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Nowadays, tremendous amounts of data are found in databases. These large collections of data bring up the basic question: "Can valuable information be gleaned from these data?".

Therefore, special methods have been devised to automatically discover in these data potentially useful and understandable regularities from which practical insights can be drawn.

In this context, the process Knowledge Discovery in Databases (KDD, [START_REF] Fayyad | From data mining to knowledge discovery: An overview[END_REF]) has emerged.

1.1 Knowledge Discovery and Data Mining Techniques [START_REF] Fayyad | From data mining to knowledge discovery: An overview[END_REF] presented KDD as the process concerned with the development of methods and techniques for discovering knowledge units from data stored in databases. The KDD process is interactive and iterative and each of its subsequent step relies on the output of the previous step. In addition, Fayyad et al. define the KDD process as a sequence of five steps:

1. data selection that aims at gathering only the data relevant to the analysis task. This step is guided by domain experts;

2. data preprocessing that employs techniques for dealing with the outliers, the noise and/or the missing values from the selected data;

1 Chapter 1. General Introduction 3. data transformation that converts the preprocessed data to an appropriate format for data mining;

4. data mining that explores the transformed data by means of specific techniques in order to extract regularities;

5. evaluation that represents the interpretation and the assessment of the discovered regularities with respect to the motivation behind the analysis task. The obtained knowledge units can then be used by decision-makers.

Data mining is the core step in the KDD process and it has two widely accepted main goals: prediction and description [START_REF] Fayyad | From data mining to knowledge discovery: An overview[END_REF]. Prediction focuses on prognosticating the identity of one thing based on the descriptions of other things whereas description, the goal around which this thesis revolves, aims at revealing a simple and concise description of the analysed data by means of user-friendly structures to capture regularities. [START_REF] Han | Data Mining: Concepts and Techniques[END_REF] outline several fundamental data mining tasks that can be used to achieve these goals: classification, regression, clustering and pattern mining. These tasks have been used in various applications, e.g. e-commerce [START_REF] Ansari | Integrating e-commerce and data mining: Architecture and challenges[END_REF], social communities [START_REF] Jay | Analysis of social communities with iceberg and stability-based concept lattices[END_REF],

education [START_REF] Al-Twijri | A new data mining model adopted for higher institutions[END_REF], agriculture [START_REF] Pitarch | Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape[END_REF], anomaly detection [START_REF] Agrawal | Survey on anomaly detection using data mining techniques[END_REF], healthcare [START_REF] Jothi | Data mining in healthcare -a review[END_REF] and accounting [START_REF] Amani | Data mining applications in accounting: A review of the literature and organizing framework[END_REF].

The choice of the data mining technique depends on the type of the analysed data, e.g. sequences, graphs, intervals or streams. In this thesis we deal with sequences of itemsets.

Indeed, the exploration of sequential data is a major challenge in current research due to the progress in storing information regarding, e.g. customer purchase behaviours, patient physical examinations, football player evolutions and web access history. Accordingly, to simplify and summarise a set of sequences in a manner that domain experts can understand we rely on two data mining techniques, namely sequential pattern mining and Formal Concept Analysis. Before stating the motivation of this thesis, we present a brief overview of the two aforementioned techniques.

Sequential Pattern Mining

Discovering sequential patterns [START_REF] Agrawal | Mining sequential patterns[END_REF] is a well-known data mining task whose aim is to find relevant subsequences in a sequence database (set of sequences)

with respect to a measure of interest. For example, the measure of interest can be a userdefined minimum support, i.e. the minimum number of sequences that have to contain a discovered subsequence.
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The objective of the sequential pattern mining task is to enumerate all relevant subsequences from a sequence database. Naively, this task can be tackled by computing the support of all possible subsequences, and next by enumerating only those for which the support is greater than or equal to a user-defined minimum support. Consequently, researchers have been working on efficiency-based methods that can enumerate the sequential patterns discovered in a sequence database without checking over all possible subsequences.

Recently, Fournier-Viger et al. [2017] have surveyed the up-to-date studies on sequential pattern mining and its applications. Given a particular input, we obtain the same set of sequential patterns by applying any of the classical methods, e.g. UDDAG [START_REF] Chen | An updown directed acyclic graph approach for sequential pattern mining[END_REF] or CM-S [START_REF] Fournier-Viger | Fast vertical mining of sequential patterns using co-occurrence information[END_REF]. However, these methods employ different data structures and algorithmic paradigms. Let us note that these methods rely on propositional algorithms, i.e. algorithms that explore data from a single table. In addition, Fournier-Viger et al. have underlined the key drawbacks of these classical methods such as:

-the huge number of generated sequential patterns that overwhelm domain experts during the pattern evaluation step;

-the limited amount of data captured by sequential patterns from the analysed sequence databases.

Therefore, researchers have shifted their focus to discovering either concise representations (i.e. patterns that summarise sequential patterns) or more informative sequential patterns (i.e. patterns that capture additional data recorded in a sequence database). Firstly, closed sequential patterns [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF] and closed partially-ordered patterns [START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF] are two concise representations. In addition, the number of sequential patterns can be reduced by pushing constraints into the mining process, e.g. regular expressions [START_REF] Garofalakis | Spirit: Sequential pattern mining with regular expression constraints[END_REF]. Secondly, to discover more informative sequential patterns, e.g. [START_REF] Chowdhury Farhan | A novel approach for mining high-utility sequential patterns in sequence databases[END_REF] proposed the high-utility sequential patterns that capture in the context of the market basket problem the quantities of purchased items.

Finally, sequential pattern mining is useful in many real-life applications, e.g. bioinformatics [START_REF] Liao | Efficient mining gapped sequential patterns for motifs in biological sequences[END_REF]], e-learning [START_REF] Ziebarth | Resource access patterns in exam preparation activities[END_REF]] and text analysis [START_REF] Pokou | Authorship attribution using small sets of frequent part-of-speech skip-grams[END_REF].

Formal Concept Analysis and Its Extensions

Formal Concept Analysis (FCA) was devised by [START_REF] Wille | Restructuring lattice theory: An approach based on hierarchies of concepts[END_REF] as a mathematical theory based on both the lattice and set theories [START_REF] Barbut | Ordre et classification : algebre et combinatoire[END_REF]Monjardet, 1970, Birkhoff, 1967]. FCA is a well-founded mathematical framework [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] that can be used for various purposes, e.g. data analysis [START_REF] Poelmans | Formal concept analysis in knowledge discovery: A survey[END_REF] and information retrieval [START_REF] Codocedo | Formal concept analysis and information retrieval -a survey[END_REF].

FCA is appropriate for the unsupervised machine learning task. Indeed, given a bunch of binary data, FCA clusters the objects that have common attributes. A cluster is called formal concept and represents a pair of two maximal sets: objects (extent) and attributes (intent).

FCA reveals a conceptual hierarchy (concept lattice represented as a directed acyclic graph (DAG)) that helps to visualise the considered data and to exhibit its intrinsic structure. In addition, the concept lattice is built without loss of information. Hence, on the one hand, no relevant details are overlooked, but on the other hand, the computation of the concept lattice becomes a time-consuming task. [START_REF] Kuznetsov | Comparing performance of algorithms for generating concept lattices[END_REF] compared the existing methods for computing concept lattices. Recently, [START_REF] Andrews | Making use of empty intersections to improve the performance of cbotype algorithms[END_REF] has proposed a fast method for deriving formal concepts, precisely IN-C . Furthermore, the complexity of concept lattices can be diminished by using, e.g. iceberg lattices [START_REF] Stumme | Efficient data mining based on formal concept analysis[END_REF], alpha Galois lattices [START_REF] Ventos | Alpha galois lattices: An overview[END_REF] or expandable concept trees [START_REF] Melo | Extracting and visualising tree-like structures from concept lattices[END_REF].

Usually, real-life data are more complex (e.g. sequences, graphs, logical formulas or intervals) than binary data on which revolve classical FCA-based approaches. Therefore, researches have been focusing on introducing various theoretical extensions, e.g. Conceptual Scaling [START_REF] Ganter | Conceptual scaling[END_REF], Triadic Concept Analysis [START_REF] Lehmann | A triadic approach to formal concept analysis[END_REF], Pattern

Structures [START_REF] Ganter | Pattern structures and their projections[END_REF], Relational Concept Analysis [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF] and Graph-FCA [START_REF] Ferré | A proposal for extending formal concept analysis to knowledge graphs[END_REF].

Lastly, FCA and its extensions are useful in many real-life applications, e.g. software engineering [START_REF] Wermelinger | Using formal concept analysis to construct and visualise hierarchies of socio-technical relations[END_REF], environment [START_REF] Braud | A lattice-based query system for assessing the quality of hydro-ecosystems[END_REF] and chemistry [START_REF] Stumpfe | Chemoinformatics and Computational Chemical Biology, chapter Molecular Test Systems for Computational Selectivity Studies and Systematic Analysis of Compound Selectivity Profiles[END_REF]. A systematic survey of the FCA-based applications is presented by [START_REF] Poelmans | Formal concept analysis in knowledge processing: A survey on applications[END_REF].

Motivation

Given a sequence database, we can obtain its description by means of classical sequential pattern mining methods, e.g. [START_REF] Agrawal | Mining sequential patterns[END_REF]. Usually, the number of sequential patterns discovered in a sequence database is huge, and thus the pattern evaluation step is a laboured task for domain experts.

To diminish the huge number of sequential patterns, we can directly obtain a more compact set of these patterns, namely closed sequential patterns, by using existing methods, e.g.

[ [START_REF] Fournier-Viger | Fast vertical mining of sequential patterns using co-occurrence information[END_REF]. Actually, a sequential pattern is closed if it is not contained in another sequential pattern that has the same support. Since the number of closed sequential patterns can still be quite large, a better option is to directly extract a more compact set of such sequential patterns, precisely closed partially-ordered patterns (cpo-patterns), by means of existing methods, e.g. [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF]. Indeed, a cpo-pattern summarises a set of closed sequential patterns that coexist in the same analysed sequences, and, besides, it has a graphical
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representation as a DAG that facilitates its evaluation.

To sum up, by choosing to discover cpo-patterns in a sequence database, on the one hand we obtain fewer patterns without loss of information; on the other hand, we help the pattern evaluation step thanks to their graphical representations. However, there are still some limitations of the existing methods for extracting cpo-patterns that we try to address in this thesis:

1. the evaluation step is not an easy task for domain experts since the discovered cpopatterns are unorganised; thus, the experts should manually figure out how these cpopatterns relate to each other;

2. domain experts do not have a global view of the discovered cpo-patterns; therefore, they can overlook pertinent cpo-patterns during the evaluation step;

3. some interesting cpo-patterns cannot be found since taxonomies over sequence-building items are not used;

4. the discovered cpo-patterns exploit only the order on itemsets from the analysed sequences, and thus the cpo-patterns do not capture the particularities hidden in these sequences.

Contributions

In this thesis we present an approach for enhancing the analysis of sequential data within the framework of Relational Concept Analysis (RCA), which is an extension of FCA. We have decided to rely on RCA rather than on FCA since the explored data are relational data and relations are not natively supported by FCA. In addition, we cope simultaneously with different types of relations, e.g. temporal/spatial and qualitative. Thus, the analysed sequences are built from a set of items that have associated qualitative values.

Basically, we devise a comprehensive KDD approach, namely Relational Concept Analysis for Exploring Sequential Data (RCA-S , [START_REF] Nica | Hierarchies of multilevel closed partially-ordered patterns for enhancing sequential data analysis[END_REF]), that exploits the relational structure of sequential data. Indeed, RCA classifies sets of objects described by attributes and relations, allowing the discovery of hierarchies of patterns. Figure 1.1 depicts the schema of RCA-S that is a fivefold approach:

1. data preprocessing: relying on domain knowledge, the data collected from a sequence database are prepared to be explored. Then, these data are remodelled in order to build the RCA input according to a proposed data model; In the following, we outline the key contributions of this thesis:

the proposal and formalisation of a novel problem, namely directly extracting cpopatterns that are implicitly organised into a hierarchy, which is a more difficult task than only enumerating cpo-patterns discovered in sequential data. Indeed, existing works, e.g. [START_REF] Cellier | Partial orders and logical concept analysis to explore patterns extracted by data mining[END_REF], have demonstrated that a hierarchical order on already extracted patterns helps in understanding the obtained knowledge, and, besides, it provides a quick way to navigate to interesting patterns;

the RCA-S approach that is the first attempt to explore sequential data by means of RCA. In addition, it is a multi-relational data mining [START_REF] Džeroski | Multi-relational data mining: An introduction[END_REF] approach that looks for regularities in sequential data whose sequences are built from multiple tables out of a relational database. Indeed, the itemsets of a sequence are instances from different tables. Hence, these itemsets are defined and ordered according to inter- the extraction of multilevel cpo-patterns, namely concrete, abstract and hybrid, without specifically preprocessing the original sequential data. Indeed, RCA allows to discover a partial order on items, and thus abstract and hybrid cpo-patterns are obtained rather than only concrete (standard, [Casas-Garriga, 2005]) cpo-patterns. In addition, the abstract cpo-patterns highlight general regularities of the analysed sequential data, while the hybrid cpo-patterns emphasise simultaneously general and specific regularities of these data;

the proposal of hierarchies of multilevel cpo-patterns with two generalisation levels.

Precisely, the generalisation regarding, firstly, the structure of cpo-patterns (e.g. the number of items, vertices and/or edges); secondly, the accuracy of items (e.g. from abstract to defined);

the proposal of weighted cpo-patterns that are more informative than standard cpopatterns. Indeed, additional information regarding the repetitive occurrences of specific itemsets in the analysed sequences can be discovered by exploiting the "richness" of the RCA output. Therefore, by means of weighted cpo-patterns we help the evaluation step by capturing and explicitly showing not only the order on itemsets (as standard cpo-patterns do), but also their different roles in the analysed sequences through new statistical measures;

the proposal of measures of interest for selecting and filtering concepts/cpo-patterns.

Usually, the number of generated concepts/cpo-patterns is quite large, but only a few of them are likely to be relevant for domain experts. Therefore, we propose to deal with the "concept explosion" problem by means of a new distribution index of a formal concept that makes use of the information encoded into the objects of the concept extent in order to determine if this concept is pertinent. Furthermore, we propose to filter the discovered cpo-patterns based on their accuracies;

a study of the RCA-S approach adaptability. We show that the proposed approach can be easily adapted to: (i) integrate a user-defined taxonomy over sequence-building 

Thesis Structure

In Chapter 2 we present the state of the art and the theoretical underpinnings of this thesis, i.e. sequential pattern mining and Formal Concept Analysis.

In Chapter 3 we present the first two steps of the RCA-S approach, namely the data preprocessing and the RCA-based exploration of sequential data. A generic data model is proposed. Then, relying on this model we explain how to encode a sequence database into the RCA input. In addition, the obtained RCA output is explained and analysed.

In Chapter 4 we present the third step of RCA-S , precisely the direct extraction of a hierarchy of multilevel cpo-patterns from the obtained RCA output. The structure and the properties of the RCA output are discussed. Then, we present an algorithm that automatically extracts multilevel cpo-patterns. In addition, a complexity analysis of RCA-S is given.

In Chapter 5 we present the fourth step of RCA-S , namely new measures of interest for guiding domain experts. The "richness" of the RCA output is exploited to compute the distribution index of a formal concept, to extract weighted cpo-patterns and to categorise the obtained multilevel cpo-patterns.

In Chapter 6 we discuss the adaptability of RCA-S . A user-defined taxonomy over sequence-building items, and, besides, user-defined constraints on the order relations on itemsets are pushed deep into the RCA-based exploration step. Then, we present how to explore simple sequential data and heterogeneous sequential data.

In Chapter 7 we present the application context of this thesis, i.e. hydro-ecology. We explain how to preprocess hydro-ecological data in order to apply the RCA-S approach.

Then, we describe and discuss the results obtained from experiments carried out on various hydro-ecological datasets.

In Chapter 8 we conclude and give some perspectives of this thesis.

Introduction

In the following sections, we present the definitions and principles of the theoretical underpinnings of this thesis, namely sequential pattern mining and Formal Concept Analysis, in order to contextualise and familiarise the reader with the terminology used in the next chapters.

In addition, we mention the most relevant related work for this thesis.

Pattern Mining

An important subfield of data mining is pattern discovery and, in this thesis, we are particularly interested in mining patterns from sequential data.

Sequential Patterns

Sequential patterns were defined by [START_REF] Agrawal | Mining sequential patterns[END_REF] as an extension of frequent itemsets and represent regularities hidden in a sequence database. Discovering sequential patterns is a data mining task whose aim is to obtain relevant subsequences from a set of analysed sequences. Usually, a subsequence is relevant if it occurs in many analysed sequences.

Formally, let I = {I 1 , I 2 , ..., I m } be a fixed set of items. An itemset IS = (I j 1 ...I j k ), where I j i ∈ I and I j i = I j l ∀i = l, is a non-empty unordered set of items. An itemset IS with k items is referred to as k-itemset. We denote by IS the set of all itemsets built from I.

Definition 2.1 (Sequence).

A sequence S = IS 1 IS 2 ...IS p , where IS j ∈ IS, is a non-empty ordered list of itemsets.

In a sequence S the itemsets are ordered under a binary relation, denoted by ≤ IS , which is total, antisymmetric and transitive. Therefore, for any two distinct itemsets An item can occur only once in an itemset, but can occur several times in different itemsets of the same sequence. A sequence S with p itemsets is referred to as a p-sequence. The length of a sequence S = IS 1 IS 2 ...IS p , denoted by l(S), is the total number of items in S.

IS α and IS β in S it is possible to determine if IS α precedes IS β (IS α ≤ IS IS β ) or IS β precedes IS α (IS β ≤ IS IS α ). It
l(S) = p i=1 |IS i | (2.1)

Definition 2.2 (Subsequence).

A sequence S = IS 1 IS 2 ...IS p is a subsequence of another sequence S = IS 1 IS 2 ...IS q , denoted by S s S , if p ≤ q and if there are integers j 1 < j 2 < ... < j k < ... < j p such that IS 1 ⊆ IS j 1 , IS 2 ⊆ IS j 2 , ..., IS p ⊆ IS j p .

Definition 2.3 (Sequence Database).

A sequence database, denoted by D S = {S 1 , S 2 , ..., S n }, is a set of sequences, where each sequence has a unique identifier.

In Tab. c) and the order on itemsets is preserved. Moreover, S s S3, and therefore we can say that subsequence S occurs often in D S since it is contained in 2 out of 3 analysed sequences. 

(a)(b c)(d) S2 (b)(c d) S3 (a)(b c)(a)
Definition 2.4 (Subsequence Support). Let D S be a sequence database. The support of a subsequence S , denoted by Support(S ), represents the total number of sequences in D S that contain S .

Support(S ) = |{S ∈ D S |S s S}| (2.2)
Furthermore, the frequency of S , denoted by Freq(S ), is the relative number of sequences in D S that contain S .

Freq(S ) = Support(S ) |D S | (2.3)
To illustrate this, in Tab. A frequent subsequence is called a sequential pattern.

In Tab. 2.2 is listed the complete set of sequential patterns discovered in the sequence database given in Tab. 

(a)(b) {S1, S3} P 7 (a)(c) {S1, S3} P 8 (a)(b c) {S1, S3} P 9 (b)(d) {S1, S2} |{S1, S2, S3}| = 3 ≥ θ. However, subsequence S = (b)(c) is not a sequential pattern since it is contained only in S2, i.e. Support(S ) = |{S2}| = 1 θ.
It is noted, in Tab. 2.2, that 9 sequential patterns are discovered. This number is quite large compared with the number of the analysed sequences (3 in Tab. 2.1). Indeed, if a sequence database D S contains a sequential pattern P = IS 1 IS 2 ...IS q (where the itemsets have distinct items), then D S contains at most Let us consider again the P 4 and P 9 sequential patterns that have the same support.

2 l(P ) -1 (2.
Since there exists no P such that P 9 s P , P 9 is closed, while P 4 is not closed. By analysing the Closed column in Tab. 2.2, we notice that there are only 4 closed sequential patterns extracted in our example, i.e. the number of extracted patterns is decreased by 56% without loss of information. Indeed, by discovering closed sequential patterns, the set of the most representative sequential patterns is obtained. In addition, the complete set of sequential patterns can be recovered from these closed sequential patterns.

Nevertheless, when the analysed database contains long sequences, the set of closed sequential patterns is still too large. To address this problem, [START_REF] Luo | Efficient mining of maximal sequential patterns using multiple samples[END_REF] introduced a more concise representation, namely maximal sequential pattern. Here, we recall its definition, but this pattern will not be explored further in this thesis since we focus on closed sequential patterns.

Definition 2.7 (Maximal Sequential Pattern). Given a sequence database D S and a sequential pattern P . P is maximal if there is no sequential pattern P in D S such that P s P .

By analysing the Maximal column in Tab. 2.2, there are only 2 sequential patterns that are maximal, and thus the number of patterns is decreased by 78%. For example, P 9 is maximal since there is no P such that P 9 s P . [START_REF] Egho | A contribution to the discovery of multidimensional patterns in healthcare trajectories[END_REF] have proposed an approach for mining heterogeneous sequences, where a sequence contains itemsets whose items are from distinct domains. In addition, an item can be an atomic item from a partially ordered set or it can be a subset of items from an unordered set. In the following, we formalise a generalisation of a heterogeneous sequence, precisely, we consider that its itemsets contain other itemsets.

Heterogeneous Sequential Patterns

Suppose now that there is a partial order (i.e. a reflexive, antisymmetric and transitive binary relation) on the set of items I, denoted by (I, ≤). We say that (I, ≤) is a poset.

Definition 2.8 (Multilevel Itemset).

A multilevel itemset IS ml = (I j 1 ...I j k ), where I j i ∈ I and I j i , I j i ∈ IS ml such that I j i ≤ I j i , is a non-empty and unordered set of items that can be at different levels of granularity (i.e. items from different levels of poset (I, ≤)).

We denote by IS ml the set of all multilevel itemsets built from (I, ≤). The partial order on the set of all multilevel itemsets (IS ml , ⊆ ml ) is defined as follows: IS ml ⊆ ml IS ml if ∀I j ∈ IS ml , ∃I j ∈ IS ml , I j ≤ I j and ∀I l = I j , ∃I l = I j such that I l ≤ I l . The order on the multilevel sequences, i.e. sequences that contain multilevel itemsets, is defined accordingly.

To illustrate this, let us consider I 1 = {a, b, c, d, e, Consonants, Vowels, Letters} a set of items and (I 1 , ≤) a partial order depicted in Fig. 2.1, where an edge represents the binary relation is-a, denoted by ≤. 
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For example, a ≤ Vowels designates that the letter "a" is a vowel. Let be two itemsets (a b c) and (a Consonants), then (a Consonants) ⊆ ml (a b c) since a ≤ a and b ≤ Consonants (or c ≤ Consonants).

Let H = {I 1 , I 2 , ..., I n } be a set of distinct sets of items, where I j with j ∈ {1, ..., n} represents a domain. We note that I j can be a poset or an unordered set. Let IS j be the set of all itemsets built from I j ∈ H.

Definition 2.9 (Heterogeneous Itemset). A heterogeneous itemset IS

H = {IS 1 , IS 2 , ..., IS n },
where IS j ∈ IS j , is a non-empty and unordered set of itemsets built from distinct sets of H.

Moreover, a multilevel heterogeneous itemset is a set of itemsets that has at least one multilevel itemset.

Let IS H be the set of all heterogeneous itemsets built from H. The partial order (IS H , ⊆ H ) is defined as follows:

IS H ⊆ H IS H if ∀IS k ∈ IS H , ∃IS k ∈ IS H such that IS k ⊆ IS k , where IS k , IS k ∈ IS k , k ∈ {1, .
.., n}. The order on multilevel heterogeneous itemsets is defined accordingly relying on ⊆ ml .

To illustrate this, let us consider H = {I 1 , I 2 }, where I 1 is partially ordered as shown in Fig. 2.1 and I 2 = { , ♦, } is an unordered set of shapes. Furthermore, let be two multilevel 

heterogeneous itemsets IS H 1 = {(Vowels c), (♦)} and IS H 2 = {(a c), ( ♦)}, then IS H 1 ⊆ H IS H 2 since (Vowels c) ⊆ ml (a c) (that is a ≤ Vowels and c ≤ c) and (♦) ⊆ ( ♦).

Definition 2.10 (Heterogeneous Sequence

< j 2 < ... < j k < ... < j r such that IS H 1 ⊆ H IS H j 1 , IS H 2 ⊆ H IS H j 2 , ..., IS Hr ⊆ H IS H jr .
Accordingly, the order on multilevel heterogeneous sequences is defined.

To illustrate this, let be two heterogeneous sequences on the aforementioned H = {I 1 , I 2 }:

- 

S1 H = {(a Consonants), ( ♦)} {(Letters), ∅} and -S2 H = {(a d), ( ♦)} {(a c), ( )} , then S1 H s H S2 H since -{(a Consonants), ( ♦)} ⊆ H {(a d), ( ♦)}, i.e. a ≤ a, d ≤ Consonants, ( ♦) ⊆ ( ♦), -{(Letters), ∅} ⊆ H {(a c), ( )}, i.e.

Closed Partially-Ordered Patterns

Closed partially-ordered patterns were introduced by Casas-Garriga [2005] in order to synthesise sets of closed sequential patterns. The closed sequential patterns from a set coexist exactly in the same sequences from a sequence database.

Formally, let D S be a sequence database and P , P two sequential patterns discovered in D S . When both P and P are contained in the same sequences in D S , a more concise representation of P and P can be obtained by relying on a partial order on the set of their itemsets.

Definition 2.13 (Partially-Ordered Pattern (po-pattern)).

A partially-ordered pattern, called po-pattern, is a directed acyclic graph G = (V, E, l). V is a set of vertices, E is a set of directed edges such that E ⊆ V × V and l is a labelling function mapping each vertex to an itemset. This structure allows to define a strict partial order on vertices u and v such that u = v : u < v if there is a directed path from the tail vertex u to the head vertex v. However, if there is no directed path from u to v, these elements are not comparable. Each path of the graph represents a sequential pattern and the set of paths in G is denoted by P G . A po-pattern is associated with the set of sequences S G that contain all paths of P G . Since a po-pattern is associated with a set of sequences, its support can be defined following Eq. 2.2. 

< a b c > (a) G 1 < a c > (b) G 2 < a b c > (c) G 3 < a b b c > (d) G 4 < a b c > (e) G 5 < b d > (f) G 6 < b c > (g) G 7 < a b c > (h) G 8
G 1 ) = Support(G 2 ) = Support(G 3 ) = Support(G 4 ) = Support(G 5 ) = |{S1, S3}| = 2.
Moreover, there are po-patterns that are contained in other po-patterns. For example, po-pattern G 2 (Fig. 

Related Work

After [START_REF] Agrawal | Mining sequential patterns[END_REF] had introduced the sequential pattern mining problem, researchers focused on extracting more efficiently (closed) sequential patterns/cpo-patterns, i.e. mining patterns with low execution time and low memory usage when defining a low minimum support or when dealing with very large databases. [START_REF] Zhao | Sequential pattern mining: A survey[END_REF], [START_REF] Mabroukeh | A taxonomy of sequential pattern mining algorithms[END_REF], [START_REF] Mooney | Sequential pattern mining -approaches and algorithms[END_REF][START_REF] Mooney | Sequential pattern mining -approaches and algorithms[END_REF][START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF] surveyed the existing approaches and algorithms for sequential pattern mining. There are two main approaches, namely apriori-based and pattern-growth.

Initially, the apriori-based method was proposed. This relies on the candidate-generationand-test principle. The key drawbacks of this approach are the huge number of generated candidates (since candidates that do not exist in the analysed database can be generated)

and the repeated full scans of the analysed database in order to evaluate the support of these candidates. The pattern-growth method avoids completely the candidate generation step by constructing recursively longer frequent subsequences only from the shorter frequent ones.

To this end, the analysed database is compressed into a frequent pattern tree that is then partitioned in order to explore small amounts of data.

In the following, we briefly recall the main algorithms for mining (closed) sequential patterns/cpo-patterns. In addition, since exploring sequential data with such algorithms can generate a huge number of patterns that makes difficult their evaluation by domain experts, we recall a few measures of interest proposed for ranking and filtering patterns.

Discovering (Heterogeneous) Sequential Patterns

Algorithm A A , proposed by [START_REF] Agrawal | Mining sequential patterns[END_REF], relies on the Apriori property [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF]: if a sequential pattern P is not frequent in a sequence database D S , then ∀P ∈ D S such that P s P , P is not frequent. Briefly, the algorithm spans three steps. Firstly, the frequent itemsets are found. Secondly, the original sequences are transformed into sequences of frequent itemsets. Finally, the transformed sequences are mined iteratively to discover sequential patterns. The last step begins with the frequent itemsets that are used to generate new possible candidates (sequences of frequent itemsets). These candidates, excepting the ones that are not frequent, are the input of the next iteration. The complete set of sequential patterns is obtained when there is no new candidate or there is no frequent candidate. The same authors introduced algorithm GSP [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] that outperforms A A due to the hash-tree data structure used to organise the generated candidate sequences.

Algorithm SPADE, proposed by [START_REF] Zaki | Spade: An efficient algorithm for mining frequent sequences[END_REF], is an apriori-based approach that encodes a sequence database into a vertical id-list database format (each item I is associated with a list of pairs (S, id IS ), where S uniquely identifies a sequence and id IS uniquely identifies an itemset of S where I occurs). All sequential patterns are discovered in only three scans of the vertical database. Firstly, the frequent 1-sequences are computed; secondly, the frequent 2-sequences. Finally, based on joins of the id-lists of pairs and on Lattice Theory [START_REF] Davey | Introduction to lattices and order[END_REF], the search space of the candidate sequences (decomposed into sub-lattices) is generated and all sequential patterns are enumerated using a breadth-first/depth-first search strategy. [START_REF] Fournier-Viger | Fast vertical mining of sequential patterns using co-occurrence information[END_REF] presented an improved version of SPADE, namely CM-S , that the authors claim it to be the fastest algorithm.

Algorithm P S , proposed by [START_REF] Pei | Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth[END_REF], is an efficient pattern-growth approach that relies on the F S algorithm [START_REF] Han | Freespan: Frequent pattern-projected sequential pattern mining[END_REF]. Since the number of obtained sequential patterns can be quite large, [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF] introduced C S , i.e. the first algorithm that generates the complete set of closed sequential patterns from a sequence database. Basically, the algorithm relies on P S but it generates a more compact set of sequential patterns (when a frequent α-subsequence is found its α-projected database is not mined if all possible descendants of α-subsequence have been discovered before). Then, the compact set is post-pruned to eliminate non-closed sequential patterns.

The bottleneck of C S is the space used to record the compact set of sequential patterns, which are needed for pattern closure checking. A solution to this problem is given by [START_REF] Wang | Bide: Efficient mining of frequent closed sequences[END_REF] who proposed the BIDE algorithm that does not keep track of the discovered closed sequential patterns. The authors proposed an adapted technique for checking the pattern closure. Moreover, this algorithm mines sequences of items, but the authors show how it can be extended to sequences of itemsets. C SP [START_REF] Gomariz | Clasp: An efficient algorithm for mining frequent closed sequences[END_REF], CM-C SP [START_REF] Fournier-Viger | Fast vertical mining of sequential patterns using co-occurrence information[END_REF] and C F [START_REF] Fumarola | Clofast: Closed sequential pattern mining using sparse and vertical id-lists[END_REF] are more recent algorithms for mining closed sequential patterns based on the vertical database format. It is shown that these algorithms outperform C S and BIDE.

In addition, the aforementioned sequential pattern mining algorithms consider only the order on itemsets in the analysed sequences and treat all the itemsets uniformly. To capture more particularities hidden in the analysed data, [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] added time constraints in advance, and thus a sequential pattern is extracted only if it admits a max-gap and a min-gap between adjacent itemsets. [START_REF] Pei | Mining sequential patterns with constraints in large databases[END_REF] pushed various constraints, e.g.

time-interval and gap information between items, into the mining process to limit the results.
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Chen et al. [2003] proposed to extract time-interval sequential patterns that reveal the time interval between successive items, and, besides, these time intervals are explicitly shown in the patterns. To capture the time interval between all the pairs of items in the extracted patterns, [START_REF] Hu | On mining multi-timeinterval sequential patterns[END_REF] introduced the multi-time-interval sequential patterns. [START_REF] Chang | Mining weighted sequential patterns in a sequence database with a time-interval weight[END_REF] proposed to find weighted sequential patterns by pushing a time-interval weight measure (the weight of a sequence derived from the time intervals of the sequence itemsets) into the mining process. Furthermore, in [START_REF] Kim | Squire: Sequential pattern mining with quantities[END_REF] and [START_REF] Yun | A new framework for detecting weighted sequential patterns in large sequence databases[END_REF] [START_REF] Beyer | Bottom-up computation of sparse and iceberg cube[END_REF].

A key drawback of such multidimensional sequences is the additional information that is constant for all itemsets of sequence S. [START_REF] Plantevit | Mining multidimensional and multilevel sequential patterns[END_REF] proposed to discover multidimensional sequential patterns in multidimensional databases. A multidimensional sequence is defined as an ordered list of multidimensional items. A multidimensional item takes the form (d 1 , d 2 , ..., d n ), where d k is an item of the k th dimension. Furthermore, each considered dimension is represented at different levels of granularity by means of partial orders, and hence multilevel sequential patterns can be discovered, as explained in [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF]. Plantevit et al. proposed algorithm M SP that searches for multidimensional and multilevel sequential patterns in two steps. First, the most specific frequent multidimensional items, referred to as maf-sequences, are found. Second, the maf-sequences are used to remodel the original multidimensional sequences, and then these sequences are mined by using the SPADE algorithm.

Nevertheless, [START_REF] Egho | A contribution to the discovery of multidimensional patterns in healthcare trajectories[END_REF] highlighted a limitation of M SP, i.e. the multidimensional items do not allow itemsets whose items are of k th dimension. The proposed algorithm MMISP tackles this issue by considering complex and heterogeneous sequences, where a sequence contains elementary sequences, i.e. itemsets whose items can be of two types: atomic and different in nature taken from user-defined taxonomies or subsets of unordered sets of items.

Discovering CPO-Patterns

Casas-Garriga [2005] presented the first algorithm for discovering cpo-patterns in a sequence database. The author focuses more on the formalisation of the cpo-pattern notion, and therefore does not provide an efficient algorithm for mining cpo-patterns. The proposed method spans two steps. First, the set of closed sequential patterns is extracted by using an existing algorithm, namely C S [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF] or BIDE [START_REF] Wang | Bide: Efficient mining of frequent closed sequences[END_REF]. Second, the obtained closed sequential patterns are post-processed in order to build cpo-patterns. Firstly, the prefix-tree that covers all sequences from a database D S is built, and then recursively frequent sub-prefix-trees on subsets of D S are extracted. Secondly, since the prefix property of sequences is used to mine the complete set of sub-prefix-trees, the associated cpo-patterns contain redundant vertices and edges, and hence a pruning and merging step is necessary.

Furthermore, [START_REF] Mannila | Discovery of frequent episodes in event sequences[END_REF] proposed to mine frequent episodes in a single long input-sequence, where an episode is formalised as a DAG.

Filtering and Ranking Sequential Patterns

To cope with the "pattern explosion" problem, there are two approaches. First, pushing constraints into the mining process, e.g. [START_REF] Garofalakis | Spirit: Sequential pattern mining with regular expression constraints[END_REF] proposed to use regular expressions as user-defined constraints in order to prune patterns during the mining process.

