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Abstract

Fifth generation mobile networks (5G) are being designed to introduce new
services that require extreme broadband data rates and utlra-reliable la-
tency. 5G will be a paradigm shift that includes heterogeneous networks
with densification, virtualized radio access networks, mm-wave carrier fre-
quencies, and very high device densities. However, unlike the previous gen-
erations, it will be a holistic network, tying any new 5G air interface and
spectrum with the currently existing LTE and WiFi.

In this context, we focus on new resource allocation strategies that are
able to take advantage of multihoming in dual access settings. We model
such algorithms at the flow level and analyze their performance in terms of
flow throughput, system stability and fairness between different classes of
users.

We first focus on multihoming in LTE/WiFi heterogeneous networks.
We consider network centric allocations where a central scheduler performs
local and global proportional fairness (PF) allocations for different classes
of users, single-homed and multihomed users. By comparison with a ref-
erence model without multihoming, we show that both strategies improve
system performance and stability, at the expense of more complexity for the
global PF. We also investigate user centric allocation strategies where mul-
tihomed users decide the split of a file using either peak rate maximization
or network assisted strategy. We show that the latter strategy maximizes
the average throughput in the whole network. We also show that network
centric strategies achieve higher data rates than the user centric ones.

Then, we focus on Virtual Radio Access Networks (V-RAN) and par-
ticularly on multi-resource allocation therein. We investigate the feasibility
of virtualization without decreasing neither users performance, nor system’s
stability. We consider a 5G heterogeneous network composed of LTE and
mm-wave cells in order to study how high frequency networks can increase
system’s capacity. We show that network virtualization is feasible without
performance loss when using the dominant resource fairness strategy (DRF).
We propose a two-phase allocation (TPA) strategy which achieves a higher
fairness index than DRF and a higher system stability than PF. We also
show significant gains brought by mm-wave instead of WiFi.

Eventually, we consider energy efficiency and compare DRF and TPA
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strategies with a Dinklebach based energy efficient strategy. Our results
show that the energy efficient strategy slightly outperforms DRF and TPA
at low to medium load in terms of higher average throughput with compara-
ble power consumption, while it outperforms them at high load in terms of
power consumption. In this case of high load, DRF outperforms TPA and
the energy efficient strategy in terms of average throughput. As for Jain’s
fairness index, TPA achieves the highest one.

Keywords- 5G networks, Heterogeneous Networks, Virtual Radio Ac-
cess Networks, Millimeter wave, LTE, Multihoming, Flow-level modeling,
Resource allocation, Multi-resource allocation, Power consumption.
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Résumé

Les réseaux mobiles de la cinquième génération (5G) sont conçus pour intro-
duire de nouveaux services nécessitant des débits de données extrêmement
hauts et une faible latence. 5G sera un changement de paradigme qui
comprend des réseaux hétérogènes densifiés, des réseaux d’accès radio vir-
tualisés, des fréquences porteuses à ondes millimétrées et des densités de
périphériques très élevées. Cependant, contrairement aux générations précédentes,
5G sera un réseau holistique, intégrant n’importe quelle nouvelle technologie
radio avec les technologies LTE et WiFi existant.

Dans ce contexte, on se concentre sur de nouvelles stratégies d’allocation
de ressources capables de bénéficier du multihoming dans le cas d’accès
double au réseau. On modélise ces algorithmes au niveau du flux et analyse
leurs performances en termes de débit, de stabilité du système et d’équité
entre différentes catégories d’utilisateurs.

On se concentre tout d’abord sur le multihoming dans les réseaux hétérogènes
LTE/WiFi. On considère les allocations centrées sur le réseau où un plan-
ificateur central effectue des allocations d’équité proportionnelle (PF) lo-
cale et globale pour différentes classes d’utilisateurs, utilisateurs individuels
(single-homed) et multi-domiciliés (multihomed). Par rapport à un modèle
de référence sans multihoming, on montre que les deux stratégies améliorent
la performance et la stabilité du système, au détriment d’une plus grande
complexité pour la stratégie PF globale. On étudie également les stratégies
d’allocation centrées sur l’utilisateur, dans lesquelles les utilisateurs multi-
homed décident la partition de la demande d’un fichier en utilisant soit la
maximisation du débit crête, soit la stratégie assistée par réseau. On mon-
tre que cette dernière stratégie maximise le débit moyen dans l’ensemble
du réseau. On montre également que les stratégies centrées sur le réseau
permettent d’obtenir des débits de données plus élevés que ceux centrés sur
l’utilisateur.

Ensuite, on se concentre sur les réseaux d’accès radio virtuels (V-RAN)
et en particulier sur l’allocation de multi-ressources. On étudie la fais-
abilité de la virtualisation sans diminuer ni la performance des utilisateurs,
ni la stabilité du système. On considère un réseau hétérogène 5G com-
posé de cellules LTE et mm-wave afin d’étudier comment les réseaux haute
fréquence peuvent augmenter la capacité du système. On montre que la

3



virtualisation du réseau est réalisable sans perte de performance lors de
l’utilisation de la stratégie “dominant resource fairness” (DRF). On pro-
pose une stratégie d’allocation en deux phases (TPA) qui montre un indice
d’équité plus élevé que DRF et une stabilité du système plus élevée que
PF. On montre également des gains importants apportés par l’adoption des
fréquences mm-wave au lieu de WiFi.

Finalement, on considère l’efficacité énergétique et compare les stratégies
DRF et TPA avec une stratégie éconergétique basée sur l’algorithme de
Dinklebach. Les résultats montrent que la stratégie éconergétique dépasse
légèrement DRF et TPA à charge faible ou moyenne en termes de débit
moyen plus élevé avec une consommation d’énergie comparable, alors qu’elle
les surpasse à une charge élevée en termes de consommation d’énergie moins
élevée. Dans ce cas de charge élevée, DRF surpasse TPA et la stratégie
éconergétique en termes de débit moyen. En ce qui concerne l’indice d’équité
de Jain, TPA réalise l’indice d’équité le plus élevé parmi d’autres stratégies.

Mots clés- Réseaux 5G, Réseaux hétérogènes, Réseaux d’accès radio
virtuel, Ondes millimétriques, LTE, Multihoming, Modélisation du flux, Al-
location de ressources, Allocation multi-ressources, Consommation d’énergie.
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Chapter 1

Introduction

A continuous revolution of wireless networks was predicted by Nicola Tesla,
the inventor of wireless telegraph, in 1915 [1]:

It’s all a wonderful thing. Wireless is coming to mankind in its
full meaning like a hurricane some of these days. Some day there
will be, say, six great wireless telephone stations in a world sys-
tem connecting all the inhabitants on this earth to one another,
not only by voice, but by sight. It’s surely coming.

Nikola Telsa Sees a Wireless Vision, NYT, 1915

The mobile cellular era started in the early 1980s. Since then, four cel-
lular generations were implemented offering several services as detailed in
Fig. 1.1. The first generation used analog transmission for speech services.
Then, second-generation (2G) mobile systems, such as the Global Systems
for Mobile Communications (GSM), were introduced in the end of 1991 of-
fering low bit data rate and digital speech service. Third generation (3G)
mobile systems were then born in 2001 as a network design independent
of the platform technology offering different services, including high quality
audio, video calls, and broadband wireless data. Mobile Internet connec-
tivity gained wide spread popularity with the fourth generation Long Term
Evolution (LTE) mobile communication system introduced in 2009. LTE
eliminated circuit switching, and employed an all-IP network with packet
switching that supports low to high mobility applications and a wide range
of data rates.

By 2021, the fifth generation mobile network is expected to appear as a
holistic network which will ensure user experience continuity for more chal-
lenging services with huge capacity, real-time constraints and massive ob-
jects connection. Among these services we note: virtual reality/augmented
reality applications, the Internet-of-Things (IoT), ultra-reliability for Device-
to-Device (D2D) communication, video streaming, etc. The wide adoption

21



of advanced multimedia applications increases mobile and Wi-Fi traffic and
requires faster, higher bandwidth and more intelligent networks.

The objective of the cellular generation evolution was always to provide
higher data rates with better user experience. With the emergence of new
services and communication types (M2M, D2D, IoT, etc.), network den-
sification and collaboration between different access technologies becomes
necessary in order to take advantage of all available bandwidth. It is im-
portant to note that users’ traffic activity takes place mainly within their
homes or offices. In this case, users may have access concurrently to cellular
broadband and Wi-Fi access points during long periods of the day. In this
context, 3GPP recently standardized “Dual connectivity” for simultaneous
connections on two access networks. A general definition of this simultane-
ous connection feature with sending and receiving data on more than one
access network is called “multihoming”. Multihoming, considered as an evo-
lution of traffic offloading, increases resource usage as well as multihoming
capable users’ data rates.

Exploiting resources to their maximum, we are still limited by the used
spectrum. As spectrum is scarce in currently explored bands, higher fre-
quency bands, including millimeter waves, are needed. The adoption of
millimeter wave frequency bands (mm-wave) in 5G networks offers a higher
spectrum allocation up to 1.7GHz which serves as a solution for the huge
capacity requirements. The use of mm-wave is now standardized, IEEE
802.11ad is one such example known as WiGig. The advantages of mm-wave
include also smaller size of antennas which allows to implement more than
64 antennas with directional beams on few centimeters. However, mm-wave
networks require more processing than conventional sub-GHz networks.

This network densification with mm-waves and all of these enhancements
increases the capital and operational expenditures (CAPEX and OPEX)
which contradicts with the green feature of 5G networks. One possible solu-
tion for decreasing CAPEX and OPEX is the Radio Access Network (RAN)
centralization or virtualization known as C-RAN/V-RAN enabled by the
network function virtualization (NFV) techniques. The main concept be-
hind C-RAN is to split the Baseband Unit (BBU) and the Remote Radio
Head (RRH) located at the cell site. The connection between the BBU and
the RRH is ensured by a low latency fronthaul. Moreover, BBUs are pooled
and centralized or virtualized into a BBU pool. The adoption of C-RAN/V-
RAN in 5G networks reduces the CAPEX by deploying only low cost and
small footprint RRH instead of deploying a whole base station. It allows
also dynamic many-to-one BBU-to-RRH allocation depending on the re-
quired processing resources which in turn decreases the OPEX. C-RAN’s en-
ergy efficiency is also increased by the negligible power consumption needed
for RRH cooling and by performing coordination functions between access
networks such as coordinated multipoint (CoMP) and enhanced inter-cell
interference coordination (eICIC).
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1.1 Scope and contributions

Figure 1.1: Approximate timeline of the evolution of the mobile
communications standards.

1.1 Scope and contributions

Motivated by the need of 5G networks to deliver new services with higher
data rates, we focus in this thesis on performance of heterogeneous net-
works composed of macro and small cells, in the presence of multihoming
capability.

We first consider two categories of resource allocation strategies: network
centric and user centric. The network centric strategies refer in our case to
local Proportional Fairness (PF) and global PF. The user centric ones are:
peak rate maximization and network assisted strategy. These strategies are
modeled at the flow level and solved both analytically and numerically in
order to evaluate the achievable data rate for each class of users as well as
system stability.

Second, we investigate the V-RAN context. In this context, we adopt
multi-resource allocation for jointly allocating radio and processing resources,
and investigate whether it is possible to virtualize a radio access network
while maintaining users performance and how this virtualization will affect
users performance and system stability. For this aim, we considered three
strategies: PF, dominant resource fairness (DRF), and a two-phase allo-
cation (TPA) which we proposed and which achieves a trade-off between
system stability and users’ allocation fairness.

Eventually, we investigate the energy efficiency of resource allocation in
the V-RAN and study energy efficiency of DRF and TPA. We compare the
joint resource allocation strategies with energy efficient allocation using Din-
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1.2 Organization of the thesis

klebach’s algorithm, and the baseline network model without virtualization.
These strategies were modeled and evaluated numerically with considering
real power models from the literature.

1.2 Organization of the thesis

The remainder of this dissertation is organized as follows.
Chapter 2 provides an extensive introduction to 5G networks, outlining

its fundamental architecture including HetNets, C-RAN/V-RAN, mm-wave
networks, and multihoming and interworking techniques. In addition, 5G
research directions are outlined with a detailed analysis of related research
studies and findings.

In Chapter 3, we evaluate the performance of multihoming in HetNets.
Two main approaches are covered: network centric versus user centric. We
evaluate the achievable throughput and system stability obtained by differ-
ent allocation strategies for both approaches.

In Chapter 4, we focus on V-RAN and evaluate multi-resource allocation
strategies. Emphasis is placed on users’ performance to meet the same
results obtained in the case of HetNets without V-RAN. As for reducing the
operational cost of 5G networks, we evaluate the power consumption and
savings coming from network virtualization.

Finally, Chapter 5 concludes the dissertation and presents some future
research directions.
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Chapter 2

Resource Orchestration in
5G: Overview and
Litterature Review

2.1 Introduction

Fifth generation (5G) is not as previous generations, an evolution of the
existing, but it is rather considered as a cellular network revolution that
builds on the evolution of existing technologies. These technologies are
complemented by new radio concepts that are designed to meet the new
and challenging requirements of some use cases today’s radio access net-
works cannot support [2] [3].

This revolution is necessary to offer new services to 5G users with good
quality of service (QoS). These services include:

• Good service even in very crowded places.

• Similar user experience for end-users on the move as for static users.

• The Internet of Things (IoT). Basically, anything that profits from
being connected will be connected.

• Machine-to-machine (M2M) or device-to-device (D2D) communica-
tion with real-time constraints, enabling new functionalities for traffic
safety, traffic efficiency, smart grid, and e-health.

• Huge capacity increase that could be achieved by having more spec-
trum, better spectrum efficiency and a large number of small cells.

In parallel to the data starving services, several technological concepts
that were not supported in previous cellular generations are now potential
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2.2 Heterogeneous networks/Multi-RAT

5G scenarios to answer users demands. We mainly note: D2D communi-
cations, ultra-reliable communications, massive machine communications,
IoT, Cloud computing, and hybrid networks.

However, the full image of 5G is not clear until now, and research projects
are being conducted in order to fit all puzzle pieces and figure out 5G’s
unified big picture by 2020. Among these projects, we note 5G-PPP [4],
NGMN [5], METIS [6], COHERENT [7], and mmMAGIC [8].

On the other hand, ultra high data rates, extremely low latency, any-
where anytime coverage, huge energy saving – most of the promises made by
5G are associated with their respective challenges. Among these challenges
we address in this thesis network densification in the form of heterogeneous
networks (HetNets). Heterogeneous architecture is an underlining feature
of 5G, however deployment and management of HetNets in 5G scenarios is
yet to be explored. Given the need to satisfy overwhelming capacity de-
mands in 5G, mm-wave spectrum (3-300 GHz) is expected to offer a very
compelling long term solution by providing additional spectrum to 5G net-
works. Hence, the challenge is the integration of mm-wave in heterogeneous
and dense networks as well as the backward compatibility and integration
with legacy 4G/3G networks. Furthermore, Cloud radio access networks
(C-RAN) contribution to 5G is considered as a cost effective and energy
efficient solution for dense 5G deployment. From an energy point of view,
cost and energy consumption are major considerations for 5G. C-RAN and
energy efficiency techniques could help in performance improvements.

Although HetNets were introduced in 4G networks, their complexity
has increased in 5G networks. In this chapter, we will try to build a clear
image of HetNets in 5G cellular networks. We consider different technologies
with a special focus on mm-wave networks given its important role in 5G
networks. We then address the available standards in HetNets that allow
interworking and multihoming between different radio access technologies.
Afterwards, we consider the virtualization of 5G HetNets and its benefits.
Different resource allocation strategies in the literature are also presented for
single-resource as well as for multi-resources. Finally, we give an overview
of existing works addressing energy efficiency strategies in 5G networks.

2.2 Heterogeneous networks/Multi-RAT

Today’s 3G and 4G networks are designed primarily with a focus on peak
rate and spectral efficiency improvements. In the 5G era, we will see a shift
towards network efficiency with 5G systems based on dense heterogeneous
networks architectures. HetNets are among the most promising low-cost
approaches to meet the industry’s capacity growth needs and deliver a uni-
form connectivity experience. A HetNet comprises a group of small cells
that support aggressive spectrum spatial reuse coexisting within macro cells
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Figure 2.1: Next Generation 5G Wireless Networks (Source: [3]).

as shown in Fig. 2.2. However, HetNets will be architected to incorporate
an increasingly diverse set of frequency bands within a range of network
topologies, including macro cells in licensed bands (e.g., long term evolu-
tion network or LTE) and small cells in licensed or unlicensed bands (e.g.,
WiFi). New higher frequency spectrum (e.g., millimeter-wave or mm-wave)
may also be deployed in small cells to enable ultra-high-data-rate services.

2.2.1 Architecture

HetNets are formed of macro cells and small cells. A macro cell is generally
divided into several sectors in order to increase the spatial frequency reuse
which increases the network capacity. Typically, a macro cell is implemented
as a tri-sectorial base station (BS) with each sector of 120◦. However, dif-
ferent definitions are considered for choosing the cell type, it can consider
the radius of the cell, the number of connected users and the deployment
options.

As their name indicates, small cells provide a smaller coverage area than
a macro cell. As shown in Fig. 2.2 , a macro cell overlaps several small
cells. There are several types of small cells such as micro, pico, femto and
relay cells, ordered in decreasing order of coverage and transmission power.
These small cells can be managed by the same operator as a macro cell or
by a different operator and require a lower installation cost. In addition, it
is worth to note that small cells are mainly deployed in order to support the
increasing rates of data services but can also support voice services.

In 5G HetNets, macro and small cells may be connected to each other

29



2.2 Heterogeneous networks/Multi-RAT

Figure 2.2: Heterogeneous network model.

via ideal or non-ideal backhaul, resulting in different levels of coordination
across the network for mobility and interference management. Increasing
degrees of network cooperation, from loose network node coordination to
completely centralized control (i.e. tight coupling), will provide increasing
levels of network capacity.

2.2.2 WiFi small cells

Widely deployed WiFi systems are playing an increasingly important role
in offloading data traffic from the heavily loaded cellular network, especially
in indoor traffic hotspots and in poor cellular coverage areas. Very recently,
the Federal Communications Commission (FCC) voted to make 100 MHz
of spectrum in the 5 GHz band available for unlicensed WiFi use based on
the IEEE 802.11ac standard [9], giving carriers and operators more oppor-
tunities to push data traffic to WiFi. WiFi access points have even been
regarded as a distinct tier of small cells in heterogeneous cellular networks.

Wireless local access networks (WLAN) technology evolution is mainly
carried out within the WLAN IEEE 802.11 working group which released
multiple set of standards for various operating frequencies and ranges spec-
ification. The first release was IEEE 802.11 original standard that was
defined in 1997 and clarified in 1999 with a data rate up to 11 Mbps [10].
In this thesis, we focus on the last two standards IEEE 802.11n [11] and
IEEE 802.11ac [12] as the newest sub-6 GHz standards. WiFi networks
implemented in most home networks are IEEE 802.11n based. The latter
operates at both 2.4 and 5 GHz frequencies and employs orthogonal fre-
quency division multiplexing (OFDM) modulation technique. The antenna
technology used with the IEEE 802.11n standard is known as Multiple In-
put, Multiple Output (MIMO) which allows the coordination with similar
technologies and offers data rates up to 300 Mbps. IEEE standards evolved
by introducing IEEE 802.11ac operating at 5 GHz with higher channel band-
width up to 160 MHz and a data rate up to 866 Mbps. The IEEE 802.11ac
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standard uses a wider channel and an improved modulation scheme that also
supports more clients called multi-user MIMO. The mm-wave spectrum in
the IEEE 802.11ad standard [13, 14] will be tackled later in this chapter.

In 3GPP, the LTE/WiFi interworking became possible by implementing
a modem-level aggregation for superior performance leveraging dual con-
nectivity standardized in Release 12 (R12) [15]. A new standard is being
studied: the LTE/WLAN Aggregation (LWA) for mobile operators leverag-
ing existing carrier WiFi deployments.

European Telecommunications Standards Institute (ETSI) defined in
[16] two different ways of integrating heterogeneous wireless networks: loose
coupling and tight coupling interworking. In a loosely coupled system, shown
in Fig. 2.3, the heterogeneous wireless networks are not connected directly.
Instead, they are connected to the same IP network (i.e., the internet).
Loose coupling uses the subscriber databases without the need for a user
plane interface. To use the WiFi network, the User Equipment (UE) first
needs to scan for available WiFi APs. It needs to authenticate on the se-
lected AP and then sends or receives data. Even if mechanisms such as the
Access Network Discovery and Selection Function (ANDSF) and Hotspot
2.0 [17] aim to accelerate the process, the UE still needs time before it can
use the WiFi network and in practice, it has to stay for a while in the AP
coverage to start offloading.

