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Chapter 1

Introduction

We are interested in fast matrix decomposition and its natural extension, tensor de-

composition. Here, by “fast”, we target at low-complexity and distributed/parallelizable

algorithms, which allow the handling of massive data for both batch and adaptive

settings. For matrix decomposition, particularly, we will focus on low-rank matrix

decomposition, also known as subspace estimation in signal processing and array

processing. For tensor decomposition, we will concentrate on low rank tensor decom-

position where two widely used models, Parallel Factor Analysis (PARAFAC) and

Tucker, will be considered.

Matrix and tensor decompositions are versatile tools used in diverse disciplines

including signal processing, linear and multilinear algebra, data communication, data

mining, machine learning, to name a few, because they help to process, model, ana-

lyze, understand or eventually compress data. We give concrete examples to illustrate

this point from several perspectives. Figure 1.1 describes a radio-astronomy system

including several Low-Freqency-Array (LOFAR) stations. After beamforming to the

direction of interest, signals from all stations are transmitted to a central correlator

to performs the correlation. Then applying beamforming to the covariance matrix

(in all direction in the skype) can help to produce a skymap. However, the observa-
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Figure 1.1: LOFAR stations.

tional signals is often accompanied by Radio Frequency Interference (RFI), leading

to data loss and observation inefficiency. To mitigate RFI, subspace-based methods

have been proven to be a simple and efficient way (see [1] and references therein).

This approach estimates the principal subspaces using SVD of the covariance matrix

and then build an orthogonal projection to eliminate RFIs (see Chapter 2 for a deeper

analysis). For tensor case, we illustrate the efficiency of PARAFAC decomposition

in EEG signal analysis (Figure 1.2). A multi-channel EEG record is transformed to

the time-frequency domain to create a three-way tensor. A wavelet or time-frequency

transform can be used in this situation. Then, PARAFAC decompose three-way ten-

sor in terms of temporal, frequency and topography components. The information

from those components can be exploited in the diagnosis process. On the other hand,

from Table 1.1, it is straightforward to see that representation of data by matrix

or tensor decomposition (i.e., number of parameters) is much less than data itself.

Thus, matrix or tensor decomposition can serve as a compression tool when appli-
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Figure 1.2: Time-Frequency representation of EEG signals and its PARAFAC decompo-
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Raw data vs. Representation

Number of parameters mn mr ` nr (Matrix decomposition)
IJK IR ` JR ` KR (PARAFAC)
IJK IP ` JQ ` KR ` PQR (Tucker)

Table 1.1: A comparison on number of parameters of raw data and its presentation using
matrix and tensor decomposition.

cable. In particular, a rank-r matrix of size m ˆ n, assume that r ! m,n, has only

mr ` nr parameters by way of truncated SVD. Similarly, we only need to consider

IR`JR`KR or IP `JQ`KR`PQR parameters as a replacement for IJK ones

if we can use PARAFAC or Tucker decomposition respectively. Here we assume that

P ! I,Q ! J, and R ! K.

However, the following common characteristics shared by many large-scale datasets

make the problem exceedingly difficult [2] (i) extremely large on amount of data (up

to million to billion entries) (ii) high dimensional to capture many aspects of the

considered object (iii) time constraint or real time requirement for streaming data

sources [3]. Sometimes, those characteristics can join together to form even harder

issues. For examples, we will consider large-scale batch tensor data (thus, (i) and

(ii)) in Chapter 4, and streaming tensor data (thus, (ii) and (iii)) in Chapter 6).

Back to the example of radio-astronomy, a real implementation of this description

is the LOFAR system [4] which is comprised of 18 core stations, 18 remote stations
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and 8 international stations. Each station has 96 Low Band Antennas (LBA) and 48

High Band Antennas (HBA). Thus, even if we consider only the HBA and want to

build a skymap from data of all stations, the number of sensors to process in total is

quite large (more than 2000). In the EEG analysis example, if we take into account

other essential aspects such as trials, conditions, subjects and groups, a huge amount

of data can produce, making it difficult for traditional analysis tools to handle. A

real-life example of large EEG dataset is MindBigData1.

To tackle those problems, it naturally leads to using distributed/parallel comput-

ing and contemplating structure of the problem. However, how we can exploit the

structure of problem as well as parallel computing efficiently for each specific task

remains an open and challenging problem. Our work will focus on these two aspects

and, thus, develop corresponding fast algorithms.

1.1 Thesis Overview and Contributions

1.1.1 Thesis overview

The structure of the thesis is divided into two main parts: fast matrix decomposition,

and fast tensor decomposition. Next, we will describe their contents in detail.

Subspace estimation. In the first part (Chapter 2), we explore the problem of

parallel/distributed subspace estimation for array processing applications. Subspace

based methods are widely used because of its simplicity and accuracy. However,

computational complexity of subspace estimation is also known to be expensive and

inappropriate for large-scale problems. Thus, we use a divide-and-conquer approach

and exploit parallel computing architectures to improve scalability of this task. In

1This dataset can be found at http://www.mindbigdata.com/opendb/.
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particular, our method divides large data into smaller ones, estimates the principal

and minor subspace from covariance matrices and fuses the local results into global

one. Different batch and adaptive algorithms are taken into account for fast and

parallel computation of both signal (principal) and noise (minor) subspaces. The

method is motivated by the theory of minimum noise subspace (MNS) previously

introduced in the context of blind channel identification; hence named Generalized

MNS (GMNS). We then apply GMNS to RFI mitigation which is a challenging prob-

lem in radio astronomy. The result shows that GMNS represents an excellent trade-off

between the computational gain and the subspace estimation accuracy, as compared

to several standard subspace methods.

In the second part, we explore fast tensor decompositions for large scale data.

A short survey of fast tensor decompositions for big data processing. Before

presenting the proposed algorithms of large scale-tensor decomposition , Chapter 3

presents a short survey on several recent state-of-the-art approaches for large-scale

tensor data which is a crucial part of big data. We cover both batch and adaptive

settings but limited to only PARAFAC and Tucker models.

Parallelizable PARAFAC decomposition. Inspired by the divide-and-conquer

based GMNS method, we propose a parallelizable PARAFAC decomposition in Chap-

ter 4. In the “divide” step, we take into account overlapping and non-overlapping

cases. The simulation result reveals that the performance of the proposed algorithm is

close to that of algorithm processing the whole data. Moreover, we also indicate that

solving PARAFAC decomposition is essentially equivalent to solving non-symmetric

joint diagonalization which is developed for blind source separation (BSS).

Robust tensor decompositions. Since determining tensor rank in advance is an

NP-complete problem, with few exceptions, most tensor algorithms are computed

with a guess (overestimated value) of the exact rank, known as the overfactoring.
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Moreover, among various constraints, non-negativity and sparsity are the most popu-

lar ones because many problems come naturally with them such as for text, image, and

EEG signal analysis. We thus adapt the all-at-once optimization framework which is

robust to the overfactoring to impose either non-negativity constraint or both non-

negativity and sparseness constraint in Chapter 5. It is shown that our proposed

algorithms eliminate artifacts and improve accuracy as compared to the state-of-

the-art algorithms. This work can be combined with the techniques developed in

Chapter 4 to handle large-scale sparse and non-negative tensor decomposition.

Fast adaptive PARAFAC algorithms for streaming tensors. In Chapter 6,

we develop two adaptive PARAFAC algorithms for streaming tensors that have one

dimension growing with time. The main problem of the state-of-the-art algorithms is

that their computational complexity is quadratic with respect to the tensor rank. Our

algorithms, in contrast, achieve linear computational complexity while keeping the

accuracy equivalent or even superior than the previous proposed algorithms. The first

proposed algorithm generalizes the Orthonormal Projection Approximation Subspace

Tracking (OPAST) approach along with a Khatri-Rao product constraint on each

column of the estimated subspace. The second algorithm is based on an alternating

least squares approach in conjunction with a Newton-type optimization technique.

On top of that, they preserve the Khatri-Rao product approximately and exploits

the reduced-rank update structure of the estimated subspace at each time instant.

In addition, we also introduced adaptive non-negative PARAFAC decomposition and

adapted one of the proposed algorithm to tackle this problem.

1.1.2 Publications

Most of the above results above have been published/submitted in the following

papers:
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Journal Papers

1. V.-D. Nguyen, K. Abed-Meraim, N. Linh-Trung, and R. Weber. Generalized

Minimum Noise Subspace for Array Processing. Submitted to IEEE Transac-

tions on Signal Processing, 2016.

2. V.-D. Nguyen, K. Abed-Meraim, and N. Linh-Trung. Second-Order Optimiza-

tion based Adaptive PARAFAC Decomposition of Three-Way Tensors. Submit-

ted to Digital Signal Processing, 2016

Conference Papers

1. V.-D. Nguyen, K. Abed-Meraim, N. Linh-Trung, and R. Weber. General-

ized MNS Method for Parallel Minor and Principal Subspace Analysis. 22nd

European Signal Processing Conference (EUSIPCO) 2013, pages: 2265-2269,

September 2014.

2. V.-D. Nguyen, K. Abed-Meraim, and N. Linh-Trung. Parallelizable PARAFAC

Decomposition of 3-way Tensors. IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) 2015, pages : 5505-5509, April 2015.

3. V.-D. Nguyen, K. Abed-Meraim, and N. Linh-Trung. Fast Adaptive PARAFAC

Decomposition Algorithm with Linear Complexity. IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP) 2016, pages :

6235-6239, March 2016.

4. V.-D. Nguyen, K. Abed-Meraim, and N. Linh-Trung. New Robust Algorithms

for Sparse Non-negative Three-way Tensor Decompositions. 24nd European

Signal Processing Conference (EUSIPCO) 2016, September 2016.

5. V.-D. Nguyen, K. Abed-Meraim, and N. Linh-Trung. Fast Tensor Decompo-
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1.1.3 Beyond This Thesis

I also contribute to two other works which are the outside of the scope of this thesis.

The first one is the performance analysis of time-frequency sparsity prior to local-

ization performance [5], in collaboration with Dr. Boudjellal, Prof. Abed-Meraim,

Prof. Belouchrani and Prof. Ravier. The second is adaptive PARAFAC decompo-

sition for third-order tensor completion [6], in collaboration with Mr. Truong, Prof.

Abed-Meraim and Prof. Nguyen. We refer interested reader to those publications for

more details.
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2.1 Introduction

Principal subspace analysis (PSA) and minor subspace analysis (MSA) play impor-

tant roles in many practical signal processing applications such as high resolution

parameter estimation [7], blind source separation [8], and radio frequency interfer-

ence mitigation [1]. Important problems closely related to PSA and MSA are prin-

cipal component analysis (PCA) and minor component analysis (MCA) that usually

require eigen-subspaces of the data covariance matrix [9].

For batch systems, standard subspace techniques based on singular value decom-

position (SVD) or eigenvalue decomposition (EVD) are often applied. Although

these techniques have high performance advantages, they face high computational

complexity, generally of Opn3q operations, where n is the dimension of the observa-

tion vector or the number of sensors. This complexity causes a serious handicap for

large-dimensional systems such as large sensor networks [10], massive multiple-input-

multiple-output (MIMO) systems [11], or large antenna arrays like the square kilome-

ter array (SKA) used in radio astronomy [12]. In addition, SVD-like methods are not
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suitable for adaptive subspace tracking because it requires repeated decompositions.

In such a case, the use of distributed algorithms [13], parallel computation schemes [1],

and fast adaptive techniques [14–16] becomes of high interest and generally leads to

large gains in terms of computational complexity and memory requirements.

To concretely motivate our research, we now give an example about the LOw

Frequency Array (LOFAR) telescope [4], which can be considered as a pathfinder

for SKAs [12]. A LOFAR telescope provides a flexible way for all-sky monitoring.

In such a system, to attain desired sensitivity (at least several orders of magnitude

higher than most communication systems) and accurate spatial resolution, a huge

amount of small phased arrays for future SKAs are used and distributed over a large

area instead of a small number of big dishes. According to [12], several hundreds of

mid- to high-frequency 15 m dishes will be located in South Africa and Africa, and

several hundreds of thousands of low-frequency antennas will be located in Western

Australia. Thus, it allows an observation of multiple directions at the same time

on the sky at a reasonable cost. However, it also leads to challenging problems as

follows. First, a massive amount of data, which are collected from some distributed

stations and then transmitted to a data center, need to be processed. Second, due

to high sensitivity, observed radio astronomical signals are very weak; they are typ-

ically 40 dB to over 100 dB weaker than signals from active services. If we suppose

further that subspace approaches such as multiple signal classification (MUSIC) [17],

estimation of signal parameters via rotational invariance techniques (ESPRIT) [18]

and their variants are adopted, it is then problematic to deal with both computa-

tional complexity and “subspace fusion” of the massive data. The latter, similar to

data fusion, is the process of integration of multiple subspaces representing the same

real-world object into consistent, accurate, and useful representations of the “global”

minor and principal subspaces.



2.1. Introduction 13

From a technical point of view, suppose that we have at hand a parallel computing

architecture with K computing units (A parallel computing architecture can be, but

not limited to, a multi-core processor, a graphics processing unit (GPU) or a field-

programmable gate array (FPGA) board.). The question of interest in this chapter

is: How can we exploit this architecture to fuse subspaces, and then to achieve the

“global” minor or principal subspaces, as well as to reduce the computational cost for

extracting these subspaces? A simple and efficient subspace method called minimum

noise subspace (MNS) was proposed in [19]. This method estimates the noise subspace

via a set of noise vectors (a basis of the noise subspace) that can be computed in

parallel from a set of tuples of system outputs. MNS is much more efficient because

it avoids large-scale EVD/SVD computation in the standard subspace method. MNS

has been applied to blind system identification [19], source localization [20], array

calibration [20], multichannel blind image deconvolution [21], and adaptive subspace

tracking [22]. However, the number of parallel computing units based on which MNS

is implemented is the same as the dimension of the noise subspace and is, generally

not equal to the actually available number of computing units (K) of the parallel

computing architecture in use. In addition, the performance of MNS is degraded if

the number of outputs is very large compared to that of the inputs.

In this work, we are not only to generalize MNS from [19] in such a way that we

can handle MNS computation with a given K number of parallel computing units

but also to handle principal subspace computation that was not dealt with in [19].

Our main contributions are summarized as follows.

1. Via the introduction of the concept of a generalized properly connected sequence

(GPCS), we propose the GMNS concept and then several efficient GMNS-based

algorithms for MSA and PSA, given a fixed number of parallel computing units.

It is noted that we have disseminated partial results on GMNS in our con-
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ference contribution [23], and here we provide detailed proofs and extensive

experiments.

2. We then propose an algorithm to estimate the principal eigenpairs from the

corresponding principal subspaces (i.e., solving the PCA problem) by solving a

joint diagonalization problem.

3. We develop efficient adaptive versions of the above proposed GMNS-based batch

algorithms for both principal subspace tracking (PST) and minor subspace

tracking (MST) by integrating several existing (non-GMNS-based) subspace

tracking algorithms in our parallel framework of GMNS. As will be shown, our

GMNS-based adaptive algorithms have advantages in terms of computational

complexity and convergence rate. It should be noted that some adaptive algo-

rithms for MNS have already been proposed in [24] but they are limited to least

minor subspace analysis.

4. We further propose efficient GMNS-based adaptive algorithms for principal

eigenvector tracking (PET) from the corresponding GMNS-based PST algo-

rithms. The performance of our algorithms is nearly identical to that of stan-

dard SVD-based algorithms and the computational complexity is lower.

5. We apply our GMNS-based PSA method to a real-life application– radio fre-

quency interference (RFI) mitigation in radio astronomy.

The minor and principal subspaces can be exploited in different ways in different

algorithms. For example, while MUSIC and its variants use the minor subspace for

direction of arrival (DOA) estimation, ESPRIT and its variants use the principal sub-

space to achieve the desired result. In this work, GMNS considers both minor and

principal subspace estimation, whereas MNS only considers minor subspace estima-

tion. The potential of GMNS are two-fold. First, GMNS provides a framework that
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allows the estimation of both minor and principal subspaces in parallel. Second, it can

be used to fuse data from several data sources. In the practical application on RFI

mitigation studied in Section 2.7, it will be shown that it is difficult or expensive to

directly estimate the “global” principal subspace from the available data covariances

of several stations.

The rest of this chapter is organized as follows. The MNS concept and its imple-

mentation are briefly reviewed in Section 2.2. The GMNS concept and the GMNS-

based batch algorithms for MSA and PSA/PCA are proposed in Sections 2.3 and 2.4,

respectively. GMNS-based adaptive algorithms are then developed in Section 2.5,

with some details on the computational complexity. The performance of the proposed

GMNS-based batch and adaptive algorithms is presented in Sections 2.6 and 2.7, in-

cluding the real-life application on RFI mitigation.

2.2 Minimum Noise Subspace: A Review

Let us consider a general linear system with p inputs and n outputs (p ă n), which

obeys the following model for the input-output relationship:

xptq “ Asptq ` nptq, (2.1)

where xptq P C
n is the observation vector, A P C

nˆp is the system matrix of full

column rank, sptq P C
p is the random source vector, and nptq P C

p is the additive

white noise vector with unknown variance σ2. The data covariance matrix is then

given by

Rxx “ EtxptqxptqHu “ ARssA
H ` σ2I, (2.2)

where Rss is the source covariance matrix of full rank.

It is of interest to compute the minor subspace of Rss for that MNS was proposed
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in order to achieve fast computation in a parallel manner [19]. In particular, the con-

cept of properly connected sequence (PCS) is defined and the system is re-organized

into n ´ p subsystems based on a selected PCS. Then, the minor subspace will be

efficiently estimated by computing the least (noise) eigenvector, corresponding to the

least eigenvalue, of each subsystem. The PCS concept is to guarantee that the noise

vectors computed from the subsystems form a basis of the noise subspace. In the

following, we will review the concept of PCS and the implementation of MNS.

2.2.1 Properly Connected Sequence

Denote the n system outputs by a set of members m1,m2, . . . ,mn. Consider a se-

quence of n ´ p subsets of outputs, wherein each subset i contains p ` 1 members

and is denoted by the pp ` 1q-tuple ti “ pmi1 ,mi2 , . . . ,mip`1
q, i “ 1, . . . , n ´ p. This

sequence is said to be properly connected, if the following conditions are satisfied:

tmi1 , . . . ,mipu Ă tmjk | j ă i, 1 ď k ď p ` 1u,

mip`1
R tmjk | j ă i, 1 ď k ď p ` 1u.

These conditions mean that each tuple in the sequence has p members in common

with its preceding tuples, along with another member not so. For instance, if we

consider a system with p “ 2 inputs and n “ 6 outputs, the following sequence of

n ´ p “ 4 tuples is a PCS:

t1 “ pm1,m2,m3q; t2 “ pm1,m2,m4q;

t3 “ pm2,m3,m5q; t4 “ pm2,m5,m6q.
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2.2.2 MNS Implementation

Now, given a PCS of n ´ p tuples of system outputs, the (partial) observation vector

xiptq “ rxi1ptq, xi2ptq, . . . , xip`1
ptqsT of p ` 1 outputs corresponding to the i-th tuple

has the following structure:

xi “ Aisptq ` niptq, (2.3)

and its covariance matrix is given by

Ri “ EtxiptqxH
i ptqu “ AiRssA

H
i ` σ2I, (2.4)

where Ai is the response matrix of the i-th subsystem and niptq is the corresponding

additive white noise. Each subsystem in (2.4) has a noise subspace of minimum

dimension (i.e., equal to one), suggesting the naming of MNS.

From each Ri, a noise vector vi is constructed by first computing the least eigen-

vector v̂i of Ri, and then zero-padding (ZP) it according to

vipjq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0, if the j-th system output does

not belong to the i-th tuple,

v̂ipj1q, if the j-th system output is the

j1-th entry of i-th tuple,

(2.5)

for 1 ď j ď n.

In practice, Ri is estimated by the sample average as R̂i “ 1
T

ř

t xiptqxH
i ptq, with

T being the sample size. It is proved in [19] that the resulting set of noise vectors

tviu, for 1 ď i ď n ´ p, forms a basis of the noise subspace. Figure 2.1 illustrates the

MNS implementation.
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Figure 2.1: MNS implementation.

2.3 Minor Subspace Analysis using GMNS

As stated in Section 2.1, the objective of this work is to exploit the available parallel

computing architecture, when having access to exactly K computing units, in order

to reduce the computational cost for extracting the minor or principal subspaces of

Rxx. We approach this by generalizing MNS.

It is observed that each noise vector in MNS is estimated by the use of a minimum

number of system outputs (i.e., p`1) which might lead to a non-negligible performance

loss if n " p. In addition, to achieve the parallel computation of the noise vectors,

pn´pq computing units are needed, a number which depends on the impinging source

number p and is usually a non-controllable system parameter.

Next, we propose a GMNS-based method for MSA, hereafter referred to as GMNS-

MSA, to overcome the above-mentioned shortcomings. Given K computing units, we

need to compute the pn ´ pq noise vectors.

