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Résumé

En raison de la demande croissante des systèmes d’analyse vidéo, la reconnaissance ainsi

que la détection de l’action humaine sont ciblées par les chercheurs. L’objectif étant de

réaliser une description précise et rapide de la vidéo, essentielement dans les grandes bases

de données. Ainsi, le but ultime de la reconnaissance de l’action humaine sur les vidéos

est de déterminer de manière automatique ce qui se passe dans une vidéo donnée.

Cette thèse vise à répondre à cette question en apportant une contribution dans la phase

de détection et la phase de reconnaissance d’actions. Dans cet esprit, nous introduisons de

nouvelles méthodes de description de reconnaissance de l’action humaine.

Pour la partie détection des actions, nous avons introduit deux approches basées sur

les points d’intérêts locaux. La première proposition est une méthode simple et efficace qui

vise à détecter les mouvements humains ensuite contribuer à extraire des séquences vidéo

décrivant des actions importantes. Afin d’atteindre cet objectif, les premières séquences

vidéo sont segmentées en volumes de trames et groupes de points déintérêt . Dans cette

méthode, nous nous basons sur le suivi du mouvement des points d’intért. Nous avons

utilisé, dans un premier lieu, des vidéos simples puis nous avons progressivement augmenté

la complexité des vidéos en optant pour des vidéos réalistes.

Les jeux de données simples présentent généralement un arrière-plan statique avec un

seul acteur qui effectue une seule action unique ou bien la même action mais d’une manière

répétitive. Nous avons ensuite testé la robustesse de la détection d’action proposée dans

des jeux de données plus complexes réalistes recueillis à partir des réseaux sociaux.

Nous avons introduit une approche de détection d’actions efficace pour résoudre le

problème de la reconnaissance d’actions humaines dans les vidéos réalistes contenant des

mouvements de caméra et n’étant pas de bonne qualité. Le mouvement humain est donc

segmenté d’une manire spatio-temporelle afin de détecter le nombre optimal de trames

suffisant pour effectuer une description vidéo.

Pour ce qui est du volet de la description, nous avons proposè dans cette thése deux

nouveaux descripteurs spatio-temporels. Ces descripteurs sont basés sur le suivi de la

i



ii RÉSUMÉ

trajectoire des points d’intérêt. Les suivis et la description vidéo sont effectués sur les

patchs vidéo qui contiennent un mouvement ou une partie d’un mouvement détecté par la

segmentation réalisée lors de l’étape précédante. Nous nous sommes basé sur le descripteur

SURF non seulement pour son efficacité et mais essentiellement pour la rapidité de son

extraction. Le premier descripteur proposé est appel ST-SURF, il est basé sur une nouvelle

combinaison du (SURF) et du flot optique. Le ST-SURF permet le suivi de la trajectoire

des points d’intérêt tout en gardant les informations spatiales, pertinentes, provenant du

SURF.

Le deuxième descripteur proposé dans le cadre de cette thèse est un histogramme du

mouvement de la trajectoire (HMTO). HMTO est basé sur la position ainsi que l’échelle

relative à un SURF. Ainsi, pour chaque SURF détecté, nous définissons une région du

voisinage du point d’intérêt en nous basant sur l’échelle. Pour le patch détecté, nous

extrayons le flux otique d’une manière dense. Les trajectoires de mouvement sont ensuite

générées pour chaque pixel en exploitant les composantes horizontale et verticale de flux

optique (u, v). La précision de la description de la vidéo proposée est testée sur un ensemble

de données complexe et un plus grand ensemble de données réalistes. Les descripteurs

de vidéo proposés sont testés d’une manière simple puis en les fusionnants avec d’autres

descripteurs. Les descripteurs vidéo ont été introduit dans un processus de classification

basée sur le sac de mots et ont démontré une amélioration des taux de reconnaissance par

rapport aux approches précédemment proposées dans l’état-de-l’art.



Abstract

Due to increasing demand for video analysis systems in recent years, human action de-

tection/recognition is being targeted by the research community in order to make video

description more accurate and faster, especially for big datasets. The ultimate purpose

of human action recognition is to discern automatically what is happening in any given

video. This thesis aims to achieve this purpose by contributing to both action detection

and recognition tasks. We thus have developed new description methods for human action

recognition.

For the action detection component we introduce two novel approaches for human action

detection. The first proposition is a simple yet effective method that aims at detecting

human movements. First, video sequences are segmented into Frame Packets (FPs) and

Group of Interest Points (GIP). In this method we track the movements of Interest Points

in simple controlled video datasets and then in videos of gradually increasing complexity.

The controlled datasets generally contain videos with a static background and simple ac-

tions performed by one actor. The more complex realistic datasets are collected from social

networks.

The second approach for action detection attempts to address the problem of human ac-

tion recognition in realistic videos captured by moving cameras. This approach works by

segmenting human motion, thus investigating the optimal sufficient frame number to per-

form action recognition. Using this approach, we detect object edges using the canny edge

detector. Next, we apply all the steps of the motion segmentation process to each frame.

Densely distributed interest points are detected and extracted based on dense SURF points

with a temporal step of N frames. Then, optical flows of the detected key points between

two frames are computed by the iterative Lucas and Kanade optical flow technique, using

pyramids.

Since we are dealing with scenes captured by moving cameras, the motion of objects

necessarily involves the background and/or the camera motion. Hence, we propose to com-

iii



iv ABSTRACT

pensate for the camera motion. To do so, we must first assume that camera motion exists

if most points move in the same direction. Then, we cluster optical flow vectors using a

KNN clustering algorithm in order to determine if the camera motion exists. If it does,

we compensate for it by applying the affine transformation to each frame in which camera

motion is detected, using as input parameters the camera flow magnitude and deviation.

Finally, after camera motion compensation, moving objects are segmented using temporal

differencing and a bounding box is drawn around each detected moving object. The action

recognition framework is applied to moving persons in the bounding box. Our goal is to

reduce the amount of data involved in motion analysis while preserving the most important

structural features. We believe that we have performed action detection in the spatial and

temporal domain in order to obtain better action detection and recognition while at the

same time considerably reducing the processing time.

For the description component, we propose two novel spatio-temporal descriptors. Both

of them are based on the tracking of interest points’ trajectories. The tracking and the

video description are performed on the detected relevant video patches that describe signif-

icant motion. We have chosen the Speed up Robust Feature (SURF) due to its efficiency

and rapidity with the extraction step. In the context of video description, the ability

to perform accurate action recognition more quickly is most appreciated by the research

community. This is especially true since recently the focus has been oriented toward in-

creasingly large realistic datasets. In sum, this first proposed descriptor is called ST-SURF

(Spatio-Temporal SURF). It is based on a novel combination of the speed up robust fea-

ture (SURF) and the optical flow. The ST-SURF allows the tracking of interest points’

trajectory while capturing spatial information provided by the detected SURF.

The second proposed descriptor is called the histogram of motion trajectory orientation

(HMTO). HMTO is based on the SURF region, position and scale. Hence, for every

detected SURF, we define the interest point neighborhood size related to the actual scale.

For the detected patch, we extract a dense displacement field based on the optical flow

algorithm. Motion trajectory orientations are then generated for every pixel by exploiting

horizontal and vertical optical flow components (u, v). We split the optical flow components

to extract the distribution of the motion trajectory orientation in the planes (t, x) and (t, y).

The generated histograms describe the distribution of the trajectory orientation angle and

its displacement into what we called selective snippets (SS). The SS are the extracted
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relevant video patches that describe a human action portion or part based on the bounding

boxes. The proposed video description accuracy is tested over complex datasets and over

large realistic datasets. The proposed video descriptors are tested in a single, fusion-based

video description. The resulting video descriptors are introduced in a classification process

based on the bag-of- words and demonstrate significantly improved recognition rates over

previously proposed approaches.
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1
INTRODUCTION

Success is to be measured not so much

by the position that one has reached in life

as by the obstacles which he has overcome.

Booker T. Washington
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2 CHAPTER 1. INTRODUCTION

Action recognition in videos focuses on exploring human behavior. It has been de-

veloped in order to duplicate the capacity of natural human vision to understand auto-

matically the surrounding environment. Since the 1980s, it has functioned by extracting

useful information from a scene in an image or a video. In recent years, a large number

of innovative feature extraction approaches have been proposed. Using these methods,

researchers extract a representation of the scene content to yield descriptors. Machine

learning algorithms are then employed to analyze these descriptors in order to achieve a

specific purpose, for instance, the recognition of actions or objects within a video, as shown

in Figure 1.1.

Figure 1.1. Human action recognition process

The recognition of human actions from videos is receiving increasing attention due to

its wide range of applications, such as video indexing and retrieval [1], human-computer

interaction, digital entertainment, and surveillance videos [2] etc. A key question now

arises: What is the definition of a human action?

Several surveys were have been conducted for the purpose of answering this question.

Among the most important of these surveys conducted in recent years are those by to

Aggarwal and Cai in 1997 [3], Gavrila in 1999 [4], Wang and Singh with their work on

2003 [5], Buxton on 2003 [6], Aggarwal and Park on 2004 [7] , Turaga et al. in 2008 [8],

and Aggarwal and Ryoo in 2011 [9]. As a result of their studies, we can subdivide ”human

body motion”, which is a broader category than ”human action”, into four main categories:

gestures, action, activity and events.

• At the most basic level, gestures are important components of human actions. They

are generally short in temporal duration. They consist of a form of nonverbal com-
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munication of the visible parts of the body in order to provide specific messages.

Gestures include movements of the hands, head or other body parts. Some examples

include spontaneous hand movements when talking, or those intentional movements

used in sign language or to signify a particular message, such as the ”victory” sign

made by the fingers as shown in Figure 1.2.

(a) (b) (c)

Figure 1.2. Some known human gestures (a) Victory gesture ; (b) Chapeau gesture; (c)
Sign language gesture

• An action is performed by an actor. One action requires a combination of a number

of gestures in order to complete a specific task, such as a ”phone call”, See Figure

1.3.

Figure 1.3. Human action ”phone call”

• An activity is a higher level of human movements. One activity can involve several

humans and objects, as demonstrated by the examples of playing football or dancing

shown in Figure 2.11. An activity, like an action, necessarily involves actors. For

example, raining is neither an action nor an activity, since it does not involve actors.

An activity is the combination of temporally ordered actions. There are many levels
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of complexity in activities. The most complex activities involve combinations of other

smaller or simpler activities.

(a) (b)

Figure 1.4. Some known human activities (a) Football ; (b) Dancing

• Events are activities that take place at a specific time. That is, each event has a

beginning and an ending time. Usually, events are characterized by their temporal

extents, not by the existing actor or the spatial information. An example of an event

could be an actorin this case, a hair stylistgiving someone a haircut

Action recognition in videos is usually confronted to by many issues, including the

necessity of handling considerable occlusions, scale changes, illumination, and the existence

of background clutter, as well as viewpoint changes, as shown in Figure 1.5.

Figure 1.5. The same object captured from different view points.

The focus of this thesis is to develop robust techniques for human action detection and

recognition via spatio-temporal features.
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To reach this purpose, we begin by understanding human action on its different levels of

complexity. We investigate motion information to develop robust human action recogni-

tion of tasks of increasing complexity. We start by treating simple actions performed by

single actors. The proposed datasets are relatively small, with very small camera motion.

Generally, the actors are performing simple action repetitively as shown in Figure 1.6

Figure 1.6. Single actions performed by an actor without background details.

In user-generated video footage, the quantity of video data containing human actions

and scenes is growing exponentially, with about 48 hours of video uploaded per minute

on YouTubeTM [10]. With this growth, the demand for action recognition in Amateur

video is certainly colossal. Compared with professionally produced movies, realistic videos

are particularly noisy with low quality, poor lighting and. This challenge motivated me to

work in more complex conditions in order to make my research more relevant to the real

world. At the same time, it must be said that the datasets used from realistic videos are

relatively small. The actions to be analyzed are performed by one or more actors, and they

involve objects as well as complete human bodies.

The final challenge in this work arises from the need to develop a robust video representa-

tion from a large dataset of realistic videos. In this dissertation, we disregard context and

focus on the actions in each video analyzed. In fact, neither the background details nor

the relations between actors are analyzed. We use temporal action detection in order to

segment video actions into relevant action parts. We develop a spatio-temporal features

representation that can be applied to realistic tasks.

We believe that human action recognition relies on three main steps:

• Action detection: Human action depends on the person performing it. For example,
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during the action ”drink a coffee” an actor can look at his ”phone”, or ”sit down”.

For the same action, another person can ”drink the coffee” without making any

other movement. Someone can ”jump” while ”walking”. Here we evoke the problem

of ”intra-classes” with which we need to deal when working with realistic videos.

• Feature extraction: The extraction of descriptors consists of detecting salient points,

patches or volumes that most describe the actions. The dataset videos must be de-

scribed by the same algorithm. Each video has its own description with a distinctive

number of features. The extracted features, from all over a dataset, must have the

same dimensionality to perform classification.

• Classification/training: Classification is the final step in the human action recognition

process. This step involves arranging descriptors into groups, according to their

features, so that descriptors with similar features are in the same group. Each group

can be used to represent an action.

1.1 Technical issues

In order to track closely human action in videos, many methods heavily rely on detecting

the video portions that can describe a specific action [11], citeniebles2010modeling,[12]. For

example, in the method of Noguchi et al. [13] video sequences are subdivided into snippets

of five frames. In [14], Laptev et al., researchers worked on video patches of thirty to two

hundred frames with an average number of seventy frames. They used spatio-temporal

descriptors to detect boosted cascade classifiers and an annotated keyframe to describe

specific actions, such as drinking. Dementhon et al. [15], extracted features from video

portions containing between twelve to eighteen frames, whereas Skindler et al. [12] sug-

gested that action recognition systems need one to ten frames to recognize action. In [16],

the authors claim that reconsidering segmentation by generating approximate locations

over a few precise objects can increase the accuracy of recognition. The drawback of all

these above-mentioned approaches is that dividing a video into equal segments is neither

sufficient nor intuitive for detecting an action with all its potential inter- and intra-class

variations.

Once videos are segmented, they are described by extracted features. The state-of-the-art

attests to various types of low level video descriptors. Several of them yielded accurate

descriptions of controlled videos. However, the more realistic the videos are, the more the
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description needs to be robust and detailed. To achieve a better description of more com-

plex videos, researchers suggest the fusion of multiple features as well as the optimization

of the video description with respect to time consumption. In particular, spatio-temporal

local features have been widely studied to detect human actions, objects and events in

videos. Although video analysis with attention to spatio-temporal features is not a new

method, it has not yet been much explored.

After the video description step comes the training or learning task. In the context of

action recognition in videos, the representation of video objects as a bag-of-visual-words

(BoVW) through a histogram has become a very active research field [17]. This histogram

can be used in a classifier framework to show the difference between object’s classes. How-

ever, the main weakness of a given BoVW is that not all words will be informative, accurate

or objective in terms of describing actions. Consequently, the selection of the most informa-

tive words is required. The most used methods to select visual words are Machine learning

techniques, such as Boosting [18], an adaptation process such as Multiple Instance Learn-

ing (MIL) [19] or many other State-of-the-art algorithms [20], [21]. While these approaches

provide significant results for action recognition, they need to be adapted to be applied

into the temporal domain.

Recent studies in both the spatial [22] and temporal [23] domains explore the descriptive

and discriminative performances of these features. Although BoVW has shown promising

recognition results, classification relying on the BoVW suffers from drawbacks caused by

the quantization of the descriptors into codewords. Another issue of BoVW representations

is the neglect the spatial information. In fact, the objects are clustered without consider-

ation of their position in the image or video frames. The utility of the BoVW approach

decreases when working with complex actions, since such actions increase the semantic gap

between the descriptor and the action.

Thus, this representation is unable to bridge the semantic gap between computable low-

level features (e.g. visual, audio, and textual features) and semantic information that they

encode (e.g. the presence of meaningful classes such as ”a person clapping”, ”sound of a

crowd cheering”, etc.) [149]. Despite much progress made in the past decade , the BoVW

computational approaches involved in complex event recognition remain reliable only under

certain domain-specific constraints.
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1.2 Main contributions

In this thesis, we address the problem of human action recognition from unconstrained

and realistic videos. To this end, feature extraction and representation algorithms are

proposed. The proposed descriptors rely on spatial interest points and temporal action

evolution, such that high accuracy can be achieved at low computational cost. A temporal

video segmentation and action detection algorithm are also proposed to optimize the action

recognition efficiency. We briefly outline our research contributions as follows:

From the action detection perspective, our contribution lies in the design of two computa-

tionally efficient action detectors.

• Trajectory based action detection: Trajectory based action detection: Within the

purview of the work proposed in this thesis, we address spatio-temporal action de-

tection. We suggest detecting human action and action boundaries in order to localize

the processed video patch (i.e., the video parts which will be processed). In a given

video, the action happens in a specific interval of time. Hence, treating the entire

video will lead not only to treating the action to be detected and then described but

also unnecessary video portions that contain non-significant actions or no action at

all. From this comes the idea of designing an algorithm that focuses on highlighting

body movements. The proposed technique relies on Interest Points (IP) detection.

We choose the Speed Up Robust Feature (SURF), as it is a highly performing and fast

interest points detector [24]. The detected interest point trajectory is tracked, and

the moving IP are selected. The latter are divided into groups, and every group of

IP is tracked. We test the efficiency of this method on increasingly complex datasets,

moving from simple actions to more complex, realistic ones. Experiments prove that

this new approach yields many advantages. On the one hand it permits us to reduce

the dimensionality of video descriptors. On the other hand, it allows us to extract

descriptors from predefined patches instead of the entire video. As a result, the pro-

cessing time is considerably reduced. The detection of human action is a challenging

task, because actions can be both simple and incredibly complex. The proposed idea

allows the division of human movements into a succession of small motions. This

provides a better detection of actions as well as a better solution to the problem of

intra-class variations. The developed algorithm detects small actions. From these

ordered mini-actions, it constructs an entire action.
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• Dense trajectory based action detection: Dense trajectory based action detection:

For this part of the research, we focused on optimizing human action detection. We

propose to detect moving humans or objects in the scene. This is achieved by first

detecting IP densely distributed throughout the scene. Then, based on the opti-

cal flow computation, we design bounding boxes surrounding the human(s) and/or

objects in movement. We allow objects detection, because we believe that objects

related to the context of the action can play an important role in the classification

step. Then, in every detected bounding box, we extract IP that perform significant

motions. By setting a minimum motion value, we take into account and reduce the

small motions generally produced by the camera. Thus, we divide the human action

into small portions called ”actionlets”. This allows the optimization of descriptor

size and reduction of processing time.

From the video description perspective, our contribution lies in the design of two

relevant and efficient descriptors.

