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Chapitre 1

Introduction

This thesis will focus on three topics related to the SLE(κ) processes. The first
part is about the dipolar SLE(κ) process and the conformal restriction measure on
the strip ; the second part is about the connectivity property of the Brownian loop
measure ; and the third part is about the generalized integral means spectrum of the
inner whole plane Loewner processes driven by a Lévy process.

The conformally invariant scaling limits of a series of planar lattice models can
be described by the one-parameter family of random fractal curves SLE(κ), which
was introduced by Schramm. These models include site percolation on the triangu-
lar graph, loop erased random walk, Ising model, harmonic random walk, discrete
Gaussian free field, FK-Ising model and uniform spanning tree. Using SLE, mathe-
maticians can get many exponents related to these lattice models, which physicists
predicted using non-rigorous methods. For example, Schramm,Werner and Lawler
got the intersection exponents of the plane Brownian motion, and then proved Man-
delbrot’s conjecture about the Hausdorff dimension of Brownian frontier points. Also
the arm exponent of these lattice can be obtained by studying some crossing events
related to the SLE(κ) process. During the past twenty years, the theory of SLE(κ)
process has developed very quickly. And more relations to physical models has been
established such as the random surface theory created by Jason Miller and Scott
Sheffield and the discrete holomorphic function theory concerning the lattice mod-
els. It is of no doubt that SLE process will continue to play the most important role
in this area.

Let us now give the structure of this thesis. In chapter one, we will recall some
basic facts about the SLE(κ) process. And this include some background related
to complex analysis and stochastic analysis. Also the definition of SLE process and
some properties will be given.

Chapter two will be devoted to the introduction of the dipolar SLE(κ) process
and to the construction of the conformal restriction measure on the strip(which is
called the dipolar conformal restriction measure). It is known that chordal SLE(κ)
process is generated by a random curve in a simply domain that connects two bound-
ary points, radial SLE(κ) process is a random curve in a simply connected domain
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that connects an inner point and a boundary point, and the whole plane SLE(κ)
process is a random curve in the complex plane from a point to infinity. In this
chapter we will see that dipolar SLE(κ) process is a random curve that connects a
boundary point to a boundary arc. And the dipolar SLE(κ) also satisfies some nice
properties as the chordal SLE(κ) process. Then we will use dipolar SLE process and
study the conformal restriction measure in the strip. This is a measure supported
on the compact sets of the strip that satisfies conformal restriction properties. To
be more precise, let us describe briefly the conformal restriction measure which we
study in this thesis : let S be the strip of width π in the plane, i.e,

S = {z = x+ iy ∈ C : x ∈ R, 0 < y < π}.

We are going to study closed random subsets K of S that have the following form :
(1) K is a connected compact set of S̄ such that K∩R = {0} and SrK has two

connected components whose boundaries contain +∞ and −∞ respectively.
(2) For any connected compact subset A of S̄ such that A ∩ Rπ = ∅, S r A is

simply connected and d(0, A) > 0, the law of ΦA(K) conditioned on the event
{K ∩ A = ∅} is the same as the law of K, where ΦA is the unique conformal
map from S r A to S that fixes +∞ and −∞ and limz→+∞(ΦA(z) − z) =
− limz→−∞(ΦA(z)− z).

The law of such a set is called a dipolar restriction measure, which is the analogy
of the chordal restriction measure defined in [9] and the radial restriction measure
defined in [23].

In chapter three we will give an an introduction to the Brownian loop measure
and prove a formula predicted by Cardy and Gasma about the total mass that
the Brownian loop in the upper half plane disconnects two given points from the
boundary. Intuitively the Brownian loop measure is just a measure induced by a
planar Brownian path starting from some point in the plane and conditions on
returning at the same point. Given two points in the upper half plane, according
to the property of the planar Brownian motion, these two points are not on the
Brownian loop almost surely. So there are four position relations about the two
points and the Brownian loop. We will see that only the case that two points are
enclosed by the loop at the same time has the finite mass. In order to give the
formula of this finite mass, the SLE bubble measure and its relation to Brownian
bubble measure will be recalled. In fact SLE bubble measure is just the measure
obtained by passing the two boundary points of chordal SLE to the same boundary
point and then rescaling.

In chapter four, we study the generalized spectrum of the inner whole plane
Loewner processes driven by Lévy process. Given an univalent function φ defined
on the unit disk with φ′(0) = 1, and p, q ∈ R, the generalized integral spectrum of
φ is defined as follows.

βφ(p, q) := lim sup
r→1+

log
∫ 2π

0
| z
φ(z)
|q|φ′(reiθ)|pdθ

| log(r − 1)|
.
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Usually it is difficult to determine the generalized integral spectrum for a simply
domain, since it is difficult to get the exact form of a conformal map from the unit
disk to the domain. But for some random univalent functions, it is possible to use
some methods to compute the averaged generalized integral means spectrum
which is defined as the following :

βφ(p, q) := lim sup
r→1+

log
∫ 2π

0
E[| z

φ(z)
|q|φ′(reiθ)|p]dθ

| log(r − 1)|
.

For the inner whole plane SLE (ft)t≥0, f0 is a conformal map on the unit disk with
derivative equal to one at 0, we can compute its average generalized integral means
spectrum. The situation happens the same when we replace the driving process by
a Lévy process. In the fourth chapter we will first give the expressions of G(z, z̄) =

E[ |z|
q |f ′(z)|p
|f(z)|q ] for some special values (p, q) and some special Lévy driven processes,

and then get the generalized integral means spectrum.

3





Chapitre 2

SLE processes

In this chapter, we recall the basic knowledge about the Schramm Loewner Evo-
lution(SLE). We will recall some basic facts in complex analysis.

We will use the following notations :

H := {z = x+ iy ∈ C : y > 0},

D := {z ∈ C : |z| < 1},D+ := {z ∈ C : |z| > 1}.

2.1 Chordal Loewner Process
A conformal map on a planar domain is a one-to-one holomorphic function.

Recall that a planar domain D is called simply connected if any closed curve in D
is homotopic to a point. For such domains we have Riemann’s conformal mapping
theorem :

Theorem 1 (Riemann mapping theorem). Given a simply connected domain D ⊂ C
and a point z0 ∈ D, then there exists a unique conformal map φ from D onto D such
that φ(0) = z0 and φ′(z0) > 0.

Definition 2 (see Chapter 3 in [10]). A connected compact set A ⊂ H is called a H-
hull if HrA is simply conneccted and A = A ∩H. By Riemann’s mapping theorem,
given a H-hull, there exists a unique conformal map gA(z) from HrA onto H such
that lim

z→∞
(gA(z)− z) = 0. And also we have a(A) = lim

z→∞
z(gA(z)− z) ≥ 0, which is

called the capacity of A. We call gA the normalised conformal map corresponding
to A.

Given a non-selfcrossing curve γ[0,∞)→ H such that γ(0) = 0 and γ(∞) =∞,
then for any given t ≥ 0, the compact set Kt enclosed by γ[0, t] is a H-hull. Denote
by a(t) the capacity of Kt and gt the corresponding normalised conformal map of
Kt. We have the following Loewner’s theorem.

Lemma 3 (see Chapter 4 in [10]). With above notations,
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2.2. RADIAL LOEWNER PROCESS

(1) t 7→ a(t) is strictly increasing and a(t)→∞ as t→∞ ;
(2) The limit Wt := lim

z∈HrKt,z→γ(t)
gt(z) exists and t → Wt is a continuous func-

tion from R+ to R ;
(3) If γ is parameterized in such a way that a(t) = 2t, then gt satisfies the
differential equation

∂tgt(z) =
2

gt(z)−Wt

, g0(z) = z. (2.1.1)

We call (2.1.1) the chordal Loewner differential equation. And this is what
Oded Schramm found to define SLE. We have seen that, starting from a non-
selfcrossing curve, we can get a continuous function Wt such that the corresponding
family of conformal maps satisfies the chordal Loewner equation (2.1.1). Conversely,
given a continuous function Wt, by solving the differential equation. For given z,
define

τ(z) := sup{t > 0, min
0≤s≤t

|gs(z)−W (s)| > 0},

and
Kt := {z ∈ H : τ(z) ≤ t}, Ht := HrKt.

Then we have

Lemma 4 (see Chapter 4 in [10]). Suppose W (t) : [0, T ] → R is a continuous
function. And gt(z) is the solution of the ODE (2.1.1). Define Kt and Ht as above,
then

(1) For any t ∈ [0, T ], gt(z) : Ht → H is a conformal(holomorphic and injective)
map ;

(2) For any t ∈ [0, T ], Kt is a H-hull ;
(3) At z =∞, gt(z) has the Laurent expansion gt(z) = z + 2t

z
+O( 1

|z|2 ).
We call (gt : 0 ≤ t ≤ T ) and (Kt : 0 ≤ t ≤ T ) the chordal Loewner pro-
cess(Loewner chain) driven by W .

Remark 5. Usually, for a given continuous function W , the Loewner chain driven by
W is not generated by a curve.

2.2 Radial Loewner Process
Definition 6. If a compact set K ⊂ D satisfies 0 6∈ K, K = K ∩ D and D rK is
simply connected, we call K is a D-hull.

By Riemann mapping theorem, for a D-hull, there exists a unique conformal
map gK : D rK → D such that gK(0) = 0, g′K(0) > 0. We call gK the normalized
conformal map corresponding to K. By Schwarz lemma we have g′K(0) ≥ 1 and
g′K(0) = 1 if and only if K ⊂ ∂D. Define the capacity of K as follows :

cap(K) := log g′K(0).

6



2.2. RADIAL LOEWNER PROCESS

Suppose that γ : [0, T ] → D is a non-selfcrossing curve with γ(0) = 1, γ(0, T ) ⊂ D
and 0 6∈ γ. Define Kt the hull enclosed by γ[0, t], gt(z) : D r Kt → D, gt(0) =
0, g′t(0) > 0 is the normalised conformal map.
Lemma 7 (see Chapter 4 in [10]). With the above notations,

(1) a(t) is a strictly increasing continuous non-negative function ;
(2) The limit λ(t) := lim

z∈Drγ[0,t],z→γ(t)
gt(z) ∈ ∂D exists, and we can choose a

continuous real-valued function Wt such that λ(t) = eiW (t).
(3) If γ is parameterized such that a(t) = t, we have the following Loewner
differential equation :

∂tgt(z) = gt(z)
λ(t) + gt(z)

λ(t)− gt(z)
, g0(z) = z. (2.2.1)

We call (2.2.1) the radial Loewner differential equation. Conversely, starting
from a continuous real-valued function Wt, consider the differential equation (2.2.1).
For given z ∈ Dr {1}, define

τ(z) := sup{t > 0, min
0≤s≤t

|gs(z)− exp{iW (s)}| > 0},

and
Kt := {z ∈ D : τ(z) ≤ t}, Dt := DrKt.

Lemma 8 (see Chapter 4 in [10]). Suppose W (t) : [0, T ]→ R is a continuous real-
valued function. And gt(z) is the solution of the ODE (2.2.1). Define Kt and Dt as
above, then

(1) For any t ∈ [0, T ], gt(z) : Dt → D is a conformal map ;
(2) For any t ∈ [0, T ], Kt is a D-hull ;
(3) At z = 0, gt(z) has the Taylor expansion gt(z) = etz +O(|z|2).

We call (gt : 0 ≤ t ≤ T ) and (Kt : 0 ≤ t ≤ T ) the (inner)radial Loewner
process(Loewner chain) driven by W .
Remark 9. Denote by ft(z) := g−1

t (z), then ft(z) satisfies the so-called reverse
Loewner differential equation :{

∂tft(z) = zf ′t(z) z+λt
z−λt

f0(z) = z, for ∀z ∈ D.
(2.2.2)

Remark 10. If we let g̃t(z) = 1
gt(

1
z

)
, where gt(z) is defined as in Lemma 8, we can get

∂tg̃t(z) =
−1

g2
t (

1
z
)
∂tgt(

1

z
)

=
−1

g2
t (

1
z
)
gt(

1

z
)
λt + gt(

1
z
)

λt − gt(1
z
)

=− g̃t(z)
g̃t(z) + λ̃t

g̃t(z)− λ̃t
,

7



2.3. WHOLE PLANE LOEWNER PROCESS

where λ̃t = 1
λt

and g̃0(z) = z. Also we have f̃t(z) := g̃−1
t (z) = 1

ft(
1
z

)
, where ft(z) =

g−1
t (z). And we can check that{

∂tf̃t(z) = zf̃ ′t(z) z+λ̃t
z−λ̃t

f̃0(z) = z for ∀z ∈ D+.

So the outer radial Loewner process driven by Wt is defined as follows :{
∂tg̃t(z) = −g̃t(z) g̃t(z)+λ̃t

g̃t(z)−λ̃t
g̃0(z) = z, for ∀z ∈ D+.

{
∂tf̃t(z) = zf̃ ′t(z) z+λ̃t

z−λ̃t
f̃0(z) = z for ∀z ∈ D+.

(2.2.3)

Notice that for the outer radial Loewner process, gt maps the complement of the
hull in D+ onto D+. Here we can easily define the hulls in D+.

2.3 Whole Plane Loewner process
The proof of Bieberbach’s conjecture in fact used the whole plane Loewner theory.

In 1923 Loewner proved a part of the conjecture, De Branges proved the conjecture
completely with the help of Loewner’s method.

Definition 11. If a compact set K ⊂ C satisfies ĈrK is simply connected, we call
K is a C-hull. Still by Riemann’s mapping theorem, there exists a unique conformal
map FK : Cr D→ CrK such that

lim
z→∞

FK(z)

z
> 0.

In fact, if 0 ∈ K, we have FK(z) = 1
fK( 1

z
)
, where fK(z) is the conformal map

from D to {1
z

: z ∈ C r K} with fK(0) = 0, f ′K(0) > 0. We call gK := F−1
K the

normalised conformal map corresponding to K. Denote by cap(K) = − log[f ′K(0)] =

log[limz→∞
FK(z)
z

], which is called the capacity of K.

Similarly, for a non-selfcrossing curve γ : (−∞,+∞) → C with γ(−∞) =
0, γ(+∞) = ∞. For any t ∈ R, denote by Kt the hull enclosed by γ[−∞, t] and
denote by gt the normalised conformal map and a(t) = cap(Kt). In fact if we define
D̃t := {1/z : z ∈ Dt}, then there exists a unique function g̃t from D̃t to the unit
disk D such that g̃t(0) > 0 and g̃′t(0) > 0. And let gt(z) := 1

g̃t(1/z)
, we can get that

gt(∞) =∞, lim
z→∞

gt(z)

z
=

1

g̃t(0)
> 0.

And this is unique. Suppose that t < s, we have Ds ⊂ Dt and then D̃s ⊂ D̃t. We
have g̃t ◦ g̃−1

s (D) ⊂ D and then by Schwarz Lemma we have

g̃′t(0) ≤ g̃′s(0).

8



2.3. WHOLE PLANE LOEWNER PROCESS

Lemma 12 (see Chapter 4 in [10]). Take the above notation, then
(1) a(t) is a strictly increasing function and a(−∞) = 0, a(+∞) = +∞ ;
(2) The limit λ(t) := lim

z→γ(t),z∈CrKt
gt(z) exists and there exists a continuous real-

valued function W such that λ(t) = eiWt ;
(3) If a(t) = t, then gt(z) satisfies the Loewner differential equation{

∂tgt(z) = gt(z)λt+gt(z)
λt−gt(z)

lim
t→−∞

etgt(z) = z, ∀z ∈ Cr {0}. (2.3.1)

We call (2.3.1) the (outer) whole plane Loewner differential equation.
(4) ∀z ∈ Cr {0}, we have

lim
t→−∞

etgt(z) = z.

Since (4) can not be found in any references, here we give the proof of (4).

Proof. Notice that(4) is equivalent to say that lim
t→−∞

et 1
g̃t(1/z)

= z holds for any

z ∈ Cr {0}, i.e
lim
t→−∞

e−tg̃t(z) = z, ∀z ∈ C.

Here g̃t is defined just before the lemma. We define f̃t(z) := g̃−1
t (z) : D→ C, and let

ht(z) := etf̃t(z), then ht(0) = 0, h′t(0) = 1. By Koebe distortion theorem we have

|z|
(1 + |z|)2

≤ |ht(z)| ≤ |z|
(1− |z|)2

.

And then we have

e−t
|g̃t(z)|

(1 + g̃t(z))2
≤ |z| ≤ e−t

|g̃t(z)|
(1− |g̃t(z)|)2

. (2.3.2)

And then
(1− |g̃t(z)|)2 ≤ e−t

|g̃t(z)|
|z|

≤ (1 + |g̃t(z)|)2.

Since |g̃t(z)| ≤ 1 for any t and z. Then we have {e−t g̃t(z)
z

: t ∈ R} is a normal family.
And we know that if tk → −∞ and e−tk g̃tk (z)

z
→ h(z), then by (2.3.2) we have that

|h(z)| = 1 and then h = 1 since h(0) = 1.

Remark 13. Denote by ft(z) := g−1
t (z), then ft(z) satisfies the so-called reverse

Loewner differential equation :{
∂tft(z) = zf ′t(z) z+λt

z−λt
lim
t→−∞

ft(e
−tz) = z, ∀z ∈ D+.

(2.3.3)

9



2.3. WHOLE PLANE LOEWNER PROCESS

Conversely, starting from a continuous real-valued function Wt, consider the dif-
ferential equation (2.3.1). For given z ∈ Cr {0}, define

τ(z) := sup{t : min
0≤s≤t

|gs(z)− exp{iW (s)}| > 0},

and
Kt := {z ∈ C : τ(z) ≤ t}, Ct := Ĉ rKt.

Lemma 14 (see Chapter 4 in [10]). Suppose W : R→ R is a continuous real-valued
function. And gt(z) is the solution of the ODE (2.3.1). Define Kt and Ct as above,
then

(1) For any t ∈ R, gt(z) : Ct → D+ is a conformal map ;
(2) For any t ∈ R, Kt is a C-hull ;
(3) At z =∞, gt(z) has the Laurent expansion gt(z) = e−tz +O( 1

|z|).
We call (gt)(or ft(z) := g−1

t (z)) and (Kt) the outer whole plane Loewner pro-
cess(Loewner chain) driven by W .

In fact, we have an inner version of the whole plane Loewner process.
To express the motivation, we still start from a non-selfcrossing curve γ from ∞ to
0 such that γ(−∞) = ∞ and γ(+∞) = 0. Dt := Ĉ r γ[−∞, t], then there exists
a unique function gt : Dt → D such that gt(0) = 0 and g′t(0) > 0. By Koebe’s one
quarter theorem, we have

1

4

1

d(0, ∂Dt)
≤ g′t(0) ≤ 1

d(0, ∂Dt)
.

So we have limt→+∞ g
′
t(0) = +∞ and limt→−∞ g

′
t(0) = 0, and we assume g′t(0) = et

and gt(γ(t)) = λt. Define γ̃(t) = 1
γ(t)

, we get the same case as in Lemma 12. And
this time gt(z) = 1

g̃t(1/z)
, where g̃t(z) here is like Lemma12 and satisfies∂tg̃t(z) = g̃t(z) λ̃t+g̃t(z)

λ̃t−g̃t(z)

lim
t→−∞

etg̃t(z) = z, ∀z ∈ Cr {0}.

Where λ̃t = g̃t(γ̃(t)) = 1/λt. Changing to gt(z), we have{
∂tgt(z) = gt(z)λt+gt(z)

λt−gt(z)

lim
t→−∞

e−tgt(z) = z, ∀z ∈ C.

And ft(z) := g−1
t (z) satisfies{

∂tft(z) = zf ′t(z) z+λt
z−λt

lim
t→−∞

ft(e
tz) = z, ∀z ∈ D.

And so we summarize as follows :

10



2.4. APPROXIMATE WHOLE PLANE LOEWNER PROCESS BY RADIAL
LOEWNER PROCESS

Lemma 15. Take above notation,{
∂tgt(z) = gt(z)gt(z)+λt

λt−gt(z)

lim
t→−∞

e−tgt(z) = z, ∀z ∈ C.

{
∂tft(z) = zf ′t(z) z+λt

z−λt
lim
t→−∞

ft(e
tz) = z, ∀z ∈ D.

To continue the procedure, we assume that γ is a simple curve from 0 to∞ such
that γ(−∞) = 0 and γ(+∞) = ∞. Dt := Ĉ r γ[t,∞], then there exists a unique
function gt : Dt → D such that gt(0) = 0 and g′t(0) = e−t > 0. This time if we let
γ̃(t) = γ(−t), then γ̃ is like Lemma 15. And we can get,{

∂tgt(z) = gt(z)gt(z)+λt
gt(z)−λt

lim
t→+∞

etgt(z) = z, ∀z ∈ C.

