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Abstract

Cyber attacks cause significant loss not only to end-users, but also Internet Service Providers
(ISP). Recently, customers of the ISP have been the number one target of the cyber attacks such
as Distributed Denial of Service attacks (DDoS). These attacks are encouraged by the widespread
availability of tools to launch the attacks. So, there is a crucial need to counter these attacks
(DDoS, botnet attacks, etc.) by effective defense mechanisms.

Researchers have devoted huge efforts on protecting the network from cyber attacks. Defense
methodologies first contains a detection process, completed by mitigation. Lack of automation
in the whole cycle of detection to mitigation increase the damage caused by cyber attacks. It
requires manual configurations of devices by the administrator to mitigate the attacks which
cause the network downtime. Therefore, it is necessary to close the security loop with an efficient
mechanism to automate the mitigation process.

In this thesis, we propose an autonomic mitigation framework to mitigate attacks that target the
network resources. Our framework provides a collaborative mitigation strategy between the ISP
and its customers. The implementation relies on Software-Defined Networking (SDN) technology
to deploy the mitigation framework. The contribution of our framework can be summarized as
follows: first the customers detect the attacks and share the threat information with its ISP to
perform the on-demand mitigation. We further develop the system to improve the management
aspect of the framework at the ISP side. This system performs the alert extraction, adaptation
and device configurations. We develop a policy language to define the high level policy which is
translated into OpenFlow rules.

Finally, we show the applicability of the framework through simulation as well as testbed
validation. We evaluate different QoS and QoE (quality of user experience) metrics in SDN
networks. The application of the framework demonstrates its effectiveness in not only mitigating
attacks for the victim, but also reducing the damage caused to traffic of other customers of the
ISP.
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Résumé

Les attaques cybernétiques causent une perte importante non seulement pour les utilisateurs
finaux, mais aussi pour les fournisseurs de services Internet (FAI). Récemment, les clients des
FAI ont été la cible numéro un de cyber-attaques telles que les attaques par déni de service
distribué (DDoS). Ces attaques sont favorisées par la disponibilité généralisée outils pour lancer
les attaques. I y a donc un besoin crucial de contrer ces attaques par des mécanismes de défense
efficaces.

Les chercheurs ont consacré d’énormes efforts a la protection du réseau contre les cyber-attaques.
Les méthodes de défense contiennent d’abord un processus de détection, complété par 1’atté-
nuation. Le manque d’automatisation dans tout le cycle de détection a I’atténuation augmente
les dégats causés par les cyber-attaques. Cela provoque des configurations manuelles de péri-
phériques 1’administrateur pour atténuer les attaques affectent la disponibilité du réseau. Par
conséquent, il est nécessaire de compléter la boucle de sécurité avec un mécanisme efficace pour
automatiser 1’atténuation.

Dans cette theése, nous proposons un cadre d’atténuation autonome pour atténuer les attaques
réseau qui visent les ressources du réseau, comme par les attaques exemple DDoS. Notre cadre
fournit une atténuation collaborative entre le FAI et ses clients. Nous utilisons la technologie SDN
(Software-Defined Networking) pour déployer le cadre d’atténuation. Le but de notre cadre peut
se résumer comme suit : d’abord, les clients détectent les attaques et partagent les informations sur
les menaces avec son fournisseur de services Internet pour effectuer 1’atténuation a la demande.
Nous développons davantage le systéme pour améliorer 1’aspect gestion du cadre au niveau I’ISP.
Ce systeme effectue I’extraction d’alertes, 1’adaptation et les configurations d’appareils. Nous
développons un langage de politique pour définir la politique de haut niveau qui se traduit par des
regles OpenFlow.

Enfin, nous montrons 1’applicabilité du cadre par la simulation ainsi que la validation des tests.
Nous avons évalué différentes métriques QoS et QoE (qualité de I’expérience utilisateur) dans
les réseaux SDN. L’application du cadre démontre son efficacité non seulement en atténuant les
attaques pour la victime, mais aussi en réduisant les dommages causés au trafic autres clients du
FAL
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|§ Introduction

Cyber attacks are defended by two mechanisms: detection and mitigation. The attack diagnosis
relies on the detection mechanism. Mitigation is the response mechanism that tries to reduce the
impact of ongoing attacks on the network. Research on mitigation approaches have received less
attention compared to detection, due to the complexity involved in the deployment of automated
mitigation mechanisms. Moreover, existing mitigation mechanisms require the deployment of
special hardware or software devices, which makes it complex and expensive for the deployment.

Furthermore, network or cyber attacks do not only cause problems to enterprise networks or end
users, but also for Internet Service Providers (ISPs). Generally, enterprise networks and end users
get the Internet services from ISPs, as they subscribe to the ISP to get network connectivity. If
the attackers target end users then it also causes collateral damage to ISPs as the traffic traverses
through their network before reaching to end users. Therefore, the ISPs have become important
players in cyber security and their intervention is key in mitigating the cyber attacks and their
impacts. However, it is difficult for the ISP to detect the attacks going towards end users or
enterprise networks. Specifically because, ISPs have a large customer base, and if they do the
detection on behalf of their customers then it causes huge processing overhead. Therefore, it is
important to design a mitigation technique that can coexist between ISPs and end users. So, it
is crucial for the end-users to share the adequate information to service provider for mitigating
cyber attacks.

Therefore, there is a need for cooperative and large scale defense mechanism among different
partners involved [51]. Such cooperative mechanisms have scalability concern at the technical
and business level. These cooperative mechanisms should overcome the both technical and
business challenges, and should benefit all the partners involved.

The management of such cooperative defense mechanism is a difficult task, as it has various
challenges: (1) the timely and automated sharing of alert informations between different managed
domains, (2) the deployment of network and security policies depend on the Service Level Agree-
ments (SLAs) with different network domain without any policy violation, (3) the configuration
of low-level device specific rules on the heterogeneous network devices should not depend on the



Chapter 1. Introduction

manual work of network administrators, (4) the deployment of such defense mechanism should
not rely on the specific hardware or software installation. Therefore, it is necessary to have an
automated defense mechanism, which respond to network changes and security alerts without
intervention from network administrators.

Automated defense framework should have a closed loop between different components of the
defense mechanisms from monitoring, analysis to response. As shown in Fig. 1.1, the framework
essentially contains a loop which consists of monitor, analysis, countermeasures and reaction. The
network status is managed by controller or a centralized manager which uses the analysis results
provided by the Analysis module, on the collected network traffic by the Monitor module, from
the data plane devices. The analysis results assist the controller in selecting the countermeasure,
and execute the reaction policies in the data nlane devices. The network administrator can specify
the higt

Polic
. Counter- <« ¥
Analysis
—> | measures

/ N

Network status

Monitor Reaction
O {/ &
%, . &
K Network infrastructure, <<\o\“
2
% Data plane

Figure 1.1 — Reference model of autonomic defense framework

1.1 Background and Challenges

Despite the tremendous efforts from both industry and academia, Cyber attacks continue emerging
with unprecedented amount and varieties. A clear gap between the detection of security events
and incident response still remains. For security professionals, it’s desirable to have a system
which can automatically detect and defend against cyber attacks in real time, which is, however,
mission impossible in practice today. According to the Forbes magazine report [84], three years
ago the cost of cyber crime in the U.S. was 100 billion dollars. Many attacks goes undetected
because of dependency of security systems on human intervention. I'T personnel are no match
to the intensive and sustained cyber attacks in the network. According to ABI research [96], in
the future enterprises would not act manually to mitigate the cyber attacks after they happen.
Specially, Distributed Denial of Service (DDoS) attacks are the most prevalent attack in the
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Internet today, which causes huge damage to the enterprise as well as to the ISPs [11]. The
existing mechanisms require the presence of network administrators to mitigate the DDoS attacks
which impacts the services in the network. Security automation would help the enterprises to
mitigate the attacks without any human intervention. Automation provides speed in responding
to the high-volume attacks in the network. Therefore, in this thesis we focus on mitigating the
DDoS attack with automation of security mechanism.

However, there are some challenges in providing the needed automation for cyber defense.
There is clear gap among the different components from monitoring and analysis to response.
Automation should provide the control of the network according to different conditions. Different
components in an automated defense should communicate effectively with each other for overall
defense of the system. It should not increase the deployment cost for the enterprise network in
terms special software and hardware. Since, if it requires some special devices or software which
requires a lot of modification in the network, then enterprises would be reluctant to deploy these
kind of automated mechanisms. Currently, the automated defense mechanisms are hardwired with
the hardware devices which makes there deployment and management a complex and daunting
task. Furthermore, the automated defense system should be robust and immune to new forms of
attacks on the system. So, these challenges still need to be addressed to make the defense system
in the network automated and operational.

1.2 Contributions

The objective of this thesis is to study the feasibility and effectiveness of building autonomic
cyberdefense mechanism using Software-Defined Networking (SDN) technology. We leverage
the unique features of SDN mainly programmability and global visibility over the entire network,
and centralized controllability to design autonomic defense mechanism. In another word, thesis
is intended to study how and to what extent the autonomic cyberdefense can be achieved. More
specifically, the following objectives are identified,

1. Design a collaborative and autonomic defense mechanism which integrates the security
functions ranging from anomaly detection in the customer network to the analysis and
adoption of countermeasures in the ISP together into a pipeline.

2. A gap between high-level policies and low level rules always remain, motivating us to
design such a policy representation and translation mechanism, which can effectively
translate high-level security and network policies into the actual actions enforced on
networking and security devices.

3. Considering the fact that attack on one customer can potentially affect many customer. So,
a dynamic path computation is important for effective traffic engineering. This motivates
us to design a policy management and enforcement framework for the ISP network which
considers multiple factors such as congestion level in the path for policy enforcement.
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The proposed framework relies on managing legitimate, suspicious and malicious flows between
the ISP and its customers using SDN technology. SDN is a new networking paradigm in which
control plane is decoupled from the data plane. Control plane is a centralized intelligence point
and it provides a global visibility of the network. We propose to use SDN for providing security
and QoS services to the customers of ISPs. Mitigation and QoS services are achieved by sharing
the security alerts and flow information with its ISP by the customers. The information shared by
the customer allows the ISP to establish different paths to process the flows.

To achieve the above objectives, we need to develop a framework, as well as designing effi-
cient algorithms, methods, and approaches. The contributions delivered in this dissertation are
summarized as follows.

1. Proposing an autonomic defense framework by leveraging SDN paradigm which can
systematically integrate key security functions together: anomaly detection, policy specifi-
cation & countermeasures selection, and response.

2. Designing a SDN based policy representation and translation technique that automatically
translate the high-level security and network policy into low-level OpenFlow rules for
enforcement in the network and security devices.

3. Providing a dynamic and adaptive policy management and enforcement framework for
the ISP network. It handles attack mitigation and QoS requests of different customers
and enforce appropriate security policies according to particular demands customers and
overall network status of the ISP. A prototype of the framework has also been developed
and evaluated via simulation to show the effectiveness of our proposal.

1.3 Outline of Dissertation
This dissertation is organized as follows:

Chapter 2 - State of the Art. This chapter firstly surveys the research efforts on building
autonomic cyberdefense mechanisms. Then SDN based security architecture and mechanisms
are extensively discussed, including network monitoring, anomaly detection, traffic engineering,
attack mitigation, as well as security policy management in SDN. The final part is focused on
DDoS attacks, one of the largest Internet threat that has been studied for more than two decades.

Chapter 3 - an SDN based Autonomic Cyberdefense Framework. This chapter presents an
autonomic cyberdefense framework which leverages the characteristics of SDN to systematically
integrate several essential security functions together, ranging from network monitoring and
anomaly detection to the adoption of countermeasures and incident response. A use case about
DDoS attack mitigation is developed for testing the feasibility and effectiveness of the proposed
framework.

4
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Chapter 4 - SDN-Oriented Policy Representation and Refinement. This chapter presents a
technique to represent and translates the network and security policies. It allows the network
administrator to define the global network and security policies without knowing how these
policies are enforced in the data plane. Upon receiving the security alerts these high-level policies
are instantiated and translated into low-level OpenFlow rules for deployment in the OpenFlow
switches.

Chapter 5 - a Novel SDN based Policy Management System. This chapter deals with the
policy management framework in the ISP network. It enables the ISP to express the high-level
security and network policies. These high-level policies in the ISP network are triggered upon
receiving the security alert or QoS request from the customers. The framework extracts data
from alerts and computes the path and deploy the corresponding low level rules in the OpenFlow
switches in an automated way. This policy management and enforcement framework is validated
by experimental simulations with an ISP and multiple customers scenario.

Chapter - Conclusion and Future Work This chapter concludes the dissertation with a sum-
mary of contributions and presents the perspective for future work.






pA State of The Art

Today, Internet offers a wide variety of services in the cloud such as video streaming, online
banking, VoIP services, etc. These services demands protection from malicious users and attacks.
This is yet a very difficult task; thus protecting these services in the network is known as cyber
defense. This term refers to the mechanisms devised for protecting the network and its resources
from cyber attacks (Malware spreading, distributed denial of service attacks, etc.) performed
by the attackers. However, protecting the network and services from the cyber attacks is very
difficult task because of the non trivial manual work involved by the network administrator (e.g.
configuring the devices, deployment of the rules, etc.).

The survey report of AlgoSec [7] as shown in Fig. 2.1 shows, that due to the lack of automation
20 percent of organizations experienced security threats. 42 percent of organizations had network
outage because of the network mis-configurations caused by the security related tasks. According
the the survey many organizations experienced security breach because of the manual security
configurations. Report says that for 19 percent of organizations it takes one full working day
or more to resolve the security breach because of the manual work involved by the network
administrators.

However, with the increased cyber threats, it is required to automate the defense mechanisms.
Attackers use automated tools to target the network resources so automated defense is required
to tackle these attacks. Next, we present a survey and state of the art on the autonomic defense
mechanisms. Then, we discuss security mechanisms proposed using Software-Defined Network-
ing (SDN) technology to which can enables us to create an architecture for automated defense.
Then, we present the current trends in the cyber attacks and some proposals to tackle the cyber
attacks with SDN technology and then we conclude.

2.1 Autonomic Cyberdefense

There have been efforts to automate the security mechanisms due to large number of cyber
attacks that have been occurred in the past. When cyber attacks have been successful they have
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® Highly automated

Have some automation but not enough
Very little automation

Virtually no automation

Figure 2.1 — State of Automation in Security.

caused huge financial loss to organizations. Therefore, to make the networks more secure and
independent of human intervention, it is necessary to make them automated like Autonomic
Computing (AC) system. AC systems are able to dynamically adapt to changes in accordance
with the high-level defined policies. AC systems have mechanisms to monitor, analyse, plan and
execute themselves based-on the changing environment according to the defined policies.

A rule based automated anomaly detection framework is proposed in [91] to protect the Building
Automation and Control (BAC) networks. Intrusion Detection System (IDS) is developed by
training the system with the data flows collected by the FireAlarm system testbed using the
monitoring module. Rules are collected from the offline data mining techniques to detect
the attacks. Cognitive Cyber Defense (CCD) [1] solution proposed by IBM contains a set of
cyber security applications which output threat indicators based on analysis of different data.
It builds real-time and long-term profiles of different entities (hosts, external users, etc.) by
analyzing different data sources which enables to classify and detect anomalous activities. These
mechanisms perform offline analysis and then the rules are updated by the network administrators.

ISDS [117] was developed as a framework for automated security based on autonomic computing.
The aim of this software is to provide intelligence to its components to dynamically adapt
according to the security conditions of the network. The main idea of the framework is to analyse
the informations received from the network and adjust dynamically.
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AUTONOMIA [29] framework uses the self-configuration approach to control and manage the
security systems in the network. It configures the system and modifies the policies dynamically to
protect the network. The framework has two modules: Component Management Interface (CMI)
and Component Runtime Manager (CRM). The CMI is used to define the high-level policies
for each component in the network whether it is software or hardware. The CRM manages the
components using the policies defined in the CMI.

The work reported in [94] classifies the traffic as normal, abnormal, and uncertain to prioritize
the traffic to provide the quality of service. A tool reported in [116] update the firewall rules
based on the information of traffic to a honeynet. It contains a module that analyzes the traffic
logs generated by the honeynet and uses data mining mechanisms to generate the new firewall
rules for the deployment.

These frameworks require special software or hardware for their deployment. It makes these
systems difficult for the deployment. Moreover, these system are limited to offline analysis
of data and making a long term profiles for decision making such as in [91], [1], [117], [116]
and [94]. They do not focus on the deployment of policies to dynamically adapt the mechanism
to provide security. AUTONOMIA [29] framework proposes to modify the policies to protect the
network. However, it requires different software and hardware components to be deployed to
realize the framework. Thanks to the emergence of Software-Defined Networking (SDN) [88]
enables us to revisit the defense mechanism to make them automated. Next, we present about
SDN and the security mechanisms proposed using SDN technology.

2.2 Software Defined Networking Architecture

Software-Defined Networking (SDN) is a new networking paradigm which separates the control
and data planes as shown in Fig. 2.2 [88]. The separation of control from the data plane enables
to easily add new network functions based on the current network requirements. The term SDN
was coined at Stanford University to represent the work on OpenFlow [80]. Since then, it has
attracted a lot of attention from both academia and industry. Many novel ideas based-on SDN
have been proposed [41, 66, 73, 82, 101]. In industry, SDN is considered as a technology which
can reduce the operational cost and strengthen their network.

Due to the strong coupling between control and forwarding plane in traditional networks, it
becomes difficult to develop and deploy new network applications, since it would require modifi-
cation in the control plane of all network devices through some hardware upgrades. Therefore,
new network features are provided in the network through the introduction of middleboxes such
as Intrusion Detection Systems, firewalls, load balancer, etc. These middleboxes need to be
placed statically at some key locations in the network which makes it difficult to dynamically
reconfigure them at runtime depending on the requirements. The main reason, for researchers to
have interests in SDN is mainly because it provides centralized controller where policies can be
defined for changing network environment and these policies can be enforced in the data plane
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Figure 2.2 — SDN Architecture

through southbound API.

The Software-Defined Networking architecture consists of three distinct layers as follows:

o The application layer consists of the end-user business applications that consume the SDN
communications services. The control layer is accessed through the application layer by
the northbound API.

e The control layer provides the functionality that supervises the network forwarding behavior
through an open interface.

e The infrastructure layer consists of the network elements (NE) and devices that provide
packet switching and forwarding.

According to this model, an SDN architecture is characterized by the following key attributes:

o Logically centralized controller and Network-Wide Visibility: In SDN, all data plane
devices are connected to a centralized controller. The controller can send control messages
to data plane devices. The controller can also send queries to data plane devices to get the
statistics to infer the network status. With a centralized controller and the knowledge of
global network status, decision making is facilitated, as opposed to legacy networks where
nodes are unaware of the overall state of the network.

e Programmability: SDN networks are controlled by software, which may be provided by
the vendors or network operators themselves. Data plane devices can be controlled by

10



2.2. Software Defined Networking Architecture

the applications deployed at the controller. It provides the approach to introduce new
network functions. Several programming languages have been proposed to enable this
feature [46, 114, 115].

e Abstraction: The business applications that use SDN services are abstracted from the
underlying network technologies. Network devices are also abstracted from SDN control
layer to ensure portability. Data plane has very simple logic to forward and drop the flow
based on the installed rules. The simplified data plane provides the flexibility to add new
features, like DevoFlow [32], NetFPGA [86], [6].

o Flow-based Management: Forwarding decisions in the switches are taken per flow. Rules
in the switches are installed on per-flow basis. The basic characteristics of SDN is to
forward the flow to the controller, when the network devices do not have the rules to
handle these flows. This feature allows to deploy the rules as and when it is required.
Moreover, it enables the network operator to handle the flow dynamically based on the
varying conditions in the network [6].

e Dynamicity SDN provides flexibility to accommodate changes for more dynamicity. De-
vices in the network can be reconfigured easily depending on the varying conditions in the
network. It enables to deploy the applications for bandwidth on-demand services in the
data centers and service provider network.

SDN Controller

The controller is the core component of the SDN network since all the intelligence is centralized
at the controller which generates the network configuration based on the policies defined the
network operator. It abstracts the low level implementation details of the data plane configuration.
There are various SDN controllers proposed. In Table 2.1, we have clustered some features of
different SDN controllers. Features include architecture, northbound API, programming language,
and OpenFlow version they support. Architecture of the SDN controllers are either centralized or
distributed. A centralized SDN controller is the single entity which manages and configures all
the data plane devices in the network based on the policies defined by the administrator. It also
becomes a single point of failure. Moreover, a centralized controller may not be a good choice to
manage the large networks. Northbound API enables the developers to deploy the application
above and abstract the low-level details of the devices. SDN controllers support different types of
programming languages to write the applications. Moreover, SDN controllers have also been
grouped based on the OpenFlow versions they support.

As we can see in Table 2.1, most of the controllers are centralized and multi-threaded. A
centralized SDN controller is the single entity which manages and configures all the data plane
devices in the network based on the policies defined by the administrator. Centralized multi-
threaded controllers leverage the parallelism of multicore computer architecture. Centralized
controllers such as RYU, NOX-MT, Trema, POX have been designed for data centers, and carrier
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Table 2.1 — SDN Controllers

SDN Controller Architecture Northbound | Programming | OF Version
API Language
NOX Centralized Ad-hoc API | C++ v1.0
NOX-MT Centralized multi- | Ad-hoc API | C++ v1.0
threaded
OpenDaylight Distributed REST, Java v(1.0,1.3)
RESTCONF
Floodlight Centralized multi- | REST API Java vl.l
threaded
POX Centralized Ad-hoc API | Python v1.0
Trema Centralized multi- | Ad-hoc API | C, Ruby v1.0
threaded
ONOS Distributed REST API Java v1.0
RYU Centralized multi- | REST API Python v(1.0,1.2,1.3,1.4,1.5)
threaded

grade networks. Distributed controllers such as ONOS, OpenDaylight can be scaled to manage
the needs of small to large networks. The advantage of distributed controller is that it provides
fault-tolerance. When one node fails, then another node can take the duties of the failed node.

Currently, SDN controllers support a wide variety of northbound APIs such as REST APIs and
ad-hoc APIs. As shown in Table 2.1, RYU, floodlight, OpenDaylight, and ONOS support the
RESTful API for communication through northbound interface. However, NOX, POX, and
Trema have their own ad-hoc APIs. Currently, only RYU SDN controller supports all the five
OpenFlow versions.

Communication with SDN Controller:

The core modules of the SDN controller includes the Network Operating System (NOS) and
the network device drivers. Switches, network applications like firewalls, Network Address
Translator (NAT) are external applications to SDN controller. The SDN controller communicates
with the external applications in the network with three different APIs.

1. Southbound API: This API enables the communication between the controller and Open-
Flow switches. OpenFlow is a standard protocol used for communication between the
controller and the switches. It is a vendor-independent protocol which provides flexibility to
network operators to program the controller and data plane according to their requirements.

2. Northbound API: Network applications which want to communicate with the controller and
underlying network infrastructure communicate through this API. For instance, firewall,
Deep Packet Inspection (DPI) and other network applications deployed at the application
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layer of the controller uses this API to communicate with the network devices through the
SDN controller. Generally, these applications use a REST API for the communication with
the controller.

3. East-West API: Generally, this API is used to communicate between distributed SDN
controllers. For instance, in a network, if the control is distributed between two controllers,
then it may require to pass information to another controller. It can also be the case that two
controllers reside in different domains, and they share informations related to their domains
with each other through east-west bound API. In other scenarios, different controllers in
the network may perform different tasks allocated to them. For example, one controller
may be allocated to perform network related tasks such as routing, load balancing. While
an other controller is allocated to perform security related tasks.

There are different types of flow messages in SDN which uses the APIs described above for
communication in SDN network.

1. Packet-in messages: The packet-in messages are used for communication between switches
and controller. When a flow arrives at the switches for which it does not have a rule, then
this flow is forwarded to the controller to decide the action to be enforced. Depending on
the high-level policy controller enforce the rule in the switches to take the action on the
flow.

2. Controller-to-Switch Messages These messages are initiated by the controller for asking
the switch features or sending the rules in the switches for forwarding or dropping flows.

3. Flow Statistics: These messages are triggered by the controller to collect the flow statistics
from the OpenFlow switches.

The salient features of SDN technology enable us to enhance the security of the network. Next in
Section 2.4.1, we present how SDN features can provide benefits to security mechanisms.

2.3 Genesis of Software Defined Networking

Though SDN is a recent concept, it builds on the history of ideas on networking. Specifically,
it has been developed on the work of programmable networks such as active networks [108],
programmable ATM networks [71] and on the idea of control and data plane separation such as
routing control platform [25].

We summarize the historical perspective of pre-SDN related works in Table 2.2 into three different
categories. Along with the categories, we specified in the second and third column of the table
which mentions past initiatives and more recent SDN deployments.
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Table 2.2 — History of programmable networks

Category ‘ Pre-SDN Initiative ‘ SDN Developments ‘
Data plane pro-| Active Net- | P4 [23],0OpenFlow [81]
grammability works [108]

Control and data | Routing  control | Ethane  [28], Open-
plane decoupling platform [25], | Flow [81]

NCP [53]
Network Operating | Cisco IOS [22] ONOS [20], NOX [52]
System

Active networks [108] is one of the early works on building networks on the concept of data
plane programmability. It assumes that the switching devices can download the programs with
specific instructions for processing of the packets. The second way proposed is to replace the
packets with the tiny programs, which are encapsulated in transmission frames and processed at
each node in the path.

P4 [23],0penFlow [81] represent the recent approach of data plane programmability. Open-
Flow [81] is one of the early works on the SDN deployment. It relies on configuring the
forwarding devices to support flow tables which can be dynamically modified using central-
ized controller. P4 [23] is a high level language for programming protocol independent packet
processors.

The works on separating the data and control plane dates back to 1980s. NCP [53] is one of the
early works done on decoupling the control and data plane. It was developed by AT&T to manage
its telephone network. Similarly, routing control platform proposed to improve the management
in BGP networks.

Recently, Ethane [28] and OpenFlow [81] proposed the decoupling of the control and data planes
for Ethernet networks. These mechanisms do not require modifications on forwarding devices. It
makes these solutions very attractive for the networking community.

Network operating system abstract the underlying hardware to the network administrator which
makes it easier to manage the network resources as well as the deployment of network applications.
The work on Network Operating System was restarted with the introduction of OpenFlow based
NOSs such as NOX [52], ONOS [20]. CISCO IOS [22] has been the most widely used NOS
since 1990s.
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2.4 Improving Network Security with Software Defined Network-
ing (SDN)

2.4.1 SDN Enabled Security Mechanisms

We believe that SDN can significantly improve the security research and it can also be integrated
with the existing security mechanisms. Decoupling of control and data plane allow to define the
global network and security policy at the control plane which can be enforced in the data plane
through programmability provided by the SDN. Moreover, global visibility of SDN makes it
possible to effectively handle the traffic in the network. In the recent years, there have been some
proposals for providing security using SDN technology. In this section, we discuss the SDN
enabled security mechanisms.

Attack Detection mechanism in SDN

In [50], authors proposes an anomaly based detection and mitigation mechanism using OpenFlow
and sFlow statistics collection mechanism. The framework uses entropy based anomaly detection
technique over SDN and compare it with the OpenFlow and sFlow flow statistics collection
mechanisms. Flow statistics collection with the native OF (OpenFlow) approach is performed
when the SDN controller request for the flow statistics from the OpenFlow switches. In SDN,
the controller is informed of the first packet for each flow. This first packet is matched to the
network policy at the controller, and then the subsequent packets are collected from the switch
and forwarded to the anomaly detection module running at the controller. The disadvantage of
OF collection method is that there is no sampling involved in the collection process, so it collects
the overall network traffic passing through the switch.

The framework also proposes a sFlow based statistics collection mechanism. In this method,
sampling process is involved which enables to construct the flow definition and collects the flow
statistics. This results in a significant reduction in the required number of flow entries. The
proposed system compares the number of flow entries required for detection and CPU usage,
with entropy based detection and Threshold random walk with credit based connection rate
limiting(TRW-CB) algorithms. Results show that the average number of flows required under
sFlow collection mechanism with entropy based method is 217 flows. However, with the OF
based approach the required number of flows are 5184 flows. The same is the case with TRW-CB
algorithm. Average number of flows required are 217 with sFlow mechanism;however, with the
OF based approach the number of flows required are above 2000. The CPU usage under sFlow
and TRW-CB algorithm is 32 percent. However, under OF based flow collection mechanism
the CPU usages for entropy based and TRW-CB algorithm is 47 and 42 percent respectively.
Therefore, authors shows that the sFlow traffic collection mechanism is better than the native OF
(OpenFlow) traffic collection mechanism.

The Lightweight DDoS detection using OpenFlow [24] proposes to use NOX platform using Self
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Organizing Maps (SOM) to detect the attacks. SOM is an unsupervised artificial neural network
method. Authors used SOM method to classify the network traffic as normal or abnormal. In
this technique, NOX controller periodically interacts with the switches and collects the traffic
samples from the switches. It extracts the features of interest such as average of packet per flow,
average of bytes per flow etc. from flow entries from all switches, and then the extracted features
are forwarded to the classifier module for further processing. The classifier module analyzes
whether traffic is DDoS flooding attack or legitimate traffic.

In [82, 83],multiple anomaly detection algorithms are used in the experimentation in order to
validate their usability in small environments. Authors propose the idea that the anomaly detection
algorithm can run at the border router of the home network. Four anomaly detection algorithms
were implemented over the NOX SDN controller. These algorithms are Threshold Random Walk
with Credit based Rate Limiting (TRW-CB), Rate Limiting, Maximum Entropy Detector, and
NETAD. In the experimentation, they have used low network traffic rates ranging from 60 to
12,000 packets per second as they have considered the home network. Results indicate that the
algorithms perform well in the small enterprise network environment. However, when it was
tested at the ISP level algorithms were unable to perform well. It also shows that the detection is
far more accurate and efficient in the home network in comparison to the ISP network because of
the high volume of traffic in the ISP network.

In NetFuse [118], a proxy device is deployed between the switches and the controller. The proxy
monitors the network load, and instructs switches to reroute any overloading flows to NetFuse
devices. This technique requires multiple SDN controllers in hierarchy. The proxy device is
deployed in between the SDN controller and the data plane. It monitors the network and also
communicates with the centralized controller. It uses passively collected data to monitor active
flows in the network.

Industrial solutions have also been proposed to detect the attacks. Radware [103] has developed
DefenseFlow a solution to detect the Distributed Denial of Service (DDoS) attacks. Radware’s
anti-DDoS application instructs OpenFlow controller to program OpenFlow switches to behave as
OpenFlow counters, which collects the flow statistics. It makes a baseline profile of the network
traffic and then monitors for the anomalies related to DDoS attacks. If the attack is detected then,
it notifies the controller to reroute the attack traffic to specialized devices deployed in the network
to process the attack traffic. Radware has also developed an open source version defense4all of
its commercial product DefenseFlow. It has been developed on the OpenDaylight controller.

In [126] a two-stage rate based detection mechanism is used to detect the DDoS attacks. Threshold
is defined by the network administrator, and once the traffic exceed the threshold then second
stage detection is activated. For instance, authors in their experimentation set 3000 packets for
every 5 seconds as a first stage detection. Once the traffic exceed this threshold then second stage
threshold of 800 Packets Per Second (PPS) is activated. If the traffic continues at the 800 PPS for
5 times, then DDoS defender application starts dropping the traffic.
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An anomaly-based detection and mitigation mechanism based on SDN is introduced in [49]. It
uses a bidirectional count sketch algorithm to detect the attacks. Furthermore, it uses packet
count on sFlow samples based on destination IP for attack detection. It identifies the destination
IP addresses with high asymmetric communication pattern. It uses a threshold value to detect the
asymmetry in communication. It removes the IP addresses which do not cross the threshold value.
Once the controller identifies the malicious flows, it instructs the switch to drop the malicious
flows. Legitimate traffic is still forwarded to victim as compared to Remote Triggered Black
Hole (RTBH) in which victim becomes unreachable for benign traffic. The authors in the paper
proposed a modular approach for data collection, anomaly detection and victim identification and
attack mitigation. The proposed mechanism is deployed at the ingress point of the network so
that once the malicious flow is identified, then it can be blocked at the entry point in the network
which saves the network resources inside the network from collateral damage.

Table 2.3 shows the DDoS detection application deployed using SDN technology, their methodol-
ogy, deployment location and the SDN controllers they have used for the application deployment.
Detection methodology specifies the algorithm or mechanism used to detect the attack. Deploy-
ment location provides the switch or router location from where data is collected to detect the
attacks. For instance,mechanisms such as [50], [83], [118], and [49] are deployed at the border
routers in the network. Mechanisms [24] and [103] collect information from all the switches in
the network to detect the attacks. Moreover, in Table 2.3 columns containing controller tells the
SDN controller used to deploy the mechanism. For example, detection mechanisms [50], [83], and
[24] are implemented using NOX controller. POX controller is used to deploy Remote Triggered
Black Hole [49] mechanism, while Radware’s solution [103] is deployed using OpenDaylight
controller. NetFuse [118] has not given the controller used to deploy its mechanism.

