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Résumé

Dans cette these nous étudions 'impatience des usagers dans les réseaux mobile et nous quan-
tifions son impact sur la performance du systeme en présence d’usagers téléchargeant des données
dans lequel nous développons deux expressions approximatives de la distribution stationnaire
du systéme : un modele agrégé et un modele détaillé et nous montrons qu’ils sont tres proches



du modele exact.

Nous étudions la mobilité de 'usager téléchargeant des données et pouvant s’impatienter, et
nous quantifions son impact sur la performance des réseaux mobile. Nous considérons le cas de
la mobilité due a I'impatience et le cas de la mobilité spontanée des usagers tout en considérant
la mobilité intra et inter cellulaire.

Nous étudions également 'impatience de 'usager qui regarde une vidéo streaming durant les
phases de pré-chargement de la vidéo et de mise en tampon pendant que la vidéo est arrétée des
le début de la mise en tampon.

Nous étudions a la fin un systeme constitué d’usagers pouvant s’impatienter, qui est sous controle
d’un gestionnaire de systeme, qui a chaque instant de décisions, choisit une action a exécuter
dans le but d’optimiser la performance définie du systeme.

Nous considérons un systeme dans lequel les usagers arrivent dans le systeme a des différents
instants et le quittent apres la fin de leurs transferts de données, ou plus tot a I'expiration de
leurs durées de patience.

Les applications numériques et les simulations nous ont permis de fournir divers métriques de
performance telles que le nombre moyen d’usagers, la proportion d’usagers impatients qui quit-
tent le systeme avant la fin de leurs transferts de fichiers, le débit, la probabilité d’impatience
en tenant compte de la localisation de I'usager dans la cellule, la probabilité d’étre impatient
durant les phases de mise en tampon, la probabilité de mise en tampon lors d’une séance de vidéo
streaming, la politique optimale, la taille limite optimale du systéme dans le but d’optimiser la
performance définie du systeme, etc...



Chapter 1

Introduction

1.1 Scope and objective

The existence of Fourth Generation or 4G networks is an important advancement in mobile
network technology. 4G networks are designed to improve wireless capabilities, network speeds
and visual technologies. Users are mainly categorized into elastics flows and streaming flows
according to the nature of traffic they produce. A user is called elastic flow when he does
transfer of digital documents as files, web pages etc..., while he is called streaming flow when he
produces video or audio applications. Nowadays, it is crutial for mobile network operators to
improve the user quality of experience (QoE) and the quality of service (QoS).

Congestion reduces system performance and user throughputs. This results to elastic users
the increase of the session durations, to streaming users the increase of the number of starva-
tions and the increase of the start-up and rebuffering duration. Users may react to this QoE
degradation by aborting their connections before their completion by impatience.

Our aim is to study this phenomenon of impatience in mobile networks and quantify its
impact on system performance.

Several works on impatience have been developed.

The first model of impatience was developed by Palm [19] in the 1940’s. He introduced an
inconvenience function of time I(t), ¢ > 0 the derivative of which he called irritation. As a
plausible form for irritation, Palm proposed dI(t) = c.tA, t > 0, as being proportional to the
hazard rate of user abandonment, our impatience function. This reasoning implies that the
distribution of patience (the time a user is willing to wait for service) is Weibull. The special
case of exponentially distributed patience, as a M/M/n+M referred as Erlang A, corresponds
to A = 0, which is irritation (or impatience) that is constant over time.

Barrer in [2] studied impatience under a First-In-First-Out (FIFO) discipline that processes
in the order that user arrive in queue.

Authors in [7] used simulations to quantify the impact of user impatience on the system
performance for several bandwidth sharing disciplines. They reported that up to 20% of the
total carried data traffic are aborded.

Authors in [15] modeled the impatience in the case of M/G/1-Processor sharing (PS) for
heavy tailed service by considering that impatience is proportional to service time. They eval-
uated the reneging probability of users with large service time and they used these results to
investigate the impact of admission control on a link of a packet network, and concluded that it
globally increases the fraction of users who complete their service.

Authors in [16] and [17] analyzed the performance of a GI/GI/1-PS queue with impatient
customers in overload by approximating a bandwidth sharing network with a more tractable



fluid model. They found that user impatience has quite a significant negative impact on system
performance, also on finite time scales and they showed that admission control reduces the
impact of reneging on system performance in some cases.

In [35] authors studied a M/M/1 queue with an exponential reneging variable. They proved
that this system can be approximated by either a reflected Ornstein-Uhlenbeck process or a
reflected affine diffusion when the arrival rate exceeds or is close to the service rate and the
reneging rate is close to 0. They showed numerically that their proposed diffusion approximations
in the context of approximating steady state performance characteristics are accurate.

In [38] authors considered a variant of a M/M/c model in which every user in the queue will
abandon the queue after an exponentially patience time. In their model time is only discusssed
in discrete terms, which can be seen as short time intervals. More than one event can occur
in one time slot. They took as starting point that an arrival at time k occurs during time slot
k, service starting at time k starts at the beginning of time slot £ and departure at time k
occurs at the end of time slot k, an abandonmrnt at time k occurs before any arrival at time
k. They called this choice the late-arrival and early abandonment. They provided the steady
state probability of their model using the generating function method and an infinite recursion.
They provided some performance measures such as the mean queue length, the fraction of users
which abandons the system, the throughput.