Second, measures of interest, e.g. δ-freeness [START_REF] Hébert | Mining frequent δ-free patterns in large databases[END_REF] and cosine interest [START_REF] Cao | Scaling up cosine interesting pattern discovery: A depthfirst method[END_REF], can be used to rank or filter the generated patterns, and therefore facilitating their evaluation by domain experts. For example, [START_REF] Fabrègue | Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment[END_REF] [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF]. [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF] surveyed existing interestingness measures that can be applied to all types of patterns since these measures rely mainly on the support measure. For example, the confidence measure [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF] is used to filter association rules discovered in a transaction database. An association rule is a logical implication X → Y , where X (antecedent) and Y (consequent) are sets of items and X ∩ Y = ∅. The confidence of such an association rule determines how often the items in Y appear in transactions containing the items in X. Therefore, only association rules with high values of confidence can be selected to be evaluated by domain experts.

Formal Concept Analysis

Formal Concept Analysis (FCA, [START_REF] Barbut | Ordre et classification : algebre et combinatoire[END_REF] and [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF]) is a mathematical framework used for data analysis and knowledge discovery. FCA encodes binary data into a formal context and yields a hierarchy of conceptual abstractions.

Definition 2.18 (Formal Context).

A formal context K is a 3-tuple (G, M, I), where G is a set of objects, M is a set of attributes and I ⊆ G × M is a binary relation that specifies which objects have which attributes.

A formal context K 1 = (G 1 , M 1 , I 1 ) is shown in Tab. 2.
3 by using a cross table, i.e. the rows are the objects G 1 = {g1, g2, g3, g4, g5}, the columns are the attributes M 1 = {m1, m2, m3, m4}

and a cross from a cell identified by a pair (g i , m j ) ∈ I 1 signifies that object g i ∈ G 1 has attribute m j ∈ M 1 . 

K 1 m1 m2 m3 m4 g1 × × g2 × × g3 × × g4 × × g5 × × ×
Two derivation operators, both denoted by , are defined for X ⊆ G and Y ⊆ M as follows: Using the K 1 formal context (Tab. 2.3), if we consider the set of objects

: 2 G → 2 M , X = {m ∈ M |∀g ∈ X, (g, m) ∈ I} : 2 M → 2 G , Y = {g ∈ G|∀m ∈ Y, (g, m) ∈ I}
X 1 = {g1}, then X 1 = Y 1 = {m1, m2}. Since Y 1 = {g1, g5} = X 2 and X 1 = X 2 , (X 1 , Y 1 ) is not a formal concept, while (X 2 , Y 1 ) is a formal concept.
Definition 2.20 (Formal Concept Support). The support of a concept C = (X, Y ) is defined as the cardinality of X.

To illustrate this, the support of concept

(X 2 , Y 1 ) is |X 2 | = |{g1, g5}| = 2.
Let C K be the set of all formal concepts derived from a formal context K = (G, M, I). Let C 1 = (X 1 , Y 1 ) and C 2 = (X 2 , Y 2 ) be two concepts from C K . The concept generalisation order, referred to as K , is defined by [START_REF] Roth | On succint representation of knowledge community taxonomies with formal concept analysis[END_REF].

C 1 K C 2 if X 1 ⊆ X 2 (⇔ Y 2 ⊆ Y 1 ). In this case, C 1 is called a subconcept of C 2 and C 2 a superconcept of C 1 . If C 1 ≺ K C 2 and there is no C 3 such that C 1 ≺ K C 3 ≺ K C 2 , then C 1 is a lower neighbour of C 2 , denoted by C 1 K C 2 and C 2 is an upper neighbour of C 1 , denoted by C 2 K C 1
The set C K ordered by K forms a complete lattice, denoted by L K = (C K , K ), which is called the concept lattice of the formal context K [START_REF] Wille | Restructuring lattice theory: An approach based on hierarchies of concepts[END_REF]. We denote by (L K ) the concept from C K whose extent has all the objects in G and by ⊥(L K ) the concept from C K whose intent has all the attributes in M . Lattice L K is represented by a Hasse diagram where the vertices are the concepts in C K and the edges are defined by the relation K . 

3). Each

concept is represented by a box structured from top to bottom as follows: concept name, simplified intent and simplified extent. The representation of the lattice is simplified as every attribute/object is top-down/bottom-up inherited. Thus an attribute/object is shown only in the highest/lowest concept where it appears. For example, in Fig. 2.4, the CK1 6 concept has the intent {m1,m2}, where the attributes m1 and m2 are inherited from the CK1 9 and CK1 8 concepts, respectively. The CK1 6 concept extent is {g1,g5}, where object g5 is inherited from the CK1 1 concept. 
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Computing Formal Concepts and Concept Lattices

Many studies have been dedicated to compute all formal concepts derived from a formal context and the associated concept lattice. [START_REF] Kuznetsov | Comparing performance of algorithms for generating concept lattices[END_REF] classified existing algorithms into batch algorithms and incremental ones. Given a formal context, batch algorithms (e.g. [START_REF] Ganter | Two basic algorithms in concept analysis[END_REF], [START_REF] Bordat | Calcul pratique du treillis de galois d'une correspondance[END_REF] and [START_REF] Kuznetsov | A fast algorithm for computing all intersections of objects in a finite semi-lattice[END_REF]) build the set of formal concepts and its Hasse diagram from scratch. In contrast, incremental algorithms (e.g. [START_REF] Norris | An algorithm for computing the maximal rectangles in a binary relation[END_REF], [START_REF] Godin | Incremental concept formation algorithms based on galois (concept) lattices[END_REF], [START_REF] Carpineto | A lattice conceptual clustering system and its application to browsing retrieval[END_REF] and [START_REF] Merwe | Addintent: A new incremental algorithm for constructing concept lattices[END_REF]) compute at the i th step the set of formal concepts or the Hasse diagram for the i first objects of a formal context. For example, the N C algorithm [START_REF] Ganter | Two basic algorithms in concept analysis[END_REF] uses a linear order on the set of objects and generates formal concepts in the lexicographical order of their extents. At each step a current object is considered and a generated formal concept is unique (i.e. the concept is derived for the first time) if its extent comprises no predecessor of the current object. [START_REF] Bordat | Calcul pratique du treillis de galois d'une correspondance[END_REF] proposed a level-wise algorithm that uses a top-down strategy to build formal concepts and the corresponding lattice. First, this algorithm finds all maximal subsets of objects; second, builds the corresponding concepts, and then computes new maximal subsets of the subsets generated at the first step. The process is repeated for the new maximal subsets of objects. A tree structure is used for fast storing and to retrieve concepts. [START_REF] Valtchev | Building concept (galois) lattices from parts: Generalizing the incremental methods[END_REF] introduced an algorithm that divides a formal context into two parts by splitting the set of objects/attributes. Then, both Hasse diagrams obtained for these two parts are assembled into a global lattice. This approach is suitable for parallel computing.

Since the number of formal concepts can be exponential in the size of the input context, [START_REF] Godin | Building and maintaining analysis-level class hierarchies using galois lattices[END_REF] introduced the attribute-object-concept poset (AOC-poset) that is a sub-hierarchy of the obtained concept lattice that comprises only highest concepts introducing an attribute and lowest concepts introducing an object. There are a few algorithms proposed to compute such reduced lattices, e.g. [START_REF] Berry | Hermes: a simple and efficient algorithm for building the aoc-poset of a binary relation[END_REF]. [START_REF] Stumme | Efficient data mining based on formal concept analysis[END_REF] proposed the T algorithm that allows to compute an iceberg concept lattice from a formal context. An iceberg concept lattice consists in all frequent concepts derived from a formal context. Let us mention that a concept is frequent if its support is greater than or equal to a user-defined minimum support θ.

Several tools are available online for computing formal concepts and concept lattices, e.g. C E2 and T J3 .

Conceptual Scaling

There are many cases when the analysed data contain objects related to attributes that can take several values. [START_REF] Wille | Concept lattices and conceptual knowledge systems[END_REF] formalised such data as a many-valued context (G, M, W, I),

where G is a set of objects, M is a set of attributes, W is a set of attribute values and I ⊆ G × M × W such that (g, m, v) ∈ I and (g, m, w) ∈ I always imply v = w. Let us note that (g, m, w) indicates that object g has value w for attribute m.

For each many-valued attribute m ∈ M a formal context can be derived by means of conceptual scaling. Various types of scaling exist [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF]. This thesis relies on elementary scales, e.g. nominal scaling and ordinal scaling. The nominal scales are used to scale a multi-valued attribute whose values mutually exclude each other. Therefore, a partition of the objects into extents is obtained. The ordinal scales are used to scale a multivalued attribute whose values are ordered and each value implies the weaker ones.

FCA Extensions

There are several extensions of FCA that allow to manipulate complex data (e.g. graphs, intervals and logical formulae) or n-ary relations between objects. In the following, we briefly state the main ideas of several extensions that are relevant in our work.

Power Context Family (PCF, [START_REF] Wille | Conceptual graphs and formal concept analysis[END_REF] and [K ötters, 2016]) is a family of formal contexts linked by their sets of objects. To our knowledge, it was the first attempt to embed arbitrary n-ary relations between objects (at the context level) in FCA. Let us note that FCA naturally handles no relation. Formally, a power context family is a n-tuple

(K 1 , K 2 , ..., K n ), n ≥ 2 with K i = (G i , M i , I i ) such that G i ⊆ (G 1 ) i , i ∈ {1, .
.., n}. Therefore, K 1 is the formal context that describes a set of objects and K n is the formal context describing n-ary relations that link n of these objects. For each formal context a lattice is built, and thus the navigation of the lattice built from K 1 does not consider the relational properties.
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In Logical Concept Analysis (LCA, [START_REF] Ferré | A logical generelization of formal concept analysis[END_REF]) an object is described by a logical formula instead of a set of attributes as in classical FCA. LCA considers a logical context K as a 3-tuple (G, L, d), where G is a set of objects, L is a logic (lattice) that describes the domain and d is a mapping that associates a formula in L to each object in G. A logical concept C is a pair (X, f ), where the extent X ⊆ G is the set of objects whose description is subsumed by f ; the intent f ∈ L is the most precise formula that subsumes all descriptions of the objects of X. The set of all logical concepts derived from K can be ordered and a lattice L K is obtained.

Pattern Structures (PS, [START_REF] Ganter | Pattern structures and their projections[END_REF]) use a pattern, instead of a set of attributes, as object description. This extension can be applied directly to complex data without involving a conversion of these complex data into binary ones. A pattern structure is a 3-tuple (G, (D, ), δ), where G is a set of objects, (D, ) is a semi-lattice of potential object descriptions and δ is a mapping that associates a description in (D, ) with each object in G.

From this pattern structure are derived pattern concepts, which can be ordered according to the inclusion on extents into a lattice of pattern concepts.

Graph-FCA (G-FCA, [START_REF] Ferré | A proposal for extending formal concept analysis to knowledge graphs[END_REF]) is an extension of FCA where objects are substituted with n-tuples of objects. The input of G-FCA is a knowledge graph (e.g. conceptual graphs or RDF graphs), called graph context, formalised as (G, M, I), where G is a set of objects, M is a set of attributes, and I ⊆ G * × M is an incidence relation that relates k-tuples of objects from G * and attributes from M . From this graph context are derived graph concepts with projected graph patterns as intents and object relations as extents. These graph concepts can be organised into a graph concept lattice.

Finally, this thesis focuses on the Relational Concept Analysis extension of FCA, and therefore we recall its theoretical aspects in the following.

Relational Concept Analysis

Relational Concept Analysis (RCA, [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF]) was devised to explore multi-relational data. Indeed, RCA classifies sets of objects described by attributes and relations, allowing to discover knowledge patterns and implication rules in relational datasets by applying iteratively FCA to a relational context family (the RCA input).

Definition 2.21 (Relational Context Family (RCF)).

A relational context family is a pair (K, R):

-K = {K i } i∈[1,n] is a set of formal contexts K i = (G i , M i , I i ); -R = {R j } j∈[1,m] is a set of relational contexts R j = (G k , G l , r j ), where r j ⊆ G k × G l is a binary relation with k, l ∈ [1, n], G k = dom(r j ) is the domain of the relation and G l = ran(r j )
is the range of the relation.

Formal Concept Analysis (FCA)

Briefly, an RCF spans several categories of objects described within formal contexts and relations between these objects. To illustrate this, let us consider the K1 = (G 1 , M 1 , I 1 ) and K2 = (G 2 , M 2 , I 2 ) formal contexts shown in Fig. 2.5a and 2.5b, respectively. Using these two formal contexts and the relational context R1 shown in Fig. 2.5c, we build the RCF ({K1, K2}, {R1}). R1 defines the relation r1 ⊆ G 1 ×G 2 between the objects of G 1 = {a1, a2, a3, a4} and G 2 = {b1, b2, b3}, e.g. (a1, b1) ∈ r1. For each formal context in an RCF, an initial lattice is built using any classical FCA algorithm. For example, L K1 (Fig. 2.6a) and L K2 (Fig. 2.6b) represent respectively the initial lattices built for the K 1 and K 2 formal contexts. RCA relies on a relational scaling mechanism that is used to transform a relation r j ⊆ G k ×G l into a set of relational attributes that extends the K k formal context, which describes the set of objects G k = dom(r j ), to a K + k scaled context.

K1 m1 m2 m3 a1 × × a2 × × a3 × a4 × × (a) K1 K2 m1 m2 m3 b1 × × b2 × b3 × (b) K2 R1 b1 b2 b3 a1 × × a2 × × a3 × × a4 × × (c) R1

Definition 2.22 (Relational Attribute

). Given a binary relation r j ⊆ G k ×G l , a formal context K l describing the G l = ran(r j ) set of objects and the set of concepts C K l derived from K l . A relational attribute takes the syntactic form qr j (C), where q is a scaling quantifier, r j is the scaled relation and

C = (X, Y ) ∈ C K l .
The relational attribute qr j (C) highlights a relation between g ∈ G k and the objects of X based on r j .

Several scaling quantifiers used in RCA are shown in Tab. 2.4.

Table 2.4: Several quantifiers for relational scaling mechanism [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF].

r j ⊆ G k × G l is a binary relation, g ∈ G k and C = (X, Y ) ∈ C K l , where C K l is derived from K l whose set of objects is G l Quantifier Name Relational Attribute Condition Universal ∀r j (C) r j (g) ⊆ X Existential ∃r j (C) r j (g) ∩ X = ∅ Universal strict ∀∃r j (C) r j (g) ⊆ X and r j (g) = ∅ Qualified cardinality restriction (max) ≥ n r j (C) r j (g) ⊆ X and |r j (g)| ≥ n Qualified cardinality restriction (min) ≤ n r j (C) r j (g) ⊆ X and |r j (g)| ≤ n Definition 2.

(Relational Extension of a Formal Context). Given a binary relation

r j ⊆ G k × G l , two formal contexts K k = (G k , M k , I k ) and K l = (G l , M l , I l ), the set of concepts C K l derived from K l and a scaling quantifier q. The relational extension of K k , denoted by K r j k , is a 3-tuple (G r j k , M r j k , I r j k ) where: -G r j k = G k ; -M r j k = {qr j (C)|C ∈ C K l }; -I r j k = {(g, qr j (C))|g ∈ G k , C = (X, Y ) ∈ C K l ,
g is connected by r j and q to objects of X}. I r j k depends on the chosen scaling quantifier, e.g. when the ∃ quantifier is used I

r j k = {(g, ∃r j (C))|g ∈ G k , C = (X, Y ) ∈ C K l , r j (g) ∩ X = ∅}.
Furthermore, the relational extension of the formal context K k when n relations r j i with i ∈ {1, ..., n} are considered, referred to as K

r jn k , is a 3-tuple (G r jn k , M r jn k , I r jn k ) where: -G r jn k = G k ; -M r jn k = n i=1 M r j i k ; -I r jn k = n i=1 I r j i k . Definition 2.24 (Scaled Context). Given a formal context K k = (G k , M k , I k ) and a relational extension K r j k = (G r j k , M r j k , I r j k ) of K k . The scaled context K + k of K k is a 3-tuple (G + k , M + k , I + k ) where: -G + k = G k ; -M + k = M k ∪ M r j k ; -I + k = I k ∪ I r j k .
To illustrate these, K1 (Fig. 2.5a) is upgraded with relational attributes built using concepts from L K2 (Fig. 2.6b), and thus the K1 + scaled context shown in Fig. 2.7a is obtained.
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Scaled context K1 + was obtained by applying the existential scaling to the r 1 binary relation. For instance, the a3 object has the relational attribute ∃r1(CK2 1) since the extent of CK2 1 contains b2 and (a3, b2) ∈ r1. The FCA algorithm is again applied to the upgraded RCF ({K1 + , K2}, {R1}). A family of lattices is generated comprising two lattices: lattice L K1 + shown in Fig. 2.7b built from K1 + and lattice L K2 given in Fig. 2.6b. Let us note that L K2

is unchanged since the G 2 set of objects is not the domain of any relation in our illustrative example. These two lattices can be navigated following the concepts used to build relational attributes. For example, ∃r1(CK2 1) of the CK1 7 concept intent (Fig. 2.7b) allows us to navi- The RCA process, depicted in Fig. 2.8, firstly, consists in applying an FCA algorithm (Sect. 2.3.1) to each formal context of an RCF in order to obtain the initial lattices. Then, FCA is applied iteratively to each formal context extended by the relational attributes built with the concepts previously learnt. The RCA output is obtained when a fix point is found, i.e.

gate from lattice L K1 + to concept CK2 1 in lattice L K2 . K1 + m1 m2 m3 ∃r1(CK2 4) ∃r1(CK2 3) ∃r1(CK2 2) ∃r1(CK2 1) a1 × × × × × × a2 × × × × × a3 × × × × × a4 × × × × × (a) K1 + CK1_5 ∃r1(CK2_4) ∃r1(CK2_3) ∃r1(CK2_2) CK1_4 m1 CK1_2 a4 CK1_3 m2 CK1_0 ∃r1(CK2_0) CK1_1 m3 a2 CK1_6 a1 CK1_7 ∃r1(CK2_1) a3 (b) L K1 +
the families of lattices of two consecutive steps are isomorphic and the formal contexts are unchanged. This fix point is always found since the process is monotonic and bounded. 
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In our illustrative example (Fig. 2.5), the family of lattices obtained by applying FCA to the upgraded RCF ({K1 + , K2}, {R1}) represents the fix point. Therefore, the RCF is not again upgraded since there is no new learnt concept.

Related Work

In the following, we discuss the FCA-based and the multi-relational data mining (MRDM, [START_REF] Džeroski | Multi-relational data mining: An introduction[END_REF]) approaches for mining sequential data. We mention as well the existing RCA-based works. In addition, we present some methods to reduce the complexity of a concept lattice.

FCA-Based Approaches for Exploring Sequential Data

There are various related FCA approaches used to explore sequential data. [START_REF] Wolff | Temporal Concept Analysis[END_REF] introduced Temporal Concept Analysis where objects are characterised by a date and a state (i.e. a set of attributes). The data are merged into a single context and the resulting concept lattice is analysed thanks to the date element in the concepts. Therefore, the temporal relations between concepts are revealed manually by domain experts. This approach was used to analyse sequential data about crime suspects [Poelmans et al., 2010a]. [START_REF] Ferré | The efficient computation of complete and concise substring scales with suffix trees[END_REF] proposed to analyse strings in order to find linear orders, i.e. substrings.

The method is applied to a string context built from the titles of all published papers at an international conference in a given period of time. The aim is to compute the complete set of maximal substrings.

In [START_REF] Casas-Garriga | Summarizing sequential data with closed partial orders[END_REF], closed sequential patterns are mined by using the BIDE [START_REF] Wang | Bide: Efficient mining of frequent closed sequences[END_REF] or C S [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF] algorithms, and then regrouped in a lattice similar to a concept lattice obtained with FCA.

Recently, [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF] have analysed sequential data by using the PS extension of FCA. From multidimensional and multilevel sequential data a sequential pattern structure is built. To overcome the large number of concepts in the pattern concept lattice, the projections of the sequential pattern structure are used. Therefore, these mathematical projections significantly decrease the number of patterns (i.e. patterns from the (D, ) sequential meet-semilattice) depending on the motivation behind the analysis step. The approach was applied to medical data.

FCA can classify and filter complex data (e.g. graphs and sequences) based on its extensions. For instance, the set of cpo-patterns, denoted by D, obtained by using a cpo-pattern mining algorithm, e.g. [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF] or [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF], can be combined with the intersection operation on graphs in order to build a pattern structure (G, (D, ), δ), where G is the set of objects described by the obtained cpo-patterns through relation δ.

Formal Concept Analysis (FCA)

In addition, [START_REF] Cellier | Partial orders and logical concept analysis to explore patterns extracted by data mining[END_REF] explained how LCA can be used to organise already extracted patterns in a concept lattice. Similarly, [START_REF] Egho | A FCA-based analysis of sequential care trajectories[END_REF] combined the sequential pattern mining and FCA domains to explore a database of heterogeneous sequences. Heterogeneous sequential patterns are extracted relying on algorithm M SP [START_REF] Plantevit | Mining multidimensional and multilevel sequential patterns[END_REF]. Then, FCA is used to organise the obtained sequential patterns. The formal context is built by taking patients as objects and sequential patterns as attributes. The approach is applied to medical data.

Multi-Relational Approaches for Exploring Sequential Data

Multi-relational data can be mined with propositional data mining algorithms by transforming these data into a single table (task usually achieved by means of propositionalization [START_REF] Kramer | Propositionalization approaches to relational data mining[END_REF]). In contrast, MRDM respects the multi-relational nature of such data.

For example, [START_REF] Jacobs | From shell logs to shell scripts[END_REF] presented an approach to find frequent shell scripts in shell logs. This work is seen as a relational pattern discovery task in sequential data and is based on system W [START_REF] Dehaspe | Discovery of frequent datalog patterns[END_REF]. Indeed, the shell commands induce a sequence, according to their execution order, and each command can be related to one or more parameters. [START_REF] Esposito | Multi-dimensional relational sequence mining[END_REF] proposed an Inductive Logic Programming (ILP, [START_REF] Muggleton | Inductive logic programming[END_REF]) algorithm for discovering first-order sequential patterns in multidimensional relational sequences (e.g. sequences where spatial and temporal information coexist). [START_REF] Ferreira | Exploring multi-relational temporal databases with a propositional sequence miner[END_REF] proposed the M S framework to explore multi-relational sequential data, where the order relation on itemsets is temporal. To this end, the multi-relational temporal data are converted into a set of heterogeneous sequences, one for each object of interest from a target table. Such a sequence can include intra-table and/or inter-table relations within the temporal data. Then, the obtained set of sequences is mined using a classical sequential pattern mining algorithm, e.g. [START_REF] Pei | Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth[END_REF] or [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF]. The extracted sequential patterns are filtered and only the most interesting ones are used to enlarge (as attributes) the original multi-relational database (the target table) by specifying which object of interest is characterised by a particular selected pattern. Finally, from the enlarged database a classification model is induced based on an ILP algorithm.

Moreover, related approaches exist in data stream mining, where a data stream represents a sequence of instances generated and gathered continually. For instance, [START_REF] Silva | Multi-relational pattern mining over data streams[END_REF] introduced the S FP-S method, which joins the MRDM and data streaming techniques for discovering frequent itemsets in large star schemas [START_REF] Kimball | The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling[END_REF]. A star schema consists in a fact (central) table interrelated via foreign keys with dimensional tables. The same authors proposed the S FP-G [START_REF] Silva | Pattern mining on stars with fp-growth[END_REF] algorithm for mining frequent multi-relational itemsets in a relational database mod-
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elled as a star schema. This pattern-growth algorithm builds for each dimension a FP-tree structure of all frequent patterns. Then, these FP-trees are combined based on the fact table into a Super FP-tree structure on which the FP-Growth [START_REF] Han | Mining frequent patterns without candidate generation: A frequent-pattern tree approach[END_REF] algorithm is applied to list all multi-relational patterns. [START_REF] Silva | Finding multi-dimensional patterns in healthcare[END_REF] used this approach to analyse hepatitis data.

A Brief Survey on RCA-Based Works

Various works from software engineering rely on RCA. [START_REF] Dao | Improving generalization level in uml models iterative cross generalization in practice[END_REF], [START_REF] Arévalo | Building abstractions in class models: Formal concept analysis in a model-driven approach[END_REF],

and [START_REF] Huchard | Relational concept discovery in structured datasets[END_REF] applied RCA to reorganise hierarchies of classes from UML models. [START_REF] Moha | Refactorings of design defects using relational concept analysis[END_REF] focused on the identification and semi-automatic correction of design defects from object-oriented software systems. [START_REF] Saada | Generation of operational transformation rules from examples of model transformations[END_REF] used RCA to learn model transformation rules from transformation examples. In [Azmeh et al., 2011a], the relations between abstract tasks are used to classify relevant Web services to instantiate the tasks.

Several works in ontology engineering are based on RCA. [START_REF] Bendaoud | Formal concept analysis: A unified framework for building and refining ontologies[END_REF] combined FCA and RCA for building and refining domain ontologies. Rouane-Hacene et al.

[2011] proposed an approach for ontologies restructuring. In [START_REF] Shi | Mining for reengineering: An application to semantic wikis using formal and relational concept analysis[END_REF], an effective method for reengineering semantic wikis is proposed. [START_REF] Azmeh | Querying Relational Concept Lattices[END_REF] focused on the navigation of the RCA output and on reducing its complexity. To this end, multi-relational data are encoded into the RCA input based on a user-defined query. The query is seen as a DAG that specifies the order on relations. The obtained family of concept lattices is navigated, following the given order, to obtain the objects that satisfy this query. [START_REF] Codocedo | A proposition for combining pattern structures and relational concept analysis[END_REF] proposed to combine the RCA and PS extensions of FCA.

RCA is adapted to integrate a description of G 1 , a set of source objects with descriptors (coming from a pattern structure (G 1 , (D, ), δ)) and relational attributes to a set of concepts on

a target formal context (G 2 , M 2 , I 2 ). For a relation r ⊆ G 1 × G 2
, the relational attributes are built using the classical quantifiers, e.g. ∃ or ∀∃. This is formalised as "heterogeneous pattern structure". An application to the Information Research domain is described, where the source objects are documents, the descriptors are vectors of intervals of Latent Variable values, the target objects are terms grouped into concepts when they have the same meaning (represented by a synset) and the relation r connects documents to their included terms.

Latent Variables abstract hidden topics spread over the documents. [START_REF] Dolques | Advances in Knowledge Discovery and Management: Volume 5, chapter Relational Concept Analysis for Relational Data Exploration[END_REF] proposed an adaptation of RCA to explore relations in a guided way in order to increase the pertinence of the results. To this end, at each step the user can select dynamically the formal contexts that are considered and/or the quantifiers used for relational scaling. In [START_REF] Dolques | Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis[END_REF], AOC-posets [START_REF] Godin | Building and maintaining analysis-level class hierarchies using galois lattices[END_REF] are used rather than concept lattices to reduce the complexity of the RCA output. This variant is applied to discover rules in hydro-ecological data. Furthermore, [START_REF] Dolques | RCA as a data transforming method: a comparison with propositionalisation[END_REF] showed that RCA uses the relational scaling mechanism to transform the multi-relational data into a singe table similarly to propositionalization approaches.

There are several tools that can be used to apply RCA as follows: G4 , RCA5 and RCAE 6 .

Filtering and Ranking Formal Concepts

A well-known problem of the FCA-based approaches is the exponential number of concepts that can be derived in the worst-case scenario from a formal context. Recently, [START_REF] Dias | Concept lattices reduction: Definition, analysis and classification[END_REF] have surveyed the techniques for concept lattice reduction and proposed to group them into: redundant information removal, simplification and selection. Our work is concerned with the selection techniques.

A popular measure used in FCA for ranking concepts is the stability index [START_REF] Kuznetsov | On stability of a formal concept[END_REF] and its new estimates [START_REF] Buzmakov | Scalable estimates of concept stability[END_REF]. Two types of stability are defined by [START_REF] Kuznetsov | Reducing the representation complexity of lattice-based taxonomies[END_REF], namely extensional and intensional. The extensional stability indicates how a concept extent depends on particular attributes of a formal context. The intensional stability indicates the probability of preserving the concept intent when removing some objects of a formal context. [START_REF] Jay | Analysis of social communities with iceberg and stability-based concept lattices[END_REF] used iceberg lattices and stability index in social healthcare network analysis. [START_REF] Klimushkin | Approaches to the selection of relevant concepts in the case of noisy data[END_REF] introduced two new measures of interest, precisely probability and separation of concepts, and discussed how they can be combined with stability index. In addition, the authors showed that stability is more reliable for selecting formal concepts derived from noisy data. Recently, [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF] have used stability index and projections of sequential pattern structures to select relevant heterogeneous medical sequential patterns. The projections of sequential pattern structures are used to introduce user-defined constraints in the mining process, e.g. for heterogeneous medical sequences some additional information can be ignored during the mining process.

Formica [2008] and [START_REF] Alqadah | Similarity measures in formal concept analysis[END_REF] defined the similarity measures of formal concepts in order to cluster formal concepts without relying on human domain expertise. [START_REF] Melo | Extracting and visualising tree-like structures from concept lattices[END_REF] used visualisation techniques to enhance the readability of concept lattices. Trees derived from a concept lattice are extracted based on measures of interest, e.g. stability, support and confidence (estimates how likely an object which has an attribute set A, also has an attribute set C [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF]) of formal concepts. [START_REF] Belohlavek | Basic level in formal concept analysis: Interesting concepts and psychological ramifications[END_REF] proposed to compute the degree to which a formal concept belongs to a basic level [START_REF] Rosch | Principles of categorization[END_REF]. A basic level is seen as a fuzzy set [START_REF] Zadeh | Fuzzy sets[END_REF] [START_REF] Dias | Reducing the size of concept lattices: The jbos approach[END_REF] proposed a different approach to reduce the complexity of a concept lattice, precisely junction based on object similarity. A formal context is preprocessed replacing groups of similar objects by representative objects. To this end, based on domain knowledge a weight is assigned to each attribute of the formal context and it is used to compute the similarity between objects. A similarity matrix is created from which clusters of similar objects are extracted. These clusters are used to remodel the original formal context from which a concept lattice is built using a classical FCA algorithm.

Summary

In this chapter, we have presented the theoretical underpinnings of this thesis, namely sequential pattern mining, FCA and RCA. In addition, we have discussed already proposed approaches for exploring sequential data.

We have outlined several FCA-based and MRDM approaches that deal with sequential data. Most of these approaches rely on propositional algorithms to extract sequential patterns (rather than cpo-patterns). The FCA-based approaches organise already discovered patterns into a hierarchy, e.g. a pattern concept lattice.

3 Relational Analysis of Sequential Data 

Introduction

In this chapter, we present the first two steps of the RCA-S approach, precisely the data preprocessing and the RCA-based exploration of sequential data. To this end, firstly, we explain how to clean and preprocess the raw data to obtain sequences. Secondly, we transform the generated sequences into the input of RCA based on a general data model. Lastly, we explain the concept lattices from the RCA output and we show how domain experts can leverage the "richness" of these results, i.e. their hierarchical nature and the various captured information, in order to discover interesting and useful patterns.

Chapter 3. Relational Analysis of Sequential Data

Running Example

Patterns hidden in sequential medical data about patients and their medical histories can provide valuable knowledge for physicians. Here, we propose to study the symptoms (e.g. fever, headache, fatigue, and cough) that indicate the presence of viruses (e.g. influenza and hepatitis) in patients. The symptoms and viruses are detected by medical examinations and viral tests, respectively.

Table 3.1 shows an illustrative example of medical data from last year, where we focus on influenza virus. We consider that these data are exported from a relational database. Physicians try to assess the cough and fever symptoms felt by patients to better understand how to identify in advance the outbreak of influenza A or B virus and to distinguish between the influenza A and B outbreaks. The symptoms can be moderate or high, while the influenza virus can be of type A or B. Thus, in this example we deal with qualitative medical data. For instance, patient P3 underwent four medical examinations and did a viral test. The first medical examination was on February 3 rd when patient P3 experienced moderate fever.

Data Preprocessing

The second medical examination was on April 10 th when the same patient P3 experienced high cough. The third medical examination was on April 11 th when the same patient P3 experienced moderate cough. The fourth medical examination was on April 12 th when patient P3 experienced high fever. Then, on April 13 th , patient P3 was diagnosed with influenza A virus.

Let us mention that only pertinent medical data are considered to recognise influenza outbreaks. We suppose that physicians focus on the viral tests done after at least one medical examination. They are also interested in the medical examinations undergone by patients within 10 days before their viral tests.

Data Preprocessing

To discover patterns in such medical data (Tab. 3.1), which are already discretized, we apply a data cleaning process. Then, the obtained data are transformed into sequential data from which qualitative sub-datasets are built based on the type of the diagnosed influenza virus.

Data Cleaning

The data cleaning process relies on the two aforementioned requirements:

only the medical examinations undergone by patients within 10 days prior to their viral tests are analysed. Therefore, the medical examination undergone by patient P3 on February 3 rd is not considered since there is no pertinent viral test done by P3;

only the viral tests done after at least one medical examination are analysed. Therefore, the viral test done by patient P1 on December 28 th is not considered since there is no medical examination undergone by P1 within 10 days before this test.

The cleaned medical data are transformed into qualitative sequential sub-datasets as we detail in the following.

Building Qualitative Sequential Sub-Datasets

A patient sequence, as shown in Fig. 3.1, consists in a chronologically ordered set of medical examinations undergone by the same patient and a corresponding viral test that ends the sequence.

A medical examination represents a non-target itemset of symptoms, while a viral test represents a target 1-itemset (set of only one item) comprising the studied item of interest, i.e.

the virus that infected the patient. A viral test points to a patient sequence and is formalised as a 3-tuple (P atient, Date, Result). The pair (P atient, Date) uniquely identifies the viral 

)(Influenza A ) S2 (COUGH high )(Influenza A ) S3 (COUGH moderate )(Influenza A ) S4 (COUGH high )(COUGH moderate FEVER high )(Influenza A ) S5 (COUGH high )(COUGH moderate )(FEVER high )(Influenza A ) S6 (COUGH moderate FEVER high )(COUGH high FEVER moderate )(FEVER high )(Influenza B ) S7 (COUGH moderate )(Influenza B )
From the sequential data shown in Tab. 3.2, we build sub-datasets based on the diagnosed type of influenza virus. Thus, there are two sequential sub-datasets referred to as D Sf luA (the patient sequences from S1 to S5) and D Sf luB (the patient sequences S6 and S7). Let us mention that we actually propose a general data model shown in Fig. 3.4 that allows to encode any qualitative sequential data (where a sequence resembles the one depicted in Fig. 3.1) into the RCA input. For example, the development of a football player skills prior to an upcoming match leading to a sequence of training sessions followed by a player evaluation when the squad role of the player is assigned. 

Modelling Qualitative Sequential Data

Exploration of Qualitative Sequential Data Using RCA

The exploration of qualitative sequential data with RCA spans two main steps: building the RCA input (an RCF), and then applying the RCA process. In the following, we exemplify how to explore such data by using only sub-dataset D Sf luA .

Building the RCA Input

In order to encode D Sf luA (Tab. 3.2) into an RCF we follow the data model depicted in Fig. 