Traffic Monitoring in SDN Environment

In the legacy network the traffic monitoring tool requires a separate hardware or special software
configuration making it tedious and expensive task for deployment and management. Moreover,
precise measurement of traffic matrix in the large IP network is difficult due to high number
of switches and other networking components. However, traffic matrix estimation problem can
be minimized in the SDN environment. By leveraging the global visibility of SDN controller
and streamlined flow operations in the SDN switches which allows to query for flow statistics,
OpenTM provides a traffic estimator mechanism. OpenTM [109], provides a traffic estimator
mechanism for origin-destination (OD) pairs in the network. It keeps account of the active
flows in the switches and gets the routing information from the OpenFlow controller’s routing
application and periodically polls the switches for the packet count counters to get the statistics.
By using the informations available to the SDN controller, OpenTM create different types of TM
for sources and destinations. In this mechanism the flow statistics is collected from the ingress
and egress switches in the network because they are close to the source and destination.

OpenNetMon [112] also provides a mechanism to monitor the network in the SDN environment.

17



Chapter 2. State of The Art

Table 2.3 — DDoS Detection Applications over SDN

Detection Applica- | Detection Method Deployment Loca- | Controller
tion tion
Combining Compares the OF flow || Egress port of the | NOX
OpenFlow and | statistics collection with || egress switch
sFlow [50] sFlow based collection ap-
proach on entropy based
method
Lightweight DDoS | Self-organizing map with || All OF switches in | NOX
Detection [24] traffic features is used to || the network
detect the attack
Traffic  Anomaly | Threshold Random || Border routers of | NOX
Detection  using | Walk,Rate limit- || the home network
SDN [83] ing,Maximum entropy || is the deployment
detector and NETAD || location
algorithms were tested
Remote Trig- | Uses bidirectional count || Detect DDoS at- | POX
gered Black Hole | sketch algorithm to detect || tacks at the ingress
(RTBH) [49] the attacks and asymmet- || point of the net-
ric communication pattern || work
to detect the attacks based
on threshold
NetFuse [118] Uses multi dimensional || Ingress switch Not given
flow aggregation to com-
bine the flow for detection
and safeguard the network
from traffic overloading
Radware [103] Makes a baseline profile || Distributed detec- | OpenDaylight
of network traffic and then || tion probes
monitors the network for
anomalies

Authors in the paper pointed out that currently, ISP over-provision network resources to meet the
QoS requirements of their customers. It polls edge switches at an adaptive rate which increases
when flow rate differ between samples and decreases when flows stabilize. It minimizes the
number of queries between switch and controller. It continuously monitors all the flows between
pre defined link on throughput, packet loss, and delay. The monitoring of end-to-end QoS
parameters helps traffic engineering mechanisms to compute the appropriate paths for routing the
traffic.

The OpenSAFE [14] framework suggest to distribute the traffic to monitoring applications. It
leverages the fact that every first packet of a flow needs to be forwarded to the controller. Then
SDN controller forwards the new flows to the traffic monitoring applications which analyzes it
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with IDS. However, OpenSAFE requires expensive hardware to perform the monitoring.

OpenSketch [124] proposed an SDN-based monitoring mechanism. It separates the measurement
data plane from the control plane. It provides a three stage pipeline (hashing, filtering, counting)
which can be implemented with the switches and they can support different measurement
tasks. The control plane of OpenSketch provides the measurement library which automatically
configures the pipeline and assigned resources to varied measurement task. However, the
new protocol proposed by OpenSketch somehow requires the upgrade in the network devices.
Moreover, it also requires the standardization of the new protocol. Therefore, it makes ISP
reluctant to deploy this mechanism.

The Passive Flow Monitoring (PaFloMon) [12] aims at providing the slice based monitoring
in the OpenFlow networks. in this mechanism network is segmented into different slices. It is
motivated by the OFELIA [2], which is the OpenFlow testbed in the Europe. PaFloMon aims
to enrich the OFELIA framework with slice aware monitoring. The sFlow monitoring tool is
integrated with the OFELIA. The aim of the OFELIA is to safeguard the experiments from the
intrusive traffic that active measurements causes during experimentation.

Traffic monitoring applications are grouped in Table 2.4 according to the methodology, deploy-
ment location and SDN controller used to deploy these applications. OpenTM [109] collects the
flow statistics from the switches closer to destination; OpenNetMon [112] uses edge switches
in the network to collect the flow statistics; while OpenSAFE [14] collects the flow statistics
from middleboxes deployed in the network path to monitor the traffic. OpenTM [109] and
OpenSAFE [14] use the NOX controller while OpenNetMon [112] uses POX controller to deploy
the mechanism.

Traffic Engineering (TE) using SDN

In traditional networks, possible ways to perform traffic engineering is to manually modify the
rules or pre-deploy the rules in network devices. It is a very intensive and daunting task for the
network operators. Furthermore, in traditional network the traffic engineering mainly contains
IP-based TE and MPLS-based TE. IP-based TE solves the problem of load balancing in multi path
environment by optimizing the IP routing algorithm. But, IP-based routing has some drawbacks.
For example, if OSPF link weights are used to control the routing of traffic, then it is difficult to
split the traffic randomly. Additionally, if the link fails or topology changes then it takes time to
converge. Likewise, MPLS-based TE causes performance overhead in the network. In summary,
the tight-coupling between the control and forwarding planes, in addition to distributed network
control, makes the traffic management a difficult task in traditional networks. The separation of
control and data planes in SDN allows network operators to define a global network policy at
the centralized controller which can be dynamically enforced. Moreover, the global visibility of
SDN enables network operators to deploy the monitoring tool which can monitor and collect the
network status information in the real time.
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Table 2.4 — Traffic Monitoring Applications over SDN

Traffic Monitoring | Methodology Deployment loca- | Controller
Applications tion
OpenTM [109] provides the traffic estimation for | Switches closer to | NOX
source and destination pair in a | destination is used
network for querying the
flow statistics
OpenNetMon [112] | It provides monitoring to deter- | Edge switches in | POX
mine whether end-to-end QoS pa- | the network are
rameters are achieved and for- | used to collect the
ward the input to TE to compute | statistics
the paths
OpenSAFE [14] Forwards the first packet of flow | Middleboxes are de- | NOX
to the monitoring application to | ployed in the path
get the information about the | to monitor the traf-
flow fic
OpenSketch [124] | Provides 3-stage pipeline (hash- | No details given No details
ing, filtering, counting) and mea- given
surement library to configure re-
sources for varied measurement
tasks
PaFloMon [12] Provides a slice based monitor- | No details given No details
ing in the SDN network given

Shu et.al [102] proposed a framework for traffic engineering in an SDN environment. The
framework consists of two parts: (i) traffic measurement and (ii) traffic management. Traffic
measurement mainly includes monitoring the network and collecting the network status in real
time for managing the traffic. The network status information includes end-to-end network
latency, topology connection status, bandwidth utilization, etc. Depending on these informations,
the current network status is validated whether it is correct or not. Depending on the traffic
measurement information, traffic in the network is scheduled to satisfy the user needs in terms of

QoS.

Cao et.al [26] proposed mechanism for planing and online routing of traffic based on SDN. The
SDN controller in the mechanism performs the policy lookup, flow steering, and route installation.
The policy table at the controller determines the logical sequence of middleboxes the packets need
to traverse. The Controller maps the logical sequence of middleboxes to the physical topology.
Once the logical to physical path is mapped, then the SDN controller installs the rules in the flow
table of the switches to forward the flow. The authors proposed an optimization algorithm to
optimize the resources such as the middlebox capacity to handle the projected traffic. They also
provided an optimization technique for online traffic steering. The aim of this algorithm is to
determine the optimal allocation of resources for the flow upon arrival.
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Agarwal et.al [3] proposed a traffic engineering technique in an SDN environment. It believes
that the SDN can be helpful in better network resource utilization and it can improve the
network performance metrics like packet loss and delay. The objective of this traffic engineering
mechanism is to adaptively and dynamically manage the network traffic according to network
operators requirement. It uses the Fully Polynomial Time Approximation Scheme (FPTAS)
to compute the route at the centralized controller. It considers the partial deployment of SDN
forwarding element (OpenFlow switches) to route the traffic in the network.

2.4.2 SDN based Security Architecture and Services

In this section, we discuss the security architecture and framework based on SDN to provide
the mitigation, middlebox deployment and middlebox chaining to process the traffic through
middleboxes in an SDN environment.

Attack Mitigation

In Drawbridge [73], the customers can subscribe to traffic engineering services provided by ISPs.
It is based on the assumption that the customer’s controller can communicate with the ISP’s
controller for the deployment of the mitigation rules. The objective of this proposal is to avoid
the unwanted dropping of customers’ traffic by their ISP. Since, in case of congestion ISP may
drop legitimate traffic traversing to the customer network. In the architecture, authors assumed
that the end-hosts perform the detection and send the rules to the ISP controller for mitigation.
ISP controller checks the validity of the rules and enforce the rules in its switches or send the
rules to the upstream ISP for the enforcement. This framework, provides the flexibility for the
customers to be adaptive in dealing with the traffic based on its dynamics. The customer can
decide at runtime rules to be established at the controller. However, in this mechanism ISP needs
to share its Policy Enforcement Points (PEP) with their customers.

The system presented by SENSS [125] provides an interface to request for attack traffic mitigation.
Once the attack is detected by the victim network, then it sends a message to the ISP requesting
the concerned traffic details and its route. The victim network can also requests the ISP to filter
or modify routes for the traffic coming to its network. SENSS system enables the customer to ask
the ISPs during no attack period, about the amount of traffic that it receives from their neighbors
and route to the network which is sending heavy traffic towards it. During DDoS attacks, the
customer compares the traffic distribution before the attack and during attack and identifies the
upstream ISP that is sending a lot of traffic. It assumes that these ISPs may be sending attack
traffic, then the customer network issues a filtering message to these ISPs to mitigate the attack
traffic. The important features of SENSS are:(1) Victim oriented: The victim has the incentive to
do the attack detection and mitigation. SENSS proposes a system to enable the victim to directly
request for the security services from remote ISPs. Victim can request the ISP for mitigating
the traffic which belongs to the victim’s address space; (2) It provides a simple interface for
victims to request for the mitigation services from ISPs. Victim can request services like traffic
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filtering, rerouting and quality of service guarantees; (3) Through the interface provided by the
ISPs victims can request multiple ISPs to traceback the attack and then it can issue the commands
for the ISPs to take the action to mitigate the attack. This framework requires multiple ISPs to
collaborate with each others.

The Bohatei [41] leverages SDN and network function virtualization (NFV) capability to provide
elastic DDoS defense. In this technique, authors leverages the NFV approach to instantiate the
defense VM (Virtual Machine) at the required location in the network. Bohatei leverages the
SDN paradigm to steer traffic towards instantiated VMs in the network. It provides an ISP centric
deployment model, where an ISP offers DDoS-defense-as-a-service to its customers. The ISP can
monetize these services. It assumes that the ISP uses some anomaly detection system to detect
whether a customer is under DDoS attack. Then attack estimation is done for the suspicious
traffic. The Resource manager in Bohatei uses the estimates to determine the type, number
and location of VMs needed to be instantiated. The Resource manager tries to optimize the
network resources using two algorithms: (1) Data center selection problem; (2) Server selection
problem in the data center (SSP). DSP is a greedy algorithm to select the data center for steering
of suspicious traffic. The algorithm provides two outputs. Firstly, it provides the what fraction
of suspicious traffic should be forwarded to each data center. Secondly, it provides a physical
graph corresponding to attack type defense to be deployed by the data center. SSP algorithm
greedily tries to assign the servers with the higher capacities to process the suspicious traffic.
Then, forwarding rule is set up to forward the traffic to defense VM. Evaluation showed that the
Bohatei system is able to handle attacks of hundreds of Gbps. It also enables the response for
DDoS traffic in less than 1 minutes. However, this framework requires the ISP to perform the
detection on behalf of their customer which can cause processing overhead on the ISP. Since,
ISPs have hundreds and thousands of customers to manage.

The DBA [74] proposes SDN-based DDoS blocking mechanism to mitigate botnet based attacks
in the network. It uses the standard OpenFlow APIs to deploy the mechanism in the SDN
environment. In this mechanism, authors propose to protect a server from botnets. Protected
server inside the network establishes a secure communication channel with the DDoS Blocking
Application (DBA). When an attack is detected by the server, it notifies the DBA about the attack.
Then, the DBA provides a redirected address to server. The DBA maintains a pool of public
IP addresses which can be used for redirection. Upon receiving the new IP address, the server
notifies the legitimate clients to use the new address to access the service. The new address needs
not to be physically replicated, but may be in the same subnet. Redirection address information
provided to the clients require some computation cost to protect these services from bots. In
their scheme, authors used CAPTCHA [4] to protect the services running at the server from
bots. However, in this mechanism, bots are poorly programmed as it may not be the case in
the practical scenario. Moreover, it has been assumed that the bots are not using IP spoofing.
Additionally, in this technique of redirection, the server needs to cooperate with the DBA for
redirection.

A report from the Open Networking Foundation (ONF) [87], discusses the advantages of SDN
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in providing security in the data center. It provides a case study where an Automated Malware
Quarantine (AMQ) detects and isolates the infected and insecure network devices before it can
impact the network. Upon identifying a threat, it dynamically applies the policies to mitigate the
threat. Once the threat is mitigated, it allows the network devices to join the network. It takes
advantage of centralized intelligence and global network visibility for mitigation. In contrast to
this approach, the current approach in the network is static and inflexible in its nature. In the
traditional network, AMQ is deployed in the proprietary hardware devices, which requires the
expert network administrator for operation.

The FRESCO [101] introduced by Shin et.al, provides a programming framework for rapid design
of detection and mitigation modules. Detection and mitigation logic are programmed and linked
as modular libraries to provide a complete defense in the network. Upon detection of a threat
in a network by detection modules, FRESCO mitigation module generate flow rules to mitigate
the threat. The framework consists of application layer (to compose security applications) and
a security enforcement kernel which implements the action from the security application. The
application layer modules of FRESCO are developed in Python and run over the NOX OpenFlow
controller. These modules run as an event driven applications. The Security Enforcement Kernel
(SEK) is directly integrated with the NOX OpenFlow controller. FRESCO SEK provides features
upon which FRESCO relies for the enforcement of the rules. It prioritizes the rules derived from
security applications over non-security applications. The prototype works on NOX version 0.5.0
using OpenFlow version 1.1.0.

Application of framework is illustrated with two examples. In the first example, authors have
shown the working of honeynet to detect the malicious scanner. To show this proposal two
modules are composed together. Scan detection module first detect an active malicious scanner
and then redirect all the malicious flow towards a honeypot for processing. Then, honeypot sends
packets back to the scanner, which is unaware that all of its flows are processed by the honeypot.
In the second example, authors illustrate that legacy security devices like BotHunter, DPI can
be integrated with the FRESCO. These security devices monitor network to identify malicious
traffic. Alerts generated from these security applications are forwarded to the mitigation module
which generates the OpenFlow rules to mitigate the attacks. Messages from the legacy security
applications are forwarded to a module as - MESSAGE_LEGACY either in (i) FRESCO format or
in (ii) other standard format such as Intrusion Detection Message Exchange Format (IDMEF) [44].
For instance, if IDMEF format is used then alert is specified as MESSAGE_LEGACY:IDMEF.

Table 2.3 shows the DDoS mitigation applications their mitigation method, mitigation location
and the SDN controller used to deploy these applications. Mitigation methods have already
been described earlier. So, we describe the mitigation location and the controller used for the
deployment of mitigation applications. Drawbridge [73], Bohatei [41] and SENSS [125] are
deployed in the ISP network of the customers. However, FRESCO [101], Automated Malware
Quarantine (AMQ) [87], and DDoS Blocking Application [74] provides the mitigation at the
ingress point in the network without collaborating with upstream networks. FRESCO [101]
uses NOX controller; OpenDaylight controller is used by Bohatei [41]; and DDoS Blocking

23



Chapter 2. State of The Art

Application [74] uses POX controller for the deployment purpose.

Table 2.5 — DDoS Mitigation Applications over SDN

Attack Mitigation | Mitigation Method Mitigation  Loca- | Controller
applications tion
Drawbridge [73] sharing of mitigation rules || ISP of customer or | No  Imple-
by customer with their || upstream ISP mentation
ISPs
SENSS [125] Provides interface on the || Upstream ISP of | No details
SDN controller which en- || victim network given
ables the victim to request
for mitigation and rerout-
ing service from the ISPs
FRESCO [101] Provides a framework for || OpenFlow switches | NOX
detection and mitigation || in the network
module
Bohatei [41] Provides DDoS defense || ISP network OpenDaylight
service and instantiate the
VMs in the network to
steer the suspicious traffic
to these VMs
DDoS Blocking Ap- | It provides redirected ad- || It protect the server | POX
plication [74] dress to server which is || from botnets by
used to redirect the legit- || redirecting traffic
imate connection upon de- || from ingress switch
tection of attacks
Automated  Mal- | Upon malware detection || Itis deployed atthe | No  detail
ware Quarantine | isolates the infected de- || edge of the network | given
(AMQ) [87] vices in the network

SDN-based Middlebox Management

Middleboxes are devices deployed in the network to process the traffic before forwarding it
towards the destination. For example, firewalls, NAT (Network Address Translator), DPI (Deep
Packet Inspection) are middleboxes frequently used in the network. Dynamic traffic modification
performed by these middleboxes in the network makes it difficult to correlate the flows for access
control and forensics. It creates conflict between the policy at the controller and at the data
plane. The conflict between the policy at the controller and at the data plane devices makes it
difficult to integrate the middleboxes in the SDN network. FlowTags [42] architecture handles
this problem. It introduced the Flowtags-capable middleboxes, which can request the SDN
controller to generate and provide the tag for processing the flow. The Tag API is provided at the
controller. Middleboxes request the controller to provide the tag for the flow for insertion before
processing. This tag insertion in the flow by the middleboxes before processing ensures: (i) the
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binding between the packet and its origin, (ii) Second, it assures that the packet follows the path
determined by the central policy.

Networks rely on middleboxes (e.g., firewalls, NATs, DPI, WAN optimizer, Intrusion Detection
System) to provide critical services such as security and load balancing. But, in the traditional
network settings, it requires careful design of network topology and intensive manual work from
network operators to set up the rules in the middleboxes and in the switches to steer the traffic
through a sequence of middleboxes. However, the advent of SDN technology provides a promising
alternative for steering traffic through a sequence of middleboxes from a centralized control
point. In this regard, SIMPLE [93] introduced a system which allows network administrators
to specify a policy to route the traffic through a logical sequence of middleboxes, which is
automatically translated into forwarding rules considering the physical topology and middlebox
resource constraints. The SIMPLE architecture has three key components at the controller:

1. The ResMgr component takes as input a network traffic matrix, the topology of the network
and policy requirements, to output a set of middleboxes for processing the traffic.

2. The DynHandler module maps the incoming and outgoing traffic from the middleboxes.
It uses a payload similarity algorithm to correlate the packets after modification from the
middleboxes.

3. The RuleGen module takes the output from the ResMgr and DynHandler modules and
generates the data plane configuration to steer the traffic through a sequence of middleboxes.

Aaron et.al. [48] discussed in their paper the fact that SDN can be useful for managing the
different middleboxes in the network. They pointed out some major challenges in managing the
middleboxes. Firstly, interpreting the middlebox state that what state exist. For example, in case
of Firewall it can be connection established. Secondly, manipulating the middlebox state. For
example, it can be specified that a packets of the flow must traverse the same IPS for the duration
of the flow. because it is required for the proper attack detection. Moreover, they discussed how
informed state control decisions can be taken by a separate control logic at the SDN controller. In
the proposal authors advocated for the SDN-based middlebox networking framework for flexible
and unified control on the deployed middleboxes in the network.

Slick [10] proposed a programmable middlebox architecture to overcome the challenges like
placement and scaling. In the paper, the authors pointed out that, in the existing network,
administrator need to plan in advance the deployment of the middleboxes at some choke points in
the topology. This static deployment makes it difficult for the network operators to dynamically
reconfigure the middleboxes based on demands. Moreover, it makes the network inefficient as
the network operator needs to over provision middlebox resources. To overcome this problem,
the authors proposed a Slick middlebox architecture. The main aim of the Slick architecture
is to provide a means by which network operator can easily implement and and efficiently
deploy policies in the network. The Slick architecture achieve this objectives by three main
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components:(i) a protocol that handles a coordination between controller and middleboxes, (ii)
Single policy is split into multiple executables that can run on multiple middleboxes, and (iii)
an optimization algorithm run at the Slick controller which dynamically places the middlebox
functions and route the traffic.

Service Chaining

Service chaining is performed to steer the traffic through a set of middleboxes deployed in
the network. It enables the network operator to specify the processing of the traffic through a
chain of middleboxes before reaching to the destination. However, due to static configuration of
middleboxes in the legacy network it is difficult to steer the traffic dynamically for processing
through these middleboxes.

The StEERING [127] pointed out that managing middleboxes (also known as inline services)
such as Network Address Translation (NAT), firewalls in data center or enterprise network is
still a daunting task. Because network operators still need to rely on the low-level complex and
manual configurations to manage these devices. Therefore, network operators either forward all
the traffic through middleboxes or set-up extra tunnels in the network to by-pass it. Therefore,
StEERING is a framework proposed using SDN technology for inline service chaining, and it
allows to steer traffic at the granularity of service provider network and traffic types using simple
policies defined at the SDN controller. StEERING framework consists of the data plane and
control plane module. There are two types of switches in the data plane modules. The perimeter
or border OF switches reside at the entry point of the service delivery network. These switches
work as classi fiers and classify the incoming traffic and forward it towards the next service in
the service chain. The core switches in the network process the traffic based on the L2 layer.
The core switches need not to be necessarily OF switches. The control plane of StEERING
consists of two modules. The first module is the SDN controller, which is responsible to manage
the switches in the network and install the flow rules in the OF switches. The second module
of control plane is an optimization algorithm which periodically determines the best locations
for the services to be deployed. However, StEERING does not address the identification and
handling of packets from service instances where packet header informations are modified.

J.Blendin et.al [21] proposed service chaining architecture based on SDN. They pointed out
limitations in the existing service chain approach. Authors argue that the existing pre-configured
and static service chains are useful but they rely on fixed hardware and software configuration.
Additionally, changing existing service chains require intensive manual work from expert network
administrator and makes it time consuming for on-demand services. They point out that dynamic
service chaining is achievable with the SDN technology, which can improve the situation in two
ways: First, service chains can easily be created from existing service functions. Second, service
functions can be dynamically created during runtime. The proposed service chaining architecture
based-on SDN consists of three layers: Forwarding layer, control layer, and application layer. The
forwarding layer contains the actual OpenFlow devices. The control layer contains the Service
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Function Chaining Router (SFCR). The Service Function Chaining Controller (SFCC) resides at
the application layer. SFCC is responsible for controlling all the components, service instance
allocation and offering high-level API. When a new flow arrives in the network it is provided a
default service instance by the SFCC. SFCC instructs the SFCR to install the network flow rules.
SFCC provides high-level API which enables network operators to define, modify and remove the
service chains dynamically. If a service chain is modified, e.g., by adding or removing a service
function, then for each corresponding service chain an appropriate service instance is inserted
or removed. SFCR is notified by the SFCC to update the service chain routing by updating the
OpenFlow flow rules at the ingress and egress router of the service chain.

Eder et.al [98] proposed a policy based architecture based on SDN technology for dynamic
service chaining. It enables network operators to define policies that govern the chaining of VNFs.
Based-on the set of available VNFs in the infrastructure, the proposed framework creates a graph
that represents the Service Chaining (SC). This architecture uses a controlled natural language
to write the policies, so that network operators do not need to be familiar with the low-level
programming language. The aim of this architecture is to ease the tasks of network operators
when specifying the service chain from low-level details.

Table 2.6 describes service chaining applications their main purpose and the controllers that
have been used for their deployment. StEERING [127] aims at chaining the middleboxes in
the network and steer the traffic to these middleboxes for processing. It uses NOX controller
for the implemented purpose. The [21] supports dynamic service chaining through APIs at
the controller to add, remove or modify the service chain. The Policy based Dynamic Service
Chaining [98] uses service chaining graphs in the policy-based management system to provide
service chaining in the network. [21] and [98] do not provide the details of SDN controller used
for the implementation purpose.

2.4.3 Security Policy Management in SDN

The centralized control plane in the SDN makes it possible to define the high-level abstract policies
at the controller which can be deployed in the switches dynamically through a southbound API. It
abstracts the low-level implementation details from the administrator. In this section, we discuss
policy based management system using SDN to protect the network.

The Hierarchical Flow Table (HFT) [45] framework uses hierarchical policies to define the
context in which network resources can be used and shared among multiple entities. In HFT,
policies are defined as a trees, and each node in the tree can determine the action to perform on
the packets. Policy tree consists of policy nodes and which contains policy atoms. Policy atom
comprises of match and action pair. In the case of conflict policy tree resolve conflicts by using a
user defined conflict resolution operator. Hierarchical policies provides flexibility to designate
the management of network resources to different entities. For instance, network operator may
assign the task of mitigating the attack traffic to security expert in the network. The main focus
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Table 2.6 — Service Chaining

Service Chaining ‘ Main Purpose H Short description Controller
StEERING [127] aims at providing || allows to chain the mid- | NOX
in-line service || dleboxes in the network
chaining and steer the traffic at the

granularity of the service
provider and traffic types
based on the policies de-
fined at the controller
SDN Service Chain- | Provides a service || Offers dynamic service | No details
ing [21] chaining architec- || chain and provides the | given

ture based-on SDN || API to add, remove and
modify the service chain
Policy based Dy- | aims at providing || Uses service chaining | No details
namic Service | dynamic  service || graphs over policy based | given
Chaining [98] chaining management system to
achieve the dynamic
service chaining in the
network

of this work is to resolve the conflicts among the policies rather than translating the high-level
security and network policies into low-level OpenFlow rules.

The Policy refinement toolkit [77] enables network operators to define Service Level Agreements
(SLAs) without delving into configuration details of low-level network devices. The toolkit
automatically translates the high-level policies into a set of low-level rules to be deployed in
the network devices. The policy refinement is performed in two stages: (i) In the first phase,
also known as bottom-up, SDN controller collects the network informations (e.g., delay, jitter)
from the forwarding-plane and store them in the policy repository. In the second phase, which
is top-down approach, framework translates the high-level SLAs into Service Level Objectives
(SLOs). Depending on the informations collected in the bottom-up phase, the framework provides
the best possible configuration for the high-level SLA. The main objective of this framework is to
translate the high-level goals specified in the SLA into low-level rules.

In [47] authors proposed an SDN-based policy deployment framework. Its a three layer frame-
work which provides a mechanism for policy deployment. Three main components of the
framework are:(i) Policy engine; (ii) Job scheduler; and (iii) Device manager. Policy engine
in the framework takes the high-level policies and network topology as inputs and transforms
the policies into specific low-level security device configuration. Job scheduler maintains the
real-time configuration to be deployed in the future. Furthermore, the device manager module
gets the configurations of the security devices from the job scheduler module and deploys the
configuration in these devices.
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The EnforSDN [18] provides a mechanism to integrate the network appliances such as firewall,
Intrusion Prevention System (IPS), IDSs into SDN networks. It decouples the policy resolution
layer from policy enforcement layer and centralizes the policy resolution layer. High-level
policies are specified at the policy resolution layer. To decouple policy resolution instances
from policy enforcement instances, resolution instances are connected to the SDN controller,
through an application called EnforSDN manager. EnforSDN manager is deployed at the SDN
controller. The SDN controller configures the data plane devices such that the flow is routed
through appropriate instances of network appliances in the network. The aim of EnforSDN is
to centralize the policy resolution layer and steer the flow correctly through appropriate set of
network appliances such as firewall, IDS, etc.

Tripathy et.al [110] proposed a policy management system based on SDN to ensure that poli-
cies are enforced by a certified server after detecting and resolving conflicts among heteroge-
neous policies. Their policy framework provides three network functions:Trust_Verify, Pol-
icy_Conflict_Resolve, and Policy_Consistency_Check. Trust_verify function identifies the com-
promised applications and applies the appropriate measures for control. Policy_Conflict_Resolve
function analyzes the possible conflicts among the policies and resolves them for policy enforce-
ment. Policy_Consistency_Check function checks whether the existing flow table entries in the
switches are in accordance with the high-level policies. These three functions in the framework
guarantee security, correctness and adaptability for on-demand changes in the policy rules. The
focus of this work is to resolve the conflicts among policies before deploying them into network
devices rather than specifying the high-level policies and translating them into low-level device
specific rules.

In the PolicyCop [16] authors argue that the traditional Policy-based QoS management mech-
anisms have number of issues. For example, most of the mechanisms are based on DiffServ
or MPLS-DiffServ which have problems. They provide static traffic classes for different QoS
levels. Moreover, they require specialized software or hardware devices in the network for policy
refinement and enforcement. PolicyCop leverages the network programmability and separate
control and data plane in the SDN to achieve dynamic configuration in their autonomic QoS
policy enforcement framework. It provides an interface for specifying QoS policies and leverages
the northbound API of SDN controller to enforce those policies. Advantages provided by the
PolicyCop over the traditional autonomic QoS framework are listed below:

1. It provides per flow control and dynamic flow aggregation in the network in contrast to
aggregation based on Type of Service (TOS) field in legacy network.

2. It offers layered architecture and the APIs between the layers are defined using JSON and
REST API which facilitates to use different programming languages in different layers.

3. It provides dynamically configurable traffic classes.

4. Traditional QoS mechanisms require different protocols to run for performing the task
like routing, MPLS label exchange etc. However, PolicyCop avoids this problem by using
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OpenFlow protocol for communication between network services and network devices.

PolicyCop mainly focuses on providing QoS management to traffic in the network. It does not
provide any policy language to express the high-level network or security policies.

Table 2.7 provides the short description of SDN-based policy management frameworks and the
policy language they support. From Table 2.7 it is clear that only [45], [77] and [47] provides a
grammar to define the high-level policies.

Table 2.7 — SDN-based Policy Management

Policy
ment

Manage- | Short description Policy Language

Hierarchical Flow
Table (HFT) [45]

provides a framework to
realize the hierarchical
policies in the SDN

Policies are defined as a
tree in the framework

Policy refinement
toolkit [77]

facilitates to define the
SLA without knowing the
implementation details

Controlled natural lan-
guage is used to define the
high-level policies

EnforSDN [18]

Decouples policy resolu-
tion layer from policy en-
forcement layer

No policy specification
language is given

Computer Network
defense Policy [47]

provides policy based
network management to
achieve security in the
network

Provides Computer Net-
work Defense Policy
(CNDP) policy specifica-
tion

Policy = Manage-
ment Frame-
work [110]

Provides security, correct-
ness and adaptability for
on-demand changes in the
policies and ensures that
policies are enforced by
a certified server and con-
flicts are resolved before
enforcement

No policy specification
language is given

PolicyCop [16]

Provides  policy-based
QoS management using
SDN

No policy specification
language is given

2.5 Attack Models and Taxonomy

Nowadays, cyber attacks are increasing in the Internet in scale and also in terms of severity.
The digital world provides a good ground for cyber attacks. The most prevalent attack in the
Internet is still the Distributed Denial of Service attack (DDoS) [11]. The aim of DDoS attack is
to prevent the legitimate use of a service in the target network. In DDoS attack multiple attacking
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entities target the same end host or network. It is widely used to congest the service provider or
enterprise network from providing the services such as video streaming, online gaming, etc. to
their customers. Nowadays, the rate of the DDoS attacks have increased. Specially the attacks
against the service providers and their customers have increased [11]. Major categories of DDoS
attacks are:

1. Volumetric Attacks: The aim of the volumetric attack is to congest the network so that

legitimate users can not use the services provided by the service providers. The main
objective is to consume the bandwidth in the network so that legitimate users can not get
fair share of the bandwidth in the network.

. TCP State-Exhaustion Attacks: The purpose of the TCP state-exhaustion attack is to
consume the connections state tables in the security devices such as firewall, loadbalancer
etc. It can also consume the resources of the server so that response from the server
becomes slow.

. Application Layer Attacks: These attacks exploit the vulnerabilities in the applications
at layer 7. These attacks are very sophisticated as they can be launched from a single
machine to take down the server. Moreover, it is difficult to detect these kinds of attack, as
they can be very slow.

As shown in Fig. 2.3 [11], according to the leading organization Arbor, in detecting and mitigating
the DDoS attacks, volumetric DDoS attacks have increased in the Internet as compared to the

TCP state exhaustion and application layer attacks.
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Figure 2.3 — Current trend in the DDoS Attack
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2.6 Distributed Denial of Services (DDoS) Attacks and Mechanisms

To date, a large variety of DDoS or DoS mitigation mechanisms have been proposed, covering
the entire security life-cycle from prevention and detection to characterization and response.
However, few of the existing mechanisms have been considered for widespread deployment
due to undesirable overhead and complexity resulting from the life-cycle management. This
Section aims at conducting an in-depth comparative study on several representative state-of-the-
art schemes, and highlighting the key observations. The selected schemes cover five categories:
capability-based, congestion control, traceback, cooperative detection and reaction, and traffic
engineering.

