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Résumé

Dans le domaine de l'informatique graphique, les données tridimensionnelles, généralement représentées par des maillages triangulaires, sont employées dans une grande variété d'applications (par exemple, le lissage, la compression, le remaillage, la simplification, le rendu, etc.). Cependant, ces procédés introduisent inévitablement des artefacts qui altèrent la qualité visuelle des données 3D rendues. Ainsi, afin de guider perceptuellement les algorithmes de traitement, il y a un besoin croissant d'évaluations subjectives et objectives de la qualité visuelle à la fois performantes et adaptées, pour évaluer et prédire les artefacts visuels. Dans cette thèse, nous présentons d'abord une étude exhaustive sur les différentes sources d'artefacts associés aux données numériques graphiques, ainsi que l'évaluation objective et subjective de la qualité visuelle des artefacts. Ensuite, nous introduisons une nouvelle étude sur la qualité subjective conçue sur la base de l'évaluations de la visibilité locale des artefacts géométriques, dans laquelle il a été demandé à des observateurs de marquer les zones de maillages 3D qui contiennent des distorsions visibles. Les cartes de distorsion visuelle collectées sont utilisées pour illustrer plusieurs fonctionnalités perceptuelles du système visuel humain (HVS), et servent de vérité-terrain pour évaluer les performances des attributs et des mesures géométriques bien connus pour prédire la visibilité locale des distorsions. Notre deuxième étude vise à évaluer la qualité visuelle de modèles 3D texturés, subjectivement et objectivement. Pour atteindre ces objectifs, nous avons introduit 136 modèles traités avec à la fois des distorsions géométriques et de texture, mené une expérience subjective de comparaison par paires, et invité 101 sujets pour évaluer les qualités visuelles des modèles à travers deux protocoles de rendu. Motivés par les opinions subjectives collectées, nous proposons deux mesures de qualité visuelle objective pour les maillages texturés, en se fondant sur les combinaisons optimales des mesures de qualité issues de la géométrie et de la texture. Ces mesures de perception proposées surpassent leurs homologues en termes de corrélation avec le jugement humain.

Mots-clés : Informatique graphique, Maillages 3D, Artefact visuel, Maillage texturé, Évalu-viii ation de la Qualité Visuelle des Maillages, Évaluation de la Qualité des Images, Métriques perceptuelles, Étude subjective. 

Context

In the teachings of Gautama Buddha, the Five Aggregates: "Form, Sensation, Perception, Mental Formation and Consciousness", reveal the way that a human observes, experiences and understands the world with his psychological cognitive processes. The cognition based on the visual system is a universal and frequent process, even in today's world, where the growing technology has changed people's lives dramatically. Especially, graphics, from ancient paintings to modern computer graphics, describe the visual perception, and reflect the human cognition. In present days, the graphics have evolved from simple two-dimensional lines to diverse three-dimensional graphical data (see Figure 1.1), which have become commonplace in the vast majority of industrial domains involving medical imaging, mechanical engineering, digital entertainment, e-commerce, scientific visualization, architecture design, virtual reality and so forth. As a result of these proliferating and various uses, the 3D graphical data, generally formed by triangular meshes, are subject to various processing operations, such as compression, simplification, transmission, remeshing, watermarking, etc. Inevitably, these manipulations introduce artifacts, which impact on the visual perception more or less, or in other words, alter the visual quality of the processed data. Considering the final receivers of the 3D data are human eyes, which appeals to costumers for the satisfying Quality of Experience, it is crucial to evaluate the quality of the distorted 3D objects, namely the visual annoyance amount caused by the artifacts. Thus, many researchers proposed numerous quality functions (i.e. metrics), attempting to find a common evaluation standard of the visual perception. For instance, the pioneer researchers only relied on simple geometric attributes (e.g., Hausdorff or RMS distances) to evaluate the distortion quality between a reference model and its processed version. However, these metrics performed poorly in terms of correlation with human vision. Recently, the scientific community has devoted to devise different mesh visual quality (MVQ) metrics considering the connections between graphical attributes (including geometric and rendering attributes) and the Human Visual System (HVS), or the functionalities of the HVS. These visual metrics aim to predict the perceived visual quality of distorted 3D data, and have surpassed the previous classical metrics regarding the correlation with visual perception. Nevertheless, there still exist two fundamental problems:

• Among the diverse metrics, which metric (and/or attribute) is able to provide the predictions that are mostly correlated with human perception?

• How to design a visual quality metric that can thoroughly fulfill different evaluation tasks (with a variety of distortions and rendering scenarios), predicting the perceived visual quality efficiently and effectively?

In order to evaluate the performance of the metrics, a metric prediction/value must be compared with the human subjective assessment, usually by computing the correlations between the global quality value produced by the metric and the subjective score from observers. However, besides this global information, in many cases it is also necessary to evaluate their performances using information about the local visibility of the artifacts (i.e. the visually noticeable distortions on small regions of a mesh). Such local information is relevant to drive locally any geometry processing operations, such as mesh simplification, compression and so forth. Moreover, among the existing 3D mesh visual quality metrics, they mainly consider either the geometric distortions or the artifacts generated during the rendering steps (see Figure 1.2). Little work has been done to evaluate the visual impact of the artifacts on textured 3D models in consideration of complex perceptual interactions (i.e. geometric, texture attributes and rendering scenarios). ; A simplified version (50K vertices) with uniform high frequency noise; result after watermarking [START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF] which produces some local bumps on the surface. Bottom row: Result after rendering (radiance caching) which creates a non uniform structured noise. This work-flow is presented in [START_REF] Lavoué | Quality assessment in computer graphics[END_REF].

Objectives and Contributions

The research topic of this thesis work is the design of subjective visual quality assessment protocols and objective visual quality metrics for 3D objects. Our main objectives are: [START_REF] Alliez | Anisotropic polygonal remeshing[END_REF] to evaluate the performance of existing 3D mesh quality metrics in the terms of correlation with the human vision on perceiving local distortions; [START_REF] Alliez | AABB Tree[END_REF] for the texture mapped 3D models, to evaluate the available metrics with regards to correlation with visual perception in different evaluation tasks (with various artifacts and rendering scenarios), and then to propose new objective quality metrics.

In order to accomplish the first objective, we designed a subjective quality study based on evaluations of the local visibility of geometric artifacts, in which observers were asked to mark the areas of 3D meshes that contain noticeable distortions. The collected perceived distortion maps are used to illustrate several perceptual functionalities of HVS, and serve as ground-truth to evaluate the performance of well-known geometric attributes and metrics for predicting the local visibility of distortions.

To achieve the second goal, we introduce 116 processed models with both geometric and texture distortions, conduct a paired-comparison subjective assessment, and invite 98 subjects to evaluate the visual qualities of the models under two different rendering protocols. Driven by the collected subjective opinions, we propose two objective quality metrics for textured meshes based on the optimal combinations of geometry and texture quality measures. Finally, we evaluate these two quality metrics along with other counterparts regarding the correlation with the subjective opinions.

Outline

The remainder of this manuscript is organized as follows:

Chapter 2 provides background knowledge on digital artifacts (distortions) caused by acquisition, conversion and processing operations. It covers common distortions existing in processed 2D images (involving videos) and 3D meshes. Chapter 3 presents a comprehensive survey on objective visual quality metrics for 2D images, videos and 3D objects. Chapter 4 describes the existing subjective visual quality assessments in computer graphics. Chapter 5 presents our proposed subjective assessment, which quantitatively evaluates several well-known geometric quality metrics and attributes for the task of predicting perceived local distortions. Chapter 6 details our subjective and objective quality assessments for texture mapped 3D models.

Chapter 7 summarizes the contributions of the manuscript, and proposes several future working directions concerning the research on visual quality assessments for 3D graphical data.

Chapter 2

Background knowledge on digital artifacts by acquisition, conversion and processing

In the computer graphic fields, various visual contents are produced, which can be mainly categorized into two types: 3D data and 2D images (digital videos are essentially sequences of 2D images). According to different sub-realms of applied graphics (e.g., scientific visualization, virtual reality, video gaming, engineering design, medical care, internet industry, etc.), extensive images, videos and 3D data are generated and manipulated. Usually, depending on different manipulation purposes (e.g., remote transmission, animation, scanning, rendering, etc.), the relevant operations, such like compression, sub-sampling, simplification, smoothing and so forth, or the sensor and circuitry of a scanner/camera may cause the noticeable distortions in 2D images or graphical 3D data [43] [32]. These distortions are called 2D image artifacts and 3D geometric artifacts respectively.

2D image artifacts 2.1.1 Image noise

Usually, image noise is shown as random variance of the color or brightness in digital images, which often occurs during image capture, transmission [START_REF] Farooque | Survey on Various Noises and Techniques for Denoising the Color Image[END_REF], etc . The range of the noise magnitude can be from almost imperceptible spots on digital images to almost entirely noise due to sophisticated processing, poor acquisition or low precision of a sensor, scanner or digital camera. Depending on different formation causes, the image noise can be generally sorted into following types:
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Gaussian noise

Gaussian noise usually happens under poor conditions of acquisition, such like poor illumination and/or high temperature, etc. This noise appears as additive, independent at each pixel and independent of the signal intensity [START_REF] Farooque | Survey on Various Noises and Techniques for Denoising the Color Image[END_REF]. A major noticeable Gaussian noise is amplifier noise, which shows as constant noise level in dark areas or in the blue channel of a color image (See Figure 2.1).

Speckle noise

Speckle noise is of granulate, which exists in active radar and synthetic aperture radar (SAR) images. In traditional radar images, it results from the interference of the received waves from an object which is no larger than a single processing element, and consequently raises the average gray level in a local area. Speckle noise in SAR images is caused by coherent processing of scattered signals from multiple distributed targets [START_REF] Goodman | Some fundamental properties of speckle[END_REF]. The presence of speckle noise in an image reduces the ability of a human observer to resolve fine details in the image [START_REF] Lee | Speckle analysis and smoothing of synthetic aperture radar images[END_REF]. (See Figure 2.1).

Fat-tail distributed noise

Fat-tail distributed noise is also known as salt-and-pepper noise or impulsive noise, which is caused by malfunctioning pixels in camera sensors, faulty memory locations in hardware, or transmission in a noisy channel [START_REF] Chan | Salt and Pepper Noise Removal by Median Type Noise Detectors and Detail-Preserving Regularization[END_REF]. It manifests itself as sparsely occurring dark pixels in bright areas and white pixels in dark areas. (See Figure 2.2). 

Smoothing artifacts

Aiming to handle the image noise or other fine-scale structure/rapid phenomena, image smoothing methods were proposed to capture important patterns in images. During this processing, the individual points of an input signal, which are more intensive than the immediately adjacent points, are modified and reduced, and thus the points that are lower than adjacent points rise. Naturally, a smoother signal is produced after this processing. Most common smoothing algorithms use spatial filters to smooth input data [START_REF] Lee | Digital image smoothing and the sigma filter[END_REF], where a set of original adjacent points are multiplied point-by-point by a group of coefficients that define the smooth shape, and then the summation of the products is divided by the sum of the coefficients (average value). The process repeats until all the original points are shifted down to the defined smooth values. Besides taking average values of coefficients, some algorithms take the median values or Gaussian weighted average values as smoothing fliters.

The visually blurred artifacts caused by smoothing may be from a high extent of defined smooth shape and excessive smoothing repeations. Figure 2.3 shows a smoothing example using Gaussian filter with different σ values.

Compression artifacts

Transmission and storage of digital images are almost required in every domain related to computer graphics. Thus, in order to decrease the transmission and storage costs, image compression algorithms were proposed to reduce irrelevance and redundancy of images, which can be lossy or lossless. Between the two types of compression methods, the lossy compression may introduce perceptible artifacts, especially, at low bit rates.

Background knowledge on digital artifacts by acquisition, conversion and processing JPEG JPEG (Joint Photographic Experts Group) compression [START_REF] Wallace | The JPEG Still Picture Compession Standard[END_REF] is a commonly used lossy compression method based on an 8×8 block-size discrete cosine transform (DCT), which convert the image (or each frame of a video source, which refers to the video compression for reducing spatial redundancy of video sequences in MPEG standards [START_REF] Gall | MPEG: A Video Compression Standard for Multimedia Applications[END_REF] ) from spatial domain into frequency domain. More precisely, let f (x, y) represent an unsigned integer image value (e.g., color, hue, intensity, etc.) in [0, 2 P -1] at the location (x, y) of input image. The output of DCT F(u, v) shifted f (x, y) to a signed integer in the range of [-2 P-1 -1, 2 P-1 -1], the transform is expressed as follows:

F(u, v) = 1 4 C(u)C(v)[ 7 ∑ x=0 7 ∑ y=0 f (x, y) cos (2x + 1)uπ 16 cos (2y + 1)vπ 16 ] (2.1) 
where 0

≤ u < 8, 0 ≤ v < 8, C(u),C(v) = 1/ √ 2 for u, v = 0; and C(u),C(v) = 1 
otherwise. In frequency domain, in an 8×8 pixels block, the quantization algorithm (i.e. DTC), which is related to the discrete fourier transform (DFT), is opted to optimally reduce a large scale of coefficients into a smaller scale by using the equation 2.1 to remove the high-frequency coefficients, since the high-frequency coefficients (such like, sharp transitions in color hue, intensity, etc.) provide fewer contributions to the whole image than other frequency coefficients [START_REF] Wallace | The JPEG Still Picture Compession Standard[END_REF]. Finally, the quantized coefficients are sequenced and losslessly packed into the output bitstream. The quantization step is a many-to-one mapping proccedure, and therefore is fundamentally lossy [START_REF] Wallace | The JPEG Still Picture Compession Standard[END_REF]. Usually, a high level of compression ratio, which means the ratio between size of compressed file and its original file, results in blocking artifacts on the compressed image, because the quantization operation inevitably makes noise around contrasting edges to meet the high compression ratio (see Figure 2.4). 

JPEG 2000

JPEG 2000 compression [START_REF] Skodras | The JPEG 2000 Still Image[END_REF], proposed by Joint Photographic Experts Group in 2000, can be lossy as well. It inherits the JPEG standard, and replaces the previous discrete cosine transform (DCT) with a discrete wavelet-based transform (DWT), which filters the input image signals with low-pass and high-pass filters, and then downsamples the filtered signals by discarding odd indexed samples, whereas JPEG uses an 8×8 block-size DCT. The lowpass filter preserves the low frequencies of a signal while attenuating or eliminating the high frequencies, meanwhile the high-pass filter preserves the high frequencies of an image such as edges, texture and detail, when discarding or attenuating the low frequencies [START_REF] Majid Rabbani | An overview of the JPEG2000 still image compression standard[END_REF]. Since the DWT eliminates blocking artifacts at high compression ratios, the JPEG 2000 performs better-measured fidelity over JPEG, however, the elimination of high frequencies from the low-pass filter results in a blurred version of the original image [START_REF] Majid Rabbani | An overview of the JPEG2000 still image compression standard[END_REF] (see Figure 2.4 ).
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Resampling (Sub-sampling) artifacts

For different image processing purposes, an image may be resized to a finer matrix in order to improve its appearance, or fitted to new position coordinates after a transformation (e.g., rotation, scaling, etc.) [START_REF] Parker | Comparison of interpolation methods for image resampling[END_REF], etc. Hence, several resampling algorithms were designed to meet the demands. However, the resampling algorithms can result in visible artifacts, such as ringing, aliasing, blocking and blurring [START_REF] Thévenaz | Image interpolation and resampling[END_REF], especially, when they are used to enlarge subsampled images by interpolating image values (e.g., RGB, hue, grayscale, etc) between pixels in a local neighborhood (see Figure 2.5). Three common resampling methods based on different interpolation algorithms are introduced as below:

Nearest-neighbor interpolation based resampling

Nearest-neighbor interpolation [START_REF] Parker | Comparison of interpolation methods for image resampling[END_REF] is a simple method for approximating an image value of non-given point at some location in an image while the values of neighboring points are given. It interpolates an image value into the location by convolving the value of the nearest point with a rectangle function. However, this is a basic low pass filter which results in some aliasing or blurring artifacts [START_REF] Parker | Comparison of interpolation methods for image resampling[END_REF] (see Figure 2.5). This algorithm is commonly used in texture mapping in 3D rendering.