In contrast, a tightly coupled system, as shown in Fig. 2.4 consists of a
common packet scheduler for cellular and WLAN systems, connecting the
latter to the mobile core network and achieving the integration between
both systems at the lower layers. The UE still needs to use WiFi security
mechanisms, which are time consuming. This was standardized by 3GPP
on Release 10 [18].

A very tight solution was proposed in [20] between WiFi access points
and LTE eNodeBs. The main idea is to connect WiFi access points that
are covered by an eNodeB to this eNodeB. Such very tight coupling is made
possible by putting security functions and the layer 3 (L3) protocol stack
of the gateway in the network. In other words, residential gateways as well
as access points specifically deployed by the operator are virtualized. The
device deployed in the customer premise or in the hot spot is called a virtual
residential gateway and the device that hosts security and L3 functions
is called a gateway hotel as it is possible to implement gateway functions
of several customers in the same equipment (see figure 2.5). The main
principle of the proposal is to keep all control functions (security, mobility,
session management) in the LTE network and to use WiFi only to transmit
data. Very tight coupling between LTE and WiFi makes possible to help
the terminal to very quickly set up Layer 2 connection with WiFi access
point. The objective is to allow terminals that are covered by a residential
virtual gateway for a short period (10 seconds to 1 minute) to use the WiFi
network to offload the cellular network.
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Figure 2.3: HetNet architecture with loose coupling (Source: [19]).

Figure 2.4: HetNet architecture with tight coupling (Source: [19]).
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Figure 2.5: HetNet architecture with very tight coupling (Source: [19]).

2.2.3 LTE small cells

LTE small cell networks are highly dense networks constituting of home
eNodeBs, indoor enterprise eNodeBs as well as outdoor deployed eNodeBs.
Some of the major challenges of the LTE small cell networks are: 1) main-
taining the desired QoS with respect to downlink and uplink packet data
transmission 2) efficient handover 3) interference co-ordination with neigh-
bors. Especially in the uplink direction, i.e., from UE to small cell eNodeB,
the task of delivering a wide variety of application layer packets is compli-
cated due to limited transmission power of the UE, limited battery resources
at UE and time-varying nature of wireless channels. Thus in order to sat-
isfy the wide variety of applications in the uplink direction, an efficient QoS
aware uplink scheduler in the eNodeB is required for guarantying uplink
QoS for all the packet data transmissions.

From an architectural point of view, two deployment scenarios were iden-
tified in [21], namely small cells co-existing with macro cells,known as Hot
Spot, and small cells without macro cells known as Not spot. In such areas,
only basic network coverage is needed, which can be adequately supported
by lower cost small cells rather than more expensive resource from the macro
site. Not-spot small cells are perfect for network coverage extension to reach
the rural areas, both indoors and outdoors. The Not-spot scenario may po-
tentially suffer however from high volume of handover signaling load, which
may impact the users Quality-of-Experience (QoE).

Hot spots [22] on the other hand enable the operator to provide addi-
tional capacity where needed. A new architecture with split control and user
plane has been proposed in 3GPP Release 12 [23]. In this architecture, the
control plane will be handled by a macro cell and user plane will be handled
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by small cells. Since small cells are deployed within the radio coverage of
an existing macro cell network, necessary techniques should be put in place
in order to enable small cells to work autonomously upon the failure of the
corresponding macro cell.

2.2.4 Mm-wave small cells

Capacity for wireless communication depends on spectral efficiency and
bandwidth. It is also related to cell size. Cell sizes are becoming small and
physical layer technology is already at the boundary of Shannon capacity
[24]. It is the system bandwidth that remains unexplored. Presently, almost
all wireless communications use spectrum in 300 MHz to 3 GHz band, often
termed as “sweet spot” or “beachfront spectrum” [25]. In order to increase
capacity, wireless communications cannot help facing the new challenges of
high frequency bandwidth. The key essence of next generation 5G wire-
less networks lies in exploring this unused, high frequency mm-wave band,
ranging from 3 ∼ 300 GHz. Even a small fraction of available mm-wave
spectrum can support hundreds of times of more data rate and capacity
over the current cellular spectrum [26]. Thus, the availability of a big chunk
of mm-wave spectrum is opening up a new horizon for spectrum constrained
future wireless communications [26].

Indeed, the usage of mm-wave in cellular networks is a promising so-
lution because of the huge channel bandwidth offered by this technology.
The essential component of mm-wave systems is the directional beamform-
ing that provides array gains that can be used to overcome the high path
loss and achieve sufficient link margins. Adaptive beamforming using large
arrays for array gain distinguishes mm-wave and microwave wireless sys-
tems. Hence, modeling beamforming in mm-wave networks is critical for
precise characterization of the network behavior and accurate evaluation of
its performance.

An example of mm-wave access networks is the IEEE 802.11ad standard
[14] so called WiGig. IEEE 802.11ad specifies the physical and MAC layers
in the 60GHz band to support multi-gigabit wireless applications includ-
ing instant wireless synchronization, wireless display of high definition (HD)
streams, cordless computing, and internet access. In the physical layer, two
operating modes are defined, the OFDM mode for high performance appli-
cations (e.g., high data rate), and the single carrier (SC) mode for low power
and low complexity implementation. In addition, a hybrid multiple access
of carrier sensing multiple access/collision avoidance (CSMA/CA) and time
division multiple access (TDMA) is adopted for transmissions among de-
vices. CSMA/CA is more suitable for bursty traffic such as web browsing
to reduce latency, while TDMA is more suitable for traffic such as video
transmission to support better QoS.
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A. Beamforming in mm-wave

The main objective of adaptive beamforming is to shape the beam patterns
(e.g., by beamsteering) so that the received signal-to-noise ratio (SNR) is
maximized. Full control of beam pattern shaping requires changing both the
amplitude and phase of transmitted signals. The need for low-cost and low-
power hardware, however, has pushed mm-wave towards a simpler analog
architecture that contains only digitally controlled constant modulus phase
shifters. Hybrid precoding proposed in [27] divides the required precoding
processing between the analog and digital domains, and hence allows better
control of the beam shape.

B. Mm-wave mobile boradband frame structure

As in 4G systems, mm-wave uses also OFDM and single-carrier waveform
as multiplexing schemes. We show in Fig. 2.6 a mm-wave frame structure
as described in [28]. The basic transmission time interval (TTI) is a solt
of 62.5µs duration. Subframe, frame and superframe’s duration are chosen
equal to those in LTE systems (1 ms, 10 ms and 40 ms, respectively) in order
to facilitate the interworking between both technologies. The cyclic prefix
(CP) is chosen to be 520 ns, which gives sufficient margin to accommodate
the longest path, different deployment scenarios, and the potential increase
of delay spread in the case of small antenna arrays or wider beams. The
subcarrier spacing is chosen to be 480 kHz, small enough to stay within the
coherent bandwidth of most multipath channels expected in mm-wave. The
corresponding OFDM symbol length (without CP) is 2.08 us, resulting in 20
percent CP overhead. The subcarrier spacing is also wide enough to keep the
size of fast/inverse fast Fourier transform (FFT/IFFT) small (2048 points
for 1 GHz system bandwidth) and accommodate inaccuracies of low-cost
clocks.

C. Interworking between mm-wave and LTE

A hybrid LTE/mm-wave system can improve coverage and ensure seamless
user experience in mobile applications. In a hybrid LTE/mm-wave system,
system information, control channel, and feedback are transmitted in the
LTE system, making the entire millimeter-wave spectrum available for data
communication. Compared with millimeter waves, the radio waves at < 3
GHz frequencies can better penetrate obstacles and are less sensitive to
non-line-of-sight (NLOS) communication link or other impairments such as
absorption by foliage, rain, and other particles in the air. Therefore, it is
advantageous to transmit important control channels and signals via cellular
radio frequencies, while utilizing the millimeter waves for high data rate
communication.
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Figure 2.6: Mm-Wave frame structure [28].
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Authors in [29] propose a RAN-level tight coupling solution for LTE/WiGig
interworking. A control/user-plane (C/U) splitting mechanism has been
considered for LTE and WiGig in mm-wave HetNet based on the propo-
sition in 3GPP Release 12 for LTE-Advanced systems [30]. By using the
proposed C/U splitting, user data traffic is offloaded to mm-wave small cells
while user mobility management is centrally controlled by LTE macro cells.
The proposed architecture enables RAN-level LTE/WiGig interworking and
makes full use of the novel technologies specified for WiGig.

2.3 Multihoming

HetNets were designed such that traffic can be offloaded between available
access networks. However, concurrent multiple access to more than one
network in wireless networks has recently been standardized in Release 12
under the name of “Dual Connectivity” [15]. In this section, we introduce
the aspects and standards enabling multihoming’s concept implementation
with focus on the dual connectivity standard. We also present a literature
overview on interworking and network selection strategies in this context.

2.3.1 Multihoming aspects

Multihoming was first proposed as a redundancy solution for wired networks.
Recently, the coexistence of different wireless access network technologies has
renewed this concept and became an attractive topic for study during the
past years. Wireless networks multihoming concept started with offloading
[31, 32, 33], passing by load balancing [34], optimal distribution [35] [36]
[37], as well as concurrent multiple access [38, 39, 40].

In data offloading, users’ data is redirected intelligently in the network
in order to avoid overload as well as improve the end user experience. Data
offloading had limited success in 3GPP Release 8 because of WiFi/LTE inte-
gration complexities. However, the introduction of LTE-Advanced in 3GPP
Release 10 made data offloading more relevant. Three key data offloading
areas are proposed: Local IP Access (LIPA), Selected IP Traffic Offload
(SIPTO) and IP Flow Mobility (IFOM). We will be looking at the details
of each of these methods later on in this section.

Non-seamless offloading methods were proposed in [31] in order to en-
hance the service discontinuity when a user chooses to turn on the WiFi
interface. A cross-system traffic steering framework is proposed in [32] as
a cost-effective integration of WiFi and LTE small cells and showed 200%
gains on traditional schedulers. Authors in [33] proposed a network assisted
offloading strategy in a heterogeneous network where users apply traffic
steering proportions transmitted by the network.

Load balancing concept was introduced in wired networks [41]. Such
load balancing system must determine the available bandwidth through an
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access link, assign incoming and outgoing traffic, and detect access links
failure. For this aim, a reliable routing protocol must be considered [42].
Similarly, load balancing management could be obtained in heterogeneous
wireless networks by dynamically optimizing the packets’ split ratio between
multiple access networks as shown in [34]. Such strategy might be based on
the load information and channel quality information at each access net-
work. A dynamic load balancing management scheme was proposed in [43]
for WiFi/LTE networks in order to balance the network load. Moreover,
several user assignment studies in HetNets use the optimization of a utility
function on which the network operator splits traffic between different access
networks. Such optimization-based load balancing was adopted in [35], [36]
and [37] but did not consider the possibility of simultaneous multiple access.

Simultaneous multiple access is the newest concept in HetNets. For sim-
plicity, we use the term “multihoming” instead of simultaneous multiple
access. A resource allocation model was proposed for multihomed access
networks with traffic flows optimal allocation in [38]. The adoption of mul-
tihoming has been proven to enhance the quality of streaming services in
wired networks as shown in [44]. Multihoming can also improve streaming
services in wireless networks as shown in [39, 40].

2.3.2 Multihoming technology enablers

Throughout the past years, 3GPP and IETF worked hard in order to stan-
dardize different HetNets interwoking schemes. Their main interest was to
standardize the users mobility between accesses, the transport layer sup-
port of multihoming, and frequency resource scheduling known as “Dual
Connectivity” (DC).

A. Mobility in Heterogneous Networks

Non-seamless offloading between LTE and WiFi is disturbing, especially
for real-time applications that require the continuity of service (e.g., VoIP,
Video Conference, HTTP page). It is highly desirable that mobile operators
provide seamless service continuity between cellular and WiFi accesses with
involving both user plane routing and control plane functions. This seamless
continuity can be first supported by ensuring a service layer continuity even
when the IP address has changed which is not supported in TCP/IP. In
this section, we present some of the seamless continuity standardized tech-
nologies. Several mechanisms are proposed by 3GPP describing the offload
management in 3GPP networks. I-WLAN is the first approach allowing
local area network access to the 3GPP core.

Next we present two approaches in Release 10 that act on different axes
by choosing either offloading or load balancing. While LIPA and SIPTO
allow offloading of the traffic into a local area network in order to reduce
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the load on cellular networks, IFOM allows the usage of dual radio connec-
tions through WLAN and 3GPP systems. More precisely, LIPA consists in
offloading the traffic seamlessly at a local gateway (L-GW) breakout point
into a local area network (LAN) when needed. SIPTO presents a selective
offloading from the serving gateway (S-GW) at a Femtocell or macrocell
scale towards a (L-GW) connected to the internet in order to decrease the
load on the cellular network in a crowded region [45]. Moreover, the WLAN
offload mechanism IFOM describes the mechanism adopted when a UE has
several data sessions over different types of access simultaneously: 3GPP
and WiFi networks. Until now, the user selects which traffic to offload on
WiFi and which to keep on the 3GPP access (for example LTE). However,
the previously described offloading techniques require mobility management
mechanisms at the network layer for roaming and offloading of low-latency
and higher data rates packet services. For this reason, 3GPP and IETF
introduced respectively two mobility protocols: GTP1 and PMIP2. Both
GTP and PMIP based mobility are explained in [46] from a technical and
economical points of view in such a way so as to optimize the interworking
between WiFi and other networks. In general, a session continuity can be
maintained: (i) between WiFi and 3GPP networks by using GTP, and (ii)
between WiFi and non-3GPP networks by using PMIP.

These offloading mechanisms and mobility solutions are complemented
by the 3GPP network selection strategy, the ANDSF, where the ANDSF
element is a server located in the operator’s network that distributes the
network selection information and policies using a standardized interface
(S14). ANDSF was first standardized in Release 8 where it introduced the
Inter-System Mobility Policies (ISMP), it was then enhanced in Release 9
and 10 in which it introduced the Inter-System Routing Policy (ISRP) for
routing IP traffic simultaneously over multiple radio interfaces. In Release
11, data identification in ANDSF (DIDA) was introduced, and finally in
Release 12, it introduced the Operator Policies for IP Interface Selection
(OPIIS).

Authors in [47] studied the non-seamless offload between cellular and
non-trusted WiFi aiming to achieve an enhanced offloading from WiFi to
LTE with guaranteed session continuity using IP encapsulation technique.
Several works addressed host mobility in the current IP architecture using
the Host Identity Protocol (HIP) proposed by IETF. Authors in [48] provide
an in-depth look at HIP, discussing its architecture, design, benefits and
potential drawbacks.

In order to support real-time services and QoS over trusted WiFi, opera-
tors deploy WiFi APs that are considered trusted and enable mobile services

1GTP: GPRS Tunneling Protocol, A group of protocols used for GPRS packet traffic
and control in mobile core networks

2 PMIP: Proxy Mobile IP, the network-based mobility mechanism supported by 3GPP2
and WiMAX
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and features over these WiFi APs such as real-time services, and generally,
end-to-end QoS over trusted WiFi, this solution is called SaMOG3. This inte-
gration is described as a use of Small Cell Base Stations (SCBS) within LTE
cell coverage. According to [32] these SCBSs have the ability to transmit
over both licensed and unlicensed spectrum. Traffic is steered in such a way
that delay-sensitive applications are routed using LTE and delay-tolerant
ones through WiFi. Some studies aim to minimize the SCBS intervention,
while others aim to maximize it. Once SCBS is chosen, UEs are scheduled
according to their QoS requirements using a scheduling mechanism (earliest
deadline first (EDF), proportionally fair scheduling (PFS), Max-timely, and
Min-Resources). This steering approach allows to reach 5× more gain than
that obtained in a random distribution ([32]).

B. Multihoming at transport layer

In addition to the mobility described above and maintaining the IP connec-
tion of a user when offloading, static multihoming of a user connected simul-
taneously to multiple access networks has multiple IP addresses. However,
regular TCP can support only one flow which mean only one IP address.
For this reason, several transport protocols were proposed, we will present
here an overview of multihoming-capable protocols.

Transport layer multihoming started with node multihoming which is
an old concept defined as a device having more than one wired access in-
terface. Two main standards were proposed: Stream Control Transport
Protocol (SCTP) in 2000 [49, 50] and Multi-Path Transport Control Proto-
col (MPTCP) in 2010 [51]. SCTP uses only one path for transfer and keeps
the other available paths for packet retransmission or for backup in case
of handover or link failure. SCTP suffered however from the middleboxes
blocking problem for SCTP packets. In this context, MPTCP was designed
to answer the need for a concurrent multipath transfer function and a wide
scale deployment by ensuring compatibility with lower and upper layers and
by bypassing the middleboxes that may act at the transport level and may
affect the TCP and MPTCP traffic. In addition, it targets better throughput
and resilience by supporting the concurrent use of multiple paths seamlessly.

C. Frequency resources aggregation

Since the operator’s first choice is to add more capacity on licensed spectrum,
carrier aggregation (CA) technology [52] has been standardized in Long
Term Evolution (LTE) Releases 10–12. CA was first proposed to aggregate

3SaMOG: S2a-Based Mobility on GTP, where GTP is a mobility solution proposed for
3GPP network using the S2a interface and adopting the Evolved Packet Core (EPC) of
LTE architecture in the mobility process.
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multiple small band segments into maximum 100 MHz virtual bandwidth
to achieve higher data rate in LTE small cells.

Frequency multi-connection is also being standardized by 3GPP. LTE
dual connectivity is introduced in Release 12 [15] as a realization of different
spectrum allocation between a macro cell and a small cell. Several work
items in Release 13 differentiated between dual connectivity in LTE/LTE-A
HetNets, the License Assisted Access (LAA), and in LTE/WLAN HetNets,
the LTE/WLAN Aggregation (LWA).

In LTE Dual Connectivity (DC), a user equipment (UE) maintains two
downlink radio links, one to the macro cell and one to the small cell with con-
trol signaling sent only to the macro eNB. In other words, the UE can move
under the coverage of the LTE macro cell without incurring any handover
events. On the other hand, the uplink user plane of the UE is sent on either
the macro cell link or the small cell link, whilst the downlink user plane has
the additional option of being split and using both links (link aggregation).
The downlink user plane bearer splitting occurs at the Packet Data Con-
vergence Protocol (PDCP) protocol layer such that PDCP PDUs are sent
either from the macro cell or forwarded over the X2 interface to the small
cell. The small cell’s eNB queues the PDCP PDUs and determines when to
schedule their transmissions. Since PDCP PDUs may arrive out-of-sequence
at the UE, the PDCP layer includes reordering functionality.

Several studies have been made in this field from different aspects in order
to boost the standardization of DC mechanism in 5G networks. Information
sharing and reporting issues were investigated in [53] with a focus on data
split requirements. A novel method addressing the MeNBs-SeNBs pairing
and the UEs grouping problem was proposed in [54]. Assignment problem
with limited available reference signals was studied in [55], while flow control
was analyzed in [56] and [57].

2.3.3 Interworking types

Several heterogeneous network types were considered in the literature. Het-
erogeneity in wired networks mainly consisted in accessing a server using
more than one ISP, which means different routes. Generally, wired net-
works mutilhoming is considered as redundancy in case of failure. Few
works tackled multihoming in such networks, we note [44] in which the au-
thors conducted a study on multihoming streaming in a residential context
using a DSL and a cable connection. This study showed significant QoS
improvement for connection splitting and migration in case of congestion.

Conversely, wireless networks interworking gained a huge reputation.
Several HetNet models were proposed along with performance evaluation
and interworking technologies standardization. Next, we present two main
categories for wireless networks interworking: (i) interworking between ac-
cess networks with the same technology, mainly 3GPP, and (ii) interworking

41



2.3 Multihoming

between different wireless technologies with a focus on the interworing be-
tween 3GPP and WLAN networks.

A. Inter-3GPP interworking

Network densification using LTE small cells has been an important evolution
direction in 3GPP, since LTE Release 10, to provide the necessary means
to accommodate the anticipated huge traffic growth. Moreover, LTE small
cells can be deployed both with macro coverage and standalone, indoor or
outdoor, and can also be deployed sparsely or densely based on each case re-
quirements. LTE interference coordination in such HetNets is widely studied
and several radio coordination features are proposed. For example, we note
downlink joint transmission, dynamic point blanking known as coordinated
scheduling and enhanced inter-cell interference coordination (eICIC).

Joint access control and spectrum resource allocation is studied in [58]
in a multi-access network composed of an LTE macro cell and several femto
cells. Authors in [59] studied the eICIC in HetNets with co-channel deploy-
ment of small cells sharing the same licensed spectrum with macro cells and
showed that they provide high-speed localized services.

