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Spécialité
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M. Walid Benameur Directeur de thèse
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Résumé

Dans cette thèse nous étudions l’impatience des usagers dans les réseaux mobile et nous quan-
tifions son impact sur la performance du système en présence d’usagers téléchargeant des données
dans lequel nous développons deux expressions approximatives de la distribution stationnaire
du systéme : un modèle agrégé et un modèle détaillé et nous montrons qu’ils sont très proches
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du modèle exact.
Nous étudions la mobilité de l’usager téléchargeant des données et pouvant s’impatienter, et
nous quantifions son impact sur la performance des réseaux mobile. Nous considérons le cas de
la mobilité due à l’impatience et le cas de la mobilité spontanée des usagers tout en considérant
la mobilité intra et inter cellulaire.
Nous étudions également l’impatience de l’usager qui regarde une vidéo streaming durant les
phases de pré-chargement de la vidéo et de mise en tampon pendant que la vidéo est arrêtée dès
le début de la mise en tampon.
Nous étudions à la fin un système constitué d’usagers pouvant s’impatienter, qui est sous contrôle
d’un gestionnaire de système, qui à chaque instant de décisions, choisit une action à exécuter
dans le but d’optimiser la performance définie du système.
Nous considérons un système dans lequel les usagers arrivent dans le système à des différents
instants et le quittent après la fin de leurs transferts de données, ou plus tôt à l’expiration de
leurs durées de patience.
Les applications numériques et les simulations nous ont permis de fournir divers métriques de
performance telles que le nombre moyen d’usagers, la proportion d’usagers impatients qui quit-
tent le système avant la fin de leurs transferts de fichiers, le débit, la probabilité d’impatience
en tenant compte de la localisation de l’usager dans la cellule, la probabilité d’être impatient
durant les phases de mise en tampon, la probabilité de mise en tampon lors d’une séance de vidéo
streaming, la politique optimale, la taille limite optimale du système dans le but d’optimiser la
performance définie du système, etc...
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Chapter 1

Introduction

1.1 Scope and objective

The existence of Fourth Generation or 4G networks is an important advancement in mobile
network technology. 4G networks are designed to improve wireless capabilities, network speeds
and visual technologies. Users are mainly categorized into elastics flows and streaming flows
according to the nature of traffic they produce. A user is called elastic flow when he does
transfer of digital documents as files, web pages etc..., while he is called streaming flow when he
produces video or audio applications. Nowadays, it is crutial for mobile network operators to
improve the user quality of experience (QoE) and the quality of service (QoS).

Congestion reduces system performance and user throughputs. This results to elastic users
the increase of the session durations, to streaming users the increase of the number of starva-
tions and the increase of the start-up and rebuffering duration. Users may react to this QoE
degradation by aborting their connections before their completion by impatience.

Our aim is to study this phenomenon of impatience in mobile networks and quantify its
impact on system performance.

Several works on impatience have been developed.
The first model of impatience was developed by Palm [19] in the 1940’s. He introduced an

inconvenience function of time I(t), t > 0 the derivative of which he called irritation. As a
plausible form for irritation, Palm proposed dI(t) = c.tλ, t > 0, as being proportional to the
hazard rate of user abandonment, our impatience function. This reasoning implies that the
distribution of patience (the time a user is willing to wait for service) is Weibull. The special
case of exponentially distributed patience, as a M/M/n+M referred as Erlang A, corresponds
to λ = 0, which is irritation (or impatience) that is constant over time.

Barrer in [2] studied impatience under a First-In-First-Out (FIFO) discipline that processes
in the order that user arrive in queue.

Authors in [7] used simulations to quantify the impact of user impatience on the system
performance for several bandwidth sharing disciplines. They reported that up to 20% of the
total carried data traffic are aborded.

Authors in [15] modeled the impatience in the case of M/G/1-Processor sharing (PS) for
heavy tailed service by considering that impatience is proportional to service time. They eval-
uated the reneging probability of users with large service time and they used these results to
investigate the impact of admission control on a link of a packet network, and concluded that it
globally increases the fraction of users who complete their service.

Authors in [16] and [17] analyzed the performance of a GI/GI/1-PS queue with impatient
customers in overload by approximating a bandwidth sharing network with a more tractable
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fluid model. They found that user impatience has quite a significant negative impact on system
performance, also on finite time scales and they showed that admission control reduces the
impact of reneging on system performance in some cases.

In [35] authors studied a M/M/1 queue with an exponential reneging variable. They proved
that this system can be approximated by either a reflected Ornstein-Uhlenbeck process or a
reflected affine diffusion when the arrival rate exceeds or is close to the service rate and the
reneging rate is close to 0. They showed numerically that their proposed diffusion approximations
in the context of approximating steady state performance characteristics are accurate.

In [38] authors considered a variant of a M/M/c model in which every user in the queue will
abandon the queue after an exponentially patience time. In their model time is only discusssed
in discrete terms, which can be seen as short time intervals. More than one event can occur
in one time slot. They took as starting point that an arrival at time k occurs during time slot
k, service starting at time k starts at the beginning of time slot k and departure at time k
occurs at the end of time slot k, an abandonmrnt at time k occurs before any arrival at time
k. They called this choice the late-arrival and early abandonment. They provided the steady
state probability of their model using the generating function method and an infinite recursion.
They provided some performance measures such as the mean queue length, the fraction of users
which abandons the system, the throughput.

In [36] authors considered a two phase queueing system with impatient users and multiple
vacations where customers arrive according to a Poisson process, and receive a first service as
well as a second. User may balk with a certain probability and may leave due to impatience after
joining the queue without getting service. The service is assumed to be stopped when the server
is on vacation or during the first phase of service. Authors derived the probability generating
functions of the number of users in the system for various states of the server, they obtained the
closed form expressions for various performance measures as the mean system sizes for various
states of the server, the average rate of balking, the average rate of reneging, and the average
rate of loss.

Authors in [46] studied the impact of video stream quality on viewer behavior in a data-
driven manner. They showed that viewers start to abandon a video if it takes more than 2
seconds to start up, and each incremental delay of 1 second resulting in a 5.8% increase in rate
of abandonment.

Author in [47] showed that the abandonment rate of viewers increases when the start-up
delay increases, a user who watches a short video is 11.5% more likely to abandon sooner during
start-up than a user who watches a long video, a user watching video with a better connectivity
is more likely to abandon sooner during start-up.

1.2 Organisation of the manuscript

In chapter 1 we study user impatience and quantify its impact on the performance of mobile
networks in the presence of elastic user. We consider a dynamic user setting where users come to
the system at different time instants and leave it after a finite duration, either after completion
of their data transfers or earlier, at the expiry of some patience duration. We model the station-
ary distribution of the system and derive several performance metrics such as mean number of
users in the system, the probability of impatience, taking into account user location in the cell.
We further develop two approximate expressions for the stationary distribution of the system:
an aggregate one and a detailed one and show their closeness to the exact model. A transient
analysis is also included.
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In chapter 2 we study mobility of elastic user who may be impatient and quantify its impact
on the performance of the mobile network. We consider the case of mobility due to impatience
and the spontaneous mobility of users both intra cell and inter cell. We model the stationary
distribution of the system and derive several performance metrics such as mean number of users,
the proportion of impatient users who quit the system before completing their file transfers and
the throughtput.

In chapter 3 we study the streaming user impatience during the prefetching and the re-
buffering phases when starvation happens. We first model the buffer as a M/M/1 queue and we
introduce the patience duration of streaming user by considering a packet level analysis in which
the video size is assumed to be infinite,for both deterministic and exponential patience durations.
Secondly we model the continuous time playback taking into account the flow dynamics in the
system constituted of several regions scheduled as a processor sharing and we consider the case
of deterministic and exponential patience durations. We derive several the performance metrics
such as the probability to be impatient during rebuffering and the probability of starvation.

In chapter 4 we study a system with impatient users controlled by a system manager who
has to choose at each decision epoch an action to make in order to optimize the system perfor-
mance. In the first part the set of actions to be chosen by the system manager is assumed to be
finite and the control is dropping and blocking in each region of the system. Classical results of
average cost markov decision process for semi markov processes allow us to derive the optimal
policy that is the path of optimal decisions to be made by the system manager at each decision
epoch in order to optimize the system performance through the value iteration algorithm and
the modified policy iteration algorithm. In the second part we study firstly a system with one
region and then generalize it to the case of multiple regions using our aggregate model developed
in the first chapter of the thesis. The set of actions to be chosen by the system manager is as-
sumed to be a real compact or a compound of real compacts. We provide a theorem that allows
us to derive recursively the optimal policy and the optimal system size in order to optimize the
system performance.

Finally in chapter 5 we conclude the thesis and present some perspectives for future work.
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Chapter 2

Modeling and analysis of user
impatience in mobile networks
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Abstract

We study in this work user impatience and quantify its impact on the performance of mobile
networks, notably 4G LTE, in the presence of data flows experiencing heterogeneous radio con-
ditions. We consider a dynamic user setting where users come to the system at different time
instants and leave it after a finite duration, either after completion of their data transfers or
earlier, at the expiry of some patience duration. We model the stationary distribution of users
in the system and derive several performance metrics such as mean transfer times and the prob-
ability of impatience, taking into account user location in the cell. We further develop two
approximate expressions for the stationary distribution of the system: an aggregate one and
a detailed one and show their closeness to the exact model. We validate our model against
simulations and show trends for several performance metrics as a function of impatience rate. A
transient analysis is also included; it yields insights on the system performance before reaching
steady-state.



2.1 Introduction

With the advent of smartphones and tablets, mobile traffic has exploded and is expected to
continue its explosion in the upcoming years. While 3G networks have been for several years
under-utilized, they are becoming more and more congested. Even if the deployment of 4G Long
Term Evolution (LTE) networks will substantially increase the capacity of mobile networks, it
is expected that it will also amplify the phenomenon of mobile traffic increase as more users will
be willing to take advantage from the data rates promised by these 4G networks. Congestion
is thus inevitable at some point and it is hence important to study its impact on the mobile
network performance.

As the large majority of traffic in mobile networks is composed of elastic data applications,
congestion reduces user throughputs and extend their session durations. Users may react to this
Quality of Experience (QoE) degradation by aborting their connections before their completion.
On one hand, the repetition of this situation may lead to user churn, and, on the other hand,
impatience of some users alleviates the network load and may enhance the performance of the
other patient users who do not choose to quit the system before the completion of their service.

Impatience has been the object of several works dealing with fixed networks.
In [6], a new version of the Erlang formula has been derived taking into account user im-

patience, resulting in so-called Erlang-I formula (I stands for impatience; other works call it
the Erlang-A formula, A standing for abandonment). This formula is applicable for the case
of streaming like flows where the service duration is independent of the quantity of resources
obtained by the user, unlike our present case of data traffic.

Stanford [3] focuses primarily on exact performance analysis under FIFO discipline. He
considers a GI/G/1 queueing system where the nth arrival may renege if his service does not
begin before an elapsed random time Tn. An expression for the average fraction of customers
who renege from the system, an expression for the waiting time distribution for all arrivals to
the system, the waiting time distribution for arrivals who reach the server, the distribution for
virtual waiting time in the queue, the distribution of the steady-state number of users in the
system and the number of users who leave the system by completing their service are found and
written in terms of the distribution of the work seen by an arbitrary arrival to the system.

In [8], the authors modeled data traffic at the flow level and considered impatience of users
in the overload regime, when the mean arrival intensity is larger than the mean service rate.

In [18], authors analyze impatience in a call center in which they consider that user’s patience
is exponentially distributed and the system’s capacity is unlimited (M/M/N+M). They outline
a method for exact analysis of M/M/N+M model and then proceed with an asymptotic analysis
in a regime that is appropriate for large call centers.

In [20] authors considered the problem of sheduling impatient users in a G/GI/1 queue.
For that they assumed that every user has a random deadline to begin its service. Given this
deadline distribution, a scheduling policy decides the user service order and which user to reject
since their dealines have expired and do not leave the queue automatically. They showed that
LIFO (last-in first out) is an optimal service order when the deadlines are independent and
identically distributed random variables with a concave cumulative distribution function. They
also showed that in case of unknown waiting time, the optimal policy for a M/M/1 queue will
be the LIFO-PO (push-out) policy.

Nt =
(
N1
t , · · ·N r

t

)
In [37] authors studied a M/M/c queue with c = 1, 1 < c < ∞ and c = ∞ in a 2-phase

fast (1) and slow (0), with impatient users. The service time is assumed to be exponential with
parameter µ in fast phase and µ0 in slow phase with µ0 ≤ µ. They assumed that each user upon
arrival has an individual timer, exponentially distributed. If the system does not change from
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phase 0 to phase 1 before user’s timer expires, user abandons the queue never to return. For the
three models that are the single server case, the multiple server case and the infinite server case,
they derived explicit expressions for the probability density function of the number of users in
the system, both when the servers are slow and when the system functions normally and they
calculated the mean total number of users in the system.

Our aim in this chapter is to study user impatience in the context of mobile cellular net-
works, with an application to LTE, and quantify its impact on the system performance. We
model the system at the flow level for a realistic dynamic setting where users come to the system
at different time epochs and leave it after a finite duration, either upon the completion of their
data transfers or, in case of impatience, when their patience tolerance is over.

We study the system in steady-state and in transient regimes and obtain analytical expres-
sions for several quality of service metrics reflecting performance, such as mean transfer times,
and probability that a user leaves the system because of impatience. And this for several as-
sumptions on the distributions of the file size and patience duration. These metrics take into
account the heterogeneity of radio conditions for the different users in the cell, in contrast with
existing works on fixed networks where the capacity of the system is constant. Our numerical
and simulation results illustrate the trends for these metrics, notably as a function of the mean
impatience rate.

The remainder of this chapter is organized as follows. In section 2.2 there are the system
description. In section 2.3 we do the steady state analysis. In section 2.4 we derive some
QoS metrics. In section 2.5 we do the transient regime analysis. Numerical applications and
simulations are done in section 2.6. We conclude the chapter in section 2.7.

2.2 System model

2.2.1 System description

We consider an OFDMA-based homogeneous cellular network and focus on the downlink of one
cell with a single base station at its center. With OFDMA, the total bandwidth, which we
denote by W , is divided into N orthogonal subcarriers and can be shared between the different
users present in the cell in the same time slot.

Due to path loss, the Signal-to-Interference and Noise Ratio (SINR) is lower at the cell
edge than at the cell center. This leads to a cell capacity C(r) that depends on the distance
r between the user and the base station. In order to obtain this throughput, we make use of
a static simulator as described in [5]. This throughput is illustrated in Figure 2.1 for an LTE
system in an urban environment.

As can be seen in this figure, the throughput decreases when the user gets further away
from the base station. Let C1 > C2 > .... > Cl > .... > Cr be the set of throughputs at
different positions l in the cell and pl the probability that the user arrives to the cell in region l
(this corresponds to a discretization of Figure 2.1 into r regions where the throughput is almost
constant in each region).

2.2.2 System model without user impatience

We assume that data flows arrive to the system following a Poisson process with intensity λ. In
the absence of user impatience, the service duration for a single user in position l when he is
alone in the system, is given by T l = σ

Cl
where σ is the flow size.
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Figure 2.1: Throughput for a user who is alone in the cell, and who is located in different
positions. We consider an LTE system using 10 MHZ of spectrum at the 2.6 GHZ band. Cell
radius is equal to 1 Km and a MIMO 2*2 scheme is considered.

In the presence of more than one user in the system, the capacity of the cell is shared between
them: each user receives a throughput equal to γl = Cl

n when there are n users in the system.
Such a system can be modeled as an M/G/1 - Processor Sharing (PS) queue [4]. In this case,
each flow of class l will have a service duration equal to T l = nσ

Cl
.

2.3 Steady-state analysis

We now study the stationary distribution of the number of flows in the system. We focus on
the case where both file size σ and the patience duration that we note by τ are exponentially
distributed.

2.3.1 Detailed steady-state analysis

Let us consider the process Nt =
(
N1
t , .....N

r
t

)
, where r is the number of regions in the cell (each

with different radio conditions and hence different capacity) and N l
t is the number of users in

region l at time t.

Case of independence between service and patience durations

Let us first assume that the flow size and the patience duration are independent and exponentially
distributed with parameters µ0 and µ, respectively:

fσ(t) = µe−µt1[0,∞](t)

fτ (t) = µ0e
−µ0t1[0,∞](t)

The service duration in region l with capacity Cl: T
l = σ

Cl
, is also exponentially distributed

with parameter µl = µCl.
Each flow in region l has a patience duration τ l exponentially distributed with parameter

µl0, and we assume that
µr0 ≤ · · · ≤ µ10

10



which means that users at the cell edge become more impatient than users at cell center due to
radio conditions.

With these assumptions, the process Nt is an irreducible Markov process with the following
intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nl∑r
l=1 n

l
µl + nlµ

l
0

qN,N = −

(
λ+

r∑
l=1

qN,N−el

)
q0,0 = −λ

where N = (n1, ...., nr); nl being the number of users in region l, el = (0, .....0, 1, 0, ....0) and
λ =

∑r
l=1 λl; λl being the mean arrival rate to region l, and pl is the probability for the arriving

user to be in region l.
The stationary distribution π(N) is solution of:

πQ = 0 and
∑
N∈Nr

π(N) = 1

Patience duration function of flow size

It is more realistic to assume that the patience duration depends on the file size, since patience
grows with file size, i.e., τ = F (σ).

For simplicity, we assume as in [8] that F is linear:

τl = alσ

where 1
al

represents the minimum throughput required to transfer very large documents in region
l, referred to as the sustainable throughput; and we assume that the flow size is exponentiel of
parameter µ.

Each flow in region l has a patience duration τ l = alσ; thus its sojourn time in region l when
there are n flows in the system is T leff = min

{
nT l, τ l

}
is exponential of parameter µ

min
{
n
Cl
,al

} .

The process Nt =
(
N1
t , ..., N

r
t

)
t>0

where N l
t denotes the number of flows in region l is an

irreducible Markov process with the following intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nlµ

min
{∑r

k=1 nk
Cl

, al

}
qN,N = −

(
λ+

r∑
l=1

qN,N−el

)
The stationary distribution as previously is the solution to:

πQ = 0 and
∑
N∈Nr

π(N) = 1

11



2.3.2 Approximate aggregate steady-state analysis

We now derive an approximate closed-form solution for the aggregate steady-state probabilities.
We first notice that the actual service duration for a single user in the system located in region
l with impatience is given by: T leff = min{T l, τ l} where T l is given by σ

Cl
. In the case of n flows

in progress in the system, the actual service duration is given by T leff (n) = min{nσCl , τ
l}.

Our approximation will be made by assuming that each user in the system is considered to
be in region l with probability pl, its service time will be Tl and its patience duration τ l, thus
its effective mean time in the system when there n active users in the system will be given by:

E (Teff (n)) =
r∑
l=1

E

(
min{nσ

Cl
, τ l}

)
pl (2.1)

So we assume that the probility that user arrives in a region and the probabity that he is
localized in this region are equal.

This resembles to an M/G/1 - State Dependent Processor Sharing (SDPS) queue where the
system load, when n users are active, is given by the product of the traffic intensity and the
service duration:

ρeff (n) = λE (Teff (n)) = λ
r∑
l=1

E

(
min{nσ

Cl
, τ l}

)
pl (2.2)

An M/G/1 - SDPS queue whose load is described by this equation is always stable as the
sojourn time of the users in the system is always finite (since it is bounded by τ). The number
of users in the system can however increase and tend to infinity; in which case, no users will be
served at all and they would all leave the system after the impatience duration. This would not
happen as long as the following condition holds:

∞∑
n=0

n∏
m=1

ρeff (m)

m
<∞ (2.3)

The stationary distribution of this approximate system is given by:

π(n) =

∏n
m=1

ρeff (m)
m∑∞

i=0

∏i
j=1

ρeff (j)
j

(2.4)

Note that the limit after which all users will depart because of impatience without finishing
their service is π(0)−1 <∞.

We give next the derivation of this approximation using some assumptions about the repar-
tition of the users in the cell.

2.3.3 Another proof of Aggregate steady-state analysis

Derivation of equation (2.4)

We now describe the aggregate model for the stationary distribution of the total number of flows
in the system without considering the detailed number of users in each region in the system.

We assume Poisson arrivals, the service time and patience duration have a general distribu-
tion and there is no assumption of independence between them.
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Let us define ξ a type variable which assigns to each user the region in which he is located.
ξ is assumed to be a discrete random variable taking values in {1, ..., r}, and we assume that
P [ξ = l] = pl. The time spent by a flow in the system when there are n flows in progress is
given by Teff (n) = min {nT, τ}, where T and τ are defined by conditional distributions with
respect to ξ:
(T | ξ = l) and T l have the same distribution,
(τ | ξ = l) and τ l have the same distribution;
where T l and τ l are respectively the service time and the patience duration in region l.

Thus
P [T < y | ξ = l] = P

[
T l < y

]
P [τ < y | ξ = l] = P

[
τ l < y

]
.

Let us recall that pl is the probability that user arrives in region l. Here we do the approxi-
mation that the probability that a user arrives in a region and the probability that he is localized
in this region are equal.

For simplicity in the notations we denote Teff by T and min
{
nT l, τ l

}
by T l.

Let us define the process X(t) =
(
n(t), T1, · · · , Tn(t)

)
, where n(t) is the number of flows in

the system at time t, and Ti the spent time by the ith flow. We do so by labeling each flow in
the system. If one flow arrives when there are n flows present in the system, all flows will be
allocated one of the (n+ 1) labels with probability 1

n+1 . And when a flow leaves the system, all
flows with higher labels in the system have their labels decreased by one.

We denote by gl and Gl respectively the density function and the distribution function of

min
{
nT l, τ l

}
. Let G(y) = P [T < y] and hl(y) = gl(y)

1−G(y) .
Given that the sojourn time T of a flow has lasted for a time y, the probability that he leaves

the system within a time interval ε is given by:

P [T < y + ε/T > y] =
P [T < y + ε, T > y]

P [T > y]
=

r∑
l=1

P
[
T l < y + ε, T l > y

]
pl

1−G(y)

=

r∑
l=1

Gl(y + ε)−Gl(y)

1−G(y)
pl =

r∑
l=1

hl(y)plε+ o(ε)

For simplicity, we add the following notation:

P [n(t) = n, T1 > y1, · · · , Tn > yn] = P [n, y1, · · · , yn : t] .

The process X(t) is a continuous Markov-process on continuous space. We now look for its
stationary distribution if it exists.

We assume that all yi > 0. The event that at time t+ ε there are n flows in the system and
the different times spent yi + ε is the union of the following different events:

• at time t there were n flows already present in the system and nothing happens for the
duration ε;

• at time t there were n+1 flows in the system, and one flow has left the system before time
t+ ε;

• at time t there were n− 1 flows in the system, and one flow arrives before time t+ ε.
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We note that the probability of a third event is null because of the assumption yi > 0.

p (n, y1 + ε, · · · , yn + ε : t+ ε) =[
1−

[
λ+

r∑
l=1

n∑
i=1

hl(yi)pl

]
ε

]
p (n, y1, · · · , yn : t)

+
r∑
l=1

n+1∑
i=1

∫ ∞
0

P [n+ 1, y1, · · · , yi, u, yi+1, · · · , yn : t]hl(u)plεdu+ o(ε).

The first term on the right hand side reflects the situation in which no arrivals or departure
occurs in the time interval (t, t + ε) and all that happens is that the spent service times of the
customers who are present at time t age by an amount ε, while the summand in the second term
reflects the situation in which there are n+ 1 customers present at time t and the one labelled
i+ 1 departs, with all higher labels being decreased by one, as stipulated by assumption.

Let us divide this equation by ε and take the limit as ε tends to zero:

∂P [n, y1, · · · , yn : t]

∂t
+

n∑
i=1

∂P [n, y1, · · · , yn : t]

∂yi

= −

[
λ+

r∑
l=1

n∑
i=1

hli(yi)pl

]
P [n, y1, · · · , yn : t]

+
r∑
l=1

n+1∑
i=1

∫ ∞
0

P [n+ 1, y1, · · · , yi, u, yi+1, · · · , yn : t]hl(u)pldu

Now we need to know what happens at arrival instants. We consider the event where n− 1
flows were present in the system at time t and a new flow arrives and is allocated position i+ 1
before time t+ ε: ∫ ε

0
P [n, y1 + ε, · · · , yi + ε, u, · · · , yn + ε : t+ ε] du

=
λε

n
P [n− 1, y1, · · · , yn : t] + o(ε)

Dividing by ε and letting ε tend to zero we obtain:

P [n, y1, · · · , yi, 0, · · · , yn : t] =
λ

n
P [n− 1, y1, · · · , yn : t]

For the stationary distribution, the first term is null:

∂π [n, y1, · · · , yn]

∂t
= 0

and we have:

n∑
i=1

∂π [n, y1, · · · , yn]

∂yi

= −

[
λ+

r∑
l=1

n∑
i=1

hl(yi)pl

]
π [n, y1, · · · , yn]
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+

r∑
l=1

n+1∑
i=1

∫ ∞
0

π [n+ 1, y1, · · · , yi, u, yi+1, · · · , yn]hl(u)pldu.

And

π [n, y1, · · · , yi, 0, · · · , yn] =
λ

n
π [n− 1, y1, · · · , yn]

We note that Gi(0) = 0.
By using the definition of derivation as a limit we obtain :

∂π [n, y1, · · · , yn]

∂yi
= −

[
r∑
l=1

hl(yi)pl

]
π [n, y1, · · · , yn]

Then the equation becomes:

λπ [n, y1, · · · , yn] =
r∑
l=1

n+1∑
i=1

∫ ∞
0

π [n+ 1, y1, · · · , yi, u, yi+1, · · · , yn]hl(u)pldu.

These equations have a unique solution that sums to one [9] .
If we integrate all variables yi, we obtain π(n):

π(n) =

∫ ∞
0
· · ·
∫ ∞
0

π [n, y1, · · · , yn] dy1 · · · dyn,

The first integration gives: ∫ ∞
0

π [n, y1, · · · , yn] dy1

=

∫ ∞
0

π [n, 0, · · · , yn/T1 > u]P [T1 > u] du

By independance

=

∫ ∞
0

π [n, 0, · · · , yn] [1−G1(u)] du

=
λ

n
π [n− 1, y2, · · · , yn]

∫ ∞
0

(1−G1(u)) du

=
λ

nµ(n)
π [n− 1, y2, · · · , yn]

Then by recurrence:

π(n) = π(0)

n∏
k=1

ρ(k)

k

where ρ(k) = λ
µ(k) , E [min {kT, τ}] = 1

µ(k) and π(0)−1 =
∑

n

∏n
k=1

ρ(k)
k .

2.3.4 Approximate detailed steady-state analysis

We now derive an approximate, product-form expression for the steady state distribution of the
users in the different locations in the system. Indeed, the Markov chain defined in section 2.3.1 is
not reversible. In order to obtain an approximate product expression, we make the assumption
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that all users in the region near the base station finish their service before users in the region
further away from the base station. It is thus possible to obtain the following:

π(N) = π(0)

n1∏
i1=1

ρ1(
∑r

k=1 nk − i1 + 1)

n1 − i1 + 1

n2∏
i2=1

ρ2(
∑r

k=2 nk − i2 + 1)

n2 − i2 + 1
· · ·

nr∏
ir=1

ρr(
∑r

k=r nk − ir + 1)

nr − ir + 1

(2.5)
where ρl(k) = λl

µl(k)
and 1

µl(k)
= E

[
min

{
kT l, τ l

}]
.

Derivation of equation (2.5)

As in section 2.3.2 we treat the case of general service time T and general patience duration τ ,
with no assumption of independence between them. Users arrive in region l according a Poisson
process of rate λl, and λ =

∑r
l=1 λl is the arriving rate in the system.

Let us denote by nl(t) the number of flows in region l at time t and T leff the time spent by

one flow in region l. We recall that T leff = min
{
nT l, τ l

}
when there are n flows in the system,

where T l = σ
Cl

is the service time in region l and τ l the patience duration in region l. To simplify

the notation, we denote T leff by T l the time spent by one flow in region l.
Now let us define the process

X(t) =
(
n1(t), · · · , nr(t), T 1

1 , · · · , T 1
n1(t)

, · · · , T r1 , · · · , T rnr(t)
)

;

where T li is the time spent by the ith flow in region l. We do so by labeling each flow in each
region.

If one flow arrives in region l when there are nl present flows, all flows in the region will be
allocated one of the (nl + 1) labels with probability 1

nl+1 . And when a flow departs from the
region, all flows of higher labels in the region have their labels decreased by one.

We denote by Gli the distribution function of T li , by gli its density function which depends

on the number of flows in the system and by hli(y) = g(y)l

1−G(y)l
the hazard function.

Given that a sojourn time of a flow T li has lasted for a time y, the probability that he leaves
the system within a time interval ε is then given by:

P
[
T l < y + ε/T l > y

]
=
Gl(y + ε)−Gl(y)

1−Gl(y)
= hli(y)ε+ o(ε).

For simplicity let us add some notation:

N(t) = (n1(t), · · · , nr(t)) ,

N = (n1, · · · , nr) ,

P
[
N(t) = N,T 1

1 > y11, · · · , T 1
n1
> y1n1

, · · · , · · · , T rnr > yrnr
]

= P
[
N, y11, · · · , y1n1

, · · · , yrnr : t
]
.

The process X(t) is a continuous Markov-process on continuous space. We look for its
stationary distribution, if it exist.

We assume that all yli > 0. The event that at time t+ ε there are N flows in the system and
the different times spent yli + ε are the union of the following different events:
- at time t there were N flows already present in the system and nothing happens for the dura-
tion ε;
-at time t there were N + el flows in the system, and one flow of region l has left the system
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before the time t+ ε;
-at time t there were N−el flows in the system, and one flow came in region l before the time t+ε.

