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Résumé Les simulations dites multi-physiques couplent plusieurs phases de
calcul. Lorsqu’elles sont exécutées en parallèle sur des architectures à mémoire
distribuée, la minimisation du temps de restitution nécessite dans la plupart des
cas d’équilibrer la charge entre les unités de traitement, pour chaque phase de
calcul. En outre, la distribution des données doit minimiser les communications
qu’elle induit.

Ce problème peut être modélisé comme un problème de partitionnement
de graphe multi-critères. On associe à chaque sommet du graphe un vecteur
de poids, dont les composantes, appelées « critères », modélisent la charge
de calcul porté par le sommet pour chaque phase de calcul. Les arêtes entre
les sommets, indiquent des dépendances de données, et peuvent être munies
d’un poids reflétant le volume de communication transitant entre les deux
sommets. L’objectif est de trouver une partition des sommets équilibrant le
poids de chaque partie pour chaque critère, tout en minimisant la somme des
poids des arêtes coupées, appelée « coupe ». Le déséquilibre maximum toléré
entre les parties est prescrit par l’utilisateur. On cherche alors une partition
minimisant la coupe, parmi toutes celles dont le déséquilibre pour chaque critère
est inférieur à cette tolérance.

Ce problème étant NP-Dur dans le cas général, l’objet de cette thèse est de
concevoir et d’implanter des heuristiques permettant de calculer efficacement
de tels partitionnements. En effet, les outils actuels renvoient souvent des
partitions dont le déséquilibre dépasse la tolérance prescrite.

Notre étude de l’espace des solutions, c’est-à-dire l’ensemble des partitions
respectant les contraintes d’équilibre, révèle qu’en pratique, cet espace est
immense. En outre, nous prouvons dans le cas mono-critère qu’une borne
sur les poids normalisés des sommets garantit que l’espace des solutions est
non-vide et connexe. Nous fondant sur ces résultats théoriques, nous proposons
des améliorations de la méthode multi-niveaux. Les outils existants mettent en
œuvre de nombreuses variations de cette méthode. Par l’étude de leurs codes
sources, nous mettons en évidence ces variations et leurs conséquences à la
lumière de notre analyse sur l’espace des solutions.

Par ailleurs, nous définissons et implantons deux algorithmes de partitionne-
ment initial, se focalisant sur l’obtention d’une solution à partir d’une partition
potentiellement déséquilibrée, au moyen de déplacements successifs de sommets.
Le premier algorithme effectue un mouvement dès que celui-ci améliore l’équi-
libre, alors que le second effectue le mouvement réduisant le plus le déséquilibre.
Nous présentons une structure de données originale, permettant d’optimiser le
choix des sommets à déplacer, et conduisant à des partitions de déséquilibre
inférieur en moyenne aux méthodes existantes.

Nous décrivons la plate-forme d’expérimentation, appelée Crack, que nous
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avons conçue afin de comparer les différents algorithmes étudiés. Ces comparai-
sons sont effectuées en partitionnant un ensembles d’instances comprenant un
cas industriel et plusieurs cas fictifs. Nous proposons une méthode de génération
de cas réalistes de simulations de type « transport de particules ».

Nos résultats démontrent la nécessité de restreindre les poids des sommets
lors de la phase de contraction de la méthode multi-niveaux. En outre, nous
mettons en évidence l’influence de la stratégie d’ordonnancement des som-
mets, dépendante de la topologie du graphe, sur l’efficacité de l’algorithme
d’appariement « Heavy-Edge Matching » dans cette même phase.

Les différents algorithmes que nous étudions sont implantés dans un outil
de partitionnement libre appelé Scotch. Au cours de nos expériences, Scotch
et Crack renvoient une partition équilibrée à chaque exécution, là où MeTiS,
l’outil le plus utilisé actuellement, échoue une grande partie du temps. Qui plus
est, la coupe des solutions renvoyées par Scotch et Crack est équivalente ou
meilleure que celle renvoyée par MeTiS.

Laboratoire d’accueil CEA, DAM, DIF, Bruyères-le-Châtel, F-91297 Arpa-
jon
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Title Load Balancing of Multi-physics Simulation by Multi-criteria Graph
Partitioning

Keywords Partitioning, Graph, Multi-criteria, Multilevel, Combinatorial
optimization

Abstract Multiphysics simulation couple several computation phases. When
they are run in parallel on memory-distributed architectures, minimizing the
simulation time requires in most cases to balance the workload across computa-
tion units, for each computation phase. Moreover, the data distribution must
minimize the induced communication.

This problem can be modeled as a multi-criteria graph partitioning problem.
We associate with each vertex of the graph a vector of weights, whose compo-
nents, called “criteria”, model the workload of the vertex for each computation
phase. The edges between vertices indicate data dependencies, and can be
given a weight representing the communication volume transferred between the
two vertices. The goal is to find a partition of the vertices that both balances
the weights of each part for each criterion, and minimizes the “edgecut”, that is,
the sum of the weights of the edges cut by the partition. The maximum allowed
imbalance is provided by the user, and we search for a partition that minimizes
the edgecut, among all the partitions whose imbalance for each criterion is
smaller than this threshold.

This problem being NP-Hard in the general case, this thesis aims at devising
and implementing heuristics that allow us to compute efficiently such partitions.
Indeed, existing tools often return partitions whose imbalance is higher than
the prescribed tolerance.

Our study of the solution space, that is, the set of all the partitions respecting
the balance constraints, reveals that, in practice, this space is extremely large.
Moreover, we prove in the mono-criterion case that a bound on the normalized
vertex weights guarantees the existence of a solution, and the connectivity of
the solution space. Based on these theoretical results, we propose improvements
of the multilevel algorithm. Existing tools implement many variations of this
algorithm. By studying their source code, we emphasize these variations and
their consequences, in light of our analysis of the solution space.

Furthermore, we define and implement two initial partitioning algorithms,
focusing on returning a solution. From a potentially imbalanced partition,
they successively move vertices from one part to another. The first algorithm
performs any move that reduces the imbalance, while the second performs at
each step the move reducing the most the imbalance. We present an original
data structure that allows us to optimize the choice of the vertex to move, and
leads to partitions of imbalance smaller on average than existing methods.

We describe the experimentation framework, named Crack, that we imple-
mented in order to compare the various algorithms at stake. This comparison
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is performed by partitioning a set of instances including an industrial test case,
and several fictitious cases. We define a method for generating realistic weight
distributions corresponding to “Particles-in-Cells”-like simulations.

Our results demonstrate the necessity to coerce the vertex weights during
the coarsening phase of the multilevel algorithm. Moreover, we evidence the
impact of the vertex ordering, which should depend on the graph topology, on
the efficiency of the “Heavy-Edge” matching scheme.

The various algorithms that we consider are implemented in an open- source
graph partitioning software called Scotch. In our experiments, Scotch and
Crack returned a balanced partition for each execution, whereas MeTiS, the
current most used partitioning tool, fails regularly. Additionally, the edgecut
of the solutions returned by Scotch and Crack is equivalent or better than the
edgecut of the solutions returned by MeTiS.
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Résumé substantiel

Contexte. Les simulations numériques permettent d’effectuer à l’aide d’un
ordinateur des expériences qui peuvent être coûteuses ou difficiles à mettre en
œuvre. Néanmoins, effectuer une simulation numérique nécessite des ressources
informatiques et du temps. Par conséquent, certaines simulations sont lancées
sur plusieurs unités de calcul, pour diminuer leur temps d’exécution, ou bien
parce qu’une unité ne suffit pas pour stocker toutes les données de la simulation.
On dit que de telles simulations sont effecuées « en mémoire distribuée ».

Par ailleurs, afin de modéliser les phénomènes physiques qu’elles étudient,
beaucoup de simulations utilisent un maillage. Un maillage est une discrétisation
de l’espace, c’est-à-dire que chacun de ses éléments, appelé une maille, est une
portion de l’espace. Une maille modélise la valeur d’un phénomène continu sur
la portion de l’espace qu’elle représente. Par conséquent, les mailles servent
de support aux données de la simulation. Lorsqu’une simulation reposant sur
un maillage est effectuée en mémoire distribuée, le maillage est partitionné,
c’est-à-dire que chaque maille est attribuée à une unité de calcul. Afin de
minimiser le temps de la simulation, la partition doit équilibrer autant que
possible la charge de travail entre les unités de calcul.

La charge de travail d’une unité de calcul dépend des mailles qui lui sont
attribuées. En effet, une unité de calcul doit, au fur et à mesure de la simulation,
mettre à jour les données de ces mailles. La quantité de calcul nécessaire pour
mettre à jour une maille varie selon les mailles et, dans le cas de simulations
dites « multi-physiques », elle dépend également de la physique considérée.
Dans ces simulations, les phases de calcul pour chaque physique sont effectuées
l’une après l’autre car elles sont séparées par des phases de synchronisation.
Par conséquent, l’équilibrage de la charge de travail doit être effectué pour
chaque phase de calcul.

Les phases de synchronisation permettent aux unités de calcul de s’échanger
des données, par envoi de messages. En effet, mettre à jour les données d’une
maille nécessite en général de disposer des données de ses voisines, donc les
données des mailles à la frontière de la partition doivent être communiquées. Les
phases de synchronisation entraînant un surcoût temporel, minimiser le temps
de la simulation nécessite aussi de minimiser le temps dû à ces communications.

Ainsi, minimiser le temps d’exécution des simulations multi-physiques,
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reposant sur un maillage et effectuées en mémoire distribuée, nécessite entre
autres d’équilibrer la charge de travail entre les unités de calcul pour chaque
phase de calcul, et de minimiser le temps des phases de communication.

Modèles. Nous présentons plusieurs modèles classiques visant à minimiser le
temps d’exécution des simulations multi-physiques en mémoire distribuée. Dans
chacun d’entre eux, la charge de travail par maille et par physique est modélisée
par un poids affecté à cette maille. Dans le cas des simulations multi-physiques,
c’est donc un vecteur de poids qui est affecté à chaque maille, dont chaque
composante, appelée « critère », représente la charge pour une phase de calcul.
Équilibrer la charge de travail revient alors à déterminer une partition du
maillage qui équilibre les poids de chaque partie pour chaque critère.

Pour minimiser le coût des communications, différents modèles existent.
Nous présentons deux modèles, l’un partitionnant directement le maillage,
l’autre le représentant par un hypergraphe, calculant le volume de communica-
tion induit par la partition. Un troisième modèle représente le maillage par un
graphe, et estime de manière approchée ce volume de communication. Nous
détaillons les limites des ces modèles au vu de la complexité des schémas de
communication possibles, pour les machines à mémoire distribuée.

Enfin, afin de pouvoir choisir entre une partition plus équilibrée et une autre
de moindre coût de communication, dans chacun des trois modèles, l’objectif
d’équilibrer la charge de travail est transformé en contrainte. L’utilisateur doit
alors fournir une tolérance de déséquilibre, et toute partition de déséquilibre
supérieur à cette tolérance n’est pas considérée comme solution. Parmi toutes
les partitions solutions, nous cherchons une solution qui minimise le coût de
communication, dite « optimale ». Ce problème, suivant le modèle choisi, est
appelé « partitionnement multi-critères de maillage/de graphe/d’hypergraphe »,
et constitue le problème que nous souhaitons résoudre dans le cadre de cette
thèse. Nous nous intéressons plus particulièrement au modèle de graphe, plus
simple et très utilisé.

État de l’art. Nous détaillons d’abord des heuristiques visant à partitionner
de façon équilibrée un ensemble de nombres. Ce problème, appelé « parti-
tionnement de nombres », cherche une solution (pas forcément optimale) à
un problème de partitionnement de graphe mono-critère. De nombreuses heu-
ristiques traitent ce problème. Cependant, très peu se généralisent à notre
cas, qui est celui du partitionnement de vecteurs de nombres, aussi appelé
« partitionnement multi-dimensionnel de nombres ». Dans cette thèse, deux
algorithmes de partitionnement de vecteurs de nombres seront étudiés.

Nous présentons ensuite les algorithmes classiques visant à résoudre le
problème du partitionnement de maillage, de graphe ou d’hypergraphe, à
chaque fois en expliquant les différences entre les version mono- et multi-
critères. La méthode la plus utilisée est la méthode multi-niveaux, composée

viii Rémi Barat



de trois phases. Dans la première phase, appelée phase de contraction, une
succession de graphes grossiers est construite en groupant des sommets du
graphe, de façon à réduire leur taille. Dans la deuxième phase, le graphe le
plus grossier est partitionné : c’est la phase de partitionnement initial. La
partition obtenue est successivement prolongée sur un graphe moins grossier
(au niveau supérieur), et raffinée à l’aide d’un algorithme d’optimisation locale.
L’algorithme le plus utilisé pour le raffinement est l’algorithme de Fiduccia-
Mattheyses (FM), qui change successivement de partie des sommets, de façon à
améliorer le plus possible le coût de communication à chaque mouvement. FM
n’autorise de déplacer un sommets que si la partition obtenue après déplacement
est solution, ce qui suppose en général que la partition fournie en entrée soit
déjà solution.

Des outils traitant le problème du partitionnement multi-critères de graphe
existent déjà, mais ils renvoient souvent des solutions ne respectant pas la
tolérance de déséquilibre.

Étude de l’espace des solutions. Étant donné un graphe G, un nombre de
parties k et une tolérance t, l’espace des solutions est l’ensemble des partitions
à k parties de G de déséquilibre inférieur ou égal à t. Nous montrons par une
méthode probabiliste de type Monte-Carlo qu’en pratique, même lorsque la
tolérance est très faible, l’espace des solutions est gigantesque.

Par ailleurs, dans le cas mono-critère, nous prouvons que si les poids nor-
malisés des sommets sont bornés par t, alors il existe une solution. Une borne
similaire, t/2, garantit la connexité de l’espace des solutions pour les algorithmes
d’optimisation locale de type FM (déplaçant un seul sommet à la fois). Cela
signifie que, quelle que soit la solution fournie en entrée, FM peut renvoyer une
solution optimale. Ces deux résultats nous mènent à conjecturer que, dans le
cas multi-critères, plus les poids (normalisés) des sommets sont petits, plus
l’espace des solution a de chance d’être grand et connecté, c’est-à-dire qu’il
est plus facile pour un algorithme de trouver une solution, et qu’il est aussi
plus facile pour un algorithme d’optimisation locale de type FM de trouver une
solution optimale.

Mise en place d’un algorithme multi-niveaux tenant compte des
poids des sommets. Nous basant sur ces conjectures, nous analysons plu-
sieurs variations de la méthode multi-niveaux. Les différents logiciels actuels
de partitionnement multi-critères qui reposent sur cette méthode l’implantent
d’ailleurs avec des variations. Nous confrontons nos propres choix algorithmiques
avec ces implantations, en nous basant, lorsque cela est possible, directement
sur le code source de ces outils.

Contraction. Durant cette phase de la méthode multi-niveaux, les sommets
du graphe sont regroupés de façon à réduire la taille du graphe. Classiquement,
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on essaie d’apparier ensemble les sommets aux extrémités des arêtes de fort
poids, selon l’algorithme Heavy-Edge Matching (HEM). Nous analysons comment
des variations de cet algorithme peuvent augmenter la probabilité de renvoyer
une solution optimale, en regard de nos conjectures. En effet, lorsque deux
sommets sont appariés, leurs poids s’ajoutent (vectoriellement), ce qui modifie
la distribution des poids. Nous considérons des restrictions sur les poids des
sommets dans le graphe grossier, ou différents ordonnancement des sommets
(avant de calculer l’appariement) suivant des critères de poids ou de topologie.

Nous montrons expérimentalement que plus on restreint les poids des
sommets, plus le déséquilibre des partitions retournées par des algorithmes de
partitionnement initial diminiue. Cela valide notre hypothèse que plus les poids
normalisés sont faibles, plus il est facile pour un algorithme de retourner une
solution.

Concernant la capacité à trouver une partition optimale, s’il n’est pas
toujours efficace de restreindre le plus possible les poids, des restrictions aident
dans la plupart des cas l’algorithme multi-niveaux à renvoyer des partitions de
plus faible coût de communication.

Les algorithmes choisissant l’ordre des sommets pour calculer l’appariement
influencent le coût de communication des solutions renvoyées. Ainsi, ordonner
les sommets toujours dans le même ordre mène à des solutions de fort coût de
communication. Il est préférable d’utiliser un ordre aléatoire, ou privilégiant les
sommets de faible poids, ou bien ordonnant les sommets par degré croissant.
Ce dernier algorithme semble être le plus robuste.

Partitionnement initial. Étant donné que beaucoup de logiciels de parti-
tionnement renvoient des solutions ne respectant pas les contraintes d’équi-
librage, nous proposons deux algorithmes se focalisant sur l’équilibre de la
partition renvoyée, traitant un problème de partitionnement multi-critères de
graphe comme un problème de partitionnement de vecteurs de nombres.

Ces algorithmes déplacent successivement un sommet de façon à améliorer
l’équilibre. Le premier algorithme, appelé VNFirst, itère sur les sommets,
changeant un sommet de partie dès lors que cela conduit à une réducation du
déséquilibre. Le second algorithme, appelé VNBest, change à chaque fois de
partie un sommet de manière à diminuer le plus possible le déséquilibre, à la
manière de l’algorithme du gradient. Dans le cas du bipartitionnement, nous
détaillons une structure de données qui diminue la complexité de cet algorithme,
lui permettant d’atteindre un temps d’exécution inférieur à d’autres algorithmes
de partitionnement initial, tel que l’algorithme Greedy Graph Growing (GGG).

Cette structure se base sur l’étude de la fonction du gain en équilibre d’un
sommet. Le gain en équilibre d’un sommet est la réduction du déséquilibre
induite si on le change de partie. Étant donnée une bipartition Π, de déséquilibre
imb(Π), le gain en équilibre d’un sommet dépend seulement de son vecteur de
poids. Plaçons nous d’abord dans le cas du bipartitionnement mono-critère, et
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considérons les variations de cette fonction de gain en équilibre. Cette fonction
est croissante avec le poids du sommet, atteint un maximum si le sommet est
de poids imb(Π)/2, puis décroît. Si les sommets sont triés par poids croissant,
on peut donc trouver le maximum sans calculer le gain de tous les sommets. En
outre, les sommets de poids supérieur à imb(Π) sont de gain négatif. Comme,
au cours de notre algorithme, le déséquilibre décroit strictement, ces sommets
ne changeront plus de partie, et n’ont plus besoin d’être considérés. Enfin, le
gain de certains sommets ne change pas après un mouvement, ce qui évite
d’avoir à recalculer les gains de tous les sommet après chaque mouvement.

Nous généralisons notre structure de données au cas du bipartitionnement
multi-critères. Trouver le sommet de meilleur gain est plus complexe, mais
nous détaillons un mécanisme permettant de le trouver sans avoir à considérer
tous les sommets. Pour ce faire, notons cmax le critère le plus déséquilibré. En
itérant sur les sommets par gain décroissant pour cmax, dès lors que cmax ne
change pas lorsqu’on considère bouger le sommet v, alors il n’est pas nécessaire
de considérer les sommets de gain inférieur pour cmax à celui de v.

Nous comparons VNFirst et VNBest à GGG et à un algorithme de partition-
nement aléatoire, Randomize. Nous montrons que VNFirst et surtout VNBest
parviennent à obtenir en moyenne des partitions des graphes grossiers de
déséquilibre inférieur à celles retournées par GGG et Randomize. En revanche,
lorsque l’algorithme multi-niveaux utilise VNBest comme algorithme de parti-
tionnement initial, lorsque la tolérance est plus stricte, les solutions retournées
en utilisant GGG sont de plus faible coût de communication.

Raffinement. Nous formalisons l’algorithme de raffinement FM de manière à
mettre en avant les ambigüités possibles sur son implantation, et en étudiant
comment ces ambigüités ont été levées par différents logiciels de partitionnement.
Par exemple, si FM est défini de sorte qu’on choisisse à chaque fois de déplacer un
sommet de façon à diminuer le plus le coût de communication, en cas d’égalité,
les politiques diffèrent en fonction des logiciels. Surtout, certains logiciels
relâchent la tolérance durant cette phase, afin d’augmenter la connexité de
l’espace des solutions. Au vu de nos conjectures, nous soutenons qu’un tel
relâchement n’est pas nécessaire, et qu’au contraire, il mène à renvoyer des
partitions qui ne sont pas des solutions.

Environnement expérimental. Nous avons mis en place une plate-forme
d’expérimentation, appelée Crack. Crack est implanté en Python et peut-être
considéré comme un logiciel flexible de partitionnement de maillage, de graphe
ou d’hypergraphe. Nous décrivons ainsi une représentation originale de l’algo-
rithme multi-niveaux, sous forme d’automate, qui permet de spécifier clairement
et simplement l’enchaînement des algorithmes utilisés et leurs paramètres.

Nous définissons les instances nous servant à comparer les différents al-
gorithmes considérés. Ces instances comprennent un cas industriel et cinq
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maillages fictifs. Pour ces derniers, nous définissons une méthode de génération
des poids qui retourne une distribution de poids similaire à celles qu’on retrouve
lors de simulations de type Monte-Carlo, pour le transport de particules.

Chaque algorithme est lancé 100 fois sur chaque instance, afin d’étudier,
d’abord, la capacité de chaque algorithme à renvoyer une solution et, ensuite, la
distribution du coût de communication des solutions renvoyées. Ces distributions
sont comparées à l’aide des profils de performance, qui tracent l’effectif cumulé
des solutions en fonction de leur coût de communication. Les courbes obtenues
permettent d’analyser et de représenter les résultats de chaque algorithme plus
finement que les indicateurs classiques (moyenne, médiane, écart-type).

Comparaison avec d’autres logiciels de partitionnement multi-cri-
tères. Pour finir, nous comparons les résultats de Crack avec ceux des logiciels
MeTiS et PaToH. En outre, nous présentons les résultats d’une implantation
d’une partie de nos algorithmes dans Scotch, un outil industriel de partitionne-
ment de graphe écrit en C. Nos algorithmes renvoient à chaque fois une solution,
contrairement à MeTiS et PaToH. Par ailleurs, les solutions renvoyées ont en
général un coût de communication équivalent ou meilleur à celui des autres
outils considérés.
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Introduction

Context. Numerical simulations model complex phenomena, avoiding ex-
periments which would otherwise be expensive or hard, if not impossible, to
conduct. However, numerical simulations also require computation resources,
memory resources, and time. Therefore, some simulations must be executed
in parallel, on distributed memory architectures, because their memory usage
does not fit in the memory of a single chip and/or because one needs to reduce
their run time.

In order to represent the complex phenomena, and the space in which these
phenomena occur, many simulations use a discrete entity called mesh. The
mesh elements model physical data that are computed along the simulation.
Therefore, the workload is divided up across the available computation units
by partitioning the mesh. This means that every mesh element is attributed to
a single computation unit.

When the simulation couples several physical models, it is said to be
“multiphysics”. In multiphysics simulations, the mesh elements involving heavier
computations usually vary from one physical model to another. Moreover, data
for different physical models are computed during distinct computation phases,
that are executed one at a time.

Challenges. In order to minimize the run time of mesh-based simulations
executed on distributed memory architectures, the mesh must be partitioned
so that every computation unit gets the same workload. Therefore, one needs
to find a balanced partition of the mesh that exhibits several properties:
(1) in the case of multiphysics simulation, the partition must minimize,

for every computation phase, the maximum workload attributed to the
computation units. This implies balancing the workloads for every phase
of the computation;

(2) besides, during the simulation, one computation unit may need data
owned by another unit, which requires some form of communication.
Communications are usually performed after every computation phase,
in a synchronization step, thus increasing the run time of the simulation.
Therefore, the partition of the mesh must also minimize the induced
communication time.
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Properties (1) and (2) can be modeled with the multi-criteria mesh partitioning
problem, or with the multi-criteria graph or hypergraph partitioning problems
when considering only the topology of the mesh (which means, without relying
on the mesh geometry).

The multi-criteria mesh/graph/hypergraph partitioning problems are NP-
Hard, but heuristics exist, and some multi-criteria partitioning tools have been
implemented. However, they often fail to return balanced partitions, and there
is limited research investigating the cause of this flaw.

Purpose of this work. This study aims at reducing the run time of simu-
lations that couple several computation phases, by devising and developing a
multi-criteria mesh partitioning method which balances the workload between
computation units for all computation phases, and additionally minimizes the
induced communication cost.

I Context, Model and State of the Art. In Chapter 1, we first present
the use of numerical simulations, and explain why some simulations are run on
distributed memory machines. As many simulations use meshes to discretize
the continuous domains involved, we give a simplified definition of what a mesh
is.

In order to model the run time of these mesh-based simulations running on
distributed memory architectures, we then examine typical executions of such
simulations. Basically, these simulations perform computation phases for a
sequence of time steps. The essential characteristics are that the computation
phases depend on each other, and that they are separated by communication
phases. As a result, minimizing the run time requires to balance the workloads
between computation units for every computation phase, and to minimize the
duration of the communication phases.

In Chapter 2, we define the multi-criteria mesh, graph and hypergraph
partitioning problems, whose solutions should minimize the run time of mul-
tiphysics simulations. In all three models, the computational workload of a
mesh element for one phase is represented by a weight associated with this ele-
ment. For multiphysics simulations, which couple several computation phases,
a vector of weights is therefore associated with every element. The compo-
nents of a vector of weights are called criteria, hence the name “multi-criteria”
mesh/graph/hypergraph partitioning.

The three models define communication costs to represent the communica-
tion time, and they all change the objective of minimizing the imbalance into a
constraint. This constraint is set by the user, who defines the tolerance, the
maximum imbalance acceptable for a partition to consider it as a solution. A
solution minimizing the communication cost is called optimal solution.

The problem of finding a solution amounts to solving a vector-of-numbers
partitioning problem, which we also define. Besides, in order to study heuristics

2 Rémi Barat



Introduction

addressing the mesh, graph or hypergraph partitioning problem, we introduce
a more general formulation that uses fitness landscapes, which help study
properties of the solution space, the set of all solutions. Characterizing the
solution space of an instance informs on whether an algorithm is suited to solve
this instance.

Chapter 3 defines algorithms addressing the vector-of-numbers partitioning
problem. Then, Chapter 4 defines heuristics addressing the multi-criteria mesh,
graph, or hypergraph partitioning problems. Among them, the multilevel
algorithm is very efficient and is used by most of the existing graph partitioning
tools. However, these tools often return imbalanced solutions, so we will
investigate how to avoid such a behavior.

II Approach. In Chapter 5, we experimentally study the number of solutions
for a set of multi-criteria instances. We also formulate two theorems, in the
mono-criterion case, which state, depending on the vertex weights, the non-
emptiness and the connection of the solution space. The connection of the
solution space depends on the algorithm considered, and examines whether
from any starting solution, the algorithm can improve it in order to reach an
optimal solution. Our theorem on the connection of the solution space is valid
for “Fiduccia-Mattheyses-like” (“FM-like”) local optimization algorithms that,
given a solution, pass to another solution by switching the part of a single
vertex.

These theoretical results lead to two conjectures on how algorithms can
benefit from smaller normalized weights. Based on these assumptions, we
define and analyze algorithmic choices for the multilevel algorithm. Indeed,
throughout the thesis, we will show that the partitioning tools Scotch, MeTiS
and PaToH, which all implement the multilevel algorithm, integrate many
variations. However, these variations are not always documented; we understood
many of them by analyzing their source code. In Chapters from 6 to 8, we
rigorously define general versions of the algorithms used in the multilevel
framework, analyze variations of them, and compare these variations with
existing implementations.

Chapter 6 focuses on the first phase of the multilevel algorithm, called
the coarsening phase. This phase coarsens the mesh, modifying the weight
distribution of the original mesh by matching cells (the elements of the mesh).
In accordance with our conjectures, we propose several matching schemes
that aim at forming smaller weights for the coarsened cells. To do so, we
use two different mechanisms. The first one directly restricts the weights
when coarsening, and the second one orders the cells in different ways before
computing the matching.

Then, in Chapter 7, we propose two algorithms for the second phase of the
multilevel algorithm, the initial partitioning phase. Our algorithms focus on
returning a solution by addressing a vector-of-numbers partitioning problem.

Multi-criteria Graph Partitioning 3



Both of our algorithms are local optimization algorithms: at each step, they
switch the part of one vertex. The first algorithm switches the part of any
vertex if it decreases the imbalance of the partition, while the second algorithm
selects the vertex so that the imbalance decreases the most. For the latter
algorithm, we also detail a data structure enabling to find such a vertex in a
reduced amount of computation.

Finally, Chapter 8 details the third phase of the multilevel algorithm, the
uncoarsening or expansion phase. This phase uses a refinement algorithm to
reduce the communication cost of the partitions of the coarse mesh, until a
partition of the original mesh is found. Most partitioning tools rely on a local
optimization algorithm for refinement, but many tools choose to relax the
imbalance tolerance during this phase, and we discuss their choice. Indeed,
relaxing the tolerance increases the probability to return imbalanced partitions.
In order to fix an excess of imbalance, MeTiS, Scotch and PaToH use various
mechanisms, that we also detail in order to be able to draw conclusions from
the results obtained with these tools.

III Experiments. In Chapter 9, we first show that existing tools return
partitions of various communication cost, so a comparison of algorithms needs
to execute them many times. We also introduce cumulative plots (also known
as performance profiles), the statistical indicator that we adopted to compare
heuristics. Furthermore, we describe the instances that we used for the tests.
There is one industrial case, and five meshes for which we generated three
fictitious weight distributions per mesh. Given any mesh, we define a method
to generate a weight distribution reflecting a particle-in-cell simulation relying
on this mesh. Finally, we describe some features of Crack, the flexible graph
partitioning tool that we implemented in Python.

Using Crack, in Chapter 10, we compare the various heuristics defined. The
aim is twofold: firstly, attempt to validate our conjectures that algorithms
benefit from smaller normalized weights, and secondly, find the best heuristic
among the studied ones. The heuristics vary with the restriction policy and
the cell ordering for the coarsening phase, and with the initial partitioning
algorithm. Finally, we also compare the multi-criteria version of Scotch that
we implemented and the best Crack heuristics, with MeTiS and PaToH, for an
imbalance tolerance t ∈ {5%, 1%, 0.2%} and a number of parts k ∈ {2, 32, 128}.
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Mathematical Definitions,
Pseudo-code Considerations and
Notations

Definitions
Definition 1 (Part)

Let S be a set. We call part of S a subset of elements of S.
The set of all parts of S is denoted by P(S).

Example
If S = {a, b, c}, then the set of all parts of S is:

P(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Definition 2 (Partition)
Let S be a set. We call partition of S a set Π of parts of S such that:
• ⋃

Πp∈Π
Πp = S: the union of all parts in Π is equal to S;

• ∀(Πp,Πq) ∈ Π2,Πp 6= Πq =⇒ Πp ∩ Πq = ∅: the intersection of two
distinct parts in Π is empty.

Note that a part is a set of elements of S, while a partition is a (particular)
set of parts of S.

A partition with 2 elements is called a bipartition. A partition with k > 2
elements is called a k-partition.

In this document, we will denote by P(S) the set of all partitions of the set
S, and given k ∈ N∗, Pk(S) the set of all k-partitions of the set S.

Definition 3 (Multiset)
A multiset (or bag) is an extension of the concept of set. We call multiset a

pair (S,m) in which S is a set, and m : S → N a function called multiplicity.
An element e ∈ S is said to appear m(e) times in the multiset (S,m).
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Definitions

With any set S, we can associate the multiset (S,1S), in which 1S : e 7→ 1
is the unit function.

In this document, we will denote the multiset

({e1, ..., en},m) by {e1, ..., e1︸ ︷︷ ︸
m(e1)

, ..., en, ..., en︸ ︷︷ ︸
m(en)

}

or {e1,
m(e1)... , e1, ..., en,

m(en)... , en}

Remark
As for sets, the order of the elements in a multiset does not matter.

Example
{4, 4, 7, 8, 9} and {9, 8, 7, 4, 4} designate the same multiset.
{4, 7, 8, 9} is both a multiset and a set, because each element appears

only once.

Remark
The usual definition of a partition does not allow the elements of a

partition to be the empty set. However, considering (multi)sets such as
{∅, k−1... ,∅, S} as k-partitions will be more suitable for our problem. Therefore,
in this document, a partition may have elements that are the empty set.

Example
The possible bipartitions of S are:{{

∅, {a, b, c}
}
,
{
{a}, {b, c}

}
,
{
{b}, {a, c}

}
,
{
{c}, {a, b}

}}

Definition 4 (Floor and Ceiling Functions)
Let x ∈ R.
bxc ∈ Z is called floor and dxe ∈ Z is called ceiling if:

x− 1 < bxc ≤ x ≤ dxe < x+ 1 (1)

Definition 5 (Computation Complexity Theory)
A decision problem is a problem that can be posed as a yes/no question of

the input values.
P is the set of all problems that can be solved by a deterministic Turing

machine using a polynomial amount of computation time.
NP is the set of all problems for which, given a candidate solution s, verifying

whether s is a solution can be performed in polynomial time.
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Mathematical Definitions, Pseudo-code Considerations and Notations

A problem h is said to be NP-Hard when for every problem p in NP, there
is a polynomial-time reduction from p to h. This means that, if an algorithm
Solver can solve h, then we can solve p in polynomial-time excluding the time
of Solver(h).

A problem is said to be NP-Complete if it is both NP and NP-Hard.

Remarks
• P ⊂ NP.
• NP-Complete = (NP ∩ NP-Hard).
• Answering the question P ?= NP remains a major challenge in computer

science.
• Another formulation of a problem being NP-Hard is that it is at least

as hard as the hardest problems in NP.
• By definition of NP-Hard and NP-Complete, the hardest problems in

NP are the NP-Complete problems.
• NP-Complete ( NP-Hard: some problems, such as the halting problem,
which aims at determining, given a computer program and an input,
whether the program will terminate, is NP-Hard but not NP-Complete.

Pseudo-code Notations
Many algorithms are described in this manuscript, using pseudo-code. In

order to improve readability, we specify in Table i the operators and notations
that we will employ to define algorithms.

Notations Used in this Manuscript
Table ii introduces notations that we will use throughout the manuscript.

The last column gives the section in which it is actually defined or the definition
number, along with the corresponding page number.

Multi-criteria Graph Partitioning 7



Notations Used in this Manuscript

Table i – Pseudo-code notations

Pseudo-code Signification
L← [ ] L is an empty ordered set/multiset – or, in informa-

tion science, a list
L← [e1 n... en] L is a list of n elements defined implicitly, e1 being

the first element and en the last
L[i] The ith element of L (1 ≤ i ≤ length(L))
L[−i] The ith element of L starting from the end
L[ia:ib] The list of elements of L of indices i such that ia ≤

i < ib
max(L) Maximum value in L
min(L) Minimum value in L
argmax(L) Index of the first occurrence of max(L) in L:

L[argmax(L)] = max(L) and(
L[i] = max(L)

)
=⇒

(
i ≥ argmax(L)

)
argmin(L) Index of the first occurrence of min(L) in L
length(L) Number of elements in L
sum(L) Sum of the elements in L
L.append(e) Append e at the end of L
L.remove(e) Remove the first occurrence of e from L
L.popFirst() Remove and return the first element in L
L.popmFirst() Remove and return the first m elements in L
L.popLast() Remove and return the last element in L
L.renumber(order) Permute L: L[i] becomes L[order[i]]
L.reverse() Same as L.renumber([length(L), ..., 1])
L.sortAscend() Sort L in ascending order
L.sortDescend() Sort L in descending order
argsortAscend(L) Return a list whose ith element is the ith smallest

element in L
argsortDescend(L) Return a list whose ith element is the ith biggest

element in L
random(a, b) Return a random number x such that a ≤ x ≤ b
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Mathematical Definitions, Pseudo-code Considerations and Notations

Table ii – Common notations

Notation Problem parameters ref. p.
Ω ⊂ R3 Geometric continuous bounded do-

main of space
sec. 1.2 15

M Mesh def. 6 16
γ ∈ N∗ Number of physical models/crite-

ria
sec. 2.1.2 25

W : M → (R+)γ Weights associated with each cell
of M

sec. 2.1.2 25

k ∈ N∗ Number of computation units and
number of parts into whichM will
be partitioned

t ∈ [0, 1] Tolerance – Maximum imbalance
allowed (t = 0 means that we
search for a perfectly balanced par-
tition)

sec. 2.1.4 30

Models
G = (VG, EG) Graph associated with M ; VG is

the set of its vertices and EG the
set of its edges

def. 16 38

H = (VH , EH) Hypergraph associated with M ;
VH is the set of its vertices and
EH the set of its hyperedges

def. 12 35

V = M or VG or VH General notation for the set of
cells or vertices that we will parti-
tion. W is prolonged from M to
V

f : P(V )→ R+ Cost function that should be min-
imized

sec. 2.1.3 27

Π = {Π1, ...,Πk} Partition of V def. 2 5
Constants & Variables

n = |V | Number of cells or vertices
i ∈ J1, nK Index of a cell or a vertex
p ∈ J1, kK Index of a part in Π
c ∈ J1, γK Index of a criterion
vi ∈ V ith element of V
wi,c = W (vi)[c] Weight of vi for criterion c
Σc = ∑

vi∈V
wi,c Total weight on V for criterion c

Σc,p = ∑
vi∈Πp

wi,c Total weight on part Πp for crite-
rion c

Multi-criteria Graph Partitioning 9
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Chapter 1

Numerical Simulations in High
Performance Computing
How a Data Distribution Problem Emerges from
Simulations in High Performance Computing

Contents

1.1 The Challenge Raised by Numerical Simulations on Distributed
Memory Architectures . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Space Discretization using a Mesh . . . . . . . . . . . . . . . . . 15

1.3 Minimizing the Run Time of a Parallel Mono-physics Simulation 17

1.4 Minimizing the Run Time of a Parallel Multiphysics Simulation 20

This chapter investigates how the run time of mesh-based multiphysics
simulations can be minimized, when they are executed on a distributed memory
machine. Section 1.1 first provides some reasons underlying the use of numerical
simulations, and explains the challenge raised when such simulations are run
on distributed memory architectures. We restrict our study to simulations
based on a mesh, a complex entity for which a rough definition is given in
Section 1.2. Then, we study typical examples of mesh-based simulations running
on a distributed memory machine, in order to characterize how to minimize
their duration. Section 1.3 handles the case of mono-physics simulations, and
Section 1.4 extends the study to multiphysics simulations.
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1.1. The Challenge Raised by Numerical Simulations on Distributed Memory
Architectures

1.1 The Challenge Raised by Numerical Sim-
ulations on Distributed Memory Architec-
tures

A number of scientific domains use numerical simulation to model complex
phenomena. Indeed, making experiments to validate or invalidate any model
(be it physical, biological, political, ...) can require rare and expensive resources.
Simulation seeks to reproduce the conditions observed in the real world using
a computer. This calls for new endeavors: firstly, being able to design a model
that reproduces a situation as accurately as needed, and secondly, an algorithmic
and implementation effort to create efficient and reliable software. By reliable,
we mean that the software does what it was designed for. By efficient, we mean
that it benefits as much as possible from the available resources, which implies
that the software performs its task as fast as possible.

Examples
Meteorology and climatology use past data to simulate (at different time

scales) probable future weather. Economics can test the effects of various
policy actions to determine their consequences. Biology also tries to model
cells and organs in order to understand better these biological systems.

The French Alternative Energies and Atomic Energy Commission (CEA)
uses simulation to study, among others, renewable and nuclear energies.
Simulation thus helps to design the installations that will serve in practice.
Nevertheless, the CEA also combines simulation with experiments, in order
to validate the models used. This is why the CEA has built in Bordeaux the
Laser Mega Joule, whose objectives are detailed in CEA [2015].

Making a simulation running fast calls for a fast machine, meaning that
it is capable of performing many operations per second. Over the years,
machine computing speed has been mainly improved by increasing processor
frequency. However, the energy consumption E of a central processing unit
(CPU) is roughly proportional to the cube of its frequency. So, instead of one
machine of frequency f of energy consumption E1 ∝ f 3, it can be much more
profitable to use two of frequency f/2, that theoretically achieve the same
computational performance for one fourth of the energy (E2 ∝ (f/2)3 × 2 =
f 3/4). Therefore, nowadays, all high performance computing machines use
several CPUs. Machines with several CPUs are called parallel machines (as
opposed to sequential machines) and can have millions of computation units.

There is also a memory aspect behind the use of parallel machines. Indeed,
the main memory capacity of a sequential machine is limited by physical factors,
such as the chip size.
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1. Numerical Simulations in High Performance Computing

Efficient use of a sequential machine is already a difficult task: pipelining,
data locality improvement, loop unrolling, and other techniques that speedup
code execution are not only machine- and software-dependent, they also require
expertise. This task is even more complex with parallel machines, leading to
new constraints:
• designing a parallel algorithm that distributes evenly the work between

computation units. Unfortunately, a perfectly balanced distribution rarely
exists, because some sequential tasks cannot be parallelized. Nevertheless,
in most simulations, equitably distributing tasks from at least a portion
of the code can dramatically reduce the total run time;
• on parallel machines, computation units can have separated memories:
we say that they are distributed memory machines, as opposed to shared-
memory machines, in which all computation units have access to the same
memory. On a distributed memory machine, when a computation unit
needs a piece of data which is not in its memory, a communication must be
performed, which may increase the run time of the application. Therefore,
data distribution must take care of the induced communications.

Thus, parallelizing an application for a distributed memory machine is a
challenging task. It implies designing a parallel algorithm that:
• distributes the work equitably between computation units;
• distributes the data so that each computation unit owns most of the data

it needs, in order to limit communications.

Before going into further details on the efficiency of a simulation, we will
clarify several points, such as what kinds of work and data need to be distributed.
Indeed, as numerical simulations are used in numerous fields, they can handle
various kinds of data.

Numerical simulations usually study physical phenomena occurring in space,
which is a continuous domain. Meshes are entities created to model a continuous
domain using a set of discrete elements. Indeed, in order to be represented by a
computer, a continuous domain must be split into a finite number of elements,
like the pixels of an image. The next section will give a rough definition of the
complex entity that a mesh is.

1.2 Space Discretization using a Mesh
In this section, we describe a model used by many simulations to approximate

a continuous domain in space named Ω. This model constructs a set of
geometrical cells that cover Ω. A mesh is a sophisticated entity, which will be
simplified in this thesis as the set of all the cells, as stated in Definition 6. More
information on meshes can be found in the book of Frey and George [1999].

Multi-criteria Graph Partitioning 15



1.2. Space Discretization using a Mesh

Example
In 2D, cells are usually triangles or quadrilaterals, as illustrated with

the mesh on the right side of Figure 1.2.1, which discretizes the continuous
domain Ω on the left side.

Figure 1.2.1 – Discretization of a bounded domain in 2D

(a) A 2D bounded domain Ω in 2D-
space

(b) A mesh discretizing Ω using triangles
and quadrilaterals

In 3D, cells are usually tetrahedra, pyramids, triangular prisms or hexa-
hedra.

Definition 6 (Mesh)
Let Ω ⊂ R3 be a bounded domain (note that Ω is also a set). In the scope

of this thesis, we call mesh a set:

M = {mq open bounded set} such that


⋃
mq = Ω
∀mp∈M,mp 6=mq =⇒ mp∩mq = ∅ .

The mq are called the cells of the mesh. mq denotes the closed set of the
open set mq. Note that mq ⊂ R3, so they have a dimension.

This thesis considers mesh-based numerical simulations running on dis-
tributed memory machines. As explained in the previous section, data are
therefore distributed between computation units. Data are represented by the
cells of the mesh, and the data distribution is usually determined by partitioning
the mesh. A partition of a mesh, according to Definition 2 on page 5 and
Definition 7, will attribute each cell to a single computation unit (every part of
the partition will be attributed to a different computation unit).

Definition 7 (Partition of a Mesh)
A mesh is a set of cells. Therefore, we call partition of a mesh a partition

of its cells.

A simulation computes physical values stored in a cell. Such data are called
the state of a cell, and computing it usually involves the states of neighboring
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cells. Neighboring cells are characterized in Definition 8, and Definition 9
introduces the boundary of a part, which serves to characterize the set of cells
that needs to be communicated.
Definition 8 (Neighboring Cells)

Let D be the dimension of Ω (D ≤ 3), and d an integer such that 0 ≤ d < D.
Two distinct cells are neighbors of dimension d if the intersection of their

closed sets is a non-empty set of dimension d. More formally, cells mp and mq

are neighbors if mp 6= mq, mp ∩mq 6= ∅, and dim(mp ∩mq) = d.
The neighborhood of mp ∈M (the set of all the cells that are neighbors of

mp) is denoted by:
N (mp) = {mq ∈M : mp and mq are neighbors}

Example
• In 2D, we can consider neighbors by edge (d = 1) or by vertex (d = 0).
• In 3D, we can also consider neighbors by face (d = 2).

Definition 9 (Boundary)
Let Π be a partition of M and Πp a part of Π. Then we call inner boundary

of Πp the set:
InnerBound(Πp) := {mp ∈ Πp : ∃mq ∈ N (mp),mq /∈ Πp} .

We also call outer boundary of Πp the set:
OuterBound(Πp) := {mq /∈ Πp : N (mq) ∩ Πp 6= ∅} .

Note that InnerBound(Πp) ⊂ Πp, while OuterBound(Πp) ⊂ (M \ Πp).
Finally, we call boundary of Π the set:

Boundary(Π) :=
⋃

Πp∈Π
InnerBound(Πp) =

⋃
Πp∈Π

OuterBound(Πp) .

At the beginning of the simulation, each cell has an initial state. The
next section describes how the next states are computed along a mono-physics
simulation.

1.3 Minimizing the Run Time of a Parallel
Mono-physics Simulation

We consider a mono-physics simulation based on a mesh M . Algorithm 1 is
a simplified model of a parallel mono-physics simulation using k computation
units in distributed memory. Our formulation does not aim to be applicable
to all mono-physics simulations, but rather to illustrate a typical trend in
numerical simulations.

Multi-criteria Graph Partitioning 17



1.3. Minimizing the Run Time of a Parallel Mono-physics Simulation

Remark
The computation units usually communicate data in “messages”. In order

to specify communication schemes, such as when to send or receive messages,
a commonly used message-passing standard is MPI. MPI stands for “Message
Passing Interface”, and its current version is fully described in MPI [2015].

The objective of the simulation is to compute the states for every cell of
M from time τ = 0 to time τ = τend. The simulation ends when the states for
every cell of M up to time τend have been computed. We call simulation time
the overall time taken to compute all the states until the last time step, which
corresponds to the duration of the function Simulate_mono.

The state of m ∈ M at time τ is denoted by Xτ (m). The initial states
X0 and the initial time step dτ are given as input. Computing the state of
m at time τ + dτ is performed by the function f. f takes as argument the
current time τ , the current time step dτ , m and its neighborhood N (m), and
the previous states of the cells Xτ .

Algorithm 1 A simulation computes the state X for all the cells in the mesh.
procedure Simulate_mono(M , k, X0, dτ , τend)
Ensure: Fills the structure X with the state of every cell for every time
step.

Π← Partition(M,k) # Can sometimes be done in a preprocessing step
Distribute(M,Π) # Communicate one part to every computation unit
τ ← 0
while τ < τend do

for in parallel p ∈ J1, kK do
for m ∈ Π[p] do

Xτ+dτ (m)← f(τ, dτ,m,N (m), Xτ )
end for

end parallel for
# Wait for all units to complete, then communicate the boundary cell states
Synchronize(

{
Xτ+dτ (m),m ∈ Boundary(Π)

}
)

dτ ← UpdateTimeStep(dτ,M) # dτ may depend on the current cell states
τ ← τ + dτ

end while
end procedure

First, the Partition routine partitions the mesh into k parts. Then, the
Distribute routine sends a part to every computation unit. In addition, we
assume that each unit gets the states of the neighbors of its boundary cells.

At each time step, unit p computes the new states for cells in part Π[p]
using function f . In order to compute the new state of a cell m, f notably
needs the states of the neighbors of m. Then, the Synchronize routine waits
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for all computation units to complete their work. When the new states for all
cells have been computed, the Synchronize routine updates the boundary cell
states on all computation units. Finally, dτ is updated.
Remark

In some cases, the partition can be computed before running the simula-
tion. Hence, the same partition will be used for different settings of the same
simulation, and the time of the Partition function will not be counted in
the simulation time.

Example
We consider a numerical simulation of 3 time steps, and compare on Fig-

ure 1.3.1 its sequential execution with a parallel execution with 2 computation
units.

Figure 1.3.1 – Comparison between a sequential and a parallel execution.

The top line (in orange) is the sequential execution. t1, t2 and t3 corre-
spond to the duration of each time step. In sequential, the duration of a time
step is the time needed to compute the states of all the cells in M , because
the single computation unit gets all the work.

The two lines below (in blue) represent a parallel execution. Each line
corresponds to a computation unit: cpu1 and cpu2. The ideal parallel time
is the sequential time divided by the number of computation units, so half
the sequential time tseq in this example. Nevertheless, the actual parallel
time tpar ends up to be, in this example, tpar = 0.80 × tseq because of the
overheads induced by the parallel execution.

First, cpu1 computes a partition of the mesh (in the “part” sequence in
gray that corresponds to the call to the Partition routine in Algorithm 1,
which could also be performed in parallel). Then, a “coms” sequence (also
in gray) distributes the parts across the computation units (this is the
Distribute call in Algorithm 1).

Then, computation of the cell states begins. Computations are represented
by the “t1”, “t2” and “t3” sequences in blue. Considering a time step, with 2
computation units, the ideal parallel time is half the sequential time. However,
this optimum can be reached only if the work is evenly balanced between
cpu1 and cpu2 and if no communication is required. Indeed, the first unit to
finish has to wait for the other before synchronizing, hence some idle time.
Then, the Synchronize call communicates the boundary cells states in the
“coms” sequence, delaying the end of the simulation as well.
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In the example, the parallel execution enables one to reduce the run time
of the simulation, compared with the sequential execution. However, it is still
quite far for the ideal parallel time. The gap between ideal and real parallel
time is measured by the parallel efficiency.

Definition 10 (Speedup and Parallel Efficiency)
We consider a simulation that runs in a time tseq on a sequential machine

and in a time tpar(k) on a parallel machine with k computation units. Then,
we call speedup Sp(k) and parallel efficiency η(k):

Sp(k) = tseq
tpar(k) η(k) = Sp(k)

k

The parallel efficiency is equal to 1 when the elapsed parallel time is equal
to the ideal parallel time.

Example
In the previous example, for which the speedup is Sp = 1.3, the parallel

efficiency is η = 0.65.

The aim of this thesis is to draw the parallel efficiency as close as possible
to 1. To do so, the distribution of the cells in the mesh must minimize:
• the workload imbalance between computation units, that induces idle

time before the call to the Synchronize function;
• the Synchronize time, which is the time required to communicate the

boundary cells;
• the Partition time.

These considerations stem for a mono-physics simulation. The next section
considers the case of multiphysics simulations.