Recently, different scenarios for LTE small cells deployment is studied in
[60] under the dual connectivity feature in which detailed system-level simu-
lations demonstrated how dual connectivity can improve end-user through-
put and mobility performance. Authors in [53] explored dual connectivity
technical challenges between LTE macro and small cells such as buffer sta-
tus report, power headroom calculation and reporting, user power saving
operations such as discontinuous reception, and increased device complexity
to support bearer split in dual connectivity. They also showed that there
are benefits of uplink bearer split in terms of increased per-user throughput
between MeNB and SeNB at the expense of higher complexity in UE func-
tionality. Authors in [61] compared load balancing and bearer splitting for
the LTE DC architecture for indoor and outdoor scenarios and showed that
both strategies achieve comparable throughput at the expense of additional
complexity for bearer split.

B. Heterogeneous Interworking

The ability to exploit different access network technologies while providing
a seamless subscriber experience has a clear appeal for all service providers
and network operators. This is why interworking between HetNets was
adopted. Several combinations of access networks were studied including,
but not limited to, UMTS/WiMAX [62], WiFi/UMTS [63], WiFi/WiMAX
[64] WiFi/HSDPA [38], WiFi/LTE [32, 36, 65, 66], and recently in 2017
mmWave/LTE [67]. However, not too many studies considered simultaneous
multihoming. In the following, we present an overview of research works
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concerning different cases of heterogeneous interworking.
A seamless handover approach between UMTS and WiMAX was pro-

posed in [62] under a tight coupling architecture. This seamless handover
was achieved by adding a sublayer on top of Layer 2 PDCP in UMTS and
of MAC in WiMAX. The interworking between WiFi and UMTS was stud-
ied in [63] from the user equipment point of view in which they proposed
a network selection scheme based on the battery power level in both nor-
mal and power saving modes. The interworking between WiFi and WiMAX
was presented in [64]. The model consisted in WiFi accesses backhauled by
WiMAX networks, the users are supposed to connect to the WiFi AP only
and the main focus was on the interference management between WiFi APs.
Multihoming was first studied in [38] between WiFi and HSDPA by using
a strategy that finds the best packet splitting ratio between both accesses
and showed service rate improvement.

Many studies addressed the interworking between WiFi and LTE. A
tight integration between WiFi and LTE studied the co-location between
WiFi and LTE small cells in [32], and proposed a cross-system traffic steer-
ing framework function of the traffic load and QoS requirements. Optimized
cell-association and RAT assignment in such networks was studied in [66]
and showed edge users throughput improvement by 1.8×. As an extension,
[68] proposed a QoS-aware scheduling algorithm that optimizes the on-time
throughput metric for tightly coupled LTE-WiFi small cells and showed a
3× improvement in the number of satisfied users. Authors in [36] considered
a centralized radio resources scheduler that can communicate with both BS
and APs offering two main functions: network selection and resource allo-
cation, assuming that a user can access only one network at a time. From
an architectural point of view, authors in [65] provided an overview on the
LTE/WLAN interworking architecture, network selection, and security and
mobility procedures. In addition, a quantitative study on the performance
of indoor WiFi IEEE 802.11ac deployment is presented in [69] by using the
offloading capabilities controlled by the user equipment itself. An analytical
model of user throughput in IEEE 802.11ac is provided. A traffic steer-
ing method from LTE to IEEE 802.11ac is proposed based on SINR and
throughput metrics aiming to ensure that users offloaded to WiFi acquire
their minimum required data rate. The performance study showed that a
minimum of 10 Mbps could be guaranteed in an interworking between IEEE
802.11ac and LTE. Very recently [67], mmwave offloading was proposed for
interworking with LTE, which we assume in this thesis to be an important
key technology in 5G networks. However, authors did not consider the case
of multihoming and its benefit in such interworking.
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2.3.4 Network selection decision

The network selection strategy in HetNets in the literature can be classified
into three approaches: network centric, user centric, and hybrid decisions.
We present here an overview for different research works in this domain and
their contributions for network selection decision.

Network centric strategies generally propose a central scheduler managed
by the operator. This central scheduler takes into consideration resource
allocation between cell users. Several works addressed the interworking be-
tween HetNets using network centric scheduler, we note [66, 38, 36, 70].
Alternatively, user centric strategies delegate the traffic splitting or offload-
ing to the users. For example, the user equipment might decide based on
the battery power level combined with the consumption on each access net-
work with preferring to offload on WiFi networks in the battery saving mode
[63, 71]. Similarly, authors in [72] proposed an autonomous interface selec-
tion architecture for mobility management. The main idea was to choose an
interface according to performance gain instead of throughput and to avoid
frequent handover. Multihoming was considered from a user centric point of
view in [73] where the user requests bandwidth share from available network
without taking into consideration the system load information, which might
be misleading sometimes.

A hybrid scheme for radio resource management consists in assisting
wireless users decisions by broadcasting aggregate information about the
network state. The operators’ broadcasted policies aim to provide a bet-
ter user experience as described in ANDSF [74]. In [75], authors proposed
an association scheme that combines both centralized and decentralized ap-
proaches in a hybrid network composed of HSDPA and 3G LTE cells. The
operator controls the UE decision through the load information broadcasted
to users about each cell. An extension of this work is provided in [76] based
on the interworking between WLAN and 3G LTE. The optimized distri-
bution of users and their utilities is achieved through a strategy based on
a Bayes-Nash equilibrium, where the operator can influence this equilib-
rium by broadcasting the channel quality indicator (CQI). Authors in [77]
proposed a network selection algorithm based on the media independent
handover concept (IEEE 802.21). This algorithm is split in two coordinat-
ing parts at the user equipment and the core network in order to decide the
most suitable access network during a call establishment or a handover. A
network-assisted user-centric WiFi offloading model was proposed in [33] by
maximizing the per-user throughput. The heterogeneous network collects
information of all users, calculates the optimized split ratio and broadcasts
it to the users to use it when offloading.
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2.4 RAN cloudification

Aiming to fill the blanks in the 5G’s complete image, we introduce in this
section the virtual radio access network (V-RAN). The rationale behind V-
RANs starts with the emergence of cloud computing such as Amazon Web
Services, Microsoft Azure and Google App Engine. In parallel, the rapid
growth in mobile media applications and platforms was limited by energy
and computational resources which imposed restrictions on the advancement
of multimedia applications. That’s why cloud computing was proposed as a
support for mobile platforms by leveraging the heavy-computational services
by executing them on the cloud. The mobile cloud computing [78] was con-
sidered as the intersection between mobile computing and cloud computing.

Cloud radio access networks (Cloud-RAN or C-RAN) architecture is
considered as an innovation in HetNets. C-RAN allows scaling the mobile
data network effectively under recent network challenges. C-RAN reduces
both expenditures of mobile networks that are facing exponentially increas-
ing data traffic demand [79] [80]. A logical evolution of C-RAN architecture
is a V-RAN, a programmable architecture that is software definable and
tuneable.

2.4.1 Macro cell

An LTE eNodeB is composed of one baseband unit (BBU) and up to three
remote radio heads (RRHs) that can be connected. To connect the BBU
and each RRH, an optical interface compliant with the common public radio
interface (CPRI) specification, which is standard, is required (see Fig. 2.7).

The BBU is responsible for digital baseband signal processing. IP pack-
ets received from the core network are modulated into digital baseband
signals and transmitted to the RRH. The digital baseband signals received
from the RRH are demodulated and IP packets are transmitted to the core
network. As for RRH, an RRH transmits and receives wireless signals. An
RRH converts the digital baseband signals from BBU that are subject to
protocol-specific processing into radio frequency signals and power amplifies
them to transmit them to UE. On the contrary, the RF signals received from
UE are amplified and converted into digital baseband signals for transmis-
sion to the BBU.

2.4.2 C-RAN/V-RAN

In C-RAN, the RRHs are located at the cell site and the BBU is implemented
separately and performs centralized signal processing for the RAN. The
decentralized BBU enables agility, faster delivery, cost savings and improved
coordination of radio capabilities across a set of RRHs. A number of BBUs
can be aggregated to form a pool of baseband units (BBU pool).
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Figure 2.7: eNodeB hardware architecture (Source: [81]).

The V-RAN architecture virtualizes the BBU functionality and services
in a centralized BBU pool (V-BBU) in the Central Office (CO) that can ef-
fectively manage on-demand resource allocation, mobility, and interference
control for a large number of interfaces using programmable software layers.
Complex RAN functions become easier also, we note: precoding, energy
efficient allocation, enhanced inter-cell interference coordination [82], coor-
dinated multi-point transmission [83] [84] and dual connectivity. V-RAN
architecture enjoys software-defined capacity and scaling limits. It enables
selective content caching, which helps to further reduce CAPEX and OPEX
as well as improve user experience based on its cloud infrastructure.

In other words, V-RAN will open the door for many new applications
in 5G. For example, it offers the possibility of using signal processing soft-
ware dedicated to a special purpose based on the actual service. However,
the realization of these benefits requires suitable strategies for an efficient
usage of computing resources [85] [86], energy efficient resource allocation
[87], sufficient fronthaul capacity [88] and effective BBU placement [89]. Au-
thors in [90] studied heterogeneous C-RAN resource sharing at spectrum,
infrastructure, and network levels.

A. Functional splitting

The C-RAN architecture can be divided into two types, based on the RRH
and BBU functionalities: Full Centralization and Partial Centralization.

In full centralization, the functionalities of Layer 1, Layer 2, Layer 3 and
signaling as well as operations and maintenance (O&M) are concentrated in
the BBU, while RRH has only the radio functionalities as shown in Fig. 2.8.
This provides optimum architecture for implementing network optimization
techniques, however, it requires a large bandwidth and very low latency link
to BBU hotel, to carry the baseband in-phase/quadrature (I/Q) signals.

Partial centralization’s baseband processing functions (Layer 1) are lo-
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Figure 2.8: Functional splitting of full and partial centralization.

cated in the RRH along with radio functions (see Fig. 2.8). This con-
figuration greatly reduces front-haul bandwidth requirements as compared
to full centralization. In return, bringing baseband processing in the RRH
level makes the upgrade and multi-cell collaborative signal processing less
convenient [80].

B. Dynamic BBU pool virtualization

C-RAN architecture physically decouples the base station processing and
radio units from each other. But to achieve the true benefits, the functional
decoupling in C-RAN is of great importance. As the network load varies
over time, this make the customary one-to-one mapping highly sub-optimal
in some situations. The relationship between processing units and radio
units should be dynamically optimized according to the network conditions
which we call BBU pooling.

BBU pooling is the second evolution step. It brings the capability of
load balancing between BBUs and cost effective redundancy for protection
against BBU failure. BBU resources are then dimensioned from aggregated
requirements of the cells covered by the pool. The main benefits of pooling
are on CAPEX, enhanced scalability and failover mechanisms. In addition,
BBU pooling includes LTE-A features for enhanced spectral efficiency and
coverage fairness such as Coordinated Multipoint (CoMP) and eICIC.

In [91] the authors developed a load based adaptive architecture for
small cell networks, in which small cells/RRH are dynamically connected to
the BBU according to the load on each small cell and the overall system.
This type of mapping not only optimizes RAN performance and saves the
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computing resources but also provides an opportunity for energy saving as
we will show later in this thesis.

2.5 Resource allocation strategies

Resource allocation and scheduling is defined as the act of assigning re-
sources to a set of tasks. A set of constraints must be met by any sched-
uler such as deadline and minimum resource allocation. The decision and
the scheduling problems address the feasibility of the scheduling. Resource
scheduling started with the periodic scheduling in 1973 [92] by assigning
zero or one resources at a time. Then another version allows sharing a re-
source or assigning more than one resource at a time. Among the proposed
single-resource scheduling algorithms we note First In First Out (FIFO),
Earliest Deadline algorithm (EDF) [92], Round Robin (RR), fair queuing
(max-min fair scheduling), proportionally fair scheduling, and Scheduling
optimization problems. However, none of these strategies extended directly
to multiple resources. Radio resource allocation strategies focused either on
rate-adaptive algorithms [93, 94] on fairness algorithms [95, 96] that try to
avoid the starvation of some users.

In this thesis, we consider different variants of the 5G architecture de-
scribed previously and evaluate users performance in each of these archi-
tectures. For this aim, we use different resource allocation strategies to
compare system’s stability and achievable users throughput. We also focus
in this comparison on the fairness between different classes of users. In this
section, we explore single and multi-resource allocation strategies we found
in the literature.

2.5.1 Case of single type of resources

A fundamental step in the understanding of resource allocation mechanisms
in the Internet has been the formulation by Kelly et al. [97] of congestion
control in terms of network utility maximization. In a scenario of a fixed
number of connections across different routes in a network, this approach
characterizes an equilibrium and leads to the formulation of dynamic, dis-
tributed methods to achieve it. A unifying mathematical formulation to
fair throughput assignment (which is called the “α-fairness”) has been pro-
posed in [98]; the degree of fairness is expressed by a parameter α defined
on the whole half line [0,∞); it controls the trade-off between efficiency (to-
tal throughput maximization) and fairness. In particular, the case α → ∞
corresponds to max-min fairness (that can be considered to be the most
fair allocation), the case α = 2 corresponds to delay minimization, the case
α→ 1 corresponds to proportional fair assignment and the case α = 0 corre-
sponds to throughput maximization (that can be considered to be the most
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efficient). α-fairness notion is commonly used to describe various network
protocols (e.g., [99], [100]).

The user utility function is defined as U(x) where x is the capacity share
the user gets and the fair capacity sharing according to the utility criterion is
defined as the solution of the maximization problem that considers the total
utility of all users with U(x) = x1−α

1−α . In this thesis, we focus on the case
of proportional fairness (PF) allocation where α = 1 and U(x) is defined in
the literature [97] by:

U(x) = logx (2.1)

The goal of PF is to keep the proportionality among all service classes of
users through resources allocation. PF also presents a trade-off between sum
rate, i.e. efficiency, and link fairness in a heterogeneous network.

2.5.2 Case of multiple types of resources

Unlike conventional works on resource allocation which focus on single re-
source allocation [97, 101, 102], C-RAN introduces the need to study multi-
resource allocation strategies, both at the RRH and BBU.

A study on multi-resource allocation in cloud computing systems is pre-
sented in [103]. The authors proposed so-called Dominant Resource Fair
(DRF) allocation as a generalization of the max-min fairness to multiple
resource types. DRF has been considered in [104] in the context of simul-
taneous fair allocation of multiple, continuously-divisible resources called
Bottleneck-Based Fairness (BBF). The latter identifies the bottleneck re-
sources and allocates resources such that each user receives all his required
resources or gets at least his entitlement on some bottleneck resource. The
work in [105] introduces Bottleneck Maximum Fairness (BMF), which is a
simplified definition of BBF that ensures fairness on a bottleneck resource. A
comparison between Proportional Fairness (PF), BMF and DRF showed the
superiority of PF and BMF over DRF in offering better efficiency-fairness
trade-off.

A Dominant Resource Fair Queuing (DRFQ) allocation was proposed in
[106]. It generalizes the concept of virtual time from classical fair queuing
to multiple resources that are consumed at different rates over time. Au-
thors in [107] proposed an enhanced sharing of data center resource types
such as Central Processing Unit (CPU), Random Access Memory (RAM)
and disk storage. Dominant resource fairness was also studied in [108] in the
presence of heterogeneous servers in a cloud computing system sharing com-
putational resources such as processing, memory and storage. The proposed
multi-resource allocation mechanism called DRF for Heterogeneous servers
(DRFH) generalizes the allocation from single server in DRF to multiple
heterogeneous servers.
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However, when applied to our virtualized heterogeneous model these
multi-resource allocation strategies do not offer same results of PF supe-
riority over DRF because of multi-resources heterogeneity. To realize the
ideal DRF allocation proposed by [103], authors in [105] stated that one
can employ a water-filling algorithm. Water-filling consists on increasing
the resource allocation at the same rate for all users until some resource is
fully used, with repeating this process until all resources are fully used. In
addition, following Ghodsi et al. [103] multi-resource allocations, including
DRF, should satisfy the following properties: (i) sharing incentive, in that
any allocation is assured at least a fraction of 1/n of all dominant resource,
(ii) strategy-proofness, in which a user cannot improve her allocation by
lying, (iii) envy-freeness, in which a user should not prefer the allocation of
another user, and (iv) pareto efficiency, in that no user allocation can be
increased without decreasing the allocation of at least another user.

2.6 5G and energy issues

The Information and Communications Technologies (ICT) account for a
considerable portion of the total energy consumption. Statistics of 2012 tell
that the annual average power consumption by ICT industries was over 200
GW, where telecommunication infrastructure and devices accounted for 25%
[109]. Moreover, it is expected that in 5G era, millions more base stations
with higher functionality and billions more devices with ever higher data
rates will be connected [110]. Therefore, dramatic improvements of Energy
Efficiency (EE) are required to ensure sustainable energy consumption in
ICT [111].

Various efforts are done to cut down the energy consumption of telecom-
munication networks. The Energy Aware Radio and Network Technologies
(EARTH) project sponsored by EU, has built a framework to support the EE
evaluation over the large scale and long term, which is named the EARTH
Energy Efficiency Evaluation Framework (E3F) [112]. E3F offers the power
consumption breakdown for eNodeB components of LTE wireless system.
Meanwhile, a flexible power model is built to support the E3F evaluation,
which considers differentiation of BSs types. Furthermore, each type of BS
is divided into a group of hardware components. The power of each hard-
ware component is affected by several scaling factors, including bandwidth,
antenna, modulation, coding rate, and load as presented in [86].

2.6.1 Energy consumption

A. Energy consumption in cellular networks

Energy consumption in cellular networks could be evaluated generally by
considering the power consumed by all the components as well as the dy-
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namic radio power used for transmission function of the load, or particularly
by considering the power consumed by each allocated resources.

The consumed power at the base station follows the model provided by
EARTH in [113] generalized to all BS types, including macro, micro, pico
and femto BSs. Different transceiver (TRX) parts power consumption is
analyzed:

• Antenna interface: The influence of the antenna type on the power
efficiency is modeled by a certain amount of loss mainly at the feeder.

• Power amplifier (PA): The power consumption in PA suffers from non-
linear effects which rises the poor power efficiency ηPA.

• Radio Frequency RF: The RF power consumption depends of the re-
quired bandwidth, the allowable signal-to-noise-and-distortion ratio,
and the resolution of the analog-to-digital conversion.

• Baseband unit (BB): The BB unit power consumption includes the
power consumed by functions such as filtering, modulation/demodulation,
digital pre-distortion, signal detection, and channel coding/decoding.

• Power supply and cooling: The power supply and active cooling con-
sumption is presented as a loss that scales linearly with the power
consumption of other components.

B. Energy consumption in WiFi

The energy consumption in WiFi is less costly than cellular networks be-
cause of the reduced coverage and the lower number of users. The power
consumption in this case depends of the AP’s two states: Idle or Dynamic
[114]. In a WiFi AP, the power consumption of PA, RF, BB, and power
supply and cooling components are reduced or neglected.

C. Energy consumption in mm-wave

In a mm-wave small cell, the power consumption includes the baseband
functions, the RF chains and the phase shifters. The other power consuming-
part is the power amplifier (PA) which is the most power consuming part
in a mm-wave access network. The power consumption in a mm-wave small
cell depends of AP’s state: Idle or Dynamic [115].

2.6.2 Energy efficiency maximization

EE and sustainability of 5G networks have recently received significant at-
tention from mobile operators, vendors and research projects.

A large amount of work has been reported on EE resource allocation in
mobile networks. An energy efficient analysis was provided for LTE HetNets
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in [116] using realistic power models defined in the EARTH project. Mainly,
energy saving techniques such as sleep mode were proposed for idle femto
cells. In the same way, authors in [117, 118] proposed small cells activation
for the offloading from macro cells to small cells as a strategy to increase
power savings.

As for HetNets with multihoming, authors in [119] and [120] developed
an uplink and downlink energy efficient allocation model for bandwidth and
power resources in a heterogeneous wireless network. In the downlink case,
they adopted a win-win strategy that achieves cooperation between different
operators. Similar works on network resource allocation with multihoming
are presented in [121, 122] with power consumption minimization.

To our knowledge, few works tackled the energy efficiency in V-RANs
architecture with multihoming. Authors in [123] focused on the baseband
unit role to decrease the fixed power consumption. They proposed a dy-
namic allocation of BBUs to RRH based on traffic conditions by switching
them between ON and OFF. In addition, authors in [124] tried to decrease
the backhaul power consumption by using caching as a solution. Authors
in [125] proposed an EE maximization under average minimum data rate,
maximum fronthaul capacity and maximum transmission power of BSs in
a C-RAN model with mm-wave backhaul. However, this work did not tar-
get the multihoming problem, neither the heterogeneity of access networks.
Considering a similar case with micro-wave backhaul, authors in [126] mod-
eled the general power consumption in such networks.

Several works studied also the mm-wave energy efficiency. A compari-
son between mm-wave and 2 GHz system was provided in [127]. This study
showed that mm-wave is more efficient than 2GHz system for high SINR
value while for low SINR value 2GHz systems outperforms the mm-wave.
Precoding energy efficient strategies were the main focus point for other
works: authors in [128] studied the hybrid precoding subconnected architec-
ture, and authors in [129] compared the fully-connected and the array-of-
subarray architectures and found that the array-of-subarray has less power
consumption.

