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Abstract

In computer graphics realm, three-dimensional graphical data, generally represented by
triangular meshes, have become commonplace, and are deployed in a variety of application
processes (e.g., smoothing, compression, remeshing, simplification, rendering, etc.). How-
ever, these processes inevitably introduce artifacts, altering the visual quality of the rendered
3D data. Thus, in order to perceptually drive the processing algorithms, there is an increasing
need for efficient and effective subjective and objective visual quality assessments to evaluate
and predict the visual artifacts.
In this thesis, we first present a comprehensive survey on different sources of artifacts in digi-
tal graphics, and current objective and subjective visual quality assessments of the artifacts.
Then, we introduce a newly designed subjective quality study based on evaluations of the
local visibility of geometric artifacts, in which observers were asked to mark areas of 3D
meshes that contain noticeable distortions. The collected perceived distortion maps are used
to illustrate several perceptual functionalities of the human visual system (HVS), and serve
as ground-truth to evaluate the performances of well-known geometric attributes and metrics
for predicting the local visibility of distortions.
Our second study aims to evaluate the visual quality of texture-mapped 3D model subjectively
and objectively. To achieve these goals, we introduced 136 processed models with both
geometric and texture distortions, conducted a paired-comparison subjective experiment,
and invited 101 subjects to evaluate the visual qualities of the models under two rendering
protocols. Driven by the collected subjective opinions, we propose two objective visual
quality metrics for textured meshes, relying on the optimal combinations of geometry and
texture quality measures. These proposed perceptual metrics outperform their counterparts
in term of the correlation with the human judgment.

Keywords : Computer Graphics, 3D mesh models, Visual artifact, Textured mesh, Mesh
Visual Quality Assessment, Image Quality Assessment, Perceptual metrics, Subjective study.
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Résumé

Dans le domaine de l’informatique graphique, les données tridimensionnelles, générale-
ment représentées par des maillages triangulaires, sont employées dans une grande variété
d’applications (par exemple, le lissage, la compression, le remaillage, la simplification, le
rendu, etc.). Cependant, ces procédés introduisent inévitablement des artefacts qui altèrent
la qualité visuelle des données 3D rendues. Ainsi, afin de guider perceptuellement les al-
gorithmes de traitement, il y a un besoin croissant d’évaluations subjectives et objectives
de la qualité visuelle à la fois performantes et adaptées, pour évaluer et prédire les artefacts
visuels.
Dans cette thèse, nous présentons d’abord une étude exhaustive sur les différentes sources
d’artefacts associés aux données numériques graphiques, ainsi que l’évaluation objective et
subjective de la qualité visuelle des artefacts.
Ensuite, nous introduisons une nouvelle étude sur la qualité subjective conçue sur la base de
l’évaluations de la visibilité locale des artefacts géométriques, dans laquelle il a été demandé
à des observateurs de marquer les zones de maillages 3D qui contiennent des distorsions
visibles. Les cartes de distorsion visuelle collectées sont utilisées pour illustrer plusieurs
fonctionnalités perceptuelles du système visuel humain (HVS), et servent de vérité-terrain
pour évaluer les performances des attributs et des mesures géométriques bien connus pour
prédire la visibilité locale des distorsions.
Notre deuxième étude vise à évaluer la qualité visuelle de modèles 3D texturés, subjective-
ment et objectivement. Pour atteindre ces objectifs, nous avons introduit 136 modèles traités
avec à la fois des distorsions géométriques et de texture, mené une expérience subjective de
comparaison par paires, et invité 101 sujets pour évaluer les qualités visuelles des modèles
à travers deux protocoles de rendu. Motivés par les opinions subjectives collectées, nous
proposons deux mesures de qualité visuelle objective pour les maillages texturés, en se
fondant sur les combinaisons optimales des mesures de qualité issues de la géométrie et de
la texture. Ces mesures de perception proposées surpassent leurs homologues en termes de
corrélation avec le jugement humain.

Mots-clés : Informatique graphique, Maillages 3D, Artefact visuel, Maillage texturé, Évalu-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



viii

ation de la Qualité Visuelle des Maillages, Évaluation de la Qualité des Images, Métriques
perceptuelles, Étude subjective.
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Chapter 1

Introduction

1.1 Context

In the teachings of Gautama Buddha, the Five Aggregates: “Form, Sensation, Perception,
Mental Formation and Consciousness”, reveal the way that a human observes, experiences and
understands the world with his psychological cognitive processes. The cognition based on the
visual system is a universal and frequent process, even in today’s world, where the growing
technology has changed people’s lives dramatically. Especially, graphics, from ancient
paintings to modern computer graphics, describe the visual perception, and reflect the human
cognition. In present days, the graphics have evolved from simple two-dimensional lines to
diverse three-dimensional graphical data (see Figure 1.1), which have become commonplace
in the vast majority of industrial domains involving medical imaging, mechanical engineering,
digital entertainment, e-commerce, scientific visualization, architecture design, virtual reality
and so forth. As a result of these proliferating and various uses, the 3D graphical data,
generally formed by triangular meshes, are subject to various processing operations, such as
compression, simplification, transmission, remeshing, watermarking, etc. Inevitably, these
manipulations introduce artifacts, which impact on the visual perception more or less, or in
other words, alter the visual quality of the processed data.
Considering the final receivers of the 3D data are human eyes, which appeals to costumers

for the satisfying Quality of Experience, it is crucial to evaluate the quality of the distorted 3D
objects, namely the visual annoyance amount caused by the artifacts. Thus, many researchers
proposed numerous quality functions (i.e. metrics), attempting to find a common evaluation
standard of the visual perception. For instance, the pioneer researchers only relied on simple
geometric attributes (e.g., Hausdorff or RMS distances) to evaluate the distortion quality
between a reference model and its processed version. However, these metrics performed
poorly in terms of correlation with human vision. Recently, the scientific community has
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2 Introduction

Figure 1.1: Examples of different 3D graphical data. from left to right: Dragon mesh, vertex
number : 50,000; Squirrel mesh mapped with texture, vertex number: 6,185; Bunny mesh,
vertex number : 34,835.

devoted to devise different mesh visual quality (MVQ) metrics considering the connections
between graphical attributes (including geometric and rendering attributes) and the Human
Visual System (HVS), or the functionalities of the HVS. These visual metrics aim to predict
the perceived visual quality of distorted 3D data, and have surpassed the previous classical
metrics regarding the correlation with visual perception. Nevertheless, there still exist two
fundamental problems:

• Among the diverse metrics, which metric (and/or attribute) is able to provide the
predictions that are mostly correlated with human perception?

• How to design a visual quality metric that can thoroughly fulfill different evaluation
tasks (with a variety of distortions and rendering scenarios), predicting the perceived
visual quality efficiently and effectively?

In order to evaluate the performance of the metrics, a metric prediction/value must be
compared with the human subjective assessment, usually by computing the correlations
between the global quality value produced by the metric and the subjective score from
observers. However, besides this global information, in many cases it is also necessary to
evaluate their performances using information about the local visibility of the artifacts (i.e.
the visually noticeable distortions on small regions of a mesh). Such local information is
relevant to drive locally any geometry processing operations, such as mesh simplification,
compression and so forth. Moreover, among the existing 3D mesh visual quality metrics,
they mainly consider either the geometric distortions or the artifacts generated during the
rendering steps (see Figure 1.2). Little work has been done to evaluate the visual impact of
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1.2 Objectives and Contributions 3

the artifacts on textured 3D models in consideration of complex perceptual interactions (i.e.
geometric, texture attributes and rendering scenarios).

Figure 1.2: Illustration of a typical computer graphics work-flow and its different causes
of artifacts. Top row, from left to right: An original scanned 3D Dragon model (338K
vertices); A simplified version (50K vertices) with uniform high frequency noise; result
after watermarking [123] which produces some local bumps on the surface. Bottom row:
Result after rendering (radiance caching) which creates a non uniform structured noise. This
work-flow is presented in [61].

1.2 Objectives and Contributions

The research topic of this thesis work is the design of subjective visual quality assessment
protocols and objective visual quality metrics for 3D objects. Our main objectives are: (1) to
evaluate the performance of existing 3D mesh quality metrics in the terms of correlation with
the human vision on perceiving local distortions; (2) for the texture mapped 3D models, to
evaluate the available metrics with regards to correlation with visual perception in different
evaluation tasks (with various artifacts and rendering scenarios), and then to propose new
objective quality metrics.
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4 Introduction

In order to accomplish the first objective, we designed a subjective quality study based on
evaluations of the local visibility of geometric artifacts, in which observers were asked to
mark the areas of 3D meshes that contain noticeable distortions. The collected perceived
distortion maps are used to illustrate several perceptual functionalities of HVS, and serve as
ground-truth to evaluate the performance of well-known geometric attributes and metrics for
predicting the local visibility of distortions.
To achieve the second goal, we introduce 116 processed models with both geometric and
texture distortions, conduct a paired-comparison subjective assessment, and invite 98 subjects
to evaluate the visual qualities of the models under two different rendering protocols. Driven
by the collected subjective opinions, we propose two objective quality metrics for textured
meshes based on the optimal combinations of geometry and texture quality measures. Finally,
we evaluate these two quality metrics along with other counterparts regarding the correlation
with the subjective opinions.

1.3 Outline

The remainder of this manuscript is organized as follows:
Chapter 2 provides background knowledge on digital artifacts (distortions) caused by ac-
quisition, conversion and processing operations. It covers common distortions existing in
processed 2D images (involving videos) and 3D meshes.
Chapter 3 presents a comprehensive survey on objective visual quality metrics for 2D images,
videos and 3D objects.
Chapter 4 describes the existing subjective visual quality assessments in computer graphics.
Chapter 5 presents our proposed subjective assessment, which quantitatively evaluates several
well-known geometric quality metrics and attributes for the task of predicting perceived local
distortions.
Chapter 6 details our subjective and objective quality assessments for texture mapped 3D
models.
Chapter 7 summarizes the contributions of the manuscript, and proposes several future
working directions concerning the research on visual quality assessments for 3D graphical
data.
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Chapter 2

Background knowledge on digital
artifacts by acquisition, conversion and
processing

In the computer graphic fields, various visual contents are produced, which can be mainly
categorized into two types: 3D data and 2D images (digital videos are essentially sequences
of 2D images). According to different sub-realms of applied graphics (e.g., scientific visu-
alization, virtual reality, video gaming, engineering design, medical care, internet industry,
etc.), extensive images, videos and 3D data are generated and manipulated. Usually, de-
pending on different manipulation purposes (e.g., remote transmission, animation, scanning,
rendering, etc.), the relevant operations, such like compression, sub-sampling, simplification,
smoothing and so forth, or the sensor and circuitry of a scanner/camera may cause the
noticeable distortions in 2D images or graphical 3D data [43] [32]. These distortions are
called 2D image artifacts and 3D geometric artifacts respectively.

2.1 2D image artifacts

2.1.1 Image noise

Usually, image noise is shown as random variance of the color or brightness in digital images,
which often occurs during image capture, transmission [32], etc . The range of the noise
magnitude can be from almost imperceptible spots on digital images to almost entirely noise
due to sophisticated processing, poor acquisition or low precision of a sensor, scanner or
digital camera. Depending on different formation causes, the image noise can be generally
sorted into following types:
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6 Background knowledge on digital artifacts by acquisition, conversion and processing

Figure 2.1: Some image noise examples. From left to right: Original Lena image, size:
512×512, White Gaussian noise (standard deviation 25), Multiplicative Speckle Noise. Both
noises are generated by MATLAB.

Gaussian noise

Gaussian noise usually happens under poor conditions of acquisition, such like poor illumi-
nation and/or high temperature, etc. This noise appears as additive, independent at each pixel
and independent of the signal intensity [32]. A major noticeable Gaussian noise is amplifier
noise, which shows as constant noise level in dark areas or in the blue channel of a color
image (See Figure 2.1).

Speckle noise

Speckle noise is of granulate, which exists in active radar and synthetic aperture radar (SAR)
images. In traditional radar images, it results from the interference of the received waves
from an object which is no larger than a single processing element, and consequently raises
the average gray level in a local area. Speckle noise in SAR images is caused by coherent
processing of scattered signals from multiple distributed targets [40]. The presence of speckle
noise in an image reduces the ability of a human observer to resolve fine details in the image
[65]. (See Figure 2.1).

Fat-tail distributed noise

Fat-tail distributed noise is also known as salt-and-pepper noise or impulsive noise, which is
caused by malfunctioning pixels in camera sensors, faulty memory locations in hardware, or
transmission in a noisy channel [11]. It manifests itself as sparsely occurring dark pixels in
bright areas and white pixels in dark areas. (See Figure 2.2).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



2.1 2D image artifacts 7

Figure 2.2: Left: Original Pepper image, size: 256×256, Right: Fat-tail distributed noise
(added to 10% of the pixels). The noise is added by using MATLAB.

2.1.2 Smoothing artifacts

Aiming to handle the image noise or other fine-scale structure/rapid phenomena, image
smoothing methods were proposed to capture important patterns in images. During this
processing, the individual points of an input signal, which are more intensive than the
immediately adjacent points, are modified and reduced, and thus the points that are lower
than adjacent points rise. Naturally, a smoother signal is produced after this processing.
Most common smoothing algorithms use spatial filters to smooth input data [66], where a
set of original adjacent points are multiplied point-by-point by a group of coefficients that
define the smooth shape, and then the summation of the products is divided by the sum of
the coefficients (average value). The process repeats until all the original points are shifted
down to the defined smooth values. Besides taking average values of coefficients, some
algorithms take the median values or Gaussian weighted average values as smoothing fliters.
The visually blurred artifacts caused by smoothing may be from a high extent of defined
smooth shape and excessive smoothing repeations. Figure 2.3 shows a smoothing example
using Gaussian filter with different σ values.

2.1.3 Compression artifacts

Transmission and storage of digital images are almost required in every domain related to
computer graphics. Thus, in order to decrease the transmission and storage costs, image
compression algorithms were proposed to reduce irrelevance and redundancy of images,
which can be lossy or lossless. Between the two types of compression methods, the lossy
compression may introduce perceptible artifacts, especially, at low bit rates.
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8 Background knowledge on digital artifacts by acquisition, conversion and processing

Figure 2.3: A smoothing example using Gaussian filter with different σ values. From left to
right: Original Lena image, size: 512×512; Image with Gaussian smoothing, σ=3; Image
with Gaussian smoothing, σ=5. The original image is manipulated by MATLAB.

JPEG

JPEG (Joint Photographic Experts Group) compression [122] is a commonly used lossy
compression method based on an 8×8 block-size discrete cosine transform (DCT), which
convert the image (or each frame of a video source, which refers to the video compression
for reducing spatial redundancy of video sequences in MPEG standards [36] ) from spatial
domain into frequency domain. More precisely, let f (x,y) represent an unsigned integer
image value (e.g., color, hue, intensity, etc.) in [0,2P−1] at the location (x,y) of input image.
The output of DCT F(u,v) shifted f (x,y) to a signed integer in the range of [−2P−1 −
1,2P−1 −1], the transform is expressed as follows:

F(u,v) =
1
4

C(u)C(v)[
7

∑
x=0

7

∑
y=0

f (x,y)cos
(2x+1)uπ

16
cos

(2y+1)vπ
16

] (2.1)

where 0 ≤ u < 8, 0 ≤ v < 8, C(u),C(v) = 1/
√

2 for u,v = 0; and C(u),C(v) = 1 otherwise.
In frequency domain, in an 8×8 pixels block, the quantization algorithm (i.e. DTC), which
is related to the discrete fourier transform (DFT), is opted to optimally reduce a large scale
of coefficients into a smaller scale by using the equation 2.1 to remove the high-frequency
coefficients, since the high-frequency coefficients (such like, sharp transitions in color
hue, intensity, etc.) provide fewer contributions to the whole image than other frequency
coefficients [122]. Finally, the quantized coefficients are sequenced and losslessly packed
into the output bitstream. The quantization step is a many-to-one mapping proccedure, and
therefore is fundamentally lossy [122]. Usually, a high level of compression ratio, which
means the ratio between size of compressed file and its original file, results in blocking
artifacts on the compressed image, because the quantization operation inevitably makes noise
around contrasting edges to meet the high compression ratio (see Figure 2.4).
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2.1 2D image artifacts 9

Figure 2.4: A comparison between JPEG and JPEG2000. From top to bottom: Original photo,
size: 1024× 768; JPEG format, size: 576× 224, compression ratio: 1:33.65; JPEG2000
format, size: 576× 224, compression ratio: 1:33.65. The photo is captured from http:
//www.wikipedia.com, Author: Shlomi Tal.

JPEG 2000

JPEG 2000 compression [103], proposed by Joint Photographic Experts Group in 2000, can
be lossy as well. It inherits the JPEG standard, and replaces the previous discrete cosine
transform (DCT) with a discrete wavelet-based transform (DWT), which filters the input
image signals with low-pass and high-pass filters, and then downsamples the filtered signals
by discarding odd indexed samples, whereas JPEG uses an 8×8 block-size DCT. The low-
pass filter preserves the low frequencies of a signal while attenuating or eliminating the high
frequencies, meanwhile the high-pass filter preserves the high frequencies of an image such
as edges, texture and detail, when discarding or attenuating the low frequencies [75]. Since
the DWT eliminates blocking artifacts at high compression ratios, the JPEG 2000 performs
better-measured fidelity over JPEG, however, the elimination of high frequencies from the
low-pass filter results in a blurred version of the original image [75] (see Figure 2.4 ).
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10 Background knowledge on digital artifacts by acquisition, conversion and processing

2.1.4 Resampling (Sub-sampling) artifacts

For different image processing purposes, an image may be resized to a finer matrix in order
to improve its appearance, or fitted to new position coordinates after a transformation (e.g.,
rotation, scaling, etc.) [82], etc. Hence, several resampling algorithms were designed to
meet the demands. However, the resampling algorithms can result in visible artifacts, such
as ringing, aliasing, blocking and blurring [111], especially, when they are used to enlarge
subsampled images by interpolating image values (e.g., RGB, hue, grayscale, etc) between
pixels in a local neighborhood (see Figure 2.5). Three common resampling methods based
on different interpolation algorithms are introduced as below:

Nearest-neighbor interpolation based resampling

Nearest-neighbor interpolation [82] is a simple method for approximating an image value
of non-given point at some location in an image while the values of neighboring points are
given. It interpolates an image value into the location by convolving the value of the nearest
point with a rectangle function. However, this is a basic low pass filter which results in
some aliasing or blurring artifacts [82] (see Figure 2.5). This algorithm is commonly used in
texture mapping in 3D rendering.

Bilinear interpolation based resampling

Bilinear interpolation performs a linear interpolation in two directions (x and y directions)
on a rectilinear 2D grid of an image. In practice, when an image needs scaling up, each
image pixel needs to be moved along a certain direction according to the scale value,
which inevitably leaves many non-valued pixels (i.e., holes) [87]. In this case, the bilinear
interpolation uses the values of 4 nearest pixel in diagonal directions from a non-valued pixel
to assign appropriate image value to the hole.
We demonstrate the algorithm using a one-dimensional (1-D) case. Two dimensional (2-D)
image data are handled by sequential x direction and y direction 1-D interpolations. Assume
f (xk) is an image value at the location xk, and f ′(x) is the value to be interpolated at the
location x. Suppose that the nearest available neighbors of x are xk (left) and xk+1 (right), and
the distance between xk and xk+1 equals to 1. Define the distances between x, xk and xk+1 as:
d = x−xk and 1−d = xk+1−x. The f ′(x) is therefore computed using bilinear interpolation
as follows:

f ′(x) = (1−d) f (xk)+d f (xk+1) (2.2)
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2.1 2D image artifacts 11

Figure 2.5: Comparison of different resampling algorithms. From left to right: Original
image, size: 200× 200; Resampled image with Bicubic interpolation, size: 100× 100;
Resampled image with Bilinear interpolation, size: 100× 100; Resampled image with
Nearest-neighbor interpolation, size: 100×100. The cartoon images are from http://www.
chrismadden.co.uk.

Like the nearest-neighbor interpolation, this algorithm is commonly used in texture mapping
of 3D object as well (see Figure 2.5 ).

Bicubic interpolation based resampling

Bicubic interpolation [87] is an extension of bilinear interpolation. Unlike the bilinear
interpolation, which consider 4 neighboring pixels (2×2), bicubic interpolation takes 16
pixels (4×4) into account, which produces a smoother rescaled image with fewer artifacts.
Similar to the demonstration of bilinear interpolation, we interpret the bicubic interpolation
in one-dimensional case involving two more values at the coordinates: xk−1 and xk+2 in the
following way:

f ′(x) = f (xk−1)(−d3 +2d2 −d)/2

+ f (x)(3d3 −5d2 −2)/2

+ f (xk+1)(−3d3 +4d2 −d)/2

+ f (xk+2)(−d3 +d2)/2

(2.3)

However, this algorithm has a larger time complexity than bilinear interpolation and nearest-
neighbor interpolation. Similar to the nearest-neighbor interpolation, both bilinear and
bicubic interpolations can cause an amount of blurring in the resampled image [44] (see
Figure 2.5 ).
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12 Background knowledge on digital artifacts by acquisition, conversion and processing

Figure 2.6: Scanned meshes from stanford 3D model repository [68]. From left to right:
Happy Buddha, scan size: 4,586,124 points; Dragon, scan size: 2,748,318 points.

2.2 3D geometric artifacts

In this part, the 3D graphic data that we focus on is 3D surface mesh, which consists of
interconnected spatial facets (e.g. triangles, quadrangles. etc). And the 3D geometric artifacts
solely refer to the distortions resulted from the geometric modeling and processing (e.g.,
smoothing, watermarking, etc.) steps, whereas the distortions caused by generating or post-
processing 3D content images/videos (e.g., tone-mapping, rendering, etc.) are considered as
image artifacts[61].

2.2.1 Mesh acquisition noise

Mesh acquisition noise on 3D mesh is introduced by inaccurate acquisitions from laser
scanners. The scanned raw meshes are usually irregular and contain millions of trian-
gles/quadrangles [43]. Figure 2.6 shows two examples of acquisition noise.

2.2.2 Smoothing artifacts

Besides the purpose of removing the high frequency noise caused by acquisition, mesh
smoothing methods are motivated by advanced filtering processing, fair surface design, hole-
filling and mesh deformation as well. The aim of smoothing is to fair the large polyhedral
surface of arbitrary topology [110]. There exist four widely used smoothing algorithms:
Laplacien smoothing [104], Gaussian smoothing [109], Taubin smoothing [109] and Two-step
smoothing [5], of which Laplacien and Gaussian smoothing algorithms may introduce the
perceived shrinkage distortion on 3D mesh, while Taubin and Two-step smoothing algorithms
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2.2 3D geometric artifacts 13

prevent the smoothed mesh from shrinkage but may still result in deformation artifacts due
to over-iterative smoothing steps (see Figure 2.7).

Laplacian smoothing

Laplacian smoothing moves each vertex vi on a mesh towards a new position v̄i by applying
an umbrella operator [120]. In details, firstly the operator computes a direction vector ⃗U(vi)

between the vertex vi and the barycenter of its adjacent vertices v j:

⃗U(vi) =
1
N

N

∑
j=1

(v j − vi) (2.4)

with N the number of adjacent vertices to vi. Then a new positon v̄i is set in the direction
⃗U(vi), which is computed as: v̄i = vi + λ ⃗U(vi). λ is a positive damping factor smaller

than 1 [109]. However, more iteration steps of Laplacian smoothing results in further mesh
shrinkage.

Gaussian smoothing

In contrast to the Laplacian smoothing that relies on the umbrella operator, Gaussian smooth-
ing [109] firstly computes a Gaussian weighted direction vector ⃗G(vi) between each vertex
vi and the barycenter of its adjacent vertices v j. ⃗G(vi) is computed as follows:

⃗G(vi) =
N

∑
j=1

ωi j(v j − vi) (2.5)

where N means the number of adjacent vertices to vi, the Gaussian weights ωi j are positive
and add up to 1 [109]. Then the new position v′i is set by moving vi in the Gaussian weighted
direction: v′i = vi +λ ⃗G(vi) , in which the damping factor λ is a positive number smaller than
1 [109]. Still, several repetitions of the smoothing process produce the shrinkage of the mesh.

Taubin smoothing

Taubin smoothing actually consists of two consecutive Gaussian smoothing steps. In a first
step, Gaussian smoothing applies a positive scale factor λ to all the vertices of a mesh,
whereas in a second step a negative scale factor µ (0 < λ <−µ) is applied to all the vertices.
The repetitions of these two steps produce a low pass filter, which filters out the perturbations
(i.e. zero mean high curvature noise) above the underlying smooth surface [109]. Taubin
smoothing effectively prevents a smoothed mesh from shrinkage, and thus contributes to a
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14 Background knowledge on digital artifacts by acquisition, conversion and processing

Figure 2.7: An example of different smoothing methods. From left to right: Original
Vase Lion model with 38,728 points; Laplacian smoothing, iteration steps: 3; Two-step
smoothing,iteration steps: 3, feature angle: 30 degree, normal smoothing steps 10, vertex
fitting steps 10; Taubin smoothing, iteration steps: 3, λ = 0.5, µ =-0.53. All the models are
processed by the software Meshlab [19].

better visual quality than than Laplacien and Gaussian smoothing methods, but it may cause
the loss of mesh details after several iterations.