In [36] authors considered a two phase queueing system with impatient users and multiple
vacations where customers arrive according to a Poisson process, and receive a first service as
well as a second. User may balk with a certain probability and may leave due to impatience after
joining the queue without getting service. The service is assumed to be stopped when the server
is on vacation or during the first phase of service. Authors derived the probability generating
functions of the number of users in the system for various states of the server, they obtained the
closed form expressions for various performance measures as the mean system sizes for various
states of the server, the average rate of balking, the average rate of reneging, and the average
rate of loss.

Authors in [46] studied the impact of video stream quality on viewer behavior in a data-
driven manner. They showed that viewers start to abandon a video if it takes more than 2
seconds to start up, and each incremental delay of 1 second resulting in a 5.8% increase in rate
of abandonment.

Author in [47] showed that the abandonment rate of viewers increases when the start-up
delay increases, a user who watches a short video is 11.5% more likely to abandon sooner during
start-up than a user who watches a long video, a user watching video with a better connectivity
is more likely to abandon sooner during start-up.

1.2 Organisation of the manuscript

In chapter 1 we study user impatience and quantify its impact on the performance of mobile
networks in the presence of elastic user. We consider a dynamic user setting where users come to
the system at different time instants and leave it after a finite duration, either after completion
of their data transfers or earlier, at the expiry of some patience duration. We model the station-
ary distribution of the system and derive several performance metrics such as mean number of
users in the system, the probability of impatience, taking into account user location in the cell.
We further develop two approximate expressions for the stationary distribution of the system:
an aggregate one and a detailed one and show their closeness to the exact model. A transient
analysis is also included.



In chapter 2 we study mobility of elastic user who may be impatient and quantify its impact
on the performance of the mobile network. We consider the case of mobility due to impatience
and the spontaneous mobility of users both intra cell and inter cell. We model the stationary
distribution of the system and derive several performance metrics such as mean number of users,
the proportion of impatient users who quit the system before completing their file transfers and
the throughtput.

In chapter 3 we study the streaming user impatience during the prefetching and the re-
buffering phases when starvation happens. We first model the buffer as a M/M/1 queue and we
introduce the patience duration of streaming user by considering a packet level analysis in which
the video size is assumed to be infinite,for both deterministic and exponential patience durations.
Secondly we model the continuous time playback taking into account the flow dynamics in the
system constituted of several regions scheduled as a processor sharing and we consider the case
of deterministic and exponential patience durations. We derive several the performance metrics
such as the probability to be impatient during rebuffering and the probability of starvation.

In chapter 4 we study a system with impatient users controlled by a system manager who
has to choose at each decision epoch an action to make in order to optimize the system perfor-
mance. In the first part the set of actions to be chosen by the system manager is assumed to be
finite and the control is dropping and blocking in each region of the system. Classical results of
average cost markov decision process for semi markov processes allow us to derive the optimal
policy that is the path of optimal decisions to be made by the system manager at each decision
epoch in order to optimize the system performance through the value iteration algorithm and
the modified policy iteration algorithm. In the second part we study firstly a system with one
region and then generalize it to the case of multiple regions using our aggregate model developed
in the first chapter of the thesis. The set of actions to be chosen by the system manager is as-
sumed to be a real compact or a compound of real compacts. We provide a theorem that allows
us to derive recursively the optimal policy and the optimal system size in order to optimize the
system performance.

Finally in chapter 5 we conclude the thesis and present some perspectives for future work.



Chapter 2

Modeling and analysis of user
impatience in mobile networks



Abstract

We study in this work user impatience and quantify its impact on the performance of mobile
networks, notably 4G LTE, in the presence of data flows experiencing heterogeneous radio con-
ditions. We consider a dynamic user setting where users come to the system at different time
instants and leave it after a finite duration, either after completion of their data transfers or
earlier, at the expiry of some patience duration. We model the stationary distribution of users
in the system and derive several performance metrics such as mean transfer times and the prob-
ability of impatience, taking into account user location in the cell. We further develop two
approximate expressions for the stationary distribution of the system: an aggregate one and
a detailed one and show their closeness to the exact model. We validate our model against
simulations and show trends for several performance metrics as a function of impatience rate. A
transient analysis is also included; it yields insights on the system performance before reaching
steady-state.



2.1 Introduction

With the advent of smartphones and tablets, mobile traffic has exploded and is expected to
continue its explosion in the upcoming years. While 3G networks have been for several years
under-utilized, they are becoming more and more congested. Even if the deployment of 4G Long
Term Evolution (LTE) networks will substantially increase the capacity of mobile networks, it
is expected that it will also amplify the phenomenon of mobile traffic increase as more users will
be willing to take advantage from the data rates promised by these 4G networks. Congestion
is thus inevitable at some point and it is hence important to study its impact on the mobile
network performance.