• Spatio-temporal SURF (ST-SURF): After video temporal segmentation and human

action detection, we propose a new algorithm based on the extension of the SURF

descriptors to the temporal domain. SURF is well known as a spatial visual descrip-

tor that proves its efficiency for image retrieval, since it is not adversely affected

by rotation and illumination. The SURF approach uses a Hessian detector, which

is efficient and especially fast. The detected SURF descriptors are associated with

their optical flow. A parametrization of the optical flow and the SURF information

leads to a spatio-temporal SURF descriptor. This feature captures the spatial infor-

mation provided by the SURF and the motion information gleaned from the optical

flow. In addition, ST-SURF contains localization information, which is missed by

the BoVW approach. Each descriptor is tested on several datasets at varying levels

of complexity. We also perform an extensive evaluation of the proposed descriptors

action detection accuracy both while using it by itself as well as when it is associated

with other descriptors. Our approach demonstrates improvements over the tradi-

tional SURF and several other spatio-temporal descriptors of the state-of-the-art.

• Histogram of trajectory motion orientation (HTMO): We investigate a complemen-

tary source of information based on the tracking of the IP trajectory. We present
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an efficient descriptor used to recognize human action in realistic video benchmarks.

Our aim is to design a feature that describes the distribution of the motion ori-

entation around an IP. We introduce a novel spatio-temporal descriptor based on

the histogram of SURF-based patches trajectory orientation, for which we coin the

term HMTO. HTMO captures joint cues between the distribution of motion and

appearance of constituent IP. The Motion trajectory is extracted by optical flow

computation. A parameterization step is exploited to extract HMTO in both x and

y directions (HMTOx) and (HMTOy).

The descriptors we designed are tested in different scenarios. In order to evaluate

our proposed approaches, we start by using simple yet challenging datasets with only one

actor performing one action without any influence from camera motion or a challenging

background. In order to prove the robustness of the proposed descriptor, we use more

complex datasets with realistic videos captured by amateurs from real scenes. These videos

contain changing backgrounds, camera motion, and illumination variation, among other

challenges.

The introduced descriptors are employed alone as well as in different configurations based

on their fusion with other descriptors from the state-of-the-art. We rely on early and late

fusion processes to explore human action recognition in highly complex small and large

datasets. At the end of the thesis, we propose a global high level video description based

on features that are able to capture both spatial and temporal information from videos

with robust camera motion and complex backgrounds.

1.3 Thesis outline

The remainder of the report is organized as follows:

• Chapter 2 discusses relevant work on action recognition and introduces our proposal

for an improved approach to action recognition.

• Chapter 3 A new spatio-temporal descriptor we called ST-SURF is proposed in

this chapter. ST-SURF is based on a novel combination of the speeded-up robust

features (SURF) and optical flow. The Hessian detector is employed to find all

interest points. To reduce the computation time, we propose a new methodology for

video segmentation into Frame Packets (FPs), based on interest points trajectory

tracking. We consider only moving interest points descriptors to generate a robust
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and powerful discriminative code-book based on K-mean clustering. A subjective

study has been launched to evaluate our index in comparison with current indices.

• Chapter 4 An efficient action recognition approach is developed in this chapter.

It is based on the spatial position and the trajectory information of the SURF. A

novel selective video segmentation scheme based on dense sampled interest point

(IP) trajectory tracking and matching is proposed. Segmented video snippets (SS)

describe a part of an action called an ”actionlet”. A new descriptor, called histogram

of motion trajectory orientation (HMTO) and based on the SURF region, position

and scale, is introduced. The performances of the proposed method are evaluated

on some known datasets. Extensive experimental tests conducted to ascertain the

superiority of the proposed method confirm the efficiency of our method.

• Chapter 5 In this chapter, temporal action detections are investigated based on a

sampling of densely distributed interest points and by reducing camera motion effect.

Once the moving actors are detected, the video temporal segmentation is performed.

The video description is evaluated on big, realistic datasets.

• Chapter 6 summarizes the results of the current research and proposes several lines

of future research.

The bibliography is given at the end.

1.4 Publications

Based on the findings of the current research, some papers have been published to the

international and national conferences as following:

Journal papers:

1. S. Megrhi, M. Jmal, A. Beghdadi, W. Souidène, ”Spatio-temporal Action Local-

ization and Detection for Human Action Recognition in Big Dataset”, in Journal of

Computer Vision and Image Understanding (CVIU): Special Issue on Individual and

Group Activities in Video Event Analysis, Submitted in November, 2014.

2. S. Megrhi, A. Beghdadi, W. Souidène, ”Selective Video Segmentation and Local

Trajectory Tracking for Human Action Recognition”, in Image and Vision Computing

Journal, Submitted in September, 2014.
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National and International conference papers:

1. S. Megrhi, A. Beghdadi, W. Souidène, ”Spatio-temporal action detection for human

action recognition in video”, accepted in The twenty seventh IST/SPIE Electronic

Imaging, 2015.

2. S. Megrhi, A. Beghdadi, W. Souidène, ”Trajectory Feature Fusion for Human Ac-

tion Recognition”, The 5th European Workshop on Visual Information Processing

(EUVIP), 2014.

3. S. Megrhi, A. Beghdadi, W. Souidène, ”Classification des actions humaines basée

sur les descripteurs spatio-temporels”, 14èmes Journées Francophones Extraction et

Gestion des Connaissances, EGC, 2014, Acceptance rate 24%.

4. S. Megrhi, W. Souidène, A. Beghdadi, ”Spatio-temporal SURF for Human Action

Recognition”, the fourteenth LNCS/Springer Pacific-Rim Conference on Multimedia

(PCM), 2013, acceptance rate 35%.

5. S. Megrhi, W. Souidène, A. Beghdadi, ”Spatio-temporal salient Feature extraction

for Perceptual Content Based Video Retrieval”, the eighth IEEE Color and Visual

Computing Symposium, 2013.

6. S. Megrhi, W. Souidène, A. Beghdadi, ”Video indexing using salient region based

spatio-temporal segmentation approach”, the fifth IEEE International Conference on

Multimedia computing and systems, pp. 170-173, 2012.

7. W. Souidène, S. Megrhi, A. Beghdadi, ”Perceptual non local mean (P-NLM) de-

noising”, the fifth IEEE International Conference on Communications Control and

Signal Processing (ISCCSP), 2012.
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A detailed discussion of related work in the area of action recognition is presented in

this chapter.

2.1 Introduction

Action recognition is a field that focuses on extracting useful information from a scene in

an image or a video. In recent years, much research has been focused on extracting robust

and relevant features. The methods used extract a representation of the scene content as

descriptors. They then use machine learning algorithms to treat these descriptors in order

to achieve a specific purpose, for instance, the recognition of actions or objects within a

video.

The recognition of human actions in videos is receiving increasing attention due to its

wide range of applications, such as video indexing and retrieval [1], human-computer in-

teraction, digital entertainment, surveillance videos [2], etc. In the realm of user-generated

video footage, the quantity of video data containing human actions and scenes is grow-

ing exponentially, with about 48 hours of video uploaded per minute on YouTubeTM. As

the quantity of video data grows, so does the demand for action and scene recognition or

content-based video data retrieval. Most often, significant events in these videos are char-

acterized by actions, such as boxing, kissing, or the stealthier actions or behaviors found

in a surveillance video. However, action recognition is usually confronted with many issues

including the necessity of handling considerable occlusions, scale changes, illumination, and

the existence of background clutter, as well as viewpoint changes. Several surveys have

been conducted in order to analyze human actions in videos. Among the most important

of these studies are those conducted by Aggarwal and Cai in 1997 [3], Gavrila in 1999 [4],

Wang and Singh with their work in 2003 [5], Buxton in 2003 [6], Aggarwal and Park in

2004 [7] , Turaga et al. in 2008 [8], and Aggarwal and Ryoo in 2011 [9].

2.2 Approaches for human action recognition

This section describes the action recognition methods proposed in the literature. The

topics covered are arranged according to the main components of the action recognition

framework 2.1.
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Figure 2.1. Action Recognition Framework.

2.3 Features extraction methods

Features extraction is the first step toward a video description. Multiple proposals have

been developed with the common objective of producing an optimal action description.

We review the particularities of these approaches and present relevant works.

2.3.1 Global features methods

In this approach, moving objects are described as a whole part of the video scene. Human

parts detection and tracking are the first step and the key to the success of this approach.

In fact, after this step, the segmented regions are described based on extracted information.

In the same spirit, authors in [25] consider human actions as 3D shapes, having analyzed

2D shapes and generalized them into volumetric space-time action shapes. In order to

achieve this transformation from 2D to 3D, they first extract the spatial information of

the orientation and location of a given figure’s torso and limbs. Next, they extract the

silhouette’s global motion. They segment space-time portions by using sliding temporal

windows. The segmented blocks are then described by a high-dimensional feature vector.

[25] employs a nearest-neighbor classifier to vote for the relative class. Examples of space-

time shapes from the Weizmann dataset are illustrated in Fig. 2.2.
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Figure 2.2. Space Time Shapes of the three actions: ”jumping-jack”, ”walking” and
”running” (coutsey from [25]).

2.3.2 Silhouette based features extraction methods

Another approach to action recognition, this time based on the human silhouette, is pre-

sented by Bobick and Davis [26]. They propose Motion Energy Images (MEI) and Motion

History Images (MHI) to extract temporal information from videos. The MEI localize the

motion in videos, while the MHI provide information about the most recent actions in the

video, that is, temporal information, Fig. 2.3.

Figure 2.3. Motion Energy Image (MEI) and Motion History Image (MHI) (coutsey from
[26]).

In like manner, Laptev introduces a human key-pose detector in key frames as a global

approach for action localization in realistic videos [14]. Firstly, a filtering step is per-

formed to reduce computational complexity. Secondly, cuboids regions features, based on

histograms of oriented spatial gradients and histograms of optical flow, are extracted. Fig.

2.4 demonstrates the appearance and motion features used to represent a sample of the

action of drinking.
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Figure 2.4. (top) Appearance and motion features; (bottom) spatial and temporal layouts
for action representation (courtesy of [14]).

2.3.3 Skeletal-based features extraction methods

Skeletal approaches to action recognition are based on posture estimation. These methods

assume that recognition of a persons posture is sufficient to determine the action in which

he is engaged. In order to estimate accurately the posture of a human skeleton, one needs

to rebuild some key points, generally the head, shoulders, feet, and hands. In [27], Gavrila

et Davis use a stereo camera associated with markers to identify the head and the limb

joints. Joint angles were used as descriptors and classification was done through Dynamic

Time Warping. In 1998, Fujiyoshi et Lipton [28] proposed a motion analysis of humans

in video stream. The boundaries extracted from moving humans serve to extract a ”star

skeleton”. The extracted skeleton consists of a maximum of five parts representing the

head along with the ends of the legs and arms, Fig. 2.5.

A more robust skeletal representation is proposed by Andriluka [29]. This method

constructs a representation based on ten limbs, Fig. 2.6. The appearance of body parts

is modeled using densely sampled shape context descriptors and discriminatively trained

AdaBoost classifiers.

For skeletal-based features extraction methods to be successful in 3D space, several
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Figure 2.5. Skeleton consisting on a maximum of five parts representing the ends of the
legs and arms, and the head (courtesy of [28]).

Figure 2.6. Upper and full human body poses estimation (courtesy of [29]).

approaches have been proposed. In fact, while Parameswaran et Chellappa [30] capture

3D motion to recognize single actions, Lv et Nevatia [31] present an approach that does

not explicitly require a 3D pose be detected in each frame. Instead, each action is modeled

as a series of synthetic 2D human poses rendered from a wide range of viewpoints. Lv and
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Nevatia then construct a graph model called Action Net based on key poses, see Fig. 2.7.

Figure 2.7. Upper and full human body poses estimation (courtesy of [31]).

2.3.4 Local features methods

Local features extraction approaches consist of describing the actions in a video as a col-

lection of local descriptors. These features can be extracted separately or densely [32], as

well as by deliberately considering or neglecting spatial information [32]. For a given region

of interest, also called an interest point (IP), the extracted feature describes this interest

point and its neighboring visual and motion information. For human action recognition,

much progress has been made in the area of local spatio-temporal (LST) features extraction

[33]. Almost all the LST descriptors now provided have been derived from the extension

of 2D spatial features or detectors to the temporal domain. The method in [34] is based

on the space-time derivatives of local patches. Niebles et al. [35] summarize the video

by space-time interest points. They use a probabilistic Latent Semantic Analysis (pLSA)

model and a Latent Dirichlet Allocation (LDA) to detect the action class in a given video.
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The Cuboids descriptor was proposed in [36], while 3D-SIFT was introduced in [37] to rec-

ognize actions in video volumes. In the same vein, [38] proposed the C2-shape features. The

Histogram of oriented gradient and Histogram of optical flow (HoG-HoF) based method

has been proposed in [39]. Authors in [40] introduced the spatio-temporal Hessian detector

and the extended SURF. Other interesting works, such as HOG3D [41], the local Trinary

Patterns [42] and Space Time SURF in [13] have been introduced. ST-SURF is a spatio-

temporal SURF obtained by the tracking of the detected SURF points. This descriptor

stands out from the rest because not only is it compact and reliable but it also focuses

only on moving objects in the scene, while ignoring small motions [43].

One of the most famous categories of local features is that of spatio-temporal interest

points (STIPs) [44]. In the work of Laptev [44], the STIPs are considered as a Harris

corner detector extension to 3D. The STIPs are detected by computing local maxima of

the extended corner function, Fig. 2.8.

Figure 2.8. Spatio-temporal interest points based on the motion of the legs of a walking
person (courtesy of [44]).

Dollár et al. [36] uses a Gabor filter temporally and a Gaussian filter spatially. Each in-

terest point is detected by local maxima over the response function of Gaussian and Gabor

filters. Willems et al. [40] propose the detection of interest points through the determi-

nant of the Hessian matrix. Interest points are detected at different spatial and temporal

scales. To speed up computations of scale-spaces, box-filters are used in combination with

an integral video structure. Examples of interest points detected in human actions are
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presented in Fig. 2.9.

Figure 2.9. Spatio-temporal interest points when using the determinant of the Hessian.
(courtesy of [40]).

Descriptors can also be represented by a grid like HOG [45]. In the work of [40], the E-

SURF is an extension of the SURF to 3D. In the same way, Klaser introduces HOG3D as

an extension from HOG [41].

2.4 Features detection

Local features are detected based on their saliency, meaning the quantity of changes in the

neighborhood of an interest point. In the image processing field, the interest points (IP)

are detected based on an important contrast changes. In videos, moving objects induce

motion changes that are considered salient in the temporal domain. The detected interest

points are space-time interest points (STIP).

2.4.1 Interest point detectors

Interest point detectors focus on isolating those areas of an image that present significant

visual features, such as edges, corners and ”blobs”. The basic objective of these detectors

is to find the same IP on an object or a scene when the viewing conditions change. For

example, the IP must be invariant to changes in scale, rotation, perspective, etc. It will

suffice here to give an idea of the diversity of the methods developed. One of the most

used detectors is the Harris corner detector. This detector is based on the eigenvalues of

the covariance matrix of the analyzed region. However, the Harris corner detector is not

invariant to changes in scale. To overcome this disadvantage, Lindeberg introduced, in [46],

the concept of automatic selection of scale, which can detect points of interest in an image,

each with their relative scale. Lindebergs detector is based on the detection of the maxima

of the Hessian matrix determinant. In order to detect blobs, Lowe detected the maxima

of the Laplacian, which corresponds to the trace of the Hessian matrix [47]. Mikolajczyk
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and Schmid improve this method in [22] and create a robust detector, called Hessian-

Laplace, using the determinant of the Hessian matrix to detect the region of interest and

the Laplacian to select the scale. The Harris-Laplace detector relies on the Harris corner

detector to select IP and the Laplacian for the choice of scale. We can see in Fig. 2.10,

that the Harris-Laplace detector detects the corners, while the Laplacian detector detects

structures such as blobs.

(a) (b) (c)

Figure 2.10. Different IP detectors. (a) Harris detector; (b) Laplace detector; (c) Harris-
Laplace detector

2.4.2 Scale Space

To detect the same objects in different recording conditions, such as differing camera

viewpoint, illumination and resolution, STIPs must be detected in different temporal and

spatial scales. A new scale is obtained by a convolution with a Gaussian blur function. A

video f(x, y, t) is, then, represented by the following scale-space:

L(x, y, t;σ2, τ2) = f ∗G(.;σ2l , τ
2
l ) (2.1)

Where G is the spatio-temporal Gaussian kernel, x and y are the frame parameters, t

represents the frame at time t, σ2 is the standard deviation of the filter.

2.4.3 Background subtraction

Given a frame sequence from a fixed camera, background subtraction consists of detecting

all the foreground objects in every frame. Motions of the objects are then detected. Any

significant change in an object’s location signifies that it is a moving object. Background

subtraction has attracted the research community since 1978 [48, 49]. Several researchers

have employed a Gaussian Mixture Model [50]. They extract the stationary background

by computing the mean of the highest weighted Gaussian at each pixel position. They

next detect the colors that appear less frequently by computing the mean of the Gaussian

with the second highest weight. Finally, they compute the background subtraction result.
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Stauffer and Grimson [51] focus on a mixture of Gaussian to model the pixel color, while

Rittscher et al. [52] use the Hidden Markov Model (HMM) to classify image blocks as

belonging to the background state, the foreground or the shadow state. All these meth-

ods work well when the background is static. For non-static backgrounds, such as raining

scenes or escalator scenes, authors in [53, 54] discern and predict the motion information

in a scene by computing a weighted sum of its previous values and white noise error. These

approaches use the auto-regressive moving average called the ARMA processes.

2.4.4 Action tracking and segmentation

To track human action in videos more closely, many methods focus on detecting the video

portions that can describe a specific action [11], [55],[12]. For example, in the method of

Noguchi et al. [13] video sequences are subdivided into snippets of five frames. In [14],

Laptev et al. worked on video patches of thirty to two hundred frames with an average

number of seventy frames. They used spatio-temporal descriptors to depict cascades of

boosted classifiers as well as an annotated key frame to describe specific actions such as

drinking.

Dementhon et al. [15] extracted features from video portions containing between twelve

to eighteen frames, whereas Skindler et al. [12] suggested that action recognition systems

only require one to ten frames to recognize action. In [16], the authors claim that reconsid-

ering segmentation by generating approximate locations for a few precise objects can boost

recognition. The drawback of all of these above-mentioned approaches is that dividing a

video into equal segments is neither a sufficient nor an intuitive way to detect an actions

inter and intra-class variations.

More recently, researchers have been focusing on video description by tracking the motion

of an interest point [56]. This allows the exploration of several motion cues such as velocity

[57, 58], orientation [59, 60], location [61], trajectory curves [62], trajectory parts [63] and

different motion cues combinations [43]. Trajectories can be extracted by matching inter-

est points. Sun et al. [47] encodes the SIFT trajectory to extract spatio-temporal context

models. Trajectories of interest points in successive frames are then extracted [64].

Trajectory patterns can be extracted by using a tracker including, but not limited to, the

KLT (Kanade-Lucas-Tomasi) tracker [65], which is used to extract trajectories in videos

[66, 56, 57]. Authors, in [67], used SIFT and KLT features to extract long duration tra-

jectories in order to capture more information about actions. Wang et al. proposed dense



2.4. FEATURES DETECTION 25

trajectory tracking to encode temporal information [68]. They suggested the use of dense

optical flow to track densely detected interest points [33]. They proved that trajectory

tracking is an intuitive and successful approach in several public benchmarks.