2.6.1 Capability-based techniques

In general, capability-based techniques require the communication parties to establish a privileged
channel [75, 121, 122]. This means the sender of a message must obtain the permission, e.g.,
a capability token, from the receiver, in order to send the message. Then, the sender inserts
the capability token in the subsequent packets to be sent to the receiver. In doing so, the traffic
is divided into two classes: the privileged traffic made of packets bearing the token and the
unprivileged one without token. In the presence of a DDoS attack, the privileged traffic is given
priority over the unprivileged traffic.

In the SIFF architecture [121] for instance, the sender is required to complete a three-way
handshake to get the capability token that will allow the transmission of the traffic. Part of the
capability token is distributed among routers in the network. When the sender inserts the acquired
capability token in the traffic, the token is verified by the routers along the path to the receiver.
Clearly, the traversed routers need to maintain the state of the flow and part of the capability
token, leading to processing overhead and operational complexity. Moreover, SIFF is vulnerable
to two types of attacks, one on the capability setup channel and other with the already acquired
capability token. Additionally, the scheme may incur latency in launching communications, since
the sender is always required to get the capability token from the receiver before sending any
message.

2.6.2 Congestion control mechanism

The basic idea of congestion control can be exemplified by the Pushback mechanism [59]: when
congestion increases in the network, a router, close to the traffic bottleneck, sends messages to
the routers upstream, asking for filtering the traffic based on a congestion signature, ensuring
that legitimate traffic can flow through the network. To implement this mechanism, however,
Pushback devices need to be deployed at each router in the network.

In [57], a DDoS mitigation framework called STRIDE is proposed, which aims at providing
end-to-end data delivery even in the presence of DDoS attacks. In particular, STRIDE is based

32



2.6. Distributed Denial of Services (DDoS) Attacks and Mechanisms

on the trust framework in which root authority is responsible to establish the path between hosts
in different autonomous domains(ADs). In STRIDE, state is maintained, per flow, at the access
routers, while intermediate routers do not need to maintain states. However, extra latency is still
incurred due to establishing an up-path to the Path server, as well as a down path from the Path
server to the destination.

2.6.3 Traceback techniques

The purpose of IP traceback mechanism is to filter the attack packets as close to the attack source
as possible [8, 13, 17, 97], by reconstructing the actual path from the victim to the attacker, even
in the presence of spoofed IP packets. To achieve this goal, two techniques can be used: packet
sampling and packet marking. An example of the former technique is Source Path Isolation
Engine (SPIE) [104], which presents an audit trail method that uses a cryptographic hash function
to generate lightweight packet digests stored at network routers on the path, allowing to trace the
origin of the attack source. As for packet marking, Yaar et al. proposed the Path identification
(Pi) [120] technique that identifies the path taken by attack packets thanks to a mark insert
by the traversed router. Specifically, a path identifier is imprinted by a router in the 16-bit IP
identification field of each packet, enabling the receiver to classify the packets. Once the attack
traffic is identified as coming from a specific path, then all the subsequent packets coming from
that path are dropped. Due to the fact that different paths may end up with the same Path ID the
false positive rate is very high. Also, routers need to keep in memory the marks which are to be
inserted in the packets.

As described previously, in Section 2.2.3 SENSS allows to traceback the attack traffic in the
SDN-enables network. However, it also require that multiple ISPs collaborate with each other to
effectively trace the source of the attack traffic.

2.6.4 Cooperative detection and reaction

Intuitively, cooperative detection and reaction architectures rely on the collaboration between
different communities or administrative domains, which usually have a prior trust relationship.
In these domains, security information or detection reports are periodically exchanged for
achieving broader detection coverage and more reliable reaction. Based on this principle, a
Cooperative Detection and Reaction Architecture was presented in [62]. Every participating
domain is assigned a Cooperative Counter-DDoS Entity, which is a modular software platform
that automatically exchange security information in the form of alerts and heartbeat messages,
using the XML-based Intrusion Detection Message Exchange Format (IDMEF) [35]. Also, the
communication within the framework requires a multicast router which listens to the notification
from other domains, and maintains the multicast tree containing the information of the subscribers.
Clearly, the effectiveness of this architecture depends on the extent of the participation from the
different domains. Further, the multicast router is potentially vulnerable to DDoS attacks which
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may halt the exchange of the security information between the partners.

A similar architecture called CITRA was reported in [99], which aims at automating intrusion
analysis and response tasks that are usually performed by expert network administrators. CITRA
also relies on the concept of communities (administrative domains), with an objective to integrate
independent security components, e.g., IDS, firewalls, routers. These devices send attack reports
to their CITRA neighbors to trace the attack path and initiate the response. In particular, a
boundary controller in the administrative domain, a role usually played by an access router, uses
the attack reports to track whether the attack packets have crossed through its network. Responses
are then taken at each CITRA enabled device. It is obvious that the effectiveness of CITRA
depends on the collaboration of different domains, which rely on the boundary controller to
disseminate and exchange security information.

Mitigation mechanisms proposed using SDN such as Bohatei [41] and Drawbridge [73] provides
a collaborative mitigation. However, in Bohatei ISP is required to perform the detection for their
customer which naturally cause the processing overhead for the ISP as it may have thousands of
customers. Moreover, in Drawbridge it requires the ISP to share its policy enforcement point
with their customers which can cause policy violation in the ISP network.

2.6.5 Traffic engineering

The general idea of this approach is to enforce a differentiated processing to different classes of
flows legitimate, suspicious or anomalous classes are usually considered, in order to optimize
attack response. For example, anomalous traffic can be directed to special purpose devices or
paths. To achieve this goal, the networking infrastructure must be modified in certain ways. For
example, CenterTrack [107] is a proposed overlay-based architecture, in which special tracking
routers are attached to the edge routers, and IP tunnels are pre-established from edge routers to
the special tracking routers. The identified malicious traffic is redirected from the edge routers to
the special tracking routers. Clearly, as an overlay network needs to be established in advance,
operational complexity and additional administrative tasks will be introduced.

Another example is dFence [78], which proposes to redirect suspicious traffic to middleboxes
deployed in the core of the ISP network at the time the customer experiences congestion. One
potential issue is that the suspicious traffic is broadcasted to different middleboxes due to which
it may reach a middlebox which is not designed for its processing, thereby causing the congestion
in the core of the ISP network.

2.7 Concluding Remarks

In this chapter, we discussed about different categories of applications which can be helpful in
designing an automated defense framework to mitigate the attacks. First, we presented the current
state of autonomic cyberdefense and what makes these mechanisms complex for deployment
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purpose. Then, we introduced about a new networking paradigm SDN and its features which
can be helpful for the deployment of network and security applications. After that, we discussed
about the existing attack detection and traffic monitoring applications developed using SDN. The
discussion about these applications enables us to take assumptions in our framework that attack
traffic can be detected by the applications deployed in SDN. Moreover, discussion on traffic
monitoring applications allows to assume that the network status can be monitored continuously
to route the traffic through different paths in the network.

We also presented works on SDN-based security architecture performing mitigation in the
network. These mechanisms perform mitigation in a single network domain. After that, we
introduced works on policy-based management system in SDN to enforce the policies in the
forwarding plane. These policy-based management systems focus on resolving conflicts among
the policies or steering the flows in the network. In the last part of this chapter we presented
the current trends in the cyber attacks. We found that the most prevalent attack in the Internet
is the DDoS attack. Then, we provided a discussion on the different categories of DDoS attack
mitigation mechanisms.

These initial works on traffic monitoring, attack detection, mitigation of attack and policy-based
management systems in the SDN motivate us to design a collaborative mitigation framework
to mitigate the attacks in an automated way. In this regard, we also propose a policy language
to define the high-level network and security policies in the network which are automatically
translated into low-level OpenFlow rules for deployment in their PEPs. Then, we design a
policy-based management system for the ISP network which allows them to provide mitigation
and QoS services to its customers.

In the next, chapter 3, we propose an autonomic mitigation framework to mitigate the DDoS
attacks in an automated way. we evaluate the framework in the testbed as well as with simulation
while mitigating the DDoS attacks.
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Defense Framework

We leverage the characteristics of SDN in order to design a collaborative attack mitigation
framework to mitigate the attacks. Our framework enables the ISP and its customer to collaborate
for mitigating the attack traffic and its impact on legitimate traffic. ISP provides the mitigation
service to the customers who are subscribed for this service. In the framework, customer performs
the detection in its network and share the security alerts with the ISP for mitigation. Depending
on the security alert ISP provides different types of processing to the flow either redirect the flow
through low bandwidth path or to the middleboxes, or block the flows. ISP provides a security
API to its customers for sharing the security alerts.

The rest of the chapter is structured as follows. An architectural description of the framework,
ArOMA, together with the implementation details of key components are presented in Section 3.2.
A use case that illustrates the applicability of ArOMA (given in Section 3.3). A report on
the development and implementation of an ArOMA prototype using a RYU SDN controller
over hardware and software OpenFlow switches provided in Section 3.4, describing the set of
experiments conducted to test the performance of ArOMA. The evaluation shows that ArOMA is
capable of defending against different types of DDoS flooding attacks up to 250,000 packets per
second.

3.1 Limitations of Existing Solutions and Motivations

A large variety of DDoS mitigation mechanisms have been proposed, which cover detection as
well as mitigation phases. However, none of the existing mechanisms have been considered for
widespread deployment due to the complexity involved in the network management tasks.

In Table 3.1, we highlight the characteristics of the existing mitigation framework and discuss
the key observations that motivate us to develop ArOMA, the autonomic defense framework.
The selected schemes cover five categories described in chapter 2 : capability-based, congestion
control, traceback, cooperative detection and reaction, and traffic engineering.
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Table 3.1 — Comparison between existing DDoS mitigation schemes

Mitigation Scheme Detection Threat Information | Collaboration | Mitigation Dedicated Software | Modification  of

Point Exchange Scope and Hardware Original Routing
Device

Capability-based End host Not addressed No Single Site No Yes

Congestion-based End host Addressed Yes Single Site Yes No

Traceback End host Addressed Yes Distributed No Yes

Cooperative Detection | End host Addressed Yes Distributed Yes Yes

and Reaction

Traffic Engineering End host Not addressed No Distributed Yes No

ArOMA End host Addressed Yes Distributed No No

Survey of the existing mechanisms is summarized in Table 3.1 based on the DDoS mitigation

techniques discussed in chapter 2, which provides the following observations:

o Threat information exchange is not necessarily applied, depending on the design principle
and architecture of the mechanism. Usually, the threat information exchange relies on
either dedicated software and hardware add-ons (e.g., congestion-based mechanisms),
or the modification of original routing devices (e.g., traceback techniques). Sometimes
both (e.g., cooperative detection and reaction mechanisms). All these lead to additional
operational complexity, as well as computing and communication overheads as most of
them need to be operational all the time. Therefore, effective information exchange is
required between the different parties involved (i.e., ISPs and their customers), so that a
customer can send its threat information to the ISP at a very early stage of the DDoS attack;

One of the desirable features is that DDoS mitigation should be distributed, to make
the countermeasures more effective and reduce collateral damage. While some of the
existing ones have this feature, they require special purpose software or hardware devices.
Therefore, there is a need for a mechanism which supports easy deployment and avoids
the use of special-purpose software or hardware devices. Moreover, the ISP must timely
handle the requests from its customers and enforce appropriate DDoS mitigation policies;

Most of the mechanisms rely on the manual configuration and real-time intervention
of a network administrator, mainly because the mitigation policies need to be statically
enforced, introducing latency to the reaction process. Therefore, there is a compelling need
to significantly automate the whole life-cycle management of DDoS mitigation schemes.

3.1.1 Threat Model and Objectives

In this section, we first describe the threat model that is addressed by our framework and the main

objective of our framework.
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3.1.2 Threat Models

We are concerned with DDoS attacks against the customer of an ISP. Attackers may choose
multiple locations in the ISP network with multi vector attacks to flood different customer
networks. However, here we focus on a single customer network, which can be extended to
multiple customers scenario. Also, we restrict our focus to DDoS flooding attacks. In particular,
two common DDoS flooding attacks which cause collateral damage to the ISP and its other
customers are explained below.

1. Target flooding attacks: an adversary sends a huge amount of traffic to the customer
network to rattle up the customer’s communication. Generally, an adversary could use the
UDP flood, TCP SYN flood and ICMP flood traffic to disrupt the services provided by the
customer network.

2. Bandwidth flooding attacks: the adversary’s objective is to flood the link between the ISP
and customer networks, ultimately disrupting the legitimate traffic which share the same
link. These types of attacks causes collateral damage to other customers of the ISP, as it
floods the links of the ISP. UDP flood and ICMP flood are widely used for launching such
attacks.

With the key observations in mind, we designed an autonomic DDoS mitigation framework that
can overcome the identified limitations and achieve the desired properties. More specifically, our
mechanism, ArOMA, bears the following properties:

e Broad protection coverage: protecting both end-host networks (e.g., end-users, CDNs) and
communication links between ISPs and customers.

e Easy deployment: the modification of routing devices or the installation of special-purpose
software or hardware are unnecessary. The threat information between the ISP and its
customers is exchanged via a well-defined security APIL.

e Dynamic and optimized mitigation: ensuring QoS of victim customers in the presence of
DDoS attacks, while avoiding damage to the traffic of other customers.

e Automated policy enforcement: achieving dynamic policy deployment through event-
based reaction to security alerts and network state changes, alleviating the burden of human
operators.

3.2 Proposed Autonomic Cyberdefense Framework

Our analysis shows that most of the existing techniques perform well in a single network
environment, but they are often limited by the lack of automated cooperation among different
domains for effective mitigation. By leveraging the characteristics of SDN technology, we
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propose a framework which satisfies the requirements for effective DDoS mitigation. Our
framework is built on the following assumptions:

1. DDoS mitigation is provided to the customers who are subscribed to the ISP before
hand, and a prior trust relationship is assumed between the ISP and its customers for the
mitigation of attack traffic;

2. DDoS detection engine runs in the customer network and generates security alerts for
mitigation;

3. Customer and ISP controllers are authenticated to each other in a reliable and secure way,
and they are immune from attacks. We don not focus on securing the SDN controller rather
than our aim is to provide security using SDN controller.

In particular, to develop this framework, we need to tackle the following challenges,

1. Scalable flow management: The reactive nature of the SDN makes it difficult for an ISP
to provide DDoS mitigation as a service to their customers. Every time an OpenFlow
switch receives a flow for which it does not have the entry in its flow table it forwards
that flow to the SDN controller to get the policy for forwarding that flow. Since it causes
processing overhead on the SDN controller, it becomes difficult for the ISP to provide
DDoS mitigation as a service to its customer.

2. Consistency of forwarding policy: NAT devices, which are widely used in networks,
involve packet header information modification. Such alteration may have an impact on
how flow packets are forwarded, violating the ISP network’s forwarding policy for these
flows.

3. Controller-to-controller communication: Communication between the ISP controller
and the customer controller is required for timely and effective DDoS mitigation. We
assume that a subscription based business model can be applied here, i.e., the ISP controller
only accepts the messages from customers which have subscribed to the mitigation services.

4. Dynamic deployment of policies: Based on the request from the customer controller, the
ISP controller needs to provide dynamic deployment of mitigation policies.

In the remainder of this section, we present our proposed framework: ArOMA. First, an overview
of the architecture is presented, along with the operational workflow of the framework, then we
specify the key components of our design.
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Figure 3.1 — SDN-enabled DDoS mitigation framework

3.2.1 Design Components

The essential design components of ArOMA, as shown in Figure 3.1, are described below. We

take a bottom-up approach by first covering the data plane components, and then the control
plane components.

Data Plane Components

While the data plane is mostly comprised of packet-forwarding devices, mainly the OpenFlow

switches, packet-processing functions supported by the middleboxes are also deployed in the
network.

OpenFlow Switches. According to the OpenFlow specifications [89], OpenFlow-enabled
switches maintain flow tables to perform packet lookups and forwarding. Basically, flow entries
consist of match fields, counters, and actions to be applied to the matching flows. Upon reception
of a packet, OpenFlow switches perform a lookup operation in the flow table: if it does not
have a flow entry for that packet, then it is considered the first packet of the flow, and its header
information is forwarded to the controller using a PACKET-IN message.

Middlebox (M). The term, as used here, generally refers to the devices that host the security
functions able to mitigate the DDoS attacks. These devices are deployed in the network for
processing and filtering the suspicious and malicious traffic in the network. As shown in
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Figure 3.1, a middlebox M is deployed in the ISP network, along with switch S3. In our
framework, we assume that M enforces pre-defined security policies for mitigating DDoS attacks,
such as UDP flood, TCP SYN flood, ICMP flood. For instance, middlebox monitors the source
IP address of the suspicious flow which sends UDP packets. If the source sends a huge amount
of packets (above a given threshold) then it is categorized as malicious and dropped, otherwise it
is treated as legitimate. Apparently, more sophisticated policies dealing with amplification and
redirection attacks can be specified as well.

Control Plane Components

Components in the control plane span across the customer and the ISP networks to complete the
autonomic operational loop, in which the customer provides traffic monitoring and detection,
while the ISP provides mitigation countermeasures. For easier representation, we use C; to denote
the components belonging to the customer, and S; to represent the ones deployed in ISP network.

C| — Monitoring Component is composed of two modules to perform the task of collecting
incoming traffic and detecting attacks in the customer network.

o Flow statistics Collector: flow statistics are periodically requested by the customer con-
troller from the OpenFlow switches and forwarded to the detection engine for further
analysis and processing. Some flow statistics collection techniques have already been
experimented with SDN technology in [24, 82]. In the proposed framework, the OpenFlow
collector (OF collector) has been used for collecting the statistics.

e Detection Engine: taking flow statistics as inputs, it generates security alerts in the presence
of anomalous traffic, based on common anomaly-detection algorithms or using signatures
from the attack database. The alerts then trigger the local policy engine for incoming
flows to be processed accordingly, as a first layer of defense. Proposing a new detection
algorithm is outside the scope of this paper. However, for the implementation purpose, we
assume that the customer network uses a detection technique to flag whether it is under
attack or not based on traffic rate threshold [41, 78].

C, — Attack Database. We assume such a database, which contains previously-seen anomalous
traffic and their associated signatures [79]. It is maintained by the customer network and possibly
updated on a subscription basis at security vendors and other trusted third parties. The detection
engine then compares the characteristics of anomalous flows with the flow features in the database
to detect attacks. Especially, we envision that such a database can interact with other threat
intelligence mechanisms (e.g., NECOMAtter [58]) using a common interface such as n6 [61].

C3 — Policy Engine. The policy engine enables the ISP and the customer to select and deploy
security policies in their respective network. The policy engine at the customer controller
generates the local rules to tackle the identified anomalous flows based on the alerts issued by
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the detection engine, and possibly characterized thanks to the attack database. Security alerts
are formatted using IDMEF [44] (a description of the format is given in Sect. 3.3) and contain
the source and destination IP address, as well as the flow identifier F1owID, a Security_Class
which provides classification information on the detected flow, and the Impact_Severity of the
detected flow on the customer network. Impact_Severity is categorized into three categories:
Low, Medium and High. Depending on the information mentioned in the alert received from the
customer controller, the policy engine at the ISP side enforces the policy to mitigate the attacks.

As for the Security_Class, we distinguish legitimate traffic from suspicious and malicious
classes of traffic. The motivation is to minimize the impact of countermeasures applied on the
flows in the ISP network by considering an intermediate class of traffic, suspicious flows, on
which we cannot decide. Suspicious flows are not blocked in the ISP network, but may be
redirected through paths with a low quality of service. In the ISP network, different paths are
provisioned from the ingress point to the the egress points (end-to-end) for different suspicious
traffic based on its impact severity. Thus, we are able to reduce the collateral damages on the
legitimate traffic, instead of blindly dropping the target flows. The mechanism to classify the
flows is out of the scope of this thesis, and we assume that the customer uses some detection
mechanism to classify the flows as suspicious and malicious [24]. Our focus is about enforcing
the policy to mitigate the attacks once it is detected.

Listing 3.1 — A Sample Policy File: Redirection of Suspicious Traffic

<Policy PolicyID="Security_policy">
<Event attack="ICMP-Flood">
</Event>
<Condition>
<flow class="suspicious"/>
<Impact severity="low"/>
</Condition >
<Actions action="Low_Bandwidth_Path"/>
</Actions >
</Policy >

Moreover, policies are defined as an event, condition and action paradigm [33]. Attack type is
used to define the event in our policy file. Flow class and impact severity are used to specify the
condition of the policy. High-level action such as drop and low_bandwidth_path are defined in
the action part of the policy as shown in the Listing 3.1 and Listing 3.2. For example, if the alert
specifies the security class as suspicious, impact severity as low, and attack type as ICMP-Flood
then the policy engine uses these informations to check the policy file to enforces the action on
the flow. As shown in the Listing 3.1, the policy specifies to provide the low bandwidth path
to the flow with low impact severity and suspicious in nature. Similarly, if the security class is
malicious then the high level action drop is specified as shown in the Listing 3.2, according to the
policy at the ISP controller.
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Table 3.2 — Security API overview

Request Arguments Response
GET url/redirect | id=FlowID,Security Class, Impact Severity, attack type | status =200 OK
GET url/block id=FlowID,Security Class status = 200 OK

Listing 3.2 — Mitigation of Malicious Traffic Policy

<Policy PolicyID="Security_policy ">
<Event attack="ICMP-Flood">
</Event>
<Condition >

<flow class="malicious"/>

</Condition >
<Actions action="Drop"/>
</Actions>

</Policy >

S1 — Security API. We envision that the ISP provides DDoS mitigation as an on-demand service
via a security API provided by its SDN controller. Through this security API, the customer can
request the ISP to deploy middleboxes to filter suspicious and malicious flows, and to assign a
higher priority to legitimate flows. In particular, this Security API is implemented at the ISP
controller as a REST API, which receives mitigation requests from the customer controller.
The detection engine at the customer controller sends the security alert in the standard IDMEF
message format. Upon receiving the alert, it extracts the alert information and forwards the
information to the mitigation engine at the ISP controller.

Such security service interface is being currently discussed at the IETF under the working group
I2NSF [40] which aims at standardizing these security functions, prompting them to be available
for widespread use in coming years. Moreover, the security API enables the customers and ISPs
to share the threat informations with different ISPs and customers which enables the ArOMA to
be extended for multiple customer and multiple ISP scenario. Table 3.2 shows the HTTP requests
the security API handles with the specified parameters, e.g., FlowID, Security Class. In particular,
the security API listens to the request from the customer. It then extracts the parameters from
an incoming request and forwards them to the policy engine, which finally takes the appropriate
action.

S> — Flow Label Module. To tackle the two challenges identified at the beginning of this Section,
i.e., the scalable flow management and the consistency of the forwarding policy, ArOMA uses
labels to identify the path from the ingress switch to the egress switch (end-to-end path) of the
ISP network. Labels are used for fast switching and rerouting, as core switches in the ISP network
simply need to check the label and forward the packets. Additionally, by using labels, the path
policy is preserved through the network, as the modification of the packet header, e.g., by a NAT
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device, does not cause a PACKET-IN [89] event at subsequent switches, since only the label is
checked for processing. Another advantage of using labels is to reduce the flow table entries in
the core switches of the ISP network [123], resolving the concern of scalability.

Algorithm 1 FlowLabel (packet) — labeled_packet

for each incoming packet P do
if Packet is in the flow table then
Sforward(P,out_port)
else
Check the destination IP and destination port
PVLANID < Push(Legitimate_label)
Sforward(P,out_port)
end if
end for

Algorithm 1 illustrates the flow label assignment process. Specifically, the label is inserted in
the 12 bits VLAN ID field using the Push method of OpenFlow [89]. At the ingress switch of
the ISP, flow rules are pre-installed based on the destination IP address of the customer network.
When a flow arrives in the ISP network, it is checked whether the flow is present in the flow
table. If the flow table contains the flow then it is forwarded through an output port. Otherwise,
flow informations are parsed and its destination IP and port informations are checked and then
a label is assigned to the flow, and it is forwarded through an output port of the ingress switch.
As such, the switch-controller interactions to assign labels to flows can be significantly reduced,
alleviating overhead on the controller as well.

The reason of using the VLAN ID field to assign labels is that it can provide 2'> = 4096 different
labels in its single domain, which are sufficient for a single domain of ISPs, which usually has a

small number of links connected with their customers through its single domain, e.g., 500 links
in Ebone [106], [119].

S3 — Path lookup. This module provides the ability to the ISP to maintain a list of end-to-end
paths at its controller. Paths in the ISP network spanning from the ingress switch to the egress
switch are computed using an all-pairs shortest path algorithm [36]. In ArOMA, a pool of paths
is maintained by the ISP according to different bandwidths, link loss probability and delay to
accommodate different types of flows which are categorized into legitimate and suspicious ones.
In doing so, the ISP can provide differentiated traffic engineering to its customers, as for example,
suspicious flows would be transported to paths providing low QoS with a higher number of hops.
On the contrary, legitimate flows would be flown along paths providing high QoS with a small
number of hops. Specifically, it receives the input in the form of middleboxes to traverse or
type of path (i.e., low bandwidth path) with impact severity(i.e., suspicious or legitimate) from
the mitigation engine and returns any matching path and its associated label. It allows the ISP
controller to redirect the flow through a policy-based path rather than broadcasting the traffic
towards security devices [78].

S, — Flow Identifier. Aggregating the flows at the ingress switch of the ISP network, protects
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these switches from limited flow table entries. ArOMA uses F1owID to identify and aggregate the
flows at the ingress switch of the ISP network and share them between the ISP and the customer
controllers (see Alg. 2 for FlowID generation). Specifically, a F1owID is computed using the IP-4
tuple (source IP, destination IP, source port, destination port) as input to the SHA1 algorithm.
Flows from the same source to the same destination are aggregated under the same identifier.
FlowID is inserted into the 64-bit cookie field set by the controller and is maintained at the
ingress switch. When the flow reaches the customer network then its controller requests the ISP
controller for the corresponding F1owID by sending the source and destination IP addresses of
the flow.

Additionally, it protects the ingress switches from state exhaustion attacks due to the limited
TCAM entries, however still we need to maintain the flow states at the ingress switch. As the
size of flow tables is increasing to meet the requirements of SDN deployments, we are now able
to use software switches (e.g., OVS switches) (widely used in the datacenters as well) to avoid
the forwarding state limitation of hardware switches [65]. Moreover, switching devices with high
performances chips (e.g, EZchip NP-4) can provide optimized TCAM memory that supports
from 125,000 up to 1,000,000 flow table entries [65].

Algorithm 2 FlowID(flow) — flow_identifier

for each incoming flow f do
f < Flow(f.IP_src, f .Port_src, f IP_dst, f.Port_dst)
if f.IP_dst € Ingress_switch.FlowTable then
f.cookie < FlowID
Sforward(f,out_port)
else
controller(f) // Flow is forwarded to controller for FlowID
new_FlowID < hash(f) // new FlowID is assigned
f-Cookie +— Push(new_FlowID) // the new FlowID is inserted in the Cookie field
end if
end for

S5 — Mitigation Engine. This module communicates with other modules deployed at the ap-
plication layer of the ISP controller in order to enforce the final mitigation countermeasures.
Upon receiving information extracted from the alert message (i.e.,FlowID, Security_Class,
Impact_Severity, source IP, destination IP) from the Security API, it forwards these informa-
tions to the policy engine at the ISP side, which provides high-level policies (e.g., Redirect, Drop)
that are enforced. When it receives a high-level action from the policy engine, the mitigation
engine also checks the Path lookup module for getting the appropriate path and the associated
label to be assigned to the flow.

For instance, if the security class and impact severity specified for the flow is suspicious and
high respectively, then the high-level action is provided as to redirect the flow through lowest
bandwidth path. Then, the mitigation engine checks the Path lookup module to get the label
associated with the lowest bandwidth path and modifies the label of the corresponding flow at the
ingress switch to be redirected. Similarly, if the flow is malicious and high level policy is drop,
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mitigation engine modifies the action for the corresponding flow to be blocked at the ingress
switch of the ISP.

3.2.2 Operational Workflow

In the framework, both the ISP and the customers have their own SDN controller running in
their respective network and communicating in a secure manner. As shown in Figure 3.1, the
framework is distributed across the ISP and customer networks, and the operational workflow
(labeled with step numbers) can be described as follows:

1. As the traffic enters the ISP network, the controller assigns a unique flow identifier, FlowID,
for each new flow, typically by leveraging the PACKET-IN message. FlowID is used by
the customer controller to request for mitigation from the ISP. Labels are also assigned
to flows at the ISP’s ingress switches for fast forwarding. The label helps preserving the
policy applied to the flow to ensure unaltered routing.

2. On the customer side, flow statistics are periodically collected via OpenFlow agents, and
forwarded to the detection engine for processing.

3. The detection engine relies on an attack database, which can interact with external databases
via certain threat information exchange methods like the n6 API [61].

4. The detection engine generates security alerts in the presence of malicious and suspicious
traffic flows, and triggers reaction from a local policy engine, which is in charge of
generating and installing policy rules at the ingress switch of the customer network for
traffic processing.

5. The FlowIDs of suspicious and malicious flows are encapsulated into security requests
sent to the mitigation engine residing on top of the SDN controller at the ISP side. To that
end, a security API is exposed by the ISP’s SDN controller. This security API is the main
component of the controller-to-controller communication.

6. The mitigation engine requests the policy engine for mitigation actions to handle the
detected suspicious or malicious flows.

7. The mitigation engine further checks with the path lookup module to infer the best path to
route the detected flows according to the mitigation actions.

8. Mitigation actions, e.g, traffic redirection to security middleboxes, are finally taken by
updating the labels of the flows of interest. This mitigation process involves automated and
dynamic deployment of policies within the ISP network.
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3.2.3 Controller to Controller Communication

Another important feature of ArOMA is the communication between the controller of the
ISP network and the one of the customer network. Controller-to-controller communication
enables the customer to share the alert information with the ISP in an automated way. This
communication channel actually serves two purposes: sharing the F1owID from the ISP to the
customer, and alerting the ISP about suspicious and malicious traffics incoming the customer
network. Specifically, the way for sharing F1owID is described as follows:

1. Initially, when the flow reaches the customer network, the customer controller requests for
the FlowID of the corresponding flow by sending the IP addresses (source IP, destination
IP) of the flow to the Security API at the ISP controller.

2. The FlowID is maintained in the cookie field at the ingress switch of the ISP.

3. On receiving the request from the customer controller, the ISP controller checks its ingress
switch for the F1owID and sends it back to the customer controller.

For example, the controller communication for DDoS mitigation mainly contains the following
operations:

1. Upon detecting DDoS traffic at the customer side, the detection engine sends the alert for
the detected flows;

2. The security alert is sent using IDMEF (different formats can be used as well).

3. The Security interface (Security API) deployed at the ISP controller is invoked via a REST
API by sending the security alert message through the detection engine at the customer
controller.

4. The Security API extracts informations such as, the security class, flow informations
(source IP, destination IP), impact severity and attack type from the security alert.

5. An acknowledgement message containing the flow information and action enforced is
returned to the customer controller after action is enforced on the flow.

3.3 Use Case

For better illustrating and understanding the design purpose and principle of ArOMA, we develop
a use case, as shown in Figure 3.2, in which one customer and one ISP collaborate with each other
to mitigate DDoS attacks. A use case including multiple customers and multiple ISPs will be
studied as our future work. In addition, for a single ISP network, it is possible to deploy multiple
SDN controllers, each of which interact with one customer network through the security API.
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q- an ArOMA need to subscribe to their ISP for this Secur
e, ntials (Step 0 and Step 1 in Figure 3.2). Meanwhile, R

anomaly detection system needs to be set up and configured in the customer network, in order

to monitor and detect the unwanted traffic according to its local security policies. It is worth
noting that neither dedicated hardware nor special software is required for deploying ArOMA
in the customer network, except for the fact that the network should be SDN-enabled. This
yields significant flexibility for the customers, as they are allowed to run different, even multiple,
detection engines and develop specific attack characterization by taking into account their local
context, policies and requirements.

For Step 2, we assume a threat information exchange format is well defined between the ISP
and customer controllers, so that the alert information can be issued to the ISP as soon as an
attack of concern is detected in the customer network. To enable this process, the ISP deploys a
security function via a RESTful API at its SDN controller to handle the request received from
the customers. Upon receipt of the alert, the security interface verifies the validity of the alert
at first, and then extracts the information from the alert and forwards it to the policy engine.
Then, the policy engine checks whether a policy matches the received alert and enforces the
corresponding rules in its SDN switches. For example, the IDMEF format can be employed
for our purpose thanks to its flexibility and compatibility with other formats. An example alert
is shown in Listing 3.3, indicating suspicious traffic with a low impact severity. Specifically,
the Classification and Assessment fields specify the type and impact of the attack respectively.
The latter indicates the impact severity of the detected traffic with a qualitative value among
{low, medium, high}. Apart from the IP addresses of the attack source and victim network, two
additional fields, the security class and F1owID are specified in the alert as well.

