N

N
N

HAL

open science

Krylov projection methods for model reduction

Eric Grimme

» To cite this version:

Eric Grimme. Krylov projection methods for model reduction. Electric power. University of Illinois
at Urbana Champaign, 1997. English. NNT: .

tel-01711328

HAL Id: tel-01711328
https://theses.hal.science/tel-01711328
Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01711328
https://hal.archives-ouvertes.fr

KRYLOV PROJECTION METHODS
FOR MODEL REDUCTION

BY
ERIC JAMES GRIMME

B.S., The Ohio State University, 1992
M.S., University of Illinois at Urbana-Champaign, 1994

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1997

Urbana, Illinois



ABSTRACT

This dissertation focuses on efficiently forming reduced-order models for large, linear
dynamic systems. Projections onto unions of Krylov subspaces lead to a class of reduced-
order models known as rational interpolants. The cornerstone of this dissertation is a
collection of theory relating Krylov projection to rational interpolation. Based on this
theoretical framework, three algorithms for model reduction are proposed. The first
algorithm, dual rational Arnoldi, is a numerically reliable approach involving orthogonal
projection matrices. The second, rational Lanczos, is an efficient generalization of existing
Lanczos-based methods. The third, rational power Krylov, avoids orthogonalization
and is suited for parallel or approximate computations. The performance of the three
algorithms is compared via a combination of theory and examples. Independent of the
precise algorithm, a host of supporting tools are also developed to form a complete
model-reduction package. Techniques for choosing the matching frequencies, estimating
the modeling error, insuring the model’s stability, treating multiple-input multiple-output
systems, implementing parallelism, and avoiding a need for exact factors of large matrix

pencils are all examined to various degrees.
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CHAPTER 1

INTRODUCTION

I[terative projection methods for the solution of large-scale, frequency-dependent prob-
lems are introduced in this chapter. Such problems are of growing interest in the analyses
or simulations of linear dynamic systems. An outline of the dissertation is provided which
highlights the goals in addressing these issues. The notation utilized throughout the dis-

sertation is also summarized.

1.1 Motivating Trends

A surprisingly large variety of physical phenomena is modeled with linear, time-
invariant (LTI) dynamic systems. The advantages of this approach include the relative
ease by which both the initial model development and the eventual mathematical treat-
ment can be achieved. Models can frequently be acquired through discretizations such as
the common finite difference and finite element approaches [1]. A range of techniques from
the backward Euler method to multistep methods exists for solving the ordinary differ-
ential equations (ODE) that describe the system [2]. Stable, well-understood numerical
linear algebra algorithms, e.g., a reduction to Schur form by orthogonal transformations,
dominate the low-level mathematical operations [3]. When combined in various fashions,
techniques such as the above enable the robust analysis, control or simulation of a large
class of physical applications.

Two trends, however, suggest a need for novel iterative approaches for treating LTI
dynamic systems, particularly with respect to the linear algebra algorithms. First, many
physical models are becoming more complex due to either increased system size or an

increased desire for detail. Discretizations of three-dimensional behavior are becoming



common. Sources for such applications include the modeling of off-chip (and increasingly
on-chip) interconnects in high-speed circuit designs [4]. Simple two-dimensional extrac-
tions of resistance and capacitance may no longer be sufficient as minimum feature sizes
drop below 0.1 microns and clock speeds exceed 1 GHz. A second example of large-scale
systems is a model of the North American power grid arising from planning problems in
an increasingly deregulated power industry [5]. Although such models tend to accurately
describe the behavior of the underlying physical system, their complexity leads to high
analysis and simulation costs with traditional numerical techniques in electrical engineer-
ing. Many dense numerical linear algebra techniques are only computationally feasible
for a limited number of variables, i.e., on the rough order of hundreds at the time of
writing. Popular orthogonal transformation-based approaches in control and eigenvalue
computations typically grow cubically in cost and quadratically in memory. Direct sparse
factorizations in simulation may be impractical as well due to a highly variable step size
or an unexploitable sparsity pattern.

The unrelenting growth of problem complexity is certainly not limited to applications
in electrical engineering. It is thus not surprising that a second trend, the proliferation
of iterative algorithms, and in particular, Krylov iterative algorithms, has appeared in
numerical linear algebra [6, 7, 8]. Suited for sparse or structured problems, these iterative
methods frequently lead to approximate numerical solutions with low computational
effort. For the most part, however, existing Krylov research focuses on fixed problems.
For example, numerous implementations exist for solving a fully specified system of
linear equations or finding the eigenvalue closest to some fixed point. Unfortunately,
these approaches only extend to frequency-dependent and time-dependent problems in a
limited fashion. With regards to dynamic systems, it may be desired to find the system’s
response over a range of frequencies or to check for unstable eigenvalues in the entire
right-half plane. The introduction of time-dependent or frequency-dependent variables
presents an exciting and relatively unexplored challenge for Krylov-based approaches.

For the reasons above, this dissertation explores the extension and development of

iterative implementations of Krylov projection for the analyses and approximations of



LTI dynamic systems. Although certainly not the first endeavor into this area (see
the historical survey in Chapter 2), it is believed that the following represents the most
comprehensive treatment of the topic to date. Rather than simply adapting some existing
iteration to dynamic systems, we concentrate on deriving a theoretical framework which
is then utilized to develop a complete spectrum of novel and powerful Krylov-based

methods for dynamic systems.

1.2 Problem Overview

This dissertation emphasizes approximate solution techniques for dynamic system
problems involving the matrix pencil (sF — A). The matrices A € RY*N and E € RVV
are assumed to be large and sparse; they typically contain lumped parameters of a large-
scale system. The scalar s € C denotes complex frequency. Such a matrix pencil arises
in several problems in linear system theory [9, 10]. For example, finding the poles of a
dynamic system entails computing the generalized eigenvalues of (A, F), i.e., finding the

values A\, €C and vectors x,, €0V *! such that
(A= E)x, =0. (1.1)

Computing the frequency response of a single-input single-output (SISO) dynamic system

requires the solution to either of the dual systems of shifted linear equations,
(sbE—A)xy=b (1.2)
(sE— A)Tx, = ¢,

for many imaginary values of s. Model reduction, finding a low-order approximation for

the original dynamic system, is yet another problem involving (s — A) (see Chapter 2 for

a detailed discussion of this problem). This dissertation focuses on the model reduction

because it is an increasingly important problem in its own right, it is less studied in the

context of iterative methods, and it encompasses many facets of the problems in (1.1)

and (1.2).

Traditional techniques for problems involving (s £ — A) transform A and E into upper-

Hessenberg or upper-triangular form. The generalized Schur decomposition, for example,



determines orthogonal Ty and T’z such that TgATZ and TgETZ are both upper-triangular
[11]. The eigenvalues of an upper-triangular pencil appear immediately. Solving systems
of equations in upper-Hessenberg form is dominated by backwards substitutions. The
pencil can be rapidly treated at many frequencies once the initial transformation is found.
Yet the O(N?) cost of this initial transformation is prohibitive for large-scale problems.
Thus we turn to iterative versions of projection methods. In this family of methods,
one is interested in iteratively acquiring a low-order approximation to the matrix pencil,
denoted (SE — 121) This low-order approximation can then be treated with conventional
algorithms to yield estimates for certain eigenvalues, approximate simulated responses
to various inputs, or low-order controllers for the original large-scale system. For the
most part, this dissertation concentrates on efficiently determining an accurate low-order
approximation of a dynamic system. Examples of efforts that begin to study the insertion
of the approximation into a design or simulation can be found in [12, 13, 14].

The iterative construction of the low-order approximation depends on a combination
of two procedures known as preconditioning and projection (see Section 2.3 for formal
definitions of these two terms). Roughly speaking and in the context of frequency-
dependent problems, preconditioning speeds the approximation’s convergence in chosen
frequency regions. In frequency-dependent problems, preconditioning often entails an
exact evaluation of the original system at a few discrete points in s. These points are
denoted interpolation points. The second component, projection, can be thought of as
forming an approximation through the extrapolation of the limited exact information
across regions of s. Computing meaningful preconditioners and projectors leads to the
problems underlying model reduction. Acquiring an accurate, low-order approximation
requires choosing appropriate interpolation points and acquiring sufficient (but not ex-
cessive) exact information at each of these points. Computing this exact information
from the original large-scale pencil is itself a significant constraint. Additionally, some
measure of the quality of the low-order approximation is required. The formal treatment
of such subproblems constitutes a successtul approach for iteratively approximating dy-

namic systems and is the bulk of this dissertation.



1.3 Dissertation Goals

The following treatment of Krylov projection methods for dynamic systems strives to
be comprehensive. A solid statement of the problems to be examined, a rigorous devel-
opment of theory, a spectrum of iterative methods, and a range of tools for implementing
these iterative methods are sought. Beyond the novel techniques developed in this dis-
sertation, this comprehensive treatment is the main difference between the following and
existing work. Our solution approach is not based on the direct transfer of some arbi-
trary existing iterative method (and its associated constraints) to a given problem at
hand. Rather, a theoretical understanding and a complement of intuition are developed
which hopefully provide a bigger picture. A framework for existing methods and avenues
for entirely new approaches is the result. Moreover, multiple levels of sophistication are
presented to balance solution accuracy against computational effort for a large variety of
problems.

The cornerstone of this dissertation is a collection of new theory that relates model
reduction to the topics of Krylov projection and multiple interpolation points. Out of
this core theory, three novel algorithms for model reduction are proposed. Each of these
algorithms is related in their ability to approximate information at multiple frequencies.
However, their convergence and costs differ. The first algorithm, denoted dual rational
Arnoldi, is a two-sided technique that constructs orthogonal bases for unions of Krylov
subspaces. The utilized Krylov subspaces of this method are adaptations of those seen
in an eigenvalue technique [15]. Due to its emphasis on orthogonalization, this method
is extremely robust and is an important contribution to Krylov-based model reduction.
However, this robustness is not cheap. A second algorithm, denoted rational Lanczos,
is therefore proposed that constructs biorthogonal bases for unions of Krylov subspaces
in a two-sided fashion. Rational Lanczos requires only short biorthogonalization recur-
sions and is cost competitive with existing methods based on the Lanczos algorithm.
This approach is not particularly suited for either parallelism or perturbations in the

constructed subspaces however. A third algorithm, denoted the rational power Krylov



method, is therefore also developed. The rational power Krylov method is implemented
as a one-sided approach that constructs a union of Krylov subspaces without any sort
of orthogonalization or biorthogonalization. Although not rigorously understood and
slightly slower to converge, this novel third algorithm is low in cost, highly parallel and
amenable to approximations in the constructed Krylov subspaces. The performance of
this and the other algorithms are compared via examples. Trade-offs between reliability
and speed exist which may be further affected by both the properties of the dynamic
system and the availability of computing resources. Independent of the precise algorithm
though, a host of supporting tools are also developed in Chapters 5 through 8 to aid
in the implementation of a complete model-reduction package. Techniques for choosing
the interpolation points (matching frequencies), estimating the modeling error, insuring
model stability, treating multiple-input multiple-output (MIMO) systems, implementing
parallelism, and avoiding a need for exact factors of the pencil (A—sF) are all considered.

We conclude this section with summaries of the material in each of the remaining

chapters.

e Background. Chapter 2 describes and motivates the model-reduction problem (dy-
namic system approximation problem) considered in this dissertation. Two impor-
tant tools, projection and preconditioning, are explained in the context of dynamic
systems. A much needed survey of the existing literature and existing solution

approaches is provided.

o Projection Framework. Chapter 3 provides a clear framework for understanding all
existing Krylov-based modeling methods. Sufficient conditions on Krylov projec-
tion are documented in order to achieve model reduction via rational interpolation.
The treatment of unstable and/or MIMO models is considered in the projection

framework.

o Projection Method Implementations. Chapter 4 utilizes the projection framework
to present a complete spectrum of iterative algorithms that achieve rational inter-

polation. These algorithms are analyzed based on their efficiency and numerical



stability. The rational Lanczos algorithm, a fast and low-memory iterative algo-

rithm for implementing rational interpolation, is derived.

Error Analysis. Chapter 5 develops two different schemes for approximating the
error in the reduced-order model. The performance of these schemes in monitoring

the modeling algorithms is analyzed and experimentally verified.

Interpolation Point Analysis. Chapter 6 provides a theoretical understanding of the
impact of interpolation point placement and usage on the quality of the reduced-
order model. Suggestions are made for utilizing the error analysis methods of
Chapter 5 to adapt the interpolation points to a specific problem’s qualities. The
performance of various interpolation strategies is experimentally verified. Well-
defined multipoint interpolation schemes are demonstrated to robustly handle var-

ious situations.

Parallelism. Chapter 7 studies the use of parallelism for speeding the construction
of reduced-order models. Parallelism can be utilized in conjunction with multiple in-
terpolation points. A version of the rational power method is proposed which avoids
large-scale communications between processors. An interpolation point scheme

from Chapter 6 is utilized to balance the work between processors.

Approzimate Solves. Chapter 8 allows for inexact rational interpolation by relaxing
the need for precise factorizations of large-scale matrix pencils. A reduction of
the work involved is sought without significant drops in accuracy. Approximation
techniques are presented for solving linear systems of equations and connections are
drawn between these techniques and the overall model-reduction process. Several

examples are provided to illustrate the possibilities with approximate solves.

Figenvalue Problems. Chapter 9 surveys preconditioned iterative eigenvalue solvers
and relates them to the proposed model-reduction techniques. Although providing
the initial insight into many of the iterative model-reduction techniques in this

dissertation, existing iterative eigenvalue methods are themselves still an active



area of research. The primary aim of this chapter is to present links between

eigenvalue and model-reduction techniques which can be exploited in future work.

1.4 Notation

This section summarizes the notation used throughout the following chapters. The
selected symbols attempt to balance the notation used in the areas of system theory and
numerical linear algebra. Many common matrix definitions and operations are summa-
rized in Table 1.1 with respect to the generic matrix (G and generic vector g. Commonly
used abbreviations in this dissertation are summarized in Table 1.2.

Notation for nearly every letter in the Greek and standard alphabets is summarized
in Table 1.3. Although relatively concrete in this table, the exact definition for a given
symbol should be taken in the context of the surrounding text. As a general rule, up-
percase letters are matrices, lowercase letters are vectors or functions, lowercase Greek
letters are scalars, and calligraphic letters are subspaces. There are exceptions to these
rules, though, in an attempt to match standard practice. In particular, the letters j to
n and J to N correspond to indices.

With regard to functions, the Laplace transform of some time-dependent function is
indicated through bold Roman rather than italicized type, e.g., f(?) transforms to f(s).
The explicit dependency of the functions on ¢ or s is dropped where the meaning is

obvious, i.e., f(¢) may simply be denoted by f and f(s) by f, if confusion can be avoided.



Table 1.1: Matrix Notation

RE*T fxd sets of real, complex matrices of size K by J

g; 7% column of the matrix ¢

G the first j columns of the matrix ¢
e transpose of (¢

G complex conjugate of

A(G) spectrum of G

colsp {G'} column space of ¢

span {¢1,...,95} span of the vectors ¢1,..., gy

Table 1.2: Abbreviations

AWE asymptotic waveform evaluation

CD compact disc

CFH complex frequency hopping

DS dynamic system

GMRES generalized minimum residual method
LTI linear, time-invariant

MIMO multiple-input multiple-output

MNA modified nodal admittance

PEEC partial element equivalent circuit
PIES preconditioned iterative eigenvalue solvers
QMR quasi-minimal residual method

RA rational Arnoldi

RC resistor, capacitor

RL rational Lanczos

RK rational Krylov

RP rational power

SISO single-input single-output

SVD singular value decomposition




Table 1.3: Character Notation

Uppercase Letters

A left pencil matrix N initial system dimension
B right matrix O  order of magnitude
C  left matrix P preconditioner matrix
D feed-through matrix ()  projection matrix
E  right pencil matrix R residual matrix
GG generic matrix S structured matrix
H  transfer matrix T transformation matrix
1 identity matrix V,W  projection matrices
J: L upper bounds on j : [ X solution matrix
M reduced-order model size Z  projection matrix
Lowercase Letters
b right vector q projection vector
¢ left vector r residual vector
d feed-through term s complex frequency
e exponential t time
f function u input
g generic vector v,w projection vector
h transfer function solution vector
? column of an identity Yy output
7 :p indices z projection vector
Greek Letters
« 7 matrix elements A eigenvalue
1) perturbation ¢ moment
€ error T 3.14...
¢ evaluation point p residue
n generic scalar o interpolation point
t imaginary, v/—1 ¢,1  polynomial coefficients
K condition number w real frequency
Calligraphic Letters
‘H  Hardy norm S search subspace
K Krylov subspace 7T constraint subspace
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CHAPTER 2

KRYLOV-BASED MODEL REDUCTION

The primary problem of interest in this dissertation is model reduction: efficiently
computing an accurate low-order approximation to a dynamic system. Most techniques
for model reduction retain certain invariant features of the original system and several are
briefly surveyed in this chapter. The solution approaches utilized in Chapters 3 through
7 retain moments of the original system to yield a reduced-order model known as a
rational interpolant. Preconditioning and Krylov projection, tools that are fundamental
in Chapter 3 for computing rational interpolants, are explained in detail. This chapter
concludes with a history and overview of existing Krylov projection methods for model

reduction.

2.1 Problem Statement

This dissertation is primarily devoted to computing low-order approximations to linear
dynamic systems. It is assumed that the original system is described by the generalized

state-space equations

Ei(t) = Az(t) + bu(t)
y(t) = cT:L'(t) + du(t).

The vector x(t) € IRV*! is the vector of state variables, b € RN*! is the input vector of

(2.1)

the system and ¢ € IRV*! is the output vector of the system. For simplicity, it is assumed
until Section 3.4.2 that the system is single-input single-output so that the input wu(?)
and output y(t) are scalar functions of time. Finally, and as is the case for nearly all
large-scale problems, it is assumed that the system matrix A € R and descriptor

matrix £ € RY*Y are large and sparse or structured.
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A reduced-order approximation to (2.1) takes the corresponding form
(2.2)

The dimension of the reduced-order model is designated as M. The output ¢(¢) approx-
imates the true output y(¢). However, in general, no simple relation exists between ()
and the state vector x(?). For instance, the tenth element of #(¢) does not need to be
directly related to the tenth element of x(?).

The above generalized, state space expressions are merely one possible representation
of linear dynamic systems. A second important representation is the transfer function
of a system. Resulting from a Laplace transform of (2.1), the transfer function of the
original system is

h(s) = ¢’ (sE — A)™'b, (2.3)

where s represents complex frequency. Without a loss of generality, the feed-through term
d of the original model is assumed to be zero (the feed-through term in (2.2) is simply
that of the original system and needs no further treatment during model reduction). The
function h(s) maps the Laplace transform of the input u(s) to the Laplace transform of
the output y(s). The transfer function of the reduced-order model, fl(s), can be defined
in a manner similar to that in (2.3).

With these preliminaries out of the way, we can now state the prime problem con-
sidered in the following: given a large-scale LTI dynamic system, rapidly compute an
accurate reduced-order model. Clearly, this statement is vague so that many different so-
lution approaches are possible. In fact, many different model-reduction techniques exist
in the literature (see [16] and Section 2.2). The following paragraphs begin to formalize
the problem statement, so that various model-reduction methods can be compared.

The key terms in the problem statement are reduced-order, rapidly and accurate.
It is hoped that the dimension M of the reduced-order model (2.2) is significantly less
than that of the original model N so that (2.2) can be analyzed and/or simulated with

relative ease via conventional techniques. Of course, the reduction itself must not be too
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expensive. If the cost of generating the reduced-order model is comparable to that of
directly analyzing (2.1), then little is saved by working with the low-order approximation.
Finally, one desires that the reduced-order model is a reasonably accurate approximation
of the original model. Because the behavior of the original model is of interest and yet
one uses the reduced-order model in its place, the reduced-order system must match
the original one in some sense. These conditions of accuracy, speed and order can be
conflicting goals. One typically expects, for example, that the accuracy of the reduced-
order model increases with a larger order M.

Several measures of the accuracy of the reduced-order model are possible. Formally,
there tends to be an interest in the difference between the actual and low-order outputs,
y(t) — g(t), given some set of inputs u(t). This difference can be characterized via a
system norm. The popular H,, error norm, for example, is defined as

v =il
lu@l=1  |[u(t)]]2
= sup ((h(ew) — fl(ew)(h(ew) — fl(ew))*)

Ih(s) = h(s)|o =

[T

In the time domain, this norm measures the worst ratio of output error energy to input
energy [17]. Equivalently, but in the frequency domain, the norm represents the largest
magnitude of the frequency-response error. By weighting this norm, one can emphasize
the error due to a specific input class of interest.

A second measure of the accuracy of the approximation is to assess which properties of
the original model are retained in the reduced-order one. Those properties of interest are
said to be invariant, that is, they are independent with respect to a similarity transform.
By retaining certain original properties of the system in the reduced-order model, one
hopes that the resulting approximation error is small. Of course, this error depends on
the selection and pertinence of the retained invariant properties.

Before leaving the problem statement, we note that model reduction is connected to
both the generalized eigenvalue problem and the problem of shifted systems of linear
equations. Chapter 6 explains that the accuracy of the reduced-order model can be

partially connected to the quality of its pole (eigenvalue) approximations. The eigenvalue
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problem is also important in other areas of system analysis, perhaps most noteworthy is
the stability problem. A variety of approaches already exists for computing the nontrivial
solutions, eigenvalues A, and eigenvectors x,,, to (1.1) over some s region (see for example
[15, 18, 19]). Variations on these approaches appear in some of the model-reduction
techniques proposed in this dissertation. A survey of pertinent eigenvalue techniques
and their connections with model-reduction algorithms is provided in Section 9.1.

Shifted systems of linear equations arise when writing the transfer function as
h(s) = c'(sE — A7 (sE — A)(sE — A)7'b = x (s E — A)xy, (2.4)

where x.(s) and x,(s) are solutions to the dual system of shifted linear equations in
(1.2). It is demonstrated in Section 3.2 that the model-reduction approaches taken in
this dissertation can be phrased in terms of finding approximate solutions to (1.2) for all
values of s. Besides the model-reduction problem, the ability to efficiently solve shifted
systems of equations is desirable in certain ODE solvers. A few techniques do exist for
iteratively solving shifted systems of equations over a single Krylov subspace [20, 21].
However, these methods are restricted to the case £ = I and are limited in their choices
of preconditioner. Suitable preconditioners for various regions of the shifted problem are
considered in [22], when F = [ and A are either symmetric or diagonally dominant. Yet
[22] evaluates (2.4) by treating each frequency independently; there is no effort to share

information among solves at multiple points.

2.2 Solution Techniques

Many model-reduction methods are based on the retention of invariant properties. A
common choice for these invariant properties are the so-called modal properties of the
system [23, 24, 25]. The modal properties are based on the system’s poles (eigenvalues)
A, and residues p,, which both arise in a partial fraction expansion of the frequency

response,

h(s) =3 - fA (2.5)
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It is assumed for simplicity that the poles of the system are unique. Each of these modal
components in the summation contributes a quantity p,e** to the zero-state impulse
response of the original system [26]. Hence, a reduced-order model that matches (or
approximately matches) specific modal components of the original model retains certain
time-dependent features of the original system in its response. Potentially, iterative
eigenvalue techniques can be used to find these specific components so that this modal
retention approach is feasible for large-scale problems. There are drawbacks to modal-
based model reduction, however. It can be difficult to identify a priori which modes are
the truly dominant modal components of the original system [27]. The response of the
system depends on the interaction of both the poles and residues; locating only the poles
near the imaginary axis may not be sufficient.

Alternative invariant properties that may be retained in model reduction are the
Hankel singular values. Hankel singular values are related to the controllability and ob-
servability properties of a system [28]. Constructing a reduced-order model to retain
the largest Hankel singular values is known as balanced truncation. Balanced truncation
possesses the desirable feature that the H,, norm of the modeling error is bounded by the
sum of the Hankel singular values not retained in the reduced-order model [29]. Unfor-
tunately, implementing balanced truncation involves the solution of Lyapunov equations
and thus, a cost of O(N?) operations [30].

The invariant properties of importance in this work are the coefficients of some power
series expansion of h(s). The solution techniques proposed determine a reduced-order
model that accurately matches the leading coeflicients p; arising in a chosen power series.

An expansion of h(s) about infinity takes the form
h(s) =d+ ,u_ls_l + ,u_25_2 + ,u_35_3 + ...

The coefficients, which are known as Markov parameters in this case, can be shown to

satisfy p_; = ¢I (E~1A)’=1 E='b by making use of the Neumann expansion [31],

(I —nG)" = > (nG)’. (2.6)

7=0
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The Markov parameters are the values of the zero-state impulse response h(t) and sub-
sequent derivatives of the impulse response at ¢ = 0. A reduced-order model whose
Markov parameters fi_; equal p_; for y = 1,2,...,2M is known as a partial realization
[32]. Because the partial realization emphasizes behavior at ¢ = 0, such a model may
be dominated by the extremely rapidly decaying dynamics of the system. Regrettully,
extensions of partial realizations that accurately reproduce behavior at some later time
are not apparent. For this reason, a power series expansion at s = 0 is typically favored
in the literature,

h(s) = po + pry5 + 8y + sus + ...

Assuming, without loss of generality that a feed-through term is absent, the coeffi-
cients, referred to as moments in this expansion, can be shown through (2.6) to satisfy
pio1 = —cT(A7YE) " A71b for 5 > 1. These moments are the value and subsequent
derivatives of the transfer function h(s) evaluated at s = 0. A reduced-order model
whose moments fi;_1 = —éT(A_lE)j_lA_li) equal p;_q for y =1,2,...,2M is known as
a Padé approximant [33]. By replacing s in the expansion with the shifted variable s — o,
le.,

h(s) = Y (s = aP Lo,

=1

one is led to shifted moments,
i1 = —c{(A—oEYTEY A - oB)7.

These shifted moments are the value and subsequent derivatives of h(s) at a user-specified
interpolation point o. A reduced-order model can typically be found that matches 2M
moments at o (there are 2M free parameters available in the numerator and denominator
of B(S)) Beyond a single interpolation point, one may be interested in a reduced-order
model that interpolates the frequency response and its derivatives at multiple points.
These K possible interpolation points {oM, o ... )} are differentiated by their
superscripts. The first 2J; moments are matched at o), the next 2.J, moments are
matched at 0(2), etc., where J1 + Jo + ...+ Jx = M. A model meeting these constraints

is denoted a multipoint Padé approximation or a rational interpolant [33, 34]. By varying
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the location and number of interpolation points utilized with the underlying problem in
mind, one can construct accurate reduced-order models in a variety of situations. For
quick reference, various moments that can be matched are summarized in Table 2.1. In
each case, these moments can be computed with matrix-vector multiplies and matrix
inversions (solving systems of linear equations) involving A and FE. It is the relative
simplicity of these two required operations that favors moment matching for sparse,

large-scale problems.

Table 2.1: Moment Choices in Model Reduction

Approximation Power Series gt
Names Expansion of h(s) Coeflicient
Partial Realization iojl ;s (E-YAY-LE~1D
=
Padé at oo
Padé iojl fiy s (AT EY A
=
Shifted Padé iojl pii(s — o)1 (A — 0By BV YA — o E)b
=
Rational Interpolant 4%1 fi—1(s —oWN)ik=t | _THA — g )y EY=Y (A — W)~
=
Multipoint Padé k=1,2,..., K k=1,2,..., K

Example 2.1 To understand the various moment matching possibilities, we conclude
with an examination of four different 15" order models for a 120" order SISO system.
This original system describes the dynamics between the lens actuator and the radial arm
position of a portable compact disc player [35]. The frequency response corresponding to
this system is shown as a solid line in Figures 2.1 and 2.2. The frequency responses of
a partial realization (dotted line) and a Padé approximation (dashed line) are in Figure

2.1. The frequency responses of a shifted Padé approzimation (dashed line; o = 10*
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Figure 2.1: Partial Realization and Padé Approximation of Example 2.1
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Figure 2.2: Shifted Padé Approximation and Rational Interpolation of Example 2.1
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with J = 15) and a rational interpolation (dotted line; oV =1, ¢® = 100, ¢® = 10*
with J; = Jy = Js = 5) are shown in Figure 2.2. Note that the partial realization
captures only higher frequency behavior, while the accuracy of the two single-point Padé
approximations is directly related to the choice of o. The best results are acquired with
the more general rational interpolant; the frequency response of the rational interpolant

is nearly indistinguishable from that of the original for all but very high frequencies.

Example 2.1 clearly exhibits the behaviors expected from each of the moment match-
ing methods. In particular, rational interpolation matches information over a range of
frequencies. This does not mean that the use of a larger number of interpolation points
is always necessary or wise. Rational interpolation requires the inversion (triangular fac-
torization) of (A — o™ E) at every one of the interpolation points (see Table 2.1). Thus,
there are extra fixed costs involved in going to multiple interpolation points; yet these
costs may be offset by the resulting improvements in convergence. Balancing the number
of interpolation points, the placement of these points, and the order M, can be crucial

for the efficient calculation of an accurate, low-order model.

2.3 Implementation Techniques

The previous section defined several model-reduction techniques including the family
of moment matching methods. Actually implementing algorithms to yield the desired
reduced-order models remains. For moment matching, there are in fact several different
avenues of implementation. One path is the explicit approach in Section 2.4.2. However,
this dissertation concentrates on the utilization of projection and preconditioning in
the proposed implementations. The obtainable benefits of this path include numerical

stability and the opportunity for iterative implementations.

2.3.1 Projection

A primary tool in Chapters 3 and 4 is projection. Projection extracts an approximate

solution of dimension M from a search subspace §. In order to be precisely defined, this
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approximation is chosen from § so that M constraints are satisfied. The subspace 7 is
associated with these constraints. For example, we typically require that the approxi-
mate solution is chosen from & so that its residual is orthogonal to a specified 7. Such
constraints are known as Petrov-Galerkin conditions. If this 7 equals S, then the pro-
jection is orthogonal; otherwise, the projection is said to be oblique. For a more detailed
review of the projection technique, refer to [8].

The subspaces S and 7 can be represented via rectangular matrices V € RV and
7 € RVM | whose columns form bases for the respective subspaces. It is important to
note that there are infinitely many V' and Z whose columns are acceptable bases for given
S and 7. For now, it is only necessary to know that V' and Z satisfy colsp {V} = S and
colsp {Z} = 7. In fact, this knowledge is sufficient in theory, because all possible choices
for the bases lead to identical results up to a similarity transformation. In Chapter 4, we
begin to analyze specific choices for V and Z in light of the issues of numerical efficiency
and accuracy.

In terms of linear dynamic systems, the projection technique is associated with the
transform and truncate operations [36]. If nonsingular left and right transformation

matrices 7)1 € R™N and 7, € RN*Y are partitioned as
TIZ[Z Z_|_:| and TT:|:V V_|_:|

and applied to (2.1), then the original model can be expressed as

ZTEV ‘ ZTEV, || @ 7T AV ‘ ZTAV, || & ZTh
—| = + u
2Py | 1BV | | iy ZEAV | 25V, | | iy 77
and
&
y=1cV |V, ] + du.
T4

The reduced-order model is determined by retaining only the leading M by M subsystem
of this transformed original system. Hence, the transformation and truncation operations

(denoted model reduction by projection) lead to a reduced-order model with components

A=2TAv, b=2"b, ¢=V"'e, d=d, E=ZTEV. (2.7)



The quantities in (2.7) are said to be the restrictions of the original system matrices by
Z and V.

The concept of model reduction via projection can be connected to the formal concept
of projection through (2.4). Analogous to (2.4), the transfer function for the reduced-

order model can be written as
h(s)=¢T(sE— AN (sE — A)(sE — A)7'. (2.8)

Defining x, and %X. to be the solutions of the dual reduced-order, shifted systems of

equations
sk — Ak, = b
( ) A) ' (2.9)
(sb— ATk, = ¢,
the transfer function (2.8) can be written as
h(s) =x"ZT(sE — A)V,. (2.10)

Comparing (2.4) to (2.10), one sees that the transfer functions of the original and reduced-
order models differ only in that the latter approximates x, and x. with Vx, and Zx.. In
fact, these approximations Vx;, and Zx,. satisfy the Petrov-Galerkin conditions for any
chosen V' and Z. Model reduction via projection computes the same approximations to
x; and x. that would be computed by projection onto § and 7 with Petrov-Galerkin
constraints. For all s, the approximate solution vector Vx; lies in colsp {V'} = § and has

a residual

ry(s) = b— (sE — A)Vk, (2.11)

that is orthogonal to colsp{Z} =T, i.e.,

A A

2T — ZT(sE — A\Vk, = b— (sk — A)%, = 0. (2.12)

The column spaces of V and Z play a reversed role in acquiring the approximate solution

to x.. The approximate solution vector Zx. lies in colsp {7} and its residual,

r.(s)=c—(sF — A)TZXC, (2.13)
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is orthogonal to colsp{V'} for all s. Thus, there is a connection between the formal
definition of a projection method and model reduction via projection.

Almost all popular model-reduction methods utilize projection. In balanced trun-
cation, V and Z are chosen to correspond to the so-called Hankel singular vectors (and
associated largest Hankel singular values) of the system. In modal model-reduction meth-
ods, V and Z are chosen to correspond to M left and right eigenvectors of the pencil
(A,F) relative to some ordering of the eigenvalues. Thus, the reduced-order model re-
tains exactly M modal components of the original system. Rational interpolation, the
method of choice in this dissertation, can also be phrased in terms of projection. Section
3.1 proves in detail that rational interpolation is achieved if the column spaces of V' and
Z span unions of Krylov subspaces.

A j* dimensional Krylov subspace corresponding to some matrix i and vector ¢ is

denoted K;((, ¢) and is defined as

K;(G,g) = span {g,Gg,G%g,...,G""'g}.

A basis for a Krylov subspace can be quickly computed it ¢ can be rapidly applied to g,
e.g., due to sparsity. This fact gives Krylov-based model reduction the potential for cost
savings. Yet specifying which Krylov subspace(s) are desirable for the best reduced-order

model remains. Extremely simple but not particularly effective choices for V and Z are

colsp {V(s)} = Kwm((A—sE),b)

= span {b,(A—sE)b,... {(A—sk)}M-1b},
colsp{Z(s)} = Ku((A-sE)T, )

= span {c, (A —sE) e, {(A—sE)T}M1c}

(2.14)

For the time being, we overlook the dependence of the subspaces in (2.14) on s (for now,
think of fixing s at some value). The content of these individual Krylov subspaces are
classic choices when approximately solving the dual systems of equations in (1.2). For
example, the biconjugate gradient method, a well-known iterative Krylov solver, would
lead to (2.14) when applied to (1.2) at a fixed s [8]. A second motivation for the form of

(2.14) and one more consistent with the model-reduction history is its simplicity. The use
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of (2.14) for model reduction emphasizes simple sparse matrix-vector products. Finally,
the structure of these two Krylov subspaces is consistent with the dual input and output
structure of a LTI dynamic system. If £ is the identity matrix, then the subspaces in
(2.14) are closely related to the controllability and observability spaces of a dynamic LTI
system [37].

Chapters 3 and 4 motivate and evaluate alternative choices for Krylov subspaces
composing V' and Z. Cost, approximation quality, and the ability to handle frequency

dependence in the problem are significant concerns which must be addressed by the forms

of V and Z.

2.3.2 Preconditioning

Preconditioning is an important partner with projection in iterative solution tech-
niques. In fact, it is frequently credited with being the most important component in
efficiently computing an accurate solution. In broad terms, the goal of precondition-
ing is to generate better projection subspaces (yield faster model convergence) without
drastically complicating the construction of the Krylov subspaces.

The preconditioner P € RNV

is traditionally introduced as a fixed left or right
transformation. Rather than solving the problem Az = b, for example, one might con-
sider the left-transformed problem PAx = Pb. If P exactly equals A~!, then the solution
x is trivially Pb. In general, P can be any matrix that transforms the original problem to
a description that is hopefully easier to (iteratively) solve. In frequency-dependent prob-
lems, approaches very similar to traditional preconditioning can be used. For example,
one can transform the matrix pencil A —sFE to P(A —sFE). However, this fixed P cannot
approximate (A — sFE)™! for all s in general. The introduction of P may only be helpful

over certain frequency ranges. To emphasize this difference with the traditional fixed

case, we use the term dynamic system (DS) preconditioner in the following to describe
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the matrix P. Left transformations are utilized so that the DS preconditioned system is

(2.15)
y(t) = cT:L'(t) + du(t).

It is stressed that (2.1) and (2.15) both describe the same system. The generalized

{ PE#(t) = PAz(t) + Phu(t)

eigenvalues of (PA, PE) and (A, E') are identical. Starting with this new description in
(2.15), but utilizing the mapping seen in going from (2.1) to (2.14), it is consistent to
define a new reduced-order model
WTPEV(t) = WTPAVE(t) + WT Pbu(t)
{ (1) = V) + du(t),

where the matrix V € RY*M now satisfies

(2.16)

colsp{V(s)} = Kn(P(A — sFE), Pb)
and the matrix W € RY*M satisfies
colsp {W(s)} = Kar((A — sE)T PT ).

Although (2.1) and (2.15) describe the same original system, (2.16) describes a reduced-
order system that is different from the one previously constructed according to (2.14).
Both the presence of P in (2.16) and the modifications of the projection matrices lead to
a new reduced-order model. In particular, the definition of V' has changed from that in
Section 2.3.1.