As the large majority of traffic in mobile networks is composed of elastic data applications,
congestion reduces user throughputs and extend their session durations. Users may react to this
Quality of Experience (QoE) degradation by aborting their connections before their completion.
On one hand, the repetition of this situation may lead to user churn, and, on the other hand,
impatience of some users alleviates the network load and may enhance the performance of the
other patient users who do not choose to quit the system before the completion of their service.

Impatience has been the object of several works dealing with fixed networks.

In [6], a new version of the Erlang formula has been derived taking into account user im-
patience, resulting in so-called Erlang-I formula (I stands for impatience; other works call it
the Erlang-A formula, A standing for abandonment). This formula is applicable for the case
of streaming like flows where the service duration is independent of the quantity of resources
obtained by the user, unlike our present case of data traffic.

Stanford [3] focuses primarily on exact performance analysis under FIFO discipline. He
considers a GI/G/1 queueing system where the nth arrival may renege if his service does not
begin before an elapsed random time T,. An expression for the average fraction of customers
who renege from the system, an expression for the waiting time distribution for all arrivals to
the system, the waiting time distribution for arrivals who reach the server, the distribution for
virtual waiting time in the queue, the distribution of the steady-state number of users in the
system and the number of users who leave the system by completing their service are found and
written in terms of the distribution of the work seen by an arbitrary arrival to the system.

In [8], the authors modeled data traffic at the flow level and considered impatience of users
in the overload regime, when the mean arrival intensity is larger than the mean service rate.

In [18], authors analyze impatience in a call center in which they consider that user’s patience
is exponentially distributed and the system’s capacity is unlimited (M/M/N+M). They outline
a method for exact analysis of M/M/N+M model and then proceed with an asymptotic analysis
in a regime that is appropriate for large call centers.

In [20] authors considered the problem of sheduling impatient users in a G/GI/1 queue.
For that they assumed that every user has a random deadline to begin its service. Given this
deadline distribution, a scheduling policy decides the user service order and which user to reject
since their dealines have expired and do not leave the queue automatically. They showed that
LIFO (last-in first out) is an optimal service order when the deadlines are independent and
identically distributed random variables with a concave cumulative distribution function. They
also showed that in case of unknown waiting time, the optimal policy for a M/M/1 queue will
be the LIFO-PO (push-out) policy.

Ny = (N}, -+~ N})

In [37] authors studied a M/M/c queue with ¢ = 1, 1 < ¢ < oo and ¢ = oo in a 2-phase
fast (1) and slow (0), with impatient users. The service time is assumed to be exponential with
parameter p in fast phase and pg in slow phase with pg < u. They assumed that each user upon
arrival has an individual timer, exponentially distributed. If the system does not change from



phase 0 to phase 1 before user’s timer expires, user abandons the queue never to return. For the
three models that are the single server case, the multiple server case and the infinite server case,
they derived explicit expressions for the probability density function of the number of users in
the system, both when the servers are slow and when the system functions normally and they
calculated the mean total number of users in the system.

Our aim in this chapter is to study user impatience in the context of mobile cellular net-
works, with an application to LTE, and quantify its impact on the system performance. We
model the system at the flow level for a realistic dynamic setting where users come to the system
at different time epochs and leave it after a finite duration, either upon the completion of their
data transfers or, in case of impatience, when their patience tolerance is over.

We study the system in steady-state and in transient regimes and obtain analytical expres-
sions for several quality of service metrics reflecting performance, such as mean transfer times,
and probability that a user leaves the system because of impatience. And this for several as-
sumptions on the distributions of the file size and patience duration. These metrics take into
account the heterogeneity of radio conditions for the different users in the cell, in contrast with
existing works on fixed networks where the capacity of the system is constant. Our numerical
and simulation results illustrate the trends for these metrics, notably as a function of the mean
impatience rate.

The remainder of this chapter is organized as follows. In section 2.2 there are the system
description. In section 2.3 we do the steady state analysis. In section 2.4 we derive some
QoS metrics. In section 2.5 we do the transient regime analysis. Numerical applications and
simulations are done in section 2.6. We conclude the chapter in section 2.7.

2.2 System model

2.2.1 System description

We consider an OFDMA-based homogeneous cellular network and focus on the downlink of one
cell with a single base station at its center. With OFDMA, the total bandwidth, which we
denote by W, is divided into N orthogonal subcarriers and can be shared between the different
users present in the cell in the same time slot.

Due to path loss, the Signal-to-Interference and Noise Ratio (SINR) is lower at the cell
edge than at the cell center. This leads to a cell capacity C(r) that depends on the distance
r between the user and the base station. In order to obtain this throughput, we make use of
a static simulator as described in [5]. This throughput is illustrated in Figure 2.1 for an LTE
system in an urban environment.

As can be seen in this figure, the throughput decreases when the user gets further away
from the base station. Let C; > Co > .... > (7 > .... > C, be the set of throughputs at
different positions [ in the cell and p; the probability that the user arrives to the cell in region [
(this corresponds to a discretization of Figure 2.1 into r regions where the throughput is almost
constant in each region).