The probability of third event is small P {Third event} = 0, because of the assumption
yli > 0.

P
[
N, y11 + ε, · · · , y1n1

+ ε, · · · , yr1 + ε, · · · , yrnr + ε : t+ ε
]

=

[
1−

[
λ+

r∑
l=1

nl∑
i=1

hli(y
l
i)

]
ε

]
P
[
N, y11, · · · , y1n1

, · · · , yrnr : t
]

+
r∑
l=1

nl+1∑
i=1

∫ ∞
0

P
[
N + el, y

1
1, · · · , y1n1

, · · · , yl1, · · · , yli, u, yli+1, · · · , ylnl , · · · , y
r
nr : t

]
hli(u)εdu+ o(ε)

We divide this equation by ε and let ε tend to zero, we obtain:

∂P
[
N, y11, · · · , y1n1

, · · · , yrnr : t
]

∂t
+

r∑
l=1

nl∑
i=1

∂P
[
N, y11, · · · , y1n1

, · · · , yrnr : t
]

∂yli

= −

[
λ+

r∑
l=1

nl∑
i=1

hli(y
l
i)

]
P
[
N, y11, · · · , y1n1

, · · · , yrnr : t
]

+

r∑
l=1

nl+1∑
i=1

∫ ∞
0

P
[
N + el, y

1
1, · · · , y1n1

, · · · , yl1, · · · , yli, u, yli+1, · · · , ylnl , · · · , y
r
nr : t

]
hli(u)du

When N = 0 the equation becomes:

λlP [0 : t] =

∫ ∞
0

P [el, u : t]hl(u)du

Now we have to know what happens at arrival instants. For this we consider the event where
N − el flows were present in the system at time t and a new flow arrived in region l and was
allocated position i+ 1 in region l before time t+ ε:∫ ε

0
P
[
N, y11 + ε, · · · , yl1 + ε, · · · , yli + ε, u, · · · , yrnr + ε : t+ ε

]
du

=
λlε

nl
P
[
N − el, y11, · · · , yrnr : t

]
+ o(ε)

Dividing by ε and letting ε tend to zero, we obtain:

P
[
N, y11, · · · , yl1, · · · , yli, 0, · · · , yrnr : t

]
=
λl
nl
P
[
N − el, y11, · · · , yrnr : t

]
As we look for the stationary distribution, the time derivative is null, and we have:

r∑
l=1

nl∑
i=1

∂π
[
N, y11, · · · , y1n1

, · · · , yrnr
]

∂yli

= −

[
λ+

r∑
l=1

nl∑
i=1

hli(y
l
i)

]
π
[
N, y11, · · · , y1n1

, · · · , yrnr
]

+
r∑
l=1

nl+1∑
i=1

∫ ∞
0

π
[
N + el, y

1
1, · · · , y1n1

, · · · , yl1, · · · , yli, u, yli+1, · · · , ylnl , · · · , y
r
nr

]
hli(u)du
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λlπ [0] =

∫ ∞
0

π [el, u]hl(u)du

π
[
N, y11, · · · , yl1, · · · , yli, 0, · · · , yrnr

]
=
λl
nl
π
[
N − el, y11, · · · , yrnr

]
We note that Gli(0) = 0.
We also note that:

d
(
1−Gli(yli)

)
dyli

= −gli(yli) = −hli(yli)
(

1−Gli(yli)
)
.

By definition of derivative:

∂π
[
N, y11, · · · , y1n1

, · · · , yrnr
]

∂yli
= lim

k→0

1

k[
π
[
N, y11, · · · , yli + k, · · · , yrnr

]
− π

[
N, y11, · · · , yli, · · · , yrnr

]]
= π

[
N, y11, · · · , yli, · · · , yrnr/T

l
i > yli

]
lim
k→0

P
[
T li > yli + k

]
− P

[
T li > yli

]
k

= π
[
N, y11, · · · , yli, · · · , yrnr/T

l
i > yli

]
lim
k→0

(
1−Gli(yli + k)

)
−
(
1−Gli(yli)

)
k

= −π
[
N, y11, · · · , yli, · · · , yrnr/T

l
i > yli

]
hli(y

l
i)
(

1−Gli(yli)
)

= −hli(yli)π
[
N, y11, · · · , yli, · · · , yrnr

]
.

Then we have equality of the two sums :

r∑
l=1

nl∑
i=1

∂π
[
N, y11, · · · , y1n1

, · · · , yrnr
]

∂yli
= −

r∑
l=1

nl∑
i=1

hli(y
l
i)π
[
N, y11, · · · , y1n1

, · · · , yrnr
]

Thus we have:

λπ
[
N, y11, · · · , y1n1

, · · · , yrnr
]

=
r∑
l=1

nl+1∑
i=1

∫ ∞
0

π
[
N + el, y

1
1, · · · , y1n1

, · · · , yl1, · · · , yli, u, yli+1, · · · , ylnl , · · · , y
r
nr

]
hli(u)du

These equations have a unique solution that sums to one [9].
By Fubini, we have:∫ ∞

0

(
1−Gl(y)

)
dy =

∫ ∞
0

P
[
T l > y

]
dy = E

[∫ T l

0
dy

]
= E

[
T l
]

=
1

µl
;

Now we use the assumption that all users in region near the base station finish their service
before users in the region far from the base station, and we begin by integrating all variables y1k
of region 1:

π(N) =

∫ ∞
0
· · ·
∫ ∞
0

π
[
N, y11, · · · , y1n1

, · · · , yrnr
]
dy11 · · · dyrnr
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The first integration gives:∫ ∞
0

π
[
N, y11, · · · , y1n1

, · · · , yrnr
]
dy11 =

∫ ∞
0

π
[
N, 0, · · · , y1n1

, · · · , yrnr/T
1
1 > u

]
P
[
T 1
1 > u

]
du

By independance

=

∫ ∞
0

π
[
N, 0, · · · , y1n1

, · · · , yrnr
] [

1−G1
1(u)

]
du

=
λ1
n1
π
[
N − e1, y12, · · · , yrnr

] ∫ ∞
0

(
1−G1

1(u)
)
du

=
λ1

n1µ1(
∑r

k=1 nk)
π
[
N − e1, y12, · · · , yrnr

]
,

We continue the same process for other variables y1k of region 1, then for variable y2k of region
2 and so on (this is our assumption: all users in region near the base station finish their service
before users in the region far from the base station). By recurrence we obtain:

π(N) = π(0)

n1∏
i1=1

ρ1(
∑r

k=1 nk − i1 + 1)

n1 − i1 + 1

n2∏
i2=1

ρ2(
∑r

k=2 nk − i2 + 1)

n2 − i2 + 1
· · ·

nr∏
ir=1

ρr(
∑r

k=r nk − ir + 1)

nr − ir + 1

where ρl(k) = λl
µl(k)

and E
[
min

{
kT l, τ l

}]
= 1

µl(k)
.

2.4 QoS metrics

Here we use the model defined in section 2.3.1.
Now we focus on one tagged flow which is fixed in region k for example, and we define the

process Nt =
(
N1
t , .....N

r
t

)
where N l

t is the number of flows in region l seen by the tagged flow.
We add two supplementary states I corresponding to the state in which the tagged flow is

impatient and F corresponding to the state in which the tagged flow finishes its service.
The process (Nt)t is Markovian with the following intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nl∑r

i=1 ni + 1
µl + nlµ

l
0

qN,I = µk0

qN,F =
µk∑r

i=1 ni + 1

qN,N = −

(
λ+ µk0 +

µk∑r
i=1 ni + 1

+

r∑
i=1

qN,N−ei

)
qN = −qN,N

The two states I and F are absorbing, then (Nt)t is a reducible Makovian process. Let us
pose

TI = inf {t > 0, Nt ∈ I} ,

TF = inf {t > 0, Nt ∈ F} ,
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T ∗ = min {TI , TF } .

The variables TI , TF and T ∗ are stopping times.
Let I(N) = P [NT ∗ ∈ I | N0 = N ] be the probability that the tagged flow is impatient,

and F (N) = P [NT ∗ ∈ F | N0 = N ] the probability that the tagged flow finishes its service
conditioned on initial state N0 = N .

We can see that I(N) = P [TI <∞ | N0 = N ]. This is the hitting probability of state I. It
can be expressed as I(N) = E

[
1NT∗∈I | Z0 = N

]
= E [f (NT ∗) | N0 = N ], with f(n) = 1{n∈I}.

Then I(N) can be found as the solution of Dirichlet/FeymannKac problems as follows:

Q I = 0 ∀ N 6= I, F

I(I) = 1

I(F ) = 0

Then I is solution of following recurrence equation:

I(N) =

r∑
i=1

qN,N+ei

qN
I(N + ei) +

r∑
i=1

qN,N−ei
qN

I(N − ei) +
qN,I
qN

.

We regroup under matrix form by posing:

I =



I(0)
I(e1)

...
I(er)

...
I(N − e1)

...
I(N − er)
I(N)

I(N + e1)
...

I(N + er)
...



and E =



−q0,I
q0
...
...

−qN,I
qN
...



So we have:
MI = E

where M is a matrix with coefficient mI,J defined as:

M0,0 = −1; M0,ei =
q0,ei
q0

;

MN,N−ei =
qN,N−ei
qN

, MN,N = −1, MN,N+ei =
qN,N+ei

qN
.

We solve for F by the same method:

F (N) =

r∑
i=1

qN,N+ei

qN
F (N + ei) +

r∑
i=1

qN,N−ei
qN

F (N − ei) +
qN,F
qN

.

Then we have:
MF = K
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where F =



F (0)
F (e1)

...
F (er)

...
F (N − e1)

...
F (N − er)
F (N)

F (N + e1)
...

F (N + er)
...



and K =



−q0,F
q0
...
...

−qN,F
qN
...



Please note that F (N) = 1− I(N).
Let S(N) = E [T ∗ | N0 = N ] denote the mean sojourn time of the tagged flow in the system

conditioned on initial state N0 = N , then S is solution of following equation:

S(N) =
1

qN
+

r∑
i=1

qN,N+ei

qN
S(N + ei) +

r∑
i=1

qN,N−ei
qN

S(N − ei).

We have the following matrix form:

MS = G

where S =



S(0)
S(e1)

...
S(er)

...
S(N − e1)

...
S(N − er)
S(N)

S(N + e1)
...

S(N + er)
...



and G =



− 1
q0
...
...
− 1
qN
...



Let C(N) = E
[∫ TI

0

(
Nk
s + 1

)
ds | N0 = N

]
be the mean cost of impatience conditioned on

N0 = N , then C is solution of the following equation:

−QC = g ∀ N 6= I

C(I) = 0

where g(N) = g(n1, ...nr) = nk + 1.
Then:

C(I) = 0
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C(F ) =∞

C(N) =
r∑
i=1

qN,N+ei

qN
C(N + ei) +

r∑
i=1

qN,N−ei
qN

C(N − ei) +
nk + 1

qN
.

In matrix form, we have:

MC = P

where C =



C(0)
C(e1)

...
C(er)

...
C(N − e1)

...
C(N − er)
C(N)

C(N + e1)
...

C(N + er)
...



and P =



− 1
q0
...
...

−nk+1
qN
...



If we consider that the system is in steady-state regime at the beginning, we obtain the
following QoS measures:

I =
∑
N

I(N)π(N)

F =
∑
N

F (N)π(N)

S =
∑
N

S(N)π(N)

C =
∑
N

C(N)π(N)

Patience duration function of flow size Now let us consider a tagged flow in region l, and
let us define process Nt =

(
N1
t , ..., N

r
t

)
t>0

where N l
t is the number of flows in region l as seen

by the tagged flow. The process Nt is Markovian with intensity matrix given by:

qN,N+el = λl = λpl,

qN,N−el =
nlµ

min
{∑r

i=1 ni+1
Cl

, al

} ,
qN,I =

µ

ak
1{

ak≤
∑r
i=1

ni+1

ck

};

qN,F =
µCk∑r

i=1 ni + 1
1{∑r

i=1
ni+1

ck
≤ak

};
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qN,N = −

(
λ+

r∑
i=1

qN,N−ei + qN,I + qN,F

)
.

We recall that al is the coefficient which appears in the expression of patience for a user
located in region l: τ l = alσ.

The states I and F are absorbing then reccurrent, and the state Nr is transient. The previous
QoS measures are calculated here by replacing qN,M by those in this paragraph.

2.5 Transient regime analyis

Now we study the system without the condition of stability.
We consider the Markov process of tagged flow studied previously in the steady-state analysis

part.
Let us pose B(N, t) = P [Zt ∈ {I, F} | Z0 = N ], the probability that the tagged flow leaves

the system at time t conditioned on initial condition Z0 = N . We can show that B(., t) is
solution of the following equation:

∂B(N, t)

dt
= QB(N, t),

B(N, 0) = 1{N∈{I,F}}.

Thus:
B(N, 0) = 0 ∀ N 6= I, F ,

B(I, 0) = B(F, 0) = 1 ,

∂B(N, t)

dt
=

r∑
i=1

qN,N+eiB(N+ei, t)+qN,NB(N, t)+

r∑
i=1

qN,N−eiB(N−ei, t)+qN,IB(I, t)+qN,FB(F, t)

=

r∑
i=1

λiB(N+ei, t)+µ0+
µk∑r

j=1 nj + 1
+qN,NB(N, t)+

r∑
i=1

[
ni∑r

j=1 nj + 1
µi + niµ0

]
B(N−ei, t) .

We apply the Laplace transformation and obtain:

r∑
i=1

qN,N−ei
qN

B̄N−ei(p)−
[
1 +

p

qN

]
B̄N (p) +

r∑
i=1

qN,N+ei

qN
B̄N+ei(p) = −

[
B(N, 0)

qN
+
qN,I + qN,F

pqN

]
.

which can be regrouped in matrix form:{
M− p

qN
I
}
B̄(p) = D
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where B̄(p) =



B̄0(p)
B̄e1(p)

...
B̄er(p)

...
B̄N−e1(p)

...
B̄N−er(p)
B̄N (p)

B̄N+e1(p)
...

B̄N+er(p)
...



,

and D =



−pB(0,0)+q0,I+q0,F
pq0
...
...

−pB(N,0)+qN,I+qN,F
pqN
...


,

Let us pose F (N, t) = P [Zt ∈ F | Z0 = N ] the probability that the tagged flow finishes its
service at instant t conditioned on Z0 = N , and I(N, t) = P [Zt ∈ I | Z0 = N ] the probability
that the tagged flow leaves the system by impatience at instant t conditioned on Z0 = N . Then
by the same method we have:

∂F (N, t)

dt
=

r∑
l=1

qN,N+elF (N + el, t) + qN,NF (N, t) +
r∑
l=1

qN,N−elF (N − el, t) + qN,F ,

F (N, 0) = 0 ∀ N 6= F ,

F (F, 0) = 1 ;

With Laplace transformation we obtain:{
M− p

qN
I
}
F̄(p) = L
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where: F̄(p) =



F̄0(p)
F̄e1(p)

...
F̄er(p)

...
F̄N−e1(p)

...
F̄N−er(p)
F̄N (p)

F̄N+e1(p)
...

F̄N+er(p)
...



,

and L =



−pF (0,0)+q0,F
pq0
...
...

−pF (N,0)+qN,F
pqN
...


,

We also have:

∂I(N, t)

dt
=

r∑
l=1

qN,N+elI(N + el, t) + qN,NI(N, t) +
r∑
l=1

qN,N−elI(N − el, t) + qN,I ,

I(N, 0) = 0 ∀ N 6= I ,

I(I, 0) = 1 ;

With Laplace transformation we obtain:{
M− p

qN
I
}
Ī(p) = H

where: Ī(p) =



Ī0(p)
Īe1(p)

...
Īer(p)

...
ĪN−e1(p)

...
ĪN−er(p)
ĪN (p)

ĪN+e1(p)
...

ĪN+er(p)
...



,
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and H =



−pI(0,0)+q0,I
pq0
...
...

−pI(N,0)+qN,I
pqN
...


,

Now let us consider the Markov process Zt =
(
Z1
t , .....Z

r
t

)
(without considering any tagged

flow) where Zit is the number of flows in region i. Its intensity matrix is given by:

qN,N+el = λl = λpl,

qN,N−el =
nl∑r
k=1 nk

µl + nlµ0,

qN,N = −

(
λ+

r∑
l=1

qN,N−el

)
;

Let us denote by T (N, t) = E
[∑r

i=1 Z
i
tT

l | Z0 = N
]

the mean service time in region l at
instant t conditioned on Z0 = N , and S(N, t) = E

[
min

{∑r
i=1 Z

i
tT

l, τ
}
| Z0 = N

]
the mean

sojourn time of flow in region l. Then T (N, t) and S(N, t) are solutions of the following equations:

∂T (N, t)

dt
=

r∑
i=1

qN,N+eiT (N + ei, t) +
r∑
i=1

qN,N−eiT (N − ei, t) + qN,NT (N, t) ,

T (N, 0) =

∑r
i=1 ni
µl

;

and

∂S(N, t)

dt
=

r∑
i=1

qN,N+eiS(N + ei, t) +
r∑
i=1

qN,N−eiS(N − ei, t) + qN,NS(N, t) ,

S(N, 0) = E

[
min

{
r∑
i=1

niT
l, τ

}]
.

2.6 Numerical applications and simulations

2.6.1 Model validation

We first validate our two models (exact and aggregate) by comparing the performance measures
obtained analytically versus simulations.

Figure 2.2 shows the mean number of flows in cell center and cell edge as a function of
impatience rate, for ρ = 0.65. It shows that simulation results and analytical results obtained
by the exact model are close.

Figure 2.3 shows the mean number of flows in the system as a function of impatience rate. It
shows that simulation results and analytical results obtained by the aggregate model are close.

Figure 2.4 shows the mean number of flows in the system as a function of impatience rate.
It compares the simulations results of the aggregate model obtained with three different service
time distributions: uniform, exponential and deterministic. The figure shows that the three
curves are quite close.
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Figure 2.2: Mean number of flows - Simulation versus equation (exact model) πQ = 0 - ρ = 0.65
- λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 200, time of simulation= 1500, number of
Monte Carlo = 120.

2.6.2 Exact model

We now show some numerical illustrations, in Figures 2.5 and 2.6 for the mean number of
flows and mean time spent in the system, respectively, as a function of impatience rate, in
the case where flow size is independent of flow duration. And this, considering two regions in
the cell: inner and outer, and the following parameters: λ1 = λ2 = 8 (flows/sec), µ1 = 32,
µ2 = 20 (1/sec) for a value of the load ρ = 0.65.

We observe that both metrics decrease with increasing impatience rate, as the system now
empties faster due to the impatient users who leave it before completing their file transfers. This
apparently improved performance is of course counter-balanced by the non-satisfaction of these
impatient users, as can be seen in Figure 2.7 where the probability of users who finish their
service decreases.

Figures 2.8, 2.9 and 2.10 show the case where the patience duration depends on the flow
size for the mean number of flows, the mean sojourn time in the system and the probability
to finish service, respectively, as a function of impatience coefficient 1/a. We observe as for
the case of independence that the curves decrease with increasing impatience rate, the system
empties faster due to the impatient users who leave before completing their service, so system
performance is improved.

Let us remark that in case of patience duration depending on file size, for a user in region l

when there are n active users in the system, we have Teff (n) = min
{
n σ
Cl
, alσ

}
is exponentially

distributed with parameter µ

min
{
n
Cl
,al

} that is not differentiable on al as opposed to of the case of

independence between patience duration and the flow size in which the above parameter µl
n +µl0

is differentiable on µl0. This fact explains why the curves plotted as a function of impatience
rate are smother in case of patience duration independent of file size than the curves plotted in
case of patience duration depending on file size.

2.6.3 Approximate aggregate model

We now study how good our aggregate approximation is by comparing it to the performance
obtained by the exact detailed one. We plot in Figures 2.11 and 2.12 the mean number of flows
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Figure 2.3: Mean number of flows - Simulation aggregate model versus equation (aggregate
model) - ρ = 0.65 -λ = 16, p1 = 0.5, p2 = 0.5, µ1 = 32, µ2 = 20, limit of admission = 200, time
of simulation = 1500, number of Monte Carlo= 120.

and mean time spent in the system, respectively, as a function of impatience rate, for the same
parameters as above, using both approaches. The curves are quite close.

2.6.4 Approximate detailed model

We now turn to the approximate detailed model and compare it to the performance obtained
by the exact detailed one. We plot in Figures 2.13 the mean number of flows, as a function of
impatience rate, for the same parameters as above, using both approaches. Again, the curves
are quite close.

2.7 Conclusion

We modeled user impatience in mobile cellular networks, with an application to 4G LTE, and
quantified its impact on system performance in terms of several QoS parameters, such as mean
transfer times, mean number of users in the cell and proportion of impatient users.

We observed that impatience results in higher system stability region and lower mean transfer
times, at the cost of higher number of users who quit the system before completing their file
transfers and hence higher user non-satisfaction.
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Figure 2.4: Mean number of flows - Simulation aggregate model with different distribution of
service time - ρ = 0.65 - λ = 16, p1 = 0.5, p2 = 0.5, µ1 = 32, µ2 = 20, limit of admission = 200,
time of simulation = 1500, number of Monte Carlo = 120.
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Figure 2.5: Mean number of flows - impatience duration independent of file size - ρ = 0.65
-λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 20.
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Figure 2.6: Mean sojourn time - impatience duration independent of file size - ρ = 0.65- λ1 =
λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 20.
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Figure 2.7: Probability of users who finish their service - impatience duration independent of
file size - ρ = 0.65-λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 20.
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Figure 2.8: Mean number of flows - impatience duration dependent on file size - ρ = 0.65-
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, flow size= 1, limit of admission = 20.
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Figure 2.9: Mean sojourn time - impatience duration dependent on file size - ρ = 0.65-λ1 = λ2 =
8, µ1 = 32, µ2 = 20, flow size= 1, limit of admission = 20.
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Figure 2.10: Probability of users who finish their service - impatience duration dependent on
file size - ρ = 0.65-λ1 = λ2 = 8, µ1 = 32, µ2 = 20, flow size= 1, limit of admission = 20.

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

impatience rate (µ0
1=µ0

2)

M
ea

n 
nu

m
be

r o
f f

lo
w

s

 

 
equation π Q=0
Aggregate method

Figure 2.11: Mean number of flows - aggregate versus exact - ρ = 0.65-λ1 = λ2 = 8, λ = 16, p1 =
p2 = 0.5, µ1 = 32, µ2 = 20, limit of admission = 20.
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Figure 2.12: Mean sojourn time - aggregate versus exact - ρ = 0.65-λ1 = λ2 = 8, λ = 16, p1 =
p2 = 0.5, µ1 = 32, µ2 = 20, limit of admission = 20.
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Figure 2.13: Mean number of flows - detailed versus exact - ρ = 0.97-λ1 = λ2 = 12, µ1 =
32, µ2 = 20, limit of admission = 30.
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Chapter 3

Modeling Mobility
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Abstract

In this chapter we study mobility of users in the case of impatience and quantify its impact on
the performance of mobile networks, notably 4G LTE, in the presence of data flows experiencing
heterogeneous radio conditions. We consider the mobility due to impatience and the spontaneous
mobility of users in the system both intra and inter cell. We derive the stationary distribution
several performance metrics such as mean number of users, the proportion of impatient users
who quit the system before completing their file transfers and throughtput.



3.1 Introduction

The mobility model describes the movement of mobile users, and how their location change
over time. Since mobility plays a significant role in determining the performance of the system,
various researchers considered different models of mobility and quantified their impact.

Authors in [21] studied a model of an ad hoc network where n nodes are assumed to be
mobile, and examined the per-session throughput for applications with loose delay constraints,
such that the topology changes over the time-scale of packet delivery. This assumption allowed
them to show that the per-user throughput can increase dramatically when nodes are mobile
rather than fixed.

In [24] authors treat the problem of user mobility estimation and prediction to improve the
connection reliability and bandwidth efficiency of underlying system architecture. They proceed
by developing a hierarchical user mobility model that closely represents the movement behavior
of a mobile user, and that, when used with appropriate pattern matching and Kalman filtering
techniques, yields an accurate location prediction algorithm.

In [25] authors examine how slower mobility-induced rate variations impact performance at
flow level, accounting for the random number of flows sharing the transmission resource. They
identify two limit regimes that they denote ’fluid’ and ’quasi-stationary’ where the rate variations
occur on an infinitely fast and an infinitely slow time scale respectively. They show that these
limit regimes provide performance bounds depending on calculated load factors, and they prove
that for a broad class of Markov-type fading processes, performance varies monotically with the
speed of the rate variations.

In [26] authors consider a dynamic setting where users come and go over time as governed by
random finite size data transfers, and explicitly allow for users to roam around over the course of
their service. They determine the capacity of networks with both intra- and inter-cell mobility.
They show that mobility tends to increase the capacity of the system not only in case of globally
optimal sheduling, but also when each of the base stations operates according to a fair sharing
policy.

In [29] authors focus on high mobility users in LTE networks, they begin by identifying
and predicting the future behaviour of user with high mobility. For that they developed an
algorithm that identifies users following similar trajectories through a cell. They assume that
users that follow similar tajectories through a cell will have similar behaviour regarding mobility
and handovers, thus they predict the future behaviour of a user by considering observations made
from past users. These predictions allow them to decide which handovers are useful and what
is the best destination cell for a handover in order to reduce some unecessary and supoptimal
handovers.

In [27] authors proposed some methods for admission capacity planning in OFDMA cellular
networks which consider the randomness of the channel gain in formulating the outage radio
and the excess capacity ratio. They solved admission capacity planning by three optimization
problems that maximize the reduction of the outage ratio, the excess capacity ratio, and the
convex combination of them. The proposed planning method provides an attractive means for
dimensioning OFDMA cellular networks in which a large fraction of users experience group-
mobility.

In [30] authors introduced a method using a simple learning based classification method
to recognize the existing moility model in unknown mobility traces that is collected from real
motion of mobile Ad-hoc nodes or mobility traces generated by simulators. With simulations
they showed significant performance of their method to recognize the mobility model of all
unknown traces into one of the supported mobility models.

In [31] authors considered group mobility and evaluated the behaviour of mobile ad hoc
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networks. They proposed four different group mobility models: (1) The random waypoint
group mobility model that extends the classic random waypoint model by applying mobility
to a subset of close by nodes. This allowed them to consider the presence of intra and inter
group data traffic. (2) the random direction group mobility model in which the final destination
of a group is selected on a border of the movement area. (3) the manhattan group mobility
model that forces movement to be only along vertical or horizontal directions. (4) the sequential
group mobility model in which groups are ordered and group of label i has to move towards the
current position of group of label i−1. They showed that the mobility model of a MANET is an
important factor to be considered. They showed that the number of groups is more important
than the number of nodes and that the impact of the area size is almost negligible.

In [32] author gave an overview and classification of mobility models using simulations. He
considered two stochastic principles for speed and direction control in which the new values
are correlated to previous values that makes the movement of nodes more smooth than simple
approaches of random movement. A speed change occurs following a Poisson process, the times
between two direction changes are not assumed to be independent of each other. He finally
discussed the impact of the border behavior on the spacial node distribution.

Our aim in this chapter is to study the mobility subject to users impatience in the context
of OFDMA networks, with an application to LTE, and quantify its impact on the system per-
formance. We model the system at the flow level for a realistic dynamic setting where users
come to the system at different time epochs, move around different regions in the system, and
leave it after a finite duration, either upon the completion of their data transfers or, in case of
impatience, when their patience tolerance is over.

The remainder of this chapter is organized as follows. In section 3.2 there are the system
description and the model of mobility. In section 3.3 we model the mobility as a consequence
of impatience, in this part we assume that a user moves only when he is impatient. In section
3.4 we model mobility by a random variable independent of impatience, and we assume that
the user can move after its variable of mobility expires. In section 3.5 we consider mobility for
general flow size. For that we assume that others users have an exponential flow size, and we
track the user with general flow size. Numerical applications and simulations are done in section
3.8. In section 3.7 we treat the case of inter cell mobility and we conclude the chapter in section
3.9.

3.2 System model

As in the previous chapter we consider an OFDMA-based homogeneous cellular network and
focus on the downlink of one cell with a single base station at its center. With OFDMA, the
total bandwidth, which we denote by W , is divided into N orthogonal subcarriers and can be
shared between the different users present in the cell in the same time slot.

Due to path loss, the Signal-to-Interference and Noise Ratio (SINR) is lower at the cell edge
than at the cell center. This leads to a cell capacity C(r) that depends on the distance r between
the user and the base station.

The throughput decreases when the user gets further away from the base station. Let
C1 > C2 > .... > Cl > .... > Cr be the set of throughputs at different positions l in the
cell and pl the probability that the user arrives to the cell in region l into r regions where the
throughput is almost constant in each region.

We model impatience by introducing a patience duration, denoted by a random variable τ .
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Each flow i of region l has its service duration T li and its patience duration τ li and completes its
transfer if and only if its service duration is less than its patience duration i.e., nT li < τ li where
n is the total number of flows present in the system.

Let us notice that patience duration may depend on the region: a user near the base station
may be less patient than a user at the edge of the cell. In reality users can move from one region
to another and/or from one cell to another for different reasons, either because service is long
and they hope to get better throughput in another region, or because they are spontaneously
moving during the download. By moving they can leave the cell unknowingly or not. Our aim
is to model these two cases of mobility.

Let us notice that the inter cell mobility is considered only in section 3.7.

3.3 Mobility due to impatience

Here only the intra cell mobility is considered, our system is a cell consisting of several regions.
We assume that leave the cell means leave the system.