Let us write n ´ p “ dK ` r, where d and r are integers and 0 ď r ă K, and for

simplicity we assume that r “ 0, i.e., pn ´ pq{K is integer-valued. Now, we propose

a concept of generalized properly connected sequence (GPCS), which generalizes the
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PCS concept used in MNS.

Definition 1. A GPCS is a sequence of K pp ` dq-tuples ti “ pmi1 , . . . ,mip`d
q for

1 ď i ď K that satisfies the following conditions:

tmi1 , . . . ,mipu Ă tmjk | j ă i, 1 ď k ď p ` du, (2.6)

tmip`1
, . . . ,mip`d

u R tmjk | j ă i, 1 ď k ď p ` du. (2.7)

In other words, each tuple in the sequence has p members in common with its

preceding tuples along with d other members not so.

Given a GPCS of K (p` d)-tuples of the outputs, the noise vectors are computed

as follows. First, for each i-th subsystem, we compute the covariance matrix Ri of

size pp ` dq ˆ pp ` dq, and hence its d least eigenvectors, represented by matrix V̂i.

Then, we construct the desired noise submatrix Vi according to the following rule1:

Vipj, :q “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0, if the j-th system output does

not belong to the i-th tuple,

V̂ipj1, :q, if the j-th system output is the

j1-th entry of i-th tuple.

(2.8)

Finally, we concatenate the K submatrices Vi, 1 ď i ď K, to have the global noise

matrix V “ rV1, . . . ,VKs whose columns form a basis of the noise subspace under

the conditions given in the following theorem, with proof given in Appendix A.1.

Theorem 1. Under the assumption that every p rows of A are linearly independent,

the noise matrix V has full column rank (i.e., rankpVq “ n´p) and hence its columns

span the desired noise subspace of the data covariance matrix Rxx.

1In the sequel, Vpj, :q refers to j-th row vector of V.
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The GMNS-MSA method is illustrated in Figure 2.2 and its implementation is

summarized in Table 2.1.

The main advantage of GMNS-MSA is the reduction of the computational cost in

comparison with the standard method. In particular, GMNS-MSA requires Oppp `

pn ´ pq{Kq2T q flops for the computation of the subsystem covariance matrices plus

Oppp ` pn ´ pq{Kq2pn ´ pq{Kq flops for the estimation of the least eigenvectors.

Whereas, the standard method requires Opn2T q flops for the estimation of the global

covariance matrix plus Opn2pn ´ pqq flops for the extraction of the noise vectors.

Obviously, if n " p, the overall cost is reduced by almost a factor of K2 for the

covariance matrix estimation and a factor of K3 for the noise subspace estimation.

Table 2.1: Summary of GMNS for MSA

Input: Observed data X

1. Extract subsystems Xi as described in 2.3

2. Compute covariance matrix of each subsystem: Ri “ 1
T
XiX

H
i

3. Extract d least eigenvectors of Ri: V̂i “ eigpRiq

4. Construct desired noise matrix:

Vipj, :q “
#

0, system output j R tuple i

V̂ipj1, :q, system output j “ entry j1 of tuple i

Output: Minor subspace weight matrix: V “ rV1, . . . ,VKs

Following are some remarks on the GMNS-MSA method.

Remark 1. Generally, pn ´ pq{K is non integer-valued; that is, 0 ă r ă K for r in

n ´ p “ dK ` r. In that case, we will use r tuples of length p ` d1, with d1 “ d ` 1,

and K ´ r tuples of length p ` d.

Remark 2. It should be noted that the GPCS concept is just a practical way to
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Figure 2.2: GMNS for MSA, with K “ 3 subsystems. The green (bold) part represents
the p outputs shared by three subsystems.

guarantee that the obtained vectors form a basis of the desired subspace. In other

words, GPCS does not represent necessary conditions to meet but only sufficient

conditions.

Remark 3. For large dimensional systems when n " p, using only p ` 1 system

outputs as in the original MNS to compute a noise vector may result in non-negligible

performance loss. Now if tpn´pq{Ku “ d is relatively large, we will instead use p`d`1

outputs to estimate a given noise vector which improves its estimation accuracy, as

later shown in Figure 2.5. It also means that we need K ă pn ´ dq{p so that the size

of subsystems is larger than p.

Remark 4. When p ! n, one way to estimate the minor subspace is to first esti-

mate the signal subspace (with a low cost) and then obtain the noise subspace as its

orthogonal complement. However, it is quite expensive to compute the orthogonal

complement subspace; i.e., Opp2nq. In addition, extraction of an orthogonal basis of

the noise subspace would require a further cost.

Remark 5. So far, we have assumed that p is known in advance. When this assumption

is violated, many subspace algorithms still work well in practice if we replace p with
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an overestimated value, for example in the MUSIC algorithm. In such a case, the

value used by the algorithm can be just a guess (overestimated value) of the exact

value p.

Remark 6. In [25], a fast subspace estimation method was proposed, exploiting the

spatial whiteness of the additive noise. In this work, we exploit this property together

with parallel computing to achieve a much higher computational gain.

2.4 Principal Subspace Analysis and Principal Com-

ponent Analysis using GMNS

The original MNS was dedicated to MSA and above we have proposed a GMNS-based

method for MSA. In this section, we propose a GMNS-based method for PSA using K

subsystems in a parallel manner. This method is hereafter referred to as GMNS-PSA.

In particular, we proposed algorithms for overlapping and non-overlapping subsystems

respectively. In addition, we extend the method for PCA, which is hereafter referred

to as GMNS-PCA.

2.4.1 Principal Subspace Analysis using GMNS

2.4.1.1 Subsystems without Overlapping Parts

Let us assume that we have a large dimensional system such that l “ n{K ą p and,

for simplicity, l is integer-valued. We divide the n system outputs into K subsystems

of length l each represented by

pmpi´1ql`1, . . . ,milq, i “ 1, . . . , K.
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Now, for each subsystem i, we compute the corresponding covariance matrix Ri

and its principal subspace matrix Wi “ AiQi, where Qi is an unknown nonsingular

matrix of size p ˆ p.

To have a global estimate of the signal subspace (i.e., a matrix W “ AQ of size

n ˆ p where Q is any p ˆ p nonsingular matrix), we need to get rid of the unknown

matrices Qi. For that, we exploit the fact that all subsystems receive the same source

S of size p ˆ T , that is,

Xi “ AiS ` Ni, i “ 1, . . . , K, (2.9)

where S “ rsp1q, ¨ ¨ ¨ , spT qs and Ni is noise affecting the i-th subsystem. Let us define

Si “ W#
i Xi, (2.10)

where # denotes the pseudo-inverse operator1. Then, thanks to (2.9), we have

Si “ Q´1
i S ` W#

i Ni, i “ 1, . . . , K. (2.11)

In the noiseless case, it can be shown that

Si “ TiS1,

where Ti “ Q´1
i Q1. Matrix Ti can be estimated by solving the following least square

problem:

min
Ti

‖ Si ´ TiS1 ‖
2
2 .

1Most subspace estimation methods compute an orthonormal basis of the desired subspace (see,

e.g., [26]) in which case we have W
#
i

“ WH

i
.
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Its solution is given by

T̂i “ SiS
#
1 . (2.12)

Finally, the principal subspace weight matrix is obtained as

W “
“

WT
1 , pW2T2qT , . . . , pWKTKqT

‰T « AQ1. (2.13)

In the noisy case, the estimate of the principal subspace weight matrix in (2.13)

is biased due to the effect of the noise term on the estimation of Ti in (2.12). In

fact, (2.12) can be rewritten as

T̂i “
ˆ

SiS
H
1

T

˙ ˆ

S1S
H
1

T

˙´1

(2.14)

« pQ´1
i R̂ssQ

´H
1 qpQ´1

1 R̂ssQ
´H
1 ` σ2Iq´1. (2.15)

Here we have substituted (2.11) into (2.14), and used the facts that the subsystems are

non-overlapping, their noise terms are uncorrelated (spatially white noise assumption)

and Wi are unitary matrices that leads to ErWH
1 n1ptqnH

1 ptqW1s “ σ2I and, hence,

WH
1 pN1N

H
1 {T qW1 « σ2I. Moreover, we remind that the signal and the noise are

uncorrelated, i.e., ErSNH
i s “ 0 and hence SNH

i {T « 0. Because of the additive term

σ2I, T̂i deviates from its desired value and leads to an estimation bias for the global

weight matrix, especially, at low signal-to-noise ratio (SNR).

To overcome this problem, we replace the previous estimate of Ti by the following

asymptotically unbiased estimate:

T̃i “
ˆ

SiS
H
1

T

˙ ˆ

S1S
H
1

T
´ σ̂2I

˙´1

“ pWH
i Ri,1W1qpWH

1 R1W1 ´ σ̂2Iq´1, (2.16)
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where

Ri,1 “ ErxiptqxH
1 ptqs (2.17)

σ̂2 “ rTrpR1q ´ TrpWH
1 R1W1qs{pl ´ pq. (2.18)

To obtain the noise power estimate in (2.18), we first obtain the EVD of R1 as

R1 “ A1RssA
H
1 ` σ2I

“ UspΛs ` σ2IqUH
s ` σ2UnU

H
n , (2.19)

in which the columns of Us span the signal subspace of R1 and those of Un span the

noise subspace of R1. From (2.19) and using WH
1 Un “ 0, we then have

WH
1 R1W1 “ WH

1 UspΛs ` σ2IqUH
s W1. (2.20)

Since WH
1 Us is unitary, we have TrpR1 ´ WH

1 R1W1q “ pl ´ pqσ2, and thus (2.18).

The above biased and unbiased algorithms are referred to as GMNS-N-PSA (N

stands for non-overlapping) and GMNS-NU-PSA (NU stands for non-overlapping and

unbiased), respectively. They are summarized in Table 2.2. Figure 2.3 illustrates the

steps described in this section.

2.4.1.2 Subsystems with Overlapping Parts

In the above non-overlapping case, we have assumed that n{K ą p. To relax this

assumption and extend our method to cover also the case1 where n{K ă p, we consider

here overlapping subsystems of size p ` q sharing q system outputs, and represented

1When using overlapping subsystems, we can deal with either n{K ě p or n{K ă p, while in
the non-overlapping case, it is necessary to have n{K ą p.
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Table 2.2: Summary of GMNS for PSA: non-overlapping and overlapping subsystems

Input: Captured data X

1. Extract non-overlapping subsystems Xi as described in 2.4.1.1, or overlap-
ping ones as in 2.4.1.2

2. Compute covariance matrix of each subsystem: Ri “ 1
T
XiX

H
i .

3. Extract p principal eigenvectors of Ri: Wi “ eigpRi, pq

4˚) Non-overlapping :

Compute T̃i

• Biased: Si “ W#
i Xi, T̃i “ SiS

#
1 .

• Unbiased: σ̂2 “ rTrpR1q ´ TrpWH
1 R1W1qs{pl ´ pq, T̃i “

´

SiS
H
1

T

¯ ´

S1S
H
1

T
´ σ̂2I

¯´1

.

4˚˚) Overlapping :

Extract overlap: Wolap
1 ptq, Wolap

i ptq

Compute: Ti “ pWolap
i q#pWolap

1 q, i “ 2, . . . , K

Compute principal weight matrix: W̃1 “ Wolap
1 , W̃i “ Wolap

i Ti

Output: Principal subspace

• Non-overlapping : W “ rWT
1 , pW2T̃2qT , . . . , pWKT̃KqT sT

• Overlapping : W “ rW̃T
1 ,W̃

T
2 , . . . ,W̃

T
KsT

by the K tuples. For example, here, we choose all subsystems which overlap with the

first one:

pm1, . . . ,mq,mq`1, . . .mp`qq,

pm1, . . . ,mq,mpi´1qd`1, . . . ,midq, i “ 2, . . . , K.
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Figure 2.3: GMNS for PSA with non-overlapping parts; K “ 3.

In other words, the q first members of the first subsystem are the q first members of

the i -th subsystem, for i “ 2, . . . , K. For simplicity, we assume that d “ pn´ pq{K is

integer-valued. Now, for each subsystem, we compute the covariance matrix Ri and

its corresponding weight matrix Wi which can be written as

Wi “

»

—

–

Wolap
i

W1
i

fi

ffi

fl
“

»

—

–

Aolap
i

A1
i

fi

ffi

fl
Qi. (2.21)

To get rid of the matrices Qi, one exploits the overlap between the first subsystem

and the i-th subsystem by assuming that any p ˆ p submatrix of A has full rank. In

that case, the global weight matrix is estimated as

W “
”

W̃T
1 ,W̃

T
2 , . . . ,W̃

T
K

ıT

, (2.22)
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Figure 2.4: GMNS for PSA with overlapping parts; K “ 3.

where

W̃1 “ W1, (2.23)

W̃i “ WiTi, i “ 2, . . . , K, (2.24)

Ti “ pWolap
i q#pWolap

1 q. (2.25)

This algorithm is referred to as GMNS-O-PSA (where O stands for overlapping)

and is summarized in Table 2.2 and illustrated in Figure 2.4.

2.4.1.3 Complexity

Similar to GMNS-MSA in Section 2.3, the main advantage of the proposed GMNS-

based PSA algorithms resides in its reduced computational cost. GMNS-NU-PSA

costs Oppn{Kq2p`p2pn{K`pqq flops for the computation of p signal subspace vectors
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and Op2pn{Kq2T q flops for the computation of the covariance matrices Ri and the

correlation matrices Ri,1, for i “ 1, . . . , K. This overall cost is approximately K2 less

than the cost of a direct computation of the signal subspace using the global covariance

matrix, which takes Opn2pT `pqq flops. GMNS-O-PSA costs Oppp`qq2p`p2p2p`qqq

flops for the computation of p signal subspace vectors and Oppp ` qq2T q flops for the

parallel computation of the covariance matrices. If n " p, n " K and T " 1, then

q « n{K, and hence GMNS-O-PSA is slightly cheaper than GMNS-NU-PSA since it

does not require computing the correlation matrices1.

2.4.2 Principal Component Analysis using GMNS

Having estimated the principal subspace by the GMNS-PSA method as presented in

Section 2.4.1, we can further extract the principal eigenvalues and eigenvectors of the

covariance matrix Rxx, resulting in a GMNS-based method for PCA. This method is

hereafter referred to as GMNS-PCA and is described below.

First, we note that

W “ AQ “ UsQ̃, (2.26)

where the columns of Us are p principal eigenvectors of Rxx, and Q̃ is a non-singular

matrix of size p ˆ p.

Now, consider the following expression:

W#RxxW “ Q̃´1pUH
s RxxUsqQ̃ (2.27)

“ Q̃´1

»

—

—

—

—

–

λ1 0

. . .

0 λp

fi

ffi

ffi

ffi

ffi

fl

Q̃, (2.28)

1For certain applications, e.g., radio astronomy, the global covariance matrix is available (or al-
ready computed) for other needs. Hence, GMNS-NU-PSA becomes more advantageous than GMNS-
O-PSA in term of computational complexity.
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Table 2.3: Summary of GMNS for PCA

Input: Principal subspace W

1. Compute expression: W#RxxW

2. Solve diagonalization problem to find Q̃´1 and tλiu

3. Extract p principal eigenvectors: Us “ WQ̃´1

Output: Principal eigenpairs: Us and tλiui“1:p

where λ1, . . . ,λp are the principal eigenvalues of Rxx.

Therefore, the principal eigenvectors and eigenvalues can be found by computing

matrix Q̃ that diagonalizes the matrix W#RxxW.

We note that since GMNS-PCA estimates the principal eigenvectors from the prin-

cipal subspace obtained by GMNS-PSA, the eigenvectors are arranged in descending

order of the corresponding eigenvalues, i.e., λ1 ą λ2 ą ¨ ¨ ¨ ą λp. Therefore, the per-

formance of principal eigenvector estimation depends on that of principal subspace

estimation. The whole method is summarized in Table 2.3.

2.5 Adaptive GMNS-based Algorithms

In this section, we are interested in estimating the minor and principal subspaces at

each time index t from streaming observations txptqutě1.

2.5.1 Minor Subspace Tracking using GMNS

Thanks to the parallel structure of GMNS-MSA, the conversion from a batch system

to an adaptive one is quite simple. This leads to our proposed GMNS-based method

for MST, which is hereafter referred to as GMNS-MST.

In practice, to track the underlying minor subspace, we replace the SVD-based
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Table 2.4: Summary of GMNS for MST

Initialization
Input: Observed data at snapshot t: xptq

1. Extract subsystems xiptq as described in 2.3

2. Track minor subspace of each subsystem using existing algorithms (e.g.
FOOja, FDPM):

V̂iptq “ TrackingAlgorithmpVipt ´ 1q,xiptqq

3. Construct the desired noise matrix Viptq:

Vipj, :q “
#

0, if system output j R tuple i

V̂ipj1, :q, if system output j “ entry j1 of tuple i

Output: Minor subspace Vptq “ rV1ptq, . . . ,VKptqs

computation of the minor subspace from the correlation matrix (i.e., Step 2 in Ta-

ble 2.1) with any existing MST algorithms while keeping the remaining steps un-

changed. In our GMNS-MST, we integrate the FOOja algorithm [27] and the FDPM

algorithm [16].

It should be noted that the estimation of the covariance matrix (i.e., Step 1 in

Table 2.1) is not required in FOOja and FDPM. As a result, GMNS-MST provides a

way to reduce the complexity of the algorithms by a factor of K. The implementation

of GMNS-MST is summarized in Table 2.4.

Because of the way we construct the desired noise matrix (i.e., Step 3 in Table 2.4),

the computational cost of GMNS-MST equals the cost of the tracking algorithm in

use reduced by a factor of K. For example, it costs Opnp{Kq if FOOja or FDPM is

used.
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2.5.2 Principal Subspace Tracking using GMNS

By extending GMNS-PSA as given in Section 2.4.1 to adaptive processing, we now

propose a GMNS-based method for PST, which is hereafter referred to as GMNS-

PST. Similar to GMNS-PSA, we deal with two cases whether we have the subsystems

with or without overlapping parts.

2.5.2.1 Subsystems without Overlapping Parts

We observe that matrix Ti can be expressed by

Ti “ W#
i pXiX

#
1 qW1. (2.29)

By this way, we can track the principal subspace Wi of each subsystem and then

compute the global weight matrix W as in (2.13).

Because calculating the term XiX
#
1 in full scale is expensive and not suitable for

adaptive processing, we propose to use a sliding window technique to overcome this

problem. Denote by N the window size. At time instant t, the subsystem Xiptq can

be written as

Xiptq “ rxipt ´ pN ´ 1qq ¨ ¨ ¨ xiptqs. (2.30)

In our GMNS-PST, we use the sliding window version of the orthogonal projection

approximation subspace tracking (OPAST) algorithm [28].

Now, to update Tiptq efficiently, we first rewrite the term XiptqX#
1 ptq as

XiptqX#
1 ptq “ PiptqM´1ptq, (2.31)
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where

Piptq “ XiptqXH
1 ptq,

Mptq “ X1ptqXH
1 ptq.

Then, we obtain

Piptq “
N´1
ÿ

τ“0

xipt ´ τqxH
1 pt ´ τq

“ Pipt ´ 1q ` xiptqxH
1 ptq ´ xipt ´ NqxH

1 pt ´ Nq, (2.32)

Mptq “
N´1
ÿ

τ“0

x1pt ´ τqxH
1 pt ´ τq

“ Mpt ´ 1q ` x1ptqxH
1 ptq ´ x1pt ´ NqxH

1 pt ´ Nq. (2.33)

Since Mptq has a rank-2 update structure, it can be efficiently inverted by applying

the matrix inversion lemma to yield M´1ptq. However, substituting (2.32) and (2.33)

into (2.31) and hence into (2.29) still includes expensive matrix-matrix multiplica-

tions. Fortunately, many fast tracking algorithms have a rank-1 update structure

(e.g., the OPAST algorithm [15]) expressed in the form of

Wptq “ Wpt ´ 1q ` pptqqHptq. (2.34)

Thus, we can use this observation to compute (2.29) recursively with only matrix-

vector multiplications. To initialize Pip0q and Mp0q, we can either choose them

arbitrarily or use the N first snapshots in a batch way.

This algorithm is referred to as GMNS-N-PST and summarized in Table 2.5.

Remark 7. Recall that in GMNS-PSA we have developed both biased and unbiased

estimators of Ti. However, in adaptive processing, we have observed that the per-
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formance improvement of PST in the unbiased case is negligible as compared to the

biased case. Thus, we only presented the latter, as above, due to its simplicity.

2.5.2.2 Subsystems with overlapping parts

Similar to modifying GMNS-MST to deal with the case where the subsystems have

overlapping parts, at each time instant in the adaptive version of GMNS-O-PSA, we

simply replace the SVD-based computation of the principal subspace from the corre-

lation matrix (i.e., Steps 2 and 3 in Table 2.2) with any existing PST algorithms while

keeping the remaining steps unchanged. Again, a similar observation for efficiently

computing Ti in the non-overlapping case can also be applied here. This algorithm

is referred to as GMNS-O-PST and summarized in Table 2.5.

