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Résumé

Cette thèse fait partie d’un projet franco-keyan dénommé ELEPHOX

(ELEctrochemical and PHOto Properties of Some Remarkable Ruthenium

and Iron CompleXes). En particulier, notre focus est la continuation du tra-

vail de C. Muhavini Wawire, Damien Jouvenot, Fréderique Loiseau, Pablo

Baudin, Sébastien Liatard, Lydia Njenga, Geoffrey Kamau, et Mark E.

Casida, “Density-Functional Study of Lumininescence in Polypyridine Ruthe-

nium Complexes,” J. Photochem. and Photobiol. A 276, 8 (2014). Cet article

a proposé une indice orbitalaire de temps de luminescence pour les complexes

de ruthénium. Cependant cet article n’était limité qu’à quelques molecules.

Afin d’avoir une théorie plus fiable et donc potentiellement plus utile, il fau-

dra tester l’indice de luminescence sur beaucoup plus de molécules. Ayant

établi le protocol, il était “évident” mais toujours un défi de le tester sur

encore une centaine de molécules pour démonter ou infirmer l’indice pro-

posée. Pour ce faire, j’ai examiné les 98 pages de la Table I de A. Juris, V.

Balzani, F. Bargelleti, S. Campagna, P. Belser, et A.V. Zelewsky, “Ru(II)

polypyridine complexes: Photophysics, photochemistry, electrochemistry, and

chemiluminescence,” Chem. Rev. 84, 85 (1988) et j’ai extrait un nombre im-

portant de données susceptibles à comparaison avec les résultats des calculs

de la théorie de la fonctionelle de la densité (DFT) et la DFT dépendante

du temps (TD-DFT). Comme les résultats étaient suffisament encourageant,

le modèle DFT était examiné de plus près avec la méthode d’une théorie de

champs de ligands (LFT) à la base de la densité des états partielle (PDOS).

Ainsi j’ai pu tester l’indice de luminescence proposée précédement par la

méthode PDOS-LFT et j’ai trouvé des difficultés avec l’indice initialement
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proposée. Par contre, nous avons pu proposer une nouvelle indice de lumi-

nescence qui, à quelques exceptions près, a une corrélation linéaire avec une

barrière énergétique moyenne pour l’état triplet excité dérivée à partir des

données experimentales. À l’avenir nous pouvons proposer une investiga-

tion plus directe de la barrière sur la surface triplet excité pour remplacer

la valeur approximative déduite de l’expérience. Puis nous voulons voir si

notre indice de luminescence s’appliquent aux cas des complexes d’iridium.

Mots-Clé: Chimie Quantique, Photochimie, État Excités, Complexes polypyri-

dine ruthénium, Luminescence, Théorie de la Fonctionnelle de la Densité,

Théorie de la Fonctionnelle de la Densité Dépendente du Temps, Densité

d’état partielle, Surface d’énergie Potentielle pour un état Triplet, État de

Transition.



Abstract

This thesis is part of the Franco-Kenyan project ELEPHOX (ELEctrochemical

and PHOto Properties of Some Remarkable Ruthenium and Iron Com-

pleXes) project. In particular, it focused on the continuation of the work of

C. Muhavini Wawire, Damien Jouvenot, Fréd erique Loiseau, Pablo Baudin,

Sébastien Liatard, Lydia Njenga, Geoffrey Kamau, and Mark E. Casida,

“Density-Functional Study of Lumininescence in Polypyridine Ruthenium

Complexes,” J. Photochem. and Photobiol. A 276, 8 (2014). That paper

proposed a luminescence index for estimating whether a ruthenium com-

plex will luminesce or not. However that paper only tested the theory on

a few molecules. In order for the theory to have a significant impact, it

must be tested on many more molecules. Now that the protocol has been

worked out, it was a straightforward but still quite challenging matter to

do another 100 or so molecules to prove or disprove the theory. In order to

do so, I went through the 98 pages of Table I of A. Juris, V. Balzani, F.

Bargelleti, S. Campagna, P. Belser, and A.V. Zelewsky, “Ru(II) polypyridine

complexes: Photophysics, photochemistry, electrochemistry, and chemilumi-

nescence,” Chem. Rev. 84, 85 (1988) and extracted data suitable for compar-

ing against density-functional theory (DFT) and time-dependent (TD-)DFT.

Since the results were sufficiently encouraging, the DFT model was examined

in the light of partial density of states ligand field theory (PDOS-LFT) and

the previously proposed luminescence indices were tested. In fact, the origi-

nally proposed indices were not found to be very reliable but we were able to

propose a new luminescence index based upon much more data and in anal-

ogy with frontier-molecular orbital ideas. Except for a few compounds, this
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index provides a luminescence index with a good linear correlation with an

experimentally-derived average excited-state activation energy barrier. Fu-

ture work should be aimed at both explicit theoretical calculations of this

barrier for ruthenium complexes and extension of the luminescence index

idea to iridium complexes.

Keywords: Quantum Chemistry, Photochemistry, Excited States, Polypyri-

dine ruthenium complexes, Luminescence, Density-functional theory, Time-

dependent density-functional theory, Partial density of states, Triplet Sur-

face, Transition State.
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Chapter 1

Introduction

Problems that are facing the world today need an urgent solution from

scientists. The world is facing a mirage of problems ranging from an ever

increasing population, thus putting a strain on the already available limited

resources. Most importantly, this increase implies an increase in demand

in the consumption of everything, but fundamentally energy requirements

increase significantly [1]. With such kinds of demands, the stain on the

limited resources and their imminent depletion cannot be ignored. There

are many other areas, not just energy that also face the same challenges.

One of the most fascinating natural processes is photosynthesis. It is fas-

cinating because of the efficiency of the process [2]. The question that we ask

ourselves here is, can we emulate this process artificially? This has been an-

swered by many scientists. The main idea behind the process is that we need

at least a donor atom, a spacer, and an acceptor. It is possible to artificially

emulate a number of natural complex operations such as photosynthesis by

building up or assembling smaller working molecular components into larger

units which form nanodevices capable of carrying out similar functions. This

strategy is known as bottom-up (small to big) and it involves the use of pho-

tochemical molecular devices (PMDs). PMDs can be defined as “structurally

organized and functionally integrated systems capable of elaborating the en-

ergy and information input of photons to perform complex functions” [3].

Phototransistors, photocatalysists, photoactivated information storage and

2
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Figure 1.1 – World energy consumption [1].

retrieval, and solar cells are some of the examples of PMDs. These PMDs

may be assembled together to come up with a single PMD which is also a

nanodevice and capable of doing more complex functions.

Improving the performance of (PMDs) has been the focus of much re-

search in the recent years. One of the approaches that has been considered

is synthesizing molecular subunits with specific properties that are able to

simulate the complex interactions of the subunits. It is a promising idea

but it faces a number of challenges. The first challenge is that of quantum

and atomistic effects at the nanoscale level. The second challenge is that

not every molecule that has been modeled theoretically can be synthesized

experimentally. This means that for the second challenge to be addressed,

both experimentalists and theoreticians must work together.

A typical PMD configuration consists of the electron donor-spacer-pigment-

spacer-acceptor, abbreviated as D-S-P-S-A. A good pigment (photosensi-

tizer) has to fulfill important general requirements, irrespective of for which

application it is aimed. Ru complexes fit particularly well in this description

because of good chemical stability, redox properties, excited state reactivity,

luminescence emission as well as excited state lifetimes which have attracted

the attention of many researchers [4]. The main problem here is: How do
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you tell which Ru complex will make a good pigment? Progress has been

made on the prediction of what would make a good pigment before the

lengthy project of working out its synthesis. To this end, [5] worked out

some promising simple molecular-orbital (MO) based luminescence indices

which may be helpful in estimating which compounds are likely to remain

excited long enough to luminescence or transfer an electron or which may

simply undergo unproductive radiationless deactivation back to the ground

state. The two molecular orbital-based luminescence indices, both of which

were based on the idea that luminescence quenching is the result of a low
3MLCT → 3MC barrier. One luminescence index proposes the difference

between the e∗g and the lowest energy π∗ PDOS bands (∆E) as an indicator.

The second luminescence index is a product of the amount of π character

in the t2g band with the amount of ruthenium d character in the 1π∗ band

summarized as d× π. The indices are proposed as qualitative luminescence

predictors. Using the indices, which were tested on five compounds, they

found that low values of ∆E and high values of d×π correlated with lack of

luminescence while high values of ∆E and low values of d× π correlate well

with luminescence. We work further on this indices by looking at more Ru

complexes from [4].

The main objectives in this work are:

1.1 Objectives

A) To test the robustness of molecular orbital (MO) luminescence indices

that were proposed by [5] on a wider variety of compounds and, in the

process, to perhaps identify additional luminescence indicators which can

help in the design of new photochemical molecular devices (PMDs).

Specifically, this entails,

• Optimization of crystal structures.

• Frequency calculation on each optimized structure.

• Time-dependent density functional theory calculations for each of the

optimized structures.

• Single point calculation for each of the optimized structures.
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• Extraction of partial density of states information using various in-

house programs.

B) Study the Ru complex triplet excited transition state and find the size of

the energy barrier.

1.2 Structure and Organization

This thesis is divided into four major parts. The first part consists of

one chapter, the introduction, that outlines what kind of problem is being

tackled in the work as well as the objectives that are covered.

The second part is part two: background material consisting of eight

chapters. The number of chapters contained in this particular part outlines

the importance of understanding each and every process before the actual

work is done.

Chapter two looks at transition metal complexes. This is actually what

is being studied in this work. It outlines what they are and the various

processes that they undergo. It is critical since it is the bare minimum with

which one should familiarize oneself.

Chapter three introduces the Schrödinger equation. A good understand-

ing of this equation provides a solid base for understanding photophenomena

and luminescence.

Chapter four is the chapter on photophenomena and luminescence. The

idea behind this chapter is that it looks at what happens in the excited state.

This is important because we are dealing with excited state phenomena.

Chapters five to nine look at the wave function-based electronic structure

theory. This is the method that is actually used in the work. In the various

chapters, each of the methods, (all of which are important in this work) have

been discussed exhaustively.

The third part is the part on original work. It is chapter 10, 11 and 12.

This part is actually the core of this thesis. It is a detailed presentation of

results that were achieved and gives the publications that resulted out of the

work, both published and also work in progress.
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The fourth part is a summary and conclusion. The chapter summarizes

what we have accomplished and what could possibly be done to further

improve the work. The other section consists of the appendices and gives

supplementary information for the published paper and my curriculum vitae.
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Chapter 2

Transition Metal Complexes

‘The Nobel Prize in Chemistry 1913 was awarded to Alfred Werner “in

recognition of his work on the linkage of atoms in molecules by which he has

thrown new light on earlier investigations and opened up new fields of

research especially in inorganic chemistry”. ’

http: // www. nobelprize. org/ nobel_ prizes/ chemistry/ laureates/

1913/ 14thOct, 2017

2.1 Introduction

Transition metal compounds form the core of the research in this thesis.

They are also referred to as coordination compounds. In the field of pho-

tochemistry and photophysics, they form an important class of compounds

essentially because of their extensive photophysical and photochemical prop-

erties [1]. In a coordination complex MLn, there is typically a central atom

which is a d metal or the cation of a d metal, M. The central atom is sur-

rounded by anions (or cations in some cases such as nitroso (NO+), cationic

oniom ligands and hydrazinium (H2N-NH+
3 ) and its derivatives [2–5]) or

molecules called ligands, L. A simple illustration of such a complex is shown

in Fig. 2.1.

A coordination compound may also be defined as any compound that

contains a coordination entity. A coordination entity is an ion or neutral

9
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Figure 2.1 – Coordination complex.

molecule that is composed of a central atom, usually that of a metal, to

which is attached a surrounding array of other atoms or groups of atoms,

each of which is called a ligand [6]. Transition metal complexes have high

symmetry, chemically significant oxidation states and often have an open-

shell d orbital configuration. Coordination of the metal ion or atom in a

non-spherically symmetric environment, that is, a ligand field, differentiates

the energies of the d-orbitals [7]. There are several common terms that will

be referred to in coordination chemistry, they have been reviewed in the next

section.

2.2 Definitions

2.2.1 Coordination number

The coordination number is the number of ligands (donor atoms) bonded

to the central atom [8]. Typical values of the coordination number are 2,

4 and 6. In the case of [Ru(bpy)3]2+, the coordination number is 6. In

this complex, each ligand “bites” the cation twice. This is why we speak of

monodentate complexes because there is a single pair of “fangs” (that is lone

pairs to form a coordinate bond). Certain have more than one lone pair that
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N N

Figure 2.2 – The 2,2’-bipyridine molecule (bpy) showing the two nitrogen
lone pairs which “bite” the central metal atom.

Figure 2.3 – The hexacoordinate [Ru(bpy)3]2+ complex. Hydrogen atoms
have not been included for clarity purposses.

can “bite.” An example is the 2,2’-bipyridine (bpy) ligand (Fig. 2.2) which

is bidentate (bites twice) because of the lone pairs on the nitrogen.

In Fig. 2.3, we see three bpy complexing with Ru2+ to form the [Ru(bpy)3]2+

hexacoordinate complex. Especially in the case of polydentate ligands, we

sometimes say that the ligands chelate. The word chelate comes from the

Greek χηλη′, which means “claw.” The ligands form a coordination sphere

around the central atom.

2.2.2 Charge

According to charge conservation, the charge on the complex is simply

the sum of the charge of the atom and the charges on the ligands.
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Example:

Ru2+ + 3 bpy → [Ru(bpy)3]2+ (2.1)

2.2.3 Nomenclature

How do we name complexes? The naming of complexes follows the rules

described in the IUPAC red book (https://www.iupac.org/cms/wp-content/

uploads/2016/07/Red\_Book\_2005.pdf) under chapter IR-9 Coordination

Compounds [6]. The reader is referred to this book if they wish to seek fur-

ther details regarding the naming of coordination complexes.

2.3 Transition Metal Structure and Properties

Alfred Werner won the Nobel prize in chemistry in 1913. He had studied

[Co(NH3)n(H2O)lClm]Cl3−m complexes with n + l +m = 6. Some of these

complexes have the same empirical formula but different colors! Werner

came up with the modern explanation of transition metal complexes while

trying to figure out why this was so [9].

2.3.1 Geometries

Geometries of transition metal complexes can generally be classified into:

(1) Octahedral (n = 6) where the central metal ion is surrounded by six lig-

ands. It contains equatorial and axial positions. The equatorial position

is the horizontal square planar arrangement in the xy-plane containing four

ligands and the axial positions are the vertical positions along the z-axis. (2)

Square planar (n = 4) where four ligands are attached to a central metal

ion. It is considered to be an extremely z-out distorted octahedral complex

because the ligands will be on the x- and y-axes. (3) Tetrahedral (n = 4)

where four ligands are attached to a central metal ion. Its difference with

the square planar geometry is that the four ligands approach the central

metal ion in between the axes [10]. The three dimensionality of these struc-

tures means that there can be confirmational (cis/trans) isomers and optical
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isomers (enantiomers).

2.3.2 Crystal Field Theory

In this theory, the ligands are treated as negative point charges which set

up an electrostatic field that repels electrons in the d orbitals of the central

metal ion [11]. The interaction of the electrostatic field of the ligands with

the d electrons results in splitting of the d orbitals into groups with different

energies. In a gaseous transition-metal ion, the five d orbitals with different

values of the magnetic quantum number (m) are degenerate (have the same

energy). Symmetry plays a critical role in how the d orbitals split. In a

complex with spherically symmetric ligand field, the five d orbitals end up in

higher energy than the free ion because of the repulsion between the metal

ion electron density and the spherical field of negative charge. This is an ideal

case which never happens in reality. Practically, d orbitals are split according

to the particular symmetry of the complex. Of particular interest is the

octahedral symmetry where the central metal ion is surrounded by six ligands

since the transition metals that are studied in this work have this symmetry.

It should however be noted that, although most of the complexes studied

have only pseudo-octahedral symmetry, octahedral symmetry is assumed as

a first approximation in assigning orbitals.

2.3.2.1 Octahedral complexes

They are octahedral and highly symmetric. In the presence of an octahe-

dral crystal field, the five d-orbitals interact differently with the surrounding

ligands resulting in their splitting into a lower-energy triply degenerate set

(t2g composed of dxy, dxz and dyz) and a higher-energy doubly degenerate

set (eg composed of dz2 and dx2−y2) separated by an energy, ∆0, known as

ligand field splitting parameter [12]. The size of the ligand-field splitting ∆0

of the d orbitals which results in the eg and t2g orbitals depends upon how

strongly the ligands interact with the central atom. Those which interact

more strongly with the central atom will result in a larger ∆0 and are said

to be “high field,” while small ∆0 means only a small interaction and the
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associated ligands are referred to as “low field.” This allows ligands to be

arranged in a spectrochemical series according to the size of ∆0:

CN− ≈ CO >> NO−
2 > NCS− > H2O > OH−

> F− > NO−
3 > Cl− > SCN− > S2−

> Br− > I− . (2.2)

By varying the ligand, one can vary the ligand field splitting between the

orbitals with sometimes spectacular consequences, notably for color and mag-

netic properties (but also for luminescence lifetimes.)

t2g 

eg 

3

5
 

2

5

d 

Figure 2.4 – Splitting of the five d orbitals of a central metal ion in octahedral
complexes.

The optical properties also vary with the ligand-field strength. The size

of ∆0 is such that d − d transitions are often in the visible. By varying ∆0

through varying the ligand, we can vary the energy of the absorbed light and

hence the color of the complex.

Table 2.1 – Table of the Werner complex colors.

[Co(NH3)6Cl3] yellow orange

[Co(NH3)5(H2O)]Cl3 red

[Co(NH3)5Cl]Cl2 purple

[Co(NH3)4Cl2]Cl green

As much as the crystal field theory (CFT) forms a good basis for studying

magnetic, thermochemical and spectroscopic data by using empirical values
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of ∆0, it faces a number of limitations. It does not take into account the

overlap of ligand and metal atom orbitals because it treats ligands as point

charges. As a consequence of this, it cannot account for the ligand spectro-

chemical series. The ligand field theory takes a broader look and addresses

the weaknesses in the CFT. In the next section, we take a look at the ligand

field theory.

2.4 Ligand Field Theory

Data from several experiments has shown that the metal-ligand bond in

transition metal complexes is composed of some degree of covalency [12].

Ligand field theory (LFT)[13] is the theory that best accounts for the effects

of covalent bonding as well as considering all the conceptual aspects of the

simple crystal field theory (CFT). Ideally, LFT works in a similar manner as

does CFT for the calculation of the energy level diagrams but it also considers

spin-orbit coupling and inter-electronic repulsion when a free metal ion is

converted to a complexed one. LFT is an application of molecular orbital

theory that concentrates on the d orbitals of the central metal atom, thus

providing a more substantial framework for understanding the origins of ∆0.

Any chemist interested in the spectroscopy of metal complexes is obliged to

use LFT.

2.4.1 Molecular Orbitals

The bonding and antibonding molecular orbitals for metal complexes

are obtained by combining metal and ligand orbitals which have the same

symmetry properties. Generally speaking, the formulation of a MO is [12],

ψ = amϕm + alϕl, (2.3)

where ϕm and ϕl are metal and ligand orbital combinations and am and

al are coefficients whose values are restricted by conditions of normalization

and orthogonality.

Two types of bonding arise out of that combination, namely σ and π
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Figure 2.5 – Molecular orbital energy level diagram for an octahedral complex
containing ligands that possess σ and π orbitals.

bonding. The σ and σ∗ bonding arise from the direct overlap of a ligand

lone-pair orbital with metal with the eg orbitals in the wrong symmetry

with t2g. In this kind of bonding, the bonding orbitals (σ) are occupied by

the electrons from the ligand and the antibonding orbitals (σ∗) levels are

centered mainly on the metal. As described earlier, different ligands cause

different ∆0 between the t2g and eg sets.

The π bonding results from the interaction of ligand orbitals directed

perpendicular to the metal-ligand axis interacting with the metal t2g orbitals.

Just as in the case of σ bonding, the nature of the ligand interacting with

the metal ion determines what happens. Figure 2.5 shows the various kinds

of molecular orbitals that arise owing to the different interactions between

the ligand and the metal in an octahedral complex.
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2.4.2 Molecular Orbital Formation

Several considerations must be made before the construction of the molec-

ular orbitals of a complex, these include: shape determination and their rel-

ative energies. Symmetry plays an essential role in the construction of the

MOs since it will give information of whether the overlap is non-zero or zero

and hence the ability to predict whether an interaction can occur or not. To

construct the molecular orbital, we consider orbitals from the metal ion as

well as orbitals from the ligand [8].

i. Metal Orbitals

In the metal ion, nine valence shell orbitals are considered. The nine

valence shell orbitals come from the 3d (5 atomic orbitals), 4s (1 atomic

orbital) and 4p (3 atomic orbitals) orbitals. Owing to the fact that

octahedral complexes are the most important to us, their symmetry in

the Oh point group they may be classified according to symmetry as:

3dz2, 3dx2 − y2; eg (2.4)

3dxy, 3dxz, 3dyz t2g (2.5)

4s a1g (2.6)

4px t1u . (2.7)

ii. Ligand Orbitals

Each of the ligand σ orbitals make up a total of six symmetry orbitals.

By choosing the linear combinations of ligand σ orbitals that have the

same symmetry properties as the various metal σ orbitals, MO construc-

tion is done in such a way that each of them overlaps with a particular

one of the six metal ion orbitals that are suitable for σ bonding.
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2.5 Photophysical Processes for Transition Metal

Complexes

Figure 2.6 shows the various types of electronic transitions that are ex-

pected in octahedral complexes at relatively low energies [1, 12].

E
p

s

d

σM*

πL*

π*

σM*

πM

πL

σL

σ

π

MC LC

LMCT

MLCT

M ML6 L

Figure 2.6 – Molecular orbital diagram representing various types of elec-
tronic transitions in octahedral complexes.

Based on the location of the MOs involved, these electronic transitions

can be classified into three types:

i. Transitions between MOs mainly localized on the central metal

These MOs are mainly from metal d orbitals such as the t2g(π) and

eg(σ∗). They are more commonly known as d − d transitions or metal

centered (MC) transitions. They are transitions from πM orbitals to σ∗M
orbitals.

ii. Transitions between MOs mainly localized on the ligands and

MO’s mainly localized on the central metal

These transitions are known as charge-transfer (CT) or electron-transfer

transitions. They include ligand-to-metal charge-transfer (LMCT) tran-

sitions such as of type πL → π∗M and the metal-to-ligand charge-transfer

(MLCT) transitions such as of type πM → π∗L.
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iii. Transitions between MOs mainly localized on the ligands

They only involve ligand orbitals which are almost unaffected by coor-

dination to the metal. These include ligand centered (LC) transitions of

type πL → π∗L.
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Chapter 3

Schrödinger Equation

It is by logic that we prove, but by intuition that we discover.

J. H. Poincaré, ca. 1900.

Introduction

In this chapter, an introductory review of elementary quantum mechan-

ics is given. Advanced concepts of the density functional theory are built

starting from the fundamental aspects of electronic structure theory using

mathematical manipulation techniques to solve the fundamental equations.

All these concepts lead to the build up of the Schrödinger equation, which

is the ‘backbone’ of electronic structure and methods. Starting from the

ultraviolet calamity and the photoelectric effect (ideas that spurred the im-

provement of quantum mechanics) a step by step approach is shown of how

the Schrödinger equation builds up. Also discussed in this chapter is the

Born-Oppenheimer approximation, which separates the motion of an elec-

tron from that of the nucleus. They are reviewed herein. This chapter has

been written based on the following references [1–9]; among others cited in

text.
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3.1 Ultraviolet Catastrophe

This is also referred to as black-body radiation. A black-body is an ideal-

ized object which absorbs and emits all incident radiation without favouring

particular frequencies [9]. The Rayleigh-Jeans law is an equation that de-

scribes the intensity of black-body radiation as a function of frequency for

a fixed temperature. The law works for low frequencies but fails for high

frequencies. This phenomenon is referred to as the ultraviolet catastrophe.

Max Planck explained the black-body radiation by introducing the concept

of quantization of energy using the Planck’s constant (h) in his equation:

E = nh, (3.1)

where h is the Planck’s constant (6.626 × 10−27 J.s). Planck could not

give a justification for his assumption of energy quantization. The idea was

taken up further by Einstein who adopted Planck’s assumption to explain

the photoelectric effect.

3.2 Photoelectric Effect

Photoelectric effect is the ejection of electrons from a metal surface by

light. The classical wave theory of light suggested that the intensity of the

light determined the amplitude of the wave. Experiments however showed

that the kinetic energy of the ejected electrons depends on the colour (which

is a function of frequency) of the light. Einstein explained the observation

by assuming that the light consisted of packets of energy (photons), with

each photon having an energy [8, 10],

Ephoton = hν, (3.2)

where h is Plancks constant and ν is the frequency of the light.

Einstein went ahead to explain that for an electron to be ejected, the

forces holding the electron in the metal must first be overcome [what is com-

monly referred to as the work function (Φ)] and then the extra energy that
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remains is the one which removes the electron from the metal. Conservation

of energy results in the equation for the photoelectric effect written as,

hν = Ephoton = Φ+KEmax, (3.3)

where Φ is the minimum energy needed by an electron to escape the metal

(metal’s work function), and KEmax is the maximum kinetic energy of an

emitted electron. The equation in essence tells us two things; first, increasing

the light’s frequency will increase the photon energy and therefore the kinetic

energy of the emitted electron. Secondly, increasing light intensity at fixed

frequency will increase the rate of emission of electrons, but has no effect on

the kinetic energy of the emitted electron. Consequently, reaping from the

fruits of his hard work, Einstein was awarded the Nobel prize [11] in physics

in 1921 for his work. The photoelectric effect shows that light can exhibit

both particle-and wavelike behaviour from diffraction experiments.

3.3 Quantization of Electronic Angular Momentum

The discussion about quantization of electronic angular momentum takes

us back to the structure of matter. Various experiments in the 19th century

such as the electric discharge tube and radioactivity led to the discovery of

charged particles, electrons and protons. The important fact to any chemist

is that chemical properties of atoms and molecules are determined by their

electronic structure. This raises the question about the nature of the motions

and energies of the electrons. To this extent, several atomic models were

proposed to explain the above question. The specific models will not be

dealt with in detail but the problem that is at hand is that classical physics

could not explain what held the electron in position as it moved around the

nucleus since it was expected to lose energy by radiation and therefore would

spiral toward the nucleus.

Neil Bohr brought in the concept of quantization of energy for the hy-

drogen atom to solve the problem. According to Bohr, electrons orbit about

the nucleus of an atom in stable allowed electronic orbits with a quantized
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electronic angular momentum [12] of,

l = mvr = nh̄, with h̄ =
h

2π
. (3.4)

A quantized angular momentum implies that the energy will in-turn be

quantized. Bohr used the principle of quantization to explain the line spec-

trum of the hydrogen atom. A photon of light of frequency ν is absorbed or

emitted with the transition of an electron from one allowed energy level to

another.

Eupper − Elower = hν. (3.5)

Bohr’s expression for the allowed energy levels worked perfectly for the

hydrogen atom spectrum but failed in atoms with more than one electron.

It did not account for chemical bonding in molecules also. This failure could

be attributed to the use of classical mechanics for the description of the elec-

tronic motions in atoms. The main difference is that, in quantum mechanics,

only certain energies of motion are allowed (i.e., energy is quantized) while in

classical mechanics, a continuous range of energies is allowed. This prompted

Louis de Broglie to introduce the wave aspect for electrons.

3.4 Wave-Particle Duality

The failure of Bohr to describe the electronic motion in atoms prompted

de Broglie to suggest that the motion of electrons has a wave aspect. The

wavelength (λ) of an electron of mass m and speed v is,

λ =
h

mv
=
h

p
, (3.6)

where ~p = m~v is the particle momentum (whose magnitude is p) and m

refers to the relativistic mass. The wave-particle duality of light was proven

by the fact that light behaves as a wave since it can be diffracted, and as a

particle because it contains packets of energy [8].

For an electron behaving as a wave, the wave completing the integral
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number of wavelength for a stable electron orbit is,

2πr = nλ. (3.7)

This can be rewritten as below with the inclusion of the de Broglie relation,

mvr = nh̄. (3.8)

The wave-particle duality leads to the Heisenberg’s uncertainty principle.

The question is, how can an electron be both a particle (localized) and a

wave (non localized)? The Heisenberg’s uncertainty principle states that the

position and momentum of a particle cannot be known simultaneously at the

same time.

∆x∆p ≥ h̄

2
. (3.9)

If the orbital radius of an electron in an atom is known exactly (position),

then the angular momentum must be completely unknown. This principle set

in a new quantum theory that was consistent with the uncertainity principle

since the Bohr model specifies the exact radius and that the orbital angular

momentum must be an integer hence a weakness. In general, the more

precisely the position is measured, the less accurate is the determination

of momentum because the act of measurement introduces an uncontrollable

disturbance in the system being measured. Schrödinger replaced this idea

with the probability of finding an electron in a particular position or volume

of space.

3.5 Time-Independent Schrödinger Equation

The Schrödinger equation is classified under what is called ‘modern quan-

tum mechanics’ [10] based on the Copenhagen interpretation. In his equa-

tion, Schrödinger replaced the wave in classical mechanics with a wave func-

tion ψ(r) = ψ(x, y, z). There exist two forms of the Schrödinger equation,

the time-dependent and the time-independent Schrödinger equation, distin-
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guished by whether the wave is stationary or travelling. In the next section

of the discussion, a heuristic justification of the Schrödinger equation is given

starting from the basic idea of the wave equation.

The time-independent Schrödinger equation is mostly used because we

are interested in atoms and molecules without the time-dependent interac-

tions. Starting from the basic idea of the classical one-dimensional wave

equation,

∂2u

∂x2
=

1

v2
∂2u

∂t2
. (3.10)

We can solve this wave equation by the separating the variables, by

writing u(x, t) as the product of a function of x and a harmonic function of

time:

u(x, t) = ψ(x) cos(ωt), (3.11)

where ψ(x) is the spatial amplitude of the wave. Replacing Eq.(3.11) in Eq.

(3.10) gives the equation for the spartial amplitude,

d2ψ

dx2
+
ω2

v2
ψ(x) = 0, (3.12)

but ω = 2πv and νλ = v leading to,

d2ψ

dx2
+

4π2

λ2
ψ(x) = 0. (3.13)

This is an ordinary differential equation describing the spatial amplitude

of the matter wave as a function of position. From Eq. (3.13), the idea of

de Broglie matter waves can be introduced. The total energy of a particle is

the sum of its kinetic energy and its potential energy, given by the equation

below,

E =
p2(x)

2m
+ V (x). (3.14)

Solving for momentum, p, yields,

p(x) =
√

2m[E − V (x)]. (3.15)
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Using the de Broglie formula, an expression for the wavelength can be found

as,

λ =
h

p
=

h
√

2m[E − V (x)]
. (3.16)

Substituting λ into Eq.(3.13),

d2ψ

dx2
+

2m

h̄2
[E − V (x)]ψ(x) = 0, (3.17)

which can be rewritten as,

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (3.18)

In three dimensions, the single-particle one-dimensional equation can be ex-

tended to,

− h̄2

2m
∇2ψ(~r) + V (~r)ψ(~r) = Eψ(~r)

≡
(

− h̄2

2me
∇2 + V (~r)

)

ψ(~r) = Eψ(~r)

≡
(

− h2

8π2me
∇2 + V (~r)

)

︸ ︷︷ ︸

Ĥ

ψ(~r) = Eψ(~r)

≡ Ĥψ(~r) = Eψ(~r) .

(3.19)

Here, Ĥ is the Hamiltonian operator. Equation (3.19) is known as the time-

independent (does not contain a time variable), non-relativistic (not valid

when the velocities of particles approach the speed of light) Schrödinger

equation. The ψ(x) wavefunctions obtained from this equation are called

stationary state wavefunctions and they describe a particle of mass (me)

∇
2 is the Laplacian or Laplace-operator, defined as the sum of differential operators

(in cartesian coordinates). ∇
2
=

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2
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moving in a potential field V (x). From this equation, the energy and any

other related properties of a molecule may be obtained by solving it. Solu-

tions to Eq. (3.19) correspond to different stationary states of a particle and

the one with the lowest energy is called the ground state.

3.6 Time-Dependent Schrödinger Equation

Although most of the problems of chemical interest can be described

by the time-independent non-relativistic Schrödinger equation, the time-

dependent Schrödinger equation is described herein for the purposes of dis-

tinction between the two of them. The time-dependent Schrödinger equa-

tion is given as a postulate of quantum mechanics, unlike the Schrödinger

equation that can be derived starting from the classical wave equation.

The “derivation” is only heuristic but not rigorous. The time-independent

Schrödinger equation can be rigorously derived from the time-independent

Schrödinger equation. From Eq. (3.13) the idea of de Broglie matter waves

with the space and time variable [φ(x, t)] is introduced. The only differ-

ence between this equation and the time-independent Schrödinger equation

is that the time variable has been introduced. The total energy of a particle

is the sum of its kinetic energy and its potential energy, given by,

E =
p2(x)

2m
+ V (x, t). (3.20)

The other steps have been omitted as they are similar to those for the time-

independent equation,

∂2ψ(x, t)

∂x2
+

2m

h̄2
[ih̄

∂

∂t
− V (x, t)]ψ(x, t) = 0, (3.21)

Which can be rewritten as;

[−h̄2
2m

∂2

∂x2
+ V (x, t)

]

Ψ(x, t) = ih̄
∂

∂t
Ψ(x, t). (3.22)

This is the time-dependent Schrödinger equation.
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3.7 Molecular Hamiltonian

Ĥψ(~r) = Eψ(~r) , (3.23)

Ĥ is the Hamiltonian operator. This operator is constructed from the energy

expression in classical mechanics. In classical mechanics, the classical energy

is calculated as:

E = kinetic energy + potential energy

=
1

2
mev

2 − Ze2

4πǫ0r

=
p2

2me
− Ze2

4πǫ0r

. (3.24)

Replacing each cartesian and momentum coordinate by the corresponding

operator in Table 3.1,

Table 3.1 – Classical to quantum transformation of cartesian position and
momentum operators.

Position Momentum
x → x̂ px → p̂x
y → ŷ py → p̂y
z → ẑ pz → p̂z

Results in:
Ĥ =

1

2me

(
p̂2x + p̂2y + p̂2z

)

= − h̄2

2me

(
δ2

δx2
+

δ2

δy2
+

δ2

δz2

)

− Ze2

4πǫ0r

=
h̄2

2me
∇2 − Ze2

4πǫ0r

. (3.25)

In other words, Ĥ is composed of the kinetic and potential energy operator,

Ĥ = T̂ + V̂ . (3.26)
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Figure 3.1 – xyz directions

Table 3.2 – Symbols used to show the interaction between nuclei electrons.

Symbol Indices Position Mass Charge
Electrons N i, j rj me -e
Nuclei M A, B RA MA +eZA

A molecular system consisting of M nuclei and N electrons is a complex

many-body problem. A system with N electrons and M nuclei in the cartesian

coordinates x, y and z may be depicted as Fig. 3.1.

The interaction between the nuclei and the electrons has been described

using the symbols in Table 3.2.