We assume that one user moves from one region to another only by impatience. For each
user we assume that:

• If the service duration is less than the patience duration, then he leaves the system

• If the patience duration is less than the service duration, so either he moves to another
region or he leaves the cell.

We denote by αij the probability that a user of region i moves to region j, and αi0 the
probability that a user of region i leaves the cell, with ∀ i ∈ {1, r},

∑r
k=0 αik = 1.

Let us introduce the process Nt =
(
N1
t , .....N

r
t

)
, where r is the number of regions in the cell

(each with different radio conditions and hence different capacity) and N l
t is the number of users

in region l.

3.3.1 Case of independence between service and patience durations

We assume that the flow size and the patience duration are independent and exponentially
distributed with parameters µ0 and µ respectively.

The service duration in region l with capacity Cl is given by T l = σ
Cl

, is also exponentially

distributed with parameter µl = µCl.
Each flow in region l has a patience duration τ l exponentially distributed with parameter

µl0.
With these assumptions, the process Nt is an irreducible Markov process with the following

intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nl∑r
l=1 nl

µl + nlµ
l
0αl0

qN,N+el−ek = nkµ
k
0αkl

qN,N = −

λ+

r∑
l=1

qN,N−el +

r∑
k=1

∑
l 6=k

qN,N+el−ek
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q0,0 = −λ

where N = (n1, ...., nr); nl being the number of users in region l, el = (0, .....0, 1, 0, ....0) is a
vector with the l-th component equals to 1 and all others are 0, and λ =

∑r
l=1 λl; λl being the

mean arrival rate to region l.
Transition from state N to state N+el−ek corresponds to the case in which a user of region

k has been impatient during its service and moves to region l.
Transition from state N to state N − el corresponds to the case in which a user of region l

leaves the cell either after the end of its service or after its patience duration has expired and
instead of moving to another region, he leaves the cell (that case occurs with probability αl0).

The stationary distribution π(N) is solution of:

πQ = 0 and
∑
N∈Nr

π(N) = 1.

Now let us try to estimate αij . When a user of some region is impatient there are r possible
events: either he moves to one of the other r − 1 regions of the system or he leaves the system.

Let us notice that here mobility is not restricted to adjacent regions.
By the formula

∑r
k=0 αik = 1, we can assume that the distribution of moving is uniform on

all regions, including the outside of the system, so ∀i ∈ [1, r] αij = αik, ∀j, k ∈ [0, r] . If we

denote by P iI the probability to be impatient in region i, we can estimate αij by
P iI
r .

Now let us find P iI . For that we focus on one tagged flow located in region i, and we define
the process Xt =

(
X1
t , .....X

r
t

)
where X l

t is the number of flows in region l seen by the tagged
flow.

Let us notice that in this section, mobility occurs only when there is impatience. Thus in
order to find the probability of impatience P iI , we assume in the study of the process Xt, that
users are not allowed to move.

We add two supplementary states I corresponding to the state in which the tagged flow is
impatient and F corresponding to the state in which the tagged flow finishes its service.

We assume that the service duration and the patience duration are exponential and inde-
pendent. With these assumptions the process (Xt)t is Markovian with the following intensity
matrix:

qN,N+el = λl = λpl,

qN,N−el =
nl∑r

j=1 nj + 1
µl + nlµ

l
0,

qN,I = µi0,

qN,F =
µi∑r

j=1 nj + 1
,

qN,N = −

(
λ+ µi0 +

µi∑r
j=1 nj + 1

+

r∑
l=1

qN,N−el

)
,

qN = −qN,N .

The two states I and F are absorbing, then (Xt)t is a reducible Makovian process.

Let us pose
TI = inf {t > 0, Xt ∈ I} ,

39



TF = inf {t > 0, Xt ∈ F} ,

T ∗ = min {TI , TF } .

The variable TI , TF and T ∗ are stopping times.
Let us pose I(N) = P [XT ∗ ∈ I | X0 = N ] the probability that the tagged flow be impatient,

conditioned on X0 = N .
We can see that I(N) = P [TI <∞ | X0 = N ] which is the hitting probability of state I. The
first formulation can be expressed as I(N) = E

[
1XT∗∈I | X0 = N

]
= E [f (XT ∗) | X0 = N ], with

f(z) = 1{z∈I}. Then I(N) can be found as the solution of Dirichlet/FeymannKac problems as
follows:

Q I = 0 ∀ N 6= I, F

I(I) = 1

I(F ) = 0

Now let us consider the same process Xt =
(
X1
t , .....X

r
t

)
without the tagged flow, where X l

t

is the number of flows in region l.
The process Xt is an irreducible Markov process with the following intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nl∑r
l=1 nl

µl + nlµ
l
0

qN,N = −

(
λ+

r∑
l=1

qN,N−el

)
The stationary distribution π(N) is solution of:

πQ = 0 and
∑
N∈Nr

π(N) = 1

If we consider that the system is in steady-state regime at the beginning, we obtain P iI :

P iI =
∑
N

I(N)π(N).

3.3.2 Patience duration function of flow size

It is more realistic to assume that the patience duration depends on the file size, since patience
grows with file size, i.e., τ = F (σ).

As in the previous chapter, we assume that

τ l = alσ

where 1
al

represents the minimum throughput required to transfer very large documents in region
l, referred to as the sustainable throughput; and we assume that the flow size is exponentiel of
parameter µ.

Each flow in region l has a patience duration τ l = alσ, and a service duration nT l = n σ
Cl

when there are n flows in the system.
The process Nt =

(
N1
t , ..., N

r
t

)
t>0

where N l
t denotes the number of flows in region l is an

irreducible Markov process with the following intensity matrix:
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qN,N+el = λl = λpl

qN,N−el =
nl∑r
l=1 nl

µl1{∑r
l=1

nl
Cl

≤al
} + nl

µ

al
αi01{∑r

l=1
nl

Cl
>al

}

qN,N+ej−ek = nk
µ

ak
αkj1{∑r

l=1
nl

Ck
>ak

}

qN,N = −

λ+
r∑
l=1

qN,N−el +
r∑

k=1

∑
l 6=k

qN,N+el−ek


We derive the probability of impatience in steady state by the similar method used in section

3.3.1.

3.4 Mobility independent of impatience

As in the previous section, only the intra cell mobility is considered, our system is a cell consisting
of several regions. We assume that leave the cell means leave the system.

We introduce a random variable for mobility that we denote by M . Each user in the system
has its mobility parameter M , its service parameter T and its patience parameter τ . When
the mobility parameter of a user of region i expires, he moves to another region j or leaves the
system.

Each user in region i has M ij mobility durations for j 6= i and j ∈ {0, 1, · · · , r}, that are
assumed to be exponentially distributed and independent with parameter αij . If the variable
M ij expires, then he moves from region i to region j. If the variable M i0 expires, then he leaves
the cell.

For each user in region i we denote by M i the minimum of all M ij .
According to our assumptions, M i is exponentially distributed with parameter

∑r
j=0,j 6=i αij .

3.4.1 Case of independence between service and patience durations

We assume that the service duration and the patience duration are exponential and indepen-
dent with respectively parameters µ, µ0, and we assume that they are independent of mobility
duration that is assumed to be exponentially distributed.

Each user of region l has its sojourn time in this region, denoted by Sl = min
{
nT l, τ l,M l

}
,

when there are n users in the system.

• If Sl = nT l, then he leaves the system after finishing service

• If Sl = τ l, then he leaves the system by impatience

• If Sl = M l, so either he moves to another region or he leaves the system.

Let us consider the process Nt =
(
N1
t , .....N

r
t

)
, where N l

t is the number of users in region l.
The process Nt is an irreducible Markov process with the following intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nl∑r
i=1 ni

µl + nlµ
l
0 + nlαl0

qN,N+el−ek = nkαkl
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qN,N = −

λ+

r∑
l=1

qN,N−el +

r∑
k=1

∑
l 6=k

qN,N+el−ek


The stationary distribution π(N) is solution of:

πQ = 0 and
∑
N∈Nr

π(N) = 1.

Now we want to study the behavior of a tagged flow in the system. For that we introduce
the process Zt =

(
Z1
t , .....Z

r
t

)
, where Z lt is the number of users in region l seen by the tagged

flow.
We denote by p∗l the probability that the tagged flow is localized in region l with

∑r
l=1 p

∗
l = 1,

that is different from pl which is the probability that a new user arrives in region l. We assume
that p∗l is constant for all l ∈ [1, r] .

We introduce three supplementary states I, F and M , where:

• I is the state by which the tagged flow leaves the system by impatience

• F is the state by which the tagged flow leaves the system if its service finishes

• M is the state by which the tagged flow leaves the cell by moving

The three states are absorbing, and the process Zt is a reducible Markov process with the
following intensity matrix:

qN,N+el = λpl = λl

qN,N−el =
nl∑r

i=1 ni + 1
µl + nlµ

l
0 + nlαl0

qN,N+el−ek = nkαkl

qN,I =

r∑
i=1

µi0p
∗
i

qN,F =

r∑
i=1

1∑r
i=1 ni + 1

µip∗i

qN,M =

r∑
i=1

αi0p
∗
i

qN,N = −

λ+
r∑
l=1

qN,N−el +
r∑

k=1

∑
l 6=k

qN,N+el−ek + qN,I + qN,F + qN,M


Let us pose

TI = inf {t > 0, Zt ∈ I} ,

TF = inf {t > 0, Zt ∈ F} ,

TM = inf {t > 0, Zt ∈M} ,

T ∗ = min {TI , TF , TM} .
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These variables are stopping times. Let us pose PI(N) = P [ZT ∗ ∈ I | Z0 = N ] the proba-
bility that the tagged flow leaves the system by impatience, PF (N) = P [ZT ∗ ∈ F | Z0 = N ] the
probability that the tagged flow finishes its service, and PM (N) = P [ZT ∗ ∈M | Z0 = N ] the
probability that the tagged flow leaves the cell by moving, all conditioned on Z0 = N.

PI , PF , PM are solution of the Dirichlet/FeymannKac problems as follows:

• PI is solution of:
Q PI = 0 ∀ N 6= I, F, M

PI(I) = 1

PI(F ) = 0

PI(M) = 0

• PF is solution of:
Q PF = 0 ∀ N 6= I, F, M

PF (I) = 0

PF (F ) = 1

PF (M) = 0

• PM is solution of:
Q PM = 0 ∀ N 6= I, F, M

PM (I) = 0

PM (F ) = 0

PM (M) = 1

If we consider that the system is in steady-state regime at the beginning, we obtain the
measures of performance in steady state P ∗I , P ∗F , P ∗M as follows:

P ∗I =
∑
N

PI(N)π(N)

P ∗F =
∑
N

PF (N)π(N)

P ∗M =
∑
N

PM (N)π(N).
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3.4.2 Patience duration function of flow size

Now let us assume again that
τ l = alσ

where 1
al

represents the minimum throughput required to transfer very large documents in region
l, referred to as the sustainable throughput; and we assume that the flow size exponentiel with
parameter µ and independent of mobility.

Each flow in region l has a patience duration τ l = alσ, a service duration nT l = n σ
Cl

when

there are n flows in the system, and a mobility parameter M l.
The process Nt =

(
N1
t , ..., N

r
t

)
t>0

where N l
t denotes the number of flows in region l is an

irreducible Markov process with the following intensity matrix:

qN,N+el = λl = λpl

qN,N−el =
nlµ

min
{∑r

i=1 ni
Cl

, al

} + nlαl0

qN,N+el−ek = nkαkl

qN,N = −

λ+

r∑
l=1

qN,N−el +

r∑
k=1

∑
l 6=k

qN,N+el−ek


The stationary distribution is found by resolving

πQ = 0 and
∑
N∈Nr

π(N) = 1.

To study the behavior of a tagged flow we do as previously, by introducing three absorbing
states I, F , M , and by considering the process of the number of flows seen by the tagged flow
in each region Zt =

(
Z1
t , ..., Z

r
t

)
t>0

.
Thus the process Zt is a reducible Markov process with the following intensity matrix:

qN,N+el = λl

qN,N−el =
nlµ

min
{∑r

i=1 ni+1
Cl

, al

} + nlαl0

qN,N+el−ek = nkαkl

qN,I =
r∑
i=1

µ

ai
1{∑r

l=1
nl+1

Ci
>ai

}p∗i

qN,F =

r∑
i=1

µi∑r
l=1 nl + 1

1{∑r
l=1

nl+1

Ci
≤ai

}p∗i

qN,M =

r∑
i=1

αi0p
∗
i

qN,N = −

λ+
r∑
l=1

qN,N−el +
r∑

k=1

∑
l 6=k

qN,N+el−ek + qN,I + qN,F + qN,M


where p∗i is the probability that the tagged flow is localized in region i.

We derive the same metrics as in section 3.4.1 by a similar method.
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3.5 Mobility for general flow size

Here we consider a system with a tagged user that has a general distribution for the flow size
and general patience duration. All other users are assumed to have exponential flow size and
patience duration, that we assume independent. We denote by σ the flow size for the tagged
flow.

Users arrive in region l according a Poisson process with parameter λl, and have a service
time T l, a patience duration τ l and a mobility variable M l defined as in the previous section,
that are exponentially distributed with parameters µl, µl0 and αl respectively.

We consider the process Nt = (N1
t , ..., N

r
t ), where N l

t is the number of users in region l seen
by the tagged flow.

When the tagged flow moves, its throughtput changes because the capacities of different
regions are different, so we define the process of mobility of the tagged flow by a process Ct
taking values to be shared with other users in [C1, ..., Cr], where Cl is the capacity in region l.

We assume that the tagged flow moves from region l to region k according to its mobility
variable M lk with parameter αlk, as for the other users.

In order to study the behaviour of the tagged flow in the cell, we assume that he can not
leave the cell by mobility, that is the reason for which the process of mobility is assumed to take
values in [C1, ..., Cr]. The other users however can leave the cell by mobility according to their
mobility variable M l0, when they are localized in region l.

Let us notice that the processes Nt and Ct are independent and Markovian.
Let us define by R(t) =

∫ t
0

Cu
1+
∑r
l=1N

l
u
du the file transferred by the tagged flow at time t, so

its service time is defined by T = inf {t > 0;R(t) ≥ σ}.
We notice that R(T ) = σ.

Theorem 3.5.1 The process Zt = (Nt, Ct) is Markovian with intensity matrix A given by:
let Zl = (Nl, Cl) and Zk = (Nk, Ck) be two states of Zt
AZk,Zl = qNk,Nk+ei = λi if Nl = Nk + ei and Cl = Ck ;
AZk,Zl = qNk,Nk−ei = ni∑r

j=1 nj+1
µi + niµ

i
0 + niαi0 if Nl = Nk − ei and Cl = Ck ;

AZk,Zl = qNk,Nk+ej−ek = nkαkj if Nl = Nk + ej − ek and Cl = Ck
AZk,Zl = αkl if Nl = Nk and Cl 6= Ck
AZk,Zl = 0 otherwise,
where Q = (qN,M ) is the intensity matrix of the process Nt, and Nk = (n1, · · · , nr).

Proof Let us pose Zl = (Nl, Cl) and Zk = (Nk, Ck) two arbitrary states of Zt. By definition of
intensity matrix

AZk,Zl = lim
h→0

1

h
P [Zt+h = Zl | Zt = Zk]

P [Zt+h = Zl | Zt = Zk] = P [Nt+h = Nl, Ct+h = Cl | Nt = Nk, Ct = Ck]

By independence between (Nt)t and (Ct)t we have:

P [Nt+h = Nl, Ct+h = Cl | Nt = Nk, Ct = Ck]

= P [Nt+h = Nl, | Nt = Nk, Ct = Ck]P [Ct+h = Cl | Nt = Nk, Ct = Ck]

= P [Nt+h = Nl | Nt = Nk]P [Ct+h = Cl | Ct = Ck] .

If Nl 6= Nk and Cl 6= Ck, that corresponds to the case in which the tagged flow moves during
the transition of the process Zt, then AZl,Zk = 0.
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Let us notice that Cl = Ck means that the tagged flow does not move during the transition
of the process Zt.

If Nl = Nk + ei and Cl = Ck that means that a new user arrives in region i and the tagged
flow does not move, then:

AZk,Zl = lim
h→0

1

h
P [Nt+h = Nk + ei | Nt = Nk]P [Ct+h = Cl | Ct = Ck]

= lim
h→0

1

h
P [Nt+h = Nk + ei | Nt = Nk]P

[
min
i6=k

(
Mki

)
> h

]
= lim

h→0

1

h
P [Nt+h = Nk + ei | Nt = Nk] exp(−h

r∑
i=1,i6=k

αki)

= qNk,Nk+ei

where qN,M is the coefficient of the intensity matrix of the process Nt.
If Nl = Nk − ei and Cl = Ck that means that a user of region i leaves the cell by mobility

and the tagged flow does not move, then:

AZk,Zl = lim
h→0

1

h
P [Nt+h = Nk − ei | Nt = Nk]P [Ct+h = Cl | Ct = Ck]

= lim
h→0

1

h
P [Nt+h = Nk − ei | Nt = Nk] exp(−h

r∑
i=1,i6=k

αki)

= qNk,Nk−ei

If Nl = Nk + ej − ek and Cl = Ck, that means that a user of region k goes to region j and
the tagged flow does not move, then:

AZk,Zl = lim
h→0

1

h
P [Nt+h = Nk + ej − ek | Nt = Nk]P [Ct+h = Cl | Ct = Ck]

= lim
h→0

1

h
P [Nt+h = Nk + ej − ek | Nt = Nk] exp(−h

r∑
i=1,i6=k

αki)

= qNk,Nk+ej−ek

If Nl = Nk and Cl 6= Ck, that means that only the tagged flow moves during the transition
of the process Zt, and he moves from region k to region l, then:

AZk,Zl = lim
h→0

P
[
Mkl < h

]
exp (−{qNk,Nk}h)

= αkl.

We denote by τe the patience duration of the tagged flow that is assumed to be general.
The probability that the tagged flow finishes its service without being impatient is given by

P [T < τe] which is equal to P [R(τe) > σ].
We can derive the probability that the tagged flows finishes its service through the relation-

ship between Markov process and ordinary differential equation (ODE) as follows. We define a
function:

g


 x1

...
xr

 , y

 =
y

1 +
∑r

l=1 xr
;

46



The process R(t) can be written as R(t) =
∫ t
0 g(Zu)du, then by the well-know relationship

between Markov process and ODE, V (t, z) = E [R(t) | Z0 = z] is solution of the following ODE:

∂V (t, z)

dt
= AV (t, z) + g(z),

V (0, z) = 0, ∀z.

We can derive the probability that the tagged flows finishes its service through the relation-
ship between Markov process and ordinary differential equation (ODE) as follows. We define a
function:

g


 x1

...
xr

 , y

 =
y

1 +
∑r

l=1 xl
;

The process R(t) can be written as R(t) =
∫ t
0 g(Zu)du. We can find the Laplace transform

of R(t) as follow
LR(λ) = E [exp (−λR(t))] , ∀λ > 0. For this let us pose W (t, z) = E [exp (−λR(t)) | Z0 = z].

By the well-know relationship between Markov process and PDE, W (t, z) is solution of the
following PDE:

∂W (t, z)

∂t
= AW (t, z)− λg (z)W (t, z),

W (0, z) = 1, ∀z.

We know that the process Nt has a stationnary distribution πN given by the equation πNQ =
0, where Q is its intensity matrix given by:

qN,N+el = λl

qN,N−el =
nl∑r

i=1 ni + 1
µl + nlµ

l
0 + nlαl0

qN,N+el−ek = nkαkl

The process Ct is a irreducible, recurent, and reversible Markov process, so it has a station-
nary distribution πC given by the local balance equation:

αn,n−1π
C
n = αn−1,nπ

C
n−1

Thus
πCn =

αn−1,n
αn,n−1

πCn−1

By recurence we have:

πCn =

n−1∏
l=1

αn−l,n−l+1

αn−l+1,n−l
πC1

As πC is a measure of probability then
∑r

n=1 π
C
n = 1, so

πC1 =

{
r∑

n=1

n−1∏
l=1

αn−l,n−l+1

αn−l+1,n−l

}−1
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Let us denote by Eπ the expectation in steady state. By Fubini and by independence between
Nt and Ct we have:

Eπ [R(t)] = Eπ

[∫ t

0

Cu
1 +

∑r
l=1N

l
u

du

]
=

∫ t

0
Eπ

[
Cu

1 +
∑r

l=1N
l
u

]
du

=

∫ t

0
Eπ [Cu]Eπ

[
1

1 +
∑r

l=1N
l
u

]
du

= tEπ [C]Eπ

[
1

1 +
∑r

l=1N
l

]
.

So we obtain a steady state expression of the throughput Eπ

[
R(t)
t

]
:

Eπ

[
R(t)

t

]
=

[
r∑
l=1

Clπ
C(l)

] ∑
(n1,...,nr)

π(n1, ..., nr)

1 +
∑r

l=1 nl


3.6 Link between both models

Here we want to see the link between the first and the second models. Let us recall that in
the first model the tagged flow has an exponential flow size σ, and its service time is given by:

T =
(1+

∑r
l=1N

l)σ
C where N l is the number of users in region l, and C is the capacity of the region

in which the tagged flow is localized. In the second model the tagged flow has a general service
time given by: T = inf {t > 0;R(t) ≥ σ}.

We notice that R(T ) = σ, so in the steady state regime we have:

Eπ

[
R(T )

T

]
= Eπ

[σ
T

]
In the first model σ

T = C
1+
∑r
l=1N

l , then

Eπ

[
R(T )

T

]
= Eπ

[
C

1 +
∑r

l=1N
l

]
Thus by independence we have:

Eπ

[
R(T )

T

]
= Eπ [C]Eπ

[
1

1 +
∑r

l=1N
l

]
So if we asume for the second model that Eπ

[
R(T )
T

]
= Eπ

[
R(t)
t

]
for any given t, then we can

conclude that the two expressions of throughput: Eπ

[
R(T )
T

]
for the second model and Eπ

[
σ
T

]
for the first model are equal.
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3.7 Inter cell mobility

In this section we introduce the inter cell mobility. We consider that there are many cells in the
system. Each cell contains many regions of different capacity. As previously, users can move
from one region to another in the cell; that is called the intra cell mobility. Now users are allowed
to move from one cell to another which is called the inter cell mobility.

For geographical reasons, we assume that the inter-cell mobility occurs only between the
edge regions, i.e, only user from edge region can move to another cell, and can only arrive to
the edge region of the arrival cell.

Let us denote by s the number of cells in the system, ∀ i ∈ [1, s] , and we denote by ri the
number of regions in cell i.

Let us introduce the process Zt =
(
Z1,1
t , ..., Z1,r1

t , · · · , Zi,1t , ..., Zi,rit , · · · , Zs,1t , ..., Z1,rs
t

)
, where

Zi,lt is the number of users in region l of cell i.
The vector

(
n11, ..., n

1
r1 , · · · , n

i
1, ..., n

i
ri , · · · , n

s
1, ..., n

s
rs

)
is a state of process Zt. We denote by

ni =
∑ri

l=1 n
i
l the total number of users in cell i.

We denote by Cil the capacity in region l of cell i.
We assume that user arrives in region l of cell i following a Poisson process of parameter λil.

A user in region l of cell i having a flow size σ, has a service time given by niσ
Cil

, when there

are ni active users in cell i. Its patience duration is dented by τ . We denote by M intra its intra
mobility variable, and M inter its inter mobility variable.

We assume that the flow size, the patience duration, the intra cell mobility variable and
the inter cell mobility variable are independent and exponentially distributed with respectively
parameters µ, µ0, α and ζ.

For a user in region l in cell i, its service time is exponential with parameter µil = Cilµ, when
he is alone in the cell. Its intra cell mobility variable to go to region l

′
in cell i is exponential

with parameter αi
ll′

. Its inter cell mobility variable to go to edge region rj of cell j is exponential

with parameter ζij if l is the edge region of cell i. If l is not the edge region of cell i there are
not inter cell mobility.

The interference between different base stations reduces the capacity of each cell, for that
we assume that the capacity in each cell is less than if there is no interference. This capacity is
shared following a processor sharing as previously.

With these assumptions the process Zt is Markovian with intensity matrix Q given by:

qZ,Z+eil
= λil, ∀i ∈ [1, s] , ∀l ∈ [1, ri]

qZ,Z−eil
=
nil
ni
µil + nilµ0, ∀i ∈ [1, s] , ∀l ∈ [1, ri]

qZ,Z+eik−e
i
l

= nilα
i
lk, ∀i ∈ [1, s] , ∀l, k ∈ [1, ri]

q
Z,Z+ejrj−eiri

= niriζ
ij , ∀i, j ∈ [1, s]

qZ,Z = −

 s∑
i=1

ri∑
l=1

λil +
s∑
i=1

ri∑
l=1

qZ,Z−eil
+

s∑
i=1

ri∑
l=1

∑
k 6=l

qZ,Z+eik−e
i
l

+
s∑
i=1

∑
j 6=i

q
Z,Z+ejrj−eiri

 .

The process Zt is irreducible and its stationnary distribution π is solution of:

πQ = 0 and
∑
N∈Nr

π(N) = 1.
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Now let us consider a tagged flow in the system. We consider that the process Zt as defined
previously contains all users in the system except the tagged flow.

We consider that the tagged flow has a flow size denoted by σ, and a patience duration τ .
We introduce the process of mobility of the tagged flow in the system Ct taking values in[

C1
1 , ...C

1
r1, · · · , Cs1 , ..., Csrs

]
, where Cil is the capacity in region l of cell i. As the other users,

we assume that the tagged flow moves in cell from one region to another following its intra cell
mobility variable M intra that is exponential with parameter α, he also moves from one cell to
another with its inter cell mobility variable M inter that is also exponential with parameter ζ.
We assume that the tagged flow, as the other users, can move to another cell only if he is in the
edge region and it arrives to the edge region of the arrival cell. If the tagged flow is located in
region l of cell i, he can move to region l′ in cell i following its intra cell mobility variable that
is exponential with parameter αill′ . He can move from cell i to cell j with its inter cell mobility
variable that is exponential with parameter ζij .

With these assumptions, the process Ct is an irreducible Markovian process with intensity
matrix QC given as follows:

qCil ,C
i
k

= αilk

q
Ciri ,C

j
rj

= ζij .

Its stationnary distribution πC is solution of:

πCQ = 0 and
∑
N∈Nr

πC(N) = 1.

Let recall that all cells are scheduled as a processor sharing, so when the tagged flow is in
cell i at time t, its throughtput is divided by 1 +N i

t where N i
t =

∑ri
l=1 Z

i,l
t is the total number

of users in cell i.
We define R(t) =

∫ t
0

Cu
1+Nu

du the portion of the file transferred by the tagged flow at time t,
where Nu is a process that defines the total number of users in the cell where the tagged flow is
located.

We notice that Nu is conditioned on Cu, Cu ∈
[
Ci1, ..., C

i
ri

]
then Nu is distributed as N i

u the
total number of users in cell i.

The service time of the tagged flow is given by T = inf {t > 0;R(t) ≥ σ}.
We denote by Eπ the expectation in steady state. By Fubini, by conditioning and by inde-

pendence, we have:

Eπ [R(t)] = Eπ

[∫ t

0

Cu
1 +Nu

du

]
=

∫ t

0
Eπ

[
Cu

1 +Nu

]
du

=

∫ t

0

s∑
i=1

Eπ

[
Cu

1 +Nu
| Cu ∈

[
Ci1, ..., C

i
ri

]]
P π
[
Cu ∈

[
Ci1, ..., C

i
ri

]]
du

= t
s∑
i=1

Eπ

[
Ci

1 +N i

]
πC
[
Ci
]

= t
s∑
i=1

Eπ
[
Ci
]
Eπ

[
1

1 +N i

]
πC
[
Ci
]
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Figure 3.1: Mean number of flows - impatience duration independent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 15.

= t
s∑
i=1

{
ri∑
l=1

Cilπ
C(Cil )

}
∑

(ni1,··· ,niri)

1

1 +
∑ri

l=1 n
i
l

πi(ni1, ..., n
i
ri)


{

ri∑
l=1

πC(Cil )

}

Thus the mean throughtput of the tagged flow in steady state is given by:

Eπ

[
R(t)

t

]
=

s∑
i=1

{
ri∑
l=1

Cilπ
C(Cil )

}
∑

(ni1,··· ,niri)

1

1 +
∑ri

l=1 n
i
l

πi(ni1, ..., n
i
ri)


{

ri∑
l=1

πC(Cil )

}
,

Where:
πi(ni1, ..., n

i
ri) =

∑
π(· · · , ni1, ..., niri , · · · )

3.8 Numerical applications and simulations

We recall that the mobility variable M is exponential with parameter α. We can notice that
E [M ] = 1

α . A user in the system moves a lot when its mobility variable is small, so when its
parameter of mobility α is high. High mobility corresponds to high value of α.

3.8.1 Case of intra-cell mobility: exponential flow size

Case of patience duration independent of file size In figure 3.1 we plot the mean number
of flows as a function of impatience rate and we compare the case without mobility to the case
with mobility due to the impatience. We observe that mobility due to impatience reduces the
number of flows in the system but the difference is not very significant.

In figures 3.2 and 3.3, we add the case in which mobility and impatience are independent
with two different parameters of mobility α = 3 and α = 10 respectively. We notice that the
mean number of users decreases with mobility. That is confirmed by figure 3.4 in which we plot
the mean number of flows as a function of mobility parameter α in the case where mobility is
independent of the patience duration that is independent of flow size.