1.4 Minimizing the Run Time of a Parallel
Multiphysics Simulation

The particularity of this thesis is that it considers multiphysics simulations.
Algorithm 2 is a simple model of a simulation that couples two physical models.
Some simulations can be far more complex, yet the principle remains the same:
the different physical models are coupled. Also, the example may be transposed
easily to more than two physical models.

Remark
Multiphysics simulations commonly couple fluid/structure, thermal/me-

chanical or electric/thermal interactions. For example, the deformation of an
aircraft wing during flight is a fluid/structure interaction, while the asphalt
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deformation on hot days is a thermal/mechanical interaction.

Algorithm 2 A model of a simulation computing variables X and Y corre-
sponding to two different physical models.
procedure Simulate_multi(M , k, X0, Y0, dτ , τend)

Π← Partition(M,k) # Can sometimes be done in a preprocessing step
Distribute(M,Π) # Communicate one part to each computation unit
τ ← 0
while τ < τend do

for in parallel p ∈ J1, kK do
for m ∈ Π[p] do

Xτ+dτ (m)← f(τ, dτ,m,N (m), Xτ , Yτ )
end for

end parallel for
# Wait for all units to complete, then communicate the boundary cell states
Synchronize(

{
Xτ+dτ (m),m ∈ Boundary(Π)

}
)

for in parallel p ∈ J1, kK do
for m ∈ Π[p] do

Y τ+dτ (m)← g(τ, dτ,m,N (m), Xτ+dτ , Yτ )
end for

end parallel for
# Wait for all units to complete, then communicate the boundary cell states
Synchronize(

{
Yτ+dτ (m),m ∈ Boundary(Π)

}
)

dτ ← UpdateTimeStep(dτ,M) # dτ may depend on the current cell states
τ ← τ + dτ

end while
end procedure

Phase X

Phase Y

In Algorithm 2, the two variables corresponding to the two physical phe-
nomena are X and Y . The initial states for all cells are X0 and Y0 and the
initial time step is dτ . We search for the states of all cells for each time step up
to Xτend

and Yτend
. The algorithm uses the same notations as the mono-physics

case of Algorithm 1 on page 18. The differences are firstly, that the function
f needs the states of m and its neighborhood N (m) for both the variables X
and Y , and secondly, that there is another function g that computes the new
states at time τ + dτ for the variable Y .

The variables X and Y are coupled: to compute Xτ+dτ , state Yτ is needed,
and to compute state Yτ+dτ , state Xτ+dτ is needed. This is why the computation
phase of Yτ+dτ does not begin before that of Xτ+dτ finishes. Thus, in parallel
executions, load balancing must be achieved for the computations of both physical
models.
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Remark
There are other formulations of Algorithms 1 and 2. For example, the

Partition routine can be called more than once. In the mono-physics case,
it would be called at some time step when the load balance is not satisfied. In
the multiphysics case, another possibility is to call it after the computation
phase of each physical model, balancing the workloads of the computation
phases one at a time.

However, in addition to the time needed to compute the new partition,
the new partition also needs to be distributed to the computation units. As
the Distribute routine can lead to a large communication overhead, our
goal is to be able to balance the workloads for all phases at the same time.

Conclusion

To sum up, this thesis is aimed at minimizing the run time of multiphysics
simulations that use meshes and run in parallel on distributed memory
architectures. The following Problem 1 synthesizes the implications of
bringing the simulation time closer to the ideal parallel time.

Problem 1 (Multi-objective Mesh Partitioning)
Design an algorithm that, given a mesh M , returns a partition of M

such that:
• the partition balances the workloads between computation units for the
computation phases of every physical moedel;
• the partition minimizes the communication time;
• the algorithm computes the partition in a minimum amount of time.

This problem appears to be a multi-objective partitioning problem. However,
some points need to be clarified: how are the so-called workloads attributed to
each computation unit quantified? How can we estimate the communication
time induced by a partition of the mesh? The next chapter will discuss several
models that are commonly used to address Problem 1.
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Models of the Minimum Run
Time of a Multiphysics
Simulation

Contents
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This chapter formulates several problems modeling how to minimize the run
time of a multiphysics simulation running on a distributed memory architec-
ture. The previous chapter has already formulated conditions to minimize the
simulation time, namely balancing the workload between computation units
and minimizing the communication and partitioning times. In Section 2.1,
we introduce models of the workloads and the communication time, and we
explain why we do not consider the partitioning time in our models.
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2.1. Modeling the Simulation Time

Handling several objectives can lead to ambiguities over the choice of the
solution, so the multi-objective formulation is transformed into a constrained
mono-objective problem. The most straightforward formulation leads to the
multi-criteria mesh partitioning problem, which is stated in Section 2.2. Nev-
ertheless, other models exist: Section 2.3 relies on a hypergraph to represent
the topology of the mesh, while Section 2.4 relies on a graph. Graphs model
differently than hypergraphs and meshes the communication cost of a partition,
in a simpler way.

Section 2.5 formulates the vector-of-numbers partitioning problem, which
is a subproblem of the multi-criteria mesh partitioning problem. Indeed,
solving a vector-of-numbers partitioning problem amounts to finding a solution
(not necessarily optimal) to a multi-criteria mesh partitioning problem. This
thesis will define and experiment on two partitioning algorithms for vector-
of-numbers. The mono-criterion version of the vector-of-numbers partitioning
problem, the number partitioning problem, has been well studied (as we will
show in Section 3.2).

Finally, Section 2.6 gives another formulation of the multi-criteria mesh
partitioning problem, using fitness landscapes. This formulation provides
an abstracted view of the problem, especially useful when considering local
optimization techniques. We introduce the terminology of fitness landscape
analysis, and these techniques will be further used in Chapters 5 and 8.

2.1 Modeling the Simulation Time
The present section gives several approximations that will simplify and

reformulate the global objectives given in the previous chapter. We remind
that these objectives were, in order to minimize the run time of a multiphysics
simulation, to 1) balance the workloads between computation units; 2) minimize
the communication time; and 3) minimize the partitioning time.

If we remind the example given while illustrating a multiphysics execution in
Algorithm 2 on page 21, the simulation time is (see the notations in Table 2.1.1):

tsim = tpart +
τend∑
τ=0

∑
φ

(
max
cpu

tcmp(cpu, φ, τ) + tcom(φ, τ)
)

(2.1)

The following sections will discuss each term appearing in Equation 2.1.

2.1.1 Partitioning Time
First, when the number of time steps increases, the partitioning time is less

and less preponderant. Actually, the choice of the partitioning algorithm is
a trade-off between the quality of the partition found and the time to find a
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Table 2.1.1 – Time notations

tsim Simulation time
tpart Partitioning time
tcmp(cpu, φ, τ) Computation time of computation unit cpu for the physi-

cal model φ at time step τ
tcom(φ, τ) Communication time after computations for the physical

model φ for time step τ

partition. This choice must be made by the user, who should know the duration
of the simulation and thus which algorithm to select.

We chose not to consider the partitioning time in our models. However,
in the experiments, in Chapter 10, we will compare the run times of every
algorithm used. We will also compare the run time of our implementation with
the run times of existing partitioning tools.

2.1.2 Computation Time

This section focuses on the max
cpu

tcmp(cpu, φ, τ) term in Equation 2.1, which
is the duration of the computation phase for the physical model φ at time step
τ . Estimating this term requires knowing, when assigning a cell of the mesh
to a computation unit, the workload of this cell for the physical model φ and
time step τ . This workload, which depends on the given cell, physical model
and time step, is provided by the user.

The workload of a cell for one phase and time step will be represented as a
weight given to this cell for this phase and time step. In this thesis, we consider
that the input weights are accurate estimations of the workload.

Besides, a usual assumption is that the provided weights do not depend on
the time step, so tcmp(cpu, φ, τ) = tcmp(cpu, φ). In practice, the imbalance is
measured after some time steps, and a new partition is computed when the
imbalance becomes greater than an imposed threshold. Again, such a policy is
defined by the user.

To sum up, in order to be able to balance the workload across computation
units for every physical model, the user must give to each cell a vector of
weights, each component representing the amount of computations of one
physical model. Such a component is called a criterion. The weights do not
depend on the time step. So, if we denote by γ ∈ N∗ the number of criteria, we
model the weights with a function W : M → (R+)γ, such that if m ∈M and
c ∈ J1, γK, then W (m)[c] is the workload of m for the cth physical model.
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Remark
Walshaw et al. [2000] describe another type of multiphase mesh simulation,

in which the cells usually belong only to one phase (or, equivalently, their
weights are non-null only for one criterion). When a cell belongs to several
phases, one phase is considered as preponderant, and the weights for the
other phases are set to 0.

Our model needs to be more general, since in our simulations it is not
always possible to choose a preponderant criterion for a cell.

If we denote by Σc,p the weight of part Πp for criterion c, the goal to balance
the workloads becomes to find a partition Πbest ofM such that, for any criterion
c, the maximum workload among all parts is minimized:

Πbest is such that ∀c ∈ J1, γK, max
Πp∈Πbest

Σc,p = min
Π∈Pk(M)

(
max
Πp∈Π

Σc,p

)
. (2.2)

Remark
As explained in Section 1.4, vertex weights should not be summed, else

partitions that are imbalanced could be considered balanced, as illustrated
by the following example.

Linearizing the vertex weights means that the computation weight of
m ∈M becomes W (m) = ∑

c∈J1,γKW (m)[c]. Let us consider a mesh with 4
cells, with two criteria. The two figures below are two bipartitions of this
mesh. Cell weights are represented by the red and green bars within each
cell. The length of a bar is proportional to the weight of the cell for this
criterion. The color of a cell represents the part it belongs to.

A partition balanced for the
linearized weights

A partition balanced for each
criterion

The partition on the left balances the linearized weights, but not the
weights for each criterion, while the partition on the right is balanced for
each criterion.
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2.1.3 Communication Time
In the current section, we explain how we model the communication time of

multiphysics simulation. Regarding communication time modeling, Hendrickson
[1998] early warned the community that it is a very complex task, involving
significant approximations. Then, Hendrickson and Kolda [2000] gave more
precisely the limitations of several models and showed how to fix some of them.
Cai and Bouhmala [2007], Deveci et al. [2015b] and Selvakkumaran and Karypis
[2006] have proposed several ways to model the cost of communications induced
by a data distribution. All of them considered this cost as a multi-objective
function. Hereafter, we do not describe explicitly these models, but rather
explain the various assumptions that we make and that can be encountered in
these models.

Firstly, in Equation 2.1, the simulation time appears as the sum of the
times used for computation and for communication. This can already be a
simplification, because one can overlap communications with computations.
Overlapping raises algorithmic and implementation challenges, and is not always
feasible. So, in this document, we consider that the communication time has
to be added to the computation time.

Secondly, for the same reason as for the computation time, we consider that
the communication time is the same at each time step.

Thirdly, estimating the communication time implies to know the communi-
cations induced when a cell is assigned to a computation unit. As explained
in Chapter 1, computing the new state for a cell m requires the states of the
neighbors of m. This is why, before each computation phase, a communication
step is performed, as illustrated in the Simulate functions of Algorithms 1 on
page 18 and 2 on page 21. In this thesis, we consider that a communication
step consists in sending the data on the boundary cells.

Therefore, similarly to the weights the user must provide to model the
workload of each cell, he also must input a communication cost for each cell.
The cost for one cell is expressed as a (scalar) weight on this cell, and represents
the time to send data on this cell to another computation unit. We model the
weights with a function Wcom : M → R+ that associates with every cell its
communication cost.

Fourthly, using a simplification of the model by Forouzan [2007], the time to
send a message depends on the latency λ (that Forouzan names “propagation
time”), the bandwidth of the network β, the size of the message wmsg, and the
maximum size of a message wmax . The time to send a message is:

tmsg =
(
λ+ wmax

β

)
×
⌊
wmsg

wmax

⌋
+
(
λ+ wmsg mod wmax

β

)
In order to simplify the computation of the total communication cost of

a partition, common models consider that latency is negligible, which entails
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that tmsg = wmsg
β

: the time to send a message becomes proportional to its size.
The communication cost models used in practice and that we define in the
following paragraphs rely on this approximation.

In this document, we will denote by f the communication cost function that
we want to minimize. Depending on the communication scheme used and of
its implementation, f can be expressed in various ways. We will now describe
possible formulations for f (that are based on the previous approximations).

Given two computation units, we explained in the previous chapter that
they need to exchange data on their cells in their common border. We will
denote by wΠp→Πq the amount of data that the unit in charge of part Πp will
need to send to the unit in charge of part Πq:

wΠp→Πq =
∑

m∈Πp∩OuterBound(Πq)
Wcom(m) .

A first way to model f is to consider that the communications are serialized
(executed one after another). In this case, the communication time would be:

tcom = ftot(Π)
β

= 1
β

∑
Πp∈Π

∑
Πq∈Π,Πq 6=Πp

wΠp→Πq .

A second way considers that all units may communicate their border simul-
taneously. In this case, the communication time would be

tcom = fmax(Π)
β

= 1
β

max
Πp∈Π

∑
Πq∈Π,Πq 6=Πp

wΠp→Πq .

A third way is to consider that communications between couples of units
can occur at the same time, as in the following example. Note that estimating
the communication time is more complex, because it involves computing many
maxima.
Example

We consider k = 4 units, and we will represent with (p↔ q || r ↔ s)
the fact that units cpup and cpuq exchange data at the same time as cpur
and cpus. Then, the scheme:

1. (1↔ 2 || 3↔ 4)
2. (1↔ 3 || 2↔ 4)
3. (1↔ 4 || 2↔ 3)

performs simultaneous pairwise communications. For this scheme, the com-
munication time is:

tcom = 1/β × fsimultaneous(Π) = max(wΠ1↔Π2 , wΠ3↔Π4)
+ max(wΠ1↔Π3 , wΠ2↔Π4)
+ max(wΠ1↔Π4 , wΠ2↔Π3) .
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Remark
A more accurate model should take into account that the time to commu-

nicate between units cpup and cpuq and between cpup and cpur may vary,
depending on their “distance” (which is the number of switches that need to
be traversed), the buffer mechanism, and other mechanisms.

Some softwares, such as Scotch (Pellegrini and Roman [1996b]), provide
mechanisms to map a partition to a given topology. More recently, De-
veci et al. [2015a] have proposed new methods to improve such mapping
algorithms.

Example
This example illustrates the difference between each formulation of the

communication cost f , with Wcom(m) = 1 for each m ∈M .

Figure 2.1.3 – A 4-partition of a mesh (one color corresponds to one part)

The following Table 2.1.2 counts the bordering cells between parts. It
displays in line p and column q the number of cells in part Πp that have
at least one neighbor in part Πq, which corresponds to the number of cells
that cpup needs to send to cpuq. The last column shows the total number of
cells that each part has to send. The sum of the last column is ftot , and its
maximum is fmax .

Table 2.1.2 – Counts in the cell on line p and column q the number of cells
that unit cpup has to send to unit cpuq

orange blue light blue yellow send

orange 5 0 0 5
blue 6 2 2 10

light blue 0 2 2 4
yellow 0 2 3 5

ftot = 24, fmax = 10
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If we want to estimate the communication cost if the communications would
be performed simultaneously, using the communication scheme:

1. ( orange ↔ blue || light blue ↔ yellow)
2. ( orange ↔ light blue || blue ↔ yellow)
3. ( orange ↔ yellow || blue ↔ light blue) ,

then the communication volume would be fsimultaneous(Π) = max(5 + 6, 2 +
3) + max(0 + 0, 2 + 2) + max(0 + 0, 2 + 2) = 19.

Remarks
ftot is commonly called the communication volume. As stated by Hen-

drickson and Kolda [2000], ftot works well in practice for the mesh partitioning
problem, because the communication volume is usually equitably distributed
across units.

Nevertheless, the maximum communication volume fmax was used in a
subchallenge of the 10th DIMACS Challenge on Graph Partitioning and
Graph Clustering, as reported by Bader et al. [2013].

Conclusion. In this section, we have described several approximations en-
abling to estimate the communication cost of a partition. This communication
cost is represented by a function f , and the goal to minimize the communication
time consists in finding a partition Πbest of M such that:

f(Πbest) = min
Π∈Pk(M)

f(Π) . (2.3)

It is up to the user to choose a formulation adapted to his simulation and
architecture. Thereafter, we will use f = ftot, which has been, as reported
by Buluç et al. [2015], adopted as a kind of standard. However, many of the
algorithms that we will present further in this document can be adapted to
various formulations of f .

2.1.4 From a Multi-objective to a Constrained Mono-
objective Formulation

Equations 2.2 and 2.3 devised in the previous sections give us a multi-
objective problem, which amounts to finding a k-partition Πbest of M such
that: 

∀c ∈ J1, γK, max
Πp∈Πbest

Σc,p = min
Π∈Pk(M)

(
max
Πp∈Π

Σc,p

)
,

f(Πbest) = min
Π∈Pk(M)

f(Π) .
(2.4)

This problem is unlikely to have a solution, because usually, finding a
balanced partition leads to a high communication volume, and conversely.
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Example
The partition {∅, k−1... ,∅,M} always minimizes the communication cost,

but it also maximizes the imbalance.

A solution minimizing both objectives is unlikely, but there are partitions
that minimize either the communication cost, or the imbalance. Between two
partitions, the first of which has larger imbalance but smaller communication
cost than the second, which one is the best suited? The answer is at least
architecture-dependent, so it is not possible to decide in the general case.
Therefore, a ranking must be defined to compare partitions. To rank partitions,
there are two possibilities: linearize the objectives or give priority to some of
them.

The first possibility, to linearize the objectives, can be used for mono-
criterion partitioning. For example, Buluç et al. [2015] define the conductance
of a partition:

fσ(Π) = ftot(Π)
min
Πp∈Π

Σc1,p

fσ prevents parts from being underweighted. There are several drawbacks
with this formulation. Firstly, it prevents a part from being empty, although a
partition with empty parts may minimize the imbalance (for example, for the
weights W = {2, 1, 1}, the 3-partition {{2}, {1, 1},∅} is of minimal imbalance).
This drawback can be corrected by changing fσ to f ′σ = ftot(Π)×maxΠp∈Π Σc1,p.
Secondly, this objective function may favor partitions that are very imbalanced
but of very small communication cost. For our multiphysics simulations, in
which obtaining balanced partitions is essential, linearization is not feasible.

The second possibility to rank the partitions is to define an order on
the objectives. For example, we can choose to prioritize the communication
cost, in which case the solution to our problem is the partition of minimal
communication cost. If two partitions are of same communication cost, the
“best” one is that of minimal imbalance.

This formulation would always lead to consider the partition {∅,M} as
optimal (because of null communication cost), yet it is of maximal imbalance.
So, it is preferable to prioritize the imbalance objectives. However, in order
to be able to return partitions of smaller communication cost, in practice, the
relation order is transformed into constraints.

Therefore, the classic model transforms a multi-objective problem into a
mono-objective problem, by adding some balance constraints. The user is asked
to provide an imbalance tolerance t, and among all partitions whose imbalance
is smaller than t, we search for the one that minimizes the communication cost.
As this maximum imbalance must be respected for all criteria, we call this the
multi-criteria mesh partitioning problem.
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This formulation discriminates two partitions that would have, for one, a
smaller communication cost, and, for the other, a smaller imbalance. In this
case, the one with a smaller communication cost is preferred if and only if its
imbalance is smaller than t. Thus, the user can adjust the tolerance to his need:
a tight tolerance if computation time is preponderant, or a loose tolerance if
communication cost must be minimized at all cost.

Remark
Of course, when two valid partitions have the same communication cost,

other criteria might be added to discriminate between them, but both of
them would be acceptable (which was not the case with the multi-objective
formulation).

Conversely, using this formulation, it is also possible that, for a given
tolerance, there is no solution. In this case, the user must increase the
tolerance.

The previous chapter explained the challenges raised by multiphysics simu-
lation in parallel computing. Until now, the current chapter justified how
the multi-criteria mesh partitioning model emerged in order to minimize the
run time of such simulations. The following section will define formally the
multi-criteria mesh partitioning problem.

2.2 Modeling a Distributed Execution with
the Multi-criteria Mesh Partitioning Prob-
lem

This section defines the multi-criteria mesh partitioning problem that this
thesis addresses. Notations for the following definitions are specified in Ta-
ble 2.2.1.

Definition 11 (Imbalance)
Using the notations of Table 2.2.1, the imbalance of part Πp for criterion c

is:

imbc(Πp) =
Σc,p − Σc

k
Σc

k

And the imbalance of partition Π is:

imb(Π) = max
c∈J1,γK

max
Πp∈Π

imbc(Πp)
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Table 2.2.1 – Mesh notations

Notation Problem parameters ref. p.
M Mesh def. 6 16
k ∈ N∗ Number of computation units or

parts in which we partition M
γ ∈ N∗ Number of physical models/criteria sec. 2.1.2 25
W : M → (R+)γ Computation weights associated

with every cell in M
sec. 2.1.2 25

t ∈ R+ [Tolerance] Maximum imbalance al-
lowed (t = 0 means that we search
for a perfectly balanced partition)

sec. 2.1.4 30

f : P(V )→ R+ Cost function that we want to min-
imize

sec. 2.1.3 27

Wcom : M → R∗+ Communication weights associated
with every cell in M

sec. 2.1.3 27

Π = (Π1, ...,Πk) Partition of M def. 2 5
Constants & Variables

n = |M | Number of cells
p ∈ J1, kK Index of a part in Π
c ∈ J1, γK Index of a criterion sec. 2.1.2 25
Σc = ∑

m∈M
W (m)[c] Total weight on M for criterion c sec. 2.1.2 25

Σc,p = ∑
m∈Πp

W (m)[c] Total weight on part Πp for crite-
rion c

sec. 2.1.2 25

Remarks
• −(k − 1) ≤ imbc(Πp) ≤ k − 1.
• imb is usually given as a percentage.
• imb(Π) = 0% means that all parts are perfectly balanced for all criteria.
• imbc(Πp) = k − 1 means that part Πp is attributed all the work for

criterion c.
• ∀c,∑

p
imbc(Πp) = 0.
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Problem 2 (Multi-criteria Mesh Partitioning)
Given a mesh M , weights W : M → (R+)γ, a number of parts k ∈ N∗,

a tolerance t ∈ R+ and a communication cost function f , the multi-criteria
mesh partitioning problem amounts to finding a partition Πbest such that:
• ∀c ∈ J1, γK, max

p∈J1,kK
imbc,p(Πbest) ≤ t ; (constraints)

• f(Πbest) = min
Π∈Pk(M), imb(Π)≤t

f(Π) . (objective)

Problem 2 formulates the multi-criteria mesh partitioning problem. Note
that the “s” in “constraints” is underlined: it highlights a key point of this thesis,
which addresses a multi-constraints problem. As we will see in Chapter 4, a
number of algorithms were designed to address the mono-criterion partitioning
problem, but few studies consider the multi-criteria version. Finally, as stated in
Section 2.1.3, we consider that f = ftot, which sums up the total communication
weight.

In the mesh partitioning problem as formulated in Problem 2, the geometric
coordinates of the mesh do not appear anywhere. Indeed, when formulating
the communication cost function, in our case, a cell requires the data of its
neighbors, so the relation between two cells is only topological. This is why
the mesh partitioning problem is often formulated using topological entities
such as hypergraphs and graphs. They also define the communication cost in a
simpler way. The next two sections will successively explain how a mesh can
be modeled with a hypergraph and with a graph.

2.3 Emphasis on the Mesh Topology in the
Multi-criteria Hypergraph Partitioning
Problem

Hypergraphs were first introduced by Catalyurek and Aykanat [1996] and
Catalyurek and Aykanat [1999], in order to correctly encode the minimization
of the communication volume in the context of sparse matrix partitioning for
the parallelization of the sparse matrix-vector (SpMV) operation. As the mesh
partitioning problem relies only on the mesh topology, a mesh can also be
modeled with a hypergraph.

In this section, we first define what a hypergraph is, and then show how
a hypergraph can model a mesh. Finally, we formulate the multi-criteria
hypergraph partitioning problem, which is, for our communication cost function,
equivalent to the mesh partitioning problem.
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Remark
The partitioning software Mondriaan, whose implementation is detailed

by Bisseling and Meesen [2005], specializes in sparse matrix partitioning. For
example, Pelt and Bisseling [2014] presents a matrix partitioning algorithm
relying on the hypergraph model.

Definition 12 (Hypergraph)
A hypergraph H is a pair H = (V,E) where V is a set of elements called

vertices and E is a multiset of non-empty subsets of V . The elements of E are
called hyperedges. (For what a multiset is, see Definition 3 on page 6.)

With each mesh, we can associate a hypergraph. V corresponds directly
to the set of cells: to each cell corresponds a unique vertex. The hyperedges
represent the neighboring relations between the cells. With each vertex/cell is
associated a hyperedge that links the cell to all of its neighbors. Definition 13
sums up how to construct the hypergraph associated with a mesh.

Definition 13 (Dual Hypergraph of a Mesh)
Given a mesh M , we define H = (V,E) such that:
• V = M
• E is the multiset

{
em = {m} ∪ N (m), where m ∈M

}
.

Thus, to each cell m ∈M corresponds a unique vertex, that we denote by
vm, and a unique hyperedge, that we denote by em. Reciprocally, to each vertex
v ∈ V (respectively hyperedge e ∈ E) corresponds a unique cell that we denote
by mv (respectively me). Given e ∈ E, the vertex vme is called the center of e.

Let W : M → (R+)γ and Wcom : M → R+ be the computation and
communication weights of M , then we define the weight functions on H:
• ∀v ∈ V,W (v) = W (mv)
• ∀e ∈ E,Wcom(e) = Wcom(me) .

Example

Figure 2.3.1 – A mesh and its corresponding hypergraph

The mesh is represented on the left, and the corresponding dual hyper-
graph on the right. To each cell of the mesh corresponds a vertex (symbolized
by a disk) and a hyperedge (symbolized by a square from which edges point
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to the ends of the hyperedge) that links the vertex to all of its neighbors.

Definition 14 (Partition of a Hypergraph)
We call partition of a hypergraph H = (V,E) a partition of its vertices V .
To each partition of a mesh corresponds a unique partition of its dual

hypergraph, and reciprocally.
Given a vertex v ∈ V and a partition Π of H, we denote by Π(v) the

(unique) part to which v belongs.

If H = (V,E) is a hypergraph, then a partition Π of H induces that some
hyperedges in E are “cut”, meaning that at least two of its ends belong to
different parts. The following definition of the λ − 1 cut, as used by Devine
et al. [2002], models the communication volume induced by a partition.

Definition 15 (λ− 1 Cut)
Let H = (V,E) be a hypergraph, and Π a partition of H. Let e ∈ E be a

hyperedge of H. We define

λ(e) =
∣∣∣{Π(v), v ∈ e

}∣∣∣ .
Note that λ(e) ∈ N∗, because each hyperedge is a non-empty set and each

vertex belongs to one part.
Given a communication weight function Wcom, the λ− 1 cut of Π is:

cutλ−1(Π) =
∑
e∈E

Wcom(e)× (λ(e)− 1)

Remark
λ(e) counts the number of different parts the ends of e belong to.
λ(e)− 1 counts the number of parts to which data on the center of e will

need to be communicated.

Example
Figure 2.3.2 on the facing page displays an example of a 4-partition of a

mesh and the partition of its corresponding hypergraph. Each color stems
for one part.

Let ered be the hyperedge colored in red, in the bottom right corner of
the hole. λ(ered) = 3, because its center belongs to the yellow part and it
has one neighbor in the light blue part, and one in the blue part. Thus, the
λ(ered) − 1 = 2, which means that it will have to be communicated to 2
computation units.

Then, let us denote by egreen the hyperedge colored in green, on the right
of ered. λ(egreen) = 2, because its center lies in the light blue part, and it has
neighbors in the yellow part. Thus, λ(egreen)− 1 = 1, which means that it
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will have to be communicated to 1 computation units.

Figure 2.3.2 – Example of a 4-partition of a mesh and of its corresponding
hypergraph

Thanks to the cutλ−1 metric, the hypergraph model counts the communica-
tion volume corresponding exactly to the function ftot defined in Section 2.1.3.
Other metrics exist, and Fortmeier et al. [2013] recently proposed a new one,
but the cutλ−1 is a very common metric. For example, Catalyurek and Aykanat
[1999] and Devine et al. [2006] use the cutλ−1 to model the communication cost.
Problem 3 gives the formulation of the multi-criteria hypergraph partitioning
problem corresponding to the multi-criteria mesh partitioning Problem 2 on
page 34.

Problem 3 (Multi-criteria Hypergraph Partitioning)
Given a hypergraph H = (V,E), weights W : V → (R+)γ, a number of

parts k ∈ N∗, a tolerance t ∈ R+ and a communication cost function f , the
multi-criteria hypergraph partitioning problem searches for a partition Πbest

such that:
• ∀c ∈ J1, γK, max

Πp∈Πbest
imbc(Πp) ≤ t (constraints)

• f(Πbest) = min
Π∈Pk(H), imb(Π)≤t

f(Π) (objective)

Some partitioning tools, such as PaToH (see Catalyurek and Aykanat [2011]),
use the hypergraph model. However, computing values with the cutλ−1 function
is complex and can result in an increase of partitioning time and complexity.
This is why many tools use the graph model, which leads to easier and usually
faster computations. The following section will present the graph model.
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2.4 A Simpler Formulation with the Multi-
criteria Graph Partitioning Problem

This section describes the graph model, which enables computing easily an
approximation of the communication volume induced by a partition. We first
define what a graph is, and then show how a graph can model a mesh, before
formulating the multi-criteria graph partitioning problem.

Definition 16 (Graph)
A graph G is a pair G = (V,E) where V is a set of elements called vertices

and E is a set of pairs of vertices. The elements of E are called edges. The
elements of an edge are called its ends.

Note that, in our case, the elements of E are unordered pairs of V , so the
graph is said undirected. If the elements of E were ordered pairs, then the graph
would have been said directed.

Remark
A graph is a particular type of hypergraph. The distinction lies in the

elements of E: edges have exactly 2 ends, while hyperedges have a non-
negative number of ends.

With each mesh, we can associate a graph. V corresponds directly to the
set of cells: to each cell corresponds a unique vertex. The edges represent the
neighboring relations between the cells. There is an edge between the vertices
corresponding to cells m1 and m2 if m1 and m2 are neighbors. Definition 17
formally describes how to build the graph associated with a mesh, called its
dual graph.

Definition 17 (Dual Graph of a Mesh)
Given a mesh M , we define G = (V,E) such that:
• V = M
• E =

{
{mi,mj} ∈M2 if and only if mi ∈ N (mj)

}
Thus, to each m ∈M corresponds a unique vertex, denoted by vm. Recipro-

cally, to each vertex v ∈ V corresponds a unique cell denoted by mv.
Let W : M → (R+)γ and Wcom : M → R+ be the computation and

communication weights of M . We define the weight functions on G:
• ∀v ∈ V,W (v) = W (mv)
• ∀e = (u, v) ∈ E,Wcom(e) = Wcom(mu) +Wcom(mv)

Note that because an edge of the graph represents a couple of cells in the
mesh, the communication weights are defined on E by attributing to an edge
the sum of the weights of its ends.
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Example

Figure 2.4.1 – Example of a mesh and its corresponding dual graph

The mesh is represented on the left and the corresponding dual graph on
the right. To each cell of the mesh corresponds a vertex (symbolized by a
disk). The neighboring relations are symbolized by the strokes between the
vertices, that are the edges of the graph.

Definition 18 (Partition of a Graph)
We call partition of a graph G = (V,E) a partition of its vertices V .
Thus, to each partition of a mesh corresponds a unique partition of its dual

graph, and reciprocally.
Given a vertex v ∈ V and a partition Π of G, we denote by Π(v) the (unique)

part to which v belongs.

If G = (V,E) is a graph, then a partition Π of G induces that some edges
in E are said to be “cut”, meaning that their ends belong to different parts.
The following definition of the edgecut, which is another formulation of the
cutλ−1 specific to the graph model, approximates the communication volume
induced by a partition.

Definition 19 (Edgecut)
Let G = (V,E) be a graph, and Π a partition of G. Let e = {u, v} ∈ E. We

define:

cut(e) =

1 if Π(u) 6= Π(v)
0 else

Given a communication weight function Wcom, the edgecut of Π is:

edgecut(Π) =
∑
e∈E

Wcom(e)× cut(e)

The edgecut counts the number of edges cut by a partition. This is an
approximation of the total communication volume ftot defined in Section 2.1.3,
as illustrated by the following example.

Multi-criteria Graph Partitioning 39



2.4. A Simpler Formulation with the Multi-criteria Graph Partitioning Problem

Example
Figure 2.4.2 shows an example of a 4-partition of a mesh and the partition

of its corresponding graph. Each color stems for one part. The edges that
are cut by the partition are dashed.

Figure 2.4.2 – 4-partition of a mesh and of its corresponding graph

Let vsquare be the vertex marked with a square. Two of its edges are cut.
This means that, when computing the edge cut, the communication weight
of mvsquare will be counted twice, whereas it must be sent only once to the
yellow part.

Nevertheless, in the case of vtriangle, the vertex marked with a triangle, it
is right to count the communication weight of mvtriangle

twice, since it must
be communicated once to the light blue part and once to the blue part.

Now assume that all communication weights of the cells are set to 1.
The total amount of communication induced by this partition was computed
using function ftot defined in Section 2.1.3, ftot(Π) = 24.

Using the graph model, we count 14 edges cut. Each edge e = (u, v) has a
weight of Wcom(mu) +Wcom(mv) = 2, which yields a communication volume
of 28.

This example illustrates that the graph model, unlike the hypergraph
model, will only approximate the total communication volume corresponding
to the function ftot.

The graph model is very common, maybe because it is simpler to understand
than the hypergraph model. Although Hendrickson and Kolda [2000] state many
limitations to this model, they also explain that, for mesh-based simulations,
the estimated communication cost is usually rather correct, as explained by
Catalyurek and Aykanat [1999]. However, note that this assumption may fail
for 3D meshes, when two cells in the mesh are considered to be neighbors if
they share a vertex or an edge (which corresponds to taking d = 0 or d = 1 in
Definition 8, instead of d = 2). The following Problem 4 gives the formulation of
the multi-criteria graph partitioning problem corresponding to the multi-criteria
mesh partitioning Problem 2.
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Problem 4 (Multi-criteria Graph Partitioning)
Given a graph G = (V,E), weights W : V → (R+)γ, a number of parts

k ∈ N∗, a tolerance t ∈ R+ and a communication cost function f , the
multi-criteria graph partitioning problem aims at finding a partition Πbest

such that:
• ∀c ∈ J1, γK, max

Πp∈Πbest
imbc(Πp) ≤ t (constraints)

• f(Πbest) = min
Π∈Pk(G), imb(Π)≤t

f(Π) (objective)

As for the multi-criteria mesh partitioning problem, our formulation of
the objective concerns the common case. It is up to the reader to adapt
the f objective function to its particular environment. Nevertheless, usually
f = edgecut, and in this case the multi-criteria graph partitioning problem is
NP-Hard.

NP-Hardness of the Classic Multi-criteria Graph Partitioning Prob-
lem

Definition 5 on page 7 recalled the complexity theory concepts such as
NP-Completeness and NP-Hardness. Roughly, a problem is said to be NP-
Hard if it is at least as hard as the hardest problems in NP, which are called
NP-Complete problems.

The proof of the NP-Hardness of the multi-criteria graph partitioning
problem involves the decision version of this problem, which is defined in
Problem 5. In the remainder of this section, we will denote by GPγ the multi-
criteria graph partitioning problem, GP1 the mono-criterion graph partitioning
problem, and GPDγ and GPD1 the decision versions of respectively the multi-
criteria and mono-criterion graph partitioning problems.

Problem 5 (Multi-Criteria Graph Partitioning – Decision Problem)
Given a graph G = (V,E), weights W : V → (R+)γ, a number of parts

k ∈ N∗, a tolerance t ∈ R+, a communication cost function f : P(G) → R+
and a communication cost f0 ∈ R+, the decision version of the multi-criteria
graph partitioning problem searches whether there exists a partition Π such that:
• ∀c ∈ J1, γK,max

Πp∈Π
imbc(Πp) ≤ t

• f(Π) ≤ f0

If we can solve GPγ , then we can easily solve GPDγ . Indeed, if Πbest is the
optimal solution of an instance of GPγ, then for f0 < f(Πbest), the answer to
GPDγ is “no”, and “yes” for any f0 ≥ f(Πbest).

Multi-criteria Graph Partitioning 41



2.5. Parallel Between Load Balancing Constraints and Vector-of-numbers
Partitioning

Therefore, GPγ is at least as hard as GPDγ . Moreover, it is straightforward
that GPDγ is at least as hard as GPD1. Hyafil and Rivest [1973] have proved
that GPD1 is NP-Complete when the communication cost is the edgecut
function. Therefore, GPγ is at least as hard as an NP-Complete problem,
which means that GPγ is NP-Hard when the communication cost is the edgecut
function.

Conclusion

Lots of partitioning tools, including Scotch (see Pellegrini [2008]) and MeTiS
(see Karypis and Kumar [1998a]), use the graph model. The graph model is
to our knowledge the simplest topological model to represent a mesh. It
formulates the multi-criteria mesh partitioning problem when the objective
function counts the communication volume, using the edgecut of the graph, as
an approximation.

However, before minimizing the objective function, the first task in our
formulation remains to find a partition respecting the balance constraints. In
the next section, we will ignore the topology and define a subproblem of the
multi-criteria mesh partitioning problem: the vector-of-numbers partitioning
problem.

2.5 Parallel Between Load Balancing Con-
straints and Vector-of-numbers Partition-
ing

This section considers a simplified version of the multi-criteria mesh parti-
tioning Problem 2. This problem is expressed in the form of several constraints,
namely to find a partition balanced for each criterion, and an objective, namely
minimizing the communication cost. In this section, we will ignore the mini-
mization objective of the multi-criteria mesh partitioning problem, to focus on
finding a partition that satisfies the balance constraints.

If the number of criteria is 1, and assuming that the computation weights
are integers, this leads to a well-known problem called the number partitioning
problem.

To match our needs, we extended the number partitioning problem to
the vector-of-numbers partitioning problem, formulated in Problem 6. This
formulation, unlike the classic number partitioning problem, considers that the
weights are real numbers. Whenever an algorithm requires the weights to be
integers, it will be specified.

Until now, we have considered that the computation weights on the mesh
were given through a weight function W : M → (R+)γ. However, to simplify
readability, in the scope of number partitioning, we will use multisets. Multisets,
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as stated in Definition 3 on page 6, are an extension of the concept of set in
which the same value may appear several times.

Definition 20 (Multiset Associated with the Computation Weight Function
of a Mesh)

Considering a mesh M and a computation cost function W : M → (R+)γ,
we define the multiset:

S = {W (m),m ∈M}

Note that S is a multiset of vectors, and that each vector in S has γ
components.

Table 2.5.1 defines the notations that will be used in the scope of the
vector-of-numbers partitioning problem.

Table 2.5.1 – Vector-of-numbers partitioning notations

Notation Problem parameters ref. p.
γ ∈ N∗ Number of physical models/criteria sec. 2.1.2 25
S ⊂ Rγ

+ Multiset of the computation weights, of
length(M) elements

def. 3 6

k ∈ N∗ Number of parts in which we will parti-
tion S

t ∈ R+ [Tolerance] Maximum imbalance al-
lowed (t = 0 means that we search for
a perfectly balanced partition)

sec. 2.1.4 30

Π = (Π1, ...,Πk) Partition of S def. 2 5

Problem 6 (Vector-of-Numbers Partitioning)
Given a finite multiset S ⊂ (R+)γ, a number of parts k ∈ N∗, a tolerance

t ∈ R+, the vector-of-numbers partitioning problem amounts to finding a
partition Π such that:

imb(Π) = max
c∈J1,γK

max
Πp∈Π

imbc(Πp) ≤ t .

However, the formulation in Problem 6 is rather unusual, with respect to
the number partitioning problem. The two formulations that follow are the
most classic definitions of this problem. They will be used in Chapter 3.
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Problem 7 (Number Partitioning – Decision Problem)
Given a finite multiset S ⊂ N and d ∈ N, determine if:

∃Π ∈ P(S), imb(Π) ≤ d

Problem 8 (Number Partitioning – Optimization Problem)
Given a finite multiset S ⊂ N, find Πbest, partition of S, such that:

imb(Πbest) = min
Π∈P(S)

imb(Π)

This section has described a subproblem of the multi-criteria mesh partition-
ing problem, the vector-of-numbers partitioning problem. Solving this problem
amounts to finding one valid partition of a multi-criteria mesh problem.

Before describing the algorithms addressing all the problems defined until
now, the next section will introduce the last model that will be used in this
thesis, which is the notion of fitness landscapes. Fitness landscapes help to
get the big picture on the multi-criteria mesh partitioning problem, as it is
aimed at analyzing a search space. In our case, the search space is the set of
all k-partitions of a mesh. Fitness landscapes study if an algorithm moving
across the search space may reach an optimal solution.

2.6 Exploration of the Search Space of the
Multi-criteria Mesh Partitioning Problem
with Fitness Landscapes

This section describes the fitness landscape model. Briefly, given an instance
of the multi-criteria mesh partitioning problem, the fitness landscape model
aims at answering whether an algorithm can reach an optimal solution for this
instance. Malan and Engelbrecht [2013] and Richter and Engelbrecht [2013]
define and sum up recent work that has been carried out on fitness landscapes.

Fitness landscapes can be applied to other problems than the mesh parti-
tioning problem. Therefore, in this section, we will consider a problem P and
an algorithm A that aims at solving P.

Definition 21 (Instance)
Given a problem P, an instance is a concrete representation of it or, in

other words, the actual case that we are trying to solve.
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Example
In this thesis, we consider P = the multi-criteria mesh partitioning

Problem 2. An instance of this problem is given by the inputs (M,k,W, t, f),
where:
• M is a mesh;
• k ∈ N∗ is the number of parts;
• W : M → (R+)γ is the computation weight function;
• t ∈ R+ is the imbalance tolerance;
• f is the communication cost function, which usually defines a commu-

nication weigh function Wcom : M → R+.

Given any instance I of the problem P, P defines a function f : XI → R.
Solving P for the instance I amounts to finding an element of XI → R that
minimizes f .

Definition 22 (Search or Configuration Space)
The set XI is called search space or configuration space, and depends on

the instance I.
The elements of XI are called candidate solutions.

Example
Given an instance I = (M,k,W, t, f) of the multi-criteria mesh parti-

tioning problem, the search space is, Pk(M), the set of all k-partitions of
M .

Nevertheless, the problem P may impose some constraints, as for the multi-
criteria mesh partitioning problem. In this case, all candidate solutions are not
solutions for an instance of the problem.

Definition 23 (Solution Space)
Given some constraints defined by the problem P and the considered instance

I of P, an element of XI respecting the constraints is called a solution. The
set of all solutions is called the solution space and will be denoted by SI.

In other words, we are looking for Πbest ∈ SI such that

f(Πbest) = min
Π∈SI

f(Π) .

Example
Given an instance I = (M,k,W, t, f) of the multi-criteria mesh parti-

tioning problem, the solution space is the set of all k-partitions of M whose
imbalance is smaller than t.
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Thus, given an instance I of P, algorithm A must return an element of SI
minimizing f .

Solving P amounts to finding an algorithm that, given any instance I and
the corresponding function f : XI → R to minimize, returns an element of SI
that minimizes f if SI is not empty.
Remark

Given an instance I = (M,k,W, t, f) of the multi-criteria mesh parti-
tioning problem, a partition Π of M can be encoded as a vector of length n
containing in slot number i the part number of the ith cell in M (where n is
the number of cells in the mesh).

For example, the partition vector for the partition of Figure 2.6.1, whose
cells are numbered, is [1, 1, 2, 2]. Indeed, cells 1 and 2 belong to the
first part and cells 3 and 4 to the second part.

Figure 2.6.1 – A bipartition of a 4-cell mesh, which can be encoded with
the vector [1,1,2,2]

Fitness landscapes consider that algorithm A will proceed in the search
space, looking for a solution that minimizes f . From a given candidate solution,
A explores XI , switching from one candidate solution to another, until it finally
stops and returns one, which in our case is a partition.
Definition 24 (Neighborhood Structure)

Given an instance I of a problem P, the way algorithm A can switch
from one candidate solution to another defines a neighborhood relation between
candidate solutions. The neighborhood structure defined by A will be represented
by nA : XI → P(XI), which means that given a candidate solution, nA returns
a subset of candidate solutions that are neighbors.

Example
Let A be a local optimization algorithm for the multi-criteria mesh

partitioning problem. It means that A switches from a partition to another
by changing the part assignments of a few cells. Using the vector notation of
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a partition, that means changing some components in the vector.
In particular, this thesis will study local optimization algorithms that can

switch at most one or two cells of part at a time. So, for these algorithms,
given a partition Π represented with the vector v, the partitions that are
neighbors of Π will be those which are represented with a vector equal to v
except for at most one or two components.

With all these definitions, Definition 25 formulates what a fitness landscape
is.

Definition 25 (Fitness Landscape)
Let I be an instance of problem P, and f : XI → R be the objective function

to minimize using algorithm A. We call fitness landscape the entity:

ΛI = (XI , nA, f)

where nA : XI → P(XI) is the neighborhood structure defined by A.

By studying the properties of fitness landscapes, we can determine some
characteristics on some classes of algorithms. For example, Chapter 5 will study
whether the solution space is connected when using algorithms that move one
vertex at a time.
Remark

A fitness landscape can be represented with a weighted oriented graph
(GΛ = (VΛ, EΛ),WΛ), with:
• VΛ = XI : a vertex in the graph is a candidate solution for the given

instance, so, in the case of mesh partitioning, a partition of the mesh;
• EΛ is defined by nA: given (u, v) ∈ V 2

Λ , (u, v) ∈ EΛ if v ∈ nA(u);
• WΛ = f : with each vertex is associated a value (in our case, the
communication cost of the partition), and we search for a vertex of
minimal value in GΛ.

A local optimization algorithm starts from a vertex in VΛ and iterates
by passing from a neighboring vertex to another in order to find a vertex of
minimal weight. Chapter 5 will study the capacity of a local optimization
algorithm to find such vertex.

Conclusion
In this chapter, we have described and discussed the mesh, hypergraph, and

graph models that express in a more concrete way the minimization of the run
time of a multiphysics simulation. A common characteristic of these models is
that the user needs to attribute computation and communication weights to
each cell of the mesh.
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The various models provide different visions of the same problem. The
mesh model (Section 2.2) may lead to the most accurate formulation of it. The
hypergraph model (Section 2.3) gets rid of the mesh geometry but remains
topologically equivalent to the mesh model. The graph model (Section 2.4)
differs from both the mesh and the hypergraph model, since it makes one
more approximation on the communication cost of a partition. However, it is
currently the most popular model, maybe because it is simpler to formulate
and to understand.

Finally, this chapter has also introduced quite original problems, when
considering the multi-criteria mesh partitioning problem. Firstly, the vector-of-
numbers partitioning problem (Section 2.5) is a subproblem of the multi-criteria
mesh partitioning problem, and is a generalization of a well-known problem,
the number partitioning problem. Solving the vector-of-numbers partitioning
problem amounts to finding a solution to a multi-criteria mesh partitioning
problem. Secondly, the fitness landscape model (Section 2.6) is a generalization
of the multi-criteria mesh partitioning model. It aims at studying the ability
for an algorithm to, from a partition, find its way to an optimal solution.

The remaining chapters of this part will define existing algorithms that
were designed to address the various problems that we defined in this chapter.
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Chapter 2 has described different problems modeling the minimization of
the run time of multiphysics simulations. They rely on balance constraints,
which means to find a partition of imbalance smaller than the input tolerance.
This amounts to solving a vector-of-numbers partitioning problem.

The present chapter introduces existing studies addressing the vector-of-
numbers partitioning Problem 6 on page 43. Given a set of vectors of numbers,
we call criteria the components of a vector. Roughly, the vector-of-numbers
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partitioning problem consists in finding a partition of the set such that for each
all criteria, the weight of each part is nearly as equal as possible.

The mono-criterion case is known as the number partitioning problem and
has been quite overlooked. Some of its properties have forged its nickname of
the “Easiest-Hard problem”, as will be explained in Section 3.1. Despite being
called the easiest, it remains an NP-Complete problem, as proved by Garey and
Johnson [1979]. The heuristics addressing it will be described in Section 3.2, and
their characteristics summed up in Section 3.3. Finally, the extension of some
of these heuristics to the multi-criteria case, will be described in Section 3.4.

Definitions and Notations
In our case, the entity that we need to partition is a multiset. Multisets

were introduced in Definition 3 on page 6. In multisets, two equal elements can
be distinct elements, which cannot be the case in sets. For ease of reading, in
this chapter, the word “set” will designate a multiset (and “subset” will mean
submultiset).

Besides, the following table recalls and extends the notations defined at the
beginning of the manuscript in Table ii:

Reminder of problem parameters
M The mesh to partition
k ∈ N∗ Number of computation units/parts into which we

will partition M
γ = 1 Number of physical models/criteria
W : M → Rγ

+ Weights associated with each cell of the mesh
t ∈ R+ [Tolerance] Maximum imbalance allowed (t = 0

means that we search for a perfectly balanced par-
tition)

Notations for number partitioning (γ = 1)
S = {W (m),m ∈M} Set (in fact: multiset) of numbers to partition (here

W : M → R+ since γ = 1)
Se = {4, 4, 7, 8, 9} Example that we will use to illustrate the algorithms

defined further in this section
n = |S| Number of numbers in S
u = max(S) Highest number in S
Σ = ∑

w∈S w Sum of all the numbers in S
Π = {Π1, ...,Πk} Partition of S
Σp = ∑

w∈Πp
w Sum of all the numbers in Πp

Note that the usual number partitioning problem considers only integers,
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while we allow for any positive real number. This does not change the way the
following algorithms behave.

Besides, the common number partitioning problem is commonly formulated
either as:

1. the decision Problem 7 on page 44: in this case, the objective is to find if
a perfectly balanced partition exists (t = 0), but not to actually compute
such a partition; or as

2. the optimization Problem 8 on page 44: in this case, the objective is to
find a partition whose imbalance is minimal.

Our formulation, as given in Problem 6 on page 43 with γ = 1, is to find a
partition of imbalance smaller than or equal to the input tolerance t. Firstly,
we need to return a partition, and secondly, this partition does not have to be
of minimum imbalance, so our formulation slightly differs from both common
formulations.

Nevertheless, the properties on the number partitioning problem that will
be explained in Section 3.1 apply to our formulation, and in Section 3.2, we
will define classic approaches and adapt them to our particular formulation.

3.1 Properties of the Number Partitioning
Problem

Number partitioning (in its decision version) is one of the six basic NP-
complete problems defined by Garey and Johnson [1979]. However, it is
not NP-complete in the strong sense, since dynamic programming can solve
the number partitioning problem in pseudo-polynomial time. The dynamic
programming algorithm, described in section 3.2.3, runs in time and space
bounded by a low polynomial in n ·u. If the numbers provided can be arbitrarily
large, then the number partitioning problem belongs to NP.

