
HAL Id: tel-01711460
https://theses.hal.science/tel-01711460v2

Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Humanized Mice as Models to study Human Innate
Immunity and Immunotherapies

Silvia Lopez-Lastra

To cite this version:
Silvia Lopez-Lastra. Humanized Mice as Models to study Human Innate Immunity and Immunother-
apies. Innate immunity. Université Paris-Saclay, 2017. English. �NNT : 2017SACLS039�. �tel-
01711460v2�

https://theses.hal.science/tel-01711460v2
https://hal.archives-ouvertes.fr


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NNT : 2017SACLS039 
 

 
Thèse de doctorat 

de 
L’Université Paris-Saclay 

préparée à 
 

L’UNIVERSITÉ PARIS-SUD 
 

ECOLE DOCTORALE n°577 : 
Structure et dynamique des systèmes vivants (SDSV) 

 
SPÉCIALITÉ DE DOCTORAT : Sciences de la Vie et de la Santé 

 
 

Par 
SILVIA LOPEZ-LASTRA 

 
Dirigée par James P. Di Santo 

 
 

HUMANIZED MICE AS MODELS TO STUDY HUMAN INNATE 
IMMUNITY AND IMMUNOTHERAPIES 

 
 

Paris, le 17 février 2017 
JURY  
 
 

M. Karim Benihoud  

M. Francesco Colucci  

M. Miguel Lopez-Botet   

Mme. Nadine Cerf-Bensussan 

M. James P. Di Santo 

Mme. Nathalie Sauvonnet  

 

 

Professeur (Université Paris Saclay) 

Directeur de recherche (University of Cambridge)  

Professeur (Universitat Pompeu Fabra) 

Directrice de recherche (INSERM)  

Professeur (Institut Pasteur) 

Chargé de recherche (Institut Pasteur)  

 

 

Président du jury 

Rapporteur 

Rapporteur 

Examinatrice 

Directeur de thèse 

Co-directrice de thèse



 



	
  

	
  

3 

	
   	
  



	
  

	
  

4 

TABLE OF CONTENTS 



	
  

	
  

5 

  



	
  

	
  

6 

 
Table of contents -------------------------------------------------------------------------------------------- 4 

Acknowledgements ----------------------------------------------------------------------------------------- 8 

Abstract/Résumé ------------------------------------------------------------------------------------------- 11 

List of figures ----------------------------------------------------------------------------------------------- 15 

List of abbreviations -------------------------------------------------------------------------------------- 19 

Introduction ------------------------------------------------------------------------------------------------- 25 

I. The Human Immune System ------------------------------------------------------------------- 29 

Early hematopoiesis ------------------------------------------------------------------------------ 29 

Adaptive immunity ------------------------------------------------------------------------------- 31 

Innate immunity ----------------------------------------------------------------------------------- 33 

i. Dendritic cells ------------------------------------------------------------------------------ 35 

ii. Innate Lymphoid Cells ------------------------------------------------------------------- 42 

iii. Gamma-delta T cells --------------------------------------------------------------------- 57 

II. Human Immune System Mice ----------------------------------------------------------------- 61 

Early development of recipient strains --------------------------------------------------------- 61 

Current HIS mouse models ---------------------------------------------------------------------- 65 

i. Hu-PBL-SCID ----------------------------------------------------------------------------- 65 

ii. NSG and BRGS --------------------------------------------------------------------------- 65 

iii. BLT (bone-marrow, liver, thymus) ---------------------------------------------------- 66 

iv. MITRG and MISTRG ------------------------------------------------------------------- 66 

Harnessing Immunity to Battle Tumors: lessons from HIS mice --------------------------- 67 

i. Modeling cancer in HIS mice ------------------------------------------------------------ 67 

ii. Targeting Natural Killer cells in HIS mice -------------------------------------------- 69 

iii. Adoptive NK cell transfer --------------------------------------------------------------- 70 

iv. Novel NK cell sources ------------------------------------------------------------------- 72 

Improving the NK cell compartment in his mice --------------------------------------------- 74 

Specific aims of the thesis -------------------------------------------------------------------------------- 77 

Results -------------------------------------------------------------------------------------------------------- 81 

PAPER I: ------------------------------------------------------------------------------------------- 83 

A functional DC crosstalk promotes human ILC homeostasis in vivo --------------------- 83 



	
  

	
  

7 

PAPER II: ---------------------------------------------------------------------------------------- 123 

Systemic human ILC precursors provide a substrate for tissue ILC differentiation --- 123 

PAPER III: --------------------------------------------------------------------------------------- 173 

In vivo efficacy of umbilical cord blood stem cell derived NK cells in the treatment of 

metastatic colorectal cancer ------------------------------------------------------------------- 173 

PAPER IV: --------------------------------------------------------------------------------------- 201 

A nanobody based bispecific targeting approach to leverage the potent and widely 

applicable tumor cytolytic capacity of monomorphic Vγ9Vδ2-T cells ----------------- 201 

Discussion -------------------------------------------------------------------------------------------------- 237 

References ------------------------------------------------------------------------------------------------- 249 

ANNEXES ------------------------------------------------------------------------------------------------- 273 

Synthesis (french) ---------------------------------------------------------------------------------------- 330 

List of publications -------------------------------------------------------------------------------------- 344 

 

 
 

 

 

 

  



	
  

	
  

8 

ACKNOWLEDGEMENTS   
  



	
  

	
  

9 

  



	
  

	
  

10 

Along the long and winding road that led me here I’ve had the opportunity to 
meet many people who, each one in his or her own way, have contributed to the person I 
am today and will likely shape my future. I want to thank everyone who taught me, 
encouraged me and helped me remain standing with generosity and benevolence. 

 
  



	
  

	
  

11 

ABSTRACT/RÉSUMÉ 
 



	
  

	
  

12 

  



	
  

	
  

13 

 
Animal models have extensively contributed to our understanding of human 

immunobiology and to uncover the underlying pathological mechanisms occurring in the 

development of the disease. However, mouse models do not always reproduce the genetic 

complexity inherent in human disease conditions. Human immune system (HIS) mouse 

models that are susceptible to human pathogens and can recapitulate human hematopoiesis 

provide one means to bridge the interspecies gap.  

Severely immunodeficient host mice support life-long, high level human 

hematolymphoid development after engraftment with human hematopoietic stem cells 

(HSC). However, the differentiation and function of some blood cell types, including innate 

lymphoid cells (ILCs), is poorly characterized in current HIS mice. Here we describe the 

development of a novel HIS mouse model, named BRGSF (BALB/c 

Rag2tm1FwaIl2rgtm1CgnFlk2tm1lrlSirpaNOD), which demonstrate enhanced maturation, function and 

homeostasis of human natural killer (NK) cells and other ILCs.  

Furthermore, the BRGSF-based HIS mouse model recapitulated the developmental 

stages of human ILCs. We could identify for the first time an ILC precursor (ILCP) 

population that is present both in HIS mice and in human peripheral blood as well as in 

several lymphoid and non-lymphoid human tissues. This circulating human ILCP population 

may provide a substrate to generate mature ILCs in tissues in response to environmental 

stressors, inflammation and infection. 

In a second part of the thesis we used BRGS (BALB/cRag2tm1FwaIl2rgtm1CgnlSirpaNOD) 

immunodeficient mice to assess two innate lymphocyte-based immunotherapeutic approaches 

for treating EGFR-expressing KRAS-mutated colorectal carcinoma in vivo. The first model 

used a combination of umbilical cord blood (UCB)-derived NK cells and the monoclonal 

antibody cetuximab to promote antibody dependent cell cytotoxicity (ADCC) against the 

tumors. In a second model, we evaluated the therapeutic suitability of novel bispecific VHH 

constructs that combine inhibition of the EGFR with the target-specific activation of effector 

Vγ9Vδ2-T cells. 

These studies highlight the utility for HIS-based mouse models to understand human 

innate lymphocyte development and to harness these potent effectors for anti-tumor 

therapies. 
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 Les modèles animaux ont largement contribué à notre compréhension de 

l’immunologie humaine et des mécanismes pathologiques associés au développement des 

maladies. Cependant, les modèles murins ne permettent pas de reproduire toute la complexité 

des pathologies humaines. Les souris à système immunitaire humain (HIS), par leur capacité 

à récapituler l’hématopoïèse humaine et à être infectées par des pathogènes humains, 

constituent une solution de choix pour combler ce fossé inter-espèce. 

Après greffe de cellules souches hématopoïétiques humaines, des souris hôtes 

sévèrement immunodéprimées permettent un haut niveau de développement du système 

hémato-lymphoïde humain tout au long de leur vie. Cependant, certains types cellulaires, 

comme les cellules lymphoïdes innées, ne parviennent pas à se différencier et à fonctionner 

normalement dans les modèles murins HIS actuels. Ici, nous décrivons le développement 

d’un modèle souris HIS original, nommé BRGSF (BALB/c Rag2tm1FwaIl2rgtm1CgnFlk2tm1lrl 

SirpaNOD), montrant une amélioration de la maturation, de la fonction et de l’homéostasie des 

cellules natural killer (NK) humaines et des autres ILCS.  

De plus, en récapitulant les différentes étapes du développement des ILCs humaines, 

ce modèle souris BRGSF nous a permis d’identifier pour la première fois un précurseur 

d’ILC (ILCP) présent à la fois dans notre modèle HIS ainsi que dans le sang périphérique et 

plusieurs organes lymphoïdes et non-lymphoïdes humains. Cette population circulante 

d’ILCPs pourrait constituer un substrat pour la production d’ILCs matures dans les tissus 

périphériques en réponse à des stress environnementaux, inflammatoires et/ou infectieux. 

Dans une seconde partie de ce travail de thèse, nous avons utilisé ces souris BRGS 

afin de tester l’efficacité de deux immunothérapies reposant sur les lymphocytes innés pour le 

traitement d’un carcinome colorectal exprimant EGFR et muté pour KRAS. La première 

approche a consisté en la co-administration des cellules NK dérivées de sang de cordon 

ombilical et d'anticorps monoclonal cetuximab afin de promouvoir le mécanisme de 

cytotoxicité cellulaire dépendante des anticorps (ADCC) contre la tumeur. La seconde 

stratégie a reposé sur l’injection de nanobodies VHH combinant l’inhibition de l’EGFR et 

l’activation spécifique du récepteur Vγ9Vδ2 des cellules T effectrices.  

Les résultats de cette étude soulignent l’importance des modèles murins HIS pour la 

compréhension du développement des lymphocytes innés humains et pour mieux les mettre à 

profit dans les thérapies anti-tumeurs 
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Biomedical research has benefited from mouse experimentation to better understand 

mammalian biology since the 16th century, and it was after the generation of the first inbred 

mouse strains in the early 20th century that they were established as model organisms giving 

birth to many of the biological discoveries of the last 120 years. In many cases, this led to the 

development of successful treatments for previously untreatable diseases, for example acute 

promyelocytic leukemia 1. Although other model organisms are genetically closer to humans 

(such as dogs, pigs or non-human primates), mice are easier to maintain and breed, have short 

generation times and thanks to robust gene-modification approaches, provide an endless 

variety of mutants in several inbred backgrounds.   

We know today that Jacques Monod and Francois Jacob’s aphorism “Anything found 

to be true of E. Coli must be true of elephants” turns out to be too reductionist. Moreover, M. 

musculus and H. sapiens have been evolving divergently for 85 million years, adapting to 

very different environments thus undergoing selection for many traits, from the circadian 

rhythm to our body size 2. Thanks to the decoding of mouse and human genomes in the early 

2000, we now appreciate this independent evolution led to a difference in one-fifth of our 

genes. Not surprisingly, this part of the genome contains genes that suffered the highest 

selection pressure due to environmental contact such as human-microbe interactions. Indeed, 

the divergent sequences are involved in transcription regulation and chromatin organization 

with enrichment in the regions related to the immune system, metabolic processes and stress 

response 3.  

It is therefore not unexpected that only 8% of the cancer studies in animal models 

reach clinical trials and that more than 80% of these eventually fail when tested in humans 4. 

The increasing knowledge of the molecular differences between mice and humans should 

allow us to evaluate the degree in which animal models may be suitable for translational 

research and when this is not the case, to then search for better systems.  

Several reviews have carefully examined the differences between the immune 

systems of mice and humans 5,6 and highlighted the major importance of immune homeostasis 

for mounting an efficient immune response. To give some examples, the expression and 

sensitivity to TLR mediated challenge, the difference in the interferon-gamma (IFN-γ) 

signaling cascade, the composition of granule constituents in neutrophils and the different 

phenotype and molecules expressed by macrophages 7 differ in fundamental ways between 

mice and men, suggesting that the predictive value of mice disease models might be limited.  
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Should we abandon mouse research as a discovery tool for understanding human 

disease? Or can we adapt the mouse model to make it more relevant for human 

immunobiology? Chimeric xenografted mice provide an interesting opportunity to study 

some aspects of human immunity in a small animal model. Mice can be modified by 

introducing human genes or genomic regions and/or by transferring human cells. Throughout 

this thesis, I will use the term “humanized mice” for immunodeficient hosts that have been 

engrafted with human blood cells or blood-forming cells and organs that can partially 

recapitulate human hemato-lymphoid system development and function. These so called 

‘HIS’ (Human Immune System) mice are an emerging tool to decipher human immune 

responses and novel immunotherapies. 
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I. THE HUMAN IMMUNE SYSTEM 

 

EARLY HEMATOPOIESIS  
	
  

I could use today the same words Alexander Maximow used in 1909 to define 

hematopoiesis: “an organized cellular hierarchy derived from a common precursor, the 

hematopoietic stem cell (HSC)”. HSCs are responsible for the trillions of blood cells formed 

each day in adults. On the one hand, HSCs have the capacity to give rise to daughter HSCs 

without differentiation; on the other hand, HSCs can enter into a dynamic and well-

orchestrated differentiation process that generates other progenitors 8. This involves a gradual 

loss of differentiation potential modulated by the expression of transcription factors that 

ultimately guides the specialization of diverse hematopoietic lineages 9. Different models 

have been proposed defining specification branch points and timing of the generation of 

downstream progenitors (Figure 1). While the classical model splits differentiation into 

myeloid and lymphoid branches 10,11, an alternative model proposes a three axes panorama 

derived from a common myeloid progenitor (CMP) and a lymphoid-primed multipotent 

progenitor (LMPP) (Figure 1) 12. The LMPP gives rise to the common lymphoid progenitor 

(CLP) that differentiates in T-, B-lymphocytes and innate lymphoid cells while the 

megakaryocyte-erythrocyte progenitor (MEP), derived from the CMP, produce platelets and 

erythrocytes.  The novelty of this revisited model of hematopoiesis is that both the myeloid 

primed (CMP) and the lymphoid primed (LMPP) progenitors maintain the capacity to switch 

to the granulocyte-macrophage progenitor (GMP) that generates monocytes and 

macrophages, granulocytes and dendritic cells (DC). 
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Figure	
  1:	
  Models	
  of	
  human	
  hematopoiesis	
  hierarchy.	
  A)	
  Classical	
  model	
  of	
  the	
  hematopoietic	
  hierarchy	
  with	
  a	
  
strict	
   separation	
   between	
   the	
   myeloid	
   and	
   lymphoid	
   branches	
   as	
   the	
   first	
   step	
   in	
   lineage	
   commitment	
  
downstream	
   of	
   the	
   hematopoietic	
   stem	
   cell.	
   (B)	
   Alternative	
   model	
   as	
   proposed	
   by	
   Adolfsson	
   et	
   al,	
  
incorporating	
  the	
  identification	
  of	
  LMPPs.	
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 ADAPTIVE IMMUNITY  
	
  

The adaptive immune system is formed by two broad sets of antigen-responsive cells: 

B (bursal or bone marrow–derived) lymphocytes and T (thymus-derived) lymphocytes, which 

in the blood and secondary lymphoid organs can be identified as CD19+ and CD3+ cells, 

respectively. In steady state, naïve B and T cells harbor a highly diverse repertoire of antigen 

(Ag) specificities. Upon encounter with cognate antigen, they proliferate massively 

generating antigen-specific ‘clones’ that differentiate into the effectors of immunity. Upon 

antigen clearance, a fraction of ‘memory’ cells remain that is the basis for the antigen-

specific recall responses, which has been classically considered a hallmark of adaptive 

immunity 14,15.  In the case of B cells the antigen specificities come from immunoglobulin 

receptors (Ig) that after engaging with an antigen, they trigger cell activation, clonal 

expansion and differentiation into antibody producing plasma cells. Antibodies are capable of 

recognizing three-dimensional structures and interact with pathogens leading to its 

neutralization. In contrast, recognition of antigen by T cells involves T cell receptor complex 

(TCR) engagement of peptides presented by class I and II major histocompatibility complex 

(MHC) molecules. These peptide/MHC complexes are expressed on the surface of antigen 

presenting cells (APCs), especially dendritic cells (DCs) 16. Accordingly, DC are the 

‘gatekeepers’ of immunity and they dictate immune response initiation and coordinate innate 

and adaptive immune activation.  

Thymic selection generates two types of T cells: those expressing a TCR receptor 

formed by αβ chains and those carrying γδ-TCR. γδ-T cells are much less understood and 

they are peculiar in that they have characteristics that place them in the border between innate 

and adaptive immunity. Their repertoire heterogeneity is poorer and they localize in very 

precise sites such as skin and some mucosal surfaces. The biology of γδ-T cells will be 

further developed below. 

 On the basis of the co-receptor expressed αβ-T cells are divided into CD8+ cytotoxic 

T cells and CD4+ helper T cells. Ag-activated helper T cells will differentiate into different 

phenotypes, depending on the stimulus and cytokines in the local environment, which can be 

characterized by their cytokine profile and by transcription factors. Th1 cells produce IFN-γ 

and interleukin-2 (IL-2) and express T-bet. Th2 cells produce IL-4, IL-5 and IL-13 and 

express GATA-3. Th17 cells produce IL-17 and IL-22 and express RORγt. A fifth type of 

“conventional” T cells, responsible for the maintenance of peripheral tolerance and down-

modulation of immune responses, are called regulatory T cells (Treg). These can be divided 
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into different subsets based on the expression of FoxP3 and/or the production of IL-10, TGF-

β and IL-35. Recently a new equilibrium model of immunity has proposed where Tregs can 

differentiate into specialized type 1, 2 or 3 subsets depending on the associate effector axis 

triggering the action 17–20. 
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  INNATE IMMUNITY  
 

Unlike the adaptive immunity that appeared later in evolution, the innate arm of the 

immune system developed already in the first multicellular organisms. Intimately related to 

their phylogeny is the mechanism these two systems use to recognize their target. By contrast 

to the specificity shown earlier for T and B-lymphocytes, innate effectors have been 

classically seen as “broad responders”. Innate effector cells bear ‘sensors’ that are capable of 

recognizing conserved structures shared by large groups of pathogens (termed microbial-

associated patterns (MAMPs) 21,22such as the lipopolysaccharide (LPS) that is present in all 

gram-negative bacteria). As such, the innate sensors are referred to as pattern recognition 

receptors (PRRs). The four PRR families include Toll-like receptors (TLR), nucleotide 

oligomerisation receptors (NLR), C-type lectin receptors (CLR) and RIG-1 like receptors 

(RLR). In humans, TLRs include 10 members, each of them with a broad range of 

specificities (Figure 2) 23. Engagement with TLR ligands triggers a signaling cascade that 

concludes with the activation either of the MAP kinase, the NFkB or the IRF pathway. 

Eventually TLR stimulation leads to the production of pro- or anti-inflammatory cytokines, 

type I IFNs, chemokines and chemokine receptors, anti-microbial and co-stimulatory 

molecules and the enhance of the antigen uptake and presentation (Table 1) 24. Also non-

infectious endogenous biomolecules called damage-associated molecular patterns (DAMPs) 

or alarmins can bind to TLRs promoting or exacerbating the inflammatory response in a 

context of stress. The fundamental role of TLRs has been evidenced by several studies that 

compared the disease susceptibility of individuals carrying different polymorphisms in genes 

that participate in TLR signaling (Figure 2). These included sepsis, immunodeficiencies, 

atherosclerosis and asthma, among others, suggesting a great therapeutic potential in the 

manipulation of these receptors 25. Indeed, recent investigations have exploited TLRs as 

adjuvants in vaccines and as tumor immunotherapeutics and have also assessed the potential 

of TLR agonists in autoimmune and inflammatory diseases 26,27. Like TLRs, CLRs are found 

in contact with the extracellular space surveying for the presence of microbial ligands. This 

greatly heterogeneous family shares the characteristic C-type lectin-like domain and its two 

best characterized members are Dectin-1 and Dectin-2. These receptors signal through 

ITAM-like domains in myeloid cells including DCs, macrophages, neutrophils and 

monocytes. They are fundamental in the recognition of fungal β-glucans and α-mannans, 

such as in Candida albicans, as well as patterns of Listeira and Mycobacterium 28.  Contrarily 
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to the previous PRR families, NLRs and RLRs are located in the cytoplasm where they patrol 

for the presence of intracellular pathogens. NOD1 and NOD2 are the prototypical members 

of the NLR family and they both detect components of the bacterial outer membrane or cell 

walls29,30. After binding to those ligands, a signaling complex is assembled leading to the 

activation of NF-κβ and MAPK pathways. The importance of this family of receptors is 

evidenced in Crohn’s disease patients that express a NOD2 variant with impaired 

responsiveness and incorporation of bacteria within the autophagosomes. Finally, RLRs are a 

group of three helicases that detect the presence of foreign RNA within the cytosol. They do 

so by recognizing features common to viral genomes and replication intermediates, such as 

the poly-U region in the HCV31,32. Their role is critical in the immune defense against RNA 

virus but they also participate in responses against DNA virus and bacteria pathogens.   

 

 
Figure	
  2:	
  TLR	
  recognition	
  of	
  conserved	
  molecular	
  structures	
  in	
  bacteria,	
  viruses,	
  fungi	
  and	
  parasites. 

 

 

Elie Metchnikoff identified the first innate immune effector cell, the macrophage, as a 

key player in cellular defense. Many others came after and today myeloid cells can be 

morphologically divided in two types: mononuclear and polymorphonuclear cells (or 
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granulocytes composed by neutrophils, eosinophils, mast cells and basophils) that provide 

protection against bacteria and parasitic infections via release of toxic and inflammatory 

molecules 33. The mononuclear phagocytes include the macrophages and their precursors, the 

monocytes, that reside allover the body regulating fibrosis and repair and contributing to 

immune surveillance and inflammation in a tissue-specific manner 34,35. Also, the rich and 

essential group of dendritic cells (DCs) belongs to this myeloid family. While myeloid cells 

have long been considered essential for innate immunity, we realize now that cells of 

lymphoid origin, such as innate lymphoid cells (ILCs) and two peculiar populations of 

antigen-rearranged lymphocytes, γδT cells and B-1 cells, are likewise innate effectors due to 

their rapid and non-Ag specific activation. Given the importance of DCs and ILCs in innate 

immune responses, their biology will be more deeply explored in the following sections. 

 

i. DENDRITIC CELLS 
	
  

In 1976 Steinman & Cohn described a novel cell type in peripheral lymphoid organs 

with characteristic morphological ‘dendrites’ that they baptized as the ‘dendritic’ cell or DC 
36.  Little did they know at that time that these “rare” DCs would be so critical for the proper 

functioning of the immune system and that DC biology would become a magnet for decades 

of intense immunology research. The description of other cells sharing immunogenic 

properties, phenotypic characteristics and morphology with DCs followed, building up the 

heterogeneous family that we know today (Figure 3). DCs are the professional antigen 

presenting cells (APCs) of the immune system that patrol secondary lymphoid tissues, most 

peripheral tissues and non-lymphoid organs. They are equipped with a molecular machinery 

to capture and process antigens, present them to T lymphocytes and provide co-stimulatory 

signals that shape immune responses. Numerous mouse studies have shown that DCs 

comprise a heterogeneous family with diverse ontogeny, locations, migration patterns and 

roles in immunity (Figure 3). The biology of human DCs, particularly in tissues, is less well 

understood and most of our knowledge on human DCs derives from blood studies. Some of 

the recent observations showed a high differentiation capacity of some DCs in circulation 

suggesting that within these there are precursors or immature DCs with different phenotype 

from tissue DCs 37–39. 

Myeloid DC-restricted precursors that exit the BM populate different tissues where 

they undergo differentiation in situ to give rise to two type of mature DCs: resident DCs that 
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will populate lymphoid tissues, and migratory DCs that will move from non-lymphoid tissues 

to the lymph nodes. The latter DC subset concomitantly up-regulates maturation markers 

upon migration and present tissue-derived antigens to T cells 40,41.   

Three subsets of DCs can be found in blood, spleen and tonsils within the lineage 

negative HLA-DR+ population: plasmacytoid DCs (pDCs, with plasma-like morphology 

instead of the typical dendritic shape) and two populations of ‘classical’ DC (cDCs) with 

abundant dendrites 42–44.  

 

PLASMACYTOID DCS express a cluster of markers including CD123 (IL-3R), CD303 

(BDCA-2) and CD304 (BDCA-4 or Neuropilin-1) (Figure 3). Recent work has revealed a 

rather multifaced identity of pDCs, being immunogenic or tolerogenic depending on the 

context 45. pDCs play fundamental roles in the defense against viral infections through their 

potent type I interferon activity 46. They can detect nucleic acids coming from virus, bacteria 

or death cells through TLR7 and TLR9 triggering the signaling cascade that ends up with the 

production of IFN-α, IFN-β and also IFN-λ 47–49.  

In the steady state, thymic pDCs have a tolerogenic role by priming Tregs to produce 

IL-10 and TGF-β and regulating their proliferation and survival 50,51. This function is 

accompanied by a low CD4+ stimulation capacity and MHC-II expression. Recent work 

showed that this type of tolerance involves a CCR9-dependent transport of peripheral Ags 

and subsequent deletion of Ag-reactive thymocytes 52. The tolerogenic machinery of pDCs 

has been reported as well in pathological conditions via TLR-independent activation 

(alternative stimulation). This results in the expression of indoleamine 2,3-dioxygenase 

(IDO) and inducible T cell co-stimulator ligand (ICOSL) that leads to induction of Treg 

expansion and to an increase in IL-10 levels. 53–55. This non-canonical pathway has been 

studied in the context of cancer, and is associated with a poor prognosis. 

In contrast, pDCs become great drivers of both innate and adaptive responses 

following activation where they increase the expression HLA-DR and co-stimulatory 

molecules (CD40, CD80, CD86) and undergo a morphological change that converts them in 

functional APCs capable of presenting Ag to naïve CD4+ T cells and cross-priming CTLs 47. 

Furthermore, activated pDCs production of IFN-α, IL-12 and IL-18 results in a massive 

activation of NK cells and CD8+ cells as well as Th1 polarization. Interestingly, some viral 

infections like HIV-1 lead to chronic immune activation that impairs pDC mediated IFN-α 
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production via enhanced CD40-CD40L interactions, evidencing the importance of this 

immune mechanism in antiviral response.  

Moreover, pDCs can secrete other pro-inflammatory cytokines (such as IL-6 that can 

drive Th17 cell commitment) and chemokines (such as CXC-chemokine ligand 8 (CXCL8), 

CXCL10, CC-chemokine ligand 3 (CCL3) and CCL4) that attract other immune cells to the 

sites of infection or inflammation. Given the importance of migration for the activity of these 

cells, it is not surprising that their function relies on the expression of several chemokine 

receptors, such as CXCR4 (development on the BM and migration to the spleen and LNs) 

and CCR2/CCR5 (blood recirculation) 56,57.    

 

CONVENTIONAL OR CLASSIC DCS are predominant in human blood and have been also 

reported in LNs and spleen as well as in non-lymphoid tissues including skin, liver, lung and 

gut. Two major cDC subsets can be identified by surface markers (Figure 3): CD1c+ DCs that 

co-express CD11b and high levels of CD11c and CD141+ cDCs that are lower for CD11c 

expression and negative for CD11b but express DNGR-1 (Clec9a). These cDC subsets differ 

in their TLR expression patterns: CD1c+ DCs express all TLRs except for TLR9 while 

CD141+ DCs have low expression of TLR1-2, TLR6 and TLR8 and high expression of TLR3 

and TLR10 58,59. 

In view of this TLR expression pattern, it is not surprising that ex vivo isolated blood 

CD1c+ cDCs showed a broader cytokine expression capacity and in some cases also a more 

potent cytokine production (for IL-12, for example). Additionally it has been reported that 

TLR6 mediated CD1c+ DC production of IL-23 and shaping of Th17 response has a 

protective role on asthma 60. By using human lung tissues and humanized mouse models, 

researchers found that specifically CD1c+ DCs are capable of driving CD103 expression on 

CD8+ cells and promote their accumulation in lung epithelia 61. In contrast, some unique 

properties have been attributed to CD141+ DCs, such as their expression of the chemokine 

receptor XCR1 that allows them to migrate in response to the XCL1, secreted by NK cells 

and CD8+ T cells 62.  

Progress in the field of human DC research has been boosted in recent years thanks to 

in-depth proteomic and transcriptomic analyses and to the development of humanized mouse 

models that can be used to study the biology of these cells in vivo. Despite their phenotypic 

and functional differences, the two cDC subsets share characteristics including the capacity to 

uptake, process and present peptides to naïve CD4+ or CD8+ T cells.  They are also similar in 
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terms of MHC-I expression 63 and in stimulatory capacity of CD4+ T cells in mixed 

lymphocyte reactions (MLR). Naïve T cell differentiation and polarization is highly 

dependent on cDCs as evidenced by the immunodeficiency observed in individuals with 

IRF8 mutations (a transcription factor necessary for the development of mononuclear 

phagocytes) 64.  When referring to T-cell polarization the activity of the different subsets 

depends greatly on the TLRs and the cytokines implicated in the reaction. Many studies have 

focused on comparing the two cDC subsets in terms of capacity to elicit individual cytokine 

production under stimuli of different nature in distinct tissues. That detailed analysis is 

beyond the scope of this manuscript and has been reviewed elsewhere 41. In brief, both cDC 

subpopulations have been associated to Th1, Th2 and Th17 CD4+ polarization in various 

organs (LNs, lung and liver) with variable intensity depending on the nature of the stimulus.     

The presentation of exogenous antigens on MHC-I molecules to CD8+ T cells that 

turns out in the initiation of the immune response is another fundamental characteristic of 

cDCs. In vivo CD1c+ DCs, CD141+ DCs and pDCs show equal intrinsic cross-presentation 

capacity although some may be specialized in certain types of antigens, like CD141+ DCs 

with necrotic cell-associated antigens 62,63.  

 

MONOCYTE-DERIVED DCS AND INFLAMMATORY DCS 

Monocytes account for the majority of the phagocytic cells in human blood. They can 

be distinguished from DCs by the expression of CD14 but they share some of the other 

markers, like CD11c (Figure 3). Based on their expression of the low affinity Fc receptor 

CD16, they are classified in three subtypes: (1) classical CD14++CD16− (circulating blood 

guard that migrate to tissues upon inflammation), (2) intermediate CD14++CD16+ (main 

producer of inflammatory TNF-α in situ), and (3) non-classical CD14+CD16++ monocytes 

(IL-12, TNF-α and IL-1β producers) 65. Under homeostatic conditions monocytes patrol the 

body complementing the tissue surveillance of DCs but when inflammation occurs 

monocytes can differentiate into macrophages and dendritic cells, the so called monocyte-

derived DCs or inflammatory DCs. These processes add more difficulties to the classification 

and distinction of “plastic” populations and discrete subsets. In vitro-generated moDCs using 

GM-CSF have been used as a model to study this cells 66; however in vivo this “plastic” 

events seem to happen in situ. In mice, infDCs have demonstrated similar capacities as DCs, 

including production of pro-inflammatory cytokines, T cell priming and polarization of Th 

responses. However, the study of these cells in humans has been challenging and only a few 
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reports claim the presence of infDCs with similar characteristics than those observed in mice 

in the context of atopic dermatitis, rheumatoid arthritis, and tumor ascites 67–69. As such, our 

understanding of infDC function in humans is limited; humanized mice may provide a 

meaningful in vivo system to further study infDC biology. 

 

	
  

Table	
  1:	
  Main	
  functions	
  of	
  toll	
  like	
  receptors	
  in	
  humans.	
   

 

 

DENDRITIC CELL DEVELOPMENT  

As previously mentioned, DCs derive from GMP in the bone marrow, circulate in the 

blood and home to the tissues throughout the body. However, the identification of human 

precursors restricted to one or several DC/monocytes/macrophage subsets and the 

understanding of the relationships between these precursors has been challenging due to the 

lack of suitable culture and in vivo systems. It has been suggested that the higher proliferation 

4 Function  Reference 
1

1 Like TLR2  70,71,72 

2
2 

Upregulation of CCR7, IL-6, IL-10, IL-12p70,TNF-α, No INF-
α  70,71,73,72 

3
3 

IFN-α (intermediate), IL-12p70 (high) 
IL-1β (CD1c+DCs), TNF-α, IL-6 

CXCL-10/IP-10, CCL3, CCL4, CCL5 and IFN-β 
IFN-λ 

 70,71,72,63,58,74 

4
4 

Upregulation of CD80, CD86, CD83, CD40, CCR7 
Secretion or upregulation of CCR7, IL-6, IL-8, IL-10, IL-12p70 

No IFN-α response 
 71,73 

5
5 

Upregulation of CD80, CD86, CD83, CCR7 
Secretion of TNF and IL-8 

Upregulation of CCR7 
 70,71,72 

6
6 

Like TLR2 
Upregulation of IL-23  70,71,72,60 

7
7 

Upregulation of CD40, CD80, CD86, CCR7 (in pDC) 
Very high IFN-α response (only in pDC) 

IL-12p70 response (only in cDC) 
 71,72 

8
8 Like TLR7  70,71 

9
9 

Upregulation of CD40, CD80, CD86, CD83, HLA-DR, CCR7 
Upregulation of IFN-α (very high), IFN-β (lower), IL-6, TNF-α 

(low), IL-8, IP-10 
No IL-10 secretion 

 71,75 

É
10 Upregulation of IL-8 (influenza infection)  76 
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capacity and lower expression of some maturation markers in circulating DCs indicated that 

those are, indeed, the precursors of DCs 38. Recently, two studies described, both at bulk and 

single cell level, the hierarchy of myeloid precursors and proposed a developmental 

relationship between monocytes, cDCs and pDCs. Using a novel in vitro system and HIS 

mice, they proposed that GMP give rise to a monocyte-DC progenitor (MDP), which then 

differentiates, into a common DC progenitor (CDP) that produces the three main DC subsets. 

Furthermore, they report the identification of a circulating immediate DC precursor (hpre-

cDC) that is restricted to the cDC subsets and expands in response to Flt3L (Figure 3) 39,77. 

The differentiation of HSCs via DC precursors to mature DCs is regulated by the 

environmental signals that includes cytokines, soluble factors and cell-to-cell contacts. Early 

attempts to generate DCs from hematopoietic precursors in vitro revealed that two cytokines 

were pivotal: GM-CSF and Flt3L. However, while the first gave rise to “monocyte-like” 

DCs, the second was unique in driving the generation of cDCs and pDCs.   

The cytokine Flt3L (fms-like tyrosine kinase 3 ligand) is ubiquitously produced by 

stromal cells, endothelial cells and activated T cells. Its receptor, Flt3 (also called CD135 and 

Flk2) is strongly expressed by early hematopoietic precursors (GMP, CLP) and is maintained 

on dendritic cells lineage restricted precursors and mature pDC and cDCs (Figure 3) 78. 

Accordingly, ablation of Flt3 is correlated with loss of DC differentiation potential 79. On the 

other hand, Flt3L administrated in mice and in humans leads to a drastic systemic expansion 

of both pDCs and cDCs 80,81. Therefore Flt3L is not only important for the development but 

also the homeostasis (survival, proliferation) of peripheral DCs 78.  
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Figure	
  3:	
  Schematic	
  view	
  of	
  human	
  dendritic	
  cell	
  development	
  The	
  main	
  surface	
  markers	
  for	
  each	
  subset	
  are	
  
shown	
  as	
  well	
  as	
  the	
  cytokines	
  they	
  produce	
  (in	
  green).	
  GMDP:	
  granulocyte,	
  monocyte	
  and	
  dendritic	
  cell	
  	
  
(DC)	
  progenitor;	
  CDP:	
  common	
  DC	
  progenitor;	
  MDP:	
  monocyte-­‐DC	
  progenitor;	
  pre-­‐cDC:	
  commited	
  precursor	
  
of	
  classical	
  DCs. 
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ii. INNATE LYMPHOID CELLS 
Innate lymphoid cells are a recently identified family of innate effectors. Two of its 

founding members: the natural killer cell (NK cell) and the lymphoid tissue inducer cell (LTi 

cell) have been known and studied for many years but the identification of new subsets with 

similar characteristics prompted their “clustering” as a distinct but heterogeneous effector 

lineage. ILCs lack recombination activating gene (RAG)-dependent rearranged antigen 

receptors and share a lymphoid cell morphology. They can be identified by the lack of 

lineage markers (CD3/CD19/CD14/CD33…) but express CD7 and CD127 (except for 

CD56dim NK cells). Interestingly ILC effector functions and transcription factor dependency 

mirror those observed in T cell subsets prompting the speculation that ILCs are ‘innate’ 

counterparts of differentiated T helper and cytotoxic lymphocytes (Figure 4). Accordingly, 

we can distinguish three broad groups of ILCs paralleling the three major axis of T cell 

specialization. ILC1s depend on the transcription factor T-BET and can be subdivided into 

cytotoxic ILC1 or NK cells (like CTLs) and ILC1s that preferentially produce type 1 

cytokines (like Th1 cells). Likewise, ILC2s and ILC3s are reminiscent of Th2 and Th17/Th22 

cells in that they depended on 

GATA-3 or RORγt, 

respectively, and they elicit the 

corresponding cytokine response 

(see in detail below). NK cells 

appear distinct from other 

‘helper’ ILCs in that they have 

different requirements for 

cytokines and transcription 

factors (reviewed in 82).  

 

 

 

 

 

 

 

 Figure	
  4:	
  Innate	
  lymphoid	
  cells	
  closely	
  reseamble	
  T	
  cel	
  subsets.	
  
(Adapted	
  from	
  Goldberg	
  et	
  al.	
  2015) 
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TYPE 1 ILCS 

For almost forty years, NK cells have been considered the prototypic (and in some 

cases only) innate source of type 1 cytokines during the early phases of the immune response. 

Several studies in the last decade, first in mice and then in humans, have identified additional 

phenotypically diverse ILC1 subsets (particularly inside the tissues) that provide innate 

sources for IFN-γ. Before discussing these different ILC1 subsets, I will briefly present some 

of the general features that characterize human NK cells.  

 

Natural Killer Cells 

Natural killer cells owe their name to the unique ability to kill transformed or virus 

infected cells without prior sensitization 83–85. Although originally described by this natural 

capacity to kill, NK cells are also major sources of type 1 cytokines, notably IFN-γ, TNF-α 

and GM-CSF, and to a lesser extent other cytokines and chemokines (MIP-1α, MIP-1β and 

RANTES) 86. Even before the discovery of additional ILC1 subsets, a high degree of 

heterogeneity was already appreciated among NK cells by virtue of the distinct lineage 

differentiation stages, the variety of effector functions and their tissue localization. In humans 

two major subsets can be distinguished in the circulation by their expression of the adhesion 

molecule CD56, namely CD56bright and CD56dim subsets (Figure 5). CD56bright cells are 

considered to give rise to the fully mature CD56dim cells, based on the order of appearance in 

HSC transplantation experiments and cytokine driven models of in vitro NK cell 

differentiation, and also to the length of the telomeres observed in the two subsets 87,88. 

CD56dim cells express the low affinity Fc receptor CD16 (responsible for the antibody-

mediated cell cytotoxicity, ADCC) and account for 90% of the peripheral blood NK cells. 

This subset is highly cytotoxic thanks to the cargo of effector molecules, granzymes, perforin 

and Fas ligand, contained in secretory lysosomes that provide them with a characteristic 

granular morphology 89. The CD56bright subset, contrarily, has a low-density expression of 

CD16 but exhibits a high potential for cytokine production under monokine or target cell 

stimulation. These cells are also hyper-responsive to IL-2 due to the expression of the high-

affinity heterotrimeric IL-2 receptor thus showing a higher proliferative potential and the 

capacity to acquire potent lytic function. CD56bright are better at penetrating the secondary 

lymphoid tissues thus accounting for the majority of the NK cells in lymph nodes or decidua, 

whereas in lung NK cells have a very differentiated profile.  
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Figure	
  5:	
  Identification	
  of	
  human	
  peripheral	
  blood	
  NK	
  cells	
  by	
  flow	
  cytometry	
  (A)	
  and	
  general	
  phenotype	
  and	
  
effector	
  funciton	
  of	
  CD56bright	
  and	
  CD56dim	
  NK	
  cell	
  subsets	
  (From	
  Cooper	
  et	
  al,	
  2001)	
  (B).	
  

 

 Given the modulation of CD56 and CD16 expression after activation, this dual 

classification of NK cells may be inaccurate in the context of tissues. For example, in the 

decidual tissue NK cells are CD56superbright accounting for around 70% of the lymphocytes 

during the first months of the pregnancy where they interact with the trophoblast and other 

immune cells regulating arterial remodeling and placenta development 90. These cells, called 

uterine NK cells (uNK) are considered a distinct NK population as they display some other 

characteristics different from pNK cells like a particular pattern of KIR expression and the 

over-expression of CD9, galectin, alpha-1 integrin, as well as other adhesion molecules 91,92. 

Interestingly, these NK cells are able to induce Treg cells in vitro indicating a role in maternal 

tolerance 93,94. Even within the CD56dim subset one can find diverse “stages” with particular 

phenotypic and functional properties throughout their final differentiation 95,96. This 

progression from CD56dim to terminal differentiated cells is accompanied by the progressive 

loss of the proliferation capacity and the acquisition of more efficient cytolytic activity. 

Phenotypically, down-regulation of CD94 and NKG2A and up-regulation of CD16, KIR and 

perforin expression characterize this process that terminates with a CD57-expressing highly 

cytotoxic mature population 97. Interestingly, cytomegalovirus infection (CMV) leads to 

selective expansion of this terminal mature subset, the drastic up-regulation of NKG2C 

expression 98,99 and the display of certain hallmarks of adaptive immunity 100.  



	
  

	
  

45 

Despite their rapid and potent response upon viral infection or transformation, NK 

cells are efficiently rendered ‘self-tolerant’ thereby avoiding potential autoimmunity. This is 

achieved by an ‘education’ process generating an array of activating and inhibitory receptors 

that maintain the NK cells on alert while tolerating “self” 101. Additionally, NK cells 

constitutively express monokine receptors that allow them to respond strongly to cytokines 

such as IFN-α, IL-2, IL-12, IL-15 and IL-18, which are produced by surrounding cells like 

monocytes and dendritic cells 102. It is therefore the combined effects of cytokines and 

receptor-ligand engagement that condition NK cell responses 103. 

The training of a self-tolerant NK cell is dependent on the signaling through ITIM 

bearing inhibitory receptors 104–106 and takes place by a mechanism not yet agreed by the 

experts. Four main mechanisms have been suggested (Figure 6): “the arming” hypothesis 

establishes that NK cells are initially unresponsive and the encounter of MHC-I by inhibitory 

receptors during development licenses or “arms” them (Figure 6a) 104. The opposite 

possibility has also been suggested, that is the  “disarming” hypothesis, stating that initially 

responsive NK cells would become anergic after chronical stimulation unless engaged by 

MHC-I specific to its inhibitory receptors (Figure 6b) 107. A third mechanism refers to as “cis-

interaction model” relies on the ability of KIR receptors to bind to MHC-I molecules in cis 

and is based on the observation that KIR receptors can transmit inhibitory signals even in the 

absence of ligand interaction, but it is unclear whether this model can be applied to all KIR 

receptors (Figure 6c) 108. Finally the “rheostat model” proposes that NK cell reactivity is 

tuned by the number and degree of affinity of self-MHC-I inhibitory receptors carried by a 

cell (Figure 6d) 107,109. As such, NK cells experience a quantitative functional adaptation that 

generates MHC-I educated NK cells responding efficiently to stimulation and responding as 

well to aberrant cells that have lost MHC-I (missing-self recognition) 110.  

 
Figure	
  6:	
  Models	
  of	
  MHC-­‐I	
  mediated	
  education	
  of	
  NK	
  cells.	
  (From	
  Höglund	
  et	
  al.	
  2010) 
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Other ITIM bearing receptors contribute to maintaining NK cells on control, 

including NKG2A that binds the non-classical MHC-I molecule HLA-E, and LIR-1 that 

engages both classical MHC-I and the non-classical HLA-G 111,112. Additionally, non MHC-I 

ligands can bind ITIM-containing receptors, this is the case of KLRG1 that binds cadherins 

and participate in tumor invasion and metastasis detection 113,114, and CD161 that recognizes 

LLT1 (osteoclast inhibitory lectin or CLEC2D, expressed by DCs and B cells) thus 

regulating NK cell activation (Figure 7) 115.  

 

Unlike T cells, allogeneic NK cell transplantation leads to graft-versus-leukemia 

responses without causing graft-versus-host disease (GVHD) 116. This suggests that NK cells 

are not pre-wired to kill in mismatched contexts but other positive stimuli contribute to 

triggering the response. This positive recognition of « altered-self » or pathogen derived 

molecules is carried out by activating receptors that express or not ITAM-carrying adaptors. 

Among those that signal through ITAM are the activating KIRs, such as KIR2DS and 

KIR3DS, as well as the heterodimers CD94-NKG2C and CD94-NKG2E 117,118. Intriguingly, 

both inhibitory NKG2A and activating NKG2C heterodimers bind to the same ligand 

suggesting that a more sophisticated mechanism of NK regulation might exist. ITAM-

independent receptors include NKG2D whose ligands are MICA-B and ULBPs, induced in 

stressed cells (transformed or virus infected) 119,120 and also the family of SLAM-related 

receptor (SRRs), notably 2B4 greatly contribute to the regulation of NK cell function when 

binding CD48-expressing cells 121 (Figure 7).  

An additional family of activating receptors, the natural cytotoxicity receptors (NCRs) 

–NKp46 (NCR1), NKp44 (NCR2), NKp30 (NCR3)- are expressed in activated and resting 

NK cells (Figure 7). The role of this family of receptors in human NK cell-mediated killing 

was demonstrated by Moretta and colleagues in culture experiments containing human NK 

clones and NK-susceptible tumor cells. Addition of anti-NCR monoclonal antibodies directed 

against individual NCRs resulted in partial inhibition of cytotoxicity whereas the combined 

use of all three mAbs strongly abrogated cytolysis 122. This work suggested that NCRs 

cooperate in target cell recognition and killing and that the extent of that cooperation depends 

on the density of the ligands on target cells. Furthermore, experiments in mouse showing the 

reduction of the tumor cell lysis by NK cells lacking one or more NCRs reflect their high 

importance in in vivo tumor surveillance 123. Several studies have also reported exogenous 

ligands for NCRs (reviewed in 124), notably pp65 of HCMV for NKp30 and viral HA for 
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NKp44 and NKp46 further evidencing the protagonist role of these receptors in NK cell 

function 125–127  

The outcome of the receptor-ligand binding not only depends on the identity of the 

receptor itself but also by the adaptor proteins associated to the cytoplasmic domains. As 

such, the 2B4 NK receptor (also called CD244) behaves as a multifunctional receptor and the 

outcome of its engagement seems to depend on the stage of NK cell maturation and 

activation. Ligation of 2B4 with a specific antibody or with CD48-expressing cells lead to 

NK activation while in patients deficient for SAP (a 2B4 adaptor protein) that engagement 

results in inhibition of NK cell function 115,128  

Tens of other activating NK receptors have been identified as well as co-stimulatory 

receptors that act synergistically ensuring the activation of NK cells upon “unhealthy” 

circumstances and not otherwise and modulating the intensity and type of immune response. 

These include DNAM-1, NKR-P1, PILR, LFA-1, CD2 and others depicted in Figure 7. A 

more exhaustive description of these receptors can be found in several excellent reviews 

published over the last decades 124,129,130.  

 

 
Figure	
  7:	
  Activating	
  and	
  inhibitory	
  receptors	
  of	
  human	
  NK	
  cells.	
  (Adapted	
  from	
  Nature	
  Reviews	
  Poster,	
  Vivier&Ugolini)	
  	
  

	
  
Surface NK cell receptors serve as landmarks that dissect the stepwise differentiation 

of HSCs to mature NK cells. Human NK cells can be detected in fetal liver from week 6 of 

gestation and in BM, lymph nodes, spleen, lung and intestine during the second trimester 131. 

In adults, early stages of NK cell development take place in the BM whereas some 
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multipotent precursors may exit to extramedullary tissues where molecular signals drive their 

final differentiation 132,133. This process is regulated by the integrated influence of soluble 

factors and transcriptional regulators that modulate lineage-specific gene expression134,87,135. 

Restricted NK precursors, including pro-NK and pre-NK (CD34+CD45RA+CD117+ 

CD94−CD122+) cells retain some multi-lineage potential, suggesting that these populations 

were not fully NK cell committed. Recently, a refined NK-restricted progenitor (rNKP) 

downstream of CLP has been defined with exclusive potential to the NK cell linage after in 

vitro single-cell and in vivo transfer experiments (Figure 8)136. These cells, identified by the 

cell surface expression profile Lin−CD34+CD38+CD123−CD45RA+CD7+ CD10+CD127− are 

localized in fetal liver (FL), BM, cord blood and adult tonsils. Other upstream NK precursors 

that retain the capacity to differentiate not only in NK cells but also in helper ILCs have been 

proposed recently and will be discussed later. 

 
Figure	
  8:	
  Model	
  of	
  early	
  NK	
  cell	
  development.	
  (From	
  Renoux	
  et	
  al.,	
  2015) 

 

NK cells are present in most compartments of the human body, from primary and 

secondary lymphoid tissues to peripheral organs. These NK cells have two origins, some of 

them are PB-NK cells that patrol the circulation and get recruited to the tissues, particularly 

upon pathologic insults to exert locally an immune response. In contrast, a second NK cell 

subset resides permanently in tissues, and shows phenotypic and function specialization 

shaped by the local environment. This tissue resident NK cell (trNK) subpopulations have 

been associated to the uterus (discussed earlier), skin, thymus, liver, intestines and salivary 

gland (at least in mice). In addition to their capacity to respond more rapidly, trNK share 

some attributes previously described for human and mouse resident-T cells. trNK express 
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CD69, which inhibits surface expression of sphingosine-1-phosphate receptor 1 (S1PR1) 

thereby promoting their retention in tissues 137; CD69 is absent from PB-NK cells but is 

expressed by skin, liver, uterus, lymph nodes and intestine human NK cells 138–142. 

Additionally, other hallmarks for tissue residency, including the expression of CD103 (that 

binds E-cadherin in epithelial cells) and/or CD49a (that promotes homing to non-lymphoid 

tissues), the tissue homing receptors CXCR6 or CCR5, and the lack of the adhesion molecule 

CD62L have been ascribed to some human NK cells in those organs 143. With the 

establishment of ILCs as a family that distinguishes between cytotoxic (mostly recirculating) 

NK cells and helper (mostly resident in steady-state) ILCs some of the trNK cells have been 

re-classified as non-NK ILC1s 144.    

Helper ILC1s 

The discovery in 2006 of IFN-γ-producing cells that, unlike NK cells, depend on the 

transcription factor Gata-3 and express IL-7 receptor (CD127) in the thymus suggested 

diversity in innate lymphoid developmental pathways. We know now that these two 

characteristics are shared by ‘helper’ ILC subsets thus placing thymic NK cells as a group 1 

ILC member 145,146.  

To date four different ILC1 populations have been identified in mice by virtue of their 

phenotype and dependency on T-bet and Eomes transcription factors. However these subsets 

have overlapping yet distinct phenotypes and functions (in an organ-dependent fashion) 

which makes an unambiguous ILC1 classification a challenge. The limited access to organs 

and the lack of in vivo genetic tracing or modifying technologies in humans further 

complicates this endeavor. As such, human ILC1 are largely defined based the absence of 

other known markers for NK cells, ILC2s or ILC3s. These include the high expression of 

CD127 and CD161 and the absence of CD56, CD94, NKp44, NKp46, c-kit, granzymes and 

perforin. Human ILC1 produce IFN-γ but not IL-13, IL-17 or IL-22 and are T-BET-positive 

but lack RORγt, GATA-3 or RORα 147. Given their localization, the post-birth emergence 

and the fact that they expand in the context of Crohn’s disease these ILC1s are likely 

involved in the early immune response and maintenance of homeostasis at mucosal barriers 

(Figure 10). Indeed, mouse models of innate inflammation showed that Ab-blockade of IFN-

γ production ameliorated the local and systemic inflammation related pathology 148.  

In the interface between the phenotypic definition of ILC1 and NK cells, 

intraepithelial ILC1 patrol the gastrointestinal mucosa watching out for danger signal from 

epithelial and myeloid cells. Fuchs and colleagues described this IEL population both in the 
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human tonsils and intestine (NKp44+CD103+) and in mice (NKp46+NK1.1+CD160+ ), where 

they develop independently of IL-15 149.  These ILC1s express low levels of CD127, CD56, 

NKp44 and CD94 and produce IFN-γ in response to IL-12 and IL-15 (Figure 9). 

Interestingly, they showed several hallmarks of TGF-β imprinting, such as expression of 

CD103 and CD9, characteristics also observed in uNKs. Like cNK cells they depend on T-

BET and EOMES but develop independently of IL-15Rα (al least in mouse) pointing to a 

dependency on other cytokines such as IL-7 or IL-2 149. Recently, a study on the PB-ILC 

repertoire reported CD127+CRTh2-CD117- cells expressing some T cell markers (cytoplasmic 

CD3, CD4, CD8, CD27 and CD28) but lacking αβ-TCR, γδ-TCR in the cytoplasm and CD3-

TCR complexes in the cell surface 150. Single-cell RNA sequencing of tonsil CD127+ ILCs 

was also able to detect this population albeit with a low T-BET expression and high 

expression of some T cell-associated genes, raising the need for further studies that 

corroborate the real identity of this intriguing population 151.  

The identification in mice of a IFN-γ-producing population in liver distinct from NK 

cells that displays some adaptive-like features prompted the search for a human counterpart 
152. As such, CD49a+ ILC1s that depend on T-BET but not on EOMES were found in human 

liver but not in the hepatic venous or in peripheral blood. Moreover, they express KIR and 

NKG2C and are CD56bright but are low for CD16, CD57 and perforin. Consequently, they can 

express high levels of pro-inflammatory cytokines but degranulate poorly 139. However, the 

highly phenotypic similarity with conventional NK cells and their lack of IL-7R (common to 

all the other hILCs) suggests that these cells may be more like NK cells than ‘helper’ ILC1. 

A recent report has argued the existence of this population and has proposed instead a novel 

subpopulation of CD49e- liver resident NK cells by using cytometry by time-of-flight 

(CyTOF) and humanized mice.  

In mice an additional ILC1 population has been described in salivary glands that 

resembles liver ILC1 in the expression of CD49a and TRAIL but, like cNK cells, are DX5+ 

and rely on Eomes. Additionally, SG ILC1s are poor producers of IFNγ contrasting with 

ILC1 hallmark characteristics 153,154. It remains to be investigated the presence and 

physiological importance of this population in man. A very recent report described for the 

first time in human lung the presence of ILC1 but further phenotyping and functional studies 

are needed to confirm their identity 155. Likewise, an uterine ILC1 population has been 

mentioned recently capable of producing IFN-γ but different of the aforementioned uNK cell 
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in that they do not express EOMES and they are CD49a-positive, thus resembling the cells 

mentioned earlier in mucosal tissues 156.  