2.2.2 System model without user impatience

We assume that data flows arrive to the system following a Poisson process with intensity A. In
the absence of user impatience, the service duration for a single user in position ! when he is
alone in the system, is given by 7" = %l where o is the flow size.
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Figure 2.1: Throughput for a user who is alone in the cell, and who is located in different
positions. We consider an LTE system using 10 MHZ of spectrum at the 2.6 GHZ band. Cell
radius is equal to 1 Km and a MIMO 2*2 scheme is considered.

In the presence of more than one user in the system, the capacity of the cell is shared between
them: each user receives a throughput equal to v = % when there are n users in the system.
Such a system can be modeled as an M/G/1 - Processor Sharing (PS) queue [4]. In this case,

each flow of class [ will have a service duration equal to T" = %

2.3 Steady-state analysis

We now study the stationary distribution of the number of flows in the system. We focus on
the case where both file size o and the patience duration that we note by 7 are exponentially
distributed.

2.3.1 Detailed steady-state analysis

Let us consider the process Ny = (Ntl, ..... N{ ), where 7 is the number of regions in the cell (each
with different radio conditions and hence different capacity) and N} is the number of users in
region [ at time .

Case of independence between service and patience durations

Let us first assume that the flow size and the patience duration are independent and exponentially
distributed with parameters ug and u, respectively:

fo(t) = pe™"1jg o) (1)

Fr(t) = poe "1 g o) (t)

The service duration in region [ with capacity Cj: T' = 2, is also exponentially distributed

=&,
with parameter p; = uCj.

Each flow in region [ has a patience duration 7! exponentially distributed with parameter
Mé, and we assume that

1
o < -0 < g

10



which means that users at the cell edge become more impatient than users at cell center due to
radio conditions.

With these assumptions, the process NV; is an irreducible Markov process with the following
intensity matrix:

AN,N+4e;, = Nl = APy

__ l
gN,N—e; = Z;ﬂ_l TLZ My + ny o

.
NN = — <>\ + Z QN,Nel>
=1

qo,0 = —A

where N = (nq,....,n,); n; being the number of users in region [, ¢; = (0,.....0,1,0,....0) and
A= >"_1 A\i; A being the mean arrival rate to region [, and p; is the probability for the arriving
user to be in region [.

The stationary distribution 7 (V) is solution of:

7@ =0 and Z T(N)=1

NeN"

Patience duration function of flow size

It is more realistic to assume that the patience duration depends on the file size, since patience
grows with file size, i.e., 7 = F(0).
For simplicity, we assume as in [8] that F is linear:

T = Q0

where a% represents the minimum throughput required to transfer very large documents in region
[, referred to as the sustainable throughput; and we assume that the flow size is exponentiel of
parameter u.

Each flow in region [ has a patience duration 7!

= a;0; thus its sojourn time in region [ when
there are n flows in the system is Té fF= min {nTl, Tl} is exponential of parameter W
min ?l’al

The process N; = (N}, ..., N[)t>0 where N} denotes the number of flows in region [ is an
irreducible Markov process with the following intensity matrix:

N, Nte; = N = APy

q - i
N,N—el - r
min {72’“5; L al}

,
NN = — <)\ +y (JN,Nel>
=1

The stationary distribution as previously is the solution to:

7@ =0 and Z m(N)=1

NeNT

11



2.3.2 Approximate aggregate steady-state analysis

We now derive an approximate closed-form solution for the aggregate steady-state probabilities.
We first notice that the actual service duration for a single user in the system located in region
[ with impatience is given by: T! pp = min{7T L, 7!} where T' is given by & - In the case of n flows
in progress in the system, the actual service duration is given by 7" rp(n) = min{”—‘l’, '}

Our approximation will be made by assuming that each user in the system is considered to
be in region ! with probability p;, its service time will be T} and its patience duration 7!, thus
its effective mean time in the system when there n active users in the system will be given by:

= s min ng 7t
BTy = 38 (min( 7 ) 1)

So we assume that the probility that user arrives in a region and the probabity that he is
localized in this region are equal.

This resembles to an M/G/1 - State Dependent Processor Sharing (SDPS) queue where the
system load, when n users are active, is given by the product of the traffic intensity and the
service duration:

pesf(n) = AE (Topp(n)) =AY E (min{g, Tl}> P (2.2)
=1

An M/G/1 - SDPS queue whose load is described by this equation is always stable as the
sojourn time of the users in the system is always finite (since it is bounded by 7). The number
of users in the system can however increase and tend to infinity; in which case, no users will be
served at all and they would all leave the system after the impatience duration. This would not
happen as long as the following condition holds:

i f[ peffrfm) < o0 (2.3)

n=0m=1
The stationary distribution of this approximate system is given by:

n  pefs(m)
Em:1z~ 2o, G) (2.4)
Yol =

Note that the limit after which all users will depart because of impatience without finishing
their service is 7(0) ™! < oc.