It is worth pointing out that trajectory smoothness and segmentation are important issues

for trajectory description. To segment a trajectory, several studies used trajectory cluster-

ing [69, 70]. Other methods are based on moving object trajectory tracking. In order to

detect ”phoning”’ and ”standing-up” actions, authors in [71] used a sliding window clas-

sifier to extract temporal information and a human tracking process to extract trajectory

information.

In [72], Mean Shift clustering is applied to trajectories to extract cluster centers describing

rare events. A trajectory based on a Hidden Markov Model (HMM) for extracting the

temporal causality is proposed in [73]. Sapienza et al. [74], proposed the extraction of

space-time cues from an action. Space-time action is detected by using 3D bounding boxes

or by detecting scores aggregation.

Recently, in [33], a new scheme is proposed for characterizing dense trajectories in order

to preserve trajectory smoothness. The trajectories’ attributes are, then, extracted by

concatenating the interest points’ trajectory in successive frames with a limited length of

fifteen frames. Finally, a trajectory shape descriptor characterizing the displacement is

computed.

Another issue in the pursuit of action tracking and segmentation is the challenge of ensuring

the robustness of extracted features in spite of camera motion and varying backgrounds.

The insight behind the success of several proposed video descriptors is the use of a static

camera and uniform background [75, 76]. Although many methods have been proposed for

reducing camera motion [77, 78, 66, 79, 80], this problem is still unresolved in some cases.

It is the goal of this work to develop a video presentation which removes camera motion

without sacrificing significant human action cues. To this end, the motion boundaries His-

togram descriptor (MBH), derived from the optical flow gradient, is used as in [81]. The

MBH removes constant motion and preserves only significant movements.

MBH has been employed in various action recognition schemes [33, 68]. It provides more

interesting results when applied to videos containing important camera motion. Though

MBH is not dedicated to remove camera motion, when combined with the spatio-temporal

SURF (ST-SURF) proposed by [43], it will contribute significantly to camera motion com-

pensation.

The description method using Spatio-Temporal Speeded-up Robust Features (ST-SURF)
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works by detecting and tracking SURF points. This descriptor is advantageous because

it is compact and reliable, and it focuses only on moving objects in the scene by ignoring

small motions [43].

2.5 Machine learning and classification approaches

In terms of classification approaches, algorithms from the machine learning community

have been heavily borrowed. The following sections describe the main principles of machine

learning.

2.5.1 Supervised and unsupervised learning

Supervised and unsupervised learning are the main methods used in Machine Learning.

In the supervised approach, machine learning is achieved by annotating the data. The

supervised learning consists of a training step which leads to an output of information,

generally a class assignment. After the training data is analyzed, the testing step takes

place in order to predict the most likely output class for any previously unseen input

instance. Unsupervised learning concerns the identification of structures from unmarked

data. This means that the information fed to the system is labeled, and there is no

evaluation metric which can be used to distinguish between different instances.

2.5.2 Classification approaches in human action recognition

While the authors in [26, 25, 36, 82, 83, 84, 47] chose to use NN classifiers to avoid explicit

training, other researchers have focused on deep neural networks [85]. In [86], the authors

performed their classification tasks using the Hidden Markov Model (HMM). Classification

methods based on sparse linear representations are also used in object recognition and

tracking [87, 88]. One of the most used algorithm is support vector machine (SVM). The

mais goal of an SVM is to maximize the separation margin between different classes. SVM

is used in various domain such as action recognition or face identification [89].

In order to map the training features onto a high-dimensional feature space, one can use a

kernel function, which will lead to an optimal separation hyperplane in the feature space.

The authors in [90], proposed the performance action recognition using a multi-class SVM

framework. Another classification technique used for action recognition is boosting [91, 92].

All of the above proposed classification approaches improve the performance of any classifier
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by combining a number of weak classifiers into a strong main one. In this thesis, we follow

many methods from the literature [93, 37] by using SVM to recognize actions.

2.6 Bag of Visual Words Approach

In the context of action recognition in videos, the representation of video objects as a bag

of visual words through a histogram has become a very active research field. The basic

idea is to divide a set of descriptors into groups, so that objects of a similar type will be

gathered into one cluster. This categorization process leads to the construction of a visual

code-book. Each code, or visual word, can be used to represent an action. Because of its

high performance and simplicity, the K-means algorithm has recently become widely used

in the construction of visual code-books, Fig. 2.11.

In this step, a visual vocabulary is built based on the extracted features. The latter

are converted into ”words”. The set of these words forms the visual vocabulary. A simple

approach to producing a visual vocabulary is by performing clustering with a K-means

algorithm applied to the set of descriptors vectors. The words in the vocabulary are then

defined as the centers of the clusters. The number of clusters determines the number of

words in the visual vocabulary. Thus, a word is assigned to each region, and an image

can be represented by a histogram of visual words in the video. Fig. 2.11, illustrates the

generation of visual words from features vectors.

(a) (b)

Figure 2.11. Code-book generation. (a) K-means clustering step for quantization ; (b)
Example of visual words distribution

The descriptor extraction step is followed by a classification task based on the code-

book generation. Several approaches have been proposed to extract a codebook for action

recognition. A codebook can be generated using a wide variety of techniques, including,

but not limited to, Random forest [94, 95], Sparse codebook learning [11, 96] or bag of
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visual words (BOVW) [97, 39, 33].

In a BOVW scheme, descriptors are first extracted. Then, a quantization step is per-

formed to build a visual word codebook. Finally, every video is described by the distri-

bution of the visual words. The BOVW approach has achieved good results in action

recognition for both image [98] and video analysis [99]. This is due to the fact that

BOVW is an orderless feature presentation that discards features spatial position and the

inter-relationships among the extracted visual words. However, the accuracy of BOVW

decreases as the database grows in size and is more realistic with many actors and richer

backgrounds. In [74], the authors suggested that this is due to the descriptor extraction

from the whole video or the setting of the video patches sizes to extract features.

To incorporate spatial information, the spatial-temporal pyramid is a relevant choice

[39, 100, 33]. This approach has been introduced for analyzing and recognizing natural

scenes categories [101]. The basic idea is to divide the image into increasingly sized sub-

regions then extract histograms of local features detected inside each sub-region. In our

work, spatial information is injected into the video description by a pattern called Motion

Distance (MD). Consequently, there is no need for extra computations to add spatial

information into a BOVW approach.

2.7 Datasets

In this thesis, we conduct the proposed action recognition framework on human action

classification datasets. We studied different datasets, varying from controlled datasets to

realistic ones. The proposed action recognition methods are tested on the KTH dataset

[34], UCF sports Dataset [102], UCF 101 [103] and UCF 11 [100]. Fig. 2.12, depicts the

major actions of these datasets.

In the following section, we provide a brief overview of each dataset.

2.7.1 KTH dataset

The KTH dataset is commonly used as a public benchmark test of spatio-temporal features

[13]. This dataset contains six kinds of actions, such as walking, running, jogging, boxing,

hand waving and hand clapping. We consider six action classes performed by twenty-five

persons in four different scenarios (indoor, outdoor, different clothes outdoors, scale out-
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Figure 2.12. Selected frames from the evaluated benchmarks. KTH: 6 actions, UCF
sport: 9 actions and YouTube: 11 actions.

doors) with a total of 2391 video samples, all with a homogeneous and static background.

The average length of videos in the KTH dataset is about 20 seconds, Fig. 2.13.

2.7.2 UCF sport dataset

The UCF sports dataset is a realistic and challenging dataset obtained from broadcast sport

videos by Ahmed et al. [102]. The collection represents a natural pool of actions featured in
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Figure 2.13. KTH dataset actions.

a wide range of scenes and viewpoints. The publicly available part of this dataset contains

nine actions, namely Diving (16 videos), Golf swinging (25 videos), Kicking (25 videos),

Lifting (15 videos), Horseback riding (14 videos), Running (15 videos), Skating (15 videos),

Swinging (35 videos), and Walking (22 videos). This dataset contains around 200 video

sequences at a resolution of 720x480 [102], Fig. 2.15.

2.7.3 UCF11 YouTube Action Data Set

UCF11 is the newest update of the YouTube action dataset. It contains 1168 videos and the

following eleven action classes: basketball shooting, biking/cycling, diving, golf-swinging,

horseback riding, soccer ball juggling, swinging, tennis racket swinging, trampoline jump-

ing, volleyball spiking, and walking a dog. For each class, the videos are grouped into

twenty-five sub-groups with about four to nine action clips in it. The video clips in the

same sub-group share a few common cues, such as the same actor, similar appearance,

same background, similar viewpoint, etc. This data set is very challenging due to large

intra-class variations, and differences in camera motion, object appearance and pose, object

scale, viewpoint, cluttered background, illumination conditions, etc.
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Figure 2.14. UCF dataset actions.

2.7.4 UCF101 Dataset

The final experiments are carried out on a large realistic dataset called UCF101. It includes

total number of 101 action classes which we have divided into five types:

• Human-Object Interaction.

• Body-Motion.

• Human-Human Interaction

• Playing Musical Instruments.

• Sports.

UCF101 is an extension of UCF50, which included the following 50 action classes, [104]:

Baseball Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breaststroke,

Clean and Jerk, Diving, Drumming, Fencing, Golf Swing, High Jump, Horse Race, Horse

Riding, Hula Hoop, Javelin Throw, Juggling Balls, Jumping Jack, Jump Rope, Kayaking,
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Figure 2.15. UCF11 dataset actions.

Lunges, Military Parade, Mixing Batter, Nunchucks, Pizza Tossing, Playing Guitar, Play-

ing Piano, Playing Tabla, Playing Violin, Pole Vault, Pommel Horse, Pull Ups, Punch,

Push Ups, Rock Climbing Indoor, Rope Climbing, Rowing, Salsa Spins, Skate Boarding,

Skiing, Skijet, Soccer Juggling, Swing, Tai Chi, Tennis Swing, Discus Throw, Trampoline

Jumping, Volleyball Spiking, Walking a dog, Yo-Yo.

The following 51 new classes are introduced in UCF101: Applying Eye Makeup, Apply-

ing Lipstick, Archery, Baby Crawling, Balance Beam, Band Marching, Basketball Dunk,

Blow Drying Hair, Blowing Candles, Body Weight Squats, Bowlng, Boxing-Punching Bag,

Boxing-Speed Bag, Brushing Teeth, Cliff Diving, Cricket Bowling, Cricket Shot, Cutting In

Kitchen, Field Hockey Penalty, Floor Gymnastics, Frisbee Catch, Front Crawl, Hair Cut,

Hammering, Hammer Throw, Handstand Pushups, Handstand Walking, Head Massage,

Ice Dancing, Knitting, Long Jump, Mopping Floor, Parallel Bars, Playing Cello, Playing

Daf, Playing Dhol, Playing Flute, Playing Sitar, Rafting, Shaving Beard, Shot Put, Sky

Diving, Soccer Penalty, Still Rings, Sumo Wrestling, Surfing, Table Tennis Shot, Typing,

Uneven Bars, Wall Pushups, Writing On Board.

Clip Groups: The clips of each action class are divided into twenty-five groups which

contain four to seven clips each. The clips in each group share some common features, such
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Figure 2.16. UCF 101 actions.
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as the background or actors. The colors on each bar denote the durations of different clips

included in that class. The chart shown in Fig. 2.17, illustrates the average clip length

(green) and total duration of clips (blue) for each action class.

Figure 2.17. UCF 101 action duration.

The videos are downloaded from YouTube [10] and the irrelevant ones are manually re-

moved. All clips have a fixed frame rate and resolution of 25 FPS and 320×240 respectively.

See Fig.2.18.

2.8 Conclusion

This section has presented the most relevant works related to Human Action Recogni-

tion. It has been shown that the first step toward action recognition is feature extraction

techniques. Relevant feature extraction methods have been reviewed. Video segmenta-

tion techniques were highlighted. We can conclude that recent approaches are looking to

capture valuable information for the action recognition with respect of time consumption.

They converge to an automatic action recognition in big datasets. As we can see, the prob-

lem of human action recognition is not close from being solved yet and new contributions

to the field have to be proposed in future years.
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Figure 2.18. UCF 101 characteristics.





C
h
a
p
t
e
r

3
SPATIO-TEMPORAL SURF

Happiness lies in the joy of achievement

and the thrill of creative effort.

Franklin D. Roosevelt
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3.1 Introduction

In this chapter, we propose a new spatio-temporal descriptor we called ST-SURF. It is

based on a novel combination of the speed up robust feature (SURF) and the optical flow.

The Hessian detector is employed to find all interest points. To reduce the computation

time, we propose a new methodology for video segmentation into Frame Packets (FPs),

based on the interest points (IP) trajectory tracking. We only consider moving interest

points descriptors to generate robust and powerful discriminative code-book based on K-

mean clustering. We use a standard bag-of-visual-words Support Vector Machine (SVM)

approach for action recognition.

The first step to describe videos is descriptor extraction. To extract video descriptors,

many researchers have been investigating in tracking major parts of human bodies then

extracting features from these regions [105]. However, they need to setup many hypothe-

sis. These hypothesis are often difficult to set. So that, methods based on spatio-temporal

features are promising for action recognition.

Some of them are based on the extraction of low-level optical flows from cuboids[92] this

method gives good results in terms of feature selection and a good classifications accuracy

[92]. But they presents limits concerning the long computational time they require [13].

Dollar et al. detect local cuboids to apply 1-D Gabor filters in the temporal direction and

2-D Gaussian kernels in the spatial space [36], and they produce video visual words based

on vector-quantization in the same way as bag-of-visual-words for object recognition [98].

In the same direction, Laptev et al proposed STIP (Spatio-Time Interest Points) to

detect cuboids [46]. This method is considered as an extension of Harris detector. Nev-

ertheless, the limits of the aforementioned methods not only concerns the hardness of

finding the best cuboid size, but also the high computational requirements [13]. In view

of the above and to overcome these problems, we propose to detect interest points using

SURF/Hessian [24]. Then we segment the videos into Groups of interest points (GIP) and

Frame Packets (FPs) to reduce the computation time. We use Sun, D at al. [106] optical

flow detection methods which allows to extract spatio-temporal SURF by tracking interest

points instead of cuboids.
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Figure 3.1. Example of SURFs found using Hessian detectors on different frames from
UCF sports dataset.

3.2 The proposed approach for human action

detection and recognition

The proposed method aims at detecting human actions, to reach this goal, first video

sequences are segmented in Frame Packets (FPs) and Group of Interest Points (GIP).

Second, based on a novel combination of optical flow computed by [106] and the local

descriptor called the Speed-up-Robust-Feature (SURF) bay2006surf, Fig. 3.1, the interest

points ST-SURF are localized and extracted, from all training video FPs. Then, the

extracted ST-SURFs are clustered using K-means clustering algorithm. The video clips

are represented as a K-bins histogram of the quantized descriptors ”bag of spatio-temporal

visual words” BoSTVW. Finally, an SVM classifier is trained using these histograms, Figure

3.2

3.3 Speed up robust features SURF

Generally descriptors extraction is achieved in tow major steps. As first step to SURF

extraction is to analyze the video frames to discriminate salient regions as IP. These points

are considered salient as they, naturally, attract the attention of humans and shows signifi-

cant human movement. The major purpose of an IPs detection algorithm is to attempts to

insulate regions of the video frames that have remarkable visual information, such as edges,

corners. The reliability of an IP detector rely of its robustness against scale, rotation and

view points changes. For example, in Figure 3.3, a robust detector is able to detect the

bird despite the changes in scale, background, rotation and view point difference.

Several IP detectors are proposed in the state-of-the-art [23, 41, 40, 13] . In 2004,

Lowe [24], presented SIFT for extracting invariant features from images that can be robust
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Figure 3.2. Training pipeline

Figure 3.3. Example of changes in scale and view point.
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Figure 3.4. Integral image computation.

against image scale changes and rotation. Then it was widely used in image, recognition and

retrieval etc. However, extracting robust features approaches are very slow [24]. Bay et al.

speeded up SIFT by using integral images for image convolutions and Fast-Hessian detector

[24]. Their experiments turned out that SURF was faster and it works well. We use the

extraction solution given by [24] to extract interest point feature. This choice is motivated

by the robustness, the smaller size of this feature and their excellent performances attested

in various datasets for action recognition [13]. The SURF feature is a 64-D vectors that

describes spatial patterns around detected points.

3.3.1 integral images

The integral images are a representation of a given image that allows for the fast imple-

mentation of box type convolution [107]. In an integral image the value of a pixel at a

given point ”p” is the sum of all pixels located in the rectangle formed by the origin till the

point ”p” of the original image. Once the integral image is computed, only four additions

are required to compute the sum of pixels intensities of any upright rectangular region of

the original image regardless size, Figure 3.4.

Let I being an input image, I∑x. A point p located at p = (x, y) represents the sum of

all pixels in the input image I of a rectangular region formed by the point a and the origin

such as:

I∑ p =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (3.1)
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Figure 3.5. Matrix of second derivative.

3.3.2 Fast-hessian detector

For interest points detection we choose the Hessian detector [108]. It searches for image

locations that exhibit strong derivatives in two orthogonal directions. It is based on the

matrix of second derivatives, the so-called Hessian (HM) [108], see Figure 3.5.

In fact, HM is not only fast and accurate, but it also allows to extract both scale and

location cues [24]. For a given IP = (x, y) located in a frame f , the HM located at IP

with the scale σ is defined as

H(IP, σ) =

(
Lxx(IP, σ) Lxy(IP, σ)

Lxy(IP, σ) Lyy(IP, σ)

)
(3.2)

Where Lxx(IP, σ) is the result of the convolution of the frame f in IP with the Gaussian

second order derivative
∂2g(σ)
∂x2 . This filter is approximated by using box filter (see Figure

3.6). Henceforth the determinant of the approximated HM becomes

det(Happrox) = DxxDyy − (0.9Dxy)
2 (3.3)

The ”box filters” are introduced in [24]. They consists on an approximation of the Gaussian

second derivatives called ”box”. Using integral images, the box filters can be evaluated

fast and the computation time is independent of the size of the filter, Figure 3.6.

One of the major challenges faced by an interest point detector is the scale changes.

In fact, the performances of a detector are evaluated according to its robustness against

scale changes. A robust detector must be able to find salient points at different scales (the

same object can be represented in different sizes in different frames). This is often handled

by creating a pyramid images such as the scale invariant feature transform SIFT [24], the

difference is illustrated in Figure 3.7. In such case the images are repeatedly filtered with
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Figure 3.6. Partial derivative of the Gaussian. First discretized (both left images) and
then approximated by a box filter according to y and xy direction. The gray areas are
equal to zero.

a Gaussian and then sub-sampled into smaller image size. Each level of the pyramid define

a scale.

The SURF has the advantage to proceed differently due to box filters and integral images.

Instead successively applying the same filter to the output of a filtered and sub-sampled

image using scale space representation based on pyramid decomposition. In [24] the filter

size is up-scaled while keeping the original image size (See Figure 3.7). The ”blob” re-

sponse maps at different scales are constructed by enlarging the filter rather than reducing

iteratively the image size. This allows on one hand to reduce the computation time on an

other hand to avoid an eventual aliasing due to the under-sampling of the image, Figure

3.7).