Two-step smoothing

Two-step smoothing is based on the iterative mean filtering [5], where in a first step all
the similar normals of all mesh triangles that share a common edge or vertex are averaged
together, and in a second step all the vertices are fitted to the new normals. This smoothing
performs well in denoising but may lose some salient shape information, which could
introduce visually distinguishable artifacts. Some different smoothing methods are shown in
Figure 2.7.

2.2.3 Simplification artifacts

Sometime the meshes scanned or processed by acquisition or smoothing procedures are with
very high resolution, which are not necessarily required or supported in some applications or
devices [37], simplification processing methods are therefore extensively used for reducing
or simplifying the size of the mesh. The algorithms incrementally reduce the number of
vertices and edges on the mesh surface through clustering or decimation methods. However,
oversimplification may lead to the deformation of the mesh, which introduces noticeable arti-
facts in forms of deformed surface, losses of mesh details, etc. In practice, four simplification
algorithms are commonly used, which are presented as follows:
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Figure 2.8: The highlighted edge is contracted into a single point. The shaded triangles
become degenerate and are removed during the contraction. The figure is adapted from [37].

Vertex decimation

Vertex decimation iteratively removes a vertex and its adjacent faces, and fills the hole with
retriangulation [96].

Vertex clustering (Quantization)

Quantization algorithms can be considered as simplification methods by clustering vertices
into a center vertex of each 3D grid cell, which will be detailed in the section Geometry
compression artifacts.

Iterative edge contraction

This method iteratively contracts the edges of a manifold surface to reduce the mesh com-
plexity [91][46]. Figure 2.8 shows the edge contraction procedure, which is called pair
contraction denoted as: (v1,v2)→ v̄. The procedure moves the vertices v1 and v2 to the new
position v̄, connects all their incident edges to v1, and deletes the vertex v2.

Quadric edge collapse decimation

Based on the iterative edge contraction, the quadric edge collapse decimation contracts
valid vertex pairs iteratively, and preserves surface error approximations relying on quadric
matrices [37]. Figure 2.9 shows an instance of different simplified approximations to an
original model using this algorithm.

2.2.4 Geometry compression artifacts

As we mentioned before, transmission and storage of digital data involving 2D and 3D graph-
ics are required in every domain related to computer graphics. Thus, geometry compression
was proposed as a solution to the issues about the mesh size reduction for the storage and
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Figure 2.9: Different simplified Bunny models using quadric edge collapse decimation for
different target triangles. From left to right: Original Bunny model with 69,451 triangles; A
simplified Bunny model with 1,000 triangles; A simplified Bunny model with 100 triangles.
The image is from [37].

transmission. In other cases, geometry compression is adopted for interactive visualization
of large meshes on low capability terminals as well [74]. In the first step of the compression,
the algorithm usually quantizes all the coordinates of vertices (so-called quantization), which
can effectively reduce the amount of data. Even though the quantization enables the encoding
without any quality loss, aggressively quantizing the geometry can introduce the loss of
information, which can be observed as a blocking or deformed surface [48] (see Figure 2.10 ).
The quantization encoder is usually of two types: scalar quantization and vector quantization.

Scalar quantization

Scalar quantization transforms the vertices of a mesh from floating-point positions into
integer number positions. A commonly used compression algorithm, namely Gotsman (TG)
compression [74], encodes the mesh vertex coordinates using uniform quantization (a kind of
scalar quantization). In details, assume that all the vertices of a mesh are uniformly quantized
to n bits meaning each coordinate of any vertex is rounded to the nearest integer value in
[0,2n −1], and accordingly the mesh bounding box is equally divided into a 3D grid, then
the coordinates of those vertices v j that lie inside ith 3D grid cell are removed and replaced
by the integer coordinates of the cell center vi [116]:

vi = round j∈k[v j] (2.6)

where k refers to the number of the vertices that lie inside ith 3D grid cell.
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2.2 3D geometric artifacts 17

Figure 2.10: Vector quantization vs. scalar quantization. From left to right: Original Bunny
model: 96 bits per vertex (bpv); Vector quantization method proposed in [18] (7 bpv); Scalar
quantization (7 bpv). The figure is captured from [18].

Vector quantization

Vector quantization partitions vertices of a mesh into arbitrary polygonal cells [92], In
contrast with the scalar quantization whose partitioned cells are cuboids, cells of vector
quantization can be better fitted to the mesh shape, and thus contribute to a better visual
quality than scalar quantization at low quantization bits [64] [18].

2.2.5 Watermarking artifacts

The watermarking technique emerges as a solution for protecting copyrights of 3D digital
designs from illegal duplication and redistribution. The algorithms embed a watermark,
which is usually a bit string or a pseudo-random sequence, over a 3D digital asset, and thus
inevitably introduces distortions after the process. Three recent blind watermarking schemes,
in which the original cover content (i.e. watermark) is not required for watermark extraction,
are presented below:

Watermarking based on vertex norms distribution[17]

The method modifies (increases or decreases) the distributions of the mean value or variance
value of the vertex norms according to a watermark bit to be inserted. And it usually
introduces structured ringing distortions on a mesh surface (see Figure 2.11 and Figure 2.12).

Watermarking based on manifold harmonics [124]

This method opts for a spectrum decomposition tool, namely the manifold harmonics trans-
form [117], which can generalize the conventional Fourier analysis to the functions defined
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Figure 2.11: A comparison between watermarking methods based on vertex norms distri-
bution [17] and based on manifold harmonics [124]. From left to right: A Venus model
embeded a watermark by Cho’s method; A Venus model embeded a same watermark by
Wang’s method using manifold harmonics. This figure is adapted from [124].

on arbitrary 2-manifold surfaces. Based on the manifold harmonics transform, the water-
marking algorithm quantizes the amplitudes of low frequency coefficients using scalar Costa
scheme [29] to covertly embed a blind and robust watermark in the manifold harmonics
spectral domain of a 3D mesh. Figure 2.11 shows a comparison between this algorithm and
Cho’s method [17]. Apparently, this algorithm introduces fewer visual artifacts.

Watermarking based on volume moments [123]

This scheme introduces the geometric volume moments. The volume moment mpqr of order
p, q, r is defined as a volume integral of the function f (x,y,z) = xpyqzr inside the closed
surface S, which can be expressed as:

mpqr =
∫∫∫

xpyqzr
ρ(x,y,z)dxdydz (2.7)

where ρ(x,y,z) is the volume indicator function, and it is equal to 1 if (x,y,z) is inside
the closed surface; otherwise it is equal to 0. Based on the notion of volume moment, the
algorithm firstly normalizes a mesh with its global volume moments, and then discretizes
its cylindrical domain to decompose the mesh into patches. In each candidate patch, the
algorithm uses a modified scalar Costa [29] quantization of local zero-order moment to
insert an one-bit watermark. After the insertion, a smooth deformation mask is used to hide
the visible distortion. Figure 2.12 presents a comparison between this method and Cho’s
algorithm [17]. This method hides a watermark better.
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Figure 2.12: A comparison between watermarking methods based on vertex norms distribu-
tion [17] and based on volume moments [123]. From left to right: A Horse model embeded a
watermark by Cho’s method; A Horse model embeded a same watermark by Wang’ method
using volume moments. This graphic is supplied by [123].

2.3 Conclusion

Through the summary above, we can see that, besides the noises resulted from acquisitions,
different types of converting and processing operations on 2D/3D contents alter or modify
properties of original digital data on aspects of gray scale, color, hue, intensity, structure,
topology, etc., which more or less introduces artifacts (e.g., blocking, blurring, losses of
details, shrinkage, deformation, etc.) as well. Some of the artifacts are almost imperceptible
for human vision system, whereas others may be very noticeable or even annoying, and bring
about unwanted problems and issues in many human centered applications.
Hence, there emerged an increasing demand of evaluating the quality of processed graphics,
which aim to evaluate the impacts of the artifacts and thereby improve the acquisition
procedure, converting and processing algorithms. Thus, many researchers proposed various
objective metrics to measure the global or local quality of processed 2D/3D graphic data.
Meanwhile, a great deal of subjective quality assessments, where subjective opinions on
evaluating the global or local quality of the processed graphics from a group of human
observers are collected and analyzed, was designed to quantitatively measure and compare the
performances of the objective metrics in correlation with subjective opinions, and moreover
some objective visual quality metrics can be driven by the collected subjective data [126].
Nevertheless, the subjective quality assessments can be very expensive to conduct, since
massive subjects and time are involved in the experiments [85]. In the following chapter,
several classical and recent objective visual quality assessments of 2D image and 3D mesh
will be introduced in details.
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Chapter 3

Survey on objective visual quality
metrics for 2D images, videos and 3D
models

3.1 Introduction

In previous chapter, we described the different types of digital artifacts caused by acquisition,
convertion and other processing operations. Since the human visual system (HVS) is the
ultimate receiver of the processed graphics, some of the artifacts are imperceptible and of no
account, but others may bring about undesired outcomes on the final appearance, and even
fatal problems in some applied scientific fields, such like medical imaging, etc. Thus, accom-
panying the development of computer graphic technologies, diverse objective and subjective
visual quality assessments (methodologies) have been proposed to measure artifacts, evaluate
processing procedures, and optimize processing methods in return. In computer graphics
realm, visual quality (visual fidelity) refers to the visual impacts of the artifacts coming
from digital graphic manipulations (e.g., rendering, compression, simplification, etc) [61].
Based on mathematical methods, objective quality assessment evaluates the visual fidelity of
processed graphic data using automatic metrics, while subjective quality assessment, where
a group of observers provide subjective opinions on estimating processed graphic contents,
permits to evaluate the performance of objective assessments in terms of correlation with
the subjective opinions. The outputs of an objective metric or a subjective experiment is
usually a single global score (e.g., Mean opinion score), which represents a global visual
impact of artifacts. However, it can also be a local distortion visibility, which predicts spatial
distributions of artifacts. Both subjective and objective quality assessing procedures can be
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22 Survey on objective visual quality metrics for 2D images, videos and 3D models

one of the three forms: full-reference (FR), reduced-reference (RR), in which an original
graphic (image, video or 3D model) is completely or partially shown for the comparison
with its distorted version, and no-reference (NF) where only distorted graphics are available.
This chapter is dedicated to present different objective visual quality metrics for 2D image,
including video sequence, and 3D mesh with full-reference (FR) setting.

3.2 Image and video visual quality assessments (IQA)

3.2.1 Metrics of first generation

Mean square error (MSE) and Peak signal-to-noise ratio (PSNR) are pioneering objective
quality metrics, both of which compute the differences in the statistical distributions of pixel
values (yi and xi) between degraded image and its reference (original image). In details,
assume that X is an original image without any processing, and Y is a distorted approximation
to be evaluated. Denote N is the total number of the pixels in each image. The MSE and
PSNR can be defined as follows:

MSE =
1
N

N

∑
i=1

(xi − yi)
2 (3.1)

And the PSNR is defined as:

PSNR = 10 · log10
MAX2

MSE
(3.2)

MAX refers to the maximum pixel value of an image. When the pixels are allocated with 8
bits/pixel, MAX = 28 −1 = 255. Furthermore, a generalization of the MSE can be deducted
using Minkowski metric, as below:

Ep = (
N

∑
i=1

|xi − yi|p)
1
p (3.3)

where p ∈ [1,∞). When p = 1, Ep means mean absolute error measure, p = 2 makes Ep

square root of MSE (RMSE), p = 3 yields cube root of MSE, while p = ∞ calls the maximum
absolute difference measure:

E∞ = max
i

|xi − yi| (3.4)

MSE and PSNR metrics are extensively used in image processing fields thanks to their
simplicity and convenience for the optimization of processing algorithms. Moreover, the
MSE and PSNR have clear physical meanings: the energy error of pixel intensities between
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a distorted image and its reference. However, the major defect of the MSE and PSNR is
their poor correlation with human perception. Figure 3.1 shows a visual example of this
defect, where the original Einstein image (a) is processed by several different operations:
contrast enhance (b), Gaussian noise (c), Fat-tail distributed noise (d), speckle noise (e),
JPEG compression(f), blurring (g). All the measured qualities of these distorted images
from MSE are 285.15, and their PSNR measures equal to 23.58, however, obviously, their
perceived qualities are dramatically different. For the last three decades, many researchers
have launched extensive experiments and studies to criticize and analyze the weakness of the
MSE and PSNR metrics [39, 28].
Later on, a great deal of researchers has devoted to design visual quality metrics, which can

Figure 3.1: A original Einstein image (a) and different processed images: contrast enhance
(b), Gaussian noise (c), Fat-tail distributed noise (d), speckle noise (e), JPEG compression
(f), blurring (g). ALL the measured MSEs between original image and a distorted versions
are 285.15, and PSNR equal to 23.58. The image is captured from [69].

predict the perceptual annoyance caused by artifacts. The research on the metrics successively
evolved in two directions: bottom-up approaches and top-down approaches.
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3.2.2 Metrics based on bottom-up approach

The image visual quality metrics based on bottom-up approach try to approximate the low-
level functionalities of the human visual system (HVS). The most common approach is to
build some basic blocks that simulate the relevant psychophysical components and features,
and ultimately integrate all the blocks into a mathematical function, which can behave the
same way as HVS components.
To establish the function, the approach usually gets through 5 stages: (1) Pre-processing,

Figure 3.2: Diagram of bottom-up visual quality assessment approaches. Note that the
CSF feature can be implemented either as a separate stage (as shown) or within “Error
Normalization” . The diagram originates from [127].

which involves image alignment, point-wise nonlinear transform, etc; (2) Contrast sensitivity
function (CSF) filtering (see Figure 3.3) is a low-pass filter that simulates visual system
components (e.g., eye optics, retina, striate cortex, etc.) and transforms color space informa-
tion; (3) Channel decomposition, which transforms the input signals into different selective
channels (subbands) of spatial frequency and orientation; (4) Error normalization, which
is used to normalize the signal error in each channel by merging the variation of visual
sensitivity in different channels, and the variation of visual error sensitivity resulted from
intra- or inter-channel neighboring transform coefficients, (5) Error pooling integrates the
signal errors from different channels into a global quality or distortion score [127]. Figure 3.2
illustrates the framework of these image quality metrics. Generally, a predictor can provide
the local visual detectability of near-threshold distortions (i.e. distortion map), whereas a met-
ric generates a single non-negative number, usually ranging from 0 to 1, indicating the global
quality of a processed graphic, and furthermore the local measurements of many metrics can
provide distortion maps, which be considered as predictors as well. Several traditional image
visual quality metrics based on bottom-up perceptual approaches are described below:
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Figure 3.3: An illustration of contrast sensitivity function (CSF) using sinusoid contrast
pattern at various spatial frequencies. The contrast decreases linearly from bottom to top
and uniformly over all frequencies, which increase from left to right. The perceived contrast,
however, peaks near the middle on the horizontal axis, near two cycles per degree. The image
originates from Bolin and Meyer [7].

Figure 3.4: A block diagram illustrating the three main components of HVS model designed
in the VDP [25].

The visible differences predictor (VDP) [25]

VDP method or Daly model mimics the lower-order processing of the HVS, such as the
optics, retina, lateral geniculate nucleus, and striate cortex, by integrating three components
(i.e. amplitude nonlinearity, contrast sensitivity function (CSF), and detection mechanism)
into a HVS model (see Figure 3.4). The VDP does not provide an absolute image quality
but instead focuses on describing the visibility of distortions between a distorted image
and its reference. The output of the VDP is a map showing the probability of detecting
the differences between two images. Figure 3.5 presents an example of VDP output. The
map of the detection probablity is able to provide a description of the threshold behavior of
vision but do not discriminate among different suprathreshold errors. Hence, the VDP can be
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summarized as a threshold model for suprathreshold imagery, and capable of quantifying the
important interactions among the threshold differences and suprathreshold of image content
and structure [25].

Figure 3.5: An example of VDP output. from left to right: Reference image; Distorted image
proccessed by quantization; Detection probability map output by VDP. The figure originates
in [76].

Sarnoff JND (just-noticeable difference) model [73]

This model uses point spread function (PSF) as a simulation of eye optics to filter image, and
then decomposes the filtered image using Laplacian pyramid into seven resolutions, followed
by band-limited contrast calculations. The visual masking effect was firstly considered in
this work. This effect expresses itself in a decreased ability to distinguish contrast patterns at
certain frequencies in the presence of similarly oriented patterns of nearly equal frequencies
(see Figure 3.6 ), which is particularly significant when an image or a mesh is mapped by
texture. The model uses a transducer (i.e. sigmoid nonlinearity) to take masking effect into
consideration. The transducer makes the discrimination of a contrast increment between one
image and the other depend on the contrast response that is common to both images. Similar
to the VDP, the Sarnoff JND produces a probability-of-detection map showing the noticeable
differences at each spatial location between two input images.
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Figure 3.6: A demonstration of visual masking effect. The edges of the mesh are less
perceived when the texture contrast is high and the texture frequency and orientation are
nearly same to the pattern of edges. The example is supplied by [34].

Watson’s DCT (Discrete Cosine Transform) model [130]

This method was designed for the perceptual quality evaluation of quantization noise from
JPEG compressions. It first divides the image into distinct blocks, and a visibility threshold is
calculated for each coefficient in each block. Three factors: (1) Baseline contrast sensitivity,
(2) Luminance masking, (3) Contrast/texture masking, are involved to determine the visibility
threshold. It produces a perceptually measured distortion map and a single distortion value
after the frequency error pooling.

Watson’s Wavelet model [131]

This measure was proposed to detect the visibility of discrete wavelet transform (DWT)
quantization noise. Following inverse wavelet transform, the noise visibility threshold in each
spatial subband is measured by subjective experimentation at fixed viewing distances. The
visibility threshold for that subband is then determined as the reciprocal of the corresponding
visual sensitivity. The combination of DWT noises detection thresholds allows a computation
of a perceptually detectable quantization matrix for which all errors are in theory above the
visual thresholds.

Several recent metrics based on these bottom-up models were designed to simulate the
sensitivity of HVS components. Referring to the Sarnoff JND model, NQM [26] metric
utilizes Peli’s contrast pyramid [84] to decompose a degraded image and its reference, con-
sidering: (1) the variation in contrast sensitivity with distance, image dimensions, spatial
frequency; (2) the variation in the local luminance mean; (3) contrast interaction between
spatial frequencies; (4) contrast masking effects. Based on the Watson’s Wavelet Model,
Chandler et al. proposed the visual signal-to-noise ratio (VSNR) [12] metric to quantify the
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visual quality of images. It takes account for the low-level and mid-level HVS properties of
contrast sensitivity and visual masking to determine the threshold of visual detection, and
then uses a wavelet-based model to judge whether the distortions are below the threshold.
However, the fact that the underlying goal of bottom-up models is to establish systems, which
mimic the functionalities of HVS, brings about inevitable defects and potential problems,
such as an obscure relationship between visibility error and quality degradation, unreason-
able normalizations of visibility thresholds between different channels [126], restricted and
simplistic generalizations of HVS simulation [137], and so forth.

3.2.3 Metrics based on top-down approach

A milestone of the development for image visual quality assessments for full-reference (FR)
comparison was the top-down model based on Structural SIMilarity (SSIM) [127], which
significantly extended the horizons of the studies of HVS mechanisms on evaluating images.
While the Bottom-up models attempt to simulate the HVS components, top-down approaches
consider the HVS systems as a black box, and try to build a model connecting input-output
relationship, where the input(s) are the images to be evaluated, and the output(s) are the
subjective elevation opinions given by observers. The following sections detail the structural
similarity and some recent and relevant approaches.

Metrics based on Structural similarity (SSIM)

The structural similarity quality measure is based on a top-down assumption that the HVS
is highly adapted for extracting structural information from a viewing field, and that a
measure of structural information errors should give a good prediction of perceived image
distortions [127]. It incorporates three structural attributes in an image: luminance, contrast,
and structure. The detailed definitions and computations are as follows:
Let x = {xi|i = 1,2,3, . . . ,N} and y = {yi|i = 1,2,3, . . . ,N} represent the two image patches,
which have been aligned with each other (e.g., spatial patches extracted from each image).
Let µx, µy, σ2

x , σ2
y and σxy denote the mean values and the variances of x and y, and the

covariance of x and y respectively. The comparison functions of luminance l(x,y), contrast
c(x,y), and structure s(x,y) are computed as:

l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
(3.5)
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c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2
(3.6)

s(x,y) =
σxy +C3

σxσy +C3
(3.7)

Where C1, C2, C3 are constant values computed by: C1 = (K1L)2,C2 = (K2L)2 and C3 =C2/2,
in which L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale images),
and K1 << 1 and K2 << 1 are two scalar constants. The local SSIM index between x and y
are defined as:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ (3.8)

According to [127], α = β = γ = 1, and the resulting SSIM index is deduced as:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(3.9)

The SSIM index is applied by sliding window approach, where the index is computed in an
8×8 moving window pixel-by-pixel. In [127], results show that SSIM method outperformed
between traditional metrics (e.g., PSNR) and previous bottom-up approaches (e.g., Sarnoff
JND (just-noticeable difference) model). However, the SSIM is a single-scale method, which
may be incompetent to the image details at different resolutions. Moreover, simply taking
the mean of SSIM indexes to obtain a global quality score is lack of qualitative sensible and
quantitative manageable principles. Improved metrics: MS-SSIM (Multi-scale structural
similarity) [129] and IW-SSIM (Information content weighting structural similarity) [128]
were therefore designed for resolving the problems.
Extended from SSIM, MS-SSIM [129] method iteratively applies a low-pass filter and down-
samples the filtered image by a factor of 2, indexing the original image pathes as Scale 1 and
the highest scale as Scale M. While contrast and structure functions are computed at each
scale, the luminance function l(x,y) is computed only on the smallest scale (M). The final
local MS−SSIM(x,y) index is obtained after M−1 iterations, as described below:

MS−SSIM(x,y) = [l(x,y)]αM ·
M

∏
j=1

[c(x,y)]β j · [s(x,y)]γ j (3.10)

with j the index of the scale, α j = β j = γ j, ∑
M
j=1 β j = 1. The results from [129] show that

MS-SSIM could produce better results than its single scale counterpart SSIM regarding the
correlation with visual perception. Figure 3.7 shows an example of local measurement maps

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



30 Survey on objective visual quality metrics for 2D images, videos and 3D models

of MS-SSIM and SSIM.

Figure 3.7: An example of prediction maps of MS-SSIM and SSIM local measurements.
from left to right: Distorted image with gradient-based tone mapping artifacts [33]; the
original image; Predicted disortion maps of MS-SSIM and SSIM , in which the distortion
probabilities visualized from red (1) to blue (0). The example is adapted from [9].

Soon afterwards, Wang and Li [128] improved the original MS-SSIM to IW-SSIM by
considering an information-content weighting (IW) based quality score pooling strategy.
Precisely, in the i-th local window at the j-th scale, the information content weight ω j,i is
introduced in the computation, defined by:
for j = 1, . . . ,M−1, we have:

IW −SSIMj(x,y) =
∑i ω j,ic(x j,i,y j,i)s(x j,i,y j,i)

∑ω j,i
(3.11)

when j = M and,

IW −SSIMj(x,y) =
1

Nj
∑

i
l(x j,i,y j,i)c(x j,i,y j,i)s(x j,i,y j,i) (3.12)

with Nj the number of local windows in the j-th scale, and ω j,i is derived by modeling the
distortion channel and the perceptual channel, and by taking the mutual information between
the images into account. Finally, the overall IW −SSIM be expressed as follows:

IW −SSIM =
M

∏
j=1

(IW −SSIMj)
β j (3.13)

where β j the values are obtained through psychophysical measurement [129]. Via the
extensive tests with six publicly-available independent image databases, IW-SSIM algorithm
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performs the best compared to SSIM and MS-SSIM for the task of predicting perceived
image quality.

Metrics based on information fidelity criterion (IFC)

The philosophical theory of information fidelity criterion (IFC) [101] hypotheses that images
and videos of the three dimensional visual environment come from a class of natural scenes,
and that most real-world distortion processes disturb the statistics of natural scenes and make
the image or video signals unnatural. Based on the Natural Scene Statistics (NSS), the natural
scene models in conjunction with distortion models predict the mutual information shared
between distorted images and their references.
Based on this hypothesis of IFC, the random field (RF) in a wavelet decomposition subband
of an image: RFd can be described as:

RFd = G ·RFr +V (3.14)

where RFr is the random field of the subband from the reference image, G represents a
deterministic scalar attenuation field, and V is a stationary additive zero-mean Gaussian noise
random field.
The IFC quantifies the statistical information that is shared between the reference and the dis-
torted images. Regarding the correlation with visual perception, the results from [101, 136]
indicate that the IFC is superior to the classical metric (i.e. PSNR), Sarnoff JND metric, and
the SSIM, but inferior to the MS-SSIM and the IW-SSIM.

