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ABSTRACTThis dissertation focuses on e�ciently forming reduced-order models for large, lineardynamic systems. Projections onto unions of Krylov subspaces lead to a class of reduced-order models known as rational interpolants. The cornerstone of this dissertation is acollection of theory relating Krylov projection to rational interpolation. Based on thistheoretical framework, three algorithms for model reduction are proposed. The �rstalgorithm, dual rational Arnoldi, is a numerically reliable approach involving orthogonalprojection matrices. The second, rational Lanczos, is an e�cient generalization of existingLanczos-based methods. The third, rational power Krylov, avoids orthogonalizationand is suited for parallel or approximate computations. The performance of the threealgorithms is compared via a combination of theory and examples. Independent of theprecise algorithm, a host of supporting tools are also developed to form a completemodel-reduction package. Techniques for choosing the matching frequencies, estimatingthe modeling error, insuring the model's stability, treating multiple-inputmultiple-outputsystems, implementing parallelism, and avoiding a need for exact factors of large matrixpencils are all examined to various degrees.
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CHAPTER 1INTRODUCTIONIterative projection methods for the solution of large-scale, frequency-dependent prob-lems are introduced in this chapter. Such problems are of growing interest in the analysesor simulations of linear dynamic systems. An outline of the dissertation is provided whichhighlights the goals in addressing these issues. The notation utilized throughout the dis-sertation is also summarized.1.1 Motivating TrendsA surprisingly large variety of physical phenomena is modeled with linear, time-invariant (LTI) dynamic systems. The advantages of this approach include the relativeease by which both the initial model development and the eventual mathematical treat-ment can be achieved. Models can frequently be acquired through discretizations such asthe common �nite di�erence and �nite element approaches [1]. A range of techniques fromthe backward Euler method to multistep methods exists for solving the ordinary di�er-ential equations (ODE) that describe the system [2]. Stable, well-understood numericallinear algebra algorithms, e.g., a reduction to Schur form by orthogonal transformations,dominate the low-level mathematical operations [3]. When combined in various fashions,techniques such as the above enable the robust analysis, control or simulation of a largeclass of physical applications.Two trends, however, suggest a need for novel iterative approaches for treating LTIdynamic systems, particularly with respect to the linear algebra algorithms. First, manyphysical models are becoming more complex due to either increased system size or anincreased desire for detail. Discretizations of three-dimensional behavior are becoming1



common. Sources for such applications include the modeling of o�-chip (and increasinglyon-chip) interconnects in high-speed circuit designs [4]. Simple two-dimensional extrac-tions of resistance and capacitance may no longer be su�cient as minimum feature sizesdrop below 0.1 microns and clock speeds exceed 1 GHz. A second example of large-scalesystems is a model of the North American power grid arising from planning problems inan increasingly deregulated power industry [5]. Although such models tend to accuratelydescribe the behavior of the underlying physical system, their complexity leads to highanalysis and simulation costs with traditional numerical techniques in electrical engineer-ing. Many dense numerical linear algebra techniques are only computationally feasiblefor a limited number of variables, i.e., on the rough order of hundreds at the time ofwriting. Popular orthogonal transformation-based approaches in control and eigenvaluecomputations typically grow cubically in cost and quadratically in memory. Direct sparsefactorizations in simulation may be impractical as well due to a highly variable step sizeor an unexploitable sparsity pattern.The unrelenting growth of problem complexity is certainly not limited to applicationsin electrical engineering. It is thus not surprising that a second trend, the proliferationof iterative algorithms, and in particular, Krylov iterative algorithms, has appeared innumerical linear algebra [6, 7, 8]. Suited for sparse or structured problems, these iterativemethods frequently lead to approximate numerical solutions with low computationale�ort. For the most part, however, existing Krylov research focuses on �xed problems.For example, numerous implementations exist for solving a fully speci�ed system oflinear equations or �nding the eigenvalue closest to some �xed point. Unfortunately,these approaches only extend to frequency-dependent and time-dependent problems in alimited fashion. With regards to dynamic systems, it may be desired to �nd the system'sresponse over a range of frequencies or to check for unstable eigenvalues in the entireright-half plane. The introduction of time-dependent or frequency-dependent variablespresents an exciting and relatively unexplored challenge for Krylov-based approaches.For the reasons above, this dissertation explores the extension and development ofiterative implementations of Krylov projection for the analyses and approximations of2



LTI dynamic systems. Although certainly not the �rst endeavor into this area (seethe historical survey in Chapter 2), it is believed that the following represents the mostcomprehensive treatment of the topic to date. Rather than simply adapting some existingiteration to dynamic systems, we concentrate on deriving a theoretical framework whichis then utilized to develop a complete spectrum of novel and powerful Krylov-basedmethods for dynamic systems.1.2 Problem OverviewThis dissertation emphasizes approximate solution techniques for dynamic systemproblems involving the matrix pencil (sE�A). The matricesA 2 IRN�N and E 2 IRN�Nare assumed to be large and sparse; they typically contain lumped parameters of a large-scale system. The scalar s 2C denotes complex frequency. Such a matrix pencil arisesin several problems in linear system theory [9, 10]. For example, �nding the poles of adynamic system entails computing the generalized eigenvalues of (A;E), i.e., �nding thevalues �n 2C and vectors xn 2CN�1 such that(A� �nE)xn = 0: (1:1)Computing the frequency response of a single-input single-output (SISO) dynamic systemrequires the solution to either of the dual systems of shifted linear equations,(sE �A)xb = b(sE �A)Txc = c; (1:2)for many imaginary values of s. Model reduction, �nding a low-order approximation forthe original dynamic system, is yet another problem involving (sE�A) (see Chapter 2 fora detailed discussion of this problem). This dissertation focuses on the model reductionbecause it is an increasingly important problem in its own right, it is less studied in thecontext of iterative methods, and it encompasses many facets of the problems in (1.1)and (1.2).Traditional techniques for problems involving (sE�A) transformA and E into upper-Hessenberg or upper-triangular form. The generalized Schur decomposition, for example,3



determines orthogonal TQ and TZ such that T TQATZ and T TQETZ are both upper-triangular[11]. The eigenvalues of an upper-triangular pencil appear immediately. Solving systemsof equations in upper-Hessenberg form is dominated by backwards substitutions. Thepencil can be rapidly treated at many frequencies once the initial transformation is found.Yet the O(N3) cost of this initial transformation is prohibitive for large-scale problems.Thus we turn to iterative versions of projection methods. In this family of methods,one is interested in iteratively acquiring a low-order approximation to the matrix pencil,denoted (sÊ � Â). This low-order approximation can then be treated with conventionalalgorithms to yield estimates for certain eigenvalues, approximate simulated responsesto various inputs, or low-order controllers for the original large-scale system. For themost part, this dissertation concentrates on e�ciently determining an accurate low-orderapproximation of a dynamic system. Examples of e�orts that begin to study the insertionof the approximation into a design or simulation can be found in [12, 13, 14].The iterative construction of the low-order approximation depends on a combinationof two procedures known as preconditioning and projection (see Section 2.3 for formalde�nitions of these two terms). Roughly speaking and in the context of frequency-dependent problems, preconditioning speeds the approximation's convergence in chosenfrequency regions. In frequency-dependent problems, preconditioning often entails anexact evaluation of the original system at a few discrete points in s. These points aredenoted interpolation points. The second component, projection, can be thought of asforming an approximation through the extrapolation of the limited exact informationacross regions of s. Computing meaningful preconditioners and projectors leads to theproblems underlying model reduction. Acquiring an accurate, low-order approximationrequires choosing appropriate interpolation points and acquiring su�cient (but not ex-cessive) exact information at each of these points. Computing this exact informationfrom the original large-scale pencil is itself a signi�cant constraint. Additionally, somemeasure of the quality of the low-order approximation is required. The formal treatmentof such subproblems constitutes a successful approach for iteratively approximating dy-namic systems and is the bulk of this dissertation.4



1.3 Dissertation GoalsThe following treatment of Krylov projection methods for dynamic systems strives tobe comprehensive. A solid statement of the problems to be examined, a rigorous devel-opment of theory, a spectrum of iterative methods, and a range of tools for implementingthese iterative methods are sought. Beyond the novel techniques developed in this dis-sertation, this comprehensive treatment is the main di�erence between the following andexisting work. Our solution approach is not based on the direct transfer of some arbi-trary existing iterative method (and its associated constraints) to a given problem athand. Rather, a theoretical understanding and a complement of intuition are developedwhich hopefully provide a bigger picture. A framework for existing methods and avenuesfor entirely new approaches is the result. Moreover, multiple levels of sophistication arepresented to balance solution accuracy against computational e�ort for a large variety ofproblems.The cornerstone of this dissertation is a collection of new theory that relates modelreduction to the topics of Krylov projection and multiple interpolation points. Out ofthis core theory, three novel algorithms for model reduction are proposed. Each of thesealgorithms is related in their ability to approximate information at multiple frequencies.However, their convergence and costs di�er. The �rst algorithm, denoted dual rationalArnoldi, is a two-sided technique that constructs orthogonal bases for unions of Krylovsubspaces. The utilized Krylov subspaces of this method are adaptations of those seenin an eigenvalue technique [15]. Due to its emphasis on orthogonalization, this methodis extremely robust and is an important contribution to Krylov-based model reduction.However, this robustness is not cheap. A second algorithm, denoted rational Lanczos,is therefore proposed that constructs biorthogonal bases for unions of Krylov subspacesin a two-sided fashion. Rational Lanczos requires only short biorthogonalization recur-sions and is cost competitive with existing methods based on the Lanczos algorithm.This approach is not particularly suited for either parallelism or perturbations in theconstructed subspaces however. A third algorithm, denoted the rational power Krylov5



method, is therefore also developed. The rational power Krylov method is implementedas a one-sided approach that constructs a union of Krylov subspaces without any sortof orthogonalization or biorthogonalization. Although not rigorously understood andslightly slower to converge, this novel third algorithm is low in cost, highly parallel andamenable to approximations in the constructed Krylov subspaces. The performance ofthis and the other algorithms are compared via examples. Trade-o�s between reliabilityand speed exist which may be further a�ected by both the properties of the dynamicsystem and the availability of computing resources. Independent of the precise algorithmthough, a host of supporting tools are also developed in Chapters 5 through 8 to aidin the implementation of a complete model-reduction package. Techniques for choosingthe interpolation points (matching frequencies), estimating the modeling error, insuringmodel stability, treating multiple-input multiple-output (MIMO) systems, implementingparallelism, and avoiding a need for exact factors of the pencil (A�sE) are all considered.We conclude this section with summaries of the material in each of the remainingchapters.� Background. Chapter 2 describes and motivates the model-reduction problem (dy-namic system approximation problem) considered in this dissertation. Two impor-tant tools, projection and preconditioning, are explained in the context of dynamicsystems. A much needed survey of the existing literature and existing solutionapproaches is provided.� Projection Framework. Chapter 3 provides a clear framework for understanding allexisting Krylov-based modeling methods. Su�cient conditions on Krylov projec-tion are documented in order to achieve model reduction via rational interpolation.The treatment of unstable and/or MIMO models is considered in the projectionframework.� Projection Method Implementations. Chapter 4 utilizes the projection frameworkto present a complete spectrum of iterative algorithms that achieve rational inter-polation. These algorithms are analyzed based on their e�ciency and numerical6



stability. The rational Lanczos algorithm, a fast and low-memory iterative algo-rithm for implementing rational interpolation, is derived.� Error Analysis. Chapter 5 develops two di�erent schemes for approximating theerror in the reduced-order model. The performance of these schemes in monitoringthe modeling algorithms is analyzed and experimentally veri�ed.� Interpolation Point Analysis. Chapter 6 provides a theoretical understanding of theimpact of interpolation point placement and usage on the quality of the reduced-order model. Suggestions are made for utilizing the error analysis methods ofChapter 5 to adapt the interpolation points to a speci�c problem's qualities. Theperformance of various interpolation strategies is experimentally veri�ed. Well-de�ned multipoint interpolation schemes are demonstrated to robustly handle var-ious situations.� Parallelism. Chapter 7 studies the use of parallelism for speeding the constructionof reduced-order models. Parallelism can be utilized in conjunction with multiple in-terpolation points. A version of the rational power method is proposed which avoidslarge-scale communications between processors. An interpolation point schemefrom Chapter 6 is utilized to balance the work between processors.� Approximate Solves. Chapter 8 allows for inexact rational interpolation by relaxingthe need for precise factorizations of large-scale matrix pencils. A reduction ofthe work involved is sought without signi�cant drops in accuracy. Approximationtechniques are presented for solving linear systems of equations and connections aredrawn between these techniques and the overall model-reduction process. Severalexamples are provided to illustrate the possibilities with approximate solves.� Eigenvalue Problems. Chapter 9 surveys preconditioned iterative eigenvalue solversand relates them to the proposed model-reduction techniques. Although providingthe initial insight into many of the iterative model-reduction techniques in thisdissertation, existing iterative eigenvalue methods are themselves still an active7



area of research. The primary aim of this chapter is to present links betweeneigenvalue and model-reduction techniques which can be exploited in future work.1.4 NotationThis section summarizes the notation used throughout the following chapters. Theselected symbols attempt to balance the notation used in the areas of system theory andnumerical linear algebra. Many common matrix de�nitions and operations are summa-rized in Table 1.1 with respect to the generic matrix G and generic vector g. Commonlyused abbreviations in this dissertation are summarized in Table 1.2.Notation for nearly every letter in the Greek and standard alphabets is summarizedin Table 1.3. Although relatively concrete in this table, the exact de�nition for a givensymbol should be taken in the context of the surrounding text. As a general rule, up-percase letters are matrices, lowercase letters are vectors or functions, lowercase Greekletters are scalars, and calligraphic letters are subspaces. There are exceptions to theserules, though, in an attempt to match standard practice. In particular, the letters j ton and J to N correspond to indices.With regard to functions, the Laplace transform of some time-dependent function isindicated through bold Roman rather than italicized type, e.g., f(t) transforms to f(s).The explicit dependency of the functions on t or s is dropped where the meaning isobvious, i.e., f(t) may simply be denoted by f and f(s) by f , if confusion can be avoided.
8



Table 1.1: Matrix NotationIRK�J ,CK�J sets of real, complex matrices of size K by Jgj jth column of the matrix GGj the �rst j columns of the matrix GGT transpose of GG� complex conjugate of G�(G) spectrum of Gcolsp fGg column space of Gspan fg1; : : : ; gJg span of the vectors g1; : : : ; gJTable 1.2: AbbreviationsAWE asymptotic waveform evaluationCD compact discCFH complex frequency hoppingDS dynamic systemGMRES generalized minimum residual methodLTI linear, time-invariantMIMO multiple-input multiple-outputMNA modi�ed nodal admittancePEEC partial element equivalent circuitPIES preconditioned iterative eigenvalue solversQMR quasi-minimal residual methodRA rational ArnoldiRC resistor, capacitorRL rational LanczosRK rational KrylovRP rational powerSISO single-input single-outputSVD singular value decomposition9



Table 1.3: Character NotationUppercase LettersA left pencil matrix N initial system dimensionB right matrix O order of magnitudeC left matrix P preconditioner matrixD feed-through matrix Q projection matrixE right pencil matrix R residual matrixG generic matrix S structured matrixH transfer matrix T transformation matrixI identity matrix V;W projection matricesJ : L upper bounds on j : l X solution matrixM reduced-order model size Z projection matrixLowercase Lettersb right vector q projection vectorc left vector r residual vectord feed-through term s complex frequencye exponential t timef function u inputg generic vector v;w projection vectorh transfer function x solution vectori column of an identity y outputj : p indices z projection vectorGreek Letters� : 
 matrix elements � eigenvalue� perturbation � moment� error � 3:14 : : :� evaluation point � residue� generic scalar � interpolation point� imaginary, p�1 �; polynomial coe�cients� condition number ! real frequencyCalligraphic LettersH Hardy norm S search subspaceK Krylov subspace T constraint subspace10



CHAPTER 2KRYLOV-BASED MODEL REDUCTIONThe primary problem of interest in this dissertation is model reduction: e�cientlycomputing an accurate low-order approximation to a dynamic system. Most techniquesfor model reduction retain certain invariant features of the original system and several arebrie
y surveyed in this chapter. The solution approaches utilized in Chapters 3 through7 retain moments of the original system to yield a reduced-order model known as arational interpolant. Preconditioning and Krylov projection, tools that are fundamentalin Chapter 3 for computing rational interpolants, are explained in detail. This chapterconcludes with a history and overview of existing Krylov projection methods for modelreduction.2.1 Problem StatementThis dissertation is primarily devoted to computing low-order approximations to lineardynamic systems. It is assumed that the original system is described by the generalizedstate-space equations 8><>: E _x(t) = Ax(t) + bu(t)y(t) = cTx(t) + du(t): (2:1)The vector x(t) 2 IRN�1 is the vector of state variables, b 2 IRN�1 is the input vector ofthe system and c 2 IRN�1 is the output vector of the system. For simplicity, it is assumeduntil Section 3.4.2 that the system is single-input single-output so that the input u(t)and output y(t) are scalar functions of time. Finally, and as is the case for nearly alllarge-scale problems, it is assumed that the system matrix A 2 IRN�N and descriptormatrix E 2 IRN�N are large and sparse or structured.11



A reduced-order approximation to (2.1) takes the corresponding form8><>: Ê _̂x(t) = Âx̂(t) + b̂u(t)ŷ(t) = ĉT x̂(t) + du(t): (2:2)The dimension of the reduced-order model is designated as M . The output ŷ(t) approx-imates the true output y(t). However, in general, no simple relation exists between x̂(t)and the state vector x(t). For instance, the tenth element of x̂(t) does not need to bedirectly related to the tenth element of x(t).The above generalized, state space expressions are merely one possible representationof linear dynamic systems. A second important representation is the transfer functionof a system. Resulting from a Laplace transform of (2.1), the transfer function of theoriginal system is h(s) = cT (sE �A)�1b; (2:3)where s represents complex frequency. Without a loss of generality, the feed-through termd of the original model is assumed to be zero (the feed-through term in (2.2) is simplythat of the original system and needs no further treatment during model reduction). Thefunction h(s) maps the Laplace transform of the input u(s) to the Laplace transform ofthe output y(s). The transfer function of the reduced-order model, ĥ(s), can be de�nedin a manner similar to that in (2.3).With these preliminaries out of the way, we can now state the prime problem con-sidered in the following: given a large-scale LTI dynamic system, rapidly compute anaccurate reduced-order model. Clearly, this statement is vague so that many di�erent so-lution approaches are possible. In fact, many di�erent model-reduction techniques existin the literature (see [16] and Section 2.2). The following paragraphs begin to formalizethe problem statement, so that various model-reduction methods can be compared.The key terms in the problem statement are reduced-order, rapidly and accurate.It is hoped that the dimension M of the reduced-order model (2.2) is signi�cantly lessthan that of the original model N so that (2.2) can be analyzed and/or simulated withrelative ease via conventional techniques. Of course, the reduction itself must not be too12



expensive. If the cost of generating the reduced-order model is comparable to that ofdirectly analyzing (2.1), then little is saved by working with the low-order approximation.Finally, one desires that the reduced-order model is a reasonably accurate approximationof the original model. Because the behavior of the original model is of interest and yetone uses the reduced-order model in its place, the reduced-order system must matchthe original one in some sense. These conditions of accuracy, speed and order can becon
icting goals. One typically expects, for example, that the accuracy of the reduced-order model increases with a larger order M .Several measures of the accuracy of the reduced-order model are possible. Formally,there tends to be an interest in the di�erence between the actual and low-order outputs,y(t) � ŷ(t), given some set of inputs u(t). This di�erence can be characterized via asystem norm. The popular H1 error norm, for example, is de�ned askh(s)� ĥ(s)k1 = maxku(t)k2=1 ky(t)� ŷ(t)k2ku(t)k2= sup! �(h(�!)� ĥ(�!)(h(�!) � ĥ(�!))�� 12 :In the time domain, this norm measures the worst ratio of output error energy to inputenergy [17]. Equivalently, but in the frequency domain, the norm represents the largestmagnitude of the frequency-response error. By weighting this norm, one can emphasizethe error due to a speci�c input class of interest.A second measure of the accuracy of the approximation is to assess which properties ofthe original model are retained in the reduced-order one. Those properties of interest aresaid to be invariant, that is, they are independent with respect to a similarity transform.By retaining certain original properties of the system in the reduced-order model, onehopes that the resulting approximation error is small. Of course, this error depends onthe selection and pertinence of the retained invariant properties.Before leaving the problem statement, we note that model reduction is connected toboth the generalized eigenvalue problem and the problem of shifted systems of linearequations. Chapter 6 explains that the accuracy of the reduced-order model can bepartially connected to the quality of its pole (eigenvalue) approximations. The eigenvalue13



problem is also important in other areas of system analysis, perhaps most noteworthy isthe stability problem. A variety of approaches already exists for computing the nontrivialsolutions, eigenvalues �n and eigenvectors xn, to (1.1) over some s region (see for example[15, 18, 19]). Variations on these approaches appear in some of the model-reductiontechniques proposed in this dissertation. A survey of pertinent eigenvalue techniquesand their connections with model-reduction algorithms is provided in Section 9.1.Shifted systems of linear equations arise when writing the transfer function ash(s) = cT (sE �A)�1(sE �A)(sE �A)�1b = xTc (sE �A)xb; (2:4)where xc(s) and xb(s) are solutions to the dual system of shifted linear equations in(1.2). It is demonstrated in Section 3.2 that the model-reduction approaches taken inthis dissertation can be phrased in terms of �nding approximate solutions to (1.2) for allvalues of s. Besides the model-reduction problem, the ability to e�ciently solve shiftedsystems of equations is desirable in certain ODE solvers. A few techniques do exist foriteratively solving shifted systems of equations over a single Krylov subspace [20, 21].However, these methods are restricted to the case E = I and are limited in their choicesof preconditioner. Suitable preconditioners for various regions of the shifted problem areconsidered in [22], when E = I and A are either symmetric or diagonally dominant. Yet[22] evaluates (2.4) by treating each frequency independently; there is no e�ort to shareinformation among solves at multiple points.2.2 Solution TechniquesMany model-reduction methods are based on the retention of invariant properties. Acommon choice for these invariant properties are the so-called modal properties of thesystem [23, 24, 25]. The modal properties are based on the system's poles (eigenvalues)�n and residues �n, which both arise in a partial fraction expansion of the frequencyresponse, h(s) = NXn=1 �ns� �n : (2:5)14



It is assumed for simplicity that the poles of the system are unique. Each of these modalcomponents in the summation contributes a quantity �ne�nt to the zero-state impulseresponse of the original system [26]. Hence, a reduced-order model that matches (orapproximately matches) speci�c modal components of the original model retains certaintime-dependent features of the original system in its response. Potentially, iterativeeigenvalue techniques can be used to �nd these speci�c components so that this modalretention approach is feasible for large-scale problems. There are drawbacks to modal-based model reduction, however. It can be di�cult to identify a priori which modes arethe truly dominant modal components of the original system [27]. The response of thesystem depends on the interaction of both the poles and residues; locating only the polesnear the imaginary axis may not be su�cient.Alternative invariant properties that may be retained in model reduction are theHankel singular values. Hankel singular values are related to the controllability and ob-servability properties of a system [28]. Constructing a reduced-order model to retainthe largest Hankel singular values is known as balanced truncation. Balanced truncationpossesses the desirable feature that theH1 norm of the modeling error is bounded by thesum of the Hankel singular values not retained in the reduced-order model [29]. Unfor-tunately, implementing balanced truncation involves the solution of Lyapunov equationsand thus, a cost of O(N3) operations [30].The invariant properties of importance in this work are the coe�cients of some powerseries expansion of h(s). The solution techniques proposed determine a reduced-ordermodel that accurately matches the leading coe�cients �j arising in a chosen power series.An expansion of h(s) about in�nity takes the formh(s) = d + ��1s�1 + ��2s�2 + ��3s�3 + : : : :The coe�cients, which are known as Markov parameters in this case, can be shown tosatisfy ��j = cT (E�1A)j�1E�1b by making use of the Neumann expansion [31],(I � �G)�1 = 1Xj=0(�G)j : (2:6)15



The Markov parameters are the values of the zero-state impulse response h(t) and sub-sequent derivatives of the impulse response at t = 0. A reduced-order model whoseMarkov parameters �̂�j equal ��j for j = 1; 2; : : : ; 2M is known as a partial realization[32]. Because the partial realization emphasizes behavior at t = 0, such a model maybe dominated by the extremely rapidly decaying dynamics of the system. Regretfully,extensions of partial realizations that accurately reproduce behavior at some later timeare not apparent. For this reason, a power series expansion at s = 0 is typically favoredin the literature, h(s) = �0 + �1s+ s2�2 + s3�3 + : : : :Assuming, without loss of generality that a feed-through term is absent, the coe�-cients, referred to as moments in this expansion, can be shown through (2.6) to satisfy�j�1 = �cT (A�1E)j�1A�1b for j � 1. These moments are the value and subsequentderivatives of the transfer function h(s) evaluated at s = 0. A reduced-order modelwhose moments �̂j�1 = �ĉT (Â�1Ê)j�1Â�1b̂ equal �j�1 for j = 1; 2; : : : ; 2M is known asa Pad�e approximant [33]. By replacing s in the expansion with the shifted variable s��,i.e., h(s) = 1Xj=1(s� �)j�1�j�1;one is led to shifted moments,�j�1 = �cTf(A� �E)�1Egj�1(A� �E)�1b:These shifted moments are the value and subsequent derivatives of h(s) at a user-speci�edinterpolation point �. A reduced-order model can typically be found that matches 2Mmoments at � (there are 2M free parameters available in the numerator and denominatorof ĥ(s)). Beyond a single interpolation point, one may be interested in a reduced-ordermodel that interpolates the frequency response and its derivatives at multiple points.These K possible interpolation points f�(1); �(2); : : : ; �(K)g are di�erentiated by theirsuperscripts. The �rst 2J1 moments are matched at �(1), the next 2J2 moments arematched at �(2), etc., where J1+ J2+ : : :+ JK =M . A model meeting these constraintsis denoted a multipoint Pad�e approximation or a rational interpolant [33, 34]. By varying16



the location and number of interpolation points utilized with the underlying problem inmind, one can construct accurate reduced-order models in a variety of situations. Forquick reference, various moments that can be matched are summarized in Table 2.1. Ineach case, these moments can be computed with matrix-vector multiplies and matrixinversions (solving systems of linear equations) involving A and E. It is the relativesimplicity of these two required operations that favors moment matching for sparse,large-scale problems.Table 2.1: Moment Choices in Model ReductionApproximation Power Series jthNames Expansion of h(s) Coe�cientPartial Realization 1Pj=1 ��js�j cT (E�1A)j�1E�1bPad�e at 1Pad�e 1Pj=1 �j�1sj�1 �cT (A�1E)j�1A�1bShifted Pad�e 1Pj=1 �j�1(s � �)j�1 �cTf(A� �E)�1Egj�1(A� �E)�1bRational Interpolant 1Pjk=1 �jk�1(s� �(k))jk�1 �cTf(A� �(k)E)�1Egjk�1(A� �(k)E)�1bMultipoint Pad�e k = 1; 2; : : : ;K k = 1; 2; : : : ;KExample 2.1 To understand the various moment matching possibilities, we concludewith an examination of four di�erent 15th order models for a 120th order SISO system.This original system describes the dynamics between the lens actuator and the radial armposition of a portable compact disc player [35]. The frequency response corresponding tothis system is shown as a solid line in Figures 2.1 and 2.2. The frequency responses ofa partial realization (dotted line) and a Pad�e approximation (dashed line) are in Figure2.1. The frequency responses of a shifted Pad�e approximation (dashed line; � = 10417
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with J = 15) and a rational interpolation (dotted line; �(1) = 1, �(2) = 100, �(3) = 104with J1 = J2 = J3 = 5) are shown in Figure 2.2. Note that the partial realizationcaptures only higher frequency behavior, while the accuracy of the two single-point Pad�eapproximations is directly related to the choice of �. The best results are acquired withthe more general rational interpolant; the frequency response of the rational interpolantis nearly indistinguishable from that of the original for all but very high frequencies.Example 2.1 clearly exhibits the behaviors expected from each of the moment match-ing methods. In particular, rational interpolation matches information over a range offrequencies. This does not mean that the use of a larger number of interpolation pointsis always necessary or wise. Rational interpolation requires the inversion (triangular fac-torization) of (A� �(k)E) at every one of the interpolation points (see Table 2.1). Thus,there are extra �xed costs involved in going to multiple interpolation points; yet thesecosts may be o�set by the resulting improvements in convergence. Balancing the numberof interpolation points, the placement of these points, and the order M , can be crucialfor the e�cient calculation of an accurate, low-order model.2.3 Implementation TechniquesThe previous section de�ned several model-reduction techniques including the familyof moment matching methods. Actually implementing algorithms to yield the desiredreduced-order models remains. For moment matching, there are in fact several di�erentavenues of implementation. One path is the explicit approach in Section 2.4.2. However,this dissertation concentrates on the utilization of projection and preconditioning inthe proposed implementations. The obtainable bene�ts of this path include numericalstability and the opportunity for iterative implementations.2.3.1 ProjectionA primary tool in Chapters 3 and 4 is projection. Projection extracts an approximatesolution of dimensionM from a search subspace S. In order to be precisely de�ned, this19



approximation is chosen from S so that M constraints are satis�ed. The subspace T isassociated with these constraints. For example, we typically require that the approxi-mate solution is chosen from S so that its residual is orthogonal to a speci�ed T . Suchconstraints are known as Petrov-Galerkin conditions. If this T equals S, then the pro-jection is orthogonal; otherwise, the projection is said to be oblique. For a more detailedreview of the projection technique, refer to [8].The subspaces S and T can be represented via rectangular matrices V 2 IRN�M andZ 2 IRN�M , whose columns form bases for the respective subspaces. It is important tonote that there are in�nitely many V and Z whose columns are acceptable bases for givenS and T . For now, it is only necessary to know that V and Z satisfy colsp fV g = S andcolsp fZg = T . In fact, this knowledge is su�cient in theory, because all possible choicesfor the bases lead to identical results up to a similarity transformation. In Chapter 4, webegin to analyze speci�c choices for V and Z in light of the issues of numerical e�ciencyand accuracy.In terms of linear dynamic systems, the projection technique is associated with thetransform and truncate operations [36]. If nonsingular left and right transformationmatrices T Tl 2 IRN�N and Tr 2 IRN�N are partitioned asTl = � Z Z+ � and Tr = � V V+ �and applied to (2.1), then the original model can be expressed as264 ZTEV ZTEV+ZT+EV ZT+EV+ 375264 _̂x_̂x+ 375 = 264 ZTAV ZTAV+ZT+AV ZT+AV+ 375264 x̂̂x+ 375+ 264 ZTbZT+b 375uand y = � cTV cTV+ � 264 x̂̂x+ 375+ du:The reduced-order model is determined by retaining only the leadingM byM subsystemof this transformed original system. Hence, the transformation and truncation operations(denoted model reduction by projection) lead to a reduced-order model with componentsÂ = ZTAV; b̂ = ZT b; ĉ = V T c; d̂ = d; Ê = ZTEV: (2:7)20



The quantities in (2.7) are said to be the restrictions of the original system matrices byZ and V .The concept of model reduction via projection can be connected to the formal conceptof projection through (2.4). Analogous to (2.4), the transfer function for the reduced-order model can be written asĥ(s) = ĉT (sÊ � Â)�1(sÊ � Â)(sÊ � Â)�1b̂: (2:8)De�ning x̂b and x̂c to be the solutions of the dual reduced-order, shifted systems ofequations (sÊ � Â)x̂b = b̂(sÊ � Â)T x̂c = ĉ; (2:9)the transfer function (2.8) can be written asĥ(s) = x̂Tc ZT (sE �A)V x̂b: (2:10)Comparing (2.4) to (2.10), one sees that the transfer functions of the original and reduced-order models di�er only in that the latter approximates xb and xc with V x̂b and Zx̂c. Infact, these approximations V x̂b and Zx̂c satisfy the Petrov-Galerkin conditions for anychosen V and Z. Model reduction via projection computes the same approximations toxb and xc that would be computed by projection onto S and T with Petrov-Galerkinconstraints. For all s, the approximate solution vector V x̂b lies in colsp fV g = S and hasa residual rb(s) = b� (sE �A)V x̂b (2:11)that is orthogonal to colsp fZg = T , i.e.,ZTb� ZT (sE �A)V x̂b = b̂� (sÊ � Â)x̂b = 0: (2:12)The column spaces of V and Z play a reversed role in acquiring the approximate solutionto xc. The approximate solution vector Zx̂c lies in colsp fZg and its residual,rc(s) = c� (sE �A)TZx̂c; (2:13)21



is orthogonal to colsp fV g for all s. Thus, there is a connection between the formalde�nition of a projection method and model reduction via projection.Almost all popular model-reduction methods utilize projection. In balanced trun-cation, V and Z are chosen to correspond to the so-called Hankel singular vectors (andassociated largest Hankel singular values) of the system. In modal model-reduction meth-ods, V and Z are chosen to correspond to M left and right eigenvectors of the pencil(A,E) relative to some ordering of the eigenvalues. Thus, the reduced-order model re-tains exactly M modal components of the original system. Rational interpolation, themethod of choice in this dissertation, can also be phrased in terms of projection. Section3.1 proves in detail that rational interpolation is achieved if the column spaces of V andZ span unions of Krylov subspaces.A jth dimensional Krylov subspace corresponding to some matrix G and vector g isdenoted Kj(G; g) and is de�ned asKj(G; g) = span ng;Gg;G2g; : : : ; Gj�1go :A basis for a Krylov subspace can be quickly computed if G can be rapidly applied to g,e.g., due to sparsity. This fact gives Krylov-based model reduction the potential for costsavings. Yet specifying which Krylov subspace(s) are desirable for the best reduced-ordermodel remains. Extremely simple but not particularly e�ective choices for V and Z arecolsp fV (s)g = KM ((A� sE); b)= span nb; (A� sE)b; : : : ; f(A� sE)gM�1bo ;colsp fZ(s)g = KM ((A� sE)T ; c)= span nc; (A� sE)Tc; : : : ; f(A� sE)TgM�1co : (2:14)For the time being, we overlook the dependence of the subspaces in (2.14) on s (for now,think of �xing s at some value). The content of these individual Krylov subspaces areclassic choices when approximately solving the dual systems of equations in (1.2). Forexample, the biconjugate gradient method, a well-known iterative Krylov solver, wouldlead to (2.14) when applied to (1.2) at a �xed s [8]. A second motivation for the form of(2.14) and one more consistent with the model-reduction history is its simplicity. The use22



of (2.14) for model reduction emphasizes simple sparse matrix-vector products. Finally,the structure of these two Krylov subspaces is consistent with the dual input and outputstructure of a LTI dynamic system. If E is the identity matrix, then the subspaces in(2.14) are closely related to the controllability and observability spaces of a dynamic LTIsystem [37].Chapters 3 and 4 motivate and evaluate alternative choices for Krylov subspacescomposing V and Z. Cost, approximation quality, and the ability to handle frequencydependence in the problem are signi�cant concerns which must be addressed by the formsof V and Z.2.3.2 PreconditioningPreconditioning is an important partner with projection in iterative solution tech-niques. In fact, it is frequently credited with being the most important component ine�ciently computing an accurate solution. In broad terms, the goal of precondition-ing is to generate better projection subspaces (yield faster model convergence) withoutdrastically complicating the construction of the Krylov subspaces.The preconditioner P 2 IRN�N is traditionally introduced as a �xed left or righttransformation. Rather than solving the problem Ax = b, for example, one might con-sider the left-transformed problem PAx = Pb. If P exactly equals A�1, then the solutionx is trivially Pb. In general, P can be any matrix that transforms the original problem toa description that is hopefully easier to (iteratively) solve. In frequency-dependent prob-lems, approaches very similar to traditional preconditioning can be used. For example,one can transform the matrix pencil A� sE to P (A� sE). However, this �xed P cannotapproximate (A� sE)�1 for all s in general. The introduction of P may only be helpfulover certain frequency ranges. To emphasize this di�erence with the traditional �xedcase, we use the term dynamic system (DS) preconditioner in the following to describe23



the matrix P . Left transformations are utilized so that the DS preconditioned system is8><>: PE _x(t) = PAx(t) + Pbu(t)y(t) = cTx(t) + du(t): (2:15)It is stressed that (2.1) and (2.15) both describe the same system. The generalizedeigenvalues of (PA;PE) and (A;E) are identical. Starting with this new description in(2.15), but utilizing the mapping seen in going from (2.1) to (2.14), it is consistent tode�ne a new reduced-order model8><>: W TPEV _̂x(t) = W TPAV x̂(t) +W TPbu(t)ŷ(t) = cTV x̂(t) + du(t); (2:16)where the matrix V 2 IRN�M now satis�escolsp fV (s)g = KM(P (A� sE); P b)and the matrix W 2 IRN�M satis�escolsp fW (s)g = KM ((A� sE)TP T ; c):Although (2.1) and (2.15) describe the same original system, (2.16) describes a reduced-order system that is di�erent from the one previously constructed according to (2.14).Both the presence of P in (2.16) and the modi�cations of the projection matrices lead toa new reduced-order model. In particular, the de�nition of V has changed from that inSection 2.3.1.Model reduction of DS preconditioned dynamic systems is generally derived in theabove fashion in the existing literature. The matrices V and W are explicitly computedand applied to the transformed version of the original dynamic system (2.15). Yet it ispossible to obtain the new reduced-order model (2.16) directly from the original descrip-tion in (2.1). If one de�nes Z to be P TW rather than (2.14), then the new reduced-ordermodel in (2.16) can be written in the desired form of (2.7). By associating new pro-jection subspaces with V and Z, new reduced-order models are possible. To obtain thereduced-order model in (2.16), choose V and Z according tocolsp fV (s)g = span nPb; P (A� sE)Pb; : : : ; fP (A� sE)gM�1Pbocolsp fZ(s)g = span nP T c; P T (A� sE)TP T c; : : : ; fP T (A� sE)TgM�1P T co (2:17)24