In figure 3.5 we plot the probability to be impatient as a function of impatience in the case
independence between mobility, service time and patience duration with different parameters of
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Figure 3.2: Mean number of flows - impatience duration independent of file size - ρ = 0.65-
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 15.
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Figure 3.3: Mean number of flows - impatience duration independent of file size - ρ = 0.65-
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 15.

mobility α = 0.05, α = 0.5 and α = 5. We observe that it increases with impatience rate, and it
decreases for high values of mobility rate that corresponds to high mobility. That is confirmed
by figure 3.6 in which we plot the probability to be impatient as a function of mobility parameter
α in the case of independence between mobility, service time and patience duration.

Case of patience duration dependent on file size Figures 3.7, 3.8, 3.9, 3.10 correspond
to the case in which the patience duration depends to the file size. As in the previous case, we
observe that the mean number of users and the probability to be impatient decreases when the
mobility of users increases.

Let us remark as in the previous chapter, that in the case of patience duration depend-
ing on file size, for a user in region l when there are n active users in the system, we have

Teff (n) = min
{
n σ
Cl
, alσ,M

}
is exponentially distributed with parameter µ

min
{
n
Cl
,al

} +α that is

not differentiable on al as opposed to the case of independence between patience duration and
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Figure 3.4: Mean number of flows - impatience duration independent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 10, limit of admission = 15.
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Figure 3.5: Probability of impatience - impatience duration independent of file size - ρ = 0.65-
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, limit of admission = 15.
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Figure 3.6: Probability of impatience - impatience duration independent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 10, limit of admission = 15.
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Figure 3.7: Mean number of flows - impatience duration dependent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, 1

a1
= 1

a2
= 10, flow size = 1, limit of admission = 15.
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Figure 3.8: Mean number of flows - impatience duration dependent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, flow size = 1, limit of admission = 15.
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Figure 3.9: Probability of impatience - impatience duration dependent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, flow size = 1, limit of admission = 15.
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Figure 3.10: Probability of impatience - impatience duration dependent of file size - ρ = 0.65 -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, 1

a1
= 1

a2
= 10, flow size = 1, limit of admission = 15.

the flow size in which the above parameter is µl

n + µl0 + α that is differentiable on µl0. This fact
explains why the curves plotted as a function of impatience rate, are smother in case of patience
duration independent of file size than the curves plotted in case of patience duration depending
on file size.

3.8.2 Case of intra-cell mobility: general flow size

Figure 3.11 plots the throughput of the tagged flow as a function of the rate of mobility of the
tagged flow going to the cell center in steady state regime; other users mobility rate is fixed. We
observe that the throughput increases with increasing mobility rate.

Figure 3.12 plots the throughput of the tagged flow as a function of the rate of mobility of
the tagged flow going to the cell edge in steady state regime. We observe that the throughput
decreases with the mobility rate. We can explain these obsevations by the fact that the capacity
in cell center is higher than in cell edge, thus the throughput is higher in cell center than in cell
edge.

Figure 3.13 plots the throughput of the tagged flow as a function of the rate of mobility
of the other users in the system; mobility rate of the tagged flow is fixed. We observe that
the throughput increases when the mobility rate increases. In fact as observed previously, the
number of users decreases when the mobility rate of users increases, thus the throughput of the
tagged flow increases.

3.8.3 Case of intra-cell mobility: Simulations

In figure 3.14 we compare the model of exponential service time and the simulation of the model
of residual service time with exponential flow size through the mean number of users as function
of mobility rate. Simulation is done by considering all users with residual service time as is
the case for the tagged flow. The curve obtained by analytical computation of the exponen-
tial service time is not constant as indicated in figure 3.14, it is slightly decreasing as a function
of mobility rate. We can observe that the average difference between the two curves is less than 3.

In figure 3.15 and 3.16 we use a simulator that considers a tagged flow in the system who is
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Figure 3.11: Throughput of the tagged flow- Fonction of mobility rate to cell center (α1) -
ρ = 0.65 -λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 3, α2 = 5, αothers = 12, limit of admission
= 30.
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Figure 3.12: Throughput of the tagged flow - Fonction of mobility rate to cell edge (α2) -
ρ = 0.65-λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 3, α1 = 5, αothers = 12, limit of admission
= 30.
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Figure 3.13: Throughput of the tagged flow -Fonction of mobility rate of other users (αothers) -
ρ = 0.65 -λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 3, α1 = α2 = 15, limit of admission = 30.
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Figure 3.14: Mean number of users of model of exponential service time and simulation of residual
service time -Fonction of mobility rate - ρ = 0.65 -λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 29,
limit of admission = 100, flow size = 1, time of simulation= 300, number of Monte Carlo= 250.
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Figure 3.15: Simulation of throughput - Fonction of mobility rate to the cell center - ρ = 0.65-
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 29, α2 = 25, αothers = 15, limit of admission = 200,
flow size = 1, time of simulation= 4700,number of Monte Carlo= 12500.

allowed to move with a residual service time and its variable R defined as previously. All other
flows have an exponential service time, a patience duration and a mobility variable that are
independent. The simulator gives us the throughput of the tagged flow defined by R(t)

t , where t
is the time of simulation.

In figures 3.14 and 3.17, we use a simulator that considers all flows with a residual service
time. Each flow is allowed to move, has a residual service time variable R, a flow size σ, a patience
duration variable τ , a service time defined by T = inf {t > 0;R(t) ≥ σ}. In this simulator, all
flows are considered as the tagged flow of the second model. The simulator gives us the number
of flows in the system.

We plot in figure 3.15 the throughput of the tagged flow with three different service time
distributions: exponential, deterministic and uniform, with the same mean, as a function of
the rate of mobility of the tagged flow going to the cell center, and in figure 3.16 we plot it
as a function of the rate of moblity of the tagged flow going to the cell edge. We observe that
the throughput increases when the rate of mobility going to the cell center increases, and the
throughput decreases when the rate of mobility going to the cell edge increases with the three
different distributions.

In figure 3.17, we do the simulation of our model by considering all users as we do for the
tagged flow with their service account R as defined previously, their flow size, and the same
rate of mobility for all users. We plot the number of flows in the system with three diferent
distributions for the flow size, the patience duration, and the variable of mobility as a function
of the rate of mobility that we assume it to be the same for the cell center and the cell edge. For
each of the three distributions: exponential, deterministic or uniform, we assume that the flow
size, the patience duration and the variable of mobility have the same distribution. We observe
that the number of flows decreases when the rate of mobility increases, and the three curves are
close.

3.8.4 Case of inter-cell mobility

In the case of inter cell mobility, numerical applications and simulations are done by considering
two cells called cell 1 and cell 2, each cell contains two regions that are the center region and
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Figure 3.16: Simulation of throughput - Fonction of mobility rate to the cell edge - ρ = 0.65
-λ1 = λ2 = 8, µ1 = 32, µ2 = 20, µ10 = µ20 = 29, α1 = 25, αothers = 15, limit of admission = 200,
flow size = 1, time of simulation= 4700,number of Monte Carlo= 12500.
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Figure 3.17: Simulation of number of users -Mobility rate - ρ = 0.65 -λ1 = λ2 = 8, µ1 = 32, µ2 =
20, µ10 = µ20 = 29, limit of admission = 100, flow size = 1, time of simulation= 300,number of
Monte Carlo= 250.
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Figure 3.18: Analytical model mean of total number of users -Fonction of inter-cell mobility rate
(ζ) - Two cells with two regions -λ11 = λ12 = λ21 = λ22 = 12, µ11 = 32, µ12 = 20, µ21 = 40, µ22 =
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Figure 3.19: Simulation of the mean number of users in each cell -Fonction of inter-cell mobility
rate (ζ) - Two Cells of two regions -λ11 = λ12 = λ21 = λ22 = 12, µ11 = 32, µ12 = 20, µ21 = 40, µ22 =
18, µ0 = 3, α1

1 = α1
2 = α2

1 = α2
2 = 0.1, limit of admission K1 = K2 = 100, time of simulation

= 500, number of Monte Carlo = 200.
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Figure 3.20: Analytical model of mean total number of users and simulation of mean total
number of users -Fonction of inter-cell mobility rate (ζ) - Two cells of two regions -λ11 = λ12 =
λ21 = λ22 = 12, µ11 = 32, µ12 = 20, µ21 = 40, µ22 = 18, µ0 = 3, α1

1 = α1
2 = α2

1 = α2
2 = 0.1, limit of

admission K1 = K2 = 100, time of simulation = 500, number of Monte Carlo = 200.

the edge region.
The intra-cell mobility is always considered through parameter α.
In figures 3.19 and 3.20 we use a simulator that considers all flows with exponential service

time. Users are assumed to arrive in each region of each cell according to a Poisson process,
and each user has a service time, a patience duration variable, an intra-cell mobility variable
allowing him to move inside the cell in which he is located, and an inter-cell mobility variable
allowing him to move from egde region to egde region of the second cell, that are independent.
The simulator gives us the number of users in each cell.

In figure 3.18 we plot the total number of users in the system consisting of two cells, as a
function of the inter cell mobility rate ζ. It shows that the total number of users in the system
deacreases when the inter cell mobility increases.

Figure 3.19 plots the results of simulations of the number of users in cell 1 and cell 2 as a
function of inter cell mobility rate. It shows that the number of users in each cell decreases with
an increasing inter cell mobility rate.

Figure 3.20 allows us to make a comparison between the model and simulations. It plots the
total number of users in the system as a function of inter cell mobility rate. The curve obtained
by analytical computation is not constant as shown in figure 3.20, it is slightly decreasing as
indicated in figure 3.18 in which it is plotted alone. We can see that the average difference
between the two curves is less than 2.

In figure 3.21, we plot the throughput of the tagged flow as a function of inter cell mobility
rate. The curve is plotted assuming that the inter cell mobility rate of the tagged flow and all
other users are equal. It shows that the throughput of the tagged flow deacreases when the inter
cell mobility rate increases. This can be explained by noticing that the inter-cell mobility occurs
only between edge regions of cells, so high inter-cell mobility rate leads users to be in region
edge, which decreases their throughtput.

Figure 3.22 plots the throughput of the tagged flow as a function of intra cell mobility α.
The curve is plotted by considering that the intra cell mobility rate of the tagged flow and all
other users are equal. The curve shows that the throughput of the tagged flow increases when
the intra cell mobility rate increases. This confirms the results of the previous studies about
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Figure 3.21: Analytical model of throughput of the tagged flow -Fonction of inter-cell mobility
rate (ζ) - Two Cells of two regions -λ11 = λ12 = λ21 = λ22 = 12, µ11 = 32, µ12 = 20, µ21 = 40, µ22 =
18, µ0 = 3, α1
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Figure 3.22: Analytical model of throughput of the tagged flow -Fonction of intra-cell mobility
rate (ζ) - Two cells of two regions -λ11 = λ12 = λ21 = λ22 = 12, µ11 = 32, µ12 = 20, µ21 = 40, µ22 =
18, µ0 = 3, limit of admission K1 = K2 = 15.
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intra-cell mobility.

3.9 Conclusion

We modeledin this chapter mobility for users subject to impatience in mobile cellular networks,
with an application to 4G LTE, and quantified its impact on system performance in terms of
several QoS parameters, such as mean number of users, the probability to be impatient in the
cell and the throughput.

We observed that mobility results in higher system stability, more users are moving more
their number decreases, the more the probability of impatience decreases, and the more the
throughput increases.
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Chapter 4

Modeling of impatience for
streaming flows in mobile networks
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Abstract

Our purpose in this part is to obtain the probability of impatience for a streaming user during
the prefetching and the rebuffering phase when starvation happens. We first model the buffer as
a M/M/1 queue and introduce the patience duration of streaming user by considering a packet
level in which the video size is assumed to be infinite, and is composed of packets and we consider
the case of deterministic and exponential patience duration. Secondly we model the probability
of impatience in the continuous time playback taking into account the flow dynamics in the
system constituted of several regions scheduled as a processor sharing and we consider the case
of deterministic and exponential patience duration. We derive several performance metrics such
as the probability to be impatient during rebuffering and the probability of starvation.



4.1 Introduction

Video services are popular on mobile networks and account for increasing proportion of data
transmitted. Among the different online video services, youtube, netflix are the most popular.
Services such as social networks enable users to share personal videos thus extending the video
streaming audiance.

Nowadays, it is crutial for mobile network operators to improve the user experience of video
service or QoE.

In order to define the QoE, it is necessary to know how streaming is played. Video streaming
consists of packets, packets are fragments of video. Media player is equipped with a playout
buffer that stores arriving packets. Video is played as long as there are packets in the buffer.
At the begining the buffer is empty and has to reach a threshold of packets to start video. This
phase is called prefetching phase. When the buffer reaches the threshold of prefetching the video
starts and the streaming user can watch its video. Once the buffer empties, the video stops, this
phenomenon is called the starvation, and the buffer has to reach a threshold to start video. This
phase is called rebuffering phase, the streaming user cannot watch its video during this phase
until the buffer reaches the threshold of rebuffering.

The prefetching and the rebuffering phases are annoying for the user, so he can leave its
video session by impatience. Our aim is to study this phenomenon of impatience.

In [48] authors have demonstrated that impatience can impact Peer-to-peer video on demand
(P2P VoD) streaming performance significantly. They showed that impatience can increase
interruptions and wasted ressources and they showed that an Earliest-First policy in conjonction
with Earliest-Deadline as peer selection strategy is more appropriate in presence of impatience.

In [49] authors studied the impact of video quality on user engagement. For this they used a
dataset spanning short video on demand, long video on demand and live content from popular
video content providers and they measured join time, rate of buffering events, buffering ratio,
rendering quality and average bitrate. They showed that the time spent in buffering has the
most impact on the user engagement and the magnitude of the impact depends on the content
type. They showed that the impact is large with live content.

Authors in [50] distinguished two sources of energy waste for smarphones during video ses-
sion: energy wasted during the prefetching when the user closes its video session because of
impatience and energy wasted by keeping the wireless interface powered on after receiving a
chunk of content that is caused by prefetching chunks that are small. They provided a down-
load scheduling algorithm based on crowd-sourced video viewing statistics that allows them to
evaluate the probability for a user to interrupt a video in order to perform the right amount of
prefetching. The algorithm balances the amount of the two kinds of energy waste. They showed
by simulations that their sheduler reduces the energy waste to half comapared to existing down-
load strategies.

In [12] authors have provided an exact distribution of the number of starvations for a stream-
ing user by considering a finite number of packets that constitutes the video file. They modeled
the buffer as an M/M/1 queue and used an approch based on Ballot theorem and an approch
based on recursive equations.

Authors in [11] studied the quality of experience for a streaming user in wireless data net-
works in terms of probability of starvation during the video session. They showed that the flow
dynamics are the fundamental cause of starvations. We use their model in section 4.3 in the
case of a system constituted of several regions and we introduce the phenomonon of impatience.

This chapter is organized as follows. In section 4.2, we model the buffer at the packet level
without considering the impact of other users on the system. We consider that the system is a
buffer in which packets arrive according to a Poisson process, and are played with exponential
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service time. In section 4.3, we consider a processor sharing system constituted of several regions,
in which we consider a tagged streaming user during its video session. In the two sections, we
study the cases of deterministic and exponential patience duration.

4.2 Model at packet level

4.2.1 System description

We consider an OFDMA-based homogeneous cellular network and focus on the downlink of one
cell with a single base station at its center. We consider a streaming user, who watches its video
on Youtube, Dailymotion etc, and we want to model its impatience during the prefetching phase
and the rebuffering phase after starvation happens.

Let us assume that the video size is infinite, and the buffer size is infinite. The video size
is divided by packets, and as in [12], we assume that packets arrive in the buffer following a
Poisson process with intensity λ, and the service rate of packet is assumed to be exponential
with parameter µ. So the buffer can be modeled as a M/M/1 queue.

At the beginning of video playing, there are the prefetching phase, in which the user has
to wait a start up delay, that is the time at which the buffer has to contain the prefetching
threshold that we note by x for the video begins.

The phenomenon of starvation occurs when the buffer is empty, and the playback stops, so
the system enters in the rebuffering phase, in which as in prefetching phase the media player
waits until the buffer reaches the threshold x1 of rebuffering x1. Note that during the rebuffering
phase, packets are not served.

We can resume the path of buffer in different steps as follows:

• the prefetching phase: in which user has to wait until the buffer reaches a threshold of
prefetching,

• the playout phase: in which user watches its video,

• the starvation: the instant at which the playout stops because the buffer is empty

• the rebuffering phase: this is like the prefetching phase, in which user waits until the buffer
reaches a threshold of rebuffering.

The prefetching and the rebuffering phases are annoying to the user, so he can put out the
video service by impatience.

Let us notice that the end of the rebuffering phase is the beginning of the playout phase and
the end of the playout phase is the beginning of the rebuffering phase.

We introduce the patience duration by a random variable τ , that models the patience of the
user. In this work, we consider the cases of exponential and deterministic patience duration.

4.2.2 Exponential patience duration

Here we assume that the patience duration is exponentially distributed with parameter µ0.
We consider two Markov processes Xt and Yt to study the buffer path, the first studies the

prefetching and the rebuffering phases, and the second studies the playout phase.
As started earlier, we assume that packets arrive in the buffer following a Poisson process

with intensity λ.
Let us denote by x the threshold of prefetching phase, and Xx

t the number of packets in the
buffer at time t during the prefetching phase.
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Note that during the prefetching phase, no packet is played, so there is no service during
the prefetching phase. We define two absorbing states I and A, where I is the state in which
the user is impatient and puts out the video, and A is the state in which the buffer reaches the
threshold x that is the end of the prefetching phase.

With these assumptions, the process Xx
t is Markovian, taking values in {0, ..., x− 1, A, I},

and its intensity matrix Q is given by:

qn,n+1 = λ, ∀n ≤ x− 2,

qx−1,A = λ,

qn,n−1 = 0, ∀n,

qn,I = µ0, ∀n ≤ x− 1,

qn,A = 0, ∀n ≤ x− 2.

Let us define TI = inf {t ≥ 0, Xx
t = I} and TA = inf {t ≥ 0, Xt = A} the time of impatience

and the start up delay respectively.

Let us pose V x(n) = P
[
Xx

min{TI ,TA} = I/Xx
0 = n

]
, the probability of impatience during the

prefetching phase conditioned on the initial state being equal to n, it means that there are n
packets in the buffer, and V x(0) is the probability of impatience with initial empty buffer.

V x(n) can be computed as a hitting probability of state I, thus V x(n) is solution of the
following equation:

(Q V x)n = 0 ∀ n 6= I,

V x(I) = 1

V x(A) = 0

If starvation happens at the end of playout phase, the buffer enters in the rebuffering phase,
in which the buffer reaches the threshold of rebuffering xi, where i is the ith rebuffering phase.

We consider the Markov process Xxi
t by replacing x by xi, and the probability of impatience

will be V xi .
Now to study the starvation, we assume as previously that packets arrive to the buffer

following a Poisson process with mean intensity λ. During the playout phase packets are served
following a FIFO Scheduler, with one server, and we assume that the service rate is exponential
with parameter µ, and there is no impatience.

We conisder the process Yt that is the number of packets in the buffer taking values in
{0, 1, 2..., }, and the playout stops when the buffer is empty i.e; when Yt = 0.

With these assumptions, Yt is a Markovian process with the following intensity matrix Q:

qn,n+1 = λ, ∀n,

qn,n−1 = µ,∀n > 0.

Let us denote by T0 = inf {t ≥ 0, Yt ≤ 0}, starvation happens when T0 <∞, and the prob-
ability of starvation when the buffer contains n packets is given by S(n) = P [T0 <∞/Y0 = n].
This is the hitting probability of state 0, thus S is solution of the following equation:

(Q S)n = 0 ∀ n 6= 0,

S(0) = 1.
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When the prefetching threshold is x, the first starvation probability is S(x), and when the
ith rebuffering threshold is xi, the i− 1th starvation probability will be S(xi).

The probability to be impatient during the lth rebuffering phase V l is given by:

V l = V xl(0) [1− V x(0)]

l−1∏
i=1

[1− V xi(0)]S(xi)

4.2.3 Deterministic patience duration

In this part we assume that the patience duration is deterministic that means τ = E [τ ].
As previously we consider two Markov process Xt and Yt, where the first one describes the

prefetching and the rebuffering phases, and the second one describes the playout phase.
As the impatience occurs only during the prefetching and the rebuffuring phases, the process

Yt is the same as previously.
We consider an absorbing state A, that is the state in which Xt reaches the threshold of

prefetching or rebuffering.
The threshold of prefetching is x, the processXx

t is Markovian, taking values in {0, ..., x− 1, A}
with intensity matrix Q given by:

qn,n+1 = λ, ∀n ≤ x− 2,

qx−1,A = λ,

qn,n−1 = 0, ∀n,

qn,A = 0, ∀n ≤ x− 2.

We define TA = inf {t ≥ 0, Xx
t = A} the start up delay of prefetching.

The user is impatient when the start up delay is more than its patience duration: TA ≥ τ .
So we define V x

n (t) = P [TA ≥ t/Xx
0 = n], thus V x

0 (τ) will be the probability to be impatient
during the prefetching phase.

By the well-known relationship between Markov process and partial differential equations,
V x
n (t) is solution of:

∂V x
n (t)

∂t
= QV x

n (t)

Thus:
∂V x

n (t)

∂t
= λ

[
V x
n+1(t)− V x

n (t)
]

The boundary conditions are: for t = 0, obviously V x
n (0) = 1 ∀n, and if the process starts in

state A there is no impatience then V x
A (t) = 0, ∀t ≥ 0.

We denote by V̄ x
n (p) =

∫∞
0 e−ptV x

n (t) dt the Laplace transformation of V x
n . If we apply the

Laplace transformation evaluated at the complex number p to the above equation we obtain:

V̄ x
n (p) =

1

p+ λ

[
1 + λ ¯V x

n+1(p)
]

By the boundary condition V x
A (t) = 0 , ∀t ≥ 0, we obtain ¯V x

x−1(p) = 1
p+λ : we pose R = 1

p+λ .
Thus by retrograding we deduce:

¯V x
x−k(p) =

k∑
i=1

λi−1Ri.
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Figure 4.1: Probability to be impatient in prefetching phase- deterministic versus exponential
patience duration

By the inverse Laplace transformation, we obtain:

V x
x−k(t) =

k∑
i=1

λi−1
ti−1

(i− 1)!
e−λt

Thus the probability of impatience is given by:

V x
0 (τ) =

x∑
i=1

λi−1
τ i−1

(i− 1)!
e−λτ .

Let us notice that for infinite threshold x, the probability of impatience is 1:

lim
x→∞

V x
0 (τ) = 1, ∀τ ≥ 0

As for the case of exponential patience duration, the probability of impatience in the ith
rebuffering phase with threshold of rebuffering xi is obtained as in the prefetching phase by
replacing x by xi, it is given by V xi

0 (τ).
The study of playout phase is the same as in the case of exponential patience duration,

because there is no impatience in there. So we obtain the probability of impatience in the lth

rebuffering phase by the formula:

V l(τ) = V xl
0 (τ) [1− V x

0 (τ)]

l−1∏
i=1

[1− V xi
0 (τ)]S(xi)

4.2.4 Numerical applications

We plot in Figures 4.1 and 4.2 the probability to be impatient during the prefetching phase as
a function of prefetching threshold and impatience rate respectively for both deterministic and
exponential patience duration. We observe that the probability to be impatient increases with
increasing prefetching threshold and impatience rate.

In figure 4.3 we observe the probabilty to be impatient during the prefetching phase in the
case of exponential patience duration as a function of impatience rate with different prefetching
thresolds. It shows that the probability to be impatient increases with increasing impatience
rate and increasing prefetching threshold.
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Figure 4.2: Probability to be impatient in prefetching phase - deterministic versus exponential
patience duration
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Figure 4.3: Probability to be impatient in prefetching phase- exponential patience duration
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4.3 Model at flow level

4.3.1 System description

We consider again an OFDMA-based homogeneous cellular network and focus on the downlink
of one cell with a single base station at its center. With OFDMA, the total bandwidth, which we
denote by W , is divided into N orthogonal subcarriers and can be shared between the different
users present in the cell in the same time slot.

Due to propagation conditions and interference from other cells, the Signal-to-Interference
and Noise Ratio (SINR) is lower at the cell edge than at the cell center. This leads to a cell
capacity C(r) that depends on the distance r between the user and the base station.

The throughput decreases when the user gets further away from the base station. Let
C1 > C2 > .... > Cl > .... > Cr be the set of throughputs at different positions l in the
cell and pl the probability that the user arrives to the cell in region l into r regions where the
throughput is almost constant in each region.

In this part, we are inspired by the model in [11].
We assume that the system contains only one streaming user and all other users are elastic.
We assume that elastic flows arrive in region l following a Poisson process with intensity λl.
We assume that elastic file sizes are exponentially distributed with the same parameter µ.

An elastic flow in region l has an exponential service rate with parameter µl = Clµ if he is alone
in the system, where Cl is the capacity of region l.

In order to study the dynamics of the playout buffer for a streaming flow, we focus on the
only streaming flow in the system that we tag, and we assume that he is located in region k.

We define the process Nt =
(
N1
t , ..., N

r
t

)
where N l

t is the number of elastics users seen by the
tagged flow in region l, we add a supplementary state F that is the state in which the tagged
flow finishes its service.

Let us denote by Bitrate the playback speed of video streams measured in bits per seconds.
When the process Nt is at state N = (n1, · · · , nr), the throughput in seconds of the video

content of the tagged flow that we denote by bkN is given by bkN = Ck
Bitrate(n+1) , where n =

∑r
l=1 nl

.
Let us notice that in this study we don’t consider impatience for elastic users in the system,

our aim is to study the phenomenon of impatience of the tagged flow during its video session.
With these assumptions, the process Nt is Markovian with intensity matrix given by:

qN,N+el = λpl = λl,

qN,N−el =
nl∑r

i=1 ni + 1
µl,

qN,F =
µk∑r

i=1 ni + 1
,

qN,N = −

(
λ+

µk∑r
i=1 ni + 1

+
r∑
i=l

qN,N−el

)
,

qN = −qN,N
where N = (n1, ..., nr) and ei = (0, ...1, ...0)

Let us denote by Ne(t) the number of state changes of the process Nt at time t, Al the time
that the lth state change takes place with A0 = 0, and by Nl = NAl the state to which the
process changes state after time Al.
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We denote by Qk(t) the length of playout buffer of tagged flow measured in seconds of video
content at time t.

In the prefetching phase, Q(t) is defined as:

Qka(t) =

Ne(t)∑
l=1

bkNl (Al −Al−1) + bkNNe(t)
(
t−ANe(t)

)
.

Let us denote by qa the start-up threshold of prefetching phase, that is the threshold from
which the video starts. The start-up delay is defined as Ta = inf

{
t ≥ 0, Qka(t) ≥ qa

}
.

Let us notice that the prefetching phase is meaningful only when the video duration is longer
than start-up threshold.

During the prefetching phase, the tagged flow can be impatient, and closes the media player.
We assume that the tagged flow has a patience duration modeled by a random variable τ .

The impatience of the tagged flow occurs when the start up delay is more than its patience
duration Ta > τ , in this case he closes the media player, that is the end of his video session.

It is easy to see from the expression of Qka that for an infinitesimal ε > 0, Qka(t + ε) =
Qka(t) + bki ε.

The prefetching phase is equivalent to starvation when the buffer content qa and the queue
is depleted with rate bki , as Qka(t + ε) = Qka(t) − bki ε, so the start-up delay can be rewritten as
Ta = inf

{
t ≥ 0, Qka(t) ≤ 0

}
.

4.3.2 Deterministic patience duration

In this part, we assume that the tagged flow has a deterministic patience duration which means
E [τ ] = τ.

Let us introduce VN (t, q) = P
[
Ta > t/N0 = N,Qka(0) = q

]
, then VN (τ, qa) is the probability

that the tagged flow is impatient during prefetching phase when the process Nt starts at state
N . Note that VF (t, q) = 0.

In order to study VN (t, q), let us consider an infinitesimal interval [0, h]. The queue evolves
in [0, h] with four possible events:

• nothing happens

• arrival of one user in the system

• departure of one user

• occurence of more than one event

So we have:

VN (t, q) = (1 + qN,Nh)VN (t− h, q − bNh) +
r∑
l=1

qN,N+elhVN+el(t− h, q − bNh)

+
r∑
l=1

qN,N−elhVN−el(t− h, q − bNh) + o(h).

Dividing all by h we have

VN (t, q)− VN (t− h, q − bNh)

h
= qN,NVN (t− h, q − bNh) +

r∑
l=1

qN,N+elVN+el(t− h, q − bNh)
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+

r∑
l=1

qN,N−elVN−el(t− h, q − bNh) + o(1).

Letting h tend to zero, we obtain

∂VN (t, q)

∂t
+ bN

∂VN (t, q)

∂q
= (QV )N (t, q) (4.1)

where
(QV )N (t, q) =

∑
M

qN,MVM (t, q)

= qN,NVN (t, q) +
r∑
l=1

qN,N+elVN+el(t, q) +
r∑
l=1

qN,N−elVN−el(t, q)

The boundary conditions are VN (0, q) = 1, ∀q > 0,∀N 6= F, because the start up delay is
always non negative, VN (t, 0) = 0, ∀t > 0, in this case the start up delay is null then less than t,
and lim

q→∞
VN (t, q) = 1 because the start up delay will be more than all t if the threshold is more

enough.
We can write the equation 4.1 in matrix form as:

∂V(t, q)

∂t
+ D

∂V(t, q)

∂q
= QV(t, q) (4.2)

where V(t, q) =


V0(t, q)

...
VN (t, q)

...

 , D = Diag {bN} is a diagonal matrix.