(a) (b)

Figure 3.7. A general outline of SIFT SURF extraction. (a) Scales space in the SURF
extraction; (b) scale space in the SIFT extraction

In order to localize interest points in the image and over different scales, a gradually

increasing filters are applied. Generally the smallest filter used is a 9× 9 filter considered
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as the initial scale layer as in Figure 3.8. In this layer many detected IP are not relevant

and unnecessary. The number of interest points detected decreases with the increase of

masks sizes.

Figure 3.8. Representation of different scales filters

For every detected IP, a square region is defined. It is centered by the detected interest

points and characterized by a reproducible orientation. This region is then divided into

4 × 4 sub-regions. A four Haar wavelet responses are extracted from every sub-region in

both x and y directions. They are then weighted by a Gaussian window centered on the

IP and represented as a point in space. The response value of the horizontal (x direction)

represent the IP abscissa and the ordinate represents the value response from the vertical

(y direction). The major orientation vector is obtained by calculating the sum of all the

wavelet responses located in a π/3 window rotating around the center of the region of

interest, Figure (3.9). The direction of the longer vector defines the main direction of the

region of interest as shown in Figure 3.10.

3.3.3 SURF extraction

The SURF extraction is made in several steps:

• the first step rectangular region centered around the IP and oriented along the main

direction selected is build. The size of this window depend on the actual scale. An

example of these windows is shown in Figure 3.11.

• Every rectangular region is divided into 16 sub-regions (see Figure 3.11). In each of

these sub-regions, responses to a Haar wavelet are calculated. Then a vertical and
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Figure 3.9. Dominant direction

Figure 3.10. Detected SURF descriptors with the main direction choice

horizontal directions are defined based on the orientation of the area of interest. The

response in the horizontal direction of the selected sub-region is denoted dx and dy

in the vertical direction.

• The weighted responses are summed for each sub-region into
∑

dx and
∑

dy. To add

additional information about changes in intensity, the sums of the absolute values

of the weighted responses are also extracted
∑
|dx| and

∑
|dy|. This results in a

descriptor vector for all 4× 4 sub-regions of length 64. Figure 3.12 shows three sub-

regions showing different intensities levels. Indeed, in the first case in the upper left

is an uniform intensity sub-region,
∑

dx,
∑

dy,
∑
|dx| and

∑
|dy| are very low. In

the second case presenting different intensity levels we notice two types of responses:

either very positive (transition from black to white) or very negative (transition from

white to black). In the third case in the right sub-region with gradually increasing

intensity, we always have a positive response (transition from black to white) but
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Figure 3.11. Detected SURF rectangular regions oriented following the main direction.

quite small. We thus find good
∑

dx and
∑
|dx| are equal and quite significant.

Figure 3.12. The descriptor entries of a sub-region represent the nature of the intensity
pattern. upper-Left: In case of a homogeneous region, all values are low. Middle: In
presence of frequencies in x direction, the value of

∑
|dy| is high, but all others are low. If

the intensity is gradually increasing in x direction, both values
∑
dy and

∑
|dy| are high.
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Figure 3.13. IPs trajectory tracking for FPs segmentation

Finally the 64D SURF descriptor is extracted. The experiments turned out that SURF

is three times faster than SIFT with a reasonable accuracy.

3.4 Frame packets (FPs) and group of interest

points (GIP) segmentation

To track human action into videos, key frame extraction techniques such as the ones

proposed in [109] can be exploited. Other methods are based a video segmentation into

patches or snippets [13, 110, 12]. Noguchi et al. choose to divide video sequences into

snippets of five frames [13]. In this thesis, we propose and use the concepts of Frame Packets

(FPs) and Group of Interest Points (GIP). We assume that, between three successive frames

(n-1, n and n+1), an interest point (from one frame to another) can have three possible

states: still, moving and disappear. The first and last states are not treated. In fact, in

the first case, no motion is detected. In the last case the interest point IP disappears and

cannot be tracked anymore. The second state is the one that concerns us the most, since

there is a displacement and we can track the displacement angle. From now on, we assume

that α is the angle between the lines segments supporting the motion of an IP from the

couple of frames (n-1, n) and (n, n+1), Figure 3.13.

By comparing α to αmax (a parameter fixed experimentally at the beginning of the
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processing) we are able to segment a succession of frames, that we call here Frame Packets

(FPs), in which each IP has an α lower than αmax. By calibrating this angle of tolerance,

we are able to certify that, within this FP, all IPs movements are within this tolerance

parameter. This means that we cannot miss any significant movement likely to influence

the remaining computing. In order to be able to have more control over the size (in number

of frames) of the FP, we introduce, the concept of Group of Interest Points (GIP). In fact,

a NGIP is a parameter defining the number of IP that must be grouped together (this

constant has to be experimentally fine-tuned to find the most suitable N). This grouping is

performed over successive IP in a frame. By defining this number NGIP we can compute

an average angle (αavg) for a certain GIP and compare it to the αmax. The higher NGIP

is the less the αavg will be sensitive to motion and the more the FP will contain frames.

Here are the steps of our segmentation algorithm. Let us suppose that we are beginning

the computation of a new FP:

• We extract the IP of the frames one and two.

• We define the GIPs based on the NGIP parameter fixed at the beginning of the

algorithm.

• We compute the line supporting the motion for each corresponding IP within these

two frames.

• We apply the above three steps to the frames two and three.

• We compute the angle between each motion line and we extract the average angle

for each GIP.

• We compare each average angle to the αmax (fixed at the beginning of the algorithm).

• We continue performing the above six steps over the next frames (taking, always,

the first motion direction as reference to all remaining comparisons) until finding an

average angle of a GIP higher than the maximum angle. In this case we can define

the FP and assume, with confidence, that the first and last frames of this FP can

fully describe the motion within.

3.5 SURF tracking into 3D feature space

Features’ tracking is performed by estimating optical flow. To increase optical flow esti-

mation accuracy, many researches are inspired from the Horn and Schunck (HS) Optical
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flow formulation. In fact, they focuses on optimizing an objective function which combines

the image’s properties and its spatial motion prediction. Sun end al. [106] proposed a

new algorithm to approximate an optimized computationally tractable objective function,

based on the original HS formulation. They first, use median filtering to denoise the flow,

Exploiting connections between median filtering and L1-based denoising. They proved

that algorithms relying on a median filtering step are approximately optimizing a different

objective that regularizes the flow over a large spatial neighborhood [106]. The resulting

algorithm ranks 1st in both angular and end-point errors in the Middlebury evaluation in

March 2010 [106].

In our work, we considered every Frame Packet as a volume of frames in the 3D space

called FP Volume (FPV ), this cubic volume is characterized by its frames’ number(FN)

going from 1 to tmax, its frames’ surfaces dimensions (FS) and its center (FPV c). A

given interest point IP = (x, y, t) is defined by its position (x, y) and its frame t. In frame

(t + n), the IP moves by a displacements u in the x direction, and v in the y direction.

IP becomes, IP (t + n) = (x + u, y + v, t + n). In all our experiments, unless mentioned

otherwise, we assume that due to the video segmentation into FPs, the motion vectors

trajectory remain stable. For stagnant interest points u = v = 0. Thus, in the FPV ,

the 3D direction (u, v, n) represent the direction of the IP motion. The motion vector is

calculated by the Sun et al. [106] optical flow approach.

Our contribution consists on the use of motion orientation and position to characterize

the motions, instead of using the direction vector (u, v, n) generated from optical flow

computation. We suppose that the motion vector in the 3D space can be defined as the

intersection of two planes perpendicular respectively to the plane (t, x) and the plane (t, y).

This parametrization is one among several possible representations of 3D lines [110]. To

extract IP orientation, we project its motion vectors onto the planes (t, x) and (t, y) of the

FPV to define an angle for each projection, the first angle αx between optical flow and

the plane (t, x), the angle αy between the plane (t, y) and the motion vector.

∝x= 90− 180

Π
arctan(u),∝y= 90− 180

Π
arctan(v). (3.4)

For each IP , we project its motion vector onto the planes (t, x) and (t, y) and obtain

two lines Lx and Ly. The orthogonal projection of FPV cx and FPV cy onto the lines Lx

and Ly allows the computing of both distances Dx and Dy between the cube center and

the lines supporting the motion vectors (Lx and Ly).
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For an IP located at (x, y, t):

Dx = Dxu −Dtv, Dy = Dyv −Dtu (3.5)

where

Dxu = (x− xmax/2)cos(180/Πarctan(u)) (3.6)

Dtv = (t− tmax/2)sin(180/Πarctan(v)) (3.7)

Dyv = (y − ymax/2)cos(180/Πarctan(v)) (3.8)

Dtu = (t− tmax/2)sin(180/Πarctan(u)) (3.9)

where tmax, xmax and ymax are the dimensions of the Frame Packet volume with tmax

depend on the number of the frames into a segmented (FPV ). In the following, Dx and

Dy describe the motion distances of a given interest point. Figure 3.14, is a graphical

illustration of the cube center and its projection into the planes (t, x) and (t, y).

Figure 3.14. The projection of a motion vector in the adjacent planes.

3.6 ST-SURF extraction:

This step consists in the generation of the novel ST-SURF that we designed. This descriptor

is represented by spatial feature 64-D vector, and temporal 4-D feature (∝x,∝y,Dx, Dy),
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Figure 3.15. Training pipeline

we concatenate both vectors into one 68-D spatiotemporal descriptor vector, and thus we

extend the image SURF descriptor [24] to videos. These features will tracks the interest

point through time in each FP we defined. The size of a FP depends on its average frames

number. In our work we consider only moving interest points (where ∝x 6= 0 and ∝y 6= 0).

3.7 ST-SURF training pipeline:

After the extraction of ST-SURF descriptors, we define a spatio-temporal words dictionary.

The basic idea is to assign a set of objects into groups so that the objects of similar type will

be in one cluster, in order to construct a visual code-book, which can be used to represent

an action, a scene or en object. Recently, the K-means algorithm has been widely used to

construct the visual code-book because of its high performances and simplicity. Fig. 3.15,

illustrate the training steps of a given videos.

3.8 ST-SURF evaluation pipeline:

After the extraction step, the generated ST-SURFs are quantized into visual words using k-

means clustering. Each video sequence can then be represented as the frequency histogram

over the visual words. Generally, using a large-sized code-book allows to obtain high
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recognition accuracy, yet an oversized code-book leads to high quantization errors. The

resulting histograms of visual word occurrences are used as classification inputs. We use a

non linear support vector machine to classify human actions.

3.9 Experiments

In the following we describe the datasets used for the evaluation of the proposed work. We

evaluate the ST-SURF in a bag-of-features based action classification task and compare

our approach to the state-of-the-art employ [23, 13, 41, 40]

3.9.1 Experimental setup and data

To demonstrate the performance of the proposed action recognition approach, we have

tested our algorithm tow realistic datasets described below:

3.9.1.1 Dataset:

The proposed framework is tested on the KTH dataset [34] and UCF sports Dataset [102].

The KTH dataset is commonly used as a public benchmark test of spatio-temporal features

[13]. This dataset contains six kinds of actions: walking, running, jogging, boxing, hand

waving and hand clapping. We consider 6 action classes by 25 persons in 4 different sce-

narios with a total of 2391 video samples. The average length of videos in the KTH dataset

is about 20 second long and about 500 frames. The second one is the UCF sports dataset,

more realistic and challenging data obtained from broadcast sport videos by Rodriguez et

al. [102]. The collection represents a natural pool of actions featured in a wide range of

scenes and viewpoints. The publicly available part of this dataset contains nine actions

namely diving, golf, swinging, kicking, lifting, horseback riding, running, skating, swinging

and walking. This dataset contains close to 200 video sequences at a resolution of 720x480

[102].

3.9.1.2 Parameter settings:

In all our experiments, we explored optimal parameter settings. We evaluate the classi-

fication rates of both KTH and UCF datasets while changing the codebook and the FPs

sizes. The results shows that the empirically optimal size book is k = 4000 with αmax =

24◦ and NGIP = 38. These settings gave us empirically satisfactory results.
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Figure 3.16. KTH dataset actions [34].

Figure 3.17. UCF dataset actions [102].
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Table 3.1. Average accuracy for various detector/descriptor combinations on the KTH
dataset.

. HOG3D HOG/HOF HOG HOF E-SURF t-SURF ST-SURF

BAA 90% 91.8% 82.3% 92.1% 81.4% 86% 88.2%
HAA 84.6% 88.7% 77.7% 88.6 % 81.4% 86% 88.2%

Table 3.2. Average accuracy for various detector/descriptor combinations on the UCF
sports dataset.

. HOG3D HOG/HOF HOG HOF E-SURF t-SURF ST-SURF

BAA 85% 81.6% 77.4% 82.6% 77.3% - 80.7%
HAA 78.9% 79.3% 66.0% 75.3% 77.3% - 80.7%

3.9.2 Experimental results on KTH dataset:

In the table 3.1, the first row compares the best average accuracy (BAA) for the differ-

ent detector/descriptor combinations reported by other researchers, on the KTH dataset.

The average accuracy for Hessian (HAA) detector/descriptor combinations on the KTH

dataset are drawn in the second row.

From the recently reported results of the state-of-the-art, we can clearly conclude that

using Hessian detector, Laptev et al. [23] obtained 88.7% using a combination of HOG

(histograms of gradient orientations) and HOF (histograms of optical flow) descriptors,

88.6% using HOF, and 77.7% with HOG . We note that Kläser et al. [41] achieved an ac-

curacy of 84.6% using HOG3D descriptor, which is a comparable results with HOG/HOF

[23]. The combination SURF/Hessian detector gives 84.6% for williems et al. [40], 86%

for Noguchi [13].

3.9.3 Experimental results on UCF dataset:

We note that Kläser and al. [41] achieved an accuracy of 85% using HOG3D/Gabor

descriptor, Laptev and al. [23] obtain 81.6%using HOG/HOF, 82.6% using HOF, and

77.4% with HOG. In the first row of Table 3.2, we compare the best average accuracy

(BAA) for the differents detector/descriptor combinations reported by other researchers,

on the UCF sports dataset. The average accuracy for Hessian (HAA) detector/descriptor

combinations on the UCF sports dataset are drawn in the second row.

Tables 3.3 and 3.4 are the confusion matrices of the actions classification results based on

two type of features. the first matrix describe the classification result for the visual SURF
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Table 3.3. SURF confusion matrix action recognition on the KTH dataset.

Table 3.4. ST-SURF confusion matrix action recognition on the KTH dataset.

Table 3.5. ST-SURF confusion matrix action recognition on the UCF sports dataset.

feature reported in [13]. The result among a single visual feature give bad classification

results for all the actions. Based on Table 3.5, confusion matrix show that the original

combination, that we proposed, of both visual and motion features (ST-SURF) boosted

significantly the classification accuracy. Regarding the average result over each of the six

actions’ KTH dataset, ST-SURF produced good result, however, less accuracy is observed

in the jogging and running actions because these actions are almost similar. lastly but

not least, comparing with results driven by the best result of the state-of-the-art, our

method achieve 88.2% better than the 86% reported by Noguchi et al. [13] using Spatio-

temporal SURF. Outperforming the results of the Cuboids/HOG combination obtained by

[46] 82.3% and the 81.4% reported by Willem et al. [40]. Based on the confusion matrix of

UCF sports Dataset given in Table. 3.5, the ST-SURF outperform the best result driven
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by the state-of-the-art using Hessian detector and achieves 80.7% of accuracy. We note

that ST-SURf/Hessian gave better results in realistic videos. We are still below the results

driven by Laptev and al. with 85% using the HOG3D/Gabor combination, and their 91.8%

reached using Harris3D/(HOG/HOF), this can be due to different code-book generation

and the use of different interest points detectors. This motivates further investigations of

different interest points detectors and realistic video settings. Regarding all these results

our method is equivalent to the state-of-the-art [23, 41, 40, 13] and shows significantly

better performance, outperforming many results driven in the same setup.

3.10 Conclusion

We have investigated a novel scheme to efficiently segment video sequences into a new

concept we called Frame Packets. Then we proposed a novel spatio-temporal descriptor

based spatio-temporal interest points. The designed descriptor is an extension of the SURF

to the temporal domain. The proposed feature extraction consists on detecting of the Surf

points and mapping them into a 3D feature space based on an original exploitation of

the optical flow orientation and position. Only the moving SURF are then selected. The

extracted features are embedded into a bag of visual word pipeline, to finally classify six

actions from KTH dataset and then nine actions from the UCF sport dataset. Furthermore,

the proposed framework demonstrate promising recognition performance on tow standard

benchmarks with the accuracy about 88.2% in KTH and 80.7% in UCF sports. In this

chapter we tested the proposed descriptors in a controlled dataset then a realistic small

dataset. In the next chapter we propose to enrich the action detection step and to introduce

more spatio-temporal descriptors. We propose also to fuse several descriptors in order

to handle camera motion effects and to work with more complex and challenging video

benchmarks.
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4.1 Introduction

Human activity understanding and recognition attracted considerable attention during the

past decades. It plays a prominent role in a wide range of applications, including video

analysis, surveillance video, gesture interpretation and content based video search, just to

name a few. These various applications rely on action recognition systems. Significant

advances in action recognition have greatly boosted the state of the art methods [9, 111].

Generally, the recognition of action can be realized by following the three major tasks

described in the below:

4.1.1 Video temporal segmentation

While several researches are based on spatial segmentation [112]. Many video description

methods rely temporal evolution by encoding the entire video sequence [113], [114]. This

obviously leads to a huge number of descriptors. Most of them do not describe the ac-

tion since they focus on non-moving humans/objects in the scenes. In other works video

sequences are described by a fixed number of frames leading to a miss interpretation of

the observed scene. In-fact, a fixed frame number can be exploited in a non realistic

video dataset with one person performing one action with static background and discard-

ing camera motion [34, 25]. However for realistic benchmarks like those introduced in

[100, 115, 116], moving object disappear in many sequences due to occlusions or change in

viewpoints. Moreover, actions can be continuous, not-continuous, superposed (jumping to

avoid an obstacle while walking, or stop to drink while walking) etc.

In these cases a selective video segmentation needs to be addressed carefully. That is

why, many approaches are based on the visual segmentation to rely on a significant video

sequence rather than encoding the entire video [16] or a randomly fixed frame number.

To avoid unnecessary computations, authors in [43], introduce a video segmentation into

frames packets based on the trajectory tracking. In this case, authors perform video

segmentation based on the SURF’s motion trajectory tracking. In order to reduce compu-

tational load, due to exhaustive human action detection, selective video segmentation into

snippets covering actions saliency in a video sequence is reconsidered.