and apply these matrices as in (2.7). Thus, DS preconditioning can be concisely de�nedin our context as the introduction of a matrix P , which takes us from the old V and Zchoices in (2.14) to those of (2.17). This de�nition of DS preconditioning is equivalentto the above use of a left-transformation P followed by the application of V and W in(2.16). We favor the point of view in (2.17) over (2.16), however. Focusing on V;Z ratherthan V;W avoids the need for left transformations on the original description. Additionalbene�ts of the V;Z point of view become apparent in Section 3.2.Clearly, the introduction of P into V and Z provides additional freedoms for specifyingthe contents of the constraint and solution subspaces. Section 2.4.3 shows how a Pcan be chosen to acquire a reduced-order model that matches moments about a singleinterpolation point. The choice for the DS preconditioner determines where the frequencyresponse of the original and reduced-order systems agrees.A noteworthy class of DS preconditioners in frequency-dependent problems is theso-called exact DS preconditioners. An exact DS preconditioner is the exact inverse ofthe matrix pencil, P = (A� �E)�1, at a �xed scalar �. We see in Chapter 3 that exactDS preconditioners are required if rational interpolation is to be achieved. An importantproperty of exact DS preconditioning is presented as Lemma 2.1. The proof for this andall other lemmas in this dissertation may be found in Appendix A.Lemma 2.1 For any value of s and �,(A� �E)�1(A� sE) = I + (� � s)(A� �E)�1E: (2:18)Applying P = (A��E)�1 to the pencil (A� sE) leads to the simpler transformed pencilwhich consists of a scaled matrix PE shifted by the identity matrix. However, scalingsand shifts by the identity matrix are not important in Krylov subspaces.Lemma 2.2 (Krylov subspace shift-invariance) For any matrix G, vector g andnonzero scalar �, Kj(�G + I; g) = Kj(G; g): (2:19)Combining Lemmas 2.1 and 2.2 leads to the equivalencesK((A� �E)�1(A� sE); (A� �E)�1b) = K((A� �E)�1E; (A� �E)�1b) (2:20)25



andK((A� �E)�T (A� sE)T ; (A� �E)�Tc) = K((A� �E)�TET ; (A� �E)�T c): (2:21)Thus, when an exact DS preconditioner is utilized, the preconditioned projection sub-spaces in (2.17) are equivalent to the frequency-independent subspaces on the right sidesof (2.20) and (2.21). Exact DS preconditioning causes the V and Z of (2.17) to be in-variant with respect to s. This fact is important, because frequency-dependent V (s) andZ(s) do not generally lead to LTI reduced-order models. If exact preconditioning is notutilized, the only option is to �x the s in V and Z to be some value �. Yet specifying sto be � in a frequency-dependent V (s) and Z(s) tends to favor an accurate solution at �over other frequencies. This issue is discussed further in Section 8.1.DS preconditioning, especially exact DS preconditioning, can signi�cantly improvethe accuracy of the reduced-order model. However, there are two signi�cant limitationsto preconditioning in a frequency-dependent problem. First, the introduction of DSpreconditioners can signi�cantly complicate the computation of V and Z. Rather thanmultiplying by the sparse pencil (A� sE) at each step, one must work with P (A� sE).If P is an exact DS preconditioner, the inverse of (A� �E) appears in the generation ofV and Z. Solving large-scale systems of linear equations to implicitly enact this inversemay be costly. Second, one may wonder how to choose good DS preconditioners. ThePetrov-Galerkin constraints insure that the reduced-order model converges in, at most, Nsteps, but one must be able to specify DS preconditioners that achieve signi�cantly fasterresults. Poorly chosen DS preconditioners are hardly better than no DS preconditionersat all. Both the cost and choice of DS preconditioners are addressed in subsequentchapters.2.4 Existing ApproachesThe number of papers proposing, exploring or utilizing Krylov-based projection formodel reduction is approaching one hundred. In this section, a hopefully complete historyof these and related works is presented. Subsections 2.4.1 through 2.4.3 present typical26



examples of the methods utilized in these existing e�orts. However, it is certainly notclaimed that these subsections precisely capture every one of the many variations presentin the literature.2.4.1 HistoryThe methods forming the foundation for this work are relatively old. The history ofPad�e approximation, for example, spans more than one hundred years [38]. The algorithmof Lanczos, an important Krylov-based iteration, is nearing its �ftieth anniversary [39].Yet, as evident by this dissertation and its many recent references, the understandingand application of these concepts is certainly not a closed topic.A large number of the moment-matching methods, particularly the early ones, forma reduced-order model from an explicit knowledge of the desired moments of the originalsystem (see for example Section 2.4.2 and [40]). Explicit methods such as [41] were uti-lized to construct Pad�e approximants in the area of control in the early 1970s. Extensionsof these techniques to multiple interpolation points followed [42, 43, 44]. Of more recentinterest, circa 1990, is a class of explicit moment-matching methods known as asymp-totic waveform evaluation (AWE) [45, 46]. Although the AWE methods themselves varylittle in basic concept from the earlier control implementations, the AWE techniques areapplied for interconnect model reduction in the area of circuits. The methods receivedattention for their ability to reduce RC interconnect models involving tens of thousands ofvariables. A multipoint version of AWE, complex frequency hopping (CFH), is availableas well [46]. Unfortunately, all of these explicit moment-matching methods are known toexhibit numerical instabilities, particularly as the dimension of the reduced-order modelM grows. The source of these di�culties was pointed out in [47] and in the indepen-dent work of [48]. Both e�orts point out that moment-matching via the Lanczos method(and more generally (bi)orthogonalized Krylov-based projection) is a preferred numericalimplementation.The �rst signi�cant mathematical connection between the Lanczos algorithm, aKrylov-based technique, and model reduction occurred in the early 1980s. It was shown27



that partial realizations could be generated through the Lanczos algorithm [32]. Adap-tations of Krylov subspaces were proposed in 1987 to generate Pad�e approximations andshifted Pad�e approximations [49]. Beyond the mathematical connections, the Lanczosmethod was utilized for model reduction in many application areas. The �rst of theseareas chronologically was apparently structural dynamics. Even prior to the knowledgeof the moment-matching connections, the Lanczos method was utilized in structural dy-namics for model reduction based on eigenvalue analysis [50, 51, 52]. Later work in the�eld utilized the Lanczos method for Pad�e approximation [53] including MIMO systems[54, 55]. The next wave of application work took place in the control literature [56, 57, 58].A large amount of existing work was repeated, although new results did appear in the ar-eas of error analysis [59] and stability retention [60]. Very recently, Lanczos-based modelreduction has become a popular topic in the area of high-speed circuits. Existing Lanczosalgorithms were applied to the standard [47, 48], MIMO [61] and symmetric problems[62]. New algorithms were proposed for stability retention [63, 64]. However, through allof these application areas, the approaches remained closely tied to the classical Lanczosalgorithm. These approaches did not emphasize or exploit the fundamental structure inprojection techniques for rational interpolation.2.4.2 Explicit moment-matchingExplicit moment-matching is a straightforward approach for constructing Pad�e approx-imations. It is typically a two-step process. First, 2M selected moments �j of the originalsystem are explicitly computed. These moments are frequently the leading coe�cientsof a power series expansion about s = 0 or s =1 (see the last column of Table 2.1 forassorted moment de�nitions). In the second step, the reduced-order frequency responseĥ(s) = �̂M�1sM�1 + : : :+ �̂1s+ �̂0sM +  ̂M�1sM�1 + : : :+  ̂1s+  ̂0is forced to correspond to the selected moments. That is, the numerator parameters�̂ and denominator parameters  ̂ are chosen so that the moments of the reduced-ordersystem �̂j equal those of the original system �j for j = 1; 2; : : : ; 2M . This parameter28



selection requires the solution of a linear systems of equations involving Hankel matrices.In the partial realization problem, for example, one solves the equation2666666664 ��1 ��2 :.. ��M��2 :.. :.. ��M�1:.. :.. :.. :..��M ��M�1 :.. ��2M+1 37777777752666666664  ̂0 ̂1... ̂M�1 3777777775 = 2666666664 ��M�1��M�2...��2M 3777777775 (2:22)to determine the  ̂ coe�cients. Another equation is solved for the �̂ coe�cients. SimilarHankel equations arise in the cases of Pad�e and shifted Pad�e approximations. For therational interpolation problem, equations involving the more general Loewner matrixmust be solved [34]. In all cases, it is important to note that the system matrices andvectors only enter the modeling problem through the moments. Given the de�nition ofthe moments in Table 2.1, A and E only enter the problem through sparse matrix-vectormultiplies and sparse linear system solves.Unfortunately, numerical implementations of explicit moment-matching experienceseveral di�culties. We consider only the most serious of these problems, ill-conditionedHankel matrices, through an example. The reader is referred to [47] for a discussion ofthe shortcomings of explicit moment-matching.Example 2.2 Consider a simple hundredth-order dynamic system de�ned byA = 10�5 26666666666664 105 0 0 � � � 00 99 0 . . . ...0 0 98 . . . 0... . . . . . . . . . 00 � � � 0 0 1 37777777777775 ; b = c = 26666666666664 11...11 37777777777775 ;and E is an identity matrix. It is not di�cult to see that given 16 digits of �nite precision,the computed ��(j+1) = cTAjb is equal to ��j for j > 10. For even moderate values ofj, the change in consecutive moments is determined by only the largest eigenvalue of A,1, in �nite precision. The information corresponding to the other eigenvalues is rapidly29



lost in practice during the computation of higher order moments. The condition numberof the Hankel matrix in (2.22) is on the order of 1018 when M is only �ve.With repetitive multiplications by a �xed matrix, it no longer becomes possible in�nite precision to introduce additional new information into the reduced-order model.This loss of information due to repetitive multiplications manifests itself through ill-conditioned Hankel matrices in the explicit moment-matching equations. Regardless ofthe number of moments matched, the computed model never converges to the actual.Although a partial realization example was presented, the same di�culties occur for thevarious Pad�e schemes. In practice, bounds must be placed, i.e., j < 10, on the numberof moments computed about a given expansion point if explicit moment-matching isutilized.2.4.3 Lanczos-based moment-matchingDue to its relative numerical elegance and reliability, the nonsymmetric Lanczos algo-rithm has a become a popular choice for moment-matching, model-reduction methods.The nonsymmetric Lanczos method is due to Cornelius Lanczos and was originally pro-posed as a method for solving linear systems of equations and eigenvalue problems [39, 65].Because we focus on nonsymmetric matrices throughout the following, the nonsymmetricdesignation of the Lanczos method (versus the symmetric Lanczos method) is dropped,but assumed.The algorithm of Lanczos computes rectangular matrices V and W 2 IRN�M thatrestrict a speci�ed matrix G to tridiagonal form,S = W TGV = 26666666666664 �1 �2 0 � � � 0
2 �2 . . . . . . ...0 . . . . . . . . . 0... . . . . . . . . . �M0 � � � 0 
M �M 37777777777775 ;30



and that satisfycolsp fV g 2 KM(G; v̂1) and colsp fWg 2 KM(GT ; ŵ1): (2:23)The vectors v̂1 and ŵ1 are user-speci�ed starting vectors which lie in the direction ofthe �rst columns of V and W . Alternatively and equivalently, the Lanczos method canbe viewed as an approach for constructing biorthogonal V and W , i.e., W TV = I, thatsatisfy the same Krylov subspace conditions (2.23). The columns of V and W satisfyingthese constraints can be iteratively computed via the three-term recursions
m+1vm+1 = Gvm � �mvm � �mvm�1�m+1wm+1 = GTwm � �mwm � 
mwm�1: (2:24)Choosing the �, � and 
 parameters in (2.24), so that W TV = I, leads to a tridiagonalS = W TGV and vice versa. An implementation of (2.24) with the appropriate parameterselections is the nonsymmetric Lanczos algorithm in Algorithm 2.1. The interested readeris referred to [66, 67] for a recent and detailed study of the nonsymmetric Lanczos method.Algorithm 2.1 Nonsymmetric LanczosInitialize: v̂1 and ŵ1.For m = 1 to M ,(S2.1.1) vm = v̂m=
m where 
m = qjŵTmv̂mj;(S2.1.2) wm = ŵm=�m where �m = sign(ŵTmv̂m)
m;(S2.1.3) �m = wTmAvm;(S2.1.4) v̂m+1 = Gvm � �mvm � �mvm�1;(S2.1.5) ŵm+1 = GTwm � �mwm � 
mwm�1;endActual implementations of the Lanczos method may encounter numerical di�cultiesincluding a loss of biorthogonality and so-called serious breakdowns [66, 67, 68, 69].However, these breakdowns are less drastic and/or rarer than the breakdowns occurring in31



explicit moment-matching. Additionally, remedies are possible [68, 69] and are discussedin Section 3.3.3.As noted in Section 2.4.1, the Lanczos method can be utilized to realize Pad�e ap-proximants or partial realizations. A proof of these statements follows from [49], as wellas in Section 3.1. Table 2.2 summarizes the appropriate Lanczos input choices for G, v̂1and ŵ1 in order to achieve various reduced-order models. The constructed V and W ofthe Lanczos method lead to the reduced-order model in (2.16). The di�erences in thereduced-order models of Table 2.2 are due entirely to the choice of exact DS precondi-tioners in V and W . Partial realizations utilize P = E�1, Pad�e approximations involveP = A�1, and the shifted Pad�e approximants utilize P = (A � �E)�1. It is importantto observe that the reduced-order models in Table 2.2 are restricted to moment match-ing about a single interpolation point. The Lanczos method cannot generate a rationalinterpolant. Table 2.2: Modeling Choices in the Lanczos AlgorithmModel Type Lanczos Quantities Model QuantitiesG ŵ1 v̂1 Z Â ÊPartial Realize E�1A c E�1b E�TW S IPad�e A�1E c A�1b A�TW I SShifted Pad�e (A� �E)�1E c (A� �E)�1b (A� �E)�TW I + �S STable 2.2 also de�nes Z in terms of the Lanczos matrix W , so that the reduced-order model can be generated via (2.7). In practice, the reduced-order system matricesÂ and Ê can be directly generated from the tridiagonal matrix S, according to thelast two columns of Table 2.2. In the case of a partial realization, for example, Â equalsZTAV =W TE�1AV =W TGV = S and Ê equals ZTEV = W TV = I. Constructing thereduced-order model according to (2.7) is an explicit projection. In the Lanczos method,one implicitly constructs the reduced-order model based on the assumed biorthogonalityof V and W . The validity of this assumption is studied further in Section 4.1.4.32



The reader should note the involvement of the inverses of A, E or combinations of thetwo in the formation of the various moment-matching models. Hence, for a particularproblem, a given model may be unrealizable due to singularities. Even when possible,the inclusion of inverses in the Lanczos method is not standard. Traditionally, the Lanc-zos algorithm assumes only matrix-vector products with easily accessible matrices. Forthe modeling approaches in Table 2.2, inverses must also be treated; they are actuallyimplemented through solving systems of linear equations. These inverses are, in fact,examples of the exact DS preconditioner discussed in Section 2.3.2.Finally, it should be mentioned that the Lanczos method avoids the di�culties en-countered with explicit moment-matching. It does so by storing its modeling infor-mation in two biorthogonal matrices V and W rather than in moments. Recall thatexplicit moment-matching eventually fails because a certain direction (corresponding tothe largest eigenvalue of G) quickly dominates the generated moments. On the otherhand, the biorthogonality condition of Lanczos, W TV = I, insures that new informationis introduced into the projector at every step. Directions already present in v1; v2; : : : ; vmand w1; w2; : : : ; wm are theoretically kept orthogonal to wm+1 and vm+1 and, therefore,do not dominate the new information. Unfortunately, the Lanczos method does notmaintain precise biorthogonality given limited numerical precision. The convergence ofthe reduced-order model in practice is slightly clouded. We frequently discuss the roleof biorthogonality/orthogonality on model reduction in the following (see Sections 3.3.2and 4.1.4).
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CHAPTER 3PROJECTION FRAMEWORK FOR RATIONALINTERPOLATIONIn this chapter, a set of su�cient conditions on the projection technique is derived toguarantee rational interpolation. These conditions are intuitively meaningful from sev-eral points of view. This projection approach is also far more general than unravelinga preselected iterative implementation. Although the latter is frequently emphasized inthe existing literature, a projection approach provides a general framework for derivingand contrasting both new and existing implementations. The validity of this projec-tion framework (and the corresponding algorithms) does depend on certain assumptions,which are covered in detail. The extension of the projection techniques to the cases ofstable and/or MIMO systems also requires and receives special attention.3.1 Rational Interpolation TheoryUnder mild assumptions, dual conditions on the projection matrices V and Z aresu�cient to produce a rational interpolant for a reduced-order model. A concise summaryof these conditions and pertinent intuition can be found in Section 3.2. This sectionformally connects Krylov subspace projection and rational interpolation. Many of thestatements and arguments made while working towards this goal are reminiscent of thosein [49]. Our analysis of rational interpolation from a projector point of view is apparentlythe �rst to be completely general, however, in that we allow for an arbitrary number ofinterpolation points K, an arbitrary number of values and derivatives Jk about a giveninterpolation point, and a direct projection involving V and Z. No restrictions are placedon the (bi)orthogonality of V and Z. 34



Is is assumed throughout this section that the large-scale matrix pencil (A � �E)and the reduced-order pencil (Â� �Ê) are both nonsingular when � is an interpolationpoint. The assumption on (A��E) must hold if the moments corresponding to � are toexist. The nonsingularity of (Â� �Ê) is considered in detail in Section 3.3. For now, itis su�cient to know that both assumptions typically hold.The connection between rational interpolation and projection begins from a simpleproperty of oblique projection. Lemma 3.1 shows under what conditions a projection canbe applied to a direction without changing it. This behavior is generalized in subsequentlemmas to model reduction. One desires a V and Z which when applied to the originalsystem do not modify the moments to be retained. The proof for Lemma 3.1 and alllemmas in this dissertation may be found in Appendix A.Lemma 3.1 If v 2 colsp fV g, then v = V (W Tv)when V and W 2 IRN�M are biorthogonal.The moments of the original system and the model are essentially two-sided, i.e.,containing both an input and output direction. We proceed to present a fundamentallemma corresponding to each of these directions and then combine them in the desiredresult.Lemma 3.2 If KJb ((A� �E)�1E; (A� �E)�1b) � colsp fV g, thenn(A� �E)�1Eoj�1 (A� �E)�1b = V n(Â� �Ê)�1Êoj�1 (Â� �Ê)�1b̂for j = 1; 2; : : : ; Jb.Lemma 3.3 If KJc �(A� �E)�TET ; (A� �E)�T c� � colsp fZg, thencT (A� �E)�1 nE(A� �E)�1oj�1 = ĉT (Â� �Ê)�1 nÊ(Â� �Ê)�1oj�1 ZTfor j = 1; 2; : : : ; Jc. 35



Theorem 3.1 IfK[k=1KJbk �(A� �(k)E)�1E; (A� �(k)E)�1b� � colsp fV g (3:1)and K[k=1KJck �(A� �(k)E)�TET ; (A� �(k)E)�T c� � colsp fZg (3:2)then the moments of (2.1) and (2.2) satisfy�cT n(A� �(k)E)�1Eojk�1 (A� �(k)E)�1b = �ĉT n(Â� �(k)Ê)�1Êojk�1 (Â� �(k)Ê)�1b̂for jk = 1; 2; : : : ; Jbk + Jck and k = 1; 2; : : :K.Proof: We develop the case where 2 � jk � Jbk + Jck ; the jk = 1 case follows triviallyfrom Lemma 3.2. For the jk � 2 case, nonnegative integers jbk and jck can always befound that satisfy jbk � Jbk , jck � Jck and jbk + jck = jk. Given such a jbk and jck ,cT n(A� �(k)E)�1Eojk�1 (A� �(k)E)�1b (3.3)= cT (A� �(k)E)�1 nE(A� �(k)E)�1ojck�1E n(A� �(k)E)�1Eojbk�1 (A� �(k)E)�1b:By Lemmas 3.2 and 3.3, expression (3.3) is equivalent toĉT (Â� �(k)Ê)�1 nÊ(Â� �(k)Ê)�1ojck�1 ZTEV n(Â� �(k)Ê)�1Êojbk�1 (Â� �(k)Ê)�1b̂and may be further simpli�ed toĉT n(Â� �(k)Ê)�1Êojk�1 (Â� �(k)Ê)�1b̂: (3:4)The quantity (3.4) is the corresponding moment of the reduced-order model. The aboverelations hold for any value of k between 1 and K, because V and Z contain Krylovsubspaces corresponding to all the k in this range.3.2 Interpretations of the TheoryTo acquire a rational interpolant that matches the �rst Jbk + Jck moments about theinterpolation points �(k) for k = 1; 2; : : :K, we propose selecting V and Z according to36



(3.1) and (3.2). Assuming the nonsingularity of the pencils (Â��(k)Ê) at these points (seeSection 3.3), Theorem 3.1 guarantees that the desired rational interpolant is acquired.We stress that any pair of projection bases satisfying (3.1) and (3.2) is su�cient toachieve the desired rational interpolant. Restrictions on V or Z, such as biorthogonalityor orthogonality, are purely implementation speci�c choices. The question then is whatis so special about the forms of (3.1) and (3.2)? In particular, do these forms suggest afamily of projection-based approaches for computing the reduced-order model?There are some clear connections to be made between the V and Z of (3.1) and (3.2)and the desired moments of the original system,�jk = cT (A� �(k)E)�1E(A� �(k)E)�1E : : : (A� �(k)E)�1E(A� �(k)E)�1b:An obvious correlation exists between the repetitive multiplication by (A � �(k)E)�1Ein both the Krylov spaces and the moments. The sum, Jbk + Jck , of the dimensions ofthe Krylov subspaces corresponding to �(k) is exactly equal to the number of momentsmatched about �(k) by the reduced-order model. This direct connection between a givenpair of Krylov subspaces and the values/derivatives matched at a given frequency suggestsa great deal of potential parallelism when forming the reduced-order model. Independentof the rest of V , only the basis for KJbk �(A� �(k)E)�1E; (A� �(k)E)�1b� is pertinent tothe moments at �(k). Matching moments about multiple points requires multiple Krylovsubspaces. Constructing these multiple subspaces in parallel is addressed in Chapter 7.In addition to moment-matching, it was demonstrated in Section 2.3.1 that the pro-posed model-reduction approach can be phrased in terms of solving the dual systemof equations (1.2). Recall that the reduced-order frequency response can be written asx̂Tc ZT (sE �A)V x̂b, where V x̂b and Zx̂c are approximate solutions to (1.2) in a Petrov-Galerkin sense. Rational interpolation is connected to the approximate solutions to (1.2)through the concept of varying DS preconditioners. Understanding what is meant by avarying DS preconditioner follows by using Lemmas 2.1 and 2.2 to obtain the equalitySKk=1KJbk �(A� �(k)E)�1E; (A� �(k)E)�1b�= SKk=1KJbk �(A� �(k)E)�1(A� sE); (A� �(k)E)�1b� : (3:5)37



A dual result can be obtained for the subspace on the left of (3.2). The subspace onthe right of (3.5) is simply the union of several preconditioned Krylov subspaces of thetype in (2.17). In fact, the subspaces making up this union vary only in the value ofthe matrix (A � �(k)E)�1, which we denote as an exact varying DS preconditioner, Pk.The choices of Z and V leading to rational interpolation simply combine several exactlypreconditioned Krylov subspaces in (2.17). By introducing multiple DS preconditionersPk into V and Z, one hopes to obtain accurate solutions to the dual equations (1.2)in each of the neighborhoods surrounding the interpolation points �k. The impact ofvarious DS preconditioners (various choices for the �(k)) is considered in Chapter 6.The use of multiple varying preconditioners has appeared in the literature [70, 71]for solving �xed systems of linear equations. Similarities can be seen between thesealgorithms and the model-reduction algorithms developed in Chapter 4. The model-reduction problem is frequency dependent; adapting multiple preconditioners to cover arange of frequencies is novel.One may question the advantages of phrasing the rational interpolation problem interms of shifted systems of linear equations and varying DS preconditioners. The strengthof this new point of view becomes apparent as one relaxes the constraint that Pk equals(A��(k)E)�1, e.g., if an iterative method is used and not converged to working precision.Avoiding the need for exact inverses of the matrix pencil may signi�cantly cut the costsinvolved in generating V and Z. Unfortunately, the concept of rational interpolation be-comes clouded without exact inverses; inexact DS preconditioners cannot exactly matchmoments. On the other hand, the use of inexact DS preconditioners is accepted and is,in fact, standard for treating systems of linear equations. An array of inexact DS pre-conditioning techniques and iterative solvers can be considered for solving dual systemsof linear equations. The use of approximations for (A� �(k)E)�1 in model reduction isconsidered in Chapter 8.We �nish this section by noting that the matrices V and Z of Theorem 3.1 arenot computed by existing Krylov-based model-reduction methods. Rather, the existingliterature consistently employs the matrices V and W . Already seen in Sections 2.3.238



and 2.4.3, the columns of the W and Z matrices satisfy the simple relationzm = (A� �mE)�Twm (3:6)for some value of �m. Theoretically, we can approach the rational interpolation problemin terms of computing either appropriate V and W or V and Z. The V;W choice is morenaturally suited to Lanczos-based implementations of Krylov projection. However, it hasbeen decided that the V;Z choice yields a clearer presentation. The column spaces ofV and Z are exact duals to each other. The reduced-order model follows trivially fromV and Z, as in (2.7). Lastly, the appearance of varying DS preconditioners in V and Zis straightforward. Yet, the choice of a �xed left transformation and associated W as in(2.16) is no longer clear when the DS preconditioners vary.3.3 Limits of the TheoryThe connections developed in Section 3.1 between rational interpolation and projectiondepend on the assumed nonsingularity of ZT (A��(k)E)V for k = 1; 2; : : :K. Singularitiesmust occur if any of the matrices V , Z or (A��(k)E) are singular. Even if these individualcomponents are all nonsingular, ZT (A��(k)E)V may still be ill-conditioned. This sectionexplores various sources and remedies for singular Â� �(k)Ê.With regards to notation, recall that the matrix Zm consists of the �rst m columnsof Z 2 IRN�M . Likewise, Vm is the �rst m columns of V . These �rst m columns formbases for some arbitrarily chosen m-dimensional subspaces contained in (3.2) and (3.1),respectively. One can de�ne a reduced-order model of size m < M by simply replacingV and Z in (2.7) with Vm and Zm. Finally, note that V and Z are always VM and ZM .3.3.1 A singular large-scale pencilMatrix inverses of the form (A � �E)�1 are a dominant presence in the constructionof the Krylov subspaces in colsp fV g and colsp fZg. However, if � is a generalizedeigenvalue of (A;E), this inverse does not exist, as (A� �E) is singular. An eigenvalue39



of the original system should not be chosen as an interpolation point. By itself, thisrestriction is an insigni�cant constraint; only a �nite number of discrete points in acontinuous plane need be avoided. Yet one may wonder about interpolation points in theneighborhood of these discrete singularity points. As the interpolation point nears aneigenvalue, the conditioning of (A��E) worsens. Fortunately, and perhaps surprisingly,a poorly conditioned (A� �E) does not lead to catastrophic results when attempting tomatch information at s = �. This conditioning issue was examined in [72] with respectto related concerns in the method of inverse iteration for eigenvalue problems. Quoting[72], The period when inverse iteration was �rst considered was notable for exag-gerated fears concerning the instability of direct methods for solving linearsystems and ill-conditioned systems were a source of particular anxiety. Forthis reason, it was widely held to be inadvisable to use a � which was tooaccurate; it was thought that such an eigenvalue should be debased a little sothat the resulting matrix (A��I) would not be too ill-conditioned. Althoughit is now generally recognized that this is not necessary, and indeed is not tobe recommended....An ill-conditioned (A � �E) can be utilized for an accurate interpolation at � dueto the form of the error in (A � �E)�1b. In short (the reader is referred to [72] for amore rigorous analysis), this error is dominated by the eigenvector xn as � approachesthe corresponding eigenvalue �n. However, this eigenvector is in the direction of thedesired solution. Although the desired vector is x = (A� �E)�1b, the computed vectoris (1 + �)(A � �E)�1b, where � may be large. Such a scaling error is unimportant in aprojection technique; one requires only an accurate subspace basis to acquire the desiredreduced-order model. Scaling a basis vector by (1 + �) does not perturb the resultingsubspace.Existing theory and practical experience show that accurate interpolation can occur ata frequency �, where (A��E) is ill-conditioned, but care must be taken when matchinghigher order moments at �. Directions not corresponding to �n � � are signi�cantlydamped by (A � �E)�1 multiplication. Therefore, one can expect a loss of precision atfrequencies away from �, which is directly proportional to the number of digits shared40



by � and �n. Acquiring information away from �n is better achieved by moving to adi�erent interpolation point.Ill-conditioned (A� �E) are, in fact, a rare concern in many applications for a morepractical reason. If the original LTI system is dynamically stable, its eigenvalues areobviously restricted to the left-half plane. Yet we see in Chapter 6, that positive realor purely imaginary interpolation points are preferred for model reduction. Thus, unlessunstable or lightly damped modes occur in the dynamic system, ill-conditioned (A��E)cannot occur at all.3.3.2 Rank-de�cient projection matricesThe use of a V or Z that is not full rank also leads to a singular ZT (A� �(k)E)V . Infact, this case leads to a singular (Â � sÊ) for all s. There are multiple sources for arank-de�cient V or Z.Theoretically, the loss of full rank in V or Z corresponds to the occurrence of aninvariant subspace. For example, consider letting M go to N with a �xed interpolationpoint. Then, the column space of V is the Krylov subspaceKN((A� �E)�1E; (A� �E)�1b):This subspace is, in fact, the controllability subspace of (2.1), because the eigenvectorsof (A � �E)�1E and (A;E) can be shown to be identical. If the original system is notcompletely controllable, the dimension of the controllability subspace is less than N andthe column rank of V must be less than N . Of course, the fact that V is not full rankin this case is not really disturbing. Uncontrollability in the original system implies theexistence of a completely accurate reduced-order model of order less than N , known asa minimal realization [31]. One has no need for a V of size N . In the context of theLanczos method, a loss of rank in V or Z due to the computation of an invariant subspaceis aptly termed a fortuitous breakdown.More alarming than the theoretical possibility of an invariant subspace, though, is arank loss in �nite machine precision. It was seen in Section 2.4.2 that �nite precision can41



lead to problems for naive implementations of moment-matching. Although the desiredconstraint and search subspaces may be theoretically acceptable, the computed V orZ may not possess full rank. Similar to Section 2.4.2, one should avoid forming vm+1,for example, by simply multiplying vm by (A� �(k)E)�1E. Such explicitly constructedcolumns of V quickly become dependent in �nite precision. In the fashion of inverseiteration, repeated multiplications by the matrix (A��(k)E)�1E emphasize only a singleeigendirection, e.g., Example 2.2.Rather than explicitly constructing columns of V , it is common to construct vm+1so as to force it to be orthogonal or biorthogonal against previous directions in Vm orZm. The columns of Z may be handled similarly. In this manner, the new columns ofV and Z are kept independent from the old. One makes sure that new information isadded as the size of V and Z grows. It is stressed that the placement of orthogonalityor biorthogonality type constraints on V and Z is purely an implementational decision.Various biorthogonality/orthogonality possibilities are explored in Table 4.1 of Chapter4. Yet these orthogonalization choices are in no way fundamental to model reduction viaprojection. Orthogonality/biorthogonality is one possible tool for avoiding rank-de�cientV and Z in �nite precision.Whatever the choice for orthogonality or biorthogonality, a variety of numerical ap-proaches exist for its enforcement. In order of increasing numerical robustness, thesetechniques include selective classical Gram-Schmidt, classical Gram-Schmidt, modi�edGram-Schmidt, classical Gram-Schmidt with reorthogonalization, and Householder re-
ectors [3]. Some version of classic Gram-Schmidt is the most common choice. Givena vector ~gm+1 to be orthogonalized against an orthogonal matrix Gm, classical Gram-Schmidt computes gm+1 = ~gm+1 � mXl=1 gl(gTl ~gm+1): (3:7)Each component in the summation of (3.7) orthogonalizes a column of Gm against gm+1.In some cases, certain past directions (columns of Gm) are known to be alreadyorthogonal to ~gm+1 due to the structure of the problem. In Lanczos-type methods forexample, one knows a priori that (gTl ~gm+1) are zero in theory for all l < m� 1. Utilizing42



this knowledge and avoiding the computation of the zero terms leads to simple updatesby short recursions. However, round-o� error always perturbs these (gTl ~gm+1) away fromzero in practice. Short term recursions are less accurate than explicitly computing all mterms in the summation of classical Gram-Schmidt. Computing all m terms is classicalGram-Schmidt. Computing only certain terms in the summation of (3.7) while assumingthe others to be zero is known as selective orthogonalization [73]. More robust thanclassic Gram-Schmidt is two passes of Gram-Schmidt, known as reorthogonalization [74].In this approach, one computes gm+1 via (3.7), sets ~gm+1 = gm+1, and computes theleft-hand side of (3.7) once more.3.3.3 A singular reduced-order pencilEven if the matrices (A� �(k)E), V and Z are nonsingular, (Â � �(k)Ê) may still beill-conditioned. This �nal subsection explores this situation in detail and, hence, assumes(A��(k)E), V and Z to be nonsingular. Our key insight into this situation is stated andproven as Theorem 3.2. If a singular ZT (A� �(k)E)V arises when forming an order Mmodel that matches Jbk + Jck moments at �(k), then there exists a reduced-order modelof a size less than M that matches Jbk + Jck � 1 moments at �(k).Theorem 3.2 Consider a V and Z where ZT (A� �(k)E)V is singular andKJbk �(A� �(k)E)�1E; (A� �(k)E)�1b� � colsp fV g (3.8)KJck �(A� �(k)E)�TET ; (A� �(k)E)�T c� � colsp fZg : (3.9)If ~VM�1; ~ZM�1 2 IRN�(M�1) are full-rank matrices satisfying the conditionscolspn~VM�1o � colsp fV g ; (3.10)colsp n ~Zm�1o � colsp fZg ; (3.11)v+ � n(A� �(k)E)�1EoJbk�1 (A� �(k)E)�1b 62 colsp n~VM�1o ; (3.12)z+ � n(A� �(k)E)�TEToJck�1 (A� �(k)E)�T c 62 colspn ~ZM�1o ; (3.13)43



and ~ZTm�1(A��(k)E) ~VM�1 is singular, then the (Jbk+Jck �1)st moment of the dimensionM � 1 reduced-order model8><>: ( ~ZTM�1E ~VM�1) _~x = ( ~ZTM�1A~VM�1)~x+ ( ~ZTM�1b)u~y = (cT ~VM�1)~x+ duabout �(k) equals the (Jbk + Jck � 1)st moment of the original system (2.1) about �(k).Proof: Due to the conditions (3.8) through (3.13), the vectors~vM = v+ � ~VM�1( ~ZTM�1(A� �(k)E) ~VM�1)�1( ~ZTM�1(A� �(k)E)v+)~zM = z+ � ~ZM�1( ~ZTM�1(A� �(k)E) ~VM�1)�T ( ~V TM�1(A� �(k)E)T z+) (3:14)form completed matrices~V = � ~VM�1 ~vM � and ~Z = � ~ZM�1 ~zM �satisfying colsp fV g = colsp n~V o and colsp fZg = colsp n ~Zo : Moreover, by the inclusionof classical Gram-Schmidt biorthogonalization in (3.14), one has the relation264 ~ZTM�1~zTM 375 (A� �(k)E) � ~VM�1 ~vM � = 264 ~ZTM�1(A� �(k)E) ~VM�1 00 �M 375 : (3:15)The value of �M = ~zTM(A��(k)E)~vM in (3.15) must be zero due to the assumed singularityof ZT (A��(k)E)V and nonsingularity of ~ZTM�1(A��(k)E) ~Vk. Using (3.14), this �M canbe written aszT+(A��(k)E)v+� (zT+(A��(k)E) ~VM�1)( ~ZTM�1(A��(k)E) ~VM�1)�1( ~ZTM�1(A��(k)E)v+):This expression further simpli�es tocTf(A� �(k)E)�1Eg(Jbk+Jck�2)(A� �(k)E)�1b�cTf(A� �(k))�1Eg(Jck�1) ~VM�1( ~ZTM�1(A� �(k)E) ~VM�1)�1 ~ZTM�1fE(A� �(k)E)�1g(Jbk�1)bdue to (3.12) and (3.13). However, because ~ZTM�1(A��(k)E) ~VM�1 is nonsingular, Lemmas3.2 and 3.3 can be used to write this most recent expression for �m as�(Jbk+Jck�1)�cT ~VM�1f( ~ZTM�1(A� �(k)E) ~VM�1)�1 ~ZTM�1E ~VM�1g(Jck�1)( ~ZTM�1(A� �(k)E) ~VM�1)�1�f ~ZTM�1E ~VM�1( ~ZTM�1(A� �(k)E) ~VM�1)�1g(Jbk�1)b:44