It is worth noting that the policy engine needs to take into account the status of the ISP network,
ensuring the legitimate flows are always assigned routing paths with high QoS, and the collateral
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damage on other customer networks can be reduced. A path lookup algorithm can be run here for
this purpose. As a result, the ISP notifies the customer about the mitigation process, indicated as
Step 3. To complete this process, it is even possible to have an extra step in acknowledging the
status of the customer network after mitigation.

Listing 3.3 — Threat Information Exchange Format Between ISP and Customer Network

<IDMEF—Message version="1.0">

<Alert>
<Analyzer analyzerid="CUSTOMER C"/>
<Source >
<Node>
<Address category="ipv4—addr">
<address >10.0.0.2 </address >
</Address>
</Node>
</Source >
<Target>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.3 </address >
</Address >
</Node>
</Target>

<Classification attack="UDP-Flood Attack">
</Classification >
<Assessment>
<Impact severity="low"/>
</Assessment>
<AdditionalData> type ="string" meaning="security class">
<string >suspicious </string >
</AdditionalData >
<AdditionalData> type ="string" meaning="FlowID">
<string >196764794928656</string >
</AdditionalData >
</Alert>
</IDMEF-Message >

3.4 Simulation based Experiments

The purpose of our experiments is to validate the effectiveness of our proposed autonomic
DDoS mitigation framework ArOMA. First, we validate the prototype using both mininet based
simulations and later in testbed based experiments. Our experiments are based on the threat
model describe in Sub Section 3.1.2. Next, we present the detailed settings and configurations of
our experiments, including the implementation details of the prototype.
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3.4.1 Network Topology

The prototype is implemented in Python and runs as an OpenFlow application on RYU controller.
To perform the simulation, we employ mininet, which provides rapid prototyping environment
for the emulation of OpenFlow switches [69]. In particular, we emulate two OpenFlow networks
as shown in Figure 3.3, and the traffic is generated by using iperf. We use UDP flood as the attack
traffic in this simulation.

We consider a domain of ISP and its customer as shown in Figure 3.3. We use this topology as
ISP networks do not have as many switches/routers as enterprise or data center networks [123].
The ISP network has 14 OpenFlow switches, from S to Sy4, connected with the controller. In
particular, ingress switch S; is connected to the external network, and the ISP controller applies
the policies on the flows coming from the external network at S;. Also, switch S5 of the ISP
is connected to the customer network, switch S5 is connected to the customer controller. Two
external hosts are configured as legitimate and malicious hosts to send legitimate and malicious
flows respectively. Moreover, we assume that those communication links in the ISP network
provide different capacities,

e Link dedicated to legitimate traffic (LT') provides 1 Gbps capacity;

e The link reserved for suspicious traffic with low impact severity ST; provides the link
capacity of 300 Mbps with 4 hops;

e The link reserved for suspicious traffic with medium impact severity is S7;, and the high
impact severity is S7;,. These are configured with the link capacities of 200 Mbps and
150 Mbps with 5 hops respectively. Suspicious Traffic of high impact severity causes
more damage to the legitimate traffic as compared to suspicious traffic of medium impact
severity. So, these traffic are provided the lowest bandwidth path to reduce its impact on
other traffic.

3.4.2 Simulation Scenario

Our simulation scenario involves all the components described in Section 3.2.1, as shown in
Figure 3.3. In particular, two external hosts, one legitimate (denoted as L) and one malicious
(2) communicate with a host (C) in the customer network. SDN controllers in the ISP and the
customer networks communicate with each other via REST APIs.

ISP maintains a policy table as shown in Table 3.3, and the ISP controller installs the labels
beforehand in the flow table of the ingress switch S;. Then the traffic between the two external
hosts and host (C) are provided with labels and F1owID when they enter the ISP network. Upon
receiving new flows, i.e., flows for which the controller does not have any forwarding policies,
the ISP controller considers them as legitimate and assigns label ‘1’ or ‘2’ (determined by the
load balancing scheme). As a result, all the intermediate switches simply checks the label in the
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Figure 3.3 — Network topology used for the simulations

Table 3.3 — Mapping between security class, impact severity, policy, bandwidth and associated

label
Security class [ Impact Severity [ Policy [ Bandwidth [ Path [ Label
Legitimate Empty Forward 1 Gbps (81, 52, Ss) VLAN_ID =1
Legitimate Empty Forward 1 Gbps (81, 53, Ss) VLAN_ID =2
Suspicious Low Redirect 300 Mbps (81, S4, Ss, Ss) VLAN_ID =3
Suspicious Low Redirect 300 Mbps (81, 87, Ss, Ss) VLAN_ID =4
Suspicious Medium Redirect 200 Mbps (S1, 89, S10, S11, S5) VLAN_ID =5
Suspicious High Redirect 150 Mbps (S1, 812,813, 814,55) | VLAN_ID=6

VLAN ID field and forwards the flows through legitimate path. Finally, the egress switch S5 pops
the label from the flows before forwarding them to the customer network.

When the ISP controller receives an alert from the customer controller, it modifies the label
accordingly. Referring to the example alert shown in Listing 3.3, as the mitigation response, the
ISP controller will enforce the redirect policy by inserting label *3’ to all the packets of the flow
originating from host A. Meanwhile, legitimate flows with label "1’ originating from host L are
still forwarded through the path with high QoS.

3.4.3 Simulation Results

We conducted simulations to evaluate the end-to-end effectiveness, throughput and network jitter
of the legitimate traffic. We also evaluated the throughput of suspicious traffic when they were
processed according to their impact severity. We measured these metrics to know how the DDoS
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flows impact the legitimate traffic and how the suspicious flows are impacted when they are
redirected through path of low bandwidth. Formally, the following two metrics are carefully
studied,

e Throughput and network jitter of legitimate traffic in case the presence of attacks;

e Throughput of suspicious traffic under different impact severity;

End-to-end effectiveness

We evaluated the effectiveness of our prototype ArOMA in how quickly it can restore the
throughput of legitimate traffic in the presence of given DDoS attacks. The results are shown in
Figure 3.4. The X-axis in Figure 3.4 represents the time which varies, Y-axis shows throughput
of the flows which changes continuously. Here, we try to measure how quickly throughput of
legitimate traffic returns to normal level when the ISP controller receives the security alert from
the customer controller for the mitigation of DDoS traffic. Specifically, we launched the UDP
attack traffic at the 10th second. Then upon receiving the mitigation request from the customer
controller, the ISP controller started the mitigation at around the 35th second. As clearly indicated
in the figure, it took less than 10 seconds for the legitimate traffic to recover its throughput after
the mitigation started. Thus, we can conclude that ArOMA generally provides rapid mitigation
response in restoring the performance of the legitimate traffic.
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Figure 3.4 — Response of ArOMA and throughput of legitimate traffic

53



Chapter 3. An SDN based Autonomic DDoS Defense Framework

Network Jitter for legitimate traffic
1 000 T . T T T

Mitigation Starts

800

s)

600

4001

Network Jitter(m

200 [~—Customer Network|

¢ $0e60e00 g A A n N
0 20 40 _ 60 80 100 120
Time(sec)

Figure 3.5 — Network Jitter of legitimate traffic going towards customer network

Network Jitter

We measure the network jitter of the legitimate traffic for determining the variation in arrival
time between packets, and further understanding the impact of DDoS attack on the quality of
service of the legitimate traffic. X-axis in Figure 3.5 shows the time in seconds which is used to
note the time when the attack and mitigation starts respectively. Y-axis tells the network jitter
in milliseconds which also varies depending on the congestion in the network. As shown in
Figure 3.5, the attack traffic was launched at the 10th second, then immediately the network jitter
started to increase. Clearly, when the mitigation was activated upon receiving the alert close to
40 second from the customer, the network jitter decreased to around 0.5 ms within 10 second. It
shows that the legitimate traffic returns to normal level very quickly.

Throughput of suspicious traffic

Another interesting experiment was to test the throughput of the suspicious traffic, which are
classified into three types in terms of its impact severity on the customer network: low, medium
and high, as shown in Table 3.3. In the ISP network, suspicious traffic is not dropped as it
may be legitimate. So, to avoid collateral damage to these kinds of traffics, the ISP provides
them different processing through path with more number of hops and less bandwidth. As the
results shown in Figure 3.6, the throughput of the suspicious traffic with low impact severity
was maintained at around 300 Mbps, while the suspicious traffic with medium and high impact
severity were redirected through the path with larger number of hops, with throughputs close to
200 Mbps and 150 Mbps respectively. Figure 3.6 shows that flows suspicious in nature get the
bandwidth provisioned for them in the ISP network rather than getting dropped completely.
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Figure 3.6 — Throughput of suspicious traffic with different impact severity

Table 3.4 — Platform specifications

Component Quantity

Specification or Con-
figuration

Role

IBM RackSwitch G8052 | 5

48 Gigabit ports

OF enabled switch

DELL server r620 2 8-core 2.9 GHz CPU, | SDN controller host (ISP,
16GB RAM, 10 Gb/s | customer)
Ethernet NICs

Hosts 3 Ubuntu server | Playing as video streaming
12.04.2, 6-core 3 | server L, attack host A and
GHz CPU, 4GB | video streaming client C
RAM,20GB HDD

SDN Controller 2 Ryu 3.20 Controlling switches in ISP

(S to S4) and customer net-
works (S5)

3.5 Testbed based Experiments

In addition to the simulation based experiments, we also experimented with an actual platform

to evaluate our prototype ArOMA. In the platform, we use the video streaming service as the

target to protect, and measure its quality, in the face of DDoS attacks, in terms of Quality of user

Experience (QoE) metrics.

3.5.1 Experimental Settings

Platform. The topology of our experimental platform is similar to the data plane configuration

shown in Figure 3.1, where the ISP and the customer networks have their own SDN controllers.

The components and specifications of the platform are given in Table 3.4. For simplicity, two
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Table 3.5 — Defined metrics to measure the impact of DDoS attacks

Metric Definition Unit Impact of at-
tack
Time to rebuffer the time taken to rebuffer | second increases

the video when the stream-
ing buffer gets empty due to
network congestion
Time to start the time taken to complete | second increases
the initial buffering to start
the video streaming

Duration of paused | the time player is in the | second Paused  for
mode paused mode for the buffer to more time
fill up during the entire video
length
Average buffer length | the buffer length of the | second increases
player
Average goodput rate of data transfer KB/sec decreases

routing paths are configured in the platform for the ISP network: one is QoS guaranteed and
used exclusively for legitimate traffic (going through switches S, Sz, and S4), while the other
is for suspicious or malicious traffic (going through S;, S3 and S4). In the customer network,
the OpenFlow switch Ss is attached to the customer controller. Also, ten host machines are
virtualized in the platform, serving as legitimate host, attack host and customer machine.

Traffic generation. We use video as the source of legitimate traffic, considering the fact that
nowadays video traffic accounts for more than 70 percent of all consumer Internet traffic [38].
We use TAPAS [34], a video streaming tool for video traffic generation between the customer
machine C and the legitimate host L. 10 TAPAS video clients generate a legitimate video traffic
over HTTP traffic. Moreover, the BotNet Simulator (BoNeSi) tool is used to generate volumetric
DDoS attacks with high traffic rates. We generate an attack traffic close to 250,000 packets per
second.

Evaluation metrics. The metrics used to evaluate our prototype are specified in Table 3.5, which
are essentially related to these QoE metrics analyzed in [39, 67, 100]. Our hypothesis is that in
the presence of DDoS attack, time to rebuffer will increase, average buffer length will decrease
and the duration of player in the paused mode will increase. The intuition behind is that attack
traffic may deplete the playout buffer of the video player, eventually reducing the quality of user
experiences watching the video.

3.5.2 Results and Analysis

We conducted several rounds of tests to comparatively study the given metrics in three cases,

e Video streaming services in normal condition (without attack traffic);
e Under different attacks without mitigation;
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e And under attack with our prototype ArOMA activated.

The metrics are measured at the video streaming client by collecting and analyzing the log files
generated by TAPAS [34].
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Figure 3.7 — Time to rebuffer

The hypothesis about this metric is that the client is not able to play the video as the streaming
buffer gets depleted due to overwhelming attack traffic. If such a condition holds for a long time,
the QoE of users will be degraded. Figure 3.7 clearly validates this hypothesis: the TAPAS video
client was able to complete the video transmission without any interruptions when there was no
DDoS traffic, and the buffer length was maintained above 15 seconds. In contrast, under DDoS
attack, the video client was not able to buffer the video, leading to a depletion of the playout
buffer down to zero. When the mitigation scheme was activated by the ISP upon the request of
the customer controller, the playout buffer returned to a normal level, allowing the video client
to play the video. When the buffering started, it took 10 to 15 seconds for the playout buffer to
return to the normal level.

Average buffer length

We measured the average buffer length, and observed that the buffer length was maintained above
16 seconds when there was no attack. As shown in Figure 3.8, in the presence of UDP flood
attack, the buffer length was maintained close to 14 seconds with ArOMA activated. Similarly,
the buffer length was maintained at 12 and close to 10 seconds, in face of ICMP and TCP
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flood attacks respectively. In contrast, the average buffer length was about 4 seconds when the
mitigation module was not activated during attacks.
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Figure 3.8 — Average buffer length of legitimate and attack traffic

Duration of paused mode

This metric was evaluated for comparing how much time the player is in the paused mode during
initial buffering and in the midst of the attack. The results are shown in Figure 3.9, which has the
following implications,

e When there was no attack, the total duration that the player was in the paused mode is
approximately 2 seconds during the initial buffering phase;

e With ArOMA activated, the video player was paused for 12 seconds under UDP flood
attack. The values were more than 15 and 40 seconds under TCP SYN flood and ICMP
flood attack respectively;

e Noticeably, the player was not able to buffer the video to play if ArOMA was not activated.
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Average Goodput

We also examined the average goodput, and observed it was maintained close to 700 KB/sec in
the absence of attacks. When DDoS attack was launched and ArOMA was activated, the average
goodput could be maintained at 550 KB/sec against the UDP flood attack. As for ICMP and TCP
SYN flood attacks, it was maintained close to 500 and 450 KB/sec respectively, as indicated in
Figure 3.10. In contrast, when ArOMA was not activated, the average goodput dropped down
below 300 KB/sec and could not return to a normal level.

3.6 Discussion

Both the simulation based and testbed based experimental results demonstrated that ArOMA is
able to provide quick response in mitigating attack traffic. It is worth noting, however, classifying
the flows as suspicious and malicious are out of concern of our proposed framework. We
assume that the customers can deploy some detection mechanisms to detect and classify the
flows as suspicious and malicious based on their local intelligence and criteria. Nevertheless,
ArOMA provides a distributed and automated way to distinguish suspicious traffic in terms of
their severity, i.e., they will be assigned with different labels and redirected to different paths.
Moreover, although the attack traffic used in the experiments are mainly UDP-flood, TCP-flood
and ICMP-flood, ArOMA can also be applied to mitigate other types of attacks as long as the
victim customers can provide sufficient flow features and attack characteristics.

One may argue that in ArOMA the communication channel between the ISP controller and
the customer controller is vulnerable to attacks. While we have to admit this fact, the current
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ArOMA design assumes that the customers of the ISP are behaving legitimately and they trust
each other. It also ensures that every customer communicates to the ISP controller through a
dedicated communication channel. In addition to pre-subscription and online authentication,
other effective authentication schemes can be also deployed by the ISP, ensuring the integrity and
confidentiality of alert messages sent from the customers. To cope with DDoS attacks, the ISP
can restrict the amount of alert messages that are sent by a particular customer in a specific time
interval. All attacks targeting at SDN controllers are not considered in this work, which have
already attracted lots of attention from SDN and security communities [19, 37, 64, 111].

Another important concern of current ArOMA architecture is that it is implemented with a single
SDN controller in the ISP and customer network. In practice, an ISP may have a large amount of
customers, making it extremely challenging or even impossible to provide real-time mitigation
service by relying on a single SDN controller. Extending the current ArOMA to have multiple
SDN controllers is an non-trivial effort, which will be the focus of our future work. For example,
multiple customers may have the conflicts in the installation of filtering rules. The scalability
issue can be also caused by the latency resulting from controller-switch communication. To the
best of our knowledge, new SDN controllers are able to handle millions of flows per second[65].
On a commodity machine with a single CPU core, state-of-the-art controllers are capable of
responding to flow setup requests within milliseconds, and Open vSwitch is capable of installing
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tens of thousands of flows per second with sub millisecond latency [123].

3.7 Related work

A comparative study on the existing DDoS mitigation techniques has been given in Section 3.1,
this Section is devoted to the analysis of fundamental differences between our design ArOMA
and the most related ones, regardless their categories specified in Section 3.1. For example, the
Cooperative Detection and Reaction Architecture (CDR) [62] and CITRA framework [99] are
related to our design ArOMA in terms of design purpose. However, one of the fundamental
assumptions of CITRA and CDR is that the counter DDoS entities are deployed in trusted
partners, so the successful operation relies on the collaboration of different networks. Such an
assumption does not necessarily hold in ArOMA. Also, CITRA and CDR need to use multicast to
communicate with different trusted domains, whereas ArOMA simply employs security API by
leveraging the programmability of ISP. CoDef [72] is a collaborative defense mechanism against
flooding attacks, enabling autonomous domains to collaborate with each other for redirecting
the legitimate traffic of customers upon request. This mechanism depends on wide collaboration
between different domains, and it does not block attack traffic in the source autonomous domain.
Compared with CoDef, ArOMA does not require the collaboration between different ASes, and
it can block attack traffic upon the request of customers.

The Overlay based architectures, such as SOS [60] and Mayday [9], consist of nodes which
communicate with one another in the network. Traffic originating from the source node is
redirected to an overlay, which is formed by the nodes for authentication, before it is finally
forwarded to the target server. Clearly, these overlay nodes act as a buffer zone between the source
of attack and target network. While more security can be possibly achieved, extra communication
latency will be incurred. In ArOMA, the potential latency is only caused by the communication
between SDN controllers, while the customers will not experience that.

One of the early DDoS mitigation schemes Pushback [59] relies on the upstream routers to block
the identified suspicious flows close to the attack source. The difference between Pushback
and ArOMA is that ArOMA shares the attack information via another communication channel
between SDN controllers instead of data plane routers. Perimeter-based DDoS defense [30]
maintains a multicast group at the ISP side and performs filtering when attack is originated from
one of its customer network. However, our framework protects the customers of the ISP from the
attack traffic originating outside the customer and ISP network. COSSACK [92] architecture also
forms a multicast group at source and victim networks to mitigate the attacks. It requires wide
collaboration between different networks to filter the attack traffic. Different from COSSACK, in
ArOMA, ISP and their customers collaborate to mitigate the attack, where ISP provides security
API to customers to request for the mitigation service.

Recent years have seen the efforts on developing novel Cyber defense techniques by leveraging
the programmability of SDN controllers. For example, the authors of [73] proposes Drawbridge,
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which allows the end hosts within an ISP to subscribe to the traffic engineering services provided
by the ISP, so that an end host can specify its particular traffic engineering rules to the ISP’s
controller. ISP controller either installs these rules in its SDN switches directly or sends them to
upstream ISP controllers. In doing so, it can avoid blind traffic engineering performed by the
ISP without the knowledge of the end hosts. However, Drawbridge requires different ISPs to
collaborate with each other to perform traffic engineering. Also, ISPs need to share their policy
enforcement points (PEPs) with their customers, since the rules specified by the customers should
be directly installed in the ISP’s SDN switches. Different from Drawbridge, ArOMA allows
ISP to enforce the mitigation policy according to the security alerts sent by the customer. More
recently, an SDN-based DDoS defense mechanism called Bohatei has been proposed [41], which
aims at helping ISP to provide DDoS defense as a service to its customers. Different from our
framework ArOMA, Bohatei requires the ISP to perform the detection and mitigation, which
brings huge computational burden to the ISP, as it has to analyze a huge amount of traffic for
different customer networks, whereas ArOMA allows the customers run their local detection
engines and only report alerts of concern to the ISP. In addition, Shin et al [101] proposes a
framework FRESCO to enable security services to be customized and composed through the
SDN controller, significantly facilitating the deployment of security services, including DDoS
mitigation schemes. Our framework ArOMA can be treated as an extension to FRESCO, with an
objective to provide collaborative DDoS mitigation between ISP and their customers.

3.8 Conclusion

It is widely recognized that without effective collaborations, it is extremely difficult, if not
impossible, to mitigate DDoS attacks. However, the collaboration between different domains and
parties in the Internet is challenging. In this chapter, we provide an on-demand DDoS mitigation
framework called ArOMA by levering SDN, with an objective to facilitate the collaboration
between the ISP and their customers. To demonstrate the feasibility and effectiveness of our
proposed framework, we developed a proof-of-concept prototype and conducted both simulation
based and testbed based experiments. The results indicated that our mitigation framework can
ensure that the protected asset, a video streaming service and a server, was able to maintain
satisfactory performance in the presence of DDoS flooding attacks, in terms of major QoE
metrics.

Our experiments and analysis of the prototype have identified some key benefits of the framework:
(1) the automated collaboration between customer and ISP would minimize the reaction time
in an operational situation; (2) Without exposing their network topology to outside domain
ISP can deploy policies to mitigate the attacks upon receiving the alert messages from its
customers. Customers can also deploy their local polices in its network to filter the attack traffic;
(3) Customer and ISP effectively communicate through the security API deployed at the ISP
controller and exchange the alert in a standard IDMEF format; (4) ISP is able to provide different
countermeasures to the suspicious flows by redirecting them to different paths, ensuring the
best QoS to legitimate flows. As such, even the suspicious traffic are guaranteed to reach the
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customer network but with degraded QoS, which potentially reduces the collateral damage in the
ISP network. In particular, we demonstrated that the centralized SDN controller can significantly
simplify the enforcement of DDoS mitigation policies in an automated way. The proposed
architecture is not a detection system but rather a collaborative mitigation system to filter the
attack traffic and provide good services to legitimate traffic. In the next, chapter 4, we present
a mechanism to represent and translate the high-level security and QoS policy into low-level
OpenFlow (OF) rules.
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SDN-Oriented Policy Representation
and Translation

In the large scale distributed network environment configurations of devices such as switches,
routers, firewall, Intrusion Detection System (IDS) are frequently done to protect and adapt the
network according to changing conditions. Manual configuration of these devices is tedious,
complex and error prone. Moreover, recent IT trends further aggravate these problems. For
instance, the growing demand of adaptive security and low performance overhead require massive
and frequent changes in the configuration of security and network devices. Furthermore, manual
configuration in such a diverse situation can negatively impact the performance of the services
in the network. Even the policies are in low level format, they also don’t adapt to continually
varying network conditions. The lack of dynamic configuration leads to network downtime
because of misconfiguration, as it requires manual work from the network operators.

Recent developments in SDN have led to a proliferation of studies that automate and simplify the
network management tasks. The northbound API in the SDN enables us to define the high-level
policies at the controller which can be enforced in the data plane devices through southbound
interface. Policies can be modified without halting the operation of network devices. Moreover,
network administrators do not have to configure all the switches, routers and middleboxes
manually to adapt the network behavior according to varying conditions. Instead decisions are
taken from a logically centralized controller.

In spite of the advantages, SDN alone does not have the ability to define policies in an expressive
way. This impede the deployment of new services in the network. There are some works
reported of using PBM (policy-based management) in SDN to govern the behavior of the network.
Most of these mechanisms use low-level syntax for expressing the policies which are directly
introduced in the controller. We argue that high-level policies should be written in the human
readable format. It should free the network operator from learning the low-level device specific
syntax for writing the policies. Policy translation techniques should be applied on the high-level
policies to automatically translate them into low level rules for deployment. However, there
are very few works reported on addressing the issue of translating the high-level policies into
low-level rules for enforcement in SDN network [76]. If the translation of high-level policy to
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Figure 4.1 — High-level view of the policy translation process

low-level rule is not done properly then the administrator would not meet the requirement and it
would lead to misconfiguration in the network. To address these issues, our aim is to develop
policy representation and translation technique, where high-level policies can be translated into a
low-level device specific rules, which are deployed into the network and security devices.

The aim of this chapter, is therefore, to address how the high-level policies can be represented in
human readable format in SDN network and translated into low-level OpenFlow rules for the
deployment in switches. The high-level view of our proposed mechanism as shown in Fig. 4.1
is supposed to: (1) define the high-level policies based-on the syntax specified in the policy
grammar, (2) Specify the templates of the low-level rule corresponding to different types of
actions, (3) translate and enforce the high-level policies into the OpenFlow switches using python
scripts. Depending on the security alerts and QoS request message policies are activated and
translated for the enforcement in the OpenFlow switches.

This chapter proposes a new methodology for translating the high-level policy into low level
rules for QoS management and mitigating attack traffic in SDN. We built a framework with some
requirements and considerations. The description of the framework is presented in Section 4.1.
Moreover, high-level policies should also be readable by human. We express the policies using
Controlled Natural Language (CNL) [68] so that network operators need not be familiar with
the OpenFlow concepts for defining the policies. We propose a policy grammar to define the
high-level policies in Section 4.2. Furthermore, OpenFlow rule templates are also provided as
a guideline on what tuples the low-level rules should be expressed in the different network and
security devices. It helps the infrastructure programmer to write the scripts which can translate
the high-level abstract policies into low level rules. These OpenFlow rule templates are presented
in Section 4.3. Then, we validate the policy translation process using two scenarios namely: (1)
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on-demand QoS provision, (2) DDoS attack mitigation. The implementation of these scenarios
are discussed in Section 4.4 and in Section 4.5. Then, we present the comparison of our policy
language with the some existing high-level policy languages on SDN in Section 4.6. Section 4.7
discusses some existing works in the literature on policy translation and enforcement. Finally, we

conclude in Section 4.8.

4.1 Policy Representation and Translation:Configuration

The network and security policies of a network should be specified at the highest level of
abstraction, and then translation techniques should be used to map the higher-level policies to
the low level. To achieve this gradual implementation, we relate events, conditions and actions
described abstractly, to the low-level rules. High-level policies are defined by the network
operators which are enforced depending on the conditions. In this chapter, as shown in Fig. 4.2,
we mainly focus on specifying the high level policies in the policy database and translating these
policies to low-level rules for deployment in data plane devices using Policy Decision Point (PDP)
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and Policy Orchestrator and Implementer (POI) shown in thick black line. In detail description of
other components will be given in chapter 5.

4.1.1 Major Components

Monitoring Component (MC) receives the security alert or QoS request message and forward
it to the PDP.

Policy Decision Point (PDP) is in charge of the global policy decision. Based on the event
and conditions it activates a policy in the policy database which provides a high-level action
(forward, redirect, drop) to be enforced. Corresponding to the high-level action, flow information
and bandwidth requested PDP gets the path details (switch ID, output port) from the NIB. PDP
forwards the path details along with the flow informations as a match field to the POI for the
low-level rule enforcement. Additionally, for the suspicious class of traffic PDP also maintains a
table containing the list of middleboxes to traverse in the network. If the flow is suspicious in
nature then PDP provides a list of middleboxes to NIB, which in return provides a path containing
the middleboxes to traverse.

Policy Database (PDB) It is essentially a repository containing the high-level security and net-
work policies specified by the network operator, without detailing the specific deployment strategy.
Policies can be specified in XML or any other format defined by the network administrator. Based
on the event and conditions as input from the PDP, it provides a high level action as an output.
The high-level policies in the PDB are instantiated based-on the security alert, QoS messages
forwarded from the PDP. A Policy ID is used to index the policies in the database, which helps in
retrieving the policy when an event occurs.

Network Information Base (NIB) contains a list of middleboxes and switches in the network
where they can be found. It contains the template to route the traffic through a different path in
the network depending on the bandwidth. Details of this component is discussed in the chapter 5.

Policy Orchestrator and Implementer (POI) contains the OpenFlow rule templates of different
actions for enforcement in the data plane devices. OpenFlow rule templates contain the
guidelines to specify how the different activities can be executed in the network. It provides an
additional level of modularity to define the format for the different types of tasks that can be
performed. It is an important part of the translation process as it provides an abstract view for the
concrete rules which are to be deployed. More details about the template module is given in the
Section 4.3. Moreover, it contains python scripts which deploy the rules in the data plane devices.
It takes the flow information as a match field along with path details (switchID, output port) to
deploy the low-level OpenFlow rules depending on the high-level action.

Algorithm 3 shows all the process of receiving the event messages, extracting and matching of
the information with the policies and enforcing the action in the network devices using FlowMod
message. In the process of implementing the policy when an event message is received event
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type and conditions are extracted. For example, if the QoS request message is received, then
the event type(e.g. Gold, Bronze, Silver QoS) is extracted from the message. Moreover, the
conditions from the QoS message such as bandwidth class, flow class are also extracted from the
event message. Then, depending on the event type and the conditions a policy is instantiated in
the policy database, which provides a high level action related to the policy. Based on the high
level action and flow information a path is selected from the NIB. The path contains the list of
switches in an order from ingress switch to egress switch.

If the rules are deployed in the order from ingress switch to egress switch then it would cause the
huge packet loss in the case, when low-level policy rules need to be modified to redirect a flow
through another path. So, our algorithm arranges the switches so that first it deploys the rules on
the core switches then at last on the border routers, so that the in the meanwhile flow can traverse
through the previous path. So Algorithm 3, copies the switch ID of the ingress switch in a stack
and removes the ID of the ingress switch from the list of switches that it gets from NIB. Then, it
deploys the low-level rules on the core switches and egress switch. After that, it pops switch of
the ingress switch from the stack and deploys the rules. Then, the flow automatically traverses
through the path. The effectiveness of this methodology is validated later in Sect. 4.4.3

Algorithm 3 Policy Implementation

for each Event event do
event_type < event.getEventType() // get the type of event from the message
event_information < event.getInfo() // Get condition from the event message
end for
for event_type and event_informations do
action < event_type.getAction(conditions) // Get the action from the policy repository based-on
the conditions specified in the event
end for
for each actions and flowInfo do
(dpid,out_port) < topology.getPath() //Provides the list switchID and the output port to forward
the flow from the NIB
Copy the switch id of the ingress switch in a stack
FlowMod(match : S_IP,D_IP,actions : out_port) // Deploy the rules on the list of switches
FlowMod(match : S_IP,D_IP,actions : out_port) // Deploy the rules on the ingress switch at last
end for

4.1.2 Operational Workflow

Depending on the informations mentioned in the alert or QoS request message the ISP controller
translates the high-level policy into low-level rules. The workflow of the policy enforcement
process is described based-on Fig. 4.2.

1. In the framework, the Monitoring component (MC) receives the security alerts or QoS
request message. MC extracts the events and conditions from the alert or QoS request
message and forward these informations to the Policy Decision Point (PDP). Informations
in the alert or QoS messages contain the flow informations (source IP, destination IP), flow
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class, bandwidth class and attack type.

2. PDP triggers an appropriate policy in the Policy Database depending on the events and
conditions. In return, it gets the high-level action for the enforcement from the Policy
Database.

3. High-level action is further refined to get the path to route the traffic based on the flow infor-
mations and bandwidth. PDP gets the concrete path details from the Network Information
Base (NIB) with specific switch ID and output port to steer the flow.

4. Then, PDP specifies the flow details as a match field along with Switch ID and output port
informations to Policy Orchestrator and Implementer (POI) which generates the the low-
level OpenFlow rules. The step by step process of policy translation process is described
for QoS and mitigation scenario in Section. 4.4 and Section. 4.5.

4.2 Policy Grammar for High-level Policy

The high-level policy syntax provides the guidelines to define the abstract policy. It enables the
network operator to express the network and security policies into an easy to understand language
without getting into low level implementation details. These high-level network and security
policies can be enforced into the data plane devices when the requirements arise. Our high-level
policy syntax provides network administrators with a collection of constructs that allow them to
define the intended behavior of the network at a high-level of abstraction.

Listing 4.1 — Grammar for the High-level policy language

Policy=PolicyID

Event=Message

Conditions=Condition Connective Conditions
Condition=<field_name ><value >
Connective=And| Or

Action=Forward | Drop | Redirect

In our policy framework, high-level policies are defined as event, condition and action paradigm [63].
An event-condition-action (ECA) paradigm is the method in which actions are triggered, at-
tributed to the presence of particular conditions. The ECA paradigm describes how the events
trigger the desired response from the system. An event could be a message from a system or
program, among varied number of other possibilities. Condition in the ECA paradigm is the
logical part which, if evaluates to true then activates the action. Action is defined as an operation
carried out on the available resources.

Our policy grammar provides the syntax to define the security and network policies. The
Northbound APIs available in the SDN controller enables us to define the high-level policy
language in a simple way. We use the policy grammar shown in Listing 4.1 to define the network
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and security policies for the OpenFlow network. In the SDN network,OpenFlow switches can
behave as middleboxes such as firewall, and some other middleboxes. With our policy language,
we can define the policies for any equipment whether OpenFlow switches or switches behaving
as firewall.