Exploration of Qualitative Sequential Data Using RCA

Analysing the patient sequences in D Sf luA , it is noted that a similar itemset can correspond to several viral tests or medical examinations. For example, the (Influenza A ) target 1-itemset occurs in all 5 analysed sequences, but it corresponds to different viral tests done by patients. Similarly, the (COUGH high ) non-target itemset occurs in the S2, S4 and S5 sequences, but it corresponds to different medical examinations undergone by patients. Furthermore, if we suppose that our sub-dataset comprises all the sequences in Tab. 3.2, we notice that a medical examination can occur in different patient sequences. For instance, the medical examination identified by (P1, 27/09) (Fig. 3.2) occurs in two sequences S1 and S6. Consequently, since in the RCA input we encode the temporal links between these itemsets, we decide to uniquely identify inter-sequence and intra-sequence each occurrence of an itemset. Table 3.3 illustrates how we propose to remodel our patient sequences of itemsets as patient sequences of unique identifiers (UIDs). Formally, let D S be a sequential dataset and S i ∈ D S a sequence of itemsets. We model S i as IS1 Seqi IS2 Seqi...ISp Seqi Seqi , that is, a sequence of UIDs. Let UID S be the set of all such sequences of UIDs derived from the D S sequences. Seqi is the UID of the target itemset and it uniquely identifies the sequence S i . We define G M = {Seqi} i∈ [1,n] , where n = |UID S |, as the set of all the target itemset UIDs in UID S . ISj Seqi is the UID of a non-target itemset and specifies the sequence Seqi that owns the itemset. We define G T = {ISj Seqi} i∈ [1,n];j∈ [1,p] as the set of all the non-target itemset UIDs in UID S , where p is the number of itemsets 

Analysing Relational Conceptual Structures

The RCA output is composed of relational conceptual structures (concept lattices) whose concepts can be navigated by domain experts (physicians in our running example) to obtain regularities from the analysed sequential data. It is worthwhile to mention that, firstly, a concept extent from the main or temporal lattice gathers all the instances from a set of objects (table) that share a set of intra-table and inter-table relations, which allow the navigation of the RCA output. Secondly, the navigation amongst the concept lattices follows the relations given by the proposed data model (Fig. 3.3). Finally, the generalisation order on concepts Let us note that when we do not actually exploit the relations between concepts, the interpretation of each main or temporal concept is imprecise, and thus makes the understanding of the revealed regularity difficult. By considering the qualitative and temporal relations highlighted by the relational attributes of the concept intents, physicians can discover:
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-from concept CKME 9 the frequent itemset "often (7 out Moreover, the information encoded into the UIDs of concept extents can be considered.

For example, the CKME 17 concept extent (Fig. 

Summary

In this chapter, we have presented a new approach for exploring sequential data, which can be gathered from multiple tables out of a relational database, within the framework of RCA.

Our method respects the relational nature of sequential data and provides relational conceptual structures that can be navigated by domain experts to discover regularities from the analysed data. A general data model has been introduced that allows the conversion of various sequential data into the input of RCA.

With a small example we have illustrated the "richness" of the RCA output (which is the benefit of exploiting the relational nature of the analysed data), i.e. the interrelated concept intents via various inter-table and/or intra-table relations, the concept extents that capture more information within the analysed sequential data and the generalisation order on the discovered regularities.

Introduction

In this chapter, we present the third step of the RCA-S approach, namely the extraction of organised multilevel cpo-patterns. To this end, our purpose is to formalise an automatic approach for extracting a hierarchy of multilevel cpo-patterns from the RCA output obtained by exploring qualitative sequential data as explained in Sect. 3.4. To illustrate our method we use the running example from Sect. 3.2 and the RCA output depicted in Fig. 3.5.

Characteristics of the RCA Output Obtained by Exploring

Sequential Data

In order to extract a hierarchy of multilevel cpo-patterns from the RCA output we exploit the structure and the properties of this output.

Structure of the RCA Output

Relying on the data model shown in Fig. 3. in Fig. 3.5c), the lattice of items (e.g. L KS in Fig. 3.5b) and the lattice of the items of interest (e.g.

the lattice of viruses).

Let us recall that in our running example we consider only one virus, e.g. influenza A, and thus we do not build the lattice of the items of interest. In addition, we note that the items used to build itemsets are atomic ones. Furthermore, the RCA-based exploration step employs a relational scaling mechanism that relies on the ∃ quantifier since the objective is to capture all the relations between the analysed objects. Now, we describe the structure of the first three aforementioned concept lattices. For easy reading, we show in Fig. 4.1 excerpts from the RCA output (Fig. 3.5) obtained with our running example. concept extent contains all the items, while the other concept extents, except for the ⊥(L K I )

extent, contain only one item. For example, in Fig. 4.1b, the CKS 3 concept extent is composed of all surveyed items, namely FEVER and COUGH, while the extent of CKS 1 contains only the FEVER item.

Finally, let L K T = (C K T , K T ) be the temporal lattice whose set of temporal concepts C K T is derived from a K T = (G T , M T , I T ) formal context. G T is both the domain and the range of a second temporal relation is preceded by, denoted by ipb 2 ⊆ G T × G T (e.g. medical examination ipb 2 medical examination), that defines the temporal links between the nontarget itemsets. Furthermore, G T is the domain of a set of qualitative relations has item quality, denoted by hi q ⊆ G T ×G I (e.g. medical examination hi q symptom), that define the non-target itemsets. There is a qualitative relation for each item quality (e.g. a symptom can have a moderate or high intensity, and thus we have has item moderate and has item high). Let us note that in our running example has item is called has symptom.

A temporal concept C T ∈ C K T is a pair (X t , Y t ) such that:
the intent Y t can contain two types of relational attributes as follows: the temporal attributes of the form ∃ipb 2 (C T ), e.g. ∃RME-ipb-ME(CKME 9) of the CKME 7 intent (Fig.

4.1c)

, where C T is a concept from the temporal lattice that describes the objects from ran(ipb 2 ) = G T , i.e. C T ∈ C K T ; the qualitative attributes of the form ∃hi q (C I ), e.g. ∃RmS(CKS 2) of the CKME 8 intent (Fig. 4.1c), where C I is a concept from the lattice of items that describes the objects (items) from ran(hi q ) = G I ; -the extent X t gathers all the UIDs in G T identifying non-target itemsets that contain the items revealed by the qualitative relational attributes of Y t and that respect the temporal order with the G T objects pointed by the temporal relational attributes of Y t .

Properties of the RCA Output

In this section, we give some useful properties of the RCA output, which rely on its aforementioned structure, to help the extraction step of cpo-patterns. Briefly, the sequential patterns that coexist in the same sequences in a sequential dataset D S are revealed by navigating interrelated concept intents. Property 4.3. The set of cpo-patterns associated with the L K M main lattice is ordered according to the inclusion on extents. This order corresponds to the subsumption on graphs g (Sect. 2.2.3).

Proof. Let G m and G m be two cpo-patterns with P Gm and P G m their sets of paths. Suppose G m

(resp. G m ) is associated with a concept C M = (X m , Y m ) ∈ C K M (resp. C M = (X m , Y m )) and X m ⊆ X m . Then Y m ⊆ Y m ↔ ∀m ∈ Y m , m ∈ Y m . Then ∀M ∈ P G m , ∃M ∈ P Gm , M s M → G m g G m .
A naive approach to extract cpo-patterns from the RCA output navigates all the temporal and qualitative relational attributes of the interrelated concept intents. This approach generates redundant information, hence the obtained cpo-patterns need post-processing. However, two properties of the RCA output can be used to improve the extraction process. In the following, we show how to directly obtain the minimal representations of the extracted cpopatterns by considering only the relational attributes pointing to the most specific concepts and by pruning the temporal relational attributes that can be deduced by transitivity.

Property 4.4. Let C 1 = (X 1 , Y 1 ) and C 2 = (X 2 , Y 2 ) be two concepts from the same lattice L K = (C K , K ) such that C 1 K C 2 . Let C = (X, Y
) be a concept whose intent has two relational attributes ∃r(C 1 ) and ∃r(C 2 ) (derived from the same relation r). Then ∃r(C 1 ) → ∃r(C 2 ).

Proof. ∃r(C 1 ) ∈ Y ↔ ∀g ∈ X, r(g) ∩ X 1 = ∅. Since C 1 K C 2 , X 1 ⊆ X 2 , and thus r(g) ∩ X 2 = ∅ ↔ ∃r(C 2 ) ∈ Y .
Thus, the relational attributes are ordered and the ∃r(C 2 ) relational attribute is redundant in the interpretation of concept C. Moreover, let Q be the set of all the concepts used to introduce relation r in concept intent C; then, we can remove all the relational attributes ∃r(C ) ∈ Y, C ∈ Q that point to concepts which are upper covers for other ones in Q. We recall that [START_REF] Roth | On succint representation of knowledge community taxonomies with formal concept analysis[END_REF] define an upper cover (or upper neighbour)

C 1 of C 2 in a lattice L K = (C K , K ), denoted by C 1 K C 2 , if C 2 ≺ K C 1 and there is no C 3 ∈ C K such that C 2 ≺ K C 3 ≺ K C 1 . Property 4.5. Let ipb be a temporal relation. Let C = (X, Y ), C 1 = (X 1 , Y 1 ) and C 2 = (X 2 , Y 2 ) be three concepts such that {∃ipb(C 1 ), ∃ipb(C 2 )} ⊆ Y and ∃ipb(C 2 ) ∈ Y 1 . Then ∃ipb(C 2 ) ∈ Y can be deduced from ∃ipb(C 1 ) ∈ Y .
Proof. Property 4.5 is directly obtained from the transitivity of the temporal relation ipb.

From the RCA Output to a Hierarchy of Multilevel

CPO-Patterns

Based on the structure and the properties of the RCA output, we introduce an algorithm that generates directly organised cpo-patterns, one for each main concept in L K M .

The CPOHrchy Algorithm

Algorithms 1 and 2 illustrate our proposal for extracting a hierarchy of cpo-patterns by navigating the RCA output. Since our objective is to directly obtain organised cpo-patterns, and, besides, since there is a generalisation order on the concepts, we propose to use a 3-tuple structure for a main concept C M = (X m , Y m , G m ). We note that G m is the cpo-pattern associated with C M and it is represented as an adjacency list of pointers to concepts. Moreover, since G m is represented as an adjacency list that contains pointers to temporal concepts, we propose to use a 3-tuple structure for a temporal concept C T = (X t , Y t , v t ) as well. We note that v t is the vertex derived from intent Y t . 

Algorithm 1: CPOHrchy

Input : the RCA output comprises L K M = (C K M , K M ), L K T = (C K T K T )
1 C next ← initialise to {C T |(∃ipb 1 (C T )) ∈ Y m }; 2 if |C next | > 1 then 3 UpperCovers ← {}; 4 foreach C T ∈ C next do 5 UpperCovers ← add {C T |C T K T C T } to UpperCovers; 6 end 7 C next ← C next \ UpperCovers; 8 end 9 if |C next | > 1 then 10 ToBeDeleted ← {}; 11 foreach C T = (X t , Y t , v t ) ∈ C next do 12 ToBeDeleted ← add {C T |(∃ipb 2 (C T )) ∈ Y t } to ToBeDeleted ; 13 end 14 C next ← C next \ ToBeDeleted ; 15 end
We propose two optimisations, first, for the CPOHrchy algorithm and second, for the RCA-based exploration step:

1. since a temporal concept C T = (X t , Y t , v t ) can be navigated several times for distinct cpo-patterns, we process C T only at its first navigation, i.e. SearchAdjacentConcepts is 57 Chapter 4. Extraction of Hierarchies of Multilevel CPO-Patterns applied only once and its result is saved for later use; similarly, v t is computed and saved;

2. since a cpo-pattern G m associated with a main concept

C M = (X m , Y m ) is discovered if Support(G m ) = |X m | ≥ θ (
we recall that θ is a user-defined minimum support for the main lattice), then all the navigated temporal concepts C T = (X t , Y t ) should have |X t | ≥ |X m | (this holds since in our case each itemset of a sequence is uniquely identified intra-sequence and inter-sequence). Therefore, we diminish the navigation space by defining a minimum support θ = θ for the temporal lattice as well.

We highlight in Sect. 7.3.2.2 how these two optimisations improve the RCA-S approach.

From Concepts to Vertices Labelled with Itemsets

To convert an adjacency list of pointers to concepts (i.e. the representation of a cpo-pattern obtained with CPOHrchy) to one of vertices labelled with itemsets, we analyse the qualitative relational attributes from these concept intents. It is worthwhile to mention that we apply again Property 4.4 to analyse, for the same qualitative relation, only the most specific concepts used to build the corresponding qualitative relational attributes in a concept intent.

Deriving Items

A qualitative relational attribute can be vague or defined depending on the generality or specificity of the concept it points to. 

is a concept in L K = (C K , K ), is called vague if C ≡ (L K ), respectively it is called defined if C ≺ K (L K ).
Relying on the partial order on items given by lattice L K I (e.g. the lattice of symptoms L KS given in Fig. 4.1b) from the RCA output and on the aforementioned types of relational attributes, we define three types of items that reveal concrete (the most specific) and abstract (the most general) information from the analysed sequential data as follows:

-let C be a concept whose intent contains the ∃hi q (C ) defined qualitative relational attribute, with extent(C ) = {item}. The extracted item is a concrete qualitative item, denoted by "item q ", where q is the item quality. The concrete qualitative item describes a collection of objects (e.g. medical examinations) which point out the occurrence of the same concrete item having the same quality; -let C be a concept whose intent contains the ∃hi q ( (L K I )) vague qualitative relational attribute that summarises all the qualitative relational attributes representing the same 58 4.3 From the RCA Output to a Hierarchy of Multilevel CPO-Patterns qualitative relation. The extracted item is an abstract qualitative item, denoted by "? q ". The abstract qualitative item describes a collection of objects which point out the occurrence of dissimilar items having the same quality; -let C be a concept whose intent has no qualitative relational attribute. Then the extracted item is an abstract item, denoted by "? ? ". The abstract item describes a collection of objects which point out the occurrence of dissimilar items having dissimilar qualities.

Based on these three types of items, we are able to extract multilevel cpo-patterns, i.e. cpopatterns that contain items from a poset (e.g. L KS in Fig. 4.1b). It is worthwhile to mention that these three types emerge for two reasons. Firstly, we use a nominal scaling to build the formal context of items that reveals a partial order over the set of items. Thus, in our running example emerges an abstraction of the fever and cough symptoms, denoted by "?", that represents the surveyed symptoms. Secondly, we highlight the qualitative values of items, e.g. moderate or high cough, by means of qualitative binary relations. Therefore, during the iterative learning process, vague qualitative relational attributes are derived (based on the aforementioned poset and the qualitative relations) that disclose abstract or abstract qualitative items. For instance, we model the moderate and high symptoms into two different qualitative relations, i.e. has symptom high and has symptom moderate, in order to be able to discover qualitative abstractions, namely ? moderate and ? high . In contrast, if the conceptual scaling is used to transform a many-valued attribute (e.g. FEVER that can be high or moderate) into one-value attributes (e.g. FEVER high and FEVER moderate ), which constitute the set of attributes of the formal context built for the medical examinations, the aforementioned qualitative abstractions cannot be revealed.

Labelling Vertices

For each concept intent in the adjacency list of pointers to concepts we derive a vertex labelled with an itemset comprising the items derived from all the qualitative relational attributes of the concept intent, as shown in Fig. 4.3. Figure 4.3a depicts a vertex having an abstract item that characterises all the medical examinations from Tab. 3.1 (i.e. all the objects from the CKME 0 concept extent) since all of them detect at least one high or moderate symptom. Figure 4.3b shows a vertex having an abstract qualitative item characteristic to all the medical examinations from the CKME 9 extent that are described by different symptoms, but all having high intensity. Figure 4.3c illustrates a vertex having a concrete qualitative item characteristic to all the medical examinations from the CKME 6 extent that are described by a specific symptom, namely fever, that has high intensity. 

Complexity Analysis of the RCA-S Approach

First, we present a time complexity analysis of RCA-S that is compared with the time complexity of the [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] approach. Second, we present a space complexity of RCA-S .

Time Complexity

We first consider the method for extracting cpo-patterns presented in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF].

In 

O(m•2•(2•|I|) l +m 3 •|D S |) = O 1 .
We now consider the current RCA-S approach that relies on two algorithms, namely Multi-FCA (the RCA process, [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF]) and CPOHrchy. We focus on the worst-case scenario. Following the proposed data model (Fig. To sum up, the overall time complexity of RCA-S is

O(n c • n o • (n a + n o ) + m • p 2 ) = O 2 .
To compare with the aforementioned complexity O 1 , we consider that the sizes of I and D S -which correspond to sets of objects -are smaller than n o and m, p are smaller than n c .

Then, O 1 is upper bounded by O(n c • 2 • (2 • n o ) l + n 3 c • n o ), while O 2 is upper bounded by O(n c •n o •(n a +n o )+n 3 c ).
Finally, since l is generally greater than 3, the complexity of RCA-S is better than the complexity of the approach described in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] combined with a lattice building step.

Space Complexity

The RCA-S approach extracts multilevel cpo-patterns by navigating concept intents from the L K M and L K T lattices. Thus, the worst-case scenario is when

L K M , L K T and L K I contain respectively 2 |M + M | , 2 |M + T | and 2 |M I | concepts.
Firstly, we discuss the RCA-based exploration step. The space complexity of the RCA

input is O(|G M | • |M M | + |G T | • |M T | + |G I | • |M I | + |G M | • |G T | + |G T | 2 + h • (|G T | • |G I |))
with h the number of the considered qualitative relations. The auxiliary space concerns the upgraded RCA input and the built lattices, which are as well the output of this step. Thus, the space complexity of the upgraded RCA input becomes

O(|G M | • |M + M | + |G T | • |M + T | + |G I | • |M I | + |G M | • |G T | + |G T | 2 + h • (|G T | • |G I |)).
The space complexity of the main lattice

L K M is O(2 • (2 |M + M | + |M + M | • 2 |M + M |-1 )) with 2 • 2 |M + M |
the space used for the unique identifiers of concepts and the number of objects from each main concept extent; 2

• |M + M | • 2 |M + M |-1 the
space used for all concept intents and the upper covers of concepts. Indeed,

|M + M | k
• k is the number of attributes from all concept intents of size k, and thus the number of attributes from all the concept intents becomes

|M + M | k=0 |M + M | k • k = |M + M | • 2 |M + M |-1 .
Accordingly, the space complexity of the RCA output (i.e. the lattices

L K M , L K T and L K I ) is O(2 • (2 |M + M | + |M + M | • 2 |M + M |-1 + 2 |M + T | + |M + T | • 2 |M + T |-1 + 2 |M I | + |M I | • 2 |M I |-1 )) = O α .
Secondly, CPOHrchy has O α as the space complexity of the input. The auxiliary space is

O(3•|M + T |+(V, E)) with (V, E) the space used for G m . The space complexity of the CPOHrchy output is O α +O(2 |M + M | •(V, E))+O(2 |M + T | ), i.e.
the main lattice is updated with a cpo-pattern for each concept and the temporal lattice is updated with a vertex for each concept.

Application to the Running Example

To illustrate our approach, let us consider that we want to extract cpo-pattern G CKVT 10 associated with the CKVT 10 main concept from the lattice of viral tests L KVT (Fig. 3.5a). For easy reading, we give in Tab. 4.1 the intents of the navigated concepts. Following Fig. 4.4, from right to left, we start by examining all temporal relational attributes from the CKVT 10 concept intent (shown in Tab. 4.1) that are ordered according to the generalisation order KME on the concepts used to build them. Since there is only one The evaluation of these cpo-patterns is enhanced since physicians are guided by the relationships between the patterns. In addition, physicians can exploit two benefits of the exploration of sequential data with RCA.

Analysis of a Hierarchy of Multilevel CPO-Patterns

Firstly, the generalisation level regarding the structure of the extracted cpo-patterns (e.g.

the number of items, vertices and/or edges). For instance, the structure of the G CKVT 6 cpopattern associated with concept CKVT 6 is more specific than the structure of its ancestor cpo-patterns, i.e. there exists a projection from its ancestor cpo-patterns into G CKVT 6 . In addition, the G CKVT 4 cpo-pattern associated with the CKVT 4 concept reveals the regularity

Summary

pattern is projected into its descendants. Consequently, when an interesting cpo-pattern is found, domain experts can continue their evaluation by focusing on the surrounding area in the hierarchy. Then, we exploit the order on items revealed by RCA and we extract multilevel cpo-patterns. Therefore, a global view of the trends of the analysed sequential data is obtained. Let us note that the CPOHrchy algorithm can be applied to any sequential data that can be modelled as depicted in Fig. 3.4.

Introduction

In this chapter, we present measures of interest computed by exploiting the "richness" of the RCA-S output that can enhance the pattern evaluation step. Firstly, we propose to cope with the "concept explosion" problem by means of a new distribution index, which makes use of the information encoded in the objects of a concept extent in order to determine the concept relevancy. Secondly, we introduce three types of cpo-patterns that reveal "more or less" accurate information, and, besides, help in not overlooking interesting navigation paths and/or patterns in the obtained hierarchies. Finally, we present a more informative type of cpo-pattern, namely weighted cpo-pattern, that helps in better understanding the obtained pattern by capturing and explicitly showing the different roles of its itemsets in the analysed sequences.

Motivating Example

Based on the same running medical example from Sect. 3.2, let us consider that we explore the sequential data illustrated in Tab. 5.1 collected from the patients P1, P2 and P3 diagnosed as having influenza A virus. Let us suppose that physicians are interested to discover global valid cpo-patterns in the analysed sequential data, as follows:

-frequent cpo-patterns that are related to many monitored patients whose viral tests are evenly distributed amongst them;

-cpo-patterns that reveal regularities available to many analysed sequences. 

Id Sequence S1 (COUGHmoderateFEVERhigh)(COUGHhighFEVERhigh)(COUGHhigh)(FEVERhigh)(InfluenzaA) S2 (COUGHmoderate)(COUGHmoderate)(COUGHmoderateFEVERhigh)(InfluenzaA) S3 (COUGHmoderate)(InfluenzaA) S4 (FEVERhighCOUGHmoderate)(COUGHhigh)(COUGHhigh)(FEVERhigh)(FEVERhigh)(InfluenzaA) S5 (FEVERhigh)(COUGHmoderateFEVERhigh)(COUGHhigh)(COUGHmoderateFEVERhigh)(FEVERhigh)(InfluenzaA) S6 (FEVERhighCOUGHhigh)(InfluenzaA) S7 (FEVERmoderate)(InfluenzaA) S8 (COUGHmoderateFEVERhigh)(FEVERhighCOUGHhigh)(COUGHhigh)(COUGHmoderateFEVERhigh)(FEVERhigh)(InfluenzaA) S9 (COUGHhigh)(InfluenzaA) S10 (COUGHhigh)(COUGHmoderate)(InfluenzaA)
As explained in Sect. 3.4 in order to explore such data by means of RCA, firstly, we remodel the patient sequences shown in Tab. 5.1 as the sequences of UIDs given in Tab. 5.2. 

Distribution Index of a Formal Concept

It is noted that 18 main concepts (cpo-patterns) were derived for θ = 3. As already stated, if θ is decreased the number of cpo-patterns increases and their navigation becomes difficult even if these patterns are organised. Consequently, some measures of interest that can guide the evaluation step are presented in the following.

Distribution Index of a Formal Concept

A measure of interest used to select relevant concepts derived from sequential data should take into account the specificity of these concepts (indeed, the concept extents contain temporal objects) whereas well-known measures (e.g. stability index [START_REF] Kuznetsov | On stability of a formal concept[END_REF] To highlight this difference, we introduce below an approach based on the distribution of a main concept extent that may have a better discriminant power than the stability index. In our example, the concept distribution is different: CKVT 8 is more relevant than CKVT 9 since it better represents both monitored patients.

Formalisation

Let (X m , Y m ) be a formal concept of the main lattice L K M , then its extent X m is a set of temporal objects -or pairs -(Object, Date). If the value of Object is not identical for all the pairs, then these pairs can be grouped into categories by objects. We accordingly define Xm that represents the set of distinct objects from X m pairs:

Xm = {o ∈ O|∃t ∈ T, (o, t) ∈ X m },
where O is the set of objects and T the set of dates. In addition, we define the following measures. 

Definition 5.3 (Distribution Index (IQV)).

The distribution of a main concept (X m , Y m ) describes the number of times each object out of Xm occurs in X m . The Index of Qualitative Variation (IQV, [START_REF] Frankfort-Nachmias | Social Statistics for a Diverse Society, chapter Measures of Variability[END_REF]) is used to measure how the pairs of X m are distributed amongst the objects. We introduce Xm φ = {(o, φ o ) |o ∈ Xm }. IQV is based on the ratio of observed differences in Xm φ to the total number of possible differences within Xm φ when ρ > 1.

If ρ = 1, IQV = 0. IQV = ρ |X m | 2 - ρ i=1 φ oi 2 |X m | 2 (ρ -1) (5.1)
Our choice of IQV [Frankfort-Nachmias and Leon-Guerrero, 2010] stems from the observation that the objects of Xm do not have an intrinsic ordering. IQV ranges from 0 to 1.

When all pairs of X m contain the same object, there is no diversity and IQV = 0. In contrast, when there are different objects and all pairs of Xm φ have equal φ o , there is even distribution and IQV = 1.

Application to a Small Example

Returning to our example (Fig. 5.3):

-both main concepts have XCKVT 8 = XCKVT 9 = {P1, P2};

-XCKVT 9 φ = {(P1, 4) , (P2, 1)};

Accuracy of a Multilevel CPO-Pattern

-XCKVT 8 φ = {(P1, 3) , (P2, 2)};

-both main concepts have the support

|X CKVT 8 | = |X CKVT 9 | = 5;
-both main concepts have the richness ρ CKVT 8 = ρ CKVT 9 = 2;

-for the CKVT 8 main concept the distribution is

IQV CKVT 8 = 2[5 2 -(3 2 +2 2 )] 5 2 (2-1)
= 0.96 and for CKVT 9 the distribution is

IQV CKVT 9 = 2[5 2 -(4 2 +1 2 )] 5 2 (2-1) = 0.64.
Hence, CKVT 8 is more relevant than CKVT 9 since its temporal objects (viral tests) are better distributed amongst the categories (patients), i.e. IQV CKVT 8 > IQV CKVT 9 .

Accuracy of a Multilevel CPO-Pattern

We recall that a multilevel cpo-pattern contains items from a poset. In Sect. 4.3.2.1, we have presented three types of items revealed by RCA-S when dealing with qualitative sequential data, precisely abstract item, abstract qualitative item and concrete qualitative item. Based on the presence of such items in a multilevel cpo-pattern (except for the item of the target itemset), we introduce three types of cpo-patterns that allow us to gradually navigate from general to specific regularities without overlooking interesting ones.

Definition 5.4 (Abstract/Hybrid/Concrete CPO-Pattern). A multilevel cpo-pattern is as follows:

• Abstract if it contains only abstract and/or abstract qualitative items;

• Hybrid if it contains both abstract and/or abstract qualitative items and concrete qualitative items;

• Concrete if it contains only concrete qualitative items.

Hybrid cpo-patterns can be characterised using a measure of precision referred to as accuracy. 

υ(G) = |I c G | |I G | 100 ∈ [0%, 100%] (5.2) If G is abstract, υ(G) = 0%; if G is concrete, υ(G) = 100%.
To illustrate these, let us consider the multilevel cpo-patterns depicted in Fig. 5.4 associated with main concepts in L KVT (Fig. 5.1a). We consider that a regularity occurs often if its support is greater than or equal to 7; sometimes if its support is between 4 and 7; rarely if its support is less than or equal to 4. since its support is equal to 8; G CKVT 15 (Fig. 5.4b) subsumes a group of multilevel cpo-patterns that share the imprecise regularity "often before the outbreak of influenza A virus patients feel moderate symptoms" since its support is equal to 8. Figures 5.4c,5.4d and 5.4e depict three concrete cpo-patterns, such that υ(G CKVT 11 ) = υ(G CKVT 4 ) = υ(G CKVT 13 ) = 100%, that are specialisation of the aforementioned abstract cpopatterns. For example, G CKVT 11 subsumes a group of multilevel cpo-patterns that share the accurate regularity "sometimes before the outbreak of influenza A virus patients feel high fever" since its support is equal to 6. Besides, G CKVT 4 subsumes a subgroup of the above-mentioned group, i.e. it is a specialisation of the concrete cpo-pattern G CKVT 11 (Fig. 5.4c). This subgroup encapsulates cpo-patterns that share the accurate regularity "rarely before the outbreak of influenza A virus patients feel simultaneously high cough and high fever" since its support is 3. 

{FEVER high } ← {COUGH high } ← {COUGH high } ← {FEVER high } ← {Influenza A }. Indeed, as
CKVT 16 KVT CKVT 6, the concrete highlighted path in Fig. 5.4g is supported by 3 out of the 4 sequences that support the hybrid highlighted path in Fig. 5.4f. Hence, there is only one sequence that has COUGH high instead of ? high from the hybrid highlighted path.

Weightiness of a CPO-Pattern

The main objective of RCA-S is to make easier the evaluation step of the discovered cpopatterns in sequential data by highlighting how they relate to each other. This task is achieved by navigating only the intents of the interrelated concepts from the RCA output. Nevertheless, cpo-patterns still do not capture all the particularities hidden in the analysed sequential data. Indeed, a cpo-pattern considers only the order on itemsets in its supporting sequences, and, besides, the itemsets are treated uniformly even if their incidences differ in these sequences. In fact, previous studies showed that exploiting additional information from the analysed sequences, e.g. capturing time-intervals between adjacent itemsets in the extracted sequential patterns [START_REF] Chen | Discovering time-interval sequential patterns in sequence databases[END_REF], leads to more valuable knowledge. In contrast, in this thesis, we propose to study and measure the repetitive occurrences of preceded itemsets in a cpo-pattern, i.e. non-target itemsets with specific predecessors. This measurement may show the non-accidental occurrence of preceded itemsets in the analysed sequences.

For example, Fig. 5.5 has at the top a set of concept intents that are navigated beginning with concept CKVT 2, which is from the main lattice L KVT (Fig. 5.1a), in order to extract the cpo-pattern G CKVT 2 depicted at the bottom of the figure. This cpo-pattern is supported by the sequences (Tab. 5.1):

-S5 = (FEVERhigh)(COUGHmoderateFEVERhigh)(COUGHhigh)(COUGHmoderateFEVERhigh)(FEVERhigh)(InfluenzaA) ; -S8 = (COUGHmoderateFEVERhigh)(FEVERhighCOUGHhigh)(COUGHhigh)(COUGHmoderateFEVERhigh)(FEVERhigh)(InfluenzaA) ; -S10 = (COUGHhigh)(COUGHmoderate)(InfluenzaA) .
We recall that cpo-patterns preserve the order on itemsets in their supporting sequences.

However, cpo-pattern G CKVT 2 is misleading since it does not encapsulate that in its supporting sequences S5, S8 and S10 exist only 3 occurrences of itemset (COUGH moderate ) when each occurrence is preceded by itemset (COUGH high ), while there are 4 occurrences of (COUGH high ) with no constraint on its order. To address the aforementioned limitation, we propose to extract hierarchies of more informative cpo-patterns, namely weighted cpo-patterns (wcpo-patterns), that capture and explicitly show the different weightiness of their vertices (itemsets). In the following, we show how to capture such information by additionally navigating the interrelated concept extents.

From Uniform Vertices to Weighted Vertices

Let G = (V, E, l) be a cpo-pattern and S G the set of sequences that support G. Let v t ∈ V be a vertex of G, and V t = {v ∈ V|v ≤ v t } the set of predecessors of v t in G (including v t ).

Furthermore, E t = {(v k , v l ) ∈ E|v k ∈ V t and v l ∈ V t } is the set of edges between vertices of V t . G t = (V t , E t , l) associated with vertex v t is a sub-graph of G. P G t is the set of paths in G t .

Definition 5.6 (Preceded Itemset).

Let IS ⊇ l(v t ) be an itemset in a sequence S ∈ S G . IS is a preceded itemset w.r.t. v t ∈ V, iff ∃S t s S , S t = IS 1 IS 2 ...IS p IS and ∀M ∈ P G t , M s S t (i.e. there exists a subsequence of S , ending with IS, that supports G t ).

Our purpose is to formalise an approach for determining the weightiness of vertices (derived from concepts of the temporal lattice) that correspond to preceded itemsets. To this end, as explained in Sect. 3.4.1, let D S be a sequence database remodelled as UID S that is a database of sequences of UIDs. G M is the set of all target itemset UIDs in UID S , while G T is the set of all non-target itemset UIDs.

As explained in Sect. 4.2.1, we consider two temporal relations

ipb 1 ⊆ G M × G T and ipb 2 ⊆ G T ×G T . Let L K M = (C K M , K M ) be the main lattice built from K M = (G M , M M , I M ). A main concept C M = (X m , Y m ) ∈ C K M has:
the intent Y m that consists of temporal relational attributes which are navigated to reveal cpo-pattern G m = (V m , E m , l m ) whose first vertex v m is the one derived from C M ; v m is labelled with a target itemset;

Weightiness of a CPO-Pattern

the extent X m that gathers all UIDs in G M of the sequences that contain all paths in G m ; S Gm = {S ∈ D S |∃Seq ∈ X m , S = getS(Seq)} is the set of sequences supporting G m .

We note that the range of ipb 1 temporal relation is G T , and thus the set of vertices V m contains one or more vertices v t derived from temporal concepts and v m vertex. Indeed, we recall that

L K T = (C K T , K T ) is the temporal lattice built from K T = (G T , M T , I T ). A temporal concept C T = (X t , Y t ) ∈ C K T has:
the intent Y t that may contain temporal relational attributes; Y t is navigated to reveal

G m = (V m , E m , l m ) cpo-pattern whose vertex v t is derived from C T ; v t vertex is labelled with itemset l m (v t );
the extent X t gathers all UIDs in G T that identify non-target itemsets containing itemset l m (v t ) and respect the temporal order with the UIDs pointed by the temporal relational attributes of Y t (assuming that these exist).

We introduce X t|m = {IS Seq ∈ X t |getS(IS Seq) ∈ S Gm }. We propose three vertex measures of weightiness that represent: the persistency of the corresponding preceded itemset in a subset of sequences of D S (how many repetitions of it are in that subset); the overall weight of the preceded itemset (how often it occurs) in D S ; the specificity of the preceded itemset in a subset of sequences of D S (the extent to which it belongs only to that subset).

∈ V m . Furthermore, Y t is navigated to extract p < |C K M |-1 different cpo-patterns G k m = (V k m , E k m , l k m ), k ∈ {1, ...,
In the following, we consider a main concept C M = (X m , Y m ), the associated cpo-pattern G m = (V m , E m , l m ) and a vertex v t ∈ V m derived from a temporal concept C T = (X t , Y t ). Specificity of a vertex v t ∈ V m measures the extent to which the corresponding preceded itemset belongs to the subset of sequences that support G m . We consider that v t is likely to be more interesting for low values of the specificity, that is, if the preceded itemset characterises the current subset, and, besides, other sequences from the analysed dataset.

Definition 5.8 (Vertex Persistency

Using these three measures, a vertex derived from a temporal concept can be mapped to a 3-tuple such as ( vt , ω vt , ς vt ).