Model reduction of DS preconditioned dynamic systems is generally derived in the
above fashion in the existing literature. The matrices V and W are explicitly computed
and applied to the transformed version of the original dynamic system (2.15). Yet it is
possible to obtain the new reduced-order model (2.16) directly from the original descrip-
tion in (2.1). If one defines Z to be PTW rather than (2.14), then the new reduced-order
model in (2.16) can be written in the desired form of (2.7). By associating new pro-
jection subspaces with V and Z, new reduced-order models are possible. To obtain the
reduced-order model in (2.16), choose V and Z according to

colsp{V(s)} = span {Pb, P(A—=sE)Pb,...,{P(A— SE)}M_IPZ)}

(2.17)
colsp{Z(s)} = span {PTC, PT(A—sE)YTPTe,... {PT(A—- SE)T}M_IPTC}
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and apply these matrices as in (2.7). Thus, DS preconditioning can be concisely defined
in our context as the introduction of a matrix P, which takes us from the old V' and 7
choices in (2.14) to those of (2.17). This definition of DS preconditioning is equivalent
to the above use of a left-transformation P followed by the application of V and W in
(2.16). We favor the point of view in (2.17) over (2.16), however. Focusing on V, Z rather
than V, W avoids the need for left transformations on the original description. Additional
benefits of the V., Z point of view become apparent in Section 3.2.

Clearly, the introduction of P into V' and Z provides additional freedoms for specifying
the contents of the constraint and solution subspaces. Section 2.4.3 shows how a P
can be chosen to acquire a reduced-order model that matches moments about a single
interpolation point. The choice for the DS preconditioner determines where the frequency
response of the original and reduced-order systems agrees.

A noteworthy class of DS preconditioners in frequency-dependent problems is the
so-called exact DS preconditioners. An exact DS preconditioner is the exact inverse of
the matrix pencil, P = (A — o E)™', at a fixed scalar 0. We see in Chapter 3 that exact
DS preconditioners are required if rational interpolation is to be achieved. An important
property of exact DS preconditioning is presented as Lemma 2.1. The proof for this and

all other lemmas in this dissertation may be found in Appendix A.
Lemma 2.1 For any value of s and o,

(A—O'E)_I(A—SE) = ]—|-(0'—8)(A—0'E)_1E. (2.18)
Applying P = (A—cE)™" to the pencil (A — sE) leads to the simpler transformed pencil

which consists of a scaled matrix PFE shifted by the identity matrix. However, scalings

and shifts by the identity matrix are not important in Krylov subspaces.

Lemma 2.2 (Krylov subspace shift-invariance) For any matriz G, vector g and

nonzero scalar m,

KimG +1,9) = K;(G,g). (2.19)
Combining Lemmas 2.1 and 2.2 leads to the equivalences

K((A—0B) ™ (A—sE),(A—oE)™"b) = K(A— oE) ' E, (A - oE)'b)  (2.20)

25



and
K(A—=oBE)yT(A-sE)Y (A—oE)Te)=K(A—-coBE) TET (A—0cE)Te). (2.21)

Thus, when an exact DS preconditioner is utilized, the preconditioned projection sub-
spaces in (2.17) are equivalent to the frequency-independent subspaces on the right sides
of (2.20) and (2.21). Exact DS preconditioning causes the V and Z of (2.17) to be in-
variant with respect to s. This fact is important, because frequency-dependent V(s) and
Z(s) do not generally lead to LTT reduced-order models. If exact preconditioning is not
utilized, the only option is to fix the s in V' and Z to be some value (. Yet specitying s
to be ( in a frequency-dependent V(s) and Z(s) tends to favor an accurate solution at ¢
over other frequencies. This issue is discussed further in Section 8.1.

DS preconditioning, especially exact DS preconditioning, can significantly improve
the accuracy of the reduced-order model. However, there are two significant limitations
to preconditioning in a frequency-dependent problem. First, the introduction of DS
preconditioners can significantly complicate the computation of V' and Z. Rather than
multiplying by the sparse pencil (A — sF) at each step, one must work with P(A — sFE).
If P is an exact DS preconditioner, the inverse of (A — o F) appears in the generation of
V and Z. Solving large-scale systems of linear equations to implicitly enact this inverse
may be costly. Second, one may wonder how to choose good DS preconditioners. The
Petrov-Galerkin constraints insure that the reduced-order model converges in, at most, N
steps, but one must be able to specify DS preconditioners that achieve significantly faster
results. Poorly chosen DS preconditioners are hardly better than no DS preconditioners
at all. Both the cost and choice of DS preconditioners are addressed in subsequent

chapters.

2.4 Existing Approaches

The number of papers proposing, exploring or utilizing Krylov-based projection for
model reduction is approaching one hundred. In this section, a hopefully complete history

of these and related works is presented. Subsections 2.4.1 through 2.4.3 present typical
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examples of the methods utilized in these existing efforts. However, it is certainly not
claimed that these subsections precisely capture every one of the many variations present

in the literature.

2.4.1 History

The methods forming the foundation for this work are relatively old. The history of
Padé approximation, for example, spans more than one hundred years [38]. The algorithm
of Lanczos, an important Krylov-based iteration, is nearing its fiftieth anniversary [39].
Yet, as evident by this dissertation and its many recent references, the understanding
and application of these concepts is certainly not a closed topic.

A large number of the moment-matching methods, particularly the early ones, form
a reduced-order model from an explicit knowledge of the desired moments of the original
system (see for example Section 2.4.2 and [40]). Explicit methods such as [41] were uti-
lized to construct Padé approximants in the area of control in the early 1970s. Extensions
of these techniques to multiple interpolation points followed [42, 43, 44]. Of more recent
interest, circa 1990, is a class of explicit moment-matching methods known as asymp-
totic waveform evaluation (AWE) [45, 46]. Although the AWE methods themselves vary
little in basic concept from the earlier control implementations, the AWE techniques are
applied for interconnect model reduction in the area of circuits. The methods received
attention for their ability to reduce RC interconnect models involving tens of thousands of
variables. A multipoint version of AWE, complex frequency hopping (CFH), is available
as well [46]. Unfortunately, all of these explicit moment-matching methods are known to
exhibit numerical instabilities, particularly as the dimension of the reduced-order model
M grows. The source of these difficulties was pointed out in [47] and in the indepen-
dent work of [48]. Both efforts point out that moment-matching via the Lanczos method
(and more generally (bi)orthogonalized Krylov-based projection) is a preferred numerical
implementation.

The first significant mathematical connection between the Lanczos algorithm, a

Krylov-based technique, and model reduction occurred in the early 1980s. It was shown
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that partial realizations could be generated through the Lanczos algorithm [32]. Adap-
tations of Krylov subspaces were proposed in 1987 to generate Padé approximations and
shifted Padé approximations [49]. Beyond the mathematical connections, the Lanczos
method was utilized for model reduction in many application areas. The first of these
areas chronologically was apparently structural dynamics. Even prior to the knowledge
of the moment-matching connections, the Lanczos method was utilized in structural dy-
namics for model reduction based on eigenvalue analysis [50, 51, 52]. Later work in the
field utilized the Lanczos method for Padé approximation [53] including MIMO systems
[54, 55]. The next wave of application work took place in the control literature [56, 57, 58].
A large amount of existing work was repeated, although new results did appear in the ar-
eas of error analysis [59] and stability retention [60]. Very recently, Lanczos-based model
reduction has become a popular topic in the area of high-speed circuits. Existing Lanczos
algorithms were applied to the standard [47, 48], MIMO [61] and symmetric problems
[62]. New algorithms were proposed for stability retention [63, 64]. However, through all
of these application areas, the approaches remained closely tied to the classical Lanczos
algorithm. These approaches did not emphasize or exploit the fundamental structure in

projection techniques for rational interpolation.

2.4.2 Explicit moment-matching

Explicit moment-matchingis a straightforward approach for constructing Padé approx-
imations. It is typically a two-step process. First, 2M selected moments p; of the original
system are explicitly computed. These moments are frequently the leading coefficients
of a power series expansion about s = 0 or s = oo (see the last column of Table 2.1 for

assorted moment definitions). In the second step, the reduced-order frequency response

B(S) — éM—lSM_l—I_---—I_&lS—I_&O
sM 4 ahppogsM=1 4 L 4 b5 + iy

is forced to correspond to the selected moments. That is, the numerator parameters
qg and denominator parameters ;/A) are chosen so that the moments of the reduced-order

system fi; equal those of the original system yp; for y = 1,2,...,2M. This parameter
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selection requires the solution of a linear systems of equations involving Hankel matrices.

In the partial realization problem, for example, one solves the equation

M-
H—2

H—2

| H-M  H-M-1

[h—M

H—n—1

H—2M+1 |

o
i

Yar-1

H—n—1

H—N—2

H—2M

(2.22)

to determine the ;/A) coefficients. Another equation is solved for the qAﬁ coefficients. Similar

Hankel equations arise in the cases of Padé and shifted Padé approximations. For the

rational interpolation problem, equations involving the more general Loewner matrix

must be solved [34]. In all cases, it is important to note that the system matrices and

vectors only enter the modeling problem through the moments. Given the definition of

the moments in Table 2.1, A and £ only enter the problem through sparse matrix-vector

multiplies and sparse linear system solves.

Unfortunately, numerical implementations of explicit moment-matching experience

several difficulties. We consider only the most serious of these problems, ill-conditioned

Hankel matrices, through an example. The reader is referred to [47] for a discussion of

the shortcomings of explicit moment-matching.

Example 2.2 Consider a stimple hundredth-order dynamic system defined by

A=107°

10°
0
0

99

and F is an tdentity matriz. It is not difficult to see that given 16 digits of finite precision,

the computed pi_(j41) = P A%b is equal to u_; for 5 > 10. For even moderate values of

7, the change in consecutive moments is determined by only the largest eigenvalue of A,

1, in finite precision. The information corresponding to the other eigenvalues is rapidly
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lost in practice during the computation of higher order moments. The condition number

of the Hankel matriz in (2.22) is on the order of 10'® when M is only five.

With repetitive multiplications by a fixed matrix, it no longer becomes possible in
finite precision to introduce additional new information into the reduced-order model.
This loss of information due to repetitive multiplications manifests itself through ill-
conditioned Hankel matrices in the explicit moment-matching equations. Regardless of
the number of moments matched, the computed model never converges to the actual.
Although a partial realization example was presented, the same difficulties occur for the
various Padé schemes. In practice, bounds must be placed, i.e., 7 < 10, on the number
of moments computed about a given expansion point if explicit moment-matching is

utilized.

2.4.3 Lanczos-based moment-matching

Due to its relative numerical elegance and reliability, the nonsymmetric Lanczos algo-
rithm has a become a popular choice for moment-matching, model-reduction methods.
The nonsymmetric Lanczos method is due to Cornelius Lanczos and was originally pro-
posed as a method for solving linear systems of equations and eigenvalue problems [39, 65].
Because we focus on nonsymmetric matrices throughout the following, the nonsymmetric
designation of the Lanczos method (versus the symmetric Lanczos method) is dropped,
but assumed.

The algorithm of Lanczos computes rectangular matrices V and W € IR™*M that

restrict a specified matrix G to tridiagonal form,

o 52 0 0
72 Qi
S=wiav=1| o 0 :
Bu
L 0 0 ™M am i
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and that satisfy
colsp {V} € Ky (G, 6y) and  colsp {W} € Ky (G, by). (2.23)

The vectors 7 and w, are user-specified starting vectors which lie in the direction of
the first columns of V' and W. Alternatively and equivalently, the Lanczos method can
be viewed as an approach for constructing biorthogonal V and W, i.e., WTV = I, that
satisfy the same Krylov subspace conditions (2.23). The columns of V' and W satisfying

these constraints can be iteratively computed via the three-term recursions

Ym4+1UVm+1 = va — Oy Uy — 6mvm—1

(2.24)

_ T
6m—|—1wm—|—1 — G W — Oy Wiy, — ’}/mwm—l-

Choosing the a, 3 and v parameters in (2.24), so that WV = I, leads to a tridiagonal
S = WTGEV and vice versa. An implementation of (2.24) with the appropriate parameter
selections is the nonsymmetric Lanczos algorithm in Algorithm 2.1. The interested reader

is referred to [66, 67] for a recent and detailed study of the nonsymmetric Lanczos method.

Algorithm 2.1 Nonsymmetric Lanczos

Initialize: ©; and ;.

Form =1to M,

(S2.1.1) v = Oy /Y Where v, = 1/ |0L 0,5
(S2.1.2) 1wy = /By Where B, = sign(wL o, )m;
(52.1.3) v = wl Avy;

(52.1.4) Vg1 = Gup — QU — BinVm—1;

(S2.1.5) i1 = GTwym — Qo — Y Win—1;

end

Actual implementations of the Lanczos method may encounter numerical difficulties
including a loss of biorthogonality and so-called serious breakdowns [66, 67, 68, 69].

However, these breakdowns are less drastic and /or rarer than the breakdowns occurring in
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explicit moment-matching. Additionally, remedies are possible [68, 69] and are discussed
in Section 3.3.3.

As noted in Section 2.4.1, the Lanczos method can be utilized to realize Padé ap-
proximants or partial realizations. A proof of these statements follows from [49], as well
as in Section 3.1. Table 2.2 summarizes the appropriate Lanczos input choices for GG, 0,
and w; 1n order to achieve various reduced-order models. The constructed V and W of
the Lanczos method lead to the reduced-order model in (2.16). The differences in the
reduced-order models of Table 2.2 are due entirely to the choice of exact DS precondi-
tioners in V and W. Partial realizations utilize P = E~!, Padé approximations involve
P = A~! and the shifted Padé approximants utilize P = (A — o F)~'. It is important
to observe that the reduced-order models in Table 2.2 are restricted to moment match-

ing about a single interpolation point. The Lanczos method cannot generate a rational

interpolant.
Table 2.2: Modeling Choices in the Lanczos Algorithm
Model Type Lanczos Quantities Model Quantities
G W i Z A B
Partial Realize E71A c E~1h E-Tw S 1
Padé ATTE ¢ A7t A-TW 1 S
Shifted Padé (A—oE)'E| ¢ |(A—=0cE)™b | (A- O'E)_TW I4+05| S

Table 2.2 also defines Z in terms of the Lanczos matrix W, so that the reduced-
order model can be generated via (2.7). In practice, the reduced-order system matrices
A and E can be directly generated from the tridiagonal matrix S, according to the
last two columns of Table 2.2. In the case of a partial realization, for example, A equals
ZTAV = WTEYAV = WIGV = S and E equals ZTEV = WIV = 1. Constructing the
reduced-order model according to (2.7) is an explicit projection. In the Lanczos method,
one implicitly constructs the reduced-order model based on the assumed biorthogonality

of V and W. The validity of this assumption is studied further in Section 4.1.4.
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The reader should note the involvement of the inverses of A, F or combinations of the
two in the formation of the various moment-matching models. Hence, for a particular
problem, a given model may be unrealizable due to singularities. Even when possible,
the inclusion of inverses in the Lanczos method is not standard. Traditionally, the Lanc-
zos algorithm assumes only matrix-vector products with easily accessible matrices. For
the modeling approaches in Table 2.2, inverses must also be treated; they are actually
implemented through solving systems of linear equations. These inverses are, in fact,
examples of the exact DS preconditioner discussed in Section 2.3.2.

Finally, it should be mentioned that the Lanczos method avoids the difficulties en-
countered with explicit moment-matching. It does so by storing its modeling infor-
mation in two biorthogonal matrices V and W rather than in moments. Recall that
explicit moment-matching eventually fails because a certain direction (corresponding to
the largest eigenvalue of () quickly dominates the generated moments. On the other
hand, the biorthogonality condition of Lanczos, WV = I, insures that new information
is introduced into the projector at every step. Directions already present in vy, ve,..., v,
and wy,ws,...,w,, are theoretically kept orthogonal to w,,+; and v,,11 and, therefore,
do not dominate the new information. Unfortunately, the Lanczos method does not
maintain precise biorthogonality given limited numerical precision. The convergence of
the reduced-order model in practice is slightly clouded. We frequently discuss the role
of biorthogonality/orthogonality on model reduction in the following (see Sections 3.3.2

and 4.1.4).
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CHAPTER 3

PROJECTION FRAMEWORK FOR RATIONAL
INTERPOLATION

In this chapter, a set of sufficient conditions on the projection technique is derived to
guarantee rational interpolation. These conditions are intuitively meaningful from sev-
eral points of view. This projection approach is also far more general than unraveling
a preselected iterative implementation. Although the latter is frequently emphasized in
the existing literature, a projection approach provides a general framework for deriving
and contrasting both new and existing implementations. The validity of this projec-
tion framework (and the corresponding algorithms) does depend on certain assumptions,
which are covered in detail. The extension of the projection techniques to the cases of

stable and/or MIMO systems also requires and receives special attention.

3.1 Rational Interpolation Theory

Under mild assumptions, dual conditions on the projection matrices V and Z are
sufficient to produce a rational interpolant for a reduced-order model. A concise summary
of these conditions and pertinent intuition can be found in Section 3.2. This section
formally connects Krylov subspace projection and rational interpolation. Many of the
statements and arguments made while working towards this goal are reminiscent of those
in [49]. Our analysis of rational interpolation from a projector point of view is apparently
the first to be completely general, however, in that we allow for an arbitrary number of
interpolation points K, an arbitrary number of values and derivatives .J; about a given

interpolation point, and a direct projection involving V' and Z. No restrictions are placed

on the (bi)orthogonality of V and Z.
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Is is assumed throughout this section that the large-scale matrix pencil (A — o F)
and the reduced-order pencil (121 — UE) are both nonsingular when o is an interpolation
point. The assumption on (A — o F) must hold if the moments corresponding to o are to
exist. The nonsingularity of (121 — UE) is considered in detail in Section 3.3. For now, it
is sufficient to know that both assumptions typically hold.

The connection between rational interpolation and projection begins from a simple
property of oblique projection. Lemma 3.1 shows under what conditions a projection can
be applied to a direction without changing it. This behavior is generalized in subsequent
lemmas to model reduction. One desires a V' and Z which when applied to the original
system do not modify the moments to be retained. The proof for Lemma 3.1 and all

lemmas in this dissertation may be found in Appendix A.
Lemma 3.1 [fv € colsp {V}, then

v=V(W)
when V oand W € R™MM are biorthogonal.

The moments of the original system and the model are essentially two-sided, i.e.,
containing both an input and output direction. We proceed to present a fundamental
lemma corresponding to each of these directions and then combine them in the desired

result.

Lemma 3.2 IfK;, (A—oFE)'E,(A—aE)"'b) C colsp {V'}, then
[(A—ory EY " (A—oB)y b=V {(A—ob) £} (A-ck)™

forj=1,2,...,J.

Lemma 3.3 If K, (A— o) TET (A= oE)~"c) C colsp {Z}, then

7—1

(Ao By {B(A-oB) '} = (A —ob)y {BA-ok) )T 27
forj=1,2,...,J..
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Theorem 3.1 If

K
U K, (A=W )78 (A= o™ E)™b) C colsp {V} (3.1)
k=1
and
K
U Ko, (A= o™ E)yTE" (A— o™ E)¢) C colsp {2} (3.2)
k=1

then the moments of (2.1) and (2.2) satisfy
— (A= oW EY T (A= oW E) b= =T {(A— oW i) EYT (A= 00 i)
forgr=12,....0, +J,, and k=1,2,.. . K.

Proof:  We develop the case where 2 < 3, < J,, + J,,; the jy = 1 case follows trivially
from Lemma 3.2. For the j; > 2 case, nonnegative integers j;, and j., can always be

found that satisty 5, < Jy,, jo, < Jo, and 3, + 7., = Jx. Given such a j, and j.,,

(A=W BT EY T (A= o E) T (3.3)
= (A=W E)yHEUA-o®E)y Y T E (A= o®WE) T EY T (A 0BT,

By Lemmas 3.2 and 3.3, expression (3.3) is equivalent to
(A= oWy {BA—oWEyT YT ZTEV {(A— oW )T EYT (A - oW E) T

and may be further simplified to

A

FA= oWy EY T (A= o E) . (3.4)

The quantity (3.4) is the corresponding moment of the reduced-order model. The above
relations hold for any value of k£ between 1 and K, because V and Z contain Krylov

subspaces corresponding to all the £ in this range. W

3.2 Interpretations of the Theory

To acquire a rational interpolant that matches the first J;, + J., moments about the

interpolation points o for k = 1,2,... K, we propose selecting V and Z according to
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(3.1) and (3.2). Assuming the nonsingularity of the pencils (A—O'(k)E) at these points (see
Section 3.3), Theorem 3.1 guarantees that the desired rational interpolant is acquired.
We stress that any pair of projection bases satisfying (3.1) and (3.2) is sufficient to
achieve the desired rational interpolant. Restrictions on V or Z, such as biorthogonality
or orthogonality, are purely implementation specific choices. The question then is what
is so special about the forms of (3.1) and (3.2)? In particular, do these forms suggest a
family of projection-based approaches for computing the reduced-order model?

There are some clear connections to be made between the V' and Z of (3.1) and (3.2)

and the desired moments of the original system,
, = c(A—cPEYTE(A-cWE)E. . (A-cWE)TE(A—-cPE) .

An obvious correlation exists between the repetitive multiplication by (A — c®WE)™'E

in both the Krylov spaces and the moments. The sum, .J;, + J.,, of the dimensions of

k7

k) is exactly equal to the number of moments

the Krylov subspaces corresponding to of
matched about ¢®) by the reduced-order model. This direct connection between a given
pair of Krylov subspaces and the values/derivatives matched at a given frequency suggests
a great deal of potential parallelism when forming the reduced-order model. Independent
of the rest of V', only the basis for Ky, ((A —oMEY TR (A - O'(k)E)_lb) is pertinent to
the moments at ¢*). Matching moments about multiple points requires multiple Krylov
subspaces. Constructing these multiple subspaces in parallel is addressed in Chapter 7.

In addition to moment-matching, it was demonstrated in Section 2.3.1 that the pro-
posed model-reduction approach can be phrased in terms of solving the dual system
of equations (1.2). Recall that the reduced-order frequency response can be written as
#17T(sE — A)V iy, where Vi, and Z3. are approximate solutions to (1.2) in a Petrov-
Galerkin sense. Rational interpolation is connected to the approximate solutions to (1.2)

through the concept of varying DS preconditioners. Understanding what is meant by a

varying DS preconditioner follows by using Lemmas 2.1 and 2.2 to obtain the equality

K, (A= oW E) B, (A= oW E)b)

i i i (3.5)
= UL, Ky, (A= oW E)™ (A~ sE), (A~ oM E)1D) .
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A dual result can be obtained for the subspace on the left of (3.2). The subspace on
the right of (3.5) is simply the union of several preconditioned Krylov subspaces of the
type in (2.17). In fact, the subspaces making up this union vary only in the value of
the matrix (A — ¢ E)~!, which we denote as an exact varying DS preconditioner, P.
The choices of Z and V leading to rational interpolation simply combine several exactly
preconditioned Krylov subspaces in (2.17). By introducing multiple DS preconditioners
Py into V and Z, one hopes to obtain accurate solutions to the dual equations (1.2)
in each of the neighborhoods surrounding the interpolation points o;. The impact of
various DS preconditioners (various choices for the o(®)) is considered in Chapter 6.

The use of multiple varying preconditioners has appeared in the literature [70, 71]
for solving fixed systems of linear equations. Similarities can be seen between these
algorithms and the model-reduction algorithms developed in Chapter 4. The model-
reduction problem is frequency dependent; adapting multiple preconditioners to cover a
range of frequencies is novel.

One may question the advantages of phrasing the rational interpolation problem in
terms of shifted systems of linear equations and varying DS preconditioners. The strength
of this new point of view becomes apparent as one relaxes the constraint that P equals
(A—oME)™! e.g., if an iterative method is used and not converged to working precision.
Avoiding the need for exact inverses of the matrix pencil may significantly cut the costs
involved in generating V and Z. Unfortunately, the concept of rational interpolation be-
comes clouded without exact inverses; inexact DS preconditioners cannot exactly match
moments. On the other hand, the use of inexact DS preconditioners is accepted and is,
in fact, standard for treating systems of linear equations. An array of inexact DS pre-
conditioning techniques and iterative solvers can be considered for solving dual systems

1 in model reduction is

of linear equations. The use of approximations for (A — c(¥ E)
considered in Chapter 8.

We finish this section by noting that the matrices V and Z of Theorem 3.1 are
not computed by existing Krylov-based model-reduction methods. Rather, the existing

literature consistently employs the matrices V' and W. Already seen in Sections 2.3.2
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and 2.4.3, the columns of the W and Z matrices satisfy the simple relation
zm = (A — UmE)_Twm (3.6)

for some value of ,,. Theoretically, we can approach the rational interpolation problem
in terms of computing either appropriate V and W or V and Z. The V, W choice is more
naturally suited to Lanczos-based implementations of Krylov projection. However, it has
been decided that the V., Z choice yields a clearer presentation. The column spaces of
V and Z are exact duals to each other. The reduced-order model follows trivially from
V and 7, as in (2.7). Lastly, the appearance of varying DS preconditioners in V' and 7
is straightforward. Yet, the choice of a fixed left transformation and associated W as in

(2.16) is no longer clear when the DS preconditioners vary.

3.3 Limits of the Theory

The connections developed in Section 3.1 between rational interpolation and projection
depend on the assumed nonsingularity of ZT (A—a®E)V for k = 1,2,... K. Singularities
must occur if any of the matrices V, Z or (A—o® E) are singular. Even if these individual
components are all nonsingular, Z7(A—o® E)V may still be ill-conditioned. This section
explores various sources and remedies for singular A—o®f.

With regards to notation, recall that the matrix Z,, consists of the first m columns
of Z € RVM | Likewise, V,, is the first m columns of V. These first m columns form
bases for some arbitrarily chosen m-dimensional subspaces contained in (3.2) and (3.1),

respectively. One can define a reduced-order model of size m < M by simply replacing

V and 7 in (2.7) with V,, and Z,,. Finally, note that V' and Z are always Vs and Zy;.

3.3.1 A singular large-scale pencil

Matrix inverses of the form (A — o F)~! are a dominant presence in the construction
of the Krylov subspaces in colsp {V} and colsp {Z}. However, if o is a generalized

eigenvalue of (A, F), this inverse does not exist, as (A — o F) is singular. An eigenvalue
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of the original system should not be chosen as an interpolation point. By itself, this
restriction is an insignificant constraint; only a finite number of discrete points in a
continuous plane need be avoided. Yet one may wonder about interpolation points in the
neighborhood of these discrete singularity points. As the interpolation point nears an
eigenvalue, the conditioning of (A — o F') worsens. Fortunately, and perhaps surprisingly,
a poorly conditioned (A — o ) does not lead to catastrophic results when attempting to
match information at s = o. This conditioning issue was examined in [72] with respect
to related concerns in the method of inverse iteration for eigenvalue problems. Quoting

[72],

The period when inverse iteration was first considered was notable for exag-
gerated fears concerning the instability of direct methods for solving linear
systems and ill-conditioned systems were a source of particular anxiety. For
this reason, it was widely held to be inadvisable to use a o which was too
accurate; it was thought that such an eigenvalue should be debased a little so
that the resulting matrix (A —o /) would not be too ill-conditioned. Although
it is now generally recognized that this is not necessary, and indeed is not to
be recommended....

An ill-conditioned (A — o F) can be utilized for an accurate interpolation at o due
to the form of the error in (A — ocE)~'b. In short (the reader is referred to [72] for a
more rigorous analysis), this error is dominated by the eigenvector x,, as o approaches
the corresponding eigenvalue )\,. However, this eigenvector is in the direction of the
desired solution. Although the desired vector is # = (A — o E)~'b, the computed vector
is (1 4+ ¢)(A — aE)~ b, where ¢ may be large. Such a scaling error is unimportant in a
projection technique; one requires only an accurate subspace basis to acquire the desired
reduced-order model. Scaling a basis vector by (1 4 €) does not perturb the resulting
subspace.

Existing theory and practical experience show that accurate interpolation can occur at
a frequency o, where (A — o F) is ill-conditioned, but care must be taken when matching
higher order moments at . Directions not corresponding to A, &~ o are significantly
damped by (A — o F)~! multiplication. Therefore, one can expect a loss of precision at

frequencies away from o, which is directly proportional to the number of digits shared
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by ¢ and A,. Acquiring information away from A, is better achieved by moving to a
different interpolation point.

[ll-conditioned (A — o F) are, in fact, a rare concern in many applications for a more
practical reason. If the original LTI system is dynamically stable, its eigenvalues are
obviously restricted to the left-half plane. Yet we see in Chapter 6, that positive real
or purely imaginary interpolation points are preferred for model reduction. Thus, unless
unstable or lightly damped modes occur in the dynamic system, ill-conditioned (A — o F)

cannot occur at all.

3.3.2 Rank-deficient projection matrices

The use of a V or Z that is not full rank also leads to a singular Z7(A — ¢WE)V. In
fact, this case leads to a singular (121 — SE) for all s. There are multiple sources for a
rank-deficient V or Z.

Theoretically, the loss of full rank in V or Z corresponds to the occurrence of an
invariant subspace. For example, consider letting M go to N with a fixed interpolation

point. Then, the column space of V' is the Krylov subspace
Kn(A—oE)'E,(A—cE)'b).

This subspace is, in fact, the controllability subspace of (2.1), because the eigenvectors
of (A—cE)™'E and (A, F) can be shown to be identical. If the original system is not
completely controllable, the dimension of the controllability subspace is less than N and
the column rank of V' must be less than N. Of course, the fact that V is not full rank
in this case is not really disturbing. Uncontrollability in the original system implies the
existence of a completely accurate reduced-order model of order less than N, known as
a minimal realization [31]. One has no need for a V of size N. In the context of the
Lanczos method, a loss of rank in V or Z due to the computation of an invariant subspace
is aptly termed a fortuitous breakdown.

More alarming than the theoretical possibility of an invariant subspace, though, is a

rank loss in finite machine precision. It was seen in Section 2.4.2 that finite precision can
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lead to problems for naive implementations of moment-matching. Although the desired
constraint and search subspaces may be theoretically acceptable, the computed V or
7 may not possess full rank. Similar to Section 2.4.2, one should avoid forming v,,41,
for example, by simply multiplying v,, by (A — o™ E)~'E. Such explicitly constructed
columns of V' quickly become dependent in finite precision. In the fashion of inverse
iteration, repeated multiplications by the matrix (A —o® E)~'E emphasize only a single
eigendirection, e.g., Example 2.2.

Rather than explicitly constructing columns of V. it is common to construct v,,41
so as to force it to be orthogonal or biorthogonal against previous directions in V,, or
Zm. The columns of Z may be handled similarly. In this manner, the new columns of
V and Z are kept independent from the old. One makes sure that new information is
added as the size of V' and Z grows. It is stressed that the placement of orthogonality
or biorthogonality type constraints on V' and Z is purely an implementational decision.
Various biorthogonality /orthogonality possibilities are explored in Table 4.1 of Chapter
4. Yet these orthogonalization choices are in no way fundamental to model reduction via
projection. Orthogonality/biorthogonality is one possible tool for avoiding rank-deficient
V and Z in finite precision.

Whatever the choice for orthogonality or biorthogonality, a variety of numerical ap-
proaches exist for its enforcement. In order of increasing numerical robustness, these
techniques include selective classical Gram-Schmidt, classical Gram-Schmidt, modified
Gram-Schmidt, classical Gram-Schmidt with reorthogonalization, and Householder re-
flectors [3]. Some version of classic Gram-Schmidt is the most common choice. Given
a vector g,4+1 to be orthogonalized against an orthogonal matrix G,,, classical Gram-

Schmidt computes

Im+1 = f]m—l—l - Zgl(nggm-l-l) (37)
=1

Each component in the summation of (3.7) orthogonalizes a column of G, against g,41.
In some cases, certain past directions (columns of G,,) are known to be already
orthogonal to §,,.1 due to the structure of the problem. In Lanczos-type methods for

example, one knows a priori that (¢f gm11) are zero in theory for all [ < m — 1. Utilizing
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this knowledge and avoiding the computation of the zero terms leads to simple updates
by short recursions. However, round-off error always perturbs these (¢f G,11) away from
zero in practice. Short term recursions are less accurate than explicitly computing all m
terms in the summation of classical Gram-Schmidt. Computing all m terms is classical
Gram-Schmidt. Computing only certain terms in the summation of (3.7) while assuming
the others to be zero is known as selective orthogonalization [73]. More robust than
classic Gram-Schmidt is two passes of Gram-Schmidt, known as reorthogonalization [74].
In this approach, one computes gn41 via (3.7), sets gmi1 = gmt1, and computes the

left-hand side of (3.7) once more.

3.3.3 A singular reduced-order pencil

Even if the matrices (A — ¢WE), V and Z are nonsingular, (121 — U(k)E) may still be
ill-conditioned. This final subsection explores this situation in detail and, hence, assumes
(A—o®E), V and Z to be nonsingular. Our key insight into this situation is stated and
proven as Theorem 3.2. If a singular Z7(A — cWE)V arises when forming an order M
model that matches J;, + J., moments at O'(k), then there exists a reduced-order model

of a size less than M that matches J;,, + J., — 1 moments at k),
Theorem 3.2 Consider a V and 7 where ZT(A — cWE)V is singular and

K, ((A=c®E)E (A-o®ME)'8) C colsp{V} (3.8)
K., ((A — M)y TET (A- U(k)E)_Tc) C colsp{Z}. (3.9)

If Vaer, Za—r € RY*M=Y gre full-rank matrices satisfying the conditions

colsp {‘N/M_l} C colsp{V}, (3.10)
colsp {Zm_l} C colsp{Z}, (3.11)
vy = {(A — U(k)E)_lE}ka_l (A— ™ E) b & colsp {‘N/M_l} , (3.12)

Jep—1

2y {(A — U(k)E)_TET} (A — U(k)E)_Tc ¢ colsp {ZM_l} , (3.13)
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and ZTJ;_I(A—U(k)E)‘N/M_l is singular, then the (Jy, +J., —1)* moment of the dimension
M — 1 reduced-order model

( NJE—lE‘N/M—l)*% = (ZJEAAVM—I)*% + (Z]E_lb)u

Y= (CT‘N/M_l):Z' + du

about o™ equals the (Jy, + J., — 1)** moment of the original system (2.1) about o*),

Proof: Due to the conditions (3.8) through (3.13), the vectors

bar = vy — Varoa (234 (A = oW E)ar0) "N 2y (A = oW By

S = 24— Zarea( 2y y(A = oW E)Wary) T (Vi (A = oWE)T2y)

form completed matrices

V:[‘N/Mq ﬁM] and Z:[ZM—l §M]
satisfying colsp {V'} = colsp {‘N/} and colsp {Z} = colsp {Z} . Moreover, by the inclusion

of classical Gram-Schmidt biorthogonalization in (3.14), one has the relation

77 R 74 (A=W EWA, 0
L T o B e DGR
73 0 ap

The value of apy = éﬁ(A—a(k)E)f)M in (3.15) must be zero due to the assumed singularity
of ZT(A— oW E)V and nonsingularity of Z%,_, (A — o™ E)V;. Using (3.14), this ays can
be written as

ZT(A— o P E), — (21(A— o B YW ) (2L (A= ™ W) 2L (A=W E),).
This expression further simplifies to
(A= W E)y T EYUatTa=2 (A — o) F)~1p
—T{(A = o)L EY VeV (25 (A — o B YW _) 1 28 {E(A — oW )=} Un1p
due to (3.12) and (3.13). However, because 21, _,(A—o® E)Vy;_ is nonsingular, Lemmas

3.2 and 3.3 can be used to write this most recent expression for «,, as

H( Ty, +Jc, —1)
—c"Vara {(Zfy 1 (A = oW EYWar0) 7 28 ViV D(Z]) (A = oW E)Vag )
(23 BV 25 (A = oW )Wy ) 3D,
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This quantity, a,,, is the difference between (J;, + J., — 1)*" moments of the original and

reduced-order models. Yet «,, is known to be zero. N

Certainly there are many conditions involved in the statement of Theorem 3.2. More-
over, Theorem 3.2 is the typical, but not the most general, description of a singular
ZT(A— oM E)V (by assuming Z%,_, (A — o™ E)Vi_; to be nonsingular, one guarantees
that the rank of ZT(A — oW E)V is at least M —1). Rather than treating all these condi-
tions and cases in detail, we simply reiterate the main concept and provide an example.
The reader should simply keep in mind that a singular Z7(A — O'(k)E)V implies the ex-
istence of a system of order less than M that matches more than 2M — 2 of the desired
moments. A singular Z7(A — 0¥ E)V implies the existence of a lesser approximation
that is nearly as good or as good at matching the desired moments of the original system.

Such behavior is illustrated by Example 3.1.

Example 3.1 Consider a third-order system with

-1 2 =2 8 —2 1 00
A=1 0 -1 2 b=1 2 c=1 0 E=10 10
0 0 —1 —1 0 02 0 1

This system is stable, controllable and observable. In an attempt to obtain a second-order

model that matches two moments at o™ = 0 and two at 0¥ =1, one can follow Theorem

3.1 and choose
Vi=| A% (A-E)"% and 7 =1 ATe (A-E)Te|.
Unfortunately, the matriv ZT(A — oMW E)V is

20 10
10 5

which is singular. In agreement with Theorem 3.2, one can check that the first-order
model described by {2 Avy, 21, vle, 2T Ev,} matches not only the first and second

moments of the original system about o'?) (as expected), but also the first moment of the
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original system about o) (not expected). Note that this first-order model does not match

the second moment of the original system at o).