A and B run over the M nuclei while i and j denote the N electrons in

the system. The analogous time-independent, non-relativistic Schrödinger

equation for the many body problem is,

ĤΨi(~x1, ~x2, ..., ~xN , ~R1, ~R2, ..., ~RM ) = EiΨi(~x1, ~x2, ..., ~xN , ~R1, ~R2, ..., ~RM )

(3.27)

Ĥ is the differential operator representing the total energy for the molecular

system. We shall consider five contributions to the Ĥ. The Ĥ being con-

sidered here does not include the external electric and magnetic fields which

will necessitate the inclusion of other terms in the Ĥ such as the spin-orbit
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coupling. The Ĥ is given as,

Ĥ = T̂e + T̂N + V̂ee + V̂NN + V̂eN , (3.28)

where,

T̂e = −
N∑

i

h̄2

2me
∇2
i

T̂N = −
M∑

A

h̄2

2MA
∇2
A

V̂ee =

N∑

i<j

e2

4πǫ0|ri − rj |

V̂NN =
M∑

A<B

e2ZAZB
4πǫ0|RA −RB|

V̂eN =
N∑

i

M∑

A

e2ZA
4πǫ0|ri −RA|

.

(3.29)

In SI units.

3.8 Atomic Units

The system of atomic units was developed to simplify mathematical equa-

tions by setting many fundamental constants equal to 1. Equations are ex-

pressed in a very compact form, without any fundamental physical constants.

Consequently, atomic units remove units from equations. Physical quantities

such as the mass of an electron, me, the modulus of its charge, |e|, Planck’s

constant h divided by 2π, the 2π times the permittivity of the vacuum, are

all set to unity. A new set of units called the atomic units is defined; the

atomic unit of energy is called a hartree and is denoted by Eh. The atomic

units that have been adopted are shown in Table 3.3.

With the expression of the physical constants as unity, Ĥ simplifies to,
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Table 3.3 – Atomic Units

Quantity Atomic Unit SI units Symbol
mass mass of an electron 9.1094× 10−31Kg me

charge elementary charge 1.6022× 10−19C e
action h

2π 1.0546× 10−34Js h̄

Length 4πǫ0h̄
mee2

5.2918× 10−11m a0(bohr)

energy h̄2

mea20
4.3547× 10−18J Eh(hartree)

27.21138 eV
627.5095 kcal mol−1

219474.6 cm−1

3.157 x 105 K

Ĥ = − 1

2me

N∑

i

∇2
i −

M∑

A

1

2MA
∇2
A +

N∑

i<j

1

|ri − rj |
+

M∑

A<B

ZAZB
|RA −RB|

−
N∑

i

M∑

A

1

ri −RA
.

(3.30)

A quick look at the Ĥ will give you the impression that it is an approximation

since it does not include interaction with external electric and magnetic fields,

spin-orbit coupling, orbit-orbit coupling and any relativistic correction of the

kinetic energy. This is just to point out this fact, but it is not a big issue

since it is always possible to add these factors to a calculation when they are

needed.

The ultimate goal that we aim at is solving the Schrödinger equation.

Looking at the problem that is at hand, it is mind boggling since it is a

prodigious problem both conceptually and computationally. The question

is, can this be solved?
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Figure 3.2 – Molecular Hamiltonian.

3.9 Born-Oppenheimer Approximation

The famous Born-Oppenheimer Approximation (clamped-nuclei approx-

imation) simplifies the Schrödinger equation by taking advantage of the sig-

nificant differences between the masses of nuclei and electrons [13]. The

lightest nuclei (1H) weights about 1800 times more than an electron, which

implies that the electrons are much lighter than the nuclei and therefore

move much faster.

I particularly like the explanation of this approximation using the com-

parison of a swarm of flies around a cow, and so I will not hesitate to state it

here. The situation of the electrons and nuclei in a molecule can be compared

to a swarm of flies around a herd of cows. The sound of the buzzing flies

(electrons) does not make the cow (nuclei) to move but as the cow moves

off to new pasture, the swarm of flies follow suit instantaneously. This in

essence means that the movement of electrons around the nucleus does not

make it to move appreciably but the movement of the nucleus triggers an

immediate movement of the electrons along with it.

With the above explanation, you realize that the electrons move in a

field of fixed nuclei. If the nuclei are fixed in space, they do not move and

therefore their kinetic energy is zero and the potential energy due to nucleus-

nucleus repulsion is a constant. Consequently, the complete Hamiltonian

reduces to an electronic Hamiltonian. Simply put, the Born-Oppenheimer

Approximation does what is depicted in Fig. 3.2.
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Ĥelec(r;R) = −1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

A=1

ZA
riA

+

N∑

i=1

M∑

i<j

1

rij

= T̂ (r) + V̂Ne(r;R) + V̂ee(r).

(3.31)

R
︸︷︷︸

Matrix

= (~R1, ~R2, ..., ~RM )
︸ ︷︷ ︸

Vectors

is a parameter in the above equation. In this case,

the Schrödinger equation is solved for the electronic problem for a given set

of fixed nuclear positions. If a new set of nuclear coordinates is generated,

the electronic problem must be solved for this set also as it is an entirely new

problem. The Schrödinger equation involving the electronic Hamiltonian is,

Ĥe(r;R)Ψe
I(x;R) = EeI (R)Ψe

I(x;R). (3.32)

Solutions of the electronic Schrödinger equation for a large number of nuclear

geometries and for electronic states are useful in constructing the molecular

potential energy surface (PES),

V (R) = Vnn(R) + EeI (R). (3.33)
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Chapter 4

Photophenomena and

Luminescence

‘And God said, “Let there be light,” and there was light. God saw that the

light was good, and he separated the light from the darkness.’

Genesis 1:3-4

4.1 Introduction

Photochemistry can be viewed as the study of the interaction of light

with matter [1]. It has been argued by some scientists, including my own

Prof. Mark Casida that photochemistry came into action when God said: “

Let there be light.”

Photochemistry has a wide range of uses and applications that include:

photosynthetic processes in green plants, a type of photo-catalysis, accumu-

lation of fossil fuels, vision, cancer treatment, water treatment, charge sep-

aration and energy migration which are key in applications of solar energy

conversion and signal processing, luminescent sensors, optical brighteners,

atmospheric photochemistry, electrochemiluminescent materials (light emit-

ting diodes (LEDs), organic light emitting diodes (OLEDs), light-emitting

electrochemical cells (LECs)), photodegradation, photostabilization, pho-

tolithography, and stereolithography. It also has applications in the fields

38
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of biomaterials and tissue engineering specifically in oncology (treatment of

cancer), molecular biology and biosurgery [2–6]. With such kinds of applica-

tions, the importance of photochemistry in changing and improving the life

of mankind cannot be ignored and thus it remains an active area of research.

In photochemistry, we are specific about the kind of light that we are in-

terested in: Typically, we deal with chemical reactions and physical changes

that result from interactions between matter and visible (400-800 nm) or ul-

traviolet (200-400 nm) light of the electromagnetic spectrum [7]. When such

interactions occur, photon energy is added to the ground state energy of the

molecule resulting in an excited state. The energy can be transferred to the

molecule by chemical reaction, intermolecular energy transfer or absorption

of radiation. The excited state possesses more stored energy and thus will

be different from its ground state precursor. Differences between the ground

and excited state includes the geometry, vibrational and rotational energies

and redox potentials. With the differences listed above, it is expected that

ground and excited states will undergo different chemical reactions. In a

chemical reaction, other reactions may also take place such as the thermal

reactions that are induced by heat. One of the major challenges when dealing

with photochemistry will be to identify products resulting from the primary

photoprocess and those from thermal reactions.

4.2 Electronic Excitation

Molecular excitation results from the interaction of matter with a pho-

ton of suitable energy, chemical reaction, or intermolecular energy transfer.

Of the three pathways of excitation, photochemistry remains the de facto

alternative route to thermal reactions. This is because it offers the easiest

mechanism to selectively populate an excited state. An electronic excited

state arises from the interaction of matter with a photon of suitable energy

as shown below.

A
︸︷︷︸

Ground State

+ hν
︸︷︷︸

photon

→ A∗
︸︷︷︸

Excited State
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This is made possible by the fact that energy of matter is quantized and

only certain specific energies are allowed, that is why we are talking of ‘a

photon of suitable energy’. The energy of the photon can be calculated from

quantum theory as E = hν.

4.2.1 How does Electronic Excitation Occur?

Electronic transition from ground to excited state after the absorption

of a photon of suitable energy is guided by the Franck-Condon principle

[8]. It obeys this principle based on the fact that we are looking at the

vertical excitation corresponding to an electronic excitation only, without

change in the nuclear positions. This is because electronic transitions occur

for a very short time that the nuclei do not change their positions during the

transition [9] since electrons are much lighter than nuclei. This often results

in an increase in the excited state bond length since transition from the

ground to excited state often involves transfer of an electron from a bonding

orbital into an anti-bonding orbital. Another reason is that the excited state

electronic structure differs from that of the ground state and thus has a

different energy profile.

The above can be shown by considering the contribution from the nuclear

component. To show this, vibrational wave functions must be known. Let

us consider a simple harmonic oscillator, whose vibrational energy levels are

quantized and the potential energy well for internuclear distances is given by

a parabolic curve as shown in Fig. 4.1.

4.2.2 Types of Electronic Transitions

The intensity of electronic transitions is guided by a number of rules

(selection rules) based on the spin and symmetry [3]. We consider closed and

open shell molecules in our discussion. The Laporte selection rule forbids

transitions between states of the same parity. This rule requires that an

electronic transition must be accompanied by a change in the orbital angular

momentum quantum number. The spin selection rule, denoted as ∆S =

0, requires that there should be no change in the spin multiplicity. Spin
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Figure 4.1 – Potential energy diagrams with vertical transitions as in the
Franck-Condon principle.

multiplicity can be calculated from the equation 2S+1, where S is the total

spin of all electron spins. It results in two kinds of electronic transitions; the

allowed transition where there is no spin flip and the forbidden transition

that involves spin flip. Now, the question is, what types of spin multiplicity

exist? The first type of spin multiplicity is the singlet (S0). It arises from

the excitation of a single electron from its spin-paired singlet ground state

to an excited state having electrons in two orbitals, each containing a single

unpaired electron as shown in Fig. 4.2. Singlet ground state to singlet excited

state is considered an allowed transition since it does not involve change in

spin and it gives rise to intense bands in the absorption spectra characterized

by large values of extinction coefficient (ǫ ≈ 102 − 104 M−1cm−1).

Figure 4.2 – Singlet ground state to excited allowed singlet state.
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The second type of multiplicity is known as the triplet (T0). It arises

from the excitation of a single electron from its spin-paired singlet ground

state to an excited state where the spins are in the same directions in the two

orbitals as shown in Fig. 4.3. Transition from a spin-paired singlet ground

state to a triplet excited state is considered a forbidden transition according

to the spin selection rule, (∆S = 0) and it gives rise to bands that can

hardly be observed in the absorption spectra characterized by small values

of extinction coefficient (ǫ ≈ 1− 102 M−1cm−1).

Figure 4.3 – Singlet ground state to excited forbidden triplet state.

The spin selection rule is however relaxed for electronic transitions in-

volving heavy atoms such as actinides, lanthanides and complexes of second

and third row transition metal complexes because of spin-orbit coupling [10].

This arises when the magnetic field produced by electrons in motion interacts

with magnetic field due to the electron spin. Spin-orbit coupling is a heavy

metal atom orbital effect that may lead to loss of distinction between singlet

and triplet states because of the mixing of the states of different multiplic-

ities. In essence, this is actually quite positive from an application point

of view because the long-lived, low-energy triplet excited states are read-

ily accessible enabling many applications. With increase in atomic number,

spin-orbit coupling is more pronounced and there is reduction in the number

of forbidden electronic transitions. In our calculations, we are dealing with

the ruthenium atom which is considered as a heavy atom; however, spin-orbit

effects have not been included in all the calculations.
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4.3 State Energy Diagram

To further understand photochemistry, state energy diagrams are used

to show the position of energy levels of the ground state, the excited singlet

states and the excited triplet states of the molecule. One point to note is that

an excited triplet state has a lower energy than that of the corresponding

excited singlet state. This is justified by the requirement of Hund’s rule [11].

Another factor that weighs in heavily for the position of the energy level

is the type of transition that is taking place. Later on, we shall be able

to define the different kinds of transitions that are likely to be encountered

in transition metal complexes; but to make our point, transitions involving

metal to ligand tend to have low energies while transitions of only ligand

molecular orbitals are more energetic. Spin arrangement in the orbitals will

be in such a way as maximizes their spatial separation, an effect commonly

known as the spin correlation effect.

This further step explains what is expected in the molecular orbitals

(MO). Bonding molecular orbitals form when atomic orbital wavefunctions

enhance each other in the region between the nuclei (Ψxy = Ψx +Ψy) while

the antibonding molecular orbitals are formed when the atomic orbital wave-

functions cancel each other in the region between the nuclei (Ψ∗
xy = Ψx−Ψy).

Orbitals containing lone pairs of electrons that are neither bonding nor an-

tibonding with no role in bonding are called nonbonding molecular orbitals

(n). On addition of an electron to a molecule it goes into the lowest unoccu-

pied molecular orbital (LUMO), if an electron is removed it is removed from

the highest occupied molecular orbital (HOMO). In this case, the lowest

electronic transition is from HOMO to LUMO.

The energies of electronic states form an important core of this work. It

is the inspiration behind the development of the program pdos.py. This is

because the presence of metal ions in the transition metal complexes have

a large number of closely spaced orbitals that can interact with each other

to give a multiplicity of states that are very similar to each other in energy

which is further complicated by the presence of spin-orbit coupling. This

makes it very complex to separate the states and the program pdos.py was
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specifically designed to help solve this problem.

4.4 Excited State Deactivation

4.4.1 Introduction

The excited state that was formed by absorption of a photon of suitable

energy is unstable with high energy and must undergo deactivation to be

stable. There are several ways in which deactivation of an excited state (A∗)

can occur; photochemical reaction, luminescence, radiationless deactivation,

and the quenching process [12]. Figure 4.4 shows the possible pathways of

deactivation of the excited state.

 

 A + hh  A* 

Photochemical reaction 

products 

A + h � 

Luminescence 

A + heat 

A and/or products  

(Quenching Process) 

Figure 4.4 – Excited State Deactivation

It will be shown in detail how each of the above processes occurs.

4.4.2 Luminescence

Luminescence can be defined as the emission of ultraviolet, visible or

infrared photons from an electronically excited species by cold light [13].
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Conversely, incandescence involves hot light. There exist different types of

luminescence depending on the mode of excitation. The different types of

luminescence based upon the source of excitation energy are:

Table 4.1 – Classification of different types of luminescence based upon the
source of excitation energy.

Type Energy Source
Chemiluminescence Chemical reaction
Triboluminescence Mechanical e.g. frictional

and electrostatic forces
Bioluminescence Chemical reaction (within living

organisms)
Thermoluminescence Heat
Electroluminescence Electric field
Radioluminescence Ionizing radiation such as the X-rays, α
Cathodoluminescence Cathode rays
Photoluminescence Radiation (UV, Visible, IR)
(fluorescence, phosphorescence)

In this work, the type of luminescence being studied is photoluminescence

(fluorescence, phosphorescence) that involves absorption of light (photons).

4.4.2.1 Jablonski Diagram

The Jablonski diagram [7] is used to represent the properties of excited

states and their relaxation processes. This is because de-activation can lead

to heading back to the ground state (photophysical process) or with for-

mation of other species (photochemical process). Photophysical processes

are represented by the Jablonski diagram. There is a convention used to

show this processes in the Jablonski diagram: It is assumed that the ground

state is a singlet and electronic states are represented by thick horizontal

lines arranged in vertical order while the states of different multiplicity are

separated horizontally. Vibrational levels are represented by thin lines. Ab-

sorption or emission of a photon asssociated with radiative transitions are

shown by straight arrows, while radiationless transitions (internal conversion

and intersystem crossing) are shown by wavy arrows. Rotational levels are
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not shown. Fig 4.5 is the Jablonski diagram being discussed.

S0 

S
1

 

S
2

 

Internal Conversion 

Absorption Absorption 

Intersystem Crossing 

Fluorescence 

Phosphoresence 

T
1

 

Figure 4.5 – Jablonski diagram.

A particularly impressive diagramatic representation of this phenomena

is from [14], which has been borrowed to illustrate the process.

In the next subsection, we discuss the various photophysical processes in

the Jablonski diagram.

4.4.3 Vibrational relaxation

As mentioned earlier, an electronically excited state has excess electronic

energy. In addition to this, it also possesses excess of vibrational energy

[9]. Vibrational relaxation occurs when a transition between a vibrationally

excited state (v > 0) and the vibrational ground state (v = 0) happens in a

given electronic state due to collision of excited state molecules with other

surrounding species. This is so since vibrational levels are associated with

each electronic state. Excess vibrational energy is given as heat and the time

scales range from 10−13−10−9 s. Typically, this is the fastest process taking

place in the excited state.
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Figure 4.6 – Jablonski diagram showing the various processes. Original
source [14].

4.4.4 Radiationless Deactivation

In the Jablonski diagram, radiationless deactivation is represented by

a horizontal wavy line. It occurs between vibrational levels of the same

energy of different electronic states. The mechanisms that fall under this

class are the internal conversion (IC) and the intersystem crossing (ISC).

Internal conversion is transition between two electronic states of the same

spin multiplicity. Internal conversion involves transformation of electronic

excitation into vibrational energy through nuclear tunneling [15].

Intersystem crossing is a spin-forbidden transition between two vibra-

tional levels with the same energy in similar electronic states of different

multiplicities for example S1 → T1. Unlike IC, ISC involves concurrent

change in spin. To compete with other deactivation processes, IC is fast and

involves vibrational relaxation. Both IC and ISC are usually followed by vi-

brational relaxation (vr) to the lowest vibrational level of the new electronic

state. With the complexity in the excited states due to the numerous states

involved, it is assumed that IC within any one spin manifold is significantly
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faster than direct deactivation to the ground state or ISC [3]. According to

Kasha’s rule[16], IC between excited states is more rapid than IC to ground

state since emission occurs from the lowest excited-state of a given multi-

plicity.

4.4.5 Radiative Deactivation

These deactivation mechanisms obey the same selection rules as the

ones for light absorption. The mechanisms here are understood in terms

of the Pauli exclusion principle. Deactivation from S1 is allowed, leading

to a ground state with spin-paired electrons in one orbital hence a short-

lived excited state (fluorescence). Forbidden de-excitation, such as that of

a triplet excited state, violates the Pauli exclusion principle and has a long

lived excited state (phosphorescence).

4.4.5.1 Fluorescence

Fluorescence is a spin allowed photon emission between states of the same

multiplicity from the lowest vibrational level of the lowest excited singlet

state, S1(v = 0) [7]. It occurs in timescales of 10−12 − 10−6 s. It can be

expressed as,

S1 −→ S0 + hν. (4.1)

The characteristics of fluorescence emission are independent of the ex-

citation wavelength except for polarization and in cases where there is a

small energy gap between the initial and final electronic states. The Franck-

Condon principle plays an important role in determining the band shapes

for radiative deactivation. At the 0-0 transition, the excited state is undis-

torted and a sharp line shaped emission band is expected. On the contrary, a

distorted excited state (<0-0 energy) will result in a broad Gaussian-shaped

emission band. The 0-0 transition is usually the same for absorption and

fluorescence [13]. This is not however the case for energies higher than the

0-0 energy where the absorption and emission spectra for the same transition

is shifted. This shift is called the Stokes shift. It is simply the difference in
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wavelength between the maximum of the excitation spectrum (shorter wave-

length, higher energy), and the maximum of the emission spectrum (longer

wavelength, lower energy) [17]. It can be used to measure of the extent of dis-

tortion between the ground and the excited state. The larger the magnitude

of Strokes shift the greater the structural or solvation differences between

the two states.

4.4.5.2 Phosphorescence

Phosphorescence is defined as a spin forbidden transition between states

of different multiplicity, normally from the lowest vibrational level of the

lowest excited triplet state, T1(v = 0) [7]. It occurs in timescales of 10−3−102
s. It can be expressed as,

T1(v = 0) −→ S0 + hν. (4.2)

There are two routes in which the triplet state may be populated; the

first one is by direct absorption from the ground state, which is not very

significant because it is a forbidden transition. The other alternative is by

first excitation by an allowed transition from S0 to S1 then followed by an

inter-system crossing from S1 to T1 . Phosphorescence can generally occur

because of any of the two methods described above. Excited state lifetimes

resulting from phosphorescence are long.

4.5 Photochemical Processes on Potential Energy

Surfaces

Potential energy surface (PES) can be defined as a mathematical function

that gives the energy of a molecule as a function of its geometry. Within the

limits of the Born-Oppenheimer approximation, we can be able to show what

happens on the PES when photochemical reactions occur. For more details

on the Born-Oppenheimer approximation and PES, the reader is referred to

section 3.9. Here, each electronic state of a molecule can be represented by a

PES that describes the change in energy of the system on changing nuclear
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coordinates [18]. How do we represent this processes on the PES? We begin

the reaction coordinate once we have an excited state from photo-excitation

then terminate it at the ground state [19].

4.6 Excited State Lifetime

The excited-state lifetime (τ) is the time taken for a given excited state

to survive before decaying by radiative or nonradiative mechanisms to the

ground state [7]. It can also be defined from a kinetic point of view as the

rate of depopulation of the excited (singlet or triplet) states following an op-

tical excitation from the ground state. From excited state dynamics, several

intramolecular decay steps are involved and each one of them is character-

ized by its own rate constant and each excited state is characterized by its

lifetime, given by,

τ =
1

∑

i
ki
, (4.3)

where ki is the first order rate constant for unimolecular or pseudo-unimolecular

processes that causes the disappearance of the excited state [12].

Experimentally, it is possible to measure the excited state lifetime from

a time-resolved experiment in which a very short pulse excitation is made,

followed by measurement of the time-dependent intensity.

4.7 Quantum Yield

Quantum yield (Φ) can be defined as a measure of the efficiency of a

photoreaction, that is, how efficient the process of absorption of light leads

to the production of excited state molecules [7]. It is a measure of the

number of moles of a species produced upon absorption of a mole of photons.

Mathematically, it can be expressed as,

Φ =
number of excited state molecules formed

number of photons absorbed
. (4.4)
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Chapter 5

Hartree-Fock Approximation

“Let us, as nature directs, begin first with first principles.”

Aristotle, Poetics I.

Methods used for electronic structure calculations have a long history of

development dating back to 1926 after the discovery of the Schrödinger equa-

tion. Starting from the initial methods that were not quite as accurate (no

electron correlation) and could only allow for the calculation of compounds

with few atoms to the current methods that are more accurate (includes elec-

tron correlation) and offer the possibility of calculating a greater number of

atoms. This chapter looks back at the background and theory of electronic

structure methods, starting with the most basic approximate methods used

to solve the Schrödinger equation to advanced quantum chemical techniques

which will be reviewed in later chapters. In the core of the development of

these methods lies the Hartree-Fock approximation. This is quite an exten-

sive topic that has been discussed here in detail but here are other references,

in addition to what has been quoted in text; [1–8].

As the ultimate goal is to solve the many-electron Schrödinger equa-

tion, at the point that we are, it still poses an unsolved problem. Previous

steps taken aimed towards solving this problem direct us to this step. The

Hartree-Fock approximation comes in handy at this step. In a nut shell,

it gives the simplest lowest energy variational solution of the Schrödinger

equation. Using a single Slater determinant for the trial wave function, the

53
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Hartree-Fock approximation optimizes molecular orbitals to give the lowest

possible total energy. Worth mentioning is that this approximation does

not include the effects of electron correlation. These effects will be included

much latter when looking at the more accurate methods. The Hartree-Fock

approximation is based on two major assumptions [9],

i.) The wave function can be written as one Slater determinant.

ii.) Each electron interacts with an average charge distribution due to the

other electrons.

In the next steps, it will be shown how this is achieved using mathemat-

ical and chemical principles.

5.1 The Hartree Product

Picking up from the Born-Oppenheimer approximation, the most appro-

priate place to begin is to use the orbital approximation that satisfies the

Pauli exclusion principle. The wave function is given by a simple product,

Ψ(x) = ψ1(~x1)ψ2(~x2)...ψn(~xn), (5.1)

the Hartree product, which does not satisfy the principle of indistinguishabil-

ity, because it is not an eigenstate of permutation operators. In other words,

the wave function should be antisymmetric with respect to the interchange

of any set of space-spin coordinates. The implication is that in addition to

the three spatial degrees of freedom that the electron possess, it also has an

intrinsic spin coordinate, either spin up α, or spin down β [10]. The generic

(α orβ) spin coordinate is referred to as ω and the set of spin coordinates

is ~x = {~r, ω} ≡ {~r, α orβ}. The notation for the orbitals now changes from

ψ(~r), a spatial orbital, to χ(~x), a spin orbital. The Hartree product is now

written as:

Ψhp(~x1,~x2, ...,~xN ) = χ1(~x1)χ2(~x2)...χN (~xN ). (5.2)
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5.2 Slater Determinant

Ψhp in Eq.(5.2) still does not satisfy the antisymmetry principle. It

is however possible to build an antisymmetric solution by introducing the

Slater determinant [11, 12] built from orthonormal spin orbitals, χi(~x). This

is the trial wave function.

Ψ(x) =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(~x1) χ2(~x1) χ3(~x1) · · · χN (~x1)

χ1(~x2) χ2(~x2) χ3(~x2) · · · χN (~x2)

χ1(~x3) χ2(~x3) χ3(~x3) · · · χN (~x3)
...

...
...

. . .
...

χ1(~xN ) χ2(~xN ) χ3(~xN ) · · · χN (~xN )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(5.3)

With the Slater determinant, each electron is associated with every or-

bital and therefore the electrons are indistinguishable. Notice that if we

try to put two electrons in the same orbital at the same time, that is, set

χ1 = χ2, then Ψ(~x1,~x2) = 0. A keen observation will tell you that this is

the Pauli exclusion principle stated in a more sophisticated manner, which

is a consequence of the antisymmetry principle.

A more compact notation is introduced for simplicity [9]. Occupied or-

bitals {χi(x), χj(x), ..., χk(x)} can be expressed in shorthand in ket symbol

as |χiχj ...χk〉 or simply as |ij...k〉.

5.3 The Electronic Hamiltonian

To find the variationally best Slater determinant, there is need to work

with the electronic Hamiltonian, which is given as the sum of N one-electron

terms and N(N − 1)/2 two-electron terms:

Ĥel =

N∑

i

h(i) +

N∑

i<j

υ(i, j) + VNN . (5.4)
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VNN is a constant for a fixed set of nuclear coordinates {RI} and therefore

is ignored. The one-electron operator h(i) is,

h(i) = −1

2
∇2
i −

∑

M

ZM
riM

, (5.5)

and

υ(i, j) =
1

rij
. (5.6)

5.4 Coulomb and Exchange Integrals

Assuming that the wave function is normalized, Eel = 〈Ψ|Ĥel|Ψ〉, the

variational principle can be used to minimize the energy within the given

functional space to obtain the optimal Hartree-Fock energy (Ehf) and wave

function.

Ehf = min
Ψsd→N

E[Ψsd], (5.7)

and also subject to the constraint that the orbitals be orthonormal. Here,

we see that E[Ψsd] is in square brackets. This is known as a functional. A

functional is a function whose argument is itself a function. It is normally

denoted by the use of a square bracket for its argument F [f ] to distinguish

it from an ordinary function f(~r). There are thus two conditions that must

be fulfilled. Starting with the first condition of minimization with the vari-

ational principle, the expectation value of the Hamiltonian operator with a

Slater determinant is sought. This is done by expanding the determinant and

constructing the individual terms. The electronic Hamiltonian [Eq. (5.4)]

can be inserted in the energy expression Esd =
∫
ΨsdĤelecΨsdd~x to cal-

culate the energy of the Slater determinant. This leads to:

Esd =

∫

Ψ

{
N∑

i=1

h(i)

}

Ψd~x +

∫

Ψ







N∑

i<j

1

rij






Ψd~x. (5.8)

We can rewrite the integrals of sums as sums of integrals, that is,



Coulomb and Exchange Integrals 57

Esd =
N∑

i=1

{∫

Ψ∗h(i)Ψd~x(i)
}

+
N∑

i<j

{∫

Ψ∗ 1

rij
Ψd~x(i)d~x(j)

}

. (5.9)

The first term of Eq.(5.9) is simply the sum of the one-electron energies hi,i
of each orbital since each one-electron operator h acts on a very small part

of the wave function. It simplifies to,

N∑

i=1

{∫

Ψ∗h(i)Ψd~x(i)
}

=

N∑

i=1

{∫

χ∗
ihχidrdω

}

=

N∑

i=1

hi,i. (5.10)

The one-electron operator h includes both the electron’s kinetic and potential

energy created by the attractive Coulombic interaction with the nuclei. The

second term of Eq.(5.9) is the two-electron terms (two-electron integrals).

The solution to the two-electron integrals is more complicated because of

the antisymmetrisation of the wave function. Each term in the two-electron

integral is,

∫∫ {

χ∗
i (~x1)χ

∗
j (~x2)− χ∗

i (~x2)χ
∗
j (~x1)

}
1
r12

{χi(~x1)χj(~x2)− χi(~x2)χj(~x1)} d~x1d~x2
. (5.11)

Equation (5.11) can be multiplied out to give,

∫∫
χ∗
i (~x1)χ

∗
j (~x2)

1
r12
χi(~x1)χj(~x2)d~x1d~x2

−
∫∫

χ∗
i (~x1)χ

∗
j (~x2)

1
r12
χi(~x2)χj(~x1)d~x1d~x2

−
∫∫

χ∗
i (~x2)χ

∗
j (~x1)

1
r12
χi(~x1)χj(~x2)d~x1d~x2

+
∫∫

χ∗
i (~x2)χ

∗
j (~x1)

1
r12
χi(~x2)χj(~x1)d~x1d~x2

= 2
∫∫

χ∗
i (~x1)χ

∗
j (~x2)

1
r12
χi(~x1)χj(~x2)d~x1d~x2

−2
∫∫

χ∗
i (~x1)χ

∗
j (~x2)

1
r12
χj(~x1)χj(~x2)d~x1d~x2

. (5.12)

Considering that the first and fourth, as well as the second and third terms

are identical two by two, the equation can be rewritten in terms of the spatial

orbitals and coordinates as,
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∫∫

|ψ2
i |(r1)

1

r12
|ψ2
j |(r2)dr1dr2. (5.13)

Equation (5.13) is known as the Coulombic integral. It is the energy of

the Coulombic interaction between an electron in orbital i with an electron

in orbital j. Its shorthand notation is Jij . Jij contributes positive energy

(destabilization) since both ψ2
i and 1/r are always positive. ψ2

i is the prob-

ability of finding an electron at a given point in space. The other integrals

in Eq.(5.12) become,

−
∫∫

ψ∗
i (r1)ψ

∗
j (r2)

1

r12
ψi(r2)ψj(r1)dr1dr2. (5.14)

Equation (5.14) is known as the exchange integral, Kij . It "corrects" Jij

to account for the antisymmetry of the wave function and also removes the

self-interaction error because Jii = Kii, thus, Jii −Kii = 0. The HF energy,

Ehf , is given by the sum of the integrals discussed above.

Ehf = 〈Ψ|Ĥel|Ψ〉

=
N∑

i=1

hi,i +

i<j
∑

i,j=1,N

(Ji,j −Ki,j)

=
N∑

i=1

hi,i +
1

2

∑

i,j=1,N

(Ji,j −Ki,j) ≡
N∑

i=1

〈i|h|i〉+ 1

2

∑

i,j=1,N

([ii|jj]− [ij|ji]) ,

(5.15)

which is the expectation value of the non-relativistic electronic Hamiltonian,

Ĥ, with respect to the N-electron Slater determinant of orthonormal spin-

orbitals. The one electron integral is,

〈i|ĥ|j〉 =
∫

dx1χ
∗
i (x1)ĥ(r1)χj(x1), (5.16)

and the two-electron integral (Mulliken charge cloud notation)[9] is,

[ij|kl] =
∫

dx1dx2χ
∗
i (x1)χj(x1)

1

r12
χ∗
k(x2)χl(x2). (5.17)
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5.5 Coulomb and Exchange Operators

It can be seen that Ehf, [Eq.(5.15)], is a functional of the spin orbitals,

Ehf = E[{χi}]. The next step is to determine the set of spin orbitals which

give the best single determinant. This is done by minimizing Eq.(5.15), EHF ,

with respect to the constraint that the spin-orbitals are orthonormal, and

what better way to do it than to use the Lagrange method of undetermined

multipliers,

L [{χi}] = Ehf[{χi}]−
∑

ij

ǫij(〈i|j〉 − δij). (5.18)

Here the ǫij are the Lagrange multipliers and 〈i|j〉 is the overlap between spin

orbitals i and j. δij is the constraint that the orbitals must be orthonormal,

that is, 〈χi|χj〉 = δij . And the solution, which is the equation for the best

Hartree-Fock spin orbitals is,

ĥ(~x1)χi(~x1) +
∑

j 6=i

[∫

dx2|χj(~x2)|2r−1
12

]

χi(~x1)−
∑

j 6=i

[∫

dx2χ
∗
j (~x2)χi(~x2)r

−1
12

]

χj(~x1)

= ǫiχi(~x1),

(5.19)

where ǫi is the energy eigenvalue (orbital energy) associated with spin orbital

χi. The term,

∑

j 6=i

[∫

dx2|χj(~x2)|2r−1
12

]

χi(~x1), (5.20)

in Eq. (5.19) is known as the Coulomb term. It is the Coulomb interaction

of an electron in spin orbital χi with the average charge distribution of

the other electrons. It shows that the first electron χi experiences a one-

electron Coulomb potential. The Coulomb term contains a self-interaction

error which must be removed since an electron cannot interact with itself.

The corresponding Coulomb operator is,
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Ĵj(~x1) =

∫

dx2|χj(~x2)|2r−1
12 , (5.21)

and

K̂j(~x1)χi(~x1) =

[∫

dx2χ
∗
j (~x2)χi(~x2)r

−1
12

]

χj(~x1), (5.22)

is called the exchange term and it arises from the antisymmetric nature of the

wave function since it exchanges spin orbitals χi and χj . The Hartree-Fock

equations can be expressed in terms of the Coulomb and exchange operators

in a more compact form as,



ĥ(~x1) +
∑

j 6=i

Ĵj(~x1)−
∑

j 6=i

K̂j(~x1)



χi(~x1) = ǫiχi(~x1). (5.23)

A keen inspection of the above equation tells us that it is an eigenvalue

equation and the exchange operators serves to remove the self-interaction

error in the Coulomb energy since,

Ĵi(~x1)χi(~x1) = K̂i(~x1)χi(~x1). (5.24)

This implies that the restriction i 6= j can be removed making f̂i orbital

independent. It also shows that obeying the Pauli exclusion principle keeps

the electrons apart in space and therefore reduces the total electron repulsion

energy. The new operator, known as the Fock operator is,

f̂(~x1) = ĥ(~x1) +
∑

j

(

Ĵj(~x1)− K̂j(~x1)
)

. (5.25)

The canonical Hartree-Fock (molecular orbital) equation is:

f̂(~x1)χi(~x1) = ǫiχi(~x1), (5.26)

where ǫi is the orbital energy of χi. The next step involves finding spin

orbitals that are eigenfunctions of the Fock operator. In this regard, there
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are two ways in which the Hartree-Fock equation can be solved; either nu-

merically (exact Hartree-Fock) or by a set of basis functions (Hartree-Fock-

Roothan equations). Each of the above solutions depends on orbitals.