2.5.3 Principal Eigenvector Tracking using GMNS

Here we present an adaptive version of GMNS-PCA, as described in Section 2.4.2, to

track the principal eigenvectors from the estimated principal subspace. It is hereafter

referred to as GMNS-PET.

According to (2.27), at time instant t, the following diagonalization is performed:

W#ptqRxxptqWptq “ Q̃´1ptq

»

—

—

—

—

–

λ1ptq 0

. . .

0 λpptq

fi

ffi

ffi

ffi

ffi

fl

Q̃ptq. (2.35)

Then, the principal eigenvectors are found to be

Usptq “ WptqQ̃´1ptq. (2.36)



2.5. Adaptive GMNS-based Algorithms 35

Table 2.5: Summary of GMNS for PST

Initialization
Input: Observed data at snapshot t: xptq

1. Extract non-overlapping subsystems xiptq as described in 2.4.1.1, or over-
lapping ones as described in 2.4.1.2

2. Track principal subspace of each subsytem using existing algorithms (e.g.
YAST, OPAST):

Wiptq “ TrackingAlgorithmpWipt ´ 1q,xiptqq

3˚) Non-overlapping :

Compute recursive updates of Piptq and Mptq´1

Compute matrix: Tiptq “ W#
i ptqpPiptqM´1ptqqW1ptq

Compute principal weight matrix:

Wptq “
“

WT
1 ptq, pWT

2 ptqTT
2 ptqq, . . . , pWT

KptqTT
Kptqq

‰T

3˚˚) Overlapping :

Extract overlap: Wolap
1 ptq, Wolap

i ptq

Compute matrix:

Tiptq “ pWolap
i ptqq#pWolap

1 ptqq, i “ 2, . . . , K

Compute principal weight matrix:

W̃iptq “ WiptqTiptq, with W̃1ptq “ W1ptq

Output: Principal subspace Wptq and W̃iptq

A naive implementation of the above estimation is not numerically efficient. Ob-
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served that (2.27) can be written as

W#ptqRxxptqWptq – EtW#ptqxptqxptqHWptqu

– EtỹptqyHptqu,

where

ỹptq “ W#ptqxptq, (2.37)

yptq “ WHptqxptq. (2.38)

The main cost thus comes from the calculation of the pseudo-inverse operator

in (2.37), which is then expressed as

ỹptq “ rWptqHWptqs´1WptqHxptq “ Dptqyptq,

where

Dptq “ rWptqHWptqs´1 “
“

I `
K
ÿ

k“2

TH
k ptqTkptq

‰´1
. (2.39)

Equation (2.39) yields because of the fact that Wkptq (k “ 1, . . . , K) are orthogonal,

i.e., WH
k ptqWkptq “ I. Thus, ỹptq and yptq can be obtained as

ỹptq “
K
ÿ

k“1

ỹkptq, (2.40)

yptq “
K
ÿ

k“1

ykptq, (2.41)
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where

ỹk “ Dptqykptq, (2.42)

yk “ WH
k ptqxkptq, (2.43)

which can be implemented in parallel in each computing unit.

Then, according to (2.35), Q̃´1ptq can be estimated by performing EVD of Zptq.

Here, Zptq is either obtained by

Zptq “
L´1
ÿ

τ“0

ỹpt ´ τqyHpt ´ τq

“ Zpt ´ 1q ` ỹptqyHptq ´ ỹpt ´ L ` 1qyHpt ´ L ` 1q, (2.44)

if a sliding window of length L is used, or by

Zptq “
t

ÿ

τ“0

βt´τ ỹpτqyHpτq

“ βZpt ´ 1q ` ỹptqyHptq, (2.45)

if the exponential window is used (β being the forgetting factor, 0 ă β ď 1). Once

Q̃´1ptq has been estimated, the principal eigenvectors are obtained by (2.36), which

can again be estimated in parallel. The algorithm costs Opnp2{Kq ` Opp3q and is

summarized in Table 2.6.

2.6 Simulated Experiments

In this section, the performance of subspace estimation is studied by simulation. In

all experiments, the system matrix A is randomly generated but kept fixed for all

Monte Carlo runs. The sources are i.i.d. Gaussian processes of unit power. The noise
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Table 2.6: Summary of GMNS for PET

Input: Principal subspaces Wkptq, Tkptq

1. Compute Dptq “
“

I `
řK

k“2 T
H
k ptqTkptq

‰´1

2. Compute Zptq as in (2.44) or (2.45)

3. Compute Q̃´1ptq “ eigpZptqq

4. Extract p principal eigenvectors: Usptq “ WptqQ̃´1ptq

Output: Principal eigenpairs: Usptq and tλiptqui“1:p

is spatially white with variance of σ2. The SNR is defined as

SNR “ 10 log10
‖ A ‖2

σ2
. (2.46)

To assess the performance of the proposed algorithms, the following two criteria

are used: subspace estimation performance (SEP) and eigenvector estimation perfor-

mance (EEP). The lower the values of SEP or EEP, the better the performance.

The SEP is defined as

SEPptq “ TrtWH
i ptqpI ´ WexptqWH

exptqqWiptqu
TrtWH

i ptqpWexptqWH
exptqqWiptqu , (2.47)

where Wi is the estimated subspace at the i-th run, and Wex is the exact subspace

weight matrix computed by orthorgonalizing A. In the case of a batch system, we

can drop t from SEP.

The EEP is defined as

EEPptq “‖ Uptq ´ Uex ‖
2
F , (2.48)
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where Uptq is the matrix of the estimated eigenvectors1, and Uex is the matrix of the

exact eigenvectors computed from the exact covariance matrix (i.e., noiseless case)

using the full SVD algorithm. Similarly, we can drop t when considering a batch

system.

In all cases, the results are reported by taking the average over 100 Monte Carlo

runs. To assess the performance of the algorithms with respect to the number of

sources, p, we present two different scenarios (p “ 2 and p “ 6) for relatively large

dimensional systems. A summary of parameters used in the experiments is given in

Table 2.7. For principal subspace estimation/tracking, parameters are chosen based

on the configuration of one of real radio astronomy systems from which we collected

data, as described in Section 2.7. For minor subspace estimation/tracking, the number

of sensors is chosen randomly but in such a way that pn´ dq{p is integer-valued. The

value of T is considered following the radio astronomy application (Section 2.7) where

the sample size was large enough and may even exceed 100 times n.

2.6.1 Minor Subspace Analysis

First, we assess the performance of GMNS-MSA against the standard MSA method

using SVD (SVD-MSA) with both small (p “ 2) and large (p “ 6) numbers of

sources. The results indicate that GMNS-MSA has performance close to SVD-MSA

when p “ 2, and it losses some accuracy at low SNR (i.e., SNR ă 5 dB) when

p “ 6, as shown in Figure 2.5(a). However, in both experiments, the dominant cost

of GMNS-MSA is reduced by a factor of K2, as compared to SVD-MSA. The selected

GPCS is given in Table 2.8.

We further consider the effect of the number of sources on the performance of

GMNS-MSA by fixing n and changing p. Moreover, we take into account two scenar-

1To remove inherent ambiguities, the eigenvector norm is set to one and its first entry is chosen
to be positive real-valued.
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Table 2.7: Parameters used in our experiments

Experiment Figure n p K T q

1 5 30 2 4 500 N/A
2 5 30 6 4 500 N/A
3 6 30 1:10 4 500 N/A
4 6 30 1:10 4 500 N/A
5 7 48 2 4 500 4
6 7 48 6 4 500 8
7 8 48 1:10 4 500 8
8 8 48 1:10 4 500 8
9 9 48 2 4 500 4
10 9 48 6 4 500 8
11 10 30 2 4 4000 N/A
12 11 30 6 4 4000 N/A
13 12 48 2 4 3000 4
14 13 48 6 4 3000 8
15 14 48 2 4 3000 4
16 15 48 6 4 3000 8
17 16 48 2 4 20971 4
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Table 2.8: GPCS used for first experiment

Tuples Members
t1 (m1,m2,m3,m4,m5,m6,m7,m8,m9)
t2 (m1,m2,m10,m11,m12,m13,m14,m15,m16)
t3 (m1,m2,m17,m18,m19,m20,m21,m22,m23)
t4 (m1,m2,m24,m25,m26,m27,m28,m29,m30)

ios: low SNR (SNR “ 5 dB) and high SNR (SNR “ 20 dB). Figure 2.5(b) suggests

that GMNS-MSA is robust and comparable with SVD-MSA in both scenarios.

2.6.2 Principal Subspace/Component Analysis

For PSA, we compare the performance of GMNS-N-PSA, GMNS-O-PSA and GMNS-

NU-PSA with the standard PSA method using SVD (SVD-PSA), for p “ 2 and p “ 6

as shown in Figures 2.6(a). Among the four algorithms, GMNS-N-PSA has the lowest

performance, as noticed in Section 2.4.1.1. The three other methods reach the SVD,

except at low SNRs. Additionally, we conduct a similar experiment as in the MSA

case to evaluate the effect of p on the performance of GMNS-N-PSA, GMNS-O-

PSA and GMNS-NU-PSA (Figure 2.6(b)). At low SNR, GMNS-N-PSA degrades

the performance when p increases while GMNS-O-PSA, GMNS-NU-PSA and SVD-

PSA are comparable. At high SNR, all algorithms are nearly identical in terms of

estimation accuracy.

For PCA, the same observation is done as for PSA, as shown in Figures 2.7. Similar

to GMNS-MSA, GMNS-PCA based on the three GMNS-MSA algorithms have the

advantage of lower computational cost with a gain approximately being equal to K2,

as compared to the standard PCA method based on SVD.
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Figure 2.5: Minor subspace estimation



2.6. Simulated Experiments 43

SNR (dB)
0 5 10 15 20 25 30

S
E
P

10-6

10-5

10-4

10-3

10-2
Subspace accuracy: n = 48, p = 2 and p = 6

GMNS-N-PSA (p = 2)

GMNS-O-PSA (p = 2)

GMNS-NU-PSA (p = 2)

SVD-PSA (p = 2)

GMNS-N-PSA (p = 6)

GMNS-O-PSA (p = 6)

GMNS-NU-PSA (p = 6)

SVD-PSA (p = 6)

14 15 16

×10
-5

6

7

8

9

(a) SEP vs. SNR

p
1 2 3 4 5 6 7 8 9 10

S
E
P

10-5

10-4

10-3

10-2
Subspace accuracy: n is fixed and p is changed

GMNS-N-PSA (SNR = 5)

GMNS-O-PSA (SNR = 5)

GMNS-NU-PSA (SNR = 5)

SVD-PSA (SNR = 5)

GMNS-N-PSA (SNR = 20)

GMNS-O-PSA (SNR = 20)

GMNS-NU-PSA SNR = 20)

SVD-PSA (SNR = 20)

(b) SEP vs. p

Figure 2.6: Principal subspace estimation.
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Figure 2.7: Principal eigenvector estimation: EEP vs. SNR.

2.6.3 Minor Subspace Tracking

For MST, we choose two low-cost algorithms, FOOja [27] and FDPM [16], and one

moderate-cost one, YAST (yet another subspace tracking) [29], and compare them

with the corresponding GMNS-based algorithms: GMNS-MST-FOOja, GMNS-MST-

FDPM and GMNS-MST-YAST. All algorithms run in a noisy environment with

SNR “ 15 dB. The performance results with respect to p “ 2 and p “ 6 are shown

in Figure 2.8, respectively.

Interestingly, the performance of GMNS-MST-FOOja is better than FOOja even

though its convergence rate is slower. The reason is that dividing data into small

subsystems reduces the search space which then mitigates the local minima conver-

gence problem and enhances the overall performance. An analogous observation can

be seen for GMNS-MST-FDPM and FDPM. Better convergence rate and estimation
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accuracy are obtained by both YAST1 and GMNS-MST-YAST but at the expense of

higher computational complexity.

2.6.4 Principal Subspace Tracking

For PST, we compare OPAST and FDPM2, with their corresponding GMNS-based

algorithms: GMNS-N-PST-OPAST, GMNS-O-PST-OPAST, GMNS-N-PST-FDPM

and GMNS-O-PST-FDPM. It can be seen from Figure 2.9 that the GMNS-based

algorithms have the same performance as their original algorithms, but with a reduced

cost. Also, we observe a clear advantage in favor of OPAST-based algorithms as

compared to FDPM-based ones.

2.6.5 Principal Eigenvector Tracking

Since the performance of GMNS-based FDPM is worse than GMNS-based OPAST, as

just shown above, we apply the GMNS-PET method in Section 2.5.3 using OPAST

to track the principal eigenvectors, with two parallelized GMNS-based algorithms:

GMNS-N-PST-OPAST and GMNS-O-PST-OPAST. Then, we compare their results

with the stand SVD-based algorithm (SVD-PST). As shown in Figure 2.10, both

GMNS-N-PST-OPAST and GMNS-O-PST-OPAST have the same performance as

that of SVD-PST.

1YAST has complexity of Opnp2q as presented in [29].
2The principal subspace can be obtained by FDPM by changing the sign of step size parameter.
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Figure 2.8: Minor subspace tracking.
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Figure 2.9: Principal subspace tracking.
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Figure 2.10: Principal eigenvector tracking.
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2.7 Application to RFI Mitigation in Radio As-

tronomy

Now, we consider RFI mitigation which is a challenging problem in radio astron-

omy [30]. In general, RFI is difficult to void even with the spectrum being protected

and the deployed area being relatively remote. The interference sources in radio as-

tronomy can stem from various man-made wireless services such as mobile cellular

telephone, global positioning system satellites, digital audio and video broadcasting,

and so on.

The effect of RFI can be observed in Figure 2.11(b). In this example, the dataset

comes from a single LOFAR station with n “ 48 antennas, as shown in Figure 2.11(a).

Usually, those 48 antenna outputs are beamformed in real time and the corresponding

signal is sent to a central correlator for further radio astronomical processing with

other remote stations.

In our experiment, a 5.2 ms signal of those 48 antennas has been stored on disk,

and a 2 MHz band around a specific terrestrial RFI (a land mobile at 55 MHz)

has been selected to produce a 48 ˆ 48 covariance matrix. The different sky images

presented in this section are derived from this matrix.

In Figure 2.11(b), while signals-of-interest (SOIs) are not really well-defined, a

“strong” RFI appears at the horizon. This image with distortions and artifacts is

referred to as “dirty image”. RFI can lead to distorted data and unwanted artifacts,

causing difficulty in astronomical observation.

To mitigate RFI, an efficient method is based on projection in which a key step

is subspace estimation. However, as stated in the introduction, SVD- or EVD-based

subspace estimation methods are quite expensive in terms of computational complex-

ity. Here we will illustrate how we can apply the proposed GMNS-based methods to
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tackle this problem while still preserving the imaging quality.

The model under consideration can be presented as [31]

xptq “ Accptq ` Arrptq ` nptq, (2.49)

where Ac P C
nˆm is the cosmic source spatial signature matrix, c P C

m is the cosmic

source signal vector, Ar P C
nˆp is the interference spatial signature matrix, rptq P C

p

is the RFI signal vector, and nptq P C
n is the additive white noise vector with unknown

variance σ2.

Hence, we can estimate the data covariance matrix as

Rxx “ AcRccA
H
c ` ArRrrA

H
r ` σ2I, (2.50)

where Rcc and Rrr are cosmic and RFI covariance matrices, respectively. Here we

have assumed that the cosmic sources, the RFIs and the system noise are uncorrelated.

The cosmic sources are point sources because of relative distance between the source

and the instrument.

2.7.1 Orthogonal Projection based RFI Mitigation Algorithm

This method can be implemented by first computing an orthogonal projection matrix

Pr and then applying it to a “dirty” covariance matrix to produce “clean” one (see [1,

32, 33] and references therein). In particular, the orthogonal projector is computed

as

Pr “ I ´ WrpWH
r Wrq´1WH

r , (2.51)
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where Wr is the estimated RFI principal subspace using SVD/EVD. We can estimate

the “clean” covariance matrix as

R̄ “ PrRPH
r . (2.52)

In fact, we can apply the projection matrix at the pre-correlation stage (i.e., at

antenna array output). However, because the data covariance matrix is produced by

the radio astronomy system by default, the described method is preferred.

In Figure 2.11(c), the SVD-based subspace projector is applied according to (2.51).

A subspace of dimension 48ˆ2, corresponding to two principal eigenvalues, is selected.

The Milky Way as well as Cassiopeia A and Cygnus A are now strongly visible and

the land mobile signal has been mitigated.

2.7.2 Qualitative Comparison

In Section 2.6, we have compared the subspace estimation accuracy between the

proposed algorithms and the corresponding SVD-based algorithms quantitatively via

numerical simulation. Now we conduct a qualitative experiment using real-life data

for further evaluation.

We replace the principal subspace in (2.51), estimated by the standard SVD-PSA

method, with the principal subspace estimated by our GMNS-PSA method and build

skymaps after RFI mitigation. Again, the subspace corresponding to two principal

eigenvalues defines the RFI subspace (p “ 2). As can be seen from Figures 2.11(d)–

(f), SOIs are enhanced while RFIs are removed (only the strongest RFI is circled

in these figures). From those figures, we can see that the imaging quality based on

GMNS-PSA is comparable with that of SVD-PSA. Again, our main advantage is the
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fact that the cost is reduced by a factor of K2 compared to SVD-PSA.

While this experiment is based on a significant but still limited number of anten-

nas, our method is potential when massive data like in the SKA project [12] need to

be processed or when data from some stations need to be fused.

2.8 Conclusions

In this chapter, we have proposed a simple but efficient approach for estimation and

tracking of the signal and noise subspaces. The different problems considered in

this work are quite common in many array processing applications and are known

as the most expensive tasks in source localization and separation to the extent that

many efficient spatial filtering methods have been disregarded in real-life applications

which use large antenna arrays, e.g., RFI mitigation in radio astronomy [30,31]1. Our

GMNS solution exploits the specific array processing model together with a parallel

computing architecture to reduce the overall cost by a factor close to K2, where K

is the number of parallel computing units, for large dimensional systems. At the

same time, it can be used to fuse data from a number of data sources. Several

algorithmic versions of the GMNS have been developed and the performance was

assessed via simulated and real-life experiments. The performance results showed that

GMNS represents an excellent solution to deal with large size arrays when distributed

resources or parallel computing units are available.

1Due to their high computational cost, efficient subspace-based RFI mitigation methods are
replaced in practice by a simple RFI or ’No RFI’ labeling method.
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Figure 2.11: Image formation before (b) and after RFI mitigation (c-f). Qualitative
comparison between SVD-based (c) and GMNS-based (d-f) subspace estimation on RFI
mitigation in radio astronomy. Signals-Of-Interest (SOIs): Cassiopeia A and Cygnus A;
Radio-Frequency-Interference (RFI): a land mobile signal. (Best view in color)



Appendix A

Appendix

A.1 Proof of Theorem 1

To prove Theorem 1, we need to show that the columns of Vi belong to the noise

subspace and the columns of V form a vector basis of the noise subspace.

First, note that ṼH
i Ai “ 0 leads to VH

i A “ 0 because of the zero-padding

procedure. Hence, the columns of Vi belong to the noise subspace.

To prove that the columns of V form a vector basis, let us show that the noise

matrix has (up to row permutation) a block diagonal structure as illustrated in Fig-

ure A.1 with non-singular dˆd diagonal blocks, which guarantee its full column rank.

Indeed, according to the GPCS concept, the i-th d ˆ d diagonal block represents the

entries of Vi corresponding to the d system outputs not shared by the preceding

subsystems (i.e., associated to tuples 1, 2, . . . , i ´ 1). The block diagonal structure is

then a direct consequence of the zero-padding technique used to build Vi from Ṽi.

Let us prove now that the d ˆ d diagonal blocks are non-singular. Indeed, if a

given diagonal block matrix is singular, then there exists a noise vector with at most

p non-zero entries; this is in contradiction with the assumption that any p rows of

matrix A are linearly independent, as assumed in Theorem 1.

54
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In part 1 of this thesis, we have considered matrix decomposition. We now move

to tensor decomposition. This chapter aims to review several recent state-of-the-

art approaches for large-scale tensor data and introduce the fundamentals of tensor

decomposition. This serves as a background for next chapters.

3.1 Introduction

Large volumes of data are being generated at any given time, especially from transac-

tional databases, multimedia content, social media, and applications of sensors in the

Internet of Things. When the size of datasets is beyond the ability of typical database

software tools to capture, store, manage, and analyze, we face the phenomenon of big

data for which new and smarter data analytic tools are required. Big data provides

opportunities for new form of data analytics, resulting in substantial productivity.