Bilinear interpolation based resampling

Bilinear interpolation performs a linear interpolation in two directions (x and y directions) on a rectilinear 2D grid of an image. In practice, when an image needs scaling up, each image pixel needs to be moved along a certain direction according to the scale value, which inevitably leaves many non-valued pixels (i.e., holes) [START_REF] Ramponi | Warped distance for space-variant linear image interpolation[END_REF]. In this case, the bilinear interpolation uses the values of 4 nearest pixel in diagonal directions from a non-valued pixel to assign appropriate image value to the hole. We demonstrate the algorithm using a one-dimensional (1-D) case. Two dimensional (2-D) image data are handled by sequential x direction and y direction 1-D interpolations. Assume f (x k ) is an image value at the location x k , and f ′ (x) is the value to be interpolated at the location x. Suppose that the nearest available neighbors of x are x k (left) and x k+1 (right), and the distance between x k and x k+1 equals to 1. Define the distances between x, x k and x k+1 as: d = xx k and 1d = x k+1x. The f ′ (x) is therefore computed using bilinear interpolation as follows: Like the nearest-neighbor interpolation, this algorithm is commonly used in texture mapping of 3D object as well (see Figure 2.5 ).

f ′ (x) = (1 -d) f (x k ) + d f (x k+1 ) (2.2)

Bicubic interpolation based resampling

Bicubic interpolation [START_REF] Ramponi | Warped distance for space-variant linear image interpolation[END_REF] is an extension of bilinear interpolation. Unlike the bilinear interpolation, which consider 4 neighboring pixels (2×2), bicubic interpolation takes 16 pixels (4×4) into account, which produces a smoother rescaled image with fewer artifacts. Similar to the demonstration of bilinear interpolation, we interpret the bicubic interpolation in one-dimensional case involving two more values at the coordinates: x k-1 and x k+2 in the following way:

f ′ (x) = f (x k-1 )(-d 3 + 2d 2 -d)/2 + f (x)(3d 3 -5d 2 -2)/2 + f (x k+1 )(-3d 3 + 4d 2 -d)/2 + f (x k+2 )(-d 3 + d 2 )/2 (2.3)
However, this algorithm has a larger time complexity than bilinear interpolation and nearestneighbor interpolation. Similar to the nearest-neighbor interpolation, both bilinear and bicubic interpolations can cause an amount of blurring in the resampled image [START_REF] Hadhoud | Adaptive image interpolation based on local activity levels[END_REF] (see Figure 2.5 ). 

3D geometric artifacts

In this part, the 3D graphic data that we focus on is 3D surface mesh, which consists of interconnected spatial facets (e.g. triangles, quadrangles. etc). And the 3D geometric artifacts solely refer to the distortions resulted from the geometric modeling and processing (e.g., smoothing, watermarking, etc.) steps, whereas the distortions caused by generating or postprocessing 3D content images/videos (e.g., tone-mapping, rendering, etc.) are considered as image artifacts [START_REF] Lavoué | Quality assessment in computer graphics[END_REF].

Mesh acquisition noise

Mesh acquisition noise on 3D mesh is introduced by inaccurate acquisitions from laser scanners. The scanned raw meshes are usually irregular and contain millions of triangles/quadrangles [START_REF] Guskov | Topological noise removal[END_REF]. Figure 2.6 shows two examples of acquisition noise.

Smoothing artifacts

Besides the purpose of removing the high frequency noise caused by acquisition, mesh smoothing methods are motivated by advanced filtering processing, fair surface design, holefilling and mesh deformation as well. The aim of smoothing is to fair the large polyhedral surface of arbitrary topology [START_REF] Taubin | A signal processing approach to fair surface design[END_REF]. There exist four widely used smoothing algorithms:

Laplacien smoothing [START_REF] Sorkine | Laplacian Surface Editing[END_REF], Gaussian smoothing [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF], Taubin smoothing [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF] and Two-step smoothing [START_REF] Belyaev | A Comparison of Mesh Smoothing Methods[END_REF], of which Laplacien and Gaussian smoothing algorithms may introduce the perceived shrinkage distortion on 3D mesh, while Taubin and Two-step smoothing algorithms prevent the smoothed mesh from shrinkage but may still result in deformation artifacts due to over-iterative smoothing steps (see Figure 2.7).

Laplacian smoothing

Laplacian smoothing moves each vertex v i on a mesh towards a new position vi by applying an umbrella operator [START_REF] Vidal | Développement de modèles graphiques probabilistes pour analyser et remailler les maillages triangulaires 2-varétés[END_REF]. In details, firstly the operator computes a direction vector ⃗ U(v i ) between the vertex v i and the barycenter of its adjacent vertices v j :

⃗ U(v i ) = 1 N N ∑ j=1 (v j -v i ) (2.4)
with N the number of adjacent vertices to v i . Then a new positon vi is set in the direction ⃗ U(v i ), which is computed as: vi

= v i + λ ⃗ U(v i ).
λ is a positive damping factor smaller than 1 [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF]. However, more iteration steps of Laplacian smoothing results in further mesh shrinkage.

Gaussian smoothing

In contrast to the Laplacian smoothing that relies on the umbrella operator, Gaussian smoothing [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF] firstly computes a Gaussian weighted direction vector ⃗ G(v i ) between each vertex v i and the barycenter of its adjacent vertices v j . ⃗ G(v i ) is computed as follows:

⃗ G(v i ) = N ∑ j=1 ω i j (v j -v i ) (2.5)
where N means the number of adjacent vertices to v i , the Gaussian weights ω i j are positive and add up to 1 [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF]. Then the new position v ′ i is set by moving v i in the Gaussian weighted direction:

v ′ i = v i + λ ⃗ G(v i )
, in which the damping factor λ is a positive number smaller than 1 [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF]. Still, several repetitions of the smoothing process produce the shrinkage of the mesh.

Taubin smoothing

Taubin smoothing actually consists of two consecutive Gaussian smoothing steps. In a first step, Gaussian smoothing applies a positive scale factor λ to all the vertices of a mesh, whereas in a second step a negative scale factor µ (0 < λ < -µ) is applied to all the vertices. The repetitions of these two steps produce a low pass filter, which filters out the perturbations (i.e. zero mean high curvature noise) above the underlying smooth surface [START_REF] Taubin | Curve and surface smoothing without shrinkage[END_REF]. Taubin smoothing effectively prevents a smoothed mesh from shrinkage, and thus contributes to a Background knowledge on digital artifacts by acquisition, conversion and processing better visual quality than than Laplacien and Gaussian smoothing methods, but it may cause the loss of mesh details after several iterations.

Two-step smoothing

Two-step smoothing is based on the iterative mean filtering [START_REF] Belyaev | A Comparison of Mesh Smoothing Methods[END_REF], where in a first step all the similar normals of all mesh triangles that share a common edge or vertex are averaged together, and in a second step all the vertices are fitted to the new normals. This smoothing performs well in denoising but may lose some salient shape information, which could introduce visually distinguishable artifacts. Some different smoothing methods are shown in Figure 2.7.

Simplification artifacts

Sometime the meshes scanned or processed by acquisition or smoothing procedures are with very high resolution, which are not necessarily required or supported in some applications or devices [START_REF] Garland | Surface simplification using quadric error metrics[END_REF], simplification processing methods are therefore extensively used for reducing or simplifying the size of the mesh. The algorithms incrementally reduce the number of vertices and edges on the mesh surface through clustering or decimation methods. However, oversimplification may lead to the deformation of the mesh, which introduces noticeable artifacts in forms of deformed surface, losses of mesh details, etc. In practice, four simplification algorithms are commonly used, which are presented as follows: 

Vertex decimation

Vertex decimation iteratively removes a vertex and its adjacent faces, and fills the hole with retriangulation [START_REF] Schroeder | Decimation of triangle meshes[END_REF].

Vertex clustering (Quantization)

Quantization algorithms can be considered as simplification methods by clustering vertices into a center vertex of each 3D grid cell, which will be detailed in the section Geometry compression artifacts.

Iterative edge contraction

This method iteratively contracts the edges of a manifold surface to reduce the mesh complexity [91][46]. Figure 2.8 shows the edge contraction procedure, which is called pair contraction denoted as: (v 1 , v 2 ) → v. The procedure moves the vertices v 1 and v 2 to the new position v, connects all their incident edges to v 1 , and deletes the vertex v 2 .

Quadric edge collapse decimation

Based on the iterative edge contraction, the quadric edge collapse decimation contracts valid vertex pairs iteratively, and preserves surface error approximations relying on quadric matrices [START_REF] Garland | Surface simplification using quadric error metrics[END_REF]. Figure 2.9 shows an instance of different simplified approximations to an original model using this algorithm.

Geometry compression artifacts

As we mentioned before, transmission and storage of digital data involving 2D and 3D graphics are required in every domain related to computer graphics. Thus, geometry compression was proposed as a solution to the issues about the mesh size reduction for the storage and Background knowledge on digital artifacts by acquisition, conversion and processing The image is from [START_REF] Garland | Surface simplification using quadric error metrics[END_REF].

transmission. In other cases, geometry compression is adopted for interactive visualization of large meshes on low capability terminals as well [START_REF] Maglo | 3D mesh compression : survey , comparisons and emerging trends[END_REF]. In the first step of the compression, the algorithm usually quantizes all the coordinates of vertices (so-called quantization), which can effectively reduce the amount of data. Even though the quantization enables the encoding without any quality loss, aggressively quantizing the geometry can introduce the loss of information, which can be observed as a blocking or deformed surface [START_REF] Karni | Spectral compression of mesh geometry[END_REF] (see Figure 2.10 ). The quantization encoder is usually of two types: scalar quantization and vector quantization.

Scalar quantization

Scalar quantization transforms the vertices of a mesh from floating-point positions into integer number positions. A commonly used compression algorithm, namely Gotsman (TG) compression [START_REF] Maglo | 3D mesh compression : survey , comparisons and emerging trends[END_REF], encodes the mesh vertex coordinates using uniform quantization (a kind of scalar quantization). In details, assume that all the vertices of a mesh are uniformly quantized to n bits meaning each coordinate of any vertex is rounded to the nearest integer value in [0, 2 n -1], and accordingly the mesh bounding box is equally divided into a 3D grid, then the coordinates of those vertices v j that lie inside ith 3D grid cell are removed and replaced by the integer coordinates of the cell center v i [START_REF] Touma | Triangle mesh compression[END_REF]:

v i = round j∈k [v j ] (2.6)
where k refers to the number of the vertices that lie inside ith 3D grid cell. 

Vector quantization

Vector quantization partitions vertices of a mesh into arbitrary polygonal cells [START_REF] Rossignac | Multi-resolution 3D approximations for rendering complex scenes[END_REF], In contrast with the scalar quantization whose partitioned cells are cuboids, cells of vector quantization can be better fitted to the mesh shape, and thus contribute to a better visual quality than scalar quantization at low quantization bits [START_REF] Lee | Vertex data compression for triangular meshes[END_REF] [18].

Watermarking artifacts

The watermarking technique emerges as a solution for protecting copyrights of 3D digital designs from illegal duplication and redistribution. The algorithms embed a watermark, which is usually a bit string or a pseudo-random sequence, over a 3D digital asset, and thus inevitably introduces distortions after the process. Three recent blind watermarking schemes, in which the original cover content (i.e. watermark) is not required for watermark extraction, are presented below:

Watermarking based on vertex norms distribution [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF] The method modifies (increases or decreases) the distributions of the mean value or variance value of the vertex norms according to a watermark bit to be inserted. And it usually introduces structured ringing distortions on a mesh surface (see Figure 2.11 and Figure 2.12).

Watermarking based on manifold harmonics [START_REF] Wang | Blind and robust mesh watermarking using manifold harmonics[END_REF] This method opts for a spectrum decomposition tool, namely the manifold harmonics transform [START_REF] Vallet | Spectral geometry processing with manifold harmonics[END_REF], which can generalize the conventional Fourier analysis to the functions defined Background knowledge on digital artifacts by acquisition, conversion and processing Figure 2.11: A comparison between watermarking methods based on vertex norms distribution [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF] and based on manifold harmonics [START_REF] Wang | Blind and robust mesh watermarking using manifold harmonics[END_REF]. From left to right: A Venus model embeded a watermark by Cho's method; A Venus model embeded a same watermark by Wang's method using manifold harmonics. This figure is adapted from [START_REF] Wang | Blind and robust mesh watermarking using manifold harmonics[END_REF].

on arbitrary 2-manifold surfaces. Based on the manifold harmonics transform, the watermarking algorithm quantizes the amplitudes of low frequency coefficients using scalar Costa scheme [START_REF] Eggers | Scalar Costa scheme for information embedding[END_REF] to covertly embed a blind and robust watermark in the manifold harmonics spectral domain of a 3D mesh. Figure 2.11 shows a comparison between this algorithm and Cho's method [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF]. Apparently, this algorithm introduces fewer visual artifacts.

Watermarking based on volume moments [START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF] This scheme introduces the geometric volume moments. The volume moment m pqr of order p, q, r is defined as a volume integral of the function f (x, y, z) = x p y q z r inside the closed surface S, which can be expressed as:

m pqr =
x p y q z r ρ(x, y, z) dx dy dz (2.7)

where ρ(x, y, z) is the volume indicator function, and it is equal to 1 if (x, y, z) is inside the closed surface; otherwise it is equal to 0. Based on the notion of volume moment, the algorithm firstly normalizes a mesh with its global volume moments, and then discretizes its cylindrical domain to decompose the mesh into patches. In each candidate patch, the algorithm uses a modified scalar Costa [START_REF] Eggers | Scalar Costa scheme for information embedding[END_REF] quantization of local zero-order moment to insert an one-bit watermark. After the insertion, a smooth deformation mask is used to hide the visible distortion. Figure 2.12 presents a comparison between this method and Cho's algorithm [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF]. This method hides a watermark better.

Figure 2.12: A comparison between watermarking methods based on vertex norms distribution [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF] and based on volume moments [START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF]. From left to right: A Horse model embeded a watermark by Cho's method; A Horse model embeded a same watermark by Wang' method using volume moments. This graphic is supplied by [START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF].

Conclusion

Through the summary above, we can see that, besides the noises resulted from acquisitions, different types of converting and processing operations on 2D/3D contents alter or modify properties of original digital data on aspects of gray scale, color, hue, intensity, structure, topology, etc., which more or less introduces artifacts (e.g., blocking, blurring, losses of details, shrinkage, deformation, etc.) as well. Some of the artifacts are almost imperceptible for human vision system, whereas others may be very noticeable or even annoying, and bring about unwanted problems and issues in many human centered applications. Hence, there emerged an increasing demand of evaluating the quality of processed graphics, which aim to evaluate the impacts of the artifacts and thereby improve the acquisition procedure, converting and processing algorithms. Thus, many researchers proposed various objective metrics to measure the global or local quality of processed 2D/3D graphic data. Meanwhile, a great deal of subjective quality assessments, where subjective opinions on evaluating the global or local quality of the processed graphics from a group of human observers are collected and analyzed, was designed to quantitatively measure and compare the performances of the objective metrics in correlation with subjective opinions, and moreover some objective visual quality metrics can be driven by the collected subjective data [START_REF] Wang | Modern Image Quality Assessment[END_REF]. Nevertheless, the subjective quality assessments can be very expensive to conduct, since massive subjects and time are involved in the experiments [START_REF] Pinson | A New Standardized Method for Objectively Measuring Video Quality[END_REF]. In the following chapter, several classical and recent objective visual quality assessments of 2D image and 3D mesh will be introduced in details.

Chapter 3

Survey on objective visual quality metrics for 2D images, videos and 3D models

Introduction

In previous chapter, we described the different types of digital artifacts caused by acquisition, convertion and other processing operations. Since the human visual system (HVS) is the ultimate receiver of the processed graphics, some of the artifacts are imperceptible and of no account, but others may bring about undesired outcomes on the final appearance, and even fatal problems in some applied scientific fields, such like medical imaging, etc. Thus, accompanying the development of computer graphic technologies, diverse objective and subjective visual quality assessments (methodologies) have been proposed to measure artifacts, evaluate processing procedures, and optimize processing methods in return. In computer graphics realm, visual quality (visual fidelity) refers to the visual impacts of the artifacts coming from digital graphic manipulations (e.g., rendering, compression, simplification, etc) [START_REF] Lavoué | Quality assessment in computer graphics[END_REF].

Based on mathematical methods, objective quality assessment evaluates the visual fidelity of processed graphic data using automatic metrics, while subjective quality assessment, where a group of observers provide subjective opinions on estimating processed graphic contents, permits to evaluate the performance of objective assessments in terms of correlation with the subjective opinions. The outputs of an objective metric or a subjective experiment is usually a single global score (e.g., Mean opinion score), which represents a global visual impact of artifacts. However, it can also be a local distortion visibility, which predicts spatial distributions of artifacts. Both subjective and objective quality assessing procedures can be one of the three forms: full-reference (FR), reduced-reference (RR), in which an original graphic (image, video or 3D model) is completely or partially shown for the comparison with its distorted version, and no-reference (NF) where only distorted graphics are available. This chapter is dedicated to present different objective visual quality metrics for 2D image, including video sequence, and 3D mesh with full-reference (FR) setting.