It is essential for the accurate identification of these populations to keep in mind that 

some of the aforementioned markers maybe modulated in the context of inflammation or 

activation, like in the case of CD49a 157. Also, fate-mapping experiments in mice and in vitro 

assays in humans revealed transdifferentiation of ILC2s and ILC3s into IFN-γ-producing 

cells by the upregulation of T-bet and downregulation of Gata-3 or RORγt further 

complicating the in vivo identification of ILC subsets in humans 158–162.  

 

 
Figure	
  9:	
  ILC	
  subsets	
  and	
  their	
  signature	
  cytokines.	
  	
  ILCs	
  are	
  activated	
  by	
  injured	
  or	
  infected	
  cell	
  signals	
  and	
  
respond	
  by	
  releasing	
  signature	
  cytokines	
  that	
  promote	
  important	
  effector	
  and	
  regulatory	
  responses.	
   	
  (From	
  
Eberl	
  et	
  al.	
  2015) 

 

 

TYPE 2 ILCS 

ILC2s are defined by their innate capacity to produce type 2 cytokines, mainly IL-13, 

IL-5, IL-9 and IL-4, as well as amphiregulin (Figure 9). These soluble factors have a dual 

effect being either protective to the host or capable of exerting pathogenic activity. IL-13 

promotes resistance to large extracellular parasites, such as helminthes, by increasing mucus 

production and muscle contractility, favoring epithelial cell turnover and macrophage 

activation. Furthermore, type 2 immunity has proven protective in a range of autoimmune 

diseases (arthritis, multiple sclerosis or Crohn’s disease) by the suppression of type-1 driven 
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inflammation (notably by TSLP) and eosinophilia (IL-4) and is involved in tissue repair 

(amphiregulin) and in the metabolic homeostasis (Figure 9).  

Like the other ILCs, type 2 ILCs sense their environment and get activated by 

cytokines and alarmins produced by myeloid and stromal cells including IL-33, IL-25, TSLP, 

IL-2, IL-4, IL-7, TL1A, prostaglandin D2 and leukotriene D4 
163–168. They are capable of 

sensing these molecules thanks to the array of surface receptors expressed that also help us 

define their phenotype. Human ILC2s can be identified by expression of CD7, the common-

gamma chain (CD132), CD127 and CD25 (rendering them responsive to IL-7 and IL-2), as 

well as CRTh2 (prostaglandin D2 receptor), CD161 and CD11a and to some extent also 

CCR6, CD117, KLRG1 160,169. ILC2s have been found in human tissues including lung, skin, 

nasal mucosa, adipose tissue and gut, and there their phenotype is slightly different than in 

the circulation, with essentially all ILC2s expressing CD90, CD44, ICOS and ST2 (IL-33R) 

as well as IL-25 receptor (IL-17BR) 163,170,171 highlighting the influence of environmental 

tissue adaptations. Moreover, ILC2 can be identified by the expression of the master 

transcription factor GATA-3 as well as the dependency on RORα and TCF-1 for their 

development from the CLP 172–175.  

In mouse an IL-25 responsive ILC2 subset has been characterized expressing high 

levels of KLGR1 and IL-25R, denoted “inflammatory ILC2” 176. This population can express 

RORγt and produce IL-17 to fight Candida Albicans infection. It is unclear whether 

inflammatory ILC2 exist in humans and to what extent plasticity drives the generation of this 

subset. 

The first functional role found in ILC2s was the resistance to worm infections in 

mouse intestine; a process that is dependent on IL-25 and IL-33 mediated activation of 

ILC2s. This occurs through the production of IL-13 and the consequent goblet and tuft cell 

hyperplasia, muscle contraction and activation of “type 2” macrophages. Concomitantly tuft 

cells produce IL-25 thus creating a positive loop that amplifies the response resulting in 

worm expulsion. In children ILC2 have also been found to inversely correlate with the 

presence of helminthic infection and with infection intensity, with the youngest patient group 

(children aged 6-9) showing the strongest correlation 177. However other studies of similar 

pathologies have claim contradictory results advocating for further data before drawing 

conclusions in that regard 178. Furthermore, ILC2s are capable of secreting amphiregulin to 

promote tissue epithelial repair after influenza infection and possible other tissue disrupting 

disorders (Figure 10) 170.  
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However, when produced in excess ILC2-derived cytokines lead to allergic disorders, 

such as asthma, atopic dermatitis and multiple allergies (Figure 10) 179,180. Several allergens 

have been used in mice to recapitulate lung or skin inflammation, a process mediated by IL-

25 and IL-33 as well as by basophil-derived IL-4. The involvement of ILC2s in human atopic 

diseases have been confirmed by the observation of increased activated ILC2s in skin lesion 

and nasal polyps of patients with atopic dermatitis and nasal polyps 181,182.  Immunopathology 

provoked by an excessive or prolonged ILC2 response can be counteracted by type I and II 

interferons and IL-27 183 as well as by the expansion of Treg cells. 

The observation that ILC2 secrete cytokines constitutively in steady state suggests 

that these cells are important not only for immune responses but also to maintain the tissue 

homeostasis. Indications of these homeostatic roles are the correlation of IL-5-mediated 

eosinophil control with the circadian rhythm 184 or the maintenance of the epithelial-stem-cell 

compartment and regulation of tuft-cell development 185.  

 

TYPE 3 ILCS 

LTi cells were initially described as CD3-CD4+ cells essential for the formation of 

lymphoid tissues186. We now appreciate that LTi cells represent a prototypical members of the 

heterogeneous group 3 ILC that exist in both in mouse and in humans and express the 

signature transcription factor Rorγt.  

CCR6+ LTi cells express lymphotoxin-α1β2 that during mouse fetal development 

binds to LTβR on stroma and endothelial cells regulating the formation of lymphoid 

structures, such as lymph nodes, cryptopatches and Peyer’s patches 187. LTi cells have been 

reported also in human mesenteric LNs and spleen during the first months of pregnancy 188,189. 

In adults this interaction is involved in the positive loop that potentiates the production of IL-

22 through the release of IL-23 by DCs in the context of bacterial infection 190 as well as in 

promoting immunoglobulin production by B cells 191. Contrarily to mouse, human LTi cells 

do not express CD4 but are CD161+CD7+ and they are able to produce IL-22 and IL-17.  

Adult human ILC3s are generally defined by their capacity to respond to IL-23 and 

IL1-β by secreting IL-22 (Figure 9). They are generally divided into two groups, those 

expressing NKp44 and/or NKp46 (NCR+) and those negative for NCRs. In human, ILC3s 

have been described in tonsils, spleen, endometrium, decidua, skin and lung 191–196. The few 

published data on human specimens show a broader and variable cytokine production 

capacity depending on the tissue and context analyzed. In tonsils, this population is sensitive 
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not only to cytokine stimulus but also NKp44-mediated signaling, and it is capable of 

producing IL-2, TNF, GM-CSF and LIF in addition to IL-22 196. Also, in inflamed conditions 

of Crohn’s disease, NCR-ILC3s are able to produce IL-17, which could likely contribute to 

the severity of the disease 197. Furthermore, GM-CSF derived from splenic ILC3s can 

promote survival and differentiation of MZ B cells 191. Recently ILC3s subsets have been 

found in human endometrium and decidua with NCR+ ILC3 and LTi-like cells producing 

pro-inflammatory cytokines such as IL-8, IL-22, IL-17A, TNF and IFN-γ, contributing to 

antimicrobial defenses during pregnancy and vessel remodeling 193.  

As repeatedly demonstrated in sepsis models using E. coli, ILC3s are important in the 

early clearance and resistance to bacterial infection 198,199. Binding of IL-22 to epithelial cells 

leads to a STAT3 mediated signaling that concludes with increased cell proliferation, 

secretion of antimicrobial peptides and the fucosylation of epithelial cells 200. In these models, 

the early IL-22 mediated response of ILC3s is critical, and activation is dependent on the IL-

23 released by DCs and mononuclear phagocytes 201. However, recent studies have 

questioned ILC3 roles based on possible functional redundancy with Th17 cells 202. To date 

no mouse model has been developed that specifically depletes ILC3s without affecting other 

cell population that could resolve this question.  

Detrimental inflammatory disorders have been related to ILC3s both in mouse models 

of colitis and in patients of Crohn’s disease (Figure 10) 197,201. This is likely due to the loss of 

commensal bacteria T cell tolerance to which ILC3s contribute through MHC-II peptide 

presentation. Indeed, analysis of Crohn’s disease patients evidenced their role in intestinal 

tolerance regulation, with MHC-II expression being inversely correlated with the number of 

Th17 cells 203. Also, clinical data from individuals with psoriasis vulgaris pointed to a role of 

ILC3 in skin inflammation with accumulation of these cells in skin and blood (Figure 10) 204. 

However, the lack of an appropriate mouse model to study human ILCs has hampered so far 

the elucidation of the underlying mechanisms. Patients with lung inflammatory conditions 

such as COPD, also showed higher numbers of NCR- ILC3s and increase IL-17 but the 

connection and mechanism remains unknown 205. A very recent paper showed the direct 

inverse link of ILC numbers in blood and HIV infection that could only be avoid when 

patients were ART-treated in the acute phase of the infection 206.  

Both in mice and in humans ILC3s have been associated with anti-tumor responses 

(Figure 10). In non-small-cell lung cancers NCR+ ILC3s are present in the lymphoid 

infiltrate of tertiary lymphoid structures found in these cancers and are associated with 
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favorable clinical outcomes 195. Intriguingly, high IL-22 signaling in acute inflammation has 

been related with increased tumor susceptibility and tumor growth after several induced 

mouse tumor models 207. Nevertheless, the mechanisms and relevance in the human setting 

remains elusive.   

Like ILC2s, type 3 ILCs are essential in the regulation of homeostasis in the interface 

with the microbiota, in this case by the IL-22 driven proliferation and survival of intestinal 

epithelial cells as well as the GM-CSF mediated maintenance of the myeloid compartment 
208,209. Finally, mouse experiments have revealed another interesting role of ILC3s in the 

protection against ionizing radiation, through maintenance of the intestinal stem-cell pool and 

thymic epithelium 210. Recent data on acute myeloid leukemia patients undergoing 

preconditioning therapy before the HSCT confirmed those results, with NCR+ ILC3 

expansion and homing to gut and skin after chemotherapy 211.  

Interestingly, ILC2-promoting cytokines, such as IL-25, inhibit IL-22 production by 

ILC3s thus establishing a dynamic equilibrium ready to respond upon internal signals or 

microbial threats (Figure 10). A remarkable characteristic of some (possibly all) ILCs is their 

capacity to adapt to environmental cues or trans-differentiate, like NCR- ILC3s that turn into 

NCR+ ILCs in the presence of IL-1β and IL-23 and into ILC1 when IL-12 is present 147. 

Signaling through IL-1β, IL-23 and retinoic acid can promote ILC1 trans-differentiation back 

to ILC3 158. Plasticity can create compensatory effects on the numbers of certain ILCs at the 

expense of other types especially in the context of inflammation.  

 

 
Figure	
  10:	
  ILC	
  role	
  on	
  inflammation	
  and	
  tissue	
  repair.	
  ILC	
  dysfunction	
  has	
  been	
  found	
  in	
  several	
  pathologic	
  
conditions	
  and	
  has	
  been	
  related	
  to	
  the	
  direct	
  or	
  indirect	
  effect	
  of	
  their	
  signature	
  cytokines.	
  (From	
  Artis&Spits	
  
2015)	
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iii. GAMMA-DELTA T CELLS 
γδ- and αβ-T cells derive from a common early precursor in the thymus where they 

both undergo TCR RAG-mediated V(D)J somatic recombination. Despite the developmental 

similarities, our understanding of the biology of γδ-T cells has lagged behind, in part due to 

the difficulties to identify the antigens these cells recognize. In humans γδ-T cells have a 

small repertoire of V gene segments and thus a narrow specificity. Most frequently the γ 

chains used are Vγ2 to Vγ11 and for the δ segments only Vδ1, Vδ2 and Vδ3 are commonly 

rearranged, thus generating a certain degree of heterogeneity. The restricted variability led to 

the initial hypothesis that these cells recognize conserved self-proteins 212. However recent 

studies revealed some of these specificities uncovering a high immuno-therapeutic potential 
213. The two most important antigen families are phosphorylated prenyl metabolites, lipids 

presented by CD1 proteins, and cell stress-associated molecules that get upregulated after 

transformation or infection, such as MICA and MICB (Figure 11). Indeed already a decade 

ago, mouse studies uncovered a critical role of γδ-T cells in skin cancer immunosurveillance 
214 and more recently a meta-analysis of 18000 cancer patients disclosed the intratumoral 

presence of this cell population as the most significant signature of favorable prognosis 215. 

During the development in the murine system different subsets of γδ-T cells target specific 

tissues, such as skin, lung, uterus, vagina and tongue and integrate the intraepithelial 

lymphocyte population performing very specialized roles 216. This is the case of the so-called 

dendritic epidermal Vγ3Vδ1 T cells (DETCs) that sense skin injury and regulate the local 

immune response 217.  

Vδ1+ T cells account for half of the total blood γδ-T cells at birth but their frequency 

decreases with age as these cells home to specific sites, notably to epithelial tissue and 

particularly in the intestine 218. In humans, γδ-T cells recognize “MHC-like” molecules, such 

as the CD1 family or stress-induced peptides. CD1 family, including the best characterized 

CD1c and CD1d, are molecules capable of presenting both foreign and self-lipid antigens 219. 

Although the precise identity of these ligands is largely unknown, several studies 

demonstrated the fundamental role of the “non-Vδ2” γδ-T cells in maintaining the 

homeostasis of the local microenvironment, in promoting wound healing and removal of 

distressed or transformed epithelial cells as well as lessening down the local inflammation 220–

222. Vδ1 pairs preferably with Vγ4 and Vγ5 and to a lower extent to Vγ9, indicating the 

existence of several antigen specificities 223. These Vδ1 T cells are also recruited to the 
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maternal/fetal interface during pregnancy and increase in numbers and activation status 

probably leading to the induction of tolerance 224.  

The majority of γδ-T cells in adult human blood bear a Vδ2 TCR (1-5% of total T 

cells), usually paired to Vγ9 chain. These Vγ9Vδ2 T cells recognize non-peptidic 

phosphorylated antigens, like isopentyl pyrophosphate (IPP), a metabolite of the cholesterol 

pathway and other metabolic intermediates that get accumulated in the context of malignancy 

or cellular stress 225. Other stress-induced ligands have been investigated, such as the ATP 

synthase that, after translocation into the membrane, drive the secretion of inflammatory 

cytokines by γδ-T cells, likely by phospho-antigen presentation 226. Furthermore, it is now 

well accepted that the butyrophilin 3A1 (CD277) is a target for Vγ9Vδ2-T cells but the 

molecular mechanisms of that interaction remains obscure 227. The fact that these pAg-

reactive γδ-T cells exist only in primates point to a non-redundant function in the stress 

surveillance needs that appeared late in evolution. 

   

 
Figure	
  11:	
  Receptor-­‐ligand	
  interactions	
  mediating	
  tumor	
  cell	
  recognition	
  by	
  gamma	
  delta	
  (γδ)	
  T	
  cells	
  (From	
  
Silva-­‐Santos	
  et	
  al,	
  2015) 

 

 Altogether, γδ-T cells show a very particular tissue-specific localization of 

oligoclonal subpopulations sharing the same TCR chains, making up 20-50% of the total 

lymphoid population in intestine and dermis 228. Research over the last years has revealed a 

certain phenotypic and functional heterogeneity within this population. Recent studies point 

to a preferential type I response by γδ-T cells and even in the absence of TCR stimulation 
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they are capable of responding to exogenous IL-2 or IL-15 by producing IFN-γ and killing 

tumor cell lines (Figure 12) 229.Tumor cell recognition and activation occurs through 

engagement of TCR and/or natural killer receptors, including NKG2D, NKp30 and NKp44 

(Figure 11). This activation leads to the aforementioned cytokine response but also to 

cytotoxic activities, including the release of perforin and granzymes and the expression of 

CD95 ligand and TRAIL 230. 

 
Figure	
  12:	
  Antitumor	
  versus	
  protumor	
  roles	
  of	
  γδ-­‐T	
  cells	
  in	
  the	
  mouse.	
  (From	
  Silva-­‐Santos	
  et	
  al.	
  2015)	
  

 

γδ-T cytokine secretion profile goes beyond type I response with cases of allergic 

asthma patients showing γδ-T-derived IL-4 in the bronchoalveolar lavage fluid 231. Other 

particular cytokines are expressed by γδ-T cells, such as keratinocyte growth factors and 

connective tissue growth factor (CTGF), showing important functions in control of epithelial 

integrity.  Their immunosuppressive capacity has also been demonstrated by the ability to 

produce Il-10 and control CD8+ T cell expansion and function 232. 

 

Paradoxically, one report has also attributed a pro-tumor role for IL-17 producing γδ-

T cells by the expansion of myeloid-derived suppressor cells in human colorectal carcinoma 

(Figure 12) 213.  Of note, these cells were also capable of producing IL-8, TNF and GM-CSF 

and have been observed, as well, in other cases with severe inflammatory conditions, such as 
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children with bacterial meningitis and non-melanoma skin cancer patients 229.These 

observations are thus far outbalanced by the reports showing an anti-tumor activity so efforts 

are being made to boost and apply γδ-T cells as therapeutic alternatives for cancer patients.  

Given their proficiency as stress sensors and cytokine producers it is not unexpected 

that these cells play important roles during viral infection. Indeed, the scarce studies that 

begin now to be known point to such role in HIV patients where γδ-T cells are drastically 

reduced and they do not recover even after antiretroviral treatment, when CD4+ T cells are 

normalized 233.  

Interestingly, γδ-T cells not only can act as effectors but also present antigens to 

adaptive lymphocytes. Upon activation they upregulate CCR7, which drives their migration 

to the lymph nodes and then increase the expression of class I and II molecules as well as 

CD80 and CD86 inducing naïve αβ-T cells 234.  

Despite the multiple physiological roles of γδ-T cells and the great potential of this 

cell population as a therapeutic tool, some limitations need to be overcome, like the number 

and activation status of the infused cells or their appropriate tumor homing and tropism, that 

could be examined in pre-clinical in vivo human models. 
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II. HUMAN IMMUNE SYSTEM MICE 

 

EARLY DEVELOPMENT OF RECIPIENT STRAINS 
	
  

The interest of scientists in transplanting human cells into other living organisms 

came together with the discovery of cellular immunity itself in early 20th century. The non-

physiological conditions of in vitro systems and the poor recapitulation of some aspects of 

human hematopoiesis, disease susceptibility and pathophysiology in mouse models set the 

need for the development of better in vivo systems 235.  However, transplantation of allogeneic 

or “non-self” cells or tissues into wild-type mice prompts a robust response that leads to graft 

rejection, only avoidable by the elimination or severe suppression of the murine innate and 

adaptive immune systems. Since the discovery of the nude athymic mutation (that provoke a 

T cell deficiency) in the 60s, chimerism levels and functionality of the engrafted human cells 

have been enhanced thanks to the improvement of the immunodeficiency in host strains 236. 

The first successful engraftments of human hematopoietic stem cells came in the late 80s 

with the triple deficient beige/nude/xid mice that on top of being athymic they have reduced 

NK cells and B cell functionality 237 and also the SCID (severe combined immunodeficiency) 

mice that due to the deficient activity of a DNA repair enzyme (Prkdc; protein kinase, DNA 

activated, catalytic peptide) they cannot execute the adaptive V(D)J recombination 238. The 

SCID mutation in CB17 mice permitted engraftment of  PBMCs, fetal hematopoietic tissues 

and HSCs 239–241. Despite that remarkable accomplishment, the presence of innate immune 

cells and the leakiness of host adaptive lymphocytes with aging limited considerably the 

extent of the human compartment 242. Additionally, the deficient DNA repair machinery leads 

to an enhanced sensitivity to radiation, preventing the conditioning of the mice before 

transplantation. This could be overcome with the description of the mutation in the 

recombination activating genes (Rag) 1 and 2, although the intact NK cell activity still 

prevented a good HSC engraftment243,244. A substantial improvement in the field came with 

the crossing of the SCID mutation into the NOD (non-obese diabetic) background (NOD-

scid) further providing a certain innate immunodeficiency and dramatically reducing the 

adaptive leakiness evidenced by the low levels of serum immunoglobulins 245. Still, the short 

life-span due to the development of thymomas and the presence of residual innate cells 

limited their usage as a model. The development and homeostasis of both T and B-
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lymphocytes and particularly NK cells greatly depend on cytokine signaling, mostly through 

the receptors that contain the common cytokine-receptor gamma chain (IL-2R). Its targeted 

mutation blocks therefore signaling through IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21, and 

consequently leads to severe impairment of adaptive lymphocytes and total absence of NK 

cells 246–248.  Several IL2rγ-targeted mutations were then developed by different labs in 

various inbred strain backgrounds generating some of the models used nowadays 249–252. 

Among them, NOD/.Cg-Prkdcscid IL2rtm1wj/Szj (NSG), NOD.Cg-PrkdcscidIl2rgtm1Sug/Jic (NOG) 

and BALB/c Rag2-/- Il2rg-/- (BRG) have shown the best ability to support human engraftment 

They are similar in phenotype showing no mature T and B cells and severe defects in NK 

cells and other innate effectors and thus leading to a long-lasting development of a functional 

human immune system, improving by 6-fold the human cell engraftment compared to NOD-

scid mice. Unlike the first two models, BRG mice present intact DNA damage repair 

machinery and are therefore resistant to radiation 245. The considerable advancement obtained 

with the IL-2R by the abolition of NK cell development was also achieved to some extent 

through the mutation of perforin and beta2-microglobulin (B2m) genes generating the 

corresponding mice models 253,254. 

 

 
Figure	
  13:	
  Improving	
  homeostasis	
  and	
  function	
  of	
  human	
  immune	
  cells	
  in	
  HIS	
  mice.	
  	
  

 

Among all the backgrounds used over the years the overall level of reconstitution is 

better in the NOD based models and this is due to an enhanced phagocyte tolerance towards 

human cells. The molecular basis underlying this advantage was revealed some years later by 

the genetic demonstration that the NOD Sirp-α showed enhanced binding to the human CD47 
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ligand 255. CD47 is ubiquotusly expressed in healthy human cells and its binding to SIRP-α 

(in phagocytes such as macrophages) releases an inhibitory signal that prevents their 

phagocytosis 256. The Sirpa gene is highly polymorphic and while in most mouse strains it 

does not interact functionally with the human CD47, the similarity of the Sirpa allele between 

the NOD strain and the human allows an operational signaling thus supporting human 

engraftment. Several methods have been used to induce tolerance based on this interaction: 

introducing the human SIRPA gene into the non-NOD genome using BAC-transgenesis or 

knock-in technology 257 or expressing the murine CD47 in the transplanted human cells 

(Figure 14) 258.     

 

 
 

Figure	
  14:	
  Approaches	
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  improve	
  xenograft	
  tolerance	
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  basis	
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  CD47-­‐SIRPα	
  interaction.	
  

	
  
Besides a murine deficient innate and adaptive immunity that prevents the graft 

rejection, an appropriate niche needs to be created to physically support the settlement of 

human cells. This can be achieved either by the pre-conditioning irradiation of the host or by 

the reduction of murine HSCs by eliminating key stemness genes (like c-kit) or replacing 

them by their human counterparts 259–261. Even after successful engraftment of HSCs, 

development and differentiation into functional mature immune cells requires the complex 

interplay of cell-mediated interactions and soluble factors like cytokines. Needless to say that 

in such a murine environment, those interactions are not always functional and only a few 
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murine cytokines cross-react with the human receptors. That is the reason for the poor 

reconstitution of the myeloid compartment and the innate lymphoid cells as well as the 

deficient maturation of the B cells (few memory and plasma cells) 262,263. Additionally the lack 

of a human thymic niche prevents the selection and maturation of T cells and those that 

develop are selected in murine cortical epithelial cells that express murine MHC (H2) 

molecules 264,265. This characteristic leads to a much higher B/T ratios in HIS mice than those 

observed in the human system (Figure 15).  
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The search for the best model organism prompted the modification of the different 

parameters that could have an impact on the human cell composition and functionality thus 

generating a number of models that may adjust better to particular scientific questions. These 

modifications include the injection route that maybe intravenous (in tail or facial vein), 

intrahepatic, intrasplenic, intrafemoral, intracardiac or intraperitoneal. The route normally 

depends on the type of cell and the age of the mouse. Both newborn mice and adult mice are 

produced with similar overall human reconstitution but the latter generating less T cell 

reconstitution 250,263. Newborn mice are normally injected intrahepatically or intracardically 

while adult mice receive the human cells intravenously. Regarding the source of human cells 

PBMCs are only used for specific purposes in short-term experiments while the majority of 

the research in the field now is performed with HSCs. These stem cells may derive from fetal 

liver, cord blood or PB/BM after mobilization with G-CSF, following that order in the 

engraftment efficacy 266,267. Most of the humanizations are carried out after a niche 

conditioning that can be done by radiation or through drugs with the first reporting better 

results 268. 
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CURRENT HIS MOUSE MODELS  
	
  

i. HU-PBL-SCID 
Due to the difficult access to fetal samples, some researchers have opted for the use of 

peripheral blood mononuclear leukocytes as a source of human cells to inject in either BRG 

or NSG mice. The applicability of this model is limited since the T cells have been educated 

in the human thymus donor and can therefore become anergic after chronic activation or 

cause a xeno-GVHD reaction 269,270. Consequently, primary immune responses are rare in this 

model and its applicability has been focused on the modeling of alloreactivity and the short-

term study of infectious agents. Skin and islets graft rejections have been performed in this 

model but PBMC donor variability limits the recapitulation of the complete human graft 

rejection 271.  

 

ii. NSG AND BRGS  
Although the genetic backgrounds of these two models are very different: NOD/.Cg-

Prkdcscid IL2rtm1wj/Szj and BALB/c Rag2-/- Il2rg-/- NOD.Sirpa, they can be studied together 

because of their similar characteristics. Usually (including the work presented in this thesis) 

these two mice are engrafted with fetal liver or cord blood HSCs (CD34+ cells) through 

intrahepatic injection of newborn pups that have previously been sublethally irradiated. In 

this context, both NSG and BRGS mice showed a high and long-lasting human CD45+ 

compartment 249,258, with B, T and myeloid cells developing in blood with an average ratio of 

7:2:1. Some but infrequent NK cells are also present in peripheral organs with deficient 

functionality. B cells are detected in blood after the first month and several precursor stages 

are observed with a profile that resembles that in humans. The B-cell repertoire seems broad 

judging by the IgM responses found upon immunization with a range of antigens and some 

antigen-specific IgGs suggesting a proper class-switching 272. The phenotypic T cell profile in 

the thymus of these mice suggest a normal differentiation pathway, however their 

functionality remains suboptimal. While EBV infection models have shown specific IFN-γ 

producing CD8+ T cell protection from lymphoma development, other studies found that ex 

vivo stimulated T cells failed to respond in an antigen specific manner 273. NK cells are 

detectable in these mice from the fourth week post-reconstitution although in very low 

numbers unless they receive exogenous administration of cytokines such as the IL-15-IL-
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15Rα complex or Flt3L 274 or endogenous secretion by transgenesis of human IL-2 275 (Li et 

al., in press). Myeloid cells including monocytes, macrophages and DCs (conventional and 

plasmacitoid) are present in lymphoid organs (BM and spleen) and also in lung and liver and 

they proved to be functional in producing cytokines and activating T cells; nevertheless their 

limited numbers in absence of transgenic or exogenous cytokines is very low (less than 1% in 

spleen) 276,277. The most dramatic difference in the composition of the hematopoietic 

compartment in human versus the HIS mice are proportion of granulocytes and erythrocytes 

(Figure 15). These cells account for less than 2 % (if found) and can only be enhanced 

through transgenesis of cytokines (SCF, GM-CSF, IL-3 and/or TPO) or hydrodynamic 

injection of plasmids 274,278.  

 

iii. BLT (BONE-MARROW, LIVER, THYMUS) 
In an attempt to circumvent the problem of the T cell education in the late 80s a 

mouse model was generated by engraftment of human fetal lymph node and thymus under 

the renal capsule of NOD-scid mice followed by the intravenous injection (after irradiating 

preconditioning) of human CD34+ cells 240,279. However, the confinement of the human cells 

to the organoid and not to other tissues of the mouse limited its utility. A further 

improvement of this approach came with the transplantation of fetal liver and thymus before 

the injection of CD34+ from the same liver into an immunodeficient mouse, NOD-scid, NSG 

or BRG (BLT mice) 279. In this model we can find the systemic high levels of adaptive 

lymphocytes, monocytes, macrophages and DCs. Moreover, the presence of a human thymus 

leads to a humanized selection of T cells thus mounting HLA-class-I and –II restricted 

responses and high levels of IgM, although recent studies show a deficient class-switch 

antibody production 279–281. BLT mice have been infected with several hematotropic 

pathogens such as EBV, dengue or HIV-I generating humoral and cellular immune responses 

that in the case of HIV has contributed to the understanding of the viral latency, mucosal 

transmission, potential immunotherapetics and the in vivo reservoir 282. 

 

iv. MITRG AND MISTRG 
The aforementioned limitations regarding the number and functionality of the 

myeloid compartment and NK cells due to the lack of cross-reactivity of mouse cytokines can 

be partially circumvented by the genetic humanization of the aforementioned mouse strains. 

Using this approach the laboratory of Richard Flavell created the MITRG and MISTRG that 
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contain the human M-CSF, IL-3, GM-CSF and TPO genes by knock-in technology and 

SIRPα by using a BAC transgene (in the case of MISTRG) 283. These models, especially the 

MISTRG, support the development of myeloid-monocytic cells as any other model and also 

show strong human innate immune responses to virus and bacteria infections. Furthermore, 

the increased numbers of monocytes and DCs lead to an enhanced trans-presentation of IL-15 

resulting in a 10-fold increase of NK cells. However, these great results are counteracted by 

the early and high mortality of mice caused by a severe anemia due to poor mouse 

erythropoiesis. 

 

Models addressing adaptive primary and secondary responses have been developed 

relying on the transgenic expression of human HLA-I and -II molecules in some of the strains 

aforementioned.  These models show an increased number and function of HLA- restricted T 

cells with antigen-specific responsiveness following immunization or infection as well as a 

immunoglobulin class switching capacity thus responding efficiently to vaccination strategies 
284–289 

 

HARNESSING IMMUNITY TO BATTLE TUMORS: LESSONS FROM HIS 
MICE 
	
  

Therapies designed to induce or potentiate the immune response against tumors are an 

appealing strategy to control tumor growth and have been the object of intense research since 

their discovery in the 70s.  Despite representing the most promising cancer treatment since 

the emergence of chemotherapy, several cases of side effects or disappointing clinical results 

have downshifted the development of new immunotherapies. The better understanding of the 

tumor heterogeneity, the mechanisms of the immune response and the interaction with the 

tumor microenvironment is a required step for the development of safe and effective 

therapies.  

i. MODELING CANCER IN HIS MICE 
Immunodeficient mice award great flexibility for the study of human tumor 

immunobiology with tumors arising from simpler tumor cell lines to the transplantation of 

human primary tumors or the de novo induction of hematological neoplasms that better 

reflect the complexity of the disease. Furthermore, as detailed earlier, the immune 

components can be generated in vivo from human HSCs or other progenitors and “supported 

or potentiated” later on, or infused once the tumor is established as a therapeutic approach.   
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A wide range of established tumor cell lines from different origins (brain, colon, 

breast, melanoma, ovarian, prostate, etc.) have been engrafted in immunocompromised mice 

and have greatly contributed to drug development and the pre-clinical assessment of potential 

therapies. However, the modification of the characteristics and acquisition of genetic 

aberrancies accompanying the repeated passaging impact the surface markers and the 

tumoregenicity of the heterogeneous cell populations that normally form the tumor 290. These 

limitations have set aside these models to studies addressing specific questions like the ability 

of a potential therapy to target certain molecule that has been overexpressed in the cell line. 

In recent years, the field has been therefore switching towards the engraftment of patient-
derived primary tumors (PDX, patient-derived xenografts) that keep the phenotypic and 

genetic complexity observed in the clinic. This include tumor stromal cells, such as tumor-

associated lymphocytes and fibroblasts, that contribute greatly to tumor growth and 

metastasis and therefore to the therapeutic response. PDX mice that have been reconstituted 

with human HSC or PBMCs represent the latest step in immuno-oncology modeling 291. 

These models can engraft the PDX as efficiently as the non-humanized mice, they respond to 

standard chemotherapeutic drugs similarly to patients and they have proved to be responsive 

to newly derived immune-modulators. One of the better-characterized PDX models is the 

AML that has contributed to the identification of leukemia stem cells (LSC) by transplanting 

different stem-like cell fractions and analyzing the leukemia-initiating activity of each in 

SCID mice 292–295. The discovery of the concept of cancer stem cell (CSC) has been a 

breakthrough in cancer biology due to the clinical implications for the long-term disease-free 

survival. CSC presence has been identified in numerous malignancies through transfer into 

immunocompromised mice and, interestingly, markers associated to CSCs have been 

correlated to the tumorigenic potential 296,297. Recent improvement in HIS mouse models by 

the transgenic expression of certain factors, like the NSG-SGM3 expressing SCF, GM-SCF 

and IL-3 could be of benefit for the engraftment of myeloid derived malignancies and the 

study of tumor infiltrating myeloid cells 278. The demonstration that HIS mouse models 

reproduce the heterogeneity and behavior of human tumors create great expectation on the 

better phenotyping of these tumor-initiating cells and the identification of drugs targeting this 

population 298.  

One of the advantages of modeling cancer in humanized mice is that we can study the 

systemic environment and the contribution of nearly all the immune cells to the pathogenesis. 

In this regard, a NSG model of treatment-refractory B-cell leukemia revealed that infiltration 
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of leukemia cells into the bone marrow rewires the tumor microenvironment to inhibit 

engulfment of antibody-targeted tumor cells. This resistance could be overcome by 

combination regimens involving therapeutic antibodies and chemotherapy that lead to 

macrophage infiltration and phagocytic activity in the bone marrow improving the efficacy of 

targeted therapeutics 299. 

 

ii. TARGETING NATURAL KILLER CELLS IN HIS MICE 
To date most immuno-modulatory strategies have focused on agents or cell therapies 

targeting T cell immunity but innate immune cells have been less exploited. NK cells exert an 

immediate cytotoxicity when encountering a malignant cell and they do so without a specific 

antigen priming but instead, by the integrated signal of an array of activating and inhibitory 

receptors. Among the first group the C-type lectin-like receptors CD94/NKG2C and NKG2D 

and the natural cytotoxicity receptors (NCR) NKp30, NKp44 and NKp46 as well as the Ig-

like receptor DNAM-1 (CD266) mediate NK cell activation when they recognize tumor cells. 

On the other hand, polymorphic inhibitory killer cell immunoglobulin-like receptors (KIRs) 

with their cognate human–leukocyte–antigen (HLA) ligands as well as CD94/NKG2A with 

the non-classical class I molecule HLA-E as ligand provide inhibitory signaling. In addition 

to the contact mediated regulation of the activity, NK cells also respond to cytokines like IL-

2, IL-12, IL-15, IL-18 and IL-21, as well as toll-like receptor ligands that shape their 

differentiation, proliferation and activation status 300.  Cytotoxicity activity is triggered 

through activation of the low-affinity activating receptor FcγRIIIa (CD16) that binds the Fc 

portion of immunoglobulin G1. NK cells kill virus infected and tumor cells using a cargo of 

perforin and granzymes contained in cytotoxic granules and less efficiently by a mechanism 

dependent on FAS ligand, TNF or TNF-related apoptosis-inducing ligand (TRAIL) 301.  

Given that NK cells in HSC-derived humanized mice express all the afore-mentioned 

receptors and respond similarly to the same cytokines, these in vivo models represent a 

powerful platform to explore the pivotal role of NK cells in cancer immunosurveillance 302–

304(BRGSF?). Additionally, stromal components such as inhibiting factors (TGF-β, IL-10, 

prostaglandin E2…) or immunosuppressive cells (Tregs, MDSCs) that influence the anti-tumor 

activity of NK cells are, as well, present in HIS mice enabling the evaluation of therapeutic 

strategies targeting the suppression of NK cells 305.   

Although chemotherapy is still the core of the current clinical anti-cancer treatments, 

immuno-modulators have now regained expectations after the revolutionary discovery of the 
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CTLA-4 and PD-1 checkpoint inhibitors targeting T-cell activation 306. Humanized mice have 

proven to recapitulate the therapeutic effect of those antibodies as well as the side effects and 

have began to provide insights about the mechanism behind and possible strategies to 

improve them 307–309. Human NK cells also express these checkpoint molecules but their 

targeting and contribution to the results of the treatment has not been assessed. Mouse studies 

on a glioma model treated with activated NK cells pre-incubated with an anti-PD-1 blocking 

antibody showed an enhancement of the survival suggesting a role that must be explored in a 

human system 310.   

 

iii. ADOPTIVE NK CELL TRANSFER 
Additionally to HSC-derived HIS models in which NK cells develop in vivo and in 

the context of other immune cells, the potential of these innate effectors has been studied by 

the adoptive transfer of ex vivo expanded and/or activated NK cells in immunodeficient mice. 

Mice treated with adoptively transferred human NK cells show NK-mediated rejection of the 

engrafted human tumor and further administration of cytokines, such as IL-2 and IL-15 

greatly improve the NK cell pool and their cytotoxic activity against transformed cell. These 

observations initially made in mice laid the foundation for the autologous NK cell infusion 

therapies started in the 80s for metastatic cancers 311. Pre-clinical assessment of cytokine 

regimes in other cancer models, such as the low-dose IL-2 in the spontaneous EBV-

associated B cell lymphoma in PBL-SCID mice, demonstrated reduction of the tumor load 

and survival prolongation 312, and preceded a number of clinical trials for both hematological 

and solid tumors (91,92,96–98). 

The discovery that inhibitory KIRs binding to MHC-I mediate inhibition of NK cell 

activation opened a new path on NK cell immunotherapies. NOD/SCID cancer models served 

as a platform to confirm the higher efficacy of alloreactive NK cells for the treatment of 

leukemia. Contrarily to T cells, NK cell do not provoke graft-versus-host disease (GVHD) in 

hematopoietic stem cell transplantation (HSCT) contexts but, instead, protect the patient 

against it and eliminate leukemia relapse and graft rejection 318. Later on, safety and efficacy 

of alloreactive NK cell infusion was confirmed in the clinic by Miller and colleagues in non 

HSCT settings with patients suffering from metastatic melanoma, renal cell carcinoma, 

Hodgkin’s lymphoma and refractory AML 319. For many years allogeneic NK cell infusions 

have been tested in the clinic with positive results and rare cases of mild toxicity 320. 

Nevertheless, a recent pediatric clinical study has reported some patients suffering from acute 
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GVHD after infusion of ex vivo expanded donor NK cells in HLA-matched HSCT 321, rising 

the necessity to perform more robust pre-clinical testing in humanized models. One strategy 

to do so was illustrated in a recent study performed in NOD/SCID mice, in which an 

alloreactive NK cell subpopulation expressing KIR2DS2 but lacking inhibitory KIR-HLA 

mismatch had dominant functional activation advantage to kill patient-derived glioblastoma 

cells 322. The regulation of the activity on infused NK cells has been classically based on 

HLA-KIR matching, however other inhibitory receptors are implicated on the inhibition of 

NK cell cytotoxicity. A recent study in HSC-NSG mice has shown that anti-NKG2A 

antibodies can stimulate human NK cell killing in AML and ALL models bypassing the need 

to search for NK cell alloreactive donors 323.   In vitro experiments have also pointed to an 

increased NK cell-mediated lysis of lymphoma and myeloma cells with allogeneic NK cell 

infusion in combination with monoclonal antibodies blocking inhibitory KIRs but this effect 

need to be confirmed in vivo 324,325.  

Another strategy to increase NK cell activity without aggravating the side-effects is 

the expression of chimeric antigen receptors (CARs) directed against tumor antigens. Pre-

clinical evaluation of CD20 targeting primary NK cell infusion in humanized mice has led to 

a clinical trial on B-lineage acute lymphoblastic leukemia currently undergoing 326.  Other 

pre-clinical trials using CAR-engineered primary human NK cells are now being performed 

in lymphoma, leukemia, carcinomas and neuroblastoma mouse models. 

NK cells are often infused in combination with immunomodulators that boost their 

anti-tumor effects or regulate their activity. CD16 receptor is in the origin of most of those 

modulators since it mediates antibody-dependent cellular cytotoxicity (ADCC) when it 

recognizes an antibody on a target cell, leading to target cell lysis. This mechanism has been 

exploited by using monoclonal antibodies targeted to tumor antigens thus stimulating the 

endogenous or adoptive NK cells. Evidences of NK cell-mediated ADCC and mild to 

moderate toxicity was observed in preclinical models and then confirmed for some cases in 

the clinical setting. Malignancies such as non-Hodgkin lymphoma with rituximab (anti-

CD20), metastatic breast cancer with trastuzumab (anti-HER2) or metastatic colorectal and 

squamous cell carcinoma of the head and neck have been treated with monoclonal antibodies 

together with NK cell infusions or in combination regimes extending the disease-free survival 

and overall survival of thousands of patients 327–329.  

As mentioned before, CSCs are emerging as necessary targets to achieve cancer cures 

since current treatments eliminate the bulk of the tumor cells but rare resistant CSCs persist 
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and lead to later tumor relapse 330. The upregulation of stress-induced antigens together with 

the ability of NK cells to target non-proliferating cells suggest that NK cells could effectively 

eliminate CSCs. Indeed, recent studies in tumor-bearing NSG mice demonstrated the capacity 

of activated transferred NK cells to reduce intratumoral CSCs and tumor burden 331–333. 

 

iv. NOVEL NK CELL SOURCES 
Two of the parameters to consider when evaluating the safety of NK cell products in 

clinical applications are the cell source and the culture conditions before the infusion. GM-

CSF mobilized PBMCs, bone marrow or umbilical cord blood are the main sources of NK 

cells. With GM-CSF effects on NK function still to determine and BM being logistically 

difficult to obtain, UCB derived NK cells have been revealed as the best source of human 

material. Researchers are working on improving the expansion yield and purity as well as to 

enhance the activity of UCB derived NK cells before infusion in the patients. NSG mice 

demonstrated the capacity of these cells to migrate to BM, spleen and liver and the inhibition 

of leukemia growth and prolongation of mice survival when combined with low-dose IL-15 
334. This pre-clinical results prompted a phase I clinical study in elderly AML patients that 

confirmed the safety and capacity of these cells to migrate and repopulate BM even in the 

absence of cytokine administration 335. This NK cell product aims at overcoming the major 

limitation of NK cell therapies in solid tumors, the delivery of high enough numbers of 

activated NK cells to the tumor site, and it is now under pre-clinical evaluation in the context 

of cervical and colorectal carcinomas 336 . 

Recently emerged alternative sources include the embryonic stem cell (hESC) or 

induced pluripotent stem cell (iPS) derived NK cells, which are still under experimental 

development. Efficient generation of NK cells from hESC and iPS cells has been achieved 

showing in vitro functional cytolytic activity against tumor cells, IFNγ production and 

expression of functional receptors 337. Very few reports are available regarding the in vivo 

activity of these products, with the more encouraging being in a NOD/SCID mouse model in 

which hESC-derived NK cells efficiently cleared a leukemia cell line tumor 338.  Current 

efforts are being made to optimizing the generation and efficacy of the stromal-free 

production but there is still a long way to go before reaching the clinic to prove irreversibility 

and safety of hPSC therapy in pre-clinical humanized models. 

Finally, there is great prospect in NK cell lines as a potentially unlimited “pure” NK 

cell source. From the handful of available clonal NK cell lines NK-92 has shown the highest 
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and more consistent cytotoxicity due to the combination of activating receptors it expresses 

and the absence of inhibitory KIRs 339. AML, myeloma and melanoma are some of the 

numerous malignancies that have been partially eliminated from SCID mice after infusion of 

NK-92 340–342.  Clinical trials have further confirmed the safety and efficacy of this cell line in 

both solid and hemotologic malignancies 343,344. One further advantage of NK-92 is the ease of 

transfection with non-viral vectors allowing them to express IL-2 (required for their 

proliferation) thus representing a powerful “off-the-shelf” cell therapeutic 345. Additionally 

and inspired by the remarkable responses obtained by CAR-T cells and the early results in 

primary NK cells, NK-92 can be very easily transfected with a gene that expresses a tumor-

CAR 346. The first pre-clinical tests in NSG mice have shed very optimistic results in 

leukemia models after CD19- or CD20-specific NK-92 infusions as well as in patient-derived 

glioblastoma with EGFR-specific NK-92 347,348.  

The latest of the NK cell therapeutic strategies was developed by Vallera and 

colleagues with the bi-or tri-specific killer cell engagers, BiKEs and TriKEs, that are small 

molecules containing two or three single chain variable fragments (scFv) from antibodies of 

different specificity 349. These are generated to bind CD16 on NK cells and one or two tumor 

antigens such as CD19 and CD20 (B cell non Hodgkin’s lymphoma) 350, CD33 or CD33 and 

CD123 (AML) 351, CD30 (Hodgkin’s lymphoma) 352, EGFR or EpCAM (EGFR/EpCAM 

overexpressing carcinomas) 353,354, and many others. The initial pre-clinical evaluation in 

humanized mice proved very promising translational potential with results exceeding those of 

monoclonal antibodies, like in the case of CD16-CD19-CD20 TriKE versus rituximab, and 

also prove efficient for overpassing HLA-mediated inhibition in refractory AML blasts.  

IL-15 is the master cytokine necessary for NK cell differentiation and survival and it 

is currently used in clinical trials alone or as an adjuvant for certain types of metastatic solid 

tumors to promote in vivo cell expansion and NK cell function 302,355. Taking advantage of 

this, novel TriKE structures have been developed that use a human IL-15 as a modified cross-

linker between the anti-CD16 and the anti-tumor antigen in order to promote in vivo NK cell 

proliferation. Assessment of the activity of a CD33 specific TriKE in an AML NSG model of 

NK cell adoptive transfer has shown in vivo persistence, high cytotoxic activity and no 

toxicity to the construct 356. Clinical development is currently under progress and will 

probably obtain FDA approval in the upcoming months to be tested in patients.   
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IMPROVING THE NK CELL COMPARTMENT IN HIS MICE 
	
  

Given the central role of NK cells in immune responses in infection, malignancy and 

inflammation and the great therapeutic potential they hold, it is necessary to optimize the 

available models for understanding their biology and pre-clinically evaluate new therapies.   

In previous sections we discussed about two types of HIS mice for the study of NK 

cell biology, those in which the human immune cells develop in vivo from injected 

hematopoietic precursors and a second category that adoptively receive mature NK cells 

freshly isolated or derived from an ex vivo expansion or activation process, a cell line or an 

ES or iPS cell. The later have fewer requirements in terms of niche, cell-cell interactions and 

soluble growth factors that are needed for NK cell development, and instead require 

cytokines for their survival and homeostatic proliferation. These cytokines are grouped by the 

use of the common cytokine receptor γ chain: IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. 

Particularly, IL-15 is the responsible for NK cell maintenance and homeostatic proliferation 

through IL-15Rα presentation 357,358 while IL-2 effect in vivo is oriented to the activation and 

induction of cytotoxicity through the regulation of the peripheral NK subsets. These 

humanized mice serve as platforms to understand the mechanisms underlying NK survival 

and function and provide pre-clinical information for the design of new therapeutics. 

Furthermore, they give valuable information about the cell migration capacity and synergistic 

effects with other cell types or immunomodulators. 

As mentioned earlier immunodeficient mice carrying IL-2rg mutations like NSG or 

NOG (both NOD/SCID/Il2rg) and BRG (Balb/c Rag/Il2rg)) support de novo multi-lineage 

development of human immune cells, including low levels of NK cells. In the BRG model an 

improvement of human reconstitution, including NK cells, has been observed when 

expressing SIRPαNOD as indicated earlier either by transgenesis or by generation of the 

congenic strain 257,258. These NK cells expressed CD56 and NKp46 as well as some level of 

CD16 and were able to degranulate moderately after stimulation with a cancer cell line. 

However in both BRGS and NSG mice NK cell displayed defects in maturation, functionality 

and heterogeneity in comparison with the human counterparts due to a deficient cytokine 

signaling 359. Based on their cytokine requirements IL-15 has been exogenously administered 

either alone or as a complex with IL-15Rα resulting in an extensive NK cell proliferation and 

accumulation of CD16+KIR+ NK cells. Also, NK cell differentiation progressed from CD56+ 

to CD56lowCD16+, and finally to CD56lowCD16+KIR+ mimicking the human model 302. On the 

other hand, the constitutive high expression of the high-affinity heterotrimeric IL-2 receptor 



	
  

	
  

75 

complex in CD56brightCD16+/− NK-cell subset and the effect of IL-2 in NK expansion and 

activation prompted the development of and IL-2 transgenic NOG mouse strain 360. When IL-

2TgNOG mice were engrafted with human HSC, CD56+ massively developed with a highly 

active phenotype including IFNγ production and cytotoxicity against tumor cells. Treatment 

with a therapeutic humanized anti-CCR4 Ab (mogamulizumab) suppressed the growth of a 

CCR4+ lymphoma, suggesting that the human NK cells in the mice exerted active Ab-

dependent cellular cytotoxicity in vivo. These cells expressed various NK receptors, including 

NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like 

receptor molecules at levels comparable to normal human NK cells from the peripheral blood 
361. Nevertheless, there are several limitations in this model due to the supra-physiological 

levels of IL-2 and therefore the high activation status of the NK cells.  

 It is well known that NK homeostasis and function is regulated by the 

interaction with other immune cells, particularly macrophages, dendritic cells and T cells. In 

addition, soluble factors released by those cells, like NKG2D ligands, IL-2, IL-12 or IL-15, 

signal on NK cells leading to proliferation and activation. Based on these crosstalk events, 

others and we have developed humanized mice that through the enhancement of the myeloid 

compartment, NK cell development results improved. As happens for other lineages, human 

myelopoiesis is driven by soluble factors normally present in the BM niche and periphery 

that in HIS mice are from mouse origin. Some of those mouse cytokines cross-react to some 

extent with the human cells but others, the species-specific cytokines, do it very poorly. In 

order to circumvent this deficiency human cytokines have been administered to HIS mice 

either as recombinant proteins 302, by cytokine-encoding plasmids 362 or by insertion of the 

cytokines either as transgenes in the mouse genome or by knocking in the human gene to 

replace the mouse counterpart 363,364. As mentioned before, transgenic models provoke supra-

physiological levels of the cytokine in the periphery and in the case of pro-myeloid factors, 

such as TPO, IL-3, GM-CSF or M-CSF, also lead to the exacerbated mobilization and HSC 

exhaustion limiting the utility of the system. The knock in approach, like the MITRG and 

MISTRG, allow a more physiological expression but adaptive cellular and humoral responses 

are very poor and the deficient mouse erythropoiesis leads to severe anemia that limits the 

lifetime of the animals. Subsequently to the myeloid enhancement, both these models showed 

an increased NK cell compartment as for the number of cells and NK cell functionality, 

including higher expression of KIR, CD94 and CD161 receptors 283. The transpresentation of 

Il-15 occurs mainly through the IL-15Rα expressed by dendritic cells so efforts have been 
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made to increase specifically this cell population in order to increase the NK pool avoiding 

the overdevelopment of other myeloid subsets. In our laboratory, Flt3-deficient BRG mice 

(BRGF) were created and after reconstitution with human HSC, human Flt3L was 

administered to the mice. The result was an increase of all the DC subsets and the promotion 

of NK cell hematopoiesis, with enhanced CD94, CD16 and KIR receptor expression. The 

combination of this system with the expression of the SirpNOD protein in the BRGSF model 

has led to further augmentation of NK cell numbers and also an enhanced functional 

competency as for degranulation capacity and cytokine production activity (unpublished 

data). This HIS model provide a unique platform to study NK cell development, crosstalk 

mechanisms with other immune cells and the pre-clinical assessment of new 

immunotherapies targeting innate cells.  

 The combination of the protocols detailed in the previous sections for 

modeling human cancer or infection with the strategies abovementioned to boost the NK cells 

in HIS mice will rise the potential to understand how NK cell interact with malignant or 

infected cells. Moreover, HSC-HIS mice offer the possibility to study the tissue specific 

interactions, the reservoirs, the migration patterns and the crosstalks within the immune 

compartment that may be important to develop combinatorial therapies that avoid metastasis, 

tumor relapse and “relocation” of the virus.   
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SPECIFIC AIMS OF THE THESIS 
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The overall objective of my thesis studies was to improve the available human 

immune system mouse models for the study of human innate effectors, their biology and their 

therapeutic potential.   

 

I. Develop a HIS mouse model capable of recapitulating the phenotype and functions of 

human innate lymphoid cells. 

 

II. Interrogate the developmental stages that give rise to human innate lymphoid cells in 

vivo in HIS mice. 

 

III. Develop and evaluate novel innate immune cell-based cancer immunotherapeutic 

approaches in HIS mice.  
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PAPER I:  
A FUNCTIONAL DC CROSSTALK PROMOTES HUMAN ILC HOMEOSTASIS 

IN VIVO 
	
  

 

Genetic engineering has allowed the tracking of the ontogeny of mouse ILCs that is 

currently quite well known. However, the human ILC development has been studied using 

different cell precursor origins and culture conditions thus creating discrepancy among the 

groups. In vivo models of human ILC biology are needed to reconcile those models, 

understand the signals and dissect the stages of human ILC development and therefore ILC 

diversity and function. Given their rapid response to infection, stress or injury and the afore-

mentioned involvement in many pathologies, they may be ideal targets to modulate the 

response in inflammatory conditions, immunotherapy or vaccination.  

ILC differentiation involves the interaction of precursor cells with stroma and 

myeloid cells and the signaling through soluble factors produced by those. However, human 

myeloid cells are not efficiently reconstituted in HIS mice due to the lack of human cytokines 

and the competition for the environmental niche in mouse tissues. One of the cytokines 

necessary for myeloid development is the FMS-related tyrosine kinase 3 ligand (Flt3L).  

In this study we generated a BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (BRGSF) HIS 

mouse model in which Flt3L-mediated enhancement of human DC numbers resulted in 

improved human ILC cell homeostasis and function. We provide evidence for a functional 

crosstalk between human DC and human ILC subsets that occurs in across lymphoid and 

non-lymphoid (mucosal) tissues. Based on that, BRGSF HIS mice open new possibilities for 

the study of ILC development and associated pathologies as well as the assessment of new 

immunotherapeutic strategies.  



 
	
  

A functional DC crosstalk promotes human ILC homeostasis in humanized mice 

 

Silvia Lopez-Lastra1,2,3, Guillemette Masse-Ranson1,2, Oriane Fiquet1,2, Sylvie Darche1,2, 

Nicolas Serafini1,2, Yan Li1,2, Mathilde Dusséaux1,2, Helene Strick-Marchand1,2 and James P. 