In this chapter, we build on the results gained in the previous work of [43] detailed in the

previous chapter. In fact we propose to track all moving objects/humans whose actions

need to be recognized. A dense SURF extraction is then performed to capture the max-

imum of spatial information contained in the video frames. Then, a tracking process is
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employed to extract selective video snippets describing the detected action. A motion angle

is empirically settled to track significant motion and in the same time reduce camera mo-

tion effect by ignoring small horizontal displacements. This technique allows investigating

a sufficient frame number to recognize significant human small actions ”actionlets”. The

combination of ordered actionlets leads to describe an entire human action. We consider

that every SS (describing an actionlet) forms a 3D volumetric cube (VC). The proposed

technique offers various advantages on the computational complexity and time consump-

tion. First, it is based on a limited number of relevant frames. Furthermore, it allows

investigating the sufficient number of relevant frames to describe an actionlet. Second, it

allows to track linear vectors of displacement to avoid additional trajectory shape feature

computation.

4.1.2 Video description

A key success of an action recognition process is the choice of the relevant features for video

description. Among the various types of features used for activity detection, the silhouette

based features and the spatio-temporal local features are the most used [117]. The basic

idea of silhouette based approaches is to track the evolution of a body shape over time,

then extract the features describing this evolution [118, 43]. Since, the approaches rely on

perfect body segmentation, they are sensitive to camera motion, occlusion and illumination

changes [119]. Another group of approaches are based on spatio-temporal interest points.

Almost all the proposed methods used for detecting spatio-temporal descriptors are based

on two major approaches.

The first class of methods is based on the extension of a 2D interest point (IP) to the

temporal domain (1D). Indeed, Willems et al. [40], proposed a method based on the ex-

tension of the Hessian matrix to the temporal domain and extract the determinant of a

spatio-temporal hessian matrix to extract IP. Laptev and al.[44], extended the volumetric

features corner detector to extract space-time local structures. In the same spirit, the

3D spatio-temporal volumetric feature was proposed by [120]. Local descriptor were also

extended to the temporal domain such as the histograms of oriented 3D spatio-temporal

gradients proposed in [41], the E-SURF descriptor in [40] and the 3D-SIFT feature intro-

duced in [37]. Noguchi et al. [13], proposed a spatio-temporal SURF using Lucas-Kanade

optical flow.

The limitation of these methods is that they handle spatial and temporal information in

a common 3D space. However, they have different characteristics and associating them
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differently in a new scheme deserve to be more investigated [33, 68].

In the second class of methods, various approaches are based on IP tracking upon a video

sequence in order to detect spatio-temporal features. This approach provides excellent

performances in activity recognition [33]. In fact, Sun et al. [67], proposed efficient ac-

tion recognition by leveraging the motion information of trajectories. Sameh et al, in

[43], proposed a method based on trajectory tracking of the SURF interest points from a

frame packet. One of the latest work has been proposed in [33]. The proposed descriptors

are based on appearance (histograms of oriented gradients), motion (histograms of optical

flow) and trajectories to characterize shape (point coordinates).

A trajectory is the path that a moving object/human follows through time. Various tra-

jectory based descriptors have been proposed in the last decades, [63, 58, 62, 61, 64]. The

trajectories features can be extracted from optical flow [33, 43, 121, 92], or by matching the

interest points in different frames [64, 33]. The number of the exploited frames to set the

trajectory length depends on the used approaches. In [64], the authors propose to set the

trajectory length into a fixed interval Lmin ≤ Lmax with Lmin = 5 frames, Lmax = 25

frames, not exceeding one second in duration. Wang et al. [68], propose a fixed trajectory

length to extract a displacement vector. Several other methods propose a trajectory length

depending on the trajectory shape, [122, 123].

In this thesis we dress the problem of human action recognition by introducing and evalu-

ating a novel local spatio-temporal descriptor coined Histogram of motion trajectory ori-

entation. For every detected SURF, we define the interest point neighborhood size related

to the SURF scale. For the detected patch, we extract dense displacement field based on

optical flow algorithm introduced in [106]. Motion trajectories orientations are then gen-

erated for every pixel by exploiting horizontal and vertical optical flow components (u, v).

We split the optical flow components to extract the distribution of the motion trajectory

orientation in the planes (t, x) and (t, y). The generated histograms describes the distri-

bution of the trajectory orientation angle and its displacement into a SS. An early fusion

step is used to associate each histogram to the corresponding SURF. Thus, we extract a

substantial of cues about spatial and temporal evolution of a moving region of interest in

a predefined SS. Note that, the spatial information is captured by the SURF descriptor.

4.1.3 Training/learning

In the context of human activity recognition in video, the representation of video objects

as a dictionary of visual words is an active research area [97, 39, 84]. The notion of bag
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of visual words (BoVW) has been introduced in [124]. The main weakness of the bag of

visual words (BoVW) is that, the visual words are not all informative and accurate to

describe an action. Therefore, one has to pay more attention to the selection of visual

words. The most used approaches to select visual words are based on Machine learning

techniques Boosting [18], random forest [95], adaptation process like Multiple Instance

Learning (MIL) [19] or many other State-of-the-art algorithms [20, 21]. In this thesis we

exploit the K-mean clustering algorithm to extract a codebook. The extracted visual words

are classified based on a χ2 Kernel Support vector machine (SVM). Non linear SVM is a

fast and efficient algorithm that maps histograms in a higher dimensional space. SVM

demonstrated high classification results under challenging realistic conditions, including

intra-class variations and background clutter [125].

4.2 Proposed architecture for human action

recognition

The main goal of our work is to develop an efficient framework to achieve accurate action

recognition. In this section, we highlight the main parts of the proposed system. The

overall proposal of our trajectory descriptor and the associated architecture are shown in

Fig 4.1.

4.3 Trajectory based selective video segmentation

The underlying assumption behind a selective segmentation is that ”Human action is accu-

rate in a specific period of time and in a specific spatial position”. The purpose of this work

is to extract interest point of only moving objects/persons and then track them until the

end of an action or a part of an action coined actionlet. Thus dense SURF are extracted

to exploit the maximum spatial information in video frames [126]. Furthermore, we begin

by a fine and dense SURFs detection in the first detected moving targets of the first frame.

A group of SURF that covers significant moving human/objects parts is then defined. In

this paper, we empirically set G − SURF = 45. Figure 4.2 illustrates the most relevant

steps of the actionlets extraction and segmentation process.

The Trajectory based SS method introduced has many advantages. It not only allows

to extract a SS covering significant Human/object actionlet. But also, it allows to track

linear vectors of displacement to avoid additional trajectory shape feature computation.
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(a)

(b)

Figure 4.1. The proposed framework. (a) discriminative segmentation process. SURF
descriptors are densely extracted and a tracking process of the displacement of every group
of interest points leads to selective snippets extraction. (b) every SS is considered a cubic
volume. In this 3D volume SURF and their corresponding optical flow fields are extracted.
Then HMTOx , HMTOy are computed for every patch surrounding the selected SURF.
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Figure 4.2. Actionlets extraction by selective segmentation. The densely detected SURF
are divided into groups of 45 SURFs. Every Group trajectory is tracked. When significant
motion is detected a SS is extracted.

4.3.1 Selective snippets (SS) and Group of SURF (G-SURF)
segmentation

SSS One of the main objectives in the proposed method is to reduce computational load.

This could be achieved by reducing the number of the video frames to be analyzed. For

this purpose, we propose the use of concepts of selective snippets and the group of SURF

(G-SURF) . Considering three successive frames (n, n+ 1, n+ 2), a detected SURF in the

frame n − 1 can be detected in the same location in the following frame n. But it can

simply disappears or can be detected in another spatial location. The first and second

cases are not addressed in this work. Because, in the first case , no motion is detected

. In the second case , the SURF can no longer be followed. In the third case the SURF

is moved. This allows to determine a trajectory description to follow the motion of this

point. Considering that α is the angle between the lines segments supporting the motion

of a SURF from the couple of frames (n, n + 1) and (n + 1, n + 2) (see Figure 4.3). We
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compare α to αmax and αmin (αmax is a threshold empirically set) to segment a succession

of frames (SS) in which each SURF has an α lower than αmax and grater than αmin. Let

Dn,n+1 be the displacement vector of a given SURF from the frame (n) to the frame (n+1).

Dn,n+2 from the frame (n) to the frame (n+ 2) (see Figure 4.3).

Dn,n+1 = (Dxn,n+1, Dyn,n+1, Dtn,n+1) (4.1)

and

Dn+1,n+2 = (Dxn+1,n+2, Dyn+1,n+2, Dtn+1,n+2) (4.2)

α = arccos
Dn,n+1 ·Dn+1,n+2

‖Dn,n+1‖ × ‖Dn,n+2‖
(4.3)

Note that, within a SS, all SURF motions are less than αmax.

Figure 4.3. Displacement vectors between consecutive frames from KTH dataset

In order to avoid an oversized SS, we introduce, the concept of G-SURF. This is a

parameter defining the number of grouped SURF empirically tuned. The grouping tech-

nique is then performed over successive detected SURF in a reference frame. By defining

G-SURF, an average motion angle (αavg) is computed and compared to αmax. The more

SURF number is, the less the αavg is sensitive to motion and the more the SS will have

extended borders. The main steps of the proposed segmentation algorithm are given below

(table ??).
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Table 4.1. Proposed algorithm.

Input : I - input video;
αmin, αmax - motion angles;

Algorithm :
step1 IP extraction from frames {f1, f2};
step2 Groups of IPs defined;
step3 Compute the line supporting the motion;
Apply the above three steps to {f2, f3};
Compute the angle between each motion line;
Extract αavg for each GIP;
if αavg ≤αmin;

then go to the next frame;
else Compare αavg to αmax;

end if
repeat previous steps;
until αavg ≥αmax;

Output = fn, tmin, tmax ;

4.4 Descriptor extraction

Action recognition is a very challenging computer vision task. As mentioned in the intro-

duction, several descriptors have been proposed to achieve high quality action detection.

In this section, we describe in details the main stages of the used descriptors. We also

introduce a novel descriptor based on IPs trajectories to track interest points motions.

4.4.1 Motion trajectory extraction

The motion trajectory detection tracking and extraction are based on the following steps.

4.4.1.1 Optical flow extraction

Features tracking is performed by estimating optical flow. To increase optical flow esti-

mation accuracy, several methods derived from the Horn and Schunck (HS) Optical flow

formulation [106] have been proposed. In this thesis we employ Sun et al. [106] proposed

algorithm. It approximates an optimized computationally tractable objective function,

based on the original HS formulation. It is filtered using a bilateral weight that depends

on the spatial and the color value distance of the pixels as done in bilateral filer. The

initially computed optical flow serves in many blocks in the proposed framework. This
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reduces feature extraction computational time. The complexity results will be shown and

discussed in section 4.6.

4.4.1.2 Trajectory tracking

To every selective snippet corresponds a volume of frames in the 3D space called SS Volume

(SSv). This cubic volume is characterized by:

• The frame number(FN) varying from 1 to tmax.

• the frame surfaces dimensions (FS) varying from x to xmax in the x direction, and

from y to ymax in the y direction.

• The SS cubic volume center (SScc) coordinates.

A given interest point IP = (x, y, t) is defined by its spatial position (x, y) and its temporal

cue t. In frame (t+n), the IP undergoes a displacement u in the x direction, and v in the

y direction and defined as, IP (t+ n) = (x+ u, y+ v, t+ n). In all our experiments, unless

mentioned otherwise, we consider only moving interest points when u 6= 0, v 6= 0. In every

pre-defined SSv, the 3D direction (u, v, n) is the direction of the IP motion. The motion

vector is calculated by the Sun et al. [106] optical flow approach. Our main contributions

consist on the use of motion trajectory orientation to describe IP displacement, instead of

using directly the optical flow fields (u, v, n) and also to adapt the extracted features to

the frame number of every SS. In-fact, the motion vector in the 3D space can be found by

the intersection of two orthogonal planes to the plane (t, x) and the plane (t, y). To extract

IP motion trajectory orientation, we project its motion vectors onto the planes (t, x) and

(t, y) of the SSv to define an angle for each projection of the first angle αx between optical

flow and the plane (t, x), the angle αy between the plane (t, y) and the motion vector.

∝x= 90− 180

Π
arctan(

u

n
),∝y= 90− 180

Π
arctan(

v

n
). (4.4)

The projection of each SURF ′s motion vector on the planes (t, x) and (t, y) yields two

lines Lx and Ly. The orthogonal projection of SSccx and SSccy onto the lines Lx and

Ly allows computing the two distances Dx and Dy between the SSv center and the lines

supporting the motion vectors (Lx and Ly).

For an IP located at (x, y, t), the distances Dx and Dy are given by:

Dx = Dxu −Dtv, Dy = Dyv −Dtu (4.5)
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where

Dxu = (x− xmax/2)cos(180/Πarctan(
u

n
)) (4.6)

Dtv = (t− tmax/2)sin(180/Πarctan(
v

n
)) (4.7)

Dyv = (y − ymax/2)cos(180/Πarctan(
v

n
)) (4.8)

Dtu = (t− tmax/2)sin(180/Πarctan(
u

n
)) (4.9)

where tmax, xmax and ymax are the dimensions of the SS volume with tmax depending

on the number of the frames contained within a segmented (SSv). In the following, Dx and

Dy describe the motion trajectory location in the 3D volume generated from the successive

frames. Figure 3.14, is a graphical illustration of the cube center and its projection into

the planes (t, x) and (t, y).

4.4.1.3 Histogram of motion trajectory orientation (HMTO)

A wide range of histograms have been proposed in the literature for action recognition

description. Some of them focus on extracting motion cues such as [39] or (MBH) [81].

While other extract spatial information i.e., (HOG) descriptor [45]. In this paper, we

introduce a novel descriptor called motion trajectory orientation histogram (HMTO). The

most valuable property of this descriptor is that it is splitted in order to captures motion

trajectory orientation patterns in both (x,t) and (y,t) directions. To gain more accuracy, we

extract both HMTOx and HMTOy from a SURF centered patch. The patch is a square

region with size 20s where s represent the current scale. Furthermore, for every pixel in the

detected patch, we compute the optical flow. Then, we extract the direction parameters

αx and αy. These are considered as the angular votes in HMTOx and HMTOy. To use

the trajectory cues to track actions, we propose to bin them based on the absolute motion

distance. Finally we extract 8 bins histogram HTOx and HTOy. These histograms are

finally L2 normalized (see Figure 4.4).
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Figure 4.4. An overview of HMTO extraction.

4.4.1.4 Motion boundary histogram (MBH)

The motion boundary histogram (MBH) was introduced in [81] to detect action. MBH

contains the distribution of the gradient of the optical flow fields in both x and in y

directions. Hence, it captures salient optical flow changes while suppressing static motion

usually derived from camera motion. The final MBHx and MBHy are 96D (2× 2× 3× 8)

features set. In this work, we used MBH, not only for its aptitude of reducing camera

motion, but also as a motion descriptor for its action recognition discriminative power

attested in the state-of-the-art [81, 33].

4.4.1.5 Spatio-temporal SURF (ST-SURF)

ST-SURF was introduced by [43]. The main idea is to detect the trajectory of a SURF

point by tracking its motion trajectory. The authors used Hessian Matrix to detect salient

points. Then, they extract all The SURF in a given video. Finally they compute a 68D

spatio-temporal SURF called ST-SURF. The results given by their proposed approach are

encouraging but still below the state-of-the-art. In this thesis, we give an optimized ST-

SURF extracted over a SS. This step is based on a dense SURF extraction, which boosts

the information detection step. We combined ST-SURF with other descriptors to capture

maximum spatial and temporal cues. We choose ST-SURF for many reasons. First, it

contains spatial information driven by the SURF and temporal information driven by the
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optical flow, the size of this descriptor and finally it provides localization information. The

latter will add spatial information to the bag of words encoding step.

4.5 Experimental Setup

We conduct the proposed action recognition framework on three human action classification

datasets, i.e., KTH, UCF sports, UCF11 (YouTube Action Data Set) (see Figure 4.5).

Experiments are carried on video characterized by various contexts, duration, view-

points, occlusion, illuminations, actors, controlled ones and realistic others. Our experi-

ments are carried on a total of 26 classes and 3759 video. To engage a fair comparison,

we follows the settings provided by some methods of the state-of-the-art. The evaluation

is given by the average accuracy result. In the following, we provide a brief overview of

every dataset in the section 4.5.1, then the parameters setting for every block in the action

recognition system are drawn in section 4.5.2.

4.5.1 Datasets

The proposed framework is validated on the KTH dataset [34], UCF sports dataset [102]

and UCF11 [100]. Figure 4.5, depict major actions of these datasets.

4.5.1.1 KTH

The KTH is a controlled, commonly used public benchmark test dataset for human action

recognition [13]. This dataset contains 6 actions classes (walking, running, jogging, boxing,

hand waving, hand clapping). The actions are performed by 25 persons in 4 different

scenarios (indoors, outdoor, different clothes outdoors, scale outdoors), with a total of

2391 video samples. The average length of videos in the KTH dataset is about 20 second

long with homogenous and static background.

4.5.1.2 UCF sports

UCF sports dataset is a realistic and challenging data obtained from broadcast sport

videos by Ahmed et al. [102]. The collection represents a natural pool of actions featured

in a wide range of scenes and viewpoints. The publicly available part of this dataset

contains nine actions namely Diving (16 videos), Golf swinging (25 videos), Kicking (25

videos), Lifting (15 videos), Horseback riding (14 videos), Running (15 videos), Skating
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Figure 4.5. Selected frames from the evaluated benchmarks. KTH: 6 actions, UCF sport:
9 actions and YouTube: 11 actions.

(15 videos), Swinging (35 videos), Walking (22 videos) . This dataset contains close to 200

video sequences at a resolution of 720x480 [102].
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4.5.1.3 UCF11 YouTube Action Data Set

UCF11 is the newest update of the YouTube action dataset, it contains 1168 videos and 11

action classes called basketball shooting, biking/cycling, diving, golf swinging, horse back

riding, soccer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking,

and walking with a dog. For each class, the videos are grouped into 25 sub-groups with

about 4 to 9 action clips in it. The video clips in the same sub-group share few common

cues, such as the same actor, similar appearance, same background, similar viewpoint,

etc. This data set is very challenging due to large intra-class variations, differences in

camera motion, object appearance and pose, object scale, viewpoint, cluttered background,

illumination conditions, etc.

4.5.2 Extracted features

The extracted features in the proposed framework are SURF descriptor used as an appear-

ance features. The motion trajectory orientation cues of the SURF are tracked using two

approaches. The first consists in splitting optical flow fields, then an original projection of

optical flow cues into the planes (x, t) and (y, t) leads to extract motion evolution through

time. Followed by the extraction of the spati-temporal location of the trajectory in a 3D

volume. As described before, The extracted ST-SURF is 68D vector (64D SURF, αx,

Dx, αy, Dy). The second approach is based on the extraction of a square shape patches

surrounding the detected SURF. The size of the detected patch is 20s. For every detected

patch a novel histogram of motion trajectory orientation is computed in both planes (x, t)

and (y, t). We Kept the same parameters settings used to design HOG and MBH. The

extracted HMTOx and HMTOy are both 96D dimension. To reenforce our action recog-

nition system we used motion boundary histogram MBH as a motion descriptor and also

for its ability of removing camera motion. MBHx and MBHy are 96D histograms. We

finally extract three descriptors ST-SURF (68D), HMTOx and HMTOy (96 + 96=192),

MBHx and MBHy (192).