3.2 Image and video visual quality assessments (IQA)

Metrics of first generation

Mean square error (MSE) and Peak signal-to-noise ratio (PSNR) are pioneering objective quality metrics, both of which compute the differences in the statistical distributions of pixel values (y i and x i ) between degraded image and its reference (original image). In details, assume that X is an original image without any processing, and Y is a distorted approximation to be evaluated. Denote N is the total number of the pixels in each image. The MSE and PSNR can be defined as follows:

MSE = 1 N N ∑ i=1 (x i -y i ) 2 (3.1)
And the PSNR is defined as:

PSNR = 10 • log 10 MAX 2 MSE (3.2)
MAX refers to the maximum pixel value of an image. When the pixels are allocated with 8 bits/pixel, MAX = 2 8 -1 = 255. Furthermore, a generalization of the MSE can be deducted using Minkowski metric, as below:

E p = ( N ∑ i=1 |x i -y i | p ) 1 p (3.3)
where p ∈ [1, ∞). When p = 1, E p means mean absolute error measure, p = 2 makes E p square root of MSE (RMSE), p = 3 yields cube root of MSE, while p = ∞ calls the maximum absolute difference measure:

E ∞ = max i |x i -y i | (3.4)
MSE and PSNR metrics are extensively used in image processing fields thanks to their simplicity and convenience for the optimization of processing algorithms. Moreover, the MSE and PSNR have clear physical meanings: the energy error of pixel intensities between a distorted image and its reference. However, the major defect of the MSE and PSNR is their poor correlation with human perception. predict the perceptual annoyance caused by artifacts. The research on the metrics successively evolved in two directions: bottom-up approaches and top-down approaches.

Metrics based on bottom-up approach

The image visual quality metrics based on bottom-up approach try to approximate the lowlevel functionalities of the human visual system (HVS). The most common approach is to build some basic blocks that simulate the relevant psychophysical components and features, and ultimately integrate all the blocks into a mathematical function, which can behave the same way as HVS components.

To establish the function, the approach usually gets through 5 stages: (1) Pre-processing, Figure 3.2: Diagram of bottom-up visual quality assessment approaches. Note that the CSF feature can be implemented either as a separate stage (as shown) or within "Error Normalization" . The diagram originates from [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF].

which involves image alignment, point-wise nonlinear transform, etc; (2) Contrast sensitivity function (CSF) filtering (see Figure 3.3) is a low-pass filter that simulates visual system components (e.g., eye optics, retina, striate cortex, etc.) and transforms color space information;

(3) Channel decomposition, which transforms the input signals into different selective channels (subbands) of spatial frequency and orientation; (4) Error normalization, which is used to normalize the signal error in each channel by merging the variation of visual sensitivity in different channels, and the variation of visual error sensitivity resulted from intra-or inter-channel neighboring transform coefficients, (5) Error pooling integrates the signal errors from different channels into a global quality or distortion score [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF]. Figure 3.2 illustrates the framework of these image quality metrics. Generally, a predictor can provide the local visual detectability of near-threshold distortions (i.e. distortion map), whereas a metric generates a single non-negative number, usually ranging from 0 to 1, indicating the global quality of a processed graphic, and furthermore the local measurements of many metrics can provide distortion maps, which be considered as predictors as well. Several traditional image visual quality metrics based on bottom-up perceptual approaches are described below: The visible differences predictor (VDP) [START_REF] Daly | Visible differences predictor: an algorithm for the assessment of image fidelity[END_REF] VDP method or Daly model mimics the lower-order processing of the HVS, such as the optics, retina, lateral geniculate nucleus, and striate cortex, by integrating three components (i.e. amplitude nonlinearity, contrast sensitivity function (CSF), and detection mechanism) into a HVS model (see Figure 3.4). The VDP does not provide an absolute image quality but instead focuses on describing the visibility of distortions between a distorted image and its reference. The output of the VDP is a map showing the probability of detecting the differences between two images. Sarnoff JND (just-noticeable difference) model [START_REF] Lubin | A visual discrimination model for image system design and evaluation[END_REF] This model uses point spread function (PSF) as a simulation of eye optics to filter image, and then decomposes the filtered image using Laplacian pyramid into seven resolutions, followed by band-limited contrast calculations. The visual masking effect was firstly considered in this work. This effect expresses itself in a decreased ability to distinguish contrast patterns at certain frequencies in the presence of similarly oriented patterns of nearly equal frequencies (see Figure 3.6 ), which is particularly significant when an image or a mesh is mapped by texture. The model uses a transducer (i.e. sigmoid nonlinearity) to take masking effect into consideration. The transducer makes the discrimination of a contrast increment between one image and the other depend on the contrast response that is common to both images. Similar to the VDP, the Sarnoff JND produces a probability-of-detection map showing the noticeable differences at each spatial location between two input images. Watson's DCT (Discrete Cosine Transform) model [START_REF] Watson | DCTune: A Technique for Visual Optimization of DCT Quantization Matrices for Individual Images[END_REF] This method was designed for the perceptual quality evaluation of quantization noise from JPEG compressions. It first divides the image into distinct blocks, and a visibility threshold is calculated for each coefficient in each block. Three factors: (1) Baseline contrast sensitivity, (2) Luminance masking, (3) Contrast/texture masking, are involved to determine the visibility threshold. It produces a perceptually measured distortion map and a single distortion value after the frequency error pooling.

Watson's Wavelet model [START_REF] Watson | Visibility of wavelet quantization noise[END_REF] This measure was proposed to detect the visibility of discrete wavelet transform (DWT) quantization noise. Following inverse wavelet transform, the noise visibility threshold in each spatial subband is measured by subjective experimentation at fixed viewing distances. The visibility threshold for that subband is then determined as the reciprocal of the corresponding visual sensitivity. The combination of DWT noises detection thresholds allows a computation of a perceptually detectable quantization matrix for which all errors are in theory above the visual thresholds.

Several recent metrics based on these bottom-up models were designed to simulate the sensitivity of HVS components. Referring to the Sarnoff JND model, NQM [START_REF] Damera-Venkata | Image quality assessment based on a degradation model[END_REF] metric utilizes Peli's contrast pyramid [START_REF] Peli | Contrast in complex images[END_REF] to decompose a degraded image and its reference, considering: (1) the variation in contrast sensitivity with distance, image dimensions, spatial frequency;

(2) the variation in the local luminance mean; (3) contrast interaction between spatial frequencies; (4) contrast masking effects. Based on the Watson's Wavelet Model, Chandler et al. proposed the visual signal-to-noise ratio (VSNR) [START_REF] Chandler | VSNR : A Visual Signal-to-Noise Ratio for Natural Images[END_REF] metric to quantify the visual quality of images. It takes account for the low-level and mid-level HVS properties of contrast sensitivity and visual masking to determine the threshold of visual detection, and then uses a wavelet-based model to judge whether the distortions are below the threshold. However, the fact that the underlying goal of bottom-up models is to establish systems, which mimic the functionalities of HVS, brings about inevitable defects and potential problems, such as an obscure relationship between visibility error and quality degradation, unreasonable normalizations of visibility thresholds between different channels [START_REF] Wang | Modern Image Quality Assessment[END_REF], restricted and simplistic generalizations of HVS simulation [START_REF] Zhou Wang | Video Quality Assessment Based on Structural Distortion Measurement[END_REF], and so forth.

Metrics based on top-down approach

A milestone of the development for image visual quality assessments for full-reference (FR) comparison was the top-down model based on Structural SIMilarity (SSIM) [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF], which significantly extended the horizons of the studies of HVS mechanisms on evaluating images. While the Bottom-up models attempt to simulate the HVS components, top-down approaches consider the HVS systems as a black box, and try to build a model connecting input-output relationship, where the input(s) are the images to be evaluated, and the output(s) are the subjective elevation opinions given by observers. The following sections detail the structural similarity and some recent and relevant approaches.

Metrics based on Structural similarity (SSIM)

The structural similarity quality measure is based on a top-down assumption that the HVS is highly adapted for extracting structural information from a viewing field, and that a measure of structural information errors should give a good prediction of perceived image distortions [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF]. It incorporates three structural attributes in an image: luminance, contrast, and structure. The detailed definitions and computations are as follows: Let x = {x i |i = 1, 2, 3, . . . , N} and y = {y i |i = 1, 2, 3, . . . , N} represent the two image patches, which have been aligned with each other (e.g., spatial patches extracted from each image). Let µ x , µ y , σ 2 x , σ 2 y and σ xy denote the mean values and the variances of x and y, and the covariance of x and y respectively. The comparison functions of luminance l(x, y), contrast c(x, y), and structure s(x, y) are computed as:

l(x, y) = 2µ x µ y +C 1 µ 2 x + µ 2 y +C 1 (3.5) c(x, y) = 2σ x σ y +C 2 σ 2 x + σ 2 y +C 2 (3.6) s(x, y) = σ xy +C 3 σ x σ y +C 3 (3.7)
Where C 1 , C 2 , C 3 are constant values computed by:

C 1 = (K 1 L) 2 ,C 2 = (K 2 L) 2 and C 3 = C 2 /2,
in which L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale images), and K 1 << 1 and K 2 << 1 are two scalar constants. The local SSIM index between x and y are defined as:

SSIM(x, y) = [l(x, y)] α • [c(x, y)] β • [s(x, y)] γ (3.8)
According to [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF], α = β = γ = 1, and the resulting SSIM index is deduced as:

SSIM(x, y) = (2µ x µ y +C 1 )(2σ xy +C 2 ) (µ 2 x + µ 2 y +C 1 )(σ 2 x + σ 2 y +C 2 ) (3.9) 
The SSIM index is applied by sliding window approach, where the index is computed in an 8 × 8 moving window pixel-by-pixel. In [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF], results show that SSIM method outperformed between traditional metrics (e.g., PSNR) and previous bottom-up approaches (e.g., Sarnoff JND (just-noticeable difference) model). However, the SSIM is a single-scale method, which may be incompetent to the image details at different resolutions. Moreover, simply taking the mean of SSIM indexes to obtain a global quality score is lack of qualitative sensible and quantitative manageable principles. Improved metrics: MS-SSIM (Multi-scale structural similarity) [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] and IW-SSIM (Information content weighting structural similarity) [START_REF] Wang | Information content weighting for perceptual image quality assessment[END_REF] were therefore designed for resolving the problems. Extended from SSIM, MS-SSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] method iteratively applies a low-pass filter and downsamples the filtered image by a factor of 2, indexing the original image pathes as Scale 1 and the highest scale as Scale M. While contrast and structure functions are computed at each scale, the luminance function l(x, y) is computed only on the smallest scale (M). The final local MS -SSIM(x, y) index is obtained after M -1 iterations, as described below:

MS -SSIM(x, y) = [l(x, y)] α M • M ∏ j=1 [c(x, y)] β j • [s(x, y)] γ j (3.10)
with j the index of the scale, α j = β j = γ j , ∑ M j=1 β j = 1. The results from [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] show that MS-SSIM could produce better results than its single scale counterpart SSIM regarding the correlation with visual perception. [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF]; the original image; Predicted disortion maps of MS-SSIM and SSIM , in which the distortion probabilities visualized from red (1) to blue (0). The example is adapted from [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF].

Soon afterwards, Wang and Li [START_REF] Wang | Information content weighting for perceptual image quality assessment[END_REF] improved the original MS-SSIM to IW-SSIM by considering an information-content weighting (IW) based quality score pooling strategy. Precisely, in the i-th local window at the j-th scale, the information content weight ω j,i is introduced in the computation, defined by: for j = 1,. . . ,M -1, we have:

IW -SSIM j (x, y) = ∑ i ω j,i c(x j,i , y j,i )s(x j,i , y j,i ) ∑ ω j,i (3.11) 
when j = M and,

IW -SSIM j (x, y) = 1 N j ∑ i l(x j,i , y j,i )c(x j,i , y j,i )s(x j,i , y j,i ) (3.12)
with N j the number of local windows in the j-th scale, and ω j,i is derived by modeling the distortion channel and the perceptual channel, and by taking the mutual information between the images into account. Finally, the overall IW -SSIM be expressed as follows:

IW -SSIM = M ∏ j=1 (IW -SSIM j ) β j (3.13)
where β j the values are obtained through psychophysical measurement [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF]. Via the extensive tests with six publicly-available independent image databases, IW-SSIM algorithm performs the best compared to SSIM and MS-SSIM for the task of predicting perceived image quality.

Metrics based on information fidelity criterion (IFC)

The philosophical theory of information fidelity criterion (IFC) [START_REF] Sheikh | An information fidelity criterion for image quality assessment using natural scene statistics[END_REF] hypotheses that images and videos of the three dimensional visual environment come from a class of natural scenes, and that most real-world distortion processes disturb the statistics of natural scenes and make the image or video signals unnatural. Based on the Natural Scene Statistics (NSS), the natural scene models in conjunction with distortion models predict the mutual information shared between distorted images and their references.

Based on this hypothesis of IFC, the random field (RF) in a wavelet decomposition subband of an image: RF d can be described as:

RF d = G • RF r +V (3.14)
where RF r is the random field of the subband from the reference image, G represents a deterministic scalar attenuation field, and V is a stationary additive zero-mean Gaussian noise random field.

The IFC quantifies the statistical information that is shared between the reference and the distorted images. Regarding the correlation with visual perception, the results from [START_REF] Sheikh | An information fidelity criterion for image quality assessment using natural scene statistics[END_REF][START_REF] Zhang | A comprehensive evaluation of full reference image quality assessment algorithms[END_REF] indicate that the IFC is superior to the classical metric (i.e. PSNR), Sarnoff JND metric, and the SSIM, but inferior to the MS-SSIM and the IW-SSIM.

Later on, Sheikh and Bovik [START_REF] Sheikh | Image information and visual quality[END_REF] extended IFC to the visual information fidelity (VIF) by considering HVS model (see Figure 3.8). The VIF does not only quantify the information shared between a reference and a distorted image, but also provide how much of this reference information can be extracted from the distorted image. The experimental results in [START_REF] Sheikh | Image information and visual quality[END_REF] show the advantages of VIF measure compared to PSNR, Sarnoff JND metric, SSIM and IFC. However, VIF cannot challenge other advanced visual quality metrics, such like MS-SSIM and IW-SSIM, via the comparisons of their performences correlated to the subjective evaluations in [START_REF] Wang | Information content weighting for perceptual image quality assessment[END_REF][START_REF] Zhang | A comprehensive evaluation of full reference image quality assessment algorithms[END_REF].

Data-driven metrics

In recent years, several researchers exploited ways to build reliable full-reference image quality metrics driven by subjective data. One remarkable metric proposed by Čadík et al. The theoretic framework of VIF : Mutual information between C and E quantifies the information that the HVS system could ideally extract from the reference image, whereas the mutual information between C and F quantifies the corresponding information that could be extracted from the test image.

[10] measures 32 defined image difference features between two images, some of which are described by a single value, some by up to 62 dimensions. The features range from a simple absolute difference value to visual attention, and include the predictions of several major image quality metrics (e.g., SSIM, VDP model, etc.). Via machine learning, the metric is trained by 37 images with manually labeled distortion maps. The features are optimally selected and incorporated with ensembles of bagged decision trees (decision forest) used for classification. Trough the leave-one-out cross-validation procedure, the classification (trained metric) is verified to outperform between all general purposes metrics. Figure 3.9 shows several predictions (distortion maps) produced by the trained metric and other metrics. 

Video visual quality metrics

As we discussed previously, videos are essentially sequences of 2D images. Thus the video visual quality can be measured by image visual quality metrics (e.g., PSNR, VSNR, SSIM, MS-SSIM, IW-SSIM, IFC, VIF, etc) frame by frame on the luminance component of the video, meanwhile, some necessary pre-processes, i.e. spatial/temporal alignment, calculation of processed valid region ( abbreviated as PVR and defined as the portion of the processed video image which contains valid picture information), and gain & level offset calibration (i.e. find the reference image that minimizes the standard deviation of each difference image between the reference and processed frames using the sub-sampled Y luminance frames), should be executed to guarantee that measurement of each frame between a processed video and its reference is accurate and efficient. Finally, a visual quality score for the video can be obtained by pooling (e.g., taking the average, the median, the maximum, the minimum, etc) the measured values over all the frames together. The performances of the measures highly depend upon their embedded image visual quality metrics [START_REF] Seshadrinathan | Study of subjective and objective quality assessment of video[END_REF].

On the other hand, by considering the specific properties of video, such like attributes of temporal changes in a video sequence, etc, Pinson et al. [START_REF] Pinson | A New Standardized Method for Objectively Measuring Video Quality[END_REF] proposed a more perceptual correlated but complex, video quality metric (VQM), which calculates the perceptual changes in spatial, temporal and chrominance properties from spatial-temporal sub-regions of video streams, and then pools them into a single quality score. The Figure 3.10 shows the diagram of VQM procedure. They firstly extracted the seven quality features (quality parameters) from a spatial-temporal sub-region of a video stream (both original and processed), which are:

(1)Parameter "si_loss": it detects a decrease or loss of spatial information;

(2)Parameter "hv_loss": it functions as a detection of a shift of edges from horizontal & vertical orientation to diagonal orientation;

(3) Parameter "hv_gain": the parameter measures a shift of edges from diagonal to horizontal & vertical;

(4) Parameter "chroma_spread": This parameter detects changes in the spread of the distribution of two-dimensional color samples;

(5) Parameter "si_gain": it assesses improvements to quality that result from edge sharpening or enhancements; (6) Parameter "ct_ati_gain": this feature is used for measuring the amount of spatial detail, and a temporal information feature, measuring the amount of motion present in the spatial/temporal region; [START_REF] Bolin | A perceptually based adaptive sampling algorithm[END_REF] Parameter "chroma_extreme": This measurement is for the detection of several localized color impairments.