Di Santo1,2,* 

 

1 Innate Immunity Unit, Institut Pasteur, 75724 Paris, France 
2 Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France.  
3 Université Paris-Sud (Paris-Saclay), Paris, France. 

 

* Correspondence to: 

James P. Di Santo 

Innate Immunity Unit 

Inserm U1223 

Institut Pasteur 

25 rue du Docteur Roux 

75724 Paris, France. 

E-mail: james.di-santo@pasteur.fr 

Phone: +33 1 45 68 86 96 

 

Key points: 

 

- A novel humanized mouse model to study human ILC biology 

- Human DC crosstalk with innate lymphoid cells in vivo 

 



PAPER I: A functional DC crosstalk promotes human ILC homeostasis in vivo 

	
  

	
  

85 

Abstract 

Humanized mice harboring human hematopoietic systems offer a valuable small 

animal model to assess human immune responses to infection, inflammation and cancer. 

Human Immune System (HIS) mice develop a broad repertoire of antigen receptor bearing B 

and T cells that can participate in adaptive immune responses after immunization. In contrast, 

analysis of innate immune components, including innate lymphoid cells (ILC) and NK cells, 

is limited in current HIS mouse models partly due to the poor development of these rare 

lymphoid subsets. Here we show that novel DC-boosted HIS mice harbor abundant NK cells 

and tissue-resident ILC subsets in lymphoid and non-lymphoid mucosal sites. We find that 

human NK cells and ILCs are phenotypically and functionally mature, and provide evidence 

that human DC activation in HIS mice can ‘crosstalk’ to human NK cells and ILCs. This 

novel HIS mouse model should provide the opportunity to study the immunobiology of 

human NK cell and ILC subsets in vivo in response to various environmental challenges. 

 

(162 words) 
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Introduction 

Transplantation of human hematopoietic stem cells into immunodeficient mice has been 

employed for the last two decades to generate Human Immune System (HIS) mouse models. 

HIS mice provide a translational bridge connecting fundamental studies to clinical 

application, and have contributed to the better understanding of human immunity and disease 

pathogenesis1,2. Nevertheless, complete reconstitution of all human hematopoietic lineages 

and homeostatic long-term maintenance of all human immune cell types has not yet been 

achieved in these models3. Much progress has been made to improve overall human 

lymphoid and myeloid cell engraftment, and to enhance the development of HLA-restricted T 

and B cell responses. In contrast, the in vivo development of human innate lymphoid 

effectors, including innate lymphoid cells (ILCs), NKT, MAIT and/or γδT cells, in HIS mice 

remains suboptimal.  

ILC comprise a recently identified family of immune effector cells that share many 

functional characteristics with CD4+ T helper (TH) and CD8+ T cytotoxic lymphocytes (CTL). 

As such, ILCs have been proposed as innate versions of TH and CTL. ILCs derive from 

committed lymphoid precursors present in the fetal liver and adult bone marrow4. ILCs are 

categorized in three main groups according to their transcription factor signatures and their 

cytokine secretion patterns5. Group 1 ILC (ILC1) include T-BET+ cells that produce high 

levels of interferon-γ (IFN-γ). Amongst ILC1, two subgroups are appreciated that differ in 

expression of EOMES. Natural killer (NK) cells are EOMES+ and represent an extensively 

studied ILC subset with cytotoxic activity against virus-infected and tumor cells6,7. A second 

ILC1 subset does not express EOMES and lacks cytotoxic granules but expresses the IL-7 

receptor (CD127). These ‘non-cytotoxic’ ILC1 are found associated with epithelium in the 

liver, lung and intestine8. Group 2 ILC (ILC2) express the transcription factor GATA3 and 

produce type 2 cytokines, especially IL-5 and IL-13. ILC2 surface markers include CD127, 
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CRTh2, CD161 and CD25 (IL-2Rα), and these systemically distributed cells have an 

important roles during infections (by viruses, parasites), in atopic conditions (allergy, airway 

hyper-responsiveness) and during tissue repair9–11. Group 3 ILC (ILC3) express the orphan 

nuclear receptor RORγt and produce IL-17A and IL-22 after stimulation. ILC3 play 

important roles in maintaining barrier surfaces (especially mucosal sites) and for protection 

against infections by fungi and extracellular bacteria. Interestingly, ILC3 are increased in 

several inflammatory conditions (IBD, psoriasis) suggesting that this subset may provoke 

disease12,13.  

In principle, HIS mouse models can provide an opportunity to better understand the 

development, differentiation and function of human ILCs in vivo. Along these lines, several 

reports have described human NK cell generation in HIS mice14–17 and have underscored the 

importance of species-specific cytokines and macrophage tolerance for the development and 

function of these innate effectors18. In contrast, reports on other human ILC subsets in 

humanized mice are scarce and only in the context of infection or inflammation19,20. Several 

ILC subsets inhabit mucosal tissues, and the reconstitution of these sites in most humanized 

mouse models appears rather limited (reviewed in 21). This may result from poor homing or 

maintenance of human hematopoietic cells due to incompatibilities in adhesion molecules, 

chemokine/chemokine receptors and/or growth and survival factors. A comprehensive 

analysis of human ILCs in HIS mice could provide new insights into how, when and where 

these cells develop. 

Previous studies correlated FMS-related tyrosine kinase 3 ligand (Flt3L)-mediated 

expansion of mouse dendritic cells with a higher ILC cell survival and proliferation22–25. We 

recently reported a humanized mouse model in which Flt3L-mediated enhancement of human 

DC numbers resulted in improved human NK cell homeostasis26. In this report, we generate 

and characterize a novel BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (BRGSF) HIS mouse model 
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with enhanced human ILC homeostasis and function. We provide evidence for a functional 

crosstalk between human DC and human ILC subsets that occurs in across lymphoid and 

non-lymphoid (mucosal) tissues. BRGSF-based HIS mice should provide the means to 

interrogate human ILC function in the context of infection and inflammation. 
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Methods 

 

Mouse strains and generation of HIS mice 

BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (BRGSF) mice were generated by extensive 

backcrossing of BALB/c Rag2-/-Il2rg-/-Flk2-/- (BRGF;26) mice to the BALB/c Rag2-/-Il2rg-/-

SirpaNOD strain (BRGS;14). BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2+/- mice were subsequently 

intercrossed to create the BRGSF strain. HIS mice were generated as previously 

described14,27. Briefly, fetal liver CD34+ cells were isolated using human CD34 microbead kit 

(Miltenyi Biotec) and subsequently phenotyped for CD38 expression by flow cytometry. 

Newborn (3–5 day old) received sublethal irradiation (3 Gy) and were injected 

intrahepatically with the equivalent of 2 × 105 CD34+CD38− human fetal liver cells. All 

manipulations of HIS mice were performed under laminar flow conditions. Experiments were 

approved by the ethical committee at the Institut Pasteur (Reference # 2007–006) and 

validated by the French Ministry of Education and Research (Reference # 02162.02). 

 

In vivo Flt3L treatment 

HIS mice were injected intraperitoneally three times per week for 2 weeks with 5 μg 

hFlt3L-Fc (BioXcell), commencing at 6-7 weeks after reconstitution. Control mice were 

injected with the same volume of PBS. HIS mice were analyzed 2-5 days after the last hFlt3L 

injection.  

 

Hydrodynamic injection in HIS mice 

Full-length human IL-2, IL-7, IL-25 and IL-33 cDNA clones were cloned in the 

mammalian cell expression vector pCMV-6-XL4 (Origene) and plasmids purified using 

endotoxin-free Plasmid-Maxi kit (Qiagen). Hydrodynamic injection in HIS mice was 
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performed as previously described28. Briefly, 8-9 weeks old HIS mice were weighed and 

injected i.v. (tail vein) with cytokine encoding plasmids in 1.8 ml PBS (for 20g body weight) 

within 7 seconds using 27-gauge needles.  

 

Cell preparation 

HIS mice were perfused with PBS prior to tissue preparation. Spleen tissue was minced 

and erythrocytes were lysed using (BD Bioscience). Percoll density gradient centrifugation 

(GE Healthcare Life Sciences) was used for liver lymphocyte preparation. Lungs were 

dissociated using 1mg/ml collagenase D (Roche) for 45 min followed by percoll density 

gradient centrifugation.  

Intestines were perfused with cold RPMI 1640 medium to remove feces, cut open 

longitudinally and washed. Tissue was cut into 1-cm pieces and agitated in pre-warmed 

medium containing 10 mM EDTA (Sigma-Aldrich) at 37°C for 30 min to remove epithelial 

cells. Remaining tissue was collected, minced and digested for 60 min in medium containing 

5% FCS and Liberase (1 mg/ml; Roche). Lamina propria lymphocytes were enriched by 

percoll gradient centrifugation, filtered and washed.  All cell preparation steps were 

performed using RPMI 1640 Glutamax (Life Technologies) 100 U/mL penicillin, 100 μ

g/mL streptomycin (Invitrogen) unless otherwise stated. 



PAPER I: A functional DC crosstalk promotes human ILC homeostasis in vivo 

	
  

	
  

91 

 

Flow cytometry 

Cells were incubated for 15 min with cold PBS (Life Technologies) containing 3% FCS, 

human and mouse FcR block (hIgG and 2.4G2) and a viability dye (eFluor 506; eBioscience 

#65-0866-14). After a washing step, cells were stained with fluorochrome-bound antibodies. 

To detect intracellular transcription factors and cytokines, cells were subsequently fixed and 

permeabilized using manufacturer’s protocols (eBioscience; BD). Antibodies used are listed 

in Supplemental Table 1. Samples were acquired using an LSR FORTESSA (BD) and data 

were analyzed uisng FlowJo software (TreeStar; version 9.8.5 & 10.0.8).  

 

In vitro stimulation assays 

For ex vivo stimulation assays, human ILCs were enriched by depletion of cells 

expressing mCD45, hCD3, hCD5 and hCD19 using magnetic cell separation (Miltenyi 

Biotec) according to manufacturer’s procedures. ILCs were plated in 96-cell plates at a 

density of 4x104 NK cells (hCD45+CD3-NKp46+) or 104 ILCs (hCD45+Lin-CD7+CD127+) per 

well. Cells were stimulated using various cytokines (including IL-15 (Peprotech), IL-12, IL-

18, IL-23, IL-1b per well. Cells were stimulated using various cytokines (includingin the 

presence of Golgi Plug (BD) for 4 h. In some cases, stimulation was performed with PMA 

(10 ng/ml; Sigma-Aldrich) plus ionomycin (1 µg/ml; Sigma-Aldrich) in the presence of Golgi 

Plug (BD) for 3 h. For degranulation assays anti-CD107a antibody and monensin (1 µg/ml; 

Sigma-Aldrich) was added to the media 1h after the beginning of the stimulation (1ul/well).  

In all cases, a non-stimulated control containing only medium was included.  
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In vivo stimulation assays  

For NK stimulation, reconstituted HIS mice were injected ip with 50 μg polyI:C 

(InvivoGen) in PBS and analyzed 14 h later. For ILC stimulation, a cocktail of flagellin, 

R848 (Resiquimod) and bacterial lipopolysaccharide (LPS-EB ultrapure) (all from 

InvivoGen, 5 ug each) was injected ip and analyzed 6 h later. 

 

Statistical analysis 

GraphPad Prism version 6 (GraphPad Software) was used to perform statistical analysis. 

Statistical significance was evaluated by two-tailed unpaired Student t tests. The 

obtained p values were considered significant when p < 0.05. 
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Results 

 

Human DC development in Flt3L-treated BRGSF-based HIS mice 

We have previously described BALB/c Rag2-/-Il2rg-/-Flk2-/- (BRGF) recipients that offer 

an approach to enhance human DC homeostasis in HIS mice26 and characterized the BALB/c 

Rag2-/-Il2rg-/-SirpaNOD strain (BRGS) with enhanced human hematopoietic engraftment due to 

improved macrophage tolerance of human cells14. We combined these two models to create 

the BALB/c Rag2-/-Il2rg-/-SirpaNODFlk2-/- (BRGSF) strain and analyzed HIS mice after 

intrahepatic transfer of human CD34+ HSC into newborn BRGSF recipients. BRGSF-based 

HIS mice showed robust reconstitution with up to 75% circulating human CD45+ cells 

(Figure S1A), including CD3+ T cells (5-30%), CD19+ B cells (60-85%), NK cells (2-6%) 

and conventional DCs (cDCs) (1-4%) (Figure S1B). Consistent with previous studies26,29–32, 

we found that exogenous Flt3L treatment could significantly boost human myeloid cell 

development in BRGSF HIS mice (Figure 1). We examined four human CD3-CD19-NKp46-

HLA-DR+ myeloid subpopulations: CD14+ monocytes, CD123+ plasmacytoid DCs (pDCs), 

CD141/BDCA-1+ cDCs and CD1c/BDCA3+ cDCs. All four subsets were detected in bone 

marrow (BM) (Figure 1A) and spleen (Figure 1C) and to a lesser extent in lung and liver 

(data not shown) of BRGSF HIS mice as minor populations (1-5%) of total CD45+ cells. 

Flt3L treatment resulted in a 30- to 85-fold increase in absolute numbers of these myeloid 

subsets in the BM and a 3-fold increase in absolute numbers of pDCs and CD141+ DCs in the 

spleen (Figures 1B, D). Exogenous Flt3L had no effect on the Flt3-deficient mouse myeloid 

cells (data not shown) thereby allowing a selective boost of human myeloid cells in this 

context. These results confirm previous studies using BRGF recipients26, but further 

demonstrate enhanced development of CD14+ monocytes in BRGSF HIS mice. 
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We next analyzed hematopoietic and myeloid precursor populations in the BM of 

reconstituted BRGSF HIS mice. Total numbers of CD34+ HSC was significantly higher in 

Flt3L-treated mice suggesting enhanced homeostasis (Figure S2A). This is in line with 

previous in vitro and in vivo studies demonstrating that HSCs express Flt3 and that signaling 

through this receptor induces proliferation of quiescent bone marrow HSCs and positively 

impacts cell survival33,34. Human DC and monocyte restricted precursors 

(Lin−CD34−CD117+CD135+CD116+CD45RA+ cells) have been shown to have a BM origin 

prior to entry into the circulation35,36. This population was detected in the BM of BRGSF mice 

(Figure S2B) and its frequency and total numbers were increased following Flt3L treatment 

(Figure S2C). These data suggest that the increased frequency and absolute numbers of 

myeloid cells in Flt3L-treated BRGSF HIS mice may result from an increase in the CD34+ 

HSC pool and their downstream DC/monocyte precursors within the BM that expand in 

response to exogenous Flt3L. 

 

Lymphocyte development in Flt3L-treated BRGSF HIS mice 

We next analyzed development of B and T cells in BRGSF HIS mice receiving or not 

Flt3L. T cell development as assessed by total thymocyte numbers and CD4/CD8 profiles 

were unaffected by Flt3L treatment (Figure S3A) and consistent with our previous 

studies18,26,27. Absolute numbers and phenotype of splenic CD4+ and CD8+ T cells were not 

significantly affected by Flt3L treatment, with the majority of cells presenting a naïve 

CD45RA+CD27+ phenotype (Figure S3B). BM B cell maturation was similar in BRGSF HIS 

mice receiving or not Flt3L harboring a predominant CD19+ B cell precursors and more 

mature IgD+IgM+ B cells (Figure S3C). 

Given previous studies demonstrating the impact of DC ‘crosstalk’ in promoting NK cell 

maturation and proliferation24,37, we tested whether Flt3L-dependent enhancement of myeloid 
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cell development in BRGSF HIS mice affected the phenotype and function of conventional 

NK cells (defined as CD3-NKp46+CD94+ cells). Administration of Flt3L to BRGSF mice led 

to an increase frequency and absolute number (2- to 2.5-fold) of conventional NK cells in the 

liver, spleen and lung (Figures 2A, B), as well as in blood, BM and intestine (data not 

shown). Conventional NK cells in humans include two main subsets: a CD56brightCD16- and a 

more mature CD56dimCD16+ subset (reviewed in 38). As reported in other HIS mouse 

models16,26, the majority of CD56+ NK cells in BRGSF HIS mice were CD16- with about 30% 

expressing the low affinity Fc receptor (Figure 2C). Flt3L treatment did not change the 

proportions of CD16+ NK cells (Figure 2C), or the expression pattern of the C-type lectin 

receptors NKG2A and NKG2C (Figure 2D). MHC class I-specific KIR expression was 

restricted to the CD16+ subsets and accounted for 15-30% of the total CD94+ population 

depending on the organ (Figure 2E, left panel). Both activating (KIR2DS4) and inhibitory 

KIR (KIR2DL1/DL2/DL3) molecules were expressed suggesting a balanced repertoire 

formation on NK cells. Neither the percentage of KIR-expressing NK cells nor the ratio of 

activating versus inhibitory receptors was affected by Flt3L treatment (Figure 2E, right 

panel). 

 

NK cell priming following Flt3L-mediated human DC boost 

Because IL-15-transpresentation by DCs has been shown to prime resting NK cells39,40, 

we compared the cytokine production and degranulation capacity of NK cells in BRGSF HIS 

mice with or without Flt3L-mediated DC boost. Splenic NK cells were stimulated with IL-12, 

IL-15 and IL-18 ex vivo and IFN-γ production was assessed by intracellular staining (Figure 

3A, upper panel). Flt3L treatment increased the frequency of IFN-γ-producing NK cells 

compared to control mice (Figure 3B). In contrast, NK cell degranulation (CD107a 

expression) upon cytokine activation was not altered in Flt3L treated mice. In order to assess 
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DC-NK cell ‘crosstalk’ in vivo, we stimulated DC via TLR3 following i.p. injection of 

poly(I:C) and assessed NK cell cytokine production ex vivo 14 h later. TLR-mediated 

activation of human DC was confirmed by elevated human IL-12 levels in plasma of mice 

after poly(I:C) injection in Flt3L boosted BRGSF HIS mice (Figure S4). We found enhanced 

NK cell IFN-γ production and a marked increase in CD107a expression in response to 

poly(I:C) activation in vivo (Figure 3C). While these responses were also observed in BRGSF 

HIS mice that had not been Flt3L boosted, the amplitude of the NK cell response was 

significantly higher in Flt3L treated HIS mice. These results suggest that increased human 

DC in Flt3L boosted BRGSF HIS mice can be stimulated in vivo and can trans-activate 

effector functions in NK cells. 

	
  

Administration	
  of	
  Flt3L	
  enhances	
  development	
  of	
  diverse	
  ILC	
  subsets	
  in	
  BRGSF	
  mice	
  

Innate lymphoid cells include several subsets of lineage-CD127+ cells that have the 

capacity to rapidly produce cytokines in the early phases of immune responses (reviewed in 

41). We next assessed the impact of Flt3L treatment in BRGSF mice on the development of 

ILC (defined as lineage-EOMES-CD7+CD127+ cells). ILCs were detected in liver, spleen, 

lung and gut and accounted for 0.5 to 2% of the total hCD45+ cells in these organs (Figure 

4A). Administration of Flt3L increased both the ILC frequency (Figure 4A) and absolute 

numbers (Figure 4B) in all organs tested, with the most pronounced effects in the liver and 

gut. 

Diverse T-BET+ IFN-γ-producing ILC subsets have been reported in various locations 

and with diverse, sometimes overlapping, surface markers (reviewed in 42). We next assessed 

ILC1 heterogeneity in BRGSF mice, focusing on the liver, where several CD127+ ILC1 

populations distinct from NK cells have been reported43–45. BRGSF mice harbor two T-BET+ 

lineage-CD7+ populations that can be distinguished on the basis of IL7Rα (CD127) 
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expression (Figure 5A). T-BET+CD127- cells represent conventional NK cells and co-express 

EOMES, CD161 and high levels of CD94 (Figure 5B). In contrast, a second T-BET+CD127+ 

subset could be detected that also expressed CD161 and EOMES but showed an essentially 

negative expression of CD94 (Figure 5B). These T-BET+CD127+ cells did not express the 

NK marker CD16 and had lower expression of NKp46 than conventional NK cells (Figure 

5C). This ILC1 subset accounted for less than 0.1% of hCD45+ liver cells, similar to a 

recently described human intrahepatic NK-like ILC46. Flt3L treatment increased the 

frequency and absolute numbers of these hepatic ILC1 (Figure 5D). 

We next addressed the IFN-γ production capacity of Lin-CD7+T-BET+ cells upon ex vivo 

stimulation. Both T-BET+CD127+ ILC1 and conventional T-BET+CD127- NK cells showed 

strong IFN-γ production after pharmacological activation (Figure 5E). We further showed 

that CD161+ ILC1 could be activated following TLR triggering in vivo (using a TLR-4, -5, -7 

and -8 ligand cocktail of flagellin, LPS and R484). Flt3L-treated BRGSF HIS mice were 

TLR-stimulated treated or not and 16 h later hepatic lymphocytes were stained for 

intracellular IFN-γ. We found that TLR stimulation was able to stimulate an IFN-γ response 

in CD161+ liver ILCs above levels observed in non-TLR-stimulated mice (Figure 5F) 

suggesting that DC activation via TLR stimulation is able to trans-activate hepatic ILC1 in 

vivo.  

 

Increased lung ILC2 homeostasis in Flt3L treated BRGSF HIS mice 

We next studied the impact of Flt3L treatment on other ILC subsets. ILC2 are present at 

mucosal sites and play a key role in barrier protection in the respiratory tract (reviewed in 47). 

We detected human ILC2 in the lung of BRGSF HIS mice as a population of lineage-

CD7+CD127+T-BET-EOMES-GATA-3+ cells (Figure 6A). The frequency and absolute 

numbers of ILC2 within the lung of BRGSF HIS mice was increased by Flt3L treatment 
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(Figure 6B). On average, GATA-3+ ILC2 represented about 0.35% of the human CD45 cells 

within the lung.  

We found that ILC2 in the lungs of BRGSF HIS mice had phenotypic similarities to 

ILC2 from human tissues9,48–50, with notable expression of the prostaglandin D2 

receptor CRTh2, c-kit receptor (CD117) and the chemokine receptor CCR6 and low or 

negative expression of CD56 (Figure 6C). Lung ILC2 in BRGSF HIS mice showed 

detectable IL-13 production under steady-state conditions that could be increased after ex 

vivo stimulation with PMA plus ionomycin (Figure 6D). In order to assess the impact of 

survival factors and inflammatory cytokines on human ILC2 function in vivo, we 

administrated in vivo a cocktail of human cytokines (IL-2, -7, -25 and -33) by hydrodynamic 

injection and assessed IL-13 production capacity six days later. Following in vivo cytokine 

expansion and stimulation, we found that a substantial proportion of ILC2 expressed IL-13 

(Figure 6D). These results suggest that human ILC2 in BRGSF HIS mice are cytokine 

responsive in vivo and that ILC2 function can be primed under appropriate environmental 

conditions. 

 

Flt3L stimulates intestinal ILC homeostasis and function in BRGSF HIS mice 

ILC3 are enriched in intestinal lamina propria and play a fundamental role in gut 

homeostasis and immune defense. Human CD45+ cell engraftment in the gut was quite 

variable in individual BRGSF HIS mice (Figure 7A) ranging from non-reconstitution to 

6x106 hCD45+ cells in intestinal lamina propria. In reconstituted HIS mice, gut lamina propria 

cells included T cells (4-20%), CD94+ NK cells (3-15%) and a clearly detectable subset of 

lineage-CD7+CD127+ ILC (1-5%). These intestinal ILCs expressed CD117 but were negative 

for NKp46 (Figure 7D) and therefore resembled NCR- ILC3 previously described in diverse 

human tissues43,51. Flt3L administration resulted in an increase of the frequency of gut ILC3 
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(reaching in some cases 10% of the total hCD45+ cell population) that was accompanied by 

an increase in total ILC number (Figures 7B, C). Intestinal ILC3 in BRGSF HIS mice 

expressed the transcription factor RORγt and following in vitro simulation, were able to 

produce IL-22 and IL-17A (Figure 7E). When human DC were stimulated in vivo with a 

cocktail of TLR ligands (see above), we found that intestinal ILC3 showed a modest increase 

of IL-22 production with no impact of the Flt3L treatment (Figure 7F). However, IL-17A was 

drastically boosted after stimulation and that increase was even more prominent in the Flt3L 

treated mice suggesting a positive effect of the ligand on the functional fitness of ILC3 in 

vivo.  
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Discussion 

Innate lymphoid cells play fundamental roles in the early immune response against 

diverse pathogens and in later stages of infection and inflammation through promotion of 

tissue homeostasis and repair. As such, ILC activation and regulation may impact upon 

disease outcome in some clinical conditions. The development of suitable small animal 

models that recapitulate ILC development and function in vivo could provide a preclinical 

testing platform to assess immunomodulatory approaches that target ILCs. Here we show that 

Flt3L-boosted BRGSF recipients provides a simple HIS mouse model for robust generation 

of diverse human innate and adaptive lymphocyte subsets. In particular, we find that mature, 

functional human ILC subsets are present in lymphoid and non-lymphoid tissues of BRGSF 

HIS mice thereby opening a path to understand human ILC immunobiology in vivo in the 

context of infection, inflammation and cancer.  

Two non-exclusive mechanisms may underlie the ability of Flt3L-boosted BRGSF HIS 

mice to robustly develop human ILCs. As Flt3L regulates early DC precursors and DC 

homeostasis22–25,37 (Figure 1, S2), an improved myeloid compartment may provide a richer 

human cytokine environment52 thus indirectly supporting ILC survival and proliferation. This 

mechanism underlies DC-transpresentation of IL-15 to mouse and human NK cells15,24,39. A 

second mechanism may involve direct effects of Flt3L on CD135+ lymphoid committed 

precursors that are upstream of human ILC or NK precursors53-55. These two pathways may 

act synergistically to contribute to the observed human ILC boost in BRGSF HIS mice. 

NK cells engage in bidirectional interactions with other innate effectors that modulate 

their differentiation, homeostasis and immune responses against pathogens and cancer56.  

This innate ‘crosstalk’ can further impact adaptive responses as evidenced by the reduced 

benefit of DC vaccination after NK cell depletion in a melanoma mouse model57. Both 

soluble (IFN-γ) as well as contact-dependent (OX40-OX40L) factors contribute to NK cell – 
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DC immune orchestration. These interactions may underlie the increased cytokine production 

and degranulation capacity we observe in BRGSF mice. As both myeloid and NK cells are 

expanded in BRGSF HIS mice, our model provides an opportunity to study the importance of 

this crosstalk in human innate immunity.  

The robust ILC development we observed in BRGSF HIS mice suggests that ILC 

homeostasis may be regulated by similar Flt3L-dependent mechanisms as found for human 

NK cells. We observed evidence for phenotypic diversity within the IFN-γ-producing ILCs in 

the liver of BRGSF mice, with T-BET+ cells heterogeneously expressing CD127 and CD94 

that finds parallels with recent reports in humans19,46. While the environmental factors that 

regulate human ILC1 diversity are not clearly identified, our BRGSF HIS mouse model 

provides a means to dissect ILC1 heterogeneity in tissue environments under steady-state and 

inflammatory conditions.   

We identified functional GATA-3+ human ILC2 in the lungs of BRGSF HIS mice. 

Previous studies have not yet described human ILC2 in humanized mice, and as such, the 

BRGSF model is therefore unique in this regard. ILC2 play critical roles in immune 

protection against various pathogens (helminths, viruses) and are associated with atopic 

diseases and reactive airways (reviewed in 58). Moreover, ILC2 have been recently shown to 

have functional plasticity in the context of inflammation49,59,60. BRGSF HIS mice may provide 

a valuable new model to study the biology of human ILC2 in vivo in the context of 

inflammation.  

We observed that BRGSF HIS mice support robust human immune reconstitution in the 

mouse intestine, including RORγt+ ILC3. ILC3 play an important role in maintaining barrier 

function (reviewed in 61). Human intestinal ILC3 protect against colitis through production of 

IL-22 and regulate T cells by MHC call II mediated presentation of microbial antigens62, a 

process that may be modeled in humanized mice63. Our BRGSF HIS mouse model may 
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provide a means to dissect the biology of human intestinal immune tolerance. A recent report 

showed that HIV-1 infection depletes human ILC3 thus providing a plausible mechanism for 

loss of intestinal homeostasis in the context of this disease20. Enhanced human ILC3 

development in BRGSF HIS mice offer a means to study these cells in various viral 

inflammation conditions. 
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Figure Legends 
 

Figure 1: Distribution of human myeloid subsets in BRGSF mice and effect of Flt3L on 

their development. Representative flow cytometry immuno-phenotypic analysis of 

hCD45+HLA-DR+CD19-CD3-CD56- cells from bone marrow (A) and spleen (C) of a Flt3L 

treated mouse and a PBS treated littermate engrafted with the same CD34+ HSC donor. 

Comparison of frequencies within the human CD45 positive cells and total number of the 

four myeloid subsets (CD14+ monocytes, CD123+ pDC, CD141+ cDC and CD1c+ cDC) with 

or without Flt3L treatment in bone marrow (B) and spleen (D). Each dot represents one 

mouse. Composite data from 3 independent experiments are shown. Numbers in plots 

represent frequencies within gates.     

 

Figure 2: Distribution of human NK cells in reconstituted BRGSF mice with or without 

Flt3L treatment.  A) Representative flow cytometry immuno-phenotypic analysis of alive 

hCD45+CD3-CD94+NKp46+ NK cells from liver, spleen and lung of a Flt3L treated mouse 

and a PBS treated littermate engrafted with the same CD34+ HSC donor. B) Comparison of 

CD94+ cell frequencies within the human CD45 positive cells (upper graph) and total number 

of NK cells (lower graph) with or without Flt3L treatment in liver, spleen and lung. C) 

Representative flow cytometry plot of CD56 and CD16 expression in liver NKp46+CD94+ 

cells as gated in top panels (left) and comparative quantification (right). D) Expression of 

NKG2A and NKG2C in liver NKp46+CD94+ cells (left) and comparative quantification 

(right).  E) Distribution of activating (CD158i) and inhibitory (CD158a/b) KIR expression in 

liver, spleen and lung NK cells of a representative BRGSF mouse treated with Flt3L (left 

plots) and comparative quantification of the total KIR expressing CD94+ NK cells with or 

without Flt3L treatment (right graph). Each dot represents one mouse. Composite data from 

at least three independent experiments are shown. Numbers in plots represent frequencies 
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within gates.     

 

Figure 3: Flt3L treatment enhances human NK-cell function in spleen cells from 

reconstituted BRGSF mice.  A) Human NK cells were MACS enriched from spleens of 

BRGSF Flt3L treated or not and were stimulated ex vivo with the monokines IL-12, IL-15 

and IL-18. Representative flow cytometry immuno-phenotypic analysis of degranulation 

(CD107a) and cytokine production (IFNγ) in NKp46+ NK cells is shown. B) Quantification 

of IFNγ-producing and CD107a-expressing NK cells from Flt3L treated or control BRGSF 

mice. C) In vivo functionality of NK cells in BRGSF mice was evaluated by quantifying 

IFNγ production and degranulation after in vivo poly (I:C) stimulation. Panel B and C 

represent composite data from of 4 mice per condition in 2 experiments. Each dot represents 

one mouse. Numbers in plots represent frequencies within gates.     

 

Figure 4: Distribution of human ILCs in BRGSF mice and effect of Flt3L treatment. A) 

Representative flow cytometry analysis of Lin-EOMES-CD7+CD127+ innate lymphoid cells 

in spleen, liver and lung and Lin-CD94-CD7+CD127+ cells in gut of a Flt3L treated BRGSF 

mouse. B) Comparative quantification of ILCs in spleen, lung, liver and gut of BRGSF mice 

treated or not with Flt3L as a percentage of hCD45+ cells (upper panel) and total number of 

cells (lower panel). Composite data from of 14 mice per condition in 4 experiments. Each dot 

represents one mouse. Numbers in plots represent frequencies within gates. 

 

Figure 5: Flt3L treatment expands a population of ILC type 1 cells different from NK 

cells. A) Representative flow cytometry analysis of T-BET and CD127 expression on Lin-

CD7+ cells in liver of a PBS and a littermate Flt3L treated BRGSF mouse. B) Expression of 

CD117, EOMES, CD161 and CD94 (histograms) on liver T-BET+CD127- (red), T-
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BET+CD127+ (blue) and T-BET-CD127+ cells (grey) assessed by flow cytometry. C) 

Expression of CD127, CD16 and NKp46 on liver Lin-T-BET+ cells, assessed by flow 

cytometry. D) Frequency among hCD45+ cells (left panel) and total number (right panel) of 

Lin-CD7+CD127+T-BET+ liver cells.  E) Representative functional analysis by IFN-γ 

intracellular flow cytometry after P/I + cytokine 4h stimulation of T-BET+CD127- (red) and 

T-BET+CD127+ (blue) cells. Gated were determined using unstimulated controls. F) Flow 

cytometry representation of IFN-γ production by Lin-T-BET+CD161+ ILC1 cells in response 

to TLR-mediated in vivo stimulation. Composite data from of 3-4 mice per condition is 

shown in left panel. Numbers in plots represent frequencies within gates.     

 

Figure 6: Flt3L treatment also augments ILC type 2 cells in reconstituted BRGSF mice. 

A) Representative flow cytometry analysis of GATA-3+ ILCs in lung of reconstituted 

BRGSF treated or not with Flt3L. B) Frequency among hCD45+ cells and total number of 

GATA-3+ ILCs in lung of reconstituted BRGSF treated or not with Flt3L. Composite data 

from 8 mice of 2 experiments is shown C) Representative functional analysis by IL-13 

intracellular flow cytometry from freshly isolated lung ILCs, after P/I ex vivo stimulation and 

after in vivo hydrodynamic cytokine injection and ex vivo stimulation. D) Expression of 

CRTh2, CCR6, CD56 and CD117 (histograms) on lung GATA-3 ILCs (red) and EOMES+T-

BET+ NK cells (grey) assessed by flow cytometry. Each dot represents one mouse. Numbers 

in plots represent frequencies within gates.     

 

Figure 7: ILC3 can be found in the gut of BRGSF reconstituted mice and their 

frequency increase after Flt3L treatment. A) Total human CD45 cell number in gut of 

BRGSF mice treated or not with Flt3L. Composite data from of 12-16 mice per group is 

shown. B) Representative flow cytometry analysis of ILCs in gut of reconstituted BRGSF 
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treated or not with Flt3L. C) Frequency among hCD45+ cells and total number of ILCs in 

total gut of reconstituted BRGSF treated or not with Flt3L. Composite data from 6/8 mice of 

2 experiments is shown. Each dot represents one mouse. D) ILC (Lin-CD94-CD7+CD127+) 

(in red) expression of CD117 and NKp46 as compared to NK cells (grey). E) Intracellular 

expression of RORγt in gut ILCs of a Flt3L treated mouse (top panel) and representative 

functional analysis by IL-22 and IL-17 intracellular flow cytometry from ex vivo stimulated 

ILCs. F) Quantification of IL-22 and IL-17 production analyzed by flow cytometry from Lin-

CD94+CD7+CD127+ ILC3 cells in response to TLR-mediated in vivo stimulation. Composite 

data from of 3-4 mice per condition is shown. Numbers in plots represent frequencies within 

gates. 

 

Supplemental Figure Legends 

 

Supplemental Figure 1: Evaluation of circulating human hematopoietic cells in blood of 

BRGSF mice 10 weeks post-engraftment. A) Frequency of human leukocytes (hCD45+) in 

blood 10 weeks post-engraftment of BRGSF mice. B) Representative flow cytometry 

analysis showing reconstitution of the main blood cell populations within the hCD45 

compartment. CD3+ T cells, CD19+ B cells, CD3-NKp46+ NK cells and CD3-CD19-

CD11c+HLA-DR+ DCs develop in BRGSF mice prior in absence of any treatment. 

 

Supplemental Figure 2: Flt3L treatment augments myeloid precursor populations in the 

BM of BRGSF mice. A) Frequency of total human CD34+ hematopoietic stem cells in bone 

marrow of BRGSF mice and effect of Flt3L treatment. B) Representative flow cytometry 

gating strategy for the analysis of Lin−CD34−CD117+CD135+CD116+CD45RA+ DC/monocyte 

precursors in BM of BRGSF mice.  C) Frequency (left) and total number (right) of human 
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myeloid hematopoietic precursor in bone marrow of BRGSF mice and effect of Flt3L 

treatment.    

 

Supplemental Figure 3: The distribution and phenotype of adaptive lymphocytes is not 

affected by Flt3L treatment in BRGSF mice 10 weeks after HSC reconstitution. A) 

Relative proportions of major thymocyte maturation stages: double negative (CD4-CD8-), 

double positive (CD4+CD8+) and single positive CD4+ and CD8+ cells in BRGSF thymus and 

the effect of Flt3L treatment. B) Distribution of CD4 and CD8 T subsets within the CD3+ 

cells (left) and differentiation status of CD8+ (middle) and CD4+ T cells (right) as for central 

memory (CD45RA-CD27+), naïve (CD45RA+CD27+), effector memory RA (CD45RA+CD27-

) and effector memory (CD45RA-CD27-). C) Frequency among hCD45+ cells of CD19+, 

CD19+CD20+ and IgD+IgM+ B cells in bone marrow of BRGSF with or without Flt3L 

treatment.  Composite data from of 4 mice per condition is shown. 

 

Supplemental Figure 4: Poly I:C treatment leads to increased IL-12 levels in plasma of 

HIS mice. Plasma levels of IL-12 were determined by Luminex technology in plasma of 

BRGSF mice prior to the Flt3L treatment, after the six treatment doses (before the poly (I:C) 

stimulation) and at the moment of the analysis. Composite data of four mice per group is 

shown.  

 

Supplemental Table 1: Antibodies used for flow cytometry analysis 
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PAPER II:  
SYSTEMIC HUMAN ILC PRECURSORS PROVIDE A SUBSTRATE FOR 

TISSUE ILC DIFFERENTIATION 
  

Human circulating ILC can be identified as a low frequency population within 

lineage—CD7+CD56—CD127+ peripheral blood cells of healthy individuals as well as patients 

suffering from diverse clinical syndromes. Further fractionation into ILC1, ILC2 and ILC3 

has been achieved using the phenotypic markers mentioned previously in this manuscript by 

several groups. Circulating ILCs also include a predominant CD117+ subset that lacks CRTh2 

expression and has been previously considered circulating ILC3 since tissue-resident ILC3 

strongly express CD117. However, we found that PB CD117+ ILC differ dramatically from 

gut CD117+ ILC in that they lack expression of NKp44 and other surface markers associated 

to ILC3s and the transcription factor RORγt and do not produce IL-17A or IL-22 after 

stimulation. 	
  

Here, we used BALB/c Rag2-/-Il2rg-/-SirpaNOD (BRGS) to analyze the lineage potential 

of this CD117+ subset. While BRGS mice engrafted with HSCs showed multilineage 

reconstitution, those receiving PB CD117+ ILCP developed Lin–CD7+ cells but no myeloid 

cells, B cells or T cells. Human CD45+ progeny from transferred CD117+ ILCP were detected 

in multiple organs, including the spleen, lung, gut and liver. At each of these tissue sites, 

EOMES+ NK cells as well as diverse CD127+ ILC subsets could be identified that produced 

IFN- γ  ILC subsets could be identifiex vivo upon stimulation. 	
  

This ILC precursor population was also found in BRGS mice engrafted with CD34+ 

HSCs. Paralelling human PB ILCP, these cells failed to elicit cytokine production after ex 

vivo stimulation. However in vitro culture in the presence of IL-2, IL-7, IL-1β led to the 

expansion of cells able to produce IFN-γ, IL-13, IL-17A and IL-22 thereby confirming the 

presence of human ILCP in HIS mice. These results demonstrate that CD34+ HSC can give 

rise to CD117+ ILCP in vivo validating the BRGS HIS mouse model as a translational 

platform to study human hematopoiesis.  	
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Summary 

Innate lymphoid cells (ILC) represent innate versions of T helper and cytotoxic T cells 

that differentiate from committed ILC precursors (ILCP). How ILCP give rise to mature 

tissue-resident ILC remains unclear. Here we identify circulating and tissue-resident ILCP in 

humans that fail to express the transcription factors and cytokine outputs of mature ILCs but 

have these signature loci in an epigenetically poised configuration. Human ILCP robustly 

generate all ILC subsets in vitro and in vivo. While human ILCP express RAR related orphan 

receptor C (RORC), circulating ILCP can be found in RORC-deficient patients that retain 

potential for EOMES+ NK cells, IFN-J+ ILC1, IL-13+ ILC2 and for IL-22+ but not for IL-

17A+ ILC3. These results support a model of tissue ILC differentiation (‘ILC-poiesis’) 

whereby diverse ILC subsets are generated in situ from systemically distributed ILCP in 

response to local environmental signals. 
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Introduction 

Innate lymphoid cells (ILC) are a novel family of lymphoid effector cells that serve 

essential roles in the early immune response, consisting of cytotoxic cells (NK cells) and 

‘helper-like’ ILC. The latter are characterized by expression of interleukin-7 receptor (IL-

7Rα/CD127) and categorized into three distinct groups based on their transcription factors 

(TF) and signature cytokine production. Group 1 ILC (ILC1) express TBX21 (encoding T-

BET) and produce T helper (TH)1-associated cytokines IFN-γ and TNF-D. Group 2 ILC 

(ILC2) express GATA-3 and RORA and secrete TH2-associated cytokines, IL-5 and IL-13. 

Group 3 ILC (ILC3) utilize RORC (encoding RORγt) to drive production of the TH17-

associated cytokines, IL-17 and/or IL-22 (Serafini et al., 2015; Spits et al., 2013). These 

different ILC subsets are found in diverse lymphoid and non-lymphoid tissues, and enriched 

at mucosal sites where they play essential roles in barrier function and innate immune defense 

(Artis and Spits, 2015; Eberl et al., 2015).  

Diverse human ILC subsets were first identified in secondary lymphoid tissues and 

subsequently reported at several non-lymphoid tissue sites (intestine, lung, liver, skin) 

(reviewed in (Juelke and Romagnani, 2016)). Two distinct populations of IFN-γ-producing 

ILC1 have been described. A T-BET+ cell expressing high levels of CD127 and CD161 but 

lacking other specific surface markers has been identified in tonsil and inflamed intestine 

(Bernink et al., 2013). In contrast, an intraepithelial ILC1 expressing NKp44 and CD103 but 

not CD127 resides at mucosal sites (Fuchs et al., 2013). Both these ILC1s produce IFN-γ in 

response to IL-12 but unlike NK cells they show minimal EOMES expression. Human 

GATA-3+ ILC2 express the chemoattractant receptor CRTh2 as well as IL-25R and IL-33R 

(Mjösberg et al., 2011), are widely distributed (lung, skin, gut, nasal polyp, adipose tissues) 

and produce type 2 cytokines IL-5 and IL-13 under a variety of physio- and pathological 

situations (reviewed in (Kim and Artis, 2015)). Group 3 ILC include RORγt+ fetal lymphoid 



PAPER II: Systemic human ILC precursors provide a substrate for tissue ILC differentiation 

	
  

	
  

127 

 
 

6/37 

tissue-inducer (LTi) cells identified in fetal mesenteric lymph nodes and spleen (Cupedo et 

al., 2009) as well as adult lineage–CD127+CD117+ cells found in adult tonsils, intestine, 

spleen, skin, lung, endometrium and decidua (reviewed in (Klose and Artis, 2016)). A subset 

of ILC3 express natural cytotoxicity receptors (NCR, including NKp30, NKp44 and NKp46) 

and are enriched in IL-22-producing cells (Cella et al., 2009; Satoh-Takayama et al., 2008). 

Murine mature ILC differentiate from hematopoietic stem cells (HSC) via a common 

lymphoid progenitor (CLP) to give rise to diverse ID2+TCF-1+PLZF+ ILC precursors (ILCP) 

in fetal liver (FL) and adult bone marrow (BM) (Constantinides et al., 2014; Yang et al., 

2015). Several TF and signaling pathways regulate this process in mice (Serafini et al., 2015); 

in contrast, human ILC development is less well characterized (Juelke and Romagnani, 

2016)). NK precursors (NKP) have been identified in FL, BM, cord blood (CB) and adult 

tonsil (Renoux et al., 2015), whereas committed ILC3 precursors (ILC3P) are found in tonsil 

and intestinal lamina propria but not peripheral blood (PB), thymus or BM (Montaldo et al., 

2014). A recent study identified tonsillar human RORγt+ ILCP that can develop into mature 

cytotoxic and helper ILC (Scoville et al., 2016). Interestingly, these human NKP, ILC3P and 

ILCP were CD34+ and enriched in secondary lymphoid tissues but were rare or absent from 

the circulation. It was unclear how these CD34+ hematopoietic precursors were 

developmentally related to mature tissue-resident ILC subsets.  

In this report, we have extensively characterized the phenotypic, molecular and 

functional attributes of peripheral blood and tissue-resident CD117+ ILCs. This included an in 

vitro study of over 1300 ILC clonal cultures as well as an in vivo analysis using humanized 

mice. While ILCs with the CD117+ phenotype were previously proposed to represent human 

ILC3 (Hazenberg and Spits, 2014), we find that peripheral blood CD117+ cells are 

remarkably enriched in multi-potent and uni-potent ILC precursors (ILCP) that can give rise 

in vitro and in vivo to all known ILC subsets, including EOMES+ NK cells. CD117+ ILCP are 
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found not only in the circulation, but also in tissues where they retain ILC multipotency. Our 

identification of systemically distributed ILCP suggests a model whereby circulating and 

tissue-resident ILCP provide a cellular substrate for ILC differentiation in situ in response to 

local environmental signals. 
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Results 

Characterization of human peripheral blood CD117+ ILC 

Circulating ILC can be identified as a low frequency population (< 0.2% of total 

CD45+ cells) within lineage—CD7+CD56—CD127+ peripheral blood (PB) cells of healthy 

individuals as well as patients suffering from diverse clinical syndromes ((Hazenberg and 

Spits, 2014; Munneke et al., 2014); Figure 1A and 1B). Further fractionation of PB ILCs into 

ILC1, ILC2 and ILC3 has been achieved using phenotypic markers that distinguish ILC 

subsets in fetal tissues and tonsils, including CD161, CRTh2, CD117 and NKp44 (Spits et al., 

2013). Circulating ILCs include predominant CRTh2+ ILC2 and a CD117+ subset that lacks 

CRTh2 expression (Figure 1A and 1B). While CD117+ cells are widely considered as 

circulating ILC3 (Hazenberg and Spits, 2014; Munneke et al., 2014), we found that PB 

CD117+ ILC differ dramatically from gut CD117+ ILC in that they lack expression of NKp44 

and RORJt that identifies ILC3 (Figure 1C and S1A). Accordingly, PB CD117+ ILC do not 

produce IL-17A or IL-22 after pharmacological stimulation, whereas gut CD117+ cells 

abundantly produce these ILC3-associated cytokines (Figure 1D). Interestingly, circulating 

CD117+ ILC express high levels of IL-1R1, CD45RA and are CD69—, whereas gut-resident 

ILC3 are CD69+ but IL-1R1— and CD45RA— (Figure 1C and S1B). These observations 

suggest that PB CD117+ ILC differ from bona fide ILC3.  

PB CD117+ ILC also do not express TF signatures that characterize other known ILC 

subsets (Figure 1C). Accordingly, PB CD117+ ILC failed to express markers associated with 

NK cells, ILC1 and ILC2, such as CD94, CD244, CRTh2 (Figure S1B) and did not produce 

IFN-J or IL-13 after stimulation with pharmacological activators (Figure 1D). Taken together, 

these results show that PB CD117+ ILC may represent a novel ILC subset. 

 

Transcription and chromatin landscapes of CD117+ ILC reveal an ILC precursor profile  
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In order to further understand the identity of PB CD117+ ILC, we profiled the 

transcriptomic and epigenetic landscapes of highly purified circulating CD117+ ILC 

compared to CD34+ HSC (Figure 2A). We performed chromatin immunoprecipitation 

followed by high-throughput sequencing using transposase-mediated tagmentation (ChIPm-

Seq; (Schmidl et al., 2015). To expose common and unique epigenetic features of CD34+ 

HSC and CD117+ ILC, we mapped histone H3 lysine 4 di-methyl modifications (H3K4Me2), 

which marks both active and poised gene regulatory elements (GRE) (Koche et al., 2011). We 

identified around 18,000 and 35,000 GRE in CD117+ ILC and CD34+ HSC respectively 

(Figure 2B), the majority of which were located in introns and intergenic regions (Figure 

S2A). A significant number of H3K4Me2+ GRE were shared between the two cell types: 89% 

of GRE identified in CD117+ ILC showed similar enrichment in HSC and were associated 

with 13159 genes of which many encoded housekeeping functions. Nevertheless, 11% of 

H3K4Me2+ GRE detected in CD117+ ILC were absent in CD34+ HSC, potentially regulating 

2283 genes. Pathway analysis of these genes revealed a strong enrichment for immune system 

and lymphocyte related processes. For example, cytokine/chemokine signaling genes critical 

for lymphoid development and function such as IL1R1, IL7R, IL2RA/B were linked to a 

CD117+ ILC-specific GRE. Conversely, GRE only active in CD34+ HSC (54% of all GRE in 

CD34+ HSC) were located near genes involved in more general pathways important for 

hematopoiesis, hemostasis, and platelet activation (Figure 2C).  

To compare the transcriptome of CD117+ ILC and CD34+ HSC, we performed RNA 

sequencing (RNA-Seq). Clear differences in gene expression profiles emerged, with a large 

cluster of 1540 genes expressed at substantially higher levels in CD117+ ILC (Figure 2D). 

Among these were many genes strongly linked to the lymphoid lineage, including IKZF1, 

CD2, CD7 and IL7R. In contrast, CD34+ HSC cells highly expressed genes involved in the 

broader development of diverse hematopoietic lineages, including ID1, GATA1, GATA2 and 
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MYB (Figure 2D and S2B) as well as cytokine receptors for myeloid lineages (CSF3R, 

CSF2RB, FLT3). Compared to HSC, CD117+ ILC express high levels of TF that have been 

shown to be essential for murine ILC development, including ID2, GATA3, TOX and TCF7. 

We did not detect transcripts characteristic of T and B cells development, such as RAG1, 

RAG2, EBF1, CD3E, BCL11A or LMO2 in CD117+ ILC although some of these genes are 

expressed by CD34+ hematopoietic progenitors (Figure S2B).  

As both transcriptomic and epigenetic analyses of CD117+ ILC identified strong 

lymphoid signatures, we intersected these datasets in order to gain insights into the 

developmental status and potential of CD117+ ILC. A substantial proportion (26%) of the 

genes most highly expressed in CD117+ ILC were located in the direct vicinity of a CD117+ 

ILC-specific GRE (Figure 2E). These included many transcription factors previously 

implicated in mouse ILC development, including ID2, GATA3, ETS1, TOX, TCF7, RORA and 

NOTCH1 (Figure 2E and S2A) – consistent with the commitment of CD117+ ILC to the 

innate lymphoid fate. In contrast, we did not detect notable expression levels for mature ILC 

TF (EOMES, TBX21, RORC), cytokine receptors (CCR6, IL1RL1, IL23R) or signature 

cytokines (IFNG, IL13, IL5, IL22, IL17A). However, many of these mature ILC identity genes 

were already marked with H3K4Me2, demonstrating that they may reside in a poised state 

(Figure 2F and S2B). Together, these analyses suggest that CD117+ ILC represent lymphoid-

biased progenitors reminiscent of multi-potent ILCP carrying a TF profile with key mature 

ILC signature genes in an epigenetically poised state. 

 

Peripheral blood CD117+ ILC include multi-potent ILC precursors (ILCP) 

In order to assess the hematopoietic potential of circulating CD117+ ILC, we cultured 

these cells in the presence of various cytokines. As CD117+ ILC express CD25, CD127 and 

IL-1R1 (Figures 1A, 1C and S1B), we added IL-2, IL-7 and/or IL-1E to these cultures. While 
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bulk cultures minimally expanded in the presence of IL-2 and IL-7, robust proliferation was 

observed when cells were cultured in IL-1E. The additional presence of cytokines that can 

drive ILC1/NK (IL-12, -18), ILC2 (IL-25, -33) or ILC3 (IL-23) development did not further 

increase cell yield over that obtained with IL-1E (Figure 3B; data not shown). Cultured cells 

did not harbor B (CD19+) or T (CD3+CD5+) cells but comprised a pure population of CD7+ 

cells that were CD161+ and expressed variable levels of CD117 and CD25 (Figure 3A). 

Remarkably, expanded cells included some EOMES+CD94+ NK cells as well as the three 

canonical ILC groups: IFN-J+ ILC1, IL-13+ ILC2 and NKp44+IL-17A+IL-22+ ILC3 (Figure 

3A). The addition of IL-12 clearly promoted the development of EOMES+CD94+ IFN-γ-

producing NK cells and IL-23 was critical for IL-17A-producing-ILC3 (Figures 3A and S3A). 

These results not only define a cytokine millieu that supports multi-lineage ILC and NK cell 

generation (IL-2, -7, -1E, -23) but also suggest that the PB CD117+ ILCs harbor multi-potent 

ILC precursors (ILCP). 

We further characterized circulating CD117+ ILCP using a modified stromal cell-

based culture system that is permissive for B cell, T cell and myeloid cell development 

(Figure 3C, (Mohtashami et al., 2010)). Moreover, this system can extensively expand human 

NK cells and ILC subsets at the clonal level with minimal plasticity (Lim et al., 2016). We 

analyzed progeny of single PB CD117+ ILC cultured on OP9 and OP9-DL4 to identify 

EOMES+ NK cells and ILC subsets producing IFN-J, IL-13, IL-17A and/or IL-22 (Figure 

3D). Our analysis of over 340 clonal cultures allows several points to be made. First, PB 

CD117+ ILC represent a heterogeneous population of uni-potent and multi-potent ILCP. 

Roughly half of the cultures derived from single CD117+ ILC generated a single ILC1, ILC2 

or ILC3 subset and therefore represent lineage-restricted ILCP, whereas the remainder are 

multi-potent ILCP that can give rise to 2 or more separate Lin–CD7+ ILC lineages (Figure 3E; 

Table S1). B cell and T cell potential was not observed. Second, within the multi-potent ILCP 
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population, a substantial fraction (between 9-17%) are able to generate all three ILC subsets 

and likely represent immature uncommitted ILCP. Moreover, clonal IFN-J+ cultures also 

comprise EOMES+ NK cells demonstrating that some PB ILCP have the potential to generate 

both ‘helper’ and ‘cytotoxic’ ILC lineages at the single cell level. Third, a subset of Lin–CD7+ 

ILC clones failed to produce any cytokine tested (Figure 3E; Table S1). As these clones 

maintained high level of CD117 but lacked other ILC markers, they may represent ILCP that 

have not further differentiated (Figure S3B). Fourth, Notch signals clearly influence the cell 

fate potential of CD117+ ILCP as multi-potentiality and development of ILC3-containing 

cells was enhanced on OP9-DL4 (Figure 3E; Table S1). Together, these data identify PB 

CD117+ ILC as a circulating pool of partially committed ILC progenitors. The comparison of 

bulk and clonal assays clearly demonstrate the importance of the single cell approach to 

define heterogeneity of CD117+ ILC cell fate potential and to establish functional 

multipotency.  