Later on, Sheikh and Bovik [100] extended IFC to the visual information fidelity (VIF)
by considering HVS model (see Figure 3.8). The VIF does not only quantify the informa-
tion shared between a reference and a distorted image, but also provide how much of this
reference information can be extracted from the distorted image. The experimental results
in [100] show the advantages of VIF measure compared to PSNR, Sarnoff JND metric,
SSIM and IFC. However, VIF cannot challenge other advanced visual quality metrics, such
like MS-SSIM and IW-SSIM, via the comparisons of their performences correlated to the
subjective evaluations in [128, 136].

3.2.4 Data-driven metrics

In recent years, several researchers exploited ways to build reliable full-reference image
quality metrics driven by subjective data. One remarkable metric proposed by Čadík et al.
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Figure 3.8: The theoretic framework of VIF : Mutual information between C and E quantifies
the information that the HVS system could ideally extract from the reference image, whereas
the mutual information between C and F quantifies the corresponding information that could
be extracted from the test image.

[10] measures 32 defined image difference features between two images, some of which
are described by a single value, some by up to 62 dimensions. The features range from a
simple absolute difference value to visual attention, and include the predictions of several
major image quality metrics (e.g., SSIM, VDP model, etc.). Via machine learning, the metric
is trained by 37 images with manually labeled distortion maps. The features are optimally
selected and incorporated with ensembles of bagged decision trees (decision forest) used
for classification. Trough the leave-one-out cross-validation procedure, the classification
(trained metric) is verified to outperform between all general purposes metrics. Figure 3.9
shows several predictions (distortion maps) produced by the trained metric and other metrics.

Figure 3.9: Comparison of distortion maps predicted by the trained metric and other metrics.
from left to right: manually marked distortions in computer graphics and the predictions
of image quality metrics: SSIM, HDR-VDP-2, sCorrel and the trained metric. The trained
metric uses the predictions of the existing metrics as features for a decision forest classifier.
It is trained to predict the subjective data. The all the distortion maps are captured from [10].
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3.2.5 Video visual quality metrics

As we discussed previously, videos are essentially sequences of 2D images. Thus the video
visual quality can be measured by image visual quality metrics (e.g., PSNR, VSNR, SSIM,
MS-SSIM, IW-SSIM, IFC, VIF, etc) frame by frame on the luminance component of the
video, meanwhile, some necessary pre-processes, i.e. spatial/temporal alignment, calculation
of processed valid region ( abbreviated as PVR and defined as the portion of the processed
video image which contains valid picture information), and gain & level offset calibration
(i.e. find the reference image that minimizes the standard deviation of each difference image
between the reference and processed frames using the sub-sampled Y luminance frames),
should be executed to guarantee that measurement of each frame between a processed video
and its reference is accurate and efficient. Finally, a visual quality score for the video can be
obtained by pooling (e.g., taking the average, the median, the maximum, the minimum, etc)
the measured values over all the frames together. The performances of the measures highly
depend upon their embedded image visual quality metrics [99].
On the other hand, by considering the specific properties of video, such like attributes of
temporal changes in a video sequence, etc, Pinson et al. [85] proposed a more perceptual
correlated but complex, video quality metric (VQM), which calculates the perceptual changes
in spatial, temporal and chrominance properties from spatial-temporal sub-regions of video
streams, and then pools them into a single quality score. The Figure 3.10 shows the diagram
of VQM procedure. They firstly extracted the seven quality features (quality parameters)
from a spatial-temporal sub-region of a video stream (both original and processed), which
are:
(1)Parameter “si_loss”: it detects a decrease or loss of spatial information;
(2)Parameter “hv_loss”: it functions as a detection of a shift of edges from horizontal &
vertical orientation to diagonal orientation;
(3) Parameter “hv_gain”: the parameter measures a shift of edges from diagonal to horizontal
& vertical;
(4) Parameter “chroma_spread”: This parameter detects changes in the spread of the distribu-
tion of two-dimensional color samples;
(5) Parameter “si_gain”: it assesses improvements to quality that result from edge sharpening
or enhancements;
(6) Parameter “ct_ati_gain”: this feature is used for measuring the amount of spatial detail,
and a temporal information feature, measuring the amount of motion present in the spa-
tial/temporal region;
(7) Parameter “chroma_extreme”: This measurement is for the detection of several localized
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Figure 3.10: The diagram of VQM procedure. The calibration of the original and processed
video streams includes spatial alignment, valid region estimation, gain & level offset cal-
culation, and temporal alignment. VQM calculation involves extracting perception-based
features, computing video quality parameters, and combining parameters to construct the
General Model. This figure is adapted from [85] .

color impairments.

The VQM model is then a linear combination of the seven parameters, whose weights
were determined by 1536 subjectively rated video sequences.

V QM =−02097 · si_loss

+0.5969 ·hv_loss

+0.2483 ·hv_gain

+0.0192 · chroma_spread

−2.3416 · si_gain

+0.0431 · ct_ati_gain

+0.0076 · chroma_extreme

(3.15)

In [85], the Pearson linear correlation between the VQM indexes and Difference Mean
Opinion Scores (DMOS) for the testing videos was up to 0.91.
A recent research on video visual quality assessment is MOtion-based Video Integrity Evalua-
tion (MOVIE) index [98], which is an integration of both spatial and temporal measurements
of distortions on the reference and the processed videos. For the spatial distortion mea-
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surements, the Spatial MOVIE index uses outputs of the spatial-temporal Gabor filters to
accomplish the Structural SIMilarity (SSIM) index and the information fidelity criterion
(IFC). On the aspect of temporal distortion measurements, the temporal MOVIE index
computes motion information from the reference video explicitly, and measures the quality
of the processed video along the motion trajectories of the reference video. At last, the
MOVIE index is a multiplication of the Spatial MOVIE index and the Temporal MOVIE
index. The MOVIE index takes the measures of both spatial and temporal motion distortions
into account, and thus outperforms among the counterparts (e.g., PSNR, VSNR, SSIM,
MS-SSIM, and VIF based video quality metrics, VQM, etc) in terms of correlation with
human judgments [98, 99].

3.3 3D mesh visual quality (MVQ) metrics

As we mentioned in previous chapter, accompanying the developments of 2D image tech-
nologies, the advances of computer graphics boost extensive uses of 3D data in many applied
domains, like virtual reality (VR), e-commerce, digital entrainments, scientific visualization,
etc. The most commonly used 3D data is represented in the form of polygonal meshes.
Similar to 2D image visual quality assessment, diverse 3D visual quality metrics were de-
signed to evaluate/boost all the processing operations on 3D objects (e.g. simplification,
compression, watermarking, etc). These 3D visual quality measurements can be mainly
classified into two types: (1) model-based metrics, which extract the geometric attributes
(e.g., geometric positions, curvatures, dihedral angles, etc.) as basic quality features; (2)
image-based metrics, inherited from image/video visual quality metrics, which measure the
screen-space distance (or similarity) of the visualized 3D data that are thus represented as
images or video sequence (e.g., snapshots of a mesh from different views) [24, 61].

3.3.1 Model-based metrics

Vertex-position based metrics

The first 3D fidelity metrics were based on geometric position distances. In the past decades,
the most extensively used metric was the Hausdorff distance, which was firstly designed for
evaluating simplification algorithms [96]. The Hausdorff distance is calculated as follows:
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Denote e(p,A) represent the minimum distance from a 3D spatial point p to a 3D mesh A:

e(p,A) = min
vA

i ∈A
d(p,vA

i ) (3.16)

in which d is the Euclidian distance, and vA
i means the ith vertex of A. The asymmetric

Hausdorff distance between two meshes A and B is computed as:

Ha(A,B) = max
vA

i ∈A
e(vA

i ,B) (3.17)

Then, the symmetric Hausdorff distance is:

H(A,B) = max{Ha(A,B),Ha(B,A)} (3.18)

Moreover, the ensembles of e(vA
i ,B) can be considered as local predictions of the differences

between two meshes A and B. The Figure 3.11 shows an visual example of the local
predictions of watermarking distortion measured by e(vA

i ,B).

Figure 3.11: From left to right: The Venus model; a distorted version after a watermarking
algorithm by [124] ; Distortion map produced by the local measures of Hausdorff distance.
Warmer colors represent higher measured distance values.

Referring to the pioneering metrics on 2D image quality, the root mean square (RMS)
error is to pool all the distances of corresponding vertices between two meshes:

RMS(A,B) = (
n

∑
i=1

||vA
i − vB

i ||2)1/2 (3.19)

where n means the number of vertices on two meshes respectively, vB
i of B is the correspond-

ing vertex to the vertex vA
i on mesh A. This definition limits the comparison between two

meshes having the same connectivity. Hence, another mean square error (MSE) was designed
based on Hausdorff distance, of which the asymmetric MSE is defined as:
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MSEa(A,B) =
NA

∑
i=1

e(vA
i ,B)

2 (3.20)

where NA is the number of vertices on mesh A. And after the computations of MSEa(A,B)
and MSEa(B,A), the Maximum Root Mean Square(MRMS) can be derived as:

MRMS(A,B) = max{
√

MSEa(A,B),
√

MSEa(B,A)} (3.21)

Another metric based on the geometric Laplacian operator [48] was introduced to percep-
tually evaluate compression algorithms. The geometric Laplacian can reflect a degree of
smoothness of the surface by considering the difference vector ⃗u(v) between a given vertex v
and its new position after a Laplacian smoothing step. It can be described as:

⃗u(v) = v−
∑i∈n(v) l−1

i vi

∑i∈n(v) l−1
i

(3.22)

where n(v) is the number of neighboring vertices’ indices of v, li refers to the Euclidean
distance from v to its neighbor vi. Based on the geometric Laplacian operator, a mesh visual
quality metric GL1 is derived based on the mean geometric distance between corresponding
vertices of two meshes (A and B) and the mean distance of their geometric Laplacian values:

GL1(A,B) = αRMS(A,B)+(1−α)(
n

∑
i=n

|| ⃗u(vA
i )−

⃗u(vB
i )||

2)1/2 (3.23)

α in [48] is determined as 0.5, while in the work [105], α equals to 0.15, which leads to a
different metric GL2.

Curvature-based metrics

Curvature is an important geometric attribute, which reflects a curving degree of a line
or a surface. Many mesh visual quality metrics were developed based on two principal
curvatures: minimum curvature K1 and maximum curvature K2 (i.e. the eigenvalues of the
shape operator at a vertex v on a surface ) and their derivatives: Gaussian curvature (K1×K2),
Mean curvature ((K1 +K2)/2), Shape index (2/π ∗arctan[(K1 +K2)/(K1 −K2)]), Curved-

ness (
√

(K2
1 +K2

2 )/2) [6, 57], etc. Figure 3.12 and Figure 3.13 present several examples
of colorized curvatures of a Dinosaur object from LIRIS/EPFL General-Purpose database.
A high-level attribute, mesh saliency [63] (see Figure 3.14), was introduced as a measure
of visually regional importance for meshes. In details, on a small region with radius σ

(σ ∈ {2ε ,3ε,4ε,5ε,6ε}), where ε is 0.3% of the diagonal length of a mesh’s bounding
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box), for the center vertex v, it firstly computes the Gaussian average of the mean curvatures
(G(Kmean(v),σ)) over the vertices within the region. Then the local mesh saliency for scale
σ : S(v) is calculated as: S(v) = |G(Kmean(v),σ)−G(Kmean(v),2σ)|.

Based on the principal curvatures and their derivatives, several well-known metrics were
designed and will be detailed in the following parts.

Figure 3.12: Examples of maximum and minimum curvatures. From left to right: Dinosaur
object; Colorized maximum curvature measurement; Colorized minimum curvature measure-
ment. The curvatures measured and colorized by Meshlab [19] using APSS algorithm [41].
Warmer color means higher measured value.

Figure 3.13: Examples of Curvedness and Gaussian curvatures. From left to right: Dinosaur
object; Colorized Curvedness measurement; Colorized Gaussian curvature measurement.
The curvatures measured and colorized by Meshlab [19] using APSS algorithm [41]. Warmer
color means higher measured value.

Inspired by Structural SIMilarity (SSIM) [127] index for 2D image quality evaluation, Lavoué
et al. [59] introduced the Mesh Structural Distortion Measure (MSDM) for evaluating the
watermarking algorithms. The MSDM performs an analysis of the mean curvature (i.e.
average, standard deviation and covariance) on local regions of the meshes. Accordingly, the
local measure of the metric LMSDM in a region (window) a of A and corresponding b of B
is defined as:

LMSDM(a,b) = (0.4×L(a,b)3 +0.4×C(a,b)3 +0.2×S(a,b)3)
1
3 (3.24)
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Figure 3.14: Mesh Saliency: Image (a) shows the Stanford Armadillo model, and image (b)
shows its mesh saliency. The image comes from [63].

L(a,b), C(a,b) and S(a,b) represent average curvature, contrast and structural comparison
functions respectively, which are defined as:

L(a,b) =
||µa −µb||

max(µa,µb)

C(a,b) =
||σa −σb||

max(σa,σb)

S(a,b) =
||σaσb −σab||

σaσb

(3.25)

with µa, µb, σa, σb and σab are respectively average , standard deviation and covariance of
the mean curvature over the local windows a and b. A local window is denoted as a set of
connected vertices and intersected points inside and on a sphere with a given radius: 0.5% of
the bounding box length. Figure shows an example of local window computation, and the
curvature of a edge point C(ve) (i.e. the intersection between the sphere and a edge of the
meshe ) is are computed as: C(ve) =

d2
d1+d2

C(v1)+
d1

d1+d2
C(v2). Finally, The global MSDM

index between two meshes A and B is computed via Minkowski pooling method associated
with all local windows:

MSDM(A,B) = (
1

nw

nw

∑
j=1

LMSDM(a j,b j)
3)

1
3 (3.26)

where nw is the number of local windows. The MSDM is an asymmetric visual distortion
index ranging from 0, meaning the identical distortion, to 1, implying two completely
different meshes.
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Figure 3.15: Example of local window computation for a vertex v and edge point ve. The
image is obtained from [59].

Figure 3.16: Distortion maps at different scales by MSDM2, the different MSDM measures
are integrated into one multiscale map and then pooled into a global distortion score. The
image comes from [56].

Following the concept of MS-MSSIM [129], Lavoué et al. later on proposed MSDM2
[56], which is a multi-scaled and symmetric version of MSDM (see Figure 3.16). At a given
scale h, MSDM2 also upgraded the average curvatures over local windows a and b up to
Gaussian average ones, where a Gaussian weighting function wh

v() is adaptively multiplied to
the mean curvature of each neighboring point vi according to the distance from center vertex
v to the vi. At a give scale h, the wh

v(vi) is computed as follows:

wh
v(vi) =

e−2||vi−v||2/h

∑v j∈N(v,h) e−2||v j−v||2/h
(3.27)

where N(v,h) is the ensemble of vertices and intersections over the local window. The
corresponding standard deviations and covariance values are then upgraded to the Gaussian-
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weighted standard deviations and covariance values following the same scenario as the
Gaussian average. The local distortion measure LDh(v) at the given scale h is then defined
as:

LDh(v) = 0.4×Lh(a,b)+0.4×Ch(a,b)+0.2×Sh(a,b) (3.28)

Thus, for n scales of local windows, the multi-scale local distortion measure MLD(v) is:

MLD(v) =
∑

n
i=1 LDhi(v)

n
(3.29)

From mesh A to B, the global distortion score GMD(A,B) of the MSDM2 is computed via a
Minkowski pooling, defined as:

GDM(A,B) = (
1
nB

nB

∑
j=1

MLD(v)3)
1
3 (3.30)

with nB the number of vertices over mesh B. Finally, the symmetric MSDM2 index is
calculated as follows: MSDM2 = 1/2(GDM(A,B)+GDM(B,A)).
Motivated by MSDM2, a recent mesh visual quality metric ( Tensor-based Perceptual
Distance Measure (TPDM)) [115] considers full information of curvature amplitudes and
principal directions, which is called mesh curvature tensor: T .
According to their definition, on each vertex v of a mesh, curvature tensor T is computed as:

T (v) =
1
|B| ∑

edgese
β (e)|e∩B|ē ēt (3.31)

where |B| is the area of the geodesic disk, defined by user, β (e) is the signed angle between
the normals of the two triangles incident to edge e, |e∩B| is the length of the part of e inside
B, and ē is a unit vector in the direction of e (see Figure 3.17).
Given a vertex v in the reference mesh A and its corresponding vertex v′ on the surface of

the distorted mesh B, the curvature tensors on the two vertices are definded respectively by T
and T ’. Then, the local tensor distance (LT D) measure for each pair of v and v′ is computed
as:

LT D = θminδKmin +θmaxδKmax (3.32)

where θmin (similarly for θmax) is an angle between γmin (i.e. the minimum direction of T )
and γ ′1 (i.e. the minimum direction of T ′ that has the smallest angular distance to γmin ), while
δKmin (similarly for δKmax) means a Michelson-like contrast of the curvature amplitudes kmin

(i.e. the minimum curvature of T ) and k′1 (i.e. the minimum curvature of T ′).
In recent years, Wang et al. [125] designed a metric so-called FMPD to measure the perceptual
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Figure 3.17: Illustration of the curvature tensor computation The image comes from [115].

distance of two meshes. Based on the analysis of Gaussian curvature, the FMPD measures
the mesh local roughness. More precisely, for each vertex vi on a mesh, they defined the
local roughness LRi as a weighted difference between the Gaussian curvatures of vi and the
Gaussian curvatures of the neighbors. Furthermore, the final local roughness measure does
not only consider the masking effect by modulating a masking effect function, but also take a
surface-weighted average of the mesh’s local roughness. The global roughness (GR) of the
mesh is then computed as a normalized surface integral of the local roughness. Finally, the
perceptual distortion FMPD index between mesh A and B is defined as:

FMPD(A,B) = c|GRA −GRB| (3.33)

where c = 8.0 is a scaling factor that scales the FMPD index into the interval [0,1].

Normal-based metrics

Besides geometric position and curvatures, the normal of a vertex (or a facet) can also provide
useful information for evaluating geometric properties of a 3D mesh. And an angle between
the normals of two adjacent facets on a mesh yields the dihedral angle, which is related to
the surface roughness [56]. Two pioneering surface roughness measures based on analysis of
normals were the multi-scale roughness proposed by Wu et al. [134], and smoothing-based
roughness by Gelasca et al. [38].
In the multi-scale roughness estimation, Wu et al. [134] associated each dihedral angle to a
quantity of local roughness by:

ρd = 1− N⃗1 · N⃗2 (3.34)

where N⃗1 and N⃗2 are the normals of adjacent triangles. Based on the definition, the roughness
of a given triangle T is related the mean G(v j) and variance V (v j) values of local roughness
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Figure 3.18: Smoothing-based Roughness Estimation. The diagram is from [38].

ρd of neighbor triangles, like:

ρ1(T ) =
G(v1)V (v1)+G(v2)V (v2)+G(v3)V (v3)

V (v1)+V (v2)+V (v3)
(3.35)

The final local roughness evaluation per-vertex ρ1(v) takes account for different scales
of bumpiness (i.e. find the maximum value among the 1-ring, the 2-ring and the 4-ring
computations around a given vertex v). The global roughness ρ1(A) of a mesh A is the sum
of local roughnesses of all vertices.
The smoothing-based roughness estimation [38] is based on the consideration whether
distortions can be perceived on smoothed surfaces (see Figure 3.18). Accordingly, the
approach firstly applies a Taubin smoothing algorithm to smooth the mesh, and then measures
the distance between each vertex v of a mesh A and its corresponding vertex vS of a smoothed
version AS along the normal of vS (i.e. n⃗S

v) in the following way:

dOS(v,vS) = pro j⃗nS
v
(v− vS) (3.36)

Then the local smooth-based roughness is the division between variance of the 2-ring
dOS(v,vS) and the area of the faces that form the 2-ring of v. The total roughness ρ2(A) of a
mesh A is the sum of local roughnesses of all vertices.
By utilizing these two surface roughness measures respectively, Corsini et al. [23] developed
two mesh quality metrics (3DPM1 and 3DPM2) considering the increment of the global
roughness ρ(·) (i.e. ρ1(·) or ρ2(·)) between mesh A and its distorted mesh B:

3DWPM(A,B) = log(
ρ(B)−ρ(A)

ρ(A)
)− logk (3.37)
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with constant k to avoid numerical instability.
Soon afterwards, Váša and Rus [119] defined the oriented dihedral angle per-edge to measure
the mesh local roughness. In details, on the surface of a mesh A, assume two adjacent triangles
t1 = {v1,v2,v3} and t1 = {v3,v2,v4} with normals N⃗1 and N⃗2, the oriented dihedral angle is
expressed as follows:

Dt1,t2 = arccos(N⃗1, N⃗2)∗ sgn(N⃗1(v4 − v3)) (3.38)

The corresponding dihedral angle on mesh B is denoted as Dt1,t2 .
Based on this local roughness, they proposed a mesh visual quality metric DAME (the
abbreviation of Dihedral Angle Mesh Error), which computes the local roughness variations
between mesh A and mesh B. The global DAME index is the summation of the local
roughness variations for all edges of two meshes in the following way:

DAME =
1
ne

∑
{t1,t2}∈ne

||Dt1,t2 −Dt1,t2|| ·mt1,t2 ·ωt1,t2 (3.39)

where ne is the number of all triangle pairs that share one edge, mt1,t2 is a weight relative to
the masking effect, which increases the values of distortion on smooth surfaces, ωt1,t2is a
weights relevant to the surface visibility.

So far, we have presented several mesh visual quality metrics based on geometric attributes
(e.g., the vertex position, the curvatures, the normal of vertex (or facet), and their derivatives,
such like dihedral angles, geometric Laplacian, Laplacian of Gaussian curvature and so forth).
A metric [57] based upon the optimal combination of all these attributes was proposed by
Lavoué et al. The surveys [58, 61] have well summarized the performance of all these mesh
quality metrics in terms of correlation with subjective opinions, and the results indicate that
the classical geometric distances, like Hausdorff and RMS, provide a very poor correlation
with human judgment, while the most recent model-based metrics (e.g. MSDM2, TPDM,
FMPD) provide much better performance.

3.3.2 Image-based metrics

In contrast to the model-based metrics, the image-based ones estimates the visual quality
of images or video sequence computed by rendering the 3D objects (e.g., snapshots of an
object from different views) by using image quality metrics (e.g., MSE, SSIM, VIF, etc.).
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Figure 3.19: The sampled 20 2D snapshots sampled around the 3D mesh as the main criterion
for decimation. The image is captured from [72].

The image-based metrics thus simplify the evaluation procedures.

The first use of image-based metrics was proposed by Lindstrom and Turk [72] in the
context of evaluating the artifacts caused by simplification. In their work, they applied a
simple RMS metric to measure distances between two models using snapshots regularly
sampled from 20 different viewpoints on a bounding sphere of each model (see Figure 3.19).
Soon afterwards, they[71] replaced RMS with some visual quality metrics (e.g., Sarnoff
JND metric, etc), but surprisingly found that RMS performs better than the visual quality
metricsin terms of predicting the perceived quality of artifacts.
For the purposes of driving simplification and remeshing of textured meshes, Qu et al.[86]

proposed a metric based on the computation the visual masking properties of a texture. By
using the Sarnoff JND to compare the original texture map and its Gaussian filtered version,
the obtained masking map which can indicate the visual masking potential on the surface,
and thus guide the remeshing or simplification algorithms.

In order to design an optimal approach of discrete levels of detail (LOD) for the visualiza-
tion of complex 3D building facades, Zhu et al. [138] presented a new quantitative analytical
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method to study the relationship between the viewing distance and visibility of a textured
model’s façade details using image visual quality metrics (i.e. VDP and SSIM).

Since the image-based metrics evaluates the 3D mesh visual quality in a simple and unified
fashion, can they perform better than model-based metrics regarding the correlation with
subjective evaluations on 3D distortions? In the study conducted by Lavoue et al. [60], they
suggested image-based metrics may perform significantly close to the model-based metrics
in evaluating the visual quality of different versions of a same object under a single type of
artifact. However, the image-based metrics are less accurate in comparing different artifacts
or artifacts applied to different 3D objects.