5.6 Hartree-Fock Orbitals and Orbital energies

The question here is, how does one determine those spin-orbitals which

are eigenfunctions of the Fock operator? Both the numerical and basis func-

tions solution of the Hartree-Fock equation depend on the orbitals since the

Fock operator has a functional dependence on the occupied spin orbitals.

Once the occupied spin orbitals are known (of course at this point they

are unknown) the Fock operator becomes a well-defined Hermitian operator,

which will have an infinite number of eigenfunctions [9]. To determine a spe-

cific Fock orbital, all the other occupied orbitals must be known. This means

that some initial orbitals must be guessed (in this case occupied orbitals) and

the guesses refined iteratively in what is known as the self-consistent field

(SCF) approach [13]. Figure 5.1 shows how the process takes place.

 

START

OCCUPIED ORBITALS in 

the i-th iteration

FOCK OPERATOR  

in the  ith iteration

Set up F

OCCUPIED &

VIRTUAL ORBITALS 

in the (i+1)th iteration

OCCUPIED ORBITALS 

in the (i+1)-th iteration

Is the total energy lower?

The energy may oscillate 

during HF iterations

END

Figure 5.1 – SCF solution of the Hartree-Fock equation [14].

The index convention a, b, c, d, e, f, h (virtual), i, j, k, l,m, n (occupied)

and p, q, r, s, t, u, v, w, x, y, z has been adopted for the various orbital ener-

gies. The Fock matrix is diagonal in the basis of the canonical orbitals,
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Fi,j = 〈χi|ĥ|χj〉 = ǫi〈χi|χi〉 = ǫjδi,j . (5.27)

We can express the orbital energies as,

ǫi = Fi,i

= 〈χi|ĥ|χi〉+
∑

k

〈χi|(Jk −Kk|χi〉

= 〈χi|ĥ|χi〉+
∑

k

(

〈χi|Jk|χi〉 −
∑

k

〈χi|Kk|χi〉
)

= ǫ
(0)
i +

∑

k

((ii||kk)− (ik||ki)).

(5.28)

Considering the index convention that was adopted above, the occupied or-

bitals can be expressed as,

ǫi = ǫ
(0)
i +

∑

j

((ii||jj)− (ij||ji))

= ǫ
(0)
i +

j 6=i
∑

j

((ii||jj)− (ij||ji)),
(5.29)

and virtual orbitals,

ǫa = ǫ(0)a +
∑

k

((aa||kk)− (ak||ka)). (5.30)

From Eq.(5.29), it can be seen that ǫi is the energy of occupied spin orbital

(χi). It includes ǫ(0)i which is the attraction to the nuclei and kinetic energy.

It also includes Coulomb and exchange interactions with each of the remain-

ing electrons (N−1). The unoccupied orbital energy ǫa, shown in Eq.(5.30),

includes the Coulomb and exchange interactions with N electrons of the

Hartree-Fock ground state. Adding up the orbital energies of the occupied

states results in,

∑

i=1,N

ǫi =
∑

i=1,N

ǫ
(0)
i +

∑

j,k=1,N

([jj||kk]− [kj||jk]). (5.31)
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A comparison of Eq.(5.31), the total energies of the occupied states and the

total Hartree-Fock energy Eq.(5.15) can be written as,

Ehf =

N∑

i=1

〈i|h|i〉+ 1

2

∑

i,j=1,N

([ii|jj]− [ij|ji]), (5.32)

which shows that,

Ehf 6=
∑

i=1,N

ǫi. (5.33)

This can be justified by the fact that ǫi includes exchange and Coulomb

interactions between an electron in a spin orbital χi and electrons in all

other occupied spin orbitals χj . Similarly, ǫj includes exchange and Coulomb

interactions between an electron in χj and electrons in all other occupied spin

orbitals χi. The sum of orbital energies thus includes the electron-electron

interactions twice because addition of ǫi and ǫj includes electron-electron

interactions between an electron in χi and χj twice. To account for this

error, a factor of 1
2 is included in the energy expression for the total energy.

5.7 Koopmans’ Theorem

To attach physical meaning to the orbital energies ǫi and ǫa shown in

the previous section, we use the Koopmans’ theorem. It states that given an

N -electron Hartree-Fock single determinant ΨN with occupied and virtual χ

energies ǫi and ǫa, then the ionization potential to produce an (N − 1) elec-

tron single determinant ΨN−1 = âiΨ with identical spin orbitals, obtained

by removing an electron from spin orbital χa, and the electron affinity to

produce an (N + 1) electron single determinant Ψa = â†aΨ with identical

spin orbitals, obtained by adding an electron to spin orbital χr are just −ǫi
and −ǫa respectively. Let us consider the energy of a system with one elec-

tron removed from orbital number k, and assume that the molecular orbitals

are identical for the two systems.
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EN =

N∑

i=1

hi,i +
1

2

∑

i,j=1,N

(Ji,j −Ki,j) + Vnn

EkN−1 =
N−1∑

i=1

hi,i +
1

2

∑

i,j=1,N−1

(Ji,j −Ki,j) + Vnn.

(5.34)

Subtracting the two energies,

EN − EkN−1 = hk +
∑

i,j=1,N

(Jk,i −Kk,i) = ǫk. (5.35)

The energy obtained in eq.(5.35), ǫk is seen to be exactly the same as the or-

bital energy obtained in eq.(5.28), ǫi. As a result of the Koopmans’ theorem,

the ionization energy (I.E) within the frozen molecular orbital approximation

is given simply as the orbital energy. Similarly, the electron affinity (EA) of

a neutral molecule is given as the orbital energy of the corresponding anion

or as the energy of the kth unoccupied orbital energy in the neutral species.

Mathematically,

EkN+1 − EN = ǫk. (5.36)

In a nutshell, the Koopmans’ theorem gives us a way of calculating approxi-

mate ionization potentials (IP) and electron affinities (EA). Koopmans’ IPs

are reasonable first approximations to experimental IPs. Electron affinities

from Koopmans’ theory are badly reproduced because correlation and relax-

ation effects do not cancel.

5.8 Roothaan-Hall Equation

The Hartree-Fock equation can be solved in two ways; either numerically

[15] (exact Hartree-Fock, that is, by mapping the orbitals on a set of grid

points) or by a set of basis functions (Hartree-Fock-Roothan equations).

Numerical methods are more applicable in small highly symmetric systems,

like atoms and diatomic molecules. Most if not all calculations use a basis set

expansion which expresses the unknown molecular orbitals in terms of a set
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of known functions. A basis function may be a Gaussian, exponential, plane

wave or polynomial. This study has adopted the finite basis set of Gaussian-

type orbitals (GTOs) which is preferred by most quantum chemists. All

our calculations include scalar relativistic effects of core electrons for the

ruthenium atom.

Introducing a basis set (linear combination of atomic orbitals (LCAO),

MO=LCAO) transforms the Hartree-Fock equations into the Roothaan equa-

tions [16]. Each MO is expanded as a linear combination of three dimen-

sional one electron functions, known as atomic orbitals 1. Typically, these

atomic orbitals are called Slater-type orbitals. Denoting the atomic orbital

basis functions as χµ,

χi(~x) =

K∑

µ=1

χµCµi(~x), (5.37)

for each spin orbital i. K is an integer relating to the size of the basis set

which is typically larger than the number of electrons in the system. A matrix

equation can be obtained for the set of molecular orbital expansion coeffi-

cients (Cµi) by substituting the linear expansion Eq.(7.1) into Eq.(5.26) 2

Using the index ν leads to,

f(~x1)
∑

ν

Cνiχν(~x1) = ǫi
∑

ν

Cνiχν(~x1). (5.38)

Multiplying from the left by a specific basis function χ∗
µ(~x1) and integrating

gives a matrix equation,

∑

ν

Cνi

∫

dx1χ
∗
µ(~x1)f̂(~x1)χν(~x1) = ǫi

∑

ν

Cνi

∫

dx1χ
∗
µ(~x1)χν(~x1). (5.39)

Introducing the matrix element notation,

1. They are not solutions to the atomic HF problem.
2. The idea behind this is that the problem of calculating the Hartree-Fock molec-

ular orbitals reduces to the problem of calculating the set of expansion coefficients Cµi

variationally.
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Sµν =

∫

dx1χ
∗
µ(~x1)χν(~x1) ≡ 〈χµ|χν〉, (5.40)

Fµν =

∫

dx1χ
∗
µ(~x1)f̂(~x1)χν(~x1) ≡ 〈χµ|F |χν〉. (5.41)

simplifies the Hartree-Fock-Roothaan equations [16] which can be written in

matrix form as,

∑

ν

FµνCνi = ǫi
∑

ν

SµνCνi, (5.42)

or simply as matrices in the form,

FC = SCǫ, (5.43)

where ǫ is a diagonal matrix of the orbital energies ǫi. To determine the un-

known MO coefficients, Cµi, the Fock matrix must be diagonalized 3. Equa-

tion (5.43) is therefore solved self consistently [17].

3. The Fock matrix is only known if all the MO coefficients are known.
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Chapter 6

Density-Functional Theory

“At the moment I am struggling with a new atomic theory. I am very

optimistic about this thing and expect that if I can only solve it, it will be

very beautiful.”

Erwin Schrödinger.

In the study of electronic structure methods, the Hartree-Fock approx-

imation was introduced in the previous chapter. It was noted that the

Hartree-Fock approximation does not include electron correlation. In this

chapter, the density functional theory (DFT) method which includes the

electron correlation is discussed.

DFT [1, 2] is presently the most promising and successful approach to

computing the electronic structure of matter having a wide range of ap-

plications including, but not limited to atoms, molecules and solids, and

quantum fluids. DFT is based on the idea of replacing the wave function

Ψ(~x1, ~x2, ..., ~xN ), which is a complicated function of 3N spatial coordinates

and N spin coordinates, with the spin density ρ(~r), which is a simpler object

which depends only upon the three coordinates (x, y, z) and the spin σ. In

DFT, there is a shift from the use of wave functions (which are considered to

be complicated and computationally expensive in terms of solving the many-

electron problem) to a functional of the electronic density with an electron

density ρ(~r). (A functional is a function of a function. Square brackets [ ] are

used to distinguish a functional from a simple function). Ideally, DFT re-

69
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places the interacting many-electron problem with an effective single-particle

problem that can be solved much more quickly. The electron density ρ(~r)

represents the number of electrons per unit volume at some position ~r in a

molecule or in an atom. Its formula in terms of Ψ is given by:

ρ(~r) = N

∫

...

∫

|Ψ(~x1, ~x2, ...~xN )|2dσ1d~x2...d~xN . (6.1)

The above quantity is a non-negative simple function of three variables x, y

and z, integrating to the total number of electrons.

∫

ρ(~r) d(~r) = N . (6.2)

Initially, the thought of replacing Ψ by ρ seemed to mean losing large

amounts of information needed for practical calculations. It was however

realized that ρ(~r) could be exploited in the study of ground-state properties

of an atom or a molecule and a lot of research was done towards achieving

this objective. The following sections outline the various theorems that have

been used to develop DFT.

6.1 Hohenberg-Kohn Theorems

This section tries to answer the question which is at the very heart of

DFT: Can we possibly replace the complicated N -electron wave function

with its dependence on 3N spatial plus N spin variables by a simpler quan-

tity, such as the electron density?

The Hohenberg-Kohn theorems [3] in DFT show that the ground-state

energy (E0) may be determined, in principle, by minimizing a functional of

the density, which is a simpler object than Ψ. They answer the question,

“Can we eliminate Ψ?” These two theorems are the basis of modern DFT,

and they formally answer the question asked in the first paragraph with the

following theorems.

Theorem 1 (Existence Theorem) It states: The external potential vext(~r)

of a nondegenerate system of N interacting electrons is determined, within a
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trivial additive constant, by the ground-state electron density ρ0(~r). Since ρ

determines the number of electrons, it follows that ρ(~r) also determines the

ground-state Ψ up to a trivial phase factor and all other electronic properties

of the system.

It legitimizes the use of ρ(~r) as basic variable. The proof is based upon

the variational principle and the Hamiltonian,

Ĥ = −1

2

∑

i=1,N

∇2
i

︸ ︷︷ ︸

T̂

+
∑

i=1,N

vext(~ri)

︸ ︷︷ ︸

Vext

+

(i<j)
∑

i,j=1,N

1

rij
︸ ︷︷ ︸

Vee

, (6.3)

where T̂ is the electron kinetic energy, Vext is the nuclear attraction and/or

interaction with an applied electric field and Vee is the electron repulsion.

This implies that it is possible from ρ0(~r) to determine other properties

of the ground-state such as the kinetic energy, the potential energy as well as

the total energy in addition to N and vext(~r). This theorem can be proven by

considering the minimum-energy principle for the ground-state. It is a proof

by contradiction. If there are two systems, with the same charge density,

but different potentials, the variational principle then requires that the two

systems must have different vext(~r).

v
(1)
ext → Ψ1 → ρ

v
(2)
ext → Ψ2 → ρ

v
(1)
ext − v

(2)
ext 6= constant.

(6.4)

This can be proved by contradiction;

Ψ1 6= Ψ2 (6.5)

since,

v
(1)
ext − v

(2)
ext 6= constant. (6.6)

What has been presented in Eq.(6.5) and Eq.(6.6) requires proof:
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Ĥ1 = E1Ψ

Ĥ2 = E2Ψ
(

Ĥ1 − Ĥ2

)

Ψ =
(

V̂ 1
ext − V̂ 2

ext

)

Ψ = (E1 − E2)Ψ

⇒ V̂ 1
ext − V̂ 2

ext = E1 − E2 except possibly where Ψ = 0.

(In fact, you can make violations whenΨ 6= 0 is separated by regions where

Ψ = 0.)

(6.7)

Using the variational principle;

E1 = 〈Ψ1|T̂ |Ψ1〉+
∫

v
(1)
ext(~r)ρ(~r)d~r

< 〈Ψ2|T̂ |Ψ2〉+
∫

v
(1)
ext(~r)ρ(~r)d~r

E2 = 〈Ψ2|T̂ |Ψ2〉+
∫

v
(2)
ext(~r)ρ(~r)d~r

< 〈Ψ1|T̂ |Ψ1〉+
∫

v
(2)
ext(~r)ρ(~r)d~r.

(6.8)

Equation 6.8 attests to the fact that the system is nondegenerate. It results

to,

〈Ψ1|T̂ + V̂ee|Ψ1〉 < 〈Ψ2|T̂ + V̂ee|Ψ2〉
〈Ψ2|T̂ + V̂ee|Ψ2〉 < 〈Ψ1|T̂ + V̂ee|Ψ1〉

. (6.9)

This is a contradiction and so we may conclude that there cannot be two

different vext(~r) that give the same ρ for their ground-states. Thus, ρ deter-

mines N and v and hence all properties of the ground-state.

Looking at it keenly, there will be some problems associated with de-

generate wave functions since the theorem assumes that the wave functions

are non-degenerate, this brings about a problem known as v-representability.

The v-representability raises the question, given a function, how do you know

that the density is a ground state density of a local potential v(~r), that is,

“Is the wave function universal?” The Levy-Lieb [4, 5] constrained-search

approach addresses this issue by giving a route to the exact ground-state
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wave function Ψ0 from the ground-state density ρ0. It shows that the v-

representability in an interacting system is not required for the proof of the

HK theorem. From the variational principle,

E0 = min
Ψ
〈Ψ|Ĥ|Ψ〉, (6.10)

E0 = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ext|Ψ〉, (6.11)

The allowed antisymmetric N -electron wave function is searched for and the

one that yields the lowest expectation value of the Hamilton operator is the

ground-state wave function.

The kinetic ˆ(T ) and electron-electron repulsion ˆ(Vee) are separated from

the energy because the external potential is determined by the density and

is independent of the wave function generating that density.

E0 = min
ρ














min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ
︸ ︷︷ ︸

Fhk[ρ]

〉








+

∫

Vext ~(r)ρ ~(r)d ~(r)







, (6.12)

The term Fhk[ρ] is universal since it does not depend on the external field

v(~r) thus has no v-representability problem hence no degeneracy problem.

Theorem 2 (Variational Principle) It states that FHK [ρ], the universal

functional (that is; independent of Vext) that delivers the ground-state energy

of the system, delivers the lowest energy if and only if the input density is the

true ground-state density, ρ0. In other words, the electronic energy satisfies

the variational condition for the ground-state energy.

Evext [ρ] = T [ρ] + Vne[ρ] + Vee[ρ] =

∫

ρ(~r)vext(~r)d~r + FHK [ρ]. (6.13)

Fhk[ρ] is minimal at the exact ground-state density ρ0(~r), and its minimum

gives the exact ground-state energy, E0, of the system. Fhk[ρ] is defined

independently of vext and therefore it is a universal functional of ρ(~r). For a
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trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = N ,

E0 ≤ Evext [ρ̃]. (6.14)

There is a problem here. The problem is; how does one know that the

trial density ρ̃(r) is a density arising from an antisymmetric N -body wave

function Ψ(~x1, ~x2, ..., ~xN )? This is known as the N -representability prob-

lem. This problem has been solved for the single-particle density whereby

any nonnegative function can be written in terms of some antisymmetric

Ψ(~x1, ~x2, ..., ~xN ). According to (pg. 55 of Ref.[2]), ρ(~r) is N -representable

if it can be obtained from an antisymmetric wave function,

ρ(~r) ≥ 0

∫

ρ(~r)dr = N and
∫

|∇ρ(~r)1/2|2dr <∞. (6.15)

Using the variational principle, and applying the second HK theorem, to the

HK energy functional, the Euler-Lagrange equation is obtained:

µ =
δEvext [ρ]

δρ(~r)
= vext(~r) +

δFHK [ρ]

δρ(~r)
, (6.16)

where µ is the chemical potential. Equation (6.16) is the basic working

equation of DFT. If the Fhk[ρ] is known, this method can be applied to any

system. It is however not easy to determine the Fhk[ρ] accurately and so

approximations of the functional must be used.

6.2 Thomas-Fermi Model

The Thomas-Fermi model [6] is a quantum statistical model of electrons

which, takes into account only the kinetic energy while treating the nuclear-

electron and electron-electron contributions in a completely classical way. It

is based on the uniform electron gas, a fictitious model system of constant

electron density in which the electron density is the key variable in atomic

calculations. The local density approximation for the kinetic energy of a
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slowly varying electron gas is,

Ttf[ρ] =
3

10
(3π2)

2/3

∫

ρ
5/3(~r)d~r. (6.17)

Combining Eq. (6.17) with the classical expression for the nuclear-electron

attractive potential and the electron-electron repulsive potential gives the

Thomas-Fermi expression for the energy of an atom,

Etf[ρ] = CF

∫

ρ
5/3 ~(r)d~r − Z

∫
ρ(~r)

r
d(~r)

+
1

2

∫∫
ρ(~r1)ρ(~r2)

r12
d~r1d~r2

, (6.18)

where Cf = 3
10(3π

2)2/3. Equation (6.18) gives the energy completely in

terms of the electron density ρ(~r) and is a very coarse approximation to

the true kinetic energy, and exchange and correlation effects are completely

neglected. However, it is the first example of a genuine density functional for

the energy. Using Eq. (6.18), ρ(~r) can be mapped onto an energy E without

any additional information. That is, it is a functional expressing the energy

in terms of the density. In the Thomas-Fermi approximation, no molecular

system is stable against dissociation [7]. This means that molecules are not

bound because the kinetic energy is not well-enough approximated [8].

6.3 Kohn-Sham Approach

Kohn and Sham [9] proposed a different unknown universal functional.

This was after the realization that most of the problems with direct density

functionals like the Thomas-Fermi method were connected with the way the

kinetic energy was determined. Kohn and Sham introduced the concept of

a reference system of non-interacting electrons which behave as uncharged

fermions and therefore do not interact with each other via Coulomb repul-

sion. The advantage of this reference system is that the major part of the

kinetic energy can be computed to good accuracy. By this method, as much

information as possible is computed exactly, leaving only a small part of



Kohn-Sham Approach 76

the total energy to be determined by an approximate functional (pg. 41-42

of Ref. [1]). This results in a system of N noninteracting electrons moving

in a local potential v̂s whose ground-state density is assumed to be exactly

the same as the ground-state density of the real interacting system of N

electrons. The ground-state kinetic energy can be computed as,

Ts = −
1

2

N∑

i=1

ni〈ψi|∇2|ψi〉, (6.19)

where, ψi and ni are the Kohn-Sham spin orbitals and their occupation num-

bers respectively. The ψi are orthonormal, 〈ψi|ψj〉 = δij , ρ ~(r) =
∑

i ni|ψi(~r)|2,
and the Pauli principle requires that 0 ≤ ni ≤ 1. Kohn and Sham invoked

this non-interacting reference system, with the one electron Hamiltonian,

Ĥs = −
1

2

N∑

i

∇2
i +

N∑

i

vs(~ri), (6.20)

where there are no electron-electron repulsion terms since it is a one electron

Hamiltonian, and the ground-state electron density is exactly ρ. For such

a system there will be an exact determinantal ground-state wave function

given by,

Ψs =
1√
N !
det[ψ1ψ2 . . . ψN ], (6.21)

where the ψi are the N lowest eigenstates of the one-electron Hamiltonian or

a linear combination of determinants with the same energy and ψ1, ψ2...ψN ,

det[ψ1, ψ2...ψN ] =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(~x1) ψ1(~x1) . . . ψN (~x1)

ψ1(~x2) ψ2(~x2) ψN (~x2)
...

...
...

ψ1(~xN ) ψ2(~xN ) . . . ψN (~xN )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (6.22)

The functional of density, Ts[ρ] is not the exact kinetic-energy functional. To

get Ts[ρ] as the exact kinetic-energy component, Kohn and Sham separated

out Ts[ρ] as the kinetic energy component,
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F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (6.23)

where,

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]. (6.24)

The quantity Exc[ρ] is called the exchange-correlation energy. It contains the

difference between T and Ts i.e., the kinetic energy difference between the

true interacting and fictitious non-interacting system and the nonclassical

part of Vee[ρ].

Lagrange multipliers ǫij for the orthonormalization conditions on ψi and

ψj are applied to satisfy the necessary conditions that the N orbitals must

satisfy to be the minimizing orbitals. The reason for this is that for mini-

mization, the orbitals must be orthonormal.

0 =
δL

δψ∗
i
~(r)

= ĥψi(~r)−
∑

j

ǫi,jψj(~r), (6.25)

L = E −
∑

i,j

ǫi,j(〈ψi|ψj〉 − δij), (6.26)

which can also be expressed (after diagonalization of the matrix of Lagrange

multipliers) as the Kohn-Sham orbital equation,

ĥsψi(~r) = ǫiψi(~r).

From Eq.(6.25), the Coulomb potential is given as,

vH [ρ](~r1) =

∫
ρ(~r2)

r12
d~r2, (6.27)

and the xc potential is given as,

vxc[ρ](~r) =
δExc[ρ]

δρ(~r)
. (6.28)

From the above equation, it is very important to realize that if the exact

forms of Exc and vxc were known, the Kohn-Sham strategy would lead to the
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exact energy, that is, the correct eigenvalue of the Hamiltonian operator Ĥ

of the Schrödinger equation. This is unfortunately not the case here. This

means that the only way forward is to work with approximations. This has

been the goal of modern density functional theory; finding better and better

approximations to these two quantities, the Exc[ρ]. The Kohn-Sham equa-

tion approached this problem by applying it to a system of non-interacting

electrons moving in the external potential vs(~r) = veff (~r). For a given

veff (~r), one obtains the ρ(~r) that satisfies the corresponding Euler equation

by solving the N one-electron equations,

[

−1

2
∇2 + vs(~r)

]

ψi = ǫiψi. (6.29)

and setting,

ρ(~r) =
N∑

i

∑

s

|ψi(~r, s)|2. (6.30)

veff depends on ρ(~r) thus the calculations are solved self-consistently. We

begin with a guessed ρ(~r), construct veff (~r) and then find a new ρ(~r).

Expressing Exc in terms of Eq. (6.24), the Euler equation is expressed

as,

µ = vs(~r) +
δTs[ρ]

δρ(~r)
, (6.31)

where the KS effective potential is defined by,

vs(~r) = vext(~r) +
δJ [ρ]

δρ(~r)
+
δExc[ρ]

δρ(~r)
= Vext(~r)

∫
ρ(~r′)

|~r − ~r ′|d~r
′ + vxc(~r), (6.32)

with the exchange-correlation potential being given as,

vxc(~r) =
δExc[ρ]

δρ(~r)
. (6.33)
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6.4 Exchange-Correlation Approximations (Jacob’s

Ladder)

In the previous section, it has been shown that the Kohn-Sham formalism

allows an exact treatment of most of the contributions to the electronic

energy of an atomic or molecular system, including the major fraction of

the kinetic energy. The remaining unknown parts are summed into the

exchange-correlation functional Exc[ρ]. The exact form of this functional

is not known and an approximate description is used instead. The quality

of the density functional approach depends solely on the accuracy of the

chosen approximation to Exc. The following sections outline some of the Exc
functionals that have been developed over time. Ideally, these functionals

can be classified into two major classes, those that are based on the electronic

wave function (generalized Kohn-Sham theory) and those that are based on

the electron density (pure density functionals).

6.4.1 Local Density Approximation(LDA)

In summary, the Exc employs only the local density at each point. The

exchange-correlation functionals are guided by studies of the hypothetical

uniform electron gas because it is the only system for which the form of

the exchange and correlation energy functionals is known exactly or at least

to very high accuracy. LDA assumes that the density ρ(~r) can be treated

locally as an uniform electron gas (UEG); the exchange-correlation density

at each point in the system is the same as that of an uniform electron gas of

the same density. Exc is given as,

ELDAxc =

∫

ǫUEGxc (ρ(~r))ρ(~r)d~r, (6.34)

where ǫUEGxc is the exchange-correlation energy per particle of a uniform

electron gas of density ρ(~r). The energy per particle is weighted with the

probability ρ(~r) that there is an electron at this position in space. ǫUEGxc (ρ(~r)
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can be further divided into exchange and correlation contributions,

ǫxc(ρ(~r)) = ǫx(ρ(~r)) + ǫc(ρ(~r)). (6.35)

The ǫx(ρ(~r)) is known and it is given by the Hartree Fock exchange for the

homogeneous electron gas,

ǫx(ρ(~r)) = −
3

4

(
3

π
ρ (~r)

)1/3

. (6.36)

Replacing the above in Eq. (6.34) gives the ρ4/3(~r) of the exchange energy. For

the correlation part, ǫc(ρ(~r)) such an explicit expression is not known. For

the ǫx(ρ(~r)), accurate values can be obtained courtesy of quantum Monte-

Carlo calculations of the homogeneous electron gas by Ceperly and Alder

[10, 11]. Based on results from the explicit calculations, authors have come

up with an approximate analytic expression for ǫc. Some of the ǫc expressions

include that by Vosko, Wilk, and Nusair [12], Perdew and Wang [13] and

Perdew, Burke and Ernzerhof [14]. The LDA has an advantage of producing

many experimentally relevant physical properties to a good level of accu-

racy in strongly bound systems. It however tends to overestimate bonding

energies as well as underestimating bond lengths.

6.4.2 Generalized Gradient Approximation (GGA)

The accuracy that was achieved by using the LDA was not sufficient for

most applications in chemistry. This is because LDA used only the infor-

mation about the density ρ(~r) at a particular point ~r. What the GGA does

is to bring in information about the gradient of the charge density, ~∇ρ(~r)
to account for the true in-homogeneous electron density. The local density

approximation is interpreted as the first term of a Taylor expansion of the

uniform density, resulting in,

EGEAxc [ρ] =

∫

ǫUEGxc (ρ)ρ(~r)d~r +

∫

Cxc(ρ(~r))x(~r)d~r, (6.37)

where the reduced gradient is given by,
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x(~r) =
|~∇ρ(~r)|
ρ4/3(~r)

. (6.38)

Equation (6.37) is known as the gradient expansion approximation (GEA).

The GEA did not however perform to the required expectations in that there

was no improved accuracy and it often performed even worse than the simple

local density approximation. The generalized gradient approximation, GGA,

was the more successful approach,

EGGAxc =

∫

ǫxc(ρ(~r), x(~r))ρ(~r)d~r. (6.39)

Different versions of the GGA include the Perdew and Wang (PW91) [15],

Perdew, Burke, and Enzerhof (PBE) [14] and Beeke-Lee-Yang-Parr (BLYP)

[16, 17].

6.4.3 Hybrid Functionals

These functionals mix a fraction of exact exchange (Hartree-Fock ex-

change) with GGA exchange and correlation [18, 19]. The simplest hybrid

functional takes the form,

Ehybxc = aEexactxc + (1− a)EGGAx + EGGAc , (6.40)

where the constant a ≈ 1/4 for molecules from empirical or theoretical esti-

mations [20].

All the calculations in this work utilized the B3LYP (Becke, three-parameter,

Lee-Yang-Parr) hybrid functional [12, 17, 18, 21]. It takes the form,

EB3LY P
xc = (1−a)ELDAx +aELDAxc + bEB88

x + cELY Pc +(1− c)ELDAc . (6.41)

where a = 0.20, b = 0.72, and c = 0.81 from the B3P functional [18], LDA

is the local density approximation, B88 is Becke’s 1988 generalized gradient

approximation (GGA) for exchange, and LYP is the Lee, Yang, and Parr’s

1988 GGA for correlation. At this point in time, it is important to note that

with the improvements, these functionals are perhaps the most accurate
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density functionals in use for quantum chemical calculations having been

used for many calculations in the recent years and currently.

6.4.4 Meta-Generalized Gradient Approximation (meta-GGA)

Meta-GGAs (mGGAs) [22], in addition to the local density and the first

gradient as input, also requires the orbital kinetic energy density. The corre-

lation energy in this functional is free of self-interaction error. Meta-GGAs

significantly improve the molecular atomization energies and metal surface

energies compared to GGA while the lattice constants are changed slightly.

The general form [23] of the mGGA is,

EXC [ρ] =

∫

exc(ρ(~r),∇ρ(~r), τ(~r))ρ(~r) d~r, (6.42)

where the kinetic-energy density is given by;

τ(~r) =
1

2

∑

i

[

~∇ψi(~r)
]

.
[

~∇ψi(~r)
]

︸ ︷︷ ︸

|~∇ψi(~r)|2

. (6.43)

6.4.5 Double hybrid functionals

Double hybrid functionals [24] include a certain amount of HF exchange

with semilocal exchange density functional and second-order Møller-Plesset

(MP2) correlation with a semilocal correlation density functional. This func-

tional includes unoccupied KS orbitals in the calculation.

6.4.6 Jacob’s Ladder of Density Functional Approximations

Jacob’s ladder of density functional approximations [26] gives the line

of development of density functionals for the exchange-correlation energy.

It suggests moving from the Hartree world up to the Heaven of chemical

accuracy. As shown in Fig. 6.1, the ladder has five rungs, each corresponding

to the increase in complexity of choices for the ingredients of the energy

density. At the lowest rung of the ladder, rung 1, the dependence is on

the local density only (LDA), followed by rung 2 where there is an explicit
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Figure 6.1 – Jacob’s ladder of Density Functional Approximations. Repro-
duced from (Ref. [25]) with permission of the PCCP Owner Societies.

dependence on gradients of the density (GGA). In rung 3, there is an explicit

dependence on the kinetic energy density (meta-GGAs). Rung 4 has an

explicit dependence on occupied orbitals (hybrid functionals), while rung 5

has an explicit dependence is on unoccupied orbitals (fully nonlocal).

This particular ladder was very well described by Casida [27], “According

to the Bible, Jacob had a dream in which he saw a ladder descending from

Heaven to Earth and angels climbing and descending the ladder. In John

Perdew’s dream, the angels are users of DFT who climb the ladder to gain

greater precision (at greater cost), but who also need to be able to descend

the ladder depending upon their needs.”
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Chapter 7

Basis Sets and Effective Core

Potentials

Basis sets form the core of quantum mechanical calculations since they

are used to provide the best representation of the unknown molecular or-

bitals. To solve the Hartree-Fock equation, there is need to choose a nu-

merical method. A basis set comes in handy for this purpose, either the

Gaussian-type orbitals (GTOs) or Slater-type orbitals (STOs). In this chap-

ter, the description of what a basis set is, how it works, and different types

is given. In this work, ruthenium polypyridine complexes have been studied

extensively. Ruthenium is classified as a heavy atom and this explains why

there is also a review of the effective core potentials (ECPs) which are used

to include scalar relativistic effects of core electrons.

7.1 Definition of a Basis Set

A basis set is a mathematical description of orbitals of a system, which

is used for the purpose of approximate theoretical calculations [1]. As men-

tioned earlier on, introducing a basis set which ideally is a linear combination

of atomic orbitals (LCAO, MO=LCAO) transforms the Hartree-Fock equa-

tions into the Roothaan equations [2]. Each unknown MO is expanded as

a linear combination of three dimensional one electron functions, known as

87
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atomic orbitals. Denoting the atomic orbital basis functions as χµ, for each

spin orbital i,

ψi(~r) =

K∑

µ=1

χµ(~r)Cµi (7.1)

where K is an integer relating to the size of the basis set larger than the

number of electrons in the system.

Any wave function may be expanded as a linear combination of a com-

plete set of basis functions, hence not an approximation. This kind of a

basis set requires that an infinite number of functions must be used, which

is normally impossible in actual calculations. Use of a finite basis set usu-

ally implies that the MO is approximate [3]. Keeping the total number of

basis functions to a minimum is computationally attractive but it is more

useful to choose basis set functional forms that permit the various integrals

appearing in the HF equations to be evaluated in a computationally efficient

fashion. The basis functions must be chosen to have a form that is useful

in a chemical sense in that the functions should have large amplitude in re-

gions of space where the electron probability density is also large and small

amplitudes where the probability density is small.

7.2 Types of Basis Functions (Atomic Orbitals)

The types of basis sets used in atomistic modelling is extremely diverse.

Atomistic calculations often use spherical symmetry to reduce the Scrödinger

equation to a one-dimensional problem which may be solved by numerical

integration. A similar approach is possible for diatomics. Some polyatomic

quantum chemistry programs use tabulated numerical atomic orbitals as ba-

sis functions, however by far the most popular choice in molecular calcula-

tions has been the use of analytic basis functions. These may be divided into

two types according to whether their decay with the radial variable r is ex-

ponential [Slater-type orbitals (STOs)(e−ζr)] [4] or Gaussian [Gaussian-type

orbitals (GTOs)(e(−αr
2))].
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7.2.1 Slater-Type Orbitals (STOs)

STOs closely resemble hydrogenic atomic orbitals to a very large extent.