Equation (4.2) is a system of hyperbolic partial differential equation of first order that can
be solved by the method of characteristic by considering the following curve:

dq(t)

dt
= bN ,

VN (t, q) is solution of the following integral equation:

VN (t, q) = eqNN tVN (0, q − bN t) +

∫ t

0

∑
M 6=N

eqNNxqNMVM (t− x, q − bNx) dx

If the tagged flow is not impatient during the prefetching phase, the playback phase begins,
the user begins to watch his video and there is no impatience during the playback.

The phenomenon of starvation occurs when the playback stops, and the buffer is empty so
it enters in the rebuffering phase in which as for the prefetching phase the tagged flow may be
impatient.

In the rebuffering phase, the same queuing process as in the prefetching phase Qka(t) is used,
with the threshold of rebuffering qb.

The probability that the tagged flow is impatient during rebuffering is VN (τ, qb).
Now let us focus on the probability that the prefetching ends in an arbitrary state M .
Let us introduce RMN (q, qa) = P

[
NTa = M/N0 = N,Qka(0) = q

]
, the probability that the

prefetching starts at state N and ends at state M is RMN (0, qa).
We recall that Qka(t+ h) = Qka(t) + bih then d

dt

(
Qka(t)

)
= bi.
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For h > 0 and an infinitesimal interval [0, h], when the queue evolves in [0, h], there are four
possible events as in the study of VN , so we have:

RMN (q, qa) = (1 + qN,Nh)RMN (q + bNh, qa) +
r∑
l=1

qN,N+elhR
M
N+el

(q + bNh, qa)

+
r∑
l=1

qN,N−elhR
M
N−el(q + bNh, qa) + o(h).

Dividing all by h we have:

RMN (q, qa)−RMN (q + bNh, qa)

h
= qN,NR

M
N (q + bNh, qa) +

r∑
l=1

qN,N+elR
M
N+el

(q + bNh, qa)

+
r∑
l=1

qN,N−elR
M
N−el(q + bNh, qa) + o(1).

Letting h tend to zero, we obtain:

−bN
∂RMN (q, qa)

∂q
= qN,NR

M
N (q, qa) +

r∑
l=1

qN,N+elR
M
N+el

(q, qa) +
r∑
l=1

qN,N−elR
M
N−el(q, qa),

with the boundary conditions ∀N 6= M : RMN (qa, qa) = 0 and RNN (qa, qa) = 1.
We notice that rebuffering happens only if there is starvation.
If the time axis starts at the instant of playing, we define the playback process by:

Qkb (t) = qa − t+

Ne(t)∑
l=1

bkNl (Al −Al−1) + bkNNe(t)
(
t−ANe(t)

)
Let us define Tb = inf

{
t ≥ 0, Qkb (t) ≤ 0

}
, the instant of starvation.

If we pose dN = bN − 1, then Qkb (t+ h) = Qkb (t) + dNh.
We introduce SMN (q) = P

[
NTb = M/Qkb (0) = q,N0 = N

]
the probability that the playout

begins at state N when the buffer content is q and ends at state M , so SMN (qa) is the probability
that the playout begins at state N and ends at state M i.e, starvation occurs at state M .

By considering a infinitesimal interval [0, h] and by the same argument as previously, it
follows that:

−dN
∂SMN (q)

∂q
=

r∑
i=1

qN,N+eiS
M
N+ei(q) +

r∑
i=1

qN,N−eiS
M
N−ei(q) + qN,NS

M
N (q),

The boundary conditions are SMN (0) = 0 ∀N 6= M if dN < 0, and SNN (0) = 1.
Now we can compute the probability that the tagged flow is impatient during the first

rebuffering phase when the threshold of rebuffering is qb:

I1 =
∑
L

∑
M

∑
N

(1− VN (τ, qa))R
M
N (0, qa)S

L
M (qa)VL(τ, qb).
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In order to introduce the matrix form, we denote by UN (τ, qa) = 1−VN (τ, qa), and we pose:

U(τ, qa) =


U0(τ, qa)

...
UN (τ, qa)

...

 , V(τ, qa) =


V0(τ, qa)

...
VN (τ, qa)

...

 ,

R(0, qa) =


R0

0(0, qa) . . . R
M
0 (0, qa) . . .

...
...

...
...

R0
N (0, qa) . . . R

M
N (0, qa) . . .

...
...

...
...

 , S(qa) =


S0
0(qa) . . . S

L
0 (qa) . . .

...
...

...
...

S0
M (qa) . . . S

L
M (qa) . . .

...
...

...
...

 ,
Thus we have the matrix form as:

I1 = (U(τ, qa))
′
× R(0, qa)× S(qa)× V(τ, qb)

By reccurence, we can compute the probability to be impatient during the lth rebuffering
phase.

We can derive a metric in steady state for the probability to be impatient during prefetch-
ing. For this, we consider the system without the tagged flow, we introduce the process
Zt =

(
Z1
t , · · · , Zrt

)
, where Z lt is the number of elastic users in region l. We assume that elastic

users arrive in region l following a Poisson process with rate λl, and the service rate in region
l is exponentially distributed with parameter µl. Then the process Zt is a irreducible Markov
process with the following intensity matrix:

qN,N+el = λl,

qN,N−el =
nl∑r
i=1 ni

µl,

qN,N = −

(
λ+

µk∑r
i=1 ni

+

r∑
i=l

qN,N−el

)
,

And there exists a steady state probability π given by:

πQ = 0 and
∑
N∈Nr

π(N) = 1.

We can derive the probability for the tagged flow to be impatient in steady state as:

V (τ, qa) =
∑
N

VN (τ, qa)π(N).

4.3.3 Exponential patience duration

Now let us assume that the patience duration τ is exponentially distributed with parameter µ0.
Let us denote by FN (q) = P

[
Ta > τ/N0 = N,Qka(0) = q

]
, the probability that the tagged

flow is impatient during prefetching phase when the process Nt starts at state N and when the
buffer has to reach q to start. As qa is the start-up threshold then FN (qa) is the probability that
the tagged flow is impatient during prefetching phase when the process Nt starts at state N .

As τ has a density function given by fτ (t) = µ0e
−µ0t1[0,∞[(t), then FN (q) can be expressed

as follows:
FN (q) = P

[
Ta > τ/N0 = N,Qka(0) = q

]
77



=

∫ ∞
0

P
[
Ta > t/N0 = N,Qka(0) = q

]
µ0e
−µ0tdt

=

∫ ∞
0

VN (t, q)µ0e
−µ0tdt

where VN (t, q) = P
[
Ta > t/N0 = N,Qka(0) = q

]
has been studied in the previous section in case

of deterministic patience duration.

Theorem 4.3.1 FN is solution of the following ordinary differential equation

dFN (q)

dq
+
µ0
bN
FN (q)− 1

bN
(QF )N (q)− µ0

bN
= 0 (4.3)

FN (0) = 0.

where (QF )N (q) =
∑

M qN,MFM (q).

Proof By integration by parts from the expression FN (q) =
∫∞
0 VN (t, q)µ0e

−µ0tdt, we obtain:

FN (q) =
[
−VN (t, q)e−µ0t

]∞
0

+

∫ ∞
0

∂VN (t, q)

∂t
e−µ0tdt

Using the fact that VN (0, q) = 1 it follows that:

FN (q) = 1 +

∫ ∞
0

∂VN (t, q)

∂t
e−µ0tdt

From 4.1 it follows:

FN (q) = 1 +

∫ ∞
0

{
−bN

∂VN (t, q)

∂q
+ (QV )N (t, q)

}
e−µ0tdt

= 1−
∫ ∞
0

bN
∂VN (t, q)

∂q
e−µ0tdt+

∫ ∞
0

∑
M

qN,MVM (t, q)e−µ0tdt

= 1−
∫ ∞
0

bN
∂VN (t, q)

∂q
e−µ0tdt+

1

µ0

∑
M

qN,M

∫ ∞
0

VM (t, q)µ0e
−µ0tdt

= 1−
∫ ∞
0

bN
∂VN (t, q)

∂q
e−µ0tdt+

1

µ0

∑
M

qN,MFM (q)

There exists a non negative real M such that | ∂VN (t,q)
∂q e−µ0t |≤ Me−µ0t that is integrable,

then we have ∫ ∞
0

bN
∂VN (t, q)

∂q
e−µ0tdt =

∂

∂q

∫ ∞
0

bNVN (t, q)e−µ0tdt

Thus

FN (q) = 1− bN
µ0

∂

∂q

∫ ∞
0

VN (t, q)µ0e
−µ0tdt+

1

µ0

∑
M

qN,MFM (q)µ0e
−µ0tdt

FN (q) = 1− bN
µ0

dFN (q)

dq
+

1

µ0
(QF )N (q)

It follows
dFN (q)

dq
+
µ0
bN
FN (q)− 1

bN
(QF )N (q)− µ0

bN
= 0.

78



From the expression of FN we have:

FN (0) =

∫ ∞
0

VN (t, 0)µ0e
−µ0tdt = 0

Let us notice that for a large value of threshold FN (q) = 1, since lim
q→∞

VN (t, q) = 1, then by

the theorem of dominated convergence see ([73]) we have:

lim
q→∞

FN (q) = lim
q→∞

∫ ∞
0

VN (t, q)µ0e
−µ0tdt =

∫ ∞
0

lim
q→∞

VN (t, q)µ0e
−µ0tdt = 1.

Let us pose F(q) =


F0(q)

...
FN (q)

...

 , E =


µ0
b0
...
µ0
bN
...

 , and M =



1
b0

(q0,0 − µ0) · · · 1
b0
q0,N · · ·

...
. . .

...
. . .

1
bN
qN,0 · · · 1

bN
(qN,N − µ0)

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .


.

It follows from theorem 4.3.1 that:

dF(q)

dq
−MF(q)− E = 0,

since as noticed in the previous section VN (t, 0) = 0.
If the tagged flow is not impatient during prefetching, the user watches his video until a

starvation happens, and the rebuffering phase begins. The tagged flow may be impatient during
rebuffering. We assume that the patience duration in the rebuffering phase is the same as in
the prefetching phase. Then the probability to be impatient during rebuffering is given by F(qb)
where qb is the threshold of rebuffering.

The probability for the tagged flow to be impatient in the first rebuffering phase is the same
as in the deterministic case by replacing V by F, and is given by:

I1 = (U(qa))
′
× R(0, qa)× S(qa)× F(qb)

where

U(qa) =


1− F0(qa)

...
1− FN (qa)

...

 ,
So by reccurence we can compute the probability to be impatient during the lth rebuffering

phase.
As in the case of deterministic patience duration, we can derive the probability for the tagged

flow to be impatient in steady state:

F (qa) =
∑
N

FN (qa)π(N).
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Figure 4.4: Probability to be impatient in prefetching phase in cell edge- exponential patience
duration- λ1 = λ2 = 8, µ1 = 32, µ2 = 20, Bitrate = 4.5, impatience rate µ0 = 13, limit of
admission 50, time of simulation=50000, number of Monte carlo = 20000.
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Figure 4.5: Probability to be impatient in prefetching phase in cell center- exponential patience
duration- λ1 = λ2 = 8, µ1 = 32, µ2 = 20, Bitrate = 4.5, start up threshold qa = 0.3, limit of
admission 50, time of simulation=50000, number of Monte carlo = 20000.
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Figure 4.6: Probability to be impatient in prefetching phase- exponential patience duration-
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, Bitrate = 4.5, impatience rate µ0 = 13, limit of admission= 10.
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Figure 4.7: Probability to be impatient in prefetching phase- exponential patience duration -
λ1 = λ2 = 8, µ1 = 32, µ2 = 20, Bitrate = 4.5, start up threshold qa = 0.3, limit of admission=
10.
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Figure 4.8: Simulation of probability to be impatient in prefetching phase- exponential patience
duration- λ1 = λ2 = 8, µ1 = 32, µ2 = 20, Bitrate = 4.5, impatience rate µ0 = 13, limit of
admission 50, time of simulation=50000, number of Monte carlo = 20000.

4.3.4 Numerical applications

Figures 4.4 and 4.5 do a comparison between simulation and model. The probability of impa-
tience is plotted as a function of impatience rate in cell edge and cell center, we can observe that
the two curves are close.

Figure 4.6 plots the probability to be impatient in prefetching phase as a function of start
up threshold. We can observe that the probability to be impatient increases when the start up
threshold increases.

In the figure 4.7, we plot the probability to be impatient as a function of the impatience rate,
and observe that it increases when the impatience rate increases. We can also observe that the
probability to be impatient is higher in cell edge than in cell center, that is due to the fact that
the throughput is higher in cell center than in cell edge.

In figures 4.8 and 4.9 we do a discrete event simulation of the system as a function of start
up threshold and impatience rate respectively. Results of simulations show that the probability
of impatience increases when the start up threshold and the impatience rate increase.

4.4 Conclusion

We modeled in this chapter impatience of a streaming user during its video session in terms of
probability of impatience during the prefetching phase and the rebuffering phase at packet level
and at flow level for deterministic and exponential patience duration.

Our results showed that the probability of impatience depends on the threshold of prefetching
during prefetching and the threshold of rebuffering during rebuffering when starvation occurs:
the more the threshold is high, the more the probability of impatience increases.

Our simulations validated the accuracy of our model.
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Figure 4.9: Simulation of probability to be impatient in prefetching phase- exponential patience
duration- λ1 = λ2 = 8, µ1 = 32, µ2 = 20, Bitrate = 4.5, start up threshold qa = 0.3, limit of
admission 50, time of simulation=50000, number of Monte carlo = 20000.
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Chapter 5

Control
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Abstract

In this part we study a system with impatient users controlled by a system manager who has to
choose at each decision epoch an action to make in order to optimize the system performance.
In the first part the set of actions to be chosen by the system manager is assumed to be finite
and the control is dropping and blocking in each region of the system that is scheduled as a
processor sharing. Classical results of average cost markov decision process for semi markov
process allow us to derive the optimal policy that is the path of optimal decisions to make by
the system manager at each decision epoch in order to optimize the system performance through
the value iteration algorithm and the modified policy iteration algorithm. In the second part we
study firstly a system with one region and then generalize to the case of multiple regions where
we use our aggregate model developped in the first chapter. The set of actions to be chosen
by the system manager is assumed to be a real compact or a compound of real compacts. We
provide a theorem that allows us to derive recursively the optimal policy and the optimal system
size in order to optimize the system performance. Our results show that the optimal system size
increases when the impatience rate increases.



5.1 Introduction

Congestion and flow control and dynamic bandwidth allocation are new challenging control
problems. Admission control is becoming much more complex in heterogeneous traffic types
(data, video, voice) than it was in telephony. The ability to control cost dynamically gives to
mobile network operators a significant advantage.

The system dynamics can be modeled by the mathematical framework of Markov decision
problem (MDP) to optimize the network’s desired objectives. A large mathematical theory of
MDP is developped in [51, 53].

Authors in [60] have reviewed numerous applications of MDP framework and protocols for
wireless sensor networks that consist of autonomous and ressource limited devices for using of
MDP in wireless sensor networks.

Authors in [63] studied a system of M/G/1 queue in which they considered a smart customer
who is allowed to choose among three strategies: enter in the queue and stay there until its service
is finished, leave the system right away, and wait outside the queue. They considered that all
other customers join the queue unconditionally and they assumed that if the smart customer
enters or leaves the system there are no other option for him and if he chooses to wait, he can
make a new decision at the end of its service completion. They showed that for a finite period
the optimal strategy for the smart customer is the policy by which he enters a small queue,
leaves a large queue and waits when the queue is of an intermediate size.

In [64] the author considered a queueing system with several unbounded servers where cus-
tomers arrive according to a Poisson process and must join one of the queues that are sheduled
as a FIFO. He showed that there are some service time distributions for which it is not optimal
to always join the shortest queue.

In [66] authors studied the dispatching problem by considering a distributed server system
with several servers operating under a M/D/1 processor sharing queue. They assumed that each
arriving task is assigned to one of the available servers and each server processes the given task
in parallel as a processor sharing. Their objective is to find an optimal dispatching decision.
For this they used an MDP framework in the average cost criterion by taking the mean sojourn
time as the function to be minimized and the cost as the number of tasks in the system.

In [67] authors considered the problem of arrival in GI/M/1 queue. They considered a simple
limit control policy under which an integer n is considered and a user is admitted to the system
if and only if the number of users in the system is less than n. They added an extension that
they called conditional acceptance rule that allows the system to conditionally accept a user.
They distinguished three categories of states: 1) if the number of users in the system is less than
n − 1, then new arrival is unconditionally accepted, 2) if the number of users in the system is
equal to n − 1, then a user conditionally joins the system but may be rejected later, 3) if the
number of users in the system is more than n−1, then new arrival is immediately rejected. They
considered the following cost-reward structure: 1) there is a reward upon service completion,
2) each user residing in the system incurs waiting time losses, 3) rejecting immediately a user
upon arrival results in a cost, 4) rejecting a user that has been conditionally accepted results in
a cost. They used the MDP framework in long run cost average and developed some conditions
under which conditional acceptance is better than simple control limit rule.

In [68] authors proposed three schemes for call traffic handling with one nonprioritized and
two priority oriented by considering a fixed channel assignment. In the nonprioritized scheme
the base stations make no distinction between new call attempts and handoff attempts. At-
tempts which find all channels occupied are cleared. In the two priority schemes, a fixed number
of channels in each cell are reserved exclusively for handoff calls, but the difference is that in
the second the queueing of handoff attempts is allowed. They derived performance character-
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istics such as blocking probability, forced termination probability, and fraction of new calls not
completed.

Authors in [69] carried out a performance evaluation for two different classes of channel
assignment techniques that are fixed channel allocation and dynamic channel allocation in terms
of the call blocking probability, the call dropping probability, the probability of unsuccessful call
and the average number of channel rearrangements per call.

In [70] authors proposed an estimation of the dropping probabilities of cellular wireless
networks by queuing handoff instead of reserving guard channels. They assumed that inter
arrivals are Gamma distributed and service time has a general distribution and they estimated
the system performance in terms of the probability of blocking and the probability of forced
termination of handoff calls. They showed that the model with handoff requests can be used for
optimum system performance instead of the model with guard channels.

In [71]authors proposed an analytical method to calculate the performance of dynamic chan-
nel assignment by considering queuing and guard channel combined scheme for handoff priori-
tisation. With simulations results they showed that their analytical results are accurate.

Authors in [72] provided a closed form expression to the blocking and dropping probabilities
in wireless cellular networks where they considered the effect of handoff arrival and guard chan-
nels. They developed an algorithm which provides the optimal number of guard channels and
the optimal number of channels.

In [52] authors studied the control of service rate in single server queuing system by assuming
Poisson arrivals and exponential service time with a state dependent service rate in average
cost over an infinite planning horizon. They considered two costs: the cost of congestion that
increases with the number of users in the system and the cost associated to the change of service
rate that increases with the chosen service rate level. They developped a computation method
that proceeds by solving a sequence of approximating problems which are the truncation of the
holding cost function. They showed that the optimal policy for the approximation problems
converge to a policy that is optimal for the original problem.

Authors in [54] were inspired by [52], they allowed the system manager to control the service
rate and the arrival rate. They considered a system of M/M/1 queues with finite system size
and state dependent service rate. They provided a theorem that gives an optimal policy and
an optimal buffer size. They applied their results to study the price-setting problem where cus-
tomers are utility maximizing and price and delay-sensitive. They studied a numerical example
to compare the social welfare using a dynamic policy and static policies and they showed that
the dynamic policy offers significant welfare gains.

We were inspired by [52] and [54] for the second part of this chapter by considering the phe-
nomenon of impatience and by allowing the system manager, in addition to service rate control
and arrival rate control, another control which allows him to force a user to leave the system
even if its service has not finished or its patience duration is not expired and we add a cost
associated to this control. We generalize this to the case of the aggregate model we developped
in chapter 1 in which the system is composed of several regions.

This chapter is organized as follows. In section 5.4 we consider the system with several
regions with different capacities sheduled as a processor sharing, the set of states and the set
actions are assumed to be finite. We pose the related problem of markov decision process in
average cost and we derive the optimal policy through the modified policy iteration and the
value iteration algorithm. In section 5.5 we consider a system with one region and we assume
that the set of actions is a compound of compact of R. We pose the related problem of markov
decision process in average cost and we derive a theorem that allows us to compute the optimal
policy recursively and the optimal system size. In section 5.6 we generalize the results of section
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5.5 to the case of aggregate model studied in chapter 1. We conclude in section 5.7.

5.2 System description

We consider as previously an OFDMA-based homogeneous cellular network and focus on the
downlink of one cell with a single base station at its center. With OFDMA, the total bandwidth,
which we denote by W , is divided into N orthogonal subcarriers and can be shared between the
different users present in the cell in the same time slot.

Due to path loss, the Signal-to-Interference and Noise Ratio (SINR) is lower at the cell
edge than at the cell center. This leads to a cell capacity C(r) that depends on the distance
r between the user and the base station. In order to obtain this throughput, we make use of
a static simulator as described in [5]. This throughput is illustrated in Figure 5.1 for an LTE
system in an urban environment.

As can be seen in this figure, the throughput decreases when the user gets further away from
the base station. Let C1 > .... > Cl > .... > Cr be the set of throughputs at different positions
l in the cell and Pl the probability that a user is located at position l (this corresponds to a
discretization of Figure 5.1 into r regions where the throughput is almost constant).
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Figure 5.1: Throughput for a user who is alone in the cell, and who is located in different
positions. We consider an LTE system using 10 MHZ of spectrum at the 2.6 GHZ band. Cell
radius is equal to 1 Km and a MIMO 2*2 scheme is considered.

5.3 Control with countable set of actions

We assume that users arrive in region l following a poisson process with rate λl. We model
impatience by introducing a patience duration, denoted by random variable τ . Each flow of
region l has its service duration T l and its patience duration τ l and completes its transfer if and
only if its service duration is less than its patience duration i.e., nT l < τ l where n is the total
number of flows present in the system.

In this chapter the system is controled by a system manager. We introduce a control or
dropping variable D for each user, that allows the system manager to force him to leave the
system even if its service is not finished or its patience duration is not expired.
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The control variable is assumed to be a exponential random variable of parameter α and
independent of service duration and patience duration. Each user of region l has its service
time Tl exponentially distributed with parameter µl when he is alone in the system, its patience
duration τl exponentially distributed with parameter µl0, and its control variable Dl also expo-
nentially distributed with parameter αl. He leaves the system either by end of service, or by
impatience, or by contreinte. We denote by T leff (n) = min

{
nT l, τ l, Dl

}
its sejourn time in the

system when there are n flows present in the system.

5.3.1 Related Markov decision process

There are four main criteria of Markov desion process problem that are: finite horizon criterion,
expected total reward criterion, expected total discounted reward criterion and average reward
criterion.

Let us denote by (St)t the studied process and Rt the reward associated to an action chosen
by the system manager at time t.

In finite horizon criterion the system manager has to make an optimal decision at each
decision epoch in order to optimize during a finite time that we denote by T the following value:

E

[
T∑
n=0

Rn | S0

]

In the case of the three last criteria the system manager has to make an optimal decision at
each decision process during an infinte time. In total reward criterion the value to optimize is:

E

[ ∞∑
n=0

Rn | S0

]

In expected total discounted reward criterion the value to optimize is:

E

[ ∞∑
n=0

γnRn | S0

]

In average reward criterion the value to optimize is:

lim
T→∞

1

T
E

[
T−1∑
n=0

Rn | S0

]

The average reward criterion is mostly used for problems where the frequency of decisions is
high as for queuing problems. In this chapter we consider the average reward criterion.

In this part the system is managed by a system manager whose has objective is to reduce
the impact of impatience on the system performance.

The system manager chooses at each decision epoch some actions that allows him to control
the system.

The system manager can manage the system through the control variable D and during
arrival at each region. Let us introduce the process Nt =

(
N1
t , .....N

r
t

)
where N l

t is the number
of flows in region l. The process Nt describes the system. With our assumptions Nt is Markovian
and changes state either if there is an arrival or a departure. Then the decision epochs can be
reduced to the instant when the process changes state, which puts us in the context of Semi
Markov decision process problems.
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At each decision epoch the system manager makes an action that defines for each user of
region l the new parameter of the variable of control αl, that is the rate of new arrival in region
l. We define for each region l, a variable bl ∈ Ξ, that is controlled by the system manager in
order to increase, decrease, limit or block the arrival in region l.

The system manager controls the system through αl and bl for l ∈ {1, · · · , r}. Let us define
the set of actions by A = {(b1, · · · , br, α1, · · · , αr) , bl ∈ Ξ, αl > 0} ⊂ Ξr × Rr. At each decision
epoch the system manager chooses an action a = (b1, · · · , br, α1, · · · , αr) ∈ A.

We assume that A is finite.
Let us recall that the patience duration τ is uncontrolled.
We assume that the system size is K, that means that the total number of users in the

system cannot exceed K, so the set of states is S = {(n1, · · · , nr) ,
∑r

l=1 nl ≤ K} ⊂ Nr, that
implies that S is also finite.

When the system is at state N , we denote the set of allowable actions at state N by AN ,
that is the set of possible action that the system manager can choose from when the system is
at state N .

A policy ξ = (ξt)t specifies the decision rule to be used at all decision epochs, it may be
deterministic or randomized.

The deterministic policy is a funtion ξt : S → A, which defines with certainty the action to
choose at time t, ξt(Xt) ∈ A.

The randomized policy ξt(N, a) defines the probability to choose the action a ∈ A at time t
when the system is at state N ∈ S.

We denote by P ξ the probability joined the policy ξ, and the corresponding expectation will
be noted by Eξ. We denote by at the process of decisions, i.e the decision to make by the system
manager at decision epoch t.

We consider Markovian policy ξ, in which P ξ [at = a | N0, ..., Nt] = P ξ [at = a | Nt] = ξt(Nt, a),
When an action a = (b1, · · · , br, α1, · · · , αr) ∈ A is made, the process Nt stays Markovian

with intensity matrix Qa given by:
qaN,N+el

= λlbl

qaN,N−el =
Nl∑r
i=1Ni

µl +Nlµ
l
0 +Nlαl

qaN,N = −

(
r∑
l=1

(λlbl + qN,N−el)

)
where N = (N1, ...., Nr); Nl being the number of users in region l, el = (0, .....0, 1, 0, ....0).
For N,N ′ ∈ S and a ∈ A, we denote by P (N ′ | N, a) the probability of transition from state

N to state N ′ when an action a is made.
We denote by P a the matrix of transition of the process Nt when the action a is made. P a

is given by Kolmogorov equation by P a = exp (Qa).
For a randomized Markovian policy ξ:

P ξ [Nt+1 | N0, ..., Nt] =
∑
a∈A

P ξ [at = a | N0, ..., Nt]P
ξ [Nt+1 | N0, ..., Nt, at = a]

=
∑
a∈A

ξt(Nt, a)P ξ [Nt+1 | Nt, at = a]

= P ξ [Nt+1 | Nt] ,
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Then it is a Markov process, where the associate Markov-chain has a transition matrix given
by:

∀N,N ′ ∈ S, Pξ,N,N ′ = P ξ
[
Nt+1 = N ′ | Nt = N

]
=
∑
a∈A

ξt(s, a)P (N ′ | N, a),

and P (N ′ | N, a) is the transition probability from state N to state N ′ of the Markov process
Nt when the decision a is made.

For a policy ξ, we denote by Pξ the stochastic matrix of transition of the associate Markov
process under the policy ξ.

Each decision made by the system manager at each decision epoch has a reward and a cost
for the system performance.

Let us consider a tagged flow and the process Xt =
(
X1
t , · · · , Xr

t

)
, where X l

t is the number
of users in region l seen by the tagged flow.

We consider that the tagged flow is located in region k ∈ {1, · · · , r}.
Let us introduce three supplementary states Ik, F k and Ck, that are assumed to be absorbing

for the process Xt.
As previously we assume that all users have a service time, a patience duration and a control

variable that are independent and exponentially distributed.
When an action a = (b1, · · · , br, α1, · · · , αr) ∈ A is made, then the process Xt is Markovian

with intensity matrix given by:

qX,X+el = λlbl

qX,X−el =
Xl∑r

i=1Xi + 1
µl +Xlµ

l
0 +Xlαl

qX,I = µk0

qX,F =
µk∑r

i=1Xi + 1

qX,C = αk

qX,X = −

(
µk0 +

µk∑r
i=1Xi + 1

+ αk +

r∑
i=1

(λlbl + qX,X−ei)

)
where X = (X1, ...., Xr) with Xl being the number of users in region l seen by the tagged flow.

Let us pose

TIk = inf
{
t > 0, Xt = Ik

}
,

TFk = inf
{
t > 0, Xt = F k

}
,

TCk = inf
{
t > 0, Xt = Ck

}
,

Let us define PIk(X) = P [TIk <∞ | X0 = X] the probability that the tagged flow be impa-
tient, PFk(N) = P [TFk <∞ | X0 = X] the probability that the tagged flow finishes its service
and PCk(N) = P [TCk <∞ | X0 = X] the probability that the tagged flow leaves the system by
force, all conditioned on initial state X0 = X. Then PIk(N), PFk(N) and PCk(N) can be found
as the solution of Dirichlet/FeymannKac problems such as:

PI is solution of:
Q PIk = 0 ∀ N 6= Ik, F k, Ck

PIk(Ik) = 1
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PIk(F k) = 0

PIk(Ck) = 0

PFk is solution of:
Q PFk = 0 ∀ N 6= Ik, F k, Ck

PFk(F k) = 1

PFk(Ik) = 0

PFk(Ck) = 0

PCk is solution of:
Q PCk = 0 ∀ N 6= Ik, F k, Ck

PCk(Ck) = 1

PCk(Ik) = 0

PCk(F k) = 0.