3.4 Conclusion

In this chapter, we briefly presented several classical and recent objective visual quality
metrics for 2D images, videos and 3D meshes. Most of them aim at evaluating the distortions
caused by one specific graphic processing algorithm (e.g., Waston’s DCT [130] metric for
JPEG compression, IFC [101] for image noise, Hausdorff distance [96] for mesh simplifica-
tion, MSDM [59] for mesh watermarking, etc.), while others focus on evaluating different
kinds of distortions (e.g., SSIM [127] , MS-SSIM [129], VQM [85] , FMPD [125], MSDM2
[56], etc.). About the metric outputs, several metrics can only provide one global quality
score (e.g., VIF [100], 3DWPM1 , 3DWPM2 [23], image-based mesh metrics [72, 86, 138]
, etc.), while some other metrics, besides the global quality score, can also provide local
distortion maps (e.g., MSE, PSNR, IFC , SSIM, MS-SSIM, IW-SSIM [128] , Hausdorff
distance, MSDM, MSMD2, GL, DAME [119] , etc.).
Ultimately, since the output of a visual quality metric should maximally approximate the
human perception, the performance of all the objective metrics are therefore evaluated using
the subjective quality experiments, where a group of observers provide subjective opinions on
a set of distorted images or 3D models. Thus, this draws forth another important theme that
is how to design a subjective experiment, from which we can collect the effective information
of human estimations on different artifacts, and quantitatively evaluate the performance of
the metrics using the collected subjective opinions. In the following chapter, we turn to the
detailed protocols of designing subjective quality assessments experiments and the means of
evaluating the performance of the objective qualiy metrics.
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Chapter 4

Subjective visual quality assessments in
computer graphics

4.1 Introduction

The objective visual quality metrics introduced in previous chapter focus on objectively and
automatically evaluating the visual quality and/or predicting the locally perceived distortions
in processed graphics, whereas a subjective visual quality assessment consists in asking a
bunch of observers to globally or locally evaluate (i.e. rate, select a preference or mark)
distorted 3D models or images. Hence, the subjective studies are generally used to evaluate
the performance of objective metrics. Furthermore, some objective visual quality metrics
can be driven by subjective opinions using machine learning [57]. However, a subjective
quality assessment usually requires a sufficient number of observers and experimental trials
to draw significant conclusions, which makes the assessment very expensive. Nevertheless,
such subjective study still cannot ensure to generate conclusive results [77]. Hence, a great
deal of research was prompted to design efficient and rigorous subjective quality assessment
experimental protocols. The most prominent subjective study protocols are: single-stimulus,
double-stimulus, forced-choice pairwise comparison and similarity judgments (see Figure
4.1). These four protocols are able to produce a scaled global quality (i.e. a single score)
from observers, which aims to reflect the global level of annoyance caused by all the artifacts
on a 3D model or an image. The single-stimulus and the double-stimulus protocols may
also enable observers to evaluate the local distortion visibility of artifacts (i.e. indicating the
spatial localization of the distortions). In this chapter, we will cover every subjective quality
assessment protocol, including the specific experimental setups, the four subjective assessing
protocols, scaling methods of computing collected subjective data, and the means of testing
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objective quality metrics performances with the scaled subjective data. The performance of
all the introduced quality metrics will be summarized at the end of the chapter.

Figure 4.1: Overview of the four subjective quality study protocols. from left to right: (a)
single-stimulus, (b) double-stimulus, (c) forced-choice pairwise comparison and (d) simi-
larity judgments. The diagram shows the timeline of each protocols and the corresponding
screens.The diagram originates from [77].

4.2 Specific setups for subjective experiment

Several important parameters are involved in a subjective experiment, including the selection
of graphic data (e.g. images, videos, 3D models, etc.) to be evaluated, the types and the
amplitudes of the distortions, and the rating protocols (i.e. single-stimulus, double-stimulus,
forced-choice pairwise comparison and similarity judgments). Precisely, the number, types
and the amplitudes of stimuli are usually decided by following the criteria [8, 127] below:

• Stimuli types: Presenting diverse distortions in order to conclude significant remarks
after analysis of objective metrics performances.

• Distortion levels: The amplitude of a stimuli should be visible but not too strong; the
idea is to span a large range of perceptual impacts.

• Stimuli number: Using limited number of stimuli to restrict each experiment time
within a generally acceptable range by each observer ( 30 minutes is usually the
accepted limit [47]).

However, for a subjective quality study involving 3D content, additional conditions should
be considered as detailed in [8, 61]:

• Lighting: Rogowitz and Rushmeier [89] addressed that the spatial location and nature
of light source(e.g., spot light, point light, etc.) can strongly influence the perceived
quality of artifact.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



4.2 Specific setups for subjective experiment 49

• Materials and Shading: Complex materials and shading methods may enhance the
visibility or introduce masking effect [34, 72].

• Background The perceived quality of a 3D model may be influenced by its background.
Particularly the background may affect the observations of the silhouette [61].

• Animation & interaction: The complexity of showing a 3D model to the observers
can range from the simplest display (e.g., a static image with fixed view point [132].)
to the most complex interactions (e.g., free controls of 3D models, such like rotation,
translation, zoom, marking, etc. [23]). For each observer, it is important to get access
to different viewpoints of the models, however, allowing this free interaction may
result in cognitive overload, which may alter the results [61]. Animation is a promising
compromise used in [81], however, a fairly slow animation speed is required, since the
speed can impact on the Contrast Sensitivity Function (CSF) [49].

Some public database provide processed 3D models with different types and distortion
extents. For instance, Figure 4.2 presents several examples of stimuli from LIRIS/EPFL
General-Purpose Database [59], and LIRIS Masking Database [55].

Figure 4.2: Several 3D stimuli, which are processed by smoothing and noise algorithms on
different areas of the model surfaces from LIRIS/EPFL General-Purpose Database [59] (Top
row) and LIRIS Masking Database [55] (Bottom row). The figure is from [57].
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4.3 Four subjective quality evaluation protocols

Four dominant subjective quality evaluation protocols exist: single-stimulus, double-stimulus,
forced-choice pairwise comparison and similarity judgments. They are adapted in a vast
majority of research of image, video and 3D mesh quality assessments. Figure 4.1 shows a
general view of these four protocols.

4.3.1 Single stimulus

Global quality rating experiment

The single stimulus scenario (see Figure 4.1 (a)) for global fidelity of processed graphics
often involves presenting an image, a video clip or a 3D model within a short and fixed
duration, and then demanding an observer to rate it using one of describing categories (e.g
excellent, good, fair, poor or bad ) or a quality scale (e.g., from 1 (the worst quality) to
10 (the best quality)) [80, 15]. The discrete categorical scales are widely used in major
subjective experiments, however some experiments prefer continuous to categorical scales
to avoid quantization artifacts [77]. A branch method of the single stimulus scenario is so-
called absolute category rating with hidden reference [80], where the reference is displayed
among other stimuli. For instance, Corsini et al. [23] utilized this protocol to collect the
subjective opinion on the different artifacts caused by watermarking. Similarly, Lavoué et
al. [59] adapted the same scenario to study the HVS sensitivity on general artifacts (e.g.
noise addition, watermarking and smoothing, etc.) with varying distortion strengths. In
[77], Mantiuk et al. addressed that presentation time is a variable that affects the overall
length of the experiment and thus the efficiency of the experimental method, therefore 3-10s
presentation time for each stimulus (including the reference) is recommended. The single
stimulus scenario is very efficient, only n+1 trials (one additional trial for the reference) are
sufficient for assessing n stimuli.

Local distortion visibility experiment

Instead of global rating, the single stimulus scenario for local distortion visibility assessment
requires the observers to directly mark regions with annoying distortions. To the best of our
knowledge, Čadík et al. [9] implemented this protocol (see Figure 4.3), instructing observers
to mark all the areas containing unpleasant distortions in an image, where only distorted
images were exhibited to the observers. Each observer took on average 30 minutes to finish
marking 11 processed images (e.g., noise, alias, brightness, etc.) in one experiment. In their
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work, the collected data are used to reveal weaknesses of both simple (PSNR, MSE, etc.)
and advanced (SSIM, MS-SSIM, etc.) metrics.

Figure 4.3: Subjective detection probability maps of local visible distortion in [9] ( two figures
on the right), warmer color means higher probability. The middle right figure shows the
detection probability map from double-stimulus protocol, in which observers were asked to
mark all the areas in the image containing noticeable distortions compared with the reference,
and the right figure presents the map from single-stimulus scenario, where observers marked
all the areas in the image containing objectionable distortions without the reference.

4.3.2 Double stimulus

Global quality rating experiment

Double stimulus categorical rating for the global fidelity (see Figure 4.1(b)) is analogous
to the single-stimulus method, but a reference and its distorted version are simultaneously
shown to an observer for the fidelity rating. This method requires n trials to assess n stimuli.
Subjective quality studies conducted by Watson [132] and Rogowitz and Rushmeier [89]
followed this scenario to collect user opinions on different types of simplified 3D models at
different simplification ratios. The purpose of Watson [132] was to evaluate the performance
of image-based and geometric metrics for the task of predicting distortion quality of sim-
plified 3D models, whereas Rogowitz and Rushmeier [89] attempted to study whether 2D
snapshots of a 3D model can be suited to predict the visual quality. Other works devised by
Rushmeier et al. [94] and Pan et al. [81] also relied on the double stimulus method to study
the interactions between texture and mesh resolutions influencing the visual appearance of
a simplified textured 3D model. In order to study the visual impact of masking effects on
3D mesh surface, Lavoué et al. [55] conducted a double-stimulus experiment by asking
observers to rate the fidelity of meshes with varying strength noises applied on either smooth
or rough areas.
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Local distortion visibility experiment

The double stimulus protocol (see Figure 4.3) can be used for evaluating the local distortion
visibility as well, where researchers instruct observers to mark the visually different areas
on processed graphic by comparing its reference. In [9], Cǎdík et al. also conducted this
double-stimulus experiment, verifying the high correlation between the locally perceived
distortions with full-reference (i.e. double stimulus protocol ) and with no-reference (i.e.
single stimulus protocol).

4.3.3 Forced-choice paired comparison

Comparing to assigning a discrete or continuous quality scale to a each stimulus in the single-
or double-stimulus scenarios, the forced-choice paired comparison protocol (Figure 4.1(c))
simply requires each observer to provide a preference (e.g., {‘better’, ‘worse’}) between
each pair of stimuli over a number of comparison trials [67]. For instance, in the experi-
ment designed by Wills et al. [133], each observer was asked to click on the appropriate
button to indicate which side of the image (left or right) appears more similar to the center
image (see Figure 4.4). This protocol benefits the advantages of simplicity and reliability
enhancement, especially when the quality difference between the processed graphics is not
easily distinguished or the multiple modalities of quality variations (e.g., spatial resolution,
temporal resolution and so on) are involved [14, 121, 67]. Moreover, in contrast to the single-
or double-stimulus methods that produce a score to describe the subjective visual quality of
the artifacts, paired comparison method usually provides a ranking of all stimuli from the
best perceived quality to the worst quality or vice versa.

However, the forced-choice paired comparison can be very tedious, since it requires (N
2 )

comparison trials to get all the possible evaluations on N stimuli. Especially, when N is large,
the trials number may be too large to be feasible [67]. In such cases, it is necessary to use
some sorting algorithms to reduce the trials number [102]. Efficient sorting algorithms, such
as quicksort, can reduce the number of comparisons necessary to order a set of conditions to
approximately NlogN [77, 97].

4.3.4 Pairwise similarity judgment

Further than forced-choice paired comparison, pairwise similarity judgment method (Figure
4.1(d)) does not only ask observers to choose their preferences but also indicate a quality
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Figure 4.4: An example of experimental platform for forced-choice paired comparison
protocol. An observor is asked to click on the appropriate button to indicate the center image
appears more similar to the image on the left or to the image on the right. This platform is
adapted from [133].

number on the how large the difference in quality is between two stimuli, in which number
’0’ means no difference is observed between the pair [77]. Pairwise similarity judgments can
also use the sorting algorithms to reduce the comparisons number.

4.4 Analysis of subjective data

4.4.1 Inter-observer agreement

During the experiments, the observers may provide implausible quality scores, preferences
or local distortion markings due to their misunderstandings or derelictions of the experiments
or their divergent opinions on evaluating one stimulus [77]. Hence, before exploiting the
results from the subjective experiments, it is critical to analyze the inter-observer agreement
between all observers, which indicates the coherency of observers’ opinions.
To assess the inter-observer agreement, a well-known mathematical method Kendall’s coeffi-
cient of agreement U introduced in [95] can be used for analyzing the consistency of raters.
Generally, u ranges from u =−1/(m−1), meaning no agreement between m observers, to 1,
indicating the consensus of all the observers [95]. The Kendall’s coefficient of concordance
W [51] can aslo reflect the inter-observer agreement of the rankings from paired comparison
and similarly judgment. For the agreement of local distortion markings, Čadík et al. [9]
calculated the coefficient u per pixel of a distorted image and made an average coefficient ū
across all the pixels to indicate the overall inter-observer agreement of the image.
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Usually, a high coefficient u (or W ) value means a high consensus of the observers or, in
other words, no statistical evidence that they differ in quality [77]. However, a low u (or W )
value (e.g., less than 0.5) may indicate a strong disagreements between observers or some
unreliable rating qualities. In such case, it is necessary to remove those unreliable results.
Rohaly, A. M., Corriveau, P. J., Libert, J. M., Webster, A. A., Baroncini, V., Beerends, J., ...
& Winkler [90] proposed a removal method. Precisely, for each stimulus, the method firstly
counts the number of rating results given by each observer that lie out the range [−2σ ,2σ ]

(σ : the standard deviation of the results over all the observer for one stimulus), and then
rejects the observer whose results meet one of the following conditions: either (1) more 5%
of his results are outside the range, or (2) the results outside that range are evenly distributed
so that the absolute difference between the result numbers that exceed the lower and the upper
bound of that range is not more than 30%. If u (or W ) remains a low value after removal
measures, it possibly implies a highly difficult task for observers to perceive the artifact.

4.4.2 Scaling methods

Once all the collected experimental data is validated for high reliability by the analysis of
inter-observer agreement, it needs scaling into a mean quality index for each stimulus over
all the observers.
For the global results from single- and double-stimulus protocols, addition to the mean
opinion score (MOS) over the observers, we can also compute the the differential mean
opinion score (DMOS) as the difference of MOS values between the reference and its
distorted version:

di, j,k,r = qi,re f (k),k,r −qi, j,k,r (4.1)

The indices correspond to i-th observer , j-th processing algorithm, k-th processed graphic
(image, video, 3D model, etc.), and r-th repetition. re f (k) is the reference condition for the
k-th processed graphic.
However, each observer tends to provide a separate quality scale for each particular stimulus,
resulting in different scales associated with each observer. Thus it is necessary to unify all the
results over observers in order to make their scores comparable [118]. To unify the results,
the easiest way is to apply a linear transformation that makes the mean and the standard
deviation equal for all observers. The uniformed result after the transform is called z−score,
and expressed as:

zi, j,k,r =
di, j,k,r − d̄i

σi
(4.2)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



4.5 Measures of evaluating objective quality metric 55

with d̄i the mean DMOS and σi the standard deviation over all the stimuli
For the scaling methods on local distortion markings, Herzog et al. [45] computed a proba-
bility of detection on local distortion by averaging marking labels (0: unmarked; 1: marked)
per pixel across all the observers. And finally, subjective distortion map is produced based
on the probabilities of all the pixels (see Figure 4.3).
After obtaining the rankings from paired comparison and similarity judgments, a scaling
method is required to convert the rankings of stimuli into quality scales. An easy method [62]
uses a so-called preference matrix (see Table 4.1) to transform the rankings of the stimuli
into vote score, which is a sum of preferences number of one stimulus over others across all
the observers.

d1 d2 d3 d4 d5 d6 score
d1 - 1 0 0 1 1 3
d2 0 - 0 1 1 0 2
d3 1 1 - 1 1 1 5
d4 1 0 0 - 0 0 1
d5 0 0 0 1 - 1 2
d6 0 1 0 1 0 - 2

Table 4.1: Example preference matrix for one observer when shown six different stimuli
from d1 to d6 . Each stimulus in a row, di is compared with another d j in each column. If the
observer prefers di to d j, then 1 is recoded in the cell (di,d j), otherwise 0 is filled in the cell.
Suggested by [62], the vote score of each stimulus di is the summation of ones in each row.

4.5 Measures of evaluating objective quality metric

Suggested by video quality experts group (VQEG) Phase I FR-TV [27], the performance of
an objective metric is evaluated with respect to three attributes of their ability to predict the
results of subjective quality assessments.

• Prediction accuracy: The ability to predict the subjective quality results with low error;

• Prediction monotonicity: The degree to which the model’s predictions agree with the
relative magnitudes of subjective quality results;

• Prediction consistency: The degree to which the model maintains prediction accuracy
over corpus.

Following these criteria, after obtaining the subjective quality score or the perceived distortion
map, researchers usually rely on several statistical measures to do some regression analyses
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and compute correlation coefficients between these collected scores and the predictions of
the objective quality metrics. The coefficients can indicate the performance of the metrics,
and thus evaluate and compare them quantitatively.

4.5.1 Performance of global quality prediction

In [27], four measures (i.e. RMS error, Pearson Linear Correlation Coefficient (LCC) [83],
Spearman Rank Order Correlation Coefficient (SROC) [106] and Non-linear regression
analysis ) are advised and broadly used to evaluate the performance of the global quality
predictions of the objective metrics.

• RMS error: It measures the root-mean-square of differences between DMOS and
predictions of an objective quality metric over all stimuli. RMS error is simple but not
competent to indicate the prediction consistency [27] (see Figure 4.5).

Figure 4.5: Figures left and right show two objective metrics with approximately equal RMS
errors between metrics predictions (shown as DMOSp in figures) and collected DMOS. Left
figure is an example of a metric that has quite accurate predictions for the majority of stimuli
but has large prediction error for the two points in the middle of the figure. Right figure is an
example of a metric that has a balanced set of prediction errors – it is not as accurate as the
metric of left figure for most of the sequences but it performs "consistently" by providing
reasonable predictions for all the stimuli. However, RMS errors cannot reflect this difference
in terms of their measured values. The figures come from [27].

• Pearson Linear Correlation Coefficient (LCC): It computes the covariance of DMOS
and the objective predictions divided by the product of their standard deviations, and
higher coefficient value means better correlation. This coefficient can well reflect the
prediction accuracy.
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• Spearman Rank Order Correlation Coefficient (SROC): This coefficient is defined as
the Pearson Linear Correlation Coefficient between the ranked values of DMOS and
objective predictions. It is a sensitive measure of prediction monotonicty.

• Non-linear regression analysis: Prior to computations of correlation coefficients , it
is suggested to use a non-linear function, which is a four-parameter logistic curve, to
fit each objective prediction, when recognizing the potential non-linear mapping of
the objective metric outputs to the subjective quality scores. The non-linear function
is used to transform the set of objective predictions to a set of predicted DMOS
values, and correlation coefficients are computed between the predicted DMOS and the
subjective DMOS. Moreover, the outlier ratio (percentage of the number of predictions
outside the range of ±2 times of the standard deviations) of the predicted DMOS can
function as a measure of prediction consistency [127] (see Figure 4.6).

Figure 4.6: Scatter plots of subjective mean opinion score (MOS) versus metric prediction,
presented in [127]. Each sample point represents one stimulus. All the points are fitted with
four-parameter logic curves. from left to right, the predictions are produced by : PSNR,
Sarnoff model and SSIM. The scatter plot of SSIM is the most convergent to the non-linear
curve, meaning that SSIM has the highest prediction consistency among three metrics.

4.5.2 Performance of local distortion prediction

To the best of our knowledge, few measures evaluate the performance of the objective quality
metrics for the task of predicting the local perceived distortion of the artifacts, while many
objective metrics, such like SSIM, MS-SSIM, MSDM2, FMPD and so on, are able to provide
such local distortion predictions. Researchers usually evaluate this performance by utilizing
the subjective detection probability map of local visible distortion, namely the subjective
distortion map (see. Figure 4.3). Particularly, the subjective distortion map can indicate the
probabilities of visually noticeable distortion over all pixels of an image (or vertices of a
3D mesh surface), but cannot provide any information about the perceived magnitude of
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a distortion. Hence, such map is propitious to benchmark a metric ability to spot visibly
distorted regions in terms of binary classification. To analyze such ability of an objective
metric, Cǎdík et al. [9] used the receiver-operator-characteristic (ROC) [4], which reveals the
relation between the size of areas that contain visible distortions and are correctly predicted
by an objective metric (true positives), and the areas that do not contain visible distortions
but are still predicted (false positives). ROC shows the relation of these two quantities for a
varying classification threshold. The objective metric that gives a larger area under the ROC
curve (AUC) is assumed to perform better (see Figure 4.7).

Figure 4.7: The performance of the local distortion prediction of the objecive quality metrics
is analyzed with ROC curve (the higher area-under-curve (AUC), the better the classification
into distorted and undistorted regions). The results are from NoRM dataset [45], and
subjective distortion maps of left figure are from double stimulus protocol, and subjective
distortion maps of right figure are from single stimulus protocol. The threshold percentage
of observers for determining the distortion visibility is 50%. The figure is captured from [9].

4.6 Performance comparison

Thus far, we have presented each procedure for implementing a subjective quality experiment,
involving the design of the protocol, the analysis of the collected subjective data and the
measures for quantitatively evaluating the performance of the objective quality metric in
correlation with the subjective data. The performance of all the classical and recent objective
quality metrics in digital graphics (images, videos, 3D models) are evaluated and summarized
in the published works [70, 99, 58, 61, 9, 60]. Thus, we briefly introduce their conclusions
in the following paragraphs:
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• Performance of image quality metrics
For the performance of global quality prediction, as in [70], comparing to the classical
image metrics (e.g., PSNR), perceptual visual quality metrics (SSIM, VIF, VSNR)
perform much better in terms of correlation with subjective opinions (DMOS). In
particular, SSIM performs fairly consistently over the different distortion types, as
contrasted with VIF and VSNR. Regarding the ability of predicting locally perceived
distortion, Čadík et al. [9] suggested that a VDP based metric: HDR-VDP-2 performed
better than its counterparts (e.g. SSIM, MS-SSIM, etc.) concerning the correlation
with subjective distortion maps.

• Performance of video quality metrics
Presented by Seshadrinathan et al. [99], the video quality metrics MOVIE and VQM
are superior to other video metrics embedded with image quality metrics, such like
PSNR, SSIM, VIF and so on, as regards to correlation with subjective scores (DMOS).

• Performance of mesh quality metrics
Summarized in [61], the comparison results show that the classical geometric distances,
like Hausdorff and RMS, provide a very poor correlation with human judgment, while
the most recent model-based metrics (e.g. MSDM2, TPDM, FMPD) provide much
better performance. In order to quantitatively compare the performance between
model-based and image based metrics, the subjective study conducted by Lavoué et
al. [60] , and indicates that the image-based metrics perform significantly close to the
performance of model-based metrics for evaluating the quality of different versions
of a same object under a single type of artifact. However, they also pointed out that
the image-based metrics are less accurate in comparing different artifacts or artifacts
applied to different 3D objects.

4.7 Conlusion

By now, we have presented an overview of objective and subjective quality assessments of
digital graphics. The research on quality assessment has made a significant progress, with
many applications. However, due to the complex modern graphic processes, this research
is still in its early stage, and there is an increasing demand for more efficient and effective
quality metrics, considering the interactions between geometry and rendering scenarios,
functionalities of human visual system (HVS) in complex tasks, and so forth. For instance, to
the best of our knowledge, Čadík et al. [9] explored a way to capture the information about
HVS ability on perceiving the local distortions of 2D images. Based on this information,
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they evaluated the existing image quality metrics for the task of predicting locally perceived
distortions. Unfortunately, hardly any research studies this HVS ability on perceiving 3D
objects, while the information about the local visibility of 3D artifacts is also important to
locally drive any geometry processing operations, such as mesh simplification, compression
and distortion localization, etc. Meanwhile, as mentioned in [61], the current mesh quality
metrics measure the distortions either on 3D meshes or on the final rendered images. We
barely see an quality metric that considers the interactions between geometric and texture
image information, while these interactions (e.g., a simplified 3D mesh mapped with a
compressed texture) may cause complex visual artifacts, which could be stronger than either
of two distortion impacts due to the additive effects, or weaker, thanks to the masking effects.
Thus, the sudy on these interactions rises as an obvious trend in current research.
In next two chapters, we will detail our two major contributions to the subjective and objective
visual quality assessments to meet the latest demand. Firstly, in Chapter 5, we present a
newly designed subjective quality study based on evaluating the local visibility of geometric
artifacts. The collected perceived distortion maps are used to represent several perceptual
functionalities of the human visual system (HVS), and serve as ground-truth to evaluate
the performance of well-known geometric attributes and metrics for predicting the locally
perceived distortions. Then, in Chapter 6, we describe our second contribution: the subjective
and objective quality evaluation of texture-mapped 3D models.
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Chapter 5

Evaluating the local visibility of
geometric artifacts

5.1 Introduction

As narrated in previous chapters, 3D meshes are subject to a wide range of processes which
include compression, simplification, filtering, watermarking and so forth. These processes
inevitably introduce distortions which alter the geometry of these 3D data and thus their
final rendered appearance. Classical metrics such as Hausdorff distance and root mean
square error have proven to be very poor predictors of the human perception and the visual
annoyance of geometric artifacts [58]. As a consequence, mesh visual quality (MVQ) metrics
have been recently introduced by the scientific community [119, 125, 56], mostly inherited
from image quality assessment metrics [126]. Their objective is to evaluate the visual impact
of the geometric artifacts (e.g. geometric quantization noise, smooth deformations due to
watermarking, simplification artifacts and so on). A comprehensive review has been recently
published about 3D mesh quality assessment [24].

The MVQ metrics provide good results in term of correlation with the subjective opinion,
however they are mostly specialized in outputting one global quality score which predicts a
global level of annoyance caused by all artifacts present in the 3D model. Such global quality
index is relevant for many computer graphics applications, for instance, to evaluate a progres-
sive compression method or to reduce/increase the quantization of either vertex position or
mesh attributes in mesh compression algorithm. However, beside this global information, it is
also important in many cases to obtain an information about the local visibility of the artifacts
(i.e. a per-vertex measure of the perceived distortion). Such local information may allow to
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drive locally any geometry processing algorithms (e.g. simplification, remeshing, filtering
and so forth). While some metrics like MSDM2 [56] do produce such local distortion maps,
they have never been evaluated quantitatively with regards to this task.