We give next the derivation of this approximation using some assumptions about the repar-
tition of the users in the cell.

m(n) =

2.3.3 Another proof of Aggregate steady-state analysis
Derivation of equation (2.4)

We now describe the aggregate model for the stationary distribution of the total number of flows
in the system without considering the detailed number of users in each region in the system.

We assume Poisson arrivals, the service time and patience duration have a general distribu-
tion and there is no assumption of independence between them.
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Let us define £ a type variable which assigns to each user the region in which he is located.
¢ is assumed to be a discrete random variable taking values in {1,...,r}, and we assume that
P[¢ =1] = p;. The time spent by a flow in the system when there are n flows in progress is
given by Terp(n) = min{nT, 7}, where T' and 7 are defined by conditional distributions with
respect to &:

(T | ¢ =1) and T' have the same distribution,
(7] € =1) and 7! have the same distribution;
where T" and 7! are respectively the service time and the patience duration in region I.
Thus
P[T<y\521]:P[Tl<y}

P[T<y\§:l]:P{Tl<y}.

Let us recall that p; is the probability that user arrives in region /. Here we do the approxi-
mation that the probability that a user arrives in a region and the probability that he is localized
in this region are equal.

For simplicity in the notations we denote Ty by 1" and min {nTl, Tl} by T

Let us define the process X (t) = (n(t), Ty, - ,Tn(t)), where n(t) is the number of flows in
the system at time ¢, and T; the spent time by the ith flow. We do so by labeling each flow in
the system. If one flow arrives when there are n flows present in the system, all flows will be
allocated one of the (n+ 1) labels with probability n%_l And when a flow leaves the system, all
flows with higher labels in the system have their labels decreased by one.

We denote by ¢' and G' respectively the density function and the distribution function of
min {nT",7'}. Let G(y) = P [T < y] and h'(y )—%.

Given that the sojourn time 7" of a flow has lasted %or a time y, the probability that he leaves
the system within a time interval e is given by:

PIT <y+eT >y _iP[Tl<y+evT’>y]pz

PT<y+¢e/T>yl= PIT >y em

=1

!
= Z G (y1+_e) Z K (y)pre + o(€)

=1

For simplicity, we add the following notation:

P[n(t):n>T1 > Y1, 7Tn>yn]:P[nay17"' 7ynt]

The process X (t) is a continuous Markov-process on continuous space. We now look for its
stationary distribution if it exists.

We assume that all y; > 0. The event that at time ¢ + € there are n flows in the system and
the different times spent y; + € is the union of the following different events:

e at time t there were n flows already present in the system and nothing happens for the
duration e;

e at time ¢ there were n+ 1 flows in the system, and one flow has left the system before time
t+ €

e at time ¢ there were n — 1 flows in the system, and one flow arrives before time ¢ + .

13



We note that the probability of a third event is null because of the assumption y; > 0.

[1_

p(n7y1+67'”7yn+6:t+6):

A+ ZZh%ynm] ¢

Pyt Yn  t)

=1 =1
r n+l 5o
+ZZ/O P[n+ Ly, yYio, Wy Yit1, - 5 Yn t t] hl(u)pledu—i—o(e).
=1 =1

The first term on the right hand side reflects the situation in which no arrivals or departure
occurs in the time interval (¢,¢ + €) and all that happens is that the spent service times of the
customers who are present at time ¢ age by an amount €, while the summand in the second term
reflects the situation in which there are n + 1 customers present at time ¢ and the one labelled
1 + 1 departs, with all higher labels being decreased by one, as stipulated by assumption.

Let us divide this equation by € and take the limit as € tends to zero:

n

ap[n7y1>"'7yn:t]+zap[nayl7'“ayn:t]

ot et y;
r o n
- /\+Zzh§(yi)pz Pln,yi, - ,yn : t]
=1 i=1
r ntl .50
+ZZ/O P[n+1uy17 yYis Uy Yit1, 0t 7y7lt] hl(“’)pldu
=1 i=1

Now we need to know what happens at arrival instants. We consider the event where n — 1
flows were present in the system at time ¢ and a new flow arrives and is allocated position ¢ + 1

before time ¢ 4+ €: .

P[n7y1+67"'7yi+€>u7"'ayn+61t+€]du
0

e

_;P[n_]-vyla )yn:t]+0(6)

Dividing by € and letting € tend to zero we obtain:
A
P[naylv'” 7y7;707'” y Yn t] = ﬁp[n_ 1;91,"' yYn - t]

For the stationary distribution, the first term is null:

aﬂ- [nvyla"' )yn]

ot =0

and we have:

i 87T[n7y17' T 7yn]
‘ Oyi

=1

T n

A+ ZZhl(yi)pl] ﬂ[n,yh"' ;yn]

=1 i=1
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r n+l

+ZZ/ n+]‘ Y1y 5 Yis Uy Yit 1,0t 7yn] hl(u)pldu

=1 i=1
And

A
W[nayla"' 7yia05"' ’yn]:ﬁﬂ-[n_:l?yl"" ayn]

We note that G;(0) = 0.
By using the definition of derivation as a limit we obtain :

67T[”7y17"' 7yn
8yi = Zh y'L nyla"'ayn}

Then the equation becomes:

r n+l

AT [n Y1, ’y" ZZ/ n+1 Yt Y, Uy Yig 1,0 vyn] hl(u)pldu.