Among the instances of NP-complete problems, some are considered “easy”,
either because among the possible partitions, the proportion of solutions is
high (these are said to be underconstrained), or because they are easily found
insoluble because the number of candidate solutions to compute can be greatly
reduced (these are said to be overconstrained).

In between lie instances that are “critically constrained”. They form what is
called a phase transition. Gent and Walsh [1998] provide a way to measure the
constrainedness of an instance of the number partitioning (decision) problem.
Given numbers drawn uniformly and at random from J1, uK, they show that κ =
log2(u)
n

characterizes the number of perfectly balanced partitions. Figure 3.1.1
on the next page shows the probability that a perfect partition exists when κ
varies. Instances for which κ� 1 are underconstrained, meaning that a great
proportion of candidate solutions are solutions, whereas κ� 1 indicates that
the instance is overconstrained and very unlikely to have a solution. The phase
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transition occurs when κ ≈ 1.

κ

Probability of a perfect
partition existing

Figure 3.1.1 – Image from Gent and Walsh [1998] showing that the probability
that a perfect partition exists drops for κ ≈ 1. This phenomenon is called a
phase transition, and characterizes the hard instances of the number partitioning
problem (the ones for which κ ≈ 1).

Their experiments are based on very small instances (n ≤ 30) with poten-
tially large numbers (u ≤ 22n in order to test various values of κ), because they
need to compute all solutions. However, they subsequently apply finite-size
scaling methods to show that their result scales with problem size.

Gent and Walsh also provide κ when the problem is to find an “imperfect
partition”, which means finding a partition of imbalance smaller than some
tolerance t. In this case, they define κ = log2(u/(t·Σ))

n
, and the phase transition

occurs again for κ ≈ 1.
Being able to characterize the phase transition of the (uniformly random)

number partitioning problem forged its “Easiest Hard Problem” nickname.
However, Mertens [2003], while reviewing this phase transition in detail, high-
lights the poor quality of the heuristics addressing it. These heuristics will be
detailed in the next section, and the following section will compare them.

3.2 Number Partitioning Algorithms

In this section, we consider the number partitioning Problem 6: we search
for a partition whose imbalance is smaller than some input threshold t.
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3.2.1 Greedy Algorithm (GA)

The greedy number partitioning algorithm GA returns a partition that may
not be a solution. This is why GA is called a heuristic. It was introduced
by Horowitz and Sahni [1974], and is also known as the best-fit decreasing
heuristic. Algorithm 3 details how GA partitions a set S into k parts.

GA starts with all parts being empty and, at each step, places the largest
remaining number into the part with the lightest weight. Therefore, the
complexity of GA’s complexity is the one of sorting the elements in decreasing
order, which is O(n log(n)).

Algorithm 3 Greedy Algorithm
1: function GA(S, k, t)
2: Π← [[ ] k... [ ]]
3: Σ← [0 k... 0]
4: S.sortDescend()
5: while S 6= [ ] do
6: w ← S.popFirst() # Largest remaining number
7: pmin ← argmin(Σ) # Index of lightest part
8: Π[pmin].append(w)
9: Σ[pmin]← Σ[pmin] + w
10: end while
11: return Π
12: end function

Example
Table 3.2.1 shows the execution of GA on the example multiset Se, searching

for a bipartition. The last two columns display the weights of Π0 and Π1.
At each step, the largest remaining number is put in the lightest part. The
imbalance of the obtained partition is 6.25%.

Table 3.2.1 – The greedy algorithm always puts the largest remaining
number in the lightest part

Se (sorted) Π0 Π1 Σ0 Σ1

[9, 8, 7, 4, 4] [ ] [ ] 0 0
[8, 7, 4, 4] [9] [ ] 9 0

[7, 4, 4] [9] [8] 9 8
[4, 4] [9] [8, 7] 9 15

[4] [9, 4] [8, 7] 13 15
[ ] [9, 4, 4] [8, 7] 17 15
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3.2.2 Karmarkar-Karp Heuristic (KK)
The greedy algorithm took the largest remaining number and put it in the

lightest part. Karmarkar and Karp [1983] proposed an algorithm that, instead of
directly putting a number in a part, replaces the largest two remaining numbers
by their difference, meaning that they will be in different parts. Meanwhile,
the actual choice of which number goes to which part is saved for later use.

Like GA, KK is a heuristic, so the returned partition may not be a solution.
The bipartitioning version of KK is simpler than the k-partitioning version.

Bipartitioning Case

Algorithm 4 defines the bipartitioning version, which is based on Proposi-
tion 1 formulated by Karmarkar and Karp.

Proposition 1 (Partitioning S\{a,b} ∪ {a− b})
Given a ≥ b elements of S, from a partition of S ′ = S\{a,b} ∪ {a− b}, we

can build a partition of S of same imbalance as S ′.

Proof
Let Π′ = {Π′1,Π′2} be a partition of S ′, and assume that a− b ∈ Π′1.
Consider Π := {Π1,Π2} such that

Π1 := Π′1\{a−b} ∪ {a}
Π2 := Π′2 ∪ {b}

First, we recall a simple equality when bipartitioning:

imb(Π1) =
Σ1 − Σ

2
Σ
2

=
Σ1 − Σ1+Σ2

2
Σ
2

=
Σ1
2 −

Σ2
2

Σ
2

= Σ1 − Σ2

Σ = −imb(Π2)

Thus,

imb(Π) = max(imb(Π1), imb(Π2)) = |imb(Π1)|

=
∣∣∣∣∣Σ1 − Σ2

Σ

∣∣∣∣∣ =
∣∣∣∣∣Σ′1 − (a− b) + a− (Σ′2 + b)

Σ

∣∣∣∣∣ =
∣∣∣∣∣Σ′1 − Σ′2

Σ

∣∣∣∣∣
= imb(Π′)

So, from a partition of S ′, we built a partition of S with the same
imbalance, which proves the proposition.
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Remark
Given a bipartition Π = (Π1,Π2), the quantity ∆ := |Σ1 − Σ2| is called

the absolute difference of Π. We have imb(Π) = ∆
Σ .

Algorithm 4 Karmarkar-Karp Bipartitioning Algorithm
1: function KK_Bipart(S, t)
2: S.sortDescend()
3: AmB ← [ ] # Stems for “a− b”

# 1st phase: build AmB
4: while length(S) ≥ 2 do
5: a, b← pop2First(S)
6: AmB.append([a, b])
7: S.InsertInOrderedList(a− b)
8: end while

# 2nd phase: build the partition
9: Π1,Π2 ← (S, [ ]) # The last element in S is assigned to Π1

10: while AmB 6= [ ] do
11: [a, b]← AmB.popLast()
12: if a− b ∈ Π1 then
13: Π1.remove(a− b)
14: Π1.append(a)
15: Π2.append(b)
16: else
17: Π2.remove(a− b)
18: Π2.append(a)
19: Π1.append(b)
20: end if
21: end while
22: return [Π1,Π2]
23: end function

The algorithm works as follows. First of all, S is sorted in descending order.
Then, in a first phase, the list AmB is constructed. At each step, the two

largest numbers in S are removed from S, and stored in AmB. Their difference
is inserted in order in S, which means that S remains sorted in descending
order after the insertion. The first phase completes when there remains only
one number in S, whose value is the absolute difference of the partition built
in the second phase.

In the second phase, the remaining element is added to Π1, while Π2 is set
to the empty set. Then, for each element (a− b) ∈ AmB, Proposition 1 is used.
Hence, (a− b) is replaced by a in the part it belongs to, while b is inserted in
the other part, keeping the same imbalance for {Π1,Π2}. The algorithm stops
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when all the elements in AmB have been processed and returns the resulting
partition, regardless of whether the imbalance is below the tolerance or not.

Example
Table 3.2.2 – How the Karmarkar-Karp Algorithm Bipartitions Se

First phase
Se (sorted) a b a - b Π0 Π1

[9, 8, 7, 4, 4] 9 8 1 [7, 9] [4, 4, 8]
[7, 4, 4, 1] 7 4 3 [1, 7] [4, 4]

[4, 3, 1] 4 3 1 [1, 3] [4]
[1, 1] 1 1 0 [1] [1]

[0] - - - [0] [ ]
Second phase

Table 3.2.2 shows how KK partitions Se. The first phase is displayed in
the left and middle columns, while the second phase (read from bottom to
top) uses the middle and right columns.

The first phase fills-in columns a, b and a − b from top to bottom,
successively replacing in Se its 2 largest numbers by their difference.

Then, the partition is built (columns Π1 and Π2), from bottom to top: at
each step, the “a− b” from the previous line is replaced by a and b, a being
put in the part that contained a− b. The obtained partition of S is on the
top line, and its imbalance is 0, hence it is a perfect partition.

Remark
Algorithm 4 can be optimized by using the priority queue concept. Indeed,

we do not need to sort the set of numbers, but rather to get at each step the
maximum number from the set.

On the example set, KK returns a perfectly balanced partition. However,
KK always puts the two largest numbers in different parts, so it will fail on a
set whose partition would be perfect only if its two largest numbers are in the
same part.

k-partitioning Case

The k-partitioning version of KK is detailed in Algorithm 5. It is more
complex but has the same structure as the bipartitioning version. It still
comprises two phases. In the first one, the differencing set AmB is built, while
in the second one, the partition is built.

It begins with a sorting of S in descending order. Then, each number in
S is transformed into a tuple of size k, the first entry being the number itself,
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and the others being zeros. This creates the matrix M . Then, the algorithm
behaves as the example in Table 3.2.3, which partitions Se into 3 parts.

Example
Table 3.2.3 – How the Karmarkar-Karp Algorithm Partitions Se into 3 Parts

First phase

M (a+ x, b+ y, c+ z) Partition
(a, b, c)(x, y, z) normalize−−−−−−→

and sort
Π0 Π1 Π2

(9, 0, 0)(0, 0, 8)(7, 0, 0)(4, 0, 0)(4, 0, 0) (9, 0, 8)→ (9, 8, 0) [4, 8] [4, 7] [9]
(9, 8, 0)(0, 0, 7)(4, 0, 0)(4, 0, 0) (9, 8, 7)→ (2, 1, 0) [4, 8] [4, 7] [9]
(4, 0, 0)(0, 0, 4)(2, 1, 0) (4, 0, 4)→ (4, 4, 0) [4, 1] [4] [2]
(4, 4, 0)(0, 1, 2) (4, 5, 2)→ (3, 2, 0) [4, 1] [4] [2]
(3, 2, 0) [3] [2] [0]

Second phase

The first phase corresponds to the left and middle columns of the table.
In this phase, the greatest numbers are successively separated. In the
table, (a, b, c) and (x, y, z) denote the tuples with the largest numbers, with
a ≥ b ≥ c and x ≤ y ≤ z ≤ a.

At each step, (a, b, c) and (x, y, z) are removed from M , and a new tuple
is formed in place: E := (a+ x, b+ y, c+ z), meaning that a and x belong
to the same part, b and y to another, and c and z to the last one. The
tuple is normalized by its minimum (∀p, E[p] becomes E[p]−min(E)) and
sorted in descending order as shown in the middle column of the table,
before inserting it back in M in order. The insertion function ensures that
M1[1] > M2[1] > ... .

The second phase builds the partition as shown on the right column of the
table, from bottom to top, which means that the last elements are considered
first. The colors in the last line of Table 3.2.3 help to understand the first
step, namely how to switch from the last line to the before-last line. On
the last line, the (3) ∈ Π0 corresponds to the (5) before normalization and
sorting. Number (5) came from b+ y = 4 + 1, so the (3) is replaced by (4, 1)
in Π0. The same is done for 2↔ 4 = 4 + 0 in Π1 and 0↔ 2 = 0 + 2 in Π2,
resulting in the partition {{4, 1}, {4}, {2}} on the before-last line.

The algorithm continues until all elements in AmB have been processed,
and returns the obtained partition, regardless of its imbalance.

This section has introduced the KK algorithm, one of the most famous
heuristic to partition numbers. Its complexity is that of its sorting algorithm:
O(n log(n)), so it is quite fast. Whereas there is no guarantee on the imbalance
of the returned partition, it has been shown by Yakir [1996] that when the
numbers are uniformly distributed, for bipartitioning, KK_Bipart is expected
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Algorithm 5 Karmarkar-Karp k-partitioning Algorithm
1: function KK(S, k, t)

# For readability, Li is the ith element of the list L
2: n← length(S)
3: S.sortDescend()

# Initialization: transform numbers into k-tuples
4: M ←

[[
S1, 0 k−1... 0

]
n...
[
Sn, 0 k−1... 0

]]
5: AmB, norms← ([ ], [ ])

# 1st phase: build AmB
6: while length(M) ≥ 2 do
7: A,B ← pop2First(M)
8: AmB.append

([
[A1, Bk] k... [Ak, B1]

])
# Save the old elements

9: E ←
[
A1 +Bk

k... Ak +B1
]

# Compute the new element
10: emin ← min(E) # Normalization factor
11: norms.append(m) # Save the normalization factor
12: E ← [E1 − emin k... Ek − emin] # Normalize
13: E.sortDescend()
14: M.InsertInOrderedMatrix(E) # So that M1[1] ≥M2[1] ≥ ...

15: end while
16: Π←M1 # First and last list in M

# 2nd phase: build the partition
17: while AmB 6= [ ] do
18: E,m← (AmB.popLast(), norms.popLast())
19: P ← [1 k... k]
20: for [a, b] ∈ E do
21: p← Π(a+ b−m) # Index of the part (a+ b−m) belongs to.
22: P.remove(p)
23: Πp.remove(a+ b−m)
24: Πp.append(a)
25: Πp.append(b)
26: end for
27: end while
28: return Π
29: end function
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to work better than GA. Then, Michiels et al. [2003] confirmed this result both
experimentally and by computing the worst case performance of KK in the
general case of k-partitioning.

3.2.3 Pseudo-Polynomial-Time Algorithm Based on Dy-
namic Programming

Garey and Johnson [1979] define Algorithm 6, a dynamic programming
algorithm that solves the number bipartitioning problem in polynomial time in
Σ. It builds the array is_sum, such that is_sum[i] is set to True if there is a
subset of S of sum i (for a better readability, in this section, we assume that
the tables indexes begin at 0).

Therefore, this algorithm works only if the elements of S are integers.
Moreover, it is only designed for bipartitioning and has no known extension
to k-partitioning, for k > 2 (though Korf and Schreiber [2013] compare the
performance of exact number algorithms for both bi- and k-partitioning).

Algorithm 6 Dynamic Programming Algorithm
1: function DynProg(S, k, t)
Require: The elements of S are integers and k = 2.
2: Σ← sum(S)
3: nP ← dΣ/2e+ 1 # Number of tracked subset sums
4: P ← [[ ] nP... [ ]] # Subsets of S
5: is_sum← [True, False nP−1... False]
6: for number ∈ S do
7: for i← 0, nP − number do
8: if is_sum[i] and not is_sum[i+ number ] then
9: is_sum[i+ number ]← True
10: P [i+ number ]← P [i] ∪ [number ]
11: if

Σ
2−(i+number)

Σ
2

≤ t then # Found a solution

12: return
[
P [i+ number ], S\P[i+number ]

]
13: end if
14: end if
15: end for
16: end for
17: return None # Did not find a solution
18: end function

The algorithm works as follows. Initially, each cell in is_sum is set to
False, except is_sum[0] which is set to True. Indeed, the empty set is a
subset of S of sum 0. We also initialize each cell in the array P to an empty
list. At each step, we consider a number in S. For each cell is_sum[i] such
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that is_sum[i] is True, if is_sum[i+ number ] is False, then we found for the
first time a subset of S whose sum is i+ number . Hence, is_sum[i+ number ]
is set to True, and P [number + i] is updated to the subset found, which is the
subset in P [i] to which number is appended.

Setting the cell of index Σ1 to True means that a partition of sums (Σ1,Σ2 =
Σ−Σ1) has been found. Note that Σ1 ≤ Σ

2 ≤ Σ2. Therefore, this partition is a
solution if its imbalance is less than t, which corresponds to Σ2−Σ

2
Σ
2

=
Σ
2−Σ1

Σ
2
≤ t.

The corresponding partition is {P[Σ1], S\P[Σ1]}. If no such partition is found,
None is returned.

Figure 3.2.1 illustrates the construction of the is_sum array on the example
multiset Se, with t = 0. In this case, the partition is found on the line before
the last.

Figure 3.2.1 – The dynamic programming algorithm enumerates all possible
subset sums of Se. Cell i is colored in grey if a subset of sum i has been found.

This algorithm requires a space of size O(n · u), so it is hardly applicable to
our problem, for which there can be many numbers (n ∼ 106) that can be very
large.

3.2.4 Optimized Dynamic Programming with the
Horowitz and Sahni Algorithm (HS) and the
Schroeppel and Shamir Algorithm

Horowitz and Sahni [1974]’s algorithm HS uses more memory to improve
upon the time complexity of the previous algorithm. It has no k-partitioning
version for k > 2. As it uses the DynProg Algorithm 6 defined in the previous
section, it requires the numbers to partition to be integers. DynProg is assumed
to have been modified to return the is_sum and P variables. We will now
explain how HS operates; it is formulated in Algorithm 7, and an example is
given in Table 3.2.4 on page 62.

Step 0. Compute some bounds Σinf and Σsup such that

Π = {Π1,Π2} solution =⇒

Σ1,Σ2 ≤ Σsup

Σ1,Σ2 ≥ Σinf

.
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Algorithm 7 Horowitz and Sahni Partitioning Algorithm
1: function HS(S, k, t)
Require: The elements of S are integers and k = 2.
2: n← length(S)
3: nA ← bn2 c
4: nB ← n− nA
5: Σ← sum(S)
6: Σsup,Σinf ← Σ

2 (1 + t), Σ
2 (1− t) # Bounds on the sum of a part (Step 0)

7: S.sortDescend() # (Step 1)
8: SA ← S[1:nA] # Largest nA elements in S
9: SB ← S[nA + 1:n] # Smallest nB elements in S

# Algorithm 6 modified to return the subsets P of S (Step 2)
10: PA ← DynProg(SA, t = −1)
11: PB ← DynProg(SB, t = −1).reverse()
12: ΣA ← [sum(PA[1]) nA... sum(PA[nA]] # ascending order
13: ΣB ← [sum(PB[1]) nB... sum(PB[nB]] # descending order
14: iA, iB ← 1, 1
15: while iA ≤ nA and iB ≤ nB do # (Step 3)
16: Σ1 ← ΣA[iA] + ΣB[iB] # Sum of the numbers in Π1

17: if Σ1 < Σinf then # Need to increase Σ1 (Case 1)
18: iA ← iA + 1
19: else if Σ1 > Σsup then # Need to decrease Σ1 (Case 2)
20: iB ← iB + 1
21: else # Found a solution (Case 3)
22: return

[
PA[iA] ∪ PB[iB], L\(PA[iA]∪PB [iB ])

]
23: end if
24: end while
25: return None
26: end function
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These bounds will eliminate some partitions, when their sums do not range
between Σinf and Σsup.

Step 1. Divide S into two sets of equal size, SA and SB. SA contains the
largest numbers in S and SB the smallest.

Step 2. Compute the set ΣA (respectively ΣB) of all the possible sums of
subsets of SA (respectively SB) using Algorithm 6 called with an imbalance
impossible to reach, so that all subsets sums are computed. It is assumed that
Algorithm 6 has been modified to return its P variable, which contains in its
ith cell a subset of sum i.

Thus, ΣA (respectively ΣB), which contains in its ith cell the sum of the list
P [i] (respectively P [i]), is sorted in ascending (respectively descending) order.

Step 3. Iterate on iA and iB such that ΣA[iA] is the smallest non-processed
element in ΣA and ΣB[iB] the largest non-processed element in ΣB. Their sum,
denoted by Σ1, corresponds to the sum of part Π1.

If Σ1 is between Σinf and Σsup (Case 3), a solution is found. Otherwise, if
we need to increase the sum (Case 1), then we take the next element (larger)
in A. Otherwise, (Case 2), we take the next element (smaller) in B.

The algorithm stops when the elements of ΣA and ΣB are exhausted or
when a solution is found. To return the solution, the parts whose sum is Σ1
are PA[iA] and PB[iB].

Example

Table 3.2.4 – The Horowitz and Sahni algorithm first divides the input set
Se in sets SA and SB. In step 2, all possible subset sums of A and B are
computed. In step 3, we iterate on the elements of ΣA and ΣB, computing
the possible sums of subsets of Se, until a solution is found.

Se = {4, 4, 7, 8, 9}, d = 0
Step 0 Σinf = b31/2c = 16 Σsup = b33/2c = 16
Step 1 SA = {9, 8} SB = {7, 4, 4}
Step 2 ΣA = {0, 8, 9, 17} ΣB = {15, 11, 8, 7, 4, 0}

Step 3

a b a+ b Case (in alg. 7)
0 15 15 1
8 15 23 2
8 11 19 2
8 7 15 1
9 7 16 3
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Horowitz and Sahni’s algorithm returns a balanced partition when one
exists. It was improved by Schroeppel and Shamir [1981] to use less memory.
We will not describe their algorithm, but the idea is, instead of computing
all the possible sums of subsets ΣA and ΣB, to generate them on demand.
Schreiber [2014] gives its time complexity O(n2n

2 ) and space complexity O(2n
4 ).

3.2.5 Complete Greedy Algorithm (CGA)
Korf [1995] extended some heuristics to make “complete” algorithms, which

return the optimal solution. Unlike the dynamic programming approaches, the
complete algorithms do not require much memory. To do so, Korf enumerates
all the possible partitions using a k-ary tree. Differences between complete
algorithms lie in the way the tree is explored.

Bipartitioning Case. Algorithm 8 details the complete greedy bipartitioning
algorithm defined by Korf. This algorithm creates the tree following the greedy
algorithm idea. Figure 3.2.2 on the following page illustrates the construction
of the binary tree for Se.

Algorithm 8 Complete Greedy Bipartitioning Algorithm
1: function CGA_Bipart (S, t)
2: S.sortDescend()
3: return CGA_rec(S, t, [[ ], [ ]])
4: end function

5: function CGA_rec (S, t, Π)
6: if S = [ ] then # No number remaining
7: if imb(Π) ≤ t then return Π else return None end if
8: else # Add the largest remaining number to the lightest part
9: i← popFirst(S)
10: pheavy, plight ← sortDescend([1, 2], key : p 7→ sum(Πp))
11: Π← CGA_rec(S, t, [Πplight ∪ [i],Πpheavy ])
12: if Π 6= None then return Π end if
13: return CGA_rec(S, t, [Πpheavy ∪ [i],Πplight ])
14: end if
15: end function

CGA_Bipart uses a recursive procedure, CGA_rec, to enumerate all possible
solutions, returning a solution when one exits, or None otherwise. CGA_rec
starts with empty parts and the list of all numbers in the S variable, which
will record the numbers not already put in a part.

When all numbers have been assigned to a part, then the imbalance of the
partition is computed. If it is smaller than t, meaning that we found a solution,
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then the partition is returned. Otherwise, None is returned.
If some numbers have not been put to a part yet, we attribute them following

the idea of GA. So, the largest remaining number, i, is removed from the list
of the remaining numbers, and added to the lightest part before recursively
calling CGA_rec. If the obtained partition is a solution (it is not None), then
the solution is returned. Else, it tries to put i in the heaviest part before
recursively calling CGA_rec.

Figure 3.2.2 shows the tree built when applying CGA to the example multiset
Se. Note that only half of the tree is shown, the other half being identical (but
with number 9 in Π2). The nodes are numbered in the order in which they
are computed: the tree is explored in a depth-first way, the left branch of each
node first. From a node, the largest remaining number is attributed to the
lightest part on the left branch, and to the heaviest part on the right branch.

The first leaf computed corresponds to the application of GA. Here, the
optimal solution is found on the 5th computed leaf (node 11).

Figure 3.2.2 – The complete greedy bipartitioning algorithm tree applied to the
example set Se = {9, 8, 7, 4, 4}. The leaves are all the partitions of Se. Their
absolute differences are indicated below. The node numbers correspond to the
order in which they are visited. In this example, the optimal (and perfect)
partition is obtained at node 11. Note that only half of the tree is shown, the
other half being symmetric (but with number 9 in Π2).

Some techniques help avoid exploring all nodes. Firstly, if the absolute
difference of a partition is greater than the sum of the remaining numbers,
then all remaining numbers are assigned to the lightest part. For example, the
absolute difference at node 9 is ∆ = 16− 8 = 8 ≥ 4 + 4, so we can immediately
put the remaining numbers (4 and 4) in the lightest part, which corresponds
to consider only node 11 in the subtree of root node 9. This would also work
at node 16. Secondly, if the weights of each part are equal, then there is no
need to compute 2 different branches because the absolute differences of their
leaves would be the same. This is notably the case at the root of the tree (not
shown here, we only see the left branch of the root), where the weight of each
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part is null, so the choice of the part into which the first number is placed
does not matter. These optimizations are not shown in Algorithm 8 to improve
readability.

k-partitioning case. The tree becomes a k-ary tree, in which each branch
assigns the largest remaining number to one part, beginning by assigning the
number to the lightest part. We will not detail the algorithm, because it is
very similar to the bipartitioning case.

3.2.6 Complete Karmarkar-Karp Heuristic (CKK)
Korf [1998] extended the KK algorithm to the complete Karmarkar-Karp

algorithm. As CGA, CKK uses a k-ary tree to return an optimal solution.

Bipartitioning example. Algorithm 9 defines the bipartitioning version of
CKK, and Figure 3.2.3 shows the tree that is created from the example set Se.
In the tree, the nodes are numbered according to their creation order. Below
the leaves are the partitions obtained in each path from the root to the leaf.

Figure 3.2.3 – The complete Karmarkar-Karp bipartitioning algorithm tree
applied to Se: the two largest numbers of a node are replaced in the left branch
by their difference, and in the right branch by their sum. The nodes are
numbered according to their visited order. The leaves are the partitions, with
their absolute differences indicated above. They are computed a posteriori,
using the method explained in Section 3.2.2. In this example, the optimal (and
perfect) partition is the first computed one (obtained at node 4).

Algorithm 9 is implemented in a recursive way. Besides the set of numbers
to partition, it takes two more arguments:
• AB: saves at each step the two largest numbers, their relation (True if
they are to be put in different parts, False otherwise) and the number
that was created (named ab; we will see that ab = (a− b) or (a+ b));
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Algorithm 9 Complete Karmarkar-Karp Bipartitioning Algorithm
1: function CKK_Bipart(S, t)
2: S.sortDescend()
3: return CKK_rec(S, t · sum(S), [ ])
4: end function

5: function CKK_rec(S, d, AB)
6: if length(S) = 1 then
7: if S[0] > d then # Dead end
8: return None
9: else # Found a solution
10: return BuildKKPartition(S, AB)
11: end if
12: else
13: a, b← S.pop2First()
14: S.InsertInOrderedList(a− b) # (1st try) a and b in different parts
15: AB.append([True, a, b, a− b]) # Record try
16: Π← CKK_rec(S, d, AB)
17: if Π 6= None then return Π end if
18: S.remove(a− b)
19: S.InsertInOrderedList(a+ b) # (2nd try) a and b in the same part
20: AB[−1]← [False, a, b, a+ b] # Replace 1st try record
21: return CKK_rec(S, d, AB)
22: end if
23: end function

24: function BuildKKPartition(S, AB)
25: Π← [S, [ ]]
26: AB.reverse()
27: for i← 1, length(AB) do
28: separate, a, b, ab← AB[i]
29: p← Π(ab) # Index of the part ab belongs to
30: Π[p].remove(ab)
31: Π[p].append(a)
32: if separate then # Add a and b to different parts
33: Π[3− p].append(b) # 3− p: other part index
34: else # Add a and b to the same part
35: Π[p].append(b)
36: end if
37: end for
38: return Π
39: end function
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• d = t ·Σ: the difference between Σ1 and Σ2 (respective sums of each part)
to consider a partition as a solution. Indeed, as shown in the proof of
Proposition 1 on page 54, imb(Π) = |Σ1−Σ2|

Σ = d
Σ .

We now detail the CKK_rec procedure. If S has at least two elements, the
two largest (namely a > b) are removed from S and arranged as follows:
• first try: (a− b) is added to S, which corresponds to applying the classic

KK algorithm, or taking the left branch of the tree. Then CKK_rec is
called recursively;
• second try: if the partition found in the first try was not a solution, then
we try doing the opposite: the two largest elements are added to the
same part. This amounts to appending (a+ b) to S, or taking the right
branch of the tree.

The recursion stops when S has only one element left. As in KK, the last
element value is ∆, the absolute difference of the partition. So, if the imbalance
of the partition (∆

Σ ) is smaller than the tolerance, we return the partition built
using the BuildKKPartition function. Otherwise, None is returned, which
means that another branch of the tree has to be explored.

The BuildKKPartition function works just as the second phase of the
KK_Bipart Algorithm 4 on page 55, except that it has to take care whether a
and b must be put in different parts or in the same part.

Like CGA, CKK uses techniques to avoid exploring all nodes. Firstly, Gent
and Walsh [1998] proved that KK always gives the optimal solution if n ≤ 4,
so whenever the set of a node has 4 or fewer elements, the right branch is
discarded. Secondly, if the largest number remaining is greater than or equal to
the sum of all the other remaining numbers, the best solution of this subtree is
obtained by placing this number in one part and all the other ones in the other.

k-partitioning case. We will not detail the k-partitioning algorithm. Its
principle follows the k-partitioning KK algorithm that uses tuples of length k.
Besides, the tree is no longer binary: each node possesses as many branches as
there are combinations to sum-up the two largest tuples. For example, for k = 3,
if (a, b, c) and (x, y, z) are the two largest tuples, then there are 6 possibilities
to combine them: (a+ x, b+ y, c+ z), (a+ x, b+ z, c+ y), (a+ y, b+ x, c+ z),
(a+ y, b+ z, c+ x), (a+ z, b+ x, c+ y) and (a+ z, b+ y, c+ x). Hence, in the
general case, each node has k! branches.

The last two sections have defined two exact algorithms, CGA and CKK,
which explored the solution space as a binary tree. Unlike the other exact
algorithms DynProg and HS defined in Sections 3.2.3 and 3.2.4, they do not need
a tremendous amount of memory. They are based respectively on the greedy
and Karmarkar-Karp algorithms GA and KK. The latter has been reported
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to return more balanced solutions, and Korf [1995] noticed that CKK usually
return solutions quicker than CGA. However, since these algorithms compute
all possible partitions, they cannot apply to a large set of numbers.

The next section introduces another way of exploring the solution space,
using stochastic search algorithms. These algorithms do not compute all
solutions, but are not exact algorithms.

3.2.7 Stochastic Search Algorithms
Stochastic search consists in exploring the search space to find a solution.

In our case, the search space has been defined in Definition 22: it is the set of
all partitions of S. A stochastic search combines the following functions:
• Evaluate: compute the value associated with some partition Π. In our

case, it is the imbalance of Π;
• Randomize: draw a partition from the search space;
• Perturb: generate a new partition from a given one.

Remark
Stochastic search algorithms usually try to maximize or minimize the

Evaluate function, whereas we just need to drive it under some threshold,
t. Nevertheless, stochastic algorithms can also be applied to the mesh
partitioning Problem 2 with the communication cost as the Evaluate function.
Therefore, we will formulate the algorithms in the usual way, assuming that
their goal is to minimize the Evaluate function.

Because these algorithms are not guaranteed to return the optimal solution,
they are “heuristics”. Furthermore, because these algorithms can apply to
various problems with different specifications of the Evaluate, Randomize and
Perturb functions, they are called “meta-heuristics”.

Definition of the Algorithms

Ruml et al. [1996] define four stochastic search algorithms for the number
partitioning problem. They all use a variable niter ∈ N∗ that specifies the
maximum number of search steps.

Random Search. Algorithm 10 defines the random search, that picks parti-
tions at random, only recording the best found.

Stochastic Descent Algorithm. Algorithm 11 defines this classic stochastic
algorithm. From a random partition, the perturbations are accepted only when
they yield some improvement.
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Algorithm 10 Random Search
1: Πbest ← Randomize()
2: for i← 1, niter do
3: Π← Randomize()
4: if Evaluate(Π) < Evaluate(Πbest) then Πbest ← Π end if
5: end for
6: return Πbest

Remark
Ruml et al. named this algorithm HillClimbing, but as we try to

minimize the imbalance function, Descent is more appropriate. Moreover,
we sometimes call HillClimbing the algorithms that select partitions that
have a worse Evaluate than the current one: they accept to climb up in
order to descend deeper later.

Algorithm 11 Stochastic Descent Algorithm
1: Πbest ← Randomize()
2: for i← 1, niter do
3: Π← Perturb(Πbest)
4: if Evaluate(Π) < Evaluate(Πbest) then Πbest ← Π end if
5: end for
6: return Πbest

Parallel Descent Algorithm. Ruml et al. also define a parallel descent
Algorithm 12. From a population of partitions generated randomly, a solution
is selected at random using the SelectIndv function. The selection process is
such that better solutions are more likely to be chosen. The selected solution
is duplicated before being changed and added to the population. Then, the
DeleteWorst function removes the worst (according to the Evaluate function)
partition from the population. Finally, the best partition according to the
Evaluate function is returned.

Simulated Annealing. Finally, Algorithm 13 defines a stochastic version of
a well-known algorithm. Its principle originated from annealing in metallurgy,
and was introduced by Kirkpatrick et al. [1983]. From a random partition, at
each step, the current partition is perturbed. If the new partition is better
than the current one, the new one replaces the current one. Else, the difference
∆f between the Evaluate values obtained for each partition is computed.
The new partition replaces the current one with probability e−

∆f
T (i) , where T

is a monotonically decreasing function called the temperature function. The
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Algorithm 12 Parallel Descent Algorithm
1: Population ← [ ]
2: for j ← 1, nindv do Population[j]← Randomize() end for
3: for i← 1, niter do
4: Π← selectIndv(1, nindv) # Prioritize the best solutions
5: Population[nindv]← Perturb(Π)
6: DeleteWorst(Population) # “worst” according to Evaluate
7: end for
8: return min([Population, key : Π 7→ Evaluate(Π)])

temperature function controls the acceptance of partitions that are worse than
the current one. This acceptance decreases with the iteration number i.

Algorithm 13 Simulated Annealing
1: Πini ← Randomize()
2: Πbest ← Πini

3: for i← 1, niter do
4: Π← Perturb(Πini)
5: ∆f ← Evaluate(Π)− Evaluate(Πbest)
6: if ∆f ≤ 0 then
7: Πbest ← Π
8: else if rand(0, 1) < 10−

∆f
T (i) then

9: Πbest ← Π
10: end if
11: end for
12: return Πbest

Ruml et al. show that the performance of the four search algorithms
defined here depends highly on the definitions of the Evaluate, Randomize
and Perturb functions, that they call the encoding, and which corresponds to
the problem representation.

Problem Representation

The problem representation defines the Evaluate, Randomize and Perturb
functions of the stochastic search algorithms. For the number partitioning
problem, the Evaluate function is always the computation of the imbalance
of the partition, but the Randomize and Perturb functions vary. Ruml et al.
define four problem representations, which are described in Table 3.2.5.

The direct representation is the reference. The Randomize function selects
a partition among all the possible ones with the same probability. The Perturb
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Table 3.2.5 – Problem representations defined by Ruml et al. [1996]

Direct representation
Randomize Generate one of the kn possible partitions of S.
Perturb Toggle the part of a random number, and randomly assign the

part of another number.
Greedy representation

Randomize Generate one of the n! permutations of J1, nK to order S. Com-
pute the partition according to the greedy algorithm defined in
Section 3.2.1.

Perturb Toggle the part of a random number, and randomly assign the
part of another number.

Prepartitioning representation
Randomize Generate a sequence O of random integers between 1 and n. If

O[i] = O[j], then the ith and jth elements of S are constrained
to lie in the same part.
The partition is then computed using the Karmarkar-Karp (KK)
Algorithm 4 on page 55.

Perturb Assign O[i] = p where i and p are chosen randomly between 1
and n, then compute the partition using KK.

Index-rules representation
Randomize Generate a sequence R of random integers, with 0 ≤ R[i] ≤

n− 2− i.
The partition is then computed using an adaptation of KK.
Recall that KK always puts in different parts the two greatest
remaining numbers. Here, at step i, this algorithm puts the
greatest number and the 2 +R[i]th greatest number in different
parts. For example, if R[i] = 1, then the 3rd largest number is
considered.

Perturb Draw at random i between 1 and n− 3, and j between 1 and
n − 2. If i ≥ j, then replace i with n − 3 − i. Else, replace j
with n− 2− j.
At this point, every pair (i, j) such that 0 ≤ i ≤ n − 3 and
0 ≤ j ≤ n− 3− i is equally probable. If j = R[i], then replace
j with n− 2− i. Thus, we have 1 ≤ j ≤ n− 2− i with j 6= R[i].
Compute the partition using the same adaptation of KK as in
the randomize step.
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function may perform one move (the part of one number is switched), two
moves (the parts of two numbers are switched) or an exchange.

The greedy representation uses the same Perturb function as the direct
representation, but the Randomize function generates a partition with the
greedy algorithm GA defined in Section 3.2.1.

Ruml et al. use the Karmarkar-Karp algorithm KK, defined in Section 3.2.2
for the prepartitioning representation. This representation, in the Randomize
function, forces some numbers to be in the same part, before applying KK. The
Perturb function changes the numbers that have to be in the same part and
applies KK once again.

The index-rules representation uses a variation of KK. While the original
version always considers putting the two largest numbers in different parts,
this algorithm puts the largest and another number in different parts. The
Randomize function defines which number other than the largest should be
considered at each step of KK. The Perturb function changes, for one step, the
random number to consider.

3.3 Comparison of Number Partitioning Algo-
rithms

Time and space complexities. Table 3.3.1 sums up the time and space
complexities of the algorithms defined in the previous section, except for the
stochastic algorithms, for which the complexities depend on the functions
Evaluate, Randomize and Perturb defined by the problem representation.

While the Evaluate function is the same for each search algorithm, the
Randomize and Perturb functions differ greatly. Their time complexities are
displayed in Table 3.3.2, before the time complexities of the stochastic search
algorithms.

The space complexity of the stochastic search algorithms is O(n), except
for the parallel hill-climbing algorithm whose space complexity is O(n · nindv).

Scope of the reported results. The following reports a number of studies
comparing the capacity of a heuristic to find a solution and the actual time
needed to compute it.

However, for all the reported studies, the results are based on the fact that
the numbers derive from a uniformly random distribution. This assumption
cannot be made in our case, for which we do not know the statistic distribution
of the numbers, which are issued from the weights of the cells. Moreover, in
some heuristics such as the multilevel one, the weights change. And finally, there
is no guarantee that these results apply to the vector-of-numbers partitioning
problem.

72 Rémi Barat



3. Survey on Algorithms for Vector-of-Numbers Partitioning

Table 3.3.1 – Time and space complexities for the number partitioning algo-
rithms defined in Section 3.2, with n = |S| and u = max(S).

Name Algorithm
type

Time
complexity

Space
complexity

Greedy Algorithm GA Heuristic n log(n) n
Karmarkar-Karp KK Heuristic n log(n) n
Dynamic programming DynProg Exact n · u n · u
Horowitz-Sahni HS Exact n · 2n

2 2n
2

Schroeppel-Shamir Exact n · 2n
2 2n

4

Complete Greedy Algorithm CGA Exact 2n n
Complete Karmarkar-Karp CKK Exact 2n n

Table 3.3.2 – Time and space complexities for the stochastic search algorithms
when used with different representations.

Direct Greedy Prepartitioning | Index-rules

Evaluate n n n
Randomize n n · log(n) n · log(n)
Perturb 1 1 n · log(n)
Random n · niter n log(n) · niter n log(n) · niter
Stochastic

n · niter n(log(n) + niter) n log(n) · niterDescent
Simulated

n · niter n(log(n) + niter) n log(n) · niterAnnealing
Parallel
Descent

n · niter · nindv n · niter · nindv n · niter(log(n) + nindv)

Efficiency of Exact Algorithms. Among the exact algorithms, the
Schroeppel-Shamir algorithm has the best time complexity for finding the
optimal bipartition. Nevertheless, its application is only possible for small sets
of integers. On the other hand, CGA and CKK have the worst-case complexity,
but they do not need as much space.

CGA and CKK have the same complexity, but the latter will in fact find a
solution much faster than the former, according to Korf [1998].

Efficiency of Heuristics. The two heuristics defined in this manuscript
are GA (Algorithm 3) and KK (Algorithm 4). However, while KK’s worst-case
complexity is the same as that of GA, KK actually outperforms GA in returning a
solution when one exists. Korf [2009] argues that the imbalance of a partition

Multi-criteria Graph Partitioning 73



3.3. Comparison of Number Partitioning Algorithms

returned by GA is on the order of the smallest number, whereas for KK the
imbalance is on the order of the last remaining number. Yet, for KK, the last
remaining number comes from repeated differences, so it should be much smaller
than the smallest number of the set.

Ruml et al. [1996] compared the stochastic search algorithms defined in
the previous section. Their major conclusion is that the search algorithm has
little influence on the solution found, while the problem representation is of
great importance. Ruml et al. launched 100 times each of the 16 combinations
of problem representation × search algorithm on 1 random instance of 100
numbers. After each run, the absolute difference u after 30 000 iterations
is measured and compared with uKK, the absolute difference of the partition
obtained with KK.

Figure 3.3.1 shows log(û) = log(mean(u)
uKK

). log(û) > 0 means that, on average,
the heuristic did not find a better solution after 30 000 iterations than the
application of KK. All representations except the prepartitioning representation
lead to solutions that are on average worse than that returned by KK. The
only algorithms that found on average a better solution than KK were the ones
based on the prepartitioning representation. Among the heuristics based on the
prepartitioning representation, there is little difference. Note that the Random
search (RGT on the figure) performs notably well, even better on average than
the Hill Climbing and the Simulated Annealing heuristics.

Figure 3.3.1 – Image from Ruml et al. [1996] showing that the search algorithm
has little influence on finding the optimal solution, unlike the problem represen-
tation. The latter are listed on the x-axis, with all the search algorithms (RGT:
Random; HC: Descent Algorithm; SA: Simulated Annealing; PHC: Parallel
Descent Algorithm) using each representation. The y-axis is the average of
log(û) over 100 runs, where û is the quotient between the absolute difference
of the best partition found after 30 000 iterations, and the absolute difference
of the partition returned by KK.

Up until now, we have focused on the number partitioning algorithm, for
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which quite a few heuristics, as well as some exact algorithms, have been
designed. However, most of them do not generalize to the vector of number
partitioning problem, as we will see in the next section.

3.4 Vector-of-Numbers Partitioning Ap-
proaches

Kojić [2010] is one of the first to consider the vector-of-numbers biparti-
tioning Problem 6 on page 43, which she calls the “Multidimensional Two-way
Number Partitioning Problem”. Note that her formulation differs slightly from
our, because it searches for a partition minimizing the imbalance, while we
only search for a solution whose imbalance is smaller than a threshold. Also,
as she explains, both of our formulations differ from the clustering problem,
and clustering algorithms would not be able to handle the multidimensional
two-way number partitioning problem.

In Section 3.4.1, we describe similarities between the vector-of-numbers par-
titioning problem and another classic problem, the multiple multi-dimensional
knapsack problem. However, we will see that, as for clustering algorithms, we
cannot adapt algorithms addressing the knapsack problem to the vector-of-
numbers partitioning problem. Then, Section 3.4.2 will discuss if extensions
of the number partitioning algorithms to the vector-of-numbers partitioning
problem are possible. Finally, Section 3.4.3 will describe existing approaches
addressing the multidimensional two-way number partitioning problem.

3.4.1 Difference with the Multiple, Multi-dimensional
Knapsack Problem

The knapsack problem, studied for example by Chekuri and Khanna [1999],
selects a number of items to pack into one bag of given weight or volume (the
constraint), so that the utility (the objective function) of the selected items is
maximized. The “multiple” version of the knapsack problem has several bags,
and the multi-dimensional version has several constraints.

A possible analogy with the vector-of-numbers partitioning algorithm is to
consider that the items are the vectors of numbers, and the bags are the parts
of the partition. Packing each item in one bag gives a partition of the set of
vector of numbers. The constraints (maximum weight and volume of one bag)
are the imbalance tolerances for each criterion on the partition.

However, there is no utility function in the vector of number partitioning
problem, and it would have no meaning since all numbers have to belong to one
part. This means that all items have to be packed. There lies the difference
between the two problems: whereas the knapsack problem needs to select some
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items to pack, the number partitioning problem needs to pack all items such
that they fit in the bags.

Therefore, a solution to a vector-of-numbers partitioning problem can be
adapted to the corresponding knapsack problem (and since all items have
been packed, the utility function is maximized). However, it does not really
make sense to rely on a heuristic addressing the knapsack problem to solve a
vector-of-number partitioning problem, because it may not pack all items, thus
not returning a partition of the set of vectors of numbers.

This section has explained why the algorithms addressing the multiple
multi-dimensional knapsack problem are not suited for the vector-of-numbers
partitioning problem. The next section will define possible extensions of the
number partitioning algorithms to the vector-of-numbers partitioning problem.

3.4.2 Extension of Number Partitioning Algorithms to
the Vector-of-Numbers Partitioning Problem

Table 3.4.1 sums up the possible extensions of the number partitioning
algorithms defined in the previous sections. A “X” means that we propose a
straightforward extension, while a “7 ” means that an extension would need
additional definitions. Note that Kojić [2010] carried out a quite similar analysis.

As explained in the table, the only algorithms whose extension can be
naturally defined are the dynamic programming algorithm and the stochastic
search algorithms, because they do not need any ordering notion.

Nevertheless, as explained in Sections 3.2.3 and 3.3, the dynamic program-
ming algorithm can only bi-partition a set of integers, whereas in the general
case, we need to k-partition a set of real vectors of numbers (k ≥ 2). Besides,
DynProg can demand a tremendous amount of space, because it requires a table
of n · u cells (where u = max(S)). In the multi-criteria case, we need as many
tables as there are criteria, so the space complexity becomes n · u · c, which
cannot fit for our applications.

Kratica et al. [2014] and Rodríguez et al. [2017] consider applying stochastic
search algorithm to the multidimensional two-way number partitioning problem.
They will be considered in the next section, which reports existing algorithms
tackling the multidimensional two-way number partitioning problem.

3.4.3 State of the Art for the multidimensional two-way
number partitioning problem

Kojić [2010] first defined an integer linear programming algorithm, and
implemented it using CPLEX. She tested her approach on small instances, from
50 to 500 integers, with a run time ranging from 1min to half an hour. Such
run times are not suitable in our case.

76 Rémi Barat



3. Survey on Algorithms for Vector-of-Numbers Partitioning

Table 3.4.1 – Discussion on the extension of the number partitioning algorithms
defined in Section 3.2 to the vector-of-numbers partitioning problem

Algorithm section extension
Greedy algorithm GA 3.2.1 7

Puts the largest remaining element in the lightest part. However, the “largest”
element and the “lightest” part have several possible definitions when dealing
with vectors of numbers.
Karmarkar-Karp algorithm KK 3.2.2 7

Puts the two largest remaining numbers in different parts and replaces them
with their difference. It is then possible to build a partition of absolute
difference equal to the last remaining element divided by Σ (sum of all the
original elements).
As for GA, defining the largest remaining numbers is not straightforward.
Moreover, subtracting two vectors can produce non positive numbers, which
is not defined in KK.
Dynamic programming algorithm DynProg 3.2.3 X
Fills a table that records in cell i whether there is a subset of sum i. The
adaptation would need as many tables as there are criteria.
Horowitz and Sahni algorithm HS 3.2.4 7

Needs to sort the set of vector of numbers, as for GA.
Complete Greedy algorithm CGA 3.2.5 7

Complete Karmarkar-Karp algorithm CKK 3.2.6 7

The complete algorithms respectively use GA and KK, which are not directly
adaptable to the vector-of-numbers partitioning problem.
Stochastic algorithms 3.2.7 X
Evaluate is the imbalance function as in Definition 11.
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Pop and Matei [2013] then proposed to use a genetic approach. Genetic
algorithms use crossover-like operators, which combine two partitions, and
mutation-like operators, which perturb an existing partition. The crossover
operator selects, between two partitions called the parents, the one of smallest
imbalance. In the “child” partition obtained, one or two vector-of-numbers are
attributed the same part as in the second parent. The mutation operator then
randomly switches the part for approximately 10% of the vector-of-numbers.
Their approach achieves to return solutions of smaller imbalance than the
integer linear programming algorithm, and in less time. To partition 400
integers, the run time of their algorithm ranges from 5 to 10min, which is still
too long for our applications.

Very recently, Kratica et al. [2014] and Rodríguez et al. [2017] used stochastic
methods. Kratica et al. introduced variable neighborhood search (VNS) and
an electromagnetism-like metaheuristic (EM), and Rodríguez et al. a GRASP
algorithm with path relinking (GRASP + PR). All rely on several random starts
(like the parallel descent algorithm) with various perturbation mechanisms.
VNS explores several neighborhoods of solutions using a local optimization
algorithm. EM defines an attraction-repulsion relation between partitions,
modeling a “charge” that corresponds to the difference in imbalance with
the “optimal” imbalance (which is the minimum imbalance found at runtime).
GRASP + PR builds randomized initial partitions that are then improved by
exploring paths between partitions of small imbalance (called “high-quality
partitions”). Kratica et al. report that on average, VNS and EM return partitions
of smaller imbalance than the genetic algorithm of Pop and Matei and the
linear programming algorithm. Although VNS and EM results are very close,
EM is slightly better. However, once again, the run time in general exceeds
5min for partitioning instances of 100 integers. As for GRASP + PR, Rodríguez
et al. set a maximum computation time of n/10, for instances of n ranging
from n = 50 to n = 500 vector-of-numbers, and for this time limit, GRASP + PR
returns on average partitions of smaller imbalance than VNS, which is said to
be its “main competitor”.

To conclude, a common feature of the existing approaches is that they
search for a partition of minimal imbalance, while we only search for a partition
of imbalance smaller than a threshold. Searching for an optimal partition, the
integer linear programming algorithm and the genetic algorithm run times are
not suited for our instances. The stochastic algorithms seem to be able to
return partitions of minimal imbalance when the computation time is smaller.
Finally, all existing approaches only consider bipartitioning.
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Conclusion
In this chapter, we have described a number of vector-of-numbers partition-

ing algorithms. The only number partitioning algorithms that can apply to our
problem in practice, be it because of their worst-case complexity or their space
complexity, are heuristics. Among the defined heuristics, stochastic search
algorithms are the most promising algorithms to address the vector-of-numbers
partitioning problem. In Chapters 5 and 7, we will study the descent algorithm.
However, we will consider non-stochastic versions of it, because we may not
need several runs to obtain a solution.