 

Circulating CD117+ ILCP have multi-ILC potential in vivo in humanized mice 

We next assessed the in vivo potential of PB CD117+ ILCP. Severely immunodeficient 

mouse strains engrafted with human CD34+ hematopoietic stem cell (HSC) progenitors 

generate human lymphoid (B, T, NK) and myeloid (DC, macrophage, neutrophils) cell 

subsets (reviewed in (Shultz et al., 2012)). We used BALB/c Rag2-/-Il2rg-/-SirpaNOD (BRGS) 

mice that are permissive for robust multi-lineage human hematopoietic cell engraftment 

(Legrand et al., 2011). Human PB CD34+ HSC and CD117+ ILCP were transferred to 

newborn BRGS mice; cytokine supplementation (human IL-2, -7, -1E, -23) was provided and 

mice were analyzed 4 weeks later (Figure 4A). BRGS mice engrafted with human CD34+ 

HSC developed CD19+ B cells and CD14/CD33+ myeloid cells in the bone marrow, while 

CD3/CD5+ T cells and Lin– CD7+ NK/ILC were detected in the gut (Figure 4B). In contrast, 
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BRGS mice receiving PB CD117+ ILCP developed Lin–CD7+ cells but no myeloid cells, B 

cells or T cells. Human CD45+ progeny from transferred CD117+ ILCP were detected in 

multiple organs, including the spleen, lung, gut and liver (Figure 4C). At each of these tissue 

sites, EOMES+ NK cells as well as diverse CD127+ ILC subsets could be identified that 

produced IFN-J, IL-13, IL-17A and/or IL-22 ex vivo upon stimulation (Figure 4C). These 

results demonstrate that PB CD117+ cells comprise committed ILCP having the capacity to 

generate all known ILC subsets and NK cells in vivo. 

 

Human CD117+ ILCP develop from CD34+ HSC in vivo 

We next interrogated the developmental relationship between CD34+ HSC and 

CD117+ ILCP in ‘humanized’ BRGS mice (Figure 5A). As expected (Legrand et al., 2011), 

bone marrow, lung, liver and spleen harbored human CD45+ cells, including a variety of 

lineage+ T, B and myeloid cells (Figure 5B, data not shown). Moreover, within the subset of 

Lin–CD7+ cells, a clearly defined subpopulation of CD127+CD117+ cells could be discerned 

in multiple tissues that lacked T-BET and EOMES expression (Figure 5B and 5C). These 

included CD127+CD117+ cells that expressed low levels of GATA-3 and RORJt and were 

NKp44– (Figure 5D) and therefore resembled PB CD117+ ILCP. Ex vivo stimulation failed to 

elicit cytokine production from CD127+CD117+ cells (Figure 5E). We sorted these cells and 

cultured them in the presence of IL-2, IL-7, IL-1E and IL-23. Expanded cells contained 

subsets able to produce IFN-J, IL-13, IL-17A and IL-22 (Figure 5E) thereby confirming the 

presence of human ILCP. These results demonstrate that fetal liver CD34+ HSC can give rise 

to CD117+ ILCP in vivo. 

 

Human CD117+ ILCP are present in fetal liver, cord blood and adult lung 
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We next assessed the stage of development when human CD117+ ILCP arise. Fetal 

liver (FL) harbors several immature hematopoietic precursor populations (Rollini et al., 2007) 

and is proposed as a site for the development of lymphoid tissue inducer cells in the mouse 

(Cherrier et al., 2012). Lin–CD127+ ILC within FL contain a predominant CD117+ subset 

(Figure S4A). Interestingly, these cells express RORJt at levels exceeding their peripheral 

blood counterparts (Figure 1C and S4A) and moreover express CCR6, Neuropilin-1 (NRP-1) 

but not NKp44 (Figure S4A and S4B). Despite these differences, FL CD117+ ILC did not 

produce significant amounts of IL-17A or IL-22 after stimulation (Figure S4C) suggesting 

that they were not fully mature ILC3. Nevertheless, when FL CD117+ ILC were expanded in 

vitro, IL-17A-producing ILC3 were abundantly generated. Moreover, IL17A+ ILC3 

developed on stromal cells lacking the Notch ligand DL4 suggesting that Notch engagement 

is not necessary for this process (Figure 6A). Interestingly, bulk cultures of FL CD117+ ILC 

also contain IL-13- and IFN-J-producing cells, although at lower frequency. Clonal analysis 

revealed that FL CD117+ ILC harbor a high proportion of ILC3 committed progenitors. Still, 

a substantial fraction of multi-potent ILCP can be revealed in the presence of Notch ligands 

(Figure 6B and 6C; Table S2). These results demonstrate that the human FL harbors CD34–

CD127+CD117+ multi-potent ILCP. The enrichment of ILC3-committed progenitors in this 

organ suggests that environmental signals may direct the further specification of multi-potent 

ILCP towards an ILC3 fate. 

We next characterized CD117+ ILC from human CB. Like their PB counterparts, CB 

CD117+ ILC lacked NKp44, CCR6 and NRP-1 and were CD45RA+ (Figure S4A and S4B). 

Moreover, CB CD117+ ILC failed to express RORJt and T-BET but were GATA-3lo, thus 

resembling PB ILCP (Figure 1C and S4A). Like PB CD117+ ILC, CB CD117+ ILC did not 

produce cytokines ex vivo after stimulation (Figure S4C). However, culture of CB CD117+ 

ILC generated IFN-J+ ILC1, IL-13+ ILC2 and IL-17A+ or IL-22+ ILC3 (Figure 6D). No T, B 
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or myeloid cells were detected in cultures of CB CD117+ ILC (data not shown). Further 

clonal analysis revealed that CB CD117+ ILC harbored a diverse mix of uni-potent and multi-

potent ILCP (Figure 6E and 6F; Table S2). Unlike FL CD117+ ILC, CB CD117+ ILC were 

not biased towards ILC3-committed progenitors, but more closely resembled PB CD117+ 

ILCP. As for ILCP from PB or FL, Notch stimulation resulted in an enhanced frequency of 

multi-potent ILCP (especially those having the potential for IL-17A+ and IL-22+ ILC3) and 

reduced the frequency of cytokine– ILC clones. 

We also examined the phenotype and potential of CD117+ ILC from adult lung tissue. 

Lung CD117+ ILC harbored discreet populations of NKp44+ and RORJt+ ILC but were 

largely CD45A– (Figure S4A and S4B). Bulk cultures of lung CD117+ ILC generated diverse 

cytokine-producing ILC subsets and EOMES+ NK cells (Figure 6G); further analysis using 

clonal assays defined the NKp44– fraction of lung CD117+ ILC as a mixture of uni-potent and 

multi-potent ILCP (Figure 6H and 6I; Table S2). These results demonstrate that a variety of 

ILCP, including multi-potent progenitors, are present in human mucosal tissues. 

 

ILC precursors reside within secondary lymphoid tissues 

As human secondary lymphoid tissues (lymph nodes, tonsils) harbor diverse ILC 

subsets and their precursors, we further characterized tonsillar CD117+ ILCP and assessed 

their cell fate potential. CD117+ ILC from pediatric tonsils harbor a predominant NKp44+ 

ILC3 subset that can be stimulated to produce IL-17A and IL-22 (Hoorweg et al., 2012). This 

population also appears to have extensive functional plasticity as stimulation (using IL-1E, 

IL-12, IL-23) modifies their cytokine production (Bernink et al., 2015; Bernink et al., 2013; 

Cella et al., 2010). Within tonsillar CD117+ ILC, we found that NKp44- cells were CD45RA+ 

and NRP-1–, while NKp44+ cells were CD45RA– and NRP-1+ (Figure S4B). These findings 

suggest that NKp44+ ILC3 are more mature and differentiate from NKp44– cells (Bernink et 
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al., 2015). However, cytokine production profiles were different in bulk cultures from 

tonsillar NKp44
–
 versus NKp44

+
 CD117

+
 ILC (Figure 6J and 6M). In particular, IFN-J+

 cells 

and IL-13
+
 cells were more obvious in cultures derived from NKp44

–
 cells, especially on OP9 

stroma (Figure 6J). 

In order to better understand the relationship between NKp44
–
 and NKp44

+
 CD117

+
 

ILC, we generated clones from both subsets and analyzed their cytokine-production potential. 

Striking differences were observed. Clones derived from NKp44
+
 CD117

+
 ILC were highly 

enriched ILC3 producing IL-17A and/or IL-22 (Figure 6N and 6O; Table S2). A fraction of 

clones co-expressed IFN-J (14%) that likely represent ‘plastic’ ILC3 that may up-regulate T-

BET as previously shown (Bernink et al., 2015). In contrast, clones derived from NKp44
–
 

CD117
+
 ILC were quite heterogeneous with cells producing not only IL-22 and/or IL-17A but 

also abundant single IFN-J+
 clones as well as single IL-13

+
 clones (Figure 6K and 6L; Table 

S2) that were not detected from NKp44
+
 CD117

+
 ILC (Figure 6N and 6O; Table S2). The 

presence of IFN-J+
 ILC1 clones was unexpected given previous reports that tonsillar CD127

+
 

ILC1 differentiate into IL-22 producing ILC3 in the presence of IL-2, IL-23 and IL-1E 

(Bernink et al., 2015). Lastly, multi-potent ILCP giving rise to three ILC subsets were only 

found in NKp44
–
 CD117

+
 ILC. Taken together, these results suggest that tonsillar CD117

+
 

ILC are quite heterogeneous comprising NKp44
–
 ILCP as well as NKp44

+
 ILC3. 

Furthermore, our extensive clonal assays clearly allow the definition of ILCP repertoires that 

is not visualized at the bulk culture level. 

 

RORC-deficient patients harbor ILCP but fail to generate IL-17A+ ILC3 

A committed ILCP in human secondary lymphoid tissue with a 

CD34
+
CD45RA

+
CD117

+
 phenotype was shown to highly express the TF RORC (Scoville et 

al., 2016). As CD117
+
 ILCP are developmentally downstream from CD34

+
 HSC (Figure 5), it 
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is possible that the previously described CD34+CD45RA+CD117+ ILCP subset is an 

intermediate in this pathway. In order to address whether RORC is required for generation of 

human CD117+ ILCP, we studied blood ILC in RORC-deficient patients. RORC deficiency in 

humans is associated with mycobacterial disease and mucocutaneous candidiasis and previous 

studies demonstrated that RORC is essential for differentiation of Th17 cells that protect 

against these pathogens (Okada et al., 2015). A reduction in the frequency of CD117-

expressing ILC was noted in patients with RORC deficiency, while CD56bright and CD56dim 

NK cells were unaffected (Figure 7A and 7B). In contrast, ILC1 were present and the 

percentage of ILC2 from total ILC was significantly increased in the absence of RORC 

(Figure 7B). Sorted CD117+ ILC from control and RORC-deficient patients were cultured as 

described above. Robust growth of Lin–CD7+ cells was observed with no significant 

difference between WT and RORC-deficient cells. We identified diverse cytokine producing 

cells in these cultures, including those producing IFN-J, IL-13 or IL-22, however, there was a 

total absence of IL-17A-producing cells (Figure 7C). Development of EOMES+IFN-J+ NK 

cells was not affected by the absence of RORC. These results demonstrate that RORC is not 

required for the development of NK cells, ILC1, ILC2 or IL-22+ ILC3 but is essential for the 

generation of IL-17A+ ILC3 from ILCP in humans.  
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Discussion  

 In this report, we identify and characterize human ILC precursors (ILCP) as a subset 

of Lin–CD7+CD127+CD117+ cells in cord and adult blood as well as fetal liver and several 

adult tissues. Human ILCP give rise to all mature ILC subsets that are capable of producing a 

range of cytokines (IFN-J, IL-13, IL-17A, IL-22) after in vitro culture in an appropriate 

cytokine environment or after transfer in vivo to immunodeficient mice. Human ILCP also 

generate EOMES+ NK cells demonstrating their potential for both cytokine-producing and 

cytotoxic ILCs. This is the first evidence for a circulating ILCP in any species and further 

demonstrate the broad systemic distribution of ILCP within human lymphoid and non-

lymphoid tissues including mucosal sites (Figure S5).  

 The identification of human ILCP was possible thanks to a robust OP9 stromal cell-

based assay that could assess ILC potential at the single cell level. With this approach, we 

analyzed over 1300 ILC clonal cultures and identified uni-potent ILCP that could give rise to 

IFN-J+ ILC1, IL-13+ ILC2 or IL-17A+ and/or IL-22+ ILC3 as well as and multi-potent human 

ILCP that could generate two or more ILC subsets. We demonstrate that human CD34+ HSC 

can develop in vivo into CD117+ cells that harbored ILCP with multi-lineage ILC potential. 

These results suggest a model for human ILCP development whereby pluripotent CD34+ HSC 

progressively differentiate into multi-potent ILCP (with the CD34–

CD7+CD127+CD117+CD45RA+ phenotype) with potential for ILC1, ILC2, ILC3 and 

EOMES+ NK cells. Both CD34+ HSC and multi-potent ILCP are present in fetal liver 

suggesting that this tissue is permissive for this transition and previously described human 

tonsillar ILCP (Scoville et al., 2016) may represent an intermediate in this pathway. The 

absence of CD34+CD117+CD45RA+ ILC precursors in BM, as well as cord and adult blood 

(Scoville et al., 2016) suggests that these ILCP arise locally. The circulating and tissue-

resident human ILCP that we describe also harbor cells with more restricted uni-potent ILC. 
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While we have not identified a marker that allows distinction between multi-potent and uni-

potent ILCP, we assume that they retain a precursor-product relationship. 

 Transcriptomic and epigenomic analysis of circulating human ILCP revealed a 

signature consistent with a partial specification to the ILC lineage. TF known to be critical for 

ILC development in mice (including TCF7, TOX, ID2 and GATA3; (Klose et al., 2014; 

Seehus et al., 2015; Serafini et al., 2014; Yang et al., 2015)) were clearly up-regulated in 

ILCP compared to circulating HSC. In contrast, signatures of early B and T lymphopoiesis 

were not obvious, consistent with the inability of ILCP to generate adaptive lymphocytes in 

vitro or in vivo. ILC group-defining TFs (BCL2, TBX21, EOMES, RORC) were either absent 

or expressed at low levels suggesting commitment to ILC1, ILC2 or ILC3 was not yet 

completed. Interestingly, the loci encoding these factors were still ‘poised’ as evidenced by 

abundant H3K4Me2 epigenetic modifications. This chromatin landscape likely facilitates 

rapid generation of differentiated ILC subsets following cytokine-driven expansion (Lara-

Astiaso et al., 2014; Zook et al., 2016). 

 The striking similarities between mature ILCs and fully differentiated TH cells are well 

recognized (reviewed in (Spits et al., 2013)). TH cells arise following antigen activation of 

naive T cells within specialized zones of secondary lymphoid tissues. While the analogous 

sites and structures that promote mature ILC differentiation are not known, it is interesting to 

consider circulating and tissue-resident ILCP as the functional innate counterpart of naive T 

cells. Both naïve T cells and ILCP are CD45RA+ and CD69- suggestive of a resting state. 

Human and mouse ILCP clearly demonstrate the potential for further differentiation to all 

known ILC subsets and lack expression of the signature TF that drive mature ILC effector 

functions. As such, ILCP resemble naïve T cells that can differentiate to diverse T helper 

subsets under appropriate environmental signals. Nevertheless, human ILCP have signature 

TF in a poised state which contrasts with the situation in naïve T cells where these loci are 
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actively repressed (Shih et al., 2016). Moreover, ILCP expand extensively in the presence of 

cytokines, whereas naïve T cell homeostasis is primarily maintained through cytokine-driven 

survival (Marrack and Kappler, 2004). Taken together, ILCP appear to have some properties 

in common with naïve T cells, although a number of important differences exist that are 

consistent with their designation as immature progenitors. 

 While uni-potent and multi-potent ILCP were identified in every human tissue sample 

tested, there were clearly differences in the relative proportions of ILCP that were uni- or 

multi-potent. It is therefore likely that each tissue harbors a unique ILCP ‘repertoire’ 

conditioned by environmental signals. One may include Notch signals that appear to influence 

ILCP multi-potency and ILC3 fate, particularly in the fetal liver. It is remarkable that other 

uni-potent ILCP were rarely detected in this organ, suggesting that at this stage of fetal 

development, the liver microenvironment may deliver signals that strongly polarize ILCP 

towards ILC3. These results corroborate earlier findings in the mouse (Cherrier et al., 2012). 

Notch-mediated signaling has been proposed to play a role in directing lymphoid cell fate 

decisions in the mouse fetal liver, promoting the development of T-lineage primed precursors 

as well as modifying ILCP homeostasis (Chea et al., 2016; Dallas et al., 2005). Soluble 

factors are also likely to be involved in ILCP ‘repertoires’ as these cells express several 

cytokine receptors (IL-1R, IL-2R, IL-18R) that allow them to sense tissue inflammation and 

stress. 

 Regulation of TF expression dictates ILC fate as well as function. Signature TF have 

been identified for ILC subsets that ‘fix’ their differentiation at the level of surface phenotype 

and effector outputs, especially for cytokines (reviewed in (Serafini et al., 2015)). The TF 

RORC helps define the ILC3 subset and is required for development and maintenance of 

ILC3 (but not ILC1, ILC2 or NK cells) in mice (Satoh-Takayama et al., 2008; Sawa et al., 

2010). As expected, RORC is expressed by human ILC3 and in committed ILC3P (Montaldo 
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et al., 2014). The recent report that all human ILC subsets express RORC (Scoville et al., 

2016) suggested a broader role for this TF in human ILC differentiation. By analyzing blood 

from RORC null patients, we could show that RORC was not required for global ILC 

differentiation in humans, but rather was critical for IL-17 production by the ILC3 subset. 

ILCP in RORC-deficient patients retained the capacity to generate other cytokine-producing 

ILC and NK cell subsets. It is noteworthy that IL-22+ ILC3 developed in a RORC-

independent fashion, suggesting compensatory pathways for these cells in humans. 

We have previously shown that OP9 stroma minimizes human ILC2 plasticity (Lim et 

al., 2016) and extend this observation by showing that in this culture system the vast majority 

of NKp44+ ILC3 clones retain their functional attributes with little plasticity towards the ILC1 

phenotype. Moreover, previous reports proposed that ILC1 clones rapidly differentiate 

towards an ILC3 fate in the presence of IL-1E (Bernink et al., 2015), whereas we found that 

ILC1 clones on OP9 stroma (containing IL-1E) retained their IFN-J signature. As such, our 

culture system appears useful to assess signals that promote ‘primary’ ILC fate from ILCP. 

Finally, our identification of circulating and tissue-resident human ILCP suggests a 

concept of ‘ILC-poiesis on-demand’ in which ILC differentiation can occur in any tissue and 

at any age. A recent study using parabiosis in mice has proposed that ILCs are long-lived 

tissue-resident cells that do not recirculate under steady-state and some inflammatory 

conditions (Gasteiger et al., 2015). In contrast, other reports have indicated that the half-life of 

several mucosal ILC subsets in the mouse is on the order of weeks, suggesting that these cells 

must be renewed (Sawa et al., 2010). The discovery of a circulating ILCP provides a 

mechanism to replenish tissue ILCs in response to steady-state losses and in the context of 

infection and inflammation.  
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Main Figure Legends 

Figure 1. Characterization of peripheral blood CD117+ILC 

(A) Gating strategy for FACS analysis of human PB ILC. Total ILC were gated on viable 

CD45+ Lin (CD3- CD4- CD5- TCRαβ- TCRγδ- CD14- CD19-) CD7+ CD127+ cells (red). NK 

cells are identified by CD56Dim (grey), ILC2 are marked by CRTh2+ cells (green) and CD117+ 

ILC are gated on CRTh2- CD117+ population (blue). (B) Percentage of total ILC from viable 

CD45+ and CD117+ ILC from total ILC of healthy adult donors in PB. Results from 27 

healthy individuals (Median). (C) Expression of surface phenotypes (NKp44, IL1R1 and 

CD69) and intracellular transcription factors (EOMES, T-BET, GATA-3 and RORγt) of PB 

CD117+ ILC and gut CD117+NKp44+/- ILC. (D) Functional profiles (IFN-γ, IL-13, IL-22 and 

IL-17A) of PB CD117+ ILC and gut CD117+NKp44+/- ILC in response to 3 h PMA/iono 

stimulation. Data representative of at least 3 individuals analyzed from at least 3 independent 

experiments. See also Figure S1. 

 

Figure 2. The transcriptional signature and chromatin landscape of CD117+ ILC 

(A) Schematic for RNA-Seq and ChIPm-Seq analyses. (B) Heatmap depicting normalized 

ChIPm-Seq signal showed H3K4me2 intensity of 36449 high-confidence regulatory region, 

of which 1989 were unique to CD117+ ILC. Venn diagram shows the overlap between three 

categories of H3KMe2+ regions (‘CD34+ HSC-specific’; ‘CD117+ ILC-specific’ and 

‘shared’). (C) Heatmap of significantly enriched molecular pathways associated with genes 

near GREs uniquely identified in CD117+ ILC (blue) or CD34+ HSC (orange). (D) Heatmap 

depicting k-means clustering of differentially expressed genes between CD117+ ILC (blue) 

and CD34+ HSC (orange) as detected by RNA-Seq. (E) Overlap of the 1540 genes most 

highly expressed by CD117+ ILC and 2283 genes associated with ‘CD117+ ILC-specific’ 
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H3KMe2+ GREs. Selected genes essential for ILC development are highlighted. (F) RNA-seq 

reads and corresponding H3K4Me2 traces are shown for selected loci. See also Figure S2. 

 

Figure 3. Cloning reveal multi-ILC lineage potential of CD117+ ILC in vitro 

(A) FACS analysis of bulk cultured CD117+ ILC for surface phenotypes, intracellular 

EOMES and cytokine expression after 3h PMA/ionomycin stimulation to identify NK cells 

(EOMES+ cells), ILC1 (IFN-γ+ cells), ILC2 (IL-13+) and ILC3 (IL-22+ and/or IL-17A+). (B) 

Expansion of bulk cultured CD117+ ILC (10 days) in stromal cell-free conditions with 

cytokines (20 ng/ml each). Results from four independent donors; ns, p>0.05; **, p<0.01; 

****, p<0.0001 using paired Student’s t test compared to IL-2, -7 only condition (Median). 

(C) Schematic diagram and morphology of CD117+ ILC-OP9 stromal co-culture system. (D) 

Single PB CD117+ ILC were cultured on OP9 or OP9-DL4 stromal cells for 14-18 days. Cells 

were stimulated with PMA/iono 3h before cytokine analysis. IL-17A and IL-22 producing 

cells were analyzed after gating on IFN-J- IL-13- cells. Positive clones were considered when 

at least 100 viable human CD45+ cells were detected by FACS. Presence of an ILC subset 

was scored when more than 5% of corresponding cytokine was detected in total viable CD45 

cells. (E) Pie chart depicting all possible ILC combinations detected. Frequency of each single 

or multi ILC differentiation among total positive wells. Data summarized from four 

independent experiments with one donor each. See also Figure S3. 

 

Figure 4. CD117+ ILC effectively give rise to multi-ILC lineage in vivo 

(A) Schematic diagram of in vivo transfer experiment. (B-C) Newborn BRGS mice were 

inhjected with PB CD117+ ILC or CD34+ HSC and analyzed 4 weeks later. (B) FACS 

analysis for lymphocytes and myeloid surface markers gated on viable human CD45+ cells 

from bone marrow and gut. (C) ILC analysis within viable human CD45+ cell using CD127, 
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NKp44 and CD117 expression, intracellular EOMES and intracellular cytokines (IFN-γ, IL-

13, IL-22 and IL-17A) production in lung, gut, liver and spleen of BRGS mice transferred 

with CD117+ ILC. Representative data of at least 4 mice in each group from 3 independent 

experiments. 

 

Figure 5. Human ILCP accumulate in human immune system (HIS) mice  

(A) Schematic diagram of generation of HIS mice. Fetal liver CD34+CD38- HSC were 

intrahepatically injected into newborn BRGS mice. Mice were analyzed 8 to 9 weeks later. 

(B) Representative FACS analysis of human ILCP (Lin- CD7+ CD127+ CD117+) in spleen, 

BM, lung and liver of HIS mice. (C) Percentage of ILCP from total human CD45+ in spleen, 

BM, lung and liver of HIS mice. (Median). (D) FACS analysis of surface phenotypes and 

transcription factors profiles of ILCP and NK cells from spleen of HIS mice. (E) Cytokine 

production of splenic CD117+ ILC pre- and post-culture on OP9-DL4 with IL-2, -7, -1β, and -

23 for 10 days. Cytokine production was analyzed after 3 h of PMA/iono stimulation. 

Representative data of 8 mice from at least 3 independent experiments. 

 

Figure 6. In vitro bulk and clonal assay of CD117+ ILC from lymphoid and non-

lymphoid organs. 

Bulk (100-300 cells) or single CD117+ NKp44+/- CD117+ ILC from different organs were 

FACS sorted into 96-well round bottom plate pre-seeded with OP9 or OP9-DL4 and supplied 

with IL-2, -7, -1β and -23 (20 ng/ml each). Intracellular cytokine production in respond to 3h 

PMA/iono stimulation was performed to identify ILC1 (IFN-γ+), ILC2 (IL-13+) and ILC3 (IL-

22+ and/or IL-17A+) after 8-10 days bulk culture (A, D, G, J, M) or 14-18 days single cell 

culture (B-C, E-F, H-I, K-L, N-O). Representative FACS analysis of bulk cultured CD117+ 

NKp44- ILC isolated from (A) FL, (D) CB, (G) lung, (J) tonsil and CD117+ NKp44+ from (M) 
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tonsil. Pie chart depicting all possible ILC combinations after clonal expansion of CD117+ 

NKp44- ILC from (B-C) FL, (E-F) CB, (H-I) lung, (K-L) tonsil and (M-N) CD117+ NKp44+ 

from tonsil on OP9 and OP9-DL4. See also Figure 3 legend. Data summarized from at least 2 

independent experiments with one donor each. See also Figure S4 

 

Figure 7. Development potential of ILCP from RORC-/- patients 

(A) FACS analysis of peripheral blood ILC subsets from healthy and RORC-/- patient 

samples. (B) Percentage of NKDim and NKBr from viable CD45+ cells, ILC1, ILC2 and ILCP 

from total ILC of PB of healthy and RORC-/- patients. Result from 22 healthy donors and 2 

RORC-/- patients. ns, p>0.05; *, p<0.05; **, p<0.01 using unpaired Student’s t test (Median) 

(C) ILCP from healthy donor or RORC-/- patients were FACS sorted and cultured on OP9-

DL4 with IL-2, -7, -1β and -23 for 8 days. Surface phenotypes, intracellular EOMES 

expression and cytokine production profiles were analyzed. 
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Supplementary Figure Legends 

 

Figure S1. CD117+ ILC gating strategy, Related to Figure 1 

(A) FACS analysis of ILCs from human peripheral blood and gut. CD117+ ILC were gated on 

lymphoid size, singlet and viable CD45+ Lin- CD7+ CD127+ CRTh2- CD117+ population. (B) 

Surface phenotypes of blood CD117+ ILC (blue) and NK cells (grey). 

 

Figure S2. Transcriptional and epigenetics signature of PB CD117+ ILC, Related to 

Figure 2 

(A) Annotation of H3K4Me2+ regions as defined by their overlap with known genomic 

features. (B) Comparative transcriptional and epigenetics profiles of CD117+ ILC and CD34+ 

HSC for selective loci. Bar graphs show gene expression values identified by RNA-Seq from 

CD117+ ILC (blue) and CD34+ HSC (orange) (n=2, error bars denote SEM). Adjacent 

genome browser screenshots display normalized H3K4Me2 ChIPm-Seq signal in CD117+ 

ILC (blue) or CD34+ HSC (orange). Arrowheads mark regions of CD117+ ILC-specific 

H3K4Me2 enrichment. 

 

Figure S3. Cytokines environment dictate progeny of CD117+ ILC, Related to Figure 3 

(A, B) 100-300 CD117+ ILC were expanded in stromal cell-free condition using different 

cytokines combination (20 ng/ml each) for 10 days. Representative FACS analysis for 

cytokines (IFN-γ, IL-13, IL-22 and IL-17A) production in response to 3h PMA/iono 

stimulation. (B) Representative FACS analysis for surface (CD7, CD117, CD94), intracellular 

TF (EOMES), and cytokine production (IFN-γ, IL-13, IL-22 and IL-17A) production in 

respond to 3h PMA/iono stimulation of cytokine- clones. 
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Figure S4. Gating strategy and characteristic of CD117+ ILC from fetal liver, cord 

blood, lung and tonsil, Related to Figure 6 

(A) Gating strategy for FACS analysis to identify CD117+ ILC from fetal liver, cord blood, 

lung and tonsil. Surface expression for CRTh2 and NKp44, intracellular TF (RORγt, GATA-3 

and T-BET) was compared between CD117+ NKp44- ILC (solid blue), CD117+ NKp44+ 

(dashed blue), CRTh2+ ILC2 (green) and CD56+ NK cells (grey). (B) Functional profiles of 

CD117+ ILC (blue), and CD56+ NK cells (grey) from FL, CB, lung and tonsil in response to 3 

h PMA/iono stimulation. (C) Surface phenotypes of CD117+NKp44- ILC (solid blue), 

CD117+NKp44+ (dashed blue), CRTh2+ ILC2 (green) and CD56+ NK cells (grey) from FL, 

CB, lung and Tonsil. (D) Table summarize number of clones detected for all possible ILC 

combinations from CD117+ NKp44- isolated from FL, CB, lung, tonsil or CD117+ NKp44+ 

from tonsil 14-18 days co-culture with OP9 or OP9-DL4.  

 

Figure S5. Model for Human ‘ILC-poiesis’ 

Human ILCP (Lineage-CD127+CD117+CD45RA+) within fetal and adult tissues as well as in 

the circulation can be detected that have potential for all ILC subsets and NK cells. 

 

Supplementary Table Legends 

Table S1. Number of clones detected for all possible ILC combination from 340 CD117+ ILC 

clones co-culture with OP9 or OP9-DL4 stroma cells, Related to Figure 3E 

 

Table S2. Number of clones detected for all possible ILC combination from CD117+ 

NKp44+/- ILC clones from different tissues co-culture with OP9 or OP9-DL4 stroma cells, 

Related to Figure 6 
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STAR Methods 

Contact for reagent and resources sharing 

Further information may be directed to the corresponding author (james.di-santo@pasteur.fr). 

 

Experimental model and subject details 

Human blood and tissues samples 

Blood samples from healthy donors were obtained from Establissement Français du 

Sang (EFS, Paris). Blood samples from patients with RORC mutation have been previously 

reported (Okada et al., 2015). Fetal liver with gestational age ranging from 14 to 20 weeks 

were obtained from Advanced Bioscience Resources Inc. following approval of an 

institutional medical ethical committee at Institut Pasteur and the French Ministry of 

Education and Research (IF-20080451). Umbilical cord blood was collected from normal 

deliveries. Tonsils were obtained from pediatric patients undergoing routine tonsillectomy 

(Scientific Institute for Research and Health Care "Casa Sollievo della Sofferenza"). Lung 

and colon samples were obtained from patients undergoing therapeutic resection (Dr. X. 

Norel and J.-M. Sallenave, Hôpital Bichat; Dr. M Allez, Hôpital Saint Louis). Informed 

consent was obtained from all patients and included protocols approved by the institutional 

review boards of Necker Medical School, Paris Descartes University, Hôpital Bichat, Hôpital 

Saint Louis, Assistance Publique - Hôpital de Paris.  

 

In vivo analysis using human immune system (HIS) mice model 

BALB/c Rag2-/-Il2rg-/-SirpaNOD (BRGS) mice have been described (Legrand et al., 

2011) and were maintained in isolators at Institut Pasteur. CD34+ HSC or CD117+ ILC were 

sorted from peripheral blood of healthy donors using a FACS Aria. Fetal liver CD34+ HSC 

were isolated using CD34 Microbead Kit (Miltenyi). For in vivo transfer experiment, 1-3 x 

105 CD117+ ILC or CD34+ HSC were intrahepatically injected into sublethal irradiated (3Gy) 
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new born (3-7 days-old) BRGS mice together with 0.3 μg of IL-2 and -7 (Miltenyi). Mice 

received IL-2, -7, -1β, -23, -25 and -33 (0.3 μg each) by intraperitoneal injection weekly and 

were analyzed four weeks post-transplantation. For generation of HIS mice, 2 x 105 fetal 

liver-derived CD34+ CD38- HSC were intrahepatically injected into sublethal irradiated (3Gy) 

new born (3-7 days-old) BRGS mice. Mice were sacrificed 8-9 weeks post-injection. 

Experiments were approved by ethical committee at Institut Pasteur and validated by French 

Ministry of Education and Research (MENESR#02162.02). 

 
Method details 

Cell isolation from blood, tonsil, gut, fetal liver and lung 

Human peripheral blood mononuclear cells (PBMC) from CB and PB were isolated by 

Ficoll-Paque (GE Healthcare) density gradient centrifugation. Single cell suspension from 

fetal liver and tonsil was achieved by mechanical disruption through 70-μm filters. Lung and 

intestine samples were minced and digested with Liberase TL (25 μg/ml; Roche) and DNase I 

(50 μg/ml; Sigma-Aldrich) for 45min in 37°C shaking incubator. Digested tissues were 

passed through 70-μm filters. Lymphocytes from liver, lung and gut were isolated by Ficoll-

Paque density gradient centrifugation.  

 

FACS analysis and cell sorting 

For FACS analysis, cells were first stained with Flexible Viability Dye eFluor 506 

(eBioscience) for 10 min following by 20 min surface antibodies staining with Brilliant 

Stained Buffer (BD) on ice.  For experiment involving intracellular TF staining, cells were 

fixed, permeabilized and stained using Foxp3/Transcription Factor Staining Buffer Kit 

(eBioscience). For intracellular cytokines staining, cells were stimulated with PMA (10ng/ml; 

Sigma) plus Ionomycin (1μg/ml; Sigma) in the presence of Golgi Plug (BD) for 3 h in 37°C 
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incubator. Cells were fixed, permeabilized and stained by Cytofix/Cytoperm Kit (BD). 

Samples were acquired on LSRFortessa (BD) and analyzed by FlowJ10 (Tree Star). 

For cell sorting from healthy PB, PBMC were first depleted of T cell, B cell, pDC and 

monocytes by labeling with biotin-conjugated anti-CD3, anti-CD4, anti-CD19, anti-CD14, 

anti-CD123 followed by anti-biotin microbeads (Miltenyi) according to manufacturer’s 

instructions. Sorting from CB and tissues were performed without lineage depletion. Bulk 

populations were sorted to a purity ≥ 99% or as single cell index sorting (both using 

FACSAria II; BD). 

 
Bulk RNA isolation, library construction, sequencing and analysis 

103 cells from each population were FACS sorted directly into 50 μl of lysis/binding 

buffer (Life Technologies). mRNA was captured with 15 μl Dynabeads oligo(dT)(Life 

Technologies), washed according to manufacturers’ instructions and eluted at 85°C with 6 μl 

of 10mM Tris-HCl (pH7.5). We used a derivation of MARS-Seq as described (Jaitin et al., 

2014), developed for single-cell RNA-seq to produce expression libraries of two replicates 

per population. Libraries were sequenced at an average depth of 5 million reads per library on 

the Ilumina NextSeq and aligned to the human reference genome (hg19). Reads were mapped 

using hisat (version 0.1.6); duplicate reads were filtered if they had identical UMIs. 

Expression levels were calculated and normalized to the total number of reads using HOMER 

software (http://homer.salk.edu). 

 
Chromatin immunoprecipitation and sequencing (Chip-Seq) using ChipMentation 
 

FACS sorted cells (20-50K) were immediately crosslinked in PBS containing 1% 

formaldehyde (Sigma) for 10 min at room temperature for ChIP-Seq analysis. Crosslinking 

was quenched by adding glycine (0.125M final concentration) followed by 5 min incubation 

at room temperature. Cells were placed on ice, washed with PBS and snap-frozen for storage 
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at -80°C. Pellets were processed in parallel to minimize technical variation. Cells were 

resuspended in 100μl sonication buffer (1% SDS, 10mM EDTA, 50mM Tris-HCl pH8 and 1x 

EDTA-free complete protease inhibitors; Roche) and transferred to a 0.65ml Bioruptor 

sonication tube (Diagenode). After 15 min incubation on ice, cells were sonicated for 30 

cycles (30 sec ON - 30 sec OFF) using a Bioruptor Pico sonicator (Diagenode) to shear 

chromatin down to ±250 bp fragments. Chromatin was equilibrated by adding 900μl 10x 

ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 16.7mM Tris-HCl 

pH8, 167mM NaCl) and incubated overnight at 4°C with 1μl of H3K4Me2-specific antibody 

(ab32356, Abcam) or normal rabbit IgG as a negative control (sc-2027, Santa Cruz). In 

addition, 20μl of protein A Dynabeads (Thermo Fisher Scientific) per IP were blocked in PBS 

containing 0.1% BSA (Sigma) by incubation overnight at 4°C. The next day, beads were 

resuspended in the original volume with ChIP dilution buffer and added to the chromatin 

extracts. After 2 hours of incubation at 4°C, beads were collected and washed with Low Salt 

buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl pH8, 150mM NaCl), 

High Salt buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl pH8, 500mM 

NaCl) and LiCl buffer (10mM Tris-HCl pH8, 1mM EDTA, 250mM LiCl, 0.5% NP-40, 0.5% 

deoxycholic acid). Chromatin-antibody immobilized on magnetic beads were then subjected 

to tagmentation as recently described (Schmidl et al., 2015). Eluted DNA was purified using 

MinElute spin columns (Qiagen) and amplified for 8-12 cycles using Nextera PCR primers. 

Libraries were purified using dual (0.5x-2.0x) SPRI Ampure XP beads (Beckman Coulter), 

pooled (up to 10 per sequencing run) and sequenced on a NextSeq500 (Illumina) running a 

single-read 75bp protocol.       

 
ChIP-Seq data processing, analysis and visualization 

Reads were demultiplexed using BaseSpace (Illumina) and aligned to the mouse genome 

(mm10 build) using Bowtie (Langmead and Salzberg, 2012) with standard settings, removing 
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reads that could not be uniquely mapped. Indexed and sorted bam files were parsed to 

HOMER (Heinz et al., 2010) for further analysis. Tag directories were generated for each 

sample with removal of duplicate reads (-tbp 1 option). BedGraph files displaying normalized 

counts (reads per million) were generated for direct visualization in the UCSC Genome 

Browser (https://genome.ucsc.edu/) using the makeUCSCfile HOMER script. H3K4Me2 

enriched regions were identified using HOMER findPeaks with -region -size 1000 -minDist 

2500 options. Overlapping and non-overlapping regions between two samples were identified 

using the intersect function of BEDTools (Quinlan and Hall, 2010) or the HOMER 

mergePeaks script (-d given option) requiring a minimal overlap of 1bp. Sets of cell type-

specific H3K4Me2+ regions were visualized as heatmaps with Java TreeView (Saldanha, 

2004). Regions/peaks were assigned to putative target genes GREAT (McLean et al., 2010). 

GREAT was subsequently used to calculate enrichments of these genes for known pathway 

signatures using the whole genome as background.  

 

Bulk and single cell culture 

All in vitro culture experiments were performed in Yssel’s medium (18432890) 

supplemented with 2% human AB serum (EFS). 2-3 x 103 stromal cells were pre-seeded in 

96-well round bottom plates one night before culture. For bulk culture, 100-300 FACS sorted 

cell were plated on the stromal cells. For cloning experiment, cells were index-sorted directly 

into the 96-well plates pre-seeded with stromal cells. Cytokines IL-2, -7 (20 ng/ml each, 

Miltenyi), IL-12, -18, -25, -33, -1β, -23 (20 ng/ml each, R&D) were provided in various 

combinations as indicated. For bulk culture, fresh cytokines and medium were replenish every 

5 days and analyzed after 10 days expansion. For cloning experiment, cytokines and medium 

were replenished every 7 days and analyzed after 14-18 days of culture. 
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Quantification and statistical analysis 

Data are represented as Median unless specified. The sample size for each experiment 

and the replicate number of experiments are included in the figure legends.  

 

Data and software availability 

Data resources 

The accession number for the RNA-Seq and ChIPm-Seq analysis have been deposited in the 

NCBI Gene Expression Omnibus under accession numbers GEO: GSE90834 and GSE90640. 

 
Additional resources 
 
Yssel’s Medium 

Yssel’s Medium is prepared in house by using IMDM (Invitrogen) plus 0.25 (w/v) bovine 

serum albumin (Sigma), 1.8 ug/L 2-amino ethanol, 40 ug/L Apo-transferrin, 5 ug/L insulin 

and penicillin/Streptomycin. 
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PAPER III:  
IN VIVO EFFICACY OF UMBILICAL CORD BLOOD STEM CELL DERIVED 

NK CELLS IN THE TREATMENT OF METASTATIC COLORECTAL CANCER 
 

Colorectal cancer (CRC) is the fourth leading cause of cancer related deaths in the 

world. Despite substantial advances in the treatment of metastatic CRC (mCRC) over the last 

decades that have contributed to better survival rates, the disease is still frequently fatal. 

Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR) pathway are 

approved for the treatment of patients with advanced CRC either in combination with 

chemotherapy or, as monotherapy, in chemo-refractory conditions. However, mutations in 

tumor suppressor genes and proto-oncogenes in EGFR signaling pathways, such as in RAS, 

BRAF and PIK3CA are common in patients with CRC. These mutations represent a poor 

prognostic marker and render anti-EFGR mAbs ineffective, leaving 42% of the chemo-

refractory mCRC population without standard treatment option. 

Besides the blockade of the EGFR-ligand interaction on tumor cells, therapeutic 

mAbs can also interact with NK cells triggering antibody-dependent cell-mediated 

cytotoxicity (ADCC). Several studies have shown a dysfunctional phenotype and poor 

infiltration of NK cells in the CRC tissue from early stages on, together with an 

immunosuppressive tumor microenvironment. Among the different strategies to increase NK 

cell-mediate anti-tumor response, autologous NK cell infusion has been evaluated in several 

solid tumors with unsuccessful results.  

In this study, we used BRGS mice to evaluate the therapeutic potential of a novel 

combinatorial treatment in an EGFR-expressing RAS-mutant colorectal carcinoma model. 

This treatment consisted on umbilical cord blood stem cell derived NK cells and the 

monoclonal antibody cetuximab. The anti-tumor efficacy of UCB-NK cells against 

cetuximab resistant human EGFR+ RASmut colon cancer cells was observed both in vitro and 

in vivo with UCB-NK showing enhanced anti-tumor cytotoxicity against colon cancer 

independent of EGFR and RAS status. 
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Abstract:  

Therapeutic monoclonal antibodies (mAbs) against the epidermal growth factor 

receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting an NK cell-

mediated anti-tumor response. The IgG1 mAb cetuximab has been used for treatment of 

RASwt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present 

study we address the potential of adoptive NK cell therapy to overcome these limitations 

investigating two allogeneic NK cell products, i.e. activated peripheral blood NK cells (A-

PBNK) and umbilical cord blood stem cell derived NK cells (UCB-NK). While cetuximab 

monotherapy was not effective against EGFR- RASwt, EGFR+ RASmut and EGFR+ BRAFmut 

cells, A-PBNK were able to initiate lysis of EGFR+ colon cancer cells irrespective of RAS or 

BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated 

significantly by coating EGFR+ colon cancer cells with cetuximab. Of note, a significantly 

higher cytotoxicity was induced by UCB-NK in EGFR-RASwt (42 ± 8% versus 67 ± 7%), 

EGFR+ RASmut (20 ± 2% versus 37 ± 6%) and EGFR+ BRAFmut (23 ± 3% versus 43 ± 7%) 

colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the 

combination of A-PBNK and cetuximab. The anti-tumor efficacy of UCB-NK cells against 

cetuximab resistant human EGFR+ RASmut colon cancer cells was further confirmed in an in 

vivo preclinical mouse model where UCB-NK showed enhanced anti-tumor cytotoxicity 

against colon cancer independent of EGFR and RAS status. As UCB-NK cells have been 

proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast 

translation into clinical proof of concept for mCRC could be considered.  
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Introduction:  

Colorectal cancer (CRC) is the fourth leading cause of cancer related deaths in the 

world(1). Despite substantial advances in the treatment of metastatic CRC (mCRC) over the 

last decades that have contributed to better survival rates(2, 3), the disease is still frequently 

fatal. Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR) 

pathway, such as panitumumab and cetuximab are approved for the treatment of patients with 

advanced CRC either in combination with chemotherapy or, as monotherapy, in chemo-

refractory conditions (4). Cetuximab (CET) and panitumumab block the interaction between 

EGFR and its ligands, thus inhibiting the downstream RAS-signalling cascade and tyrosine 

kinase activation(5). However, mutations in tumour suppressor genes and proto-oncogenes in 

EGFR signalling pathways, such as in RAS, BRAF and PIK3CA are common in patients with 

CRC. These mutations represent a poor prognostic marker and render anti-EFGR mAbs 

ineffective, leaving 42% of the chemo-refractory mCRC population without standard 

treatment option(6, 7). 

Besides the blockade of the EGFR-ligand interaction on tumor cells, therapeutic 

mAbs can also interact with Natural Killer (NK) cells triggering antibody-dependent cell-

mediated cytotoxicity (ADCC)(8-10), and this can translate into superior anti-tumor 

effects(11). Two NK cell subsets can be identified based on the expression of CD16, the low 

affinity FcTwo NK receptor. The majority of NK cells are CD56dimCD16+, and play an active 

role in NK cell cytotoxicity and are capable of performing ADCC upon IgG1 engagement via 

CD16, whereas CD56brightCD16- NK cells are mainly immune regulatory in function, secreting 

cytokines, and are less cytotoxic than CD56dim cells(12). NK cell functions are tightly 

regulated by a delicate balance between activating receptors (like the natural cytotoxicity 

receptors NKp46, NKp30 and NKp44, or C-type lectin-like receptor NKG2D)(13) and Major 

Histocompatibility Complex (MHC) class I binding inhibitory receptors, including Killer-cell 

immunoglobulin-like receptors (KIRs), LIR1/ILT2 and NKG2A/CD94(14). The importance 
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of NK cells in controlling tumors has been extensively demonstrated since their identification 

40 years ago (15-17).  

Several studies have shown a dysfunctional phenotype and poor infiltration of NK 

cells in the CRC tissue from early stages on, together with an immunosuppressive tumor 

microenvironment(18, 19). Hence, various strategies e.g. using cytokines or therapeutic 

ADCC enhancing mAbs, have been explored to increase NK cell numbers and function and to 

enhance their trafficking to tumor sites(20). Another approach entails the adoptive transfer of 

in vitro manipulated and expanded autologous or allogeneic NK cells. Autologous NK cells 

so far have failed to demonstrate significant therapeutic benefits in solid tumors (21-23). 

Therefore, the focus has shifted to the development of allogeneic NK cells as a potential 

adoptive cell therapy for treatment in solid tumors. Previously, we demonstrated  that the 

combination of allogeneic activated PBNK (A-PBNK) cells and CET can effectively target 

RAS mutant (RASmut) CRC tumors(24). 

Here, we compared two feeder cell free allogeneic NK cell products, i.e. activated 

peripheral blood NK cells (A-PBNK) and cord blood stem cell derived NK cells (UCB-NK), 

alone or in combination with cetuximab for anti-tumor effects against RASmut CRC. 

 

 

Materials and Methods 

Cell lines  

Cell lines A431 (epidermoid carcinoma), COLO320, SW480 and HT-29 (colon 

carcinoma) were obtained from American Type Culture Collection (ATCC) and cultured in 

Dulbecco’s modified medium (DMEM; Invitrogen, Carlsbad CA, USA) containing 100 U/ml 

penicillin, 100 μg/ml streptomycin and 10% fetal calf serum (FCS; Integro, Zaandam, The 

Netherlands). Cell cultures were passaged every 5 days and maintained in a 37°C, 95% 

humidity, 5% CO2 incubator. 
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PBNK isolation and activation  

Peripheral blood mononuclear cells (PBMC) were isolated from the heparinized 

blood of healthy donors (6 males, 4 females, age range = 56-64 and CRC patients (8 males, 2 

females, age range = 66-74) after written informed consent and according to protocols 

approved by the institutional review board of VU University Medical Center, Amsterdam 

(NCT01792934). Blood samples were collected at baseline and after the first cycle of first-

line palliative chemotherapy consisting of oral capecitabine (1000 mg/m2, bid, day 1-14), i.v. 

oxaliplatin (130 mg/m2, day 1) and i.v. bevacizumab (7.5 mg/kg, day 1, in 4/10 mCRC 

patients). PBMC were isolated using Lymphoprep™ (STEMCELL Technologies, Cologne, 

Germany) density gradient centrifugation. CD56+ NK cells were isolated from PBMC using a 

MACS Human NK cell isolation kit (Miltenyi Biotech, Bergisch Gladbach, Germany) 

according to the manufacturer’s instructions. PBNK cells purity and viability were checked 

using CD3 VioBlue, CD56 APC Vio 770, and CD16 APC (Miltenyi Biotech) and 7AAD 

(Sigma Aldrich, Zwijndrecht, The Netherlands). Isolated PBNK cells were activated 

overnight with 1000U/ml IL-2 (Proleukin®; Chiron, München, Germany) and 10 ng/ml IL-15 

(CellGenix) for use in cytotoxicity assays. The parameters compared before and after 

stimulation with cytokines were NK purity (87 ± 5 % versus 84 ± 2%), NK CD16+, 92 ± 12 % 

versus 88 ± 8%) and NK viability (89 ± 5 % versus 84 ± 8%), respectively. 

 

Flow cytometry 

The antibody staining mix for the assessment of NK cell functionality consisted of 

CD45 VioGreen, CD14 VioBlue, CD19 VioBlue and SYTOX® Blue, together with CD3 

PerCP-Vio 700 and TCR-γδ PerCP-Vio700 to exclude dead cells, debris and non-NK 

populations from PBMC. NK cells were identified by the expression of CD45+CD3-CD56+ 

cells, and further characterized for NK functionality by plotting against CD16 APC, CD25 

VioBrightFITC, CD107a PE, and NKp44 PE-Vio770 and for NK cell phenotype by plotting 

against NKG2A PE-Vio770, NKG2C PE, NKG2D PerCP-Cy5.5 and PanKIR2D FITC. All 
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antibodies were supplied by Miltenyi Biotec except SYTOX® Blue (Thermo Fisher 

Scientific, Berlin, Germany). 

 

UCB-NK cultures  

Allogeneic NK cells (UCB-NK) were generated from cryopreserved umbilical cord 

blood (UCB) hematopoietic stem cells as previously described(25). CD34+ UCB cells from 

six UCB-donors were plated (4x105/ml) into 12-well tissue culture plates (Corning 

Incorporated, Corning, NY, USA) in Glycostem Basal Growth Medium (GBGM®) (Clear 

Cell Technologies, Beernem, Belgium) supplemented with 10% human serum (HS; Sanquin 

Bloodbank, Amsterdam, The Netherlands), 25ng/mL of SCF, Flt-3L, TPO, and IL-7 

(CellGenix, Freiburg, Germany). In the expansion phase II, from day 9 to 14, TPO was 

replaced with 20ng/mL IL-15 (CellGenix). During the first 14 days of culture, low molecular 

weight heparin (LMWH) (Clivarin®; Abbott, Wiesbaden, Germany) in a final concentration 

of 20 μg/ml and a low-dose cytokine cocktail consisting of 10 pg/ml GM-CSF (Neupogen), 

250 pg/ml G-CSF and 50 pg/ml IL-6 (CellGenix) were added to the expansion cultures. Cells 

were refreshed with new medium twice a week and maintained at 37°C, 5% CO2. On day 14, 

the NK cell differentiation process was initiated by addition of NK cell differentiation 

medium consisting of the same basal medium with 2% HS but with high-dose cytokine 

cocktail consisting of 20ng/ml of IL-7, SCF, IL-15 (CellGenix) and 1000 U/ml IL-2 

(Proleukin®; Chiron, München, Germany). Cultures were refreshed every 2-3 days and 

maintained till day 42. Five UCB-NK cultures were used for cytotoxicity assays and one 

UCB-NK culture for in vivo studies (both with a CD56+ cell purity of >95%). UCB-NK CD16 

levels in matured UCB-NK cells were monitored using an antibody mix of human 

CD45VioGreen (1:11), CD56 APC-Vio770 |(1:11) and CD16 APC (1:11). Similarly, UCB-

NK CD16 expression in BRGS mice was monitored using an antibody mix of BV650 anti-

mouse CD45 (clone 30-F11), Alexa Fluor® 700 anti-human CD45 (clone HI30), PE-CF594 
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anti-human CD56 (clone B159), all from BD and APC-Vio770 anti-human CD56 (clone 

REA196) and APC CD16 (clone REA423) both from Miltenyi Biotec.   

 

NK cell cytotoxicity assays 

Flow cytometry was used for the read-out of cytotoxicity assays. Target cells 

(COLO320, SW480 and HT-29 were labelled with 5μM pacific blue succinimidyl ester 

(PBSE; Molecular Probes Europe, Leiden, The Netherlands) at a concentration of 1x107 cells 

per ml for 10 min at 37°C. The reaction was terminated by adding an equal volume of FCS, 

followed by incubation at room temperature for 5 min after which stained cells were washed 

twice and suspended in DMEM + 10% FCS to a final concentration of 5 x 105/ml. Overnight 

activated PBNK cells and UCB-NK cells were washed with PBS and suspended in Glycostem 

Basal Growth Medium (GBGM) + 2% FCS to a final concentration of 5 x 105/ml. Target cells 

were co-cultured with effector cells at an E:T ratio of 1:1 in a total volume of 250 μl in 96-

well flat-bottom plates (5 x 104 targets in 100 μl of DMEM + 10% FCS incubated with 5 x 

104 effectors in 100 μl of GBGM + 2% FCS, further supplemented with 25 μl of GBGM + 

2% FCS and DMEM + 10% FCS medium). NK cells and target cells alone were plated out in 

triplicate as negative controls. Target cells were coated with 5 μg/ml cetuximab (Merck, 

Darmstadt, Germany) for 1h at 4°C. To measure degranulation of NK cells, anti-CD107a PE 

(Miltenyi Biotech) was added in 1:20 dilution at the beginning of the assay. After incubation 

for 4hr at 37°C, cells were harvested and stained with CD56 APC Vio 770 (1:25) and CD16 

APC (1:25) (Miltenyi Biotech) and 7AAD (1:500) (Sigma Aldrich). Degranulation of NK 

cells was measured by detecting cell surface expression of CD107a.  

 

In vivo studies 

The EGFR+RASmut SW480 cell line and EGFR+++RASwt A431 cell line were stably 

transduced with Gaussia Luciferase (Gluc) for in vivo studies. Lentiviral (LV) supernatant of 

Cerulean Fluorescent Protein (CFP) positive Gluc virus (LV-CFP-Gluc) was kindly provided 
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by Dr. Tom Würdinger(26). SW480 and A431 cells with Gluc expression of 95% were used 

for mouse studies.  