=1 i=1

These equations have a unique solution that sums to one [9] .
If we integrate all variables y;, we obtain m(n):

o o
:/ / W[n’yl’...’yn]dyl...dyn’
0 0

The first integration gives:
oo
/ W[”?Zylu'”)yn]dyl
0

:/ m[n,0, - ,yn/Th > u] P11 > u]du
0

By independance
= [ A0l - Giw) du
0

:%ﬂ[n—l,yg,--- ,yn]/ooo(l—Gl(u))du

A
= ﬂ-[n_lvy?a"'7yn]

np(n)
Then by recurrence:
ﬁ p(k)
k=1 k
where p(k) = ﬁ, Emin {kT,7}] = ﬁ and m(0)™t =3 TIr; pT.

2.3.4 Approximate detailed steady-state analysis

We now derive an approximate, product-form expression for the steady state distribution of the
users in the different locations in the system. Indeed, the Markov chain defined in section 2.3.1 is
not reversible. In order to obtain an approximate product expression, we make the assumption

15



that all users in the region near the base station finish their service before users in the region
further away from the base station. It is thus possible to obtain the following;:

(V) = 7(0) ﬁ Py e — i1+ 1) ﬁ p2(Pha e —i2+1) ﬁ pr(Pher i — i +1)
i1 ny—1 +1 Faler] ng —1i9 + 1 i Ny — 4 + 1

(2.5)

where py(k) = % and ﬁ = E [min {kT',7'}].

Derivation of equation (2.5)

As in section 2.3.2 we treat the case of general service time T and general patience duration 7,
with no assumption of independence between them. Users arrive in region ! according a Poisson
process of rate A, and A = Y_;_; A; is the arriving rate in the system.

Let us denote by n;(t) the number of flows in region [ at time ¢ and T} ¢ the time spent by

one flow in region [. We recall that T’ é fF= min {nTl, Tl} when there are n flows in the system,
where T! = %l is the service time in region { and 7! the patience duration in region . To simplify

the notation, we denote Té £f by T' the time spent by one flow in region .
Now let us define the process

X(t) = (nl(t),--~ (), Tl T T gr(t));

where TZ-Z is the time spent by the ith flow in region {. We do so by labeling each flow in each
region.

If one flow arrives in region [ when there are n; present flows, all flows in the region will be
allocated one of the (n; + 1) labels with probability ﬁ And when a flow departs from the
region, all flows of higher labels in the region have their labels decreased by one.

We denote by Gﬁ the distribution function of Til , by gé its density function which depends

9(y)!
1-G(y)!

Given that a sojourn time of a flow Til has lasted for a time y, the probability that he leaves
the system within a time interval € is then given by:

on the number of flows in the system and by hl(y) = the hazard function.

P [Tl <y+e/T' >y| = Gl(ylteél—(y()}l(y) = hl(y)e + o(e).
For simplicity let us add some notation:
N(t) = (na(t), - ne(t)),
N:(nl’... 77%)7
PIN(t) =N, T >yl . T, > yno s oo >yn ] = PNyl oy o, o 1]

The process X(t) is a continuous Markov-process on continuous space. We look for its
stationary distribution, if it exist.

We assume that all yf > 0. The event that at time ¢ + € there are N flows in the system and
the different times spent y! + € are the union of the following different events:
- at time t there were N flows already present in the system and nothing happens for the dura-
tion ¢;
-at time t there were N + ¢; flows in the system, and one flow of region [ has left the system
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before the time t + ¢;
-at time ¢ there were N —e¢; flows in the system, and one flow came in region [ before the time ¢+e.

The probability of third event is small P {Third event} = 0, because of the assumption
!
y; > 0.

P[va%-f—ef”,yrlLl+6,-~',y{+e,'--,y2r+e:t+e]
roon r n+1 00
=1 i=1 =1 i=1 Y0
P|:N+elay%a"'7yn1>"'7ylla"',yéauayzl'—i-l)"'ayilla"'vy:zr:t} hl( )edu+0()

We divide this equation by € and let € tend to zero, we obtain:

8P|:N7yzll7“.7y7111’.”7y;;r' izap Ny17-..’ }Ll’...?yzr:t]
ot =1 i=1 0y,
T r n+1
A+ SOSRH | PNyl gkl +zz/
=1 i—1 =1 i—1

1 1 l l l [
P {N"i_elvylv'” yYn Y Y U Yy 7ynl7'”

T t} hl(u)du

When N = 0 the equation becomes:
)\ZP[O:t]:/ Pleyu: 4] B (u)du
0

Now we have to know what happens at arrival instants. For this we consider the event where
N — ¢; flows were present in the system at time ¢ and a new flow arrived in region [ and was
allocated position 7 4+ 1 in region [ before time ¢ + e:

