pressure at this time has the lowest value calculated on the whole period, while a fully filled 

cylinder means that the pressure has reached its highest value. These pressure level 

representations are relative: the maximum pressure level in section A is not necessarily higher 

than the minimum one in section D.  
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pressure in section P4 is 20 kPa higher than that in section P3, the main jet is still attached to the 

right branch since the pressure in section A4 is still about 6.8 kPa lower than that in section A2. 

This is consistent with the fact, demonstrated in section 4.4, that the jet switching mechanism in 

a single oscillator is provoked the combination of the pressure differences between the control 

ports and between the branches.  

Time 1t : From t0 to t1, about 0.125T later, a high pressure compression wave (HPCW) 

propagates along the tube 3, from A3 to D3, and a low pressure expansion wave (LPEW) also 

moves from A1 to D1 due to the entrainment effect of the main jet. At the same time, in Osc.4s, 

a HPCW propagates from D4 to A4 and provokes the switching of the main jet from the right 

side to the left one. 

Time 2t : After a duration of Δt from t0, the HPCW in tube 3 arrives in section P3, which is 

the left control port of Osc.4s, leading to a pressure augmentation from its lower level to the 

higher one. Similarly, the LPEW in tube 1 arrives in section P1 leading to a pressure decrease 

from its higher level to the lower one. In the case of a single oscillator, the pressure in one of the 

control ports would decrease simultaneously when the pressure increase in the other control 

port, leading to the inversion of the pressure difference provoking a destabilization of the main 

jet. However, in this synchronized case, the pressure in P2, is maintained at its lower level since 

the HPCW in tube 2 needs another 0.125T to reach P2. Similarly, the pressure in P4, is 

maintained at its higher level since the LPEW in tube 4 needs another 0.125T to reach P4. Thus, 

ΔPP1-P2 is still positive and ΔPP3-P4 still negative at time t2, although their absolute values have 

decreased a lot (cf. Figure 5-11). As a consequence, the main jets in both oscillators stay very 

stable, as it can be seen on the Uy evolution curves in Figure 5-10.  

Time 3t : At t1 + Δt, the pressure differences ΔPP1-P2 and ΔPP3-P4 are reversed since the 

HPCW and the LPEW arrive in sections P2 and P4, respectively. As the pressure differences in 

sections A have not yet reached their maximum levels, the main jets in Osc.3s and Osc.4s do not 

switch but become unstable. The velocities Uy in sections A3 and A2 begin to decline.  

Time 4t : After almost T/2 or 2Δt from t0 and 0.125T after t3, the HPCW reflected from the 

section P3 in tube 3, reaches the section A3 and thus provoke the switching of main jet in 

Osc.3s from the right side to the left one. The first half period is finished. 
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Time 0t : from Figure 5-16, it can be observed that at t0, the pressure in section P1 is 21 

kPa higher than that in section P2, while the pressure in section A3 is also a little higher than 

that in section A4. The combination of these two pressure differences provoke the switching of 

the main jet in Osc.3s from the left branch to the right one. In Osc.4s, at this time, the main jet 

has been in the right branch for almost a quarter period (cf. Figure 5-15). The pressures in both 

the left branch and control port of this oscillator are higher than those in its right side, 

resulting in a stable attachment of the main jet to the right branch. 

Time 1t : One basic time unit Δt later, the HPCW coming from the section A4 along the 

tube 4 arrives at the control port section P4 and reflects, while the LPEW propagates from A3 

to P3 and then reflects. As a consequence, the value of ΔPP3-P4 decreases from 20 kPa to a 

negative value. However, the |ΔPA2-A1| value is still too small to provoke the jet switching, 

which is in accordance with what has been shown on a single oscillator in section 4.2.3. 

Time 2t : The pressure difference |ΔPA2-A1| between the branches of Osc.4s has now 

reached a value large enough to provoke, in conjunction with the large value of |ΔPP3-P4|, the 

switching of the jet in this oscillator. At this time, along tube 2, the HPCW starts to propagate 

from section A2, and along tube 1, the LPEW starts to propagate from A1. While at the same 

moment, the fronts of the pressure waves in tube 4 (HPCW) and tube 3 (LPEW) are already in 

middle of the tubes. 

Time 3t : At this time, i.e. two basic time units after t0, both the HPCW in tube 4 and the 

LPEW in tube 3 have reached back section A4 and section A3 respectively, which makes the 

pressure difference between the branches ΔPA3-A4 changing from positive to a slightly negative 

value. However, the pressure difference at the control ports ΔPP1-P2 is still largely positive, not 

allowing the jet switching. 

Time 4t  : One basic time unit Δt later than t2, the HPCW in tube 2 arrives in section P2 

and the LPEW in tube 1 arrives in section P1, provoking the destabilization of the main jet of 

Osc.3s. This is particularly visible on Uy profiles in section A3 and A4: these 2 velocities are 

indeed very close and very perturbed between t4 and t5. 

Time 5t : The conjunction of the two pressure differences ΔPP1-P2 and ΔPA3-A4 provokes 

the switching. The time difference t5 - t4 can be related to the deflection time. 

From t4 to t5, under the combined effect of the two pressure differences in Osc.3s, the main 

jet switching is provoked in a short time from comparably stable status.  
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The characteristic length Lr is the streamwise distance between the ramp slant edge where 

separation occurs and the reattachment point in the baseline flow without control, which is 

about 145 mm as shown in Figure 6-15. f is the measured frequency of the synchronized fluidic 

oscillator array as shown also in Figure 6-10.  

Assuming that the jet oscillates in a sinusoidal pattern, the momentum coefficient can be 

calculated by Eq.(1-10): 

 

2 2

2 2

( )
1 1
2 2

rms
b b b b

μ

r

m U N U U A
C

ρU Lω U L ω 


    (6-2) 

where N is the total number of outlet slots which is N = 24. 

The mean blowing velocity bU and the RMS value of blowing velocity rms
bU are extracted 

from Figure 6-6b which is the velocity response to inlet pressure of the single fluidic oscillator 

whose internal dimensions are the same as those in the oscillator array. However, both their 

feedback loop tube diameter and length are different. Thus, the mean blowing velocity bU

should be the same due to the conservation of mass flow rate while there might be deviations in 

the value of rms
bU . Nevertheless, the rms

bU value is very low compared to bU  and the error 

due to this approximation is believed to be acceptable. 