For datasets collected in a multi-dimensional form, they can be naturally repre-

sented by multi-way arrays, which are called tensors1. If we consider a vector as a

first-order tensor, a matrix as a second-order tensor, we will work with higher-order

tensors (of order larger than two) for multiway arrays. In other words, while a ma-

trix is indexed with two indices, a higher order tensor is a data structure with more

than two indices. For example, a three-way tensor can be used to easily store the

time-frequency representation of an EEG dataset. The first way is for the spatial

dimension, storing the locations of the electrodes (channels) that measure the elec-

tricity of the brain. The two other dimensions are the time and the frequency which

store the time-varying frequency content of the EEG signal. These tensor decomposi-

tions, which reveal different structures/components hidden in the underlying tensors,

1More precisely, tensors are introduced in linear algebra as multilinear forms which are naturally
represented, for a given basis of the considered Euclidean space, by multi-way array.
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Figure 3.1: Taxonomy of large-scale tensor problem.

thereby provide efficient tools to analyze, compress and understand data.

Two widely-used tensor decompositions are: (i) parallel factor analysis (PARAFAC) [34],

also known as canonical decompostion (CANDECOMP) [35] used for latent parameter

estimation, and (ii) Tucker decomposition [36] often used for compression and sub-

space estimation. While matrix decompositions (e.g., singular value decomposition-

SVD, non-negative matrix decomposition) are used as powerful tools to analyze two

dimensional data, tensor decompositions are more versatile because they enjoy the

following main advantages for multi-dimensional data: (i) Tensors are a natural gen-

eralization of matrices; (ii) The PARAFAC decomposition possesses the uniqueness

property under mild conditions [37]. Note that additional constraints (such as non-

negativity, sparseness) imposed on the tensor model, when possible, can improve

the uniqueness property and/or interpretation [38]; (iii) The Tucker decomposition

takes into account the multi-way structure of data and captures multiple interactions

instead of pairwise interactions, which will be destroyed if applying matrix decomposi-

tion to collapse some of the modes of data [39]; (iv) Tensor decompositions outperform

matrix decompositions in some practical applications as shown in [40].

Tensor decomposition is encountered in diverse applications, such as: psychomet-

rics, chemistry, signal processing, linear and multilinear algebra, data communication,
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data mining, computer vision, machine learning, to name a few. Thus, a comprehen-

sive survey which covers all those disciplines is difficult. We list here several important

surveys arranged in chronological order: basics of tensor decomposition and its appli-

cations [37], unsupervised multiway data analysis [41], multi-linear subspace learning

for tensor data [42], tensor factorization and decomposition in data mining [43], low-

rank tensor approximation [44] and tensor decomposition for signal processing [40,45].

This list is by no means exhaustive and for more details, we refer to them and the

references therein.

Our short survey, in complementary with the mentioned surveys, focuses on large-

scale tensor problem and the potential approaches to solve it. Here we only consider

the two most popular models: PARAFAC and Tucker and disregard other impor-

tant models such as block tensor decomposition [46–48], tensor networks including

tensor trains [49] and hierarchical Tucker [50], coupled matrix/tensor-tensor decom-

position [51], [52].

Notations: We follow the notations used in [37]. Calligraphic letters are used for

tensors (A,B, . . . ). Matrices, vectors, and scalars are denoted by boldface uppercase,

boldface lowercase, and lowercase respectively; for example A, a, and a. Element

pi, j, kq of a tensor A P R
IˆJˆK is symbolized as aijk, element pi, jq of a matrix

A P R
IˆJ as aij, and i-th entry of a vector a P R

I as ai. Moreover, A b B defines

the Kronecker product of A and B, A d B the Khatri-Rao (column-wise Kronecker)

product and A ˚B the Hadamard product which is the element-wise matrix product,

a ˝ b the outer product of a and b.
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3.2 From Matrix Decomposition to Tensor Decom-

position

Before starting with basic operators and models of tensor decomposition, we provide

“the bridge” between matrix and tensor decomposition through a comparison of their

uniqueness. Here, we are interested in computing a low-rank approximation. In

general form, low rank matrix decomposition can be written as

X “ PQT , (3.1)

which is non-unique. It means that there always exists a non-singular matrix S such

that

X “ PQT “ pPS´1qpSQT q “ P̂Q̂T (3.2)

where P̂ “ PS´1 and Q̂ “ QST . To be unique, additional constraints must be

imposed. Among various constraints, the most popular ones include orthogonality,

sparseness and non-negativity. For example, SVD of X is given by

P “ UE,Q “ V (3.3)

where U and V are orthogonal and E is a diagonal matrix with non-negative real

singular values. In convention, singular values are arranged in descending order. As

a result, the uniqueness of SVD , up to a sign, is due to orthogonal constraint on U

and V, and ordered diagonal matrix E.

Let’s consider, for example, the PARAFAC tensor decomposition. The PARAFAC

model in matrix form (unfolded tensor) can be represented as (see next section for
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more details)

X “ ApC d BqT (3.4)

If we decompose X by using SVD, we will obtain

P “ AŜ´1 (3.5)

Q “ pC d BqŜT (3.6)

where Ŝ is a non-singular matrix. However, different from matrix case, we know

that Q has Khatri-Rao product structure. Without any additional constraints, by

“restoring” the Khatri-Rao structure of Q, we can recover matrix B and C, then

A uniquely (up to scale and permutation). Thus, PARAFAC model can be seen as

matrix decomposition of the unfolded tensor with the Khatri-Rao product structure

imposed on matrix Q. The point here is that, using tensor decomposition, if possi-

ble, often provides rich structures which can be exploited efficiently to improve the

performance and convergence rate of certain algorithms.

3.3 Basic Tensor Operations and Models

In this section, we present basic tensor operators which are often used in developing

algorithms for tensor decomposition. We also present intuitive idea of PARAFAC

and Tucker model and their uniqueness properties. This section is a summary of rich

literature which can be found in the listed surveys. For simplicity, we will present

most results in the case of 3-way tensor.
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3.3.1 Basic Tensor Operations

3.3.1.1 Tensor Unfolding

Tensor unfolding, also known as matricization and flattening, is an operation which

reorders tensor into a matrix. Using tensor unfolding allows to exploit well-defined

properties developed in linear algebra for vectors and matrices and provides a con-

venient way to process tensors. We note that tensor operators can be implemented

without tensor unfolding.

Mode-n unfoldings of a tensor X P R
IˆJˆK are defined as

Xp1q : rXp1qsi,j`pk´1qJ “ xijk

Xp2q : rXp2qsj,i`pk´1qI “ xijk

Xp3q : rXp3qsk,i`pj´1qI “ xijk.

There are different ways to choose ordering of columns. In literature, three ways

are considered: forward cyclic [53], backward cyclic [54] and ascending order [37].

The mode-n-unfolding here corresponds to the ascending case. Using different tensor

unfoldings leads to slightly different formula of tensor models. However, it does not

affect the final results (i.e., recovered factors) as long as it is chosen consistently.

3.3.1.2 Tensor Multiplication

Entries of mode-1 product of a tensor X P R
IˆJˆK and a matrix A P R

NˆI , denoted

by pX ˆn Aq, is given by

pX ˆ1 Aqnjk “
I

ÿ

i“1

xijkani
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More generally, entries of mode-n product of a tensor X P R
I1¨¨¨ˆInˆ¨¨¨ˆIN and a matrix

A P R
JˆIn , denoted by pX ˆn Aq, is defined as

pX ˆn Aqi1¨¨¨in´1jin`1¨¨¨iN “
In
ÿ

in“1

xi1¨¨¨iNajin

Let Y “ X ˆn A. We can write an equivalent expression in unfolded tensor form as

follows

Ypnq “ AXpnq

We also have the following properties

X ˆn A ˆm B “ X ˆm B ˆn A

X ˆn A ˆn B “ X ˆn pBAq (3.7)

The inner product of two same-size tensors X , Y P R
IˆJˆK is defined as

xX ,Yy “
I

ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

xijkyijk.

As a consequence, we have xX ,X y “ }X }2. Moreover, the l1 norm of a tensor X P

R
IˆJˆK is defined as

}X }1 “
I

ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

|xijk|.
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3.3.1.3 Useful Matrix Property

Several useful matrix properties are summarized here

pA b BqpC b Dq “ pACq b pBDq

pA d BqT pA d Bq “ pATAq ˚ pBTBq

vecpABCT q “ pC b Aq vecpBq,

pA b Bq# “ ppATAq ˚ pBTBqq#pA b BqT

pA b B b CqpD d E d Fq “ pADq d pBEq d pCFq

where vecpq performs vectorization of a matrix or a tensor that stacks the columns of

the matrix or the tensor into a vector (e.g., given B P R
IˆJ , vecpBq “ rbT

1 , ¨ ¨ ¨ ,bT
J sT

and pq# is the pseudo-inverse operator. Dimensions of each matrix are assumed to

match.

3.3.2 PARAFAC model

Intuitive idea behind PARAFAC can be captured through Figure 3.2. While SVD

for matrices can be written as sum of R rank one matrices (Figure 3.2 (a)), the

PARAFAC decomposition of X P R
IˆJˆK can be defined as

X “ vA,B,Cw ”
R

ÿ

r“1

ar ˝ br ˝ cr, (3.8)

or equivalently

xijk “
R

ÿ

r“1

airbjrckr (3.9)

which is the sum of R rank-one tensors (Figure 3.2 (b)), with R being the tensor rank.

The set of vectors, taru, tbru, tcru can be grouped into the so-called loading matrices
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Figure 3.2: PARAFAC can be seen as a generalization of SVD.

A “ ra1 . . . aRs P R
IˆR, B “ rb1 . . .bRs P R

JˆR, and C “ rc1 . . . cRs P R
KˆR.

Equation 3.8 can also be formulated in matrix and vector form using mode-n

unfolding as

Xp1q “ ApC d BqT (3.10)

Xp2q “ BpC d AqT (3.11)

Xp3q “ CpB d AqT (3.12)

x “ pC d B d Aq1 (3.13)

where x “ vecpXp1qq and 1 P R
Rˆ1 whose all entries are one. It is straightforward

to see from Figure 3.2 (b) and (3.8) that the sum is unchangeable if we reorder and

re-scale rank-one tensors (hence, order of vectors in loading matrices). Thus, we have

X “ vA,B,Cw “ vAΠΛ1,BΠΛ2,CΠΛ3w (3.14)
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Figure 3.3: PARAFAC can be seen as a special case of Tucker.

where Π is a permutation matrix and Λi, i “ 1, ¨ ¨ ¨ , 3, are scale diagonal matrices

satisfying Λ1Λ2Λ3 “ I. PARAFAC decomposition is generically unique (up to scales

and permutation) if the following condition is satisfied [55]:

2RpR ´ 1q ď IpI ´ 1qKpK ´ 1q, R ď J.

This condition is developed based on Kruskal’s result [56].

3.3.3 Tucker Model

We note that PARAFAC can also be illustrated as Figure 3.3 (a) with an unit super-

diagonal tensor1 I. If we relax this constraint (i.e., I now can be sparse or dense

tensor), we form the Tucker decomposition of Y P R
IˆJˆK which can be written as

1an unit super-diagonal tensor is a cubical tensor with ones along the superdiagonal.
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follows:

Y “ vG;A,B,Cw ”
P

ÿ

p“1

Q
ÿ

q“1

R
ÿ

r“1

gpqrap ˝ bq ˝ cr, (3.15)

where A “ ra1 . . . aP s P R
IˆP , B “ rb1 . . .bQs P R

JˆQ and C “ rc1 . . . cRs P R
KˆR

are the factor matrices and G P R
PˆQˆR is called the core tensor. In general, fac-

tor matrices of Tucker model are not necessarily orthogonal. However, in practice,

column-wise orthogonal constraint is, in most cases, imposed.

A special case of orthogonal Tucker decomposition is Higher-Order SVD (HOSVD) [54]

where the core tensor has all-orthogonal property besides orthogonal factors. All-

orthogonal property means that by considering a 3-way core tensor, the matrices,

extracted by fixing one index and releasing two the others, are mutually orthogonal.

Matrix and vector forms of (3.15) can be presented as

Yp1q “ AGp1qpC b BqT (3.16)

Yp2q “ BGp2qpC b AqT (3.17)

Yp3q “ CGp3qpB b AqT (3.18)

y “ pC b B b Aqg, (3.19)

where y “ vecpYq and g “ vecpGq.

In contrast to the PARAFAC model, the Tucker model is non-unique since

Y “ vG;A,B,Cw “ vG ˆ1 P ˆ2 Q ˆ3 R;AP´1,BQ´1,CR´1w. (3.20)

Uniqueness can be achieved only if specific constraints are added, for example both

sparsity and non-negativity constraints.
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3.4 Batch Setting

In batch setting, we categorize the existing algorithms based on their tensor decom-

position approaches. For each one, we first describe the main idea which is shared by

all algorithms and then present specific solutions and their differences.

3.4.1 Divide-and-Conquer Approach

The main idea of this approach (Figure 3.4) is to divide a big tensor data into number

of smaller tensor data; then run specific tensor decomposition algorithms on those

data (possibly in parallel scheme) before joining “local” results into “global” one.

The difference resides on the way each algorithm handle data (i.e., decentralized or

distributed) and on the used optimization techniques.

X X

.

.

.

.

.

.

I

A

B

C

Figure 3.4: Divide-and-Conquer approach for large-scale tensor (An example of
PARAFAC model)

3.4.1.1 PARAFAC Model

In [57], the authors proposed to use this approach combined with a fast Alternating

Least-Squares (ALS) algorithm. To speed up the joining procedure, they also pro-

posed a multistage reconstruction step where local factors are merged from results
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of neighbor sub-tensors. The algorithm works with underlying assumption that the

decomposition of each sub-tensor is strictly unique.

In [58], we also used a decentralized approach but the way the structure of

PARAFAC is used is different from [57]. In fact, our algorithm is an extension in

spirit of the Generalized Minimum Noise Subspace (GMNS) method [23, 59] which

permits to use (stable) SVD at small scale for subspace estimation. Our algorithm

also use the same uniqueness condition assumption as in [57].

To relax uniqueness condition on sub-tensors, in [60,61], the authors developed a

distributed ALS algorithm. The main idea is to permit collaboration across the three

modes of the tensor.

3.4.1.2 Tucker Model

A distributed memory Tucker decomposition for data compression was proposed

in [62]. While each data block is fixed in each processor, factor matrices are ex-

changed between processor grid. Parallel implementation Higher Order Orthogonal

Iteration (HOOI) [63] using Sequentially-Truncated HOSVD [64] as an initialization,

was taken into account. Those algorithms can also be implemented efficiently by

using level 3 Basic Linear Algebra Subprograms (BLAS) routines1.

3.4.2 Compression/Compressive Sensing/Random Sampling

based Approach

The spirit of these approaches is to process a reduced-size or a sparse representation

which essentially keeps the same or approximately the same information as the original

form. An illustration of this approach is given in Figure 3.5.

1Level 3 BLAS aims to implement matrix-matrix operations and supports block-partitioned
algorithms
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Figure 3.5: Compression/compressive sensing/random sampling approach for large-scale
tensor (PARAFAC model)

In tensor decomposition, compression approach-based algorithms always use Tucker

decomposition or HOSVD to compress data; and then depending on applications, a

desired decomposition (e.g., PARAFAC) is applied on the core tensor to extract

loading factors. To recover the factors of the original form, the extracted factors

are simply multiplied with the corresponding factors of Tucker decomposition. As a

consequence, it allows to avoid running desired decomposition on large dimensional

tensors (i.e., avoid running iterative algorithm1 in large-scale data). Since both Tucker

and HOSVD algorithms require SVD or EVD computation of large dimensional ma-

trices, this approach would be appropriate only for small or moderate size tensor

decomposition. For more details, we refer the reader to [65].

Random sampling (RS) method represents data in smaller size or sparse form

while approximately preserving essential information (see [66] for an introduction

and review). Depending on data form (e.g., matrix or tensor) and algorithms, there

1Most PARAFAC decomposition algorithms are iterative.
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are different kinds of sampling strategies such as element-wise, row/column, slide and

block. Moreover, those strategies can be chosen following several specific probability

distributions (e.g., uniform, non-uniform, data-dependent).

For Tucker model, in [67], along each mode, a column sampling strategy, which can

be one-pass or multiple-pass, is first applied to the unfolded tensor. Then the factor

matrices are computed as principal singular vectors of the sampled matrix. A similar

method but using element-wise sampling is developed in [68]. We note that element-

wise sampling yields sparse representation instead of reduced-size form.

For PARAFAC model, Parcube algorithm [69] uses data-dependent-based sampling

to determine important part of tensor (i.e., marginal sum of tensor for each mode),

runs PARAFAC for each sampled tensor and then merges results. This algorithm

only works for sparse tensors and offers no identifiablity guarantee.

In [70], authors further developed compression approach by assuming that the

big tensor has underlying low-rank structure (i.e., PARAFAC model) and factor ma-

trices are sparse. While low-rank structure allows to design a special compression

matrix which has Kronecker product structure, the sparse factors help to guarantee

identifiability (i.e., uniqueness of the recovered factors from results of the compressed

tensor). Here, the Kronecker product structure of the compression matrix keeps the

compressed tensor having a low-rank as the original one. Thus, authors claim that

this approach can be considered as a generalization of compressive sensing (CS) idea

for multilinear case. A combination of this approach and divide-and-conquer strategy

can be found in [71].

3.4.3 Alternating Least-Square/Optimization Approach

For tensor decomposition, alternating least-squares yields workhorse algorithm for

long time. The idea of alternating approach is simple; at each step, we optimize a
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factor while keeping the others fixed. At the beginning there were several efforts to

accelerate the convergence rate and overcome the degeneracy1 problem using line-

search approach [72]. The direct implementation of ALS is difficult to handle for

large scale data because (i) the size of intermediate computation results between

unfolded tensor and all-but-one factors is much larger than that of the interested

loading matrices (ii) multiple accesses of original tensor data in different orders are

necessary. Several techniques to tackle those problems have been addressed in [73]

and [74].

The general optimization approach casts the tensor decomposition problem into a

nonlinear equation problem and then solves it using standard optimization tools, such

as gradient methods. In some difficult situations such as degeneracy or over-factoring

case2, the gradient approach based-algorithms can outperform ALS in terms of ac-

curacy and performance. Within this class, various algorithms have been developed,

including the non-linear conjugate gradient [75], also see [76] for the case of missing

data, [77] for the case of sparse and nonnegative PARAFAC and Tucker, the fast

damped Gauss-Newton (dGN) algorithms [78] and the Alternating Direction Method

of Multipliers (ADMM) [79].

3.5 Adaptive Setting

In adaptive setting (also known as online or incremental setting), we classify the

existing algorithms w.r.t. the characteristic of streaming data: full observation (i.e.,

without missing data) and partial observation (i.e., with missing data). An illustra-

tion of adaptive tensor setting is given in Figure 3.6.

1Degeneracy refers to problem when collinearity of two or more components in the factor matrices
exists.

2Over-factoring means that the chosen tensor rank is larger than the true one.
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X pt ´ 1q
Ð ¨ ¨ ¨

Figure 3.6: Adaptive tensor setting: at time instant t, tensor X ptq captures a new data
slice.

3.5.1 Full Observation

Adaptive PARAFACmodel for third-order tensors having one dimension growing with

time has been introduced in [80]. Two algorithms using recursive least-squares track-

ing (PARAFAC-RLST) and simultaneous diagonalization tracking (PARAFAC-SDT)

have been proposed. While the former uses first-order methods (i.e., using gradients)

to optimize an exponentially-weighted least-squares cost function, the latter exploits

SVD tracking algorithm combined with recursive simultaneous diagonalization step.

The computational complexity of both algorithms is quadratic in terms of the tensor

rank.

To deal with computational complexity problem of [80], we have proposed a linear

complexity adaptive PARAFAC algorithm [81] which generalizes the Orthonormal

Projection Approximation Subspace Tracking (OPAST) approach [15]. This algo-

rithm, named 3DOPAST, uses a special interpretation of Khatri-Rao product as

collinear vectors inside each column. Its performance is equal or even superior to

PARAFAC-RLST and PARAFAC-SDT while keeping the computational complexity

linear to tensor rank. An improved version of 3DOPAST, named SOAP, using second-

order stochastic gradient as well as preserving Khatri-Rao product structure is also

proposed in [82]. Moreover, we also adapt SOAP to handle adaptive non-negative

PARAFAC model. It is shown that SOAP is stable for very long time run. For more

details, we invite the reader to our papers [81, 82].
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Adaptive Tucker decomposition has several different names in the literature, for

examples: dynamic tensor analysis [83], incremental tensor subspace learning [84],

tensor subspace tracking [85]. Streaming tensor analysis was proposed in [83]. In this

work, the eigensubspace is updated via tracking a projection matrix for all modes.

Dynamic tensor analysis, which is a more general model for streaming tensor analysis,

allows a changeable amount of data to come at each time instant. The main idea

of the proposed algorithm for this kind of model is to track the covariance matrix

and the eigensubspace of unfolded tensors for each mode. With the same spirit, the

incremental tensor subspace learning applies an incremental SVD algorithm [86] to

three unfolded tensors. In tensor subspace tracking, based on Kronecker-structured

projection, the tensor subspace is tracked by using the matrix-based subspace tracking

PAST algorithm [14].