Application to a Small Example

To illustrate how to extract a wcpo-pattern, let us examine the set of interrelated concept extents navigated to extract cpo-pattern G CKVT 17 shown in Fig. 5.6, which is associated with the CKVT 17 main concept from lattice L KVT (Fig. 5.1a). The vertices of G CKVT 17 are annotated with 3-tuples ( vt , ω vt , ς vt ). Since all the itemsets in the CKME 63 extent are owned by the sequences in S G CKVT 17 , the v CKME 63 specificity is ς vCKME 63 = 4 4 100 = 100%. In addition, extent CKME 63 contains a group of two non-target itemsets (P2,09/09) Seq8 and (P2,08/09) Seq8 (gray rectangle in Fig. 5.6) order on the extracted cpo-patterns is insufficient for domain experts. To cope with these problems, we propose to use hierarchies of wcpo-patterns and to exploit the vertex measures of weightiness introduced in Sect. 5.5.1. It is worth mentioning that the persistency, overall weight and specificity of a vertex can be considered simultaneously or not depending on the motivation behind the analysis step.

Henceforth, we use the motivating example (Sect. 5.2) to illustrate three practical cases that take advantage of wcpo-patterns when physicians try to interpret the extracted medical knowledge. As these examples demonstrate, the wcpo-patterns can lead to more informative knowledge since the different importance of vertices or paths are considered.

Ranking the Vertices and Paths of a CPO-Pattern

In a cpo-pattern the vertices/paths are considered uniformly. Then, domain experts can easily be misled into thinking that all vertices/paths in a cpo-pattern have the same impact on the item of interest. For instance, let us suppose that physicians try to interpret the vertices v CKME 7 , v CKME 8 and v CKME 42 of cpo-pattern G CKVT 17 (Fig. 5.6) by disregarding the weightiness of vertices. Physicians find that before the outbreak of influenza A virus the patients feel high cough and high fever in any order, but after feeling simultaneously high fever and moderate cough. Since only 3 out of 10 analysed sequences support G CKVT 17 , physicians can infer with low confidence that:

-"rarely the simultaneous occurrence of high fever and moderate cough can be considered as a premature sign of a possible influenza A outbreak";

-"rarely high fever and high cough can be considered as early signs of influenza A outbreak".

However, by paying attention to the weightiness of vertices shown in Fig. 5.6, physicians discover that:

-there are ω vCKME 7 = 7 simultaneous occurrences of cough moderate and high fever in the analysed dataset; ς vCKME 7 = 57.1% of these occurrences are specific to only a subset of sequences (|S G CKVT 17 | = 3 patient sequences), and, besides, 42.9% are specific to other analysed sequences. Therefore, the inference "the simultaneous occurrence of high fever and moderate cough can be a premature sign of influenza A outbreak" may be globally valid in the analysed sequences; since the simultaneous occurrence of moderate cough and high fever in the subset of sequences is not too persistent vCKME 7 = 0.33, physicians can further examine, e.g. if these symptoms may be caused by a bacterial infection;

-there are ω vCKME 8 = 7 occurrences of high cough preceded simultaneously by high fever and moderate cough in the analysed dataset; ς vCKME 8 = 85.7% of these occurrences are specific to only the aforementioned subset of sequences. In addition, the occurrence of high cough (the v CKME 8 label) in this subset of sequences is persistent vCKME 8 = 1 and the inference "high cough can be an early sign of influenza A outbreak" seems to be valid at least for this subset of sequences;

-in the analysed dataset there are more occurrences of the (FEVER high ) preceded itemset rather than the (COUGH high ) preceded itemset, i.e. ω vCKME 42 > ω vCKME 8 . Then, the (FEVER high ) preceded itemset is ς vCKME 42 = 77.7% specific only to this subset of sequences and 22.3% specific to other analysed sequences, while the (COUGH high ) preceded itemset is only 14.3% specific to other sequences. Therefore, the inference "high fever can be an early sign of influenza A outbreak" seems to be valid for this subset of sequences as well as valid for other analysed sequences. Moreover, the occurrence of high fever (the v CKME 42 label) in this subset of sequences is more persistent, i.e. vCKME 42 > vCKME 8 . Hence, physicians can rank the paths and can infer that regularity {FEVER high , COUGH moderate } ← {FEVER high } is more pertinent to recognise influenza A outbreak.

Selecting Interesting Navigation Paths in a Hierarchy of CPO-Patterns

Usually the extracted hierarchies of cpo-patterns are very large and even if the relationships between cpo-patterns are highlighted and the support measure can be considered, their navigation is still not an easy task for domain experts. easily infer that the high symptoms are more probable to be signs of influenza A outbreak, i.e. the high symptoms are more persistent ( (?high) = 1.87) than the moderate symptoms ( (?moderate) = 0.5). Accordingly, physicians select the navigation path that consists in the descendant wcpo-patterns of (a) and the evaluation continues by applying the same ranking criterion.

Distinguishing the Best Sub-Dataset Supporting a CPO-Pattern

There are cases when it is useful to find out discriminant regularities for different types of the studied item of interest. [START_REF] Fabrègue | Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment[END_REF] presented an approach that captures discriminant regularities for different ecological states of the aquatic ecosystem. Here, in our motivating example, we can suppose that physicians are interested in distinguishing between the outbreaks of influenza A and B by assessing the symptoms felt by patients. Usually, physicians determine that the same extracted cpo-pattern belongs rather to sub-dataset D Sf luA (Tab. 5.1) or to sub-dataset D Sf luB (Tab. 5.3) by relying on the support measure (or its variants, e.g. growth rate [START_REF] Dong | Efficient mining of emerging patterns: Discovering trends and differences[END_REF]). However, there are cases when a cpo-pattern is found with equal support in both sub-datasets. 

Id Sequence S1 (COUGH high FEVER high )(Influenza B ) S2 (COUGH moderate )(Influenza B ) S3 (COUGH moderate )(Influenza B ) S4 (COUGH high )(FEVER high )(FEVER high )(Influenza B ) S5 (FEVER high )(COUGH high )(Influenza B ) S6 (FEVER high COUGH high )(Influenza B ) S7 (FEVER moderate )(Influenza B ) S8 (FEVER high COUGH high )(COUGH high )(Influenza B ) S9 (COUGH high )(Influenza B ) S10 (COUGH moderate )(Influenza B )
For example, let us consider that physicians try to understand if the regularity given in Fig. 5.8 helps to recognise the influenza A or influenza B outbreak. Both cpo-patterns are discovered with the same Suppport = 5 ( on the first vertex), and thus it is impossible to distinguish between them by disregarding the weightiness of vertices. In contrast, when physicians consider, for instance, the persistencies of vertices it is easily noted that the high cough and the high fever are more persistent in wcpo-pattern (a). Accordingly, physicians can conclude that the regularity given in Fig. 5.8 is a distinguishing characteristic of the influenza A outbreak since both vertices are more significant. Moreover, the same inference is drawn by additionally considering the overall weights of the vertices. 

Summary

In this chapter, we have introduced measures of interest for enhancing sequential data analysis. Mainly, we have tried to leverage the navigated concept extents rather than only the concept intents (Chapter 4). We have shown how to select the well-distributed formal concepts derived from a sequence database gathering sets of sequences, each set being associated with a distinct category (e.g. patient). Then, we have exploited the different types of items extracted by using RCA-S and we have proposed three types of cpo-patterns, i.e. concrete, hybrid and abstract. Moreover, we have proposed to extract more informative patterns, precisely wcpo-patterns, that capture and explicitly show not only the order on itemsets (as standard cpo-patterns do) but also their different roles in the analysed sequences through three statistical measures, i.e. persistency, specificity and overall weight.

Introduction

In this chapter, we present four extensions of the RCA-S approach. Firstly, we consider user-defined constraints on the order relations on itemsets. Secondly, we explain how to integrate a user-defined taxonomy over sequence-building items. Then, we show how to explore simple sequential data (i.e. sequences are built from items without qualitative values).

Lastly, we explain how to explore heterogeneous sequential data.

Extraction of CPO-Patterns with User-Defined Constraints on the Order Relations on Itemsets

In the RCA-S approach the order on itemsets in a cpo-pattern is revealed by the relational attributes from the navigated concept intents; these relational attributes are built using the existential scaling mechanism in order to capture all the relations between the analysed itemsets. For instance, relying on the RCA output (Fig. 3.5) from the running example, in Fig. However, physicians can be interested in finding out cpo-patterns that are available for patients that frequently experience certain symptoms before a viral test. For example, physicians can look for the viral tests that are preceded by more than 50% of the associated medical examinations (from the sequences that end with these viral tests) for which the intensity of cough symptom is moderate. Using RCA-S , this type of cpo-pattern can be discovered by only changing the quantifier applied to the relations encoded in the temporal relational
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contexts during the iterative steps. To add the constraint "a viral test is preceded by more than 50% of the associated medical examinations", we use the ∃ quantifier with a user-defined cardinality, denoted by ∃ >n% [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF] where n = 50, that is applied only to the relations encoded in the RVT-ipb-ME relational context. Formally, a relational attribute ∃ >n% r(C), where r is a relation and C = (X, Y ) is a concept whose extent contains objects from ran(r), describes an object g ∈ dom(r) if r(g) ∩ X = ∅ and |r(g) ∩ X| > n×|r(g)| 100 . To illustrate this, we apply again RCA to the RCF depicted in Tab. 3.4 by changing the ∃ to ∃ >50% quantifier only for the RVT-ipb-ME temporal relational context (the ∃ quantifier is preserved for RME-ipb-ME). The obtained RCA output is the same as that from Fig. 3.5 except for the L KVT main lattice that has the new structure shown in Fig. 6.2. It is noted that the number of extracted cpo-patterns (associated with main concepts) is smaller, i.e. 7 cpo-patterns in comparison to 11 initial cpo-patterns (there is no extracted cpo-pattern for ⊥(L KVT )), since the criterion imposed by physicians is more restrictive. Therefore, the evaluation of the hierarchy of cpo-patterns is facilitated thanks to the smaller number of obtained cpo-patterns. In addition, it is noted that cpo-pattern G CKVT 7 ( 1 , Fig. 6.1) is discovered as well when using the ∃ >50% quantifier, precisely it is associated with the CKVT 5 main concept in Fig. 6.2. 

CKVT_0 ∃ >50% RVT-ipb-ME(CKME_0) CKVT_5 ∃ >50% RVT-ipb-ME(CKME_8) (P2,09/02)_Seq3 CKVT_6 ∃ >50% RVT-ipb-ME(CKME_9) (P2,15/05)_Seq4 CKVT_4 ∃ >50% RVT-ipb-ME(CKME_7) CKVT_2 ∃ >50% RVT-ipb-ME(CKME_3) (P1,18/11)_Seq2 CKVT_7 ∃ >50% RVT-ipb-ME(CKME_17) (P3,13/04)_Seq5 CKVT_3 ∃ >50% RVT-ipb-ME(CKME_16) ∃ >50% RVT-ipb-ME(CKME_5) ∃ >50% RVT-ipb-ME(CKME_6) (P1,28/09)_Seq1 CKVT_1 ∃ >50% RVT-ipb-ME(CKME_15) ∃ >50% RVT-ipb-ME(CKME_11) ∃ >50% RVT-ipb-ME(CKME_10) ∃ >50% RVT-ipb-ME(CKME_1) ∃ >50% RVT-ipb-ME(CKME_12) ∃ >50% RVT-ipb-ME(CKME_14) ∃ >50% RVT-ipb-ME(CKME_13) ∃ >50% RVT-ipb-ME(CKME_2) ∃ >50% RVT-ipb-ME(CKME_4)
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CKVT_0 ∃ >50% RVT-ipb-ME(CKME_0) CKVT_5 ∃ >50% RVT-ipb-ME(CKME_8) (P2,09/02)_Seq3 CKVT_6 ∃ >50% RVT-ipb-ME(CKME_9) (P2,15/05)_Seq4 CKVT_4 ∃ >50% RVT-ipb-ME(CKME_7) (P3,13/04)_Seq5 CKVT_2 ∃ >50% RVT-ipb-ME(CKME_3) (P1,18/11)_Seq2 CKVT_3 ∃ >50% RVT-ipb-ME(CKME_5) ∃ >50% RVT-ipb-ME(CKME_6) (P1,28/09)_Seq1 CKVT_1 ∃ >50% RVT-ipb-ME(CKME_11) ∃ >50% RVT-ipb-ME(CKME_10) ∃ >50% RVT-ipb-ME(CKME_1) ∃ >50% RVT-ipb-ME(CKME_12) ∃ >50% RVT-ipb-ME(CKME_13) ∃ >50% RVT-ipb-ME(CKME_2) ∃ >50% RVT-ipb-ME(CKME_4) (a) L KVT CKME_0 CKME_8 ∃RmS(CKS_3) ∃RmS(CKS_2) (P2,08/02)_Seq3 CKME_7 ∃ >50% RME-ipb-ME(CKME_0) CKME_9 ∃RhS(CKS_3) CKME_5 CKME_6 ∃RhS(CKS_1) (P1,
∃ >50% RME-ipb-ME(CKME_11) ∃ >50% RME-ipb-ME(CKME_10) ∃ >50% RME-ipb-ME(CKME_1) ∃ >50% RME-ipb-ME(CKME_12) ∃ >50% RME-ipb-ME(CKME_13) ∃ >50% RME-ipb-ME(CKME_2) ∃ >50% RME-ipb-ME(CKME_4) ∃ >50% RME-ipb-ME(CKME_7) ∃ >50% RME-ipb-ME(CKME_5) ∃ >50% RME-ipb-ME(CKME_8) ∃RhS(CKS_0) ∃RmS(CKS_0) ∃RmS(CKS_1) (b) L KME Figure 6.4:
The L KVT main lattice of viral tests and the L KME lattice of medical examinations obtained by scaling the temporal links using the ∃ >50% quantifier

RCA-S with a User-Defined Taxonomy Over the Items

RCA-S reveals a taxonomy over sequence-building items due to the nominal scaling applied to encode these items into an RCF (the RCA input). This taxonomy has only two levels:

first, the level comprising each atomic item and second, the level with the general item, i.e.

the item that represents the set of items used to build the analysed sequences. Accordingly, the extracted multilevel cpo-patterns contain only items from these two levels. [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] proposed to integrate a user-defined taxonomy over the items in order to extract sequential patterns (rather than cpo-patterns) containing items across different levels of the taxonomy. Their method is applied to sequences whose items are atomic values. To this end, they preprocess each sequence from the database to obtain an "extendedsequence", i.e. the sequence is upgraded with the ancestors (from the taxonomy) of each item in the sequence. Thus, their algorithm GSP explores sequences that already contain the relationships between the items and their ancestors.

In contrast, RCA-S can easily integrate a user-defined taxonomy in the RCF, and, besides, can extract directly organised cpo-patterns that contain items from different levels of the taxonomy without preprocessing the analysed sequences. To illustrate this, we consider the user-defined taxonomy over symptoms depicted in Fig. 6.5 (i.e. the symptoms can be described at different levels of precision) and the small sequential dataset shown in Tab. 6.1.

It is worth noting that the analysed patient sequences consist in only atomic items, namely DRY COUGH (DC), WET COUGH (WC) and FEVER (F). The RCA process is applied (as explained in Sect. 3.4.2) to the RCA input shown in Tab.

6.2 and the fix point depicted in Fig. 6.6 is obtained. Let us mention that the L KS lattice of symptoms (Fig. 6.6b) represents the user-defined taxonomy shown in Fig. 6.5.

Using the CPOHrchy algorithm (Sect. 4.3.1), we extract a hierarchy of multilevel cpopatterns from the obtained RCA output shown in Fig. 6.6. For instance, the multilevel cpo- Let us note that our approach with a user-defined taxonomy can be applied to explore sequences that include items across different levels of the taxonomy, as well.

CKVT_0 ∃RVT-ipb-ME(CKME_0) ∃RVT-ipb-ME(CKME_11) ∃RVT-ipb-ME(CKME_10) CKVT_6 ∃RVT-ipb-ME(CKME_7) ∃RVT-ipb-ME(CKME_9) CKVT_1 ∃RVT-ipb-ME(CKME_1) CKVT_4 ∃RVT-ipb-ME(CKME_5) ∃RVT-ipb-ME(CKME_6) (P1,20/09) CKVT_3 ∃RVT-ipb-ME(CKME_3) ∃RVT-ipb-ME(CKME_4) (P2,17/05) CKVT_2 ∃RVT-ipb-ME(CKME_2) (P3,09/04) CKVT_5 ∃RVT-ipb-ME(CKME_8) (a) L KVT CKS_5 S S CKS_4 C C CKS_0 CKS_3 F F CKS_2 DC DC CKS_1 WC WC (b) L KS CKME_0 ∃RhS(CKS_5) CKME_7 ∃RME-ipb-ME(CKME_0) ∃RME-ipb-ME(CKME_9) ∃RME-ipb-ME(CKME_11) CKME_1 ∃RME-ipb-ME(CKME_7) ∃RME-ipb-ME(CKME_1) ∃RME-ipb-ME(CKME_5) ∃RME-ipb-ME(CKME_3) ∃RME-ipb-ME(CKME_2) ∃RmS(CKS_4) ∃RmS(CKS_0) ∃RmS(CKS_2) ∃RmS(CKS_1) ∃RhS(CKS_0) CKME_5 ∃RME-ipb-ME(CKME_6) ∃RME-ipb-ME(CKME_8) (P1,19/09) CKME_3 ∃RME-ipb-ME(CKME_4) ∃RME-ipb-ME(CKME_10) ∃RhS(CKS_3) (P2,

Exploration of Simple Sequential Data

RCA-S can be easily adapted to explore simple sequential data (i.e. the items do not have associated qualitative values). To illustrate this, let us consider the simple sequential medical data given in Tab. 6.3. A patient sequence ends with a viral test (target itemset of viruses) that is preceded by a chronologically ordered set of medical examinations (non-target itemsets of symptoms).

For example, sequence S4 ends with the (Influenza) target 1-itemset that contains only the influenza virus, and, besides, S4 contains the (COUGH FEVER) non-target itemset that has the cough and fever symptoms.

To explore the sequential data shown in Tab. 6.3, we use the data model depicted in Fig. 

Sequence IS1 Seq1 IS2 Seq1 IS3 Seq1 Seq1 IS1 Seq2 Seq2 IS1 Seq3 IS2 Seq3 Seq3 IS1 Seq4 Seq4 IS1 Seq5 IS2 Seq5 IS3 Seq5 IS4 Seq5 Seq5
Relying on the data model depicted in Fig. 6.8 and on Tab. 6.4, we build the RCF (the RCA input) illustrated in Tab. 6.5. 

Seq1 × Seq2 × Seq3 × Seq4 × Seq5 × KME COUGH FEVER HEADACHE IS1 Seq1 × IS2 Seq1 × × IS3 Seq1 × × × IS1 Seq2 × IS1 Seq3 × IS2 Seq3 × IS1 Seq4 × × IS1 Seq5 × IS2 Seq5 × IS3 Seq5 × IS4 Seq5 × RME-ipb-ME IS1 Seq1 IS2 Seq1 IS3 Seq1 IS1 Seq2 IS1 Seq3 IS2 Seq3 IS1 Seq4 IS1 Seq5 IS2 Seq5 IS3 Seq5 IS4 Seq5 IS1 Seq1 IS2 Seq1 × IS3 Seq1 × × IS1 Seq2 IS1 Seq3 IS2 Seq3 × IS1 Seq4 IS1 Seq5 IS2 Seq5 × IS3 Seq5 × × IS4 Seq5 × × × RVT-ipb-ME IS1 Seq1 IS2 Seq1 IS3 Seq1 IS1 Seq2 IS1 Seq3 IS2 Seq3 IS1 Seq4 IS1 Seq5 IS2 Seq5 IS3 Seq5 IS4 Seq5 Seq1 × × × Seq2 × Seq3 × × Seq4 × Seq5 × × × ×
In Tab. and/or relational attributes. For example, the CKVT 0 concept intent (Fig. 6.9a) contains the binary attribute Influenza and the relational attribute ∃RVT-ipb-ME(CKME 5).

CKVT_0 Influenza ∃RVT-ipb-ME(CKME_5) CKVT_5 ∃RVT-ipb-ME(CKME_4) CKVT_3 ∃RVT-ipb-ME(CKME_2) Seq4 CKVT_4 CKVT_6 ∃RVT-ipb-ME(CKME_3) Seq2 CKVT_1 ∃RVT-ipb-ME(CKME_0) ∃RVT-ipb-ME(CKME_7) Seq1 CKVT_2 ∃RVT-ipb-ME(CKME_1) ∃RVT-ipb-ME(CKME_8) ∃RVT-ipb-ME(CKME_11) ∃RVT-ipb-ME(CKME_12) CKVT_8 ∃RVT-ipb-ME(CKME_9) ∃RVT-ipb-ME(CKME_10) Seq3 CKVT_7 ∃RVT-ipb-ME(CKME_6) CKVT_9 ∃RVT-ipb-ME(CKME_13) Seq5 (a) L KVT CKME_5 CKME_4 COUGH IS1_Seq1 IS1_Seq3 IS1_Seq5 CKME_2 IS1_Seq4 CKME_3 FEVER IS1_Seq2 CKME_0 ∃RME-ipb-ME(CKME_2) ∃RME-ipb-ME(CKME_7) IS3_Seq1 CKME_1 HEADACHE ∃RME-ipb-ME(CKME_3) ∃RME-ipb-ME(CKME_8) CKME_7 IS2_Seq1 CKME_11 IS3_Seq5 CKME_12 ∃RME-ipb-ME(CKME_9) ∃RME-ipb-ME(CKME_10) CKME_8 CKME_9 IS2_Seq3 IS2_Seq5 CKME_10 ∃RME-ipb-ME(CKME_5) ∃RME-ipb-ME(CKME_4) CKME_6 ∃RME-ipb-ME(CKME_0) ∃RME-ipb-ME(CKME_1) ∃RME-ipb-ME(CKME_6) ∃RME-ipb-ME(CKME_13) CKME_13 ∃RME-ipb-ME(CKME_11) ∃RME-ipb-ME(CKME_12) IS4_Seq5 (b) L KME Figure 6
.9: The RCA output (the simplified concept lattices) obtained by exploring the simple sequential data given in Tab. 6.3 As explained in Chapter 4, we extract a cpo-pattern for each concept out of the main lattice L KVT . Basically, we start from a main concept intent and we navigate the lattices being guided by the relational attributes pointing to the most specific concepts (Properties 4.4 and 4.5). For each navigated concept intent we derive:

a vertex that is labelled with an itemset built by using the binary attributes; 

Exploration of Heterogeneous Sequential Data

So far, we have shown how to extract cpo-patterns of itemsets, where an itemset contains homogeneous items (i.e. items of a similar nature). Recently, [START_REF] Egho | A contribution to the discovery of multidimensional patterns in healthcare trajectories[END_REF] have focused on discovering sequential patterns (rather than cpo-patterns) in complex and heterogeneous sequential data, where a sequence contains "elementary sequences" (ESs), i.e. itemsets whose items are from distinct domains. According to the authors, the complexity of these data stems from the fact that an item of an ES can be of two types: (i) atomic item taken from a poset or (ii) subset of an unordered set of items.

To explore such complex and heterogeneous data, the authors first look for frequent and specific ESs (FSESs). Second, ESs from the original sequences are replaced with FSESs. Then, FSESs are mapped to distinct integers that are used to encode the sequences obtained at the second step. Lastly, the transformed sequences are explored using a propositional algorithm, e.g. C S [START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF]. Thus, the proposed algorithm MMISP does not discover directly sequential patterns in complex and heterogeneous sequential data since a preprocessing step is involved, which encodes the original heterogeneous data into sequences of homogeneous items. 98

Exploration of Heterogeneous Sequential Data

In contrast, RCA-S directly searches for cpo-patterns in complex and heterogeneous sequential data, and, besides, reveals how these cpo-patterns relate to each other. Moreover, our approach can be applied to sequences of ESs (in this thesis, referred to as heterogeneous itemsets), where an ES comprises k-itemsets (k can vary from itemset to itemset) from different domains (as presented in Sect. 2.2.2). Let us note that, a k-itemset is composed of atomic items taken from: (i) an unordered set of items or (ii) a partial order over a set of items (taxonomy).

Consequently, we generalise the ES proposed by Egho et al. by considering its atomic items as 1-itemsets. In the following, we introduce a comprehensive KDD approach for exploring such sequential data and for extracting hierarchies of multilevel heterogeneous cpopatterns (i.e. cpo-patterns whose paths are closed heterogeneous sequential patterns as described in Sect. 2.2.2) by slightly modifying the RCA-S approach.

Motivating Example

We rely on the running example from Sect. 3.2. We recall that physicians are interested in assessing the symptoms (e.g. fever and cough) felt by patients before the outbreaks of influenza virus. The symptoms and the viruses are detected by medical examinations and viral tests, respectively.

For a medical examination undergone by a patient can be recorded: (i) the experienced symptoms and their intensities (mandatory), (ii) the state of vital signs (e.g. heart rate) and (iii) the prescribed drugs and their doses.

For a viral test done by a patient can be recorded: (i) the viruses that infected the patient (mandatory) and (ii) the patient category (e.g. child, infant) and gender.

We suppose that by analysing these various collected information, physicians try to better understand patient health evolution before the outbreaks of influenza virus. The viruses that can be detected by the viral tests constitute the {Influenza A , Influenza B } unordered set of atomic items. The symptoms, drugs, vital signs and patients (domains) can be described by means of taxonomies (posets) as depicted in Fig. 6.11. The sequence-building items of these sets are enumerated in Tab. 6.6. The intensity of a symptom can be moderate (m) or high (h); the state of a vital sign can be good (g) or bad (b); the prescribed dose for a drug can be loading dose (ld) or maintenance 

Relational Analysis of Heterogeneous Qualitative Sequential Data

To explore such heterogeneous data we follow the steps presented in Sect. 3.4.

Building the RCA Input

In order to constitute the set of viral tests and the one of medical examinations used to build the RCA input we remodel the heterogeneous sequences shown in Tab. 6.8 as the sequences of UIDs given in Tab. 6.9. IS1 Seq1, IS2 Seq1, IS3 Seq1, IS1 Seq2, IS1 Seq3, IS1 Seq4 and IS2 Seq4 uniquely identify the medical examinations (P1, 12/11), (P1, 13/11), (P1, 14/11), (P2, 09/03), (P3, 25/12), (P4, 03/01) and (P4, 06/01), respectively. Seq1, Seq2, Seq3 and Seq4 uniquely identify the viral tests (P1, 16/11), (P2, 13/03), (P3, 28/12) and (P4, 08/01), respectively.

Relying on the data model shown in Fig. 6.12 and on the dataset given in Tab. 6.9, we encode the heterogeneous data from Tab. 6.8 into the RCF illustrated in Tab. 6.10. The KS (symptoms), KP (patients), KVS (vital signs), KD (drugs), KVT (virus tests) and KME (medical examinations) cross tables represent formal contexts. Note that, the first four formal contexts 102
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Table 6.9: The sequences of UIDs obtained by remodelling the data shown in Tab. 6.8

Sequence

IS1 Seq1 IS2 Seq1 IS3 Seq1 Seq1 IS1 Seq2 Seq2 IS1 Seq3 Seq3 IS1 Seq4 IS2 Seq4 Seq4
are built by using the ordinal scaling in order to encode the taxonomies. KVT has the set of binary attributes {Influenza A , Influenza B }, i.e. the formal context has two columns, one for each type of influenza virus that can be detected by a viral test. Besides, the viral tests are described by using the qualitative relations undergone by. KME has no column since a medical examination is described only by using the qualitative relations has symptom, has treatment and has vital.

The RVT-ipb-ME, RME-ipb-ME, RmS and RhS relational contexts are described in Sect. 3.4.1.

The RgVS (medical examination detects a good vital sign), RbVS (medical examination detects a bad vital sign), RldD (medical examination has treatment loading dose drug), RmdD (medical examination has treatment maintenance dose drug), RfP (viral test undergone by a female patient) and RmP (viral test undergone by a male patient) cross tables represent qualitative relational contexts since they define qualitative relations.

Applying the RCA Process

RCA is applied to the RCF shown in Tab. 6.10 and the family of concept lattices depicted in Fig. 6.13 is obtained after three iterations. There is a concept lattice for each formal context as follows: L KVT (viral tests), L KME (medical examinations), L KS (symptoms), L KVS (vital signs), L KD (drugs) and L KP (patients). Let us note that L KS , L KP , L KVS and L KD correspond to the taxonomies illustrated in Fig. 6.11 and their concepts are used to describe medical examinations or viral tests by means of the qualitative relational attributes.

For example, the relational attribute ∃RgVS(CKVS 1) of the CKME 15 concept intent in L KME (Fig. 6.13f) is a qualitative one since it highlights the qualitative relation has vital good. In addition, this relational attribute describes the medical examinations gathered by the CKME 15 extent, namely IS1 Seq1 (i.e. (P1, 12/11) in Tab. 6.7) and IS1 Seq4 (i.e. (P4, 03/01) in Tab. 6.7), for which a good respiratory rate (i.e. extent(CKVS 1) = {RR}) was measured.

Extracting Hierarchies of Multilevel Heterogeneous CPO-Patterns

To extract a hierarchy of multilevel heterogeneous cpo-patterns from the RCA output depicted in Fig. 6.13, we apply algorithm CPOHrchy (Sect. 4.3.1) by slightly modifying the step of converting a concept intent to a vertex. Indeed, in this case a vertex derived from a con-Table 6.10: RCF that encodes the heterogeneous sequential data shown in Tab. 6.7; formal contexts: KS, KP, KVS, KD, KVT and KME; temporal relational contexts: RME-ipb-ME and RVT-ipb-ME; qualitative relational contexts: RmS, RhS, RfP, RmP, RgVS, RbVS, RldD and RmdD Basically, an itemset of the multilevel heterogeneous itemset is built for each set of qualitative relational attributes (which define the same qualitative relation) or for each set of binary attributes (which are from the same domain) out of the concept intent.
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Therefore, for a concept intent we analyse the qualitative relational attributes, which are built using a qualitative relation hi q and concepts from the lattice of items

L K I = (C K I , K I ),
to derive items as follows:

-from a qualitative relational attribute ∃hi q (C I ), where C I ∈ C K I , is derived an item, denoted by "item q ", where extent(C I ) = {item} and q is the item quality according to hi q ; -if there is no qualitative relational attribute that highlights the hi q relation and the information introduced by this relation is mandatory, then is derived an item, denoted by "item ? " where extent( (L K I )) = {item}, that constitutes the 1-itemset obtained for this type of information; conversely, if the information introduced by this relation is not mandatory, then no item is derived, and thus ∅ is obtained for this type of information.

To illustrate this, let us consider the CKME 6 concept intent (Fig. 6.13f) and the derived heterogeneous vertex shown in Fig. 6.14. Only the qualitative relational attributes pointing to the most specific concepts are analysed (Property 4.4). To improve the visualisation of a heterogeneous vertex, we propose to label the vertex ( ) with the itemset (of the corresponding multilevel heterogeneous itemset) that represents the mandatory information (e.g. symptoms in Fig. 6.14), and, besides, to use other shapes to illustrate the itemsets that represent extra information (e.g.

for vital signs, ♦ for patients and for drugs). Now, we are able to extract a hierarchy of multilevel heterogeneous cpo-patterns from the RCA output shown in Fig. 6.13. We recall that a multilevel heterogeneous cpo-pattern is extracted for each main concept in lattice L KVT (Fig. 6.13c) by navigating interrelated concept intents. For example, Fig. 6.15 depicts the set of navigated concept intents starting from the CKVT 0 main concept intent. This set of navigated concept intents is obtained as explained in Section 4.3 without any modification. Therefore, the CKVT 0 intent points to the CKME 9

intent that points to both the CKME 15 and CKME 14 intents. 

Introduction

The RCA-S approach is applied to hydro-ecological data collected (from French rivers)

during two interdisciplinary research projects, namely Fresqueau 1 and REX 2 . In this chapter, firstly, we briefly explain the hydro-ecological data that we have to deal with. Secondly, we

show how to preprocess these data according to domain knowledge. Lastly, we present and discuss the results obtained by exploring these data.

In Europe, according to the Water Framework Directive [European Union, 2000] recommendations, a special attention should be given to preserving or restoring the good state of waterbodies. Monitoring and assessing the effect of the pollution sources or the one of the restoration processes is to be done in order to improve the domain knowledge, and, besides, to define guidelines for stakeholders.

The Fresqueau project gathered and unified databases about the north-est and south-est French waterbodies. A number of 11329 river sites (i.e. fixed points) are monitored. The collected data cover various compartments, e.g. physico-chemistry, hydro-biology, hydromorphology and land use (as described in [START_REF] Berrahou | A quality-aware spatial data warehouse for querying hydroecological data[END_REF]). Some of these data are temporally related, e.g. a physico-chemical parameter can be measured periodically. In our experiments, we try to tackle the following issue (as in [START_REF] Fabrègue | Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment[END_REF]):

Can hydro-ecologists explain biological values from physico-chemical ones occurring in past months, and thus to improve the global assessment of the quality of the aquatic ecosystem?

Precisely, given sequential data that represent hydro-ecological sequences of biological and physico-chemical samples, we try to make sense of them by using hierarchies of multilevel cpo-patterns (obtained with RCA-S ) that summarise the impact of physico-chemical values on biological ones. Moreover, we try to facilitate the pattern evaluation step using the measures of interest presented in Chapter 5.

Description of Hydro-Ecological Data

The issue that we try to tackle is relevant for hydro-ecologists since the biological state of water determines its quality. In addition, there are several works based on data mining techniques, e.g. [START_REF] Goethals | Applications of artificial neural networks predicting macroinvertebrates in freshwaters[END_REF], [START_REF] Dakou | Decision tree models for prediction of macroinvertebrate taxa in the river axios (northern greece)[END_REF] and [START_REF] Kocev | Learning habitat models for the diatom community in lake prespa[END_REF], that highlight the non-triviality of this task. Actually, [START_REF] Fabrègue | Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment[END_REF] introduced an approach devised during the Fresqueau project for extracting cpo-patterns from sequences of biological and physico-chemical samples. However, the evaluation step of these cpo-patterns is difficult since: (i) they are unorganised, (ii) they capture only the order on itemsets from the analysed data and (iii) these cpo-patterns do not provide a global view of the extracted regularities.

The REX project collected data about the restoration projects undertaken along the Rhine river in the Alsace plain. These data are about past restoration projects, temporal evolution of the water quality (biological indicators and physico-chemical parameters) and pressures (e.g. land use). The monitored river sites induce a river site network (that can be seen as a graph of river sites linked by the spatial relation is downstream of ). In our experiments, we try to address the following issue: Can hydro-ecologists explain the necessity or the effect of river site restorations by assessing the quality of water and land use aspects of upstream river sites?

Precisely, by using real data from the REX project we want to show the applicability of RCA-S to real-life heterogeneous sequential data.

Description of Hydro-Ecological Data

In the following, we aim to contextualise and to familiarise the reader with the hydro-ecological domain. Briefly, we present the biological, physico-chemical and land use data.

Biological Data

These data deal with the animals and plants living in watercourses. There are several biological groups, e.g. oligochaetes (small worms living in sediments) (Fig. In this thesis, we focus on the first three biological indicators since they are the most used

Building Qualitative Sequential Sub-Datasets

From the preprocessed hydro-ecological data, we build qualitative sub-datasets of sequences as explained in Sect. 3.3.2. Briefly, we order temporally the samples for each distinct river site in Tab. 7.4 according to the values from the Month/Year column. Then, for each river site, we cut the obtained sequence out in hydro-ecological sequences based on an expert-defined time window, i.e. 4 months before a biological sample. Table 7.5 depicts the obtained sequences.

For example, (NITRO yellow PHOS green )(PHOS green )(IBGN yellow ) means that the simultaneous occurrence of the items NITRO yellow and PHOS green is temporally followed by item PHOS green that is followed by item IBGN yellow .