Table 6-1. Controlling parameters of three controlled flow cases 

Pi /(MPa) 0.2 0.25 0.3 

f /(Hz) 716 660 660 

F  5.2 4.8 4.8 

bU  / (m/s) 44 57 70 

rms
bU / (m/s) 6.4 7.7 9.2 

VR 2.5 3.2 4.0 

Cμ 0.16% 0.27% 0.41% 

 

6.3.1 Mean field of baseline flow 

The mean flow field of the baseline flow is presented in Figure 6-15. The ramp wall is 

represented by the red line. The data obtained near the wall are not reliable because of the 

light reflection and thus are abandoned. The separation of the incoming boundary layer is 

induced by the sharp expansion of the test section. Downstream of the separation point, the 

flow is marked by a large mean recirculation region where Ux < 0, which extends up to the 
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reattachment point where the separated shear layer hits the wall. The separation line is the 

external boundary of the recirculation region. In this study, it is defined by the isoline Ux = 0 

on the mean streamwise velocity field, cf. the white line in Figure 6-15. The recirculation 

region is usually characterized by its length Lr, which corresponds to the streamwise distance 

between the separation point and the reattachment point. In this baseline case, Lr / h ≈ 4.8 

which is very close to that obtained in a larger scale ramp by Kourta et al76 where Lr / h ≈ 

5.0. The topologies are comparable with different Re and the main difference is the location of 

the mean reattachment point which moves upstream for increasing Re76. Lr can also be 

interpreted as the streamwise scale of shear layer development.  

 

Figure 6-15. Mean flow flow field of the baseline separated flow, Re=3.8×104 

The streamwise evolution of the shear layer is often characterized by a generalized 

momentum thickness SLθ which is defined according to Dandois et al87 as: 

 
min

min min

min min

( , ) ( ) ( , ) ( )
( ) (1 )

( ) ( ) ( ) ( )
x x

SL y

U x y U x U x y U x
θ x dy

U x U x U x U x



 

 
 

    (6-3) 

where Umin(x) is a local minimum streamwise velocity. 

The expansion rate of this shear layer is defined as: 

 
( )SLdθ x

χ
dx

   (6-4) 

A constant expansion rate of SLθ  can be found from Figure 6-16 when 0 < x / Lr < 0.5 

which is / 0.21/ 4.8 0.044SLdθ dx   . 
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Figure 6-16. Shear layer thickness θSL evolution along streamwise direction 

The spreading rates of typical free turbulent mixing layers modeled by Browand & 

Toutt88 is: 

 min

min

( ) ( ) ( )
0.034

( ) ( )
SLdθ x U x U x

χ
dx U x U x






 

   (6-5) 

Eq.(6-5) yield / 0.045SLdθ dx  , to be compared to the measured value of 0.044. this 

good agreement suggests that the separated shear layer behaves similarly to a free shear layer 

in a large region downstream of the upper edge of the ramp. However, the growth rate of 

/SLθ h  decreases for x / Lr > 0.5 and Eq.(6-5) is no longer an acceptable approximation. 

6.3.2 Mean flow fields with fluidic oscillator actuation 

The mean velocity fields in the streamwise direction obtained in both baseline case and 

controlled cases are shown together in Figure 6-17. In the first controlled case (Cμ = 0.16%), 

the flow separation has been totally eliminated and no reverse flow can be observed. When Cμ 

continues increasing to 0.27%, the situation becomes even better. In case of Cμ = 0.41%, no 

significant modification can be observed compared to the case Cμ = 0.27%.  
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Figure 6-17. Streamlines and mean Ux field contours under various conditions 

Similar observations can be obtained by plotting the profiles of the velocity differences 

between Ux and the free stream velocity ΔU = Ux − U∞, as shown in Figure 6-18. In freestream 

(i.e. z/h > 1), the relative velocity is 0, thus the plot markers in each case are overlapped to the 

position line. While in areas where Ux is smaller than the U∞, resulting in a negative relative 

velocity, (e.g. z/h < 0.3), the plot markers will be deviated to the left side of the position line. 

Blue lines are added to indicate the position where the Ux would be 0. The separation happens 

once the markers pass on the left of this blue line.  

From the global view in Figure 6-18, the flow patterns of free-stream and separation 

regions in both uncontrolled and controlled cases can be clearly observed and compared. In 

case of baseline flow (Cμ = 0), marked by the blue circles, the deviation to each vertical line is 
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more significant compared to the controlled cases. The largest deviation appears around x/h ≈ 

2.3 where the strongest separation happens. As the flow goes further, the deviation becomes 

smaller and smaller, though still larger than those of controlled cases ( x/h ≈ 9). All three 

controlled cases (Cμ = 0.16%, 0.27%, 0.41%) show obvious improvement of the separated flow 

demonstrated by the sharp reduction of deviations to corresponding position lines compared to 

the baseline flow case. In the trailing flow, i.e. x/h >5, no obvious differences can be observed 

among the controlled cases. In the ramp region, a zoomed view is used to inspect the controlling 

effects in the three studied cases. From this zoomed view, with the help of added blue lines, it 

can be clearly observed that the separation is always totally eliminated, since no markers 

surpass the blue lines in all cases. In addition, the last two cases with higher Cμ work a little 

better than the case of smaller Cμ = 0.16%. However, no observable difference can be found 

between the case with Cμ = 0.27% and that with Cμ = 0.41%. 

 

Figure 6-18. Profiles of velocity difference between Ux and U∞ at different positions along the ramp: global view 
and zoomed view 

Compared to the studies reviewed in Table 1-3 where the optimal Cμ equals 0.8%, the 

present study shows that unsteady blowing with Cμ = 0.16% is able to totally eliminate the 

separation in a ramp flow, utilizing a synchronized array of fluidic oscillators. Moreover, when 

Cμ is larger than 0.27%, no additional benefit can be obtained. 