A vector-of-numbers partitioning algorithm aims at returning a solution to
the corresponding mesh partitioning problem. Nevertheless, the communication
cost of this solution can be high. Existing algorithms that also take into account
the communication cost of a partition will be defined in the next chapter.
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Chapter 4

Mesh Partitioning Algorithms
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This chapter describes the existing partitioning algorithms addressing the
multi-criteria mesh partitioning Problem 2 on page 34 or its variations, the
multi-criteria hypergraph and graph partitioning Problems 3 on page 37 and 4
on page 41. Basically, the problem is to partition into k parts a mesh/hy-
pergraph/graph whose cells/vertices are given a vector of γ weights (γ is the
number of criteria), such that for each criterion, the partition balances the
weights of the parts. Therefore, a partition is a solution of the problem only if
its imbalance for each criterion is smaller than some input tolerance t.

Among all partitions respecting such balance constraints, or, in other words,
among all candidate solutions, we search for an optimal solution, which is one
that minimizes the communication cost induced by the partition. As explained
previously in Chapter 2, mesh, hypergraph and graph model differently the
communication cost.

The multi-criteria graph partitioning problem is NP-Hard when the com-
munication cost is the classic edgecut function, as explained in Section 2.4.
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Similarly, the corresponding multi-criteria mesh and hypergraph partitioning
problems are also hard problems, and in our case, we will have to rely on
heuristics. Heuristics are algorithms that do not guarantee to return an optimal
solution. The goal of this chapter is to provide an overview of the existing
heuristics that can be used to partition a multi-criteria mesh, hypergraph or
graph.

First, Section 4.1 will describe an algorithm which is not a partitioning
algorithm in itself. This algorithm, called recursive bisection (RB), extends a
bipartitioning algorithm into a k-partitioning algorithm. Many algorithms rely
on RB for k-partitioning when k > 2.

For example, the geometric algorithms described in Section 4.2 often rely
on RB. Geometric algorithms partition a mesh using the geometric coordinates
of its cells.

On the opposite, some algorithms rely only on the mesh topology, modeling
the mesh with a hypergraph or a graph as explained previously in Sections 2.3
and 2.4. In this document, we have divided the topological algorithms into two
categories: (i) the algorithms usually used to build a partition from scratch,
called direct algorithms, will be described in Section 4.3, and (ii) the algorithms
that refine an input partition, called refinement algorithms, will be described
in Section 4.4.

Finally, Section 4.5 will introduce the multilevel algorithm. This algorithm
is used by most of the partitioning tools, and considered by Buluç et al. [2015]
as the most successful heuristic for partitioning large graphs. Nevertheless, as
stated by Pellegrini [2008], this algorithm may also be seen as a partitioning
strategy, because it usually relies on other partitioning algorithms.

Remarks
Evolutionary algorithms and simulated annealing have also been consid-

ered to address the mesh partitioning problem. They will not be described
in this document, but Bichot and Siarry [2010] describe them very well.
Concerning mesh partitioning, they have been supplanted by the multilevel
algorithm.

Topological algorithms do not apply only on mesh partitioning. Their
application is wide: they appear among others in the physical design of
digital circuits for very large scale integration (VLSI), in the classification of
individuals for complex networks such as power grids and biological or social
networks, in image processing... Buluç et al. [2015] have provided a good
survey on graph partitioning algorithms and their applications.
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Notations
All the algorithms defined in this section take as arguments:
• the mesh M or the corresponding graph/hypergraph G to partition;
• the number of part k ∈ N∗;
• the computation weights W : M → Rγ

+ associated with each cell/vertex;
• the imbalance tolerance t;
• the communication cost function f : P(M)→ R+ that should be mini-

mized.
Table ii on page 9 details and references the meaning of these parameters.

4.1 Recursive Bisection (RB)
This section describes the recursive bisection algorithm RB, which forms

a k-partitioning algorithm from a bipartitioning algorithm Bisect. RB was
introduced by Kernighan and Lin [1970]. Since then, many bipartitioning
algorithms such as geometric algorithms (Section 4.2) or spectral bisection
(Section 4.3.1) have relied on RB for k-partitioning.

Overview and Example

The idea is to first bipartition the mesh using Bisect. Then, each part is
bipartitioned with Bisect, which forms a 4-partition of the mesh. By repeating
this scheme, we obtain a 2m-partition of the mesh for any m ∈ N.

If k is not a power of 2, then at least one partition call has to require a
partition whose weight for one part is not one half. The following example
illustrates how to handle k = 3.
Example

The following diagram shows the different steps to partition a mono-
criterion mesh M of total weight Σ into k = 3 parts of weight Σ

3 . The circles
show the parts, with their name and weight indicated nearby. The squares
symbolize the application of the bipartitioning function Bisect.

M(Σ)

Bisect(tgt =
[

1
3 ,

2
3

]
)

Π1(Σ
3 ) Πtmp(2Σ

3 )

Bisect(tgt =
[

1
2 ,

1
2

]
)

Π2(Σ
3 ) Π3(Σ

3 )Π1(Σ
3 )
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First, Bisect is applied on M , targeting a weight of Σ
3 for part Π1 and

2Σ
3 for part Πtmp. Then, Bisect is called on Πtmp with “regular” target part
weights, which means half the weight of Πtmp for both parts. This forms Π2

and Π3, both of weight 2 Σ
3

2 = Σ
3 .

Remark
In order to make k-partitions when k is not a power of 2, the Bisect

algorithm must take another argument, which is the list of the target part
weights. In the following, this argument will be called tgt ∈ [0, 1]γ×k.

Algorithm

Algorithm 14 describes the recursive bisection function RB. If k = 1 then
the partition is immediate. Otherwise, first, the tolerance is adapted to k, as
will be explained further. Then, the target weights for the next bipartitioning
are computed. If k is even, the target weights are

[
1
2 ,

1
2

]
, but if k is odd, the

target weights are
[
k−1
2k ,

k+1
2k

]
.

The bipartitioning algorithm Bisect computes a bipartition Π = {Π1,Π2}
with the adapted target weights. Finally, RB is recursively applied to Π1 and
Π2 with the right number of parts: if k is even, respectively k

2 and k
2 , and if k

is odd, respectively k−1
2 and k+1

2 .

Algorithm 14 Recursive Bisection
1: function RB(M , k, W , t, f , Bisect)
2: if k = 1 then return [M ] end if
3: t← AdaptTolerance(t, k)
4: k1, k2 ← bk2c, b

k+1
2 c

5: Π← Bisect(M,W, t, f, tgt =
[
k1
k
, k2
k

]
)

# If imb(Π) < t, the next bisection steps have a greater tolerance
6: Π′ ← RB(Π1, k1,W, t1, f, Bisect)
7: Π′′ ← RB(Π2, k2,W, t2, f, Bisect)
8: return Π′ ∪ Π′′
9: end function

Adapting the Tolerance

When using RB, Karypis and Kumar [1998b] give an example illustrating why
the imbalance tolerance set at each step must be adapted. This is the purpose
of the AdaptTolerance function used in Algorithm 14. We will first provide
such an example, and then give in Proposition 2 the maximum imbalance that
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a partition computed using RB can reach if the same tolerance is given at each
call to the Bisect algorithm.

Example
For example, consider the execution of RB below using some bipartitioning

algorithm Bisect. The input tolerance is t = 10%. We consider a mono-
criterion mesh of total weight Σ = 400, and we want to partition it into
k = 4 parts.

The following graph shows possible weights of each part when Bisect is
called with t = 10% every time.

Σ = 400

Bisect(t = 10%)

Σtmp
1 = 180 Σtmp

2 = 220

Bisect(t = 10%) Bisect(t = 10%)

Σ1 = 86
imb = −14%

Σ2 = 94
imb = −6%

Σ3 = 99
imb = −1%

Σ4 = 121
imb = 21%

The heaviest part, Π4, reaches a weight of Σ4 = 121, which accounts for
an imbalance of imb = Σ4−Σ

k
Σ
k

= 121−100
100 = 21%. Thus, the final imbalance of

the partition far exceeds the input tolerance of 10%.

Proposition 2 (Imbalance when using recursive bisection)
After m calls to a bipartitioning algorithm that returns partitions of imbal-

ance at most t, the final imbalance can reach (1 + t)m − 1.

Proof
Let Σ be the sum of the weights of the mesh for one criterion. We will

show by induction that after m steps, the weight of the first part for this
criterion can reach Σ

2m × (1 + t)m.
Basis: this is true for m = 0 by hypothesis.
Inductive step: assume that the statement holds for m, then assume

that the weight of the first part is Σm
1 = Σ

2m × (1 + t)m. When partitioning
with an algorithm that returns partitions of imbalance at most t, the first
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part, in the worst case, will have a weight of:

Σm+1
1 = Σm

1
2 + t× Σm

1
2

(which corresponds to a partition of imbalance t).
Thus,

Σm+1
1 = (1 + t)× Σm

1
2

= (1 + t)×
Σ

2m × (1 + t)m

2 using the inductive assumption

= Σ
2m+1 × (1 + t)m+1 .

Conclusion: we have proved by induction that after m calls to an
algorithm returning partitions of imbalance at most t, the weight of the first
part is in the worst case Σ

2m × (1 + t)m.
That means that the imbalance afterm calls is in the worst case (1+t)m−1.

As stated in Proposition 2, if the recursive bisection algorithm is used
without care, the imbalance can exceed greatly the given tolerance. Karypis
and Kumar [1998b] study several schemes in order to guarantee that the final
imbalance, when using recursive bisection, does not exceed the input tolerance.

Karypis and Kumar first scheme considers allowing a constant tolerance at
each step. Thus, the tolerance at each step is computed once at the beginning
of the algorithm; when computing a k partition, if m = log2(k), it is m

√
1 + t−1.

However, this can lead to very tight tolerances; for example, with k = 32 and
t = 5%, then the tolerance at each step is 5

√
1 + 0.05− 1 = 0.98%.

Therefore, Karypis and Kumar propose other schemes that vary the tolerance
at each step: the tolerance is either relaxed in the first steps, then tightened
in the last steps, or on the contrary tight in the first steps and relaxed in the
lasts.

In Scotch-5.1.2, the tolerance is dynamically adapted after each call to
Bipart, to the maximum possible tolerance ensuring that the final partition
will respect the balance constraints.

Benefits of RB

Recursive bisection is a simple scheme that enables one to use a biparti-
tioning algorithm for k-partitioning. It was first proposed by Kernighan and
Lin [1970]. It is usually simpler to implement than extensions of bipartitioning
algorithms to k-partitioning when k > 2. For example, the Fiduccia-Mattheyses
algorithm that will be introduced in Section 4.4.2 becomes very complex for
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direct k-partitioning when k > 2.

Limitations of RB

Simon and Teng [1997] claim that direct k-partitioning algorithms lead to
partitions of smaller communication cost than RB, and show it with experi-
ments on mono-criterion graph partitioning. Aykanat et al. [2008] extend this
claim to multi-criteria hypergraph partitioning. In particular, they advance
possible reasons for the performance degradation when using RB, such as the
need to tighten the tolerance at each bisection level (in the AdaptTolerance
function), which, as we will see in the next chapter, restricts the solution space.
Nevertheless, note that Aykanat et al. still rely on RB for the initial partitioning
phase of the multilevel algorithm, which will be defined in Section 4.5.

Besides, even if Karypis and Kumar [1998b] study several schemes for
setting the tolerance using the AdaptTolerance, they do not provide a clear
conclusion. Therefore, how to set the tolerance at each bisection level remains
an open question.

Conclusion

We have defined and analyzed the recursive bisection strategy RB. RB is not
a partitioning algorithm by itself, but it transforms a bipartitioning algorithm
Bisect into a k-partitioning algorithm. RB is a simple scheme that calls Bisect
several times. However, the imbalance tolerance used at each step must be
adapted from the global input tolerance, and the best way to set this tolerance
is still an open problem. Besides, several works argue that RB cannot, in many
cases, return partitions of communication costs as small as the ones that direct
k-partitioning algorithms can reach.

Some of the following algorithms, such as geometric and spectral algorithms,
or any bipartitioning algorithm, may rely on RB in order to k-partition a mesh
when k > 2. We will also use RB in our experiments, in Chapter 10.

4.2 Mesh Partitioning using Geometric Algo-
rithms

This section defines and analyzes partitioning algorithms that rely on the
mesh geometry. Such approaches can be justified by the “ham sandwich”
theorem, whose origin is not well-known but is related by Beyer and Zardecki
[2004]. Basically, this theorem states that γ objects in a γ-dimensional Euclidean
space, such as two chunks of bread and ham in 3D, can all be simultaneously
bisected with a single (γ − 1)-dimensional hyperplane (i.e. in 3D, a plane).

Note that this theorem stems only for the continuous domain Ω that the
mesh M models, but not for M , which is a discrete object. For example, the
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discrete weights assigned to each mesh cell do not have direct equivalents in
the ham sandwich theorem.

4.2.1 Recursive Coordinate Bisection (RCB)
Overview

The recursive coordinate bisection algorithm (RCB) was first proposed
by Berger and Bokhari [1987]. As shown in Algorithm 15, it uses the re-
cursive bisection Algorithm 14 introduced in the previous section.

The bipartitioning algorithm used, CoordBipart, takes an axis as argument
(usually, the most elongated axis is given), and cuts the mesh along the axis or
plane orthogonal to this axis. As the place of the cut depends on the weights
of the cells, the common versions of CoordBipart differ between mono and
multi-criteria partitioning. Nevertheless, in both cases, it does not directly take
into account the objective function f , but is based on the idea that a “straight”
cut will not induce a high communication cost.

Algorithm 15 Recursive Coordinate Bisection
1: function RCB(M , k, W , t, f)
2: return RB(M,k,W, t, f, CoordBipart) # See Algorithms 14 and 16
3: end function

Remark
As explained in the previous section, the bipartitioning algorithms used

by RB must take one more argument: the target weights. For example,
tgt =

(
1
5 ,

4
5

)
means that the weight of the first part should be close to one

fifth of the total weight.

Mono-criterion Bipartitioning Algorithm

Algorithm 16 defines the CoordBipart function when dealing with a mono-
criterion instance. First, the cells are ordered according to their coordinate
along the input axis. The input axis is usually the one along which the mesh is
the most elongated. In the algorithm, for a cell m ∈M , m.coord(d) denotes
the coordinate of m along the d axis. Then, the CutHalfWeight_mono function
will take the elements in order and put them in the first part, stopping when
the first part outweighs tgt[1] · Σ.

Remark
The CutHalfWeight_multi function could be used for mono-criterion

partitioning, but CutHalfWeight_mono is the common algorithm in the
mono-criterion case.
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Algorithm 16 Coordinate Bipartition
1: function CoordBipart(M , W , t, f , tgt, d: axis)
2: order ← sortAscend([M [1].coord(d) n... M [n].coord(d)])
3: return CutHalfWeight(M,W, order, tgt)
4: end function

5: function CutHalfWeight_mono(M , W , order, tgt)# Mono-criterion version
6: i,Σ1,Σ← 1, 0, sum(W )
7: Π1 ← [ ]
8: while Σ1 < tgt · Σ do
9: Π1.append(M [order[i]])
10: Σ1 ← Σ1 +W [order[i]]
11: i← i+ 1
12: end while
13: return [Π1,M \ Π1]
14: end function

15: function CutHalfWeight_multi(M , W , order, tgt) # Multi-criteria version
16: Π1,Πbest ← [ ], [M, [ ]]
17: for i← 1, length(M) do
18: Π1.append(M [order[i]])
19: Πnew ← [Π1,M \ Π1]
20: if imb(Πnew, tgt) < imb(Πbest, tgt) then
21: Πbest ← Πnew

22: end if
23: end for
24: return Πbest

25: end function
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Multi-criteria Bipartitioning Algorithm

Boman et al. [2007] use RCB for multi-criteria mesh partitioning. Compared
to the mono-criterion case, the only difference is the CutHalfWeight_multi
function. They propose two alternatives: minimize the maximum imbalance
between criteria, or the sum of the imbalance per criterion. In our case, as
explained in Chapter 2, the objective is to select the bipartition leading to the
minimal imbalance.

Example
Table 4.2.1 displays two 4-partitions: the first row of a mono-criterion

mesh, and the second row of a two-criteria mesh.

Table 4.2.1 – Mono-criterion 4-partitions using RCB

Input weights RCB partition Statistics
imbc(Πp)(%):

P1 P2 P3 P4
c1 −33.7 −0.6 +12.8 +21.5

Number of cells to send:
P1 P2 P3 P4 total

P1 1 1 0 2
P2 2 2 3 7
P3 2 2 1 5
P4 0 3 1 4

Imbalance 21.5%
Communication 18

imbc(Πp)(%):

P1 P2 P3 P4
c1 +15.2 +84.5 −36.1 −63.6
c2 −15.5 −70.9 −6.6 +93.0

Number of cells to send:
P1 P2 P3 P4 total

P1 2 3 0 5
P2 2 2 2 6
P3 3 2 0 5
P4 0 2 0 2

Imbalance 93.0%
Communications 18

The weight distributions are displayed on the left column, the bar in each
cell of the mesh being proportional to its weight. In the second row, weights
for the first criterion are in red, while weights for the second criterion are in
green. The middle column shows the partitions computed by RCB, each color
corresponding to one part. Finally, the last column gives the imbalance and
communication volume produced by the two partitions.
The imbalances are given relatively to each part and criterion, and the
communication table counts in the cell in the pth row and qth column the
number of cells that unit p must send to unit q.
This example illustrates the kind of partitions that RCB may produce. In
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particular, we can see that the imbalance of the partitions may be quite high,
especially in this case where RCB puts the heaviest cells at the border of the
partition.

Benefits of RCB

RCB is a simple and fast algorithm that works well for mono-criterion meshes
with a regular geometry, when the place of the cut does not involve heavy
vertices.

Limitations of RCB

Firstly, the communication cost may be high when irregular shapes like
circles or holes appear, or when computation weights are not uniform (which is
especially the case for multi-criteria partitioning).

Secondly, it does not take into account the objective function, and in
particular the communication weights, assuming that a straight cut will lead
to fewer communications.

Thirdly, there is no guarantee that the obtained partition will respect the
balance constraints. In fact, as seen in the previous example, RCB can lead to
very imbalanced partitions, especially in the multi-criteria case.

Fourthly, it is very dependent on the mesh orientation: a rotation of the
axes leads to a different partition. The next section will describe the recursive
inertial bisection algorithm, which computes its own axes.

4.2.2 Recursive Inertial Bisection (RIB)
Williams [1991] is one of the first to define the recursive inertial bisection

algorithm (RIB), a method that is very similar to the RCB Algorithm 15 analyzed
in the previous section. Although it would be possible to use a similar extension
to multi-criteria than for RCB, in our knowledge, there has not been any usage
of RIB in multi-criteria.

Overview

The RIB Algorithm 17, unlike RCB, adapts the axes to the mesh it partitions.

Algorithm 17 Recursive Inertial Bisection
1: function RIB(M , k, W , t, f)
2: return RB(M,k,W, t, f, InertialBipart) # See Algorithms 14 and 18
3: end function
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Mono-criterion Algorithm

Algorithm 18 implements the core of RIB. It first computes a direction in
which the mesh will be cut: unlike RCB, this direction is not given as input, but
is computed by the OrthogonalInertialAxis function, whose implementation
is not displayed here. Basically, it considers the weights as a mass, and the
principal axis is set as the axis that minimizes the angular momentum when
the mesh rotates around it. In our knowledge, there is no extension of this
function to multi-criteria.

Then, as for RIB, the cut axis is set as orthogonal to the inertial axis, and
a CutHalfWeight defined in Algorithm 16 is used.

Algorithm 18 Inertial Bipartition
1: function InertialBipart(M , W , t, f , tgt)
2: d← OrthogonalInertialAxis(M,W ) # No extension to multi-criteria
3: order ← sortAscend([M [1].coord(d) n... M [n].coord(d)])
4: return CutHalfWeight(M,W, order, tgt) # See Algorithm 16
5: end function

Benefits

Unlike RCB, RIB is not dependent on the original orientation of the mesh,
so it can consider meshes with more irregular shapes (though not every shape).
Despite needing more computation than RCB, it remains quite fast compared
to the topological algorithms that will be described in the next section.

Limitations

Basically, RIB relies on the same principle as RCB, that straight cuts will
lead to small communication cost. Therefore, as for RCB, RIB does not directly
take into account the communication cost function, so it may be deceived by
non-uniform communication weights Wcom (corresponding to edge or hyperedge
weights).

Moreover, as for RCB, RIB may return partitions of high communication cost
if it attempts to cut next to heavy cells. In this case, it may also return a very
imbalanced partition. Finally, in our knowledge, there is no extension of the
OrthogonalInertialAxis function in multi-criteria.

4.2.3 Spacefilling Curves (SFC)
Another algorithm quite similar to RIB and RCB has been introduced by

Pilkington et al. [1994]. They claim that their algorithm, which we named SFC
and which uses spacefilling curves to order the vertices, leads to more balanced
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partitions than RCB. One main difference between SFC and RIB and RCB is that
SFC does not need to rely on RB for k-partitioning.

A spacefilling curve is a curve that covers an entire continuous domain of
space. In our case, as explained in Section 1.2, the domain is discretized to
form a mesh, and the spacefilling curve defines an order of the cells such that
cells that are close will have close numbers. Examples of spacefilling curves are
the Peano curve or the Hilbert curve.

Algorithm 19 describes the SFC algorithm for the mono-criterion version.
First, an order using a spacefilling curve is determined using the OrderSFC
function, whose implementation is not defined here. Then, we use a similar
algorithm than the CutHalfWeight_mono function defined in Algorithm 15,
but so that each part gets roughly 1/kth of the total weight instead of one half.

Algorithm 19 Partitioning with Spacefilling Curves
1: function SFC(M , k, W , t, f)
2: n,Σ← length(M), sum(W )
3: order ← OrderSFC(M) # Order the cells
4: i← 1
5: Π← [[ ] k... [ ]]
6: for p← 1, k − 1 do
7: Σp ← 0
8: while i ≤ n and Σp <

Σ
k
do # Mono-criterion version

9: Πp.append(M [order[i]])
10: Σp ← Σp +W [order[i]]
11: i← i+ 1
12: end while
13: end for
14: Πk ← [M [order[i]] n−i... M [order[n]]]
15: return Π
16: end function

It would be possible to adapt the CutHalfWeight_multi function in order
to extend the SFC algorithm to multi-criteria partitioning, but we do not know
of any work relating such adaptation, which does not seem to be straightforward
when RB is not used.

Conclusion on the Analyzed Geometric Algorithms

To sum up, RCB, RIB and SFC are heuristics that partition a mesh using the
geometric coordinates of the cells. They are quite simple and fast, but suffer
from several limitations:
• the imbalance of the partition returned may be high, especially when the

partition puts heavy cells in the border;
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• they do not directly take into account the communication cost;
• extensions to multi-criteria for RIB and SFC are not straightforward.
The topological algorithms that will be analyzed in the next section can

overcome some of these limitations, usually using more computations.

4.3 Topological Direct Partitioning Algo-
rithms

This section defines algorithms that rely on the topology of the mesh. They
always operate on the hypergraph or graph model of the mesh, which were
defined in Sections 2.3 and 2.4. In this section, we will focus on algorithms
that are usually used to build a partition from scratch, while the next section
will deal with algorithms that refine an existing partition.

4.3.1 Spectral Graph Partitioning (SpectralBipart)
Donath and Hoffman [1973] and Fiedler [1975] introduced the spectral graph

partitioning method, one of the first methods designed to partition a graph.
More recently, Slininger [2013] provided a good overview of spectral graph
partitioning, which does not work for hypergraphs as it uses the Laplacian
matrix of a graph.

Definition 26 (Laplacian Matrix of a Graph)
Let G = (V,E) be a graph. We call Laplacian matrix of G the matrix:

(LG)i,j =


worddeg(vi) if i = j,

−1 if i 6= j and (vi, vj) ∈ E,
0 otherwise.

If the edges are valued, i.e. if we consider the function Wcom : E → R+,
then the Laplacian matrix becomes

(LG)i,j =


∑

ngbr∈N (vi)
Wcom((vi, ngbr)) if i = j,

−Wcom((vi, vj)) if i 6= j and (vi, vj) ∈ E,
0 otherwise.

Remark
The Laplacian matrix is symmetric and its rank is 1 since the sum of a

row or of a column is null.
Thus, 0 is an eigenvalue of LG, of eigenvector 1n (where n = |V |). Indeed,

the multiplicity of the eigenvalue 0 is the number of connected components
in G.
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Overview

The spectral bisection algorithm is defined in Algorithm 20. It uses the
recursive bisection Algorithm 14 on page 84 and uses the smallest non-zero
eigenvalue to determine where to cut, whose eigenvector is called the Fiedler’s
vector.

Algorithm 20 Spectral Bisection
1: function SpectralPart(G, k, W , t, f)
2: return RB(G, k,W, t, f, SpectralBipart) # See Algorithms 14 and 5
3: end function

Algorithm

The SpectralBipart function is very similar to the CoordBipart and
InertialBipart functions defined in Section 4.2. SpectralBipart first orders
the vertices of the graph according to the Fiedler’s vector vecfiedler corresponding
to the smallest non-zero eigenvalue. Vertex of index i becomes the jth element
if vecfiedler [i] is the jth smallest component of vecfiedler .

Then, the CutHalfWeight function is called. It has been defined with the
RCB algorithm: roughly, it fills the first part with the first elements of order so
that the imbalance of the obtained partition is minimized.

Algorithm 21 Spectral Bipartitioning Algorithm
1: function SpectralBipart(G = (V,E), k, W , t, f , tgt)

Require: Wcom : E → R+, the edge weights used to compute f
2: vecfiedler ← ComputeVectorOfFiedler(LG,Wcom)
3: order ← argsortAscend(vecfiedler)
4: return CutHalfWeight(G,W, order, tgt) # See Algorithm 15
5: end function

Benefits

The spectral bisection algorithm, unlike the geometric approaches, takes
into account the communication cost of the graph, through the edge weights
that are inserted in the Laplacian matrix.

Limitations

As for the geometric approaches, the spectral bisection algorithm may return
very imbalanced partitions when the partition is cut between heavy vertices.
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Furthermore, the spectral bisection needs to compute eigenvalues and
eigenvectors, which are complex problems that take time to solve, especially
when the matrix is large. For example, one algorithm commonly used (according
to von Luxburg [2007]) is the Lanczos algorithm, whose complexity is O(e×n2),
where n is the number of vertices of the graph and e its number of edges.

4.3.2 Greedy Graph Growing (GGG)
Overview

Graph growing comes from the idea that each part should be connected
in order to minimize the communication costs. The objective of greedy graph
growing is to obtain quickly a balanced partition whose communication cost is
quite good, by growing the parts from so-called centers in a breadth-first-search
manner.

The graph growing algorithm has been first proposed by George and Liu
[1981], and Goehring and Saad [1995] and Jain et al. [1998] then defined some
variations of this algorithm. In this section, we will focus on a popular variation
introduced by Karypis and Kumar [1998a] for mono-criterion partitioning and
Karypis and Kumar [1998b] for multi-criteria partitioning, called greedy graph
growing (GGG).

The principal difference between graph growing and greedy graph growing
lies in the way the partition is grown: graph growing uses a breadth-first search,
while GGG grows the parts so that the communication cost of the partition is
minimized at each step.

Mono-criterion Algorithm

Algorithm 22 details the implementation of GGG for the mono-criterion
case. Using the GenerateSeeds function, the algorithm first generates k − 1
random numbers, all different, that are called the “seeds”. Then, in the
GrowPartsFromSeeds function, each seed will be put in one part, and each
part will grow until its weight reaches the target weight. The implementation
of this function is not detailed here, because it is not defined clearly by Karypis
and Kumar [1998a]. Roughly, it repeatedly moves the vertices to the lightest
part, by selecting at each step, an unmoved vertex that decreases the most
(or increases the least) the communication cost. The GrowPartsFromSeeds
function stops when no more vertices can be moved.

Finally, because the partition returned by the GrowPartsFromSeeds depends
a lot on the seeds, it is repeated niter times with different seeds at each step,
selected by the GenerateNewSeeds function. While it is common to use the
centers of the parts as new seeds for the next step, as defined by Goehring and
Saad, Karypis and Kumar simply use random seeds at each step, in a stochastic
manner.
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Remark
Graph growing and greedy graph growing are a kind of stochastic al-

gorithm (which were introduced in Section 3.2.7), because they iterate a
number of times before returning the best partition found.

Algorithm 22 Mono-criterion Greedy Graph Growing
1: function GGG(G = (V,E), k, W , t, f)

Require: niter ∈ N∗ number of times the parts are grown
2: n← length(V )
3: Πbest ← [V, [ ] k−1... [ ]]
4: seeds← GenerateSeeds(k − 1) # Generate k − 1 different random numbers
5: for iter ← 1, niter do
6: Π← GrowPartsFromSeeds(G, k,W, t, f, seeds)
7: if

(
imb(Π) ≤ t and (imb(Πbest) > t or f(Π) < f(Πbest))

)
then

8: Πbest ← Π
9: end if
10: seeds← GenerateNewSeeds(Π, k)
11: end for
12: return Πbest

13: end function

Multi-criteria Partitioning Algorithm

Karypis and Kumar [1998b] extend GGG to multi-criteria bipartitioning,
as defined in function GGG_Bipart_multi of Algorithm 23. This function
starts by separating the vertices into different lists, depending on their heaviest
normalized weight. Given a vertex vi, the criterion for which its normalized
weight is the heaviest is denoted by cimax: we have W (vi)[cimax] = max

c∈[1,γ]
W (vi)[c].

Basically, GGG_Bipart_multi starts with all vertices in the first part Π1,
except for one vertex called the seed, which is put in the second part Π2. Then,
as long as the normalized weight of Π2 for at least one criterion does not exceed
0.5, it selects the criterion cmax for which Π1 is the heaviest. The “heaviest
criterion” is determined by the function SelectCmax, which also defines how to
deal with the case when the list_per_cmax is empty for the criterion for which
Π1 is the heaviest (in this case, we consider the second criterion for which Π1
is the heaviest, and so on).

Then, the function SelectBestGain determines the vertex vi in Π1 whose
cimax is equal to cmax, and which leads to the smallest communication cost.
This vertex is moved to Π2 using the Move function, which also removes vi from
list_per_cmax[cimax]. Thus, once a vertex has been moved to Π2, it cannot be
moved back into Π1 until the end of the algorithm.
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Algorithm 23 Multi-criteria Adaptation of Greedy Graph Growing for Bipar-
titioning
1: function SelectCmax(Σ, list_per_cmax)
2: Σs← Σ
3: while True do
4: cmax ← argmin(Σs)
5: if list_per_cmax[cmax] 6= [ ] then return cmax end if
6: Σs.remove(Σs[cmax])
7: end while
8: end function

9: procedure Move(Π, i, W , list_per_cmax)
10: Π[i]← 2
11: cimax ← argmax(W [i])
12: list_per_cmax[cimax].remove(i) # Updates
13: Σ← [Σ[0] +W [i][0] γ... Σ[γ] +W [i][γ]]
14: end procedure

15: function GGG_Bipart_multi(G = (V,E), k, W , t, f)
Require: ∀c, sum(Wc) = 1 (normalized weights)

16: n← |V |
17: Π← [V, [ ]]
18: Σ← [0 γ... 0]
19: list_per_cmax ← [[ ] γ... [ ]]
20: for i← 1, n do # Sort the vertices into distinct lists depending on their ci

max

21: cimax ← argmax(W [i])
22: list_per_cmax[cimax].append(i)
23: end for
24: Move(Π, random(1, n),W, list_per_cmax) # Move a random seed
25: while ∀c,Σ[c] < 0.5 do
26: cmax ← SelectCmax(Σ, list_per_cmax)
27: i← SelectBestGain(list_per_cmax[cmax])
28: Move(Π, i,W, list_per_cmax)
29: end while
30: return Π
31: end function
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Therefore, this algorithm tries to achieve balance using a simple greedy
scheme, which moves at each step a vertex in order to decrease the heaviest
normalized weight of Π1 the most. Nevertheless, it also tries to achieve a parti-
tion with a small communication cost, because among the possible movements,
it selects the one that leads to the smallest communication cost.

Finally, Karypis and Kumar [1998b] use the recursive bisection algorithm
in case of k − partitioning with k > 2. In this case, the algorithm stops when
the normalized weight of Π2 for at least one criterion exceeds the target weight
tgt.

Benefits

GGG involves fewer computations than spectral partitioning; it is a simple
and fast heuristic. Moreover, unlike the geometric algorithms introduced in
Section 4.2, it directly takes into account the communication cost of a partition.

Limitations

GGG provides no guarantee to find a balanced partition, especially for multi-
criteria graph partitioning. Moreover, GGG favors partitions with connected
parts, especially in the mono-criterion case. Nevertheless, partitions with non-
connected parts should be considered in the case of non-unitary computation
or communication weights.

Karypis and Kumar [1998b] report that in some cases, GGG_Bipart_multi
will fail to return partitions respecting the balance constraints, in which case
they use a rebalancing step. This step is also used in MeTiS’ refinement phase,
which will be detailed in Chapter 8.

Finally, Buluç et al. [2015] report that GGG needs to be run several times,
because the communication cost of the partition highly depends on the seed
positions.

Conclusion on SpectralPart and GGG

In this section, we have described the spectral graph partitioning and the
greedy graph growing methods. These are direct algorithms: they build a
partition from scratch. Both focus on finding a partition that is likely to
possess a small communicaton cost, while the imbalance of the partition is not
their main concern. Whereas the spectral graph partitioning computation cost
is high, the greedy graph growing method is fast, and in the mono-criterion
case, it can usually easily find balanced partitions, with a small communication
cost. The capacity of GGG to find balanced partitions for multi-criteria meshes
will be examined in Section 10.1.

The communication cost of the obtained partition is usually improved in
a second step, using a refinement algorithm such as the ones that will be
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introduced in the next section.

4.4 Topological Refinement Partitioning Algo-
rithms

Refinement algorithms modify an existing partition, usually in order to
improve its communication cost. The two methods that we will describe are
local optimization algorithms, which were mentioned in Section 2.6. As their
name tells, local optimization algorithms turn a partition onto another by small
changes, of only one or two vertices at a time. Nevertheless, the partition
obtained after all these little changes can differ greatly from the initial one.

Section 4.4.1 will describe the Kernighan-Lin algorithm (KL), which was
historically the first local optimization algorithm for graph partitioning. KL
inspired the Fiduccia-Mattheyses algorithm (FM), which will be described in
Section 4.4.2.

4.4.1 Kernighan-Lin Algorithm (KL)
Overview

Kernighan and Lin [1970] define a vertex swapping algorithm called the
Kernighan-Lin algorithm (KL). This algorithm is a local optimization algorithm
that makes successive exchanges of vertices, each time so that the communica-
tion cost decreases the most.

Algorithm

KL is described in Algorithm 24. It performs a succession of passes, which
are sequences of swaps. A swap is an exchange of two vertices that are not in the
same part. At each step, the swap that decreases the most the communication
cost is performed. Note that this decrease can be negative (becoming an
increase) when there is no other choice. And, after that two vertices exchanged
their parts, they are locked and cannot change of part until the end of the pass.

When there is no more possible swap, the pass ends. The partition of smallest
communication cost reached in the pass is recovered. If the communication
cost decreased compared to the previous pass, then a new pass starts over, and
all vertices are unlocked. Otherwise, the algorithm ends.

A few more conditions usually characterize the KL algorithm. First, the
selected vertex pair should always lead to a partition respecting the balance con-
straints. This is always the case when vertex weights are all equal to 1 and the
initial partition is balanced but induces more work when computation weights
are not unitary and especially for multi-criteria mesh partitioning. Thus, the
SelectBestSwap function could be called SelectBestSwapPreservingBalance.
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Algorithm 24 Kernighan-Lin
1: function KL(M , k, W , t, f , Πini)

Require: imb(Πini) ≤ t
2: Πbest ← Πini

3: repeat # Perform a pass
4: fold_best ← f(Πbest)
5: Π← Πbest

6: while RemainSwap(Π) do # Condition for stopping the pass
7: (i, j)← SelectBestSwap(M,W, k, t, f,Π)
8: Π[i],Π[j]← Π[j],Π[i] # Perform a swap
9: Lock(i, j)
10: if f(Π) ≤ f(Πbest) then Πbest ← Π end if
11: end while
12: until f(Πbest) = fold_best
13: return Πbest

14: end function

Benefits

KL refine an existing balanced partition. When the computation costs are
unitary, it is straightforward: if the input partition Πini is balanced, then any
swap can be performed. Moreover, Kernighan and Lin define their algorithm
as a hill-climbing algorithm, because they authorize performing exchanges that
increase the communication cost, if this increase is later in the pass cancelled
by a decrease of the communication cost.

Besides, as long as the imbalance of the input partition is smaller than
the tolerance, the partition returned by KL will always respect the balance
constraints.

Limitations

First, KL requires a balanced partition as input. Therefore, KL alone does
not suffice as a partitioning algorithm; it must be combined with a direct
partitioning algorithm. Then, the greatest drawback of KL is its computation
cost. Indeed, its complexity is in O(n2 log n) because of the SelectBestSwap
function. Indeed, in order to find the swap leading to the lowest communication
cost, it must try out m(m−1)

2 pairs, where m is the number of vertices unlocked.
The next section introduces another local optimization algorithm, which

instead of performing exchanges, moves one vertex at a time.
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4.4.2 Fiduccia-Mattheyses Algorithm (FM)
Overview

Fiduccia and Mattheyses [1982]’s algorithm, FM, is close to the KL algorithm
introduced in the previous section. Instead of considering exchanges, Fiduccia
and Mattheyses allow any single vertex to switch of part and call this action a
move. Moreover, a gain table records the reduction in communication cost of
each move, enabling constant time access to the best move. After a move, the
gain table is updated for the vertex moved and its neighbors.

Algorithm

The FM Algorithm 25 is very similar to KL. It performs a sequence of moves
(a move is the change of part of one vertex) that is called a pass. Each vertex
moved is then locked until the end of a pass. During a pass, we keep track of
the best partition found. If its communication cost strictly decreased during the
pass, a new pass begins: the best partition found is retrieved and all vertices
are unlocked. Otherwise, the algorithm stops.

The selection of the move is performed using a gain table. In the biparti-
tioning case, the gain table stores in cell g the vertices which, when changed of
part, decrease the communication cost by g units (we say that these vertices
are of gain g). Using Fiduccia and Mattheyses’s gain table structure, the move
of greatest gain is retrieved in constant time. After moving a vertex v, the gain
table must be updated for the vertices whose gain changes. When considering
the edgecut, the gain changes for v and its neighbors. When considering the
cutλ−1, the gain changes for v, its neighbors and the neighbors of its neighbors.

Note that as for KL, the selected move must lead to a partition that still
respects the balance constraints. If the initial partition Πini respects them as
required, this guarantees that the returned partition will always respect the
constraints. Thus, among the possible moves, we select the one that decreases
the most the communication cost, or, in other words, the move of best gain.
Note that the gain can be negative, which helps FM to escape from a local
minimum.

Karypis and Kumar [1998d] proposed two modifications of FM. Firstly, they
authorize only the boundary vertices to move, and secondly, a pass may be
stopped after x moves of negative gains made in a row, where x is an algorithmic
parameter. These two improvements accelerate even more the FM algorithm,
and will be discussed in Chapter 8.

Pellegrini [2007] proposed to restrain the possible moves to a band that
contains only the vertices at a distance at most 3 from the border of Πini. This
speeds up the algorithm, since fewer gains have to be computed (reducing
the complexities of the GainTableInit and GainTableUpdate functions) and
fewer moves are considered (possibly reducing the SelectMove complexity
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Algorithm 25 Fiduccia-Mattheyses
1: function FM(M , k, W , t, f , Πini)

Require: imb(Πini) ≤ t
2: Πbest ← Πini

3: repeat # Perform a pass
4: Π← Πbest

5: fold ← f(Πbest)
6: gains, locked← GainTableInit(M, f,Π), [ ]
7: while RemainMove(Π, t) do # Condition for stopping the pass
8: i, p← SelectMove(gains, locked)
9: Π[i]← p
10: Lock(i)
11: GainTableUpdate(gains, i, p)
12: if f(Π) ≤ f(Πbest) then Πbest ← Π end if
13: end while
14: until f(Πbest) = fold
15: return Πbest

16: end function

and stopping the passes earlier). Moreover, Pellegrini reported that, when
coupled with the multilevel algorithm (which will be defined in Section 4.5),
such restrictions on the possible moves also decreased the communication cost
of the returned partition, possibly because FM is less likely to get trapped in a
local minimum far from the global minimum sketched at the coarsest level and
from which Πini is close.

Benefits

FM is a fast algorithm which, given an initial partition respecting the balance
constraints, aims at reducing its communication cost. When using the graph
model G = (V,E), at each step, the move of best gain is obtained in constant
time. Then, the gain for the vertex moved and its neighbors are updated, and
the vertex is locked so that it will not move anymore during this pass.

As the KL algorithm defined in the previous section, FM is a hill-climbing
algorithm able to bypass local minima. Indeed, it performs moves of negative
gain if they decrease the communication cost obtained at the end of the pass.
Moreover, despite being a local optimization algorithm, at the beginning of
a pass, any partition is reachable in less than n moves, provided that these
moves respect the balance constraints.
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Limitations

First, FM needs an initial partition that respect the balance constraints.
Otherwise, the returned partition is not guaranteed to be a solution.

Then, considering that a move can be performed only if it leads to a partition
respecting the balance constraints, some partitions may be inaccessible. This
can be illustrated using the fitness landscape induced by FM. A fitness landscape
(as introduced in Definition 25) is a triplet ΛI = (XI , nFM, f) where I is the
instance (mesh, weights, tolerance) and nFM a neighborhood structure. nFM

defines how one can move from one solution to another; here, we move from one
partition to another by doing a move so that the obtained partition respects
the constraints. So, being able to reach any partition from any initial partition
would mean that ΛI is connected.

A main drawback of FM is its increased complexity when dealing with
partitions of more than two parts (k > 2). Sanchis [1989] first described an
implementation of FM for k-partitioning, using k(k − 1) gain tables. Indeed,
one vertex has to maintain a gain for each part it does not belong to, so the
search and data structure become more complex.

Conclusion on KL and FM

This section has described two refinement techniques. Both need an input
partition respecting the balance constraints. The first algorithm, KL, uses vertex
swaps to reduce the communication cost, but forbid swaps leading to a partition
that does not respect the constraints. The second algorithm, FM, does the same
thing, but changes vertices of part one after another (one change is called a
move) instead of performing swaps. Both algorithms need a balanced partition
as input, and provided that the input partition respect the balance constraints,
the returned partition is guaranteed to also respect these constraints.

The high time complexity of KL has led to the supremacy of FM, whose
complexity is far lower. Nevertheless, note that for both of them, the extension
to direct k-partitioning (when k > 2) leads to increased complexity.

Finally, whereas any partition is reachable through a reduced number of
moves, as noted by Pellegrini [2007], FM and KL may be stuck in a local minimum
far worse than the global minimum. The following multilevel algorithm remedies
to this drawback of using a refinement algorithm, but so that the partition
given as input will be close to the optimal solution.

4.5 The Multilevel Algorithm
Overview

The multilevel algorithm was first introduced by Bui and Jones [1993],
Barnard and Simon [1994], van Driessche and Roose [1994] and Hendrickson
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and Leland [1995]. It is described in Algorithm 26 and illustrated in Figure 4.5.1.
As explained by Barnard and Simon [1994], it enables one to compute a

partition fast. Moreover, the multilevel algorithm reduces the search space
by getting rid of the partitions that are unlikely to be solutions of small
communication cost. Therefore, if indeed the solutions of small communication
cost are preserved, the partition returned can be of high quality.

Initial Partitioning

Refined partition

Prolonged partition

Coarsening
phase

Uncoarsening
phase

Initial partitioning

Figure 4.5.1 – The Three Phases of the Multilevel Algorithm (image from the
Scotch-6.0.4manual of Pellegrini [2008])

In order to reduce the search space, the multilevel algorithm reduces the
size of the graph by clustering some of its vertices. This is the coarsening
phase, which is divided into several “levels” of coarsening. In Algorithm 26, the
Coarsen function computes successive aggregations, each one corresponding to
one level.

When the produced graph is small enough, a direct partitioning algorithm is
used through the Partition function. This is the initial partitioning phase, in
which the search space is reduced. Finally, the partition found at a lower level
is prolonged to the upper level (function Prolong), and refined using a local
refinement algorithm (function Refine). This is the expansion or uncoarsening
phase, which ends when a partition of the original graph has been obtained
and refined.

The next sections will detail each of the three phases of the multilevel
algorithm.

Coarsening Phase

The aim of the coarsening phase is to reduce the search space. However,
reducing the search space may also reduce the solution space, so this reduction
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Algorithm 26 Multilevel Algorithm
1: function Multilevel(M , k, W , t, f)

Require: Coarsen, Partition and Refine functions, and ncoarse ∈ N∗
2: level ← 0
3: M coarse

0 ,W coarse
0 ←M,W

4: while length(M coarse) > ncoarse do # Coarsening phase
5: M coarse

level+1,W
coarse
level+1 ← Coarsen(M coarse

level ,W coarse
level )

6: level ← level + 1
7: end while
8: Π← Partition(M coarse

level , k,W coarse
level , t, f) # Initial partitioning phase

9: while level > 0 do # Expansion phase
10: Π,M coarse

level−1,W
coarse
level−1 ← Prolong(Π,M coarse

level ,W coarse
level )

11: Π← Refine(M coarse
level−1, k,W

coarse
level−1, t, f,Π)

12: end while
13: end function

must try to:
• remove from the solution space the partitions that have a high communi-

cation cost. However, the optimal solution for the coarsened graph may
not be the optimal solution for the original graph;
• preserve the optimal solution, which means that the optimal solution
in the original search space is also the optimal solution in the reduced
search space.

The reduction of the search space is done by clustering some vertices. The
basic idea, in order to fulfill the two objectives of the coarsening phase stated
above, is to aggregate together vertices that belong to the same part in the
optimal partition.

Usually, the clustering is performed by matching vertices into pairs. At
each level, one vertex is matched with at most one other vertex. Usually, only
vertices that are neighbors are matched together. Several strategies can be
used to choose which pairs of neighbors will be matched together:
• random matching: an unmatched vertex is matched with one of its

unmatched neighbors. This matching scheme was the first ever used.
• heavy-edge matching (HEM): an unmatched vertex is matched with its
unmatched neighbor along the edge of heaviest weight. This scheme
was proposed by Karypis and Kumar [1998a] and has been used by
most partitioning tools since then. The idea is twofold: firstly, removing
the heaviest edges should eliminate partitions of high communication
cost, secondly, the heaviest edges are less likely to be cut in the optimal
partition.

There are other algorithmic choices introduced in partitioning tools such as
MeTiS or Scotch, which modify the coarsening phase. These will be described
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and studied in Chapter 6. The following will define how to build a coarsened
graph or hypergraph from a matching.

Definition 27 (Matching Function)
Given a mesh, a graph or a hypergraph, we call V the set of cells or vertices.

A matching is a function M : V → V c ⊂ V such that ∀vc ∈ V c, there is at
least one and at most two vertices in V whose image byM is vc.

Two vertices that have the same image are said to be matched together.

Remarks
• A matching is a surjective function.
• In practice,M(v) = v orM(v) ∈ N (v) .

Definition 28 (Coarsened Graph)
Given a graph G = (V,E), computation weights W : V → Rγ

+, communica-
tion weights Wcom : E → R∗+ and a matchingM : V → Vc, the coarsened graph
is Gc = (V c, Ec), such that:
• V c = {M(v), v ∈ V } ,

• Ec =

(M(u),M(v)) such that

(u, v) ∈ E
M(u) 6=M(v)

.
The weight functions are projected in the following way:

W (vc) =
∑

v∈V, M(v)=vc

W (v) ,

Wcom((uc, vc)) =
∑

(u,v)∈E, M(u)=uc, M(v)=vc

Wcom((u, v)) .

Remark
Since W (v) is a vector, W (v) +W (u) is a classic vector addition.

In the coarsened graph, when two vertices are matched together, their
common edge is dropped. If two edges end on the same vertex, they are fused
in the coarsened graph: the weight of the resulting edge is the sum of their
weights. The other edges are kept as they are. Also, the weight of a coarsened
vertex is the sum of the weights of the vertices that formed it.

Definition 29 (Coarsened Hypergraph)
Given a hypergraph H = (V,E), computation weights W : V → Rγ

+,
communication weights Wcom : E → R∗+ and a matching M : V → V c, the
coarsened hypergraph is Hc = (V c, Ec). We use the notations introduced in
Section 2.3 where evc ∈ Ec is the hyperedge of center vc ∈ V c, leading to the
definition:
• V c = {M(v), v ∈ V } ,
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• Ec =
{{
M(u), u ∈ ⋃

v∈V, M(v)=vc
ev

}
, vc ∈ V c

}
.

Note that, in the above definition, V c is considered as a set, and Ec as a
multiset of sets (a hyperedge is a set).

The weight functions are projected in the following way:
W (vc) =

∑
v∈V, M(v)=vc

W (v) ,

Wcom(evc) =
∑

ev∈E, M(v)=vc

Wcom(ev) .

The coarsened hypergraph vertices are built similarly as those of a coarsened
graph. The difference is how to build the coarsened hyperedges. Given a
coarsened vertex vc, which is the fusion of vertices u and v, the coarsened
hyperedge of center vc is the union of the hyperedges of centers u and v. Besides,
the weight of evc is the sum of the weights of eu and ev.
Remarks
• Even if the computation or communication weights given to the original
graph are unitary, after a matching, the possibility that they stay
unitary is very small, since the weight of a coarsened vertex is the sum
of the weights of the vertices matched to form it. The same holds for
edges or hyperedges.
• Karypis and Kumar [1995] have studied the evolution of the degrees of

the vertices. We will investigate this property in Section 6.2.
• Chekuri and Khanna [1999] and Chevalier and Safro [2009] compare
coarsening schemes allowing vertices to belong to different sets with
some probabilities. This scheme is complicated to use, especially during
the uncoarsening phase, in which it is thus difficult to know to which
part an uncoarsened vertex belongs.

The coarsening phase reduced the search space by reducing the size of the
graph. In the next section, the coarsened graph will be partitioned: this is the
initial partitioning phase.

Initial Partitioning Phase

The coarsening phase has reduced the search space, trying to get rid of
partitions with high communication cost. The role of the initial partitioning
phase can be seen in various ways:
• to return the optimal solution of the reduced search space, which, if the
coarsening phase fulfilled its task, is also the optimal solution of the
original search space;
• to return a solution, that is, a partition that respects the balance con-

straints. This solution is not optimal but is expected to become so thanks
to the refinement in the expansion phase;
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• to return a partition which is not necessarily a solution, but whose
communication cost is small. The imbalance will be fixed in the expansion
phase.

Of course, the first option is in practice impossible to fulfill, because there
is no guarantee that the optimal solution of the reduced search space is the
optimal solution of the original. This is why we use a refinement algorithm in
the expansion phase.

Then, between the two other possibilities, the choice varies between par-
titioning tools. For example, MeTiS has chosen the third one: for the initial
partitioning phase, the tolerance is relaxed in order to enlarge the solution
space and accept partitions of smaller communication cost. The tolerance is
then tightened during the expansion phase.