When an action a = (b1, · · · , br, α1, · · · , αr) ∈ A is made at state N , we define the reward
function R(N, a), and the cost function C(N, a) as follows:

R(N, a) =
r∑

k=1

PFk(N)

C(N, a) =
r∑

k=1

PCk(N)

The system manager goal is to choose an action a at each decision epoch, when the system
is at state N in order to maximize the quantity R(N, a)− C(N, a).

In the following we only consider deterministic policy because we use a result from Markov
decision process that allows us to find optimal deterministic policy.

We consider the problem of average cost criterion in infinite horizon.
For a deterministic policy ξ, let us define

∆ξ(M) = lim
n→∞

1

n
Eξ

[
n−1∑
i=0

{R(Ni, ξ(Ni))− C(Ni, ξ(Ni))} | N0 = M

]
Let us define

∆∗ = sup
ξ

∆ξ

where the supremum is taken over all deterministic policies.
The system manager goal is to find the optimal policy ξ∗ over all deterministic policy if it

exists that maximizes ∆∗ such that:
∆∗ = ∆ξ∗ .

and
ξ∗ ∈ argmaxξ∆ξ.

Definition A Markov decision problem is said to be ergodic or recurrent if the transition matrix
associated to each deterministic policy consists of a single reccurent class.

A Markov decision problem is said to be communicating if for each pair of states N and N
′

there exists a deterministic policy ξ under which N is accessible from N
′

that means there exists

an integer n > 0, such that
(
P ξ
)n (

N | N ′
)
> 0.
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5.3.2 Control with adjustable arrival rate in each region

In this part we assume that 0 /∈ Ξ.
The system manger can adjust the arrival rate through bl ∈ Ξ in order to decrease the arrival

rate in each region.
In this model we have AN = A for all N ∈ S.
For any action a the process Nt with intensity matrix Qa is irreducible and reccurent, it then

has a stationnary distribution πa given by:

πaQa = 0∑
N∈S

πa(N) = 1.

The process Nt consists of a single recurrent class for every deterministic policy which means
that our Markov decision process is ergodic or recurrent.

It is well known for ergodic Markov decision process in the average cost criterion that ∆ξ is
constant ∆ξ(M) = ∆ξ,∀M and is given by:

∆ξ =
∑
N∈S

πξ(N) {R(N, ξ(N))− C(N, ξ(N))} .

Let us denote the set of bounded real functions defined on S by V = {f : S −→ R, f <∞}

Now let us enounce somes results about ergodic Markov decision process (see [53]).

Theorem 5.3.1 Let us assume that the set of state S is countable. If there exists a g ∈ R and
an h ∈ V, such that for each state N ∈ S, the following optimality equation is satisfied

max
a∈AN

{
R(N, a)− C(N, a)− g +

∑
M∈S

P (M | N, a)h(M)− h(N)

}
= 0 (5.1)

Then g = ∆∗.

Proof See [53]

Let us notice that the above theorem is applied only for ergodic Markov decision process.
In our model S is finite, it is then countable which verifies the assumption in the above

theorem.
The following theorem gives us existence and uniqueness of the optimal solution (See [53]).

Theorem 5.3.2 Assume S and AN for each state N are finite, for each state N ∈ S and each
action a ∈ AN the reward function R(N, a) is bounded, and the model is ergodic, then

There exists a g ∈ R and an h ∈ V such that for each N ∈ S, the optimality equation is
verified

max
a∈AN

{
R(N, a)− C(N, a)− g +

∑
M∈S

P (M | N, a)h(M)− h(N)

}
= 0

If any other solution g′ and h′ of 5.1 exists, then g = g′.

Proof See [53]
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The optimality equation 5.1 can be rewritten as:

g + h(N) = max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}

For an h ∈ V, a policy ξh is called h-improving if for each N ∈ S

R(N, ξh(N))− C(N, ξh(N)) +
∑
M∈S

P
(
M | N, ξh(N)

)
h(M)

= max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}
This means that for each N ∈ S,

ξh(N) ∈ argmaxa∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}

The following theorem gives us the conditions under which there is a solution to the equation
5.1 (see [53]).

Theorem 5.3.3 Assume S and AN for each state N , are finite, for each state N ∈ S and each
action a ∈ AN the reward function R(N, a) is bounded, and the model is ergodic, then

There exists a g ∈ R and an h ∈ V such that equation (5.1) is satisfied
g = ∆∗

Any h-improving policy is an optimal policy.

Proof See [53]

Modified Policy Iteration Algorithm

For ε > 0, a policy ξ is said to be ε−optimal if

| ∆ξ −∆∗ |< ε.

In this part we expose an algorithm that allows us to obtain a ε−optimal policy, for an
arbitrary ε > 0.

We use the Modified policy iteration algorithm that is derived in [53].
Let us introduce the norm sp, defined on V, as;

∀V ∈ V, sp(V ) = max
s∈S

V (s)−min
s∈S

V (s),

Let us set a sequence of non-negative integers (mn)n.
The modified policy iteration algorithm is described as follows:

1. Set n = 0, for each N ∈ S, select v0(N) ∈ R, specify ε > 0.

2. For each N ∈ S, choose ξn+1(N) which satisfies

R(N, ξn+1(N))− C(N, ξn+1(N)) +
∑
M∈S

P (M | N, ξn+1(N)) vn(M)
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= max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}
This means

ξn+1(N) ∈ argmaxa∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}
.

Set ξn+1(N) = ξn(N) if possible.

3. a. Set k = 0, and for each N ∈ S, set

u0n(N) = R(N, ξn+1(N))− C(N, ξn+1(N)) +
∑
M∈S

P (M | N, ξn+1(N)) vn(M).

b. If
sp
(
u0n − vn

)
< ε,

go to step (4). Otherwise go to step (c).

c. If k = mn, go to (e). Othetwise, for each N ∈ S, compute uk+1
n (N) as follows

uk+1
n (N) = R(N, ξn+1(N))− C(N, ξn+1(N)) +

∑
M∈S

P (M | N, ξn+1(N))ukn(M).

d. Increment k by 1, and return to (c).

e. Set vn+1 = umnn , go to (2).

4. For each N ∈ S, choose ξε(N), such that

R(N, ξε(N))− C(N, ξε(N)) +
∑
M∈S

P (M | N, ξε(N)) vn(M)

= max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}

This means

ξε(N) ∈ argmaxa∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}

and stop.

The following theorem ensures the convergence of the above algorithm ([53]).

Theorem 5.3.4 Assume that the Markov decision process is ergodic, and assume that under all
deterministic policies, the associate Markov process is aperiodic.

Then for any sequence of non-negative integers (mn) and for any ε > 0, there exists an
integer n in which the modified policy iteration algorithm stops.

Proof See [53]
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In order to apply the above theorem that ensures that the modified policy iteration algorithm
terminates, aperiodicity is required.

There exists a simple transformation called aperiodicity transformation, that allows, under
all policies, to make the associate Markov process aperiodic, see [53].

Let us define the transformed Markov process with components indicated by ” ¯ ”.
The aperiodicity transformation consists in choosing a fixed real θ satisfying 0 < θ < 1, and

defining the set of states by S̄ = S, the set of accessible actions by ĀN = AN for all states N ,

R̄(N, a) = θR(N, a), C̄(N, a) = θC(N, a) ∀N ∈ S, ∀a ∈ AN ,

and
P̄ (M | N, a) = (1− θ) δ(M | N) + θP (M | N, a), ∀N ∈ S, ∀a ∈ AN

where δ(M | N) is equal to 1 if M = N and is equal to 0 otherwise.
The transformed Markov process is aperiodic under all policies.
In [53] it is shown that the sets of optimal stationary policies for the original and the trans-

formed problems are identical, and ∆̄∗ = θ∆∗.

5.3.3 Control with admission limit in each region

In this part we assume that instead of controlling the rate of entry in each region, the system
manager controls the number of admissible users in each region, at each decision epoch.

Here we pose bl = 1{Nl<Kl}, where Kl is the number of admissible users in region l and
Nl is the number of active users in region l. Thus we can rewrite the new set of actions as
A = {(K1, · · · ,Kr, α1, · · · , αr)} ⊂ Nr × Rr.

As previously we assume that A is finite, and that the system has a finite size K, that means
that the total number of users in the system is assumed to not exceed K.

Let us notice that the system manger cannot choose a number of admissible users Kl in
region l, less than the current number of users Nl in region l. So when the system is at state N ,
the set of admissible actions AN = {(K1, · · · ,Kr, α1, · · · , αr) , Kl ≥ Nl, ∀l,

∑r
l=1Kl ≤ K} ⊂ A.

When the action a = (K1, · · · ,Kr, α1, · · · , αr) ∈ A is choosen by the system manager, then
the process Nt stays Markovian with intensity matrix Qa given by:

qaN,N+el
= λl, if Nl ≤ Kl − 1,

qaN,N+el
= 0, if Nl = Kl,

qaN,N−el =
Nl∑r
i=1Ni

µl +Nlµ
l
0 +Nlαl,

qaN,N = −

(
r∑
l=1

qN,N+el +

r∑
l=1

qN,N−el

)
.

It’s obvious to see that for two arbitrary states N and M there exists a deterministic policy
ξ under which M is accessible from N , that means that there exists an integer n > 0 such that(
P ξ
)n

(M | N) > 0, our Markov decision process is said to be communicating.
In a communicating model in the average cost criterion the expression ∆ξ:

∆ξ(M) = lim
n→∞

1

n
Eξ

[
n−1∑
i=0

{R(Ni, ξ(Ni))− C(Ni, ξ(Ni))} | N0 = M

]
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is not constant as in the ergodic model.
The following theorem gives us the optimality equation for the communicating model (See

[53]).

Theorem 5.3.5 If the set of states S is finite, and if there exists a g ∈ V and an h ∈ V, such
that the following optimality equations are satisfied for each N ∈ S:

max
a∈AN

{∑
M∈S

P (M | N, a) g(M)− g(N)

}
= 0 (5.2)

and

max
a∈BN

{
R(N, a)− C(N, a)− g(N) +

∑
M∈S

P (M | N, a)h(M)− h(N)

}
= 0, (5.3)

where BN =
{
a′ ∈ AN ,

∑
M∈S P (M | N, a) g(M)− g(N) = 0

}
,

Then g = ∆∗.

Proof See [53]

It is sometimes difficult to explicit the set BN , so we introduce the modified optimality
equation as follows:

max
a∈AN

{∑
M∈S

P (M | N, a) g(M)− g(N)

}
= 0,

and

max
a∈AN

{
R(N, a)− C(N, a)− g(N) +

∑
M∈S

P (M | N, a)h(M)− h(N)

}
= 0, (5.4)

The following theorem enables us to join the modified and the unmodified optimality equation
(See [53]).

Theorem 5.3.6 Let us assume that S and AN are finite for each state N ∈ S, and that there
exists a g ∈ V and an h ∈ V satisfying the optimality equations 5.2 and 5.3, then there exists an
M > 0 such that g and h+Mg satisfy the modified optimality equations 5.2 and 5.4.

Proof See [53]

The next theorem is analogous to theorem 5.3.5, and prooves the optimality of the modified
optimality equations (See [53]).

Theorem 5.3.7 Let us assume S to be countable.
If there exists a g ∈ V and an h ∈ V, such that the modified optimality equations are satisfied:
for each N ∈ S:

max
a∈AN

{∑
M∈S

P (M | N, a) g(M)− g(N)

}
= 0

and

max
a∈BN

{
R(N, a)− C(N, a)− g(N) +

∑
M∈S

P (M | N, a)h(M)− h(N)

}
= 0,

Then g = ∆∗.
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Proof See [53]

The next theorem establishes the existence of solutions to the optimality equations and the
modified optimality equations.

Theorem 5.3.8 Let us assume S and AN to be finite for each state,
There exists g that satisfy g = ∆∗

There exists an h ∈ V, such that g and h verify the optimality equations (5.2) and (5.3),
There exists an h′ ∈ V, such that g and h′ verify the modified optimality equations (5.2) and

(5.4),

Proof See [53]

Now let us give the following theorem which establishes the optimal policy.

Theorem 5.3.9 Let us assume S and AN to be finite for each state N ,
Then there exists a deterministic optimal policy.
If g and h satisfy the optimality equations (5.2) and (5.3), then the policy ξ defined such

that:

g(N) =

{∑
M∈S

P (M | N, ξ(N)) g(M)

}
and {

R(N, ξ(N))− C(N, ξ(N)) +
∑
M∈S

P (M | N, ξ(N))h(M)

}

= max
a∈BN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}
,

This is equivalent to

ξ(N) ∈ argmaxa∈BN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}

where BN =
{
a′ ∈ AN ,

∑
M∈S P (M | N, a) g(M)− g(N) = 0

}
,

is the optimal policy.
If g

′
and h

′
satisfy the modified optimality equations (5.2) and (5.4), then the policy ξ

′
defined

such that:

g(N) =

{∑
M∈S

P
(
M | N, ξ′(N)

)
g(M)

}
and {

R(N, ξ
′
(N))− C(N, ξ

′
(N)) +

∑
M∈S

P
(
M | N, ξ′(N)

)
h(M)

}

= max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}
,

This is equivalent to

ξ
′
(N) ∈ argmaxa∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a)h(M)

}
is the optimal policy.
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Proof See [53]

Theorem 5.3.10 Assume that the model is communicating and let ξ be a stationary policy

1. Suppose there exist two states N and M ∈ S, such that ∆ξ(N) < ∆ξ(M). Then there

exists a stationary policy ξ
′

for which ∆ξ
′
(N) = ∆ξ

′
(M) ≥ ∆ξ(M)

2. Suppose ξ is an optimal policy. Then there exists a stationary optimal policy ξ
′

with optimal

gain that is constant at each state, ∆ξ
′
(N) = ∆∗ ∀N ∈ S.

Proof See [53]

The above theorem shows that the optimal gain is constant as in an ergodic model.
Let us notice that the gain ∆ξ associated to an arbitrary policy ξ is not necessary constant.
We use the value iteration algorithm (See [53]) to compute the optimal policy. The value iter-

ation algorithm for ergodic model can be used in communicating model because its convergence
needs the optimal gain to be constant as said in the above theorem.

Value Iteration Algorithm

1. Set n = 0, for each N ∈ S, select v0(N) ∈ R, specify ε > 0.

2. For each N ∈ S, compute vn+1(N) by

vn+1(N) = max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}
.

3. If
sp
(
vn+1 − vn

)
< ε

Go to (4). Otherwise increment n by 1 and go back to (2).

4. For each N ∈ S, choose ξε(N), such that

R(N, ξε(N))− C(N, ξε(N)) +
∑
M∈S

P (M | N, ξε(N)) vn(M)

= max
a∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}

This means

ξε(N) ∈ argmaxa∈AN

{
R(N, a)− C(N, a) +

∑
M∈S

P (M | N, a) vn(M)

}

and stop.

The following theorem ensures the convergence of the Value Iteration Algorithm (See [53]).

Theorem 5.3.11 Assume that the model is such that the optimal gain ∆∗ is constant on S, and
assume that under all deterministic policies the associated Markov process is aperiodic. Then
there exists an integer n in which the Value Iteration Algorithm terminates.
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Proof See [53]

As our model is communicating, then the optimal gain is constant which satisfies the first
assumption of the above theorem. The second assumption can be satisfied by using the aperi-
odicity transformation exposed previously.

Let us notice that the theorem is also applicable to Ergodic model.

5.3.4 Control with region blocking

In this part the system manager is able to block an arrival in each region.
Here we assume Ξ = {0, 1}, bl = 0 means that all arrivals in region l are rejected and bl = 1

means that all arrivals in region l are accepted unless the total number of users in the system
exceeds K.

When the action a = (b1, · · · , br, α1, · · · , αr) ∈ A is chosen by the system manager, then the
process Nt stays Markovian with intensity matrix Qa given by:

qaN,N+el
= λl, if bl = 1, and

r∑
i=1

Ni ≤ K − 1,

qaN,N+el
= 0, if bl = 0, or

r∑
i=1

Ni ≥ K

qaN,N−el =
Nl∑r
i=1Ni

µl +Nlµ
l
0 +Nlαl,

qaN,N = −

(
r∑
l=1

qN,N+el +
r∑
l=1

qN,N−el

)
.

where N = (N1, · · · , Nr) .
It’s obvious to see that for two arbitrary states N and M there exists a deterministic policy

ξ under which M is accessible from N , that means that there exists an integer n > 0 such that(
P ξ
)n

(M | N) > 0, our Markov decision process is then communicating.
Thus all results about communicating model as exposed in the previous section can be used

here.

5.3.5 Numerical applications

In this part numerical applications we consider a system consisting of two regions.
We first begin by the case of adjustable arrival rate in each region corresponding to the model

in section 5.4.1.
We consider that set of actions is defined as follows:

b1, b2 ∈ {1, 2, · · · , 5}

α1, α2 ∈ {5, 10, · · · , 25} ,

and we take µ1 = 32, µ2 = 20, λ1 = λ2 = 8, µ0 = 4 and the system size K = 15.
For ε = 0.55, the modified policy iteration algorithm says that the ε-optimal policy is the

same at each state and is given by:

ξ(N) = (b1, b2, α1, α2) = (5, 1, 5, 5) , ∀N ∈ S.
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For the case of control with admission limit in each region (model in section 5.4.2) we consider
the following set of admissible actions at state N = (N1, N2) ∈ S:

α1, α2 ∈ {5, 10, · · · , 25} ,

K1 ∈ 〈N1, N1 + 1, N1 + 2, · · · }

K2 ∈ 〈N2, N2 + 1, N2 + 2, · · · }

We choose µ1 = 32, µ2 = 20, λ1 = λ2 = 8, µ0 = 4 and the system size K = 15.
For ε = 0.55, the value iteration algorithm gives us the ε-optimal policy shown in the table

5.1.

Table 5.1: Value iteration results
System state K1 K2 α1 α2

(0,0) 1 1 5 5
(0,1) 1 1 5 5
(0,2) 1 2 5 5
(0,3) 1 3 5 5
(0,4) 1 4 5 5
(0,5) 1 5 5 5
(1,0) 1 1 5 5
(1,1) 1 1 5 5
(1,2) 1 2 5 5
(1,3) 1 3 5 5
(1,4) 1 4 5 5
(2,0) 2 1 5 5
(2,1) 2 1 5 5
(2,2) 2 2 5 5
(2,3) 2 3 5 5
(3,0) 3 1 5 5
(3,1) 3 1 5 5
(3,2) 3 2 5 5
(4,0) 4 1 5 5
(4,1) 4 1 5 5
(5,0) 5 1 5 5

...
...

...
...

...
(15,0) 15 1 5 5

We finish with the case of control with region blocking (model in section 5.4.3), in which we
consider the following set of actions:

b1, b2 ∈ {0, 1}

α1, α2 ∈ {5, 10, · · · , 25} .

We choose µ1 = 32, µ2 = 20, λ1 = λ2 = 8, µ0 = 4 and the system size K = 15.
For ε = 0.55, the value iteration algorithm says that the ε-optimal policy is the same at each

state and is given by:

ξ(N) = (b1, b2, α1, α2) = (1, 1, 5, 5) , ∀N ∈ S.
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5.4 Control with compact set of actions

In this part we develop another aproach of control. We consider that the set of actions is compact
and not countable as it was the case in the previous section. We derive some results that allow
us to find optimal policy recursively without using value iteration and modified policy iteration
algorithms as we did in the previous section. In addition our results provide the system manager
with an optimal system size for admission control.

5.4.1 Model

Let us first consider a system with one cell composed of one region. Then the case of multiple
regions will be studied in section 5.6.

Users are assuming to arrive according to a Poisson process with rate λ. Users in the system
are served as a processor sharing. When there are n active users in the system, each user has
a service time given by T = n σC , where σ is the flow size, and C is the system capacity. The
flow size is assumed to be exponentially distributed, then the service time σ

C if he is alone in
the system, is also exponentially distributed with parameter that we denote by µ. If there are
n active users in the system, because of the processor sharing sheduler, the service time will be
exponentially distributed with parameter µ

n .
Each user in the system has a patience duration denoted by τ that is assumed to be ex-

ponentially distributed with parameter µ0. We introduce a variable of control for dropping D,
that allows the system manager to force a user to leave the system even if he does not finish his
service. The variable of control is also assumed to be exponentially distributed with parameter
denoted by α.

Each user in the system has its service time T , its patience duration τ , and its variable of
control D, that we assume independent. So we can define for each user its effective time in the
system given by Teff = min

{
nσ
C , τ,D

}
, that by assumption of independence, is exponentially

distributed with parameter µ
n + µ0 + α, when there are n active users in the system. In this

section the system is controled by the system manager, who chooses at each decision epoch
some actions to make in order to optimize the system performance which means in our work to
maximize some function that we will define later.

Let us introduce the process Nt which is the number of users in the system at instant t taking
values in {0, 1, 2, ....}. Under our assumption the process is an irreductible Markov process with
intensity matrix Q given by:

qn,n+1 = λ,

qn,n−1 = µ+ n (µ0 + α) , ∀n > 0.

This Markov process Nt has a steady state probabilty π for the number of users in the system
that verifies the local balance equation:

(µ+ n (µ0 + α))πn = λπn−1. (5.5)

5.4.2 Related Markov decision process problem

In this section we study the problem of choosing the arrival rate λ, the service rate by the
parameter µ, and the parameter of the control variable or dropping variable α. As the process is
Markovian, we consider that the decision epochs are the instants at which the process changes
state, that falls in the problem of semi-Markov decision problems.

In this part we only consider deterministic actions. The system manager has to choose an
action a = (λ, µ, α) ∈ A after either an arrival or departure instance. We assume that the set of
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actions A = [0,M ]× [0, S]× [0, L] , where M , S and L are respectively the maximum value that
can reach the arrival rate λ, the service rate µ and the dropping rate α.

Let us define c1(µ) the cost rate associated to the change of service rate µ, c2(α) the cost rate
associated to the change of parameter of control variable α, and b(λ) the value rate associated
with arrival rate λ. The system manager incurs a holding cost at each state of the system that
we denote by hn, when the state is n. hn can be seen as the cost for the system to contain n
active users or the cost of congestion.

Let us assume that c1(0) = 0, c1 is a non-decreasing and convex function on [0, S], c2(0) = 0,
c2 is a non-decreasing and convex function on [0, L], and b is assumed to be non-decreasing,
strictly concave, continuous differentiable on [0,M ] with b(0) = 0, we also assume that b

′
(0) <∞.

Let us notice that the assumption c1 and c2 are non-decreasing is natural because increasing
the service rate and the dropping rate can’t be done without high cost value.

It is natural to assume that the holding cost or the cost of congestion hn is non-decreasing in
n, h0 = 0 and limn→∞ hn = ∞. When the number of users in the system increases, congestion
increases then the cost of congestion increases. When the system is empty, there is no congestion
then the cost of congestion is null.

We consider the problem of long run average generated per unit time unit over infinite
planning horizon.

We define a policy as a triplet of vectors
(
~λ, ~µ, ~α

)
, where ~λ = (λ0, λ1, λ2, · · · ), ~µ = (µ0, µ1, µ2, · · · )

and ~α = (α0, α1, α2, · · · ). an = (λn, µn, αn) would be the action chosen by the system manager
when the system is at state n. We assume by convention that µ0 = α0 = 0.

A policy
(
~λ, ~µ, ~α

)
is said to be ergodic if under this policy the process Nt has a unique

steady state probability π
(
~λ, ~µ, ~α

)
that satisfies the above local balance equation. We define

the long run average generated under an ergodic policy
(
~λ, ~µ, ~α

)
by:

Z
(
~λ, ~µ, ~α

)
=

∞∑
n=0

πn

(
~λ, ~µ, ~α

) [
b(λn)− c1(µn)− c2(αn)− hn

]
. (5.6)

We define the optimal long run average by:

Z∗ = sup
(~λ,~µ,~α)

Z
(
~λ, ~µ, ~α

)
, (5.7)

where the supremum is taken over all ergodic policies.

A policy
(
~λ, ~µ, ~α

)
is said to be optimal if Z∗ = Z

(
~λ, ~µ, ~α

)
.

The system manager objective is to find an optimal policy in order to maximize the long run
average.

We first consider our system with a finite system size, which we denote by K. We derive the
optimal system size later.

5.4.3 Optimality equation

We assume that the system has a finite state with K the system size, so the process Nt takes
values in {0, 1, 2, · · · ,K} .

By convention we assume that λK = 0 and µ0 = 0.
According to the optimality equations for a semi-Markov decision process problem with long

run average cost criterion we have the following equations:

v0 = sup
λ∈[0,M ]

{
b(λ)− z

λ
+ v1

}
(5.8)
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vn = sup
(λ,µ,α)∈A

{
b(λ)− c1(µ)− c2(α)− hn − z

λ+ [µ+ n(µ0 + α)]
+

λ

λ+ [µ+ n(µ0 + α)]
vn+1 +

[µ+ n(µ0 + α)]

λ+ [µ+ n(µ0 + α)]
vn−1

}
,

(5.9)
∀n ∈ {1, · · · ,K − 1}

vK = sup
µ∈[0,S],α∈[0,L]

{
−c1(µ)− c2(α)− hK − z

µ+K(µ0 + α)
+ vK−1

}
(5.10)

z is interpreted as a guess at the supremum average value.
Let us notice that in equation (5.8), 1

λ represents the expectation until the next state that is

1, and the probability for the process to leave the state 0 and go to state 1 is λ
λ = 1. In equation

(5.9), 1
λ+[µ+n(µ0+α)]

represents the expectation for the process to change state being at state n,
λ

λ+[µ+n(µ0+α)]
represents the probability for the process to leave state n and go to state n + 1,

and µ+n(µ0+α)
λ+[µ+n(µ0+α)]

the probability to leave state n and go to state n − 1. In equation (5.10)
1

µ+K(µ0+α)
is the expectation for the process to change state, the only state in which the process

can go while at state K is the state K − 1 that has a probability equal to 1.
v0, v1, v2, · · · , vK are called relative value functions in average cost value, and are only de-

termined up to an additive constant. So we define the relative value differences:

yn = vn−1 − vn, ∀n ∈ {1, · · · ,K} .

Then equations (5.8), (5.9), (5.10) can be written as:

z = sup
λ∈[0,M ]

{b(λ)− λy1} (5.11)

z = sup
λ∈[0,M ]

{b(λ)− λyn+1+}+ sup
µ∈[0,S]

{
µyn − c1(µ)

}
+ sup
α∈[0,L]

{
nαyn − c2(α)

}
+nµ0yn−hn (5.12)

z = sup
µ∈[0,S]

{
µyK − c1(µ)

}
+ sup
α∈[0,L]

{
KαyK − c2(α)

}
+Kµ0yK − hK (5.13)

Let us define ζ, φ1 and φ2 as follows:

ζ(y) = sup
λ∈[0,M ]

{b(λ)− λy} , ∀y ∈
[
0, b

′
(0)
]

(5.14)

φ1(y) = sup
µ∈[0,S]

{
µy − c1(µ)

}
, ∀y ≥ 0 (5.15)

φ2(y, n) = sup
α∈[0,L]

{
nαy − c2(α)

}
, ∀y ≥ 0 (5.16)

Let us notice that ζ is only defined on
[
0, b

′
(0)
]
, this will be clear in the analysis. Thus

equations (5.11), (5.12), (5.13) can be rewritten as follows:

z = ζ(y1) (5.17)

z = ζ(yn+1) + φ1(yn) + φ2(yn, n) + nµ0yn − hn, ∀n ∈ {0, · · · ,K − 1} (5.18)
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z = φ1(yK) + φ2(yK ,K) +Kµ0yK − hK . (5.19)

Let us notice that for a fixed y, the function b(λ) − λy is continuous with λ since b is
continuous by assumption, and the set [0,M ] is compact, then the maximizer exists and takes
values in [0,M ]. We denote by η(y) the smallest maximizer of supremum in the expression of
ζ(y) such that:

ζ(y) = b(η(y))− η(y)y.

Similary the functions µy − c1(µ) and nαy − c2(α) are continuous with µ and α respetively
and the sets [0, S] and [0, L] are compact, then the maximizers in the expression of φ1 and φ2

exist and take values in [0, S] and [0, L] respectively . We denote by ψ1(y) the smallest maximizer
of supremum in the expression of φ1(y) and ψ2(y, n) the smallest maximizer of supremum in the
expression of φ2(y) such that:

φ1(y) = ψ1(y)y − c1(ψ1(y))

φ2(y, n) = nψ2(y, n)y − c2(ψ2(y, n))

Theorem 5.4.1 If there exists an integer K, a real z and a vector (y1, y2, · · · , yK) such that:

• z and (y1, y2, · · · , yK) solve the optimality equation (5.17), (5.18), (5.19)

• hn + z ≥ φ1(b′(0)) + φ2(b
′
(0), n) + nµ0b

′
(0), ∀n ≥ K + 1

• 0 ≤ yn ≤ b
′
(0), ∀n ∈ {1, · · · ,K}

Then z ≥ Z
(
~λ, ~µ, ~α

)
, for all ergodic policies

(
~λ, ~µ, ~α

)
, thus z ≥ Z∗.

Let there be the following policy
(
~λ∗, ~µ∗, ~α∗

)
given by:

λ∗n = η(yn+1), ∀n ∈ {0, · · · ,K − 1}

λ∗n = 0, ∀n ≥ K

µ∗n = ψ1(yn), ∀n ∈ {0, · · · ,K}

µ∗n = S, ∀n ≥ K + 1

α∗n = ψ2(yn, n), ∀n ∈ {0, · · · ,K}

α∗n = L, ∀n ≥ K + 1

If the policy
(
~λ∗, ~µ∗, ~α∗

)
is ergodic, then it is optimal among all ergodic policy that truncate the

system size to K:

Z
(
~λ∗, ~µ∗, ~α∗

)
= Z∗.