4.2.1 Event

Event represents the part specified for the policy to be triggered. (e.g. the arrival of security alert
message, arrival of new packet as an event). In Listing 4.1, we show events as a "Message". Events
are not explicitly mentioned in the grammar as they can be arbitrary strings. Flooding attack
event can contain information related to flooding attacks such as UDP, TCP, ICMP, etc. Similarly,
QoS_Request event can contain the request messages for providing differentiated QoS services.
It may contains the QoS request message for Gold_QoS_Request, Bronze_QoS_Request, and
Silver_QoS_Request. For instance, Gold_QoS_Request message is for providing the highest
bandwidth path with no delay. Our policy language is not limited to the events described here, it
can be extended to include more events based on the requirements of the network.

4.2.2 Condition

When an event is triggered, the associated parameters are checked against the condition specified
in the policy. Condition is generally a boolean expression which can be evaluated to true, false
or not applicable. Not applicable represents that no condition is specified for the event. In our
grammar shown in Listing 4.1, Condition is specified with the field name and a value. Field
name contains an arbitrary string and a value. For example, it can contain the security or network
assessment information such as impact severity of a traffic on the network, flow class, bandwidth
class, traffic type, service, etc. Impact severity, flow class, bandwidth class, etc. are field names.

Impact_Severity specifies the impact of attack traffic or traffic causing the congestion in the
network. It can take either of three values such as as low, medium and high.

Flow class categorizes the flow into three different classes known as: suspicious, malicious and
legitimate. Suspicious indicates that the flow is a mix of legitimate and malicious flow. The flow
which is confirmed as an attack traffic is specified as malicious flow. The benign traffic is defined
as legitimate flow. The flow informations include source and destination IP addresses. Traffic
type specifies the different types of flows based on their protocols such as UDP traffic, HTTP
traffic, TCP, etc.

A Service is defined as the IP address and port of a server that a flow may access. For example,
we can define the service web server as: web_server = 10.0.0.3. It means that the server with the
IP address 10.0.0.3 provides the web services. Moreover, if the destination address of the flow is
(10.0.0.3), it means that flow is accessing the web server.
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A Bandwidth class represents the different classes of paths in the network represented in terms of
bandwidths. It contains three classes of bandwidth: Gold, Silver, and bronze class. Path in the
OpenFlow network is defined as SwitchID and the output port. The classes of bandwidths are
administrator defined based on the topology. For example, a network operator can define the gold
class as a path which has a bandwidth higher than 400 Mbps.

4.2.3 Action

Action specifies the high-level decision which should be enforced when the conditions are met
for the event. In Listing 4.1, we have listed a few high-level OpenFlow actions for our policy
translation framework. OpenFlow specifies two generic high level actions:Forward, and Drop [89].
Apart from these actions, we have also specified the action redirect in our grammar.

The action forward represents that when a flow arrives in the network then it is routed through
the network. Forward action signifies that there is no information about the flow in the data plane
devices. Redirect action represents that there is information about the flow in the network path
but it has to be redirected through another path in the network. Generally, redirection of the traffic
occurs in the network because of link failure, congestion or when a flow has been identified as
suspicious. Drop action specifies blocking of the flow in the network. Drop action is applied on
the flows which are identified as malicious. Examples with the policy syntax are described later
in the Section 4.4 and Section 4.5.

4.2.4 Mapping of High-level Policy to Low Level Rules:

As we specify the policies using ECA paradigm, therefore, a typical policy consists of three main
parts:

ON (Event) IF (Condition) DO (Action)

Table 4.1 shows the list of Events, Conditions and Actions we use to specify the policies.
Additionally, we provide the corresponding match field according to the OpenFlow specification
for the events, conditions and actions. The QoS request and security alert events are translated
into flow informations which include source and destination IP while specifying the OpenFlow
rule. Condition in the high level policy is mapped to the protocol, VLAN_ID, destination IP and
Input_Port informations. Furthermore, the high-level actions are mapped to switch ID (dpid) and
setting a VLAN_ID field and providing an output port at the switch. Additionally, Drop action in
OpenFlow is specified with empty action field.

When an event occurs in the system policies can be triggered by the PDP. If the Event comply
with the conditions in the policy then an action is returned from the Policy Database. We use the
following high-level abstract policy to show how the logical reasoning works and how the high
level policy is translated.
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Table 4.1 — Syntax to Specify Policies

Syntax OpenFlow Match

Gold QoS,

Bronze QoS,

Silver QoS,

Security alerts
Flow Class,
Bandwidth Class,
Impact Severity,
Traffic Type
Forward, Redirect,
Drop

Events Source IP, Destination IP

Conditions Destination IP, ip_proto, In_Port, VLAN

Action dpid, action={ VLAN,out_port},drop={}

"Bronze QoS request should receive a bandwidth higher than 200Mbps and less than 400Mbps".

The above high level policy means that when an Event occur which request to provide bronze
QoS service for a flow then flow should be redirected through bronze path in the network. The
steps to reach the conclusion are described below:

1. When the QoS request event occurs in the network, then the QoS class requested is checked
in the request message, e.g., Gold QoS, Bronze, Silver. If there are occurrences of these
QoS classes then the corresponding policy is triggered in the policy repository.

2. In the bronze QoS policy the condition part is evaluated to provide the bandwidth to
the flow. In this case, the bandwidth is higher than 200Mbps and lower than 400Mbps.
Depending on the evaluated condition the high level action is returned which is "Redirect".

3. This high-level action "Redirect" is further translated into the exact path depending on
the bandwidth granted to the flow. This further processing can be generally applied to all
processed actions for any flow. The low level rules in the OpenFlow switch is represented
by the flow informations (source and destination IP address) as a match, and the output
port. The translation of the high-level action redirect into the low level OpenFlow rule
is described in detail in the Section. 4.4.2. In the OpenFlow switch, the packets can be
represented as event and flow informations can be described as a match field and output
port is the action which comply with the condition part of the policy.

4.3 OpenFlow Rule Templates

Rule templates provide a way which allows to instantiate the rules for different tasks in the
network which can be enforced by different devices. Now, we discuss about the generic templates
used in our framework for different tasks. OpenFlow rule templates are maintained at the PDP
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except the template which specifies the path details.

4.3.1 Template for Specifying the Path

In our policy framework, a path is specified as a set of switch IDs and output ports. The Listing 4.2
shows a template to define a path with the switch ID and the output port to route the flow through
a specific path. Each path is associated with a unique label which helps in fast forwarding the
flow through that path. Template of the different paths are maintained in the NIB.

Listing 4.2 — A template to Specify the Paths in Network

Path={Switch:’SwitchID’,’ Port’:Output_Port}
Label={PathID :VLAN_ID}

4.3.2 Template for the forward Action

The high-level action forward is used for routing the traffic through a path. The Listing 4.3 shows
the template for the action "Forward”. The template shows that at the ingress switch, forwarding
rules are specified with: source IP, destination IP address, setting a label in the Vlan ID field, and
forward the flow through output port. It can be used for forwarding the flows originating at a
specific source and going to a particular destination. In the core switches forwarding rules are
specified only with matching a label and forwarding the flow through an output port. Moreover,
at the egress switches rules are specified with: destination IP address, with deleting the label and
forwarding the flow through an output port. To forward all the flows from a source, it requires
to specify source IP address, providing a label in the flow and specifying the output port at the
ingress switch. Furthermore, to forward all the flows traversing to a specific destination requires
the destination IP address, setting a label in the flow and forwarding the flow through an output
port.

Listing 4.3 — OpenFlow rules templates to forward the flow

Ingress Switch: [’Source IP’: addr, ’Destination IP’: addr, ’SetLabel’:
Vlan_ID,’ Action’:Out_Port]

Core Switch: [’Action’:Out_Port,’Label’:Vlan_ID]

Egress Switch:[ *Destination IP’: addr, ’'Label’:pop,’  Action’:Out_Port]

All the flows originating at a a source: [’Source IP’: addr, ’SetLabel’:
Vlan_ID,’ Action’:Out_Port]

All the flows traversing to a destination: [’Destination IP’: addr, ’SetLabel
>:Vlan_ID, > Action’ : Out_Port]
Specific flows originating at a source: [’Source IP’: addr, ’“Protocol’: proto

, “SetLabel’:Vlan_ID,’ Action’:OQut_Port]
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4.3.3 Template for the drop action

The drop action is used to filter the traffic. It can be specified at any location in the network
block the traffic. Listing 4.4 shows an abstract template to specify the drop action depending
on the condition in the network. For instance, to drop a specific flow, we specify its source IP,
destination IP and protocol. Moreover, dropping all the flows originating from a particular source
requires to specify only source IP and action drop. Similarly, to filter all the flows traversing to a
particular destination, requires only destination IP address and action drop.

Listing 4.4 — OpenFlow rule template to Drop the Flows

Drop specific flows: [’Source IP’: addr, ’Destination IP’: addr, ’'Protocol’:
proto ,’ Action’ :Drop]

All the flows originating at a particular source: [’Source IP’: addr, ’Action
> :Drop]
All the flows going to particular destination:[ Destination IP’: addr, °’

Action’ :Drop]

4.3.4 Template for the redirect action

The redirect action is used to divert the traffic from its previous path to a new path because of
link failure or congestion in the previous path or a flow is required to be provided better QoS.
Listing 4.5 shows a template to specify the action "Redirect" at the switches in the network for
diverting flows depending on the conditions. For instance, to redirect specific flows OpenFlow
rules are specified with: source IP, destination IP address, modifying a label and forwarding the
flow through a output port of ingress switch. Moreover, to redirect all the flows originating from
a particular source, we require only to specify the source IP address of the flow and setting a
new label in the VLAN ID field at the ingress switch. In a similar way, to redirect all the flows
traversing towards a particular destination, it only requires destination IP address and setting a
new label on the flow and specifying the output port of the ingress switch to redirect the flow.

Listing 4.5 — OpenFlow rule template to redirect the flow

Redirect specific flows: [’Source IP’: addr, ’*Destination IP’: addr, °’
SetLabel’:Vlan_ID, ’ Action’: Output_Port]

Redirect the flows originating at a specific source: [’Source IP’: addr, ~
SetLabel’:Vlan_ID,’ Action’: Output_Port]
All the flows going to particular destination:[ Destination IP’: addr, °’

SetLabel ’:Vlan_ID, ’ Action’: Output_Port]
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4.3.5 Implementation of the Redirect and Drop Action:

Python script shown in Listing 4.6 provides a template to redirect the traffic in the network
through another path. Script is instantiated when the high-level action corresponding to a policy
is “redirect”. It takes as inputs the switch ID (dpid), output port (out_port), label (vlan_vid), and
flow informations as a match to deploy the rules to redirect a flow. First, the OpenFlow rules
are deployed in the core switches according to Algorithm 3. Then, the rules are modified at the
ingress and egress switch respectively to redirect the flow through new path. As the script shows,
at the ingress switch a label is inserted in the flow and the flow is redirected. Core switches only
checks the label and forward the flow through an output port. At the egress switch, the label is
popped and flow is forwarded depending on the destination IP address through an output port.

However, when the flow is specified as malicious then the script to drop the flow is instantiated.
It takes the flow informations as a match field and ingress switch ID to drop the flow. Malicious
flows are dropped at the ingress switch to reduce the collateral damage caused to legitimate flows.
Empty action in the script specify to drop the flow.

Listing 4.6 — Script to enforce the redirection policy

def redirect(self ,parser ,dpid,out_port,match,dst,actions ,vlan_vid)

{

if (dpid == core_switch and match):

actions = [parser.OFPActionPushVIlan(0x8100), parser.OFPActionSetField(
vlan_vid = (vid)),parser.OFPActionOutput(out_port)] // Redirect the flow

if (dpid == ingress_switch and vlan_vid == vid):

actions = [parser.OFPActionOutput(out_port)]

if (dpid == egress_switch and dst == ’dst_ip’):

actions = [parser.OFPActionPopV1lan(0x8100),parser. OFPActionOutput(out_port)]

return actions

Listing 4.7 — Script to drop a malicious flow

def drop(self ,parser ,dpid,match,actions)

{
if (dpid == ingress_switch and match):
actions = []

return actions

}

4.4 Scenario 1: On-demand QoS Provisioning

One key feature of our policy translation mechanism is that it enables the ISP to automatically
react on a QoS request message sent by its customers. We discuss this use case with the sample
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network, as shown in Fig. 4.3. The sample network consists of one ISP and a customer network
represented as C. There are two external hosts shown as H; and H;. These external hosts send the
traffic to the customer network. The customer requests the ISP to activate the desired QoS policy
for a specific flow by sending the flow class, bandwidth class request, source IP, and destination
IP. In the following scenario, the customer requests for the gold class of bandwidth from its ISP.
Step by step example of the gold QoS policy translation are given in the Sect. 4.4.2.

4.4.1 Configurations for on-demand QoS:

The translation of high-level QoS policy into low-level OpenFlow rules requires some configura-
tions. In this regard, we discuss the required inputs for the enforcement of the QoS policy in the
ISP network depending on the request from the customer. Moreover, we present the templates
specific to the scenario of gold QoS policy enforcement.

QoS request message received from customer: On-demand QoS messages are the request
from the customer to their service provider for differentiated QoS service. The request message
contains the flow information and the type of QoS service requested. As shown in Listing 4.8 QoS
request contains the flow informations as: source IP: 10.0.0.1, destination IP:10.0.0.3. Source IP
10.0.0.1 represents the external host H;. Moreover, it contains the bandwidth class demanded
as "Gold" and the flow class as "Legitimate". The event type which is "Gold QoS request" is
mentioned in the classification event field of the request message.
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Gold QoS Policy at the ISP Controller: The policy file shown in Listing 4.9 provides the gold
bandwidth path in the ISP network. It contains the event type information which is "Gold_QoS".
The condition part of the policy contains flow class as "Legitimate" and bandwidth class as
"Gold". Based-on the event and conditions it provides the high-level action as "Redirect". The
high-level action "Redirect" is further refined using Table 4.2 which is described in detail in
Sect. 4.4.2. Bandwidth of 400 Mbps is provisioned for gold class.

Listing 4.8 — QoS Request Message Sent by Customer

<IDMEF-Message version="1.0">
<Alert>
<Analyzer analyzerid="CUSTOMER_C"/>
<Source>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.1 </address >
</Address>
</Node>
<Service >
<protocol >udp</protocol >
</Service >
</Source >
<Target>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.3 </ address >
</Address >
</Node>
</Target>
<Classification event="Gold QoS">
</Classification >
<AdditionalData> type ="string" meaning="flow class">
<string >Legitimate </string >
</AdditionalData >
<AdditionalData> type ="string" meaning="bandwidth request">
<string >Gold</string >
</AdditionalData >
</Alert>
</IDMEF—-Message >
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Table 4.2 — A Mapping Table between High QoS Bandwidth and the Network Path

’ Path ‘ Destination Network ‘ Bandwidth Class

P1 10.0.0.3 Gold
P2 10.0.0.3 Silver
P3 10.0.0.3 Bronze

Listing 4.9 — A High-level Gold QoS Policy in the ISP Network

<Policy PolicyID="QoS">
<Event Type = "Gold_QoS">
</Event>
<Condition>
<flow class="Legitimate">
<bandwidth class="Gold">
</Condition >
<Actions action="Redirect"/>
</Actions >
</Policy >

Listing 4.10 — Instantiation of the template to steer the traffic through high QoS path

P1:{ Switch:S1,output(5); Switch:S2, output(2); Switch:S4,output(2)}

P2:{ Switch:S1,output(6); Switch:S5, output(2); Switch:S6, output(2); Switch:
S4, output(2)}

P3:{Switch:S1, output(7); Switch:S7,output(2); Switch:S8,output(2); Switch:S9
,output(2); Switch:S4,output(2)}

Path={1:P1, 2:P2, 3:P3}

Instantiation of the template to route the flow through high QoS path:

The Table 4.2 provides the path to route the flow through gold, silver and bronze class of
bandwidths. The bandwidth of 350 Mbps and 300 Mbps are provisioned for silver and bronze
class respectively. Furthermore, as explained in the Sect. 4.3, paths are defined as switch ID and
output port informations. Listing 4.10 provides the concrete path details along with the switch ID
and the output port corresponding to the path shown in Table 4.2.
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4.4.2 Step-by-Step Example

Listing 4.11 — OpenFlow rules in the Switch S1 before the deployment of QoS Policy

nw_src=10.0.0.2 ,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:3—>
vlan_vid , output:7

nw_src=10.0.0.1,nw_dst=10.0.0.3,ip,actions=push_vlan:0x8100, set_field:3—>
vlan_vid , output:7

To summarize this section, we provide an example of how a high-level QoS policy is transformed
into low-level rules for the enforcement. This use case is described using the network shown
in Fig. 4.3. Customer C sends the request to the ISP to provision the gold QoS path to the flow
coming to its network from H;. As Listing 4.11 shows, rules in the switch S; to forward the flow
through the path P; by inserting a label 3 in the packet through an output port 7.

1. Customer C sends the QoS request message to the ISP controller to provision for the gold
path for the traffic coming to its network from host H;. The QoS request message is shown
in the Listing 4.8.

2. The Monitoring Component extracts the event type (Gold QoS) and conditions such as
the bandwidth request ("Gold") and the Flow class ("Legitimate") from the QoS request
message. Then, it forwards the event (Gold QoS) and conditions to the PDP. Using the
event type (Gold QoS) and conditions, the PDP checks the policy database to get the
high-level action. In this case, the high-level action is "Redirect". Listing 4.9 shows the
high level QoS policy for the gold class.

3. The high-level action "Redirect" is further refined to get the concrete path details. PDP
sends the high-level action redirect, flow informations (source and destination IP) and
bandwidth class (Gold) to the NIB. Then, NIB uses the bandwidth class (Gold) and
destination network informations to get the path to redirect the flow using Table 4.2. A
concrete path details corresponding to the P is is got from the template shown in the
Listing 4.10. Note that in this case, the path consisting of switch ID and the output port is:
(81:5, 52:2,54:2). Moreover, the label for the path is 1.

4. The PDP uses the high-level action "Redirect" along with the bandwidth requested to
instantiate the script in POI. The script to redirect the flow through the gold QoS path is
shown in Listing 4.13. The concrete path details along with flow informations (source and
destination IP) as a match field provided provided as an input to the script which deploys
the OpenFlow rules in the switches. Listing 4.13 shows that the rules first deployed in the
core switches, then at the egress and ingress switch respectively. Rules are deployed in the
switches according to the template shown in Listing 4.5. Listing 4.12 shows the low-level
rules in the switch S to forward the flow containing source IP 10.0.0.1 and destination IP
10.0.0.3 through an output port 5 by inserting a label 1. So that flow can traverse through
path Py.
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Figure 4.4 — Different QoS scenarios for policy deployment

Listing 4.12 — OpenFlow rules in the Switch S1 after the deployment of QoS Policy

nw_src=10.0.0.2 ,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100,set_field:1—>
vlan_vid , output:8

nw_src=10.0.0.1,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:1—>
vlan_vid , output:5

Listing 4.13 — Implementation of the Redirection policy

def gold_qos(self ,parser ,dpid,out_port ,match,actions ,vlan_vid ,dst_ip)

{

if (dpid == 2 and match):

actions = [parser.OFPActionPushVIlan(0x8100), parser.OFPActionSetField (
vlan_vid = (0x0001)),parser.OFPActionOutput(2)] // Redirect the flow

if (dpid == 4 and vlan_vid == 1):
actions = [parser.OFPActionOutput(2)]
if (dpid == 1 and dst_ip == 10.0.0.3"):

actions = [parser.OFPActionPopVlan(0x8100),parser. OFPActionOutput(5)]
return actions

4.4.3 Experimental Validation

Next, we evaluate the performance of our policy translation framework in implementing the
different QoS policies. We measure the time needed to translate and deploy the high-level gold,
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Table 4.3 — QoS Policies in different scenarios

’ Scenario ‘A‘ B ‘ C ‘
Gold QoS Policy | 3 | 5 | 7
Silver QoS Policy | 4 | 8 | 15

Bronze QoS Policy | 5 | 10 | 20

silver and bronze QoS policies into low-level OpenFlow rules. The implementation time of these
policies are evaluated according to the scenarios shown in Table 4.3. The implementation time of
policies is the time needed to translate and deploy the high-level policies into low level OpenFlow
rules. Implementation time is independent of the communication time between the customer
controller and the ISP controller. However, the communication delay between the controller and
the switch is included in the deployment time of low level OpenFlow rules from controller to the
switch. Fig. 4.4 shows the list of switches during different QoS scenarios.

The QoS scenario is deployed in the mininet with the sample network topology shown in Fig. 4.3.
We use IPERF [5] to generate the traffic in the scenario with varying rates.

Implementation time of QoS policies

It is worth noting that the implementation time of Gold QoS policy is less as compared to silver
and bronze QoS policies. Since the implementation time considers the deployment of policy
on the number of switches. As shown in Table 4.3 the path with the less number of hops is
provisioned for the gold QoS policy. It is apparent from Fig. 4.5 that the increase in the number
of elements in the topology is reflected as an increase in the time for calculation and deployment
of the low-level OpenFlow rules. The implementation time for the gold QoS policy is high in the
scenario C shown in Fig. 4.4 as it has the more number of switches as compared to scenario A
and B. The implementation time reported in Fig. 4.6 for the silver QoS policy also follows the
same increasing trend with the increase in the number of switches in the topology. As can be
seen in Fig. 4.6 deployment time in scenario C is around 28 millisecond, which is reasonable
considering the number of switches as shown in Fig. 4.4 for the scenario C of silver QoS policy
deployment.

In the similar way, the deployment time of bronze QoS policy increases with the increase in the
number of switches in the path. It takes around 36 milliseconds to deploy the low-level rules on
the bronze path in scenario C as it has 20 switches shown in Fig. 4.4. Considering the number of
switches in the path, the deployment time of policy in the bronze path is still not very high it is
still in the order of few milliseconds.

82



4.4. Scenario 1: On-demand QoS Provisioning

18
16
14
12
10

Time (ms)

C

Gold QoS policies in different scenarios

Figure 4.5 — Gold QoS policy implementation time with different scenarios

Packet loss during the deployment of OpenFlow rules in the switches

We measured the packet loss during the deployment of low-level rules according to our mechanism.
As shown in Fig. 4.8, packet loss still follows the increasing trend. But, with our mechanism
we minimize the packet loss to a large extent. It can be seen in Fig. 4.8 that there is no packet
loss when the traffic rate is 1 Mbps. Even at the 15 Mbps of traffic rate packet loss is around
7.2 percent as compared to 37 percent in case of without our mechanism. It shows that our
mechanism greatly reduces the packet loss percentage while deploying the low-level rules in the
OpenFlow switches.

The main reason for the low packet loss is that first we deploy the low-level rules in the core
switches. After that low level rules are modified at the ingress and egress switch respectively. So,
when the rules are being deployed in the core switches flow traverses the previous path and it
reduces the packet loss to a significant level. In this case, the packet loss occurs only because of
the delay in deployment from the controller to the border switches.
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Figure 4.6 — Silver QoS policy implementation time with different scenarios

4.5 Scenario 2: On-demand DDoS attack mitigation

An important feature of our policy translation framework is that it provides flexibility to the ISP
to automatically react on security events. In this section, we present in details how the DDoS
attack mitigation is achieved in the network with out policy management.

4.5.1 Scenario description of attack traffic mitigation

We illustrate our use case with sample network shown in Fig. 4.3. Upon detecting the DDoS
attacks, the customer sends the security alert to the ISP. We assume that, the customer uses some
detection mechanism to detect the attacks [41]. Intrusion Detection Message Exchange Format
(IDMEF) [44] is used by the customer to send the security alert. For instance, the customer sends
the IDMEF alert message indicating that a tuplet source 1P, destination IP, flow_class,impact
severity requires mitigation. Details of all the steps involved in activating and deployment of the
mitigation policy are discussed in the Sect. 4.5.2.

The input data contains the security alerts received from the customer and the policies at the ISP
controller to deploy the rules in the network devices.
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Security alert received from customer: Security alerts are used to report about the attack traffic.
Referring to the alert shown in Listing 4.14 contains the network and assessment attributes.

e The network attribute contains the IP addresses and attack type. The security alert contains
network informations such as: source IP: 10.0.0.2, destination IP:10.0.0.3, attack type:
ICMP Flood.

e The assessment attributes describe the effect of the attack on the network. For instance,
a low impact severity, as shown in the alert represents that the congestion level in the
customer network is 70 percent. Moreover, the security alert mentions the flow class as
suspicious.

DDoS attack mitigation policy at the ISP controller: It contains the policy to process the
received security alerts. The example policy shown in Listing 4.15 provides high level action
"Redirect" for the ICMP flood traffic with a low impact severity.

Listing 4.14 — Security alert sent by the customer

<IDMEF—Message version="1.0">
<Alert>
<Analyzer analyzerid="CUSTOMER C"/>
<Source >
<Node>
<Address category="ipv4—addr">
<address >10.0.0.2 </ address >
</Address >
</Node>
<Service >
<protocol >ICMP</protocol >
</Service >
</Source>
<Target>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.3 </address >
</Address>
</Node>
</Target>
<Classification event="ICMP_FLOOD">
</Classification >
<Assessment >
<Impact severity="Low"/>
</Assessment >
<AdditionalData> type ="string" meaning="flow class">
<string >Suspicious </string >
</AdditionalData >
</Alert>
</IDMEF-Message >
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Table 4.4 — A Mapping Table between Bandwidths, Customer Network and the Path

’ Path ‘ Bandwidth | Destination Network

Py Low 10.0.0.3
Ps Medium 10.0.0.3
P High 10.0.0.3

Listing 4.15 — A high-level Policy to Redirect Suspicious Traffic in the ISP Network

<Policy PolicyID="Mitigation">
<Event Type = "ICMP_Flood">
</Event>
<Condition >
<flow class="suspicious"/>
<Impact severity="Low"/>
</Condition >
<Actions action="Redirect"/>
</Actions >
</Policy >

Instantiation of the template to redirect the suspicious traffic: It contains the information
about redirecting the suspicious traffic through the low bandwidth path or through the middleboxes.
Table 4.4 provides the path to route the flow depending on the impact severity mentioned in
the security alert by the customer. Furthermore, Listing 4.16 provides the concrete path details
including the switch ID and output port to steer the flow.

Listing 4.16 — Instantiation of the template for redirecting the traffic through low bandwidth paths

P4:{ Switch:S1, output(8);Switch:S10, output(2),Switch:S11,output(2);Switch:S12,

output(2); Switch:S13,output(2) ;...; Switch:S30, output(2); Switch:S4,output
(2)}

P5:{Switch:S1, output(9);Switch:S31,output(2);Switch:S32,output(2); Switch:S33
,output(2);Switch:S34, output(2);..; Switch:S60, output(2);Switch:S4,output(2)

}

P6:{ Switch:S1, output(10); Switch:S61,output(2); Switch:S62,output(2);Switch:
S63,output(2); Switch:S64,output(2);Switch:S65, output(2);

Switch:S66, output (2); Switch:S67,output(2);..; Switch:S99,output(2);Switch:S4,
output(2)}

Path={5:P5, 6:P6, 7:P7}

4.5.2 Step-by-Step Example

In this section, we describe a step-by-step example of how a high-level mitigation policy shown in
Listing 4.15 is transformed into low-level rules for enforcement. This use case is described using
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the sample network shown in Fig. 4.3. Specifically, we explain the scenario with the customer

C sending the security alert to the ISP. In this scenario, host H> sends DDoS traffic towards the

customer C. First, all the flows from H; and H, are traversing the network through the path P;.

As shown in Listing 4.17, the rule in the switch Sy, before the deployment of mitigation policy,

forward the flow through an output port 5 by inserting a label 1 in the packet towards the path P;.

Now, the steps are described below:

. Customer C sends a security alert to the ISP for processing the ICMP flood traffic coming

from the host H,. The corresponding security alert is shown in Listing 4.14.

. Extracted alert informations are forwarded by the Monitoring component to the PDP.

Informations received by the PDP contains: event type (ICMP Flood), conditions: flow
class (suspicious), and Impact severity (Low). PDP uses the policy ID which is "Mitigation"
along with the event and conditions to instantiate the appropriate policy which is shown in
Listing 4.15. The high-level action in this case is "Redirect".

. The high-level action "Redirect" is further refined to get the path using Table 4.4. PDP

sends the flow and bandwidth detail (Low) to the the NIB to get the concrete path detail.
Then, NIB computes the path based on the inputs provided by the PDP. Note that, in this
case the path is Pj.

. Template shown in the Listing 4.16 is used to get the concrete path details depending on

the high-level path information which is P4. In this scenario, the path for the traffic from
10.0.0.2 t0 10.0.0.3 is: (5;:8, 510:2,511:2,512:2,513:2,54:2). Earlier, flow from 10.0.0.2 to
10.0.0.3 was traversing through the path P;.

. The high-level action "Redirect" along with the bandwidth information is used by the PDP

to instantiate the script in POI shown in Listing 4.19. The path details along with the flow
informations as a match field are used by the script to deploy the rules to process the flow
with low impact severity. First the rules are deployed in the core switches. Then, at the
egress switch the rules are deployed. Finally, at the ingress switch flow informations are
matched and a label is provided which is 4 in this case. At the egress switch Sy,label is
popped and based on the destination IP address flow is forwarded. Listing 4.18 shows the
low-level rule in the switch Sy to forward the flow of source IP 10.0.0.2 and destination
IP 10.0.0.3 by inserting a label 4 and through an output port 8. So that flow can traverse
through path Py.

Listing 4.17 — OpenFlow rules in the Switch S1 before the deployment of Mitigation Policy

nw_src=10.0.0.2 ,nw_dst=10.0.0.3,ip,actions=push_vlan:0x8100, set_field:1—>
vlan_vid , output:5

nw_src=10.0.0.1,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:1—>
vlan_vid , output:5
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Table 4.5 — Mitigation policies in different scenarios

Scenario Number of switches in the path
Policy for low impact severity flows 20
Policy for medium impact severity flows 30
Policy for high impact severity flows 40

Listing 4.18 — OpenFlow rules in the Switch S1 after the deployment of Mitigation Policy

nw_src=10.0.0.2,nw_dst=10.0.0.3,ip,actions=push_vlan:0x8100, set_field:4—>
vlan_vid , output:8

nw_src=10.0.0.1,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:1—>
vlan_vid , output:5

Listing 4.19 — Script to redirect the Suspicious Traffic

def redirect_suspicious(self ,actions ,parser ,dpid,dst_ip ,datapath, match,
vlan_vid):

if ((dpid == 10 and vlan_vid == ’5’)):
actions = [parser.OFPActionOutput(3—in_port)]
if ((dpid == 11 and vlan_vid == ’5’)):
actions = [parser.OFPActionOutput(3—in_port)]
if ((dpid == 12 and vlan_vid == ’5’)):
actions = [parser.OFPActionOutput(3—in_port)]
if ((dpid == 4 and dst == *10.0.0.3°)):
actions =[parser.OFPActionPopV1an(0x8100) ,parser. OFPActionOutput
(2)]
if ((dpid == 4 and dst == *10.0.0.2° and src == *10.0.0.3)):

actions = [parser.OFPActionOutput(6)]

if ((dpid == 1 and match)):

actions = [parser.OFPActionPushVIlan(0x8100), parser.
OFPActionSetField(vlan_vid = (0x0005)), parser.OFPActionOutput

(8)1]
if ((dpid == 1 and dst == *10.0.0.2° and src == 10.0.0.3)):
actions =[parser.OFPActionPopV1an(0x8100) ,parser. OFPActionOutput
(2)]

return actions

4.5.3 Experimental validation of mitigation policies

We use mininet to deploy the attack mitigation scenario with the sample network shown in
Fig. 4.3. Moreover, we use IPERF [5] to generate the traffic with different intensities. In this
section, deployment time of different types of attack mitigation policies are discussed to process
the suspicious flows. Table 4.5 shows the number of switches in the path provisioned for the
different types of suspicious traffic. Suspicious flows based on their impact severities on the
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destination network are routed through the low bandwidth path.
Implementation time of mitigation policy

We evaluated the time needed to translate the high-level mitigation policy into low level OpenFlow
rules for the deployment. It also include the communication delay between the controller and the
switch. We choose implementation time as a metric since it helps to evaluate how effective is
our policy translation mechanism in translating the high-level policy into low level rules for the
deployment. From the Fig. 4.9 we can see that the implementation time to deploy the policy to
handle suspicious flow with high impact severity is close to 75 millisecond. It is significantly
higher than the implementation time of other mitigation policies. Since, path with the highest
number of hops is provisioned for the security policy processing the high impact severity flows.
If we consider the number of switches in the path to process the high impact severity flows then it
is still reasonable in between 75 to 80 millisecond. The implementation time to deploy the policy
to handle low and medium impact severity flows are around 37 and 55 millisecond respectively.

Moreover, it is important to note that as shown in Fig. 4.9, the implementation time to deploy the
low level rules to block the malicious traffic is very fast. Interestingly, the deployment time to
block a flow is significantly lower than deployment time of other policies. It is because of the
fact that the block action is only enforced at the ingress switch of the ISP network and no further
enforcement is required. SO, it takes very less time for the deployment of the policy to drop the
flow.