On the opposite, Barat et al. [2016] have chosen the second option: focusing
on returning a solution, be it not optimal for the communication cost. For
multi-criteria instances, they show that using this policy, they obtain partitions
respecting the balance constraints, unlike MeTiS, which often returns partitions
that are not solutions. They also study a modified version of MeTiS called
“MeTiS_Eq”, which does not relax the tolerance, and show that the commu-
nication cost of the solutions returned by “MeTiS_Eq” does not degrade on
average over the solutions of MeTiS.

In this document, we will study in detail the effect of the initial partitioning
algorithm. More precisely, Chapter 7 will study new initial partitioning algo-
rithms, and Section 10.1 will compare the imbalance of the partitions of the
coarsest graph that they return. When they are used in a multilevel scheme, we
will also study the communication cost of the partitions of the original graph
that they induce.

Expansion Phase

The expansion phase successively prolongs and refines the partition obtained
at a coarser level.

Definition 30 (Prolongation or Uncoarsening)
Let M : V → V c be a matching between the set of vertices V and its

coarsened set of vertices V c. Let Πc be a partition of V c.
We prolong Πc from V c to V by defining the partition Π of V , such that

M(v) ∈ Πp ⇐⇒ v ∈ Πp.

In order to perform the refinement, many partitioning tools use the FM
algorithm defined in Section 4.4.2, with some variations that will be discussed
further, in Chapter 8.

Nevertheless, one common assumption is that the partition found at a lower
level is close to the optimal at the current level. The objective of the refinement
technique is to fix a possible gap between the raw output of the prolongation
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and the optimal solution at this level. Even more, according to Pellegrini
[2007], it is better to stay close to the partition of the lower level, which is more
likely to be close to the optimal solution. Therefore, he proposes to restrict
the possible moves of FM to a “band”, composed of the vertices at a distance at
most 3 from the border of the partition of the lower level.

Benefits of the Multilevel Algorithm

The multilevel algorithm has two main benefits. Firstly, it computes a
partition faster with direct heuristics, because the only direct partitioning
algorithm is run on a graph of reduced size. Then, the refinement algorithm is
likely to operate only on the boundary vertices, which are usually far less than
the total size of the graph, hence a smaller complexity. The actual complexity
of the multilevel algorithm is hard to evaluate, because coarsening time and
complexity depends on the graph topology of the considered graph. Usually, it
is considered linear in the number of vertices.

Second, the multilevel algorithm returns solutions of “good” quality, that
is, with a small communication cost. Indeed, the coarsening phase gets rid of a
lot of “bad” candidate solutions. In case the optimal solution of the reduced
search space is not the optimal solution of the original search space, it should
not be far, and the refinement algorithm should succeed in finding the optimal
solution of the original search space. Indeed, note that refinement algorithms
have more degrees of freedom at finer levels, because even if a coarsen vertex
cannot be moved at a coarsen level, its constituent vertices might move at finer
levels.

These two major advantages of the multilevel algorithm have led many
graph partitioning tools to rely on it.

Limitations of the Multilevel Algorithm

Yet, the multilevel algorithm has its drawbacks. Firstly, coarsening the
graph makes the weights of the vertices grow, which reduces the solution space,
as will be seen in Chapter 5. Consequently, Chapter 6 will deal with coarsening
schemes that take into account the computation weights.

Besides, the multilevel algorithm can be improved. Most of its parameters
were set experimentally or based on intuition, but some variations can lead to
great improvement in the communication cost of the returned solution. As illus-
trated by the variety of implementations of this method among the partitioning
tools, there is a lack of studies for setting some parameters. Chapters 6 and 8
will describe and study variations of the coarsening and refinement phases.

In this chapter, we have described the multilevel algorithm. It is currently
the most efficient framework to partition meshes, graphs or hypergraphs, both

110 Rémi Barat



4. Mesh Partitioning Algorithms

thanks to its run time and to the quality of the returned partitions, whose
communication cost is small on average.

Conclusion on Mesh Partitioning Algorithms

At this stage, we have explained in Chapter 1 the motivations underlying the
multi-criteria mesh, hypergraph and graph partitioning problems. Chapter 2
has formulated these problems and discussed their benefits and limitations, as
well as the definition of one subproblem, the vector-of-numbers partitioning
problem.

Chapter 3 has detailed the existing approaches to address the vector-of-
numbers partitioning problem. These will be compared to those dealing with
the vector-of-numbers partitioning problem in Chapter 7. Indeed, this chapter
will introduce new initial partitioning algorithms that focus on obtaining
a partition respecting the balance constraints, by addressing the vector-of-
numbers partitioning problem.

The present chapter has introduced the existing heuristics addressing the
multi-criteria mesh, hypergraph or graph partitioning problems. Among these
heuristics, the multilevel algorithm is currently the one that returns the solutions
with the smallest communication cost. However, the current approaches were
designed for mono-criterion mesh, hypergraph or graph partitioning, and can
return partitions that do not respect the balance constraints. Moreover, as
we will see in Chapters 6 and 8, some parameters of the multilevel algorithm
can be tuned in order to improve firstly the probability to find a solution, and
secondly the probability to find an optimal solution.
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In the previous part, we have first formulated in Chapter 2 the problems
that this thesis focuses on, starting with the mesh partitioning Problem 2. All
problems try to partition an instance I = (M,k,W, t, f), where M is a mesh,
a graph or a hypergraph, k is the required number of parts, W : M → Rγ

+ are
the computation weights of each cell or vertex for each criterion, t ∈ R+ is the
imbalance tolerance, and f : P(M)→ R is the communication cost function
that we want to minimize.

Given an instance, the problem is to find a partition whose imbalance is
smaller than the tolerance t (the existing algorithms addressing this vector-of-
numbers partitioning problem were examined in Chapter 3). Such a partition
is called a solution, which may not be an optimal solution, though. The set of
all solutions is called the solution space and has been defined in Section 2.6.
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Among all solutions, the objective is to find an optimal solution, which is one
that minimizes a given function f (called the objective function).

In this chapter, we do not describe algorithms aiming at finding the optimal
solution, but rather we study the existence of a solution, and the reachability
of the optimal solution from other solutions when using local optimization
algorithms. Indeed, the algorithms presented in Section 4.4, namely FM and
KL, refine an input solution by performing “local” changes, meaning that a
few vertices switch to another part at a time. These refinement algorithms
topologically define a neighborhood relationship between solutions, which thus
defines the connection of the solution space. If the solution space associated
with an algorithm is connected, it means that, given any initial solution, this
refinement algorithm can return any solution, and in particular it can return
an optimal one.

Section 5.1 will first analyze the difference between mono- and multi-criteria
partitioning. Then, Section 5.2 will study the size of the solution space, which
means that this section does not depend on any refinement algorithm. On the
opposite, Section 5.3 will focus on the connection of the solution space, which is
based on the way the considered refinement algorithm passes from a partition
to another.

5.1 How a Multi-criteria Instance Differs from
a Mono-criterion Instance

In this section, we will examine if a mono-criterion mesh partitioning algo-
rithm can be used on a multi-criteria mesh. First, we will discuss relationships
between the solution space of a multi-criteria instance and the solution spaces
of its mono-criterion subinstances. Then, we will study if some characteristics
on a multi-criteria weight distribution can lead a mono-criterion algorithm to
perform well.

Relation with the Subinstances Solution Spaces

Given an instance I = (M,k,W : M → Rγ
+, t, f), we define the (mono-

criterion) subinstances of I as, for c ∈ [1, γ], Ic = (M,k,Wc : m 7→ W (m)[c], t, f).
We denote by SI the solution space of the instance I and SIc the solution space
of its subinstance Ic.

Then, recall that a solution is a partition whose imbalance is smaller than t
for all criteria, so:

SI =
γ⋂
c=1

SIc .

Therefore, the size of the solution space of a multi-criteria instance is
bounded by the sizes of the solution spaces of its corresponding mono-criterion
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instances: |SI | ≤ minc(|SIc |).
Besides, this equation illustrates a major difference between solving a multi-

criteria problem and a mono-criterion problem. Indeed, it is not enough to be
able to find a solution to a mono-criterion problem; to solve a multi-criteria
problem, we need to find a partition which is a solution for all the corresponding
mono-criterion problems. However, depending on some characteristics on the
weight distributions, a mono-criterion algorithm can perform well on a multi-
criteria instance.

Qualitative Analysis Using the Weight Distribution

Firstly, consider a multi-criteria weight distribution for which each vertex
has the same weight for each criterion. Partitioning this instance is similar
to partitioning a mono-criterion instance. This case may be extreme, but
given some similarities between the weight distributions of each criterion (i.e.
, heavy and light vertices are the same for all criteria), the imbalance for all
criteria would be always roughly the same, which means that a mono-criterion
algorithm would be able to handle this multi-criteria instance as “easily” as a
mono-criterion instance.

We consider now the opposite: if the vertices of heavy weight differ for each
criterion, then it is easy to rebalance some criterion without unbalancing the
others. Therefore, applying a mono-criterion refinement algorithm a few times
can allow one to find a partition balanced for all criteria.

These characteristics can be taken into account in Chapter 9, in which we
introduce a model to generate multi-criteria weight distributions.

Conclusion

In this section, we have analyzed whether a mono-criterion algorithm can
perform well on a multi-criteria instance. In particular, we have explained that
the solution space of a multi-criteria instance is the intersection of the solution
spaces of the corresponding mono-criterion instances.

Besides, even though we did not investigate further on this property, it
might be possible to determine if a mono-criterion algorithm can succeed in
returning a balanced partition for a multi-criteria instance by analyzing its
weight distribution.

5.2 Study of the Size of the Solution Space
This section focuses on the size of the solution space, the space of all

partitions of imbalance smaller than or equal to the input tolerance t. To begin
with, in Section 5.2.1, we will define a sufficient condition for the existence of a
solution in the mono-criterion case. Then in Section 5.2.2, we will perform a
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study to estimate the size of the solution spaces of the instances that we will
use later to compare partitioning algorithms. We will also provide an upper
bound on the size of the solution space.

5.2.1 Bounding the Maximal Vertex Weight Ensures
the Existence of a Solution

Theorem 1 (Existence of a Solution to a Mono-criterion Bipartitioning Prob-
lem)

We consider the mono-criterion case (γ = 1) and aim at bipartitioning
(k = 2) a set of non negative numbers W with an imbalance tolerance t ∈ [0, 1].

max
w∈W

w

Σ ≤ t =⇒ the solution space is not empty.

Proof
Assuming max

w∈W
w
Σ ≤

t
2 , we will build a bipartition of W that is a solution.

Let Π = {∅,W} be a partition of W . Using the fact that as long as
Σ1 < Σ, then Π2 is not empty, we move numbers from Π2 to Π1 until Σ1
becomes greater than or equal to Σ

2 × (1− t). By construction, at this step,
there is a number w ∈ Π1 such that Σ1 − w < Σ

2 × (1− t) ≤ Σ1.
We will now prove by contradiction that Π is a balanced partition.
Let us assume that Π is not balanced. First, we have Σ1 > Σ2, otherwise

Π would be solution because we would have Σ
2 × (1− t) ≤ Σ1 ≤ Σ

2 . So, this
means that imb(Π) = max(imb(Π1), imb(Π2)) = imb(Π1).

Then, Π is not a solution means that:

imb(Π) > t ⇐⇒ imb(Π1) > t

⇐⇒
Σ1 − Σ

2
Σ
2

> t

⇐⇒
w + Σ1 − w − Σ

2
Σ
2

> t

⇐⇒ w > t
Σ
2 + Σ

2 − (Σ1 − w)

=⇒ w > tΣ since Σ1 − w <
Σ
2 × (1− t) ,

which contradicts the assertion that w
Σ ≤ t. Thus, imb(Π) ≤ t, which means

that Π is a balanced partition and therefore that the solution space is not
empty.
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Table 5.2.1 – Numerical values of u
Σ for the instances that will be used to

compare partitioning algorithms in Chapter 10. u is the maximum weight of a
vertex: u = max(W ).

Mesh n w u
Σ

1 0.00045018
Mushroom 22800 2 0.00055498

3 0.00053642
1 0.00097113

Onera 85567 2 0.00121591
3 0.00163818
1 0.00082836

Wave 156316 2 0.00092409
3 0.00086265
1 0.00000601

Linkrodsok1 174218 2 0.00000601
3 0.00000601
1 0.00002105

Shock 1196252 2 0.00000492
3 0.00002716

Remark
The opposite is not true. For example, the set W = {1, 1} has a solution

for t = 0 (which is Π = {{1}, {1}}, whereas max
w∈W

w
Σ = 0.5 > t

2 = 0).

Unfortunately, we were not able to find a similar result in the multi-criteria
case. Nevertheless, since the solution space of a multi-criteria instance is
the intersection of the solution spaces of its corresponding mono-criterion
instances, having normalized weights below t

2 for each criterion means that the
multi-criteria instance is more likely to have a solution.

Numerical Application. Table 5.2.1 displays u
Σ for each of the 45 instances

that will be used in Chapter 10 to compare partitioning algorithms. These
instances will be described in Section 9.1. They are composed of 5 meshes of n
cells, for which 3 weight distributions of three criteria each have been generated.
Since the instances are multi-criteria, u

Σ = maxc( uc

Σc
).

Each instance will be partitioned with 3 imbalance tolerances: t ∈ {0.05,
0.01, 0.002}. For all instances but (Onera, w ∈ {2, 3}, t = 0.2%), u

Σ < t
2 . Note

that in the multi-criteria case, this does not guarantee the existence of a
solution.
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5.2.2 Estimation of the Size of the Solution Space
To increase readability, we will restrict our study to the bipartitioning case,

but similar estimations can be computed for k-partitioning, with k > 2.

Eliminating Some Invalid Partitions

First, recall that the solution space S is included in the search space X. In
the mesh bipartitioning (or vector-of-numbers bipartitioning) case, the search
space is the set of all bipartitions of the mesh (or of the vector-of-numbers).
Given a mesh M of n cells, the set of all bipartitions has 2n−1 elements.

Indeed, as explained in Section 2.6, a partition can be represented as a
vector of size n of ones and twos, whose ith value indicates the part to which
the ith cell belongs. This yields 2n different vectors. However, given a partition
Π and a partition Π′ in which ∀m ∈M , Π(m) 6= Π′(m) (Π(m) and Π′(m) are
the parts to which m belongs in partitions Π and Π′), Π and Π′ designate the
same partition but will be encoded by different vectors. Therefore, there are
2n/2 = 2n−1 possible partitions, which is the size of the search space. As the
solution space is included in the search space, its size is at most 2n−1.

We can improve this bound. Firstly, we consider the mono-criterion case,
and number the vertices by decreasing weight, so that W (v1) ≥ ... ≥ W (vn).
Let us denote by vs the vertex such that:

s−1∑
i=1

W (vi) <
Σ
2 (1− t) ≤

s∑
i=1

W (vi) .

s is the minimum number of vertices that a part must process in order to be a
solution. Indeed, (v1, ..., vs−1) are the s− 1 vertices of greatest weight, so any
other set of s− 1 vertices would have a weight smaller than ∑s−1

i=1 W (vi) and
thus smaller than Σ

2 (1− t).
Therefore, any partition for which one part has less than s vertices is not

a solution, which eliminates Sinv = ∑s−1
i=1

(
n
i

)
partitions, hence the following

bound on the number of solutions: |S| ≤ 2n−1 − Sinv.

For a multi-criteria instance, if we denote by sc the s value corresponding
to the weight distribution of criterion c, then s = maxc(sc), because sc is the
minimal number of cells that one part must hold in order for a partition to be
solution.

Numerical Application. Table 5.2.2 displays the s and |SX | corresponding
to each of the 45 instances mentioned previously and that will be described in
Section 9.1. We will only report the values for the tightest tolerance, t = 0.2%,
which leads to the largest |SX |.
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Table 5.2.2 – Values of X, s and |SX |. |SX | provides a lower bound on the
number of invalid solutions. An upper bound on |S| is given by |X| − |SX |,
which in this case is very close to |X|.

mesh n |X| t = 0.2%
s SX

Mushroom 22800 109902 11378 106863

Onera 85567 1037161 42698 1025758

Wave 156316 1067887 78003 1047055

Linkrodsok1 174218 1075661 86935 1052444

Shock 1196252 10519530 596980 10360110

However, the third criterion in each weight distribution assigns a unitary
weight to each vertex, by definition. A unitary weight distribution is a weight
distribution for which s is the greatest possible, because s is the minimal
number of vertices in a part for a solution. Therefore, for each mesh, s is the
same for the 3 weight distributions.

The number of partitions that we can eliminate with this method is huge,
but remains negligible compared with the total number of partitions. Therefore,
we will use another method in order to estimate more precisely the number of
solutions.

Estimation of |S| Using a Monte-Carlo Method

The Monte-Carlo method, which is explained in detail by Kalos andWhitlock
[2009], consists in generating random partitions and counting the number of
partitions that are indeed solutions. This is the same as measuring the surface
of a lake by sending random shots in a surface S embracing the lake and
counting the proportion p of shots that fall in the lake; the surface of the lake
is then p× S.

In order to generate a random partition, we assign a random part to each
vertex. Using this method, a partition will have a probability of (1

2)n−1 to be
found (1

2 for each vertex, divided by 2 because if the parts of all vertices are
reversed, the partition is the same). It is a uniform distribution.

Numerical Application. Table 5.2.3 estimates the proportion of partitions
that are solutions, |S||X| , by running the random partitioning algorithm 10000
times on each instance.

The proportion of solutions found using a random algorithm is quite aston-
ishing. Indeed, for all the instances, when the imbalance tolerance is 5%, most
of the time, all partitions are solutions. Therefore, with this tolerance, more
runs of the random partitioning algorithm may be needed.
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Table 5.2.3 – Estimation of the size of the solution space using a Monte-Carlo
method: it is given by |X| × |S|

|X| .

Mesh n |X| w t = 5% t = 1% t = 0.2%
|S|
|X|

|S|
|X|

|S|
|X|

Mushroom 22800 109902
1 0.99 0.24 0.0032
2 0.99 0.26 0.0040
3 0.99 0.31 0.0051

Onera 85567 1037161
1 1.00 0.96 0.12
2 1.00 0.98 0.23
3 0.99 0.48 0.025

Wave 156316 1067887
1 1.00 0.84 0.13
2 1.00 0.90 0.11
3 1.00 0.71 0.098

Linkrodsok1 174218 1075661
1 1.00 0.99 0.57
2 1.00 1.00 0.61
3 1.00 1.00 0.58

Shock 1196252 10519530
1 1.00 0.99 0.40
2 1.00 1.00 0.62
3 1.00 0.99 0.30

When the imbalance tolerance is 1%, the proportion of solution is still
very high. And when the imbalance tolerance is 0.2%, the proportion remains
non-negligible, especially for the big instances. This shows that the solution
space, even for a multi-criteria instance, remains huge.

Nevertheless, different algorithms will have different ways to explore this
space. For example, the multilevel algorithm, when coarsening, will reduce the
search space and, probably, the solution space. Refinement algorithms usually
do not step out of the solution space, but depending on the local refinement
that they perform (e.g. swaps, move of a single vertex, etc.), they may not be
able to reach the same solutions. Some relax the imbalance tolerance in order
for the refinement algorithms to consider partitions that are nearly solutions.

5.3 Study of the Connection of the Solution
Space

The purpose of this section is to examine if an algorithm may reach an
optimal solution. In particular, we will focus on local optimizations algorithms,
that perform at each step a few moves (a move corresponds to switching the
part of a vertex). Usually, a local optimization algorithm cannot pass from a
solution to a partition which is not a solution, and the allowed moves define a
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neighborhood relationship between solutions.
This section focuses on the connection of the solution space, which is,

given two solutions, if there exists a sequence of neighboring solutions that
links the two solutions. In particular, we will show in Section 5.3.1 that the
local optimization algorithms FM and KL, that were defined in Section 4.4, can
have different sets of reachable solutions. Therefore, whereas FM is sometimes
presented as a variation of KL, these algorithms are in fact intrinsically different.

Then, we will state a theorem that guarantees, in the mono-criterion case,
the connection of the solution space for local optimization algorithms that
move one vertex at a time, such as FM. The condition for connection is a bound
on the vertex weights, which should not exceed t

2 , where t is the imbalance
tolerance. We were not able to generalize this result to the multi-criteria case,
but it gives a hint on the influence of the vertex weights on the connection
of the solution space, which will be taken into account in Chapter 6, when
considering coarsening algorithms.
Remark

Section 2.6 introduced the notion of fitness landscape, which is in our
case the combination of the search space (set of all k-partitions of the input
mesh) and of the neighborhood relationship defined by an algorithm. The
fitness landscape can be seen as an oriented graph, whose vertices are the
partitions, and whose edges link partitions that are neighbors according to
the considered algorithm. For example, with FM, two partitions Π and Π′
are neighbors if, between Π and Π′, there exists a unique cell that changed
of part. If the solution space is connected, it means that, given any initial
solution, the algorithm can find an optimal solution. If it is not connected,
however, it means that we may have to relax the tolerance, or to try with
different initial partitions.

The graph of the solution space can be seen as a landscape with peaks
and valleys defined by the communication cost of a partition. The algorithm
aims at exploring this landscape, trying to find a valley among those of
lowest altitude, which will contain a partition of minimal communication
cost. A final notion that we tried to investigate was the “ruggedness” of
the solution space, which refers to the density of the valleys and the slope
of the mountains. The ruggedness may give some information on the best
suited algorithm to solve an instance. For example, in a smooth landscape,
an algorithm always following the steepest descending slope might discover
an optimal solution quickly. However, a steepest-descent algorithm is likely
to be stuck in a local minimum when the landscape is rugged, for which an
algorithm descending little by little or allowing hill-climbing can be more
suited.

One of the main difficulties was how to define the ruggedness for a discrete
space. A second challenge was how to sample the solution space in order to
measure it.
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5.3.1 Comparison of the Solution Space of KL and FM

This section considers the solution space of two famous local optimization
algorithms, FM and KL, which were introduced in Section 4.4. Basically, FM
passes from one partition to another by changing one vertex of part at a time,
while KL exchanges the parts of two vertices. Therefore, these two algorithms
define the following neighborhood structure between partitions.

Definition 31 (Neighborhood Structure for FM and KL)
We denote by Π(m) the part to which m ∈M belongs in partition Π.
For FM, we say that two partitions Π and Π′ are neighbors if:

|{m ∈M,Π′(m) 6= Π(m)}| = 1 .

This means that there is one unique cell in M that changed of part between Π
and Π′.

For KL, we say that Π and Π′ are neighbors if
{m ∈M,Π′(m) 6= Π(m)} = {m→,m←} ;
Π′(m←) = Π(m→) ;
Π′(m→) = Π(m←) .

This means that there are two cells in M that changed of part between Π and
Π′, and that these two cells have switched their respective parts.

KL exchanges at each step two cells of part, which means that the number
of cells in some part is always the same. Therefore, from a starting partition
Πini = {Πini

1 , ...,Πini
k }, KL can only reach another partition Π′ = {Π′1, ...,Π′k} for

which |Πini
1 | = |Π′1|, ..., |Πini

k | = |Π′k|. This is not the case for FM, which moves a
single vertex at a time. Therefore, if the cardinal of the parts for two solutions
differ, the solution space for KL is not connected, while that of FM might be.

However, in some cases, the converse can be true. Consider for example two
cells m1 and m2 of weight greater than t · Σ. It means that, from a solution,
moving m1 or m2 would lead to a partition which is not a solution. Therefore,
if there is a solution S= in which m1 and m2 are in the same part and another
S6= in which m1 and m2 are in different parts, and if Πini = S=, then there is
no mean for FM to get to S6= without unbalancing the partition (this statement
will be proved in Section 7.3.2). However, it might be possible for KL, which
may swap m1 and m2. Therefore, in this case, the solution space for FM might
not be connected, while that of KL might be.

Thus, moving one cell at a time and performing exchanges induces an
intrinsic difference in the connection of the solution space. This analysis shows
that there is actually a major difference between KL and FM. In the next section,
we will focus on FM-like optimization algorithms, and will formulate a bound
on the vertex weights that guarantees the connection of the solution space in
the mono-criterion bipartitioning case.
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5.3.2 Bound on the Vertex Weights Ensuring the Con-
nection of the Solution Space for FM-like Local Op-
timization Algorithms

This section considers the mono-criterion bipartitioning case (using the
notations of Table ii on page 9, that is, γ = 1 and k = 2). Therefore, given a
meshM , we defineW = {W (m)[1],m ∈M} (W is a multiset, as in Definition 3
on page 6). Bipartitioning W is equivalent to bipartitioning M .

Theorem 2 (Connection of the Solution Space of the Mono-criterion Biparti-
tioning Problem)

We consider the mono-criterion case and bipartitioning a multiset of non-
negative numbers W with an imbalance tolerance t ∈ [0, 1].

max
w∈W

w

Σ ≤
t

2 =⇒ the solution space is connected.

Proof
Assume that max

w∈W
w
Σ ≤

t
2 (1). By Theorem 1, the solution space is not

empty.
Let Π and Π′ be two solutions, which means that imb(Π) ≤ t and

imb(Π′) ≤ t. We will build a sequence of neighboring solutions (Π1, ...,Πf)
such that Π1 = Π and Πf = Π′. Πi and Πi+1 are neighbors means that only
one number changes of part between Πi and Πi+1 (we say that only one
number moves).

For that, we define M as the set of all numbers that have to move to
transform Π into Π′. Noting Π(w) the part to which w belongs in Π and
Π′(w) the part to which w belongs in Π′, we have:

M = {w ∈ W,Π(w) 6= Π′(w)} .

Our algorithm operates in two main steps:
1. as long as there is a number inM which also belongs to the heaviest

part, move it to the lightest part and remove it fromM (if both parts
have the same weight, any part can be considered as the heaviest);

2. then, when there are no more numbers inM which also belong to the
heaviest part, and as long asM is not empty, successively move the
remaining numbers inM to the heaviest part (as we move a number
from the lightest part to the heaviest part, the lightest part is still the
lightest one after the move).

The algorithm stops whenM is empty.
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1. Moving from the Heaviest Part

Assume that partition Πi is a solution (so imb(Πi) ≤ t (2)), and that
there exists w ∈ M that belongs to the heaviest part. We will first prove
that Πi+1, obtained by moving w to the lightest part, is also a solution.

Without loss of generality, we assume that Πi(w) = Πi
1 (which means that

Πi+1 = (Πi
1 \ {w},Πi

2 ∪ {w})). Hence imb(Πi
1) ≥ imb(Πi

2) and imb(Πi
1) +

imb(Πi
2) = 0, so imb(Πi

2) ≤ 0 (3).
The imbalances of the parts of Πi+1 are:

imb(Πi+1
1 ) =

Σi+1
1 − Σ

2
Σ
2

=
Σi

1 − w − Σ
2

Σ
2

= imb(Πi
1)− w

Σ
2

≤ t− 2w
Σ by (2)

≤ t because w ≥ 0 ;

imb(Πi+1
2 ) =

Σi
2 + w − Σ

2
Σ
2

= imb(Πi
2) + 2w

Σ ≤ 2w
Σ by (3)

≤ t by (1) .

Thus, imb(Πi+1) = max(imb(Πi+1
1 ), imb(Πi+1

2 )) ≤ t, which means that
Πi+1 is a solution.

We have proved that given a solution, moving any number from the
heaviest part leads to another solution. Since the initial partition Π1 = Π is
solution by hypothesis, this shows by induction that all the partitions built
in the first step are solutions.

2. Moving from the Lightest Part

Without loss of generality, we assume as before that Πi
1 is the heaviest part.

For the second step of the algorithm, we have by definitionM∩ Πi
1 = ∅.

Besides, we will consider that M = {w1, ..., wb}, and we define Πi+j =(
Πi

1 ∪ {w1, j..., wj},Πi
2 \ {w1, j..., wj}

)
.

We will prove by induction that ∀j ∈ [0, b], Πi+j is a solution and Πi+j
1 is

still the heaviest part.
The condition is valid for j = 1 by definition of Πi.
Then, given j ∈ [1, b− 1], we assume that the condition is valid for j and

we will show that it still holds for j + 1.
First, we have Σi+j+1

1 = Σi+j
1 + wj+1 ≥ Σi+j

1 , so the heaviest part is still
the heaviest one after moving wj+1.
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Then,

imb(Πi+j+1
1 ) =

Σi+j+1
1 − Σ

2
Σ
2

=
Σi

1 +
j+1∑
a=1

wa − Σ
2

Σ
2

≤
Σi

1 +
b∑

a=1
wa − Σ

2

Σ
2

= imb(Π′)

≤ t by hypothesis,

which proves that Πi+j+1 is a solution.
By induction, we have proved that the partitions Πi+1, ...,Πi+b are solu-

tions.

Conclusion

By construction, whenM is empty, we have Πi+b = Πf . By definition
of the Πis, Πi and Πi+1 are neighbors, and we have proved that they are
all solutions. This shows that from any solution Π, there is a sequence of
neighboring partitions leading to any solution Π′, such that these partitions
are all solutions.

Therefore, if the normalized weight of all vertices is smaller than half
the imbalance tolerance, the solution space for the mono-criterion mesh
partitioning problem is connected.

Unfortunately, we were not able to generilize this theorem to the multi-
criteria case. The issue is that the notion of heaviest part does not extend to
the multi-criteria case, and that moving a vertex can decrease the weight of a
part for one criterion but increase it for another.

Nevertheless, this result seems to indicate that when the normalized weights
are large, the solution space is less likely to be connected. This statement is
likely to hold for multi-criteria instances, even if other factors intervene, such
as the entanglement of the weight distributions (as discussed in Section 5.1).

Therefore, this result will influence the design of the coarsening phase, which
is the topic of the next chapter. Besides, it will also justify the design of the
initial partitioning algorithms that will be introduced in Chapter 7.

Conclusion
In this chapter, we have first discussed what makes a multi-criteria instance

more difficult to partition than a mono-criterion instance. We have explained
that the entanglement of the weight distributions (that is, whether the heavy
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vertices are the same for all criteria) is a key issue.
Then, we have studied the size of the solution space using various approaches.

First, we have stated, for the mono-criterion case, a bound on the vertex weights
that guarantees the existence of a solution. This result was not generalized to
multi-criteria, but it strengthens the assumption that, if the vertex weights are
small, there will be more solutions. The same bound appeared to guarantee the
connection of the solution space in the bipartitioning mono-criterion case, for
FM-like algorithms. Therefore, we believe that having light vertices in general
means that finding balanced partition is easier.

In the next chapters, we will keep this assumption in mind while analyzing
partitioning algorithms. Then, in Chapter 10, we will compare the algorithms
that make use of this assumption with the ones that do not consider it.
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Chapter 4 has exposed existing algorithms to partition a mesh. Among
them, the multilevel framework is well spread among partitioning tools. Indeed,
as reported in a survey by Buluç et al. [2015], it has been applied successively on
various meshes. Nevertheless, many variations exist among its implementations.
This chapter focuses on variations of the coarsening phase of the multilevel
algorithm.

The coarsening phase has conventional objectives which will be detailed
in Section 6.1. However, partitioning tools use different ways to fulfill these
objectives. In this chapter, we will review existing coarsening schemes and
link them with the implementations of the partitioning tools Scotch, MeTiS
and PaToH when possible. In particular, Section 6.2 will focus on ordering
the vertices before computing a matching, and Section 6.3 will concentrate on
restrictions on the coarsened vertex weights.

Remarks
We chose to focus on MeTiS and PaToH because they are multi-criteria

partitioning tools. Zoltan is another partitioning tool that also handles
multi-criteria partitioning, yet relies only on geometrical algorithms, that are
usually not suited for our meshes. Finally, Scotch is for now a mono-criterion
partitioning tool, for which we wish to implement multi-criteria support.

Moreover, we have noticed that MeTiS-5.1.0 and Scotch-6.0.4 partitioning
tools do not always behave as described by Karypis and Kumar [1998a] and
Karypis and Kumar [1998b] for MeTiS, and by Pellegrini [2008] for Scotch.
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The algorithms that we will define were deduced from a careful study of the
source codes of MeTiS and Scotch, and we will provide references directly
from the source code of these tools.

Unfortunately, we were not able to perform the same analysis for PaToH,
whose source code is not available. Therefore, information about PaToH
algorithms is based on the user manual of Catalyurek and Aykanat [2011].

Therefore, this chapter will not introduce any new coarsening scheme. Its
aim is to define and analyze the objectives and consequences of coarsening
schemes on the coarsened graph. Whenever possible, we will clarify the coars-
ening algorithms implemented in partitioning tools. The various schemes will
be compared in Chapter 10, because their performance also depends on the
initial partitioning algorithm and on the refinement algorithm used. These two
issues will be addressed respectively in Chapters 7 and 8, while Chapter 9 will
define the set of instances used for the comparison.

6.1 Conventional Goals of the Coarsening
Scheme

This section aims at formulating the objectives of the coarsening phase
and point out its possible variations. The coarsening phase is one of the three
phases in the multilevel Algorithm 26 on page 106. In this phase, a function
named Coarsen is called as long as the number of vertices in the graph does
not become smaller than a threshold. This threshold, which we called ncoarse,
is a parameter of the coarsening phase. To our knowledge, no study has ever
been carried out on the setting of this value, but for Scotch, MeTiS and PaToH,
the values are close.
Implementation – MeTiS-5.1.0

MeTiS defines ncoarse = 100 in the multi-criteria case (and ncoarse = 20 in
the mono-criterion case).

Source: variable ctrl->CoarsenTo set in function SetupCtrl of file
options.c.

Implementation – Scotch-6.0.4
Scotch defines ncoarse = 120.
Source: When displaying the default strategy (option -vs), it is the

parameter vert as described in the user manual of Pellegrini [2008].

Implementation – PaToH-3.2
PaToH defines ncoarse’s value to lie between 10 and maxint, but does not

indicate how it is actually computed. For the instances that will be presented
in Chapter 9, we observed that ncoarse ranges from 48 to 89, which is close
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to the values of MeTiS and Scotch.

In this document, we will only consider performing the coarsening through
the computation of matchings, which were described in Definition 27: a match-
ing is a functionM : V → V c ⊂ V such that ∀vc ∈ V c, there is at least one and
at most two vertices in V whose image byM is vc. In other words, a matching
pairs some vertices together. Matchings are usually opposed to aggregations,
which can merge an arbitrary number of vertices at one level. Last but not
least, we will only consider matching a vertex with one of its neighbors.

Implementation – MeTiS-5.1.0, Scotch-6.0.4, PaToH-3.2
Scotch and MeTiS both perform successive matchings to coarsen the

graph, while PaToH relies on aggregations (though it also implements a
number of matching-based coarsening schemes). In fact, at each level of
PaToH’s coarsening scheme, each vertex is fused with at least one of its
neighbors.

Conventional objectives. As asserted by Buluç et al. [2015], the coarsening
phase aims at fulfilling several conventional objectives.
• The first one is to try to minimize the weights of the edges of the coarsened
graphs, so that the possible partitions of the coarsened graphs exhibit
small communication cost. In other words, this mechanism aims at
removing partitions of high communication cost from the search space.
• Another conventional requirement is that the weights of the vertices in
the coarsened graphs should be uniform, so that it becomes easier to
find a solution. This assertion is supported by Theorem 1, formulated in
the previous chapter, which guarantees, in the mono-criterion case, the
non-emptiness and the connection of the solution space when the vertex
weights are bounded.
• An early objective was to improve the behavior of the FM algorithm used

in the refinement phase. Indeed, when partitioning VLSI circuits, FM was
found to suffer from large number of ties on the move gains, because
of the small degrees of the vertices. A solution was to create coarsened
vertices with larger degrees.
• Finally, one commonly tries to avoid letting vertices unmatched for
several levels. Indeed, especially for meshes whose topology is very
regular, regularly pairing vertices may help the coarsened graph maintain
a topology similar to that of the original graph.

Actually, the coarsening phase may be seen as a maximum weight matching
problem: the objective is to maximize the sum of the weights of the edges
between matched vertices. As indicated by Buluç et al. [2015], this problem
can be solved in polynomial time, but optimal algorithms are too slow in
practice. Therefore, many works proposed and compared matching schemes. For
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example, Holtgrewe et al. [2009] compares three matching schemes (including
one approximating that of MeTiS) in the context of parallel graph partitioning.

Algorithm 27 defines a quite generic version of the coarsening algorithm
(though it is at least restricted to matchings computed using neighborhoods).
The Coarsen function fills the matching list so that the ith vertex in mesh M
will be matched with the matching[i]th vertex. matching[i] = 0 means that
the ith vertex is unmatched. A vertex can only be matched with at most one
of its neighbors.

Despite being restricted, this version of the coarsening phase allows some
degrees of freedom. In particular, the three aforementioned functions may differ
between partitioning tools. We will now describe the coarsening algorithm and
point out the possible variations of it.

Algorithm 27 Coarsening
1: function Coarsen(M , W , Wcom)
2: n← length(M)
3: matching ← [0 n... 0]
4: ordvtxs ← Order(M)
5: for i← 1, n do
6: v ←M [ordvtxs[i]].index()
7: if matching[v] = 0 then # Try to match v with one of its neighbors
8: ordngbrs ← OrderNgbrs(v,N (v),W,Wcom) # N (v): neighbors of v
9: j ← 1
10: while matching[v] = 0 and j ≤ length(N (v)) do
11: u← N (v)[ordngbrs[j]].index()
12: if matching[u] = 0 and not Restriction(v, u,W ) then
13: matching[v] = u # Match v with u
14: matching[u] = v
15: end if
16: j ← j + 1
17: end while
18: if matching[v] = 0 then # All neighbors of v were already matched
19: matching[v] = v # v will remain unmatched at this level
20: end if
21: end if
22: end for
23: return matching
24: end function

Prior to choosing which vertices are matched together, an ordering on the
vertices is first computed using the Order function. This function differs across
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partitioning tools, and will be the object of Section 6.2.
Considering the ith vertex v according to the defined order, if v is unmatched,

we will try to match it with one of its yet unmatched neighbors. To do so,
the neighbors are first ordered using the OrderNgbrs function, which slightly
differs between partitioning tools. Nevertheless, the basic idea, which is to use
the Heavy-Edge-Matching scheme (HEM) sketched in Section 4.5, remains the
same. HEM tries to match in priority a vertex with some neighbor along the
edge or hyperedge of greatest communication weight. The rational is to get
rid, in the coarsened graph, of the heaviest edges.

Algorithm 28 Heavy-Edge-Matching, a Very Common Implementation of the
OrderNgbrs Function
1: function OrderNgbrsHEM(v, Nv, W , Wcom)
2: # If graph model
3: return sortDescend(N (v), key : u 7→ Wcom[(v, u)])

# If mesh or hypergraph model
4: return sortDescend(N (v), key : u 7→ Wcom[u])
5: end function

Nevertheless, the OrderNgbrsHEM function is ambiguous. Indeed, if one
vertex has several edges with identical communication weight, several orders
are possible. In order to compare matching schemes, in Chapter 10, we will
use the default order on the vertices as a tie-breaker. This is also the policy of
Scotch, but MeTiS uses a different one.
Implementation – MeTiS-5.1.0

MeTiS’ OrderNgbrsHEM function implements a tie-breaking policy, which
considers the computation weights. In multi-criteria, the preference goes
to the neighbors which, after matching, would lead to the most “uniform”
computation weights.

This uniformity is defined in MeTiS as
γ∑
c=1

∣∣∣W (v)[c]
Σc
−W (v)

∣∣∣, whereW (v) =

1
γ

γ∑
c=1

W (v)[c]
Σc

is the mean of the normalized weights of a vertex. For tie-
breaking, it selects the vertex that minimizes this quantity. Note that this
is still ambiguous, for example, when the neighbors of one vertex have the
same communication and computation weights.

Source: function BetterVBalance called by the function Match_SHEM.

The global Coarsen function tries to match a vertex v with one of its
neighbors. After the determination of the neighbors ordering, we can match v
with the first of its unmatched neighbor, provided it is not forbidden match-
ing. Indeed, as we will see in Section 6.3, partitioning tools define various
Restriction functions to prevent the creation of vertices with unwanted prop-
erties, and in particular, aiming at producing uniform vertex weights. Thus, if
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the considered neighbor u is unmatched and that the matching is not forbidden,
v and u are matched together.

Conclusion. This section has formulated a quite generic version of the coars-
ening algorithm and has pointed out possible variations. Some of these vari-
ations (including those of existing partitioning tools) will be compared in
Chapter 10, because their effects remain unclear.

In the next sections, we will describe and analyze several matching schemes.
More precisely, the next section will deal with the Order function, while the
one after will focus on the Restriction function.

6.2 Analysis of Ordering Schemes when Com-
puting a Matching

The HEM policy aims at matching a vertex with its neighbor along the
heaviest edge, which is not always possible, for example when two different
vertices have their heaviest edge ending on the same vertex. Thus, different
orderings of the vertices can lead to different matchings. In this section, we
describe several ordering strategies, and analyze their respective objectives.
Remark

A basic observation is that vertices that are considered first have a greater
chance to be matched than vertices considered last, whose neighbors are
more likely to be already matched. Moreover, vertices that are considered
first have a greater chance to be matched along their heaviest edge, whereas
at the end, the remaining unmatched vertices can only be matched with their
unmatched neighbors, not really taking into account the edge weights.

Basic Ordering Strategies

We propose in Algorithm 29 two ordering strategies. The first one, named
OrderFirst, will act in contradiction with the conventional objectives, because
it tends to always match the same vertices. Indeed, the vertices of small index
will have a greater probability to be matched, and in this scheme, the vertices of
small index remain of small index at each level. If its performance is comparable
to that of other ordering strategies, it will mean that the conventional objectives
are unfounded.

The second ordering strategy in Algorithm 29 is OrderRandom, which returns
a random order of the cells. It aims at preventing vertices from remaining
unmatched for several levels, because the vertices that have a bigger probability
to be matched change at each level. However, there is no guarantee to produce
uniform vertex weights.
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Implementation – PaToH-3.2
PaToH uses the OrderRandom strategy to order the vertices when match-

ing.

Algorithm 29 Basic Ordering Strategies
1: function OrderFirst(M)
2: n← length(M)
3: return [1 n... n]
4: end function

5: function OrderRandom(M)
6: n← length(M)
7: return shuffle([1 n... n])
8: end function

Ordering Strategies Based on Degrees and Edge Weights

Karypis and Kumar [1995] studied the average degrees of the vertices of the
coarsened graphs. They reported that the average degree increases in the first
levels, and decreases in the last levels. Indeed, for meshes, at the beginning
of the multilevel algorithm, the vertices have roughly the same number of
neighbors. However, when two vertices u and v are matched together to form
vertex u+ v, deg(u+ v) is given by:

deg(u+ v) = deg(u) + deg(v)− |N (u) ∩N (v)| − 2 .

Therefore, the coarsened vertices that result from the matching of two finer
vertices will in general have a higher degree than coarsened vertices that
remained unmatched in the previous levels. A means to prevent vertices from
remaining unmatched for several levels is to order first the vertices of lower
degree.

However, using the HEM policy, the vertices that have a heavy edge have a
higher probability to be matched than the others. Therefore, if two vertices
have several heavy edges, matching them together will mean that most of these
heavy edges will remain in the coarsened graph (maybe as even heavier edges),
whereas matching such vertices with vertices with less heavy edges may remove
more heavy edges.

This may be avoided using another definition of the degree of a vertex,
which is the sum of the weights of its edges. We will call this the “weighted
degree” and denote it by wdeg(v) = ∑

u∈Nv

Wcom((u, v)). The weighted degree

is used in particular in the Laplacian matrix of the graph (used for spectral
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partitioning, which was defined in Section 4.3.1). When vertices u and v are
matched together to form vertex u+ v, the weighted degree of u+ v is:

wdeg(u+ v) = wdeg(u) + wdeg(v)− 2Wcom((u, v)) .

Algorithm 30 defines an ordering strategy, named OrderDegrees, based on
vertex degrees or weighted degrees. It orders the vertices by increasing degrees
or weighted degrees.

Algorithm 30 Ordering Strategies Based on Degrees and Edge Weights
1: function deg(v, Wcom)
2: # Using the regular degree deg
3: return length(N (v))

# Using the weighted degree wdeg (graph model)
4: return ∑

u∈N (v)
Wcom((u, v))

# Using the weighted degree wdeg (mesh or hypergraph model)
5: return Wcom(v)
6: end function

7: function OrderDegrees(M)
8: n← length(M)
9: return argsortAscend([deg(M [1]) n... deg(M [n])])
10: end function

We have tested the OrderDegrees using the degrees and the weighted
degrees, and the results were similar for many instances, and inconclusive for
others. In Chapter 10, we will report the results obtained using the regular
degrees. However, a study to understand the difference between using the
degrees and the weighted degrees may be worthwhile.
Implementation – MeTiS-5.1.0

MeTiS first calls the OrderRandom and then a pseudo “OrderDegree”
method (using the degree of the vertices). Indeed, it sorts only the vertices
whose degree is smaller than the average degree.

Source: functions irandArrayPermute and BucketSortKeysInc(_, _,
avgdegree, degrees, _, _) called by function Match_SHEM.

Remark
In order to avoid sorting all the vertices by degree, we have also imple-

mented another version of the OrderDegree function. Instead of sorting all
the vertices, it divides them into b buckets and sorts each bucket indepen-
dently. Then, the order is the first elements of each bucket, followed by the
second elements of each bucket and so on. This function can be parallelized
more easily than the OrderDegree function, because each process can sort

136 Rémi Barat



6. Analysis of New Coarsening Schemes

one bucket independently from the others. This aims at simulating the
concurrent execution of b independent matching tasks, each of them handling
a subset of the vertex set.

We tested this function (using the wdeg) for b ∈ {2, 8, 16, 32} buckets, and
observed that the results did not really change with the number of buckets,
though this should be investigated further. However, in this document, we
will report the results for the basic OrderDegree algorithm (using the wdeg
criterion).

Ordering Strategies Based on Vertex Weights

Finally, Algorithm 31 defines a strategy based on vertex weights. Indeed,
during the coarsening, the weights of the vertices are increasing, because the
weight of a coarsened vertex is the sum of the weights of the original vertices.
So, the left-behind vertices should have smaller weights. As we have seen
in Chapter 5, creating heavy vertices is likely to reduce the size and the
connection of the solution space. Therefore, given a threshold tpriority ∈ R+, the
OrderVwgts function orders first the vertices of weight smaller than tpriority× Σc

n

for any criterion c (Σc

n
is the average weight of a vertex for criterion c).

Algorithm 31 Ordering Strategies Based on Vertex Weights
1: function OrderVwgts(M,W )

Require: tpriority ∈ R+ weight threshold
2: n← length(M)
3: linf , lsup ← [ ], [ ]
4: for i← 1, n do
5: if ∀c ∈ J1, γK,W (M [i])[c] < tpriority · Σc

n
then

6: linf .append(i)
7: else
8: lsup.append(i)
9: end if
10: end for
11: return linf ∪ lsup
12: end function

Implementation – Scotch-6.0.4
Scotch uses the OrderVwgts function with tpriority = 0.25, combined with

a so-called “cache-friendly” permutation (which may be approximated to a
localized OrderRandom).

Source: function GRAPHMATCHSCANNAME in file graph_match_scan.c.
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Algorithm 31 takes into account the vertex weights, but does not explicitly
forbid to create heavy vertices, which can reduce the solution space, as shown
in Chapter 5. The next section proposes some restrictions that forbid to match
vertices when the formed vertex would be too heavy.

6.3 Taking Balance into Account with Weight
Restrictions

In Chapter 5, we have shown that when the normalized weights are small, the
size and connection of the solution space are likely to increase. Therefore, many
partitioning tools introduce a Restriction function in order to prevent the
creation of such vertices. A version of this function is defined in Algorithm 32.

The goal of the restriction function is to prevent the matching of vertices
if the merged vertex would be too heavy. In order to define what “too heavy”
means, the Restriction function requires a parameter calledW restrict ∈ (R+)γ
in Algorithm 32: The Restriction function forbids to merge two vertices if
the resulting vertex weight for criterion c were above W restrict[c].

Algorithm 32 Restriction Algorithm
1: function Restriction(v, u, W )

Require: W restrict ∈ (R+)γ
2: for c← 1, γ do # γ is the number of criteria
3: if W (v)[c] +W (u)[c] > W restrict[c] then
4: return False
5: end if
6: end for
7: return True
8: end function

Implementation – MeTiS-5.1.0
MeTiS policy for multi-criteria graph partitioning considers the total

weight of a criterion for the current level, and defines W restrict[c] = 0.015 ·Σc

(or W restrict = 0.075 · Σ in the mono-criterion case), so it will not match
vertices if the resulting vertex weight for one criterion is heavier than 1.5%
of the total weight for this criterion.

Source: See the function CoarsenGraph in file coarsen.c.

Implementation – Scotch-6.0.4
Scotch considers the average vertex weight of the coarsened graph, which

is defined as Σc

nlevel−1
, where nlevel−1 is the maximum number of vertices at

the coarser level, defined as nlevel−1 = nlevel · rat, where nlevel is the number
of vertices at the current level, and rat the coarsening ratio, set to 0.8 by
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default. Then, Scotch forbids to match vertices if the resulting vertex weight
is heavier 4 times the average weight, so W restrict[c] = 4 · Σc

nlevel·0.8
.

Source: Variable coarvelomax in function GRAPHMATCHSCANNAME of file
graph_match_scan.c.

Conclusion
In this chapter, we have devised a quite general version of the matching

algorithm, and have linked it with the famous Heavy-Edge-Matching coarsen-
ing scheme. Nevertheless, the behavior of HEM is not fully explicitly defined.
Therefore, various implementations are possible and may lead to very different
coarsened graphs.

We have pointed out the parts that were ambiguous and have linked them
to the conventional objectives of the coarsening phase. Whenever possible, we
have clearly defined the coarsening strategies of the partitioning tools Scotch,
MeTiS and PaToH. This illustrated the variations of implementations for this
phase.

The consequences of these variations on the returned solutions will be
examined in Chapter 10. Indeed, the performance of a coarsening strategy
also depends on the initial partitioning algorithm and on the refinement phase,
which are the topics of the next two chapters.
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Section 4.5 has introduced the famous multilevel algorithm, used to solve
the multi-criteria mesh partitioning Problem 2 on page 34. The first phase
of this algorithm, the coarsening phase, has been studied in Chapter 6. The
current chapter focuses on the initial partitioning phase, whose aim is to find a
balanced partition of the coarsest graph. “Balanced” means that among all
criteria, the maximum imbalance is smaller than the input tolerance, as stated
in Definition 11. Such a balanced partition is called a solution.

Most of the existing partitioning algorithms focus on returning a partition of
small communication cost, and we have observed that partitioning tools return a
large proportion of partitions that are not solutions. Therefore, we have decided,
for the initial partitioning phase, to focus on returning a solution. So, for this
phase, we will reduce the mesh partitioning problem to a vector-of-numbers
partitioning problem (as defined in Problem 6 on page 43).