The presence of singular Z7(A — ¢ E)V and the fortuitous matching of extra mo-
ments can be tied to other phenomenon. For example, a nonminimal, reduced-order
model of size M implies the presence of a less than M*" order approximation that matches
all of the moments of the M** order model. Hence, a nonminimal, reduced-order model
has a singular Z7(A — o™ E)V for one or more k. This case is not much of a concern,
because the generation of nonminimal, reduced-order models (beyond a minimal one)
is a wasted effort. Perhaps a more common scenario for a singular Z7(A — oM E)V
is the lack of any M* order system that meets the specified 2M moment constraints.
A rational interpolant of size M cannot always be found that meets the specified 2M
constraints; a singular Z7 (A —o® E)V is consistent with this situation. For example, no
approximation with M =1 exists that matches the moments o = 0 and gy = 1 at some
o, because a first-order system has no zeros. The M = 0 approximation, ﬁ(s) = 0 for all
s, does match the first moment pg = 0, though, agreeing with Theorem 3.2. Similarly,
in Example 3.1, one can check that no reduced-order model of order less than or equal
to two exists which matches the specified moments pg = —20, py = 24 at o) = 0 and
o= —10, py =5 at 0@ = 1.

Fortunately, as Theorem 3.2 suggests, the environment surrounding a singular or
nearly singular (121 — O'(k)E) is not a common one in practice. This is not to say that
such difficulties never arise. Given that the cause of a singular (121 — U(k)E) is now
better understood, it is possible to characterize various approaches for working around
the problem. Each of these remedies modifies the size of and/or the moment constraints
on the reduced-order model in hopes that a valid rational interpolant can be realized.
Each of these remedies also assumes that V, Z and (A — 0¥ E) are nonsingular.

Modified Model Dimension. One possible remedy is to simply increase the model
size until all (121 — O'(k)E) are nonsingular, i.e., until the model is large enough to meet
all required constraints. If a model of size M is lacking, then one simply skips over

it and augments V and Z until a valid reduced-order model is found. This process
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is known as look-ahead in the Lanczos literature [68, 69]. Unfortunately, one rarely
knows a priori the required increase in model size for a valid approximation to be found.
Usually, this increase is only one or two iterations. This approach is appropriate for
fast implementations; although the required implementation may be complicated and
heuristic.

Revised Moment Constraints. A second remedy is to choose the interpolation points
to avoid difficulties. Rather than fixing the number of moments matched Jj, a priori, one
adaptively selects from among the interpolation points as the model reduction proceeds.
For example, assume one has a valid model of size M — 1. Then, the next interpolation
point utilized (the next two moments matched) is selected to avoid singular (121 — U(k)E).
Theorem 3.2 and intuition tell us to avoid matching two new moments at an interpolation
point ¢®) if the first of these new moments is already matched by the model of size M —1.
Unfortunately, it is not known a priori how many interpolation points must be inspected
before a valid one is found. Usually, this number is only one. This approach is suited
for implementations that already match moments about multiple interpolation points. It
is also consistent with choosing the interpolation points in an attempt to generate the
most accurate reduced-order model possible. One avoids choosing an interpolation point
to match data that are already included in the existing reduced-order model. Adaptively
choosing interpolation points according to the modeling error is further considered in
Chapter 6.

Reduced Moment Constraints. A final approach for avoiding a singular (121 — O'(k)E)
is to construct a reduced-order model that matches fewer than 2M moment constraints.
That is, if a reduced-order model of size M cannot meet the specified 2M moment
constraints, drop one or more of the constraints. A well-known algorithm in this class is
the Arnoldi method [75]. Arnoldi methods are guaranteed to avoid singular pencils by
choosing ZT = VI(A —oFE)™'. Aslong as V and (A — o F) are nonsingular (assumed in
this section), ZT(A—o E)V = VTV must be nonsingular. However, with this choice for Z,
the value(s) of the J., in Theorem 3.1 are zero, so that an Arnoldi-type approach generally

meets only M moment constraints. The advantages of the Arnoldi-type approach is its
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immunity to certain breakdowns. The disadvantage of the approach is its inability to
match as many moments in the reduced-order model. It should be noted that approaches

matching more than M, but less than 2M moments, still need to be studied.

3.4 Further Issues

In this dissertation, the focus is on the computation of a rational interpolant for a
SISO system. Other system-related issues exist, however. In the following the issues of

dynamic stability and MIMO systems are considered in the projection framework.

3.4.1 Stable models

Although the introduced projection approach matches moments of the original system,
a different set of invariant quantities, the system’s eigenvalues, are less regulated. It is
known that the eigenvalues of (121, E), known as Ritz values, may lie in the right half of the
complex plane even though the original system is stable. A discussion of instabilities in
partial realizations is presented in [76]. Unstable reduced-order models of stable systems
are frequently unacceptable, e.g., if the approximation is to be used for simulations.

To address these stability concerns, the author proposed techniques in [60, 77] to
discard the unstable modes of the reduced-order model. Because finite Ritz values in the
right-half plane cannot correspond to true eigenvalues of a stable system, eliminating the
unstable Ritz values is a reasonable approach. Similar strategies also recently appeared
in [48, 78]. Explicitly, one need find only order-M orthogonal left and right matrices to

transform the reduced-order model into the form

E, 0 o A, 0 s
. = . (3.16)
0 F, Ty 0 A, Ty,
and
T i,
Y = [ ¢y Gy + du,
Ty
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where the eigenvalues of (1215, ES) are the stable ones of the initial reduced-order model.
The leading subsystem is retained as the final reduced-order model. A straightforward
approach for acquiring the form in (3.16) is discussed in [78]. For the Lanczos algorithm,
an efficient implementation based on hyperbolic rotations can produce (3.16) with only
O(M) operations [60]. This approach is known as the implicitly restarted Lanczos algo-
rithm. It implicitly edits the Lanczos iteration to rapidly acquire a new Lanczos iteration
that generates the purely stable reduced-order subsystem.

Under the special conditions that A and £ are normal matrices and V equals Z, stable
reduced-order models can always be obtained. Under these conditions, a relation between
the field of values of (A, F) and the convex hull of (A, F') exists that bounds the spectrum
of (121, E) [7]. The guaranteed stability of partial realizations when A is normal, £ is an
identity matrix, and V equals 7 is discussed in [77]. A projection involving the Cholesky
factorization of F is utilized in [64] to acquire guaranteed stable Padé approximations
when A and E are symmetric. Certainly such results are desirable, although they require

normal matrices and limit the choices for V and Z.

3.4.2 Multiple-input multiple-output models

For a MIMO system, the rectangular matrices B € RV ** and ' € RV*L* take the
place of the vectors b and ¢. Corresponding to these new input and output matrices, the

corresponding reduced-order model becomes
A=7%AV, B=7"B, C=V'C, D=D, E=Z"EV.
Similarly, the moments of the original system are now the matrices
CT{A - ocWEY BV YA - W E)1B. (3.17)

Trivially, the element in the (., 1) position of (3.17) is the j¥ moment of the SISO
system, whose input vector is the I!" column of B (denoted ;) and whose output vector

is the I!" column of C' (denoted ¢;). Thus, the following corollary to Theorem 3.1 follows
readily for the MIMO case.
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Corollary 3.1 If

G { O /Cka’l ((A — g(k)E)—lE7 (A — g(k)E)—lbl)} C colsp{V} (3.18)

(=1

and

L. K
U { Ko, (A= o®E)TET (A a<k>E)—Tc,)} C colsp {Z} (3.19)
k=1

le=1

then the moments of original and reduced-order model satisfy

Jea—1 A

—c {(A - a<k>E)—1E}”“_1 (A= oW E) "y = e {(A—oWE)yT LY (A= 0@ )1,

fO?“ij: 1,2,...,ka7l —I_‘]Ck,l} k= 1,2,...[(, 1521,2,...,[/5 and lc: 1,2,...,Lc.

Two important points arise from Corollary 3.1. First, although the number of scalar
elements in (3.17) grows as the product L.L;, the changes in the size of (3.18) versus
(3.1) and (3.19) versus (3.2) are linear with respect to L, and L.. To understand this
difference, consider the special, but not uncommon case where L, =1 and L. > 1. The
number of subsystems in the overall problem is L.. Because L, = 1, the MIMO version
of V in (3.18) simplifies to (3.1). Thus, for any Z of size M, the reduced-order model
formed with this V' is guaranteed to match J,, + ...+ Jy,, = M moments of every one
of the L. subsystems. For the case where L, = 1, it is possible to match M moments
in every one of the L. subsystems with projection matrices of only size M. The model-
reduction problem is two-sided; but at times it is more cost-effective to concentrate on
only one of the two sides.

A second point of importance in the MIMO problem is that the same number of mo-
ments need not be matched for every subsystem. The standard Krylov-based approaches
to the MIMO problem assume K = 1 and fix J,, = J., = J for all [ [54, 55, 61, 79].
Such an approach is known as a block method, because the individual vectors in B or
(' are treated identically during the construction of the projection matrices. Although a
block approach is perhaps the most straightforward to implement, situations can and do
frequently arise where the complexity among the subsystems varies significantly. Corol-
lary 3.1 provides a tremendous amount of flexibility for treating MIMO systems. The

projection matrices may be weighted to achieve greater accuracy in specific subsystems.
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Corollary 3.1 is a natural extension for rational interpolation in the MIMO case,
yet the user should avoid going to extremes. Allowing K, Lj, L. to each become even
moderately large automatically precludes a small model size M. Moreover, there may be
a large amount of overlap between the various individual Krylov subspaces, particularly
with respect to variations in the [ indices. For example, even though the number of
theoretically required subspaces may grow large with L, a few subspaces may come
very close to covering the entire union. It is unclear at this time as to how one might
locate the most globally appropriate individual subspaces. FExperiments replacing the
K Ly subspaces in (3.19) with K Krylov subspaces that are independent of [ (e.g., replace
by with a random starting vector, replace b with the summed vector 3_; by, etc.) led to
only limited success in practice. More research is needed in the case where both L, and

L. are large to determine an appropriate reduced-order model with a practical size.
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CHAPTER 4

PROJECTION METHODS FOR RATIONAL
INTERPOLATION

Chapter 3 demonstrates that a rational interpolant can be acquired with straight-
forward conditions on the column spaces of V' and Z. The rational Krylov algorithm
developed in Section 4.1 provides a great deal of freedom in computing bases for these
subspaces. Specifically, the type of orthogonality imposed on the columns of the projec-
tion matrices differentiates the algorithms proposed in this chapter. A significant amount
of attention is therefore given to the impact of various orthogonalization schemes in both
theory and practice. One particularly elegant version of the rational Krylov method, the
rational Lanczos method, leads to a generalization of the Lanczos method for treating
multiple interpolation points. The development of the rational Lanczos is significant as it
can compute rational interpolants with short iterative recursions. The chapter concludes

with an example demonstrating the behavior of various rational Krylov approaches.

4.1 The Rational Krylov Method

Theorem 3.1 provides simple conditions on the column spaces of V' and Z for acquiring
a reduced-order model through rational interpolation. Specific choices for implementing
V and Z that meet these conditions remains. The goal is to compute V and Z in both
an efficient and a numerically stable manner. In this section, a general method, denoted
the rational Krylov method, is introduced for computing V and Z. An infinite number of
appropriate V and Z can, in fact, be generated with this method by simply varying a few

well-defined parameters. Once this broad method is available, specific implementations
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follow readily. Additionally, the presence of a broad method provides a clear framework
for comparing each version’s particular attributes.

The rational Krylov (RK) method is presented in Algorithm 4.1. Its name follows from
the description in [80] of the subspaces in (3.1) and (3.2) as rational Krylov subspaces.
Additionally and not by accident, the title is fitting from the perspective that the RK

algorithm generates rational interpolants.

Algorithm 4.1 Rational Krylov (General Version)

Initialize: ¢; = (77)7'b and w; = (B¥) " Le;
For m=1to M,

(S4.1.1) Input: o,,, the interpolation point for m iteration;

(54.1.2) 0, =(A—0,E) g 11 and 2, = (A — 0, E) Tw,, 11;

(S4.1.3) %0 = O — Vi1 0y and B2 20, = 20 — Zppe1 Zm;

(S4.1.4)  Gy1 = Ev,, and 10,41 = BTz,

(54.1.5) i1 9ms1 = Gmtr — Qmbmgr and B w0pnq1 = Wogr — Wil
end

Two simplifying assumptions are made in going from Theorem 3.1 to the RK algo-
rithm. First, the column spaces of V and Z are constructed to equal (=) rather than
contain (2) the union of Krylov subspaces on the left sides of (3.1) and (3.2). Yet this
assumption does not prevent rational interpolation; it is the Krylov subspaces which con-
tain the desired moment information. Second, it is assumed that the dimensions of the
dual Krylov subspaces are consistent, i.e., J;,, = J., = J; for all k. These choices allow
the matching of the maximum number of possible moments for a given model size M.

One should immediately notice the presence of ¢, and w,, in addition to v,, and z,,
in Algorithm 4.1. The constructed ¢) and W are related in direct fashions with V' and
7 via (54.1.4). The choice between primarily working with @ and W versus V and 7

can be mainly based on ease of notation and point of view. By initially incorporating all
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four matrices (rather than only V and 7) into the RK algorithm, more options become
apparent.

An iteration of the RK algorithm consists of executing (S4.1.1) through (S4.1.5). A
user-specified interpolation point, o,,, is associated with each iteration. The value of
o,, must be one of the K possible interpolation points o) through o®). Although the
ordering of the interpolation points in the RK algorithm is arbitrary, the number of times
o is chosen to be some o) during the M iterations determines the number of moments
matched at o® by the final reduced-order model. Mainly, it is shown below that the
number of moments matched at ¢(®) is twice the number of times that o,, is chosen to
be o® in the M iterations.

Steps (54.1.2) through (S4.1.5) of the RK algorithm generate the new columns of the
projection matrices. Step (54.1.2) introduces new information into the column spaces of
V and Z, while (S4.1.4) introduces new information into the column spaces of () and
W. The actual bases used to represent these columns spaces are determined in (54.1.3)
and (S4.1.5). The updates in these two steps correspond to the classical Gram-Schmidt
procedure described by (3.7). The choices for the vectors ¢, Um, W, and Z, in these
updates determine what type of biorthogonality or orthogonality is produced among (),
V, W and Z. Furthermore, it is these vectors that primarily distinguish the specific
implementations. Several important options (but certainly not all) are summarized in
Table 4.1. The first, second and fourth cases in Table 4.1 are implemented in detail in
Sections 4.1.1 through 4.1.3. The study of these specific cases further clarifies the breadth
of the RK Algorithm 4.1.

An additional component to (bi)orthogonalization is the specification of the scaling
parameters 3%, 3%, ~4? and 4". The last column of Table 4.1, titled 3, + restriction,
lists the conditions that must be met in each case by the choice of the four ~2, ~*, g%

and % parameters. In the second row, for example, orthogonal V and Z are required,

VIV = ZT7 = I. One might therefore choose 3% = 4% =1 and

’}/;Jn = Hf)m - Vm—lf)mHQ and 7; = Hgm - Zm—lgmHQ

o4



Table 4.1: Orthogonalization Choices in the Rational Krylov Algorithm

Case Gm Um Wy, Zm B, v Restrictions
none 0 0 0 0 —
V, Z orthogonal 0| VI o, 0 ZE o I 2wl = lomllz = 1
V, Z biorthogonal || 0 | ZL 9, 0 VI oz, 2o, =1
V, W biorthogonal | 0 | WL _ o, | VI 1, 0 wl v, =1
to insure that v1v, = 2Lz, = 1. In all cases, there are fewer constraints than 3, ~

parameters.

There is one other parameter of interest in the RK algorithm, mainly the “previous”
index p,,. This scalar subscript appears in (S4.1.2). The value of p,, locates the most
recent iteration prior to iteration m that employed the same interpolation point used in
the m*" iteration. If ,, was not used as an interpolation point in the first m—1 iterations,
one sets p,, = 0. If 0, = 0,1, then o, was last used in the (m — 1)*" iteration and the
value of p,, is m — 1. The new directions generated in (S4.1.2) of the current iteration
are founded on the directions computed the last time that o, was used. Example 4.1

sheds some light on both the role of p,, and the overall RK algorithm.

Example 4.1 Consider a 5" order model with o1 = ¢, 0y = ¢, 505 = 63, 5, = ¢
and o5 = oM. Thus, the m = 1 iteration is said to be associated with ¢, the m = 2
iteration is associated with ¢V, ete. Based on the above definition of p,,, one has p; =0,
pe =0, ps =1, py =3 and ps = 2. The value of ps, for example, follows from the fact
that prior to m =5, o) was last utilized in the second iteration.

Choosing 3 = 32 =~v1 =~2 =1 and ¢y = vy = Wy, = 2, = 0 for all m, one can

check that the V' constructed in Algorithm 4.1 takes the form

V= Pgb Plb (PQE)PQZ) (PQE)2P26 (PlE)Plb )

where Py = (A — cWEYY. A dual result holds for Z. The use of p, in (S4.1.2)
leads directly to V' and Z that correspond to the desired Krylov subspaces in an order
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determined by the selection of the o,,. New columns of V and Z that correspond to the

Krylov subspaces involving o) are added whenever o,, is chosen to be o).

Example 4.1 demonstrates that the RK algorithm with special parameter choices
leads to the desired column spaces for V and Z. Prior to leaving this general version of
the RK algorithm, it is important to show that the computed V and Z lead to the desired
rational interpolant in all cases. The following results prove this fact by demonstrating
that the column spaces of V' and Z fit the required form of Theorem 3.1. The key to this

proof is Lemma 4.1, which is proven in Appendix A.

Lemma 4.1 If o and c*+Y are two arbitrary, distinet interpolation points, then

(A—o®p)” 1E{( o) EY YA — oM E) T €
{span{(A — c®E) O} K, (A - ™I E)T B (A— o™ VE) ) b (41
and
(A—o®p)” TET{( oD )T ETYH A — oM E) e €
{span{(A — e®E) T JK; ((A— o™ E)TET (A— otV E) )} (42)

for any value of 3 > 1.

Theorem 4.1 Assume that V and Z are the results of M steps of the general RK al-

gorithm with nonzero scaling parameters 1, ~2, B2 and BZ. For any m < M, the

relations
K
colsp {Viu} = | Ky, (A= oW E) B, (A= oW E)™) (4.3)
k=1
and
K
colsp {Zn} = U Ky, (A= oW E)yTET (A— oW E)e) (4.4)
k=1

hold, where ji. equals the number of times o,, was chosen to be o™ in the first m

iterations.
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Proof: We begin by inductively proving that

colsp {@ 1} C colsp {[ EV,, ‘ b ]} (4.5)

for any m < M. The m = 1 case is straightforward because ¢ = 7{q; is initialized to b.
Assume (4.5) holds for m = M — 1 as well. Due to steps (54.1.4) and (54.1.5) of the RK
algorithm,

Yarpr9m+r = Boyr — Qurdarsa.
Combining this expression with the inductive assumption demonstrates that (4.5) holds

for m = M as well. Hence, (4.5) holds by induction.

We next show that for any m < M the relation
O = o {(A — UmE)_lE}jf%m_l(A — 0 E) 0+ Vi 1Gm (4.6)

holds where «,, is nonzero and o, equals ok (the subscript k identifies which of the K

interpolation points was used in the m'" iteration). The equality in (4.3) follows trivially
from (4.6).

Induction can be utilized to prove (4.6). For m = 1, the desired relation
Yo = (A — UlE)_lb

follows directly from (S4.1.2) and (S4.1.3) of the RK algorithm. Assume (4.6) also holds
for iterations 2 to m — 1. Based on (S4.1.2) and (54.1.3), v,, can be written as

Vm = (1) {Om — Vio10m}

= (1) H(A =00 E) gp1 = Viea v} (4.7)

It j;, . is one, then p,, equals zero and gy, 11 lies in the direction of b. For this case, (4.6)
follows directly from (4.7). If j; . is greater than one, then (S4.1.4) and (S4.1.5) must

be utilized to express (4.7) as

Um = (’an)_l {(A - UmE)_1(75m+1)_l{q~pm+1 - QQO-I-l} - Vm—lf)m}

= ()" {(A=0nB) " (9i) B = Quuilnsn} = VP )
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Using (4.5), this last expression can be rewritten as

Um = (an)_l(’yzm-l—l)_l(A - UmE)_lEvpm —I_ (A - UmE)_l [ Evm—l b :| f]m —I_ Vm—lf]m
= (1) ) (A = 0 )T BV (A = 0, E) YD

—I—(A — O'mE)_l |: EVm_l b :| Gm + Vm—lgmv (48)

where §,,, ¢, and §,, are some vectors. The second equality follows from the inductive
assumption and the fact that j; = j; . — 1. From (4.8), Lemma 4.1 leads to the
desired result (4.6). The value of oy, is simply a product of the inverses of 4% and 7",

terms which by assumption are nonzero,

e A I 7Y

Expression (4.3) follows directly from (4.6). The portion of the proof corresponding to
(4.4) is the dual to that presented above. W

As a side note, it is an interesting fact that the proof of Theorem 4.1 is not strongly
dependent on the specific value p,, in the subscript of (S4.1.3). The replacement of p,,
in (54.1.3) with the value m — 1 arises in Section 4.1.4. Insights into alternatives to p,

are provided by Example 4.2.

Example 4.2 Consider the construction of an orthogonal Vi (see second row of Table
4.1) with the interpolation point-ordering o4 = oM oy = 0 and o5 = . The first

two columns of V' are therefore
Va=| (A - O'(I)E)_lb y2(A — U(Q)E)_lb + azv1 |

where the parameters v, Vo and «y are chosen so that V, is orthogonal. Using the
prescribed subscript p, =1 in step (S4.1.2) of the third RK iteration, one obtains a new

direction
05 = (A — O'(I)E)_qu_l = (A - U(I)E)_lEvl =v(A— U(I)E)_IE(A — U(I)E)_lb.
This new direction is always acceptable for augmenting the subspace.
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If, on the other, the subscript p,, + 1 is replaced with m in the subscript of (S4.1.2),
the third direction is

1~)3 = (A — O'(I)E)_IQQ+1 = (A — O'(I)E)_IEUQ
= (A—cWE)TEA—-cPE)
+ag (A — U(I)E)_IE(A — U(I)E)_lb. (4.9)

Due to Lemma 4.1, the (A — cWE) " E(A — oI E)~'b vector in ({.9) is a combination
of the vectors (A — oMW E)"'b and (A — c@ E)~'b, so that vs takes the form

05271(14 — O'(I)E)_IE(A — O'(I)E)_lb + 311 + a3 2U3. (410)

The vector in (4.10) is an acceptable third direction as long as ayy is nonzero. However,
if (A=W EY b and (A— oD E) b are (nearly) orthogonal, aqy is extremely small and

U3 fails to introduce a new direction.

Consistent with Example 4.2 and the proof of Theorem 4.1, we claim that the V' and

7 satisfy
K
colsp {Viu} € U Kjp,,, (A= oW E) B, (A= oW E)™) (4.11)
k=1
and
K
colsp {Zn} € (J Ky, (A= oW E)TET (A= oW E)™e), (4.12)
k=1

when a value is substituted for p,, in (54.1.2) that is greater than p,,, but less than m.
If equality does not hold in (4.11) or (4.12) (as it always must in Theorem 4.1 when p,,
is utilized), then V' and/or Z are rank-deficient. In this case, the substituted index for
Pm 18 not appropriate. An approach to handling rank-deficient V or Z is presented at
the end of Section 4.1.1.

4.1.1 A rational power Krylov algorithm

The various orthogonalization parameters and vectors in the RK algorithm provide a

great deal of flexibility in computing valid V and Z. We consider in this section the simple
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case where 41 =, = By = 2 =1 and ¢,, = v, = Wy, = %, = 0. No orthogonalization
is used in this approach; the Krylov subspaces are generated by directly multiplying
previous vectors with (A —o® E)~'E. With these choices, a simplified version of the RK
algorithm, the rational power algorithm, Algorithm 4.2, results. We denote this approach

as the RP (rational power) algorithm for consistency with the other abbreviations.

Algorithm 4.2 Rational Krylov (RP Version)

Initialize: m =0
For k=1 to K,
For j. =1 to Jg,
(S4.2.1) If jp =1,
O = (A — O'(k)E)_lb and Z, = (A — O'(k)E)_TC;

else
O = (A= cWEY "B,y and 2, = (A— oW E)y"TET 2, _y;
end
(54.2.2) v = 0n/||Omllz and  zn, = 20/ Z0|2-
(54.2.3) m=m+1;
end

end

Several choices were made in going from Algorithm 4.1 to the concrete implementation
of Algorithm 4.2. First, the interpolation points used in the iterations, denoted o,,, were
utilized in a consecutive fashion. That is, the first J; iterations involved oV, the next
J, iterations utilized o(?, etc. Of course, the o, could theoretically be selected in any
order. Different possibilities for ordering the interpolation points were illustrated in the
algorithms developed in Sections 4.1.2 and 4.1.3. Due to the interpolation point-ordering
in the RP algorithm, p,, + 1 takes on either the value 1 (a new interpolation point) or m

(same interpolation point as the previous iteration). This fact leads to the two possible

decision branches in (S4.2.1).
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One should also note that the RP implementation lacks the ¢,, and w,, vectors present
in the general RK algorithm. These vectors can be buried in the RP algorithm due to
the choice ¢,, = w,, = 0. This simplification leads to ¢,, = ¢,, and w,, = w,,, so that

(S4.1.5) of the general version yields
gn = Ev,y and w,, = ETz,_4.

These last expressions are substituted into (54.1.2) of the general RK algorithm to remove
the explicit presence of ¢, and w,, from the RP implementation. By taking this step,
one need only store two rather than four sequences of vectors in memory. In general,
one or more of the ¢,,, v,,, w,,, or z, equals the corresponding vectors §¢,,, U, W,,, and
Zm (see Table 4.1). When these equalities occur, it is possible that the corresponding
vector sequence need not be stored in memory. We must compute at least two of the four
projection matrices in general nonsymmetric problems to obtain a rational interpolant.

A relatively brief analysis of the RP implementation reveals that the constructed V'

takes the explicit form
V: Plb (PlE)Jl_lplb Pgb (PQE)J2_1P26 Pgb ...... :| )

where Py = (A — cWE)~!. The matrix Z takes a dual form. The RP algorithm realizes
appropriate bases for colsp {V'} and colsp {Z} in the most direct manner possible.

Of course, it has already been pointed out in Section 3.3.3 that a direct approach
(straightforward and repeated multiplications by (A — ¢ E)~'E) may lead to numerical
difficulties in practice. The lack of any sort of (bi)orthogonalization in the algorithm
immediately causes concern. Indeed, unless the J; are all extremely small, problems are
sure to arise. Numerous repeated multiplications by a fixed matrix in finite precision
no longer introduce new information into V and Z. Yet some hope arises for the RP
algorithm because the values of o®) can be varied. If the interpolation point is frequently
altered, the J; are kept small. Changing to a new interpolation point where the problem
has yet to converge guarantees that new information is added. That is, one places

information into the projection matrices by repeated changes of o(¥), rather than repeated
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multiplications. This approach is similar in spirit to the complex frequency hopping
improvements of AWE [46]. As in CFH, a successful RP implementation tends to require
factors of (A — sF) at numerous points. Unlike CFH, the projection technique of the
RP algorithm generates a single reduced-order model that is a rational interpolant. A
projection approach may also enable the use of techniques such as approximate solves or
parallelism to reduce the matrix factorization costs (see Chapters 7 and 8).

Even with a frequent change of o®), unacceptable dependent columns can still appear
in V or Z. Consider, for example, the redundancy in the V' columns which results
when two different interpolation points are very near to each other. Unfortunately, what
constitutes “nearness” is problem dependent and difficult to characterize. In practice, one
may try to adapt the point placement to the problem as the model reduction proceeds. In
any situation, one cannot rule out the appearance of a few dependencies in the columns
the RP-generated V and Z. As long as the values of J; are kept small, one can expect
this number of dependencies to be only a small fraction of M.

The dependent portion of V and Z can be discarded through a singular value decom-
position. Assume that the ranks of V and Z are M — 6y and M — 6z, respectively, so
that the rank of (121 — SE) is at most the lesser of (M — é,, M — ¢,) for any s. Then, by

the singular value decomposition [3, 81], there exist orthogonal matrices 17 = [T} [T}, ]
and T, = [T, _|T,,] such that for a given matrix (A—nk),
TE | . A ¥, |0
i (A-ub)| 1, |1, | = . (4.13)

The matrix ¥, is nonsingular and square with a rank M that is less than or equal
to min(M — év, M — éz). By Theorem 4.2 below, the lower-order model consisting
of A = (TZMZ)TA(VTTM) and £ = (TZMZ)TE(VTTM) is an appropriate one for model

reduction.

Theorem 4.2 . If T} and T, are the left and right singular vectors of (121— nE) that lead
to (4.13), then the matrices VT, . and ZT;_ are full rank.
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Proof: In the singular value decomposition, the columns of 7)., and 7, are known to
form bases for the null spaces of (121 — nE) and (121 — nE)T, respectively [3]. Because
A equals ZT AV and E equals ZTE'V, the null spaces of V and Z must be respectively
contained in the column spaces of T,, and T}, as well (if ¢ is a vector such that Vg =0,
then clearly ZT AVg and ZT EVg are also zero). Yet T,, and T), are orthogonal to T,
and Tj , implying that VT, . and ZT_ are full rank. H

The matrices V = VT, and 7 = ZT, . are full rank and thus, serve as suitable
projection matrices. In fact, if M = M — &y, then the column spaces of V and V are
equivalent. A dual result holds for Z. Otherwise, colsp {‘N/} C colsp {V'}, so that the
column spaces of V and V differ slightly (in a manner depending on the choice of 7,
which is typically one of the interpolation points). In this case, the reduced-order model
involving A and E differs slightly from the desired rational interpolant. Additionally,
the matrices V and Z are typically not exactly singular in practice. As a result, the
lower-right corner of the rightmost matrix in (4.13) differs slightly from zero. For these
reasons, projection with V and Z rather than V and Z yields better conditioned, yet
slightly perturbed, reduced-order models.

In summary, the RP implementation is a simple version of the RK framework which
avoids orthogonalization. Due to this simplicity, the issue of dependent projection direc-
tions must be addressed through the use of multiple interpolation points and possibly
postprocessings. The RP approach certainly does not promote the level of understanding
and elegance which follows from the inclusion of orthogonalization. Even so, the simplic-

ity of the rational power Krylov approach allows for interesting possibilities in Chapter

7.

4.1.2 A dual rational Arnoldi algorithm

Arguably, the best approach for avoiding difficulties in the construction of V' and Z
is to insure that both of these quantities are orthogonal matrices. This technique is

implemented as Algorithm 4.3. Algorithm 4.3 is denoted a dual rational Arnoldi (RA)
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version, because the steps taken to independently construct V' and Z are each similar to
the steps of the rational Arnoldi method of [15].

In Algorithm 4.3, the interpolation points are interspersed. The first iteration uses
oM the second iteration uses o), ..., the K iteration involves o) the (K 4 1)
iteration uses ¢(!) again, etc. This alternating strategy fixes p,, to be m — K and,
therefore, determines the decision and indices in (S4.3.1). Again, it is stressed that
ordering of the interpolation points is not theoretically a factor in the resulting reduced-
order model. The approach in Algorithm 4.3 simply provides another example of an

interpolation point selection strategy.

Algorithm 4.3 Rational Krylov (Dual RA Version)

Initialize: m =0
For j =1 to J,
For k=1 to K,
(54.3.1) Ifj=1,
om = (A — O'(k)E)_lb and Z,, = (A — O'(k)E)_TC;

else

om = (A — U(k)E)_lEvm_K and Z,, = (A — O'(k)E)_TETZm_K;

S4.3.2) Dy =0y — Vo VI 0, and 2, = 2, — Zp 1 ZE 2
S4.3.3) vy = On/||0n]] and z, = 24/
S4.34) m=m+1;

.
Zmll;

e

end

end

As long as singular (A — ¢ E) and invariant subspaces are avoided, the dual RA
implementation is guaranteed to yield the desired V and Z. There is still no guarantee
that the resulting (A—O'(k)E) are all nonsingular (see Section 3.3.3). However, the ability

to construct V and Z without the chance of breakdowns is an important point. As long
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as the orthogonality is maintained in a stable fashion, the dual RA implementation
generates V and Z in a completely stable fashion. This is the first Krylov-projection-
based implementation for rational interpolation (or Padé approximation) possessing this
stability property.

Recall that the construction of an orthogonal basis is not a trivial process. Except for
the Householder and reorthogonalized Gram-Schmidt cases, a gradual loss of orthogonal-
ity is observed in the computed versions of V and Z. Yet exact orthogonality is not a
condition on Theorem 3.1, and even significant losses of orthogonality do not impair the
quality of the reduced-order model. Some sort of postprocessing is required, however, if
V and Z become severely ill-conditioned. The appearance of dependent columns with the
classical Gram-Schmidt approach (implemented in Algorithm4.3), is rare but possible.
In such a situation, the postprocessing approach discussed at the end of Section 4.1.1 is
a possible remedy.

In summary, the dual RA method tends to be a better behaved algorithm than the
other RK variants seen in this chapter. Unfortunately, the dual RA implementation is
not as fast as a rational Krylov version that is derived in the next section. This fact is not
particularly surprising; a trade-off between algorithm speed and robustness is common in
numerical linear algebra. One should understand this spectrum of possibilities so that the
proper implementation may be used with a given application. The general RK method

of Section 4.1 provides great flexibility in balancing computational effort and stability.

4.1.3 An initial rational Lanczos algorithm

Rational Lanczos is a version of the RK algorithm that maintains a biorthogonal V'
and W. As such, it is simple to develop an initial version of the rational Lanczos (RL)
method, Algorithm 4.4, from the general RK algorithm. Because the biorthogonalized
V and W are not duals to each other, the steps of the RL implementation are not
particularly symmetric with respect to each other.

Rational Lanczos is a potentially fast implementation of Krylov-based model reduc-

tion. It shares its name with a similar algorithm that was derived in [82]. The beauty
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Algorithm 4.4 Rational Krylov (Initial RI. Version)

Initialize: ¢ = b, wy = (B}*)'cand jr =0for k=1 to K
For m=1to M,

(S4.4.1) Input: o,,, interpolation point for m!" iteration;
($442) 3= (A= 00 B)gpir and £ = (A — 00 B) ity 1
( ) Y m = V= Vi a WL 05
(S4.44)  qni1 = Ev,, and 10,41 = ETz,;

( ) B Wit = Wi — W V405
( )

For k =1to K, If 6,, = ¢®, then j; = ji + 1; end; end

of the RL algorithm lies in the speed with which A and F can be computed. There are,
in fact, two paths to generating a valid reduced-order model with rational Lanczos given
Algorithm 4.4. The approach in [82] emphasizes the expression in (54.4.3) and permutes
the order of the W columns to produce a model in the form of (2.7), up to a similar-
ity transformation. The approach developed in this section starts with the expression in
(S4.4.5) and leads to a model that takes the exact form of (2.7). Although these two paths
differ significantly, because V and W are not duals to each other, both paths are based on
Algorithm 4.4 and lead to similar final results. We do not spend time reviewing the older
version. The following implementation is superior in both its ease of development and the
form of the resulting reduced-order model. Although both implementations of this sec-
tion and [82] rapidly lead to rational interpolation, the newly proposed implementations
follow clearly from the projection framework utilized throughout this dissertation.

We begin by considering the form of B =7TEV given that V and Z are generated

according to Algorithm 4.4. The value of the m* column of ET appears during the
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computation of w,, 41 in (S4.4.5) of the m'™ iteration,

w ~ T ~
6m—|—1wm+1 = W1 — WiV, Wi

= E'%, - W,(VIET2,). (4.14)

The second equality (4.14) follows from the definition of 1,41 in (S4.4.4) of the m!"
iteration. The m™ column of ET arises directly from the rightmost quantity in (4.14).
Multiplying (4.14) on the left by V7 and recalling the biorthogonality of the matrices V
and W yields the results

vl Bz, = e for [=m+1

and

vlTEsz =0 for [>m+1.

These results hold for any value of m. Hence, ET is an upper-Hessenberg matrix. In fact,
even more can be said. For the [ < m case, algorithm step (S4.4.2) of the m!" iteration
leads to the relation

vlTEsz = vlTET(A — UmE)_Twpm_H. (4.15)
For specific values of [ < m, the quantity in (4.15) is zero as well. The matrix E=27TEV
generated by the RL algorithm is extremely sparse.

Theorem 4.3 For the columns of V and W generated by rational Lanczos, vi BTz, =0

forl < p,.

Proof: To determine the values of [ < m such that the quantity in (4.15) is zero, note
that Vp:fnwpmﬂ equals 0 by the biorthogonality of V and W. The question as to when
(4.15) is zero can therefore be rephrased as when does (A —a,,, £)~' Ev; lie in the column
space of V,, 7 The answer to this question follows from the fact that p,, is the index of
the next to last iteration using the interpolation point o,,. Due to this fact and Theorem

4.1,

colsp {V;,} € Kja((A—oWE)E (A - o™ E)"1)

U Ky (A= 0*E) B, (A= o*E)'b), (4.16)
k#£k
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where k is the index such that o® = o, and the values J&, k=1 to K, are those set by
(S4.4.6) in the m'" iteration. Because by definition, o™ was used in the (pm)!" iteration,

it is known that the relation

colsp (V1) € Kjpma((A— oD E)E, (A— 0P )7

U K (A= oWE)yTE (A - oWE)™b) (4.17)
k#£k

holds. By Lemma 4.1 and expressions (4.16) and (4.17), it is found that
colsp {(A — UmE)_lEme_l} C colsp {V,,.} .
Hence, we obtain
(A— o0, E) " "Ev € colsp{V,,,} for 1< py,

and (4.15) is zero for [ < p,,.
If the above development, and (4.17) in particular, is to make sense, j; must be
greater than one. When j; < 2, o] 7z, is generally nonzero for all [ < m + 1. If j; is

greater than one, vlTEsz is nonzero for p,, <I<m+1. N

The presence of nonzero vlTEsz for m+1 > 1 > p, is a generalization of the

three-term recursion present in the standard Lanczos method. In the Lanczos method,
K equals 1 and p,, equals m — 1, so that nonzero terms exist for values of [ between

m + 1 and m — 1. The behavior of the RL algorithm is demonstrated in Example 4.3.