This quantity, �m, is the di�erence between (Jbk +Jck � 1)st moments of the original andreduced-order models. Yet �m is known to be zero.Certainly there are many conditions involved in the statement of Theorem 3.2. More-over, Theorem 3.2 is the typical, but not the most general, description of a singularZT (A� �(k)E)V (by assuming ~ZTM�1(A� �(k)E) ~VM�1 to be nonsingular, one guaranteesthat the rank of ZT (A��(k)E)V is at leastM �1). Rather than treating all these condi-tions and cases in detail, we simply reiterate the main concept and provide an example.The reader should simply keep in mind that a singular ZT (A� �(k)E)V implies the ex-istence of a system of order less than M that matches more than 2M � 2 of the desiredmoments. A singular ZT (A � �(k)E)V implies the existence of a lesser approximationthat is nearly as good or as good at matching the desired moments of the original system.Such behavior is illustrated by Example 3.1.Example 3.1 Consider a third-order system withA = 2666664 �1 2 �20 �1 20 0 �1 3777775 b = 2666664 82�1 3777775 c = 2666664 �200 3777775 E = 2666664 1 0 00 1 00:2 0 1 3777775 :This system is stable, controllable and observable. In an attempt to obtain a second-ordermodel that matches two moments at �(1) = 0 and two at �(2) = 1, one can follow Theorem3.1 and chooseV = � A�1b (A� E)�1b � and Z = � A�T c (A�E)�T c � :Unfortunately, the matrix ZT (A� �(1)E)V is264 20 1010 5 375 ;which is singular. In agreement with Theorem 3.2, one can check that the �rst-ordermodel described by fzT2Av2, zT2 b, vT2 c, zT2 Ev2g matches not only the �rst and secondmoments of the original system about �(2) (as expected), but also the �rst moment of the45



original system about �(1) (not expected). Note that this �rst-order model does not matchthe second moment of the original system at �(1).The presence of singular ZT (A� �(k)E)V and the fortuitous matching of extra mo-ments can be tied to other phenomenon. For example, a nonminimal, reduced-ordermodel of sizeM implies the presence of a less thanM th order approximation that matchesall of the moments of the M th order model. Hence, a nonminimal, reduced-order modelhas a singular ZT (A� �(k)E)V for one or more k. This case is not much of a concern,because the generation of nonminimal, reduced-order models (beyond a minimal one)is a wasted e�ort. Perhaps a more common scenario for a singular ZT (A � �(k)E)Vis the lack of any M th order system that meets the speci�ed 2M moment constraints.A rational interpolant of size M cannot always be found that meets the speci�ed 2Mconstraints; a singular ZT (A��(k)E)V is consistent with this situation. For example, noapproximation with M = 1 exists that matches the moments �0 = 0 and �1 = 1 at some�, because a �rst-order system has no zeros. The M = 0 approximation, ĥ(s) = 0 for alls, does match the �rst moment �0 = 0, though, agreeing with Theorem 3.2. Similarly,in Example 3.1, one can check that no reduced-order model of order less than or equalto two exists which matches the speci�ed moments �0 = �20, �1 = 24 at �(1) = 0 and�0 = �10, �1 = 5 at �(2) = 1.Fortunately, as Theorem 3.2 suggests, the environment surrounding a singular ornearly singular (Â � �(k)Ê) is not a common one in practice. This is not to say thatsuch di�culties never arise. Given that the cause of a singular (Â � �(k)Ê) is nowbetter understood, it is possible to characterize various approaches for working aroundthe problem. Each of these remedies modi�es the size of and/or the moment constraintson the reduced-order model in hopes that a valid rational interpolant can be realized.Each of these remedies also assumes that V , Z and (A� �(k)E) are nonsingular.Modi�ed Model Dimension. One possible remedy is to simply increase the modelsize until all (Â � �(k)Ê) are nonsingular, i.e., until the model is large enough to meetall required constraints. If a model of size M is lacking, then one simply skips overit and augments V and Z until a valid reduced-order model is found. This process46



is known as look-ahead in the Lanczos literature [68, 69]. Unfortunately, one rarelyknows a priori the required increase in model size for a valid approximation to be found.Usually, this increase is only one or two iterations. This approach is appropriate forfast implementations; although the required implementation may be complicated andheuristic.Revised Moment Constraints. A second remedy is to choose the interpolation pointsto avoid di�culties. Rather than �xing the number of moments matched Jk, a priori, oneadaptively selects from among the interpolation points as the model reduction proceeds.For example, assume one has a valid model of size M � 1. Then, the next interpolationpoint utilized (the next two moments matched) is selected to avoid singular (Â��(k)Ê).Theorem 3.2 and intuition tell us to avoid matching two new moments at an interpolationpoint �(k) if the �rst of these new moments is already matched by the model of sizeM�1.Unfortunately, it is not known a priori how many interpolation points must be inspectedbefore a valid one is found. Usually, this number is only one. This approach is suitedfor implementations that already match moments about multiple interpolation points. Itis also consistent with choosing the interpolation points in an attempt to generate themost accurate reduced-order model possible. One avoids choosing an interpolation pointto match data that are already included in the existing reduced-order model. Adaptivelychoosing interpolation points according to the modeling error is further considered inChapter 6.Reduced Moment Constraints. A �nal approach for avoiding a singular (Â � �(k)Ê)is to construct a reduced-order model that matches fewer than 2M moment constraints.That is, if a reduced-order model of size M cannot meet the speci�ed 2M momentconstraints, drop one or more of the constraints. A well-known algorithm in this class isthe Arnoldi method [75]. Arnoldi methods are guaranteed to avoid singular pencils bychoosing ZT = V T (A� �E)�1. As long as V and (A� �E) are nonsingular (assumed inthis section), ZT (A��E)V = V TV must be nonsingular. However, with this choice for Z,the value(s) of the Jck in Theorem 3.1 are zero, so that an Arnoldi-type approach generallymeets only M moment constraints. The advantages of the Arnoldi-type approach is its47



immunity to certain breakdowns. The disadvantage of the approach is its inability tomatch as many moments in the reduced-order model. It should be noted that approachesmatching more than M , but less than 2M moments, still need to be studied.3.4 Further IssuesIn this dissertation, the focus is on the computation of a rational interpolant for aSISO system. Other system-related issues exist, however. In the following the issues ofdynamic stability and MIMO systems are considered in the projection framework.3.4.1 Stable modelsAlthough the introduced projection approach matches moments of the original system,a di�erent set of invariant quantities, the system's eigenvalues, are less regulated. It isknown that the eigenvalues of (Â; Ê), known as Ritz values, may lie in the right half of thecomplex plane even though the original system is stable. A discussion of instabilities inpartial realizations is presented in [76]. Unstable reduced-order models of stable systemsare frequently unacceptable, e.g., if the approximation is to be used for simulations.To address these stability concerns, the author proposed techniques in [60, 77] todiscard the unstable modes of the reduced-order model. Because �nite Ritz values in theright-half plane cannot correspond to true eigenvalues of a stable system, eliminating theunstable Ritz values is a reasonable approach. Similar strategies also recently appearedin [48, 78]. Explicitly, one need �nd only order-M orthogonal left and right matrices totransform the reduced-order model into the form264 Ês 00 Êu 375264 _̂xs_̂xu 375 = 264 Âs 00 Âu 375264 x̂sx̂u 375 (3:16)and ŷ = � ĉs ĉu �T 264 x̂sx̂u 375+ du;48



where the eigenvalues of (Âs; Ês) are the stable ones of the initial reduced-order model.The leading subsystem is retained as the �nal reduced-order model. A straightforwardapproach for acquiring the form in (3.16) is discussed in [78]. For the Lanczos algorithm,an e�cient implementation based on hyperbolic rotations can produce (3.16) with onlyO(M) operations [60]. This approach is known as the implicitly restarted Lanczos algo-rithm. It implicitly edits the Lanczos iteration to rapidly acquire a new Lanczos iterationthat generates the purely stable reduced-order subsystem.Under the special conditions that A and E are normal matrices and V equals Z, stablereduced-order models can always be obtained. Under these conditions, a relation betweenthe �eld of values of (A;E) and the convex hull of (A;E) exists that bounds the spectrumof (Â; Ê) [7]. The guaranteed stability of partial realizations when A is normal, E is anidentity matrix, and V equals Z is discussed in [77]. A projection involving the Choleskyfactorization of E is utilized in [64] to acquire guaranteed stable Pad�e approximationswhen A and E are symmetric. Certainly such results are desirable, although they requirenormal matrices and limit the choices for V and Z.3.4.2 Multiple-input multiple-output modelsFor a MIMO system, the rectangular matrices B 2 IRN�Lb and C 2 IRN�Lc take theplace of the vectors b and c. Corresponding to these new input and output matrices, thecorresponding reduced-order model becomesÂ = ZTAV; B̂ = ZTB; Ĉ = V TC; D̂ = D; Ê = ZTEV:Similarly, the moments of the original system are now the matricesCTf(A� �(k)E)�1Egj�1(A� �(k)E)�1B: (3:17)Trivially, the element in the (lc; lb) position of (3.17) is the jth moment of the SISOsystem, whose input vector is the lthb column of B (denoted bl) and whose output vectoris the lthc column of C (denoted cl). Thus, the following corollary to Theorem 3.1 followsreadily for the MIMO case. 49



Corollary 3.1 IfLb[lb=1( K[k=1KJbk;l �(A� �(k)E)�1E; (A� �(k)E)�1bl�) � colsp fV g (3:18)and Lc[lc=1( K[k=1KJck;l �(A� �(k)E)�TET ; (A� �(k)E)�T cl�) � colsp fZg (3:19)then the moments of original and reduced-order model satisfy�cTl n(A� �(k)E)�1Eojk;l�1 (A� �(k)E)�1bl = �ĉTl n(Â� �(k)Ê)�1Êojk;l�1 (Â� �(k)Ê)�1b̂lfor jk;l = 1; 2; : : : ; Jbk;l + Jck;l , k = 1; 2; : : :K, lb = 1; 2; : : : ; Lb and lc = 1; 2; : : : ; Lc.Two important points arise from Corollary 3.1. First, although the number of scalarelements in (3.17) grows as the product LcLb, the changes in the size of (3.18) versus(3.1) and (3.19) versus (3.2) are linear with respect to Lb and Lc. To understand thisdi�erence, consider the special, but not uncommon case where Lb = 1 and Lc � 1. Thenumber of subsystems in the overall problem is Lc. Because Lb = 1, the MIMO versionof V in (3.18) simpli�es to (3.1). Thus, for any Z of size M , the reduced-order modelformed with this V is guaranteed to match Jb1 + : : :+ JbK = M moments of every oneof the Lc subsystems. For the case where Lb = 1, it is possible to match M momentsin every one of the Lc subsystems with projection matrices of only size M . The model-reduction problem is two-sided; but at times it is more cost-e�ective to concentrate ononly one of the two sides.A second point of importance in the MIMO problem is that the same number of mo-ments need not be matched for every subsystem. The standard Krylov-based approachesto the MIMO problem assume K = 1 and �x Jbl = Jcl = J for all l [54, 55, 61, 79].Such an approach is known as a block method, because the individual vectors in B orC are treated identically during the construction of the projection matrices. Although ablock approach is perhaps the most straightforward to implement, situations can and dofrequently arise where the complexity among the subsystems varies signi�cantly. Corol-lary 3.1 provides a tremendous amount of 
exibility for treating MIMO systems. Theprojection matrices may be weighted to achieve greater accuracy in speci�c subsystems.50



Corollary 3.1 is a natural extension for rational interpolation in the MIMO case,yet the user should avoid going to extremes. Allowing K, Lb, Lc to each become evenmoderately large automatically precludes a small model sizeM . Moreover, there may bea large amount of overlap between the various individual Krylov subspaces, particularlywith respect to variations in the l indices. For example, even though the number oftheoretically required subspaces may grow large with Lb, a few subspaces may comevery close to covering the entire union. It is unclear at this time as to how one mightlocate the most globally appropriate individual subspaces. Experiments replacing theKLb subspaces in (3.19) with K Krylov subspaces that are independent of l (e.g., replacebl with a random starting vector, replace bl with the summed vector Pl bl, etc.) led toonly limited success in practice. More research is needed in the case where both Lb andLc are large to determine an appropriate reduced-order model with a practical size.
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CHAPTER 4PROJECTION METHODS FOR RATIONALINTERPOLATIONChapter 3 demonstrates that a rational interpolant can be acquired with straight-forward conditions on the column spaces of V and Z. The rational Krylov algorithmdeveloped in Section 4.1 provides a great deal of freedom in computing bases for thesesubspaces. Speci�cally, the type of orthogonality imposed on the columns of the projec-tion matrices di�erentiates the algorithms proposed in this chapter. A signi�cant amountof attention is therefore given to the impact of various orthogonalization schemes in boththeory and practice. One particularly elegant version of the rational Krylov method, therational Lanczos method, leads to a generalization of the Lanczos method for treatingmultiple interpolation points. The development of the rational Lanczos is signi�cant as itcan compute rational interpolants with short iterative recursions. The chapter concludeswith an example demonstrating the behavior of various rational Krylov approaches.4.1 The Rational Krylov MethodTheorem 3.1 provides simple conditions on the column spaces of V and Z for acquiringa reduced-order model through rational interpolation. Speci�c choices for implementingV and Z that meet these conditions remains. The goal is to compute V and Z in bothan e�cient and a numerically stable manner. In this section, a general method, denotedthe rational Krylov method, is introduced for computing V and Z. An in�nite number ofappropriate V and Z can, in fact, be generated with this method by simply varying a fewwell-de�ned parameters. Once this broad method is available, speci�c implementations52



follow readily. Additionally, the presence of a broad method provides a clear frameworkfor comparing each version's particular attributes.The rational Krylov (RK) method is presented in Algorithm 4.1. Its name follows fromthe description in [80] of the subspaces in (3.1) and (3.2) as rational Krylov subspaces.Additionally and not by accident, the title is �tting from the perspective that the RKalgorithm generates rational interpolants.Algorithm 4.1 Rational Krylov (General Version)Initialize: q1 = (
q1)�1b and w1 = (�w1 )�1c;For m = 1 to M ,(S4.1.1) Input: �m, the interpolation point for mth iteration;(S4.1.2) ~vm = (A� �mE)�1qpm+1 and ~zm = (A� �mE)�Twpm+1;(S4.1.3) 
vmvm = ~vm � Vm�1�vm and �zmzm = ~zm � Zm�1�zm;(S4.1.4) ~qm+1 = Evm and ~wm+1 = ETzm;(S4.1.5) 
qm+1qm+1 = ~qm+1 �Qm�qm+1 and �wm+1wm+1 = ~wm+1 �Wm �wm+1;endTwo simplifying assumptions are made in going from Theorem 3.1 to the RK algo-rithm. First, the column spaces of V and Z are constructed to equal (=) rather thancontain (�) the union of Krylov subspaces on the left sides of (3.1) and (3.2). Yet thisassumption does not prevent rational interpolation; it is the Krylov subspaces which con-tain the desired moment information. Second, it is assumed that the dimensions of thedual Krylov subspaces are consistent, i.e., Jbk = Jck = Jk for all k. These choices allowthe matching of the maximum number of possible moments for a given model size M .One should immediately notice the presence of qm and wm in addition to vm and zmin Algorithm 4.1. The constructed Q and W are related in direct fashions with V andZ via (S4.1.4). The choice between primarily working with Q and W versus V and Zcan be mainly based on ease of notation and point of view. By initially incorporating all53



four matrices (rather than only V and Z) into the RK algorithm, more options becomeapparent.An iteration of the RK algorithm consists of executing (S4.1.1) through (S4.1.5). Auser-speci�ed interpolation point, �m, is associated with each iteration. The value of�m must be one of the K possible interpolation points �(1) through �(K). Although theordering of the interpolation points in the RK algorithm is arbitrary, the number of times�m is chosen to be some �(k) during theM iterations determines the number of momentsmatched at �(k) by the �nal reduced-order model. Mainly, it is shown below that thenumber of moments matched at �(k) is twice the number of times that �m is chosen tobe �(k) in the M iterations.Steps (S4.1.2) through (S4.1.5) of the RK algorithm generate the new columns of theprojection matrices. Step (S4.1.2) introduces new information into the column spaces ofV and Z, while (S4.1.4) introduces new information into the column spaces of Q andW . The actual bases used to represent these columns spaces are determined in (S4.1.3)and (S4.1.5). The updates in these two steps correspond to the classical Gram-Schmidtprocedure described by (3.7). The choices for the vectors �qm, �vm, �wm and �zm in theseupdates determine what type of biorthogonality or orthogonality is produced among Q,V , W and Z. Furthermore, it is these vectors that primarily distinguish the speci�cimplementations. Several important options (but certainly not all) are summarized inTable 4.1. The �rst, second and fourth cases in Table 4.1 are implemented in detail inSections 4.1.1 through 4.1.3. The study of these speci�c cases further clari�es the breadthof the RK Algorithm 4.1.An additional component to (bi)orthogonalization is the speci�cation of the scalingparameters �w, �z, 
q and 
v. The last column of Table 4.1, titled �, 
 restriction,lists the conditions that must be met in each case by the choice of the four 
q, 
v, �wand �z parameters. In the second row, for example, orthogonal V and Z are required,V TV = ZTZ = I. One might therefore choose �wm = 
qm = 1 and
vm = k~vm � Vm�1�vmk2 and 
zm = k~zm � Zm�1�zmk254



Table 4.1: Orthogonalization Choices in the Rational Krylov AlgorithmCase �qm �vm �wm �zm �, 
 Restrictionsnone 0 0 0 0 |V;Z orthogonal 0 V Tm�1~vm 0 ZTm�1~zm kzmk2 = kvmk2 = 1V;Z biorthogonal 0 ZTm�1~vm 0 V Tm�1~zm zTmvm = 1V;W biorthogonal 0 W Tm�1~vm V Tm�1 ~wm 0 wTmvm = 1to insure that vTmvm = zTmzm = 1. In all cases, there are fewer constraints than �, 
parameters.There is one other parameter of interest in the RK algorithm, mainly the \previous"index pm. This scalar subscript appears in (S4.1.2). The value of pm locates the mostrecent iteration prior to iteration m that employed the same interpolation point used inthemth iteration. If �m was not used as an interpolation point in the �rst m�1 iterations,one sets pm = 0. If �m = �m�1, then �m was last used in the (m� 1)st iteration and thevalue of pm is m � 1. The new directions generated in (S4.1.2) of the current iterationare founded on the directions computed the last time that �m was used. Example 4.1sheds some light on both the role of pm and the overall RK algorithm.Example 4.1 Consider a 5th order model with �1 = �(2), �2 = �(1), �3 = �(2), �4 = �(2)and �5 = �(1). Thus, the m = 1 iteration is said to be associated with �(2), the m = 2iteration is associated with �(1), etc. Based on the above de�nition of pm, one has p1 = 0,p2 = 0, p3 = 1, p4 = 3 and p5 = 2. The value of p5, for example, follows from the factthat prior to m = 5, �(1) was last utilized in the second iteration.Choosing �wm = �zm = 
qm = 
vm = 1 and �qm = �vm = �wm = �zm = 0 for all m, one cancheck that the V constructed in Algorithm 4.1 takes the formV = � P2b P1b (P2E)P2b (P2E)2P2b (P1E)P1b � ;where Pk = (A � �(k)E)�1. A dual result holds for Z. The use of pm in (S4.1.2)leads directly to V and Z that correspond to the desired Krylov subspaces in an order55



determined by the selection of the �m. New columns of V and Z that correspond to theKrylov subspaces involving �(k) are added whenever �m is chosen to be �(k).Example 4.1 demonstrates that the RK algorithm with special parameter choicesleads to the desired column spaces for V and Z. Prior to leaving this general version ofthe RK algorithm, it is important to show that the computed V and Z lead to the desiredrational interpolant in all cases. The following results prove this fact by demonstratingthat the column spaces of V and Z �t the required form of Theorem 3.1. The key to thisproof is Lemma 4.1, which is proven in Appendix A.Lemma 4.1 If �(k) and �(k+1) are two arbitrary, distinct interpolation points, then(A� �(k)E)�1Ef(A� �(k+1)E)�1Egj�1(A� �(k+1)E)�1b 2nspanf(A� �(k)E)�1bg[Kj �(A� �(k+1)E)�1E; (A� �(k+1)E)�1b�o (4.1)and (A� �(k)E)�TETf(A� �(k+1)E)�TETgj�1(A� �(k+1)E)�T c 2nspanf(A� �(k)E)�T cg[Kj �(A� �(k+1)E)�TET ; (A� �(k+1)E)�T c�o (4.2)for any value of j � 1.Theorem 4.1 Assume that V and Z are the results of M steps of the general RK al-gorithm with nonzero scaling parameters 
qm, 
vm, �wm and �zm. For any m � M , therelations colsp fVmg = K[k=1Kjk;m �(A� �(k)E)�1E; (A� �(k)E)�1b� (4:3)and colsp fZmg = K[k=1Kjk;m �(A� �(k)E)�TET ; (A� �(k)E)�T c� (4:4)hold, where jk;m equals the number of times �m was chosen to be �(k) in the �rst miterations. 56



Proof: We begin by inductively proving thatcolsp fQm+1g � colsp�� EVm b �� (4:5)for any m �M . The m = 1 case is straightforward because ~q1 = 
q1q1 is initialized to b.Assume (4.5) holds for m =M � 1 as well. Due to steps (S4.1.4) and (S4.1.5) of the RKalgorithm, 
qM+1qM+1 = EvM �QM �qM+1:Combining this expression with the inductive assumption demonstrates that (4.5) holdsfor m =M as well. Hence, (4.5) holds by induction.We next show that for any m �M the relationvm = �mf(A� �mE)�1Egj~k;m�1(A� �mE)�1b+ Vm�1gm (4:6)holds where �m is nonzero and �m equals �(~k) (the subscript ~k identi�es which of the Kinterpolation points was used in the mth iteration). The equality in (4.3) follows triviallyfrom (4.6).Induction can be utilized to prove (4.6). For m = 1, the desired relation
v1v1 = (A� �1E)�1bfollows directly from (S4.1.2) and (S4.1.3) of the RK algorithm. Assume (4.6) also holdsfor iterations 2 to m� 1. Based on (S4.1.2) and (S4.1.3), vm can be written asvm = (
vm)�1f~vm � Vm�1�vmg= (
vm)�1f(A� �mE)�1qpm+1 � Vm�1�vmg: (4.7)If j~k;m is one, then pm equals zero and qpm+1 lies in the direction of b. For this case, (4.6)follows directly from (4.7). If j~k;m is greater than one, then (S4.1.4) and (S4.1.5) mustbe utilized to express (4.7) asvm = (
vm)�1 n(A� �mE)�1(
qpm+1)�1f~qpm+1 �Qm�qm+1g � Vm�1�vmo= (
vm)�1 n(A� �mE)�1(
qpm+1)�1fEvpm �Qm�qm+1g � Vm�1�vmo :57



Using (4.5), this last expression can be rewritten asvm = (
vm)�1(
qpm+1)�1(A� �mE)�1Evpm + (A� �mE)�1 � EVm�1 b � ~gm + Vm�1ĝm= �pm(
vm)�1(
qpm+1)�1f(A� �mE)�1Egj~k;m(A� �mE)�1b+(A� �mE)�1 � EVm�1 b � �gm + Vm�1ĝm; (4.8)where ~gm, �gm and ĝm are some vectors. The second equality follows from the inductiveassumption and the fact that j~k;pm = j~k;m � 1. From (4.8), Lemma 4.1 leads to thedesired result (4.6). The value of �m is simply a product of the inverses of 
q and 
v,terms which by assumption are nonzero,�m = �pm(
vpm)�1(
qpm+1)�1:Expression (4.3) follows directly from (4.6). The portion of the proof corresponding to(4.4) is the dual to that presented above.As a side note, it is an interesting fact that the proof of Theorem 4.1 is not stronglydependent on the speci�c value pm in the subscript of (S4.1.3). The replacement of pmin (S4.1.3) with the value m� 1 arises in Section 4.1.4. Insights into alternatives to pmare provided by Example 4.2.Example 4.2 Consider the construction of an orthogonal V3 (see second row of Table4.1) with the interpolation point-ordering �1 = �(1), �2 = �(2) and �3 = �(1). The �rsttwo columns of V are thereforeV2 = � 
1(A� �(1)E)�1b 
2(A� �(2)E)�1b+ �2;1v1 � ;where the parameters 
1, 
2 and �2 are chosen so that V2 is orthogonal. Using theprescribed subscript pm = 1 in step (S4.1.2) of the third RK iteration, one obtains a newdirection~v3 = (A� �(1)E)�1q1+1 = (A� �(1)E)�1Ev1 = 
1(A� �(1)E)�1E(A� �(1)E)�1b:This new direction is always acceptable for augmenting the subspace.58



If, on the other, the subscript pm + 1 is replaced with m in the subscript of (S4.1.2),the third direction is ~v3 = (A� �(1)E)�1q2+1 = (A� �(1)E)�1Ev2= 
2(A� �(1)E)�1E(A� �(2)E)�1b+�2;1(A� �(1)E)�1E(A� �(1)E)�1b: (4.9)Due to Lemma 4.1, the (A� �(1)E)�1E(A� �(2)E)�1b vector in (4.9) is a combinationof the vectors (A� �(1)E)�1b and (A� �(2)E)�1b, so that ~v3 takes the form�2;1(A� �(1)E)�1E(A� �(1)E)�1b+ �3;1v1 + �3;2v2: (4:10)The vector in (4.10) is an acceptable third direction as long as �2;1 is nonzero. However,if (A��(1)E)�1b and (A��(2)E)�1b are (nearly) orthogonal, �2;1 is extremely small and~v3 fails to introduce a new direction.Consistent with Example 4.2 and the proof of Theorem 4.1, we claim that the V andZ satisfy colsp fVmg � K[k=1Kjk;m �(A� �(k)E)�1E; (A� �(k)E)�1b� (4:11)and colsp fZmg � K[k=1Kjk;m �(A� �(k)E)�TET ; (A� �(k)E)�T c� ; (4:12)when a value is substituted for pm in (S4.1.2) that is greater than pm, but less than m.If equality does not hold in (4.11) or (4.12) (as it always must in Theorem 4.1 when pmis utilized), then V and/or Z are rank-de�cient. In this case, the substituted index forpm is not appropriate. An approach to handling rank-de�cient V or Z is presented atthe end of Section 4.1.1.4.1.1 A rational power Krylov algorithmThe various orthogonalization parameters and vectors in the RK algorithm provide agreat deal of 
exibility in computing valid V and Z. We consider in this section the simple59



case where 
qm = 
vm = �wm = �zm = 1 and �qm = �vm = �wm = �zm = 0. No orthogonalizationis used in this approach; the Krylov subspaces are generated by directly multiplyingprevious vectors with (A��(k)E)�1E. With these choices, a simpli�ed version of the RKalgorithm, the rational power algorithm, Algorithm 4.2, results. We denote this approachas the RP (rational power) algorithm for consistency with the other abbreviations.Algorithm 4.2 Rational Krylov (RP Version)Initialize: m = 0For k = 1 to K,For jk = 1 to Jk,(S4.2.1) If jk = 1,~vm = (A� �(k)E)�1b and ~zm = (A� �(k)E)�T c;else~vm = (A� �(k)E)�1Evm�1 and ~zm = (A� �(k)E)�TET zm�1;end(S4.2.2) vm = ~vm=k~vmk2 and zm = ~zm=k~zmk2.(S4.2.3) m = m+ 1;endendSeveral choices were made in going from Algorithm 4.1 to the concrete implementationof Algorithm 4.2. First, the interpolation points used in the iterations, denoted �m, wereutilized in a consecutive fashion. That is, the �rst J1 iterations involved �(1), the nextJ2 iterations utilized �(2), etc. Of course, the �m could theoretically be selected in anyorder. Di�erent possibilities for ordering the interpolation points were illustrated in thealgorithms developed in Sections 4.1.2 and 4.1.3. Due to the interpolation point-orderingin the RP algorithm, pm+1 takes on either the value 1 (a new interpolation point) or m(same interpolation point as the previous iteration). This fact leads to the two possibledecision branches in (S4.2.1). 60



One should also note that the RP implementation lacks the qm and wm vectors presentin the general RK algorithm. These vectors can be buried in the RP algorithm due tothe choice �qm = �wm = 0. This simpli�cation leads to qm = ~qm and wm = ~wm, so that(S4.1.5) of the general version yieldsqm = Evm�1 and wm = ET zm�1:These last expressions are substituted into (S4.1.2) of the general RK algorithm to removethe explicit presence of qm and wm from the RP implementation. By taking this step,one need only store two rather than four sequences of vectors in memory. In general,one or more of the qm, vm, wm, or zm equals the corresponding vectors ~qm, ~vm, ~wm, and~zm (see Table 4.1). When these equalities occur, it is possible that the correspondingvector sequence need not be stored in memory. We must compute at least two of the fourprojection matrices in general nonsymmetric problems to obtain a rational interpolant.A relatively brief analysis of the RP implementation reveals that the constructed Vtakes the explicit formV = � P1b : : : (P1E)J1�1P1b P2b : : : (P2E)J2�1P2b P3b : : : : : : � ;where Pk = (A� �(k)E)�1. The matrix Z takes a dual form. The RP algorithm realizesappropriate bases for colsp fV g and colsp fZg in the most direct manner possible.Of course, it has already been pointed out in Section 3.3.3 that a direct approach(straightforward and repeated multiplications by (A��(k)E)�1E) may lead to numericaldi�culties in practice. The lack of any sort of (bi)orthogonalization in the algorithmimmediately causes concern. Indeed, unless the Jk are all extremely small, problems aresure to arise. Numerous repeated multiplications by a �xed matrix in �nite precisionno longer introduce new information into V and Z. Yet some hope arises for the RPalgorithm because the values of �(k) can be varied. If the interpolation point is frequentlyaltered, the Jk are kept small. Changing to a new interpolation point where the problemhas yet to converge guarantees that new information is added. That is, one placesinformation into the projection matrices by repeated changes of �(k), rather than repeated61



multiplications. This approach is similar in spirit to the complex frequency hoppingimprovements of AWE [46]. As in CFH, a successful RP implementation tends to requirefactors of (A � sE) at numerous points. Unlike CFH, the projection technique of theRP algorithm generates a single reduced-order model that is a rational interpolant. Aprojection approach may also enable the use of techniques such as approximate solves orparallelism to reduce the matrix factorization costs (see Chapters 7 and 8).Even with a frequent change of �(k), unacceptable dependent columns can still appearin V or Z. Consider, for example, the redundancy in the V columns which resultswhen two di�erent interpolation points are very near to each other. Unfortunately, whatconstitutes \nearness" is problem dependent and di�cult to characterize. In practice, onemay try to adapt the point placement to the problem as the model reduction proceeds. Inany situation, one cannot rule out the appearance of a few dependencies in the columnsthe RP-generated V and Z. As long as the values of Jk are kept small, one can expectthis number of dependencies to be only a small fraction of M .The dependent portion of V and Z can be discarded through a singular value decom-position. Assume that the ranks of V and Z are M � �V and M � �Z, respectively, sothat the rank of (Â� sÊ) is at most the lesser of (M � �v;M � �z) for any s. Then, bythe singular value decomposition [3, 81], there exist orthogonal matrices Tl = [Tl ~M jTl+]and Tr = [Tr ~M jTr+] such that for a given matrix (Â� �Ê),264 T Tl ~MTl+ 375 (Â� �Ê) � Tr ~M Tr+ � = 264 �� 00 0 375 : (4:13)The matrix �� is nonsingular and square with a rank ~M that is less than or equalto min(M � �V ;M � �Z). By Theorem 4.2 below, the lower-order model consistingof ~A = (Tl ~MZ)TA(V Tr ~M ) and ~E = (Tl ~MZ)TE(V Tr ~M ) is an appropriate one for modelreduction.Theorem 4.2 . If Tl and Tr are the left and right singular vectors of (Â��Ê) that leadto (4.13), then the matrices V Tr ~M and ZTl ~M are full rank.62



Proof: In the singular value decomposition, the columns of Tr+ and Tl+ are known toform bases for the null spaces of (Â � �Ê) and (Â � �Ê)T , respectively [3]. BecauseÂ equals ZTAV and Ê equals ZTEV , the null spaces of V and Z must be respectivelycontained in the column spaces of Tr+ and Tl+ as well (if g is a vector such that V T g = 0,then clearly ZTAV g and ZTEV g are also zero). Yet Tr+ and Tl+ are orthogonal to Tr ~Mand Tl ~M , implying that V Tr ~M and ZTl ~M are full rank.The matrices ~V = V Tl ~M and ~Z = ZTr ~M are full rank and thus, serve as suitableprojection matrices. In fact, if ~M = M � �V , then the column spaces of V and ~V areequivalent. A dual result holds for ~Z. Otherwise, colspn~V o � colsp fV g, so that thecolumn spaces of V and ~V di�er slightly (in a manner depending on the choice of �,which is typically one of the interpolation points). In this case, the reduced-order modelinvolving ~A and ~E di�ers slightly from the desired rational interpolant. Additionally,the matrices V and Z are typically not exactly singular in practice. As a result, thelower-right corner of the rightmost matrix in (4.13) di�ers slightly from zero. For thesereasons, projection with ~V and ~Z rather than V and Z yields better conditioned, yetslightly perturbed, reduced-order models.In summary, the RP implementation is a simple version of the RK framework whichavoids orthogonalization. Due to this simplicity, the issue of dependent projection direc-tions must be addressed through the use of multiple interpolation points and possiblypostprocessings. The RP approach certainly does not promote the level of understandingand elegance which follows from the inclusion of orthogonalization. Even so, the simplic-ity of the rational power Krylov approach allows for interesting possibilities in Chapter7.4.1.2 A dual rational Arnoldi algorithmArguably, the best approach for avoiding di�culties in the construction of V and Zis to insure that both of these quantities are orthogonal matrices. This technique isimplemented as Algorithm 4.3. Algorithm 4.3 is denoted a dual rational Arnoldi (RA)63



version, because the steps taken to independently construct V and Z are each similar tothe steps of the rational Arnoldi method of [15].In Algorithm 4.3, the interpolation points are interspersed. The �rst iteration uses�(1), the second iteration uses �(2), : : :, the K th iteration involves �(K), the (K + 1)stiteration uses �(1) again, etc. This alternating strategy �xes pm to be m � K and,therefore, determines the decision and indices in (S4.3.1). Again, it is stressed thatordering of the interpolation points is not theoretically a factor in the resulting reduced-order model. The approach in Algorithm 4.3 simply provides another example of aninterpolation point selection strategy.Algorithm 4.3 Rational Krylov (Dual RA Version)Initialize: m = 0For j = 1 to J ,For k = 1 to K,(S4.3.1) If j = 1,~vm = (A� �(k)E)�1b and ~zm = (A� �(k)E)�T c;else~vm = (A� �(k)E)�1Evm�K and ~zm = (A� �(k)E)�TET zm�K;end(S4.3.2) v̂m = ~vm � Vm�1V Tm�1~vm and ẑm = ~zm � Zm�1ZTm�1~zm;(S4.3.3) vm = v̂m=kv̂mk and zm = ẑm=kẑmk;(S4.3.4) m = m+ 1;endendAs long as singular (A � �(k)E) and invariant subspaces are avoided, the dual RAimplementation is guaranteed to yield the desired V and Z. There is still no guaranteethat the resulting (Â��(k)Ê) are all nonsingular (see Section 3.3.3). However, the abilityto construct V and Z without the chance of breakdowns is an important point. As long64



as the orthogonality is maintained in a stable fashion, the dual RA implementationgenerates V and Z in a completely stable fashion. This is the �rst Krylov-projection-based implementation for rational interpolation (or Pad�e approximation) possessing thisstability property.Recall that the construction of an orthogonal basis is not a trivial process. Except forthe Householder and reorthogonalized Gram-Schmidt cases, a gradual loss of orthogonal-ity is observed in the computed versions of V and Z. Yet exact orthogonality is not acondition on Theorem 3.1, and even signi�cant losses of orthogonality do not impair thequality of the reduced-order model. Some sort of postprocessing is required, however, ifV and Z become severely ill-conditioned. The appearance of dependent columns with theclassical Gram-Schmidt approach (implemented in Algorithm4.3), is rare but possible.In such a situation, the postprocessing approach discussed at the end of Section 4.1.1 isa possible remedy.In summary, the dual RA method tends to be a better behaved algorithm than theother RK variants seen in this chapter. Unfortunately, the dual RA implementation isnot as fast as a rational Krylov version that is derived in the next section. This fact is notparticularly surprising; a trade-o� between algorithm speed and robustness is common innumerical linear algebra. One should understand this spectrum of possibilities so that theproper implementation may be used with a given application. The general RK methodof Section 4.1 provides great 
exibility in balancing computational e�ort and stability.4.1.3 An initial rational Lanczos algorithmRational Lanczos is a version of the RK algorithm that maintains a biorthogonal Vand W . As such, it is simple to develop an initial version of the rational Lanczos (RL)method, Algorithm 4.4, from the general RK algorithm. Because the biorthogonalizedV and W are not duals to each other, the steps of the RL implementation are notparticularly symmetric with respect to each other.Rational Lanczos is a potentially fast implementation of Krylov-based model reduc-tion. It shares its name with a similar algorithm that was derived in [82]. The beauty65