This amounts to dropping the objective function, which will be considered
later, in the refinement phase. Providing a solution to a refinement algorithm
allows it to focus exclusively on reducing the communication cost, without
having to reduce also the imbalance. Besides, if the solution space is connected,
which was studied in Chapter 5, once a solution is found, the refinement function
can reach the partition that minimizes the objective function, passing only
through solutions. This allows one to guarantee that the returned partition
will be a solution to our problem. The only condition is then to find a balanced
initial partition.

Dropping the objective function may simplify the problem, but it remains
a difficult one, as proved in Chapter 3, which presented various algorithms
addressing the mono-criterion version of the vector-of-numbers partitioning
problem, the famous number partitioning problem. Besides, despite having
been well-studied, as shown in Section 3.4.3, only a few algorithms designed
for number partitioning can be used for vector-of-numbers partitioning. Actu-
ally, the only algorithms that may be directly extended to vector-of-numbers
partitioning are the dynamic programming algorithm of Section 3.2.3 and the
stochastic algorithms introduced in Section 3.2.7.

The dynamic programming algorithm is only applicable to integer weights,
and also may require huge amounts of memory, depending on the total sums of
the weights Σc, so we chose to focus on the stochastic algorithms. Section 7.1
will define a hill-climbing vector-of-numbers partitioning algorithm, which
moves a vertex from a part to another as long as it reduces the partition
imbalance. Then, Section 7.2 will consider moving the vertex that reduces
the most the partition imbalance. Finding such a vertex may require many
computations. This is why we will implement in Section 7.3 (in the case of
mono-criterion bipartitioning) and in Section 7.4 (in the case of multi-criterion
bipartitioning) a method to speedup the search. Finally, Section 7.5 will discuss
the extension of the method to k-partitioning, when k > 2.
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Definitions and Useful Functions
Definition 32 introduces the gain in imbalance of a move, that we denote

by igain, and that will be used throughout this chapter. Note that the igain is
defined in the same way for mono- and multi-criteria partitioning.

Definition 32 (Gain in Imbalance of a Move)
Given a mesh M and a partition Π = {Π1, k...,Πk} of M , let v be a cell or

its corresponding vertex in M .
We assume that v ∈ Πp, and consider moving it to Πq 6= Πp, which would

lead to the partition Π′ = {Π′1, k...,Π′k} such that Π′p = Πp\{v} and Π′q = Πq∪{v}
and ∀r /∈ {p, q},Π′r = Πr.

Then, the gain in imbalance for this move is defined as:

igain(v → Πq) = imb(Π)− imb(Π′) .

We also define the gain in imbalance of a move for one criterion c as:

igainc(v → Πq) = imbc(Π)− imbc(Π′) .

Πq is called the target part of v.
In the bipartitioning case, there is only one possible target part for a vertex,

so we will simplify the notations: igain(v) instead of igain(v → Πq) and
igainc(v) instead of igainc(v → Πq).

Then, we define the most imbalanced criterion when dealing with multi-
criteria partitioning.

Definition 33 (Most Imbalanced Criterion, cmax)
Given a partition Π, we call “most imbalanced criterion” and we denote by

cmax any integer in J1, γK such that imbcmax(Π) = imb(Π).
Note that there can be several possible values for cmax, when Π exhibits the

same imbalance for several criteria. In this case, cmax is one of these values.

Algorithm 33 describes the RangePart function that will be used by many
other algorithms in this chapter. This function returns a list containing, in its
ith cell, the index of the ith heaviest part. In case of bipartitioning (k = 2), it
returns in the first cell the index of the overweighted part, and in the second
cell the index of the underweighted part.

Algorithm 33
1: function RangeParts(Π, k)
2: return sortDescend([1 k... k], key : p 7→ imb(Πp))
3: end function

Finally, in this chapter, the word “weight” will mean “normalized weight”.
For a cell m ∈M , its normalized weight for criterion c is w = W (m)[c]

Σc
.
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7.1 Descent Vector-of-Numbers Partitioning
Algorithm

This section proposes a new vector-of-numbers partitioning algorithm called
VNFirst, defined in Algorithm 34. It is very similar to the descent Algorithm 11
on page 69. A notable difference is that, to achieve a more generalized algorithm,
we chose to allow the user to give as an argument an initial partition. VNFirst
will try to move vertices in order to reduce the imbalance, starting from this
initial partition. As an example, we tested VNFirst by feeding it with a random
partition, a partition that had all vertices in one part, or a partition balanced
for one criterion.

Algorithm 34 Descent Vector-of-Numbers Partitioning
Require: Π: an initial partition of M (may be random)
1: function VNFirst(M , k, W , t, f , Π)
2: n← length(M)
3: i, ilast ← 1, 1 # ilast: index of last moved vertex
4: repeat # Iterate on the vertices in order
5: for q ← 1, k, q 6= Π[i] do
6: if igain(M [i]→ Πq) > 0 then# If this move decreases the imbalance
7: Π[i]← q # Perform the move
8: ilast ← i
9: end if
10: end for
11: i← (i mod n) + 1 # i starts back at 1 after reaching n
12: until i = ilast # Until no more move decreases the imbalance
13: return Π
14: end function

To reduce the imbalance of the input partition, the VNFirst function
considers the vertices in order and moves a vertex as long as it reduces the
imbalance. It keeps track in the variable ilast of the index of the last vertex
moved and will stop if no more move can reduce the imbalance.

The partition returned is not guaranteed to have an imbalance smaller than
the input tolerance, and it is not possible to reduce its imbalance with only
one move.

The next section considers performing at each step the move that reduces
the most the imbalance.
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7.2 Steepest Descent Vector-of-Numbers Par-
titioning Algorithm (Greedy Implementa-
tion)

This section proposes a new vector-of-numbers partitioning algorithm, de-
fined in Algorithm 35, called VNBest_greedy. As VNFirst, it is also quite
similar to the hill climbing Algorithm 11. VNBest_greedy differs from VNFirst
because, instead of moving the first vertex found that reduces the imbalance,
VNBest_greedy moves the vertex that reduces the imbalance the most. Note
that moves that increase the imbalance are forbidden. This means that in the
returned partition, no more move can reduce the imbalance.

Algorithm 35 Greedy Version of the Steepest Descent-like Vector-of-Numbers
Partitioning Algorithm
Require: Π: an initial partition of M (may be random)
1: function FindBestMove_greedy(M , k, Π)
2: n← length(M)
3: ibest, qbest, gbest ← None, None, None
4: for i← 1, n do
5: for q ← 1, k; p 6= Π[i] do
6: gi→q ← igain(M [i]→ Πq)
7: if gbest = None or gi→q > gbest then
8: ibest, qbest, gbest ← i, q, gi→q
9: end if
10: end for
11: end for
12: return ibest, qbest
13: end function

14: function VNBest_greedy(M , W , Wcom, k, t, Π)
15: i, q ← FindBestMove_greedy(M,k,Π)
16: while igain(M [i]→ Πq) > 0 do
17: Π[i]← Πq

18: i, q ← FindBestMove_greedy(M,k,Π)
19: end while
20: return Π
21: end function

Finding the move leading to the smallest imbalance implies, as implemented
in Algorithm 35, a lot of computations, because at each step, it computes the
gain for all possible moves. If n is the number of cells in M , then there are
n · (k − 1) possible moves, which implies computing n · (k − 1) · γ imbalances
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at each step.
Is there a way to avoid computing the gain for all vertices at each step? Is

there a way to find quickly the best move? The next section will investigate
these questions, restricting to the mono-criterion case for now.

7.3 An Implementation of VNBest Avoiding
Many Computations

In this section, we will introduce a novel implementation of the algorithm
VNBest, which moves at each step the vertex whose igain is maximum as long as
this igain is non-negative. This implementation is restricted to mono-criterion
bipartition, but it will be adapted to multi-criteria bipartitioning in the next
section.

First, Section 7.3.1 will formulate an expression of the igain for each vertex.
Section 7.3.2 will briefly prove a corollary on the connection of the solution
space for algorithms that perform moves, which was discussed in Section 5.3.1.
Then, using the expression of the igain, Section 7.3.3 will explain that at
some point, some vertices will not move until the end of the algorithm. Using
these two results, Section 7.3.4 proposes a gain table structure that will allow
to record the gains for each vertex, and in Sections 7.3.5 and 7.3.6 we will
respectively describe how we can find quickly the move of greatest gain using
this structure and how to update the gain table quickly.

7.3.1 Expression of the Gain of a Move
As stated in the following Proposition 3, the gain of a vertex may be

computed quite easily.

Proposition 3 (Gain in Imbalance for Mono-criterion Bipartitioning)
Given a mesh M and a bipartition Π = {Π1,Π2} of M , let v be a cell or its

corresponding vertex in M .
We assume that v ∈ Πp, and consider moving it to Πq 6= Πp, which would

lead to the partition Π′ = {Π′p,Π′q}, such that Π′p = Πp \ {v} and Π′q = Πq ∪{v}
As specified at the beginning of this chapter, w is the normalized weight of

v, which is w = W (v)
Σ .

Then, the gain of v is:

igain(v) =


−2w if imb(Πq) ≥ 0 ,

2 · imb(Π)− 2w if imb(Πq) ≤ 0 and w ≥ imb(Π)
2 ;

2w if imb(Πq) ≤ 0 and w ≤ imb(Π)
2 .
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Remark
The igain function is continuous. Indeed, it is linear if imb(Πq) ≥ 0, and

piecewise linear with no discontinuity at its endpoint w = imb(Π)
2 otherwise:

2 · imb(Π)− 2w = 2 · 2w − 2w = 2w .

Proof
Without loss of generality, we assume that the weights are normalized, so

Σ = 1.

Informal proof. The table below illustrates the formal proof that follows.
It is a visual demonstration of the igain value. Each line corresponds to a
possible expression of igain, which is stated in the last column.

Drawing Observation igain(v) =
imb(Π)− imb(Π′)

Moving to the underweighted part when w ≤ imb(Π)
2

imb(Π′)
2 +w = imb(Π)

2 igain(v) = 2w

Moving to the underweighted part when w ≥ imb(Π)
2

imb(Π)
2 + imb(Π′)

2 = w
igain(v) =

2 · imb(Π)− 2w

Moving to the overweighted part

imb(Π′)
2 = imb(Π)

2 +w igain(v) = −2w

On every figure, Π is displayed on the left and Π′ on the right. For each
partition, the sums of their parts (Σp, Σ′p, Σq and Σ′q) are displayed as a
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vertical bar, and the vertex moved (of weight w) is in orange.
The imbalances for each partition are displayed with red arrows. Indeed,

using the fact that when bipartitioning, imb(Πp) = −imb(Πq), we have:

imb(Π) = max (imb(Πp), imb(Πq)) = |imb(Πp)| =
∣∣∣∣∣Σp − Σ

2
Σ
2

∣∣∣∣∣ = 2 ·
∣∣∣∣Σp −

1
2

∣∣∣∣︸ ︷︷ ︸
red arrow

The middle column of each line combines the red arrows to form an
expression, from which one can deduce the expression of the igain in the last
column.

Formal proof. Using the notations defined in Proposition 3,

igain(v) = imb(Π)− imb(Π′)
= max

(
imb(Πp), imb(Πq)

)
−max

(
imb(Π′p), imb(Π′q)

)
.

In the case of bipartitioning, imb(Πp) = −imb(Πq), so:
igain(v) = |imb(Πq)| − |imb(Π′q)|

= |imb(Πq)| −
∣∣∣∣∣Σq +W (v)− Σ

2
Σ
2

∣∣∣∣∣ = |imb(Πq)| −
∣∣∣∣∣Σq − Σ

2
Σ
2

+ W (v)
Σ
2

∣∣∣∣∣
= |imb(Πq)| − |imb(Πq) + 2w| .

If imb(Πq) ≥ 0 (the part in which we place v is already overweighted):
igain(v) = imb(Πq)− (imb(Πq) + 2w)

= −2w .

Else, imb(Πq) ≤ 0, so in the case of bipartitioning, imb(Π) = −imb(Πq)
and
igain(v) = −imb(Πq)− |imb(Πq) + 2w|

=

−imb(Πq) + (imb(Πq) + 2w) if imb(Πq) + 2w ≤ 0 ;
−imb(Πq)− (imb(Πq) + 2w) otherwise

=

2w if w ≤ −imb(Πq)
2 = imb(Π)

2 ;
2 · imb(Π)− 2w otherwise.

Which concludes the proof.

Before going into further details on the implementation, the next section
will formulate a corollary on the connection of the solution space when using a
local optimization algorithm similar to VNBest.
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7.3.2 A Corollary: a Necessary Condition for the Con-
nection of the Solution Space

Corollary 1 (Connection of the Solution Space for Local Optimization Algo-
rithms Moving One Vertex At A Time)

Given a local optimization algorithm that moves one vertex at a time, and
an instance for which at least two vertices u and v have a weight heavier than
t · Σ.

If there is a solution in which u and v are in the same part and another
solution in which u and v are in different parts, then the solution space for this
algorithm is not connected.

Proof
Let Π be a partition in which u and v are in the same part. We assume

that Π is a solution, so imb(Π) ≤ t. We will prove that moving u or v leads
to a partition which is not a solution, or in other words that its imbalance is
higher than t.

Without loss of generality, we consider that u and v belong to Π1 and
will consider moving u. We define w = W (u)

Σ ; by assumption w > t. Besides,
Π′ = {Π1 \ {u},Π2 ∪ {u}}.

Firstly, we have imb(Π) ≤ t < w, so using Proposition 3, the gain of u is
either −2w or 2 · imb(Π)− 2w. Therefore, the imbalance of Π′ is either:

imb(Π′) = imb(Π) + 2w > imb(Π) + 2t
> 2t Because imb(Π) ≥ 0 ,

or:
imb(Π′) = imb(Π)− (2 · imb(Π)− 2w)

= 2w − imb(Π) > 2t− imb(Π)
> t Because imb(Π) ≤ t .

We have shown that the imbalance of Π′ is higher than t, so Π′ is not a
solution.

A sequence of neighboring solutions that would lead from a solution in
which u and v belong to the same part to a solution in which u and v are
not in the same part would need to, from one solution in which u and v,
move either u or v, which would thus lead to a partition which not a solution.
Therefore, such a sequence does not exist, which proves that the solution
space in this case is not connected.

This theorem can be used to determine if the solution space of an instance
is connected, when there are at least two vertices of weights heavier than tΣ.
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Indeed, as we have seen in Section 5.2.2, it is easy to find solutions using a
random partitioning algorithm. Nevertheless, as we can see in Table 5.2.1,
which reports the value of u/Σ = maxc∈[1,γ] maxm∈M(W (m)[c]/Σc), for the
instances that we will use for our test, fulfilling the condition u/Σ < t requires
a value of t below 0.17%, while the tightest prescribed tolerance in our tests is
t = 0.2%.

7.3.3 Settled Vertices
Proposition 3 of the previous section leads to the following Proposition 4,

which states that the vertices of weights heavier than imb(Π) will have a
negative gain until the end of the algorithm. As VNBest only performs moves
of non-negative gain, we say that such vertices are settled.

Proposition 4 (Settled Vertices for the Mono-criterion Bipartitioning Case)
Given a meshM and a bipartition Π ofM , let v be a cell or its corresponding

vertex in M , and let w be the (normalized) weight of v. We have:

w ≥ imb(Π) =⇒ v will have a negative igain until the end of algorithm

Proof
Let Πq be the target part of v.
We assume that w ≥ imb(Π). Then, using Proposition 3, we know that

the gain for v is:

igain(v) =


−2w if imb(Πq) ≥ 0 ;
2 · imb(Π)− 2w if imb(Πq) ≤ 0 and w ≥ imb(Π)

2 ;
2w if imb(Πq) ≤ 0 and w ≤ imb(Π)

2 .

Since imb(Π) ≥ 0, we have w ≥ imb(Π)
2 , so

igain(v) =

−2w if imb(Πq) ≥ 0 ;
2 · imb(Π)− 2w if imb(Πq) ≤ 0 .

Therefore, in either case, the igain for v is negative, because w ≥ imb(Π)
so 2 · imb(Π)− 2w is negative, and −2w is negative because W : M → R+
so w ≥ 0.

Moreover, since the imbalance is strictly decreasing by definition of
VNBest, for the rest of the algorithm, w will stay heavier than imb(Π), which
means that v will have a negative igain until the end of the algorithm.
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Proposition 4 shows that, depending on the current imbalance, some vertices
will not move until the end of the algorithm. Therefore, there is no need to
compute their igain until the end of the algorithm.

In the following section, we will use the results from Propositions 3 and 4
to propose a gain table structure that will allow us to find quickly the maximal
igain at each step, and to avoid recomputing all gains after each move.

7.3.4 Gain Table Structure (Mono-criterion Case)
The igain of a move is the reduction in imbalance induced by this move, as

in Definition 32. Our gain table records the igains of the vertices in order to
speedup the search and avoid unnecessary computations.

Ordering the Vertices to Order the igains

Proposition 3 allows us to build Table 7.3.1, which displays data on the
igain as a function of the vertex weights, for the vertices in the overweighted
part:
• on the first row, the expression of the igain of a vertex depending on its
weight and on the current imbalance;
• on the second row, the variations of the igain function. The igain is here

considered as a function of the weight, for a given imbalance;
• on the last row, the sign of the igain function.

Table 7.3.1 – Variation array of the gain as a function of the weight, for a given
imbalance and for the vertices in the overweighted part

W (v)

igain(v)

igain(v)

igain(v)

0 imb(Π)
2 imb(Π) +∞

2w 2 · imb(Π)− 2w

00

imb(Π)imb(Π)

−∞−∞
0

0 + 0 −

Gain Table Organization

We will make use of the simple variations of igain when the weight is
increasing to build a gain table whose variations follow those of the igain
function. Thus, our gain table will have n cells (where n is the number of
cells in the mesh), and the ith cell will store the igain for the cell with the ith
smallest weight in the mesh.
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Table 7.3.2 – The gain table structure for a fictitious mesh of n cells, and for a
fictitious partition

imb(Π)
2 imb(Π)

Πp is overweighted ↓ ↓
weight w1 w2 ... winflt winflt+1 ... wlast wlast+1 ... wn

part Πq Πp ... Πq Πp ... Πq Πq ... Πp

igain(v → Πq) 2w 2 · imb(Π)− 2w
– g2 ... – ginflt+1 ... – x ... x︸ ︷︷ ︸

settled vertices

Table 7.3.2 gives an example of the gain table structure. The vertex weights
are indicated on the first row. The cells are ordered such that w1 ≤ ... ≤ wn.
The part of each vertex in this example is indicated on the second row (with
different colors for each part), the expression of igain is recalled on the third row
(as computed in Proposition 3), and its value for each vertex in the overweighted
part in the fourth row. A “–” in the fourth row indicates that the igain(v → Πq)
is not defined for vertex v because v already belongs to Πq, and an “x” indicates
that the gain does not need to be computed because the vertex is settled, as
shown in Proposition 4.

Gain Table Initialization

Algorithm 36 details how the gain table is initialized.
First, the vertices are sorted by increasing weights, so that W (v1) ≤ ... ≤

W (vn). Then, the ith cell in the table gains is initialized with the gain of
vi, but only if the weight of vi is lighter than imb(Π). Indeed, as seen in
Proposition 4, vertices of weight heavier than imb(Π) are settled, so we do not
need to compute their gain.

Remark
Note that if vi belongs to the underweighted part, the ith cell does not

contain the gain of vi. If wi ≤ imb(Π)
2 , it contains the opposite of igain(vi),

and an incorrect value otherwise.
This is actually a little trick that will reduce the amount of computation

when updating the gain after a move (which will be discussed further in
Section 7.3.6). The idea is that, since the vertices in the underweighted part
will not move, we do not need the value of their gain at this step. However,
when the overweighted part changes, the gains of the vertices in the new
overweighted part and of weight smaller than imb(Π)

2 will already be set to
the proper value.

In addition to the gains table, the GainTableInit_mono function also
returns the position of the inflection point, inflt, which is the index of the
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Algorithm 36 Initialization of the Gain Table in the Case of Mono-criterion
Bipartitioning
Require: k = 2 and γ = 1 and sum(W ) = 1 (normalized weights)
1: function GainTableInit_mono(M , W , k, Π)
2: W.sortAscend()
3: gains, inflt, i← [ ], 0, 1 # inflt: inflection point position
4: while i ≤ n and W [i] < imb(Π) do
5: if W [i] ≤ imb(Π)

2 then
6: gains.append(2 ·W [i])
7: inflt ← i
8: else
9: gains.append(2 · imb(Π)− 2 ·W [i])
10: end if
11: i← i+ 1
12: end while
13: last ← i− 1 # i corresponds to the first settled vertex
14: return gains, inflt, last
15: end function

last vertex whose weight is just smaller or equal to imbc(Π)
2 . Also, the function

returns in variable last the number of vertices whose weight is smaller than
imb(Π), which is the number of non-settled vertices.

In this section, we have detailed the heart of our implementation of the
VNBest algorithm: the gain table structure. Note that we also keep track of
the position of the inflection point (position around which the gains will begin
to decrease) and the number of unsettled vertices. In the next section, we will
describe how this structure allows us to find the best move quickly.

7.3.5 Finding the Best Move
According to the variation Table 7.3.1 described in Section 7.3.1, the best

move is the vertex in the overweighted part whose weight is the closest to
imb(Π)

2 .

Example

In Table 7.3.3, that would be either vinflt−1 or vinflt+1, but not vinflt which is
in the underweighted part (so its gain is negative).

Algorithm

Algorithm 37 details how to find the move of best gain using few compu-
tations. It starts from the inflection point inflt (which was returned by the
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Table 7.3.3 – The candidate moves of best gain in the gain table structure of a
fictitious mesh are to be searched among the vertices of weight close to imb(Π)

2

imb(Π)
2 imb(Π)

Πp is overweighted ↓ ↓
weight w1 w2 ... winflt−1 winflt winflt+1 ... wlast wlast+1 ... wn

part Πq Πp ... Πp Πq Πp ... Πq Πq ... Πp

igain(v → Πq) 2w 2 · imb(Π)− 2w
– g2 ... ginflt−1 – ginflt+1 ... – x ... x

← → ︸ ︷︷ ︸
best moves settled vertices

GainTableInit_mono function, and is the index of the last vertex of weight
smaller or equal to imb(Π)

2 ). Then, it stores in the variable ileft the index of
the first vertex which is in the overweighted part and of index smaller than or
equal to inflt. If no such vertex exists, then ileft is set to 0.

Algorithm 37 Finding the Best Move Without Computing All the Imbalance
Gains (Mono-criterion Bipartitioning Case)
Require: k = 2 and γ = 1
function FindBestMove_mono(M , k, Π, gains, inflt, last)

ileft , iright ← inflt, inflt + 1
pover , pundr ← RangeParts(Π, 2) # Indexes of overweighted and underweighted

parts
while ileft > 0 and M [ileft ] /∈ Πpover do ileft ← ileft − 1 end while
while iright ≤ last and M [iright ] /∈ Πpover do iright ← iright + 1 end while
if iright ≤ last and

(
ileft = 0 or gains[iright ] > gains[ileft ]

)
then

return iright , pundr
else

return ileft , pundr # ileft may be 0
end if

end function

It acts identically with the variable iright that will contain the index of the
first vertex in the overweighted part and of index strictly heavier than inflt,
but smaller than last, the number of non-settled vertices. If no such vertex
exists, then iright contains last.

In the example Table 7.3.3, ileft = inflt − 1 and iright = inflt + 1. The best
move is obtained by comparing gains[ileft ] to gains[iright ], when ileft and iright
are well-defined (neither 0 or n). If both ileft and iright are undefined, then 0 is
returned, which means that no more move of positive gain exists.

Once we have found the best move, the imbalance will decrease, which
means that the gain of some vertices will change. In the next section, we will
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explain how to update the gain table. Besides, we need to keep track of the
inflection point position and the number of settled vertices.

7.3.6 Gain Table Update After a Move
Overview

After a move, if we call Π′ the new partition:
• if the overweighted part remains the same, only the vertices in the

overweighted part and of weight ranging between imb(Π′)
2 and imb(Π′) may

change of gain;
• otherwise, the vertices in the new overweighted part need a gain update.

However, the gain for the vertices of weight below imb(Π′)
2 does not depend

on the imbalance, so it is still 2w, the value that it was initialized
to (remember when we talked about the little trick in the remark in
Section 7.3.4). Therefore, the vertices of weight below imb(Π′)

2 do not need
a gain update;
• moreover, the imbalance will decrease by definition. For the vertices of
weight heavier than imb(Π′), they become settled vertices, so we will stop
keeping track of their gain.

Thus, thanks to a little trick (an erroneous value of the gain for the vertices
in the underweighted part, that turns out to be the correct value when the
overweighted part changes and if their weight is still smaller than imb(Π′)

2 ), if the
overweighted part changes, it is actually the same as when the overweighted
part does not change: in both cases, we need to update the gains of the vertices
in the (possibly new) overweighted part that have a weight ranging between
imb(Π′)

2 and imb(Π′).

Example

Table 7.3.4 displays in its first row an example of the gain table before any
move, and in the second row the updates after one move. The second row
therefore distinguishes two cases, depending on whether the overweighted part
changes or not after the move. Indeed, in both cases, the vertices needing a
gain update are the vertices in the (possibly new) overweighted part and of
weight ranging between imb(Π′)

2 and imb(Π′).
The igain for the vertices in the overweighted part is indicated, and “–” is

inserted for the vertices for which it is not defined. An “x” in place of the igain
of a vertex means that this vertex is settled, so there is no need to compute its
gain.

Algorithm

Algorithm 38 implements the search for the move of maximum igain.
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Table 7.3.4 – The candidate moves of best gain in the gain table structure of a
fictitious mesh are to be searched among the vertices of weight close to imb(Π)

2

Before the move imb(Π)
2 imb(Π)

Πp is overweighted ↓ ↓
weight w1 w2 ... winflt−1 winflt winflt+1 ... wlast ...
part Πq Πp ... Πp Πq Πp ... Πq ...

igain(v → Πq) 2w 2 · imb(Π)− 2w
– g2 ... ginflt−1 – ginflt+1 ... – x

← → ︸ ︷︷ ︸
best moves settled vertices

After the move imb(Π′)
2 imb(Π′)

1. Π′p is overweighted ↓ ↓
weight w1 w2 ... winflt′ winflt′+1 ... wlast′ ...
part Πq Πp ... Πp Πq ... Πp ...

igain(v → Πq) 2w 2 · imb(Π′)− 2w
– g2 ... ginflt′ – ... g′last′ x︸ ︷︷ ︸ ︸ ︷︷ ︸

need gain update settled vertices
2. Π′q is overweighted ︷ ︸︸ ︷ ︷ ︸︸ ︷
igain(v → Πp) 2w 2 · imb(Π′)− 2w

g1 – ... – g′inflt′+1 ... – x

Algorithm 38 Updating the Gain Table in Case of Mono-criterion Biparti-
tioning
Require: k = 2 and γ = 1 and sum(W ) = 1 (normalized weights)
function GainTableUpdate_mono(M , W , Π, gains, last)

pover ,_← RangeParts(Π, 2) # Index of overweighted part
i← 1
while i ≤ last and W [i] ≤ imb(Π)

2 do i← i+ 1 end while
inflt ← i− 1
while i ≤ last and W [i] < imb(Π) do

if Π[i] = pover then
gains[i]← 2 · imb(Π)− 2W [i] # Gain update

end if
i← i+ 1

end while
last ← i # i is the number of unsettled vertices
return gains, inflt, last

end function
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The GainTableUpdate function begins by scanning the gains table until
it finds the inflection point. Before reaching the inflection point, no update
is required. This is only after the inflection point that the gains must be
recomputed. Note that only the gains of the vertices in the overweighted part
need to be computed. Indeed, the vertices in the underweighted part have a
negative gain, and they will not be considered by the FindBestMove function.
When the weights of the vertices become heavier or equal to the imbalance, the
update stops because these vertices are settled.

Remark
After a move, by definition of the algorithm, the imbalance decreases.

Along the algorithm, the number of settled vertices is thus increasing, and a
decreasing number of vertices need to be considered.

7.3.7 Global Algorithm and Conclusion
Throughout this section, we have detailed a gain table structure that allows,

in the mono-criterion, bipartitioning case, to reduce the amount of computation.
The exact amount of computation required is difficult to estimate, but the
thing is that:
• it is at least n log(n) (n is the number of cells in the mesh), because our

implementation needs to sort the cells by increasing weight;
• when a move of great gain is performed, then, the number of settled
vertices should increase, because the vertices of weight heavier than the
imbalance are settled, so the amount of computation remaining decreases;
• when a move of small gain is performed, then only a few gains should be
updated, because only the vertices of weight ranging between half the
imbalance and the imbalance change of gain, so it amounts for a reduced
amount of computation.

In both cases, the amount of computation is either small or reduced for the
rest of the algorithm, so we believe that our implementation of a gain table
structure allows a great reduction in the amount of computation required over
the greedy implementation of the VNBest algorithm. This will be asserted
experimentally in Section 10.1.1.

Algorithm 39 implements the VNBest_mono function that relies on the gain
table structure. To sum up, the key features of the gain table are that:
• the vertices in the gain table are sorted by increasing weight;
• the vertices of weight heavier than or equal to imb(Π) do not need to be
considered, because they will have a negative gain until the end of the
algorithm (we say that they are “settled”);
• the vertex of maximum gain can be quickly found, because it is the vertex

in the overweighted part and whose weight is closest to imb(Π)
2 ;
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Algorithm 39 Mono-criterion Version of the Steepest Descent-like Vector-of-
Numbers Partitioning Algorithm Using a Gain Table To Reduce the Amount
of Computation and Speedup the Search
Require: Π: an initial partition of M (may be random)
1: function VNBest_mono(M , W , Wcom, t, Π)
2: gains, inflt, last← GainTableInit_mono(M,W,Π)
3: i, q ← FindBestMove_mono(M,Π, gains, inflt, last)
4: while igain(M [i]→ Πq) > 0 do
5: Π[i]← Πq

6: gains, inflt, last ← GainTableUpdate_mono(M,W,Π, gains, last)
7: i, q ← FindBestMove_mono(M,k,Π, gains, inflt, last)
8: end while
9: return Π
10: end function

• after a move, if imb′ is the new imbalance, the only update in the gain
table concerns the vertices in the (possibly new) overweighted part of
weight between half imb′ and imb;
• indeed, the vertices in the overweighted part of weight w under imb(Π)

2
have a constant gain of 2w. Using a little trick, their gain do not need
to be updated after a move if their weight is still below half the new
imbalance.

The next section will address a more complex situation, as we will consider
the multi-criteria bipartitioning case.

7.4 Multi-criteria, Bipartitioning Case
In this section, we consider bipartitioning a multi-criteria mesh. The

difference with the mono-criterion case is that a move that may reduce the
imbalance for one criterion may unfortunately increase it for another, so
computing the igain of one move becomes more difficult, and finding the best
move is more tricky.

This section is organized similarly as the previous one.

7.4.1 Expression of the Gain of a Move
Proposition 5 formulates similar equations for the gain per criterion as in the

mono-criterion case, but concerning the gain per criterion igainc (introduced
at the beginning of this chapter in Definition 32).

Proposition 5 (Gain in Imbalance per Criterion for Multi-criteria Bipartition-
ing)
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Figure 7.4.1 – Example of how the imbalance changes when a vertex (in orange)
moves (left: before move, right: after move)

Given a mesh M and a bipartition Π = {Π1,Π2} of M , let v be a cell or
vertex in M .

We assume that v ∈ Πp, and consider moving it to Πq 6= Πp, which would
lead to the partition Π′ = {Π′p,Π′q}, such that Π′p = Πp \{v} and Π′q = Πq ∪{v}.

We denote by wc the (normalized) weight of v for criterion c (wc = W (v)[c]
Σc

).
Then, the gain of v for criterion c is

igainc(v) =


−2wc if imbc(Πq) ≥ 0 ;
2 · imbc(Π)− 2wc if imbc(Πq) ≤ 0 and w ≥ imbc(Π)

2 ;
2wc if imbc(Πq) ≤ 0 and w ≤ imbc(Π)

2 .

Proof
Let us consider any weight function Wc : v 7→ W (v)[c]; in this case, the

instance (M,Wc) is a mono-criterion mesh, of gain function identical to
igainc. So, the mono-criterion Proposition 3 holds for igainc, which concludes
the proof.

If Proposition 5 is similar to the mono-criterion case, it is not as powerful.
Indeed, there are no means to compute the igain of a vertex from its igainc for
each criterion. This is due to the fact that usually, igain(v) 6= max

c
igainc(v),

as shown in Figure 7.4.1, which shows an example of the move of a vertex (in
orange) when there are two criteria, c1 and c2.

On this figure, the vertex of weight (w1, w2) in orange is moved from Πp to
Πq. However, the most imbalanced criterion changes, so there are no means to
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express the gain other than using the basic equations:

gain(v) = imb(Π)− imb(Π′) = max
c

(imbc(Π))−max
c

(imbc(Π′))

= max
c

(imbc(Π))−max
c

(imbc(Π)− gainc(v))

Since we cannot compute directly the igain of a vertex in the multi-criteria
case, we will need to use the igainc functions. These functions lead to the same
property as in the mono-criterion case on settled vertices, as we will see in the
next section. Then, we will describe in Section 7.4.3 the gain table structure
that we will use in order to find quickly the move of best gain and to reduce
the amount of computation.

7.4.2 Settled Vertices
Proposition 5 leads to a property similar to that of the mono-criterion case,

about some vertices that are settled.

Proposition 6 (Settled Vertices for the Multi-criteria Bipartitioning Case)
Given a mesh M and a bipartition Π of M , let v be a cell or its corre-

sponding vertex in M . We assume that the weight function W is normalized
( ∀c, ∑

v∈M
W (v)[c] = 1). Then we have:

∃c,W (v)[c] ≥ imb(Π) =⇒ v will have a negative igain until the
end of the algorithm.

Proof
Given a mesh M and a bipartition Π of M , let v be a cell or its corre-

sponding vertex inM , and let wc be the (normalized) weight of v for criterion
c. Let Πq be the target part of v.

We assume that wc ≥ imb(Π). Then, using Proposition 3, we know that
the gain for v is:

igain(v) = imb(Π)− imb(Π′)
≤ imb(Π)− imbc(Π′) because imb(Π′) ≥ imbc(Π′)
≤ imb(Π)− (imbc(Π)− igainc(v)) = imb(Π)− imbc(Π) + igainc(v) .

Using Proposition 5 and the fact that wc ≥ imb(Π) ≥ imbc(Π)
2 ,

igain(v) ≤

imb(Π)− imbc(Π)− 2w if imbc(Πq) ≥ 0 ;
imb(Π)− imbc(Π) + (2 · imbc(Π)− 2w) otherwise .

igain(v) ≤

imb(Π)− imbc(Π)− 2w if imbc(Πq) ≥ 0 ;
imb(Π) + imbc(Π)− 2w otherwise .
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If imbc(Πq) ≥ 0, then imb(Π) ≤ w by our assumption and w ≥ 0 by
definition, so imb(Π)− imbc(Π)− 2w ≤ 0.

Otherwise, imbc(Π) ≤ imb(Π) ≤ w, so imb(Π) + imbc(Π) − 2w ≤
2imb(Π)− 2w ≤ 0.

We have shown that the gain in imbalance for v is negative. Using the
same reasoning as in Proposition 4 (on settled vertices in the case of mono-
criterion bipartitioning), we can conclude that, by definition of VNBest, v
will not switch to another part anymore during the algorithm.

Proposition 6 allows us to avoid computing the gain of the settled vertices.
In the multi-criteria case, a vertex is settled if its weight for at least one criterion
is heavier than the (global) imbalance. Using this property and the expression
of the igainc functions computed in the previous section, the next section will
define the gain table that we will use in the multi-criteria bipartitioning case.

7.4.3 Gain Table Structure (Multi-criteria Case)
Gain Table Organization

The multi-criteria gain table is a set of γ gain subtables: one per criterion.
We will navigate between each subtable in order to find the move reducing the
most the imbalance. In the cth subtable, the vertices are ordered by increasing
weight for criterion c, which allows us to keep the same characteristics for igainc
as for a mono-criterion table: the igainc in the subtable is increasing up to a
weight close to imbc(Π)

2 , then it is decreasing, and become negative when the
weights become heavier than imbc(Π).

Example

Table 7.4.1 shows an example of the gain table for a mesh of n = 12 cells
and a weight distribution of two criteria. It is therefore composed of two gain
subtables, one per row.

In the first row, the vertices are ordered by increasing weight according to the
first criterion. In this example, we have W (v3)[1] ≤ W (v5)[1] ≤ ... ≤ W (v8)[1].
The same holds for the second row, but considering the second criterion, so
that W (v1)[2] ≤ W (v12)[2] ≤ ... ≤ W (v6)[2].

The most imbalanced criterion, cmax, is assumed to be c2. Therefore, as
stated in the previous section, all vertices whose weight is heavier than imbc2(Π)
for at least one criterion are settled. These vertices are colored in gray and have
an “x” as igain value. In the example, the settled vertices are v6, v8 and v12.
Note that some settled vertices, as v6 or v12, may appear in place of “unsettled”
vertices in some subtables, but we just will ignore them.
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Table 7.4.1 – The gain table structure for a fictitious multi-criteria mesh

Gain subtable for c1 imbc1(Π)
2 imbc1(Π) imbc2(Π)
↓ ↓ ↓

vertex v3 v5 v6 v1 v7 v11 v10 v4 v2 v9 v12 v8
part Πp Πq Πq Πp Πp Πp Πq Πq Πp Πq Πp Πq

gainc1 g3,1 g5,1 x g1,1 g7,1 g11,1 g10,1 g4,1 g2,1 g9,1 x x︸ ︷︷ ︸
settled vertices

Gain subtable for c2 = cmax
imbc2(Π)

2 imbcmax(Π)
↓ ↓

vertex v1 v12 v3 v9 v2 v10 v5 v7 v11 v4 v8 v6
part Πp Πp Πp Πq Πp Πq Πq Πp Πp Πq Πq Πq

gainc2 g1,2 x g3,2 g9,2 g2,2 g10,2 g5,2 g7,2 g11,2 g4,2 x x︸ ︷︷ ︸
settled vertices

Algorithm

Algorithm 40 describes the GainTableInit function, that initializes a multi-
criteria gain table. It basically calls the GainSubtableInit function for each
criterion. Note that, instead of one inflection point position as in the mono-
criterion case, the multi-criteria version returns a list of inflection point positions,
one per criterion. However, the number of unsettled vertices (variable last) in
each subtable is independent from the criterion.

The GainSubtableInit function is nearly the same as the
GainTableInit_mono function, but using Wc and imbc instead of W
and imb. The only part that changes is when to stop computing the gains,
which uses the global imbalance imb instead of imbc. This is the particularity
of the multi-criteria case: a vertex of negative igainc may be of positive igain.

We have described the gain table structure that we will use in the multi-
criteria case. In the next section, we will explain how to navigate between the
subtables in order to find the move of greatest igain in a few steps.

Finding the Best Move

In order to reduce the imbalance, the imbalance for the most imbalanced
criterion cmax must decrease. Therefore, the vertex moved must belong to the
overweighted part for cmax. Unlike for the mono-criterion case, nevertheless,
finding the vertex of best igaincmax does not guarantee to have found the vertex
leading to the smallest imbalance. In order to find the vertex of best gain, we
will use the following Proposition 7, which allows us to stop the search when a
move does not improve the most imbalanced criterion.
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Algorithm 40 Initialization of the Gain Table in Case of Multi-criteria Bipar-
titioning
Require: k = 2 and ∀c, sum(Wc) = 1 (normalized weights)
1: function GainSubtableInit(M , W , Π, c)
2: Wc.sortAscend()
3: gainsc, infltc, i← [ ], 0, 1
4: while i ≤ n and Wc[i] < imb(Π) do # Independent from c

5: if Wc[i] ≤ imbc(Π)
2 then # Depends on c

6: gainsc.append(2 ·Wc[i])
7: infltc ← i
8: else
9: gainsc.append(2 · imbc(Π)− 2 ·Wc[i])
10: end if
11: i← i+ 1
12: end while
13: last ← i
14: return gainsc, infltc, last
15: end function

16: function GainTableInit(M , W , k, Π)
17: gains, inflt ← [ ], [ ]
18: for c← 1, γ do
19: gainsc, infltc, last ← GainSubtableInit(M,W,Π, c)
20: gains.append(gainsc)
21: inflt.append(infltc)
22: end for
23: return gains, inflt, last
24: end function
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Proposition 7 (igain for the Vertices of Smaller igaincmax)
Given a mesh M and a bipartition Π = {Π1,Π2} of M , let v be a cell or its

corresponding vertex in M .
We assume that, when moving v to the part it does not belong to, the most

imbalanced criterion remains the same. Hence:

∀ṽ ∈M, igaincmax(ṽ) ≤ igaincmax(v) =⇒ igain(ṽ) ≤ igain(v) .

Proof
Given a mesh M and a bipartition Π = {Π1,Π2} of M , let v be a cell or

its corresponding vertex in M .
We assume that v ∈ Πp, and consider moving v to Πq 6= Πp, which

would lead to the partition Π′ = {Π′p,Π′q}, such that Π′p = Πp \ {v} and
Π′q = Πq ∪ {v}.

Let ṽ be another cell or vertex in M , in part Πp̃. We consider moving
ṽ to Πq̃ 6= Πp̃, which would lead to the partition Π̃′ = {Π̃′p̃, Π̃′q̃}, such that
Π̃′p̃ = Πp̃ \ {ṽ} and Π̃′q̃ = Πq̃ ∪ {ṽ}.

Let cmax be the most imbalanced criterion of Π. We assume that cmax
is also the most imbalanced criterion of Π′ (which means that the most
imbalanced criterion remains the same when moving v). We will denoted by
c̃max the most imbalanced criterion of Π̃.

Finally, we assume that igaincmax(ṽ) ≤ igaincmax(v), and we will show
that igain(ṽ) ≤ igain(v).

We have:

imb(Π̃′) = imbc̃max(Π̃′) = imbc̃max(Π)− igainc̃max(ṽ)
≤ imb(Π)− igainc̃max(ṽ) . (7.1)

Besides, we also have:

imb(Π̃′) ≥ imbcmax(Π̃′) = imbcmax(Π)− igaincmax(ṽ)
= imb(Π)− igaincmax(ṽ) . (7.2)

Combining 7.2 and 7.1, we get:

imb(Π)− igaincmax(ṽ) ≤ imb(Π̃′) ≤ imb(Π)− igainc̃max(ṽ) ,

so
igainc̃max(ṽ) ≤ igaincmax(ṽ)

and as we assumed that igaincmax(ṽ) ≤ igaincmax(v),
igainc̃max(ṽ) ≤ igaincmax(v) . (7.3)
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Firstly, since cmax is the most imbalanced criterion for both Π and Π′,
we have:

igaincmax(v) = imbcmax(Π)− imbcmax(Π′) = imb(Π)− imb(Π′)
= igain(v) . (7.4)

Secondly, we also have

igain(ṽ) = imb(Π)− imb(Π̃′)
= imb(Π)−max

c
(imbc(Π)− gainc(ṽ)) ,

but

max
c

(imbc(Π)− gainc(ṽ)) ≥ imbc̃max(Π)− igainc̃max(ṽ)

≥ imb(Π)− igainc̃max(ṽ) ,

so

imb(Π)−max
c

(imbc(Π)− gainc(ṽ)) ≤ imb(Π)− (imb(Π)− igainc̃max(ṽ))

≤ igainc̃max(ṽ) ,

and
igain(ṽ) ≤ igainc̃max(ṽ) . (7.5)

Combining 7.3, 7.4 and 7.5, we finally obtain:

igain(ṽ) ≤ igain(v) ,

which concludes the proof.

The idea to find the best move is first to consider the moves of best gain for
cmax. Then, we will have to examine each vertex (by decreasing igaincmax) in
the gain subtable for cmax as long as we do not find a vertex which, when moved,
does not change cmax. Once we have found one, as stated in Proposition 7, all
the remaining vertices will have a smaller igain.

Algorithm

Algorithm 41 implements the FindBestMove function. This function returns
the vertex leading to the best gain without browsing all the gain table.

First, the function initializes some data. In particular, the variables lft and
rgt will state if the search should be continued respectively to the left and to
the right from the current positions, which are respectively ilft and irgt . As we
consider the vertices of best gain for cmax, the initial positions are the inflection
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Algorithm 41 Finding the Best Move Without Computing All the Imbalance
Gains (Bipartitioning Case)
Require: k = 2 and ∀c, sum(Wc) = 1 (normalized weights)
1: function FindBestMove(M , k, Π, gains, inflt, last)
2: cmax ← argmax([imb1(Π) γ... imbγ(Π)]) # Most imbalanced criterion
3: pover ,_← RangeParts(Π, 2) # Index of overweighted part
4: candidates ← [ ] # Stores the vertices that can have the greatest igain
5: lft, rgt ← True, True
6: ilft , irgt ← inflt[cmax], inflt[cmax] + 1
7: while lft or rgt do
8: if lft then # Explore to the left from inflt to find a vertex in Πpover

9: while ilft > 0 and M [ilft] /∈ Πp do ilft ← ilft − 1 end while
10: end if
11: if ilft > 0 then glft ← gainscmax

[ilft] else glft ← −1 end if
12: if rgt then # Explore to the right from inflt to find a vertex in Πpover

13: while irgt ≤ last and M [irgt ] /∈ Πp do irgt ← irgt + 1 end while
14: end if
15: if irgt > 0 then grgt ← gainscmax

[irgt ] else grgt ← −1 end if
16: lft, rgt ← False, False
17: if glft > −1 and glft ≥ grgt then # If ilft has the best gain
18: candidates.append(ilft)

# Continue searching to the left if cmax does not change
19: lft← (cmaxAfterMove(gains,Π, ilft) = cmax)
20: if lft then ilft ← ilft − 1 end if
21: else if grgt > −1 then # Else if irgt has the best gain
22: candidates.append(irgt)

# Continue searching to the right if cmax does not change
23: rgt ← (cmaxAfterMove(gains,Π, irgt) = cmax)
24: if rgt then irgt ← irgt + 1 end if
25: end if # Else, the search will stop (end of table)
26: end while
27: return BestAmongCandidates(Π, candidates, gains), poverwgt
28: end function

29: function BestAmongCandidates(Π, candidates, gains)
30: ibest, imbmin ← 0, 1
31: for i ∈ candidates do
32: imbi ← max([imb1(Π)− gains1[i] γ... imbγ(Π)− gainsγ[i])
33: if imbi < imbmin then ibest, imbmin ← i, imbi end if
34: end for
35: return ibest
36: end function
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point and the inflection point + 1.
Then, while we search to the left and/or to the right, we will repeat the

following: explore to the left and/or to the right to find a vertex in the
overweighted part. Then, between the vertex on the left and the vertex on the
right, select that of greatest igaincmax , add it to the candidates list, and see if
the most imbalance criterion improves when it is moved. If it improves, we will
need to go on filling the candidates list. If it does not improve, then we can
stop the search.

At this step, the candidates list contains all the vertices that may have
the greatest igain. Finally, the vertex that actually has the greatest igain is
selected from the candidates list using the BestAmongCandidates function.

Finally, after having performed a move, we will need to update all the gain
subtables accordingly. The principle is the same as in the mono-criterion case,
although it must be performed for each of the gain subtables, and that it is a
bit different to define the settled vertices.

Updating the Gains After a Move

Updating the gain table means updating the igainc values for each
criterion, which means to update each of the gain subtables. This is
nearly the same as updating a mono-criterion gain table. Algorithm 42
details the GainSubtableUpdate function, which is nearly the same as the
GainTableUpdate_mono function used in the mono-criterion case.

The first difference is that whether the vertices in the cth gain table need
a gain update, does not depend only on c, but also on cmax. Indeed, vertices
in the underweighted part for cmax do not need a gain update, because they
will have a negative igain as long as the overweighted part for cmax does not
change, so we will update their igainc values at this time.

The second difference is that the place of the inflection point depends on the
criterion considered. Moreover, the place where the settled vertices sub-array
begins is computed using the “global” imbalance.

7.4.4 Global Algorithm and Conclusion
In this section, we have detailed the gain table structure for the multi-criteria,

bipartitioning case. This structure should allow us to reduce the amount of
computation, whereas it is very difficult to estimate it in the multi-criteria
case. However, we will see in Section 10.1.1 that, using our implementation,
the VNBest algorithm is in practice fast enough. Algorithm 43 details our
implementation (which is very similar to that of the VNBest_mono algorithm)
using the functions defined throughout this section.

The key differences with the mono-criterion case are:
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Algorithm 42 Updating the Gain Subtable in Case of Bipartitioning
Require: k = 2 and ∀c, sum(Wc) = 1 (normalized weights)
function GainSubtableUpdate(M , W , Π, gains, last, c)

pover ,_← RangeParts(Π, 2) # Index of overweighted part (for cmax)
i← 1 # No gain update
while i ≤ last and Wc[i] ≤ imbc(Π)

2 do # Depends on imbc

i← i+ 1
end while
inflt ← i− 1
while i ≤ last and Wc[i] < imb(Π) do # Depends on imb

if Π[i] = pover then # Depends on cmax

gainsc[i]← 2 · imb(Π)− 2Wc[i] # Gain update
end if
i← i+ 1

end while
last ← i− 1 # i corresponds to the first settled vertex
return gainsc, inflt, last

end function

Algorithm 43 Multi-criteria Version of the Steepest Descent-like Vector-of-
Numbers Partitioning Using a Gain Table to reduce the amount of computation
and speedup the search
Require: Π: an initial partition of M (may be random)
1: function VNBest(M , W , Wcom, t, Π)
2: gains, inflt, last← GainTableInit(M,W,Π)
3: i, q ← FindBestMove(M,Π, gains, inflt, last)
4: while igain(M [i]→ Πq) > 0 do
5: Π[i]← Πq

6: for c← 1, γ do
7: gains, inflt, last ← GainSubtableUpdate(M,W,Π, gains, last, c)
8: end for
9: i, q ← FindBestMove(M,k,Π, gains, inflt, last)
10: end while
11: return Π
12: end function
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• there is one gain table for each criterion;
• the vertices in the cth gain table are sorted by increasing weight for

criterion c;
• we only need to consider the vertices belonging to the overweighted part

for cmax;
• the vertices whose weight for at least one criterion is heavier or equal to
imb(Π) do not need to be considered, because they are settled in their
current part. This is a notable difference with the mono-criterion case (a
straightforward application would be to consider imbc(Π), but in fact it
is not correct);
• finding the vertex of maximum igain requires more computations than

in the mono-criterion case. This is the biggest difference with the mono-
criterion case, because the vertex closest to the inflection point may not
be that of greatest igain;
• however, thanks to the useful Proposition 7, we need to consider only the

vertices of weight closest to imbcmax (Π)
2 , until moving one of them does not

change the most imbalanced criterion cmax;

The next section will consider the k-partitioning case.