Example 4.3 Consider executing the RL algorithm for M = 11 iterations that use o)
in the first four iterations, o®) in iterations five through eight, and o) again in the last
three iterations. The values of the parameters o,,, p,, j1 and jo as m varies are presented

in Table 4.2. The structure of the matrix ET is shown in Figure 4.1.

The structure of £ is particularly elegant when the interpolation points are utilized
in an alternating fashion. In this case, p,, equals m — K for m > K. Thus, ET has a

lower bandwidth of 1 and an upper bandwidth of K.
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Figure 4.1: Sparsity Structure of ET in Example 4.3
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Example 4.4 Consider executing the RL algorithm again, as in Ezxample 4.3, except
with the interpolation points alternating in the order indicated by Table 4.3. Because
seven iterations are still performed at oV and four at o9, this new reduced-order model
is equivalent (up to a similarity transform) with the results of Frample 4.3. However,
the use of alternating interpolation points leads to a different ET in Figure 4.2. Note the
banded structure of this ET.

The structure of A is surprisingly sparse, as well. In fact, A follows in a very direct
fashion from . To see this fact, note once more (5.4.4.2) and the biorthogonality of V'
and W. The m' row of A is then

LAV = 2NA-0, )V 40,2 BV
= wmeV + ozl BV
+ ozl BV, (4.18)

T
me+1

" row of E, plus a standard unit vector. For

Thus, the m*" row of A is 0,, times the m!
a single interpolation point, Ais I + o . The matrix A follows in a trivial fashion from
E in rational Lanczos. Yet we know that the £ is simple to compute, as well.

Besides providing a pleasing structure to E and 121, the sparsity present in the RL
algorithm can significantly reduce the memory and computational requirements of the
algorithm. As seen in the Lanczos algorithm, banded matrices correspond to shortened

recursions for the computation of the V and W vectors. For example, (S4.4.5) can be

computed as

B 4 Wig1 = Wypp1 — Z wl(vlTEsz). (4.19)
=1

Those components in the summation of (4.19) with v] £z, = 0 drop out trivially. For
the special case, where the interpolation points are alternated in a regular fashion, e.g.,
Example 4.4, the scalars v} E7z,, are zero for [ < m — K if m > K. Hence, (54.4.5)

becomes
m

Bt = o — > w75, (4.20)

l=max(1,m—-K)
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for this special case. The computation of w,, is a length K + 2 recursion which requires
only a knowledge of the vectors v,,_x to v, and w,,_g to w,,. Earlier vectors in V' and
W need not be stored in memory. If the interpolation points are regularly alternated
and K is reasonably small, the RL algorithm is comparable from a memory and work
standpoint with the standard Lanczos method. The use of regularly alternated inter-
polation points is important. Other interpolation point selection schemes, although not
necessarily introducing a higher total number of nonzero elements into A and E, lead to
larger values of m — p,, and thus, lengthened v,, and w,, recursions. A trade-off between
the flexibility in interpolation point selection and the length of the iterative recursions

exists.

4.1.4 A practical rational Lanczos algorithm

A version of the RL method that utilizes regularly alternated interpolation points is
provided in Algorithm 4.5. There is a slight reordering of the steps in this version which
makes for an easier implementation in practice. However, this reordering does not change
the results. When discussing the RL algorithm in the remaining chapters, we are referring
to Algorithm 4.5 unless otherwise noted.

The shortened recursion for w,, in (54.5.3) follows from (4.20). The validity of trun-

cating the v, recursion in (54.5.2) follows from the values of
’}/m,l = wlT(A — O'mE)_lEvm_l.

Dual to the proof of Theorem 4.3, expression (4.2) in Lemma 4.1 indicates that the
vector ET(A — 0, )" Tw; lies in the column space of W,,_5 for [ < m — K — 1. Thus,
the biorthogonality of V' and W forces v, to be zero for | <m — K — 1.

The matrices A and F generated by Algorithm 4.5 follow readily from the above
developed results. For example, comparing (4.20) and (S4.5.3) yields the descriptor
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Algorithm 4.5 Rational Krylov (Banded RL Version)

Initialize: @y = ¢ and 9, = (A — U(I)E)_lb and m =1
For y =1 to J,
For k =1 to K,

(S4.5.1)
(54.5.2)
(54.5.3)
(S4.5.4)
(54.5.5)
(54.5.6)
(54.5.7)
end

end

itm>1, 0, =(A- U(k)E)_lEvm_l; end

A m—1 [ A
Om = Om = 2 mmax(1,m—K—1) V¥m,l where 7, ; = W} V,,;
~ o~ m—1 T~ .
W = W — l=max(1,m—K-1) wlﬂm,l where 6m,l = U W

Vm = O [Ymm Where v m = /|01 05

Wiy, = Win/ B Where By, = sign(@ﬁﬁm)’ymm;

W1 = BT (A - U(k)E)_Twm;

m=m+ 1;

matrix of the reduced-order model,

[ o '
' B2
P Bri2. : o BIKCKJK-K
Br 432 BIK-K+1,JK-K
Bik. i
I Bikyigx-r - Biky1r |

(4.21)

Computing the last column of E requires the execution of (S4.5.3) in the (M + 1)*

iteration. This fact is consistent with the behavior of the standard Lanczos method.

Given E, the columns of A follow readily from (4.18).

Because ¢ lies in the direction of wq, the biorthogonality of V' and W yields

&= Bia 0 ... 0

An expression for the reduced-order input vector results from the relation

b=27"b=2"(A—ocWE)A—-cWE) b= Z"(A— W E) vy,
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The vector (4.23) is simply the first column of (121 — U(I)E) times a scalar. Due to (4.18)
and (4.21), this vector is zero in all but its first K elements. Thus, bis sparse as well.

A rational interpolant can be achieved through short biorthogonalization recurrences.
The efficiency of these short recurrences does not come without introducing some addi-
tional pitfalls, however. In the remainder of this section, we will explore some of the
potential difficulties and the corresponding remedies that arise in a practical RL imple-
mentation. Analogies to each of these pitfalls and remedies exist in the standard Lanczos
method.

The first harsh reality of the RL method is that the employed short recursions fail
to keep V and W biorthogonal in finite precision. In fact, it is observed in practice that
this biorthogonality is lost rapidly and to a significant extent. This issue might not be
such a concern if the reduced-order model was explicitly constructed according to (2.7).
However, the RL method constructs its reduced-order model based on a biorthogonal-
ity assumption. The validity of the banded structure of (4.21) is intertwined with the
assumption of biorthogonality. The proposed remedy to similar problems in the liter-
ature is a simple one—do nothing. One ignores the loss of biorthogonality, continues
to use short recursions, and blindly chooses the reduced-order model according to (4.21)
through (4.23). Of course, the implemented reduced-order model is no longer an exact ra-
tional interpolant. Surprisingly enough though, the approximation generated with falsely
assumed biorthogonality converges in practice, albeit slightly slower than the rational in-
terpolant. For the symmetric K = 1 case in finite precision, the eventual convergence
of the resulting approximation is assured [83]; but it is stressed that M > N steps may
be required to achieve the desired level of convergence in practice. Further comments
on such behavior in the area of iterative solvers for linear systems of equations may be
found in [84, 85]. The bottom line is that a loss of (bi)orthogonality tends to slow but
not destroy the convergence of approximations that assume (bi)orthogonality and avoid
the explicit use of (2.7). This behavior is still not perfectly understood, even for the
nonsymmetric Lanczos method. It is certainly beyond the scope of this study to attempt

to address the R algorithm with further rigor.
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Some intuition as to why the RL results converge at all follows from a local satisfaction
of the Petrov-Galerkin constraint. It is shown in Section 5.2, without biorthogonality
assumptions, that the output residual, r. = ¢ — (sF — A)T Zx,, resulting from M rational

Lanczos iterations is of the form
T on AT
r. = 6M—|—1,M—|—1U)M-|—1{ZM(SE — A) c}.

Thus, if v; 1s orthogonal to wysyq for all [ satisfying L <1 < M + 1, which is guaranteed
for L = M — K by the implemented short recursions, then vir. is zero for L <1< M.
Although the RL algorithm may not enforce full biorthogonality in practice, it does
guarantee that the current output residual is orthogonal to recent v directions. The
Petrov-Galerkin constraints hold with respect to these recent v directions.

One further observation is important regarding the convergence of the RL algorithm
in light of the biorthogonality loss. It has been repeatedly observed in practice that the
eventual convergence of the RL results occurs only when p,, is replaced by the value m—1.
This approach, introduced just prior to Section 4.1.1, contradicts the standard practice
of choosing p,, to be the index of the next-to-last iteration employing o,,. Replacing p,,
with m —1 is actually implemented in the RI. Algorithm 4.5. The superiority of the m —1
choice for methods that construct their approximations by assuming (bi)orthogonality
was also observed in [81]. Related comments on the topic of the p,, choice may also be
found in [81].

A second practical concern in the RL implementation is the so-called serious break-
down. A breakdown occurs in a Lanczos-type method when 12)71;+11A)m+1 = (. The assump-
tions of Theorem 4.1 are violated in this event, because either 3, or v, must take
on the value zero. In this case, biorthogonality cannot be maintained and the algorithm
cannot proceed. The theoretical background for such a breakdown is closely related to
the theory of Section 3.3.3. In fact, the dot product 12)71;+11A)m+1 is proportional to the
error in the (2m + 1)“ moment of the order m reduced-order model corresponding to
V. and W, [82]. Recall though from Theorem 3.2, that a fortuitous matching of the

(2m + 1)*" moment leads to a singularity in the order m + 1 approximation. However,
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unlike the requirements of Section 3.3.3, which need only be concerned with singularities
in the order M approximation, a singular WZV,, for any m < M leads to a breakdown
of rational Lanczos. Each subsequent step of rational Lanczos relies on the assumed
biorthogonality of the existing projection matrices.

Solutions for sidestepping serious breakdowns include both the look-ahead approach
and the interpolation point changes discussed in Section 3.3.3. These remedies are no
longer simply postprocessing events; one may need to avoid breakdown at any iteration.
The interested reader may find the intricate details of look-ahead Lanczos in [69]. Editing
the interpolation order is not difficult to implement, but it does require the maintenance
of longer biorthogonality recursions as m — p,, grows. FEither way, the avoidance of
the breakdown results in fill-in outside of the band of elements in the rational Lanczos-
generated A and E. 1t is stressed again that the issue of serious breakdowns is only a
concern for the RL version of the considered RK implementations.

One final pertinent issue in implementing rational Lanczos is the choice of the 4* and
BY parameters. Care should be taken when scaling the vectors v, and w,, to obtain the
biorthogonal vectors v,, and w,,. The standard approach, the one taken in Algorithm
4.5, 1s to scale ¥, and w,, such that 3, ,, = £v,,m. A more stable approach occasionally
seen in the Lanczos literature is to select

T . T .
N PR [ AR T
el fonll

so that the norms of v,, and w,, are identical.

4.2 Comparisons

Given the variety of numerical approaches for implementing rational interpolation via
projection, the obvious question becomes which method is the best? No simple answer
exists. Problem dependent factors such as the eigenvalue spectrum, the sparsity pattern
of the large-scale matrix pencil and the desired accuracy in the reduced-order model can
favor different variations of the general RK approach. Handling these varying factors in

a numerically efficient and robust manner requires flexibility.
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The computational costs of the three methods of Sections 4.1.1, 4.1.2 and 4.1.4 follow
from relatively simple analyses of Algorithms 4.2, 4.3 and 4.5. The results of these
analyses on M iterations of each algorithm are summarized in Table 4.4. Column two
indicates the number of floating point operations (flops) required to generate the two
projection matrices V and W or Z. Column three lists the number of flops required to
form the model once these projection matrices are formed. The data in both columns
are only accurate to the order of the dominant terms. Table 4.2 utilizes the special
notation A, £, F and X to represent the cost of specific matrix operations utilized in
the RK method. The cost to acquire the triangular factors of (A — 0¥ E) is denoted
by F, X is the cost to solve a system of equations given these factors, & is the cost of
multiplying a dense vector by F, and A is the cost of multiplying a dense vector by
A. Determining the precise costs in floating point operations (flops) for these matrix
operations requires a knowledge in practice of the sparsity patterns of A and E and
of the specific techniques used to exploit the sparsity patterns. For example, most RC
models of circuit interconnects involve an F on the order of N'* and X, &€, and A on

the order of V.

Table 4.4: Computational Costs of RK Implementations

Method | Projection Matrix Generation | Model Generation
RP KF+2M(E+ X) M(A+E&)+4NM?

Dual RA | KF4+2M(E+X)+4NM? | M(A+ &)+ 4NM?
RL KF+2M(E+X)+4NMK 2M?

Fach of the methods requires at least KF + 2M(E + X') operations to form and
use the factors of (A — o® E). The remaining difference between the three algorithms
is due to the amount of orthogonalization/biorthogonalization performed and the effort
required to generate the reduced-order model. The RP algorithm requires no orthogo-
nality recursions, the RL method requires length K recursions and the dual RA method

requires length M recursions. If the fixed cost KF + 2M(E + X') dominates, e.g., the
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matrix factorizations cost F is large due to a lack of easily exploitable sparsity, then these
differences are negligible. If, on the other hand, the matrices are extremely sparse and
M is large, the cost of the different implementations varies significantly. In this case, the
RL algorithm is desirable, because its cost only grows linearly in K'm. The RIL algorithm
employs short recursions that automatically lead to a reduced-order model. The dual
RA method is far more expensive when the fixed costs are negligible, because both its
cost to orthogonalize V and Z and its effort to compute the reduced-order model grow
quadratically in m. The RP implementation requires linearly increasing work to compute
V and Z., but quadratically increasing effort to form its reduced-order model. Because
the cost of the RP method is on the order of the dual RA approach, and yet its robustness
is less, the sequential RP implementation of Algorithm 4.2 is rarely recommended.

The memory requirements of the different variations are related to costs. A sum-
mary of the memory requirements for the three algorithms is in Table 4.5. The second
column lists the memory needed in iteratively storing the columns of V', W and/or 7,
while the third column lists any additional memory required to store the reduced-order
model. Analogous to Table 4.4, the variable F now denotes the space to store a matrix
factorization, while A and £ denote the number of nonzero elements in A and £. Again,
the overall memory requirements cannot be exactly specified, but depend on sparsity and
the values of K, M and N. Assuming the memory required to store the factorizations
is not dominant, the RL implementation requires a fixed amount of memory, while the

memory requirements of the dual RA and RP implementation grow linearly with m.

Table 4.5: Memory Requirements of RK Implementations

Method | Projection Matrix Generation | Model Generation
RP KF+¢& 2M? + A4 2MN
Dual RA KF+E&E42MN 2M? + A
RL KF+E&E4+2KN 2M?
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From a memory and cost standpoint, the RL method is preferred over the dual RA
method. However, Section 3.3.2 suggests that numerical accuracy favors the methods in
exactly the opposite order. The RL implementation gains its speed from less reliable short
recursions. Although the rational Lanczos-generated model may eventually converge,
this convergence may be delayed relative to the results of the dual rational Arnoldi

implementation. This behavior is explored in Example 4.5.

Example 4.5 To compare the behavior of the dual rational Arnoldi and the rational
Lanczos implementations, we consider a generated problem intended to mimic the behav-
ior of a packaging interconnect of a circuit. This generated problem consists of fifteen
identical segments connected in series (see Figure 4.3 for the structure of a segment).
Using Modified Nodal Analysis (MNA) [86], a set of equations of size N = 47 can be for-
mulated to describe the interconnect. The frequency response of the interconnect between
10® and 10' Hertz is shown in Figure {.4. The input to this system is a voltage source

placed at the left of the first segment; the output is the current through this source.

01Q 10 pH

Figure 4.3: Interconnect Segment of Example 4.4

Forty iterations of both the dual RA and the rational Lanczos algorithms were executed
in MATLAB; the utilized code is available in Appendiz B. In both cases, these iterations

alternated between the use of the interpolation points ¢ = 2710% and ¢ = 2710,
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Figures 4.5 through 4.7 display the convergence, loss of biorthogonality/orthogonality,
and computational costs for the two approaches as a function of the iteration m. Figure
4.5 presents a computed estimate of the relative Hy error norm (weighted over 10® to
10 Hz) between the original system and the respective reduced-order models. Although
the identical selection of interpolation points in both cases suggests identical convergence
in infinite precision, the convergence of the RL method (dotted line) is clearly slower.
This behavior in finite precision agrees with practical observations and the limited the-
ory in the literature (see the discussion in Section 4.1.4). The delay in convergence is
correlated with a loss of biorthogonality in the RL case (see the dotted line in Figure
4.6 denoting ||I — WZIV,|l2). The orthogonality in the dual RA case is also eventually
lost as well (see the dashed line denoting 0.5(|[1 — VIV, |l + 11 — ZLZ,|l2)). The dual
RA implementation employs classical Gram-Schmidt orthogonalization. This approach is
unstable, yet it is more robust than the shortened biorthogonalization recursion used in
rational Lanczos. However, we stress that this difference in orthogonalization schemes
does not itself determine the convergence difference. The difference arises from the fact
that dual RA employs (2.7) to construct the reduced-order model, which does not depend
on orthogonality, while the RL approach constructs a banded reduced-order pencil, which
does depend on biorthogonality. This assumption of bandedness and the associated unde-
sirable convergence delay in rational Lanczos is offset, though, by reduced computational
effort. Figure 4.7 presents the cumulative number of floating point operations required by
the two modeling implementations as a function of m. The work involved in the RL case
grows linearly with m (dotted line), while the work in the dual RA case grows quadrat-
ically with m (dashed line). It is interesting to note that both of the approaches require
about the same number of total operations to compute reduced-order models with errors
in Figure 4.5 less than 107'°. Although requiring more iterations, the RL approach need
not involve more work. Such behavior tends to be problem dependent and contributes
to the long-standing arguments over Lanczos-type versus Arnoldi-type approaches in the

numerical linear algebra literature.
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A few statements can be made to summarize the choice for the RK implementation.
The RP algorithm is not appropriate for cases where J; exceeds 10. The dual RA algo-
rithm is most likely preferred when the complexity of factorizing (A — o) E') dominates.
Beyond these extremes, one must balance the convergence reliability of dual rational
Arnoldi against the shortened recursions of rational Lanczos. Additionally, further re-
search is merited to determine if any other desirable versions of the general RK algorithm

exist.
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CHAPTER 5

MODEL ERROR

A knowledge of the error between the original system and the computed rational in-
terpolant is important for several reasons. It can be used to monitor the number of
iterations required for convergence of the reduced-order model. In simulation, one needs
to know that the response of the reduced-order model is sufficiently close to that of the
original system. In control, one hopes to construct a controller from the reduced-order
model that performs acceptably with the original system. In all applications, unnec-
essarily large models should be avoided due to computational cost. A measure of the
error might also be feedback to adapt the modeling procedure itself. For example, one
can attempt to select the interpolation points used in later steps to focus on the errors
present after earlier iterations.

In this chapter, two approaches for estimating the error in the reduced-order model
are developed. The merits of each are compared, particularly in the examples at the con-
clusion of this chapter. Unfortunately, none of these proposed techniques are guaranteed
to be completely without inaccuracies. This reality follows naturally from the fact that
a combined knowledge of both the reduced-order model and the modeling error implies
a total knowledge of the original system. Because a complete analysis of the original
system is to be avoided, one must resort to approximations to measure the gap between

the original and reduced-order models.

5.1 Complementary Approximations

A simple approach for estimating the frequency-response error, €(s) = ﬁ(s) — h(s),

between the original and reduced-order models is to compute the difference between two

84



reduced-order models,

~

¢(s) = h(s) —hy(s). (5.1)

The transfer function of FIJ_(S) corresponds to some second and completely different
low-order approximation of the original system. Both of these approximations can be
generated by any (and not necessarily the same) Krylov-based projection algorithm.
Hence, (5.1) is a suitable and achievable error estimate for any of the previously discussed
modeling techniques.

The two low-order approximations used in (5.1) should contrast in their approxima-
tions of the original system because this difference estimates the modeling error. That
is, two points of view of the original system are sought, which are designed to be com-
plementary. The use of drastically different viewpoints typically suggests that ﬁ(s) and
FIJ_(S) agree consistently only at those frequencies where both approximations are ac-
curate. Where these two different viewpoints agree (where €(s) is small), one assumes
that €(s) is small. Where these two different viewpoints diverge, at least one of the two
approximations must be inaccurate and €(s) is assumed to be significant. Note that this
last assumption errs on the conservative side, because the lack of a converged FlJ_(S) at
some frequency does not directly imply a large €(s) at that frequency.

The generation of two distinct reduced-order models requires the construction of two
different projection pairs of dimension M, the previously seen V, Z and the second pair
V1,71 (note that the L subscript denotes complimentary, but not necessarily orthogonal
directions; colsp {V'} = colsp {V} when M = N). The flexibility in forming these two
pairs of projection matrices resides in the choice of interpolation points. Two different
sets of interpolation points are sought, which lead to two distinct reduced-order models.
In [87], the frequency responses of multiple Padé approximations, where each obviously
utilizes a single, distinct interpolation point, are compared to estimate convergence. As
a generalization for rational interpolation, we propose the use of two interlaced sets of
interpolation points (interlaced moment-matching). An example of this point distribution
is seen in Figure 5.1, where the black dots correspond to the first approximation and the

white dots to the other. The use of interlaced interpolation points (versus distinct clusters
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of points) provides each of the two reduced-order models with a reasonable opportunity

to converge across the entire frequency range. Recall that both viewpoints must converge

before the estimated error diminishes. Keeping the individual interpolation points of the
(k)

two models (i.e., o®) and o) separated leads to approximations with the desired local,

complementary viewpoints.
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Figure 5.1: Interpolation Point Interlacing in Complementary K = 3 Models

Although the viewpoints of the two approximations in é(s) are designed to be com-
plementary, it is possible that both may miss a given feature in the original dynamic
model. In this situation, € does not indicate this missing feature and the error estimate is
incorrect. Such difficulties tend to be associated with lightly damped poles that are not
identified by either of the reduced-order models. This issue is taken up again in Section
5.3, although Section 5.3 shows € to be appropriate in most circumstances.

The cost of generating the error estimate involves the computation of a second
reduced-order model and also the evaluation of (5.1). Generating an additional ap-
proximation simply doubles the cost for the appropriate algorithm in Table 4.4. Various
possibilities and associated costs exist for evaluating é(s). Computing the H., norm of
(5.1) via conventional eigenvalue analyses of Hamiltonian matrices [88] costs a minimum
of 30(2m)? flops [3]. There is typically a total cost on the order of 100M* flops when

A

€9

the error is estimated after each iteration of the algorithm, e.g., find ||&

[eel] [ceR I

é||so- This cost can be scaled back slightly by not evaluating the error at every itera-
tion. An alternative approach to computing € is to simply evaluate it at multiple points.
In practice, approximately 8m well-placed points in the fashion of the frequency-response
algorithms of [89] give reasonable results for our purposes. By transforming the A and
E matrices into upper-Hessenberg form (8m? flops [3]) prior to evaluation [9], the cost

of computing ¢ at the fixed points can be kept at roughly 16m? flops per iteration. The
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total cost to estimate the error throughout the algorithm is thus on the order of M* flops.
From Table 4.4, the cost to evaluate € does not typically exceed the cost of actually gen-
erating the reduced-order model by the dual rational Arnoldi approach. However, it is
possible (given easily exploitable sparsity) that the é(s) evaluation may eclipse the cost
of actually generating a reduced-order model via rational Lanczos. This model difference
approach may not be appropriate for use with the RL implementation.

Assuming that the cost of generating a second model dominates the computation
of € one may still wonder if this apparent doubling of required effort is worthwhile.
There are possible savings gained through an error estimate, which may more than offset
the doubling of computation. With a sense of the modeling error, one can adapt the
utilization of interpolation points according to the dynamics absent in the model (see
Section 6.4). Adaptive interpolation point placement selection can lead to acceptable
models for smaller values of M and thus save on work and storage. An error estimate
also suggests a stopping criterion, e.g., the model size is assumed sufficient when the
error drops below a certain level. A good stopping criterion allows one to avoid excessive
and wasteful iterations. Although the use of an error estimate may increase the work
per iteration, a knowledge of € can reduce the total number of iterations required. For
implementations where effort grows quadratically with m, e.g., dual rational Arnoldi, a
reduction in total iterations is especially significant.

The error estimate can oftentimes be improved through a simple modification of (5.1).
Recall that we are ultimately interested in the acceptable, low-order model represented
by ﬁ(s) The second low-order function FIJ_(S) serves only to estimate the true frequency
response h(s). A better approximation for h(s) can be found by combining the infor-
mation in the two sets of projection matrices V,Z and V., Z, to obtain a 2M" order

model, HU(S). The updated error estimate then becomes

~

¢t(s) = h(s) — hy(s). (5.2)

Similar to (5.1), one hopes that this new error estimate is large wherever ﬁ(s) has not

converged due to the presence of the V|, Z, directions in the other reduced-order model.
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This new estimate is superior to (5.1) from the perspective that the new error approx-
imation can be expected to drop to zero whenever ﬁ(s) converges. Unlike FIJ_(S), BU(S)
includes the original V' and Z directions and, thus, tends to at least converge wherever
h does. From a cost standpoint, generating ¢ may require 2? times as much effort as ¢.
The projection matrices Vi, Z, must be (bi)orthogonalized against V', Z in generating
ho. Moreover, the cost of evaluating ¢t is larger than before. The advantages of ¢* must

be significant if (5.2) is to be preferred over (5.1).

5.2 Residual Expressions

An alternative approach to quantifying the modeling error is through the previously

discussed residual expressions,
rp(s)=b—(sF—A)Vx, and r.(s)=c—(sk — A)TZ)ACC.

Residual expressions are a significant tool for quantifying the error in iterative linear
system solving. It is known that very simple relations for the residuals arise in many
Arnoldi and Lanczos contexts. Given the role of the dual systems (1.2) in the model
reduction, it is not surprising then that the residuals are pertinent to the modeling error
as well. Residuals were utilized in [59] for the partial realization problem. We formalize
a new, fundamental relationship between the residuals and the modeling error in the

following result.

Theorem 5.1 The difference between the frequency responses of the original and

reduced-order systems is vl (A — sE) ™ r,.
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Proof: Starting from the frequency-response definitions in (2.5) and (2.8), the modeling

error 1s

e(s) = cT(sE—A)—el(sk— A7
= (B - A — TV
= I(sBE— A)7Hb— (sE — A)V,}
= I(sE— A)7'ry. (5.3)

By the Petrov-Galerkin conditions in Section 2.3.1, ZTr, = 0, so that (5.3) can be further

expanded as

e(s) = {c —xTZV(sE — A)}(sE — A)'ry

= rl(sE — A) 'y, (5.4)

the desired result. W

Evaluating the error expression (5.4) in its entirety remains a difficult task. However,
a sufficiently small r, or r. at some sq typically implies a small error at that frequency by
itself. The only exception to this behavior occurs when sq is near an eigenvalue of (A, )
so that elements of (A — soF)~! grow large. Analogous to Section 5.1, large errors in
ﬁ(s) due to the presence of weak poles along the imaginary axis may not be adequately
reflected in the residual.

It is stressed that monitoring r, and/or r. does not directly lead to an estimate
for the modeling error. Acquiring the modeling error requires an inverse of (sF — A)
which is not possessed. Rather, one must concentrate on the trends in the residual
behavior as s and m vary. Attempting to gauge these trends demands the evaluation of
r, and/or r. at numerous values of s. Fortuitously, the residual expressions of many of

the implementations in Chapter 4 simplify through the following result.
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Lemma 5.1 The matrices of the general RK algorithm satisfy

(A - SE)Vm = Qmt1

and

(A — SE)TZm == Wm_|_1

form > 1.

0
92 T
73 Gm+1
!
’73n+1 ]
T
ip1+1
!
0
o) T
650 wm-l-l

w
m+1

g1 — S

i

g1 — 8

O — S

(5.5)

(5.6)

Lemma 5.1 writes the (sl — A)V and (sE — A)TZ matrices in the residual expression

as the product of a fixed matrix of size N x (m+1) and a low-order frequency-dependent

matrix.

This ability is extremely beneficial in the rational Lanczos versions because

Upm = Zm = 0 for all m. Recalling the definition of A and E in (4.18) and (4.21) for
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rational Lanczos, (5.6) reduces to

(A—sEV' Z,, = W, | L.+ L, 4+ Wi 172 B (O — )
(m — s)

= WnlA—=sE) + wnp1iL By (0m — 5). (5.7)
The RL output residual vector after M iterations is therefore

ro(s) = c—W(sE—A)T(sE— AT+ Bara(on — s)warpriXe

= Wi 11— Weé+ Buarlon — s)warping (sl — A)~Té

= wM_Hiﬂ(sE — A)_TéﬂJ\LM(O'M — S) (58)

due to the definition of ¢ in (4.22). Through (5.8), the norm of the output residual can
be computed as the norm of wy;1; times a frequency-dependent function composed of
low-order matrices. The norm of wys4q1 need only be computed once regardless of the
number of times r.(s) is evaluated. Because ¢5s is only nonzero in its last element, the
function zﬂ(sE — A)_Té can be rapidly evaluated at an arbitrary frequency so. One need
only (a) find a left transformation to place the upper-Hessenberg matrix (SOE — A)T into
upper-triangular form and (b) perform a single step of back-substitution to find the last
element in X.(sg). These upper-triangular transformations in the first step are easily
updated with 4m flops from one iteration to the next, because Aﬁ_l and E;;C_l are the
leading minors of the upper-Hessenberg matrices Aﬁ and E;;C Assuming the residual is
evaluated at 8m points, the cost of iteratively updating the norm of r. is approximately
2N +32m? flops per iteration. The overall cost is roughly 2M N +5M? flops, a value that
compares favorably to the expense of computing the reduced-order model with rational
Lanczos.

For the other versions of the RK algorithm, expressions (5.5) and (5.6) must be used
to generate the residuals. Updating the residual norms from one iteration to the next
involves O(mN) operations to iteratively update QL Q,, or WIW,, and an additional

O(m?) operations per frequency point to solve a low-order, upper-Hessenberg system
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of equations. In the general case, the residual evaluation across M iterations involves
O(M?*N + M*) operations, a cost that is comparable to the treatment of ¢ in the previous

section.

5.3 Comparisons

The computation of the modeling error involves a common theme: balancing computa-
tional expense against the quality of the results. The two methods of this chapter provide
error estimates at costs that are no larger than the modeling expense itself. The residual
tends to be a slightly cheaper estimation, particularly in the case of the efficient rational
Lanczos algorithm. To evaluate its performance versus that of the complementary model
comparison (5.1), we analyze several examples. Example 5.1 considers the effectiveness

of the error estimates in predicting the worst-case error in the reduced-order model .

Example 5.1 In this example, we consider a model of tokamak plasma dynamics which
was originally presented in [56]. The frequency response of the original model is shown in
Figure 5.2. This response is relatively simple, due to the presence of all of the eigenvalues
of (A, E) on the negative real axis. Frequency responses of this type are quite common in
many applications, however.

The dual RA algorithm can be applied to this problem for M = 10 iterations with
o = 1. The actual error in the frequency response B(S) is indicated in the second column
of Table 5.1, as m varies from 1 to 10. Thus difference s the mazimum relative difference
between h and h over the frequencies in the range 1 < w < 1000. FEstimates based on
complementary approximations (5.1) are presented in the third column for various m.
This third column compares two reduced-order models centered respectively at o =1 and
oL = 100. The use of (5.1) provides a reasonable error estimate in this example. The
maximum product of the relative residuals is indicated in the fourth column of Table
5.1. Both vy, and r. should be included in the residual error estimate, where possible, to
take the two-sided properties of Theorem 5.1 into account. The fourth column provides

an excellent estimate of the worst-case frequency-response error, as well. Fither of the
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approaches in Sections 5.1 or 5.2 provides an acceptable measure of the modeling error

for this problem.

Beyond a worst-case bound, the user may be interested in an error estimate across the
frequency range. Such an estimate may be useful, for example, to modify the selection

of future interpolation points.

Example 5.2 This problem arises from a partial element equivalent circuit (PEEC)
model of a patch antenna structure (see [90] and experimentation in [{6]). Contain-
ing 2100 capacitances, 172 inductances and 6990 mutual inductances, the circuit can be
realized as a system of dimension 480. The magnitude of the frequency response of this
circuit s shown in Figure 5.3. Note the presence of multiple sharp peaks resulting from
lightly damped poles along the imaginary axis.

The rational Lanczos algorithm was applied to the PEEC model for M = 100 itera-
tions. The generated approximation alternated J; = 50 iterations at o =1 GHz and
Jy = 50 iterations at o'?) = 4 GHz. Figures 5.4 through 5.7 present the true modeling
error (dashed line) and the € estimate of (5.1) for m = 25,50,75 and 100. In acquiring €,
the first reduced-order model was compared to a second, complementary model generated
about a single interpolation point at o, = 2.5 GHz. Although occasionally missing one of
the many peaks,e.g., 3.5 GHz in Figure 5.5, or occasionally overestimating a peak, e.g.,
0.5 GHz in Figure 5.6, € provides a surprisingly accurate measurement of the true error
€ across the entire frequency range.

Figures 5.8 through 5.11 compare the true error € (dashed line) to the output residual
r.(s) (dotted line) for m = 25,50,75 and 100. Recall in rational Lanczos that this
residual value can be readily evaluated according to (5.8). For ease of analysis, the resulls
of the residual computation are scaled (by the same amount at all frequencies), so that the
means of the magnitudes of ¢ and r. are identical in the figures. In practice, one must
concentrate on the relative changes in r. as the values of the variables m and s vary.
Clearly, the residual results are not as precise as those in Figures 5./ through 5.7. Keep
in mind that the residual estimate may be generated with O(M) less effort than (5.1).
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Figure 5.2: Frequency Response of Example 5.1

Table 5.1: Modeling Error Estimates of Example 5.1

|| ma, BUgRRN | max, el mleal | ma, {{equell - gl
1| 4.6807e+00 1.3377e+00 1.5269e+00
2 || 13172400 5.6735¢-01 3.9489e-01
30| 2.2291e+00 6.9063¢-01 2.7383e4-00
4 1.0583e-01 1.2019e-01 2.3849e-02
5 2.4734e-02 2.5753¢-02 6.6484¢-03
6 2.8501¢-03 2.8525¢-03 3.6360¢-03
7 3.0310¢-03 3.2918¢-03 3.4935¢-03
3 1.6833¢-03 1.9949¢-03 1.1889¢-03
9 5.3874e-03 7.5989¢-03 1.2661e-02
10| 2610704 1.0067e-03 4.3114e-04
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Figure 5.3: Frequency Response of Example 5.2

The residual plots are able to capture the general shape of the error curve and point out

the locations of the spikes in the frequency response.

As the Examples 5.1 and 5.2 suggest, the above proposed error-estimation techniques
are effective in many situations. However, the error estimates based on model differences
or residuals do not always adequately treat sharp spikes in the frequency response. The
assumption that a small € or residual guarantees a small error is not necessarily valid at
these sharp peaks (not valid in the neighborhoods of poles along the imaginary axis). This
difficulty is demonstrated in Example 5.3. The point of this example is not to completely
invalidate the proposed error estimation methods. Rather, it is to demonstrate that care

must be used when treating systems with lightly damped poles.
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Example 5.3 Consider the simple seventh-order system defined by

—.001
3

)
—.001

-3 1

and E = I. The frequency response of this system is shown in Figure 5.12. A fourth-
order model using the interpolation point o = 0.5 has the true error shown (dashed line)

in Figures 5.13 and 5.14. Note that this reduced-order model fails to capture the peak in

the original frequency response at 5 rad/s.

25

Magnitude

Frequency (rad/s)

Figure 5.12: Frequency Response of Example 5.3

A second model, and associated FIJ_(S), was constructed using the interpolation point
op =10 with M = 4. The error estimate, based on comparing ﬁ(s) and FlJ_(S) according
to (5.1), is shown as a dotted line in Figure 5.13. Unfortunately, this error estimate é
falsely suggests convergence (it estimates two digits of accuracy everywhere) and misses

the peak at 5 rad/s. Note also that the estimate based on (5.1) is too conservative at
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low frequencies; its values there are based on the convergence of PIJ_(S) rather than the
behavior of ﬁ(s)

An error estimate based on the residuals is displayed as a dotted line in Figure 5.1/.
The dotted curve indicates (without scaling) the products of the relative output and input

residuals,
rpr.

[181l21[¢l2

at each frequency. As before, this error estimate fails to indicate the absent peak at 5
rad/s. The residual does provide a better estimate of the true errors at low frequencies

though.

Based on the above discussions and examples, the qualities of the proposed error-

estimation techniques can be summarized. The € estimate of (5.1):

1. Provides a direct approximation to ¢

2. Is accurate at frequencies corresponding to the complementary interpolation points

(%)

g1

3. Can overestimate the error at frequencies corresponding to the primary interpola-

tion points o)
4. May underestimate errors corresponding to sharp frequency peaks
A residual based error estimate:

1. Must be scaled to ¢, particularly if only one of the residuals is computed

2. Is accurate at frequencies corresponding to the interpolation points of the reduced-

order model
3. May fail to indicate errors corresponding to sharp frequency peaks

4. Typically requires less work, particularly for the r. function in rational Lanczos

Some of these features are complementary, suggesting that a robust implementation might

incorporate both approaches when possible.
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CHAPTER 6

MODEL INTERPOLATION POINTS

The Krylov-based projection methods of Chapter 4 interpolate the value and consec-
utive derivatives of the frequency response of the original system at one or more points.
Yet by itself, the knowledge that one is interpolating the frequency response reveals lit-
tle concerning the quality of the resulting reduced-order model. For example, one can
extract any combination of the poles (eigenvalues) of the original system via appropri-
ate interpolation choices [41]. The precise location of the interpolation points and the
amount of data matched at each interpolation point are the central factors in determining
the accuracy and dimension of the reduced-order model.