6.4 Discussion about the control mechanisms 

In the following, only the baseline flow Cμ = 0 and the controlled flow with Cμ = 0.16% 

are analyzed and compared in order to clarify the controlling mechanisms. 
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6.4.1 Momentum equations governing the mean flow: 

Given the Reynolds decomposition of an instantaneous velocity U (x,y,z,t): 

 ( , , , ) ( , , , ) '( , , , )U x y z t U x y z t u x y z t      (6-6) 

where ( , , , )U x y z t   is the ensemble-averaged or mean velocity, '( , , , )u x y z t  is the 

fluctuating velocity. Thus, for an incompressible flow, the governing Reynolds-averaged 

Navier–Stokes (RANS) equation in tensor form is: 

 
2 ' '1j j j i j

i
i j i i i

U U U u uP
U ν

t x ρ x x x x

     
    

     
  (6-7) 

where Uj are the mean velocity components, uj
’ are the fluctuation velocity components, P is 

the ensemble-averaged pressure, ρ is the ensemble-averaged density, ν is the kinetic viscosity, 

<X> means the ensemble-averaged value of term X. 

In a 2-dimensional average flow and giving the emphasis to pressure gradient terms, 

Eq.(6-7) can be reformulated to: 

 
2 2

2 2

' ' ' '
( ) ( ) ( )x x x x

x y

U U U UP u u u v
ρ U U ρ μ

x x y x y x y

         
      

      
  (6-8) 

 
2 2

2 2

' ' ' '
( ) ( ) ( )y y y y

x y

U U U UP u v v v
ρ U U ρ μ

y x y x y x y

         
      

      
  (6-9) 

From the PIV test, the variable fields of Ux, Uy, ' 'u u  , ' 'v v   and ' 'u v  have 

been obtained. Thus, from, Eq.(6-8) and Eq.(6-9), the mean pressure gradient fields in both x 

direction and y direction can be calculated. 

6.4.2 Pressure gradient field of both baseline case and controlling case 

Figure 6-19 presents the pressure gradient field of the baseline flow in both y direction 

and x direction. The high value of /P y   in the upstream, especially above the recirculation 

bubble (x/h ≈  3) illustrate the higher pressure which push the main stream flowing 

downside in the ramp, and the low value of /P y   at the end of the recirculation region and 

the near wall region reflects the effect of wall boundary which forces the downside flow back 

the main flow direction. The topology of the x direction pressure gradient field /P x   is 

much different. The flow accelerates a little just before the ramp (x/h < 0) because of the 

negative value of /P x  . Then a shear layer is formed where very high values of /P x 

can be found which means the flow velocity in this layer decreases quickly because of the 

strong entrainment effect from the main flow above the layer to the recirculation region 
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downside the layer. In the first half part of recirculation region (0<x/h < 2.5), the significantly 

negative value of /P x   shows the flow is accelerating from very low streamwise velocity. 

A large region of high positive value of /P x   can be found just in the end of recirculation 

bubble (x/h ≈ 4). The huge pressure increase in this region plays a significant role to make 

the main flow separated and is a main source of flow energy loss.  

In the controlled case, the pressure gradient in both directions are significantly changed as 

shown in Figure 6-20. Firstly, both the high positive gradient regions are moving upstream. 

Secondly, the highest gradient values in both direction increase a lot, e.g., the highest /P y   

is increased from 750 to 1300 Pa/m. Thirdly, the highest gradient values all appear near the 

actuator excitation location (x/h ≈ 0). Fourthly, the value of /P x  becomes much larger in 

the whole ramp region.   

 

Figure 6-19. Pressure gradient field of the baseline flow. a) y direction gradient; b) x direction gradient 
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Figure 6-20. Pressure gradient field of the controlled flow, Cμ = 0.16%. a) y direction gradient; b) x direction 
gradient 

All the above observations and comparisons demonstrate that the actuation of fluidic 

oscillator array largely modifies the flow field structure and the gradient field structure. For 

the purpose to find out the most important controlling factors, deeper analysis about each 

component in the governing equations should be conducted. Since the separation is mostly 

controlled by the x direction pressure gradient, the analysis is thus focused on Eq.(6-8).  

6.4.3 Focus on analysis of pressure gradient in x direction: 

After examining each term in Eq.(6-8) from PIV results (cf. Annex 3), it is found that 

some components are not significant, thus can be ignored in our analysis process. Only the 

important components are kept and rearranged as follows: 

 
' ' ' 'x x

x y

U UP u u u v
ρU ρU ρ ρ

x x y x y

       
    

    
  (6-10) 

 
21 ' ' ' '

( )
2

x
x y

U u u u v
P ρU ρU ρ ρ

x y x y

      
    

   
  (6-11) 

The static pressure plus the dynamic pressure in x direction 21

2 xP ρU  is a stagnation 

pressure which describes the force or energy the fluid contains. Thus, the left term of Eq.(6-11) 

which is the gradient of this stagnation pressure can be approximately treated as the force loss 

or force gain denoted by Φ  along the streamwise direction. Since the term related ' 'u u   
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is small (cf. Figure A3- 1), Φ  is mainly controlled by the two other terms: 1
x

y

U
ψ U

y


 

 and 

2

' 'u v
ψ

y

  


 .  

 1 2

' '
Φ x

y

U u v
ψ ψ ψ U

y y

   
    

 
   (6-12) 

The contours of 1ψ , 2ψ , and 2ψ  in both baseline case and controlled case are presented 

in Figure 6-21, Figure 6-22 and Figure 6-23 respectively. Within the shear layer immediately 

after the separation point, both terms are positive and of the same order (cf. Figure 6-21a, and 

Figure 6-22a). 1ψ  represents the force gain which is related to the mean flow while 2ψ  

represents the force loss along the flow which is related to the turbulence terms. In the 

baseline case, 1ψ  is dominant compared to 2ψ  in the shear layer(cf. Figure 6-23a), but not 

sufficiently to avoid the separation.  

In order to overcome the separation, more forces are needed in the shear layer region. 

From Eq.(6-12), either increasing term 1ψ  or decreasing 2ψ  is possible to increase ψ . 

However, direct modification of term 1ψ  would be very costly since it is related to the main 

flow compared to modifying the turbulence related term 2ψ . Decreasing 2ψ  seems also 

difficult since the turbulence level is hard to reduce directly. However, with the actuation of 

fluidic oscillator array, 2ψ  can be increased easily as shown in Figure 6-22b, which means 

the force loss is increased because of the oscillator actuation. At the same time, as can be 

observed in Figure 6-21b, 1ψ  which represents the force gain is also increased. The increase 

in force gain from 1ψ  is however much larger than the increase in force loss from 2ψ , which 

is evidenced by the significant increase of ψ  in the shear layer and ramp region in Figure 

6-23b.  