{
∂tft(z) = zf ′t(z)λt+z

λt−z
lim
t→+∞

ft(e
−tz) = z, ∀z ∈ D. (2.3.4)

where λt = gt(γ(t)). Similarly, starting from a real-valued continuous function Wt,
let λt = exp{iWt}. We call the solution of above differential equation (2.3.4) the
inner whole plane Loewner process(chain) driven by Wt.

2.4 Approximate Whole Plane Loewner Process by
Radial Loewner Process

In this section, we will give a relation between radial Loewner process and whole
plane Loewner process, which will be very important in our computation of the
spectrum of the random whole plane Loewner chains.

Given a real-valued continuous functionWt : R→ R, and let λt := exp{iWt}. For
any given s ∈ R, define conformal maps (g

(s)
t ) as follows : g(s)

t (z) = e−tz if t ≤ −s ;
if t ≥ −s, g(s)

t (z) is defined as the solution to the outer radial Loewer differential
equation(2.2.3) with initial condition g(s)

−s(z) = esz.

Lemma 16 (see Chapter 6 in [10]). Take the above notations, then as s tends to +∞,
(g

(s)
t ) converges locally uniformly to a limit which we will denote by (gt). Moreover

(gt) is the outer whole plane Loewner process driven by Wt( see Lemma 14).

We can use above lemma to prove that the inner whole plane Loewner process
can also be approximated by the modified inner radial Loewner process. For given
s ∈ R, define conformal maps (g

(s)
t ) as follows : for t > s, g(s)

t (z) = e−tz ; for t ≤ s,
g

(s)
t is the solution to the modified inner radial Loewner differential equation
which is defined as follows :

∂tgt(z) = gt(z)
gt(z) + λ(t)

gt(z)− λ(t)
(2.4.1)

with the initial condition g(s)
s (z) = e−sz.

11



2.5. DRIVEN BY JUMP FUNCTIONS

Lemma 17. With g(s)
t defined as above, we have

lim
s→+∞

g
(s)
t (z) = gt(z)

locally uniformly, where (gt) is the inner whole plane Loewner process (see (2.3.4))
driven by Wt.

Proof. Define g̃(s)
t (z) = 1

g
(s)
−t ( 1

z
)
and λ̃(t) = 1

λ(−t) . Then g̃
(s)
t satisfies Lemma 16. We

have that as s→ +∞, g̃(s)
t converges to a limit g̃t, where g̃t is the outer whole plane

Loewner process driven by Wt( see Lemma 14). So g(s)
t converges locally uniformly

to a limit gt(z) := 1
g̃−t(

1
z

)
. We only need to check that gt(z) satisfies (2.3.4).

2.5 Driven by jump functions
Suppose that Wt is a function that is right continuous and has left limit at very

point, then the corresponding Loewner equation (2.1.1),(2.2.1) and (2.3.1) driven by
Wt still have the solution gt which is conformal. This is because that we only need
to consider the equation on the intervals on which W is continuous and then use the
conclusions in the previous sections. And also the corresponding conclusions in the
previous section still holds with slight modifications.

2.6 Stochastic Analysis
In this section we recall some facts from stochastic analysis.

Definition 18. A standard Brownian motion is a stochastic process (Bt)t≥0 such
that

(1) B0 = 0 ;
(2) For any 0 ≤ t1 < t2 < t3 < ... < tn,Bt2 − Bt1 , Bt3 − Bt2 , ..., Btn − Btn−1 are
independent ;

(3) For any 0 ≤ s ≤ t,Bt − Bs ∼ N(0, t − s), where N(0, t − s) denotes the
normal distribution with mean 0 and variance t− s ;

(4) Almost surely, the sample path t→ Bt is continuous.

Definition 19. A Lévy process is a stochastic process (Lt)t≥0 such that
(1) L0 = 0(a.s) ;
(2) For any 0 ≤ t1 < t2 < t3 < ... < tn,Lt2 − Lt1 , Lt3 − Lt2 , ..., Ltn − Ltn−1 are
independent ;

(3) For any 0 ≤ s ≤ t, Lt − Ls has the same law as Lt−s ;

Notice that Brownian motion is a special Lévy process. The essential difference
with Brownian motion is that jumps are allowed. The characteristic function of a
Lévy process Lt has the form

E[eiξLt ] = e−tη(ξ), (2.6.1)

12



2.6. STOCHASTIC ANALYSIS

where η is called the Lévy symbol and is a continuous complex function of ξ ∈ R,
satisfying η(0) = 0 and η(−ξ) = η(ξ). If η(−ξ) = η(ξ), we call Lt a symmetric Lévy
process. For Brownian motion, the Lévy symbol is η(ξ) = ξ2

2
. More generally,the

function
η(ξ) =

|ξ|α

2
, α ∈ (0, 2]

is the Lévy symbol of the so-called α−stable process.

Definition 20. A stochastic process (Mt)t≥0 on a filtered probability space (Ω,F , (Ft)t≥0,P)
is called a martingale if

(1) For any t ≥ 0, Mt is Ft-measurable and integrable ;
(2) For any s ≤ t, E[Mt|Fs] = Ms a.s.

Given a filtered probability space (Ω,F , (Ft)t≥0,P), a non-negative random vari-
able T is called a stopping time if for any t ≥ 0, the event {T ≤ t} is measurable
with respect to Ft.

A stochastic process (Mt)t≥0 is called a local martingale if there exists a se-
quence of increasing sopping times Tn →∞ such that for any n ∈ N,(Mt∧Tn)t≥0 is a
martingale.

Itô calculus is very important in stochastic analysis. Here we will not give the
definition of stochastic integral with respect to Brownian motion, even for Lévy
process. But we will give Itô’s formula which will be used many times in this thesis.

Theorem 21 (see Proposition 1.6 of Chapter V II in [18]). Suppose that f(t, x) is
a function defined on [0,∞)×R, and f is C1 with respect to t, and C2 with respect
to x. If a stochastic process Yt can be written as dYt = XtdBt + Ztdt, then

df(t, Yt) =
(∂f
∂t

(t, Yt) +
∂f

∂x
(t, Yt)Zt +

1

2

∂2f

∂x2
(t, Yt)

)
dt+

∂f

∂x
(t, Yt)XtdBt.

In particular, if f(t, Yt) is a local martingale, the drift term in above formula is equal
to zero.

We also have an integral version of Itô’s formula. It can stated as the following :

Theorem 22. Suppose that Lt is a Lévy process, then for any C2 function f ,

M f
t := f(Lt)− f(L0)−

∫ t

0

Λf(Ls)ds

is a local martingale. In particular,if f(Lt) is a local martingale, then Λf ≡ 0. Here
Λ is the generator corresponding to the Lévy process Lt which is defined as

Λf(x) = lim
t↓0

Ex[f(Lt)]− f(x)

t
.

Remark 23. In fact, if f(t, Lt) is a local martingale, then ∂tf = −Λf , here when Λ
acts on f , it is considered as an function of the second variable x.
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2.7. CHORDAL SCHRAMM LOEWNER EVOLUTION

For martingales, the following stopping theorem is very useful to determine the
expectation of some random variables.

Theorem 24 (see section 3 of Chapter II in [18]). If (Mt)0≤t≤T is a martingale and
sup

0≤t≤T
E[Mt] <∞, then E[M0] = E[Mt].

2.7 Chordal Schramm Loewner Evolution
In 1999([20]), Oded Schramm founded that by assigning the driven process to

be the one-dimensional standard Brownian motion, the Loewner chains can be used
to be the candidate for describing the scaling limits of some lattice models in statis-
tic physics. What he defined is called the Schramm Loewner evolution (SLE)
process. Now we give the detailed definition of SLE.

Definition 25 (see [20]). Given κ > 0, let Wt =
√
κBt, we call the random Lowner

chain driven by Wt the chordal SLE(κ) process from 0 to ∞ in H.

Proposition 26 (see [19]). Suppose {gt(z) : t ≥ 0} and {Kt : t ≥ 0} are the chordal
SLE process from 0 to ∞ in H. Then

(1) (scaling invariance)For any r > 0, the process ĝt(z) := r−
1
2 grt(
√
rz) has the

same distribution as gt(z) considered as stochastic processes indexed by (t, z).
In particular, t→ Kt has the same distribution as t→ r−

1
2Krt as H-hulls.

(2) (Markov property) Suppose that τ is a stopping time about the filtration gen-
erated by Wt. Then g̃t(z) := gt+τ ◦ g−1

τ (z + Wτ ) − Wτ is independent with
{gt : 0 ≤ t ≤ τ}, and has the same distribution as gt(z).

Remark 27. By (1), we can define the SLE for any triple (D, z, w) where D is a
simply connected domain with z, w ∈ ∂D by choosing any conformal map f from H
to D that sends 0 to z and sends ∞ to w and then defining the SLE process in D
from z to w as the the image of the SLE process in H from 0 to ∞.

In fact, chordal SLE(κ) process is almost surely generated by a curve. And the
property of the curve depends on the parameter κ.

Theorem 28 (see [19] and [12]). Suppose that (Kt : t ≥ 0) is the chordal SLE(κ)
process from 0 to ∞ in H. Almost surely, there exists a continuous non self-crossing
curve γ in H such that γ(0) = 0, γ(∞) = ∞ and for any t ≥ 0, Kt is equal to the
complement of the unbounded component of Hrγ[0, t] in H, i.e. the chordal SLE(κ)
process is almost surely generated by a curve. We call γ the SLE(κ) trace.

Theorem 29 (see [19]). Suppose γ is the SLE(κ) trace from 0 to ∞ in H, then
(a) If κ ∈ (0, 4], almost surely γ is a simple curve ;
(b) If κ ∈ (4, 8), almost surely γ is a self-touching curve and encloses H, but for
any given point z ∈ Hr {0}, almost surely z 6∈ γ ;

(c) If κ ∈ [8,∞), almost surely γ[0,∞] = H, i.e. γ is a space-filling curve.
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2.7. CHORDAL SCHRAMM LOEWNER EVOLUTION

For some special values κ, the SLE(κ) trace satisfies some special properties. The
most interesting case is κ = 6 and κ = 8

3
.

Proposition 30 (see [14][11]). Suppose that γ is the SLE(κ) trace from 0 to ∞ in
H.

(a) If κ = 6, for any H-hull K with 0 6∈ K, define

τK := inf{t ≥ 0 : γ(t) ∈ K},

then γ[0, τK) has the same distribution as the SLE(6) in HrK from 0 to ∞
upon hitting K. This is called the local property of SLE(6).

(b) If κ = 8
3
, for any H-hull K with 0 6∈ K. Define ΦK(z) = gK(z) − gK(0),

where gK(z) is the normalised conformal map corresponding to K. Then

P[γ ∩K = ∅] = Φ′K(0)
5
8 . (2.7.1)

Notice that for two H-hulls K1, K2 that don’t contain 0,

ΦK1∪Φ−1
K1

(K2) = ΦK2 ◦ ΦK1 ,Φ
′
K1∪Φ−1

K1
(K2)

(0) = Φ′K2
(0)Φ′K1

(0).

Then conditioned on γ ∩ K = ∅, γ has the same distribution as the SLE(8
3
)

from 0 to ∞ in HrK. This is called the restriction property of SLE(8
3
).

Given z ∈ H, for κ ∈ (0, 8), we have known that z 6∈ γ a.s. So it makes senses to
ask the question about the probability that z lies to the left(right) side of γ. In fact
Oded Schramm has got a formula for this.

Proposition 31 (see [21]). Given z = x+ iy ∈ H, κ ∈ (0, 8). Suppose that γ is the
SLE(κ) trace from 0 to ∞ in H. Then the probability that γ passes the left of z is

p(z) = C

∫ x
y

−∞
(1 + t2)−

4
κdt, (2.7.2)

where C = C(κ) is the constant that make the total integral above equal to 1.

Notice that for κ = 4, p(z) = 1 − arg(z)
π

; for κ = 8
3
, p(z) = 1

2
(1 + x

|z|). There are
some other properties which we will not list here, they can be found in[19].

Remark 32. The properties we have given here are those that will be used in the
proof of the main results of this thesis. There are also many other nice properties of
SLE(κ) such as the reversibility, duality and Hausdorff dimension etc. We will not
give them here.
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2.8. RADIAL AND WHOLE PLANE SLE

2.8 Radial and Whole Plane SLE
In this section, we will introduce the radial SLE and whole plane SLE process.

Definition 33. Suppose that (Bt : t ∈ R) is a two-sided Brownian motion, we
call the inner(outer) Loewner process (chain) driven by Wt =

√
κBt the inner

(outer) radial SLE(κ) process from 1 to 0(∞) in D(D+)(see section 2.2). And the
inner (outer) whole plane Loewner process (chain) driven by Wt =

√
κBt the inner

(outer) whole plane SLE(κ) process from 0(∞) to ∞(0) in C(see section 2.3).

Remark 34. For any triple (D, z, w), where D is a proper simple connected domain
of C with z ∈ D and w ∈ ∂D, there exists a unique conformal map φ from D onto
D with φ(0) = z and φ(1) = w. We can define the radial SLE(κ) in D from w to z
as the image of the radial SLE(κ) in D from 1 to 0 under the map φ.

In fact, radial SLE(κ) and whole plane SLE(κ) have many of the same properties
as the chordal SLE(κ). By the Markov property of Brownian motion, for radial
SLE(κ), the Markov property also holds.

Proposition 35 (see [10][11]). Suppose τ is a stopping time with respect to the
filtration generated by Wt =

√
κBt and (gt) is the radial SLE(κ) process from 1 to

0 in D. Then g̃t(z) := gt+τ ◦ g−1
τ (zλτ )/λτ has the same distribution as gt(z) and is

independent with {gt : 0 ≤ t ≤ τ}. Here λt = exp{iWt}.

But for the whole palne SLE(κ) the scaling property holds.

Proposition 36 (see [10] [11]). Suppose that (gt, Kt : t ∈ R) is the (outer) whole
plane SLE(κ), and r ∈ R. then (gt+r(e

rz), e−rKt+r : t ∈ R) has the same distribution
as (gt, Kt : t ∈ R).

Remark 37. So given two different points z, w ∈ C, we can define the whole plane
SLE(κ) in C from z to w as the image under any conformal map from C to C that
send ∞ to z and 0 to w.

Theorem 38 (see [10]). Almost surely, the (inner)radial SLE(κ) is generated by a
curve γ from 1 to 0, which we call the (inner) radial SLE(κ) trace. And

(1) If κ ∈ (0, 4], γ is a simple curve a.s ;
(2) If κ ∈ (4, 8), γ is a selftouching but non-selfcrossing curve a.s. Also D =
∪
t≥0

Kt, where Kt is the radial SLE(κ) hulls. But for a given z ∈ Dr{1}, z 6∈ γ
a.s.

(3) If κ ∈ [8,∞), then D = γ[0,∞] a.s, i,e γ is a space-filling curve almost
surely.

Remark 39. For the whole plane SLE(κ), it is also generated by a curve almost
surely and the phase of the curve has the same behavior as the radial SLE(κ).

For special values κ = 6 and κ = 8
3
, the locality and restriction property also

hold for radial SLE process.
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2.8. RADIAL AND WHOLE PLANE SLE

Proposition 40 (see Chapter 6 in [10]). Suppose that γ is the radial SLE(κ) trace
from 1 to 0 in D.

(a) If κ = 6, for any D-hull K with 1 6∈ K, define

τK := inf{t ≥ 0 : γ(t) ∈ K},

then γ[0, τK) has the same distribution as the radial SLE(6) in DrK from 1
to 0 upon hitting K. This is called the local property of radial SLE(6).

(b) If κ = 8
3
, for any D-hull K with 1 6∈ K. Define ΦK(z) = gK(z)/gK(1), where

gK(z) is the normalised conformal map corresponding to K. Then

P[γ ∩K = ∅] = |Φ′K(0)|
5
48 |Φ′K(1)|

5
8 . (2.8.1)

Notice that for two D-hulls K1, K2 that don’t contain 1,

ΦK1∪Φ−1
K1

(K2) = ΦK2 ◦ ΦK1 ,

Φ′
K1∪Φ−1

K1
(K2)

(0) = Φ′K2
(0)Φ′K1

(0),Φ′
K1∪Φ−1

K1
(K2)

(1) = Φ′K2
(1)Φ′K1

(1).

Then conditioned on γ∩K = ∅, γ has the same distribution as the SLE(8
3
) from

1 to 0 in DrK. This is called the restriction property of radial SLE(8
3
).

For whole plane SLE(6), the locality also holds.

Proposition 41 (see Chapter 6 in [10]). Suppose γ is a (outer)whole plane SLE(6)
curve from 0 and ∞ and suppose w ∈ C r {0}. Let t∗ be the first time t that γ[0, t]
disconnects w from ∞. Then (γ(t) : 0 ≤ t ≤ t∗) has the same distribution of a whole
plane SLE(6) path from 0 to w stopped at the first time that it disconnects w from
∞.

Moreover the frontier points of the whole plane SLE(6) have the same distribution
as the frontier points of planar Brownian motion. This is a very deep result that
connects SLE and Brownian motion.

Theorem 42 (see Chapter 6 in [10]). Let γ be a (outer) whole plane SLE(6) path
from 0 to ∞. Let D be a simply connected domain other than C containing the
origin. Define

τD = inf{t : γ(t) ∈ ∂D}.
Let Bt denote a complex Brownian motion starting at the origin and define

σD = inf{t : Bt ∈ ∂D}.

Then γ(τD) and B(σD)) have the same distribution, i.e., the measure on ∂D induced
by γ(τD) is the harmonic measure in D started at 0.

It is easy to see from the definition that when stopping (outer)whole plane SLE(κ)
at some time, the remaining of the trace is the radial SLE(κ) in the complement of
the trace.
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2.8. RADIAL AND WHOLE PLANE SLE

Proposition 43. Let (gt, Kt : t ∈ R) be the whole plane SLE(κ) from 0 to ∞.
Suppose that t0 ∈ R is a stopping time with respect to the filtration generated by
Bt(Here Wt =

√
κBt is the driven process and Bt is a standard two-sided Brownian

motion ). Then conditioned on (Kt, t ≤ t0), (Kt : t ≥ t0) has the distribution of a
radial SLE(κ) in CrKt0 from γ(t0) to ∞.

Proof. For any t ≥ 0, define

ft(z) :=
eiWt

gt+t0(z)
,

Then ft(∞) = 0 and

∂tft(z) = ft(z)
eiW

′
t + ft(z)

eiW
′
t − ft(z)

,

where W ′
t = W (t0) −W (t + t0) =

√
κBt, which has the distribution of a standard

one dimensional Brownian motion.

In fact chordal SLE(κ) and radial SLE(κ) are equivalent in some sense.

Theorem 44 (see Chapter 6 in [10][13]). Suppose that (Kt)t≥0 is a chordal SLE(κ)
process from −1 to 1 in D. and (K̃t)t≥0 is a radial SLE(κ) process from −1 to 0 in
D. Define

τ := sup{t > 0 : 0 6∈ Kt}, τ̃ := sup{t > 0 : 1 6∈ K̃t}.
Then if κ = 6, {Kt : 0 ≤ t < τ} has the same distribution as {K̃t : 0 ≤ t < τ̃} ; If
κ 6= 6, there exist two sequences of stopping times (Tn, n ≥ 1) ↑ T and (T̃n, n ≥ 1) ↑
T̃ such that {Kt : 0 ≤ t < Tn} and {K̃t : 0 ≤ t < T̃n} are absolutely continuous with
each other.

We have seen in section 2.4 that whole plane Loewner process can be approxi-
mated by radial Loewner process. So the whole plane SLE(κ) can also be approxi-
mated by radial SLE(κ). We will use this to give a result which will be very important
in computing the spectrum of whole plane SLE(κ) process.

The definition of the (outer) radial SLE(κ) can be extended to t ∈ R by consid-
ering stochastic ODE :

∂tgt(z) = gt(z)
λ(t) + gt(z)

λ(t)− gt(z)
, g0(z) = z,∀z ∈ D+,

where λ(t) = exp{i
√
κBt} and Bt is a two-sided Brownian motion. Then

Lemma 45. Let (gt : t ∈ R) be the (outer) radial SLE(κ) defined above, then the
map z → g−t(z) has the same distribution as z → g−1

t (zλ(t))/λ(t). And so the
solution of the equation

∂tft(z) = ft(z)
ft(z) + λ(t)

ft(z)− λ(t)
, f0(z) = z,∀z ∈ D+, (2.8.2)

has the same distribution as g−1
t (zλ(t))/λ(t).
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2.8. RADIAL AND WHOLE PLANE SLE

Lemma 46. Suppose that (ft : t ∈ R) is defined as (2.8.2), then

lim
t→+∞

e−tft(z)
(law)
= F0(z),

where F0(z) = h−1
0 (z) and (ht : t ∈ R) is the outer whole plane SLE(κ) process.