Immunodeficient BRGS mice (BALB/cRag2tm1FwaIl2rgtm1CgnSirpaNOD) were used in 

this study.  Twenty-four adult mice (male, 8 weeks old) received an intravenous (i.v) tail vein 

injection with 0.5 x 106 SW480 Gluc cells at day 0 and were randomized into 4 groups. Group 

A only received SW480 cells, group B received SW480 in combination with cetuximab 

intraperitoneally (i.p., 0.5 mg, days 1, 4, 7), group C received SW480 in combination with 

UCB-NK i.v. (1x107, days 1, 4, 7), and group D received SW480 cells in combination with 

UCB-NK i.v. (1x107, days 1, 4, 7) and cetuximab i.p. (0.5 mg, days 1, 4, 7). Groups C and D 

received i.p. 0.5μg IL-15 + 7.5μg IL-15Rα every 2-3 days from day 0 till day 14. Further, 

three adult mice received i.v tail vein injection of 0.5 x 106 A431 Gluc cells at day 0 and were 

treated with 0.5mg cetuximab (i.p., 0.5mg days 1, 4, 7), was used as a cetuximab efficacy 

control. Treatment effects were monitored using blood Gluc levels and bioluminescence 

imaging (BLI). All manipulations of BRGS mice were performed under laminar flow 

conditions. 

 

Blood Gluc quantification in vitro  

Secreted Gluc was measured according to a protocol described previously(27). Ten µl 

of blood was collected by capillarity into EDTA containing Microvette® CB tubes. Blood 

samples were distributed in 96 well black plates then mixed with 100μl of 100mM Gluc 

substrate native coelenterazine in PBS (P.J.K. GmbH; Kleinblittersdorf, Germany) and 5 

minutes later light emission was quantified. Blood that was withdrawn before tumor 

inoculation served to determine a baseline value. Measurements were done twice a week until 

day 35.  Gluc activity was measured using IVIS spectrum luminescence detector 

(PerkinElmer, Villebon-sur-Yvette, France). Data obtained were quantified using Living 

Image 4.0 software (PerkinElmer, Villebon-sur-Yvette, France).  
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Bioluminescence imaging in vivo 

Mice were anesthetized using isofluorane gas in an induction chamber at a gas flow 

of 2.5 pm. Retro orbital injection of coelenterazine (4mg/kg body weight) was administered 

and mice were placed in the anaesthesia manifold inside the imaging chamber and imaged 

within 5 mins following substrate injection. Mice were placed into the light chamber and 

overlay images were collected for a period of 15min using IVIS spectrum in vivo imaging 

system (PerkinElmer, Villebon-sur-Yvette, France). Images were then analysed using Living 

Image 4.0 software (PerkinElmer, Villebon-sur-Yvette, France).  

 

Ethics statement 

Animals were housed in isolators under pathogen-free conditions with humane care 

and anaesthesia was performed using inhalational isoflurane anaesthesia to minimize 

suffering. Experiments were approved by the Institut Pasteur’s ethical committee for animal 

use in research, Comité d’étique en expérimentation animale (CETEA) #89, protocol 

reference # 2007–006 and validated by the French Ministry of Education and Research 

(Reference # 02162.01). 

Statistical analysis 

Data were analyzed using GraphPad Prism version 6 (GraphPad Software, San 

Diego, CA). Differences between conditions were determined using one-way ANOVA or 

two-way ANOVA with multiple comparisons between column means, unpaired-t-test and log 

rank (Mantel-cox) test as deemed appropriate. A p-value of <0.05 was considered statistically 

significant. 
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Results:  

Highly dysfunctional NK cells in CRC patients 

Flow cytometry was used to determine the frequency, phenotype and functionality of 

NK cells in PBMC of healthy volunteers (n=10, age range 56-64, 6 males/4 females) and 

patients with metastatic CRC (n=10, age range 66-74, 8 males/2 females) before and after the 

first cycle of first line palliative chemotherapy consisting of oral capecitabine (1000 mg/m2, 

bid, day 1-14), i.v. oxaliplatin (130 mg/m2, day 1) and i.v. bevacizumab (7.5 mg/kg, day 1, in 

4/10 mCRC patients). As illustrated in figure 1A, mCRC patients harbored on average a 20% 

lower percentage of CD3-CD56+NK cells in the total CD45+ lymphocyte population as 

compared to healthy controls (p<0.05). These lower NK rates, which are in line with a 

previous report in colorectal cancer(28), further declined after the first cycle of chemotherapy 

(p<0.01). 

We next evaluated whether this quantitative NK cell defect was also accompanied by 

functional defects in the NK cell population. For this purpose, the ability of NK cells from 

healthy volunteers and mCRC patients to induce both natural cytotoxicity and mediate ADCC 

of the epidermoid carcinoma cell line A431 (MHC-Ilow, EGFRhigh, KRASwt) was assessed. 

For ADCC tumor target cells were coated with cetuximab before the addition of NK cells.  It 

was evident that the cytotoxic potential of NK cells from mCRC patients, as reflected by 

degranulation (i.e. CD107a surface expression), was highly impaired both before 

chemotherapy and after the first cycle of chemotherapy. Though NK cells of mCRC patients 

were capable of ADCC, as evidenced by significant increases in degranulation when target 

cells were coated with cetuximab (p<0.05), levels were still low compared to those observed 

in healthy volunteers. (Figure 1B). Of note, although the NK cells of healthy volunteers and 

mCRC patients expressed similar levels of CD16 (Figure 1C), this did not translate into 

comparable levels of ADCC. NKp44 expression, known to reflect the activation status of NK 

cells, was similar between the HD and mCRC groups used in NK cytotoxicity experiments 

(Figure 1D). Furthermore, no significant differences were observed in expression levels of 
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NK activating (NKG2D, NKG2C) and NK inhibiting (NKG2A, KIR2D) receptors between 

healthy controls and CRC patients (Supplementary figure 1).  

Enhanced in vitro cytotoxicity of colon cancer cells mediated by UCB-NK cells 

In order to explore novel therapies to replace dysfunctional NK cells in patients with 

advanced CRC, we tested two different sources of allogeneic NK cell products (A-PBNK and 

UCB-NK), that could eventually be used for adoptive transfer strategies. We next compared 

the activity of A-PBNK cells (age range 22-37 years) and UCB-NK cells using a flow based 

NK cell cytotoxicity assay based on detection of 7-AAD accumulation in tumor cells. Three 

different cell lines of colon cancer origin were compared, i.e. COLO320 (EGFR- RASwt), 

SW480 (EGFR+ RASmut) and HT-29 (EGFR+ RASwt, BRAFmut). As expected, addition of 

cetuximab to EGFR- RASwt COLO320 cells did not result in increased killing. Of interest, 

lysis was consistently and significantly higher (p<0.01) using UCB-NK compared to A-

PBNK. As reported previously, the combination of cetuximab and A-PBNK resulted in 

increased killing of EGFR+RASmut SW480 and EGFR+ BRAFmut HT-29 via ADCC(24). CD16 

was expressed by 88 ± 8% (n=5) of A-PBNK after overnight stimulation with cytokines and 

by 7 ± 2% (n=5) of UCB-NK cells at the end of the 35-day culture period. No added effect of 

cetuximab was observed when using UCB-NK cells, which is possibly related to their lower 

in vitro CD16 levels(29). Of note, tumor cell lysis induced by UCB-NK cells was comparable 

to that observed with the combination of A-PBNK and cetuximab (Figure 2A). Measurements 

of NK cell degranulation reflected equivalent trends observed for tumor cell lysis (Figure 2B). 

These results show that UCB-NK cells have superior cytotoxic efficacy over A-PBNK cells 

against cetuximab resistant colon cancer cells in vitro.  

UCB-NK cells inhibit in vivo tumor growth and increase survival  

To address whether UCB-NK cells exhibit similar anti-tumor efficacy in vivo, we 

transferred Gluc transduced SW480 cells to immunodeficient mice (BRGS; see methods). 

SW480 cells are EGFR+RASmut and cetuximab monotherapy resistant. Mice were divided into 

4 groups of 6 mice per group: SW480 only (group A), SW480 + cetuximab (group B), 
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SW480 + UCB-NK (group C) and SW480 + UCB-NK + cetuximab (group D). Gaussia 

luciferase activity in whole blood was measured every three days to monitor the tumor burden 

(Supplementary figure 2). These data confirmed our in vitro observations that SW480 cells 

were resistant to cetuximab mediated growth inhibition (blue line). Of note, while treatment 

with UCB-NK cells alone significantly decreased the tumor load (green line), this effect was 

not increased by combining UCB-NK cells with cetuximab and thereby further confirmed 

both the inefficacy of cetuximab in treating RAS mutated tumors as well as the inability of 

cetuximab to induce ADCC of UCB-NK cells in vivo (orange line) (Figure 3). CD16 

expression levels on UCB-NK cells were monitored in two mice upon adoptive transfer and 

increased from 6.0% before transfer to 14.0% (mouse 1) and 19.1% (mouse 2) at day 5 post 

UCB-NK cell infusion (data not shown). 

While the blood Gluc assay measurements provided evidence of a reduction in the total tumor 

burden after UCB-NK treatment, we wanted to explore the impact of the therapy on the 

localization and size of the metastases. For that purpose, BLI was performed at day 35 after 

tumor inoculation. Figure 4A depicts four representative BLI images from each group at day 

35 post-tumor injection and average radiance from range of interest (ROI) measurements are 

shown in Figure 4B. Mice from groups A and B showed a higher and more diffuse tumor load 

compared to mice treated with UCB-NK alone or in combination with cetuximab. To 

demonstrate the possibility of antitumor efficacy of cetuximab in the BRGS mouse model we 

performed a similar tumor challenge using the cetuximab sensitive A431 cell line, which 

bears wild-type RAS and overexpresses EGFR. A significant decrease in tumor load was 

observed when A431 tumors were treated with the same concentration of cetuximab as in the 

SW480 study (Figure 4C), confirming the in vivo functionality of cetuximab. We next 

assessed whether treatment of SW480 bearing mice with UCB-NK cells alone or in 

combination with cetuximab translated into a survival advantage (Figure 5). Indeed, treatment 

of mice with UCB-NK cells alone resulted in a significant prolongation in their life span 

(p=0.01), whereas combinatorial therapy did not add significantly to this. Treatment with 
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cetuximab alone did not translate into a significant survival advantage, consistent with the 

observed effects on tumor growth. 

Discussion  

To test the cytotoxic potential of NK cells for treating advanced colorectal cancer 

patients, we compared their functional status before and after chemotherapy. We observed 

that peripheral blood NK cell numbers were reduced in mCRC patients and that residual NK 

cells were dysfunctional and unable to mount a strong effector response when stimulated with 

an NK cell sensitive tumor target. Though an increase in NK cell cytotoxicity was observed 

when tumor target cells were coated with the anti-EGFR mAb cetuximab, reflecting a 

capacity for ADCC, cytotoxicity was still significantly lower (both before and after 

chemotherapy) than that observed in healthy controls. These data indicate a decreased 

functional state of NK cells in patients with mCRC, which is in line with studies in mice 

where the cytokine production and anti-tumor activity of adoptively transferred NK cells were 

highly affected following long-term exposure to tumors(30). Through recognition of MHC 

class I molecules KIRs prevent NK cells from targeting healthy cells while allowing them to 

detect tumor or infected cells with low or downregulated expression of MHC class I in a 

process known as “missing self”(31). Severely diminished or aberrant expression of MHC 

class I has been reported in the majority of colorectal adenocarcinomas(32),(33), which 

makes them an ideal target for NK cell-mediated killing. Although NK cells are infrequent in 

colorectal tissues(18), several independent studies investigated the clinical impact of NK cell 

infiltration on the prognosis of CRC, as well as in other types of carcinoma. These clinical 

studies, including a recent tissue microarray of 1414 CRC biopsies, led to the conclusion that 

NK cell infiltration in tumors correlated with better overall response rates and progression-

free survival in CRC patients(34-37), suggesting that therapies aimed at boosting NK cell 

functions could be beneficial in mCRC and possibly also in other types of cancer. 

We evaluated and compared the cytotoxic efficacy of two different sources of feeder 

cell free allogeneic NK cells, i.e. A-PBNK cells and in vitro expanded and differentiated 
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UCB-NK cells. In vitro NK cell cytotoxicity experiments revealed that the cytotoxic activity 

of UCB-NK cells against CRC cells was significantly higher than that of A-PBNK cells and 

in addition demonstrated that, while an increase in cytotoxicity through ADCC was not 

evident with UCB-NK cells, their cytotoxic potential was still comparable to that observed 

with A-PBNK potentiated by cetuximab mediated ADCC. It is possible that the stronger 

cytotoxic effects of UCB-NK cells are due to the intense stimulation with cytokines in 

comparison to A-PBNK cells. The failure to observe ADCC-enhanced cytotoxicity with 

UCB-NK cells in vitro can be explained by their low expression levels of CD16(29). As we 

previously observed in vivo up-regulation of CD16 on UCB-NK cells upon their transfer to 

NOD/scid IL2Rgnull (NSG) mice(38), we decided to also test the efficacy of cetuximab 

treatment in combination with UCB-NK cells in an in vivo model. Treatment of SW480 

RASmut tumors in BRGS mice with UCB-NK cells, resulted in control of disease progression 

and translated into a significantly longer survival. As expected, cetuximab monotherapy did 

not result in a decreased SW480 tumor load or improvement in survival, recapitulating the 

clinical data from patients bearing RASmut CRC tumors. Unexpectedly, we failed to 

demonstrate superior in vivo anti-tumor effects or survival when we combined the transfer of 

UCB-NK cells with cetuximab infusions. The underlying causes for this latter finding remain 

obscure but may be related to sub-optimal in vivo upregulation of CD16 in the used mouse 

model or CD16 polymorphisms in the employed batch of UCB-NK cells, both of which could 

have hampered efficient ADCC.  

Taken together, UCB-NK cells displayed significant anti-tumor efficacy, suggesting a 

potential beneficial role for UCB-NK cells in the treatment of RAS and BRAF mutant CRC. 

As an important present limitation in treating mCRC patients is related to resistance to anti-

EGFR mAbs, adoptive transfer of cytolytic UCB-NK cells could thus constitute a viable 

treatment option. Our in vitro and in vivo data demonstrating that adoptive transfer of UCB-

NK cells alone was as effective as the combination of A-PBNK and cetuximab raises the 

possibility that UCB-NK administration could obviate the use of cetuximab in RASwt mCRC. 
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Furthermore, UCB-NK can also lyse RASmut CRC cells at levels higher than those observed 

with A-PBNK. Importantly, allogeneic NK cells have demonstrated their safety in clinical 

trials in several solid tumors(39, 40), and more specifically, the UCB-NK cell product used in 

our experiments was found to be safe in a clinical trial in Acute Myeloid Leukemia (AML) 

patients (Dolstra et al., 2016 manuscript submitted). 

Several features make UCB-NK attractive for further clinical development. For 

example, our GMP based expansion and differentiation protocol reproducibly resulted in a 

more than 10,000-fold expansion of cytotoxic UCB-NK cells from single donors. 

Furthermore, UCB-NK cells can be supplied as an “off the shelf” product, stored in large 

aliquots facilitating multiple infusions. Also, the low immunogenicity by UCB grafts prevents 

adverse reactions that are prevalent after repeated PBNK transfusions(41). In this respect, it is 

relevant to mention that while NK cells in general are often inhibited by recognition of MHC 

class I molecules on the surface of tumor cells, UCB-NK display relatively low levels of 

Killer cell - immunoglobulin like receptors (KIRs) supporting their ability to effectively lyse 

MHC class I expressing tumor cells(29). Finally, the ability of UCB-NK cells to proliferate 

and home to liver, lungs, spleen and bone-marrow after adoptive transfer has been previously 

demonstrated  in NSG mice (38), though additional studies are required to determine whether 

UCB-NK cells have a similar migratory pattern upon adoptive transfer in solid tumor patients. 

Together, these features and observations provide UCB-NK cells with several unique 

advantages for further development as a universal NK cell platform. 

Considering the size and heterogeneity of the tumor mass in advanced stages of CRC 

and other types of cancer, UCB-NK may not provide a sufficient therapeutic effect as a single 

agent. However, rational combinations of UCB-NK cells with existing drugs or drugs that are 

in clinical development can be envisioned to further increase their efficacy.  Previous studies 

have pointed out that the proteasome inhibitor (bortezomib)(42) and the immunomodulatory 

drug (lenalidomide)(43) sensitize tumor cells to NK mediated killing. In addition, UCB-NK 

cell application together with bispecific or trispecific antibodies by binding to UCB-NK cell 
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activating receptors can also increase NK cell tumor specificity(44). Though we did not 

specifically assess ADCC induced by other mAbs, it is very likely that the failure of UCB-NK 

to mediate ADCC is a more general phenomenon as this generally depends on binding to 

CD16/FcγRIII, which was found to be expressed at only low levels in the UCB-NK cell 

product. However, recent data from a clinical phase 1 study with the same UCB-NK cell 

product in patients with AML revealed significant upregulation of CD16 on UCB-NK cells 

post transfusion suggesting that the UCB-NK cell product may acquire the capacity to 

mediate ADCC in patients following adoptive transfer (Dolstra et al., manuscript submitted). 

Further, this phenomenon may also provide a strong rationale for combining UCB-NK cells 

with bispecific or trispecific killer cell engagers(45). Taken together, these approaches can 

substantially increase UCB-NK cell responses to advanced solid tumors, including mCRC.

   

In conclusion, in this study we have demonstrated the in vitro efficacy of UCB-NK 

cells against multiple colorectal cancer cell lines independent of EGFR expression and EGFR 

downstream signaling mutations, and in addition have demonstrated the in vivo antitumor 

efficacy of adoptively transferred UCB-NK cells against EGFR+RASmut tumors. As the 

adoptive transfer of UCB-NK cells (oNKord®) has been shown to be safe in patients with 

AML (CCMO nr NL31699 & Dutch trial register no 2818), our data provide a rationale for 

the clinical exploration of UCB-NK cells in the treatment of mCRC.  
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Figure 1: Low prevalence and functionally impaired NK cells in CRC patients 

(A) Frequency of NK cells within PBMC from healthy controls and from mCRC 

patients at baseline and after the first cycle of chemotherapy. (B) NK cell degranulation in 

healthy controls and mCRC patients after a 4 hr co-culture of resting NK cells with A431 

cells in the presence (open symbols) or absence (closed symbols) of cetuximab at an E:T ratio 

of 1:1. (C) Expression levels of resting NK cell CD16 and (D) NKp44 in healthy controls and 

in mCRC patients before and after 1 cycle of chemotherapy. Data represent mean ± SEM 

from 10 mCRC patients and 10 age and sex matched healthy controls. *P < 0.05, **P < 0.01, 

***P < 0.005, calculated with one-way ANOVA, multiple comparison between column 

means. 
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Figure 2: Ex vivo cytotoxic efficacy of A-PBNK and UCB-NK cells against CRC 

cells 

(A) CRC cell lines COLO320 (EGFR-, RASwt), SW480 (EGFR+, RASmut) and HT-29 

(EGFR+, RASwt, BRAFmut) were subjected to NK killing using two allogeneic NK cell 

products, i.e. A-PBNK and UCB-NK cells. 7AAD (A) and CD107a (B) were measured after a 

4 hr co-culture of A-PBNK and UCB-NK cells with CRC targets in the presence or absence 

of cetuximab at an E:T ratio of 1:1. Experiments were carried out in triplicate. Bars represent 

mean ± SEM, n=5. *P < 0.05 and **P < 0.01, calculated with two-way ANOVA, multiple 

comparison between column means. 
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Figure 3: Significant anti-tumor effects of UCB-NK cells in vivo 

Real time monitoring of tumor progression and treatment response was performed 

measuring Gluc levels from mice blood twice a week. Baseline Gluc values were obtained 

from all mice a day before tumor injection (day-1), and further monitoring continued until 

day 35. Blood Gluc levels were compared between control SW480 only (A) group and 

treatment groups SW480 + cetuximab (B), SW480 + UCB-NK (C) and SW480 + UCB-NK + 

cetuximab (D) for statistical significance. Data presented is from 6 mice per group (n=6). 

Scatter plots represent mean ± SEM. *P < 0.05, calculated with unpaired-t test.  
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Figure 4: Successful tumor elimination by UCB-NK cells as revealed by 

bioluminescence imaging in vivo 

(A) Four mice from control and treatment groups were imaged at day 35 for tumor 

load and distribution. Mice were injected retro-orbitally with Gluc substrate coelenterazine 

and images were acquired for 5 min. In SW480 control and SW480+cetuximab groups, tumor 

growth was extensive and highly disseminated, spreading to most parts of the body. However, 

in UCB-NK and UCB-NK + cetuximab groups there was a significantly lower tumor load, 

which was further verified by calculating the average radiance between groups as shown in 

figure B (n=4 mice per group). (C) Cetuximab functionality against EGFR+++ RASwt A431 

cells was tested in parallel to SW480 studies in BRGS mice (n=3 mice per group). For figures 

B and C, bars represent mean ± SEM. *P< 0.05 for figure B and figure C was calculated with 

unpaired t test. 
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Figure 5: Significant survival benefit in cetuximab resistant RAS mutant tumor 

bearing mice treated with UCB-NK cells  

Kaplan -Meier survival curves were plotted for the total experimental study period 

from day 0 until day 65. Survival rates of SW480 (EGFR+, RASmut) tumor bearing mice (n=6 

per group) following treatment with PBS only (black line), cetuximab only (blue line), UCB-

NK only (green line) and UCB-NK + cetuximab (orange line) were plotted over time to 

monitor treatment outcome. Statistical differences between groups were calculated using log 

rank (Mantel-Cox) test and indicated in the figure. 
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Supplementary figure 1: Expression profiles of NK cell receptors in CRC 

patients. Resting NK cells within PBMC populations from healthy controls and from mCRC 

patients at baseline and after one cycle of chemotherapy were monitored for the NK cell 

activating receptors NKG2D (A), NKG2C (B) and NK cell inhibitory receptors NKG2A (C) 

and KIR2D (D). Data represent mean ± SEM from 10 mCRC patients and 10 healthy 

controls. Statistical difference was calculated with one-way ANOVA, multiple comparisons 

between column means.  
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Supplementary figure 2: Schedule of in vivo BRGS mouse experiments. BRGS 

mice were divided in 4 groups of 6 mice each. SW480 (A) is the control group, followed by 

treatment groups SW480+cetuximab (B), SW480+UCB-NK (C) and SW480+cetuximab (D). 

0.5x106 Gluc transduced SW480 cells per mouse were administered i.v. to all groups at day 0. 

On day 1 (dose I) post tumor injection, groups B and D were treated with 0.5mg of cetuximab 

i.p. and groups C and D were infused iv. with 10x106 UCB-NK cells. Same doses of 

cetuximab and UCB-NK cells were again administered at day 4 (dose II) and day 7 (dose III) 

to the respective groups. 0.5 μg IL-15Rα and administered to the UCB-NK-treated groups 

on days 1, 4, 7, 10 and 14. Treatment effects were monitored using blood Gluc levels and BLI 

in vivo imaging. 
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PAPER IV:  
A NANOBODY BASED BISPECIFIC TARGETING APPROACH TO LEVERAGE 

THE POTENT AND WIDELY APPLICABLE TUMOR CYTOLYTIC CAPACITY 
OF MONOMORPHIC VΓ9VΔ2-T CELLS 

 

We discussed earlier in this manuscript the unique features that make Vγ9Vδ2-T cells 

of major interest to cancer immunotherapeutic approaches. Indeed, clinical trials have been 

initiated to evaluate the use of Vγ9Vδ2-T cells in the treatment of both hematological and 

solid malignancies. Clinically explored approaches have included adoptive transfer of ex vivo 

expanded Vγ9Vδ2-T cells and the in vivo activation of Vγ9Vδ2-T cells through the 

administration of aminobisphosphonates NBPs or synthetic non-peptidic phosphoantigens 

(pAg), alone or in combination with low-dose IL-2. These Vγ9Vδ2-T cell-based therapeutic 

approaches were well tolerated and capable of inducing clinically relevant anti-tumor 

responses in several cases, however, the overall results were inconsistent, possibly related to 

the fact that these approaches induced a systemic Vγ9Vδ2-T cell activation without 

necessarily effecting their preferential accumulation in the tumor microenvironment, where 

these cells would be expected to exert their antitumor effects. 

A recently developed approach to improve the activation and accumulation of 

Vγ9Vδ2-T cells in tumors are the nanobodies (or VHHs). These are formed by the variable 

antigen-binding region derived from heavy chain only antibodies, naturally occurring in 

camelids.  

In this study we described the generation of a bispecific VHH construct that combines 

inhibition of the EGFR with the target-specific activation of effector Vγ9Vδ2-T cells using 

an agonistic anti-Vγ9Vδ2-TCR VHH. A BRGS model of colorectal carcinoma was used to 

evaluate in vivo the efficacy of this therapeutic strategy.  Vγ9Vδ2-T cells activated in this 

manner produced pro-inflammatory cytokines such as IFN-γ and TNF-α in vitro and 

efficiently lysed EGFR expressing tumor both in vitro and in vivo regardless of KRAS 

mutations. This anti-tumor activity led to an overall lower tumor burden and improved 

survival compared to non-treated mice, confirming the therapeutic potential of VHHs in 

combination with Vγ9Vδ2-T cells.  
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One Sentence Summary: A novel bispecific nanobody-based construct targeting both 

Vγ9Vδ2-T cells and EGFR induces potent Vγ9Vδ2-T cell activation and subsequent tumor 

cell lysis both in vitro and in an in vivo mouse xenograft model, independent of KRAS and 

BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations.   
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Abstract 

Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in 

human peripheral blood, they play a vital role in tumor defense and are therefore of major 

interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer 

immunotherapeutic approaches developed so far have been generally well tolerated and were 

able to induce significant clinical responses. However, overall results were inconsistent, 

possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells 

without preferential accumulation and targeted activation in the tumor. Here we show that a 

novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR 

induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in 

an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF 

tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In 

combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile 

replacement of the tumor-specific nanobody, this immunotherapeutic approach can be 

applied to a large group of cancer patients.   
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Introduction 

Although the majority of human T cells expresses an αβ-TCR, a smaller proportion of T cells 

expresses a γδ-TCR. The most predominant γδ-T cell subset in human peripheral blood 

consists of Vγ9Vδ2-T cells that account for approximately 1-5% of all T cells. Vγ9Vδ2-T 

cells are able to induce apoptosis in a broad spectrum of cancer cells and their reduced 

frequency and/ or impaired functionality in the peripheral blood is a commonly observed 

phenomenon in cancer patients.(1–8) In melanoma patients, reduced Vγ9Vδ2-T cell levels in 

the tumor microenvironment are related to more advanced clinical stages and reduced 

Vγ9Vδ2-T cell levels in the peripheral blood were recently shown to be a negative predictor 

for response upon treatment with ipilimumab.(9, 10) These observations clearly point to a 

vital role for Vγ9Vδ2-T cells in natural and induced immunity to cancer. In contrast to 

conventional T cells, ligand recognition by Vγ9Vδ2-T cells is independent of MHC-

molecule presentation, tumor neo-epitope burden and classical immuno-editing,(11, 12) This 

underscores their great potential as anti-tumor effector cells, a potential that has been hitherto 

largely untapped. 

Vγ9Vδ2-T cells become activated by the recognition of non-peptidic phosphoantigens 

(pAg).(13–15) These are upregulated by stressed cells, including malignant cells, as a 

consequence of an enhanced activity of the mevalonate pathway(16) or through the non-

mevalonate pathway upon bacterial infection.(14, 17, 18) Furthermore, therapeutic agents 

such as aminobisphosphonates (NBP) can inhibit the mevalonate pathway and thus lead to 

intracellular pAg accumulation. Upon elevated intracellular levels of pAg in target cells, the 

GTPase RhoB translocates from the nucleus to the cytoplasm where it binds to the membrane 

protein butyrophilin 3A1 (BTN3A1, also known as CD277). This binding induces a 

conformational change of BTN3A1 that is sensed by the Vγ9Vδ2-T cell receptor (TCR) and 

results in rapid Vγ9Vδ2-T cell activation.(19–23) Vγ9Vδ2-T cells can be further activated 

by interactions between the NKG2D receptor expressed on most Vγ9Vδ2-T cells and by 

stress-related MICA, MICB and ULBP molecules that are upregulated in infected or 

transformed cells.(3, 24) This, in combination with enhanced pAg levels, allows Vγ9Vδ2-T 

cells to distinguish “normal” cells from ”altered-self” or tumor cells.(25) Activated Vγ9Vδ2-

T cells produce pro-inflammatory cytokines (e.g. IFN-γ, TNF-α and the chemokines MIP-1 

and RANTES) in addition to cytolytic mediators (perforin, granzyme B) to induce the 

specific lysis of target cells, which is regulated through the perforin pathway or through Fas-

induced apoptosis.(25, 26)  
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Their monomorphic recognition of activating ligands, their effective induction of 

tumor cell lysis and their rapid effector response provide Vγ9Vδ2-T cells with a unique 

combination of features that make them of major interest for cancer immunotherapeutic 

approaches. As a result, several clinical trials have been initiated to evaluate the use of 

Vγ9Vδ2-T cells in the treatment of both hematological and solid malignancies. Clinically 

explored approaches have included adoptive transfer of ex vivo expanded Vγ9Vδ2-T cells 

and the in vivo activation of Vγ9Vδ2-T cells through the administration of NBPs or synthetic 

pAg, alone or in combination with low-dose IL-2 treatment.(27, 28) These Vγ9Vδ2-T cell-

based therapeutic approaches were well tolerated and capable of inducing clinically relevant 

anti-tumor responses in several cases. However, the overall results were inconsistent, 

possibly related to the fact that these approaches induced a systemic Vγ9Vδ2-T cell 

activation without necessarily affecting their preferential accumulation and activation in the 

tumor microenvironment, where these cells should exert their anti-tumor effects. 

To date, various bispecific T cell engagers (BiTEs) targeting both CD3 and a tumor 

antigen through the coupling of single-chain variable fragments (scFv) have been developed 

and were shown to induce clinical responses.(29) However, as CD3 is expressed by all T 

cells, including immunosuppressive regulatory T cells (Tregs) that actually predominate in 

the tumor microenvironment and are related to poor prognosis(30), antibody-based constructs 

designed to exclusively trigger immune cells with a pro-inflammatory function, such as 

Vγ9Vδ2-T cells, might well constitute a more effective approach.(31) Recently, we have 

reported on the generation of a set of Vγ9Vδ2-TCR specific nanobodies with activating 

properties that could form the basis for a novel therapeutic approach aimed at tumor-specific 

Vγ9Vδ2-T cell accumulation and activation.(32) Nanobodies (or VHHs) are defined by the 

variable antigen binding regions derived from heavy chain only antibodies, naturally 

occurring in camelids (i.e. llamas, camels and dromedaries).(33, 34) Single-domain VHH 

have several advantages over full-length antibodies or scFv when used for the generation of 

multivalent and/or multispecific molecules. Due to the absence of light chain domains, 

pairing issues do not apply, VHHs refold easily and they are provided with increased 

solubility. Moreover, VHHs can easily be produced by bacteria or yeast allowing time and 

cost reduction during manufacturing.(35, 36) Furthermore, VHH domains are low 

immunogenic because of their high homology with human VH genes and the absence of the 

Fc-region.(29, 36) VHHs are ten times smaller than conventional antibodies, allowing them 
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to reach clefts in antigen structures and granting them with enhanced tissue penetration as 

compared with conventional antibodies.(37, 38)  

Here, we describe the generation and evaluation of a bispecific VHH-based construct 

that combines inhibition of the epidermal growth factor receptor (EGFR)-signaling pathway 

via an antagonistic anti-EGFR VHH with the target-dependent activation of effector 

Vγ9Vδ2-T cells via an anti-Vγ9Vδ2-TCR VHH. Vγ9Vδ2-T cells activated in this manner 

produced pro-inflammatory cytokines such as IFN-γ and TNF-α and efficiently lysed EGFR-

expressing tumor cell lines both in vitro and in vivo. This therapeutic effect was independent 

of KRAS or BRAF mutations, which are normally associated with resistance to anti-EGFR 

monoclonal antibody (mAb) therapy.(39, 40) Moreover, variations in Vγ9Vδ2-TCR δ2-

CDR3 sequence that are known to be associated with reduced Vγ9Vδ2-T cell responses(1) to 

pAg stimulation stimulation did not affect cell killing efficacy. This novel bispecific VHH-

based immunotherapeutic approach can be applied to many tumor types by simply replacing 

the tumor-specific VHH and does not require further individualization due to the conserved 

monomorphic nature of the Vγ9Vδ2-TCR.  
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Results 

Selection of a human Vγ9Vδ2-TCR specific and -activating VHH  

Vγ9Vδ2-TCR specific VHHs were generated by immunizing 2 lama glamas multiple times 

with human Vγ9Vδ2-T cells pooled from different healthy donors. Through phage display 

and after screening for Vγ9Vδ2-TCR specific fragments, 20 different Vγ9Vδ2-TCR specific 

VHHs were identified, either directed to the Vδ2- or to the Vγ9-chain, and either with 

activating or with non-activating potential as determined using a Vγ9Vδ2-TCR transduced 

JurMa luciferase reporter cell line.(32) The VHHs with activating potential identified in this 

screen were then tested for their capability to induce activation of human healthy donor-

derived Vγ9Vδ2-T cells via cross-linking. For this purpose, Vγ9Vδ2-T cells were cultured 

with plate-bound VHHs for 24 hrs. Activation of Vγ9Vδ2-T cells was determined by 

assessing up-regulation of the activation marker CD25, induction of CD107a expression, 

reflecting the release of cytotoxic granules, and the intracellular production of IFN-γ as 

determined by flow cytometry. As a positive control we used NBP-pretreated HeLa cells. 

These screens led to the identification of the anti-Vδ2 VHH 6H4 and the anti-Vγ9 VHH 6H1 

as the most consistently activating VHHs, inducing Vγ9Vδ2-T cell activation in all three 

assays across multiple donors (Fig. 1 A-C). Their ability to activate Vγ9Vδ2-T cells was 

further confirmed by studying the activation of Vγ9Vδ2-T cells from PBMC directly ex-

vivo(data not shown). 

Although the vast majority of γδ-T cells in the human peripheral blood consist of 

Vγ9Vδ2-T cells, γδ-T cells expressing either the Vγ9-chain (i.e. Vγ9+Vδ2- γδ-T cells) or the 

Vδ2-chain (i.e. Vγ9-Vδ2+ γδ-T cells) exist; these, however, do not respond to pAg 

stimulation. As the relative frequency of Vγ9-Vδ2+ γδ-T cells is very low and substantially 

lower than the level of Vγ9+Vδ2- γδ-T cells(17, 41), we reasoned that a Vδ2-TCR chain 

specific VHH would more selectively target Vγ9Vδ2-T cells and would therefore be the 

preferred VHH to be used in a bispecific VHH construct aimed at the specific targeting of 

Vγ9Vδ2-T cells. For this reason, the Vδ2-TCR specific VHH 6H4 (Fig. 1D and 1E) was 

selected for further experiments. 

To determine whether coupling of two anti-Vγ9Vδ2-TCR VHHs into one bivalent 

VHH construct could result in an even stronger activation of Vγ9Vδ2-T cells, two 6H4 VHH 

genes were engineered into one construct and separated by a flexible Gly4Ser-linker (GS) of 

varying length (5-30 amino acids). First, bivalent VHH 6H4-5GS-6H4 was compared to the 

monovalent VHH 6H4 with respect to its ability to activate Vγ9Vδ2-T cells in a plate-bound 
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assay. At all tested concentrations, stimulation with the bivalent VHH resulted in a stronger 

Vγ9Vδ2-T cell activation as compared to the monovalent VHH (Fig. 1F). However, to be 

optimally effective in a tumor targeting construct, it is desirable that the VHH does not 

induce Vγ9Vδ2-T cell activation either on its own or in the absence of tumor cells. We 

observed that when Vγ9Vδ2-T cells were cultured with the bivalent VHH 6H4-5GS-6H4 

added in solution, a strong Vγ9Vδ2-T cell activation was induced, even at very low 

concentrations (Fig. 1F). This was independent of the linker length between both 6H4 VHHs 

(data not shown). In contrast, when monovalent VHH 6H4 was added in solution to Vγ9Vδ2-

T cell cultures, Vγ9Vδ2-T cells did not become activated (Fig. 1F). As Vγ9Vδ2-TCR cross-

linking by the bivalent VHH constructs would likely result in non-specific systemic as 

opposed to target-specific activation of Vγ9Vδ2-T cells, the monovalent anti-Vγ9Vδ2 TCR 

VHH 6H4 was selected for incorporation into a bispecific tumor-targeting VHH construct. 

 

Generation and functional evaluation of a bispecific anti-EGFR-anti-Vγ9Vδ2-TCR VHH 

construct 

To generate a bispecific VHH construct, the anti-Vγ9Vδ2-TCR VHH 6H4 was joined to the 

previously generated and characterized high-affinity anti-EGFR VHH 7D12. This VHH is 

able to compete with EGF for EGFR binding and inhibits both EGFR phosphorylation and 

EGFR+ tumor cell proliferation in vitro and in vivo.(42, 43) To determine the optimal format 

with respect to binding and functionality, multiple bispecific VHH constructs were created, 

with variations in orientation and spacing between the individual VHHs. First, bispecific 

7D12-6H4 and 6H4-7D12 VHH constructs were generated with a flexible Gly4Ser-linker of 

10 amino acids to determine whether target binding and affinity of the individual VHHs was 

maintained in the bispecific format and whether this was dependent on their orientation. 

Whereas the affinity of 6H4 to Vγ9Vδ2-T cells did not differ by its relative (i.e. N-terminal, 

or C-terminal) position in the bispecific VHH, the anti-EGFR 7D12 VHH clearly bound to 

EGFR+ A431 tumor cells more efficiently when it was positioned at the N-terminus (Fig. 

2A). Therefore, the 7D12-6H4 format was considered optimal and variations of this 

bispecific VHH were made regarding linker length to assess whether this would influence 

binding efficiency and functionality. As shown in figure 2B, variations in linker length did 

not influence the binding of the construct to target cells. Furthermore, linker length 

differences did not influence the efficacy of Vγ9Vδ2-T cell activation, degranulation or 

tumor cell lysis induced by the bispecific VHH construct upon co-culture of Vγ9Vδ2-T cells 
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with EGFR-expressing tumor cells (Fig. 2C). This was also observed when the linker length 

was replaced to the smallest Gly4Ser-linker consisting of 5 amino acids (data not shown). As 

a small linker is least prone to proteolysis in vivo, we used the 5 amino acid (5GS) linker for 

all subsequent experiments.  

Vγ9Vδ2-T cell activation and subsequent tumor cell lysis was formally demonstrated 

to depend on simultaneous binding of the bispecific VHH construct to Vγ9Vδ2-T cells and 

EGFR-expressing tumor cells by the use of control constructs incorporating the irrelevant 

VHH R2(44) (Fig. 3A). Of note, Vγ9Vδ2-T cell activation and degranulation levels induced 

by the 7D12-5GS-6H4 bispecific VHH construct were equivalent to those observed when 

Vγ9Vδ2-T cells were co-cultured with NBP-pretreated EGFR+ tumor cells. The maximum 

level of tumor cell lysis induced by Vγ9Vδ2-T cells was observed at concentrations as low as 

10 nM of the 7D12-5GS-6H4 bispecific construct. Importantly, it was at least as effective as 

when tumor cells were pretreated with 100 µM NBP. Furthermore, when titrating down the 

7D12-5GS-6H4 concentration, efficient lysis of EGFR+ tumor cells was observed at 

concentrations as low as 10 pM in a 1:1 effector:target cell ratio. Importantly, this was not 

observed when the immortalized human B-cell line JY, lacking EGFR expression, was used 

as target (Fig. 3B), thus demonstrating the specificity of this targeting approach. 

As treatment with anti-EGFR mAbs such as cetuximab or panitumumab is often 

accompanied by skin toxicity,(45, 46) we explored whether primary skin-derived (EGFR+) 

keratinocytes were lysed by Vγ9Vδ2-T cells in the presence of the 7D12-5GS-6H4 construct. 

EGFR expression was confirmed by flow cytometry demonstrating that the mean 

fluorescence index (MFI) of EGFR expression on keratinocytes was 3.2 ± 1.5 (n=3, mean ± 

SD) (as a reference, the MFI of EGFR on A431 was 9.4, and the MFI of EGFR on JY was 

0.8). Even at high concentrations of the bispecific targeting construct, only minor activation 

and cytolytic activity of Vγ9Vδ2-T cells was observed in the presence of primary 

keratinocytes (Supplementary fig. 1).  

7D12-5GS-6H4 induces Vγ9Vδ2-T cell-mediated lysis of EGFR+ tumor cells irrespective of 

KRAS or BRAF mutation status 

Of note, the 7D12 VHH retained its capacity to inhibit EGFR signaling in a dose-dependent 

manner upon incorporation into the bispecific VHH construct. As demonstrated by the 

analysis of EGFR phosphorylation in EGFR expressing tumor cells upon their exposure to 

EGF, this inhibitory activity was equivalent to that of the monovalent 7D12 VHH (Fig. 4A). 

To test if the 7D12-5GS-6H4 bispecific VHH exerted antitumor activity even in the presence 
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of activating mutations in the EGFR signaling pathway, Vγ9Vδ2-T cells were co-cultured 

with EGFR+ human colon cancer cell lines carrying either a mutation in KRAS (i.e. SW480 

cells, expressing one of the most common and oncogenic KRAS mutations G12V) or BRAF 

(i.e. HT-29 cells, expressing the most common BRAF mutation V600E)(47, 48) in the 

presence or absence of 7D12-5GS-6H4. As shown in Fig. 4B-I, 7D12-5GS-6H4 induced 

potent Vγ9Vδ2-T cell activation, degranulation and tumor cell lysis of EGFR+ colon tumor 

cells, irrespective of their KRAS or BRAF mutation status. 

 

7D12-5GS-6H4 activates Vγ9Vδ2-TCR-G115 with various δ2-CDR3 sequence variations 

The sequence and length of the δ2-CDR3 region of the Vγ9Vδ2-TCR varies between 

individuals and in part determines the TCR affinity and cytolytic capacity upon binding of 

pAg expressing target cells.(1) Since VHH 6H4 specifically binds to the Vδ2-chain of the 

Vγ9Vδ2-TCR, we determined if common Vδ2-CDR3 variations influenced the binding of 

the VHH 6H4 to the Vγ9Vδ2-TCR and whether this affected its Vγ9Vδ2-T cell activating 

capacity. To this end, JurMa cells were transduced to express the wildtype Vγ9Vδ2-TCR-

G115 or the Vγ9Vδ2-TCR-G115 with δ2-CDR3 variations in the 98-103 region (Kabat 

numbering). This region was either replaced by i) a single alanine, creating a “short length” 

mutant (δ2-G115LM1) with complete abolishment of pAg/BTN3A1-reactivity; ii) 9 alanine 

amino acids, creating an “enlongated length” mutant (in δ2-G115LM9) with approximately 

40% reduced pAg/BTN3A1-reactivity compared to wild-type Vγ9Vδ2-TCR-G115; iii) the 

δ2-CDR3 sequence of the naturally weakly pAg/BTN3A1-reactive cl3 clone (δ2-G115cl3); or 

iiii) the δ2-CDR3 sequence of the naturally highly pAg/BTN3A1-reactive cl5 clone (δ2-

G115cl5).(1) The δ2-G115 length mutants and δ2-G115cl3 showed a slightly reduced binding 

of VHH 6H4 compared to δ2-G115WT and δ2-G115cl5 (Fig. 5A). However, and more 

importantly, no significant difference was observed in the ability of VHH 6H4 to trigger 

activation as determined by CD69 expression on the JurMa cells expressing the modified 

Vγ9Vδ2-TCRs as compared to the JurMa cells expressing the Vγ9Vδ2-TCR-G115WT (Fig. 

5B). Thus, donor sequence variations in δ2-CDR3 that are known to impact pAg recognition, 

do not substantially affect the capacity of the 7D12-5GS-6H4 bispecific VHH construct to 

trigger Vγ9Vδ2-T cell activation and function.  

 

7D12-5GS-6H4 enhances the Vγ9Vδ2-T cell-mediated inhibition of tumor outgrowth in vivo  
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We next assessed the effect of the 7D12-5GS-6H4 VHH on the outgrowth of human EGFR-

overexpressing tumors in vivo. Immunodeficient BRGSwt mice were engrafted with 

SW480Gluc tumor cells carrying a KRASG12V-mutation and transduced to stably express 

Gaussia luciferase (Gluc). Expression of Gluc allowed real-time monitoring of viable primary 

and metastatic tumor cell load and response to treatment using bioluminescence imaging 

(BLI).(49) At days 1, 4, and 7, mice were treated with either PBS, cetuximab, Vγ9Vδ2-T 

cells, or Vγ9Vδ2-T cells in combination with 7D12-5GS-6H4 (Fig. 6A). At day 35, BLI 

clearly demonstrated that mice treated with the combination of Vγ9Vδ2-T cells and 7D12-

5GS-6H4 had an overall lower tumor burden compared to the mice treated with PBS, 

cetuximab or Vγ9Vδ2-T cells alone (Fig. 6B and C). Most importantly, and in accordance 

with the BLI data, mice treated with the combination of Vγ9Vδ2-T cells and 7D12-5GS-6H4 

had a significantly improved overall survival compared with mice treated with either PBS, 

cetuximab or Vγ9Vδ2-T cells alone (Fig. 6D). These results confirm the expected treatment 

failure with cetuximab of KRAS mutated colorectal cancer cells and demonstrate that EGFR-

mediated tumor targeting by 7D12-5GS-6H4 enhances the Vγ9Vδ2-T cell-mediated 

inhibition of tumor outgrowth in vivo, even for cetuximab resistant (i.e. KRAS mutated) 

tumors. 
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Discussion 

Vγ9Vδ2-T cells have a unique combination of features that make them highly promising for 

use in cancer immunotherapy, i.e. the recognition of ligands exclusively exposed by stressed 

or altered cells in an MHC-independent manner, a rapid innate-like response, the ability to 

induce efficient target cell lysis via multiple routes (Fas/FasL and perforin pathway) against a 

wide variety of tumor targets, the induction of dendritic cell maturation, and even efficient 

antigen presentation to αβ-T cells.(22, 25, 26) Several attempts have been made to clinically 

exploit Vγ9Vδ2-T cell activation in cancer patients but results thus far lack consistency.(27, 

28) This is likely related to the absence of a specific trigger for the activated Vγ9Vδ2-T cells 

to home to and infiltrate tumor sites. 

Here, we explored whether the antitumor activity of Vγ9Vδ2-T cells could be 

enhanced and directed to the tumor by using a bispecific VHH construct that would allow 

Vγ9Vδ2-T cell accumulation and activation specifically at the tumor site. As a model tumor 

antigen we selected EGFR, which is a key factor in epithelial malignancies as its activity 

enhances tumor growth, invasion, and metastasis.(50, 51) Agents aimed at EGFR inhibition, 

such as anti-EGFR mAbs competing for ligand binding (e.g. cetuximab and panitumumab) 

and EGFR-specific tyrosine kinase inhibitors (TKI; e.g. erlotinib or gefitinib), are currently 

registered treatments for various advanced-stage epithelial cancers, including non-small-cell 

lung cancer, colorectal cancer, pancreatic cancer, and head and neck squamous cell 

carcinoma.(52) Treatment with these agents is related to improved progression free and 

overall survival, though the overall efficacy is generally limited and frequently restricted to 

certain patient subsets, leaving ample room for improvement.(52)  

From a set of 20 Vγ9Vδ2-TCR specific VHHs generated from immunized llamas and 

selected by phage display, we selected the Vδ2-specific VHH 6H4 on the grounds that it 

consistently induced Vγ9Vδ2-T cell activation and since targeting the Vδ2-chain would be 

more specific for Vγ9Vδ2-T cells than targeting the Vγ9-chain, as in general Vγ9+Vδ2- γδ-T 

cells are more abundant than Vγ9-Vδ2+ γδ-T cells in the human peripheral blood.(17, 41) As 

bivalent formats of the Vδ2-specific VHH 6H4 already induced striking activation of 

Vγ9Vδ2-T cells in the absence of target cells, probably due to the crosslinking of the TCRs, 

and this was expected to result in systemic activation of Vγ9Vδ2-T cells when applied 

therapeutically, we decided to use the monovalent VHH 6H4 for incorporation in the 

bispecific VHH in order to minimize the chances of non-specific (tumor unrelated) activation 

upon systemic administration. By joining an anti-EGFR VHH (7D12) to the 6H4 VHH, we 
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created a bispecific VHH construct targeting both EGFR and the Vγ9Vδ2-TCR. The 

generated 7D12-5GS-6H4 bispecific VHH induced strong activation and degranulation of 

Vγ9Vδ2-T cells resulting in potent lysis of EGFR expressing tumors at picomolar 

concentrations in an EGFR and Vγ9Vδ2-TCR dependent fashion. Previously, we determined 

that VHH 7D12 inhibited EGFR phosphorylation and pathway activation by binding to 

EGFR domain III, thus preventing its conformational change to an active state.(42, 43) 

Importantly, integration of anti-EGFR VHH 7D12 into the bispecific format did not alter its 

ability to inhibit EGF-induced signaling in EGFR overexpressing cancer cells. Moreover, and 

in contrast to the currently available anti-EGFR mAb therapies which are mainly effective 

through the inhibition of EGFR signaling(52), the 7D12-5GS-6H4 bispecific VHH construct 

described here also induced efficient Vγ9Vδ2-T cell-mediated lysis of colorectal cancer cell 

lines carrying common KRAS or BRAF mutations. Mutations such as these in the proto-

oncogenes of the RAS family (e.g. KRAS, NRAS, HRAS and BRAF) frequently occur in e.g. 

colorectal, pancreatic and lung cancers, which together account for a major proportion of 

cancer cases. This often makes tumors resistant to the currently available anti-EGFR 

therapies (e.g. mAbs and TKI)(39, 40) and leads to poor prognosis(53, 54). Our data 

demonstrate that 7D12-5GS-6H4 has a dual mechanism of action by combining the inhibition 

of EGF-induced signaling (involved in tumor survival, growth and metastasis) with the direct 

induction of tumor cell lysis. The effective and superior anti-tumor effect of the bispecific 

VHH construct was confirmed using mice xenograft experiments. Mice grafted with human 

EGFR-overexpressing KRAS-mutated tumor cells that were treated with the bispecific VHH 

in combination with Vγ9Vδ2-T cells showed significant reduction of tumor outgrowth and 

improved overall survival. These are promising results that suggest that the bispecific 7D12-

5GS-6H4 VHH construct may also inhibit growth of EGFR+ tumors in patients independent 

of the RAS or BRAF mutation status of the tumor and might thereby allow a more widespread 

applicability of EGFR-targeted treatments by bypassing the need for RAS and BRAF mutation 

analyses.(55) Moreover, the data presented here provide a proof of concept for Vγ9Vδ2-T 

cell targeted therapy for a broad range of tumor types, which may be facilitated by simply 

exchanging the anti-EGFR VHH for VHHs targeting various other tumor antigens. 

Interestingly, the ability to overcome the therapeutic barrier posed by RAS mutations 

was also noted for bispecific T cell engagers (BiTEs) wherein the scFv variable domains of 

cetuximab or panitumumab were fused to a scFv against CD3 expressed by T cells.(56) 

However, though some BiTEs have induced clinical responses , limitations of this approach 
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include the requirement for continuous infusions of the drug due to its short serum half-life 

time and the fact that it targets CD3 which is expressed by all T cells including 

immunosuppressive T cells such as Tregs.(29) Tregs predominate in the tumor 

microenvironment, actively suppress the activation and proliferation of effector T cells and 

are related to unfavorable prognosis.(30) For this reason, antibody-based constructs designed 

to exclusively trigger immune cells with a pro-inflammatory function, such as Vγ9Vδ2-T 

cells, may be preferable over the targeting of CD3.(31)  

In a recently published preclinical study the antitumor efficacy of Vγ9Vδ2-T cells 

was explored through the use of a tribody targeting the γ9-chain of the Vγ9Vδ2-TCR and the 

tumor antigen Her2/neu. This (Her2)2xVγ9 tribody efficiently lysed Her2/neu 

overexpressing pancreatic cells in vitro and in mouse xenografts.(57) Although this nearly 

full-sized (~100kD) antibody approach underscores the potential of tumor-targeted Vγ9Vδ2-

T cell-based immunotherapies, more specific targeting of the Vγ9Vδ2-T cell population can 

be achieved using an antibody (fragment) directed to Vδ2 compared to Vγ9, as in our 

bispecific VHH. Furthermore, the development and use of whole mouse mAbs has several 

limitations including the mispairing of heavy and light chains and the risk of developing 

human-anti-mouse antibodies (HAMA) in patients which leads to antibody neutralization and 

adverse events in the form of a cytokine release syndrome.(29, 36) These limitations can be 

overcome by the use of VHHs. VHH are low immunogenic because they share high 

homology with human VH genes and are devoid of an Fc-region.(29, 33, 36) Because of the 

single domain nature of VHHs, pairing issues do not apply. This advantage in combination 

with their small size and the fact that they do not require post-translational modifications, 

allow VHHs to be easily produced in bacteria or yeast, which remain the most cost- and time-

efficient production systems to date.(36, 58, 59) VHHs are known for their high stability at 

elevated temperature and pH, providing them with enhanced solubility and making them less 

prone to aggregation.(36, 60) The small size of VHHs (~30 kDa for a bispecific VHH) also 

facilitates deep tumor tissue penetration compared to larger sized antibody constructs, but 

like other small antibody fragments (such as BiTEs) this is also associated with a short serum 

half-life time due to fast renal clearance. This can be circumvented by fusion of the VHH to a 

serum albumin binding VHH.(29, 38, 42, 61)  

As anti-EGFR mAb therapy can be complicated by (generally well manageable) skin 

toxicity as a result of mAb binding to EGFR expressed on keratinocytes, it was encouraging 

to see only minor keratinocyte lysis when keratinocytes were cultured with Vγ9Vδ2-T cells 
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in the presence of the 7D12-5GS-6H4 bispecific VHH. Although preclinical tests such as this 

do not necessarily predict safety in patients, these results are encouraging with regards to the 

future clinical exploration of this particular bispecific VHH construct. 
 In conclusion, we here describe the development of a bispecific VHH construct with a dual 

mechanism of action, combining ligand deprivation crucial for tumor cell proliferation and survival 

with the efficient and exclusive lysis of EGFR expressing tumor cells by conserved immune effector 

Vγ9Vδ2-T cells. Since EGFR is a widely expressed and clinically validated tumor antigen, a large 

patient group could benefit from this therapy. This group can be even broadened by the fact that, in 

contrast to currently available anti-EGFR therapies, the effectiveness of this therapy will not be 

influenced by downstream mutations in e.g. RAS or BRAF and, due to the monomorphic nature of the 

Vγ9Vδ2-TCR this immunotherapeutic approach requires no further individualization. Furthermore, as 

recently VHHs directed to various other tumor antigens have been developed(62) and continue to be 

developed, these can easily be exchanged for the anti-EGFR VHH enabling future Vγ9Vδ2-T cell 

targeted therapy for a broad range of tumor types.  



PAPER IV: A nanobody based bispecific targeting approach to leverage the potent and widely applicable tumor cytolytic capacity of 

monomorphic Vγ nanobcells 

 
	
  

	
  

216 

Materials & methods  

Cell lines 

HeLa, A431, HT29, Colo320 and SW480 cell lines were obtained from ATCC and, as well as 

Her14(63) cultured in DMEM+, i.e. Dulbecco's Modified Eagle's Medium (Lonza, catalog 

#BE12-614F) supplemented with 10% (v/v) fetal calf serum (FCS) (HyClone GE Healthcare, 

catalog #SV30160.03), 100 IU/mL sodium penicillin, 100 μg/mL streptomycin sulfate and 

2.0 mM L-glutamine (Life Technologies, catalog #10378-016). 