The VQM model is then a linear combination of the seven parameters, whose weights were determined by 1536 subjectively rated video sequences.

V QM = -02097 • si_loss + 0.5969 • hv_loss + 0.2483 • hv_gain + 0.0192 • chroma_spread -2.3416 • si_gain + 0.0431 • ct_ati_gain + 0.0076 • chroma_extreme (3.15)
In [START_REF] Pinson | A New Standardized Method for Objectively Measuring Video Quality[END_REF], the Pearson linear correlation between the VQM indexes and Difference Mean Opinion Scores (DMOS) for the testing videos was up to 0.91. A recent research on video visual quality assessment is MOtion-based Video Integrity Evaluation (MOVIE) index [START_REF] Seshadrinathan | Motion-based perceptual quality assessment of video[END_REF], which is an integration of both spatial and temporal measurements of distortions on the reference and the processed videos. For the spatial distortion mea-surements, the Spatial MOVIE index uses outputs of the spatial-temporal Gabor filters to accomplish the Structural SIMilarity (SSIM) index and the information fidelity criterion (IFC). On the aspect of temporal distortion measurements, the temporal MOVIE index computes motion information from the reference video explicitly, and measures the quality of the processed video along the motion trajectories of the reference video. At last, the MOVIE index is a multiplication of the Spatial MOVIE index and the Temporal MOVIE index. The MOVIE index takes the measures of both spatial and temporal motion distortions into account, and thus outperforms among the counterparts (e.g., PSNR, VSNR, SSIM, MS-SSIM, and VIF based video quality metrics, VQM, etc) in terms of correlation with human judgments [START_REF] Seshadrinathan | Motion-based perceptual quality assessment of video[END_REF][START_REF] Seshadrinathan | Study of subjective and objective quality assessment of video[END_REF].

3D mesh visual quality (MVQ) metrics

As we mentioned in previous chapter, accompanying the developments of 2D image technologies, the advances of computer graphics boost extensive uses of 3D data in many applied domains, like virtual reality (VR), e-commerce, digital entrainments, scientific visualization, etc. The most commonly used 3D data is represented in the form of polygonal meshes. Similar to 2D image visual quality assessment, diverse 3D visual quality metrics were designed to evaluate/boost all the processing operations on 3D objects (e.g. simplification, compression, watermarking, etc). These 3D visual quality measurements can be mainly classified into two types: (1) model-based metrics, which extract the geometric attributes (e.g., geometric positions, curvatures, dihedral angles, etc.) as basic quality features; (2) image-based metrics, inherited from image/video visual quality metrics, which measure the screen-space distance (or similarity) of the visualized 3D data that are thus represented as images or video sequence (e.g., snapshots of a mesh from different views) [START_REF] Corsini | Perceptual metrics for static and dynamic triangle meshes[END_REF][START_REF] Lavoué | Quality assessment in computer graphics[END_REF].

Model-based metrics

Vertex-position based metrics

The first 3D fidelity metrics were based on geometric position distances. In the past decades, the most extensively used metric was the Hausdorff distance, which was firstly designed for evaluating simplification algorithms [START_REF] Schroeder | Decimation of triangle meshes[END_REF]. The Hausdorff distance is calculated as follows:

Survey on objective visual quality metrics for 2D images, videos and 3D models Denote e(p, A) represent the minimum distance from a 3D spatial point p to a 3D mesh A:

e(p, A) = min v A i ∈A d(p, v A i ) (3.16)
in which d is the Euclidian distance, and v A i means the i th vertex of A. The asymmetric Hausdorff distance between two meshes A and B is computed as:

H a (A, B) = max v A i ∈A e(v A i , B) (3.17)
Then, the symmetric Hausdorff distance is:

H(A, B) = max{H a (A, B), H a (B, A)} (3.18)
Moreover, the ensembles of e(v A i , B) can be considered as local predictions of the differences between two meshes A and B. The Referring to the pioneering metrics on 2D image quality, the root mean square (RMS) error is to pool all the distances of corresponding vertices between two meshes:

RMS(A, B) = ( n ∑ i=1 ||v A i -v B i || 2 ) 1/2 (3.19)
where n means the number of vertices on two meshes respectively, v B i of B is the corresponding vertex to the vertex v A i on mesh A. This definition limits the comparison between two meshes having the same connectivity. Hence, another mean square error (MSE) was designed based on Hausdorff distance, of which the asymmetric MSE is defined as:

MSE a (A, B) = N A ∑ i=1 e(v A i , B) 2 (3.20)
where N A is the number of vertices on mesh A. And after the computations of MSE a (A, B) and MSE a (B, A), the Maximum Root Mean Square(MRMS) can be derived as:

MRMS(A, B) = max{ MSE a (A, B), MSE a (B, A)} (3.21)
Another metric based on the geometric Laplacian operator [START_REF] Karni | Spectral compression of mesh geometry[END_REF] was introduced to perceptually evaluate compression algorithms. The geometric Laplacian can reflect a degree of smoothness of the surface by considering the difference vector ⃗ u(v) between a given vertex v and its new position after a Laplacian smoothing step. It can be described as:

⃗ u(v) = v - ∑ i∈n(v) l -1 i v i ∑ i∈n(v) l -1 i (3.22)
where n(v) is the number of neighboring vertices' indices of v, l i refers to the Euclidean distance from v to its neighbor v i . Based on the geometric Laplacian operator, a mesh visual quality metric GL 1 is derived based on the mean geometric distance between corresponding vertices of two meshes (A and B) and the mean distance of their geometric Laplacian values:

GL 1 (A, B) = αRMS(A, B) + (1 -α)( n ∑ i=n || ⃗ u(v A i ) -⃗ u(v B i )|| 2 ) 1/2 (3.23)
α in [START_REF] Karni | Spectral compression of mesh geometry[END_REF] is determined as 0.5, while in the work [START_REF] Sorkine | High-pass quantization for mesh encoding[END_REF], α equals to 0.15, which leads to a different metric GL 2 .

Curvature-based metrics

Curvature is an important geometric attribute, which reflects a curving degree of a line or a surface. Many mesh visual quality metrics were developed based on two principal curvatures: minimum curvature K 1 and maximum curvature K 2 (i.e. the eigenvalues of the shape operator at a vertex v on a surface ) and their derivatives: A high-level attribute, mesh saliency [START_REF] Lee | Mesh saliency[END_REF] (see Figure 3.14), was introduced as a measure of visually regional importance for meshes. In details, on a small region with radius σ (σ ∈ {2ε, 3ε, 4ε, 5ε, 6ε}), where ε is 0.3% of the diagonal length of a mesh's bounding box), for the center vertex v, it firstly computes the Gaussian average of the mean curvatures (G(K mean (v), σ )) over the vertices within the region. Then the local mesh saliency for scale σ : S(v) is calculated as:

Gaussian curvature (K 1 × K 2 ), Mean curvature ((K 1 + K 2 )/2), Shape index (2/π * arctan[(K 1 + K 2 )/(K 1 -K 2 )]), Curved- ness ( (K 2 1 + K 2 2 )/2) [6, 57], etc.
S(v) = |G(K mean (v), σ ) -G(K mean (v), 2σ )|.
Based on the principal curvatures and their derivatives, several well-known metrics were designed and will be detailed in the following parts. Inspired by Structural SIMilarity (SSIM) [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF] index for 2D image quality evaluation, Lavoué et al. [START_REF] Lavoue | Perceptually driven 3D distance metrics with application to watermarking[END_REF] introduced the Mesh Structural Distortion Measure (MSDM) for evaluating the watermarking algorithms. The MSDM performs an analysis of the mean curvature (i.e. average, standard deviation and covariance) on local regions of the meshes. Accordingly, the local measure of the metric LMSDM in a region (window) a of A and corresponding b of B is defined as: 

LMSDM(a, b) = (0.4 × L(a, b) 3 + 0.4 ×C(a, b) 3 + 0.2 × S(a, b) 3 ) 1 3 (3.24)
L(a, b) = ||µ a -µ b || max(µ a , µ b ) C(a, b) = ||σ a -σ b || max(σ a , σ b ) S(a, b) = ||σ a σ b -σ ab || σ a σ b (3.25)
with µ a , µ b , σ a , σ b and σ ab are respectively average , standard deviation and covariance of the mean curvature over the local windows a and b. A local window is denoted as a set of connected vertices and intersected points inside and on a sphere with a given radius: 0.5% of the bounding box length. Figure shows an example of local window computation, and the curvature of a edge point C(v e ) (i.e. the intersection between the sphere and a edge of the meshe ) is are computed as:

C(v e ) = d 2 d 1 +d 2 C(v 1 ) + d 1 d 1 +d 2 C(v 2 )
. Finally, The global MSDM index between two meshes A and B is computed via Minkowski pooling method associated with all local windows:

MSDM(A, B) = ( 1 n w n w ∑ j=1 LMSDM(a j , b j ) 3 ) 1 3 (3.26)
where n w is the number of local windows. The MSDM is an asymmetric visual distortion index ranging from 0, meaning the identical distortion, to 1, implying two completely different meshes. Following the concept of MS-MSSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF], Lavoué et al. later on proposed MSDM2 [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF], which is a multi-scaled and symmetric version of MSDM (see Figure 3.16). At a given scale h, MSDM2 also upgraded the average curvatures over local windows a and b up to Gaussian average ones, where a Gaussian weighting function w h v () is adaptively multiplied to the mean curvature of each neighboring point v i according to the distance from center vertex v to the v i . At a give scale h, the w h v (v i ) is computed as follows:

w h v (v i ) = e -2||v i -v|| 2 /h ∑ v j ∈N(v,h) e -2||v j -v|| 2 /h (3.27)
where N(v, h) is the ensemble of vertices and intersections over the local window. The corresponding standard deviations and covariance values are then upgraded to the Gaussian-weighted standard deviations and covariance values following the same scenario as the Gaussian average. The local distortion measure LD h (v) at the given scale h is then defined as:

LD h (v) = 0.4 × L h (a, b) + 0.4 ×C h (a, b) + 0.2 × S h (a, b) (3.28)
Thus, for n scales of local windows, the multi-scale local distortion measure MLD(v) is:

MLD(v) = ∑ n i=1 LD h i (v) n (3.29)
From mesh A to B, the global distortion score GMD(A, B) of the MSDM2 is computed via a Minkowski pooling, defined as:

GDM(A, B) = ( 1 n B n B ∑ j=1 MLD(v) 3 ) 1 3 
(3.30)

with n B the number of vertices over mesh B. Finally, the symmetric MSDM2 index is calculated as follows:

MSDM2 = 1/2(GDM(A, B) + GDM(B, A)).
Motivated by MSDM2, a recent mesh visual quality metric ( Tensor-based Perceptual Distance Measure (TPDM)) [START_REF] Torkhani | A curvature tensor distance for mesh visual quality assessment[END_REF] considers full information of curvature amplitudes and principal directions, which is called mesh curvature tensor: T . According to their definition, on each vertex v of a mesh, curvature tensor T is computed as:

T (v) = 1 |B| ∑ edges e
β (e)|e ∩ B| ē ēt (3.31) where |B| is the area of the geodesic disk, defined by user, β (e) is the signed angle between the normals of the two triangles incident to edge e, |e ∩ B| is the length of the part of e inside B, and ē is a unit vector in the direction of e (see Figure 3.17). Given a vertex v in the reference mesh A and its corresponding vertex v ′ on the surface of the distorted mesh B, the curvature tensors on the two vertices are definded respectively by T and T '. Then, the local tensor distance (LT D) measure for each pair of v and v ′ is computed as:

LT D = θ min δ K min + θ max δ K max (3.32)
where θ min (similarly for θ max ) is an angle between γ min (i.e. the minimum direction of T ) and γ ′ 1 (i.e. the minimum direction of T ′ that has the smallest angular distance to γ min ), while δ K min (similarly for δ K max ) means a Michelson-like contrast of the curvature amplitudes k min (i.e. the minimum curvature of T ) and k ′ 1 (i.e. the minimum curvature of T ′ ). In recent years, Wang et al. [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF] designed a metric so-called FMPD to measure the perceptual Figure 3.17: Illustration of the curvature tensor computation The image comes from [START_REF] Torkhani | A curvature tensor distance for mesh visual quality assessment[END_REF].

distance of two meshes. Based on the analysis of Gaussian curvature, the FMPD measures the mesh local roughness. More precisely, for each vertex v i on a mesh, they defined the local roughness LR i as a weighted difference between the Gaussian curvatures of v i and the Gaussian curvatures of the neighbors. Furthermore, the final local roughness measure does not only consider the masking effect by modulating a masking effect function, but also take a surface-weighted average of the mesh's local roughness. The global roughness (GR) of the mesh is then computed as a normalized surface integral of the local roughness. Finally, the perceptual distortion FMPD index between mesh A and B is defined as:

FMPD(A, B) = c|GR A -GR B | (3.33)
where c = 8.0 is a scaling factor that scales the FMPD index into the interval [0, 1].

Normal-based metrics

Besides geometric position and curvatures, the normal of a vertex (or a facet) can also provide useful information for evaluating geometric properties of a 3D mesh. And an angle between the normals of two adjacent facets on a mesh yields the dihedral angle, which is related to the surface roughness [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF]. Two pioneering surface roughness measures based on analysis of normals were the multi-scale roughness proposed by Wu et al. [START_REF] Wu | An effective feature-preserving mesh simplification scheme based on face constriction[END_REF], and smoothing-based roughness by Gelasca et al. [START_REF] Gelasca | Objective evaluation of the perceptual quality of 3D watermarking[END_REF].

In the multi-scale roughness estimation, Wu et al. [START_REF] Wu | An effective feature-preserving mesh simplification scheme based on face constriction[END_REF] associated each dihedral angle to a quantity of local roughness by:

ρ d = 1 -⃗ N 1 • ⃗ N 2 (3.34)
where ⃗ N 1 and ⃗ N 2 are the normals of adjacent triangles. Based on the definition, the roughness of a given triangle T is related the mean G(v j ) and variance V (v j ) values of local roughness 

ρ 1 (T ) = G(v 1 )V (v 1 ) + G(v 2 )V (v 2 ) + G(v 3 )V (v 3 ) V (v 1 ) +V (v 2 ) +V (v 3 ) (3.35) 
The final local roughness evaluation per-vertex ρ 1 (v) takes account for different scales of bumpiness (i.e. find the maximum value among the 1-ring, the 2-ring and the 4-ring computations around a given vertex v). The global roughness ρ 1 (A) of a mesh A is the sum of local roughnesses of all vertices.

The smoothing-based roughness estimation [START_REF] Gelasca | Objective evaluation of the perceptual quality of 3D watermarking[END_REF] is based on the consideration whether distortions can be perceived on smoothed surfaces (see Figure 3.18). Accordingly, the approach firstly applies a Taubin smoothing algorithm to smooth the mesh, and then measures the distance between each vertex v of a mesh A and its corresponding vertex v S of a smoothed version A S along the normal of v S (i.e. ⃗ n S v ) in the following way:

d OS (v, v S ) = pro j ⃗ n S v (v -v S ) (3.36)
Then the local smooth-based roughness is the division between variance of the 2-ring d OS (v, v S ) and the area of the faces that form the 2-ring of v. The total roughness ρ 2 (A) of a mesh A is the sum of local roughnesses of all vertices. By utilizing these two surface roughness measures respectively, Corsini et al. [START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF] developed two mesh quality metrics (3DPM1 and 3DPM2) considering the increment of the global roughness ρ(•) (i.e. ρ 1 (•) or ρ 2 (•)) between mesh A and its distorted mesh B:

3DW PM(A, B) = log ( ρ(B) -ρ(A) ρ(A) ) -log k (3.37)
with constant k to avoid numerical instability. Soon afterwards, Váša and Rus [119] defined the oriented dihedral angle per-edge to measure the mesh local roughness. In details, on the surface of a mesh A, assume two adjacent triangles

t 1 = {v 1 , v 2 , v 3 } and t 1 = {v 3 , v 2 , v 4 } with normals ⃗ N 1 and ⃗ N 2 ,
the oriented dihedral angle is expressed as follows:

D t 1 ,t 2 = arccos ( ⃗ N 1 , ⃗ N 2 ) * sgn( ⃗ N 1 (v 4 -v 3 )) (3.38)
The corresponding dihedral angle on mesh B is denoted as

D t 1 ,t 2 .
Based on this local roughness, they proposed a mesh visual quality metric DAME (the abbreviation of Dihedral Angle Mesh Error), which computes the local roughness variations between mesh A and mesh B. The global DAME index is the summation of the local roughness variations for all edges of two meshes in the following way:

DAME = 1 n e ∑ {t 1 ,t 2 }∈n e ||D t 1 ,t 2 -D t 1 ,t 2 || • m t 1 ,t 2 • ω t 1 ,t 2 (3.39)
where n e is the number of all triangle pairs that share one edge, m t 1 ,t 2 is a weight relative to the masking effect, which increases the values of distortion on smooth surfaces, ω t 1 ,t 2 is a weights relevant to the surface visibility.