Proof. Given s > 0, recall the definition of g(s)
t in Lemma 16. For t ≥ −s, it is the

solution of the following differential equation :

∂tg
(s)
t = g

(s)
t

λ(t) + g
(s)
t

λ(t)− g(s)
t

, g
(s)
−s = esz.

Then (g
(s)
−t : t ≤ s) satisfies

∂tg
(s)
−t = g

(s)
−t
g

(s)
−t + λ̃(t)

g
(s)
−t − λ̃(t)

, g
(s)
−s = esz.

where λ̃(t) = λ(−t) (law)
= λ(t). So by the uniqueness of solution the ODE, we have

g
(s)
−t

(law)
= ft(g

(s)
0 ). Let t = s and combing g(s)

−s = esz, we have

e−tft(z)
(law)
= (g

(t)
0 )−1(z),

where (g
(t)
0 )−1(z) is the inverse of g(t)

0 . By Lemma 16, as t → +∞, the conformal
map g(t)

0 converges locally uniformly to h0(z), where (ht : t ∈ R) is the outer whole
plane SLE(κ). Therefore the inverse of g(t)

0 converges to h−1
0 (z).

Also the (inner) radial SLE(κ) can be extended to t ∈ R by considering stochastic
ODE :

∂tgt(z) = gt(z)
λ(t) + gt(z)

λ(t)− gt(z)
, g0(z) = z, ∀z ∈ D,

where λ(t) = exp{i
√
κBt} and Bt is a two-sided Brownian motion. Then

Lemma 47. Let (gt : t ∈ R) be the (inner) radial SLE(κ) defined above, then the
map z → g−t(z) has the same distribution as z → g−1

t (zλ(t))/λ(t). And so the
solution of the equation

∂tft(z) = ft(z)
ft(z) + λ(t)

ft(z)− λ(t)
, f0(z) = z, ∀z ∈ D, (2.8.3)

has the same distribution as g−1
t (zλ(t))/λ(t).

Lemma 48. Suppose that (ft : t ∈ R) is defined as (2.8.3), then

lim
t→+∞

etft(z)
(law)
= H0(z),

where H0(z) = h−1
0 (z) and (ht : t ∈ R) is the inner whole plane SLE(κ) process.
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2.9. DRIVEN BY A LÉVY PROCESS

Proof. Given s > 0, recall the definition of g(s)
t in Lemma 17. For t ≥ s, it is the

solution of the following differential equation :

∂tg
(s)
t = g

(s)
t

g
(s)
t + λ(t)

g
(s)
t − λ(t)

, g(s)
s = e−sz.

So by the uniqueness of solution of the ODE, we have g(s)
t (z)

(law)
= ft(g

(s)
0 (z)). There-

fore etft(z)
(law)
= etg

(s)
t ((g

(s)
0 )−1). Let t = s, we get

etft(z)
(law)
= (g

(t)
0 )−1(z)

Then combining Lemma 17 and let t→ +∞, we finish the proof.

2.9 Driven by a Lévy process
Since a Lévy process has a modification which is left continuous and has right

limit, by section 2.5 we can consider the Loewner process driven by a Lévy process.
And by the Markov property of Lévy process, the random Loewner chain we get also
satisfies the Markov property( notice that it may not be generated by a continuous
curve now since Lévy process may have jumps). In fact, most of the conclusions of
SLE process in the previous section still holds for the Loewner chain driven by a
general Lévy process. Especially we emphasize that Lemma 48 still holds for Lévy
driven processes. This will used in the computation of the avarage spectrum of the
inner whole plane Loewner processes driven by a Lévy process.
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Chapitre 3

Dipolar Conformal Restriction
Measure

In this chapter, we will use dipolar SLE(κ) process to construct a conformal
restriction measure on the strip S, which is defined as follows :

S = {z = x+ iy ∈ C : x ∈ R, 0 < y < π}. (3.0.1)

This dipolar conformal restriction is a "dipolar version" of the results derived in the
the paper [9] by Lawler,Schramm,and Werner("chordal version") and the paper [23]
by Hao Wu("radial version"). The goal is to describe the law of a random set on the
strip that satisfies a certain restriction property.

We are going to study closed random subsets K of S that have the following
form :

(1) K is a connected compact set of S̄ such that K ∩ R = {0} and S rK has
two connected components that one of their boundaries contains +∞ and the
other contains −∞ ;

(2) For any connected compact subset A of S̄ such that A ∩ Rπ = ∅, S r A is
simply connected and d(0, A) > 0, the law of ΦA(K) conditioned on the event
{K ∩ A = ∅} is the same as the law of K, where ΦA is the unique conformal
map from S r A to S that fixes +∞ and −∞ and limz→+∞(ΦA(z) − z) =
− limz→−∞(ΦA(z)− z).

The law of such a set is called a dipolar restriction measure, which is the analogy
of the chordal restriction measure defined in [9] and the radial restriction measure
defined in [23].

The main result of this chapter is the following characterization of all the dipolar
restriction measures.

Theorem 49. (1) A dipolar conformal restriction measure is fully characterized
by two real parameters (α, β) such that

P[K ∩ A = ∅] = |Φ′A(0)|β exp{−αS(A)}

21



3.1. CHORDAL CONFORMAL RESTRICTION MEASURE

where A is any connected compact subset of S̄ such that A∩Rπ = ∅, S rA is
simply connected and d(0, A) > 0, and ΦA is the conformal map from S r A
to S that fixes ±∞ and S(A) is the capacity of A(see the definition in section
3.3). We denote this restriction measure by P(α, β).

(2) For any β ≥ 5
8
, the measure P(β(1−β)

2β+1
, β) exists and if K is a sample of this

measure, then K ∩Rπ contains only one point X+ iπ and the random variable
has the density function(up to a constant)

ρ(x) = (cosh
x

2
)−

2
3

(2β+1).

We will prove this theorem step by step in the following sections. It is necessary
to give an introduction to the chordal conformal restriction measure and radial
conformal restriction measure.

3.1 Chordal conformal restriction measure
Let H := {x+ iy ∈ C : y > 0} be the upper half plane and Ω is the collection of

subset K of H that satisfies the following conditions :
(1) K a connected closed set, K ∩ R = {0} ;
(2) HrK has two connected unbounded components.

Let Ah be the collection of H-hulls and A∗h := {A ∈ Ah : 0 6∈ A}. Suppose Fh is the
σ -algebra on Ω generated by the class below :{

{K : K ∩ A = ∅} : A ∈ A∗h
}
.

If a probability measure P on (Ω,Fh) satisfies : for any A ∈ A∗h, conditioned on
K ∩ A = ∅, ΦA(K) has the same law as K. Here K is a sample of P. We call P
the conformal restriction measure on H. Notice that if two probability measures
P,P′ on (Ω,Fh) satisfies for any A ∈ A∗h, P[K ∩ A = ∅] = P′[K ∩ A = ∅], then
P = P′.

Theorem 50 (see [9]). The conformal restriction measure on H can be characterized
as follows.

(1) If P is a conformal restriction measure on H , there exists a unique β ∈ R
and β ≥ 5

8
such that for any A ∈ A∗h ,

P[K ∩ A = ∅] = Φ′A(0)β,

where ΦA(z) is the conformal map from H r A onto H that fixes 0 and ∞.
So the conformal restriction can be characterized by one parameter β, which
is denoted by P(β).

(2) P(β) exists if and only if β ≥ 5
8
.

Notice that by Proposition 30, chordal SLE(8
3
) has the law P(5

8
).
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3.2. RADIAL CONFORMAL RESTRICTION MEASURE

3.2 Radial conformal restriction measure
Similarly, we have the radial conformal restriction. Still we denote by D := {z ∈

C : |z| < 1} the unit disk and Ω the collection of subsets of D that satisfies the
following conditions :

(1) K is a connected closed set, K ∩ ∂D = {1} ;
(2) 0 ∈ K and HrK is connected.

Denote by Ad the collection of D-hulls and A∗d := {A ∈ Ad : 1 6∈ A}. Suppose Fd is
the σ-algebra on Ω that is generated by the class below :{

{K : K ∩ A = ∅} : A ∈ A∗d
}
.

If a probability measure P on (Ω,Fd) satisfies for any A ∈ A∗d, conditioned on
K ∩ A = ∅, ΦA(K) has the same law as K. Here K is a sample of P . We call
P a conformal restriction measure on D ( or a radial conformal restriction
measure). Notice that if two probability measures P,P′ on (Ω,Fd) satisfy that for
any A ∈ A∗d, P[K ∩ A = ∅] = P′[K ∩ A = ∅], then P = P′.

Theorem 51 (see[23]). The radial conformal restriction measure can be character-
ized as follows.

(1) If P is a radial conformal restriction measure on D, there are two parameters
(α, β) such that for A ∈ A∗d,

P[K ∩ A = ∅] = |Φ′A(0)|α|Φ′A(1)|β,

where ΦA is the conformal map from D r A onto D that fixes 0 and 1. Then
a radial conformal restriction measure can be characterized by two parametres
(α, β), which is denoted by P(α, β).

(2) P(α, β) exists if and only if β ≥ 5
8
and α ≤ 1

48
((
√

24β + 1− 1)2 − 4).

By Proposition 40, we know that radial SLE(8
3
) has the law P( 5

48
, 5

8
).

3.3 Dipolar Loewner Process
In this section, the dipolar Loewner process will be given(the reader can also

refer[24]). Just like the chordal Loewner process, this is a differential equation that
describes the evolution of the conformal map corresponding a curve in S.

The upper half plane is denoted by H , the strip with width π is just defined
as (3.0.1) and the upper boundary of S is denoted by Rπ. We will frequently use
the conformal map ϕ0(z) := ez − 1 from S to H that sends −∞, 0,+∞ to −1, 0,∞
respectively.

Definition 52. A compact connected subset A ⊂ S is called a S-hull (dipolar
compact hull) if A = A ∩ S, A ∩ Rπ = ∅ and S r A is simply connected. Denote
by As the collection of all S-hulls.
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3.3. DIPOLAR LOEWNER PROCESS

Lemma 53. For any A ∈ As, there exists a unique conformal map gA from S r A
onto S such that gA(±∞) =∞ and

lim
z→+∞

[gA(z)− z] = − lim
z→−∞

[gA(z)− z] <∞.

Proof. (1)Existence. Define f(z) = ez, then f(A) is a H-hull with 0 6∈ f(A). Then
by section 2.1, there exists a unique conformal map φf(A) from H r f(A) onto H
such that

φf(A)(0) = 0, lim
z→∞

φf(A)(z)

z
= 1, , φ′f(A)(0) < 1.

Let h(z) := log
[
φf(A)(e

z)
]
, then

h : S r A→ S, h(−∞) = −∞, h(+∞) = +∞,

h(R) = R, h(R + iπ) = R + iπ,

lim
z→+∞

[h(z)− z] = lim
z→+∞

log
φf(A)(e

z)

z
= 0,

and
lim

z→−∞
[h(z)− z] = lim

z→−∞
log

φf(A)(e
z)

z
= log φ′f(A)(0) < 0.

Therefore gA(z) := h(z)− 1
2

log φ′f(A)(0) satisfies

lim
z→+∞

[gA(z)− z] = −1

2
log φ′f(A)(0),

lim
z→−∞

[gA(z)− z] =
1

2
log φ′f(A)(0).

And gA(z) fixes R and R + iπ.
(2)Uniqueness. If g1 and g2 both satisfy the conditions, let h(z) = g1 ◦ g−1

2 (z) :
S → S and

h(R) = R, h(R + iπ) = R + iπ (∗)
lim

z→+∞
[h(z)− z] = − lim

z→−∞
[h(z)− z] (∗∗)

By (∗) we get that h(z) = z + c, where c a real number. By (∗∗), we get c = 0.

We call S(A) := lim
z→+∞

[gA(z)− z] the capacity of A and gA the normalised

conformal map with respect to A. Notice that S(A) ≥ 0 and the equality holds if
and only if A ⊂ R. Another useful conformal map about S-hulls is : ∀A ∈ As, there
exists a unique conformal map ΦA : S r A→ S such that

ΦA(0) = 0,ΦA(+∞) = +∞,ΦA(−∞) = −∞

Indeed we just let ΦA(z) := gA(z)− gA(0).
Just like the chordal case, start from a non-selfcrossing curve γ[0,∞) ⊂ S such

that the S-hulls created by γ is strictly increasing. In the purpose of simplifying the
procedure, we assume that γ is a simple curve and γ(0,∞) ⊂ S. Then for any t ≥ 0,
Kt := γ[0, t] is a S-hull. Let St := S rKt. Denote by S(t) the capacity of γ[0, t] and
gt(z) the corresponding normalised conformal map. Then we have
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3.3. DIPOLAR LOEWNER PROCESS

Lemma 54. With above notations,
(a) S(t) is a strictly increasing continuous function ;
(b) The limit Wt := lim

z∈St;z→γ(t)
gt(z) exists and is a continuous function ;

(c) If the curve is parameterized such that S(t) = t, then the conformal maps
gt(z) satisfies the following differential equation :

∂tgt(z) = coth
gt(z)−Wt

2
, g0(z) = z, (3.3.1)

where coth(z) = (ez + e−z)/(ez − e−z).
We call (3.3.1) the dipolar Loewner equation.

Proof. Recall the proof of Lemma 53, let f(z) := ez and γ̃(t) = f(γ(t)). Then γ̃[0, t]
is a H-hull and let g̃t be the normalised conformal map of γ̃[0, t]. Then by Lemma 3
we have

gt(z) = log
[
g̃t(e

z)− g̃t(0)
]
− 1

2
log g′t(0), S(t) = −1

2
log g̃′t(0),

and the limit W̃t := lim
z∈Hrγ̃[0,t],z→γ̃(t)

g̃t(z) exists and is continuous. Also by Lemma

3, g̃′t(0) is continuous with respect to t. Therefore S(t) is continuous. Since Kt is
strictly increasing, S(t) is strictly increasing. And the limit

Wt = lim
z∈St;z→γ(t)

gt(z) = lim
z∈St;z→γ(t)

log
[
g̃t(e

z)− g̃t(0)
]
− 1

2
log g′t(0)

= lim
z∈Hrγ̃[0,t],z→γ̃(t)

log
[
g̃t(z)− g̃t(0)

]
− 1

2
log g′t(0)

= log
[
W̃t − g̃t(0)

]
− 1

2
log g′t(0).

exists and is continuous with respect to t. We are left to prove (c). Notice that for
fixed t ≥ 0, Im (g−1

t (z)− z) is a bounded harmonic function and therefore we have

Im (g−1
t (z)− z) = − 1

π

∫
It

Im
ex

ez − ex
Im (g−1

t (x))dx,

where It is the interval of the image of γ[0, t] under gt. Since a holomorphic function
is determined by its imaginary part up to a constant. We have

g−1
t (z)− z = − 1

π

∫
It

ex

ez − ex
Im (g−1

t (x))dx+ C.

Since

g−1
t (z)− z →

{
−t as z → +∞
t as z → −∞,
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3.3. DIPOLAR LOEWNER PROCESS

we have
C = −t, 2t =

1

π

∫
It

Im (g−1
t (x))dx.

Then
g−1
t (z)− z = − 1

2π

∫
It

ez + ex

ez − ex
Im (g−1

t (x))dx. (3.3.2)

For fixed h > 0, apply above equation to gt,t+h(z) = gt+h ◦ g−1
t (z), we have

gt ◦ g−1
t+h(z)− z = − 1

2π

∫
It,h

ez + ex

ez − ex
Im [gt ◦ g−1

t+h(x)]dx. (3.3.3)

Here It,h is the interval of the image of γ[t, t+ h] which contains Wt+h. Notice that

h =
1

2π

∫
It,h

Im [gt ◦ g−1
t+h(x)]dx.

Replace z by gt+h(z) in (3.3.3),

gt(z)− gt+h(z) = − 1

2π

∫
It,h

coth
gt+h(z)− x

2
Im [gt ◦ g−1

t+h(x)]dx.

By using the integral middle theorem to both the real parts and imaginary parts of
above equation and then divided by h and passing h to 0, we have

∂+
t gt(z) = coth

gt(z)−Wt

2
.

Similarly, we can also get the differential equation for the left derivative by letting
h < 0.

Conversely, starting from a real-valued continuous functionW (t) on R+, consider
the dipolar Loewner equation (3.3.1). For a given z ∈ S, define

τ(z) := sup{t > 0, min
0≤s≤t

|gs(z)−W (s)| > 0},

and
Kt := {z ∈ S : τ(z) ≤ t}, St := S rKt.

Then we have

Lemma 55. Suppose W (t) : [0,∞)→ R is a continuous function. And gt(z) is the
solution of the ODE (3.3.1). Define Kt and St as above, then

(1) For any t ≥ 0, gt(z) : St → S is a conformal map ;
(2) For any t ≥ 0, Kt is a S-hull ;
(3) At z = ±∞, gt(z) has the Laurent expansion gt(z) = z ± t+O( 1

|z|).
We call (gt : t ≥ 0) and (Kt : t ≥ 0) the dipolar Loewner process(Loewner
chain) driven by W .
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

Proof. Notic that the blow up time of (3.3.1) is the first time that gt(z) −W (t) =
0, 2πi and

coth
z

2
=
ez/2 + e−z/2

ez/2 − e−z/2
.

So ez/2 = e−z/2 ⇔ ez = 1 ⇔ z = 2kπi. If z ∈ R + iπ, we have Im (gt(z)) = π, so
the maximal interval that the ODE (3.3.1) lives is [0, τ(z)). Since the vector field
coth(z/2) is holomorphic, we can get gt(z) is holomorphic.

Fix T > 0 and w ∈ S, consider the following initial value problem :

∂tft(w) = − coth
ft(w)−W (T − t)

2
, f0(w) = w

Since
−Im coth

x+ iy

2
=

2 sin y

|ez/2 − e−z/2|2
> 0,

this ODE will not blow up in [0, T ].
Let ht(w) = fT−t(w), then ht(w) satisfies

∂tht(w) = coth
ht(w)−Wt

2
, hT (w) = w

Therefore gt(h0(w) = ht(w), 0 ≤ t ≤ T ). In particular gT (h0(w)) = w, this shows
that gT (z) is surjective. By the unique dependence on the initial value of ODE,
we can see that gT is injective. So gT (z) is a conformal map from ST onto S. By
expanding at ±∞, we can see that for fixed T , if |z| is large enough, gT (z) will not
blow up. Therefore KT is compact and a S-hull. Also by expanding at ±∞, we have
the Laurent expansion.

Remark 56. Usually, given a continuous function, the corresponding dipolar Loewner
process(chain) is not generated by a non-selfcrossing curve.

3.4 Dipolar Schramm Loewner Evolution
In this section, we will introduce the dipolar Schramm Loewner Evolution and

give its properties.

Definition 57. Let κ > 0 and (Bt : t ≥ 0) be a standard one dimensional Brownian
motion, we call the dipolar Loewner process (chain) driven by Wt :=

√
κBt the

diolar SLE(κ) process from 0 to Rπ.

Remark 58. Choose a conformal map f from S onto H that sends +∞ and −∞
to x1 and x2 respectively and keeps 0. Then the image of dipolar SLE(κ) under
this conformal map is a SLE(κ; ρ, ρ) process with force points x1 and x2, where
ρ = 1

2
κ − 3(see [22]). But it is more convenient to deal with dipolar SLE(κ) since

there are no force points.
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

Remark 59. For any triple (D, z, I), where D is a proper simple connected domain
of C with z ∈ ∂D and I ⊂ ∂D is an arc not containing z, there exists a unique
conformal map φ from S onto D with φ(0) = z and φ(Rπ) = I. We can define the
dipolar SLE(κ) in D from z to I as the image of the dipolar SLE(κ) in S from 0 to
Rπ under the map φ.

Dipolar SLE(κ) also has the Markov property.

Proposition 60 ((Markov property)). Suppose {gt(z) : t ≥ 0} and {Kt : t ≥ 0}
are the dipolar SLE(κ) process from 0 to Rπ in S. Suppose that τ is a stopping
time about the filtration generated by Wt. Then g̃t(z) := gt+τ ◦ g−1

τ (z +Wτ )−Wτ is
independent with {gt : 0 ≤ t ≤ τ}, and has the same distribution as gt(z).

In fact dipolar SLE(κ) is equivalent to chordal SLE(κ) in some sense.