Table 7.5: The hydro-ecological sequences obtained from Tab. 7.4

Id

Sequence

1 (NITRO orange PHOS red )(NITRO orange PHOS yellow )(IBGN orange ) 2 (NITRO blue PHOS green )(NITRO blue PHOS blue )(IBGN blue ) 3 (NITRO orange PHOS orange )(IBGN orange ) 4 (NITRO yellow PHOS green )(PHOS green )(IBGN yellow ) 5 (NITRO yellow )(IPR yellow )
To analyse these sequences we build qualitative sequential sub-datasets based on the biological indicators and their qualitative values. Precisely, all hydro-ecological sequences in a sub-dataset end with the same biological indicator having the same qualitative value.

A survey on these sub-datasets is relevant for hydro-ecologists since they are interested in the impact of physico-chemical macro-parameters on the behaviour of the same biological indicator, for all possible qualitative values. For example, four sub-datasets can be built from the hydro-ecological sequences given in Tab. 7.5, i.e. IBGN orange (sequences 1 and 3), IBGN blue (sequence 2), IBGN yellow (sequence 4) and IPR yellow (sequence 5).

Modelling Qualitative Sequential Data

To explore such sequential sub-datasets and to build the RCA input, the data model depicted in Fig. 

Experiments -Performance and Quantitative Results

In this section we experimentally evaluate the RCA-S approach on various hydro-ecological sub-datasets. We present some quantitative statistics resulting from these experiments. First, we discuss the tools and algorithms underlying RCA-S , which are used to explore both the Fresqueau and REX sub-datasets. Second, we present a performance study of RCA-S .

Then, we assess the exploration, extraction and selection steps of RCA-S . In addition, we empirically show that with RCA-S we obtain directly the minimal representations of the extracted multilevel cpo-patterns and we compare the stability index with the distribution index of a formal concept.

Tools and Algorithms

This thesis relies on the RCAE4 tool (implemented in Java) that provides a user interface for manually creating/updating the RCA input and for visualising the obtained family of concept lattices. The iterative RCA process is based on the algorithm proposed by [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF]. The novelty of this tool is the interactive exploration of the data, i.e. at each iteration the user can choose the considered formal contexts, scaling quantifiers and algorithms used to build concept lattices. However, in this thesis we do not explore sequential data in an interactive way. We note that in this thesis the algorithm ADDE [Merwe creased. To this end, we set θ = 20% for the IPR blue sub-dataset, θ = 12% for the IBD blue sub-dataset (where θ is the minimum support defined for the L K M main lattice) and we replicate the analysed sequences from 1 to 7 times for both sub-datasets. Generally, the execution only 16525 multilevel cpo-patterns are discovered. This difference can be linked to each subdataset heterogeneity (e.g. the number of items, the repetitive occurrences of these items). In addition, for such small sub-datasets the number of extracted cpo-patterns is comparable to the one discovered in voluminous benchmark sub-datasets since RCA-S discovers almost all combinations of the concrete and abstract items as explained in Sect. 7.3.2.4. For example, in [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] is reported a number of ≈ 75000 cpo-patterns obtained with θ = 0.06% in dataset Gazelle 5 that contains 59601 sequences built from 497 items and having an average sequence length of 2.51. In Fig. 7.4a we report a number of 569202 multilevel cpopatterns discovered with θ = 3% in a small sub-dataset that contains only 1196 sequences built from 46 items and having the same average sequence length of 2.51. sub-datasets. On the horizontal axis is the minimum support θ (%). For instance, the nonoptimised approach applied to the IBD blue sub-dataset (Fig. 7.4c) has no minimum support defined for the L K T temporal lattice and during each iterative step the relational scaling mechanism processes up to 105850 temporal concepts even if not all of them are used to extract cpo-patterns. In contrast, the optimised approach uses a minimum support

θ = θ |G M | |G T |
for the temporal lattice, where G M and G T are respectively the set of objects of the K M and K T formal contexts (Sect. 4.2.1). Figure 7.4e shows the smaller number of derived temporal concepts for the IBD blue sub-dataset when using θ (horizontal axis) and θ . In addition, less memory is used. For instance, when θ = 6% (θ = 3%) only 4429 temporal concepts are derived; θ = 3% (θ = 1%) then 31854 temporal concepts are derived. Thus, for θ = 6% and θ = 3% the optimised RCA-based exploration is respectively 3.49 and 1.33 times faster than the non-optimised one.

Similarly, for the IPR blue sub-dataset the non-optimised approach derives 933968 temporal concepts and the execution time is ≈ 9000 seconds when θ is not defined. Thus, in Fig. 7.4d we report for the non-optimised approach the execution time obtained with θ = 2% that leads to only 149373 temporal concepts. rithm can be influenced by the used implementation 6 , which is not currently optimised for searching in large collections.

Exploring Hydro-Ecological Sequential Data

The hydro-ecological sub-datasets obtained as explained in Sect. Both histograms suggest that as the minimum support increases, the number of concrete cpopatterns decreases faster than the number of hybrid and abstract cpo-patterns. For instance, in Fig. 7.6b the number of concrete, hybrid and abstract cpo-patterns decreases on average by almost 29%, 23% and 8% respectively when the minimum support is increased by 4%.

This is to be linked to the fact that the obtained hierarchies tend to concentrate the abstract cpo-patterns at the top, the hybrid ones in the middle and the concrete ones at the bottom.

As stated in Sect. 7.3.2.3, the IBGN sub-datasets provide more reliable knowledge for the assessment of the aquatic ecosystem. Hence, Tab. 7.9 details some quantitative statistics obtained for the IBGN sub-datasets (there are five sub-datasets one for each possible qualitative value of the biological indicator). A survey on these sub-datasets is relevant for hydro- 

Verifying the Minimal Representations of the Extracted CPO-Patterns

In order to verify that we directly obtain the minimal representations of the extracted multilevel cpo-patterns, we rely on the merging and pruning steps presented by Fabrègue et al. Figure 7.8: The number of vertices (#vertices) and edges (#edges) obtained with RCA-S or after merging and pruning steps [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] The numbers of vertices/edges obtained with RCA-S are placed on the horizontal axis and the numbers of vertices/edges obtained after applying the [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] steps are placed on the vertical axis. It is noted that there is no vertex or edge that should be merged or pruned, and thus by means of RCA-S we obtain directly the minimal representations Thus, the distribution index and support measures allow to select simple (e.g. having only one vertex) as well as more complex cpo-patterns that provide an overview of the abstract or concrete regularities from the entire monitored geographical area.

Briefly, the evaluation can continue following the hierarchy of cpo-patterns starting from the selected cpo-patterns -as we are going to detail in Sect. 7.3.3.1 -or by selecting more cpo-patterns based on lower thresholds of the aforementioned measures. For example, when τ IQV = 0.9 and τ Support = 15, the top-28 abstract and the top-54 concrete cpo-patterns are selected.

Hydro-Ecological Sequential Data

the L K M main lattice discovered in the IBD blue sub-dataset (Tab. 7.10). A diamond is a main concept in L K M ; its label represents the stability of the concept. In Fig. 7.12a there are 18 best-distributed concepts for Support ≥ 70; in Fig. 7.12b there are 21 best-distributed concepts selected for Support ∈ [50,60]. It is noted in both scatter-plots that on average 79% of the selected best-distributed concepts have Stability ≥ 0.9. Since only 90 out of 7980 concepts in L K M have Stability ≥ 0.9, we can consider that for high values of the support measure the selected best-distributed concepts may as well be the most-stable ones. Figure 7.14 shows that the computation of the stability index (as explained in [START_REF] Roth | On succint representation of knowledge community taxonomies with formal concept analysis[END_REF]) is a time-consuming task in comparison to the computation of the distribution index.

Indeed, [START_REF] Roth | On succint representation of knowledge community taxonomies with formal concept analysis[END_REF] showed that in the worst-case scenario the complexity of the computation of the stability index is quadratic in the size of the concept lattice. In contrast, in the worst-case scenario the complexity of the computation of the distribution index (using Eq. 5.1 when concept extents are already given) for all concepts in a lattice L K built from a

formal context K = (G, M, I) is O(m • n) with m = |L K | and n = |G|.
To sum up, when the analysed objects are identified by pairs (Object, Date), we have 134

Hydro-Ecological Sequential Data

empirically observed that the distribution of concepts can be used to select relevant concepts (that tend to be stable) if the execution time is important. is valid only for one physico-chemical sample that precedes the biological one, and thus it should not be discovered.

To address this issue, we explore the hydro-ecological sequential data by using various quantifiers during the relational scaling mechanism as detailed in Sect. 6.2. -changing the quantifier used for ipb1 and at the same time preserving the one used for ipb2 leads to the same number of concepts for L K T and a different number of concepts for L K M . The constant number of the L K T concepts is to be linked to the fact that ipb2

⊆ G M × G T ipb2 ⊆ G T × G T L K M L K T IBD green
does not depend on the learnt concepts in L K M . To illustrate this, for the IBD green sub-dataset by using the ∃ >75% quantifier for both the ipb1 and ipb2 temporal relations, ). In addition, by analysing Tab. 7.12 it is noted that the frequency of the (b) cpo-pattern tends to decrease for negative qualitative values (yellow, orange and red) of IBGN; -the measures associated with cpo-pattern (c) stress that the red physico-chemical macroparameters are not frequently measured before IBGN blue since they show a degradation of the water quality and do not lead to a very good ecological state. This cpo-pattern is retrieved in 17.5% of the analysed data and covers only 20% of the monitored geographical area. As expected, in contrast with the (b) cpo-pattern, the (c) cpo-pattern has a low support and it is valid for a small percentage of the monitored geographical area. Besides, by analysing again Tab. 7.12 it is noted that the frequency of the (c) cpopattern decreases when the quality of IBGN increases (from red to orange, yellow and blue). The persistencies of the vertices from wcpo-patterns help hydro-ecologists to infer if the regularities are accidental or not. For instance, Fig. 7.17 reflects that if the nutrient pollution (e.g. PHOS yellow ) is too persistent in time the biocoenosis (flora and fauna) may lose its resilience capacity [START_REF] Webster | Stream Ecology: Application and Testing of General Ecological Theory, chapter Stability of Stream Ecosystems[END_REF], and thus IBGN orange ( = 0.1) becomes IBGN red ( = 0.2). Furthermore, the overall weights of the vertices from the wcpo-patterns shown in Fig. 7.17 are quite similar in both sub-datasets. Itemset (PHOS yellow PAES green ) has one extra occurrence in the IBGN red sub-dataset (ω = 12) than in the IBGN orange one (ω = 11).

Therefore, in this case the persistency and overall weight measures can be used to discriminate the cpo-patterns, but the extra occurrence may be accidental as well.

The specificities of the vertices from the wcpo-patterns shown in Fig. 7.18 seem to have a more discriminant power. By analysing the (b) wcpo-pattern, it is noted that three vertices have smaller specificity values than the values of the same three vertices from the (a)

wcpo-pattern. Thus, the (b) wcpo-pattern reveals regularities available for many analysed sequences. For example, the regularity {PAES green } ← {? blue , PAES green } is in:

-the IBGN orange sub-dataset ς = 50% specific to the 6 sequences that support the wcpo-pattern, and, besides, 50% specific to the other analysed sequences;

-the IBGN red sub-dataset ς = 80% specific to the 6 sequences that support the wcpopattern, and, besides, only 20% specific to the other analysed sequences. 7.14 shows some data gathered for three river sites given in Fig. 7.21, precisely S7742, S7743 and S7792. We note that for a river site only the values of physico-chemical parameters are mandatory. There are three monitored periods of time, i.e. 2002 -2005, 2006 -2009 and 2010 -2014. For each period of time and a river site, the aggregated values are obtained from various Table 7.15 shows the 12 surveyed river segments, where each river segment includes a river site from the analysed river network (Fig. 7.21). 

Data preprocessing

To explore such heterogeneous data, we preprocess them using once again the domain knowledge. Firstly, the biological and physico-chemical data in Tab. 7.14 are already discretized.

The land use data are numerical values, and thus we discretize them using the qualitative values given in Tab. 7.17. Table 7.18 shows the preprocessed data about river sites (the raw data are given in Tab.

7.14). For example, between 2010 -2014 the surroundings of the S7792 river site are covered with a medium percentage of urban areas and a low percentage of arable lands at 100 m buffer; a low percentage of urban areas and a high percentage of arable lands at 500 m buffer. 

Building a Heterogeneous Sequential Dataset

For each period of time and river site in the studied river site network (Fig. 7.21), a heterogeneous itemset {physico-chemical parameters, biological indicators, land use} can be built. For example, the heterogeneous itemset {(NH + 4 green P green NO - 2 yellow ), (IBGN red IBD green ), (11 low 100m 11 low 500m 21 low 100m 21 low 500m )} is associated with river site S7742 for the period [START_REF] Chen | An updown directed acyclic graph approach for sequential pattern mining[END_REF]-2014 (Tab. 7.18) (Tab. 7.18). Note that 11 and 21 are respectively the identifiers of urban areas and arable lands as shown in the taxonomy depicted in Fig. 7.22a. Since between the river sites exists the spatial order is downstream of, we can build heterogeneous sequences. Moreover, a sequence can end with a target itemset (restoration types) built from an unordered set, e.g. (Global L1 Wetland L1 ) for the 19949 river segment (Tab. 7.20).

Although a dataset of heterogeneous sequences can be built for the analysed river site network, our aim is to manipulate the data as a graph that has heterogeneous itemsets as vertices and binary spatial relations as edges. Thus, we show that RCA-S might be appropriate for graph mining [START_REF] Chakrabarti | Graph mining: Laws, generators, and algorithms[END_REF], as well.

Modelling Heterogeneous Sequential Data

To explore the REX heterogeneous dataset and to build the RCA input, the data model depicted in Fig. 7.24 is used. This model allows us to learn more about the ecological state of the aquatic ecosystem by highlighting the impact of land use, water quality and river restorations. and nitrogen that represent a part of the abiotic characteristics suitable for the diatom species [START_REF] Raibole | Impact of physico-chemical parameters on microbial diversity: Seasonal study[END_REF].

The 6 cpo-pattern, which is a more concrete specialisation of 5 , is associated with 3 river segments (shown in Tab. 7.22) that contain at most 2 locations that had global and wetland restorations. Itemset (BIO green ) (♦ in Fig. 7.25) reveals locally a good ecological state of the aquatic ecosystem. Since BIO is an abstract item, we cannot specify the fauna and flora that underpin this regularity. In addition, itemset (TEMPERATURE blue ) reveals locally a very good physico-chemical state of the water temperature. Furthermore, locally at 500 m buffer the land use pressures of arable lands and urban areas are medium, while at 100 m the land use pressures of urban areas are high. 

× × × × × × × × × × × 2 × × × × × 3 × × × × × × × × 4 × × × × × 5 × × × × × × 6 × × × 7 × × ×
A - - S7743 S7915 B - S7915 S7743 C S7915 - S7743 D - S7915 - S7743 E - - S7914 F S7914 S7914 S7914
The cpo-pattern given in Fig. 7.26 is associated with 2 river segments that contain at most 2 locations that were globally restored. Locally, in the entire monitored period 2002 -2014 

Discussion

papers followed by a final evaluation or the trajectory of a football player prior to a football game leading to a sequence of training sessions followed by a player evaluation.

Discussion

In contrast to classical sequential pattern mining methods, the problem that we have tried to tackle in this thesis is more challenging since the objective is to simultaneously enumerate the cpo-patterns from a sequential dataset and to highlight how these patterns relate to each other. In fact, this problem has been inspired by existing works, e.g. [START_REF] Cellier | Partial orders and logical concept analysis to explore patterns extracted by data mining[END_REF] and [START_REF] Egho | A FCA-based analysis of sequential care trajectories[END_REF], that post-process already discovered patterns in order to organise them into a hierarchy. Therefore, these existing works rely on classical sequential pattern mining methods [START_REF] Fournier-Viger | A survey of sequential pattern mining[END_REF]. However, we have proposed RCA-S that is a self-contained approach for directly extracting a hierarchy of cpo-patterns from the given sequential dataset.

Recently, [START_REF] Buzmakov | On mining complex sequential data by means of FCA and pattern structures[END_REF] have shown how to explore sequential data by means of FCA and pattern structures. Hence, the set of cpo-patterns extracted using classical methods, e.g. [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF] and [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF], can be combined with the intersection operation on graph to build a pattern structure. The resulting pattern concept lattice can be compared to the hierarchy of cpo-patterns built with RCA-S . Let us however notice that first, in our approach the cpo-patterns are extracted and implicitly organised into a hierarchy directly from the RCA output. Second, a partial order on items is generated, and thus abstract and hybrid cpo-patterns are obtained rather than only concrete cpo-patterns as in [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF] and [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF]. Such results can be related to [START_REF] Srikant | Mining sequential patterns: Generalizations and performance improvements[END_REF] where generalised sequential patterns (rather than cpo-patterns) are extracted on two steps:

(i) new generalised sequences are built from the original ones based on a user-defined taxonomy over the items and (ii) the new generalised sequences are explored. Therefore, their method explores sequences that already contain the relationships between the items and their ancestors. In contrast, the RCA-S approach extracts multilevel cpo-patterns without a specific preprocessing of the original sequences. Indeed, RCA reveals automatically the relationships between the items and their ancestors during the relational scaling mechanism since the unordered set of items/taxonomy over the items is encoded into the RCA input based on the nominal/ordinal scaling. Moreover, RCA-S allows both to navigate along the sequences and to synthesise them within cpo-patterns.

To our knowledge, the existing methods [START_REF] Pei | Discovering frequent closed partial orders from strings[END_REF] and [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] directly extract standard cpo-patterns, i.e. patterns that consider only the order on itemsets from the analysed sequences. RCA-S allows to directly obtain more informative cpopatterns by exploiting the "richness" of the RCA output, namely weighted cpo-patterns and cpo-patterns with user-defined constraints.

Finally, Temporal Concept Analysis [START_REF] Wolff | Temporal Concept Analysis[END_REF] is an extension of FCA for exploring temporal data where the temporal relations between the derived concepts are actually revealed by manually analysing the dates in the concepts. The RCA-S approach, on the contrary, automatically reveals the temporal links between the derived concepts through the relational scaling mechanism.

Perspectives

The contributions presented in this thesis open up interesting research directions:

to improve RCA-S in order to be applicable to large volumes of sequential data. In fact, since classical RCA does not cope with big datasets, the current version of RCA-S is not an efficiency-based approach but rather focuses on exploring small but interesting datasets, as those designed during the Fresqueau and REX projects, in order to enhance the pattern evaluation step. To address the "concept explosion" problem, it will be interesting to improve the RCA-based exploration step of sequential data by means of AOC-poset [START_REF] Godin | Building and maintaining analysis-level class hierarchies using galois lattices[END_REF]. Indeed, [START_REF] Dolques | Performance-friendly rule extraction in large water data-sets with AOC posets and relational concept analysis[END_REF] have shown that using AOC-poset rather than concept lattices reduces the complexity of the RCA output;

to avoid the "cpo-pattern explosion" by pushing measures of interest deep into the RCA-based exploration step. Usually, the support measure is used to prune infrequent cpo-patterns.

In this thesis, we have already used the iceberg lattices that exploits the support measure. However, it will be interesting to try to push the distribution index or the stability index [START_REF] Kuznetsov | On stability of a formal concept[END_REF] into the RCA-based exploration step, and thus to directly extract only relevant multilevel cpo-patterns;

to design a tool that interactively extract the cpo-patterns from the RCA output rather than to extract all of them at once. To this end, the extraction and the evaluation steps of RCA-S may be seen as one iterative step. Precisely, relying on measures of interest (e.g.

distribution index) domain experts may first select a few interesting main concepts, and thus the CPOHrchy algorithm would extract only the associated multilevel cpopatterns. Second, the extraction of cpo-patterns may continue based on other main concepts selected by using again the measures of interest or based on the main concepts that surround the previously selected concepts. Then, the iterative step may continue in the same way. To sum up, an interactive tool may enhance the evaluation step since domain experts may gradually and systematically assess the discovered multi-level cpo-patterns rather than being overwhelmed by the potential exponential number of cpo-patterns;
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to study the different quantifiers that can underpin the relational scaling mechanism and to analyse the emerged cpo-patterns. In this thesis we have focused only on the ∃ quantifier and its variants applied to the order relations on the itemsets. It will be interesting

to study more quantifiers presented in [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF] and also to apply them to the qualitative relations used to define the itemsets. For example, the ≥ 50% quantifier can be used to discover only the itemsets that include at least 50% out of the number of items used to build the analysed sequences;

to empirically compare the RCA-S approach with ad hoc methods. In this thesis, we have presented a time complexity analysis that theoretically shows -in the worst-case scenario -the better performance of RCA-S compared with an ad hoc method that combines FCA and the [START_REF] Fabrègue | Mining closed partially ordered patterns, a new optimized algorithm[END_REF] approach for extracting cpo-patterns. Furthermore, it will be interesting to carry out an experimental evaluation of the RCA-S approach and other ad hoc methods on standard benchmark datasets. Pour résumer, nous avons conc ¸u une approche dont les résultats facilitent l'évaluation des motifs partiellement ordonnés fermés découverts dans les données séquentielles comme suit :
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1. les experts peuvent naviguer entre les motifs obtenus en étant guidés par les relations entre eux ;

2. les motifs plus ou moins abstraits peuvent révéler des résultats qui ne peuvent être trouvés par de motifs concrets avec des valeurs élevées du support et aussi peuvent donner un aperc ¸u des tendances des données analysées ;

3. les motifs partiellement ordonnés fermés pondérés mettent en évidence les particularités liées aux differents itemset présents dans les séquences analysées ;

Par ailleurs, il convient de mentionner que l'approche RCA-S peut être appliquée à toute donnée pouvant être modélisée selon le modèle de données générique proposé, comme par exemple la trajectoire d'un joueur de football avant un match menant à une séquence de sessions de formation suivie d'une évaluation de joueur.

Les contributions présentées dans cette thèse ouvrent plusieurs orientations de recherche.

Par exemple :

-RCA-S peut être amélioré pour être applicable à de gros volumes de données. En 
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 1632 Figure1.1: Overview of the RCA-S approach[START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF] 

  is worthwhile to mention that the binary relation ≤ IS can be a temporal relation (e.g. New Year's Eve 2015 is preceded by New Year's Eve 2013), a topological relation (e.g. Polygon1 contains Polygon2), a directional relation (e.g. (Canada US) is north of Mexico), a part of relation (e.g. cytoplasm is part of cell) or any other order in which related itemsets follow each other.

  2.1 is an illustrative example of a sequence database D S that contains three sequences S1, S2 and S3 built from the set of items I = {a, b, c, d}. For example, S1 = (a)(b c)(d) is a 3-sequence that contains the (a) 1-itemset, the (b c) 2-itemset and the (d) 1-itemset. A sequence S = (a)(c) is a subsequence of S1, denoted by S s S1, since (a) ⊆ (a), (c) ⊆ (b

2 andDefinition 2 . 5 (

 225 2.1 subsequence S = (a)(c) has Support(S ) = |{S1, S3}| = Freq(S ) = |{S1,S3}| |{S1,S2,S3}| ≈ 0.67. Sequential Pattern). Given a sequence database D S , a user-defined minimum support θ and a subsequence S . S is a frequent subsequence in D S according to θ if Support(S ) ≥ θ.
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 426 frequent subsequences of P as well. For example, sequential pattern P 9 = (b)(d) is obtained, but also its frequent subsequences P 1 = (b) and P 4 = (d) . Since P 4 and P 9 have the same support Support(P 4) = Support(P 9) = |{S1, S2}| = 2, and, besides, P 4 can be discovered from P 9,[START_REF] Yan | Clospan: Mining closed sequential patterns in large datasets[END_REF] proposed a more concise representation of sequential patterns, namely closed sequential patterns. Closed Sequential Pattern). Given a sequence database D S and a sequential pattern P . P is closed if there is no sequential pattern P in D S such that P s P and Support(P ) = Support(P ).

Figure 2 .

 2 Figure 2.1: An example of a partial order on I 1 = {a, b, c, d, e, Consonants, Vowels, Letters}
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 267 Figure 2.2 illustrates a few po-patterns associated with the set of sequences {S1, S3} from the sequence database given in Tab. 2.1, except for po-pattern G 6 (Fig.2.2f) associated with {S1, S2} and po-pattern G 7 (Fig. 2.2g) associated with {S1, S2, S3}. For instance, G 1 (Fig.2.2a) is a concise representation of the P 6 = (a)(b) and P 7 = (a)(c) sequential patterns shown in Tab. 2.2 that coexist in the same sequences S1 and S3. Indeed, the set of itemsets in P 6 and P 7, denoted by IS P 6&P 7 = {(a), (b), (c)} and the binary relation precedes, referred to as <, build the partial order (IS P 6&P 7 , <). Thus, the same itemset (a) is comparable with the (b) and (c) itemsets, i.e. (a) < (b) and (a) < (c), while the (b) and (c) itemsets are not comparable.

Figure 2 . 2 :

 22 Figure 2.2: Several po-patterns that summarise the sequential patterns associated with {S1, S3} (Tab. 2.1), except for po-pattern G 6 associated with {S1, S2} and po-pattern G 7 associated with {S1, S2, S3}

  2.2b) summarises the P 2 = (c) and P 3 = (a) sequential patterns from Tab. 2.2, while po-pattern G 5 (Fig.2.2e) summarises the P 1 = (b) , P 2, and P 3 sequential patterns. Then, we can say that G 2 is a sub po-pattern of G 5 . Definition 2.15 (Sub PO-Pattern). Given two po-patterns G and G with P G and P G their sets of paths. G is a sub po-pattern of G, denoted by G g G, if ∀P ∈ P G , ∃P ∈ P G such that P s P . A set of sequential patterns can have multiple concise representations. For instance, the po-patterns G 3 and G 4 (Fig. 2.2c and 2.2d) synthesise the set of sequential patterns P = { (b) , (a) , (b c) }, i.e. G 3 g G 4 and G 4 g G 3 . Therefore, one of these po-patterns is redundant and only the most compact representation of P should be discovered.

2. 2

 2 Pattern Mining Definition 2.16 (Minimal PO-Pattern). Given a set of sequential patterns P and its concise representation G = (V, E, l). The po-pattern G is minimal if there is no other concise representation G = (V , E , l ) of P such that G g G and G g G with |V | < |V| or |E | < |E|. Now, following Def. 2.16, po-pattern G 4 is not minimal since path (b) is contained in path (b c) and |V 4 | > |V 3 |. Thus, G 3 is the minimal po-pattern that should be extracted and po-pattern G 4 is redundant. It is worthwhile to mention that the number of obtained po-patterns can explode, and therefore inspired by the closure property of sequential patterns, more representative popatterns can be extracted. Definition 2.17 (Closed PO-Pattern (cpo-pattern)). Let D S be a sequence database and G a popattern. The po-pattern G is closed, referred to as cpo-pattern, if it is minimal and there is no popattern G in D S such that G ≺ g G with S G = S G .

Figure 2 .Figure 2 . 3 :

 223 Figure 2.3 shows the set of cpo-patterns that summarise the sequential patterns given in Tab. 2.2. It is noted that there is a cpo-pattern for each distinct set of sequences, and hence the number of obtained patterns is decreased. For example, cpo-pattern G 7 (Fig.2.3b) synthesises the P 1 = (b) and P 2 = (c) closed sequential patterns contained in the sequences S1, S2 and S3 shown in Tab. 2.1.

where 2 G

 2 and 2 M are the power sets of G and M , respectively. The operators define a Galois connection between 2 G and 2 M . The set X is the set of all attributes in M shared by the objects in X. Similarly, Y is the set of all objects in G that have the attributes in Y . The composition operators are closure operators since they are idempotent, monotonous and extensive. X and Y , such that X = X and Y = Y , are closed sets. Definition 2.19 (Formal Concept). A formal concept C derived from a formal context K = (G, M, I) is a pair (X, Y ), where X ⊆ G and Y ⊆ M , such that X = Y and Y = X. The set of objects X is called the extent of C, while the set of attributes Y is called the intent of C.
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 2 Figure 2.4 illustrates the Hasse diagram 1 of lattice L K1 derived from K 1 (Tab. 2.3). Each
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 24 Figure 2.4: The Hasse diagram of the L K1 concept lattice derived from the K 1 formal context (Tab. 2.3)
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 25 Figure 2.5: Illustrative example of a relational context family
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 26 Figure 2.6: The initial lattices L K1 and L K2 built respectively for the formal contexts K 1 and K 2
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 27 Figure 2.7: (a) the scaled context of K1; (b) the lattice built from K1 +
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 2 Figure 2.8: The schema of the RCA process
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 3 Figure 3.1: Patient sequence
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 32 Figure 3.2: The sequences of patient P1

  Exploiting the relational nature of our sequential medical data, we propose to model the sub-datasets as shown in Fig.3.3. This data model is used to build the RCA input, as we explain in Sect. 3.4.1. There are four rectangles, one for each set of objects (analogous to a table from a relational database) we manipulate, as follows: viruses (V), symptoms (S), viral tests (VT) and medical examinations (ME). The set of viruses contains only one object (item) Influenza and the set of symptoms contains two objects COUGH and FEVER.
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 33 Figure 3.3: The modelling of the sequential medical data shown in Tab. 3.2[START_REF] Nica | Extracting hierarchies of closed partially-ordered patterns using relational concept analysis[END_REF] 

Figure 3 . 4 :

 34 Figure 3.4: General data model for exploring qualitative sequential data with RCA

3. 3 .

 3 As explained in Sect.3.3.3, the set of viruses contains only one object Influenza and the set of symptoms contains two objects COUGH and FEVER. Below, we detail how to create the set of viral tests (that represents the objects of interest) and the one of medical examinations.

(

  except the target itemset) in sequence Seqi. The function getS : G M ∪ G T → D S maps a target/non-target itemset UID to the original sequence that owns the itemset. The function getIS : G M ∪ G T → IS maps a UID to the corresponding target/non-target itemset. For instance, UID Sf luA (Tab. 3.3) is a sequential dataset of UIDs, where G M is the set of all the viral test UIDs, while G T is the set of all the medical examination UIDs. The patient sequence of UIDs (P1,17/11) Seq2 (P1,18/11) Seq2 is derived from the patient sequence of itemsets getS((P1,18/11) Seq2) = S2 = (COUGH high )(Influenza A ) shown in Tab. 3.2. The UID (P1,18/11) Seq2 uniquely identifies the target 1-itemset getIS((P1,18/11) Seq2) = (Influenza A ) that ends S2. Similarly, (P1,17/11) Seq2 uniquely identifies the non-target itemset getIS((P1,17/11) Seq2) = (COUGH high ) owned by the getS((P1,17/11) Seq2) = S2 patient sequence. Chapter 3. Relational Analysis of Sequential Data Relying on Tab. 3.2 and 3.3 and following the data model depicted in Fig. 3.3, we encode D Sf luA into the RCA input shown in Tab. 3.4.

  Figure 3.5: The fix point of the RCF given in Tab.3.4: (a) the simplified lattice of viral tests; (b) the simplified lattice of symptoms; (c) the simplified lattice of medical examinations
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 36 Figure 3.6: Several relations between the conceptual structures depicted in Fig.3.5

  (a) L KVT (b) L KS (c) L KME

Figure 4 .

 4 Figure 4.1: Excerpts from the RCA output (the simplified concept lattices) depicted in Fig. 3.5; (a) the lattice of viral tests, (b) the lattice of symptoms and (c) the lattice of medical examinations

Property 4 . 1 .

 41 Fig. 4.2), where C I ∈ C K I , then C T reveals an itemset of qualitative values (e.g. FEVER high ). Moreover, if the C T concept intent contains a temporal relational attribute ∃ipb 2 (C T ) (e.g. ∃RME-ipb-ME(CKME 9)), then C T leads to another itemset in the sequential pattern, depending on the C T intent. Therefore, the temporal relational attributes reveal the order on itemsets in the sequential pattern and the qualitative relational attributes reveal the itemsets of the sequential pattern. In contrast, if the C T intent (e.g. CKME 8 used to build ∃RVT-ipb-ME(CKME 8) of CKVT 4 in Fig. 4.2) contains no temporal relational attribute, the extraction of the sequential pattern is finished.
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 42 Figure 4.2: Two navigation paths beginning with the CKVT 4 main concept intent (Fig. 3.5a)
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 34673 and L K I = (C K I , K I ) whose concepts have the aformentioned 3-tuple structures. Output: L K M whose concepts are updated with the associated cpo-patterns.1 foreach C M = (X m , Y m , G m ) where C M = ⊥(L K M ) do 2 if Y m has temporal relational attributes then next ← SearchAdjacentConcepts(Y m ); m ← initialise to (C M , C next );5 Queue ← enqueue the C next concepts and mark them as visited; T = (X t , Y t , v t ) ← dequeue Queue; 8 v t ← derive an itemset based on L K I and the qualitative relational attributes of Y t (Sect. 4.3.2); 9 if Y t has temporal relational attributes then 10C next ← SearchAdjacentConcepts(Y t ); 11 G m ← add (C T , C next ) to G m ; 12 C next ← delete already visited concepts from C next ; 13 if C next is not empty then 14Queue ← enqueue the C next concepts and mark them as visited; add (C T , {}) to G m ; From the RCA Output to a Hierarchy of Multilevel CPO-Patterns Algorithm 1, referred to as CPOHrchy, takes as input the three lattices L K M , L K T and L K I and its output is the main lattice L K M whose concepts are updated with the corresponding cpo-patterns. The three lattices are represented as sets of concepts, where for each concept its upper covers are known. For each main concept C M whose intent has at least one temporal relational attribute, an adjacent list of pointers to the navigated concepts (i.e. the concepts that are adjacent to each navigated concept) is built in a breadth-first manner based on Properties 4.4 and 4.5. For each navigated concept is derived a vertex labelled with an itemset (detailed in Sect.4.3.2). It is worth mentioning that ⊥(L K M ) is not taken into consideration since generally this is too specific and not frequent (according to a user-defined minimum support θ). Algorithm 2, called SearchAdjacentConcepts, shows how to derive from the temporal relational attributes of the intent of a main concept C M the next concepts C next that should be navigated by relying on Properties 4.4 and 4.5. This algorithm is applicable to temporal concepts (in this case ipb 1 is replaced with ipb 2 ) as well. Lines [2-8]: delete all the concepts in C next that are upper covers for other concepts in C next , i.e. delete concepts that are not the most specific ones in C next . Lines [9-15]: prune all the concepts in C next that can be deduced by navigating other ones in C next . Algorithm 2: SearchAdjacentConcepts Input : intent Y m of a main concept C M . Output: C next the set of the next navigated concepts.
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 4 1 (Vague/Defined Relational Attribute). The relational attribute ∃r(C), where C

Figure 4 . 3 :

 43 Figure 4.3: Deriving vertices from concept intents that contain only the relational attributes after pruning according to Property 4.4

  the following, D S is a sequence database, I is a set of items, IS ⊆ 2 I is the set of the itemsets in the sequences of D S and l is the maximum length of the sequences in D S . Let us denote by m the number of the obtained cpo-patterns. The proposed method spans two steps and its overall complexity in the worst-case scenario is O(m • 2 • (2 • |I|) l ). If we build a hierarchy of these results in a post-processing step and since the patterns are closed and already associated with their supporting sequences, the complexity of the extra step would be 1) building the context patterns-sequences: O(m•|D S |) and 2) building the lattice 1 : O(m 2 • |D S |•(m+2)). Thus, the whole process complexity would be

  3.4), let us consider an RCF (the RCA input) that comprises the set of formal contexts {K M = (G M , M M , I M ), K T = (G T , M T , I T ), K I = (G I , M I , I I )} and the associated relational contexts. The obtained fix point contains the set of concept lattices {L K M , L K T , L K I } built from the scaled contexts 1 the complexity of building a lattice L from a context (G, M, I) is O(|G| 2 • |M | • |L|) [Merwe et al., 2004] 60 4.4 Complexity Analysis of the RCA-S Approach {K+ M = (G M , M + M , I + M ), K + T = (G T , M + T , I + T ), K I = (G I , M I , I I )}. We denote by |L K i | the number of formal concepts in lattice L K i . According to[START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF], in the worst-case scenario the overall computation time of the considered fix point isO(n c • n o • (n a + n o )), where n c = max (|L K M |, |L K T |, |L K I |), n a = max (|M + M |, |M + T |, |M I |) and n o = max (|G M |, |G T |, |G I |).The worst-case scenario for the CPOHrchy algorithm is when each main/temporal concept points to all concepts inL K T . Let us denote m = |L K M | (each element of L K M reveals a cpo-pattern), p = |L K T |and q the number of all the qualitative relational attributes from a temporal concept intent. First, we focus on Algorithm 2. The overall computation time is O(p) since we iterate throughout p concepts pointed by the temporal relational attributes of Y m at Lines [1, 4, 7, 11, 14]. The other lines are O(1). Second, in Algorithm 1, Lines [2-20] are executed m times. Lines [3, 5] have the complexity O(p) since C next contains p concepts pointed by the temporal relational attributes of Y m . Lines [6-19] are executed p times since each temporal concept in L K T is visited only once and the complexity of these lines is O(p(q + p)). Indeed, Lines [10, 12, 14] are O(p) since C next has p concepts pointed by the temporal relational attributes of Y t , Line [8] is O(q) and the other lines are O(1). Since generally q ≤ p, the computation time becomes O(p 2 ). Therefore, in the worst-case scenario the overall computation time for CPOHrchy is O(m • p 2 ).
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 44 Figure 4.4: Extracting the cpo-pattern associated with the CKVT 10 main concept. 1 is the set of navigated concepts and 2 is the generated cpo-pattern G CKVT 10 . Each vertex in 2 is derived from a concept in 1 (from right to left)

Figure 4 .