We conclude that the policies implementation time for our evaluation work well in reasonable
time, but it can be further reduced if the number of devices for policy deployment can be reduced.
This can be done with pre-installed rules in some devices in the network. For instance, as in
the case of security policy with high impact severity, if the policies are pre-deployed in the core
switches from S17 to S21 then only at the border switches S1 and S4 policies need to be deployed
dynamically which can reduce the overall implementation time.

In one of the experimentation, we also evaluated the implementation time of the policy to handle
suspicious flows with different traffic rates. Fig. 4.10, shows that the deployment time of the low
level rules corresponding to the high-level policy to process the suspicious flows of high impact
severity is same. Experimentation was run with varying traffic rates from 1 Mbps to 15 Mbps. In
all the scenarios, we found that the time to translate and deploy the high-level policy into low
level rules are same after the security alert is received by the ISP. In all the case, it is around 75
millisecond. It shows that the traffic rate does not affect our policy translation process and the
deployment of corresponding low-level rules in the network.

Packets by-passed the Drop Action

Filtering of the malicious flows at the border router of the ISP network is better for their customers,
as it reduces the impact on the incoming legitimate traffic to the customer network traversing

90



4.6. Features and Comparison with Existing Policy Language

®
S

~
=]

-
S

w
=3

Time (ms)

w
S

Low Impact Medium Impact High Impact Block

Mitigation Policies

Figure 4.9 — Implementation time of mitigation policies

through the ISP network. Therefore, we measured the number of packets that by-passed the
ingress switch while processing the alert to drop the malicious flows. Number of packets that
cross the ingress switch with varied traffic rates were evaluated. This metric helps to analyze
the effectiveness of our policy translation mechanism as it measures how many packets reach
the destination while deploying the OpenFlow rule to block the malicious flow. As can be seen
in Fig. 4.11, when the traffic rate is 1 Mbps then around 18 packets crossed the ingress switch
and reached the customer network. It is worth noting that the number of packets that crossed
the ingress switch and reached the customer network increases with the increase in the traffic
rate. As shown in Fig. 4.11, when the traffic rate is 5 Mbps then close to 125 packets reached the
customer network which was under attack. There is a sharp increase in the number of packets
that reached the customer network when the traffic rate increased from 10 to 15 Mbps. It occurs
because of the minimum delay in processing the security alert and the deployment low-level rules
to drop the malicious flows.

4.6 Features and Comparison with Existing Policy Language

In this section, first we discuss the features of the policy language and then we compare our
policy language with the existing policy languages.
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Figure 4.10 — Independent of the traffic rate time required to implement the mitigation policy for
high impact severity flows

4.6.1 Features of the Policy Language

The main characteristics of our policy language is described below:

o Index: Index is a special item which helps the PDP in identifying and efficiently instantiate
the policy in the policy database. PolicyID is used in our policy language to identify the
specific policies such as QoS or mitigation policies.

e Rich Set of Actions: It allows the expression of a diverse set of actions to be enforced by
the policies depending on the specified conditions.

e Controlled Natural Language (CNL): The advantage of using CNL is that it is more
readable than typical computer language. Moreover, network operator do not need to be
familiar with the low level syntax to express the policies.

e Policy Definition: Generally, a policy is defined as a set of rules. It is categorized in two
groups static and dynamic. A fixed set of actions are applied according to the pre-defined
parameters in static policies. However, dynamic policies are applied depending on the
changing conditions such as congestion in the network.
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Figure 4.11 — Number of Packets that bypass during the implementation of block action at the
ingress switch

e ECA: Our policy language follows the ECA paradigm to specify the network and security
policies. As ECA paradigm can handle the composite events, so it is a good choice to
design the policy language.

e Modular Composition: It enables the management of the complexity of the policies.
Policies are decomposed into distinct modules with precisely specified interactions. Distinct
modules are also necessary for maintainability.

e Security and QoS constructs: It allows the network operators to express the high level goals
for traffic engineering and security policy enforcement if the specified conditions are met.

e XML: XML is a known international format to define the policies which is expressive and
extensible. Since our policy language is encoded into the XML format, it provides usability
and allows the interoperability of the policies on different system.

e Expressibility: Our policy language enables network operators to express different attack
and congestion scenarios based on the impact severity of the traffic. It also allows network
administrator to specify different levels of QoS services which can be triggered based
on the requirement. Moreover, one can define new security and network goals with the
existing terms of the grammar without the need of another grammar.

e Formalization: This feature in our policy language enables the network operator to leverage
the grammar to define the network and security policies for different scenarios.

e Obligation: It specifies that once an Event occurs in the network, policy language should
instantiate the task which must be executed. As explained in the QoS and mitigation policy
scenario, our policy language enforces the Action once some Event is triggered in the
network.
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4.6.2 Comparison with Existing Policy Languages

Table 4.6 shows the comparison of our policy language with the Procera [115], OpenSec [70]
and Merlin [105]. Procera and Merlin both provide a high-level language to express the policies
in the network. While OpenSec proposed a policy specification language to divert the traffic to
middleboxes for processing. Procera uses a complex syntax which makes it complicated and
difficult to understand. It does not use simple plain language (CNL) to define the policies which
makes it complicated and difficult to comprehend. Moreover, to define an event in Procera, it
needs to be registered with its global data structure. Procera does not provide unique policy
ID to retrieve the policy. It triggers the policy based on the events. It provides a rich set of
actions such as allow, deny, rate limit and redirect host. "Allow" forwards the flow or provide
access to a resource in the network to a user. "Deny" blocks the access of a network resource
for a user or block the traffic. "Rate limit" action sets a threshold to throttling a flow. "Redirect
host" specifies that a flow should be redirected to a particular host machine. Policy definition in
Procera is dynamic i.e. policies are enforced depending on the varying conditions. Furthermore,
it allows policies to be modular and event driven which provide dynamicity and flexibility to
modify the high level policies. However, it does not provide constructs to define the security
and QoS constraints in the network. The main focus of Procera is to program the network using
high-level defined policies.

OpenSec [70] also introduce a policy specification language. Policies are directly defined on the
flow which makes it scenario specific. It relies on the OpenFlow syntax to specify the policies,
which require network operators to be familiar with the OpenFlow concepts. Moreover, it does
not provide a rich construct of actions, only alert and block actions are specified. Alert action
reroute a flow to middleboxes for processing. Block is enforced on the malicious flow. OpenFlow
match field is used as conditions to specify the high-level action for enforcement. Furthermore,
OpenSec does not provide an index to identify the policy for efficient retrieval. Policies in
OpenSec are dynamic in nature and are triggered based on the events in the network. Moreover,
it provides constructs to specify the security policies in the network. However, it does not provide
modular composition while specifying the policies in the network. The main focus of OpenSec is
to route the traffic through middleboxes for processing.

Merlin [105] enables the definition of high-level policies using programs in a declarative language.
The language contains predicates to identify the packets and regular expression to encode the
paths. It uses the packet header fields to classify and express the policies for the set of packets.
An unique identifier is not specified for policy retrieval. Moreover, Merlin does not provide
modular composition to express the high-level policies in the network. It allows the network
operators to express the policies for guaranteed QoS in the network for the specific set of packets.
Moreover, it allows the policies to be enforced based on the changing conditions in the network
which makes the policies in Merlin dynamic in nature. However, Merlin policies are based on the
condition-action paradigm. The main focus of Merlin is to provide the bandwidth guarantee to
specific flows. Therefore, it does not provide diverse set of actions, mainly focus on the forward
action.
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4.6. Features and Comparison with Existing Policy Language

Table 4.6 — Comparison with Procera, OpenSec and Merlin

Procera OpenSec Merlin Proposed Language
Proc world ->do
rf(:)tﬁzn f;: - Flow: Event=QoS_message
E“ ﬂozv c(llass—le timate VLAN=vlan_id; Conditions:
Svntax and - —ee Service: (ip.src=10.0.0.1 and | Flow class= legitimate
y . Gold_path; ip.dst=10.0.0.0.3) ->.% Bandwidth class = Gold
bandwidth_class=gold )
React: Action:
and .
. alert Redirect
event already exist
then allow
. Unique ID is used
Index No unique ID is used pnlque ID No unique ID is used to identify the
is not used .
policy in database
allow; deny, )
Action redirect host, React, Block | forward Forward, Redirect,
.. Drop
rateLimit rate
Controlled Rely on
Natural Do not use CNL OpenFlow . CNL is used to define
. . CNL is not used .
Language to specify policy syntax to policy
(CNL) define Policies
Policy . . . .
Definition Dynamic Dynamic Dynamic Dynamic
EVF:nt Yes Yes No Yes
Driven
Modular. . Yes No No Yes
Composition
Security and No Security QoS Guarantee Both
QoS
Formalization Yes No Yes Yes
Obligation Yes Yes Yes Yes

However, our policy language uses CNL to define the high-level policy in the human readable

format which makes it easy to understand. Network administrators do not need to be familiar with

special programming syntax or OpenFlow concepts to define the high level policy language. It

uses Event-Condition-Action format to define the high level policies. Moreover, it uses a unique

ID to efficiently retrieve the policies from the policy repository. Furthermore, our policy language

provides a formal grammar which can be leveraged by the network operator to define the policies

for different scenarios. It provides syntax to define the network and security policies as well.

Additionally, three high-level actions are specified by our policy language: Forward, Redirect

and Drop.
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4.6.3 Usability of the Policy Language

Our policy language allows to express the high-level policies in controlled natural language.
Network administrator is not require to learn device specific syntax to specify the high-level
policies. It makes the policies easy to write and understand. Moreover, event driven mechanism
in our policy language enables to trigger the policies based on asynchronous notification. It is
better in comparison to condition-action paradigm. Since in condition-action paradigm policy
needs to check the condition all the time to enforce the action. Our policies are not hard coded in
the data plane devices. When an event occurs it triggers the policy and then the high-level policy
is translated into low-level rules for the deployment.

Moreover, our policy language provides modular composition. It enables to clearly define the
interaction among the different modules of the policies and reduces the complexity in managing
the high-level policies. Furthermore, our policy language provides the flexibility to specify
different security and QoS scenarios.

Additionally, our policy language uses an unique ID to instantiate the policy. It makes easier and
faster to trigger a specific policy from the list of policies. Moreover, apart from three high-level
actions forward, redirect and drop other different types of action can be added in our policy
language.

4.7 Related Work

There have been some works on the policy refinement mechanisms. The work whose motivation
is close to ours are Zhao et al [128] and Craven et al [31]. These mechanisms proposed policy
languages to translate the high-level policies into low-level rules. However, they are limited
by the characteristics of the legacy networks such as the lack of centralized control plane,
programmability, and interface to deploy the rules to switches and routers. Bandra et.al. [15]
presented an approach to policy refinement based on the event calculus, used in conjunction with
the abductive technique to know the sequence of steps which will enable the system to achieve
desired goal. First, high-level goals are mapped to concrete goals which are system requirements.
Then, the system requirements are mapped to specific modules available in the system. It uses
UML state charts to describe the system. The relationship between system description and the
high level goals can be implemented either as a policy or system functionality. It can not be
automated. Moreover, refinement process mainly focus on QoS management in differentiated
service network. Verma [113] presents a mechanism of policy translation for QoS management,
which is based on the set of tables to identify the relationship between users, applications, servers,
routers and classes of service supported by the network. When a new Service Level Specification
(SLYS) is triggered, the system performs a table lookup to identify the configuration for the
specified user, application and class of service. This mechanism is automated, however it relies
on the correctness of the table which requires expert administrator. Moreover, this mechanism
supports only specific type of SLA and low-level device policies.
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Thanks to the evolution of SDN technology, our policy translation mechanism is based-on
SDN [90] which provides a centralized control point and an interface between control plane and
data plane to deploy the rules in the switches and routers.

However, programming the network in the SDN is also not an easy task. It requires the network
operators to be familiar with the OpenFlow programming and syntax for specifying the network
and security policies. Our mechanism provides a syntax to represent the high-level security and
QoS policies which are deployed depending on the events in the network.

There have been some languages proposed to program the behavior of the network. P4 [23]
is a high-level language for programming the network. Its aim is to provide the functionality
of parsing the packets independently of the underlying hardware. P4 mainly aims at modeling
the forwarding behaviors through programmable routers. These languages specify the routing
policies close to data plane, while we provide the high level policies for mitigation and QoS
services.

Recently, there have been some proposals on defining high-level policy enforcement. Tripathy
et.al [110] proposed a policy management system to check the consistency and resolve the
conflicts before policy enforcement. It supports functions to verify the trust, resolve the conflicts
and check the consistency before policy enforcement. The main idea of this framework is to
support security, correctness and adaptability for on-demand modification in the policies. A policy
refinement based on Service Level Agreement (SLA) approach is proposed in [76]. Business
level goals are specified as SLA and these SLAs are translated into service level objectives (SLOs)
and these SLOs are used to enforce the policies in the network devices. Differently from these
works, we provide a language to specify the high-level policies and contexts for the security and
QoS policies. Moreover, we provide different high-level policy templates to deploy the low-level
rules based on the high-level action.

4.8 Conclusion

In this chapter, we have proposed a policy translation mechanism to translate the high-level
network and security policies into low-level rules. We used the Controlled Natural Language
(CNL) to propose the grammar for our high-level policies. Moreover, we define high-level policy
templates which helps in enforcing different actions in the network devices. The result is a top
down translation of mitigation and QoS policies into the low-level OF rules. The system has been
validated with the two use cases:(1) QoS policy,(2) mitigation policy with multiple customers
scenarios. The use case are considered basic but generic-they can be easily extended to take
into consideration of more sophisticated requirements and policies. In the next chapter 5, we
discuss the policy management framework at the ISP controller and evaluate the framework
which computes the path and process the requests of the multiple customers of the ISP.
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One of the major objectives of traffic engineering in the ISP network is to mitigate the impact of
traffic congestion on its customers, which can be caused, among others, by the attacks. However,
simply prioritizing the legitimate traffic or redirecting the suspicious traffic for one customer,
without considering the network status of the ISP, may impact other customers of the same ISP.
Because the same path in the ISP network can be shared between different customers of the
ISP. Therefore, it is necessary to consider the network status of the ISP to perform the traffic
engineering for the customers.

Moreover, for effective traffic engineering collaboration is required between the ISP and its
customers. Without collaboration with their ISPs, customers do not have much control over
the incoming traffic, apart from dropping the attack traffic at their border routers. However,
complexity involved in the network management tasks such as configuring switches or routers
for dynamic policy enforcement makes the real time collaboration difficult.

Furthermore, to mitigate the impact of attack traffic, ISPs statically deploy middleboxes inline
with network devices at the choke points of the network to process the incoming traffic. These
middleboxes are generally distributed in the network through a separate VLANs, while network
policy is usually applied per VLAN. This leads to static service chaining with the deployment of
static policies for steering traffic [85]. Moreover, all the traffic, whether it needs to be processed
through the middleboxes or not, eventually traverse these devices, which causes processing
overhead on these devices. It also causes extra latency to the flows which need not to be
processed by the middleboxes. These static deployment of middleboxes and security policies
further complicate the network management tasks. Therefore, a dynamic and automated policy
management system is required to overcome these issues.

The aim of this chapter is to provide a dynamic and adaptive policy management framework for
the ISP network. The framework enables the ISP to perform the traffic engineering considering
its network status. We benefit from the SDN technology and use our policy specification and
translation mechanism introduced in chapter 4 to specify the high-level policies which are
enforced based on the conditions in the network. Moreover, customers can dynamically express
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their requirements to the ISP for the instantiation of the policies. In summary, the framework takes
into account multiple factors like the current network status of the ISP and policy agreements
with its customers to perform traffic engineering. We implement our proposed framework for
a specific use case, where the ISP and their customers collaborate with each other to mitigate
the effect of congestion caused by the attack traffic. We experimentally demonstrate that the
framework can help an ISP to provide good QoS to legitimate traffic, while reducing the impact
on other customers’ traffic.

The remainder of this chapter is organized as follows: Section 5.1 discuss the requirements for the
policy management and enforcement framework. In Section 5.2 we present our policy framework,
its workflow and functional components. Section 5.3 describes the mechanism to compute the
path for the policy enforcement. Section 5.4 provides the workflow of the policy management
framework. Experiments and results are reported in Section 5.5. Section 5.6 provides some
discussion on the previous works and finally Section 5.7 concludes the paper.

5.1 Requirements for the Policy Management and Enforcement Frame-
work

e Dynamic and Automated: The policy framework must be dynamic and highly automated
to free the network operators from manual and error prone process of policy enforce-
ment. Only at the initial stage network administrator should define the high level policies
manually.

e Well-formed: The policy should be well formed so that a unique policy can be chosen
for a given event and associated conditions. This would enable the framework to be
deterministic.

e Simple and Expressive: Policy management framework should be simple and expressive
enough so that network operators can define their diverse intents. It should allow the
network operators to specify the policies in a simple to understand language without
knowing how these policies will be implemented.

e Service Chaining: Specifying correct processing order for a packet depending on the
policies is important: For instance, a packet coming from external network should be first
processed through a firewall and then it should traverse the core network, or a suspicious
traffic should traverse through a specific set of switches or middleboxes in the network.

o Traffic Engineering: Framework should enable to execute the traffic engineering policies
in the ISP network for an end user without impacting the traffic of other users to reduce the
collateral damage.
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Figure 5.1 — Workflow of the Policy Management Framework

5.2 Design Components

In this section, we describe the components involved in the design of policy management and
enforcement framework. Since policy database, policy decision point and POI have already
been described in detail in chapter 4, i.e. how they enable to translate the high-level policies
into low-level OpenFlow rules. Therefore, in this chapter we mainly describe about Monitoring
Component (MC), Network Information Base (NIB) in more detail. The main focus of this chapter
is to propose a policy-based management and enforcement system to manage the ISP network
in an automated fashion. The functional components of the policy management framework are

described as follows:

Monitoring Component (MC):

The MC is responsible for receiving alerts and notifications from the different customers. Particu-
larly, it extracts the events and conditions which are used by the PDP to instantiate the policy
in the policy database. The extracted events and conditions are: attack type (event), flow class

101



Chapter 5. A New SDN based Security Policy Management and Enforcement Framework

(suspicious, malicious, legitimate), impact severity (low, medium, high), and flow information
(source and destination IP addresses).

Policy Database (Policy DB)

In the framework, policy database is used to store high-level policies defined by the network ad-
ministrator in the ISP network. Policies are defined as event, condition and action paradigm.Please
refer to chapter 4 for more detail on this component as it has already been described there.

Policy Decision Point (PDP)

This component works as an orchestrator between different modules in the framework. It is
the centralized intelligence point in the framework. Details of this component has already been
described in chapter 4.

Network Information Base (NIB)

NIB maintains a table containing the list of paths based on different bandwidths. It is responsible
for computing the path depending on the network status of the ISP. It also considers the list of
middleboxes to traverse, in order to steer suspicious flows in the network. It maintains a mapping
table containing the list of middleboxes and their deployment location in the network. Depending
on the inputs (flow informations, high-level action, and bandwidth requested) it computes the path.
After computing the path, it provides the list of switches and output port along with Network
Service Header (NSH) to the PDP. Paths are computed using the policy aware shortest path [27],
which enables the traffic to be routed through a path based on the pre-defined policies. Details of
the path computation algorithm is described in Section 5.3.

Moreover, this component is responsible to monitor the status of the switches and paths in the
ISP network and provides the network status (congested, normal). Indeed, to monitor the ISP
network, we can use a tool like OpenNetMon [112] that permits to maintain the traffic matrix for
different paths and switches in the network.

Policy Orchestrator and Implementer (POI)

This module generates the OpenFlow rules based-on the match and action information provided by
the PDP. It takes the flow informations (source and destination IP), path details (switchID:output
port) and Network Service Header (NSH) from PDP to distribute the rules in the OpenFlow
switches in the network. Description of POI module has been given in the chapter 4.
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Customer
Network

Figure 5.2 — An Example of Policy Aware Shortest Path

5.3 Path Computation and Network Service Header

This section presents the details of major functions in our policy enforcement framework such as
path computation and Network Service Header (NSH).

5.3.1 Network Service Header (NSH)

Our policy management framework uses NSH to steer the traffic. In particular, we use VLAN
ID (MPLS and VXLAN header can be used as well) to provide NSH in the packets, and it
contains end-to-end path identifier (global segment) and middlebox or switch IDs (local segment).
Both local and global segment are stacked in the NSH for forwarding, and these two labels are
described as follows,

1. Global Segment helps to steer the flows from the ingress switch to the egress switch in
the ISP network. Thanks to this label, core switches in the path can easily identify the
output port through which a packet is to be forwarded. Flow states containing NSH is
maintained only at ingress switch. It significantly reduces the flow table entries in the core
switches [56].

2. Local Segment is used to identify the middlebox through which the traffic of interest
needs to be processed. It avoids broadcasting the traffic towards the middleboxes for
processing [78]. Moreover, middleboxes are not required to be deployed outside the
main datapath in the network. Furthermore, it reduces the processing overhead on the
middleboxes by avoiding the unnecessary processing of all the traffic in the path through
the middleboxes, if it is not required.
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It is worth noting that although inserting extra header may increase the size of packets, but the
processing time for switches and middleboxes can be significantly saved. Moreover, NSH can
reduce the number of flow table entries in the core switches, because its operations only happen at
ingress switch of ISP. Moreover, ISPs can use software switches at its ingress point to overcome
the limitations of flow table entries.

5.3.2 Path Computation

Algorithm 4 Path_Computation

1: procedure PATH_COMPUTE(flow,bw_req,action,step)

2 hop <0

3 F < flow

4: path[] < get_paths(destinationIP) // Provide the list of paths to forward the traffic to destination
35: Total_bandwidth < (bw_req+ bandwidth_occupied)

6 if action is fwd or redirect and bw_req then

7 for Flow F and each path do

8 b < compute_Bandwidth(min(all_links)) //Takes the minimum bandwidth in the path

9 d < Hop_Count(stepli] + stepli+1])

10: hop_count < hop +d // Computes the hop count in the path

11: path.addList(p)

12: if (b — Total_bandwidth) > 0 then //New flow does not impact other flows traversing the
link.

13: return hop_count, path(p)

14: else

15: return No Paths are available

16: end if

17: end for

18: end if

19: if action is Fwd_Middlebox and flow F then

20: middleboxes <+ Fwd_Middlebox //Get the list of middleboxes to traverse

21: pathl] < list_paths(destinationl Pmiddleboxes)

22: for each path do

23: b < compute_Bandwidth(min(all_links)) //Takes the minimum bandwidth in the path

24: hop_count < hop +d // Computes the hop count in the path

25: path.addList(p)

26: if (b — Total_bandwidth) > 0 then //New flow does not impact other flows traversing the
link.

27: return hop_count, path(p)

28: else

29: return No Paths are available

30: end if

31: end for

32: end if

33: end procedure

Algorithm 4 takes into account the flow, bandwidth requested and action provided by the PDP for
computing the path. Flow informations specially destination IP helps in identifying the egress
points for computing the path. Action specifies whether to forward, redirect or route the flow
towards middleboxes. The bandwidth to be provided to the flow is specified in the variable
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bw_req.

For instance, PDP may specify that the flow needs to be steered through firewall and NAT devices,
then NIB module identifies the paths which have firewall and NAT devices and whether they are
connected to the destination network mentioned in the flow or not. After computing the path,
NIB returns the path details to the PDP.

For better illustration, an example is shown in Fig. 5.2, showing how the paths are computed. For a
flow F, in order to obtain a bandwidth b, one constraint that must be satisfied is that the maximum
rate of the traffic from other flows in the shared link should be under (b — Total_bandwidth),
where b is the minimum link capacity in a path. In other words, bandwidth requirement of a flow
should not impact other flows which are traversing through the network.

As shown in Fig. 5.2, paths (P}, P») are provisioned for high QoS, while the paths P; and P, are
of low bandwidth. Moreover, the path P; is shared by the flow F; and F>. While the flow F3
traverses through the path P. Traffic rates of Fj, F> and F3 are 10, 15 and 20 Mbps respectively.
Flow F, is legitimate and needs to be redirected to another path for better QoS.

In this example, NIB gets the status of the path P, as congested since flow F3 of 20 Mbps is
traversing through P>. Moreover, the capacity of the link between S and S3 is 20 Mbps. So, the
path P> can not be used for redirecting the flow F, as it will negatively impact both the traffic />
and F3. Therefore, the available paths for computation are P; and P;. The result after running
Algorithm 4, indicates that the shortest path with the lowest hop count is path P3. Thus, flow F>
is redirected to path P rather than P, (which has the same hop count as that of P; but has lower
bandwidth capacity between switch Sg and Sy).

Moreover, the Algorithm 4, also computes the path when a flow needs to be steered through the
sequence of middleboxes. In this scenario, the action variable contains the list of middleboxes
through which flow is to be routed. Algorithm 4 checks if the action is Fwd_Middlebox then it
computes the path for the flow considering the list of middleboxes which needs to be traversed.
Variable Fwd_Middlebox provides the list of middleboxes through which flow is to be routed.
Moreover, algorithm ensures that the flow F which needs to be forwarded through the path
containing middleboxes should not impact other flows traversing the path negatively. In other
words, bandwidth should be under (b - Total_bandwidth).

5.4 Workflow of the Framework

The design overview of our framework is shown in Fig. 5.1, consisting of several functional
components as described in Section 5.2. As most of the operations are carried out within the ISP
domain, the customer network is not shown here. To better illustrate the specific functions of the
different components, the operational workflow is given as follows,

1. An event is triggered at the ISP controller when a security alert is received by the
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Monitoring component from the customer controller. Flow informations (source IP,
destination IP), impact severity of the traffic on the customer network (low, medium, high),
flow class (legitimate, suspicious, and malicious) and attack type details are extracted by
the MC module [54]. The extracted informations are forwarded to the PDP [55].

2. PDP selects the high-level action from the policy database to be applied on the flow based
on the event and its corresponding conditions received from MC. Then, it forwards the
high-level action, bandwidth requested, and flow informations to the NIB.

3. The NIB computes one or multiple best-fitted paths (more details will be given in Sec-
tion 5.3.) given flow informations (i.e., it allows to identify the ingress and egress nodes
within the ISP networks), bandwidth requested, and the high-level action.

4. NIB forwards the path details along with switch ID, output port and Network Service
Header (NSH) (e.g., VLAN ID) [95] to the PDP. PDP forwards these details to the POI
module for the deployment of the rules in the OpenFlow switches. If all the paths in the
ISP network are congested then NIB returns message stating ’no paths are available” to the
PDP. In this case, PDP forwards drop action for the flow of concern to the POI to reduce
the congestion level in the network.

5. Moreover, PDP instantiates the script in the POI based on the bandwidth requested by the
customer. Then, script in the POI module deploys the OpenFlow rules in the switches.

5.5 Experiments

We consider the ISP network which provides the traffic engineering to its customers to mitigate
the impact of network congestion. The aim of our experiments is to show, in a multiple-customer
scenario, the effectiveness of our proposed policy management and enforcement system on
mitigating the impact of traffic congestion and collateral damage in the presence of DDoS attacks.

5.5.1 Experiment Settings

The prototype our policy enforcement framework is implemented in Python and run as an
OpenFlow application on Ryu SDN controller. The experiments were carried out in Mininet [69],
which provides prototyping environment for the OpenFlow switches. The experimental scenario
is shown in Fig. 5.3, in which the ISP network contains 14 OpenFlow switches and 6 paths. In
particular, the paths noted with Py, P, and P are configured with higher bandwidth as compared
to the paths P4, Ps and Ps. The bandwidth and link loss probability of different paths are shown
in Table 5.2. In addition, each customer network has one OpenFlow switch attached to its SDN
controller, which communicates with the SDN controller of the ISP network using the REST API.
Four hosts are configured to send the traffic to the customers C;, C; and Cs.
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Table 5.1 — Traffic its flow class and Destination Network

Flow | Flow Class | Destination

H, Legitimate &
H, Suspicious C,
H; Legitimate ()
H, Legitimate (6]

5.5.2 Example Scenario

Host H, sends UDP flood traffic at the rate of 400 Mbps towards customer C; with an aim to
congest the network. Hosts Hy, Hz and Hy sends traffic at low rate to the customer networks Ci,
C> and Cs respectively. Table 5.1 shows the traffic from its source to the destination network
with its flow class. When network congestion occurs, C;, C; and C3 send the alerts to the ISP
requesting for better QoS for their legitimate traffic. In the scenario, ISP receives a security
alert in IDMEF format [44], from customer C3 which requests to redirect the legitimate traffic
originating from Hj.

The alert in the IDMEF format provides a common exchange format between the ISP and its
customers. Specifically, Analyzer ID specifies the ID of the sender, which is the customer
network in our case. Source and Target addresses specify the IP addresses of the source and
destination networks respectively. The field Service contains the specific information about
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Table 5.2 — Traffic paths in terms of bandwidth and link loss probability

Paths | Bandwidth | Link Loss Percentage

P 400 Mbps 0
P, 400 Mbps
P 400 Mbps
Py 200 Mbps
Ps 100 Mbps
Ps 50 Mbps

NN | W OO

the traffic, e.g., protocols. Assessment field specifies the impact severity of the traffic on the
customer network, which has either of the following values: low, medium and high. In our
case, low impact severity means that the customer network is stable and congestion level is
60%, medium and high impact severity means congestion level is 70% and more than 80%
respectively. Field AdditionalData provides flexibility to extend the standard IDMEF alert
with more information. For example, we use this field to accommodate flow class to denote the
class of traffic.

Upon receiving an alert, MC module extracts the information of interest and forward it to PDP
as explained in Section 5.2. In the scenario, alert from Cs contains flow class (legitimate), Flow
(source IP, destination IP), impact severity (low) and traffic type (UDP). With these inputs, PDP
gets high-level action (redirect) from policy database as shown in Listing 5.2. The Listing 5.2
shows a sample policy used in our experimentation to address UDP flood attacks. Flows identified
as suspicious are diverted to other paths in the network if they have a low impact on the network.
Likewise, in Listing 5.3, a sample policy to provide better QoS to legitimate traffic is shown.

Then, PDP forwards the high-level action, flow information and flow class to NIB for computing
the path. In this scenario, NIB provides the path Ps for redirecting the flows for Csz. Then POI
inserts a global segment in the packets from Hy to C; for redirection. POI also distributes the
rules in the switches (S1, S5, S4) to forward the flow from Hj.

Similarly, traffic from H3 to C; is redirected through path P, based on the request from customer
C,. In the same way, if customer C; requests the ISP to redirect the legitimate traffic originating
from host Hy, one of the available paths will be chosen. If customer C; requests to redirect the
traffic of H, with alert containing flow class suspicious and impact severity medium, then flow is
redirected to path Ps, which is provisioned for suspicious traffic of medium impact severity. In
doing so, ISP can guarantee the good QoS for legitimate traffic.

108



0N N L bW~

G L LW W NN DN N DNDNNDDND = = == = = = = = =
W NN = OO0 X IN N A W~ OO X I WU A WN R~ OO

O 0 3NN B W=

]

5.5. Experiments

Listing 5.1 — Alert Message Exchange Format

<IDMEF-Message version="1.0">
<Alert>
<Analyzer analyzerid="CUSTOMER C3"/>
<Source >
<Node>
<Address category="ipv4—addr">
<address >10.0.0.4 </address >
</Address>
</Node>
<Service >
<protocol >udp</protocol >
</Service >
</Source >
<Target>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.7 </address >
</Address>
</Node>
<Service >
<protocol >udp</protocol >
</Service >
</Target>
<Classification event="UDP-Flood Traffic">
</Classification >
<Assessment >
<Impact severity="Low"/>
</Assessment>
<AdditionalData> type ="string" meaning="flow class">
<string >Legitimate </string >
</AdditionalData >
</Alert>
</IDMEF-Message >

Listing 5.2 — A Sample Policy File to redirect suspicious traffic

<Policy PolicyID="Security_policy">
<Event event="UDP-Flood">
</Event>
<Condition >
<flow class="suspicious"/>
<Impact severity="medium"/>
</Condition >
<Actions action="redirect"/>
</Actions >
</Policy >
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Listing 5.3 — A Policy File to provide QoS to Legitimate flows

<Policy PolicyID="QoS_policy">
<Event event="QoS_request">
</Event>
<Condition >

<flow class="legitimate"/>

</Condition >
<Actions action="redirect"/>
</Actions >

</Policy >

5.5.3 Results and Analysis

We use throughput and network jitter, two well accepted QoS metrics, to evaluate the effectivenss.
Some results are reported in the following.

Throughput of legitimate traffic

Throughput is measured in the presence of DDoS attacks. As we can see in Figure 5.4, the
throughput of all the legitimate traffic dropped sharply as soon as H, started to attack. As a result,
the SDN controller of customer C5 sends an alert, which contains the Flow informations (source
IP, destination IP) and flow class (legitimate), to MC at the ISP controller, making PDP decide on
redirecting the flow. Subsequently, NIB computes the best path, which is, P3 in this case, and
provides the path details and NSH to the PDP. Finally, the corresponding OpenFlow rules are
loaded to PEPs, namely the OpenFlow switches by POI based on the inputs from PDP. As shown
in Figure 5.4, the legitimate traffic traversing to C3 was thus able to quickly return to its normal
level.