So far, we have presented several mesh visual quality metrics based on geometric attributes (e.g., the vertex position, the curvatures, the normal of vertex (or facet), and their derivatives, such like dihedral angles, geometric Laplacian, Laplacian of Gaussian curvature and so forth).

A metric [START_REF] Lavoué | Perceptual quality metrics for 3D meshes: Towards an optimal multi-attribute computational model[END_REF] based upon the optimal combination of all these attributes was proposed by Lavoué et al. The surveys [START_REF] Lavoue | A comparison of perceptually-based metrics for objective evaluation of geometry processing[END_REF][START_REF] Lavoué | Quality assessment in computer graphics[END_REF] have well summarized the performance of all these mesh quality metrics in terms of correlation with subjective opinions, and the results indicate that the classical geometric distances, like Hausdorff and RMS, provide a very poor correlation with human judgment, while the most recent model-based metrics (e.g. MSDM2, TPDM, FMPD) provide much better performance.

Image-based metrics

In contrast to the model-based metrics, the image-based ones estimates the visual quality of images or video sequence computed by rendering the 3D objects (e.g., snapshots of an object from different views) by using image quality metrics (e.g., MSE, SSIM, VIF, etc.). The image-based metrics thus simplify the evaluation procedures.

The first use of image-based metrics was proposed by Lindstrom and Turk [START_REF] Lindstrom | Image-driven simplification[END_REF] in the context of evaluating the artifacts caused by simplification. In their work, they applied a simple RMS metric to measure distances between two models using snapshots regularly sampled from 20 different viewpoints on a bounding sphere of each model (see Figure 3.19). Soon afterwards, they [START_REF] Lindstrom | Model Simplification using Image and Geometry-Based Metrics[END_REF] replaced RMS with some visual quality metrics (e.g., Sarnoff JND metric, etc), but surprisingly found that RMS performs better than the visual quality metricsin terms of predicting the perceived quality of artifacts. For the purposes of driving simplification and remeshing of textured meshes, Qu et al. [START_REF] Qu | Perceptually guided polygon reduction[END_REF] proposed a metric based on the computation the visual masking properties of a texture. By using the Sarnoff JND to compare the original texture map and its Gaussian filtered version, the obtained masking map which can indicate the visual masking potential on the surface, and thus guide the remeshing or simplification algorithms.

In order to design an optimal approach of discrete levels of detail (LOD) for the visualization of complex 3D building facades, Zhu et al. [START_REF] Zhu | Quantitative analysis of discrete 3D geometrical detail levels based on perceptual metric[END_REF] presented a new quantitative analytical method to study the relationship between the viewing distance and visibility of a textured model's façade details using image visual quality metrics (i.e. VDP and SSIM).

Since the image-based metrics evaluates the 3D mesh visual quality in a simple and unified fashion, can they perform better than model-based metrics regarding the correlation with subjective evaluations on 3D distortions? In the study conducted by Lavoue et al. [START_REF] Lavoue | On the Efficiency of Image Metrics for Evaluating the Visual Quality of 3D Models[END_REF], they suggested image-based metrics may perform significantly close to the model-based metrics in evaluating the visual quality of different versions of a same object under a single type of artifact. However, the image-based metrics are less accurate in comparing different artifacts or artifacts applied to different 3D objects.

Conclusion

In this chapter, we briefly presented several classical and recent objective visual quality metrics for 2D images, videos and 3D meshes. Most of them aim at evaluating the distortions caused by one specific graphic processing algorithm (e.g., Waston's DCT [START_REF] Watson | DCTune: A Technique for Visual Optimization of DCT Quantization Matrices for Individual Images[END_REF] metric for JPEG compression, IFC [START_REF] Sheikh | An information fidelity criterion for image quality assessment using natural scene statistics[END_REF] for image noise, Hausdorff distance [START_REF] Schroeder | Decimation of triangle meshes[END_REF] for mesh simplification, MSDM [START_REF] Lavoue | Perceptually driven 3D distance metrics with application to watermarking[END_REF] for mesh watermarking, etc.), while others focus on evaluating different kinds of distortions (e.g., SSIM [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF] , MS-SSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF], VQM [START_REF] Pinson | A New Standardized Method for Objectively Measuring Video Quality[END_REF] , FMPD [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF], MSDM2 [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF], etc.). About the metric outputs, several metrics can only provide one global quality score (e.g., VIF [START_REF] Sheikh | Image information and visual quality[END_REF], 3DW PM 1 , 3DW PM 2 [START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF], image-based mesh metrics [START_REF] Lindstrom | Image-driven simplification[END_REF][START_REF] Qu | Perceptually guided polygon reduction[END_REF][START_REF] Zhu | Quantitative analysis of discrete 3D geometrical detail levels based on perceptual metric[END_REF] , etc.), while some other metrics, besides the global quality score, can also provide local distortion maps (e.g., MSE, PSNR, IFC , SSIM, MS-SSIM, IW-SSIM [START_REF] Wang | Information content weighting for perceptual image quality assessment[END_REF] , Hausdorff distance, MSDM, MSMD2, GL, DAME [119] , etc.). Ultimately, since the output of a visual quality metric should maximally approximate the human perception, the performance of all the objective metrics are therefore evaluated using the subjective quality experiments, where a group of observers provide subjective opinions on a set of distorted images or 3D models. Thus, this draws forth another important theme that is how to design a subjective experiment, from which we can collect the effective information of human estimations on different artifacts, and quantitatively evaluate the performance of the metrics using the collected subjective opinions. In the following chapter, we turn to the detailed protocols of designing subjective quality assessments experiments and the means of evaluating the performance of the objective qualiy metrics.

Chapter 4

Subjective visual quality assessments in computer graphics

Introduction

The objective visual quality metrics introduced in previous chapter focus on objectively and automatically evaluating the visual quality and/or predicting the locally perceived distortions in processed graphics, whereas a subjective visual quality assessment consists in asking a bunch of observers to globally or locally evaluate (i.e. rate, select a preference or mark) distorted 3D models or images. Hence, the subjective studies are generally used to evaluate the performance of objective metrics. Furthermore, some objective visual quality metrics can be driven by subjective opinions using machine learning [START_REF] Lavoué | Perceptual quality metrics for 3D meshes: Towards an optimal multi-attribute computational model[END_REF]. However, a subjective quality assessment usually requires a sufficient number of observers and experimental trials to draw significant conclusions, which makes the assessment very expensive. Nevertheless, such subjective study still cannot ensure to generate conclusive results [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. Hence, a great deal of research was prompted to design efficient and rigorous subjective quality assessment experimental protocols. The most prominent subjective study protocols are: single-stimulus, double-stimulus, forced-choice pairwise comparison and similarity judgments (see Figure 4.1). These four protocols are able to produce a scaled global quality (i.e. a single score) from observers, which aims to reflect the global level of annoyance caused by all the artifacts on a 3D model or an image. The single-stimulus and the double-stimulus protocols may also enable observers to evaluate the local distortion visibility of artifacts (i.e. indicating the spatial localization of the distortions). In this chapter, we will cover every subjective quality assessment protocol, including the specific experimental setups, the four subjective assessing protocols, scaling methods of computing collected subjective data, and the means of testing objective quality metrics performances with the scaled subjective data. The performance of all the introduced quality metrics will be summarized at the end of the chapter. 

Specific setups for subjective experiment

Several important parameters are involved in a subjective experiment, including the selection of graphic data (e.g. images, videos, 3D models, etc.) to be evaluated, the types and the amplitudes of the distortions, and the rating protocols (i.e. single-stimulus, double-stimulus, forced-choice pairwise comparison and similarity judgments). Precisely, the number, types and the amplitudes of stimuli are usually decided by following the criteria [START_REF] Bulbul | Assessing visual quality of 3-D polygonal models[END_REF][START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF] below:

• Stimuli types: Presenting diverse distortions in order to conclude significant remarks after analysis of objective metrics performances.

• Distortion levels: The amplitude of a stimuli should be visible but not too strong; the idea is to span a large range of perceptual impacts.

• Stimuli number: Using limited number of stimuli to restrict each experiment time within a generally acceptable range by each observer ( 30 minutes is usually the accepted limit [START_REF] Itu | Methodology for the subjective assessment of the quality of television pictures[END_REF]).

However, for a subjective quality study involving 3D content, additional conditions should be considered as detailed in [START_REF] Bulbul | Assessing visual quality of 3-D polygonal models[END_REF][START_REF] Lavoué | Quality assessment in computer graphics[END_REF]:

• Lighting: Rogowitz and Rushmeier [START_REF] Rogowitz | Are image quality metrics adequate to evaluate the quality of geometric objects? Photonics West[END_REF] addressed that the spatial location and nature of light source(e.g., spot light, point light, etc.) can strongly influence the perceived quality of artifact.

• Materials and Shading: Complex materials and shading methods may enhance the visibility or introduce masking effect [START_REF] Ferwerda | A Model of Visual Masking for Computer Graphics[END_REF][START_REF] Lindstrom | Image-driven simplification[END_REF].

• Background The perceived quality of a 3D model may be influenced by its background.

Particularly the background may affect the observations of the silhouette [START_REF] Lavoué | Quality assessment in computer graphics[END_REF].

• Animation & interaction: The complexity of showing a 3D model to the observers can range from the simplest display (e.g., a static image with fixed view point [START_REF] Watson | Measuring and predicting visual fidelity[END_REF].) to the most complex interactions (e.g., free controls of 3D models, such like rotation, translation, zoom, marking, etc. [START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF]). For each observer, it is important to get access to different viewpoints of the models, however, allowing this free interaction may result in cognitive overload, which may alter the results [START_REF] Lavoué | Quality assessment in computer graphics[END_REF]. Animation is a promising compromise used in [START_REF] Pan | Quality metric for approximating subjective evaluation of 3-D objects[END_REF], however, a fairly slow animation speed is required, since the speed can impact on the Contrast Sensitivity Function (CSF) [START_REF] Kelly | Motion and vision. II. Stabilized spatio-temporal threshold surface[END_REF].

Some public database provide processed 3D models with different types and distortion extents. For instance, 

Four subjective quality evaluation protocols

Four dominant subjective quality evaluation protocols exist: single-stimulus, double-stimulus, forced-choice pairwise comparison and similarity judgments. They are adapted in a vast majority of research of image, video and 3D mesh quality assessments. Figure 4.1 shows a general view of these four protocols.

Single stimulus

Global quality rating experiment

The single stimulus scenario (see Figure 4.1 (a)) for global fidelity of processed graphics often involves presenting an image, a video clip or a 3D model within a short and fixed duration, and then demanding an observer to rate it using one of describing categories (e.g excellent, good, fair, poor or bad ) or a quality scale (e.g., from 1 (the worst quality) to 10 (the best quality)) [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF][START_REF] Chen | New requirements of subjective video quality assessment methodologies for 3dtv[END_REF]. The discrete categorical scales are widely used in major subjective experiments, however some experiments prefer continuous to categorical scales to avoid quantization artifacts [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. A branch method of the single stimulus scenario is socalled absolute category rating with hidden reference [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF], where the reference is displayed among other stimuli. For instance, Corsini et al. [START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF] utilized this protocol to collect the subjective opinion on the different artifacts caused by watermarking. Similarly, Lavoué et al. [START_REF] Lavoue | Perceptually driven 3D distance metrics with application to watermarking[END_REF] adapted the same scenario to study the HVS sensitivity on general artifacts (e.g. noise addition, watermarking and smoothing, etc.) with varying distortion strengths. In [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF], Mantiuk et al. addressed that presentation time is a variable that affects the overall length of the experiment and thus the efficiency of the experimental method, therefore 3-10s presentation time for each stimulus (including the reference) is recommended. The single stimulus scenario is very efficient, only n + 1 trials (one additional trial for the reference) are sufficient for assessing n stimuli.

Local distortion visibility experiment

Instead of global rating, the single stimulus scenario for local distortion visibility assessment requires the observers to directly mark regions with annoying distortions. To the best of our knowledge, Čadík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] implemented this protocol (see Figure 4.3), instructing observers to mark all the areas containing unpleasant distortions in an image, where only distorted images were exhibited to the observers. Each observer took on average 30 minutes to finish marking 11 processed images (e.g., noise, alias, brightness, etc.) in one experiment. In their work, the collected data are used to reveal weaknesses of both simple (PSNR, MSE, etc.) and advanced (SSIM, MS-SSIM, etc.) metrics. 

Double stimulus

Global quality rating experiment Double stimulus categorical rating for the global fidelity (see Figure 4.1(b)) is analogous to the single-stimulus method, but a reference and its distorted version are simultaneously shown to an observer for the fidelity rating. This method requires n trials to assess n stimuli. Subjective quality studies conducted by Watson [START_REF] Watson | Measuring and predicting visual fidelity[END_REF] and Rogowitz and Rushmeier [START_REF] Rogowitz | Are image quality metrics adequate to evaluate the quality of geometric objects? Photonics West[END_REF] followed this scenario to collect user opinions on different types of simplified 3D models at different simplification ratios. The purpose of Watson [START_REF] Watson | Measuring and predicting visual fidelity[END_REF] was to evaluate the performance of image-based and geometric metrics for the task of predicting distortion quality of simplified 3D models, whereas Rogowitz and Rushmeier [START_REF] Rogowitz | Are image quality metrics adequate to evaluate the quality of geometric objects? Photonics West[END_REF] attempted to study whether 2D snapshots of a 3D model can be suited to predict the visual quality. Other works devised by Rushmeier et al. [START_REF] Rushmeier | Perceptual issues in substituting texture for geometry[END_REF] and Pan et al. [START_REF] Pan | Quality metric for approximating subjective evaluation of 3-D objects[END_REF] also relied on the double stimulus method to study the interactions between texture and mesh resolutions influencing the visual appearance of a simplified textured 3D model. In order to study the visual impact of masking effects on 3D mesh surface, Lavoué et al. [START_REF] Lavoué | A local roughness measure for 3D meshes and its application to visual masking[END_REF] conducted a double-stimulus experiment by asking observers to rate the fidelity of meshes with varying strength noises applied on either smooth or rough areas.

Local distortion visibility experiment

The double stimulus protocol (see Figure 4.3) can be used for evaluating the local distortion visibility as well, where researchers instruct observers to mark the visually different areas on processed graphic by comparing its reference. In [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF], Cǎdík et al. also conducted this double-stimulus experiment, verifying the high correlation between the locally perceived distortions with full-reference (i.e. double stimulus protocol ) and with no-reference (i.e. single stimulus protocol).

Forced-choice paired comparison

Comparing to assigning a discrete or continuous quality scale to a each stimulus in the singleor double-stimulus scenarios, the forced-choice paired comparison protocol (Figure 4.1(c)) simply requires each observer to provide a preference (e.g., {'better', 'worse'}) between each pair of stimuli over a number of comparison trials [START_REF] Lee | Subjective Quality Evaluation via Paired Comparison: Application to Scalable Video Coding[END_REF]. For instance, in the experiment designed by Wills et al. [START_REF] Wills | Toward a perceptual space for gloss[END_REF], each observer was asked to click on the appropriate button to indicate which side of the image (left or right) appears more similar to the center image (see Figure 4.4). This protocol benefits the advantages of simplicity and reliability enhancement, especially when the quality difference between the processed graphics is not easily distinguished or the multiple modalities of quality variations (e.g., spatial resolution, temporal resolution and so on) are involved [START_REF] Chen | A Crowdsourceable QoE evalutation framework for multimedia content[END_REF][START_REF] Voran | Gradient ascent subjective multimedia quality testing[END_REF][START_REF] Lee | Subjective Quality Evaluation via Paired Comparison: Application to Scalable Video Coding[END_REF]. Moreover, in contrast to the singleor double-stimulus methods that produce a score to describe the subjective visual quality of the artifacts, paired comparison method usually provides a ranking of all stimuli from the best perceived quality to the worst quality or vice versa.

However, the forced-choice paired comparison can be very tedious, since it requires ( N 2 ) comparison trials to get all the possible evaluations on N stimuli. Especially, when N is large, the trials number may be too large to be feasible [START_REF] Lee | Subjective Quality Evaluation via Paired Comparison: Application to Scalable Video Coding[END_REF]. In such cases, it is necessary to use some sorting algorithms to reduce the trials number [START_REF] Silverstein | Efficient method for paired comparison[END_REF]. Efficient sorting algorithms, such as quicksort, can reduce the number of comparisons necessary to order a set of conditions to approximately NlogN [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF][START_REF] Sedgewick | An Introduction to the Analysis of Algorithms[END_REF].

Pairwise similarity judgment

Further than forced-choice paired comparison, pairwise similarity judgment method (Figure 4.1(d)) does not only ask observers to choose their preferences but also indicate a quality protocol. An observor is asked to click on the appropriate button to indicate the center image appears more similar to the image on the left or to the image on the right. This platform is adapted from [START_REF] Wills | Toward a perceptual space for gloss[END_REF]. number on the how large the difference in quality is between two stimuli, in which number '0' means no difference is observed between the pair [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. Pairwise similarity judgments can also use the sorting algorithms to reduce the comparisons number.