The placement and selection of interpolation points are studied in this chapter. Con-
nections are made between the locations of interpolation points and the convergence
behavior of the model. In particular, effort is concentrated on the popular choices of
purely real or imaginary interpolation points. This analysis provides insights into the re-
lations between the model’s convergence, the placement of the interpolation points, and
the dynamics of the system. However, these insights are not sufficient by themselves,
because the dynamics of the original system are rarely known a priori. The latter por-
tion of this chapter focuses on the implementation of point placement and selection in
practice, a nontrivial problem given that the dynamic behavior of the original system is

rarely known prior to the model’s convergence.

6.1 Analysis Tools

To implement rational interpolation, both the location of the interpolation points and

the number of moments matched about each of the interpolation points must be specified.
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Together these decisions determine both the size and accuracy of the reduced-order model.
Understanding the impact of these choices on the resulting reduced-order is not alway
straightforward, however. We begin by relating the choices for interpolation points to
the convergence of the eigenvalues of (A, F) and to the residuals 1y, r.. Past results such
as Theorem 5.1, in turn, connect these quantities to the convergence of the reduced-order
model.

One should understand that the convergence analyses performed in this chapter tend
to consist of general trends rather than precise mathematical derivations. Unfortunately,
the current understanding of the convergence of Krylov projection methods is limited,
particularly when nonsymmetric matrices or multiple Krylov subspaces are involved.
However, the presented level of rigor is sufficient for providing an intuition for interpo-
lation point placement and selection. The insights of this section serve as important
backdrops for the more practical implementation decisions in Sections 6.2 and 6.3.

We also initially assume that the number of interpolation points is small, so that
the convergence in a given frequency range depends primarily on a single pair of dual
Krylov subspaces with a corresponding interpolation point in that region. Associating a
given frequency range with a single interpolation point, o, simplifies the analysis and 1s
reasonable in many applications. Additionally, this assumption errs on the conservative
side because considering all the interpolation points at once (considering the union of in-
formation in the projector) typically only improves the convergence at a given frequency.

The role of the eigenvalues of (A, E') in the behavior of a system is grounded in the
work of Bode [26]. Relations exist between the poles of the original system and the peaks
in the system’s frequency response. For the considered Krylov projection methods, the
convergence of the eigenvalues of (121, E) to those of (A, F) is governed by the spectrum
of the matrix (A — o E)~'F in the neighborhood of s = o. It is simple to show that if A
and x are an eigenvalue and eigenvector of (A, F), then 1/(A—0) and x are an eigenvalue
and eigenvector of (A — aE)~'E. Moreover, the tendency of an eigenvalue A to appear

as an eigenvalue of the pencil (121, E) depends upon the extent that 1/(A — o) is:
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1. Positioned on the outer edge of the spectrum of (A — o E)~'E. In particular, the
eigenvalues of the original system that are closest to ¢ are mapped to the outside

of the spectrum of (A — o E)™'E.

2. Separated from the other eigenvalues of (A — o E)™'E. We say 1/(A — o) is well
separated, if the distance between 1/(A — o) and its closest neighbor is on the order

of [1/(A = o).

3. Strengthened due to the presence of large eigenvector components in the vectors b
and/or ¢. The residue, p, corresponding to a A is a measure of this strength. The

residue arises in the partial fraction expansion (2.5).

To motivate these observations, we note that the construction of each utilized Krylov
subspace involves the multiplication of vectors by (A—o E)~'E. If a vector ¢ is expanded
in terms of the eigenvectors, x,,, of (A, F') and multiplied by (A — o E)~'FE, the result is

(assuming distinct eigenvalues for simplicity),

N N
(A= oE)"Eg=(A—0cE)'EY  ayx, =) 3 T x,.
n=1 n=1"‘n — 0

Thus, those eigenvectors A, that are strong (o, is large) and/or near o (positioned on
the outside of the spectrum of (A — o E)~'E) are emphasized by multiplication with
(A—oFE)~'E. In either case, the scaling a,,/(A, — o) grows large. Although they may be
emphasized, eigenvectors corresponding to eigenvalues in a cluster (not well separated)
are all emphasized to the same extent, making it difficult to discern individual directions
in the cluster. Up to a point, this analysis is similar in spirit to that for a power method
[3]. We stress though that care must be taken in limiting such a comparison, the Krylov
projection involves entire subspaces rather than simply single directions.

Additional relations between the interpolation points and the convergence of the
reduced-order model follow from a point of view based on approximately solving the dual
systems of linear equations (1.2). The error in the frequency response of the reduced-
order model is rZ(sE — A)7'r,. As explained in Section 3.2, the speed at which these

residuals are driven to zero depends on the choice of DS preconditioners used in the Krylov
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subspaces. The exact DS preconditioner, P, = (A — o™ )~ is in turn determined by
the choice of the interpolation point. Therefore, it is certainly of interest to know how the
properties of a DS preconditioner relate to the use of a given interpolation point. Unlike
an analysis of eigenvalue convergence, the residuals associated with the approximate
solutions to (2.9) are defined and pertinent for all values of s.

The matrix (A — oE) ' (A — sE) is at the center of the linear system solver point
of view considered in Section 3.2. Recall that P = (A — ¢E)~" plays the role of an
exact preconditioner in a Krylov-based solver for linear systems of equations involving
A — oF. One possible path to discuss DS preconditioning and the associated matrix
(A — oFE)™ (A — sE) is through the concept of clustering. A DS preconditioner may
be evaluated according to the number of distinct eigenvalue clusters appearing in the
spectrum of P(A — sE). A small number of tightly-packed clusters is preferred in the
spectrum of P(A—sF) for values of s in the frequency range of interest. Two eigenvalues
)\, and 5\n+1 of (A—oE) ' (A—sE) at some s = 5 are said to be clustered if their relative

difference, N N
|)\n - )\n—|—1|
min s ]

is sufficiently small. A cluster at one is particularly desirable.

) (6.1)

To motivate this concept of clustering, consider a matrix G that equals P(A — nF)
or any other generic matrix. Further assume that this matrix has v clusters. Solving the
system of equations Gx, = ¢ via a projection technique leads to a solution that lies in
the Krylov space K ;((, g). If the clusters in ¢ are tight, i.e., the eigenvalues in a cluster
lie atop one another, then the dimension of K;((,¢) does not exceed 4. For example,
the dimension of K (G, g) is only one if (7 is a scaled identity matrix (the eigenvalues
of G in this case are all identical) and x, lies in K1(G,¢). Thus, the number of steps
required by an iterative solver to find x, does not exceed v — 1. If the eigenvalues of &
all exist at three points, for example, an exact solution arises after only two iterations.
Clustering reduces the number of directions considered by an iterative method in finding
the solution. Of course, as the clusters become less tight (the clustered elements are no

longer exactly on top of each other), one can only say that the rank of an increasingly
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perturbed version of K (G, g) equals v. As a very rough rule-of-thumb, one can expect
the relative error in the solution after v — 1 iterations to be proportional to the relative
distance (6.1) between clustered eigenvalues.

The impact of the choice of o on the spectrums of the two matrices (A — cE)™'E
and (A — oF)™'(A — sE) is key in the following analyses of interpolation points. Not
surprisingly, these two matrices are in fact related up to a simple scaling and shift by the

expression (3.5).

6.2 Point Placement

Based on the desired features in the spectrums of (A—oFE)™'E or (A—aE) Y A—sE),
various strategies for locating the interpolation points may be evaluated. We begin with

the simpler single point approaches.

6.2.1 Imaginary interpolation points

The use of an imaginary interpolation point is perhaps the most logical of starting
points, because one is interested in minimizing the frequency-response error h(s) — ﬁ(s)
along the imaginary axis (s = w). To aid in the analysis of this choice, an example
mapping from A to 1/(A — o) is displayed in Figure 6.1 for an imaginary interpolation
point. Recall that 1/(A — o) is an eigenvalue of (A — cE)™'E if A is an eigenvalue of
(A, E). As evident from either the expression 1/(A — o) or Figure 6.1, an imaginary
interpolation point maps those eigenvalues of (A, F) near o to well-separated positions
on the outer edge of the spectrum of (A — cE)™'E. From the discussion in Section
6.1, one should therefore expect those poles of the original system nearest o to rapidly
appear in (121, E) Practical experience confirms this observation. The poles near o tend
to appear, regardless of their strength. The use of an imaginary interpolation point is a
powerful tool for finding all of the information in the neighborhood near o.

The advantage of an imaginary interpolation point locally is unfortunately its downfall

globally. Although eigenvalue strength and separation come into play away from o, one

107



............

. .

. .
.

Rle) Spectrum

(A- GE) E

‘"9
ey — —_—

(@)
B —_—

Spectrum
(AE)

Figure 6.1: Eigenvalue Mapping for an Imaginary Interpolation Point

can roughly expect the convergence tendency of an eigenvalue of (A, E') to be inversely
proportional to its distance from o. Thus, a desired eigenvalue, Ay, of (A, ) that is near
the imaginary axis but away from ¢ must wait on the convergence of all the eigenvalues
closer to o (including eigenvalues that are possibly a distance ~ |A\4| into the left-half
plane). Yet unless they are very strong, eigenvalues far into the left-half plane do not
impact h(s). Unless very weak, an eigenvalue near the imaginary axis leads to a peak
in the frequency response [26]. The convergence of A\; may be forced to wait on an
undetermined number of eigenvalues that are far into the left-half plane and nonessential
to the model. In this situation, stagnation is observed in the reduction of the modeling
error until these non-contributing eigenvalues are all identified. This stagnation can
be further amplified if A; lies in a cluster of eigenvalues, or if Ay is weak. In slowing
convergence, this stagnation leads to a model of unnecessarily large size.

From a DS preconditioner point of view, the previous discussion remains pertinent.
Due to Lemma 2.1, the eigenvalues of (A — o F)™'(A —sE) are simply those of the matrix
(A — o E)"'FE shifted by one and scaled by (s — o). The deviation of the eigenvalues
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of the DS preconditioned matrix from a cluster at one is directly proportional to the
distance of s from o. As s deviates from o, numerous eigenvalues escape the cluster
and the effectiveness of the DS preconditioner diminishes. The convergence of Vi, and
Z%. to the true solutions of (1.2) at values of s away from o slows, because the iterative
solver must capture the scattered eigenvalues that are outside of the cluster. The order
in which these scattered eigenvalues are found depends on the same issues touched on in
the previous paragraph.

To summarize, imaginary interpolation points always lead to excellent results locally,
but can result in extremely slow convergence at all frequencies away from o. An example
of this behavior is provided in Section 6.4.

Before leaving the topic of imaginary points, the reader should note that those poles
near the complex conjugate of the interpolation point, o*, are not typically near o and are
therefore mapped by (A — o E)™'E towards the cluster at the origin. If the convergence
of the poles of the original system is to occur in complex conjugate pairs, interpolation
at both o and ¢* is required. The results of interpolating at ¢* are simply the dual to
those for o.

Some comments on the implementational aspects of complex arithmetic are also in
order. Although one allows complex o(¥), the avoidance of complex V and Z is desirable.
Beyond potential cost savings by keeping V' and Z purely real, a real reduced-order
model is preferred for its consistency with the real description of the original system.
An approach used to retain real operations with complex ¢ was developed in [91]
for the rational Arnoldi algorithm. The thrust of this development is that one should
always treat the complex points ¢®) and ¢®" pairwise. Whenever an iteration with o*)
is executed, perform a simultaneous iteration with its conjugate o(®)". Because of the

relation

(A— o™ By = {(A—oWE) )7, (6.2)

a knowledge of one direction automatically implies the knowledge of its conjugate. The
execution of these two simultaneous, conjugate iterations need only introduce two real

directions real{(A—oc® E)~'v} and imag{(A—c® E)~'v} into V rather than two complex
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ones. The use of (6.2) halves the extra effort (typically an increase by a factor of four)
involved in working with the complex matrix (A — o F). For further details, the reader

is referred to [91].

6.2.2 Real interpolation points

All of the interpolation points in the prior examples of this dissertation are real. The
utility of a positive real interpolation point again follows from the mapping of the gen-
eralized eigenvalues of (A, E) to the eigenvalues of the matrix (A — o)™ 'E. Such a
mapping is displayed in Figure 6.2 and is determined by the following result.

Lemma 6.1 [f the initial system (2.1) is stable and o is a positive, real number, then

the eigenvalues of (A — o E)~'E are contained in a circle of radius % that is centered at
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Figure 6.2: Eigenvalue Mapping for a Real Interpolation Point

According to Lemma 6.1, a value A in the left half of the complex plane is mapped to
1/(A—0), a position inside a circle. The imaginary axis, the edge of the left-half plane, is
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compressed onto the edge of this circle. A simple analysis of the mapping A — 1/(A — o)
reveals that those poles of the initial system with magnitudes much less than o are all
mapped to a cluster at _71 Those poles with magnitudes much greater than o are all
mapped to a cluster at 0. Only those poles with magnitudes on the order of o can avoid
being squeezed into a cluster at 0 or _71 Poles that are not well separated in the spectrum
of (A — oFE)'E tend to be approximated as a single compressed pole in the reduced-
order model. Hence, one can only expect poles with |\, | & o to be distinguishable in the
reduced-order model. In particular, one should expect the strong poles with magnitudes
on the order of o to appear in (121, E) In Figure 6.2, these poles lie in the shaded regions.

Real positive interpolation points provide a distant view of the dynamics of a stable
initial system. The position of a mapped eigenvalue 1/(A — o) and, thus, the overall
convergence of the approximate eigenvalue is typically less sensitive to the value of Real(\)
when o is real. Practical experience verifies that a pole away from the imaginary axis
still appears in the model if a real interpolation point is used and if that pole is well

separated and/or strong.

Example 6.1 Consider an eigenvalue A = —.01 + ¢ and a perturbed version of this
eigenvalue, \s = —.1 + ¢. The change in the resulting mapped eigenvalue relative to the

perturbation of the pole,
(A=) = (As — o)~
A — As] ’

is less than 0.5, if o =1, but is 1000 if o0 = . The difference between the mapped versions

of A and Xg is significant for the imaginary interpolation point, but is negligible for the

real interpolation point.

Besides eigenvalue convergence, we are also interested in the approximate system
solutions to (1.2) (and in turn the DS preconditioned matrix, (A — o E)™'(A — sE)) as
s varies. A distance exists between a real o and the system poles, so that small relative
perturbations in s barely impact the results with the DS preconditioned matrix. The

following result helps to formalize this statement.
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Lemma 6.2 [f )\ is an eigenvalue of (A, E), then A= A:; is an eigenvalue of the matrix

(A—oE) Y (A-sE).

Assuming a stable initial system and a positive real o, the difference |\ —o| is at least

as large as 0. Based on this observation and Lemma 6.2, the eigenvalues of
(A— O'E)_l(A —sFE) and (A-— O'E)_l(A —(s+0)F)

vary by at most 6/c, when s &~ oi. Compare this fact to the imaginary interpolation
case where the change in the spectrum of the DS preconditioned matrix was directly
proportional to the perturbation, é, on the interpolation point. The DS preconditioner
with a real interpolation point has the opportunity to be suitable over wider regions of
s.

The potential for a real interpolation point to be effective over wide regions of s and
actually being effective over broad regions are two different things. In the examples of
Section 6.4, a real interpolation point leads to convergence in a wide neighborhood about
ot except about a finite number of weak eigenvalues of (A, F) along the imaginary axis.
For insight into this observation, we return to Figure 6.2. Because the spectrum of the
DS preconditioned matrix is simply a shifted and scaled version of Figure 6.2, it is clear
that a real interpolation point can leave a large number of well-separated eigenvalues
in the spectrum of (A — oF)™'(A — sE) (corresponding to all eigenvalues of (A, F)
with magnitudes near o). Our previous discussions indicate that the strong, scattered
eigenvalues are the ones tending to appear in the model. The eigenvectors corresponding
to these strong eigenvalues play an important part in the solutions to (1.2), because
they are ones that by definition dominate b and ¢. Also, because the significance of
these directions arises from their role in the fixed vectors b and ¢, their importance
depends less on variations in frequency. The only points where these directions can
be overshadowed are those where weaker poles crop up near the imaginary axis. The
eigenvector corresponding to a weak, predominantly imaginary pole, A,, dominates the
solution of (A —sE)x, = b as s nears A\,. Yet, because of a Krylov projection’s emphasis

on strong poles, this weak direction can be absent in the reduced-order model and the
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converge of Vx;, and Zi. at s = ¢|\,| delayed. In summary, a real interpolation point

tends to yield a broader, but courser convergence to the true frequency response.

6.2.3 Multiple interpolation points

Now that we better understand the strengths and weaknesses of a single interpolation
point, it is appropriate to turn to the more general rational interpolation problem. Our
goal remains the same: a rapid and efficient convergence to an accurate reduced-order
model. Combinations of interpolation points: real, imaginary and complex can be used
to achieve this goal. We tend to concentrate on purely real or imaginary points to keep
the development manageable.

The first proposed placement strategy, and the one favored in the previous examples
of this dissertation, is to logarithmically space interpolation points between w,,;, and
Wiae on the real axis. A large spacing between these real points is appropriate due to the
broad convergence regions of real interpolation points discussed in Section 6.2.2. The use
of one interpolation point per every other order of frequency magnitude is recommended.
For a large class of problems, this strategy involves only a single interpolation point. In
general, only a very small number of interpolation points are required by this technique.
This strategy is thus appropriate when the cost of factorizing (A — c® E) is large. The
use of real interpolation points is also preferred for the rational Lanczos algorithm, as
it allows for a small bandwidth in A and E. The only drawback of real interpolation
points are the previously mentioned difficulties with lightly damped poles (sharp peaks
in the frequency response). Numerous iterations may be required, if such points are to
be found.

Spaced interpolation points along the imaginary axis are a second possibility. Rapid
convergence in the frequency response can be expected with this strategy about the

k). Either linear or logarithmic spacing can be

K neighborhoods centered at s = o
utilized to adjust this behavior to the frequency range of the problem. An accurate, low-
order model can be expected given a sufficient number of imaginary interpolation points,

but the value of this number is rarely known a priori. Underestimating the number of

113



required imaginary interpolation points can lead to stagnated convergence away from the
o®). Frequency-response peaks due to weak eigenvalues along the imaginary axis may
be untouched, if these peaks are located between and away from the preset imaginary
interpolation points. That is, problems may arise if the local convergence regions about
cach ¢ do not readily overlap. Avoiding such problems requires either an adaptive
introduction of extra interpolation points during the modeling process or a fine grid of
closely spaced points. Fither strategy, and especially the latter, is undoubtedly costly
as many factorizations of (A — O'(k)E) are involved. Possible algorithmic approaches for
overcoming these expenses are proposed in Chapters 7 and 8. Further details on adaptive
point placement and selection are provided in Section 6.3.

Of course, a combination of real and imaginary interpolation points is possible. The
distanced real points produce the general features of the frequency response. Imaginary
interpolation points may then be introduced as needed to capture the exact behavior in
user-specified frequency ranges. The imaginary interpolation points can be used to weigh
desirable application-specific features which are known to the user.

Even though it is not implemented in the following, there is another approach for
selecting multiple interpolation points which is of interest. This approach is due to [92]
and actually leads to an optimal reduced-order model in a certain sense. It is shown in
[92] that the £; norm of the inverse Laplace transform of h(s) — h(s) is minimized if
ﬁ(s) matches the values of h(s) at o0, = Ay m = 1,2,..., M, where the \,, are the
poles of the reduced-order model. Unfortunately, these values — X, where interpolation
is proposed are not known a priori. An algorithm is proposed in [93] for iteratively
locating these points, but both the convergence and efficiency of this procedure are
questionable for large-scale problems. Regardless of the feasibility of the implementation,
this approach does suggest that a combination of real and imaginary interpolation points

can be preferred over a single interpolation point.
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6.3 Point Selection

Once the values of the interpolation points are set, their ordering and use (the values for
Ji) need to be specified. Schemes based on simply alternating the interpolation points
at each iteration were already seen in Chapter 4. Alternating points was particularly
important in the rational Lanczos algorithm, because it promoted a small bandwidth in
the reduced-order matrices. Yet even with such a simple scheme, one may not wish to
match the same number of moments about every interpolation point. For example, the
error over a certain frequency range might be observed to drop much faster than over
another. Frequently, such information only arises as a picture of the system develops
during the modeling process. Thus, even in the simplest schemes, an adaptive control of
the interpolation point selection may be worthwhile.

It is logical to base adaptive interpolation decisions on one of the error estimates
developed in Chapter 5. The interpolation points of new iterations can be specified as
m grows with the goal of reducing the remaining error in the approximation. Various
degrees of effort can placed towards controlling the future modeling steps via some error

estimate e.

6.3.1 Adaptive termination

In this simplest of approaches, one utilizes ¢ to specify only the number of moments
(2.J;,) matched about each interpolation point. The placement and ordering of the interpo-
lation points, e.g., alternated in consecutive blocks, etc., are specified prior to execution.
A given ¢® is then utilized in the prescribed ordering until ¢ drops below an acceptable
level across the frequency ranges that correspond to o®). If imaginary points are used,
for example, one ceases to use o®) when the modeling error is small for all frequencies
between it and its nearest neighbors. This approach is even pertinent for A = 1; the

corresponding frequency range simply runs from wy,;;, to Wy, in this case.
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6.3.2 Adaptive selection

This approach utilizes the error estimate to determine both the ordering of the (%)
and the values of J; for some predetermined set of interpolation points. One simply
chooses the interpolation point for the (m + 1)*" iteration that is closest to the frequency
where €, 1s largest. Intuitively, such an approach is pleasing as one strives to reduce the

maximum error at each step.

6.3.3 Adaptive placement

Taking the previous approach one step farther, one can adaptively place a completely
new interpolation point in the m!” iteration at the frequency where ¢, is largest. The set
of interpolation points is not fixed a priori, but grows during the process. To limit this
growth, one may choose to perform multiple iterations before changing to a new point.
If m is an iteration where a new interpolation point is chosen, a good rule of thumb is to
persist with this chosen interpolation point until the frequency-response change in some
future iteration, e.g., ﬁm_|_f(5) — flm_|_f_1(5), drops to less than 10% of flm(s) — flm_l(s).
That is, remain with a given interpolation point until signs of stagnation arise. In this
manner, one attempts to obtain full benefits from an interpolation point before suffering
the costs involved with moving to another one. Note that adaptive placement is only

appropriate for imaginary interpolation points; real ones possess a broader range suited

for the previously mentioned adaptive selection.

Example 6.2 Consider applying the three adaptive schemes to find an approximation
between 1 and 10 rad/s. In adaptive termination (Section 6.3.1), one might start by
using o) =1 in odd iterations and ¢ = 10 in even iterations. One stops utilizing oV
as an interpolation point, as soon as ¢ becomes small over 1 to 5 rad/s. Likewise, o) is
no longer used after € becomes small over 5 to 10 rad/s. In adaptive selection (Section
6.3.2), the interpolation point utilized in the m'™ iteration (o,,) depends on ¢,_1. If €y

is largest over 1 to 5 rad/s, then o, = 1; otherwise, o, is set to be 10. In adaptive
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placement (Section 6.3.3), oy, is chosen to be /—1 times the frequency in the range

1 <w <10, where é,-1(w) is largest.

Although the use of adaptation increases in going from the point selection approaches
of Sections 6.3.1 to 6.3.3, the performance need not increase accordingly. For both prac-
tical and theoretical reasons, the adaptive selection scheme may not be preferred over
the simpler combination of regularly alternating interpolation points and adaptive termi-
nation. Assuming exact DS preconditioners and infinite precision, only the values of Jj,
and not the interpolation point ordering, determine the reduced-order model. In theory,
the approaches in Sections 6.3.1 and 6.3.2 should yield similar results. Furthermore, the
error estimate € used by adaptive selection or placement is only an approximation. Reg-
ularly alternating the interpolation points as in Section 6.3.1 insures that information is
matched across the entire frequency range.

From a cost standpoint, care should also be taken before abandoning the simpler
adaptive termination scheme. Interpolation point-ordering based on € (Section 6.3.2)
destroys the banded structure in the rational Lanczos method. The adaptive placement
of points (Section 6.3.3) may lead to a large number of imaginary interpolation points.
Although many points may speed convergence, a large K is most likely impractical for

the algorithms of Chapter 4 (the algorithms seen up to this point).

6.4 Comparisons

To compare various interpolation point placement and selection techniques, one can

generate reduced-order models according to the following five strategies:

Strategy 1. A single real interpolation point at w;,q,
Strategy 2. Two imaginary interpolation points at +w;,;,

Strategy 3. A real interpolation point at every other order of magnitude
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Strategy 4. Five conjugate pairs of linearly spaced imaginary interpolation points
Strategy 5. Adaptively placed imaginary interpolation points according to max(e)

Strategy 1, a real point at w4z, is endorsed in [48] while Strategy 2, an imaginary point
at Wpin, 1s quite common throughout the literature. Strategies 3 and 4 were discussed
in Section 6.2.3. Strategy 5 is an adaptive strategy that places a new interpolation
point (after every ten iterations in Examples 6.3 and 6.4) wherever the current modeling
error is greatest. This strategy is not implementable in practical situations, because
only an error estimate € is commonly available. Strategy 5 serves as a rough bound on
the best achievable error and is, thus, useful for comparisons. The expected behavior
of each strategy follows from Section 6.2. Recall that a real interpolation point, o),
tends to induce a course convergence over the approximate range 0.10") < w < 100,
while an imaginary interpolation point, o(®), tends to induce precise convergence in the

neighborhood of s = 1o®).

Example 6.3 We return to the compact disc player considered in Example 2.1. In this
example, the CD subsystem to be approximated relates the position of the player’s focusing
lens to inputs at the radial arm actuator. The frequency response of this subsystem is
shown in Figure 6.5.

One hundred RK iterations were evecuted with each of the five interpolation point
strategies listed at the beginning of this section. The specific interpolation points cor-
responding to each of these strategies are listed in Table 6.1. The model reduction was
implemented with a reorthogonalized version of the dual rational Arnoldi to insure that
the quality of the approximation depended solely on interpolation point placement and
selection. The relative errors in the reduced-order model as both the interpolation point
strategy and the number of iterations varies are presented in Table 6.2. The error is
measured by a computed Hy norm, which is uniformly weighted over the frequency range
Wmin = 0.1 10 Wpar = 10° rad/s.

With the exception of the single real interpolation point case, the strategies of Table
6.2 perform comparably well. The difficulties with a single interpolation point follow from
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Table 6.2: Convergence with the Interpolation Point Strategies of Example 6.3

Table 6.1: Interpolation Point Strategies of Example 6.3

Strategy

Interpolation Point(s)

1

10°

+¢

1, 100, 10*

+0, +100, £1000, £10%, £10%

St = | W |

+¢, £100¢, £3000¢, £600¢, £10%, £4200¢,
+1.8-10%, £1.6 - 10%, £3.9 - 10*, £300.

m Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Strategy 5
10 || 1.0000e+00 | 2.6246e+00 | 9.7267e-01 | 1.1844e+4-00 | 2.7315e4-00
20 || 1.0002e400 | 2.3167e-01 | 1.3378e-01 | 4.0014e-01 | 4.4137e-02
30 || 1.0001e400 | 6.0595e-03 | 6.5276e-02 | 1.6369e-01 | 9.9232e-03
40 || 1.0002e4-00 | 1.1386e-03 | 1.5089¢e-03 | 1.8898e-03 | 6.1080e-04
50 || 1.0002e400 | 5.3858e-04 | 1.7842e-03 | 1.4359e-03 | 2.0964e-04
60 || 1.0001e4-00 | 7.5327e-04 | 4.2890e-04 | 2.9126e-04 | 3.3147e-04
70 || 1.0002e+00 | 3.8352e-04 | 3.0646e-04 | 1.2832e-04 | 8.5592e-05
80 || 1.0036e400 | 8.3960e-05 | 1.0041e-04 | 8.2559e-05 | 1.9209e-05
90 || 1.0052e+00 | 1.0465e-05 | 7.5123e-06 | 1.4374e-05 | 7.9303e-06
100 || 1.0395e4-00 | 4.6947e-06 | 1.9490e-05 | 1.1960e-05 | 4.5992e-06
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Figure 6.3: Frequency Response of Example 6.3

the portion of the spectrum of (A, E) in Figure 6.4. As one moves up and way from the
origin in this figure, the vertical spacing between the eigenvalues grows proportionally
with w, while the horizontal spacing only gradually increases. The vertical spacing for the
cigenvalues across the top of the figure is on the order of 10*, while it drops to order 10!
as one approaches the origin.

To a real interpolation point at 10°, only the vertical spacings on the order of 10*
are significant. The eigenvalues across the top of the figure appear well separated, while
those eigenvalues with imaginary parts < 10* appear as a large cluster al the origin.
Unfortunately for Strategy 1, the individual eigenvalues in this cluster dominate the fre-
quency response. Strateqy 1 stagnates, because it emphasizes the eigenvalues across the
top of Figure 6.4. Strategy 2, on the other hand, focuses on the eigenvalues nearest to
the origin. The eigenvalues along the imaginary axis do not appear as a cluster to this
interpolation point. Strategy 2 is able to continue converging at higher frequencies as
m grows, because the eigenvalues lie on a single path along the imaginary axis. Think

of circles of increasingly larger radii that are centered at the origin. As these circles

120



107
? KR 3o % x R x
[ X o
[ K ¥x X x % x % ¥
*
104§ K 1
[ % * ]
[ Kk
[ £
2 t *
2
2\103; X
© [ ¥
c r 5
% r * x * *7
E | x|
g
=10 F i
@ 3
3 f
o [
10"} 1
1 0 1 1 1 1 1 1 1 1 0

0
-900 -800 -700 -600 -500 -400 -300 -200 -100
Negative Real Axis

Figure 6.4: Eigenvalue Spectrum of Example 6.3

grow in size, the only additional eigenvalues that they enclose lie at higher frequencies
along the imaginary axis. There are no eigenvalues with large real and small imaginary
components that would induce stagnation in Strategy 2. Observe the empty space in the
lower-left corner of Figure 6.4. Strategies 3 through 5 all utilize at least one interpolation
point with a magnitude on the order of one as well. Thus, these latter strategies share

the desirable convergence properties of Strategy 2.

The CD player possesses an eigenvalue spectrum that favors low-magnitude interpo-
lation points. However, as Example 6.4 shows, interpolation points near the origin can

cause difficulties in other problems.

Example 6.4 In this example, we once more consider the PEEC problem introduced in
Example 5.2. Like Fxample 6.3, the five strategies at the beginning of this section were
each utilized for one-hundred dual rational Arnoldi iterations. The specific interpolation
points used in each strategy are listed in Table 6.3. The convergence results with each of

these strategies are presented in Table 6.4. Because the frequency range of interest only
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spans an order of magnitude in Figure 5.3, the same single real interpolation point is
appropriate for Strategies 1 and 3.

Unlike Example 6.3, Strategy 2, the single imaginary interpolation point, suffers in
this example. To understand this occurrence, consider the portion of the PEEC spectrum
of (A, F) that appears in Figure 6.5. Note that the axes in Figure 6.5 are scaled to Hz
for easy comparison with the frequency response in Figure 5.3. A cluster of eigenvalues
near the origin leads to the stagnation observed in the second column of Table 6.4. Using
imaginary interpolation points at £0.5¢, Strateqy 2 emphasizes this cluster at the origin
instead of the line of eigenvalues running up along the imaginary axis. However, this
line of eigenvalues dominates the frequency response; note the correspondence between
their locations and the spikes in Figure 5.3. Although weak at times, these eigenvalues
are easily captured by the other strategies, particularly numbers four and five. The more
complicated Strategies | and 5 do show speed ups over a single real point, yet Strategy 1
is not unreasonable given its economical implementation. In fact, Strategy 5 could only
be carried out for seventy iterations in this problem due to the memory limitations of the

machine executing the algorithm.
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Figure 6.5: Eigenvalue Spectrum of Example 6.4
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Table 6.3: Interpolation Point Strategies of Example 6.4

Table 6.4: Convergence with the Interpolation Point Strategies of Example 6.4

Strategy || Interpolation Point(s)
1 )
2 +0.5¢
3 )
4 +¢, £2¢, 3¢, £40, 50
5 o, 350, 50, £30, £20, £0.50, £4.50, £2.75

m || Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Strategy 5
10 || 6.0169e-01 | 6.4804e-01 | 6.0169e-01 | 5.7333e-01 | 6.6406e-01
20 || 2.2386e-01 | 8.4414e-01 | 2.2386e-01 | 1.4775e-01 | 2.2477e-01
30 || 2.3394e-01 | 2.2597e-01 | 2.3394e-01 | 1.3035e-01 | 1.3782e-01
40 || 2.5878e-01 | 2.7452e-01 | 2.5878e-01 | 1.4116e-02 | 2.7480e-02
50 || 2.6881e-01 | 2.0472e-01 | 2.6881e-01 | 1.6305e-04 | 7.9555e-04
60 || 1.0115e-01 | 1.1185e-01 | 1.0115e-01 | 2.7311e-06 | 2.3797e-05
70 || 4.4557e-02 | 1.4684e-01 | 4.4557e-02 | 1.7026e-07 | 8.2285e-08
80 || 9.9652e-03 | 1.0727e-01 | 9.9652e-03 | 4.7323e-08

90 || 3.1338e-04 | 6.0746e-02 | 3.1338e-04 | 1.1786e-07

100 || 3.6179e-06 | 6.8173e-02 | 3.6179e-06 | 3.6125e-08

123




A single interpolation point is suitable for many applications. The actual location of
that optimal point varies though from problem to problem. The placement of a single
point may be further clouded by the fact that little is frequently known of a system’s
response prior to the model reduction. On the other hand, Examples 4.3 and 4.4 suggest
that a few systematically placed interpolation points insure fast convergence in a variety
of situations. Strategy 3, for example, provides a robust and competitive convergence
(relative to any single-point strategy) in all attempted problems.

As for the adaptive strategies of Section 6.3, the results are mixed. Convergence
improvements by a factor of two to three can at times be observed with adaptive place-
ment and selection. Yet, these convergence improvements tend to be accompanied by
significant increases in cost. The accuracy of the adaptations also tends to be limited by
the quality of the error estimates, ¢. Further research is needed in this area. Perhaps
the true value of adaptation may only be realized in methods that avoid the sequential
implementation of exact DS preconditioners. Alternatives to the exact case are studied

in both Chapters 7 and 8.
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CHAPTER 7

PARALLEL RATIONAL INTERPOLATION

A significant amount of high-level parallelism appears to exist in rational interpola-
tion. Multiple interpolation points and their corresponding Krylov subspaces are in-
volved. Treating these points concurrently might significantly reduce the time required
to construct the reduced-order model. Although possible complications arise in the
(bi)orthogonalization and generation of the approximation, an interesting version of the
RP algorithm is devised which avoids these difficulties and provides impressive prelimi-

nary experimental results.

7.1 Overview

One way to enhance the performance of Krylov-based model reduction is to execute
the algorithm on multiple processors. One breaks the algorithm into portions that can
be treated in a parallel fashion. Some interaction is typically required between these
sub-portions, although communications should be kept to a minimum.

There are at least two types of exploitable parallelism within model reduction via
projection. The first is the parallelism that exists to various degrees in the basic matrix
operations: matrix-vector products, matrix factorizations, etc. The second type of par-
allelism arises from the fact that the column spaces of the projection matrices V' and 7
are composed of multiple Krylov subspaces, which are only differentiated by the choice
of o®). One hopes to concurrently construct the subspaces making up the unions in
V and Z. Accordingly, the interpolation points are scattered across the processors. In
theory, this second type of parallelism could be combined with that in the basic matrix

operations. A strategy with two or more levels of parallelism results. One most likely
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needs to utilize both of these levels to meet the memory requirements imposed by larger
problems. In this section, only the structure of the V' and Z column spaces is exploited.
The reader is referred to [94] for parallel versions of the more basic matrix operations.

Corresponding to the assignment of distinct interpolation point(s) to each processor,
several assumptions are required. First, one must assume that sufficient memory exists
to store the sparse factorizations of (A — o(® E) at all the interpolation points. In a
distributed network of processors [94], one must therefore assume that the memory local
to each processor can store the sparse factorizations corresponding to its assigned inter-
polation point(s). Second, and for reasons of scalability [94], one must allow the number
of interpolation points K to meet or exceed the number of moments, 2./, matched about
each interpolation point. The interpolation points can be treated in parallel. Matching
higher moments (large J) about a given point is a sequential procedure, i.e., the only
parallelism available is in the matrix operations. This K > J assumption tends to in-
validate a parallel version of the RL algorithm of Section 4.1.3. A large K in rational
Lanczos leads to a large bandwidth in Aand £ (long recurrences) and, hence, eliminates
the RL method’s edge over the dual rational Arnoldi algorithm. The assumption of a
large K also runs contrary to the tendencies throughout the rest of this dissertation.
In this proposed parallel approach, many interpolation points are utilized, which each
capture the dynamic behavior in their locality. Hence, a highly parallel implementation
appears to be suited to the use of imaginary rather than real interpolation points (recall
Section 6.2). Given moderate parallelism (only a few processors), combinations of real
and imaginary shifts are most likely appropriate (we do not consider this case further in
this section).