2.7 Conclusion

We presented in this chapter a general overview of HetNets in 5G cellular
networks. HetNets emerged as a promising low-cost approach for network
densification. The interworking schemes range from load balancing, to of-
foading and multihoming; the latter being the focus of the present thesis. We
described multihoming aspects and technology enablers available in 3GPP
releases and those proposed by IETF. These technologies mainly include
mobility protocols, transport layer’s protocols, and dual connectivity mech-
anism in 5G. We reported on works on heterogeneous networks interworking,
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highlighting different network selection strategies.
We also described V-RAN’s architecture and defined BBU and RRH enti-

ties based on the different functional splitting types. We showed that BBU
virtualization offers new efficiency and coverage enhancements by means
of CoMP and eICIC. We reported on resource allocation works for both
single type and multiple types of resources. We focused on proportional
fairness and dominant resource fairness strategies for single resource and
multi-resource allocations, respectively. We finally presented energy con-
sumption aspects in different wireless networks, described power consuming
parts and reported different energy efficiency works in the literature, for
HetNets, C-RAN and multihoming.

In the next chapter, we present our work on the performance evaluation
of multihoming in HetNets and compare network versus user centric resource
allocation strategies.
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Chapter 3

Network Centric versus User
Centric Multihoming

3.1 Introduction

Facing the important increase of data traffic and the need for higher data
rates, the fifth generation networks will be based on low cost, dense HetNets.
HetNets pushed the operators to look for the best interworking techniques,
standards and advanced features that aim to improve the overall system
performance. In particular, network access in HetNets was previously pro-
posed for offloading traffic or load balancing. Yet, simultaneous multiple
access attracted operators with the increasing demands called “multihom-
ing”. Multihoming was standardized in Release 12 [15] under the name of
“Dual Connectivity”.

In this chapter, we model macro cell/small cell multihoming for both net-
work centric and user centric approaches. Although several studies tackled
network and user centric allocations, none of them considered the multihom-
ing key feature. A central scheduler allocates resources in a network centric
strategy as presented in [36, 38, 66, 70]. While in the user centric approach,
the users decide by themselves the traffic splitting ratio or offloading to an
access or another [63, 71, 72, 73]. None of these works however studied re-
source allocation in the presence of multihoming, and this is the object of
our first contribution.

We specifically develop, in the following, analytical models to evaluate
the performance of several resource allocation strategies while considering
multihoming and compare them numerically versus a baseline strategy with-
out multihoming. We consider both user centric and network centric allo-
cation strategies. For the network centric strategies, we apply Proportional
Fairness (PF) on both global and local levels to the system: global PF con-
siders both access networks as a whole system whereas local PF considers
each of the access networks individually, independently from the other one.
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Although other works considered PF resource allocation ([130, 131, 132, 133]
to state just a few), we model here the case of multihomed users in a hetero-
geneous system which was not considered in other works. We also extend
our network centric study to evaluate the impact of opportunistic scheduling
on the system’s performance. Opportunistic scheduling in cellular networks
was studied in many works (for instance [134], [135]) as well as opportunis-
tic beamforming in [136], we consider it in this work in the context of a
multihomed system.

User centric policies are performed at the application layer. We study
two strategies: a simple one in which the multihomed user is aware of the
peak rates of each network interface and splits its traffic proportionally be-
tween them, and a network assisted one in which the operator broadcasts
information about the traffic intensities and the capacities of each system.
The multihomed user uses this information so as to maximize its throughput.

3.2 System description

We consider the downlink of a multi-access wireless network composed of one
LTE macro cell having in its coverage K WiFi small cells, as shown in Figure
4.1. We suppose that this system serves two types of users depending on
their mobile equipment: single-homed and multihomed users. Single-homed
users can have a single connection at a time depending on the quality of the
received signal (LTE or WiFi) whereas multihomed users can benefit from
multihoming when they are covered by both access networks by activating
simultaneous connection mode.

As mentioned above, resources can be managed in a network centric or
user centric manner.

In network centric, the allocation is performed jointly for both layers’
resources: LTE and WiFi, as follows:

• A low bandwidth backhaul links the central scheduling node to the
WiFi AP and the LTE eNodeB. The central scheduler operates at
a large time scale - order of the flow dynamics - and determines the
amount of resources to be allocated to each flow on each radio interface.

• Second level system schedulers, located within the WiFi AP and the
LTE eNB, receive the first scheduler allocation output and use it to
allocate effectively radio resources to users. We assume that these
schedulers operate on a lower time scale and take into account the
instantaneous fast fading variations in LTE.

In the user centric resource allocation, we study two strategies for traffic
splitting:
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Figure 3.1: System model.

• Peak rate maximization: users do not receive any information about
the system load. They split their traffic proportionally to the peak
rate offered by each interface.

• Network assisted strategy: users use the load information broadcasted
by the network in order to maximize their throughput performance.

3.3 Network centric resource allocations

We assume that flows are elastic, with exponentially distributed file size with
mean σ, and that they arrive to the system following a Poisson process with
global traffic intensity λ = λM +

∑
k(λ

S
k +λMH

k ) where λM , λSk and λMH
k are

the mean traffic intensities for single-homed LTE macro cell users, single-
homed small cell users and multihomed users, respectively, k = 1, · · · ,K.

Let the capacity shares resulting from different resource allocation strate-
gies be denoted as follows:

• xM (n) and xMHM
k (n) are resource capacity shares in the LTE macro

cell for single-homed LTE users and multihomed users, having a con-
nection with the kth WiFi small cell, respectively.

• xSk (n) and xMHS
k (n) are resource capacity shares in the WiFi small cell

numbered k for WiFi-only single-homed users and multihomed ones,
respectively.
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where n = (nM , nS1 , n
MH
1 , · · · , nSk , nMH

k ) and where nM , nSk and nMH
k , with

k = 1, · · · ,K, denote the number of users of each class: LTE only macro
cell users, WiFi only small cell users, and multihomed users (both macro
and small cells), respectively.

These shares depend on the allocation strategy, as we will show next for
the two strategies: local PF wherein PF is applied to each access network
separately from the other one, and global PF wherein it is applied to all
accesses as a whole.

For simplicity, we first study the system with homogeneous radio con-
ditions over the cells, with a cell capacity denoted by CM for LTE macro
cell and CS for WiFi small cells. We then generalize our model to cover the
case of multiple radio conditions.

3.3.1 Local Proportional Fairness

Generally, a user utility is defined as U(x) where x is the capacity share
the user gets. One example of utility is the so-called α-fair one, given by:
U(x) = x1−α

1−α . For the case of proportional fairness allocation, α = 1 and
U(x) is defined in the literature [97] by U(x) = log x.

In our case, local PF is obtained by maximizing the utility function for
the macro cell and each small cell independently. For the macro cell, the
utility function is defined as the sum of the logarithms of the flow rates
obtained by single-homed and multihomed users served in the macro cell as
follows:

maximize:

UM =nM log(xMCM ) +
K∑
k=1

nMH
k log(xMHM

k CM ) (3.1)

subject to:

nMxM +

K∑
k=1

nMH
k xMHM

k = 1 (3.2)

xM , xMHM
k ∈ [0, 1] (3.3)

with k = 1, · · · ,K. Eq. (3.2) is the capacity constraint of the macro cell
access network which ensures that the sum of capacity shares obtained by
the users served in macro cell is equal to 1.

For the kth small cell, the utility function is defined as the sum of the
logarithms of the flow rates obtained by single-homed and multihomed users
served by small cell k as follows:
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maximize:

UkS =nSk log(xSkC
S) + nMH

k log(xMHS
k CS) (3.4)

subject to:

nSkx
S
k + nMH

k xMHS
k = 1 (3.5)

xSk , x
MHS
k ∈ [0, 1] (3.6)

with k = 1, · · · ,K. Eq. (3.5) is the constraint that limits the sum of the
users’ capacity shares on small cell to 1.

We next formulate the Lagrangian function for each access network, com-
posed of the utility function and its corresponding constraints, and obtain
the capacity shares for each access network. For instance, the Lagrangian
of the problem shown in Eq. (3.1) is given by:

LM (xM , xMHM
1 , · · · , xMHM

K , νM ) = nM log(xMCM )+
∑
k

nMH
k log(xMHM

k CM )

− νM (nMxM +
∑
k

nMH
k xMHM

k − 1) (3.7)

with νM the Lagrangian multiplier. Then

δLM
δxM

=
nM

xM
− nMνM = 0 (3.8)

δLM

δxMHM
k

=
nMH
k

xMHM
k

− nMH
k νM = 0 (3.9)

By replacing xM and xMHM
k in Eq. (3.2), we find νM = nM +

∑
k n

MH
k

and so the unique solution to the primal problem is given by:

xM = xMHM
k = 1/(nM +

K∑
k=1

nMH
k ) (3.10)

Similarly, by solving Eq. (3.4) under the constraint (3.5) we find:

xSk = xMHS
k = 1/(nSk + nMH

k ) (3.11)

Note that, as fast fading is not taken into account, local PF is equivalent
to round robin (RR) resource sharing: the round robin scheduling strategy
serves users in a cyclic manner. In addition, this model for WiFi small
cell throughput ignores the inefficiency of WiFi resource allocation where
collisions lead to a decrease in the capacity when several users are served
simultaneously. This gives an upper bound of the performance. We will
consider this inefficiency in the case of heterogeneous radio conditions in
section 3.5.
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3.3.2 Global Proportional Fairness

Global PF is obtained by jointly maximizing the capacity shares (xM (n),xSk (n),

xMHM
k (n), xMHS

k (n)) of macro cell users, kth small cell users, kth multihomed
users on macro cell access and kth multihomed users on small cell access,
respectively.

This is obtained by jointly maximizing the utility function defined in
Eq. (3.12) as the sum of the logarithms of the flow rates obtained by single-
homed and multihomed users on each access network.
maximize:

U =nM log(xMCM ) +
K∑
k=1

nMH
k log(xMHM

k CM + xMHS
k CS)

+

K∑
k=1

nSk log(xSkC
S) (3.12)

subject to:

nMxM +
K∑
k=1

nMH
k xMHM

k = 1 (3.13)

nSkx
S
k + nMH

k xMHS
k = 1 (3.14)

xM , xMHM
k ∈ [0, 1] (3.15)

xSk , x
MHS
k ∈ [0, 1] (3.16)

with k = 1, · · · ,K. Eqs. (3.13) and (3.14) are the constraints which ensure
that the capacity shares on LTE and WiFi access networks, respectively,
equal to 1.

The maximization problem is solved numerically. A closed-form expres-
sion for the capacity shares can however be obtained when the system is
simplified to one macro cell and one small cell by deriving the Lagrangian
function of the problem described in Eq. (3.12) under the constraints in
Eqs. (3.13) and (3.14).

L =nM log(xMCM ) + nMH log(xMHMCM + xMHSCS) + nS log(xSCS)

− νM (nMxM + nMHxMHM − 1)− νS(nSxS + nMHxMHS − 1) (3.17)
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with νM and νS the Lagrangian multipliers. Then:

δL

δxM
=
nM

xM
− nMνM (3.18)

δL

δxS
=
nS

xS
− nSνS (3.19)

δL

δxMHM
=

nMHCM

xMHMCM + xMHSCS
− nMHνM (3.20)

δL

δxMHS
=

nMHCS

xMHMCM + xMHSCS
− nMHνS (3.21)

By replacing Eqs. (3.18) and (3.19) in Eqs. (3.13) and (3.14) for K = 1,
we find xMHM and xMHS function of νM and νS , respectively. Then, we find
the Lagrange multipliers by substituting xMHM and xMHS in Eq. (3.20)

νM =
CM (nM + nS + nMH)

CM + CS
(3.22)

νS =
CS(nM + nS + nMH)

CM + CS
(3.23)

The unique solution to the problem is given by:

xM =
CM + CS

CM (nM + nS + nMH)
(3.24)

xS =
CM + CS

CS(nM + nS + nMH)
(3.25)

xMHM =
CMnS − CSnM + CMnMH

CMnMH(nM + nS + nMH)
(3.26)

xMHS =
CSnM − CMnS + CSnMH

CSnMH(nM + nS + nMH)
(3.27)

where nM , nS and nMH denote the number of LTE, WiFi and multihomed
users, respectively.

3.3.3 Performance metrics

Since the operator decides the distribution of the resources instantaneously,
we model the network centric system by a Markov Chain with state n
defined, as described above, by: n = (nM , nS1 , n

MH
1 , · · · , nSk , nMH

k ), where,
again, nM , nSk and nMH

k denote macro cell single-homed users, small cell
single-homed users and multihomed users (both macro and small cells), re-
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spectively, and with transition rates equal to:

q(n,n + eM ) =λM (3.28)

q(n,n + eSk ) =λSk (3.29)

q(n,n + eMH
k ) =λMH

k (3.30)

q(n,n− eM ) =nMxM
CM

σ
(3.31)

q(n,n− eSk ) =nSkx
S
k

CS

σ
(3.32)

q(n,n− eMH
k ) =nMH

k

xMHM
k Cl + xMHS

k CS

σ
(3.33)

where eM , eSk and eMH
k denote the vector with one at the corresponding

entry and zero elsewhere, for macro cell, small cell and multihomed users
between macro cell and small cell k, respectively, with k = 1, · · · ,K.

The diagonal element is:

q(n,n) = −
∑
ni 6=n

q(n,ni) (3.34)

with ni the row elements of the transition matrix except n.
The steady state distribution is then obtained by solving:{

Π(n).Q(n) = 0

Π(n).e = 1
(3.35)

Π(n) being the vector of the steady-state probabilities and e a vector of
ones.

Once the vector Π(n) is obtained, the global performance parameters
can be calculated. The average number of users in each class of users is
obtained by the formula:

NM =
∑
nM∈n

nMΠ(n) (3.36)

NS
k =

∑
nSk∈n

nSkΠ(n) (3.37)

NMH
k =

∑
nMH
k ∈n

nMH
k Π(n) (3.38)

A. Mean delay and average throughput

Using Little’s formula, we deduce the mean delay of users of each class:

δM =
NM

λM
; δSk =

NS
k

λSk
; δMH

k =
NMH
k

λMH
k

(3.39)
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And finally, we deduce the average throughput obtained by users of each
class:

DM =
λMσ

NM
; DS

k =
λSkσ

NS
k

; DMH
k =

λMH
k σ

NMH
k

(3.40)

with k = 1, · · · ,K.

B. System stability

We now turn to the system stability limits. For simplicity, we assume that
all small cells have the same traffic arrival intensity for WiFi only small cell
users and multihomed ones: i.e., λSk = λS and λMH

k = λMH for all k. Given

that pM = λM

λ , pS = λS

λ and pMH = λMH

λ , the sum pM +K(pS + pMH) = 1.
At the stability limit, there are different cases for macro and small cells

queues.

Macro cell queue A macro cell queue may serve only macro cell users
with load ρM1:

ρM1 =
pMλσ

CM
(3.41)

Nevertheless, a macro cell queue may also serve both macro cell only
users and multihomed users at stability limits with load ρM2 as follows:

ρM2 =
(pM +KpMH)λσ

CM
(3.42)

where ρM1 and ρM2 are the lower and upper bounds respectively on the
macro cell queue load.

Small cell queue Likewise the macro cell queue, at stability limits, the
small cell queue has two extreme values, it may serve only small cell users
with load ρS1 equal to:

ρS1 =
pSλσ

CS
(3.43)

or may serve both small cell only users and multihomed users with load ρS2:

ρS2 =
(pS + pMH)λσ

CS
(3.44)

We take the realistic case when the macro cell queue is more loaded than
the small cell queue without taking into consideration the multihomed users,
i.e., ρM1 > ρS1. Hence, two cases are possible:
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1. For ρM1 > ρS2, all multihomed users are served by the small cell access.
Thus, the system stability corresponds to the maximum capacity for
which all queues are stable , i.e., the most loaded ρM1 ≤ 1, which
gives:

λ ≤ CM

pMσ
.

2. For ρM1 < ρS2, multihomed users cannot be served completely by
small cell access because, at stability limits, it becomes much loaded

than the macro cell with
pMH

CS
>

pM

CM
− pS

CS
> 0. In this case, at sta-

bility limits, multihomed users are served by both queues with equaliz-
ing their load. A proportion pMHS of multihomed users traffic will be
served by the small cell and the remaining (1− pMHS ) will be served
by the macro cell , where pMHS is the solution of:

pM +KpMH(1− pMHS )

CM
=
pS + pMHpMHS

CS

Based on this equalization, the stability limits correspond to ρM1 ≤ 1
or ρS2 ≤ 1 as follows:

λ ≤ CS

(pS + pMHpMHS )σ

3.4 User centric resources allocation

We now turn to the user centric approach and evaluate the performance of
two strategies: peak rate maximization and network assisted strategies. Our
aim is to find the optimal value of the proportion β of a file a multihomed
user receives on the LTE macro cell; the remaining file proportion, (1− β),
is received on the WiFi small cell. Obviously, β depends on the applied
strategy.

For simplicity, we assume that all WiFi small cells have the same traffic
arrival intensity for WiFi only users and multihomed ones: i.e., λSk = λS

and λMH
k = λMH for all k.

3.4.1 Peak rate maximization

As already mentioned, peak rate maximization strategy supposes that mul-
tihomed users have only information on the throughput of each system: CM

and CSk and use this information to find β, the file split ratio between LTE
and WiFi:

β =
CM

CM + CS
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3.4.2 Network assisted policy

In the network assisted policy, the network operator broadcasts detailed
information about the offered traffic in each class, for example the arrival
rates λ. Multihomed users aim to maximize their throughput given by:

DMH
k (β) = min(

DM (β)

β
,
DS
k (β)

1− β
) (3.45)

where DM (β) and DS
k (β) are the average user throughputs for single homed

macro and small cell users, respectively, and are given by:

DM (β) = CM − λMσ −
K∑
k=1

λMH
k σβ (3.46)

DS
k (β) = CSk − λSkσ − λMH

k σ(1− β) (3.47)

We define the overall average user throughput by taking into account all
classes of users as:

D(β) =
λM

λ
DM (β) +

K∑
i=1

(
λSk
λ
DS
k (β) +

λMH
k

λ
DMH
k (β)) (3.48)

The multihomed users’ objective is to find the optimal traffic split that
maximizes their throughput given by Eqn. (3.45).

We get the following solution for k > 1:

β∗ =
δ −

√
δ2 − 4(K − 1)λMHσ(CM − λMσ)

2(K − 1)λMHσ
(3.49)

with:

δ = CM − λMσ + CS − λSσ + (K − 1)λMHσ (3.50)

For the case of one LTE macro cell and one WiFi small cell (i.e. K = 1):

β∗ = arg max min(
CM − λMσ − λMHσβ

β
,
CS − λSσ − λMHσ(1− β)

1− β
)

(3.51)

If CM−λMσ−λMHσβ
β < CS−λSσ−λMHσ(1−β)

1−β : β ∈ min(β0, 1) with

β0 =
CM − λMσ

CM − λMσ + CS − λSσ
(3.52)

which gives that β = β0.
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If CM−λMσ−λMHσβ
β > CS−λSσ−λMHσ(1−β)

1−β : β ∈ max(0, β0). In this case,
the solution is β = β0.

This yields for both cases the optimal split: β∗ = β0.

β∗ =
CM − λMσ

CM − λMσ + CS − λSσ
(3.53)

Moreover, we have the following result:

Theorem 1. The selfish policy where multihomed users maximize their own
throughput corresponds to a global optimum for the average throughput of all
users over the cell, i.e., maximizes D in equation (3.48).

Proof. It is sufficient for this to verify that β∗ in equation (3.49) optimizes
equation (3.48). See Appendix A for the proof.

This correspondence between selfish optimum and global optimum can
be interpreted as follows: when the network operator maximizes multihomed
users’ throughput, it offers multihomed users the opportunity to leave the
system faster, and thus free resources for single-homed users.

3.4.3 Performance metrics

In the user centric approach, the traffic split decision is independent of the
instantaneous state of the system which can be modeled by a set of K + 1
independent queues. These queues are one macro cell and K small cell
queues, all Processor Sharing (PS).