3.5.2 Partial Observation

In another recent work [87], authors have proposed an adaptive PARAFAC for in-

complete streaming data. They proposed to use first-order method to minimize

exponentially-weighted least-squares cost function with regularization terms. Second-

order methods have been considered independently in [88] as well as in our work [6].
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In previous chapter, we have surveyed the approaches for large-scale tensor prob-

lem. In contrast, this chapter will consider a specific solution which is an extension

of GMNS method introduced in Chapter 2.

4.1 Introduction

As stated in the previous chapter, in literature, many algorithms are developed for

fitting the PARAFAC model. One of the “workhorse” algorithms for long time is the

alternating least-squares (ALS). The drawback of ALS is that it may require many

iterations before convergence and is not guaranteed to reach the global optimum [37].
76
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Few works giving approximate “closed-form” 1 solutions are proposed such as [55] and

[89]. These algorithms transform PARAFAC model into joint diagonalization (JD) of

several sets of matrices. Although having promising results, they are either not robust

with noise (as shown later) or/and expensive in term of computation complexity

(required to compute HOSVD (Higher-Order-Singular Value Decomposition) [89] or

a bi-linear mapping [55] before solving JD).

In this chapter, we propose a new closed-form algorithm to solve the PARAFAC

problem. The key steps of our algorithm is based on solving a non-symmetrical

joint diagonalization (NJD) problem. These steps comparing to [55], [89] are sim-

pler and more robust to noise. Moreover, the performance of our algorithm is near

identical with ALS’s which is close to Cramer-Rao Lower Bound (CRLB) as show

in [90]. We also develop a procedure which allows to integrate our algorithm in dis-

tributed/parallel computing scheme, thereby can be suitable for large-scale problem.

4.2 PARAFAC-NJD Decomposition

Let consider the matrix representation of a tensor X (i.e.(3.11))

X “ pC d AqBT ` N (4.1)

Our algorithm can be divided into three steps:

Step 1: Estimate the subspace which spans column space of matrix C d A (i.e.

pC d AqQ whereas Q is an unknown (non-singular) matrix.

Step 2: Estimate the matricesA and C ,andQ simultaneously using non-symmetrical

joint diagonalization.

1As commented in [89], the ‘closed-form’ in the literature is conflicting. Here, we consider JD
and NJD to be closed-form.
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Step 3: Estimate the loading matrix B.

Now we explain these steps in detail. To estimate the subspace of the matrix AdB,

we use the approach based on computing the covariance matrix of X

Rx “ 1

J
pXXT q “ pC d AqRbpC d AqT ` Rn (4.2)

where Rn is assumed either negligible or asymptotically (i.e. for J " 1) proportional

to identity matrix. Then the principal subspace is extracted by partial eigenvalue

decomposition (i.e. by extracting U, the matrix of the R principal eigenvectors of

Rx). It is straightforward to demonstrate:

U “ pC d AqQ (4.3)

where Q is a non-singular R ˆ R unknown matrix. The subspace estimation here

can be thought as compression or dimension reduction step. In the second step,

we propose to use a non-symmetrical joint diagonalization to recover the loading

matrices A and C, and estimate the matrix Q simultaneously. Observe that (4.3)

can be rewritten as

Mk “ ADkQ, k “ 1, . . . , K (4.4)

where Mk “ U:,:,k (i.e., in slides [37] ) and Dk “ diagpCk:q. Thus, A, tDku, and Q

can be found by minimizing the following function

fpA,Q, tDkuq “
K
ÿ

k“1

‖ Mk ´ ADkQ ‖2F (4.5)

There are many existing algorithms which tackle this problem, for example [91], [92],

[93] or ALS [72]. At the final step, we can estimate B from the estimated subspace
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U and Q in the first and second steps respectively

B “ pUTXqTQT (4.6)

Here, we exploit the fact that U is orthogonal. Thus, we do not need to calculate

C d A after the second step. This algorithm is referred to as PARAFAC-NJD (NJD

stands for Non-symmetrical Joint Diagonalization).

Remarks:

• First, while our approach solves a non-symmetrical joint diagonalization di-

rectly, the method in [55] needs to build a bi-linear mapping which has high

computational complexity in the case of the captured data with large dimension

before solving a symmetrical joint diagonalization problem. More importantly,

in a noisy environment, our algorithm is more robust to noise when comparing

with [55] as indicated in the simulation section.

• Second, by exploiting structure of the estimated subspaces, our method is easy

to incorporate into parallel and dynamic schemes as presented in next section.

• Third, the solution of (4.4) is unique only up to scaling and permutation indeter-

minacy. More specifically, any set of matrices of the formAPΛ, tΛ´1PTDkPΛ̃
´1u,

and Λ̃PTQ is also a solution where P is a permutation matrix, and Λ and Λ̃

are diagonal matrices.

4.2.1 Parallel PARAFAC-NJD Decomposition

In this section, we develop a parallel version for the proposed algorithm. In the pre-

vious chapter, GMNS method is proposed to estimate principal and minor subspaces

in a parallel scheme. It allows to reduce overall numerical cost by a factor of L2

(L is number of available DSPs) while still preserving the estimation accuracy. This
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Table 4.1: Summary of Parallel PARAFAC-NJD algorithm

Input: Matrix representation of large-scale tensor X

1. Extract non-overlapping sub-tensors as described in 4.2.1.1, or overlapping
ones as described in 4.2.1.2

2. Apply PARAFAC-NJD algorithm:

(a) Parallel principal subspace estimation using GMNS

(b) Extract sub-loading matrices using NJD

3. Solve permutation and scale problem

Output: estimated loading matrices A,B and C

algorithm can be applied to estimate the principal subspace U. Moreover, we further

reduce the complexity of solving NJD problem in our algorithm by proposing a new

procedure which has the spirit close to the GMNS algorithm.

Our new procedure has two key steps besides applying PARAFAC-NJD procedure.

The first one is to divide a big tensor into sub-tensors. We consider non-overlapping

and overlapping cases. The second one is to solve permutation problem between the

estimated loading matrices from each sub-tensor. Summary of all steps are presented

in Table 4.1.

4.2.1.1 Parallel PARAFAC-NJD Decomposition with Non-overlapping

Tensor Partitioning

Assume that, we want to divide a big tensor into L non-overlapping sub-tensors along

K-mode such that d “ K{L (for simplicity, d is assumed to be integer-valued). Thus,

l-th subtensor can be represented in matrix and slab form respectively as follows

Xl “ pCdpl´1q`1:dl,: d AqBT (4.7)
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and,

Xl
k “ ADl

kB
T , k “ 1, . . . , d (4.8)

Following this partitioning procedure, the subtensors still keep the same structure

like the original one but having a smaller dimension (i.e I ˆ J ˆ d for each).

After partitioning tensor, we apply the PARAFAC-NJD algorithm for each sub-

tensor. Specifically, the estimated subspace Ul of tensor X l yields

Ul “ pCl d AlqQl. (4.9)

where Cl P R
dˆR, Al P R

IˆR, and Ql P R
RˆR. Then we find Cl, Al and Ql by

minimizing the function

fpAl,Ql, tDl
kuq “

d
ÿ

k“1

‖ Ml
k ´ AlDl

kQ
l ‖2 (4.10)

Similar to (4.6), the loading matrix Bl can be calculated as

Bl “ ppUlqTXlqT pQlqT (4.11)

where Bl P R
JˆR . Until now, we have a set of matrices tAlu, tBlu and tClu.

Note that, tAlu and tBlu are estimates of A and B correspondingly up to scale and

permutation. On the other hand, each Cl presents a sub-matrix of C (see (4.20) and

(4.21)).

We now solve scaling and permutation problem. For loading matrixA, we consider

loading matrices of two successive subtensors, Al “ APl
Λ

l and Al`1 “ APl`1
Λ

l`1.
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Then, for each column of matrix Al, we search

i “ argmax
j

|pAl
:,kqT pAl`1

:,j q|
}Al

:,k}}Al`1
:,j }

k “ 1, . . . , R (4.12)

Pl`1,lpi, kq “ 1 (4.13)

Λ
l`1,lpi, iq “

pAl`1
:,i qT pAl

:,kq
}Al`1

:,i }
(4.14)

where initialization of P “ 0 which is an RˆR zero matrix and initialization of Λ “ I

which is an identity matrix. Thus, loading matrix A can be found by (by informal

way)

Al`1 “ Al`1pΛl`1,lqpPl`1,lq (4.15)

For loading matrix B, we note that

Bl “ ppUlqTXlqT pQlqT (4.16)

“ BPlpΛ̃lqT (4.17)

We thus can apply the same procedure in previous description to Bl and Bl`1 to find

out Λ̃l`1,l. Consequently,

Bl`1 “ Bl`1pΛ̃l`1,lqpPl`1,lq (4.18)

Finally, from results of A and B, each row of loading matrix Cl`1 is given by

Dl`1
k “ pΛl`1,lq´1pPl`1,lqTDl`1

k pPl`1,lqpΛ̃l`1,lq´1 (4.19)

We refer to this procedure as PARAFAC-NJD-NO.
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4.2.1.2 Parallel PARAFAC-NJD Decomposition with Overlapping Ten-

sor Partitioning

Similar to non-overlapping case, we want to divide a big tensor into L overlapping

sub-tensors along K-mode. Let q be the number of overlapping slides. Hence, each

overlapping tensor has d` q slabs. The matrix and slab representation of this proce-

dure for two successive subtensor X l and X l`1 are given by

Xl “ pCdpl´1q`1:dl`q,: d AqBT (4.20)

Xl`1 “ pCdl`1:dpl`1q`q,: d AqBT (4.21)

and

Xl
k “ ADl

kB
T , k “ 1, . . . , d ` q (4.22)

Xl`1
k “ ADl`1

k BT (4.23)

respectively, where Dl
k “ diagpCl

k:q and Dl`1
k “ diagpCl`1

k: q and Cl “ Cdpl´1q`1:dl`q,:

and Cl`1 “ Cdl`1:dpl`1q`q,:. Each subtensor now has size of I ˆ J ˆ pd ` qq. We then

apply the proposed algorithm for each sub-tensor to get a set of matrices tAlu P R
IˆR,

tBlu P R
JˆR and tClu P R

pd`qqˆR. The scale and permutation problem can be solved

by applying the same procedure in non-overlapping case for A and B.

For the loading matrix C, we consider two successive sub-tensors which yield Cl and
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Cl`1

Cl “

»

—

–

Cl,nonoverlap

Cl,overlap

fi

ffi

fl
Pl

Λ
l “

»

—

–

Cdpl´1q`1:dl,:

Cdl`1:dl`q,:

fi

ffi

fl
Pl

Λ
l (4.24)

Cl`1 “

»

—

–

Cl`1,overlap

Cl`1,nonoverlap

fi

ffi

fl
Pl`1

Λ
l`1 “

»

—

–

Cdl`1:dpl`1q

Cdpl`1q`1:dpl`1q`q

fi

ffi

fl
Pl`1

Λ
l`1 (4.25)

We then apply the described procedure for overlapping part of Cl and Cl`1. Thus,

loading matrix C is given by

Cl`1 “ Cl`1pΛl`1,lqpPl`1,lq (4.26)

After matrices alignment, we can improve the estimates of A and B by averaging

Â “ 1

L

L
ÿ

1

Al (4.27)

and

B̂ “ 1

L

L
ÿ

1

Bl (4.28)

We refer to this procedure as PARAFAC-NJD-O.

4.3 Simulations

To assess the performance of the proposed algorithms, we use the same set-up as

in [55]. The entries of a tensor X whose rank is R are drawn from a zero-mean

unit-variance Gaussian distribution. A Gaussian noise term N is then added to this

tensor

X̃ “ X

‖ X ‖F
` σN

N

‖ N ‖F
(4.29)
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I J K R L q

20 20 40 8 2;4 4

Table 4.2: Particular parameters are set in our experiments.

where the value of σN controls the noise level. The accuracy of the estimated loading

matrices (A, B, and C) and matrix representation of tensor X (X) is the relative

error defined as

ρpNq “ 1

N

N
ÿ

n“1

‖ Hn ´ Hex ‖F
‖ Hex ‖F

(4.30)

where N is the number of Monte Carlo runs and Hi is the estimate of the exact

matrix Hex. In all experiments, N is set to 100. We compare the performance of

our algorithms with two state-of-the-art ones, ALS+ELS from N-way toolbox1 and

PARAFAC-SDQZ [55]. Parameters for experiments are shown in Table4.2. Rank R

is chosen to be small comparing to dimensions of tensor. The results from Figure 4.1

and 4.2 show that performance of PARAFAC-NJD is comparable to ALS+ELS and

PARAFAC-SDQZ but with reduced computational cost. Moreover, it is more ro-

bust than PARAFAC-SDQZ in the noisy environment (i.e. ´logpσNq ă 0.5). Fig-

ures 4.1 and 4.2 also illustrate the effectiveness of proposed procedures in parallel

computing scheme (likewise, for dynamic tensor analysis with the same parameters).

The PARAFAC-NJD-0 (L “ 2, q “ 4) has slight performance loss comparing to the

three batch algorithms. When number of processors L increases, PARAFAC-NJD-0

(L “ 4, q “ 4) gain more in term of complexity and have small performance loss.

Thus changing L allows to balance between the accuracy and the complexity.

1N-way toolbox version 3.30 (including enhanced line search procedure [72]) is downloaded from
http://www.models.life.ku.dk/nwaytoolbox
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4.4 Conclusion

We have described a new algorithm for tackling PARAFAC problem based on solving

a non-symmetrical joint diagonalization problem. Furthermore, a new procedure for

solving scale and permutation ambiguities between the estimated loading matrices

from different DSPs has been proposed to reduce complexity in a distributed/parallel

computing scheme. In simulation, we have compared the proposed methods to

ALS+ELS and PARAFAC-SDQZ and observed that the performance of our algo-

rithm is similar to or even slightly better in specific contexts.
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(a) Loading matrix A

(b) Loading matrix B

(c) Loading matrix C

Figure 4.1: Performance comparison of the proposed algorithms with ALS+ELS and
PARAFAC-SDQZ (loading matrices)
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Figure 4.2: Performance comparison of the proposed algorithms with ALS+ELS and
PARAFAC-SDQZ (matrix representation of tensor X ).
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alone, are inappropriate for large-scale problem. However, they can be integrated into

the divide-and-conquer framework as described in Chapter 3.
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5.1 Introduction

To date, various methods have been introduced and developed for computing ten-

sor decomposition. We can classify them into three main approaches: alternating

approach, general optimization approach and algebraic approach. The alternating

approach optimizes one factor at each step while keeping the others fixed. The gen-

eral optimization approach casts the tensor decomposition problem into a nonlinear

equation problem and then solve it using standard optimization tools, such as gra-

dient methods. In a different aspect, as its name reveals, the algebraic approach

aims to solve the tensor decomposition problem by using only algebra operators. We

refer the reader to [76, 94] for a comparion of different algorithms for PARAFAC

decomposition.

For a long time, the alternating approach is considered as the “workhorse” one

because of its simplicity and relative efficiency. However, an all-at-once optimization

framework (see [76] and references therein), which has been recently proposed, has

been reported to be as accurate as alternating-based algorithms while being more

robust in the over-factoring case1. While estimating the rank of a tensor is NP-

complete [37] and still an open problem, robustness is a desirable characteristic.

Moreover, among various constraints, two popular ones are non-negativity and

sparsity because many problems come naturally with them, such as in text, image,

and EEG signal analyses. As a result, many tensor decomposition algorithms with

non-negativity and sparseness constraints have been proposed. We refer the reader

to [37, 38, 40] for comprehensive review. For PARAFAC, imposing a non-negativity

constraint, when applicable, not only improves the physical interpretation [38] but also

helps to avoid diverging components [95, 96]. Enforcing non-negativity and sparsity

1Over-factoring means that for example in PARAFAC we choose a tensor rank is larger than its
true value.
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on factors and/or the core tensor also helps to improve the uniqueness of the Tucker

decomposition [97]. However, as will be indicated in the sequel, even enforcing non-

negativity and sparsity on factors, the state-of-the-art algorithms are not robust to

over-factoring. Our work aims to overcome this shortcoming by bring these two

desired characteristics together. In particular, we would like to have algorithms which

are robust with over-factoring and easy to use with either non-negativity constraint

or both non-negativity and sparseness constraints.

Our contributions are two folds: First, we tailor the all-at-one optimization frame-

work [76] to impose non-negativity constraint or both non-negativity and sparse-

ness constraints for tensor decomposition. Second, we apply this framework to two

case studies: (i) sparse non-negative PARAFAC decomposition, and (ii) sparse non-

negative Tucker decomposition. As shown in the simulation section, our sparse non-

negative algorithms are as accurate as state-of-the-art algorithms but more robust to

over-factoring. We would like to highlight that the all-at-once optimization approach

has been applied to the PARAFAC decomposition with missing entries [98], coupled

matrix/tensor decomposition without/with missing value [99]. However, to our best

knowledge, sparse non-negative PARAFAC and Tucker ones have not been proposed

in the context of all-at-one optimization.

5.2 All-at-once Optimization with Nonnegative and

Sparse Constraints

The all-at-once optimization approach [76] includes three steps:

Step 1: Define a cost function f and variable x.

Step 2: Compute the gradient ∇fpxq.

Step 3: Optimize using nonlinear conjugate gradient.
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Table 5.1: All-at-once optimization with non-negativity constraints

Step 1: Define a cost function f and variable x.
Step 2: Compute the gradient ∇fpxq.
Step 3: Optimize using first order projected gradient.

The special point comes from variable x which is a concatenation of the vectorized

forms of the loading matrices for PARAFAC, or vectorized forms of the loading factors

and the core tensor for Tucker (see next sections for more details).

To impose the non-negativity constraint or both the non-negativity and sparseness

constraints, we propose to replace the nonlinear conjugate gradient by a first-order

projected gradient method. This framework is simple and easy to implement. More-

over, it allows us to solve a large class of problems (e.g., different models) with

non-negativity and sparseness constraints. When the sparseness constraint comes

after the non-negativity constraint, it is straightforward to calculate the gradient of

variable with l1 norm following the rule B}x}1
Bx

“ 1 where 1 is a vector1 whose en-

tries are one. Thus, we can use the proposed framework without modifying Step 3

in the optimization algorithm. A summary of the framework is presented in Algo-

rithm 5.1. We adapt the projected gradient algorithm [100] to use in Step 3. We

choose this algorithm because it is well-understood and the results for convergence

are available [101]. The algorithm is a variant of the projected gradient algorithm

using the Armijo rule along the projection arc [102]. In particular, the step size in

the following update step:

xpk`1q “ rxk ´ αk∇fpxkqs` (5.1)

1Here, we will ”over-use” notation 1 which can be vector or matrix depending on the variable
size
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should be such that the following condition is satisfied:

fpxk`1q ´ fpxkq ď σ∇fpxkqT pxk`1 ´ xkq, (5.2)

where αk “ βtk and tk is the first integer which makes (5.2) hold and σ is a pre-defined

positive scalar. The main idea now is to reduce the search time of αk by using αk´1

as an initial guess. This search strategy stems from the fact that αk and αk´1 may

be close. Thus we can increase or decrease αk until the largest βtk that satisfies (5.2)

is found. A summary of the projected gradient is presented in Table 1.

For stopping condition, we terminate the algorithm if }r∇fpxkqs`} ď ǫ}r∇fpx1qs}

or if the algorithm reaches a maximum number of iterations. The former means that

we stop if a solution at the k-th step xk is close to a stationary point where ǫ ą 0 is

a small user-defined number. The latter is to avoid a too-long run-time.

Algorithm 1: Modified projected gradient [100].

Input : x0 P R`

Output: x P R` such that (5.2) is minimized
1 initialization for β P p0, 1q, σ P p0, 1q, α0 “ 1
2 while a stopping condition is not met do
3 if (5.2) holds, then
4 repeat
5 αk Ð αk{β
6 x̂ Ð rx ´ αk∇fpxkqs`

7 until (5.2) does not hold, or x̂ “ x;

8 else
9 repeat

10 αk Ð αkβ

11 x̂ Ð rx ´ αk∇fpxkqs`

12 until (5.2) holds, or x̂ “ x;

13 end

14 end
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5.3 First Case Study: PARAFAC Model

In this section, we define the cost function for the sparse non-negative PARAFAC

decomposition as

minimize fpA,B,Cq

subject to A ě 0,B ě 0,C ě 0

where

fpA,B,Cq “1

2
}X ´ vA,B,Cw}2F

` λA}A}1 ` λB}B}1 ` λC}C}1 (5.3)

and λA, λB and λC are penalty terms which control the regularization strength. We

can write out three equivalent expressions of (5.3) in terms of unfolded tensors as

follows:

fpA,B,Cq “ 1

2
}Xp1q ´ ApC d BqT }2F

` λA}A}1 ` λB}B}1 ` λC}C}1 (5.4)

fpA,B,Cq “ 1

2
}Xp2q ´ BpC d AqT }2F

` λA}A}1 ` λB}B}1 ` λC}C}1 (5.5)

fpA,B,Cq “ 1

2
}Xp3q ´ CpB d AqT }2F

` λA}A}1 ` λB}B}1 ` λC}C}1. (5.6)
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These expressions are convenient when computing the partial derivatives correspond-

ing to variables A or B or C. To be specific, we have

Bf
BA “ ´Xp1qpC d Bq ` ApCTC ˚ BTBq ` λA1 (5.7)

Bf
BB “ ´Xp2qpC d Aq ` BpCTC ˚ ATAq ` λB1 (5.8)

Bf
BC “ ´Xp3qpB d Aq ` CpBTB ˚ ATAq ` λC1. (5.9)

We then obtain the gradient by concatenating their vectorized forms as

∇fpxq “
„

vecp Bf
BAqT , vecp Bf

BBqT , vecp Bf
BCqT

T

, (5.10)

where x “ rvecpAqT , vecpBqT , vecpCqT sT . Finally, we use this gradient in Step 2 of

the framework given by Table 5.1. We refer to this implementation as the All-at-once

optimization based Sparse Nonegative PARAFAC (ASNP) algorithm.