Analysis of subjective data 4.4.1 Inter-observer agreement

During the experiments, the observers may provide implausible quality scores, preferences or local distortion markings due to their misunderstandings or derelictions of the experiments or their divergent opinions on evaluating one stimulus [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. Hence, before exploiting the results from the subjective experiments, it is critical to analyze the inter-observer agreement between all observers, which indicates the coherency of observers' opinions. To assess the inter-observer agreement, a well-known mathematical method Kendall's coefficient of agreement U introduced in [START_REF] Salkind | Encyclopedia of measurement and statistics[END_REF] can be used for analyzing the consistency of raters. Generally, u ranges from u = -1/(m -1), meaning no agreement between m observers, to 1, indicating the consensus of all the observers [START_REF] Salkind | Encyclopedia of measurement and statistics[END_REF]. The Kendall's coefficient of concordance W [START_REF] Kendall | The Problem of m Rankings[END_REF] can aslo reflect the inter-observer agreement of the rankings from paired comparison and similarly judgment. For the agreement of local distortion markings, Čadík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] calculated the coefficient u per pixel of a distorted image and made an average coefficient ū across all the pixels to indicate the overall inter-observer agreement of the image.

Usually, a high coefficient u (or W ) value means a high consensus of the observers or, in other words, no statistical evidence that they differ in quality [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. However, a low u (or W ) value (e.g., less than 0.5) may indicate a strong disagreements between observers or some unreliable rating qualities. In such case, it is necessary to remove those unreliable results. Rohaly, A. M., Corriveau, P. J., Libert, J. M., Webster, A. A., Baroncini, V., Beerends, J., ... & Winkler [START_REF] Rohaly | Video quality experts group: Current results and future directions[END_REF] proposed a removal method. Precisely, for each stimulus, the method firstly counts the number of rating results given by each observer that lie out the range [-2σ , 2σ ] (σ : the standard deviation of the results over all the observer for one stimulus), and then rejects the observer whose results meet one of the following conditions: either (1) more 5% of his results are outside the range, or (2) the results outside that range are evenly distributed so that the absolute difference between the result numbers that exceed the lower and the upper bound of that range is not more than 30%. If u (or W ) remains a low value after removal measures, it possibly implies a highly difficult task for observers to perceive the artifact.

Scaling methods

Once all the collected experimental data is validated for high reliability by the analysis of inter-observer agreement, it needs scaling into a mean quality index for each stimulus over all the observers. For the global results from single-and double-stimulus protocols, addition to the mean opinion score (MOS) over the observers, we can also compute the the differential mean opinion score (DMOS) as the difference of MOS values between the reference and its distorted version:

d i, j,k,r = q i,re f (k),k,r -q i, j,k,r (4.1) 
The indices correspond to i-th observer , j-th processing algorithm, k-th processed graphic (image, video, 3D model, etc.), and r-th repetition. re f (k) is the reference condition for the k-th processed graphic. However, each observer tends to provide a separate quality scale for each particular stimulus, resulting in different scales associated with each observer. Thus it is necessary to unify all the results over observers in order to make their scores comparable [START_REF] Van Dijk | Quality assessment of coded images using numerical category scaling[END_REF]. To unify the results, the easiest way is to apply a linear transformation that makes the mean and the standard deviation equal for all observers. The uniformed result after the transform is called z-score, and expressed as:

z i, j,k,r = d i, j,k,r -di σ i (4.2)
with di the mean DMOS and σ i the standard deviation over all the stimuli For the scaling methods on local distortion markings, Herzog et al. [START_REF] Herzog | NoRM: No-Reference Image Quality Metric for Realistic Image Synthesis[END_REF] computed a probability of detection on local distortion by averaging marking labels (0: unmarked; 1: marked) per pixel across all the observers. And finally, subjective distortion map is produced based on the probabilities of all the pixels (see Figure 4.3).

After obtaining the rankings from paired comparison and similarity judgments, a scaling method is required to convert the rankings of stimuli into quality scales. An easy method [START_REF] Ledda | Evaluation of tone mapping operators using a High Dynamic Range display[END_REF] uses a so-called preference matrix (see Table 4.1) to transform the rankings of the stimuli into vote score, which is a sum of preferences number of one stimulus over others across all the observers. Suggested by [START_REF] Ledda | Evaluation of tone mapping operators using a High Dynamic Range display[END_REF], the vote score of each stimulus d i is the summation of ones in each row.
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Measures of evaluating objective quality metric

Suggested by video quality experts group (VQEG) Phase I FR-TV [START_REF] Chisholm | Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment[END_REF], the performance of an objective metric is evaluated with respect to three attributes of their ability to predict the results of subjective quality assessments.

• Prediction accuracy: The ability to predict the subjective quality results with low error;

• Prediction monotonicity: The degree to which the model's predictions agree with the relative magnitudes of subjective quality results;

• Prediction consistency: The degree to which the model maintains prediction accuracy over corpus.

Following these criteria, after obtaining the subjective quality score or the perceived distortion map, researchers usually rely on several statistical measures to do some regression analyses and compute correlation coefficients between these collected scores and the predictions of the objective quality metrics. The coefficients can indicate the performance of the metrics, and thus evaluate and compare them quantitatively.

Performance of global quality prediction

In [START_REF] Chisholm | Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment[END_REF], four measures (i.e. RMS error, Pearson Linear Correlation Coefficient (LCC) [START_REF] Pearson | Note on Regression and Inheritance in the Case of Two Parents[END_REF], Spearman Rank Order Correlation Coefficient (SROC) [START_REF] Spearman | The proof and measurement of association between two rings[END_REF] and Non-linear regression analysis ) are advised and broadly used to evaluate the performance of the global quality predictions of the objective metrics.

• RMS error: It measures the root-mean-square of differences between DMOS and predictions of an objective quality metric over all stimuli. RMS error is simple but not competent to indicate the prediction consistency [START_REF] Chisholm | Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment[END_REF] (see Figure 4.5). • Pearson Linear Correlation Coefficient (LCC): It computes the covariance of DMOS and the objective predictions divided by the product of their standard deviations, and higher coefficient value means better correlation. This coefficient can well reflect the prediction accuracy.

• Spearman Rank Order Correlation Coefficient (SROC): This coefficient is defined as the Pearson Linear Correlation Coefficient between the ranked values of DMOS and objective predictions. It is a sensitive measure of prediction monotonicty.

• Non-linear regression analysis: Prior to computations of correlation coefficients , it is suggested to use a non-linear function, which is a four-parameter logistic curve, to fit each objective prediction, when recognizing the potential non-linear mapping of the objective metric outputs to the subjective quality scores. The non-linear function is used to transform the set of objective predictions to a set of predicted DMOS values, and correlation coefficients are computed between the predicted DMOS and the subjective DMOS. Moreover, the outlier ratio (percentage of the number of predictions outside the range of ±2 times of the standard deviations) of the predicted DMOS can function as a measure of prediction consistency [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF] (see Figure 4.6).

Figure 4.6: Scatter plots of subjective mean opinion score (MOS) versus metric prediction, presented in [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF]. Each sample point represents one stimulus. All the points are fitted with four-parameter logic curves. from left to right, the predictions are produced by : PSNR, Sarnoff model and SSIM. The scatter plot of SSIM is the most convergent to the non-linear curve, meaning that SSIM has the highest prediction consistency among three metrics.

Performance of local distortion prediction

To the best of our knowledge, few measures evaluate the performance of the objective quality metrics for the task of predicting the local perceived distortion of the artifacts, while many objective metrics, such like SSIM, MS-SSIM, MSDM2, FMPD and so on, are able to provide such local distortion predictions. Researchers usually evaluate this performance by utilizing the subjective detection probability map of local visible distortion, namely the subjective distortion map (see. Figure 4.3). Particularly, the subjective distortion map can indicate the probabilities of visually noticeable distortion over all pixels of an image (or vertices of a 3D mesh surface), but cannot provide any information about the perceived magnitude of a distortion. Hence, such map is propitious to benchmark a metric ability to spot visibly distorted regions in terms of binary classification. To analyze such ability of an objective metric, Cǎdík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] used the receiver-operator-characteristic (ROC) [START_REF] Baldi | Assessing the accuracy of prediction algorithms for classification: an overview[END_REF], which reveals the relation between the size of areas that contain visible distortions and are correctly predicted by an objective metric (true positives), and the areas that do not contain visible distortions but are still predicted (false positives). ROC shows the relation of these two quantities for a varying classification threshold. The objective metric that gives a larger area under the ROC curve (AUC) is assumed to perform better (see Figure 4.7). 

Performance comparison

Thus far, we have presented each procedure for implementing a subjective quality experiment, involving the design of the protocol, the analysis of the collected subjective data and the measures for quantitatively evaluating the performance of the objective quality metric in correlation with the subjective data. The performance of all the classical and recent objective quality metrics in digital graphics (images, videos, 3D models) are evaluated and summarized in the published works [START_REF] Lin | Perceptual visual quality metrics A survey-ref[END_REF][START_REF] Seshadrinathan | Study of subjective and objective quality assessment of video[END_REF][START_REF] Lavoue | A comparison of perceptually-based metrics for objective evaluation of geometry processing[END_REF][START_REF] Lavoué | Quality assessment in computer graphics[END_REF][START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF][START_REF] Lavoue | On the Efficiency of Image Metrics for Evaluating the Visual Quality of 3D Models[END_REF]. Thus, we briefly introduce their conclusions in the following paragraphs:

• Performance of image quality metrics For the performance of global quality prediction, as in [START_REF] Lin | Perceptual visual quality metrics A survey-ref[END_REF], comparing to the classical image metrics (e.g., PSNR), perceptual visual quality metrics (SSIM, VIF, VSNR) perform much better in terms of correlation with subjective opinions (DMOS). In particular, SSIM performs fairly consistently over the different distortion types, as contrasted with VIF and VSNR. Regarding the ability of predicting locally perceived distortion, Čadík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] suggested that a VDP based metric: HDR-VDP-2 performed better than its counterparts (e.g. SSIM, MS-SSIM, etc.) concerning the correlation with subjective distortion maps.

• Performance of video quality metrics Presented by Seshadrinathan et al. [START_REF] Seshadrinathan | Study of subjective and objective quality assessment of video[END_REF], the video quality metrics MOVIE and VQM are superior to other video metrics embedded with image quality metrics, such like PSNR, SSIM, VIF and so on, as regards to correlation with subjective scores (DMOS).

• Performance of mesh quality metrics Summarized in [START_REF] Lavoué | Quality assessment in computer graphics[END_REF], the comparison results show that the classical geometric distances, like Hausdorff and RMS, provide a very poor correlation with human judgment, while the most recent model-based metrics (e.g. MSDM2, TPDM, FMPD) provide much better performance. In order to quantitatively compare the performance between model-based and image based metrics, the subjective study conducted by Lavoué et al. [START_REF] Lavoue | On the Efficiency of Image Metrics for Evaluating the Visual Quality of 3D Models[END_REF] , and indicates that the image-based metrics perform significantly close to the performance of model-based metrics for evaluating the quality of different versions of a same object under a single type of artifact. However, they also pointed out that the image-based metrics are less accurate in comparing different artifacts or artifacts applied to different 3D objects.

Conlusion

By now, we have presented an overview of objective and subjective quality assessments of digital graphics. The research on quality assessment has made a significant progress, with many applications. However, due to the complex modern graphic processes, this research is still in its early stage, and there is an increasing demand for more efficient and effective quality metrics, considering the interactions between geometry and rendering scenarios, functionalities of human visual system (HVS) in complex tasks, and so forth. For instance, to the best of our knowledge, Čadík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] explored a way to capture the information about HVS ability on perceiving the local distortions of 2D images. Based on this information, they evaluated the existing image quality metrics for the task of predicting locally perceived distortions. Unfortunately, hardly any research studies this HVS ability on perceiving 3D objects, while the information about the local visibility of 3D artifacts is also important to locally drive any geometry processing operations, such as mesh simplification, compression and distortion localization, etc. Meanwhile, as mentioned in [START_REF] Lavoué | Quality assessment in computer graphics[END_REF], the current mesh quality metrics measure the distortions either on 3D meshes or on the final rendered images. We barely see an quality metric that considers the interactions between geometric and texture image information, while these interactions (e.g., a simplified 3D mesh mapped with a compressed texture) may cause complex visual artifacts, which could be stronger than either of two distortion impacts due to the additive effects, or weaker, thanks to the masking effects. Thus, the sudy on these interactions rises as an obvious trend in current research.

In next two chapters, we will detail our two major contributions to the subjective and objective visual quality assessments to meet the latest demand. Firstly, in Chapter 5, we present a newly designed subjective quality study based on evaluating the local visibility of geometric artifacts. The collected perceived distortion maps are used to represent several perceptual functionalities of the human visual system (HVS), and serve as ground-truth to evaluate the performance of well-known geometric attributes and metrics for predicting the locally perceived distortions. Then, in Chapter 6, we describe our second contribution: the subjective and objective quality evaluation of texture-mapped 3D models.

Chapter 5

Evaluating the local visibility of geometric artifacts

Introduction

As narrated in previous chapters, 3D meshes are subject to a wide range of processes which include compression, simplification, filtering, watermarking and so forth. These processes inevitably introduce distortions which alter the geometry of these 3D data and thus their final rendered appearance. Classical metrics such as Hausdorff distance and root mean square error have proven to be very poor predictors of the human perception and the visual annoyance of geometric artifacts [START_REF] Lavoue | A comparison of perceptually-based metrics for objective evaluation of geometry processing[END_REF]. As a consequence, mesh visual quality (MVQ) metrics have been recently introduced by the scientific community [119, [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF][START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF], mostly inherited from image quality assessment metrics [START_REF] Wang | Modern Image Quality Assessment[END_REF]. Their objective is to evaluate the visual impact of the geometric artifacts (e.g. geometric quantization noise, smooth deformations due to watermarking, simplification artifacts and so on). A comprehensive review has been recently published about 3D mesh quality assessment [START_REF] Corsini | Perceptual metrics for static and dynamic triangle meshes[END_REF].

The MVQ metrics provide good results in term of correlation with the subjective opinion, however they are mostly specialized in outputting one global quality score which predicts a global level of annoyance caused by all artifacts present in the 3D model. Such global quality index is relevant for many computer graphics applications, for instance, to evaluate a progressive compression method or to reduce/increase the quantization of either vertex position or mesh attributes in mesh compression algorithm. However, beside this global information, it is also important in many cases to obtain an information about the local visibility of the artifacts (i.e. a per-vertex measure of the perceived distortion). Such local information may allow to drive locally any geometry processing algorithms (e.g. simplification, remeshing, filtering and so forth). While some metrics like MSDM2 [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF] do produce such local distortion maps, they have never been evaluated quantitatively with regards to this task.

In that context we propose a new full reference dataset of localized distortion maps for several types of geometrical artefact and meshes, obtained through a subjective experiment.

For this purpose we gather a set of 3D models associated with several types of distortions (watermarking, quantization, non-uniform noise, smoothing and simplification). In the experiment, we ask observers to paint the vertices of distorted models where they perceived noticeable differences as compared with the reference ones (using a brush painting interface).

After an analysis of the inter-observer agreement, we show that the results illustrate some perceptual mechanisms of the Human Visual System (Masking effect and frequency sensitivity).

We then use this dataset to perform quantitative analysis and comparison of the performance of existing metrics and geometric attributes for the task of local visual difference prediction.

The rest of this chapter is organized as follows: section 5.2 presents our subjective experiment. Section 5.3 details the tested attributes and metrics. Finally, section 5.4 presents the performance measure and the results of our study.

Localized distortion experiment

The objective of this experiment is to study the visibility and annoyance of geometric artifacts localized on the surface of 3D objects. More specifically, we ask observers to mark areas of 3D objects that contain noticeable distortions, compared to a reference. Results of this study will provide insights on the perceptibility of certain artifacts and will be used as well to evaluate the performance of existing metrics and geometric features to predict this visibility.

Experimental design

As mentioned in previous chapter, the design of subjective quality evaluation experiment involving 3D content requires the choice of many rendering parameters (e.g. lighting, material, background, level of interaction). Several authors have made such 3D subjective quality experiments [START_REF] Watson | Measuring and predicting visual fidelity[END_REF][START_REF] Rogowitz | Are image quality metrics adequate to evaluate the quality of geometric objects? Photonics West[END_REF][START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF]119]; whereas none of them tackled the task of local artifact marking, these works inspired us to use the following experimental setting:

• We considered a full-reference experiment, i.e. the observers see the distorted 3D model to mark, together with the reference not-distorted one. A no-reference task would have been too difficult since an observer, even expert, cannot have a sufficient a priori on a 3D shape to be able to notice that a region presents an artifact without knowing the reference.

• We considered a full interaction scenario (the use of static viewpoints is not recommended [START_REF] Rogowitz | Are image quality metrics adequate to evaluate the quality of geometric objects? Photonics West[END_REF]).

• To minimize the influence of the light and the camera positions on the perception of artifacts, we simply consider a front directional lighting without specular reflections.

• As in [START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF], we chose a non uniform background in order to minimize the influence of the silhouette.