4.5.3 Features encoding: Bag of features

The classification step starts k-mean clustering applied on a set of 106 randomly se-

lected features, to build a visual dictionary for every extracted descriptor type (ST-SURF,

HMTOx, HMTOy, MBHx, MBHy). For every descriptor we construct 4000 visual words.

The k-mean clustering is initialized 8 times and we kept the configuration with the lowest
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error rate. The extracted histograms are L2 normalized to ensure better visual quality.

Finally, to classify the actions we use a non linear SVM with an RBF 2
χ Kernels [39].

K(vi, vj) = exp(−
∑ 1

Ac
D(vci , v

c
j)), (4.10)

Where D(vci , v
c
j) is the χ2 distance between video vi and vj of the channel c. Ac is the

mean distance value of the training features.

4.6 Experimental results and discussion

In this section we report and discuss the action recognition results extracted from KTH,

UCF sport and UCF11 datasets. The purpose of this discussion is to highlight the keys

success and weaknesses of the proposed action recognition system. As described below, we

use the same settings and evaluation metrics of the state-of-the-art.

4.6.1 Evaluation of the proposed approach

This section presents the results of a standard evaluation of the proposed system based

on a selective snippet segmentation with αmax = 40 in KTH dataset and αmax = 25 for

realistic datasets . The extracted features are then based on this segmentation extents. The

results are reported for three datasets ie., a controlled dataset (KTH) and two realistic ones

(UCF sport and YouTube). The evaluation results are given by the confusion matrices (see

Tables 4.2, 4.3, 4.4). The overall performances on KTH, UCF sport and YouTube dataset

are 94.9%, 90.3% and 90.44%.

With the KTH dataset, we follow the same protocols used in the methods of the state-

of-the-art for learning and testing phases. A group of 24 actors is involved during the

learning phase. One actor, for every action, is left for the test step. Our proposed approach

achieved an accuracy rate of 94.9% outperforming various proposed approaches (see Table

4.2). KTH video sequences were captured using a static camera with 25 fps frame rate,

with a spatial resolution of 160x120 pixels and a length of four seconds in average. The

experiments are performed using an Intel core i5 computer. The code is paralellized and

the number of cores was automatically selected by matlab software.

Figure 4.7, represents the computational complexity reported for the mean computing time

for one video per subject, a total of 150 videos (25 actors- 6 actions), and with respect

to the frame number into a SS. The selective snippets segmentation consumes only 2% of

the whole processing time which highlight the efficiency of this segmentation technique.
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The optical flow has the largest part of the processing time 48%. Since we reuse the

pre-computed optical flow and the SURF descriptors, we save processing time for HMTO

descriptor only 11%. The extraction time for descriptor, the training and the testing time

are relatively not consuming, and about 10% are less than the optical flow extraction

duration.
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Figure 4.6. Confusion matrix of the classification results for the KTH dataset for the
proposed approach using the combination of HMTO, PCA-STSURF, MBH descriptors.

Figure 4.7. computationlal requirement for 150 videos in KTH dataset.

The results shown in Table 4.7, are reported from the original papers [34, 38, 39, 35,

21, 13, 43, 33, 127]. The performances are around 94.9% in KTH dataset, nearly 0.4%

better than Spatio-temporal SURF [13]. We achieved 6-7 % improvement more than the

ST-SURF [43]. This is due to many factors, such as the optimization of the selective seg-

mentation based on dense SURF and the fusion of the ST-SURf with trajectory descriptors
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(HMTO, MBH). It can be also noticed that MBH descriptor does not improve significantly

the performances because KTH is a controlled dataset with minimum camera motion.

Table 4.2. Some state of the art recognition results over the KTH dataset.

Method Year Accuracy (%)
Shuldt et al. [34] 2004 71.7
Jhuang et al. [38] 2007 90.5
Laptev et al. [39] 2008 91.8
Niebles et al. [35] 2008 93.3

Lin et al. [21] 2009 95.8
Noguchi et al.[13] 2012 94.5
Megrhi et al. [43] 2013 88.2
Wang et al.[33] 2013 95.3

Virigkas et al. [127](CTW) 2014 93.8
HMTO+MBH+ST-SURF 2014 94.9

The UCF sport dataset is an uncontrolled video of sportive activities. The videos

are captured from different camera under various conditions. The resolution is 720 × 480

pixels. For SS, we use the same settings as KHT dataset i.e. αmax = 25◦. The results of our

approach are depicted in Figure 4.8. The proposed scheme achieves an accuracy of 90.3%,

which is better than the state-of-the-art methods [102, 128, 23, 129, 43, 33, 127]. The

increase in accuracy over the other methods is within the range [0.3− 4%]. This is due to

many reasons related to our strategy. In fact, the selective segmentation allows to extract

actionlets rather than randomly set a descriptor length. Note that the proposed approach

gets better results on realistic video containing various motion from several sources. This

is well handled by our approach, because in the SS, the segmentation ignores small angles

and performs really well for detecting rotational motion. Second, the use of the MBH

descriptor allows to capture significant motion while suppressing small ones.

Regarding the computational timing, we investigate running the proposed approach on

a total of 90 videos (10 videos for each class randomly chosen). The SS step took less than

1% of the total processing time. While the biggest consumer is the optical flow extraction

which represents 46% of the whole process. HMTO extraction process takes 18%, since

it requires a dense optical flow extraction step. It is 2% less than both ST-SURF+MBH

extraction step. This is explained by the reuse of the precomputed optical flow. Figure

4.9summarizes the obtained results.
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Figure 4.8. Confusion matrix of the classification results for the UCF sport dataset for
the proposed approach using the combination of HMTO, ST-SURF, MBH descriptors.

Figure 4.9. Computational requirement for UCF sport dataset.

Different background, view points, illumination, the existence of difference in scale, in

actors, in appearances and poses and the existence of camera motion are the key-challenge

of YouTube dataset. The latter is the more realistic benchmark we used in our experiments.

The confusion matrix shown in Figure 4.10, reveals a performance of 90.44% outperform-

ing the results published in the literature. We obtain an increase of performance around

[0.2 − 4%] greater than the overall reported results and outperforming the lasted results

[127] by 0.5%, (Table 4.4).

In order to evaluate the complexity, we conducted our experiments on 245 video (1

video from every groups in every action). According to Figure 4.11. the complexity is in
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Table 4.3. Some state of the art recognition results over the UCF sport dataset.

Method Year Accuracy (%)
Rodriguez et al. [102] 2008 69.2

Kovaska and Grauman [128] 2010 87.3
Wang et al. [23] 2011 85.6
Le et al. [129] 2011 86.5

Megrhi et al. [43] 2013 88.2
Wang et al.[33] 2013 80.7

Virigkas et al (CTW)[127]. 2014 90.1
HMTO+MBH+PCA-STSURF 2014 90.3
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Figure 4.10. Confusion matrix of the classification results for the YouTube dataset for
the proposed approach using the combination of HMTO, ST-SURF and MBH descriptors.

the same spirit of the previously reported results. In-fact, SS consumed 2% of the total

time. These results prove the rapidity of the segmentation process even when facing re-

alistic videos. The most expensive part is taken by the optical flow 55% about 9% more

than in UCF sport experiment. This is the consequence of the complexity and the variable

quality of the dataset and the density of details in a realistic benchmark. We note that

the optical flow used in this work [106] is based on a pre-filtering step to optimize the

computation of optical flow. HTMO computation takes about 21% as the optical flow is

densely extracted from SURF based patches and contains many extra details and contexts

in relation with the action.
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Figure 4.11. Computational requirement for 245 videos from YouTube dataset.

The proposed approach improves results on realistic datasets UCF sport and YouTube

more than in the case of KTH dataset. In the latter our results are equivalent to those

obtained with the state-of-the-art methods. The injection of the MBH is not really effi-

cient in KTH since it has a static background. We achieved a slight improvement of 0.1%

on UCF sport dataset. The best improvement of 0.5% is realized on YouTube dataset.

These results confirm that the selective segmentation we proposed in this paper, (efficient

more in rotation since it is based on an angular motion), contributes significantly in this

improvement. It captures motion of several actors or objects in relation with the actors

while ignoring small motion since we set a threshold on motion magnitude. We highlight

also the use of MBH descriptor, associated with the proposed MHTO, strike a balance

between motion description and camera motion reduction. Moreover, the reported results

are based on settings that might be different in the code-book generation and the learning

testing step.

Table 4.4. Some state of the art recognition results over the UCF YouTube dataset.

Method Year Accuracy (%)
Liu et al. [100] 2009 71.2

Ikizler-Cinbis and Sclaroff [130] 2010 75.2
Wang et al. [68] 2011 84.2
Le et al. [129] 2011 75.8
Wang et al.[33] 2013 85.4

Virigkas et al. (CTW) [127] 2014 90.1
HMTO+MBH+PCA-STSURF 2014 90.44
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4.6.2 Comparison with other descriptors

In this section we compare the proposed features with a selection of descriptors from the

literature. In [33], authors considered several approaches to evaluate their accuracy. We

report some of their recent results for comparison. The reported results are given in the

original papers [33, 127, 74]. To achieve fair comparison we conduct experiment using ST-

SURF on YouTube dataset. We also fused MBHx and MBHy to extract MBH evaluation.

HMTOx and HMTOy are also fused to allow evaluating the HMTO. Several observations

could be drawn from the performances evolution depicted in Figure 4.12.

The distribution of the trajectory angles given by HMTO perform well in KTH dataset

90.1% outperforming dense trajectory 89.8%, KLT trajectory 89.4% and SIFT trajectory

44.6%. As HMTO allows the tracking of the trajectory of a moving patch, the temporal

extents of the action are settled by selective segmentation into actionlets. Notice also that,

MIEF32 reported 96.76%, this is due to the use of an optimized SVM learning approach.

AMAR-CTW achieved 93.8% when they cluster motion curves using GMM in both learn-

ing/test steps.

In the case of realistic datasets UCF sport and YouTube, the performance of HMTO de-

creases to 80.3% and 76.4%. Hence, the more is the dataset realistic and contains spotty

background the less is the performance. However, we still outperform the trajectory based

descriptors ie. dense trajectory 75.4% and 67.5%, KLT trajectory 72.8% and 58.2% and

SIFT trajectory 55.7% and 47.3%.

We can also observe that the performances of the proposed HMTO (90.1%, 80.3%, 76.4%)

are better than MBH (90.0%, 79.6%, 74.8%) in the three datasets. This demonstrates the

importance of the motion cues in detecting human actions. The results are all better in

the case of KTH as it does not contain significant camera motion.

It could be also noticed that combined with ST-SURF and MBH, the HMTO gives best

results in realistic and complicated video. This encourages the use of different features to

achieve relevant action recognition. The results are improved by 4.9% on KTH dataset

and, between 10-20% for realistic video. This is the consequence of the efficiency of the

association of the actionlets extraction with MBH features to reduce video in realistic

benchmarks. When combined with HOG, HOF and MBH, dense trajectory, KLT trajec-

tory and SIFT trajectory shows a significant improvement. As the final descriptor globes

spatial information from HOG, temporal information from trajectory and from HOF and

the use of MBH which detects motion and suppresses small linear displacement. The use

of different learning approaches influence significantly the final performances, this is shown
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by MIL-F32 and TMAR-CTW on KTH dataset.

Year
Dataset

KTH UCF sport Youtube

P
r
o
p
o
se

d
a
p
p
r
o
a
c
h

HMTO 2014 90.1 % 80.3 % 76.4 %

ST-SURF 2014 88.2 % 80.7 % 79.5 %

MBH 2014 90.0 % 79.6 % 74.8 %

Fused 2014 94.9 % 90.3 % 90.44 %

D
.T

Trajectory 2009 89.8 % 75.4 % 76.5 %

Combined 2010 94.2 % 88.0 % 84.1 %

K
L
T Trajectory 2009 89.4 % 72.8 % 58.2 %

Combined 2010 93.4 % 82.1 % 79.5 %

S
IF

T Trajectory 2009 44.6 % 55.7 % 47.3 %

Combined 2010 84.9 % 77.9 % 73.2 %

S
T
-S

V

Trajectory 2009 96.76 % - % 84.52 ± 5.27 %

L
C
S
S

Trajectory 2009 93.8 % 90.1 % 90.1 %

Figure 4.12. Various reported results of descriptor performances in action recognition.

4.6.3 Evaluation of the settings

In this section we evaluate some changes in both the segmentation and feature extraction

processes. The first proposed experiment is based on controlling the selective snippets

extents. The latter has a great impact on the action recognition results. In-fact, SS

defines the actionlet content. The latter, combined orderly, describes human actions. The

trajectory length depends on the motion extracted angles and the G-SURF. We apply the

experiment on UCF sport dataset as a realistic benchmark and KTH dataset as a controlled

one.
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Figure 4.13. G-SURf variation.

Figure 4.13, reports the impact of the variation of the G-SURF. We can conclude that

for a G-SURF between 35 to about 45 SURF, an improvement in performances is achieved

with our approach. In-fact, below 35 SURF, the SS is not accurate since it captures very

small motion. Greater than 45 SURF, the detected motion may ignore significant human

action and results in a very long SS.

The second experiment reports the impact of the variation of the motion threshold αmax

on the recognition of every action in KTH dataset. The results are depicted in Figure 4.14.

The performance of the proposed approach decreases significantly with αmax = π/18 and

αmax = π/4. However in this controlled dataset, with static background, αmax = π/4 gives

slightly better results than αmax = π/18 because the dataset does not contain realistic

scenes, it is also based on single action without contexts connected to the action (like

ball for a footballer, or a glass for a drinker). So, increasing αmax increases the chance

of detecting the whole body of the person performing the action. While decreasing this

threshold, will not contribute to detect more information.

In Figure 4.15, we selected the first 4 SS extents to demonstrate αmax variations impact

on the SS in KTH dataset. The tested video contain 360 frames. Indeed, every line, in

Figure 4.15, represents the SS borders. With αmax = π/18, we extracted 194 SS, which is

the equivalent of 2-4 frames per SS. This is a huge number because the detected motion is

concentrated on the actor performing one, almost linear, action. αmax = π/4 we extracted 6

SS. We can clearly remark that with a small angle in a ”boxing” action context a very small

angle will report a big number of SS reporting visually the same action (see Figure 4.15,

(a), line one and two). This yields to a longer processing time for redundant information

extraction. Using αmax = π/4, we can see from Figure 4.15.(b), that the results are not
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Figure 4.14. Motion angle variation on KTH

really different from αmax = π/9, with less SS number. The emerged observation is that

for non realistic benchmarks, we better use important thresholds to detect actions.

In the UCF sport Dataset evaluation experiment, the variation of the threshold has

a great impact on the system performances. We used 171 frames video sequences. With

significant background in a realistic context. The scene contains one person, performing

”Golf” action. A realistic action contains an actor accompanied by several elements that

are part and somehow in a relationship with the action (for instance a ball in the soccer

kicking action, is a part of the action context). This case corresponds to a person, in a golf

course, using a golf club. All the elements might contribute to detect the action. However,

when hitting a draw the motion of the golf clubs is really fast. Surprisingly, the SS we

extracted considers the golf club motion in addition to the human action. For αmax = π/18,

we extracted 38 SS, about 2-5 frames per SS. As we can see in Figure 4.16.(a), row 1, the

SS contains the actionlet describing the small motion of the head of the actor. In row 2,

we can see the small displacement of golf club despite the quality of the average resolution

of the video and the non significant golf club motion.

With αmax = π/9, the results are more convincing and confirm the excellent perfor-

mances in term of tracking action. In-fact, in figure 4.16.(b), row 1, the extracted actionlet

describes a significant motion. We detect the golf club motion despite the fastness of the

action and the thinness of the the golf club. We extracted 19 SS, about 8-12 frames by

SS. The actionlet perceptually describes a part of the action. We did not detect the ball

motion, due to its size, color and the quality of the video and the fastness of its motion

displacement after being hit. When using αmax = π/4, two SS are extracted, which indeed,
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(a) (b) (c)

Figure 4.15. Motion threshold changes in KTH dataset. (a) αmax = π/18; (b) αmax =
π/9; (b) αmax = π/4;

(a) (b) (c)

Figure 4.16. Motion threshold changes in UCF sport dataset. (a) αmax = π/18; (b)
αmax = π/9; (b) αmax = π/4;

gave bad results. We believe that, in realistic video, many elements can contribute in de-

scribing an action (ie. phone for call phone action). This is why the use of a small motion

angle is desirable to extract relevant actionlets. We choose a threshold of αmax = 25◦ to

detect small actions that are likely belonging to the action, but at the same time we need

to avoid to capture small unnecessary movements.
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Figure 4.17. Motion angle variation on YouTube

The third experiment evaluates the resulting performance of the HMTO. In-fact, we

changed the size of the neighborhood surrounding SURF form 0.5 × s to 200 × s. The

obtained results are shown in Figure 4.17.

4.7 Summary and conclusion

A novel technique for actionlets extraction from videos via a space-time selective video seg-

mentation is introduced. The action recognition results in three challenging benchmarks.

The obtained results prove the efficiency of the proposed approach. In fact adopting this

method, there is no need to fix a trajectory length for all the extracted descriptors, or to

set an equal sub-volume length for all the detected space-time descriptors. Rather, every

significant motion is detected and compared to a threshold to evaluate the motion mag-

nitude. Then every detected actionlet describes an action part that concatenated orderly

with successive actionlets allows to construct a human action.

We developed an efficient descriptor called Histogram of motion trajectory orientation.

The latter is based on the tracking along a trajectory of moving regions. The distribution

of motion angles we extracted outperforms several proposed descriptors. We are convinced

that our descriptor has many advantages. For instance, it extracts dense pre-filtered op-

tical flow from local patches. The latter are based on moving SURF localization. Thus,

we extract meaningful motion information while saving extracting dense optical flow from

the whole frame. We inject localization cues into the proposed descriptor to avoid using

extra computations to add spatial information ie. spatial pyramid. For every region of

interest we extracted histogram on two channels based on the optical flow features. When

we extracted the proposed descriptors in a selective snippet, we avoid computing trajec-
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tory shape features and keep the motion angular trajectory cues. We qualitatively prove

its sufficiency for action recognition.

One of the most important challenges human action recognition is the camera motion.

To handle this issue we processed differently in the segmentation step and the descriptor

extraction step. In-fact, in the SS process we set a threshold to avoid small linear motion,

so it cannot influence significantly the segmentation quality. In the HMTO extraction

process we first use a pre-filtering optical flow extraction to boost the accuracy of optical

flow estimation. Then we coupled our descriptor with motion boundary histogram. The

latter, is based on the gradient of optical, thus it suppresses small motion likely coming

from video capture sources.