It can also observed that the topology of the ψ  contours in the controlled case (cf. 

Figure 6-23b) is very similar to the contours of /P x   in the ramp region (cf. Figure 6-20b). 

In particular, the high levels of ψ  in this zone explain why the flow is not separated despite 

the large positive values of /P x  .  

Thus, from the above analysis, the controlling mechanism seems to be that the actuator 

affect the turbulence terms, i.e. <u’v’>, then the turbulence terms affect the mean flow term, 

x
y

U
U

y




 , and this mean flow term transfers more forces from the free flow to the shear layer, 

which helps the flow to overcome the pressure gradient and to reattach to the wall.   
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Figure 6-21. Contours of 1
x

y

U
ψ U

y


 


, a) baseline flow; b) controlled flow, Cμ = 0.16% 

 

Figure 6-22. Contours of 2

' 'u v
ψ

y
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, a) baseline flow; b) controlled flow, Cμ = 0.16% 
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Figure 6-23. Contours of 1 2ψ ψ ψ  , a) baseline flow; b) controlled flow, Cμ = 0.16% 

6.4.4 Turbulent Kinetic Energy and turbulence production analysis 

The Turbulent Kinetic Energy (TKE or k) can be calculated as: 

 
1

' '
2 i ik u u     (6-13) 

The governing equation of k is: 
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ifD is the diffusion term. Ρ  is the production of TKE, or simply the production and this 

term can increase the TKE of the flow. ε is the dissipation rate of TKE. From the obtained PIV 

results, the TKE field and production field of the mean flow can be calculated directly as: 
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The contours of TKE and production in both baseline case and controlled case are 

presented in Figure 6-24 and Figure 6-25 respectively. In the baseline case, the value of TKE 

(cf. Figure 6-24a) progressively increases from k/U∞
2 = 0.016 at the separation point (x/h ≈ 

0) up to a maximal value k/U∞
2 = 0.024 just beyond the separation bubble in the shear layer 

(x/h ≈ 4). In the controlled case however, the topology of TKE contours is totally changed 

(cf. Figure 6-24b): the maximal value k/U∞
2 = 0.05 is much higher and is found just 

downstream from the actuation location (x/h ≈ 0.5) and the high TKE area is much larger in 

the ramp region. From Figure 6-25, it can be observed that the production of TKE is also 

largely increased immediately after the actuation location. 

Thus, the fluidic oscillator array amplifies the production of turbulence evidenced both by 

the TKE contours and production contours, just next to the actuation location. One 

consequence of this is that <u’v’> is increased as shown in Figure 6-26. Following the 

textbook of Pope89, for a plane mixing layer which is very similar to present ramp flow, the 

spreading rate dθSL/dx is closely connected to the Reynolds shear stress (Eq.5-209, Eq.5-216, 

Eq.5-228 in Pope89). This means that the increase of Reynolds shear stress <u’v’> would 

result into a faster growth of the separated shear layer. Accordingly, the recirculation length Lr 

decreases which is exactly what have been observed in this study. 
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Figure 6-24. Contours of mean flow TKE, a) baseline flow; b) controlled flow, Cμ = 0.16% 

 

Figure 6-25. Contours of mean flow production of TKE, a) baseline flow; b) controlled flow, Cμ = 0.16% 
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Figure 6-26. Contours of mean flow Reynolds stress component <u’v’>, a) baseline flow; b) controlled flow, Cμ 
= 0.16% 

6.5 Conclusions 

An array of 12 identical miniature fluidic oscillators has been designed and tested on a 

ramp separated flow. The chosen synchronization method of the fluidic oscillators array has 

been tested and proved to be successful. The efficiency of this array of fluidic oscillator to 

delay separation has been examined thanks to PIV measurements conducted on a ramp flow in 

a wind tunnel. The obtained results show that this fluidic oscillator array is very promising 

considering the low momentum coefficient Cμ needed to totally eliminate the separation. The 

detailed analysis of the underlying controlling mechanisms shows that the fluidic oscillator 

actuation increases the turbulence which increases the forces loss in the ramp region. 

However, in the same time, the modification of the turbulence terms leads to a modification of 

the mean flow terms due to the correlations between turbulence and mean flow. As a result, 

despite the increase in force loss due to the increase of turbulence terms provoked by the 

actuation, more force is transferred from the main flow to the shear layer. This mechanism 

helps the flow to overcome the pressure gradient and to reattach to the wall. 

 
Nevertheless, despite the encouraging results which have been obtained, additional 

measurements and refined analysis should be performed to confirm the proposed mechanisms. 
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It would also be interesting to find out the most sensitive scale to the actuation and the 

threshold of Cμ needed to eliminate the recirculation bubble in a broad Re range.
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Chapter 7. Conclusions and Perspectives 

Conclusions 

The main objective of the present work was to study in detail the working dynamics of a 

pulsing jet relaxation fluidic oscillator in order to propose guiding rules for its design and to 

develop an array of synchronized actuators in order to test their ability to delay the flow 

separation on a ramp.  

After a brief introduction about various flow control strategies and typical fluidic actuators, 

the bibliographical study has been focused on the various kinds of fluidic oscillators, 

highlighting the interest to use pulsing jet relaxation fluidic oscillators for flow control 

applications and the lack of knowledge on the physical mechanisms governing their behavior. 

The core of this thesis work has then been presented in four main parts, concerning the 

experimental analysis of the performances of 4 oscillator prototypes, the numerical simulation 

of the unsteady flows in these oscillators to identify the main physical mechanisms controlling 

their working dynamics, the development of synchronization methods for an array of oscillators 

and the application of this array of fluidic actuators to the control of a ramp separated flow. The 

major conclusions are as follows: 

 New designed prototypes have been experimentally characterized both by hot wire and 

transient pressure sensors. It has been confirmed that the average velocity of the 

generated pulsed jets is controlled by the oscillator’s throat section and the inlet 

pressure. However, the amplitude of the outlet velocity and its evolution with time can 

also be affected by the throat section and/or other internal geometrical factors such as 

the internal symmetry of the device. In addition, both the feedback loop length and 

diameter play important roles on the oscillator’s performances, in particular its 

frequency response. A relation, deducted from the acquired experimental data, has been 

proposed to estimate the oscillation frequency as a function of the feedback loops 

length.  