For peak rate assisted strategy, the stability limits correspond to the
total traffic arrival rate that keeps both queues stable. Given that the split
ratio is β = CM

CM+CS
, the upper bound for λ is:

λ < min{ CM

(pM +
∑

k p
MH
k β)σ

,
CS

(pSk + pMH
k (1− β))σ

}, ∀k ∈ [1,K]

For the network assisted strategy, we assume that the macro cell LTE
queue becomes unstable before the other K small cell WiFi queues do. Given
that λM ≫ λMH

k at stability limits of the LTE queue, the traffic split of
multihomed users on the LTE access β → 0 and the load of the LTE macro
cell is:

ρM =
λMσ

CM
(3.54)

After the saturation of LTE queue, all multihomed users join completely the
WiFi queue and the kth WiFi small cell stability limits is equal to:

ρSk =
λSkσ

CS
+
λMH
k σ

CS
(3.55)
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The system stability corresponds to the stability of both LTE and WiFi
systems by finding the traffic arrival that maintains ρM ≤ 1 and ρSk ≤ 1
determined by the following inequality:

λ < min{ C
M

pMσ
,

CS

(pS + pMH)σ
}, ∀k ∈ [1,K]

3.5 Heterogeneous radio conditions

Finally, we consider the realistic case where users at different positions in the
cell receive different signal strengths from the network. The objective here
is to find the optimal multihoming policies when different radio conditions
are experienced by multihomed users. A typical example is one with two
radio conditions for multihomed users: indoor, with a better WiFi signal
than the LTE one, and outdoor, with a better LTE signal than the WiFi
one.

We consider the following radio conditions’ distribution:

• N radio conditions for the LTE macro cell users, each with weight pMn
computed as the number of flow arrivals from this class over the total
LTE macro cell flow arrivals. Among these radio conditions, 1→ KJ
correspond to multihomed users, and KJ+1→ N correspond to LTE
users. We denote by CMn the throughput observed in the LTE macro
cell by a user of class n ∈ [1, N ].

• I radio conditions in each WiFi small cell, each with weight pSi . We
also rearrange the radio conditions for WiFi so that the first J radio
conditions 1 → J correspond to multihomed users, and J + 1 → I
correspond to WiFi users. We denote by CSi the throughput observed
in the WiFi small cell by a user of class i ∈ [1, I].

Without loss of generality, we focus on the global PF strategy for the
network centric approach and on the network assisted strategy for the user
centric approach.

3.5.1 Network centric approach

We start with the heterogeneous radio conditions applied to the global PF
strategy. Let n̂M and n̂S be the number of users in LTE macro cell and
WiFi small cell queues, respectively, including multihomed users. For ease
of expression, we denote the number of multihomed users by n̂MH :

n̂MH = n̂MpMj = n̂SpSj (3.56)

for j = 1, · · · , J .
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The optimization problem to solve becomes:
maximize:

U =n̂M
N∑

n=KJ+1

pMn log(xMn C
M
n )+

Kn̂S
I∑

i=J+1

pSi log(xSi C
S
i )+ (3.57)

K(
J∑
j=1

ˆnMH log(xMHM
j CMj + xMHS

j CSj )

subject to:

n̂M
N∑

n=KJ+1

pMn x
M
n +Kn̂M

J∑
j=1

pMj x
MHM
j = 1 (3.58)

n̂S
I∑

i=J+1

pSi x
S
i + n̂S

J∑
j=1

pSj x
MHS
j = 1 (3.59)

The capacity share values are obtained by solving numerically the prob-
lem in equation (3.57), subject to constraints (3.58) and (3.59).

3.5.2 User centric approach

In this section, we study the heterogeneous radio conditions influence on
users’ performance when applying the network assisted strategy.

Let λ̂M and λ̂S be the flow arrival intensities in LTE and WiFi queues,
respectively, including multihomed users. When these multihomed users
choose a policy expressed by β = (β1, ..., βJ), the cell loads become equal
to:

ρM (β) = λ̂Mσ
[
K

J∑
j=1

pMj βj

CMj
+

N∑
n=KJ+1

pMn
CMn

]
(3.60)

ρS(β) = λ̂Sσ
[ J∑
j=1

pSj (1− βj)
CSj

+
I∑

i=J+1

pSi
CSi

]
(3.61)

In this case, the system is modeled as K+1 independent PS queues with
cell capacities given by:

ĈM (β) =
[
K

J∑
j=1

pMj βj

CMj
+

N∑
n=KJ+1

pMn
CMn

]−1
(3.62)

ĈS(β) =
[ J∑
j=1

pSj (1− βj)
CSj

+

I∑
i=J+1

pSi
CSi

]−1
(3.63)
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In this context, the average throughput of a multihomed user that be-
longs to class h ∈ [1, J ] is given by:

DMH
h (β) = min{

CMh
βh

(1− λ̂Mσ(K
∑
j 6=h

pMj βj

CMj
+
∑
n>KJ

pMn
CMn

))

−Kλ̂MσpMh ;

CSh
1− βh

(1− λ̂Sσ(
∑
j 6=h

pSj (1− βj)
CSj

+
∑
i>J

pSi
CSi

))− λ̂SσpSh} (3.64)

Let β∗h be the optimal policy that maximizes the throughput of multi-
homed users of class h, given the policy of other classes j 6= i:

β∗h = arg max
βh

{DMH
h (β)} (3.65)

and let β/h = (β1, ..., βh−1, βh+1, ..., βJ) be the policies chosen by all multi-
homed users classes except h. The solution of the maximization in equation
(3.65) is given in Eq. (3.66). For more details see Appendix B.

β∗h(β/h) =
δ −

√
δ2 − 4λMH

h σCMh (1− ρM (β/h))

2λMH
h σ

(3.66)

with:

δ = CMh (1− ρM (β/h)) + CSh (1− ρS(β/h)) + λMH
h σ (3.67)

ρM (β/h) = λ̂Mσ(K
∑
j 6=h

pMj βj

CMj
+
∑
n>KJ

pMn
CMn

) (3.68)

ρS(β/h) = λ̂Sσ(
∑
j 6=h

pSj (1− βj)
CSj

+
∑
i>J

pSi
CSi

) (3.69)

and

λMH
h = Kλ̂MpMh − λ̂SpSh (3.70)

Consequently, if all users apply this described strategy, the solution of
the set of the J fixed point Eq. (3.66) yields the resulting policy under
the sufficient stability condition. This is expressed by replacing β/h by
β∗/h = (β∗1 , ..., β

∗
h−1, β

∗
h+1, ..., β

∗
J).

Definition 1. The sufficient stability condition is the traffic region that
maintains the stability of both systems (macro and small cells) for all mul-
tihoming policies:
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λ̂M ≤ 1

σ(K
∑J

j=1

pMj
CMj

+
∑

n>KJ
pMn
CMn

)
(3.71)

λ̂S ≤ 1

σ(
∑J

j=1

pSj
CSj

+
∑

i>J
pSi
CSi

)
(3.72)

Theorem 2. The fixed point solution of (3.66) exists and corresponds to a
Nash equilibrium under the sufficient stability condition.

Theorem 2 is proven in Appendix C.
In other words, the Nash equilibrium exists for traffic loads before the

stability point. Near this latter, some policies may cause system instability,
preventing thus from proper convergence.

3.6 Simulation and numerical results

In this section, we present simulation parameters used to evaluate the per-
formance of the proposed resource allocation strategies. For this aim, we
consider a network where each LTE eNodeB coexists with K = 3 WiFi APs
(IEEE 802.11n). For more realistic radio conditions, we consider a dense
LTE network deployed in a large European city with an average radius of
350 meters and an LTE frequency band equal to 1800 MHz. Based on the
Channel Quality Indicator (CQI) measurements and the resource block (RB)
throughputs, authors in [137] found the average LTE macro cell capacity to
be equal to CM = 30.5 Mbps .

In addition, we consider a typical WiFi small cell deployment of 70 me-
ters radius and 15 Mbps average capacity. Assuming a homogeneous dis-
tribution of users over the covered system area, we define the arrival rate
of users for each access network as shown in Table 4.1. We consider that
50% of users equipment are multihoming capable, and that they can connect
simultaneously to LTE and WiFi whenever possible which implies that only
multihoming capable users that are covered by WiFi and LTE benefit the
multihoming, which equals 15% of multihomed users on each WiFi access
network.

Our results are plotted as a function of the global offered traffic λσ in
Mbps, with σ = 5 Mbits the average flow size. More details on output
performance parameters are given in Table 3.2.

User centric performances are evaluated by using the closed form equa-
tions of throughput. However, network centric ones are evaluated by a
Monte Carlo simulation of the Markov Chain in MATLAB with maximizing
the utility function of capacity shares between users flows.

70



3.6 Simulation and numerical results

Table 3.1:
Simulation parameters

Parameter Value

LTE macro cell radius rMC 350 m

LTE average rate 30.5 Mbps

Number of WiFi small cells (k) 3

WiFi small cell radius rSC 70 m

WiFi average rate 15 Mbps

Average flow size 5 Mbits

Global traffic intensity λ 0 · · · 35[1/s]

LTE users traffic intensity 55%λ

kth AP WiFi users traffic intensity 7.5%λ

Multihomed users connected to
LTE macro cell andkth WiFi small

cell traffic intensity

7.5%λ

Table 3.2: Output parameters

Output
Parameter

Definition

DM Throughput of macro cell users

DS
k Throughput of kth small cell users

DMH
k Throughput of multihomed users on macro cell and kth small cell

Dql Throughput of macro cell access network including macro
cell only users and multihomed users

Dqw Throughput of kth small cell access network including
small cell only and multihomed users served on this access

x axis Offered traffic equal to the total arrival rate in the whole
system multihplied by the average flow size σ
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Figure 3.2: Impact of network centric scheduling strategies on users’ perfor-
mance.

3.6.1 Network centric approach

A. Achievable throughput

We present in Figure 3.2 the achievable throughput for all classes of users as
a function of the offered traffic, both for local and global PF network cen-
tric resource allocation strategies. With the chosen parameters, multihomed
users will be able to achieve higher throughput with local PF compared to
that achieved by applying global PF. Whereas single-homed users achieve
a better performance with the global PF strategy. This can be explained
by the fact that local PF applied on a wireless interface ignores other in-
terfaces’ allocation and thus do an over-provisioning for multihomed users
contrary to global PF that takes into consideration the resource allocation
on all interfaces and achieves a better fairness between single-homed and
multihomed users. This increase of fairness between users when applying
global PF strategy is explained by the decrease in the difference between
user’s throughput.

We also notice that, at low loads, multihomed users achieve higher
throughput than single-home ones, and which is equal to the aggregation
of both systems’ capacities, then their throughput decreases when traffic
increases.

It is worth to note that based on the chosen parameters of traffic intensity
on each access network, LTE access network receives higher proportion of
user arrivals than WiFi. This difference is explained by the fast decrease of
achievable throughput for LTE users versus a slower decrease of WiFi users’
throughput. With the increase of traffic intensity, the achievable throughput
by LTE becomes less than that achievable by WiFi.
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Figure 3.3: User performance and system stability for network centric strate-
gies.

B. System stability

Under the assumption of an infinite queue with no blocking, we observe
that both strategies local PF and global PF achieve the same stability point
55 Mbps of offered traffic (which is equal to the traffic intensity when the
average achievable throughput reaches zero) as shown in Figure 3.3. This
figure shows the stability region for each system (LTE and Wi-Fi) by plot-
ting their average throughput as a function of the offered traffic, both for
local and global PF strategies. However, the difference of stability between
both queues is noticeable: the LTE system becomes unstable at 55 Mbps
before the WiFi system does at 75 Mbps. This can be explained by the
fact that multihomed users distribution corresponds to users distribution in
the system as we assume that 50% of users are multihoming capable users.
This gives that only 15% of multihomed traffic can be served on a WiFi
AP due to its small coverage. Note that the stability point is when both
LTE and WiFi systems are stable. In order to find this stability point, we
intentionally ignore the inefficiency of WiFi resource allocation and consider
only the upper bound of users’ performance.

Furthermore, we note that the sum of the throughputs per queue can be
higher or lower than the offered traffic. Keeping in mind that this achievable
throughput per queue is inversely proportional to the traffic arrival intensity,
i.e., the requested offered traffic, a low traffic intensity allows the users to
receive higher throughput than their target because they do not share (or
they share with a small number of users) the network resources and can
leave the system very fast. However, a high traffic intensity causes the high
number of users to share the network resources. This share is shown in
Figure 3.3 by a lower throughput than the target which causes the users
to spend more time before leaving the system. If the traffic intensity (i.e.,
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Figure 3.4: Throughput variation for each wireless access network as a func-
tion of offered traffic, comparison between local PF and reference model for
a = 0.2 and 0.8.

offered traffic) increases, the system reaches the saturation point.

C. Benefit of multihoming

In order to emphasize the benefit of multihoming, we compare the local PF
strategy with a baseline one without multihoming. In this baseline strategy,
the multihoming capable users (50% of devices in our numerical examples)
are served either by LTE or WiFi because multihoming is not considered.
We denote by a the proportion of multihoming capable users served by
LTE instead of the proportion of a file a multihomed user receives on LTE.
Consequently, (1− a) denotes the proportion of those users served by WiFi.
Based on this pre-known distribution, the stability conditions become:

ρM +

K∑
k=1

ρMHM
k =

λMσ

CM
+

K∑
k=1

aλMH
k σ

CM
< 1

ρSk + ρMHS
k =

λSkσ

CS
+

(1− a)λMH
k σ

CS
< 1

Figure 3.4 shows a comparison between the network with multihoming
and the baseline case without multihoming. For the baseline case, we con-
sider two values of a; this choice of a has a large impact on the network
performance.

We notice that for the LTE system, local PF achieves higher throughput
and higher stability. Whereas for WiFi, local PF brings higher throughput
but lower stability. This is due to the fact that local PF achieves a propor-
tional distribution of resources between both access types by changing the
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multihomed users capacity share on each access. However, since the baseline
case does not allow multihoming and WiFi is less loaded than LTE in local
PF, we obtain this difference of stability between both strategies. It is worth
noting that global stability is enhanced with multihoming.

D. Impact of fast fading

We now consider the second level scheduler for the LTE macro cell. A chan-
nel aware PF scheduler operates at the fast fading time scale, as assumed in
[135]. This fast fading is modeled as a gain G added to the LTE system as
a function of the number of flows in progress: when the LTE macro cell has
nM flows, and an optimized capacity share xM , the obtained throughput
by LTE flows is equal to xMCMG(nM ), where G(nM ) corresponds to the
opportunistic scheduling gain that is a function of several parameters such
as the number of flows in the channel, the channel model, the receiver type
and the Multiple Input Multiple Output (MIMO) scheme [134].

The system can still be modeled as a Markov Chain with state dependent
departure rates due to the opportunistic scheduling gain. The transition
rates described in Eqs. (3.31) and (3.33) for the LTE macro cell users in the
Markov chain become:

q(n,n− eM ) =nMxM
CMG(nM )

σ
(3.73)

q(n,n− eMH
k ) =nMH

k

xMHM
k CMG(nM ) + xMHS

k CS

σ
(3.74)

This gain is applied to LTE users only, including multihomed ones. The
achievable throughput for a WiFi user remains as described in Eq. (3.32).
We consider the scheduling gain calculated in [135] for a MIMO 2× 2 LTE
system and an Additive White Gaussian Noise (AWGN) channel and that
converges to G(∞) = 1.7 starting from a number of active users in the LTE
cell equal to 19.

The numerical simulations in Figure 3.5 show that the overall perfor-
mance of the system is improved when opportunistic scheduling is consid-
ered. We see clearly that opportunistic scheduling alleviates the load of LTE
and extends the benefit of multihoming to higher traffic loads.

3.6.2 User centric approach

Now, we compare the performance of user centric resource allocation strate-
gies: peak rate maximization and network assisted.

As we can see in Figure 3.6 the network assisted strategy enables mul-
tihomed and LTE-only users to achieve higher throughput, especially at
higher traffic loads. Yet, WiFi-only users have a slightly lower throughput
with the network assisted strategy than that obtained with the peak rate
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Figure 3.5: Impact of opportunistic scheduling on performance.

maximization. This difference of performance relates to the resource alloca-
tion strategy: while peak rate maximization uses throughput perceived by
the users for each access type, network assisted strategy is more robust and
takes into consideration the traffic intensity in each system. Consequently,
we observe that multihomed users achieve higher throughput with the net-
work assisted strategy when compared with single-homed users (LTE-only
and WiFi-only). This is also the case for the peak rate maximization strat-
egy but not at high traffic loads because this strategy does not take into
consideration system’s traffic intensity.

Furthermore, we show in Figure 3.7 that the LTE macro cell reaches
instability before WiFi small cell does, and this is because of the difference
between coverage and hence the fact that LTE serves more users than WiFi.
In fact, the network assisted strategy brings larger stability for LTE, but it
does the opposite for WiFi as more multihomed users are served on WiFi.
This is the optimal distribution of load from a user point of view. This
strategy improves the whole stability of the system by balancing multihomed
users between the two sub-systems.

3.6.3 Comparison with network centric allocation strategy

Another important evaluation is the comparison between user centric (net-
work assisted) and network centric (global PF) strategies shown in Figure
3.8. We observe that LTE and WiFi queues achieve a better performance
with global PF strategy whereas WiFi-only users’ performance becomes
slightly lower than that achieved with the network assisted strategy. The
difference of performance relates to the precision of the allocation strat-
egy: global PF performs instantaneous resource allocation, while network
assisted uses average values for resource allocation decision. In contrast,
the advantage of network assisted strategy is the computational simplicity
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Figure 3.6: Impact of user centric scheduling strategies on users’ perfor-
mance.

when compared with the complexity of global PF. However, both strate-
gies achieve the same stability points for LTE and WiFi queues because the
stability point is independent of the resource allocation strategy.

3.6.4 Case of heterogeneous radio conditions

In order to evaluate the impact of the heterogeneous radio conditions on
multihomed users’ achievable throughput, we apply now the network assisted
strategy. We consider two types of multihomed users’ radio conditions:
indoor and outdoor. Recall that indoor users receive a high WiFi signal and
a low LTE signal, whereas outdoor users receive a low WiFi signal and a
high LTE one. In our experiment, we consider a path loss of 6 dB for WiFi,
and consider that 50% of multihomed users are indoor. We show in Figure
3.9 that indoor users achieve a higher throughput than outdoor ones. This
is explained by the fact that indoor users receive a good WiFi signal.

3.7 Conclusion

We studied in this chapter different types of multihoming resource allocation
strategies in multi-access LTE/WiFi networks, and evaluated their impact
on single-homed and multihomed users as well as on the global system, in
terms of achievable throughput and stability. We considered two approaches:
network centric and user centric. In the former, the network decides how
to distribute resources between all classes of users whereas in the latter, the
split of file request on both access interfaces is decided by the multihomed
user itself.
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Figure 3.7: LTE and WiFi queues performance and system stability.
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Figure 3.8: Comparison of user centric and network centric strategies.

In each approach, we focused on two strategies: local versus global PF
for the network centric strategy and peak rate maximization versus network
assisted for the user centric one. We proved also that the network assisted
strategy, wherein the user benefits from traffic intensity information on each
radio access in addition to their maximal rates, corresponds to the network
centric global optimum that maximizes the average throughput in the whole
system.

In addition, we compared network centric global PF to the user centric
network assisted strategy. We showed that global PF achieves a better
performance in terms of throughput. However, network assisted strategy
requires less computational resources.

Finally, we evaluated the achievable rates of multihomed users in hetero-
geneous radio conditions: indoor and outdoor and showed that the former
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Figure 3.9: Multihomed achievable throughput for indoor and outdoor users.

makes them take more advantage of WiFi and hence achieve higher rates.
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Chapter 4

Joint Radio/Processing
Resource Allocation in
V-RAN

4.1 Introduction

We introduce in this chapter V-RAN integration in a 5G network by adopt-
ing the previous model of macro cells/small cells interworking with multi-
homing. V-RAN was proposed as a solution to limit the capital and oper-
ating expenditure (CAPEX and OPEX).

We introduced V-RAN main components in section 2.4: the base- band
unit (BBU) responsible for the baseband functions and the remote radio
head (RRH) which integrates the radio functions. A BBU pool in the V-
RAN ensures the simplicity of any future cell deployment because in this
case the deployment will be handled at the BBU level with only deploying
the RRH site which is less costly than the BBU unit deployment. Yet, the V-
RAN increases user experience by applying enhanced inter-cell interference
techniques [82] and coordinating multi-point [138, 84] at the BBU pool.

We address in this chapter the problem of joint allocation of multiple
types of resources, mainly frequency and processing resources, to differ-
ent classes of users with heterogeneous demands. Frequency resources are
limited by the spectrum allocated to each access network and processing
resources are limited by the BBU capacity offered by a given network oper-
ator. We also consider the case of multihomed users and the heterogeneity
of access types each requiring different processing resources.

Although resource allocation strategies have been widely studied for sin-
gle resources in [139, 101] and multiple types of resources [140, 141, 103, 106],
these strategies cannot be applied directly to the V-RAN because they do
not consider the case of independent resources. For this aim, we modify ex-
isting strategies and consider two cases for the V-RAN: with sufficient and
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with limited processing resources.
Furthermore, we focus on the trade-off between power consumption and

the achievable rate in the V-RAN with multihoming. We build on the ex-
isting state-of-the art solutions in order to find an energy efficient joint
allocation strategy without compromising the achievable throughput in a
multihoming capable V-RAN.