Despite we achieved encouraging results, there are several rooms of improvement. In the

next chapter, we plan to focus on optimizing space-time selective segmentation for long

actions. This is why we propose a more reliable and optimal action detection and segmen-

tation. The proposed approaches are evaluated on some realistic big datasets.
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5.1 Introduction

Currently recognizing human actions in videos is a challenging task. In fact, videos gen-

erally might contain complex actions with large intra-class variability, poor quality and

camera motion. In this chapter, we focus on reducing camera motion effect in both action

detection and video description tasks. The action detection allows to segment a video into

a succession of patches containing significant human action. In the literature, videos are

temporally segmented with different methods. Some, [131, 132, 57], are based on the tra-

jectory of interest points. In the last decades, a wide variety of trajectory based descriptors

has been proposed, [63, 58, 62, 61, 64]. Trajectories features can be extracted from optical

flow [33, 43, 121, 92], or by matching the interest points in different frames [64, 33]. The

number of frames involved in setting the trajectory length depends on the used approach.

In [64], the trajectory length belongs to a fixed interval while in [68] it is chosen to be fix

in order to extract a displacement vector.

Human motion segmentation acts as a pre-processing step for action recognition [133,

66]. Thus, the latter’s performance is highly related to one of the motion segmentation

algorithm. To assist action recognition, moving objects/humans in videos need to be first

detected, then segmented. Pixel-wise techniques, namely background subtraction and tem-

poral differencing [134], are the most straightforward methods for motion segmentation.

However, they are only effective under the consideration of static cameras. When dealing

with cameras in motion, these models are likely to fail as the background is continuously

varying in addition to the target’s motion. In the literature, many approaches considering

camera motion are proposed.

A recent study [135], revealed that optical flow based methods [136, 137, 138] are one of

the most employed techniques in motion segmentation. Horn and Schunck [139] and Lucas

and Kanade (LK) [65] are the oldest yet most employed optical flow algorithms. Regarding

their limitations toward accuracy and illumination changes, some improvements are pre-

sented. Our method is also based on optical flow computation. We apply the pyramidal

implementation of the Lucas and Kanade algorithm [140] to estimate optical flows of the

detected interest points (IP) in each frame. This method ensures detecting motion with

different speeds.

In spatial domain, these interest points carry high information contents. The most em-

ployed interest points detectors are Scale Invariant Feature Transform (SIFT) [47] and

SURF [24] descriptors. Jurie et al.[141] revealed that using a regular dense grid for sam-

pling local image patches enhances the use of interest points. A recent evaluation of dense
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sampling proposed by Uijlings et al. [126] proved that dense SIFT and dense SURF descrip-

tors may be extracted more quickly with no loss of accuracy. Moreover, dense sampling

has been shown to improve or produce comparable performance in different applications

such as image classification [142][143]. Further, Wang et al. [23] evaluated the use of dense

sampling at regular positions in space and time for action recognition

In practice, motion segmentation is quite difficult. The complexity of dynamic scenes is

considered as the biggest challenge facing this task where objects’ motion is combined with

both the camera and background motions. In this case, camera motion compensation is

crucial. Earlier approaches to camera motion compensation relied on estimating the cam-

era motion as a 2D affine transform or homography [144, 78, 80]. Other methods performed

motion compensation at trajectory level [79]. Uemura et al. [66] used a sophisticated and

robust(RANSAC) estimation of camera motion. All these works support the potential

of motion compensation. However, in some cases it is almost impossible to separate the

foreground and the background when there are close up captures of the human activity.

We propose, in this chapter, a motion segmentation algorithm based on dense features

which are comparable to state-of-the-arts. Optical flows of detected keypoints are then

computed. We propose to compensate the camera motion by determining the camera

flow direction using the k-Nearest Neighbor (KNN) clustering algorithm then applying the

affine motion model. Finally, humans/objects are segmented using temporal differencing

between two motion-compensated frames and a bounding box is drawn around each de-

tected object. Thereafter, the discriminative video segmentation is performed based on

the extracted bounding boxes (BB).

5.2 Action detection and motion segmentation

Motion is, with no doubt, the most reliable source of information for studying humans’

behavior. Hence, human motion segmentation appears to be a good way to reduce the

amount of data involved in the task of action recognition. Optical flow is one effective

and commonly performed technique for motion segmentation [134]. This task gets more

challenging when dealing with scenes captured by moving cameras. In this situation, the

scene necessarily involves the background, the camera and/or humans and objects motion.

At this level, camera motion compensation becomes compulsory. To do so, some attempts

have been proposed. In [66], Uemure et al. combined color based image segmentation

with dominant homographies estimated based on local extracted features. Cinbis et al.

[130] applied video stabilization using homography-based motion compensation approach.
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Nga et al. [145] subtracted the estimated camera flow multiplied by the camera direction

(d = ±1) from the flow of each extracted spatio-temporal keypoint. However, in this work,

only camera translation in both horizontal and vertical directions is considered. Different

works [144, 78, 80] consider 2D polynomial affine motion models to compensate camera

motion. In [144, 78], this model was employed to separate dominant motion, supposed to

represent the camera motion, from residual motion in videos with dynamic scenes. More

recently, Jain et al.[80] considered the same model. The compensated flow is computed in

each point as the difference between the original flow vector and the affine flow vector of

the same point. Thereby, each vector is compensated by its own affine flow and not by

the one of the camera. To overcome these problems, we propose, for compensating the

camera motion, to first determine the direction and magnitude of the dominant motion,

then applying the affine motion model. Once this step is achieved, we obtain a situation

similar to one where the camera is static.

5.3 Proposed method for motion segmentation

The proposed approach aims to detect and segment moving objects in a moving field of

view. To reach this goal, first interest points are densely detected and extracted with a

temporal step of N frames. Second, optical flows of detected keypoints between two frames

are then computed by the iterative Lucas & Kanade optical flow using pyramids[140]. Then,

the resulting vector field is passed to a flow clustering process which splits the list of flow

vectors into clusters having similar flow direction within them and are different to each

other. Based on the clustering results, camera motion is determined and compensated in

order to extract foreground features. A schematic diagram of our algorithm is shown in

Figure 5.1.

5.3.1 Computation of Optical Flow Vectors

In an image, some parts have almost the same color distribution such as the sky or the roof.

These parts do not generally bring useful information and may add noise when computing

the optical flow. In order to reduce the amount of data involved in motion analysis while

preserving the most important structural features, we begin by detecting image edges using

the canny edge detector [146], see Figure 5.2.

As follows, all the steps of the motion segmentation process will be applied on the edge

frame. Once the set of interest points densely detected from the edge frame is defined, we
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Figure 5.1. Proposed framework for motion segmentation.

Figure 5.2. Edges detection for some classes from UCF101 dataset.

track them over the next one using the iterative Lucas & Kanade (LK) optical flow using

pyramids. Figure 5.3 draws an example of LK optical flow before and after edge detection.

We can easily notice in this figure, that after applying edge detetcion, many erroneous flow

vectors were corrected.

The result of optical flow computation is a set of four-dimensional vectors V such as:

V = {V1 · · ·VN |Vi = (xi, yi, ai,mi)} (5.1)

where xi and yi are the image coordinates of keypoint i, ai and mi are respectively the

motion direction and magnitude of i. mi corresponds to the distance between keypoint i in

frame t and its corresponding feature in the next frame. Generally, optical flow is computed
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Figure 5.3. Results of LK optical flow computation before (left) and after (right) edge
detection.

between two successive frames. However, the result may be unstable when objects either

move too fast, too slow or stop between successive frames. In this thesis, we propose to

extract keypoints and compute optical flow with a temporal step size of N frames. The

choice of the temporal step’s value varies according to the type of the video. For example,

in sport videos such as running or swimming, motion is large. Hence, in order to obtain

more information about the motion, it is better to choose small value of N. On the other

hand, in every day activities videos such as talking or writing, motion is small. In such

videos, N is chosen to be large.

The computation of optical flow vectors also allows the removal of static features. The

latter are pixels that have optical flow component magnitudes lower than a threshold T in

both x and y directions. They are also referred as ”zero-motion” pixels. In our experiments,

we set the minimum motion magnitude to 0.5 pixel per frame.

5.3.2 Detection and compensation of camera motion

Given a number of extracted dense keypoints and their associated motion vectors, we aim to

separate local motions belonging to moving objects from the camera motion. In this work,

we solve the problem of camera motion compensation by, first, confirming the existence

of camera motion based on motion vectors. If detected, we determine the direction and

magnitude of the camera motion before moving to the next step. Then, camera motion is

compensated by applying affine transformations on the original frame.

Camera motion detection: In this step, we aim to find out how the camera moves at

each frame basing on the assumption that if most points shift to the same direction, camera

motion exists and it has the same direction as the moving points. This is derived from

analysing the optical flows between two frames of a frame set. Therefore, we propose to
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cluster optical flow vectors in order to eliminate outliers and to determine camera motion

direction. In view of our real-time requirements, it is desirable to have a low number of

clusters of similar optical flow vectors. Here, we don’t seek to group motion vectors having

the same magnitude or deviation. We are interested only on the direction of the motion.

We define, as shown in figure 5.4, eight possible directions of the camera motion: six in

Figure 5.4. Possible directions of camera motion.

both horizontal direction, forward (up, down or right) or backward (up, down or left), and

two in the vertical direction (up or down). In order to segment flow field into different

groups, we employ the k-Nearest Neighbor ( KNN) clustering algorithm.

After KNN clustering, some small clusters appear. These clusters do not belong to a

dominant cluster and they are not relevant to the purposes of our work. Therefore, clusters

with a size lower than a certain threshold are discarded. Figure 5.5 presents examples of

optical flows clustering using KNN. Each of the eight directions of the camera is presented

by a different color. In these images, it is easy to distinguish the moving objects from the

background as well as determining the camera motion direction. In the first three images,

the camera is moving in a different direction than the humans in the image. However in

the last one, the man at the left has the same motion direction as the camera (presented

in the same color) but their velocity is different. Hence the necessity of camera motion

compensation.

Since we assumed that camera motion exists if most points move in the same direction,

then, we seek to determine the size of each of the eight obtained clusters, get the largest

one and compare its size to some threshold. Therefore, camera motion exists if equation

(5.2) is satisfied:

sup
i ∈{1,..,8}

{si} > k (5.2)
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Figure 5.5. Optical flow clustering using KNN algorithm: the first row presents optical
flows between two frames taken from a video sequence while the second row displays the
results of KNN clustering. The keypoints are grouped into eight clusters with different
colors depending on the flow direction: red (forward up), yellow (forward down), green
(backward up), cyan (backward down), blue (forward to the right), purple (backward to
the left), dark green (up) and orange (down).

Where si is the size of cluster i, i is the number of the cluster and k is a threshold

representing the minimal required proportion of moving points. In our experiments, we set

k as N
2 where N is the total number of detected points. As an example, in figure 5.5(first

image), we can easily interpret that purple color is the dominant one. Hence, camera

motion exits and the camera is moving horizontally to the left. The camera is supposed

to be in rest if the above condition is not satisfied. If the camera is detected as in motion,

then the camera motion magnitude and deviation are computed basing on the following

equations:

mm = mean | fi | (5.3)

θm = mean(θfi) (5.4)

Here, fi and θfi refer, respectively, to the flow and deviation of point i. mm and θm refer,

respectively, to the camera flow magnitude and deviation.

Camera motion Compensation: In Videos captured by a hand-held camera, camera

motion is random. It is a combination of translation and rotation. In Nga et al.’s work[145],
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only the camera translation is considered. Camera motion is compensated by subtracting

the camera flow from the original flow of each SURF keypoints. So, the camera motion will

not be correctly compensated if the motion is, for example, oblique. We propose to solve

this problem by applying affine transformation on each frame in which camera motion is

detected. The affine model [147] incorporates transformation such as translation, rotation

and scaling (compressions or expansions). The transformation can be described as:

I ′ = D × I + d× T (5.5)

Where I is the original frame, I ′ is the transformed frame, D =

[
sxdxx sydxy

sxdyx sydyy

]
is the

deformation matrix accounting for rotation and scaling, dxx, dxy, dyx, dyy are the rotation

parameters and sx and sy are the scaling ratios in the x and y directions. T =

[
dx

dy

]
is the

translation vector.

In this work, we take under consideration only translation and rotation motions. Scaling

is one of our future works. Therefore, the parameters sx and sy from the deformation matrix

are equal to 1. Hence, I ′ from (5.5) becomes:

I ′ =

[
cos θm − sin θm

sin θm cos θm

]
× I +

[
mmH

mmV

]
(5.6)

Here mmH (respectively mmV ) refers to the camera flow magnitude when the camera

translates horizontally (respectively vertically). d equals 1 if the camera moves to positive

direction or -1 if the camera moves to negative direction. In case of horizontal motion,

mmV = 0 and in case of vertical motion, mmH = 0. Unlike in [80] and [145] where the

motion of each flow vector is compensated independently, in our work, we apply the affine

model on the whole image.

5.3.2.1 Motion segmentation

After compensating the camera motion, we reach a situation similar to one where the

camera is static. Here, moving objects are segmented using a pixel-wise technique which is

temporal differencing. It is the simplest method to extract moving objects and is robust to

dynamic environments. It is similar to the background subtraction techniques. The only

difference is that the background model is the previous frame. This algorithm classifies a

new pixel as being a foreground pixel whenever ‖ I(x, y)−Iprev(x, y) ‖≥ T where T is a user
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defined threshold. The obtained result is a binary image. However, due to camera noise

and limitations of the background model, the foreground mask (binary image) typically

contains numerous small ”noise” clusters. These erroneous clusters can be removed by

applying a noise filtering algorithm to the foreground mask. Removing these erroneous

clusters in an early stage is desirable since they can interfere with later post-processing

steps. In general, morphological operations are performed to remove noise and extract

significant information from images. In our system, we used both morphological erosion

and dilatation, respectively, to remove noise and unwanted objects. Erosion consists on

convoluting an image A with some kernel B, calculating the local minima over the area

of the kernel and replacing this value where the anchor of the kernel is located. After

that, objects including many small holes and separated pixels may be connected into one

cluster using the dilatation operation. Useless and small clusters are removed by setting

limitation on their sizes. The remaining clusters represent the moving objects. Finally,

a bounding box is drawn around each detected object. The aforementioned steps of our

propose method for motion segmentation are applied on an input video with a temporal

step with size N . Thus, we need to track the detected objects in the remaining frames (the

frames between frame (n) and frame (n+N)). To accomplish this, we employ a template

matching technique which is the normalized cross correlation [148].

Figure 5.6 emphasizes the effectiveness of our motion segmentation method. It can be

observed that almost only local motions remain which are then employed, after filtering

noise, to segment the motion. Our method succeeded to eliminate the motion induced

by the camera leaving only humans/objects motion. However, in some cases, the process

of camera motion compensation may have a reverse effect on motion segmentation. In

fact, in some frames two or more dominant plans can coexist. Hence, the camera motion

direction and deviation will not be determined correctly. For example in figure 5.6-fourth

row, motion of two players can be easily detected before camera motion compensation.

When applied, the latter adds some noise to the frame. At the end, we were able to solve

this problem using morphological operations.

In case where no camera motion is detected, we admit that the detected flow belong

to the objects/humans in motion. Hence, instead of applying, like we did previously,

the temporal differencing technique, here, we propose to apply a second clustering of

optical flow vectors based on the degree of similarity of their magnitudes, angles and

closeness, under the assumption that optical flows of a single person/object have similar

characteristics. We assume that two optical flow vectors, fi and fj , belong to the same
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Figure 5.6. Results of our proposed method for motion segmentation. Camera motion
exists in all the sequence. The first column presents a frame set of consecutive frames
containing camera motion on which optical flow is drawn. The second column refers to
the motion segmentation results before camera motion compensation. The third column
shows the results of motion segmentation after camera motion compensation. Finally, the
last column is the final segmentation after applying morphological operations.

cluster if the following assumptions are satisfied:

| li − lj |≤ lth (5.7)

| θi − θj |≤ θth (5.8)

| posXi − posXj |≤ posXth (5.9)

| posYi − posYj |≤ posYth (5.10)

where li and lj are the magnitudes of fi and fj . θi and θj are the deviations (angles)

of fi and fj . (Xi, Yi) and (Xj , Yj) are the coordinates of optical flow vectors. Finally, lth,
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θth, posXth and posYth are the thresholds for optical flow clustering. All detected flow

vectors are compared two-by-two basing on these similarity comparisons leading to form

a fixed number of clusters. In order to remove noisy and meaningless clusters, we discard

ones with size smaller than a threshold. The remaining clusters belong to the foreground.

A bounding Box is drawn around each one. Figure 5.7 presents the segmentation results

derived from the optical flow clustering technique as well as the results of using frame

differencing technique. The first technique (row 5) reached better segmentation results. It

succeeds to capture the whole human motion while the second technique (rows 3 and 4)

leads to loose information and only some parts of the motion were segmented.

5.4 Proposed framework for human action

recognition

The ultimate goal of this work is to introduce an efficient method to achieve accurate and

fast action recognition in big dataset. The overall architecture proposal of other spatial-

temporal segmentation and the associated architecture are highlighted in Figure 5.8.

5.4.1 Selective temporal segmentation

In order to achieve a relevant spatial-temporal video segmentation, we extract interest

points located within the detected Bounding box as it contains moving objects/persons.

Here, dense SURFs are the most appropriate interest points to be employed in order

to exploit the maximum spatial information in video frames [126]. This process begins

by dense SURFs detection in the BBs extracted from the first frame. These descriptors

trajectories are then tracked until the end of the video patch. In order to guarantee a fair

comparison, we use the same settings as other chapters and as the state-of-the-art.

In this chapter, we briefly describe the theoretical details of all the phases involved in our

human action recognition computation pipeline:

• A group of SURF that covers significant moving human/objects parts are defined as:

G-SURF = 49.

• The concepts of selective snippets, previously described, and G-SURF are employed.

In fact, for three successive frames (n, n+1, n+2), trajectory features can be extracted

for a moving SURF. Considering that α is the angle between the lines segments

supporting the motion of a SURF from the couple of frames (n, n+1) and (n+1, n+2),
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Figure 5.7. Results of motion segmentation in videos acquired by static camera. The
first row presents a set of consecutive frames on which optical flow is drawn. The second
row refers to optical flow clustering using KNN clustering. The third and forth rows show
the results of temporal differencing technique. Finally, the last row is the result of motion
segmentation after optical flow second clustering.
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Figure 5.8. Human action ”phone call”
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a comparison between α to αmax and αmin (αmax and αmin are threshold empirically

set) is performed in order to segment a succession of frames (SS) in which each SURF

has an α lower than αmax and greater than αmin.

• A displacement vector Dn,n+1 is computed from the frame (n) to the frame (n+ 1),

and Dn,n+2 from the frame (n) to the frame (n+ 2).

α = arccos
Dn,n+1 ·Dn+1,n+2

‖Dn,n+1‖ × ‖Dn,n+2‖
(5.11)

5.4.2 Feature extraction

To increase the efficiency of the proposed camera motion compensation, we employ several

local spatio-temporal descriptors. Based on our motion trajectory extraction framework

and practical considerations, the overall extraction process can be summarized as follows:

• First, trajectories are extracted by optical flow detection. In this work, we employ

the optical flow proposed by Sun et al. [106].

• Every bounding box based selective snippet corresponds to a volume of frames in the

3D space called SS Volume (SSv). This cubic volume is characterized by the frame

number (FN) varying from 1 to tmax. The frame surface dimensions (FS) vary from

x to xmax in the x direction, and from y to ymax in the y direction.