 4 Figure 4.5 illustrates a hierarchy of multilevel cpo-patterns, i.e. main lattice L KVT (Fig. 3.5a) whose concepts are upgraded with the cpo-patterns discovered in the sequential medical data given in Tab. 3.1 by using RCA-S . Let us mention that the bottom concept is not considered since there is no analysed sequence that contains such specific cpo-pattern. Moreover, each concept has as intent a cpo-pattern, and thus this hierarchy highlights how the extracted cpo-patterns relate to each other; each concept has as extent a set of sequence UIDs whose cardinality represents the support of the associated cpo-pattern. For example, cpopattern G CKVT 7 associated with concept CKVT 7, whose Support(G CKVT 7 ) = |extent(CKVT 7)| =

Figure 4 . 5 :

 45 Figure 4.5: The hierarchy of multilevel cpo-patterns generated from the sequential medical data given in Tab. 3.1
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 5152 Figure 5.1: The fix point obtained for the sequential data given in Tab. 5.1: the simplified lattice of viral tests L KVT and the simplified lattice of symptoms L KS ; * is the intent of the bottom concept

  briefly explained in Sect. 2.3.5.4) fit classical concepts. For example, Fig. 5.3 depicts the extents of two main concepts CKVT 9 and CKVT 8 (Fig. 5.1a) whose temporal objects identify viral tests (i.e. sequences).

Figure 5 . 3 :

 53 Figure 5.3: The viral test distribution by patients for two concept extents CKVT 9 and CKVT 8 from L KVT (Fig. 5.1a)

Definition 5 .Definition 5 . 2 (

 552 1 (Absolute Frequency (φ o )). Let C M = (X m , Y m ) be a main concept and o an object of Xm . The absolute frequency of o in C M , denoted φ o , is equal to the number of pairs of X m where o occurs. Support and Richness (ρ)). The support of a main concept (X m , Y m ) corresponds to the number of pairs (Object, Date) out of X m . Its richness, referred to as ρ, is defined as the cardinality of Xm .

Definition 5 . 5 (

 55 Accuracy(υ)). Let I be the set of items. Let G be a multilevel cpo-pattern and I G the multiset of items labelling the nodes of G (∀I ∈ I G , I ∈ I). Let I c G be the subset of I G containing the concrete qualitative items. The accuracy of G is defined as the ratio of I c G cardinality to I G cardinality.

Figure 5 . 4 :

 54 Figure 5.4: Several multilevel cpo-patterns; abstract: (a) and (b); concrete: (c), (d) and (e); hybrid: (f) and (g)
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 57 Figures 5.4f and 5.4g illustrate two hybrid cpo-patterns whose accuracies are: υ(G CKVT 6 ) =

Figure 5 . 5 :

 55 Figure 5.5: From a set of navigated concept intents to cpo-pattern G CKVT 2 associated with the CKVT 2 main concept depicted in Fig. 5.1a

Definition 5 . 7 (

 57 p} and X t is the set of all UIDs that identify preceded itemsets w.r.t.v k t ∈ V k m . Weighted CPO-Pattern (wcpo-pattern)). Given a main concept C M , the vertex v m derived from C M , the associated cpo-pattern G m = (V m , E m , l m ) and a function w m : (V m -{v m }) → R n ≥0 , where n is constant. A weighted cpo-pattern is a quadruple (V m , E m , l m , w m )where the function w m maps each vertex to a n-tuple of real positive numbers (vertex measures of weightiness).

Figure 5 . 6 :

 56 Figure 5.6: Extraction of the G CKVT 17 weighted cpo-pattern associated with the CKVT 17 concept (Fig. 5.1a) by navigating concept extents

  For instance, let us suppose that physicians try to navigate the hierarchy of cpo-patterns shown in Fig. 5.7 while ignoring the weightiness of vertices. This figure depicts an excerpt (with six cpo-patterns from (a) to (f)) from the hierarchy of wcpo-patterns obtained by exploring the sequential data illustrated in Tab. 5.1.
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 57 Figure 5.7: Excerpt from the hierarchy of wcpo-patterns obtained by exploring the sequential data illustrated in Tab. 5.1

Figure 5 .

 5 Figure 5.8: Distinguishing between the outbreaks of influenza A and B

  6.1 there is a temporal link between the CKVT 7 main concept and the CKME 8 temporal concept (highlighted by the ∃RVT-ipb-ME(CKME 8) temporal relational attribute of the CKVT 7 intent) since each viral test in the CKVT 7 extent is preceded by at least one medical examination in the CKME 8 extent. Indeed, the viral tests identified by (P2,15/05) Seq4, (P2,09/02) Seq3 and (P3,13/04) Seq5 are preceded respectively by 1 medical examination from the CKME 8 extent; the viral test identified by (P1,28/09) Seq1 is preceded by 2 medical examinations. Therefore, the CKVT 7 extent gathers all the UIDs of viral tests (from the analysed data shown in Tab. 3.1) that are preceded respectively by at least one medical examination when the patient experienced a moderate cough.

Figure 6 .

 6 Figure 6.1: The ∃ quantifier: the concepts navigated to extract cpo-pattern G CKVT 7 ( 1 ) associated with the CKVT 7 main concept from lattice L KVT (Fig. 3.5a). The intents contain only the relational attributes according to Properties 4.4 and 4.5
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 62 Figure 6.2: The L KVT main lattice of viral tests obtained by scaling the temporal links between viral tests and medical examinations (shown in Tab. 3.4) using the ∃ >50% quantifier

Figure 6 . 5 :

 65 Figure 6.5: A taxonomy over the symptoms felt by patients

Figure 6 . 6 : 6 . 4

 6664 Figure 6.6: The RCA output (the simplified concept lattices) obtained by exploring the sequential data shown in Tab. 6.1 with a user-defined taxonomy over the items

Figure 6 . 7 :

 67 Figure 6.7: The cpo-pattern associated with concept CKVT 6 (Fig. 6.6a) that contains items across different levels of the taxonomy of symptoms shown in Fig. 6.5

6. 8 .

 8 There are two rectangles, one for each set of objects we manipulate, as follows: viral tests (VT) and medical examinations (ME). The temporal links between viral tests/medical examinations and medical examinations are highlighted by a temporal relation is preceded by.

Figure 6 . 8 :

 68 Figure 6.8: The modelling of the simple sequential data given in Tab. 6.3

97Chapter 6 .

 6 Study of the RCA-S Approach Adaptability an edge for each temporal relational attribute. To illustrate this, let us analyse cpo-pattern G CKVT 8 ( 2 , Fig. 6.10) extracted by navigating the interrelated concept intents 1 shown in Fig. 6.10. Vertex v CKVT 8 labelled with itemset (Influenza) is derived from the binary attribute Influenza of the CKVT 8 main concept intent. Vertex v CKME 9 labelled with itemset (COUGH) is derived from the binary attribute COUGH of the CKME 9 intent. The edge between the v CKVT 8 and v CKME 9 vertices is derived from the temporal relational attribute ∃RVT-ipb-ME(CKME 9) of the CKVT 8 intent that points to CKME 9. Similarly, vertex v CKME 4 labelled with itemset (COUGH) is derived from the binary attribute COUGH of the CKME 4 intent. The edge between the v CKME 9 and v CKME 4 vertices is derived from the temporal relational attribute ∃RME-ipb-ME(CKME 4) of the CKME 9 intent that points to CKME 4.

Figure 6 .

 6 Figure 6.10: 1 the interrelated concept intents navigated starting from the CKVT 8 main concept intent; 2 cpo-pattern G CKVT 8 associated with the CKVT 8 main concept from Fig. 6.9a. The intents contain only the relational attributes according to Properties 4.4 and 4.5

Figure 6 .

 6 Figure 6.12: The modelling of the heterogeneous sequential medical data shown in Tab. 6.8

Figure 6 .

 6 Figure 6.13: The fix point (the simplified concept lattices) of the RCF given in Tab. 6.10: (a) the lattice of vital signs; (b) the lattice of patients; (c) the lattice of viral tests; (d) the lattice of symptoms; (e) the lattice of drugs; (f) the lattice of medical examinations; * represents the intent of a bottom concept

Figure 6 . 6 . 5

 665 Figure 6.14: The heterogeneous vertex derived from the CKME 6 concept intent (Fig. 6.13f)

Figure 6 .

 6 Figure 6.15: The navigated concept intents starting from the CKVT 0 main concept (Fig. 6.13c) in order to extract the G CKVT 0 multilevel heterogeneous cpo-pattern

Figure 6 .

 6 Figure 6.16: The G CKVT 0 multilevel heterogeneous cpo-pattern associated with the CKVT 0 main concept (Fig. 6.13c)

  7.1a), macroinvertebrates (Fig. 7.1b), fishes (Fig. 7.1c), macrophytes (macroscopic plants living in water) (Fig. 7.1d) and diatoms (microscopic algae) (Fig. 7.1e). In France, five biological indicators have been normalised to assess the quality of watercourses: Standardised Global Biological Index (IBGN, [AFNOR, 2004a]) assesses the quality of watercourses by analysing macro-invertebrates. Precisely, some macro-invertebrates are sensitive to water pollution, while other ones are not. This index gives an overall estimation of the water ecosystem quality. The index score ranges from 0 to 20, where 0 represents a very bad quality of water and 20 a very good quality of water;

Figure 7 .

 7 Figure 7.1: Examples of flora and fauna and their size ranges

  7.2 is used. The four rectangles represent the four sets of objects we manipulate, as follows: biological samples, physico-chemical samples, biological indicators and physico-chemical macro-parameters. We note that the set of biological indicators contains only one indicator per sub-dataset. The links between biological/physico-chemical samples and physico-chemical samples are highlighted by the temporal binary relation is preceded by. This temporal relation associates one sample with another one if the first sample is preceded in time by the second one, on the same river site. There is no temporal binary relation between biological samples since in this work we evaluate the impact of physico-chemistry on biology. The biological/physico-chemical samples are described only by the qualitative bi-119 Chapter 7. Hydro-Ecology as Application Context nary relations has parameter blue, has parameter green, has parameter yellow, has parameter orange and has parameter red that link the biological/physico-chemical samples with the measured biological indicators/physico-chemical macro-parameters. For instance, in Tab. 7.4 the qualitative relation has parameter green links the physico-chemical sample taken at the S1 river site in March 2009 (03/2009) with the PHOS macro-parameter.
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 72 Figure 7.2: The modelling of hydro-ecological sequential data collected during the Fresqueau project [Nica et al., 2016a]. Bio and PhC stand respectively for biological and physico-chemical
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 737 Figure 7.3: Scalability test (number of analysed sequences)

Figures 7 . 7 Figure 7 . 4 :

 7774 Figures 7.4c and 7.4d illustrate the execution time of the RCA-based exploration step with and without optimisation (as explained in Sect. 4.3) for both the IBD and IPR blue

Figure 7 .Figures 7 .

 77 Figures 7.4g and 7.4h show the computation time of the algorithm CPOHrchy with or without optimisation. In both the IBD and IPR blue sub-datasets the extraction step relies on the navigation space (L K T = (C K T , K T )) depicted in Fig. 7.4e and 7.4f, respectively. When a temporal concept is navigated for distinct cpo-patterns, the non-optimised CPOHrchy searches its adjacent concepts in L K T and derives its itemset each time. Conversely, the optimised version of the algorithm saves the computed information for later use. In both subdatasets it is noted that low values of θ and large temporal lattices |C K T | ≥ 10000 (Fig. 7.4e and 7.4f) slow down the extraction step. In addition, the efficiency of the CPOHrchy algo-

  7.3.1.3 are encoded into the RCA input based on the data model shown in Fig.7.2. The relational scaling mechanism employed by the RCA process relies on the ∃ quantifier to derive the temporal and qual-6 based on Java Collection Framework and Lambda Expressions 1247.3 Hydro-Ecological Sequential Dataitative links between samples and samples/biological indicators/physico-chemical macroparameters. We note that there is no lattice of biological indicators since all the biological samples from a sub-dataset measure the same biological indicator having a specific qualitative value (e.g. a blue IBD). The RCA output comprises three lattices, one for each entity of the data model, i.e. the lattice of biological samples (the L K M main lattice), the lattice of physico-chemical samples (the L K T temporal lattice) and the lattice of physico-chemical macro-parameters (the L K I lattice of items). Furthermore, L K M is an Iceberg[START_REF] Stumme | Efficient data mining based on formal concept analysis[END_REF] lattice since a user-defined minimum support θ (%) is used.In Tab. 7.7 six hydro-ecological sequential sub-datasets are analysed. Each sub-dataset concerns only one biological indicator, namely IPR, IBD or IBGN, having the yellow or green qualitative value. These sub-datasets are interesting since the yellow (medium) qualitative value represents the threshold between the good ecological state and the bad ecological state of the aquatic ecosystem; the green qualitative value represents the good ecological state of the aquatic ecosystem. Other qualitative values were also analysed and we discuss them in the following sections.
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 75 Figure 7.5: The distribution of cpo-patterns in the obtained hierarchies according to the cpo-pattern accuracies and their numbers of items

Figure 7 . 6 :

 76 Figure 7.6: The number of multilevel cpo-patterns (concrete, hybrid and abstract) extracted at different support thresholds

Figure 7 .

 7 Figure 7.7 illustrates the distribution of the hybrid cpo-patterns extracted for all the subdatasets given in Tab. 7.9 according to their accuracies. The height of each point in the plot represents the number of extracted hybrid cpo-patterns (in logarithmic scale) whose accuracies are in the interval indicated on the horizontal axis. We can observe that the hybrid cpo-patterns have an almost similar distribution in the 5 extracted hierarchies.

Figure 7 . 7 :

 77 Figure 7.7: The distribution of the hybrid cpo-patterns (discovered in five distinct sub-datasets) with respect to their accuracies

7. 3 Figure 7 .Figure 7 .

 377 Figure 7.10: The percentages of the monitored geographical area covered by the top-23 abstract and top-32 concrete relevant cpo-patterns discovered in the IBGN blue sub-dataset (Tab. 7.9)

Figure 7 .Figure 7 .

 77 Figure 7.12: CPO-patterns by the distribution index (IQV), support and stability index (diamond labels) measures associated with the main concepts discovered in the IBD blue sub-dataset (Tab.7.10) 

Figure 7 .

 7 Figure 7.14: Performance study: the distribution (IQV) and stability indices of formal concepts

Figure 7 .

 7 Figure 7.15: Hydro-ecological sequence

Figure 7 .

 7 Figure 7.16: Excerpt from the hierarchy of cpo-patterns discovered in the IBGN blue sub-dataset given in Tab. 7.9. The support, richness (ρ) and distribution index (IQV) of each associated main concept are shown

  Figures 7.17and 7.18 depict two examples of multilevel wcpo-patterns discovered simultaneously in the IBGN red and the IBGN orange sub-datasets with the same support ( on the first vertex). As defined in Sect. 5.5, each vertex is labelled with a 3-tuple ( vt , ς vt , ω vt ), i.e. (persistency, specificity, overall weight).

Figure 7 .

 7 Figure 7.17: Two concrete wcpo-patterns discovered simultaneously in the IBGN red and the IBGN orange sub-datasets with the same Support = 10. represents the wcpo-pattern support. The other vertices are labelled with 3-tuples ( vt , ς vt , ω vt )

Figure 7 .

 7 Figure 7.18: Two hybrid wcpo-patterns discovered simultaneously in the IBGN red and the IBGN orange sub-datasets with the same Support = 6.represents the wcpo-pattern support. The other vertices are labelled with 3-tuples ( vt , ς vt , ω vt )

Figure 7 .

 7 Figure 7.19 reveals only one type of concrete pollution (organic: orange NITRO, red NI-TRO, red MOOX), while Fig. 7.20 reveals two types of concrete pollution (organic: orange NITRO, red MOOX and nutrient: red PHOS). Then, in Fig. 7.19 the physico-chemical pres-

Figure 7 .Figure 7 .

 77 Figure 7.19: A complex hybrid wcpo-pattern discovered in the IBGN orange sub-dataset. represents the wcpo-pattern support. The other vertices are labelled with 3-tuples ( vt , ς vt , ω vt )

Figure 7 .

 7 Figure 7.21: The analysed river site network

Figure 7 .

 7 Figure 7.23: The S7742 river site that is in the 20165 river segment

Figure 7 .

 7 Figure 7.24: The modelling of hydro-ecological heterogeneous sequential data collected during the REX project. Bio and PhC stand respectively for biological and physico-chemical

Figure 7 .

 7 Figure 7.25: Excerpt from the hierarchy of multilevel heterogeneous cpo-patterns discovered in the REX dataset (Tab. 7.21). 1 , 2 , 3 , 4 , 5 , 6 and 7 identify the cpo-patterns. is the support (number of river segments) of a cpo-pattern; represents the types of the river segment restoration; PHC and BIO stand respectively for physico-chemical parameters and biological indicators; represents the land use; ♦ represents the biological indicators; represents the physico-chemical parameters

Figure 7 .

 7 Figure 7.26 depicts a complex multilevel heterogeneous cpo-pattern extracted from the REX dataset. This is associated with the river segments 8674 and 19949. The vertices A , B , C , D , E and F are derived from the concepts in L K T whose extents (river sites) are shown in Tab. 7.23.

Figure 7 .

 7 Figure 7.26: A complex multilevel heterogeneous cpo-pattern extracted from the REX dataset (Tab. 7.21). A , B , C , D , E and F identify the vertices; is the support (number of river segments) of the cpo-pattern; represents the types of the river segment restoration; PHC and BIO stand respectively for physico-chemical parameters and biological indicators; represents the land use; ♦ represents the biological indicators; represents the physico-chemical parameters

4 .

 4 les motifs partiellement ordonnés fermés découverts n'exploitent que l'ordre des itemsets dans les séquences analysées et donc les motifs partiellement ordonnés fermés ne capturent pas les particularités (par exemple, l'occurrence répétitive d'un itemset dans un ensemble de séquences analysées) cachées dans ces séquences.Pour résoudre ces problèmes, cette thèse présente une méthode d'exploration de données séquentielles à l'aide de l'Analyse Relationnelle de Concept (ARC), qui permet de prendre en compte des relations objet-objet par l'application itérative de l'Analyse de Concepts Formels (ACF) sur un ensemble de contextes formels. L'ACF est une méthode de classification qui s'applique à des jeux de données constitués d'objets décrits par des attributs. D'un point de vue mathématique, l'ACF permet d'extraire à partir d'une unique relation binaire objetattribut un ensemble de concepts munis d'une structure hiérarchique appelé treillis de concepts. Un concept est constitué d'une extension et d'une intension : l'extension est l'ensemble maximal d'objets partageant le même ensemble maximal d'attributs qui constitue l'intension. L'ARC prend en entrée une famille relationnelle de contextes, composée d'un ensemble de contextes formels et d'un ensemble de contextes relationels entre objets des contextes formels. Lors de la première itération, chaque contexte formel est utilisé pour générer un treillis. Pour les itérations qui suivent, les concepts créés à l'étape précédente sont intégrés sous forme d'attributs relationnels dans les contextes formels, pour enrichir la description des objets. En effet, grâce à une opération d'échelonnage (existentiel, par exemple) il est possible d'utiliser les relations objet-objet pour créer une relation objet-concept. Cette relation qui permet de préciser les liens entre les itemsets qualitatifs qui sont contenus dans les séquences analysées. Ce modèle général se compose de quatre entités : un ensemble d'items, un ensemble d'itemsets non cibles, un ensemble d'items d'intérêt et un ensemble d'itemsets cibles. Ces entités sont liées par des relations temporelles «est précédé par» et des relations qualitatives «a l'item avec la qualité». En utilisant ce modèle, diverses données séquentielles, telles que des données hydroécologiques ou médicales, peuvent être explorées à l'aide de l'ARC. Le modèle permet la conversion de données séquentielles en contextes formels et relationnels, qui représentent l'entrée de l'ARC. La richesse du résultat de l'ARC facilite l'étape d'évaluation grâce à l'organisation des concepts en hiérarchies et aux informations portées par les concepts, à savoir les objets de leurs extensions et les attributs de leurs intensions, dont les attributs relationnels qui rendent ces concepts interdépendants ; -l'extraction directe de hiérarchies de motifs partiellement ordonnés fermés. Nous bénéficions du fait que certains motifs découverts sont naturellement des sous-motifs les uns des autres, et nous proposons d'extraire des hiérarchies de motifs partiellement ordonnés fermés o ù chaque motif est projeté dans ses descendants. Par conséquent, lorsqu'un motif partiellement ordonné fermé intéressant est trouvé, l'analyse peut continuer en explorant la zone environnante dans la hiérarchie ; -l'extraction de hiérarchies de motifs partiellement ordonnés fermés multi-niveaux avec deux niveaux de généralisation. La généralisation concerne d'une part la structure des motifs (par exemple, le nombre d'items, les sommets et / ou les arêtes), et d'autre part la précision des items (par exemple, de abstrait à défini) ; -l'extraction de motifs partiellement ordonnés fermés multi-niveaux sans prétraiter les séquences d'origine. Nous exploitons l'ordre sur les items révélé par l'ARC et nous extrayons des motifs partiellement ordonnés fermés multi-niveaux. Contrairement aux approches existantes pour l'extraction de motifs partiellement ordonnés fermés, on obtient au moyen de l'ARC deux nouveaux types de motifs : des motifs génériques qui représentent de fac ¸on abstraite les tendances communes des motifs séquentiels standards, et des motifs hybrides qui représentent à la fois des tendances communes et des informations spécialisées. L'existence de tels motifs et de la hiérarchie associée permet de faciliter l'analyse, en autorisant l'expert à circuler entre motifs au moyen des relations de spécialisation et de généralisation ; -des mesures d'intérêt pour la sélection et le filtrage de concepts et de motifs partiellement ordonnés fermés. Nous proposons de faire face au problème de l'explosion du nombre de concepts et de motifs partiellement ordonnés fermés au moyen d'un nouvel 166 indice de distribution, qui utilise les informations portées par les objets d'une extension de concept afin de déterminer la pertinence du concept. De plus, nous présentons un motif partiellement ordonné fermé plus informatif, à savoir un motif partiellement ordonné fermé pondéré, qui aide à mieux comprendre le motif obtenu en capturant et en montrant explicitement les différents r ôles de ses itemsets dans les séquences analysées sous-jacentes ; -une étude de l'adaptabilité de l'approche RCA-S . Nous montrons que l'approche proposée peut être adaptée pour : (i) extraire des motifs partiellement ordonnés fermés contenant des items appartenant à différents niveaux d'une taxonomie définie par l'expert, (ii) spécifier des contraintes sur les relations d'ordre entre les itemsets de motifs partiellement ordonnés fermés découverts (par exemple, pour découvrir les motifs dont les itemsets comprennent au moins 50% des items utilisés pour construire les séquences analysées) et (iii) explorer des données séquentielles hétérogènes (les séquences qui sont construites en utilisant des items représentent des domaines divers). Le manuscrit de thèse se compose de huit chapitres. Dans le deuxième chapitre, nous présentons l'état de l'art et les fondements théoriques de cette thèse : l'extraction de motifs séquentiels et l'ACF. Dans le troisième chapitre, nous présentons les deux premières étapes de l'approche RCA-S : le prétraitement des données et l'exploration par l'ARC de données séquentielles. Un modèle générique de données est proposé. Ensuite, en s'appuyant sur ce modèle, nous expliquons comment encoder une base de séquences pour l'utiliser en entrée de l'ARC. En outre, la sortie de l'ARC obtenue est expliquée et analysée. Nous montrons que la navigation manuelle de la sortie de l'ARC afin de découvrir des régularités pertinentes n'est pas une tâche facile pour les experts du domaine, parce que le nombre de concepts peut être grand et, en outre, les experts doivent porter leur attention de concept en concept et de treillis à treillis en considérant des relations intra-treillis et inter-treillis. Dans le quatrième chapitre, nous présentons l'étape suivante de RCA-S , précisément l'extraction directe d'une hiérarchie de motifs partiellement ordonnés fermés multi-niveaux à partir de la sortie de l'ARC obtenue. La structure et les propriétés de la sortie de l'ARC sont discutées. Ensuite, nous présentons un algorithme qui extrait automatiquement les motifs partiellement ordonnés fermés multi-niveaux. Deux optimisations de l'approche RCA-S sont présentées : une au niveau de l'exploration avec l'ARC et une autre au niveau de l'extraction. En outre, une analyse de complexité temporelle et spatiale de RCA-S est donnée. Dans le cinquième chapitre, nous présentons de nouvelles mesures d'intérêt pour le guidage d'experts de domaine. La "richesse" de la sortie de l'ARC est exploitée pour calculer l'indice de distribution (IQV) d'un concept formel, pour extraire les motifs partiellement ordonnés fermés multi-niveaux pondérés et pour catégoriser les motifs partiellement ordonnés fermés multi-niveaux obtenus en fonction de leur précision. De plus, nous présentons comment les motifs pondérés peuvent améliorer l'analyse des données séquentielles. Dans le sixième chapitre, nous discutons l'adaptabilité de RCA-S . Une taxonomie définie par l'expert sur les éléments de construction de séquence et, en outre, les contraintes définies par l'utilisateur sur les relations d'ordre sur les itemsets sont poussées profondément dans l'étape d'exploration basée sur l'ARC. Ensuite, nous présentons comment explorer des données séquentielles hétérogènes afin d'obtenir des motifs partiellement ordonnés fermés multi-niveaux hétérogènes. Dans le septième chapitre, nous présentons le contexte hydroécologique qui est le contexte d'application de cette thèse. Nous expliquons comment prétraiter les données hydroécologiques. Ensuite, nous décrivons et discutons les résultats obtenus à partir d'expérimentations réalisées sur différents ensembles de données hydroécologiques. Dans le huitième chapitre, nous concluons et donnons quelques perspectives de cette thèse. Nous avons évalué expérimentalement l'approche RCA-S et ses extensions sur des ensembles de données hydroécologiques collectés pendant deux projets de recherche interdisciplinaires, les projets Fresqueau 1 et REX 2 . Le projet ANR Fresqueau (2011-2015) portait sur le développement de méthodes innovantes pour l'analyse de données sur la qualité des eaux de rivière. Le projet REX (2015-2016), financé par l' École Nationale du Génie de l'Eau et de l'Environnement do Strasbourg, s'intéressait aux conditions et effets des opérations de restauration écologique menées sur différents sites de la plaine du Rhin. Les jeux de données du projet Fresqueau sont composés de séquences de valeurs, concernant des paramètres physico-chimiques et biologiques mesurés dans des stations (sites d'étude) de rivières. L'objectif est de relier les deux types de paramètres. Nous montrons sur différents jeux de données que l'approche RCA-S permet de mettre en évidence l'influence dans le temps des paramètres physico-chimiques sur les paramètres biologiques au moyen des hiérarchies de motifs partiellement ordonnés fermés multi-niveaux (pondérés ou non). Les jeux de données du projet REX sont composés de données hétérogènes concernant des paramètres biologiques et physico-chimiques de l'eau et l'occupation du sol relevée autour des stations de rivières (Fig. 7.23 du manuscrit). De plus, des informations concernant la restauration des tronc ¸ons de rivières sont analysées. Les stations de rivières sont intégrées dans un réseau représenté sous forme de graphe orientés (réseau des stations). Nous montrons ici que notre approche est également appropriée pour la fouille de données sur des graphes. Pour le données Fresqueau on peut trouver un exemple de résultat sur la Fig. 7.16 du manuscrit. Cette figure présente une partie de la hiérarchie des motifs partiellement ordonnés fermés multi-niveaux extraits d'un jeu de données relatives à des stations de rivières pour lesquelles l'indice biologique global normalisé (IBGN) indique un très bon état. Cet indice se base sur l'analyse des macro-invertébrés présents sur la station. On peut voir sur la figure des motifs abstraits, des motifs hybrides et des motifs concrets. Chaque motif porte trois mesures : le support (le nombre de séquences qui contiennent le motif), la richesse (le nombre de stations de rivières distinctes o ù ont été échantillonnées les mesures des séquences qui contiennent le motif) et l'IQV (indicateur de la distribution des mesures biologiques parmi les stations de rivières). Par exemple, les deux motifs (b) et (c) soulignent deux correspondances bien connues entre les valeurs qualitatives des macro-paramètres physico-chimiques et celles de l'indicateur biologique IBGN. Le motif (b) souligne que l'IBGN bleu est mesuré lorsqu'il est précédé par des valeurs qualitatives bleues des macro-paramètres physico-chimiques. Les mesures associées au motif (c) illustrent le fait que les macro-paramètres physico-chimiques avec des valeurs qualitatives rouges ne sont pas fréquemment mesurées avant l'IBGN bleu car ils montrent une dégradation de la qualité de l'eau et ne conduisent pas à un très bon état écologique. De plus, grâce aux motifs partiellement ordonnés fermés multi-niveaux qui sont extraits en utilisant RCA-S , le motif hybride (i), ayant un support de 18 peut être trouvé lorsque, par exemple un support minimum égal à 15 est utilisé même si le motif précis (r), qui est une spécialisation de (i), n'a qu'un support de 9 et n'est pas découvert. Dans un motif partiellement ordonné fermé multi-niveaux pondéré, chaque sommet est étiqueté avec un itemset et peut être annoté avec un 3-tuple (persistance, spécificité, poids total) qui capture les particularités cachées dans les données analysées. La persistance est une mesure qui illustre le caractère répétitif d'un itemset dans chaque séquence qui supporte le motif. La spécificité est une mesure qui illustre l'appartenance exclusive d'un itemset aux séquences qui supportent le motif. Le poids total est le nombre total d'occurrences de cet itemset dans toutes les séquences analysées. Du point de vue de l'interprétation, on peut détecter via un motif : une forte pollution (mise en évidence par les valeurs qualitatives des macro-paramètres), une pollution persistante (mise en évidence par la mesure de la persistance des sommets) et une combinaison de pollutions différentes (soulignées par les sommets qui contiennent de nombreux macro-paramètres, qui représentent des types distincts de pollution). La Fig. 7.19 du manuscrit illustre un motif partiellement ordonné fermé multiniveaux hybride et pondéré qui a été découvert dans 4 séquences du jeu de données associé à la valeur orange de l'IBGN. Dans cet exemple, l'itemset (NITRO orange PAES green ) révèle la présence d'une mauvaise pollution organique (NITRO) avec une persistance de 0, 75, une spécificité de 78% et un poids global égal à 9. Un autre example, celui de la Fig. 7.19 révèle un seul type de pollution spécifique, précisément organique (NITRO orange, NITRO rouge, MOOX rouge). Ensuite, des pressions physico-chimiques fortes peuvent être révélées par une répétition de mauvaises valeurs pour les paramètres physico-chimiques. C'est le cas dans ce dernier exemple o ù les pressions physico-chimiques sont fortes car il y a sept occurrences des macro-paramètres mauvais (orange) et très mauvais (rouge). Dans un motif partiellement ordonné fermé multi-niveaux hétérogène, chaque sommet est étiqueté avec un itemset et peut être annoté avec des itemsets révélant des informations provenant de différents domaines. La Fig. 7.26 du manuscrit montre un motif partiellement ordonné fermé multi-niveaux hétérogène trouvé dans le jeu de données REX. Ce motif est associé à deux tronc ¸ons de rivières (valeur indiquée dans le carré noir sur le rectangle) qui contiennent au plus deux endroits qui ont été restaurés globalement. Les sommets A , B , C , D , E et F du motif sont associés aux stations de rivières. Le motif révèle que, localement ( A , B , C et D ), les pressions exercées par les zones bâties étaient moyennes dans un rayon de 500 m autour de ces stations. En revanche, pour les rivières en amont ( E et F ) dans un rayon de 500 m, d'une part, les pressions exercées sur la rivière par les zones industrielles bâties et les terres arables étaient faibles (< 25%) ; d'autre part, un pourcentage élevé (> 40%) de la zone est recouvert de forêts, qui favorisent à un bon état écologique de l'écosystème aquatique. En comparant le sommet E avec A , B , C et D on note une dégradation concernant les valeurs qualitatives des paramètres physico-chimiques, probablement causée par les pressions liées au bâti. Par exemple, l'ammonium bleu (très bon) de E est mesuré lorsque, dans les environs, les pressions liées à l'occupation des sols sont faibles ; l'ammonium vert (bon) de A , B , C et D est mesuré lorsque, dans les environs, les pressions liées à l'occupation des sols sont moyennes.

  fait, puisque l'ARC classique ne fait pas face aux grands ensembles de données, la version actuelle de RCA-S n'est pas une approche basée sur l'efficacité, mais se concentre plut ôt sur l'exploration de jeux de données petits mais intéressants, comme ceux conc ¸us lors des projets Fresqueau et REX, afin d'améliorer l'étape d'analyse des motifs. Pour résoudre le problème de l'explosion de concepts, il sera intéressant d'améliorer l'étape d'exploration des données séquentielles basée sur l'ARC au moyen des Attribute-Object-Concept-posets ; -il sera intéressant d'utiliser des mesures d'intérêt dès la phase d'exploration basée sur l'ARC pour éviter l'explosion de motifs partiellement ordonnés fermés. Habituellement, le support est utilisé pour élaguer les motifs partiellement ordonnés fermés peu fréquents. Dans cette thèse, nous avons déjà utilisé les treillis d'Iceberg qui exploitent le support. Cependant, on peut essayer d'introduire l'indice de distribution dans l'étape d'exploration basée sur l'ARC et, par conséquent, d'extraire directement uniquement les motifs partiellement ordonnés fermés pertinents ; -il sera intéressant de concevoir un outil qui extrait de manière interactive et itérative les motifs à partis des treillis produits par l'ARC plut ôt que de les extraire tous à la fois. À cette fin, les étapes d'extraction et d'évaluation de RCA-S peuvent être considérées comme une étape itérative. Plus précisément, les experts peuvent s'appuyer sur des mesures d'intérêt pour sélectionner quelques concepts intéressants, pour lesquels on extrait les motifs partiellement ordonnés fermés multi-niveaux associés. L'extraction de motifs partiellement ordonnés fermés multi-niveaux peut se poursuivre en fonction d'autres concepts sélectionnés en utilisant à nouveau les mesures d'intérêt ou en fonction des concepts qui entourent les concepts sélectionnés précédemment. Ce processus itératif peut continuer de la même manière. Pour résumer, un outil interactif peut améliorer l'évaluation de motifs, car les experts du domaine peuvent évaluer de manière progressive et systématique les motifs découverts plut ôt que d'être submergés par le nombre exponentiel de motifs ; -il sera intéressant d'étudier les différents quantificateurs qui peuvent être utilisés pendant le mécanisme d'échelonnage relationnel et d'analyser les motifs partiellement ordonnés fermés qui sont alors extraits. De fait, dans cette thèse, nous nous sommes

  

generic data model that allows the conversion of various qualitative sequential data

  

table and intra-table relations. RCA yields concept lattices (one for each considered table) that are interconnected through various relations. Consequently, domain experts can find regularities hidden in the analysed sequential data by navigating amongst the interrelated concepts of these lattices;

a (e.g. medical or hydro-ecological) into the RCA input. This model also underpins the navigation of the obtained concept lattices;

an algorithm CPOHrchy that automatically navigates the obtained concept lattices in order to extract a hierarchy of cpo-patterns. Since the RCA output is complex, i.e. it contains several lattices whose concepts are interrelated through various relations, we Chapter 1. General Introduction automate its navigation. This algorithm relies on the structure and the properties of the RCA output in order to directly obtain the minimal representations of cpo-patterns without involving post-processing;

Table 2 .