Similarly, the traffic flow going to C, was redirected through path P, upon the request of customer
(3, in order to restore its throughput to the normal level. Afterwards, the alert of customer C)
reached the ISP controller, which interestingly redirected the traffic originating from host H;
(which has the higher throughput) to path P, as well. Therefore, pushing the throughput of the
traffic (originating from host H3) to customer C; down to zero, as shown in Figure 5.4. This
indicates that, due to the limited availability of high QoS paths in the ISP network, ensuring the
QoS for one customer may incur negative impact on other customers.

QoS provisioning for legitimate traffic.

Following the previous experiment, we examine how the QoS of legitimate traffic can be provi-
sioned if all the paths with high bandwidth are congested. In this experiment, when the customer
C; requests for getting better QoS. The traffic from H; to C; is redirected to lower bandwidth
path Py instead of P;. As shown in Figure 5.5, it avoided the collateral damage caused to the
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Figure 5.5 — Throughput of legitimate traffic in the case traffic going towards Cj is redirected
through low suspicious path

traffic going towards C, and C3. Moreover, traffic from H; to C; is not heavily impacted in spite
of the congestion in the legitimate path LP;.
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Figure 5.6 — Throughput of legitimate and suspicious traffic going towards customer network
after redirection.

Aggressive traffic redirected through suspicious path

In this experiment, we examined the effect of redirecting the suspicious traffic through suspicious
path i.e. path provisioned with low bandwidths. Customer C; sends an alert for the traffic
coming from H; by specifying the flow class as suspicious and impact severity as medium. As a
result, traffic from H> is redirected through suspicious path SP, with medium impact severity. As
Fig. 5.6 shows, legitimate flows from H| obtained its fair share of bandwidth close to 300 Mbps.
Also, flows from H3 and Hj heading to C; and C; got appropriate bandwidth around 200 Mbps.
However, suspicious traffic from H, to Cj receives throughput of 100 Mbps which is provisioned
for the suspicious traffic with medium impact severity.

Network Jitter of legitimate traffic

Finally, we test how the network jitter of legitimate traffic varies because of congestion in the
network. As Fig. 5.7 shows, the network jitter of legitimate traffic going towards customers Cj,
(,, and C; started to increase when the attack traffic from H, congested the network. However,
all of them immediately decreased when the ISP controller redirected the traffic flows upon
receiving the mitigation requests from the customers. Despite the similar changing pattern, the
network jitter of the traffic going to C; decreased earlier compared to those of C; and C;. This is
simply because customer Cs sent alert earlier than customers C, and C; did.
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Figure 5.7 — Network jitter of legitimate traffic

5.6 Discussions

To the best of our knowledge, there is a number of works dealing with policy-based network man-
agement leveraging the SDN paradigm [16, 18, 70, 77]. They usually exploit key features such
as data plane programmability and network visibility of SDN to ease the network management
tasks. In this section, we review existing policy-based systems, that inspired them, and earlier
proposals in traffic steering.

Traffic steering is an exemplary instance of how to take advantage of SDN switches to enforce
routing and security policies in an efficient manner for middlebox-specific networks. One such
effort, SIMPLE [93], alleviates manual operation from administrators by allowing them to specify
a logical routing policy and translates it into forwarding rules, in compliance with physical
resource constraints. Additionally, FlowTags [43] provide a technique to enforce network-wide
policies in spite of packet modifications imposed by middleboxes.

Policy management frameworks would often rely on the above-mentioned technological building
blocks to satisfy user-centric requirements. EnforSDN [18] proposes to simplify network service
management by decoupling policy resolution (computing concrete rules) from policy enforcement
(pushing low-level rules) by remarking that the former deals with flows, e.g., security policies,
while the latter forwards packets at the data plane. It tackles middlebox-induced problems but
fails to accommodate other contexts than the network. PolicyCop [16] is such a QoS policy
enforcement framework that provides an autonomic management of user-centric policies by
monitoring and enforcing the users’ Service-Level Agreements (SLAs). It relies on common
data plane interfaces exposed by OpenFlow forwarding devices for statistics collection and
flow information retrieval, and includes a number of controller applications to support policy
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monitoring and enforcement. Our work is interested in extending the inputs to the policy
engine with security events. Additionally, the computation of policy routes do not take into
account the availability of security services. Business-level goals are also taken into account in a
policy authoring framework proposed by Machado et al. [77]. Their framework matches these
requirements with the capacities provided by the network infrastructure in order to decide on an
appropriate policy, through abductive reasoning. It is however unclear how network elements are
requested and configured beyond the policy path computation (referred to as Analysis Phase in
their work). OpenSec [70] is close to our proposal in that this framework provides a language
that blends security services within the autonomic reaction process. However, it seems to focus
the deployment on edge switches, while we are interested in distributing the policies across the
controller’s network domain.

Our work aims at accommodating multiple customer services sharing a network service provider,
who doubles as a security service provider. Going beyond routing and QoS requirements, we
aim at reacting to security events, with the collaboration of the customers, and offer network-
status-aware security reaction policies. The presence of multiple competing customers raises a
supplementary challenge in that the reactive policy targeted at a given customer should cause
little to no impact on other customer services. It is important to consider the whole network then,
and not only the edge switches, in order to distribute the rules along the policy path. This path
traverses a number of forwarding switches and security services (either static middleboxes, or
virtualized network functions) in a fashion similar to OpenSec [70] and SIMPLE [93].

There are some limitations of our policy management and enforcement framework. We imple-
mented the framework with one ISP and three customers scenario. However, ISPs generally have
hundreds and thousands of customers. So, scalability is a major concern. However, to manage
large customer base ISPs can deploy multiple SDN controllers. Different SDN controllers can
manage different groups of customers. Therefore, with multiple SDN controllers scalability
can be increase to some extent. Moreover, while performing traffic engineering our framework
considers the total bandwidth of the path and the current load in the path. Additionally, it consid-
ers the QoS requirement and middleboxes need to be traversed in case the traffic is suspicious.
However, it can be modeled as an optimization problem by considering different constraints such
as load on switches and middleboxes. Load on SDN controllers should also be considered while
deploying the rules. So, there are some factors which needs to be considered for the deployment
of our policy management and enforcement framework.

5.7 Conclusion

In this chapter, we proposed an automated and dynamic policy enforcement framework for
mitigating the impact of attack traffic between the ISP and its customers. Framework allows the
administrators in the ISP network to define high-level security policies in human readable format.
Security policies at the ISP controller can be dynamically specified according to the security
alerts sent from the customer controller to address the different circumstances. The policies are
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specifically enforced at OpenFlow switches via APIs of SDN controller for achieving dynamic
policy deployment. Specifically, our policy management framework provides collaborative and
user centric automated response for mitigating the impact of attack traffic and providing the QoS

service to the customers of the ISP.
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Conclusion and Future Work

The main objective of this thesis was to propose automated mechanism to handle the cyber attacks.
Imagine, for instance service provider and enterprise infrastructures, with attackers targeting both.
Cyber attacks, targeting both may affect the wide diversity users and services over the Internet.
Unavailability of the network administrators to mitigate the attacks further increase the impact of
attack traffic.

In terms of contributions, we have started this dissertation by surveying existing mechanisms
to mitigate the cyber attacks. Firstly, we presented the state of autonomic cyberdefense, as well
as the existing mechanisms. The, we introduced the SDN and discussed its features. More
specifically, we surveyed SDN based security mechanisms and services. We described the
attack mitigation, detection, traffic monitoring and traffic engineering mechanisms based on
SDN, as well as their characteristics. Our focus has been on how security mechanisms can be
improved using the SDN technology. Specifically, we presented the techniques leveraging the
characteristics of SDN such as decoupling of control and data plane, programmability and global
visibility from a security standpoint.

The state-of-the art and related work has been complemented by three main contributions. First
of all, we proposed an autonomic mitigation framework which provides a collaborative and
automated response. The framework is distributed between ISP and its customer. The framework
allows the customer to request for mitigation upon attack detection. The idea is validated in
the mininet as well as in the testbed. Second, we presented a policy grammar to represent the
high-level security and network policy in the ISP network. We introduced policy templates and
tables to map the high-level policies into low-level OpenFlow rules for deployment in data plane
devices. The idea is to provide a way to represent the high-level policies in the ISP network and
provide an automated way to translate these policies in to low level rules. Third, we proposed a
policy management and enforcement framework to manage the ISP network and provide security
and QoS services to its customers considering the network status of the ISP. The aim is to reduce
the impact of collateral damage caused by the attack traffic to different customers. The idea is to
compute the path dynamically considering the network status of the ISP and provide the path to
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redirect the traffic. A prototype of policy management and enforcement framework is designed
and validated in the mininet considering a ISP network and multiple customers scenario.

In terms of perspective for future research, several actions remain to be done. It is worth noting
that security mechanisms using SDN have a vast number of challenges to be addressed. This
dissertation has handled, with a limited scope, some of the challenges in the topic, paying
special attention to mitigation of attack traffic in an automated way. Automated response system
encompass many other fields that have to be handled together in order to improve their resilience
against attack and misuse.

With this in mind, a first perspective would include a more thorough analysis of the performance
impact of using SDN for mitigating attack traffic. Indeed, the performance of our autonomic
framework is an important issue that is necessary to handle. In this dissertation, we expanded the
single ISP and single customer, into three customer scenario, while reducing the impact of attack.
However, impact of scalability on ISP network needs to be considered for good performance.

In this dissertation, we assumed that customer uses some detection mechanism to detect the
attacks. Accurate and quick detection of attack is required for timely and effective mitigation.
Moreover, integration of detection tool at the customer network with the mitigation components
in the ISP network is also a concern. Moreover, in the framework, monitoring component needs to
be integrated at the ISP side to detect the congestion in the ISP network, and provide the network
status of the ISP network for effective traffic engineering in the ISP network. Likewise, the
performance of the framework with all the components integrated together, with more customers
needs to be analysed.
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A.1 Introduction

Les cyber-attaques sont défendues par deux mécanismes: la détection et I’atténuation. Le
diagnostic d’attaque repose sur le mécanisme de détection. L’ atténuation est le mécanisme de
réponse qui tente de réduire I'impact de 1’attaque et sa sévérité sur le réseau. Contrairement aux
mécanismes de détection, la recherche sur les approches d’atténuation a recu moins d’attention
en raison de la complexité inhérente au déploiement de mécanismes automatisés d’atténuation.
En outre, les mécanismes d’atténuation existants nécessitent le déploiement de périphériques
matériels ou logiciels spéciaux qui les rendent complexes et coliteux. Pour ces raisons, les petites
entreprises et les fournisseurs de services sont réticents a déployer ces mécanismes complexes
dans leurs réseaux.

Par ailleurs, les cyber-attaques ne causent pas seulement des problemes aux réseaux d’entreprise
ou aux utilisateurs finaux, mais aussi aux fournisseurs de services Internet (FAI). Ce sont en
effet les FAI qui fournissent aux entreprises et aux utilisateurs finaux un acces a Internet qui y
souscrivent par un abonnement. Lorsque les attaquants ciblent le réseau des utilisateurs finaux, ils
provoquent également des dommages collatéraux aux réseaux des FAI lorsque le trafic malveillant
traverse le réseau du FAI avant d’atteindre les utilisateurs finaux. Par conséquent, les FAI sont
devenus des acteurs importants de la cybersécurité et leur intervention est essentielle pour atténuer
les cyber-attaques et leurs impacts. Cependant, il est difficile pour le FAI de détecter les attaques
vers les utilisateurs finaux ou les réseaux d’entreprise. Cela entraine un traitement additionnel
pour les dispositifs de détection déployés dans le réseau du FAI ainsi qu’une violation de la
politique pour les utilisateurs finaux. Généralement, les FAI disposent d’une base de clientele
conséquente et, s’ils devaient réaliser le processus de détection pour chacun de leurs clients, ils
subiraient un colit de traitement prohibitif. En outre, si la détection et I’analyse sont effectuées
par le FAI et si, pendant cette durée, le flux est modifié, cela pourrait causer une violation de la
politique des clients. Par conséquent, il est crucial de fournir une technique d’atténuation qui peut
coexister entre les FAI et les utilisateurs finaux, et qui respecte la politique du réseau et celles des
utilisateurs. Il est donc crucial pour les utilisateurs finaux de fournir I’information adéquate au
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FAI pour atténuer les cyber-attaques.

De nos jours, les cyber-attaques ont gagné en ampleur et leur impact est s’est étendu, pour ne plus
se limiter au FAI et a I’ utilisateur final cible des attaques, mais affecter aussi les autres utilisateurs
finaux et FAI qui dépendent du FAI fournisseur de I’utilisateur victime. Cela inclut également les
ressources des différents fournisseurs de services. Par conséquent, il existe un besoin pour un
mécanisme de défense coopératif et a grande échelle impliquant les différents acteurs victimes
des attaques [51]. Ces mécanismes coopératifs visent a étre évolutifs au niveau technique et
commercial. Ils nécessitent bien souvent I’'usage ou I’installation d’un logiciel ou d’un matériel
spécifique. Cela rend ces systémes complexes a déployer

La gestion de ce mécanisme de défense coopérative est une tiche difficile, car elle présente
différents défis: (1) le partage des informations d’alerte entre différents domaines réseau doit
étre rapide et automatisé, (2) le déploiement de politiques réseau et de sécurité dépendant des
accords de niveau de service (SLA) avec un domaine de réseau différent doit étre réalise sans
aucune violation de la politique, (3) la configuration des regles spécifiques au périphérique de
bas niveau sur les périphériques réseau hétérogeénes ne doit pas dépendre du travail manuel des
administrateurs réseau, (4) le déploiement d’un tel mécanisme de défense ne doit pas nécessiter
I’installation d’un matériel ou d’un logiciel spécifique. Ceci afin d’obtenir un mécanisme de
défense automatisé, qui répond aux changements du réseau et aux alertes de sécurité, sans
intervention des administrateurs réseau.

Cependant, il existe des difficultés a fournir I’automatisation nécessaire a la cyber-défense.
Il existe un écart clair entre les différents composants, de la surveillance et de I’analyse a la
réponse. L’ automatisation ne peut étre réalisée sans assurer le contrdle du réseau, en fonction des
variations de son état. Les différents composants d’une défense automatisée doivent égalelement
communiquer efficacement les uns avec les autres pour assurer la défense globale du systeme. Et
cela, sans augmenter le colit de déploiement pour le réseau d’entreprise en matiere de logiciels et
de matériels spécifiques. En effet, s’il est nécessaire d’implémenter des dispositifs spécifiques
ou d’intégrer des logiciels requérant beaucoup de modifications dans le réseau, les entreprises
seraient alors réticentes a déployer ce type de mécanismes automatisés. A 1’heure actuelle, les
mécanismes de défense automatisés sont fortement couplés aux périphériques matériels faisant
ainsi du déploiement et de la gestion du réseau une tiche complexe et fastidieuse. En outre, le
systeme de défense automatisé doit €tre robuste et a I’abri de nouvelles formes d’attaques. Ainsi,
ces défis doivent encore étre abordés pour rendre le systeme de défense du réseau automatisé et
opérationnel.

L’ objectif de cette these est d’étudier la faisabilité et I’ efficacité de la construction d’un mécanisme
de cyber-défense autonome en explorant de maniere exhaustive le paradigm Software-Defined
Networking (SDN) et en tirant parti de ses caractéristiques uniques, principalement la programma-
bilité du plan de données, la visibilité globale sur I’ensemble du réseau et le contrdle centralisé.
En d’autres termes, la these vise a étudier comment et dans quelle mesure la cyber-défense au-
tonome peut étre réalisé en matiere d’auto-configuration, d’auto-optimisation, d’auto-protection
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et d’auto-réparation.

Le rapport d’enquéte d’ AlgoSec montre qu’en raison du manque d’automatisation:

e 20% des organisations ont subi des menaces contre leur sécurité;

e 42% des organisations ont eu une panne de réseau en raison de mauvaises configurations
du réseau causées par des taches liées a la sécurité. Selon 1’enquéte, de nombreuses
organisations ont éprouvé des violations de sécurité en raison de configurations manuelles
de sécurité;

e pour 19% des organisations, un jour ouvrable complet ou plus est nécessaire pour résoudre
la violation de sécurité en raison du travail manuel réalisé par les administrateurs réseau.

Cependant, avec les menaces cybernétiques accrues, il est nécessaire d’automatiser les mécan-
ismes de défense. Les attaquants utilisent des outils automatisés pour cibler les ressources du
réseau, rendant la défense automatisée nécessaire pour contrer ces attaques.

AUTONOMIA [29] est un systeme reposant sur la configuration automatique pour controler et
gérer les systemes de sécurité du réseau. Il configure le systeme et modifie dynamiquement les
stratégies pour protéger le réseau. Le systeme comporte deux modules: une interface de gestion
de composants (CMI) et un gestionnaire d’exécution des composants (CRM). Le CMI permet de
définir les politiques de haut niveau pour chaque composant du réseau, qu’il s’agisse du logiciel
ou du matériel. Le CRM gere les composants en utilisant les politiques définies dans le CMI. Le
travail rapporté dans [94] classifie le trafic comme normal, anormal ou incertain, pour prioriser
les différentes classes de trafic afin de fournir de la qualité de service. Un outil décrit dans [116]
met a jour les regles de pare-feu en fonction des informations de trafic destiné a un réseau de
pots de miel (honeynet). Il contient un module qui analyse les journaux de trafic générés par le
honeynet et utilise des mécanismes d’exploration de données pour générer les nouvelles régles de
pare-feu pour le déploiement.

ISDS [117] a été développé comme un systeme de sécurité basée sur le paradigme d’informatique
autonome (Autonomic Computing). Le but de ce logiciel est de fournir de I’intelligence a ses
composants pour s’adapter dynamiquement en fonction des conditions de sécurité du réseau.

Ces systemees nécessitent souvent un logiciel ou un matériel spécifique pour leur déploiement.
Cela rend ces systemes difficiles a déployer. Grace a I’émergence de la mise en réseau définie par
logiciel (SDN) [88], il nous est permis de réviser les mécanismes de défense pour les automatiser.
SDN est un nouveau paradigme réseau qui sépare les plans de contrdle et de données. Cette
séparation permet d’ajouter facilement de nouvelles fonctions réseau en fonction des besoins
actuels du réseau. Le terme SDN a été inventé a 1’ Université de Stanford pour identifier le travail
réalisé sur OpenFlow [80]. Depuis, il a attiré beaucoup d’attention tant du milieu universitaire que
de I’industrie. De nombreuses idées nouvelles basées sur SDN ont été proposées [41, 66, 101].
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Dans I’industrie, SDN est considérée comme une technologie future qui peut réduire le cofit
opérationnel et renforcer le réseau.

Une architecture SDN se caractérise par les caractéristiques suivantes:

o un controleur logiquement centralisé et une visibilité globale du réseau : dans un réseau
SDN, tous les appareils du plan de données sont connectés a un contrdleur centralisé. Le
contrdleur peut alors envoyer des messages de contrdle a ces appareils. Le contrleur peut
également leur envoyer des requétes pour obtenir des statistiques qui permettent de déduire
I’état du réseau. Cette vision centralisée de 1’état global du réseau facilite la prise de
décision, par opposition aux réseaux existants qui sont construits sur une vision autonome
du systeme ou les noeuds ignorent 1’état général du réseau.

o [a programmabilité du plan de controle : les réseaux SDN sont contrdlés par un logiciel,
qui peut étre fourni par les FAI ou les opérateurs de réseau eux-mémes. Les éléments du
plan de données peuvent étre contrdlés par les applications déployées sur le contrdleur.

e un niveau d’abstraction : les applications métier utilisent des services SDN qui abstraient
les technologies de réseau sous-jacentes. Les périphériques réseau sont également abstraits
par la couche de contrdle SDN pour assurer la portabilité.

e une gestion basée sur les flux : une régle de base des périphériques réseau (éléments du
plan de données) est de transmettre les paquets d’un flux au controleur lorsque ceux-ci ne
possedent pas de régles pour gérer ce flux. Cette fonctionnalité de SDN nous permet de
gérer le flux de maniere dynamique en fonction des conditions variables du réseau [6].

Dans la section suivante (A.2), nous proposons un cadre d’atténuation autonome pour atténuer
les attaques de maniere automatisée. Nous évaluons le cadre sur une plateforme de test ainsi par
simulation. Nous démontrons les performances du cadre par une atténuation d’attaques DDoS
(déni de service distribué).

A.2 Un Cadre de Mitigation de DDoS Autonome basé sur SDN

Une grande variété de mécanismes d’atténuation des attaques DDoS ont été proposés, qui couvrent
la détection ainsi que les phases d’atténuation. Cependant, aucun des mécanismes existants n’a
été envisagé pour un déploiement a grande échelle en raison de la complexité inhérente aux
taches de gestion du réseau.

Dans [78], les auteurs ont proposé un systeme appelé dFence capable de fournir une atténuation
DDoS a la demande en redirigeant le trafic vers un ensemble de dispositifs réseaux (aussi appelées
middleboxes) déployés statiquement. Etant donné qu’un grand nombre de middleboxes doivent
étre déployées statiquement dans le cceur du réseau du FAI afin de traiter le trafic, cela provoque
une congestion lorsque le FAI doit rediriger le trafic. En outre, le manque de mécanisme
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efficace d’échange d’informations entre différents domaines rend difficile le déploiement et
I’exploitation de ces middleboxes. Par exemple, le processus actuel d’échange d’informations
entre le fournisseur de services Internet et ses clients dépend encore de la disponibilité de
I’administrateur réseau.

Une lecon importante tirée des dernieres attaques DDoS est que les clients et les FAI doivent
collaborer étroitement les uns avec les autres. Idéalement, lorsque le client détecte I’attaque, les
informations connexes doivent &tre partagées avec le FAI a temps pour une atténuation rapide.
Cependant, a notre connaissance, seuls quelques programmes collaboratifs d’atténuation des
DDoS sont actuellement disponibles [62, 99]. Ces mécanismes sont basés sur une communauté
de partenaires fiables, ce qui rend nécessaire pour tous les routeurs réseau d’en maintenir une
liste, entralnant un traitement additionnel occasioné par 1I’échange d’informations de sécurité. En
outre, les dispositifs de réseau dédiés, ainsi que les routeurs modifiés, doivent étre déployés au
préalable, entralnant une complexité opérationnelle, de déploiement et de gestion, qui rendent les
interventions humaines non triviales inévitables. Par conséquent, il est nécessaire d’automatiser
de maniere significative I’ensemble de la gestion du cycle de vie des approches d’atténuation des
attaques DDoS.

Dans I’ensemble, les lecons tirées des conceptions passées de I’atténuation des attaques DDoS
indiquent clairement que les exigences suivantes méritent une attention particuliere:

1. Déploiement et fonctionnement faciles, évitant de recourir a un logiciel ou des pé-
riphériques matériels spécifiques;

2. Echange efficace d’informations entre les différentes parties impliquées (c’est-a-dire les
FALI et leurs clients), afin qu’un client puisse envoyer ses informations sur les menaces au
FAI a un stade tres précoce de I’attaque DDoS;

3. Le FAI doit traiter en temps opportun les demandes de ses clients et appliquer les politiques
d’atténuation d’attaques DDoS appropriées;

4. Tout le cycle de vie du programme d’atténuation d’attaques DDoS doit étre géré de manicre
adaptative et automatisée.

Malheureusement, les caractéristiques intrinséques (par exemple, le fort couplage entre le plan
de contrdle et le plan de données) de I’infrastructure de réseau existante font que la majorité
des systemes d’atténuation d’attaques DDoS ne satisfont pas aux exigences requises. Grace au
développement récent de la technologie SDN, qui offre une séparation claire du plan de controle
du réseau et du plan de données, un certain nombre de fonctionnalités nous sont ainsi promises
telles que la programmabilité des périphériques réseau par le contrdleur SDN. Dans ce chapitre,
nous proposons un cadre d’atténuation de DDoS autonome, ArOMA, basé sur SDN, qui a le
potentiel de répondre parfaitement aux exigences de conception en intégrant différents modules
d’atténuation d’attaques DDoS, allant de la surveillance du trafic a I’atténuation, en passant par
la détection d’anomalies.
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Figure A.1 — Cadre d’atténuation d’attaques DDoS basé sur SDN

A.2.1 Architecture et Flux Opérationnel

Dans

le cadre ArOMA, les FAI et les clients disposent de leur propre contrdleur SDN dans leur

réseau respectif et communiquent de maniere sécurisée. Comme le montre la figure A.1, le cadre
est réparti entre le FAI et les réseaux clients, et le flux opérationnel (étiqueté avec des numéros
d’étape) peut étre décrit comme suit:
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. Lorsque le trafic entre dans le réseau du FAI, le controleur attribue un identificateur de

flux unique, FlowID, pour chaque nouveau flux, généralement en utilisant le message
PACKET-IN. FlowID est utilisé par le contrdleur du client pour demander 1’atténuation
d’une attaque au FAI Les étiquettes sont également attribuées aux flux par les commuta-
teurs d’entrée du FAI pour accélérer la transmission de paquets (forwarding). L’ étiquette
aide enfin a préserver la politique appliquée au flux afin d’assurer un routage inaltéré.

. Du c6té du client, des statistiques de flux sont collectées périodiquement via les agents

OpenFlow et transmises au moteur de détection pour €tre traitées.

. Le moteur de détection repose sur une base de données d’attaque, qui peut interagir avec

des bases de données externes via certaines méthodes d’échange d’informations de menaces
telles que I'interface de programmation n6 [61].

Le moteur de détection génere des alertes de sécurité en présence de flux de trafic malveil-
lants ou suspects et déclenche une réaction a partir d’'un moteur de politiques local, chargé
de générer et d’installer des regles de politique lors de I’entrée du flux dans le réseau client.
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. Les F1owID s de flux suspects et malveillants sont encapsulés dans les requétes de sécurité
envoyées au moteur d’atténuation qui réside sur le controleur SDN du FAL A cette fin, une
interface de programmation (API) de sécurité est exposée par le controleur SDN du FAL
Cette API de sécurité est le principal composant de la communication entre contréleurs.

. Le moteur d’atténuation demande au moteur de politique quelles sont les actions d’atténuation
a implémenter afin de traiter les flux suspects ou malveillants détectés.

. De plus, le moteur d’atténuation vérifie avec le module de recherche de chemin quel est le
meilleur chemin pour acheminer les flux détectés en fonction des actions d’atténuation.

. Les actions d’atténuation, par exemple la redirection de trafic vers des middleboxes de
sécurité, sont finalement appliquées en mettant a jour les étiquettes des flux concernés. Ce
processus d’atténuation implique un déploiement automatisé et dynamique des politiques
au sein du réseau du FAIL

A.2.2 Communication entre Controleurs

Une autre caractéristique importante d’ ArOMA est la communication entre le contréleur du

réseau du FAI et celui du réseau client. La communication entre contrdleurs permet au client de

partager les informations d’alerte avec le FAI de maniere automatisée. Ce canal de communication
a effectivement deux objectifs: partager le F1owID du flux malveillant détecté et alerter le FAI

sur la menace de ces trafics malveillants destinés au réseau client. Plus précisément, la fagcon de

partager le FlowID est décrite comme suit:

1. Initialement, lorsque le trafic atteint le réseau client, le controleur client demande le F1owID

du flux correspondant en envoyant les adresses IP (source et destination) de ce flux a I’API
de sécurité du contrdleur du FAIL

. Le FlowID est maintenu et mis a jour périodiquement au niveau du commutateur d’entrée
du FAI, dans le champ Cookie.

. Lors de la réception de la demande du contrdleur client, le contrdleur du FAI vérifie la
table du commutateur d’entrée correspondant pour obtenir le FlowID correspondant et le
renvoie au contrdleur client.

Pour illustrer, la communication entre contrdleurs dans le cadre de I’atténuation d’une attaque

DDoS contient les opérations suivantes:

1. Lors de la détection du trafic DDoS c6té client, le moteur de détection envoie 1’alerte pour

les flux détectés;

2. L’alerte de sécurité est envoyée au format IDMEF (mais d’autres formats peuvent également

étre utilisés).
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3. L’interface de sécurité (API de sécurité) exposée par le contrdleur du FAI est atteinte via
une requéte HTTP encapsulant le message d’alerte de sécurité généré par le moteur de
détection du contrdleur client.

4. I API de sécurité extrait de I’alerte des informations telles que la classe de sécurité, les
informations du flux (IP source, IP destination), la sévérité de 1’attaque (en matiere d’impact
sur le réseau) et le type d’attaque.

5. Un accusé de réception contenant les informations de flux et les actions appliquées est
renvoyé au contrdleur du client apres 1’application de I’action sur le flux.

A.2.3 Expérimentations sur la Plateforme de Test

Nous avons réalisé nos expérimentations sur une plateforme physique pour évaluer notre prototype
du cadre ArOMA. Dans cette plateforme, nous illustrons la performance de protection du cadre
par sa capacité a maintenir la qualité d’un flux vidéo, face aux attaques DDoS. Nous mesurons
cette performance en matiere de qualité de 1’expérience utilisateur (QoE).

Plateforme. La topologie de notre plateforme expérimentale est similaire a la configuration
du plan de données montrée dans la Fig. A.1, ou le FAI et les réseaux clients ont leur propre
contréleur SDN. Pour simplifier, deux chemins de routage sont configurés dans la plateforme
pour le réseau du FAI: I’un est garanti en matiere de qualité de service et utilisé exclusivement
pour le trafic 1égitime (chemin passant par les commutateurs Sy, S et S4), tandis que 1’ autre est
dédié au trafic suspect ou malveillant (chemin passant par Sy, S3 et S4). Dans le réseau client, le
commutateur OpenFlow S5 est rattaché au contréleur client. En outre, dix machines hotes sont
virtualisées dans la plateforme, pour représenter les utilisateurs 1égitimes, les attaquants et le
serveur de streaming vidéo.

Génération de trafic. La raison, pour laquelle nous avons choisi d’illustrer les performance du
cadre ArOMA en utilisant la vidéo comme source de trafic 1égitime, tient au fait que le trafic
vidéo actuel représente plus de 70% du trafic Internet des consommateursciteseventy. Nous
utilisons ici TAPAS [34], un outil de streaming vidéo pour la génération de trafic vidéo entre
le serveur HTTP dans le réseau client C et les hétes 1égitime L. 10 clients TAPAS permettent
de générer un trafic vidéo 1égitime en provenance du serveur HTTP. De plus, I’outil BotNet
Simulator (BoNeSi) est utilisé pour générer des attaques DDoS volumétriques avec des taux de
trafic élevés. Nous générons un trafic d’attaque de pres de 250.000 paquets par seconde.

A.2.4 Résultats et Analyse

Nous avons mené plusieurs séries de tests pour étudier comparativement les parametres donnés
dans trois cas,

e Services de diffusion vidéo en condition normale (sans trafic d’attaque);

126



A.2. Un Cadre de Mitigation de DDoS Autonome basé sur SDN

e Face a différentes attaques et sans atténuation;

e Face aux attaques et en présence de notre prototype ArOMA.

Les métriques sont mesurées par les clients de streaming vidéo en collectant et en analysant les
fichiers journaux générés par TAPAS.

Taille Moyenne de la Mémoire Tampon

Nous avons mesuré la taille moyenne de la mémoire tampon (ou taille du buffer, exprimée en
secondes), et nous avons observé que la taille du buffer était maintenue au-dessus de 16 secondes
en I’absence d’attaque. Comme le montre la Fig. A.2, en présence d’une attaque par inondation
UDP, la taille du buffer a été maintenue a pres de 14 secondes par notre cadre ArOMA. De méme,
la taille du buffer a été maintenue respectivement a 12 et 10 secondes, face aux attaques ICMP
et TCP. En revanche, la taille moyenne du buffer était d’environ 4 secondes lorsque le module
d’atténuation n’était pas activé pendant les attaques.

Average Buffer Length
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= # udp flood
g 10 % 7 T
o 8 |— A # tcp flood
£ / /
[ 6 / % # no mitigation
4 % / o # icmp flood
(2) */é /% B & no attack
udp flood  tcp flood no icmp flood no attack
mitigation
Attacks

Figure A.2 — Taille moyenne du buffer en fonction des scénarios d’attaque
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Débit applicatif moyen

Nous avons également examiné le débit applicatif moyen, et avons observé qu’il était maintenu
a pres de 700 Ko/s en I’absence d’attaque. Lorsque une attaque DDoS par inondation UDP
est lancée et que ArOMA a été activé, le débit moyen peut étre maintenu a 550 Ko/s. En ce
qui concerne les attaques par inondation ICMP et TCP SYN, le débit applicatif moyen peut
&tre maintenue a pres de 500 et 450 Ko/s, respectivement (voir Fig. A.3). En revanche, lorsque
ArOMA n’est pas activé, le débit moyen tombe en dessous de 300 Ko/s et ne peut pas revenir a
un niveau normal.
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Figure A.3 — Débit applicatif moyen en fonction des scénarios d’attaque

A.2.5 Discussion

Il est largement reconnu que sans collaboration efficace, il est extrémement difficile, sinon impos-
sible, d’atténuer les attaques DDoS. Cependant, la collaboration entre les différents domaines et
acteurs d’Internet est difficile. Dans ce chapitre, nous fournissons un cadre d’atténuation DDoS
a la demande appelé ArOMA qui tire parti des technologies SDN, dans le but de faciliter la
collaboration entre le FAI et leurs clients. Pour démontrer la faisabilité et I’efficacité de notre
proposition, nous avons développé un prototype et effectué a la fois des expérimentations en sim-
ulation et sur une plateforme physique. Les résultats indiquent que notre cadre d’atténuation peut

128



A.3. Représentation et Traduction des Politiques de Haut Niveau

garantir que I’actif a protéger — dans notre scénario, il s’agissait d’un service de diffusion vidéo
— a pu maintenir des performances satisfaisantes en présence d’attaques DDoS par inondation.
Ces résultats ont été mesurés en matiere de QoE, qui indique la satisfaction de I’utilisateur, une
métrique importante pour les diffuseurs de vidéo. Dans la section suivante (A.3), nous présentons
un mécanisme pour représenter et traduire la politique de sécurité d’un client du FAI ou une
politique de qualité de service (QoS) abstraite en regles OpenFlow de bas niveau.