4.2 V-RAN for heterogeneous networks

4.2.1 V-RAN architectural considerations

HetNets are the result of large macro cells combination with small cells.
These small cells increase capacity in loaded areas, or fill in the area with
low coverage [142]. Small cells are depolyed in the macro eNB by adding
low-power base stations as eNBs, Home eNBs, Relay Nodes, or Remote
Radio Heads (RRH). In particular, RRH based small cell deployment can
have distinct architectures [143]:

• Distributed baseband architecture consisting of having BBU and RRH
units in the small cell.

• Common baseband architecture including a BBU connected to one
or more RRH where RRH can be geographically separated from the
BBU.

As mentioned in section 2.4, RAN architecture has evolved from all-
in-one architecture to distributed base stations with RRH separated from
the BBU [144]. First, BBU and RRH were separated by fiber links that
carry the baseband wireless signal [145]. In this architecture, RRH’s role is
receiving the wireless signal and power amplification; while BBU implements
the antenna and other layer 2 and 3 functionalities. Second, BBUs were
unified in a BBU system platform with unified processing board hardware
platform and support Software Defined Radio (SDR) upgrade. However, this
second architecture does not support real-time dynamic resource allocation.
Third, BBUs were virtualized in data centers that enable dynamic service
provisioning forming thus a BBU pool to different virtualized base stations
and different air interface standards. Moreover, this virtualization does not
include small cells only, but also traditional RAN architectures such as BS
in 2G networks, NodeB in 3G networks, and eNodeB in 4G networks.

4.2.2 System description

We consider a heterogeneous V-RAN composed of a macro cell (MC) co-
existing with K small cells (SCs). Each access network is composed of an
RRH as shown in Fig. 4.1. These RRH are connected to their corresponding
BBU forming thus a BBU pool.
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Figure 4.1: V-RAN general model

In such centralized networks, the RRH handles the analog processing
as well as the digital to analog conversion. The BBU pool is responsible
for the digital baseband processing functions. Optical fiber cables are used
to provide data transmission between the RRHs and the BBU pool and en-
sure an ideal fronthaul that supports in-phase/quadrature samples exchange
between RRH and BBU.

Multihomed users achieve dual connectivity on lower layers. The medium
access control (MAC) layer manages resource mapping between physical
layers of macro and small cells, their data modulation, hybrid automatic
repeat request (HARQ) as well as channel coding on the corresponding car-
rier component. In addition, this unique MAC layer supports cross carrier
scheduling.

In this chapter, we keep similar notations for global traffic intensity and
users classes as previously. We also define the following parameters for the
wireless access and the V-RAN:

For the wireless access We define xMi (n) and xMHM
ki (n) as the band-

width shares in the macro cell for single-homed macro cell users and multi-
homed users having a connection with the kth small cell, respectively, with
k = 1, · · · ,K and i denotes the Channel Quality indicator, i = CQI. We
also define xSki(n) and xMHS

ki (n) as the bandwidth shares in the SC number
k for small cell-only single-homed users and multihomed ones, respectively.

83



4.2 V-RAN for heterogeneous networks

Figure 4.2: Equivalence between radio and processing resource allocation in
V-RAN.

For the V-RAN We define yMi (n) and yMHM
ki (n) as the CPU shares in

the V-RAN for single-homed macro cell users and multihomed users, having
a connection with the kth small cell, respectively. We also define ySki(n) and

yMHS
ki (n) as the CPU shares in the SC number k for SC-only single-homed

users and multihomed ones, respectively.
A multi-resource allocation must be performed jointly on the radio and

processing resources. Fig. 4.2 shows that an allocated amount of frequency
resources requires a corresponding amount of processing resources in the
BBU so that they yield together the same throughput perceived by the end
user, taking into account different efficiency parameters in each of them.
This correspondence depends of the spectral efficiency (SEi) in the wireless
access, with i = CQI, and the V-RAN efficiency given by the processing
efficiency γ = {γMi , γSi } which is function of the users’ radio conditions and
their access network technology. We shall explicit more this statement in
the next section.

For the performance evaluation, we consider the achievable data rate
by each class of users taking into consideration the heterogeneity of users’
radio conditions in the macro and small cells. The achievable data rate R, in
both access networks, is function of the spectral efficiency and the allocated
spectral resources given by:

R = x×B × SE (4.1)

where x is the bandwidth share, B is the channel bandwidth in [Hz] and
SE is the spectral efficiency which is function of the CQI and the access
technology in [bps/Hz].
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4.3 Case without multihoming

We first focus on multi-resource allocation strategies without multihoming
in which we consider both 1) the spectral resource share at the macro or the
small cells and 2) the processing resource share at the BBU pool.

In this chapter, we adapt the strategies proposed in [103, 105, 108] to
our case where radio resources of macro and small cells are independent and
all users share the same processing resources from the BBU pool.

We start by evaluating a baseline network model where no V-RAN is
considered. We then present the resource allocation adapted to our system
model in case of V-RAN. We start by the Proportional Fairness (PF), then
the Dominant Resource Fairness (DRF) and finally our proposed strategy
called Two-Phase Allocation (TPA).

4.3.1 Baseline network model without V-RAN

The baseline radio access network consists of a HetNet composed of a macro
cell and a set of small cells. We consider a proportional fairness resource
allocation that finds bandwidth capacity shares allocated for each class of
users. These capacity shares are obtained by maximizing the utility function
equal to the sum of logarithms of users’ throughput as defined in [97].

In this case, the achievable rate by macro cell and small cells users are
independent. The capacity shares of macro cell users are equal to the solu-
tion of Eq. (4.2) subject to conditions given in Eq. (4.3).
Maximize:

UM =
∑
i

nMi log(xMi SEiB
M ) (4.2)

subject to:

nMi x
M
i = 1, (4.3a)

xMi ∈ [0, 1] (4.3b)

with i = CQI. Eq. (4.3a) is the capacity constraint of the macro cell access
network which ensures that the sum of capacity shares obtained by the users
served by the macro cell equals to 1.

For the kth small cell, the utility function is defined as the sum of the
logarithms of the flow rates obtained by the kth small cell users as follows:
Maximize:

UkS =
∑
i

nSki log(xSkiSEiB
S) (4.4)

subject to:

nSkix
S
ki = 1, (4.5a)

xSki ∈ [0, 1] (4.5b)
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with k = 1, · · · ,K and i = CQI. Eq. (4.5a) is the constraint that limits the
sum of the users’ capacity shares on the SC k to 1.

The solutions of problems in Eq. (4.2) and (4.4) are given by:

xMi = 1/(
∑
i

nMi ) (4.6a)

xSki = 1/(
∑
i

nSki) (4.6b)

4.3.2 Proportional fairness with V-RAN

We now model the proportional fair resource allocation while considering the
V-RAN. We do so based on our model provided in chapter 3 by introducing
a new condition for the processing resource allocation.

We maximize the following utility function for the system:

U =
∑
i∈I

nMi log
(
xMi B

MSEi
)

+
∑
k

∑
i∈I

nSki log
(
xSkiB

SSEi
)

(4.7)

subject to: ∑
i∈I

nMi x
M
i ≤ 1, (4.8a)∑

i∈I
nSkix

S
ki ≤ 1, (4.8b)∑

i∈I
nMi y

M
i +

∑
k

∑
i∈I

nSkiy
S
ki ≤ 1 (4.8c)

where

xMi B
MSEi = yMi V γ

M
i (4.9)

xSkiB
SSEi = ySkiV γ

S
i (4.10)

The above maximization problem consists in finding the capacity shares
for all the users by maximizing the achievable throughput in a proportional
fair allocation, taking into consideration the V-RAN capacity in condition
(4.8c). In addition, we consider the difference of the processing efficiency as
a function of the technology and the adopted modulation; this processing
efficiency is denoted by γMi and γSi for the macro and small cell, respectively.
The mapping between allocated spectral resources and allocated processing
resources yielding the same throughput is shown in Eqns. (4.9) and (4.10).
In the following, we replace y by x according to these mapping equations.
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The Lagrangian of this system is given by:

L =
∑
i∈I

nMi log
(
xMi B

MSEi
)

+
∑
k

∑
i∈I

nSki log
(
xSkiB

SSEi
)

− µ1(
∑
i∈I

nMi x
M
i − 1)−

∑
k

µk2(
∑
i∈I

nSkix
S
ki − 1)

− µ3(
∑
i∈I

nMi
BMSEi

V γMi
xMi +

∑
k

∑
i∈I

nSki
BSSEi

V γSi
xSki − 1) (4.11)

The Karush Kuhn Tucker (KKT) conditions for problem (4.11) are:

∇L = 0, (4.12a)∑
i∈I

nMi x
M
i − 1 ≤ 0, (4.12b)∑

i∈I
nSkix

S
ki − 1 ≤ 0, (4.12c)

∑
i∈I

nMi
BMSEi

V γMi
xMi +

∑
k

∑
i∈I

nSki
BSSEi

V γSi
xSki − 1 ≤ 0, (4.12d)

µ1 ≥ 0, µk2 ≥ 0, µ3 ≥ 0 (4.12e)

and the complementary slackness:

µ1(
∑
i∈I

nMi x
M
i − 1) = 0, (4.13a)

µk2(
∑
i∈I

nSkix
S
ki − 1) = 0, ∀k = 1, · · · ,K (4.13b)

µ3(
∑
i∈I

nMi
BMSEi

V γMi
xMi +

∑
k

∑
i∈I

nSki
BSSEi

V γSi
xSki − 1) = 0 (4.13c)

In order to solve this problem, we first assume that µ1 = 0, µk2 = 0 and
µ3 6= 0 and we solve the problem. Then we solve the problem by assuming
that µ1 6= 0, µk2 6= 0 and µ3 = 0. The solution is as follows:

xMi = min

(
V γMi

ntBMSEi
,

1∑
i∈I n

M
i

)
(4.14a)

xSki = min

(
V γSi

ntBSSEi
,

1∑
i∈I n

S
ki

)
(4.14b)

with nt =
∑

i∈I n
M
i +

∑
k

∑
i∈I n

S
ki.

It is worth to note that the advantage of PF allocation is the fairness
between all users. However, this fairness could decrease the system’s effi-
ciency when applied to our case because by ensuring fairness between all
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4.3 Case without multihoming

users, some resources might be left unused which violates the Pareto effi-
ciency condition. To overcome this, we focus next on two resource allocation
strategies that achieve a compromise between efficiency and fairness: DRF
and a new proposal which we call TPA.

4.3.3 Dominant resource fairness with V-RAN

The adaptation of DRF to our context lies in its extension to take into con-
sideration the correspondence between V-RAN’s processing resources and
the radio ones. To realize the ideal DRF allocation proposed by [103], au-
thors in [105] stated that one can employ a water-filling algorithm. This is
possible by increasing the resource allocation at the same rate until some
resource is fully used. In this case, users using that resource are frozen while
other users allocations are increased until all the resources are frozen. We
show in Algorithm (1) the steps of DRF resource allocation applied to our
case. The advantage of this strategy is that it is Pareto efficient because it
ensures that no fraction of any resource is left needlessly idle.

Algorithm 1 Water-filling algorithm

1: Parameters:
2: dx← increment step
3: xMi ← macro cell class i user share
4: xSki ← small cell k, class i user share
5: Algorithm:
6: do
7: for each class i ∈ macrocell do
8: if macrocell stable then
9: xMi ← xMi + dx.

10: else
11: stop(1, i) = 1.

12: for each k ∈ K do
13: for each class i ∈ smallcell k do
14: if SC stable then
15: xSki ← xSki + dx.
16: else
17: stop(k + 1, i) = 1.

18: while V-RAN is stable and
∑∑

(stop) ≤ nb of classes

4.3.4 Two-phase allocation with V-RAN

In this section, we propose a two-phase resource allocation strategy which
achieves the advantages of the two above-mentioned strategies: it specifically
achieves the fairness of PF and the Pareto efficiency of water-filling.
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The resource allocation shares are first based on those obtained by Eq.
(4.7). Then a feedback step allocates the unused resources remaining in the
network. This strategy is shown in Algorithm (2) where f (resp. f ′) is the
mapping (resp. de-mapping) function between radio resources and V-RAN’s
(resp. V-RAN resources and radio ones) as follows:

y = f(x) =
x B SE

V γ
(4.15a)

x = f ′(y) =
y V γ

B SE
(4.15b)

with the parameters B = {BM , BS}, SE = {SEi} and γ = {γMi , γSi } are
chosen according to the user’s class.

Algorithm 2 Two-phase allocation

1: Parameters:
2: xMi ← From Eq. (4.14a)
3: xSki ← From Eq. (4.14b)
4: feedback ← logical index of accesses that can increase
5: their users’ shares
6: Algorithm:
7: if

∑
i n

M
i x

M
i ≤ 1 then

8: feedback(MC) = 1

9: for k = 1 : K do
10: if

∑
i n

S
kix

S
ki ≤ 1 then

11: feedback(SC k) = 1

12: Update the allocation for the accesses where feedback is 1

13: x(feedback) = f ′(1−n(feedback)f(x(feedback))n(feedback) )

4.4 Case with multihoming

In this section, we consider the network model provided in section 4.3.2
with multihomed users. We model the multi-resource allocation strategies
proposed in section 4.3 with adding the corresponding parameters for mul-
tihomed users.

We first present the baseline network model without V-RAN. We then
provide resource allocation with PF, DRF and TPA taking V-RAN into
consideration.

4.4.1 Baseline network model without V-RAN

The baseline network with multihoming is a heterogeneous radio access net-
work where users can be single-homed or multihomed according to the user
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4.4 Case with multihoming

equipment capabilities as well as to the received signals from the macro cell
and the small cells. We consider PF resource allocation. The problem in Eq.
(4.16) consists in maximizing the sum of the logarithms of the flow rates ob-
tained by single-homed and multihomed users on each access network. The
solution is the capacity share values xMi (n),xSki(n), xMHM

ki (n), xMHS
ki (n) of

macro cell users, kth small cell users, kth multihomed users on macro cell
access and kth multihomed users on small cell, respectively.
Maximize:

U =
∑
i

nMi log(xMi SEiB
M )

+
∑
i

K∑
k=1

nSki log(xSkiSEiB
S) (4.16)

+
∑
i

K∑
k=1

nMH
ki log(xMHM

ki SEiB
M + xMHS

ki SEiB
S)

subject to:

nMi x
M
i +

K∑
k=1

nMH
ki xMHM

ki = 1, (4.17)

nSkix
S
ki + nMH

ki xMHS
ki = 1, (4.18)

xMi , x
MHM
ki ∈ [0, 1], (4.19)

xSki, x
MHS
ki ∈ [0, 1] (4.20)

with k = 1, · · · ,K. Eqs. (4.17) and (4.18) are the constraints which ensure
that the sum of capacity shares on the macro cell and the small cell access
networks, respectively, is equal to 1.

For K small cells, this maximization problem is solved numerically in
MATLAB. However, if we assume K = 1 with one macro cell and only one
small cell, a closed form expression for the capacity shares is obtained by
deriving the Lagrangian function of the problem described in Eq. (4.16)
under the corresponding constraints for K = 1 in Eqs. (4.17) and (4.18).

L =nM log(xMSE BM ) + nS log(xSSE BS)

+ nMH log(xMHMSE BM + xMHSSE BS)

− νM (nMxM + nMHxMHM − 1)

− νS(nSxS + nMHxMHS − 1) (4.21)
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with νM and νS the Lagrange multipliers. Then:

δL

δxM
=
nM

xM
− nMνM , (4.22)

δL

δxS
=
nS

xS
− nSνS , (4.23)

δL

δxMHM
=

nMHSE BM

xMHMSE BM + xMHSSE BS
− nMHνM , (4.24)

δL

δxMHS
=

nMHSE BS

xMHMSE BM + xMHSSE BS
− nMHνS (4.25)

By replacing Eqs. (4.22) and (4.23) in Eqs. (4.17) and (4.17) for K = 1,
we find xM and xS as a function of νM and νS , respectively. Then we find
the Lagrange multipliers by substituting xMHM and xMHS in Eq. (4.24)

νM =
BM (nM + nS + nMH)

BM +BS
(4.26)

νS =
BS(nM + nS + nMH)

BM +BS
(4.27)

The unique solution to the problem is given by:

xM =
BM +BS

BM (nM + nS + nMH)
(4.28)

xS =
BM +BS

BS(nM + nS + nMH)
(4.29)

xMHM =
BMnS −BSnM +BMnMH

BMnMH(nM + nS + nMH)
(4.30)

xMHS =
BSnM −BMnS +BSnMH

BSnMH(nM + nS + nMH)
(4.31)

where nM , nS and nMH denote the number of macro cell, small cell and
multihomed users, respectively.

4.4.2 Proportional fairness with V-RAN and multihoming

We extend the model provided in section 4.4.1 by introducing processing
resources condition at the BBU pool as well as resource mapping expres-
sions that maintain the correspondence between frequency and processing
resources for each class of single-homed and multihomed users.

The capacity shares in this case are the maximization solution of the
problem in Eq. (4.32) under radio and processing resource stability condi-
tions.
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Maximize:

U =
∑
i∈I

nMi log
(
xMi B

MSEi
)

+
∑
k

∑
i∈I

nSki log
(
xSkiB

SSEi
)

(4.32)

+
∑
k

∑
i∈I

nMH
ki log

(
xMHM
ki BMSEi + xMHS

ki BSSEi
)

subject to following conditions (Eq. (4.33)) that maintain stability in all
access networks as well as in the BBU pool:∑

i∈I
nMi x

M
i B

M +
∑
k

∑
i∈I

nMH
ki xMHM

ki BM ≤ BM , (4.33a)∑
i∈I

nSkix
S
kiB

S +
∑
i∈I

nMH
ki xMHS

ki BS ≤ BS , (4.33b)∑
i∈I

nMi y
M
i +

∑
k

∑
i∈I

nSkiy
S
ki+∑

k

∑
i∈I

nMH
ki (yMHM

ki + yMHS
ki ) ≤ 1 (4.33c)

taking into consideration the mapping functions between spectral resources
and processing resources:

xMi B
MSEi = yMi V γ

M
i , (4.34a)

xSkiB
SSEi = ySkiV γ

S
i , (4.34b)

xMHM
ki BMSEi = yMHM

ki V γMi , (4.34c)

xMHS
ki BSSEi = yMHS

ki V γSi (4.34d)

This allocation strategy considers the difference of processing efficiency
as a function of the technology and the modulation adopted, this processing
efficiency is denoted by γMi , γSi . The mapping between spectral efficiency
and processing efficiency is presented in Eqns. (4.34).

Here also, applying proportional fairness to our network model with
multihoming does not allow us to benefit from all available resources in the
network. For this reason, we consider next DRF as well as TPA allocation
strategies.

4.4.3 Dominant resource fairness with V-RAN and multi-
homing

In this section, we present the dominant resource fairness described in section
4.3.3 while considering the multihomed users in the network. For this reason,
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Algortihm 3 is the extension of Algorithm 1; it allocates resources to single-
homed and multihomed users in each access network. It is important to note
that the water-filling with multihoming satisfies DRF’s properties defined
in [103].

Algorithm 3 is a sharing incentive in that no user is better off if resources
are equally partitioned among them. Second, a user cannot increase his
allocation by lying about his requirements which maintains the strategy
proofness. Third, water-filling with multihoming is envy-free in that no
user would trade his allocation with another user. Eventually, it is Pareto
efficient since all resources are used, to increase a user allocation we must
decrease the allocation of another one.

Algorithm 3 Water-filling algorithm

1: Parameters:
2: dx← increment step
3: xMi , x

MHM
ki ← macro cell class i single-homed and

4: multihomed users share resp.
5: xSki, x

MHS
ki ← small cell k, class i single-homed and

6: multihomed users share resp.
7: Algorithm:
8: do
9: for each user class i ∈ macrocell do

10: if macrocell stable then
11: xMi ← xMi + dx.

12: xMHM
ki ← xMHM

ki + dx.
13: else
14: stop(1, i) = 1.

15: for each k ∈ K do
16: for each user class i ∈ smallcell k do
17: if smallcell stable then
18: xSki ← xSki + dx.

19: xMHS
ki ← xMHS

ki + dx.
20: else
21: stop(k + 1, i) = 1.

22: while V-RAN is stable and
∑∑

(stop) ≤ nb of classes

4.4.4 Two-phase allocation with V-RAN and multihoming

The two-phase heuristic allocation with multihomed users is defined as the
extension of section 4.4.2. In this case, a feedback step after finding the
capacity shares must be added: we calculate the unused resources and re-
distribute them among the users while maintaining small cells, macro cell
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and V-RAN’s stability. f and f ′ are calculated using Eq. (4.15). Recall that
f (resp. f ,′) calculates the mapping (resp. de-mapping) function between
radio and V-RAN (resp. V-RAN and radio). This strategy allows to increase
the allocation efficiency and maintains the fairness between all users.