5.4 Second Case Study: Tucker Model

Similar to the PARAFAC case, we present a sparse non-negative Tucker decompo-

sition. Depending on applications, we can choose to impose a sparseness constraint

on several factors and the core tensor, or only the core tensor. If dimensions of the

core tensor are smaller than those of the underlying tensor, we have the standard

Tucker model. Otherwise, we have a tensor dictionary learning problem. Consider

the following cost function:

minimize hpA,B,C,Gq

subject to A ě 0,B ě 0,C ě 0,G ě 0
(5.11)
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where

hpA,B,C,Gq “ 1

2
}Y ´ vG;A,B,Cw}2F

` λA}A}1 ` λB}B}1 ` λC}C}1 ` λG}G}1 (5.12)

and λA, λB, λC and λG are penalty terms ofA, B, C and G respectively. We can write

out four equivalent expressions of (5.12) in terms of unfolded tensors and vectorized

form as follows:

hpA,B,C,Gq “ 1

2
}Yp1q ´ AGp1qpC b BqT }2F

` λA}A}1 ` λB}B}1 ` λC}C}1 ` λG}Gp1q}1 (5.13)

hpA,B,C,Gq “ 1

2
}Yp2q ´ BGp2qpC b AqT }2F

` λA}A}1 ` λB}B}1 ` λC}C}1 ` λG}Gp2q}1 (5.14)

hpA,B,C,Gq “ 1

2
}Yp3q ´ CGp3qpB b AqT }2F

` λA}A}1 ` λB}B}1 ` λC}C}1 ` λG}Gp3q}1 (5.15)

hpA,B,C,Gq “ 1

2
}y ´ pC b B b Aqg}2F

` λA}A}1 ` λB}B}1 ` λC}C}1 ` λG}g}1. (5.16)



5.5. Simulation 97

The partial derivatives of A, B, C and G can then be obtained as

Bh
BA “ ´Xp1qpC b BqGT

p1q

` AGp1qpCTC b BTBqGT
p1q ` λA1 (5.17)

Bh
BB “ ´Xp2qpC b AqGT

p2q

` BGp2qpCTC b ATAqGT
p2q ` λB1 (5.18)

Bh
BC “ ´Xp3qpB b AqGT

p3q

` CGp3qpBTB b ATAqGT
p3q ` λC1 (5.19)

Bh
Bg “ ´pCT b BT b AT qg

` pCTC b BTB b ATAqg ` λG1. (5.20)

By concatenating their vectorized form, we attain

∇hpxq “
”

vecp Bh
BA

qT , vecp Bh
BB

qT , vecp Bh
BC

qT , p Bh
Bg

qT
ıT

, (5.21)

where x “ rvecpAqT , vecpBqT , vecpCqT ,gT sT . We use the above gradient in place of

the gradient in Step 2 of the framework of Table 5.1. We refer to this implementation

as the All-at-once optimization based Sparse Non-negative Tucker (ASNT) algorithm.

5.5 Simulation

In this section, the performance of the proposed algorithms are assessed. We imple-

ment the considered algorithms using the Matlab Tensor Toolbox in Matlab [103].

Parameters of the algorithms are summarized in Table 6.5. Because of limited space,

we select two experiments to compare our algorithms with several available algorithms

from literature. In all experiments, we keep all default parameters of the comparing
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α β σ maxIter ǫ λA λB λC λG

1 0.1 0.01 1000 10´4 0.01 0 0 N/A
1 0.1 0.01 1000 10´4 0 0 0 0

Table 5.2: Particular parameters set in our experiment.

algorithms.

To assess the accuracy of ASNP1 and its robustness, we compare our algorithm

in over-factoring case with two state-of-the-art algorithms: CPOPT [76] from the

Tensor Toolbox and the Non-negative Alternating Least-Squares (NALS-PARAFAC)

from the N-way Toolbox [104]. In particular, we use amino acids fluorescence data

from [105]. This data is a third-order tensor corresponding to 5 chemical samples

measured by fluorescence at 61 excitation and 201 emission wavelengths. The true

rank of the tensor is three. Since PARAFAC is unique up to scales and permutation,

we follow the normalization method proposed in [105]. Particularly, we normalize

the loading vectors of the second and third modes and keep the variance of the

corresponding vectors in the first mode. Then we arrange them in descending order

of amplitude. This normalization method was also used for CPOPT when comparing

with the CP-ALS algorithm in [76]. As shown in Figure 5.1, our method is accurate

and more robust than CPOPT and NALS-PARAFAC.

To assess the performance of ANST, we randomly generate a 20 ˆ 20 ˆ 20 non-

negative tensor following the Tucker model (3.15). The core tensor size is set to 5 ˆ

5ˆ5. Then, the noisy observation is Ỹ “ Y `η
}Y}F
}N }F

N , where N ptq is the noise whose

size is identical to that of Y and parameter η controls the noise level. We compare

performance of ANST with the Block Coordinate Descent based Tucker (BCDT)

in [106]. The relative error was used as the performance criterion ̺ “ }Y´Yest}F
}Y}F

where

Yest is the estimated tensor. The average result obtained from 100 Monte Carlo

1With chosen parameters, the result of the ASNP algorithm for the non-negativity constraint is
almost identical to that for both the sparseness and non-negativity constraints. Thus, we decided
to present the latter only.
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simulation runs is shown in Figure 6.2. We can see that the performance of ANST is

slightly better than that of BCDT. However, we confirm that our algorithm is slower

than BCDT and our future work will focus on improving this drawback.

5.6 Conclusion

We have introduced in this chapter two new tensor decomposition algorithms that

take into account the sparsity and non-negativity of the factors. Compared to other

existing methods, the proposed solution has the advantages of simplicity and ro-

bustness to tensor-rank estimation errors. Simulation results have been provided to

illustrate the effectiveness and robustness of the algorithms for both simulated and

real-life data.
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So far we have discussed about tensor decomposition in batch setting in previous

chapters of the second part. However many applications requires processing with

time constraint or even realtime. In this chapter, we will study PARAFAC model in

adaptive setting, so-called adaptive PARAFAC.

6.1 Introduction

With the recent advances on sensor and streaming technologies, processing massive

volumes of data (or “big data”) with time constraints or even in real-time is not

only crucial but also challenging [3], in a wide range of applications including MIMO

radars [80], biomedical imaging [87], and signal processing [40].

A typical situation in those cases is that data are acquired along multiple di-

mensions, one among which is time. Such data can be naturally represented by

tensors. Tensor decomposition, thereby, can be used as an important tool to ana-

lyze, understand or eventually compress data. In this chapter, adaptive PARAFAC

decomposition is the method of interest.

For streaming tensors, direct application of batch (i.e., offline) PARAFAC de-

composition is computationally demanding. Instead, an adaptive (i.e., incremental)

approach is more suitable and, hence, should provide a good trade-off between quality
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and efficiency. In contrast to adaptive filtering [107] or subspace tracking [16,108,109],

which have a long standing history and are well-understood, adaptive tensor decom-

position has received little attention so far.

In [80], Nion and Sidiropoulos proposed an adaptive decomposition model for a

class of third-order tensors that have one dimension growing with time. Accordingly,

they proposed two algorithms: recursive least-squares tracking (PARAFAC-RLST)

and simultaneous diagonalization tracking (PARAFAC-SDT). In [87], Mardani, Ma-

teos and Giannakis also proposed an adaptive PARAFAC method for streaming data

under partial observation. A common basis in these studies is the use of first-order

methods (i.e., using gradients) to optimize an exponentially weighted least-squares

cost function.

In this chapter, we propose two algorithms for full streaming data. In particular,

first algorithm, called 3D-OPAST, generalizes the orthonormal projection approxima-

tion subspace tracking (OPAST) algorithm [15] The second algorithm, called SOAP,

is based on second-order optimization. The main contributions of the proposed algo-

rithms are summarized as follows.

1. 3D-OPAST and SOAP have lower complexity and comparable or superior con-

vergence as compared to PARAFAC-RLST and PARAFAC-SDT. In terms of

complexity, if I and K are the two tensor dimensions other than time, and

R is the tensor rank, then 3D-OPAST and SOAP require only OpIKRq flops

per iteration (linear complexity with respect to R) while PARAFAC-RLST and

PARARAC-SDT require OpIKR2q (quadratic complexity). For 3D-OPAST,

this complexity is achieved by exploiting a special interpretation of the Khatri-

Rao product as collinear vectors inside each column of the estimated subspace.

For SOAP, we first take advantage of a second-order stochastic gradient algo-

rithm, in replace of the first-order gradient algorithm used in [80], to improve
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estimation accuracy. Then, at each step in the algorithm, a column of the esti-

mated subspace is forced to have a Kronecker product structure so that the over-

all subspace approximately preserves the Khatri-Rao product structure. When

possible, a rank-one update is also exploited to achieve linear complexity.

2. A variant of SOAP is proposed for adaptive PARAFAC decomposition with

a non-negativity constraint. It is known that imposing a non-negativity con-

straint on PARAFAC, when applicable, not only improves the physical inter-

pretation [38] but also helps to avoid diverging components [95,96]. To the best

of our knowledge, adaptive non-negative PARAFAC has not been addressed in

the literature.

3. Both 3DOPAST and SOAP are ready for parallel/decentralized computing im-

plementation, an advantage not considered in [80]. This is especially important

when performing large-scale online processing tasks. SOAP allows reduction of

algorithm complexity and storage when several parallel computing units (DSP)

are available.

6.2 Batch and Adaptive PARAFAC

To make this chapter self-contained, we will recall batch PARAFAC model in this sec-

tion. In addition, for the ease of comparison, we follow the basic adaptive PARAFAC

model and assumptions that were introduced in [80]. This model is slightly different

to the PARAFAC model in chapter 3 in terms of unfolded tensor, as described in

detail below.
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6.2.1 Batch PARAFAC

Consider a tensor X P C
IˆJˆK . The PARAFAC decomposition of X can be written

as follows:

X “
R

ÿ

r“1

ar ˝ br ˝ cr, (6.1)

summing R rank-one tensors, where R is the rank of X . The set of vectors taru, tbru,

and tcru can be grouped into the so-called loading matrices A “ ra1 . . . aRs P C
IˆR,

B “ rb1 . . .bRs P C
JˆR, and C “ rc1 . . . cRs P C

KˆR.

In practice, (6.1) is only an approximate tensor. In other words, in a noisy envi-

ronment we should have

X “
R

ÿ

r“1

ar ˝ br ˝ cr ` N , (6.2)

where N is a noise tensor. Thus, given a data tensor X , PARAFAC tries to achieve

R-rank best least squares approximation. Equation (6.1) can also be re-formulated

in matrix form as

Xp1q “ pA d CqBT , (6.3)

where Xp1q P R
IKˆJ with X

p1q
pi´1qK`k,j

“ xijk. We can write analogous expressions for

Xp2q and Xp3q [80].

PARAFAC is generically unique if it satisfies the following condition [56]:

2RpR ´ 1q ď IpI ´ 1qKpK ´ 1q, R ď J. (6.4)

6.2.2 Adaptive PARAFAC

In batch PARAFAC, the dimensions of X are fixed. In contrast, in adaptive PARAFAC,

they grow with time, that is, X ptq P C
IptqˆJptqˆKptq in the general case. In this

work, we consider the case where only one dimension grows with time, in particular
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Figure 6.1: Adaptive third-order tensor model and its equivalent matrix form.

X ptq P C
IˆJptqˆK .

Under this model, the mode-1 tensor represented in matrix form at time t, Xp1qptq,

is given by

Xp1qptq » HptqBT ptq, (6.5)

where Hptq “ Aptq d Cptq P C
IKˆR, Bptq P C

JptqˆR. When taking into account two

successive times, it can be expressed as a concatenation of the mode-1 tensor of past

data at time t ´ 1 and a vector of new data at time t, i.e.,

Xp1qptq “ pXp1qpt ´ 1q,xptqq, (6.6)

where xptq P C
IK is obtained from vectorizing the new slide of data at time t. Fig-

ure 6.1 illustrates this formulation.

The loading matricesA andC assumed to follow unknown but slowly time-varying

models such that Aptq » Apt ´ 1q and Cptq » Cpt ´ 1q, and hence Hptq » Hpt ´ 1q.

Accordingly, we have

BT ptq » pBT pt ´ 1q,bT ptqq. (6.7)

It means that at each time instant we only need to estimate the row vector bptq and

augment it to Bpt ´ 1q to obtain Bptq, instead of updating the whole Bptq.
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Also, the tensor rank, R, is assumed to be known and constant so that at each

time instant, when new data is added to the old tensor, the uniqueness property of

the new tensor is fulfilled (6.4). We note that estimating tensor rank is NP-complete

problem [37]. Several heuristic methods can be found in [110] and references therein.

6.3 Principle of 3D-OPAST Algorithm

Recall the matrix representation of the PARAFAC model in (6.3) without the super-

script (1) for simplicity

X “ pA d CqBT . (6.8)

By using matrix factorization [55], (6.8) can be rewritten as

X “ WE,

where

W “ pA d CqQ´1,

E “ QBT ,

for some nonsingular Q. The objective is now to find the ambiguity matrix Q or

Q´1 to recover the Khatri-Rao product structure H “ A d C. Matrix Q can be

estimated by solving a simultaneous diagonalization [55], [89] or non-symmetric joint

diagonalization as in chapter 4. Hence, A and C can be found, based on the following

observation of H:

H “ A d C “ ra1 b c1 ¨ ¨ ¨ aR b cRs

“ rvectc1aT
1 u ¨ ¨ ¨ vectcRaT

Rus.



6.3. Principle of 3D-OPAST Algorithm 109

Since each column of H has the form of a vectorized rank-1 matrix, we can achieve

ci and ai as left and right singular vectors of matrix Hi “ unvecpai b ciq. It is

straightforward to obtain B when either Q or Q´1 and E are available.

Because of its high complexity, applying the above procedure is not suitable for

the adaptive model. In [80], one of the proposed methods requires sliding-window

SVD tracking to estimate both the left and right orthogonal subspaces, Wptq and

Eptq, and then exploits the block common between Bpt ´ 1q and Bptq to construct

the recursive update of Qptq and Q´1ptq. We refer the reader to [80] for more details.

In this work, we only track the left orthogonal subspace Wptq using the OPAST

method in [15], and then use orthonormal projection approximation of the two succes-

sive subspaces Wpt´ 1q and Wptq to find out the recursive update of Hptq and Qptq.

At each step, we preserve the Khatri-Rao product structure of Hptq by minimizing a

cost function that measures the collinear deviation of sub-vectors inside each column

of Hptq. Then, bptq is estimated by calculating the pseudo-inverse of Hptq exploiting

its reduced rank update structure. As a consequence, the proposed algorithm has lin-

ear computational complexity of order OpIKRq while sustaining good performance.

6.3.1 Algorithm Derivation

6.3.1.1 Overview of OPAST Principle

Consider the cost function

fpWq “ E
#

‖ xptq ´ WWxptq ‖2
(

(6.9)

“ tr
#

Rxx ´ 2WHRxxW ` WHRxxWWHW
(

,

whereW is an unitary matrix spanning the principal subspace ofRxx “ EtxptqxHptqu.

Minimizing (6.9) yields the abstract form of the OPAST [15] as follows (using informal
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Table 6.1: OPAST algorithm

yptq “ WHpt ´ 1qxptq

qptq “ 1

β
Zpt ´ 1qyptq

γ “ 1{p1 ` yHptqqptqq
τ “ 1

‖qptq‖2
p 1?

1`‖qptq‖2p‖xptq‖2´‖yptq‖2q
´ 1q

pptq “ Wpt ´ 1qpτqptq ´ γp1 ` τ ‖ qptq ‖2qyptqq ` p1 ` τ ‖ qptq ‖2qγxptq

Zptq “ 1

β
Zpt ´ 1q ´ γqptqqHptq

Wptq “ Wpt ´ 1q ` pptqqHptq

notation)

Wptq “ RxxWpt ´ 1qrWHpt ´ 1qRxxWpt ´ 1qs´1

Wptq “ WptqrWHptqWptqs´1{2 (6.10)

Equation (6.10) is an orthogonalization of Wptq. By using the projection approxima-

tion, i.e., Wptq » Wpt´ 1q, a fast implementation of the algorithm has been derived

in [15] and summarized in Table 6.1 where Zp0q is initialized by identity matrix.

6.3.1.2 3D-OPAST

In this section, we assume that Apt ´ 1q, Bpt ´ 1q and Cpt ´ 1q are available, as well

as their related matrices H#pt ´ 1q and Hpt ´ 1q. We then build on the projection

approximation approach to construct the recursive update expressions for Aptq, Bptq

and Cptq. Our algorithm can be summarized in four steps as follows: (i) given

xptq, estimate Wptq using OPAST; (ii) estimate Hptq from Wptq and Qpt ´ 1q by

iteratively minimizing a criterion which measures its deviation from a Khatri-Rao

structure; (iii) extract Aptq and Cptq from Hptq; and (iv) update the estimate of Hptq

and its pseudo-inverse and calculate bT ptq. We now consider these steps in detail.



6.3. Principle of 3D-OPAST Algorithm 111

Step 1: Estimate Wptq

To estimate Wptq, at time instant t, we run the OPAST algorithm as described

in Table 6.1.

Step 2: Estimate Hptq from Wptq and Qpt ´ 1q

At this step, ideally, we want to recover Hptq which “preserves” the Khatri-Rao

product structure. To this end, we first consider the following expression:

Hptq “ WptqQptq

» rWpt ´ 1q ` pptqqT ptqsrQpt ´ 1qpI ` εptqq, (6.11)

where we use last equation of OPAST and the updating rule

Qptq » Qpt ´ 1qpI ` εptqq, (6.12)

where εptq is an R ˆ R unknown matrix. The objective is to find εptq which imposes

the Khatri-Rao product structure on Hptq. We note that finding entries of εptq all

at once leads to a computational complexity of order OpIKR2q. Instead, to preserve

the linear complexity, we choose εptq to be zero except for its j´th column vector

(with j “ t mod pRq), i.e.,

εptq “ r0 εj 0s “ εje
T
j , (6.13)

where εj is j-th column of εptq and ej is the unit vector whose j-th entry is one.

Substitute (6.13) into (6.11) yields

Hptq » Mptq ` pMptqεjqeTj , (6.14)



6.3. Principle of 3D-OPAST Algorithm 112

where

Mptq “ rWpt ´ 1q ` pptqqT ptqsrQpt ´ 1q

“ Hpt ´ 1q ` pptqq̃T ptq, (6.15)

with q̃ptq “ QT pt ´ 1qqptq. Therefore, only the j-th column of Hptq is affected by εj

according to

hjptq » mjptq ` Mptqεj (6.16)
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

h1
j ptq

...

hi
jptq

...

hI
j ptq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

»

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

m1
j ptq ` M1

j ptqεj
...

mi
jptq ` Mi

jptqεj
...

mI
j ptq ` MI

j ptqεj

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(6.17)

where hi
jptq and mi

jptq, i “ 1, . . . , I are K ˆ 1 sub-vectors of hjptq and mjptq, respec-

tively, and Mi
jptq are sub-matrices of Mptq.

Observe that two successive sub-vectors hi
jptq and hi`1

j ptq are collinear by following

the definition of Hptq “ Aptq dCptq. Thus, preserving the collinear subvectors inside

each column of Hptq corresponds to imposing the Khatri-Rao structure on Hptq.

Before proceeding further, we define the following cost function which measures

the deviation from the collinear condition of two vectors u “ ru1, . . . , uIsT and v “

rv1, . . . , vIsT :

fpu,vq “
`

I´1
ÿ

i“1

puivi`1 ´ viui`1q2
˘

` puIv1 ´ vIu1q2. (6.18)

Let ũ “ DIu “ raI , a1, . . . , aI´1sT , where DI is a downshift permutation matrix [26].