 2 1: Example of a sequence database D S

	Sequence Id	Sequence
	S1	

Table 2 .

 2 2: All sequential patterns discovered in the sequence database from Tab. 2.1 when θ = 2

	Unique Identifier Sequential Pattern Set of Sequences Closed Maximal
	P 1	(b)	{S1, S2, S3}
	P 2	(c)	{S1, S2, S3}
	P 3	(a)	{S1, S3}
	P 4	(d)	{S1, S2}
	P 5	(b c)	{S1, S3}
	P 6		

  ). A heterogeneous sequence S H = IS H 1 IS H 2 ... IS Hr , where IS H i ∈ IS H with i ∈ {1, ..., r}, is a non-empty ordered list of heterogeneous itemsets. In addition, a heterogeneous sequence that has at least one multilevel heterogeneous itemset represents a multilevel heterogeneous sequence (hereinafter referred to as heterogeneous sequence). A heterogeneous sequence S H = IS H 1 IS H 2 ...IS Hr is a subsequence of another heterogeneous sequence S H = IS H 1 IS H 2 ...IS Hq , denoted by S H s H S H , if r ≤ q and if there are integers j 1

  Following Def. 2.5 and Eq. 2.2, we define a heterogeneous sequential pattern as follows. Given a heterogeneous sequence database D S H and a heterogeneous sequential pattern P H . P H is closed if there is no heterogeneous sequential pattern P H in D S H such that P H s P H and Support(P H ) = Support(P H ).

	2.2 Pattern Mining
	16

a ≤ Letters (or c ≤ Letters), ∅ ⊆ ( ). Definition 2.11 (Heterogeneous Sequential Pattern). Given a heterogeneous sequence database D S H , a user-defined minimum support θ and a heterogeneous subsequence S H . S H is a frequent heterogeneous subsequence in D S H according to θ if Support(S H ) ≥ θ. A frequent heterogeneous subsequence is called a heterogeneous sequential pattern. Definition 2.12 (Closed Heterogeneous Sequential Pattern).

Table 2 .3: Example of a formal context

 2 

  . Five Chapter 2. Preliminaries and State of the Art basic level metrics, i.e. similarity, cue validity, category feature collocation, category utility and predictability, are discussed in order to rank the formal concepts derived from a formal context. Therefore, only the formal concepts with high values of such metrics are evaluated by domain experts.

Table 3 .

 3 1: Illustrative example of medical data

	Patient Date	Medical Examination Viral Test COUGH FEVER Influenza
		25/09	-	high	-
		26/09 moderate	-	-
	P1	27/09 moderate 28/09 -	high -	-A
		02/10 high	moderate	-
		05/10	-	high	-
		07/10	-	-	B
		17/11 high	-	-
		18/11	-	-	A
		28/12	-	-	A
		08/02 moderate	-	-
		09/02	-	-	A
	P2	13/05 high	-	-
		14/05 moderate	high	-
		15/05	-	-	A
		20/10 moderate	-	-
		25/10	-	-	B
		03/02	-	moderate	-
	P3	10/04 high	-	-
		11/04 moderate	-	-
		12/04	-	high	-
		13/04	-	-	A

Table 3 .

 3 2: The sequential dataset obtained from Tab. 3.1

	Sequence Id	Sequence
	S1	(FEVER

high )(COUGH moderate )(COUGH moderate FEVER high

  table relation since it links distinct types of objects. Similarly, medical examinations are linked to symptoms by inter-table qualitative relations, precisely has symptom, differentiated by the type of the identified symptom, e.g. moderate (mS) or high (hS). Viral tests/medical examinations and medical examinations are linked by a temporal binary relation is preceded by (ipb) that associates a viral test/medical examination with a medical examination if the viral test/medical examination is preceded in time by the medical examination. The temporal relation between a viral test and a medical examination is an inter-table relation, while the temporal relation between medical examinations is an intra-table one since it relates the same type of objects. There is no temporal binary relation between viral tests since our aim is to study the symptoms that help physicians to prognosticate the influenza A or B virus.

Table 3 . 3 :

 33 UID Sf luA : sub-dataset of sequences of UIDs

	Sequence

Table 3 .

 3 4: RCF that encodes sub-dataset D Sf luA (Tab. 3.2); formal contexts: KS, KVT and KME; qualitative relational contexts: RmS and RhS; temporal relational contexts: RME-ipb-ME and RVT-ipb-ME

								KME (P1,25/09) Seq1	RmS	COUGH	FEVER	RhS	COUGH	FEVER
	KS COUGH × COUGH FEVER	FEVER ×	KVT (P1,28/09) Seq1 (P1,18/11) Seq2 (P2,09/02) Seq3 (P2,15/05) Seq4 (P3,13/04) Seq5	(P1,26/09) Seq1 (P1,27/09) Seq1 (P1,17/11) Seq2 (P2,08/02) Seq3 (P2,13/05) Seq4 (P2,14/05) Seq4 (P3,10/04) Seq5	(P1,25/09) Seq1 (P1,26/09) Seq1 × (P1,27/09) Seq1 × (P1,17/11) Seq2 (P2,08/02) Seq3 × (P2,13/05) Seq4 (P2,14/05) Seq4 ×	(P1,25/09) Seq1 × (P1,26/09) Seq1 (P1,27/09) Seq1 × (P1,17/11) Seq2 × (P2,08/02) Seq3 (P2,13/05) Seq4 × (P2,14/05) Seq4 ×
								(P3,11/04) Seq5	(P3,10/04) Seq5	(P3,10/04) Seq5 ×
								(P3,12/04) Seq5	(P3,11/04) Seq5 ×	(P3,11/04) Seq5
												(P3,12/04) Seq5	(P3,12/04) Seq5 ×
	RME-ipb-ME	(P1,25/09) Seq1	(P1,26/09) Seq1	(P1,27/09) Seq1	(P1,17/11) Seq2	(P2,08/02) Seq3	(P2,13/05) Seq4	(P2,14/05) Seq4	(P3,10/04) Seq5	(P3,11/04) Seq5	(P3,12/04) Seq5
	(P1,25/09) Seq1								
	(P1,26/09) Seq1 ×								
	(P1,27/09) Seq1 × ×							
	(P1,17/11) Seq2								
	(P2,08/02) Seq3								
	(P2,13/05) Seq4								
	(P2,										

14/05) Seq4 × (P3,10/04) Seq5 (P3,11/04) Seq5 × (P3,12/04) Seq5

  RVT-ipb-ME has viral tests as rows and medical examinations as columns. A cross indicates a link between objects, e.g. the cell identified by the (P2,15/05) Seq4 viral test UID and the (P2,13/05) Seq4 medical examination UID contains a cross since both are undergone by the same patient P2 and the medical examination precedes the viral test, as shown in Tab. 3.3. RCA is applied to the RCF shown in Tab. 3.4 and the family of concept lattices (the RCA output) depicted in Fig. 3.5 is obtained after four iterations. The simplified representations of these concept lattices are shown. There is a concept lattice for each formal context as

	3.4.2 Applying the RCA Process										
	RVT-ipb-ME	(P1,25/09) Seq1	(P1,26/09) Seq1	(P1,27/09) Seq1	(P1,17/11) Seq2	(P2,08/02) Seq3	(P2,13/05) Seq4	(P2,14/05) Seq4	(P3,10/04) Seq5	(P3,11/04) Seq5	(P3,12/04) Seq5
	(P1,28/09) Seq1 × × ×							
	(P1,18/11) Seq2				×						
	(P2,09/02) Seq3					×					
	(P2,15/05) Seq4						× ×			
	(P3,13/04) Seq5								× × ×
	× ×										

The cross tables KS (symptoms), KVT (viral tests) and KME (medical examinations) represent formal contexts. There is no formal context of viruses since we focus on a specific virus, and thus all viral tests detect the influenza A virus. Therefore, KVT has no column since by default each viral test represents the target 1-itemset (Influenza A ). KME has no column since a medical examination is described only by using the has symptom qualitative relations and the rows represent the UIDs of the medical examinations from Tab. 3.3. The RVT-ipb-ME (viral test ipb medical examination) and RME-ipb-ME (medical examination ipb medical examination) cross tables represent temporal relational contexts since both define temporal relations. The RmS (medical examination detects a moderate symptom) and RhS (medical examination detects a high symptom) cross tables represent qualitative relational contexts since both define qualitative relations. For example, follows: L KVT (viral tests), L KS (symptoms) and L KME (medical examinations). Actually, L KVT is an iceberg concept lattice since a user-defined minimum support θ is used to discover frequent concepts from the lattice of the objects of interest. L KVT is considered as the main lattice since it describes the temporal links between viral tests (target 1-itemsets) and medical examinations (non-target itemsets). L KME is considered as the temporal lattice since it describes the temporal links between medical examinations. The L KVT and L KME concept lattices are modified during the iterative steps due to the qualitative and temporal relations that have respectively as domain the set of objects of KVT and the one of KME. The concept intents of these two lattices contain temporal and/or qualitative relational attributes derived by the relational scaling mechanism. It is worthwhile to mention that the relational scaling mechanism relies on the existential quantifier (∃) since our objective is to capture all the relations between the analysed objects. For instance, the relational attribute ∃RhS(CKS 1) of the CKME 6 concept intent in lattice L KME is a qualitative one since it highlights the qualitative relation has symptom high and allows us to navigate from lattice L KME to lattice L KS . In contrast, the relational attribute ∃RVT-ipb-ME(CKME 7) of the CKVT 6 concept intent in L KVT is a temporal one since it highlights the temporal relation is preceded by and allows us to navigate from lattice L KVT to lattice L KME .

  Sf luA , since there are 2 occurrences of this regularity in each of these sequences compared with the only one occurrence in getS((P2, 14/05) Seq4) = S4. Thus, in S4 ∈ D Sf luA this regularity can have another cause, e.g. a bacterial infection.So far we have shown how relational conceptual structures can be analysed by physicians to discover various regularities in sequential data, which can be assessed and interpreted to understand how to recognise in advance virus outbreaks as well as to discriminate between virus types. In addition, the information encoded into the UIDs of medical examinations/viral tests can be exploited to obtain more valuable regularities.However, navigating such relational conceptual structures in order to discover meaningful regularities is not a trivial task for domain experts since the number of concepts can be

	3.6) contains medical examinations undergone
	by the patients P2 and P3 and no medical examination undergone by patient P1. Then, physi-
	cians can deduce that the regularity revealed by this concept is not a global valid one in sub-

dataset D Sf luA . In addition, by analysing the UIDs of the CKME 7 extent, physicians can notice that the regularity revealed by this concept is more persistent in getS((P1, 26/09) Seq1) = getS((P1, 27/09) Seq1) = S1 and getS((P3, 11/04) Seq5) = getS((P3, 12/04) Seq5) = S5,

3.5 Summary

where {S1, S5} ⊂ D large, and, besides, these experts should move their focus from concept to concept and from lattice to lattice by considering respectively intra-table and inter-table relations. To help domain experts, in the next chapter, we propose a method to synthesise the obtained relational conceptual structures into a hierarchy of cpo-patterns.

  4, we denote the four sets of objects: G M the set of all the target itemset UIDs (e.g. viral tests), G T the set of all the non-target itemset UIDs (e.g. medical examinations), G I the set of all the items (e.g. symptoms) used to build the

non-target itemsets and G O the set of all the items of interest (e.g. viruses) used to build the target itemsets. Accordingly, the RCA output comprises four concept lattices, one for each set of objects, as follows: the main lattice (e.g. L KVT in Fig.

3

.5a), the temporal lattice (e.g. L KME

Table 4 .

 4 1: The concept intents navigated to extract the G CKVT 10 cpo-pattern

	Concept	Relational Attributes Temporal Qualitative
	CKVT 10	∃RVT-ipb-ME(CKME 16)	
		∃RVT-ipb-ME(CKME 9)	
		∃RVT-ipb-ME(CKME 15)	
		∃RVT-ipb-ME(CKME 0)	
		∃RVT-ipb-ME(CKME 12)	
		∃RVT-ipb-ME(CKME 7)	
		∃RVT-ipb-ME(CKME 5)	
		∃RVT-ipb-ME(CKME 8)	
		∃RVT-ipb-ME(CKME 6)	
		∃RVT-ipb-ME(CKME 2)	
		∃RVT-ipb-ME(CKME 4)	
	CKME 12	∃RME-ipb-ME(CKME 16)	∃RmS(CKS 3)
		∃RME-ipb-ME(CKME 9)	∃RmS(CKS 2)
		∃RME-ipb-ME(CKME 0)	∃RhS(CKS 1)
		∃RME-ipb-ME(CKME 7)	∃RhS(CKS 3)
		∃RME-ipb-ME(CKME 5)	
		∃RME-ipb-ME(CKME 8)	
		∃RME-ipb-ME(CKME 6)	
	CKME 16	∃RME-ipb-ME(CKME 9)	∃RmS(CKS 3)
		∃RME-ipb-ME(CKME 0)	∃RmS(CKS 2)
		∃RME-ipb-ME(CKME 6)	
	CKME 6		∃RhS(CKS 3)
			∃RhS(CKS 1)

Table 5

 5 

.1: Illustrative sequential sub-dataset D Sf luA

Table 5 .

 5 2: The patient sequences of UIDs obtained by remodelling the sequences of itemsets shown in Tab. 5.1

	Sequence

  ). The persistency of v t , denoted by vt , is the total number of repetitions (repetitive occurrences in the same sequence) of preceded itemsets w.r.t. v t .

		vt =	|X t|m | -|X m | |X m |	(5.3)
	Persistency of a vertex v ς vt =	|X t|m | |X t |	100 ∈ (0%, 100%]	(5.5)

t ∈ V m measures the repetitive tendency of the corresponding preceded itemset in the subset of sequences that support G m . We consider that the preceded itemset characterises this subset if it is not accidental, i.e. the preceded itemset occurs repeatedly in the subset. Definition 5.9 (Vertex Overall Weight). The overall weight of v t , denoted by ω vt , is the total number of occurrences of preceded itemsets w.r.t.

v k t ∈ V k m , k ∈ {1, ..., p} where p < |C K M | -1 is the number of cpo-patterns extracted by navigating Y t . ω vt = |X t | (5.4)

Overall Weight of a vertex v t ∈ V m measures how numerous is the corresponding preceded itemset in all analysed sequences. Therefore, the overall weight provides an overview of the number of occurrences of the preceded itemset in the analysed dataset and it can be a reference point used in decision-making by domain experts. Using the overall weight of a vertex v t , the overall frequency of v t in D S can be computed by ϕ vt = |Xt| |G T | . Definition 5.10 (Vertex Specificity). The specificity of v t , denoted by ς vt , is the relative number of preceded itemsets w.r.t. v t .

  and (FEVER high COUGH moderate ) in the order they appear in G CKVT 17 .The vertex derived from the CKME 63 temporal concept intent is labelled with the preceded itemset (FEVER high ) and it is denoted by v CKME 63 . The CKME 63 extent gathers the 4 nontarget itemsets (each UID represents a non-target itemset) in Tab. 5.1 that contain (FEVER high ) and that are preceded by the itemsets (FEVER high ), 2×(COUGH high ) and (FEVER high COUGH moderate ) in the order they appear in G CKVT 17 . Therefore, the overall weight of v CKME 63 is ω vCKME 63 = 4.

5

.1 that are preceded by the itemsets 2 × (FEVER high ), 2 × (COUGH high ),

Table 5 . 3

 53 

: Illustrative sub-dataset D Sf luB

Table 6 .

 6 1: Illustrative example of medical data with atomic items from a user-defined taxonomy

	Patient Date	Medical Examination Viral Test DC WC F Influenza
		17/09 high -moderate	-
	P1	19/09 -high	-	-
		20/09 -	-	-	A
		15/05 -high moderate	-
	P2	16/05 -	-	high	-
		17/05 -	-	-	A
	P3	08/04 high high 09/04 --	--	-A

Table 6 .

 6 

	RhS																	
	KS S × S C × × C	F	DC	WC	KVT (P1,20/09)	KME (P1,17/09) (P1,19/09)	RME-ipb-ME (P1,17/09)	(P1,17/09)	(P1,19/09)	(P2,15/05)	(P2,16/05)	(P3,08/04)	RVT-ipb-ME	(P1,17/09)	(P1,19/09)	(P2,15/05)	(P2,16/05)	(P3,08/04)
	F × ×			(P2,17/05)	(P2,15/05)	(P1,19/09) ×						(P1,20/09) × ×
	DC × × ×		(P3,09/04)	(P2,16/05)	(P2,15/05)							(P2,17/05)	× ×
	WC × ×			×		(P3,08/04)	(P2,16/05)			×			(P3,09/04)	×
								(P3,08/04)							
					RmS	S	C	F	DC	WC	RhS		S	C	F	DC	WC
					(P1,17/09)	×			(P1,17/09)				×	
					(P1,19/09)					(P1,19/09)					×
					(P2,15/05)	×			(P2,15/05)					×
					(P2,16/05)					(P2,16/05)		×		
					(P3,08/04)					(P3,08/04)				× ×

2: RCF that encodes the medical data shown in Tab. 6.1; formal contexts: KS, KVT and KME; temporal relational contexts: RME-ipb-ME and RVT-ipb-ME; qualitative relational contexts: RmS and

Table 6 .

 6 3: Illustrative example of simple sequential medical data

	Sequence Id	Sequence
	S1	(COUGH)(COUGH FEVER)(COUGH FEVER HEADACHE)(Influenza)
	S2	(FEVER)(Influenza)
	S3	(COUGH)(COUGH)(Influenza)
	S4	(COUGH FEVER)(Influenza)
	S5	(COUGH)(COUGH)(FEVER)(HEADACHE)(Influenza)

Table 6 .

 6 4: The patient sequences of UIDs obtained by remodelling the sequences of itemsets shown in Tab.6.3 

Table 6 .

 6 5: RCF that encodes the sequential data shown in Tab. 6.3; formal contexts: KVT and KME; temporal relational contexts: RME-ipb-ME and RVT-ipb-ME

	KVT	Influenza

  Exploration of Simple Sequential Data one for each temporal relation out of the data model: RVT-ipb-ME (viral test ipb medical examination) and RME-ipb-ME (medical examination ipb medical examination). The formal context of viral tests encodes that each target 1-itemset contains the Influenza item; the formal context of medical examinations encodes that each non-target itemset contains the items COUGH and/or FEVER and/or HEADACHE. Therefore, the itemsets are described by means of binary attributes.Figure 6.9 depicts the RCA output obtained by applying the RCA process to the RCF given in Tab. 6.5. Two lattices are obtained: L KT (the lattice of viral tests) and L ME (the lattice of medical examinations). It is noted that each concept intent can contain binary attributes

6.5 

exist two formal contexts one for each set of objects out of the data model: KVT (viral tests) and KME (medical examinations). In addition, there are two relational contexts

6.4 

Table 6 .

 6 6: The atomic items used to build heterogeneous sequences

	Set	Items
	symptoms FEVER (F), DRY COUGH (DC), WET COUGH (WC)
	drugs	AMANTADINE (AVA), RIMANTADINE (AVR), IBUPROFEN (AII), PARACETAMOL (APP),
		METAMIZOLE (APM), KETOPROFEN (AIK)
	patients	ADULT (A), CHILD (C), INFANT (I)
	vital signs BLOOD PRESSURE (BP), HEART RATE (HR), RESPIRATORY RATE (RR)

Table 7 .

 7 7:The results of exploring the IPR, IBD and IBGN yellow and green sub-datasets with θ = 0%. The columns Bio and Phc Samples represent respectively the number of analysed biological and physico-chemical samples; column Output represents the number of concepts from the lattice of biological samples (L K M ) and the lattice of physico-chemical samples (L K T )

		Sub-dataset		RCA
	Indicator Quality	Samples Bio PhC L K M Output L K T
	IPR				35699 39605
	IBD	yellow	80	194	32146 20947
	IBGN				9414 11580
	IPR				26323 12102
	IBD	green	69	183	60447 32927
	IBGN				8312 15190
	By analysing the quantitative results shown in Tab.	

Table 7 .

 7 9: The results of exploring the IBGN sub-datasets with θ = 5%. The columns Bio and Phc Samples represent respectively the number of analysed biological and physico-chemical samples; column Output represents the number of concepts from the lattice of biological samples (L K M ) and the lattice of physico-chemical samples (L K T ); column CPO-patterns represents the number of extracted cpo-patterns

		Sub-dataset		RCA		CPOHrchy	
	Indicator Quality	Samples Bio PhC L K M Output L K T	CPO-patterns Concrete Abstract Hybrid
		blue			7971	7997	284	46	7640
		green			2921	8825	342	177	2401
	IBGN	yellow	80	164	6978	7706	224	694	6059
		orange			1742	2958	231	238	1272
		red			18080 20325	219	2979	14881

Table 7 .

 7 11 illustrates the different numbers of concepts generated for three sub-datasets, precisely IBD green, IBGN blue and IPR orange, by using the ∃ >n% quantifier with n ∈ {25, 50, 75} for the temporal relations ipb1 ⊆ G M × G T (biological sample ipb physico-chemical sample) and ipb2 ⊆ G T × G T (physico-chemical sample ipb physico-chemical sample). We recall that G M and G T represent the sets of objects from the formal contexts used to build respectively the main lattice L K M and the temporal lattice L K T (Sect. 4.2.1).

Table 7 .

 7 11: The results of exploring the IBD green, IBGN blue and IPR orange sub-datasets with θ = 10%. The columns Bio and Phc Samples represent respectively the number of analysed biological and physico-chemical samples; column Relational scaling represents the quantifier used during the relational scaling mechanism for the temporal relations ipb1 (biological sample ipb physico-chemical sample) and ipb2 (physico-chemical sample ipb physico-chemical sample); column Output represents the number of concepts from the lattice of biological samples (L K M ) and the one of physico-chemical samples (L K T )

	Sub-dataset	RCA	
	Indicator Quality	Samples Bio PhC ipb1	Relational scaling	Output

Table 7 .

 7 12: The support, richness (ρ) and distribution index (IQV) of the (a) to (s) cpo-patterns (shown in Fig.7.16 but having different target qualitative values of IBGN) in the IBGN blue, green, yellow, orange and red sub-datasets given in Tab. 7.9

								IBGN biological indicator						
	CPO-pattern		blue			green			yellow			orange			red	
		support	ρ	IQV	support	ρ	IQV	support	ρ	IQV	support	ρ	IQV	support	ρ	IQV
	a	80	40	0.984	80	48	0.983	80	57	0.99	80	55	0.989	80	59	0.993
	b	63	33	0.986	67	44	0.987	55	37	0.987	44	39	0.996	24	21	0.991
	c	14	8	0.921	-	-	-	17	14	0.991	19	14	0.954	38	24	0.984
	d	31	18	0.978	27	17	0.961	-	-	-	19	15	0.991	12	11	0.993
	e	12	8	0.963	-	-	-	-	-	-	-	-	-	-	-	-
	f	29	17	0.977	22	14	0.943	-	-	-	17	14	0.991	8	8	1
	g	11	8	0.963	-	-	-	-	-	-	-	-	-	-	-	-
	h	10	10	1	-	-	-	-	-	-	-	-	-	-	-	-
	i	18	15	0.985	-	-	-	-	-	-	-	-	-	-	-	-
	j	7	7	1	-	-	-	-	-	-	-	-	-	-	-	-
	k	42	27	0.985	43	28	0.978	41	32	0.991	28	26	0.994	15	15	1
	l	36	26	0.988	51	32	0.981	32	23	0.98	30	27	0.994	15	13	0.982
	m	36	23	0.99	27	17	0.961	21	13	0.977	9	8	0.987	5	4	0.96
	n	29	23	0.987	36	23	0.969	25	19	0.979	20	18	0.99	9	9	1
	o	20	16	0.992	18	10	0.919	8	5	0.937	-	-	-	-	-	-
	p	22	19	0.994	-	-	-									

Table 7 .

 7 14: Examples from the hydro-ecological heterogeneous data collected during the REX project: biological indicators, physico-chemical parameters (ammonium (N H + 4 ), total phosphorus (P ), nitrite (N O - 2 )) and types of land use

	Period	River Site	Indicators/Parameters Biological Physico-Chemical IBGN IBD N H + 4 P N O -2	Types of land use (%) Urban areas Arable lands 100 m 500 m 100 m 500 m	River Segment
	2002 -2005	S7792 S7742	--	orange yellow yellow green green green	green blue	51 0	21 8	0 0	53 0	5601 20165
	2006 -2009	S7792 S7743	blue orange	orange yellow	yellow yellow green green	green green	51 0	23 0	0 0	53 0	5601 19949
	2010 -2014	S7742 S7792	red yellow	green orange	green green	green yellow	yellow green	0 51	9 23	0 0	0 53	20165 5601

Table 7 .

 7 15: The monitored river segments and the river sites included in them (from the river network shown in Fig.7.21)

	River Segment River Site
	3163	S8763
	4548	S7753
	5601	S7792
	6850	S6702
	8614	S7914
	8674	S7915
	18725	S7778
	19754	S7965
	19949	S7743
	20165	S7742
	20346	S7741
	26763	S7872

Table 7 .

 7 16 shows the restorations undertaken on three river segments: 5601, 19949 and 20165. There are two types of restoration: global and wetland. During the monitored period 2002 -2014, there can be several restorations for the same river segment. For instance, in Tab. 7.16 the 20165 river segment was restored in 3 different locations (depicted also in Fig. 7.23).
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Table 7 .

 7 16: Examples from the hydro-ecological data about river segments collected during the REX project

	River Segment	Restoration Type Wetland Global
	5601	no	yes
	20165	yes	no
	19949	yes	yes
	20165	yes	yes
	20165	yes	no

Table 7 .

 7 17: Domain knowledge: the discretization intervals for the types of land use

	Type of land use	low	medium	high
	Buildings	[0%, 25%] (25%, 52%] (52%, 100%]
	Agriculture	[0%, 25%] (25%, 45%] (45%, 100%]
	Forests & Natural Areas [0%, 15%] (15%, 40%] (40%, 100%]
	Wetlands	[0%, 15%] (15%, 40%] (40%, 100%]
	Waterbodies	[0%, 30%] (30%, 50%] (50%, 100%]

Table 7 .

 7 18: The preprocessed hydro-ecological heterogeneous data (the raw data are shown in Tab. 7.14) ) for the entire monitored period 2002 -2014. To this end, we rely again on the domain knowledge and we use Tab. 7.19 to obtain the preprocessed data shown in Tab. 7.20.

	Period	River Site	Indicators/Parameters Biological Physico-Chemical IBGN IBD N H + 4 P N O -2	Types of land use Urban areas Arable lands 100 m 500 m 100 m 500 m	River Segment
	2002 -2005	S7792 S7742	--	orange green	yellow yellow green green	green blue	medium low	low low	low low	high low	5601 20165
	2006 -2009	S7792 S7743	blue orange	orange yellow yellow yellow green green	green green	medium low	low low	low low	high low	5601 19949
	2010 -2014	S7742 S7792	red yellow	green orange	green green	green yellow	yellow green	low medium	low low	low low	low high	20165 5601

Secondly, the data about each river segment

(Tab. 7.16

) should be aggregated to obtain a global estimation of the level of the type of restoration (i.e. the number of restored loca-tions

Table 7 .

 7 19: Domain knowledge: the levels of the restoration type by the number of undertaken restorations For instance, the 20165 river segment has level L2 for the wetland restoration since in Tab. 7.16 there are 3 such restorations and has level L1 for the global restoration since in Tab. 7.16 there is only one such restoration.

	L1	L2	L3
	#restorations (0, 2] (2, 5] (5, ∞)

Table 7 .

 7 20: The preprocessed data about the river segments shown in Tab.7.16 

	River Segment	Restoration Type Wetland Global
	5601	L1	L1
	20165	L2	L1
	19949	L1	L1

Table 7 .

 7 22:The associated river segments of the multilevel heterogeneous cpo-patterns shown in Fig.7.25

CPO-pattern Associated River Segments 3163 4548 5601 6850 8674 8681 18725 19754 19949 20165 20346 26763 1

  

Table 7 .

 7 23: The river sites of the extents of the concepts from which the vertices A , B , C , D , E and F of the heterogeneous cpo-pattern depicted in Fig.7.26 are derived

Vertex Monitored Periods 2002 -2005 2006 -2009 2010 -2014
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Motivating Example

For a sequence in Tab. 5.1, the correspondence from its itemsets to the UIDs in Tab. 5.2 is from left to right. For example, (P1,06/01) Seq1 from the first sequence in Tab. 5.2 is the UID of the non-target itemset (COUGH moderate FEVER high ) out of S1 (Tab. 5.1); (P1,10/01) Seq1 from the same first sequence in Tab. 5.2 is the UID of the target 1-itemset (Influenza A ) out of S1 (Tab. 5.1).

Secondly, the corresponding RCF is built and the RCA output depicted in Fig. 5.1 and 5.2 (the simplified representations of the concept lattices) is obtained by defining θ = 3 for the main lattice L KVT .

09/03)_Seq4 (P1,20/10)_Seq5 (P2,10/09)_Seq8 CKVT_1 * CKVT_16 ∃RVT-ipb-ME(CKME_62) ∃RVT-ipb-ME(CKME_64) ∃RVT-ipb-ME(CKME_28) (P1,10/01)_Seq1 (P1,20/10)_Seq5 (P2,10/09)_Seq8 CKVT_3 ∃RVT-ipb-ME(CKME_61) ∃RVT-ipb-ME(CKME_33) ∃RVT-ipb-ME(CKME_36) ∃RVT-ipb-ME(CKME_27) ∃RVT-ipb-ME(CKME_34) ∃RVT-ipb-ME(CKME_5) (P1,15/02)_Seq2 (P1,20/10)_Seq5 (P2,10/09)_Seq8 CKVT_17 ∃RVT-ipb-ME(CKME_66) ∃RVT-ipb-ME(CKME_63) ∃RVT-ipb-ME(CKME_29) (P1,10/01)_Seq1 (P1,09/03)_Seq4 (P2,10/09)_Seq8 CKVT_2 ∃RVT-ipb-ME(CKME_24) ∃RVT-ipb-ME(CKME_31) (P1,20/10)_Seq5 (P2,10/09)_Seq8 (P3,25/08)_Seq10 CKVT_4 ∃RVT-ipb-ME(CKME_4) (P1,10/01)_Seq1 (P2,12/11)_Seq6 (P2,10/09)_Seq8 CKVT_5 ∃RVT-ipb-ME(CKME_6) CKVT_12 ∃RVT-ipb-ME(CKME_9) (P3,16/07)_Seq9 CKVT_15 ∃RVT-ipb-ME(CKME_12) (P2,13/05)_Seq7 Chapter 5. Interestingness Measures for Guiding Domain Experts CKME_0 CKME_15 ∃RME-ipb-ME(CKME_0) CKME_49 ∃RME-ipb-ME(CKME_15) CKME_52 CKME_39 ∃RME-ipb-ME(CKME_49) ∃RME-ipb-ME(CKME_48) ∃RME-ipb-ME(CKME_35) CKME_46 ∃RME-ipb-ME(CKME_50) ∃RME-ipb-ME(CKME_52) ∃RME-ipb-ME(CKME_8) CKME_40 CKME_42 CKME_60 ∃RME-ipb-ME(CKME_39) ∃RME-ipb-ME(CKME_40) CKME_65 CKME_1 * CKME_55 ∃RME-ipb-ME(CKME_58) ∃RME-ipb-ME(CKME_26) ∃RME-ipb-ME(CKME_33) ∃RME-ipb-ME(CKME_20) ∃RME-ipb-ME(CKME_22) (P1,19/10)_Seq5 CKME_18 ∃RME-ipb-ME(CKME_30) ∃RME-ipb-ME(CKME_62) ∃RME-ipb-ME(CKME_63) ∃RME-ipb-ME(CKME_65) ∃RME-ipb-ME(CKME_17) (P2,09/09)_Seq8 CKME_17 (P2,08/09)_Seq8 CKME_20 (P1,18/10)_Seq5 CKME_56 (P1,14/02)_Seq2 CKME_2 ∃RmS(CKS_1) (P2,12/05)_Seq7 CKME_23 (P1,08/01)_Seq1 (P2,07/09)_Seq8 CKME_19 (P1,17/10)_Seq5 CKME_3 (P1,07/01)_Seq1 (P2,06/09)_Seq8 CKME_59 ∃RME-ipb-ME(CKME_67) ∃RME-ipb-ME(CKME_66) (P1,08/03)_Seq4 CKME_63 CKME_57 ∃RME-ipb-ME(CKME_64) ∃RME-ipb-ME(CKME_38) ∃RME-ipb-ME(CKME_21) ∃RME-ipb-ME(CKME_27) ∃RME-ipb-ME(CKME_24) CKME_58 ∃RME-ipb-ME(CKME_32) ∃RME-ipb-ME(CKME_36) ∃RME-ipb-ME(CKME_19) CKME_67 ∃RME-ipb-ME(CKME_69) ∃RME-ipb-ME(CKME_46) ∃RME-ipb-ME(CKME_47) CKME_30 ∃RME-ipb-ME(CKME_37) ∃RME-ipb-ME(CKME_68) ∃RME-ipb-ME(CKME_23) (P1,09/01)_Seq1 CKME_62 ∃RME-ipb-ME(CKME_41) CKME_61 ∃RME-ipb-ME(CKME_34) CKME_26 CKME_69 ∃RME-ipb-ME(CKME_54) CKME_48 ∃RME-ipb-ME(CKME_53) ∃RME-ipb-ME(CKME_51) ∃RME-ipb-ME(CKME_14) CKME_47 ∃RME-ipb-ME(CKME_9) CKME_50 ∃RME-ipb-ME(CKME_7) CKME_37 ∃RME-ipb-ME(CKME_3) ∃RME-ipb-ME(CKME_4) CKME_64 ∃RME-ipb-ME(CKME_43) ∃RME-ipb-ME(CKME_28) CKME_38 CKME_33 CKME_32 ∃RME-ipb-ME(CKME_25) ∃RME-ipb-ME(CKME_31) ∃RME-ipb-ME(CKME_5) CKME_36 ∃RME-ipb-ME(CKME_6) CKME_43 ∃RME-ipb-ME(CKME_44) ∃RME-ipb-ME(CKME_11) CKME_54 ∃RME-ipb-ME(CKME_12) ∃RME-ipb-ME(CKME_10) CKME_51 ∃RME-ipb-ME(CKME_13) CKME_53 ∃RME-ipb-ME(CKME_16) CKME_66 ∃RME-ipb-ME(CKME_29) (P1,07/03)_Seq4 CKME_68 ∃RME-ipb-ME(CKME_42) ∃RME-ipb-ME(CKME_45)

Chapter 4. Extraction of Hierarchies of Multilevel CPO-Patterns

{FEVER high , COUGH moderate } ← {Influenza A } that is a specialisation of, e.g. {FEVER high } ← {Influenza A } regularity revealed by G CKVT 6 .