• Descriptors computation: To extract IP motion trajectory orientation, we project

its motion vectors onto the planes (t, x) and (t, y) of the SSv to define an angle for

each projection of the first angle αx between optical flow and the plane (t, x), the

angle αy between the plane (t, y) and the motion vector.

∝x= 90− 180

Π
arctan(

u

n
),∝y= 90− 180

Π
arctan(

v

n
). (5.12)

The projection of each SURF ′s motion vector on the planes (t, x) and (t, y) yields

two lines Lx and Ly. The orthogonal projection of SSccx and SSccy onto the lines

Lx and Ly allows computing the two distances Dx and Dy between the SSv center

and the lines supporting the motion vectors (Lx and Ly).

For an IP located at (x, y, t), the distances Dx and Dy are given by:

Dx = Dxu −Dtv, Dy = Dyv −Dtu (5.13)
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• Histogram of motion trajectory orientation (HMTO) computation: Both HMTOx

and HMTOy are extracted from a SURF centered patch. The patch is a square

region with size 20s where s represent the current scale.

Figure 5.9. An overview of HMTO extraction.

• Motion boundary histogram (MBH)computation. The final MBHx and MBHy are

96D (2× 2× 3× 8) features set [81, 33].

• Spatio-temporal SURF (ST-SURF)computation: A 68D ST-SURF contains: spatial

information driven by the SURF, temporal information driven by the optical flow

and the size of this descriptor. It also provides localization information. The latter

will add spatial information to the bag of words encoding step [43].

5.5 Experiments and results

5.5.1 Experimental settings

In earlier chapters, we introduced the overall approach for motion segmentation and action

description. Our proposed technique for motion segmentation does not require no assump-

tions about the first frame nor initialization or training steps. We start the segmentation

process with dense SURF features extraction with temporal step size of N frames. In our

experiments, we fix N as 3 so that small motions will not be lost and fast motions will

be captured with no errors. Then, we compute LK optical flow. The flow vectors are

clustered to determine whether camera motion exists. If it does not, we conduct a second

clustering of the flow vectors basing on the degree of similarity of their magnitudes, angles

and closeness. We fixed the thresholds experimentally as follows: lth = 15, θth = 2.0,
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posXth = 45 and posYth = 305.

The employed descriptors in the action recognition process provide a rich video represen-

tation in term of space and motion of moving interest points. From each clip, we extract

local spatio-temporal features as ST-SURF. As described previously, the extracted ST-

SURF is a 68D vector (64D SURF, αx, Dx, αy, Dy). We also extract square shape patches

surrounding the detected SURFs. The size of each detected patch is 20s. For each one, a

HTMO is computed in both planes (x, t) and (y, t). HMTOx and HMTOy are both 96D

vectors. To reinforce our action recognition system, we used motion boundary histogram

MBH as a motion descriptor and also for its ability to remove camera motion. MBHx and

MBHy are 96D histograms.

We performed an experiment using the bag of words approach to provide baseline results

on the UCF101 dataset. The classification step starts by k-mean clustering applied on a set

of 106 randomly selected features to build a visual dictionary for every extracted descriptor

type (ST-SURF, HMTOx, HMTOy, MBHx, MBHy). For each one, we construct 4000

visual words. The k-mean clustering is initialized 8 times and we kept the configuration

with the lowest error rate. The extracted histograms are L2 normalized to ensure better

visual quality. Finally, to classify the actions, we use a non linear SVM with an RBF 2
χ

Kernel [39].

K(vi, vj) = exp(−
∑ 1

Ac
D(vci , v

c
j)), (5.14)

Where D(vci , v
c
j) is the χ2 distance between video vi and vj of the channel c. Ac is the

mean distance value of the training features.

5.6 Dataset

In this thesis, the latest experiments are carried on a big realistic dataset called UCF101

[103]. It includes total number of 101 action classes which we have divided into five types:

• Human-Object Interaction.

• Body-Motion.

• Human-Human Interaction

• Playing Musical Instruments.

• Sports.
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UCF101 is an extension of UCF50 which included the following 50 action classes, [104]:

Baseball Pitch, Basketball, Shooting, Bench Press, Biking, Billiards Shot, Breaststroke,

Clean and Jerk, Diving, Drumming, Fencing, Golf Swing, High Jump, Horse Race, Horse

Riding, Hula Hoop, JavelinThrow, Juggling Balls, Jumping Jack, Jump Rope, Kayaking,

Lunges, Military Parade, Mixing Batter, Nun chucks, Pizza Tossing, Playing Guitar, Play-

ing Piano, Playing Tabla, Playing Violin, Pole Vault, Pommel Horse, Pull Ups, Punch,

Push Ups, Rock Climbing Indoor, Rope Climbing, Rowing, Salsa Spins, Skate Boarding,

Skiing, Skijet, Soccer Juggling, Swing, TaiChi, Tennis Swing, Throw Discus, Trampoline

Jumping, Volleyball Spiking, Walking with a dog, Yo-Yo.

The following 51 new classes are introduced in UCF101: Apply Eye Makeup, Ap-

ply Lipstick, Archery, Baby Crawling,Balance Beam, Band Marching, Basketball Dunk,

Blow Drying Hair, Blowing Candles, Body Weight Squats, Bowlng, Boxing-Punching Bag,

Boxing-Speed Bag, Brushing Teeth, Cliff Diving, Cricket Bowling, Cricket Shot, Cutting In

Kitchen, Field Hockey Penalty, Floor Gymnastics, Frisbee Catch, Front Crawl, Hair cut,

Hammering, Hammer Throw, Handstand Pushups, Handstand Walking, Head Massage,

Ice Dancing, Knitting, Long Jump, MoppingFloor, Parallel Bars, Playing Cello, Playing

Daf, Playing Dhol, Playing Flute, Playing Sitar, Rafting, Shaving Beard, Shot put, Sky

Diving, Soccer Penalty, Still Rings, SumoWrestling, Surfing, Table Tennis Shot, Typing,

Uneven Bars, Wall Pushups, Writing On Board.

Clip Groups: The clips of one action class are divided into 25 groups which contain 4-7

clips each. The clips in one group share some common features, such as the background

or actors. The colors on each bar illustrate the durations of different clips included in that

class. The chart shown in Figure 5.10, illustrates the average clip length (green) and total

duration of clips (blue) for each action class. The videos are downloaded from YouTube

[10] and the irrelevant ones are manually removed. All clips have fixed frame rate and

resolution of 25 FPS and 320×240 respectively.

5.7 Experimental results and discussion

In this section, we report and discuss the motion segmentation and action recognition

results extracted from UCF101 datasets. The purpose of this discussion is to highlight the

keys of success and weaknesses of the proposed action recognition system.
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Figure 5.10. UCF 101 actions.
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5.7.1 Motion segmentation

We, first, present the evaluation of the proposed motion segmentation process. The ex-

periments are carried out on 125 randomly picked videos (25 videos from each of the five

categories) from the UCF dataset. The latter is very complex. It represents different in-

door and outdoor scenes with moving foreground, objects, complex background and camera

motion. In fact, this dataset is dedicated mainly to the task of action recognition. Hence,

as far as we know, there are no evaluations of proposed motion segmentation algorithms

based on this dataset that we may compare our method to.

The system’s performance is evaluated in terms of the average F-measure given by:

F =
2×Rc × Pr
Rc + Pr

(5.15)

where Pr is precision and Rc is the recall for bounding boxes annotations, for each video.

These measures are assessed basing on some bounding boxes annotations provided in [32].

Our main purpose from segmenting motion, is to restrict the amount of data involved

in studying human actions. Hence, we aim to detect a bounding box covering as much

motion as possible. Table 5.1 reports the obtained results. For the Sports (74.50%),

Playing Musical Instrument (88.75%),Human-Object Interaction (87.83%), Body-Motion

Only(85.45%), Human-Human Interaction (84.53%).

In general, the camera motion segmentation process helps improving the accuracy of

Table 5.1. F-measure results over the UCF101 dataset.

Action class F-measure (%)
Sports 74.50

Playing Musical Instrument 88.75
Human-Object Interaction 87.83

Body-Motion Only 85.45
Human-Human Interaction 84.53

motion segmentation. Also, for fixed scenes, employing a second clustering of motion flow

vectors enhances moving objects extraction. We consider these results satisfying especially

since we make no assumptions about the first frame and our process does not require any

initialization or training steps. Sports actions are considered as the most challenging ones

as they include important motions of humans along with camera motion. The majority of

those videos were captured outdoors with the presence of trees and audience. Despite these

effects, sports actions motion segmentation reached acceptable results. The performed
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motion segmentation makes the action recognition task easier even with presence of camera

motion.

5.7.2 Action Recognition

As described before, we use the same settings and evaluation metrics of the state-of-the-

art. The accuracy rates reported for the predefined action types are shown in Table 5.2.

For the Sports (87.23%), Playing Musical Instrument (79.4%), Human-Object Interaction

(86.07%), Body-Motion Only(85.19%), Human-Human Interaction (88.61%).

We can notice that Human-Human Interaction actions achieve the highest accuracy since

the spatio-temporal segmentation we introduced in this thesis highlight human bodies,

thus the feature extraction is performed in the humans bounding boxes boosts significantly

human detection. Performing sports action achieves a reasonable accuracy of 87.23%, this

is due to two factors the first one is the temporal segmentation while the second one is the

motion based extraction features. In fact, sports actions show important motion which is

very well described in our proposed approaches. Despite that Human-objects and Body

motion actions are not based on significant motion, the classification shows satisfactory

results. We believe that pixel motion segmentation precision in detecting motion is a good

cue to explore human action.

Table 5.2. Recognition results over the UCF101 dataset.

Action class Accuracy (%)
Sports 87.23%

Playing Musical Instrument 83.4%
Human-Object Interaction 86.07%

Body-Motion Only 85.19%
Human-Human Interaction 88.61%

We present the results of our approach compared to trajectory and motion based video

description approaches in Table 5.3. MBH descriptor is associated with several approaches

to detect human actions since it is based on optical flow. This proves that combining MBH

with different descriptors is a straightforward way to improve the results. The proposed

approach which combines ST-SURF, HTMO and MBH gives an accuracy rate of 79.2%

equivalent to the state-of-the-art trajectory based video description. As expected, the

proposed spatio-temporal segmentation improves the proposed approach by 6.1% achiev-

ing 85.3% of accuracy in the challenging realistic big dataset UCF101. Compared with

trajectory based descriptors, the proposed approach gives good performances.
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Approach Descriptor UCF101: Accuracy %
Trajectory TrajShape 47.1
Trajectory+ Loclal decriptors TrajShape+MBH+HOG+HOF 72.8
Local descriptors HOG3D+MBH+HOG+HOF 78.9
Trajectory Dense trajectory 85.9
Trajectory Dense trajectory+PSIFT 85.7
Trajectory MBH 85.7
Trajectory BB+ST-SURF+HTMO+MBH 85.3
Trajectory ST-SURF+HTMO+MBH 79.2
Trajectory BB+ST-SURF+HTMO+MBH 86.1

Table 5.3. Trajectory based descriptor performances over the UCF101 dataset.

5.7.3 Comparison with the state of the art

The results given by the-state-of-the-art are given in Table 5.4. They are reported from

the original papers [149, 150, 32, 151, 104, 152, 153]. The overall performances on UCF101

dataset are 85.3%. These Results are significantly better than those reported in [104] using

standard bag of words method with overall accuracy of 44.5%. In [149], authors used dense

trajectory computed for fixed frame length L = 16 and L = 17. The overall performance

rate is 47.1% using trajectory descriptor. Combined with MBH, HOG and HOF their

trajectory based approach reaches 72.8%. These performances still lower than our results.

We believe that this is due to the use of a fixed frame number. We also outperform the

results given in [150]. Authors used multi-channel approach for Local Part Model LPM

algorithm for efficient action recognition. Their approach was based on the fusion of HOG,

HOF, HOG3D and MBH. They achieved 78.9% of average accuracy. Dense trajectory

features were used in [32]. Author applied Fisher vector and spatio-temporal pyramids

to embed structure information. Finally, a linear SVM combining everything gives the

performance of 85.9% about 0.6% better than our results. This proves the importance of

motion cues in detecting human actions, this also encourages us to investigate more learning

approaches that the SVM we used in this thesis. Fishor vectors gives good results in [151].

In fact, authors extract features from both video and keyframe modalities. They used dense

trajectory features associated with HOG and Motion Boundary Histogram (MBH), then

they encode them as Fisher vectors. To represent action-specific scene context, we compute

local SIFT pyramids on grayscale (P-SIFT) and opponent color keyframes (P-OSIFT)

extracted as the central frame of each clip. improve accuracy by using L1-regularized

logistic regression (L1LRS) for stacking classifier outputs 85.7%, 0.2% better than our
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method. The results given in [152] are lower than ours. In fact, authors provide an

extensive empirical evaluation of CNNs on large scale video classification 63.3%. However,

in [153], authors investigate architectures of indiscriminately trained deep Convolutional

Networks (ConvNets) for action recognition in video. This method achieves 87.6% which is

the best result. This, also, highlights the importance of the classification task investigation,

especially in term of deep classification.

Table 5.4. Some state of the art recognition results over the UCF101 dataset.

Method Year Accuracy (%)
Murthy et al. [149] 2013 72.8

Shi et al. [150] 2013 78.9
Wang et al. [32] 2013 85.9

Karaman et al. [151] 2013 85.7
Khuramm et al. [104] 2012 44.5
Karpathy et al.[152] 2014 63.3
Simonyan et al. [153] 2014 87.6

5.8 Summary and Conclusion

In this chapter, we presented an end-to-end framework for human action recognition in

big dataset. As part of this effort, we introduced a new human motion segmentation

process based on studying optical flows induced by human motion. The flows are clustered

to determine the existence of camera motion. The latter is compensated by means of

affine transformation. Pre-processing operations are performed in order to extract humans

motion. The proposed approach achieves a reasonable trade-off between high accuracy and

prohibitive computational cost.

The video segmentation task is followed by the video description process which includes

different descriptors that shares the same purpose: extracting the maximum motion and

appearance cues. To this end, we employed the Histogram of motion trajectory orientation.

The latter is based on the tracking along a trajectory of moving regions. The distribution of

motion angles we extracted has several advantages involved in different action recognition

steps. For instances, it extracts meaningful local motion information in a dense sampling.

It also have localization cues which avoid using extra computations to add spatial infor-

mation ie. spatial pyramid.
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6.1 Conclusion

In this dissertation we presented a set of approaches aimed to improve the performance

of both action detection and video description. The algorithms were specially designed

to recognize human actions in video under a number of challenging conditions. These

conditions included camera motion, low resolution and complex datasets.

In the realm of action detection, the first issue we addressed was that of spatio-temporal

video segmentation. To accomplish this task, we used an original interest points tracking

approach to detect moving humans/objects. This work is based on Speeded-up robust

features (SURF) as interest points (IP). The proposed approach yields video segments

containing significant action and does not rely on a fixed number of frames.

Secondly, we addressed the issue of camera motion compensation in the context of

spatio-temporal video segmentation. In this thesis, we presented a method for human

motion segmentation in dynamic scenes. The proposed process encompasses a collection

of techniques enabling camera motion compensation as well as motion segmentation in

complex videos. Camera motion compensation is achieved by clustering optical flow vec-

tors of densely extracted key interest points. The largest cluster represents the camera

motion, which is compensated for using affine motion models. Then, motion is segmented

using temporal differencing between two frames. If the camera is static, we recommend

segmenting motion by applying a second clustering of flow vectors based on their degree

of similarity. The formed clusters belong to the foreground. Finally, a bounding box is

drawn around each moving object.

We also focused on deploying these methods in video description frameworks. We

enriched the state-of-the-art by proposing two different video descriptors. The first video

descriptor is based on local interest point extension to the temporal domain. The second

descriptor is another local descriptor based on the distribution of the trajectory of interest

points in a predefined bounding box. Both descriptors’ performances were tested using

different schemes, such as single descriptors or a fusion of different descriptors.

In conclusion, the current research has analyzed, developed and evaluated different meth-

ods for not only action detection and video segmentation but also action recognition in

video. A comparison of our experimental results with those of existing approaches has

demonstrated the promise of our new methods.
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6.2 Summary of Contributions

Our main contributions are summarized below

• Trajectory based action detection: Within the purview of the work proposed in this

thesis, we addressed the spatio-temporal action detection. We proposed the detection

of human action and action boundaries to localize action. The proposed technique

relies on Interest Points (IP) detection. We chose to use the Speeded-Up Robust

Feature, as it is a high performing and fast interest points detector. The detected

interest point trajectory can then be tracked and the moving IP selected.

• Dense trajectory based action detection: In this part of the thesis, we focused on

optimizing human action detection, since it has already been proven that real per-

formances increase with respect to time consumption. We proposed in this context

to detect moving human or objects in the scene. This is achieved first by detection

of dense IP and then by optical flow computation, for which we designed bounding,

boxes to surround the humans and/or objects in movement.

• Spatio-temporal SURF (ST-SURF): We proposed a new algorithm based on the ex-

tension of the speeded-up robust features (SURF) to the temporal domain. This

feature captures the spatial information provided by the SURF and the motion in-

formation brought by the optical flow. In addition, ST-SURF contains localization

information, which is not obtained by the Bag of Visual Words (BoVW) approach.

• Histogram of trajectory motion orientation (HTMO): We investigated a complemen-

tary source of information based on the tracking of the IP trajectory. HTMO captures

joint cues between the distribution of motion and appearance of constituent IP. The

motion trajectory is extracted by optical flow computation.

The descriptors we designed were tested in different scenarios. In order to evaluate

our proposed approaches, we began by using simple yet challenging datasets. At the most

basic level, we analyzed scenes in which one actor was performing one action without the

influence of either camera motion or a challenging background. We then experimented

with more complex datasets comprised of realistic videos captured by amateurs from real

scenes.
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6.3 Future work

In the course of the research carried out for this thesis, a number of possible directions

for further research have been identified. Relating to the two main parts of this thesis,

these research ideas can be divided into two separate sections. First, despite the extensive

research already carried out in the field of human action detection, there is still room for

improvement. In the current algorithms, the SURF detector is used in a dense sampling.

Other interest points and methods based on more stable and effective dense sampling

deserve careful consideration. An extension of our framework could be improved with the

use of different descriptors.

Furthermore, an automatic segmentation could be investigated. For long video se-

quences a clustering could be performed on the extracted trajectories to accelerate the

recognition process. We could also to apply trajectory features for video retrieval via a

multimodal scheme.

Secondly, regarding the evaluation of video description, further work should be focused

on more motion-based descriptors.

Conducting experiments using other classification methods, such as deep schemes or

fisher vectors, could also significantly contribute to better human action recognition. Iden-

tifying these deficiencies would prepare the way for further improvements.

Experimenting with new datasets should also be considered for futur research. The

main issue when dealing with realistic videos is that of a significant increase in running

time. Thus, developing new algorithms that are able to segment low resolution videos

would potentially increase the efficiency of action detection.
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