• We provide to the user a mesh painting tools, with a customable brush size.

Our interface is built upon MeshLab [START_REF] Cignoni | Meshlab: an open-source mesh processing tool[END_REF].

Stimuli creation

The choice of an appropriate corpus of stimuli for a subjective quality experiment is critical and is a complex task, since we have to chose a set of reference 3D models and their distorted versions with appropriate distortion types and appropriate distortion strengths, fulfilling the criteria detailed in section 4.2 Chapter 4. Particularly in our case, all the reference 3D models should represent meshes used either in digital entertainment, or virtual museum with a sufficient population diversity. Indeed, imagine that we chose a too simple reference object (e.g. a sphere) and too simple distortions associated with high amplitudes (e.g. adding sharp geometric creases) then our experiment will be useless since even a simple metric can predict the visibility of such obvious artifacts. On the contrary, the objective of our study is to challenge the ability of existing metrics to detect complex artifacts that occurs in practical operations (e.g. smooth structured patterns) in complex scenarios (e.g. near the visibility threshold). Indeed, even a basic Euclidean geometric distance is able to predict the visibility of a too obvious artifact like a sharp geometric crease added on a sphere. Besides this need of complexity, our dataset must also present a sufficient degree of diversity to allow us to draw significant conclusions regarding the performance of the metrics. Finally, given the limited but necessary time for the painting task, the dataset has to remain of limited size. Indeed, it is not realistic to ask people to paint 80 models, which is the typical size of datasets used for global quality assessment [119,[START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF].

For these goals, we selected a small set of surface models exhibiting very different shapes, containing both smooth and rough parts, and associated with different sampling densities. All the models are formed by closed 2-manifold triangular meshes. For the distortion we have considered realistic processing operations (#1 to #3 and #9 to #11 in Table 5.1):

• Watermarking -Three different algorithms are used, they respectively modify the volume moments [START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF], the low frequency spectral coefficients [START_REF] Wang | Blind and robust mesh watermarking using manifold harmonics[END_REF] and the vertex norms [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF] (i.e. their distance to the centroid of the model). The introduced distortions are respectively smooth deformations [START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF][START_REF] Wang | Blind and robust mesh watermarking using manifold harmonics[END_REF] and structured ring-like patterns [START_REF] Cho | An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms[END_REF].

• Compression -We consider uniform geometric quantization, the most common lossy process of compression algorithms.

• Simplification -We consider the QEM algorithm [START_REF] Garland | Surface simplification using quadric error metrics[END_REF].

On top of these realistic distortions we also consider noise addition and smoothing [START_REF] Taubin | A signal processing approach to fair surface design[END_REF], in order to emulate further complex processings. These distortions are applied in a local manner on selected regions of the object, either rough or semi-rough. The concerned stimuli objects (#4 to #8 in Table 5.1) have been picked from the LIRIS General Purpose subjective database. All the distortions are prestented in Appendix A. As stated above, the idea is to create a compact set of challenging and diversified stimuli (11 in total). We still have introduced a certain amount of consistency: we conducted the same attack (noise addition) on different models and different attacks on the same model (Egea), in order to be able to draw conclusions about these cases. This set of challenging stimuli constitute a good base to analyze complex perceptual mechanisms (e.g. frequency sensitivity, masking effect) and to create a robust metric.

Participants and procedure

The participants were shown each distorted object next to its reference version, side by side on the same screen. They were able to fully interact with the models (rotation, zoom and translation) and to change the size of the painting brush.They were instructed to mark the regions (on the distorted model) were they could see any visible difference with respect to the reference one, and were given no time limit for the deliberation. The 11 pairs of models were presented in random order to prevent any order bias. Before starting the test session, each participant was subject to a training phase to make him familiar with 3D object manipulation [START_REF] Cignoni | Metro: Measuring Error on Simplfied Surfaces[END_REF].

(rotation, scaling, translation) and with the mesh painting tool.

Three different sizes of screen were used: 14, 19 and 22 inches due to the limit of our experimental equipment. Given the fact that each pair of stimuli (distorted and reference) spanned the full screen, each stimuli thus subtended at least 15 degree of visual angle horizontally. 20 participants took part to our experiment (3 females and 17 males), they were aged from 16 to 27 years. They were mostly students and staffs from University of Lyon and from the Northwestern Polytechnical University of Xi'an, China. The experiment was conducted, on purpose, in uncontrolled viewing conditions (to reflect real-world conditions). This pool of observers contained both computer graphics experts and naive subjects.

The time to mark all 11 objects was 90 minutes on average (with a standard deviation of 30 minutes). This may seem long (e.g. 30 minutes is usually recommended for a rating experiment [START_REF] Itu | Methodology for the subjective assessment of the quality of television pictures[END_REF]), however observing and painting a small number of models is far less tiring that rating hundreds of stimuli, because the full interactions between observers and objects alleviate boredom compared to hundreds times of repetitive ratings. It is interesting to observe that these painting times highly depend on the objects: 5 minutes on average were necessary to mark each simplified Bunny object (#10 and #11) while an average of 12 minutes was taken for the Vase Lion (#9). These times seem to depend both on the object shape and attack complexity. An example of distortion map obtained from the human subjects is shown in figure 5.1 (object #8). It results from averaging the 20 observers' binary maps and reflects the local probabilities of artifact detection. In this example, more than 50% of the observers have detected the geometric noise added on the neck and the ribs of the dinosaur. 

Analysis of subjective dataset Observer agreement

Before exploiting the results of our experiment, it is critical to analyze the agreement between participants. Indeed, a high disagreement would mean that observers have randomly made their choices and thus would imply that the task was too difficult or ill-defined. To assess this inter-observer agreement we first consider the Kendall's coefficient of agreement [START_REF] Kendall | On the method of paired comparisons[END_REF]. This coefficient, noted as u, is usually used for assessing the consistency of votes in paired comparison studies [START_REF] Ledda | Evaluation of tone mapping operators using a High Dynamic Range display[END_REF][START_REF] Rubinstein | A comparative study of image retargeting[END_REF]. It ranges from 1 (perfect agreement) to -1/(n -1), if n is even, and -1/n, if n is odd, where n is the number of observers. In their experiment related to image local distortion assessment, Čadík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] computed this coefficient per pixel; following this idea we compute it per vertex by considering the number of participants that have chosen the distorted choice over the not-distorted one and vice versa. We can then derive an coefficient u by averaging all vertex coefficients over each object. Still as in [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF], and considering the fact that the high number of unmarked vertices will push the coefficient toward high values, we also compute u mask for which we average only vertices marked as distorted by at least 5% of the observers. Results are detailed in table 5.2. The values of u and u mask averaged over all the objects are respectively 0.60 and 0.43. That constitute good agreement values very close to those from Čadík et al. [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] (0.78 and 0.41).

We could consider that these values sufficiently assess the agreement of the observers and thus the reliability of our experimental results. However, computing the agreement for each vertex separately may lose some important information about the randomness of the observer's choices. As an illustration, imagine that the observers each vote for a different subset of the mesh vertices, then u (as well as u mask ) will be high since all the vertices will be chosen as unmarked by n or n -1 observers. This high u value may be considered as correct because observers mostly agree on the fact that no vertex seems distorted. However, in that case we could also consider that their votes are random and thus that their agreement should be low. To face this issue we also computed a more global statistical agreement indicator: the Krippendorff's α coefficient [START_REF] Kripendorff | Content Analysis. AN Introduction to Its Methodology[END_REF]. This indicator is able to measure the agreement among an arbitrary number of observers assigning values to unstructured phenomena. It ranges from 0 (observers agree as if chance had produced the results) to 1 (observers agree perfectly). It is actually a generalization of several statistical indicators (e.g. for two observers and ordinal data, it is identical to the Spearman's rank correlation coefficient). For each object, we do not compute a single α value but the distribution of α by bootstrapping (as recommended by the author [START_REF] Kripendorff | Content Analysis. AN Introduction to Its Methodology[END_REF]) and we thus obtain a mean value and the associated confidence interval. Table 5.2 details these values as well as the 5 th and 95 th percentiles. The α averaged over all the object is 0.102. This is a relatively low value suggesting that the task was indeed difficult. However, the percentiles show that these values are statistically significant so there really exists an agreement among the observers, suggesting that their task has been reliably performed. Local distortion marking is still a very unusual task in subjective quality assessment, hence it is hard to judge what can be considered as a typical α value for this kind of data. What we can assert is that our observer agreement is very similar to the one observed in the image localized distortion experiment from [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] (this is assessed by the similar u and u mask values and illustrated, in the appendix A, by the similarity in the obtained maps). We argue that the Krippendorff's α should become a gold standard to evaluate the observer agreement for localized distortion experiments.

When looking at the per-object agreement in table 5.2, we can observe that it varies from 0.011 to 0.218 (Krippendorff's α). These values directly reflect the difficulty for the observers to perceive the artifacts. For instance, the noise added on the Egea model (#5 and #6) is quite easy to detect (α > 0.20). On the contrary, a smooth deformation due to watermarking (#1) is far more difficult to perceive (α = 0.029). These agreement values allow us to detect two problematic cases: object #2 owns a very high u and a very low α, and object #11 owns both low u and α values. The artifacts of object #2 are of very low frequency (see figure 5.3) and almost invisible, thus observers have marked very few and almost random vertices. On the contrary object #11 is too much simplified, hence observers have painted almost all vertices. These two special cases will thus be removed in some of our evaluation experiments. 

ID

Observations

The artifact probability maps, that we obtained, constitute great subjective data for further studies about perceptual mechanisms involved in the visualization of 3D graphical content. While this investigation is not in the scope of this paper, we provide here a quick illustration of two well known features of the human visual system: the visual masking effect and the frequency sensitivity.

Visual masking defines the reduction in the visibility of one stimulus due to the simultaneous presence of another. For 3D surfaces, this phenomenon points out the maximized visibility of geometric distortions on smooth regions rather than on rough ones. This effect is perfectly illustrated by object #9: whereas the same uniform 9-bits quantization is applied for all vertices, we can observe that the subjective artifact probability is much higher on the face of the Lion which is rather smooth, than on the mane which is rough (see figure 5.2). The human visual system is also sensitive to the frequencies of a visual stimulus. Studies of this phenomenon have led to define the contrast sensitivity function (CSF), characterized by a band-pass filter with a peak frequency between 4 and 6 cpd (cycles by degree) and a quick drop on each side of this peak. For 3D shapes, this generally leads to observe that high-frequency distortions have a much higher probability to be visually noticeable than low-frequency ones. This frequency sensitivity is particularly well illustrated when looking at objects #2 and #3. Their distortions are respectively of very low and very high frequency (see figure 5.3). Whereas the power of the distortion is much higher in object #2 (as reflected by the MRMS values -0.59 against 0.08), the number of vertices marked as distorted is much lower: on average observers have marked 1.2% of the vertices against 5.4% for object #3.This is also illustrated by the observer maps in figure 5.3.

Set of geometric attributes and metrics

Our dataset provides the opportunity to analyze the performance of existing metrics and well-known vertex attributes for the task of visual difference prediction. We also select a set of low-level geometric attributes commonly used in perceptually-based geometry processing algorithms. We implemented 12 features detailed below.

• Curvatures (Minimum (a 1 = K min ), Maximum (a 2 = K max ), Mean(a 3 = (a 1 + a 2 )/2)
and Gaussian (a 4 = a 1 * a 2 ) per vertex respectively) -Following the solution adopted in [START_REF] Alliez | Anisotropic polygonal remeshing[END_REF], we evaluate the curvature tensor using the method from Cohen-Steiner and Morvan [START_REF] Cohen-Steiner | Restricted delaunay triangulations and normal cycle[END_REF] on a fixed-size neighborhood around each vertex, i.e. a geodesic disk approximated by the intersection of the surface with a sphere centered at the vertex.

• Shape Index [53] -a 5 = 2/π * arctan[(a 2 + a 1 )/(a 2a 1 )].

• Curvedness [START_REF] Koenderink | Surface shape and curvature scales[END_REF] a 6 = (a 2 1 + a 2 2 )/2. • The 3D Geometric position a 7 -a 7 (v i ) = P i is the position of each vertex v i .

• Mean dihedral angle a 8 -Since all the objects are 2-manifold meshes, the mean dihedral angle is then computed for each edge and corresponds to the angle D < t j ,t j+1 > between the normals of its adjacent faces t j and t j+1 . The computed values are then averaged for each vertex v i . This attribute was used in the perceptual metric from Váša and Rus [119]. At each vertex v i :

a 8 (v i ) = ∑ j D<t j ,t j+1 > N e i f or j ∈ N e i N e
i is the number of adjacent edges around the center vertex v i .

• Normal a 9 -This attribute was considered in several simplification algorithms such as QEM [START_REF] Garland | Surface simplification using quadric error metrics[END_REF] and VSA [START_REF] Cohen-Steiner | Variational shape approximation[END_REF]. At each vertex v i , it is computed as:

a 9 (v i ) = ∑ j ⃗ n j || ∑ j ⃗ n j || f or j ∈ N T i . N T
i is the number of adjacent facets around the center vertex v i .

• Mesh Saliency a 10 -We have implemented one scale saliency (not the multi-scale one) from Lee et al. [START_REF] Lee | Mesh saliency[END_REF], based on a difference of Gaussian operator. At each vertex v i , it is computed as:

a 10 (v i ) = |G(a 3 (v i ), σ i ) -G(a 3 (v i ), 2σ i )| G(a 3 (v i ), σ
) is defined as the Gaussian-weighted average of the mean curvature per vertex, σ is a distance to the center vertex v i .

• Laplacian a 11 -The relevance of the difference of geometric Laplacian regarding the perceived artifact visibility was raised by Karni and Gotsman [START_REF] Karni | Spectral compression of mesh geometry[END_REF]. It is computed at each vertx v i : a 11 (v i ) =

∑ j (P i -P j ) N T i . P i is the position of center vertex v i , P j is the position of its adjacent vertex v j . N T i is the number of adjacent facets around the center vertex v i .

• Laplacian of Gaussian curvature a 12 -It corresponds to the Laplacian operator applied on the Gaussian curvature field. This attribute was used in the perceptual metric from Wang et al. [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF]. Note that the authors use the cotangent weights discretization of the Laplace operator while we consider the simpler graph Laplacian, defined as LR (Local Roughness) in their work.

Geometric positions, normals and geometric Laplacian are 3D vectors, while the others are scalar values. Besides most simple geometric features (position and normals), we selected attributes either commonly used in mesh quality metrics [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF]119,[START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF] or pointed as relevant by previous learning-based works related to perception [START_REF] Benhabiles | Learning boundary edges for 3D-mesh segmentation[END_REF][START_REF] Chen | Schelling points on 3D surface meshes[END_REF].

Our objective is to predict the local visual distortion in a full reference scenario. Hence, for this task, we consider not the attributes themselves but differences of attributes. To compute these differences, we first establish a correspondence between the distorted mesh D and the reference one R. For that purpose, we simply perform a fast projection of the vertices from D onto the surface of R. For each vertex v of the distorted mesh D (associated with given attribute a(v)), we compute its nearest 3D point v on the surface of the reference model R using the efficient AABB tree structure [START_REF] Alliez | AABB Tree[END_REF] from the CGAL library. For each 3D point v, its attribute a( v) is interpolated from the triangle it belongs to using barycentric coordinates. The features that we consider are thus the local per-vertex differences of each attributes and are computed as follows:

f v = ∥a(v) -a( v)∥ (5.1)
where ∥•∥ represents Euclidean norm. Additionally to this simple difference, we also consider a normalized difference, defined as follows:

f N v = ∥a(v) -a( v)∥ max(∥a(v)∥ , ∥a( v)∥) + K . ( 5.2) 
where K = 1 is a constant to avoid instability when denominators are close to zero. The denominator has goals, (1) it normalizes the features f v (between 0 and 1), which is necessary for further machine learning and (2) it acts as a visual masking filter (e.g. it gives more weight to a same curvature variation in a flat region than in rough or highly curved ones). Of course, for vector attributes (geometric position and normal) this denominator is discarded.

The geometric position difference is normalized by the bounding box size.

To strengthen the robustness of our metric, we consider each feature at several scales; indeed on top of each per vertex attribute values a(v), we consider also Gaussian-weighted averages a h (v) computed as follow:

a h (v) = ∑ v i ∈N(v,h) w h v (v) a(v) (5.3) 
N (v, h) is the connected set of vertices belonging to the sphere with center v and radius h (including the intersections of edges with the sphere) and w h v () is a Gaussian weighting (an isotropic weighting) function centered on v with standard deviation of h/2 (i.e. the size h of the neighborhood is twice the standard deviation of the Gaussian filter).

Besides these attribute differences, we also consider three well known metrics, commonly used to drive or evaluate geometry processing operations, and which produce distortion maps:

• The Hausdorff distance -Each vertex of the distorted mesh is associated with its Hausdorff distance to the reference surface during the first step the computation. This measure is commonly used to drive or evaluate geometry processing operations.