Secondly, the generalisation level regarding the accuracy of items. For example, G CKVT 5 associated with CKVT 5 reveals the regularity {COUGH high } ← {Influenza A } that is a concrete specialisation of the abstract regularity {? high } ← {Influenza A } revealed by G CKVT 8 associated with CKVT 8.

Accordingly, when an interesting cpo-pattern is found by physicians, the evaluation can continue only by navigating amongst its descendant cpo-patterns, and thus the explored search space of patterns decreases in size. Moreover, thanks to the multilevel cpo-patterns extracted by using RCA-S , abstractions of the infrequent concrete cpo-patterns can be discovered. For instance, cpo-pattern G CKVT 3 associated with concept CKVT 3 is not found for a minimum support θ = 3 since Support(G CKVT 3 ) = 2 θ whereas G CKVT 6 is obtained since

However, the number of extracted cpo-patterns can be quite large, depending on the analysed sequential dataset volume and characteristics, thus complicating their evaluation and increasing the chance of overlooking interesting cpo-patterns. In our illustrative example, 5 sequences (Tab. 3.1) are analysed and by means of RCA-S a hierarchy of 11 multilevel cpopatterns is obtained. Let us note that using a minimum support θ = 3 for the main lattice, we obtain only 5 multilevel cpo-patterns. In addition, there are practical cases (e.g. choosing interesting navigation paths in the hierarchy or finding global valid regularities in the analysed sequences) when the hierarchical order on cpo-patterns and the support measure are still insufficient for domain experts. For example, in Fig. 4.5, if G CKVT 7 and G CKVT 8 are two interesting cpo-patterns the physicians cannot decide whose descendants to analyse since both cpo-patterns have Support(G CKVT 7 ) = Support(G CKVT 8 ) = 4.

To address the aforementioned problems, in the next chapter, we propose some interestingness measures that exploit the "richness" of the RCA output obtained by exploring sequential data. Using these statistical measures, domain experts can select relevant cpopatterns, and thus can focus only on one sub-hierarchy of cpo-patterns at a time.

Summary

In this chapter, we have devised an algorithm that automatically navigates relational conceptual structures (the RCA output) in order to extract multilevel cpo-patterns organised into a hierarchy. This algorithm relies on the structure and the properties of the RCA output.

The primary aim of our approach is to help the evaluation of the extracted set of cpopatterns. To this end, we benefit from the fact that some cpo-patterns are naturally subpatterns of others and we propose to extract a hierarchy of cpo-patterns where each cpo-that occur in the same sequence getS((P2, 09/09) Seq8) = getS((P2, 08/09) Seq8) = S8 ∈ S G CKVT 17 . Then, extent CKME 63 contains one repetition identified by (P2,09/09) Seq8 (italic font in Fig. 5.6), and thus the v CKME 63 persistency is vCKME 63 = 4-3 3 = 0.33. Vertex v CKME 42 labelled with the preceded itemset (FEVER high ) is derived from the CKME 42 temporal concept intent and has the overall weight ω vCKME 42 = 9. Indeed, the CKME 42 extent comprises the 9 non-target itemsets in Tab. 5.1 that contain itemset (FEVER high ) and that are preceded by itemset (FEVER high COUGH moderate ). The two non-target itemsets (P1,19/10) Seq5 and (P1,18/10) Seq5 (gray font in Fig. 5.6) are owned by S5 / ∈ S G CKVT 17 , and thus the v CKME 42

specificity is ς vCKME 42 = 7 9 100 = 77.7%. Since there are three groups of non-target itemsets that contain a total of 4 repetitions the persistency of v CKME 42 is vCKME 42 = 7-3 3 = 1.33. Vertex v CKME 29 labelled with the preceded itemset (COUGH high ) is derived from the CKME 29 temporal concept intent. The CKME 29 concept extent gathers the 3 non-target itemsets in Tab. 5.1 that contain itemset (COUGH high ) and that are preceded by the itemsets (COUGH high ) and (FEVER high COUGH moderate ) in the order they appear in G CKVT 17 . Thus, the overall weight of v CKME 29 is ω vCKME 29 = 3 and its specificity is ς vCKME 29 = 3 3 100 = 100%. In addition, the persistency of v CKME 29 is vCKME 29 = 3-3 3 = 0 since there is no repetition. Vertex v CKME 8 labelled with the preceded itemset (COUGH high ) is derived from the CKME 8 temporal concept intent and has the overall weight ω vCKME 8 = 7. Indeed, the CKME 8 extent comprises the 7 non-target itemsets in Tab. 5.1 that contain itemset (COUGH high ) and that are preceded by the itemset (FEVER high COUGH moderate ). The non-target itemset identified by (P1,17/10) Seq5 is owned by getS((P1, 17/10) Seq5) = S5 / ∈ S G CKVT 17 , and thus the v CKME 8

specificity is ς vCKME 8 = 6 7 100 = 85.7%. Since there are three groups of non-target itemsets that contain a total of 3 repetitions the persistency of v CKME 8 is vCKME 8 = 6-3 3 = 1. Finally, vertex v CKME 7 labelled with the preceded itemset (FEVER high COUGH moderate ) is derived from the CKME 7 temporal concept intent and has the overall weight ω vCKME 7 = 7. Indeed, the CKME 7 concept extent comprises the 7 non-target itemsets in Tab. 5.1 that contain itemset (FEVER high COUGH moderate ). Note that, since v CKME 7 vertex is not preceded by other vertices in cpo-pattern G CKVT 17 , there is no constraint on the order of the preceded itemset in the analysed sequences. The v CKME 7 specificity is ς vCKME 7 = 4 7 100 = 57.1% since there are 3 non-target itemsets (gray font in Fig. 5.6) that are not owned by the sequences in S G CKVT 17 . The persistency of v CKME 7 is vCKME 7 = 4-3 3 = 0.33 since the CKME 7 extent contains only one repetition (italic font in Fig. 5.6).

Enhancing Sequential Data Analysis Using Weighted CPO-Patterns

We recall that by using RCA-S as explained in Chapter 4, hierarchies of cpo-patterns are obtained in order to help the evaluation step by highlighting how the extracted patterns relate to each other. However, we can assume practical cases (discussed in the following) when the Chapter 6. Study of the RCA-S Approach Adaptability However, cpo-pattern G CKVT 5 ( 1 , Fig. 6.3) is less frequent than G CKVT 7 (Support(G CKVT 7 ) = 4) since there are only Support(CKVT 5) = 2 viral tests that have more than 50% of the associated medical examinations for which the intensity of cough is moderate. Indeed, by analysing Tab. 3.1 and 3.3, the (P1,28/09) Seq1 viral test has 3 associated medical examinations and 2 > (50% of 3) of them are gathered in the CKME 8 concept intent (Fig. 6.3). Similarly, the (P1,09/02) Seq3 viral test has one associated medical examination that is gathered in the CKME 8 intent (Fig. 6.3). In contrast, the (P3,13/04) Seq5 viral test (Fig. 6.1) has 3 associated medical examinations but only 1 ≯ (50% of 3) of them is described by the moderate cough symptom, and thus this viral test is not in the CKVT 5 concept extent (Fig. 6.3). Figure 6.3: The ∃ >50% quantifier: the concepts navigated to extract cpo-pattern G CKVT 5 ( 1 ) associated with the CKVT 5 main concept from lattice L KVT (Fig. 6.2). The intents contain only the relational attributes according to Properties 4.4 and 4.5 Such constraint can be used on the temporal relations between medical examinations as well. To this end, we also change quantifier ∃ to ∃ >50% for the RME-ipb-ME temporal relational context and the RCA output contains the two lattices depicted in Fig. 6.4 and the lattice of symptoms shown in Fig. 3.5b. By analysing Fig. 6.4b, it is noted that the number of temporal concepts has decreased, i.e. 14 concepts in comparison to 18 concepts (Fig. 3.5c); in Fig. 6.4a the number of extracted cpo-patterns (associated with main concepts) has decreased as well, i.e. 6 cpo-patterns in comparison with 11 (Fig. 3.5a) or 7 (Fig. 6.2) cpo-patterns.

Let us mention that depending on the motivation behind the analysis, the various quantifiers presented in [START_REF] Rouane-Hacene | Relational concept analysis: Mining concept lattices from multi-relational data[END_REF] and their variants can be applied in the same way to any type of relation (e.g. qualitative, temporal). 6.7 shows an illustrative example of heterogeneous medical data from last year (we consider that these data are exported from a relational database). For example, the medical examination identified by the (P1,12/11) temporal object was undergone on November 12 th when the dry cough (DC) symptom of patient P1 was high (h) and the respiratory rate (RR) vital of P1 was good (g). It is noted that the prescribed treatment was not recorded. The viral test identified by temporal object (P1, 16/11) was done on November 16 th when the male (m) child (C) P1 was diagnosed with both the influenza A and B viruses. 

6.5 Exploration of Heterogeneous Sequential Data

Data Preprocessing

To obtain heterogeneous sequences as described in Sect. 

Modelling Heterogeneous Qualitative Sequential Data

To explore the heterogeneous sequential data illustrated in Tab. 

Summary

In this chapter, we have illustrated the adaptability of the RCA-S approach. We have shown how to push domain knowledge and user preferences into the mining process by slightly modifying our approach. Therefore, more cpo-patterns can emerge based on the user-defined taxonomies over the items. Smaller hierarchies of multilevel cpo-patterns can be extracted by considering user-defined constraints on the order relations on itemsets. Moreover, we have explained how to adapt RCA-S to explore simple sequential data and how to extract heterogeneous cpo-patterns from heterogeneous sequential data.

Description of Hydro-Ecological Data

by hydro-ecologists. The values of these indicators are computed by using the biological samples taken (about) once a year from each monitored river site.

Physico-Chemical Data

There is a huge number of physical and chemical parameters of water, e.g. pH, temperature, nitrates, organic matter and pesticides. For example, the Fresqueau data gather more than 900 such parameters. These parameters impact the life cycle of the aquatic flora and fauna. For example, piscivorous fishes (i.e. fish feeding on fish) eat small fishes; small fishes eat macro-invertebrates that eat diatoms. Diatoms are sunlight-dependent and nutrientdependent. Therefore, a contamination of water by excessive inputs of nutrients can disturb the food chain since it can cause the disappearance of some diatom species and/or the abundance of some other ones.

The physico-chemical data encompass two groups of parameters:

Macro-pollutants (mg/l metric unit) that naturally exist in water. Some examples are organic matter (e.g. plant residues), particulate matter (e.g. soot and dust), nitrogenous matter (e.g. ammonium (N H + 4 ), Kjeldahl nitrogen (N KJ) and nitrite (N O - 2 )) and phosphorous matter (e.g. total phosphorus (P ) and orthophosphate (P O 3- 4 )). However, human activity can cause an excess of macro-pollutants (e.g. nutrients) by means of e.g. agricultural practices. This high concentration of nutrients (e.g. nitrate (N O - 3 ) and P O 3- 4 ) effects the aquatic ecosystem [START_REF] Almasri | Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds[END_REF] and may cause e.g. eutrophication.

Micro-pollutants (µg/l metric unit) that do not naturally exist in water. In contrast to macropollutants, they are toxic at very low concentrations. They contain a large number of anthropogenic and natural substances [START_REF] Luo | A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment[END_REF]. Some examples are pesticides [START_REF] Berm Údez-Couso | Pollution of surface waters by metalaxyl and nitrate from non-point sources[END_REF], pharmaceuticals [START_REF] Behera | Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of korea[END_REF], heavy metals (that are natural or not) and industrial chemicals.

The values of these parameters are computed by using the physico-chemical samples usually taken monthly or every two months from each monitored river site.

Land Use Data

All types of land use, e.g. pavements, buildings and forests, effect positively or negatively the water quality. Forests and the areas covered naturally with vegetation minimise the chance of the rainfall to become run-off, and, besides, they increase the chance of the rainfall to be soaked into the soil. Therefore, the quality of water is good in the surrounding areas. In contrast, the areas covered with pavements and buildings cause high run-off charged with various elements (e.g. metals) that lead to a bad quality of water in the surrounding areas.

Chapter 7. Hydro-Ecology as Application Context

In the REX project, the land use around each monitored river site is assessed within two increasing buffers, precisely 100 m and 500 m.

Hydro-Ecological Sequential Data

We focus on hydro-ecological data collected during the Fresqueau project that comprise biological and physico-chemical samples taken at fixed points (river sites) and repeated in time.

The obtained sub-datasets contain sequences whose itemsets are ordered according to temporal relations and defined according to qualitative relations. 

Data Preprocessing

We note that these raw hydro-ecological data contain only numerical values. For exploring such data, we transform them into qualitative sequential sub-datasets (as explained in Sect.

3.3) by applying the discretization and cleaning processes based on domain knowledge.

Data Discretization

The discretization aims at converting numerical values into qualitative ones and it is based Standard AFNOR [START_REF] Afnor | Qualité de l'eau : détermination de l'Indice Oligochètes de Bioindication des Sédiments (IOBS). Norme Franc ¸aise NF T90-390[END_REF][START_REF] Afnor | Qualité de l'eau : détermination de l'Indice Oligochètes de Bioindication des Sédiments (IOBS). Norme Franc ¸aise NF T90-390[END_REF][AFNOR, , 2004b[START_REF] Afnor | Qualité de l'eau : détermination de l'Indice Biologique Diatomées (IBD). Norme Franc ¸aise NF T90-354[END_REF][AFNOR, , 2004a] ] is used for the biological discretization. Table 7.2 shows the discretization intervals for the biological indicators. For example, an IPR score of 26 is discretized as an orange qualitative value; an IBD score of 17 is discretized as a blue qualitative value. Standard SEQ-eau 3 groups the physico-chemical parameters into 15 macro-parameters, e.g. PAES (particulate matter), HAP (hydrocarbons) and MINE (minerals). For instance, in Tab. 7.1 the physico-chemical parameters N KJ, N H + 4 and N O - 2 are grouped into the NITRO macro-parameter, while the physico-chemical parameters P and P O 3- 4 are grouped into the PHOS macro-parameter. Table 7.3 shows the discretization intervals for the physicochemical parameters. For example, 0.989 mg/l of N O - 2 is discretized as an orange qualitative value; 4 mg/l of P O 3- 4 is discretized as a red qualitative value. The qualitative value of a macro-parameter represents the worst qualitative value obtained for the measured physicochemical parameters grouped by this macro-parameter. For instance, a blue qualitative value of P and a yellow qualitative value of P O 3- 4 are discretized as a yellow qualitative value of PHOS.

Table 7.4 is obtained by applying the discretization process to the raw hydro-ecological data illustrated in Tab. 7.1. We can note that the number of values (there are less columns) is significantly small thanks to the macro-parameters. to extract multilevel cpo-patterns has also been developed in Java 8.

Study of the RCA-S Performance

The performance of the RCA-S approach is not our main concern. However, in the following we present a performance study regarding the execution time and the scalability of our approach. The relational scaling mechanism relies on the ∃ quantifier. The experiments were carried out on a MacBook Pro with 2.9 GHz Intel Core i7, 8 GB DDR3 RAM, running OS X 10.9.5.

We use two hydro-ecological sequential sub-datasets from the Fresqueau project whose characteristics, namely the number of sequences, the number of itemsets, the number of items, the average sequence length (the number of itemsets in a sequence) and the maximum sequence length, are shown in Tab. 7.6. The CPO-patterns column illustrates the quite large numbers of concrete, abstract and hybrid cpo-patterns discovered in the analysed sub-datasets. In the following, we examine how the extracted hierarchies are organised according to the accuracy (Sect. 5.4), total number of items and the support of each type of cpo-pattern. We have to remind that the accuracy is in (0%, 100%) for the hybrid cpo-patterns and it is equal to 0% and 100% for the abstract and concrete cpo-patterns, respectively. 

Selecting Relevant CPO-Patterns

In this section, we show the results obtained only for the IBGN blue sub-dataset given in Tab.

7.9. This sub-dataset is interesting since the blue quality of the IBGN biological indicator represents the best ecological state of the aquatic ecosystem, and, besides, the size of the monitored geographical area (40 river sites) is appropriate for discovering global valid cpopatterns, i.e. cpo-patterns that are available with the same frequency for many river sites.

In Tab. 7.9 the CPO-patterns column illustrates the quite large number of extracted concrete, abstract and hybrid cpo-patterns that should be ranked to ease their evaluation. To this end, we select relevant cpo-patterns based on the support, richness and distribution index measures (Sect. 5.3) of the associated main concepts. Figure 7.9 shows two scatter-plots of the distribution index (IQV) versus the support. A circle represents a cpo-pattern and its diameter is proportional to the richness (number of river sites) of the associated main concept. 

Comparing Distribution Index with Stability Index

The stability index [START_REF] Kuznetsov | On stability of a formal concept[END_REF] is a well-known measure of interest that has been used in many FCA-based applications for selecting relevant formal concepts. In our case, i.e.

hydro-ecological sequential data, it may show the likelihood of a cpo-pattern to still exist when several sequences that support it are ignored. In contrast, the distribution index (Sect.

5.

3) of a concept shows the way in which the sequences that support the associated cpopattern are spread over the geographical area (the river sites from where the biological and physico-chemical samples were taken) monitored through these sequences. In the following, based on the sub-datasets given in Tab. 7.10, we try to analyse if the relevant concepts selected with the stability index can also be selected with the distribution index. Firstly, we try to analyse if the best-distributed main concepts may as well be the stable ones. Figure 7.12 shows, for different ranges of the support measure and a threshold τ IQV = 0.99, the best-distributed concepts (associated with the extracted cpo-patterns) from

Hydro-Ecological Sequential Data

L K M contains 85 concepts and L K T contains 22033 concepts. Then, for the same subdataset by exploring it with the ∃ >50% quantifier for ipb1 and the same quantifier ∃ >75% for ipb2, L K M contains more concepts (1186), while L K T contains the same number of concepts;

-preserving the quantifier used for ipb1 and at the same time changing the one used for ipb2 leads to different numbers of concepts for both the L K M and L K T lattices. The variation of the number of the L K M concepts is to be linked to the fact that ipb1 depends on the learnt concepts in L K T . To illustrate this, for the IBGN blue sub-dataset by using the ∃ quantifier for ipb1 and the ∃ >75% quantifier for ipb2, L K M contains 44061 concepts and L K T contains 1406 concepts. Then, for the same sub-dataset by exploring it with the same ∃ quantifier for ipb1 and the ∃ >50% quantifier for ipb2, L K M contains 90892 concepts and L K T contains 3209 concepts.

Experiments -Qualitative Assessment of the Extracted CPO-Patterns

In this section we present some qualitative interpretations resulting from experiments carried out on various hydro-ecological datasets. We highlight how hydro-ecologists are guided during the evaluation step by the obtained hierarchies of multilevel cpo-patterns, and, besides, by the weighted cpo-patterns. 

Navigating a Hierarchy of Multilevel CPO-Patterns

Therefore, hydro-ecologists can navigate the descendants of the (b) cpo-pattern in order to find patterns revealing the appropriate environment for the blue IBGN biological indicator that provide a very good ecological state of the aquatic ecosystem. In addition, hydroecologists can focus on the descendants of the (c) cpo-pattern to find out how the water quality is not impacted when red qualitative values of physico-chemical macro-parameters are measured.

By navigating the direct descendants of the (b) cpo-pattern hydro-ecologists can find three interesting concrete cpo-patterns, i.e. (k), (l) and (m). The (k) and (l) cpo-patterns have respectively 52.5% and 45% frequency and they cover respectively 67.5% and 65% of the monitored geographical area. In addition, the (k) and (l) cpo-patterns illustrate the well-known correspondence between IBGN blue and MOOX blue , NITRO blue (that show an organic pollution).

Chapter 7. Hydro-Ecology as Application Context

The impact of the nutrient pollution, i.e. excessive nutrients (PHOS), on the IBGN qualitative values is a lesser-known fact highlighted by the (m) cpo-pattern with 45% frequency and covering 57.5% of the monitored geographical area.

Since MOOX blue , NITRO blue and PHOS blue have individually relevant impact on IBGN blue , hydro-ecologists are interested to know if their coexistence is also observed. Therefore, going down in the hierarchy the (n) cpo-pattern, which occurs with 36.25% frequency and covers 57.5% of the monitored geographical area, reveals the coexistence at the same time of MOOX blue and NITRO blue ; the (o) cpo-pattern, which occurs with 25% frequency and covers 40% of the monitored geographical area, reveals the simultaneous occurrence of NITRO blue and PHOS blue ; and the (p) cpo-pattern, which occurs with 27.5% frequency and covers 47.5%

of the monitored geographical area, reveals the coexistence at the same time of MOOX blue and PHOS blue . According to [START_REF] Lafont | A practical concept for the ecological assessment of aquatic ecosystems: application on the river dore in france[END_REF] and [START_REF] Mondy | Using conditional tree forests and life history traits to assess specific risks of stream degradation under multiple pressure scenario[END_REF], the IBGN biological indicator is sensitive to various pollutions (in particular, to macro-pollutants) without distinguishing them. Our cpo-patterns show a better answer for the organic pollution.

As aforementioned, the coexistence of MOOX blue with NITRO blue revealed by the (n) cpopattern is expected and indicates the absence of the organic pollution. By analysing Tab. 7.12, hydro-ecologists notice that (n) is discovered in all 5 analysed sub-datasets. Thus, hydroecologists can infer that only the absence of the organic pollution is not always enough to obtain a very good qualitative value of IBGN. In contrast, a surprising coexistence is revealed by the (o) and (p) cpo-patterns that still have good frequencies and indicate the absence of two pollutions, namely organic (MOOX or NITRO) and nutrient (PHOS). Furthermore, by looking over Tab. 7.12, hydro-ecologists can infer that the simultaneous absence of the organic and nutrient pollutions increases the cases when a very good qualitative value of IBGN is obtained (i.e. cpo-pattern (o) occurs only in 3 sub-datasets and cpo-pattern (p) in 2 sub-datasets).

The strong impact of the aforementioned coexistences of the blue physico-chemical macroparameters is emphasized by the descendants of the (c) cpo-pattern. For instance, the (q), (j) and (s) cpo-patterns can highlight that the abiotic characteristics (the non-living chemical and physical parts) suitable for a very good ecological state of the aquatic ecosystem are not impacted by an accidental pollution (e.g. particulate matter (PAES red )). Moreover, by analysing Tab. 7.12 it is as well noted that the (e), (g), (j), (q) and (s) cpo-patterns are not discovered for other qualitative values of IBGN.

In addition, thanks to the multilevel cpo-patterns extracted by using RCA-S the hybrid (i) cpo-pattern, having 22.5% frequency, can be found when, e.g. a minimum support equal to θ = 15% is used even if the accurate (r) cpo-pattern, which is a specialisation of (i), has only 11.25% frequency and it is not discovered.

Hydro-Ecological Sequential Data

Analysing Multilevel Weighted CPO-Patterns

Table 7.13 shows some statistics regarding two hydro-ecological sub-datasets, precisely IBGN orange and IBGN red. Each analysed sub-dataset is built with 10 sequences of 2 samples, 10 sequences of 3 samples, 10 sequences of 4 samples and 15 sequences of 5 samples. In order to help hydro-ecologists to discriminate the cpo-patterns that are found simultaneously in the aforementioned sub-datasets, we extract multilevel wcpo-patterns. 

Experiments and Discussion

In this section, we present some first results obtained with the RCA-S approach applied to heterogeneous sequential data collected during the REX project. A more systematic analysis should be done in the future. Table 7.21 shows the characteristics of the REX dataset, and the number of concepts generated by applying RCA-S . Basically, relying on the data model depicted in Fig. 7.24 we encode into the RCA input the data collected during the entire monitored period 2002 -2014 for the river network depicted in Fig. 7.21. The relational scaling mechanism relies on the ∃ quantifier. The obtained family of lattices contains the taxonomies shown in Fig. 7.22, the lattice of river segments (L K M ) and the lattice of river sites (L K T ).

Table 7.21: The results of the REX dataset exploration with θ = 0%. Column River Site Measurements represents the number of measurements made on the three monitored periods at the river sites shown in Fig. 7.21; column River Segments represents the number of monitored river segments with at least one restored location; column L K M represents the number of concepts from the lattice of river segments; column L K T represents the number of concepts from the lattice of river sites

Dataset

RCA Output River Site Measurements River Segments

By navigating the lattices starting from the main concepts in L K M we obtain a hierarchy of 859 multilevel heterogeneous cpo-patterns. Figure 7.25 depicts an excerpt from this hierarchy, precisely the organised 1 , 2 , 3 , 4 , 5 , 6 and 7 multilevel heterogeneous cpo-patterns. A cpo-pattern is associated with a set of river segments (given in Tab. 7.22) whose number (support) is shown in . The restoration types of these river segments are illustrated in , e.g. Global L1 meaning that the river segments were globally restored at most 2 locations. A vertex ( ) is associated with a set of river sites and it is labelled with physico-chemical parameters and their qualitative values. A vertex can have additional information: land use ( ) and biological indicators (♦). In the following, we focus on the cpo-patterns 1 , 4 and 6 .

The 1 cpo-pattern is associated with 11 ( in Fig. 7.25) river segments that contain at most 2 locations that were globally restored. In addition, itemset (PHC blue ) reveals locally (i.e. in the associated river segments shown in Tab. 7.22) a very good physico-chemical state of water.

The 4 cpo-pattern is associated with 5 river segments (shown in Tab. 7.22) that contain at most 2 locations that were globally restored. Itemset (IBD green ) (♦ in Fig. 7.25) reveals locally a good ecological state of water based on the analysis of diatom species. In addition, the physico-chemical state of water is very good for the temperature, biological oxygen demand
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the land use pressures of buildings were medium at 500 m buffer. In contrast, in the upstream rivers at 500 m buffer on the one hand the land use pressures of industrial areas and arable lands were low; on the other hand, a high percentage of the area is covered with forests that lead to a good ecological state of the aquatic ecosystem in the surroundings. Indeed, by

analysing the E vertex, itemset (IBGN green ) (♦, Fig. 7.26) reveals a good ecological state of the aquatic ecosystem in the period [START_REF] Chen | An updown directed acyclic graph approach for sequential pattern mining[END_REF]-2014 (Tab. 7.23) (Tab. 7.23) based on the analysis of macroinvertebrates. Moreover, the water temperature is very good; the organic matter (dissolved oxygen, biological oxygen demand and oxygen saturation) are good and very good; the nitrogenous parameters (nitrite and ammonium), which are related to the organic matter, are as well good and very good; and the nutrients (total phosphorous and nitrate) are very good.

By comparing the E vertex with the A , B , C and D vertices, it is noted a degradation up to one level regarding the qualitative values of the physico-chemical parameters probably caused by the medium building pressures at 500 m buffer, e.g.:

-AMMONIUM blue and DISSOLVED OXYGEN blue (very good) from E are measured when the surroundings are covered with a low percentage of industrial areas and arable lands (i.e. the land use pressures are low), while AMONIUM green and DISSOLVED OXYGEN green (good) from A , B , C and D are measured when the surroundings are covered with a medium percentage of buildings (i.e. the land use pressures are medium);

-TOTAL PHOSPHORUS blue (very good) from E is measured when in the surroundings the land use pressures are low; TOTAL PHOSPHORUS green (good) from B , C and D is measured when in the surroundings the land use pressures are medium.

Furthermore, the cpo-pattern shown in Fig. 7.26 reflects that the biological indicators seem to be more sensitive (up to two levels of their qualitative values) to the land use pressures [START_REF] Wasson | Quelle limite de " bon état écologique " pour les invertébrés benthiques en rivières ? Apport des modèles d'extrapolation spatiale reliant l'indice biologique global normalisé à l'occupation du sol[END_REF] and [START_REF] Villeneuve | Can we predict biological condition of stream ecosystems? a multi-stressors approach linking three biological indices to physico-chemistry, hydromorphology and land use[END_REF]. For instance, IBGN green in upstream rivers ( E ) in contrast to BIO yellow and IBGN orange locally ( C and D , respectively).

To sum up, hydro-ecologists can draw valuable insights from the heterogeneous sequential data by exploiting the "richness" (e.g. the additional information captured by the concept extents and the revealed abstract items) of the RCA-S results.

Summary

In this chapter, we have presented hydro-ecology as an application context of this thesis.

The analysed hydro-ecological data are exported from the databases used in two interdisciplinary research projects, namely Fresqueau and REX. We have chosen these data since we collaborate with hydro-ecologists. We have explained the preprocessing of these data in order to be able to apply the RCA-S approach and the aspects that have been discussed in this thesis.

Summary

We have presented several interesting results discovered in these hydro-ecological (heterogeneous) sequential data with RCA-S and its extensions introduced in Chapter 6. We have shown that the multilevel (heterogeneous) cpo-patterns reveal well-known correspondences as well as more surprising ones between biological indicators, physico-chemical macroparameters and land use. We have illustrated that the hierarchical results help the pattern evaluation step by guiding the hydro-ecologists. We have highlighted how RCA-S and its extensions are appropriate to make use of domain knowledge, to enumerate only multilevel cpo-patterns that answer specific questions that hydro-ecologists may have and to discover more informative patterns, i.e. wcpo-patterns.

In addition, we have presented a performance study of RCA-S that underlines the usefulness of the approach for exploring small but non-trivial datasets. We have empirically verified the ability of RCA-S to directly extract the minimal representations of cpo-patterns and the usefulness of the distribution index when the execution time is important.

155 Conclusions Nowadays, in the context of the digital age, large amounts of structured data are generated and stored in order to be further harnessed by discovering valuable pieces of information relevant for stakeholders. Basically, the structured data refer to the data stored in databases.

In this thesis, we have focused on exploring sequential data and we have introduced a novel problem, i.e. to directly extract multilevel cpo-patterns implicitly organised into a hierarchy, in order to help the pattern evaluation step of the KDD process. To this end, we have devised an original and self-contained KDD approach within the RCA framework, referred to as RCA-S , that exploits the relational nature of sequential data, the well-founded FCA technique and the properties of the RCA output.

RCA-S is a multi-relational data mining approach since it looks for regularities in sequential data that are gathered from multiple tables out of a relational database. This ap- The primary aim of RCA-S is to simplify the evaluation step of the extracted set of cpopatterns, i.e. the synthetic description of the raw sequential data. To this end, we benefit from the fact that some cpo-patterns are naturally sub-patterns of others and we propose to extract hierarchies of cpo-patterns where each cpo-pattern is projected into its descendants.

Consequently, when an interesting cpo-pattern is found the evaluation step can continue by analysing the surrounding area in the hierarchy. Then, we exploit the order on items revealed by RCA and we extract multilevel cpo-patterns without specific preprocessing. Therefore, a global view of the standard cpo-patterns (i.e. cpo-patterns built from an unordered set of items) is obtained. Next, we make use of the information encoded in the navigated concept extents. On the one hand we extract weighted cpo-patterns that capture -besides the order on itemsets -additional information hidden in the analysed sequential data; on the other hand, we propose to compute some measures of interest, e.g. the distribution index and the richness of a concept, that can be used to select pertinent concepts/cpo-patterns. In addition, we show that RCA-S can be easily adapted to extract cpo-patterns with items across different levels of a user-defined taxonomy, to push user-defined constraints deep into the RCA-based exploration step or to explore heterogeneous sequential data.

The RCA-S approach was applied to hydro-ecological sequential data collected during two interdisciplinary research projects, namely Fresqueau and REX. Firstly, given sequential data that represent hydro-ecological sequences of biological and physico-chemical samples, we found hierarchies of multilevel cpo-patterns that summarise the impact of physicochemical values on biological ones. We recall that biological values determine the quality of water. By means of these cpo-patterns, we could help hydro-ecologists to check wellknown correspondences between the two types of values as well as to discover lesser-known facts. Then, by using the weighted cpo-patterns and the inherent measures, we could help hydro-ecologists to discriminate the same regularities discovered for different water qualities. Moreover, by varying the quantifiers used during the relational scaling mechanism, we could help hydro-ecologists to discover regularities with constraints regarding the frequency of a specific physico-chemical state of water. Secondly, given a river network (graph) and heterogeneous sequential data collected during three distinct periods of time, we discovered a hierarchy of multilevel heterogeneous cpo-patterns that summarise the impact of the analysed ecological factors on the quality of water. These experiments are the first attempt to apply RCA-S to graph mining and the obtained results are instructive.

Furthermore, it is worthwhile to mention that the RCA-S approach can be applied to any data that can be modelled according to the generic data model proposed in this thesis, e.g. the trajectory of a student knowledge in a specific field leading to a sequence of test 

Abstract

Nowadays, large amounts of sequential data are generated and stored in order to be further harnessed by discovering valuable pieces of information. Many sequential pattern mining methods have been proposed to discover potentially useful and understandable patterns that describe the analysed sequential data. These works have focused on efficiently enumerating all the patterns or concise representations, such as closed partially-ordered patterns (cpo-patterns), that makes their evaluation a laboured task for domain experts since their number can be quite large. To address this issue, we propose a new approach, that is to directly extract multilevel cpo-patterns implicitly organised into a hierarchy. To this end, we devise an original and self-contained method within the Relational Concept Analysis (RCA) framework, referred to as RCA-SEQ, that exploits the relational nature of sequential data and the structure and properties of the lattices from the RCA output. RCA-SEQ spans five steps: (1) the preprocessing of the raw data; (2) the RCA-based exploration of the preprocessed data; [START_REF]l'extraction de motifs partiellement ordonnés fermés multi-niveaux organisés dans une hiérarchie en naviguant parmi les treillis interconnectés[END_REF] the automatic extraction of a hierarchy of multilevel cpo-patterns by navigating the lattices from the RCA output; (4) the selection of relevant multilevel cpo-patterns based on various measures of interest; (5) the pattern evaluation done by domain experts. In addition, we show that the RCA-SEQ approach can be easily adapted to extract more informative patterns (the weighted cpo-patterns), to integrate a user-defined taxonomy or to explore heterogeneous sequential data. Two hydro-ecological datasets have been used to asses RCA-SEQ.