In that context we propose a new full reference dataset of localized distortion maps for
several types of geometrical artefact and meshes, obtained through a subjective experiment.
For this purpose we gather a set of 3D models associated with several types of distortions
(watermarking, quantization, non-uniform noise, smoothing and simplification). In the ex-
periment, we ask observers to paint the vertices of distorted models where they perceived
noticeable differences as compared with the reference ones (using a brush painting interface).
After an analysis of the inter-observer agreement, we show that the results illustrate some per-
ceptual mechanisms of the Human Visual System (Masking effect and frequency sensitivity).
We then use this dataset to perform quantitative analysis and comparison of the performance
of existing metrics and geometric attributes for the task of local visual difference prediction.

The rest of this chapter is organized as follows: section 5.2 presents our subjective
experiment. Section 5.3 details the tested attributes and metrics. Finally, section 5.4 presents
the performance measure and the results of our study.

5.2 Localized distortion experiment

The objective of this experiment is to study the visibility and annoyance of geometric artifacts
localized on the surface of 3D objects. More specifically, we ask observers to mark areas
of 3D objects that contain noticeable distortions, compared to a reference. Results of this
study will provide insights on the perceptibility of certain artifacts and will be used as well to
evaluate the performance of existing metrics and geometric features to predict this visibility.

5.2.1 Experimental design

As mentioned in previous chapter, the design of subjective quality evaluation experiment
involving 3D content requires the choice of many rendering parameters (e.g. lighting,
material, background, level of interaction). Several authors have made such 3D subjective
quality experiments [132, 89, 23, 119]; whereas none of them tackled the task of local artifact
marking, these works inspired us to use the following experimental setting:
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• We considered a full-reference experiment, i.e. the observers see the distorted 3D
model to mark, together with the reference not-distorted one. A no-reference task
would have been too difficult since an observer, even expert, cannot have a sufficient
a priori on a 3D shape to be able to notice that a region presents an artifact without
knowing the reference.

• We considered a full interaction scenario (the use of static viewpoints is not recom-
mended [89]).

• To minimize the influence of the light and the camera positions on the perception of
artifacts, we simply consider a front directional lighting without specular reflections.

• As in [23], we chose a non uniform background in order to minimize the influence of
the silhouette.

• We provide to the user a mesh painting tools, with a customable brush size.

Our interface is built upon MeshLab [19].

5.2.2 Stimuli creation

The choice of an appropriate corpus of stimuli for a subjective quality experiment is critical
and is a complex task, since we have to chose a set of reference 3D models and their distorted
versions with appropriate distortion types and appropriate distortion strengths, fulfilling
the criteria detailed in section 4.2 Chapter 4. Particularly in our case, all the reference 3D
models should represent meshes used either in digital entertainment, or virtual museum
with a sufficient population diversity. Indeed, imagine that we chose a too simple reference
object (e.g. a sphere) and too simple distortions associated with high amplitudes (e.g. adding
sharp geometric creases) then our experiment will be useless since even a simple metric can
predict the visibility of such obvious artifacts. On the contrary, the objective of our study is
to challenge the ability of existing metrics to detect complex artifacts that occurs in practical
operations (e.g. smooth structured patterns) in complex scenarios (e.g. near the visibility
threshold). Indeed, even a basic Euclidean geometric distance is able to predict the visibility
of a too obvious artifact like a sharp geometric crease added on a sphere. Besides this need of
complexity, our dataset must also present a sufficient degree of diversity to allow us to draw
significant conclusions regarding the performance of the metrics. Finally, given the limited
but necessary time for the painting task, the dataset has to remain of limited size. Indeed, it
is not realistic to ask people to paint 80 models, which is the typical size of datasets used for
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global quality assessment [119, 56].

For these goals, we selected a small set of surface models exhibiting very different shapes,
containing both smooth and rough parts, and associated with different sampling densities.
All the models are formed by closed 2-manifold triangular meshes. For the distortion we
have considered realistic processing operations (#1 to #3 and #9 to #11 in Table 5.1):

• Watermarking - Three different algorithms are used, they respectively modify the
volume moments [123], the low frequency spectral coefficients [124] and the vertex
norms [17] (i.e. their distance to the centroid of the model). The introduced distortions
are respectively smooth deformations [123, 124] and structured ring-like patterns [17].

• Compression - We consider uniform geometric quantization, the most common lossy
process of compression algorithms.

• Simplification - We consider the QEM algorithm [37].

On top of these realistic distortions we also consider noise addition and smoothing [110],
in order to emulate further complex processings. These distortions are applied in a local
manner on selected regions of the object, either rough or semi-rough. The concerned stimuli
objects (#4 to #8 in Table 5.1) have been picked from the LIRIS General Purpose subjective
database. All the distortions are prestented in Appendix A. As stated above, the idea is
to create a compact set of challenging and diversified stimuli (11 in total). We still have
introduced a certain amount of consistency: we conducted the same attack (noise addition)
on different models and different attacks on the same model (Egea), in order to be able to
draw conclusions about these cases. This set of challenging stimuli constitute a good base to
analyze complex perceptual mechanisms (e.g. frequency sensitivity, masking effect) and to
create a robust metric.

5.2.3 Participants and procedure

The participants were shown each distorted object next to its reference version, side by side
on the same screen. They were able to fully interact with the models (rotation, zoom and
translation) and to change the size of the painting brush.They were instructed to mark the
regions (on the distorted model) were they could see any visible difference with respect to the
reference one, and were given no time limit for the deliberation. The 11 pairs of models were
presented in random order to prevent any order bias. Before starting the test session, each
participant was subject to a training phase to make him familiar with 3D object manipulation
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ID Original Model Distortion type Method & ref. Settings MRMS
(vertex number) (10−3)

#1 Egea (100K) Watermarking Volume moment [123] 75 bits inserted, α=0.7 0.85
#2 Egea (100K) Watermarking Spectral [124] 16 bits inserted 0.59
#3 Egea (100K) Watermarking Vertex norms [17] 64 bits inserted, method I 0.08
#4 Egea (50K) Smoothing Taubin [110] 30 iterations, rough areas 0.33
#5 Egea (50K) Noise Uniform α = 0.9%, rough areas 0.16
#6 Egea (50K) Noise Uniform α = 0.9%, intermediate areas. 0.16
#7 Egea (50K) Smoothing Taubin [110] 30 iterations, intermediate areas 0.26
#8 Dinosaur (42K) Noise Uniform α = 0.75%, intermediate areas 0.17
#9 Vase Lion (39K) Quantization Uniform 9 bits 0.33
#10 Bunny (25K) Simplification Garland & Eckbert [37] 50% removed 0.15
#11 Bunny (25K) Simplification Garland & Eckbert [37] 80% removed 0.29

Table 5.1: Details of our dataset. MRMS stands for Maximum Root Mean Square error,
calculated using the Metro tool [20].

(rotation, scaling, translation) and with the mesh painting tool.

Three different sizes of screen were used: 14, 19 and 22 inches due to the limit of our
experimental equipment. Given the fact that each pair of stimuli (distorted and reference)
spanned the full screen, each stimuli thus subtended at least 15 degree of visual angle hori-
zontally. 20 participants took part to our experiment (3 females and 17 males), they were
aged from 16 to 27 years. They were mostly students and staffs from University of Lyon
and from the Northwestern Polytechnical University of Xi’an, China. The experiment was
conducted, on purpose, in uncontrolled viewing conditions (to reflect real-world conditions).
This pool of observers contained both computer graphics experts and naive subjects.

The time to mark all 11 objects was 90 minutes on average (with a standard deviation
of 30 minutes). This may seem long (e.g. 30 minutes is usually recommended for a rating
experiment [47]), however observing and painting a small number of models is far less
tiring that rating hundreds of stimuli, because the full interactions between observers and
objects alleviate boredom compared to hundreds times of repetitive ratings. It is interesting
to observe that these painting times highly depend on the objects: 5 minutes on average
were necessary to mark each simplified Bunny object (#10 and #11) while an average of
12 minutes was taken for the Vase Lion (#9). These times seem to depend both on the
object shape and attack complexity. An example of distortion map obtained from the human
subjects is shown in figure 5.1 (object #8). It results from averaging the 20 observers’ binary
maps and reflects the local probabilities of artifact detection. In this example, more than
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50% of the observers have detected the geometric noise added on the neck and the ribs of the
dinosaur.

Figure 5.1: Example reference and distorted models from our dataset (object #8), along with
human-perceived distortions (color coded probabilities of artifact detection)

5.2.4 Analysis of subjective dataset

Observer agreement

Before exploiting the results of our experiment, it is critical to analyze the agreement between
participants. Indeed, a high disagreement would mean that observers have randomly made
their choices and thus would imply that the task was too difficult or ill-defined. To assess
this inter-observer agreement we first consider the Kendall’s coefficient of agreement [52].
This coefficient, noted as u, is usually used for assessing the consistency of votes in paired
comparison studies [62, 93]. It ranges from 1 (perfect agreement) to −1/(n− 1), if n is
even, and −1/n, if n is odd, where n is the number of observers. In their experiment related
to image local distortion assessment, Čadík et al. [9] computed this coefficient per pixel;
following this idea we compute it per vertex by considering the number of participants that
have chosen the distorted choice over the not-distorted one and vice versa. We can then
derive an coefficient u by averaging all vertex coefficients over each object. Still as in [9],
and considering the fact that the high number of unmarked vertices will push the coefficient
toward high values, we also compute umask for which we average only vertices marked as
distorted by at least 5% of the observers. Results are detailed in table 5.2. The values of u
and umask averaged over all the objects are respectively 0.60 and 0.43. That constitute good
agreement values very close to those from Čadík et al. [9] (0.78 and 0.41).
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We could consider that these values sufficiently assess the agreement of the observers
and thus the reliability of our experimental results. However, computing the agreement for
each vertex separately may lose some important information about the randomness of the
observer’s choices. As an illustration, imagine that the observers each vote for a different
subset of the mesh vertices, then u (as well as umask) will be high since all the vertices will be
chosen as unmarked by n or n−1 observers. This high u value may be considered as correct
because observers mostly agree on the fact that no vertex seems distorted. However, in that
case we could also consider that their votes are random and thus that their agreement should
be low. To face this issue we also computed a more global statistical agreement indicator: the
Krippendorff’s α coefficient [54]. This indicator is able to measure the agreement among an
arbitrary number of observers assigning values to unstructured phenomena. It ranges from 0
(observers agree as if chance had produced the results) to 1 (observers agree perfectly). It is
actually a generalization of several statistical indicators (e.g. for two observers and ordinal
data, it is identical to the Spearman’s rank correlation coefficient). For each object, we do
not compute a single α value but the distribution of α by bootstrapping (as recommended
by the author [54]) and we thus obtain a mean value and the associated confidence interval.
Table 5.2 details these values as well as the 5th and 95th percentiles. The α averaged over
all the object is 0.102. This is a relatively low value suggesting that the task was indeed
difficult. However, the percentiles show that these values are statistically significant so
there really exists an agreement among the observers, suggesting that their task has been
reliably performed. Local distortion marking is still a very unusual task in subjective quality
assessment, hence it is hard to judge what can be considered as a typical α value for this
kind of data. What we can assert is that our observer agreement is very similar to the one
observed in the image localized distortion experiment from [9] (this is assessed by the similar
u and umask values and illustrated, in the appendix A, by the similarity in the obtained maps).
We argue that the Krippendorff’s α should become a gold standard to evaluate the observer
agreement for localized distortion experiments.

When looking at the per-object agreement in table 5.2, we can observe that it varies
from 0.011 to 0.218 (Krippendorff’s α). These values directly reflect the difficulty for the
observers to perceive the artifacts. For instance, the noise added on the Egea model (#5
and #6) is quite easy to detect (α > 0.20). On the contrary, a smooth deformation due to
watermarking (#1) is far more difficult to perceive (α = 0.029). These agreement values
allow us to detect two problematic cases: object #2 owns a very high u and a very low α ,
and object #11 owns both low u and α values. The artifacts of object #2 are of very low
frequency (see figure 5.3) and almost invisible, thus observers have marked very few and
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almost random vertices. On the contrary object #11 is too much simplified, hence observers
have painted almost all vertices. These two special cases will thus be removed in some of
our evaluation experiments.

ID u umask Kripp. α [5th,95th]
#1 0.901 0.719 0.029 [0.029;0.030]
#2 0.952 0.761 0.011 [0.010;0.012]
#3 0.806 0.604 0.057 [0.056;0.058]
#4 0.705 0.435 0.127 [0.126;0.128]
#5 0.546 0.292 0.218 [0.217;0.220]
#6 0.537 0.282 0.206 [0.205;0.208]
#7 0.649 0.366 0.177 [0.175;0.178]
#8 0.483 0.337 0.162 [0.161;0.164]
#9 0.320 0.310 0.082 [0.081;0.083]

#10 0.537 0.498 0.032 [0.030;0.034]
#11 0.181 0.132 0.022 [0.020;0.025]

Mean 0.602 0.430 0.102 [0.101;0.104]

Table 5.2: Inter-observer agreement statistics, in terms of Kendall’s u and Krippendorff’s α

coefficients

Observations

The artifact probability maps, that we obtained, constitute great subjective data for further
studies about perceptual mechanisms involved in the visualization of 3D graphical content.
While this investigation is not in the scope of this paper, we provide here a quick illustration
of two well known features of the human visual system: the visual masking effect and the
frequency sensitivity.

Visual masking defines the reduction in the visibility of one stimulus due to the simul-
taneous presence of another. For 3D surfaces, this phenomenon points out the maximized
visibility of geometric distortions on smooth regions rather than on rough ones. This effect is
perfectly illustrated by object #9: whereas the same uniform 9-bits quantization is applied
for all vertices, we can observe that the subjective artifact probability is much higher on the
face of the Lion which is rather smooth, than on the mane which is rough (see figure 5.2).

The human visual system is also sensitive to the frequencies of a visual stimulus. Studies
of this phenomenon have led to define the contrast sensitivity function (CSF), characterized
by a band-pass filter with a peak frequency between 4 and 6 cpd (cycles by degree) and a
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Figure 5.2: Reference and distorted models from our dataset (stimulus #9) along with
human-perceived distortions (color-coded probabilities of artifact detection) and distortion
maps from different metrics (colors mapped in the min-max range). The distortion prediction
performance of each metric is given in term of Area Under ROC Curve (AUC).

quick drop on each side of this peak. For 3D shapes, this generally leads to observe that
high-frequency distortions have a much higher probability to be visually noticeable than
low-frequency ones. This frequency sensitivity is particularly well illustrated when looking
at objects #2 and #3. Their distortions are respectively of very low and very high frequency
(see figure 5.3). Whereas the power of the distortion is much higher in object #2 (as reflected
by the MRMS values - 0.59 against 0.08), the number of vertices marked as distorted is
much lower: on average observers have marked 1.2% of the vertices against 5.4% for object
#3.This is also illustrated by the observer maps in figure 5.3.

5.3 Set of geometric attributes and metrics

Our dataset provides the opportunity to analyze the performance of existing metrics and
well-known vertex attributes for the task of visual difference prediction. We also select a set
of low-level geometric attributes commonly used in perceptually-based geometry processing
algorithms. We implemented 12 features detailed below.

• Curvatures (Minimum (a1 = Kmin), Maximum (a2 = Kmax), Mean(a3 = (a1 +a2)/2)
and Gaussian (a4 = a1 ∗a2) per vertex respectively) - Following the solution adopted
in [1], we evaluate the curvature tensor using the method from Cohen-Steiner and
Morvan [22] on a fixed-size neighborhood around each vertex, i.e. a geodesic disk
approximated by the intersection of the surface with a sphere centered at the vertex.

• Shape Index [53] - a5 = 2/π ∗arctan[(a2 +a1)/(a2 −a1)].

• Curvedness [53] - a6 =
√

(a2
1 +a2

2)/2.
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Figure 5.3: Distorted models #2 (low frequency watermark) et #3 (high frequency watermark)
and their Hausdorff and observer maps. Low frequency distortions are much less visible.

• The 3D Geometric position a7 - a7(vi) = Pi is the position of each vertex vi .

• Mean dihedral angle a8 - Since all the objects are 2-manifold meshes, the mean dihedral
angle is then computed for each edge and corresponds to the angle D < t j, t j+1 >

between the normals of its adjacent faces t j and t j+1. The computed values are then
averaged for each vertex vi. This attribute was used in the perceptual metric from Váša
and Rus [119]. At each vertex vi:
a8(vi) =

∑ j D<t j,t j+1>

Ne
i

f or j ∈ Ne
i

Ne
i is the number of adjacent edges around the center vertex vi.

• Normal a9 - This attribute was considered in several simplification algorithms such as
QEM [37] and VSA [21]. At each vertex vi, it is computed as:
a9(vi) =

∑ j n⃗ j
||∑ j n⃗ j|| f or j ∈ NT

i .

NT
i is the number of adjacent facets around the center vertex vi.

• Mesh Saliency a10 - We have implemented one scale saliency (not the multi-scale one)
from Lee et al. [63], based on a difference of Gaussian operator. At each vertex vi, it is
computed as:
a10(vi) = |G(a3(vi),σi)−G(a3(vi),2σi)|
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G(a3(vi),σ) is defined as the Gaussian-weighted average of the mean curvature per
vertex, σ is a distance to the center vertex vi.

• Laplacian a11 - The relevance of the difference of geometric Laplacian regarding the
perceived artifact visibility was raised by Karni and Gotsman[48]. It is computed at
each vertx vi: a11(vi) =

∑ j (Pi−Pj)

NT
i

. Pi is the position of center vertex vi, Pj is the position

of its adjacent vertex v j. NT
i is the number of adjacent facets around the center vertex vi.

• Laplacian of Gaussian curvature a12 - It corresponds to the Laplacian operator applied
on the Gaussian curvature field. This attribute was used in the perceptual metric from
Wang et al. [125]. Note that the authors use the cotangent weights discretization of the
Laplace operator while we consider the simpler graph Laplacian, defined as LR (Local
Roughness) in their work.

Geometric positions, normals and geometric Laplacian are 3D vectors, while the others are
scalar values. Besides most simple geometric features (position and normals), we selected
attributes either commonly used in mesh quality metrics [56, 119, 125] or pointed as relevant
by previous learning-based works related to perception [6, 16].

Our objective is to predict the local visual distortion in a full reference scenario. Hence,
for this task, we consider not the attributes themselves but differences of attributes. To
compute these differences, we first establish a correspondence between the distorted mesh
D and the reference one R. For that purpose, we simply perform a fast projection of the
vertices from D onto the surface of R. For each vertex v of the distorted mesh D (associated
with given attribute a(v)), we compute its nearest 3D point v̂ on the surface of the reference
model R using the efficient AABB tree structure [2] from the CGAL library. For each 3D
point v̂, its attribute a(v̂) is interpolated from the triangle it belongs to using barycentric
coordinates. The features that we consider are thus the local per-vertex differences of each
attributes and are computed as follows:

fv = ∥a(v)−a(v̂)∥ (5.1)

where ∥·∥ represents Euclidean norm.
Additionally to this simple difference, we also consider a normalized difference, defined as
follows:

f N
v =

∥a(v)−a(v̂)∥
max(∥a(v)∥ ,∥a(v̂)∥)+K

. (5.2)
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72 Evaluating the local visibility of geometric artifacts

where K = 1 is a constant to avoid instability when denominators are close to zero. The
denominator has goals, (1) it normalizes the features fv (between 0 and 1), which is necessary
for further machine learning and (2) it acts as a visual masking filter (e.g. it gives more
weight to a same curvature variation in a flat region than in rough or highly curved ones). Of
course, for vector attributes (geometric position and normal) this denominator is discarded.
The geometric position difference is normalized by the bounding box size.

To strengthen the robustness of our metric, we consider each feature at several scales;
indeed on top of each per vertex attribute values a(v), we consider also Gaussian-weighted
averages ah(v) computed as follow:

ah(v) = ∑
vi∈N(v,h)

wh
v(v)a(v) (5.3)

N (v,h) is the connected set of vertices belonging to the sphere with center v and radius h
(including the intersections of edges with the sphere) and wh

v() is a Gaussian weighting (an
isotropic weighting) function centered on v with standard deviation of h/2 (i.e. the size h of
the neighborhood is twice the standard deviation of the Gaussian filter).

Besides these attribute differences, we also consider three well known metrics, commonly
used to drive or evaluate geometry processing operations, and which produce distortion
maps:

• The Hausdorff distance - Each vertex of the distorted mesh is associated with its
Hausdorff distance to the reference surface during the first step the computation. This
measure is commonly used to drive or evaluate geometry processing operations.

• MSDM2 [56] - This metric computes multi-scale differences of curvature statistics
between vertices of the distorted mesh and their projections on the reference one, at
multiple scales. These local differences are then pooled into a single global score.
Hence, this metric natively produces a distortion map. However, while it has shown
to provide excellent results for global quality prediction, this metric has never been
evaluated for the task of localized distortion visibility prediction.

• FMPD [125]- Like MSDM2, this perceptual metric has proven to be an excellent
predictor of the global quality of 3D meshes but has never been evaluated for the task
of visible difference prediction. The original FMPD computes a single difference
of global roughness value between the meshes to compare. Here, we consider local
differences of their local roughness estimator, based on the Laplacian of Gaussian
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curvature modulated by masking effect functions. The algorithms are well detailed in
[125]. This local roughness difference is also subject to normalization and averaging
(see eq. 5.1, 5.2 and 5.3).

For each attribute (including the local roughness difference of FMPD), we consider
two scales h = {0.012R,0.036R} (R is the maximum length of the bounding box ) in ad-
dition to the per vertex version (the saliency does not have per vertex version), and then
get 13× 3− 1 = 38 features. Besides these normalized features, we also take their non-
normalized forms as the other 38 features. These scales correspond to those used in [63].
Finally, including the MSDM2 and Hausdorff computations, we therefore have 78 features in
total.

5.4 Evaluation of geometric attributes and metrics

5.4.1 Performance measure

As in [9], our purpose is to evaluate the metric/attribute ability of predicting the problem-
atic regions in terms of binary classification: marking the vertices that contain noticeable
distortions. Therefore, we use the receiver-operator-characteristic (ROC) that represents
the relation between probability of false positives (x axis, meaning the vertex classified
as distorted while it is not) and probability of true positive (y axis, meaning the vertex
correctly classified as distorted) by varying a decision threshold on the metric (resp. attribute
difference) output. To determine the binary ground-truth data, it is convenient to assume that
a certain percentage of observers need to mark the distortion to consider it noticeable. In our
case, the binary ground-truth data are obtained by considering as distorted vertices marked
by more than 25% of the observers. The area under the ROC curve (AUC) can then be used
as a direct indicator of the performance (1 corresponds to a perfect classification while 0.5
corresponds to a random one).

For each feature/metric we compute the ROC performances per-object which are then
averaged on the whole database. The AUC values are then averaged over the 11 models.
To test how the metrics can adapt to several objects and distortion types together, we also
compute the ROC curve for all objects together. For this latter experiment, we duplicate
vertices of smallest models in order to balance the respective importance of each object in
this global ROC calculation.
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Attributes #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

Minimum
0.88 0.92 0.71 0.83 0.87 0.84 0.79 0.77 0.58 0.60 0.54
(1,N) (2,S) (2,N) (1,S) (1,S) (0,N) (0,S) (0,N) (1,S) (0,S) (1,S)

Maximum
0.95 0.97 0.86 0.90 0.91 0.89 0.86 0.74 0.77 0.73 0.57
(2,S) (2,S) (2,N) (2,S) (2,S) (2,N) (2,S) (0,S) (2,N) (2,N) (2,N)

Mean
0.93 0.96 0.85 0.89 0.90 0.87 0.86 0.78 0.77 0.70 0.56
(1,N) (2,S) (2,N) (2,S) (2,S) (2,N) (2,S) (1,S) (2,N) (2,N) (1,N)

Gauss
0.86 0.91 0.68 0.84 0.90 0.87 0.81 0.79 0.54 0.62 0.58
(1,S) (2,S) (1,N) (2,S) (2,S) (1,N) (2,S) (1,S) (1,S) (2,N) (0,S)

Shape index
0.87 0.88 0.74 0.79 0.86 0.82 0.78 0.75 0.71 0.63 0.53
(1,N) (2,S) (2,S) (0,S) (1,S) (1,S) (1,S) (1,S) (1,S) (1,S) (1,S)

Curvednesss
0.95 0.97 0.87 0.89 0.91 0.90 0.85 0.80 0.78 0.73 0.58
(2,S) (2,S) (2,N) (2,S) (2,S) (2,S) (2,S) (1,S) (2,N) (2,N) (2,N)

Position
0.90 0.83 0.68 0.83 0.88 0.86 0.81 0.79 0.59 0.50 0.56
(2,N) (2,S) (2,N) (1,N) (2,N) (2,N) (1,N) (1,N) (1,N) (0,N) (0,N)

Dihedral
0.89 0.59 0.68 0.82 0.86 0.84 0.79 0.76 0.58 0.65 0.57
(1,N) (2,N) (0,N) (1,N) (1,N) (0,N) (1,N) (0,N) (2,N) (2,N) (0,N)

Normal
0.91 0.93 0.61 0.87 0.88 0.85 0.84 0.77 0.61 0.58 0.60
(2,N) (2,N) (0,N) (2,N) (1,N) (1,N) (1,N) (1,N) (1,N) (1,N) (2,N)

Saliency
0.85 0.91 0.64 0.79 0.83 0.79 0.76 0.67 0.56 0.63 0.57
(2,N) (2,N) (1,N) (1,S) (1,S) (1,S) (1,S) (2,N) (1,S) (1,N) (2,S)

Laplassian
0.90 0.65 0.60 0.82 0.87 0.85 0.78 0.77 0.54 0.69 0.63
(2,S) (0,N) (0,N) (1,N) (1,N) (0,N) (1,N) (0,N) (1,N) (2,N) (2,N)

LaplaceGauss
0.88 0.89 0.71 0.86 0.92 0.91 0.83 0.78 0.72 0.56 0.66
(2,S) (1,S) (2,S) (2,S) (2,S) (2,N) (1,N) (1,N) (2,N) (0,S) (0,S)

FMPD
0.96 0.95 0.87 0.83 0.83 0.82 0.79 0.74 0.82 0.63 0.66
(2,S) (2,S) (2,S) (2,S) (1,S) (0,S) (0,S) (0,S) (2,N) (0,N) (0,N)

MSDM2 0.97 0.97 0.85 0.84 0.90 0.88 0.81 0.77 0.79 0.71 0.54
Hausdorff 0.76 0.83 0.60 0.79 0.83 0.80 0.76 0.73 0.50 0.50 0.56

Table 5.3: AUC values from best performed attribute-based features including LRF from
FMPD, and AUC values from MSDM2 and Hausdorff distance.