Algorithm 4.4 Rational Krylov (Initial RL Version)Initialize: q1 = b, w1 = (�w1 )�1c and jk = 0 for k = 1 to KFor m = 1 to M ,(S4.4.1) Input: �m, interpolation point for mth iteration;(S4.4.2) ~vm = (A� �mE)�1qpm+1 and zm = (A� �mE)�Twpm+1;(S4.4.3) 
vmvm = ~vm � Vm�1W Tm�1~vm;(S4.4.4) qm+1 = Evm and ~wm+1 = ETzm;(S4.4.5) �wm+1wm+1 = ~wm+1 �WmV Tm ~wm+1;(S4.4.6) For k = 1 to K, If �m = �(k), then jk = jk + 1; end; endendof the RL algorithm lies in the speed with which Â and Ê can be computed. There are,in fact, two paths to generating a valid reduced-order model with rational Lanczos givenAlgorithm 4.4. The approach in [82] emphasizes the expression in (S4.4.3) and permutesthe order of the W columns to produce a model in the form of (2.7), up to a similar-ity transformation. The approach developed in this section starts with the expression in(S4.4.5) and leads to a model that takes the exact form of (2.7). Although these two pathsdi�er signi�cantly, because V andW are not duals to each other, both paths are based onAlgorithm 4.4 and lead to similar �nal results. We do not spend time reviewing the olderversion. The following implementation is superior in both its ease of development and theform of the resulting reduced-order model. Although both implementations of this sec-tion and [82] rapidly lead to rational interpolation, the newly proposed implementationsfollow clearly from the projection framework utilized throughout this dissertation.We begin by considering the form of Ê = ZTEV given that V and Z are generatedaccording to Algorithm 4.4. The value of the mth column of ÊT appears during the66



computation of wm+1 in (S4.4.5) of the mth iteration,�wm+1wm+1 = ~wm+1 �WmV Tm ~wm+1= ET zm �Wm(V TmETzm): (4.14)The second equality (4.14) follows from the de�nition of ~wm+1 in (S4.4.4) of the mthiteration. The mth column of ÊT arises directly from the rightmost quantity in (4.14).Multiplying (4.14) on the left by V T and recalling the biorthogonality of the matrices Vand W yields the results vTl ET zm = �wm+1 for l = m+ 1and vTl ET zm = 0 for l > m+ 1:These results hold for any value of m. Hence, ÊT is an upper-Hessenberg matrix. In fact,even more can be said. For the l � m case, algorithm step (S4.4.2) of the mth iterationleads to the relation vTl ET zm = vTl ET (A� �mE)�Twpm+1: (4:15)For speci�c values of l � m, the quantity in (4.15) is zero as well. The matrix Ê = ZTEVgenerated by the RL algorithm is extremely sparse.Theorem 4.3 For the columns of V and W generated by rational Lanczos, vTl ET zm = 0for l < pm.Proof: To determine the values of l � m such that the quantity in (4.15) is zero, notethat V Tpmwpm+1 equals 0 by the biorthogonality of V and W . The question as to when(4.15) is zero can therefore be rephrased as when does (A��mE)�1Evl lie in the columnspace of Vpm? The answer to this question follows from the fact that pm is the index ofthe next to last iteration using the interpolation point �m. Due to this fact and Theorem4.1, colsp fVpmg � Kj~k�1((A� �(~k)E)�1E; (A� �(~k)E)�1b)[k 6=~kKjk((A� �kE)�1E; (A� �kE)�1b); (4.16)67



where ~k is the index such that �(~k) = �m and the values jk, k = 1 to K, are those set by(S4.4.6) in the mth iteration. Because by de�nition, �(~k) was used in the (pm)th iteration,it is known that the relationcolsp fVpm�1g � Kj~k�2((A� �(~k)E)�1E; (A� �(~k)E)�1b)[k 6=~kKjk((A� �(k)E)�1E; (A� �(k)E)�1b) (4.17)holds. By Lemma 4.1 and expressions (4.16) and (4.17), it is found thatcolspn(A� �mE)�1EVpm�1o � colsp fVpmg :Hence, we obtain (A� �mE)�1Evl 2 colsp fVpmg for l < pmand (4.15) is zero for l < pm.If the above development, and (4.17) in particular, is to make sense, j~k must begreater than one. When j~k < 2, vTl ETzm is generally nonzero for all l � m+ 1. If j~k isgreater than one, vTl ET zm is nonzero for pm � l � m+ 1.The presence of nonzero vTl ET zm for m + 1 � l � pm is a generalization of thethree-term recursion present in the standard Lanczos method. In the Lanczos method,K equals 1 and pm equals m � 1, so that nonzero terms exist for values of l betweenm+ 1 and m� 1. The behavior of the RL algorithm is demonstrated in Example 4.3.Example 4.3 Consider executing the RL algorithm for M = 11 iterations that use �(1)in the �rst four iterations, �(2) in iterations �ve through eight, and �(1) again in the lastthree iterations. The values of the parameters �m, pm, j1 and j2 as m varies are presentedin Table 4.2. The structure of the matrix ÊT is shown in Figure 4.1.The structure of Ê is particularly elegant when the interpolation points are utilizedin an alternating fashion. In this case, pm equals m �K for m > K. Thus, ÊT has alower bandwidth of 1 and an upper bandwidth of K.68
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Example 4.4 Consider executing the RL algorithm again, as in Example 4.3, exceptwith the interpolation points alternating in the order indicated by Table 4.3. Becauseseven iterations are still performed at �(1) and four at �(2), this new reduced-order modelis equivalent (up to a similarity transform) with the results of Example 4.3. However,the use of alternating interpolation points leads to a di�erent ÊT in Figure 4.2. Note thebanded structure of this ÊT .The structure of Â is surprisingly sparse, as well. In fact, Â follows in a very directfashion from Ê. To see this fact, note once more (S.4.4.2) and the biorthogonality of Vand W . The mth row of Â is thenzTmAV = zTm(A� �mE)V + �mzTmEV= wTpm+1V + �mzTmEV= iTpm+1 + �mzTmEV: (4.18)Thus, the mth row of Â is �m times the mth row of Ê, plus a standard unit vector. Fora single interpolation point, Â is I + �Ê. The matrix Â follows in a trivial fashion fromÊ in rational Lanczos. Yet we know that the Ê is simple to compute, as well.Besides providing a pleasing structure to Ê and Â, the sparsity present in the RLalgorithm can signi�cantly reduce the memory and computational requirements of thealgorithm. As seen in the Lanczos algorithm, banded matrices correspond to shortenedrecursions for the computation of the V and W vectors. For example, (S4.4.5) can becomputed as �wm+1wm+1 = ~wm+1 � mXl=1wl(vTl ETzm): (4:19)Those components in the summation of (4.19) with vTl ETzm = 0 drop out trivially. Forthe special case, where the interpolation points are alternated in a regular fashion, e.g.,Example 4.4, the scalars vTl ETzm are zero for l < m � K if m > K. Hence, (S4.4.5)becomes �wm+1wm+1 = ~wm+1 � mXl=max(1;m�K)wl(vTl ETzm) (4:20)70
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for this special case. The computation of wm is a length K + 2 recursion which requiresonly a knowledge of the vectors vm�K to vm and wm�K to wm. Earlier vectors in V andW need not be stored in memory. If the interpolation points are regularly alternatedand K is reasonably small, the RL algorithm is comparable from a memory and workstandpoint with the standard Lanczos method. The use of regularly alternated inter-polation points is important. Other interpolation point selection schemes, although notnecessarily introducing a higher total number of nonzero elements into Â and Ê, lead tolarger values of m� pm and thus, lengthened vm and wm recursions. A trade-o� betweenthe 
exibility in interpolation point selection and the length of the iterative recursionsexists.4.1.4 A practical rational Lanczos algorithmA version of the RL method that utilizes regularly alternated interpolation points isprovided in Algorithm 4.5. There is a slight reordering of the steps in this version whichmakes for an easier implementation in practice. However, this reordering does not changethe results. When discussing the RL algorithm in the remaining chapters, we are referringto Algorithm 4.5 unless otherwise noted.The shortened recursion for wm in (S4.5.3) follows from (4.20). The validity of trun-cating the vm recursion in (S4.5.2) follows from the values of
m;l = wTl (A� �mE)�1Evm�1:Dual to the proof of Theorem 4.3, expression (4.2) in Lemma 4.1 indicates that thevector ET (A � �mE)�Twl lies in the column space of Wm�2 for l < m �K � 1. Thus,the biorthogonality of V and W forces 
m;l to be zero for l < m�K � 1.The matrices Â and Ê generated by Algorithm 4.5 follow readily from the abovedeveloped results. For example, comparing (4.20) and (S4.5.3) yields the descriptor72



Algorithm 4.5 Rational Krylov (Banded RL Version)Initialize: ~w1 = c and ~v1 = (A� �(1)E)�1b and m = 1For j = 1 to J ,For k = 1 to K,(S4.5.1) if m > 1, ~vm = (A� �(k)E)�1Evm�1; end(S4.5.2) v̂m = ~vm �Pm�1l=max(1;m�K�1) vl
m;l where 
m;l = wTl ~vm;(S4.5.3) ŵm = ~wm �Pm�1l=max(1;m�K�1)wl�m;l where �m;l = vTl ~wm;(S4.5.4) vm = v̂m=
m;m where 
m;m = qjŵTmv̂mj;(S4.5.5) wm = ŵm=�m;m where �m;m = sign(ŵTmv̂m)
m;m;(S4.5.6) ~wm+1 = ET (A� �(k)E)�Twm;(S4.5.7) m = m+ 1;endendmatrix of the reduced-order model,Ê = 26666666666666664 �2;1 �2;2... �3;2 . . .�K+2;1 ... . . . �JK�K;JK�K�K+3;2 �JK�K+1;JK�K . . .. . . ... . . . �JK;JK�JK+1;JK�K � � � �JK+1;JK
37777777777777775 : (4:21)Computing the last column of Ê requires the execution of (S4.5.3) in the (M + 1)stiteration. This fact is consistent with the behavior of the standard Lanczos method.Given Ê, the columns of Â follow readily from (4.18).Because c lies in the direction of w1, the biorthogonality of V and W yieldsĉT = � �1;1 0 : : : 0 � : (4:22)An expression for the reduced-order input vector results from the relationb̂ = ZTb = ZT (A� �(1)E)(A� �(1)E)�1b = ZT (A� �(1)E)v1
1;1: (4:23)73



The vector (4.23) is simply the �rst column of (Â� �(1)Ê) times a scalar. Due to (4.18)and (4.21), this vector is zero in all but its �rst K elements. Thus, b̂ is sparse as well.A rational interpolant can be achieved through short biorthogonalization recurrences.The e�ciency of these short recurrences does not come without introducing some addi-tional pitfalls, however. In the remainder of this section, we will explore some of thepotential di�culties and the corresponding remedies that arise in a practical RL imple-mentation. Analogies to each of these pitfalls and remedies exist in the standard Lanczosmethod.The �rst harsh reality of the RL method is that the employed short recursions failto keep V and W biorthogonal in �nite precision. In fact, it is observed in practice thatthis biorthogonality is lost rapidly and to a signi�cant extent. This issue might not besuch a concern if the reduced-order model was explicitly constructed according to (2.7).However, the RL method constructs its reduced-order model based on a biorthogonal-ity assumption. The validity of the banded structure of (4.21) is intertwined with theassumption of biorthogonality. The proposed remedy to similar problems in the liter-ature is a simple one|do nothing. One ignores the loss of biorthogonality, continuesto use short recursions, and blindly chooses the reduced-order model according to (4.21)through (4.23). Of course, the implemented reduced-order model is no longer an exact ra-tional interpolant. Surprisingly enough though, the approximation generated with falselyassumed biorthogonality converges in practice, albeit slightly slower than the rational in-terpolant. For the symmetric K = 1 case in �nite precision, the eventual convergenceof the resulting approximation is assured [83]; but it is stressed that M > N steps maybe required to achieve the desired level of convergence in practice. Further commentson such behavior in the area of iterative solvers for linear systems of equations may befound in [84, 85]. The bottom line is that a loss of (bi)orthogonality tends to slow butnot destroy the convergence of approximations that assume (bi)orthogonality and avoidthe explicit use of (2.7). This behavior is still not perfectly understood, even for thenonsymmetric Lanczos method. It is certainly beyond the scope of this study to attemptto address the RL algorithm with further rigor.74



Some intuition as to why the RL results converge at all follows from a local satisfactionof the Petrov-Galerkin constraint. It is shown in Section 5.2, without biorthogonalityassumptions, that the output residual, rc = c� (sE�A)TZx̂c, resulting fromM rationalLanczos iterations is of the formrc = �M+1;M+1wM+1fiTM(sÊ � Â)�T ĉg:Thus, if vl is orthogonal to wM+1 for all l satisfying L � l < M + 1, which is guaranteedfor L = M �K by the implemented short recursions, then vTl rc is zero for L � l � M .Although the RL algorithm may not enforce full biorthogonality in practice, it doesguarantee that the current output residual is orthogonal to recent v directions. ThePetrov-Galerkin constraints hold with respect to these recent v directions.One further observation is important regarding the convergence of the RL algorithmin light of the biorthogonality loss. It has been repeatedly observed in practice that theeventual convergence of the RL results occurs only when pm is replaced by the valuem�1.This approach, introduced just prior to Section 4.1.1, contradicts the standard practiceof choosing pm to be the index of the next-to-last iteration employing �m. Replacing pmwith m�1 is actually implemented in the RL Algorithm 4.5. The superiority of them�1choice for methods that construct their approximations by assuming (bi)orthogonalitywas also observed in [81]. Related comments on the topic of the pm choice may also befound in [81].A second practical concern in the RL implementation is the so-called serious break-down. A breakdown occurs in a Lanczos-type method when ŵTm+1v̂m+1 = 0. The assump-tions of Theorem 4.1 are violated in this event, because either �wm+1 or 
vm+1 must takeon the value zero. In this case, biorthogonality cannot be maintained and the algorithmcannot proceed. The theoretical background for such a breakdown is closely related tothe theory of Section 3.3.3. In fact, the dot product ŵTm+1v̂m+1 is proportional to theerror in the (2m + 1)st moment of the order m reduced-order model corresponding toVm and Wm [82]. Recall though from Theorem 3.2, that a fortuitous matching of the(2m + 1)st moment leads to a singularity in the order m + 1 approximation. However,75



unlike the requirements of Section 3.3.3, which need only be concerned with singularitiesin the order M approximation, a singular W TmVm for any m � M leads to a breakdownof rational Lanczos. Each subsequent step of rational Lanczos relies on the assumedbiorthogonality of the existing projection matrices.Solutions for sidestepping serious breakdowns include both the look-ahead approachand the interpolation point changes discussed in Section 3.3.3. These remedies are nolonger simply postprocessing events; one may need to avoid breakdown at any iteration.The interested reader may �nd the intricate details of look-ahead Lanczos in [69]. Editingthe interpolation order is not di�cult to implement, but it does require the maintenanceof longer biorthogonality recursions as m � pm grows. Either way, the avoidance ofthe breakdown results in �ll-in outside of the band of elements in the rational Lanczos-generated Â and Ê. It is stressed again that the issue of serious breakdowns is only aconcern for the RL version of the considered RK implementations.One �nal pertinent issue in implementing rational Lanczos is the choice of the 
v and�w parameters. Care should be taken when scaling the vectors v̂m and ŵm to obtain thebiorthogonal vectors vm and wm. The standard approach, the one taken in Algorithm4.5, is to scale v̂m and ŵm such that �m;m = �
m;m. A more stable approach occasionallyseen in the Lanczos literature is to select
m;m = vuut jwTmvmj � kvmk2kwmk2 and �m;m = sign(wTmvm)vuut jwTmvmj � kwmk2kvmk2so that the norms of vm and wm are identical.4.2 ComparisonsGiven the variety of numerical approaches for implementing rational interpolation viaprojection, the obvious question becomes which method is the best? No simple answerexists. Problem dependent factors such as the eigenvalue spectrum, the sparsity patternof the large-scale matrix pencil and the desired accuracy in the reduced-order model canfavor di�erent variations of the general RK approach. Handling these varying factors ina numerically e�cient and robust manner requires 
exibility.76



The computational costs of the three methods of Sections 4.1.1, 4.1.2 and 4.1.4 followfrom relatively simple analyses of Algorithms 4.2, 4.3 and 4.5. The results of theseanalyses on M iterations of each algorithm are summarized in Table 4.4. Column twoindicates the number of 
oating point operations (
ops) required to generate the twoprojection matrices V and W or Z. Column three lists the number of 
ops required toform the model once these projection matrices are formed. The data in both columnsare only accurate to the order of the dominant terms. Table 4.2 utilizes the specialnotation A, E, F and X to represent the cost of speci�c matrix operations utilized inthe RK method. The cost to acquire the triangular factors of (A � �(k)E) is denotedby F , X is the cost to solve a system of equations given these factors, E is the cost ofmultiplying a dense vector by E, and A is the cost of multiplying a dense vector byA. Determining the precise costs in 
oating point operations (
ops) for these matrixoperations requires a knowledge in practice of the sparsity patterns of A and E andof the speci�c techniques used to exploit the sparsity patterns. For example, most RCmodels of circuit interconnects involve an F on the order of N1:4 and X , E, and A onthe order of N .Table 4.4: Computational Costs of RK ImplementationsMethod Projection Matrix Generation Model GenerationRP KF + 2M(E + X ) M(A+ E) + 4NM2Dual RA KF + 2M(E + X ) + 4NM2 M(A+ E) + 4NM2RL KF + 2M(E + X ) + 4NMK 2M2Each of the methods requires at least KF + 2M(E + X ) operations to form anduse the factors of (A � �(k)E). The remaining di�erence between the three algorithmsis due to the amount of orthogonalization/biorthogonalization performed and the e�ortrequired to generate the reduced-order model. The RP algorithm requires no orthogo-nality recursions, the RL method requires length K recursions and the dual RA methodrequires length M recursions. If the �xed cost KF + 2M(E + X ) dominates, e.g., the77



matrix factorizations cost F is large due to a lack of easily exploitable sparsity, then thesedi�erences are negligible. If, on the other hand, the matrices are extremely sparse andM is large, the cost of the di�erent implementations varies signi�cantly. In this case, theRL algorithm is desirable, because its cost only grows linearly in Km. The RL algorithmemploys short recursions that automatically lead to a reduced-order model. The dualRA method is far more expensive when the �xed costs are negligible, because both itscost to orthogonalize V and Z and its e�ort to compute the reduced-order model growquadratically in m. The RP implementation requires linearly increasing work to computeV and Z, but quadratically increasing e�ort to form its reduced-order model. Becausethe cost of the RP method is on the order of the dual RA approach, and yet its robustnessis less, the sequential RP implementation of Algorithm 4.2 is rarely recommended.The memory requirements of the di�erent variations are related to costs. A sum-mary of the memory requirements for the three algorithms is in Table 4.5. The secondcolumn lists the memory needed in iteratively storing the columns of V , W and/or Z,while the third column lists any additional memory required to store the reduced-ordermodel. Analogous to Table 4.4, the variable F now denotes the space to store a matrixfactorization, while A and E denote the number of nonzero elements in A and E. Again,the overall memory requirements cannot be exactly speci�ed, but depend on sparsity andthe values of K, M and N . Assuming the memory required to store the factorizationsis not dominant, the RL implementation requires a �xed amount of memory, while thememory requirements of the dual RA and RP implementation grow linearly with m.Table 4.5: Memory Requirements of RK ImplementationsMethod Projection Matrix Generation Model GenerationRP KF + E 2M2 +A+ 2MNDual RA KF + E + 2MN 2M2 +ARL KF + E + 2KN 2M278



From a memory and cost standpoint, the RL method is preferred over the dual RAmethod. However, Section 3.3.2 suggests that numerical accuracy favors the methods inexactly the opposite order. The RL implementation gains its speed from less reliable shortrecursions. Although the rational Lanczos-generated model may eventually converge,this convergence may be delayed relative to the results of the dual rational Arnoldiimplementation. This behavior is explored in Example 4.5.Example 4.5 To compare the behavior of the dual rational Arnoldi and the rationalLanczos implementations, we consider a generated problem intended to mimic the behav-ior of a packaging interconnect of a circuit. This generated problem consists of �fteenidentical segments connected in series (see Figure 4.3 for the structure of a segment).Using Modi�ed Nodal Analysis (MNA) [86], a set of equations of size N = 47 can be for-mulated to describe the interconnect. The frequency response of the interconnect between108 and 1011 Hertz is shown in Figure 4.4. The input to this system is a voltage sourceplaced at the left of the �rst segment; the output is the current through this source.
10 pH

100 Ω1 pF

0.1 Ω

Figure 4.3: Interconnect Segment of Example 4.4Forty iterations of both the dual RA and the rational Lanczos algorithms were executedin MATLAB; the utilized code is available in Appendix B. In both cases, these iterationsalternated between the use of the interpolation points �(1) = 2�108 and �(2) = 2�1011.79



Figures 4.5 through 4.7 display the convergence, loss of biorthogonality/orthogonality,and computational costs for the two approaches as a function of the iteration m. Figure4.5 presents a computed estimate of the relative H2 error norm (weighted over 108 to1011 Hz) between the original system and the respective reduced-order models. Althoughthe identical selection of interpolation points in both cases suggests identical convergencein in�nite precision, the convergence of the RL method (dotted line) is clearly slower.This behavior in �nite precision agrees with practical observations and the limited the-ory in the literature (see the discussion in Section 4.1.4). The delay in convergence iscorrelated with a loss of biorthogonality in the RL case (see the dotted line in Figure4.6 denoting kI �W TmVmk2). The orthogonality in the dual RA case is also eventuallylost as well (see the dashed line denoting 0:5(kI � V TmVmk2 + kI � ZTmZmk2)). The dualRA implementation employs classical Gram-Schmidt orthogonalization. This approach isunstable, yet it is more robust than the shortened biorthogonalization recursion used inrational Lanczos. However, we stress that this di�erence in orthogonalization schemesdoes not itself determine the convergence di�erence. The di�erence arises from the factthat dual RA employs (2.7) to construct the reduced-order model, which does not dependon orthogonality, while the RL approach constructs a banded reduced-order pencil, whichdoes depend on biorthogonality. This assumption of bandedness and the associated unde-sirable convergence delay in rational Lanczos is o�set, though, by reduced computationale�ort. Figure 4.7 presents the cumulative number of 
oating point operations required bythe two modeling implementations as a function of m. The work involved in the RL casegrows linearly with m (dotted line), while the work in the dual RA case grows quadrat-ically with m (dashed line). It is interesting to note that both of the approaches requireabout the same number of total operations to compute reduced-order models with errorsin Figure 4.5 less than 10�10. Although requiring more iterations, the RL approach neednot involve more work. Such behavior tends to be problem dependent and contributesto the long-standing arguments over Lanczos-type versus Arnoldi-type approaches in thenumerical linear algebra literature. 80
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Figure 4.4: Frequency Response of Example 4.4
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A few statements can be made to summarize the choice for the RK implementation.The RP algorithm is not appropriate for cases where Jk exceeds 10. The dual RA algo-rithm is most likely preferred when the complexity of factorizing (A� �(k)E) dominates.Beyond these extremes, one must balance the convergence reliability of dual rationalArnoldi against the shortened recursions of rational Lanczos. Additionally, further re-search is merited to determine if any other desirable versions of the general RK algorithmexist.
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CHAPTER 5MODEL ERRORA knowledge of the error between the original system and the computed rational in-terpolant is important for several reasons. It can be used to monitor the number ofiterations required for convergence of the reduced-order model. In simulation, one needsto know that the response of the reduced-order model is su�ciently close to that of theoriginal system. In control, one hopes to construct a controller from the reduced-ordermodel that performs acceptably with the original system. In all applications, unnec-essarily large models should be avoided due to computational cost. A measure of theerror might also be feedback to adapt the modeling procedure itself. For example, onecan attempt to select the interpolation points used in later steps to focus on the errorspresent after earlier iterations.In this chapter, two approaches for estimating the error in the reduced-order modelare developed. The merits of each are compared, particularly in the examples at the con-clusion of this chapter. Unfortunately, none of these proposed techniques are guaranteedto be completely without inaccuracies. This reality follows naturally from the fact thata combined knowledge of both the reduced-order model and the modeling error impliesa total knowledge of the original system. Because a complete analysis of the originalsystem is to be avoided, one must resort to approximations to measure the gap betweenthe original and reduced-order models.5.1 Complementary ApproximationsA simple approach for estimating the frequency-response error, �(s) = ĥ(s) � h(s),between the original and reduced-order models is to compute the di�erence between two84



reduced-order models, �̂(s) = ĥ(s)� ĥ?(s): (5:1)The transfer function of ĥ?(s) corresponds to some second and completely di�erentlow-order approximation of the original system. Both of these approximations can begenerated by any (and not necessarily the same) Krylov-based projection algorithm.Hence, (5.1) is a suitable and achievable error estimate for any of the previously discussedmodeling techniques.The two low-order approximations used in (5.1) should contrast in their approxima-tions of the original system because this di�erence estimates the modeling error. Thatis, two points of view of the original system are sought, which are designed to be com-plementary. The use of drastically di�erent viewpoints typically suggests that ĥ(s) andĥ?(s) agree consistently only at those frequencies where both approximations are ac-curate. Where these two di�erent viewpoints agree (where �̂(s) is small), one assumesthat �(s) is small. Where these two di�erent viewpoints diverge, at least one of the twoapproximations must be inaccurate and �(s) is assumed to be signi�cant. Note that thislast assumption errs on the conservative side, because the lack of a converged ĥ?(s) atsome frequency does not directly imply a large �(s) at that frequency.The generation of two distinct reduced-order models requires the construction of twodi�erent projection pairs of dimension M , the previously seen V;Z and the second pairV?; Z? (note that the ? subscript denotes complimentary, but not necessarily orthogonaldirections; colsp fV g = colsp fV?g when M = N). The 
exibility in forming these twopairs of projection matrices resides in the choice of interpolation points. Two di�erentsets of interpolation points are sought, which lead to two distinct reduced-order models.In [87], the frequency responses of multiple Pad�e approximations, where each obviouslyutilizes a single, distinct interpolation point, are compared to estimate convergence. Asa generalization for rational interpolation, we propose the use of two interlaced sets ofinterpolation points (interlaced moment-matching). An example of this point distributionis seen in Figure 5.1, where the black dots correspond to the �rst approximation and thewhite dots to the other. The use of interlaced interpolation points (versus distinct clusters85



of points) provides each of the two reduced-order models with a reasonable opportunityto converge across the entire frequency range. Recall that both viewpoints must convergebefore the estimated error diminishes. Keeping the individual interpolation points of thetwo models (i.e., �(k) and �(k)? ) separated leads to approximations with the desired local,complementary viewpoints.
ω  ωmin max

σ σ σ σ σ σ (1)  (2) (2) (1) (3) (3)Figure 5.1: Interpolation Point Interlacing in Complementary K = 3 ModelsAlthough the viewpoints of the two approximations in �̂(s) are designed to be com-plementary, it is possible that both may miss a given feature in the original dynamicmodel. In this situation, �̂ does not indicate this missing feature and the error estimate isincorrect. Such di�culties tend to be associated with lightly damped poles that are notidenti�ed by either of the reduced-order models. This issue is taken up again in Section5.3, although Section 5.3 shows �̂ to be appropriate in most circumstances.The cost of generating the error estimate involves the computation of a secondreduced-order model and also the evaluation of (5.1). Generating an additional ap-proximation simply doubles the cost for the appropriate algorithm in Table 4.4. Variouspossibilities and associated costs exist for evaluating �̂(s). Computing the H1 norm of(5.1) via conventional eigenvalue analyses of Hamiltonian matrices [88] costs a minimumof 30(2m)3 
ops [3]. There is typically a total cost on the order of 100M4 
ops whenthe error is estimated after each iteration of the algorithm, e.g., �nd k�̂1k1, k�̂2k1, : : :,k�̂Mk1. This cost can be scaled back slightly by not evaluating the error at every itera-tion. An alternative approach to computing �̂ is to simply evaluate it at multiple points.In practice, approximately 8m well-placed points in the fashion of the frequency-responsealgorithms of [89] give reasonable results for our purposes. By transforming the Â andÊ matrices into upper-Hessenberg form (8m3 
ops [3]) prior to evaluation [9], the costof computing �̂ at the �xed points can be kept at roughly 16m3 
ops per iteration. The86



total cost to estimate the error throughout the algorithm is thus on the order ofM4 
ops.From Table 4.4, the cost to evaluate �̂ does not typically exceed the cost of actually gen-erating the reduced-order model by the dual rational Arnoldi approach. However, it ispossible (given easily exploitable sparsity) that the �̂(s) evaluation may eclipse the costof actually generating a reduced-order model via rational Lanczos. This model di�erenceapproach may not be appropriate for use with the RL implementation.Assuming that the cost of generating a second model dominates the computationof �̂, one may still wonder if this apparent doubling of required e�ort is worthwhile.There are possible savings gained through an error estimate, which may more than o�setthe doubling of computation. With a sense of the modeling error, one can adapt theutilization of interpolation points according to the dynamics absent in the model (seeSection 6.4). Adaptive interpolation point placement selection can lead to acceptablemodels for smaller values of M and thus save on work and storage. An error estimatealso suggests a stopping criterion, e.g., the model size is assumed su�cient when theerror drops below a certain level. A good stopping criterion allows one to avoid excessiveand wasteful iterations. Although the use of an error estimate may increase the workper iteration, a knowledge of �̂ can reduce the total number of iterations required. Forimplementations where e�ort grows quadratically with m, e.g., dual rational Arnoldi, areduction in total iterations is especially signi�cant.The error estimate can oftentimes be improved through a simple modi�cation of (5.1).Recall that we are ultimately interested in the acceptable, low-order model representedby ĥ(s). The second low-order function ĥ?(s) serves only to estimate the true frequencyresponse h(s). A better approximation for h(s) can be found by combining the infor-mation in the two sets of projection matrices V;Z and V?; Z? to obtain a 2M th ordermodel, ĥ[(s). The updated error estimate then becomes�̂+(s) = ĥ(s)� ĥ[(s): (5:2)Similar to (5.1), one hopes that this new error estimate is large wherever ĥ(s) has notconverged due to the presence of the V?; Z? directions in the other reduced-order model.87



This new estimate is superior to (5.1) from the perspective that the new error approx-imation can be expected to drop to zero whenever ĥ(s) converges. Unlike ĥ?(s), ĥ[(s)includes the original V and Z directions and, thus, tends to at least converge whereverĥ does. From a cost standpoint, generating �̂+ may require 22 times as much e�ort as �̂.The projection matrices V?, Z? must be (bi)orthogonalized against V , Z in generatingĥ[. Moreover, the cost of evaluating �̂+ is larger than before. The advantages of �̂+ mustbe signi�cant if (5.2) is to be preferred over (5.1).5.2 Residual ExpressionsAn alternative approach to quantifying the modeling error is through the previouslydiscussed residual expressions,rb(s) = b� (sE �A)V x̂b and rc(s) = c� (sE �A)TZx̂c:Residual expressions are a signi�cant tool for quantifying the error in iterative linearsystem solving. It is known that very simple relations for the residuals arise in manyArnoldi and Lanczos contexts. Given the role of the dual systems (1.2) in the modelreduction, it is not surprising then that the residuals are pertinent to the modeling erroras well. Residuals were utilized in [59] for the partial realization problem. We formalizea new, fundamental relationship between the residuals and the modeling error in thefollowing result.Theorem 5.1 The di�erence between the frequency responses of the original andreduced-order systems is rTc (A� sE)�1rb.
88



Proof: Starting from the frequency-response de�nitions in (2.5) and (2.8), the modelingerror is �(s) = cT (sE �A)�1b� ĉT (sÊ � Â)�1b̂= cT (sE �A)�1b� cTV x̂b= cT (sE �A)�1fb� (sE �A)V x̂bg= cT (sE �A)�1rb: (5.3)By the Petrov-Galerkin conditions in Section 2.3.1, ZT rb = 0, so that (5.3) can be furtherexpanded as �(s) = fcT � xTc ZT (sE �A)g(sE �A)�1rb= rTc (sE �A)�1rb; (5.4)the desired result.Evaluating the error expression (5.4) in its entirety remains a di�cult task. However,a su�ciently small rb or rc at some s0 typically implies a small error at that frequency byitself. The only exception to this behavior occurs when s0 is near an eigenvalue of (A;E)so that elements of (A � s0E)�1 grow large. Analogous to Section 5.1, large errors inĥ(s) due to the presence of weak poles along the imaginary axis may not be adequatelyre
ected in the residual.It is stressed that monitoring rb and/or rc does not directly lead to an estimatefor the modeling error. Acquiring the modeling error requires an inverse of (sE � A)which is not possessed. Rather, one must concentrate on the trends in the residualbehavior as s and m vary. Attempting to gauge these trends demands the evaluation ofrb and/or rc at numerous values of s. Fortuitously, the residual expressions of many ofthe implementations in Chapter 4 simplify through the following result.89



Lemma 5.1 The matrices of the general RK algorithm satisfy(A� sE)Vm = Qm+18>>>>>>>>>>>>>><>>>>>>>>>>>>>>:2666666666666664 " "ip1+1 � � � � � � ipm+1# #0 : : : : : : 0 37777777777777752666666664 
v1 �v2 � � � "
v2 �vm. . . #
vm 3777777775�1+2666666664 �q2 � � � "
q2 �qm+1. . . #
qm+1 37777777752666664 �1 � s . . . �m � s 37777759>>>>>>>>=>>>>>>>>; (5:5)
and (A� sE)TZm = Wm+18>>>>>>>>>>>>>><>>>>>>>>>>>>>>:2666666666666664 " "ip1+1 � � � � � � ipm+1# #0 : : : : : : 0 37777777777777752666666664 �z1 �z2 � � � "�z2 �zm. . . #�zm 3777777775�1+2666666664 �w2 � � � "�w2 �wm+1. . . #�wm+1 37777777752666664 �1 � s . . . �m � s 37777759>>>>>>>>=>>>>>>>>; (5:6)
for m � 1.Lemma 5.1 writes the (sE�A)V and (sE�A)TZ matrices in the residual expressionas the product of a �xed matrix of size N� (m+1) and a low-order frequency-dependentmatrix. This ability is extremely bene�cial in the rational Lanczos versions because�vm = �zm = 0 for all m. Recalling the de�nition of Â and Ê in (4.18) and (4.21) for90



rational Lanczos, (5.6) reduces to(A� sE)TZm = Wm 0BBBBB@Im + Êm 2666664 (�1 � s) . . . (�m � s) 37777751CCCCCA+ wm+1iTm�m;m(�m � s)= Wm(Â� sÊ)T + wm+1iTm�m;m(�m � s): (5.7)The RL output residual vector after M iterations is thereforerc(s) = c�W (sÊ � Â)T (sÊ � Â)�T ĉ+ �M;M(�M � s)wM+1iTM x̂c= Wi1�1;1 �Wĉ+ �M;M(�M � s)wM+1iTM(sÊ � Â)�T ĉ= wM+1iTM(sÊ � Â)�T ĉ�M;M(�M � s) (5.8)due to the de�nition of ĉ in (4.22). Through (5.8), the norm of the output residual canbe computed as the norm of wM+1 times a frequency-dependent function composed oflow-order matrices. The norm of wM+1 need only be computed once regardless of thenumber of times rc(s) is evaluated. Because iM is only nonzero in its last element, thefunction iTM(sÊ� Â)�T ĉ can be rapidly evaluated at an arbitrary frequency s0. One needonly (a) �nd a left transformation to place the upper-Hessenberg matrix (s0Ê� Â)T intoupper-triangular form and (b) perform a single step of back-substitution to �nd the lastelement in x̂c(s0). These upper-triangular transformations in the �rst step are easilyupdated with 4m 
ops from one iteration to the next, because ÂTm�1 and ÊTm�1 are theleading minors of the upper-Hessenberg matrices ÂTm and ÊTm. Assuming the residual isevaluated at 8m points, the cost of iteratively updating the norm of rc is approximately2N+32m2 
ops per iteration. The overall cost is roughly 2MN +5M3 
ops, a value thatcompares favorably to the expense of computing the reduced-order model with rationalLanczos.For the other versions of the RK algorithm, expressions (5.5) and (5.6) must be usedto generate the residuals. Updating the residual norms from one iteration to the nextinvolves O(mN) operations to iteratively update QTmQm or W TmWm and an additionalO(m2) operations per frequency point to solve a low-order, upper-Hessenberg system91



of equations. In the general case, the residual evaluation across M iterations involvesO(M2N+M4) operations, a cost that is comparable to the treatment of �̂ in the previoussection.5.3 ComparisonsThe computation of the modeling error involves a common theme: balancing computa-tional expense against the quality of the results. The two methods of this chapter provideerror estimates at costs that are no larger than the modeling expense itself. The residualtends to be a slightly cheaper estimation, particularly in the case of the e�cient rationalLanczos algorithm. To evaluate its performance versus that of the complementary modelcomparison (5.1), we analyze several examples. Example 5.1 considers the e�ectivenessof the error estimates in predicting the worst-case error in the reduced-order model .Example 5.1 In this example, we consider a model of tokamak plasma dynamics whichwas originally presented in [56]. The frequency response of the original model is shown inFigure 5.2. This response is relatively simple, due to the presence of all of the eigenvaluesof (A;E) on the negative real axis. Frequency responses of this type are quite common inmany applications, however.The dual RA algorithm can be applied to this problem for M = 10 iterations with� = 1. The actual error in the frequency response ĥ(s) is indicated in the second columnof Table 5.1, as m varies from 1 to 10. This di�erence is the maximum relative di�erencebetween h and ĥ over the frequencies in the range 1 � ! � 1000. Estimates based oncomplementary approximations (5.1) are presented in the third column for various m.This third column compares two reduced-order models centered respectively at � = 1 and�? = 100. The use of (5.1) provides a reasonable error estimate in this example. Themaximum product of the relative residuals is indicated in the fourth column of Table5.1. Both rb and rc should be included in the residual error estimate, where possible, totake the two-sided properties of Theorem 5.1 into account. The fourth column providesan excellent estimate of the worst-case frequency-response error, as well. Either of the92



approaches in Sections 5.1 or 5.2 provides an acceptable measure of the modeling errorfor this problem.Beyond a worst-case bound, the user may be interested in an error estimate across thefrequency range. Such an estimate may be useful, for example, to modify the selectionof future interpolation points.Example 5.2 This problem arises from a partial element equivalent circuit (PEEC)model of a patch antenna structure (see [90] and experimentation in [46]). Contain-ing 2100 capacitances, 172 inductances and 6990 mutual inductances, the circuit can berealized as a system of dimension 480. The magnitude of the frequency response of thiscircuit is shown in Figure 5.3. Note the presence of multiple sharp peaks resulting fromlightly damped poles along the imaginary axis.The rational Lanczos algorithm was applied to the PEEC model for M = 100 itera-tions. The generated approximation alternated J1 = 50 iterations at �(1) = 1 GHz andJ2 = 50 iterations at �(2) = 4 GHz. Figures 5.4 through 5.7 present the true modelingerror (dashed line) and the �̂ estimate of (5.1) for m = 25; 50; 75 and 100. In acquiring �̂,the �rst reduced-order model was compared to a second, complementary model generatedabout a single interpolation point at �? = 2:5 GHz. Although occasionally missing one ofthe many peaks,e.g., 3:5 GHz in Figure 5.5, or occasionally overestimating a peak, e.g.,0:5 GHz in Figure 5.6, �̂ provides a surprisingly accurate measurement of the true error� across the entire frequency range.Figures 5.8 through 5.11 compare the true error � (dashed line) to the output residualrc(s) (dotted line) for m = 25; 50; 75 and 100. Recall in rational Lanczos that thisresidual value can be readily evaluated according to (5.8). For ease of analysis, the resultsof the residual computation are scaled (by the same amount at all frequencies), so that themeans of the magnitudes of � and rc are identical in the �gures. In practice, one mustconcentrate on the relative changes in rc as the values of the variables m and s vary.Clearly, the residual results are not as precise as those in Figures 5.4 through 5.7. Keepin mind that the residual estimate may be generated with O(M) less e�ort than (5.1).93
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Figure 5.2: Frequency Response of Example 5.1Table 5.1: Modeling Error Estimates of Example 5.1m max! jh(�!)�ĥm(�!)jjh(�!)j max! jĥm(�!)�ĥ?m(�!)jjĥ?m(�!)j max! n jrcm(�!)jkck2 � jrbm(�!)jkbk2 o1 4.6807e+00 1.3377e+00 1.5269e+002 1.3172e+00 5.6735e-01 3.9489e-013 2.2291e+00 6.9063e-01 2.7383e+004 1.0583e-01 1.2019e-01 2.3849e-025 2.4734e-02 2.5753e-02 6.6484e-036 2.8501e-03 2.8525e-03 3.6360e-037 3.0310e-03 3.2918e-03 3.4935e-038 1.6833e-03 1.9949e-03 1.1889e-039 5.3874e-03 7.5989e-03 1.2661e-0210 2.6107e-04 1.0067e-03 4.3114e-0494
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Figure 5.3: Frequency Response of Example 5.2The residual plots are able to capture the general shape of the error curve and point outthe locations of the spikes in the frequency response.As the Examples 5.1 and 5.2 suggest, the above proposed error-estimation techniquesare e�ective in many situations. However, the error estimates based on model di�erencesor residuals do not always adequately treat sharp spikes in the frequency response. Theassumption that a small �̂ or residual guarantees a small error is not necessarily valid atthese sharp peaks (not valid in the neighborhoods of poles along the imaginary axis). Thisdi�culty is demonstrated in Example 5.3. The point of this example is not to completelyinvalidate the proposed error estimation methods. Rather, it is to demonstrate that caremust be used when treating systems with lightly damped poles.
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Figure 5.4: Error Estimate �̂25 in Example 5.2
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Figure 5.5: Error Estimate �̂50 in Example 5.296
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Figure 5.6: Error Estimate �̂75 in Example 5.2
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Figure 5.7: Error Estimate �̂100 in Example 5.297
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Figure 5.8: Error Estimate rc25 in Example 5.2
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Figure 5.9: Error Estimate rc50 in Example 5.298
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Figure 5.10: Error Estimate rc75 in Example 5.2
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Figure 5.11: Error Estimate rc100 in Example 5.299