The cost function (6.18) can be written as fpu,vq “‖ ũ ˚ v ´ ṽ ˚ u ‖2, where ˚ refers
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to the Hadamard product (elementwise product). Thus, we minimize the following

cost function:

min
εj

I´1
ÿ

i“1

‖ h̃i
j ˚ hi`1

j ´ h̃i`1
j ˚ hi

j ‖
2 ` ‖ h̃I

j ˚ h1
j ´ h̃1

j ˚ hI
j ‖

2 (6.19)

To solve (6.19), we used a first order linearization (expansion) in term of εj. By this

way, εj is computed by solving an R ˆ R linear system. The detail calculation can

be found in the Appendix B.1. Once we have εj, the j-th columns of Hptq and Qptq

are updated using (6.12) and (6.16) respectively.

Step 3: Extract Aptq and Cptq from Hptq

At this step, since using batch SVD is not suitable for adaptive tracking, we use

a single Bi-SVD iteration [111] to update aiptq and ciptq recursively according toCptq

from Hptq

for i “ 1, . . . , R

aiptq “ HT
i ptqcipt ´ 1q (6.20)

ciptq “ Hiptqaiptq
‖ Hiptqaiptq ‖

. (6.21)

Step 4: Estimate H#ptq and bT ptq

By combining (6.13), (6.14) and (6.15), Hptq reveals a rank-2 update structure

Hptq “ Hpt ´ 1q ` pptqq̃T ptq ` zptqeTj ,

where zptq “ Mptqεj. Thus, given the knowlege of H#pt ´ 1q, we can use the matrix

inversion lemma to calculate H#ptq with a linear complexity.

A summary of 3DOPAST is given in Table 6.2.

Initialization:
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Table 6.2: Summary of 3DOPAST

Inputs:
Apt ´ 1q, Bpt ´ 1), Cpt ´ 1q,Hpt ´ 1q, H#pt ´ 1q, Qpt ´ 1q

1. Estimate Wptq
Estimate Wptq using OPAST

2. Step 2: Estimate Hptq from Wptq and Qpt ´ 1q
q̃ptq “ QT pt ´ 1qqptq

Mptq “ Hpt ´ 1q ` pptqq̃T ptq (6.15)

Estimate εj by minimizing the cost function (6.19)

hjptq » mjptq ` Mptqεj (6.16)

Qptq » Qpt ´ 1qpI ` εptqq (6.12)

3. Extract Aptq and Cptq
- Extract Aptq and Cptq
for i “ 1, . . . , R
Hiptq “ unvecphiptqq
aiptq “ HT

i ptqcipt ´ 1q

ciptq “
Hiptqaiptq

‖ Hiptqaiptq ‖
4. Calculate H#ptq and update bptq
Calculate H#ptq using fast matrix inversion lemma
bT ptq “ Hptq#xptq (6.43)

BT ptq “ rBT pt ´ 1q,bT ptqs (6.7)
Outputs:

Aptq, Bptq, Cptq,Hptq, H#ptq, Qptq

In our simulation, we choose to capture J0 slices, then run the batch PARAFAC

algorithm to obtain initial estimation. J0 can be chosen to be the smallest number

satisfying the uniqueness condition in (6.4).

6.4 Second-order Optimization based Adaptive PARAFAC

Consider the following exponentially weighted least-square cost function:

Φptq “ 1

2

t
ÿ

τ“1

λt´τφpτq, (6.22)

where

φpτq “‖ xpτq ´ HptqbT pτq ‖22 (6.23)
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and λ P p0, 1s is referred to as the forgetting factor. Now, finding the loading matrices

of the adaptive PARAFAC model of (6.5) corresponds to minimizing (6.22), that is,

min
Hptq,Bptq

Φptq, s.t. Hptq “ Aptq d Cptq. (6.24)

This cost function is well-known in adaptive filter theory [107] and can be solved

by a recursive least-square method as used in [80]. In this paper, we provide an

alternative way to not only improve the performance of the algorithm but also reduce

the complexity. For the performance, our idea is to first optimize the exponentially-

weighted least- squares cost function by using second-order stochastic gradient, then

approximately preserve the Khatri-Rao product of the estimated subspace Hptq at

each step. To achieve linear complexity, we propose to update each column of the

subspace at a time instant using a cyclic strategy. Thus, our algorithm is called

Second-Order Optimization based Adaptive PARAFAC (SOAP).

Given the estimates of Apt´1q,Bpt´1q and Cpt´1q, the objective of SOAP is to

construct the recursive update expressions for Aptq,Bptq and Cptq using alternating

minimization. The algorithm includes four main steps as follows:

Step 1: Estimate bT ptq

Step 2: Given bptq, estimate Hptq

Step 3: Extract Aptq and Cptq, and estimate one column of Hptq

Step 4: Calculate H#ptq and update bptq

While the steps are similar to those in [80], the details in these steps contain our

various improvements. We now explain these steps in detail. The summary of SOAP

is given in Table 6.3.
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6.4.1 Estimate bT ptq

This step is the same as in [80]. Vector bT ptq can be obtained as the least-square

solution of (6.23), according to

argmin
bT

‖ xptq ´ Hpt ´ 1qbT ptq ‖22, (6.25)

which is

b̂T ptq “ H#pt ´ 1qxptq, (6.26)

where H#pt ´ 1q has been calculated in the previous iteration.

6.4.2 Estimate Hptq

Unlike [80], we use here a Newton-type method to find Hptq. Let h “ vecpHq.

Function φpτq in (6.23) can be rewritten as

φpτq “‖ xpτq ´ pbpτq b IIKqhptq ‖22, (6.27)

wherein we have exploited the fact that vecpABCT q “ pC b Aq vecpBq.

As mentioned in [112], the direction at the maximum rate of change of a func-

tion Φ with respect to h is given by the derivative of Φ with respect to h˚, i.e.,

rDh˚Φph,h˚qsT . Consequently, we have

rDh˚Φph,h˚qsT
ˇ

ˇ

ˇ

h“hpt´1q
“

´
t

ÿ

τ“1

λt´τ rpbHpτq b IIKqxpτq

´ pbHpτqbpτq b IIKqhpt ´ 1qs. (6.28)
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Thus, its Hessian is computed as

H “ DhprDh˚Φph,h˚qsT q
ˇ

ˇ

ˇ

h“hpt´1q

“
t

ÿ

τ“1

λt´τ rpbHpτqbpτqq b IIKs “ Rptq b IIK , (6.29)

where

Rptq “
t

ÿ

τ“1

λt´τbHpτqbpτq

“ λRpt ´ 1q ` bHptqbptq

To achieve linear complexity, we replace (6.28) by instant gradient estimation (i.e.,

stochastic gradient)

rDh˚φph,h˚, tqsT
ˇ

ˇ

ˇ

h“hpt´1q
“

´rpbHptq b IIKqxptq´

pbHptqbptqq b IIKhpt ´ 1qs. (6.30)

The update rule of h is thus given by

hptq “ hpt ´ 1q ` ηH´1rDh˚φph,h˚, tqsT , (6.31)

where η is a step size. By substituting (6.29) and (6.30) into (6.31), we obtain

hptq “ hpt ´ 1q ` ηrR´1ptqpbHptq b IIKqxptq

´ R´1ptqpbHptqbptq b IIKqhpt ´ 1qs. (6.32)
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We can stack (i.e., unvec) (6.32) in matrix form as follows:

Hptq “Hpt ´ 1q`

ηrxptq ´ Hpt ´ 1qbT ptqsb˚ptqR´1ptq. (6.33)

Here, we can see that calculating and storing the Hessian explicitly as in (6.29) is

not necessary. Instead, we only need to calculate the inverse of Rptq. Since Rptq has

a rank-1 update structure, its inverse can be efficiently updated using the inversion

lemma as

R´1ptq “ rλRpt ´ 1q ` bT ptqb˚ptqs´1

“ λ´1R´1pt ´ 1q ´ β´1ptquptquHptq. (6.34)

where

βptq “ 1 ` λ´1b˚ptqR´1pt ´ 1qbT ptq, (6.35)

uptq “ λ´1R´1pt ´ 1qbT ptq, (6.36)

Substituting (6.34) into (6.33) yields

Hptq “ Hpt ´ 1q ` dptquHptq, (6.37)

where

dptq “ γptqrxptq ´ Hpt ´ 1qbT ptqs, (6.38)

γptq “ ηp1 ´ β´1ptqb˚ptquptqq. (6.39)
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6.4.3 Extract Aptq and Cptq & Update One Column of Hptq

The purpose of this step is to (i) preserve an approximate Khatri-Rao product struc-

ture of Hptq in order to improve the estimation accuracy and ensure the convergence

of the algorithm, (ii) provide a reduced rank update structure that allows the calcu-

lation of H#ptq in the next step with linear complexity, and (iii) extract from Hptq

the loading matrices Aptq and Cptq. This can be implemented efficiently as step 3 of

3D-OPAST.

Then, having obtained Aptq and Cptq, Hptq may be re-updated as done in [80].

However, to achieve linear complexity, in this paper we choose to re-update only

one column of Hptq at each iteration. In particular, at time instant t, we select

the column of Hptq to be updated in a cyclic way; that is, select column j where

j “ pt mod Rq ` 1. This column is then updated it as

ĥjptq “ ajptq b cjptq. (6.40)

Because of the best rank-1 approximation property of SVD, we take advantage of the

denoised loading vectors ajptq and cjptq and, thereby, improve the accuracy of Hptq

estimation. The other columns of Hptq are left unchanged to preserve the reduced-

rank structure of the updated matrix. The updated version of Hptq can be expressed

as

Ĥptq “ Hptq ` zptqeTj ptq, (6.41)

where

zptq “ ĥjptq ´ hjptq, (6.42)

and ejptq is the unit vector whose j-th entry is one. It is straightforward to see that

Ĥptq has a rank-2 update structure by substituting (6.37) into (6.41).
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6.4.4 Calculate H#ptq and Update bptq

As mentioned in Step 3, we can compute the pseudo-inverse of Ĥptq efficiently thanks

to its rank-2 update structure. Our case corresponds to Theorem 5 in [113], as given

in the Appendix.

Then, we can update bptq by

bT ptq “ Ĥ#ptqxptq, (6.43)

and hence obtain Bptq from (6.7).

6.4.5 Algorithm Initialization

To initialize Ap0q, Bp0q, Cp0q, H#p0q and R´1p0q before tracking, we can capture J0

slices, where J0 is chosen to satisfy the uniqueness condition of (6.4), and then run a

batch PARAFAC algorithm to obtain Ap0q, Bp0q, and Cp0q. After that, we compute

H#p0q “ pAp0q d Cp0qq# and R´1p0q “ pBT p0qBp0qq´1.

6.5 Adaptive Non-negative PARAFAC

In this section, we consider the case where the constraint of non-negativity is imposed,

and modify SOAP accordingly. We call this modification of SOAP as non-negative

SOAP (NSOAP).

Given the non-negative estimates of Apt´ 1q ě 0, Bpt´ 1q ě 0, and Cpt´ 1q ě 0,

we want to find recursive updates of Aptq ě 0, Bptq ě 0, and Cptq ě 0, which are

the loading matrices of the PARAFAC decomposition. We note that, while SOAP

works with the general case of complex values, in this section we only consider real

non-negative ones.



6.5. Adaptive Non-negative PARAFAC 121

Table 6.3: Summary of SOAP

Inputs:
Apt ´ 1q, Bpt ´ 1), Cpt ´ 1q,Hpt ´ 1q, H#pt ´ 1q, R´1pt ´ 1q

1. Estimate bT ptq
bT ptq “ H#pt ´ 1qxptq (6.26)

2. Estimate Hptq
βptq “ 1 ` λ´1b˚ptqR´1pt ´ 1qbT ptq (6.35)

uptq “ λ´1R´1pt ´ 1qbT ptq (6.36)

R´1ptq “ λ´1R´1pt ´ 1q ´ β´1ptquptquHptq (6.34)

γptq “ ηp1 ´ β´1ptqb˚ptquptqq (6.39)

dptq “ γptqrxptq ´ Hpt ´ 1qbT ptqs (6.38)

Hptq “ Hpt ´ 1q ` dptquT ptq (6.37)
3. Extract Aptq and Cptq, update one column of Hptq
- Extract Aptq and Cptq
for i “ 1, . . . , R

Hiptq “ unvecphiptqq
aiptq “ HT

i ptqcipt ´ 1q

ciptq “
Hiptqaiptq

‖ Hiptqaiptq ‖
- Update column j of Hptq

j “ pt mod Rq ` 1

ĥjptq “ ajptq b cjptq (6.40)

zptq “ ĥjptq ´ hjptq (6.42)

Hp:, jqptq “ ĥjptq
4. Calculate H#ptq and update bptq
Calculate H#ptq using fast matrix inversion lemma
bT ptq “ Hptq#xptq (6.43)

BT ptq “ rBT pt ´ 1q,bT ptqs (6.7)
Outputs:

Aptq, Bptq, Cptq,Hptq, H#ptq, R´1ptq

A simple approach is to use the positive orthant projection. That is, at each step

of SOAP, we project the result on the positive orthant, for example, in Step 1, set

bT ptq :“ rbT ptqs`. However, this naive combination does not work for Step 2 (the

so-called projected Newton-type method), as indicated in the context of constrained

optimization [114] or least-squares non-negative matrix approximation [115].

In practice, for batch processing, the projected Newton-type method requires a

combination of restrictions on the Hessian (e.g., diagonal or partly diagonal [116])

and the Armijo-like step rule [114] to guarantee a quadratic rate of convergence. In
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spite of their advantage, computing the Armijo-like step rule is expensive and not

suitable for adaptive algorithms. It is even more difficult in our case because the

global optimum value can be changed continuously, depending on new data.

Therefore, we propose to use a simpler strategy. Particularly, because of the slowly

time-varying model assumption, we restrict ourselves to only calculating the diagonal

of the Hessian and using a fixed step rule. Even though the convergence proof is not

available yet, this strategy still gives an acceptable performance and represents a good

trade-off between the performance and the complexity, as indicated in Section 6.7.

Now, for the details, several modifications of SOAP for handling the non-negativity

constraint are as follows. At the end of Step 1, we add one minor step after obtaining

bT ptq, by setting

bT ptq :“ rbT ptqs`. (6.44)

In Step 2, after calculating R´1ptq, we extract the diagonal matrix (which is non-

negative since R is positive Hermitian) as

R̂´1ptq “ diagpdiagpR´1ptqqq, (6.45)

and then calculate

ûptq “ R̂´1ptqbT ptq. (6.46)

Thus, Hptq is updated, using dptq and ûptq instead of dptq and uptq, by

Hptq “ Hpt ´ 1q ` dptqûT ptq. (6.47)
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Then, we project Hptq on the positive orthant to obtain

H̃ptq “ rHptqs`. (6.48)

As previously discussed in Step 3, ciptq and aiptq are respectively the principal left

singular vector and the conjugate of the principal right singular vector of matrix

Hiptq “ unvecpaiptq b ciptqq. The updated loading matrices Aptq and Cptq, obtained

by (6.20) and (6.21), are still non-negative since H̃iptq is non-negative and so are

Apt ´ 1q and Cpt ´ 1q (already obtained in the previous time instant). In Step 4, a

positive orthant projection like (6.44) is used.

A summary of all the steps of the NSOAP algorithm is given in Table 6.4. The

initialization of NSOAP is similar to that of SOAP, except that a batch non-negative

PARAFAC algorithm is used instead of the standard PARAFAC.

6.6 Discussions

In this section, we provide some important comments on the similarities and differ-

ences between our algorithms and those developed in [80]. Discussions on parallel

implementations are also given.

First, it is straightforward to realize that in all steps the main cost of 3DOPAST

and SOAP come from the matrix-vector product. Thus, they have linear complexity

of OpIKRq. NSOAP is slightly more expensive but has the same complexity order

as SOAP.

Second, obviously, in Step 3 of SOAP, we can choose to update d ą 1 columns of

Hptq instead of only 1 column. This parameter d can be chosen to balance between

the estimation accuracy and the numerical cost.

Third, the main reason that helps SOAP achieve linear complexity, while still
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Table 6.4: Summary of NSOAP

Inputs:
Apt ´ 1q ě 0, Bpt ´ 1q ě 0, Cpt ´ 1q ě 0,

Hpt ´ 1q, H#pt ´ 1q, R´1pt ´ 1q
1. Estimate bT ptq

Perform Step 1 of SOAP

bT ptq “ rbT ptqs` (6.44)
2. Estimate Hptq

βptq “ 1 ` bptqR#pt ´ 1qbptqT (6.35)

uptq “ λ´1R´1pt ´ 1qbptqT (6.36)

R´1ptq “ λ´1R´1pt ´ 1q ´ β´1ptquptquptqT (6.34)

R̂´1ptq “ diagpdiagpR´1ptqqq (6.45)

γptq “ ηp1 ´ β´1ptqb˚ptquptqq (6.39)

dptq “ γptqpxptq ´ Hpt ´ 1qbT ptqq (6.38)

ûptq “ R̂´1ptqbT ptq (6.46)

Hptq “ Hpt ´ 1q ` dptqûT ptq

H̃ptq “ rHptqs` (6.48)
3. Same as Step 3 of SOAP but with H̃ptq
4. Calculate H#ptq and update bptq

Perform Step 4 of SOAP

bT ptq “ rbT ptqs` (6.44)

BT ptq “ rBT pt ´ 1q,bT ptqs (6.7)
Outputs:

Aptq ě 0, Bptq ě 0, Cptq ě 0,

Hptq, H#ptq, R´1ptq

having a comparable or even superior performance (as shown in the next section)

stems from Steps 2 and 3. In Step 2, both the gradient (stochastic) and Hessian are

used instead of only the gradient as in PARAFAC-RLST. In Step 3, we exploit the

Khatri-Rao product structure, which is not fully exploited in both PARAFAC-RLST

and PARAFAC-SDT, to enhance the performance. The fast calculation of H#ptq

using the pseudo-inverse lemma in Step 4 is a consequence of designing Hptq to have

a rank-2 update in Steps 2 and 3.

Finally, in Step 3, we can update all columns of Hptq using (6.20) and (6.21) for

i “ 1, . . . , R. However, it leads to calculate H#ptq without a rank-2 update structure
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as in SOAP, by using the Khatri-Rao product structure as follows:

H#ptq “ rAT ptqAptq ˚ CT ptqCptqs´1rAptq d CptqsT . (6.49)

The cost for this implementation is OpIKR2q and is thus disregarded in this paper.

Now, we show that both SOAP and NSOAP are easy to realize in a parallel scheme.

This implementation is important when used for massive data (large dimensional

systems). It can be observed that the main computational cost comes from the

matrix-vector product. Assume that R computational units (DSPs) are available.

Then, in Step 1, Equation (6.26) corresponds to

bT
i ptq “ h̃ipt ´ 1qxptq, i “ 1, . . . , R, (6.50)

where h̃ipt ´ 1q is i-th row of H#pt ´ 1q. It means that we have replaced the matrix-

vector product by the vector-vector product. This procedure can also be applied in

Step 4. Steps 2 and 3 themselves have already a parallel structure and, again, note

that each column of Hptq can be estimated independently. By this way, the overall

cost can be reduced, by approximately a factor of R, to OpIKq flops per iteration.

6.7 Simulations

In this section, we study the performance of the proposed algorithms using both

synthetic and real data, from [105]. We also consider the effect of different system

parameters on the performance.
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6.7.1 Performance Comparison

First, we use the framework provided by the authors in [80] to verify and compare

the performance of the considered algorithms. A time-varying model is thereby con-

structed so that, at time instant t, we generate the loading matrices Aptq and Cptq

as

Aptq “ p1 ´ εAqApt ´ 1q ` εANA, (6.51)

Cptq “ p1 ´ εCqCpt ´ 1q ` εCNC , (6.52)

where εA and εC control the speed of variation for A and C between two successive

observations, NA and NC are random matrices with identical sizes with A and C.

Generate a vector bptq randomly and the noiseless input data xptq is given by

xptq “ rAptq d CptqsbT ptq.

Thus, this observation vector follows the model described in Section 6.2.2 and are

constrained by the assumptions therein. Then, the noisy observation is given by

x̃ptq “ xptq ` σnptq, (6.53)

where nptq is a zero mean, unit-variance noise vector while parameter σ is introduced

to control the noise level. We set a default value of σ to 10´3. To have a fair

comparison, we keep all default parameters of the algorithms and the model as offered

by the authors of [80]. A summary of parameters used in our experiments is showed

in Table 6.5.

The performance measures for the loading matrices Aptq and Cptq are the stan-

dard deviations (STD) between the true loading matrices, Aptq and Cptq, and their
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Table 6.5: Experimental set-up parameters

Fig. I J0 K R T εA, εC λ η

2 20 50 20 8 1000 10´3 0.8 NA

3 20 50 20 8 1000 10´3 0.8 0.02

4 5 70 61 3 201 NA 0.8 0.002

5 20 50 20 8 1000 10´2 0.8 0.02
10´3

10´5

6 50 50 50 20 1000 10´3 0.8 NA

7 20 50 20 8 10000 0 0.8 NA

8-9 5 50 61 3 1000 0 0.8 0.02

estimates, Aesptq and Cesptq, up to a scale and permutation indeterminacy at each

time

STDAptq “‖ Aptq ´ Aesptq ‖F , (6.54)

STDCptq “‖ Cptq ´ Cesptq ‖F . (6.55)

For the loading matrix Bptq, because of its time-shift structure, we verify its perfor-

mance through xptq by

STDBptq “‖ xptq ´ xesptq ‖2 . (6.56)

To assess the convergence rate of the algorithms, we set up the following scenario:

always keep the speed of variation of A and C constant except at a few specific time

instants at which the speed of variation arbitrarily increases. Thus, the algorithm

that recovers faster yields a better convergence rate. This scenario is similar to the

convergence rate assessment in the context of subspace tracking, see for example [29,

117].