Algorithm 4 Two-phase allocation

1: Parameters:
2: xMi , x

S
ki, x

MHM
ki , xMHS

ki ← solution of problem (4.32)
3: feedback ← logical index of accesses that can increase
4: their users’ shares
5: Algorithm:
6: if

∑
i n

M
i x

M
i +

∑
k

∑
i n

MH
ki xMHM

ki ≤ 1 then
7: feedback(MC) = 1

8: for k = 1 : K do
9: if

∑
i n

S
kix

S
ki +

∑
i n

MH
ki xMHS

ki ≤ 1 then
10: feedback(SC k) = 1

11: Update the allocation for the accesses where feedback is 1

12: x(feedback) = f ′(1−n(feedback)f(x(feedback))n(feedback) )

4.5 Accounting for power consumption in V-RAN

In this section, we elaborate on the energy efficiency of resource allocation
strategies applied on the V-RAN architecture. The V-RAN network archi-
tecture is an essential part of energy efficient 5G networks since the baseband
processing virtualization leads to more energy-efficient cooling, better coor-
dination (CoMP) and dynamic cell reconfiguration. Many recent works have
surveyed the energy efficient gains obtained with C-RAN [146, 147, 148, 126].
However, few researchers addressed the energy efficient resource allocation
in C-RAN/V-RAN. Dynamic resource allocation in C-RAN was studied in
[123] and showed a 70% power consumption reduction. As for multihoming,
an energy efficient study was proposed in [121].

We focus in this section on the trade-off between power consumption
and the achievable rate in the V-RAN with multihoming and compare the
performance of multi-resource allocation strategies from an energy efficient
point of view.

For the power models, we consider the holistic energy efficiency evalu-
ation framework (E3F) that has been developed within the Energy Aware
Radio and neTwork tecHnologies (EARTH) project [113, 112]. E3F presents
a quantitative evaluation for radio access network’s operation in a cellular
network with a detailed power model of a base station.

We consider the V-RAN presented in Fig. 4.1, with heterogeneous access
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networks composed of an LTE macro cell and K mm-wave small cells. In
fact, network densification combined with the use of cm-wave and mm-wave
frequency bands above 10GHz increases the available bandwidth for short
range communications in dense areas. However, reliable mm-wave commu-
nication consist of power-hungry transceiver chains as well as complex pro-
cessing techniques [128, 149]. We first consider the network without V-RAN.
Then, we evaluate the power consumption of DRF and TPA strategies. We
also evaluate the case of assigning multihomed users to a corresponding ac-
cess network using previously mentioned parameter a, defined as the rate of
multihomed users served by the macro cell. Finally, we consider an energy
efficient allocation by using the Dinklebach’s algorithm [150].

4.5.1 Modeling power consumption in V-RAN

In the following, we provide power models for both access types: macro and
small cells, in a V-RAN with BBU pooling.

The total power consumption is equal to the sum of RRH’s and BBU’s
power consumption:

Ptot = PRRHMC +
∑
k

PRRHSCk
+ s ∗ PBBU (4.35)

where PRRHMC , PRRHSCk
, and PBBU denote the power consumption at the MC’s

RRH, the power consumption at the kth SC and the power consumption of a
BBU server respectively. s denotes the number of BBUs active in the BBU
pool.

An LTE RRH power consumption is provided by EARTH in [113] as:

PRRHMC = NTRX(P0 + ∆pPout) (4.36)

where NTRX denotes the number of transmission chains, P0 is the linear
model parameter to represent the power consumption at the zero RF output
power without the baseband power consumption and ∆p is the slope of
the load dependent power consumption. This fixed power consumption P0

is independent from the access network load and is called the tax of the
coverage, it is consumed by the broadcast channels that are continuously
emitting even at 0 load. Pout is the dynamic RF power equal to ρMCPmax
where ρMC is the load in the macro cell, and Pmax is the maximum transmit
power. All these parameters are summarized in Table 4.3.

As for mm-wave small cells, the RRH power consumption PRRHSCk
is as-

sumed to be a constant value regardless of the traffic load [115].
Finally, the total BBU pool power consumption is defined as:

P totBBU = s× PBBU (4.37)

where s is the total number of allocated BBUs in the pool, and PBBU is the
power consumption in a BBU.
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4.5.2 Energy efficiency of resource allocation schemes

In this section, we present resources allocation strategies considered in the
previous section in order to study the trade-off between the achievable data
rate and the power consumption. We focus on multihomed users’ role in
increasing or decreasing the total power consumption in the network. The
baseline model without V-RAN, used as a reference to which we compare
our results, is described in section 4.3.1.

A. Case of DRF with multihoming

In this section, we adopt the dominant resource fairness algorithm, Algo-
rithm 3, that allocates resources to single-homed and multihomed users in
each access network in the V-RAN.

In this strategy, the BBUs assignment is dynamic, which means that the
central scheduler at the operator 1) increases the number of BBUs turned
ON as a function of the system load 2) assigns a BBU to serve a set of small
cells and macro cells depending on their load.

Let Eq. (4.38) be the rule the central scheduler follows in order to choose
the number s of BBU for a given network.

s =

⌈
CMρM +

∑
k C

S
k ρ

S
k

Ccap

⌉
(4.38)

with CM , CSk and Ccap denoting the processing capacity in GOPS1 required
for the macro cell at full load, for the small cells at full load, and the pro-
cessor maximum capacity. ρM and ρSk denote the load at both layers.

Based on the load in each access layer, we calculate the total power
consumption in the network with V-RAN by applying the DRF allocation
strategy.

B. Case of DRF in V-RAN without multihoming

In this case, we consider that multihoming capable users are connected either
to the macro cell or to the small cell. A proportion a of multihoming capable
users are connected to the macro cell while a proportion (1−a) receive data
from the small cells. The aim is to study how the power consumption varies
with varying a. We also consider a dynamic BBU assignment with total
number of BBU equal to s given in Eq. (4.38).

C. Case of TPA with multihoming

For the two-phase allocation algorithm, Algorithm 4, the BBUs assignment
is dynamic and follows Eq. (4.38). The total power consumption is equal to
the sum of powers consumed in all access networks.

1GOPS: Giga Operations Per Second

96



4.5 Accounting for power consumption in V-RAN

It is important to note that TPA is composed of two phases, and does
not take into consideration energy efficiency when allocating resources.

4.5.3 Energy efficient allocation for V-RAN

Now, we propose an energy efficient allocation that maximizes the energy
efficiency in a V-RAN with multihoming.

Let P (x) be the power consumption function for a given access network,
R(x) be the achievable throughput function of the access network.

P (x) =NTRX(P ′0 + ρMC(x)∆pPmax) +

K∑
k=1

PRRHSCk
+ sPBBU (4.39a)

R(x) =
∑
i

nMi x
M
i B

MSEi +
∑
k

∑
i

nSkix
S
kiB

SSEi+∑
k

∑
i

nMH
ki (xMHM

ki BMSEi + xMHS
ki BSSEi) (4.39b)

As energy efficiency increases with decreasing energy-per-bit, the opti-
mization problem that maximizes the energy efficiency is equivalent to that
of minimizing the energy-per-bit. In this case, we formulate the optimization
problem as follows:

P 1.

minimize
P (x)

R(x)
(4.40)

subject to
∑
i

nMi x
M
i +

∑
k

∑
i

nMH
ki xMHM

ki ≤ 1 (4.41)

and
∑
i

nSkix
S
ki +

∑
i

nMH
ki xMHS

ki ≤ 1 (4.42)

and
∑
i∈I

nMi y
M
i V +

∑
k

∑
i∈I

nSkiy
S
kiV+∑

k

∑
i∈I

nMH
ki (yMHM

ki + yMHS
ki )V ≤ V (4.43)

taking into consideration the mapping functions between spectral efficiency
and processing efficiency:

xMi B
MSEi = yMi V γ

M
i (4.44a)

xSkiB
SSEi = ySkiV γ

S
i (4.44b)

xMHM
ki BMSEi = yMHM

ki V γMi (4.44c)

xMHS
ki BSSEi = yMHS

ki V γSi (4.44d)
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Note that solving the fractional optimization problem P1 directly is very
challenging. For this reason, we derive a parametric optimization problem
out of the fractional programming by introducing a parameter θ [150] as
follows:

P 2.

minimize z(θ) = P (x)− θ R(x) (4.45)

subject to
∑
i

nMi x
M
i +

∑
k

∑
i

nMH
ki xMHM

ki ≤ 1 (4.46)

and:
∑
i

nSkix
S
ki +

∑
i

nMH
ki xMHS

ki ≤ 1 (4.47)∑
i∈I

nMi y
M
i V +

∑
k

∑
i∈I

nSkiy
S
kiV+∑

k

∑
i∈I

nMH
ki (yMHM

ki + yMHS
ki )V ≤ V (4.48)

where the parametric problem P2 is a convex optimization for a given θ
solved by applying Dinkelbach’s method defined in Algorithm 5.

Algorithm 5 Dinkelbach’s method

1: Initialize θ;
2: do
3: Determine Z(θ) and x∗;

4: θ∗ = P (x∗)
R(x∗) ;

5: while z(θ∗) > ε

In order to find x∗ for a given θ, we solve the linear minimization in
Problem 2.

This allocation strategy considers the difference of processing efficiencies
γMi , γSi as a function of the technology and the adopted modulation. The
mapping between spectral efficiency and processing efficiency is presented
in Eqns. (4.44).

4.6 Simulation and numerical results

4.6.1 Simulation parameters

We suppose that our network is composed of a heterogeneous virtual radio
access network composed of an LTE macro cell and mm-wave small cells,
with different radio resources and processing requirements. We consider the
inter-site multi-connectivity architecture proposed in [8]. By choosing the
mm-wave technology, we target high data rates allowed by this technology
that can reach several Gbps.
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Table 4.1: Parameters affecting baseband power consumption. Default val-
ues chosen in [86] and network scenarios.

Description Default LTE mm-wave

Bandwidth [MHz] 10 20 1750

Number of Antennas 2 4 8

Modulation 6 2, 4, 6 2, 4, 6

Coding rate 1 0.5, 0.5, 3/4 0.5, 0.5, 3/4

CQI 15 5, 8, 13 15, 18, 23

Table 4.2: Processing efficiency as a function of MCS in LTE and mm-wave
in [Mbps/CPU].

Class LTE (TC) mm-wave (LDPC)

1/2 QPSK 2.32 0.607

1/2 16QAM 4.6885 1.098

3/4 64 QAM 9.27 2.025

In these simulations, we consider the LTE macro cell described previously
in chapter 3, and three mm-wave small cells of rSC = 70 m radius that
operate at 60 GHz frequency band with 1.7 GHz bandwidth and deploy an
8 × 8 antenna array [151]. Other parameters adopted in Chapter 3 remain
the same. Using the mapping information between CQI, MCS, data rate
and distance for a 60 GHz link [152, 153] and for an LTE access network in
[154], the users’ distribution is calculated for an LTE and a mm-wave access
network.

Let λ denote the overall arrival rate. It is equal to the sum of all arrival
rates. The traffic intensity in this case is equal to λ× σ in [Mbps], where σ
Mbits denotes the mean elastic flow size with exponential distribution.

The processing efficiency γMi and γSi are important parameters in that
they differentiate between computational requirements in each access net-
work. Table 4.1 presents the different classes of users in LTE and mm-
wave. We estimate LTE and mm-wave processing efficiency using infor-
mation provided in [86]. We show in Table 4.2 the processing efficiency
γ in [Mbps/CPU]. We calculate it for LTE and mm-wave respectively for
the three CQIs corresponding to modulations (2, 4, 6) under coding rates
(1/2, 1/2, 3/4), respectively. It is important to note that multihomed users
processing efficiency on the macro and the small cells are independent and
follow the same parameters shown in Table 4.2.

4.6.2 Case without mulihoming

In this section, we compare the achievable throughput obtained by each
class of users for each of the allocation strategies under two cases: sufficient
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Figure 4.3: Performance evaluation without V-RAN and with single-homed
users only.

processing resources or limited processing resources.

A. V-RAN with sufficient resources

We first consider that processing resources in the V-RAN are sufficient.
We evaluate the achievable throughput in the baseline HetNet (without V-
RAN) as a function of the offered traffic as shown in Fig. 4.3 based on the
proportional fairness resource allocation. The obtained results show that
macro and small cell users data rates are independent since each access
network allocates its frequency resources independently. We observe that as
the offered traffic in the system increases, the load in the macro cell increases
while small cells load increases at a lower rate. This limitation of the macro
cell is related to the simulation scenario we considered: macro cell receives
higher percentage of offered traffic than small cells.

For a V-RAN with sufficient CPU processing resources (1200 CPU units),
we show in Fig. 4.4 the achievable throughput as a function of the offered
traffic for each of the proposed strategies. In Fig. 4.4a we see that the pro-
portional fairness strategy achieves a throughput equivalent to that obtained
for the baseline network model for low load. Macro cell’s stability point is
limited by the spectral resources saturation. We denote by stability point
the maximum offered traffic that can be transported by the access network
before it gets saturated, i.e., the point at which, the achievable throughput
becomes equal to zero. On the other hand, we see that small cells stability
point is limited to 42 Mbps by the allocation strategy.

It is interesting to see in Fig. 4.4b that the DRF allocation strategy
offers better stability than PF and allows to achieve higher data rates for
small cell users similar to those obtained by the baseline strategy. This
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(b) DRF
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(c) TPA

Figure 4.4: Comparison of: (4.4a) proportional fairness (PF), (4.4b) domi-
nant resource fairness (DRF) and (4.4c) two-phase allocation (TPA) strate-
gies’ achievable throughput for different classes of users when V-RAN has
sufficient processing resources.

allocation strategy allows to virtualize our network without loosing on the
performance and stability.

As for the TPA allocation results depicted in Fig. 4.4c, we observe an
improvement over PF in terms of achievable throughput and especially in
terms of system stability. We also observe an increased fairness between
different classes of users illustrated by closer throughput plots.

Fig. 4.5 presents a comparison of the average achievable throughput
between the baseline network model and the different allocation strategies.
Obviously, the DRF strategy, i.e., waterfilling, achieves the highest perfor-
mance with an average throughput almost equal to the baseline one when
no virtualization was considered. PF appears to have the worst performance
with network stability limited to 42 Mbps of offered traffic. In between, the
TPA strategy achieves better fairness between different classes of users.
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Figure 4.5: Comparing average throughput of different strategies when V-
RAN has sufficient resources.

B. V-RAN with limited resources

We assume in this section that V-RAN’s processing resources are limiting
and compare the different allocation strategies as shown in Figure 4.6. The
plotted results show the variation of achievable throughput as a function
of the offered traffic for each class of users. For 60 CPU units of limited
processing capacity, we observe in Fig. 4.6a that the achievable throughput
obtained by all the users decreases for all access networks and reaches the
limits of the system’s stability at 30 Mbps for both small cells and macro
cells. We also find that the maximum achievable throughout at low load
decreases for all classes of users.

When comparing PF to the water-filling strategy (i.e., DRF), we ob-
serve in Fig. 4.6b that DRF achieves a higher stability for both macro and
small cells as well as increased achievable throughput by macro cell users
and decreased achievable throughput for small cell users at low load. This
variation of allocation is related to the consideration of heterogeneous re-
quirements for each class of users in PF, while disregarding this information
in DRF. This stability improvement is explained by the waste of resources
in PF that had proven to be not Pareto efficient. While DRF does not
stop before all possible spectral and processing resources are allocated, PF
chooses between two possible allocations based on the available spectral and
processing resources, including unused resources in the network.

Fig. 4.6c shows the two-phase allocation simulation results. We observe
that at limited processing capacity, TPA combines the advantages of both
PF and DRF. It increases the fairness between different classes of users
achieving throughputs that are closer to each other. It also increases the
network stability point for both access networks to a point equal to that
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(b) DRF
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Figure 4.6: Comparison of: (4.6a) proportional fairness (PF), (4.6b) dom-
inant resource fairness (DRF) and (4.6c) two-phase allocation strategies’
achievable throughput of different classes of users when V-RAN has restric-
tive processing resources.

achieved by DRF.
By comparing the average throughput of the above mentioned allocation

strategies, we see in Fig. 4.7 that waterfilling and TPA have comparable re-
sults. At low load, PF outperforms water-filling (DRF) and TPA. However,
at medium to high load, we observe that water-filling and TPA outperform
PF especially from a stability point of view.

C. Jain Fairness Index comparison

In Fig. 4.8 , we evaluate the Jain’s fairness index [155] in order to quantify
the fairness of each allocation strategy as a function of the offered traffic
when no multihoming is considered. For sufficient processing resources at
the V-RAN, we see in Fig. 4.8a that all allocation strategies achieve the
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Figure 4.7: Comparing average throughput of different strategies when V-
RAN is restrictive.
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(a) Fairness index vs. the offered traffic with
sufficient V-RAN resources.
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(b) Fairness index vs. the offered traffic with
limiting V-RAN resources.

Figure 4.8: Fairness index.

same fairness at low load. At higher load, PF shows the highest fairness,
water-filling shows the lowest fairness index, and TPA appears to offer a
higher fairness than water-filling and better stability than PF. For V-RAN
with limiting resources, we observe in Fig. 4.8b that PF, water-filling and
TPA achieve higher fairness, with clearer fairness difference. PF achieves
always the highest fairness, and water-filling offers the lowest fairness index.

4.6.3 Case with mulihoming

In this section, we show the simulation results for the V-RAN with multi-
homing. We specifically investigate how the presence of multihomed users
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influences resource allocation. As above, we first consider the network when
V-RAN has sufficient processing resources and then present the simulation
results for the case when the V-RAN has limiting processing resources at
the BBU pool.

A. V-RAN with sufficient resources

The baseline simulation results using PF allocation (without V-RAN) in
Fig. 4.9 are considered as a reference to evaluate multi-resource alloca-
tion techniques as our aim is to find the allocation strategy that allows us
to pool BBU resources in the network without compromising the system’s
performance.

Fig. 4.9 shows that multihomed users achieve higher throughput than
single-homed ones; it becomes equal to the latter when the macro cell is
fully loaded. Given the difference between macro and small cells loads, we
see that the macro cell reaches the stability limit earlier than the small cells
which have lower load and larger spectrum to be allocated.

Simulation results in Fig. 4.10 show the achievable throughput for each
class of users as a function of the offered traffic for PF, DRF and TPA
strategies. With sufficient processing resources of 1200 CPU unit, PF al-
location strategy achieves results almost comparable to those obtained in
the baseline model. However, at high load, all users’ classes throughputs
in all access networks decrease to zero at 40 Mbps. Given that spectral
and processing resources are sufficient, we deduce here that the allocation
strategy itself is limiting and does not allow to benefit from all the avail-
able resources. Multihomed users appear to follow the same strategy: they
combine the achievable data rate in the macro cell and the connected small
cell, and when one of these networks is saturated multihomed users will be
served completely by the other access network. This concurrent access is
the privilege of multihomed users over single-homed users.

Dominant resource fairness results implemented as a water-filling algo-
rithm show in Fig. 4.10b the comparable results with the baseline network
model. This proves again that DRF achieves an efficient pooling of BBU
resources even in the presence of multihomed users. Similarly to the results
without multihoming shown in Fig. 4.4b, we find here that DRF improves
the system stability with achieving higher data rates for small cell users at
high load after the macro cell gets saturated.

Simulation results plotted in Fig. 4.10c show that TPA achieves compa-
rable data rates with the baseline strategy at low to medium loads. At high
load, when the macro cell reaches the stability limits, multihomed users join
small cells and receive the same data rate as single-homed users.

As a comparison, we show in Fig. 4.11 the average achievable throughput
in all multi-resource allocation strategies as well as the baseline strategy
when no BBU pooling is considered. The water-filling strategy appears to
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Figure 4.9: Performance evaluation without V-RAN architecture and with
multihoming.

achieve comparable results with the baseline strategy; it also outperforms
the two-phase allocation strategy. The latter achieves an acceptable average
data rate as well as a high system stability. Clearly, even after considering
the multi-resource allocation for the proportional fairness the results are not
satisfactory which means that proportional fairness is not well suited to our
multi-resource problem. PF has two main problems: 1) wasted resources
and 2) limited system stability because of the wasted resources.

B. V-RAN with limiting resources

In this section, we study the case of limited processing resources in a V-RAN
with multihomed users. Here, we present a comparison of the average data
rate obtained by different multi-resource allocation strategies.

Fig. 4.12 shows the average achievable throughput by the three alloca-
tion strategies. The obtained results show that for low load, PF outperforms
water-filling (DRF) and TPA, while at medium to high loads, DRF and TPA
achieve comparable results. In this case of restrictive V-RAN, DRF outper-
forms both PF and TPA.