The bases for the individual subspaces in the unions, i.e., bases for
Ki((A=a®E)YE (A - ocWE) 1) (7.1)

and

Ki(A-—oc®E)yTE (A-cWE)Te) (7.2)
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can be constructed concurrently. Consider, for now, the case where one interpolation
point is assigned per processor. Matrices Vj; and Zjj can be constructed on the kth
processor that yield bases for the subspaces (7.1) and (7.2) evaluated at o®). Upon

completion, the overall projection matrices

V= VJJ ...VJJ( and Z = ZJJ ...ZJJ(

are stored across the K processors. Unfortunately, this simple approach is incomplete.
The reduced-order model in (2.7) must still be computed from V' and 7, requiring the
interaction of all K processors. Related, but more limiting, one may place orthogonality
conditions on V and Z. Orthogonalization requires each processor to access the entire V
and Z matrices. However, broadcasting the dense columns of V' and Z to all processors

is a significant communication bottleneck.

7.2 A parallel dual rational Arnoldi algorithm

Several parallel variants of a one-sided rational Arnoldi method are developed in [81]
for the eigenvalue problem. These techniques are trivially extended to the dual case,
and we do not cover the details here. To summarize, the factorizations of (4 — o*) E)
at multiple points are scattered among processors. In each step of the algorithm, K
new directions in both the column spaces of V' and Z are concurrently constructed. To
achieve orthogonal bases, one or more of the processors needs to access all of the existing
directions in V' and Z. But as mentioned above, the amount of communication involved

in this orthogonalization is undesirable.

7.3 A parallel rational power algorithm

To avoid orthogonalization and the associated processor interactions, one can turn to
the rational power Krylov method, which was proposed in Section 4.1.1. The RP method

does not use orthogonalization, but requires numerous interpolation points. Both of these
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qualities are well-suited to a parallel implementation. In particular, V' can be computed
without processor interactions, if orthogonalization is avoided.

However, significant processor interaction may still be required to form E=Z7TEV
and A = ZTAV. Consider, for example, that a,, = Z7 Av,, must be formed for m = 1
to M; yet the columns of Z are scattered across the processors.

Matters would be significantly simplified if every processor automatically knew the
entire matrix Z at the start of execution. The matrices A and E would then be generated
in parallel. Each processor would compute the columns Z7 Av,, and ZT Ev,, of Aand E
that correspond to the columns of V' that they possessed. No communication would be
required to form V, Aor E. An automatic knowledge of Z (without communications) is
possible if the form of Z is prespecified in a manner known to all of the processors. If 7 is
prespecified to be a matrix of random elements, for example, each processor can directly
access Z by simply knowing the seed value of the random number generator. Similarly, 7
contains the first M columns of an identity matrix, each processor could trivially generate
7 for itself. Of course, such versions of Z fail to satisfy the desired rational interpolation
form in (3.2). Yet moment-matching is two-sided; a V' that satisfies (3.1) leads to a
reduced-order model which still matches M (rather than 2M) moments. We can specify
7 for ease of computation and V for approximation accuracy. One forfeits some moments
by prespecitying the form of Z, but the loss of model-reduction quality in practice does
not seem to be as harmful as one might fear. Fven when Z is arbitrary, V matches
moments and insures that the reduced-order model converges in at most NV steps. As
Examples 7.1 through 7.3 demonstrate, the convergence based on the one-sided use of V
tends to be reasonably competitive with the previous two-sided algorithms. Moreover,
the one-sided approach is highly parallel.

Besides avoiding the communication of Z, a parallel RP algorithm must carefully
assign interpolation points to the processors. Interpolation point placement is crucial for
load-balancing, i.e., making sure that the amount of work performed by each processor is
fairly identical. If the interpolation points on two different processors are too close, then

these processors compute (nearly) duplicate directions and work is wasted. One of the
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processors could have been more efficiently utilized elsewhere. On the other hand, if an
insufficient number of processors are assigned to a frequency range where large modeling
error exists, then this error only gradually declines, many iterations are required on a
single processor, and the advantages of parallelism are lost. Beyond load-balancing, the
placement of multiple interpolation points is fundamental to the RP method. Recall from
Section 4.1.1 that the RP algorithm relies on frequent changes of the interpolation points
(small Ji) to introduce sufficient information into V. Luckily for the RP approach, the
use of many well-placed interpolation points is consistent with a load-balanced parallel
implementation.

To effectively address point placement, we suggest the combination of several tech-

niques proposed in the previous three chapters:

L. An Error Estimate via Complementary Models (Section 5.1). Determining appro-
priate locations for the interpolation points requires a sense of the dynamics of the
original system. As the model reduction proceeds, the error estimate (5.1) can be
utilized to obtain a sense of important behavior, which is absent from the reduced-
order model. The comparison of complementary models is particularly appropriate
for parallel algorithms; one can construct the two different viewpoints B(S) and

A

h, (s) concurrently.

2. Adaptive Point Placement (Section 6.3). 1t is difficult, if not impossible, to quantify
the convergence behavior of the reduced-order model a priori. Therefore, to insure
that each processor is contributing new information at every step, old interpolation
points must be discarded where convergence has occurred, while new interpolation
points must be introduced where the modeling error remains large. These decisions

are made according to the error estimate.

3. Dependency Postprocessing (Section 4.1.1). Even with adaptive point placement
based on error estimates, the RP algorithm may still occasionally compute (nearly)
redundant information. Postprocessing via a singular value decomposition is there-

fore employed to remove the any redundancies in the projection matrices.
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Algorithm 7.1 combines these techniques. This algorithm (a) computes directions
in V at K points, (b) updates the set of interpolation points according to an updated
error estimate, and (c¢) returns to the first step if needed. The computation of K new
directions, (S7.1.1) through (S7.1.4), may be executed in parallel. These steps include
the matrix factorizations in (S7.1.2) and the reduced-order model updates in (S7.1.4).

Note that two complementary reduced-order models are actually computed in (S7.1.4).

This parallel RP algorithm completely replaces its set of interpolation points at the
beginning of every iteration of the outer [ loop (although in practice one might want
to use a given interpolation point for a few iterations to reduce the required work). As
such, only one moment (the value of the frequency response) is matched about any given
interpolation point. At the end of each outer iteration, an error estimate is computed
based on the comparison of two distinct reduced-order models. Mainly, the difference
ﬁ(s) — FlJ_(S) is computed at many points over the frequency range wy,;n 10 W A scaled
version of this difference is then used as a (discrete) probability distribution function for
the random placement of the next set of K interpolation points. The probability that
a new interpolation point is located at some frequency is proportional to the degree of
modeling error estimated at that frequency.

Those operations outside of the k dependent loops require either communications be-
tween the processors, (S7.1.5) and (S7.1.8), or sequential operations, (S7.1.6). The com-
munications require messages of length O(M), in practice, while the sequential (S7.1.6)
involves O(M?) operations. All communications and sequential operations involving
order-N quantities are avoided. The communications and sequential operations occur L
times, a value that is expected to be small.

The Algorithm 7.1 is designed for clarity and several details are intentionally over-
looked. The amount of effort associated with A and E is not quite as much as suggested
by (S7.1.4) and (S7.1.5). One does not need to compute/send the entire matrices A and
E in each outer [ iteration. The leading minors of the A and E matrices remain the same

from one iteration to the next. Only the K bottom rows and K rightmost columns need
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Algorithm 7.1 Rational Krylov (Parallel RP Version)

Initialize: € = 1 for wym < W < Whnae;
For [ =1 to L,
For k=1 to 2K,
(S7.1.1)  choose o®) randomly between w,i, and wyee

according to € distribution;

S7.1.2 Ol = A—O'(k)E —1p.
( ) bk = ( ;

(S7.1.3)  wip = 0ur/ ||00k2;
(S7.1.4) Itk <K,
For 7 =1 to [,
AG-1)K+k = Zi Avj and Ci-1)E+k = Ziic Bk
end
else,
For y =1 tol,
AL pyreqn = ZileAvM_K and €1, _, ., = ZirlKEvj,k—K;
end
end

end
(S7.1.5)  send A, E and A,, E| to all processors;
(S7.1.6)  postprocess approximations for rank-deficiencies

For k=1 to 2K,

A

(S7.1.7) compute é =h — h, over (Wmin + %wmm) to (Wmin + %wmw);
end
(S7.1.8)  send € to all processors;

end
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to be treated in a given [ outer iteration. The output and input vectors, V¢ and Z7b,
can be handled similarly. The effort involved in these vectors is minor, when compared
to that in forming and communicating Aand E.

There are several other details that can be implemented in the parallel RP algorithm.
First, one might edit ¢ in (S7.1.1) after each interpolation point is chosen. As a new
interpolation point is placed, set € to zero in the near proximity of this point. With
this small trick, (nearly) duplicate interpolation points can be avoided. Implementing
this optional € modification does require (S7.1.1) to be executed sequentially (this is
not a real concern, because this step is so simple). Second, the outer [ iteration would
most likely be terminated and new interpolation points would cease to be chosen when
¢ becomes sufficiently small everywhere. Third, the treatment of complex quantities in
Algorithm 7.1 is rather nebulous. In practice, V' is augmented with both the directions
real{(A — o E)~1b} and imag{(A — 0¥ E)~'b} so as to incorporate both ¢*) and its
complex conjugate into the reduced-order model.

The reliability of the proposed parallel methods could be questioned at this point.
After all, terms such as random and nonorthogonal do not exactly inspire confidence
in the approach. A rigorous understanding of the method’s convergence, in practice,
is not yet claimed. We rely instead on the generality of Theorem 3.1 and impressive
initial experimental results. Several tests of a sequential (quasi-parallel) version of the
parallel RP algorithm are presented in Examples 7.1 through 7.3. The MATLAB code
used in these tests may be found in Appendix B. We stress that the reduced-order
models generated with this quasi-parallel algorithm should exactly equal those formed
with a true 16-processor machine. At this point, our goal is obviously not an indepth
analysis of the approach’s efficiency; although an execution time is desired that is in
the neighborhood of L sparse linear system solves. Rather, we simply emphasize the
potential of the approach.

In Examples 7.1 through 7.3, a few details should not be overlooked. First, the
random generator seed was set to zero at the beginning of each test. Second, the plots

associated with each case utilize a dotted line to denote the true frequency response, a
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dashed line to denote the frequency response of the reduced-order model, and a solid line
to denote the error estimate ¢. Third, it is expected that the reduced-order models will
be augmented by an additional 16 states (corresponding to 8 interpolation points and
their complex conjugates) after each outer MATLAB iteration. The actual model size,
denoted by m, does not grow quite as quickly, however, because dependent directions
(corresponding to singular values with relatives sizes under 107®) are discarded by the

SVD postprocessing of Section 4.1.1.

Example 7.1 In this problem, we reconsider the packaging interconnect of Fxample 4.5.
A quasi-parallel RP algorithm was executed for only L = 2 outer iterations. The results
after each iteration are shown in Figures 7.1 and 7.2. Both the quality of the reduced-
order models and the error estimates are high. The accuracy of this 25" order model is
is competitive with the results of the sequential dual rational Arnoldi algorithm in Figure
4.5. Although the dual RA approach matches twice as many moments, dual RA does not

aggressively utilize multiple interpolation points.

Example 7.2 In this problem, we reconsider the CD player subsystem of Example 6.3.
The results after each of the first L = 4 iterations are displayed in Figures 7.3 through
7.6. The model accuracy is again comparable to that of the dual RA Algorithm 6.2. The
error at high frequencies is due primarily to the measure (Hs norm) of the modeling

error and not to a shortcoming of the parallel RP method.

Example 7.3 In this problem, we reconsider the PEEC model of Frample 5.2. The
results after each of the first L = 4 iterations are displayed in Figures 7.7 through 7.10.
The reduced-order model accuracy with the parallel RP algorithm is actually superior
to the previously seen dual RA results. The large number of spikes in this problem’s
frequency response are more rapidly found (in terms of model size m) with a large number
of interpolation points. It is interesting to note that the number of discarded projection
directions becomes large as the degree of convergence becomes significant (the model size

between | = 3 and [ = 4 changes only by two). The difference between the original and
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reduced-order models is no longer large enough to readily support multiple new directions

(additional interpolation points) beyond | = 3.

A parallel model-reduction algorithm involving one random projection matrix Z and
one nonorthogonal projection matrix V was proposed. Using a random Z reduces the
number of moments that can be matched by the reduced-order model. Yet a random 7
allows for the parallel construction of the reduced-order model with minimal communi-
cations. Also, as long as V satisfies (3.1), M moments are still matched. Error estimates
and adaptive point placement are aimed at acquiring an efficient, balanced convergence.
By avoiding Gram-Schmidt recurrences during the construction of this V', parallelism is
further increased. Although the lack of orthogonality in V' can lead to dependences, these
problems can apparently be overcome by the use of numerous interpolation points and
SVD postprocessing of the reduced-order model. Although further study of this SVD
postprocessing is required (see Chapter 10), the results of Examples 7.1 through 7.3 are

noteworthy.
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Figure 7.1: Approximate Frequency Response of Example 7.1 when m = 12
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Figure 7.2: Approximate Frequency Response of Example 7.1 when m = 25
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Figure 7.5: Approximate Frequency Response of Example 7.2 when m = 40
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Figure 7.6: Approximate Frequency Response of Example 7.2 when m = 48
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Figure 7.7: Approximate Frequency Response of Example 7.3 when m = 15
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CHAPTER 8

APPROXIMATE RATIONAL INTERPOLATION

The power of the model-reduction techniques of the previous sections arises primar-
ily from the construction of bases for the exact DS-preconditioned Krylov subspaces in
(3.1) and (3.2). However, it is doubtful that these bases can be generated or even stored
as the size and/or complexity of the original system grows. For example, direct sparse
factorizations of a matrix pencil arising from a three-dimensional discretization are fre-
quently impractical. This chapter considers approaches for reducing the computational
effort required in rational interpolation. Both explicit and implicit approximations to
(A — oFE)~! are incorporated into the projection subspaces. Some of the exact relations
of Chapters 3 and 4 are lost, but reasonable results are still possible.

The following efforts represent some of the first attempts to relax the requirements
on DS preconditioners in Krylov algorithms in order to reduce work. This chapter is a
starting point rather than a final solution for reducing the computational effort in model

reduction.

8.1 Conversions to Approximate Solves

The construction of an exact rational interpolant requires the exact DS preconditioners

present in the subspaces of (3.1) and (3.2). By Lemmas 2.1 and 2.2, these subspaces take

the form
colsp{V} = O Kj(A—ocWE)y Y (A—sE),(A—- P E)b) (8.1)
colsp{Z} = O K ((A- U(k)E)_T(A —sE)T (A - U(k)E)_Tc), (8.2)

140



where (A — o™ E)~" is an exact DS preconditioner and the choice of s is superfluous.
Emphasizing the iterative solution of the dual systems of equations (1.2), recall that
Section 3.2 suggests the need to find only acceptable approximate solutions V%, and
Zz. across the frequency range of interest. In adopting this view and abandoning strict
moment-matching conditions, inexact DS preconditioners become appropriate. We re-
place (A — ¢ E)~"in (8.1) and (8.2) with approximations.

An adaptation of the RK algorithm utilizing approximations to (A — c®E)~! is
presented in Algorithm 8.1. There are only two differences between Algorithms 4.1 and
8.1. The matrix (A — 0, F)~! was replaced with 9, ~ (A — ¢, E)~" in (S8.1.2) and E
was replaced with (A — ¢, F) in (S8.1.4). The scalar (,, corresponds to fixing a value for
sin (8.1) and (8.2). It was noted in Section 3.2, that the choice of s in (8.1) and (8.2) is
not relevant for the exact DS preconditioner case due to the shift invariance property of
Krylov subspaces. Thus, in the previously assumed exact cases, it made computational

sense to simply replace (A — sFE) with F (think of allowing s to grow larger).

Algorithm 8.1 Rational Krylov (Approximate General Version)

Initialize: ¢, = (v{)~'b and w; = (B¥) LT,
For m=1to M,

(S8.1.1) Input: o,,, the interpolation point for m iteration;

(S8.1.2) ¥, = ®pqp,, 11 and 2, = L, 1y;

(S8.1.3) Y0y = O — Vi1 0y and 82 2z = 20 — Zppe1 Zm;

(S8.1.4)  Gmy1 = (A = (uE)vy and g1 = (A — G E) 2,5

(S8.1.5)  my1Gm41 = Gms1 — QuGmar and Bl wpgy = Wyngr — Wiy Wg;
end

The generated V' and Z of the approximate RK algorithm no longer form bases for
unions of Krylov subspaces (Lemmas 2.1 and 4.1 do not carry over to the inexact DS pre-
conditioning case), nor do these projection matrices lead to rational interpolants. How-

ever, the reduced-order model formed from (2.7) with approximately DS-preconditioned
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V and Z does satisfy the Petrov-Galerkin constraints (meeting the Petrov-Galerkin con-
straints is not restricted to moment-matching) and Theorem 5.1 still holds. As long as
reasonable approximations Vx;, and ZX. to x; and x. are acquired, a good reduced-order
model is achievable. It is interesting to note that even the exactly DS-preconditioned V
and Z do not necessarily lead to optimal approximations to x; and x. at all s. Rational
interpolation leads to exact DS preconditioners, which are only optimally suited for a
few discrete points, i.e., the interpolation points. For frequencies away from the inter-
polation points, it is uncertain as to whether (A — O'(k)E)_l is necessarily a better DS
preconditioner than some Py, ~ (A — oM E)~1,

Two new parameters, ¢, and (,,, appear in Algorithm 8.1 and must be specified.
We denote ®,, as the DS preconditioning operator of the m!" iteration. The operator

~1 on a vector. If ®,, is a matrix, which

®,, approximates the action of (A — 0, F)
was always assumed in the past, then it is a member of the set { P, Ps, ... Px}, where
P, is an approximation to (A — ¢ E)~'. This choice is consistent with the previous
notation regarding a DS preconditioner. Numerous possibilities exist for finding a fixed
DS preconditioner P, that approximates (A — oW E)~' [8]. Typically, one constructs
a sparse matrix, which can be utilized to approximate the action of (A — oc®E)~'. In
the incomplete LU approach, for example, an approximate, sparse LU factorization of
(A — o™ E) is computed. Elements appearing during the factorization that correspond
to a certain level of fill or possess sizes that are under a certain tolerance are dropped
[95]. A second technique is the approximate inverse approach. One constructs a Py with
some sparsity pattern, so that P,(A— O'(k)E) — [ is minimized with respect to some norm,
e.g., the Frobenius norm [96].

Alternatively, and more generally, one can think of ®,, as an operation that takes in

the vectors ¢,,,+1, wy,,+1 and outputs the vectors v,,, z,,. Hence, ®,, can represent an

iterative system solver that computes approximate solutions to the equations®

(A= 00, = qp41 and (A — UmE)sz = Wpp+1- (8.3)

*Note that the exact (ideal) solutions in (8.3) are underlined. The vector that is actually computed
(the approximation) is indicated in standard fashion without underlining.
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When an iterative solver is utilized, ®,, represents a nonlinear operation which is no
longer associated with a fixed matrix P. The use of iterative solvers to implicitly perform
DS preconditioning is common in the linear solver literature [70, 71, 97]. Methods of this
type are known as inner-outer iterations. The outer iteration constructs a search subspace
for the solution of the original problem. In our case, the outer iteration constructs the
projection matrices V and Z. During each outer step, an entire loop of inner iterations
is executed (not necessarily for the same number of steps each time) to generate the
DS preconditioner for the current outer step. In our case, the inner iteration consists
of iteratively constructing approximate solutions in (58.1.2) to (8.3). The operator @,
is implicitly defined by the inner iteration. Many different iterations are possible when
constructing the approximations ©,, and 2, to (A—o,,F)"1q,, 11 and (A—0c,, £) " Tw,, 41
These inner iterative solvers are generally Krylov methods themselves. The approximate
solutions v,, and Z,, are typically chosen from the inner Krylov subspaces, according
to Petrov-Galerkin or minimal residual constraints. Examples of iterative approaches
satisfying these two respective constraints are the biconjugate gradient (BiCQG) and quasi-
minimal residual (QMR) methods [6, 8]. These particular methods are mentioned because
they are two-sided; each can simultaneously generate approximation solutions to dual
systems of equations involving (A — o™ E) and (A — ¢ E)T. A noteworthy one-sided
approach is the generalized minimal residual (GMRES) method [8, 84].

The other new parameter of interest in the approximate RK algorithm is (,. If
(and only if) ®,, is an inexact DS preconditioner, then the specific choice for ¢, in
(S8.1.4) contributes to the specification of the V and Z column spaces. In the exact case,
(A — (n F) was replaced with F for convenience. We denote this exact case as (,, = oo,
although one would certainly not compute (A — (,,, F') as such. In the inexact case, it is
possible to tune (,, for improved results.

One possible choice for (,, is the interpolation point o,. The motivation for this
selection is that the matching of moments at o, is closely connected to solving the dual
equations (1.2) at s = 0,,,. The traditional subspaces involved in solving the system of

equations (1.2) with s fixed at o, is (2.17) with (,, = 0. A second motivation for this
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Cm choice follows from the mapping of the eigenvalues of (A, F) to the eigenvalues of
¢, (A — (nF). A mapping for the case when @, is exact and (,, = oo was presented
in Figure 6.1. A mapping is sought that makes the desired eigenvalues stand out in the
spectrum of the DS-preconditioned matrix. In Figure 6.1, the properties of the exact DS
preconditioner drove the desired poles to the outer edge of the spectrum. An example
of a mapping for the (,, = 0, case is displayed in Figure 8.1. This mapping has been
studied to a great extent in the eigenvalue literature for a technique known as Davidson’s
method [19, 98]. It transforms any eigenvalue of (A, E') near o to a position in the
spectrum of ®,,(A — 0, F) that is close to the origin. This behavior follows from the
fact that if X is an eigenvalue of (A, ), then zero is an eigenvalue of ®,,(A — AE) for
any matrix ®,,. On the other hand, because ®,, is an approximation to (A — o, F),
it is hoped that the other eigenvalues of ®,,(A — 0, F) are close to 1. If this mapping
occurs, the desired eigenvalues of (A, F) near o are mapped towards the origin and are
well separated from a cluster at 1. Unfortunately, this argument and the choice (,, = o,
breaks down if ®,, becomes too good of an approximation to (A — o, £)~". In this case,
®,, (A — 0, F) becomes the identity and all eigenvalues are mapped on top of each other
at 1. Furthermore, multiplication of old directions in V and Z by the identity contributes
no new information in subsequently computed directions.

As later experiments in Examples 8.3 and 8.4 indicate, the choice of ( can lead to sig-
nificant, but oftentimes unpredictable differences in the convergence of the reduced-order
model. In practice, (,,, can be tuned between co and o, by using available information
on the DS preconditioner quality and/or the convergence behavior of previous solves.
Alternatively, more sophisticated approaches for implementing the approximate solvers

are discussed in Section 8.3, which de-emphasizes (,,.

8.2 Approximate Solve Algorithms

Although the choices for ®,, and (,,, are not trivial, they are straightforward given the

above discussions to adapt the algorithms of Chapter 4 for approximate system solves.
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All that is required is to repeat the modifications seen in the approximate RK algorithm.
An approximate dual RA algorithm is presented in Algorithm 8.2.

As long as orthogonality is (nearly) maintained in V and Z, convergence in at most
N steps is still guaranteed in the approximate dual RA version. Of course, effective DS

preconditioners should be utilized to obtain an effective model of size M < N.

8.2.1 Approximate rational Lanczos

More than other RK variants seen in Chapter 4, the rational Lanczos algorithm relies
on the properties of the exact DS preconditioner. This reliance made it an efficient algo-
rithm in Section 4.1.4, but it also makes the approach a questionable one for inexact DS
preconditioning. The RL algorithm relied on exact DS preconditioning in Theorem 4.3
to achieve banded A and E matrices. If approximations to (4 — o® E)~! are utilized in
(54.5.6) of the RL algorithm, the reduced-order systems matrices become dense. Either
these now nonzero off-diagonal terms must be computed or an error is incurred. Com-

puting all of the elements in A or E corresponds to full-length biorthogonality recursions
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Algorithm 8.2 Rational Krylov (Approximate Dual RA Version)

Initialize: m =0
For y =1 to J,
For k =1 to K,
(S8.2.1) Ify=1,
Uy = ©,,0 and z,,, = CI);CLC;
else
O = ®p(A — (uE) vy and 2, = L (A - ( E) 2k
end
$8.2.2) Dy =0y — Vua VI 0, and 2, = 2, — Zp 1 2L 2

S8.2.3) vy = On/||0n|| and z, = 2,/

.
Zml

o~ e~

S8.24) m=m+1;
end

end

(rather than length K + 2 recursions). Thus, this approach for dealing with approximate
DS preconditioning increases the cost of an approximate RL algorithm to levels com-
parable with the dual RA approach. However, the approximate dual RA algorithm is
numerically more reliable; an O(M?*N) version of the RL algorithm is of little value.
The only other apparent option to dealing with an approximate RL algorithm is to
simply ignore the error between ®,, and (A — o, F)~". In this case, simply edit (S4.5.6)
of the RL algorithm and nothing else. The approximate RL method is presented in
Algorithm 8.3. Banded A and E are still assumed in this algorithm (they are still formed
by using only the 3 terms in the length K + 2 recursions). The error in this theoretically

unsupported approach is characterized by Theorem 8.1.

Theorem 8.1 The output residual expression for the approzimate RL algorithm is

A A ~ A A

r.(s) = ﬂM+17M+1wM+1i£(SE — A)_Té(UM —s)— R(skE — A)_Té, (8.4)
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Algorithm 8.3 Rational Krylov (Approximate Banded RI Version)

Initialize: W = cand vy = &b and m =1
For y =1 to J,
For k =1 to K,

(58.3.1)
(58.3.2)
(58.3.3)
(58.3.4)
(58.3.5)
(58.3.6)
(58.3.7)
end

end

itm>1,0,=%®,Fv,_1; end

A m—1 [ A
Om = Om = 2 mmax(1,m—K—1) V¥m,l where 7, ; = W} V,,;
~ o~ m—1 T~ .
W = W — l=max(1,m—K-1) wlﬂm,l where 6m,l = U W

Vm = O [Ymm Where v m = /|01 05

Wiy, = Win/ B Where By, = sign(@ﬁﬁm)’ymm;

~ _ i THT .
W1 = B O w;

m=m+ 1;

where the m™ column of R is

P = Wi — (A — O'mE)T((I)z;me),

(8.5)

the residual associated with the approzimate system solve in (58.3.6) of the m'" iteration.

Proof:  Due to residual definition (8.5), the approximate system solution in the m'

iteration can be written as

2y = q)?nwm = (A - UmE)_T(wm — ).

Multiplying this expression on the left by (A — o,, E)T, i.e.,

(A— UmE)TZm = (Wm — ),

and a shift by sE7z,, yields the equivalent expressions,

(A — SE)TZm = (Wp — Tm) + (o — S)ETZm

wm—l—l

w
m+1
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The expression in (8.6) involves the relations in (58.3.3) and (58.3.6). Placing together

the expressions (8.6) for all M iterations produces the matrix equality

_ o -
3 _ (01— )

. W

(A=sE)'Z =R WA Wapsa | 7 M :

(Om = 5)

Br1,M41 |

which due to the definitions of £ in (4.21) and Ain (4.18), is the expression
(A—sE)TZ = W(A = sE) 4 (0 — 8)Brrp1 mprwarsrin, — R. (8.7)

The equality (8.7) can now be substituted into (2.13) to acquire the output residual
expression,
ro(s) = e+ {W(A=3sE)+ (0, — 8)Buprmsrtoniia — RIX.

= —Rk.—We+c+ Buppwnsisg(sE— A Te(o, —s).  (8.8)

The desired expression (8.4) follows trivially given (4.22), the definition of ¢ in the RL

algorithm. W

In the exact case, the output residual resulting from the RL algorithm is a scaled
version of wysy1. This vector wyryq stays biorthogonal with at least the recent directions
of V. Moreover, the scaling of w,,+1 drops to zero in regions around the interpolation
point. When approximations to (A — c® E)~" are employed, the output residual is
corrupted by the error in ®,,. The residual r,,, associated with the approximation for
the vector (A — o™ E)~Tw,,, appears in r.. Several things should be noted concerning

this corruption:

1. The corruption of r.(s) is proportional to the error in ®,,.

2. Unlike the exact case, the residual r. in approximate RL is not generally forced to

zero in the regions about the interpolation point.

3. Errors in the computation of (A—0,, £)~! in the m'* iteration continue to appear in

the reduced-order models of later iterations (the entire matrix R appears in (8.4)).
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4. The total corruption behaves as the sum (rather than product) of previous errors in
the computation of (A — 0, F)™!, because the matrix R appears in a matrix-vector
product in (8.4). This fact is good news for exactly DS-preconditioned versions of
the RL algorithm that are implemented in finite precision. Machine-level precision

errors in the linear system solvers are not blown up in later steps.

In summary, significant errors between (A —o®) E)~" and ®,, do not appear to be accept-
able in any iteration of the approximate rational Lanczos algorithm. Limited numerical

experience supports this result.

8.2.2 Approximate rational power methods

As with the dual RA algorithm, an appropriate approximate version of the rational
power algorithm follows readily with the modifications seen in Algorithm 8.1 for the ap-
proximate RK algorithm. There appears to be little value in such an approach, however,
because the the advantages of the dual RA approach over a two-sided RP method remain.

With the collapse of the elegant rational Lanczos theory in the approximate case,
one loses a low-memory (short recursion) projection technique. Although the dual RA
approach is reliable, storing the O(MN) elements of V and Z may exceed available
memory. This fact is especially true when approximate solves are utilized; one expects
the model dimension, M, to grow slightly in compensation for the solve inaccuracies.
An approach requiring only O(N) storage is achievable through a one-sided RP method.
Again, we turn to the idea of a prespecified Z matrix as in Section 7.3. If Z is completely
known a prior, the columns of V' (and associated columns of A and E) can be computed
without a full knowledge of one another, because the RP approach does not incorporate
orthogonalization. In the m' step of the sequential, approximate RP algorithm, one
computes v, = P, Fv,_1 (or v, = ®,0b if o, is a new interpolation point). After
scaling ¥,,,, one then computes the entire m™ column of A, and Em, ie., ZT Av,, and

ZT Ev,,. Once these low-order columns are acquired, 9,41 and Z,,,; are computed and
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the vectors v, and z,, are discarded from memory. At most, two length N vectors are
required for storage in this iteration.

The prespecified Z matrix must meet several conditions if this approach is to be
successful. First, a matrix Z,; of size N x M must be known ahead of time, where the
size of M is at least as great as M. In the proposed low-memory RP approach (unlike
the parallel version in Section 7.3), the m' columns of A,, and E,, must be computed
in their entirety during the m® iteration. Computing the entire first column of Ain the
first iteration therefore requires the knowledge of M immediately, but we would prefer
not to specify the final value for the reduced-order model size M a priori (hopefully, M
is adapted to the complexity of the dynamic system). To avoid this a priori specification,
choose an initial M larger than the estimate for M and work with Zy; throughout the
algorithm. To be conservative, make a guess for M prior to the model reduction and
choose M to be several times that. Of course, if M is significantly larger than the
eventual true value of M, then work is wasted. At each iteration, one computes Z]%%Avm
and Z]%%Evm when, in fact, only Z1;Av,, and ZI;Ev,, are eventually needed (the final
reduced-order pencil is cut from size M x M to M X M). For this reason, the product of
Z]\:% with a vector must be a relatively cheap operation, so that wasted work is not too
expensive. Additionally, it is hoped that Z,; can be compactly stored, because it (but
not V') must be available in its entirety.

As long as V satisfies (3.1), any value of Z leads to a reduced-order model which
matches M moments. In Section 7.3, it was suggested to simply choose a random Z. A
random Z,; can be compactly stored, but a matrix-vector product involving Z]\:% is an
O(MN) operation. For this reason, consider going to a Z,; that is composed of random
integers or is sparse. Choosing Z,; to be the first M columns of the identity matrix
Iy leads to extremely low storage and computations. However, sparsity patterns better
suited to the structure of the problem may improve convergence. An appropriate choice
for Zy; is a topic for additional research.

An algorithm implementing a one-sided, approximate rational power method is pre-

sented as Algorithm 8.4. The values of J; in this algorithm should be kept small (< 5)
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in an attempt to reduce dependencies among the columns of V. Dependencies may arise,
however, and require the singular value postprocessing that was discussed at the con-
clusion of Section 4.1.1. A small J; and correspondingly large K is not as significant
of a concern in the approximate version. In the approximate RP algorithm, complete
factorizations are no longer computed at every interpolation point. With iterative linear
system solvers, for example, there may not be a significant cost advantage to staying at

a few interpolation points.

Algorithm 8.4 Rational Krylov (Approximate RP Version)

Initialize: m = 0 and Zy;
For k =1 to K,
For j;. =1 to Ji,
(S8.4.1) If jp =1,
Uy = D, 0;
else

O = Pp(A — (G F)vm-1;

S8.4.2) vy = O/ |[Om |2
S8.4.3)  ay = Z]%%Avm and ¢, = Z]%%Evm;
S8.4.4) m=m+1;

o~ e~

end

end

An implementation of Algorithm 8.4 requires one approximate solve, one matrix-
vector product (mat-vec) with A, one mat-vec with F, and one mat-vec with Z,;. How-
ever, Z,; is hopefully chosen in a way to reduce expenses. The one-sided RP algorithm
also cuts cost by avoiding any operations involving AT or ET; the work per iteration

is divided in half. Assuming Z,; is chosen for compact storage and ®,, involves sparse
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operations, then the overall memory required by the algorithm is O(N + MM) elements.

This value represents an order M reduction versus the approximate dual RA algorithm.

8.2.3 Comparisons

The successful introduction of approximate solves into the model-reduction techniques
of Chapter 4 is not a trivial task. The theory governing the determination of modeling
error or interpolation points is no longer exact. Fast implementations may no longer be
based on elegant, short recursions, and perhaps most alarming, the debate over successful
iterative methods and preconditioners for generating the approximate solutions is far
from settled in the numerical linear algebra literature. Determining the right level of
preconditioning for a fixed system of linear equations is oftentimes a task involving trial
and error.

Nevertheless, the possible payoff with approximate solutions is great. In the remainder
of this section, the impact of approximations on the model reduction of two moderately
sized problems is considered. The breakdown of Lanczos-type approaches with approxi-
mate solves is demonstrated. However, we show that approximate rational interpolation
is possible without exact matrix factorizations. Finally, some initial insights into working
with approximate solves are related.

The first problem considered in the following examples arises from a discretization of

the partial differential equation (PDE) [99],

dx  0*x 0%z ox
o= + 52 + 20$ + 1802 + f(v, z)u(t). (8.9)

In (8.9), x is a function of time (t), vertical position (v) and horizontal position (z). The
boundaries of interest in this problem lie on a square with opposite corners at (0,0) and
(1,1). The function x(t,v,z) is zero on these boundaries. This PDE can be discretized
with centered difference approximations on a grid of n, X n, points [2]. The discretization
grid, when n, = 3 and n, = 5, is shown in Figure 8.2. A state-space equation of dimension
N = n,n, results from the discretization. The sparsity pattern of the resulting A matrix,

when n, = 7 and n, = 12, is shown in Figure 8.3. The input vector of the system
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corresponds to f(v,z) and is composed of random elements. The output vector of the
system is equated to the input vector for no other reason than simplicity.

For a second test problem, we consider n, interconnects that are running parallel to
each other horizontally and are coupled by mutual inductance vertically. For example,
there are n, = 2 parallel interconnects in Figure 8.4, each consisting of n, = 3 segments
of resistors, capacitors and inductors. The elements in the interconnects are randomly
generated. The variance of the resistance values is 1000, the variance of the capacitance
values is 107'? and the variance of the inductance values is 107'°. The input to the circuit
is a current source at the leftmost segment of the top interconnect. The output of the
circuit is the voltage at the rightmost segment of the bottom interconnect. For such a
system, MNA equations of dimension n,(2n, — 1) result. The first n,n. quantities in the
state vector are node voltages; the remaining ones are inductor currents. The sparsity
pattern of the resulting sE — A matrix, when n, = 3 and n, = 30, is shown in Figure

8.5. This sparsity pattern and the following examples were obtained via MATLAB.

Example 8.1 This example explores the impact of errors in the linear equation solutions

on various model-reduction implementations. Specifically, equations of the form

(A—0,E)0, = qn

(8.10)
(A—0,E)z, =w,

arise in the various RK implementations, which are solved to assorted degrees of numeri-
cal precision (16, 10, 6, and 2 digits of accuracy in the following). Besides the variations
in solver accuracy, different model-reduction implementations are considered: dual RA
with a real interpolation point, RL with a real interpolation point, dual RA with a few
imaginary interpolation points, RL with a few imaginary interpolation points, and dual
RA with numerous adaptively placed, tmaginary interpolation points. These combina-
tions of model-reduction algorithms and solver accuracies were applied to a discretization
of (8.9) on a7 x 12 grid. The frequency response of this discretization is in Figure 8.6.
Figure 8.7 plots the modeling error resulting from dual RA iterations (with a real

shift at 2x ) as the solver accuracy varies. The ‘0’ line corresponds to 16 digits of solver
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precision, the ‘x’ line corresponds to 10 digits of precision, the ‘“+’ line to 6 digits, and the
‘" line to only 2 digits. A quick analysis of these plots shows that the convergence of the
reduced-order model tends to stagnate at a level that is related to the solver precision in
a nonlinear fashion. When the noise level is reached in a given case, continued iterations
during this stagnation period only add random directions to V and Z—directions not
particularly suited for reducing the modeling error. This stagnation continues until the
number of iterations m becomes nearly N. When m s N, the modeling error is guaranteed
to drop to about machine precision if orthogonal V. and 7 were maintained (in all cases
orthogonality was maintained up to the limit of machine precision). A dual RA reduced-
order model with m = N is simply a different realization of the original model. Although
not shown, even the ‘x’ line drops off sharply towards zero when m = N — 1.