 Numerical models developed in OpenFOAM have shown to offer a quite precise 

estimation of the operating frequency. A detailed analysis of the simulation results has 

shown that in a pulsing jet relaxation fluidic oscillator, the main jet deflection is 

provoked not only by the pressure difference between the oscillator's control ports, but 

also by the pressure difference between its branches. In the studied configurations, the 
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threshold value of the pressure difference between the control ports needed to provoke 

by itself the jet deflection is much higher than the pressure difference needed between 

the branches. However, when combining these two effects, the jet deflection becomes 

much easier.  

 The switching mechanism has been shown to be linked to the back and forth 

propagation of pressure waves in the oscillator's branches and feedback loops: just 

after the jet switching, a High Pressure Compression Wave propagates in the branch 

where the jet is attached and in the corresponding feedback loop while a Low Pressure 

Expansion Wave propagates in the other branch and feedback loop. When these waves 

arrive at the control ports they reflect and the jet is destabilized by the inversion of the 

pressure difference at its base. The switching occurs when the pressure waves have 

reached back the branches provoking the inversion of the pressure difference between 

branches. As the pressure waves propagate roughly at the sound velocity Co, the 

oscillation period T can be approximately linked to the feedback loop length Lf by the 

newly proposed relation T = 4Lf / Co , which confirms the empirical relation deducted 

from the experimental results. A more precise relation has also been proposed to 

calculate the oscillation frequency, taking into account the flow velocity in the 

oscillator. These numerical simulations have also permitted to explain the 

non-dependence of the oscillation frequency to the supply pressure. 

 Two new methods, based on interconnections between the feedback loops, have been 

proposed to synchronize two similar oscillators. These two methods have been 

validated experimentally and numerically. The first one leads to a frequency close to the 

one of the oscillators working separately and the pulsed jets generated by these two 

devices are nearly in phase opposition. The second method leads to a much lower 

frequency and a phase difference close to 0.25T. The numerical simulations have also 

permit to explain the dynamic behavior of the synchronized oscillators and to prove the 

feasibility of the synchronization of an array of 4 fluidic oscillators, using the first 

interconnection method. 

 In the last part of this work, 12 identical fluidic oscillators have been integrated in a 

ramp to test their efficiency to control the flow separation. The chosen method to 

synchronize this fluidic oscillators array has been tested experimentally and proved to 

be successful. The mean and fluctuating flow fields over the ramp, with and without 

actuation of this array of fluidic oscillators, have been acquired by PIV in a wind 
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tunnel. The obtained results show that this fluidic oscillator array is very promising, 

considering the low momentum coefficient Cμ, compared to the optimal values found 

in the literature, needed to totally eliminate the separation. An analysis of the 

turbulence flow fields has shown that the underlying controlling mechanisms were 

linked to an increase of the turbulence in the ramp region due to the pulsed jets 

generated by the oscillators, leading to a net increase, compared to the case without 

actuation, of the force transferred from the main flow to the shear layer.  

 

Perspectives 

Though numerous encouraging results have been obtained, some interesting points need to 

be further explored, to finally allow the design and development of optimized actuators which 

could be implemented on real systems (e.g. airfoil or car after-body):  

 The validity of the simple relation proposed to estimate the oscillator’s operating 

frequency is limited to configurations in which the feedback loops diameter/width is 

not too small. Additional numerical simulations would be necessary to analyze the 

role played by this parameter and other geometrical dimensions, such as the throat 

width, on the device performances.  

 The amplitude and form of the pulsed jets generated by the oscillator seems to be very 

sensitive to its internal geometry. Numerical models should thus be improved to be 

able to give exploitable data on the link between the pulsed jets characteristics and the 

oscillator's internal geometry. Visualization of the oscillator's internal flow, e.g. by 

PIV or molecular tagging techniques, could also be a useful experimental tool for the 

validation of the numerical models. 

 The synchronization methods should be further explored, in particular to find ways to 

control the phase lag between oscillators working in an array, as this parameter could 

have a strong effect on the flow control efficiency.  

 Additional measurements (e.g. PIV mean and phase-averaged flow fields in various 

cross planes of the ramp) and refined analysis should be performed to confirm the 

proposed mechanisms governing the flow separation control by an array of fluidic 

oscillators. It would also be interesting to find out the most sensitive scale to the 

actuation and the threshold of Cμ needed to eliminate the recirculation bubble in a 

broad Re range. Additional experimental analyses should also be conducted in 

different configurations (various F+, with and without synchronization, different 
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phase lags between actuators…), in particular to identify the role of the actuation 

frequency and of the synchronization on the control efficiency.  
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Annex 1. Preliminary Study of a First 

Oscillator Prototype 

For flow control application, the most important parameters which characterize a fluidic 

oscillator are its working frequency and its outlet velocity evolution pattern as discussed in 

chapter 1. In order to obtain these parameters, two measurement techniques are employed: the 

hot wire anemometry and the transient pressure transducer. The hot wire anemometer can 

measure the instantaneous outlet velocity and give also access to the working frequency while 

the pressure transducer can only measure the oscillator’s working frequency. However, for 

fragility reasons, the hot wire was only employed at low inlet pressure conditions, while the 

pressure transducer could be used in a very large range of inlet pressure. 

The first prototype tested in this section was designed during the work of W. Ghozlani 12. 

After re-assembling it, its frequency response under various inlet pressures are examined both 

by the hot wire anemometry and pressure transducer. 

A1.1 First measurements by hot wire 

A1.1.1 Experimental setup 

The experimental setup consists in a fluidic oscillator connected to a pressurized air tank, as 

shown in Figure A1-1. The pressure in the air tank can be adjusted through a valve and is 

monitored by a pressure sensor. The pressure in this air tank is regarded as the inlet total 

pressure of the oscillator. The oscillator is placed vertically and fixed by screw bolts on the 

platform. The flow issuing from the oscillator outlets is measured with a single component 

hot-wire driven by an anemometer (DISA 55M01). The hot wire probe is set on linear traverse 

assembly allowing for 3-D displacements, with a spatial resolution of 0.01 mm in all three 

directions. The hot wire is just placed parallel to the outlet slot as shown in Figure A1-1b, in the 

center of the right outlet and at a distance of 0.72 mm from the outlet plane. The signals of the 

pressure sensor in the air tank and of the hot wire are recorded by computer at a sampling 

frequency of 10 kHz, which is large enough to resolve the oscillation frequency. Time-series 

lasting 100 s are acquired in order to assure statistical convergence.  