The hydrogen atom (one electron atom) is of great interest in this context

because it is one of the few quantum mechanical problems with an analytic

solution [5]. For the hydrogen atom and other one electron ions, the solution

of the Schrödinger equation gives atomic orbitals which are a product of a

radial function that depends on the distance of the electron from the nucleus

and a spherical harmonic. The hydrogen-like atomic orbitals (HAOs) have

the form,

ψn,l ,m(r, θ, ϕ) = Rn,l (r)Yn,l (θ, ϕ), (7.2)

where Yn,l (θ, ϕ) are complex-valued spherical harmonics [whose real and

imaginary parts give atomic orbitals their characteristic shapes (s, p, d, f)]

and the radial dependence Rn(r) is given as,

Rn,l(r) = Ln,l(r)e
−r/a0 . (7.3)

The complex form of the HAOs simultaneously satisfy the three eigen-

value equations:

Ĥψnlm = Enψnlm n = 1, 2, 3

L̂2ψnlm = l(l + 1)ψnlm l = 0, 1, 2, 3, ..., (n− 1)

L̂zψnlm = mψnlm m = 0,±1,±2,±3, ...,±l.
(7.4)

Each eigenvalue is characterized by one quantum number (n). n is the

principal quantum number which typifies the total electron energy, l is the

orbital quantum number that describes square of the angular momentum

and m is the magnetic number which gives the z-component of the angu-

lar momentum. Orbitals, which are eigenfunctions that are specified by the

quantum numbers are essential in understanding the behaviour of electrons

in atoms. The analytic solution influences greatly how basis sets are con-

structed [6].

Having looked at the analytic solution of the HAOs, it is now easier to
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link STOs to hydrogenic atomic orbitals. STOs have the form,

Yl,m(θ, ϕ)r
n−1e−ζr or xnymzle−ζr

or
[
ζ3

π

]0.5
e−ζr(Simplified equation for hydrogen-like systems).

(7.5)

The distance between the nucleus and electron has an exponential de-

pendence that mirrors the exact orbitals for the hydrogen atom. STOs differ

from HAOs in the radial part Rn(r), which is independent of l. One obvious

implication of this difference is that STOs do not possess radial nodes like

a real atomic orbital because of the wrong behaviour of the ns functions

when n > 1 resulting in some loss of orthogonality. By making LCAO of

STOs, the radial nodes can be introduced (Schmidt orthogonalization) [7].

Owing to the large number of the integrals needed for computation, STOs

face a problem in the analytical calculation of integrals centered on three or

four different atoms. This limits their utility in molecular systems of any

significant size because of the difficulty in calculation of integrals which is

computationally very expensive. It is still possible to use STOs for atomic

and diatomic calculations where such restrictions do not exist [3, 8, 9]. STOs

exhibit correct short and long range behaviour. One of the commercial codes

that use the STOs even for polyatomic molecules is the Amsterdam Den-

sity Functional code, (ADF)[10].

7.2.2 Gaussian-type orbitals (GTOs)

GTOs come in as a solution to the problem of STOs, which is, the diffi-

culty of calculating certain matrix elements in the Fock matrix. GTOs which

contain the exponential (e−αr
2

), replace the STOs (e−ζr) with functions that

look like STOs but in which the matrix elements can be calculated in an eas-

ier way. The aspect of simplification arises from the fact that the product

of two GTOs at two different positions can be rewritten as a GTO centered

between these two positions. GTOs have the form,

Yl,m(θ, ϕ)r
n−1e−αr

2

or xnymzle−αr
2 (7.6)
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One major difference between STOs and GTOs is that the r-factor of the

exponential in GTO is squared. Although GTOs are convenient to use from a

computational point of view, the exponential difference leads to two obvious

problems arising from their use: first, faster decay at larger r , consequently

leading to poor approximation of the true radial function in the outer region

and secondly, lack of cusps (discontinous derivative) at r = 0 compared to

real HAOs that have a cusp hence improper representation of the behaviour

near the nucleus. Both the STOs (gives proper radial shape) and GTOs

(computational efficiency) have attractive features that any computational

chemist would love to combine for purposes of computational efficiency and

accuracy. The question is, how can we do this? It is possible by linearly

combining several GTOs (primitive Gaussians) with fixed coefficients to form

the contracted GTO. One would expect that with contracted GTOs there

will be lack of accuracy, but this is not the case because the core orbitals are

insensitive to the molecular environment hence making linear combination

possible. Primitive Gaussians are the original GTOs centered on the same

nucleus. They have a standardized form and some examples corresponding

to s, p, d, and f atomic orbitals are represented as:

s function : e−αr
2

,

p function : (x, y, z)e−αr
2

,

d function : (x2, y2, z2, xy, yz, zx)e−αr
2

,

f function : (x3, y3, z3, x2y, x2z, xy2, y2z, yz2, xz2, xyz)e−αr
2

,

(7.7)

Mathematically, a contracted GTO with three Gaussians (3G) can be defined

as,

e(−αr) ≈ c1e
−α1r2 + c2e

−α2r2 + c3e
−α3r2 (7.8)

There are 6 cartesian d functions. This is a consequence of the fact that the

x2 + y2 + z2 = r2 combination is really an s function. Similar remark for

the f functions times the appropriate angular part xn + ym + zl. There are

various types of functions for contracted GTOs; these will be discussed later
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on in this chapter. In quantum chemistry, GTOs dominate for molecular

computation owing to the large number of integrals that must be computed.

7.3 Classification of Basis Sets

7.3.1 Minimal Basis Sets (Single Zeta)

An AO is described by one STO (or STO-like) basis function. In this basis

set, a minimal number of functions are used to represent all the electrons

of the ground state atoms and any empty valence orbitals. To explain this

further, specific examples of H (1s1) and C (1s22s22p2) atoms are considered.

The minimal basis set for hydrogen is one “1s” orbital and “1s” orbital, “2s”

orbital and the full set of three “2p” orbitals for the carbon atom respectively.

For the methane molecule, the total number of basis sets can be calculated

as; 4×(1s)+1s+2s+2px, 2py, 2pz = 9 basis functions [11]. There are several

minimal basis sets that are used in computation. The STO-nG [12–15] basis

sets approximating STOs akin to AOs with n primitive functions is the most

common. It is a linear combination of n GTOs fitted to each STO. Some

examples include STO-3G, STO-4G, STO-6G. The STO-3G basis set implies

that each basis function is a contraction of three primitive Gaussians. Its

radial part can be written as;

STO-3G = c1e
−α1r2 + c2e

−α2r2 + c3e
−α3r2 . (7.9)

Another example of the minimal basis set is the MINI sets of Huzinaga

and co-workers [13] such as the MINI-1, MINI-2. The difference comes in

from the number of primitives used for different kinds of functions. Minimal

basis sets are unsuitable in calculations including electron correlation. They

provide poor results for molecules owing to their inadequacy at describing the

process of bond formation and deviation from the spherical symmetry [12].

Another weakness is that energies and wave functions from minimal basis

set are not very close to the HF limits. For more accurate calculations, more

extensive basis sets must be used. The next basis set involves improvement

of the minimal basis set.
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7.3.2 Double, Triple and Multi Zeta (ζ) Basis Sets and Split

Valence Basis Sets

Each AO is described by two basis functions for the double zeta (DZ),

three basis functions for the triple zeta (TZ) and four basis functions for the

quadruple zeta (QZ) basis sets. A DZ basis set uses two s-functions for 1s

(1s and 1s’), four s-functions for 1s and 2s (1s, 1s’, 2s and 2s’) and two sets

of p-functions (2p and 2p’) for first row elements. DZ basis sets make better

descriptions of bond formation because they describe bonding in different

directions uniquely [12]. Increasing the size of the basis functions has an

advantage of inching closer and closer to the HF limit. Chemical intuition

helps in deciding which AOs to add. The most significant observation is that

core orbitals hardly participate in chemical bonding while valence orbitals

mainly contribute to chemical bonding. This chemical consequence ideally

means that flexibility in the valence basis functions is more beneficial than in

the core; therefore, many basis functions should be used for valence orbitals

to calculate electronic states accurately. If, for instance, we look at atoms

bonded to more electropositive elements, they will take on partial negative

charge from loss of valence electrons, thus affecting the density distribution

of the remaining electrons [16]. This particular observation brought in the

development of the ‘split valence’ or ‘valence-multiple-ζ’ basis sets.

Split valence (SV) basis functions split each valence orbital into two parts,

an inner shell and an outer shell. One type of contracted Gaussian-type func-

tion is used for core orbitals and multiple contracted functions for valence

orbitals. Some examples of SV basis sets developed by Pople [17] are 3-

21G, 6-21G, 4-31G, 6-31G and 6-311G. It is easy to identify the contraction

method used in the SV basis set from its naming. The number of primitives

used in the contracted core functions is indicated by the first number. Pre-

ceding numbers after the hyphen show the numbers of primitives used in the

valence functions. Two such numbers indicate that it is a valence-double-ζ

basis and three numbers, valence-triple-ζ. To illustrate this, for the 6-31G

basis set, ‘6’ means 6 primitive functions for core orbitals and ‘31’ means the

use of doubly-split basis functions combining contracted basis functions of 3
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primitive functions with one uncontracted basis function for valence orbitals.

The 6-311G makes use of triply split basis functions for valence orbitals. Ex-

amples of the SV basis set is the Dunning Huzinaga basis function described

as DZ for the doubly split, TZ for the triply split and QZ for the quadruply

split functions for valence orbitals. The DZV, TZV, and QZV belong to the

Ahlrichs-type. So far, the basis sets described, beginning from the minimal

basis sets to DZ, TZ, QZ and split valence basis sets do not consider possible

contributions from basis functions in which the quantum number l is larger

than the maximum value present in the ground state of the atom. When

the value of l is large, it will have an effect on the adjacent atoms through

polarization. The following basis sets takes this into consideration.

7.3.3 Polarization Function-Supplemented Basis Functions

Bonding in molecules leads to significant polarization or distortion of

atomic orbitals by neighbouring atoms.

Figure 7.1 – Distortion of orbitals resulting from the inclusion of s and p
orbitals.

Figure 7.2 – Distortion of orbitals resulting from the inclusion of p and d
orbitals.
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To take this into consideration, basis functions with high values of l must

be included [18]. Essentially, polarization allows for change in shape of or-

bitals in the sense that the molecular wave-function has the flexibly to distort

away from spherical symmetry in the surrounding of each atom. Addition

of polarization functions incorporates an elaborate electron distribution; for

instance, the distortion of the s orbital is accounted for by inclusion of p-type

basis function while that of p orbitals by inclusion of d-type functions and d

orbitals by inclusion of f -type functions. The resulting basis set is referred to

as the DZ plus polarization (DZP) or the SV plus polarization (SVP) basis.

Examples of the DZP basis set is the (6-31G* or 6-31G(d)) which adds of

one polarization function (d type functions) for all non-hyrogen atoms and

the (6-31G** or 6-31G(d,p)) that adds one p orbital function to each hydro-

gen atom in the Pople type function [1]. Exception of polarization function

on the hydrogen atoms in the (6-31G* or 6-31G(d)) basis is for the reason

that mostly, hydrogen atoms sit at the end of the bonds. In addition, the

large number of hydrogen atoms means that adding functions to hydrogen

will cause the basis set to grow very quickly. Polarization functions for hy-

drogen atoms must be included if they play a significant role in the property

of interest. Addition of two sets of polarization functions to a TZ basis set

results in a triple zeta plus double polarization (TZ2P) type basis.

The significance of polarization functions at different levels of calculations

cannot be ignored. Correlated methods require more polarization functions

and higher angular momentum to get the same convergence as the HF level.

For the HF level however, the difference noticed is not much with the ex-

pansion of the basis set beyond TZ2P [3].

The use of polarization function-supplemented basis functions consider-

ably improves the description of molecular geometries and molecular relative

energies.

7.3.4 Diffuse-Function-Augmented Basis Functions

For systems in which the highest energy MOs are spatially more diffuse

such as anions, loose supermolecular complexes, molecules with lone pairs
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(notably hydrogen-bonding N, O and F atoms) and highly excited electronic

states than standard valence size functions, diffuse basis functions are used to

allow the weakly bound electrons to localize far from the remaining electron

density. This means that the orbitals are able to occupy a larger region of

space [16]. Addition of a diffuse function is shown by a plus (+) in Pople-type

basis functions. Examples include the 6-31+G(d) basis set in which one s and

one set of p functions have been added to the heavy atoms. 6-3l++G(d),

adds diffuse functions to the H atoms too. Addition of diffuse functions

on hydrogen atoms often makes a noticeable change in accuracy. Other

examples are in the MIDI! and MIDIY basis sets in which diffuse sp sets

have augmented leading to MIDIX+ and MIDIY+. The ‘aug’ prefix is used

to indicate the presence of diffuse fucnctions for the correlation consistent

basis sets cc-pVnZ. Examples under this family are aug-cc-pVTZ which has

diffuse f, d, p, and s functions on heavy atoms and diffuse d, p, and s functions

on H and He.

Diffuse-function-augmented basis functions produce better results for the

calculation of acidities and electron affinities.

7.3.5 Effective Core Potential (ECP) Basis Functions (Pseu-

dopotentials)

The previous types of basis sets discussed mainly deal with the first and

second row elements of the periodic table. As we move towards the third row

elements and beyond (heavy elements), there is an increase in the number

of electrons and this poses several challenges to a computational chemist.

The first challenge is that with the increase in the number of electrons and

orbitals, a large number of basis functions are required to describe them.

Since most of these electrons are core, there is a challenge to represent them

adequately. The second challenge is that the core electrons in heavy elements

reach velocities sufficiently close speed of light that they show relativistic

effects. Relativistic effects have an effect on geometries, energies and other

properties. It is impossible for a non-relativistic Hamiltonian operator to

account for such effects. The third challenge is reduction in the speed of ab-
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initio calculations due to the large number of two-electron repulsion integrals

involved. These problems can be circumvented by using an ECP [19].

An ECP or pseudo-potential adds to the Fock operator a one-electron

operator which treats core electrons as an imaginary sphere of dense charge

distribution providing a highly repulsive potential and preventing the va-

lence electrons from collapsing into the inner orbital [1]. In the N electron

HF Roothan-Hall equations, the core electrons are replaced by an effective

potential function instead of being counted explicitly. ECPs drastically re-

duce the number of basis functions, incorporate the relativistic effects of the

core electrons and speed up calculations by reducing the scope of the elec-

tronic structure problem for heavy elements. ECPs obey the Pauli exclusion

principle.

The construction of ECPs is dependent on the number of electrons to be

included in the core. Based on this, ECPs can largely be classified into two;

‘large-core’ ECPs which include everything except the outermost (valence)

shell and ‘small-core’ ECPs which scale back to the next lower shell. For

calculations involving heavier metals, the small-core ECPs that include the

sub valence shell are preferred because polarization of the sub shell has some

chemical consequences. Examples of ECP basis functions are LanL2DZ, of

Los Alamos National Laboratory (DZ means double-zeta) and the Stuttgart

relativistic small core (STRSC) and large core (STRLC) ECP basis functions

(Germany).

Calculations on transition metal molecules rely heavily on the use of

ECPs. Specifically, this work studies ruthenium (Ru) transition metal com-

plexes and an ECP is used for the Ru atom. Ru (Z=44) is a fifth row

atom with an atomic configuration of [Kr]4d75s1 which justifies the use of

an ECP since it is a heavy element. The double-ζ quality LanL2DZ basis

set for ruthenium along with the corresponding ECP was used. Since Ru is

a heavy element, the core electrons of are not chemically important because

they are not actively involved in chemical bonding. The ECP also serves to

account for the relativistic effects. Ru is a heavy metal and the small-core

ECP that includes the subvalence shell is used. The ECP is composed of

28 core electrons ([Ar]3d10) and the double-ζ basis set treats the remaining
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(4s24p64d75s1, 16 electrons).

7.4 6-31G and 6-31G(d) Basis Sets

These two basis sets were used for all calculations with the atoms C, N,

O, and Cl. This explains the reason why they are reviewed here in more

detail.

7.4.1 6-31G

This is a Pople-type split valence basis set. For each atom (except H) in

the molecule, the 6-31G basis, consists of one contracted Gaussian composed

of six primitives for each core orbital and two functions for each valence-shell

orbital, a contracted Gaussian of three primitives and a single uncontracted

primitive. An example of the carbon atom using this basis set means that

the core orbital, (1s) is represented by six primitives and the four valence

orbitals (2s, 2px, 2py, 2pz) are represented by two contracted orbitals. Each

contracted orbital contains four primitives comprised of three contracted

and one uncontracted orbital. The total number of primitives required to

represent the C atom is 6 (inner) + 4 × 4 (valence electrons) = 22. Below

is an output of orbital functions for a 6-31G basis set from Gaussian 09 for

the carbon atom which relates to what had been discussed previously.

Similarly, N and O will have the same number of orbital functions as C

because they share the core and the valence electron orbitals.

7.4.2 6-31G(d)

This basis set was used in order to study the effect of adding the polar-

ization function on the results. It is exactly the same as the 6-31G with the

difference coming in due to the addition of six d-type polarization functions

for each non-hydrogen atom.
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Table 7.1 – Output of orbital functions for a 6-31G basis set from Gaussian
09 for the carbon atom.

2 0
S 6 1.00 0.000000000000

0.4173511460D+04 0.1834772160D-02
0.6274579110D+03 0.1399462700D-01
0.1429020930D+03 0.6858655181D-01
0.4023432930D+02 0.2322408730D+00
0.1282021290D+02 0.4690699481D+00
0.4390437010D+01 0.3604551991D+00

SP 3 1.00 0.000000000000
0.1162636186D+02 -0.1149611817D+00 0.6757974388D-01
0.2716279807D+01 -0.1691174786D+00 0.3239072959D+00
0.7722183966D+00 0.1145851947D+01 0.7408951398D+00

SP 1 1.00 0.000000000000
0.2120314975D+00 0.1000000000D+01 0.1000000000D+01

7.5 Basis Set Superposition Error (BSSE)

Gaussian basis sets remain the choice of many in representing molecular

orbitals in electronic structure calculations [20–23]. The use of finite basis

sets (basis sets that are far from the basis set limit) often introduces system-

atic errors in the results. BSSE is an error that arises from the use of finite

basis sets. It results from calculations of the interaction energy of two weakly

bound systems leading to an overestimation of the attractive interaction [24].

To understand the BSSE, we look at two basis sets for different systems, one

combined and the other isolated. Pooled basis sets of two fragments in the

system is closer to the basis set limit i.e., (complete basis) than is the frag-

ment basis set in the isolated systems. The interaction energy between two

molecules or atoms (monomers) close enough to form a dimer is calculated

as the energy difference between the product complex AB (dimer) and its

components A and B (monomers),

Eint = E(AB, rc)− E(A, re)− E(B, re), (7.10)
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where rc is the distance between A and B in the dimer AB and re is the

size of the separate reactants (monomers). Eint is often too large, thus

overestimating the stability of the complex. Several methods have been used

to minimize the BSSE; they are discussed below.

7.5.1 Counterpoise Method

The counterpoise method (CP)[25] is an approximate method for esti-

mating the size of the BSSE. In this method, the energies of the monomer

are calculated by using the same (combined) basis set as the dimer. The CP

corrected interaction energy is calculated as,

Eint(CP ) = E(AB, rc)
AB − E(A, re)

AB − E(B, re)
AB. (7.11)

Superscripts AB indicate that the complex and the separate components are

calculated in the same (combined) basis. This method tends to overestimate

the BSSE effect. The overestimation can be attributed to the fact that the

full basis set is used for the monomer calculations.

7.5.2 Chemical Hamiltonian Approach

The chemical Hamiltonian approach (CHA) [26] eliminates the BSSE

in the conventional Hamiltonian with a new one designed to prevent basis

set mixing. This is done by removing all the projector-containing terms

which would allow basis set extension removing the terms of the Hamiltonian

making BSSE.

7.5.3 Other Methods

Other methods [24] used to reduce the BSSE include; The same number

of optimized parameters (SNOOP) method. In this method, there is an

identical number of wave function parameters in the monomer and dimer

calculations at both the HF and correlated levels of theory. The LSDalton
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2016 program [27] has been used to do these calculations. The restricted

localized orbital (RLO) has been used to estimate intramolecular BSSE.
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Chapter 8

Partial Density of States

(PDOS)

Partial density of states (PDOS) analysis is a well-established procedure

in condensed matter theory, though there are several variants of the PDOS

procedure to be found in the literature. The variant we use is essentially the

same as the one proposed by Roald Hoffmann and sketched on pp. 32-36

of Ref. [1]. For concreteness, we give here a brief description of our PDOS

analysis.

The density of states (DOS) function is given by,

DOS(ǫ) =
∑

i

g(ǫ− ǫi) , (8.1)

where g is a normalized gaussian,

∫

g(ǫ) dǫ = 1 , (8.2)

with fixed full-width-at-half-maximum (FWHM, chosen to be 1 eV in the

present study) and ǫi is the energy of the ith molecular orbital (MO). The

formula for the PDOS for the µth atomic orbital (AO) is,

PDOSµ(ǫ) =
∑

i

qµ,ig(ǫ− ǫi) , (8.3)
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where qµ,i is the Mulliken charge of the µth AO in the ith MO. It is calculated

as,

qµ,i =
∑

ν

Sµ,νPµ,ν , (8.4)

where,

Sµ,ν = 〈µ|ν〉 , (8.5)

is the AO overlap matrix and,

P (i)
µ,ν = Cν,iCν,i , (8.6)

is the ith MO density matrix calculated from the MO coefficient matric, C.

Normally we are interested in the PDOS for a group of orbitals (such as all

the d orbitals on the ruthenium atom). In that case, thie appropriate PDOS

is obtained as a sum over the PDOS of all relevant orbitals,

PDOS(ǫ) =
∑

µ

PDOSµ(ǫ) . (8.7)

These equations were implemented in our own in-house Python program

PDOS.py. PDOS.py has the same functionality as the Python program

GaussSum (http://gausssum.sourcegourge.net/) and against which it

has been checked.

An advantage of PDOS.py is that multiple PDOS as well as the total

DOS may be plotted on the same graph. We needed this for the present

work and it does not seem to be very easy to do with GaussSum. All of

the PDOS figures presented in the main article and in this supplementary

material were prepared using PDOS.py.

Users of GaussSum should note that GaussSum and PDOS.py differ

in their definitions of the gaussian convolution. In GaussSum, the gaussians

always have unit height. In PDOS.py, the gaussians always have unit area.

This latter choice seems more logical to us. This means that the ratio of
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peak heights calculated with GaussSum to that of PDOS.py is,

GaussSum

PDOS.py
=

√
π

log 2

FWHM
2

. (8.8)
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Chapter 9

Time-Dependent Density

Functional Theory

“DFT and TD-DFT are like identical twins who are born at the same time

but change with time and separation.”

MAGERO Denis.

Among the other references quoted in text, this chapter is also based on

references [1–15].

The Hohenberg-Kohn-Sham DFT makes exclusive use of the ground-state

electron density (ρ(~r)) to completely describe the N -electron system, thus,

it is limited to ground-state time-independent problems. As chemists, we

are also interested in phenomena occurring in electronic excited-states and

those may be derived from an aspect of time evolution. For instance in our

case, we need to look at the excited-state spectra which is just one among

the many excited-state phenomena of interest in chemistry. Time-dependent

density-functional theory (TD-DFT) has been specifically tailored to address

excited-state problems. It is not surprising at all if we compare DFT and

TD-DFT to identical twins who are born at the same time but changes come

in with time and separation. This is because both methods have a similar

idea of replacing the wave function Ψ with the spin density ρ, which is a

simpler object. In TD-DFT, the complicated many-body time-dependent

109
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Schrödinger equation is replaced by a set of time-dependent single-particle

equations whose orbitals result in the same time-dependent density ρ(~r, t).

The time-dependent density ρ(~r, t) is simply a function of how electrons are

distributed in the system at a given time.

The next sections describe the formalism of TD-DFT starting from the

Runge-Gross theorem [16], time-dependent generalization of the Hohenberg-

Kohn theorem [17], Kohn-Sham construction [18], exchange-correlation (xc)

functionals and ending with the Casida equation.

9.1 Time-Dependent Schrödinger Equation

We start by considering an N -electron system with coordinates r =

(~r1, ..., ~rN ) described by the non-relativistic time-dependent Schrödinger equa-

tion and moving in an explicitly time-dependent external scalar potential

υ(~r, t),

Ĥ(t)Ψ(t) = i
∂

∂t
Ψ(t) = i

∂Ψ(t)

∂t
. (9.1)

Using Eq. (9.1), we can calculate the Ψ at any other time t provided that

the state of the system at an initial time t0 is known. It describes what is

known as an initial value problem. This means that if you have Ψ0 = Ψ(t0),

you can obtain Ψ(t) by propagating the wave function forward in time:

Ψ(t0)

↓
ĤΨ(t0)

↓
ih̄

(
δΨ
δt

)

t=t0

↓
Ψ(t0 + dt) = Ψ(t0)− i

h̄ĤΨdt.

(9.2)

The implication is that Ψ at time t is a functional of the wave function at

time t0,Ψ[Ψ0](t). The Hamiltonian is given as,
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H(t) = T̂ + Ŵ + V̂ext(t). (9.3)

The first term is the kinetic energy expressed as,

T̂ = −1

2

N∑

i=1

∇2
i , (9.4)

the second term is the electron-electron interaction,

Ŵ =
1

2

N∑

i<j

1

|~ri − ~rj |
, (9.5)

and the last term is the time-dependent potential operator,

V̂ext(t) =

N∑

i=1

υext(~ri, t). (9.6)

As one moves from time, t = t0 to t = tn, the system also evolves in time

from an initial state at t = t0 to some state at t = tn and changes in density

also come with the evolution. The electron density can be calculated as,

ρ(~r, t) = N

∫

d3~r2...

∫

d3~rN |Ψ(~r, ~r2, ..., ~rN , t)|2, (9.7)

where ρ(~r, t)d3~r is the probability of finding an electron in a region d3~r at

time t. The density is normalized to the number of electrons:

∫

d3~rρ(~r, t) = N. (9.8)

From Eq. (9.1), the associated value of a physical observable, Ô is obtained

from the expectation value,

〈O〉(t) = 〈Ψ(t)|Ô|Ψ(t)〉 (9.9)

From the above equation, the current density ~j can be expressed. Since the

formal TD-DFT is ultimately based upon ~j, it is only logical to show that O

are functionals of the time-dependent charge density. Ideally, the TD density
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gives all the information that is needed about the electronic problem. The

Runge-Gross theorem shows this logic.

9.2 First Runge-Gross theorem

TD-DFT [19] has been improving over the years with new developments

being incorporated. The basic mathematical foundations of TD-DFT are

presented in the Runge-Gross theorem [20]. It formalizes the TD generaliza-

tion of the Hohenberg-Kohn theorem as well its construction.

The Runge-Gross theorem is thus a proof that two spatially-different

external potentials cannot induce the same time-dependent densities. It

deals with the quantum states arising from a fixed initial state. This is

because the TD Schrödinger equation is a first-order differential equation in

the time coordinate.

Theorem 3 (Existence Theorem) In other words, the densities ρ(~r, t)

and ρ′(~r, t) evolving from a common initial state Ψ0 under the influence

of two potentials v(~r, t) and v′(~r, t) both Taylor-expandable around t0 are

always different provided that the potentials differ by more than a purely

time-dependent function c(t). The external potential is assumed to be time-

independent for t < t0 and the time-dependent field comes on exactly at time

t0. That is,

v(~r, t) 6= v′(~r, t) + c(t)⇒ ρ(~r, t) 6= ρ′(~r, t). (9.10)

Figure 9.1 is an illustration of the Runge-Gross theorem.

This theorem is analogous to the first Hohenberg-Kohn theorem of DFT.

There is a one-to-one correspondence between the external potential and the

density and the TD potential is a functional of the TD density unique up to

a time-dependent phase α(t).

Ψ(t) = Ψ [ρ,Ψ0] (t)e
iα(t), (9.11)

For a system is in its ground-state,
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Figure 9.1 – Runge-Gross theorem: A pictorial illustration.

Ψ(t) = Ψ [ρ] (t)eiα(t). (9.12)

The above theorem can be proven by showing that two potentials differing

by more than a function of time (υ 6= υ
′

+ c(t)) produce different current

densities, ~j and ~j
′

generated by υ and υ
′

. More details about the proof can

be found in Ref. [21].

9.3 Second Runge-Gross theorem

At this point, one would expect that this section would be second Hohenberg-

Kohnn theorem since in static quantum mechanics, the ground-state of the

system can be determined through the minimization of the total energy

functional, E [Ψ] =
〈

Ψ|Ĥ|Ψ
〉

, analogous to the Rayleigh-Ritz variational

principle. That is not the case however! This is because in TD systems,

there is no variational principle on the basis of the total energy for it is not

a conserved quantity. For the TD systems, time evolution is derived from
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stationary-action (variational) principle. What is used here is the; Frenkel-

Dirac variational principle which involves finding the stationary points

of the action,

A =

∫ t1

t0

dt〈Ψ(t)|i ∂
∂t
− Ĥ(t)|Ψ(t)〉, (9.13)

subject to the condition that δΨ(t0) = δΨ(t1) = 0 yields the time-dependent

Schrödinger equation.

Ĥ(t)Ψ(t) = −i ∂
∂t

Ψ(t). (9.14)

It however faces the limitation that the density must be v-representable.

This is a disadvantage in itself because it is difficult to develop the exact

formalism since the condition limits the range of possible variations with the

unexpected result that A = 0 will have other solutions besides the exact

ρ(t). This problem will be discussed under the TD Kohn-Sham equation.

The time-dependent Schrödinger equation can be solved by calculating

the stationary point of the functional A[ρ] because the action, A, is a density

functional. It then follows that its solution can be obtained by the function

Ψ(t) that makes the functional stationary. A[ρ] is stationary at the exact

density of the system, that is,

δA

δρ(~r, t)
= 0 =

∫ t1

t0

dt
′〈 δΨ(t

′

)

δρ(~r, t)
|i ∂
∂t′

− Ĥ(t
′

)|Ψ(t
′

)〉+ c.c., (9.15)

From this equation, it can be seen that the phase factor simply contributes

an additive constant, A = A[ρ]+constant. The additive constant is rendered

immaterial with the application of the variational condition, Eq. (9.13) and

this provides the analogue of the second HK theorem for TD-DFT. The

action functional is now written as,

A[ρ] = S[ρ]−
∫ t1

t0

∫

ρ(~r, t)vext(~r, t)dtd~r, (9.16)

which defines S[ρ]. S[ρ] is a universal functional independent of the external
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potential v defined as,

S[ρ] =
∑

i

fi

∫ t1

t0

〈

ψi(t)|i
∂

∂t
− 1

2
∇2|ψi(t)

〉

dt

− 1

2

∫ t1

t0

∫∫
ρ(~r1, t)ρ(~r2, t)

~r1~r2
d~r1d~r2dt−Axc[ρ],

(9.17)

where ρ(~r, t) =
∑

i
fi|ψi(~r, t)|2. The assumption here is that there is a similar

dependence for ρ(~r, t) and vext(~r, t). Given a trial function such as one

of single-determinantal form, the Frenkel-Dirac variational principle can be

used to derive an approximate time-dependent equation.

9.4 Time-Dependent Kohn-Sham Equation

The Runge-Gross theorem tells us that ideally, all observables can be

calculated with the knowledge of the one-body density. The problem how-

ever has always been: how do you calculate the one-body density? This

problem was however addressed thanks to the Kohn and Sham idea of using

an auxiliary system of non-interacting KS electrons subject to an external

local potential (vks) to solve the interacting Schrödinger equation [22]. KS

equations for TD systems can be derived by assuming the existence of a po-

tential, veff(~r, t) whose orbitals ψi(~r, t) yield the same charge density ρ(~r, t)

as the interacting system, the same way that it is done for the time inde-

pendent case. The minimization of the action [Eq. (9.16)] leads to the TD

Kohn-Sham equation,

i
∂

∂t
Ψ(~r, t) =

[

−1

2
∇2 + vks(~r, t)

]

Ψ(~r, t). (9.18)

The KS electrons obey this equation. Since the KS system does not interact,

its wave function is simply a Slater determinant of N occupied single-particle

orbitals and the density of the non-interacting system is obtained from the

TD KS orbitals according to,
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ρ(~r, t) =

occ∑

i

|ψ(~r, t)|2. (9.19)

The solution of Eq. (9.18) yields the true density ρ(~r, t) of the interacting

system without the need to calculate the many-body wave function. The

next step involves applying the RG theorem to the non-interacting system

of electrons in the KS potential vKS , in a manner analogous to what was done

for the interacting electrons. The implication is a one-to-one correspondence

between a given density ρ(~r, t) and the KS potential that yields that density

given that the initial KS Slater determinant is fixed:

ρ(~r, t)↔ vks(~r, t). (9.20)

Thus, vKS is a unique functional of the density and initial state,

vks(~r, t) ≡ vks[ρ,Ψ0](~r, t). (9.21)

The KS potential, vks (TD effective potential) can be decomposed into,

vks(~r, t) = vext(~r, t) + vHartree(~r, t) + vxc(~r, t), (9.22)

where vext(~r, t) is the external potential, vHartree(~r, t) is the Hartree poten-

tial =
∫
d3r

′ ρ(~r,t)

|r−r′ |
that depends on the instantaneous TD density only and

vxc(~r, t) is the exchange correlation (xc) potential. In ground-state DFT, vxc
is written as a functional derivative of the xc energy. However, the extension

of this formulation to the TD case is not straightforward because of a prob-

lem related to causality [23]. This problem arises because time propagation

in TD means that ψ(t0) actually determines ψ(t1). Van Leeuwen solved the

problem by using the Keldish formalism to define a new action functional

Ã[23]. The TD exchange-correlation potential, vxc can be expressed in terms

of the new exchange correlation action functional as [23],

vxc(~r, t) =
δÃxc[ρ]

δρ(~r, t)
. (9.23)
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However, the exact TD exchange correlation action functional (xc kernel) is

unknown and approximations must be used in practical implementations of

TD-DFT. The next section deals with vxc approximations used in TD-DFT.

9.5 Exchange-Correlation Potentials

The exact TD-DFT vxc is unknown and hence must be approximated.

The exact exchange-correlation potential depends on the entire history of

the density.

The Adiabatic Approximation (AA) is the simplest and most successful

TD xc-approximation. It ignores all dependence on the history and allows

only a dependence on the instantaneous density. In other words, the AA is

said to be a local approximation in time. It is written as,

vadiaxc [ρ](~r, t) =
δAxc[ρ]

δρ(~r, t)
,

∼= δExc[ρ(t)]

δρ(~r; t)
,

= vapproxxc [ρ(t)](~r),

(9.24)

where,

Axc =

∫ t1

t0

Exc[ρ(t)]. (9.25)

Exc is the exchange correlation functional of TD Kohn Sham theory, ρ(t) is

the density ρ at time, t. vadiaxc [ρ](~r, t) is a function of four variables (x, y, z, t)

and the spin while ρ(~r; t) is a function of x, y, and z since t is regarded as a

fixed parameter. The flexibility of this variable makes it possible to use all the

approximate functionals Exc from ground-state DFT in TD-DFT. The AA

approximation has been remarkably successful in calculating optical spectra

and effectively defines conventional TD-DFT.
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9.6 Linear Response Theory (LR)

The ultimate goal of many, if not all chemists is to study excited-state

properties. Time-dependent density functional theory forms the basis used

to calculate excitation energies and optical spectra because it captures the

essential dynamical nature of an excitation process. In particular, the linear

response theory (LR) [24] is used when considering response of a molecular

property (dynamic polarizability) to a weak time-dependent external per-

turbation of the unperturbed molecule. It is a way of describing how matter

interacts with the electromagnetic field. The weak perturbation may be

compared with a spectroscopy experiment. The LR of a system will contain

all the information about its excitation spectrum. It determines single exci-

tation energies of molecules from first principles. Simply put, the response

theory figures out how a system reacts to outside influences. Linear response

theory can be depicted schematically as in Fig. 9.2.