The results as the model-reduction algorithm varies are presented in Tables 8.1 through
8.4. In each table, the linear equations in the model-reduction algorithm are solved to a
different degree of numerical precision. The various dual RA implementations continue
to converge in a reasonable fashion as the degree of numerical precision drops. There is of
course some difference across the columns due to the varying interpolation point schemes.
Numerous imaginary interpolation points that are tuned to the modeling error consistently
yield the best results. However, the performance with a single real interpolation point or
two imaginary points is acceptable, as well, when dual RA is used for all but significant
levels of solver noise.

The results with RL algorithms are presented in the last two columns of Tables 8.1
through 8.4. FEven with significant digits of precision in Table 8.1, the RL results are
slightly inferior to those with the rational Arnoldi implementations. This slight discrep-
ancy is consistent with the RL approach’s dependence on biorthogonality (recall Example
4.5). The convergence of the RL approaches rapidly worsens when fewer digits of ac-
curacy are achieved in the linear equation solutions. In fact, the convergence of the RL
results level off immediately when fewer than 6 digits of accuracy are maintained in Ta-

bles 8.3 and 8.4 . This behavior is consistent with the observations made in Section 8.2;

157



Table 8.1: Convergence with 16 Digits of Precision in Example 8.1

Dual RA
Real o

Dual RA

Imag o

Modeling Error

Dual RA
Adapted o

RL
Real o

RL

Imag o

10
20
30
40
30
60
70
80

1.0012e-01
1.2973e-06
1.4979e-14
1.4957e-14
1.4911e-14
1.4974e-14
1.4860e-14
1.4932e-14

7.6131e-02
5.7945e-08
1.5185e-14
1.5154e-14
1.5205e-14
1.5257e-14
1.5199e-14
1.5194e-14

5.3675e-02
1.5544e-14
1.5557Te-14
1.3143e-13
2.5463e-13
2.3132e-13
5.9524e-13
3.2808e-13

9.9563e-02
1.0582e-04
6.9162e-10
6.9102e-10
6.9102e-10
6.9102e-10
6.9102e-10
6.9102e-10

7.6131e-02
5.7944e-08
9.6934e-13
9.6930e-13
9.6930e-13
9.6930e-13
9.6930e-13
9.6930e-13

Table 8.2: Convergence with 10 Digits of Precision in Example 8.1

Dual RA
Real o

Dual RA

Imag o

Modeling Error

Dual RA
Adapted o

RL
Real o

RL

Imag o

10
20
30
40
30
60
70
80

1.0012e-01
1.3054e-06
7.8977e-12
3.4019e-10
4.9277e-10
1.5035e-10
1.7546e-10
6.5200e-11

7.6131e-02
5.7963e-08
2.2175e-13
2.4578e-13
6.6366e-13
1.3442e-12
2.9901e-12
3.9822e-13

5.3322e-02
7.1350e-12
1.4679e-14
1.4752e-14
1.4727e-14
1.4653e-14
1.4665e-14
1.4857Te-14

9.9582e-02
8.0087e-04
2.6930e-06
2.6937e-06
2.6937e-06
2.6937e-06
2.6937e-06
2.6937e-06

7.6131e-02
1.0609e-06
1.9547e-08
1.9547e-08
1.9547e-08
1.9547e-08
1.9547e-08
1.9547e-08
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Table 8.3: Convergence with 6 Digits of Precision in Example 8.1

Dual RA
Real o

Modeling Error

Dual RA

Imag o

Dual RA
Adapted o

RL
Real o

RL

Imag o

10
20
30
40
30
60
70
80

7.9312e-02
1.2610e-02
9.6187e-03
6.2384e-03
1.7408e-02
1.9966e-03
5.6909e-03
1.5544e-04

7.6256e-02
1.0527e-05
8.5144e-06
5.1706e-05
1.6411e-05
7.5595e-06
1.0981e-05
5.8382e-06

2.8675e-02
2.4593e-10
4.3110e-11
5.0282e-12
7.6168e-12
3.0844e-12
7.1168e-12
1.3037e-12

9.9623e-02
9.9211e-02
9.9052e-02
9.9039e-02
9.9196e-02
9.9049e-02
9.9054e-02
9.9056e-02

7.6128e-02
2.5076e-04
2.2276e-04
2.2332e-04
2.2354e-04
2.2350e-04
2.2349e-04
2.2357e-04

Table 8.4: Convergence with 2 Digits of Precision in Example 8.1

m Modeling Error
Dual RA Dual RA | Dual RA RL RL
Real o Imag o | Adapted o Real o Imag o

10 || 8.4919e-01 | 3.7454e-01 | 2.5081e-01 | 4.7903e-01 | 4.8004e-01
20 || 2.4262e+400 | 8.9720e-02 | 7.3547e-03 | 4.7906e-01 | 2.1937e-01
30 || 6.3352e-01 | 1.2191e-01 | 2.3288e-03 | 4.7906e-01 | 1.6319e-01
40 || 4.3093e-01 | 4.8418e-02 | 4.2221e-04 | 4.7906e-01 | 5.8513e-01
50 || 4.8595e-01 | 7.1805e-02 | 6.9019e-04 | 4.7906e-01 | 1.1733e-01
60 || 4.6206e-01 | 1.4629e-03 | 2.0862e-03 | 4.7906e-01 | 1.2958e-01
70 || 2.4451e-01 | 4.1994e-04 | 2.6235e-04 | 4.7906e-01 | 1.0641e-01
80 || 8.9394e-02 | 1.8301e-04 | 6.8138e-05 | 4.7906e-01 | 1.5627e-01
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numerical errors in rational Lanczos do not dissipate with additional modeling iterations.

The errors in the RL approximations continue to be large, even when m surpasses N.

Example 8.2 We also repeated the above experiments for the previously described in-
terconnect problem with n, = 3 and n, = 30. The frequency response of this system s
displayed in Figure 8.8. The convergence of a dual RA tmplementation with a real shift
at 27100 is plotted in Figure 8.9 for several different levels of solver precision. Again,
the ‘o’ line corresponds to 16 digits of solver precision, the ‘x’ line to 10 digits, the ‘4’
line to 6 digits, and the ‘x* line to 2 digits. The results are plotted through the first 100
iterations, although N in this problem is 177. Unlike Figure 8.7, the lines in Figure 8.9
are not easily distinguishable. With high solver accuracy (16 digits of precision), con-
vergence is only gradual because this problem’s dynamics are not easily captured with a
single interpolation point. Less solver accuracy (10 or 6 digits) is sufficient to reproduce
this gradual convergence, as well. The results in Figures 8.7 and 8.9 seem to suggest
that the level of solver accuracy in the (m + 1) iteration need only be consistent with
the degree of model convergence after m iterations. This relation between the current
model error and the required solver accuracy in the m' iteration (if it does indeed exist)
is clearly nonlinear, however. Characterizing the minimal level of solver accuracy for
near-ideal, reduced-order model convergence is an interesting question requiring further
tnvestigation.

Again in this example, we also consider the convergence behavior of various RK im-
plementations. The dependence of this behavior on the solver precision is indicated in
Tables 8.5 through 8.8. The most important feature in these plots is the stagnation in the
RL implementations as solver accuracy diminishes. For the case of two digits of precision
(which is probably the closest to reality in actual approximate solution techniques), the
implemented RL approaches are completely useless. As noted above, the results of the

various RA implementations are barely affected by the variations in solver precision.

In practice, a loss of numerical precision in the solver follows naturally from the

approximations existing in inexact DS preconditioners or inner solver iterations. Yet
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Table 8.5: Convergence with 16 Digits of Precision in Example 8.2

m Modeling Error
Dual RA Dual RA Dual RA RL RL
Real o Imag o Adapted o Real o Imag o

10 || 1.0227e+00 | 4.0696e-01 | 1.4265e+00 | 1.0227e+00 | 4.0696e-01
20 || 2.8240e-01 | 2.7610e-01 | 2.1883e-01 | 2.8240e-01 | 2.7610e-01
30 || 1.1404e-01 | 2.7239e-01 | 9.6314e-02 | 1.1404e-01 | 2.7239e-01
40 || 1.2071e-01 | 3.4685e-01 | 2.4581e-02 | 1.2071e-01 | 3.4685e-01
50 || 5.4785e-02 | 2.4587e-01 | 2.0032e-02 | 5.4785e-02 | 2.6438e-01
60 || 9.8426e-02 | 2.2455e-01 | 2.0912e-02 | 9.8425e-02 | 2.6073e-01
70 || 6.9414e-02 | 6.8882e-02 | 1.3267e-02 | 6.9414e-02 | 2.5526e-01
80 || 2.1697e-02 | 7.0448e-02 | 3.9350e-03 | 2.4651e-02 | 2.5606e-01
90 || 1.3254e-02 | 5.4822e-02 | 2.5981e-03 | 1.4218e-02 | 2.5698e-01
100 || 5.0322e-03 | 4.5268e-02 | 4.9065e-04 | 1.4703e-02 | 2.6290e-01

Table 8.6: Convergence with 10 Digits of Precision in Example 8.2

m Modeling Error
Dual RA Dual RA Dual RA RL RL
Real o Imag o Adapted o Real o Imag o

10 || 1.0227e+00 | 4.0696e-01 | 1.4265e+00 | 1.0227e+00 | 4.0696e-01
20 || 2.8240e-01 | 2.7610e-01 | 2.1882e-01 | 2.8239e-01 | 2.7610e-01
30 || 1.1406e-01 | 2.7239e-01 | 9.6314e-02 | 1.1413e-01 | 2.7239e-01
40 || 1.2035e-01 | 3.4674e-01 | 2.4581e-02 | 1.2072e-01 | 3.0056e-01
50 || 5.4705e-02 | 2.4605e-01 | 2.0032e-02 | 5.4746e-02 | 3.4728e-01
60 || 1.0319e-01 | 2.4037e-01 | 2.0912e-02 | 9.5094e-02 | 2.6343e-01
70 || 7.4712e-02 | 9.6700e-02 | 1.3266e-02 | 4.3219e-02 | 2.6649e-01
80 || 2.0836e-02 | 6.8930e-02 | 3.9349e-03 | 3.7064e-02 | 2.7249e-01
90 || 1.3713e-02 | 4.6907e-02 | 2.5981e-03 | 1.6420e-02 | 2.6041e-01
100 || 1.2824e-02 | 4.5367e-02 | 4.9067e-04 | 1.6671e-02 | 2.6200e-01
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Table 8.7: Convergence with 6 Digits of Precision in Example 8.2

m Modeling Error
Dual RA Dual RA Dual RA RL RL
Real o Imag o Adapted o Real o Imag o

10 || 1.0112e+00 | 4.0446e-01 | 1.4250e+00 | 1.0199e4-00 | 4.0720e-01
20 || 2.8986e-01 | 2.7599e-01 | 1.8035e-01 | 1.4775e+00 | 2.7624e-01
30 || 1.1816e-01 | 2.7328e-01 | 1.4771e-01 | 4.6811e-01 | 2.7257e-01
40 || 9.9176e-02 | 2.7947e-01 | 5.0217e-02 | 4.3410e-01 | 2.7457e-01
50 || 4.4016e-02 | 2.6507e-01 | 2.1662e-02 | 4.3203e-01 | 2.7487e-01
60 || 6.7788e-02 | 2.4560e-01 | 1.4191e-02 | 4.3610e-01 | 2.7429e-01
70 || 4.0316e-02 | 2.6098e-01 | 5.4195e-03 | 4.3834e-01 | 2.7637e-01
80 || 1.7033e-02 | 1.25975e-01 | 5.2231e-03 | 4.3850e-01 | 2.7490e-01
90 || 1.8339e-02 | 1.0604e-01 | 3.6121e-03 | 4.3846e-01 | 2.7584e-01
100 || 1.4709e-02 | 7.5908e-02 | 6.9394e-04 | 4.3846e-01 | 2.7380e-01

Table 8.8: Convergence with 2 Digits of Precision in Example 8.2

m Modeling Error
Dual RA Dual RA Dual RA RL RL
Real o Imag o Adapted o Real o Imag o

10 || 1.0155e+00 | 1.3251e400 | 1.2823e+00 | 1.0000e+00 | 2.7562e+00
20 || 6.1500e-01 | 5.7633e-01 | 3.3702e-01 | 1.0000e+00 | 2.7090e+00
30 || 1.0031e-01 | 8.9612e-01 | 8.7027e-02 | 1.0000e+00 | 1.1193e+01
40 || 1.9410e-01 | 3.3256e-01 | 7.2225e-02 | 1.0000e+400 | 4.7387e+00
50 || 5.2599e-01 | 3.7340e-01 | 3.8174e-02 | 1.0000e+00 | 4.0128e+00
60 || 9.7136e-02 | 3.9263e-01 | 3.2044e-02 | 1.0000e+00 | 4.2823e+00
70 || 2.6194e-01 | 4.1133e-01 | 3.0033e-02 | 1.0000e+00 | 1.8649e+00
80 || 8.8138e-02 | 4.8893e-01 | 1.4716e-02 | 1.0000e+00 | 7.7877e+00
90 || 1.0393e-01 | 5.4277e-01 | 1.2229¢-02 | 1.0000e+00 | 2.6655e+00
100 || 6.0593e-02 | 3.7207e-01 | 1.3597e-02 | 1.0000e+400 | 1.4687e+01

163




regardless of the exact source of the inaccuracy, the approximate dual RA approach can
lead to valid reduced-order models. This fact is demonstrated in the following examples
on some larger versions of the two problems of interest. The results of this experimenta-
tion are preliminary and are not intended to reflect a final effort towards incorporating
approximate solves. Merely demonstrating that exact factorizations of (A — sE') are not

required is apparently a novel result.

Example 8.3 Consider a discretization of the PDE in (8.9) on a 40 x 60 grid. This
grid leads to an A matriz of dimension N = 2400 with 11800 nonzero elements. The
approximate dual RA algorithm is applied to this problem with a real shift of 2m. The
systems of linear equations (8.10) are approvimately solved with the GMRES method
[8]. Each inner GMRES iteration incoporates an inner-preconditioner’ formed with the
TLUT(4,0) method of [8]. That is, an ILUT preconditioner is applied to (8.10) prior
to the execution of the GMRES method. The operator ®,, combines both a fized inner
preconditioner and an iterative solver,

The results of 100 dual RA iterations with either five or twenty GMRES inner itera-
tions are presented in Table §8.9. Thus, 500 total inner iterations take place in the first
case and 2000 in the second (these iterations only involve matriz-vector products how-
ever). Different values of (,, (00 and 0,,) are also presented in this table. Note that the
Cm = Om case performs well when the DS preconditioner is poorer (fewer GMRES steps),
but s unacceptable when the DS preconditioner is more accurate. The opposite behavior
occurs when (p, is 0o, i.e., (A — (uF) is replaced with E. Although the best results are
obtained in the second column, the results with a well-chosen (,, and only five GMRES

iterations in column three are reasonably good.

Example 8.4 Consider six parallel interconnects that each consist of 150 segments. This
problem has an N of size 1794, an A matriz with 4476 nonzero elements and an E

matriz with 6294 nonzero elements. The approrximate dual RA algorithm was utilized for

TThe DS preconditioner ®,, is used to speed the convergence of the reduced-order model (the outer
iteration) over a range of frequencies. An inner preconditioner is utilized in the inner solver iteration to
speed the determination of a solution to (8.10).
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model reduction with fifteen GMRES inner iterations and o = 2x10°. In this example,
though, we vary the inner preconditioner used in the inner iteration between ILUT(2,0)
and ILUT(4,0). That is, more fill is allowed in the inner preconditioner in the latter
case. The results of 100 modeling iterations are in Table 8.10. The amount of inner
preconditioning is critical in this problem; significant differences result from only moderate

changes in ®,,.

Computing reasonably accurate solutions to the dual system of equations demands
good DS preconditioners. Even when iterative Krylov techniques are involved in the
solution, this inner iteration often involes an inner preconditioner, e.g., as in Example
8.3. It is felt that the use of improved inner preconditioners and inner iterations is crucial
to the successful implementation of a faster, approximate model-reduction method, i.e.,

Section 8.2.2.

8.3 Relating Inner and Outer Recursions

In prior portions of this chapter, the generation of ®,, is considered to be an indepen-
dent subproblem in the model-reduction procedure. However, because the choice of ®,,
depends on the properties of A and F, it is logical to utilize every piece of information
about A and E during the linear system solves. The search and constraint subspaces,
which are iteratively generated during past model-reduction steps, provide useful infor-
mation about A and E. Consider the computation of the next direction in the outer

modeling iteration. Ideally, one solves the equation
(A= 0ms1 E)Opgy = (A = G By, (8.11)

exactly. If this is not possible, some sort of approximation is required. The reduced-order

model itself provides a guess for the solution to (8.11),
Ot = Vil A = 0w B ) 20 (A = (o By (8.12)

This initial guess finds an approximate solution in the column space of V,, that satisfies

a Petrov-Galerkin constraint with respect to Z,,. Using the projection associated with
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Table 8.9: Convergence with Approximate Solutions in Example 8.3

m Modeling Error
(m =00 G = Om
5 GMRES steps | 20 GMRES steps || 5 GMRES steps | 20 GMRES steps

10 9.9508e-01 1.3772e-03 5.9617e+400 1.6515e+4-00
20 1.1376e+00 1.9907e-04 9.0502e-02 1.0812e+400
30 2.1930e+00 4.5920e-05 3.7690e-01 1.1226e+4-00
40 1.2878e+00 2.7160e-04 9.2384e-03 1.2008e+-00
50 3.4732e+00 3.4845e-04 3.2868e-02 1.6405e+-00
60 3.4849e+00 8.7005e-05 2.7594e-02 3.2289e-01
70 1.2312e+00 8.2442e-05 8.1249e-02 1.2692e-01
80 2.0851e+00 5.0187e-05 1.1214e-01 1.2623e-02
90 1.0403e4-00 2.7940e-04 4.0154e-01 7.1056e-02
100 2.5813e+4-00 2.0818e-05 4.5188e-02 3.3366e-01

Table 8.10: Convergence with Approximate Solutions in Example 8.4

m Modeling Error
ILUT(2,0) | ILUT(4,0)
10 || 1.0000e+00 | 6.8291e-01
20 || 1.0005e4-00 | 4.6680e-01
30 || 8.7317e-01 | 3.7234e-01
40 || 2.1176e+00 | 4.7784e-01
50 || 5.8921e+400 | 2.8841e-01
60 | 4.4015e400 | 2.0572e-01
70 || 1.3687e+01 | 1.2033e+400
80 || 1.2908e401 | 1.6671e-01
90 || 1.2099e401 | 1.1474e-01
100 || 1.1945e+01 | 1.0359e-01
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model reduction to generate an initial guess o)), can lead to better inner-solver results
than simply choosing o7, ., to be a random vector or a vector of zeros. In a sense, (8.12)
recycles existing work rather than trying to solve (8.11) from scratch. Unfortunately,
(8.12) is not enough by itself. Because the purpose of solving (8.11) is to compute a new
direction v,,11, an approximate solution that lies entirely in the existing directions of V,,
is not acceptable.

The initial guess in (8.12) must be improved upon. This correction can be accom-

plished by incorporating the initial guess into (8.11) to form the problem
(A= s B)Bgs — 81) = (A= G Yo — (A= 0 )il yy (8.13)
An approximation v,,11 then follows by approximately solving
(A = st E)ign = (A — o By — (A = 0 E)ily
and adding 09, to the result. The computed vector @,,41 is an update that hopefully

leads to a better approximation, v,,41 = 05, + Un41. This update is, in fact, the new

direction introduced into V,,41; the vector 4,1 satisfies

rn{[ 1 J} o[ e ]}

because oy, lies in the column space of V;,. The update can be approximated as

Ut = Ponr {(A = G )0y, — (A = 01 B0 41} (8.14)
where @, approximates (A — 0,41 F)™". As before, ®,,.; can be a fixed DS precon-
ditioner, an iterative solver, or a preconditioned iterative solver. The rightmost term
in (8.14) incorporates existing information from the outer modeling iteration into the
approximate solve of (8.11). We try to avoid recomputing already known information
during the formation of @,,11.

The computation of @,,11 can actually be simplified further by rewriting the initial

guess as
f)?n—l—l = Vm(Am - Um+1E)_1ZT€(A — O'm+1E)Upm
(a1 = o )WVin (A — 0 )1 ZL Bv,

= Vpp + (Ot — Cpm)vm(Am - Um+1E)_1Z£Evpm.
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Using this expression for the initial guess, the update (8.14) becomes

Unt1 = (Tms1 = G ) Prng1 Bvp,,

~(Tms1 = Cpn) Pt (A = Gt BV (A — 0 )1 ZL By,

= (Um+1 - Cpm)q)m+1 {Evpm

— (A= Ot BV (A = 0n )7 20 By, b (8.15)
There are two important things to note about (8.15). First, the update t,,41 consists of
the vector ®,,11 Fv, , which is perhaps the most naive approximation to the ideal new

direction (A — 0,11 E) ' Ev, , and a correction vector
®1(A = 01 BV An — 0 )7 21 By,

which incorporates information from the existing reduced-order model. When &,
nears (A — 0,41 F)7", the vector ®,,.1Fv,, nears the ideal direction, while the cor-
rection Vm(Am — 0m+1E)_1Zg;Evpm is contained in colsp {V,,} and is, hence, irrelevant.
On the other hand, if the reduced-order model is accurate (a fortunate event), then
Vm(A — 0m+1E)_1Z£ nears (A — 0,41 E£)"" and the update @,,41 becomes small. A
second important feature of (8.15) is that the parameter (,,, only comes into play as a
scaling. However, scalings do not matter in constructing subspaces, so that the unscaled
vector

1 { vy, — (A = O EVWVo( Ay — 0 ) 20 B, (8.16)

is a perfectly appropriate new direction for augmenting V,,,. Even though ®,, may not
be an exact DS preconditioner, the choice of o), as a starting guess leads to a new
direction (8.16) that is independent of (. We have thus found a second way (exact DS
preconditioning was the first) for generating V' directions that are independent of the
evaluation point (.

As a side note, it is claimed that the derivation of (8.16) provides an alternative path
for obtaining Davidson’s method for the eigenvalue problem [98]. We return to this topic

in Section 9.1.3.
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Example 8.5 [f the discretized PDE in Example 8.3 is solved with the improved initial
guess in (8.12) for 100 modeling iterations, the data in Table 8.11 are the result. The
use of the improved starting vector leads to a convergence which is slightly improved over
the best cases in Frample 8.3. However, the best results in Frample 8.3 required careful
choices for (, an issue that is no longer a concern here. The results in this example are

independent of (1.

Table 8.11: Improved Starting Vector Results in Example 8.5

m Modeling Error
5 GMRES steps | 20 GMRES steps

10 1.1939e+-00 1.0132e-02
20 4.7650e-01 4.3593e-04
30 6.1100e-02 1.0544e-03
40 2.7000e-02 1.8763e-04
50 1.4200e-02 3.2375e-04
60 4.1100e-02 2.3447e-04
70 4.6500e-02 7.1564e-05
80 3.1000e-03 5.2044e-04
90 9.5000e-03 6.1742e-05
100 4.5000e-03 1.8461e-04

There is at least one other approach for using the outer modeling projection subspaces
as an aid in the solution of the linear systems of equations. The thrust of this approach

is to iteratively solve the equation
(I = ViV A = 01 E)opgr = (I = VY, )(A = G, By, (8.17)

rather than (8.11). An approximate solution 0,41 is iteratively constructed for (8.17),

e.g., from the subspace

Ki((I = ViV (A = 0 B). (1 = VV, ) (A = G E)v,, ).
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which is orthogonal to the outer search subspace V,,. In this manner, effort is not
wasted by computing 9,11 in directions already present in V,,,. A dual approach can also
be obtained for Z,,11. The concept of keeping inner-iterations orthogonal to the outer
was developed in [100] for solving fixed systems of linear equations. Modifications of
Davidson’s method also exist in the eigenvalue problem which keep ©,,,1 orthogonal to
the initial guess.

There is a drawback with approaches such as (8.16) and (8.17). The entire outer
matrices V' and Z must be available and utilized at every iteration. This utilization
increases costs and prevents fast iterations such as the one suggested in Section 8.2.2. Of
course, compromises might be possible that involve only the most recent directions in V'
and Z or some dominant directions in V and Z.

It is beyond the scope of this dissertation (and perhaps any single work) to completely
characterize all issues pertinent to preconditioning, initial solution guesses and inner-
outer relations. These topics run throughout iterative approaches in many applications
and continue to be an active area of research. Hopefully, this chapter has demonstrated
though that such solver techniques are applicable and of interest in the model reduction

of large-scale dynamic systems.
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CHAPTER 9

ITERATIVE EIGENVALUE SOLVERS

This chapter focuses on preconditioned iterative eigenvalue solvers (PIES), a class of
methods that are closely tied to the model-reduction techniques of Chapters 4 and 8.
The relations between PIES and the proposed model-reduction techniques are explained
in Section 9.2. Prior to this discussion, however, the PIES are surveyed and classified
according to a few well-defined choices. This is not to say, however, that all worthwhile
iterative eigensolvers utilize preconditioners and fall into the proposed classification. The
implicitly restarted Arnoldi algorithm [101] is an example of a notable nonpreconditioned
approach for eigenvalue computations.

In this section, it is assumed that the problem to be solved is a standard, symmetric
one, i.e., A = AT and F = I. Concentrating on this commonly occurring and much-
studied problem allows for a more straightforward introduction to the eigenvalue themes.
Extensions of the developed techniques to the more general pencil (A — AE) are often-
times straightforward, yet even a comprehensive treatment of the symmetric problem is

a significant task.

9.1 Existing Techniques

Approaches for solving the generalized problem, Ax = Ax, are well-developed when
the dimension of the problem, n, is small [11]. Computing even a few eigenvalues and
eigenvectors when A is large and sparse, however, is typically a difficult task to this day.
Although elegant and relatively inexpensive, the classical iterative methods of Arnoldi [75]
and Lanczos [39] oftentimes fall short, particularly when the target is an interior portion

of the spectrum. As a result, numerous authors (beginning apparently with Davidson in
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1975 [98]) developed significant modifications and extensions of the Arnoldi and Lanczos
methods. For the most part, these modifications incorporate preconditioning in some
fashion to yield improved rates of convergence.

Nearly all PIES implement the Rayleigh-Ritz procedure [102] with respect to some
subspace S and transformed matrix (T'A). In our previous terminology, S is a search
subspace corresponding to an orthogonal projection. The acquired eigenvector approxi-
mations lie in this search subspace. The approximate eigenvalues are acquired from the
low-order pencil (YTTAY,YTTY), where the column space of ¥ € RYV*M is S, As in
model reduction, the eigenvalues of (YITAY,YTTY) do depend upon the selection of
both T" and Y. In fact, the standard forms of T' and Y can be characterized through a
few well-defined choices.

Assuming that a single eigenvalue A; and a corresponding eigenvector x; are desired,

the column space of Y typically takes the form

colsp{Y} = | yy Py(A—GIHYiky, Ps(A—(DYokg, ... (9.1)

in the eigenvalue literature. The matrix Y,, contains the first m columns of Y. The
first column of Y, Y; = wy; is specified by the user and it is typically chosen to be
either a random vector or a vector of 1’s. The matrices P, play the role of varying
ES preconditioners (ES stands for eigenvalue solver, playing the role of DS in previous
chapters). The vector Y,,x,,, is the eigenvector approximation after m iterations.

Given Y, an approximation for X, in its column space is sought. Similar to the
model-reduction problem, this approximation arises out of the low-order approximation
(YIT, AY,, , YIT,Y,). Assume j\dm is the eigenvalue of (Y1 T, AY,,, YT, Y, ) perceived
to be closest to Ay. Then, the reduced-order eigenvector X, of (YTngAYm,YTngYm)
corresponding to Ay leads to an approximation Yx, for x4. This approximate eigenvec-

tor Yxy  satisfies the Galerkin type condition

where T,,(A — j\dm])Ymﬁcdm is the residual associated with the eigenvalue estimate j\dm.

172



At each PIES iteration, (9.1) is augmented by multiplying the previous eigenvector
approximation Y,,_1X4,,_, by Pn(A — (nI), where P, ~ (A — 0,,I)"". The scalars o,
and (,, in P,(A — (1) are selected in an attempt to emphasize the desired vector x4
in the new direction P,,(A — (nl)YnXa,,. The specifics of P,,(A — (,, ) are considered
in detail in Section 9.1.1. The choice of ¢, is closely related to the specification of the

model-reduction interpolation point in Chapter 6.

9.1.1 Preconditioned matrices

The matrix P, (A — (,,I) appeared throughout the model-reduction methods of the
previous chapters, and it plays a central role in (9.1). As in model reduction, we begin
by considering the case where P,, is an exact ES preconditioner, (A — o,,1)~'. The

eigenvalues of P,,(A — (,,[) are then (recall Lemma 6.2),
A—"Cm
A—o,,

In going from A to P,,(A — (1), A is mapped to X. Recall also from Section 6.1, that

\ =

(9.3)

those eigenvalues of A that are mapped to well-separated positions in the spectrum of
P,.(A = (1) converge rapidly. PIES attempt to choose o, and (,, that map A; to a
well-separated position and that map the rest of the eigenvalues of A into a tight cluster.
If this mapping is achieved, multiplication by P,,(A — (,,[) separates x4 from the rest of
the cluster.

The parameter o, is always chosen to be an estimate of the desired eigenvalue in
PIES. In this manner (recall the role of o as an interpolation point), the portion of the
complex plane around o, is emphasized. The parameter (,, is typically chosen to acquire
one of the mappings in either Figure 6.1, the (,, = oo case, or Figure 8.1, the (,, = o,
case. The derivation of these mappings was already presented in model reduction. The
(m = 0o case relies on the properties of (A — o,,I)~" to map the desired eigenvalue to the
extreme outer edge of the spectrum. The (,, = 0, case relies heavily on the properties
of (A —0,1) to map the desired eigenvalue towards the origin.

It is perhaps not surprising to learn that the choice of (,, does not matter when P,

is exactly (A — o, 1)~'. This result follows from Lemma 2.1 and is consistent with the
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independence of (2.20) on s. When P,, = (A—0,,I)7", all mappings A — P,,(A—(,,[) are
equally good in terms of the resulting eigenvalue separation. However, (,,, does become
important when P,, is not exact. The choice (,, ~ o, is favored for exact P, in the
literature, apparently, because this mapping relies less on (A — o, 1)~

In many PIES, the scalars o, and (,, are updated every iteration to reflect the most
recent approximations for A;. There is an advantage, though, to fixing these values and
P,, at the start of the algorithm using some initial estimate for A4. In such an approach,

the column space of Y becomes a Krylov subspace,
colsp {Y'} = K(P(A = CT).pa).

and P &~ (A— )" need only be computed once. Symmetric Lanczos type methods can
be used to compute Y [103, 104, 105]. Fortuitously, some form of the reduced-order pencil
(YITAY,YTTY) is implicitly generated by an a Lanczos-type algorithm. In practice,
the Lanczos method is restarted multiple times. The Lanczos method is executed for
several iterations, new approximations to Ay and x; are found, the values of o and ( are
updated, the starting vector is updated, and the process is repeated. In this manner, o
and ( are occasionally updated. Although this infrequent update may slow convergence,

the costs per iteration may drop in that a new P is not needed in every iteration.

9.1.2 Reduced-order pencils

Even though the matrix Y,, is fixed after m PIES iterations, the new eigenvector ap-
proximation Y, %, is not. The vector X, depends on the choice for the transformation
T,, in the low-order problem (Yﬂ{TmAYm,YTngYm). It is stressed that the choice of
T, effects only the eigenvectors/values of the reduced-order approximation and not the
eigenvectors/values of the original problem. The goal in choosing T, is to find the best
possible eigenvector approximation in colsp {Y,,} given a reasonable amount of compu-

tational effort. Several possibilities for T, appear in the literature.
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9.1.2.1 Strategy 1, T, =1

This simple approach leads to the reduced-order pencil (Y, AY,, . Y1Y,). This T,
is trivial to implement, making it a common choice in many existing implementa-
tions. However, for a given Y,,, only the exterior approximate eigenvalues/vectors of
(YTAY,,,YTY,) tend to be optimal approximations for the corresponding eigenvalues of

A [102]. Better approximations for an interior eigenvalue of A with a given Y,, may be

achievable with a different T,,, [106].

9.1.2.2 Strategy 2, T,, = (A — 0, I)7"

This choice for T}, is the one that leads to the best (in some sense) possible approx-
imations for eigenvalues of A near (some possibly interior value) o,,. This observation

follows from the relations:

YI(A =0, 1) AY, k= AYT(A — 0, 1)1V, %
Y A—o, ) (A—opl 4+ 0 )Yk = \AYT(A =0, 1) 'Y, %
SYIY, 40, YA -0, I) Yk =AY (A =0, 1) Y, %
SYA—o, ) Vok = (A —0,) VY, %

(9.4)

The eigenvectors/values of (YT(A — o, [)7AY,,, YT (A — 0, 1)7'Y,,) are directly related
to the eigenvectors/values of (YT (A — ¢, 1)7'Y,,,Y,IY,,) by (9.4), but this latter pencil
is simply Strategy 1 (7' = I) applied to the matrix (A — o,,1)~". The eigenvalues on the
exterior of (A — 0,,I)~! correspond to those of A near o,,, and these are the ones best
approximated by (YT(A — 0,,1)71Y,,, YTY,,) with T, = I.

The main shortcoming of this approach is that it requires an exact factorization of

(A — o, 1) to acquire T,,. Although this cost is acceptable in methods already utilizing

exact ES preconditioners, P,, = (A — 0,,1)7", it is not appropriate in general.

9.1.2.3 Strategy 3, T}, = (A — o, 1)

This choice was proposed as a more efficient avenue for treating interior eigenvalues

[107]. To evaluate this transformation, again rewrite it in terms of a second, equivalent
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eigenvalue problem. Define the quantities,
STS = YA —o0,1)Y,,

Y = (A=o0,1)Y,.5,
Si.

8
I

The reduced-order eigenvalue problem with T,, = (A — 0,,1) can then be rewritten as

VI(A - 0, 1)AY, % = A\YL(A - 5,,])Y, %
& V(A - amJ)W X=(A—0n)YI(A—0,1)Y, %
& X = ( —om)S” ( — o, )Y, 5%
<:>§<—( Om) ﬂ{( —onl)” 1y, %
SYIA -0, )" WVyx=(A—0,)"'x
Hence, an approximation found with Strategy 3 is equivalent to finding an approximation
in the column space of Y, with Strategy 2. Strategy 3 finds the best (in a sense)
possible eigenvector approximations in Y,, for those eigenvalues of A near o,,. Eigenvector
approximations lying in Y are frequently referred to as harmonic Ritz vectors [108].
This strategy finds eigenvector approximations in Y,,, a corrupted version of Y,,, and
thus, the quality of the results may suffer. Strategy 2 is cheaper than Strategy 1, though,
because exact factors or inverses need be treated here. Limited experimentation in the

literature suggests that T,, = (A — 0,,1) is preferred to T" = [ for interior eigenvalues

[107].

9.1.2.4 Strategy 4, T, = Ty, = (A — 0, 1)1

In this final approach, left and right transformations are utilized to obtain the reduced-

order pencil,
(YA -0, )TTAA =0, )Y, YA — 0, 1)72Y,,. (9.5)

Thus, Strategy 4 can be thought of as a two-sided version of Strategy 2. Similar desirable

approximations to eigenvalues of A near o, are therefore expected at the cost of involving
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(A — 0, I)~" again. These observations follow from the relations:

VI(A =0, ) A(A — 0, )Yk = AYT(A — 0, 1) 72V, %
SYI I+ 0p(A—onl) WA= 0,]) Yk =AY (A—0,,1)72Y,%
SY A=, 1) Wy =(A—0,)YT(A—0,1)72Y,%
SYNA-o, )Y, %= (A —0,) 'YI(A -0, 1) 'Y,
The eigenvector approximations of Strategy 4 are those that would result from a straight-
forward restriction of ((A — ¢, 1)7%,(A— 0, 1)7") by Y,,. Although not common in the

existing eigenvalue literature, Strategy 4 becomes important in Section 9.2.

9.1.3 Existing implementations

A bedazzingly array of PIES now exists in the literature, yet most of them can be traced
back to two techniques. One of these seminal techniques is the method of Davidson [98].
Davidson’s method chooses T, = [ (see Strategy 1 of Section 9.1.2) and (,, = o,
(recall Section 9.1.1). The second technique is denoted, for lack of a consistent historical
title, the shift-and-invert PIES. Originating in [103], the shift-and-invert PIES chooses
Tw = (A—0,1)"" and (,, = oo. In its original form, shift-and-invert PIES kept o, fixed
for multiple iterations to allow for the use of the symmetric Lanczos method.

A version of the shift-and-invert PIES is provided as Algorithm 9.1. This shift-and-
invert Rayleigh-Ritz method is a relatively straightforward extension of the well-known
shift-and-invert eigenvalue iteration [3]. However, rather than use only the most recent
direction to approximate the desired eigenvector, shift-and-invert PIES incorporates all
previously computed directions into the search subspace colsp {Y,,}. These computed
directions are kept orthogonal by (59.1.4) for improved numerical stability. The scalar
Oma1 18 chosen to be the eigenvalue j\dm of YI(A—0,)'AY,,,YT(A ~0,)7'Y,,). In
practice, one actually computes the eigenvalue édm of YI(A—0,,I)7'Y,,, which is largest
in magnitude and uses the result (9.4) to obtain 0,41 = (édm —om)

If 0,41 is kept fixed rather than updated in (S9.1.2), the symmetric Lanczos algorithm
(Algorithm 2.1 with v,, = w, = y, and G = (A — olI)™!) can be used to compute

Y. Moreover, the tridiagonal matrix Y7 (A — oI)~'Y arises naturally with the Lanczos
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Algorithm 9.1 Shift-and-Invert PIES

Initialize: an orthogonal vector y; = Y] and eigenvalue guess oy;
For m=1to M,

(59.1.1) Compute (édm, X,,,) from the Rayleigh quotient Y1 (A — 7, 1)71Y,,;
59.1.2

Om+1 = 3 )

€dm—0'm
Jm+1 = (A = 01 )71V, )i

?)m-l-l = gm—l-l - YmYTg?jmﬁ—l;

59.1.3
59.1.4
59.1.5

— gmil .
Ymtl = Ngmgalls?