Proof Let us consider an arbitrary ergodic policy
(
~λ, ~µ, ~α

)
. Then it has steady state probability

π satisfying the local balance equation:

(µn + n (µ0 + αn))πn = λn−1πn−1, ∀n ≥ 1

and
∞∑
n=0

πn = 1.
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By definition of ζ, φ1 and φ2 we have:

ζ(yn+1) = sup
λ∈[0,M ]

{b(λ)− λyn+1} ≥ b(λn)− λnyn+1, ∀n ∈ {1, · · · ,K − 1} (5.20)

φ1(yn) = sup
µ∈[0,S]

{
µyn − c1(µ)

}
≥ µnyn − c1(µn), ∀n ∈ {1, · · · ,K − 1} (5.21)

φ2(yn, n) = sup
α∈[0,L]

{
nαyn − c2(α)

}
≥ nαnyn − c2(αn), ∀n ∈ {1, · · · ,K − 1} (5.22)

Using equation (5.18), and summing equations (5.20), (5.21), (5.22), we get,

z + hn = ζ(yn+1) + φ1(yn) + φ2(yn, n) + nµ0yn

≥ b(λn)− λnyn+1 + µnyn − c1(µn) + nαnyn − c2(αn) + nµ0yn, ∀n ∈ {1, · · · ,K − 1} .

Thus
z ≥ b(λn)− λnyn+1 + µnyn − c1(µn) + nαnyn − c2(αn) + nµ0yn − hn

Let us multiply both sides by πn and let us sum over n ∈ {1, · · · ,K − 1}, we obtain:

z
K−1∑
n=1

πn ≥
K−1∑
n=1

πn
[
b(λn)− c1(µn)− c2(αn)− hn

]
+
K−1∑
n=1

(πnyn [µn + nαn + nµ0]− λnπnyn+1)

The equations of local balance give λnπn = (µn+1 + (n+ 1) (µ0 + αn+1))πn+1,
Thus

K−1∑
n=1

(πnyn [µn + nαn + nµ0]− λnπnyn+1)

=
K−1∑
n=1

(πnyn [µn + n (αn + µ0)]− πn+1yn+1 [µn+1 + (n+ 1) (µ0 + αn+1)])

= π1y1 [µ1 + α1 + µ0]− πNyK [µN +N (αK + µ0)]

So we obtain

z

K−1∑
n=1

πn ≥
K−1∑
n=1

πn
[
b(λn)− c1(µn)− c2(αn)− hn

]
+π1y1 [µ1 + α1 + µ0]−πKyK [µK +K (αK + µ0)]

(5.23)
Similary by (5.17) and (5.19) and using the fact that c1(µ0) = c2(µ0) = 0 we have:

zπ0 ≥ π0b(λ0)− π0λ0y1 − π0c1(µ0)− π0c2(µ0) (5.24)

zπK ≥ πK [µK +K (αK + µ0)] yK − πKc1(µK)− πKc2(µK)− πKhK (5.25)

Summing equations (5.23), (5.24) and (5.25), and using the fact that π0λ0y1 = π1 [µ1 + α1 + µ0] y1,
we obtain:

z

K∑
n=0

πn ≥
K−1∑
n=0

πn
[
b(λn)− c1(µn)− c2(αn)− hn

]
− πKc1(µK)− πKc2(αK)− πKhK (5.26)
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Let us consider the case of n ≥ K + 1.
By definition of φ1 and φ2 we have ∀n ≥ K + 1:

φ1(b
′
(0)) ≥ b′(0)µn − c1(µn)

φ2(b
′
(0), n) ≥ nb′(0)αn − c2(αn)

The assumption in the theorem says that hn + z ≥ φ1(b′(0)) + φ2(b
′
(0), n) + nµ0b

′
(0), ∀n ≥

K + 1
Then we obtain:

z ≥ φ1(b′(0)) + φ2(b
′
(0), n) + nµ0b

′
(0)− hn, ∀n ≥ K + 1

Thus
z ≥ b′(0)µn − c1(µn) + nb

′
(0)αn − c2(αn) + nµ0b

′
(0)− hn, ∀n ≥ K + 1

Multiplying both sides of this inequality by πn, for n ≥ K + 1, we obtain:

πnz ≥ b
′
(0)πnµn − πnc1(µn) + nb

′
(0)πnαn − πnc2(αn) + nπnµ0b

′
(0)− πnhn, ∀n ≥ K + 1

πnz ≥ b
′
(0)πn [µn + n (αn + µ0)]− πnc1(µn)− πnc2(αn)− πnhn, ∀n ≥ K + 1

This gives by using the equations of local balance:

πnz ≥ b
′
(0)πn−1λn−1 − πnc1(µn)− πnc2(αn)− πnhn, ∀n ≥ K + 1

By assumption b is concave, it then satisfies b
′
(0)λn−1 ≥ b(λn−1). Then we obtain:

πnz ≥ b(λn−1)πn−1 − πnc1(µn)− πnc2(αn)− πnhn, ∀n ≥ K + 1 (5.27)

Let us pose an integer N that is larger than K. Let us sum equation (5.27) over N and let
us add it to equation (5.26), we obtain:

z

N∑
n=0

πn ≥
N∑
n=0

πn
[
b(λn)− c1(µn)− c2(αn)− hn

]
− πNb(λN ) (5.28)

Passing to the limit as N →∞, and using the fact that πNb(λN )→ 0, it follows that:

z ≥
∞∑
n=0

πn
[
b(λn)− c1(µn)− c2(αn)− hn

]
= Z

(
~λ, ~µ, ~α

)
This implies that:

z ≥ Z∗

Now let us consider the candidate policy
(
~λ∗, ~µ∗, ~α∗

)
given in the theorem. So the inequality

in equation (5.26) is an equality. For an ergodic policy that truncates the buffer size to K, we
have

∑K
n=0 πn = 1, and b(λK) = 0, then we conclude:

z
K∑
n=0

π∗n =
K−1∑
n=0

π∗n
[
b(λ∗n)− c1(µ∗n)− c2(α∗n)− hn

]
− π∗Kc1(µ∗K)− πKc2(α∗K)− π∗KhK

Thus

z =

K∑
n=0

π∗n
[
b(λ∗n)− c1(µ∗n)− c2(α∗n)− hn

]
That implies that the policy

(
~λ∗, ~µ∗, ~α∗

)
is optimal among all ergodic policies that truncate

the system size to K.
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5.4.4 Some properties of ζ, φ1 and φ2

In this part we derive some important properties of ζ, φ1 and φ2 and their associated maximizer
that we need in our analysis.

Proposition 5.4.2 The function φ1 is convex, differentiable almost everywhere with y, for each
fixed n ≥ 1, φ2( , n) is convex, differentiable almost everywhere with y, and we have:

• φ′1( ) = ψ1( ), φ1(y) =
∫ y
0 ψ

1(u)du

• φ′2( , n) = nψ2( , n), φ2(y, n) = n
∫ y
0 ψ

2(u, n)du, ∀n ≥ 1

It follows that φ1( ) and φ2( , n) are nondecreasing with y.

Proof Let y0 ≥ 0, and let x0 = ψ1(y0) such that:

φ1(y0) = x0y0 − c1(x0)

Let an arbitrary y ≥ 0,

φ1(y) = sup
x∈[0,S]

{
xy − c1(x)

}
≥ yx0 − c1(x0)

Then
φ1(y)− φ1(y0) ≥ x0 (y − y0) , ∀y ≥ 0

This implies that φ1 is convex. A finite convex function is continuous and differentiable
almost everywhere, and the above inequality implies that its derivative at y0 is x0 = ψ1(y0),
thus we have φ

′1() = ψ1() wherever the derivative exists. Then we have the following Rieman-
integral form:

φ1(y) =

∫ y

0
ψ1(u)du

Similary for φ2, let y0 ≥ 0, and n ≥ 1, let x0 = ψ2(y0, n) such that:

φ2(y0, n) = nx0y0 − c2(x0)

Let an arbitrary y ≥ 0,

φ2(y, n) = sup
x∈[0,L]

{
nxy − c2(x)

}
≥ nyx0 − c2(x0)

Thus

φ2(y, n)− φ2(y0, n) ≥ nx0 (y − y0) , ∀y ≥ 0

This implies that φ2( , n) is convex with y, so it is continuous and differentiable almost
everywhere, and its derivative at y0 is nx0 = nψ2(y0, n), thus we have the following Rieman-
integral form:

φ2(y, n) = n

∫ y

0
ψ2(u, n)du.

As ψ1 ∈ [0, S] and ψ2 ∈ [0, L], then they are positive, this implies that φ1( ) and φ2( , n) are
nondecreasing.

Proposition 5.4.3 Let (c
′1)−1 and (c

′2)−1 be the inverse function of the derivative function of
c1 and c2 respectively, we have
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• The function ψ1(y) = 0, ∀y ≤ c′1(0), and if c
′1 is differentiable then ψ1(y) = (c

′1)−1(y), ∀y >
c
′1(0)

• For each n ≥ 1, ψ2(y, n) = 0, ∀y ≤ c
′2(0)
n , and if c

′2 is differentiable, then ψ2(y, n) =

(c
′2)−1(ny), ∀y > c

′2(0)
n

Proof Let us recall that we assumed that c1 and c2 are strictly convex and continuous dif-
ferentiable, with c1(0) = c2(0) = 0, then their respective derivative functions c

′1 and c
′2

are strictly increasing, thus their inverse functions (c
′1)−1 and (c

′2)−1 exist. Let us define
p1 = sup

{
y ≥ 0, φ1(y) = 0

}
and p2n = sup

{
y ≥ 0, φ2(y, n) = 0

}
. Since φ1 and φ2 are positive

(that can be seen by their Rieman-integral form), it follows that:

ψ1(y) = 0,∀y ≤ p1

and
ψ2(y, n) = 0,∀y ≤ p2n,

So we have to prove that p1 = c
′1(0) and p2n = c

′2(0)
n .

p1 can be written as:

p1 = sup

{
y ≥ 0, sup

x∈[0,S]

{
xy − c1(x)

}
= 0

}

= sup
{
y ≥ 0, xy − c1(x) ≤ 0, ∀x ∈ [0, S]

}
= inf

{
c1(x)

x
≤ 0, ∀x ∈ [0, S]

}
By convexity of c1 and the fact that c1(0) = 0 it follows that

c1(x)

x
≥ c′1(0), ∀x ∈ [0, S]

This implies that p1 = c
′1(0).

p2n can be written as:

p2n = sup

{
y ≥ 0, sup

x∈[0,L]

{
nxy − c2(x)

}
= 0

}

= sup
{
y ≥ 0, nxy − c2(x) ≤ 0, ∀x ∈ [0, L]

}
= inf

{
c2(x)

nx
≤ 0, ∀x ∈ [0, L]

}
By convexity of c2 and the fact that c2(0) = 0 it follows that

c2(x)

x
≥ c′2(0), ∀x ∈ [0, S]

This implies that p2n = c
′2(0)
n .

Let us define f(x) = xy − c1(x), for y > p1, defined on [0, S], and gn(x) = nxy − c2(x) for
y ≥ p2n, defined on [0, L], and n ≥ 1.
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The real function f is continuous differentiable, so its maximizer and its minimizer satisfy
f
′
(x) = y − c

′1(x) = 0, since f
′′
(x) = −c′′1(x) < 0 because c1 is assumed to be strictly

convex, then c
′′1 > 0, then there are no minimizer for f . Now let us assume that f has more

than two maximizers, and let x1 and x2 be two maximizers of f , with x1 < x2. We have
f
′
(x1) = f

′
(x2) = 0. Then by Rolle theorem there exists x3 such as x1 < x3 < x2, satisfying

f
′′
(x3) = 0 = −c′′1(x3). By assumption c1 is stricly convex then c

′′1(x3) > 0 which is absurd.
So the maximizer is unique and is equal to ψ1(y).

We do a similar proof for g, and it follows that ψ2(y, n) = (c
′2)−1(ny).

Proposition 5.4.4 The function ζ is decreasing, concave, differentiable almost everywhere on[
0, b

′
(0)
]

with ζ
′
(y) = −η(y), and we have:

ζ(y) = b(M)−
∫ y

0
η(u)du

Proof Let y0 ≤ b
′
(0), and let x0 = η(y0) such that:

ζ(y0) = b(x0)− y0x0,

Let an arbitrary y ≤ b′(0), so
ζ(y) ≥ b(x0)− yx0,

Thus:
ζ(y)− ζ(y0) ≥ x0 (y0 − y)

Then
[−ζ(y0)]−

[
−ζ(y)

]
≥ x0 (y0 − y)

This implies that [−ζ] is convex with derivative in y0 equal to x0 = η(y0). Then we conclude
that ζ is concave with ζ

′
= −η ∈ [0,M ]. This implies that ζ is also decreasing. It follows that

its Rieman-integral form is given by

ζ(y) = ζ(0)−
∫ y

0
η(u)du.

By assumption b is increasing then:

ζ(0) = sup
x∈[0,M ]

b(x) = b(M).

Proposition 5.4.5 The function ζ is nonnegative, strictly decreasing on
[
0, b

′
(0)
]
, its inverse

ζ−1 is well defined on
[
0, b

′
(0)
]

and ζ(b
′
(0) = 0.

Moreover
η(y) = M, ∀y ∈

[
0, b

′
(M)

]
η(y) =

[
b
′
]−1

(y), ∀y ∈
[
b
′
(M), b

′
(0)
]
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Proof Let us define a = inf {y ≥ 0, ζ(y) ≤ 0}
Then:

a = inf {y ≥ 0, b(x)− xy ≤ 0, ∀x ∈ [0,M ]}

a = inf

{
y ≥ 0, y ≥ b(x)

x
, ∀x ∈ [0,M ]

}

a = sup

{
b(x)

x
, ∀x ∈ [0,M ] .

}
Moreover b is concave on [0,M ] and b(0) = 0, then b(x)

x ≤ b
′
(0), ∀x ∈ [0,M ]. This implies

that a = b
′
(0). Thus ∀y ∈

[
0, b

′
(0)
]
, ζ(y) ≥ 0 and ζ(b

′
(0)) = 0.

As b is assumed to be strictly concave, then its derivative b
′

is strictly decreasing and conti-

nous, then its inverse
[
b
′
]−1

exists, and is continuous and strictly decreasing.

Let y ∈
[
0, b

′
(M)

]
, let f(x) = b(x) − xy, ∀x ∈ [0,M ], then f

′
(x) = b

′
(x) − y ≥ 0. This

implies that f is increasing, then the supx∈[0,M ] f(x) = f(M), thus η(y) = M.

Let y ∈
[
b
′
(M), b

′
(0)
]
, so f

′
(x) = b

′
(x) − y = 0 implies y = b

′
(x), this implies x = η(y) =[

b
′
]−1

(y). As ζ
′

= −η < 0 on
[
0, b

′
(0)
]

then ζ is strictly decreasing. Then its inverse exists.

5.4.5 Computation of the solution of the optimality equation

In this part we derive an explicit solution for the optimality equations (5.17), (5.18), (5.19).
If we have φ1(b

′
(0)) + φ2(b

′
(0), 1) + µ0b

′
(0) ≤ h1, it follows under the above theorem 5.4.1

that it is optimal to not accept any user.
In order to derive the optimal system size that is more than 0, we assume that

φ1(b
′
(0)) + φ2(b

′
(0), 1) + µ0b

′
(0) > h1. (5.29)

In order to have a finite optimal system size, we assume that:

lim
n→∞

hn − φ1(b
′
(0))− φ2(b′(0), n)

nb′(0)
≥ µ0. (5.30)

Theorem 5.4.6 There exists [an, bn], and the functions yn( ) on [an, bn] , for n ∈ 〈1, 2, · · · ,K + 1},
defined inductively as follows:

• 0 = a1 < a2 < · · · aK < aK+1 < bK+1 < bK < · · · bK < b1 = b(M),

• hn−1 + an − φ1(yn−1(an))− φ2(yn−1(an), n− 1)− (n− 1)µ0yn−1(an) = 0 and hn−1 + bn −
φ1(yn−1(bn))− φ2(yn−1(bn), n− 1)− (n− 1)µ0yn−1(bn) = b(M), ∀n ∈ 〈2, · · · ,K + 1}

• yn(z) = ζ−1
(
z + hn−1 − φ1(yn−1(z))− φ2(yn−1(z), n− 1)− (n− 1)µ0yn−1(z)

)
, ∀z ∈ [an, bn]

and ∀n ∈ 〈2, · · · ,K + 1}

• yn( ) is continuous and strictly decreasing with yn(an) = b
′
(0) and yn(bn) = 0, ∀n ∈

〈1, · · · ,K + 1}

• hn + an < φ1(b
′
(0)) + φ2(b

′
(0), n) + nµ0b

′
(0), ∀n ∈ 〈1, · · · ,K}

• hK+1 + aK+1 ≥ φ1(b
′
(0)) + φ2(b

′
(0),K + 1) + (K + 1)µ0b

′
(0)
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There exists an optimal system size given by

K = max
{
n ≥ 1, hn + an < φ1(b

′
(0)) + φ2(b

′
(0), n) + nµ0b

′
(0)
}
.

Proof Let us notice that the last assertion in the theorem is a stopping condition.
We prove the first four assertions by induction. We assume that these assertions are true at

step K = 1. Let us begin by proving that they are true for K = 2. We first begin by constructing
a2 and b2.

Let us define f1(z) = z + h1 − φ1(y1(z))− φ2(y1(z), 1)− y1(z)µ0, for z ∈ [a1, b1].
As y1 is assumed to be strictly decreasing by the step K = 1 of induction, then it follows

that f1 is strictly increasing and continuous. Then by the assumption in equation (5.29), we
have:

f1(a1) = h1 − φ1(y1(z))− φ2(y1(z), 1)− y1(z)µ0 < 0

and
f1(b1) = b(M) + h1 − φ1(y1(b1))− φ2(y1(b1), 1)− y1(b1)µ0 = b(M) + h1 > 0

Then by the intermediate value theorem there exists a2 ∈ [a1, b1] such that f1(a2) = 0. It
follows that a2 + h1 − φ1(y1(a2))− φ2(y1(a2), 1)− y1(a2)µ0 = 0.

Let us pose g(z) = f1(z)− b(M), we have g(a2) = −b(M) < 0 and g(b1) = f1(b1)− b(M) =
h1 > 0, then by the intermediate value theorem there exists b2 ∈ [a2, b1] such that g(b2) = 0.
That is h1 + b2 − φ1(y1(b2))− φ2(y1(b2), 1)− y1(b2)µ0 = b(M).

As f1(a2) = 0 and f1(b2) = b(M), and f1 is strictly increasing, then f1( ) ∈ [0, b(M)] . Then
we can define y2 as follows:

y2(z) = ζ−1
(
z + h1 − φ1(y1(z))− φ2(y1(z), 1)− µ0y1(z)

)
, ∀z ∈ [a2, b2]

This is continuous and strictly decreasing, with y2(a2) = ζ−1(0) = b
′
(0) and y2(b2) =

ζ−1(b(M)) = 0 since ζ(0) = b(M). Then the induction is true at step K = 2.
Now let us assume that the induction is true at step j − 1.
So if hj + aj ≥ φ1(b

′
(0)) + φ2(b

′
(0), j) + jµ0b

′
(0), then we set K = j − 1 and an = aj−1,

∀n > K + 1, the induction terminates.
Or we have hj + aj < φ1(b

′
(0)) + φ2(b

′
(0), j) + jµ0b

′
(0).

In this case we define fj(z) = z + hj − φ1(yj(z))− φ2(yj(z), j)− jyj(z)µ0, for z ∈ [aj , bj ]. It
follows that fj is strictly increasing and continuous and we have:

fj(aj) = aj+hj−φ1(yj(aj))−φ2(yj(aj), j)−jyj(aj)µ0 = aj+hj−φ1(b
′
(0))−φ2(b′(0), j)−jb′(0)µ0 < 0

and
fj(bj) = bj + hj − φ1(yj(bj))− φ2(yj(bj), 1)− jyj(bj)µ0 > bj + hj−1 > b(M).

Then by the intermediate value theorem there exists aj+1 ∈ [aj , bj ] such that fj(aj+1) = 0.
It follows that aj+1 + hj − φ1(yj(aj+1))− φ2(yj(aj+1), j)− jyj(aj+1)µ0 = 0.

Let us pose g(z) = fj(z)−b(M), we have g(aj+1) = −b(M) < 0 and g(bj) = f1(bj)−b(M) >
0, then by the intermediate value theorem there exists bj+1 ∈ [aj+1, bj ] such that g(bj+1) = 0.
That is hj + bj+1 − φ1(yj(bj+1))− φ2(yj(bj+1), j)− jyj(bj+1)µ0 = b(M).

As fj(aj+1) = 0 and fj(bj+1) = b(M), and fj is strictly increasing, then fj( ) ∈ [0, b(M)] .
So we can define yj+1 as follows

yj+1(z) = ζ−1
(
z + hj − φ1(yj(z))− φ2(yj(z), j)− jµ0yj(z)

)
, ∀z ∈ [aj+1, bj+1] .
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This is continuous and strictly decreasing, with yj+1(aj+1) = ζ−1(0) = b
′
(0) and yj+1(bj+1) =

ζ−1(b(M)) = 0.
This proves the induction at step j.
To continue at step j + 1, we have as above two cases. We define

K = max
{
n ≥ 1, hn + an < φ1(b

′
(0)) + φ2(b

′
(0), n) + nµ0b

′
(0)
}
.

Assumption (5.30) allows us to say that K is finite.
Then we conclude by definition of K that:

hK+1 + aK+1 ≥ φ1(b
′
(0)) + φ2(b

′
(0),K + 1) + (K + 1)µ0b

′
(0).

Let us notice that the optimal system size provided by the above theorem is an optimal
admission control for the system manager in order to maximize the long run average function.
This means that it is optimal to block all new arrivals when the number of users in the system
reaches this optimal system size.

The above theorem allows us to construct an optimal solution.

Theorem 5.4.7 Let z∗ = aK+1, where K is the optimal system size provided by the previous
theorem, and let y∗n = yn(z∗), for n ∈ {1, · · · ,K}.

Then z∗ and (y∗1, · · · , y∗K) solve the optimal equations such that:

z∗ = ζ(y∗1) (5.31)

z∗ = ζ(y∗n+1) + φ1(y∗n) + φ2(y∗n, n) + nµ0y
∗
n − hn, ∀n ∈ {0, · · · ,K − 1} (5.32)

z∗ = φ1(y∗K) + φ2(y∗K ,K) +Kµ0y
∗
K − hK . (5.33)

and 0 < y∗n < b
′
(0), n ∈ {1, · · · ,K} .

Moreover, the following policy
(
~λ∗, ~µ∗, ~α∗

)
given by:

λ∗n = η(y∗n+1), ∀n ∈ {0, · · · ,K − 1}

λ∗n = 0, ∀n ≥ K

µ∗n = ψ1(y∗n), ∀n ∈ {0, · · · ,K}

µ∗n = S, ∀n ≥ K + 1

α∗n = ψ2(y∗n, n), ∀n ∈ {0, · · · ,K}

α∗n = L, ∀n ≥ K + 1

is optimal.

Proof Let us notice that y1(z) = ζ−1(z) defined on [a1, a2] . Then it follows that ζ(y∗1) =
ζ(y1(z

∗)) = z∗ which proves equation (5.31).
Next consider n ∈ {0, · · · ,K − 1}, it follows by construction of yn+1 that:

y∗n+1 = yn+1(z
∗) = ζ−1

(
z∗ + hn − φ1(yn(z∗))− φ2(yn(z∗), n)− nµ0yn(z∗)

)
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This implies equation (5.32). For the last equation of optimality we have y∗K+1 = yK+1(aK+1) =

b
′
(0), it follows that:

b
′
(0) = ζ−1

(
z∗ + hK − φ1(yK(z∗))− φ2(yK(z∗),K)−Kµ0yK(z∗)

)
Using ζ(b

′
(0)) = 0, it follows equation (5.33).

Now let us prove 0 < y∗n < b
′
(0).

Let us recall that yn(bn) = 0, and yn is strictly decreasing, since z∗ = aK+1 < bn, then
y∗n = yn(z∗) > yn(bn) = 0 ∀n ∈ {1, · · · ,K} .

We recall that yn is strictly decreasing, aK+1 > an, and yn(an) = b
′
(0), it follows that

y∗n = yn(z∗) < yn(an) = b
′
(0).

From Theorem (5.4.6) and by definition of K, for n ≥ K + 1:

hn + z∗ ≥ φ1(b′(0)) + φ2(b
′
(0), n) + nµ0b

′
(0)

All assumptions of Theorem (5.4.1) are verified, then z∗ is optimal, and it follows that the
given candidate policy is optimal.

5.4.6 Numerical applications

In this part we do some numerical applications with a simple example.
Let us pose b(λ) = λ

1+λ , c1(µ) = µ2 and c2(α) = α2.
We can see that b is strictly concave, non-decreasing with b(0) = 0, then b satisfies all assump-
tions, and b

′
(0) = 1.

The functions c1 and c2 are non-decreasing, convex, and C2− continuous differentiable, so
they verify all required assumptions.

With some calculations we obtain:

ζ(y) = (
√
y − 1)2,

ζ−1(x) = (1−
√
x)2,

η(y) =
1
√
y
− 1,

φ1(y) =
y2

4
,

φ2(y, n) =
(ny)2

4
,

ψ1(y) =
y

2
,

ψ2(y, n) =
ny

2
,

Let us pose hn = n3, and assume that b is defined on [0, 10].
In order to make an illustration of the recursive construction method given in theorem 5.4.6

and theorem 5.4.7, we pose µ0 = 10, for which the optimal system size K is equal to 3, an and
bn of theorem 5.4.6 are given in the table 5.2

By theorem 5.4.7, we have z∗ = a4 = 0.4132. It follows that y∗1 = 0.1273, y∗2 = 0.4033 and
y∗3 = 0.3855.

The optimal policy is given in the table 5.3.
In figures 5.2, 5.3 and 5.4 we plot the optimal system size as a function of impatience rate

for three different congestion costs: hn = n2, hn = n3 and hn = n4 respectively. The figures
show that the optimal system size increases when the impatience rate increases, and that the
optimal system size decreases when the congestion cost increases.
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Figure 5.2: Optimal system size-hn = n2
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Figure 5.3: Optimal system size-hn = n3
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Figure 5.4: Optimal system size-hn = n4
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Table 5.2: Theorem 5.4.6 results
Steps a b

1 0 0.9090
2 0.3942 0.5565
3 0.4132 0.4172
4 0.4132

Table 5.3: Theorem 5.4.7 results
System state λ µ α

0 1.8028 0 0
1 0.5747 0.0636 0.0636
2 0.6106 0.2016 0.4033
3 0 0.1928 0.5783

5.5 Control with compact set of actions: multiple region case.

In this section we generalize the results of the previous section to the case of one cell with
multiple regions. We use the aggregate approximation model we developped in chapter 1.

Let us recall that in this model we assume that there are r regions in the system. Users
arrive to the cell according to a Poisson process with rate λ. Users arrive in region l according
to a Poisson process with rate λl = λpl, where pl is the probability that user arrives in region l,
thus

∑r
l=1 pl = 1.

We assume that service is exponential in region l, with parameter µl. Each user of region l
has a patience duration assumed to be exponential with parameter µl0. To simplify our analysis
we assume that µl0 = µ0, ∀l ∈ {1, r}. We assume that service time and patience duration are
independent.

In chapter 1 we derived a approximate, aggregate steady state distribution for the number
of users in the system is given by:

π(n) =

∏n
l=1

ρeff (l)
l∑∞

i=0

∏i
j=1

ρeff (j)
j

(5.34)

with

ρeff (n) = λ

r∑
l=1

E
(

min
{
nT l, τ l

})
pl (5.35)

In this part we introduce the control or dropping variable D, allowing the manager to expulse
a user after a finite time in the system. A user of region l has a control or dropping variable Dl

assumed to be exponential with parameter αl. We assume that service time, patience duration
and control variable are independent.

With the control variable the new steady state probability is then given by:

π(n) =

∏n
l=1

ρeff (l)
l∑∞

i=0

∏i
j=1

ρeff (j)
j

(5.36)

ρeff (n) = λ

r∑
l=1

E
(

min
{
nT l, τ l, Dl

})
pl = nλ

r∑
l=1

pl
µl + n (µ0 + αl)

(5.37)
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Let us notice that this steady state probability satisfies the local balance equations given by:{
r∑
l=1

pl
µl + n (µ0 + αl)

}−1
πn = λπn−1. (5.38)

Then in steady state our model is equivalent to a birth-death process where the service time

at state n is exponential with parameter
{∑r

l=1
pl

µl+n(µ0+αl)

}−1
.

5.5.1 Related Markov decision process problem

As in the case of one region studied in the previous section, in this section we study the problem
of choosing the arrival rate in the system λ, the service rate in each region by the parameters
(µ1, · · · , µr), and the parameters of the control or dropping variable in each region (α1, · · · , αr) .

We consider that the decision epochs are the instants at which the process changes state.
Only deterministic actions will be considered.
The system manager has to choose an action a = (λ, µ1, · · · , µr, α1, · · · , αr) ∈ A after either

an arrival or departure instance, where the set of actions A is assumed to be A = [0,M ] ×
[0, S]r × [0, L]r .

As in the previous section let us define c1 (µ1, · · · , µr) the cost rate associated to the change of
service rate to (µ1, · · · , µr) in each region, this is a real function defined on [0, S]r , c2 (α1, · · · , αr)
the cost rate associated to the change of parameters of control or dropping variables to (α1, · · · , αr)
in each region, this is a real function defined on [0, L]r , and b(λ) the value rate associated with
arrival rate λ, this is a real function defined on [0,M ]. The system manager incurs a holding
cost at each state of the system that we denote by hn, when the state is n. hn can be seen as
the cost for the system to contain n active users or the cost of congestion.