                         

Perturbation Excitation Response

Figure 9.2 – An illustration of the LR theory
.

9.7 Linear Response TD-DFT (LR TD-DFT)

In this section a discussion of the Fourier-transformed frequency domain

(ω) is done. Spectral information about the system can be obtained from the

KS orbitals since they reproduce the exact density in frequency-space, and
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via a Fourier-transform of the KS orbitals in a similar manner as in Sec. 9.4.

In a consistent step by step manner, it will be shown how LR TD-DFT can

be used to extract linear absorption spectra by inducing small perturbations

to the KS orbitals [25].

9.7.1 Time-dependent linear density response

Three components will be key in describing the TD linear response den-

sity, the Hamiltonian, Ĥ(t), Eq. (9.3), TD external perturbation δvext(~r, t)

and the external potential vext(~r) at t < t0, the ground-state (Ψ0) and at

t > t0 where there is time evolution. For convenience, bra (〈|) ket ( |〉) [26]

notation has been used. Thus, the ground-state (Ψ0) at t < t0 can be ex-

pressed as |Ψ0〉. A small perturbation, δvext(~r, t), is slowly introduced in the

KS Hamiltonian at t = t0. Considering the two variables of time at t < t0

and t > t0, vext(~r, t) is given as,

t < t0, vext(~r, t) = vext(~r) and, (9.26)

t > t0, vext(~r, t) = vext(~r) + δvext(~r, t). (9.27)

This means that at t < t0, the density evolution is simply the ground-state

density ρ0(~r) and the density at t > t0 is time-dependent starting from the

ground-state density as shown below,

t < t0, ρ(~r, t) = ρ0(~r) and, (9.28)

t > t0, ρ(~r, t) = ρ0(~r) + δρ(~r, t). (9.29)

ρ(~r, t) can be expanded in powers of the potential as,

ρ(~r, t) = ρ0(~r) + δρ(~r, t) + ..., (9.30)

Since we are interested in the density evolution with time, we keep the first

order term, δρ(~r, t). It is possible to relate δρ(~r, t) and δvext(~r, t) mathemat-

ically as,
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δρ(~r, t) =

∫

d3r
′

∫

dt
′

χρρ(~r, ~r
′

; t− t′)δvext(~r
′

, t
′

). (9.31)

This is known as the linear density response, δρ(~r, t) to the perturbation

δvext(~r, t). The density-density response function or generalized susceptibil-

ity, χρρ(~r, ~r
′

; t− t′) can be expressed in terms functionals as,

χρρ(~r, ~r
′

; t− t′) = δρ[vext](~r, t)

δvext(~r
′t′)

∣
∣
∣
∣
vext[ρ0]

,

or

χρρ(~r, ~r
′

; t− t′) = −iΘ(t− t′)
〈

Ψ0|[ρ̂(~r, t− t
′

), ρ̂(~r
′

)]|Ψ0

〉

,

where

ρ̂(~r) =
∑

r

Ψr(~r)Ψ
∗
r(~r)â

+
r âr (2

ndquantization),

(9.32)

where Θ(t − t
′

) is known as the Heaviside step function that takes care of

causality. A Fourier transform of Eq. (9.32) gives spectral information about

the system, that is, χρρ(~r, ~r
′

; t − t
′

) becomes χρρ(~r, ~r
′

;ω). The Lehmann

representation of the density density response function given as,

χρρ(~r, ~r
′

, ω) =
∑

n




〈Ψ0|ρ̂(~r)|Ψn〉

〈

Ψn|ρ̂(~r
′

)|Ψ0

〉

ω − ωn0 + iη

−

〈

Ψ0|ρ̂(~r
′

)|Ψn

〉

〈Ψn|ρ̂(~r)|Ψ0〉
ω + ωn0 + iη



 .

(9.33)

Equation (9.33) forms the core of LR theory since it shows explicitly how

a frequency-dependent perturbation couples to the excitation spectrum of a

system. Excitation energies lie at the poles of χρρ and oscillator strengths

are obtained from the residues. We can also get the absorption spectrum by

taking the imaginary part of Eq. (9.33). We wish to show how the spectral
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function,

S(ω) =
∑

I

fI [δ(ω − ωI) + δ(ω + ωI)] , (9.34)

may be calculated from the dynamic polarizability,

α(ω) =
∑

I

fI
ω2
I − ω2

, (9.35)

as

S(ω) =
2ω

π
lim
η→0

α(ω + iη) . (9.36)

We do this by noticing that

α(ω) =
∑

I

(
fI
2ω

)(
1

ωI − ω
− 1

ωI + ω

)

, (9.37)

so that,

2ω

π
α(ω + iη) =

∑

I

fI
π

(
1

ωI − ω − iη
− 1

ωI + ω + iη

)

=
∑

I

fI
π

[
ωI − ω + iη

(ωI − ω − iη) (ωI − ω + iη)

]

(9.38)

−
∑

I

fI
π

[
ωI + ω − iη

(ωI + ω + iη) (ωI + ω − iη)

]

=
∑

I

fI
π

[
ωI − ω + iη

(ωI − ω) + η2
− ωI + ω − iη

(ωI + ω)2 + η2

]

=
∑

I

fI
π

[
ωI − ω

(ωI − ω)2 + η2
− ωI + ω

(ωI + ω)2 + η2

]

+ i
∑

I

fI
π

[
η

(ωI − ω)2 + η2
+

η

(ωI + ω)2 + η2

]

.(9.39)
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It is now easy to separate the real and imaginary parts:

2ω

π
ℜα(ω + iη) =

∑

I

fI
π

[
ωI − ω

(ωI − ω)2 + η2
− ωI + ω

(ωI + ω)2 + η2

]

2ω

π
ℑα(ω + iη) =

∑

I

fI
π

[
η

(ωI − ω)2 + η2
+

η

(ωI + ω)2 + η2

]

.(9.40)

Since the Lorentzian representation of the Dirac delta function is

δ(x) =
1

π
lim
η→0

η

x2 + η2
, (9.41)

it follows that so that,

2ω

π
lim
η→0

ℑα(ω + iη) =
∑

I

fI [δ(ωI − ω) + δ(ωI + ω)] (9.42)

which is just the spectral function of Eq. (9.34) because the Dirac delta

function is an even function [δ(x) = −δ(x)]. Interestingly, if η is small but

finite, not taking the limit simply corresponds to Lorentzian broadening of

the spectral function.

9.7.2 Kohn-Sham Linear Density Response

In Sec. 9.7.1, a discussion has been made of how to extract the various

quantities from the density-density response. However, the practically of the

equations discussed in Sec. 9.7.1 remains limited because it is an interacting

system of electrons and thus requires an input of many-body eigenstates

and eigenenergies. To make the equations more practical, we consider a

fictitious system of non-interacting KS electrons that produces the same

density response as the interacting system. The only difference between this

section and the previous section is that here, we are considering a system

of non-interacting electrons and thus utilize the KS orbitals, φi. The initial

equations that share similarities have been skipped and we start from the

dressed KS potential which is given as,
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δvks[ρ,Ψ0,Φ0](~r, t) = δvext[ρ](~r, t) +

∫

d3~r′
δρ(~r′, t)

|~r − ~r′|
+ δvxc[ρ,Ψ0,Φ0](~r, t).

(9.43)

(but both Ψ0[ρ],Φ0[ρ] are eliminated if you begin from the ground-state.)

The density response is related to the KS potential by,

δρ(~r, t) =

∫

d3~r′
∫

dt
′

χks
ρρ (~r, ~r′; t− t′)δvks(~r′, t

′

), (9.44)

and the Lehmann spectral representation for the KS system is,

χks
ρρ (~r, ~r′;ω) =

∑

n




〈Φ0|ρ̂(~r)|Φn〉

〈

Φn|ρ̂(~r′)|Φ0

〉

ω − ωks
n0 + iη

−

〈

Φ0|ρ̂(~r′)|Φn
〉

〈Φn|ρ̂(~r)|Φ0〉
ω + ωks

n0 + iη



 ,

(9.45)

where Φn is the excited KS determinant of the ground-state KS potential

and ωks
n0 is the corresponding KS excitation frequency. Equation (9.45) can

further simplify to the sum over KS single excitations to be,

χks
ρρ (~r, ~r′;ω) =

N∑

k=0

∞∑

j=N+1

[

φj(~r)φ
∗
k(~r)φ

∗
j (
~r′)φk(~r′)

ω − (ǫj − ǫk) + iη

−
φk(~r)φ

∗
j (~r)φ

∗
k(
~r′)φj(~r′)

ω + (ǫj − ǫk) + iη

]

.

(9.46)

As mentioned earlier, the χks
ρρ results from KS single excitations and thus

does not contain double and higher multiple KS excitations hence not a

true representation of excitations from the interacting system. To get a true

picture, there is need to relate the interacting, χρρ, and KS density-density

response functions χks
ρρ . The equation is,



Casida Equations 124

χρρ(~r, ~r′; t− t
′

) =χks
ρρ (~r, ~r′; t− t′) +

∫

d3x

∫

dτ

∫

d3x
′

∫

dτ
′

χks
ρρ (~r,x, t− τ)

×
{

δ(τ − τ ′

)

|x′ − x| + fxc[ρ0](x,x
′

, τ − τ ′

)

}

χρρ(x
′

, r
′

, τ
′ − t′),

(9.47)

where fxc[ρ0](~r, ~r′, t− t
′

) is the TD xc kernel defined as,

fxc[ρ0](~r, ~r′, t− t
′

) =
δvxc(~r, t)

δρ(~r′ , t′)

∣
∣
∣
∣
ρ(~r

′ ,t′ )=ρ0

. (9.48)

The role of fxc is to bring in the missing double and higher multiple exci-

tations that were missing in the χks
ρρ . To obtain accurate spectra in TD-

DFT, accurate approximations to fxc must be constructed. Doing a Fourier-

transform on Eq. (9.47) gives the frequency domain equation,

χρρ(~r, ~r′;ω) =χ
ks
ρρ (~r, ~r′;ω) +

∫

d3~x

∫

d3x′χks
ρρ (~r, ~x, ω)

×
{

1

|x′ − x| + fxc[ρ0](~x, ~x
′

, ω)

}

χρρ(~x′, ~r′, ω).

(9.49)

From the Eq. (9.49), we can see that two situations arise, one ideal and

the other of practical. Looking at the ideal situation: from the ground-

state DFT, the χKSρρ can be constructed and χρρ solved self-consistently.

Practically, as will be seen in the next section under the Casida equations, it

has to be rewritten as a non-linear eigenvalue problem in terms of matrices

represented in a basis set of molecular orbitals.

9.8 Casida Equations

As mentioned earlier, we are interested in the response of a system ini-

tially in a stationary state (ground-state), Ψ0, to a weak external perturba-

tion. Typically, we can obtain the dynamic response of the charge density
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from TD-DFT. There are several methods that can be used to extract exci-

tations from TD-DFT: A case in point is the absorption spectrum obtained

from the poles of the excitation energies, ωI and the oscillator strengths,

fI . The biggest challenge has been how to compute the said quantities ac-

curately. This challenge was overcome in 1995 by Casida, [27], by using

the Casida equations that efficiently convert the search for poles of response

functions into a large eigenvalue problem. He provided a procedure of how

to calculate the said quantities using knowledge from the linear density re-

sponse of the system by reformulating the linear response time-dependent

density functional response theory to resemble the standard implementation

of LR-TDHF. The dynamic polarizability, α(ω), that describes the response

of the dipole moment to a TD electric field can be calculated from the re-

sponse of the charge density obtained from TD-DFT. With such information,

the electronic excitation spectrum in the usual dipole approximation can be

determined.

We can derive the Casida equation by considering an N -electron system

initially in its ground stationary state, Ψ0, exposed to a TD perturbation

turned on adiabatically at time, t = −∞. The equation for the dynamic

response of the KS density matrix is,

{

ω

[

1 0

0 −1

]

−
[

A B

B∗ A∗

]}(

δ ~P (ω)

δ ~P ∗(ω)

)

=

(

~vappl(ω)

~v∗appl(ω)

)

. (9.50)

Rearranging this expression to the form of dynamic polarizability according

to the sum-over-states (SOS) relation,

α(ω) =
∑

I 6=0

fI
ω2
I − ω2

(9.51)

we can extract the excitation energies and oscillator strengths. In Eq. (9.51),

fI is given as,

fI =
2

3
ωI(| 〈Ψ0|x̂|ΨI〉 |2 + | 〈Ψ0|ŷ|ΨI〉 |2 + | 〈Ψ0|ẑ|ΨI〉 |2), (9.52)
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related with the excitation energy,

ωI = EI − E0. (9.53)

The excitation energies, ωI are determined by the poles of the dynamic

polarizability and fI determines the equivalent oscillator strengths. It is

worth mentioning when the exciting frequency hits a resonance capable of

exciting an electron, the dynamic response of the density matrix, ~vappl(ω),

should be infinite even for a small perturbation. Considering other factors,

such as the impact of the frequencies described in the previous statement

to the equation for the dynamic response of the KS density matrix, Eq.

(9.50), takes the form χ(+∞) = 0. It results in the matrix pseudo-eigenvalue

problem that is simply an expression of the dynamic polarizability in the

basis of unperturbed MOs.

[

A B

B∗ A∗

](
~XI

~YI

)

= ωI

[

1 0

0 −1

](
~XI

~YI

)

. (9.54)

The pseudo-eigenvalue problem has both an excitation (ωI > 0) and de-

excitation (ωI < 0) both of which are paired and whose solution can be

found and only differ at the interchange of X and Y .

(
~XI

~YI

)

↔ ωI = EI − E0 = −ωI ↔
(
~YI
~XI

)

. (9.55)

Equation (9.54) can be solved in a simpler manner by introducing the Tamm-

Dancoff approximation (TDA) [28] . With this approximation, the B matri-

ces are ignored and the solution to the following equation is sought,

A ~XI = ωI ~XI . (9.56)

The exact Eq. (9.54) can be reduced to a matrix equation similar to the

TDA equation but without making approximations within the local density

approximation (LDA) and generalized gradient approximation (GGA). It

can be rewritten as,
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Ω~FI = ωI ~FI , (9.57)

where,

Ω = (A−B)+1/2(A + B)(A−B)+1/2

~FI = (A−B)−1/2( ~XI + ~YI).
(9.58)

The excitation energies of the system can be obtained from the eigenvalues of

Eq. (9.57) while the eigenvectors ( ~XI , ~YI)
† give the spectroscopic oscillator

strengths and to assign the symmetry of each transition, although in practice,

the symmetry of the excited-state is many times already reflected in ~FI . To

solve the Casida’s equations, one is needed to diagonalize the ground-state

Hamiltonian in order to get a number of the empty KS states.

9.9 ‘Deadly Sins’ of TD-DFT

‘Deadly Sins’ of TD-DFT are simply the possible sources of errors when

doing calculations with TD-DFT. If one commits any of this ‘sins’, then one

is likely not to go to Heaven (get accurate TD-DFT results) [29]. According

to [29], there are four of them:

• Errors can arise from ground-state DFT calculation. If one begins

with wrong KS orbital energies, TD-DFT calculations cannot produce

accurate results. This is known as The sin of the ground-state.

• Errors arising from local approximations to an adiabatic fxc(r, r
′

),

that is properties that require nonlocality are known as The sin of

locality.

• The sin of forgetfulness arises from phenomena missing when the adi-

abatic approximation is made, that is, properties that require nonlo-

cality in time, and finally,

• The sin of the wave function arises from the difference between the

true wave function and the KS wave function.
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Chapter 10

DFT and TD-DFT for

Ruthenium Complexes

This chapter is my contribution to a projected review article,

“Challenge of time-dependent density-functional theory for pho-

tochemistry”

by Mark E. Casida, Myneni Hemanadhan, Ala M. H. H. Aldin

Darghouth, and Denis Magero.

It gives a good basic introduction to how well (TD-)DFT works for ruthenium

complexes. The next chapter will then go into this subject in much more

detail.

10.1 Introduction

Ruthenium complexes have attracted intense research in the recent years

and also in the past. This is because ruthenium complexes have a wide range

of applications in every day life such as the organic solar cells, light emitting

diodes and photo-molecular chemical devices just to mention but a few[1]. To

make its application a reality, the excited state properties of the compound

must be studied. This have been done experimentally in various ways but

there is also need to develop theoretical methods that can accurately predict

the excited state properties so as to compliment experimental data and vice

132
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versa. To this date, there are several methods that can be used to study

excited state properties theoretically. Some of the methods that can be

used include the time-dependent density-functional theory (TD-DFT), time-

dependent Hartree Fock (TD-HF), and the configuration interaction (CI)

among many others. This works compares the three methods to find out

which one is able to predict excited state properties accurately by comparing

with experimental spectra.

10.2 Computational Details

Ground state optimization was done with density functional theory (DFT)

and Hartree Fock. The DFT calculations were performed by using the

Gaussian09[2] (version D.01) program package. Calculated gas phase ab-

sorption spectra for the compound was done using different methods for ex-

cited state calculations including the time dependent (TD) density-functional

theory (TD-DFT)[3], time-dependent Hartree Fock (TD-HF) and configura-

tion interaction (CI) levels of theory. All the calculations were done with the

Becke three parameters hybrid exchange and the Lee-Yang-Parr correlation

functionals (B3LYP)[4, 5]. All-electron 6-31G and 6-31G(d)[6–12] basis set

was used for C, H and N atoms while a double-ζ quality basis set LANL2DZ

and the corresponding effective core potential (ECP) was used for Ru[13] .

X-ray crystallographic data for the compound was obtained from the

Cambridge crystallographic data centre (CCDC) with reference code BEN-

HUZ. Ground state optimization was done by starting with the crystallo-

graphic data. The minima was tested by calculating vibrational frequencies

and checking out for the presence or absence of imaginary frequencies. The

absence of imaginary frequencies gave an indication that the geometry was at

the minima. Excited state calculations used the optimized ground state ge-

ometries with the same basis sets and functionals. Calculations were done at

different levels of theory including the CI, TD-DFT and TD-HF. The number

of excited states for all the calculations was 100 singlet states. Results ob-

tained from theoretical calculations are obtained as spectral functions. The

oscillator strength can be obtained from the spectral function which is given
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by,

S(ω) =
∑

I

fIδ(ω − ωI), (10.1)

where fI is the oscillator strength and ωI is the electronic excitation energy

obtained as EI− E0.

To compare calculated gas phase absorption spectra with experimental

spectra, the spectral function from theoretical calculations is be converted

to the molar extinction coefficient. This was done by the use of an in house

build program, Spectrum.py, which converts the spectral function into mo-

lar extinction coefficient so that calculated gas phase absorption spectra and

experimental spectra can be compared directly on the same graph. Spec-

trum.py was used to plot the gas phase absorption spectra as well as the

experimental spectra. It has the advantage of being usable for different units

(i.e., nm, cm−1 and eV). It is also possible to have several plots of both cal-

culated and experimental curves on the same graph at a single go using this

programme. Comparison of experimental and calculated absorption spectra

that has been done with Spectrum.py is shown in Fig.10.2 and Fig.10.3.

All the gas phase absorption calculations were Gaussian broadened with

a full-width-at-half-maximum (FWHM) of 4000 cm−1, which is accounted

for by Spectrum.py, to account for spectral broadening due to vibrational

structure, solvent effects, and finite experimental resolution. It is of impor-

tance therefore to note that FWHM is the only empirical parameter involved

in the comparison of theoretical and measured spectra.

10.3 Results and Discussion

Optimized Geometry Figure 10.1 shows an optimized structure of [Ru(trpy)2]2+.

Table 10.1 gives a comparison of selected geometries parameters calculated

at different levels of theory with experimental data.

Table 10.1 gives a comparison of calculated bond lengths and angles with

HF and DFT with experimental data and results from other works.
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Figure 10.1 – ORTEP diagram showing the optimized structure of
[Ru(trpy)2]2+ with different measured bond lengths and angles. The el-
lipsoidal probability is at 70%.

Table 10.1 – Comparison of parameters for geometries optimized at HF and
DFT. Bond lengths are in (Å) and bond angles are in degrees.

HF DFT Exp.[14] Other Works 1

RuN2 2.21 2.122 2.074 2.11
RuN54 2.086 2.018 1.984 2.011
RuN3 2.21 2.122
N54C55 1.336 1.365 1.345 1.36
N2C11 1.353 1.382 1.374 1.38
C11C55 1.489 1.474 1.466 1.47
N2C6 1.33 1.354 1.35 1.36
RuN54C55 118.132 118.784 119.4 118.8
RuN2C11 112.473 113.477 113.4 113.8
RuN2C6 127.502 127.336 127.5 126.6
N54RuN2 77.002 78.456 78.6 78.9
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Spectra Figure 10.2 shows a comparison of the different absorption spectra

at different levels of theory compared with experimental data for 6-31G basis

set. Figure 10.3 shows the same calculations with 6-31G(d) basis set.

Figure 10.2 – Comparison of experimental with calculated absorption spectra
at different levels of theory; CIS, TD-HF and TD-DFT for [Ru(trpy)2]2+.
Calculated spectra has been done with 100 singlet states and 6-31G basis
set. Experimental spectra; measured at room temperature in acetonitrile [1].

Figure 10.3 – Comparison of experimental with calculated absorption spectra
at different levels of theory; CIS, TD-HF and TD-DFT for [Ru(trpy)2]2+.
Calculated spectra has been done with 100 singlet states and 6-31G(d) basis
set. Experimental spectra; measured at room temperature in acetonitrile [1].

Table 10.2 compares the calculated absorption peaks obtained from three

different levels of calculations with experimental data.

In both the ground state optimization and the excited state calculations

with different methods, TD-DFT gives the best representation of experimen-

tal spectra.
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Table 10.2 – Comparison of the position of spectral peaks calculated at dif-
ferent levels of theory; CIS, TD-HF and TD-DFT for 6-31G and 6-31G(d)
basis sets. Wavelength is given in nm and the corresponding molar extinction
coefficient is in parenthesis with units of 103 M−1. cm−1.

CIS TD-HF TD-DFT Exp.(λmax) 2

6-31G 158[93.19] 169[70.61] 240[35.78]
213[55.40] 220[44.68] 293[45.73]

415[19.90] 476[17.70]
6-31G(d) 160[93.77] 172[72.42] 242[34.38]

245[32.03] 262[27.93] 292[43.22]
403[16.47] 476[17.70]
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Chapter 11

Partial Density of States

Ligand Field Theory

(PDOS-LFT): Recovering a

LFT-Like Picture and

Application to Photoproperties

of Ruthenium(II) Polypyridine

Complexes

Introduction

This chapter forms the core part of my thesis. The work that was done

and the contribution towards scientific knowledge is divided into two sections.

In the first section, the MO indices that were proposed by [1] are validated

by applying them to a bigger number of compounds that were carefully se-

lected from [2] which contains data about hundreds of Ru complexes based

on the length of the excited state lifetime both at room temperature and

140
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at liquid nitrogen temperature. In particular, the work involved modelling

using Gaussview or using the X-ray crystal structures of 112 Ru complexes.

Optimization of the ground state structures and frequency calculations were

also done. All the optimized complexes that did not have imaginary fre-

quencies were considered as the probable global minimum. Excited state

calculations and TD-DFT calculations were done also.

11.1 Background Information on the Problem

Ru complexes have a wide range of applications as light harvesting an-

tennas or photocatalytic centers in photochemical molecular devices (PMDs)

such as phosphorescent dyes for display applications (commonly referred to

as the organic light emitting diode OLED), photomolecular photoswitch,

sensitizers of solar energy conversion and photocatalysis.[3–13]. This has

attracted a lot of research in these complexes owing to their wide range of

applications. For these complexes to have meaningful applications that have

been listed above, they must have a long lived excited state lifetime (atleast

1 µs) that is able to facilitate electron transfer. It is therefore paramount

that the excited state lifetime must be well understood. This understand-

ing is in terms of the deactivation mechanisms and what leads to the long

or short excited state lifetime. This work looks at how to estimate the ex-

cited state lifetimes of Ru complexes using quantum chemical calculations.

Quantum chemical calculations have been used many times before to study

the structural and electronic properties of these complexes [14]. The article

resulting from this work is given below.
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A B S T R A C T

Gas phase density-functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are reported
for a data base of 98 ruthenium(II) polypyridine complexes. Comparison with X-ray crystal geometries
and with experimental absorption spectra measured in solution show an excellent linear correlation with
the results of the gas phase calculations. Comparing this with the usual chemical understanding based
upon ligand field theory (LFT) is complicated by the large number of molecular orbitals present and
especially by the heavy mixing of the antibonding metal e!g orbitals with ligand orbitals. Nevertheless, we

show that a deeper understanding can be obtained by a partial density-of-states (PDOS) analysis which
allows us to extract approximate metal t2g and e!g and ligand p* orbital energies in a well-defined way,

thus providing a PDOS analogue of LFT (PDOS-LFT). Not only do PDOS-LFT energies generate a
spectrochemical series for the ligands, but orbital energy differences provide good estimates of TD-DFT
absorption energies. Encouraged by this success, we use frontier-molecular-orbital-theory-like reasoning
to construct a model which allows us in most, but not all, of the cases studied to use PDOS-LFT energies to
provide a semiquantitative relationship between luminescence lifetimes at room temperature and liquid
nitrogen temperature.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Karl Ernst Claus had the highly unhealthy habit of tasting his
chemicals, but (though it made him seriously sick on more than
one occasion) it did help him to discover ruthenium in 1884, in
part, by following the taste from one solution to another as he
successively purified his samples [1]. At first this newcomer to the
group of platinum metals seemed to have few applications. The
situation soon changed, first with the discovery of important
applications in catalysis, and now because of the rich photochem-
istry of ruthenium compounds [2–13]. In particular, ruthenium
complexes may be used as pigments to capture light for drug
delivery, photocatalysis, solar cells, or display applications [2,3].
Many of these applications rely on optical excitation leading to an

excited state with a long enough lifetime (typically about 1 ms) to
lead to charge transfer. This paper concerns a relatively simple
model and its use to help us to understand and predict the
photophenomena of ruthenium complexes.

The ideal model would be both quantitative and simple. In
previous work [3], it was shown for five complexes that gas-phase
density-functional theory (DFT) and time-dependent DFT (TD-
DFT) provide quantitative tools for predicting ruthenium complex
crystal geometries and solution absorption spectra. Equally
importantly, the results were reduced to a ligand-field theory
(LFT) [14] like framework that can be easily related back to the
usual interpretive tool used by transition-metal-complex chem-
ists. This was done via the use of the concepts of the density-of-
states (DOS) and partial DOS (PDOS) of DFT molecular orbitals
(MOs) to identify the energy range of the antibonding ruthenium
e!g orbitals whose mixing with ligand orbitals otherwise makes

them notoriously difficult to locate, unlike the much easier case of
the nonbonding ruthenium t2g orbitals. Luminescence indices

* Corresponding author.
E-mail addresses: magerode@gmail.com (D. Magero),

denis.magero@ujf-grenoble.fr (M.E. Casida), magerod@yahoo.com (G. Amolo).
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were also suggested based upon this PDOS-LFT to try to say
something about relative luminescence lifetimes of different
ruthenium complexes. However a theory based upon only five
compounds can hardly be taken as proven. (Another approach to
extracting LFT from DFT is ligand field DFT [15]. PDOS-LFT offers a
complementary but simpler approach.)

Here we extend the earlier study to the large number of
complexes whose photoproperties are tabulated in the excellent, if
dated, review article of Balzini, Barigelletti, Capagna, Belser, and
Von Zelewsky [16]. Our understanding is deepened by confronting
calculations for on the order of 100 pseudo-octahedral ruthenium
complexes with experimental data. In particular, we are able to
obtain a roughly linear correlation (albeit with some exceptions)
between a function of PDOS-LFT energies and an average activation
energy describing nonradiative relaxation of the luminescent
excited state.

The problem of ruthenium complex luminescence lifetimes has
been well studied in the literature [18,5,16,2,6–9,19,20,10–13].
Even so, no universal detailed theory of luminescence lifetimes has
emerged because of a diversity of ligand-dependent de-excitation
mechanisms. Nevertheless there is a commonly accepted “generic
mechanism” [16] based upon the pseudo-octahedral symmetry
LFT diagram shown in Fig. 1. An initial singlet metal-ligand charge

transfer state 1MLCTðt52gp
!1e!0g Þ is formed either directly by exciting

the ground state [1GSðt62gp
!0e!0g Þ] or by exciting another state and

subsequent radiationless relaxation (see the caption of Fig. 1 for
the definition of GS, MLCT, and MC):

1GSðt62gp
!0e!0g Þ ! 1MLCTðt52gp

!1e!0g Þ: ð1Þ

Ruthenium complex spin-orbit coupling then leads to rapid
intersystem crossing to form the corresponding triplet
3MLCTðt52gp

!1e!0g Þ,

1MLCTðt52gp
!1e!0g Þ ! 3MLCTðt52gp

!1e!0g Þ: ð2Þ

This 3MLCT can phosphoresce back to the 1GS or it can go over an
excited-state transition state barrier to a triplet metal center state

3MCðt52ge
!1
g p

!0Þ,

3MLCTðt52gp
!1e!0g Þ

ka
!
 
kb

3MCðt52ge
!1
g p

!0Þ: ð3Þ

Notice how the MC e!g MO has now presumably become lower than

the ligand-centered (LC) p* MO (Fig. 2). This is possible because of
geometric relaxation as illustrated in the state diagram shown in
Fig. 3. The resultant state can then go through a photochemical
funnel with intersystem crossing to return to the groundstate,

3MCðt52ge
!1
g p

!0Þ
k c
!

GSðt62ge
!0
g p

!0Þ: ð4Þ

This is presumed to involve ligands coming partially or completely
off and/or being replaced by solvent molecules. The rate constants
ka, kb, and kc are the same as those defined in Ref. [21]. Fig. 2
provides a summary in the form of orbitals and Fig. 3 in the form of
potential energy curves for different states. A key assumption is
that the main luminescence quenching at room temperature is due
to the barrier crossing [Eq. (3)] followed by a rapid return to the
ground state [Eq. (4)]. For this reason, we will focus on this barrier
in seeking a PDOS-LFT explanation for relative luminescence
lifetimes, but let us admit in advance that our answer, though
general and useful, is unlikely to be universal. For one thing, a
mixture of different types of ligands or of different types of metal-
ligand bonds, means that there is likely to be more than one path
for luminescence quenching. Still other mechanisms might come

Fig. 1. Generic ligand field theory diagram for octahedral ruthenium(II) polypyridyl
complexes. Note that ligand p* orbital energy levels intercalate between ruthenium
t2g and eg* LFT states. The number of p* levels varies depending upon the ligands
(only two are shown here). Photon absorption leads to a t2g! p* transition from the
ground state (GS) to a metal-to-ligand charge transfer (MLCT) state. As d ! d

transitions are symmetry forbidden by the Dl =&1 selection rule in the atom, the
creation of a MLCT excited state is favored over the formation of a metal-centered
(MC) state. Kasha's rule [17] tells us that nonradiative (“nr” in the figure) transitions
will take place until the dominant luminescence is from the lowest p* orbital back
to the t2g orbital to reform the GS.

Fig. 2. Orbital diagrams for the electronic GS and the most relevant excited states
for pseudo-octahedral ruthenium(II) polypyridyl complexes.

Fig. 3. The diagram shows the principle potential energy curves in our model. The
abscissa corresponds to a reaction pathway involving partial removal of a ligand
while the ordinate represents the state energy. The dashed lines indicate diabatic
states whose avoided crossing leads to the energetic barrier on the adiabatic surface
between the 3MLCT and 3MC minima. Figure from Ref. [3] based upon Ref. [22].
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in involving, say, unforeseen intermediate dark states. And, as we
shall see in Section 3, the barrier crossing [Eq. (3)] is unlikely to be
the only influence on the luminescence lifetime at room
temperature. Nevertheless we shall be happy with a semi-
quantitative PDOS-LFT-based theory of luminescence which works
most of the time.

The rest of the paper is organized as follows: The next section
discusses our choice of molecules, theoretical methods, and
computational details. This is followed by a results section in
which evidence is first given for the ability of DFT to give
reasonably good geometries and of TD-DFT to give reasonably good
absorption spectra. Secondly PDOS-LFT energy levels are discussed
and shown to be useful for predicting photoproperties. And thirdly
a model is presented which allows us to say something about
luminescence lifetimes from PDOS-LFT energy levels. Section 4
concludes. PDOS and TD-DFT spectra are presented in a separate
document as supporting information.

2. Data base, theoretical method, and computational details

2.1. Data base

Our theoretical calculations are based upon an old but
unusually extensive list of the photoproperties of ruthenium
complexes. In particular, our calculations are based upon the
photoproperties of about 300 mononuclear ruthenium complexes
reported in Table 1 of the 1988 review article of Juris, Balzini,
Barigelletti, Capagna, Belser, and Von Zelewsky [16]. Of these, the
111 complexes shown in Tables 1–4 have luminescence data either

at room temperature (RT) or at the boiling point of liquid nitrogen
(77 K). For convenience we have numbered them in the same order
as they appear in Table 1 of review article [16]. Note that this
luminescence data was not necessarily measured in the same
solvent for different compounds, or even for any given compound,
and that the reported precision of the measurements vary. The
ligand abbreviations are given in Appendix B. With a few
exceptions (CN', Cl', ox, NPP, NA, bt, en), the ligands are pyridine
and polypyridine N-type ligands, many of are found in common
lists of the well-known spectrochemical series governing the
ligand field splitting D,

D : Cl' < py < en < bpy < phen < CN': ð5Þ

Calculations have been carried out on 98 of these 111 complexes,
with 13 left untreated either because of lack of a good initial guess
for the complex structure, convergence difficulties, or simple lack
of time. Not every calculation is necessarily useful as some needed
to be discarded for theoretical reasons (an unbound e!g orbital) and

not every property could be calculated for every compound.
Furthermore we were not able to find comparison data for every
property of every complex but we think that the extensiveness of
our calculations and of the comparison with experiment for a
broad range of complexes and properties should be highly useful.

2.2. Computational methods and details

The calculations reported in this paper are very similar to those
reported in Ref. [3]. Version B.05 of the GAUSSIAN 03 [23] quantum
chemistry package was used in Ref. [3]. Here we use version D.01 of

Table 1
Numbering of the compounds investigated in this paper. With a few exceptions
(listed but unnumbered compounds), these are the mononuclear complexes with
77 K experimental luminescence lifetimes taken in their order of occurrence from
Table 1 of Ref. [16]. An asterisk has been added if the original table also contained
some information about room temperature lifetimes.