Example 5.3 Consider the simple seventh-order system de�ned byA = 266666666666666666664 �:001 �55 �:001 �1 �55 �1 �7 �5 �3
377777777777777777775 ; b = c = 266666666666666666664

p:001p:00111111
377777777777777777775 ;and E = I. The frequency response of this system is shown in Figure 5.12. A fourth-order model using the interpolation point � = 0:5 has the true error shown (dashed line)in Figures 5.13 and 5.14. Note that this reduced-order model fails to capture the peak inthe original frequency response at 5 rad/s.
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Figure 5.12: Frequency Response of Example 5.3A second model, and associated ĥ?(s), was constructed using the interpolation point�? = 10 with M = 4. The error estimate, based on comparing ĥ(s) and ĥ?(s) accordingto (5.1), is shown as a dotted line in Figure 5.13. Unfortunately, this error estimate �̂falsely suggests convergence (it estimates two digits of accuracy everywhere) and missesthe peak at 5 rad/s. Note also that the estimate based on (5.1) is too conservative at100



low frequencies; its values there are based on the convergence of ĥ?(s) rather than thebehavior of ĥ(s).An error estimate based on the residuals is displayed as a dotted line in Figure 5.14.The dotted curve indicates (without scaling) the products of the relative output and inputresiduals, rbrckbk2kck2at each frequency. As before, this error estimate fails to indicate the absent peak at 5rad/s. The residual does provide a better estimate of the true errors at low frequenciesthough.Based on the above discussions and examples, the qualities of the proposed error-estimation techniques can be summarized. The �̂ estimate of (5.1):1. Provides a direct approximation to �2. Is accurate at frequencies corresponding to the complementary interpolation points�(k)?3. Can overestimate the error at frequencies corresponding to the primary interpola-tion points �(k)4. May underestimate errors corresponding to sharp frequency peaksA residual based error estimate:1. Must be scaled to �, particularly if only one of the residuals is computed2. Is accurate at frequencies corresponding to the interpolation points of the reduced-order model3. May fail to indicate errors corresponding to sharp frequency peaks4. Typically requires less work, particularly for the rc function in rational LanczosSome of these features are complementary, suggesting that a robust implementationmightincorporate both approaches when possible.101
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CHAPTER 6MODEL INTERPOLATION POINTSThe Krylov-based projection methods of Chapter 4 interpolate the value and consec-utive derivatives of the frequency response of the original system at one or more points.Yet by itself, the knowledge that one is interpolating the frequency response reveals lit-tle concerning the quality of the resulting reduced-order model. For example, one canextract any combination of the poles (eigenvalues) of the original system via appropri-ate interpolation choices [41]. The precise location of the interpolation points and theamount of data matched at each interpolation point are the central factors in determiningthe accuracy and dimension of the reduced-order model.The placement and selection of interpolation points are studied in this chapter. Con-nections are made between the locations of interpolation points and the convergencebehavior of the model. In particular, e�ort is concentrated on the popular choices ofpurely real or imaginary interpolation points. This analysis provides insights into the re-lations between the model's convergence, the placement of the interpolation points, andthe dynamics of the system. However, these insights are not su�cient by themselves,because the dynamics of the original system are rarely known a priori. The latter por-tion of this chapter focuses on the implementation of point placement and selection inpractice, a nontrivial problem given that the dynamic behavior of the original system israrely known prior to the model's convergence.6.1 Analysis ToolsTo implement rational interpolation, both the location of the interpolation points andthe number of moments matched about each of the interpolation points must be speci�ed.103



Together these decisions determine both the size and accuracy of the reduced-order model.Understanding the impact of these choices on the resulting reduced-order is not alwaystraightforward, however. We begin by relating the choices for interpolation points tothe convergence of the eigenvalues of (A;E) and to the residuals rb, rc. Past results suchas Theorem 5.1, in turn, connect these quantities to the convergence of the reduced-ordermodel.One should understand that the convergence analyses performed in this chapter tendto consist of general trends rather than precise mathematical derivations. Unfortunately,the current understanding of the convergence of Krylov projection methods is limited,particularly when nonsymmetric matrices or multiple Krylov subspaces are involved.However, the presented level of rigor is su�cient for providing an intuition for interpo-lation point placement and selection. The insights of this section serve as importantbackdrops for the more practical implementation decisions in Sections 6.2 and 6.3.We also initially assume that the number of interpolation points is small, so thatthe convergence in a given frequency range depends primarily on a single pair of dualKrylov subspaces with a corresponding interpolation point in that region. Associating agiven frequency range with a single interpolation point, �, simpli�es the analysis and isreasonable in many applications. Additionally, this assumption errs on the conservativeside because considering all the interpolation points at once (considering the union of in-formation in the projector) typically only improves the convergence at a given frequency.The role of the eigenvalues of (A;E) in the behavior of a system is grounded in thework of Bode [26]. Relations exist between the poles of the original system and the peaksin the system's frequency response. For the considered Krylov projection methods, theconvergence of the eigenvalues of (Â; Ê) to those of (A;E) is governed by the spectrumof the matrix (A� �E)�1E in the neighborhood of s = �. It is simple to show that if �and x are an eigenvalue and eigenvector of (A;E), then 1=(���) and x are an eigenvalueand eigenvector of (A � �E)�1E. Moreover, the tendency of an eigenvalue � to appearas an eigenvalue of the pencil (Â; Ê) depends upon the extent that 1=(� � �) is:104



1. Positioned on the outer edge of the spectrum of (A � �E)�1E. In particular, theeigenvalues of the original system that are closest to � are mapped to the outsideof the spectrum of (A� �E)�1E.2. Separated from the other eigenvalues of (A � �E)�1E. We say 1=(� � �) is wellseparated, if the distance between 1=(���) and its closest neighbor is on the orderof j1=(� � �)j.3. Strengthened due to the presence of large eigenvector components in the vectors band/or c. The residue, �, corresponding to a � is a measure of this strength. Theresidue arises in the partial fraction expansion (2.5).To motivate these observations, we note that the construction of each utilized Krylovsubspace involves the multiplication of vectors by (A��E)�1E. If a vector g is expandedin terms of the eigenvectors, xn, of (A;E) and multiplied by (A� �E)�1E, the result is(assuming distinct eigenvalues for simplicity),(A� �E)�1Eg = (A� �E)�1E NXn=1�nxn = NXn=1 �n�n � �xn:Thus, those eigenvectors �n that are strong (�n is large) and/or near � (positioned onthe outside of the spectrum of (A � �E)�1E) are emphasized by multiplication with(A��E)�1E. In either case, the scaling �n=(�n��) grows large. Although they may beemphasized, eigenvectors corresponding to eigenvalues in a cluster (not well separated)are all emphasized to the same extent, making it di�cult to discern individual directionsin the cluster. Up to a point, this analysis is similar in spirit to that for a power method[3]. We stress though that care must be taken in limiting such a comparison, the Krylovprojection involves entire subspaces rather than simply single directions.Additional relations between the interpolation points and the convergence of thereduced-order model follow from a point of view based on approximately solving the dualsystems of linear equations (1.2). The error in the frequency response of the reduced-order model is rTc (sE � A)�1rb. As explained in Section 3.2, the speed at which theseresiduals are driven to zero depends on the choice of DS preconditioners used in the Krylov105



subspaces. The exact DS preconditioner, Pk = (A� �(k)E)�1, is in turn determined bythe choice of the interpolation point. Therefore, it is certainly of interest to know how theproperties of a DS preconditioner relate to the use of a given interpolation point. Unlikean analysis of eigenvalue convergence, the residuals associated with the approximatesolutions to (2.9) are de�ned and pertinent for all values of s.The matrix (A � �E)�1(A � sE) is at the center of the linear system solver pointof view considered in Section 3.2. Recall that P = (A � �E)�1 plays the role of anexact preconditioner in a Krylov-based solver for linear systems of equations involvingA � �E. One possible path to discuss DS preconditioning and the associated matrix(A � �E)�1(A � sE) is through the concept of clustering. A DS preconditioner maybe evaluated according to the number of distinct eigenvalue clusters appearing in thespectrum of P (A � sE). A small number of tightly-packed clusters is preferred in thespectrum of P (A�sE) for values of s in the frequency range of interest. Two eigenvalues~�n and ~�n+1 of (A��E)�1(A�sE) at some s = � are said to be clustered if their relativedi�erence, j~�n � ~�n+1jmin(j~�nj; j~�n+1j) ; (6:1)is su�ciently small. A cluster at one is particularly desirable.To motivate this concept of clustering, consider a matrix G that equals P (A � �E)or any other generic matrix. Further assume that this matrix has 
 clusters. Solving thesystem of equations Gxg = g via a projection technique leads to a solution that lies inthe Krylov space KJ(G; g). If the clusters in G are tight, i.e., the eigenvalues in a clusterlie atop one another, then the dimension of KJ (G; g) does not exceed 
. For example,the dimension of KJ(G; g) is only one if G is a scaled identity matrix (the eigenvaluesof G in this case are all identical) and xg lies in K1(G; g). Thus, the number of stepsrequired by an iterative solver to �nd xg does not exceed 
 � 1. If the eigenvalues of Gall exist at three points, for example, an exact solution arises after only two iterations.Clustering reduces the number of directions considered by an iterative method in �ndingthe solution. Of course, as the clusters become less tight (the clustered elements are nolonger exactly on top of each other), one can only say that the rank of an increasingly106



perturbed version of KJ(G; g) equals 
. As a very rough rule-of-thumb, one can expectthe relative error in the solution after 
 � 1 iterations to be proportional to the relativedistance (6.1) between clustered eigenvalues.The impact of the choice of � on the spectrums of the two matrices (A � �E)�1Eand (A � �E)�1(A � sE) is key in the following analyses of interpolation points. Notsurprisingly, these two matrices are in fact related up to a simple scaling and shift by theexpression (3.5).6.2 Point PlacementBased on the desired features in the spectrums of (A��E)�1E or (A��E)�1(A�sE),various strategies for locating the interpolation points may be evaluated. We begin withthe simpler single point approaches.6.2.1 Imaginary interpolation pointsThe use of an imaginary interpolation point is perhaps the most logical of startingpoints, because one is interested in minimizing the frequency-response error h(s)� ĥ(s)along the imaginary axis (s = �!). To aid in the analysis of this choice, an examplemapping from � to 1=(� � �) is displayed in Figure 6.1 for an imaginary interpolationpoint. Recall that 1=(� � �) is an eigenvalue of (A � �E)�1E if � is an eigenvalue of(A;E). As evident from either the expression 1=(� � �) or Figure 6.1, an imaginaryinterpolation point maps those eigenvalues of (A;E) near � to well-separated positionson the outer edge of the spectrum of (A � �E)�1E. From the discussion in Section6.1, one should therefore expect those poles of the original system nearest � to rapidlyappear in (Â; Ê). Practical experience con�rms this observation. The poles near � tendto appear, regardless of their strength. The use of an imaginary interpolation point is apowerful tool for �nding all of the information in the neighborhood near �.The advantage of an imaginary interpolation point locally is unfortunately its downfallglobally. Although eigenvalue strength and separation come into play away from �, one107
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Figure 6.1: Eigenvalue Mapping for an Imaginary Interpolation Pointcan roughly expect the convergence tendency of an eigenvalue of (A;E) to be inverselyproportional to its distance from �. Thus, a desired eigenvalue, �d, of (A;E) that is nearthe imaginary axis but away from � must wait on the convergence of all the eigenvaluescloser to � (including eigenvalues that are possibly a distance � j�dj into the left-halfplane). Yet unless they are very strong, eigenvalues far into the left-half plane do notimpact h(s). Unless very weak, an eigenvalue near the imaginary axis leads to a peakin the frequency response [26]. The convergence of �d may be forced to wait on anundetermined number of eigenvalues that are far into the left-half plane and nonessentialto the model. In this situation, stagnation is observed in the reduction of the modelingerror until these non-contributing eigenvalues are all identi�ed. This stagnation canbe further ampli�ed if �d lies in a cluster of eigenvalues, or if �d is weak. In slowingconvergence, this stagnation leads to a model of unnecessarily large size.From a DS preconditioner point of view, the previous discussion remains pertinent.Due to Lemma 2.1, the eigenvalues of (A��E)�1(A�sE) are simply those of the matrix(A � �E)�1E shifted by one and scaled by (s � �). The deviation of the eigenvalues108



of the DS preconditioned matrix from a cluster at one is directly proportional to thedistance of s from �. As s deviates from �, numerous eigenvalues escape the clusterand the e�ectiveness of the DS preconditioner diminishes. The convergence of V x̂b andZx̂c to the true solutions of (1.2) at values of s away from � slows, because the iterativesolver must capture the scattered eigenvalues that are outside of the cluster. The orderin which these scattered eigenvalues are found depends on the same issues touched on inthe previous paragraph.To summarize, imaginary interpolation points always lead to excellent results locally,but can result in extremely slow convergence at all frequencies away from �. An exampleof this behavior is provided in Section 6.4.Before leaving the topic of imaginary points, the reader should note that those polesnear the complex conjugate of the interpolation point, ��, are not typically near � and aretherefore mapped by (A� �E)�1E towards the cluster at the origin. If the convergenceof the poles of the original system is to occur in complex conjugate pairs, interpolationat both � and �� is required. The results of interpolating at �� are simply the dual tothose for �.Some comments on the implementational aspects of complex arithmetic are also inorder. Although one allows complex �(k), the avoidance of complex V and Z is desirable.Beyond potential cost savings by keeping V and Z purely real, a real reduced-ordermodel is preferred for its consistency with the real description of the original system.An approach used to retain real operations with complex �(k) was developed in [91]for the rational Arnoldi algorithm. The thrust of this development is that one shouldalways treat the complex points �(k) and �(k)� pairwise. Whenever an iteration with �(k)is executed, perform a simultaneous iteration with its conjugate �(k)�. Because of therelation (A� �(k)�E)�1v = f(A� �(k)E)�1vg�; (6:2)a knowledge of one direction automatically implies the knowledge of its conjugate. Theexecution of these two simultaneous, conjugate iterations need only introduce two realdirections realf(A��(k)E)�1vg and imagf(A��(k)E)�1vg into V rather than two complex109



ones. The use of (6.2) halves the extra e�ort (typically an increase by a factor of four)involved in working with the complex matrix (A� �E). For further details, the readeris referred to [91].6.2.2 Real interpolation pointsAll of the interpolation points in the prior examples of this dissertation are real. Theutility of a positive real interpolation point again follows from the mapping of the gen-eralized eigenvalues of (A;E) to the eigenvalues of the matrix (A � �E)�1E. Such amapping is displayed in Figure 6.2 and is determined by the following result.Lemma 6.1 If the initial system (2.1) is stable and � is a positive, real number, thenthe eigenvalues of (A� �E)�1E are contained in a circle of radius 12� that is centered at�12� .
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compressed onto the edge of this circle. A simple analysis of the mapping �! 1=(���)reveals that those poles of the initial system with magnitudes much less than � are allmapped to a cluster at �1� . Those poles with magnitudes much greater than � are allmapped to a cluster at 0. Only those poles with magnitudes on the order of � can avoidbeing squeezed into a cluster at 0 or �1� . Poles that are not well separated in the spectrumof (A � �E)�1E tend to be approximated as a single compressed pole in the reduced-order model. Hence, one can only expect poles with j�nj � � to be distinguishable in thereduced-order model. In particular, one should expect the strong poles with magnitudeson the order of � to appear in (Â; Ê). In Figure 6.2, these poles lie in the shaded regions.Real positive interpolation points provide a distant view of the dynamics of a stableinitial system. The position of a mapped eigenvalue 1=(� � �) and, thus, the overallconvergence of the approximate eigenvalue is typically less sensitive to the value of Real(�)when � is real. Practical experience veri�es that a pole away from the imaginary axisstill appears in the model if a real interpolation point is used and if that pole is wellseparated and/or strong.Example 6.1 Consider an eigenvalue � = �:01 + � and a perturbed version of thiseigenvalue, �� = �:1 + �. The change in the resulting mapped eigenvalue relative to theperturbation of the pole, j(�� �)�1 � (�� � �)�1jj�� ��j ;is less than 0:5, if � = 1, but is 1000 if � = �. The di�erence between the mapped versionsof � and �� is signi�cant for the imaginary interpolation point, but is negligible for thereal interpolation point.Besides eigenvalue convergence, we are also interested in the approximate systemsolutions to (1.2) (and in turn the DS preconditioned matrix, (A � �E)�1(A� sE)) ass varies. A distance exists between a real � and the system poles, so that small relativeperturbations in s barely impact the results with the DS preconditioned matrix. Thefollowing result helps to formalize this statement.111



Lemma 6.2 If � is an eigenvalue of (A;E), then ~� = ��s��� is an eigenvalue of the matrix(A� �E)�1(A� sE).Assuming a stable initial system and a positive real �, the di�erence j���j is at leastas large as �. Based on this observation and Lemma 6.2, the eigenvalues of(A� �E)�1(A� sE) and (A� �E)�1(A� (s+ �)E)vary by at most �=�, when s � ��. Compare this fact to the imaginary interpolationcase where the change in the spectrum of the DS preconditioned matrix was directlyproportional to the perturbation, �, on the interpolation point. The DS preconditionerwith a real interpolation point has the opportunity to be suitable over wider regions ofs. The potential for a real interpolation point to be e�ective over wide regions of s andactually being e�ective over broad regions are two di�erent things. In the examples ofSection 6.4, a real interpolation point leads to convergence in a wide neighborhood about�� except about a �nite number of weak eigenvalues of (A;E) along the imaginary axis.For insight into this observation, we return to Figure 6.2. Because the spectrum of theDS preconditioned matrix is simply a shifted and scaled version of Figure 6.2, it is clearthat a real interpolation point can leave a large number of well-separated eigenvaluesin the spectrum of (A � �E)�1(A � sE) (corresponding to all eigenvalues of (A;E)with magnitudes near �). Our previous discussions indicate that the strong, scatteredeigenvalues are the ones tending to appear in the model. The eigenvectors correspondingto these strong eigenvalues play an important part in the solutions to (1.2), becausethey are ones that by de�nition dominate b and c. Also, because the signi�cance ofthese directions arises from their role in the �xed vectors b and c, their importancedepends less on variations in frequency. The only points where these directions canbe overshadowed are those where weaker poles crop up near the imaginary axis. Theeigenvector corresponding to a weak, predominantly imaginary pole, �w, dominates thesolution of (A� sE)xb = b as s nears �w. Yet, because of a Krylov projection's emphasison strong poles, this weak direction can be absent in the reduced-order model and the112



converge of V x̂b and Zx̂c at s = �j�wj delayed. In summary, a real interpolation pointtends to yield a broader, but courser convergence to the true frequency response.6.2.3 Multiple interpolation pointsNow that we better understand the strengths and weaknesses of a single interpolationpoint, it is appropriate to turn to the more general rational interpolation problem. Ourgoal remains the same: a rapid and e�cient convergence to an accurate reduced-ordermodel. Combinations of interpolation points: real, imaginary and complex can be usedto achieve this goal. We tend to concentrate on purely real or imaginary points to keepthe development manageable.The �rst proposed placement strategy, and the one favored in the previous examplesof this dissertation, is to logarithmically space interpolation points between !min and!max on the real axis. A large spacing between these real points is appropriate due to thebroad convergence regions of real interpolation points discussed in Section 6.2.2. The useof one interpolation point per every other order of frequency magnitude is recommended.For a large class of problems, this strategy involves only a single interpolation point. Ingeneral, only a very small number of interpolation points are required by this technique.This strategy is thus appropriate when the cost of factorizing (A� �(k)E) is large. Theuse of real interpolation points is also preferred for the rational Lanczos algorithm, asit allows for a small bandwidth in Â and Ê. The only drawback of real interpolationpoints are the previously mentioned di�culties with lightly damped poles (sharp peaksin the frequency response). Numerous iterations may be required, if such points are tobe found.Spaced interpolation points along the imaginary axis are a second possibility. Rapidconvergence in the frequency response can be expected with this strategy about theK neighborhoods centered at s = ��(k). Either linear or logarithmic spacing can beutilized to adjust this behavior to the frequency range of the problem. An accurate, low-order model can be expected given a su�cient number of imaginary interpolation points,but the value of this number is rarely known a priori. Underestimating the number of113



required imaginary interpolation points can lead to stagnated convergence away from the�(k). Frequency-response peaks due to weak eigenvalues along the imaginary axis maybe untouched, if these peaks are located between and away from the preset imaginaryinterpolation points. That is, problems may arise if the local convergence regions abouteach �(k) do not readily overlap. Avoiding such problems requires either an adaptiveintroduction of extra interpolation points during the modeling process or a �ne grid ofclosely spaced points. Either strategy, and especially the latter, is undoubtedly costlyas many factorizations of (A� �(k)E) are involved. Possible algorithmic approaches forovercoming these expenses are proposed in Chapters 7 and 8. Further details on adaptivepoint placement and selection are provided in Section 6.3.Of course, a combination of real and imaginary interpolation points is possible. Thedistanced real points produce the general features of the frequency response. Imaginaryinterpolation points may then be introduced as needed to capture the exact behavior inuser-speci�ed frequency ranges. The imaginary interpolation points can be used to weighdesirable application-speci�c features which are known to the user.Even though it is not implemented in the following, there is another approach forselecting multiple interpolation points which is of interest. This approach is due to [92]and actually leads to an optimal reduced-order model in a certain sense. It is shown in[92] that the L2 norm of the inverse Laplace transform of h(s) � ĥ(s) is minimized ifĥ(s) matches the values of h(s) at �m = ��̂m, m = 1; 2; : : : ;M , where the �̂m are thepoles of the reduced-order model. Unfortunately, these values ��̂m where interpolationis proposed are not known a priori. An algorithm is proposed in [93] for iterativelylocating these points, but both the convergence and e�ciency of this procedure arequestionable for large-scale problems. Regardless of the feasibility of the implementation,this approach does suggest that a combination of real and imaginary interpolation pointscan be preferred over a single interpolation point.114



6.3 Point SelectionOnce the values of the interpolation points are set, their ordering and use (the values forJk) need to be speci�ed. Schemes based on simply alternating the interpolation pointsat each iteration were already seen in Chapter 4. Alternating points was particularlyimportant in the rational Lanczos algorithm, because it promoted a small bandwidth inthe reduced-order matrices. Yet even with such a simple scheme, one may not wish tomatch the same number of moments about every interpolation point. For example, theerror over a certain frequency range might be observed to drop much faster than overanother. Frequently, such information only arises as a picture of the system developsduring the modeling process. Thus, even in the simplest schemes, an adaptive control ofthe interpolation point selection may be worthwhile.It is logical to base adaptive interpolation decisions on one of the error estimatesdeveloped in Chapter 5. The interpolation points of new iterations can be speci�ed asm grows with the goal of reducing the remaining error in the approximation. Variousdegrees of e�ort can placed towards controlling the future modeling steps via some errorestimate �̂.6.3.1 Adaptive terminationIn this simplest of approaches, one utilizes �̂ to specify only the number of moments(2Jk) matched about each interpolation point. The placement and ordering of the interpo-lation points, e.g., alternated in consecutive blocks, etc., are speci�ed prior to execution.A given �(k) is then utilized in the prescribed ordering until �̂ drops below an acceptablelevel across the frequency ranges that correspond to �(k). If imaginary points are used,for example, one ceases to use �(k) when the modeling error is small for all frequenciesbetween it and its nearest neighbors. This approach is even pertinent for K = 1; thecorresponding frequency range simply runs from !min to !max in this case.115



6.3.2 Adaptive selectionThis approach utilizes the error estimate to determine both the ordering of the �(k)and the values of Jk for some predetermined set of interpolation points. One simplychooses the interpolation point for the (m+1)st iteration that is closest to the frequencywhere �̂m is largest. Intuitively, such an approach is pleasing as one strives to reduce themaximum error at each step.6.3.3 Adaptive placementTaking the previous approach one step farther, one can adaptively place a completelynew interpolation point in the mth iteration at the frequency where �̂m is largest. The setof interpolation points is not �xed a priori, but grows during the process. To limit thisgrowth, one may choose to perform multiple iterations before changing to a new point.If m is an iteration where a new interpolation point is chosen, a good rule of thumb is topersist with this chosen interpolation point until the frequency-response change in somefuture iteration, e.g., ĥm+f (s)� ĥm+f�1(s), drops to less than 10% of ĥm(s)� ĥm�1(s).That is, remain with a given interpolation point until signs of stagnation arise. In thismanner, one attempts to obtain full bene�ts from an interpolation point before su�eringthe costs involved with moving to another one. Note that adaptive placement is onlyappropriate for imaginary interpolation points; real ones possess a broader range suitedfor the previously mentioned adaptive selection.Example 6.2 Consider applying the three adaptive schemes to �nd an approximationbetween 1 and 10 rad/s. In adaptive termination (Section 6.3.1), one might start byusing �(1) = 1 in odd iterations and �(2) = 10 in even iterations. One stops utilizing �(1)as an interpolation point, as soon as �̂ becomes small over 1 to 5 rad/s. Likewise, �(2) isno longer used after �̂ becomes small over 5 to 10 rad/s. In adaptive selection (Section6.3.2), the interpolation point utilized in the mth iteration (�m) depends on �̂m�1. If �̂m�1is largest over 1 to 5 rad/s, then �m = 1; otherwise, �m is set to be 10. In adaptive116



placement (Section 6.3.3), �m is chosen to be p�1 times the frequency in the range1 � ! � 10, where �̂m�1(�!) is largest.Although the use of adaptation increases in going from the point selection approachesof Sections 6.3.1 to 6.3.3, the performance need not increase accordingly. For both prac-tical and theoretical reasons, the adaptive selection scheme may not be preferred overthe simpler combination of regularly alternating interpolation points and adaptive termi-nation. Assuming exact DS preconditioners and in�nite precision, only the values of Jk,and not the interpolation point ordering, determine the reduced-order model. In theory,the approaches in Sections 6.3.1 and 6.3.2 should yield similar results. Furthermore, theerror estimate �̂ used by adaptive selection or placement is only an approximation. Reg-ularly alternating the interpolation points as in Section 6.3.1 insures that information ismatched across the entire frequency range.From a cost standpoint, care should also be taken before abandoning the simpleradaptive termination scheme. Interpolation point-ordering based on �̂ (Section 6.3.2)destroys the banded structure in the rational Lanczos method. The adaptive placementof points (Section 6.3.3) may lead to a large number of imaginary interpolation points.Although many points may speed convergence, a large K is most likely impractical forthe algorithms of Chapter 4 (the algorithms seen up to this point).6.4 ComparisonsTo compare various interpolation point placement and selection techniques, one cangenerate reduced-order models according to the following �ve strategies:Strategy 1. A single real interpolation point at !maxStrategy 2. Two imaginary interpolation points at �!minStrategy 3. A real interpolation point at every other order of magnitude117



Strategy 4. Five conjugate pairs of linearly spaced imaginary interpolation pointsStrategy 5. Adaptively placed imaginary interpolation points according to max(�)Strategy 1, a real point at !max, is endorsed in [48] while Strategy 2, an imaginary pointat !min, is quite common throughout the literature. Strategies 3 and 4 were discussedin Section 6.2.3. Strategy 5 is an adaptive strategy that places a new interpolationpoint (after every ten iterations in Examples 6.3 and 6.4) wherever the current modelingerror is greatest. This strategy is not implementable in practical situations, becauseonly an error estimate �̂ is commonly available. Strategy 5 serves as a rough bound onthe best achievable error and is, thus, useful for comparisons. The expected behaviorof each strategy follows from Section 6.2. Recall that a real interpolation point, �(k),tends to induce a course convergence over the approximate range 0:1�(k) < ! < 10�(k),while an imaginary interpolation point, �(k), tends to induce precise convergence in theneighborhood of s = ��(k).Example 6.3 We return to the compact disc player considered in Example 2.1. In thisexample, the CD subsystem to be approximated relates the position of the player's focusinglens to inputs at the radial arm actuator. The frequency response of this subsystem isshown in Figure 6.3.One hundred RK iterations were executed with each of the �ve interpolation pointstrategies listed at the beginning of this section. The speci�c interpolation points cor-responding to each of these strategies are listed in Table 6.1. The model reduction wasimplemented with a reorthogonalized version of the dual rational Arnoldi to insure thatthe quality of the approximation depended solely on interpolation point placement andselection. The relative errors in the reduced-order model as both the interpolation pointstrategy and the number of iterations varies are presented in Table 6.2. The error ismeasured by a computed H2 norm, which is uniformly weighted over the frequency range!min = 0:1 to !max = 105 rad/s.With the exception of the single real interpolation point case, the strategies of Table6.2 perform comparably well. The di�culties with a single interpolation point follow from118



Table 6.1: Interpolation Point Strategies of Example 6.3Strategy Interpolation Point(s)1 1052 ��3 1, 100, 1044 ��, �10�, �100�, �103�, �104�5 ��, �100�, �3000�, �600�, �104�, �4200�,�1:8 � 104�, �1:6 � 104�, �3:9 � 104, �300�Table 6.2: Convergence with the Interpolation Point Strategies of Example 6.3m Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 510 1.0000e+00 2.6246e+00 9.7267e-01 1.1844e+00 2.7315e+0020 1.0002e+00 2.3167e-01 1.3378e-01 4.0014e-01 4.4137e-0230 1.0001e+00 6.0595e-03 6.5276e-02 1.6369e-01 9.9232e-0340 1.0002e+00 1.1386e-03 1.5089e-03 1.8898e-03 6.1080e-0450 1.0002e+00 5.3858e-04 1.7842e-03 1.4359e-03 2.0964e-0460 1.0001e+00 7.5327e-04 4.2890e-04 2.9126e-04 3.3147e-0470 1.0002e+00 3.8352e-04 3.0646e-04 1.2832e-04 8.5592e-0580 1.0036e+00 8.3960e-05 1.0041e-04 8.2559e-05 1.9209e-0590 1.0052e+00 1.0465e-05 7.5123e-06 1.4374e-05 7.9303e-06100 1.0395e+00 4.6947e-06 1.9490e-05 1.1960e-05 4.5992e-06119
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Figure 6.3: Frequency Response of Example 6.3the portion of the spectrum of (A;E) in Figure 6.4. As one moves up and way from theorigin in this �gure, the vertical spacing between the eigenvalues grows proportionallywith !, while the horizontal spacing only gradually increases. The vertical spacing for theeigenvalues across the top of the �gure is on the order of 104, while it drops to order 101as one approaches the origin.To a real interpolation point at 105, only the vertical spacings on the order of 104are signi�cant. The eigenvalues across the top of the �gure appear well separated, whilethose eigenvalues with imaginary parts < 104 appear as a large cluster at the origin.Unfortunately for Strategy 1, the individual eigenvalues in this cluster dominate the fre-quency response. Strategy 1 stagnates, because it emphasizes the eigenvalues across thetop of Figure 6.4. Strategy 2, on the other hand, focuses on the eigenvalues nearest tothe origin. The eigenvalues along the imaginary axis do not appear as a cluster to thisinterpolation point. Strategy 2 is able to continue converging at higher frequencies asm grows, because the eigenvalues lie on a single path along the imaginary axis. Thinkof circles of increasingly larger radii that are centered at the origin. As these circles120
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Figure 6.4: Eigenvalue Spectrum of Example 6.3grow in size, the only additional eigenvalues that they enclose lie at higher frequenciesalong the imaginary axis. There are no eigenvalues with large real and small imaginarycomponents that would induce stagnation in Strategy 2. Observe the empty space in thelower-left corner of Figure 6.4. Strategies 3 through 5 all utilize at least one interpolationpoint with a magnitude on the order of one as well. Thus, these latter strategies sharethe desirable convergence properties of Strategy 2.The CD player possesses an eigenvalue spectrum that favors low-magnitude interpo-lation points. However, as Example 6.4 shows, interpolation points near the origin cancause di�culties in other problems.Example 6.4 In this example, we once more consider the PEEC problem introduced inExample 5.2. Like Example 6.3, the �ve strategies at the beginning of this section wereeach utilized for one-hundred dual rational Arnoldi iterations. The speci�c interpolationpoints used in each strategy are listed in Table 6.3. The convergence results with each ofthese strategies are presented in Table 6.4. Because the frequency range of interest only121



spans an order of magnitude in Figure 5.3, the same single real interpolation point isappropriate for Strategies 1 and 3.Unlike Example 6.3, Strategy 2, the single imaginary interpolation point, su�ers inthis example. To understand this occurrence, consider the portion of the PEEC spectrumof (A;E) that appears in Figure 6.5. Note that the axes in Figure 6.5 are scaled to Hzfor easy comparison with the frequency response in Figure 5.3. A cluster of eigenvaluesnear the origin leads to the stagnation observed in the second column of Table 6.4. Usingimaginary interpolation points at �0:5�, Strategy 2 emphasizes this cluster at the origininstead of the line of eigenvalues running up along the imaginary axis. However, thisline of eigenvalues dominates the frequency response; note the correspondence betweentheir locations and the spikes in Figure 5.3. Although weak at times, these eigenvaluesare easily captured by the other strategies, particularly numbers four and �ve. The morecomplicated Strategies 4 and 5 do show speed ups over a single real point, yet Strategy 1is not unreasonable given its economical implementation. In fact, Strategy 5 could onlybe carried out for seventy iterations in this problem due to the memory limitations of themachine executing the algorithm.
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Table 6.3: Interpolation Point Strategies of Example 6.4Strategy Interpolation Point(s)1 52 �0:5�3 54 ��, �2�, �3�, �4�, �5�5 ��, �3:5�, �5�, �3�, �2�, �0:5�, �4:5�, �2:75�
Table 6.4: Convergence with the Interpolation Point Strategies of Example 6.4m Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 510 6.0169e-01 6.4804e-01 6.0169e-01 5.7333e-01 6.6406e-0120 2.2386e-01 8.4414e-01 2.2386e-01 1.4775e-01 2.2477e-0130 2.3394e-01 2.2597e-01 2.3394e-01 1.3035e-01 1.3782e-0140 2.5878e-01 2.7452e-01 2.5878e-01 1.4116e-02 2.7480e-0250 2.6881e-01 2.0472e-01 2.6881e-01 1.6305e-04 7.9555e-0460 1.0115e-01 1.1185e-01 1.0115e-01 2.7311e-06 2.3797e-0570 4.4557e-02 1.4684e-01 4.4557e-02 1.7026e-07 8.2285e-0880 9.9652e-03 1.0727e-01 9.9652e-03 4.7323e-0890 3.1338e-04 6.0746e-02 3.1338e-04 1.1786e-07100 3.6179e-06 6.8173e-02 3.6179e-06 3.6125e-08123