Theorem 61 (see [24]). Let (Kt)t≥0 be the dipolar SLE(κ) process from 0 to Rπ in
S and (K̃t)t≥0 be the chordal SLE(κ) from 0 to +∞ in S. Define

τ := inf{t > 0 : Kt ∩ Rπ 6= ∅}, τ̃ := inf{t > 0 : K̃t ∩ Rπ 6= ∅}.

Then if κ = 6, {Kt : 0 ≤ t < τ} has the same distribution as {K̃t : 0 ≤ t < τ̃} ;
if κ 6= 6, there exists two sequences of stopping times (Tn, n ≥ 1) ↑ τ and (T̃n, n ≥
1) ↑ τ̃ such that {Kt : 0 ≤ t < Tn} and {K̃t : 0 ≤ t < T̃n} are mutually absolutely
continuous.

Proof. Denote by φ(z) = ez − 1 : Sπ → H, then φ(0) = 0, φ(+∞) = ∞ and
φ(−∞) = −1. Suppose gt(z) is the chordal SLE(κ) maps from 0 to ∞ in H. For
t < τ̃ , ht(z) := gt(e

z − 1) : Sπ r K̃t → H satisfies ht(+∞) =∞. Define

φt(z) := log[gt(e
z − 1)− gt(−1)].

So φt(z) : Sπ r K̃t → Sπ satisfies φt(+∞) = +∞, φt(−∞) = −∞ and

lim
z→+∞

[φt(z)− z] = 0, lim
→−∞

[φt(z)− z] = log g′t(−1).

Define
Φt(z) := φt(z)− 1

2
log g′t(−1).

Then Φt(z) : Sπ r K̃t → Sπ satisfies φt(+∞) = +∞, φt(−∞) = −∞ and

lim
z→+∞

[Φt(z)− z] = −1

2
log g′t(−1) > 0, lim

→−∞
[φt(z)− z] =

1

2
log g′t(−1).

Since ∂tgt(z) = −2
gt(z)−

√
κBt

, we have

∂tg
′
t(−1) =

−2g′t(−1)

(gt(−1)−
√
κBt)2

.
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

Therefore

∂t log g′t(−1) =
−2

(gt(−1)−
√
κBt)2

.

log g′t(−1) =

∫ t

0

−2

(gs(−1)−
√
κBs)2

ds.

−1

2
log g′t(−1) =

∫ t

0

1

(gs(−1)−
√
κBs)2

ds.

Since as S-hulls, S(K̃t) =
∫ t

0
1

(gs(−1)−
√
κBs)2ds. Let u(t) := S(K̃t), use u as the pa-

rameter. Define β(t) := log[
√
κBt − gt(−1)]− 1

2
log g′t(−1), then

∂tΦt(z) = ∂tφt(z)− 1

2
∂t log g′t(−1)

=
1

gt(ez − 1)− gt(−1)
[

2

gt(ez − 1)−
√
κBt

− 2

gt(−1)−
√
κBt

]

+
1

(gt(−1)−
√
κBt)2

=
gt(e

z − 1) +
√
κBt − 2gt(−1)

(gt(ez − 1)−
√
κBt)(gt(−1)−

√
κBt)2

.

So

∂uΦt(z) =∂tΦt(z)∂ut = ∂tΦt(z)(gt(z)−
√
κBt)

2

=
gt(e

z − 1) +
√
κBt − 2gt(−1)

(gt(ez − 1)−
√
κBt)

.

Since

gt(e
z − 1)− gt(−1) = eφt(z) = eΦt(z)+

1
2

log g′t(−1) = eΦt(z)
√
g′t(−1).

√
κBt − gt(−1) = eβ(t)

√
g′t(−1).

We can get

∂uΦt(z) =
eΦt(z) + eβ(t)

eΦt(z) − eβ(t)
= coth

Φt(u) − β(t(u))

2
.

Let Wt :=
√
κBt, then
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

dβ(t) =
1

Wt − gt(−1)
(dWt − dgt(z))

+
1

(Wt − gt(−1)2
d 〈Wt − gt(−1),Wt − gt(−1)〉 − 1

2
∂t log g′t(−1)dt

=
1

Wt − gt(−1)

√
κdBt +

2

(Wt − gt(−1)2
dt

− κ

2

1

(Wt − gt(−1)2
dt− 1

2

−2

(Wt − gt(−1)2
dt

=
1

Wt − gt(−1)

√
κdBt + (3− κ

2
)

1

(Wt − gt(−1)2
dt.

Therefore dβ(t(u)) =
√
κdB̃u + (3− κ

2
)du, where B̃u is a standard one dimensional

Brownian motion. So if κ = 6, {Kt : 0 ≤ t < τ} and {K̃t : 0 ≤ t < τ̃} have the same
distribution up to a time-change. If κ 6= 6, by Girsanov’s theorem(see [18]) we can
get the result.

Remark 62. By the absolutely continuous property in above lemma, we know that
dipolar SLE(κ) is also generated by a continuous curve(we call the SLE(κ) trace)
almost surely and has the same phase transition depending on κ.

In fact for dipolar SLE(κ) process, we have the following property.

Proposition 63 (see [24]). Let γ be the diolar SLE(κ) trace from 0 to Rπ in S.
Then

(1) If 0 ≤ κ ≤ 4, γis a simple curve and γ[0,∞) ⊂ Sπ ∪ {0} a.s ;
(2) If 4 < κ < 8, almost surely γ is a non-selfcroosing curve and for any given
z ∈ S̄π r {0} but z 6∈ γ[0,∞) ;

(3) If κ ≥ 8, almost surely γ[0,∞) has Hausdorff dimension 2, i.e. γ fills the
area it encloses ;

(4) Almost surely the limit m := lim
t→∞

γ(t) exists ;
(5) Almost surely, m ∈ Rπ. If denote by m = X+iπ, then the random variable X
has the density function ρ(x) = (cosh(x

2
))−

4
κ/cκ, where cκ =

∫ +∞
−∞ (cosh(x

2
))−

4
κdx.

Remark 64. By above proposition if (Kt)t≥0 is the H-hulls corresponding to dipolar
SLE(κ), denote by

K∞ = ∪
t≥0

Kt,

Then K∞ is bounded. In fact the author in [24] used the boundness of K∞ to prove
above proposition.
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

Just like the chordal SLE, dipolar SLE(6) satisfies local property and dipolar
SLE(8

3
) satisfies restriction property. In [8], the author gave a proof using the con-

formal field theory to find a martingale to prove the restriction property. Here we
use the method in [9] to construct the martingale directly.

It is necessary to give the detailed proof of local property and restriction property
here since we can not find any reference about this although it is direct. The main
point is to determine how the capacity of a hull changes under a conformal map.

Let A ∈ As be a S-hull such that 0 6∈ A, and ΦA is the unique conformal map
S r A → S that fixes 0,+∞ and −∞. Suppose that (Kt : t ≥ 0) is the dipolar
Loewner chain driven by a continuous function (Wt : t ≥ 0). Write τA := inf{t ≥ 0 :
Kt ∩A 6= ∅}. Then for any t < τA, ΦA(Kt) is a S-hull. Denote by g̃t the normalised
conformal map corresponding to ΦA(Kt) and S(t) the capacity of ΦA(Kt), then g̃t
satisfies the rescaled dipolar Loewner equation :

∂tg̃t(z) = ∂tS(t) coth
g̃t(z)− W̃t

2
g̃0(z) = z.

where W̃t = ht(Wt) is a continuous function. Denote by ht(z) := g̃t ◦ ΦA ◦ g−1
t (z),

and At := gt(A), by Schwarz reflection theorem ht(z) can be analytically extended
to a neighbourhood of Wt. We have the following :

Lemma 65. Take the notations above, for 0 ≤ t < TA,

S(At) = S(t) + S(A)− t,

∂tS(t) = h′t(Wt)
2,

∂tht(Wt) = −3h′′t (Wt),

∂th
′
t(Wt) =

1

2

(h′′t (Wt))
2

h′t(Wt)
− 4

3
h′′′t (Wt) +

(h′t(Wt))
3 − h′t(Wt)

6
.

Proof. By the definition of ht,

lim
z→±∞

(ht(z)− z) = lim
z→±∞

(ht(z)− ΦA ◦ g−1
t (z))

+ lim
z→±∞

(ΦA ◦ g−1
t (z)− g−1

t (z)) + lim
z→±∞

(g−1
t (z)− z)

= ±S(t)± S(A)− gA(0)∓ t.

So ht(z) + gA(0) is the normalised conformal map corresponding to At and therefore
S(At) = S(t) + S(A)− t.

For the second equation take the derivative of ht(z) with respect to t, we get

∂tht(z) = [∂tS(t)] coth
ht(z)− ht(Wt)

2
− h′t(z) coth

z −Wt

2
. (3.4.1)
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

By multiplying z−Wt

2
on both side of above equation and let z → Wt, we can get

0 = ∂tS(t)
1

h′t(Wt)
− h′t(Wt).

So ∂tS(t) = h′t(Wt)
2.

The third equation is obtained by passing z → Wt in the equation (3.4.1).
Take the derivative of z on both sides of (3.4.1) we have

∂th
′
t(z) = −1

2

h′t(z)(h′t(Wt))
2

sinh (ht(z)−ht(Wt))2

2

− h′′t (z) coth
z −Wt

2
+

1

2
h′t(z)

1

(sinh z−Wt

2
)2
.

Then the fourth equation is obtained by passing z → Wt on the both side of above
equation.

By above lemma, we can get the local property of dipolar SLE(6) and restriction
property of dipolar SLE(8

3
).

Proposition 66. Suppose that γ is the dipolar SLE(κ) trace from 0 to Rπ in S.
(a) If κ = 6, for any S-hull A with 0 6∈ A, define

τA := inf{t ≥ 0 : γ(t) ∈ A},

then γ[0, τA) has the same distribution as the dipolar SLE(6) in S rA from 0
to Rπ upon hitting K. This is called the local property of dipolar SLE(6).

(b) If κ = 8
3
, for any S-hull A with 0 6∈ A. Define ΦA(z) = gA(z)− gA(0), where

gA(z) is the normalised conformal map corresponding to A. Then

P
[
K ∩ A = ∅

]
= |Φ′A(0)|

5
8 exp{− 5

48
S(A)}.

where At = gt(A) and S(A) and S(At) are the capacities of these two hulls.
Notice that for two S-hulls K1, K2 that don’t contain 0,

ΦK1∪Φ−1
K1

(K2) = ΦK2 ◦ ΦK1 , S(K1 ∪ Φ−1
K1

(K2) = S(K1) + S(K2),

Φ′
K1∪Φ−1

K1
(K2)

(0) = Φ′K2
(0)Φ′K1

(0).

Then conditioned on γ ∩ A = ∅, γ has the same distribution as the dipolar
SLE(8

3
) from 0 to Rπ in S r K. This is called the restriction property of

dipolar SLE(8
3
).

Proof. Suppose that Wt =
√
κBt is the driven process of dipolar SLE(κ). Using the

same notation as Lemma 65. For t < τA, we see that the driven process of the curve
ΦA(γ) is W̃t = ht(Wt). By Itô’s formula and combing Lemma 65, we have

dW̃t = ∂tht(Wt)dt+ h′t(Wt)dWt +
κ

2
h′′t (Wt)dt

= (
κ

2
− 3)h′′t (Wt)dt+ h′t(Wt)

√
κdBt.
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3.4. DIPOLAR SCHRAMM LOEWNER EVOLUTION

So if κ = 6, by a time change, W̃t is scaled a Brownian motion and this proves the
locality of dipolar SLE(6).

For κ = 8
3
, define

Yt = 1{t<τA}h
′
t(Wt)

5
8 exp{− 5

48
S(At)}.

Denote by Nt = log Yt = 5
8

log h′t(Wt)− 5
48
S(At). By lemma 65, we have

dh′t(Wt) = ∂th
′
t(Wt)dt+ h′′t (Wt)dWt +

1

2
h′′′t (Wt)d 〈W,W 〉t

= [
1

2

(h′′t (Wt))
2

h′t(Wt)
+

(h′t(Wt))
3 − h′t(Wt)

6
]dt+ h′′t (Wt)

√
8

3
dBt,

and
dS(At) = (h′t(Wt)

2 − 1)dt.

So

dNt =
5

8
d log h′t(Wt)−

5

48
dS(At)

=
5

8
[−5

6

(h′′t (Wt))
2

(h′t(Wt))2
+

(h′t(Wt))
2 − 1

6
]dt

− 5

48
(h′t(Wt)

2 − 1)dt+
5

8

h′′t (Wt)

h′t(Wt)

√
8

3
dBt

=− 25

48

(h′′t (Wt))
2

(h′t(Wt))2
+

5

8

h′′t (Wt)

h′t(Wt)

√
8

3
dBt

And then

dYt = Yt(dNt +
1

2
d < N,N >t) =

√
25

24
Yt
h′′t (Wt)

h′t(Wt)
dBt.

Therefore Yt is a local martingale. Since S(At) ≥ 0 and h′t(Wt) ≤ 1, we get that Yt
is a martingale. Just using the same method as [9](In fact if we regard h′t(Wt) as the
probability that a Brownian motion starting from Wt in S avoids At before exiting
S, then for τA <∞, h′t(Wt)→ 0 ; for τA =∞, h′t(Wt)→ 1 and S(At)→ 0.), we can
get limt→τA Yt = 1{τA=∞}. So by the optional stopping theorem

P[K ∩ A = ∅] = E[MτA ] = E[M0] = |Φ′A(0)|
5
8 exp{− 5

48
S(A)}.

Remark 67. By above lemma, we have constructed the conformal restriction measure
P( 5

48
, 5

8
) in Theorem 49.
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3.5. BROWNIAN BRIDGE ON THE STRIP

3.5 Brownian Bridge on the strip
In this section the brownian bridge on the strip S will be given, this is a proba-

bility mesure defined on the space of the curves from 0 to Rπ. The exact definition
is as follows :

Suppose that µε is the law of a planar Brownian motion (Bt) starting from iε
and conditioned to first exit S from Rπ. By the optional stopping time theorem, the
probability that a one dimension Brownian motion started from ε hits π before 0 is
ε/π, so the law π

ε
µε converges to a probability measure µexc0,Rπ in the Prohorov sense,

we call this measure the Brownian bridge measure or Brownian excursion measure
from 0 to Rπ on the strip. In fact this measure is just the normalisation of the
Brownian excursion measure defined in chapter 5 of the book [10]. The measure is
supported on the curves from 0 to Rπ in the strip S. We can show that µexc0,Rπ satisfies
the conformal restriction property.

Proposition 68. Suppose that K has the law µexc0,Rπ , then for any A ∈ As with 0 6∈ A,

P[K ∩ A = ∅] = Φ′A(0). (3.5.1)

Moreover, by definition K almost surely intersects Rπ at some point X + iπ, the law
of X has the density function ρ(x) = ex

(1+ex)2 .

Proof. Let P (ε) be the probability that a Brownian motion started from iε hits Rπ

before R ∪ A. By the conformal invariance of planar Brownian motion,

P (ε) = P(Bt started from ΦA(iε) hits Rπ before R) =
Im ΦA(iε)

π

Then we have

P[K ∩ A = ∅] = lim
ε→0

π

ε
P (ε) = lim

ε→0

π

ε

Im ΦA(iε)

π
= Φ′A(0).

Notice the Poisson kernel of S is H(z, x+ iπ) = − 1
π
Im ex

ex+ez
, we have

P[Bt from iε hits Rπ at (−∞, x+ iπ]|Bt from iε hits Rπ before R]

=
π

ε

∫ x

−∞

−1

π
Im

et

eiε + et
dt =

1

ε

∫ x

−∞

et sin ε

e2t + 2et cos ε+ 1
dt.

So the hitting point of the Bridge have the distribution function

P[X ≤ x] = lim
ε→0

1

ε

∫ x

−∞

et sin ε

e2t + 2et cos ε+ 1
dt =

∫ x

−∞

et

e2t + 2et + 1
dt.
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3.6. CHARACTERIZATION OF THE CONFORMAL RESTRICTION MEASURE

3.6 Characterization of the conformal restriction mea-
sure

In this section we will show that a dipolar conformal restriction can be charac-
terized by two parameters.

Let Ω be the collection of compact connected subsets K of S such that K ∩R =
{0} and S rK has two connected components that each of them contains +∞ and
−∞ on the boundary respectively. Endow Ω with the σ-field generated by the family
of sets of the type {K ∈ Ω : K ∩ A = ∅} where A ∈ A∗s. Just like the chordal and
radial case this σ-algebra is the same as the σ-algebra induced by the Hausdorff
metric on Ω. Notice that

{
{K ∈ Ω : K ∩A = ∅} : A ∈ A∗s

}
forms an algebra. As the

chordal case[9] and radial case [23], by the unique extension theorem of probability
measures on algebras, we have :

Lemma 69. If P and P′ are two probability measures on Ω such that P[K ∩ A =
∅] = P′[K ∩ A = ∅] for all A ∈ A∗s, then P = P′.

Just like the chordal case [9], by endowing A∗s with the Hausdorff metric, the
function A→ P[K ∩A = ∅] is continuous and this fact will be used in this section.

To prove the existence of the two values α and β, it is necessary to introduce the
perfect hull (this notation was first used in [23]) :

Fix x ∈ Rr{0}, suppose (Kt(x))t≥0 is the hulls generated by the driven function
Wt = x−coth x

2
t and gt is the corresponding conformal maps. These hulls (Kt(x))t≥0

are called the perfect hulls from x. We can check that gt(0) = − coth x
2
t.

Lemma 70. With the notations above.
(1) Define ht(z) = gt(z)− gt(0) = gt(z) + coth x

2
t, then ht+s = ht ◦ hs.

(2) Let K be a dipolar restriction sample, then there exists a constant ν(x) such
that

P
[
K ∩Kt = ∅

]
= exp{−ν(x)t} ∀t ≥ 0.

Proof. For fixed s ≥ 0, by the uniqueness of the solution of the following ODE :

∂tft(z) = coth
ft(z)− x

2
+ coth

x

2
, f0(z) = hs(z),

we can see that both ht+s and ht ◦ hs satisfies this ODE, and so we have (1). From
(1), we have ht(Ks+t(x) rKt(x)) = (Ks(x)) for any t, s ≥ 0. Then for any t, s ≥ 0,
by the conformal restriction property, we have that

P[K ∩Kt+s(x) = ∅|K ∩Kt(x) = ∅]

= P[K ∩ ht(Ks+t(x) rKt(x)) = ∅] = P[K ∩Ks(x) = ∅].

Thus for any t, s ≥ 0, we have

P[K ∩Kt+s(x) = ∅|K ∩Kt(x) = ∅] = P[K ∩Kt(x) = ∅]×P[K ∩Ks(x) = ∅].
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3.6. CHARACTERIZATION OF THE CONFORMAL RESTRICTION MEASURE

Combining the fact that t → Kt(x) is continuous, there exists a constant ν(x) ≥ 0
such that

P[K ∩Kt(x) = ∅] = exp{−tν(x)}.

In the chordal case, the analogous quantity ν(x) should be a constant because of
the scaling-invariance, but here, just like the radial case, we have a different situation
(with one more freedom because of the lack of a restriction condition). In fact, we
will show that ν(x) is a smooth function.

Now we are ready to prove the first part of Theorem 49 that we state as following :

Proposition 71. For any dipolar restriction sample K, there exists two constants
α, β ∈ R such that for any A ∈ A∗s,

P[K ∩ A = ∅] = Φ′A(0)β exp{−αS(A)} (3.6.1)

where S(A) is the capacity of A.

By lemma 69, for any α, β ∈ R, there exists at most one law that satisfies
(3.6.1). The strategy of the proof of above proposition is the same as the strategy
used in [23] : first show that (3.6.1) holds for any perfect hulls Kt(x) and then show
that the hulls generated by the family of perfect hulls are dense in A∗s in the sense
of the Hausdorff metric(here the hull generated by two hulls A1, A2 is defined as
A1 ∪ g−1

A1
(A2)). And then use the continuity of the map A→ P[K ∩ A = ∅].

We will begin by showing that the function x → ν(x) is a smooth function on
R r {0}. And then use the commutation relations derived in Lemma 9 of [23] . It
seems that it is easier to work on the upper half plane because we can write down
the exact form of the conformal maps from subdomains of H onto itself.

Let ϕ0(z) = ez − 1 be the conformal map from S to H that sends +∞, 0,−∞ to
−1, 0,∞ respectively. Suppose thatK is a sample of the dipolar conformal restriction
measure on the strip, then K̃ := ϕ0(K) is a sample of what we call the dipolar
restriction measure on the upper half plane. For x ∈ C, let B(x, r) denote the ball
centered at x with radius r.