€
/ P[Nay%—i_ea"'7yl1+67"’7yzl‘+67u7"'7y:7,r+6:t+6:|du
0

)\le

—P[N-
ny

elvy%f" 7y17;r t] +O(€)

Dividing by € and letting € tend to zero, we obtain:

Al

P|:N7y%a
ny

7yl17"'ay'§707"'7y:“' :| P[N—El,y%,"‘,y;rit]

As we look for the stationary distribution, the time derivative is null, and we have:

izaﬂ Noylyh ]
=1 =1 83/7{
r ni+1
)\Jrzzhl yZ] [Nyt oyt ] +ZZ/
=1 i=1 =1 =1
Tr[NJrez,y%w-,yipm,yi,‘--7y§,u,y§+1w~,yfwm,yﬂ hi(u)du
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A (0] = /000 7 leg, u] bt (u)du

Al
W[Nay%f" 7ylla”' 7y'§707"' 7y:1T:| :7’717(- [N_elvy%f“ 7y17;r]

We note that GL(0) = 0.
We also note that:

By definition of derivative:

6W[N7y%7"'aykla"'ayzr] IERT 1
ayé k=0 k

|:7T |:N>y%7 7y£+k> 7y:z,.:| _W[Nay%a"' 7y§1"' ay;7:|:|

P[>y +k Tl > 4f
:W[N,y}7 ’y,f’... 7y:‘7,7./1—;l>yij| ’}:131 [ 1 :| [ i Z:|

k
. (=Gl +k) - (1 -Gl
ZTF[JVUy%,w by ,yZT/TZ>y§} ]1135( ( 11 ( )

— = [Nyl suhe i, /T >yl ) (1= Gloh)

Then we have equality of the two sums :

T r n
87‘[‘ Ny’...7y1’...7y7‘ l
ZZ : ) lnl n’“] :_Zzhi(yf)ﬂ—[]\[ay%v7y71L177y77:LT]
I=1 i=1 Yi =1 i=1
Thus we have:
)‘W[Nay%v"'ayrlzl)"'vy;r]
r n+1 o
:ZZ/ 7T|:N+el7y%7’y’rlll77y11’7y£7u7y£+177y5”77y:”:| hi(u)du
=1 i=1 70

These equations have a unique solution that sums to one [9].
By Fubini, we have:
T
Ji
0

| (-cw)a= ["P[r'>yay-£ -p[r]-1;

Now we use the assumption that all users in region near the base station finish their service
before users in the region far from the base station, and we begin by integrating all variables y,i

of region 1:
/ / Nyh...’yil’...,ygr]dy%...dygr
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The first integration gives:

> 1 1 1 > 1 1 1
/0 7r[JV,yla"'73/n17"'7:9:1,T]dyl:/0 W[N7O7"'7yn17"'7y:w/Tl>u]P[T1>u]du
By independance

:/ T [N,O,--- ,y}“,--- ,yzr] [1—G%(u)] du
0

A

=[N —e1,yl, - ,yﬁr]/ (1-Gl(u)) du
ni 0

)\1 1
= wN—elvya"'vyr. )
() et vk

We continue the same process for other variables y,i of region 1, then for variable y,% of region
2 and so on (this is our assumption: all users in region near the base station finish their service
before users in the region far from the base station). By recurrence we obtain:
ni T . n2 T . T T .
P11 — i1+ 1) v 2 e — iz + 1) pr(D e e — i + 1)
m(N)==(0) ][] 1 11 2 I = r -

A4 ny—1+1 -4 ng —1i9 + 1 44 Ny — 1+ 1
i1=1 io=1 ir=1

where py(k) = - and E [min {kT',7'}] = 1.

2.4 QoS metrics

Here we use the model defined in section 2.3.1.

Now we focus on one tagged flow which is fixed in region k for example, and we define the
process Ny = (Ntl, ..... N/ ) where N} is the number of flows in region I seen by the tagged flow.

We add two supplementary states I corresponding to the state in which the tagged flow is
impatient and F' corresponding to the state in which the tagged flow finishes its service.

The process (Ny); is Markovian with the following intensity matrix:

AN, N+4e, = A\l = APy
ny

l
QN N—e; = —7 M1+ 1y
(] 2221,'%_’_1:“ Ko
aN,r = i
N F = e
’ Zzzlni—l-l
gN.N = — )\+Mk+$+i:QNN
5 0 Z;"Zl nz+1 — AV —¢€4
qN = —4N,N

The two states I and F' are absorbing, then (Ny); is a reducible Makovian process. Let us

pose
Tr=inf{t >0,N, € I},

TF:inf{t>0,NtEF},
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T* = min {T[, TF} .

The variables Ty, Tr and T™* are stopping times.

Let I(N) = P[Np~ € I| Ny = N] be the probability that the tagged flow is impatient,
and F(N) = P[Nr- € F| Ny = N| the probability that the tagged flow finishes its service
conditioned on initial state Ny = N.