7.5 Discussion on the Extension to k-
partitioning

This section will discuss the extension of the VNBest algorithm to the k-
partitioning case, with k > 2. There is a major difference when dealing with
k > 2 parts. Indeed, VNBest searches for a move that minimizes the imbalance,
which is a minimization of a maximum. With two parts, the imbalances are
opposite, which allow useful properties, for example Proposition 5 that allowed
to compute easily igainc. This proposition does not hold anymore when dealing
with more than two parts, as shown in the following example, which considers
a mono-criterion mesh.

Example
The next figure displays an example of two 3-partition for a mono-criterion

instance. The imbalance of a partition is shown by a red arrow. Indeed,

imb(Π) = max(imb(Πp), imb(Πq), imb(Πr)) = imb(Πp) (in this example)

=
Σp − Σ

k
Σ
k

= 3×
(

Σp −
1
3

)
︸ ︷︷ ︸

red arrow

because the weights are normalized.
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We can see that the gain of moving v of weight w is here imb(Πp)−imb(Πr),
which cannot be formulated as an expression involving only imb(Π) and w,
as in to the bipartitioning case.

There is no means to compute directly the gain of a move like in the
bipartitioning case, and, more importantly, finding which move will reduce the
most the imbalance is complex, especially in the multi-criteria case. Therefore,
for k-partitioning, we prefer to rely on the recursive bisection algorithm (RB
defined in Algorithm 14 on page 84). Indeed, whereas some argue that a
direct k-partitioning algorithm may optimize better than a recursive bisection
algorithm, we do not need to find the partition with minimal imbalance, but
“only” a partition of imbalance smaller than the given tolerance.

Nevertheless, we will state some results that are still valid when dealing
with k > 2 parts.
• In order to decrease the imbalance, one needs to move a vertex from

the heaviest part for the most imbalanced criterion. Therefore, the best
move should be searched among the vertices in part Πpmax such that
imbcmax(Πpmax) = max

Πp∈Π
(imbcmax(Πp)).

• In the mono-criterion case, the vertices whose weight is heavier than
imb(Π) are settled, as stated in the following Proposition 8. We assume
this should also be true in the multi-criteria case.

Proposition 8 (Settled Vertices for the Mono-criterion Case)
Given a mesh M and a partition Π of M , let v be a cell or its corresponding

vertex in M . Let its normalized weight be w = W (v)
Σ . Then:

w ≥ imb(Π) =⇒ v will have a negative igain until the end of algorithm.

Proof
To simplify the notations, we will assume without loss of generality that

v ∈ Π1, and we will consider moving v to the target part Π2.
We denote by Π′ = {Π′1, ...,Π′k} the partition of M obtained after moving

v, which means that Π′1 = Π1 \ {v}, Π′2 = Π2 ∪ {v} and ∀p /∈ {1, 2},Π′p = Πp.
We assume that w ≥ imb(Π), and we will show that imb(Π′) ≥ imb(Π).

We have:
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imb(Π′) = max(imb(Π′1), imb(Π′2), imb(Π′3), ..., imb(Π′k))

= max
(

Σ1 − w − Σ
k

Σ
k

,
Σ2 + w − Σ

k
Σ
k

, imb(Π3), ..., imb(Πk)
)

= max(imb(Π1)− kw, imb(Π2) + kw, imb(Π3), ..., imb(Πk))
≥ max(imb(Π1), imb(Π2) + kw, imb(Π3), ..., imb(Πk))
≥ max(imb(Π), imb(Π2) + kw, imb(Π), ..., imb(Π))
≥ max(imb(Π), imb(Π2) + kw) . (7.6)

Besides, we have
k∑
p=1

imb(Πp) = 0, so:

imb(Π2) + kw = −
∑
p 6=2

(imb(Πp)) + kw

≥ −
∑
p 6=2

(imb(Π)) + kw

≥ −(k − 1) · imb(Π) + kw ,

and using w ≥ imb(Π):
imb(Π2) + kw ≥ w ≥ imb(Π) . (7.7)

Therefore, combining the inequations 7.6 and 7.7, we obtain that
imb(Π′) ≥ imb(Π), which concludes the proof.

Conclusion

The steepest descent algorithm is much more complex when dealing with
k > 2 parts. Some results may still be valid, but proving them is more difficult.
Therefore, for k-partitioning, we propose to rely on the recursive bisection
algorithm, which is very simple to use, and if VNBest_bipart returns partitions
of small imbalance, the recursive bisection should be able to return a balanced
solution.

7.6 Conclusion on the Steepest Descent Algo-
rithm

In this section, we have introduced a steepest descent algorithm to solve the
vector-of-numbers partitioning problem. We have first stated some results for
the mono-criterion, bipartitioning case, before explaining to which extent they
could be adapted to the multi-criteria partitioning case. The key issues are:
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• the number of possible moves decreases along the algorithm, because a
vertex whose weight for at least one criterion is heavier than the current
imbalance will not move anymore during the algorithm (Proposition 6);
• the best move may be found without testing all possible moves. Firstly,
we only need to consider vertices in the overweighted part for the most
imbalanced criterion cmax. Then, starting from the vertices whose gain
for cmax is the highest, we test if, when moving them, the overweighted
part for the most imbalanced criterion changes. When it does not change,
it means that the remaining vertices will not decrease the imbalance as
much as the current one (Proposition 7). Therefore, the best move is
among the already computed ones;
• for bipartitioning, igainc has a predefined formula (Proposition 5). From

this formula, we have designed a gain table that stores γ × n gains, that
is, the gain of each vertex for each criterion. This gain table allows us
to access quickly the vertices of best gain and to avoid recomputing the
gains when they do not change.

The VNFirst and the VNBest algorithms aim to be applied on the coarsened
graph. In Section 10.1, we will therefore compare their performance on different
levels of coarsened graphs.

The goal of these initial partitioning algorithms is to return quickly a
balanced partition of the coarsest graph. This partition will be successively
prolonged and refined at finer levels, until a partition of the original graph is
computed. The refinement phase, which is the subject of the next chapter,
works on reducing the communication cost of the partition at each finer level,
usually while preserving balance.
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Definition of a Local
Optimization Refinement
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In this chapter, we describe and justify our implementation of the expansion
phase of the multilevel algorithm. The expansion or uncoarsening phase was
defined in Algorithm 26 on page 106. In this formulation, the expansion phase
is a succession of calls to the Prolong and Refine functions, that are invoked
for each level created in the coarsening phase.
• The Prolong function assigns a part to each cell/vertex of the coarsened
mesh/graph. We will use the common scheme formulated previously in
Definition 30 on page 109, which specifies that a vertex is assigned the
same part as its corresponding vertex in the coarsened graph. Note that
with this scheme, the imbalance and the communication cost of the finer
graph after prolongation are the same as that of the coarsened graph.
• The Refine function aims at reducing the communication cost of the
prolonged partition. In our case, the Refine function is the classical
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Fiduccia-Mattheyses algorithm FM, which, when given a solution, will
also return a solution.

Section 8.1 will first justify the use of the FM algorithm. Then, Section 8.2
will formulate a general version of FM, that highlights parts that we will develop
in the next sections. Indeed, these parts vary from one partitioning tool to
another, or need more implementation details, so we will explain our choices
in greater detail. Thus, Section 8.3 will focus on allowed moves and tolerance
relaxation, Section 8.4 on the selection between moves of same gain, and
Section 8.5, on the stop conditions of FM.

Along this chapter, we will also compare our implementation to those of the
multi-criteria partitioning tools MeTiS and PaToH, and with the mono-criterion
partitioning tool Scotch in which our algorithm will eventually be implemented.

8.1 Refinement Algorithm Overview
The usual algorithms to refine the communication cost during the expansion

phase are FM and KL (the Kernighan-Lin algorithm, defined in Section 4.4.1).
The main difference between those two algorithms is that FM moves one vertex
at a time, while KL swaps two vertices at each step. Therefore, as analyzed in
Section 5.3.1, given an initial solution, the reachable solutions of each algorithm
can be very different.

In particular, as KL performs exchanges, it cannot reach partitions in which
the number of vertices per part is different from that of the initial partition,
which can remove quite a lot of solutions when the vertices do not have a unit
weight, or when the imbalance tolerance is large.

Implementation – PaToH-3.2
PaToH relies on a “KLFM” refinement algorithm, which seems to be a call

to a special version of KL followed by a call to a version of FM quite similar
to that of MeTiS.

Another benefit of FM over KL is that it is faster. This is by the way how
Fiduccia and Mattheyses [1982] described their algorithm: an improvement in
terms of run time of KL (whereas they actually define a new algorithm).

Finally, we will assume that the solution space when using FM is connected.
This assumption is inspired by the analysis performed in Section 5.3, which
stated a bound on the vertex weights that guaranteed the connection of the
solution space for FM-like algorithms in the mono-criterion case. We claim that,
in practice, it is possible to reach the optimal solution from any initial solution.
Moreover, such optimal solution should be reachable in a few moves. More
precisely, in the order of n moves, where n is the number of vertices in the
mesh.
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Besides, we studied some variations of FM which did not allow moves
of negative gain or moves of non-positive gain. These seemed to perform
significantly worse, which would mean that hill-climbing, as well as the ability
to cross “plateaux” (in a fitness landscape view, a plateau is when we perform
a move of null gain) are necessary to get to the optimal solution (getting there
in a straight descent is unlikely). Therefore, FM’s major characteristic is that it
is able to escape from local minima by allowing moves of negative gains.

We also briefly studied other variants of FM, concerning the move selection.
A first variant, instead of selecting a move of best gain, selected at each step
any move of non-negative gain. A second variant selected at each step a move
of worst non-negative gain.

The results seemed to indicate that the variant performing any move of
non-negative gain reached varied solutions (and usually, the best solutions
reached were as good as the ones of the classic FM algorithm, if not better in
some cases). The variant selecting the move of worst gain globally got worse
results. Nevertheless, these experiments were performed out of the multilevel
framework, which is likely to change the results found.

To conclude, the FM algorithm is a classic and fast refinement algorithm
that enables to avoid some local minima using a hill-climbing process. The
next sections will describe more precisely our implementation of FM, in order to
avoid any ambiguity.

8.2 General Version of FM

We will first give a global description of FM, and show that some of its aspects
are ambiguous. Therefore, as in Chapter 6 that described the coarsening phase,
we will justify our algorithmic choices for these parts, and try to compare them
with those of the partitioning tools MeTiS, PaToH and Scotch. Algorithm 44
gives a more general version of FM than the classic one given in Section 4.4.2.
This version comprises additional functions, that are highlighted.

The first added function is the Allowed function, which, given a candidate
move, returns if it is allowed. For example, the classic FM algorithm forbids to
perform moves that unbalance the partition more than the prescribed tolerance.
This will be discussed in Section 8.3.

Then, the BreakTies function defines, if there are several candidate moves
of same gain, which move should be performed. This aspect is not precised by
Fiduccia and Mattheyses [1982], and will be analyzed in Section 8.4.

Finally, the StopInner and StopOuter functions define, respectively, when
a pass must be stopped, and when the algorithm must stop. Some improvements
have been proposed by Karypis and Kumar [1998a] in order to speedup the
algorithm, and the various partitioning tools all implement slightly different
versions for these conditions. Section 8.5 will focus on the conditions that we
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Algorithm 44 Generalized Version of the Fiduccia-Mattheyses Algorithm
1: function FM(M , k, W , t, f , Πini)

Require: imb(Πini) ≤ t
gains: structure allowing constant time access to the moves of
best gain

2: Πbest, ipass ← Πini, 0
3: repeat # Perform a pass
4: Π← Πbest # Recover partitions of smallest communication cost found
5: fold, ipass ← f(Π), ipass + 1
6: ineg ← 0 # Counter for StopInner function
7: gains← GainTableInit(M, f,Π)
8: repeat # Perform a move
9: g ← gains.getMaxGain() # Start from the greatest gain
10: moves← [ ]
11: while moves = [ ] and g ≥ gains.getMinGain() do
12: moves← gains.getMoves(g) # Moves of gain g
13: for move ∈ moves do
14: if Locked(move) or not Allowed(move,W, t) then
15: moves.remove(move)
16: end if
17: end for
18: g ← g − 1 # Try with moves of smaller gain
19: end while
20: if moves = [ ] then
21: break # Remaining moves are forbidden
22: end if
23: i, p← BreakTies(moves) # Select one among the allowed ones
24: Π[i]← p
25: Lock(i)
26: if f(Π) ≤ f(Πbest) then
27: Πbest ← Π
28: end if
29: GainTableUpdate(gains, i, p)
30: if gains[(i, p)] ≤ 0 then
31: ineg ← ineg + 1
32: else
33: ineg ← 0
34: end if
35: until StopInner(ineg) # Pass stop condition
36: until StopOuter(fold, f(Πbest), ipass) # Algorithm stop condition
37: return Πbest

38: end function
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chose.

8.3 Restrictions to Preserve Balance
In this section, we focus on the Allowed function, which is one of the major

source of differences between partitioning tools. Indeed, for MeTiS and Scotch,
the imbalance tolerance is relaxed at coarser levels. This means that partitions
that are not solutions are accepted at coarser levels, which will improve the
connection of the solution space.

We chose not to relax the imbalance tolerance, for several reasons:
• the main reason is that, given a solution returned by the initial partitioning
algorithm, the final partition returned may not be a solution, and we
observed that some partitioning tools often do not return a solution, as
we will see in Section 9.2;
• during the uncoarsening phase, the refinement algorithm will have two

objectives: to reduce the imbalance under a threshold, and to reduce the
communication cost as much as possible. Having to deal with several
objectives at the same time can lead to hinder one when trying to improve
the other;
• we assume that there is no need for this relaxation. Indeed, thanks to our

study on the connection of the solution space in Section 5.3, we assume
that, in practice, the solution space for FM-like algorithms is connected.

Algorithm 45 implements existing policies for move restrictions. We will
rely on the AllowedBalance function, which corresponds to the classic FM
algorithm.

The different functions are:
• AllowedBalanced: the basic restriction. It prevents one from making

moves that imbalance the partition more than the prescribed tolerance.
• AllowedRebalance1: begins by checking if the current partition respects
the balance constraints. If not, it selects only the moves that improve
the imbalance; otherwise, it relies on the basic AllowedBalanced policy.
• AllowedRebalance2: quite similar to the AllowedRebalance1 function,
because it also checks if the current partition respects the balance con-
straints. However, when the constraints are not respected, this func-
tion selects only the vertices that belong to the heaviest part for the
most imbalanced criterion. As stated in the previous chapter in Defi-
nition 33, the most imbalanced criterion cmax is a criterion such that
imbcmax(Π) = imb(Π).
• AllowedBoundary: allows only to move vertices that are in the boundary
of the partition. The boundary of a partition, as formulated previously
in Definition 9 on page 17, is the set of the vertices whose part differs
from that of at least one of their neighbors. This function is based on
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Algorithm 45 Restricting the Possible Moves to Regulate the Imbalance
1: function AllowedBalanced(i, p, t, Π)
2: Π′ ← Π
3: Π′[i]← p
4: return imb(Π′) ≤ t
5: end function

6: function AllowedRebalance1(i, p, t, Π)
7: if imb(Π) ≤ t then
8: return AllowedBalanced(i, p, t,Π)
9: else
10: return AllowedBalanced(i, p, imb(Π),Π)
11: end if
12: end function

13: function AllowedRebalance2(i, p, t, Π)
14: if imb(Π) ≤ t then
15: return AllowedBalanced(i, p, t,Π)
16: else
17: p← Π[i]
18: return imb(Πp) = imb(Π)) # vi belongs to the most imbalanced part
19: end if
20: end function

21: function AllowedBoundary(i, p, t, Π)
Require: M the mesh

The Boundary() of a partition as in Definition 9 of Section 1.2
22: return M [i] ∈ Boundary(Π)
23: end function

24: function AllowedAdaptLevel(i, p, t, Π, AllowedFct)
Require: level: the current level number

AdaptTolerance: function returning a new tolerance depending
on the current level

25: tlevel ← AdaptTolerance(level)
26: return AllowedFct(i, p, tlevel,Π)
27: end function
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the assumption that a partition whose parts are connected will have a
smaller communication cost.
• AllowedAdaptLevel: relies on the assumption that the tolerance should

be adapted to each level. Usually, this means that the tolerance is more
relaxed for coarser graphs. It is usually used in conjunction with one of the
two AllowedRebalance functions. Indeed, relaxing the tolerance means
that the prolonged partition may not respect the balance constraints, and
that some improvement on the balance is needed.

Implementation – Scotch-6.0.4
The Scotch implementation is formulated in Algorithm 46: the tolerance

is relaxed depending on the current level, and when the partition imbalance
is greater than the relaxed tolerance, moves that increase the imbalance are
forbidden.

Algorithm 46 – Scotch Restrict Policy
1: function AdaptToleranceScotch(t, level)
2: return t× (1.05)level
3: end function

4: function AllowedScotch(i, p, t, Π)
5: return AllowedAdaptLevel(i, p, t,Π, AllowedRebalance1)
6: end function

Source: function BgraphBipartMlCoarsen in file bgraph_bipart_ml.

Implementation – MeTiS-5.1.0
The MeTiS implementation is formulated in Algorithm 47: moving ver-

tices that do not belong to the boundary is forbidden, and the tolerance
is relaxed depending on the current level: when the partition imbalance is
greater than the relaxed tolerance, only vertices from the heaviest part for
the most imbalanced criterion can be moved.

Algorithm 47 – MeTiS Restriction Policy
1: function AdaptToleranceMetis(t, level)

Require: nlevel the number of vertices in the coarsened graph
2: return t+ 0.5

max(20, nlevel)
3: end function

4: function AllowedMetis(i, p, t, Π)

5:
return

(
AllowedBoundary(i, p, t,Π)

and AllowedAdaptLevel(i, p, t,Π, AllowedRebalance2)
)

6: end function
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Source: variable ffactor (for “fudge factor”) in file fm.c.

Moreover, MeTiS uses a rebalancing algorithm in combination with FM.
In short, this rebalancing algorithm tries to move vertices from the heaviest
part for the most imbalanced criterion, until the partition imbalance becomes
smaller than the tolerance, or until the number of moves exceeds the number
of vertices. The vertices of best gain (for the communication cost) are
considered first, and a move is performed:
• if it reduces the imbalance;
• or if it leads to the same imbalance but reduces the cut;
• or if it leads to the same imbalance and the same cut, but the squares

of imbalances for each criterion decrease.

Source: function McGeneral2WayBalance in file balance.c.

In this section, we have detailed the Allowed function, which differs greatly
between partitioning tools. Moreover, note that Scotch and MeTiS relax the
tolerance when the graph is coarsened, in order to enlarge the search space.
However, they need some rebalancing mechanisms in order to ensure that the
returned partition will respect the balance constraints.

8.4 Tie-breaking Between Moves of Same
Gain

FM specifies that the move of highest gain (commonly called the move
of best gain) must be performed, even if this gain is negative. However,
there can be several moves of best gain, or some moves can be forbidden, for
example when some vertices are locked. In this case, we will select the first
vertex according to the mesh order, which corresponds to the BreakTiesFirst
function implemented in Algorithm 48. Indeed, we did not investigate other
policies, so we chose to rely on a simple strategy. However, investigations on
which policy allows for the best results should be performed. In this section,
we will describe the policies of other tools.

Implementation – MeTiS-5.1.0
MeTiS uses the BreakTiesFirst function.

Algorithm 48 also defines the BreakTiesImbalance function, which returns
one candidate that leads to the minimal imbalance.
Implementation – Scotch-6.0.4

Scotch uses the BreakTiesImbalance function, which allows it to rebal-
ance the partition if it is not a solution (remember that Scotch relaxes the
tolerance at coarser levels), or to try to limit any increase in the imbalance
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Algorithm 48 Breaking Ties Between Several Moves of Same Gain
Require: length(candidates) ≥ 1

1: function BreakTiesFirst(candidates, Π)
2: return candidates[1]
3: end function

4: function BreakTiesImbalance(candidates, Π)
5: imbbest ← 1
6: for (i, p) ∈ candidates do
7: Π′ ← Π
8: Π′[i] = p
9: if imb(Π′) ≤ imbbest then
10: imbbest ← imb(Π′)
11: best_move← (i, p)
12: end if
13: end for
14: return best_move
15: end function

when the current partition is a solution. Therefore, Scotch handles the multi-
objective problem raised by the relaxation of the tolerance by prioritizing
the minimization of the communication cost, but by always trying to reduce
the imbalance as a second objective.

8.5 Stopping the Search
This section defines the StopInner and StopOuter functions. The

StopInner function specifies when a pass must be stopped, while the StopOuter
function specifies if a new pass shall be performed after the current one com-
pletes.

In this document, we will not investigate on these functions. Fiduccia
and Mattheyses defines the StopInner function as to stop when all moves of
unlocked vertices are forbidden. Nevertheless, in order to speedup the multilevel
algorithm, most partitioning tools stop after a certain number nneg of moves of
negative gains have been performed in a row.

Therefore, Algorithm 49 formulates our condition to stop performing moves
within the same pass. It relies on the external variable ineg, which is updated
during the pass in the FM Algorithm 44. It counts the number of moves of
negative gain performed in a row, and is reset to 0 at the beginning of a new
pass, or when a move of non-negative gain is performed. A pass is stopped when
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the ineg variable exceeds the nneg parameter. In our case, we set nneg = 120,
which is the same value as Scotch. Nevertheless, the values for nneg for different
partitioning tools are close, as displayed in Table 8.5.1.

Algorithm 49 Condition to Perform a New Move
1: function StopInner(ineg)

Require: nneg: maximum number of moves of negative gains that can be
performed in a row

2: return imoves = nmoves or ineg = nneg
3: end function

Algorithm 50 formulates the condition to stop performing passes. It relies
on the external variables fold, fnew and ipass, that are updated after each pass
in the FM Algorithm 44.

ipass counts the number of passes performed, while fold and fnew are the
communication cost of the partition of, respectively, the last pass and the
current pass. The algorithm stops if the number of passes exceeds the npass
parameter, or if the current pass did not improve the communication cost of
the partition over the last pass, that is, when fnew = fold. Note that fnew > fold
is not possible, because fnew = f(Πbest) so fnew is initialized to fold, and can
only decrease.

Algorithm 50 Condition to Perform a New Pass After that One Finishes
1: function StopOuter(fold, fnew, ipass)

Require: npass the maximum number of pass (can be infinite)
2: return fnew = fold or ipass = npass
3: end function

In our case, we chose the same value as Fiduccia and Mattheyses and Scotch,
which is the default value: npass =∞. Nevertheless, as displayed in Table 8.5.1,
MeTiS sets npass = 10, which means that the improvements of any other pass
after having already performed 10 passes are negligible, and only increase the
run time of the algorithm (though we are not aware of any work reporting this
yet). Therefore, investigations may be performed on this assumption as well.

Implementation – Scotch-6.0.4, MeTiS-5.1.0, PaToH-3.2
Scotch MeTiS PaToH

nneg 120 max
(
25,min(150, nlevel

100 )
)

max(50, nlevel

1000 )
npass ∞ 10 ∞

Table 8.5.1 – Scotch-6.0.4, MeTiS-5.1.0 and PaToH-3.2 default parameters
for the StopInner and StopOuter functions of the refinement phase.
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Conclusion on the Refinement Phase
This chapter has described our implementation of the refinement phase.

Even though we did not propose any new algorithm, we did justify our choices
and compare them with the implementations of existing tools, in particular
MeTiS and Scotch. The most noticeable difference is that, unlike them, we do
not relax the imbalance tolerance at coarser levels. This choice is motivated by
our study of the connection of the solution space: we assume that, in practice,
the solution space is connected, even for the multi-criteria mesh partitioning
problem.

Not relaxing the imbalance tolerance allows us to define a simple version of
the FM algorithm. The key features follow classic implementations: we do not
allow moves that imbalance the partition more than the tolerance, we stop a
pass after 120 moves of negative gains, and we stop the algorithm when the last
pass did not improve the communication cost. Note that other partitioning
tools use more complicated refinement algorithms, because they have to focus
on several objectives at the same time.
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Conclusion on our Approach
In this part, we have studied the three phases of the multilevel algorithm.

However, before going into the details of each phase, Chapter 5 has studied
the size and the connection of the solution space for FM-like algorithms. In the
mono-criterion case, we have found some bounds on the weights of the vertices
that guarantee the existence of a solution and the connection of the solution
space. We claim that, in practice, the solution space of a mesh partitioning
problem is huge and connected, for algorithms that move one vertex at a time.

Therefore, unlike most partitioning tools, which often return partitions
that are not solutions because they prioritize the communication cost over
the partition imbalance, we designed our multilevel algorithm to first aim at
returning a balanced partition, and then minimize the communication cost.
To this extent, we first proposed in Chapter 6 several coarsening schemes and
analyzed them, and we will compare their performance in the next part. Then,
in Chapter 7, we defined two vector-of-numbers initial partitioning algorithms
that focus on minimizing the imbalance of the initial partition. Finally, in
Chapter 8, we described our refinement algorithm, which is simple because
it focuses plainly on minimizing the communication cost. In the next part,
we will examine the consequences of using different coarsening schemes and
different initial partitioning algorithms.
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Chapter 9

Experimental Environment
Definition of the Instance Space, Comparison Method
and Software Implementation
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The previous part introduced in detail algorithms based on the multilevel
framework. These algorithms differ in the matching algorithms used for coars-
ening (even if each method is based on the Heavy-Edge Matching scheme),
rely on different initial partitioning algorithms, but use a common refinement
scheme. This part aims at analyzing experimentally the effects of each policy.
However, to do so, we need to define the instance space.

The instance space is the set of instances that we will use to compare
algorithms. As described by Blackburn et al. [2012], the analysis that we will
perform will be valid at least for the instances that belong to the instance space.
Section 9.1 defines one industrial test case, and present other meshes for which
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we generate fictitious weight distributions. The method used to generate such
multi-criteria weight distributions is based on the way numerical simulations
occur at CEA (in particular, particle-in-cell simulations).

Besides, in practice, a heuristic returns various partitions of a given instance,
as we will see in Section 9.2. Indeed, heuristics often rely on the mesh numbering,
or on random mechanisms. For example, Scotch and MeTiS use random seeds
for their greedy graph growing initial partitioning algorithm. Therefore, with
a different numbering of the mesh, or a change in the random seed generator,
the returned partition differ greatly between runs.

Thus, comparing heuristics is not obvious. This is why Section 9.3 will
introduce a method helping to compare and analyze the characteristics of each
heuristic. Finally, Section 9.4 will describe the flexible software, named Crack,
that we implemented in order to compare the various heuristics.

9.1 Definition of the Instance Space

This section defines the instances that we will use to compare the heuristics.
We call instance space the set of our instances. Note that, even if we hope
that our results may generalize to all possible instances, in fact, as noticed
by Blackburn et al. [2012], they may be valid only on this instance space. In
particular, variations on the weight distributions can lead to other conclusions
on the properties of each heuristic.

9.1.1 LMJ , an Industrial Test Case

We will use a 3D mesh named LMJ , displayed in Figure 9.1.1 It models a
capsule that will be heated by a laser, and has 484 356 vertices. This particular
mesh is used for multiphysics simulations for experiments on plasma physics,
carried out in the Laser Mégajoule, a research device situated in Bordeaux,
France (for more information, see CEA [2015]).

The capsule is composed of different structures, among which gold and
foam. Particles will move into the capsule, changing the structures. The first
weight of a cell depends on the number of particles in the cell. The second
weight depends on the structures contained in a cell, and cells containing
gold are particularly heavier. The third weight is a unitary weight, so that a
partition must attribute roughly the same number of cells to each part. Finally,
edge weights correspond to the volume of data that must be exchanged if two
neighboring cells are not in the same part.
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Figure 9.1.1 – The mesh LMJ , which is our industrial test case. Top left: the
whole domain, which is in a cube. Top right: the capsule that is inside the
cube. Bottom left: upper view of the interior of the capsule. The interior is
colored in blue, cells containing gold are in pink, cells containing foam are in
purple. Bottom right: side view of the capsule. Red cells are the slits in the
foam.
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Table 9.1.1 – The mesh used to perform the tests

Mesh t k

Name Geometry |V | |E|
Mushroom 2D 22 800 45 253
Onera 3D 85 567 166 817
Wave 3D 156 317 1 059 331
Linkrodsok1 3D 174 218 322 771
Shock 2D 1 196 352 1 793 115

∈ {0.2%, 1%, 5%} k = 2

9.1.2 Generation of Weight Distributions Correspond-
ing to Particle-In-Cell Simulations

Table 9.1.1 sums up some characteristics of the other instances that we will
use. There are 5 meshes of various sizes and geometries. The experiments will
be performed for 3 different imbalance tolerances: a very tight tolerance of
0.2%, a tight one of 1%, and a classic laxer one of 5%. Figures 9.1.2, 9.1.3 and
9.1.4 respectively display the meshes Mushroom, Linkrodsok1 and Shock.

Figure 9.1.2 – The smallest mesh, Mushroom, of 22 800 cells

Unfortunately, there is no public repository of weight distributions of meshes
used in multiphysics simulations, and in the numerical simulations that are
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Figure 9.1.3 – Two different views of the 3D mesh Linkrodsok1 , of 174 218 cells

X

Y

Z

Figure 9.1.4 – The biggest mesh, Shock, of 1 196 352 cells. On the left: the
whole mesh. On the right: a zoom on the center of the picture.
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run at CEA, the computation weights are tightly integrated to the code,
which makes them difficult to extract. Therefore, we introduce a model that
enables one to simulate multi-criteria weight distributions of some multiphysics
simulations.

Whereas these instances are not industrial test cases, we will define a method
to generate weight distributions similar to that of particle-in-cell simulations.
In such simulations, computations are linked to the number of particles located
in a given cell. Usually, particles are scattered from one or several sources (for
example, light sources generate photons), and the number of particles decreases
linearly with the distance to the source.

Besides, computation linked to one cell usually increases along with the
square of the number of particles in this cell, while the memory required to
store a cell is linear with the number of particles in this cell.

Algorithm 51 formulates the two functions that will be used to generate a
weight distribution for one criterion. The first one, named VWgtsUnit, associates
a unit weight with each cell. The second one, named VWgtsMountains, assigns
heavier weights to the cells that are close to some vertices called the “peaks”
(which model a source of particles).

The VWgtsMountains function needs some additional parameters, that are:
peaks, the list of the cells that will serve as peaks; radius, the list of the radius
for every peak; g : R → R+, a function that, given the distance of a cell to
a peak, returns a weight which corresponds to the amount of computation
that the cell gets from being at this distance from the peak; and finally, some
weights that act as bounds.

Using these parameters, for each peak, the cells at a distance d smaller than
the radius of this peak (so, in the mountain corresponding to this peak) increase
their weight for the current criterion of g(d). Cells that are not included in
any mountain for the current criterion are assigned for this criterion a random
weight between wvalleymin

and wvalleymax . Note that the function FindNewPeak,
which is not implemented here, simply selects a cell which is not already in a
mountain for this criterion.

Table 9.1.2 sums-up the parameters used to generate the computation
weights associated with the cells of the meshes. For the first and second criteria,
cells are given computation weights using the VWgtsMountains function. In
each case, 3 random peaks (peaks cannot be part of another mountain) are
generated, of radius chosen randomly between one eighth and one fourth of the
length of the mesh.

The function used to compute the weight of a cell at a distance d from
the peak is, given a radius r, g : d 7→ max

(
wvalleymin

, int
(
(wpeak(1− d

r
))2
))
.

Moreover, we chose wpeak = 50, and (wvalleymin
, wvalleymax) = (10, 11). The

weight of the peak is thus g(wpeak) = 502 = 2500, and the weights of cells
outside the mountains are either 10 or 11. For the third criterion, all cells are
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Algorithm 51 Generation of the Vertex Weights
1: function VWgtsUnit(M)
2: n← length(M)
3: return [1 n... 1]
4: end function

5: function VWgtsMountains(M)
Require: peaks ∈Mnpeaks: the cells considered as peaks

radius ∈ Rnpeaks: the radius of each peak
g : R→ R+: given a distance, returns a weight
wvalleymin

, wvalleymax
, wpeak ∈ (R+)3: bounds for vertex weights

6: n← length(M)
7: Wc ← [0 n... 0]
8: for peak, r ∈ (peaks, radius) do # Weights for the cells on the mountains
9: for i← 1, n do
10: d← dist(M [i],M [peak]) # Euclidean distance
11: if d ≤ r then
12: Wc[i]← Wc[i] + g(d)
13: end if
14: end for
15: end for
16: for i← 1, n do # Weights for the cells outside from the mountains
17: if Wc[i] = 0 then
18: Wc ← random(wvalleymin

, wvalleymax
)

19: end if
20: end for
21: return Wc

22: end function
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Table 9.1.2 – Generating the computation weight function W

VWgtsFct Wc1 ,Wc2 ← Mountains Wc3 ← Unit

parameters
npeaks g(d) wvalleymin/max

wpeak

3 ∝ int((1− d
r
)2) 10/11 50

∅

Table 9.1.3 – Model used for our tests

Representation f Wcom((vi, vj))

Graph edgecut
∑

v∈{vi,vj}
int

( ∑
c∈{1,2}

√
W (v)[c]

)

given a unit weight.
Therefore, the two first criteria correspond to a simulation modeling two

physical models relying on the particle-in-cell model, while the third criterion
corresponds to the fact that we want each unit to receive roughly the same
number of cells.

Then, Table 9.1.2 defines the model that we will use to partition the meshes:
we will rely on the graph model introduced previously in Section 2.4. Each
edge is given a weight that depends on the weights of its ends for the first and
second criteria. Indeed, in particle-in-cell simulations, the communication cost
is often linked to the number of particles present in a cell, and as the weight of
a cell for a criterion is the square of the number of particles on it, the number
of particles for this criterion is the square root of the weight of a cell.

For every mesh, we will generate 3 weight distributions corresponding
to the description given in Table 9.1.2. Therefore, this makes 5 meshes ×
3 weights distributions × 3 tolerance thresholds × 1 number of parts = 45 in-
stances. In the next section, we will show that for every instance, one run per
heuristic is not sufficient to compare them. Indeed, given a heuristic, there is a
high discrepancy on the communication cost of the returned partitions.

9.2 Highlighting the Discrepancy on the Com-
munication Cost of the Returned Parti-
tions

This section examines first the proportion of solutions returned by existing
partitioning tools, and then analyze the communication cost of these solutions
for each tool. The aim is to show that comparing these algorithms will require
to run every algorithm many times, and will demonstrate that comparing
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Table 9.2.1 – State-of-the-art partitioning tool options

Tool version options remarks
MeTiS 5.1.0 random seed f = edgecut
PaToH 3.2 random seed

PQ=Q (enhance quality over speed)
BO=C (balance cell-weights)

f = cutλ−1

Scotch 6.0.4 random seed
mono-criterion version:
W (m) = W (m)[1]

f = edgecut

partitioning algorithms is not obvious.
The partitioning tools that we will use in this section are MeTiS-5.1.0

and PaToH-3.2, which handle multi-criteria partitioning, and Scotch-6.0.4,
which does not handle multi-criteria yet, but in which we will implement our
algorithms. The characteristics of each tool are summarized in Table 9.2.1.

In particular, note that PaToH, which relies on the hypergraph model
described in Section 2.3, uses as communication cost function the cutλ−1 of a
partition, which slightly differs from the edgecut of a partition. Besides, as
Scotch does not handle multi-criteria graph partitioning, we will use it as a
mono-criterion graph partitioning tool in this section. Therefore, Scotch will
balance only the first criterion in each weight distribution.

Each partitioning tool takes as argument a random seed. In order to test
the robustness of every tool, we will run it 100 times on every instance with a
different seed for every run.

Proportion of Solutions Returned

Table 9.2.2 reports the percentage of solutions returned by each partitioning
tool.

Scotch returns in each case 100% of solutions. However, we cannot compare
its results to those of MeTiS and PaToH, since they do not solve the same
problem: for Scotch, which is here a mono-criterion partitioning tool, a solution
is a partition balanced for the first criterion.

PaToH fails to return solutions for two instances. In particular, it does not
manage to return a single solution for the Shock mesh when the tolerance is
very tight, though some solutions exist since MeTiS manages to find some.

MeTiS returns 100% of solutions for only four instances. For the eleven
others, the proportion is very low: usually below 50%, and for five instances
20% or less. An interesting fact is that, in many cases, MeTiS returns in many
cases more solutions when the tolerance is tighter.

Therefore, the existing multi-criteria partitioning tools sometimes fail to
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Table 9.2.2 – Percentage of partitions respecting the constraints returned by
each partitioning tool, for 100 runs of the first weight distribution of each
instance

instance Scotch (%) MeTiS (%) PaToH (%)mesh t

Mushroom
5% X 34 X
1% X 68 X

0.2% X 58 X

Onera
5% X X X
1% X X X

0.2% X 41 X

Wave
5% X X X
1% X 2 X

0.2% X 9 X

Linkrodsok1
5% X X X
1% X X X

0.2% X 12 X

Shock
5% X 20 X
1% X 46 37

0.2% X 18 0

return a solution, although one exists. This only could justify the fact that, in
order to compare algorithms, one should perform many runs to conclude on the
tendency of an algorithm to return a solution when one exists. Nevertheless, we
will see in the following that comparing the communication cost of the returned
solutions is not straightforward.

Bar Plots

In order to show the distribution of the communication cost of the solutions
returned by each algorithm, we will use a bar plot. A bar plot represents the
distribution of the communication cost of the partitions returned by some tool,
for one instance. The length of a bar at ordinate y is the number of times that
the tool returned a partition of communication cost y for this instance.

Since the objective is to minimize the communication cost, lower bars are
better. A perfect partitioning tool would only have one bar at the lowest
possible ordinate, meaning that it always returns a partition of minimum
communication cost.

For MeTiS, which returned many partitions that are not solutions, we also
included a bar plot of the imbalance of the partitions returned. Regarding
balance, the objective is to return partitions of imbalance lower than the
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tolerance. Hence, bars above t represent invalid partitions.
Finally, we recall that this section does not aim at comparing partitioning

tools, which is not possible in the first place, because:
• Scotch balances only the first criterion of each instance;
• for PaToH, which relies on the hypergraph model, we reported the cutλ−1
(defined in Section 2.3), which is the same communication cost that it
optimizes.

However, a comparison between multi-criteria partitioning algorithms, including
MeTiS, PaToH and a beta version of Scotch, will be performed in Section 10.2.

Results Analysis

Figure 9.2.1 displays in each line the bar plots of a partitioning tool, and
on each column the bar plots for a given tolerance. The tolerance is relaxed in
the left column (5%), tight in the middle column (1%), and very tight in the
right column (0.2%). Each plot displays results for the first weight distribution
of the Mushroom mesh introduced previously in Table 9.1.1, and the plots for
the first weight distribution of the other meshes are given in Appendix A.2. In
each plot, the mean is displayed with a red triangle pointing down, and the
median with a yellow triangle pointing up.

Scotch. The first line displays the results for Scotch-6.0.4, which shows
an extended range of communication costs for the returned solutions when
the tolerance becomes tighter. When t = 0.2%, Scotch sometimes returns a
partition whose communication cost is more than 15 000, which is more than
three times the communication cost of the best partitions that it returns. When
t = 1% and t = 5%, there is also a factor of two between the minimum and
maximum communication costs obtained. Nevertheless, we observe that the
communication costs of the optimal solution for each tolerance are close.

Implementation – Scotch-6.0.4
By default, when Scotch-6.0.4 is called, it runs two independent multilevel

algorithms and returns the best partition of the two. For Scotch, between
two partitions, the “best” one is, if both are not solution, the one of minimal
imbalance, else if both are solutions, the one of minimal communication cost,
else the one that is a solution.

Therefore, a thorough study of Scotch algorithm would require making
Scotch run the multilevel only once when called. This is what we will do
when testing the multi-criteria version of Scotch that we implemented, in
Section 10.2.

The first line of Figure 9.2.1 shows that, in this case, the communication
cost of the solutions returned by Scotch varies by a factor of two. Besides, it is
quite interesting that the smallest communication cost obtained is nearly the
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(a) Tolerance 5% (b) Tolerance 1% (c) Tolerance 0.2%

Figure 9.2.1 – Bar plots of the edgecut, cutλ−1 and imbalance of the partitions
returned by Scotch, MeTiS and PaToH over 100 runs on the mesh Mushroom
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same even when the tolerance is very tight, but that the highest communication
cost obtained increases a lot.

MeTiS Edgecut. The second line displays the bar plots for the communi-
cation cost of the partitions returned by MeTiS-5.1.0. In this case, for each
tolerance, two distributions are displayed. The distribution on the left considers
all the partitions returned by MeTiS, while the distribution on the right dis-
plays only the partitions that respect the constraints (hence the name “MeTiS
valid”).

The proportion of solutions was displayed previously in Table 9.2.2, which
shows that for Mushroom, MeTiS returned more solutions when the imbalance
was tighter. When looking at the communication costs of all partitions returned
by MeTiS for this mesh, it also seems that it returns fewer solutions of high
communication cost when the tolerance is tighter. This phenomenon is surpris-
ing: paradoxically, it is more profitable to run MeTiS with a tighter tolerance
to get more solutions, or to get more partitions of smaller communication cost
in general.

Implementation – MeTiS-5.1.0
In the multi-criteria case, if n is the original number of vertices, MeTiS

coarsens the graph until its number of vertices becomes smaller than N =
max

(
n

20 log2(k) , 30× k
)
. Then, it will run 4 to 5 independent multilevel

algorithms on this coarsened graph, and take the best of them. Then, it will
run its expansion phase normally using this best partition.

Source: variables ctrl->CoarsenTo and ctrl->nIparts set in function
METIS_PartGraphKway.

Therefore, like Scotch does, MeTiS attempts to return solutions of smaller
communication cost by running its algorithm multiple times. However, unlike
Scotch, MeTiS only performs several runs on an already coarsened graph.
For example, for Mushroom, the size of the coarsest graph is N = 22 800

20 =
1 140 vertices, and for Shock, it is N = 1 196 352

20 = 59 817 vertices.

MeTiS Imbalance. In the third line, we have plotted the distribution of
the imbalance of the 100 partitions returned by MeTiS. As one can see, the
partitions that do not respect the constraints are not very imbalanced; the
imbalance is higher than the tolerance by most one half. This is due to MeTiS’
policy to allow a relaxed tolerance at coarser levels, as seen in Section 8.3.
Partitions that are not solutions may be caused by the fact that, when reaching
the finest level, MeTiS either does not manage to decrease the imbalance
enough, or does not want to decrease the imbalance because it would increase
the communication cost very much.
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PaToH. Finally, the last line displays the distribution of the communication
cost for PaToH. For PaToH, the communication cost is cutλ−1. As for Scotch,
the communication cost varies a lot between the returned partitions, and this
variation increases when the imbalance is tighter.

Conclusion

From the analysis of the proportion of solutions returned by each soft-
ware and of the bar plots of the communication cost, we can formulate some
qualitative observations:
• the partition returned by a partitioning tool does not always respect the

balance constraints;
• there are some variations in the communication cost of the returned
solutions, even for mono-criterion partitioning, and up to a factor of 2
here. The variations seem to intensify when the imbalance tolerance
becomes tighter;
• for the first weight distribution of Mushroom, the minimal communication

cost of a partition is very close for each imbalance tolerance.
Therefore, considering that a heuristic sometimes return partitions that

are not solutions and due to the variety of communication costs yielded for
the same instance, how can we compare two heuristics? This question will be
addressed in the next section.

9.3 Definition of the Method Used to Com-
pare Algorithms

In the previous section, we have shown that heuristics return various parti-
tions of the same instance, of various imbalance and communication cost. In
this section, we examine several ways to compare heuristics, and we will define
which one we will use in this document. Using the defined method, we will be
able to analyze the characteristics of a heuristic.

Indeed, there is no uniform metric to compare heuristics. For example, Wal-
shaw et al. [2000] run each algorithm once on each instance, before comparing
the average on the instances. Deveci et al. [2015b] run each algorithm five
times on each instance and, for each instance, compares the average on the five
runs. LaSalle and Karypis [2016] run each algorithm 25 times on each instance
and compare their geometric average.

Section 9.3.1 will start by defining a metric that we already considered
implicitly in the previous section, which is the probability for a heuristic to
return a solution for a given instance. Then, Section 9.3.2 will show that in
order to compare heuristics based on the communication cost of the returned
solutions, classic metrics such as the mean or the median are not forcibly
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pertinent. Therefore, Section 9.3.3 will define how to compare heuristics as
well as provide a way to find properties of a heuristic.

9.3.1 Probability to Return a Partition Respecting the
Constraints

This first metric estimates the probability that a heuristic will return
a partition that respects the constraints. Indeed, in the mesh partitioning
Problem 2, in order to be able to compare the communication cost of two
partitions, they must respect the constraints.

Definition 34 (Probability to Return a Solution)
We will denote by P (valid) the probability that a heuristic returns a partition

respecting the balance constraints.
Given a heuristic and an instance, in order to estimate P (valid), we will

perform Nruns independent runs of this heuristic on this instance. We denote
by Nvalid the number of partitions returned that respect the constraints. Then,

P (valid) = Nvalid

Nruns
. (9.1)

Example
Table 9.2.2 showed in the previous section is an estimation of P (valid)

for Scotch, MeTiS and PaToH, for the first weight distribution of each mesh
and tolerance.

In our experiments, we only run each heuristic 100 times on each instance,
so one may wonder if it is legitimate to say that P (valid) is accurate. The
purpose of this study is not to compute accurately P (valid), but to give a
rough estimate of it. Moreover, we have observed experimentally that P (valid)
does not change very much with 200 runs.

P (valid) estimates the probability that a heuristic returns a solution. In
the following sections, we will introduce metrics to compare heuristics based
on the communication cost of the solutions that they return.

9.3.2 Classic Metrics
A simple way to compare heuristics based on the communication cost of

the returned solutions is to use classic statistical indicators. Nevertheless, we
will see that they are not sufficient to understand whether some algorithm is
better than another, or why.

In this section, we will denote by S the set of the solutions returned by a
heuristic that was run Nruns times. Besides, we will consider:
• the mean =

∑
Π∈S f(Π)
|S| (if |S| ≥ 1);
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• the median, which is the communication cost of the returned solution
such that half of the other solutions has a higher communication cost,
and the other half has a smaller communication cost;
• the standard deviation, SD, which quantifies the dispersion of a set of
data values. If we denote by S the set of solutions returned by the
heuristic, then SD =

√∑
Π∈S(f(Π)−mean)2

|S|−1 (provided that |S| ≥ 2);
• the minimum and maximum communication costs, min = minΠ∈S f(Π)

and max = maxΠ∈S f(Π).

Example
In this example, we will use the classic statistical indicators to compare

the communication cost of the solutions returned by MeTiS when it is called
with various imbalance tolerances. We define metist to refer to MeTiS used
with an imbalance tolerance of t/100, with t ∈ {5%, 1%, 0.2%}. Normally,
one could expect that metis5 will get better results than metis1, which itself
will get better results than metis0.2.

Table 9.3.1 sums up the values for these statistics for the returned solutions
of MeTiS, when partitioning the mesh Linkrodsok1 for the first weight
distribution.

Table 9.3.1 – Classic statistics on the communication cost of the solutions
returned by MeTiS when partitioning the mesh Linkrodsok1 for the first
weight distribution

Tolerance mean SD min median max

5% 7613 2282 5676 6588 14340
1% 8187 454 6996 8160 9384

0.2% 7479 202 7248 7416 7944

Firstly, since these statistics only take into account the solutions, metis0.2
gets the smallest mean, standard deviation and max. However, as seen in
Table 9.2.2, metis0.2 only returned 12 solutions out of 100 runs. Therefore,
it is difficult to compare its statistics with those of metis1 and metis5 which
both returned 100 solutions for this mesh.

Secondly, metis5 gets a smaller mean, min and median than metis1.
However, metis5 standard deviation and max far exceed those of metis1.
Therefore, ordering metis1 and metis5 would mean to prioritize a statistical
indicator over the others. If the preferred indicator is the mean, as it is usually,
then metis5 would be considered better than metis1 for this mesh. However,
as shown by the high standard deviation, metis5 may return solutions of
very high communication cost, which is not visible using only the mean.

As illustrated by this example, comparing heuristics requires us to prioritize
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one metric over the others. Moreover, these metrics are difficult to combine
with P (valid), the probability to return a partition respecting the constraints.
Between a partitioning method that returns more solutions and one that returns
solutions with a smallest communication cost on average, how do we choose?

Therefore, in the next section, we will define a method to represent the
results. This method will help us compare and analyze heuristics more easily.

9.3.3 Cumulative Plots and Probability to Be x Times
as Good as the Optimal Solution Found

In this section, we introduce a representation of the distribution of the
communication cost of the solutions returned by a heuristic. The idea is, for
some heuristic A, to use a cumulative plot function, that we call cumul in this
document, associating with each x ∈ R+ the number of times that A returned
a solution of communication cost smaller than or equal to x.

As claimed by Dolan and Moré [2002], cumulative plots (that they name
performance profiles) help us compare more easily heuristics and understand
some of their properties. Indeed, in our case, a cumulative plot conveys all the
information on the communication cost distribution of the solutions returned
by a heuristic, as well as the proportion of solutions returned. Dolan and Moré
used the example of optimization softwares, which search for an optimal solution
in a minimum amount of time. This is analogous to our aim, which is to find
a solution as close as possible to an optimum, considering that the compared
algorithms run in a comparable amount of time because their complexities are
equivalent.

The cumul function displays the distribution of the communication cost of
the solution returned by a heuristic differently than the bar plots introduced
previously in Section 9.2. Using the cumul function, we compare more easily
two heuristics: the curve on the top left is better, as illustrated in the following
example.

Example
Figure 9.3.1 plots the cumul function for MeTiS, when applied to the

mesh Linkrodsok1 with a tolerance in the set {5%, 1%, 0.2%}. As previously,
we define metist to refer to MeTiS used with an imbalance tolerance of t/100.

A first observation is that the cumul function for MeTiS when the toler-
ance is 0.2% does not reach 100, because MeTiS returned only 12 partitions
of imbalance smaller than the tolerance when the tolerance was set to 0.2%.

A second observation confirms what we mentioned in the previous section:
it is not obvious to compare metis5 and metis1. Indeed, the cumul functions
of metis1 and metis5 intersect, for a normalized edgecut of approximately
1.5.

Nevertheless, the behaviors of metis1 and metis5 may be analyzed easily
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using their cumul function. Until approximately a normalized edgecut of
1.5, metis5 is on the left of metis1, which means that metis5 returns more
solutions of normalized edgecut smaller than 1.5 than metis1. However, after
1.5, we observe the opposite, and the communication cost of the solutions
returned by metis5 raises quickly, whereas for metis1, the communication
cost is very stable. Therefore, for this instance, despite returning in general
solutions of higher communication cost, metis1 seems more reliable than
metis5.

Figure 9.3.1 – cumul function for MeTiS on the mesh Linkrodsok1 , for the
first weight distribution. cumul(x) is the number of times that MeTiS
returned a partition whose edgecut was smaller than x. Unlike on the left,
the edgecut on the right plot is normalized with the minimal communication
cost found by metis5, metis1 and metis0.2, respectively.