The fluidic oscillator represented in Figure A1-1 was manufactured using EDM (Electrical 

Discharge Machining) technique. The prototype has a width of 10 mm and the two exits and the 

nozzle widths are 500 µm and 200 µm, respectively. The fluidic oscillator is fixed on a flat plate. 
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evidenced that the oscillation frequency has some relationship with the capacitive effect: for a 

given supply pressure, i.e., a given inlet mass flow rate, a longer feedback loop will need a 

longer time to be filled in and to reach the threshold pressure which can provoke a switching of 

the jet. This threshold pressure is proportional to the static pressure in the jet at the throat of the 

nozzle (i.e., in front of the control ports), which is itself proportional to the inlet supply pressure. 

This is confirmed by the proportionality between the ratio of the supply mass flow rate to the 

inlet supply pressure and the switching frequency clearly shown on Figure A1-2b when the 

sonic conditions are reached at the throat (Pi >Pcr). In this case indeed, the mass flow rate is 

proportional to the supply pressure: 

 
1

2( 1) i

*
i

1
( )

2

γ

γ
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Pγ γ
m A

R T
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
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where Rg is the gas constant (Rg = 287 j/K/kg for air). 

For supply pressures lower than the critical one, the inlet mass flow rate will depend from 

both the supply pressure and the pressure at the throat as given by: 
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  (A1-4) 

Assuming that the static pressure at the throat is the atmospheric pressure (for subsonic 

conditions), leads to the curve drawn on Figure A1-2b which has the same trend than the 

frequency curve but is not strictly proportional. However, as already mentioned, due to the 

development of the jet in the oscillator branches, the pressure at the throat for subsonic 

conditions will be slightly lower than the atmospheric pressure and cannot be calculated 

analytically due to the geometry complexity.  
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time step should smaller than 1/(1000×20)=5×10-5 s. For the second criterion, with the current 

mesh file, the time step should be smaller than 1×10-8 s. While after the third criterion, a time 

step of 5×10-7
 
s should appropriate with the current mesh file. 

The predicted oscillation frequencies for different time steps and transient discretization 

schemes are reported in Table A1-1. The inlet pressure is 0.16 MPa for which the measured 

frequency was 369 Hz. 

Table A1-1. Comparison of the predicted results in various settings 

 Time step/(s)
Iteration number 

per step 
Transient 

formula-implicit order
Simulated 

frequency (Hz) 
Max CCFL

1 5×10-5 350 2nd 447 1530 

2 5×10-6 200 1st 380 157 

3 5×10-6 200 2nd 454 157 

4 1×10-6 40 2nd 384 35 

5 5×10-7 30 2nd 384 17 

6 1×10-7 25 2nd 457 8.5 

7 5×10-8 15 2nd 457 1.7 

 
Obviously, these two settings have a strong influence on the numerical results: two 

frequencies were found depending on the chosen time step and transient discretization scheme, 

one of about 380 Hz, close to the measured frequency at 369 Hz, and a much larger one of about 

450 Hz. It is however difficult to understand why a 2nd order discretization scheme and a 

smaller time step, which are presumed to give to more accurate results, can lead to higher 

discrepancies with the experimental results. In addition, due to the assembly problems 

described above, the close correspondence between the geometry used in the numerical models 

and the actual oscillator's internal geometry during the experiments was not ensured, making it 

very difficult to validate the numerical models in order to use them afterwards for the analysis 

and design of optimized oscillators.  

A1.4 Conclusions  

The two experimental campaigns conducted on a first oscillator prototype have evidenced 

important assembly difficulties leading to leakages and possible modifications of the device's 
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internal dimensions, making it very difficult to analyze the behavior of this oscillator in relation 

with the geometrical and operation parameters. It has been however observed that: 

 the oscillation frequency increases with the inlet pressure in a similar way than the 

mass flow rate until sonic conditions are reached at the throat, suggesting the 

existence of a capacitive effect as in the work of Khelfaoui et al. 58.  

 once the flow is sonic at the throat, for a given supply pressure, the oscillator's 

frequency evolves linearly with the feedback tube length, showing that the 

propagation of pressure waves in the feedback loops could also play a role in the 

oscillation process.  

 a so-called "unstable oscillation" phenomenon appears above a threshold inlet 

pressure, whose value is in relation with the feedback loops length and diameter. It 

has been observed that with partial blockage in the throat, it is much easier to 

provoke the excited mode of oscillation. However, the underlying mechanisms 

governing this phenomenon are still unclear up to now. 

In addition, numerical models built on the CFD software ANSYS/FLUENT have shown an 

important sensibility to critical settings such as the transient discretization scheme and the time 

step, not allowing their exploitation for the design of new actuators with optimized 

performances.  

As a consequence, new oscillator prototypes should be developed, solving the identified 

assembly problems, in order to get more accurate experimental data which could help in 

identifying and understanding the relation between the actuator's performances and the 

geometrical parameters and operating conditions. 

In addition, more robust numerical models should be built and validated in order to 

facilitate the analysis of the physical mechanisms governing the internal flow oscillations and 

thus to draw guidelines for the design of specific actuators.  
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Annex 2. Sensitivity Study of the 

Numerical Schemes in OpenFOAM 

In the framework of OpenFOAM, taking the calculation cost, accuracy and stability into 

consideration, the discretization schemes are chosen in a first step as shown in Table A2-1, and 

the boundary conditions initially utilized in each equation are listed in the following Table A2-2. 

During each time step, the final residual error is at least 10 orders of magnitude smaller 

compared to the initial residual error when solve each equation.  