A.3 Représentation et Traduction des Politiques de Haut Niveau

Dans les architectures réseau distribuées de grande échelle, des périphériques tels que les com-
mutateurs, les routeurs, les pare-feux, les systemes de détection d’intrusion (IDS) sont souvent
utilisés pour protéger et adapter le réseau en fonction des conditions variables. La configuration
manuelle de ces nombreux appareils demeure néanmoins fastidieuse, complexe et susceptible
d’erreurs.

En outre, les récentes tendances de 1’informatique aggravent davantage ces problemes. Par exem-
ple, la demande croissante de sécurité adaptative et d’optimisation des performances nécessitent
des changements massifs et fréquents dans la configuration des périphériques de sécurité et de
réseau. En outre, la configuration manuelle dans une situation aussi complexe peut avoir un
impact négatif sur la performance des services dans le réseau. Quand bien méme les politiques
sont représentés dans un format proche de la configuration des périphériques, elles ne s’adaptent
pas aux conditions réseaux en évolution constante. Le manque de dynamicité de la configuration
entraine donc des temps d’arrét du réseau, en raison d’une configuration non adaptée qui requiert
un intervention manuelle des opérateurs de réseau.

Les développements récents dans les réseaux SDN ont conduit a une prolifération de travaux qui
tentent d’automatiser et de simplifier les tiches de gestion du réseau. L’ API Nord du modele
SDN nous permet de définir des politiques de haut niveau que le contrdleur peut appliquer aux
périphériques réseau du plan de données via son interface Sud. Les politiques peuvent étre
modifiées sans interrompre 1’exploitation des périphériques réseau. Malgré ces avantages, SDN
seul n’a pas la capacité de définir des politiques de manicre expressive. Si la traduction de la
regle de haut niveau en une regle de bas niveau n’est pas effectuée correctement, elle risque de ne
pas satisfaire aux exigences et entrainer une mauvaise configuration des périphériques réseau.
L’ objectif de ce chapitre est donc d’aborder comment les politiques de haut niveau peuvent étre
représentées dans un format lisible par un humain et traduites en régles OpenFlow de bas niveau
pour le déploiement dans les commutateurs.

A.3.1 Cadre de Gestion et d’Application des Politiques

Les politiques de gestion et de sécurité d’un réseau doivent étre spécifiées au plus haut niveau
d’abstraction. Par ailleurs, des techniques de traduction peuvent étre utilisées pour faire corre-

129



Policy
Database

A

Action

Events,
Conditions 2 . | ———————
Flow,/Bandwidth >! Network

1 H !
N Policy 1
CMonltormg i s Decision / | Information |

omponent | , ; < 1 i
L____P ______ 1 Event, Condition th D witchlD,Output PortL--BEEE-(NE)--:

Flow, SwitchID, Output port

Policy Orchestrator
and Implementer

Policy
Enforcement
Point (PEP)

Figure A.4 — Cadre de gestion et d’application des politiques

spondre les politiques de niveau abstrait avec les instructions de bas niveau. Pour réaliser cette
mise en correspondance, nous rapportons les événements, les conditions et les actions décrites
abstraitement, aux reégles OpenFlow de bas niveau. Dans ce chapitre, comme indiqué dans la
Fig. A.4, nous nous concentrons principalement sur la spécification des politiques de haut niveau
dans la base de données des politiques et la traduction de ces politiques en regles de bas niveau
pour le déploiement dans les appareils du plan de données grace au Policy Decision Point (PDP)
d’une part et au Policy Orchestrator and Implementer (POI), d’autre part. La description détaillée
des autres composants sera donnée dans la Section A.4.

A.3.2 Composants Principaux

Monitoring Component (MC). Le composant de surveillance (MC) recoit I’alerte de sécurité
ou le message de demande de QoS et le renvoie au moteur de politique (PDP).

Policy Decision Point (PDP). Le point de décision de la politique (PDP) est responsable de
I’application de politiques réseau au niveau global. En fonction de I’événement et des conditions
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du réseau et de sa sécurité, le PDP active une politique dans la base de données des politiques.
Cette politique décide d’une action de haut niveau, p.ex., transférer (forward), rediriger (redirect),
ou jeter (drop), a appliquer. En se basant sur I’action de haut niveau, I’information de flux et la
bande passante demandée, il obtient les détails du chemin d’acces (identifiant du commutateur,
port de sortie) de la base d’information réseau (NIB). Le PDP transmet les détails du chemin avec
les informations de flux pour servir de filtre a I’ orchestrateur de politique (POI) pour I’application
des regles de bas niveau.

Policy Database (PDB). La base de politiques (PDB) est essentiellement un référentiel contenant
les politiques de sécurité et de réseau de haut niveau spécifiées par I’opérateur réseau, sans préciser
de stratégie de déploiement spécifique. Les stratégies peuvent étre spécifiées en XML ou dans
tout autre format défini par I’administrateur réseau. Ces politiques de haut niveau sont instanciées
sur la base de I’alerte de sécurité ou des messages QoS transmis par le PDP. Un identifiant de
stratégie est utilisé pour indexer les stratégies dans la base de politiques, ce qui aide a récupérer
la stratégie liée a un événement donné. Il permet & I’administrateur du réseau d’exprimer des
politiques de sécurité et de réseau de haut niveau sans avoir a préciser comment les mettre en
application.

Network Information Base (NIB). La base d’informations réseau (NIB) Contient une liste de
middleboxes et de commutateurs réseau auxquels les middleboxes sont attachées. Il offre des
configurations-types qui permettent d’instancier les configuration pour acheminer le trafic par
un chemin réseau différent en fonction de la bande passante. Les détails de ce composant sont
décrits dans la Section A.4.

Policy Orchestrator and Implementer (POI). L orchestrateur de politiques (POI) contient les
modeles de regles OpenFlow pour différentes actions de haut niveau qui permettent I’'implémentation
de celles-ci dans les composants réseau du plan de données. Ces modeles de regle OpenFlow
contiennent les directives pour spécifier comment les différentes activités peuvent étre exé-
cutées dans le réseau. En outre, il contient des scripts python qui déploient les reégles dans les
périphériques réseau. Sur la base de I’information de flux, il retourne les détails du chemin
(switchlD, port de sortie) pour déployer les regles OpenFlow de bas niveau en fonction de 1’action
de haut niveau.

Dans la Section A.3.3, nous présentons la grammaire pour définir les politiques de haut niveau
dans la base PDB du cadre.

A.3.3 Grammaire de Politique de Haut Niveau

La syntaxe de notre politique de haut niveau nous permet définir un format unique pour exprimer
de maniere abstraite la politique réseau au sein d FAL Il permet a I’opérateur de réseau d’exprimer
également des politiques de sécurité dans un langage facile a comprendre sans entrer dans les
détails de mise en ceuvre de bas niveau. Ces politiques de sécurité et de réseau de haut niveau
peuvent étre appliquées dans les périphériques du plan de données lorsque les exigences sont
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satisfaites.

Listing A.1 — Grammaire pour les une politiques de haut niveau

Policy=PolicyID

Event=Message

Conditions=Condition Connective Conditions
Condition=<field_name ><value >
Connective=And| Or

Action=Forward | Drop| Redirect

Dans notre cadre de politique, les politiques de haut niveau sont définies selon le paradigme
événement-condition-action (ECA) [63]. Notre approche permet de spécifier les actions qui
seront déclenchées, face a un événement particulier en fonction d’un certain nombre de conditions.
Le paradigme ECA décrit ainsi comment les événements déclenchent la réponse souhaitée du
systeme. Un événement pourrait étre un message d’un systeme ou d’un programme, entre autres.
Les conditions décrivent la logique d’activation de 1’action. L’action est définie comme une
opération effectuée sur les ressources disponibles.

Les API Northbound exposées par le controleur SDN nous permettent de définir le langage de
politique de haut niveau de maniere simple. Nous utilisons la grammaire de politique présentée
dans le Listing A.1 pour définir le réseau et ses stratégies de sécurité. Au niveau du plan de
données, les commutateurs OpenFlow peuvent se comporter comme des middleboxes telles que
un pare-feu, par exemple. Avec notre langage de politique, nous pouvons définir les politiques de
tout tye d’équipement de sécurité, y compris les commutateurs OpenFlow ou les middleboxes.

Dans la Section A.3.4, nous décrivons le flux opérationnel du cadre.

A.3.4 Flux Opérationnel

En fonction des informations mentionnées dans I’alerte ou la requéte de QoS, le contrleur du
FAI traduit la politique de haut niveau en regles de bas niveau. Le flux opérationnel du processus
d’instantiation et de traduction de la politique est décrit selon la Figure A.4.

1. Dans le cadre, le composant de supervision (MC) recoit les alertes de sécurité ou la requéte
de QoS. Le MC extrait les événements et les conditions du message regu et les transmet au
point de décision de politique (PDP). Les informations contenues dans les alertes ou les
requpetes de QoS incluent les identifiants de flux (IP source, IP de destination), la classe
du flux, la classe de bande passante et le type d’attaque.

2. Le PDP sélectionne une politique appropriée dans la base de régles en fonction des
événements et des conditions. En retour, il obtient I’action de haut niveau a appliquer au
plan de données.
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3. L’action de haut niveau est affinée pour obtenir le chemin d’acces au trafic en fonction
des informations du flux et de la bande passante. Le PDP obtient les détails du chemin
concret a partir de la base d’informations réseau (NIB) avec 1’identifiant de commutation
spécifique et le port de sortie pour orienter le flux.

4. Ensuite, le PDP spécifie au POI les détails du filtre pour capturer le flux d’interét en
utilisant les informations de ce flux, afin que celui-ci y associe les instrutions de bas niveau
OpenFlow comprenant I’identifiant du commutateur (Switch ID) et les informations du
port de sortie.

A.3.5 Cas d’Utilisation: Provision de QoS a la Demande

L’un des principaux éléments de notre mécanisme de traduction des politiques est qu’il permet
au FAI de réagir automatiquement sur une requéte de QoS envoyé par ses clients. Nous discutons
ce cas d’utilisation sur la base du réseau présenté en Figure A.5. Ce réseau se compose de deux
sous-réseaux distincts: un FAI et un sous-réseau client représenté par C. Deux hotes externes sont
dénotés H; et H,. Ces hotes externes générent du trafic a destination du réseau client. Le client
demande au FAI d’activer la politique QoS souhaitée pour un flux spécifique en lui envoyant la
classe du flux, la requéte de QoS (largeur de bande passante), les informations de flux (adresses
IP source et destination). Dans le scénario suivant, le client fait une requéte de QoS a son FAI
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Requéte QoS recue depuis un client : Les requétes de QoS a la demande émanent du client
et instruisent le fournisseur de services de service une QoS différenciée. Cette requéte contient
les informations de flux et le type de service QoS demandé. Comme le montre le Listing A.3,
la requéte de QoS contient les informations suivantes: {IP source: 10.0.0.1, IP destination:
10.0.0.3}. L’adresse IP 10.0.0.1 représente I’hote externe H;. En outre, il contient la classe
de QoS demandée (“Gold”) et la classe de flux (“Legitimate”). Pour le type d’événement,
“Gold_QoS” est mentionné dans le champ Event de la rubrique Classification de 1’alerte.

Listing A.2 — Une politique QoS de haut niveau de classe Gold

<Policy PolicyID="QoS">
<Event Type = "Gold_QoS">
</Event>
<Condition >
<flow class="Legitimate">
<bandwidth class="Gold">
</Condition >
<Actions action="Redirect"/>
</Actions >
</Policy >

Politique de QoS Gold appliquée par le FAI : Le fichier de politique affiché dans le Listing A.2
fournit le chemin d’acces de classe Gold dans le réseau du FAI Il contient les informations de
type d’événement, p. ex., “Gold_QoS”. Les conditions constraignent la stratégie pour une classe
de flux légitimes (“Legitimate”) et une classe de bande passante “Gold”. La politique sélectionnée
selon ces parametres retourne I’action abstraite “Redirection”. Cette action est ensuite affinée a
I’aide de la Table A.1, décrite en détail dans la Section A.3.6. Une bande passante de 400 Mbps
est provisionnée pour la classe “Gold”.
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Table A.1 — Table de correspondance entre largeurs de bande passante et chemins réseau

’ Path ‘ Destination Network | Bandwidth Class

P1 10.0.0.3 Gold
P2 10.0.0.3 Silver
P3 10.0.0.3 Bronze

Listing A.3 — Requéte de QoS envoyée par le client

<IDMEF-Message version="1.0">
<Alert>
<Analyzer analyzerid="CUSTOMER C"/>
<Source>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.1 </address >
</Address>
</Node>
<Service >
<protocol >udp</protocol >
</Service >
</Source>
<Target>
<Node>
<Address category="ipv4—addr">
<address >10.0.0.3 </address >
</Address>
</Node>
</Target>
<Classification event="Gold QoS">
</Classification >
<AdditionalData> type ="string" meaning="flow class">
<string >Legitimate </string >
</AdditionalData >
<AdditionalData> type ="string" meaning="bandwidth request">
<string >Gold </string >
</AdditionalData >
</Alert>
</IDMEF-Message >
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Listing A.4 — Instantiation du modele pour diriger le trafic via un chemin QoS élevé

P1:{ Switch:S1,output(5); Switch:S2, output(2); Switch:S4,output(2)}

P2:{ Switch:S1,output(6); Switch:S5, output(2); Switch:S6, output(2); Switch:
S4,output(2)}

P3:{ Switch:S1, output(7); Switch:S7,output(2); Switch:S8, output(2); Switch:S9
,output(2); Switch:S4,output(2)}

Path={1:P1, 2:P2, 3:P3}

Instanciation du modele pour acheminer le flux via un chemin de QoS élevée : La Tableau A.1
indique le chemin pour acheminer le flux a travers la classe de bande passante “Gold”, “Silver” ou
“Bronze”. Des largeurs de 350 Mbps et 300 Mbps sont provisionnées pour les classes “Silver” et
“Bronze”, respectivement. Les chemins sont définis comme des ensembles de couples (identifiant
du commutateur:port de sortie). Le Listing A.4 fournit les détails du chemin concret.

A.3.6 Exemple étape par étape

Pour résumer cette section, nous fournissons un exemple de la facon dont une politique QoS de
haut niveau est transformée en régles de bas niveau pour I’application. Ce cas d’utilisation est
décrit en utilisant le réseau représenté sur la Fig. A.5. Le client C envoie la requéte au FAI de
fournir un chemin de QoS “Gold” aux flux qui arrivent a son réseau depuis I’hdte H;. Comme la
Liste A.5 le montre, les régles dans le commutateur S; pour transférer le flux a travers le chemin
P insérent une étiquette 3 dans le paquet via un port de sortie 7.

Listing A.5 — Regles OpenFlow dans le Switch S1 avant le déploiement de la Politique QoS

nw_src=10.0.0.2,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:3—>
vlan_vid , output:7

nw_src=10.0.0.1,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:3—>
vlan_vid , output:7

1. Le client C envoie le message de requéte QoS au contrdleur du FAI pour provisionner
le chemin de QoS “Gold” pour le trafic arrivant sur son réseau a partir de ’hote H;. La
requéte de QoS s’affiche dans le Listing A.3.

2. Le MC extrait le type d’événement (Gold QoS) et les conditions telles que la demande
de bande passante (“Gold”) ainsi que la classe de flux ("Legitimate") et les transmet au
PDP. Selon le type d’événement et les conditions, le PDP vérifie la base de regles pour
obtenir les actions de haut niveau. Dans ce cas, 1’action de haut niveau est “Redirect”. Le
Listing A.2 montre la politique QoS de haut niveau pour la classe Gold.

3. Le PDP envoie ’action de haut niveau, les informations de flux (adresses IP source et
destiation) et la classe de bande passante (Gold) a la NIB. Basé sur I’information sur le
niveau de bande passante (Gold) et le réseau de destination, la NIB fournit le chemin vers
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lequel le flux doit étre redirigé, en se basant sur la Table A.1. Notez que, dans ce cas, le
chemin est alors: (51:5, $2:2, S4:2). De plus, I’étiquette pour le chemin est 1.

4. Le PDP utilise I’action de haut niveau “Redirect” avec la bande passante demandée pour
instancier le script dans le POI qui déploie les régles OpenFlow dans les commutateurs. Le
Listing A.6 montre les régles de bas niveau dans le commutateur S; pour transférer le flux
contenant identifié par {IP source: 10.0.0.1, IP destination: 10.0.0.3}, via le port de sortie
5 en insérant une étiquette 1. Donc, ce flux est autorisé a traverser le chemin P;.

Listing A.6 — Reégles OpenFlow dans le Switch S1 apres le déploiement de la politique QoS

nw_src=10.0.0.2 ,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100,set_field:1—>
vlan_vid , output:8

nw_src=10.0.0.1,nw_dst=10.0.0.3 ,ip, actions=push_vlan:0x8100, set_field:1—>
vlan_vid , output:5

A.3.7 Conclusion

Dans cette section, nous avons décrit le langage de politique proposé. En outre, nous avons fourni
un mécanisme pour traduire la politique de haut niveau pour le déploiement de regles OpenFlow
de bas niveau dans les commutateurs. Le mécanisme est décrit dans le contexte d’un scénario de
provisionnement de QoS. Dans la section suivante, nous présentons le cadre de gestion basé sur
les politiques pour gérer le réseau du FAI de maniere automatisée.

A.4 Cadre de Gestion et de Mise en (Euvre des Politiques de Sécu-
rité SDN

Notre objectif est de fournir un systeme de gestion de politique dynamique et adaptable pour
le réseau des FAI Notre systeme de gestion de politiques spécifie les politiques de sécurité
et de réseau de haut niveau et fournit une collaboration en temps réel avec les clients pour
atténuer ’effet de la congestion diie a une augmentation du trafic, des incidents réseau ou des
attaques. Nous tirons parti du paradigme SDN et utilisons notre spécification de politiques et le
mécanisme de traduction introduit dans la Section A.3 pour concevoir un systeme de gestion basé
sur les politiques pour le réseau du FAIL Ce systeme permet au FAI de spécifier les politiques
de sécurité et de réseau de haut niveau. En outre, les clients peuvent exprimer dynamiquement
leurs exigences au FAI pour I’instanciation des politiques. Ces politiques peuvent étre déployées
dynamiquement dans les périphériques du plan de données. En particulier, le systeme de gestion
des politiques dans le FAI tient compte de multiples facteurs tels que I’état actuel du réseau du
FALI et les accords stratégiques avec ses clients. En outre, il doit s’adapter aux demandes de
certains clients, de sorte que 1’ingénierie du trafic effectuée pour un client n’aura pas d’impact sur
le trafic va destination du réseau d’autres clients. Plus précisément, notre systéme de gestion des
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Figure A.6 — Flux opérationnel du cadre de gestion de politiques

politiques fournit une réponse automatisée collaborative et centrée sur 1’utilisateur pour atténuer
I’impact du trafic d’attaque et fournir un service garanti en QoS aux clients du FAL

A4.1 Composants Principaux

Les composants fonctionnels du systeme de gestion des politiques sont les suivants:

Composant de supervision (MC):

Le MC est responsable de la réception des alertes et des notifications provenant des différents
clients. En particulier, il extrait les événements et les conditions utilisés par le PDP pour instancier

la politique depuis la base de politiques.
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Base de politiques (Policy DB)

Dans le cadre de gestion et d’application de la politique, la base de politiques est utilisée pour
stocker les stratégies de haut niveau définies par I’administrateur réseau dans le réseau du FAIL
Les politiques sont décrites selon le paradigme ECA (voir Section A.3 pour plus de détails).

Point de décision de la politique (PDP)

Ce composant fonctionne comme un orchestrateur des différents modules composant le cadre.
C’est le point central de la logique du cadre.

Base d’informations réseau (NIB)

La NIB maintient une table contenant la liste des chemins en fonction de différentes largeurs de
bande. La NIB est responsable du calcul du chemin en fonction de I’état du réseau du FAIL. Selon
les entrées (informations de flux, action de haut niveau et bande passante demandée), la NIB
calcule le chemin. Les chemins sont calculés en utilisant le chemin le plus court en adéquation
avec la politique [27], permettant de faire transiter le trafic via un chemin basé sur des stratégies
prédéfinies. Les détails de 1’algorithme de calcul du chemin sont décrits dans 1’ Algorithme 5.
Une fois le chemin calculé, la NIB fournit la liste des couples commutateurs-ports de sortie ainsi
qu’une en-téte spécifique, 1’en-téte de service réseau (NSH) au PDP.

Par ailleurs, ce composant est responsable de surveiller I’état des commutateurs et des chemins
d’acces dans le réseau du FAI et de fournir 1’état du réseau (congestionné, normal) aux composants
qui en ont besoin. Pour surveiller le réseau du FAI, nous pouvons exploiter un outil comme
OpenNetMon [112] qui permet de maintenir une matrice de trafic des différents chemins et
commutateurs dans le réseau.

Algorithm 5 Calcul de chemin réseau

1: procedure PATH_COMPUTE(flow,bw_req,action,step,Max_rate)
2 hop <0
3 path + ||
4 for Flow F and each path p do
5: p < compute_Bandwidth(max(all_links)) //Takes the maximum bandwidth in the path
6: d < Hop_Count (stepli] + step[i+ 1])
7 hop_count < hop +d // Computes the hop count in the path
8 path.addList(p)
9: if (C—bw_req) > Max_rate then //New flow should not impact other flows traversing the
link.
10: return hop_count, path
11: else
12: return No Paths are available
13: end if

14: end for
15: end procedure

139



Appendix A. French Summary

Orchestrateur de politiques (POI)

Ce module génere les regles OpenFlow basées sur les informations fournies par le PDP. La
description du module POI a été donnée dans la Section A.3.

Ci-dessous, nous décrivons le flux opérationnel de la gestion et I’application de politiques:

1. Un événement est déclenché au niveau du controleur du FAI lorsqu’une alerte de sécurité
est regue par le MC, provenant du contrdleur client. Les informations de flux (IP source,
IP de destination), la gravité de I’impact du trafic sur le réseau client (faible, moyen, élevé),
la classe de flux (Iégitime, suspecte ou malveillante) et les détails du type d’attaque sont
extraites par le module MC [54];

2. Les informations extraites sont transmises au PDP [55]. Le PDP sélectionne 1’action
de haut niveau a partir de la base de politiques a appliquer sur le flux en fonction de
I’événement et de certaines conditions. Ensuite, il transmet I’action de haut niveau, la
bande passante demandée et les informations de flux a la NIB (qui permettent d’identifier
les nceuds d’entrée et de sortie dans le réseau du FAI).

3. La NIB calcule un ou plusieurs chemins adaptés, a partir des informations recues précédem-
ment.

4. La NIB envoie au PDP les détails du chemin avec I’identifiant des commutateurs, les ports
de sortie et I’en-téte de service réseau (NSH) (qui peut etre stocké dans le champ VLAN de
la couche Ethernet) [95]. Le PDP transmet ces détails au module POI pour le déploiement
des regles dans les commutateurs OpenFlow. Si tous les chemins du réseau du FAI sont
encombrés, la NIB renvoie le message indiquant “aucun chemin d’acces n’est disponible”.
Dans ce cas, le PDP renvoie une action drop pour le flux concerné au POI afin de réduire
le niveau de congestion dans le réseau.

5. Puis, le PDP instancie le script dans le POI en fonction de la bande passante demandée
par le client. Le PDP transmet également I’identifiant du commutateur, le port de sortie et
I’en-téte NSH au POI qui déploie les regles dans les commutateurs pour traiter le trafic.

A.4.2 Parametres Expérimentaux

Les expériences ont ét€ menées dans Mininet, un environnement de simulation d’un réseau de
commutateurs OpenFlow. Le scénario expérimental est illustré dans la Figure A.7, dans laquelle
nous supposons que le réseau du FAI contient 14 commutateurs et 6 chemins. La probabilité
de perte liaison et la bande passante des différents chemins est supposée €tre comme dans le
Tableau A.2. Par ailleurs, les alertes de sécurité recues par le FAI sont représentées au format
IDMEF [44].

Gigue du trafic légitime.
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Figure A.7 — Scénario expérimental pour trois réseaux clients avec un réseau FAI.

Table A.2 — Bande passante et probabilité de perte de liaison pour les chemins réseau.

Paths \ Bandwidth \ Link Loss Percentage

Py 400 Mbps 0
P, 400 Mbps 0
P 400 Mbps 0
Py 200 Mbps 3
Ps 100 Mbps 5
Ps 50 Mbps 7

Dans cette expérimentation, nous vérifions la fluctuation du signal du trafic 1égitime en présence
de congestion. Comme le montre la Figure. A.7, nous avons utilisé I’hote H, pour générer un
trafic d’attaque DDoS et avons observé I’impact sur le trafic 1égitime destiné aux clients C, C; et
C3. Comme visible dans la Figure A.8, la gigue du réseau de tout le trafic 1égitime a fortement
augmenté des que H, a débuté son attaque. En conséquence, le controleur SDN du client Cs
envoie une alerteau MC contréleur du FAI, ce qui déclenche la réaction du PDP qui décide de
rediriger le flux. Par la suite, la NIB calcule le meilleur chemin, ¢’est-a-dire P; dans ce cas, et
fournit les détails du chemin d’acces et le NSH au PDP.

Enfin, les regles OpenFlow correspondantes sont poussées sur les PEPs, a savoir les commutateurs
OF, par le POL. Ainsi, le transport du trafic 1égitime vers C3 a été rapidement rétabli a son niveau
normal. De mé&me, a la demande de C;, le flux destiné C; est redirigé sur le chemin P, ce qui
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Table A.3 — Classe de flux et réseau de destination de chaque flux client

Flow | Flow Class | Destination

H; Legitimate C
H, | Suspicious G
Hz | Legitimate G
Hy Legitimate C3
1400
1200r i i
[ [
21000 a ]
_E 800 Request for redirections i
%
% 600
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Z 400
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Figure A.8 — Gigue du trafic 1€gitime

permet de restaurer rapidement la gigue de ce flux & un niveau normal. Enfin, le trafic de H; est
redirigé sur le chemin dédié au trafic suspect, Ps, restaurant la gigue du trafic allant de H; a C; a
un niveau normal. En ce qui concerne la gigue du trafic destiné a Cs, celle-ci a diminué plus tot
par rapport a celles de C; et C;. Cela s’explique simplement par le fait que le client C5 a envoyé
son alerte plus tot que les clients C; et C.

A.4.3 Conclusion

Dans cette section, nous avons décrit notre cadre de gestion des politiques SDN pour fournir
des services automatisés de QoS aux clients du FAI Le cadre fournit un algorithme de calcul de
chemin qui prend en compte I’état du réseau du FAI pour réaliser des opérations d’ingénierie de
trafic. Il réduit les dommages directs causés par le trafic d’attaque sur le trafic 1égitime. En outre,
cela réduit également les dommages collatéraux causés par I’ingénierie de trafic effectuée pour
un client sur le trafic a destination d’autres clients du FAL De plus, I’en-téte NSH inséré par notre
cadre permet aux middleboxes de ne pas étre déployées en dehors du chemin des flux clients.
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A.5 Conclusion

L’ objectif principal de cette theése était de proposer un mécanisme automatisé pour gérer les
cyber-attaques. En particulier, certaines attaques ne ciblent pas seulement les fournisseurs
d’infrastructures mais aussi les fournisseurs de services. Les cyber-attaques ciblant les deux
peuvent ont le potentiel de gravement affecter I’expérience des utilisateurs, en particulier par
rapport aux services exposées sur Internet. La disponibilité limitée des administrateurs réseau
pour atténuer les attaques accroit encore I’'impact du trafic d’attaque.

En termes de contributions, nous avons commencé cette thése en examinant les mécanismes
existants d’atténuation des cyber-attaques. Tout d’abord, nous avons présenté 1’état de la cyber-
défense autonome, ainsi que les mécanismes existants. Nous avons ensuite introduit le paradigm
SDN et discuté de ses fonctionnalités. Plus précisément, nous avons examiné les mécanismes
et les services de sécurité basés sur SDN. Nous avons décrit les mécanismes d’atténuation des
attaques, de détection, de surveillance du trafic et d’ingénierie du trafic basés sur SDN, ainsi
que leurs caractéristiques. Notre attention a porté sur la facon dont les mécanismes de sécurité
peuvent étre améliorés et étendus en utilisant la technologie SDN. Ainsi, nous avons présenté des
techniques qui tirent avantage des caractéristiques du paradigme SDN telles que le découplage
du plan de contrdle et du plan de données, la programmation et la visibilité globale du point de
vue de la sécurité.

L’ état de I’art du domaine de recherche a ainsi ét€ complété par trois contributions principales.
Dans un premier temps, nous avons proposé un cadre d’atténuation autonome qui fournit une
réponse collaborative et automatisée. Le cadre est distribué entre le FAI et son client. Le cadre
permet au client de demander des mesures d’atténuation lors de la détection d’une attaque.
L’approche a été validée a I’aide de mininet, un logiciel de simulation d’un réseau SDN, ainsi
que sur une plateforme physique constituée de commutateurs OpenFlow. Deuxiemement, nous
avons présenté une grammaire permettant de représenter la politique de sécurité et la politique
réseau de haut niveau dans le réseau du FAIL. Nous avons introduit des modeles et des tableaux de
stratégie pour faire mettre en correspondance les politiques de haut niveau d’un c6té, et les regles
OpenFlow de bas niveau de I’autre. Cette “traduction” facilite le déploiement automatisé d’une
politique vers les périphériques du plan de données. En dernier lieu, nous avons proposé un cadre
de gestion et d’application de la politique pour gérer le réseau du FAI et fournir des services de
sécurité et de QoS a ses clients en tenant compte de 1’état du réseau du FAIL L’objectif est de
réduire I'impact des dommages directs causés par le trafic d’attaque a différents clients ainsi que
les dommages collatéraux causés par la mesure d’atténuation du trafic d’attaque, destiné a un
client, sur les autres clients du FAI. L’idée est de calculer les chemins des flux clients de maniére
dynamique en tenant compte de 1’état du réseau du FAI et de rediriger potentiellement ces trafics
sur des chemins moins congestionnés. Un prototype de la gestion des politiques et du cadre
d’application a été réalisé et validé dans mininet en tenant compte d’un scénario comprenant un
réseau FAI et plusieurs clients.

Concernant les perspectives de recherche future, plusieurs travaux complémentaires sont envis-
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agés. En effet, il convient de noter que les mécanismes de sécurité utilisant SDN ont un grand
nombre de défis a relever. Cette theése a traité, avec une portée limitée, certains des défis du
sujet, en accordant une attention particuliere a 1’atténuation du trafic d’attaque d’une maniere
automatisée. Le systeme de réponse automatisé englobe de nombreux autres domaines qui
doivent étre gérés ensemble afin d’améliorer leur résilience contre les attaques et les abus.

Dans cette optique, une premiere perspective comprendrait une analyse plus approfondie de
I’impact en matiere de performance de 1’utilisation de SDN dans le processus d’atténuation du
trafic d’attaque. En effet, la performance de notre cadre autonome est une question importante
qu’il est nécessaire d’aborder. Dans cette dissertation, nous avons élargi nos cas d’utilisations
d’un seul FAI et un client unique a un scénario a plusieurs clients, tout en réduisant les dommages
collatéraux de I’attaque. Cependant, I’'impact du passage a I’échelle reste a considérer pour des
raisons de performance.

Dans cette dissertation, nous avons supposé que le client utilise un mécanisme de détection
pour détecter les attaques. Une détection précise et rapide de 1’attaque est nécessaire pour une
atténuation efficace. De plus, I'intégration d’un outil de détection sur le réseau client avec les
composants d’atténuation dans le réseau du FAI est également une préoccupation. En outre,
dans notre cadre, le composant de supervision doit étre intégré du c6té du FAI pour détecter
la congestion dans le réseau du FAI et fournir cet état aux autres composants d’ingénierie du
trafic. De méme, la performance du cadre avec I’ensemble de ces composants intégrés doit étre
analysée, en particulier dans des scénarios avec plusieurs clients.
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