A single interpolation point is suitable for many applications. The actual location ofthat optimal point varies though from problem to problem. The placement of a singlepoint may be further clouded by the fact that little is frequently known of a system'sresponse prior to the model reduction. On the other hand, Examples 4.3 and 4.4 suggestthat a few systematically placed interpolation points insure fast convergence in a varietyof situations. Strategy 3, for example, provides a robust and competitive convergence(relative to any single-point strategy) in all attempted problems.As for the adaptive strategies of Section 6.3, the results are mixed. Convergenceimprovements by a factor of two to three can at times be observed with adaptive place-ment and selection. Yet, these convergence improvements tend to be accompanied bysigni�cant increases in cost. The accuracy of the adaptations also tends to be limited bythe quality of the error estimates, �̂. Further research is needed in this area. Perhapsthe true value of adaptation may only be realized in methods that avoid the sequentialimplementation of exact DS preconditioners. Alternatives to the exact case are studiedin both Chapters 7 and 8.
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CHAPTER 7PARALLEL RATIONAL INTERPOLATIONA signi�cant amount of high-level parallelism appears to exist in rational interpola-tion. Multiple interpolation points and their corresponding Krylov subspaces are in-volved. Treating these points concurrently might signi�cantly reduce the time requiredto construct the reduced-order model. Although possible complications arise in the(bi)orthogonalization and generation of the approximation, an interesting version of theRP algorithm is devised which avoids these di�culties and provides impressive prelimi-nary experimental results.7.1 OverviewOne way to enhance the performance of Krylov-based model reduction is to executethe algorithm on multiple processors. One breaks the algorithm into portions that canbe treated in a parallel fashion. Some interaction is typically required between thesesub-portions, although communications should be kept to a minimum.There are at least two types of exploitable parallelism within model reduction viaprojection. The �rst is the parallelism that exists to various degrees in the basic matrixoperations: matrix-vector products, matrix factorizations, etc. The second type of par-allelism arises from the fact that the column spaces of the projection matrices V and Zare composed of multiple Krylov subspaces, which are only di�erentiated by the choiceof �(k). One hopes to concurrently construct the subspaces making up the unions inV and Z. Accordingly, the interpolation points are scattered across the processors. Intheory, this second type of parallelism could be combined with that in the basic matrixoperations. A strategy with two or more levels of parallelism results. One most likely125



needs to utilize both of these levels to meet the memory requirements imposed by largerproblems. In this section, only the structure of the V and Z column spaces is exploited.The reader is referred to [94] for parallel versions of the more basic matrix operations.Corresponding to the assignment of distinct interpolation point(s) to each processor,several assumptions are required. First, one must assume that su�cient memory existsto store the sparse factorizations of (A � �(k)E) at all the interpolation points. In adistributed network of processors [94], one must therefore assume that the memory localto each processor can store the sparse factorizations corresponding to its assigned inter-polation point(s). Second, and for reasons of scalability [94], one must allow the numberof interpolation points K to meet or exceed the number of moments, 2J , matched abouteach interpolation point. The interpolation points can be treated in parallel. Matchinghigher moments (large J) about a given point is a sequential procedure, i.e., the onlyparallelism available is in the matrix operations. This K � J assumption tends to in-validate a parallel version of the RL algorithm of Section 4.1.3. A large K in rationalLanczos leads to a large bandwidth in Â and Ê (long recurrences) and, hence, eliminatesthe RL method's edge over the dual rational Arnoldi algorithm. The assumption of alarge K also runs contrary to the tendencies throughout the rest of this dissertation.In this proposed parallel approach, many interpolation points are utilized, which eachcapture the dynamic behavior in their locality. Hence, a highly parallel implementationappears to be suited to the use of imaginary rather than real interpolation points (recallSection 6.2). Given moderate parallelism (only a few processors), combinations of realand imaginary shifts are most likely appropriate (we do not consider this case further inthis section).The bases for the individual subspaces in the unions, i.e., bases forKJ ((A� �(k)E)�1E; (A� �(k)E)�1b) (7:1)and KJ ((A� �(k)E)�TE; (A� �(k)E)�T c) (7:2)126



can be constructed concurrently. Consider, for now, the case where one interpolationpoint is assigned per processor. Matrices VJ;k and ZJ;k can be constructed on the kthprocessor that yield bases for the subspaces (7.1) and (7.2) evaluated at �(k). Uponcompletion, the overall projection matricesV = � VJ;1 : : : VJ;K � and Z = � ZJ;1 : : :ZJ;K �are stored across the K processors. Unfortunately, this simple approach is incomplete.The reduced-order model in (2.7) must still be computed from V and Z, requiring theinteraction of all K processors. Related, but more limiting, one may place orthogonalityconditions on V and Z. Orthogonalization requires each processor to access the entire Vand Z matrices. However, broadcasting the dense columns of V and Z to all processorsis a signi�cant communication bottleneck.7.2 A parallel dual rational Arnoldi algorithmSeveral parallel variants of a one-sided rational Arnoldi method are developed in [81]for the eigenvalue problem. These techniques are trivially extended to the dual case,and we do not cover the details here. To summarize, the factorizations of (A � �(k)E)at multiple points are scattered among processors. In each step of the algorithm, Knew directions in both the column spaces of V and Z are concurrently constructed. Toachieve orthogonal bases, one or more of the processors needs to access all of the existingdirections in V and Z. But as mentioned above, the amount of communication involvedin this orthogonalization is undesirable.7.3 A parallel rational power algorithmTo avoid orthogonalization and the associated processor interactions, one can turn tothe rational power Krylov method, which was proposed in Section 4.1.1. The RP methoddoes not use orthogonalization, but requires numerous interpolation points. Both of these127



qualities are well-suited to a parallel implementation. In particular, V can be computedwithout processor interactions, if orthogonalization is avoided.However, signi�cant processor interaction may still be required to form Ê = ZTEVand Â = ZTAV . Consider, for example, that âm = ZTAvm must be formed for m = 1to M ; yet the columns of Z are scattered across the processors.Matters would be signi�cantly simpli�ed if every processor automatically knew theentire matrix Z at the start of execution. The matrices Â and Ê would then be generatedin parallel. Each processor would compute the columns ZTAvm and ZTEvm of Â and Êthat correspond to the columns of V that they possessed. No communication would berequired to form V , Â or Ê. An automatic knowledge of Z (without communications) ispossible if the form of Z is prespeci�ed in a manner known to all of the processors. If Z isprespeci�ed to be a matrix of random elements, for example, each processor can directlyaccess Z by simply knowing the seed value of the random number generator. Similarly, Zcontains the �rstM columns of an identity matrix, each processor could trivially generateZ for itself. Of course, such versions of Z fail to satisfy the desired rational interpolationform in (3.2). Yet moment-matching is two-sided; a V that satis�es (3.1) leads to areduced-order model which still matchesM (rather than 2M) moments. We can specifyZ for ease of computation and V for approximation accuracy. One forfeits some momentsby prespecifying the form of Z, but the loss of model-reduction quality in practice doesnot seem to be as harmful as one might fear. Even when Z is arbitrary, V matchesmoments and insures that the reduced-order model converges in at most N steps. AsExamples 7.1 through 7.3 demonstrate, the convergence based on the one-sided use of Vtends to be reasonably competitive with the previous two-sided algorithms. Moreover,the one-sided approach is highly parallel.Besides avoiding the communication of Z, a parallel RP algorithm must carefullyassign interpolation points to the processors. Interpolation point placement is crucial forload-balancing, i.e., making sure that the amount of work performed by each processor isfairly identical. If the interpolation points on two di�erent processors are too close, thenthese processors compute (nearly) duplicate directions and work is wasted. One of the128



processors could have been more e�ciently utilized elsewhere. On the other hand, if aninsu�cient number of processors are assigned to a frequency range where large modelingerror exists, then this error only gradually declines, many iterations are required on asingle processor, and the advantages of parallelism are lost. Beyond load-balancing, theplacement of multiple interpolation points is fundamental to the RP method. Recall fromSection 4.1.1 that the RP algorithm relies on frequent changes of the interpolation points(small Jk) to introduce su�cient information into V . Luckily for the RP approach, theuse of many well-placed interpolation points is consistent with a load-balanced parallelimplementation.To e�ectively address point placement, we suggest the combination of several tech-niques proposed in the previous three chapters:1. An Error Estimate via Complementary Models (Section 5.1). Determining appro-priate locations for the interpolation points requires a sense of the dynamics of theoriginal system. As the model reduction proceeds, the error estimate (5.1) can beutilized to obtain a sense of important behavior, which is absent from the reduced-order model. The comparison of complementary models is particularly appropriatefor parallel algorithms; one can construct the two di�erent viewpoints ĥ(s) andĥ?(s) concurrently.2. Adaptive Point Placement (Section 6.3). It is di�cult, if not impossible, to quantifythe convergence behavior of the reduced-order model a priori. Therefore, to insurethat each processor is contributing new information at every step, old interpolationpoints must be discarded where convergence has occurred, while new interpolationpoints must be introduced where the modeling error remains large. These decisionsare made according to the error estimate.3. Dependency Postprocessing (Section 4.1.1). Even with adaptive point placementbased on error estimates, the RP algorithm may still occasionally compute (nearly)redundant information. Postprocessing via a singular value decomposition is there-fore employed to remove the any redundancies in the projection matrices.129



Algorithm 7.1 combines these techniques. This algorithm (a) computes directionsin V at K points, (b) updates the set of interpolation points according to an updatederror estimate, and (c) returns to the �rst step if needed. The computation of K newdirections, (S7.1.1) through (S7.1.4), may be executed in parallel. These steps includethe matrix factorizations in (S7.1.2) and the reduced-order model updates in (S7.1.4).Note that two complementary reduced-order models are actually computed in (S7.1.4).This parallel RP algorithm completely replaces its set of interpolation points at thebeginning of every iteration of the outer l loop (although in practice one might wantto use a given interpolation point for a few iterations to reduce the required work). Assuch, only one moment (the value of the frequency response) is matched about any giveninterpolation point. At the end of each outer iteration, an error estimate is computedbased on the comparison of two distinct reduced-order models. Mainly, the di�erenceĥ(s)�ĥ?(s) is computed at many points over the frequency range !min to !max. A scaledversion of this di�erence is then used as a (discrete) probability distribution function forthe random placement of the next set of K interpolation points. The probability thata new interpolation point is located at some frequency is proportional to the degree ofmodeling error estimated at that frequency.Those operations outside of the k dependent loops require either communications be-tween the processors, (S7.1.5) and (S7.1.8), or sequential operations, (S7.1.6). The com-munications require messages of length O(M), in practice, while the sequential (S7.1.6)involves O(M3) operations. All communications and sequential operations involvingorder-N quantities are avoided. The communications and sequential operations occur Ltimes, a value that is expected to be small.The Algorithm 7.1 is designed for clarity and several details are intentionally over-looked. The amount of e�ort associated with Â and Ê is not quite as much as suggestedby (S7.1.4) and (S7.1.5). One does not need to compute/send the entire matrices Â andÊ in each outer l iteration. The leading minors of the Â and Ê matrices remain the samefrom one iteration to the next. Only the K bottom rows and K rightmost columns need130



Algorithm 7.1 Rational Krylov (Parallel RP Version)Initialize: �̂ = 1 for !min < w < !max;For l = 1 to L,For k = 1 to 2K,(S7.1.1) choose �(k) randomly between !min and !maxaccording to �̂ distribution;(S7.1.2) v̂l;k = (A� �(k)E)�1b;(S7.1.3) vl;k = v̂l;k= kv̂l;kk2;(S7.1.4) If k � K,For j = 1 to l,â(j�1)K+k = ZTlKAvj;k and ê(j�1)K+k = ZTlKEvj;k;endelse,For j = 1 to l,â?(j�2)K+k = ZT?lKAvj;k�K and ê?(j�2)K+k = ZT?lKEvj;k�K ;endendend(S7.1.5) send Â, Ê and Â?, Ê? to all processors;(S7.1.6) postprocess approximations for rank-de�cienciesFor k = 1 to 2K,(S7.1.7) compute �̂ = ĥ� ĥ? over (!min + k�12K !max) to (!min + k2K!max);end(S7.1.8) send �̂ to all processors;end 131



to be treated in a given l outer iteration. The output and input vectors, V T c and ZTb,can be handled similarly. The e�ort involved in these vectors is minor, when comparedto that in forming and communicating Â and Ê.There are several other details that can be implemented in the parallel RP algorithm.First, one might edit �̂ in (S7.1.1) after each interpolation point is chosen. As a newinterpolation point is placed, set �̂ to zero in the near proximity of this point. Withthis small trick, (nearly) duplicate interpolation points can be avoided. Implementingthis optional �̂ modi�cation does require (S7.1.1) to be executed sequentially (this isnot a real concern, because this step is so simple). Second, the outer l iteration wouldmost likely be terminated and new interpolation points would cease to be chosen when�̂ becomes su�ciently small everywhere. Third, the treatment of complex quantities inAlgorithm 7.1 is rather nebulous. In practice, V is augmented with both the directionsrealf(A � �(k)E)�1bg and imagf(A � �(k)E)�1bg so as to incorporate both �(k) and itscomplex conjugate into the reduced-order model.The reliability of the proposed parallel methods could be questioned at this point.After all, terms such as random and nonorthogonal do not exactly inspire con�dencein the approach. A rigorous understanding of the method's convergence, in practice,is not yet claimed. We rely instead on the generality of Theorem 3.1 and impressiveinitial experimental results. Several tests of a sequential (quasi-parallel) version of theparallel RP algorithm are presented in Examples 7.1 through 7.3. The MATLAB codeused in these tests may be found in Appendix B. We stress that the reduced-ordermodels generated with this quasi-parallel algorithm should exactly equal those formedwith a true 16-processor machine. At this point, our goal is obviously not an indepthanalysis of the approach's e�ciency; although an execution time is desired that is inthe neighborhood of L sparse linear system solves. Rather, we simply emphasize thepotential of the approach.In Examples 7.1 through 7.3, a few details should not be overlooked. First, therandom generator seed was set to zero at the beginning of each test. Second, the plotsassociated with each case utilize a dotted line to denote the true frequency response, a132



dashed line to denote the frequency response of the reduced-order model, and a solid lineto denote the error estimate �̂. Third, it is expected that the reduced-order models willbe augmented by an additional 16 states (corresponding to 8 interpolation points andtheir complex conjugates) after each outer MATLAB iteration. The actual model size,denoted by m, does not grow quite as quickly, however, because dependent directions(corresponding to singular values with relatives sizes under 10�8) are discarded by theSVD postprocessing of Section 4.1.1.Example 7.1 In this problem, we reconsider the packaging interconnect of Example 4.5.A quasi-parallel RP algorithm was executed for only L = 2 outer iterations. The resultsafter each iteration are shown in Figures 7.1 and 7.2. Both the quality of the reduced-order models and the error estimates are high. The accuracy of this 25th order model isis competitive with the results of the sequential dual rational Arnoldi algorithm in Figure4.5. Although the dual RA approach matches twice as many moments, dual RA does notaggressively utilize multiple interpolation points.Example 7.2 In this problem, we reconsider the CD player subsystem of Example 6.3.The results after each of the �rst L = 4 iterations are displayed in Figures 7.3 through7.6. The model accuracy is again comparable to that of the dual RA Algorithm 6.2. Theerror at high frequencies is due primarily to the measure (H1 norm) of the modelingerror and not to a shortcoming of the parallel RP method.Example 7.3 In this problem, we reconsider the PEEC model of Example 5.2. Theresults after each of the �rst L = 4 iterations are displayed in Figures 7.7 through 7.10.The reduced-order model accuracy with the parallel RP algorithm is actually superiorto the previously seen dual RA results. The large number of spikes in this problem'sfrequency response are more rapidly found (in terms of model size m) with a large numberof interpolation points. It is interesting to note that the number of discarded projectiondirections becomes large as the degree of convergence becomes signi�cant (the model sizebetween l = 3 and l = 4 changes only by two). The di�erence between the original and133



reduced-order models is no longer large enough to readily support multiple new directions(additional interpolation points) beyond l = 3.A parallel model-reduction algorithm involving one random projection matrix Z andone nonorthogonal projection matrix V was proposed. Using a random Z reduces thenumber of moments that can be matched by the reduced-order model. Yet a random Zallows for the parallel construction of the reduced-order model with minimal communi-cations. Also, as long as V satis�es (3.1),M moments are still matched. Error estimatesand adaptive point placement are aimed at acquiring an e�cient, balanced convergence.By avoiding Gram-Schmidt recurrences during the construction of this V , parallelism isfurther increased. Although the lack of orthogonality in V can lead to dependences, theseproblems can apparently be overcome by the use of numerous interpolation points andSVD postprocessing of the reduced-order model. Although further study of this SVDpostprocessing is required (see Chapter 10), the results of Examples 7.1 through 7.3 arenoteworthy.
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Figure 7.1: Approximate Frequency Response of Example 7.1 when m = 12
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Figure 7.2: Approximate Frequency Response of Example 7.1 when m = 25135
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Figure 7.3: Approximate Frequency Response of Example 7.2 when m = 14
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Figure 7.4: Approximate Frequency Response of Example 7.2 when m = 27136
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Figure 7.5: Approximate Frequency Response of Example 7.2 when m = 40
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Figure 7.6: Approximate Frequency Response of Example 7.2 when m = 48137
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Figure 7.7: Approximate Frequency Response of Example 7.3 when m = 15
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Figure 7.8: Approximate Frequency Response of Example 7.3 when m = 31138
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Figure 7.9: Approximate Frequency Response of Example 7.3 when m = 42
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Figure 7.10: Approximate Frequency Response of Example 7.3 when m = 44139



CHAPTER 8APPROXIMATE RATIONAL INTERPOLATIONThe power of the model-reduction techniques of the previous sections arises primar-ily from the construction of bases for the exact DS-preconditioned Krylov subspaces in(3.1) and (3.2). However, it is doubtful that these bases can be generated or even storedas the size and/or complexity of the original system grows. For example, direct sparsefactorizations of a matrix pencil arising from a three-dimensional discretization are fre-quently impractical. This chapter considers approaches for reducing the computationale�ort required in rational interpolation. Both explicit and implicit approximations to(A� �E)�1 are incorporated into the projection subspaces. Some of the exact relationsof Chapters 3 and 4 are lost, but reasonable results are still possible.The following e�orts represent some of the �rst attempts to relax the requirementson DS preconditioners in Krylov algorithms in order to reduce work. This chapter is astarting point rather than a �nal solution for reducing the computational e�ort in modelreduction.8.1 Conversions to Approximate SolvesThe construction of an exact rational interpolant requires the exact DS preconditionerspresent in the subspaces of (3.1) and (3.2). By Lemmas 2.1 and 2.2, these subspaces takethe form colsp fV g = K[k=1KJk((A� �(k)E)�1(A� sE); (A� �(k)E)�1b) (8.1)colsp fZg = K[k=1KJk((A� �(k)E)�T (A� sE)T ; (A� �(k)E)�T c); (8.2)140



where (A � �(k)E)�1 is an exact DS preconditioner and the choice of s is super
uous.Emphasizing the iterative solution of the dual systems of equations (1.2), recall thatSection 3.2 suggests the need to �nd only acceptable approximate solutions V x̂b andZ ẑc across the frequency range of interest. In adopting this view and abandoning strictmoment-matching conditions, inexact DS preconditioners become appropriate. We re-place (A� �(k)E)�1 in (8.1) and (8.2) with approximations.An adaptation of the RK algorithm utilizing approximations to (A � �(k)E)�1 ispresented in Algorithm 8.1. There are only two di�erences between Algorithms 4.1 and8.1. The matrix (A� �mE)�1 was replaced with �m � (A� �mE)�1 in (S8.1.2) and Ewas replaced with (A� �mE) in (S8.1.4). The scalar �m corresponds to �xing a value fors in (8.1) and (8.2). It was noted in Section 3.2, that the choice of s in (8.1) and (8.2) isnot relevant for the exact DS preconditioner case due to the shift invariance property ofKrylov subspaces. Thus, in the previously assumed exact cases, it made computationalsense to simply replace (A� sE) with E (think of allowing s to grow larger).Algorithm 8.1 Rational Krylov (Approximate General Version)Initialize: q1 = (
q1)�1b and w1 = (�w1 )�1cT ;For m = 1 to M ,(S8.1.1) Input: �m, the interpolation point for mth iteration;(S8.1.2) ~vm = �mqpm+1 and ~zm = �Tmwpm+1;(S8.1.3) 
vmvm = ~vm � Vm�1�vm and �zmzm = ~zm � Zm�1�zm;(S8.1.4) ~qm+1 = (A� �mE)vm and ~wm+1 = (A� �mE)Tzm;(S8.1.5) 
qm+1qm+1 = ~qm+1 �Qm�qm+1 and �wm+1wm+1 = ~wm+1 �Wm �wm+1;endThe generated V and Z of the approximate RK algorithm no longer form bases forunions of Krylov subspaces (Lemmas 2.1 and 4.1 do not carry over to the inexact DS pre-conditioning case), nor do these projection matrices lead to rational interpolants. How-ever, the reduced-order model formed from (2.7) with approximately DS-preconditioned141



V and Z does satisfy the Petrov-Galerkin constraints (meeting the Petrov-Galerkin con-straints is not restricted to moment-matching) and Theorem 5.1 still holds. As long asreasonable approximations V x̂b and Zx̂c to xb and xc are acquired, a good reduced-ordermodel is achievable. It is interesting to note that even the exactly DS-preconditioned Vand Z do not necessarily lead to optimal approximations to xb and xc at all s. Rationalinterpolation leads to exact DS preconditioners, which are only optimally suited for afew discrete points, i.e., the interpolation points. For frequencies away from the inter-polation points, it is uncertain as to whether (A � �(k)E)�1 is necessarily a better DSpreconditioner than some Pk � (A� �(k)E)�1.Two new parameters, �m and �m, appear in Algorithm 8.1 and must be speci�ed.We denote �m as the DS preconditioning operator of the mth iteration. The operator�m approximates the action of (A � �mE)�1 on a vector. If �m is a matrix, whichwas always assumed in the past, then it is a member of the set fP1; P2; : : : PKg, wherePk is an approximation to (A � �(k)E)�1. This choice is consistent with the previousnotation regarding a DS preconditioner. Numerous possibilities exist for �nding a �xedDS preconditioner Pk that approximates (A � �(k)E)�1 [8]. Typically, one constructsa sparse matrix, which can be utilized to approximate the action of (A � �(k)E)�1. Inthe incomplete LU approach, for example, an approximate, sparse LU factorization of(A � �(k)E) is computed. Elements appearing during the factorization that correspondto a certain level of �ll or possess sizes that are under a certain tolerance are dropped[95]. A second technique is the approximate inverse approach. One constructs a Pk withsome sparsity pattern, so that Pk(A��(k)E)�I is minimized with respect to some norm,e.g., the Frobenius norm [96].Alternatively, and more generally, one can think of �m as an operation that takes inthe vectors qpm+1, wpm+1 and outputs the vectors ~vm, ~zm. Hence, �m can represent aniterative system solver that computes approximate solutions to the equations�(A� �mE)~vm = qpm+1 and (A� �mE)T ~zm = wpm+1: (8:3)�Note that the exact (ideal) solutions in (8.3) are underlined. The vector that is actually computed(the approximation) is indicated in standard fashion without underlining.142



When an iterative solver is utilized, �m represents a nonlinear operation which is nolonger associated with a �xed matrix Pk. The use of iterative solvers to implicitly performDS preconditioning is common in the linear solver literature [70, 71, 97]. Methods of thistype are known as inner-outer iterations. The outer iteration constructs a search subspacefor the solution of the original problem. In our case, the outer iteration constructs theprojection matrices V and Z. During each outer step, an entire loop of inner iterationsis executed (not necessarily for the same number of steps each time) to generate theDS preconditioner for the current outer step. In our case, the inner iteration consistsof iteratively constructing approximate solutions in (S8.1.2) to (8.3). The operator �mis implicitly de�ned by the inner iteration. Many di�erent iterations are possible whenconstructing the approximations ~vm and ~zm to (A��mE)�1qpm+1 and (A��mE)�Twpm+1.These inner iterative solvers are generally Krylov methods themselves. The approximatesolutions ~vm and ~zm are typically chosen from the inner Krylov subspaces, accordingto Petrov-Galerkin or minimal residual constraints. Examples of iterative approachessatisfying these two respective constraints are the biconjugate gradient (BiCG) and quasi-minimal residual (QMR) methods [6, 8]. These particular methods are mentioned becausethey are two-sided; each can simultaneously generate approximation solutions to dualsystems of equations involving (A � �(k)E) and (A � �(k)E)T . A noteworthy one-sidedapproach is the generalized minimal residual (GMRES) method [8, 84].The other new parameter of interest in the approximate RK algorithm is �m. If(and only if) �m is an inexact DS preconditioner, then the speci�c choice for �m in(S8.1.4) contributes to the speci�cation of the V and Z column spaces. In the exact case,(A� �mE) was replaced with E for convenience. We denote this exact case as �m =1,although one would certainly not compute (A� �mE) as such. In the inexact case, it ispossible to tune �m for improved results.One possible choice for �m is the interpolation point �m. The motivation for thisselection is that the matching of moments at �m is closely connected to solving the dualequations (1.2) at s = �m. The traditional subspaces involved in solving the system ofequations (1.2) with s �xed at �m is (2.17) with �m = �m. A second motivation for this143



�m choice follows from the mapping of the eigenvalues of (A;E) to the eigenvalues of�m(A � �mE). A mapping for the case when �m is exact and �m = 1 was presentedin Figure 6.1. A mapping is sought that makes the desired eigenvalues stand out in thespectrum of the DS-preconditioned matrix. In Figure 6.1, the properties of the exact DSpreconditioner drove the desired poles to the outer edge of the spectrum. An exampleof a mapping for the �m = �m case is displayed in Figure 8.1. This mapping has beenstudied to a great extent in the eigenvalue literature for a technique known as Davidson'smethod [19, 98]. It transforms any eigenvalue of (A;E) near � to a position in thespectrum of �m(A � �mE) that is close to the origin. This behavior follows from thefact that if � is an eigenvalue of (A;E), then zero is an eigenvalue of �m(A � �E) forany matrix �m. On the other hand, because �m is an approximation to (A � �mE),it is hoped that the other eigenvalues of �m(A � �mE) are close to 1. If this mappingoccurs, the desired eigenvalues of (A;E) near � are mapped towards the origin and arewell separated from a cluster at 1. Unfortunately, this argument and the choice �m = �mbreaks down if �m becomes too good of an approximation to (A� �mE)�1. In this case,�m(A� �mE) becomes the identity and all eigenvalues are mapped on top of each otherat 1. Furthermore, multiplication of old directions in V and Z by the identity contributesno new information in subsequently computed directions.As later experiments in Examples 8.3 and 8.4 indicate, the choice of � can lead to sig-ni�cant, but oftentimes unpredictable di�erences in the convergence of the reduced-ordermodel. In practice, �m can be tuned between 1 and �m by using available informationon the DS preconditioner quality and/or the convergence behavior of previous solves.Alternatively, more sophisticated approaches for implementing the approximate solversare discussed in Section 8.3, which de-emphasizes �m.8.2 Approximate Solve AlgorithmsAlthough the choices for �m and �m are not trivial, they are straightforward given theabove discussions to adapt the algorithms of Chapter 4 for approximate system solves.144
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Figure 8.1: An Eigenvalue Mapping for �m = �mAll that is required is to repeat the modi�cations seen in the approximate RK algorithm.An approximate dual RA algorithm is presented in Algorithm 8.2.As long as orthogonality is (nearly) maintained in V and Z, convergence in at mostN steps is still guaranteed in the approximate dual RA version. Of course, e�ective DSpreconditioners should be utilized to obtain an e�ective model of size M � N .8.2.1 Approximate rational LanczosMore than other RK variants seen in Chapter 4, the rational Lanczos algorithm relieson the properties of the exact DS preconditioner. This reliance made it an e�cient algo-rithm in Section 4.1.4, but it also makes the approach a questionable one for inexact DSpreconditioning. The RL algorithm relied on exact DS preconditioning in Theorem 4.3to achieve banded Â and Ê matrices. If approximations to (A� �(k)E)�1 are utilized in(S4.5.6) of the RL algorithm, the reduced-order systems matrices become dense. Eitherthese now nonzero o�-diagonal terms must be computed or an error is incurred. Com-puting all of the elements in Â or Ê corresponds to full-length biorthogonality recursions145



Algorithm 8.2 Rational Krylov (Approximate Dual RA Version)Initialize: m = 0For j = 1 to J ,For k = 1 to K,(S8.2.1) If j = 1,~vm = �mb and ~zm = �Tmc;else~vm = �m(A� �mE)vm�K and ~zm = �Tm(A� �mE)Tzm�K ;end(S8.2.2) v̂m = ~vm � Vm�1V Tm�1~vm and ẑm = ~zm � Zm�1ZTm�1~zm;(S8.2.3) vm = v̂m=kv̂mk and zm = ẑm=kẑmk;(S8.2.4) m = m+ 1;endend(rather than length K+2 recursions). Thus, this approach for dealing with approximateDS preconditioning increases the cost of an approximate RL algorithm to levels com-parable with the dual RA approach. However, the approximate dual RA algorithm isnumerically more reliable; an O(M2N) version of the RL algorithm is of little value.The only other apparent option to dealing with an approximate RL algorithm is tosimply ignore the error between �m and (A� �mE)�1. In this case, simply edit (S4.5.6)of the RL algorithm and nothing else. The approximate RL method is presented inAlgorithm 8.3. Banded Â and Ê are still assumed in this algorithm (they are still formedby using only the � terms in the length K +2 recursions). The error in this theoreticallyunsupported approach is characterized by Theorem 8.1.Theorem 8.1 The output residual expression for the approximate RL algorithm isrc(s) = �M+1;M+1wM+1iTm(sÊ � Â)�T ĉ(�M � s)� ~R(sÊ � Â)�T ĉ; (8:4)146



Algorithm 8.3 Rational Krylov (Approximate Banded RL Version)Initialize: ~w1 = c and ~v1 = �1b and m = 1For j = 1 to J ,For k = 1 to K,(S8.3.1) if m > 1, ~vm = �mEvm�1; end(S8.3.2) v̂m = ~vm �Pm�1l=max(1;m�K�1) vl
m;l where 
m;l = wTl ~vm;(S8.3.3) ŵm = ~wm �Pm�1l=max(1;m�K�1)wl�m;l where �m;l = vTl ~wm;(S8.3.4) vm = v̂m=
m;m where 
m;m = qjŵTmv̂mj;(S8.3.5) wm = ŵm=�m;m where �m;m = sign(ŵTmv̂m)
m;m;(S8.3.6) ~wm+1 = ET�Tmwm;(S8.3.7) m = m+ 1;endendwhere the mth column of ~R is~rm = wm � (A� �mE)T (�Tmwm); (8:5)the residual associated with the approximate system solve in (S8.3.6) of the mth iteration.Proof: Due to residual de�nition (8.5), the approximate system solution in the mthiteration can be written aszm � �Tmwm = (A� �mE)�T (wm � ~rm):Multiplying this expression on the left by (A� �mE)T , i.e.,(A� �mE)T zm = (wm � ~rm);and a shift by sETzm yields the equivalent expressions,(A� sE)Tzm = (wm � ~rm) + (�m � s)ET zm= (wm � ~rm) + (�m � s)Wm+1 264 �wm+1�wm+1 375 : (8.6)147



The expression in (8.6) involves the relations in (S8.3.3) and (S8.3.6). Placing togetherthe expressions (8.6) for all M iterations produces the matrix equality(A� sE)TZ = � ~R+W +WM+1 2666666664 �w2 . . .�2;2 �wM+1. . . �M+1;M+1 37777777752666664 (�1 � s) . . . (�m � s) 3777775 ;which due to the de�nitions of Ê in (4.21) and Â in (4.18), is the expression(A� sE)TZ = W (Â� sÊ) + (�m � s)�M+1;M+1wM+1iTM � ~R: (8:7)The equality (8.7) can now be substituted into (2.13) to acquire the output residualexpression,rc(s) = c+ fW (Â� sÊ) + (�m � s)�M+1;M+1wM+1iTM � ~Rgx̂c= � ~Rx̂c �Wĉ+ c+ �M+1;M+1wM+1iTM(sÊ � Â)�T ĉ(�m � s): (8.8)The desired expression (8.4) follows trivially given (4.22), the de�nition of ĉ in the RLalgorithm.In the exact case, the output residual resulting from the RL algorithm is a scaledversion of wM+1. This vector wM+1 stays biorthogonal with at least the recent directionsof V . Moreover, the scaling of wm+1 drops to zero in regions around the interpolationpoint. When approximations to (A � �(k)E)�1 are employed, the output residual iscorrupted by the error in �m. The residual ~rm, associated with the approximation forthe vector (A� �(k)E)�Twm, appears in rc. Several things should be noted concerningthis corruption:1. The corruption of rc(s) is proportional to the error in �m.2. Unlike the exact case, the residual rc in approximate RL is not generally forced tozero in the regions about the interpolation point.3. Errors in the computation of (A��mE)�1 in themth iteration continue to appear inthe reduced-order models of later iterations (the entire matrix ~R appears in (8.4)).148



4. The total corruption behaves as the sum (rather than product) of previous errors inthe computation of (A��mE)�1, because the matrix ~R appears in a matrix-vectorproduct in (8.4). This fact is good news for exactly DS-preconditioned versions ofthe RL algorithm that are implemented in �nite precision. Machine-level precisionerrors in the linear system solvers are not blown up in later steps.In summary, signi�cant errors between (A��(k)E)�1 and �m do not appear to be accept-able in any iteration of the approximate rational Lanczos algorithm. Limited numericalexperience supports this result.8.2.2 Approximate rational power methodsAs with the dual RA algorithm, an appropriate approximate version of the rationalpower algorithm follows readily with the modi�cations seen in Algorithm 8.1 for the ap-proximate RK algorithm. There appears to be little value in such an approach, however,because the the advantages of the dual RA approach over a two-sided RP method remain.With the collapse of the elegant rational Lanczos theory in the approximate case,one loses a low-memory (short recursion) projection technique. Although the dual RAapproach is reliable, storing the O(MN) elements of V and Z may exceed availablememory. This fact is especially true when approximate solves are utilized; one expectsthe model dimension, M , to grow slightly in compensation for the solve inaccuracies.An approach requiring only O(N) storage is achievable through a one-sided RP method.Again, we turn to the idea of a prespeci�ed Z matrix as in Section 7.3. If Z is completelyknown a prior, the columns of V (and associated columns of Â and Ê) can be computedwithout a full knowledge of one another, because the RP approach does not incorporateorthogonalization. In the mth step of the sequential, approximate RP algorithm, onecomputes ~vm = �mEvm�1 (or ~vm = �mb if �m is a new interpolation point). Afterscaling ~vm, one then computes the entire mth column of Âm and Êm, i.e., ZTAvm andZTEvm. Once these low-order columns are acquired, ~vm+1 and ~zm+1 are computed and149



the vectors vm and zm are discarded from memory. At most, two length N vectors arerequired for storage in this iteration.The prespeci�ed Z matrix must meet several conditions if this approach is to besuccessful. First, a matrix Z ~M of size N � ~M must be known ahead of time, where thesize of ~M is at least as great as M . In the proposed low-memory RP approach (unlikethe parallel version in Section 7.3), the mth columns of Âm and Êm must be computedin their entirety during the mth iteration. Computing the entire �rst column of Â in the�rst iteration therefore requires the knowledge of M immediately, but we would prefernot to specify the �nal value for the reduced-order model size M a priori (hopefully, Mis adapted to the complexity of the dynamic system). To avoid this a priori speci�cation,choose an initial ~M larger than the estimate for M and work with Z ~M throughout thealgorithm. To be conservative, make a guess for M prior to the model reduction andchoose ~M to be several times that. Of course, if ~M is signi�cantly larger than theeventual true value of M , then work is wasted. At each iteration, one computes ZT~MAvmand ZT~MEvm when, in fact, only ZTMAvm and ZTMEvm are eventually needed (the �nalreduced-order pencil is cut from size ~M �M to M �M). For this reason, the product ofZT~M with a vector must be a relatively cheap operation, so that wasted work is not tooexpensive. Additionally, it is hoped that Z ~M can be compactly stored, because it (butnot V ) must be available in its entirety.As long as V satis�es (3.1), any value of Z leads to a reduced-order model whichmatches M moments. In Section 7.3, it was suggested to simply choose a random Z. Arandom Z ~M can be compactly stored, but a matrix-vector product involving ZT~M is anO( ~MN) operation. For this reason, consider going to a Z ~M that is composed of randomintegers or is sparse. Choosing Z ~M to be the �rst ~M columns of the identity matrixI ~M leads to extremely low storage and computations. However, sparsity patterns bettersuited to the structure of the problem may improve convergence. An appropriate choicefor Z ~M is a topic for additional research.An algorithm implementing a one-sided, approximate rational power method is pre-sented as Algorithm 8.4. The values of Jk in this algorithm should be kept small (< 5)150



in an attempt to reduce dependencies among the columns of V . Dependencies may arise,however, and require the singular value postprocessing that was discussed at the con-clusion of Section 4.1.1. A small Jk and correspondingly large K is not as signi�cantof a concern in the approximate version. In the approximate RP algorithm, completefactorizations are no longer computed at every interpolation point. With iterative linearsystem solvers, for example, there may not be a signi�cant cost advantage to staying ata few interpolation points.Algorithm 8.4 Rational Krylov (Approximate RP Version)Initialize: m = 0 and Z ~MFor k = 1 to K,For jk = 1 to Jk,(S8.4.1) If jk = 1,~vm = �mb;else~vm = �m(A� �mE)vm�1;end(S8.4.2) vm = ~vm=k~vmk2;(S8.4.3) âm = ZT~MAvm and êm = ZT~MEvm;(S8.4.4) m = m+ 1;endendAn implementation of Algorithm 8.4 requires one approximate solve, one matrix-vector product (mat-vec) with A, one mat-vec with E, and one mat-vec with Z ~M . How-ever, Z ~M is hopefully chosen in a way to reduce expenses. The one-sided RP algorithmalso cuts cost by avoiding any operations involving AT or ET ; the work per iterationis divided in half. Assuming Z ~M is chosen for compact storage and �m involves sparse151



operations, then the overall memory required by the algorithm is O(N + ~MM) elements.This value represents an order M reduction versus the approximate dual RA algorithm.8.2.3 ComparisonsThe successful introduction of approximate solves into the model-reduction techniquesof Chapter 4 is not a trivial task. The theory governing the determination of modelingerror or interpolation points is no longer exact. Fast implementations may no longer bebased on elegant, short recursions, and perhaps most alarming, the debate over successfuliterative methods and preconditioners for generating the approximate solutions is farfrom settled in the numerical linear algebra literature. Determining the right level ofpreconditioning for a �xed system of linear equations is oftentimes a task involving trialand error.Nevertheless, the possible payo� with approximate solutions is great. In the remainderof this section, the impact of approximations on the model reduction of two moderatelysized problems is considered. The breakdown of Lanczos-type approaches with approxi-mate solves is demonstrated. However, we show that approximate rational interpolationis possible without exact matrix factorizations. Finally, some initial insights into workingwith approximate solves are related.The �rst problem considered in the following examples arises from a discretization ofthe partial di�erential equation (PDE) [99],@x@t = @2x@z2 + @2x@v2 + 20@x@z + 180x + f(v; z)u(t): (8:9)In (8.9), x is a function of time (t), vertical position (v) and horizontal position (z). Theboundaries of interest in this problem lie on a square with opposite corners at (0; 0) and(1; 1). The function x(t; v; z) is zero on these boundaries. This PDE can be discretizedwith centered di�erence approximations on a grid of nv�nz points [2]. The discretizationgrid, when nv = 3 and nz = 5, is shown in Figure 8.2. A state-space equation of dimensionN = nvnz results from the discretization. The sparsity pattern of the resulting A matrix,when nv = 7 and nz = 12, is shown in Figure 8.3. The input vector of the system152



corresponds to f(v; z) and is composed of random elements. The output vector of thesystem is equated to the input vector for no other reason than simplicity.For a second test problem, we consider nv interconnects that are running parallel toeach other horizontally and are coupled by mutual inductance vertically. For example,there are nv = 2 parallel interconnects in Figure 8.4, each consisting of nz = 3 segmentsof resistors, capacitors and inductors. The elements in the interconnects are randomlygenerated. The variance of the resistance values is 1000, the variance of the capacitancevalues is 10�13 and the variance of the inductance values is 10�10. The input to the circuitis a current source at the leftmost segment of the top interconnect. The output of thecircuit is the voltage at the rightmost segment of the bottom interconnect. For such asystem, MNA equations of dimension nv(2nz � 1) result. The �rst nvnz quantities in thestate vector are node voltages; the remaining ones are inductor currents. The sparsitypattern of the resulting sE � A matrix, when nv = 3 and nz = 30, is shown in Figure8.5. This sparsity pattern and the following examples were obtained via MATLAB.Example 8.1 This example explores the impact of errors in the linear equation solutionson various model-reduction implementations. Speci�cally, equations of the form(A� �mE)~vm = qm(A� �mE)T ~zm = wm (8:10)arise in the various RK implementations, which are solved to assorted degrees of numeri-cal precision ( 16, 10, 6, and 2 digits of accuracy in the following). Besides the variationsin solver accuracy, di�erent model-reduction implementations are considered: dual RAwith a real interpolation point, RL with a real interpolation point, dual RA with a fewimaginary interpolation points, RL with a few imaginary interpolation points, and dualRA with numerous adaptively placed, imaginary interpolation points. These combina-tions of model-reduction algorithms and solver accuracies were applied to a discretizationof (8.9) on a 7� 12 grid. The frequency response of this discretization is in Figure 8.6.Figure 8.7 plots the modeling error resulting from dual RA iterations (with a realshift at 2�) as the solver accuracy varies. The `o' line corresponds to 16 digits of solver153
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Figure 8.3: Discretized PDE Sparsity Pattern, 7 � 12 Case154
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Figure 8.6: Frequency Response of Example 8.1
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Figure 8.7: Finite Precision Dual RA Results for Example 8.1 (o= 16 digits, x= 10digits, += 6 digits, �= 2 digits) 156



precision, the `x' line corresponds to 10 digits of precision, the `+' line to 6 digits, and the`�' line to only 2 digits. A quick analysis of these plots shows that the convergence of thereduced-order model tends to stagnate at a level that is related to the solver precision ina nonlinear fashion. When the noise level is reached in a given case, continued iterationsduring this stagnation period only add random directions to V and Z|directions notparticularly suited for reducing the modeling error. This stagnation continues until thenumber of iterations m becomes nearly N . When m is N , the modeling error is guaranteedto drop to about machine precision if orthogonal V and Z were maintained (in all casesorthogonality was maintained up to the limit of machine precision). A dual RA reduced-order model with m = N is simply a di�erent realization of the original model. Althoughnot shown, even the `�' line drops o� sharply towards zero when m = N � 1.The results as the model-reduction algorithm varies are presented in Tables 8.1 through8.4. In each table, the linear equations in the model-reduction algorithm are solved to adi�erent degree of numerical precision. The various dual RA implementations continueto converge in a reasonable fashion as the degree of numerical precision drops. There is ofcourse some di�erence across the columns due to the varying interpolation point schemes.Numerous imaginary interpolation points that are tuned to the modeling error consistentlyyield the best results. However, the performance with a single real interpolation point ortwo imaginary points is acceptable, as well, when dual RA is used for all but signi�cantlevels of solver noise.The results with RL algorithms are presented in the last two columns of Tables 8.1through 8.4. Even with signi�cant digits of precision in Table 8.1, the RL results areslightly inferior to those with the rational Arnoldi implementations. This slight discrep-ancy is consistent with the RL approach's dependence on biorthogonality (recall Example4.5). The convergence of the RL approaches rapidly worsens when fewer digits of ac-curacy are achieved in the linear equation solutions. In fact, the convergence of the RLresults level o� immediately when fewer than 6 digits of accuracy are maintained in Ta-bles 8.3 and 8.4 . This behavior is consistent with the observations made in Section 8.2;157