For ε > 0 small enough and x ∈ (−1, 0) ∪ (0,∞), the map

gx,ε(z) := z +
ε2

z − x
is a conformal map from HrB(x, ε) onto H that fix ∞. Define

fx,ε(z) =
1

1− ε2

x(1+x)

(gx,ε(z) +
ε2

x
) =

1

1− ε2

x(1+x)

(z +
ε2

z − x
+
ε2

x
).

This is the unique conformal map from H r B(x, ε) onto H that fixes −1, 0,∞.
Denote

pε(x) = P
[
K̃ ∩B(x, ε) 6= ∅

]
.

Just as Lemma 5 in [23], we have
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3.6. CHARACTERIZATION OF THE CONFORMAL RESTRICTION MEASURE

Lemma 72. Let K̃ be a dipolar restriction sample in H. For any x ∈ (−1, 0)∪(0,∞),
the following limits exists

λ(x) := lim
ε→0

1

ε2
pε(x).

And further λ(x) ∈ (0,∞).

Proof. For fixed x ∈ (−1, 0) ∪ (0,∞), let (K̃t(x) : t ≥ 0) be the perfect hulls
from x, here we mean K̃t(x) = ϕ0(Kt(ϕ

−1
0 (x))), where Kt(ϕ

−1
0 (x)) is the perfect

hulls in S from ϕ−1
0 (x) = log(x + 1) as defined at the beginning Lemma 70. For

small enough ε > 0, define N(ε) = [ε−2] which is the integer part of ε−2. And
φ1 = φ2 = ... = φN = fx,ε. Let Φε = φN(ε) ◦ φN(ε)−1 ◦ ... ◦ φ1 be the conformal map
from H := φ−1

1 ◦ ... ◦ φ−1
N(ε)(H) onto H that fixes −1, 0,∞. Define Aε(x) = HrH.

Then the same as, we have Aε(x) → K̃tx(x) in the Hausdorff sense as ε → 0.
Moreover we have that Ktx(x) ⊂ Aε(x). Here by compute the capacity we can see
that tx = 1

2(1+x)2 . In fact

S(ϕ−1(B(x, ε) ∩H)) =
1

2
log f ′x,ε(∞)− 1

2
log f ′x,ε(−1) = −1

2
log[1− ε2

(1 + x2)
],

and so

tx = lim
ε→0

S(Aε(x)) = lim
ε→0
−N(ε)

2
log[1− ε2

(1 + x2)
] =

1

2(1 + x)2
.

Now by the conformal restriction property we have

P[K ∩ Aε(x) = ∅] = (1− pε(x))N(ε).

On the other hand, by Lemma 70, we have

P[K ∩ Aε(x) = ∅]→ P[K̃ ∩ K̃tx(x) = ∅]

= P[K ∩Ktx(ϕ
−1
0 (x)) = ∅] = exp{−ν(log(x+ 1))tx} , as ε→ 0.

Therefore
lim
ε→0

N(ε) log(1− pε(x)) = − 1

2(1 + x)2
ν(log(x+ 1)).

This completes the proof. We further get that

λ(x) =
1

2(1 + x)2
ν(log(x+ 1)). (3.6.2)

In fact the function λ(x) in the above lemma has a very nice form. In order to
determine the exact form of λ(x), we need to find some functional relations satisfied
by λ(x). We will give two functional relations in the following two lemmas : one is
the symmetric relation, and the other is the commutation relation.
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Lemma 73 (symmetric relation). For any x > 0, the function λ satisfies

λ(x) =
1

(1 + x)4
λ(− x

1 + x
). (3.6.3)

Proof. Write E(x, ε) := ϕ−1
0 (B(x, ε)). Denote by I(z) = −z the reflection of the

imaginary axis. Since the law of the conformal restriction measure is invariant under
the reflection of the imaginary axis, we have that

P[K ∩ E(x, ε) 6= ∅] = P[K ∩ I(E(x, ε)) 6= ∅]

Notice that ψ := ϕ0 ◦ I ◦ ϕ−1(z) = − z
1+z

, we have

P[K̃ ∩B(x, ε) 6= ∅] = P[K̃ ∩ ψ(B(x, ε)) 6= ∅].

Therefore

λ(x) = lim
ε→0

1

ε2
P
[
K̃ ∩B(x, ε) 6= ∅

]
= lim

ε→0
P[K̃ ∩ ψ(B(x, ε)) 6= ∅]

= lim
ε→0
|ψ′(x)|2 1

ε2|ψ′(x)|2
P
[
K̃ ∩B(ψ(x), |ψ′(x)|ε) 6= ∅

]
=

1

(1 + x)4
λ(− x

1 + x
).

Fix x, y ∈ (−1, 0) ∪ (0,∞), define

F (x, y) = lim
ε→0

1

ε2
(fx,ε(y)− y), G(x, y) = lim

ε→0

1

ε2
(f ′x,ε(y)− 1).

By direct computation, we have that

F (x, y) =
1

y − x
+

1

x
+

y

x(1 + x)
, G(x, y) =

1

x(1 + x)
− 1

(y − x)2
.

By exactly the same argument as the Lemma 6, Lemma 7, Lemma 8 in [23], we can
get the second functional relation satisfied by λ(x) which is called the commutation
relations. Since the argument is totally the same as, we omit the proof and just give
the statement.

Lemma 74. The function λ is differentiable in x ∈ (−1, 0) ∪ (0,∞) and satisfies
the following commutation relation : for any x, y ∈ (−1, 0) or x, y ∈ (0,∞),

λ′(y)F (x, y) + 2λ(y)G(x, y) = λ′(x)F (y, x) + 2λ(x)G(y, x). (3.6.4)
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Combining Lemma 73 and Lemma 74, we can get the exact form of λ(x) :

Lemma 75. There exists two constants c1 and c2 such that

λ(x) =
c1(1 + x) + c2x

2

x2(1 + x)2
. (3.6.5)

Proof. Fix x, expand the two sides of (3.6.4) and then let y → x, we can get

x2(1 + x)2λ′′′(x) + 6x(1 + x)(2x+ 1)λ′′(x)

+ 6(1 + 6x+ 6x2)λ′(x) + 12(1 + 2x)λ(x) = 0.

The solution of above differential equation have the following form :

λ(x) =
c1 + c3x+ c2x

2

x2(1 + x)2

Since λ(x) satisfies (3.6.3), we can get c1 = c3.

Proof of proposition 71 Recall that for the perfect hulls Kt(x) from x, the
corresponding function ht(z) satisfies

∂tht(z) = coth
ht(z)− x

2
, h0(z) = z.

From ht(0) = 0 and take the derivative of above differential equation at z = 0, we
can get

h′t(0) = exp{−1

4

1

(sinh x
2
)2
t}.

Combining P
[
K ∩ Kt(x) = ∅

]
= exp{−ν(x)t} and S(Kt(x)) = t. By (3.6.2), we

have

ν(x) = 2c2 + 2c1
1

4(sinh x
2
)2
.

So if we set α = 2c2 and β = 2c1, we can see that

P
[
K ∩Kt(x) = ∅

]
= exp{−ν(x)t} = |h′t(0)|β exp{−αS(Kt(x)))}.

Now we have proved that proposition 71 holds for all the hulls generated by perfect
hulls. Then use the same method as Proposition 3.3 in [9] ,the hulls generated by
perfect hulls are dense in A∗s, combing the continuity of A → P[K ∩ A = ∅], we
proved proposition 71 for all the hulls in A∗s.

39



3.7. CONSTRUCTION BY POISSON CLOUD

3.7 Construction by Poisson cloud

In this section we will use Brownian bubble measure and SLE(8
3
) to construct

P(β(1−β)
2β+1

, β). For a conformal map f , define the modified Schwarzian derivative as
follows :

S̃f(z) =
f ′′′(z)

f ′(z)
− 3

2
(
f ′′(z)

f ′(z)
)2 +

1− f ′(z)2

2
. (3.7.1)

Define
β = β(κ) =

6− κ
2κ

, α = α(κ) =
(κ− 2)(6− κ)

8κ
.

λ = λ(κ) =
(6− κ)(8− 3κ)

2κ
.

Lemma 76. Suppose that Wt =
√
κBt is the driven process of the dipolar SLE(κ),

and K is the hull generated by the dipolar SLE(κ). Take the same notations as lemma
65, and α(κ), β(κ), λ(κ) are as above. Then

Yt = 1{t<TA}h
′
t(Wt)

β exp{−αS(At)} exp{λ
∫ t

0

S̃hs(Ws)ds},

is a local martingale. In particular, when κ ≤ 8
3
, Yt is a martingale and

E[1{τA=∞} exp{λ
∫ ∞

0

S̃hs(Ws)ds}] = Φ′A(0)β exp{−αS(A)}

Proof. It is proved by the standard stochastic analysis.

Lemma 77. Suppose that µbub
S (0) is the Brownian bubble measure on the strip at 0

and K is a sample of this law, then

µbub
S (0)[K ∩ A 6= ∅] = −1

6
S̃ΦA(0), ∀A ∈ A∗s. (3.7.2)

Proof. Denote Ã = ϕ0(A), and Ã is a compact hull in H. By the definition of the
Brownian bubble measure, we have

µbub
S (0)[K ∩ A 6= ∅] =

1

|ϕ′0(0)|2
µbub
H (0)[K ∩ Ã 6= ∅] = −1

6
SgÃ(0).

where SgA is the Schwarzian derivative. We can check that the normalised conformal
map corresponding to Ã is

gÃ(z) = e−S(A)[egA(log(z+1)) − 1].

By direct computation, we have SgÃ(0) = S̃g(0).
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

Now we can use the above two lemmas to construct the dipolar conformal restric-
tion measure. Just exactly the same argument as [9], we have the following analysis :
Suppose that κ ≤ 8/3 and take the notations at the beginning of this sction. Con-
sider a Poisson point process X on Ω× [0,∞) with mean (intensity) λµ× dt, where
dt is Lebesgue measure. As before, let γ denote the SLEκ path, gt the corresponding
conformal maps, and Wt the Loewner driving process. We take γ to be independent
from X.

Let
X̂ :=

{
g−1
t (K +Wt) : (K, t) ∈ X, t ∈ [0,∞)

}
,

and let Ξ be the filling of the union of elements of X̂ and γ, i,e, Ξ is the closure of
the domains between X̂ and γ.

Let A ∈ A∗s, and let ht be the normalized conformal map from S r gt(A) onto
S. By Lemma 77, for any t > 0 on the event γ[0, t] ∩ A = ∅,

P
[
{K : g−1

t (K +Wt) ∩ A 6= ∅}
∣∣ gt]

= P
[
{K : (K +Wt) ∩ gt(A) 6= ∅}

∣∣ gt]
= −S̃ht(Wt)/6,

where K is independent from γ and has law µbub
S (0). Consequently, on the event

γ[0,∞) ∩ A = ∅,

P
[
Ξ ∩ A = ∅

∣∣ γ] = exp
(
λ

∫ ∞
0

S̃ht(Wt)

6
dt
)
.

By taking expectation and applying Theorem 76 , we get

P
[
Ξ ∩ A = ∅

]
= Φ′A(0)β exp{−αS(A)} , (3.7.3)

Using the same method as [9], we have

Proposition 78. For any κ ∈ [0, 8/3], the law of Ξ(κ) is P(α(κ), β(κ)).

Notice that β(κ) ≥ 5
8
and α(κ) = α(β) = β(1−β)

2β+1
. So we have constructed

P(β, β(1−β)
2β+1

) for β ≥ 5
8
.

3.8 Construction from One-sided restriction mea-
sure

In proposition 71, we showed that a dipolar conformal restriction is uniquely
characterized by two parameters (α, β) such that for any A ∈ A∗s, P[K ∩ A = ∅] =
Φ′A(0)β exp{−αS(A)}. We denote this measure by P(α, β). By Proposition 66 and
Proposition 3.5.1, we know that P( 5

48
, 5

8
) and P(0, 1) exists. In this section, we will

use dipolar SLE(κ; ρ) process to construct P(α, β) for other values of (α, β).
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

Dipolar SLE(κ; ρ) processes are variants of SLE(κ) processes. For what we will
use in this chapter, we will here only describe the dipolar SLE(κ; ρ) with one force
point. It is defined as the solution of the dipolar Lowner equation (3.3.1) where the
driven function is replaced by the solution to the following SDE systems :

dWt = ρ
2

coth Wt−Vt
2

dt+
√
κdBt

dVt = coth Vt−Wt

2
dt

W0 = 0, V0 = x ∈ Rr {0}, Wt−Vt
W0−U0

> 0.

(3.8.1)

By the same method as the chordal SLE(κ; ρ) processes, it can be proven that when
κ > 0 and ρ > −2, there is a pathwise unique solution to the above SDE system.
And the SLE(κ; ρ) is almost surely generated by a continuous curve from 0 to Rπ.

If we take the limit x → 0+(repectively 0−), the process has a limit which is
called the dipolar SLE(ρ) process with force point 0+(respectively 0−).

Fix ρ > 0. Let gt(z) be the dipolar Loewner chain SLE(8
3
; ρ) with force point

0+ generated by the driven function (Wt : t ≥ 0), where (Wt, Vt) is the unique
solution of the system in (3.8.1). Recall that dipolar SLE(8

3
; ρ) is generated by a

curve γ. For any A ∈ A∗s, let τA be the first time that γ hits A. For ant t < τA,
let g̃t be the normalised conformal map of the dipolar hull ΦA(γ(t)). Denote by
ht(z) = g̃t ◦ ΦA ◦ g−1

t (z) the conformal map from S r gt(A) onto S that fixes ±∞.
Then we have the following lemma.

Lemma 79.
Mt = |h′t(Wt)|

5
8 |h′t(Vt)|λ exp{−αS(At)}Z

3
8
ρ

t

is a local martingale where

Zt = sinh Yt
2
/ sinh Xt

2
,

Yt = ht(Vt)− ht(Wt), Xt = Vt −Wt,

α = 5
48

+ 3
64
ρ(ρ+ 4), λ = 1

32
ρ(3ρ+ 4),

and At = gt(A) and S(At) is the capacity of At.

Proof. Using Itô formula, combined with lemma 65 we have

d log sinh
Yt
2

=
[1
6

(coth
Yt
2

)2(h′t(Wt))
2 +

5

6
coth

Yt
2
h′′t (Wt)

− ρ

4
h′t(Wt) coth

Yt
2

coth
Xt

2
+

1

3
(h′t(Wt))

2
]
dt− 1

2
coth

Yt
2
h′t(Wt)

√
8

3
dBt,

d log sinh
Xt

2
=

3ρ+ 2

12
(coth

Xt

2
)2dt +

1

3
dt − 1

2
coth

Xt

2

√
8

3
dBt,
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

d log h′t(Wt) =
(
− 5

6

(h′′t (Wt))
2

(h′t(Wt))2
+

(h′t(Wt))
2 − 1

6

+
h′′t (Wt)

h′t(Wt)

ρ

2
coth

Wt − Vt
2

)
dt+

√
8

3

h′′t (Wt)

h′t(Wt)
dBt,

d log h′t(Vt) =
dh′t(Vt)

h′t(Vt)
=

1

2
[(coth

Xt

2
)2 − 1]dt − 1

2
[h′t(Wt)]

2[(coth
Yt
2

)2 − 1]dt,

d logS(At) = ([h′t(Wt)]
2 − 1)dt.

Let Nt = logMt, then we have dMt = Mt(dNt + 1
2
d 〈N,N〉t) and we can use the

above results to get that the drift term of dMt is equal to zero and so Mt is a local
martingale.

Remark 80. In order to make the computation process more precise, we give the
detailed procedure of using Itô’s formula to prove that Mt is a local martingale.

dht(Vt) = ∂tht(Vt)dt+ h′t(Vt)dVt

=(h′t(Wt))
2 coth

ht(Vt)− ht(Wt)

2
dt− h′t(Vt) coth

Vt −Wt

2
dt

+ h′t(Vt) coth
Vt −Wt

2
dt = (h′t(Wt))

2 coth
ht(Vt)− ht(Wt)

2
dt.

dht(Wt) = ∂tht(Wt)dt+ h′t(Wt)[
ρ

2
coth

Vt −Wt

2
+

√
8

3
dBt] +

h′′t (Wt)

2

8

3
dt

=− 3h′′t (Wt)dt+ h′t(Wt)[
ρ

2
coth

Vt −Wt

2
+

√
8

3
dBt] +

h′′t (Wt)

2

8

3
dt

=[−5

3
h′′t (Wt) +

ρ

2
h′t(Wt) coth

Vt −Wt

2
]dt+

√
8

3
h′t(Wt)dBt

Denote by Yt = ht(Vt)− ht(Wt) and Xt = Vt −Wt, we have

dYt = [(h′t(Wt))
2 coth

Yt
2

+
5

3
h′′t (Wt)−

ρ

2
h′t(Wt) coth

Xt

2
]dt− h′t(Wt)

√
8

3
dBt.
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

d sinh
Yt
2

=
1

2
cosh

Yt
2
dYt +

1

8
sinh

Yt
2
d < Y, Y >t

=
[1
2

(cosh Yt
2

)2

sinh Yt
2

(h′t(Wt))
2 +

5

6
h′′t (Wt) cosh

Yt
2
− ρ

4
h′t(Wt) cosh

Yt
2

coth
Xt

2

+
1

3
sinh

Yt
2

(h′t(Wt))
2
]
dt− 1

2
cosh

Yt
2
h′t(Wt)

√
8

3
dBt.

d log sinh
Yt
2

=
[1
2

(coth
Yt
2

)2(h′t(Wt))
2 +

5

6
coth

Yt
2
h′′t (Wt)−

ρ

4
h′t(Wt) coth

Yt
2

coth
Xt

2

+
1

3
(h′t(Wt))

2 − 1

2

1

(sinh Yt
2

)2

1

4

8

3
(cosh

Yt
2

)2(h′t(Wt))
2
]
dt− 1

2
coth

Yt
2
h′t(Wt)

√
8

3
dBt

=
[1
6

(coth
Yt
2

)2(h′t(Wt))
2 +

5

6
coth

Yt
2
h′′t (Wt)−

ρ

4
h′t(Wt) coth

Yt
2

coth
Xt

2

+
1

3
(h′t(Wt))

2
]
dt− 1

2
coth

Yt
2
h′t(Wt)

√
8

3
dBt.

Since

dVt = coth
Vt −Wt

2
dt , dWt =

ρ

2
coth

Wt − Vt
2

dt+

√
8

3
dBt,

We have

dXt = dVt − dWt = (1 +
ρ

2
) coth

Xt

2
dt−

√
8

3
dBt.

d sinh
Xt

2
=

1

2
cosh

Xt

2
dXt +

1

8
sinh

Xt

2
d < X,X >t

=
1

2
cosh

Xt

2

(
(1 +

ρ

2
) coth

Xt

2
dt−

√
8

3
dBt

)
+

1

8
sinh

Xt

2

8

3
dt

=
1

2
(1 +

ρ

2
)
(cosh Xt

2
)2

sinh Xt
2

dt+
1

3
sinh

Xt

2
dt− 1

2
cosh

Xt

2

√
8

3
dBt.

d log sinh
Xt

2
=

1

2
(1 +

ρ

2
)(coth

Xt

2
)2dt+

1

3
dt−

1
4
(cosh Xt

2
)2

2(sinh Xt
2

)2

8

3
dt− 1

2
coth

Xt

2

√
8

3
dBt

=
3ρ+ 2

12
(coth

Xt

2
)2dt+

1

3
dt− 1

2
coth

Xt

2

√
8

3
dBt.
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

dh′t(Wt) = ∂th
′
t(Wt)dt+ h′′t (Wt)dWt +

1

2
h′′′t (Wt)d < W,W >t

=
(1

2

(h′′t (Wt))
2

h′t(Wt)
− 4

3
h′′′t (Wt) +

(h′t(Wt))
3 − h′t(Wt)

6

)
dt

+ h′′t (Wt)[
ρ

2
coth

Wt − Vt
2

dt+

√
8

3
dBt] +

1

2
h′′′t (Wt)

8

3
dt

=
(1

2

(h′′t (Wt))
2

h′t(Wt)
+

(h′t(Wt))
3 − h′t(Wt)

6
+ h′′t (Wt)

ρ

2
coth

Wt − Vt
2

)
dt

+

√
8

3
h′′t (Wt)dBt.

d log h′t(Wt) =
1

h′t(Wt)
dh′t(Wt) +

−1

2(h′t(Wt))2
[dh′t(Wt)]

2

=
(1

2

(h′′t (Wt))
2

(h′t(Wt))2
+

(h′t(Wt))
2 − 1

6
+
h′′t (Wt)

h′t(Wt)

ρ

2
coth

Wt − Vt
2

)
dt

+

√
8

3

h′′t (Wt)

h′t(Wt)
dBt −

1

2(h′t(Wt))2

8

3
[h′′t (Wt)]

2dt

=
(
− 5

6

(h′′t (Wt))
2

(h′t(Wt))2
+

(h′t(Wt))
2 − 1

6
+
h′′t (Wt)

h′t(Wt)

ρ

2
coth

Wt − Vt
2

)
dt

+

√
8

3

h′′t (Wt)

h′t(Wt)
dBt

dh′t(Vt) = ∂th
′
t(Vt)dt+ h′′t (Vt)dVt

=
1

2

h′t(Vt)

(sinh Xt
2

)2
dt− 1

2

h′t(Vt)[h
′
t(Wt)]

2

[sinh Yt
2

]2
dt

=
1

2
h′t(Vt)[(coth

Xt

2
)2 − 1]dt− 1

2
h′t(Vt)[h

′
t(Wt)]

2[(coth
Yt
2

)2 − 1]dt

d log h′t(Vt) =
dh′t(Vt)

h′t(Vt)
=

1

2
[(coth

Xt

2
)2 − 1]dt− 1

2
[h′t(Wt)]

2[(coth
Yt
2

)2 − 1]dt

d logS(At) = d[a(t) + S(A)− t] = ([h′t(Wt)]
2 − 1)dt.