We can see that I(N) = P [T; < oo | Ny = N]. This is the hitting probability of state I. It
can be expressed as I(N) = E [Iny.er | Zo = N| = E[f (Ng-) | No = N], with f(n) = Liery-
Then I(N) can be found as the solution of Dirichlet/FeymannKac problems as follows:

QI=0 VN#I F
I(I)=1
I(F) =0

Then I is solution of following recurrence equation:

4N,N+e; gN,N—e; qnN,1
I T T N+e ’I ) =,
; qN l Z N

We regroup under matrix form by posing:
1(0)
I(er)

I(er)

—qo,1

: q0
I(N — 61) :
I= : and E = :

I(N —e,) Zan.g
I(N) "

I(N +e)

I(N —|— er)

So we have:
MI=E

where M is a matrix with coefficient m; ; defined as:

Moo =—1; Mog, qoﬁl?
q0
gN,N—e; gN,N+e;
My N—ei = “MyN=—1, MNNtei = LA
gN aN
We solve for F' by the same method:
F ZqNN+€ZFN—|—€ ZQNN elF ) gN,F
aN 2 qN

=1

Then we have:
MF =K
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F(0)
F(e1)

—%.F
: %
F(N —e;) :
where F = : and K = :
F(N —e;) _ZII\V“F
F(N) .
F(N +e;)

F(N + ¢)

Please note that F(N) =1—I(N).
Let S(N) = E[T* | No = N| denote the mean sojourn time of the tagged flow in the system
conditioned on initial state Ny = N, then S is solution of following equation:

S(N) = —+ZqNN+EZSN+e, ZQNN SN —e).
v I AN

We have the following matrix form:

MS =G
S5(0)
S(el)

S(er)

S(N —e1)
where S = : and G = :
S(N —er) -
S(N)
S(N +e1)

S(N .—i- er)

Let C(N) = E [f (NF4+1)ds| Ny = N} be the mean cost of impatience conditioned on
Nog =N, then C is solution of the following equation:

—QC =g VN#I
C(I)=0

where g(N) = g(n1,...n,) = ng + 1.
Then:
C(I)=0
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C(F) =00

GN,N+e; qN,N—e; ng +1
C(N ——T2C(N +¢) ——C(N —e .
; qN Z Z l) qN

In matrix form, we have:

MC =P

C(0)
C(e1)

Cler)

9
C(N —e1) :
where C = : and P = :
C(N —er) _nsi;\tl

C(N)
C(N +e1)

C(N.—i— er)

If we consider that the system is in steady-state regime at the beginning, we obtain the
following QoS measures:
I=> I(N)x(N
N

F=>) F(N)x(N
N

S=> S(N)m(N)
N

C=> C(N)m(N
N

Patience duration function of flow size Now let us consider a tagged flow in region [, and
let us define process N; = (Ntl, ey N ) 10 Where N} is the number of flows in region I as seen
by the tagged flow. The process N; is Markovian with intensity matrix given by:

AN,N+e;, = Nl = Apy,
np

gN,N—e, = v >
; . gl
min {722257# , al}

qN, 1 = Ly ;
s T m;+1 ]
ay {akﬁiﬁ.k : }

22



T
NN = — (A +) aNN-e +avg + QN,F> :
i=1
We recall that a' is the coefficient which appears in the expression of patience for a user
located in region I: 7! = dlo.
The states I and F' are absorbing then reccurrent, and the state N is transient. The previous

QoS measures are calculated here by replacing gy ps by those in this paragraph.

2.5 Transient regime analyis

Now we study the system without the condition of stability.

We consider the Markov process of tagged flow studied previously in the steady-state analysis
part.

Let us pose B(N,t) = P[Z, € {I,F} | Zy = N, the probability that the tagged flow leaves
the system at time ¢ conditioned on initial condition Zy = N. We can show that B(.,t) is
solution of the following equation:

dB(N, )
dt

B(N,0) = Lyneqr,ryy-

= QB(N,1),

Thus:
B(N,0)=0 VN#I,F,
B(I,0) = B(F,0) =1,
OB(N,t " ,
E“) =Y avNre BIN+ei, ) +ann BN, )+ qn.v-eiB(N—ei, t)+an1B(I,1)+qn pB(F,1)
=1 i=1
T lu/ , .
k 7
= S ONB(N+es )+ ot ettt qu BN, D4 S | ety + migto | B(N—e 1) .
izl i ( i ) Ko Z;:1nj+l 4dN,N ( ) ; Z;j:lnj‘FlMZ 10 ( i )

We apply the Laplace transformation and obtain:

r '

N.N—e; - N.N+e; 5 B(N,0 NI+ an,F
E q’ieBN—ei(p) — |:1 + p:| By(p) + E uBN—i—ei(p) _ |: ( ) + q q :| .
= I a - v qN PaN

which can be regrouped in matrix form:

{M - p]I} B(p) =D

gnN
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BN—el (p)
where B(p) = : ,
BN*ET (p)
Bn(p)

BN+61 (p)

BN+er(p)

pB(0,0)+qo,1+q0,F
Po

and D = : 7

__ pB(N,0)+qn,1+an,F
PN

Let us pose F'(N,t) = P[Z; € F'| Zp = N| the probability that the tagged fl