Table 8.1: Convergence with 16 Digits of Precision in Example 8.1m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 1.0012e-01 7.6131e-02 5.3675e-02 9.9563e-02 7.6131e-0220 1.2973e-06 5.7945e-08 1.5544e-14 1.0582e-04 5.7944e-0830 1.4979e-14 1.5185e-14 1.5557e-14 6.9162e-10 9.6934e-1340 1.4957e-14 1.5154e-14 1.3143e-13 6.9102e-10 9.6930e-1350 1.4911e-14 1.5205e-14 2.5463e-13 6.9102e-10 9.6930e-1360 1.4974e-14 1.5257e-14 2.3132e-13 6.9102e-10 9.6930e-1370 1.4860e-14 1.5199e-14 5.9524e-13 6.9102e-10 9.6930e-1380 1.4932e-14 1.5194e-14 3.2808e-13 6.9102e-10 9.6930e-13Table 8.2: Convergence with 10 Digits of Precision in Example 8.1m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 1.0012e-01 7.6131e-02 5.3322e-02 9.9582e-02 7.6131e-0220 1.3054e-06 5.7963e-08 7.1350e-12 8.0087e-04 1.0609e-0630 7.8977e-12 2.2175e-13 1.4679e-14 2.6930e-06 1.9547e-0840 3.4019e-10 2.4578e-13 1.4752e-14 2.6937e-06 1.9547e-0850 4.9277e-10 6.6366e-13 1.4727e-14 2.6937e-06 1.9547e-0860 1.5035e-10 1.3442e-12 1.4653e-14 2.6937e-06 1.9547e-0870 1.7546e-10 2.9901e-12 1.4665e-14 2.6937e-06 1.9547e-0880 6.5200e-11 3.9822e-13 1.4857e-14 2.6937e-06 1.9547e-08158



Table 8.3: Convergence with 6 Digits of Precision in Example 8.1m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 7.9312e-02 7.6256e-02 2.8675e-02 9.9623e-02 7.6128e-0220 1.2610e-02 1.0527e-05 2.4593e-10 9.9211e-02 2.5076e-0430 9.6187e-03 8.5144e-06 4.3110e-11 9.9052e-02 2.2276e-0440 6.2384e-03 5.1706e-05 5.0282e-12 9.9039e-02 2.2332e-0450 1.7408e-02 1.6411e-05 7.6168e-12 9.9196e-02 2.2354e-0460 1.9966e-03 7.5595e-06 3.0844e-12 9.9049e-02 2.2350e-0470 5.6909e-03 1.0981e-05 7.1168e-12 9.9054e-02 2.2349e-0480 1.5544e-04 5.8382e-06 1.3037e-12 9.9056e-02 2.2357e-04Table 8.4: Convergence with 2 Digits of Precision in Example 8.1m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 8.4919e-01 3.7454e-01 2.5081e-01 4.7903e-01 4.8004e-0120 2.4262e+00 8.9720e-02 7.3547e-03 4.7906e-01 2.1937e-0130 6.3352e-01 1.2191e-01 2.3288e-03 4.7906e-01 1.6319e-0140 4.3093e-01 4.8418e-02 4.2221e-04 4.7906e-01 5.8513e-0150 4.8595e-01 7.1805e-02 6.9019e-04 4.7906e-01 1.1733e-0160 4.6206e-01 1.4629e-03 2.0862e-03 4.7906e-01 1.2958e-0170 2.4451e-01 4.1994e-04 2.6235e-04 4.7906e-01 1.0641e-0180 8.9394e-02 1.8301e-04 6.8138e-05 4.7906e-01 1.5627e-01159



numerical errors in rational Lanczos do not dissipate with additional modeling iterations.The errors in the RL approximations continue to be large, even when m surpasses N .Example 8.2 We also repeated the above experiments for the previously described in-terconnect problem with nv = 3 and nz = 30. The frequency response of this system isdisplayed in Figure 8.8. The convergence of a dual RA implementation with a real shiftat 2�1010 is plotted in Figure 8.9 for several di�erent levels of solver precision. Again,the `o' line corresponds to 16 digits of solver precision, the `x' line to 10 digits, the `+'line to 6 digits, and the `�' line to 2 digits. The results are plotted through the �rst 100iterations, although N in this problem is 177. Unlike Figure 8.7, the lines in Figure 8.9are not easily distinguishable. With high solver accuracy (16 digits of precision), con-vergence is only gradual because this problem's dynamics are not easily captured with asingle interpolation point. Less solver accuracy (10 or 6 digits) is su�cient to reproducethis gradual convergence, as well. The results in Figures 8.7 and 8.9 seem to suggestthat the level of solver accuracy in the (m + 1)st iteration need only be consistent withthe degree of model convergence after m iterations. This relation between the currentmodel error and the required solver accuracy in the mth iteration (if it does indeed exist)is clearly nonlinear, however. Characterizing the minimal level of solver accuracy fornear-ideal, reduced-order model convergence is an interesting question requiring furtherinvestigation.Again in this example, we also consider the convergence behavior of various RK im-plementations. The dependence of this behavior on the solver precision is indicated inTables 8.5 through 8.8. The most important feature in these plots is the stagnation in theRL implementations as solver accuracy diminishes. For the case of two digits of precision(which is probably the closest to reality in actual approximate solution techniques), theimplemented RL approaches are completely useless. As noted above, the results of thevarious RA implementations are barely a�ected by the variations in solver precision.In practice, a loss of numerical precision in the solver follows naturally from theapproximations existing in inexact DS preconditioners or inner solver iterations. Yet160
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Figure 8.8: Frequency Response of Example 8.2
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Table 8.5: Convergence with 16 Digits of Precision in Example 8.2m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 1.0227e+00 4.0696e-01 1.4265e+00 1.0227e+00 4.0696e-0120 2.8240e-01 2.7610e-01 2.1883e-01 2.8240e-01 2.7610e-0130 1.1404e-01 2.7239e-01 9.6314e-02 1.1404e-01 2.7239e-0140 1.2071e-01 3.4685e-01 2.4581e-02 1.2071e-01 3.4685e-0150 5.4785e-02 2.4587e-01 2.0032e-02 5.4785e-02 2.6438e-0160 9.8426e-02 2.2455e-01 2.0912e-02 9.8425e-02 2.6073e-0170 6.9414e-02 6.8882e-02 1.3267e-02 6.9414e-02 2.5526e-0180 2.1697e-02 7.0448e-02 3.9350e-03 2.4651e-02 2.5606e-0190 1.3254e-02 5.4822e-02 2.5981e-03 1.4218e-02 2.5698e-01100 5.0322e-03 4.5268e-02 4.9065e-04 1.4703e-02 2.6290e-01Table 8.6: Convergence with 10 Digits of Precision in Example 8.2m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 1.0227e+00 4.0696e-01 1.4265e+00 1.0227e+00 4.0696e-0120 2.8240e-01 2.7610e-01 2.1882e-01 2.8239e-01 2.7610e-0130 1.1406e-01 2.7239e-01 9.6314e-02 1.1413e-01 2.7239e-0140 1.2035e-01 3.4674e-01 2.4581e-02 1.2072e-01 3.0056e-0150 5.4705e-02 2.4605e-01 2.0032e-02 5.4746e-02 3.4728e-0160 1.0319e-01 2.4037e-01 2.0912e-02 9.5094e-02 2.6343e-0170 7.4712e-02 9.6700e-02 1.3266e-02 4.3219e-02 2.6649e-0180 2.0836e-02 6.8930e-02 3.9349e-03 3.7064e-02 2.7249e-0190 1.3713e-02 4.6907e-02 2.5981e-03 1.6420e-02 2.6041e-01100 1.2824e-02 4.5367e-02 4.9067e-04 1.6671e-02 2.6200e-01162



Table 8.7: Convergence with 6 Digits of Precision in Example 8.2m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 1.0112e+00 4.0446e-01 1.4250e+00 1.0199e+00 4.0720e-0120 2.8986e-01 2.7599e-01 1.8035e-01 1.4775e+00 2.7624e-0130 1.1816e-01 2.7328e-01 1.4771e-01 4.6811e-01 2.7257e-0140 9.9176e-02 2.7947e-01 5.0217e-02 4.3410e-01 2.7457e-0150 4.4016e-02 2.6507e-01 2.1662e-02 4.3203e-01 2.7487e-0160 6.7788e-02 2.4560e-01 1.4191e-02 4.3610e-01 2.7429e-0170 4.0316e-02 2.6098e-01 5.4195e-03 4.3834e-01 2.7637e-0180 1.7033e-02 1.25975e-01 5.2231e-03 4.3850e-01 2.7490e-0190 1.8339e-02 1.0604e-01 3.6121e-03 4.3846e-01 2.7584e-01100 1.4709e-02 7.5908e-02 6.9394e-04 4.3846e-01 2.7380e-01Table 8.8: Convergence with 2 Digits of Precision in Example 8.2m Modeling ErrorDual RA Dual RA Dual RA RL RLReal � Imag � Adapted � Real � Imag �10 1.0155e+00 1.3251e+00 1.2823e+00 1.0000e+00 2.7562e+0020 6.1500e-01 5.7633e-01 3.3702e-01 1.0000e+00 2.7090e+0030 1.0031e-01 8.9612e-01 8.7027e-02 1.0000e+00 1.1193e+0140 1.9410e-01 3.3256e-01 7.2225e-02 1.0000e+00 4.7387e+0050 5.2599e-01 3.7340e-01 3.8174e-02 1.0000e+00 4.0128e+0060 9.7136e-02 3.9263e-01 3.2044e-02 1.0000e+00 4.2823e+0070 2.6194e-01 4.1133e-01 3.0033e-02 1.0000e+00 1.8649e+0080 8.8138e-02 4.8893e-01 1.4716e-02 1.0000e+00 7.7877e+0090 1.0393e-01 5.4277e-01 1.2229e-02 1.0000e+00 2.6655e+00100 6.0593e-02 3.7207e-01 1.3597e-02 1.0000e+00 1.4687e+01163



regardless of the exact source of the inaccuracy, the approximate dual RA approach canlead to valid reduced-order models. This fact is demonstrated in the following exampleson some larger versions of the two problems of interest. The results of this experimenta-tion are preliminary and are not intended to re
ect a �nal e�ort towards incorporatingapproximate solves. Merely demonstrating that exact factorizations of (A� sE) are notrequired is apparently a novel result.Example 8.3 Consider a discretization of the PDE in (8.9) on a 40 � 60 grid. Thisgrid leads to an A matrix of dimension N = 2400 with 11800 nonzero elements. Theapproximate dual RA algorithm is applied to this problem with a real shift of 2�. Thesystems of linear equations (8.10) are approximately solved with the GMRES method[8]. Each inner GMRES iteration incoporates an inner-preconditionery formed with theILUT (4; 0) method of [8]. That is, an ILUT preconditioner is applied to (8.10) priorto the execution of the GMRES method. The operator �m combines both a �xed innerpreconditioner and an iterative solver.The results of 100 dual RA iterations with either �ve or twenty GMRES inner itera-tions are presented in Table 8.9. Thus, 500 total inner iterations take place in the �rstcase and 2000 in the second (these iterations only involve matrix-vector products how-ever). Di�erent values of �m (1 and �m) are also presented in this table. Note that the�m = �m case performs well when the DS preconditioner is poorer (fewer GMRES steps),but is unacceptable when the DS preconditioner is more accurate. The opposite behavioroccurs when �m is 1, i.e., (A � �mE) is replaced with E. Although the best results areobtained in the second column, the results with a well-chosen �m and only �ve GMRESiterations in column three are reasonably good.Example 8.4 Consider six parallel interconnects that each consist of 150 segments. Thisproblem has an N of size 1794, an A matrix with 4476 nonzero elements and an Ematrix with 6294 nonzero elements. The approximate dual RA algorithm was utilized foryThe DS preconditioner �m is used to speed the convergence of the reduced-order model (the outeriteration) over a range of frequencies. An inner preconditioner is utilized in the inner solver iteration tospeed the determination of a solution to (8.10). 164



model reduction with �fteen GMRES inner iterations and � = 2�109. In this example,though, we vary the inner preconditioner used in the inner iteration between ILUT (2; 0)and ILUT (4; 0). That is, more �ll is allowed in the inner preconditioner in the lattercase. The results of 100 modeling iterations are in Table 8.10. The amount of innerpreconditioning is critical in this problem; signi�cant di�erences result from only moderatechanges in �m.Computing reasonably accurate solutions to the dual system of equations demandsgood DS preconditioners. Even when iterative Krylov techniques are involved in thesolution, this inner iteration often involes an inner preconditioner, e.g., as in Example8.3. It is felt that the use of improved inner preconditioners and inner iterations is crucialto the successful implementation of a faster, approximate model-reduction method, i.e.,Section 8.2.2.8.3 Relating Inner and Outer RecursionsIn prior portions of this chapter, the generation of �m is considered to be an indepen-dent subproblem in the model-reduction procedure. However, because the choice of �mdepends on the properties of A and E, it is logical to utilize every piece of informationabout A and E during the linear system solves. The search and constraint subspaces,which are iteratively generated during past model-reduction steps, provide useful infor-mation about A and E. Consider the computation of the next direction in the outermodeling iteration. Ideally, one solves the equation(A� �m+1E)~vm+1 = (A� �pmE)vpm (8:11)exactly. If this is not possible, some sort of approximation is required. The reduced-ordermodel itself provides a guess for the solution to (8.11),~v0m+1 = Vm(Âm � �m+1Êm)�1ZTm(A� �pmE)vpm: (8:12)This initial guess �nds an approximate solution in the column space of Vm that satis�esa Petrov-Galerkin constraint with respect to Zm. Using the projection associated with165



Table 8.9: Convergence with Approximate Solutions in Example 8.3m Modeling Error�m =1 �m = �m5 GMRES steps 20 GMRES steps 5 GMRES steps 20 GMRES steps10 9.9508e-01 1.3772e-03 5.9617e+00 1.6515e+0020 1.1376e+00 1.9907e-04 9.0502e-02 1.0812e+0030 2.1930e+00 4.5920e-05 3.7690e-01 1.1226e+0040 1.2878e+00 2.7160e-04 9.2384e-03 1.2008e+0050 3.4732e+00 3.4845e-04 3.2868e-02 1.6405e+0060 3.4849e+00 8.7005e-05 2.7594e-02 3.2289e-0170 1.2312e+00 8.2442e-05 8.1249e-02 1.2692e-0180 2.0851e+00 5.0187e-05 1.1214e-01 1.2623e-0290 1.0403e+00 2.7940e-04 4.0154e-01 7.1056e-02100 2.5813e+00 2.0818e-05 4.5188e-02 3.3366e-01Table 8.10: Convergence with Approximate Solutions in Example 8.4m Modeling ErrorILUT(2,0) ILUT(4,0)10 1.0000e+00 6.8291e-0120 1.0005e+00 4.6680e-0130 8.7317e-01 3.7234e-0140 2.1176e+00 4.7784e-0150 5.8921e+00 2.8841e-0160 4.4015e+00 2.0572e-0170 1.3687e+01 1.2033e+0080 1.2908e+01 1.6671e-0190 1.2099e+01 1.1474e-01100 1.1945e+01 1.0359e-01166



model reduction to generate an initial guess ~v0m+1 can lead to better inner-solver resultsthan simply choosing ~v0m+1 to be a random vector or a vector of zeros. In a sense, (8.12)recycles existing work rather than trying to solve (8.11) from scratch. Unfortunately,(8.12) is not enough by itself. Because the purpose of solving (8.11) is to compute a newdirection ~vm+1, an approximate solution that lies entirely in the existing directions of Vmis not acceptable.The initial guess in (8.12) must be improved upon. This correction can be accom-plished by incorporating the initial guess into (8.11) to form the problem(A� �m+1E)(~vm+1 � ~v0m+1) = (A� �pmE)vpm � (A� �m+1E)~v0m+1: (8:13)An approximation ~vm+1 then follows by approximately solving(A� �m+1E)~um+1 = (A� �pmE)vpm � (A� �m+1E)~v0m+1and adding ~v0m+1 to the result. The computed vector ~um+1 is an update that hopefullyleads to a better approximation, ~vm+1 = ~v0m+1 + ~um+1. This update is, in fact, the newdirection introduced into Vm+1; the vector ~um+1 satis�escolsp�� Vm ~vm+1 �� = colsp�� Vm ~um+1 �� ;because ~v0m+1 lies in the column space of Vm. The update can be approximated as~um+1 = �m+1f(A� �pmE)vpm � (A� �m+1E)~v0m+1g; (8:14)where �m approximates (A � �m+1E)�1. As before, �m+1 can be a �xed DS precon-ditioner, an iterative solver, or a preconditioned iterative solver. The rightmost termin (8.14) incorporates existing information from the outer modeling iteration into theapproximate solve of (8.11). We try to avoid recomputing already known informationduring the formation of ~um+1.The computation of ~um+1 can actually be simpli�ed further by rewriting the initialguess as ~v0m+1 = Vm(Âm � �m+1Ê)�1ZTm(A� �m+1E)vpm+(�m+1 � �pm)Vm(Âm � �m+1Ê)�1ZTmEvpm= vpm + (�m+1 � �pm)Vm(Âm � �m+1Ê)�1ZTmEvpm:167



Using this expression for the initial guess, the update (8.14) becomes~um+1 = (�m+1 � �pm)�m+1Evpm�(�m+1 � �pm)�m+1(A� �m+1E)Vm(Âm � �m+1Ê)�1ZTmEvpm= (�m+1 � �pm)�m+1 fEvpm�(A� �m+1E)Vm(Âm � �m+1Ê)�1ZTmEvpmo : (8.15)There are two important things to note about (8.15). First, the update ~um+1 consists ofthe vector �m+1Evpm, which is perhaps the most naive approximation to the ideal newdirection (A� �m+1E)�1Evpm, and a correction vector�m+1(A� �m+1E)Vm(Âm � �m+1Ê)�1ZTmEvpm;which incorporates information from the existing reduced-order model. When �m+1nears (A � �m+1E)�1, the vector �m+1Evpm nears the ideal direction, while the cor-rection Vm(Âm � �m+1Ê)�1ZTmEvpm is contained in colsp fVmg and is, hence, irrelevant.On the other hand, if the reduced-order model is accurate (a fortunate event), thenVm(Â � �m+1Ê)�1ZTm nears (A � �m+1E)�1 and the update ~um+1 becomes small. Asecond important feature of (8.15) is that the parameter �pm only comes into play as ascaling. However, scalings do not matter in constructing subspaces, so that the unscaledvector �m+1 nEvpm � (A� �m+1E)Vm(Âm � �m+1Êm)�1ZTmEvpmo (8:16)is a perfectly appropriate new direction for augmenting Vm. Even though �m may notbe an exact DS preconditioner, the choice of ~v0m+1 as a starting guess leads to a newdirection (8.16) that is independent of �. We have thus found a second way (exact DSpreconditioning was the �rst) for generating V directions that are independent of theevaluation point �.As a side note, it is claimed that the derivation of (8.16) provides an alternative pathfor obtaining Davidson's method for the eigenvalue problem [98]. We return to this topicin Section 9.1.3. 168



Example 8.5 If the discretized PDE in Example 8.3 is solved with the improved initialguess in (8.12) for 100 modeling iterations, the data in Table 8.11 are the result. Theuse of the improved starting vector leads to a convergence which is slightly improved overthe best cases in Example 8.3. However, the best results in Example 8.3 required carefulchoices for �, an issue that is no longer a concern here. The results in this example areindependent of �m+1.Table 8.11: Improved Starting Vector Results in Example 8.5m Modeling Error5 GMRES steps 20 GMRES steps10 1.1939e+00 1.0132e-0220 4.7650e-01 4.3593e-0430 6.1100e-02 1.0544e-0340 2.7000e-02 1.8763e-0450 1.4200e-02 3.2375e-0460 4.1100e-02 2.3447e-0470 4.6500e-02 7.1564e-0580 3.1000e-03 5.2044e-0490 9.5000e-03 6.1742e-05100 4.5000e-03 1.8461e-04There is at least one other approach for using the outer modeling projection subspacesas an aid in the solution of the linear systems of equations. The thrust of this approachis to iteratively solve the equation(I � VmV Tm )(A� �m+1E)~vm+1 = (I � V V Tm )(A� �pmE)vpm (8:17)rather than (8.11). An approximate solution ~vm+1 is iteratively constructed for (8.17),e.g., from the subspaceKj((I � VmV Tm )(A� �m+1E); (I � V V Tm )(A� �pmE)vpm);169



which is orthogonal to the outer search subspace Vm. In this manner, e�ort is notwasted by computing ~vm+1 in directions already present in Vm. A dual approach can alsobe obtained for ~zm+1. The concept of keeping inner-iterations orthogonal to the outerwas developed in [100] for solving �xed systems of linear equations. Modi�cations ofDavidson's method also exist in the eigenvalue problem which keep ~vm+1 orthogonal tothe initial guess.There is a drawback with approaches such as (8.16) and (8.17). The entire outermatrices V and Z must be available and utilized at every iteration. This utilizationincreases costs and prevents fast iterations such as the one suggested in Section 8.2.2. Ofcourse, compromises might be possible that involve only the most recent directions in Vand Z or some dominant directions in V and Z.It is beyond the scope of this dissertation (and perhaps any single work) to completelycharacterize all issues pertinent to preconditioning, initial solution guesses and inner-outer relations. These topics run throughout iterative approaches in many applicationsand continue to be an active area of research. Hopefully, this chapter has demonstratedthough that such solver techniques are applicable and of interest in the model reductionof large-scale dynamic systems.
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CHAPTER 9ITERATIVE EIGENVALUE SOLVERSThis chapter focuses on preconditioned iterative eigenvalue solvers (PIES), a class ofmethods that are closely tied to the model-reduction techniques of Chapters 4 and 8.The relations between PIES and the proposed model-reduction techniques are explainedin Section 9.2. Prior to this discussion, however, the PIES are surveyed and classi�edaccording to a few well-de�ned choices. This is not to say, however, that all worthwhileiterative eigensolvers utilize preconditioners and fall into the proposed classi�cation. Theimplicitly restarted Arnoldi algorithm [101] is an example of a notable nonpreconditionedapproach for eigenvalue computations.In this section, it is assumed that the problem to be solved is a standard, symmetricone, i.e., A = AT and E = I. Concentrating on this commonly occurring and much-studied problem allows for a more straightforward introduction to the eigenvalue themes.Extensions of the developed techniques to the more general pencil (A� �E) are often-times straightforward, yet even a comprehensive treatment of the symmetric problem isa signi�cant task.9.1 Existing TechniquesApproaches for solving the generalized problem, Ax = �x, are well-developed whenthe dimension of the problem, n, is small [11]. Computing even a few eigenvalues andeigenvectors when A is large and sparse, however, is typically a di�cult task to this day.Although elegant and relatively inexpensive, the classical iterativemethods of Arnoldi [75]and Lanczos [39] oftentimes fall short, particularly when the target is an interior portionof the spectrum. As a result, numerous authors (beginning apparently with Davidson in171



1975 [98]) developed signi�cant modi�cations and extensions of the Arnoldi and Lanczosmethods. For the most part, these modi�cations incorporate preconditioning in somefashion to yield improved rates of convergence.Nearly all PIES implement the Rayleigh-Ritz procedure [102] with respect to somesubspace S and transformed matrix (TA). In our previous terminology, S is a searchsubspace corresponding to an orthogonal projection. The acquired eigenvector approxi-mations lie in this search subspace. The approximate eigenvalues are acquired from thelow-order pencil (Y TTAY; Y TTY ), where the column space of Y 2 IRN�M is S. As inmodel reduction, the eigenvalues of (Y TTAY; Y TTY ) do depend upon the selection ofboth T and Y . In fact, the standard forms of T and Y can be characterized through afew well-de�ned choices.Assuming that a single eigenvalue �d and a corresponding eigenvector xd are desired,the column space of Y typically takes the formcolsp fY g = � y1 P2(A� �2I)Y1x̂d1 P3(A� �3I)Y2x̂d2 : : : � (9:1)in the eigenvalue literature. The matrix Ym contains the �rst m columns of Y . The�rst column of Y , Y1 = y1 is speci�ed by the user and it is typically chosen to beeither a random vector or a vector of 1's. The matrices Pm play the role of varyingES preconditioners (ES stands for eigenvalue solver, playing the role of DS in previouschapters). The vector Ymxdm is the eigenvector approximation after m iterations.Given Y , an approximation for x̂d in its column space is sought. Similar to themodel-reduction problem, this approximation arises out of the low-order approximation(Y TmTmAYm; Y TmTmYm). Assume �̂dm is the eigenvalue of (Y TmTmAYm; Y TmTmYm) perceivedto be closest to �d. Then, the reduced-order eigenvector x̂dm of (Y TmTmAYm; Y TmTmYm)corresponding to �̂d leads to an approximation Y x̂dm for xd. This approximate eigenvec-tor Y x̂dm satis�es the Galerkin type conditionY Tm fTm(A� �̂dmI)(Ymx̂dm)g = 0 (9:2)where Tm(A� �̂dmI)Ymx̂dm is the residual associated with the eigenvalue estimate �̂dm .172



At each PIES iteration, (9.1) is augmented by multiplying the previous eigenvectorapproximation Ym�1x̂dm�1 by Pm(A � �mI), where Pm � (A � �mI)�1. The scalars �mand �m in Pm(A � �mI) are selected in an attempt to emphasize the desired vector xdin the new direction Pm(A � �mI)Ymx̂dm . The speci�cs of Pm(A � �mI) are consideredin detail in Section 9.1.1. The choice of �m is closely related to the speci�cation of themodel-reduction interpolation point in Chapter 6.9.1.1 Preconditioned matricesThe matrix Pm(A � �mI) appeared throughout the model-reduction methods of theprevious chapters, and it plays a central role in (9.1). As in model reduction, we beginby considering the case where Pm is an exact ES preconditioner, (A � �mI)�1. Theeigenvalues of Pm(A� �mI) are then (recall Lemma 6.2),~� = � � �m� � �m : (9:3)In going from A to Pm(A� �mI), � is mapped to ~�. Recall also from Section 6.1, thatthose eigenvalues of A that are mapped to well-separated positions in the spectrum ofPm(A � �mI) converge rapidly. PIES attempt to choose �m and �m that map �d to awell-separated position and that map the rest of the eigenvalues of A into a tight cluster.If this mapping is achieved, multiplication by Pm(A� �mI) separates xd from the rest ofthe cluster.The parameter �m is always chosen to be an estimate of the desired eigenvalue inPIES. In this manner (recall the role of � as an interpolation point), the portion of thecomplex plane around �m is emphasized. The parameter �m is typically chosen to acquireone of the mappings in either Figure 6.1, the �m = 1 case, or Figure 8.1, the �m = �mcase. The derivation of these mappings was already presented in model reduction. The�m =1 case relies on the properties of (A��mI)�1 to map the desired eigenvalue to theextreme outer edge of the spectrum. The �m = �m case relies heavily on the propertiesof (A� �mI) to map the desired eigenvalue towards the origin.It is perhaps not surprising to learn that the choice of �m does not matter when Pmis exactly (A � �mI)�1. This result follows from Lemma 2.1 and is consistent with the173



independence of (2.20) on s. When Pm = (A��mI)�1, all mappingsA! Pm(A��mI) areequally good in terms of the resulting eigenvalue separation. However, �m does becomeimportant when Pm is not exact. The choice �m � �m is favored for exact Pm in theliterature, apparently, because this mapping relies less on (A� �mI)�1.In many PIES, the scalars �m and �m are updated every iteration to re
ect the mostrecent approximations for �d. There is an advantage, though, to �xing these values andPm at the start of the algorithm using some initial estimate for �d. In such an approach,the column space of Y becomes a Krylov subspace,colsp fY g = K(P (A� �I); y1);and P � (A��I)�1 need only be computed once. Symmetric Lanczos type methods canbe used to compute Y [103, 104, 105]. Fortuitously, some form of the reduced-order pencil(Y TTAY; Y TTY ) is implicitly generated by an a Lanczos-type algorithm. In practice,the Lanczos method is restarted multiple times. The Lanczos method is executed forseveral iterations, new approximations to �d and xd are found, the values of � and � areupdated, the starting vector is updated, and the process is repeated. In this manner, �and � are occasionally updated. Although this infrequent update may slow convergence,the costs per iteration may drop in that a new P is not needed in every iteration.9.1.2 Reduced-order pencilsEven though the matrix Ym is �xed after m PIES iterations, the new eigenvector ap-proximation Ymx̂dm is not. The vector x̂dm depends on the choice for the transformationTm in the low-order problem (Y TmTmAYm; Y TmTmYm). It is stressed that the choice ofTm e�ects only the eigenvectors/values of the reduced-order approximation and not theeigenvectors/values of the original problem. The goal in choosing Tm is to �nd the bestpossible eigenvector approximation in colsp fYmg given a reasonable amount of compu-tational e�ort. Several possibilities for Tm appear in the literature.174



9.1.2.1 Strategy 1, Tm = IThis simple approach leads to the reduced-order pencil (Y TmAYm; Y TmYm). This Tmis trivial to implement, making it a common choice in many existing implementa-tions. However, for a given Ym, only the exterior approximate eigenvalues/vectors of(Y TmAYm; Y TmYm) tend to be optimal approximations for the corresponding eigenvalues ofA [102]. Better approximations for an interior eigenvalue of A with a given Ym may beachievable with a di�erent Tm [106].9.1.2.2 Strategy 2, Tm = (A� �mI)�1This choice for Tm is the one that leads to the best (in some sense) possible approx-imations for eigenvalues of A near (some possibly interior value) �m. This observationfollows from the relations:Y Tm (A� �mI)�1AYmx̂ = �̂Y Tm (A� �mI)�1Ymx̂, Y Tm (A� �mI)�1(A� �mI + �mI)Ymx̂ = �̂Y Tm (A� �mI)�1Ymx̂, Y TmYm + �mY Tm (A� �mI)�1Ymx̂ = �̂Y Tm (A� �mI)�1Ymx̂, Y Tm (A� �mI)�1Ymx̂ = (�̂� �m)�1Y TmYmx̂: (9:4)The eigenvectors/values of (Y T (A��mI)�1AYm; Y Tm (A��mI)�1Ym) are directly relatedto the eigenvectors/values of (Y T (A� �mI)�1Ym; Y TmYm) by (9.4), but this latter pencilis simply Strategy 1 (T = I) applied to the matrix (A� �mI)�1. The eigenvalues on theexterior of (A � �mI)�1 correspond to those of A near �m, and these are the ones bestapproximated by (Y T (A� �mI)�1Ym; Y TmYm) with Tm = I.The main shortcoming of this approach is that it requires an exact factorization of(A � �mI) to acquire Tm. Although this cost is acceptable in methods already utilizingexact ES preconditioners, Pm = (A� �mI)�1, it is not appropriate in general.9.1.2.3 Strategy 3, Tm = (A� �mI)This choice was proposed as a more e�cient avenue for treating interior eigenvalues[107]. To evaluate this transformation, again rewrite it in terms of a second, equivalent175



eigenvalue problem. De�ne the quantities,STS = Y Tm (A� �mI)Ym;~Y = (A� �mI)YmS;~x = Sx̂:The reduced-order eigenvalue problem with Tm = (A� �mI) can then be rewritten asY Tm (A� �mI)AYmx̂ = �̂Y Tm (A� �mI)Ymx̂, Y Tm (A� �mI)2Ymx̂ = (�̂� �m)Y Tm (A� �mI)Ymx̂, ~x = (�̂� �m)S�TY Tm (A� �mI)�1YmS�1~x, ~x = (�̂� �m) ~Y Tm (A� �mI)�1 ~Ym~x, ~Y Tm (A� �mI)�1 ~Ym~x = (�̂ � �m)�1~x:Hence, an approximation found with Strategy 3 is equivalent to �nding an approximationin the column space of ~Ym with Strategy 2. Strategy 3 �nds the best (in a sense)possible eigenvector approximations in ~Ym for those eigenvalues ofA near �m. Eigenvectorapproximations lying in ~Y are frequently referred to as harmonic Ritz vectors [108].This strategy �nds eigenvector approximations in ~Ym, a corrupted version of Ym, andthus, the quality of the results may su�er. Strategy 2 is cheaper than Strategy 1, though,because exact factors or inverses need be treated here. Limited experimentation in theliterature suggests that Tm = (A � �mI) is preferred to T = I for interior eigenvalues[107].9.1.2.4 Strategy 4, Tml = Tmr = (A� �mI)�1In this �nal approach, left and right transformations are utilized to obtain the reduced-order pencil, (Y Tm (A� �mI)�1A(A� �mI)�1Ym; Y Tm (A� �mI)�2Ym: (9:5)Thus, Strategy 4 can be thought of as a two-sided version of Strategy 2. Similar desirableapproximations to eigenvalues of A near �m are therefore expected at the cost of involving176



(A� �mI)�1 again. These observations follow from the relations:Y Tm (A� �mI)�1A(A� �mI)�1Ymx̂ = �̂Y Tm (A� �mI)�2Ymx̂, Y Tm (I + �m(A� �mI)�1)(A� �mI)�1Ymx̂ = �̂Y Tm (A� �mI)�2Ymx̂, Y Tm (A� �mI)�1Ymx̂ = (�̂ � �m)Y Tm (A� �mI)�2Ymx̂, Y Tm (A� �mI)�2Ymx̂ = (�̂ � �m)�1Y Tm (A� �mI)�1Ymx̂:The eigenvector approximations of Strategy 4 are those that would result from a straight-forward restriction of ((A� �mI)�2; (A� �mI)�1) by Ym. Although not common in theexisting eigenvalue literature, Strategy 4 becomes important in Section 9.2.9.1.3 Existing implementationsA bedazzingly array of PIES now exists in the literature, yet most of them can be tracedback to two techniques. One of these seminal techniques is the method of Davidson [98].Davidson's method chooses Tm = I (see Strategy 1 of Section 9.1.2) and �m = �m(recall Section 9.1.1). The second technique is denoted, for lack of a consistent historicaltitle, the shift-and-invert PIES. Originating in [103], the shift-and-invert PIES choosesTm = (A��mI)�1 and �m =1. In its original form, shift-and-invert PIES kept �m �xedfor multiple iterations to allow for the use of the symmetric Lanczos method.A version of the shift-and-invert PIES is provided as Algorithm 9.1. This shift-and-invert Rayleigh-Ritz method is a relatively straightforward extension of the well-knownshift-and-invert eigenvalue iteration [3]. However, rather than use only the most recentdirection to approximate the desired eigenvector, shift-and-invert PIES incorporates allpreviously computed directions into the search subspace colsp fYmg. These computeddirections are kept orthogonal by (S9.1.4) for improved numerical stability. The scalar�m+1 is chosen to be the eigenvalue �̂dm of (Y Tm (A � �m)�1AYm; Y Tm (A � �m)�1Ym). Inpractice, one actually computes the eigenvalue �̂dm of Y Tm (A��mI)�1Ym, which is largestin magnitude and uses the result (9.4) to obtain �m+1 = (�̂dm � �m)�1.If �m+1 is kept �xed rather than updated in (S9.1.2), the symmetric Lanczos algorithm(Algorithm 2.1 with vm = wm = ym and G = (A � �I)�1) can be used to computeY . Moreover, the tridiagonal matrix Y T (A � �I)�1Y arises naturally with the Lanczos177