The SW480 cell line was stably transduced with lentivirus carrying the Gaussia 

Luciferase (Gluc) and Cerulean Fluorescent Protein (CFP) genes (LV-CFP-Gluc)(64), kindly 

provided by Tom Würdinger (VU University medical center (VUmc), Amsterdam, NL), to 

generate the SW480Gluc cell line. CFP positive SW480Gluc cells were sorted and used for tumor 

injection in mice when CFP expression was >95% as determined by flow cytometry. 

JY cells and Jurkat transductants(32) were cultured in IMDM+, i.e. Iscove’s modified 

Dulbecco’s medium (Lonza, catalog #BE12-722F) supplemented with 10% (v/v) FCS, 0.05 

mM β-mercaptoethanol, 100 IU/mL sodium penicillin, 100 μg/mL streptomycin sulfate and 

2.0 mM L-glutamine. JurMa cell lines transduced with Vγ9Vδ2-TCR-G115WT and δ2-CDR3 

variants, were generated as previously described(1) and cultured in IMDM+. 

Keratinocytes were isolated from human adult skin as described previously.(65) In 

brief, epidermal sheets were separated from dermis by incubation with Dispase II (Roche, 

catalog #04942078001) overnight at 4°C. Subsequently, keratinocytes were isolated from the 

epidermis by a 10 minute 0.125% trypsin incubation (HyClone GE Healthcare, catalog # 

SH3004201) and seeded per 3*106 cells in keratinocyte culture medium on 9-cm-diameter 

tissue culture dishes coated with 0.5 μg/cm2 human placental collagen IV (Sigma-Aldrich, 

catalog #C5533). Keratinocyte culture medium consisted of Dulbecco's 

Modified Eagle's Medium and Ham's F12 (Invitrogen, catalog #21765-029) in a 3:1 ratio, 

supplemented with 10% (v/v) FCS, 100 IU/mL sodium penicillin, 100 μg/mL streptomycin 

sulfate, 2.0 mM L-glutamine, 1 μmol/L hydrocortisone (Sigma-Aldrich, catalog #H0888), 1 

μmol/L isoproterenol hydrochloride (Sigma-Aldrich, catalog #I6504), 0.09 μmol/L insulin 

(Sigma-Aldrich, catalog #I5500), and 2 ng/ml human keratinocyte growth factor (Sigma-

Aldrich, catalog #K1757). All cell lines were maintained at 37°C with 5% CO2 in a 

humidified atmosphere and tested mycoplasma negative. 

 

 



PAPER IV: A nanobody based bispecific targeting approach to leverage the potent and widely applicable tumor cytolytic capacity of 

monomorphic Vγ nanobcells 

 
	
  

	
  

217 

Flow cytometry and monoclonal antibodies 

FITC-labeled anti-TCR Vδ2 (catalog #555738), FITC-labeled anti-IFN-γ (catalog #554700), 

FITC-labeled anti-CD69 (catalog #347823), PE-labeled anti-CD107a (catalog #555801), PE-

labeled anti-CD25 (catalog #55542), PE-labeled pan γδ-TCR (catalog #333141), APC-

labeled anti-CD25 (catalog #340907), and 7-AAD (catalog #559925) were obtained from BD 

Biosciences. PerCP-labeled anti-TCR Vδ2 (catalog #331410), PE-labeled anti-TCR Vγ9 

(catalog #331308) and APC-labeled anti-TCR Vγ9 (catalog #331310) were from Biolegend. 

RPE-labeled goat-anti-mouse F(ab’)2 fragment (catalog #R0480) was obtained from Dako. 

Anti-Myc tag mAb clone 4A6 (catalog #05-724) was obtained from Merck Millipore and 

anti-Myc tag mAb clone 9E10 was produced in-house. Alexa488-labeled cetuximab was a 

kind gift of Rens Braster and Yvette van Kooyk (VUmc, Amsterdam, NL). All stainings for 

flow cytometry were performed in PBS supplemented with 0.1% BSA and 0.02% sodium-

azide. Intracellular IFN-γ production was determined by adding GolgiPlug to the cell culture 

for the final 4 hrs of the experiment. Cells were fixed and permeablized with the 

Fixation/Permeabilization Solution Kit from BD Biosciences(catalog #555028) and stained 

with anti-IFN-γ mAb. 

Stained cells were measured with a FACS Calibur or LSRFortessa (BD Biosciences) 

and analyzed with CellQuest (BD Biosciences) or Kaluza software (Beckman-Coulter). 

 

Generation of donor-derived Vγ9Vδ2-T and pan γδ-T cell lines 

Healthy donor-derived Vγ9Vδ2-T cells were isolated, expanded and cultured as described 

previously.(32) In brief, Vγ9Vδ2-T cells were isolated by magnetic-activated cell sorting 

from PBMC using FITC-labeled anti-TCR Vδ2 or PE-labeled anti-TCR Vγ9 mAb in 

combination with anti-mouse IgG MicroBeads (Miltenyi Biotec, catalog #130-048-401). 

Purified Vγ9Vδ2-T cells were stimulated weekly with irradiated and NBP-pretreated (100 

μM Pamidronate for 2-3 hrs, Teva Pharmachemie, catalog #12J08RD) human mature 

monocyte derived dendritic cells or an irradiated feeder mix (PBMC of 2 healthy human 

donors and Epstein Barr Virus transformed B cells with addition of 50 ng/ml PHA). 

Vγ9Vδ2-T cells were used for experiments when Vγ9+Vδ2+-TCR expression was >90% and 

CD25 expression was <40% as determined by flow cytometry. 

Vγ9Vδ2-T cell lines were cultured in Yssels+, i.e. Yssels medium(66) supplemented 

with 1% human AB serum (Cellect, MP Biomedicals, catalog #2931949), 50 U/ml rhIL-2 

(Proleukin, Novartis), 0.05 mM β-ME, 100 IU/mL sodium penicillin, 100 μg/mL 
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streptomycin sulfate and 2.0 mM L-glutamine. Vγ9Vδ2-T cell lines and tumor target cell 

lines were cultured in IMDM+ medium during experiments. The Vγ9Vδ2-T cell lines were 

maintained at 37°C with 5% CO2 in a humidified atmosphere and tested mycoplasma 

negative. 

Vγ9+Vδ2+, Vγ9+Vδ2−, Vγ9+Vδ2+ and Vγ9−Vδ2− γδ-T cell lines were obtained from 

human PBMC by MACS isolation. PBMC were stained with PE-labeled pan γδ-TCR 

antibody and anti-mouse IgG MicroBeads. This pan γδ-T cell line was expanded with a 

feeder mix and subsequently stained with FITC-labeled anti-TCR Vδ2 and PE-labeled anti-

TCR Vγ9 antibodies to allow flow cytometric cell sorting of 4 separate populations (i.e. 

Vγ9−Vδ2+,Vγ9+Vδ2−, Vγ9+Vδ2+ and Vγ9−Vδ2− γδ-T cells). 

 

Generation, production and purification of bivalent and bispecific VHHs 

To generate bivalent or bispecific VHHs, genes of VHH 6H4(32), VHH 7D12(42) or VHH 

R2(44) were PCR-amplified using Phusion High-Fidelity DNA Polymerase (New England 

Biolabs, catalog #M0530) and appropriate primers encoding the N- or C-terminal end of the 

VHH gene, a restriction endonuclease site, and a linker sequence (composed of Gly4-Ser 

repeats). PCR products were purified by gel extraction using the NucleoSpin Gel and PCR 

Clean-up kit (Macherey-Nagel, catalog #740609), digested with restriction endonucleases to 

allow cloning into appropriate plasmids.  

 For in vitro experiments, PCR products were cloned to plasmid pMek219, verified by 

sequencing and produced in TG1 bacteria as described previously(32). Produced VHH were 

derived from the bacterial periplasm by a PBS freeze-thawing step and purified by 

immobilized metal ion affinity chromatography (IMAC) using Talon resin (Clontech, catalog 

# 635504). VHH were eluted with 150 mM imidazole and dialyzed twice against PBS.  

 For in vivo experiments, PCR products were cloned to a modified version of the 

pFastBac I plasmid (Thermo Fisher Scientific) containing a Honeybee Melittin Signal 

Sequence (HMSS) and a C-terminal his-tag. Bacmid DNA and virus were essentially 

prepared according to the Bac-to-Bac manual (Thermo Fisher Scientific). Briefly, the 

pFastBac constructs were transformed into EMBACY cells(67) and bacmid DNA was 

isolated. Sf9 insect cells were transfected with the bacmid DNA and the virus was 

subsequently amplified in a sf9 suspension culture. Collected virus was used to infect sf9 

cells for protein expression. Medium containing the secreted proteins was harvested 3 days 

post infection and dialyzed 2 x against 25 mM HEPES pH 7.5 and 200 mM NaCl. Proteins 
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were purified on a 5 ml HiTrap Ni2+ column, eluted with 200 mM imidazol in 25 mM 

HEPES pH 7.5, 200 mM NaCl. Proteins were further purified by size exclusion 

chromatography on a S75 16/60 Superdex column (GE Healthcare) equilibrated with PBS 

buffer. Fractions containing the proteins were pooled, concentrated and passed through a 0.22 

µM filter.  

The purity of produced protein was checked on a coomassie blue-stained protein gel 

before use. 

 

Binding analysis of VHH 

To determine the binding of VHH to cells, 5*104 Vγ9Vδ2-T cells, A431 cells, Jurkat or 

JurMa transductants were incubated with VHH at the indicated concentrations for 30 

minutes. Bound VHH was detected with anti-Myc-tag antibody clone 4A6 and RPE-labeled 

goat-anti-mouse F(ab’)2 fragment by flow cytometry. 

To determine the binding persistence and stability of bivalent VHH 7D12-5GS-6H4 to 

Vγ9Vδ2-T cells, Vγ9Vδ2-T cells were incubated with 100 nM VHH for 30 minutes, 

unbound VHH was washed away and the cells were cultured for 0, 8 or 15 days in Yssels+ in 

the presence of 10 U/ml rhIL-2 (Proleukin, Novartis). On days 0, 8 and 15 a sample was 

taken from the culture and VHH bound to the Vγ9Vδ2-T cells was detected with anti-Myc-

tag antibody clone 4A6 and an RPE-labeled goat-anti-mouse F(ab’)2 fragment by flow 

cytometry.  
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Functional analysis of monospecific, bivalent and bispecific VHH 

To determine the effect of monovalent and bivalent Vγ9Vδ2-TCR specific VHH on 

Vγ9Vδ2-T cell activation, Vγ9Vδ2-TCR expressing cells were either cultured in the 

presence of plate bound or soluble VHHs. For plate bound conditions, wells of a 96-well flat-

bottom culture plate (Greiner, catalog #655180) were coated with 4 µg/ml mouse-anti-Myc 

clone 9E10 in PBS overnight at 4°C. Wells were washed three times with PBS and incubated 

for 2 hrs with the indicated concentrations of VHH in PBS. After the wells were again 

washed three times with PBS, 105 Vγ9Vδ2-T cells, 105 Vγ9Vδ2-TCR-G115 transduced 

JurMa cells or 2.5*105 PBMC were added per well in a final volume of 200 µl IMDM+. For 

soluble VHH conditions, the indicated concentration of VHH in PBS was added to 105 

Vγ9Vδ2-T cells in a 96-well flat-bottom culture plate. For control conditions, Vγ9Vδ2-T 

cells were co-cultured with untreated (negative control) or NBP-treated (100 μM 

Pamidronate for 2-3 hrs, positive control) HeLa cells in a 1:1 ratio. Cells were cultured in a 

final volume of 200 µl IMDM+ for 24 hrs. 

To determine the effect of bispecific anti-EGFR-anti-Vγ9Vδ2-TCR VHH on 

Vγ9Vδ2-T cell activation, degranulation and target cell lysis in a 24-hour assay, 5*104 target 

cells (A431, JY, HT29, Colo320 or SW480) were labeled with 40 nM CFSE (Sigma-Aldrich, 

catalog #21888) or 5 µM PBSE (Thermo Fisher Scientific, catalog #P10163), according to 

the manufacturer`s protocol, and allowed to adhere for 4 hrs in a 96-well flat bottom culture 

well. Vγ9Vδ2-T cells were incubated with the indicated concentrations of VHH for 1 hr at 

4°C, washed three times with PBS and added in a 1:1 ratio to the target cells and cultured for 

24 hrs in a final volume of 200 µl IMDM+. In case of keratinocytes, primary keratinocytes 

were plated 2 days beforehand on collagen IV coated wells to obtain a viable cell pool at the 

start of the experiment. For the NBP-pretreated positive control, target cells were incubated 

with 100 μM Pamidronate during cell adherence and washed by a 3x PBS rinse before the 

addition of Vγ9Vδ2-T cells.  

To determine the biological efficacy of the 7D12-5GS-6H4 bispecific VHH or control 

monovalent R2 VHH over time, Vγ9Vδ2-T cells were incubated with 100 nM VHH for 30 

minutes, unbound VHH was washed away and the cells were cultured for 15 days in Yssels+. 

A final concentration of 10 U/ml rhIL-2 was added to the culture every 3 days. On day 15, 

Vγ9Vδ2-T cells were transferred in a 1:1 ratio to a 96-well flat bottom culture well 

containing 4 hr adhered A431 cells. Cells were co-cultured for 24 hrs in a final volume of 

200 µl IMDM+. 
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To determine degranulation of Vγ9Vδ2-T cells, anti-CD107a mAb and GolgiStop 

(BD Bioscience, catalog #554724) were added to the co-culture for the final 4 hrs of the 

experiment. At the end of the experiment, cells were harvested and stained with anti-Vδ2 

and/or anti-Vγ9 mAb or CD3 mAb to identify Vγ9+Vδ2+-T cells. CD25 and CD69 

expression on Vγ9Vδ2-T cells was determined with an anti-CD25 and anti-CD69 mAb, 

respectively. Cells were stained with 7-AAD according to the manufacturer`s protocol to 

distinguish lysed cells. mAbs bound to the cells and 7-AAD staining were analyzed by flow 

cytometry. 

 

Inhibition of EGF-induced EGFR phosphorylation 

Inhibition of EGF-induced EGFR phosphorylation was performed as described before.(68) 

105 Her14 cells were seeded per well in a 12-wells plate in DMEM+ and allowed to adhere. 

After 8 hrs, the medium was replaced by DMEMmin, i.e. Dulbecco's 

Modified Eagle's Medium supplemented with 0.1% (v/v) FCS, 100 IU/mL sodium penicillin, 

100 μg/mL streptomycin sulfate and 2.0 mM L-glutamine. The following day, cells were 

washed once with PBS, after which a mixture of the indicated VHHs was added to the cells 

in combination with 8 nM recombinant human EGF (Peprotech, catalog # AF-100-15) in 

DMEMmin for 15 minutes at 37°C. Subsequently the cells were washed three times with ice-

cold PBS and resuspended in 2x Laemmli protein sample buffer. Half of the sample was 

loaded and run on a SDS-PAGE gel and western blotted. Phosphorylated EGFR was detected 

with an anti-phosphoEGF Receptor (Tyr1068) polyclonal antibody and an anti-rabbit-HRP 

mAb (both from Cell Signaling Technology, catalog #2234 and #7074, respectively). Blots 

were stained with an anti-β-actin (Sigma-Aldrich, catalog #21888) and anti-mouse HRP mAb 

(Cell Signaling Technology, catalog #7076) to demonstrate that equal amounts of cell lysate 

were loaded on gel.  
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In vivo studies  

Immunodeficient BRGS mice (BALB/c Rag2-/-Il2rg-/-SirpaNOD)(69) were housed in isolators 

under pathogen-free conditions and randomly divided in 4 treatment groups (n=6/group). At 

day 0, mice received an intravenous (i.v.) tail vein injection with 0.5*106 SW480Gluc cells. At 

days 1, 4 and 7 mice were treated with either a) 500 μg cetuximab i.p., b) 1*107 Vγ9Vδ2-T 

cells i.v., c) 1*107 Vγ9Vδ2-T cells in combination with 1 µg of the bispecific 7D12-5GS-

6H4 VHH i.v., or an equal volume of sterile PBS i.v. Mice that received Vγ9Vδ2-T cells 

were injected at days 1, 4, 7, 10 and 14 with 10,000 U human recombinant IL-2 i.p. to 

stimulate the proliferation of activated Vγ9Vδ2-T cells. Bioluminescence imaging (BLI) was 

performed at day 35 in 4 randomly selected mice from each study group. For this procedure, 

mice were anesthetized with inhalation anesthetics (isofluorane/oxygen) and injected i.v. 

retro-orbitally with 4 mg/kg coelenterazine (PJK GmbH, native-CTZ). BLI was recorded 

using an IVIS imaging system (PerkinElmer) and images were analysed using Living Image 

4.0 software. BRGS mouse experiments were approved by the animal ethical committee of 

the Institut Pasteur (Reference # 2007–006), Paris, France, and validated by the French 

Ministry of Education and Research (Reference # 02162.01).  

 

Statistical analyses 

Statistical analyses were performed in GraphPad Prism version 5 (La Jolla, CA, USA). For in 

vitro analyses, a one-way ANOVA with a Bonferroni’s post-hoc test was used. For in vivo 

data analysis of BLI, an unpaired T-test was used. For the survival analysis, a Mantel-Cox 

test was used. All findings were considered significant when p-values were <0.05. 
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Figures 

 

Figure 1. Characteristics of Vγ9Vδ2-T cell activating VHH. A-C) Vγ9Vδ2-T cells were 

cultured with individual plate bound (wells coated with 500 nM) anti-Vγ9Vδ2-TCR VHH, 

control VHH R2, HeLa cells or NBP-pretreated HeLa cells in a 1:1 ratio. After 24 hrs, 

Vγ9Vδ2-T cell activation was determined by assessing the percentage of Vγ9Vδ2-T cells 

positive for A) CD25, B) CD107a, or C) intracellular IFN-γ using flow cytometry. Shown are 

means subtracted by background levels ± SEM of n=3-5 experiments. p-Values were 

calculated with a one-way ANOVA and Bonferroni’s post-hoc test. (* indicates p<0.05 and 

** indicates p<0.01). D) The anti-Vδ2 VHH 6H4 (40 nM) binds to Jurkat-Vγ9Vδ2-TCR 

cells (thick line), but not to Jurkat cells without TCR expression (filled grey) or Jurkat-

Vα24Vβ11-TCR cells (dotted line). E) The anti-Vδ2 VHH 6H4 (350 nM) binds to healthy 

donor-derived Vγ9+Vδ2+
 (thick line) and Vγ9-Vδ2+ γδ-T cells but not to Vγ9-Vδ2- (filled 

grey) or Vγ9+Vδ2- γδ-T cells (dotted line). F) Vγ9Vδ2-T cells were cultured with plate 
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bound or soluble monovalent VHH (filled squares), bivalent VHH (filled triangles) or control 

VHH R2 (open circles) at the indicated concentrations for 24 hrs. Expression of CD25 was 

assessed using flow cytometry. Representative figures of n=3 experiments are shown. 

Abbreviations: aminobisphosphonates (NBP); Gly4Ser (GS). 

 

 
Figure 2. The effect of orientation and linker length in the bispecific VHH. A and B) 

Vγ9Vδ2-T cells (left) or EGFR-expressing A431 cells (right) were incubated in the presence 

or absence of the indicated VHHs and bound VHH was assessed by flow cytometry. Mean 

fluorescence intensity (MF) of bound VHH to the cells is depicted. C) Vγ9Vδ2-T cells and 

A431 cells were co-cultured in a 1:1 ratio for 24 hrs in the presence or absence of the 

indicated bispecific VHH. Both CD25 (left) and CD107a (middle) expression on Vγ9Vδ2-T 

cells were assessed by flow cytometry. The percentage of lysed A431 cells (right) was 

determined using 7-AAD staining and flow cytometry. Representative figures of n=3 

experiments are shown. Abbreviations: Gly4Ser (GS).  
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Figure 3. The 7D12-5GS-6H4 bispecific VHH induces Vγ9Vδ2-T cell activation and 
lysis of EGFR expressing tumor cells. Vγ9Vδ2-T cells were cultured with or without 

EGFR+ A431 tumor cells (A-B) or EGFR- JY cells (B) in a 1:1 ratio in the presence of the 

7D12-5GS-6H4 bispecific VHH or a bispecific control VHH. VHH concentrations: A) 10 

nM; B) as indicated. For control situations, Vγ9Vδ2-T cells were co-cultured with target 

cells in the absence of VHH (no VHH; negative control) or with NBP-pretreated target cells 

(positive control). After 24 hrs, Vγ9Vδ2-T cell activation and degranulation was determined 

by assessing the percentage of CD25 or CD107a expression, respectively by flow cytometry. 

The percentage of lysed target cells was determined using 7-AAD staining and flow 

cytometry. A) White bars represent Vγ9Vδ2-T cell mono-cultures in the absence of VHH, 

grey bars represent target cell mono-cultures in the absence of VHH and black bars represent 

Vγ9Vδ2-T cell co-cultures with target cells and indicated VHH. B) Co-cultures of target 

cells with Vγ9Vδ2-T cells and indicated amount of 7D12-5GS-6H4 bispecific VHH. Shown 

are mean ± SEM of n=3-4 experiments. p-Values were calculated with a one-way ANOVA 

and Bonferroni’s post-hoc test (* indicates p<0.05 and *** indicates p<0.001). 

Abbreviations: aminobisphosphonates (NBP); Gly4Ser (GS). 
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Figure 4. The 7D12-5GS-6H4 bispecific VHH inhibits EGFR signaling but does not 

depend on this to induce tumor cell lysis. A) The anti-EGFR 7D12 VHH retains its 

capacity to inhibit phosphorylation of EGFR when incorporated in a bispecific 7D12-5GS-

6H4 VHH format. Her14 cells were incubated with a mixture of 8 nM human EGF and the 

indicated VHH. Cell lysates were run on SDS-PAGE gel and western blotted for 

phosphorylated EGFRTyr1068 and β-actin as a loading control. B-I) Vγ9Vδ2-T cells were 

cultured with or without the EGFR+ colon tumor cells SW480 KRASG12V (B-E) or HT29 

BRAFV600E (F-I) in a 1:1 ratio in the presence of the 7D12-5GS-6H4 bispecific VHH or a 

bispecific control VHH. VHH concentrations: B-D and F-H) 10 nM; E and I) as indicated. 

For control situations, Vγ9Vδ2-T cells were co-cultured with target cells in the absence of 

VHH (no VHH; negative control) or with NBP-pretreated target cells (positive control). After 

24 hrs, Vγ9Vδ2-T cell activation and degranulation was determined by assessing the 

percentage of CD25 (B and F) or CD107a (C and G) expression, respectively by flow 
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cytometry. The percentage of lysed target cells was determined using 7-AAD staining and 

flow cytometry (D-E and H-I). B-D and F-H) White bars represent Vγ9Vδ2-T cell mono-

cultures in the absence of VHH, grey bars represent target cell mono-cultures in the absence 

of VHH and black bars represent Vγ9Vδ2-T cell co-cultures with target cells and indicated 

VHH. E and I) Co-cultures of target cells with Vγ9Vδ2-T cells and the indicated amount of 

7D12-5GS-6H4 bispecific VHH. Shown are means ± SEM of n=3 experiments. p-Values 

were calculated with a one-way ANOVA and Bonferroni’s post-hoc test (* indicates p<0.05, 

** indicates p<0.01 and *** indicates p<0.001). Abbreviations: aminobisphosphonates 

(NBP); Gly4Ser (GS). 

 

 

 
Figure 5. The anti-Vγ9Vδ2-TCR specific VHH 6H4 efficiently activates Vγ9Vδ2-T cells 

harbouring δ2-CDR variations. A) Indicated JurMa transductants were incubated with 500 

nM VHH 6H4 and bound VHH was assessed by flow cytometry. Mean fluorescence intensity 

(MF) of VHH bound to the cells is depicted. A representative figure of n=3 experiments is 

shown. B) Indicated JurMa transductants were cultured with HeLa cells (negative control, 

white), NBP-pretreated HeLa cells (positive control, grey) or plate bound (wells coated with 

500 nM) VHH 6H4 (black). After 24 hrs, the activation status of the cells was determined by 

assessing CD69 expression on the cells by flow cytometry. Indicated significant differences 

are relative to values of δ2-G115WT cells stimulated with HeLa cells. A representative figure 

of triplicate samples (mean ± SEM) of n=3 experiments is shown. p-Values were calculated 

with a one-way ANOVA and Bonferroni’s post-hoc test (*** indicates p<0.001). 

Abbreviations: aminobisphosphonates (NBP).  

0

2

4

6

8

VH
H 

bin
din

g 
(M

FI
)

A

CD
69

 (
%

)

B

Figure 5

0

20

40

60

80

***

*** *** ***
***

***
Hela cells
Hela cells + NBP
VHH 6H4



PAPER IV: A nanobody based bispecific targeting approach to leverage the potent and widely applicable tumor cytolytic capacity of 

monomorphic Vγ nanobcells 

 
	
  

	
  

235 

 
Figure 6. The 7D12-5GS-6H4 bispecific VHH inhibits tumor growth in vivo. 

Immunodeficient BRGS mice grafted with SW480Gluc cells were treated with PBS (control 

group; A), cetuximab (500 µg i.p.; group B), Vγ9Vδ2-T cells (1*107 i.v.; group C) or 

Vγ9Vδ2-T cells and 7D12-5GS-6H4 VHH (1*107and 1 µg, respectively, both i.v.; group D) 

at days 1, 4 and 7. IL-2 (10,000 U, i.p.) was administered on days 1, 4, 7, 10 and 14 to the 

groups receiving Vγ9Vδ2-T cells. A) A schematic overview of the treatment schedule. B and 

C) Bioluminescence imaging at day 35 of 4 mice per treatment group. B) Heat map 

indicating the sites and relative level of tumor cell activity in individual mice. Red squares 

indicate the image field used for quantification analysis. C) Quantified bioluminescence 

signal measured per mouse expressed as the measured radiance normalized to the number of 

pixels, time and angle of imaging. Shown are means ± SEM of n=4 mice per group. p-Values 
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were calculated with a unpaired T-test (* indicates p<0.05). D) Kaplan-Meier analyses of 

mouse survival, n=6 mice per group. p-Values were calculated with a Mantel-Cox test (* 

indicates p<0.05, ** indicates p<0.01 and *** indicates p<0.001). Abbreviations: Gly4Ser 

(GS). 

Supplementary figures 

 
Supplementary figure 1. The 7D12-5GS-6H4 bispecific VHH induces minimal lysis of 

keratinocytes. Vγ9Vδ2-T cells were cultured with or without primary keratinocytes in a 1:1 

ratio in the presence of the 7D12-5GS-6H4 bispecific VHH or a bispecific control VHH. 

VHH concentrations: A) 10 nM and B) as indicated. After 24 hrs, the percentage of lysed 

keratinocytes cells was determined using 7-AAD staining and flow cytometry. A-B) White 

bars represent Vγ9Vδ2-T cell mono-cultures in the absence of VHH and black bars represent 

Vγ9Vδ2-T cell co-cultures with primary keratinocytes and indicated VHH. Shown are means 

± SEM of n=3 experiments. p-Values were calculated with a one-way ANOVA and 

Bonferroni’s post-hoc test (* indicates p<0.05). Abbreviations: aminobisphosphonates 

(NBP); Gly4Ser (GS).
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HIS mice have been created with the aim to bridge the gap between small animal 

models and human studies and to explore human immunity in an in vivo experimental system. 

Several advances over the last years have improved the overall human engraftment and the 

development of various lineages of blood cells in HIS mice. For example, while B and T 

lymphocytes are quite well developed in HIS mice (albeit with some maturation deficits), 

both myeloid and lymphoid innate cells are underrepresented. Their low frequency may be 

the result of both the incapability of progenitor cells to further differentiate or migrate from 

primary organs and/or the lack of survival and proliferation signals in mature cells. Overall, 

we understand very little about what drives development of a particular blood cell type. At 

the same time, the deficiencies themselves found in these models provide hints of the 

molecular cues necessary for normal balanced hematopoiesis365.  

 

During hematopoiesis a steady state is established between HSC self-renewal and 

lineage differentiation that is maintained by regulatory signals (cell interactions, soluble 

factors) coming from cells within the environment. External cues also help maintain the 

survival and functionality of mature hematopoietic cells throughout their lifetime. In HIS 

mice, many cells present within hematopoietic niches (osteoclasts, vascular cells, 

perivascular cells) are of murine origin366,367. Their products (chemokines, cytokines and 

growth factors, etc.) may act in a species-specific fashion. In some cases, they will be 

sufficiently divergent in their structure from their human counterpart that they do not function 

on human cells. Several approaches in HIS mice have been devised to address this issue 

(replacement of mouse genes with human counterparts, exogenous deliver the human 

molecules in vivo, etc 260,261,277,368).  These optimized HIS models show a ‘balanced’ 

development of most hematopoietic lineages thereby more closely resembling the human 

condition.  

The Flt3-deficient BRGS HIS mouse model developed in our lab efficiently reduces 

the generation of mouse DC subsets thus providing an open ‘niche’ for human DCs. Using 

exogenous Flt3L allow for a selective boosting of several myeloid populations, including 

CD141+DCs, CD1c+DCs, pDCs and CD14+ monocytes at a systemic level with the BM 

showing the most pronounced effect. CD135+ myeloid precursors were increased in this 

model. Previous reports had revealed a prominent effect of Flt3L in the in vitro and in vivo 

development of NK cells. Interestingly, our HIS model not only confirmed the effect on NK 

cells but it also showed, for the first time, an increase in the frequency and total numbers of 
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human lineage-CD127+ helper ILCs. The manuscript “A functional DC crosstalk promotes 

human ILC homeostasis in vivo” analyzed the phenotypic and functional characteristics of 

each ILC subset identified in this novel HIS mouse model. 

 

i. What is the mechanism underlying the ILC boost in BRGSF HIS mice? 

 

Given the bidirectional crosstalk between DCs and NK cells both in homeostasis and 

during the immune response, the increased DC compartment in BRGSF mice was predicted 

to impact human NK cell development. The primary cytokine governing NK cell 

differentiation, proliferation and survival is IL-15. When bound to its high affinity IL-15Rα, 

soluble or membrane-bound complexes are formed that can then act on IL-2βγR bearing 

target cells (so called “trans-presentation”) triggering downstream signaling302,369. 

NK cell proliferation and survival is also regulated by IL-2370. CD4+ T cells are the 

main IL-2 producers but IL-15 can also boost human T cell homeostasis 371, suggesting that 

boosted BRGSF might have an enriched IL-2 milieu as a consequence of the higher IL-15 

availability. One could expect then that CD56bright cells would overtake in number the 

CD56dim subset due to its higher expression density and hyper-responsiveness to IL-2372. 

Nonetheless, the ratios of the two populations remain stable in reconstituted BRGSF mice 

after Flt3L treatment. This may be due to the timing of T cell development in the model (T 

cells develop later after HSC engraftment) thus limiting the environmental concentration of 

human IL-2 in the periphery.  

While IL-15 is fundamental for NK cell development, helper ILCs are dependent on 

the cytokine IL-7. Murine IL-7 has been shown to have some inter-species activity based on 

its capacity to trigger the same signaling pathways than hIL-7 in human T cells373 . However, 

the widespread expression of IL-7 receptor in the neighboring developing human lymphocyte 

precursors and mature cells (γδ-T, NKT, αβ-T and B cells) limits the availability of the 

cytokine. Although the main source of IL-7 are the stromal and vascular endothelial cells, 

DCs have also been shown to produce it at low levels in steady-state conditions and 4-fold 

stronger after CD40L/IFNγ activation374. Given the fundamental role of IL-7 in the 

development of CD7+CD127+ ILC cells, this is likely behind the positive effect observed in 

the total cell number in BRGSF after the myeloid boost.  

Besides the direct effect of DC-derived cytokines on ILC proliferation and survival, a 

second mechanism involving a direct effect of Flt3L in Flt3-expressing ILC progenitors 
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might also operate and foster their development. Both NK cells and hILCs differentiate from 

HSC via the CLP that has the potency to give rise to all innate and adaptive lymphocytes. 

While the reported ILC precursors in mouse and human, including the ILCP we identify here 

(Paper II) is negative for Flt3, Renoux and colleagues have recently found a NK-restricted 

progenitor (NKP, Lin−CD34+CD38+CD45RA+CD7+CD10+) population that partially (50%) 

express the receptor of Flt3L. NKP is downstream of CLP, that expresses it in 70% of the 

cells, and give rise to NK cell but does not have T, B, myeloid or helper innate lymphoid cell 

potential136 . Given the expression of Flt3 in both CLP and NKP and maybe other yet-

unknown ILCPs, it is likely that Flt3L is directly signaling on this precursor populations and 

this might account for the ILC enhancement we observe.  

 

ii. Why do ILCs have enhanced function in BRGSF HIS mice? 
 

All ILC populations detected in BRGSF HIS mice demonstrated an increased 

functional competency after Flt3L treatment. We postulate that the mechanism underlying 

this increased function is probably linked to the boosted myeloid compartment that provides 

an enriched niche with higher cytokine availability.  It has been shown in several mouse 

models that NK-cell preactivation by DCs is required for an efficient immune response 

against viral infections and tumors375,376. Further to the transpresentation of IL-15 that 

promotes not only proliferation and survival of NK cells but also prime protective responses, 

DCs are capable of producing a myriad of other key factors. For instance, IL-12 production, 

particularly by infDCs, efficiently stimulates IFNγ secretion by NK cells, and this is greatly 

enhanced after microbial-mediated activation of TLRs in DCs. When IL-18 is present, the 

expression of IL-12 receptor is upregulated rendering the NK cells more responsive. This 

synergy between IL-18 and IL-12 enhance, in turn, NK cell cytolytic activity377.  The release 

of type I IFNs by pDCs and CD141+ cDCs also stimulates NK cell cytotoxicity particularly in 

the context of viral infection and provoke the upregulation of stimulatory receptors such as 

CD69 378.  

The presence of functional mature DCs in our model accompanied by the increased of 

ILCs creates an ideal system that is susceptible to viral infections thus providing a platform to 

observe the very important interplay between those two families. Indeed, the presence of viral 

dsRNA triggers TLR3 activation both in NK cells and in DCs that engage in a crosstalk that 

promote IL-12 mediated NK activation and the selective survival of mature DCs (NK cell-
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mediated “editing” of DCs) and the eventual induction of Th1 responses. Mouse models of 

cytomegalovirus showed that NK cells control the frequency and length of viral antigen 

presentation by DCs 379,380, highlighting the central immunoregulatory role of NK cells in 

CMV infection. In humans NKG2D and NKp46, which are expressed by BRGSF mice where 

found to be involved in the recognition of influenza-infected DCs triggering the activation 

and immune response381.   

The phenotypic similarities between NK cells in HIS mice and in normal human 

tissues suggest that HIS mice provide a relevant model to study NK receptors in vivo under  

certain conditions. This could be especially interesting in the context of infectious diseases, 

for example during the expansion of CD56+NKG2Cbright NK cells in response to HCMV98.  

The role of DCs and NK cells in viral infections has been already explored in a few 

reports involving humanized mice. For example, NRG mice disclosed an opposing role of 

pDCs in HIV-I replication and promotion of the immunopathogenesis that depends on IFN-I 

providing hits for novel therapeutic strategies 382,383.  

Other factors, such as chemokines serve as mediators in the DC-NK interplay. This is 

the case of CX3CL1, which is a soluble and membrane-bound chemokine expressed by DCs 

and up-regulated upon maturation. NK cells express CX3CR1 and its activation triggers an 

IFNγ response384.  

In the same way, ILC2 and ILC3 responses are enhanced in the presence of the 

enriched cytokine environment created in our model. The range of cytokines produced by 

DCs includes IL-1b, IL-4, IL-6, IL-21, IL-23 and IL-33, which have various activating roles 

both in Th cells and in ILCs as discussed earlier in this manuscript385,386. In our Flt3L boosted 

model, both the basal expression and the enhanced release of these cytokines upon DC 

activation provide stimulatory signals that activate ILCs more efficiently than the non-

boosted system. 

 

iii. How do ILC develop in BRGS-based HIS mice? 
 

Subsets of ILCs develop during the fetal period (particularly the LTi cells that 

promote organogenesis of lymphoid structures) and which then persist during adult life133,186. 

While the fetal development is absent in the humanized mice setting, leading to the lack of 

LTi cells and likely other subsets of ILC3s387, post-natal ILC development could potentially 

follow the same process than in the human system. The presence of adaptive lymphocytes 
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and NK cells proves that CLPs in HIS mice are capable of giving rise to lymphoid progeny. 

In mouse studies, the differentiation of CLPs into mature ILCs seems to follow the same 

scheme with progenitor populations existing in both embryos and adults. However, parabiosis 

studies in mice revealed that the replacement of tissue helper ILCs is minimal during 

adulthood, in contrast to NK cells144.  Since human engraftment takes place after-birth in HIS 

mice, that would explain the better reconstitution of NK cells in comparison to ILCs and 

would be a major limitation for the latter. Therefore, only “adult” ILC development would 

take place, thus lessening the ILC heterogeneity. Nevertheless, it is not known whether also 

potential neonatal-developed ILC progenitors can contribute to the adult ILC pool and maybe 

compensate for the fetal deficiency. In that case, the post-birth timing of the human 

reconstitution would be critical on the progeny potential of the precursors and should be 

taken into account.  

ILC diversification is regulated by the upregulation of signature transcription factors 

but the environmental signals that drive that regulate this process are poorly understood. 

Several TFs are known to be involved in the development of NK cells while hILC1 

development program is less well appreciated, as reviewed elsewhere 133,388. The common 

trait of type I ILCs is the capacity to produce IFNγ, which is regulated by the transcription 

factor T-BET. It is possible that the signals driving T-BET expression are linked to ILC1 

commitment, although there is not clear evidence to support this hypothesis. T-bet is induced 

in two waves: the first comes after TCR or IFNγ-STAT1 signaling and the second by IL-12 

mediated activation of STAT4. Later on, the IFNγ produced by the type I cell maintains T-

bet expression in a positive feedback loop 389. HIS mice could potentially support that process 

since the T-BET inducers, IFNγ-STAT1 and IL-12-STAT4, can be found in humanized mice. 

Nevertheless, whether this signaling occurs in an appropriate spatio-temporal setting that 

favors ILC development has not been addressed. 

ILC2 specification and function depend on two transcription factors, RORα and Gata-

3. Transient Notch signal has also been shown to have a role in that process in CLP cultures 

and this has been further suggested in vivo since ILC2Ps expanded upon signaling through 

Notch2 390. Given that OP9 cell lines ectopically expressing Notch ligands can drive both 

mouse and human T cell development 391, the observation of ILC2s in BRGSF mice would 

imply interspecies Notch signaling also in vivo in humanized mice. On the other hand, 

although mainly secreted by necrotic cells after tissue injury, IL-33 can also be produced by 

DCs at low levels, being further enhanced by DC stimulators such as LPS or PGE2. As 
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suggested in the literature, the synergy between Notch, IL-7 and IL-33 after Flt3L could drive 

the increased development of the Gata-3 ILC2s observed in BRGSF mice.  

It is well appreciated that RORγt is the TF designating mouse ILC3 commitment and 

recently it has been, as well, supported in humans after the identification RORγt+CD34+ cells 

as lineage-specific progenitors of ILC3 that are enriched in tonsils and intestinal LP392. 

However, the environmental cues that drive the upregulation of RORγt are not as clear. Both 

in the fetal and the adult development of ILC3 Notch signaling seems to be involved, at least 

partially, and this signaling is dependent on the TF aryl hydrocarbon receptor (AHR). In 

mice, ILC3 development is indirectly regulated by the intestinal microbiota and the derived 

xenobiotic substances are sensed by AHR393. Deficiencies of Ahr-/- mice in the development 

of a number of cell lineages including several T cell subsets and also of ILC3 confirmed its 

indispensability. Given the notable presence of ILC3 in our model these interactions might be 

taking place in the mouse or otherwise alternative pathways may give rise to human ILC3s. It 

would be interesting to examine RORγt-expressing precursor populations and to assess their 

progeny potential in vivo as well as the dependency on Notch, AHR and different types of 

microbiota133,394. Furthermore, BRGSF mice can provide the opportunity to study tissue 

specific properties of those precursors and also the developmental relations between different 

ILC subsets. 

  
iv. Are HIS mice relevant for human lymphocyte development discovery?  

 

While mouse ILC development has been dissected in diverse ILC precursor stages 
133,395, the human hematopoietic hierarchy is less well characterized. Downstream of CLP only 

the NKP, mentioned earlier, has been described both in vitro and in vivo giving rise only to 

cytotoxic NK cells but not other hILCs396. Regarding hILCs, several reports have identified 

putative human progenitors committed to a specific ILC group but any has provided evidence 

of an in vivo ILC common precursor 392,397,398. The study of mature ILC populations described 

in the first part of this thesis set a precedent for the further exploration of human precursor 

populations in our model. 

Human peripheral blood studies conducted in the laboratory identified a 

CD117+CD127+ ILC-like population that does not express signature transcription factors and 

is not capable of producing cytokines, but can give rise to mature ILCs after in vitro culture. 

Analysis of central and peripheral organs of reconstituted HIS mice gave rise to the 

observation of a similar cell population. These Lin-CD7+CD127+CD117+ cells are present in 
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BM, spleen, lung and liver and, similarly to the human counterpart; do not express EOMES, 

T-BET, RORγt or GATA-3 at the level of the mature ILCs. Furthermore, while no cytokine 

production was observed ex vivo, when sorted and cultured with IL-2, IL-7, IL-1β and IL-23, 

these cells expanded and acquired the capacity to produced IFN-γ, IL-13, IL-22 and IL-17 in 

different proportions depending on the mouse. The characterization of an ILC precursor 

population in both the human system and the HIS mice provides an excellent example of the 

power of HIS models to recapitulate human immunobiology. Although we did not have 

access to BM tissues, the presence of ILCP in humanized mice BM suggests that this is the 

case also in humans. In that case, ILCP would account for an ILC precursor that arises from 

the BM and patrol through the circulation the peripheral tissues providing an in situ source of 

ILCs upon infection or inflammation. Further studies in humanized mice may help shed light 

on the mechanisms that regulate ILCP responsiveness within different tissue environments. 

 

v. Immunotherapeutic implications: beyond the NK cells 

 
The enriched ILC development in Flt3L-boosted BRGSF mice and their relevant 

tissue distribution and functionality opens a wide range of possibilities for studying the 

steady-state development and biology and the role of this cell family in immunosurveillance 

and anti-viral responses.   

Based on its phenotypic resemblance and the capacity to produce type I cytokines it 

has been assumed that ILC1 may be involved in Th1 responses similar to cytokine producer 

NK cells. However, their actual contribution to inflammation has not been fully explored. As 

with NK cells, murine studies have revealed an important role for ILC1 in mediating 

immunity against intracellular pathogens like T. Gondii 399 and in tumor immunosurveillance 
400 but few studies have been reported yet in any of these diseases in the human system. Only 

a positive correlation has been reported in non small-cell lung tumors between the 

intratumoral type 3 ILC numbers and the clinical outcome195. Despite this protective role, IL-

23 has been detected in various human cancers, and increased IL-17 and IL-23 expression 

correlated with severity of the disease and worse prognosis. Human tumor models are needed 

to dissect the role of ILCs in tumorogenesis and study the impact of its modulation as a 

therapeutic approach. 

In humans, ILC1s are increased in patients with chronic hepatitis B infection and they 

are associated with the hepatic damage 401. Many reports have demonstrated that ILCs are 
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mostly tissue resident and only at later time points of the infection tissues get replenish from 

circulating ILCs or ILC precursors 144. However, usually only ILCs in peripheral blood can be 

studied humans while the HBV humanized mouse models could provide further 

understanding of the involvement of ILC1 in hepatitis infection. Mouse models harboring 

both the immune system and human hepatocytes have been created that support the natural 

course of acute HBV infection and chronic hepatitis 402–404. Combination of these systems 

with the BRGSF model we present here could provide a better understanding of the virus 

pathogenesis and its interaction with the innate immune system.  

There are limited data on the role of ILCs in other human infectious diseases. 

Recently a humanized NSG mouse model showed reduced ILC3 numbers, as observed in 

chronic HIV patients, and suggested a mechanism dependent on pDCs for that cell reduction, 

which was reserved after antiretroviral therapy 383. Strikingly, filarial worm infection in 

human provoked an expansion of type 2 ILCs suggesting a role of these cells in immune 

defense as previously demonstrated in mice 178.  Any HIS model has been developed to our 

knowledge that could shed light on the protective role of ILC2 in worm infection so far. 

IFNγ producing CD127+ ILC1s have been identified in human gut and they are 

increased in patients of Crohn’s disease. The induction of acute or chronic inflammatory 

bowel disease (IBD) using chemicals such as dextran sodium sulfate (DSS) could be 

achieved in BRGSF mice recapitulating the observations in human. In this line, a humanized 

NSG model of IBD has revealed that the increase in ILC1s is a direct consequence of acute 

inflammation and not due to a long-term ongoing inflammatory state147. Intestinal 

inflammation is also associated with type 3 ILCs since their phenotypes are altered in patients 

with IBD with selective enrichment in inflamed tissues. Their potent capacity to produce IL-

17A and IL-22 greatly contribute to the inflammation given that ILC depletion or blockage of 

those cytokines abrogates colitis in mice, although the depletion strategy used in that study 

was not specific for ILC3148. Nevertheless, this pathogenic role in chronic intestinal 

inflammation needs to be confirmed in human IBD models. Strikingly, mouse IL-22 

producing ILC3s are necessary for fighting acute bacterial infection since IL-22 blockade 

exacerbated the associated inflammation likely resembling the situation in human E. Coli 

infections. Furthermore, IL-22 producing cells are necessary for tissue repair particularly in 

the context of IBD rising more questions on the potential role of this ILC subset in human gut 

immunity405.  
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ILC2 play a pathogenic role in many inflammatory respiratory diseases as well as in 

viral related diseases in the mouse, but their phenotype and distribution differ from humans. 

In humans, higher proportions of ILC2s have been observed in patients of chronic 

rhinosinusitis and allergic asthma while the tendency is inversed for chronic obstructive 

pulmonary disease, where both lung tissues and PBMCs contain less ILC2s than in healthy 

individuals. The mechanistic explanations for those variations are largely unknown 

highlighting the need for better models that reconstitute human ILC2s and myeloid cells, 

particularly granulocytes and mast cells, which are the main responsible for mediating 

allergic responses. Such a model could be the NOG IL-3/GM-Tg with contain human IL-3 

and GM-CSF as transgenes leading to the enhancement of the myeloid compartment, 

particularly basophils and mast cells 364. This HIS mouse model recapitulated some of the 

events occurring in asthmatic inflammation upon administration of IL-33 and should provide 

an opportunity to study the involvement of ILC2 in the pathology. 

ILCs sense signal cytokines shed by myeloid and non-hematopoietic cells and 

respond with the production of effector cytokines that active local innate and adaptive 

effector function thus behaving as integrators of the immune response. Rapidly after infection 

or stress ILC produce type 1, type 2 and type 3 cytokines that shape the adaptive response 

through expression of MHC class II molecules and regulation of DCs406. The presence of 

ILCs, T cells and DCs in humanized mice offer a means to better understand the crosstalks 

among the three-effector cells in a tissue specific manner in homeostasis and in the context of 

inflammation. 
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CONCLUDING REMARKS 

 
In a context in which the divergence between mouse and human immune system is 

increasingly appreciated, my thesis aimed at developing a humanized mouse model that 

allows researchers to better understand human innate immunity and to bridge the gap with the 

clinic. For the first time, we describe a humanized mouse model that supports the 

development of all three ILC subsets at high levels and functionally competent in steady 

state. Furthermore, we show that humanized mice are capable of providing valuable 

information about unknown developmental pathways in human hematopoiesis.  

One challenge of ILC research is to understand how these cells interact with other 

innate, adaptive and non-hematopoietic cells to resolve inflammation. Over the last decades 

others and we have set up disease models easily applicable to our BRGSF system or others 

designed to address specific questions of the immune response. These “next generation” HIS-

pathology models, that could be patient-personalized, have the potential to uncover new 

aspects of ILC biology and to offer a platform to manipulate ILC responses thus providing 

immune protection.  
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14.1. Introduction 

Natural Killer (NK) cells were initially identified by their ability to spontaneously lyse tumor 

cells without prior activation, and early efforts focused on understanding the mechanisms 

controlling NK cell cytotoxic activity. An equally important issue was why and how ‘natural 

killers’ did not attack self-tissues (NK cell ‘tolerance’). It was later learned that NK cells use 

germ line-encoded inhibitory NK cell receptors that distinguish self-MHC from ‘altered’, 

‘stressed’ or non-self-MHC molecules expressed at the cell surface. Thus, NK cells and 

adaptive lymphocytes (B, T) use fundamentally different strategies to detect invading 

pathogens, with NK cells surveying self MHC for alterations (stress, transformation), as 

opposed to B and T lymphocytes that detect foreign pathogens or pathogen-derived 

peptides, respectively. 

Infection often leads to changes in the expression of cell surface molecules. This 

indirect ‘signature’ can be ‘read’ by lymphocytes that patrol tissues. Many viruses down-

modulate MHC class I expression on the cells they infect, and as such, become targets for 

NK cells that survey self-MHC molecules at the cell surface. The essential role of NK cells 

in anti-viral defense is demonstrated by the increased susceptibility to infections 

(particularly herpes and papillomavirus) observed in NK cell-deficient patients (1). 

Moreover, some viruses have evolved mechanisms that allow their potential escape from 

NK cell recognition. These include virus encoded proteins that complex and inhibit ligands 

for NK cell activating receptors, as well as proteins that interfere with soluble factors 

required for the inflammatory response. In contrast, cellular transformation does not 

necessarily lead to the reduced expression of MHC class I molecules but is more generally 

associated with the inducible expression of ‘stress’ proteins. Ligands for NK cell activating 

receptors (including NKG2D or natural-killer group 2, member D expressed by all NK cells) 

represent another detection system that operates independently of the inhibitory MHC-

specific NK cell receptors. 

Only a fraction of peripheral NK cells (in mice or man) truly act as ‘natural killers’, 

while most NK cells possess additional effector molecules that allow them to modify cells 

within their microenvironment. These include soluble cytokines and chemokines that can 

amplify immune recognition via up-regulation of MHC molecules on target cells (IFN-g), 

activate neutrophils (TNF-a), recruit hematopoietic cells (GM-CSF) and potentially suppress 

the inflammatory response (IL-10). Thus, NK cells are involved in different steps of the 

immune response (detection, first-line defense, and subsequent amplification), they 

interface directly with cells involved in the adaptive immune responses (dendritic cell cross-

talk), and they are potentially involved in the regulation of autoimmunity. Diverse NK cell 
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functions can be modulated and in some cases evolve to provide new biological effectors 

depending on environmental signals. 

In the present chapter, we briefly review the main features of NK cell development 

and function before summarizing knowledge on the interactions between NK cells with HIV. 

We will then turn to a review of the most recent advances regarding NK reconstitution in 

HIS mice. We will conclude by trying to give the reader an idea of the current status and 

potential of HIS mice for deciphering NK cell-mediated response in HIV infection.  

 

14.2. NK cells in mice and man 

 
14.2.1 NK cell development: a step-wise transcriptional process that generates 

diverse functional subsets 

Several mature NK cell subsets have been described that demonstrate unique 

tissue localizations, as well as phenotypic and functional differences. We will not review this 

subject that has been extensively reported (2, 3), but will only remind the readers that the 

origins of this diversification remain poorly understood. Several mechanisms are likely 

involved, certainly those controlling tissue-specific homing, but also the presence of unique 

environmental cues that condition the activation states of tissue-resident NK cell subsets 

(4). 

The development of fully differentiated NK cells from pluripotent hematopoietic stem 

cells (HSCs) is controlled by the integrated influence of cytokines and growth-regulatory 

molecules that promote proliferation together with transcription factors that activate or 

repress lineage-specific gene expression (5). The result is a stepwise transformation that is 

accompanied by an evolving pattern of receptors whose integrated and coordinated signal 

control and regulate the acquisition of the functional response (6). Three main stages of 

maturing NK cells can be recognized: NK cell precursors (NKP) that are committed to the 

NK cell lineage, immature NK (iNK) cells that are acquiring phenotypic and functional 

competence, and mature NK (mNK) cells that have completed the developmental process. 

The process by which a hematopoietic stem cell (HSC) becomes a committed NKP 

is perhaps the most poorly characterized in terms of receptor expression and transcriptional 

activity. Recently, this stage has been refined with the use of reporter mice and additional 

cell surface markers that define developmental intermediates between the common 

lymphoid progenitor (CLP) and a ‘refined’ NKP (7, 8). Similarly, human NK-lineage 

precursors have been isolated from several tissues including BM, peripheral and umbilical 

cord blood, thymus, secondary lymphoid organs, liver and decidua (9-12). NKP are 

functionally defined in either species have potential to give rise to NK cells but no other 
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hematopoietic lineages. While this appears to be satisfied in the mouse (7, 8, 13), human 

pro-NK (CD34+CD38+CD45RA+CD7+) and pre-NK (CD34+CD45RA+CD117+CD94− CD122+) 

subsets retain some multi-lineage potential suggesting that these are not homogeneous 

populations of human NKP (14, 15). 

The transcriptional activity that restricts NKP potential to the NK cell lineage is not 

fully understood. The inhibitor of DNA binding 2 (Id2) is critical for NK development by 

preventing the transcriptional activity of E box TFs (16). Still, this is not sufficient to ensure 

NK cell lineage development, since Id2 is also required to generate distinct innate lymphoid 

cell (ILC) subsets from CLP (17). Presumably a combination of TFs are involved that may 

include Tox, T-bet (Tbx21) and Eomesodermin (Eomes) (18, 19). Recently, Ets1 has 

emerged as an early regulator of NK precursor development controlling Id2 and Tbx21 

expression (20). It is perhaps through combinatorial TF expression that the NK lineage 

diverges from CLP. This initial TF profile may also encode cytokine receptors (including the 

IL-2/IL-15 receptor β chain CD122) required for IL15 responsiveness. Once these 

precursors encounter a suitable IL-15-containing environment, the NK lineage potential 

may be reinforced, sealing NK commitment. 

The transition from NKP to iNK cells generates cells with partially mature NK 

phenotypes, at the cell surface (ie: with some but not all NK cell receptors) and with respect 

to effector cell functions. In the mouse, this stage is marked by acquisition of NK1.1 and 

NKp46, while in human NK cells this involves up-regulation of CD56 and NKp46 expression 

(4). Several TF are expressed in iNK cells, including the nuclear factor induced by IL-3 

(Nfil3, also known as E4-binding protein 4, E4bp4) (21-23) and the T-box factor Tox (24). 

Little is known how these TF control NK cell maturation in general, or the selective NK cell 

receptor expression profiles of iNK cells in particular. Concerning effector functions, most 

immature NK cells are not cytotoxic and do not secrete IFN-g, although some reports have 

proposed that iNK cells have distinct cytokine production profiles (25, 26). Gata3 plays a 

role in NK cell differentiation at this stage by regulating cytokine production (27). 

Interestingly, Nfil3/E4bp4 has been proposed to regulate Gata3 (23), providing a potential 

link between TF that control iNK cell maturation. 