45



3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

Using above lemma we can construct a "one-sided" restriction measure, we state
it as a lemma as follows :

Lemma 81. Suppose that γ is the dipolar SLE(8
3
; ρ) curve with force point 0+

(respectively 0−). Then for any A ∈ A∗s such that A ∩ (0,∞) = ∅ (respectively
A ∩ (−∞, 0) = ∅),

P[γ ∩ A = ∅] = Φ′A(0)β exp{−αS(A)},

where α = α(ρ) is the same as Lemma 79 and

β = β(ρ) =
5

8
+ λ+

3

8
ρ =

1

32
(ρ+ 2)(3ρ+ 10).

Proof. Use the same notation as Lemma 79. By the same method as [9], we can see
that 0 < h′t(Wt) ≤ 1 and h′t(Vt), Zt are uniformly bounded, henceMt is a martingale.
In fact we can regard h′t(Wt) as the probability that a Brownian bridge in the strip
S from Wt avoids gt(A).

So if τA <∞, h′t(Wt)→ 0 as t→ τA, and therefore Mt → 0,as t→ τA.
If τA = ∞, as t → ∞, h′t(Wt) → 1. Since Vt ≥ Wt, the brownian Bridge of

course will avoid gt(A) if the Brownian bridge from Wt avoids gt(A) (here we use
the fact that A ∩ (0,∞) = ∅), hence h′t(Vt) → 1 as t → ∞. On the other hand, if
γ ∩ A = ∅, ht(z) tends to the identity map as t → ∞, hence S(At) → 0 as t → ∞.
By comparing with the Bessel process, we can see that Zt → 1 as t → ∞. Thus,
almost surely ,

lim
t→τA

Mt = 1{γ∩A=∅]}.

By the optional stopping theorem we have

P[γ ∩ A = ∅] = E[MτA ] = M0 = Φ′A(0)β exp{−αS(A)}.

The proof of the case with 0− as a force point is the same.

Remark 82. We call probability measures that satisfies the conditions in Lemma 81
the one-sided dipolar conformal restriction measure. In fact we can also get
the one-sided restriction measure by adding poisson cloud to SLE(κ; ρ) process for
κ ∈ [0, 8

3
]. Using the same notation as lemma 79, we only replace the SLE(8

3
, ρ) in

Proposition 78 by a SLE(κ; ρ) process. Define

a(κ, ρ) =
6− κ

2κ
, b(κ, ρ) =

ρ

4κ
(ρ+ 4− κ), c(κ, ρ) =

ρ

κ
.

λ(κ) =
(8− 3κ)(6− κ)

2κ
, α(κ, ρ) =

(6− κ)(κ− 2) + ρ(ρ+ 4)

8κ
.
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

Lemma 83. Take notations above,

Mt = 1{t<τA}(h
′
t(Wt))

a(h′t(Vt))
b exp{−αS(At)}Zc

t exp{λ
∫ t

0

S̃hs(Ws)ds}

is a local martingale.

The proof of this lemma is just by Ito’s calculus. Using the same method as
Proposition 78, we can add Brownian bubbles to this SLE(κ; ρ) with force point 0+

(0−) to get the one-sided restriction measure with parameters (a(κ, ρ) + b(κ, ρ) +
c(κ, ρ), α(κ, ρ)) for κ ≤ 8

3
.

Now we are ready to construct the dipolar conformal restriction measure from
one-sided measure.

Proposition 84. For β > 5
8
, let ρ = 2

3
(
√

24β + 1−1)−2 > 0. Let γR be the dipolar
SLE(8

3
, ρ) curve with force point 0−. Denote by X the terminal point of γR on Rπ.

Given γR, let γL be an independent chordal SLE(8
3
, ρ− 2) curve with force point 0+

from 0 to X in the left connected component of S r γR. Define K as the closure of
union of the domains between γR and γL. Then the law of K is the dipolar conformal
restriction measure P(α, β), where α is the same as Lemma 79, i.e.

α = α(β) =
5

48
+

3

64
ρ(ρ+ 4) =

1

48
((
√

24β + 1− 1)2 − 4).

Proof. We only need to check that

P[K ∩ A = ∅] = Φ′A(0)β exp{−αS(A)}.

Since γR is the dipolar SLE(8
3
, ρ) curve with force point 0−, it satisfies the one-

sided restriction property by Lemma 81, we know that this is true for A such that
A ∩ (−∞, 0) = ∅. Notice that any hull in A∗s can be generated by two hulls one of
which does not intersect with the positive axis and one of which does not intersect
with the negative axis. So we only need to show that this proposition hold for any
A ∈ A∗s such that A ∩ (0,∞) = ∅.

With the same notations as Lemma 79. Since ρ > 0, Mt is a martingale by
the same analysis as Lemma 81. From the proof of lemma 81, we notice that when
τA <∞, Mt → 0 as t→ τA. When τA =∞, as t→∞, h′t(Wt)→ 1 S(At)→ 0 and
Zt → 1. But the situation is different with respect to h′t(Vt). By one-sided property
of the chordal SLE(8

3
, ρ) process, we have

h′t(Vt)
λ → P[γL ∩ A = ∅|γR], as t→∞.

Thus by optional stopping theorem,

P[K ∩ A = ∅] = E[1{τA=∞}E[γL ∩ A = ∅|γR]] = E[MτA ] = M0.
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3.8. CONSTRUCTION FROM ONE-SIDED RESTRICTION MEASURE

Remark 85. In fact, our construction from SLE(8
3
, ρ) have an pre-request : we should

make sure that dipolar SLE(8
3
, ρ) intersects with Rπ. According to [17] and the

equivalent relations between dipolar SLE and chordal SLE(see [22]), we can see that
only if ρ ∈ (−2, 2) , the dipolar SLE(8

3
, ρ) can intersect with Rπ. So we should

add ρ ∈ (0, 2) in Proposition 84. Now β ∈ (5
8
, 2). Therefore β ∈ (5

8
, 2) we have

constructed P(α(β), β) for β ∈ (5
8
, 2) and here α(β) = 1

48
((
√

24β + 1− 1)2 − 4).

Remark 86. So far, we can not give the sufficient conditions that (α, β) should satisfy
for making sure the conformal restriction measure exists like [9] and [23]. And this
is one of the continuing work of the author.
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Chapitre 4

On the Brownian Loop Measure

Using SLE as a tool, many problems relating to the properties of the lattice
models have been solved, such as the arm exponents for these models. There are also
some variants of SLE (conformal loop ensemble, Brownian loop measure, Brownian
bubble measure) that describe the scaling limit of the random loops in these models.
Therefore it is natural to use SLE to get properties of these loop measures. One of
theses application is to use SLE(8

3
) to study the properties of the Brownian bubble

measure and Brownian loop measure. In fact, by rescaling and letting the two end
points tends to one common point, one can get the Brownian bubble measure(differ
by a constant).

Recently Beliaev and Viklund [4] got a formula for the probability that two given
points lies to the left of the SLE(8

3
) curve and used it to study some connectivity

functions for SLE(8
3
) bubbles and reconstructed the chordal restriction measure in-

troduced by Lawler, Werner and Schramm [9]. In this chapter, we will follow their
work to use the SLE(8

3
) bubble to derive the formula for the total mass of the Brow-

nian loop that disconnects two given points from the boundary. This formula was
predicted by Cardy and Gamsa [7], here the formula we get just differ by a constant
from theirs.

In the following sections, we will give a brief introduction to the topics that will
be used in this paper, which include the Brownian bubble measure, Brownian loop
measure, SLE(κ) bubble measure and the relation between these measures. We first
state our the main theorem of this chapter as follows.

Theorem 87. Denote by µloop
H the Brownian loop measure on the upper half plane

and γ is a sample of the Brownian loop. Given two points z = x+iy, w = u+iv ∈ H,
let E(z, w) denote the event that γ disconnects both z and w from the boundary of
H. Then we have

µloop
H [E(z, w)] =− π

5
√

3
− 1

10
η 3F2(1,

4

3
, 1;

5

3
, 2; η)− 1

10
log(η(η − 1)) (4.0.1)

+
Γ(2

3
)2

5Γ(4
3
)
(η(η − 1))

1
3 2F1(1,

2

3
;
4

3
, η). (4.0.2)
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4.1. BROWNIAN LOOP MEASURE AND BUBBLE MEASURE

where
η = η(z, w) = −(x− u)2 + (y − v)2

4yv
, (4.0.3)

and 3F2, 2F1 are the hypergeometric functions.

(4.0.1) was first given by Cardy using conformal field theory which assumes that
O(n) model has the scaling limit. In fact (4.0.1) has a nicer form :

µloop[E(z, w)] = − 1

10
[log σ + (1− σ) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ)], (4.0.4)

where
σ = σ(z, w) =

|z − w|2

|z − w̄|2
=

(x− u)2 + (y − v)2

(x− u)2 + (y + v)2
, (4.0.5)

and 3F2 is the hypergeometric function.

Remark 88. By the conformal invariance of Brownian loop measure (see [15]), for
any simply connected domain D ⊂ C with z, w ∈ D, we can get the total mass of the
Brownian loop in D that disconnect both z and w from ∂D by the conformal map
from D to H. In particular, if D = D, we choose the conformal map φ(z) = i1+z

1−z from
D onto H. Then the total mass of the Brownian loop measure in D that disconnects
z, w ∈ D from ∂D is

− 1

10
[log σ̃ + (1− σ̃) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ̃)],

where σ̃ = σ̃(z, w) = |z−w|2
|1−zw̄|2 .

4.1 Brownian loop measure and bubble measure
In this section, we will introduce several measures on the space of continuous

curves in the plane. To keep the present chapter short, we will not provide the
detailed discussions but instead refer the reader to the fifth chapter of Lawler’s book
[10] and [15] or the appendix of the thesis.

Let µ(z, ·; t) be the law of a complex Brownian motion (Bs : 0 ≤ s ≤ t) starting
from z. And µ(z, ·; t) can be written as

µ(z, ·; t) =

∫
C
µ(z, w; t)dw

where the above integral can be regarded as the integral of functions which take
values in the space of measures. Using the density function of the complex Brownian
motion, we can see that the total mass of µ(z, w; t) is 1

2πt
exp{− 1

2t
|z − w|2}.

Let µ(z, w) be the measure defined by µ(z, w) =
∫∞

0
µ(z, w; t). This is a σ−finite

infinite measure. If D ⊂ C is a simply connected domain with nice boundary and
z, w ∈ D, we can define µD(z, w) be the restriction of µ(z, w) on the space of curves
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that lie inside D. If z 6= w, the total measure of µD(z, w) is πGD(z, w), where
GD(z, w) is the Green function on D.

If D is a simply connected domain with nice boundary, let B be a complex
Brownian motion starting from z ∈ D and τD the exit time. Denote µD(z, ∂D) the
law of (Bt : 0 ≤ t ≤ τD), we can write

µD(z, ∂D) =

∫
∂D

µD(z, w)dw.

Here we can regard µD(z, w) as a measure on the space of curves in D from z to
w ∈ ∂D, and the total mass of µD(z, w) is the the poisson kernel HD(z, w). For
z ∈ D,w ∈ ∂D, µD(z, w) can also be equivalently defined by the limits

µD(z, w) = lim
ε→0

1

2ε
µD(z, w + εnw),

where nw is the inner normal at w.
And similarly for z, w ∈ ∂D, we can also define

µD(z, w) = lim
ε→0

1

2ε2
µD(z + εnz, w + εnw)

It can be showed that above limits exists in sense of Prohorov convergence(see Chap-
ter 5 of [10]).

Given z ∈ ∂D, the Brownian bubble measure µbub
D (z) is defined as the limit

µbub
D (z) := lim

w∈∂D,w→z
πµD(z, w).

The Brownian loop measure is defined as following :

µloopC :=

∫
C

1

tγ
µ(z, z)dz =

∫
C

∫ ∞
0

1

tγ
µ(z, z; t)dtdz.

Since µ(z, z) is a measure defined on loops with z as a marked point(called a root),
the Brownian loop measure should be understood as the above integral of measures
by forgetting the root. For any domain D, let µloop

D be the restriction of the Brownian
loop measure on the space of loops inside D.

For any a ∈ R, define Ha := {x+iy ∈ C : y > a}, according to the lowest point of
the Brownian loop, the Brownian loop can be decomposed into the following integral
of Brownian bubbles(see [15]) :

µloop
C =

1

π

∫
C
µbub
Hy (x+ iy)dxdy. (4.1.1)

(4.1.1) will be very important in our computation.
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4.2 SLE bubble measure
In this section we will define the SLE bubble measure and give the relation

between SLE(8
3
) bubble and Brownian bubble measure.

Suppose κ ∈ (0, 4], ε > 0 and γε is the SLE(κ) curve from 0 to ε in the upper
half plane. Let µε denote the law of γε.

Lemma 89. The limit of the following limit exists :

µbub
SLE(κ)(0) = lim

ε→0
ε1−

8
κµε. (4.2.1)

We call µbub
SLE(κ)(0) the SLE(κ)-bubble measure.

Proof. We only need to show that the limit restricted to some generated alge-
bras that consist of finite mass exists. Here we choose the measurable sets {γ :
γ disconnects z from ∞} for fixed z ∈ H. By the definition of the SLE(κ) from 0 to
ε, we choose the auto-conformal map Fε(z) = εz

z+1
that sends∞ to ε and fixes 0. We

have
P[γ disconnects z from ∞] = p(F−1

ε (z)),

where p(z) is the probability that a point z lies to the right side of a chordal SLE(κ)
from 0 to ∞ in H, which is obtained in (2.7.2).

Therefore

lim
ε→0

ε1−
8
κp(F−1

ε (z)) =
Γ( 4

κ
)

√
πΓ(8−κ

2κ
)( 8
κ
− 1)

(
x2 + y2

y
)1− 8

κ (4.2.2)

So for fix z ∈ H, if we denote µε(z) the restriction of µε restricted to the curves that
disconnect z from ∞, then by the above equation, we know that the limit

µbub
SLE(κ)(0, z) := lim

ε→0
ε1−

8
κµε(z)

exists and therefore we can define µbub
SLE(κ)(0) as the limit of µbub

SLE(κ)(0, z) as z tends
to zero.

If κ = 8
3
, from (4.2.2), we get that the total mass of the SLE(8

3
)-bubble that

disconnects a given point z = x+iy ∈ H is 1
4
( y
x2+y2 )2 = 1

4
(Im 1

z
)2 which corresponding

to the part (a) of proposition 3.1 in [4]. In fact, [4] also gives the measure of the
SLE(8

3
)-bubble that disconnects two points z, w ∈ H from ∞ which we will state as

the following lemma.

Lemma 90 (see [4]). Let E(z, w) be the event that two points z, w ∈ H are discon-
nected from ∞ by a SLE(8

3
) curve from 0 to ε, then

µε[E(z, w)] =
1

4
Im (

1

z
)Im (

1

w
)G(σ(z, w))ε2 +O(ε3). (4.2.3)
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where σ is defined as (4.0.5) and

G(t) = 1− t 2F1(1,
4

3
;
5

3
; 1− t). (4.2.4)

Here 2F1 is the hypergeometric function.

Notice that when κ = 8
3
, it holds that 1− 8

κ
= −2. so we have

µbub
SLE(0)[E(z, w)] =

1

4
Im (

1

z
)Im (

1

w
) =

1

4

yv

(x2 + y2)(u2 + v2)
G(σ(z, w)). (4.2.5)

SLE(8
3
)-bubble measure is very closely related to Brownian bubble, in fact they

only differ by a constant.

Lemma 91.
µbub
H (0) =

8

5
µbub

SLE(κ)(0).

Proof. By the construction of the Brownian bubble measure at 0 (see the Chapter
5 of Lawler’s book [10]), it is the limit of the unique measure on loops in H rooted
at 0 such that the measure that the sample intersect |z| = r is 1

r2 for any r > 0. So
we only need to show that the total mass of the SLE(8

3
)-bubble sample intersecting

|z| = r is 5
8r2 . Define Fε(z) = z

ε−z , the imagine of the circle |z| = r under Fε is
a circle with center c0 = − r2

r2−ε2 and radius ρ = εr
r2−ε2 . Define the conformal map

φε(z) = z − c0 + ρ2

z−c0 which maps H r B(c0, ρ) onto H with the derivative at ∞
equaling to 1. By the conformal restriction property of SLE(8

3
), we have

µε[γ ∩ |z| = r = ∅] = µ∞[γ ∩B(c0, ρ) = ∅] = φ′ε(0)
5
8 .

Therefore we can check that

µbub
SLE(κ)(0)[γ ∩ |z| = r 6= ∅] = lim

ε→0

1

ε2
(1− φ′ε(0)

5
8 =

5

8r2
.

4.3 Proof of the nicer form
Given two points z0 = x0+iy0 and w0 = u0+iv0 ∈ H. By the symmetric property

of the the Brownian loop measure, we can assume y0 ≤ v0, u0 ≥ x0 without loss of
generality. By (4.1.1),

µloop
H [E(z0, w0)] =

1

π

∫
H
µbub
Hy (x+ iy)[E(z0, w0)]dxdy

=
1

π

∫ y0

0

∫
R
µbub
Hy (x+ iy)[E(z0, w0)]dxdy.
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Here E(z0, w0) denotes the event that the Brownian loop sample in H disconnects
both z0 and w0 from the boundary of H.

By the translation invariance of the Brownian bubble measure, we have

µbub
Hy (x+ iy)[E(z0, w0)] = µbub

H (0)[E(z0 − z, w0 − z)].

By Lemma 91 we have µbub
H (0) = 8

5
µbub

SLE(κ)(0). Therefore by (4.2.5),

µloop
H [E(z0, w0)] =

8

5π

∫ y0

0

∫
R
µbub

SLE(κ)(0)[E(z0 − x− iy, w0 − x− iy)]dxdy

=
8

5π

∫ y0

0

∫
R

1

4
Im
( 1

z0 − x− iy

)
Im
( 1

w0 − x− iy

)
G(σ(z0 − x− iy, w0 − x− iy))dxdy. (4.3.1)

So in order to prove the theorem, we only need to compute above integral. Define
two functions as follows :

f(x, y) :=
(y0 − y)(v0 − y)

[(x0 − x)2 + (y0 − y)2]× [(u0 − x)2 + (v0 − y)2]
. (4.3.2)

g(y) :=
(x0 − u0)2 + (y0 − v0)2

(x0 − u0)2 + (y0 + v0 − 2y)2

2F1(1,
4

3
;
5

3
;

4(y0 − y)(v0 − y)

(x0 − u0)2 + (y0 + v0 − 2y)2
). (4.3.3)

Lemma 92. Take the notations as above, for fixed y > 0,

∫
R
f(x, y)dx =

2(y0 − y) + v0 − y0

(x0 − u0)2 +
(
2(y0 − y) + v0 − y0

)2π. (4.3.4)

Proof. For fixed y > 0, denote

a = y0 − y, b = v0 − y, c = u0 − x0, d = v0 − y0.