Algorithm 9.1 Shift-and-Invert PIESInitialize: an orthogonal vector y1 = Y1 and eigenvalue guess �1;For m = 1 to M ,(S9.1.1) Compute (�̂dm; x̂dm) from the Rayleigh quotient Y Tm (A� �mI)�1Ym;(S9.1.2) �m+1 = 1�̂dm��m ;(S9.1.3) ~ym+1 = (A� �m+1I)�1(Ymx̂dm);(S9.1.4) ŷm+1 = ~ym+1 � YmY Tm ~ym+1;(S9.1.5) ym+1 = ŷm+1kŷm+1k2 ;endmethod. The largest eigenvalue of this tridiagonal matrix is �̂dM , which in turn leads tothe eigenvalue estimate, �̂dM = (�̂dm � �)�1.Because shift-and-invert PIES use both exact ES preconditioners and transformationStrategy 2 of Section 9.1.2, a rapid convergence to �d oftentimes occurs. Unfortunately,the involvement of (A � �mI)�1 either explicitly or implicitly is not practical in manyproblems. For this reason, Davidson's method is the foundation of many currently pop-ular PIES methods. Davidson's method and its many generalizations avoid the use ofexact ES preconditioners.A version of Davidson's method is provided as Algorithm 9.2. As noted above, thismethod utilizes the left transformation T = I and sets �m equal to �m. An orthogonalbasis for the search subspace is formed in Y . The original method of Davidson chose theinverse of the diagonal of (A � �mI) as the ES preconditioner Pm. Other, more recentextensions of the approach utilize more general ES preconditioners [19].Di�culties arise with Davidson's method, however, if Pm becomes too good of anapproximation to (A� �mI)�1. In this case, ~ym+1 in (S9.2.3) is approximately x̂dm andno new direction is obtained. To avoid this di�culty, one can perturb �m slightly awayfrom �m. A popular choice in the literature [109] is to select �m+1 = �m+1+ �m+1, where178



Algorithm 9.2 Davidson's MethodInitialize: an orthogonal vector y1 = Y1;For m = 1 to M ,(S9.2.1) Compute (�̂dm ; x̂dm) from Y TmAYm;(S9.2.2) rm = (A� �̂dmI)(Ymx̂dm);(S9.2.3) ~ym+1 = Pm+1rm;(S9.2.4) ŷm+1 = ~ym+1 � YmY Tm ~ym+1;(S9.2.5) ym+1 = ~ym+1k~ym+1k2 ;endthe perturbation is �m+1 = x̂TdmY TmPm+1(A� �m+1I)Ymx̂dmx̂TdmY TmPm+1Ymx̂dm : (9:6)Computing (9.6) directly is relatively cheap. An even more e�cient implementation ofthis correction is possible through a method of Jacobi [110]. The perturbation in (9.6)leads to a new search direction, Pm+1(A � (�m+1 + �m+1)I)Ymx̂dm , which is orthogonalto the previous eigenvector estimate Ymx̂dm. In this manner, new information is addedto Y at every iteration.Apparently, all variations of the original shift-and-invert and Davidson's methods canbe categorized according to their choices for Tm and �m. Table 9.1 attempts to sortmethods contained in many (but certainly not all) papers accordingly. The point of thistable is not to minimize the contributions of the listed papers; rather, it is to emphasizethat central themes exist throughout the PIES literature involving Tm and �m. Theinterested reader should examine these papers for their varied contributions concerningES preconditioning, �m selection and eigenvalue convergence. Two recent surveys ofiterative eigenvalue methods are also available [18, 111].The papers listed in Table 9.1 tend to progress chronologically from left to right.It should be noted that the entry in the second row is complementary to that in the�rst and third rows. This di�erence follows from the fact that both the �rst row and the179



Table 9.1: Classifying Existing PIES�m =1 �m = �m �m = �m + �mT = I [98, 19, 112, 113, 105] [109, 114, 110]Tm = (A� �mI)�1 [103]Tm = (A� �mI) [107] [110]second column of Table 9.1 tend to require exact ES preconditioners. As long as exact ESpreconditioners are being computed, both the powerful transformation Tm = (A��mI)�1and the easily computed case �m =1 should be used.9.1.4 Approaches for several eigenvaluesTraditionally, several eigenvalues of (A;E) are computed via a block extension of analgorithm. One simply replaces the vector ym+1 in (9.1) with a block of vectors ym+1 2IRN�K, ~ym+1 = Pm+1(A� �m+1I)Ym � x̂(1)dm : : : x̂(K)dm � : (9:7)The matrix on the far right of (9.7) contains eigenvector estimates for the desired Keigenvalues. Alternatively, one can individually update each new direction, i.e.,~ym+1 = � P (1)m+1(A� �(1)m+1I)Ymx̂(1)dm : : : P (K)m+1(A� �(K)m+1I)Ymx̂(K)dm � ;and hopefully improve the resulting convergence. The parameters P (k)m+1 and �(k)m+1 can betuned to each individual eigendirection. Such an approach is developed for Davidson'smethod in [115].Further interesting results are obtained if these P (k)m are exact ES preconditioners,the parameters �(k)m and �(k)m are �xed for all m, and the initial eigenvector guesses x̂(k)d1are all identical. In this case, the column space of Ym is an ever-popular rational Krylovsubspace, K[k=1 �(A� �(k)I)�1; y1� : (9:8)180



As stated earlier, the initial work on rational Krylov subspaces and the associated RAalgorithm was directed at the eigenvalue problem [80]. The desired subspace can be con-structed with a one-sided rational Arnoldi algorithm [91]. In this context, the rationalArnoldi algorithm serves as the multiple eigenvalue generalization of the shift-and-invertPIES. An algorithm for the one-sided rational Arnoldi algorithm is presented as Algo-rithm 9.3. This algorithm works to compute one eigenvalue approximation at a time(corresponding to the outer k loop) by constructing one Krylov subspace in (9.8) at atime. While converging to a given eigenvalue, the parameter �(k) remains �xed so thatan Arnoldi-type method results.Note that the matrix E is included in Algorithm 9.3 for consistency with the RKalgorithms in Chapter 4. For consistency with the simplifying assumptions made in thissection, simply think of E as an identity and A as a symmetric matrix.Algorithm 9.3 One-sided Rational ArnoldiInitialize: m = 1 and an orthogonal vector y1;For k = 1 to K,Set �(k) as an estimate for the next desired eigenvalue �dk ;qm+1 = Ey1;While �dk is not found,(S9.3.1) ~ym+1 = (A� �(k)E)�1qm+1;(S9.3.2) ŷm+1 = ~ym+1 �Pml=1 yl
l;m where 
l;m = yTl ~ym+1;(S9.3.3) ym+1 = ŷm+1=
m+1;m where 
m+1;m = kŷm+1k2;(S9.3.4) m = m+ 1;(S9.3.5) qm+1 = Eym;endendAt this point, the casual reader may choose to proceed to Section 9.2. We spend theremainder of this section demonstrating how the one-sided RA algorithm can implicitly181



generate a pencil (Y TTAY; Y TTY ) involving the Strategy 2 transformation (A��(k)I)�1.The presented approach for computing the approximate eigenvectors is a novel one (it dif-fers from that proposed in [15, 91]), but is consistent with the eigenvalue approximationsgenerated by the shift-and-invert PIE in the single eigenvalue case.Algorithm 9.3 computes an orthogonal Y corresponding to the subspace in (9.8).However, Y must still be applied to some matrix pencil to determine approximate eigen-values and eigenvectors in every step. Fortuitously, a desired low-order pencil is implicitlyformed by the one-sided RA algorithm. This behavior and the following derivation is sim-ilar to that seen for the RL algorithm in Sections 4.1.3 and 4.1.4. Our starting point isthe matrix relationship AYm+1Êm+1;m = EYm+1Âm+1;m; (9:9)which was derived in [91] and holds after m iterations of the one-sided RA algorithm.Due to (S9.3.2) and (S9.3.3), the matrices Êm+1;m and Âm+1;m 2 IR(m+1)�m are upper-Hessenberg matrices whose mth columns take the forms2666666664 
1;m...
m+1;m0 3777777775 and il + �m 2666666664 
1;m...
m+1;m0 3777777775 : (9:10)The vector il is either the �rst or mth column of an identity matrix (it does not mat-ter in this discussion) and the scalar �m 2 f�(1); : : : ; �(K)g is the speci�c interpolationpoint used in the mth iteration. Note the similarity between (9.10) and (4.18). De�ning~Am+1;m = Âm+1;m � �mÊm+1;m and noting (9.9), results in(A� �mE)Ym+1Êm+1;m = EYm+1 ~Am+1;m = EYm ~Am;m: (9:11)The last equality in (9.11) holds, because the (m+ 1)st row of ~Am+1;m consists of zeros(the last column of the upper-Hessenberg ~Am+1;m is just im). Multiplying (9.11) on theleft by Y Tm (A� �mE)�1 yieldsÊm;m = Y Tm (A� �mE)�1EYm ~Am;m;182



so that Y Tm (A� �mE)�1(A� �̂E)Ym ~Am= Y Tm (A� �mE)�1f(A� �mE + (�m � ~�)EgYm ~Am (9.12)= (�m � �̂)Êm + ~Am= Âm � �̂Êm: (9.13)Thus, if �̂ and x̂ are an eigenvalue and eigenvector of (Âm; Êm), then (�̂; ~Amx̂) are aneigenvalue and eigenvector of(Y Tm (A� �mE)�1AYm; Y Tm (A� �mE)�1EYm): (9:14)However, (9.14) is exactly the pencil sought by Strategy 1 of Section 9.1.2 for �ndingapproximations to eigenvalues near �m. In the mth iteration, the desired eigenvalueapproximation �̂dm nearest �m can be directly acquired from the matrices Âm and Êmconstructed in Algorithm 9.3. This occurrence is ideal, because we are trying to locatethe eigenvalue nearest �m in the mth iteration. Only (9.14), the desired low-order pencilfor �m, is implicitly generated at the mth iteration, because doing so requires that thevector (A� �mI)�1ym is somewhere available. This information is, in fact, available inthe vector ~ym+1, which was formed by multiplying ym by (A� �mI)�1.The eigenvector approximation Ym ~Amx̂dm arising from (9.14) is not the approximateeigenvector Ym+1Êm+1;mx̂dm suggested by [91]. To provide further motivation for theformer choice, we write the residual rm corresponding to this eigenvector asrm = (A� �̂dmE)Ym ~Amx̂dm= (A� �̂dmE)Ym+1(Âm+1;m � �mÊm+1;m)x̂dm= (A� �mE)Ym+1(Âm+1;m � �mÊm+1;m)x̂dm+(�m � �̂dm)EYm+1(Âm+1;m � �mÊm+1;m)x̂dm;and continue by noting (9.9) and writing 183



rm = (A� �mE)Ym+1(Âm+1;m � �mÊm+1;m)x̂dm+(�m � �̂dm)(A� �mE)Ym+1Êm+1;mx̂dm= (A� �mE)Ym+1(Âm+1;m � �̂dmÊm+1;m)x̂dm :Lastly, the fact that (Âm;m � �dmÊm;m)x̂dm equals zero yields the residual expressionrm = �(A� �mE)ym+1; (9:15)where � is the dot-product of x̂dm with the last row of (Âm+1;m � �̂dmÊm+1;m). Theresidual (9.15) that results from choosing the approximate eigenvector as Ym ~Amx̂dm inthe mth iteration is (A��mE) orthogonal to the column space of Ym. This orthogonalityis consistent with the Galerkin condition in (9.2). The approximate eigenvector choiceYm+1Êm+1;mx̂dm only leads to E orthogonality for the residual [91].9.2 Arriving at PIES from Model ReductionMany previous chapters allude to connections between the proposed model-reductiontechniques and the eigenvalue methods of Section 9.1. In this section, the techniquesdeveloped for model reduction are considered in the context of �nding eigenvalues. Vari-ations on the themes in Section 9.1 result. By performing this exercise, it is hoped thatnew insights into and perhaps modi�cations of existing PIES result can eventually beobtained.For simplicity, a model-reduction problem that is consistent with the eigenvalue as-sumptions (A is symmetric, E is the identity matrix, and b = c) is considered. Thisassumption is not restrictive, because the model-reduction techniques that serve as ourstarting point are already known for the general case.The key to both model reduction and PIES is the form of the search subspaces. Forthe symmetric case, the model-reduction subspace is the column space of V . In modelreduction, the next direction in the search subspace is computed as �m(A � �mI)vm�1,while the new direction in PIES is �m(A � �mI)Ym�1x̂dm�1 . Section 9.1.3 notes thatthese new directions take equivalent forms when the �m are constant with respect to a184



given interpolation point, e.g., Krylov subspaces result in (9.8) for the shift-and-invertPIES. However, what happens when �m is inexact and varying? In particular, how doesDavidson's method relate to model reduction? The answer to these questions come fromSection 8.3, where relations between outer modeling and inner solver iterations werediscussed. Recall the update direction in (8.16) that was derived for model reduction,�m+1 nvpm � (A� �m+1I)Vm(Âm � �m+1Im)�1V Tm vpmo : (9:16)This vector is the update direction that results when the outer iteration is used to generatean initial guess for the inner solve. However, as �m+1 approaches the eigenvalue �̂dm of Â(they are set equal in Davidson's method), the vector (Âm � �m+1Im)�1V Tm vpm in (9.16)becomes the orthogonal eigenvector x̂dm times a large scaling factor. Due to this largescaling of x̂dm, the �m+1vpm term in (9.16) drops out and one is left with the new directionof Davidson's method. Hence, Davidson's method is an inner-outer type iterative methodthat implicitly computes �m(A��mI)vm�1 by utilizing an initial solver guess that is basedon the outer iteration. The only problem that can arise in Davidson's method is when�m+1 becomes exact (recall Section 9.1.2). In this case, the vector �m+1vpm yields theideal new direction in (9.16); yet it is dropped in Davidson's method. Corrections to thisproblem utilize orthogonality between the existing outer subspace and the computed newdirection to avoid di�culties [109, 110]. As noted at the end of Section 8.3, this approachis another way of relating the inner and outer iterations.The only other point of di�erence between the model reduction and eigenvalue sub-spaces is the choice for the �rst vector in the subspace. PIES typically choose somevector, say b, for its starting vector y1. The �rst column of V in model reduction is�1b. Think of v1 as simply an improved guess for the starting vector; (A � �1E)�1b ismore likely a better approximation for the desired eigenvector then b. If this supposedlybetter starting guess is used for y1, then (assuming �xed shift selection) the eigenvaluesof (Y TAY; Y TY ) and (V TAV; V TV ) are identical. There is an alternative description ofthe di�erences between V and Y , however. Consider the simplest case, where the columnspace of V isKM ((A��I)�1; (A��I)�1b) and the column space of Y is KM((A��I)�1; b).185



Then, trivially, V equals (A� �I)�1Y and the low-order pencil of model reduction isV T (A� �I)V = Y T (A� �I)�1(A� �I)(A� �I)�1Y: (9:17)The right side of (9.17) and thus, the low-order pencil from model-reduction result fromthe Strategy 4 approach of Section 9.1.2 for generating the reduced-order pencil. Theexpression (9.17) does not hold exactly in the event of inexact ES preconditioners. It doesillustrate that only minor di�erences exist between V and Y and, perhaps, the di�erentstrategies of Section 9.1.2.
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CHAPTER 10CONCLUSIONS AND FUTURE WORKIn this �nal chapter, the results of the previous nine chapters are recapitulated withan emphasis on DS preconditioners and bases for the projection subspaces. Suggestionsare also provided for further improvements and extensions of these results.10.1 Summary of ResultsRational interpolation is readily achieved by projection onto unions of Krylov subspacesas in (3.1) and (3.2). A projection algorithm for implementing rational interpolation musttherefore choose both the DS preconditioners used in (approximately) forming the sub-spaces and the speci�c bases representing the subspaces. Modulo some assumptions onthe conditioning of the reduced-order pencil ZT (A��E)V , any bases will lead to rationalinterpolation. Decisions to form biorthogonal or orthogonal bases are only pertinent withrespect to e�ciency and reliability, but not to rational interpolation itself. Biorthogonal-ity, with respect to a certain matrix, leads to the rational Lanczos algorithm, an e�cientapproach that generalizes all existing single-point Lanczos techniques for Pad�e approxi-mation. In theory, this biorthogonality can be maintained and the projection implicitlyperformed with recursions whose lengths are proportional to the number of interpolationpoints. Unfortunately, this biorthogonality is lost in practice, the convergence of the RLresults are slightly slowed, and the algorithm is susceptible to errors in the DS precondi-tioner. These di�culties can be avoided by utilizing orthogonal bases. This choice leadsto the dual rational Arnoldi algorithm, a relatively robust, but more costly approach.The dual RA approach is suited for inexact DS preconditioners. Its orthogonality tendsto eliminate column dependencies in V or Z, which otherwise arise in �nite precision187



and, in particular, when many moments are matched about a single interpolation point.A novel approach based on a low-order singular value decomposition can alternatively beemployed to extract dependent columns. This technique, associated with the proposedrational power method, is applied to the reduced-order model and avoids costly Gram-Schmidt computations on the vectors in the large-dimensional subspaces. By avoidingany form of (bi)orthogonalization, the RP algorithm is particularly well-suited for parallelimplementations. In particular, if Z is known a priori (the approach is one-sided), thenV and the reduced-order model can be concurrently computed on multiple processorswith nearly negligible communications. Error estimates can be used to avoid redundantwork on these processors.In addition to the type of basis, the DS preconditioners must be selected. Ideally,these DS preconditioners are exact inverses of (A� �(k)E), leading to moment matchingat the interpolation point �(k). However, approximate DS preconditioners (solves) arereasonable in versions of the RA and RP algorithms and may reduce computational costs.Experiments suggest that the accuracy of the approximate solves should be consistentwith that desired in the reduced-order model, if signi�cant deterioration in the modelingconvergence is to be avoided. These approximations can be implemented via �xed pre-conditioners, inner iterations of a Krylov-based iterative solver, or a combination of inneriterations and inner preconditioners. Injecting information from the outer modeling iter-ation into the solver can also improve the solver's performance. Regardless of how the DSpreconditioner is formed, its contents depend on the choice for the interpolation point.Imaginary interpolation points, �(k), lead to reduced-order model convergence at frequen-cies in the locality of j�(k)j. Real interpolation points, on the other hand, lead to courserconvergence over broader frequency ranges. In terms of cost versus accuracy trade-o�s, alimited number of real interpolation points are typically preferred in sequential rationalKrylov implementations. For purposes of load balancing, parallel implementations arebetter served by numerous, dynamically placed imaginary interpolation points. In eitherimplementation, the placement of interpolation points and/or the number of momentsmatched per point should be based on available information feedback from error analyses.188



The error can be implicitly estimated from residual computations or explicitly estimatedby comparisons of di�erent reduced-order models (whose di�erences are themselves dueto complementary choices of past interpolation points). The residuals are at times easierto compute, but the model comparison tends to be more accurate.10.2 Future PossibilitiesThe aim of this dissertation is to provide a strong foundation for the reduced-ordermodeling of LTI, SISO dynamic systems with Krylov-like projection methods. Beyondthis work, there are possible tunings based on problem dependent issues, e.g., takingadvantage of symmetry, which can be addressed with simple modi�cations of the methodsin this dissertation. There are also implementational details, e.g., tuning an adaptiveinterpolation point strategy, which can be addressed with coded trials and errors. Froma purer research standpoint, there are �ve remaining areas for future work that areapparent at this time.10.2.1 MIMO systemsAs noted in Section 3.4.2, multiple-input multiple-output systems are common andfrequently treated through block versions of the projection algorithms. However, blockversions become expensive for even moderate numbers of inputs and outputs. New ideasfor acquiring the fundamental directions in the subspaces (3.18) and (3.19) are needed.Perhaps certain poles of the system should be emphasized in a modal-type approach.10.2.2 Rank de�cienciesSection 4.1.1 proposes an SVD approach for handling rank de�cient V or Z matricesby postprocessing the reduced-order model. Further theoretical work and experimenta-tion are needed to completely understand the details and reliability of this method. Inparticular, choosing the frequency (or perhaps frequencies) at which the SVD (or SVD's)189



is evaluated requires additional insight. Furthermore, acceptable condition numbers forthe postprocessed, reduced-order model must be examined.10.2.3 Multilevel parallelismA C-version of the parallel Algorithm 7.1 is being planned. It will be implemented fordistributed architectures via the MPI (message passing interface) directives. However,in extremely large problems, it is doubtful that a matrix pencil (A � �(k)E) can bestored/treated by a single processor unit. A second level of parallelism that is based onpartitioning the basic matrix operations will be required. In this manner, hundreds ofprocessors can be brought to bear on the problem, while hopefully retaining e�ciency.10.2.4 Approximate solversThere are nearly a countless number of iterative solvers and inner preconditioners thatcan be considered for approximately solving (8.3). For simplicity, the well-known GMRESalgorithm is utilized in Chapter 8. The risks and bene�ts of a two-sided iterative solver,such as QMR, should be studied as well. Furthermore, connections between the outermodeling and inner solver recursions appear to be important and should be consideredin detail. Lastly, connections should be obtained between the approximate solves andinterpolation point placement. It is conjectured that the use of approximate solves makesan increasing number of interpolation points more feasible in sequential implementations.This statement was not explored or exploited in Chapter 8.10.2.5 Related problemsBeyond the issues arising directly from this dissertation, there are several classes ofproblems that can possibly bene�t from the developed LTI model-reduction techniques:1. Shifted Systems of Linear Equations. Many of the model-reduction techniques,e.g., interpolation point placement based on the residual calculations, the various190



RK implementations, parallelism, etc., should be directly transferable to solvingarbitrary systems of shifted linear equations.2. Eigenvalue Problems. The eigenvalue problem was discussed in detail in Chapter 9along with its connections to model reduction. General approaches for computingseveral eigenvalues over regions are still needed. Issues such as interpolation pointplacement and parallelism need to be further explored as well.3. Nonlinear or Time-varying Problems. Extending the model reduction beyond LTIdynamic systems provides several new challenges. For distributed systems, e.g.,transmission line equations, the higher order moments of the system will generallyno longer be available via simple repetitive multiplications by a matrix. Also, if thelinear pencil (A� sE) is replaced by a higher (perhaps in�nite) order matrix poly-nomial A(s), then explicitly computing the approximation ZTA(s)V is no longerstraightforward. One might linearize the model-reduction process over frequencyregions and attempt to merge the results. Similarly, in time-dependent problems,LTI reduced-order models might be constructed for di�erent regions of time. Thesensitivity of a given model's accuracy, with respect to time, must then be deter-mined and approaches for updating the projection matrices V and Z over timemust be obtained.
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APPENDIX ALEMMA PROOFSProof of Lemma 2.1 The result follows from the equalities(A� �E)�1(A� sE) = (A� �E)�1(A� sE + (� � �)E)= I + (� � s)(A� �E)�1E:Proof for Lemma 2.2 We show that Kj(�G+ I; g) � Kj(G; g) by induction. The dualrelation Kj(G; g) � Kj(�G+I; g) follows in a similar fashion. The subspaces Kj(�G+I; g)and Kj(G; g) are trivially identical when j = 1. Now assume that (2.19) holds for some~| � 1. It must be shown that (�G+ I)~|g 2 K~|+1(G; g). By assumption, ~g = (�G+ I)~|�1gis in K~|(G; g) and therefore, G~g is in K~|+1(G; g). Thus, the vector(�G + I)~|g = (�G + I)~g = �G~g + ~glies in K~|+1(G; g) and the �rst half of the proof is complete.Proof for Lemma 3.1 The assumption that v lies in the column space of V impliesthat there exists a vector g such that v = V g. Noting the biorthogonality of V and W ,it follows that VW Tv = VW TV g = V g = v.Proof for Lemma 3.2 We begin by de�ning a matrixW T = �ZT (A� �E)V ��1 ZT (A� �E) (A:1)which satis�es W TV = I. The proof follows by induction. For j = 1,V �ZT (A� �E)V ��1 ZTb = V W T (A� �E)�1b = (A� �E)�1b:192



The last equality follows from Lemma 3.1 because (A� �E)�1b 2 colsp fV g. If we nowassume that the desired result holds up to some j � Jb, then the expression of interestcorresponding to j isV n(ZT (A� �E)V )�1ZTEV oj�1 (ZT (A� �E)V )�1ZTb= V (ZT (A� �E)TV )�1ZTE f(A� �E)�1Egj�2 (A� �E)�1b= V (ZT (A� �E)TV )�1ZT (A� �E) f(A� �E)�1Egj�1 (A� �E)�1b= V W T f(A� �E)�1Egj�1 (A� �E)�1b= f(A� �E)�1Egj�1 (A� �E)�1b:The �rst equality follows from the inductive assumption. The last equality follows fromLemma 3.1 because f(A� �E)�1Egj�1 (A � �E)�1b 2 colsp fV g. By induction, thedesired result must hold for any j � Jb.Proof for Lemma 3.3 The desired result is simply the dual to that in Lemma 3.2. Forthis reason, we only present the j = 1 case and note that the balance of the argumentproceeds in the fashion of the previous proof. De�ne W again as in (A.1). Then, forj = 1, cTV �ZT (A� �E)V ��1 ZT = cTVW T (A� �E)�1 = cT (A� �E)�1:The last equality follows from the use of Lemma 3.1 in conjunction with the followingobservation: if W = (A � �E)TZT for some nonsingular matrix T 2 IRM�M and amatrix Z 2 IRN�M satisfying KJ �(A� �E)�TE�T ; (A� �E)�Tc� � colsp fZg, thenKJ �ET (A� �E)�T ; c� � colsp fWg.To see this observation, begin by noting that~zj = n(A� �E)�TEToj�1 (A� �E)�T cT � colsp fZg (A:2)is assumed for j = 1; : : : ; J . Thus, ~zj can be written as Zgj for some vector gj and anyj � J . Multiplying ~zj on the left by (A� �E)T yields(A� �E)T ~zj = (A� �E)TZTT�1gj = WT�1gj = W ~gj (A:3)193



for j = 1; : : : ; J . By (A.2) and (A.3), nE�T (A� �E)�Toj�1 c is in the column space ofW for j = 1; : : : ; J . A basis for KJ(ET (A� �E)�T ; c) and hence, KJ (ET (A� �E)�T ; c)itself must therefore lie in colsp fWg.Proof for Lemma 4.1 We prove (4.1). The key is to note that (A� �(k)E)�1 can berewritten as(A� �(k)E)�1 = (A� �(k)E)�1(A� �(k+1)E)(A� �(k+1)E)�1= (A� �(k)E)�1(A� �(k)E + (�(k) � �(k+1))E)(A� �(k+1)E)�1to yield(�(k)��(k+1))(A��(k)E)�1E(A��(k+1)E)�1 = (A��(k)E)�1� (A��(k+1)E)�1: (A:4)Using (A.4), expression (4.1) follows via induction. If j = 1, multiplying (A.4) on theright by b gives(A� �(k)E)�1E(A� �(k+1)E)�1b = (�(k)� �(k+1))�1f(A� �(k)E)�1 � (A� �(k+1)E)�1gband (4.1) is satis�ed. Next, assume that (4.1) holds for j = 1; : : : ; J � 1. Multiplying(A.4) on the right by E n(A� �(k+1)E)�1EoJ�2 (A� �(k+1)E)�1b yields(�(k) � �(k+1))(A� �(k)E)�1E n(A� �(k+1)E)�1EoJ�1 (A� �(k+1)E)�1b= (A� �(k)E)�1E n(A� �(k+1)E)�1EoJ�2 (A� �(k+1)E)�1b�n(A� �(k+1)E)�1EoJ�1 (A� �(k+1)E)�1b: (A.5)Under the assumption that (4.1) holds for j = J � 1, (A.5) shows that (4.1) also holdsfor j = J . The induction step and thus (4.1) hold, in general. The proof of (4.2) is thedual to that provided for (4.1).Proof for Lemma 5.1 We prove (5.6) and leave (5.5) as its dual. Combining the rightsides of (S4.1.2) and (S4.1.3) of the general RK algorithm leads to the relation(A� �mE)TZm 264 �zm�zm 375 = wpm+1:194



Through the right sides of (S4.1.4) and (S4.1.5) this relation can be rewritten as(A� sE)TZm 264 �zm�zm 375 = wpm+1 + (�m � s)EZm 264 �zm�zm 375= wpm+1 + (�m � s)Wm+1 2666666664 �w2 : : : "�w2 �wm+1. . . #�wm+1 3777777775264 �zm�zm 375 : (A.6)Combining the expressions (A.6) into matrix form for m = 1 to M and multiplying onthe right by the inverse of 2666666664 �1 �z2 � � � ". . . �zm. . . #�zm 3777777775yields (5.6).Proof for Lemma 6.1 If �n is an eigenvalue of (A;E), then Axn = �Exn. An equivalentrelation, (A��E)�1Exn = 1�n��xn, follows from Lemma 2.1. Because the original systemis stable, the spectrum of (A;E) lies to the left of the imaginary axis and the spectrumof (A � �)�1E is bounded in the complex plane by the complex function f(!) = 1�!�� .However, f(!) simply de�nes a circle centered at �12� with radius 12� , because the relation� ��(2)+ !2 � 12��2 + � !�(2) + !2�2 = � 12��2holds where Real(f(!)) = ���(2)+!2 and Imag(f(!)) = �!�(2)+!2 .Proof for Lemma 6.2 The desired result follows from the relationsAxn = �nExn $ (A� �E)�1Exn = xn(�n � �)�1$ (I + (� � s)(A� �E)�1E)xn = �1 + � � s�n � ��xn$ (A� �E)�1f(A� �E) + (� � s)Egxn = �n � s�n � �xn:195



APPENDIX BSELECTED MATLAB IMPLEMENTATIONSThe development of the dual rational Arnoldi and rational Lanczos algorithms areimportant contributions of this work. Provided below are the implementations of thesealgorithms that were executed in MATLAB for Examples 4.5 and 7.1.A Dual Rational Arnoldi Implementation:function [Am,Em,bm,cm] = RK_DRA(A,E,b,c,J,S);% Rational Krylov Method (Dual Rational Arnoldi Version)%% INPUTS:% A,E,b,c = system to be modeled% J = number of moments to be matched per point% S = column vector of interpolation points% OUTPUTS:% Am,Em,bm,cm = reduced-order model% Parameter initializationm = 1;J = round(J/2);[K,one] = size(S);[N,N] = size(A);V = []; Z = [];% Factorize sparse matrices via minimal column ordering196



L = []; U = []; P = []; Q = [];p = zeros(K,N);for k=1:K,X = (A-S(k)*E);p(k,:) = colmmd(X);[Lt,Ut,Pt] = lu(X(:,p(k,:)));L = [L,Lt]; U = [U,Ut]; P = [P,Pt];I = sparse(eye(N,N)); Q = [Q,I(:,p(k,:))];end% Construct V and Zfor j=1:J,for k=1:K,kk = (k-1)*N+1:k*N;if j==1,v = Q(:,kk)*(U(:,kk)\(L(:,kk)\(P(:,kk)*b)));z = P(:,kk)'*(L(:,kk)'\(U(:,kk)'\(Q(:,kk)'*c)));elsev = Q(:,kk)*(U(:,kk)\(L(:,kk)\(P(:,kk)*(E*V(:,m-1)))));z = P(:,kk)'*(L(:,kk)'\(U(:,kk)'\(Q(:,kk)'*(E'*Z(:,m-1)))));endif m > 1, v = v - V*(V'*v); z = z - Z*(Z'*z); endV = [V,v/norm(v)]; Z = [Z,z/norm(z)];m = m+1;endend% Compute the reduced-order modelAm = Z'*(A*V); Em = Z'*(E*V); bm = Z'*b; cm = V'*c;197



A Rational Lanczos Implementation:function [Am,Em,bm,cm] = RK_RL(A,E,b,c,J,S);% Rational Krylov Method (Rational Lanczos Version)%% INPUTS:% A,E,b,c = system to be modeled% J = number of moments to be matched per point% S = column vector of interpolation points% OUTPUTS:% Am,Em,bm,cm = reduced-order model% Parameter initializationm = 1;J = round(J/2);[K,one] = size(S);[N,N] = size(A);V = []; W = []; w = c;% Reduced-order model initializationAm=zeros(J*K,J*K); Em=zeros(J*K,J*K); bm=zeros(J*K,1); cm=zeros(J*K,1);% Factorize sparse matrices via minimal column orderingL = []; U = []; P = []; Q = [];p = zeros(K,N);for k=1:K,X = (A-S(k)*E);p(k,:) = colmmd(X);[Lt,Ut,Pt] = lu(X(:,p(k,:)));L = [L,Lt]; U = [U,Ut]; P = [P,Pt];I = sparse(eye(N,N)); Q = [Q,I(:,p(k,:))];end 198



% Construct V and Wfor j=1:J,for k=1:K,kk = (k-1)*N+1:k*N;if j==1,v = Q(:,kk)*(U(:,kk)\(L(:,kk)\(P(:,kk)*b)));elsev = Q(:,kk)*(U(:,kk)\(L(:,kk)\(P(:,kk)*(E*V(:,m-1)))));endif m > 1,Gamma = W(:,max(1,m-K-1):m-1)'*v;Beta = V(:,max(1,m-K-1):m-1)'*w;v = v - V(:,max(1,m-K-1):m-1)*Gamma;w = w - W(:,max(1,m-K-1):m-1)*Beta;v = v-V(:,max(1,m-K-1):m-1)*(W(:,max(1,m-K-1):m-1)'*v);w = w-W(:,max(1,m-K-1):m-1)*(V(:,max(1,m-K-1):m-1)'*w);endgamma = sqrt(abs(w'*v)*norm(v)/norm(w));beta = sign(w'*v)*sqrt(abs(w'*v)*norm(w)/norm(v));if m == 1, beta_1 = beta; gamma_1 = gamma; endV = [V,v/gamma]; W = [W,w/beta];w = E'*(P(:,kk)'*(L(:,kk)'\(U(:,kk)'\(Q(:,kk)'*W(:,m)))));if m > 1,Em(m-1,max(1,m-K-1):m) = [Beta',beta];Am(m-1,:) = S_old*Em(m-1,:);Am(m-1,m-1) = Am(m-1,m-1) + 1;endS_old = S(k);m = m+1; 199



endend% Finish off the Am and Em matricesBeta = V(:,max(1,m-K-1):m-1)'*w;Em(J*K,J*K-K:J*K) = Beta';Am(J*K,:) = S(K)*Em(J*K,:);Am(J*K,J*K) = Am(J*K,J*K)+1;% Compute the reduced-order input and output vectorsbm = (Am(:,1)-S(1)*Em(:,1))*gamma_1;cm(1) = beta_1;A Quasi-Parallel Rational Power Implementation:function [Am,Em,bm,cm] = RK_PRP(A,E,b,c,J,f);% Rational Krylov Method (Quasi-Parallel Rational Power Version)%% INPUTS:% A,E,b,c = system to be modeled% J = number of ``parallel'' iterations to perform% f = vector containing frequency point grid% OUTPUTS:% Am,Em,bm,cm = reduced-order modelnprocs = 8;% initialize the pdf to a uniform distribution[pt_tot,one] = size(f);pdf = ones(size(f))/pt_tot;pt_sep = round(0.01*pt_tot)+1;% initialize the projection matrices200



V1 =[]; Z1=[]; V2=[]; Z2=[];for j=1:J,for p=1:nprocs,% choose another point for model 1 based on current pdfrvar = rand(1);pt_cnt = 1;PDF = pdf(1);while rvar > PDF,pt_cnt = pt_cnt+1;PDF = PDF + pdf(pt_cnt);end% edit pdf to keep current points 1% distancedfor l=max(1,pt_cnt-pt_sep):min(pt_tot,pt_cnt+pt_sep), pdf(l)=0; endpdf = pdf/sum(pdf);% compute the new directions for model 1v1 = (A-i*E*f(pt_cnt))\b;V1 = [V1,real(v1)/norm(real(v1)),imag(v1)/norm(imag(v1))];z1 = randn(size(b))+i*randn(size(b));Z1 = [Z1,real(z1)/norm(real(z1)),imag(z1)/norm(imag(z1))];% choose another point for model 2 based on current pdfrvar = rand(1);pt_cnt = 1;PDF = pdf(1);while rvar > PDF,pt_cnt = pt_cnt+1;PDF = PDF + pdf(pt_cnt);end 201



% edit pdf to keep current rounds of points 1% distancedfor l=max(1,pt_cnt-pt_sep):min(pt_tot,pt_cnt+pt_sep), pdf(l)=0; endpdf = pdf/sum(pdf);% compute the new directions for model 2v2 = (A-i*E*f(pt_cnt))\b;V2 = [V2,real(v2)/norm(real(v2)),imag(v2)/norm(imag(v2))];z2 = randn(size(b))+i*randn(size(b));Z2 = [Z2,real(z2)/norm(real(z2)),imag(z2)/norm(imag(z2))];end% Compute model number 1A1 = Z1'*(A*V1); E1 = Z1'*(E*V1); b1 = Z1'*b; c1 = V1'*c;[M,junk] = size(A1);[Uc,Sc,Vc] = svd(A1-abs(f(1))*E1);k = 1; while (Sc(1,1)/Sc(k,k) < 1e8) & (k<M), k = k+1; end; k=k-1;A1 = Uc(:,1:k)'*A1*Vc(:,1:k); E1 = Uc(:,1:k)'*E1*Vc(:,1:k);b1 = Uc(:,1:k)'*b1; c1 = Vc(:,1:k)'*c1;% Compute model number 2A2 = Z2'*(A*V2); E2 = Z2'*(E*V2); b2 = Z2'*b; c2 = V2'*c;[M,junk] = size(A2);[Uc,Sc,Vc] = svd(A2-abs(f(1))*E2);k = 1; while (Sc(1,1)/Sc(k,k) < 1e8) & (k<M), k = k+1; end; k=k-1;A2 = Uc(:,1:k)'*A2*Vc(:,1:k); E2 = Uc(:,1:k)'*E2*Vc(:,1:k);b2 = Uc(:,1:k)'*b2; c2 = Vc(:,1:k)'*c2;% Compute the difference between the two models to update the pdfdiff = zeros(size(f));for k = 1:pt_tot,diff(k) = abs(c1'*((i*f(k)*E1-A1)\b1)-c2'*((i*f(k)*E2-A2)\b2));202



endpdf = diff/sum(diff);endAm=A1; Em=E1; bm=b1; cm=c1;
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