Number Name

(1)* [Ru(bpy)(CN)4]
2'

(2) [Ru(bpy)2Cl2]
(3)* [Ru(bpy)2(CN)2]
(4)* [Ru(bpy)2(en)]

2+

(5) [Ru(bpy)2(ox)]
(6)* [Ru(bpy)3]

2+

(7)* [Ru(bpy)2(4-n-bpy)]
2+

(8)* [Ru(bpy)2(3,30-dm-bpy)]2+

(9)* [Ru(bpy)2(4,40-dm-bpy)]2+

(10)* [Ru(bpy)2(4,40-dCl-bpy)]
2+

(11) [Ru(bpy)2(4,40-dn-bpy)]
2+

(12)* [Ru(bpy)2(4,40-dph-bpy)]
2+

(13)* [Ru(bpy)2(4,40-DTB-bpy)]
2+

(14)* cis-[Ru(bpy)2(m-4,40-bpy)2]
4+

(15)* [Ru(bpy)2(bpz)]
2+

(16)* [Ru(bpy)2(phen)]
2+

(17) [Ru(bpy)2(4,7-dm-phen)2+

(18)* [Ru(bpy)2(4,7-Ph2-phen)]
2+

(19)* [Ru(bpy)2(4,7-dhy-phen)]
2+

(20) [Ru(bpy)2(5,6-dm-phen)]2+

(21) [Ru(bpy)2(DIAF)]
2+

(22)* [Ru(bpy)2(DIAFO)]
2+

(23)* [Ru(bpy)2(taphen)]
2+

(24) cis-[Ru(bpy)2(py)2]
2+

(25) trans-[Ru(bpy)2(py)2]
2+

(26) [Ru(bpy)2(pic)2]
2+

(27) [Ru(bpy)2(DPM)]2+

(28) [Ru(bpy)2(DPE)]
2+

(29)* [Ru(bpy)2(PimH)]2+

(30)* [Ru(bpy)2(PBzimH)]2+

(31)* [Ru(bpy)2(biimH2)]
2+

(32)* [Ru(bpy)2(BiBzimH2)]
2+

(33) [Ru(bpy)2(NPP)]
+

(34) [Ru(bpy)2(piq)]
2+

(35) [Ru(bpy)2(hpiq)]
2+

Table 2
Numbering of the compounds investigated in this paper. With a few exceptions
(listed but unnumbered compounds), these are the mononuclear complexes with
77 K experimental luminescence lifetimes taken in their order of occurrence from
Table 1 of Ref. [16]. An asterisk has been added if the original table also contained
some information about room temperature lifetimes.

Number Name

(36) [Ru(bpy)2(pq)]
2+

(37)* [Ru(bpy)2(DMCH)]2+

(38) [Ru(bpy)2(OMCH)]2+

(39)* [Ru(bpy)2(biq)]
2+

(40)* [Ru(bpy)2(i-biq)]
2+

(41)* [Ru(bpy)2(BL4)]
2+

(42)* [Ru(bpy)2(BL5)]
2+

(43)* [Ru(bpy)2(BL6)]
2+

(44)* [Ru(bpy)2(BL7)]
2+

(45)* [Ru(bpy)(3,30-dm-bpy)2]
2+

(46)* [Ru(bpy)(4,40-DTB-bpy)2]
2+

(47) [Ru(bpy)(h-phen)2]
2+

(48)* [Ru(bpy)(phen)2]
2+

(49) cis-[Ru(bpy)(phen)(py)2]
2+

(50) trans-[Ru(bpy)(phen)(py)2]
2+

(51) [Ru(bpy)(DIAFO)2]
2+

(52)* [Ru(bpy)(taphen)2]
2+

(53) [Ru(bpy)(py)2(en)]
2+

(54) [Ru(bpy)(py)3Cl]
+

(55) [Ru(bpy)(py)4]
2+

(56) [Ru(bpy)(py)2(PMA)]2+

(57) [Ru(bpy)(py)2(2-AEP)]
2+

(58) [Ru(bpy)(PMA)2]
2+

(59) [Ru(bpy)(pq)2]
2+

(60)* [Ru(bpy)(DMCH)2]
2+

(61)* [Ru(bpy)(biq)2]
2+

(62)* [Ru(bpy)(i-biq)2]
2+

(63)* [Ru(bpy)(trpy)Cl]+

(64)* [Ru(bpy)(trpy)(CN)]+

(65)* [Ru(4-n-bpy)3]
2+

(66) [Ru(6-m-bpy)3]
2+

(67)* [Ru(3,30-dm-bpy)3]
2+

(68) [Ru(3,30-dm-bpy)2(phen)]
2+

(69) [Ru(3,30-dm-bpy)(phen)2]
2+

(70)* [Ru(4,40-dm-bpy)3]
2+

D. Magero et al. / Journal of Photochemistry and Photobiology A: Chemistry 348 (2017) 305–325 307



GAUSSIAN 09 [24]. Density-functional theory (DFT) and time-
dependent (TD-)DFT calculations were carried out using the same
B3LYP functional. This is a three-parameter hybrid functional using
Hartree–Fock (HF) exchange, the usual analytical form of the local
density approximation (LDAx) for exchange [25], Becke's 1988
generalized gradient approximation (GGA) exchange B88x [26],
the Vosko–Wilk–Nusair parameterization of the LDA correlation
(LDAc) [27], and Lee, Yang, and Parr's GGA for correlation (LYP88c)
[28],

EB3LYPxc
¼ ð1 ' a0ÞE

LDA
x
þ a0E

HF
x þ axE

B88x
x

þ acE
LYP88c
c þ ð1 ' acÞE

VWN80c
c ; ð6Þ

where a0= 0.20, ax = 0.72, and ac = 0.81 are taken from Becke's B3P
functional [29].

These calculations require us to choose a Gaussian-type basis
set. As in Ref. [3], we used the double-zeta quality LANL2DZ basis
set for ruthenium along with the corresponding effective core
potential (ECP) [30,31]. All-electron 6-31G and 6-31G(d) basis sets
[32–38] were used for all the elements in the first three periods of
the periodic table. Note that Ref. [3] only used the smaller 6-31G
basis set, while the present work is able to verify basis set
convergence by also reporting results with the larger 6-31G(d)
compounds. However, due to the very large number of calculations
carried out and the size of the molecules, calculations with still
larger basis sets were judged to fall outside of the scope of the
present study. Unless otherwise mentioned, extensive use of
program defaults was used for many of the computational
parameters. Neither explicit nor dielectric cavity models were
used in our calculations, so that all calculations reported in this
article are technically for gas-phase molecules.

It should be emphasized that, while a simple Web of Science
[39] search shows that the B3LYP functional has been by far the
most used functional for DFT calculations on ruthenium(II)
polypyridine complexes, the B3LYP functional is gradually losing
popularity to other functionals as shown, for example, by the
results of the annual DFT popularity poll [40] which shows the
B3LYP functional falling from second place (after PBE0) in 2010–
2011 to third place (after PBE and PBE0) in 2012–2016. This, of
course, is just what it says it is — namely a measure of the
popularity of different functionals among users of DFT. Tsipis
reviews the scientific information assessing the performance of
different functionals for coordination chemistry and indicates that
the B3LYP functional is still an excellent choice [41]. Nevertheless
Ref. [42] reports that the B3LYP functional tends to overestimate
metal-ligand bond lengths and Ref. [43] reports better TD-DFT
spectra when the B3PW91 functional is used. The choice of the
B3LYP functional for this work was somewhat arbitrarily based
upon its use in Ref. [3]. A few TD-B3PW91/6-31G calculations at
B3LYP/6-31G optimized geometries have been added to give an
idea of how these compare with TD-B3LYP calculations at the same
geometries. The notation used here is method/basis and is
occasionally extended to method A/basis A//method B/basis B
where a calculation with method A and basis A has been carried out
at geometries optimized using method B and basis B.

The geometries of all the complexes were optimized and (local)
minima were confirmed by the absence of imaginary vibrational
frequencies. Whenever possible, the geometry optimizations
began from X-ray crystal structural data obtained from the
Cambridge Crystallographic Data Centre (CCDC) [106,44]. This
was the case for the compounds listed in Table 5. Start geometries
indicated with an asterisk in Table 5 were constructed from the
CCDC data of a related compound. Otherwise crystal coordinates
were generated from the GAUSSVIEW program [107], taking into
account specific symmetries and crystallographic volumes. The
threshold for optimization was set to ultrafine with self consistent
field (SCF) convergence being being set to very tight.

Time-dependent DFT [108,109] gas-phase absorption spectra
were calculated at the optimized ground-state geometries using
the same functional and basis sets as for the ground-state
calculation. In all cases, at least 100 singlet states were included
in calculations of spectra. As in Ref. [3], a theoretical molar
extinction spectrum is calculated via,

eðvÞ ¼
pNAe

2

2e0mec lnð10Þ
SðvÞ; ð7Þ

from the corresponding spectral function,

SðvÞ ¼
X

I

f Idðv ' vIÞ; ð8Þ

Table 3
Numbering of the compounds investigated in this paper. With a few exceptions
(listed but unnumbered compounds), these are the mononuclear complexes with
77 K experimental luminescence lifetimes taken in their order of occurrence from
Table 1 of Ref. [16]. An asterisk has been added if the original table also contained
some information about room temperature lifetimes.

Number Name

(71)* [Ru(4,40-dm-bpy)2(4,7-dhy-phen)]
2+

(72)* [Ru(4,40-dCl-bpy)3]
2+

(73)* [Ru(4,40-dph-bpy)3]
2+

(74)* [Ru(4,40-DTB-bpy)3]
2+

(75) [Ru(6,60-dm-bpy)3]
2+

(76) [Ru(h-phen)3]
2+

(77)* [Ru(phen)3]
2+

(78)* [Ru(phen)2(4,7-dhy-phen)]
2+

(79) [Ru(phen)2(pq)]
2+

(80) [Ru(phen)2(DMCH)]2+

(81) [Ru(phen)2(biq)]
2+

(82) [Ru(phen)(pq)2]
2+

(83) [Ru(phen)(biq)2]
2+

(84) [Ru(2-m-phen)3]
2+

(85) [Ru(2,9-dm-phen)3]
2+

(86)* [Ru(4,7-Ph2-phen)3]
2+

(87)* [Ru(4,7-dhy-phen)(tm1-phen)2]
2+

(88) [Ru(DPA)3]
'

(89) [Ru(DPA)(DPAH)2]
+

(90) [Ru(DPAH)3]
2+

(91) [Ru(Azpy)3]
2+

(92) [Ru(NA)3]
2+

(93) [Ru(hpiq)3]
2+

(94) [Ru(pq)3]
2+

(95) [Ru(pq)2(biq)]
2+

(96) [Ru(pq)(biq)2]
2+

(97) [Ru(pynapy)3]
2+

(98)* [Ru(DMCH)2Cl2]
(99)* [Ru(DMCH)2(CN)2]
(100) [Ru(DMCH)3]

2+

(101) [Ru(dinapy)3]
2+

(102) [Ru(biq)2Cl2]
(103)* [Ru(biq)2(CN)2]
(104) [Ru(biq)3]

2+

(105) [Ru(i-biq)2Cl2]

Table 4
Numbering of the compounds investigated in this paper. With a few exceptions
(listed but unnumbered compounds), these are the mononuclear complexes with
77 K experimental luminescence lifetimes taken in their order of occurrence from
Table 1 of Ref. [16]. An asterisk has been added if the original table also contained
some information about room temperature lifetimes.

Number Name

(106)* [Ru(i-biq)2(CN)2]
(107)* [Ru(i-biq)3]

2+

(108)* [Ru(trpy)2]
2+

(109) [Ru(tro)2]
2+

(110) [Ru(tsite)2]
2+

(111) [Ru(dqp)2]
2+
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using an in-house python program SPECTRUM.PY [110]. The result is a
theoretical spectrum with the same units and the same order of
magnitude as the experimentally-measured absorption spectrum,
thereby allowing easy comparison of theory and experiment, albeit
at the expense of introducing a single empirical parameter which
accounts for spectral broadening due to vibrational structure,
solvent broadening (but not solvent shifts), and finite experimental
resolution. This is the full width at half maximum (FWHM) which
has been set to 40 nm throughout.

Density-of-states (DOS) and partial DOS (PDOS) were obtained
using another in-house python program called PDOS.PY [111]
previously described in the supplementary data associated with
Ref. [3]. This allows us to identify the positions of ligand-field
theory (LFT) like ruthenium d states as well as ligand p states after
suitable broadening. At a practical level, using PDOS.PY involves
carrying out another single point calculation with the option
(pop=full gfinput iop(6/7=3,3/33=1,3/36=-1), thereby
causing GAUSSIAN to output the number of basis functions Nbasis,
the overlap matrix, the eigenvalues, and the MO coefficients. PDOS.
PY then takes this information from the GAUSSIAN output files and
calculates the (P)DOS. We used a FWHM of 0.25 eV with 40,000
points for graphing.

3. Results

The results of our calculations are divided into three
subsections. In the first subsection (Section 3.1), we validate the

ability of DFT to be able to determine ground-state structures and
the ability of TD-DFT to be able to simulate experimental
absorption spectra. Section 3.2 extracts t2g, e!g , and p* energies

from PDOS-LFT and shows that these correlate with peaks in
measured absorption spectra. Section 3.3 discusses the extent to
which PDOS-LFT can be used to predict which compounds may
have long luminescence lifetimes.

3.1. Structure and properties

3.1.1. Geometries

We first test whether our DFT calculations are consistent with
observed X-ray crystallography geometries by seeing how much
typical bond lengths and bond angles change when the geometry is
re-optimized in gas phase using the X-ray geometries as start
geometries. Naturally we expect some expansion of the molecule
as there are fewer constraints in the gas phase than in the solid
phase but, nevertheless, we expect gas-phase and solid-state
geometries to be correlated.

The need to judge correlation requires us to make a short review
of linear regression as some of the concepts that we use are
expected to be unfamiliar to even expert readers. Linear regression
is just a least squares fit of N (xi, yi) data points to the familiar
equation,

y ¼ mx þ b: ð9Þ

Minimizing the error

E ¼
X

i¼1;N

yi ' mxi ' bð Þ
2
; ð10Þ

gives the usual formulae for the slope and intercept,

m ¼
hxyi ' hxihyi

hx2i ' hxi2

b ¼
hyihxyi ' hxihxyi

hx2i ' hxi2
;

ð11Þ

where we have introduced the notation,

hf ðx; yÞi ¼
1
N

X

i¼1;N

f ðxi; yiÞ: ð12Þ

for the average of the N f(xi, yi) values. The goodness of fit is usually
judged by the correlation coefficient defined as,

R2 ¼
hxyi ' hxihyið Þ2

hx2i ' hxi2
" #

hy2i ' hyi2
" # ; ð13Þ

which is close to unity for a good fit. Up to this point, everything
corresponds to the standard formulae implemented in typical
spreadsheet programs.

However, we need to go a little further because the correlation
coefficient is not a good measure of the error in the sense that the
correlation coefficient calculated over a small range of xi values
may be very different from the correlation coefficient obtained
when all the data is taken into consideration. That is why it is often
better to calculate the standard error which is defined as the
standard deviation of the yi values from those obtained from the
fit. It may be calculated as,

Dy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

N ' 2

% &

hy2i ' hyi2
" #

1 ' R2
" #

s

; ð14Þ

which also shows the relation of the standard error to the
correlation coefficient. Furthermore, following Ref. [112], it is often

Table 5
List of 39 compounds with crystal structures. An asterisk indicates that the CCDC
structure was modified.

Number CCDC [44] reference code Citation

(2) AHEHIF Ref. [45,46]
(3) LESLEB Ref. [47]
(4) SAXCIE Ref. [48]
(5) YAQJOP Ref. [49]
(6) BPYRUF Ref. [50]
(7) DIXVEL Ref. [51]
(9) JUQHEI Ref. [52,53]
(10) BAQYEY Ref. [54,55]
(14)* OBITIC01 Ref. [56,57]
(16) TIXFOV Ref. [58]
(17) XOFQEO Ref. [59,60]
(20) IBAGAU Ref. [61,62]
(21) COMVIJ Ref. [63]
(22) YAGJAR10 Ref. [64]
(24) GEBHEA Ref. [65]
(25) QUBRIO Ref. [66,67]
(26) MESWUC Ref. [68,69]
(31) KEWQOT Ref. [70,71]
(32) NUYKIC Ref. [72,73]
(33) XOCXIW Ref. [74]
(36) HUWGEL Ref. [75,76]
(46) QOMYEX Ref. [77,78]
(48) JEMWAA Ref. [79,80]
(51)* YAGJAR10 Ref. [64]
(62)* PATLAX Ref. [81]
(63) WAKRUX Ref. [82,83]
(64) NAMFOY Ref. [84,85]
(66) FINREA Ref. [86,87]
(74) NOFPII Ref. [88,89]
(75) FINRIE Ref. [90,87]
(77) ZIFCAU Ref. [91,92]
(81) IFAXUI Ref. [93,94]
(83) GEYZOB Ref. [95,96]
(84) FINRAW Ref. [97,87]
(91) MARVAD Ref. [98,99]
(94) VAJLUO Ref. [100,101]
(107) PATLAX Ref. [81]
(108) BENHUZ Ref. [102,103]
(109) BOFGEJ Ref. [104,105]
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more interesting to invert the fit so that,

x ¼
y

m
'

b

m
: ð15Þ

The predictability,

Dx ¼
Dy

jmj
; ð16Þ

then represents the expected error in predicting the experimental
results using our theoretical model. In reporting the results of our
fits, we will give the slope m, the intercept b, the correlation
coefficient R, and the predictability Dx.

In order to see how they are correlated, theoretical and
experimental bond distances and angles were compared for 35 of
the 39 complexes in Table 5. Complexes (14) and (62) are excluded
because their start geometries were a modified version of the
original X-ray crystal structures. Complexes (33) and (51) are
excluded because we were unable to converge the gas-phase
geometry optimizations.

Fig. 4 shows how calculated gas-phase bond lengths compare
with X-ray crystal structure geometries. Only ligand-metal bond
lengths have been considered. As expected the calculated gas-
phase bond lengths are typically longer than those in the X-ray
crystal structures. However Table 6 shows that the correlation is
actually excellent with a predictability of 0.0251 Å for the 6-31G
basis set and 0.0262 Å for the 6-31G(d) basis set. This may be
compared with the typical error of 0.005 Å obtained for 20 organic
molecules with the same functional and the 6-31G(d) basis set (p.

124 of Ref. [113]). Note, however, that the comparison made there
is against gas phase data and that predicting the geometries of
transition metal complexes is in general more challenging than
predicting the geometries of purely organic molecules. It is
interesting to note that geometries predicted using the 6-31G basis
set are better correlated with experimental X-ray geometries
obtained using the seemingly better 6-31G(d) basis set. However
the differences in the results obtained with the two basis sets are
not really significant.

Fig. 5 shows how calculated gas-phase bond angles compare
with X-ray crystal structure geometries. Only ligand-metal-ligand

Fig. 4. (a) Correlation graph between calculated DFT bond lengths for the 6-31G
(~) and 6-31G(d) (.) and 184 measured X-ray crystallographic bond lengths. (b)
Enlargement. The 45. line indicates perfect agreement with experiment.

Table 6
Least squares fit parameters.

Basis set m b R2 Dx

Bond length/Å
6-31G 1.04387 '0.04195 0.90450 0.02505
6-31G(d) 1.02988 '0.00602 0.89674 0.02617

Bond angles/degrees
6-31G 1.07230 '6.39743 0.93055 1.10263
6-31G(d) 1.07424 '6.79970 0.92682 1.13407

l/nm
6-31G 0.78134 81.20545 0.47982 33.6319
6-31G(d) 0.77617 67.65579 0.40762 53.5672

Fig. 5. (a) Correlation graph between calculated DFT bond angles for the 6-31G (~)
and 6-31G(d) (.) and 85 measured X-ray crystallographic bond angles. (b)
Enlargement. The 45. line indicates perfect agreement with experiment.
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angles near 90. have been considered. The calculated bond angles
tend to be smaller than the X-ray crystal structure bond angles.
Table 6 shows that the correlation is actually excellent with a
predictability of 1.103. for the 6-31G basis set and 1.134. for the 6-
31G(d) basis set. This may be compared with the typical error
quoted as being on the order of a few tenths of a degree obtained
for 20 organic molecules with the same functional and the 6-31G
(d) basis set (p. 124 of Ref. [113]). Of course, once again, this is not
unexpected because the comparison is against gas phase data and
that predicting the geometries of transition metal complexes is in
general more challenging than predicting the geometries of purely
organic molecules. It is also interesting to notice that, the 6-31G(d)
basis set results correlated slightly less well with experiment than
do the 6-31G basis set results, but the difference is not really
significant.

3.1.2. Absorption spectra

We now wish to see if (TD-)DFT is able to give absorption
spectra in reasonable agreement with experiment. Some example
comparisons of spectra are given in Fig. 6. Many other TD-DFT
spectra are given in the Supplementary Information. Note that no
adjustable parameters have been used other than the FWHM
(Section 2). Such spectra are expected to be accurate to about
0.2 eV, which is not extremely accurate but which is often adequate
for qualitative assignments of spectral features. Typical complexes
show two to four peaks, where some of the peaks are only visible as
shoulders. Other spectra are given in the Supplementary Informa-
tion. We have noticed that the lowest energy 6-31G(d) peak is often
blue-shifted with respect to the corresponding 6-31G peak, with
much less differences between the basis sets for higher-energy
features in the TD-B3LYP spectra. We assume that this is due to
error cancelation.

In order to compare theory and experiment for several
molecules, it is useful to focus on the lowest energy transition.
Data for this has been collected from several references and is
conveniently provided in Table 1 of Ref. [16] for several solvents.
Since the lowest energy transition is expected to be of t2g! p*

charge-transfer type, we can anticipate some solvent dependence,
though it is often relatively small. We have tried to minimize
solvent effects by estimating a best value in acetonitrile, a common
solvent for polypyridinal ruthenium complexes. As discussed in
Ref. [116], there are several ways to estimate solvent shifts in
spectra and all involve approximations. The one we chose consists
of seeking the best linear relationship between the inverse
wavelength and the orientation polarizability,

Df ðe; nÞ ¼
e ' 1
2e þ 1

'
n2 ' 1
2n2 þ 1

; ð17Þ

which comes out of Onsager's reaction field theory. Here e is the
solvent dielectric constant and n is the solvent refractive index.
Note that this is only valid for a given transition weakly interacting
with a dielectric medium. An example plot is shown in Fig. 7 for
complex (3) where the solvent shift is particularly marked and
there are two experimental values for the absorption in acetoni-
trile. The value from the linear plot for this compound and best
estimates in acetonitrile where they could be extracted are shown
in Table 7.

Fig. 8shows how our TD-DFTspectra compare with experimental
spectra for the placement of the lowest energy absorption
maximum. The calculated predictability shown in Table 6 corre-
sponds to 0.17 eV for the 6-31G basis set and to 0.27 eV for the 6-31G
(d)basis set at500 nm. This is thesortofaccuracy wenormallyexpect
from TD-DFT in the absence of any particular problems such as, say,
strong density relaxation upon excitation. [TD-B3LPW91/6-31G
calculations at the B3LYP/6-31G optimized geometries have also
been included in Fig. 8 (see Section 2), but no significant differences
have been observed compared with the TD-B3LYP/6-31G results at
the same geometries.] We conclude that our DFT model is a
reasonably good descriptor of the experimental situation.

3.2. PDOS-LFT

We now come to the heart of this paper, namely the partial
density-of-states (PDOS) technique for extracting ligand field
theory (LFT) like information from DFT calculations. This is needed
by chemists as it is their traditional tool for thinking about and
discussing spectra (e.g., Fig. 6) and other photoprocesses in
transition metal complexes. It is also nontrivial because the usual
pseudo-octahedral orbitals t2g and e!g do not emerge automatically

from DFT calculations. This statement is less true of the
nonbonding t2g which can often be identified by direct visualiza-
tion of DFT molecular orbitals, but it is very true of the antibonding

Fig. 6. Comparison of calculated gas-phase absorption spectra (6-31G, red; 6-31G
(d) blue) with an experimental spectrum: (a) complex (18), experimental spectrum
in acetonitrile from Ref. [114]; (b) complex (24), experimental spectrum in water
from Ref. [115]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

Fig. 7. Inverse of the wavelength of the lowest energy absorption plotted against
the orientational polarization for complex (3) and various solvents listed in Table 1
of Ref. [16], except for chloroform which did not fit the trend established by the
other solvents. Note that Df(e,n) = 0.3054 for acetonitrile.
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e!g orbitals which (because they are antibonding) mix heavily with

ligand orbitals, making it impossible to identify individual e!g
orbitals among the DFT molecular orbitals in the absence of special
tools. The tool we have used here is the very simple one used in Ref.
[3], namely a PDOS analysis based upon Mulliken charges. Other
(P)DOS graphs may be found in the Supplementary Information.

The concept of the density-of-states (DOS) is borrowed from
solid-state physics. The idea is to replace the orbital energy levels,
which have become too dense for convenient interpretation, with a
Gaussian-broadened stick spectrum,

DOSðeÞ ¼
X

i

gðe ' eiÞ ; ð18Þ

where the gaussian,

gðeÞ ¼

ffiffiffiffi

a

p

r

e'ax
2
; ð19Þ

is normalized to unity. The parameter a is fixed by the FWHM
according to the relation,

FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2
a

r

: ð20Þ

We loose the concept of individual orbital energy levels when
using the DOS. Nevertheless an isolated DOS peak of unit area
corresponds to a single underlying orbital energy level, a DOS peak
integrating to an area of two corresponds to two closely spaced
underlying orbital energy levels, etc. Fig. 9 provides an example of
the DOS of two complexes. Note that each peak represents one to
several underlying molecular orbital levels.

The partial density-of-states (PDOS) goes a step further by
introducing an atomic orbital decomposition of the DOS. Thus the
PDOS for the mth atomic orbital is,

PDOSmðeÞ ¼
X

i

qm;igðe ' eiÞ: ð21Þ

Table 7
Best estimates of the lowest energy absorption maximum in acetonitrile based
upon data from Table 1 of Ref. [16].

Number Wavelength Number Wavelength
(nm) (nm)

(1) 431.2 (53) 476.0
(2) 524.0 (56) 465.0
(3) 457.2 (57) 455.0
(6) 451.5 (58) 478.0
(7) 493.0 (59) 479.1
(8) 448.0 (60) 559.0
(9) 445.0 (61) 547.0
(10) 448.0 (62) 450.0
(11) 514.0 (63) 506.0
(12) 458.0 (64) 487.3
(13) 450.0 (65) 480.0
(14) 450.0 (66) 448.0
(15) 472.7 (67) 456.0
(22) 440.0 (70) 456.0
(23) 440.0 (72) 462.0
(24) 450.0 (73) 474.0
(25) 474.0 (74) 456.0
(29) 460.0 (76) 453.0
(30) 458.0 (77) 467.4
(31) 473.0 (79) 483.0
(32) 463.0 (80) 522.0
(34) 483.0 (81) 522.0
(35) 480.0 (90) 375.0
(36) 478.0 (92) 505.0
(37) 528.0 (93) 494.0
(38) 562.0 (94) 483.5
(39) 526.0 (97) 526.0
(40) 540.0 (99) 605.1
(45) 453.0 (100) 540.0
(46) 454.0 (101) 585.0
(47) 450.0 (103) 605.1
(48) 442.0 (104) 524.0
(49) 448.0 (105) 436.0
(50) 476.0 (106) 414.8
(51) 446.0 (107) 392.0
(52) 438.0 (108) 473.1

Fig. 8. Correlation graph between calculated lowest energy absorption wave-
lengths for the TD-B3LYP/6-31G//B3LYP/6-31G (~), TD-B3LYP/6-31G(d)//B3LYP/6-
31G (+), and TD-B3PW91/6-31G//B3LYP/6-31G (/) for 57 best estimates for the best
estimate of the experimental lowest energy absorption wavelengths in acetonitrile.
(The 45. line indicates perfect agreement with experiment.)

Fig. 9. B3LYP/6-31G (P)DOS calculated for (a) complex (18) and (b) complex (24).
Note that the corresponding highest-occupied molecular orbital energies are
'10.43 eV for complex (18) and '10.95 for complex (24).(For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the article.)
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Here the quantity qm,i is the Mulliken atomic charge of atomic
orbital m in molecular orbital i. We obtain the ruthenium d PDOS by
summing PDOSm over all d-type atomic orbitals on ruthenium.
Similarly we obtain the p PDOS by summing PDOSm over all the p-
type atomic orbitals on the heavy atoms (e.g., on C, N, and O) on the
ligands. As seen in Fig. 9, the approximate energies of the t2g and e!g
orbitals on the ruthenium clearly emerge for complex (24) with the
expected peak height ratio of 3:2. We also see a loss of t2g
degeneracy for complex (18) due to breaking of perfect octahedral
symmetry in this complex as well as some small seemingly random
d-orbital density contributing to molecular orbitals at other
energies.

It should be noted that the PDOS analysis, while highly useful,
also contains a degree of arbitrariness. In the first place, the precise
picture will vary as the FWHM is varied. This is why it is best to use
a fixed value of the FWHM as we do in this paper. Also, the PDOS
shares the basis-dependence of the Mulliken analysis. This is
illustrated in Fig. 10 where the e!g peak shifts slightly relative to the

p* peaks when going from the 6-31G to the 6-31G(d) basis set.
Many other examples allowing the comparison of the PDOS
calculated with the two different basis sets for a wide variety of
complexes may be found in the Supplementary Information and
provide further evidence for slight basis-set dependent shifts in
the PDOS. However an important exception is in the case of
unbound (i.e., positive energy) orbitals where a finite basis set is
trying to describe a continuum. These cases are marked with an
asterisk (*) in the Supplementary Information and can show very
great differences between the position and character of the t2g and
e!g PDOS peaks in going from the 6-31G to the 6-31G(d) basis sets,

such as is the case for complex (7)* where there is a simple t2g peak
in the PDOS calculated with the 6-31G basis set and a triple t2g
peak in the PDOS calculated with the 6-31G(d) basis set.

We thus have a ligand-field theory (LFT) like PDOS-LFT picture.
However it is not LFT as the PDOS-LFT splitting DPDOS'LFTcalculated
as the energy difference between the e!g and t2g PDOS peaks is not

the same as the DLFT expected from LFT. We can see this by
comparing numbers for the much studied complex (6). According
to our calculations, DPDOS'LFT =49,300 cm'1 calculated with the 6-
31G basis set and 48,200 cm'1 calculated with the 6-31G(d) basis
set. This can be compared with the value DPDOS'LFT =48,000 cm'1

and with DLFT =28,600 cm'1 reported previously [3]. Clearly
DPDOS'LFT is much larger than DLFT so that PDOS-LFT is different
from the usual LFT.

Fig. 10. B3LYP (P)DOS calculated for complex (18): (a) 6-31G basis and (b) 6-31G(d)
basis.(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

Table 8
DPDOS'LFT (cm'1) for complexes with simple t2g and e!g peaks.

Number 6-31G6-31G 6-31G(d)

(6) 49,300. 48,200.
(8) 48,800. 48,100.
(9) 48,900. 48,000.
(11) 49,300. 47,800.
(13) 49,100. 47,900.
(14) 47,800. 46,900.
(15) 49,500. 48,300.
(16) 48,800. 47,800.
(17) 48,300. 47,400.
(19) 47,800. 46,500.
(20) 48,800. 47,400.
(23) 48,400. 47,400.
(24) 48,400. 47,300.
(25) 48,400. 47,100.
(26) 48,300. 47,200.
(27) 48,000. 46,800.
(28) 47,700. 46,700.
(29) 48,700. 47,500.
(30) 48,500. 47,500.
(31) 48,500. 47,000.
(32) 48,000. 46,700.
(34) 49,000. 47,900.
(40) 48,700. 47,400.
(41) 48,900. 47,700.
(42) 48,800. 48,000.
(46) 48,900. 47,700.
(47) 48,800. 47,600.
(48) 48,700. 47,200.
(50) 48,300. 47,100.

Table 9
DPDOS'LFT (cm'1) for complexes with simple t2g and e!g peaks.

Number 6-31G6-31G 6-31G(d)

(52) 48,100. 46,800.
(53) 47,400. 46,700.
(55) 47,100. 45,700.
(56) 47,700. 46,600.
(57) 47,300. 46,300.
(58) 47,600. 46,400.
(70) 48,300. 47,500.
(71) 47,800. 46,600.
(75) 45,400. 44,700.
(76) 48,400. 47,600.
(77) 48,300. 47,300.
(78) 47,800. 46,600.
(85) 43,800. 43,400.
(87) 47,700. 46,300.
(90) 47,400. 45,700.
(93) 47,500. 46,600.
(94) 46,100. 44,700.
(96) 43,600. 42,500.
(97) 48,500. 47,100.
(104) 43,000. 42,200.
(107) 48,000. 47,400.
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Tables 8 and 9 show the values of DPDOS'LFT for complexes
sufficiently close to octahedral symmetry to show simple t2g and e!g
PDOS peaks, excluding complexes where the e!g peak is unbound.

Fig. 11 provides a graphical comparison of how DPDOS'LFT changes
in going from the 6-31G to the 6-31G(d) basis set. The correlation is
linear up to some residual scatter which can be explained by the
precision of the graphical measurement of the distance between
peaks. In general, the DPDOS'LFT splitting closes a bit when the
larger basis set is used compared to the smaller basis set. Although
DPDOS'LFT 6¼ DLFT, we do expect them to have the same trends and
so to be able to establish spectrochemical series. Thus from Fig. 11
we may, for example, deduce the following relationship for ligand
field strength:

D : bpy > i ' biq > hpiq > DPAH > pq

> 6; 60 ' dm ' bpy > 2; 9 ' dm ' phen > biq:
Ligand abbreviations are defined in Appendix B.

Since the usual LFT splitting DLFT is extracted from absorption
spectra [14], it is interesting to see to what extent energy
differences between PDOS-LFT peaks correlate with the position
of TD-DFT absorption spectra peaks. Often times, TD-DFT results
may be analyzed within the two-orbital two-electron model
(TOTEM) (See, e.g., the review Ref. [109]). Let us consider a simpler
hybrid functional,

EHybridxc ¼ ð1 ' a0ÞE
GGA
x þ a0E

HF
x þ EGGAc ; ð23Þ

vHybrid
S ¼ ea ' ei þ 2ðiajfHjaiÞ

'a0ðiijfHjaaÞ þ ð1 ' a0Þðiajf
a;a
x jaiÞ

þacðiajf
a;a
c þ f

a;b
c jaiÞ

vHybrid
T ¼ ea ' ei

þð1 ' a0Þðiajf
a;a
x jaiÞ

þð1 ' a0Þðiajf
a;a
x jaiÞ ð24Þ

than the B3LYP functional [Eq. (6)] as it already captures all the
essential features which are of interest to us here. In the Tamm-
Dancoff approximation (See, e.g., the review Ref. [109]), the TOTEM
model gives the following formulae for the singlet vS and triplet
vT excitation energies:where we follow the notation of Ref. [109].
If the two-electron integrals are (or their sum is) sufficiently small,
then we may expect that excitation energies may be approximated,

albeit rather roughly, as orbital energy differences:

v 1 ea ' ei: ð25Þ

This was checked by taking the same complexes treated in Fig. 11
and comparing the wavelength corresponding to the et2g ! ep!

transitions with the wavelength of the corresponding peaks in the
TD-B3LYP absorption spectra in Fig. 12. A least squares fit indicates
quite a good correlation in the sense that the slope is only slightly
greater than unity and the intercept is small. However there is a
large scatter of the data points around the fit line which may be due
to neglect of two-electron integrals but may equally well be due to
difficulty assigning the precise positions of PDOS peaks and of
peaks (and particularly of shoulders) in the TD-B3LYP spectra.
Nevertheless we find the figure to be quite encouraging in that the
figure suggests that a PDOS-LFT orbital model may provide useful
insight into the behavior of excited states.