Then we have

f(x, y) =
ab

[(x0 − x)2 + a2][(u0 − x)2 + b2]
.
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Doing the standard calculus as follows.∫
R
f(x, y)dx =

∫
R

ab

[(x0 − x)2 + a2][(u0 − x)2 + b2]
dx

=ab

∫
R

1

[x2 + a2][(x+ c)2 + b2]
dx

=
abπ

ab
(
a4 − 2a2(b2 − c2) + (b2 + c2)2

)(b(b2 + c2 − a2) arctan[
x

a
]

+ a
[
(a2 + c2 − b2) arctan[

c+ x

b
] + bc log

b2 + (c+ x)2

a2 + x2

])
|∞−∞

=π
b(b2 + c2 − a2) + a(a2 + c2 − b2)

a4 − 2a2(b2 − c2) + (b2 + c2)2
.

Replace b by a+ d, we can get∫
R
f(x, y)dx =

(2a+ d)π

c2 + (2a+ d)2
.

And this is what we want.

By (4.3.1), we have

µloop
H [E(z0, w0)] =

8

5π

∫ y0

0

∫
R

1

4
f(x, y)(1− g(y))dxdy

=
8

5π

∫ y0

0

π

4

2a+ d

c2 + (2a+ d)2
[1− g(y)]dy =

2

5
(A−B), (4.3.5)

where

A = A(z0, w0) =

∫ y0

0

2(y0 − y) + v0 − y0

(x0 − u0)2 +
(
2(y0 − y) + v0 − y0

)2dy, (4.3.6)

and

B = B(z0, w0) =

∫ y0

0

2(y0 − y) + v0 − y0

(x0 − u0)2 +
(
2(y0 − y) + v0 − y0

)2 g(y)dy. (4.3.7)

Lemma 93.
A =

1

4
log

1

σ
,

where σ is defined as (4.0.5).
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Proof. By (4.3.6) we have

A =

∫ y0

0

2(y0 − y) + d

c2 + (2(y0 − y) + d)2
dy =

∫ y0

0

2y + d

c2 + (2y + d)2
dy

=
1

2

∫ 2y0+d
c

d/c

y

1 + y2
dy =

1

4
log

c2 + (2y0 + d)2

c2 + d2
.

In the second equation we used the variable change y → y0 − y and in the last
equation we used the variable change y → 2y+d

c
. Notice that

c2 + (2y0 + d)2

c2 + d2
=

(u0 − x0)2 + (y0 + v0)2

(u0 − x0)2 + (v0 − y0)2
=

1

σ
.

Lemma 94.
B =

1

4
(1− σ) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ),

where σ is defined as (4.0.5).

Proof. By (4.3.7) and the definition of g(y), we have

B =

∫ y0

0

2(y0 − y) + d

c2 + (2(y0 − y) + d)2
· c2 + d2

c2 + (2(y0 − y) + d)2
·

2F1(1,
4

3
;
5

3
;
4(y0 − y)((y0 − y) + d)

c2 + (2(y0 − y) + d)2
)dy

=

∫ y0

0

2y + d

c2 + (2y + d)2
· c2 + d2

c2 + (2y + d)2
· 2F1(1,

4

3
;
5

3
;

4y(y + d)

c2 + (2y + d)2
)dy

=

∫ 2y0+d
c

d
c

cy

c2 + c2y2
· c

2 + d2

c2 + c2y2
· 2F1(1,

4

3
;
5

3
;
c2y2 − d2

c2 + c2y2
) · c

2
dy

=
1

2

c2 + d2

c2

∫ 2y0+d
c

d
c

y

(1 + y2)2
· 2F1(1,

4

3
;
5

3
;
c2y2 − d2

c2 + c2y2
)dy

=
1

4

∫ 4y0(y0+d)

c2+(2y0+d)2

0
2F1(1,

4

3
;
5

3
; y)dy

=
1

4

4y0(y0 + d)

c2 + (2y0 + d)2
· 3F2(1,

4

3
, 1;

5

3
, 2;

4y0(y0 + d)

c2 + (2y0 + d)2
)

=
1

4
(1− σ) 3F2(1,

4

3
, 1;

5

3
, 2; 1− σ).

Here the second equation used the variable change y → y0−y, the third equation used
the variable change y → 2y+d

c
, the fifth equation used the variable change c2y2−d2

c2+c2y2 → y
and the sixth equation used the equation about hypergeometric functions below :∫ x

0
2F1(a, b; c, y)dy = x 3F2(a, b, 1; c, 2, x).
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Now by (4.3.5) and Lemma 93 and Lemma 94 we get (4.0.4).

4.4 Proof of the Gamsa formula

In this section we will prove the the equivalence of formula (4.0.1) and (4.0.4).
First we will recall some identities of the hypergeometric functions which will be
used in our proof. We will assume that our hypergeometric functions are all well
defined. And they satisfies the following identities (see Chapter 8 of [1]) :

2F1(a, b; c;x) = (1− x)−b 2F1(c− a, b; c; x

x− 1
). (4.4.1)

2F1(a, b; c;x) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b+ 1− c; 1− x)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− x)c−a−b 2F1(c− a, c− b; c+ 1− a− b; 1− x). (4.4.2)

2F1(a, b; c;x) = (1− x)c−a−b 2F1(c− a, c− b; c;x). (4.4.3)

Notice that η = σ
σ−1

and σ ∈ (0, 1). We define a function φ on [0, 1] as following.

φ(t) =
2π√

3
+

t

t− 1
3F2(1,

4

3
, 1;

5

3
, 2;

t

t− 1
)− (1− t) 3F2(1,

4

3
, 1;

5

3
, 2; 1− t)

− 2 log(1− t)− 2
Γ(2

3
)2

Γ(4
3
)

3

√
t

(t− 1)2 2F1(1,
2

3
;
4

3
;

t

t− 1
). (4.4.4)

To prove that (4.0.1) and (4.0.4) are equivalent, it only needs to show that
φ(t) ≡ 0. Notice that φ(0) = 2π√

3
− 3F2(1, 4

3
, 1; 5

3
, 2; 1) = 0, it is left to show that

φ′(t) ≡ 0. Take the following notations.

I(t) :=
t

t− 1
3F2(1,

4

3
, 1;

5

3
, 2;

t

t− 1
)− 2 log(1− t),

J(t) := −(1− t) 3F2(1,
4

3
, 1;

5

3
, 2; 1− t),

K(t) := −2
Γ(2

3
)2

Γ(4
3
)

3

√
t

(t− 1)2 2F1(1,
2

3
;
4

3
;

t

t− 1
).
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Define a function f(x) = x 3F2(1, 4
3
, 1; 5

3
, 2;x). It is easy to check that

f ′(x) = 2F1(1,
4

3
;
5

3
;x).

So

dI(t)

dt
=

2

1− t
+ f ′(

t

t− 1
)
−1

(1− t)2
=

2

1− t
− 1

(1− t)2 2F1(1,
4

3
;
5

3
;

t

t− 1
)

=
2

1− t
− 1

1− t 2F1(1,
1

3
;
5

3
; t). (4.4.5)

The last equation is due to (4.4.1) by assigning a = 1
3
, b = 1, c = 5

3
. Similarly we

can get that
dJ(t)

dt
= f ′(1− t) = 2F1(1,

4

3
;
5

3
; 1− t).

Using (4.4.2), let a = 1, b = 4
3
, c = 5

3
, we have

2F1(1,
4

3
;
5

3
; 1− t) = − 2F1(1,

4

3
;
5

3
; t) +

2

3

Γ(2
3
)2

Γ(4
3
)
t−

2
3 2F1(

1

3
,
2

3
;
1

3
; t)

By letting a = 1
3
, b = 2

3
, c = 1

3
in (4.4.3), the following holds

2F1(
1

3
,
2

3
;
1

3
; t) = (1− t)−

2
3 2F1(0,−1

3
;
1

3
, x) = (1− t)−

2
3 .

Therefore
dJ(t)

dt
= − 2F1(1,

4

3
;
5

3
; t) +

2

3

Γ(2
3
)2

Γ(4
3
)

(t(1− t))−
2
3 . (4.4.6)

In the last we deal with the derivative of K(t) with respect to t. By letting a =
1
3
, b = 2

3
, c = 4

3
in (4.4.1), we can get

2F1(1,
2

3
;
4

3
;

t

t− 1
) = (1− t)

2
3 2F1(1,

2

3
;
4

3
; t).

Consequently,

K(t) = −2
Γ(2

3
)2

Γ(4
3
)
t

1
3 2F1(1,

2

3
;
4

3
; t).

And

dK(t)

dt
= −2

Γ(2
3
)2

Γ(4
3
)

[1
3
t−

2
3 2F1(1,

2

3
;
4

3
; t) + t

1
3

(1− t)− 2
3 − 2F1(1, 2

3
; 4

3
; t)

3t

]
= −2

3

Γ(2
3
)2

Γ(4
3
)
t−

2
3 (1− t)−

2
3 . (4.4.7)
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Combining (4.4.5),(4.4.6) and (4.4.7), we have

φ′(t) =
dI(t)

dt
+
dJ(t)

dt
+
dK(t)

t
=

2

1− t
− 1

1− t 2F1(1,
1

3
;
5

3
; t)− 2F1(1,

4

3
;
5

3
; t).

Lemma 95.
2− 2F1(1,

1

3
;
5

3
; t)− (1− t) 2F1(1,

4

3
;
5

3
; t) = 0.

Proof. By definition we have

2F1(1,
4

3
;
5

3
; t) = 1 +

∞∑
n=1

Γ(n+ 4
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 5

3
)
tn.

Therefore

t 2F1(1,
4

3
;
5

3
; t) =

∞∑
n=1

Γ(n+ 1
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 2

3
)
tn.

Similarly

2F1(1,
1

3
;
5

3
; t) = 1 +

∞∑
n=1

Γ(n+ 1
3
)Γ(5

3
)

Γ(1
3
)Γ(n+ 5

3
)
tn.

By using the relation Γ(x + 1) = xΓ(x), we can see that the coefficient of tn in the
sum is

Γ(n+ 1
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 2

3
)
−

Γ(n+ 4
3
)Γ(5

3
)

Γ(4
3
)Γ(n+ 5

3
)
−

Γ(n+ 1
3
)Γ(5

3
)

Γ(1
3
)Γ(n+ 5

3
)

= 0.

From Lemma 95, we have φ′(t) ≡ 0, and therefore φ ≡ φ(0) = 0. This completes
the proof of the equivalence between (4.0.1) and (4.0.4).

4.5 The other cases

Given z, w ∈ H, and γ the sample of the Brownian loop in the upper half plane.
According to the property of Brownian path, almost surely, z, w 6∈ γ. So except the
case that γ disconnects both z and w from the boundary, there are three other cases :

(1) γ disconnects z from the boundary but does not disconnect w from the
boundary ;

(2) γ disconnects w from the boundary but does not disconnect z from the
boundary ;

(3) γ does neither disconnects z from the boundary nor disconnects w from the
boundary.

We will show that the total measure of above three cases are infinite. In fact,
using the same method as [4], we can show the following lemma.
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Lemma 96. Suppose that γ is the sample of the SLE(8
3
) from 0 to ε and denote

above three cases by E1(z, w), E2(z, w) and E3(z, w) respectively. Then

P[E1(z, w)] =
1

4
ε2
(
(Im

1

z
)2 − Im

1

z
Im

1

w
G(σ)

)
+O(ε3), (4.5.1)

P[E2(z, w)] =
1

4
ε2
[
(Im

1

w
)2 − Im

1

z
Im

1

w
G(σ)

]
+O(ε3), (4.5.2)

P[E3(z, w)] = 1− 1

4
ε2
[
(Im

1

w
)2 + (Im

1

z
)2 − Im

1

z
Im

1

w
G(σ)

]
+O(ε3). (4.5.3)

The proof of this lemma is the same as in [4]. We only need to prove that for
SLE(8

3
) γ from 0 to ∞, the following holds.

P[γ passes the left of z and the right of w]

=
1

4
(1− x

|z|
)(1 +

u

|w|
)(1− y

|z| − x
v

|w|+ u
G(σ)).

P[γ passes the left of w and the right of z]

=
1

4
(1 +

x

|z|
)(1− u

|w|
)(1− y

|z|+ x

v

|w| − u
G(σ)).

P[γpasses the right of both z and w]

=
1

4
(1− x

|z|
)(1− u

|w|
)(1 +

y

|z| − x
v

|w| − u
G(σ)).

where G(σ) is the same as (4.2.4). Then using the conformal map Fε(z) = εz
1+z

to
convert the SLE(8

3
) from 0 to∞ into the SLE(8

3
) from 0 to ε. Combing above lemma

and the definition of the Brownian bubble measure and lemma 91, we can get

µbub
H (0)(E1(z, w)) =

1

10
[(

y

x2 + y2
)2 − y

x2 + y2

v

u2 + v2
G(σ(z, w))].

µbub
H (0)(E2(z, w)) =

1

10
[(

v

u2 + v2
)2 − y

x2 + y2

v

u2 + v2
G(σ(z, w))].

µbub
H (0)(E3(z, w)) =∞.

By relation (4.1.1) and calculating the integral on the upper half plane, we can see
that the total mass of the Brownian loop measure on these three sets are infinite.
In fact, we can see intuitively that these three cases all contain the loops with
arbitrary small diameter, while the event E(z, w) in the main theorem exclude these
small loops.
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Chapitre 5

Integral Means Spectrum of the
modified inner Whole plane SLE

In the theory of univalent function, the extremal problems has always been a
very important issue. In this chapter we will recall one of the issues in extremal
problems—spectrum problem. We will first give some basic definitions of the integral
spectrum and the integral means spectrum. And then we will recall some results
about the integral means spectrum of the outer whole plane SLE(κ) process. In the
last we will recall the so-called generalized integral means spectrum and give the
integral means spectrum of the inner whole plane Loewner chain driven by some
special Lévy process.

5.1 Spectrum problem
Denote by

D := {z ∈ C : |z| < 1},D+ := {z ∈ C : |z| > 1}.

There are two classes S and Σ of univalent functions which are very important. They
are defined as follows :

S := {φ(z) = z + a2z
2 + a3z

3 + ... is univalent on D}, (5.1.1)

Σ := {ψ(z) = z +
b1

z
+
b2

z2
+ ... is univalent on D+}, (5.1.2)

where "univalent" function we means one-to-one holomorphic function and an and
bn are the coefficients of the corresponding Taylor expansion and Laurent expansion.

A natural question is which extremal values an and bn can have among these two
classes. First for S, define the Koebe function as follows :

k(z) :=
∞∑
n=1

nzn =
z

(1− z)2
, (5.1.3)
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5.1. SPECTRUM PROBLEM

It can be verified that φ ∈ S and an = n. In fact Bieberbach conjectured in 1916
that among S, Koebe is the function that makes |an| attain the maximal value,i.e.
for any φ(z) = z + a2z

2 + a3z
3 + ... ∈ S , |an| ≤ n holds for any n. This conjecture

was completely proved by De Branges in 1985(see [5]). For Σ, no corresponding
conclusion has been established so far, even the asymptotic behavior of bn is open.
Another extremal problem about univalent function is the spectrum problem. The
spectrum has a close relation with the behavior of harmonic measure. Given p ∈ R,
φ ∈ Σ, define βφ(p) as follows :

βφ(p) := lim sup
r→1+

log
∫ 2π

0
|φ′(reiθ)|pdθ

| log |r − 1||
.

we call βφ(p) the integral means spectrum of φ or the corresponding simply con-
nected domain φ(D+). Define B(p) := sup

φ∈Σ
βφ(p). Call B(p) the universal integral

means spectrum . About B(p), there is the following conjecture :

B(p) =

{
p2

4
if p2 < 4

|p| − 1 if |p| ≥ 2.

Notice that if p = 1,
∫ 2π

0
|φ′(reiθ)|dθ tends to the length of the boundary |∂φ(Σ)|

as r → 1. Therefore in some sense βφ(p) reflects the regularity of the boundary of
φ(Σ).

For φ ∈ S, we can also define the spectrum. Here we use the definition in [6].
Given p, q ∈ R, φ ∈ S. Define βφ(p, q) as follows :

βφ(p, q) := lim sup
r→1+

log
∫ 2π

0
| z
φ(z)
|q|φ′(reiθ)|pdθ

| log |r − 1||
.

Call βφ(p, q) is the generalized means integral spectrum of φ or the correspond-
ing φ(D). Notice that for φ ∈ Σ,

βφ(p) = βψ(p, 2p), here ψ(z) =
1

φ(1/z)
.

Usually, for a given simply connected domain D, it is very difficult to compute
the integral means spectrum since it is difficult to get the exact form of the con-
formal map from D onto D. But for some random simply connected domains(the
complement of the whole plane SLE(κ) hulls), some tools can be used to compute
the average integral means spectrum which is defined as follows :

βφ(p) := lim sup
r→1+

log
∫ 2π

0
E[|φ′(reiθ)|p]dθ
| log |r − 1||

. (5.1.4)

βφ(p, q) := lim sup
r→1+

log
∫ 2π

0
E[| z

φ(z)
|q|φ′(reiθ)|p]dθ

| log |r − 1||
.
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5.2. SPECTRUM OF THE LOEWNER PROCESS DRIVEN BY LÉVY PROCESS

In the following section, for convenience we will use "spectrum" to denote the
average integral means spectrum.

For the outer whole plane SLE(κ) (gt : t ∈ R) ( see the definition 33), ft(z) :=
g−1
t (z) is the conformal map from D+ onto C r Kt and ft(∞) = ∞, f ′t(∞) = et.
Therefore e−tft(z) ∈ Σ. So it is natural to consider the spectrum of e−tft(z). By
the scaling property of whole plane SLE(κ) (see Proposition 36 ), we only need to
consider the spectrum of f0. In the seminal paper [3] and the following paer [2],
the authors used the method of finding special solution of some partial differential
equation to compute the spectrum of outer whole plane SLE(κ). We stated the result
as follows :

Theorem 97 (see[2] and [3]). The spectrum of the whole plane SLE(κ) at t = 0 is

βtip(t) = −t− 1 +
1

4

(
4 + κ−

√
(4 + κ)2 − 8κt

)
, t ≤ t2,

β0(t) = −t+
4 + κ

4κ

(
4 + κ−

√
(4 + κ)2 − 8κt

)
, t2 ≤ t ≤ t3,

βlin(t) = t− (4 + κ)2

16κ
t3 ≤ t.

where
t1 = − 1

128
(4 + κ)2(8 + κ),

t2 = −1− 3κ

8
,

t3 =
3(4 + κ)2

32κ
.

In [6], the authors analyzed the generalized integral means spectrum of inner
whole plane process and give the exact form of the spectrum for some special values
(p, q) that are on some parabolas.

5.2 Spectrum of the Loewner process driven by Lévy
process

In this section, we will analyze the spectrum of the inner Loewner process driven
by Lévy process. Recall (2.3.4), the inner whole Loewner process driven by the real-
valued function Wt is defined as the solution of the following ODE :{

∂tgt(z) = gt(z)gt(z)+λt
gt(z)−λt

lim
t→+∞

etgt(z) = z, ∀z ∈ C.

{
∂tft(z) = zf ′t(z)λt+z

λt−z
lim
t→+∞

ft(e
−tz) = z, ∀z ∈ D. (5.2.1)

Here λt = exp{iWt}.
In this section, we will assume that Wt = Lt where Lt is a Lévy process. We

want to compute the average integral means spectrum of f0, where ft is defined as
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5.2. SPECTRUM OF THE LOEWNER PROCESS DRIVEN BY LÉVY PROCESS

(2.3.4). Recall for Lévy driven Loewner process , we still have Lemma 48 since the
proof of Lemma 48 only uses the Markov property of the driven process. Therefore
we have

lim
t→+∞

etf̃t(z)
(law)
= f0(z), (5.2.2)

where f̃t is defined as follows :

∂tf̃t(z) = f̃t(z)
f̃t(z) + λ(t)

f̃t(z)− λ(t)
, f̃0(z) = z, ∀z ∈ D, (5.2.3)

By the Markov property of Lévy process, we know that for any s ≤ t :

f̃t(z)
(law)
= λ(s)f̃t−s(f̃s(z)/λ(s)). (5.2.4)

Donote by f := f0(z), according to the definition, we want to compute

E[|f ′(z)p|] = E[f ′(z)
p
2 f ′(z)

p
2 ],

for p ∈ R. In fact we can study the two-point function for z1, z2 ∈ D,

G(z1, z2) := E[z
q
2
1

f ′(z1)
p
2

f(z1)
q
2

z2

q̄
2
f ′(z2)

p̄
2

f(z2)
q̄
2

].

where p, q ∈ C.
We define a time-dependent, auxiliary two-point function,

G̃(z1, z̄2, t) := E[z
q
2
1

f̃ ′t(z1)
p
2

f̃t(z1)
q
2

z2

q̄
2
f̃ ′t(z2)

p̄
2

f̃t(z2)
q̄
2

],

where f̃t is defined as (5.2.3).
This time by (5.2.2), the two point function G(z1, z̄2) is the limit

lim
t→+∞

eRe (p−q)tG̃(z1, z̄2, t) = G(z1, z̄2). (5.2.5)

Let us introduce the shorthand notation,

Xt(z1) =
f̃ ′t(z1)

p
2

f̃t(z1)
q
2

, Yt(z2) =
f̃ ′t(z2)

p̄
2

f̃t(z2)
q̄
2

.