C. Jain Fairness Index comparison

Fig. 4.13 shows the Jain’s fairness index variation of each allocation strategy
as a function of the offered traffic when multihoming is considered. For
sufficient processing resources at the V-RAN, we see in Fig. 4.13a that all
allocation strategies achieve the same fairness at low load. At higher loads,
PF offers the highest fairness index, while water-filling offers the lowest
one. TPA outperforms PF with highest system stability and outperforms
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(a) PF
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(b) DRF
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Figure 4.10: Comparison of: (4.10a) proportional fairness (PF), (4.10b)
dominant resource fairness (DRF) and (4.10c) two-phase allocation strate-
gies’ achievable throughput of different classes of users when V-RAN has
sufficient processing resources in case of multihoming.

water-filling with highest fairness index. For V-RAN with limiting resources,
the difference between the fairness values becomes clearer in Fig. 4.13b.
Whereas PF always offers the highest fairness and water-filling the lowest
one. An operator can choose PF, TPA, or water-filling by prioritizing the
achievable rate, fairness or stability.

4.6.4 Power consumption evaluation

In the following simulations, we consider the case of one macro cell and K =
20 mm-wave small cells with sufficient processing resources. We consider
K = 20 small cells instead of 3 that was adopted previously in order to
focus on the energy efficiency in a very dense HetNet deployment. We also
disregard the heterogeneity between users classes in the network in order to
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Figure 4.11: Comparing average throughput of different strategies when
V-RAN has sufficient resources and with multihoming.
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Figure 4.12: Comparing average throughput of different strategies when
V-RAN is restrictive and with multihoming.
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(a) Fairness index vs. the offered traffic with
sufficient V-RAN resources.
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(b) Fairness index vs. the offered traffic with
limiting V-RAN resources.

Figure 4.13: Fairness index, system with multihoming.

reduce system’s complexity.
The previously adopted parameters such as macro and small cell radii,

frequency bands, bandwidths, processing efficiencies remain the same in this
section. We also keep the parameters presented in Tables 4.1 and 4.2.

Given that we assume in this section only one radio condition for the LTE
macro cell users (CQI= 13), and only one radio condition for the mm-wave
small cell users (CQI= 23), the flow arrivals are modified such that

λ = p̂Mλ+
∑
k

p̂Sλ+
∑
k

p̂MHλ (4.49)

where small cell users and multihomed users arrival rates are obtained as a
function of the small cell and the macro cell radii, rSC and rMC respectively,
and p̂M ,p̂S and p̂MH are given by

p̂S = p̂MH = (rSC/rMC)2 (4.50)

p̂M = 1− 2Kp̂S (4.51)

As for the power consumption parameters, we present in table 4.3 the
macro cell’s power consumption parameters.

Table 4.3: Power model parameters

Power (Watts) NTRX Pmax [W] P0[W] ∆p Psleep
RRH 6 20 84 2.8 56

According to [115], the small cell RRH power consumption is constant
and equal to P kSC = 60W .

And a BBU consumes PBBU = 120W and is able to process 324 GOPS.
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Figure 4.14: Comparing average throughput variation under different allo-
cation strategies.

A. Comparing average data rates

Figure 4.14 presents the average data rate as a function of the offered traffic
for each allocation strategy.

When no V-RAN is considered, we apply the local PF strategy, the
average throughput in this case serves as a baseline to which we compare
other strategies. We observe that at low to medium load, the energy efficient
strategy (EE) achieves the highest average throughput with 4.26% higher
than the baseline, while DRF achieves an average of 2.35% higher than the
baseline. While at high load, DRF achieves the highest performance while
TPA decreases rapidly to 30% lower average throughput than the baseline
without DRF.

B. Comparing power consumptions

In Fig. 4.15, we compare the total power consumption as a function of
the offered traffic for the above-mentioned allocation strategies. We observe
that the system virtualization diminishes significantly the total power con-
sumption due to the variable assignment of BBUs to the access networks.
Depending on the network load and on the adopted strategy, the total power
consumption in the network is reduced between 40% to 93% of the total
power consumed in the system without virtualization.

We found that the EE strategy achieves similar power consumption with
DRF at low load, higher consumption at medium load (100−200 Mbps), and
lower consumption at high load (200−250 Mbps). While TPA achieves lower
consumption at low to medium loads, then requires higher consumption than
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Figure 4.15: Comparing power consumption variation under different allo-
cation strategies.

both EE and DRF at higher load.
Now if we combine both data rate and total power variations, we find that

the energy efficient strategy achieves the best trade-off between the energy
consumption and the average data rate at low to medium load. While DRF
achieves the better trade-off at higher load.

C. Comparing Dynamic DRF and Energy Efficient allocation

In this section, we aim to figure out the reason behind the obtained perfor-
mance for DRF and EE strategies. Generally, energy efficient maximization
is achieved either by increasing the users achievable throughput or by re-
ducing the power consumption. When comparing the achievable data rate
for each class of users in Fig. 4.16, we find that the energy efficient strategy
offers a higher throughput for small cell users, but at the expense of lower
throughput for macro cell users. Even though small cell users require higher
processing, the energy efficient strategy assigns more resources to small cell
users whenever possible trying to reduce power consumption by reducing the
number of users. This is possible because this allocation strategy takes both
energy and throughput into consideration, contrary to DRF which focuses
on the throughput only. However, at high load, the macro cell becomes
unstable when using the EE strategy, which results in moving multihomed
users load on the small cells, and reducing thus small cell users’ through-
put. This also was translated by an increased power consumption as seen
in figure 4.15.
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Figure 4.16: Comparing achievable data rate by each class of users for both
DRF and energy efficient allocation strategies.

D. Jain fairness index comparison

Despite the higher average throughput offered by EE, we show in Fig. 4.17
that it offers a lower fairness than DRF and TPA. In addition, it is worth
to note that TPA achieves comparable results at low to medium load with
DRF and EE in terms of average throughput and power consumption, but
it surely achieves a higher fairness between the users.

4.7 Conclusion

We presented in this chapter different resource allocation strategies under
different virtual radio access networks scenarios. Three allocation strate-
gies were considered: proportional fairness (PF), dominant resource fairness
(DRF), and a newly proposed two-phase heuristic allocation (TPA).

We started with a V-RAN model without dual connectivity, i.e., multi-
homing, and then considered dual connectivity in the network. We jointly
allocated radio resources as well as processing ones. For both cases when
V-RAN has limiting and sufficient processing resources, we found that DRF
outperforms other strategies in terms of achievable throughput, PF offers
the highest fairness, and TPA offers a trade-off between fairness and achiev-
able throughput and maintains system’s stability. We also found that when
using PF, V-RAN limits small cells performance while DRF maintains a
good performance and stability for these small cells.

By comparing these strategies to the baseline network performance when
no virtualization is considered, we found that DRF achieves comparable
throughput and stability in the system allowing thus to virtualize the HetNet
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Figure 4.17: Jain fairness index vs. the offered traffic.

without performance loss.
Knowing that 5G is being designed to be a green network, we studied

V-RAN’s energy efficiency with multihoming, and this by adopting multi-
resource allocation strategies taking into consideration two parameters in-
stead of only one: the achievable throughput and the total power consump-
tion in the network. We compared local PF applied to a baseline network
model without V-RAN to the network model with V-RAN using DRF, TPA,
and energy efficient allocation using Dinklebach’s algorithm. We considered
only sufficient processing resources case by allocating BBUs dynamically to
the RRHs.

The energy efficient strategy has been shown to outperform all other
strategies at low to average load both in terms of increased average through-
put and reduced power consumption, which means reduced network OPEX.
However, DRF outperformed the other strategies at high load. When com-
paring the jain fairness index, TPA outperformed other strategies in terms
of fairness, and the energy efficient strategy has shown the lowest fairness
index.
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Chapter 5

Conclusion and Perspectives

5.1 Thesis summary

Since the introduction of mobile broadband in 3G cellular networks in 2001,
users are continuously asking for more services with increasing capacity and
latency requirements. Nowadays, the first 5G network will see the light by
2020 offering a large number of services with huge capacity and ultra-reliable
communication. Until then, a rigorous work is needed from researchers to
address all possible topics in 5G networks.

The increasing number of connected devices requires a larger number
of small cells deployment accompanied with wireless LAN proliferation in
houses, offices, malls and almost any indoor place. This coexistence of sev-
eral access technologies could be exploited in order to achieve higher data
rates than that could be achieved by single access networks. By adopting
the multihoming capability in a network, multihomed users reach higher
data rates than single-homed ones.

The first contribution of this thesis focused on evaluating a HetNet with
multihoming capability. This work modeled resource allocation strategies by
applying: (1) network centric approaches: local and global proportional fair-
ness and (2) user centric approaches: peak rate maximization and network
assisted strategies. Our results showed that the network assisted strategy
offers a global network optimum. We also found that global PF achieves a
better performance than user centric strategies in terms of throughput at
the expense of higher computational requirements.

However, the usage of dense HetNets increases significantly cells imple-
mentation and upgrade costs, i.e., CAPEX. This cost can be reduced by
considering a 5G network with C-RAN/V-RAN. In this case, the base sta-
tion functionalities are split between cell locations (RRH) and the centralized
pool (BBU pool). The challenge here is to choose a joint resource allocation
strategy that considers both radio and processing resource requirements.
For this aim, we considered three joint-allocation strategies: proportional
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fairness (PF), dominant resource fairness (DRF), and proposed a new two-
phase heuristic allocation (TPA). We notably showed that DRF outperforms
other strategies in terms of achievable throughput when V-RAN’s processing
resources are limiting or sufficient while maintaining good performance and
stability for small cells contrary to PF. We also showed that TPA achieves a
trade-off between PF and DRF by offering higher throughput than PF and
ensuring higher fairness than DRF. Furthermore, we showed that DRF is a
good choice for RAN virtualization because it offers comparable results in
terms of throughput and stability with the baseline network model (without
virtualization).

Finally, and because V-RAN is intended to be a green solution, we ex-
tended our investigation to an energy efficiency study of power consumption
in 5G V-RAN aiming to achieve a lower OPEX. We considered the previous
V-RAN resource allocation strategies, DRF and TPA, as well as an energy
efficient allocation strategy using Dinklebach’s algorithm and the baseline
case where no-virtualization is applied. We added a power component to
the joint allocation strategies, and compared both throughput and power
consumption metrics. At low to medium load, the energy efficient strat-
egy using Dinklebach’s algorithm outperformed all remaining strategies in
terms of higher average throughput while having comparable total power
consumption. However, at high system load, DRF outperformed TPA and
the energy efficient strategy in terms of higher throughput, but the energy
efficient strategy achieves the lowest power consumption. We also showed
that TPA outperforms both strategies in terms of users’ allocation fairness.

5.2 Future research perspectives

We explored in this work the resource allocation strategies applied to dif-
ferent 5G architecture scenarios where the users’ classes are split between
multihomed and single-homed. While we considered in this work only elas-
tic traffic, 5G services consist of several types of traffic: real-time, circuit,
elastic, and multi-media streaming. A direct extension would be the inves-
tigation of real-time traffic in 5G where resource allocation strategies will
require additional real-time constraints.

In addition to the multihoming and pooling design considerations in 5G
V-RAN, caching is yet another feature that must be considered. Caching
can improve users’ quality of experience by bringing storage functionality to
the network edges instead of centralized servers reducing thus latency.

Moreover, it would be very interesting to evaluate the studied network
scenarios and technologies by the means of testbeds in order to validate our
results. An experimental framework for a HetNet with mm-wave small cells
as well as a virtualized network can be used to study multihoming concepts
in 5G systems.

116



5.2 Future research perspectives

Finally, we believe that 5G infrastructure should not be limited to the
case of one operator only. It would be interesting to explore the coexistence
of different operators either cooperative or in competition. We aim in our
future works to explore different sharing configurations and pricing models
for the services offered to the users.

We detail in the following the previously introduced research perspec-
tives.

5.2.1 Real-time traffic in 5G

Deploying 5G mobile networks requires a highly enhanced mobile broad-
band experience. The range of applications and services that can be de-
ployed include ultra-reliable communication services with enhanced latency
[3]. In addition to the achieved higher throughput, we aim to add a la-
tency constraint, and evaluate resource allocation in 5G networks with both
constraints.

With the adoption of mm-wave in 5G networks [156], a round trip latency
of 1 ms is required [157]. However, there is very little work explaining ways of
achieving this stringent requirement. Our aim consists mainly on modeling
the real-time traffic [158] in 5G networks at the flow level and finding the
capacity shares that ensure a good user experience.

5.2.2 Caching in V-RAN

Another strategy to decrease the latency in delay-sensitive content retrieval
is using content caching in the V-RAN. In online social networks, users tend
to choose contents that are recommended by friends, or currently trending.
This content can be cached beforehand [159, 160].

In [161], edge caching has been developed for small cell networks. How-
ever, this work considered the case of single-homed access, while multihomed
access is possible. Consequently, we aim to study the impact of multihoming
on V-RAN edge caching. We specifically focus on a heterogeneous network
where mm-wave small cells coexist with LTE macro cell.

5.2.3 V-RAN testbed

To further examine the feasibility of V-RAN 5G system, we find it interest-
ing to conduct a series of experiments on a realistic RAN system [162]. This
could be possible by virtualizing an eNodeB into RRH and BBU, with eval-
uating the joint allocation strategies in order to verify the obtained results,
and observe how a real system would perform under different load conditions
with mm-wave and multihoming. In order to demonstrate the efficiency of
V-RANs in practice, a large-size testbed with corresponding trial tests for
V-RANs must be considered.
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5.2.4 Economical aspects

Although the focus was on 5G architecture performance evaluation with
multihoming applied to different scenarios of macro and small cells, in-
cluding LTE, WiFi and mm-wave, the follow-up to this work could focus
on the economical aspects as well [163]. We aim to consider the case of
a multi-tenant cooperative network, where several operators coexist [164],
and where the profit sharing between different operators can for instance be
modeled function of the subscription revenues, the infrastructure and oper-
ation costs using economical strategies stemming from coalition games [165]
and Shapely value [166].
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[84] V. N. Ha, L. B. Le, and N. D. Dào. Coordinated multipoint transmission design
for cloud-rans with limited fronthaul capacity constraints. IEEE Transactions on
Vehicular Technology, 65(9):7432–7447, Sept. 2016.

[85] Navid Nikaein. Processing radio access network functions in the cloud: Critical
issues and modeling. In Proceedings of the 6th International Workshop on Mobile
Cloud Computing and Services, MCS ’15, pages 36–43, New York, NY, USA, 2015.
ACM.

[86] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp, W. Wajda,
D. Sabella, F. Richter, M. J. Gonzalez, H. Klessig, I. Gódor, M. Olsson, M. A.
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Appendix A

Proof of Theorem 1

Our objective is to prove that the selfish policy of multihomed users corre-
sponds to the global optimum of the average throughput by verifying that
the optimal value of β∗ is the same.

A.1 Selfish optimum

Let β∗MH be the maximum of Eq. (3.45):

β∗MH = arg max min(
CM − λMσ −

∑K
k=1 λ

MH
k σβ

β︸ ︷︷ ︸
1

,
CSk − λSkσ − λMH

k σ(1− β)

1− β︸ ︷︷ ︸
2

)
(A.1)

If 1 < 2 : We find that β ∈ min([0, 1]∩ [β1, β2]) with 0 < β1 < 1 < β2

for a stable system. With β1 and β2 the solution of 1 < 2 .

β1,2 =
δ ∓

√
δ2 − 4(K − 1)λMHσ(CM − λMσ)

2(K − 1)λMHσ
(A.2)

for δ as defined in Eq. (3.67). In this case, the solution is β = min([β1, 1]) =
β1.

If 1 > 2 : We find that β ∈ max([0, 1] ∩ (] −∞, β1] ∩ [β2,∞[)) with
0 < β1 < 1 < β2 for a stable system. In this case, the solution is β =
max([0, β1]) = β1. Which makes β∗MH = β1.
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A.2 Global optimum

A.2 Global optimum

Now, let β∗g be the maximum of Eq. (3.48):

β∗g = arg max

(
min

(
CM − λMσ −

∑K
k=1 λ

MH
k σβ

β︸ ︷︷ ︸
1

,
CSk − λSkσ − λMH

k σ(1− β)

1− β︸ ︷︷ ︸
2

)

− λSσ(1− β)− λMσβ
)

(A.3)

If 1 < 2 : From the min operator, we get that β ∈ [β1, 1] with f the
function to maximize decreasing over [β1, 1]. In this case, the maximum is
achieved for β = β1.

If 1 > 2 : β ∈ [0, β1] with the obtained function to maximize increas-
ing over this domain. In this case, β = β1. Which makes β∗g = β1.

By this, we prove that the multihomed users selfish policy corresponds
to the global optimum of the system for β∗MH = β∗g = β1.
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Appendix B

Maximization of Eq. (3.66)

In order to prove that Eq. (3.66) corresponds to the maximum of Eq. (3.65),
we combine both Eqs. (3.64) and (3.65) as:

β∗h = arg max
βh

{
min

(
1 , 2

)}
(B.1)

with:

1 =
CMh
βh

(1− λ̂Mσ(K
∑
j 6=h

pMj βj

CMj
+
∑
n>KJ

pMn
CMn

))−Kλ̂MσpMh (B.2)

2 =
CSmin

1− βh
(1− λ̂Sσ(

∑
j 6=h

pSj (1− βj)
CSmin

+
∑
i>J

pSi
CSmin

))− λ̂SσpSh (B.3)

If 1 < 2 : We find that β ∈ min([0, 1] ∩ [β1, β2]) with β1 and β2

the solution of 1 < 2 defined as an equation of second degree with
0 < β1 < 1 < β2.

β1,2 =
δ ∓

√
δ2 − 4λMH

h σCMh (1− ρM (β/h))

2λMH
h σ

(B.4)

with δ and ρM (β/h) as defined in Eqs. (3.67) and (3.68) respectively. In
this case, the maximum of DMH

h is obtained for β = min([β1, 1]) = β1.
If 1 > 2 : We find that β ∈ max([0, 1] ∩ (] − ∞, β1] ∩ [β2,∞[) =

max([0, β1]) = β1.
The solution of multihomed users selfish policy under heterogeneous ra-

dio conditions is thus β∗h(β/h) =
δ−
√
δ2−4λMH

h σCMh (1−ρM (β/h))

2λMH
h σ

for both cases

1 < 2 and 1 > 2 .
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Appendix C

Proof of Theorem 2

Our objective is to prove first that the fixed point solution of Eq. (3.66)
exists. We then prove that it corresponds to a Nash equilibrium.

Let A be a compact in RJ defined by xj ∈ [0, 1], j = 1, ..., J (a hy-
percube). According to Brouwer’s fixed point theorem [167], function f(.)
defined on A by Eq. (3.66) admits a fixed point if it is continuous and
has values in A. The continuity of f is obvious, we need to prove that
∀(β/h) ∈ [0, 1]J−1 the solution of Eq. (3.66) gives a value βh ∈ [0, 1].

Under the sufficient stability condition in Eqs. (3.71) and (3.72), we
have:

ρM (β/h) ≤ 1

ρS(β/h) ≤ 1

Knowing that:

δ = CMh (1− ρM (β/h)) + CSmin(1− ρS(β/h)) + λMH
h σ ≥ 0 (C.1)

it is easy to show the lower bound :

δ −
√
δ2 − 4λMH

h σCMh (1− ρM (β/h))

2λMH
h σ

≥ 0 (C.2)

As of the upper bound, we use the fact that:

δ ≥ CMh (1− ρM (β/h)) + λMH
h σ (C.3)

If we multiply by −4λMH
h σ, add δ2, and factorize, we get:

(δ − 2λMH
h σ)2 ≤ δ2 − 4λMH

h σCMh (1− ρM (β/h))

Since 0 ≤ δ − 2λMH
h σ, we get:

δ − 2λMH
h σ ≤

√
δ2 − 4λMH

h σCMh (1− ρM (β/h))
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By rearranging appropriately the terms, we prove the existence of the
upper bound:

δ −
√
δ2 − 4λMH

h σCMh (1− ρM (β/h))

2λMH
h σ

≤ 1 (C.4)

By this, we prove that ∀(β/h) ∈ [0, 1]J−1, and for the sufficient stability
condition of the system, the βh calculated by Eq. (3.66) ∈ [0, 1]:

0 ≤
δ −

√
δ2 − 4λMH

h σCMh (1− ρM (β/h))

2λMH
h σ

≤ 1 (C.5)

Now consider the game where the strategy of each class of multihomed
users is its traffic split βj . Let users of classes j 6= h apply the policies β∗j
obtained from Eq. (3.66). If class h users apply a policy βh different from
β∗h in Eq. (3.66), they will degrade their throughput as β∗h is by definition
the traffic split that maximizes the multihomed throughput. This proves
the existence of a Nash equilibrium in the system.
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