Fig. 11. Correlation plot between DPDOS'LFT calculated in cm'1 with the 6-31G and
6-31G(d) basis sets for 55 complexes. The diagonal line indicates where points
should lie in the event of hypothetical perfect agreement between the two sets of
results. A least squares fit to the calculated points gives the equation DPDOS'LFT(6-
31G(d)) = 0.940 DPDOS'LFT(6-31G) + 1740 cm'1. Complexes whose data points are
marked: (6) [Ru(bpy)3]

2+, (42) [Ru(bpy)2(BL5)]
2+, (107) [Ru(i-biq)2(BL5)]

2+, (93) [Ru
(hpiq)3]

2+, (75) [Ru(6,60-dm-bpy)3]
2+, (85) [Ru(2,9-dm-phen)3]

2+, (96) [Ru(pq)
(biq)2]

2+, and (104) [Ru(biq)3]
2+.

Fig. 12. Correlation plot between t2g! p* PDOS orbital energy differences
calculated using the 6-31G basis set and TD-B3LYP(6-31G) absorption spectra
peaks. A least squares fit to the 161 data points gives the line indicated on the graph
whose equation is lðvSÞ ¼ 1:19lðep! ' et2g Þ ' 7:63 nm.

Table 10
Compounds with both room temperature (RT) and liquid nitrogen temperature
(77 K) data from Table 1 of Ref. [16]. An asterisk has been added if the PDOS e!g
orbital is unbound. Luminescence times are averages over different

measurements in different solvents. See text for the definition of DEave.

Number t(77 K) t(RT) DEave
ms ms cm'1

(1)* 3.7 0.043 321.
(3)* 3.7 0.30 181.
(4) 0.84 0.070 179.
(6) 5.23 0.845 132.
(7)* 3.1 0.78 100.
(8) 5.25 0.533 165.
(9) 5.2 0.48 172.
(12) 5.6 1.92 77.
(13) 4.6 1.17 99.
(14) 7.59 0.454 203.
(15) 3.4 0.378 158.
(16) 6.6 0.497 186.
(18) 9.4 1.591 128.
(19) 3.9 0.628 132.
(21) 5.9 0.00007 818.
(22) 5.1 0.137 261.
(23) 1.8 0.05 259.
(29) 4.450 0.192 227.
(30) 4.240 0.340 182.
(31) 3.25 0.121 237.
(32) 3.000 0.115 235.
(37) 1.5 0.38 99.
(39) 1.65 0.27 131.
(40) 4.7 1.1 105.
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3.3. Luminescence lifetimes

Since gas-phase B3LYP geometries are a good indicator of
ruthenium complex crystal geometries, gas-phase TD-B3LYP
absorption spectra are a reasonable indicator of ruthenium
complex absorption spectra in solution, and PDOS-LFT energies
provide a first approximation to absorption spectra energies, then
we may also hope to be able to say something about ruthenium
complex luminescence lifetimes on the basis of PDOS-LFT
information. Indeed this was the reasoning given in the seminal
paper [3] where PDOS-LFT luminescence indices were proposed
upon the basis of the idea that the room temperature (RT)
luminescence lifetime should increase with the height of the
3MLCT ! 3MC barrier shown in Fig. 3. This barrier-height
dependence would also imply a strong temperature dependence
which is indeed seen in the 48 liquid nitrogen (77 K) and room
temperature (RT) values in Tables 10 and 11 and the 46 points in
Fig. 13.

In order to see where PDOS-LFT-derived luminescence indices
may be able to say something about luminescence lifetimes, we
need first to understand the various contributions to luminescence
lifetimes. Luminescence lifetime experiments measure the decay
rate of the intensity of light luminescing at a particular wavelength

as a function of time. This gives a temperature (T) dependent decay
constant k(T) which is related to the decay lifetime t(T) by,

kðTÞ ¼
1

tðTÞ
: ð26Þ

The luminescence lifetime determined from the decay rate of
measured intensity is a measure of the rate of disappearance of the
luminescent species — in this case, the phosphorescent 3MLCT
state. In addition to phosphorescence, other physical phenomena
are also included in the decay lifetime t(T) which generally depend
upon the temperature T. The decay rate constant may be separated,

kðTÞ ¼ k0 þ knrb ðTÞ ; ð27Þ

into a temperature-independent part,

k0 ¼ k
r
þ k

nr
a ; ð28Þ

where the superscript “r” refers to “radiative” and the superscript
“nr” refers to “nonradiative” [117]. The temperature-independent
part describes processes which continue to be operational even at
very low temperatures. (k0 is assumed to be equal to k(T) at T = 84 K
in Ref. [118].) The temperature-dependent part may be further
separated as [16],

k
nr
b ðTÞ ¼ kmeltðTÞ þ kequlibðTÞ þ kbarrierðTÞ ; ð29Þ

where,

kmeltðTÞ ¼
B

1 þ exp C 1
T '

1
TB

" #h i ð30Þ

describes the melting of the solid matrix of the solution at low
temperature, where kmelt(T) = constant B for T!1 and kmelt(T) = 0
for T!0. TB is the temperature at which kmelt(T)=B/2 and C is a
temperature related to the viscosity effect;

kequlibðTÞ ¼ A1e
'DE1=RT ; ð31Þ

describes thermal equilibrium with higher energy states of the
same electronic nature (e.g., states with the same symmetry in an
octahedral complex according to LFT but which are split with
ligands giving only pseudo-octahedral symmetry), and

kbarrierðTÞ ¼ A2e
'DE2=RT ; ð32Þ

is an Arrhenius term describing crossing of the 3MLCT ! 3MC
barrier prior to subsequent de-activation to 1GS. As pointed out in
Ref. [21], DE2 is only the 3MLCT ! 3MC activation energy barrier
when kc>> kb [see Eqs. (3) and (4)], but the situation becomes
more complicated if (for example) kb>> kc. Putting it altogether
results in,

Table 11
Compounds with both room temperature (RT) and liquid nitrogen temperature
(77 K) data from Table 1 of Ref. [16]. An asterisk has been added if the PDOS e!g
orbital is unbound. Luminescence times are averages over different

measurements in different solvents. See text for the definition of DEave.

Number t(77K) t(RT) DEave
ms ms cm'1

(41) 4.560 0.356 184.
(42) 4.090 0.390 170.
(43) 4.020 0.389 169.
(44) 4.070 0.360 175.
(46) 4.8 1.07 108.
(48) 12.45 0.784 200.
(52) 2.0 0.13 197.
(60) 1.9 0.39 114.
(61) 1.95 0.20 164.
(64)* 5.0 0.001 615.
(67)* 6.4 0.21 632.
(70) 4.6 0.525 157.
(71) 10.50 0.475 223.
(73) 4.79 1.31 94.
(74) 5.3 1.15 110.
(77) 9.93 0.673 194.
(78) 3.0 1.675 42.
(86) 9.58 4.796 50.
(87) 11.0 1.750 132.
(99)* 1.17 0.167 115.
(103)* 0.88 0.147 129.
(106)* 177. 0.237 477.
(107) 96.0 0.1475 467.
(108) 10.7 0.0037 575.

Fig. 13. Correlation between luminescence lifetimes at room temperature (RT) and
at liquid nitrogen temperature (77 K).

Table 12
Parameters describing the temperature dependence of the luminescence decay rate
of [Ru(bpy)3]

2+ in propionitrile/buylronitile (4:5 v/v) from p. 108 of Ref. [16], except:
C and TB were determined by variation within the recommended range until we
obtained results similar to those in Fig. 6 of Ref. [118]. Aave and DEave are calculated
as explained in the text.

Parameter Value

k0 2 / 105 s'1

B 2.1 / 105 s'1

C 1900
TB 125 K
A1 5.6 / 105 s'1

DE1 90 cm'1

A2 1.3 / 1014 s'1

DE2 3960 cm'1

Aave 2.707 / 106 s'1

DEave 159.98 cm'1
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k ¼ k0 þ kmeltðTÞ þ kequlibðTÞ þ kbarrierðTÞ

¼ k0 þ
B

1 þ exp C
1
T
'

1
TB

% &+ ,

þA1e
'DE1=RT þ A2e

'DE2=RT : ð33Þ

The barrier term is commonly believed to dominate over the other
terms at high-enough temperatures. If so, then we may hope to be
able to relate DE2 to the features of the PDOS-LFT theory.

But how high a temperature is high-enough to make this hope
reasonable? We can get some idea of the answer to this question by
examination of the relative importance of the different terms in
Eq. (29) for [Ru(bpy)3]

2+ in propionitrile/butyronitrile (4:5 v/v)
using the parameters given in Table 12. Data is often plotted as ln
(k) versus 1/T as shown in Fig. 14. A look at the different
contributions on the excited state lifetimes is also shown on the
same plot. It looks very different on different scales as different
physical effects come into play in different temperature regimes.
Only k0 is important below about 30 K. From about 30 K to 100 K,
kequilib becomes important. The melting term kmelt switches on
from about 100 K to about 250 K. After 250 K, kbarrier rapidly begins
to dominate. Unfortunately kbarrier is not the single overwhelm-
ingly dominant term at RT (298 K).

This means that it is very difficult to extract an accurate value of
the triplet barrier energy DE2 from only the luminescence decay
constants at 77 K and at RT. We have tried various ways to do so, but
all of them suffer from some sort of numerical instability resulting
from trying to get a relatively small number from taking the
difference of two large numbers. Improved computational preci-
sion would not solve this problem because the accuracy of the two
large numbers is limited by experimental precision. We therefore
choose a different route and simply assume that RT is a high-
enough temperature to neglect all but the barrier term. Fig. 14
shows that this is only a very rough approximation at best.
However we have little alternative but to make this approximation
given the nature of the primary readily available data. That is, the
best that can be done if the only data available is the luminescence
decay constants at 77 K and at RT, is to fit to the very simple
equation,

kðTÞ ¼ Aavee
'DEave=RT : ð34Þ

This may also be regarded as an alternative (overly simplistic)
model. If we can use this model to explain how DEave may be
estimated from PDOS-LFT, then we will nevertheless have access to

information about the interrelationship of luminescence lifetimes
at 77 K and at RT. With this caveat, we will confine subsequent
discussion to luminescence indices for predicting DEave.

Let us now turn to the challenge posed in Ref. [3], namely that of
coming up with MO-based indices (or, more exactly, PDOS-LFT-
based indices) for predicting luminescence lifetimes. The argu-
ment was made that the DEave should be smallest when the
3MC-3MLCT state energy difference is smallest. In LFT-PDOS terms,
this corresponds to DEave being smallest when the MO energy
difference,

DE ¼ ee!g ' ep! ; ð35Þ

is smallest. We can check this using the PDOS corresponding to the
complexes listed in Tables 10 and 11. A few complexes have to be
eliminated when the known underbinding of DFT has led to
unbound e!g orbitals. Nevertheless, this still leaves 36 data points.

The correlation between DE and Eave is shown in Fig. 15. The
correlation is surprisingly bad.

We are thus led to think more deeply about the avoided crossing
of two states with diabatic energies E1 and E2 and coupling matrix
element W. The adiabatic energies may be found by diagonalizing
the two-state hamiltonian matrix,

H ¼
E1 W
W E2

+ ,

: ð36Þ

The exact and perturbative solutions are,

Eþ ¼ E þ
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DE
- .2

þ 4W2
q

1 E2 '
W2

DE

E' ¼ E '
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DE
- .2

þ 4W2
q

1 E1 þ
W2

DE
;

ð37Þ

where

E ¼
E1 þ E2

2
: ð38Þ

is the average of the diagonal elements. Following ideas very
similar to those found in frontier MO theory (FMOT) [119,120], we
will adapt the pertubative formulae evaluated at the ground state

geometry,

E' ' E1 1
W2

DE
: ð39Þ

as the estimate of the triplet state energy barrier. More exactly,
the slope of the potential energy curve for the excited state at the
ground-state equilibrium geometry provides a rough indication
of trends in the height of the excited-state energy barrier.

Fig. 14. Plot of ln(k) versus 1/T for luminescence decay rates for [Ru(bpy)3]
2+ in

propionitile/butyronitrile (4:5 v/v).

Fig. 15. Correlation between DE and Eave.
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Although we are not actually doing FMOT, but rather presenting
something which we suppose to be novel, it should be born in
mind that our theory resembles FMOT and so is subject to
criticism similar to that which Dewar so reasonably leveled at
FMOT [121]. Nevertheless FMOT continues to be used and indeed
was honored by the 1981 Nobel Prize in Chemistry because,
occasional failures set aside, FMOT frequently provides a simple
explanation of chemical reactivity. Likewise we seek a simple
explanation of luminesence lifetimes but expect there to be
occasional exceptions. Eq. (39) suggests that Eave should correlate
better with 1/DE than with DE. This hypothesis is tested in Fig. 16.
Fig. 16 does indeed seem more linear than does Fig. 15, but the line
in Fig. 16 seems to take the form of an upperbound to a scatter of
Eave values.

A clue as to how to further improve our theory is to notice that
while Eave has units of energy,1/DE has units of inverse energy. This
should be corrected by the quantity W which also has units of
energy, but which is not obviously related to the PDOS-LFT picture
from which we seek to extract clues about luminescence lifetimes.
Again, we take our lead from Roald Hoffmann (one of the fathers of
FMOT), and estimate W by the Wolfberg–Helmholtz-like formula
[122],

W ¼ SE; ð40Þ

where E was defined in Eq. (38) and S is some sort of overlap matrix
element. Let us assume that S1 constant, and so compare Eave

against E
2
=DE which both have the energy units. The result is

shown in Fig.17. Except for a few complexes [(14), (21), (107), (108),
and possibly ((78)], the result is finally a reasonably good linear
correlation. Indeed a least squares fit

[Eave ¼ ð9:348 cm'1=eVÞðE
2
=DEÞ þ 50:764 cm'1] indicates that

the line passes pretty nearly through the origin as might be
expected from our simple FMOT-like theory.

In principle we might be able to do better by being able to
provide some suitable estimate of the overlap S. One suggestion
was given in Ref. [3] which involved the percentage of d

contribution to the p* peak times the percentage of p contribution
to the t2g peak. We have tried this and several other similar ideas as
a way to construct an estimate of S and have found no way to

improve upon E
2
=DE as the best estimator of Eave. We therefore

conclude that this is the best we are going to obtain. The outliers in

Fig. 17 (i.e., those far from the line correlating Eave with E
2
=DE

might easily be accounted for by such things as the roughness of
the estimates of luminescence lifetimes which, on the one hand,
are not always reported very accurately and which, on the other
hand, have been averaged over different values in different
solvents. It is also possible that not all ruthenium complexes have
the same type of decay mechanism — and varying the ligands is an
excellent way to increase the number of ways a ligand can come off
and go on again, leading us back to the ground state. Indeed, as
explained above, we do not even expect our FMOT-like approach to
work 100% of the time and so are happy that it works as well as it
seems to work.

4. Conclusion

We have shown that gas-phase DFT and TD-DFT calculations
give results that correlate well with crystal geometries and with
solution absorption spectra of ruthenium complex spectra. This is
not really a surprise. It has been noticed before and has even been
treated in review articles focusing on the spectra of transition
metal complexes [123–125]. However quantifying this relationship
for a very large group of ruthenium(II) polypyridine complexes is
already useful.

Also important for present purposes, we have shown that
PDOS-LFT provides an interpretational tool, different from, but
similar to traditional LFT. It allows a semiquantitative prediction of
trends in absorption specta and it allows us to generate
spectrochemical series based upon calculated t2g-e!g energy

differences. This is far from easy to do by other means because
TD-DFT calculations provide more information than is otherwise
easily mapped onto LFT concepts. In particular, while the
nonbonding t2g orbitals may often be identified by visualization
of specific individual molecular orbitals of the metal complex, the
antibonding e!g orbitals mix too heavily with ligand orbitals to

extract their energies by direct visualization of metal complex
orbitals. On the other hand, approximate e!g orbital energies may be

obtained in a well-defined manner using the PDOS technique.
This led us to believe that we might be able to develop a simple

PDOS-LFT model which could be useful for understanding and
hence for helping to design ligands to tailor specific photochemical
properties of the ligands of ruthenium(II) polypyridine complexes.
Indeed we were able to use ideas reminicent of frontier molecular
orbital theory to build a simple model which provides a linear
correlation in many, but not all cases, between an average triplet
state transition barrier energy and the square of the average of the
e!g and lowest p* PDOS-LFT energies divided by their difference.

Exceptions might be due to insufficiently precise experimental
data, approximations inherent in a FMOT-like approach, or real
differences in the luminescence decay mechanisms of different
complexes.

Our simple PDOS-LFT model will not replace more elaborate
modeling, but it provides a relatively quick and easy way to relate
luminescence lifetimes at room temperature and liquid nitrogen
temperature. In so doing, it becomes possible to explore many

Fig. 16. Correlation between 1/DE and Eave. The dashed line is only a guide to the
eye.

Fig. 17. Correlation between E
2
=DE and Eave. The dashed line is only a guide to

the eye.
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more complexes than would be possible with a more detailed
model.

Some groups have successfully rationalized the trends in
luminescence properties of some ruthenium(II) polypropylene
complexes [126–128] and iridium(III) complexes [129] by the DFT-
optimized 3MLCT ! 3MC energy barrier. In the future, we also plan
to calculate triplet state energy barriers from explicit searches of
TD-DFT excited-state potential energy surfaces for at least a few
ruthenium(II) polypyridine complexes and compare them with our
PDOS-LFT model.
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Appendix A. Some common abbreviations

This paper contains a large number of abbreviations in order to
keep the text from becoming too cumbersome. For the reader's
convenience, we summarize some of these abbreviations in this
appendix. Ligand abbreviations are given in the next appendix.
Common solvent abbreviations are:

3 acetylnitrile, CH3CN.
3 heavy water, 2H2O.
3 dimethylformamide, (CH3)2N-CHO.
3 ethyleneglycol, HOCH2CH2OH.
3 ethylenediamine, H2NCH2CH2NH2.
3 ether/iso-pentane/ethanol (5:5:2).
3 ethanol, CH3CH2OH.
3 water, H2O.
3 methanol, CH3OH.
3 propylene carbonate,

Some other abbreviations used in the text are:

Fig. 18. Ligand list (part I).
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3 atomic orbital.
3 three-parameter hybrid Becke exchange plus Lee–Yang–Parr
correlation density functional.
3 density-functional theory.
3 density-of-states.
3 effective core potential.
3 frontier molecular orbital theory.
3 ground state.
3 Ligand field theory.
3 metal centered.
3 metal-ligand charge transfer.
3 molecular orbital.
3 partial density of states.
3 room temperature.
3 self-consistent field.
3 time dependent.
3 volume to volume.

Appendix B. List of ligand abbreviations

The ligand abbreviations used in this paper are the same as
those used in Ref. [16]. For the readers convenience, these ligands
are shown in Figs. 18–26 and in order of their appearance in the
Tables 1–4.

Fig. 19. Ligand list (part II).

Fig. 20. Ligand list (part III).
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Fig. 21. Ligand list (part IV).

Fig. 22. Ligand list (part V).
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Fig. 23. Ligand list (part VI).

Fig. 24. Ligand list (part VII).
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Fig. 26. Ligand list (part IX).

Fig. 25. Ligand list (part VIII).
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Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.
jphotochem.2017.07.037.
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Chapter 12

Located a Transition State on

the Excited-State Triplet

Surface

This is preliminary work aimed at finding the nature and height of the

barrier on the lowest triplet excited-state surface.

12.1 Introduction

12.1.1 Background Information on the Problem

Ruthenium complexes continue to illicit immense interest owing to their

wide range of applications ranging from photochemical molecular devices

(PMDs), biological sensors, organic light emitting diodes (OLEDS) and

biomedical applications just to mention but a few; and which has been the

subject of many studies [1–11]. When talking about these complexes, the

idea that comes into mind is the excited state lifetime. Study of the excited

state lifetime demands that the working of the complexes must be under-

stood in terms of the deactivation mechanisms and what leads to the long or

short excited state lifetime. However, in this work we do not focus on how to

modify the complex to have a long or short excited state lifetime, our focus

165
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Figure 12.1 – The diagram shows the principle potential energy curves in
our model. The abscissa corresponds to a reaction pathway involving partial
removal of a ligand while the ordinate represents the state energy. The
dashed lines indicate diabatic states whose avoided crossing leads to the
energetic barrier on the adiabatic surface between the 3MLCT and 3MC
minima.

is on how to estimate the excited state lifetimes of the complexes using the

quantum chemical calculations. Quantum chemical calculations have been

used before and many times to study the structural and electronic properties

of these complexes [12].

Generally, there are two ways to look/understand the deactivation mech-

anisms of the ruthenium complexes, namely, the state based and the molecu-

lar orbital based way. We shall explain the two of them in detail and explain

why one model is chosen over the other.

1. State based model

The process starts by the absorption of a photon in the ground state

(S0) which is then excited to the singlet metal to ligand charge trans-

fer state (1MLCT) that is quickly transformed to the triplet metal to

ligand charge transfer (3MLCT) through ultrafast intersystem cross-

ing (ISC). The triplet states are excited states, which means that they

are unstable and they must undergo a deactivation to be stabilized.

Some of the methods in which the deactivation can occur include: i)

A photochemical reaction where the original molecule disappears ii)



Introduction 167

luminescence iii) radiationless deactivation and iv) quenching process

[13]. The luminescent 3MLCT can be depopulated in two ways, either

through a radiative (emission) or non-radiative pathway. The major

deactivation route at room temperature is believed to be to the 3MLCT

to the metal centered, 3MC state. It is possible to determine the emis-

sion quantum yields and the excited state lifetimes from the individual

rate constants. Experimentally, excited state lifetime is measured as a

decay rate of the intensity of light luminescing at a particular wave as

a function of time. Temperature, the decay constant k(T) and decay

lifetime τ(T ) are related by,

k(T ) =
1

τ(T )
. (12.1)

The decay lifetime τ(T ) is temperature dependent and the decay rate

constant can be separated into the temperature dependent and inde-

pendent parts. The temperature independent processes are those that

continue to occur even at very low temperatures.

k(T ) = k0 + knrb (T ) , (12.2)

where k0 is the temperature dependent part and knrb (T ) is the tempera-

ture independent part. The temperature dependent term is associated

with;

(a) Activated surface crossing to another excited state. For our case,

we shall assume that this is the 3MLCT to 3MC surface crossing.

This particular term will be studied more exhaustively later on.

(b) Onset of vibrational modes that do not occur at low temperatures

because of the frozen environment. Vibrational modes can favour

radiationless decay.

The temperature dependent term may further be further expressed as,

knrb (T ) = kmelt(T ) + kequlib(T ) + kbarrier(T ) , (12.3)
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where,

kmelt(T ) =
B

1 + exp
[

C
(

1
T − 1

TB

)] . (12.4)

TB is the temperature at which kmelt(T )=B/2 and C is a temperature

related to the viscosity effect. This equation describes the behaviour

of a system in the transition from glass to fluid of a solvent.

kequlib(T ) = A1e
−∆E1/RT , (12.5)

describes thermal equilibrium with higher energy states of the same

electronic nature (e.g., states with the same symmetry in an octahedral

complex according to LFT but which are split with ligands giving only

pseudo-octahedral symmetry), and

kbarrier(T ) = A2e
−∆E2/RT , (12.6)

is an Arrhenius term describing the temperature dependence of the

luminescence lifetime at high temperatures (T>250 K) and which as

mentioned earlier is related to the activated surface crossing to another

excited state. In this case, it is associated with the crossing of the
3MLCT → 3MC barrier prior to subsequent de-activation to 1GS.

Putting it altogether results in,

k = k0 + kmelt(T ) + kequlib(T ) + kbarrier(T )

= k0 +
B

1 + C
(

1
T − 1

TB

)

+ A1e
−∆E1/RT +A2e

−∆E2/RT . (12.7)

The barrier term is commonly believed to dominate over the other

terms at high-enough temperatures. The assumption made is that

barrier crossing followed by a rapid return to the ground state is the

main reason for phosphorescence quenching.

The energy barrier for the surface crossing (3MLCT → 3MC) is re-
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lated to the energy gap between the two states and thus it can give

an idea about the excited state lifetime of the complexes. Using the

state based model, it is possible to estimate the excited state lifetime

of d6 complexes. The problem with the state based model is that

the unoccupied states are heavily mixed and is difficult to recover the

conventional mechanism from theoretical calculations. Using the next

model that will be discussed, we will explain how this problem was

overcome.

2. Molecular Orbital based model The orbital picture suggests that all the

information needed to understand the state based model is already in

the ground state molecular orbitals (MOs) of the complex. With this

in mind, we now focus of the molecular orbitals, testing whether this

hypothesis is true or false. Figure 12.2 gives the ‘pseudooctahedral’

ligand field theory (LFT) picture that was recovered in Ref. [14] and

the two MO based indices that were developed.

Figure 12.2 – Pseudo-octahedral ligand field theory diagram for Ru com-
plexes.

The problem of mixing of the states in the unoccupied states was

overcome[14] by the use of the projected density of states (PDOS).

Based on the PDOS derived LFT-like picture. The authors proposed

two molecular orbital-based luminescence indices, both of which were

based on the idea that luminescence quenching is as a result of a low
3MLCT → 3MC barrier. One luminescence index proposes the dif-

ference between the e∗g and the lowest energy π∗ PDOS bands as an

indicator of ∆E. The second luminescence index is a product of the

amount of π character in the t2g band with the amount of ruthenium d
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character in the 1π∗ band summarized as d×π. The frontier molecular

orbital theory that we recently looked at also looks at the activation

barriers to estimate the excited state lifetime but it is relies on the

experimental activation barrier.

Using the above information, work was done on more than 90 com-

plexes so as to validate the molecular orbital indices that were devel-

oped by [14]. In this work, a quantitative structure activity relationship

(QSPR) was developed by identifying the target molecules that had a

long excited state lifetime (those that are likely to remain excited long

enough to luminescence or transfer an electron), and comparing against

all the other complexes. The complexes studied were identified from

[13] based on the length of their excited state lifetime. If a complex

was within the parameter space, it was likely to have a long excited

state lifetime, but if it did not lie within the parameter space, then it

was not worth synthesising since it will not be very useful practically.

But there was a gap in terms of just how much information could be

extracted. In particular, the data about the lifetimes at room tem-

perature and the activation barrier was not easy to come by, and this

prompted the extension of this study to find how big or small the acti-

vation barrier is. This is because with this information, it is possible,

using the luminescence indices to get exactly which complexes are go-

ing to have a long excited state lifetime or not since the height of the

activation barrier is related to the length of the excited state lifetime.

In this work, we seek to get the activation barriers theoretically. In-

deed, we are not delving into a completely new world but each complex

comes with its own challenges especially in the excited state. Recent

work has shown that it possible to calculate the activation energy from
3MLCT to 3MC [15]. The transition states of the 3(MLCT → MC)

conversion was determined as well as the energy barriers of the con-

version. Those in complexes containing bpy and terpyridine ligands

were reported to have small activation energies (less than 5 kcal/mol).

The study employed DFT method with the Lee-Yang-Parr correlation

functionals (B3YPP) [16, 17] and a double-zeta quality SDD basis set
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for the ruthenium atom and the other atoms were described by a split

valence Pople basis plus one polarization function (6-311G*). Calcula-

tions were done in acetronitrile solvent using the PCM method.

In Ref. [18], ultrafast transient infrared spectroscopy and DFT calcu-

lations of ruthenium(II) polypyridyl complexes has been used to char-

acterize the transition from 3(MLCT → MC). It has been shown from

the potential energy curves that for [Ru(bpy)3]2+, the triplet manifold

along the metal-ligand distance for the 3dd state is at a higher energy

than the 3MLCT state and that there is a substantial barrier between

the two minima. The study makes use of the Gaussian 09 program

package with the mPW1PW91 functional, D95V basis set for H, C and

N atoms and the LANL2DZ basis set for ruthenium. Calculations were

performed in the gas phase and with the PCM method in order to take

solvent effects into account.

In this work, the height of the activation barrier from 3MLCT to 3MC is

the main interest. For this to be done, the relevant excited states must

be identified so that a plot of the potential energy surface (PES) and

the energies obtained can be used to calculate the height of the barrier.

The 3MLCT and 3MC excited states must be correctly identified and

the energies calculated as the transition occurs from one excited state

to the other. The question is, how do we do this theoretically?

Mulliken spin density analysis has been used as an important tool to

identify the nature of the excited electronic state. This method has

been used previously [15, 18, 19, 19–21] for the same purpose. A unity

net spin on ruthenium was associated with the 3MLCT state while

a net spin of 2 on ruthenium was identified as the 3MC state. Jahn

Teller effect [22] is used as the key principle to help in differentiating

the different kinds of excited states. As the transition occurs from the
3MLCT to 3MC, there is lowering of the symmetry and therefore the

axial bond lengths are distorted by the population of the eg orbital.

The two bond lengths are expected to be significantly longer compared

to the other bonds in the molecule. The location of the 3MC involves
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the distortion of the structures to get a good starting guess for the

triplet optimization. The reasoning behind this distortion is as follows;

displacing ligands away from the ruthenium core will lower the energy

of the unoccupied d orbitals, to a point at which the (dz2 or dx2−y2)

become occupied. Therefore, by the elongation of the Ru-N bonds in

the xy plane, the energy of the unoccupied orbitals decreases, hence

populating the dx2−y2 orbital, leading to the 3MC state [23].

The Mulliken population analysis has been used in this work to char-

acterize the nature of the triplet states in this work, the ultimate goal

being the calculation of the size of the activation barrier.

12.2 Computational Details

All calculations have been done with the Gaussian09 [24] code (version

D.01). The first step involved the ground state optimization of all the three

complexes in gas phase. The 3MLCT and 3dd states were also optimized both

in gas phase and in acetonitrile using the PCM model to account for the sol-

vent effects. A double-ζ quality basis set LANL2DZ and the corresponding

effective core potential (ECP) [25] was used to characterize Ru. H, N and

C atoms were described by the D95V basis set [26]. Frequency calculations

were performed on the optimized geometries so as to check whether they

were the true minima (with no imaginary frequencies). The MPW1PW91

exchange-correlation hybrid functional [27] was used. For all the calcula-

tions, (pop=full) was set to full so as to extract all the information. A

density value of 0.004 was used in Gaussview to generate the spin density

diagrams from cube files. 3MLCT was obtained by optimizing the optimized

ground state with the triplet spin, first in gas phase and then in solvent. The
3MC excited state was obtained by elongating the two axial bond lengths to

2.4000 Å and then optimizing first in gas phase and then in solvent. All the

optimized excited states converged to the true minima as an analysis of the

frequencies did not show any negative frequencies. The potential energy scan

was obtained by increasing the bond length of the two axial bonds in steps

of 0.002 Å and fixing those particular parameters during an optimization.
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12.3 Results and Discussion

Table 12.1,12.2,12.3 gives the optimized bond lengths, charge and spin

density on ruthenium in acetonitrile for the ground state singlet state and the

two triplet excited states for [Ru(bpy)3]2+, [Ru(mbpy)3]2+ and [Ru(mphen)3]2+

respectively.

Table 12.1 – Optimized structural bond lengths (Å) in acetonitrile for the
three states for [Ru(bpy)3]2+.

S0
3MLCT 3MC

Spin(Ru) 0.993 1.874
Charge(Ru) 1.143 1.044

Bond lengths (Å) (This Work)
Ru-N

2 2.07249 2.07430 2.39994
3 2.07286 2.09534 2.12902
4 2.07270 2.07430 2.40019
5 2.07257 2.09534 2.12909
6 2.07328 2.04889 2.08448
7 2.07256 2.04890 2.08449

Other Works [18]
Ru-N

2 2.07266 2.07433 2.40638
3 2.07299 2.09533 2.13187
4 2.07278 2.07434 2.40647
5 2.07230 2.09533 2.13182
6 2.07252 2.04891 2.08578
7 2.07242 2.04892 2.08579

So far, the calculated bond lengths, charge and spin show excellent agree-

ment with other works [18] on the same.

Figures 12.3, 12.4, 12.5 and 12.6, 12.7, 12.8 show the spin density dis-

tribution of the 3MLCT and 3MC of [Ru(bpy)3]2+, [Ru(mbpy)3]2+ and

[Ru(mphen)3]2+ respectively. For the 3MLCT spin density, the excited state

electron is localized on one of the three ligands as shown in Figs. 12.3, 12.4,

and 12.5. This state gives a spin density on Ru of 0.993 which is essentially
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Table 12.2 – Optimized structural bond lengths (Å) in acetonitrile for the
three states for [Ru(mbpy)3]2+.

S0
3MLCT 3MC

Spin(Ru) 1.011473 1.916306
Charge(Ru) 1.072959 0.964987

Bond lengths (Å) (This Work)
Ru-N

2 2.0646903 2.0386164 2.1380399
3 2.1417344 2.1084160 2.4861674
18 2.0844091 2.0886892 2.0728442
19 2.1582617 2.1725408 2.1633806
34 2.1424503 2.1633302 2.4950329
35 2.0733401 2.0755988 2.1253608

Other Works [18]
Ru-N

2 2.06168 2.12842
3 2.13532 2.50581
18 2.08114 2.07758
19 2.15151 2.15821
34 2.13675 2.48641
35 2.06983 2.13332
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Table 12.3 – Optimized structural bond lengths (Å) in acetonitrile for the
three states for [Ru(mphen)3]2+.

S0
3MLCT 3MC

Spin(Ru) 0.966200 1.934650
Charge(Ru) 1.098457 0.985159

Bond lengths (Å) (This Work)
Ru-N

2 2.0245337 2.1308085
3 2.1247346 2.4985064
16 2.1019110 2.0827714
17 2.1759625 2.1708665
30 2.1515958 2.5123456
31 2.0682720 2.1268998

Other Works [18]
Ru-N

2 2.06548 2.02447 2.12839
3 2.14538 2.12483 2.51246
16 2.08095 2.10190 2.08142
17 2.15374 2.17611 2.16979
30 2.13737 2.15169 2.50153
31 2.07366 2.06829 2.12679
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unity and the charge is 1.143. A comparison of the Ru-N bond lengths for

this state and the ground state are not significantly different. In the 3MC

state, one electron is transferred to ruthenium and the spin density changes

from unity to 1.874 which is approximately 2 and a charge of 1.044. The

geometry of 3MC is significantly different from that of the ground state and

the coordination octahedron is strongly distorted due to Jahn-Teller effect

[22]. There is elongation of the two axial bond lengths in the coordination

octahedron; this can be observed from Tables 12.1, 12.2, and 12.3 where

the Ru-N2(2.07433 Å) and Ru-N4(2.07434 Å) in the 3MLCT state changes

to Ru-N2(2.39994 Å) and Ru-N4(2.40019 Å) in the 3MC state. This is a

change of about 0.332 Å in the two axial bond lengths for the transition

from 3MLCT to 3MC state. The other four bond lengths show minimal

bond elongation ranging from 0.03559 to 0.03368 Å.

Figure 12.3 – Spin density distribution of 3MLCT state on [Ru(bpy)3]2+ in
acetonitrile.