The terminal differentiation of mNK cells is marked by the acquisition of DX5/CD49b 

in mice, whereas in humans this stage is achieved with the generation of CD56hiCD16− and 

CD56+CD16+ NK cell subsets. In both species, mature NK cells express receptors of the 

CD94/NKG2C family and also variable and stochastic expression of MHC class I-specific 

NK cell receptors (KIR in human, Ly49 in mouse). Many of these inhibitory receptors are 

involved in sensing target cell MHC expression (that indirectly measures cell ‘health’) and 

are critical regulators of NK cell maturation in the bone marrow and activation in the 

periphery. The mechanisms behind the ‘education’ process that generates KIR/Ly49 
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repertoires remains one of the greatest unsolved enigmas in NK cell biology. Other surface 

markers increase expression on mature NK cells compared to iNK, including CD11a, 

CD11b, CD16 and CD43. Some of these molecules are involved in cell adhesion and may 

be critical for allowing NK cell to eliminate target cells. The functional capacity of NK cells 

also increases as cells progress to mNK: perforin, granzymes, cytokines (IFN-γ, TNFs). 

These phenotypic and functional changes occur in parallel with shifting TF profiles: 

expression of Blimp1, Eomes, Tbx21, MITF, MEF and CEBP-g are up-regulated at this 

stage and deficiencies in these factors compromise NK cell effector functions. While not all 

TF/target gene associations are completely understood, both Blimp1 and Tbx21 appear to 

directly regulate cytokine, perforin and granzymes B production (18) (28). 

 

14.2.2. Roles for cytokines in NK cell development and function 

NK cell differentiation is regulated by several distinct cytokines among which the 

common gamma chain-dependent cytokines have a decisive role. In particular, IL-2, IL-7, 

IL-15 and IL-21 display specific and overlapping roles in the generation and maintenance of 

NK cell and may have a differential impact on the development of specific NK subsets (29). 

Studies have shown that CD56hiCD16- NK cells in man express the high affinity trimeric IL-

2Rabg receptor and are exquisitely sensitive to low levels of IL-2, where as CD56+CD16+ 

NK cells in man and all NK cells in mice express the intermediate affinity IL-2Rbg complex 

and can only be triggered by higher (non-physiological) levels of IL-2 (30-32). Moreover, 

mice or humans deficient for IL-2 or IL-2Rα do not have apparent defect in peripheral NK 

cell reconstitution (33-35). These studies indicate that IL-2 may have a dose-dependent 

effect on the maturation and function of peripheral NK subtypes, but does not play a role in 

mainstream NK cell development in either species. IL-15 exerts its effects via ‘trans-

presentation’ by soluble IL-15Rα or through membrane bound IL-15Rα to cells expressing 

the IL-2Rbg complex (36-43). In contrast to IL-2, mice deficient for IL-15 or IL-15Rα have 

defects in NK population, which confirms the primary role of IL-15 for the development and 

homeostasis of NK cells (44, 45).  Both cytokines are known to stimulate the proliferation, 

survival and activation of NK cells and have broad impact on other lymphoid cells. 

Abundant granzyme B and perforin can be produced from pre-stored mRNA in NK cells 

after stimulation of IL-2 or IL-15 to increase NK cell mediated cytolytic activity (46, 47).  

Unlike IL-2 and IL-15, IL-7Rα is not expressed by most circulating NK cells. 

However, a subset of NK1.1+ cells in murine thymus expresses IL-7Ra as do the human 

CD56hiCD16- subset (48, 49). Mouse CD127+ NK cells distinguish themselves from 

classical NK cells by their dependency on IL-7 and GATA-3 and display high cytokine 

secretion potential but low cytolytic activity. Whether IL-7 can boost the homeostasis of NK 
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cell subsets in vivo remains to be tested. IL-21 primarily produced by activated CD4 T cells 

and plays several roles in immune responses, primarily by inducing the functional 

maturation of B, T and NK cells. Although IL-21 is not required for mainstream NK cell 

development, this cytokine can co-stimulate NK cells (with IL-15 and IL-12) to proliferate 

and potentiate their ADCC activity (50-52).  

Apart from common gamma chain dependent cytokines, many other cytokines can 

function to regulate mature NK cell responses. For example, IFN-α/β is known to induce 

cytolytic activity of NK cell during viral infections, IL-12 and IL-18 are potent stimulators of 

IFN-a secretion, and IL-27 can promote ‘regulatory’ activity (IL-10) from human NK cells 

(53). In addition, negative regulators of NK cell function likely include IL-10, TGF-b and in 

some cases, type I interferons (54).  

 

14.2.3. Mechanisms of NK-cell mediated responses 

The major effector functions of NK cells (cytotoxicity and cytokine secretion) are 

controlled through an integration of signals that arise from an array of activating and 

inhibiting receptors and the presence of pro-inflammatory cytokines. The inhibitory 

receptors, encoded by the killer Ig-like receptor (KIR) multi-gene family in humans and the 

C-type lectin-like genes family (Ly49) in mice, are responsible for the MHC ‘self-tolerance’ 

through recognition of host MHC class I molecules (HLA in humans) (55). While this 

education process is poorly understood, it has been shown that potentially ‘autoreactive’ 

NK cells become functionally hyporesponsive during this process (56). This therefore 

selects for NK cells that react to targets cells that lack normal expression of MHC-self 

molecules (due to viral infection or malignant transformation), the so-called ‘missing-self’ 

hypothesis (57). Loss of inhibition then allows the subsequent activation of the NK cells in 

immune responses. Rarely the situation is ‘black and white’ with complete loss of MHC 

expression. More often, it is the balance between activation and inhibition that determines 

the outcome. For example, when a NK cell recognizes a stress- or infection-induced ligand 

via an activating receptor (such as CD16, NKG2D or natural cytotoxicity receptors NKp30, 

NKp44 and NKp46) in a low MHC-I expression setting, the NK cell becomes activated and 

the “killing machinery” is engaged. This involves the exocytosis of cytotoxic granules 

containing perforin and granzymes via an immunological synapse. Additionally, small 

peptides and the pro-apoptotic molecules Fas ligand and TRAIL (TNF-related apoptosis-

inducing ligand) may also be delivered. These induce a death-inducing signaling complex 

that leads to the induction of caspase-mediated apoptosis (58, 59).  

NK cells bear the CD16 receptor (FcγRIIIa) for IgG and can mediate antibody-

dependent cellular cytotoxicity (ADCC) especially against antibody-coated tumor cells. 
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CD16 engagement triggers NK cell activation, cytokine production and degranulation that 

leads to target cell lysis. Some HIV-specific peptides have been proposed as possible 

ADCC targets for a NK cell-based vaccine, as reviewed below, as well as, epitopes 

unregulated during tumorigenesis, such CD20, Her-2/neu, epidermal growth factor 

receptor, vascular endothelial cell growth factor, just to mention a few (60). The potential of 

this approach is strongly dependent on FcR alleles and HLA/KIR-mediated NK cell 

education (61). 

Human and mouse NK cells are responsive to soluble factors, such as IL-12 and IL-

18, that lead to robust secretion of IFN-γ, TNF-α, granulocyte macrophage-colony-

stimulating factor (GM-CSF), IL-10, and IL-13 (62). Some subsets of NK cells appear more 

responsive in this respect (CD56hiCD16- human NK cells, CD127+ mouse NK cells), but it 

should be stressed that production of certain cytokines (for example IFN-g) is a general 

property of all NK cells. The cytokines produced by NK cells may depend on the 

combination of monokines present within the environment. The cytokine-mediated 

activation of NK cells shapes the subsequent recruitment and function of other 

hematopoietic cells. In the case of anti-viral T-cell responses, NK cell activation regulates 

CD4 T cell-mediated support for the CD8 T cell control of viral pathogenesis, while during 

infections NK cells shape recruitment and activation of myeloid cells (63, 64). 

Several observations from in vitro experiments and studies with mouse models as 

well as with tumor and transplantation patients confirmed the regulatory effect of Treg cells 

on NK cell activity. Treg cells inhibit NK cell proliferation, cytotoxicity and IFN-γ secretion 

under certain conditions through a TGFβ-mediated interaction (65) that may be 

counteracted by the accumulation of IL-15Rα expressing DCs, or, as claimed in recent 

works, by a IL-2-dependent signaling. This mechanism implies a CD4+ T cell secretion of 

IL-2 that is taken up by Treg cells, thus preventing NK cell stimulation (66). Another 

possible player in the crosstalk network around NK cells are neutrophils as reported 

recently based on inflammation in vitro experiments. It remains unknown, however, to 

which extent these two cell types cross-regulate activities in vivo (67). 

Over the last years researchers have speculated with possibility that NK cells might 

display immunological memory, a trait that has historically characterized adaptive immunity. 

A number of viral antigens, including HIV-1, elicit recall responses from hepatic mouse NK 

cells by a mechanism dependent of the chemokine receptor CXCR6 (68). Moreover, MCMV 

infection generates a population of NK cells with heightened effectors functions that are 

reminiscent of memory T cells (69). Whether ‘memory’ NK cells exist in other disease 

states or have an important role in human immune responses remains to be determined. 
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14.3.  NK cells in HIV infection 

 
14.3.1. NK cell-mediated control of HIV infection 

NK cell-mediated innate immunity appears to play a pivotal role in restraining HIV-1 

viral replication at earlier stages of infection as demonstrated by the correlation between 

the levels of viremia observed in patients and the expression of specific combinations of 

KIR-MHC class I alleles (70). Moreover, increased NK-cell mediated responses have been 

documented in sero-negative exposed individuals compared to healthy and HIV-1-positive 

patients (71). In general, an increase in CD56+CD16+ subset and a reduction in 

CD56hiCD16− NK cells are observed early in HIV-1 infection. As the infection becomes 

chronic, Siglec-7 expression on NK cells increases, followed by the emergence of a 

population of functionally anergic NK cells that are CD56- and present increased expression 

of inhibitory receptors (72, 73). These observations suggest that ‘exhausted’ NK cell 

phenotypes can result from excessive activation in the context of prolonged virus 

replication. In some studies, CCR5 expression on NK cells is also upregulated in viremic 

patients (74) that could indicate hyper-activation. In vitro, exposure of NK cells to HIV 

envelope proteins can induce some of these changes in gene expression (75, 76).  

The putative mechanisms that NK cells use to restrict HIV replication are not fully 

eludicated. Both cytolytic and secretory mechanisms are possible, including granule-

mediated lysis of virally infected target cells and/or production of soluble factors that limit 

viral spread. Along the latter, NK cells can produce CC-chemokine ligand 3 (CCL3), CCL4 

and CCL5, all of which are ligands for CCR5 co-receptor required for HIV entry (77). 

For many years, a focus of research has been the identification of viral proteins that 

could be targets for elimination of virally infected cells by antibody-mediated cellular 

cytotoxicity (ADCC). It has become now clear that directing ADCC responses toward 

particular HIV epitopes may be more efficient for controlling viremia (78). However, the 

wide variety of viral strains complicates the identification of a conserved epitopes capable 

of triggering a robust and broadly reactive ADCC response. Some potential vaccine targets 

have been proposed, including Vpu (a multifunctional protein from HIV-1 that can be found 

on the surface of infected cells) or the Env gp120 epitope defined by mAb A32 (79, 80).   

Epidemiological studies have delved into the importance of KIR-HLA interactions in 

the NK cell-mediated control of HIV, which is already extensively appreciated for T-cell 

responses, however, there is not yet complete consensus regarding the specific allele 

variants associated with better HIV-1 disease outcomes (81). 
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14.3.2. Viral evasion and modulation of NK cell phenotype and function in HIV 

infected patients 

NK cell function in HIV infected patients has been shown to be defective in many 

respects. One direct mechanism by which HIV can directly modulate NK function is through 

its viral proteins. HIV protein Tat inhibits NK mediated cytolysis by blocking calcium channel 

activity. This in turn inhibits the cytolytic capacity of NK cells through two distinct 

mechanisms: reduced degranulation and inhibiton of FasL upregulating (82, 83). Another 

example concerns the HIV envelope protein gp120. Binding of gp120 to CXCR4, 

constitutively expressed on NK cells, can induce autophagy leading to NK cell death (84). 

While many viruses down-regulate MHC class I molecule during infection, HIV 

infected cells retain relatively normal levels of MHC class I molecules. Instead, HIV 

infection, via the viral protein Nef, selectively reduces expression of HLA-A and HLA-B that 

are mainly used to present viral peptides to cytotoxic T cells. In contrast, Nef does not 

modify expression of HLA-C and HLA-E molecules that serve as ligands for inhibitory NK 

cell receptors (85-87). In addition, Nef also binds and degrades MICA and ULBPs in HIV 

infected cells, which are ligands for the NK cell activating receptor NKG2D (88). Nolting et 

al reported that chronic HIV-1 infection is associated with a specific defect of NKG2D-

mediated NK cell activation, due to elevated levels of the soluble (shed) MICA that are 

released by HIV-1 infected CD4+ T cells into patient sera. Increased serum MICA results in 

NKG2D down-regulation and a profound dysregulation of NK cells effector functions (89). 

Hence, by differentially modulation of HLA molecules and NKG2D ligands on infected cells, 

HIV escapes from most antiviral activities mediated by CD8 T cell and NK cells. 

HIV infection perturbs the expression of activating and inhibitory receptors on NK 

cells resulting in the modulation of NK cell function. For example, NK cells from HIV 

infected patients have increased expression of receptors like CD94, CD161 and KIR2DL1 

(90, 91), and decreased expression of NKp44 and 2B4 (92, 93). The molecular 

mechanisms that generate NK receptor expression modulation during HIV infection remain 

unknown. Possible causes include HCMV co-infection or chronic activation of immune 

system following loss of containment of gut commensal flora. 

NK cell activation can be modulated by a ‘cross-talk’ between NK cells and other 

immune cells, especially dendritic cells. pDCs are the major type I IFN producing cells 

during viral infection, and IFN α/β primes NK cells for cytolytic activity. During the course of 

disease, HIV-infected pDC are progressively depleted resulting in a decrease of IFN-α 

levels (94, 95). This may be one mechanism behind the suppression of NK-mediated lysis 

of autologous infected CD4+ T cells in HIV infected patients. ‘Classical’ cDC from HIV 

patients produce less IL-12 and subsequently fail to activate NK cells for IFN-γ and TNF-α 
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secretion (96, 97). Saidi et al. demonstrated that the cytokine High Mobility group Box 

protein 1 (HMGB1) plays a role as an immune ‘alarmin’ during HIV infection (98). HMGB1 is 

an endogenous danger signal produced by innate effectors such as NK cells, which can be 

released during states of cellular stress or damage. HMGB1 normally promotes the NK-DC 

cross talk but, in the context of chronic HIV infection, triggers viral replication in DC and 

blocks NK-mediated killing of infected DC thus contributing to viral persistence (99). 

Increased levels of circulating HMGB1 are detected in HIV-1-infected individuals and are 

associated with high viral loads (100). Lastly, FoxP3+ Tregs can suppress both T and NK 

cell responses, and increased numbers of activated Tregs have been observed in HIV 

patients (101). Treg suppression of NK cell function may be mediated by TGF-β dependent 

NKG2D down-regulation (102). Moreover, circulating levels of other immunosuppressive 

cytokines (like IL-10) are increased in HIV infected patients (103).  Collectively, the 

dysregulated NK cell ‘cross-talk’ results in reduced NK cell functions and an inefficient anti-

viral response during chronic HIV infection.  

While it is generally assumed that NK cells play a critical role in the control of HIV 

infection, in some cases, a paradoxical role for NK cells in promoting HIV replication or 

pathology has been observed. A conserved peptide in gp41 (called 3S) can induce the 

expression of a NKp44 ligand (NKp44L) on non-infected CD4+ T cells rendering them 

targets for NK cell elimination (104). Nef can inhibit NKp44L expression thereby protecting 

infected CD4+ T cells from NK cell lysis (105). Blocking NKp44L expression by anti-3S 

antibodies protects autologous CD4+ T cells in SHIV-infected macaques from NK cell 

cytotoxic activity, and can preserve CD4 central memory T cells (106). Viral proteins may 

therefore re-configure innate immune cell function to promote viral persistence. 

 

14.3.3. Advances in HIV therapies that target NK cells 

In the past three decades, tremendous efforts have been devoted to create an 

efficient vaccine to combat HIV. The discovery of new broadly neutralizing Abs and vector-

based vaccines to induce cell-mediated immunity provide hope, however we still lack an 

efficient vaccine that can induce HIV specific adaptive immunity. In recent years, the role 

for innate immune responses, and especially those mediated by NK cells, in the early 

resistance to HIV and in the control of persistent infection have been extensively studied. 

While HARRT treatment can provide an important degree of viremic control, NK cell 

numbers and functions are generally not normalized during treatment suggesting the 

existence of additional mechanistic deficiencies (103, 107-109).  

Several new approaches have been proposed to restore NK cell function in HIV-

infected individuals. Expression of inhibitory receptors on NK cells increases in HIV infected 
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patients, and blocking these receptors with mAbs or small molecule compounds may help 

increase NK cell activation. Indeed, mAb masking of inhibitory KIRs increases the cytolytic 

activities against autologous infected cells (110). Still, NK cells may be generally activated 

by this approach, and potential side effects need to be carefully assessed before using this 

approach in HIV patients.  

As cytokine levels are dysregulated in HIV infected patients, exogenous delivery of 

IL-2, IL-15, IL-21, and/or IFN-α/β may help boost the NK cell homeostasis and function. In 

particular, IL-2 has been approved clinically as a therapy to treat metastatic melanoma and 

renal cancers (111). Although the treatment is associated with dose dependent toxicity, 

anti-tumor NK and cytotoxic T cell responses are significantly improved. Still, immune cells 

are activated and Tregs are expanded during IL-2 treatment (112), so this treatment may 

lead to increased HIV infection and higher viral load. The combination of HAART and low-

dose IL-2 treatment may minimize the viral production while enhancing the antiviral 

activities. IL-15 also holds promise as an adjuvant for HIV therapy. Compared to IL-2, IL-15 

is less toxic and has lower mitogenic potential (113). IL-15 inhibits apoptosis of NK and 

CD8 T cells from HIV infected patients by up-regulating the expression of Bcl-XL. However, 

recent animal study suggests that although transient stimulation of IL-15/IL-15Ra 

complexes in vivo induces NK cell proliferation and activation, prolonged stimulation may 

impair NK phenotype and function (114). As with IL-2, the dose and duration of IL-15 

treatment must be carefully considered. IL-21 can strongly enhance ex vivo NK cells 

functions and prevents apoptosis with minimal stimulation of HIV replication (115). Lastly, 

as pDC numbers and functions are compromised in HIV infected patients, exogeneous IFN-

α/β priming of NK cell cytolytic activity could explain the viral suppression and decreased 

viral integration in treated HIV patients (116).  

 

14.4. Human immune system (HIS) mice: a tool to study human NK cell biology in 

vivo  

 
14.4.1 Human NK cell reconstitution in HIS mice  

Given the central role of NK cells in maintaining immune homeostasis and for 

immune responses during infection, inflammation and cancer, an in vivo model that can 

allow a better understanding of human NK cell development and function has multiple 

applications. Human Immune System (HIS) mice are generated after transfer of human 

CD34+ cells into suitably conditioned immunodeficient mice. Several different HIS mouse 

models are available and the reader is referred to recent reviews that describe these 

models in detail (117). Most HIS mice demonstrate clear evidence of multi-lineage human 
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hematopoietic reconstitution, with strong development of lymphoid cells and lower levels of 

myeloid cell reconstitution. Still, within the lymphoid lineage, not all lymphocyte subsets are 

reconstituted with equal efficiency. Human B and T cells are in general, well represented in 

HIS mice. In contrast, human NK cell reconstitution, as well as other innate lymphocyte 

subsets (gd T cells, NK-T cells) remains relatively low in these models.   

Despite the low levels of NK cell reconstitution, several studies managed to 

characterize the phenotypes and functions of the few NK cells that develop in NOD-based 

(NOG and NSG) HIS mice. Human NK cells are present in bone marrow and spleen of 

reconstituted NOG mice, and show cytolytic function against K562 tumor cells at high 

effector to target (E:T) ratios (118). Human NK cells from CD34+-transplanted NSG mice 

and supplemented with human IL-7 were generated that lack the surface expression of 

inhibitory receptors like KIRs. Most of these human NK cells displayed a CD56hiCD16- 

phenotype and appeared functional inert as they failed to kill K562 cells at low E:T ratios 

and only poorly produced IFN-γ after stimulation (119). Another study showed that almost 

half of NKp46+ NK cells in NSG mice are CD56- and require in vivo or in vitro activation to 

become CD56+ (120). 

Similarly, systemic NK reconstitution in BALB/c Rag2−/−Il2rg−/− (BRG) recipients is 

poor in terms of absolute numbers of CD3-NKp46+ cells (38). In contrast with NSG and 

NOG mice, CD56+CD16+ NK cells can be found in BRG mice but within the thymus and 

lymph nodes (121, 122). Still, human NK cells from BRG mice express NKp46, NKG2D, 

CD94 and KIRs, similar to their native human counterparts. The normal expression of 

CD122, NKG2A and CD161 suggest a functional competence of human NK cells in BRG 

mice that is confirmed by the degranulation displayed when co-cultured with tumor cell lines 

(38, 123). 

In the NOD–SCID–bone marrow–liver–thymus model (BLT mice), T cell 

development is prominent and highly efficient due to T cell education in a human thymic 

microenvironment. This results in a systemic T cell reconstitution (lymphoid and non-

lymphoid tissue, including gut, salivary glands, skin) that generates strong adaptive T cell 

responses. Nevertheless, NK cell reconstitution in BLT mice is still poor in terms of number 

of CD3-CD56+ NK cells (124).   

 

14.4.2. Approaches to improve human NK cell reconstitution and function in HIS 

mice 

NK cells represent 10-15% of lymphocytes in human blood, whereas current HIS 

models rarely achieve levels beyond 1-3% CD56+ NK cells within the human CD45+ cell 

gate. Multiple mechanisms may explain the poor human NK cell reconstitution and function 
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in HIS mouse models. One possibility is that IL-15 availability differs in the different 

recipient strains. NOD mice have a defective IL-15 allele, which normally contributes to the 

NK cell defect in this strain and might also affect human NK cell development in NSG HIS 

mice (125). While the IL-15 allele in the BALB/c background is functional, the levels of 

human NK cells in BRG HIS mice are not dramatically improved compared to NSG HIS 

mice. This observation raises the intriguing possibility that mouse IL-15 might not be the 

driving force behind human NK cell development in HIS mice. While mouse IL-15 can 

cross-react weakly with human cells (38), human IL-15 is more efficient in stimulating IL-15-

reponsive lymphocytes. Interestingly, in vivo neutralization of mouse IL-15 had little effect 

on human NK cell homeostasis in HIS mice, whereas blocking human IL-15 strongly 

reduced human NK cell development (38). Moreover, exogenous treatment of HIS mice 

with human IL-15 was shown to strongly improve human NK cell development and function 

in HIS mice (38, 122, 126). These observations predict that approaches that increase IL-15 

‘transpresentation’ will improve human NK cell homeostasis in HIS mice. 

Another difference in HIS models involves the host macrophage response to 

xenografted cells. SIRPα is an inhibitory receptor expressed by macrophages that 

recognizes CD47 expressed on most nucleated normal cells (127). The interaction between 

SIRPα and CD47 delivers a ‘Do not eat me’ signal to the macrophage and thereby protects 

the CD47+ target cell from phagocytosis. Human CD47 poorly interacts with most mouse 

SIRPa alleles, although in NOD mice, SIRPaNOD binds human CD47 with high affinity and 

provides a mechanism to explain the higher reconstitution of human xenografts in NOD-

based immunodeficient mice (127). As such, another possible reason for the poor human 

NK cell development in BRG HIS mice could be the enhanced phagocytosis of human NK 

cells due to poor SIRPa-CD47 interactions. This hypothesis has been tested using three 

different approaches: forced expression of mCD47 on human cells before reconstitution of 

BRG mice, creation of BRG SIRPaNOD congenic mice and creation of BRG hSIRPa 

transgenic mice (128, 129). In all these cases, human NK cell numbers are increased 

significantly but the frequencies of these cells are still low compared to that observed in 

human peripheral blood. Clearly additional mechanisms play a role in this process and 

further work is required in this area. 

A plethora of hematopoietic and non-hematopoeitic cells intimately regulate NK cell 

development and function. NK differentiation involves the interaction of NK cells with 

stromal cells and DC, pDC, Treg and myeloid cells (130-132). However, many of these cell 

types are not efficiently reconstituted in HIS mice and stromal cells are by definition of 

mouse origin in the HIS model. Studies have shown that distinct cytokines can selectively 

boost the engraftment of DC and Tregs in HIS mice (126, 133, 134). In the future, it will be 

interesting to systematically study the effects of diverse human cytokines (alone or in 
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combination) for NK cell homeostasis and function in HIS mouse; for these studies, 

hydrodynamic injection may offer a flexible approach to rapidly test cytokine effects.  

 

14.4.3. Future development of HIS mice to study NK cell responses in HIV infection 

HIV tropism is limited to human and chimpanzees (135). As many countries either 

ban or severely restrict the research on great apes, there is a pressing need to identify 

alternative in vivo models that can recapitulate the kinetics of HIV infection in man, and can 

be used to develop new therapeutics and screen vaccine candidates.  A relatively simple, 

reproducible, small sized and less costly animal model, ideally based in rodents, could 

provide a means to better understand HIV pathophysiology and test new therapies.  

In recent years, HIS mice have been used to model human HIV infections (135-

138). HIS mice have several unique advantages for the study of HIV. First, multiple cohorts 

of HIS mice can be generated from multiple, genetically distinct donors. This overcomes the 

intragenetic variables generated from clinical studies on pooled data from patient samples 

but also allows for analysis of genetic differences. Second, the continuous supply of newly 

generated immune cells in vivo during the course of HIV infection enables longitudinal 

studies on HIV viral persistence and evolution. Third, both laboratory-adapted and clinical 

isolates of HIV virus can be used in HIS mice to study HIV transmission and human 

immune response. Fourth, the access to all immune tissues, and in particular mucosal 

sites, will allow in-depth investigation of the biology of HIV, which has been limited in 

humans because of the difficulty in obtaining biopsies from infected patients. Moreover, 

multiple routes of HIV transmission have been shown to elicit pathology in HIS mice. 

Finally, new therapeutic or prophylactic approaches may be tested in HIS mice because of 

the capacity of these models to recapitulate normal human immune responses. 

In recent years, HIS mice have provided a better understanding of the early events 

of HIV infection and represent a useful platform to test new therapeutic approaches(139-

142). The success in modeling HIV infection in HIS mice has been tempered by the 

relatively weak anti-HIV adaptive immune responses that can be elicited in this context 

(136-138). It is not known whether anti-HIV NK cell responses occur in infected HIS mice, 

partly due to the inadequate reconstitution of human NK cells in HIS mice in general. Some 

of the aforementioned strategies to boost NK cell homeostasis in HIS mice should facilitate 

the study of NK cells during HIV infection. 

As alluded to earlier, it is not fully understood if NK cells are beneficial or detrimental 

in the control of HIV infection. HIS mice offer a means to dissect the role for NK cells in HIV 

biology. Whether human NK cells eliminate virally-infected T cells and DC or alternatively 

whether they attack uninfected human CD4 T cells expressing NKp44 ligands induced by 
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gp41-derived peptides can be tested. Once established, blocking antibodies or compounds 

could be tested to modulate the beneficial of detrimental effect from human NK cells on the 

evolution of HIV infection and disease. 

Harnessing the power of NK mediated ADCC in HIS model may be a new approach 

to identify novel HIV therapeutics. Previous studies on antibody responses against HIV 

infection were focused on neutralizing effect to block the entry of HIV viruses. Recent 

findings indicate that many previously identified non-neutralizing antibodies may actually 

play a role via ADCC. HIS mice with boosted NK cells could offer an in vivo model to 

evaluate the ADCC ability of those antibodies. In addition, as activated and proliferating T 

cells are the major targets for HIV infection, administration of anti-CD25 antibody may 

specifically deplete those cells by NK mediated ADCC. This hypothesis can be tested using 

HIS mice boosted with human NK cells.  

The absence of appropriate HLA class I molecules in most HIS models poses an 

issue for proper human NK cell education and function. In current HIS models, NK cells 

express low levels of KIRs, produce less IFN-γ and display lower cytolytic activity after 

stimulating with cytokines and tumor cells. In addition to the lack of appropriate cytokines, 

the absence of correct ‘educating’ HLA-KIR interactions may also account for these 

phenotypic and functional NK cell deficiencies observed in HIS mice. The use of HLA class 

I expressing HIS mice (143, 144) may provide a means to study the impact of MHC-KIR 

interactions to shape NK mediated responses during HIV infection.  

Vaginal and rectal transmission of HIV accounts for the majority of new 

transmissions and early virus replication occurs primarily in gastrointestinal tract (135). As 

such, NK mediated innate immunity may be critical for the early control of HIV replication at 

mucosal sites. However, the reconstitution of human NK cells at these sites is rather poor in 

most HIS models. Whether this is secondary to poor lymphoid structure development (145), 

or to defective NK cell maturation and homing, remains unclear. Alternatively, activation of 

the murine innate system during HIV infection, due to indirect effects of human cytokines 

that cross-react with mouse hematopoietic and stromal components, may also dampen 

human innate (and adaptive) immune responses. These are challenging issues for the 

future use and development of HIS mice to study HIV infection and disease pathogenesis.  

 

14.5. Concluding remarks 

Humanized immune system (HIS) mouse models provide a novel tool to better 

understand the contribution of NK cells to the immune response against HIV. Functional 

subsets of human NK cells can develop in HIS mice; these same mice have been shown to 

be permissive for HIV infection, replication and its subsequent disease manifestations. HIS 
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mice can therefore provide a basis to experimentally decipher the role for human NK cells 

in HIV pathophysiology. The ability to modulate NK cell function in HIS mice constitutes a 

tractable translational tool that could contribute to the development NK cell-based therapies 

and vaccines that limit HIV replication or accelerate the immune control of the disease. 
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SUMMARY

Innate lymphoid cells (ILCs) are a family of effectors
that originate from a common innate lymphoid cell
progenitor. However, the transcriptional program
that sets the identity of the ILC lineage remains
elusive. Here, we show that NFIL3 is a critical regu-
lator of the common helper-like innate lymphoid
cell progenitor (CHILP). Cell-intrinsic Nfil3 ablation
led to variably impaired development of fetal and
adult ILC subsets. Conditional gene targeting de-
monstrated that NFIL3 exerted its function prior to
ILC subset commitment. Accordingly, NFIL3 ablation
resulted in loss of ID2+ CHILP and PLZF+ ILC progen-
itors. Nfil3 expression in lymphoid progenitors was
under the control of the mesenchyme-derived hema-
topoietin IL-7, and NFIL3 exerted its function via
direct Id2 regulation in the CHILP. Moreover, ectopic
Id2 expression in Nfil3-null precursors rescued
defective ILC lineage development in vivo. Our data
establish NFIL3 as a key regulator of common help-
er-like ILC progenitors as they emerge during early
lymphopoiesis.

INTRODUCTION

The immune system is composed by myriads of cell types and
lymphoid organs that ensure immune surveillance and protective
immunity. The adaptive immune system arose late in evolution
and consists of B and T lymphocytes that express recombining
antigen-specific receptors. Naive T and B cells are activated
by their cognate antigen in secondary lymphoid organs and un-

dergo significant cell division and differentiation before exerting
their effector function. In contrast, innate lymphocytes display
rapid effector functions despite their set of limited germ-line-en-
coded receptors. Formore than three decades, natural killer (NK)
cells were the only recognized innate lymphocytes (Diefenbach
et al., 2014; McKenzie et al., 2014; Spits et al., 2013). More
recently, additional innate lymphocytes have been discovered
andwere considered to be part of a family of effector cells collec-
tively named innate lymphoid cells (ILCs) (Diefenbach et al.,
2014; McKenzie et al., 2014; Spits et al., 2013).
ILCs have a lymphoid morphology, lack rearranged antigen

receptors, and are abundantly present at mucosal surfaces,
such as the enteric lamina propria. The expression of lineage-
specific transcription factors and discrete cytokine profiles
led to the identification of three distinct ILC subsets that have
striking parallels with T helper (Th) cell subsets. Group 1 ILCs
(ILC1) resemble Th1 cells and include NK cells and other
IFNg-producing innate effectors ILC1 (Bernink et al., 2013; Die-
fenbach et al., 2014; Fuchs et al., 2013; Klose et al., 2014;
McKenzie et al., 2014; Spits et al., 2013; Vonarbourg et al.,
2010). ILC1s were shown to depend on TBX21 (T-bet), IL-7,
and IL-15 (Diefenbach et al., 2014; McKenzie et al., 2014; Spits
et al., 2013). Group 2 ILCs are similar to Th2 cells. ILC2s are
RORa (Halim et al., 2012; Wong et al., 2012) and GATA3 (Hoyler
et al., 2012; Klein Wolterink et al., 2013; Mjösberg et al., 2012)
dependent, IL-7 dependent, and produce IL-5 and IL-13 (Moro
et al., 2010; Neill et al., 2010; Spits et al., 2013). ILC2s have
been shown to play important roles in helminth infections,
asthma, and allergy contexts (McKenzie et al., 2014; Spits
et al., 2013). Group 3 ILCs (ILC3) are RORgt and partly AhR
dependent, rely on IL-7, and similarly to Th17 cells produce
IL-17 and IL-22 (Diefenbach et al., 2014; Kiss et al., 2011;
Lee et al., 2012; McKenzie et al., 2014; Qiu et al., 2012; Spits
et al., 2013). ILC3s were also shown to mediate inflammatory
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Figure 1. Nfil3 Deficiency Results in Reduced Adult and Fetal ILCs
(A) Fetal liver (FL) CLP, BMCLP and NK, BM and liver ILC1, BM and lung ILC2, gut ILC3, fetal gut (FG) CD4! LTi, FG CD4+ LTi, and B and T cells were analyzed by

quantitative RT-PCR for Nfil3 expression.

(B) Flow cytometry analysis of Nfil3GFP expression in developing BM NK cells, spleen mature NK cells, ILC1s from BM and gut, CLPs, ILC2s from BM and lung,

enteric CD4+ and NKp46+ ILC3s from Nfil3GFP mice, and FL and FG CD4! and CD4+ LTi cells from E15.5 Nfil3GFP embryos.

(C) Number of FL and BM CLPs from Nfil3+/+ and Nfil3!/! mice. BM: Nfil3+/+ n = 6; Nfil3!/! n = 6.

(D) Number of BM and gut ILC1s from Nfil3+/+ and Nfil3!/! mice. BM: Nfil3+/+ n = 9; Nfil3!/! n = 11; gut: Nfil3+/+ n = 6; Nfil3!/! n = 5.

(E) Number of BM, lung, and gut ILC2s fromNfil3+/+ andNfil3!/!mice. BM:Nfil3+/+ n = 6;Nfil3!/! n = 6, lung:Nfil3+/+ n = 8;Nfil3!/! n = 8; gut:Nfil3+/+ n = 3;Nfil3!/!

n = 3.

(legend continued on next page)
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bowel diseases (Buonocore et al., 2010; Vonarbourg et al.,
2010) and to control immune responses to attaching and
effacing enteric pathogens such as Escherichia coli and Citro-
bacter rodentium (Sonnenberg et al., 2011; Zheng et al.,
2008). Lymphoid tissue inducer (LTi) cells are the prototypical
member of ILC3s, are dependent on retinoic acid signaling,
and were shown to play a critical role in secondary lymphoid
organ (SLO) development and tissue homeostasis (Diefenbach
et al., 2014; Spencer et al., 2014; Spits et al., 2013; van de Pa-
vert et al., 2014).
ILCs express the transcriptional regulator inhibitor of DNA

binding 2 (ID2), and Id2 deficiency leads to developmental block
of ILCs (Boos et al., 2007; Moro et al., 2010). ID2 is a helix-loop-
helix factor that was shown to sequester E proteins from their
target gene promoters. Interestingly, EBF1 has been shown to
counter Id2 expression (Thal et al., 2009), and conditional dele-
tion of Ebf1 in committed pro-B cells leads to their conversion
into different ILC subsets (Nechanitzky et al., 2013), suggesting
the existence of a common ILC precursor. Interestingly, a
a4b7+PLZF+ cell was recently identified as a committed precur-
sor to ILCs with the exception of NK and LTi cells (Constanti-
nides et al., 2014) and another study demonstrated that a
a4b7+ID2high cell was the common helper-like innate lymphoid
precursor (CHILP) to all helper-like ILCs (Klose et al., 2014).
Nevertheless, the factors that control the emergence of these
recently described ILC precursors from common lymphoid
progenitors (CLPs) remain unknown. Altogether, these data
suggest the existence of additional, yet unrecognized, tran-
scriptional regulators that set the identity of the CHILP (Klose
et al., 2014).
NFIL3 (also known as E4BP4) is a basic leucine zipper tran-

scription factor that was identified by its DNA-binding activity
(Zhang et al., 1995). NFIL3 coordinates signals from several
regulatory pathways, including the circadian clock. More
recently, NFIL3 was shown to mediate several immune pro-
cesses. NFIL3 controls pro-B cell survival (Ikushima et al.,
1997), IgE class-switch (Kashiwada et al., 2010), Th2 and
Th17 cytokine expression (Kashiwada et al., 2011a; Motomura
et al., 2011; Yu et al., 2013), IL-12 regulation (Kobayashi et al.,
2011; Smith et al., 2011), and CD8a dendritic cell develop-
ment (Kashiwada et al., 2011b). Interestingly, Nfil3-null mice
have an early block in NK cell development that perturbs
ID2, GATA3, EOMES, and TBX21 expression in hematopoietic
precursors (Gascoyne et al., 2009; Kamizono et al., 2009;
Male et al., 2014); these different transcription factors critically
control NK cell differentiation and homeostasis (Spits et al.,
2013).
In this report, we show that cytokine-dependent expression

of NFIL3 promotes the development of theCHILP via direct regu-
lation of Id2. Based on our results, NFIL3 emerges as a key tran-
scription factor that orchestrates the emergence of ILC precur-
sors from CLPs.

RESULTS

Nfil3 Is Expressed byAll Helper-like ILCs and Is Required
for ILC Homeostasis
NFIL3 is an essential transcription factor for NK cell commitment
from lymphoid progenitors. Nfil3-deficient mice have a profound
defect in peripheral NK cell homeostasis, which arises from an
early block in NK cell maturation in the bone marrow (Crotta
et al., 2014; Gascoyne et al., 2009; Male et al., 2014; Seillet
et al., 2014a). As diverse ILCs are thought to arise from lymphoid
precursors via common intermediates (Constantinides et al.,
2014; Klose et al., 2014; Spits et al., 2013), we hypothesized
that Nfil3 might have generalized roles in ILC development.
We first assessedNfil3 expression in lymphoid precursors and

distinct ILC subsets from fetal and adult tissues. We found high
levels of Nfil3 transcripts in all ILC subsets, whereas adaptive B
and T lymphocytes expressed very low levels ofNfil3 (Figure 1A).
In agreement, Nfil3GFP reporter mice revealed that GFP was
clearly expressed byNK cells and their immature BMprecursors,
whereas B and T cells were GFPlo (Figures 1B and S1A). Interest-
ingly, helper ILC1, ILC2, and ILC3 subsets from diverse fetal and
adult tissue sites also expressed high levels of GFP (Figures 1B
and S1A), a finding also confirmed at the protein level using intra-
cellular staining for NFIL3 in adult NK, ILC1, ILC2, and ILC3 sub-
sets (Figure S1B). These data demonstrate that NK cells are not
the only lymphoid cell subset that strongly expresses Nfil3 but
that high constitutive Nfil3 expression is a common character-
istic of all ILC subsets.
To assess the role of NFIL3 on the development and homeo-

stasis of helper-like ILC1, ILC2, and ILC3, we analyzed mice
with a germ-line deletion of Nfil3 (Gascoyne et al., 2009). In the
absence of Nfil3, ILC1 in the BM and gut, ILC2 in the BM and
lung, and CD4+ ILC3 in the gut were all clearly reduced, whereas
CLPs were not affected (Figures 1C–1F). Germ-line deletion of
Nfil3 also resulted in a decrease of RORgt+ ILC3 subsets in the
fetal liver, gut, and lymph nodes with a clear dose-dependent ef-
fect (Figures 1G and S1C–S1F). Consequently, Nfil3 ablation re-
sulted in reduced number of minute PPs and severely diminished
fetal LN size (Figures S1G–S1I). Of note, PPs were also reduced
in Nfil3!/! adult animals, arguing against a putative PP develop-
mental delay (Figure S1G). Taken together, these data confirm
recent reports on the broad role for Nfil3 in controlling the ho-
meostasis of helper ILC subsets and NK cells in both fetal and
adult life (Geiger et al., 2014; Seillet et al., 2014b; Yu et al., 2014).

Hematopoietic-Autonomous NFIL3 Controls ILC
Development before Commitment into Discrete ILC
Lineages
Nfil3 is widely expressed by tissues from different germ layers
having significant pleiotropic effects. In order to determine
whether hematopoietic cell-intrinsic Nfil3 expression is required
for ILC homeostasis, we ablated Nfil3 in a lineage-specific

(F) Number of gut NCR+ (NKp46+), NCR! (NKp46!CD4!), and CD4+ ILC3 populations from Nfil3+/+ and Nfil3!/! mice. Nfil3+/+ n = 6; Nfil3!/! n = 7.

(G) Left: number of a4b7highRORgt+ FL cells. Nfil3+/+ n = 5; Nfil3+/! n = 9; Nfil3!/! n = 8. Right: percentage of FG CD4! and CD4+ LTi cells. Nfil3+/+ n = 5; Nfil3+/!

n = 9; Nfil3!/! n = 8.

Error bars show SE. *, **, and *** p values for Student’s t test lower than 0.05, 0.01, and 0.001, respectively. See also Figure S1.
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fashion. Nfil3fl/fl mice were bred to Vav1-iCre mice, ensuring Cre
activity in the hematopoietic lineage (de Boer et al., 2003; Moto-
mura et al., 2011; Figure 2A). Analysis of adult Vav1-iCre.Nfil3D

mice revealed unperturbed BM CLP development, whereas
helper ILC1, ILC2, and ILC3 subsets were reduced when
compared to their Nfil3fl/fl littermate controls (Figures 2B and
2C). Consistent with observations in germ-line Nfil3!/! mice,
fetal gut ILC3 subsets were significantly reduced in E15.5
Vav1-iCre.Nfil3D/D embryos when compared to their Nfil3fl/fl

littermate controls (Figures 2D, S2A, and S2B).
Having established the important function of NFIL3 in overall

ILC homeostasis, we next assessed whether NFIL3 is still
required upon commitment into mature ILC subsets. In order
to test this hypothesis, we analyzed mice in which Nfil3 was ab-
lated after commitment into the ILC3 lineage using Rorc-Cre
mice (Eberl and Littman, 2004; Figure 2A). Strikingly, analysis
of adult and fetal Rorc-Cre.Nfil3D/D mice demonstrated normal
enteric ILC3 development (Figures 2E, 2F, and S2B), indicating
that NFIL3 exerts its hematopoietic cell-intrinsic function before
Rorc acquisition but appears dispensable once ILC3s become
lineage committed.
Further evidence that NFIL3 is required before RORgt acquisi-

tion was provided by in vitro differentiation assays. The fetal gut
harbors ILC precursors Lin!IL7Ra+a4b7+ID2+RORgt! and CD4!

Rorc-GFP+ LTi that can further differentiate to CD4+ LTi cells
when co-cultured with OP9 cells (van de Pavert et al., 2014).
Whereas these ILC precursors from Nfil3+/! failed to give rise
to committed ILC3s (Rorc-GFP+), Nfil3+/! CD4! LTi (Rorc-
GFP+) could efficiently differentiate into CD4+ LTi cells under
the same conditions (Figures 2G and 2H). Thus, hematopoiet-
ic-autonomous NFIL3 expression in uncommitted fetal ILC pre-
cursors is critical for their further maturation.

NFIL3 Regulates the Emergence of Common Helper-ILC
Precursors
Given the broad impact of NFIL3 on ILC homeostasis and the ev-
idence that NFIL3 exerted its role prior to ILC lineage commit-
ment, we hypothesize that NFIL3 may be required during the
generation of committed ILC precursors (Constantinides et al.,
2014; Klose et al., 2014). Common-helper-like ILC precursors
(CHILPs) have been defined as Lin!IL-7Ra+a4b7highID2+ cells
that express variable amounts of PLZF (Constantinides et al.,
2014; Klose et al., 2014). Using Id2 reporter mice (Rawlins

et al., 2009), we found that Nfil3 has a critical, dose-dependent
role in the development of fetal and adult ID2+ CHILPs (Figures
3A and 3B). Similarly, a4b7highPLZF+ progenitors were severely
reduced in the BM and fetal liver of Nfil3 germ-line-deficient
and Vav1-iCre.Nfil3D/D mice (Figures 3C, 3D, S3A, and S3B). In
line with these findings, a4b7+ ILC precursors expressed higher
levels of Nfil3 transcripts, Nfil3GFP, and NFIL3 protein when
compared to CLPs (Figures 3E and 3F).
The observation that CHILPs were strongly reduced in the

absence of Nfil3 provides an explanation for the broad effects
of Nfil3 in ILC homeostasis. Nevertheless, despite the apparent
lack of CHILPs inNfil3-deficient mousemodels, some peripheral
ILC2s and ILC3s were still present in the gut and lung (Figure 1).
This finding could suggest a CHILP-independent pathway of
ILC2 and ILC3 development. Alternatively, despite strongly
reduced CHILPs in Nfil3!/! mice, these rare CHILPs further
develop into ILC2s and/or ILC3s and expand in the periphery.
In order to address these possibilities, we performed competitive
BM reconstitution experiments using lethally irradiated hosts
(CD45.1), which received WT (CD45.2) or Nfil3!/! (CD45.2) BM
against a WT competitor (CD45.1/2) in a 1:1 ratio (Figure 4A).
Analysis of such chimeras 8 weeks after transplantation revealed
that, despite normal CLP development, a4b7high PLZF! and
PLZF+ CHILPs derived from Nfil3!/! precursors were signifi-
cantly reduced when compared to their WT counterparts (Fig-
ures 4B and S4). In line with the normal CLP development in
the absence of NFIL3, thymic T cell development from Nfil3!/!

precursors was indistinguishable from WT (Figure 4C). In
contrast, all mature ILC subsets (ILC1, ILC2, and ILC3) that
derived from Nfil3!/! precursors were consistently and severely
reduced in these chimeras (Figure 4D). Altogether, these data
further confirm that Nfil3 acts in a hematopoietic cell-intrinsic
fashion to drive ILC development. In addition, these results pro-
vide compelling evidence that NFIL3 is a critical regulator of ILC
progenitors in early lymphopoiesis as they emerge from CLPs.

Nfil3 Expression Is Modulated by the gc-Dependent
Cytokine IL7
Early studies of NFIL3 implicated its role in regulating the survival
of lymphoid cells in response to IL-3 (Ikushima et al., 1997).
Therefore, we interrogated whether NFIL3 acts downstream of
critical cytokines required for early stages of ILC development.
Lymphoid precursors were isolated from Nfil3GFP mice and

Figure 2. NFIL3 Acts in a Cell-Autonomous Fashion before Commitment into Mature ILCs
(A) Conditional Nfil3-deficient animals breeding scheme.

(B and C) Conditional Nfil3-deficient animals were bred with Vav1-iCre animals. Flow cytometry analysis of liver NK and ILC1; BM CLP and ILC2; enteric ILC2

and total ILC3; and NCR+, NCR!, CD4+ ILC3 sub-populations from adult conditional Nfil3-deficient animals and their littermate controls. Frequency of NK,

ILC1, and BM ILC2 from Lin! cells: NK Nfil3+/+ = 8.5%, Nfil3!/! = 2%; ILC1 Nfil3+/+ = 2.5%, Nfil3!/! = 0.3%; ILC2 Nfil3+/+ = 0.5%, Nfil3!/! = 0.03%. Frequency

of NCR+, NCR!, and CD4+ ILC3 from Lin!THY1+ cells: NCR+ ILC3 Nfil3+/+ = 5.3%, Nfil3!/! = 0.2%; NCR! ILC3 Nfil3+/+ = 31.9%, Nfil3!/! = 5.6%; CD4+ ILC3

Nfil3+/+ = 5.6%, Nfil3!/! = 2.9%.

(D) Flow cytometry analysis and percentage of CD4! and CD4+ LTi cells in E15.5 FG. Nfil3fl/fl n = 8; Nfil3fl/D n = 7; Nfil3D/D n = 5.

(E) Conditional Nfil3-deficient animals were bred with Rorc-Cre animals. Flow cytometry analysis and number of ILC3 in gut. Nfil3fl/fl n = 3; Nfil3D/D n = 3.

(F) Conditional Nfil3-deficient animals were bred with Rorc-Cre animals. Flow cytometry analysis and percentage of FG CD4! and CD4+ LTi cells. Nfil3fl/fl n = 7;

Nfil3 D/D n = 5.

(G and H)Nfil3+/!mice were bred toRorcGFP animals. E15.5 CD4!LTi cells and RORgt! ILC precursors fromNfil3+/+and Nfil3+/!were co-cultured with OP9. Flow

cytometry analysis and percentage of ILC3 RORgt+ (G) and CD4+ LTi (H) after 6 days of culture. Nfil3 +/+ n = 4; Nfil3 +/! n = 8.

Error bars show SE. *, **, and *** p values for Student’s t test lower than 0.05, 0.01, and 0.001, respectively. See also Figure S2.
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stimulated with IL-7.We found that GFP expression was strongly
induced by this cytokine in BM FLT3!a4b7high ILC precursors as
well as in BM CLP (Figure 5A). In line with these findings, lung
ILC2 and gut NKp46+ ILC3 also upregulatedNfil3GFP expression,
whereas mature NK cells and intestinal ILC1 did not modulate
Nfil3GFP expression (Figures 5B and 5C). Binding of IL-7 to its
cognate receptor triggers a signaling cascade, resulting in the
activation of the JAK/STAT and PI3K/Akt pathways (Demoulin
and Renauld, 1998). Thus, we asked whether IL-7 regulates
Nfil3 in a STAT5-dependent fashion. We found that GFP levels
were reduced in ILC that were cultured with STAT5 inhibitor, indi-
cating that NFIL3 functions downstream of IL-7 and that the acti-
vation of STAT5 is required for IL-7-induced Nfil3GFP expression
(Figure 5D).

As IL-7 could enhance NFIL3 expression in early lymphoid cell
precursors and especially a4b7high ILC precursors (Figure 5A),
we hypothesized that cytokine-driven NFIL3 expression might
regulate these cells as they emerge during early lymphopoiesis.
Thus, we examined ILC2 generation in vitro from single Nfil3+/+

and Nfil3!/! BM CLP. We observed that the average clone
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Figure 3. NFIL3 Is Required for the Emer-
gence of CHILP and a4b7highPLZF+ ILC Pro-
genitors
(A and B) Flow cytometry analysis and number of

CHILP cells in BM and FL fromNfil3+/+ andNfil3!/!

mice. BM: Nfil3+/+ n = 4 and Nfil3!/! n = 5; FL:

Nfil3+/+ n = 5 and Nfil3!/! n = 6.

(C) Number of a4b7highPLZF+ ILC progenitors in

BM from Nfil3+/+ and Nfil3!/! mice and conditional

deficient animals and their littermate controls. BM:

Nfil3+/+ n = 6; Nfil3!/! n = 3; BM: Nfil3fl/fl n = 3;

Nfil3D/D n = 3.

(D) Number of FL CHILP PLZF+ progenitors in

E15.5 Nfil3+/+ and Nfil3!/! embryos. FL: Nfil3+/+

n = 5; Nfil3+/! n = 5.

(E) CLP and FLT3!a4b7high cells were analyzed by

quantitative RT-PCR for Nfil3 expression.

(F) Flow cytometry analysis of Nfil3GFP expression

and NFIL3 in CLPs and FLT3!a4b7high from BM

and E15.5 FL cells.

Error bars show SE. * and *** p values for Student’s

t test lower than 0.05 and 0.001, respectively. See

also Figure S3.

size of the resultant ILC2 colonies from
Nfil3!/! CLPs were significantly smaller
compared to that obtained from WT
CLP, which could not be explained by
increased apoptosis rates or defective
proliferation capacity (Figures 5E, 5F,
and S5A–S5C). Noteworthy, this finding
was also in agreement with normal pro-
liferation and cytokine production of
Nfil3!/! ILC2 (Figures S5D and S5E).
Interestingly, T cell colony sizes from
Nfil3+/+ and Nfil3!/! CLPs were similar
(Figure 5E), suggesting an ILC-specific
target for NFIL3 action. Taken together,
these data suggest a model whereby the

gc cytokine IL-7 regulates Nfil3 expression in common lymphoid
precursors that impacts on these developing progenitors.

NFIL3 Directly Regulates Id2 in the CHILP
Because Id2+ ILC precursors were strongly reduced inNfil3-defi-
cient mice (Figure 3), we hypothesized that Id2 was a relevant
downstream target of Nfil3 in CHILP. Strikingly, Id2 transcripts
were strongly decreased in both fetal and adult Nfil3!/! ILC pre-
cursors and NFIL3 impacted on Id2 levels in FLT3!a4b7high pre-
cursors, whereas Id2 levels were only moderately modulated in
CLPs and mature ILC subsets (Figures 6A, 6B, and S6A). To
gain additional insight into the regulatory mechanisms of Nfil3,
we performed chromatin immunoprecipitation with a specific
anti-NFIL3 antibody followed by quantitative PCR analysis
(ChIP) in biologically relevant ILC progenitors ex vivo. NFIL3
bound the Id2 locus in CHILP, which also displayed active dime-
thylated H3K4 in the NFIL3-binding region (Figure 6C). Interest-
ingly, whereas enrichment of NFIL3 binding was found at a re-
gion ‘‘D’’ close to the Id2 promoter in CHILP, NFIL3 bound to
the distinct region ‘‘H’’ in more mature ILC2 and ILC3 (Figures
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6C, S6B, and S6C), which also displayed active dimethylated
H3K4 upstream of the NFIL3-binding region (Figure 6C). Note-
worthy, NFIL3 did not bind to important genes to ILC2 and IL3
development, notably Ahr, Tox, Notch2, and Rora (Figure S6D).
Despite this specific NFIL3 binding to the Id2 locus in mature
ILC subsets, Nfil3 ablation did not affect Id2 expression in these
cells (Figure S6A), in agreement with themodel thatNfil3 expres-
sion is critical prior to, but not after, ILC commitment.
To further test whether NFIL3 controls CHILP generation via

Id2, we determined whether differentiation of Nfil3-deficient
ILC in vivo could be restored by enforced Id2 expression. We
transduced Nfil3+/+ and Nfil3!/! fetal liver progenitors with retro-
viral particles expressing Id2 (pMig-Id2) or GFP only (empty vec-
tor) and generated bone marrow chimeras (Figure 6D). Retroviral
transduction of Id2 (pMig-Id2) allowed Nfil3!/! progenitors to re-
acquire their potential to differentiate into ILC1, ILC2, and ILC3
in vivo, whereas ectopic expression of Id2 in WT progenitors
had no impact in ILC lineages (Figure 6D). In agreement, retro-
viral transduction of Id2 (pMig-Id2) also allowed Nfil3!/! CLP
to develop in vitro into PLZF+ CHILP when compared to their
counterparts transduced with retroviral particles containing
GFP only (Figure S6E). Collectively, these experiments demon-
strate that NFIL3 directly regulates Id2 expression in ILC progen-
itors and orchestrates their emergence from CLPs (Figure 6E).