5.4.2 Evaluation procedures

In the evaluation section, we firstly used Naive Bayes classier to train a dataset from each
procedure detailed below, which is trained using ground-thruth data (supervised learning) for
a single feature/metric, then, and get class information (distorted or not for each vertex). Then
based on such information, we tested the same dataset to obtain the correlation between the
feature/metric and class. To evaluate all the features/metrics robustly and comprehensively,
we design three different train and test procedures based on cross validation:

1. For each object separately, we perform a train and test procedure based on the leave-
one-out cross validation, evaluating each feature/metric, where the training dataset is
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Rank 9Objects indv Mean AUC 11Objects indv Mean AUC Whole 9Objects AUC Whole 11Objects AUC

1 MSDM2 0.84 MSDM2 0.87
FMPD

0.88
FMPD

0.87
(2,S) (2,S)

2
Curvedness

0.83
Curvedness

0.87
Laplace Gauss

0.86
Curvedness

0.85
(2,S) (2,S) (2,N) (1,S)

3
Maximum

0.83
Maximum

0.87 MSDM2 0.86
Maximum

0.85
(2,S) (2,S) (1,S)

4
Mean

0.81
LRF(FMPD)

0.85
Curvedness

0.86
Mean

0.84
(2,S) (2,N) (1,S) (1,S)

5
LRF(FMPD)

0.80
Mean

0.84
Maximum

0.86
Gauss

0.84
(2,N) (2,N) (1,S) (1,S)

6
Laplace Gauss

0.79
Laplace Gauss

0.79
Mean

0.85
Laplace Gauss

0.83
(2,N) (2,N) (1,S) (2,S)

7
Shape indx

0.76
Position

0.79
Gauss

0.83 MSDM2 0.83
(1,S) (2,N) (1,S)

8
Normal

0.76
Normal

0.78
Minimum

0.80
Minimum

0.82
(1,N) (2,N) (1,S) (1,S)

9
Laplace

0.75
Gauss

0.76
Dihedral

0.79
Saliency

0.77
(1,S) (2,S) (0,N) (1,S)

10
Gauss

0.75
Shape indx

0.76
Saliency

0.77
Dihedral

0.77
(1,S) (1,S) (1,S) (1,N)

11
Position

0.75
Minimum

0.74
Normal

0.77
Normal

0.74
(2,N) (1,S) (0,S) (0,S)

12
Minimum

0.74
Laplace

0.73
Shape indx

0.76
Shape indx

0.73
(1,S) (1,S) (1,N) (1,S)

13
Dihedral

0.74 Hausdorff 0.73
Laplace

0.73
Laplace

0.72
(0,N) (0,S) (0,N)

14
Saliency

0.71
Saliency

0.72
Position

0.66
Position

0.67
(1,N) (1,N) (2,S) (1,S)

15 Hausdorff 0.70
Dihedral

0.71 Hausdorff 0.60 Hausdorff 0.59
(1,N)

Table 5.4: From left to right: Ranks of average AUC values for best performing features
and metrics among 9/11 models (second and third column); Ranks of AUC values for best
performing features and metrics on a model taking vertices from 9/11 as a whole dataset
(fourth and fifth column).

feature/metric values on the vertices from 10 models and testing dataset is the same
type of feature/metric values from the rest model (similar to the other 10 models). The
average ROC curve is recorded as the final performance estimate per model.

2. We perform a train and test procedure based on 10-fold cross validation, evaluating
each attribute/metric on the whole set of vertices from the 11 models together.

3. According to the Krippendorff’s α values in Table 5.2, we excluded two models #2
and #11, whose α values are smallest and second smallest respectively. And then
we perform a train and test procedure evaluating each attribute/metric on the whole
set of vertices from the rest 9 models. This procedure, to some extent, guarantees
the robustness and credibility of the evaluation by eliminating those too difficult or
ill-defined tasks.
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76 Evaluating the local visibility of geometric artifacts

Figure 5.4: the ROC curves from MSDM2, FMPD, Hausdorff distance and 2 other features
among best performing ones for each model.

5.4.3 Results and comparisons

Performance of the attributes and metrics

We have trained and tested all the features and metrics with the 3 procedures mentioned in
the subsection 5.4.2. Figures 5.2 and 5.5 illustrate some visual results, while table 5.3 and
details the quantitative performance in terms of AUC values for each feature and for each
model from the dataset. Average values are presented in table 5.4 and figure 5.6 (according to
agreement statistics, models #2 and #11 have been excluded from this averaging). Additional
results, including #2 and #11, are available in the appendix A. As all the 76 features are
derived from 13 attributes, thus, we present the results obtained by the best filter: (i,S) and
(i,N) respectively refer to simple (eq. 5.1) and normalized (eq. 5.2) attribute difference, while
i refers to the averaging scale (eq. 5.3): 0 means per-vertex attribute and 1, 2 respectively
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refer to small and large averaging scale.

Figure 5.5: Reference and distorted models from our dataset (object #3), observer data and
distortion maps from different attributes and metrics (colors are mapped in the min-max
range).

For the second and third procedure, Table 5.4 and Figure 5.6-bottom row present the
performance comparisons.We also computed other statistics of all the results from first
procedure. In details, we firstly took an average AUC value of every feature/metric among 11
models and 9 models (excluding #2 and #11) respectively. Then, similar to the work before,
we selected the best performing features among same attribute-based features according to
the average AUC values. Similarly, for the results from 9/11 models as a whole dataset, we
show the results from best performing features among same attribute-based features and
FMPD, MSDM2, Hausdorff distance.

In Table 5.4, the second and third column show the ranks according to the average AUC
values, the comparisons confirm our previous deduction: MSDM2 performs outstandingly
well among all the features/metrics when a certain feature/metric measures 9/11 models
separately. And yet, the performance of curvedness-based features is still quite good. This
suggests that on a model whose distortion is unknown, MSDM2 metric could predict visually
correlated distortion better than other feature/metric. In contrast, when we take 9/11 models
as whole dataset, the performance of FMPD suddenly rises to the first place. This means that
in scenario where one single threshold has to be determined for detecting artifacts for several
objects and/or distortion types, then the FMPD metric is the most suited. This may be due to
the fact that this metric explicitly incorporates global and local normalization pre-processes
(linked to the masking effect). In general, Hausdorff and some geometric attributes-based
features (e.g. geometric metric, mean dihedral angle) could not predict the perceived local
distortion.
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Figure 5.6: Top: Mean of AUC values for all the tested features. Error bars denote standard
deviations. Bottom: AUC values when computing ROC curves over the whole dataset.

To observe directly, for each model, Figure 5.4 shows the ROC curves of the performances
from MSDM2, FMPD, Hausdorff distance and 2 other features among best performing ones.
With the same scenario, Figure 5.7 shows the ROC curves for 9/11 models as a whole.

Influence of the filters

Table 5.5 illustrates the AUC values averaged over all features and objects, for each filter
separately. We run paired t-test with confidence level 0.95 to evaluate the effect of each filter.
The normalization does not have a significant impact (p-value = 0.11). However Scale 1 is
significantly better than Scale 0 (p-value = 6×10−8) and Scale 2 is significantly better than
Scale 1 (p-value = 0.02). The conclusion to draw here is that averaging the features has a
significant impact on their ability to predict the visible distortion. The main reason is that
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Figure 5.7: the ROC curves from MSDM2, FMPD, Hausdorff distance and 2 other features
among best performing ones on a model taking vertices from 9 as a whole dataset(left) and
on a model taking vertices from 11 as a whole dataset (right).

such averaging (on geodesic neighborhoods) makes the computation more independent of
the sampling density.

Scale 0 Scale 1 Scale 2
Attr. dif. S 0.70 0.73 0.75
Attr. dif. N 0.71 0.74 0.74

Table 5.5: AUC values averaged over all features, for each filter separately.

5.4.4 Discussion

Several conclusions can be drawn from the results presented above:

• Previous studies [58, 24] showed that geometric distances (e.g. Hausdorff and root
mean square error) are not good predictors of the perceived global visual quality. Our
study completes this analysis by demonstrating that the geometric distance (Hausdorff
as well as averaged position difference) is not a good predictor of the local visible
difference.

• Recent metrics like MSDM2 [56] and FMPD [125] provide the best results for this
task of visible difference prediction; these good performances are mainly due to two
key features: (1) being multi-scale improves the robustness, and (2) smart masking
filters improve the stability across different models and distortions.
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• Simple curvature measures (e.g. the curvedness difference) may produce excellent
results. However, we noted unstable performance with a high and unpredictable effect
of the normalization. For instance, AUC values for model #9 are respectively 0.78 and
0.67 for curvedness (2,N) and curvedness (2,S) (see the appendix A).

• Predicting the perceived local distortions on the surface of a 3D mesh appears to be
a very challenging task. Figures 5.2 and 5.5 illustrate the fact that even best metrics
are still far from perfectly predicting the ground-truth distortion maps. Hence, much
works remain to be done in this area and our dataset is an excellent basis for that.

The provided insights into the visual perception of local artifacts are of broad interest for
the computer graphics community. The attributes and metrics detected as good predictors by
our study (i.e. MSDM2, FMPD and curvedness) may be used to design quality metrics as
well as Just Noticeable Difference (JND) models. These features may also be useful to guide
geometry processing algorithms.

5.5 Conclusion and perspective

In this work, we have designed a novel subjective experiment to obtain information about the
local visibility of complex artifacts on a set of 3D objects. We use the obtained distortion
probability maps to (1) illustrate some properties of the human visual system and to (2)
quantitatively evaluate a large set of 3D mesh attributes as well as recent perceptual metrics
for the task of predicting perceived local distortions. From the results, we observe that
curvature-based attributes (in particular curvedness) demonstrate a much better performance
than others (e.g. mean dihedral angles, normals, Laplacian, saliency). As expected, Hausdorff
geometric distance is a poor predictor of the perceived local distortion. Another interesting
result is that recent perceptual metrics, originally designed for global quality evaluation,
also provide the best and most stable results for this local task. We also introduce some
recommendations highlighting the influence of attribute averaging and normalization for the
design of new metrics.

These publicly available dataset and results1 constitute the very first steps toward the
efficient prediction of the perceivability of geometric artifacts, and more broadly toward the
understanding of local perceptual mechanisms involving 3D geometry. In particular, this
dataset will be very useful to evaluate and/or to train future metrics. Machine-learning is
appearing as a powerful tool to design full reference image quality metrics [78, 10, 13] and

1http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
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5.5 Conclusion and perspective 81

could indeed provide good results for 3D mesh artifact localization. However, we believe
that such top-down approach should also integrate low-level human vision processes (such
as a model of contrast sensitivity function) to be really efficient.

Our study focused on the geometry and thus considered a simple rendering style. We now
plan to investigate how complex textures and shaders, used in modern rendering pipelines,
influence the visibility of artifacts. Recent studies about the influence of material [35] and
lighting [31] on the shape perception, should bring highly relevant cues for this goal.
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Chapter 6

Subjective and objective visual quality
assessment of textured 3D meshes

6.1 Introduction

In the previous chapter, the objects we study are primary 3D surface meshes without texture.
However in practice, texture mapped 3D graphics are now commonplace in many applications,
including digital entertainment, cultural heritage and architecture. They consist of geometric
surfaces, on which are mapped several texture images that serve to make the rendering more
realistic. Common texture maps include diffuse map, normal map and specular map. After
their creation (by a designer or using a scanning/reconstruction process), these textured 3D
assets may be subject to diverse processing operations including simplification, compression,
filtering, watermarking and so on. For instance, with the goal of accelerating the transmission
for remote Web 3D visualization (e.g., for a virtual museum application), the geometry may
be simplified and quantized, and the texture maps may be subject to JPEG compression.
Similar geometry and texture degradations may also occur when these assets have to be
adapted for lightweight mobile devices; in that case, textures may have to be sub-sampled or
compressed using some GPU-friendly random-access methods (e.g., [107]). These geometry
and texture content corruptions may impact the visual quality of the 3D asset. Therefore,
there is a need for efficient perceptual metrics to evaluate the visual impact of these textured
model artifacts on the visual quality of the rendered image.
Many visual quality metrics have been introduced in the field of computer graphics. However,
most of them can only be applied on images created during the rendering step. They mostly
focus on detecting artifacts caused by global illumination approximation or tone mapping
[3, 45, 135, 10]. On the contrary, another class of method focuses on evaluating the artifacts
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introduced on the 3D assets themselves. However most consider only geometric distortions
[56, 119, 125]. Little work has been done to evaluate the visual impact of both geometry and
texture distortions on the appearance of the rendered image. Studying the complex perceptual
interactions requires a ground-truth of subjective opinions on a variety of models with such
degradations. To the best of our knowledge, only Pan et al. [81] conducted such a subjective
study. However, they considered only geometry and texture sub-sampling distortions. In this
chapter, we present a large-scale subjective experiment for this purpose, based on a paired
comparison protocol. As in [81], we restrict the texture information to the diffuse maps.
TOur dataset contains more than 272 videos of animated 3D models created from 5 reference
objects, 5 types of distortions, and 2 rendering parameters. The experiments involved more
than 100 people. After an analysis of the influence of lighting on the perception of geometry
and texture artifacts, we then use this subjective ground-truth to evaluate the performance of
a large set of state-of-the-art metrics (dedicated to image, video and 3D models). We finally
propose a new metric based on an optimal combination of geometric and image measures.
The rest of this chapter is organized as follows: 6.2 describes our subjective experiments and
their results. Section 6.3 presents a comprehensive evaluation of state-of-the-art image and
mesh metrics with respect to our subjective ground-truth, and details our proposed perceptual
measure and their validation. Finally, concluding remarks and perspective works are given in
Section 6.4.

6.2 Subjective experiment

We conducted a large-scale subjective experiment to evaluate the visual impact of texture
and geometry distortions on the appearance of textured 3D models. We chose a paired
comparison technique, where observers are shown two stimuli side by side and are asked
to choose the one that is most similar to the reference (forced-choice methodology). This
protocol was shown to be more accurate than others (e.g. single stimulus rating) due to the
simplicity of the subjects’ task [77]. This section provides details on the subjective study and
its results

6.2.1 Stimuli generation

We selected 5 textured triangle meshes created using different methodologies and targeting
different application domains (see Table 6.1 and Figure 6.1). The Hulk and Sport Car are arti-
ficial models created using a modeling software. They have been selected from a community
model repository (ShareGC.com). They both have small numbers of polygons, structured
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texture content and smooth texture seams (i.e., vertices associated with multiple texture
coordinate pairs). The squirrel and the Easter Island statue come from a reconstruction
process using multiple photographs, they are courtesy of the EPFL Computer Graphics
and Geometry Laboratory. Finally, the Dwarf is a scanned model, courtesy of the Visual
Computing Laboratory of ISTI-CNR, Pisa (http://vcg.isti.cnr.it). These three latter models,
created respectively from reconstruction and scanning, exhibit noisier texture seams and
content. The numbers of vertices from the five models goes from 6,000 to 250,000 and the
texture size goes from 256× 256 to 4096× 4096. Note that the Hulk and Sport Car are
associated with several texture images (resp. 2 and 15). To summarize, these objects span a
wide variety of geometry and texture data.

#Vertex #Texture Texture Size Average Curv. Text. Charac. Map. Complex.
Squirrel 6,185 1 2048×2048 High High freq. & Noisy Simple

Hulk 10,236 2 1024×1024 & 512×512 High Structured Simple
Statue 104,019 4 355×226 to 4096×4096 Low Noisy Complex

Sport Car 122,873 15 256×256 to 1024×768 Low & sharp edges Structured Simple
Dwarf 250,004 1 4096×4096 Intermediate Intermediate Complex

Table 6.1: Details about our 3D models.

Figure 6.1: 5 Models used in the subjective study (from left to right: Sport Car, Easter Island
statue, squirrel, Hulk and Dwarf).

These reference models have been corrupted by five types of distortions (three applied on
the geometry and two applied on the texture), applied each with four different strengths:
On the geometry:

• Compression - We consider uniform geometric quantization, the most common lossy
process of compression algorithms.
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• Simplification - We consider the Quadric Error Metric algorithm from Garland and
Heckbert [37].

• Smoothing - We consider Laplacian smoothing [110].

On the texture map:

• JPEG - The most commonly used algorithm for the lossy compression for 2D images.

• Sub-sampling - We reduce the texture size by resampling through bilinear interpola-
tion.

The strength of these distortions was adjusted manually in order to span the whole range of
visual quality from imperceptible levels to high levels of impairment. For this task, a large set
of distortions were generated and viewed by the authors and a subset of them that spanned
the desired visual quality (i.e., “Excellent”, “Good”, “Fair” and “Poor”) were chosen to be
included in the database. This perceptual adjustment of the distortion strength was also done
for the LIVE Video Quality Database [99]. As stated by the authors, it allows us to test the
ability of objective metrics to predict visual quality consistently across varying content and
distortion types. We thus generated 20 distorted models (5 distortion types × 4 strength) per
reference object.
To challenge the generalization ability of the objective metrics, we also included mixed
distortions. For this task, we manually selected 36 distorted versions among the 12×8 = 96
possible combinations of the 12 geometry and 8 texture distortions detailed above. In practice,
we applied the 20 single-type distortions on the Hulk, Sport Car, squirrel and Easter Island
statue model, and mixed 36 mixed distortions on the Dwarf model, resulting in a database
of 116 models (+5 references), including the reference. Table B.1 provides details on the
distortion parameters while Figure 6.2 and 6.3 illustrate some visual examples.

6.2.2 Rendering parameters

User interaction: In existing subjective studies involving 3D content, different ways have
been used to display the 3D models to the observers, from the most simple (as static images,
as in [132]) to the most complex (by allowing free rotation, zoom and translation, as in [23]).
While it is important for the observer to have access to different viewpoints of the 3D object,
the problem of allowing free interaction is a cognitive overload which may alter the results.
A good compromise is to use animations, as in [81]. For each object of our database, we
generate a low-speed rotation animation around the vertical axis.
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Figure 6.2: Examples (Sport Car and squirrel ) of distorted models from our dataset. The
rendering is the same as in our videos.

Figure 6.3: Examples (Hulk and Easter Island statue ) of distorted models from our dataset.
The rendering is the same as in our videos.

Lighting and shading: As noticed by Rogowitz and Rushmeier [89] the position and type
of light sources have a strong influence on the perception of the artefacts. Lighting from
the front have a masking effect, hence we chose an indirect illumination. Sun and Perona
[108] showed that people tend to assume light is above and slightly to the left of the object
when they interpret a shaded picture as a 3D scene. Their observations have been confirmed
by O’Shea et al. [79] who demonstrated that the viewer’s perception of a 3D shape is more
accurate when the angle between the light direction and viewing direction is 20-30 degree
above the viewpoint and to the left of 12 degree from vertical. We follow this lighting
condition by putting a spot light at this position. For the material, we kept the original
parameters from the source reference objects, which are mainly diffuse. The video size is
1920×1080. The duration of the video is 15 seconds for the single-type distortions and 10
seconds for the mixed-distortions (for this latter case, videos have been made shorter in order
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ID Distortion type Squirrel Hulk Statue Sport Car Dwarf
L1 Smoothing 1 iteration 1 iteration 10 iterations 1 iteration 15 iterations
L2 Smoothing 3 iterations 2 iterations 20 iterations 2 iterations 25 iterations
L3 Smoothing 5 iterations 3 iterations 30 iterations 3 iterations 40 iterations
L4 Smoothing 7 iterations 4 iterations 50 iterations 4 iterations 50 iterations
Si1 Simplification 50% removed 30% removed 50% removed 50% removed 80% removed
Si2 Simplification 70% removed 40% removed 70% removed 60% removed 92% removed
Si3 Simplification 75% removed 50% removed 87.5% removed 75% removed 97.5% removed
Si4 Simplification 87.5% removed 70% removed 95% removed 87.5% removed 98.7% removed
Q1 Quantization 10 bits 10 bits 10 bits 10 bits 11 bits
Q2 Quantization 9 bits 9 bits 9 bits 9 bits 10 bits
Q3 Quantization 8 bits 8 bits 8 bits 8 bits 9 bits
Q4 Quantization 7 bits 7 bits 7 bits 7 bits 8 bits
J1 JPEG 18% quality 18% quality 80% quality 10% quality 12% quality
J2 JPEG 14% quality 14% quality 16% quality 5% quality 10% quality
J3 JPEG 10% quality 10% quality 12% quality 3% quality 8% quality
J4 JPEG 6% quality 8% quality 8% quality 1% quality 6% quality
Su1 Sub-sampling 40% sampled 40% sampled 25% sampled 50% sampled 10% sampled
Su2 Sub-sampling 30% sampled 30% sampled 20% sampled 20% sampled 8% sampled
Su3 Sub-sampling 20% sampled 20% sampled 10% sampled 10% sampled 5% sampled
Su4 Sub-sampling 10% sampled 10% sampled 5% sampled 5% sampled 3% sampled

Table 6.2: Details about the distortions applied on each reference model. For the Dwarf
model, details about distortions are available in Appendix B.

to keep a reasonable duration for the comparison experiment).
In order to study the influence of shading on the results, we also re-generated the same set of

videos by keeping only the reflectance (i.e. without shading). Examples are shown in Figure
6.4. We thus obtain 10 video sets to rate (5 models × 2 rendering settings), for a total of 232
videos.

6.2.3 Experimental procedure

As stated above, we opted for a paired comparison methodology since it has been demon-
strated to be more reliable than rating methods [77]. The participants are shown two videos
of distorted models at a time, side by side, and are asked to choose the one that is most
similar to the reference. The observer can replay the videos as much as (s)he wants. For sake
of readability, the reference video is not displayed on the same screen but is presented just
before the beginning of the comparisons, and can then be viewed at any time on a pop-up
window by clicking on a button. The interface was developed in JavaScript, as web platform,
and is illustrated in Figure 6.5.
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Figure 6.4: Examples of the appearances of distorted models with different lighting and
shading settings from our dataset . The rendering is the same as in our videos. Note that for
the Dwarf, we present here compound distortions (geometry+texture) from our validation set
(see Section 6.3.4).

The main issue with the paired comparison protocol is the large number of possible
comparisons:

( 2
20

)
=190 per model for the single distortion setting, and

( 2
36

)
= 630 for the

mixed distortion one. It is therefore unrealistic to ask a participant to perform a complete test
even on a single model. Fortunately, this high number of trials per model can be reduced
by using sorting algorithms as recommended in [102, 77]. The idea is to embed a sorting
algorithm into the experiment platform; this algorithm then decides in an on-line fashion
which pairs of videos to compare based on the previous comparisons.

We introduced a simple yet efficient sorting algorithm for the single-distortion setting.
The idea is obtain a global ranking of the 20 stimuli by interleaving them progressively,
one distortion type at a time (i.e., compression, simplification, smoothing, JPEG and Sub-
sampling). For a given distortion D, we assume that the distortion strength goes from D1

(weak) to D4 (strong). The assumption behind our algorithm is that for a given distortion D,
the quality of Di is always better than D j for j > i (noted as QDi > QD j ,∀ j > i). First, two
distortions types Q and J are randomly chosen (in this example, Quantization and JPEG),
Q4 and J4 are then compared. The index of the not-selected video (Q4) is pushed into a list
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Figure 6.5: Illustration of our browser-based interface for the paired comparison task. Pairs
of 3D models are presented as videos ; the user selects the one he prefers and then clicks on
the Next button. The reference model can be displayed at any time by clicking on the See
Original Model button below the Next button.