The first experiment is to compare the performance of SOAP with that of PARAFAC-
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RLST, PARAFAC-SDT (exponential window), 3DOPAST and batch PARAFAC-ALS

(Alternating Least-Squares). Batch PARAFAC here serves as a “lower bound” for

adaptive algorithms. As shown in Figure 6.2, SOAP outperforms PARAFAC-RLST,

PARAFAC-SDT, 3DOPAST and is closer to batch PARAFAC than the others. In

addition, SOAP, 3DOPAST, PARAFAC-RLST, and PARAFAC-SDT approximately

have the same convergence rate. Again, we note that the computational complexity

of SOAP and 3DOPAST are OpIKRq as compared to OpIKR2q of PARAFAC-RLST

and PARAFAC-SDT.

In the second experiment for non-negative data, we take absolute value of the

previous model, i.e.,

A`ptq “ |Aptq|, (6.57)

C`ptq “ |Cptq|, (6.58)

x`ptq “ |xptq|, (6.59)

where (`) means non-negative. Since there exist no other adaptive non-negative

PARAFAC algorithms apart from our NSOAP, we compare NSOAP with the batch

non-negative PARAFAC (Batch N-PARAFAC) algorithm implemented in the N-way

toolbox [104]. The results are shown in Figure 6.3.

To further study the performance of NSOAP, we apply it to a typical example using

a fluorescence dataset [105] which includes five samples of fluorescence excitation-

emission of size 5 samples ˆ 201 emission wavelengths ˆ 61 excitation wavelengths. It

is showed that the estimated loading matrices from PARAFAC with the nonnegative

constraint are similar to the pure spectra. Here, we use an initialization tensor of

size 5 ˆ 70 ˆ 61. Note that the emission wavelength is relatively short, and during

the interval r250, 300s one of three components is almost zero. Figure 6.4 shows that
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NSOAP can recover the tensor components in this particular example.

6.7.2 Relative Execution Time Comparison

In Section 6.6, we indicate that our algorithms have linear complexity OpIKRq. Here,

we provide a rough complexity assessment of the algorithms using CPU execution

time as a measure. We emphasize the relativity of this comparison because the CPU

execution time depends on various factors including platform, programming language,

implementation. We compare SOAP with PARAFAC-RLST and PARAFAC-SDT 1.

Again, all parameters of PARAFAC-RLST and PARAFAC-SDT are kept default.

The algorithms are run in a computer Intel Core i7 2.8 Ghz with 8Gb RAM and

Maltab R2015a. Figure 6.6 shows that SOAP is faster than PARAFAC-RLST and

PARAFAC-SDT.

6.7.3 Effect of The Speed of Variation

In this section, we consider different values of the speed of variation εA and εC to

evaluate its effect on the performance. Figure 6.5 shows that SOAP adapts better

to fast variation (εA “ εC “ 10´2) than PARAFAC-RLST, PARAFAC-SDT, and

3DOPAST. In this case, SOAP still converges while the others diverge. When the

variation is smaller (εA “ εC “ 10´3 or 10´5), SOAP is comparable to PARAFAC-

RLST and PARAFAC-SDT.

6.7.4 Long Run-time Stability

Performance of various algorithms including the famous recursive least squares (RLS)

and least mean square (LMS) can suffer when running for long time. This is referred

to as long run-time stability or limited precision effect [118] caused by accumulated

1We disregard 3DOPAST in this experiment because the code is not optimized yet.
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quantization error in time. We show that, by experiment, SOAP is more stable than

PARAFAC-RLST,PARAFAC-SDT and 3DOPAST in this aspect1 (Figure 6.7), at

least in the described context and given parameters. A theoretical analysis to explain

why SOAP is more stable is still an open problem and deserves a future work. We

note that, in practice, the limited precision effect can be resolved by reinitializing

algorithms after typically several thousands of iterations.

6.7.5 Waveform-preserving Character

The waveform-preserving character is important in communication and bio-medical

applications, as for example in the blind receivers for direct-sequence code-division

multiple access (DS-CDMA) [119] and multi-subject Functional Magnetic Resonance

Imaging (fMRI) analysis [120]. In this section, we illustrate this property of our algo-

rithms via a synthetic example. We first generate the loading matrix Bptq including

three kinds of signals: a chirp, a rectangular wave and a sawtooth wave. The signal

length is 1 s and the sample rate is 1 kHz. For the chirp, the instantaneous frequency

is 0 at t “ 0 and crosses 300 Hz at t “ 1 s. The rectangular wave has a frequency

of 50 Hz, and the symmetric sawtooth has a repetition frequency of 20 Hz with a

sawtooth width of 0.05 s. For Aptq and Cptq, we use the loading matrices from the

fluoresence example where components of Aptq have a sharp change and components

of Cptq have a smooth change. The PARAFAC model is then disturbed by a Gaussian

noise with signal-to-noise-ratio (SNR) of 15 dB. The SNR (in dB) is defined by

SNRpdBq “ Et‖ Aptq d Cptqbptq ‖2u2
σ2

. (6.60)

1An experiment where we run SOAP 106 iterations was conducted to confirm the stability of
the proposed algorithm.



6.8. Conclusions 131

The simulation results when applying SOAP and NOSAP are shown in Figures 6.8

and 6.9, corresponding to the first 200 data samples (iterations). As we can see, both

algorithms lead to a good restoration of the original components.

6.8 Conclusions

In this chapter, we have proposed three efficient adaptive PARAFAC decomposition

algorithms: 3D-OPAST and SOAP for a standard setup and NSOAP for the non-

negative constraint case. To our best knowledge, no adaptive non-negative PARAFAC

algorithms have been addressed before. By exploiting the data structure, the pro-

posed algorithms achieve linear computational complexity of OpIKRq per iteration

while enjoying a good performance as compared to the state-of-the-art algorithms.

These algorithms1 can be considered as a starting point of real-time PARAFAC-based

applications.

1Program codes will be made available on-line after publication of this work.
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Figure 6.2: Performance and speed convergence rate comparison of five algorithms when
loading matrices change relatively fast, εA “ εC “ 10´3.
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Figure 6.3: Performance comparison of NSOAP with batch non-negative PARAFAC when
loading matrices change relatively fast, εA “ εC “ 10´3.



6.8. Conclusions 134

1 1.5 2 2.5 3 3.5 4 4.5 5

×10
4

0

0.5

1

1.5

2

2.5

3

NSOAP

Batch N-PARAFAC

(a) Loading matrix Aptq

Emission wavelength/nm
320 340 360 380 400 420 440 460

R
el
at
iv
e
in
te
n
si
ty

0

0.05

0.1

0.15

NSOAP

Batch N-PARAFAC

(b) Loading matrix Bptq

Excitation wavelength/nm
240 250 260 270 280 290 300

R
el
at
iv
e
in
te
n
si
ty

0

0.05

0.1

0.15

0.2

0.25

NSOAP

Batch N-PARAFAC

(c) Loading matrix Cptq

Figure 6.4: Performance comparison of NSOAP with batch non-negative PARAFAC in
fluorescence data set. For Bptq, we present only a part of recovered loading matrix; initial-
ization part is disregarded.



6.8. Conclusions 135

time

0 100 200 300 400 500 600 700 800 900 1000

S
T
D

o
f
A

10
-4

10
-2

10
0

10
2

10
4

10
6

εA = εC = 10
−2

εA = εC = 10
−3

εA = εC = 10
−5

Evolution of STD of A

PARAFAC RLST

PARAFAC SDT

3DOPAST

SOAP

(a) Loading matrix Aptq

time

0 100 200 300 400 500 600 700 800 900 1000

S
T
D

o
f
A

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

εA = εC = 10
−2

εA = εC = 10
−3

εA = εC = 10
−5

Evolution of STD of x

PARAFAC RLST

PARAFAC SDT

3DOPAST

SOAP

(b) Observation vector xptq

time

0 100 200 300 400 500 600 700 800 900 1000

S
T
D

o
f
A

10
-4

10
-2

10
0

10
2

10
4

εA = εC = 10
−2

εA = εC = 10
−3

εA = εC = 10
−5

Evolution of STD of C

PARAFAC RLST

PARAFAC SDT

3DOPAST

SOAP

(c) Loading matrix Cptq
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Appendix

B.1 Linearization

In this section, we present in details the procedure which minimizes the cost function

defined in Section 6.3.1.2.

min
εj

Φpεjq (B.1)

where

Φpεjq “
`

I´1
ÿ

i“1

‖ h̃i
j ˚ hi`1

j ´ h̃i`1
j ˚ hi

jq ‖2
˘

` ‖ h̃I
j ˚ h1

j ´ h̃1
j ˚ hI

j q ‖2 (B.2)

To simplify the notation , we will drop subscript j from now. Thus, we have

Φpεq “
`

I´1
ÿ

i“1

‖ pm̃i ` M̃iεq ˚ pmi`1 ` Mi`1εq ´ pm̃i`1 ` M̃i`1εq ˚ pmi ` Miεq ‖2
˘

` ‖ pm̃I ` M̃Iεq ˚ pm1 ` M1εq ´ pm̃1 ` M̃1εq ˚ pmI ` MIεq ‖2 (B.3)

140
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where

m̃i “ DI ˚ mi, i “ 1, ¨ ¨ ¨ , I (B.4)

M̃i “ DI ˚ Mi, i “ 1, ¨ ¨ ¨ , I (B.5)

By neglecting the second order terms, the cost function Φpεq can be expressed as

follows

Φpεq »
I´1
ÿ

i“1

‖ m̃i˚pMi`1εq`pM̃iεq˚mi`1´m̃i`1˚pMiεq´pM̃i`1εq˚mi`m̃i˚mi`1´m̃i`1˚mi ‖2

(B.6)

We note that

m̃i ˚ pMi`1εq “ pMi`1 ˚ rm̃i, ¨ ¨ ¨ , m̃is
loooooomoooooon

R columns

qε “ Uiε (B.7)

pM̃iεq ˚ mi`1 “ pM̃i ˚ rmi`1, ¨ ¨ ¨ ,mi`1s
looooooooomooooooooon

R columns

qε “ Viε (B.8)

m̃i`1 ˚ pMiεq “ pMi ˚ rm̃i`1, ¨ ¨ ¨ , m̃i`1s
looooooooomooooooooon

R columns

qε “ Piε (B.9)

pM̃i`1εq ˚ mi “ pM̃i`1 ˚ rmi, ¨ ¨ ¨ ,mis
loooooomoooooon

R columns

qε “ Qiε (B.10)
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where

Ui “ Mi`1 ˚ rm̃i, ¨ ¨ ¨ , m̃is
loooooomoooooon

R columns

(B.11)

Vi “ M̃i ˚ rmi`1, ¨ ¨ ¨ ,mi`1s
looooooooomooooooooon

R columns

(B.12)

Pi “ Mi ˚ rm̃i`1, ¨ ¨ ¨ , m̃i`1s
looooooooomooooooooon

R columns

(B.13)

Qi “ M̃i`1 ˚ rmi, ¨ ¨ ¨ ,mis
loooooomoooooon

R columns

(B.14)

Let

si “ m̃i ˚ mi`1 (B.15)

f i “ m̃i`1 ˚ mi (B.16)

We obtain the following form of cost function Φpεq

Φpεq »
I´1
ÿ

i“1

‖ Ziε ` zi ‖2 (B.17)

where

Zi “ pUi ` Viq ´ pPi ` Qiq (B.18)

zi “ si ´ f i (B.19)

By setting (B.17) to zero and again neglecting the second order terms, we obtain the

final solution

ε “ ρv

‖ v ‖2
(B.20)
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where

ρ “
I´1
ÿ

i“1

pziqT pziq (B.21)

v “
I´1
ÿ

i“1

Zizi (B.22)

B.2 Rank-1 Update Formula

To make our paper self-contained, we present here rank-1 update for the pseudo-

inverse as discussed in Step 4 of the proposed algorithm (Section 6.4.4). Because the

matrix Ĥptq has a rank-2 structure, we can apply formula (B.23) twice to obtain its

pseudo-inverse Ĥ#ptq.

Given matrix A P C
IˆJ , its pseudo-inverse A# P C

IˆJ and two vectors, c P C
Iˆ1

d P C
Jˆ1, fast update of pA ` cdHq#, corresponding to Theorem 5 in [113], is given

by

pA ` cdHq# “ A# ` 1

β˚
A#hHuH ´ β˚

σ
pqH , (B.23)

where

β “ 1 ` dHA#c

h “ dHA#

k “ A#c

u “ c ´ Ak

p “ ´‖ u ‖2

β˚
A#hH ´ k

qH “ ´‖ h ‖2

β˚
uH ´ h

σ “‖ h ‖2‖ u ‖2 ` | β |2 .
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We note that this update includes only matrix-vector multiplications and, thus, pre-

serves linear complexity of our algorithm.



Chapter 7

Conclusion

We have presented novel techniques for fast matrix and tensor decomposition with

real-life applications. The contributions of this thesis are summarized as follows:

For estimating subspace in parallel, in Chapter 2 we have introduced subspace

fusion concept inspired by the real-life processing and application on radio-astronomy.

We then generalize MNS theory to solve this problem in both batch and adaptive

settings. The proposed GMNS consists of the following two main contributions (i) we

extend the concept of PCS (properly connected sequence) used in the MNS method

in such a way one can extract the minor subspace with a fixed number K of DSPs

in a parallel architecture or otherwise to improve the estimation of noise vectors in

large dimensional systems, and (ii) we propose new algorithms for the computation

of the principal subspace using again K properly chosen subsystems in a parallel

scheme. The overall numerical cost is approximately reduced by a factor of K2

while preserving the estimation accuracy close to optimal. We have also adapted

GMNS to several important variants such as principal component analysis, minor

and principle subspace tracking, principal eigenvector tracking. As a result, GMNS

can be applied to a wider applications such as high resolution parameter estimation,

data compression or blind source separation, besides RFI mitigation.
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For batch tensor decomposition, first we have did a survey on recent approaches

for large-scale tensor problem in Chapter 3. We then have proposed two solutions,

non-overlapping and overlapping, for massive-scale PARAFAC in Chapter 4. The

proposed algorithms use similar divide-and-conquer strategy as GMNS case. More-

over, since selecting number of components in PARAFAC and Tucker with sparse and

non-negative constraints is a difficult problem, we adapted all-at-once optimization

approach for those models to resolve it in Chapter 5. Consequently, we can set an

overfactoring as tensor rank for PARAFAC model instead of heuristic or time con-

suming model section approaches. All-at-once optimization for Tucker can also run

on top of other algorithms to improve the accuracy of estimated loading factors. Our

main point is to show that combining of robust overfactoring algorithms and appro-

priate constraint (here, nonnegativity and sparsity) can help to eliminate artifacts and

obtain the superior result. Besides, we can combine the solutions for massive-scale

with the robust-overfactoring algorithms.

For adaptive PARAFAC decomposition, we have set a new limit on computational

complexity, linear complexity to tensor rank instead of quadratic one in Chapter 6.

To this end, we have used the following three main ideas in two different ways. First,

since adaptive PARAFAC decomposition can be seen as principal subspace tracking

with Khatri-Rao structure, we can generalize results of the well-developed adaptive

subspace tracking algorithms. Secondly, reduced-rank structure of estimated subspace

can preserve low complexity. Finally, exploiting Khatri-Rao product structure and

cyclic updating a column of the estimated subspace can help to improve the accuracy.

We have also introduced the adaptive non-negative PARAFAC problem and refined

solution of adaptive PARAFAC to tackle it.

We expect that the proposed techniques in this thesis will bring a step forward

real-time applications using matrix and tensor decomposition. In the future, we plan
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to extend the following aspects from our work.

For fast matrix decomposition:

• more efficient GMNS method for short observational time interval and explore

real-time applications of the adaptive tensor decomposition

• combination of GMNS method and random matrix theory

• statistical performance analysis of GMNS

For fast tensor decomposition:

• third-order tensor with two or three dimensions growing with time

• missing data case (both adaptive matrix and tensor completion)

Also, we would like to emphasize that adaptive tensor decomposition is at early stage

of development as compared to well-understood adaptive subspace tracking.
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Viet-Dung NGUYEN

Contribution aux décompositions rapides des matrices et tenseurs

Résumé :

De nos jours, les grandes masses de données se retrouvent dans de nombreux domaines
relatifs aux applications multimédia, sociologiques, biomédicales, radio astronomiques,
etc. On parle alors du phénomène ‘Big Data’ qui nécessite le développement d’outils
appropriés pour la manipulation et l’analyse appropriée de telles masses de données. Ce
travail de thèse est dédié au développement de méthodes efficaces pour la décomposition
rapide et adaptative de tenseurs ou matrices de grandes tailles et ce pour l’analyse de
données multidimensionnelles.
Nous proposons en premier une méthode d’estimation de sous espaces qui s’appuie sur
la technique dite ‘divide and conquer’ permettant une estimation distribuée ou parallèle
des sous-espaces désirés. Après avoir démontré l’efficacité numérique de cette solution,
nous introduisons différentes variantes de celle-ci pour la poursuite adaptative ou bloc
des sous espaces principaux ou mineurs ainsi que des vecteurs propres de la matrice de
covariance des données. Une application à la suppression d’interférences radiofréquences
en radioastronomie a été traitée.
La seconde partie du travail a été consacrée aux décompositions rapides de type PA-
RAFAC ou Tucker de tenseurs multidimensionnels. Nous commençons par généraliser
l’approche ‘divide and conquer’ précédente au contexte tensoriel et ce en vue de la dé-
composition PARAFAC parallélisable des tenseurs. Ensuite nous adaptons une technique
d’optimisation de type ‘all-at-once’ pour la décomposition robuste (à la méconnaissance
des ordres) de tenseurs parcimonieux et non négatifs. Finalement, nous considérons le
cas de flux de données continu et proposons deux algorithmes adaptatifs pour la décom-
position rapide (à complexité linéaire) de tenseurs en dimension 3. Malgré leurs faibles
complexités, ces algorithmes ont des performances similaires (voire parfois supérieures) à
celles des méthodes existantes de la littérature.
Au final, ce travail aboutit à un ensemble d’outils algorithmiques et algébriques effi-
caces pour la manipulation et l’analyse de données multidimensionnelles de grandes tailles.

Mots clés : décompositions rapides des matrices et tenseurs, PARAFAC, Tucker, Big Data,
suivi sous-espace adaptatif, contrainte clairsemée et non négative.
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Contributions to Fast Matrix and Tensor Decompositions

Abstract :

Large volumes of data are being generated at any given time, especially from transactional
databases, multimedia content, social media, and applications of sensor networks. When
the size of datasets is beyond the ability of typical database software tools to capture,
store, manage, and analyze, we face the phenomenon of big data for which new and
smarter data analytic tools are required. Big data provides opportunities for new form
of data analytics, resulting in substantial productivity. In this thesis, we will explore fast
matrix and tensor decompositions as computational tools to process and analyze multi-
dimensional massive-data.
We first aim to study fast subspace estimation, a specific technique used in matrix de-
composition. Traditional subspace estimation yields high performance but suffers from
processing large-scale data. We thus propose distributed/parallel subspace estimation fol-
lowing a divide-and-conquer approach in both batch and adaptive settings. Based on
this technique, we further consider its important variants such as principal component
analysis, minor and principal subspace tracking and principal eigenvector tracking. We
demonstrate the potential of our proposed algorithms by solving the challenging radio
frequency interference (RFI) mitigation problem in radio astronomy.
In the second part, we concentrate on fast tensor decomposition, a natural extension of
the matrix one. We generalize the results for the matrix case to make PARAFAC ten-
sor decomposition parallelizable in batch setting. Then we adapt all-at-once optimization
approach to consider sparse non-negative PARAFAC and Tucker decomposition with unk-
nown tensor rank. Finally, we propose two PARAFAC decomposition algorithms for a class
of third-order tensors that have one dimension growing linearly with time. The proposed
algorithms have linear complexity, good convergence rate and good estimation accuracy.
The results in a standard setting show that the performance of our proposed algorithms
is comparable or even superior to the state-of-the-art algorithms. We also introduce an
adaptive nonnegative PARAFAC problem and refine the solution of adaptive PARAFAC
to tackle it.
The main contributions of this thesis, as new tools to allow fast handling large-scale
multidimensional data, thus bring a step forward real-time applications..

Keywords : Fast matrix and tensor decompositions, PARAFAC, Tucker, Big Data, adap-
tive subspace tracking, sparse and non-negative constraint.
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