Thus, using the cumul function, one can qualitatively compare heuristics.
One heuristic whose cumul function remains on the left of that of another
heuristic is clearly better (irrespectively of the partitioning time). Moreover,
a curve at the top of the plot indicates that the heuristic returned a large
proportion of solutions.

Besides, the cumul function helps one to choose the heuristic fitting the
best its needs. For example, being able to run a heuristic several times will in
most cases reduce greatly the probability to get a partition of very bad quality,
in which case a heuristic that returns more solutions of small communication
cost (such as metis5) may be preferred. On the opposite, if the heuristic can
only be run once, then one may prefer a robust heuristic, that guarantees not
to return solutions of high communication cost (like metis1).

In the next chapter, we will therefore rely on the cumul function to compare
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heuristics, but also to analyze their respective results. Nevertheless, before
reporting the results, the next section will introduce the software testbed,
named Crack, that we implemented in order to test various algorithms.

9.4 Crack: a Flexible Python Mesh Partition-
ing Tool

In order to compare the various heuristics that have been described in this
document, we have implemented a Python tool, that we named Crack.

Model Used for the Experiments

In Crack, it is possible to choose between the mesh, graph and hypergraph
models. We have carried out some experiments on the effects of using the
hypergraph model over the graph model. We have observed qualitatively that
using the graph model, the edgecut of the returned solutions is on average
smaller than when using the hypergraph model, but the cutλ−1 of the returned
solutions is greater.

Nevertheless, though the hypergraph model is usually considered modeling
better the communication time induced by a partition, we were not able to
determine the impact of the model on the run time of a real simulation. For
the experiments reported in this document, we will use the graph model.

Multilevel Implementation

The multilevel implementation in Crack uses an original model. Indeed,
it models the multilevel algorithm as a finite-state machine whose states are
coarsening, partitioning or prolongation phases. The user defines the states
and the transitions between states. Modeling the multilevel algorithm as a
finite-state machine enables the user to define easily variations on the multilevel
scheme.
Example

For example, the default multilevel algorithm of MeTiS, which has been
described throughout this document, is not as simple as the abstract multi-
level Algorithm 26. For example, MeTiS modifies the imbalance tolerance
depending on the current level, or uses a Rebalancing function in addition
to the FM refinement algorithm. These modifications can be visualized simply
using a finite-state machine, as displayed in Figure A.1.1 on page 238.

Another use of a finite-state machine to represent easily a multilevel
algorithm is when defining variations of the V-cycle (which is the common
multilevel algorithm), such as the W-cycle. The W-cycle has been introduced
by Ouyang et al. [2000] and Walshaw [2004], and studied in particular by
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Coarsenstart

Partition

Prolong Refine end
nlevel > ncoarse

nlevel ≤ ncoarse

imb(Π) ≤ t

imb(Π) ≤ t

nlevel < n

nlevel = n

imb(Π) > t
and nlevel = n

Figure 9.4.1 – The multilevel algorithm used for the tests. nlevel is the number
of vertices of the coarsened graph, and t is the imbalance tolerance.

Sanders and Schulz [2010]. It consists in applying V-cycles (the default
multilevel algorithm) on coarsened graphs.

For our tests, we use the classic multilevel algorithm (the V-cycle), defined
in Algorithm 26. If we define it using a finite-state machine, as displayed on
Figure 9.4.1, it is composed of four states:
• the Coarsen state, which is repeated until the number of vertices becomes

smaller than ncoarse;
• the initial Partitioning state, which alternates with the Prolong state

as long as it does not find a solution;
• the Prolong state, which prolongs the graph and the partition (if it is

solution) onto the upper level;
• the Refine state, which is a partitioning state, called alternatively with

the Prolong state as long as a solution has been found, until a partition
of the original graph has been computed.

Note that this scheme was designed knowing that the Refine function will
always return a partition respecting the balance constraints.

Algorithm Specification File

Crack was designed to be flexible, which means that one should be able
to set precisely and easily every algorithm and parameter used. We chose to
use YAML specification files, that are described accurately by Ben-Kiki et al.
[2009]. YAML is a human-friendly language that can be used among others
with Python, C++ or Java. It transforms a file written in the YAML language
into a data structure using a parser. Note in particular that indentation matters
in YAML, and that a # comments the rest of the line.

For Python, the parser is called PyYAML, and it outputs a Python data
structure, which in our case will be a list of algorithms. We will use the example
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# ************************************************************ #
# YAML specification: VNBest+FM initial partitioning algorithm #
- algo: random # Random partitioning #
- algo: number_best # Imbalance refinement #
- algo: fm # Com_cost refinement #

args:
model: graph # Will minimize the edgecut #
stop_inn: # Inner loop stop condition #

algo: consecutive_negative_gain
args:

nmoves: 120
# ************************************************************ #

Figure 9.4.2 – Example of a YAML specification file

file displayed in Figure 9.4.2 to explain how such a list is encoded in Crack.
First, the file starts with two commented lines, that are not interpreted

by PyYAML. Then, the first character is a -, which introduces the first
element of a list. This element will be composed of the Python dictionary
{"algo": "random"}, which has one key (the string algo) with which one
value is associated (the string random). This means that, in the first place,
Crack will call the RandomPart Algorithm 10 on page 69.

Then, on the second line, the first character is once again a -, which
introduces the second element of the list. This line means that after that
RandomPart finishes, the partition will be refined with the VNBest Algorithm 43
on page 168.

Finally, starting from the third line, the lines all exhibits the same level
of indent, which means that they all relate to the third element in the list.
This element is a dictionary of two keys, that are algo and args. In Crack,
the value of the algo key should be a string corresponding to an algorithm
name, and the value of the args key are a dictionary specifying the arguments
of this algorithm. In this case, we will use the FM Algorithm 44 on page 176,
minimizing the edgecut, and stopping an inner loop after that 120 moves of
negative gain have been performed in a row.

Besides, we have given in Figure 9.4.2 the YAML specification file for an
algorithm relying on the multilevel framework.

Remark
The specification format of Crack is quite similar to Scotch strategy

strings. However, YAML files are more flexible (for example, data types are
given automatically) and are more easily understood by human beings (for
example, thanks to the indentation and the use of comments). In Scotch,
algorithm names are defined by one character only (though it is not the
case for the argument names), and the strategy strings are quite difficult to
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handle.

Conclusion
In this chapter, we have introduced in Section 9.1 the set of instances that

we will use to evaluate the possible heuristics that we defined in Chapters 6, 7
and 8. The instances comprise 6 meshes, of which one is an industrial test case.
Except for the industrial test case, which has only one weight distribution,
we generate for all meshes 3 particular weight distributions. The imbalance
tolerance belongs to the set {5%, 1%, 0.2%}, and the number of parts requested
is {2, 32, 128}. Each heuristic will be run 100 times on each instance, except
for the industrial case for which we were not able to perform as many runs.

Section 9.1 also defined an algorithm which, given a mesh, generates a multi-
criteria weight distributions that mimic those of particle-in-cell simulations.
The weight distributions for each mesh rely on this method.

Then, Section 9.2 showed that one needs to run an algorithm many times
in order to be able to analyze its results. However, representing the result
distributions is far from obvious, and as seen in Section 9.3.2, classic indicators
are not sufficient to compare heuristics. Consequently, we will rely on the
cumul function defined in Section 9.3.3, that helps one to compare quite easily
heuristics (a curve on the top left is better) and also shows on the same plot
the proportion of solutions returned.

Finally, we have introduced in Section 9.4 the framework that we will use
to compare the various algorithms that were defined in this document.
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This chapter performs an experimental analysis of the various algorithms
studied throughout this document. The instances used were defined in Sec-
tion 9.1, and include an industrial test case named LMJ . Comparisons will
be performed by studying the proportion of the solutions returned using the
cumul function of the distribution of the communication cost of the solution
returned, defined in Section 9.3.3.

In particular, using Crack, we will compare in Section 10.1 the different
initial partitioning algorithms, and the different weight restriction policies.
Among the studied algorithms, some will be implemented in a multi-criteria
version of Scotch. In Section 10.2, we will compare this multi-criteria version of
Scotch with existing multi-criteria partitioning tools and with the algorithms
of Crack, in the bipartitioning case.

Section 10.3 will study if our algorithms can be improved thanks to a
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different ordering policy when computing the matchings. Finally, we will show
in Section 10.4 that our algorithms are also efficient for k-partitioning.

10.1 A “Crack Analysis” of Initial Partition-
ing Algorithms and Restriction Policies
on the Ability to Find a Solution at
Coarse Levels

This section compares the imbalance of the partition returned by two
kinds of algorithms. Firstly, we compare the restriction policies introduced in
Section 6.3. These restrictions stem from the theoretical results of Chapter 5,
which settled that bounding the vertex weights more would simplify the search
for a solution. Secondly, we compare initial partitioning algorithms. This is a
critical issue because our multilevel algorithm relies on the fact as long as that
the initial partitioning algorithm finds a solution, we are guaranteed to return
a solution at the end of the algorithm.

Section 10.1.1 will first show that the run time of our initial partitioning
algorithms is suitable for our requirements. Then, Section 10.1.2 will focus on
the imbalance of the partitions produced at the coarsest level. The coarsest
level is reached when nlevel ≤ ncoarse = 120. Yet, one has also to consider the
case when ncoarse is higher, or when the initial partitioning algorithm fails to
return a solution at the coarsest level. Section 10.1.3 will study the evolution of
the imbalance of the returned partitions at coarsen levels close to the coarsest
level. Finally, Section 10.1.4 will demonstrate and analyze the impact of the
restriction policy and of the initial partitioning algorithm on the communication
cost of the returned partitions.

10.1.1 Run Time of the Initial Partitioning Algorithms
Implemented in Crack

Table 10.1.1 reports the average run time of each initial partitioning algo-
rithm on the tested instances. Times are given in ms. We can see that VNBest
is only about 5 times slower than VNFirst, thanks to the implementation
described in Section 7.2. In spite of its seemingly higher complexity, VNBest is
even faster than GGG.

As we will see in Section 10.2.1, the run time of the initial partitioning
algorithms is negligible with respect to the run time of the whole multilevel
algorithm. Moreover, the run time of VNFirst and VNBest, which address
a vector-of-numbers partitioning problem, are far shorter than the run time
reported in Section 3.4.3 for existing vector-of-number partitioning problems.
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Table 10.1.1 – Average run times of each initial partitioning algorithm, in ms

level Randomize VNFirst VNBest GGG

coarsest (n ∼ 90) 0.504 1.25 5.59 7.39
coarsest + 3 (n ∼ 500) 2.52 6.48 38.3 74.5

10.1.2 Comparison of the Imbalance at the Coarsest
Level

This section compares the imbalance of the partitions returned by the initial
partitioning algorithms, when they are run on the coarsest graph produced by
the different Restriction policies.

Implementation – Crack
The coarsest graph is produced using different Restriction policies.

However, we always use the OrderRandom scheme and the HEM algorithm to
compute the matching.

VNBest and VNFisrt are given a random partition computed by the
RandomPart algorithm as input.

Finally, the GGG algorithm is not used as a stochastic algorithm, unlike in
MeTiS, because it is an experimental study. The random seeds are computed
once per execution of the GGG algorithm.

Comparison of Initial Partitioning Algorithms

We will use a representation of the cumul function for the imbalance. We
will start by examining the results for each initial partitioning algorithms,
displayed on Figure 10.1.1. For each initial partitioning algorithm, we display
the area in which its cumul functions lie (there are four cumul functions per
initial partitioning algorithm, because we tested four Restriction policies).

The objective of each initial partitioning algorithm, whatever the tolerance,
is to minimize the imbalance of the returned partition. This means that, on the
figure, algorithms whose areas span the most on the top left corner are better.
This is the case of VNBest, which returned partitions of imbalance smaller than
1% for half of the executions.

The area of VNFirst is quite close to that of VNBest, but always a little lower.
This means that the partitions returned by VNFirst have in general a higher
imbalance than those returned by VNBest. When searching for a balanced
partition of a vector-of-numbers partitioning problem, for these instances,
performing the move that leads to the smallest imbalance therefore leads to
better local optima.

GGG rarely manages to return partitions of very small imbalance, but its
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Figure 10.1.1 – For a given algorithm, the cumul function introduced in Section 9.3.3
counts, given an imbalance x, the number of times that the algorithm returned a
partition of imbalance smaller than or equal to x (Therefore, top left is better).
The cumul functions for one initial partitioning algorithm and several restriction
policies are grouped; the figure displays the areas in which their cumul functions lie.

area almost matches that of VNBest when considering imbalance higher than
4%.

Finally, the Randomize algorithm manages to return about 13% of partitions
of imbalance smaller than 5%.

Whereas Randomize’s area is thin, the areas of VNFirst, VNBest and GGG
rapidly enlarge. This means that the restriction policy impacts their perfor-
mance. In order to compare each scheme (initial algorithm and restriction
policy), we will use the average, which is simpler to represent and analyze.

Comparison Using the Average

Figure 10.1.2 displays the average imbalance of the partitions returned by
each initial partitioning algorithm, when partitioning the coarsest graph for
each Restriction policy. We only displayed the averages for the meshes Wave
and Shock, because they are quite similar to the other meshes, as displayed in
Figure A.3.3 on page 246.

For each initial partitioning algorithm, the results are quite similar; more
restrictions decrease in general the average imbalance. Besides, for Shock and
Mushroom, a tight Restriction policy enables VNFirst and GGG to return on
average partitions of imbalance as small as that of VNBest. This shows that
restricting the vertex weights during the coarsening phase helps the initial
partitioning algorithms to find partitions of smaller imbalance, which raises
the probability to find a solution at the coarsest level.
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Figure 10.1.2 – Averages of the imbalance of the partitions returned by each algorithm
for each restriction policy and each initial partitioning algorithm, at the coarsest
level, over 300 runs.

Numerical values of the average of the imbalance of the partitions found
show that the initial partitioning algorithm is not able to find a balanced
partition at the coarsest level for each execution. In this case, the global
algorithm specifies that another initial partitioning will be tried at the next
level. The next section will therefore study the performance of the initial
algorithms at less coarse levels.

10.1.3 Evolution of the Imbalance at Coarse Levels
This section studies the imbalance of the partitions returned by the initial

partitioning algorithms at different coarse levels, which amounts to changing
the value of ncoarse. Thus, as we will see further, understanding the evolution
of the performance of initial partitioning algorithm may give information on
how to set ncoarse.

Figure 10.1.3 plots the average imbalance of the partitions returned by
each algorithm for the coarsest level and the three previous levels (the average
number of vertices at each level, n, is displayed above each plot) for the mesh
Wave. The trends are quite similar for the other instances, whose plots are
displayed in Figures A.3.4 to A.3.7 on page 248.

For each initial partitioning algorithm, the average imbalance of the re-
turned partitions decreases when ncoarse (and therefore n) increases. Indeed,
it becomes easier to balance the partition (this generalizes the analysis of the
number partitioning problem performed in Section 3.1 to the vector-of-numbers
partitioning problem). In particular, the decrease is spectacular for GGG, which
returns partitions of imbalance smaller than VNFirst at finer levels, for three
meshes out of five.

In our case, the goal of the initial partitioning phase is to find a balanced
partition. If ncoarse = 120, the probability to find a balanced partition may
be quite small for many instances, depending on the tolerance. Therefore,
when the tolerance is tight, ncoarse may be increased, or the initial partitioning
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Figure 10.1.3 – Average of the imbalance of the partitions returned for the mesh
Wave at different coarse levels. The average was computed over 100 runs on each of
the three weight distributions.

algorithm may need to be run additional times to increase the probability to
find a balanced partition.

Conclusion

So far, we have studied the imbalance of the partitions of the coarsest graph,
when using different initial partitioning algorithms and different Restriction
policies on the vertex weights. The main results are:
• the initial partitioning algorithm VNBest returns in general partitions
of smaller imbalance than the other initial partitioning algorithms, for
this set of instances. This result is valid regardless of the Restriction
policy;
• establishing tighter bounds on the vertex weights leads each initial parti-

tioning algorithm to return, on average, partitions of smaller imbalance.
This result supports a conclusion drawn in Chapter 5, that bounding
the vertex weights helps the algorithms to find balanced partitions more
easily;
• increasing ncoarse leads the initial partitioning algorithms to find more
easily partitions of smaller imbalance. This is particularly the case for
GGG, for which the average of the imbalance of the partitions returned
reaches the average of the imbalance of the partitions returned by VNBest
when ncoarse increases.
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In the next section, we will study the communication cost of the partitions
found using VNBest and GGG, and the different Restriction policies. Indeed,
the VNFirst algorithm is based on the same principle as VNBest, so their
behavior regarding the communication cost should be the same.

10.1.4 Impact of the Restriction policy and of the Ini-
tial Partitioning Algorithm on the Communica-
tion Cost

Figure 10.1.4 displays the cumul function of the communication cost of the
partition for the meshes Onera, Shock and LMJ , which are representative of
the cumul functions obtained for all meshes. The tested algorithms rely on two
initial partitioning algorithms used (VNBest with plain lines, GGG with dashed
lines), and various Restriction policies. We will first consider results for the
meshes Onera and Shock.

Comparison of the Initial Partitioning Algorithms. This amounts to
comparing plain lines (VNBest) with dashed lines (GGG), for a given color. For
all meshes, when the tolerance is 5%, VNBest and GGG are equivalent. In
general, using GGG yields solutions of smaller communication cost than VNBest.
Indeed, the performance of VNBest worsens when the tolerance tightens. A
possible explanation is that, when the tolerance is tight, the solution space is
less connected, and the refinement algorithm (FM) does not manage to reach
the optimal solution.

Comparison of the Restriction. Policies This amounts to comparing, for
a given linestyle, the lines of different colors. For all meshes, more restrictions
help to return partitions of smaller communication cost. In particular, for the
meshes Mushroom and Shock, the gap between restriction policies is large when
using VNBest. Once again, this result supports a conclusion of Chapter 5, but
here on the connection of the solution space. Therefore, we claim that more
restrictions are likely to increase the connection of the solution space, enabling
the refinement algorithm to reach the optimal solution more easily.

Results for the LMJ Mesh. We chose to discuss results for LMJ separately,
firstly because they are more difficult to analyze due to the number of runs
that we were able to perform (only 18 runs per algorithm, for t ∈ {5%, 1%}),
and secondly because the findings regarding the Restriction policies is quite
different. Indeed, the tightest restriction policy, Restrict 04, returns in general
solutions of higher communication cost. As the vertex weight distribution was
not generated as for the other meshes, this shows that a very tight Restriction
policy is not suited for every instance. Therefore, it would be worth to study
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Figure 10.1.4 – Cumulative plots of the communication cost of the partitions
returned when using either VNBest or GGG for the initial partitioning phase,
and when enforcing various restriction policies for the coarsening phase.
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how to set the maximum weight of a merged vertex during the coarsening
phase.

Conclusion

In this section, we have studied the impact on the communication cost of
using the initial partitioning algorithms VNBest and GGG, and of using different
Restriction policies. The main results are:
• when the tolerance tightens, algorithms relying on VNBest do not manage

to reach a solution near the optimal, unlike algorithms using GGG;
• in general, restricting the vertex weights enables one to return solutions
of smaller communication cost, which supports our assumption that
bounding the vertex weights increases the connection of the solution
space in the multi-criteria case;
• however, determining the maximum threshold value for the vertex weights
will need further investigation, since a too tight bound leads to an increase
in the communication cost of the returned partition.

In the following, we will restrict our study to the algorithms relying on
VNBest and GGG for the initial partitioning phase, and on the Restrict 8 policy
during the coarsening phase.

10.2 Implementation in Scotch and Compar-
ison with Crack and Existing Multi-
criteria Partitioning Tools

We have implemented a multi-criteria version of Scotch-6.0.4, and will
compare in this section the performance of this new multi-criteria version of
Scotch with MeTiS and PaToH. We will consider the results of two versions of
Crack, one relying on VNBest and the other using GGG.

Implementation – Experimental Multi-criteria Version of Scotch
For the experiments, we prevented Scotch to run two independent multi-

levels per execution (which is the default behavior in Scotch-6.0.4). Moreover,
we also removed the relaxation of the imbalance tolerance at coarse levels,
since we focus on returning balanced partitions. Finally, we implemented
the VNBest initial partitioning algorithm in Scotch because, as shown in
Section 10.1, it yields the highest probability to return a balanced partition.

The remaining differences between Scotch and Crack are its ordering of
the vertices when determining the matchings during the coarsening phase,
and the tie-breaking policy of its FM algorithm during the refinement phase,
which, as explained by Alpert and Kahng [1995], can highly change the
behaviour of the algorithm.
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For matching ordering, Scotch adds a random tie-breaking policy to the
increasing degree order. For FM, the gain table structure in Scotch has a
Last-In-First-Out policy which defines the tie-breaking policy.

Implementation – MeTiS-5.1.0
We used MeTiS-5.1.0 with its default settings, whose implementation has

been described throughout this document. One main difference of MeTiS
over our approach is that it relaxes the imbalance tolerance at lower levels,
and uses rebalancing mechanisms to improve the partition imbalance.

Another notable point is that, whereas Karypis and Kumar [1998b]
introduced the GGG algorithm that we use with Crack in this section, the
default settings for multi-criteria graph partitioning with MeTiS do not
rely on this initial partitioning algorithm. As displayed on Figure A.1.1 on
page 238, it uses a Random partitioning algorithm, followed by MeTiS’s FM
again, the rebalancing algorithm again, FM, the rebalancing algorithm, and a
third call to FM (see file initpart.c, function McRandomBisection).

The final notable point is that, by default, MeTiS computes 5 parti-
tions of the coarse graph when its number of vertices becomes smaller than
max( n

20×log2(k) , 30× k) = n
20 in our case (k = 2 and n

20 > 60).

Implementation – PaToH-3.2
Recall that PaToH does not optimize the edgecut, but the cutλ−1. We

will nevertheless report its results in terms of edgecut, in order to compare
them with those of Crack, MeTiS and Scotch.

10.2.1 Run Time
Figure 10.2.1 displays the average run time of each partitioning tool. Each

point corresponds to the average on the 300 runs performed (100 per weight
distribution) for a given tolerance. Standard deviation std is indicated as an
error bar (the length of the bar is std√

300). Because PaToH is not an open-source
software, we were not able to run it on our industrial test case LMJ .

A first observation is that Scotch run time is comparable to the run time
of MeTiS and PaToH, which shows the viability of our algorithm. A second
observation is that the standard deviation is negligible. A third observation is
that the average run time is rather independent from the prescribed imbalance
tolerance.

We did not include the running time of Crack in the figure, because its run
time is not of the same order of magnitude. Crack run time ranges from on
average 6s for bipartitioning the mesh Mushroom, to 2min for the industrial
test case LMJ and up to 5min for the mesh Shock.
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Figure 10.2.1 – Average time of Scotch, MeTiS and PaToH on each instance.
Error bars are also displayed. For each algorithm, three points are plotted,
corresponding to the imbalance tolerance of 5%, 1%, and 0.2%.

10.2.2 Ability to Find a Solution
Table 10.2.1 displays the proportion of solutions returned for Crack (using

GGG or VNBest, results are the same), MeTiS, PaToH and Scotch. A check mark
indicates that all partitions returned were solutions. Otherwise, the rounded
percentage of solutions returned is indicated (so a 100% indicates that out of
300 runs, almost all partitions returned were solutions). We also provide, in
parentheses, the average imbalance of the partitions that are not solutions.

Remark
Note that we accepted an error of 1% on the imbalance of the solution

returned to consider it as a solution. Therefore, for an imbalance tolerance
of 1%, we accepted as solutions the partitions of imbalance below 1.01%.
Indeed, MeTiS, Scotch and PaToH returned some partitions of imbalance
very close to the tolerance.

MeTiS fails to return solutions in many cases, and the imbalance of the
partitions that are not solutions are on average imbalanced half more than
the tolerance. The reason why MeTiS returns imbalanced partitions surely
lies in the fact that it relaxes the tolerance at coarse levels. Note that, on
the industrial test case LMJ , MeTiS does not find any solution when the
tolerance is of 5%. However, it finds some when the tolerance is of 1%. This
counter-intuitive behavior shows a lack of robustness in the MeTiS approach.

PaToH manages to return a solution at every execution for every mesh but
Shock, and LMJ when the tolerance is very tight. Finally, Crack and Scotch
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Multi-criteria Partitioning Tools

Table 10.2.1 – Percentage of solutions returned by each partitioning tool, for
100 runs on each of the 3 weight distributions generated on each instance,
except for LMJ which has only 1 weight distribution. A check mark means that
all partitions returned were solutions. When it was not the case, the average
imbalance of the partitions that were not solution is indicated in parentheses.

instance Crack (%) Scotch (%) MeTiS (%) PaToH (%)mesh t

Mushroom
5% X X 39 (6.21) X
1% X X 25 (1.33) X

0.2% X X 29 (0.25) X

Onera
5% X X 92 (6.82) X
1% X X 73 (1.34) X

0.2% X X 45 (0.22) X

Wave
5% X X 67 (6.50) X
1% X X 54 (1.28) X

0.2% X X 14 (0.24) X

Linkrodsok1
5% X X X X
1% X X X X

0.2% X X 11 (0.20) X

Shock
5% X X 13 (6.25) 100 (5.14)
1% X X 35 (1.26) 56 (1.30)

0.2% X X 11 (0.24) 2.0 (0.60)

LMJ
5% X X 0 (7.14) X
1% X X 15 (1.39) X

0.2% X X 1.0 (0.26) 2.0 (0.39)
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return 100% of solutions for all meshes.

10.2.3 Comparison of the Communication Cost Distri-
butions

Figure 10.2.2 shows the cumul function of the communication cost for the
meshes Onera, Wave and LMJ . The cumul function for the other three meshes
is displayed in Figure A.4.1 on page 250.

Results show that, for a tolerance of 5%, Crack return solutions of commu-
nication cost slightly smaller than for MeTiS and PaToH, whatever the initial
partitioning algorithm. The performance of Crack degrades when the tolerance
tightens, especially for the variant relying on VNBest, as we saw previously.
Nevertheless, the version of Crack relying on GGG obtains a high proportion
of solutions of small communication cost, whereas MeTiS algorithm seems
inconsistent due to the high proportion of invalid solutions that it returns.

The results of PaToH are quite average. However, the comparison is quite
difficult because it does not minimize the edgecut.

Finally, Scotch yields good results when the tolerance is in {5%, 1%}. When
the tolerance is tight, indeed, we have shown in Section 10.1.4 that VNBest
performance degrades. Surprisingly, the performance of Scotch is quite different
from that of Crack_VNBest. For example, it performs very well on the industrial
test case, LMJ . This shows that little differences of implementation can lead
to big differences in the results produced.

Conclusion

In this section, we have compared a multi-criteria implementation of Scotch
with two versions of Crack and with two partitioning tools, MeTiS and PaToH.
A first result is that our algorithms, unlike the tested partitioning tools, return
solutions at each execution. A second result is that, when the tolerance is
of 5%, our algorithms return partitions of smaller communication cost than
existing tools.

However, the performance seems to degrade when the tolerance tightens.
The next section will study a last variation of the multilevel algorithm, which
is the order of the vertices before computing the matchings.

10.3 Analysis of the Impact of the Matching
Order Using Crack

This section aims at determining if the matching order impacts the dis-
tribution of the communication cost of the returned solution and, if this
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Tolerance 5% Tolerance 1% Tolerance 0.2%
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Figure 10.2.2 – Comparison of Crack, Scotch, MeTiS and PaToH on the three
meshes, using the cumul function. For a given algorithm, cumul(x) is the
number of solutions of communication cost smaller than x returned by the
algorithm. Since we aim at minimizing the communication cost, top left is
better.
Each algorithm was run 100 times on each of the 3 weight distributions per
mesh. Note that only the partitions that are valid are counted in the cumul
function. The cut was normalized by the minimal communication cost found
among all the algorithms.
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is the case, which scheme is the best suited. The tested schemes were de-
scribed in Section 6.2; they are OrderPriority, OrderDegrees, OrderFirst
and OrderRandom.

Figure 10.3.1 reports the cumul function for the communication cost of the
returned partitions for the meshes Wave, Shock and LMJ . The algorithms all
used the Restrict 8 policy during the coarsening phase, and different ordering
schemes whose cumul functions are displayed in different colors. Algorithms
relying on VNBest are displayed with plain lines, while those relying on GGG are
displayed with dashed lines. Figure A.5.1 on page 251 reports the results for
the other three meshes.

First, we observe that ordering the vertices using different strategies before
applying the HEM scheme may considerably impact the cumul function. This
is particularly visible when using the OrderFirst scheme (in yellow), which
performs in general rather poorly compared with the other ordering schemes.
As we explained in Section 6.2, this scheme will always consider the same
vertices first for matching. Results thus show that matching schemes must
avoid considering vertices in the same order.

Then, each of the other ordering strategies has at least one instance for
which it returns partitions of smallest communication cost. Nevertheless, given
an initial partitioning algorithm, the OrderDegrees scheme always manages to
return partitions of small communication cost. This indicates that ordering
strategies must also take care of the graph topology.

Conclusion

In this section, we have shown that ordering the vertices before matching has
a heavy impact on the communication cost of the solutions returned. Moreover,
ordering schemes must avoid to always consider vertices in the same order, but
instead need to take into account the graph topology.

10.4 Comparison for k-partitioning (k ∈
{32, 128})

This section reports in Figure 10.4.1 the results obtained by our multi-
criteria version of Scotch, Crack using OrderDegrees, Restrict8 and VNBest
or GGG, MeTiS and PaToH for k-partitioning, with a tolerance of 5%.

Implementation – Crack
For k-partitioning with Crack, we used the recursive bisection algorithm

RB, defined in Section 4.1. When applying a bipartitioning algorithm on a
part, the tolerance is adapted considering the remaining bisection levels and
the current imbalance of this part.
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Tolerance 5% Tolerance 1% Tolerance 0.2%
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Figure 10.3.1 – Comparison of using different ordering policies on the commu-
nication cost of the partitions for three meshes, using the cumul function. For
a given algorithm, cumul(x) is the number of solutions of communication cost
smaller than x returned by the algorithm. Since we aim at minimizing the
communication cost, top left is better.
Each algorithm was run 100 times on each of the 3 weight distributions per
mesh (except for LMJ , which has only 1 weight distribution). Note that only
the partitions that are valid are counted in the cumul function. The cut was
normalized by the minimal communication cost found among all the algorithms.
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Figure 10.4.1 – Comparison of the communication cost of the solution returned
by Crack, Scotch, MeTiS and PaToH for k-partitioning.
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Results show that, despite using the recursive bisection scheme, which is
said to be less effective than direct k-partitioning (see Section 4.1), the versions
of Crack relying on GGG perform very well, since they return partitions with
the smallest communication cost.

Moreover, on the industrial test case LMJ , Crack and Scotch manage to
return a solution at each execution, unlike MeTiS, and the communication cost
of the solutions of Crack and Scotch is very close to the minimal communication
cost found by MeTiS.

Conclusion
In this chapter, we have performed an experimental analysis of the perfor-

mance of the algorithms that have been defined throughout this document.
To do so, we have run them several times on different instances, including an
industrial test case. This performance was measured using the percentage of
solutions returned, and the cumul function that represents the distribution of
the communication cost of the solutions returned.

The main results are:
• our initial partitioning algorithm VNBest returns partitions of the coarsest

graph with the smallest imbalance on average. Nevertheless, the evolution
of the average imbalance showed that GGG was able to catch up with
VNBest at finer levels;
• for a tolerance of 5%, using GGG or VNBest does not change much the

distribution of the communication cost of the returned solutions. However,
when the tolerance tightens, algorithms relying on VNBest do not manage
to return as many solutions close to an optimal solution;
• enforcing restrictions on the vertex weights during the coarsening phase

leads each initial partitioning algorithm to return more balanced solutions.
This result supports our claim that bounding the vertex weights simplifies
the search for a solution;
• restrictions also decreased the communication cost of the returned so-
lutions, which sides with our claim that bounding the vertex weights
simplifies the search for an optimal solution. However, how to find the
optimal bound remains an open question. In our experiments, we relied
on the Restrict 8 policy;
• ordering the vertices before computing the matching is of great importance.

In particular, the order must not always schedule the vertices in the same
order, and must take into account the graph topology;
• comparison with other partitioning tools showed that, unlike the others,
our approach always returned a solution. In particular, MeTiS policy
to relax the imbalance tolerance leads to counter-intuitive results, when
MeTiS finds more solutions for a tighter tolerance. This was particularly
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true on the industrial case, for which MeTiS returned 0 solutions for a
tolerance of 5%, but found some when the tolerance was of 1%, whereas
Crack and Scotch managed to always return a solution;
• in addition to always returning a solution, our approach achieves to return

partitions of small communication cost, even clearly smaller in some cases;
• our approach is also efficient for k-partitioning using the recursive bisec-
tion scheme. The communication cost is as small as when using other
partitioning tools, and on the industrial test case, it manages, unlike
MeTiS, to always return a solution.
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Conclusion

The work presented in this thesis aimed at the reduction of the run time of
mesh-based multiphysics simulations running on distributed memory architec-
tures. The main characteristic of multiphysics simulation is that they couple
several computation phases. In Chapter 1, we described such simulations and
showed that, in order to reduce their run time, one should balance the workload
between computation units for each phase, minimize the communication time
induced by the data distribution, and minimize the time needed to partition
the mesh.

Then, we explained in Chapter 2 how these objectives can be modeled,
making several approximations. These approximations resulted in the formula-
tion of the classic multi-criteria mesh/hypergraph/graph partitioning problems,
which search for a partition respecting balance constraints and minimizing a
communication cost function. Moreover, we also defined the vector-of-numbers
partitioning problem, which can be seen as a generalization of the classic
number partitioning problem, or as a subproblem of the multi-criteria mesh
partitioning problem. Finally, we introduced the notion of fitness landscape,
which defines how a partitioning algorithm explores the set of all partitions in
order to find an optimal solution.

We showed in Chapter 3 that the number partitioning problem is a hard
problem, which has been well studied. Nevertheless, few algorithms can be
directly applied to the vector-of-numbers partitioning problem. The situation
is quite similar for the multi-criteria mesh/hypergraph/graph partitioning
problems: while many algorithms have been designed for the mono-criterion
case, few exist in the multi-criteria case, as evidenced in Chapter 4.

Our main contributions include a theoretical analysis of the solution space
in Chapter 5. In particular, in the mono-criterion case, we stated a bound
on the vertex weights that guarantees the existence of a solution. The same
bound guarantees that the solution space is connected when using a refinement
algorithm passing from one solution to another by switching the part of a single
vertex at a time. Therefore, we conjectured that low vertex weights are likely
to increase the number of solutions and the probability that the solution space
is connected.
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Based on this conjecture, we analyzed variations of the multilevel framework.
Existing partitioning tools implement some of these variations, but they do not
always report about them, so we highlighted the diversity of implementations
and analyzed their consequences by referencing their source code. The different
algorithms were compared in Chapter 10, when run on a set of instances
described in Chapter 9. The set of instances comprises one industrial test case,
and five meshes for which three fictitious weight distributions per mesh were
generated. The generation method introduced reflects weight distributions used
in Particles-In-Cells simulations.

In order to compare the algorithms, we showed that each algorithm needed
to be run many times, and we defined the cumul function that helps compare
on the same plot both the number of solutions returned and the distribution of
the communication cost of the returned solutions. We claim that this method
also enables one to evaluate algorithms more easily.

Chapter 9 also introduced the framework, named Crack, that we imple-
mented to perform our experiments. Crack is a flexible partitioning tool
that uses user-friendly YAML specification files, and relies on a finite-state
automaton to run multiple variations of the multilevel algorithm.

In Chapter 6, we discussed restricting the vertex weights, in order to avoid
creating heavy weights in the coarsened graphs. In Section 10.1, we experimen-
tally verified that restrictions enable indeed initial partitioning algorithms to
find solutions more easily, and also that algorithms relying on restrictions find
solutions closer to the optimal solution.

We also considered in Chapter 6 coarsening schemes relying on various
ordering algorithms that influence the behavior of the Heavy-Edge Matching
algorithm. Results of Section 10.3 showed first that using the default order
at each step led to solutions of higher communication cost. Then, among the
other policies, the gap was small, but ordering using the mesh topology was
the most robust approach.

We proposed two initial partitioning algorithms in Chapter 7. These
algorithms, that are local optimization algorithms, tackle the multi-criteria
mesh partitioning problem as a vector-of-numbers partitioning problem. The
first one, VNFirst, moves any vertex if it decreases the imbalance, the second
one, VNBest, moves a vertex so that the imbalance decreases the most. For
VNBest, as shown in Section 10.1.1, our data structure enabled it to take less
time than the classic greedy-graph-growing algorithm GGG.

As reported in Sections 10.1.2 and 10.1.3, VNBest returns partitions of the
coarsest graph of smaller imbalance than VNFirst and GGG. Besides, as seen in
Section 10.1.4, when the tolerance is of 5%, algorithms relying on VNBest return
solutions as good as those returned by algorithms relying on GGG. Nevertheless,
its performance degrades when the tolerance tightens, because optimal solutions
become more difficult to reach.
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Conclusion

In Chapter 8. we argued that relaxing the tolerance during the refinement
phase is not needed, and can lead algorithms to return imbalanced partitions.
When comparing with the existing multi-criteria partitioning tools MeTiS and
PaToH in Section 10.2.2, we showed that our approach, be it with Crack or
with the multi-criteria version of Scotch that we implemented, was the only
one to have returned a solution after each call. Moreover, in Sections 10.2.3
and 10.4, we showed that the communication cost of the solutions of Crack and
Scotch was equivalent or better than the one of the other partitioning tools.
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Future Works

Models. Chapter 2 has defined many models to reflect the minimization of the
run time of multiphysics simulations run on memory distributed architectures.
Despite many claims on the efficiency of a model over the others, the influence
of the model has not been reported for industrial cases, which may explain that
the simplest one, the graph model, remains popular. A study or reports on the
accuracy of each model in practice would be very useful, both for the users
and the developers. Such study could also help the user to set the imbalance
tolerance.

Instances. In this document, we were able to compare our algorithms on one
industrial test case. It is also possible to find meshes or graphs used in practice
on the DIMACS [2012] website or on the database provided by Soper et al.
[2004], but no weight distribution is provided. This is particularly problematic
when experimenting on multi-criteria partitioning algorithms. Indeed, as we
showed in this document, the weight distribution is preponderant, so it can
change the performance of an algorithm. Though we proposed a method to
generate plausible multi-criteria weight distributions, they correspond only to
Particles-in-Cells simulations. Therefore, a database gathering both meshes and
(multi-criteria) weight distributions used in practice would be highly profitable
both for the algorithm designers and the users, as the algorithms designed
would tackle the exact problems of the users.

Algorithms. The bar plots displayed in Section 9.2 and the cumul functions
in Sections 10.2.3 and 10.4 show that current partitioning algorithms lack
robustness, as for a given instance, changing the random seed can lead to a
difference of a factor of more than two in the communication cost of the returned
solution. Improving this robustness is a major challenge, since the multi-criteria
graph partitioning problem is NP-Hard. Nevertheless, it is possible, and using
simple mechanisms as restricting the weights in the coarsened graphs. However,
how to set the maximum allowed weight remains an open question. A starting
point could be to consider the bound that appears in our theorems: half the
tolerance (when the weights are normalized).

In order to improve robustness, another possibility is to run the algorithm
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several times, keeping only the best solution found. This is the policy of Scotch-
6.0.4 (that searches for two solutions). How many executions are needed? This
appears to be a statistical question, but in practice, we also need to take into
account the fact that algorithms are tested on a finite set of meshes, and that
the robustness of an algorithm can change for a mesh not included in the
experimental set. Therefore, one also needs to understand the properties of a
mesh that will make that an algorithm will have a high robustness or not on
the input mesh.

Another technique used by MeTiS-5.1.0 is to run the algorithm several
times on the coarsened graph. We also studied this scheme, but could not
find a correlation between the communication cost of partition of the coarsest
graph and the communication cost of the partition of the original graph (good
partitions of the coarsest graph did not always lead to good partitions of the
original graph, and reversely). Characterizing such a correlation would be
definitely worthy.

Fitness Landscapes. We have analyzed the fitness landscape issued from
FM-like local optimization algorithms. We have discovered that such fitness
landscapes comprise large “plateaux”, that are sets of neighboring solutions of
same communication cost. We also attempted to define the “ruggedness” of a
fitness landscape. The ruggedness of a landscape characterizes its shape; basi-
cally, mountains are more rugged than hills, which are more rugged than plains.
The FM algorithm is hill-climbing, because it allows selecting partitions of
higher communication cost. Such a feature is mandatory when the landscape
is rugged, in order to bypass local optima.

However, the FM algorithm always selects a neighboring solution of smallest
communication cost. In a very rugged landscape, this means that FM would
descend in every valley, descending at the bottom before attempting to escape
from them. Other policies, such as selecting any neighboring solution that
decreases the communication cost, or even selecting a neighboring solution
that decreases the least the communication cost (when it really decreases the
communication cost), could avoid local optima to descend directly in the lowest
valley.

We studied the performance of such algorithms, that we called FMFirst and
FMWorst. Their distributions of the communication cost, especially for FMFirst,
were more spread than the one of FM, and usually not as good. Nevertheless,
our tests were not performed using the multilevel framework, and studies on
whether FMFirst and FMWorst can be useful would be very interesting.

Implementation. We presented in this document Crack, a flexible graph
partitioning tool. Indeed, though many graph partitioning tools exist, they
mostly focus on performance. However, being able to implement, test, and
compare rapidly new and exotic algorithms is very difficult using such tools.
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Future Works

Distributing and improving our work in Crack, or proposing a similar parti-
tioning tool, would highly benefit to researchers in partitioning algorithms. In
particular, such a framework should enable the use of various models (such
as mesh, graph, hypergraph), provide an interface to design benchmarks, and
help the researcher to compare the algorithms by detailing the results using
various methods.

Such a tool would also benefit to users, as they could test and compare many
partitioning algorithms on their own test cases, and thus select the algorithm
which is best suited for their applications.

Other Applications of Multi-criteria Partitioning. If during a simu-
lation, the weight distribution changes in a predictable way, multi-criteria
partitioning algorithm can be used instead of repartitioning algorithms, by
adding the weight distributions at selected time steps as extra criteria.

Other Applications of Our Work. We proposed a methodology to study
local optimization algorithms. This methodology can apply to similar problems
than the multi-criteria partitioning problem. For example, Morais [2016]
considers partitioning a mesh under memory constraints. His work takes into
account the duplication of bordering cells, which in some cases leads to memory
overflows.
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of the Solutions Returned by Scotch-6.0.4, MeTiS-5.1.0 and
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A.5 Comparison of Ordering Schemes before Applying HEM . . . . . 249

A.1 MeTiS-5.1.0 Default Multi-criteria Parti-
tioning Algorithm

We will describe MeTiS default algorithm using a finite-state machine,
as defined in Section 9.4 in order to represent Crack multilevel algorithm.
Figure A.1.1 displays the finite-state machine for MeTiS default algorithm.
Therefore, this is the algorithm that we compare with in the experiments of
Sections 9.2 and 10.2.

MeTiS first coarsens the graph using the HEM policy (details about MeTiS
coarsening phase were explained in Chapter 6). When the number of vertices of
the coarsened graph (noted nlevel) becomes smaller than ncoarse1 = max(0.05 n

ln k ,
30k), MeTiS will run nruns ∈ {4, 5} times the following on the coarsened graph:
• continue the coarsening phase until the number of vertices becomes smaller

than ncoarse2 = 100;
• perform an initial partitioning algorithm, which means calling successively
the RandomPart algorithm, FM, MeTiS’ Rebalance algorithm, FM once
again, another time the Rebalance algorithm, and a third call to FM
(MeTiS implementation of these algorithms was defined in Chapter 8);
• uncoarsen the graph, which means first to Prolong the partition to the
finer level, then refine it using Rebalance and FM, and restart from the
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A.2. Bar Plots Showing the Discrepancy of Communication Cost of the
Solutions Returned by Scotch-6.0.4, MeTiS-5.1.0 and PaToH-3.2

start

Coarsen

Coarsen

RandomPart FM

Rebalance FM

Rebalance FM

Prolong FM Rebalance

Prolong FM Rebalance

end

nlevel > ncoarse1

nlevel > ncoarse2

nlevel ≤ ncoarse1
[Run nruns times]

nlevel ≤ ncoarse2 nlevel ≤ ncoarse1

nlevel > ncoarse1
[Select best of nruns]

nlevel < n

nlevel = n

Figure A.1.1 – The default multilevel algorithm used by MeTiS

Prolong state as long as the number of vertices is smaller than ncoarse1 .
MeTiS thus computes 4 to 5 partitions of a coarsened graph. Then, the

best partition is selected, and only this one is prolonged and refined until a
partition of the original graph is obtained.

A.2 Bar Plots Showing the Discrepancy of
Communication Cost of the Solutions Re-
turned by Scotch-6.0.4, MeTiS-5.1.0 and
PaToH-3.2

This section reports the distribution of the communication cost of the
partitions returned by Scotch, MeTiS and PaToH. Bar plots were defined in
Section 9.2 in order to show the discrepancy of the communication cost of the
returned solutions. Figures A.2.1 on the next page to A.2.4 on page 242 report
the results for each mesh (the meshes were defined in Section 9.1). On each
page, the results for one tolerance are displayed on the same column, and the
results for one partitioning tool on the same line.

As the objective is to minimize the communication cost, lower bars are
better. Moreover, the results can not be compared between partitioning tools,
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(a) Tolerance 5% (b) Tolerance 1% (c) Tolerance 0.2%

Figure A.2.1 – Bar plots of the communication cost of the 100 partitions of the
mesh Onera

because the mono-criterion version of Scotch was used, and PaToH does not
minimize the edgecut but the cutλ−1 . Whenever a tool did not return 100%
of solutions over the 100 runs, a column “valid” displays the bar plots for the
solutions.

Note that the discrepancy depends on the mesh, and is particularly visible
for the meshes Onera and Shock. Moreover, for these two meshes, MeTiS and
Scotch surprisingly obtain better results when the tolerance is tighter.
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(a) Tolerance 5% (b) Tolerance 1% (c) Tolerance 0.2%

Figure A.2.2 – Bar plots of the communication cost of the 100 partitions of the
mesh Wave
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(a) Tolerance 5% (b) Tolerance 1% (c) Tolerance 0.2%

Figure A.2.3 – Bar plots of the communication cost of the 100 partitions of the
mesh Linkrodsok1
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(a) Tolerance 5% (b) Tolerance 1% (c) Tolerance 0.2%

Figure A.2.4 – Bar plots of the communication cost of the 100 partitions of the
mesh Shock
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A.3 Imbalance at the Coarsest Level
Section 10.1.2 studied the imbalance of the partitions returned by each initial

partitioning algorithm, for the coarsest graph originated from each restriction
policy. The experiments did not include the LMJ mesh.

Figure A.3.1 on the next page uses the same representation as in Sec-
tion 10.1.2: the cumul functions are given as areas, in order to study the results
of each partitioning algorithm, independently from the Restriction policy.

Conclusions on the performance of the initial partitioning algorithms are
quite similar for all instances. Thus, VNBest returns in general partitions of
smallest imbalance, followed by VNFirst and then GGG.

Nevertheless, the variability to the Restriction policy differs between the
instances (the space occupation of the area of one initial partitioning algorithm
changes from one mesh to another).

Then, Figure A.3.2 on page 245 details the results of each initial partitioning
algorithm, for each restriction policy, on each mesh. Without regrouping the
Restriction policies, analysis of the cumul functions is more complex, because
the curves intertwine. Nevertheless, in general, for a given initial partitioning
algorithm, more restrictions lead to partitions of smaller imbalance.

Finally, Figure A.3.3 on page 246 displays the average imbalance of the
partitions returned by each initial partitioning algorithms at the coarsest level.
Then, Figures A.3.4 on page 247 to A.3.7 on page 248 display the average
imbalance of the partitions returned by each initial partitioning algorithm, for
each mesh (but LMJ ), at different coarsened levels (which amounts to changing
the value of ncoarse).
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Figure A.3.1 – For a given algorithm, the cumul function introduced in Section 9.3.3
counts, given an imbalance x, the number of times that the algorithm returned a
partition of imbalance smaller than or equal to x (therefore, left is better).
The figure represents the area in which lies the cumul function of each initial
partitioning algorithm, when partitioning the coarsest graph produced by different
Restriction policies.
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Figure A.3.2 – For a given algorithm, the cumul function introduced in Section 9.3.3
counts, given an imbalance x, the number of times that the algorithm returned a
partition of imbalance smaller than or equal to x (Therefore, left is better).
Dash types indicate the initial partitioning algorithm used, and colors indicate the
Restriction policy.
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Figure A.3.3 – Averages of the imbalance of the partitions returned by each algorithm
for each restriction policy and each initial partitioning algorithm, at the coarsest
level
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Figure A.3.4 – Average of the imbalance of the partitions returned for the mesh
Mushroom at different coarse levels. The average was computed over 100 runs on
each of the three weight distributions.

Figure A.3.5 – Average of the imbalance of the partitions returned for the mesh
Onera at different coarse levels. The average was computed over 100 runs on each of
the three weight distributions.
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Figure A.3.6 – Average of the imbalance of the partitions returned for the mesh
Linkrodsok1 at different coarse levels. The average was computed over 100 runs on
each of the three weight distributions.

Figure A.3.7 – Average of the imbalance of the partitions returned for the mesh
Shock at different coarse levels. The average was computed over 100 runs on each of
the three weight distributions.
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A.4 Implementation in Scotch and Compar-
ison with Crack and Existing Multi-
criteria Partitioning Tools

Figure A.4.1 on the following page displays the cumul functions for our
multi-criteria Scotch implementation, for Crack, and for the partitioning tools
MeTiS and PaToH, for the meshes Mushroom, Linkrodsok1 and Shock. The
results were discussed in Section 10.2.3.

A.5 Comparison of Ordering Schemes before
Applying HEM

Figure A.5.1 on page 251 shows the impact of using different ordering
schemes before applying the HEM algorithm, for the meshes Mushroom, Onera
and Linkrodsok1 . The results were commented in Section 10.3.
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Figure A.4.1 – Comparison of Crack, Scotch, MeTiS and PaToH on the first
three meshes, using the cumul function. For a given algorithm, cumul(x) is
the number of solutions of communication cost smaller than x returned by the
algorithm. Since we aim at minimizing the communication cost, left is better.
Each algorithm was run 100 times on each of the 3 weight distributions per
mesh, and note that only the partitions that are valid are counted in the cumul
function. The cut was normalized by the minimal communication cost found
among all the algorithms.
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Figure A.5.1 – Comparison of different ordering policies (indicated by the
different colors) before applying the HEM scheme, during the coarsening phase,
using Crack. All algorithms use the same Restrict 8 policy on the vertex
weights, and either the VNBest algorithm (plain lines) or the GGG algorithm
(dashed lines) for initial partitioning.
Each algorithm was run 100 times on each of the 3 weight distributions per
mesh, and note that only the partitions that are valid are counted in the cumul
function. The cut was normalized by the minimal communication cost found
among all the algorithms.
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