(List 1), as the poorest quality version. In the next trial, the selected model from the previous
round (J4) and a distorted model with a decreased level from the other type (Q3) are shuffled
and displayed to the user. This process continues until all 8 models are sorted from the worst
to best quality. This sorting process is repeated with two other distortions types (Smoothing
and Simplification in the example) to form a second list (List 2) which is then interleaved
with the remaining distortion type (Sub-sampling) and then with List 1 to obtain the final
ranking of the 20 distortions. In our study, the average comparison number was 36 (instead
of 190 for the full design). This sorting algorithm is illustrated in Appendix B.
For the mixed-distortion setting, the hypothesis QDi > QD j ,∀ j > i does not hold anymore.
Hence, we implemented a more classical self-balancing binary tree, as in [77]. The average
number of comparison for sorting the 36 distorted models was 140 (instead of 630).

6.2.4 Participants

A total of 101 subjects took part in the experiment, aged between 20 and 55, all with normal
or corrected to normal vision. Participants were students and staff from the University of
Lyon in France and the University of Alberta in Canada. On average, it took 12 minutes for
one observer to finish the experiment for one video set. 89 subjects rated 1 set, 8 rated 2 sets
and 4 rated 3 sets. None of these repetitions took place on the same day in order to prevent
any learning effect. The experiments were all conducted on the same 15-inch MacBook Pro
screen, in a dark room. In total, each of the 10 video sets (5 models × 2 rendering settings)
was judged by between 11 and 15 observers (see Table 6.3).
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6.2.5 Computing scores

For each video set and each subject, we obtain a global ranking of the nm distorted models
(nm equals 20 or 36 in our experiments). From this ranking, it is easy to retrieve the full
preference matrix (nm ×nm), by applying the transitive relation: if object A is better than
object B and B is better than C, then we can deduce that A is better than C. These per-subject
preference matrices can then be summed into a single one (per video set). In this matrix P,
each element Pi, j represents the number of times the stimulus i was judged to have higher
quality than stimulus j (the matrices are available in Appendix B). As in [62, 77], we then
consider the number of votes received by each stimuli as its quality score, which may then
be divided by the number of human subjects ns for normalization among video sets:

si =
∑

nm
j=1 Pi, j

ns
(6.1)

We then obtained a subjective score for each distorted model with belong to [0,19], for the
single distortion type setting and [0,35] for the mixed distortion one. Note that the value
19 (resp. 35) occurs only for models which have been ranked first by every subjects. Note
that more sophisticated statistical methods exist for inferring scale values from a preference
matrix. We computed scores using Thurstone’s Law of Comparative Judgments, Case V
[112], which assumes that the observers’ choices can be thought of as sampled from a normal
distribution of underlying quality scores. Since the values obtained were very close to the
simple vote counts described below (more than 0.99 Pearson correlation), we decided to keep
the latter.

6.2.6 Analysis and discussion

Observer agreement

It is essential to analyze the agreements between the subjects before studying the results
from the experiment. Since each observer outputs a global ranking of the stimuli, the best
way to evaluate their agreement is to compute the Kendall’s coefficient of concordance W
[50] which assesses the agreement among raters. Table 6.3 gives details on the results. W
ranges from 1, meaning complete agreement, to 0, meaning no agreement, while the p-value
associated with W provides the likelihood of null hypothesis, which means no agreement
between all the subjects. Table 6.3 shows that the overall Kendall’s W coefficients are at least
as large as 0.69, implying a strong agreement among the subjects, confirmed by the very low
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p-values.

Rendering with shading Rendering without shading
Observer Number Kendall’s W p-value Observer Number Kendall’s W p-value

Squirrel 11 0.69 <0.0001 11 0.71 <0.0001
Hulk 11 0.77 <0.0001 13 0.70 <0.0001

Statue 11 0.83 <0.0001 15 0.76 <0.0001
Sport Car 11 0.74 <0.0001 11 0.76 <0.0001

Dwarf 11 0.72 <0.0001 12 0.77 <0.0001

Table 6.3: Agreement between observers (Kendall’s W between their ranks) for each
reference model and each rendering condition.

Observation

The visual impact of the distortions highly depends on the textured 3D model, as illustrated
in Figure 6.6. The geometric quantization, for instance, is less visible on 3D shapes with
fewer vertices (like the Squirrel). The reason is that the sampling density of the surface
directly influences the frequency of the visual distortions created by the quantization and
thus their perceptual impact (related to the contrast sensitivity function). The resolution and
the content of the texture also strongly influence the perception of artifacts.

Figure 6.6: Mean scores (averaged among the 4 strengths) for the 5 types of distortions and
the 5 models for the rendering with shading. Higher scores mean better visual quality.
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Effect of the rendering

In this section, we investigate the influence of the rendering on the visual impact of the
distortions. Figure 6.7 presents the quality scores, averaged over the models for the two
rendering conditions: with and without shading. As expected, when only the reflectance
of the surface is taken into account, the quality scores of the geometric distortions are
consistently better since the impact of the geometry on the rendering is basically limited to
silhouette. By conducting one-tailed paired t-tests, we found a significant increase of the
quality of geometric distortions (p-value=0.012) and a significant decrease of the quality of
texture distortions (p-value=0.001). These intuitive results have to be kept in mind, when
assessing the quality of textured 3D models. A calibration according to the rendering may be
necessary.

Figure 6.7: Mean scores (averaged among the 5 types of distortions and the 4 models) for
the two types of rendering: with shading (top-left light source, diffuse material), and without
shading (diffuse albedo only).

6.3 Toward an optimal metric for textured mesh quality
assessment

In this section, we propose an objective metric for textured mesh quality assessment as a
simple linear combination of mesh quality and texture quality. We use the subjective dataset
presented below to evaluate the performance of different mesh and texture metrics for this
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task. We also compare their performance to video metrics computed on the rendered videos.
In the next section, we also propose a new metric for geometry quality assessment.

6.3.1 A new metric for geometry quality assessment

By looking at the subjective scores obtained for geometric distortions (smoothing, quan-
tization and simplification), we observed that the ranks of the distortions with the highest
strengths from these three types show a pattern common to all models: the distorted model
ranked as the worst visual quality always comes from either the strongest quantization method
or from the strongest simplification. Distorted models from the strongest smoothing never
appear at the end of the ranks. For instance, among the 20 distorted Hulk models, the distor-
tion with the worst visual quality is the 7 bits quantization (subjective score: 0.91), while
the distortion of the worst smoothing has a fairly high subjective score (7.45) (see Figure
6.8). Quality scores from L3,L4 are actually significantly higher than Q3,Q4 (p-values =
0.011 and 0.0063 for shaded/non-shaded data) and significantly higher than Si3,Si4 (p-values
= 0.011 and 0.03). This subjective pattern is related to the perceptual mechanisms of the
human visual system which is more sensitive to high frequency variations on local areas (e.g.
distortions caused by simplification or quantization) rather than to more global low-frequency
variations (e.g. caused by smoothing).

Figure 6.8: From left to right: Hulk model with 7-bits quantization (subjective score: 0.91),
Original Hulk model and Hulk model with Laplacian smoothing of 4 iterations (subjective
score: 7.45).

Based on these observations as well as previous studies which emphasize the good
behavior of curvature for predicting visual distortions [56, 125, 115, 42], we propose a novel
local distortion measurement by computing the amount of variance of curvature in local
corresponding neighborhoods between two meshes (a distorted mesh Md and a reference
mesh Mr). We first establish a correspondence between Md and Mr (as in [56]), we then
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compute the mean curvature C on each vertex of Md and its corresponding curvature value
Ĉ on corresponding point of Mr. For each vertex v from Md , we then compute the standard
deviation δ h

v of the local curvature differences in a geodesic neighborhood of size h around v.
δ h

v is computed as follows:

δ
h
v =

√√√√1
k

k

∑
j=1

[
Ĉ j −C j

max(Ĉ j,C j)+a
−E(

Ĉ j −C j

max(Ĉ j,C j)+a
)]2 (6.2)

where k is the number of vertices of the neighborhood, a a constant to avoid instability
when denominators are close to zero, and E( Ĉ j−C j

max(Ĉ j,C j)+a
) the mean value of curvature

differences in the neighborhood. δ h
v is theoretically upper bounded by 2 but can be clamped

in [0,1]. As in [56], we make this computation for three different neighborhood sizes hi to
capture the perceptually meaningful scales, and improve the efficiency and robustness of
the metric. We took three scales hi ∈ {2ε,3ε,4ε}, where ε = 2.5% of the max length of the
bounding box of the model. Then multi-scale local distortion measure δM(v) is computed
as: δM(v) = 1

n ∑
n
i=1 δ

hi
v . n is the number of scales (3 in our study). Finally, we consider a

root mean square pooling of these local measurements to obtain our global SDCD (Standard
Deviation of Curvature Difference) value:

SDCD(Md,Mr) = (
1

|Md| ∑
v∈Md

δM(v)2)
1
2 . (6.3)

This metric captures local roughness variations, whereas more global changes (e.g. a global
shrink of the model) are not considered as perceptually significant. The performance of this
metric is evaluated in the following section.

6.3.2 Mesh and Image metric evaluation

Since most of distorted models from our dataset are associated to a single attack (either on
geometry or texture), their subjective scores may be used as ground truth to evaluate existing
metrics respectively for geometry quality assessment only and image quality assessment only
(applied on texture image) and consequently determine the most appropriate metrics (resp.
for geometry and texture image) for their further combination. For each of our reference
models, we split the dataset into two groups according to the distortion type: geometry ad
texture. We select several commonly used perceptual geometric and image metrics. For
geometry, we select the Root Mean Square Error (RMSE) computed on geometry, MSDM2
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[56], which is one of the best performing perceptually-motivated metrics, and our newly
proposed metric SDCD. For texture, we select the RMSE on image pixels, SSIM [127] and
MS-SSIM [129] (top performing metrics on natural images). Tables 6.4 and 6.5 detail the
Spearman and Pearson correlations between the objective metrics and the subjective scores
for geometry and texture quality assessment, respectively.

Squirrel Hulk Statue Sport Car Dwarf Average
rp rs rp rs rp rs rp rs rp rs rp rs

Geometry RMSE 0.72 0.90 0.37 0.61 0.07 0.00 0.65 0.28 0.02 0.28 0.37 0.41
MSDM2 [56] 0.78 0.76 0.88 0.85 0.15 0.15 0.53 0.52 0.86 0.90 0.64 0.64
SDCD (Our Metric) 0.60 0.55 0.84 0.80 0.64 0.64 0.40 0.41 0.89 0.86 0.67 0.65

Table 6.4: Performance comparison (Pearson rp and Spearman rp correlations) of several
geometric metrics on our subjective database (geometric distortions only). Rendering with
shading.

Squirrel Hulk Statue Sport Car Dwarf Average
rp rs rp rs rp rs rp rs rp rs rp rs

Image RMSE 0.73 0.86 0.21 0.28 0.39 0.50 0.93 1.00 0.65 0.73 0.58 0.67
SSIM [127] 0.27 0.17 0.60 0.77 0.70 0.69 0.90 0.93 0.73 0.88 0.64 0.69
MS-SSIM [129] 0.83 0.98 0.67 0.81 0.70 0.76 0.86 0.86 0.86 0.95 0.78 0.87

Table 6.5: Performance comparison (Pearson rp and Spearman rp correlations) of several
image metrics on our subjective database (texture distortions only). Rendering with shading.

Previous studies dedicated to quality assessment of 3D meshes [24] and natural images
[136] have shown that geometry and image RMSEs are not good predictors of the visual
quality. It is interesting to see that these results are confirmed for our database for which
they are outperformed by perceptual metrics. This result is interesting because, in our case,
texture and geometry involve complex masking effects. Indeed, texture artifacts may be
masked by the geometric mapping and vice versa.
Table 6.4 shows that, on certain models, MSDM2 performs better than SDCD. However, for
the Statue, SDCD demonstrates a significant improvement. Regarding the performance, we
will consider both MSDM2 and SDCD for our further combined quality metric for textured
mesh. For texture metric (see Table 6.5), MS-SSIM provides the best overall performance
and will thus be chosen as texture metric for our further optimal combination.

6.3.3 Toward an optimal combination

We propose to assess the visual quality of a textured mesh as a simple linear combination of
its geometry quality and its texture quality, respectively assessed by a 3D mesh metric QG
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(MSDM2 or SDCD) and an image metric QT (MS-SSIM). We will see in the results, that
this simple scheme is able to provide very good results. Our combined metric is thus defined
as follows:

CM = αQG +(1−α)QT (6.4)

where α is an optimal weight determined through a greedy optimization in a 5-folds cross-
validation way. For each model (resp. Squirrel, Statue, Sport Car, Hulk and Dwarf) we
compute the optimal weights as the one which maximize the Spearman correlation over
the 4 other models. We propose two versions of our combined metric: CM1 (the optimal
combination of MSDM2 and MS-SSIM) and CM2 (the optimal combination of SDCD and
MS-SSIM). We compare our metrics CM1 and CM2 to several state of the art metrics:

• FQM [113, 114], a metric especially designed for textured mesh quality assessment. It
is defined as a weighted combination of two simple error measures: the mean squared
error over mesh vertices and the mean squared error over texture pixels. Optimal
weights are computed using cross-validation, as for our metric.

• Several video quality metrics applied to the rendered videos: The DCT-based Video
Quality Metric from F. Xiao [30], PSNR applied on all frames and averaged, and
MS-SSIM applied on all frames and averaged. These metrics have been computed
using the MSU Video Quality Measurement Tool 1.

The performance of these metrics are evaluated using the Spearman and Pearson correlations
between the objective metric’s values and the subjective scores, as well as the root-mean-
squared error (RMS). The Pearson correlation and the RMS are computed after a logistic
regression which provides a non-linear mapping between the objective and subjective scores.
Results are shown in Tables 6.6 and 6.7, respectively for the shaded and non-shaded rendering.
Scatter plots of subjective scores versus metric’s values are presented in Figure 6.10.

As illustrated in the tables, our metrics CM1 and CM2 outperform the other for most of
the models. Given the fact that, for a given model, the weighting factor α is learnt using the
other ones, this good performance demonstrates an excellent inter-model robustness. It is
interesting to see that the performance of our metrics is generally better for the non-shaded
rendering than for the shaded rendering. The reason is that shading involves complex masking
interactions between texture and geometry that are not considered in our metrics since they
evaluate geometry and texture separately. These interactions are extremely limited in the
non-shaded rendering, which accounts for the improved results of our metrics.

1http://compression.ru/video/quality_measure/video_measurement_tool_en.html

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés

http://compression.ru/video/quality_measure/video_measurement_tool_en.html


98 Subjective and objective visual quality assessment of textured 3D meshes

Squirrel Hulk Statue Sport Car Dwarf
rp rs RMS rp rs RMS rp rs RMS rp rs RMS rp rs RMS

Video-DCT 0.12 0.09 4.76 0.18 0.36 4.99 0.26 0.30 5.04 0.62 0.67 3.97 0.24 0.25 4.75
Video-PSNR 0.22 0.26 4.68 0.33 0.36 4.79 0.21 0.26 5.12 0.67 0.70 3.68 0.31 0.32 4.63
Video-MSSSIM 0.24 0.39 4.64 0.17 0.41 5.00 0.25 0.42 5.05 0.67 0.72 3.64 0.38 0.40 4.50
FQM 0.80 0.85 2.83 0.41 0.56 4.55 0.26 0.18 5.07 0.67 0.47 3.86 0.38 0.41 4.53
CM1 (Our Metric) 0.82 0.82 2.24 0.81 0.81 2.92 0.36 0.30 4.93 0.70 0.60 3.58 0.56 0.70 3.95
CM2 (Our Metric) 0.78 0.72 2.80 0.73 0.72 3.48 0.62 0.68 3.94 0.68 0.51 3.72 0.58 0.70 3.87

Table 6.6: Performance comparison (Pearson rp and Spearman rp correlations, RMSE of
the residuals) of several textured mesh quality metrics on our subjective database. Rendering
with shading.

Squirrel Hulk Statue Sport Car Dwarf
rp rs RMS rp rs RMS rp rs RMS rp rs RMS rp rs RMS

Video-DCT -0.21 -0.26 4.76 0.22 0.25 4.72 0.34 0.24 4.74 0.58 0.42 4.23 0.24 0.21 4.89
Video-PSNR -0.13 -0.04 4.82 0.35 0.39 4.50 0.13 0.22 4.97 0.51 0.56 4.32 0.31 0.29 4.78
Video-MSSSIM -0.05 0.14 4.86 0.28 0.61 4.64 0.34 0.37 4.72 0.67 0.69 3.77 0.65 0.63 3.80
FQM 0.69 0.71 3.47 0.46 0.62 4.17 0.48 0.31 4.44 0.73 0.82 3.34 0.56 0.69 4.15
CM1 (Our Metric) 0.80 0.88 2.38 0.69 0.80 3.29 0.47 0.41 4.53 0.77 0.90 2.86 0.73 0.81 3.23
CM2 (Our Metric) 0.79 0.81 2.54 0.72 0.82 2.93 0.63 0.69 3.81 0.74 0.88 3.12 0.76 0.88 3.04

Table 6.7: Performance comparison (Pearson rp and Spearman rp correlations, RMSE of
the residuals) of several textured mesh quality metrics on our subjective database. Rendering
without shading.

All combined metrics (CM1, CM2 and FQM) have lower performances for the Statue.
The reason is visible on Figure 6.10. Indeed, in the corresponding plots, we observe that the
visual impact of simplification distortions (green dots) is underestimated by these metrics
(which provide good quality scores for simplified models). The reason is that the poor
subjective quality of these distorted versions is due to damage on the texture seams, which
considerably alters the visual appearance but is totally unpredictable by combined metrics
that do not take into account the texture mapping.he same underestimation of the simplifica-
tion impact is observed for the Dwarf model, which also exhibits complex texture seams. For
this latter model, the geometric metrics also underestimate the impact of quantization which
is particularly harmful for such a high resolution model.

One last observation is the superiority of video-based metrics for the Sport Car model
(shaded rendering). The reason is as follows: this model exhibits several interior parts
(e.g. seats, radio) whose texture maps are severely damaged by JPEG and Sub-sampling
distortions. However, these interior parts are almost invisible due to the position of the
camera in the videos. Hence, the subjective scores are rather good for these distorted models
whereas the image metrics predict very low quality values. On the contrary, video-based
metrics only take into account the visible parts and thus provide correct results (in particular
Video-MSSSIM). To verify this effect, we adopted a slightly different viewpoint for this
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particular model, in the non-shaded rendering, which improves the visibility of these interior
parts. As expected, combined metrics results are much better (see table 6.7).

It is interesting to see that the performance of our metrics is overall better for the
reflectance-only rendering than for the shaded rendering. The reason is that the shading
involves complex masking interactions between texture and geometry that are not considered
in our metrics since they evaluate geometry and texture separately. These interactions are
very limited in the reflectance-only rendering, which explains the improved results of our
metrics.

Table 6.8 details the α values for each model (computed using our 5-folds cross validation)
for both rendering settings. As illustrated by the table, α are consistently smaller for the
rendering without shading. As explained in section 6.2.6, when only the reflectance of the
surface is taken into account, the visual impact of the geometric distortions is highly reduced.
Hence, the parameter α may be adjusted/calibrated according to the lighting, material and
other rendering parameters since they will emphasize either texture or geometry distortions.
Still, it is interesting to notice that if we learn the α values on the subjective scores coming
from the shaded rendering and use them to predict subjective score from the reflectance only
dataset, the obtained correlation remain correct (less than 10% decrease of performance).

Squirrel Hulk Statue Sport Car Dwarf Average
αCM1 αCM2 αCM1 αCM2 αCM1 αCM2 αCM1 αCM2 αCM1 αCM2 αCM1 αCM2

With shading 0.086 0.117 0.108 0.184 0.103 0.133 0.086 0.132 0.061 0.111 0.089 0.135
Without shading 0.061 0.109 0.026 0.108 0.061 0.118 0.061 0.109 0.061 0.109 0.054 0.111

Table 6.8: α values for each model and each rendering setting.

6.3.4 Validation on compound distortions

In this section, we validate our objective metrics using a new set of compound geometry-
texture distortions. We selected the Dwarf model, and we manually selected 36 distorted
versions among the 12× 8 = 96 possible combinations of the 12 geometry and 8 texture
distortions detailed in Section 6.2.1, resulting in a new validation set of 36 models. Details
about these mixed distortions are available in the supplementary material ; some examples
are shown in Figure 6.4, bottom right. As before, we created two sets of videos (of 10
seconds duration) with and without shading, respectively. We performed a paired-comparison
experiment to obtain the subjective scores. For this mixed-distortion setting, the hypothesis
QDi > QD j ,∀ j > i from our sorting algorithm no longer holds. Hence, we implemented a
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more classical self-balancing binary tree, as in [77]. The average number of comparisons for
sorting the 36 distorted models was 140 (instead of 630 for the full comparison). 20 observers
took part to this new experiment, 19 rated 1 set and 1 rated both sets. We thus obtained 10
judgments for the shaded rendering and 11 for the non-shaded one. The average time to
finish the experiment for one video set of 36 videos was 21 minutes. As for the previous
experiment, the agreement is rather high (resp. 0.75 and 0.71 for shaded and non-shaded
settings). Raw scores are detailed on the supplementary material.
To validate ou metrics, we computed their optimal weights based on the models from our
previous experiment (we excluded the Dwarf). Results are detailed in Table 6.9 and Figure 6.9.
Even for this difficult scenario (learning on single-type distortions and testing on compound
distortions), our metrics offer excellent performance: 0.85 and 0.87 Spearman correlations
for CM2, for both rendering settings, hence demonstrating once again an excellent robustness.

With shading Without shading
rp rs RMS rp rs RMS

Video-DCT 0.32 0.50 7.81 0.35 0.32 8.23
Video-PSNR 0.33 0.58 7.32 0.40 0.33 8.05
Video-MSSSIM 0.67 0.66 6.79 0.68 0.67 6.42
FQM 0.64 0.66 6.90 0.76 0.77 5.73
CM1 (Our Metric) 0.74 0.77 6.01 0.85 0.86 4.47
CM2 (Our Metric) 0.80 0.85 5.33 0.86 0.87 4.44

Table 6.9: Performance comparison on the compound distortion dataset.

Figure 6.9: Scatter plots of subjective scores versus objective metric values for the compound
distortion dataset. Each point represents one distorted model. Fitted logistic curves are
represented in black.
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6.4 Conclusion and Perspective

In this work, we have designed and constructed a new subjectively-rated database of textured
3D meshes. Our subjective study is based on a paired comparison protocol, and involved
more than 100 subjects. The database contains 136 distorted models (subject to geometry and
texture distortions), which were evaluated within 2 rendering settings. The subjective results
allowed us to draw interesting conclusions regarding the influence of the shape and texture
content as well as the rendering on the perceptual impact of distortions. We then proposed
new objective metrics for visual quality assessment of textured meshes, as optimized linear
combinations of mesh quality and texture quality. We used our subjective dataset to evaluate
the performance of these metrics against state-of-the-art ones and to explain failure of metrics
applied on the rendered images/videos. Such perceptually-validated metrics are of great
interest for many applications such as 3D model simplification or compression, texture
simplification and so on. We also proposed a new measure for geometry quality assessment.
Note that our dataset, subjective scores and metric results will be made publicly available
on-line.
While our proposed metrics showed that they outperformed their counterparts for the task of
textured mesh quality assessment, there is still room for improvement. For instance, when
evaluating geometry and texture quality, we need to integrate some visibility information.
Indeed, the interior parts of a 3D model do not contribute to its rendered visual appearance;
as another example, regions in very convex areas will only be visible in a few viewpoints
and thus will have little impact on subjective opinion. Another issue is the variation in texel
size within a texture; indeed, different regions of a texture map are not necessarily mapped
with the same size in the screen, and this effect should be taken into account. The angular
resolution (in pixels per degree of visual angle) of the rendered scene is also of importance
and may be integrated as a scale factor in the metric. Finally, a major issue is to integrate
texture coordinate distortions which are a common side effect of geometric changes. As we
observed, even slight movements of texture seams may seriously harm visual appearance.
Finally, we could conduct a comprehensive evaluation to determine, among the dozens of
existing image metrics, the most adapted for texture evaluation.
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Figure 6.10: Scatter plots of subjective scores versus objective metric’s values. Each point
represents one distorted model. Fitted logistic curves are represented in black.
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Chapter 7

Conclusion and Perspective

7.1 Summary of the contributions

In this manuscript, we have presented our research study on objective and subjective assess-
ments of 3D models. Our main objectives were firstly to evaluate the performance of several
visual quality metrics on predicting the local visibility of different distortions and provid-
ing perceptual quality index for textured 3D models with various artifacts and rendering
scenarios, and then to propose new visual quality metrics for the texture mapped meshes.
These objectives were accomplished through our designed subjective quality assessments
on evaluating the local visibility of artifacts, and a variety of distorted textured meshes with
different rendering protocols respectively. The two new quality metrics for textured meshes
were determined through the optimal combinations of geometry and texture quality metrics.
The experimental results have demonstrated the effectiveness of the proposed methods.
The contributions of this manuscript can be summarized as follows:

• Designing a novel subjective experiment to collect information about local visi-
bility of complex artifacts
We utilized the obtained distortion probability maps to illustrate several functionalities
of the human visual system, and to quantitatively evaluate a large set of 3D mesh
attributes as well as recent mesh visual quality metrics on predicting perceived local dis-
tortions. The experimental results showed that curvature-based attributes (particularly
curvedness) demonstrate a much better performance than others (e.g. dihedral angles,
normals, Laplacian, saliency), while Hausdorff geometric distance is a poor predictor
of the perceived local distortion. Meanwhile, the recent perceptual quality metrics,
originally designed for global quality estimation, also provides excellent results for the
task of predicting locally perceived distortion
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• A public dataset of distortion probability maps of complex artifacts
This dataset contributes to a further understanding of the HVS mechanisms on perceiv-
ing geometric artifacts, and assists researchers to propose more efficient and effective
visual quality metrics in future. In particular this dataset will be very useful to evaluate
and/or to train future metrics.