The PES scan of the transition from 3MLCT to 3MC state of [Ru(bpy)3]2+

is shown in Fig. 12.9. This was traced by linearly elongating the two Ru-N

bonds in steps of 0.002 Å from 3MLCT to 3MC and optimizing all the other

structural parameters. Efforts to trace the PES scan for [Ru(mbpy)3]2+ and

[Ru(mphen)3]2+ failed after running several calculations. The results ob-

tained showed that the energy kept on increasing with the transition from
3MLCT to 3MC. This is not correct since a barrier is expected, however small
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Figure 12.4 – Spin density distribution of 3MLCT state on [Ru(mbpy)3]2+

in acetonitrile.

Figure 12.5 – Spin density distribution of 3MLCT state on [Ru(mphen)3]2+

in acetonitrile.
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Figure 12.6 – Spin density distribution of 3MC state on [Ru(bpy)3]2+ in
acetonitrile.

Figure 12.7 – Spin density distribution of 3MC state on [Ru(mbpy)3]2+ in
acetonitrile.
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Figure 12.8 – Spin density distribution of 3MC state on [Ru(mphen)3]2+ in
acetonitrile.

when this kind of transition is taking place. Other calculations on the same

complexes will be done in the coming days to establish where the problem

is.
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Figure 12.9 – 3MLCT to 3MC state potential energy scan along the reaction
coordinate of the axial distortion of the 3MC state for [Ru(bpy)3]2+.

12.4 Conclusion

The main aim of this work was to learn how to do the excited state cal-

culations, and eventually to be able to calculate the height of the activation

barrier.
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Information about the height of the activation barrier would be use-

ful in terms of predicting the excited state lifetimes more directly. So far,

this has been achieved to some extent as the excited state calculations

for [Ru(bpy)3]2+ have been done. Calculations for two other complexes,

[Ru(mbpy)3]2+ and [Ru(mphen)3]2+ were not successful for reasons that have

not yet been established since the 3MLCT and 3MC states were sucessfully

identified. It is worthy mentioning that excited state dynamics are not the

same for every ruthenium complex [18, 28, 29]. This is based on the fact that

each complex may have different ligands as well as other factors that have a

significant influence on the excited state dynamics that come into play such

as the solvent effects. Results obtained for [Ru(bpy)3]2+ are encouraging

since with this information the activation barrier can be calculated directly.

Most of the efforts will be directed towards the study of the activation barrier

of homoleptic transition metal complexes.
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Chapter 13

Summary and Conclusion

Transition metal complexes and ruthenium and iridium complexes in

particular have found an important role in electronic devices, including solar

cells and organic light emitting diodes. One reason for this is the presence of

a long-lived triplet excited state which is accessible via singlet excitation fol-

lowed by intersystem crossing due to strong spin-orbit coupling. Such devices

and the experiments needed to develop new materials for new devices can be

expected to benefit from improved understanding through better theoretical

modeling. However realistic modeling of these complexes, while increasingly

possible, is complicated and compute intensive, hence limiting the number

of complexes which can be treated. That is why a much simpler approach

has been taken in this thesis, namely to see how much information about

luminesence lifetimes may be obtained just by looking at gas-phase opti-

mized geometries of ruthenium complexes and their orbital energies. On the

order of 100 ruthenium complexes were studied and it was shown that the

gas-phase DFT geometries are reasonably close to experimentally-measured

crystal geometries. Furthermore TD-DFT spectra correlate reasonably well

with solution spectra corrected for solvent effects. This authorizes us to

use (TD-)DFT as a model for further investigation of the underlying phys-

ical chemical reasons why some complexes have longer lifetimes than other

lifetimes. We immediately faced two difficulties.

The first difficulty is that it is difficult to overcome is to find a way to
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relate the calculated DFT orbital energies with LFT energies. This is impor-

tant because, not only do experimentalists rely highly upon LFT to explain

their results and to plan experiments, but LFT brings out common features

between related but different compounds. We were able to do this by taking

advantage of earlier results from the Franco-Kenyan collaboration, namely

the use of partial density of states (PDOS) analysis. In particular, while

the nonbonding ruthenium t2g orbitals are often identifiable by visualizing

DFT orbitals, this is no longer true of the antibonding e∗g orbitals which mix

with the ligand orbitals in such a way that their density is split over many

DFT energy levels. The PDOS approach takes this splitting specifically into

account and allows us to find approximate e∗g energy levels even when the e∗g
density has been split over many DFT orbitals. This provides an LFT-like

picture which is not LFT but which resembles it enough to be able to use

similar reasoning.

Another difficulty that had to be overcome is that the most common the-

ory for ruthenium complex luminescence lifetimes is based upon estimations

of the height of the transition state barrier on the triplet excited state curve.

However this transition energy is rarely available experimentally. We were

able to overcome this in the first instance by looking at an average lumines-

cence lifetime calculated from experimentally available room temperature

and liquid nitrogen lifetimes.

We were then able to check the value of luminescence indices proposed

in earlier work from our Franco-Kenyan collaboration and found them to

be less than optimal. However frontier-molecular orbital ideas led us to a

new proposal for luminescence indices which, except for a few points, pro-

vides a reasonably linear correlation with the average luminescence lifetime.

The few exceptions observed may be due to qualitatively different relaxation

pathways, to the need for more or better experimental data in these cases,

or, perhaps, still other as yet unimaginable reasons.

One approach for improving this study would be to cut out the need for

experimentally-determined average barriers by direct calculation of theoret-

ical activation energies for de-excitation of the triple excited state. We have

included a chapter in this thesis where we have begun to explore this ap-
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proach. It is indeed more difficult than the orbital-based approach but it is

worthwhile. Though time did not allow us to finish this part of the project,

it is envisaged that the work will continue after finishing the PhD.

Another avenue, and one suggested by a referee for our published paper,

is that the study be extended to iridium compounds. This is also on our list

of future “to-dos.”
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Supplementary Material: Partial Density of States Ligand Field Theory
(PDOS-LFT): Recovering a LFT-Like Picture and Application to the

Photoproperties of Ruthenium Polypyridine Complexes
by Denis Magero, Mark E. Casida, Nicholas Makau, George Amolo, and Lusweti Kituyi

Last update: June 11, 2017

This supplementary material consists of a systematic collection of our calculated partial density of states
(PDOS) and time-dependent B3LYP (TD-B3LYP) spectra for the complexes treated in the main paper.
B3LYP highest-occupied molecular orbital (HOMO) energies, taken directly from the Gaussian outputs,

are also given. These provide an indication of the start of the HOMO-LUMO (lowest unoccupied molecular
orbital) gap. The corresponding notion in solid-state physics is the Fermi energy (roughly equal to the
average of the HOMO and LUMO energies) which is an alternative way to indicate the position of the
HOMO-LUMO gap.
Complexes indicated with an asterisk (*) have unbound (i.e., postive energy) e∗

g
orbitals in their PDOS.

Some complexes could not be included because of difficulty optimizing their geometries. The PDOS could
not always be calculated because of current program limitations. Complexes with only TD-B3LYP spectra
are indicated with a dagger (†).
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2− 5

2 Complex (2)†: [Ru(bpy)2Cl2] 6

3 Complex (3)*: [Ru(bpy)2(CN)2] 7

4 Complex (4): [Ru(bpy)2(en)] 8
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6 Complex (6): [Ru(bpy)3]
2+ 10
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2+ 11

8 Complex (8): [Ru(bpy)2(3,3’-dm-bpy)]2+ 12
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2+ 14
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2+ 15
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13 Complex (14): cis-[Ru(bpy)2(m-4,4’-bpy)2]
4+ 17

14 Complex (15): [Ru(bpy)2(bpz)]
2+ 18

15 Complex (16): [Ru(bpy)2(phen)]
2+ 19

16 Complex (17): [Ru(bpy)2(4,7-dm-phen)]2+ 20

17 Complex (18): [Ru(bpy)2(4,7-Ph2-phen)]
2+ 21
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2+ 41

38 Complex (40): [Ru(bpy)2(i-biq)]
2+ 42

39 Complex (41): [Ru(bpy)2(BL4)]2+ 43

40 Complex (42): [Ru(bpy)2(BL5)]2+ 44

41 Complex (46): [Ru(bpy)(4,4’-DTB-bpy)2]
2+ 45

42 Complex (47): [Ru(bpy)(h-phen)]2+ 46
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2+ 47
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2+ 55
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2+ 69

66 Complex (79): [Ru(phen)2(pq)]
2+ 70

67 Complex (80): [Ru(phen)2(DMCH)]2+ 71

68 Complex (81): [Ru(phen)2(biq)]
2+ 72

69 Complex (82): [Ru(phen)(pq)2]
2+ 73
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2+ 74
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2+ 75

72 Complex (85): [Ru(2,9-dm-phen)3]
2+ 76

73 Complex (86): [Ru(4,7-Ph2-phen)3]
2+ 77
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74 Complex (87): [Ru(4,7-dhy-phen)(tm1-phen)2]
2+ 78

75 Complex (88)*: [Ru(DPA)3]
− 79

76 Complex (89): [Ru(DPA)(DPAH)2]
+ 80

77 Complex (90): [Ru(DPAH)3]
2+ 81

78 Complex (91): [Ru(Azpy)3]
2+ 82

79 Complex (92): [Ru(NA)3]
2+ 83

80 Complex (93): [Ru(hpiq)3]
2+ 84

81 Complex (94): [Ru(pq)3]
2+ 85

82 Complex (95): [Ru(pq)2(biq)]
2+ 86

83 Complex (96): [Ru(pq)(biq)2]
2+ 87

84 Complex (97): [Ru(pynapy)3]
2+ 88

85 Complex (98)†: [Ru(DMCH)2Cl2] 89

86 Complex (99)*: [Ru(DMCH)2(CN)2] 90

87 Complex (100): [Ru(DMCH)3]
2+ 91

88 Complex (101): [Ru(dinapy)3]
2+ 92

89 Complex (102)†: [Ru(biq)2Cl2] 93

90 Complex (103)*: [Ru(biq)2(CN)2] 94

91 Complex (104): [Ru(biq)3]
2+ 95

92 Complex (105)†: [Ru(i-biq)2Cl2] 96
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2+ 98
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1. Complex (1)*: [Ru(bpy)(CN)4]
2−

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = 1.57 eV ǫHOMO = 1.63 eV

Total and partial density of states of [Ru(bpy)(CN)4]
2− partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)(CN)4]
2− TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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2. Complex (2)†: [Ru(bpy)2Cl2]

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.52 eV ǫHOMO = -4.47 eV

Absorption Spectrum

[Ru(bpy)2Cl2] TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental curve
measured at room temperature in acetonitrile [1].
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3. Complex (3)*: [Ru(bpy)2(CN)2]

PDOS

10 8 6 4 2 0 2
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DOS

Ru d orbitals

C and N p orbitals

8 6 4 2 0 2
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14

DOS

Ru d orbitals

C and N p orbitals

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.80 eV ǫHOMO = -4.80 eV

Total and partial density of states of [Ru(bpy)2(CN)2] partitioned over Ru d orbitals and ligand C and N p
orbitals.

Absorption Spectrum

[Ru(bpy)2(CN)2] TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental curve
measured at room temperature in acetonitrile [2].
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4. Complex (4): [Ru(bpy)2(en)]

PDOS

14 12 10 8 6 4 2

0

5
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20

DOS

Ru d orbitals

C N and O p orbitals

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.16 eV ǫHOMO = -11.32 eV

Total and partial density of states of [Ru(bpy)2(en)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2)(en)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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5. Complex (5)*: [Ru(bpy)2(ox)]

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.60 eV ǫHOMO = -4.46 eV

Total and partial density of states of [Ru(bpy)2(ox)] partitioned over Ru d orbitals and ligand C, O and N
p orbitals.

Absorption Spectrum

[Ru(bpy)2(ox)] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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6. Complex (6): [Ru(bpy)3]
2+

PDOS
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C and N p orbitals

Ru d orbitals
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DOS

C and N p orbitals

Ru d orbital

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.20 eV ǫHOMO = -11.31 eV

Total and partial density of states of [Ru(bpy)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(bpy)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. “Frozen” means a cal-

culation at the X-ray crystallography geometry without further optimization. Experimental curve measured
at room temperature in water [3].
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7. Complex (7)*: [Ru(bpy)2(4-n-bpy)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.28 eV ǫHOMO = -11.36 eV

Total and partial density of states of [Ru(bpy)2(4-n-bpy)]
2+ partitioned over Ru d orbitals and ligand C, O

and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4-n-bpy)]
+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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8. Complex (8): [Ru(bpy)2(3,3’-dm-bpy)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.84 eV ǫHOMO = -10.97 eV

Total and partial density of states of [Ru(bpy)2(3,3’-dm-bpy)]2+ partitioned over Ru d orbitals and ligand
C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(3,3’-dm-bpy)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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9. Complex (9): [Ru(bpy)2(4,4’-dm-bpy)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.78 eV ǫHOMO = -10.91 eV

Total and partial density of states of [Ru(bpy)2(4,4’-dm-bpy)]2+ partitioned over Ru d orbitals and ligand
C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,4’-dm-bpy)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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10. Complex (11): [Ru(bpy)2(4,4’-dn-bpy)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.59 eV ǫHOMO = -10.62 eV

Total and partial density of states of [Ru(bpy)2(4,4’-dn-bpy)]
2+ partitioned over Ru d orbitals and ligand

C, O and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,4’-dn-bpy)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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11. Complex (12): [Ru(bpy)2(4,4’-dph-bpy)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.48 eV ǫHOMO = -10.56 eV

Total and partial density of states of [Ru(bpy)2(4,4’-dph-bpy)]
2+ partitioned over Ru d orbitals and ligand

C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,4’-dph-bpy)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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12. Complex (13): [Ru(bpy)2(4,4’-DTB-bpy)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.65 eV ǫHOMO = -10.78 eV

Total and partial density of states of [Ru(bpy)2(4,4’-DTB-bpy)]2+ partitioned over Ru d orbitals and ligand
C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,4’-DTB-bpy)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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13. Complex (14): cis-[Ru(bpy)2(m-4,4’-bpy)2]
4+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -14.40 eV ǫHOMO = -14.52 eV

Total and partial density of states of cis-[Ru(bpy)2(m-4,4’-bpy)2)]
4+ partitioned over Ru d orbitals and

ligand C and N p orbitals.

Absorption Spectrum

Cis-[Ru(bpy)2(m-4,4’-bpy)2)]
4+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Ex-

perimental curve at 25◦C in acetonitrile[4].
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14. Complex (15): [Ru(bpy)2(bpz)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.51 eV ǫHOMO = -11.58 eV

Total and partial density of states of [Ru(bpy)2(bpz)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2(bpz)]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

curve from [5].
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15. Complex (16): [Ru(bpy)2(phen)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.91 eV ǫHOMO = -11.05 eV

Total and partial density of states of [Ru(bpy)2(phen)]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)2(phen)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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16. Complex (17): [Ru(bpy)2(4,7-dm-phen)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.73 eV ǫHOMO = -10.87 eV

Total and partial density of states of [Ru(bpy)2(4,7-dm-phen)]2+ partitioned over Ru d orbitals and ligand
C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,7-dm-phen)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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17. Complex (18): [Ru(bpy)2(4,7-Ph2-phen)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.43 eV ǫHOMO = -10.46 eV

Total and partial density of states of [Ru(bpy)2(4,7-Ph2-phen)]
2+ partitioned over Ru d orbitals and ligand

C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,7-Ph2-phen)]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experi-

mental spectrum measured in acetonitrile [6].
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18. Complex (19): [Ru(bpy)2(4,7-dhy-phen)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.71 eV ǫHOMO = -10.79 eV

Total and partial density of states of [Ru(bpy)2(4,7-dhy-phen)]
2+ partitioned over Ru d orbitals and ligand

C,O, and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(4,7-dhy-phen)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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19. Complex (20): [Ru(bpy)2(5,6-dm-phen)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.80 eV ǫHOMO = -10.94 eV

Total and partial density of states of [Ru(bpy)2(5,6-dm-phen)]2+ partitioned over Ru d orbitals and ligand
C and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(5,6-dm-phen)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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20. Complex (21): [Ru(bpy)2(DIAF)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.00 eV ǫHOMO = -11.14 eV

Total and partial density of states of [Ru(bpy)2(DIAF)]2+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)2(DIAF)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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21. Complex (22)†: [Ru(bpy)2(DIAFO)]2+

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.17 eV ǫHOMO = -11.30 eV

Absorption Spectrum

[Ru(bpy)2(DIAFO)]2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental
spectrum measured at room temperature in acetonitrile [7].
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22. Complex (23): [Ru(bpy)2(taphen)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.25 eV ǫHOMO = -11.35 eV

Total and partial density of states of [Ru(bpy)2(taphen)]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)2(taphen)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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23. Complex (24): cis-[Ru(bpy)2(py)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.95 eV ǫHOMO = -11.10 eV

Total and partial density of states of cis-[Ru(bpy)2(py)2]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

Cis-[Ru(bpy)2(py)2]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

spectrum measured in water [8].
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24. Complex (25): trans-[Ru(bpy)2(py)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.95 eV ǫHOMO = -11.10 eV

Total and partial density of states of trans-[Ru(bpy)2(py)2]
2+ partitioned over Ru d orbitals and ligand C

and N p orbitals.

Absorption Spectrum

Trans-[Ru(bpy)2(py)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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25. Complex (26): [Ru(bpy)2(pic)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.78 eV ǫHOMO = -10.93 eV

Total and partial density of states of [Ru(bpy)2(pic)2]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2(pic)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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26. Complex (27): [Ru(bpy)2(DPM)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.91 eV ǫHOMO = -11.06 eV

Total and partial density of states of [Ru(bpy)2(DPM)]2+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)2(DPM)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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27. Complex (28): [Ru(bpy)2(DPE)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.91 eV ǫHOMO = -11.08 eV

Total and partial density of states of [Ru(bpy)2(DPE)]2+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)2(DPE)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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28. Complex (29): [Ru(bpy)2(PimH)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.87 eV ǫHOMO = -11.00 eV

Total and partial density of states of [Ru(bpy)2(PimH)]2+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)2(PimH)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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29. Complex (30): [Ru(bpy)2(PBzimH)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.75 eV ǫHOMO = -10.86 eV

Total and partial density of states of [Ru(bpy)2(PBzimH)]2+ partitioned over Ru d orbitals and ligand C
and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(PBzimH)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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30. Complex (31): [Ru(bpy)2(biimH2)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.77 eV ǫHOMO = -10.90 eV

Total and partial density of states of [Ru(bpy)2(biimH2)]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)2(biimH2)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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31. Complex (32): [Ru(bpy)2(BiBzimH2)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.58 eV ǫHOMO = -10.68 eV

Total and partial density of states of [Ru(bpy)2(BiBzimH2)]
2+ partitioned over Ru d orbitals and ligand C

and N p orbitals.

Absorption Spectrum

[Ru(bpy)2(BiBzimH2)]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimen-

tal curve measured at room temperature in acetonitrile[9].
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32. Complex (34): [Ru(bpy)2(piq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.79 eV ǫHOMO = -10.89 eV

Total and partial density of states of [Ru(bpy)2(piq)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2(piq)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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33. Complex (35): [Ru(bpy)2(hpiq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.76 eV ǫHOMO = -10.86 eV

Total and partial density of states of [Ru(bpy)2(hpiq)]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)2(hpiq)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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34. Complex (36): [Ru(bpy)2(pq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.84 eV ǫHOMO = -10.96 eV

Total and partial density of states of [Ru(bpy)2(pq)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2(pq)]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental curve

measured in DMF [10].
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35. Complex (37): [Ru(bpy)2(DMCH)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.50 eV ǫHOMO = -10.61 eV

Total and partial density of states of [Ru(bpy)2(DMCH)]2+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)2(DMCH)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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36. Complex (38)†: [Ru(bpy)2(OMCH)]2+

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.35 eV ǫHOMO = -10.39 eV

Absorption Spectrum

[Ru(bpy)2(OMCH)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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37. Complex (39)†: [Ru(bpy)2(biq)]
2+

Absorption Spectrum

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.72 eV ǫHOMO = -10.82 eV

[Ru(bpy)2(biq)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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38. Complex (40): [Ru(bpy)2(i-biq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.58 eV ǫHOMO = -10.67 eV

Total and partial density of states of [Ru(bpy)2(i-biq)]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)2(i-biq)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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39. Complex (41): [Ru(bpy)2(BL4)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -8.94 eV ǫHOMO = -9.15 eV

Total and partial density of states of [Ru(bpy)2(BL4)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2(BL4)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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40. Complex (42): [Ru(bpy)2(BL5)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -8.48 eV ǫHOMO = -8.59 eV

Total and partial density of states of [Ru(bpy)2(BL5)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)2(BL5)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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41. Complex (46): [Ru(bpy)(4,4’-DTB-bpy)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.36 eV ǫHOMO = -10.49 eV

Total and partial density of states of [Ru(bpy)(4,4’-DTB-bpy)2]
2+ partitioned over Ru d orbitals and ligand

C and N p orbitals.

Absorption Spectrum

[Ru(bpy)(4,4’-DTB-bpy)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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42. Complex (47): [Ru(bpy)(h-phen)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.77 eV ǫHOMO = -10.91 eV

Total and partial density of states of [Ru(bpy)(h-phen)]2+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)(h-phen)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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43. Complex (48): [Ru(bpy)(phen)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.86 eV ǫHOMO = -11.00 eV

Total and partial density of states of [Ru(bpy)(phen)2]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)(phen)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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44. Complex (50): trans-[Ru(bpy)(phen)(py)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.89 eV ǫHOMO = -11.04 eV

Total and partial density of states of trans-[Ru(bpy)(phen)(py)2]
2+ partitioned over Ru d orbitals and ligand

C and N p orbitals.

Absorption Spectrum

Trans-[Ru(bpy)(phen)(py)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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45. Complex (52): [Ru(bpy)(taphen)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.53 eV ǫHOMO = -11.60 eV

Total and partial density of states of [Ru(bpy)(taphen)2]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)(taphen)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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46. Complex (53): [Ru(bpy)(py)2(en)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.19 eV ǫHOMO = -11.39 eV

Total and partial density of states of [Ru(bpy)(py)2(en)]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)(py)2(en)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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47. Complex (55): [Ru(bpy)(py)4]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.96 eV ǫHOMO = -11.13 eV

Total and partial density of states of [Ru(bpy)(py)4]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)(py)4]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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48. Complex (56): [Ru(bpy)(py)2(PMA)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.12 eV ǫHOMO = -11.29 eV

Total and partial density of states of [Ru(bpy)(py)2(PMA)]2+ partitioned over Ru d orbitals and ligand C
and N p orbitals.

Absorption Spectrum

[Ru(bpy)(py)2(PMA)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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49. Complex (57): [Ru(bpy)(py)2(2-AEP)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.99 eV ǫHOMO = -11.17 eV

Total and partial density of states of [Ru(bpy)(py)2(2-AEP)]
2+ partitioned over Ru d orbitals and ligand C

and N p orbitals.

Absorption Spectrum

[Ru(bpy)(py)2(2-AEP)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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50. Complex (58): [Ru(bpy)(PMA)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.17 eV ǫHOMO = -11.35 eV

Total and partial density of states of [Ru(bpy)(PMA)2]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)(PMA)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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51. Complex (60): [Ru(bpy)(DMCH)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.13 eV ǫHOMO = -10.23 eV

Total and partial density of states of [Ru(bpy)(DMCH)2]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(bpy)(DMCH)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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52. Complex (61): [Ru(bpy)(biq)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.50 eV ǫHOMO = -10.59 eV

Total and partial density of states of [Ru(bpy)(biq)2]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(bpy)(biq)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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53. Complex (63)†: [Ru(bpy)(trpy)Cl]+

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -7.76 eV ǫHOMO = -7.78 eV

Absorption Spectrum

[Ru(bpy)(trpy)Cl]+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental
curve measured in acetonitrile at room temperature [9].
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54. Complex (64)*: [Ru(bpy)(trpy)(CN)]+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.97 eV ǫHOMO = -11.15 eV

Total and partial density of states of [Ru(bpy)(trpy)(CN)]+ partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(bpy)(trpy)(CN)]+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experiment in
acetonitrile [11].
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55. Complex (66)*: [Ru(6-m-bpy)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -13.92 eV ǫHOMO = -13.84 eV

Total and partial density of states of [Ru(6-m-bpy)3]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(6-m-bpy)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

curves measured in acetonitrile [12] and methanol [13], both at room temperature.
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56. Complex (67)*: [Ru(3,3’-dm-bpy)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -13.72 eV ǫHOMO = -13.67 eV

Total and partial density of states of [Ru(3,3’-dm-bpy)3]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(3,3’-dm-bpy)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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57. Complex (69): [Ru(3,3’-dm-bpy)(phen)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -13.45 eV ǫHOMO = -13.45 eV

Total and partial density of states of [Ru(3,3’-dm-bpy)(phen)2]
2+ partitioned over Ru d orbitals and ligand

C and N p orbitals.

Absorption Spectrum

[Ru(3,3’-dm-bpy)(phen)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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58. Complex (70): [Ru(4,4’-dm-bpy)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.42 eV ǫHOMO = -10.56 eV

Total and partial density of states of [Ru(3,3’-dm-bpy)3]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(3,3’-dm-bpy)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

spectrum measured in acetonitrile [14].
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59. Complex (71): [Ru(4,4’-dm-bpy)2(4,7-dhy-phen)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.38 eV ǫHOMO = -10.48 eV

Total and partial density of states of [Ru(4,4’-dm-bpy)2(4,7-dhy-phen)]
2+ partitioned over Ru d orbitals and

ligand C, O, and N p orbitals.

Absorption Spectrum

[Ru(4,4’-dm-bpy)2(4,7-dhy-phen)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.

63



60. Complex (73): [Ru(4,4’-dph-bpy)3]
2+

PDOS

B3LYP/6-31G
ǫHOMO = -9.84 eV

Total and partial density of states of [Ru(4,4’-dph-bpy)3]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(4,4’-dph-bpy)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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61. Complex (74): [Ru(4,4’-DTB-bpy)3]
2+

PDOS

B3LYP/6-31G
ǫHOMO = -10.08 eV

Total and partial density of states of [Ru(4,4’-DTB-bpy)3]
2+ partitioned over Ru d orbitals and ligand C

and N p orbitals.

Absorption Spectrum

[Ru(4,4’-DTB-bpy)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

spectrum measured in dichloromethane at room temperature [15].
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62. Complex (75): [Ru(6,6’-dm-bpy)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.80 eV ǫHOMO = -10.97 eV

Total and partial density of states of [Ru(6,6’-dm-bpy)3]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(6,6’-dm-bpy)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

spectrum measured in methanol [13].
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63. Complex (76): [Ru(h-phen)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.68 eV ǫHOMO = -10.82 eV

Total and partial density of states of [Ru(h-phen)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(h-phen)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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64. Complex (77): [Ru(phen)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.82 eV ǫHOMO = -10.95 eV

Total and partial density of states of [Ru(phen)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(phen)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental spectrum

measured in acetonitrile [16].
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65. Complex (78): [Ru(phen)2(4,7-dhy-phen)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.63 eV ǫHOMO = -10.72 eV

Total and partial density of states of [Ru(phen)2(4,7-dhy-phen)]
2+ partitioned over Ru d orbitals and ligand

C, O, and N p orbitals.

Absorption Spectrum

[Ru(phen)2(4,7-dhy-phen)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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66. Complex (79): [Ru(phen)2(pq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.74 eV ǫHOMO = -10.87 eV

Total and partial density of states of [Ru(phen)2(pq)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(phen)2(pq)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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67. Complex (80): [Ru(phen)2(DMCH)]2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.42 eV ǫHOMO = -10.52 eV

Total and partial density of states of [Ru(phen)2(DMCH)]2+ partitioned over Ru d orbitals and ligand C
and N p orbitals.

Absorption Spectrum

[Ru(phen)2(DMCH)]2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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68. Complex (81): [Ru(phen)2(biq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.62 eV ǫHOMO = -10.73 eV

Total and partial density of states of [Ru(phen)2(biq)]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(phen)2(biq)]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. The experimental

spectrum is measured in water [17].
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69. Complex (82): [Ru(phen)(pq)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.69 eV ǫHOMO = -10.80 eV

Total and partial density of states of [Ru(phen)(pq)2]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(phen)(pq)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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70. Complex (83): [Ru(phen)(biq)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.46 eV ǫHOMO = -10.55 eV

Total and partial density of states of [Ru(phen)(biq)2]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(phen)(biq)2]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental

spectrum measured in water [17].
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71. Complex (84): [Ru(2-m-phen)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.68 eV ǫHOMO = -10.83 eV

Total and partial density of states of [Ru(2-m-phen)3]
2+ partitioned over Ru d orbitals and ligand C and N

p orbitals.

Absorption Spectrum

[Ru(2-m-phen)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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72. Complex (85): [Ru(2,9-dm-phen)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.59 eV ǫHOMO = -10.75 eV

Total and partial density of states of [Ru(2,9-dm-phen)3]
2+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(2,9-dm-phen)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.

76



73. Complex (86): [Ru(4,7-Ph2-phen)3]
2+

PDOS

B3LYP/6-31G
ǫHOMO = -9.84 eV

Total and partial density of states of [Ru(4,7-Ph2-phen)3]
2+ partitioned over Ru d orbitals and ligand C

and N p orbitals.

Absorption Spectrum

[Ru(4,7-Ph2-phen)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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74. Complex (87): [Ru(4,7-dhy-phen)(tm1-phen)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.11 eV ǫHOMO = -10.23 eV

Total and partial density of states of [Ru(4,7-dhy-phen)(tm1-phen)2]
2+ partitioned over Ru d orbitals and

ligand C, O, and N p orbitals.

Absorption Spectrum

[Ru(4,7-dhy-phen)(tm1-phen)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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75. Complex (88)*: [Ru(DPA)3]
−

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -1.35 eV ǫHOMO = -1.43 eV

Total and partial density of states of [Ru(DPA)3]
− partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(DPA)3]
− TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental spectrum

measured in dimethyl sulfoxide [18].
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76. Complex (89): [Ru(DPA)(DPAH)2]
+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -6.71 eV ǫHOMO = -6.73 eV

Total and partial density of states of [Ru(DPA)(DPAH)2]
+ partitioned over Ru d orbitals and ligand C and

N p orbitals.

Absorption Spectrum

[Ru(DPA)(DPAH)2]
+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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77. Complex (90): [Ru(DPAH)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.53 eV ǫHOMO = -10.70 eV

Total and partial density of states of [Ru(DPAH)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(DPAH)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental spec-

trum measured in a mixture of methanol and ethanol [18].
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78. Complex (91): [Ru(Azpy)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.66 eV ǫHOMO = -11.67 eV

Total and partial density of states of [Ru(Azpy)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(Azpy)3]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental spec-

trum measured in acrylonitrile [16].
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79. Complex (92): [Ru(NA)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -12.42 eV ǫHOMO = -12.33 eV

Total and partial density of states of [Ru(NA)3]
2+ partitioned over Ru d orbitals and ligand C, O, and N p

orbitals.

Absorption Spectrum

[Ru(NA)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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80. Complex (93): [Ru(hpiq)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.60 eV ǫHOMO = -10.67 eV

Total and partial density of states of [Ru(hpiq)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(hpiq)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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81. Complex (94): [Ru(pq)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.65 eV ǫHOMO = -10.77 eV

Total and partial density of states of [Ru(pq)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(pq)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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82. Complex (95): [Ru(pq)2(biq)]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.54 eV ǫHOMO = -10.64 eV

Total and partial density of states of [Ru(pq)2(biq)]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(pq)2(biq)]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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83. Complex (96): [Ru(pq)(biq)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.45 eV ǫHOMO = -10.55 eV

Total and partial density of states of [Ru(pq)(biq)2]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(pq)(biq)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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84. Complex (97): [Ru(pynapy)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.34 eV ǫHOMO = -10.46 eV

Total and partial density of states of [Ru(pynapy)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(pynapy)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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85. Complex (98)†: [Ru(DMCH)2Cl2]

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.36 eV ǫHOMO = -4.32 eV

Absorption Spectrum

[Ru(DMCH)2Cl2] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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86. Complex (99)*: [Ru(DMCH)2(CN)2]

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.56 eV ǫHOMO = -4.60 eV

Total and partial density of states of [Ru(DMCH)2(CN)2] partitioned over Ru d orbitals and ligand C and
N p orbitals.

Absorption Spectrum

[Ru(DMCH)2(CN)2] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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87. Complex (100): [Ru(DMCH)3]
2+

PDOS

6-31G
ǫHOMO = -9.87 eV

Total and partial density of states of [Ru(DMCH)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(DMCH)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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88. Complex (101): [Ru(dinapy)3]
2+

PDOS

6-31G
ǫHOMO = -9.69 eV

Total and partial density of states of [Ru(dinapy)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(dinapy)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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89. Complex (102)†: [Ru(biq)2Cl2]

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.80 eV ǫHOMO = -4.74 eV

Absorption Spectrum

[Ru(biq)2Cl2] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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90. Complex (103)*: [Ru(biq)2(CN)2]

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.89 eV ǫHOMO = -4.88 eV

Total and partial density of states of [Ru(biq)2(CN)2] partitioned over Ru d orbitals and ligand C and N p
orbitals.

Absorption Spectrum

[Ru(biq)2(CN)2] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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91. Complex (104): [Ru(biq)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.36 eV ǫHOMO = -10.46 eV

Total and partial density of states of [Ru(biq)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(biq)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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92. Complex (105)†: [Ru(i-biq)2Cl2]

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.30 eV ǫHOMO = -4.27 eV

Absorption Spectrum

[Ru(i-biq)2Cl2] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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93. Complex (106)*: [Ru(i-biq)2(CN)2]

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.54 eV ǫHOMO = -4.57 eV

Total and partial density of states of [Ru(i-biq)2(CN)2] partitioned over Ru d orbitals and ligand C and N
p orbitals.

Absorption Spectrum

[Ru(i-biq)2(CN)2] TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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94. Complex (107): [Ru(i-biq)3]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -9.95 eV ǫHOMO = -10.07 eV

Total and partial density of states of [Ru(i-biq)3]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(i-biq)3]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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95. Complex (108): [Ru(trpy)2]
2+

PDOS

14 12 10 8 6 4 2

0

5

10

15

20

25

DOS
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B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -11.09 eV ǫHOMO = -11.19 eV

Total and partial density of states of [Ru(trpy)2]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(trpy)2]
2+ TD-B3LYP/6-31G, TD-B3LYP/6-31G(d), and experimental spectra. Experimental spectra

measured at 294K in acetronitrile[19, 20] and at 298K in water (H2O) and dichloromethane (CH2Cl2)[21].
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96. Complex (109): [Ru(tro)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -10.53 eV ǫHOMO = -10.57 eV

Total and partial density of states of [Ru(tro)2]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(tro)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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97. Complex (110): [Ru(tsite)2]
2+

PDOS

6-31G
ǫHOMO = -9.84 eV

Total and partial density of states of [Ru(tsite)2]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(tsite)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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98. Complex (111)*: [Ru(dqp)2]
2+

PDOS

B3LYP/6-31G B3LYP/6-31G(d)
ǫHOMO = -4.25 eV ǫHOMO = -12.94 eV

Total and partial density of states of [Ru(dqp)2]
2+ partitioned over Ru d orbitals and ligand C and N p

orbitals.

Absorption Spectrum

[Ru(dqp)2]
2+ TD-B3LYP/6-31G and TD-B3LYP/6-31G(d) spectra.
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