DISCUSSION

The development of multiple and distinct hematopoietic cell
lineages relies on tightly controlled expression of transcription
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Error bars show SE. ** and *** p values for Stu-

dent’s t test lower than 0.01 and 0.001, respec-

tively. See also Figure S4.

factors that promote lineage specification
and commitment while suppressing alter-
native cell fates. As an example, several
regulators induce the development of un-
committed hematopoietic progenitors
into the B or T cell lineage. In contrast to
the transcription factors that promote
generation of adaptive lymphocytes, the
factors that control ILC development are
less well understood.
Diverse ILC subsets can be generated

from CLPs, and ID2 has emerged as
a central regulator of ILC fate (Hoyler

et al., 2012;Moro et al., 2010; Yokota et al., 1999). More recently,
committed precursors to all helper ILCs (CHILPs) were identified
within the fetal and adult Lin!IL-7Ra+a4b7high progenitor cell
population (Klose et al., 2014). Committed ILC precursors
strongly express ID2 and harbor both PLZF+ and PLZF! frac-
tions (Klose et al., 2014), and NOTCH triggering could induce
PLZF expression on PLZF!a4b7high cells, suggesting a precur-
sor-product relation between these subsets (Constantinides
et al., 2014). PLZF-expressing ILC progenitors could give rise
to ILC1, ILC2, and ILC3, but not LTi cells (Constantinides et al.,
2014), whereas Id2+a4b7high ILC precursors originate all help-
er-ILC subsets, suggesting that a4b7highID2+PLZF! cells may
harbor LTi potential. Nevertheless, how the emergence of CHILP
from CLP is regulated remains elusive.
Whereas the transcriptional repressor ID2 is essential for

development of all known ILC subsets, it is not clear how Id2
expression is regulated in lymphoid progenitors (CLP) or how
titration and reduction of E-protein activity allows for emergence
of CHILP from these cells. Previous studies demonstrated that
the transcription factor NFIL3 is broad regulator of ILC homeo-
stasis (Gascoyne et al., 2009; Geiger et al., 2014; Male et al.,
2014; Seillet et al., 2014b), although the molecular basis for the
NFIL3 effect remained unclear. In this report, we demonstrate
that NFIL3 is a critical regulator of the common-helper-like ILC
progenitor (CHILP), while being dispensable for overall helper-
like ILC fate and maintenance of discrete mature ILC subsets
(Geiger et al., 2014; Seillet et al., 2014b). We demonstrate
that IL-7 regulated NFIL3 expression in the CHILP and that
NFIL3 operated via direct regulation of Id2 expression in ILC
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precursors. In agreement, ectopic Id2 expression in vivo rescued
developmental defects of ILC1, ILC2, and ILC3 from Nfil3-null
lymphoid precursors. We further demonstrated that Id2 expres-
sion could rescue PLZF expression in Nfil3!/! CHILP, suggest-
ing a transcription factor cascade that links Nfil3, Id2, and
Zbtb16. Based on our results, NFIL3 emerges as a central regu-
lator of the common helper ILC precursor in early lymphopoiesis.
Interestingly, it was recently shown that NFIL3 could act in CLP
upstream of Tox, also directing the development of a CXCR6+

common cytotoxic and helper ILC precursor (aLP; Yu et al.,
2014). The relationship between aLP and CHILP is unclear, but
it is possible that NFIL3 may act by distinct mechanisms in
different ILC precursors. This notion is also in line with our own
findings showing that NFIL3 binding occurred at different Id2
genomic regions in the CHILP and mature ILC3 and the absence
of NFIL3 binding to Tox in ILC3 (Figures 6C and S6D).

A potent cell-intrinsic role for NFIL3 in the generation of all
recognized ILC subsets, including NK cells (Gascoyne et al.,
2009; Kamizono et al., 2009) and ILC1, ILC2, and ILC3 (this
study; Geiger et al., 2014; Seillet et al., 2014b) has recently
been reported. Our observation that NFIL3 is required for the
generation of helper-ILC precursors, namely a4b7highPLZF!

and a4b7highPLZF+ precursors (Constantinides et al., 2014;
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Figure 5. Nfil3 Expression Is Modulated by
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(A–C) BM CLP and FLT3!a4b7high (A), BM ILC2

and gut ILC3 (B), and spleen NK and liver ILC1

cells (C) fromNfil3GFPmice were stimulated in vitro

with IL-7 and analyzed by flow cytometry.

(D) BM ILC2s from Nfil3GFP mice were stimulated

with IL-7 or IL-7 and STAT5 inhibitors and analyzed

by flow cytometry.

(E) Flow cytometry analysis of ILC2 differentiated

in vitro from Nfil3+/+ and Nfil3!/! BM CLPs. iCD3,

intracellular CD3.

(F) ILC2 and T cell number per colony. ILC2:

Nfil3+/+ n = 37; Nfil3!/! n = 46; T cells: Nfil3+/+ n =

49; Nfil3!/! n = 49.

Error bars show SE. **p values for Student’s t test

lower than 0.01. See also Figure S5.

Klose et al., 2014), confirms a cellular
mechanism for the broad effect of NFIL3
on multiple ILC subsets (Geiger et al.,
2014). On a molecular level, we found
that NFIL3 directly regulated Id2 in
CHILP. ID2 is a transcriptional repressor
that is critically required for NK cell and
ILC development from hematopoietic
precursors (Boos et al., 2007; Moro
et al., 2010; Satoh-Takayama et al.,
2010). We found that Id2 expression in
Nfil3!/! CHILP was severely compro-
mised and that NFIL3 bound specifically
to the Id2 promoter in CHILP-remodeling
chromatin configuration as revealed
by specific enrichment of dimethylated
H3K4. Moreover, ID2 appeared upstream

of Zbtb16 expression in ILC precursors, allowing us to propose a
NFIL3 > ID2 > PLZF transcription factor cascade that regulates
ILC emergence from CLPs.
Our data indicate that cellular expansion of Nfil3!/! ILC pre-

cursors toward ILC2was less robust, although it could not be ex-
plained by reduced proliferation or increased apoptosis, and that
Nfil3-deficient fetal ILC precursors were unable to further mature
in vitro. In addition, we found that Nfil3-dependent CHILP
strongly upregulated NFIL3 expression in response to IL-7.
Thus, we propose that cytokine-dependent signalsmay promote
stabilization and/or enhancement of NFIL3, which in turn orches-
trates the emergence of CHILP via direct Id2 regulation.
Whereas our results clearly indicate an essential role for NFIL3

in early ILC precursors, NFIL3 may also play additional context-
dependent roles at later stages of ILC differentiation and for
maintenance of effector functions in mature ILC subsets. Recent
studies of conditional ablation ofNfil3 in NK cells and NCR+ ILC3
(using Ncr1-Cre mice) failed to identify a major role for NFIL3 in
NK cell proliferation following MCMV infection and maintenance
of mature ILC3, respectively (Firth et al., 2013; Geiger et al.,
2014). Similarly, our results using Rorc-Cre mice likewise sug-
gest that many critical functions associated with ILC3 subsets
(LTi and lymphoid tissue organogenesis) are intact despite
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Nfil3 ablation after ILC subset commitment (Figure S2B). In addi-
tion, Nfil3-deficient ILC2 displayed normal cytokine secretion
and expansion in response to IL-33 (Figures S5D–S5F). Finally,
whereas NFIL3 binding to the Id2 locus was a common charac-
teristic of ILC progenitors and mature ILC2 and ILC3, NFIL3
binding occurred at different Id2 genomic regions in the CHILP
and mature ILC, suggesting differential transcriptional activity
of NFIL3 in ILC progenitors and committed cells. Nevertheless,
detailed studies on conditional Nfil3 deletion in mature ILC sub-
sets need to be performed in order to fully address this question.
Our current data demonstrating that NFIL3 is a key regulator of

the common-helper-like innate lymphoid precursor and previous
studies establishing that cytotoxic ILC development, notably NK
cells, also rely on NFIL3 suggest that NFIL3 may be required for
the early establishment of a common helper- and cytotoxic-ILC

lineage progenitor (Figure 6E). In line with this idea, it was
recently shown that NFIL3 can direct the development of a com-
mon cytotoxic and helper ILC precursor (Yu et al., 2014). Genetic
fate-mapping studies, multiparametric reporter lines, and line-
age-targeted strategies will be central to further elucidate the ex-
istence and the fate of such global innate lymphoid progenitor
(GILP) to helper and cytotoxic ILCs (Figure 6E).

EXPERIMENTAL PROCEDURES

Mice
C57Bl/6 mice were purchased from Charles River. Nfil3GFP transgenic mice

were generated using bacterial artificial chromosomes (BACs) (obtained

from Gene Expression Nervous System Atlas) that comprise the Nfil3 gene

with upstream and downstream regulatory regions. NSG and C57Bl/6 Ly5.1

(CD45.1) mice were maintained in house at Instituto de Medicina Molecular
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Figure 6. NFIL3 Acts in the CHILP via Direct Control of Id2 Expression
(A) Nfil3+/+ and Nfil3!/! FLT3!a4b7high cells were analyzed by quantitative RT-PCR for Id2 expression.

(B) Mean fluorescence intensity of Id2GFP in E15.5 FL FLT3!a4b7high cells from Nfil3+/+, Nfil3+/!, and Nfil3!/! littermate controls.

(C) Id2 locus scheme (top). ChIP analysis for NFIL3 and H3K4me2 binding in the Id2 locus of BM CHILP cells (left panel) and E15.5 CD4! LTi cells (right panel).

(D) In vivo Id2 rescue scheme (top). Hematopoietic progenitor cells from Nfil3+/+ and Nfil3!/! (CD45.2) mice were transduced with pMig.Id2-IRES-GFP retroviral

vector and control, and 53 105 total cells were injected into irradiated NSGhosts (CD45.1). GFP-positive cells were analyzed by flow cytometry, and cell numbers

normalized to the transduction efficiency are displayed. Nfil3+/+ pMig-Empty n = 4; Nfil3+/+ pMig-Id2 n = 4; Nfil3!/! pMig-Empty n = 4; Nfil3!/! pMig-Id2 n = 5.

(E) NFIL3 controls helper-like innate lymphoid cell generation through regulation of the CHILP.

Error bars show SE. * and ** p values for Student’s t test (B), ANOVA test (C), and Mann-Whitney (D) lower than 0.05 and 0.01, respectively. See also Figure S6.
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(IMM) or purchased from The Jackson Laboratories. Nfil3!/!, Vav1-iCre,Rorc-

Cre, Nfil3fl/fl, RorcGFP, and Id2GFP mice were on a C57Bl/6 background and

were previously described (de Boer et al., 2003; Eberl and Littman, 2004; Eberl

et al., 2004; Gascoyne et al., 2009; Motomura et al., 2011; Rawlins et al., 2009).

Mice were analyzed at the age of 8–12 weeks. All animal experiments were

approved by national and institutional ethical committees, Direção-Geral de

Alimentação e Veterinária, and IMM and Institute Pasteur ethical committees.

Power Analysis was performed in order to estimate the number of experi-

mental mice.

Flow Cytometry Analysis and Cell Sorting
Embryonic guts and lymph nodes were harvested and digested with collage-

nase D (5 mg/ml; Roche) and DNase I (0.1 mg/ml; Roche) in DMEM, 3% FBS

for approximately 40 min at 37"C under gentle agitation. Fetal liver and LN

cell suspensions were obtained using 70-mm strainers. Bone marrow cells

were collected by either flushing or crushing bones. Lungs were minced

and incubated 30 min at 37"C with agitation in HBSS with 5 mM EDTA,

10 mM HEPES, and 5% FBS followed by 1 hr digestion with collagenase D

(5 mg/ml; Roche) and DNase I (0.1 mg/ml; Roche) in RPMI, 5% FBS with

10 mM HEPES. Sequentially cells were purified by centrifugation 30 min at

2,400 rpm in 40/80 Percoll (Sigma) gradient. Small intestines were cut,

washed with PBS 13 5 mM EDTA 15 min at 37"C with agitation. IELs were

removed using a 100-mm cell strainer, and the remaining pieces were

digested 30 min at 37"C with agitation in RPMI with 10 mM HEPES and

5% FBS, collagenase D (5 mg/ml; Roche) and DNase I (0.1 mg/ml; Roche).

Sequentially, cells were purified by centrifugation 30 min at 2,400 rpm

in 40/80 Percoll (Sigma) gradient. Livers were smashed and cells were

purified by centrifugation 30 min at 2,400 rpm in 35% Percoll (Sigma). Intra-

cellular stainings for transcription factors were performed using the Foxp3/

Transcription Factor Staining Buffer Set (eBioscience). For cytokine produc-

tion, cells were stimulated for 4 hr with PMA (phorbol 12-myristate 13-ace-

tate; 50 ng/ml) and ionomycin (500 ng/ml) in the presence of brefeldin A

(3 mg/ml) and analyzed by intracellular staining as described (Klein Wolterink

et al., 2013). The lineage cocktail for adult BM, liver, lung, and gut included

CD3e, CD4, CD8a, CD19, B220, CD11c, CD11b, Ter119, Gr1, TCRb, TCRgd,

and NK1.1. For ILC1 staining in BM, liver, and gut, NK1.1 and CD11b were

not added to the lineage cocktail. The lineage cocktail for FL, E15.5 guts,

and LN included Ter119, TCRb, CD3e, CD19, NK1.1, CD11c, CD11b, and

Gr1. Samples were sorted on a FACSAria I or FACSAria III and analyzed

on a LSRFortessa (BD). Flow cytometry data were analyzed with FlowJo

8.8.7 software (Tree Star). Sorted populations were >95% pure. A complete

description of all populations analyzed and sorted is available in the Supple-

mental Experimental Procedures.

Bone Marrow Transplantation
BM cells were KIT+ MACS sorted from Nfil3+/+ or Nfil3!/! mice. 53 105 sorted

cells were retro-orbitally injected in direct competition with a third-part WT

competitor CD45.1/CD45.2 (1:1 ratio) into lethally irradiated NSG CD45.1

mice. Recipients were analyzed 8 weeks post-transplantation.

Cell Culture and Viral Transduction
For embryonic cell culture, ILC precursors and CD4! LTi cells were sorted

from E15.5 guts and suspended in culture medium OPTI-MEM (Invitrogen)

supplemented with 20% FBS, penicillin and streptomycin (respectively,

50 U and 50 mg/ml; Invitrogen), sodium pyruvate (1 mM; Invitrogen) and

b-mercaptoethanol (50 mM; Invitrogen), and recombinant murine RANK

ligand (rRANKL) (50 ng/ml; Peprotech). Cells were seeded into flat-bottom

96-well plates previously coated with 30,000 rad-irradiated OP9 stromal

cells for 6 days. For IL-7 stimulation, cells were sorted and stimulated

overnight (10 ng/ml), and all conditions were analyzed using a live/dead

cellular marker. STAT5 inhibitor was purchased from Santa Cruz (sc-

355979). For ILC2 differentiation, precursor cells were cultured on OP9-

DL1 cells in the presence of FLT3 ligand (10 ng/ml), IL-7 (10 ng/ml), and

IL-33 (10 ng/ml). The plating efficiency was 54% and 63% for Nfil3+/+

and Nfil3!/! CLP, respectively. For differentiation of ILC progenitors and

acquisition of PLZF, CLPs were cultured 5 days on OP9-DL1 cells in

the presence of FLT3 ligand (10 ng/ml), IL-7 (10 ng/ml), and SCF

(10 ng/ml). For retroviral transduction, cells from Nfil3!/! and WT litter-

mate controls were sorted and transduced with pMig.IRES-GFP retroviral

empty vector or containing Id2 in the presence of polybrene (0.8 mg/ml;

Sigma-Aldrich).

Quantitative RT-PCR
Total RNA was extracted using RNeasy Micro kit (QIAGEN) according to

manufacturer’s protocol. RNA concentration was determined using Nanodrop

Spectrophotometer (Nanodrop Technologies). For TaqMan assays (Applied

Biosystems), RNA was retro-transcribed using High Capacity RNA-to-cDNA

Kit (Applied Biosystems), followed by a pre-amplification PCR using TaqMan

PreAmp Master Mix (Applied Biosystems). TaqMan Gene Expression Master

Mix (Applied Biosystems) was used in real-time PCR. Gene expression

was normalized to Hprt1 and Gapdh. When multiple endogenous controls

are used, these are treated as a single population and the reference

value calculated by arithmeticmean of their CT values. Thus, we used the com-

parative CT method (2 !DCT), in which DCT (gene of interest) = CT (gene of interest) !
CT (Housekeeping reference value). When comparison or fold between samples

was necessary, the comparative DCT method (2 !DDCT), in which

DDCT (gene of interest, population of interest) = DCT (gene of interest, population of interest) !
DCT (gene of interest, reference population). Real-time PCR analysis was performed

using StepOne Real-Time PCR system (Applied Biosystems). Probes can be

found in Supplemental Experimental Procedures.

ChIP Assay
BM CHILP, E15.5 CD4!LTi, BM ILC2, and gut ILC3 cells were isolated by

flow cytometry sorting. Cells were lysed, crosslinked, and chromosomal

DNA-protein complex sonicated to generate DNA fragments ranging from

100 to 300 bp. DNA/protein complexes were immunoprecipitated, using

the LowCell# ChIP kit (Diagenode), with 3 mg of rabbit polyclonal antibody

against NFIL3 (H-300; Santa Cruz Biotechnology), rabbit control IgG

(Abcam), or H3K4me2 (07-030; Millipore). Immunoprecipitates were uncros-

slinked and analyzed by quantitative PCR using primer pairs (50-30) flanking

putative NFIL3 sites on Id2. Results were normalized to input intensity and

control IgG. Experimental controls also included NFIL3 chromatin immuno-

precipitation (ChIP) in fetal Nfil3-deficient ILC3 (Figure S6C) and NFIL3

ChIP analysis in an irrelevant non-transcribed region (segment A; Fig-

ure 6C). Primer sequences are indicated in the Supplemental Experimental

Procedures.

Statistics
Variance was analyzed using F-test. Student’s t test was performed on homo-

scedastic populations, and Student’s t test with Welch correction was applied

on samples with different variances. Mann-Whitney U test was used in sam-

ples that did not follow a normal distribution. Equality of several means was

determined by ANOVA test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.02.057.
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S.M., Traver, G., and Rothman, P.B. (2010). IL-4-induced transcription factor

NFIL3/E4BP4 controls IgE class switching. Proc. Natl. Acad. Sci. USA 107,

821–826.

Kashiwada, M., Cassel, S.L., Colgan, J.D., and Rothman, P.B. (2011a). NFIL3/

E4BP4 controls type 2 T helper cell cytokine expression. EMBO J. 30, 2071–

2082.

Kashiwada, M., Pham, N.L., Pewe, L.L., Harty, J.T., and Rothman, P.B.

(2011b). NFIL3/E4BP4 is a key transcription factor for CD8a⁺ dendritic cell

development. Blood 117, 6193–6197.

Kiss, E.A., Vonarbourg, C., Kopfmann, S., Hobeika, E., Finke, D., Esser, C., and

Diefenbach, A. (2011). Natural aryl hydrocarbon receptor ligands control

organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565.

Klein Wolterink, R.G.J., Serafini, N., van Nimwegen, M., Vosshenrich, C.A.J.,

de Bruijn, M.J.W., Fonseca Pereira, D., Veiga Fernandes, H., Hendriks,

R.W., and Di Santo, J.P. (2013). Essential, dose-dependent role for the tran-

scription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate

lymphoid cells. Proc. Natl. Acad. Sci. USA 110, 10240–10245.
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Diefenbach, A., and Grosschedl, R. (2013). Transcription factor EBF1 is essen-

tial for the maintenance of B cell identity and prevention of alternative fates in

committed cells. Nat. Immunol. 14, 867–875.

Neill, D.R., Wong, S.H., Bellosi, A., Flynn, R.J., Daly, M., Langford, T.K.A.,

Bucks, C., Kane, C.M., Fallon, P.G., Pannell, R., et al. (2010). Nuocytes repre-

sent a new innate effector leukocyte that mediates type-2 immunity. Nature

464, 1367–1370.

Qiu, J., Heller, J.J., Guo, X., Chen, Z.M., Fish, K., Fu, Y.X., and Zhou, L. (2012).

The aryl hydrocarbon receptor regulates gut immunity through modulation of

innate lymphoid cells. Immunity 36, 92–104.

Rawlins, E.L., Clark, C.P., Xue, Y., and Hogan, B.L. (2009). The Id2+ distal tip

lung epithelium contains individual multipotent embryonic progenitor cells.

Development 136, 3741–3745.

Satoh-Takayama, N., Lesjean-Pottier, S., Vieira, P., Sawa, S., Eberl, G., Vos-

shenrich, C.A., and Di Santo, J.P. (2010). IL-7 and IL-15 independently pro-

gram the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-

dependent precursors. J. Exp. Med. 207, 273–280.

Seillet, C., Huntington, N.D., Gangatirkar, P., Axelsson, E., Minnich, M., Brady,

H.J., Busslinger, M., Smyth, M.J., Belz, G.T., and Carotta, S. (2014a). Differen-

tial requirement for Nfil3 during NK cell development. J. Immunol. 192, 2667–

2676.

Seillet, C., Rankin, L.C., Groom, J.R., Mielke, L.A., Tellier, J., Chopin, M., Hun-

tington, N.D., Belz, G.T., and Carotta, S. (2014b). Nfil3 is required for the devel-

opment of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740.

Smith, A.M., Qualls, J.E., O’Brien, K., Balouzian, L., Johnson, P.F., Schultz-

Cherry, S., Smale, S.T., and Murray, P.J. (2011). A distal enhancer in Il12b is

the target of transcriptional repression by the STAT3 pathway and requires

the basic leucine zipper (B-ZIP) protein NFIL3. J. Biol. Chem. 286, 23582–

23590.

Sonnenberg, G.F., Monticelli, L.A., Elloso, M.M., Fouser, L.A., and Artis, D.

(2011). CD4(+) lymphoid tissue-inducer cells promote innate immunity in the

gut. Immunity 34, 122–134.

Spencer, S.P., Wilhelm, C., Yang, Q., Hall, J.A., Bouladoux, N., Boyd, A., Nut-

man, T.B., Urban, J.F., Jr., Wang, J., Ramalingam, T.R., et al. (2014). Adapta-

tion of innate lymphoid cells to amicronutrient deficiency promotes type 2 bar-

rier immunity. Science 343, 432–437.

Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G.,

Koyasu, S., Locksley, R.M., McKenzie, A.N., Mebius, R.E., et al. (2013). Innate

lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13,

145–149.

Thal, M.A., Carvalho, T.L., He, T., Kim, H.G., Gao, H., Hagman, J., and Klug,

C.A. (2009). Ebf1-mediated down-regulation of Id2 and Id3 is essential for

specification of the B cell lineage. Proc. Natl. Acad. Sci. USA 106, 552–557.

van de Pavert, S.A., Ferreira, M., Domingues, R.G., Ribeiro, H., Molenaar, R.,

Moreira-Santos, L., Almeida, F.F., Ibiza, S., Barbosa, I., Goverse, G., et al.

(2014). Maternal retinoids control type 3 innate lymphoid cells and set the

offspring immunity. Nature 508, 123–127.

Vonarbourg, C., Mortha, A., Bui, V.L., Hernandez, P.P., Kiss, E.A., Hoyler, T.,

Flach, M., Bengsch, B., Thimme, R., Hölscher, C., et al. (2010). Regulated

expression of nuclear receptor RORgt confers distinct functional fates to

NK cell receptor-expressing RORgt(+) innate lymphocytes. Immunity 33,

736–751.

Wong, S.H., Walker, J.A., Jolin, H.E., Drynan, L.F., Hams, E., Camelo, A.,

Barlow, J.L., Neill, D.R., Panova, V., Koch, U., et al. (2012). Transcription factor

RORa is critical for nuocyte development. Nat. Immunol. 13, 229–236.

Yokota, Y., Mansouri, A., Mori, S., Sugawara, S., Adachi, S., Nishikawa, S.,

and Gruss, P. (1999). Development of peripheral lymphoid organs and natural

killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706.

Yu, X., Rollins, D., Ruhn, K.A., Stubblefield, J.J., Green, C.B., Kashiwada, M.,

Rothman, P.B., Takahashi, J.S., and Hooper, L.V. (2013). TH17 cell differenti-

ation is regulated by the circadian clock. Science 342, 727–730.

Yu, X., Wang, Y., Deng, M., Li, Y., Ruhn, K.A., Zhang, C.C., and Hooper, L.V.

(2014). The basic leucine zipper transcription factor NFIL3 directs the develop-

ment of a common innate lymphoid cell precursor. eLife 3, e04406.

Zhang, W., Zhang, J., Kornuc, M., Kwan, K., Frank, R., and Nimer, S.D. (1995).

Molecular cloning and characterization of NF-IL3A, a transcriptional activator

of the human interleukin-3 promoter. Mol. Cell. Biol. 15, 6055–6063.

Zheng, Y., Valdez, P.A., Danilenko, D.M., Hu, Y., Sa, S.M., Gong, Q., Abbas,

A.R., Modrusan, Z., Ghilardi, N., de Sauvage, F.J., and Ouyang, W. (2008).

Interleukin-22mediates early host defense against attaching and effacing bac-

terial pathogens. Nat. Med. 14, 282–289.

2054 Cell Reports 10, 2043–2054, March 31, 2015 ª2015 The Authors



 
	
  

	
    



 
	
  

	
  

314 

SYNTHESIS (FRENCH) 



 
	
  

	
  

315 



 
	
  

	
  

316 

Les cellules souches hématopoïétiques (CSH) sont responsables de la formation de 

trillions de cellules sanguines chaque jour chez l’adulte. D’une part, les CSHs ont la capacité 

de donner naissance à des cellules-filles CSH non différentiées ; de l’autre les CSHs peuvent 

entrer dans un processus de différentiation dynamique et bien organisé qui génère d’autres 

cellules filles. Cette perte graduelle du potentiel de différentiation est modulée par 

l’expression de facteurs de transcription qui, en fin de compte, guide le développement des 

différentes lignées du système immunitaire.    

Le système immunitaire adaptatif désigne deux larges groupes de cellules qui 

réagissent aux antigènes : les lymphocytes B (de Bursal ou dérivé du “bone marrow”) et les 

lymphocytes T (dérivé du thymus), identifiés respectivement par les protéines de surface 

CD19 et CD3. En l’absence de stimulation, les cellules naïves expriment un ample répertoire 

d’antigènes (Ag). Alors qu’ils rencontrent leur antigène cible, les lymphocytes portant le 

récepteur correspondant prolifèrent massivement formant des clones qui ensuite deviennent 

les effecteurs de la réponse immunitaire adaptative. Après l’élimination de l’antigène, une 

fraction de cellules « mémoire » spécifiques d’antigène circulent et « patrouillent » 

l’organisme pendant des années jouant un rôle central dans la réponse immunitaire 

secondaire contre le même antigène (caractéristique principale de l’immunité adaptative).  La 

maturation des lymphocytes T s’effectue au sein du thymus et consiste entre autre en 

l’expression d’un TCR (récepteur membranaire caractéristique des lymphocytes T) qui peut 

être constitué soit par des chaines gamma et delta (cellules γδ-T), soit par des chaines alpha et 

beta (cellules αβ-T). Les premiers sont moins bien compris et ont des caractéristiques à 

cheval entre les cellules innées et adaptatives. L’hétérogénéité de leur répertoire est beaucoup 

moins riche et ils sont localisés dans des sites très précis, comme dans la peau ou les surfaces 

muqueuses.     

 Contrairement à l’immunité adaptative, l’immunité innée est apparue déjà dans les 

premiers organismes multicellulaires et elle reconnait sa cible par des mécanismes à large 

spectre capables de détecter des motifs structurels conservés par des grands groupes de 

pathogènes, comme les lipopolysaccharides (LPS).   

Depuis la découverte de la première cellule innée par Elie Metchnikoff, le 

macrophage, de nombreux acteurs de la réponse cellulaire innée ont été décrits. Du coté 

myéloïde on distingue deux classes : les cellules mononuclées (monocytes, macrophages et 

cellules dendritiques, CD ou DC en anglais) et les granulocytes (neutrophiles, éosinophiles, 

mastocytes et basophiles). La branche lymphoïde innée a été décrite plus récemment et est 

constituée par les cellules innées lymphoïdes (CLIs) et deux populations particulières de 
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lymphocytes qui répondent rapidement aux antigènes de manière non-spécifique, les cellules 

γδT, discutés antérieurement et les cellules B-1.        

Parmi les cellules dendritiques 

localisées dans le sang, la rate et organes 

lymphoïdes (dépourvues de marqueurs 

de lignée et exprimant le marqueur 

HLA-DR) on distingue deux grands 

types en raison de différences 

morphologiques, phénotypiques et 

fonctionnelles : les CD conventionnelles, 

qui peuvent être migratoires ou 

résidentes, (cCD) et les CD 

plasmacytoïdes (pCD). 

Les CD plasmacytoïdes, grâce à 

différents récepteurs (CD123, CD303 ou 

CD304), sont capables de capturer des 

antigènes viraux, tumoraux ou issus de cellules en nécrose. L’étude de l’expression de leurs 

« toll-like receptors » TLR (TLR7 et 9) et des cytokines produites suite à leur engagement 

par leurs ligands respectifs, suggère une spécialisation fonctionnelle des pCD chez l’homme 

comme chez la souris dans les réponses anti-virales, nécessitant la production d’IFN-alpha, -

beta et lambda. 

Les CD conventionnelles sont majoritaires dans le sang et se divisent en deux sous-

familles principales: les CD1c+ CDs qui co-expriment CD11b et de hauts niveaux de CD11c 

et les CD141+ cCDs qui ont une expression de CD11c plus faible et n ‘expriment pas CD11b. 

Ces deux classes de CDs expriment aussi différemment les TLRs, alors que les CD1c+ CDs 

expriment tous les TLRs sauf TLR9, les CD141+ CDs expriment faiblement TLR1-2, TLR6 

et TLR8 et fortement TLR3 et TLR1. 

Les CDs ont traditionnellement eu comme caractéristique de se différencier à partir de 

deux types de précurseurs, un myéloïde et un lymphoïde. La recherche d’un précurseur 

commun aux CDs a récemment conduit à repenser l’architecture générale de l’hématopoïèse 

après qu’un précurseur commun aux CD, monocytes et macrophages : le MDP (macrophage 

dendritic cell precursor) ait été indentifié dans la lignée myéloïde. Ce MDP est capable de 

donner : soit les monocytes, macrophages et cellules de Langerhans, soit les pCD et les cCD 

à partir d’un précurseur commun aux CD : le CDP. 

Figure	
  1:	
  Spécificité	
  des	
  différents	
  TLR	
  envers	
  les	
  structures	
  
conservées	
  chez	
  les	
  bactéries,	
  virus,	
  champignons	
  et	
  parasites. 
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Les cellules innées lymphoïdes (CLI pour innate lymphoid cells) forment une famille 

d’effecteurs de la réponse innée dépourvus de récepteurs spécifiques aux antigènes, dont la 

diversité fonctionnelle est proche de celle des effecteurs T helper (Th) de la réponse 

adaptative. On distingue trois principaux groupes d’CLI. Les CLI de type 1, constituées des 

cellules  tueuses naturelles (de l’anglais natural killer, NK)  identifiées il y a plus de 40 ans et 

les « helper » CLI1s qui produisent préférentiellement des cytokines de type 1, comme l’IFN 

gamma. Les CLI de type 2, productrices d’IL-13, d’IL-5 et d’IL-4, comme les cellules Th2, 

interviennent dans la réponse innée mucosale aux parasites intestinaux, et participent à 

l’exacerbation des réactions inflammatoires et allergiques des voies respiratoires. Les CLI de 

type 3 se distinguent par l’expression du facteur de transcription RORγt (RAR-related orphan 

Figure	
  2:	
  Schéma	
  du	
  développement	
  des	
  cellules	
  dendritiques	
  humaines.	
  GMDP:	
  granulocyte,	
  monocyte	
  and	
  
dendritic	
  cell	
  	
  (DC)	
  progenitor;	
  CDP:	
  common	
  DC	
  progenitor;	
  MDP:	
  monocyte-­‐DC	
  progenitor;	
  pre-­‐cDC:	
  

commited	
  precursor	
  of	
  classical	
  DCs. 
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receptor gamma t) et du 

récepteur de l’IL-23, qui leur 

confèrent la capacité de sécréter 

de l’IL-17 et de l’IL-22, au 

même titre que les cellules 

Th17.. Présentes dès le stade 

fœtal, elles sont indispensables à 

la formation des ganglions 

périphériques et des tissus 

lymphoïdes associés à l’intestin. 

Après la naissance, elles 

contribuent à protéger la 

muqueuse contre les 

entérobactéries pathogènes, et à 

maintenir la flore commensale 

sous contrôle.  

 

 

Les modèles animaux ont largement contribué à notre compréhension de 

l’immunologie humaine et des mécanismes pathologiques associés au développement des 

maladies. Cependant, les modèles murins ne permettent pas de reproduire toute la complexité 

du system immunitaire humain et des pathologies humaines. La sélection et la validation de 

nouvelles thérapies et vaccins sont devenues incontournables dans les domaines de 

l’immunothérapie des cancers, de l’infectiologie et des maladies auto-immunes.  Récemment, 

les avancements dans la reconstitution d’un système immunitaire humain dans des modèles 

murins immunodéficients « HIS » (Human Immune System), a relancé l’intérêt de 

l’utilisation de tels modèles pour résoudre les mécanismes physiopathologiques de maladies 

liées à l’immunité et pour prédire les réponses immunitaires aux cours des traitements de 

maladies complexes.  

Le développement des souris humanisées a débuté à la fin des années 1980 avec des 

études réalisées dans des souris immunodéficientes portant la mutation SCID (Severe 

Combined Immunodeficiency Desease). Depuis, nombreux efforts ont été déployés pour 

atteindre un modèle dont la greffe et le développement du système immunitaire humain sont 

Figure	
  3:	
  Parallélisme entre les CLIs et les lymphocytes T.	
  
(Adapté	
  de	
  Goldberg	
  et	
  al.	
  2015) 



 
	
  

	
  

320 

optimaux, en modifiant le fond génétique et en mutant des gènes nécessaires au 

développement des cellules murines.  

 
Figure	
  4:	
  Stratégies	
  d’amélioration	
  de	
  l’homéostasie	
  et	
  fonction	
  des	
  cellules	
  du	
  système	
  immunitaire	
  humain	
  

chez	
  les	
  souris	
  HIS	
  a	
  travers	
  le	
  temps 

.  

Dans les travaux présentés dans ce manuscrit, le modèle BRGS (BALB/c Rag2-/- 

Il2rg-/- NOD.Sirpa) a été utilisé. Les souris BRGS ont un fond Balb/c et présentent des 

mutations nulles sur le gène RAG-2, (Recombinase Activity Gene-2) qui empêche le 

développement des lymphocytes T, B et la génération d’anticorps, et sur le gène de la chaine 

γc (CD132), commune à plusieurs récepteurs d’interleukines (IL-2, IL-4, IL-7, IL-9, IL-15 et 

IL-21), empêchant le développement des cellules Natural Killer (NK) et autres cellules 

innées. Enfin, l’insertion de la version polymorphique du gène SIRPα (Signal regulatory 

protein alpha) du fond NOD confère une tolérance supérieure des phagocytes vers les cellules 

humaines portant le antigène CD47, et ainsi une meilleure reconstitution hématopoïétique.  

 Ces modifications rendent les souris BRGS profondément immunodéficientes car 

dépourvues de lymphocytes T, de lymphocytes B et de cellules NK et, par la suite, favorisent 

la greffe et la différenciation des Cellules Souches Hématopoïétiques humaines contenues 

dans la fraction de cellules CD34+ (CSHh) de la moelle osseuse, du sang de cordon ou du 

foie fœtal. Après greffe de ces dernières, le développement des différentes lignées 

immunitaires humaines est observé pendant plusieurs mois.   

Ainsi, les modèles BRGS sont un outil préclinique particulièrement approprié 

permettant d’obtenir de manière rapide des résultats pertinents d’un point de vue 

clinique. Cependant, certains types cellulaires, comme les cellules dendritiques ou le cellues 
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lymphoïdes innées, ne parviennent pas à se différencier et à fonctionner normalement dans 

les modèles murins HIS actuels.   

Alors que les cellules dendritiques sont essentielles pour l’initiation de la réponse 

immunitaire et la présentation antigénique, ils agissent aussi de concert avec les cellules de 

l’immunité innée (notamment les CLIs) pour réguler une réponse optimale et, à long terme, la 

réponse humorale et l’immunité cellulaire. Alors que les modèles HIS génèrent un répertoire 

complet de cellules T et B, ces modèles ont des réponses atténuées après une primo 

immunisation. Ceci peut être dû à une génération sous-optimale des cellules innées myéloïdes 

et lymphoïdes « de réponse rapide ».  Dans le cadre de ce projet, ces défauts de réponse 

immunitaire seront corrigés par différentes approches innovantes, incluant l’élimination de la 

compétition des cellules dendritiques murines (par élimination du facteur de croissance murin 

flk2) ou par injection de facteurs de croissance humains pour stimuler le développement des 

cellules dendritiques et/ou CLIs (injection de Flt3 et IL-15).  

Ces études ont comme objectifs spécifiques : Premièrement, créer et valider un 

modèle de souris HIS permettant de récapituler le phénotype et les fonctions des CLIs 

humaines. Deuxièmement, comprendre comment ces cellules CLI se développent in vivo 

chez les souris humanisées. Finalement, optimiser l’utilisation de modèles HIS comme outil 

de test préclinique de immunothérapies contre le cancer.  

 

 

 

 

 

 

 

Je présente les résultats principaux de mes travaux de thèse sous forme d’articles 

scientifiques : 

Des	
  interactions	
  functionnelless	
  avec	
  les	
  CDs	
  promeuvent	
  l’homeostasie	
  des	
  CLIs	
  in	
  
vivo.	
  	
  
 

L’ingénierie génétique a permis de décrire l’ontogénie des CLIs murins au point 

qu’elle est aujourd’hui relativement bien connue. En revanche, le développement des CLIs 

chez l’homme reste largement méconnu du fait de la grande variété des précurseurs et des 

conditions de cultures utilisées dans les études publiées. Pour concilier ces modèles différents 
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et pour étudier la diversité phénotypique et fonctionnelle des CLIs, nous visons à créer des 

modèles in vivo récapitulant les CLIs humains avec fidélité. De plus, ces modèles peuvent 

finalement être utilisés pour recréer des pathologies humaines et pour étudier le potentiel des 

CLIs comme cible thérapeutique ou vaccinale.       

La différentiation des CLIs implique de nombreuses interactions entre des cellules 

précurseurs, leur stroma et les cellules myéloïdes, ainsi que les voies de signalisation 

impliquant les facteurs solubles que ces partenaires cellulaires produisent. Cependant, les 

cellules myéloïdes humaines ne sont pas suffisamment représentées dans les souris HIS du 

fait de l’absence de cytokines humaines et à la compétition pour la niche hématopoïétique 

dans les tissue murins. Une de ces cytokines essentielles pour le développement myéloïde est 

le Flt3L (de l’anglais FMS-related tyrosine kinase 3 ligand). 

Dans cette étude, nous avons généré des souris HIS BALB/c Rag2-/-Il2rg-/-

SirpaNODFlk2-/- (BRGSF) qui, après traitement avec la protéine recombinant Flt3L, ont 

montré une augmentation des CDs humaines. Cette amélioration a eu, par la même occasion, 

un impact positif sur l’homéostasie et la fonction des CLIs humaines.  

Nous montrons dans ces travaux que l’interaction CD-CLI a lieu au sein de tous les 

organes lymphoïdes et non-lymphoïdes (muqueuses), permettant aux CLIs de se développer 

et survivre grâce à des facteurs solubles (interactions indirectes) et probablement à des 

interactions directes. Sur cette base, les souris HIS BRGSF ouvrent un vaste champs de 

recherche pour l’étude du développement des CLIs, des pathologies associées, et de 

nouvelles stratégies thérapeutiques.  

 
Figure	
  5:	
  Resumé	
  graphique	
  du	
  modéle	
  de	
  souris	
  humanisée	
  BRGSF. 
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Des	
  cellules	
  precurseurs	
  des	
  CLI	
  fournissent	
  un	
  substrat	
  pour	
  la	
  differentiation	
  des	
  CLIs	
  
dans	
  les	
  tissus.	
   	
   	
  

 Les CLIs peuvent être identifiés par les marqueurs lignage—CD7+CD56—

CD127+ à basse fréquence dans le sang périphérique des individus sains ou souffrant des 

divers syndromes cliniques. Une analyse plus approfondie utilisant d’autres marqueurs peut 

les séparer en trois grandes classes. Jusqu’à 

présent, la manière dont les cellules précurseurs 

des CLI (CLIP) donnent naissance à différentes 

CLI matures dans les tissus restait mal 

comprise. Cette étude collaborative au sein de 

mon équipe a donné lieu à la découverte des 

CLIP circulants dans le sang périphérique 

humain.  

La mise en évidence des CLIP 

circulantes et la possibilité de les prélever 

permettent d’envisager avec optimisme des 

applications de thérapie cellulaire. Ces 

précurseurs donnent en effet naissance à quatre 

grands types de cellules lymphoïdes innées qui 

interviennent très tôt pour défendre 

l’organisme : les cellules tueuses naturelles 

(NK), et les trois types d’CLI (CLI1, 2 ou 3), qui possèdent des rôles et des cibles différents. 

Cette découverte bouscule également le dogme couramment admis jusqu’à présent sur 

l’origine tissulaire des CLI (c’est à dire la moelle osseuse). Les CLIP circulent dans le sang 

puis parviennent sur le lieu de l’infection ou de la tumeur, où les CLI sont produites 

localement pour combattre les agressions. La production des CLI est donc locale, dans 

chaque tissu concerné par un mécanisme qu’on pourrait nommer l’CLI-poïèse, à l’image 

d’autres processus de fabrication cellulaire dans l’organisme. » 

Dans cette étude on a utilisé des souris HIS BALB/c Rag2-/-Il2rg-/-SirpaNOD (BRGS) 

pour analyser le potentiel de differentiation de la population cellulaire CD117+ CLIP. Alors 

que les souris BRGS greffées avec des CSH ont montré la reconstitution de plusieurs lignées 

cellulaires, celles qui ont recu les cellules CD117+ CLIP ont uniquement montré le 

developpement des cellules Lin–CD7+ mais pas des celulles myeloides, lymphocytes B ou 

Figure6:	
  Resumé	
  graphique	
  de	
  la	
  localization	
  et	
  
capacité	
  de	
  differentiation	
  des	
  CLIPs. 
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lymphocytes T. La progénie humaine dérivée des CD117+ CLIP a été detectée dans plusieurs 

organes (rate, poumon, intestin et foie). Dans tous ces tissus, des cellules EOMES+ NK ainsi 

que des populations cellulaires CD127+ CLI productrices de IFN- γ ont pu être détectées.  

Le precurseur CLI a pu être identifié également dans les souris BRGS greffées avec 

des CSHs CD34+. De facon similaire aux CLIPs obtenues à partir du sang humain, les 

cellules derivées des souris humanisées ont echoué a produire des cytokines après stimulation 

ex vivo. Toutefois, la culture de ces cellules in vitro en presence de IL-2, IL-7 et IL-1β a 

conduit à l’expansion cellulaire et à la production de IFN-γ, IL-13, IL-17A et IL-22, 

démontrant donc la présence des CLIPs dans les souris HIS.  

 

Les	
  cellules	
  tueuses	
  naturelles	
  derivées	
  des	
  cellules	
  souches	
  du	
  sang	
  de	
  cordon	
  
ombilical	
  (UCB)	
  sont	
  efficaces	
  dans	
  le	
  traitement	
  in	
  vivo	
  du	
  cancer	
  colorectal	
  
metastatique.	
  	
  

 

Le cancer colorectal (CRC) est la quatrième cause de mortalité par cancer dans le 

monde. Malgré les derniers avancements dans le traitement du CRC métastasique qui ont 

amélioré substantiellement le taux de survie, cette maladie est encore souvent fatale. Les 

anticorps monoclonaux (mAbs) ciblant le récepteur du facteur de croissance épidermique 

(EGFR de l’anglais Epidermal Growth Factor Receptor) ont été approuvés pour le traitement 

des patients qui souffrent de CRC avancé, soit en combinaison avec la chimiothérapie ou 

comme monothérapie (dans les patients chimio-réfractaires). Cependant, des mutations sur 

des gènes suppresseurs de tumeurs et proto-oncogènes dans la voie de signalisation du EGFR 

(RAS, BRAF ou PIK3CA) son fréquentes chez les patients avec CRC. Ces mutations 

représentent des marqueurs de pronostic négatifs et rendent les thérapies mAbs anti-EGFR 

inefficaces. Cela se traduit par le fait que 42% des patients avec CRC chimio-réfractaires sont 

dépourvus d’options thérapeutiques.  

En plus du blocage de l’interaction ligand-EGFR dans les cellules tumorales, les 

mAbs thérapeutiques peuvent aussi interagir avec les cellules NK, déclenchant une 

cytotoxicité dépendante des anticorps (ADCC, de l’anglais antibody-dependent cell-mediated 

cytotoxicity). Plusieurs études ont montré un phénotype dysfonctionnel et une infiltration 

déficiente des NKs dans le tissu cancéreux dès les stades précoces ainsi qu’un 

microenvironnement tumoral immunosuppresseur. Différentes stratégies, comme l’infusion 

des NK autologues, ont été utilisées pour augmenter l’activité anti-tumorale des cellules NK, 
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mais elles se sont relevées jusqu’à présent infructueuses dans plusieurs types de tumeurs 

solides.   

Dans cette étude nous avons utilisé des souris BRGS pour évaluer le potentiel 

thérapeutique d’un nouveau traitement combinatoire dans un modèle de CRC muté pour RAS 

(RASmut) et exprimant l’EGFR. Ce traitement a consisté en une co-administration de cellules 

NK dérivées des cellules souches d’UCB et de mAb commercial cetuximab. Nos résultats 

montrent une efficacité anti-tumorale des cellules UCB-NK contre les cellules tumorales 

EGFR+ RASmut supérieur au cetuximab en monothérapie. Cette activité anti-tumorale a été 

observée à la fois in vitro et in vivo contre des cellules cancéreuses colorectales 

indépendamment du statut EGFR et RAS. 

 
Figure	
  7:	
  Effet	
  des	
  differents	
  traitements	
  sur	
  la	
  croissance	
  de	
  la	
  tumeur	
  SW480	
  chez	
  les	
  souris	
  BRGS. 

 

Une	
  approche	
  basée	
  sur	
  des	
  nanobodies	
  bispecifiques	
  pour	
  exploiter	
  la	
  capacité	
  
cytolytique	
  des	
  cellules	
  Vγ9Vδ2-­‐T	
  

Comme discuté précédemment, les cellules T dont le TCR est composé par des 

chaines de type γ et δ, particulièrement les cellules Vγ9Vδ2-T, présentent un intérêt 

particulier pour développer de nouvelles approches thérapeutiques. En fait, des essais 

cliniques ont récemment débuté pour des thérapies utilisant ces cellules dans des cancers 

hématologiques ou solides. Ces stratégies incluent le transfert adoptif des cellules Vγ9Vδ2-T 

amplifiées ex vivo et l’activation in vivo des cellules Vγ9Vδ2-T à travers l’administration 

d’aminobisphosphonates ou phosphoantigènes synthétiques seuls ou combinés avec IL-2. 

Cependant, les résultats de ces essais montrent une tolérance et une activité anti-tumorale qui 

varient selon les études. Une explication possible pour cette observation est le fait que 
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l’induction de l’activité des cellules Vγ9Vδ2-T est systémique et non favorisée dans le 

microenvironnement tumoral, où les cellules effectrices doivent exercer leur activité.   

Des travaux publiés récemment ont montré que les nanobodies (ou VHHs) peuvent 

améliorer l’activation et l’accumulation des cellules Vγ9Vδ2-T dans la tumeur. Les 

nanobodies sont des fragments d’anticorps à domaine unique plus de dix fois plus petits que 

les anticorps monoclonaux traditionnels. Les nanobodies se caractérisent par d’étonnantes 

propriétés en termes de production, de stabilité et de reconnaissance de marqueurs tumoraux. 

Leur petite taille permet entre autres de cibler la même protéine de façon multiple.   

Dans cette étude nous décrivons la génération de nanobodies bispécifiques qui 

combinent l’inhibition de la voie de signalisation de l’EGFR et l’activation spécifique des 

cellules effectrices Vγ9Vδ2-T. Un modèle BRGS 

de carcinome colorectal a été utilisé pour évaluer 

l ‘efficacité in vivo de cette stratégie 

thérapeutique. Nous avons pu démontrer que les 

cellules Vγ9Vδ2-T activées de cette façon 

produisent des cytokines pro-inflammatoires 

comme IFN-γ et TNF-α in vitro et in vivo 

indépendamment du statut du gène KRAS. Cette 

activité anti-tumorale a conduit à une charge 

tumorale diminuée et une survie accrue des souris 

traitées en comparaison à celles qui n’ont pas reçu 

le traitement combiné de cellules Vγ9Vδ2-T et de 

nanobodies.  
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Figure8:	
  Effet	
  des	
  différents	
  traitements	
  sur	
  la	
  
croissance	
  de	
  la	
  tumeur	
  SW480	
  (c)	
  et	
  sur	
  la	
  

survie	
  des	
  souris	
  BRGS	
  (d). 
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Titre : LES SOURIS HUMANISÉES COMME MODÈLES D'ÉTUDE DE L'IMMUNITÉ INNÉE HUMAINE ET DES 
IMMUNOTHERAPIES  

Mots clés : Souris humanisées, Cellules Natural Killer, Cellules lymphoïdes innées, Immunothérapies  

Résumé : Les modèles animaux ont largement 
contribué à notre compréhension de l’immunologie humaine 
et des mécanismes pathologiques associés au développement 
des maladies. Cependant, les modèles murins ne permettent 
pas de reproduire toute la complexité des pathologies 
humaines. Les souris à système immunitaire humain (HIS), 
par leur capacité à récapituler l’hématopoïèse humaine et à 
être infectées par des pathogènes humains, constituent une 
solution de choix pour combler ce fossé inter-espèce. 

Après greffe de cellules souches hématopoïétiques 
humaines, des souris hôtes sévèrement immunodéprimées 
permettent un haut niveau de développement du système 
hémato-lymphoïde humain tout au long de leur vie. 
Cependant, certains types cellulaires, comme les cellules 
lymphoïdes innées, ne parviennent pas à se différencier et à 
fonctionner normalement dans les modèles murins HIS 
actuels. Ici, nous décrivons le développement d’un modèle 
souris HIS original, nommé BRGSF (BALB/c 
Rag2tm1FwaIl2rgtm1CgnFlk2tm1lrl SirpaNOD), montrant une 
amélioration de la maturation, de la fonction et de 
l’homéostasie des cellules natural killer (NK) humaines et 
des autres ILCS.  
De	
   plus,	
   en	
   récapitulant	
   les	
   différentes	
   étapes	
   du	
  
développement	
  des	
  ILCs	
  humaines,	
  ce	
  modèle	
  souris	
   
 

BRGSF nous a permis d’identifier pour la première fois un 
précurseur d’ILC (ILCP) présent à la fois dans notre modèle 
HIS ainsi que dans le sang périphérique et plusieurs organes 
lymphoïdes et non-lymphoïdes humains. Cette population 
circulante d’ILCPs pourrait constituer un substrat pour la 
production d’ILCs matures dans les tissus périphériques en 
réponse à des stress environnementaux, inflammatoires et/ou 
infectieux. 

Dans une seconde partie de ce travail de thèse, nous 
avons utilisé ces souris BRGS afin de tester l’efficacité de 
deux immunothérapies reposant sur les lymphocytes innés 
pour le traitement d’un carcinome colorectal exprimant 
EGFR et muté pour KRAS. La première approche a consisté 
en la co-administration des cellules NK dérivées de sang de 
cordon ombilical et d'anticorps monoclonal cetuximab afin 
de promouvoir le mécanisme de cytotoxicité cellulaire 
dépendante des anticorps (ADCC) contre la tumeur. La 
seconde stratégie a reposé sur l’injection de nanobodies 
VHH combinant l’inhibition de l’EGFR et l’activation 
spécifique du récepteur Vγ9Vδ2 des cellules T effectrices.  

Les résultats de cette étude soulignent l’importance 
des modèles murins HIS pour la compréhension du 
développement des lymphocytes innés humains et pour 
mieux les mettre à profit dans les thérapies anti-tumeurs 
 

 

 

Title : HUMANIZED MICE AS MODELS TO STUDY HUMAN INNATE IMMUNITY AND IMMUNOTHERAPIES 

Keywords : Humanized mice, Natural killer cells, Innate lymphoid cells, Immunotherapies  

Abstract : Animal models have extensively 
contributed to our understanding of human immunobiology 
and to uncover the underlying pathological mechanisms 
occurring in the development of the disease. However, 
mouse models do not always reproduce the genetic 
complexity inherent in human disease conditions. Human 
immune system (HIS) mouse models that are susceptible to 
human pathogens and can recapitulate human hematopoiesis 
provide one means to bridge the interspecies gap.  

Severely immunodeficient host mice support life-
long, high level human hematolymphoid development after 
engraftment with human hematopoietic stem cells (HSC). 
However, the differentiation and function of some blood cell 
types, including innate lymphoid cells (ILCs), is poorly 
characterized in current HIS mice. Here we describe the 
development of a novel HIS mouse model, named BRGSF 
(BALB/c Rag2tm1FwaIl2rgtm1CgnFlk2tm1lrlSirpaNOD), which 
demonstrate enhanced maturation, function and homeostasis 
of human natural killer (NK) cells and other ILCs.  
Furthermore, the BRGSF-based HIS mouse model 
recapitulated the developmental stages of human ILCs. 
Furthermore, the BRGSF-based HIS mouse model 
recapitulated the developmental stages of human ILCs. We 

could identify for the first time an ILC precursor (ILCP) 
population that is present both in HIS mice and in human 
peripheral blood as well as in several lymphoid and non-
lymphoid human tissues. This circulating human ILCP 
population may provide a substrate to generate mature ILCs 
in tissues in response to environmental stressors, 
inflammation and infection. 
In a second part of the thesis we used BRGS 
(BALB/cRag2tm1FwaIl2rgtm1CgnlSirpaNOD) immunodeficient 
mice to assess two innate lymphocyte-based 
immunotherapeutic approaches for treating EGFR-
expressing KRAS-mutated colorectal carcinoma in vivo. 
The first model used a combination of umbilical cord blood 
(UCB)-derived NK cells and the monoclonal antibody 
cetuximab to promote antibody dependent cell cytotoxicity 
(ADCC) against the tumors. In a second model, we 
evaluated the therapeutic suitability of novel bispecific 
VHH constructs that combine inhibition of the EGFR with 
the target-specific activation of effector Vγ9Vδ2-T cells. 
These studies highlight the utility for HIS-based mouse 
models to understand human innate lymphocyte 
development and to harness these potent effectors for anti-
tumor therapies. 
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