(59.1.2)
(59.1.3)
(59.1.4)
(59.1.5)

end

method. The largest eigenvalue of this tridiagonal matrix is édM, which in turn leads to
the eigenvalue estimate, j\dM = (édm — o) L.

Because shift-and-invert PIES use both exact ES preconditioners and transformation
Strategy 2 of Section 9.1.2, a rapid convergence to Ay oftentimes occurs. Unfortunately,
the involvement of (A — &, 1)! either explicitly or implicitly is not practical in many
problems. For this reason, Davidson’s method is the foundation of many currently pop-
ular PIES methods. Davidson’s method and its many generalizations avoid the use of
exact ES preconditioners.

A version of Davidson’s method is provided as Algorithm 9.2. As noted above, this
method utilizes the left transformation 7' = I and sets (,, equal to o,,. An orthogonal
basis for the search subspace is formed in Y. The original method of Davidson chose the
inverse of the diagonal of (A — 0,,1) as the ES preconditioner P,. Other, more recent
extensions of the approach utilize more general ES preconditioners [19].

Difficulties arise with Davidson’s method, however, if P, becomes too good of an
approximation to (A — o,,I)7". In this case, §,4+1 in (5S9.2.3) is approximately X,4,, and
no new direction is obtained. To avoid this difficulty, one can perturb (,, slightly away

from o,,. A popular choice in the literature [109] is to select (41 = 0py1 + 01, where
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Algorithm 9.2 Davidson’s Method

Initialize: an orthogonal vector y; = Yi;
For m =1 to M,
(59.2.1) Compute (j\dm,ﬁcdm) from YT AY,,;

(89.2.2) 1y = (A= Ay, 1)(Viuka,);
(59.2.3)  Ymt1 = Prg1rm;
(59.2.4) a1 = Jmi1 — Y Y a1
(59.2.5) Y1 = s
end
the perturbation is
et = Xy Y Py (A =0 )Y, ‘ (9.6)

X5 YIP 1Yo Xy,
Computing (9.6) directly is relatively cheap. An even more efficient implementation of
this correction is possible through a method of Jacobi [110]. The perturbation in (9.6)
leads to a new search direction, Py41(A — (041 + 6mt1)l)YimXa,,, which is orthogonal
to the previous eigenvector estimate Y,,%, . In this manner, new information is added
to Y at every iteration.

Apparently, all variations of the original shift-and-invert and Davidson’s methods can
be categorized according to their choices for T,, and (,. Table 9.1 attempts to sort
methods contained in many (but certainly not all) papers accordingly. The point of this
table is not to minimize the contributions of the listed papers; rather, it is to emphasize
that central themes exist throughout the PIES literature involving T, and (.. The
interested reader should examine these papers for their varied contributions concerning
ES preconditioning, o, selection and eigenvalue convergence. Two recent surveys of
iterative eigenvalue methods are also available [18, 111].

The papers listed in Table 9.1 tend to progress chronologically from left to right.
It should be noted that the entry in the second row is complementary to that in the
first and third rows. This difference follows from the fact that both the first row and the
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Table 9.1: Classifying Existing PIES

Cm = 00 Cm = Om G = O + 6
T = 98, 19, 112, 113, 105] | [109, 114, 110]
T =(A—o,I)"" | [103]
T = (A—0,1) [107] [110]

second column of Table 9.1 tend to require exact ES preconditioners. As long as exact ES
preconditioners are being computed, both the powerful transformation 7,, = (A—o,,I)™"

and the easily computed case (,, = oo should be used.

9.1.4 Approaches for several eigenvalues

Traditionally, several eigenvalues of (A, F) are computed via a block extension of an

algorithm. One simply replaces the vector y,,4+1 in (9.1) with a block of vectors y,,41 €

RNXIX7

The matrix on the far right of (9.7) contains eigenvector estimates for the desired K

eigenvalues. Alternatively, one can individually update each new direction, i.e.,
Ym1 = P7§11-|)—1(A - Cﬁiﬂ)Ymﬁcﬁa e PT(rLIfI:)l(A - Cr(r{i)lj)ymﬁg) ] )

and hopefully improve the resulting convergence. The parameters PT(nk_I)_1 and CT(:_?_I can be
tuned to each individual eigendirection. Such an approach is developed for Davidson’s
method in [115].

Further interesting results are obtained if these P{®) are exact ES preconditioners,
the parameters o(¥) and ((F) are fixed for all m, and the initial eigenvector guesses f(il]j)

are all identical. In this case, the column space of Y}, is an ever-popular rational Krylov

subspace,

U (A= ™D~ y). (9.8)
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As stated earlier, the initial work on rational Krylov subspaces and the associated RA
algorithm was directed at the eigenvalue problem [80]. The desired subspace can be con-
structed with a one-sided rational Arnoldi algorithm [91]. In this context, the rational
Arnoldi algorithm serves as the multiple eigenvalue generalization of the shift-and-invert
PIES. An algorithm for the one-sided rational Arnoldi algorithm is presented as Algo-
rithm 9.3. This algorithm works to compute one eigenvalue approximation at a time
(corresponding to the outer k loop) by constructing one Krylov subspace in (9.8) at a
time. While converging to a given eigenvalue, the parameter ¢(*) remains fixed so that
an Arnoldi-type method results.

Note that the matrix F is included in Algorithm 9.3 for consistency with the RK
algorithms in Chapter 4. For consistency with the simplifying assumptions made in this

section, simply think of £ as an identity and A as a symmetric matrix.

Algorithm 9.3 One-sided Rational Arnoldi

Initialize: m = 1 and an orthogonal vector yy;
For k =1 to K,
Set 0¥ as an estimate for the next desired eigenvalue Ay, ;
qm+1 = Lyn;
While Ay, is not found,
(S9.3.1) g1 = (A= oWE) g s

59.3.2) Y41 = Ymt1 — 2i%y Y Vim where vy, = ?JzT?ij;

Urmt]|23
S9.3.4
S9.3.5

)
)
S9.3.3)  Ymt1 = Umt1/Ymt+1,m Where Yop1m =
) m=m+1;

)

(
(
(
( G+t = By
end

end

At this point, the casual reader may choose to proceed to Section 9.2. We spend the

remainder of this section demonstrating how the one-sided RA algorithm can implicitly
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generate a pencil (YTTAY, YTTY ) involving the Strategy 2 transformation (A—a® 1)~
The presented approach for computing the approximate eigenvectors is a novel one (it dif-
fers from that proposed in [15, 91]), but is consistent with the eigenvalue approximations
generated by the shift-and-invert PIE in the single eigenvalue case.

Algorithm 9.3 computes an orthogonal Y corresponding to the subspace in (9.8).
However, Y must still be applied to some matrix pencil to determine approximate eigen-
values and eigenvectors in every step. Fortuitously, a desired low-order pencil is implicitly
formed by the one-sided RA algorithm. This behavior and the following derivation is sim-
ilar to that seen for the RL algorithm in Sections 4.1.3 and 4.1.4. Our starting point is
the matrix relationship

AYm+1Em+1,m = EYm—I—lAm—I—l,ma (99)

which was derived in [91] and holds after m iterations of the one-sided RA algorithm.
Due to (59.3.2) and (59.3.3), the matrices Em+1,m and Am+17m e R™+DX™ are upper-

Hessenberg matrices whose m** columns take the forms

71,m 71,m
and 1+ oy (9.10)
7m—|—1,m 7m—|—1,m
L 0 - L 0 -

The vector 4; is either the first or m'™ column of an identity matrix (it does not mat-
ter in this discussion) and the scalar o,, € {0, ... ¢} is the specific interpolation
point used in the m iteration. Note the similarity between (9.10) and (4.18). Defining

Aptim = Am+17m — UmEmHm and noting (9.9), results in
(A= 0 E) Y1 Bt = EY iy At = EY Ay . (9.11)

The last equality in (9.11) holds, because the (m + 1) row of Am—l—l,m consists of zeros
(the last column of the upper-Hessenberg A,, 41, is just i, ). Multiplying (9.11) on the

left by YT(A — 0, F)7" yields
By =Y (A= 0, E) ' EY, Ay,
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so that

YA =0, E) (A= AE)Y, A,
= YA -0, BE)" (A= 0nE 4+ (0, — N E}Y, A, (9.12)

= A, —\E,. (9.13)

Thus, if A and % are an eigenvalue and eigenvector of (Am,Em), then (S\,Amfc) are an

eigenvalue and eigenvector of
(YA~ 0,E)AY,, . YA~ 0, E)'EY,,). (9.14)

However, (9.14) is exactly the pencil sought by Strategy 1 of Section 9.1.2 for finding
approximations to eigenvalues near o,. In the m!* iteration, the desired eigenvalue
approximation j\dm nearest o, can be directly acquired from the matrices A, and B,
constructed in Algorithm 9.3. This occurrence is ideal, because we are trying to locate
the eigenvalue nearest o, in the m' iteration. Only (9.14), the desired low-order pencil
for o,,, is implicitly generated at the m!”" iteration, because doing so requires that the
vector (A — ¢, 1)y, is somewhere available. This information is, in fact, available in
the vector ¢,,41, which was formed by multiplying y,, by (A — o, 1)~

The eigenvector approximation szzlmf(dm arising from (9.14) is not the approximate

eigenvector Ym+1Em+17m§<dm suggested by [91]. To provide further motivation for the

former choice, we write the residual r,, corresponding to this eigenvector as

r, = (A—j\de)YmAm)A(dm

N

— (A - j\dew)}/m—I—l(14m—|—1,m - O-mEm—I—l,m)}A(dm

— (A - O-mE)Ym—I—l(Am—I—l,m - UmEm+1,m)}zdm
+(Um - 5\dm)Ewi/m—l—l(14m—|—1,m - UmEm+1,m)kdm7

and continue by noting (9.9) and writing
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ry, = (A - O-mE)Ym—I—l(Am—I—l,m - UmEm+1,m)}zdm

+(Um - j‘dm)(14 - O-mE)Ym{—lEm—l—l,m}A(dm

A A A

= (A - O-mE)Ym—I—l(Am—I—l,m - )\dem—I—l,m)}A(dm-

A A

Lastly, the fact that (Am — Aa,, Emom )Xa,, equals zero yields the residual expression
rm = (A= 00 E)Ymtr, (9.15)

where « is the dot-product of X, with the last row of (Am+17m — j\dem+17m). The
residual (9.15) that results from choosing the approximate eigenvector as Vi ApXa, in
the m'™ iteration is (A — o, ) orthogonal to the column space of Y,,. This orthogonality
is consistent with the Galerkin condition in (9.2). The approximate eigenvector choice

Yia1 Em+17m§<dm only leads to E orthogonality for the residual [91].

9.2 Arriving at PIES from Model Reduction

Many previous chapters allude to connections between the proposed model-reduction
techniques and the eigenvalue methods of Section 9.1. In this section, the techniques
developed for model reduction are considered in the context of finding eigenvalues. Vari-
ations on the themes in Section 9.1 result. By performing this exercise, it is hoped that
new insights into and perhaps modifications of existing PIES result can eventually be
obtained.

For simplicity, a model-reduction problem that is consistent with the eigenvalue as-
sumptions (A is symmetric, £ is the identity matrix, and b = ¢) is considered. This
assumption is not restrictive, because the model-reduction techniques that serve as our
starting point are already known for the general case.

The key to both model reduction and PIES is the form of the search subspaces. For
the symmetric case, the model-reduction subspace is the column space of V. In model
reduction, the next direction in the search subspace is computed as ®,,(A — (! )vpm—1,
while the new direction in PIES is ®,,(A — (,,[)Y-1%X4,_,. Section 9.1.3 notes that

these new directions take equivalent forms when the ®,, are constant with respect to a
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given interpolation point, e.g., Krylov subspaces result in (9.8) for the shift-and-invert
PIES. However, what happens when ®,, is inexact and varying? In particular, how does
Davidson’s method relate to model reduction? The answer to these questions come from
Section 8.3, where relations between outer modeling and inner solver iterations were

discussed. Recall the update direction in (8.16) that was derived for model reduction,
1 {Vp — (A = Org1 V(A = Grga L) Vil vy, | (9.16)

This vector is the update direction that results when the outer iteration is used to generate
an initial guess for the inner solve. However, as 0,411 approaches the eigenvalue j\dm of A
(they are set equal in Davidson’s method), the vector (Am — i1 )"V 0, in (9.16)
becomes the orthogonal eigenvector X, times a large scaling factor. Due to this large
scaling of X,4,,, the @, 410, term in (9.16) drops out and one is left with the new direction
of Davidson’s method. Hence, Davidson’s method is an inner-outer type iterative method
that implicitly computes ®,,(A— (I )v,,—1 by utilizing an initial solver guess that is based
on the outer iteration. The only problem that can arise in Davidson’s method is when
®,,11 becomes exact (recall Section 9.1.2). In this case, the vector ®,,41v,,, yields the
ideal new direction in (9.16); yet it is dropped in Davidson’s method. Corrections to this
problem utilize orthogonality between the existing outer subspace and the computed new
direction to avoid difficulties [109, 110]. As noted at the end of Section 8.3, this approach
is another way of relating the inner and outer iterations.

The only other point of difference between the model reduction and eigenvalue sub-
spaces 1s the choice for the first vector in the subspace. PIES typically choose some
vector, say b, for its starting vector y;. The first column of V' in model reduction is
®,b. Think of vy as simply an improved guess for the starting vector; (A — oy £)™1b is
more likely a better approximation for the desired eigenvector then b. If this supposedly
better starting guess is used for yy, then (assuming fixed shift selection) the eigenvalues
of (YTAY,YTY) and (VT AV, VTV) are identical. There is an alternative description of
the differences between V' and Y, however. Consider the simplest case, where the column

space of V' is Kyr((A—cal)™! (A—cl)7'b) and the column space of Y is Ky ((A—o )™, b).
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Then, trivially, V equals (A — oI)™'Y and the low-order pencil of model reduction is
VIA- MY =Y (A—al)™ (A= M)A —ol)7Y. (9.17)

The right side of (9.17) and thus, the low-order pencil from model-reduction result from
the Strategy 4 approach of Section 9.1.2 for generating the reduced-order pencil. The
expression (9.17) does not hold exactly in the event of inexact ES preconditioners. It does
illustrate that only minor differences exist between V and Y and, perhaps, the different

strategies of Section 9.1.2.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

In this final chapter, the results of the previous nine chapters are recapitulated with
an emphasis on DS preconditioners and bases for the projection subspaces. Suggestions

are also provided for further improvements and extensions of these results.

10.1 Summary of Results

Rational interpolation is readily achieved by projection onto unions of Krylov subspaces
asin (3.1) and (3.2). A projection algorithm for implementing rational interpolation must
therefore choose both the DS preconditioners used in (approximately) forming the sub-
spaces and the specific bases representing the subspaces. Modulo some assumptions on
the conditioning of the reduced-order pencil ZT(A—aE)V, any bases will lead to rational
interpolation. Decisions to form biorthogonal or orthogonal bases are only pertinent with
respect to efficiency and reliability, but not to rational interpolation itself. Biorthogonal-
ity, with respect to a certain matrix, leads to the rational Lanczos algorithm, an efficient
approach that generalizes all existing single-point Lanczos techniques for Padé approxi-
mation. In theory, this biorthogonality can be maintained and the projection implicitly
performed with recursions whose lengths are proportional to the number of interpolation
points. Unfortunately, this biorthogonality is lost in practice, the convergence of the RL
results are slightly slowed, and the algorithm is susceptible to errors in the DS precondi-
tioner. These difficulties can be avoided by utilizing orthogonal bases. This choice leads
to the dual rational Arnoldi algorithm, a relatively robust, but more costly approach.
The dual RA approach is suited for inexact DS preconditioners. Its orthogonality tends

to eliminate column dependencies in V or Z, which otherwise arise in finite precision

187



and, in particular, when many moments are matched about a single interpolation point.
A novel approach based on a low-order singular value decomposition can alternatively be
employed to extract dependent columns. This technique, associated with the proposed
rational power method, is applied to the reduced-order model and avoids costly Gram-
Schmidt computations on the vectors in the large-dimensional subspaces. By avoiding
any form of (bi)orthogonalization, the RP algorithm is particularly well-suited for parallel
implementations. In particular, if 7 is known a priori (the approach is one-sided), then
V' and the reduced-order model can be concurrently computed on multiple processors
with nearly negligible communications. Error estimates can be used to avoid redundant
work on these processors.

In addition to the type of basis, the DS preconditioners must be selected. Ideally,
these DS preconditioners are exact inverses of (A — ¢® E), leading to moment matching
at the interpolation point o*). However, approximate DS preconditioners (solves) are
reasonable in versions of the RA and RP algorithms and may reduce computational costs.
Experiments suggest that the accuracy of the approximate solves should be consistent
with that desired in the reduced-order model, if significant deterioration in the modeling
convergence is to be avoided. These approximations can be implemented via fixed pre-
conditioners, inner iterations of a Krylov-based iterative solver, or a combination of inner
iterations and inner preconditioners. Injecting information from the outer modeling iter-
ation into the solver can also improve the solver’s performance. Regardless of how the DS
preconditioner is formed, its contents depend on the choice for the interpolation point.
Imaginary interpolation points, 0¥, lead to reduced-order model convergence at frequen-
cies in the locality of |¢(®)|. Real interpolation points, on the other hand, lead to courser
convergence over broader frequency ranges. In terms of cost versus accuracy trade-offs, a
limited number of real interpolation points are typically preferred in sequential rational
Krylov implementations. For purposes of load balancing, parallel implementations are
better served by numerous, dynamically placed imaginary interpolation points. In either
implementation, the placement of interpolation points and/or the number of moments

matched per point should be based on available information feedback from error analyses.
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The error can be implicitly estimated from residual computations or explicitly estimated
by comparisons of different reduced-order models (whose differences are themselves due
to complementary choices of past interpolation points). The residuals are at times easier

to compute, but the model comparison tends to be more accurate.

10.2 Future Possibilities

The aim of this dissertation is to provide a strong foundation for the reduced-order
modeling of LTI, SISO dynamic systems with Krylov-like projection methods. Beyond
this work, there are possible tunings based on problem dependent issues, e.g., taking
advantage of symmetry, which can be addressed with simple modifications of the methods
in this dissertation. There are also implementational details, e.g., tuning an adaptive
interpolation point strategy, which can be addressed with coded trials and errors. From
a purer research standpoint, there are five remaining areas for future work that are

apparent at this time.

10.2.1 MIMO systems

As noted in Section 3.4.2, multiple-input multiple-output systems are common and
frequently treated through block versions of the projection algorithms. However, block
versions become expensive for even moderate numbers of inputs and outputs. New ideas
for acquiring the fundamental directions in the subspaces (3.18) and (3.19) are needed.

Perhaps certain poles of the system should be emphasized in a modal-type approach.

10.2.2 Rank deficiencies

Section 4.1.1 proposes an SVD approach for handling rank deficient V' or Z matrices
by postprocessing the reduced-order model. Further theoretical work and experimenta-
tion are needed to completely understand the details and reliability of this method. In
particular, choosing the frequency (or perhaps frequencies) at which the SVD (or SVD’s)
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is evaluated requires additional insight. Furthermore, acceptable condition numbers for

the postprocessed, reduced-order model must be examined.

10.2.3 Multilevel parallelism

A C-version of the parallel Algorithm 7.1 is being planned. It will be implemented for
distributed architectures via the MPI (message passing interface) directives. However,
in extremely large problems, it is doubtful that a matrix pencil (A — ¢®E) can be
stored/treated by a single processor unit. A second level of parallelism that is based on
partitioning the basic matrix operations will be required. In this manner, hundreds of

processors can be brought to bear on the problem, while hopefully retaining efficiency.

10.2.4 Approximate solvers

There are nearly a countless number of iterative solvers and inner preconditioners that
can be considered for approximately solving (8.3). For simplicity, the well-known GMRES
algorithm is utilized in Chapter 8. The risks and benefits of a two-sided iterative solver,
such as QMR, should be studied as well. Furthermore, connections between the outer
modeling and inner solver recursions appear to be important and should be considered
in detail. Lastly, connections should be obtained between the approximate solves and
interpolation point placement. It is conjectured that the use of approximate solves makes
an increasing number of interpolation points more feasible in sequential implementations.

This statement was not explored or exploited in Chapter 8.

10.2.5 Related problems

Beyond the issues arising directly from this dissertation, there are several classes of

problems that can possibly benefit from the developed LTI model-reduction techniques:

1. Shifted Systems of Linear Fquations. Many of the model-reduction techniques,

e.g., interpolation point placement based on the residual calculations, the various
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RK implementations, parallelism, etc., should be directly transferable to solving

arbitrary systems of shifted linear equations.

. Figenvalue Problems. The eigenvalue problem was discussed in detail in Chapter 9
along with its connections to model reduction. General approaches for computing
several eigenvalues over regions are still needed. Issues such as interpolation point

placement and parallelism need to be further explored as well.

. Nonlinear or Time-varying Problems. Extending the model reduction beyond LTI
dynamic systems provides several new challenges. For distributed systems, e.g.,
transmission line equations, the higher order moments of the system will generally
no longer be available via simple repetitive multiplications by a matrix. Also, if the
linear pencil (A — sF) is replaced by a higher (perhaps infinite) order matrix poly-
nomial A(s), then explicitly computing the approximation Z7A(s)V is no longer
straightforward. One might linearize the model-reduction process over frequency
regions and attempt to merge the results. Similarly, in time-dependent problems,
LTI reduced-order models might be constructed for different regions of time. The
sensitivity of a given model’s accuracy, with respect to time, must then be deter-
mined and approaches for updating the projection matrices V and Z over time

must be obtained.
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APPENDIX A

LEMMA PROOFS

Proof of Lemma 2.1 The result follows from the equalities

(A— O'E)_l(A —skE) = (A-— O'E)_l(A —sE+ (0 —0)F)
= I+ (c—s)(A- O'E)_IE. [ |

Proof for Lemma 2.2 We show that K;(nG'+ 1,9) C K;(G, g) by induction. The dual
relation K;(G,g) € K;j(nG+1, g) follows in a similar fashion. The subspaces K;(nG'+1, ¢)
and K;(G, g) are trivially identical when j = 1. Now assume that (2.19) holds for some
j > 1. It must be shown that (nG + I)g € K;11(G, g). By assumption, g = (nG + 1)~ 1g
is in K3(G, ¢) and therefore, Gi¢ is in K;41(G, g). Thus, the vector

(G + 1)lg = (G + 1)g =Gy +g
lies in K;41(G, g) and the first half of the proof is complete. W

Proof for Lemma 3.1 The assumption that v lies in the column space of V implies
that there exists a vector g such that v = V¢. Noting the biorthogonality of V and W,
it follows that VWTo = VWIVg=Vg=v. N

Proof for Lemma 3.2 We begin by defining a matrix
W = (2" (A= oE)V) " Z7(A-oE) (A1)
which satisfies W7V = I. The proof follows by induction. For j = 1,

V(254 —oB)WV) 2T = VIWT(A—0E)"'b= (A - oE)™b.
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The last equality follows from Lemma 3.1 because (A — o E)™'b € colsp {V}. If we now
assume that the desired result holds up to some j < .Jy, then the expression of interest

corresponding to j is

V{27 (A= oBW) ZTEVY T (ZT(A— o E)V) T 2T
= V(ZT(A—oB)TV) ZTE{(A— o) ' EY (A= cE)™
= V(ZT(A = cE)TV) ' ZT(A— o E) {(A— oE) ' EY ™ (A— o E) '
—VWT{(A—cE)'EY " (A—oE)b
= {(A—oE)'EY T (A= k).
The first equality follows from the inductive assumption. The last equality follows from

Lemma 3.1 because {(A — UE)_IE}j_1 (A —cE)™b € colsp {V}. By induction, the

desired result must hold for any 7 < .J,. W

Proof for Lemma 3.3 The desired result is simply the dual to that in Lemma 3.2. For
this reason, we only present the j = 1 case and note that the balance of the argument
proceeds in the fashion of the previous proof. Define W again as in (A.1). Then, for
J=1

TV (ZT(A=oB)W) 2T = SVWT (A= oB) = T (A—oB).

The last equality follows from the use of Lemma 3.1 in conjunction with the following
observation: if W = (A — o )T ZT for some nonsingular matrix 7' € R™*™ and a
matrix Z € RMM satisfying K ((A —oE) TE-T (A- O'E)_TC) C colsp {Z}, then
K (ET(A —ok) T, c) C colsp {W}.

To see this observation, begin by noting that

5= {(A—o)TE"Y T (A—oB) e C colsp {£) (A.2)

is assumed for y = 1,...,J. Thus, Z; can be written as Zg; for some vector ¢g; and any

7 < J. Multiplying Z; on the left by (A — o E)T yields

(A—oBE)'2, = (A— oY ZTT g; = WT ™ g; = W, (A.3)
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for j =1,...,J. By (A.2) and (A.3), {E‘T(A — UE)_T}j_l ¢ is in the column space of
Wfor j =1,...,J. A basis for K;(ET(A —oFE)~T ¢) and hence, K;(ET(A —oE)~T,¢)
itself must therefore lie in colsp {W}. N

Proof for Lemma 4.1 We prove (4.1). The key is to note that (A — o E)~! can be

rewritten as

(A—oWE)y? = (A—oPE) YAt VE) A - D)t
= A-—cPEY Y A-cWE 4 (¢ — g+ EY(A — oD )1

to yield
(O'(k) — O'(k+1))(A — U(k)E)_lE(A — U(k""l)E)_l =(A- O'(k)E)_l —(A- U(k""l)E)_l. (A4)

Using (A.4), expression (4.1) follows via induction. If j = 1, multiplying (A.4) on the
right by b gives

(A— oW E)TE(A - c* R = (6B — g+ A — oW )=t — (A — D E)~1Yp

and (4.1) is satisfied. Next, assume that (4.1) holds for y = 1,...,J — 1. Multiplying
(A.4) on the right by £ {(A — U(’“"'I)E)_IE}J_2 (A — oF+D )1 yields

(0¥ — o)A — oW E) T E{(A— oI E)TE} T (A oI E) T
:(A_AW@*E“A—UWWEY%QLQA—UWWEY%
(A= oty VT (A g ), (A.5)
Under the assumption that (4.1) holds for j = J — 1, (A.5) shows that (4.1) also holds

for j = J. The induction step and thus (4.1) hold, in general. The proof of (4.2) is the
dual to that provided for (4.1). W

Proof for Lemma 5.1 We prove (5.6) and leave (5.5) as its dual. Combining the right
sides of (S4.1.2) and (54.1.3) of the general RK algorithm leads to the relation

Zm
= wpm+1 .

P

(A—o0, BV 7,
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Through the right sides of (S4.1.4) and (S4.1.5) this relation can be rewritten as
Z
P

By W Zom
= Wyt + (O = Wit | o . (A.6)

“m

P

(A—sEY' 7,

] = W1+ (Om — 8)EZy,

Wy ... T

l

w
m+1

Combining the expressions (A.6) into matrix form for m = 1 to M and multiplying on

the right by the inverse of

yields (5.6). W

Proof for Lemma 6.1 If )\, is an eigenvalue of (A, F), then Ax,, = AEX,,. An equivalent
relation, (A—c E) 'Ex, = Anl—_gxn, follows from Lemma 2.1. Because the original system

is stable, the spectrum of (A, E) lies to the left of the imaginary axis and the spectrum

1

of (A — o)™'E is bounded in the complex plane by the complex function f(w) =

However, f(w) simply defines a circle centered at ;—; with radius %, because the relation
ore ) *(ore) =)
o 4+ 0?2 20 c@ 1 w?)  \2¢
holds where Real(f(w)) = ﬁ and Imag(f(w)) = ﬁ [ |

Proof for Lemma 6.2 The desired result follows from the relations

Ax, =\ Ex, < (A—ocE)'Ex, =x,(\, —0o)7!

o (I+(0—s)(A=ocE) " E)x, = (1+ “‘3)xn

A, — O
A —
o (A=oB) (A= 0E) + (0 —5)E}x, = | _jxn. m
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APPENDIX B

SELECTED MATLAB IMPLEMENTATIONS

The development of the dual rational Arnoldi and rational Lanczos algorithms are
important contributions of this work. Provided below are the implementations of these

algorithms that were executed in MATLAB for Examples 4.5 and 7.1.

A Dual Rational Arnoldi Implementation:

function [Am,Em,bm,cm] = RK_DRA(A,E,b,c,J,S);

% Rational Krylov Method (Dual Rational Arnoldi Version)

% INPUTS:

yA A,E,b,c = system to be modeled

h J = number of moments to be matched per point
h S = column vector of interpolation points

% OUTPUTS:

% Am,Em,bm,cm = reduced-order model

% Parameter initialization

m=1;

[
1]

round(J/2);
[K,one] = size(S);
[N,N] = size(A);
v=1[1;2z=1[;

% Factorize sparse matrices via minimal column ordering
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L=[0;U0=10;P=1[0,;Q=1[1;
p = zeros(K,N);

for k=1:K,

>3
1]

(A-S(k)*E) ;
p(k,:) = colmmd(X);
[Lt,Ut,Pt] = 1u(X(:,p(k,:)));

L = [L,Lt]; U = [U,Ut]; P = [P,Pt];
I = sparse(eye(N,N)); Q = [Q,IC:,p(k,:))];
end

% Construct V and Z
for j=1:7J,
for k=1:K,
kk = (k-1)*N+1:k*N;
if j==1,
v = QC,kk)*(UC,kk)\(LC: k) \(P(: ,kk)*b)) ) ;
z = P(:,kk) > *(L(:,kk) "\ (UC: ,kk) >\ (Q(: ,kk) **c))) ;
else
v = QC,kk)*(UC, k) NG,k NP k) *(ExV(:,m=-1)))));
z = P(:,kk) 7+ (L(:,kk) P\ (UC: ,kk) " \(Q(: ,kk) >+ (E*Z(: ,m-1)))) ) ;
end

ifm>1, v=v-Vk(V’*v); z =2 - Zx(Z’%z); end

V = [V,v/norm(v)]; Z = [Z,z/norm(z)];
m = m+l;
end

end
% Compute the reduced-order model

Am = Z’*(A*V); Em = Z’*(ExV); bm = Z’*b; cm = V’*c;
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A Rational Lanczos Implementation:

function [Am,Em,bm,cm] = RK_RL(A,E,b,c,J,S);

% Rational Krylov Method (Rational Lanczos Version)

/

% INPUTS:

yA A,E,b,c = system to be modeled

h J = number of moments to be matched per point
h S = column vector of interpolation points

% OUTPUTS:

% Am,Em,bm,cm = reduced-order model

% Parameter initialization

m=1;

[
1]

round(J/2);

[K,one] = size(S);

[N,N] = size(h);

v=1"[0;Ww=1[; w=c;

% Reduced-order model initialization

Am=zeros(J*K,J*K); Em=zeros(J*K,J*K); bm=zeros(J*K,1); cm=zeros(J*K,1);
% Factorize sparse matrices via minimal column ordering
L=1[;Uu=10;P=10;Q=1[I;

p = zeros(K,N);

for k=1:K,

>3
1]

(A-S(k)*E) ;
p(k,:) = colmmd(X);
[Lt,Ut,Pt] = 1u(X(:,p(k,:)));

L = [L,Lt]l; U = [U,Ut]; P = [P,Pt];
I = sparse(eye(W,N)); Q = [Q,IC:,p(k,:))];
end
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% Construct V and W
for j=1:7,
for k=1:K,
kk = (k-1)*N+1:k*N;
if j==1,
v = QC:,kk)*(UC: ,kk)\N(L(:,kk)\(P(: ,kk)*b)));

else

v = QC,kk)*(UC: , kN (L(C: L, kk)\N(P(C: ,kk)* (EXV (2 ,m=1)))));
end
ifm>1,

Gamma = W(:,max(1,m-K-1):m-1) *v;

Beta = V(:,max(1,m-K-1):m-1) 2 *w;

v =v - V(:,max(1,m-K-1) :m-1)*Gamma;
w=w - W(:,max(1,m-K-1):m-1)*Beta;
v = v-V(:,max(1,m-K-1) :m-1)*(W(: ,max(1,m-K-1) :m-1) **v);
w = w-W(:,max(1,m-K-1) :m-1)*(V(: ,max(1,m-K-1) :m-1) **w);

end

gamma = sqrt(abs(w’*v)*norm(v)/norm(w)) ;

beta sign(w’*v)*sqrt (abs (w’*v)*norm(w) /norm(v)) ;
if m == 1, beta_l = beta; gamma_1 = gamma; end

v

[V,v/gammal; W = [W,w/betal;

w = E2x(P(:,kk) "*(L(:,kk) P\ (UC:,kk) PN (QC: ,kk) 7*W(: ,m))))) ;
if m> 1,

Em(m-1,max(1,m-K-1):m) = [Beta’,betal;

Am(m-1,:) = S_old*Em(m-1,:);

Am(m-1,m-1) = Am(m-1,m-1) + 1;
end

S_old = s(k);

m = m+l;
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end
end
% Finish off the Am and Em matrices
Beta = V(:,max(1,m-K-1):m-1) *w;
Em(J*K,J*K-K:J*K) = Beta’;
Am(J*K,:) = S(K)*Em(J*K,:);
Am(J*K,J*K) = Am(J*K,J*K)+1;
% Compute the reduced-order input and output vectors
bm = (Am(:,1)-S(1)*Em(:,1))*gamma_1;

cm(1l) = beta_1;

A Quasi-Parallel Rational Power Implementation:

function [Am,Em,bm,cm] = RK_PRP(A,E,b,c,J,f);

% Rational Krylov Method (Quasi-Parallel Rational Power Version)

% INPUTS:

yA A,E,b,c = system to be modeled

/A J = number of ‘‘parallel’’ iterations to perform
/A f = vector containing frequency point grid

% OUTPUTS:

% Am,Em,bm,cm = reduced-order model

nprocs = 8;

% initialize the pdf to a uniform distribution
[pt_tot,one] = size(f);

pdf = ones(size(f))/pt_tot;

pt_sep = round(0.01*pt_tot)+1;

% initialize the projection matrices
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vi =[1; z1=[1; v2=[1; Z2=[];

for j=1:7,

for p=1:nprocs,

% choose another point for model 1 based on current pdf
rvar = rand(1);
pt_cnt = 1;
PDF = pdf(1);
while rvar > PDF,
pt_cnt = pt_cnt+1;
PDF = PDF + pdf(pt_cnt);
end
% edit pdf to keep current points 1% distanced
for l=max(1l,pt_cnt-pt_sep) :min(pt_tot,pt_cnt+pt_sep), pdf(1)=0; end
pdf = pdf/sum(pdf);

% compute the new directions for model 1

vl = (A-i*Exf(pt_cnt))\b;

V1 = [Vi,real(vl)/norm(real(vl)),imag(vl)/norm(imag(vi))];
z1 = randn(size(b))+i*randn(size(b));

Z1 = [Z1,real(zl)/norm(real(zl)),imag(z1) /norm(imag(z1))];

% choose another point for model 2 based on current pdf
rvar = rand(1);
pt_cnt = 1;
PDF = pdf(1);
while rvar > PDF,
pt_cnt = pt_cnt+1;
PDF = PDF + pdf(pt_cnt);

end
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% edit pdf to keep current rounds of points 1} distanced
for l=max(1l,pt_cnt-pt_sep) :min(pt_tot,pt_cnt+pt_sep), pdf(1)=0; end
pdf = pdf/sum(pdf);

% compute the new directions for model 2

v2 = (A-i*Exf(pt_cnt))\b;

V2 = [V2,real(v2)/norm(real(v2)),imag(v2)/norm(imag(v2))];

z2 = randn(size(b))+i*randn(size(b));

Z2 = [Z2,real(z2)/norm(real(z2)),imag(z2)/norm(imag(z2))];
end

% Compute model number 1

Al = Z1’x(AxV1); E1 = Z1’*(E*V1); bl = Z1’%b; cl = Vi’*c;
[M, junk] = size(Al);

[Uc,Sc,Vc] = svd(Al-abs(£f(1))*E1);

k = 1; while (Sc(1,1)/Sc(k,k) < 1e8) & (k<M), k = k+1; end; k=k-1;

Al Uc(:,1:k)’*A1*Vc(:,1:k); E1 = Uc(:,1:k)’*E1*Vc(:,1:k);

bl

Uc(:,1:k)’*b1; cl = Vc(:,1:k)’ *cl;

% Compute model number 2

A2 = Z27x(AxV2); E2 = Z2’*(E*V2); b2 = Z27%xb; c2 = V27%c;

[M, junk] = size(A2);

[Uc,Sc,Vc] = svd(A2-abs(£f(1))*E2);

k = 1; while (Sc(1,1)/Sc(k,k) < 1e8) & (k<M), k = k+1; end; k=k-1;

A2

Uc(:,1:k)’*A2+Vc(:,1:k); E2 = Uc(:,1:k)’*E2*xVc(:,1:k);

b2 Uc(:,1:k)’*b2; c2 = Vc(:,1:k)’ *c2;

% Compute the difference between the two models to update the pdf
diff = zeros(size(f));

for k = l:pt_tot,

diff (k) = abs(cl’*((i*f(k)*E1-A1)\b1)-c2’*((i*f (k)*E2-A2)\b2));
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end
pdf = diff/sum(diff);

end

Am=A1; Em=E1; bm=bl; cm=ci;
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