Table A2-1. Method and precision of the chosen discretization schemes 

 Scheme name precision 

gradSchemes Gauss linear 2nd order 

LaplacianSchemes Gauss linear corrected 0.5 
Blend of 1st and 

2nd order 

divSchemes 

div(phi,U) Gauss limitedLinear 1 2nd order 

div(phi,e) Gauss QUICK 2 2nd order 

div(phid,p) Gauss limitedLinear 1 1st order 

div(phi,K) Gauss limitedLinear 1 1st order 

div(phi,p) Gauss limitedLinear 1 1st order 

div(phi,k) Gauss upwind 1st order 

div(phi,epsilon) Gauss upwind 1st order 

div((muEff*dev2(T(Grad(U))))) Gauss linear 2nd order 

 

Table A2-2. Boundary conditions in each equation 

equation inlet wall outlet 

p totalPressure zeroGradient totalPressure

U pressureInletVelocity fixedValue zeroGradient

T inletOutlet zeroGradient inletOutlet 

k 
turbulentIntensityKineticEnergyInlet 

intensity 0.05; 
kqRWallFunction 

inletOutlet 
1 

p　 　 
turbulentMixingLengthDissipationRateInlet

mixingLength 0.005; 
epsilonWallFunction 

inletOutlet 
500 

omega turbulentMixingLengthFrequencyInlet omegaWallFunction zeroGradient
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CrankNicolson 0.5 which is the average scheme of Euler and CrankNicolson 1.0; backward is 

an implicit second order precision scheme. 79 Besides the default schemes of the divergence 

terms, the second order upwind schemes have been also applied to all the divergence terms. 

Table A2-3. Various simulation setups and predicted results 

Case 
number 

Max 
CCFL 

Time Scheme 
Divergence 

Scheme 
Convergence BCs f / Hz 

Velocity 
amplitude 

1 0.7 
CrankNicolson 

0.5 
default Yes default 640.5 (-40,185) 

2 0.7 
CrankNicolson 

0.5 
all 2nd order No default -- -- 

3 0.7 backward all 2nd order No default -- -- 

4 0.35 backward all 2nd order No default -- -- 

5 0.35 backward default Yes default 468.2 (-40,145) 

6 0.7 backward default No default -- -- 

7 0.35 
CrankNicolson 

0.5 
default Yes default 650.7 (-30,187) 

8 0.7 
CrankNicolson 

1.0 
default No default -- -- 

9 0.35 
CrankNicolson 

1.0 
default Yes default 448.7 (-56,140) 

10 0.7 Euler default No default -- -- 

11 0.35 Euler default Yes default 649.8 (-30,190) 

12 0.35 backward all 2nd order Yes modified 481.4 (-10,85) 

 
As the results shown in Table A2-3, not all the simulations get the converged results: 

comparing the cases with the same larger Courant number (case 1, 2, 3, 6, 8 and 10), only with 

the case 1 conditions can we get the converged results while with the smaller Courant number 

(case 4,5,7,9 and 11), all the simulations get converged results except the case with the all 

second order divergence schemes (case 4). And this implies that the maximum Courant number 

has a large effect on the stability of the simulation: the smaller the maximum courant number is, 

the better is the calculation stability, and the more precise is the predicted results theoretically. 

However, the smaller courant number means a smaller time step with certain mesh file, and this 

leads to more calculation resource requirement. A compromise is needed in order to get an 

acceptable stability, precision and cost.  

With the higher order temporal discretization schemes, both backward and CrankNicolson 

1.0 (case 5 and 9), the predicted oscillation frequency and velocity amplitude in the center of 
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left outlet are similar, with less than 5% difference. While compared to the results obtained by 

lower order schemes, the difference can be as large as 40%.  

The choice of different discretization schemes of the divergence terms has big effects on 

the final results: with the second order upwind scheme in all divergence terms (case 2, 3 and 4), 

no converged results can be obtained in either condition. This means that the divergence term 

discretization schemes have has large effects on the simulation stability. Simulation is very 

sensitive to the schemes of convection terms. In theory, a higher precision scheme can lead to 

higher precision, and there is no reason that the second order upwind scheme in the convection 

terms always lead to the crash of simulation.  

A second order discretization scheme is always preferred in order to get better prediction 

results. The reason why the calculation always crashes with second order scheme in convection 

terms maybe is that the boundary conditions are not conform to the physical conditions. Under 

this logic, in case 12, the outlet boundary conditions of both k equation and epsilon equation are 

modified to zeroGradient from inletOutlet; and the inlet turbulent mixingLength in epsilon 

equation is modified from 0.005m to 0.0005m which is more like the reality case. the predicted 

frequency is 481.4Hz which is similar to case 5’s 468.2Hz, while the velocity amplitude is 95 

m/s which is much different to 185 m/s in case 5.  

In conclusion, under the hypothesis that higher order discretization schemes and smaller 

time step always lead to better results, the smaller CCFL value, backward temporal scheme, 

second order scheme in convection terms and modified boundary conditions are better choice 

for all the following simulations.  

In the following simulations, the geometry utilized is the designed new oscillator prototype 

Osc.2 as shown in Figure 2-1 and Figure 2-2 and the mesh density is similar to that in Figure 

A2-2. At the same time of testing the effects of various numerical parameters, the predicted 

results can also offer some information about the performance of this new designed prototype. 

A2.3 Effects of wall function 

As a turbulent flow approaches a wall, its mean and fluctuating components of velocity, and 

consequently k, vanish creating large gradients. In addition, the very high turbulent stresses 

away from the wall decrease in the near wall layer to values of magnitude comparable to those 

of the viscous stresses. Therefore if the near wall layer is to be resolved, a substantial number of 

grid points will be required. 80 

Low Reynolds number turbulence models are capable of simulating the dampening effects 

of the wall but at the expense of using a very large number of grid points. This is the 
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unavoidable cost that has to be paid if accurate solutions of the flow in the near wall region are 

required.  

On the other hand, the high Reynolds number turbulence approach, exemplified by the 

standard k-epsilon model, avoids the need to resolve the near wall layer through the use of wall 

functions. In this method, theoretical profiles between the boundary surface and the first 

near-wall code are assumed and superimposed. Compared to the previous approach, wall 

functions reduce significantly the computational cost. The main disadvantage of this 

methodology however, is related to the validity of these profiles, which are only known and 

justified in near-equilibrium boundary layers. 80 

OpenFOAM offers both high Reynolds number turbulence models like the k-epsilon model 

family and low Reynolds number turbulence model like the k-omega SST model, and different 

wall functions for both the normal condition and the low Reynolds number condition.  