Let us assume that c1 (0, · · · , 0) = 0, c1 is non-decreasing in each of its r variables on [0, S],
and continuous, convex function on [0, S]r, c2 (0, · · · , 0) = 0, c2 is non-decreasing in each of its
r variables on [0, L] and continuous, convex function on [0, L]r. The function b is assumed to
be non-decreasing, strictly concave, continuous differentiable on [0,M ] with b(0) = 0, we also
assume that b

′
(0) <∞. It is natural to assume that the holding cost hn is non-decreasing in n,

with h0 = 0 and limn→∞ hn =∞.
We consider the problem of long run average generated per unit time unit over infinite

planning horizon.

We define a policy as a triplet of vector
(
~λ, ~µ, ~α

)
, where

~λ = (λ0, λ1, λ2, · · · )

,
~µ = ((µ1, · · · , µr)0 , (µ1, · · · , µr)1 , (µ1, · · · , µr)2 , · · · )

and
~α = ((α1, · · · , αr)0 , (α1, · · · , αr)1 , (α1, · · · , αr)2 , · · · ) .

an = (λn, (µ1, · · · , µr)n , (α1, · · · , αr)n) would be the action chosen by the system manager when
the system is at state n.

We assume by convention that (µ1, · · · , µr)0 = (α1, · · · , αr)0 = 0.

A policy
(
~λ, ~µ, ~α

)
is said to be ergodic if under this policy the process Nt has a unique

steady state probability π
(
~λ, ~µ, ~α

)
that satisfies the local balance equation.
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We define the long run average generated under an ergodic policy
(
~λ, ~µ, ~α

)
by:

Z
(
~λ, ~µ, ~α

)
=

∞∑
n=0

πn

(
~λ, ~µ, ~α

) [
b(λn)− c1 (µ1, · · · , µr)− c2 (α1, · · · , αr)− hn

]
. (5.39)

We define the optimal long run average by:

Z∗ = sup
(~λ,~µ,~α)

Z
(
~λ, ~µ, ~α

)
, (5.40)

where the supremum is taken over all ergodic policies.

A policy
(
~λ, ~µ, ~α

)
is said to be optimal if Z∗ = Z

(
~λ, ~µ, ~α

)
.

The system manager objective is to find an optimal policy in order to maximize the long run
average.

We first consider that the system has a finite size, we denote it by K. We derive the optimal
system size later.

5.5.2 Optimality equation

We assume that the system size is K, so the process Nt takes values in S = {0, 1, 2, · · · ,K} .
By convention we assume that λK = 0.
According to the optimality equations for a semi-Markov decision process problem with long

run average cost criterion we have the following equations:

v0 = sup
λ∈[0,M ]

{
b(λ)− z

λ
+ v1

}
(5.41)

vn = sup
(λ,µ1,··· ,µr,α1,··· ,αr)∈A

b(λ)− c1 (µ1, · · · , µr)− c2 (α1, · · · , αr)− hn − z

λ+
{∑r

l=1
pl

µl+n(µ0+αl)

}−1 (5.42)

+
λ

λ+
{∑r

l=1
pl

µl+n(µ0+αl)

}−1 vn+1 +

{∑r
l=1

pl
µl+n(µ0+αl)

}−1
λ+

{∑r
l=1

pl
µl+n(µ0+αl)

}−1 vn−1,
∀n ∈ {1, · · · ,K − 1}

vK = sup
(µ1,··· ,µr)∈[0,S]r,(α1,··· ,αr)∈[0,L]r

−c
1 (µ1, · · · , µr)− c2 (α1, · · · , αr)− hK − z{∑r

l=1
pl

µl+K(µ0+αl)

}−1 + vK−1


(5.43)

z is interpreted as a guess at the supremum average value.
Let us notice that in equation (5.41), 1

λ represents the expectation until to the next state

which is 1, and the probability for the process to leave the state 0 and go to state 1 is λ
λ = 1.

In equation (5.42) 1

λ+

{∑r
l=1

pl
µl+n(µ0+αl)

}−1 represents the expectation for the process to change

state while at state n, λ

λ+

{∑r
l=1

pl
µl+n(µ0+αl)

}−1 represents the probability for the process to leave
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state n and go to state n + 1, and

{∑r
l=1

pl
µl+n(µ0+αl)

}−1

λ+

{∑r
l=1

pl
µl+n(µ0+αl)

}−1 the probability to leave state n and

go to state n− 1. In equation (5.43) 1{∑r
l=1

pl
µl+K(µ0+αl)

}−1 is the expectation for the process to

change state, the only state in which the process can go while at state K is state K − 1 which
has a probability equal to 1.

v0, v1, v2, · · · , vK are called relative value functions in average cost value, and are only de-
termined up to an additive constant.

We define the relative value differences by:

yn = vn−1 − vn, ∀n ∈ {1, · · · ,K} .

Thus equations (5.41), (5.42), (5.43) can be rewritten as:

z = sup
λ∈[0,M ]

{b(λ)− λy1} (5.44)

z = sup
λ∈[0,M ]

{b(λ)− λyn+1} (5.45)

+ sup
(µ1,··· ,µr)∈[0,S]r,(α1,··· ,αr)∈[0,L]r


{

r∑
l=1

pl
µl + n (µ0 + αl)

}−1
yn − c1 (µ1, · · · , µr)− c2 (α1, · · · , αr)

−hn
∀n ∈ {1, · · · ,K − 1}

z = sup
(µ1,··· ,µr)∈[0,S]r,(α1,··· ,αr)∈[0,L]r


{

r∑
l=1

pl
µl +K (µ0 + αl)

}−1
yK − c1 (µ1, · · · , µr)− c2 (α1, · · · , αr)

−hK .
(5.46)

Let us define ζ and φ as follows:

ζ(y) = sup
λ∈[0,M ]

{b(λ)− λy} , ∀y ∈
[
0, b

′
(0)
]

(5.47)

φ(y, n) = sup
(µ1,··· ,µr)∈[0,S]r,(α1,··· ,αr)∈[0,L]r


{

r∑
l=1

pl
µl + n (µ0 + αl)

}−1
y − c1 (µ1, · · · , µr)− c2 (α1, · · · , αr)

 ,

(5.48)
∀y ≥ 0

Let us notice that ζ has already been studied in the case of one region in the previous section,

and is assumed to be defined on
[
0, b

′
(0)
]
.

Equations (5.44), (5.45), and (5.46) can be rewritten as follows:

z = ζ(y1) (5.49)

z = ζ(yn+1) + φ(yn, n)− hn, ∀n ∈ {0, · · · ,K − 1} (5.50)
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z = φ(yK ,K)− hK . (5.51)

As established in the previous section, we denote by η(y) the smallest maximizer of the
supremum in the expression of ζ(y) such that:

ζ(y) = b(η(y))− η(y)y.

As by assumption c1 and c2 are continuous, so for a fixed y and n, the function
{∑r

l=1
pl

µl+n(µ0+αl)

}−1
y−

c1 (µ1, · · · , µr) − c2 (α1, · · · , αr) is continuous on [0, S]r × [0, L]r, which is compact, then the
maximizers in the expression of φ exist and take values in [0, S]r × [0, L]r. We denote by
ψ(y, n) =

(
ψ1(y, n), ψ2(y, n)

)
the smallest maximizer in each component of [0, S] and [0, L], of

the supremum in the expression of φ(y, n), where ψ1(y, n) and ψ2(y, n) take values in [0, S]r and
[0, L]r respectively.

Now let us derive the analog of theorem 5.4.1.

Theorem 5.5.1 If there exists an integer K, a real z and a vector (y1, y2, · · · , yK) such that:

• z and (y1, y2, · · · , yK) solve the optimality equations (5.49), (5.50), (5.51)

• hn + z ≥ φ(b
′
(0), n), ∀n ≥ K + 1

• 0 ≤ yn ≤ b
′
(0), ∀n ∈ {1, · · · ,K}

Then z ≥ Z
(
~λ, ~µ, ~α

)
, for all ergodic policies

(
~λ, ~µ, ~α

)
, thus z ≥ Z∗.

Let there be the following policy
(
~λ∗, ~µ∗, ~α∗

)
given by:

λ∗n = η(yn+1), ∀n ∈ {0, · · · ,K − 1}

λ∗n = 0, ∀n ≥ K

(µ∗1, · · · , µ∗r)n = ψ1(yn, n), ∀n ∈ {0, · · · ,K}

(µ∗1, · · · , µ∗r)n = (S · · · , S) , ∀n ≥ K + 1

(α∗1, · · · , α∗r)n = ψ2(yn, n), ∀n ∈ {0, · · · ,K}

(α∗1, · · · , α∗r)n = (L · · · , L) , ∀n ≥ K + 1

If the policy
(
~λ∗, ~µ∗, ~α∗

)
is ergodic, then it is optimal among all ergodic policies that truncate

the system size to K:

Z
(
~λ∗, ~µ∗, ~α∗

)
= Z∗.

Proof Let us consider an arbitrary ergodic policy
(
~λ, ~µ, ~α

)
.

In order to simplify the notations, the action chosen by the system manger at state n ∈ S,
is denoted by an =

(
λn, µ

1
n, · · · , µrn, α1

n, · · · , αrn
)
n
.

Under the policy
(
~λ, ~µ, ~α

)
the system has a steady state probability π satisfying the local

balance equations: {
r∑
l=1

pl
µln + n (µ0 + αln)

}−1
πn = λn−1πn−1, ∀n ≥ 1
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and
∞∑
n=0

πn = 1.

By definition of ζ andφ we have :

ζ(yn+1) ≥ b(λn)− λnyn+1, ∀n ∈ {1, · · · ,K − 1} (5.52)

φ(yn, n) ≥


{

r∑
l=1

pl
µln + n (µ0 + αln)

}−1
yn − c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

) (5.53)

Using equation (5.50), and summing equations (5.52), (5.53), we get,

z + hn = ζ(yn+1) + φ(yn, n)

≥ b(λn)− λnyn+1 +


{

r∑
l=1

pl
µln + n (µ0 + αln)

}−1
yn − c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

) .

Thus

z ≥ b(λn)−λnyn+1+


{

r∑
l=1

pl
µln + n (µ0 + αln)

}−1
yn − c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)−hn
Let us multiply both sides by πn and let us sum over n ∈ {1, · · · ,K − 1}, we obtain:

z
K−1∑
n=1

πn ≥
K−1∑
n=1

πn
[
b(λn)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
− hn

]

+
K−1∑
n=1

πnyn{ r∑
l=1

pl
µln + n (µ0 + αln)

}−1
− λnπnyn+1


The equations of local balance give λnπn =

{∑r
l=1

pl
µln+1+(n+1)(µ0+αln+1)

}−1
πn+1,

Thus

K−1∑
n=1

πnyn{ r∑
l=1

pl
µln + n (µ0 + αln)

}−1
− λnπnyn+1


=

K−1∑
n=1

πnyn{ r∑
l=1

pl
µln + n (µ0 + αln)

}−1
− πn+1yn+1

{
r∑
l=1

pl

µln+1 + (n+ 1)
(
µ0 + αln+1

)}−1


= π1y1

{
r∑
l=1

pl

µl1 +
(
µ0 + αl1

)}−1 − πKyK { r∑
l=1

pl

µlK +K
(
µ0 + αlK

)}−1
So we obtain

z
K−1∑
n=1

πn ≥
K−1∑
n=1

πn
[
b(λn)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
− hn

]
(5.54)
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+π1y1

{
r∑
l=1

pl

µl1 +
(
µ0 + αl1

)}−1 − πKyK { r∑
l=1

pl

µlK +K
(
µ0 + αlK

)}−1
Similary by equations (5.49) and (5.51) and using the fact that c1

(
µ10, · · · , µr0

)
= c2

(
α1
0, · · · , αr0

)
=

0 we have:

zπ0 ≥ π0b(λ0)− π0λ0y1 − π0c1
(
µ10, · · · , µr0

)
− π0c2

(
α1
0, · · · , αr0

)
(5.55)

zπK ≥ πK

{
r∑
l=1

pl

µlK +K
(
µ0 + αlK

)}−1 yK −πKc1 (µ1K , · · · , µrK)−πKc2 (α1
K , · · · , αrK

)
−πKhK

(5.56)

Summing equations (5.54),(5.55)and (5.56), and using the fact that π0λ0y1 = π1

{∑r
l=1

pl
µl1+(µ0+αl1)

}−1
y1,

we obtain:

z
K∑
n=0

πn ≥
K−1∑
n=1

πn
[
b(λn)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
− hn

]
(5.57)

−πKc1
(
µ1K , · · · , µrK

)
− πKc2

(
α1
K , · · · , αrK

)
− πKhK

Let us consider the case of n ≥ K + 1.
By definition of φ we have ∀n ≥ K + 1:

φ(b
′
(0), n) ≥


{

r∑
l=1

pl
µln + n (µ0 + αln)

}−1
b
′
(0)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
The assumption in the theorem says that hn + z ≥ φ(b

′
(0), n), ∀n ≥ K + 1, then we obtain:

z ≥ φ(b
′
(0), n)− hn, ∀n ≥ K + 1

Thus

z ≥

{
r∑
l=1

pl
µln + n (µ0 + αln)

}−1
b
′
(0)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
− hn, ∀n ≥ K + 1

Multiplying both sides of this inequality by πn, for n ≥ K + 1 we obtain:

πnz ≥ πn

{
r∑
l=1

pl
µln + n (µ0 + αln)

}−1
b
′
(0)−πnc1

(
µ1n, · · · , µrn

)
−πnc2

(
α1
n, · · · , αrn

)
−πnhn, ∀n ≥ K+1

This gives by using the equations of local balance:

πnz ≥ b
′
(0)πn−1λn−1 − πnc1

(
µ1n, · · · , µrn

)
− πnc2

(
α1
n, · · · , αrn

)
− πnhn, ∀n ≥ K + 1

By assumption b is concave, it then satisfies b
′
(0)λn−1 ≥ b(λn−1). Then we obtain:

πnz ≥ b(λn−1)πn−1 − πnc1
(
µ1n, · · · , µrn

)
− πnc2

(
α1
n, · · · , αrn

)
− πnhn, ∀n ≥ K + 1 (5.58)
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Let us pose an integer N that is larger than K. Let us sum equation (5.58) over N and let
us add it to equation (5.57), we obtain:

z

N∑
n=0

πn ≥
N∑
n=0

πn
[
b(λn)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
− hn

]
− πKb(λK) (5.59)

Passing to the limit as N →∞, and using the fact that πNb(λN )→ 0, it follows that:

z ≥
∞∑
n=0

πn
[
b(λn)− c1

(
µ1n, · · · , µrn

)
− c2

(
α1
n, · · · , αrn

)
− hn

]
= Z

(
~λ, ~µ, ~α

)
This implies that:

z ≥ Z∗

Now let us consider the candidate policy
(
~λ∗, ~µ∗, ~α∗

)
given in the theorem. So the inequality

in equation (5.57) is an equality. For an ergodic policy that truncates the system size to K, we
have

∑K
n=0 πn = 1, and b(λK) = 0. Then we conclude:

z =

K∑
n=0

π∗n
[
b(λ∗n)− c1

(
µ∗1n , · · · , µ∗rn

)
− c2

(
α∗1n , · · · , α∗rn

)
− hn

]
This implies that the policies

(
~λ∗, ~µ∗, ~α∗

)
is optimal among all ergodic policy that truncate

the system size to K.

Now let us derive somes properties of φ.
For an integer n, let us define a real function Fn defined on [0, S]r × [0, L]r by:

Fn (µ1, · · · , µr, α1, · · · , αr) =

{
r∑
l=1

pl
µl + n (µ0 + αl)

}−1
.

Proposition 5.5.2 For each fixed n ≥ 1, the function φ( , n) is convex, differentiable almost
everywhere with y, and we have:

• φ′(y, n) = Fn (ψ(y, n)),

• φ(y, n) =
∫ y
0 Fn (ψ(u, n)) du

It follows that φ( , n) is nondecreasing with y.

Proof Let y0 ≥ 0, and let x0 =
(
x10, x

2
0

)
=
(
ψ1(y0, n), ψ2(y0, n)

)
= ψ(y0, n), such that:

φ(y0, n) = Fn (ψ(y0, n)) y0 − c1(x10)− c2(x20)

Let an arbitrary y ≥ 0,

φ(y, n) ≥ Fn (ψ(y0, n)) y − c1(x10)− c2(x20)

Then
φ(y, n)− φ(y0, n) ≥ Fn (ψ(y0, n)) (y − y0) ,

This implies that φ is convex. A finite convex function is continuous and differentiable almost
everywhere, and the above inequality implies that its derivative at y0 is Fn (ψ(y0, n)).

Then we have the following Rieman-integral form:

φ(y, n) =

∫ y

0
Fn (ψ(u, n)) du.

As Fn is non-negative, this implies that φ(n) is nondecreasing.
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5.5.3 Computation of the solution of the optimality equations

In this part we derive an explicit solution of the optimality equations.
If we have φ(b

′
(0), 1) ≤ h1 it follows under the above theorem that it is optimal to not accept

any user.
In order to derive the optimal system size that is more than 0, we assume that

φ(b
′
(0), 1) > h1. (5.60)

In order to have a finite optimal system size, we assume that:

lim
n→∞

hn ≥ φ(b
′
(0), n). (5.61)

Theorem 5.5.3 There exists [an, bn], and the functions yn( ) on [an, bn] , for n ∈ 〈1, 2, · · · ,K + 1},
defined inductively as follows:

• 0 = a1 < a2 < · · · aK < aK+1 < bK+1 < bK < · · · bK < b1 = b(M),

• hn−1 + an − φ(yn−1(an), n − 1) = 0 and hn−1 + bn − φ(yn−1(bn), n − 1) = b(M), ∀n ∈
〈2, · · · ,K + 1}

• yn(z) = ζ−1 (z + hn−1 − φ(yn−1(z), n− 1)), ∀z ∈ [an, bn] and ∀n ∈ 〈2, · · · ,K + 1}

• yn( ) is continuous and strictly decreasing with yn(an) = b
′
(0) and yn(bn) = 0, ∀n ∈

〈1, · · · ,K + 1}

• hn + an < φ(b
′
(0), n), ∀n ∈ 〈1, · · · ,K}

• hK+1 + aK+1 ≥ φ(b
′
(0),K + 1)

There exists an optimal system size given by

K = max
{
n ≥ 1, hn + an < φ(b

′
(0), n)

}
.

Proof Let us notice that the last assertion in the theorem is a stopping condition.
We prove the first four assertions by induction. We assume that these assertions are true at

step K = 1. Let us begin by proving that it is true for K = 2. So we first begin by constructing
a2 and b2.

Let us define f1(z) = z + h1 − φ(y1(z), 1), for z ∈ [a1, b1].
As y1 is assumed to be strictly decreasing by the step K = 1 of the induction, then it follows

that f1 is strictly increasing and continuous. Then by the assumption in equation (5.60), we
have:

f1(a1) = h1 − φ(y1(a1), 1) < 0

and
f1(b1) = b(M) + h1 − φ(y1(b1), 1) = b(M) + h1 > 0

Then by the intermediate value theorem there exists a2 ∈ [a1, b1] such that f1(a2) = 0. It
follows that a2 + h1 − φ(y1(a2), 1) = 0.

Let us pose g(z) = f1(z)− b(M), we have g(a2) = −b(M) < 0 and g(b1) = f1(b1)− b(M) =
h1 > 0, then by the intermediate value theorem there exists b2 ∈ [a2, b1] such that g(b2) = 0.
That is h1 + b2 − φ(y1(b2), 1) = b(M).
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As f1(a2) = 0 and f1(b2) = b(M), and f1 is strictly increasing, then f1(z) ∈ [0, b(M)] , ∀z ∈
[a2, b2] .

We can define y2 as follows:

y2(z) = ζ−1 (z + h1 − φ(y1(z), 1)) , ∀z ∈ [a2, b2]

This is continuous and strictly decreasing, with y2(a2) = ζ−1(0) = b
′
(0) and y2(b2) =

ζ−1(b(M)) = 0 since ζ(0) = b(M).
Then the induction is true at step K = 2.
Now let us assume that the induction is true at step j − 1.
If hj + aj ≥ φ(b

′
(0), j), then we set K = j − 1 and an = aj−1, ∀n > K + 1, the induction

terminates.
Otherwise we have hj + aj < φ(b

′
(0), j).

In this case we define fj(z) = z+hj −φ(yj(z), j), for z ∈ [aj , bj ]. It follows that fj is strictly
increasing and continuous. We have:

fj(aj) = aj + hj − φ(yj(aj), j) = aj + hj − φ(b
′
(0), j) < 0

and
fj(bj) = bj + hj − φ(yj(bj), j) > bj + hj−1 > b(M).

Then by the intermediate value theorem there exists aj+1 ∈ [aj , bj ] such that fj(aj+1) = 0.
It follows that aj+1 + hj − φ(yj(aj+1), j) = 0.
Let us pose g(z) = fj(z)−b(M), we have g(aj+1) = −b(M) < 0 and g(bj) = fj(bj)−b(M) >

0, then by the intermediate value theorem there exists bj+1 ∈ [aj+1, bj ] such that g(bj+1) = 0.
That is hj + bj+1 − φ(yj(bj+1), j) = b(M).

As fj(aj+1) = 0 and fj(bj+1) = b(M), and fj is strictly increasing, then fj(z) ∈ [0, b(M)] , ∀z ∈
[aj+1, bj+1] .

We can define yj+1 as follows

yj+1(z) = ζ−1 (z + hj − φ(yj(z), j)) , ∀z ∈ [aj+1, bj+1] .

This is continuous and strictly decreasing, with yj+1(aj+1) = ζ−1(0) = b
′
(0) and yj+1(bj+1) =

ζ−1(b(M)) = 0.
This proves the induction at step j.
To continue at step j + 1 we have as above two cases. So we can define

K = max
{
n ≥ 1, hn + an < φ(b

′
(0), n)

}
.

Assumption (5.61) allows us to say that K is finite.
By definition of K we have:

hK+1 + aK+1 ≥ φ(b
′
(0),K + 1).

We can now derive a construction of the optimal solution.

Theorem 5.5.4 Let z∗ = aK+1, where K is the optimal system size provided by the previous
theorem, and let y∗n = yn(z∗), for n ∈ {1, · · · ,K}.

Then z∗ and (y∗1, · · · , y∗K) solve the optimal equations such that:

z∗ = ζ(y∗1) (5.62)
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z∗ = ζ(y∗n+1) + φ(y∗n, n)− hn, ∀n ∈ {0, · · · ,K − 1} (5.63)

z∗ = φ(y∗K ,K)− hK . (5.64)

and 0 < y∗n < b
′
(0), n ∈ {1, · · · ,K} .

Moreover, the following policy
(
~λ∗, ~µ∗, ~α∗

)
given by:

λ∗n = η(yn+1), ∀n ∈ {0, · · · ,K − 1}

λ∗n = 0, ∀n ≥ K

(µ∗1, · · · , µ∗r)n = ψ1(yn, n), ∀n ∈ {0, · · · ,K}

(µ∗1, · · · , µ∗r)n = (S · · · , S) , ∀n ≥ K + 1

(α∗1, · · · , α∗r)n = ψ2(yn, n), ∀n ∈ {0, · · · ,K}

(α∗1, · · · , α∗r)n = (L · · · , L) , ∀n ≥ K + 1

is optimal.

Proof Let us notice that y1(z) = ζ−1(z) defined on [a1, a2] . Then it follows that ζ(y∗1) =
ζ(y1(z

∗)) = z∗ which proves equation (5.62).
Next consider n ∈ {0, · · · ,K − 1}, it follows by construction of yn+1 that:

y∗n+1 = yn+1(z
∗) = ζ−1 (z∗ + hn − φ(yn(z∗), n))

which implies equation (5.63).
For the last equation of optimality we have y∗K+1 = yK+1(aK+1) = b

′
(0), it follows that:

b
′
(0) = ζ−1 (z∗ + hK − φ(yK(z∗),K))

Using ζ(b
′
(0)) = 0, it follows equation (5.64).

Now let us prove 0 < y∗n < b
′
(0).

Let us recall that yn(bn) = 0, and yn is strictly decreasing, since z∗ = aK+1 < bn, then
y∗n = yn(z∗) > yn(bn) = 0 ∀n ∈ {1, · · · ,K} .

We recall that yn is strictly decreasing, aK+1 > an, and yn(an) = b
′
(0), it follows that

y∗n = yn(z∗) < yn(an) = b
′
(0).

From Theorem (5.5.3) and by definition of K, for n ≥ K + 1:

hn + z∗ ≥ φ(b
′
(0), n)

All assumptions of Theorem (5.5.1) are verified, then z∗ is optimal, and it follows that the
given candidate policy is optimal.
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5.5.4 Numerical applications

In this part we do some numerical applications with a simple example. For this conisder a
system consisting of two regions, in which we assume that the system manger cannot change the
capacity in each region. In our numerical applications we assume that µ1 = 32 and µ2 = 20. As
the system manager is not able to change µ1 and µ2, we assume that the cost associated to the
change of capacity is null c1(µ1, µ2) = 0 which satisfies all required assumptions about c1.

We pose b(λ) = λ
1+λ and c2(α1, α2) = α2

1 + α2
2.

We can see that b is strictly concave, non-decreasing with b(0) = 0, then b satisfies all
assumptions, and b

′
(0) = 1.

The function c2 is non-decreasing in each of its variables, convex, and C2− continuous
differentiable, so it verifies all required assumptions.

With some calculations we obtain:

ζ(y) = (
√
y − 1)2,

ζ−1(x) = (1−
√
x)2,

η(y) =
1
√
y
− 1,

Let us pose hn = n3, and assume that b is defined on [0, 10].
In order to make an illustration of the recursive construction method given in theorem 5.5.3

and theorem 5.5.4, we pose µ0 = 7, for which the optimal system size K is equal to 3, an and
bn of theorem 5.5.3 are given in the table 5.4

Table 5.4: Theorem 5.5.3 results
Steps a b

1 0 0.9090
2 0.6021 0.7085
3 0.6311 0.6340
4 0.631229

By theorem 5.5.4, we have z∗ = a4 = 0.631229. It follows that y∗1 = 0.0422, y∗2 = 0.2187 and
y∗3 = 0.5893.

The optimal policy is given in the table 5.5

Table 5.5: Theorem 5.5.4 results
System state λ α1 α2

0 3.8679 0 0
1 1.1383 0.0071 0.0071
2 0.3027 0.0795 0.1440
3 0 0.3441 0.5521

In figures 5.5, 5.6 and 5.7 we plot the optimal system size as a function of impatience rate
for three different congestion costs: hn = n2, hn = n3 and hn = n4 respectively. The figures
show that the optimal system size increases when the impatience rate increases, and that the
optimal system size decreases when the congestion cost increases.
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Figure 5.5: Optimal system size-hn = n2
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Figure 5.6: Optimal system size-hn = n3
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Figure 5.7: Optimal system size-hn = n4
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5.6 Conclusion

We first modeled a system consisting of one cell with several regions taking into account user
impatience where control is made through blocking and dropping. We used a Markov decision
process framework to find an optimal policy through value iteration and modified iteration policy
algorithms in order to reduce the impact of impatience on the system performance. We then
developed another approach of control considering first the case of one region and then extended
it to the case of multiple regions where set of actions is compact. We derived some results that
allow us to find the optimal policy recursively and derive optimal system size for blocking. Our
results showed that the optimal system size increases when the impatience rate increases.
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Chapter 6

Conclusion and perspectives

We modeled in this thesis impatience of users in mobile cellular networks, with an application to
4G LTE, and quantified its impact on system performance in terms of several QoS parameters,
such as mean transfer times, mean number of users in the cell and proportion of impatient users.
We observed that impatience results in higher system stability region and lower mean transfer
times, at the cost of higher number of users who quit the system before completing their file
transfers and hence higher user non-satisfaction.

We also considered impatience of users who can move through different regions of a cell (intra
cell cell mobility) and through different cells of the system (inter-mobility). We observed that
mobility results in higher system stability, the more the users are moving the more their number
decreases, and the more the probability of impatience decreases, and the more the throughput
increases.

We modeled moreover impatience of streaming users during their video sessions in terms of
probability of impatience during the prefetching phase and the rebuffering phase at the packet
level and at the flow level for deterministic and exponential patience durations. We showed that
the probability of impatience depends on the threshold of prefetching during prefetching and
the threshold of rebuffering during rebuffering when starvation occurs, the more the threshold
is high, the more the probability of impatience gets.

Eventually we modeled a system under control where control is made through blocking and
dropping. We used a Markov decision process framework to find the optimal policy through value
iteration and modified iteration policy algorithms in order to reduce the impact of impatience
on the system performance. We developed a second aproach of control where the set of actions
is compact. We obtained some results that allow us to find the optimal policy recursively and
derive the optimal system size for blocking. Our results showed that the optimal system size
increases when the impatience rate increases.

In chapter 1 we mainly modeled user impatience when the system is stable. An interesting
perspective would be to consider user impatience when the system is in overload state. We could
consider an eventual diffusion approximation taking into account the phenomenon of impatience.

In chapter 2 we modeled mobility of user subject to impatience. We considered a tagged
user with a general flow size and we assumed that all other users have a exponential flow size.
An interesting perspective would be to consider that all users have a general flow size.

In chapter 3 we modeled impatience of streaming users for exponential patience duration
and deterministic patience duration case. An interesting perspective woud be to consider the
case for general distribution of patience duration.

In chapter 4 we modeled a system under control in which the system is assumed to be stable.
An interesting perspective would be to control the system when it is in overload. We could
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consider a diffusion approximation in order to control the obtained diffusion process.
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