ThenMs := E[Xt(z1)Yt(z2)] is a local martingale. In fact by the Markov property
of Lévy process, we know that for any s ≤ t :

f̃t(z)
(law)
= λ(s)f̃t−s(f̃s(z)/λ(s)). (5.2.6)
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ThereforeMs = Xs(z1)Ys(z2)G(z1,s, z2,s, t− s), ∀s < t, where

z1,s =
f̃s(z1)

λs
, z2,s =

f̃s(z2)

λs
.

Notice that

dXs(z1) =Xs(z1)

[
p

2
− q

2
− p

(1− z1,s)2
+

q

1− z1,s

]
ds,

dYs(z2) =Ys(z2)

[
p̄

2
− q̄

2
− p̄

(1− z̄2,s)2
+

q̄

1− z̄2,s

]
ds,

dz1,s

ds
=z1s

z1,s + 1

z1,s − 1
,
dz2,s

ds
= z2,s

z2,s + 1

z2,s − 1
.

Since H(s, Ls) := Xs(z1)Ys(z2)G̃(z1,s, z2,s, t−s) is a local martingale for all s ≤ t,
by Remark 23, we have

−ΛH(s, Ls) = ∂sH(s, Ls),

where Λ is the generator of the Lévy process Lt.

∂sH = H

[
p

2
− q

2
− p

(1− z1,s)2
+

q

1− z1,s

]

+H

[
p̄

2
− q̄

2
− p̄

(1− z̄2,s)2
+

q̄

1− z̄2,s

]
−Xs(z1)Ys(z2)∂τ G̃(z1,s, z2,s, t− s)

+Xs(z1)Ys(z2)∂z1G̃(z1,s, z2,s, t− s)z1s
z1,s + 1

z1,s − 1

+Xs(z1)Ys(z2)∂z̄2G̃(z1,s, z2,s, t− s)z2,s
z2,s + 1

z2,s − 1
,

where τ = t− s. So we have

− ΛG̃(z1,s, z2,s, t− s) = G̃(z1,s, z2,s, t− s)[
p

2
− q

2
− p

(1− z1,s)2
+

q

1− z1,s

]

+G̃(z1,s, z2,s, t− s)[
p̄

2
− q̄

2
− p̄

(1− z̄2,s)2
+

q̄

1− z̄2,s

]

−∂τ G̃(z1,s, z2,s, t− s) + ∂z1G̃(z1,s, z2,s, t− s)z1s
z1,s + 1

z1,s − 1

+∂z̄2G̃(z1,s, z2,s, t− s)z2,s
z2,s + 1

z2,s − 1
. (5.2.7)
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Note that by (5.2.5), it holds that

exp{(p− q
2

+
p̄− q̄

2
)t}G̃(z1, z2, t)(

p− q
2

+
p̄− q̄

2
)

+ exp{(p− q
2

+
p̄− q̄

2
)t}∂tG̃(z1, z2, t)→ 0 as t→ +∞.

So as t→ +∞,

exp{(p− q
2

+
p̄− q̄

2
)t}∂tG̃(z1, z2, t)→ −(

p− q
2

+
p̄− q̄

2
)G(z1, z2).

Multiplying exp{(p−q
2

+ p̄−q̄
2

)(t− s)} on the two sides of (5.2.7) and passing t to∞m
we can get

− ΛG(z1, z2) = G(z1, z2)[
p

2
− q

2
− p

(1− z1)2
+

q

1− z1

]

+G(z1, z2)[
p̄

2
− q̄

2
− p̄

(1− z̄2)2
+

q̄

1− z̄2

]

+(
p− q

2
+
p̄− q̄

2
)G(z1, z2) + ∂z1G(z1, z2)z1

z1 + 1

z1 − 1

+∂z̄2G(z1, z2)z2
z2 + 1

z2 − 1
. (5.2.8)

Then G(z1, z̄2) satisfies P(D)G(z1, z̄2) = 0, where

P(D) =Λ + z1
z1 + 1

z1 − 1
∂z1 + z2

z2 + 1

z2 − 1
∂z̄2 + p− q + p̄− q̄

− p

(1− z1)2
+

q

1− z1

− p̄

(1− z̄2)2
+

q̄

1− z̄2

. (5.2.9)

Recall the definition of Λ in Theorem 22 :

Λf(x) = lim
t↓0

Ex[f(Lt)]− f(x)

t
.

For k, l ∈ Z,we have

Λ(zkz̄l) = rk+lΛ(eiθ(k−l))

= rk+l lim
t↓0

Eθ[ei(k−l)Lt ]− ei(k−l)θ

t

= rk+l lim
t↓0

ei(k−l)θ(e−tη(k−l) − 1)

t

= −η(k − l)zkz̄l, (5.2.10)

where η is the Lévy symbol of Lt(see (2.6.1)).
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5.2.1 Drifted Brownian motion

In this section, we consider the special Lévy process Lt = at+
√
κBt, where a ∈

R, κ ≥ 0 and Bt is a standard one-dimensional Brownian motion. By the definition
of the L’evy symbol

E[eiξLt ] = E[eiξ(at+
√
κBt)] = eiaξt−t

κ
2
|ξ|2 = e−tη(ξ).

So
η(ξ) =

κ

2
|ξ|2 − iaξ.

By (5.2.10), we have

Λ(zkz̄l) = −η(k − l)zkz̄l = −κ
2

(k − l)2(zkz̄l) + ia(k − l)(zkz̄l),

So
Λ = −κ

2
(z∂z − z̄∂z̄)2 + ia(z∂z − z̄∂z̄).

The operator in (5.2.9) becomes

P(D) =− κ

2
(z1∂z1 − z̄2∂z̄2)2 + z1(

z1 + 1

z1 − 1
+ ia)∂z1

+z2(
z2 + 1

z2 − 1
− ia)∂z̄2 + p− q + p̄− q̄

− p

(1− z1)2
+

q

1− z1

− p̄

(1− z̄2)2
+

q̄

1− z̄2

. (5.2.11)

We want to find a solution of the PDE

P(D)G(z1, z̄2) = 0, G(0, 0) = 1.

Suppose that the solution has the form

G(z1, z̄2) = (1− z1)α(1− z̄2)ᾱP (z1z̄2).

Then we can see that

P(D)[(1− z1)α(1− z̄2)ᾱP (z1z̄2)] = (I) + (II) + (III),

where

(I) = z1z̄2(1− z1)α−1(1− z̄2)ᾱ−1(κ|α|2P (z1z̄2) + 2(z1z̄2 − 1)P ′(z1z̄2)),

(II) = [P(∂)(1− z1)α](1− z̄2)ᾱP (z1z̄2),

(III) = [P(∂̄)(1− z̄2)ᾱ](1− z1)αP (z1z̄2);
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and

P(∂) := −κ
2

(z1∂1)2 +

(
z1 + 1

z1 − 1
+ ia

)
z1∂1 + p− q +

q

1− z1

− p

(1− z1)2
,

P(∂̄) := −κ
2

(z̄2∂̄2)2 +

(
z̄2 + 1

z̄2 − 1
− ia

)
z̄2∂̄2 + p̄− q̄ +

q̄

1− z̄2

− p̄

(1− z̄2)2
.

Notice that P(∂)(1 − z1)α = 0 ⇔ P(∂̄)(1 − z̄2)ᾱ = 0. So if P(∂)(1 − z1)α = 0, we
have

P(D)[(1− z1)α(1− z̄2)ᾱP (z1z̄2)] = 0

⇔ κ|α|2P (z1z̄2) + 2(z1z̄2 − 1)P ′(z1z̄2) = 0

⇔ P (z1z̄2) = (1− z1z̄2)−
κ|α|2

2 .

So we need to find α such that (1− z)α is a solution of P(∂)(1− z)α = 0.
By computation, we can see that

P(∂)(1− z)α = A(1− z)α +B(1− z)α−1 + C(1− z)α−2,

where

A = −κ
2
α2 + (1 + ia)α + p− q,

B = κα2 −
(

1

2
κ+ 3

)
α− iaα + q,

C = −κα
2

2
+
(

2 +
κ

2

)
α− p.

Notice that A+B + C = 0. By choosing p, q, α such that A = B = C = 0, we get

E

z q21 f ′(z1)
p
2

f(z1)
q
2

z2

q̄
2
f ′(z2)

p̄
2

f(z2)
q̄
2

 = (1− z1)α(1− z̄2)ᾱ(1− z1z̄2)−
κ|α|2

2 .

Since we want to calculate the average spectrum, we need p, q ∈ R, so we need to
get α from A = B = C = 0.

Assume α = α1 + iα2. By C = 0, we get p = −κ
2
α2 +(2+ κ

2
)α. Then by Im p = 0,

we get
α2

(
−κα1 + 2 +

κ

2

)
= 0.

So α2 = 0 or α1 = 4+κ
2κ

.
By B = 0, we get q = −κα2 +

(
3 + κ

2

)
α− iaα. Then by Im q = 0, we get that

2κα1α2 −
(κ

2
+ 3
)
α2 + aα1 = 0.
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So if α2 = 0, we have a = 0, this is the usual case which has been discussed in[6].
So we assume a 6= 0, then

α1 =
κ+ 4

2κ
, α2 = −a(κ+ 4)

κ(κ+ 2)
,

and

α =
4 + κ

2κ

(
1− i 2a

k + 2

)
.

Then

p = p(κ, a) =
(κ+ 4)2

8κ

(
1 +

4a2

(κ+ 2)2

)
,

q = q(κ, a) =
κ+ 4

2κ

(
1 +

4a2

(κ+ 2)2

)
.

Notice that κ
2
|α|2 = p. So with these special values we have

E[|z|q |f
′(z)|p

|f(z)|q
] =

|(1− z)α|2

(1− |z|2)
κ|α|2

2

.

Notice that Reα > 0, then we can get that

lim
r→1

∫
|z|=r

|(1− z)α|2

(1− |z|2)
κ|α|2

2

|dz| � (1− r2)−
κ|α|2

2 .

So in our special case the average (p, q)-spectrum is β(p, q) = p. We summary our
results as the following theorem :

Theorem 98. Let f(z) = f0(z) where (ft) is the whole-plane Loewner process driven
by λ(t) = ei(at+

√
κBt). If p, q take the following values :

p = p(κ, a) = (κ+4)2

8κ

(
1 + 4a2

(κ+2)2

)
,

q = q(κ, a) = κ+4
2κ

(
1 + 4a2

(κ+2)2

)
;

then the generalized integral means spectrum β(p, q) of f is equal to p.

Remark 99. In fact we can regard the Loewner process driven by Lt = at +
√
κBt

as a stochastic perturbation of the logarithmic spiral, which corresponds to the case
κ = 0. Also note that when κ = 0, f0 is the just the Koebe function, therefore SLEκ
might be looked upon as a stochastic perturbation of the Koebe map as κ tends to
0.
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Figure 5.2.1 – The logarithmic spiral with a = 5.

5.2.2 Generalized integral means spectrum of the logarithmic
spiral

The logarithmic spiral with parameter a ∈ R is the curve parametrized by

γ(t) = e(1+ia)t, t ≥ 0.

Let Ωt = Cr γ[t,+∞) and ft(z) : D→ Ωt be the Riemann map, i.e. the conformal
map with

ft(0) = 0, f ′t(0) > 0. (5.2.12)

By the Koebe-1/4 theorem, limt→−∞ f
′
t(0) = 0 and limt→∞ f

′
t(0) = ∞. Then, there

exists t0 such that f ′t0(0) = 1. Suppose that ft0(eiθ0) = γ(t0) = e(1+ia)t0 for some
θ0 ∈ [0, 2π].

Consider now the function f̃t defined by

f̃t(z) = e(1+ia)tft0(e−iatz).

We have f̃t(0) = 0, f̃ ′t(0) = et, and

f̃t(e
i(θ0+at)) = e(1+ia)(t+t0) = γ(t+ t0).

Hence f̃t : D→ Ωt+t0 is the Loewner map corresponding to the curve

γ̃(t) = e(1+ia)(t+t0), t ∈ R.

Since f̃t(ei(θ0+at)) = γ̃(t), the associated process is driven by λ̃(t) = ei(θ0+at).
Define then the curve

η(t) = e−iθ0 γ̃(t), t ∈ R,

and the function
ht(z) = e−iθ0 f̃t(e

iθ0z).
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It is clear that ht is the Loewner map corresponding to η and since ht(eiat) = η(t),
the associated driven function is λ(t) = eiat.

Notice that the curve η can be obtained by a rotation and a time-translation of
the logarithmic spiral γ. Thus the generalized integral means spectrum should be
the same for the maps h0 and f0.

Let us compute the generalized integral means spectrum of f0. We define the
function Φ as follows :

Φ(z) := e
(1+ia) 2

1+a2 log(i 1−z
1+z ) =

(
i
1− z
1 + z

) 2(1+ia)

1+a2

, z ∈ D.

We know that z 7→ log(z) maps conformally the upper half plane onto the strip Sπ,
and z 7→ e(1+ia)z the strip domain S2π/(1+a2) := {x + iy : 0 < y < 2π/(1 + a2)} onto
C with a cut along the whole logarithmic spiral γ(t), t ∈ R. Consequently, Φ is a
conformal map from the unit disk to the complement of the whole logarithmic spiral
with Φ(1) = 0,Φ(−1) =∞.

Suppose f0(z) is conformal map corresponding to the whole plane Loewner pro-
cess driven by eiat at t = 0. We call this the half spiral. Near ∞, the half spiral and
whole spiral have the same spectrum. So we can use Φ to calculate the spectrum
near ∞.

Since |Φ(z)| = e
2

1+a2 (Re log
i(1−z)

1+z
−aIm log

i(1−z)
1+z

) and Im log i(1−z)
1+z

∈ [0, 2π] is bounded.

We only need to see e
2

1+a2 (Re log
i(1−z)

1+z
).

Then
|Φ(z)| ∼ |1− z

1 + z
|

2
1+a2 , |Φ′(z)| ∼ |1 + z|−

3+a2

1+a2 |1− z|
1−a2

1+a2 .

Thus
|Φ′(z)|p

|Φ(z)|q
∼ |1 + z|−p

3+a2

1+a2 + 2q

1+a2 |1− z|p
1−a2

1+a2−
2

1+a2 q.

Around z = −1, |1 + z|2 = (r2 + 2r cos θ + 1) behaves like (π − θ)2, so its integral
around π behaves like θ−p+

2(q−p)
1+a2 +1 ∼ (1 − r)

−p+ 2(q−p)
1+a2 +1. Then we haveβ1(p, q) =

−p+ 2(q−p)
1+a2 + 1.

Suppose

φ(z) =
z

(1− z)2
: D→ Cr (0,−1

4
]

is the Koebe function with φ(0) = 0, φ(1) =∞, φ(−1) = −1
4
.

Let g be the conformal map from C r (0,−1
4
] to Ω0 := C r γ[0,∞] with g(0) =

0, g(−1
4
) = 1. Then f0 = g ◦ φ. Notice that g and g′ is bounded near −1

4
. So near

−1, ∫
|f ′0(z)|p

|f(z)q|
∼
∫
|φ′(z)|p.

Since the spectrum of a half line near the tip is −p− 1. Then we get that near the
tip 1, the spectrum of the half spiral should be βtip = −p− 1.
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Figure 5.2.2 – Phases for the generalized integral means spectrum of the logarithmic
spiral.

Since away from∞ and the tip 1, the half spiral is rectifiable, then the spectrum
should be β0 := 0. We get the following theorem.

Theorem 100. The generalized integral means spectrum of f0 where ft is the whole-
plane Loewner process driven by λ(t) = eiat is given by

β(p, q) = max{βtip, β0, β1}.

5.2.3 General Lévy process with special symbols

In this section, we will consider general Lévy process but with special symbols.
We will use the same method as [16] to compute the generalized integral means
spectrum for some special values.

In the following we assume that p ≡ 2 and Lt is symmetric(see section 2.6).
Suppose G(z, z̄) has the form

G(z, z̄) = (1− z)(1− z̄)h(z, z̄).

Substituting into (22),

− η̂[(1− z)(1− z̄)h(z, z̄)] + (z + 1)(z̄ − 1)z∂zh+

(z̄ + 1)(z − 1)z̄∂z̄h+ (3− q)(2zz̄ − z − z̄)h = 0. (5.2.13)

Assume

h(z, z̄) =
∞∑
n=0

θn(χ)(zn + z̄n), χ := zz̄.

72



5.2. SPECTRUM OF THE LOEWNER PROCESS DRIVEN BY LÉVY PROCESS

By comparing the coefficients before zn, we can get a recursion relation among
θn(χ) :( The symmetric assumption ofLt assures that we only need to compare the
coefficient of zn for n ∈ N)

2χ(χ− 1)θ′n(χ)−
(
ηn + n+ (ηn + 2q − n− 6)χ

)
θn (5.2.14)

+ χ
(
ηn + n− 2 + q

)
θn+1(χ) + (ηn − n− 2 + q)θn−1(χ) = 0. (5.2.15)

Therefore, we have
(a) If η1 = 3− q, only θ0 is not equal to 0, and we have

θ0(χ) =
1

2(1− χ)3−q , G(z, z̄) =
|1− z|2

(1− |z|2)3−q .

So
lim
r→1

∫
|z|=r

|1− z|2

(1− |z|2)3−q |dz| � (1− r2)q−3.

Then the corresponding generalized integral means spectrum is

β(2, q) = 3− q.

(b) If η1 = 1−q, only θ0 and θ1 don’t vanish. And they satisfy the ODE system :{
(χ− 1)θ′0(χ) + (3− q)θ0(χ) + (q − 2)θ1(χ) = 0

2χ(χ− 1)θ′1(χ) +
(
q − 2 + (6− q)χ

)
θ1(χ)− 2θ0(χ) = 0.

Solving this ODE system(combing the initial values G(0) ≡ 1), we have
θ0(χ) = 1+χ

(1−χ)4−q

θ1(χ) = − 2
(2−q)(1−χ)4−q .

Then

G(z, z̄) =|1− z|2
( 1 + |z|2

(1− |z|2)4−q +
2(z + z̄)

(q − 2)(1− |z|2)4−q

)
=
|1− z|2

(1− |z|2)4−q

(
1 + |z|2 +

2(z + z̄)

q − 2

)
.

Since η1 = 1− q > 0, we have q < 1 and 1 + |z|2 + 2(z+z̄)
q−2

is uniformly bounded.
Therefore

lim
r→1

∫
|z|=r

|1− z|2

(1− |z|2)4−q

(
1 + |z|2 +

2(z + z̄)

q − 2

)
|dz| � (1− r2)q−4.

We get the corresponding generalized integral means spectrum is

β(2, q) = 4− q.
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We summarize above results as the theorem below :

Theorem 101. Suppose f = f0, here (ft) is the inner Loewner process driven by
λt = exp{iLt}, where Lt is a symmetric Lévy process. Then

(1) If p = 2, η1 = 3 − q, the average generalized integral means spectrum f is
β(2, q) = 3− q ;

(2) If p = 2, η1 = 4 − q, the average generalized integral means spectrum f is
β(2, q) = 4− q.

Remark 102. Here p = 2 is essential, otherwise we will not have the nice form . So
far all the spectrum we have got used the special solution of the PDE. And we can
not get the special for general (p, q).
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Certains problèmes concernant le SLE

Résumé :
Cette thèse se concentre sur trois sujets liés aux SLE(κ) processus. La première partie concerne le processus
dipolar SLE(κ) et la mesure de restriction conforme à la bande ; La deuxième partie porte sur la propriété de
connectivité de la mesure de la boucle brownienne ; Et la troisième partie porte sur le spectre des moyens
intégrés généralisés du processus entier intérieur des processus Loewner piloté par un processus Lévy.
Mots clés :dipolar SLE ; dipolar restriction mesure ; la mesure de la boucle brownienne ; le spectre des moyens
intégrés généralisés.

Some problems about SLE

Abstract :
This thesis focuses on three topics related to the SLE(κ) processes. The first part is about the dipolar SLE(κ)
process and the conformal restriction measure on the strip ; the second part is about the connectivity property
of the Brownian loop measure ; and the third part is about the generalized integral means spectrum of the inner
whole plane Loewner processes driven by a Lévy process.
Keywords : dipolar SLE ; dipolar restriction measure ; Brownian loop measure ; average integral means spec-
trum.
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