The flow inside the oscillator has a very complex flow pattern: the jet is oscillating between 

the two branches and feedback loops which leads to the velocity difference between the two 

sides of the oscillator. Take the mesh file in Figure A2-2 for example, when the main jet is 

attached to left branch, the Y+ value is in an order of 30 in the beginning of attachment and 

decreases to less than 5 in the left feedback loop; while in the right side branch, the Y+ value is 

always less than 1 in the right feedback loop. This complexity leads to the difficulty of choosing 

the appropriate turbulent model and wall function. In the switching zone in which the flow is in 

the highest velocity and complexity, the Y+ value varies the most (from 5 to 30). And in this 

condition, it is not sure that if the application of low Reynolds number turbulence model or high 

Reynolds number turbulence model is appropriate. If the largest Y+ value inside the entire 

oscillator is smaller than 1, the application of kOmegaSST and the low Reynolds number wall 

functions would be the most precise choice. However, this needs much denser mesh file, 

speciously near the wall, and much smaller time step in order to keep the same maximum 

courant number. In order to avoid the high calculation cost, the tests of different wall function 

and turbulence model were carried out firstly.  

Two simulations were carried out in the same new designed geometry Osc.2 and the same 

mesh file with moderate density which is similar to that described in Figure A2-1. The 

numerical schemes and boundary conditions are the same as the modified ones described above 

in the first simulation. While in the other simulation, the boundary conditions of wall in both k 

and epsilon equations are modified to the low Reynolds number wall functions.  
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Table A2-5. modified discretization method of all terms 

 Scheme name precision 

ddt backward 2nd order 

gradSchemes Gauss linear 2nd order 

LaplacianSchemes Gauss linear corrected 0.5 Blend of 1st and 2nd order 

divSchemes Gauss linearUpwind grad( ) 2nd order 

 

Table A2-6. Modified boundary condition in all equations 

equation inlet wall outlet 

p totalPressure zeroGradient fixedValue

U pressureInletVelocity fixedValue zeroGradient

T inletOutlet zeroGradient inletOutlet

k 
turbulentIntensity-KineticEnergyInlet 

intensity 0.05; 
kqRWallFunction zeroGradient

epsilon 
turbulentMixingLength-DissipationRateInlet

mixingLength 0.0005; 
epsilonWallFunction zeroGradient

omega 
turbulentMixingLength-FrequencyInlet 

mixingLength 0.0005; 
omegaWallFunction zeroGradient

 

A2.5 Effects of turbulence model choice 

In base of the previous works, various turbulence models were also tested. With the same 

discretization methods in Table A2-5 and boundary conditions in Table A2-6, not all the 

simulations can get the converged results. In order to get the converged results, some 

discretization method should be modified in some terms. As shown in Table A2-7, with the 

current mesh and numerical settings, only the k-e realizable turbulence model can get a 

converged results, while for the standard k-epsilon model and RNG k-e model, the convection 

terms or divergence terms should be discretized in a default method as shown in Table A2-1. 

And in the case of k-omega-SST turbulence model, besides the default schemes in convection 

terms, the transient term scheme should also be modified to a Euler scheme which is a 1st order 

precision scheme.  
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Table A2-7. Simulation results with various turbulence models 

 Transient term Convection term f (Hz) Uy range (ms-1) 

k-epsilon backward default 542.6 (70, 125) 

RNG k-e backward default 452.8 (-31, 130) 

k-e Realizable backward 2nd order Upwind 506.4 (-10, 170) 

k-Omega-SST Euler default 488.9 (-10, 180) 

 
As can be clearly observed in the above table, the difference between the predicted results 

using different turbulence models is huge. Compared to the results by k-e Realizable model, the 

predicted frequency by k-epsilon model is 7% higher and the Uy range is 70% smaller; while 

with the RNG k-e model, the frequency is 10% lower and the Uy range is 11% smaller. For the 

case of k-Omega-SST model, the frequency is only 3.4% lower and the Uy range is very similar 

(5% larger). With the preference of higher order schemes and the higher calculation stability, 

with the current mesh, the k-e realizable turbulence model is preferred.  

A2.6 Effects of mesh density choice 

The effect of the mesh density has been also verified with the kOmegaSST turbulence 

model. The mesh density next to the boundary has been increased a lot which can be observed 

in Figure A2-4. With this mesh file, the maximum Y+ throughout the domain is about 1 in order 

to apply the low Reynolds number wall function in k and Omega equations. In this case, there 

are 406000 quad cells in total which is about 4 times of the normal mesh, and the corresponding 

time step is 1×10-9s, which is only one fifth of the previous one in order to insure the same 

maximum courant number. Under these conditions, just getting the same simulated period, at 

least 20 times of the calculation resources are needed which is unacceptable in general.  
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Table A2-8. Comparison of predicted results with kOmegaSST turbulence model 

 Mesh density 
Temporal 
scheme 

f (Hz) Uy range (ms-1) 

k-Omega-SST Normal Euler 488.9 (-10, 180) 

k-Omega-SST Dense Euler 513 (25, 170) 

k-Omega-SST Dense backward 511 (25, 170) 

 

 

Figure A2-5. Comparison of predicted results with different temporal schemes, k-Omega-SST turbulence model  

A2.7 Remarks and comments 

Considering the calculation precision and efficiency, the realizable k-epsilon turbulent 

model, with moderate mesh density and normal wall function would be the best choice for the 

following work. The chosen discretization schemes and boundary conditions for each equation 

are the same as that in Table A2-5 and Table A2-6 respectively. 
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Annex 3. Components of turbulent flow 

measured by PIV 

 

Figure A3- 1. Reynold stress component <u’u’> contours, a) baseline flow; b) controlled flow, Cμ = 0.16% 
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Figure A3- 2. Reynold stress component <u’v’> contours, a) baseline flow; b) controlled flow, Cμ = 0.16% 

 

Figure A3- 3. Reynold stress component <v’v’> contours, a) baseline flow; b) controlled flow, Cμ = 0.16% 
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Figure A3- 4. Contours of x
x

U
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 , a) baseline flow; b) controlled flow, Cμ = 0.16% 
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Figure A3- 5. Contours of x direction gradient of Reynold stress component <u’u’>, 
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