• A new subjective rating database of textured 3D meshes
Based on a paired comparison protocol, this subjective study enables us to draw
remarkable conclusions regarding the perceptual impacts of the interactions between
distortions and rendering protocols.

• New objective quality metrics of textured 3D meshes based on optimal combina-
tion of mesh quality and texture quality
We used our subjective dataset to evaluate the performance of this metric against
state-of-the-art ones. Such metric can play an efficient role in many applications, such
as 3D model simplification or compression, texture simplification and so on. We also
proposed a new metric for geometry quality assessment.

In a nutshell, an important characteristic of this thesis work is that we have made several cre-
ative efforts on exploiting the mechanisms of visual perception in complex quality evaluation
tasks, and proposed some notable mathematical assessments to evaluate the visual quality of
3D meshes. Indeed, we believe that the future research on visual quality assessment of 3D
objects can be improved by emending machine-learning mechanism, and integrating human
vision processes (such like a model of contrast sensitivity function).

7.2 Perspective

Several research perspectives appear at the end of this thesis.

• Improvement of the mesh visual quality metrics based on Machine-learning mech-
anism
Machine learning provides a good opportunity to construct the perceptual quality
metrics based on our new ground-truths (i.e. distortion probability maps). Such metrics
have potential applications of 3D mesh artifact localization.

• Improvement of the visual quality metrics for textured 3D objects by integrating
visibility information
Considering the effects of less visible regions (e.g., interior or convex areas of a model,
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etc.), texture mapping information and the complex masking interactions between
geometry and texture, this visibility information could improve the efficiency of the
future quality metrics for texture mapped meshes.

More challenges are still waiting in the fields of visual quality assessment for 3D graphical
data. Particularly, many progresses still remain to be achieved in understanding the complex
interactions between geometry, material and lighting information, and the hidden connections
between these interactions and functionalities of HVS. All these factors should be considered
to devise efficient quality metrics in future. In all, we believe that the study on this research
area has a very promising future.

7.3 Relevant Publications

International Journal

• Jinjiang Guo, Vincent Vidal, Irene Cheng, Anup Basu, Atilla Baskurt, and Guillaume
Lavoue, Subjective and Objective Visual Quality Assessment of Textured 3D Meshes,
ACM Transactions on Applied Perception, Association for Computing Machinery,
2016, 14 (2), pp.11.

International Conference

• Jinjiang Guo, Vincent Vidal, Atilla Baskurt, and Guillaume Lavoue. Evaluating
the local visibility of geometric artifacts. In Proceedings of the ACM SIGGRAPH
Symposium on Applied Perception, pages 91-98. ACM, 2015.
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Perceptual metrics for static and dynamic triangle meshes. In Computer Graphics Forum,
volume 32, pages 101–125. Wiley Online Library.

[25] Daly, S. (1993). Visible differences predictor: an algorithm for the assessment of image
fidelity. In Digital Images and Human Vision, volume 1666, pages 179–206. International
Society for Optics and Photonics.

[26] Damera-Venkata, N., Kite, T. D., Geisler, W. S., Evans, B. L., and Bovik, A. C.
(2000). Image quality assessment based on a degradation model. Image Processing, IEEE
Transactions on, 9(4):636–650.

[27] E, C. O. M. L. S., Chisholm, S., and Q, R. (2008). Final Report From the Video Quality
Experts Group on the Validation of Objective Models of Video Quality Assessment.
Group, 28(February 2005):15–25.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



Bibliography 111

[28] Eckert, M. P. and Bradley, A. P. (1998). Perceptual quality metrics applied to still image
compression. Signal Processing, 70(3):177–200.

[29] Eggers, J. J., Bäuml, R., Tzschoppe, R., and Girod, B. (2003). Scalar Costa scheme for
information embedding. IEEE Transactions on Signal Processing, 51(4):1003–1019.

[30] F. Xiao (2000). DCT-based video quality evaluation. Technical report, Stanford
University.

[31] Faisman, A. and Langer, M. S. (2013). How does lighting direction affect shape
perception of glossy and matte surfaces? In Proceedings of the ACM Symposium on
Applied Perception - SAP ’13, page 9. ACM.

[32] Farooque, M. A. and Rohankar, J. S. (2013). Survey on Various Noises and Techniques
for Denoising the Color Image. International Journal of Application or Innovation in
Engineering and Management, 2(11):217–221.

[33] Fattal, R., Lischinski, D., and Werman, M. (2002). Gradient domain high dynamic
range compression. In ACM Transactions on Graphics, volume 21, pages 249–256. ACM.

[34] Ferwerda, J. A., Pattanaik, S., Shirley, P., and Greenberg, D. P. (1997). A Model of
Visual Masking for Computer Graphics. In Siggraph, pages 143–152. ACM Press/Addison-
Wesley Publishing Co.

[35] Fleming, R. (2014). Visual perception of materials and their properties. Vision research,
94(24):62–75.

[36] Gall, D. L. (1991). MPEG: A Video Compression Standard for Multimedia Applications.
Association for Computing Machinery.Communications of the ACM, 34(4):46.

[37] Garland, M. and Heckbert, P. S. (1997). Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 209–216. ACM Press/Addison-Wesley Publishing Co.

[38] Gelasca, E. D., Ebrahimi, T., Corsini, M., and Barni, M. (2005). Objective evaluation
of the perceptual quality of 3D watermarking. In Proceedings - International Conference
on Image Processing, ICIP, volume 1, pages 241–244. IEEE.

[39] Girod, B. (1993). What’s wrong with mean-squared error? In Digital images and
human vision, pages 207–220. MIT press.

[40] Goodman, J. W. (1976). Some fundamental properties of speckle. J. Opt. Soc. Am.,
66(11):1145–1150.

[41] Guennebaud, G. and Gross, M. (2007). Algebraic point set surfaces. In ACM Transac-
tions on Graphics, volume 26, page 23. ACM.

[42] Guo, J., Vidal, V., Baskurt, A., and Lavou, G. (2015). Evaluating the local visibility of
geometric artifacts. In Symposium in Applied Perception.

[43] Guskov, I. and Wood, Z. (2001). Topological noise removal. Proc. Graphics Interface,
pages 19–26.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



112 Bibliography

[44] Hadhoud, M. M., Dessouky, M. I., and El-Samie, F. E. A. (2003). Adaptive image
interpolation based on local activity levels. In Proceedings of the Twentieth National
Radio Science Conference (NRSC’03), pages C4– 1–8. IEEE.
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Appendix A

Supplementary materials for Chapter 5

In this supplement, we report additional images, tables and experimental results.

A.1 Additional details on the ground-truth data

The 11 subjective distortion maps:

Figure A.1: Original models, distorted models and observer maps (color-coded probabilities
of artifact detection) for each stimulus from our dataset.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI099/these.pdf 
© [J. Guo], [2016], INSA Lyon, tous droits réservés



120 Supplementary materials for Chapter 5

Figure A.2: Observer maps of the 6 first stimuli from the dataset of Cadik et al., SIGGRAPH
ASIA 2012.

The Figure A.2 illustrates the subjective distortion maps from the 2D image experiment
from Cadik et al., SIGGRAPH ASIA 2012. We can observe that the amplitudes and distri-
butions of the detection probabilities are similar to our experiments. For instance, the most
distorted areas are usually marked by 50 to 80% of the observers. This illustrates the fact
that the agreements of observers are similar in both experiments (also shown by the Kendall
u coefficients).

The agreement of the observers is also illustrated in the Figure A.3 which presents the
painting results of the 20 observers for stimulus #8.

Figure A.3: Example of raw binary maps from 20 observers for stimulus #8 (Kripp. α =
0.162).

A.2 Additional results

Complete AUC (area under the ROC curve) results for all the tested features and for all
filters. Mean values are also presented, averaged over the 11 objects and averaged over 9
objects (excluding #2 and #11). Features are ranked according to their “mean 9 objects”
performance:
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Table A.1: AUC values for all the tested features and for all filters.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Mean 11 objects Mean 9 objects

MSDM2 0,97 0,97 0,85 0,84 0,90 0,88 0,81 0,77 0,79 0,71 0,54 0,82 0,84
Curvedness(2,S) 0,95 0,97 0,86 0,89 0,91 0,90 0,85 0,71 0,67 0,70 0,54 0,82 0,83
MaxCurv(2,S) 0,95 0,97 0,85 0,90 0,91 0,89 0,86 0,71 0,66 0,70 0,54 0,81 0,83
Curvedness(2,N) 0,94 0,96 0,87 0,89 0,85 0,82 0,82 0,65 0,78 0,73 0,58 0,81 0,82
MaxCurv(2,N) 0,94 0,96 0,86 0,89 0,85 0,82 0,82 0,65 0,77 0,73 0,57 0,81 0,81
Curvedness(1,N) 0,94 0,83 0,84 0,84 0,88 0,84 0,80 0,76 0,73 0,68 0,55 0,79 0,81
MeanCurv(2,S) 0,93 0,96 0,83 0,89 0,90 0,87 0,86 0,67 0,66 0,68 0,51 0,80 0,81
MaxCurv(1,N) 0,93 0,65 0,83 0,84 0,87 0,84 0,80 0,75 0,74 0,68 0,55 0,77 0,81
Curvedness(1,S) 0,90 0,68 0,80 0,85 0,90 0,88 0,82 0,80 0,61 0,66 0,55 0,77 0,80
MaxCurv(1,S) 0,88 0,48 0,79 0,85 0,90 0,88 0,82 0,79 0,62 0,66 0,57 0,75 0,80
FMPD(2,S) 0,96 0,95 0,87 0,83 0,82 0,79 0,78 0,70 0,82 0,61 0,56 0,79 0,80
FMPD(2,N) 0,96 0,95 0,87 0,83 0,82 0,79 0,78 0,70 0,82 0,61 0,56 0,79 0,80
MeanCurv(1,N) 0,93 0,76 0,80 0,83 0,87 0,83 0,79 0,74 0,70 0,68 0,56 0,77 0,80
MeanCurv(2,N) 0,92 0,96 0,85 0,87 0,83 0,79 0,82 0,61 0,77 0,70 0,54 0,79 0,80
MeanCurv(1,S) 0,87 0,54 0,77 0,84 0,89 0,87 0,82 0,78 0,59 0,66 0,52 0,74 0,79
Laplacegauss(2,S) 0,88 0,66 0,71 0,86 0,92 0,91 0,81 0,77 0,72 0,50 0,56 0,75 0,79
Laplacegauss(2,N) 0,88 0,66 0,71 0,86 0,92 0,91 0,81 0,77 0,72 0,50 0,56 0,75 0,79
FMPD(1,S) 0,90 0,78 0,81 0,79 0,83 0,79 0,76 0,72 0,77 0,62 0,60 0,76 0,78
FMPD(1,N) 0,90 0,78 0,81 0,79 0,83 0,79 0,76 0,72 0,77 0,62 0,60 0,76 0,78
ShapeIndex(1,S) 0,86 0,67 0,69 0,81 0,86 0,82 0,78 0,72 0,71 0,63 0,53 0,73 0,76
Normal(1,S) 0,90 0,72 0,59 0,85 0,88 0,85 0,84 0,77 0,61 0,58 0,57 0,74 0,76
Normal(1,N) 0,90 0,72 0,59 0,85 0,88 0,85 0,84 0,77 0,61 0,58 0,57 0,74 0,76
Laplacegauss(1,S) 0,76 0,89 0,63 0,85 0,90 0,89 0,83 0,78 0,64 0,54 0,58 0,75 0,76
Laplacegauss(1,N) 0,76 0,89 0,63 0,85 0,90 0,89 0,83 0,78 0,64 0,54 0,58 0,75 0,76
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Table A.1: (continued)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Mean 11 objects Mean 9 objects

ShapeIndex(1,N) 0,87 0,69 0,69 0,80 0,85 0,82 0,77 0,72 0,69 0,60 0,52 0,73 0,76
Curvedness(0,N) 0,83 0,78 0,72 0,80 0,85 0,83 0,78 0,75 0,59 0,65 0,56 0,74 0,75
GausCurv(1,N) 0,86 0,51 0,68 0,81 0,87 0,84 0,79 0,76 0,55 0,61 0,54 0,71 0,75
MeanCurv(0,N) 0,83 0,77 0,71 0,79 0,85 0,83 0,78 0,75 0,59 0,63 0,55 0,73 0,75
Position(2,S) 0,90 0,83 0,68 0,82 0,88 0,86 0,77 0,78 0,56 0,50 0,53 0,74 0,75
Position(2,N) 0,90 0,83 0,68 0,82 0,88 0,86 0,77 0,78 0,56 0,50 0,53 0,74 0,75
MaxCurv(0,N) 0,81 0,76 0,71 0,80 0,85 0,83 0,78 0,75 0,59 0,64 0,54 0,73 0,75
Position(1,S) 0,84 0,83 0,66 0,83 0,87 0,86 0,81 0,79 0,59 0,50 0,53 0,74 0,75
Position(1,N) 0,84 0,83 0,66 0,83 0,87 0,86 0,81 0,79 0,59 0,50 0,53 0,74 0,75
Normal(2,S) 0,91 0,93 0,52 0,87 0,86 0,84 0,87 0,72 0,61 0,56 0,60 0,75 0,75
Normal(2,N) 0,91 0,93 0,52 0,87 0,86 0,84 0,87 0,72 0,61 0,56 0,60 0,75 0,75
ShapeIndex(0,S) 0,81 0,61 0,69 0,79 0,85 0,82 0,78 0,75 0,63 0,62 0,52 0,71 0,75
Normal(0,S) 0,84 0,49 0,61 0,83 0,87 0,85 0,82 0,77 0,58 0,57 0,59 0,71 0,75
Normal(0,N) 0,84 0,49 0,61 0,83 0,87 0,85 0,82 0,77 0,58 0,57 0,59 0,71 0,75
MiniCurv(1,S) 0,81 0,67 0,60 0,83 0,87 0,84 0,80 0,75 0,58 0,62 0,54 0,72 0,74
Laplacian(1,S) 0,90 0,52 0,53 0,82 0,87 0,84 0,78 0,76 0,54 0,67 0,54 0,71 0,74
Laplacian(1,N) 0,90 0,52 0,53 0,82 0,87 0,84 0,78 0,76 0,54 0,67 0,54 0,71 0,74
MiniCurv(0,N) 0,82 0,59 0,67 0,79 0,85 0,83 0,78 0,76 0,54 0,59 0,53 0,71 0,74
GausCurv(2,N) 0,79 0,89 0,73 0,84 0,88 0,84 0,80 0,63 0,51 0,62 0,54 0,73 0,74
Dihedral(0,S) 0,80 0,45 0,68 0,80 0,86 0,84 0,79 0,76 0,52 0,57 0,57 0,70 0,74
Dihedral(0,N) 0,80 0,45 0,68 0,80 0,86 0,84 0,79 0,76 0,52 0,57 0,57 0,70 0,74
MeanCurv(0,S) 0,76 0,58 0,63 0,81 0,86 0,84 0,79 0,76 0,54 0,63 0,54 0,70 0,74
GausCurv(2,S) 0,73 0,91 0,68 0,84 0,90 0,86 0,81 0,70 0,50 0,60 0,57 0,74 0,74
Dihedral(1,S) 0,89 0,50 0,52 0,82 0,86 0,83 0,79 0,74 0,54 0,61 0,55 0,70 0,74
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Table A.1: (continued)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Mean 11 objects Mean 9 objects

Dihedral(1,N) 0,89 0,50 0,52 0,82 0,86 0,83 0,79 0,74 0,54 0,61 0,55 0,70 0,74
MiniCurv(1,N) 0,88 0,68 0,65 0,79 0,85 0,81 0,77 0,75 0,52 0,57 0,53 0,71 0,73
ShapeIndex(0,N) 0,77 0,63 0,65 0,79 0,84 0,82 0,77 0,75 0,62 0,59 0,51 0,70 0,73
Curvedness(0,S) 0,73 0,53 0,63 0,81 0,86 0,84 0,79 0,76 0,54 0,62 0,56 0,70 0,73
Laplacian(0,S) 0,79 0,65 0,60 0,80 0,86 0,85 0,77 0,77 0,50 0,65 0,54 0,71 0,73
Laplacian(0,N) 0,79 0,65 0,60 0,80 0,86 0,85 0,77 0,77 0,50 0,65 0,54 0,71 0,73
MiniCurv(0,S) 0,77 0,52 0,62 0,81 0,86 0,84 0,79 0,77 0,54 0,60 0,53 0,69 0,73
MaxCurv(0,S) 0,72 0,49 0,63 0,81 0,86 0,84 0,79 0,76 0,55 0,61 0,57 0,69 0,73
GausCurv(1,S) 0,66 0,76 0,58 0,83 0,89 0,87 0,81 0,79 0,52 0,56 0,56 0,71 0,73
FMPD(0,S) 0,75 0,62 0,56 0,80 0,85 0,82 0,79 0,74 0,63 0,60 0,60 0,70 0,73
Laplacian(2,S) 0,87 0,59 0,52 0,81 0,83 0,79 0,76 0,70 0,53 0,69 0,63 0,70 0,72
Laplacian(2,N) 0,87 0,59 0,52 0,81 0,83 0,79 0,76 0,70 0,53 0,69 0,63 0,70 0,72
GausCurv(0,N) 0,73 0,60 0,55 0,81 0,87 0,85 0,80 0,77 0,52 0,60 0,54 0,69 0,72
MiniCurv(2,S) 0,73 0,92 0,68 0,82 0,85 0,81 0,79 0,65 0,51 0,63 0,51 0,72 0,72
FMPD(0,N) 0,73 0,55 0,60 0,77 0,82 0,77 0,76 0,71 0,68 0,63 0,66 0,70 0,72
ShapeIndex(2,S) 0,68 0,88 0,74 0,78 0,83 0,79 0,75 0,64 0,60 0,62 0,52 0,71 0,71
GausCurv(0,S) 0,65 0,63 0,57 0,81 0,87 0,85 0,78 0,77 0,57 0,55 0,58 0,69 0,71
Saliency(1,N) 0,84 0,66 0,64 0,77 0,81 0,77 0,74 0,65 0,54 0,63 0,53 0,69 0,71
Laplacegaus(0,N) 0,65 0,73 0,55 0,82 0,88 0,86 0,81 0,77 0,51 0,56 0,61 0,70 0,71
MiniCurv(2,N) 0,79 0,89 0,71 0,79 0,81 0,76 0,75 0,63 0,56 0,58 0,52 0,71 0,71
ShapeIndex(2,N) 0,68 0,85 0,73 0,78 0,83 0,78 0,74 0,64 0,57 0,60 0,51 0,70 0,71
Dihedral(2,S) 0,85 0,59 0,50 0,80 0,76 0,77 0,76 0,65 0,58 0,65 0,57 0,68 0,70
Dihedral(2,N) 0,85 0,59 0,50 0,80 0,76 0,77 0,76 0,65 0,58 0,65 0,57 0,68 0,70
Laplacegaus(0,S) 0,56 0,75 0,58 0,82 0,84 0,82 0,76 0,77 0,58 0,56 0,66 0,70 0,70
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Table A.1: (continued)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 Mean 11 objects Mean 9 objects

Position(0,S) 0,76 0,83 0,60 0,79 0,83 0,80 0,76 0,73 0,50 0,50 0,56 0,70 0,70
Position(0,N) 0,76 0,83 0,60 0,79 0,83 0,80 0,76 0,73 0,50 0,50 0,56 0,70 0,70
Saliency(1,S) 0,72 0,45 0,53 0,79 0,83 0,79 0,76 0,65 0,56 0,60 0,54 0,66 0,69
Saliency(2,N) 0,85 0,91 0,63 0,75 0,71 0,68 0,68 0,67 0,54 0,61 0,50 0,69 0,68
Saliency(2,S) 0,83 0,90 0,55 0,74 0,71 0,68 0,69 0,62 0,53 0,62 0,57 0,68 0,66
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Mean and global AUC values when considering the 11 objects (instead of 9, as presented
in Chapter 5):

Figure A.4: Left: Mean AUC values for all the tested features. Error bars denote standard
deviations. Right: AUC values when computing ROC curves on the whole dataset.

A supplementary illustration of subjective map and attributes:

Figure A.5: Reference and distorted models from our dataset (objects #7), observer data
and distortion maps from different attributes and metrics (colors are mapped in the min-max
range).
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Supplementary materials for Chapter 6

B.1 Wireframes and texture seams of our 3D models

Figure B.1: Wireframes and texture seams (in green)
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B.2 Distortions on the Dward model

ID Texture Distortion Geometric Distortion
D1 JPEG 6% quality Smoothing 25 iterations
D2 JPEG 6% quality Smoothing 50 iterations
D3 JPEG 6% quality Quantization 10 bits
D4 JPEG 6% quality Quantization 8 bits
D5 JPEG 6% quality Simplification 92% removed
D6 JPEG 6% quality Simplification 98.7% removed
D7 JPEG 8% quality Smoothing 25 iterations
D8 JPEG 8% quality Smoothing 50 iterations
D9 JPEG 8% quality Quantization 10 bits
D10 JPEG 8% quality Quantization 8 bits
D11 JPEG 8% quality Simplification 92% removed
D12 JPEG 8% quality Simplification 98.7% removed
D13 JPEG 10% quality Smoothing 25 iterations
D14 JPEG 10% quality Smoothing 50 iterations
D15 JPEG 10% quality Quantization 10 bits
D16 JPEG 10% quality Quantization 8 bits
D17 JPEG 10% quality Simplification 92% removed
D18 JPEG 10% quality Simplification 98.7% removed
D19 Sub-sampling 3% sampled Smoothing 25 iterations
D20 Sub-sampling 3% sampled Smoothing 50 iterations
D21 Sub-sampling 3% sampled Quantization 10 bits
D22 Sub-sampling 3% sampled Quantization 8 bits
D23 Sub-sampling 3% sampled Simplification 92% removed
D24 Sub-sampling 3% sampled Simplification 98.7% removed
D25 Sub-sampling 5% sampled Smoothing 25 iterations
D26 Sub-sampling 5% sampled Smoothing 50 iterations
D27 Sub-sampling 5% sampled Quantization 10 bits
D28 Sub-sampling 5% sampled Quantization 8 bits
D29 Sub-sampling 5% sampled Simplification 92% removed
D30 Sub-sampling 5% sampled Simplification 98.7% removed
D31 Sub-sampling 8% sampled Smoothing 25 iterations
D32 Sub-sampling 8% sampled Smoothing 50 iterations
D33 Sub-sampling 8% sampled Quantization 10 bits
D34 Sub-sampling 8% sampled Quantization 8 bits
D35 Sub-sampling 8% sampled Simplification 92% removed
D36 Sub-sampling 8% sampled Simplification 98.7% removed

Table B.1: Details about the distortions applied on the Dwarf model.
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B.3 Illustration of our sorting algorithm

Figure B.2: Step 1 Two groups (e.g., Q and J) are randomly chosen. The subject firstly
compares Q4 and J4. When the subject determines the model closer to the reference (J4), the
index of the other model (Q4) will be pushed into a list (List1) as the worst quality model.
Then the next two models will be shown. In this round, the selected model from previous
round (J4) and a distorted model with a decreased strength from the other group (Q3) are
shuffled and displayed to the subject. Then, following this way, we repeat the comparisons
until all 8 models are sorted from the worst visual quality to the best into List 1. The same
process is conducted between two other groups (e.g., L and Si), and another list (List 2) is
obtained from these two groups.
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Figure B.3: Step 2 One list among List 1 and List 2 is randomly chosen (e.g., List 2), in
which all the models are already sorted by their visual qualities. This list will be merged
with the remaining group (Su). Following the procedure detailed in step 1, these two sets of
models are interleaved into List 3.

Figure B.4: Step 3 Finally the remaining lists (List 3) and (List 1) are merged with the same
process than before, to obtain the Final List, which contains the 20 models ranked from the
worst visual quality to the best (1 means the best, and 20 means the worst).

B.4 Subjective scores
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Figure B.5: Subjective vote scores for all the 100 distorted models (single-type distortion
setting) for the rendering with shading. Higher scores mean better visual quality..

Figure B.6: Subjective vote scores for all the 100 distorted models (single-type distortion
setting) for the rendering without shading. Higher scores mean better visual quality.
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Figure B.7: Subjective vote scores for the 36 distorted Dwarf models (mixed-type distortion
setting) for the renderings with shading and without shading respectively. Higher scores
mean better visual quality.
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