• MSDM2 [56] -This metric computes multi-scale differences of curvature statistics between vertices of the distorted mesh and their projections on the reference one, at multiple scales. These local differences are then pooled into a single global score. Hence, this metric natively produces a distortion map. However, while it has shown to provide excellent results for global quality prediction, this metric has never been evaluated for the task of localized distortion visibility prediction.

• FMPD [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF]-Like MSDM2, this perceptual metric has proven to be an excellent predictor of the global quality of 3D meshes but has never been evaluated for the task of visible difference prediction. The original FMPD computes a single difference of global roughness value between the meshes to compare. Here, we consider local differences of their local roughness estimator, based on the Laplacian of Gaussian curvature modulated by masking effect functions. The algorithms are well detailed in [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF]. This local roughness difference is also subject to normalization and averaging (see eq. 5.1, 5.2 and 5.3).

For each attribute (including the local roughness difference of FMPD), we consider two scales h = {0.012R, 0.036R} (R is the maximum length of the bounding box ) in addition to the per vertex version (the saliency does not have per vertex version), and then get 13 × 3 -1 = 38 features. Besides these normalized features, we also take their nonnormalized forms as the other 38 features. These scales correspond to those used in [START_REF] Lee | Mesh saliency[END_REF]. Finally, including the MSDM2 and Hausdorff computations, we therefore have 78 features in total.

Evaluation of geometric attributes and metrics

Performance measure

As in [START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF], our purpose is to evaluate the metric/attribute ability of predicting the problematic regions in terms of binary classification: marking the vertices that contain noticeable distortions. Therefore, we use the receiver-operator-characteristic (ROC) that represents the relation between probability of false positives (x axis, meaning the vertex classified as distorted while it is not) and probability of true positive (y axis, meaning the vertex correctly classified as distorted) by varying a decision threshold on the metric (resp. attribute difference) output. To determine the binary ground-truth data, it is convenient to assume that a certain percentage of observers need to mark the distortion to consider it noticeable. In our case, the binary ground-truth data are obtained by considering as distorted vertices marked by more than 25% of the observers. The area under the ROC curve (AUC) can then be used as a direct indicator of the performance (1 corresponds to a perfect classification while 0.5 corresponds to a random one).

For each feature/metric we compute the ROC performances per-object which are then averaged on the whole database. The AUC values are then averaged over the 11 models. To test how the metrics can adapt to several objects and distortion types together, we also compute the ROC curve for all objects together. For this latter experiment, we duplicate vertices of smallest models in order to balance the respective importance of each object in this global ROC calculation. 
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Evaluation procedures

In the evaluation section, we firstly used Naive Bayes classier to train a dataset from each procedure detailed below, which is trained using ground-thruth data (supervised learning) for a single feature/metric, then, and get class information (distorted or not for each vertex). Then based on such information, we tested the same dataset to obtain the correlation between the feature/metric and class. To evaluate all the features/metrics robustly and comprehensively, we design three different train and test procedures based on cross validation:

1. For each object separately, we perform a train and test procedure based on the leaveone-out cross validation, evaluating each feature/metric, where the training dataset is Table 5.4: From left to right: Ranks of average AUC values for best performing features and metrics among 9/11 models (second and third column); Ranks of AUC values for best performing features and metrics on a model taking vertices from 9/11 as a whole dataset (fourth and fifth column).

feature/metric values on the vertices from 10 models and testing dataset is the same type of feature/metric values from the rest model (similar to the other 10 models). The average ROC curve is recorded as the final performance estimate per model.

2. We perform a train and test procedure based on 10-fold cross validation, evaluating each attribute/metric on the whole set of vertices from the 11 models together.

3. According to the Krippendorff's α values in Table 5.2, we excluded two models #2 and #11, whose α values are smallest and second smallest respectively. And then we perform a train and test procedure evaluating each attribute/metric on the whole set of vertices from the rest 9 models. This procedure, to some extent, guarantees the robustness and credibility of the evaluation by eliminating those too difficult or ill-defined tasks. 

Results and comparisons

Performance of the attributes and metrics

We have trained and tested all the features and metrics with the 3 procedures mentioned in the subsection 5.4.2. Figures 5.2 and 5.5 illustrate some visual results, while table 5.3 and details the quantitative performance in terms of AUC values for each feature and for each model from the dataset. Average values are presented in table 5.4 and figure 5.6 (according to agreement statistics, models #2 and #11 have been excluded from this averaging). Additional results, including #2 and #11, are available in the appendix A. As all the 76 features are derived from 13 attributes, thus, we present the results obtained by the best filter: (i, S) and (i, N) respectively refer to simple (eq. 5.1) and normalized (eq. 5.2) attribute difference, while i refers to the averaging scale (eq. 5.

3): 0 means per-vertex attribute and 1, 2 respectively refer to small and large averaging scale.

Figure 5.5: Reference and distorted models from our dataset (object #3), observer data and distortion maps from different attributes and metrics (colors are mapped in the min-max range).

For the second and third procedure, Table 5.4 and Figure 5.6-bottom row present the performance comparisons.We also computed other statistics of all the results from first procedure. In details, we firstly took an average AUC value of every feature/metric among 11 models and 9 models (excluding #2 and #11) respectively. Then, similar to the work before, we selected the best performing features among same attribute-based features according to the average AUC values. Similarly, for the results from 9/11 models as a whole dataset, we show the results from best performing features among same attribute-based features and FMPD, MSDM2, Hausdorff distance.

In Table 5.4, the second and third column show the ranks according to the average AUC values, the comparisons confirm our previous deduction: MSDM2 performs outstandingly well among all the features/metrics when a certain feature/metric measures 9/11 models separately. And yet, the performance of curvedness-based features is still quite good. This suggests that on a model whose distortion is unknown, MSDM2 metric could predict visually correlated distortion better than other feature/metric. In contrast, when we take 9/11 models as whole dataset, the performance of FMPD suddenly rises to the first place. This means that in scenario where one single threshold has to be determined for detecting artifacts for several objects and/or distortion types, then the FMPD metric is the most suited. This may be due to the fact that this metric explicitly incorporates global and local normalization pre-processes (linked to the masking effect). In general, Hausdorff and some geometric attributes-based features (e.g. geometric metric, mean dihedral angle) could not predict the perceived local distortion. To observe directly, for each model, Figure 5.4 shows the ROC curves of the performances from MSDM2, FMPD, Hausdorff distance and 2 other features among best performing ones. With the same scenario, Figure 5.7 shows the ROC curves for 9/11 models as a whole.

Influence of the filters Table 5.5 illustrates the AUC values averaged over all features and objects, for each filter separately. We run paired t-test with confidence level 0.95 to evaluate the effect of each filter. The normalization does not have a significant impact (p-value = 0.11). However Scale 1 is significantly better than Scale 0 (p-value = 6 × 10 -8 ) and Scale 2 is significantly better than Scale 1 (p-value = 0.02). The conclusion to draw here is that averaging the features has a significant impact on their ability to predict the visible distortion. The main reason is that 5.5: AUC values averaged over all features, for each filter separately.

Discussion

Several conclusions can be drawn from the results presented above:

• Previous studies [START_REF] Lavoue | A comparison of perceptually-based metrics for objective evaluation of geometry processing[END_REF][START_REF] Corsini | Perceptual metrics for static and dynamic triangle meshes[END_REF] showed that geometric distances (e.g. Hausdorff and root mean square error) are not good predictors of the perceived global visual quality. Our study completes this analysis by demonstrating that the geometric distance (Hausdorff as well as averaged position difference) is not a good predictor of the local visible difference.

• Recent metrics like MSDM2 [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF] and FMPD [START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF] provide the best results for this task of visible difference prediction; these good performances are mainly due to two key features: (1) being multi-scale improves the robustness, and (2) smart masking filters improve the stability across different models and distortions.

• Simple curvature measures (e.g. the curvedness difference) may produce excellent results. However, we noted unstable performance with a high and unpredictable effect of the normalization. For instance, AUC values for model #9 are respectively 0.78 and 0.67 for curvedness (2, N) and curvedness (2, S) (see the appendix A).

• Predicting the perceived local distortions on the surface of a 3D mesh appears to be a very challenging task. Figures 5.2 and 5.5 illustrate the fact that even best metrics are still far from perfectly predicting the ground-truth distortion maps. Hence, much works remain to be done in this area and our dataset is an excellent basis for that.

The provided insights into the visual perception of local artifacts are of broad interest for the computer graphics community. The attributes and metrics detected as good predictors by our study (i.e. MSDM2, FMPD and curvedness) may be used to design quality metrics as well as Just Noticeable Difference (JND) models. These features may also be useful to guide geometry processing algorithms.

Conclusion and perspective

In this work, we have designed a novel subjective experiment to obtain information about the local visibility of complex artifacts on a set of 3D objects. We use the obtained distortion probability maps to (1) illustrate some properties of the human visual system and to (2) quantitatively evaluate a large set of 3D mesh attributes as well as recent perceptual metrics for the task of predicting perceived local distortions. From the results, we observe that curvature-based attributes (in particular curvedness) demonstrate a much better performance than others (e.g. mean dihedral angles, normals, Laplacian, saliency). As expected, Hausdorff geometric distance is a poor predictor of the perceived local distortion. Another interesting result is that recent perceptual metrics, originally designed for global quality evaluation, also provide the best and most stable results for this local task. We also introduce some recommendations highlighting the influence of attribute averaging and normalization for the design of new metrics. These publicly available dataset and results1 constitute the very first steps toward the efficient prediction of the perceivability of geometric artifacts, and more broadly toward the understanding of local perceptual mechanisms involving 3D geometry. In particular, this dataset will be very useful to evaluate and/or to train future metrics. Machine-learning is appearing as a powerful tool to design full reference image quality metrics [START_REF] Narwaria | SVD-based quality metric for image and video using machine learning[END_REF][START_REF] Čadík | Learning to predict localized distortions in rendered images[END_REF][START_REF] Charrier | Machine learning to design fullreference image quality assessment algorithm[END_REF] and could indeed provide good results for 3D mesh artifact localization. However, we believe that such top-down approach should also integrate low-level human vision processes (such as a model of contrast sensitivity function) to be really efficient.

Our study focused on the geometry and thus considered a simple rendering style. We now plan to investigate how complex textures and shaders, used in modern rendering pipelines, influence the visibility of artifacts. Recent studies about the influence of material [START_REF] Fleming | Visual perception of materials and their properties[END_REF] and lighting [START_REF] Faisman | How does lighting direction affect shape perception of glossy and matte surfaces[END_REF] on the shape perception, should bring highly relevant cues for this goal.

Chapter 6

Subjective and objective visual quality assessment of textured 3D meshes

Introduction

In the previous chapter, the objects we study are primary 3D surface meshes without texture. However in practice, texture mapped 3D graphics are now commonplace in many applications, including digital entertainment, cultural heritage and architecture. They consist of geometric surfaces, on which are mapped several texture images that serve to make the rendering more realistic. Common texture maps include diffuse map, normal map and specular map. After their creation (by a designer or using a scanning/reconstruction process), these textured 3D assets may be subject to diverse processing operations including simplification, compression, filtering, watermarking and so on. For instance, with the goal of accelerating the transmission for remote Web 3D visualization (e.g., for a virtual museum application), the geometry may be simplified and quantized, and the texture maps may be subject to JPEG compression. Similar geometry and texture degradations may also occur when these assets have to be adapted for lightweight mobile devices; in that case, textures may have to be sub-sampled or compressed using some GPU-friendly random-access methods (e.g., [START_REF] Ström | i PACKMAN: high-quality, low-complexity texture compression for mobile phones[END_REF]). These geometry and texture content corruptions may impact the visual quality of the 3D asset. Therefore, there is a need for efficient perceptual metrics to evaluate the visual impact of these textured model artifacts on the visual quality of the rendered image. Many visual quality metrics have been introduced in the field of computer graphics. However, most of them can only be applied on images created during the rendering step. They mostly focus on detecting artifacts caused by global illumination approximation or tone mapping [START_REF] Aydin | Video quality assessment for computer graphics applications[END_REF][START_REF] Herzog | NoRM: No-Reference Image Quality Metric for Realistic Image Synthesis[END_REF][START_REF] Yeganeh | Objective quality assessment of tone-mapped images[END_REF][START_REF] Čadík | Learning to predict localized distortions in rendered images[END_REF]. On the contrary, another class of method focuses on evaluating the artifacts introduced on the 3D assets themselves. However most consider only geometric distortions [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF]119,[START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF]. Little work has been done to evaluate the visual impact of both geometry and texture distortions on the appearance of the rendered image. Studying the complex perceptual interactions requires a ground-truth of subjective opinions on a variety of models with such degradations. To the best of our knowledge, only Pan et al. [START_REF] Pan | Quality metric for approximating subjective evaluation of 3-D objects[END_REF] conducted such a subjective study. However, they considered only geometry and texture sub-sampling distortions. In this chapter, we present a large-scale subjective experiment for this purpose, based on a paired comparison protocol. As in [START_REF] Pan | Quality metric for approximating subjective evaluation of 3-D objects[END_REF], we restrict the texture information to the diffuse maps. TOur dataset contains more than 272 videos of animated 3D models created from 5 reference objects, 5 types of distortions, and 2 rendering parameters. The experiments involved more than 100 people. After an analysis of the influence of lighting on the perception of geometry and texture artifacts, we then use this subjective ground-truth to evaluate the performance of a large set of state-of-the-art metrics (dedicated to image, video and 3D models). We finally propose a new metric based on an optimal combination of geometric and image measures. The rest of this chapter is organized as follows: 6.2 describes our subjective experiments and their results. Section 6.3 presents a comprehensive evaluation of state-of-the-art image and mesh metrics with respect to our subjective ground-truth, and details our proposed perceptual measure and their validation. Finally, concluding remarks and perspective works are given in Section 6.4.

Subjective experiment

We conducted a large-scale subjective experiment to evaluate the visual impact of texture and geometry distortions on the appearance of textured 3D models. We chose a paired comparison technique, where observers are shown two stimuli side by side and are asked to choose the one that is most similar to the reference (forced-choice methodology). This protocol was shown to be more accurate than others (e.g. single stimulus rating) due to the simplicity of the subjects' task [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. This section provides details on the subjective study and its results

Stimuli generation

We selected 5 textured triangle meshes created using different methodologies and targeting different application domains (see Table 6.1 and Figure 6.1). The Hulk and Sport Car are artificial models created using a modeling software. They have been selected from a community model repository (ShareGC.com). They both have small numbers of polygons, structured texture content and smooth texture seams (i.e., vertices associated with multiple texture coordinate pairs). The squirrel and the Easter Island statue come from a reconstruction process using multiple photographs, they are courtesy of the EPFL Computer Graphics and Geometry Laboratory. Finally, the Dwarf is a scanned model, courtesy of the Visual Computing Laboratory of ISTI-CNR, Pisa (http://vcg.isti.cnr.it). These three latter models, created respectively from reconstruction and scanning, exhibit noisier texture seams and content. The numbers of vertices from the five models goes from 6,000 to 250,000 and the texture size goes from 256 × 256 to 4096 × 4096. Note that the Hulk and Sport Car are associated with several texture images (resp. 2 and 15). To summarize, these objects span a wide variety of geometry and texture data. These reference models have been corrupted by five types of distortions (three applied on the geometry and two applied on the texture), applied each with four different strengths: On the geometry:

• Compression -We consider uniform geometric quantization, the most common lossy process of compression algorithms.

• Simplification -We consider the Quadric Error Metric algorithm from Garland and Heckbert [START_REF] Garland | Surface simplification using quadric error metrics[END_REF].

• Smoothing -We consider Laplacian smoothing [START_REF] Taubin | A signal processing approach to fair surface design[END_REF].

On the texture map:

• JPEG -The most commonly used algorithm for the lossy compression for 2D images.

• Sub-sampling -We reduce the texture size by resampling through bilinear interpolation.

The strength of these distortions was adjusted manually in order to span the whole range of visual quality from imperceptible levels to high levels of impairment. For this task, a large set of distortions were generated and viewed by the authors and a subset of them that spanned the desired visual quality (i.e., "Excellent", "Good", "Fair" and "Poor") were chosen to be included in the database. This perceptual adjustment of the distortion strength was also done for the LIVE Video Quality Database [START_REF] Seshadrinathan | Study of subjective and objective quality assessment of video[END_REF]. As stated by the authors, it allows us to test the ability of objective metrics to predict visual quality consistently across varying content and distortion types. We thus generated 20 distorted models (5 distortion types × 4 strength) per reference object.

To challenge the generalization ability of the objective metrics, we also included mixed distortions. For this task, we manually selected 36 distorted versions among the 12 × 8 = 96 possible combinations of the 12 geometry and 8 texture distortions detailed above. In practice, we applied the 20 single-type distortions on the Hulk, Sport Car, squirrel and Easter Island statue model, and mixed 36 mixed distortions on the Dwarf model, resulting in a database of 116 models (+5 references), including the reference. Table B.1 provides details on the distortion parameters while Figure 6.2 and 6.3 illustrate some visual examples.

Rendering parameters

User interaction: In existing subjective studies involving 3D content, different ways have been used to display the 3D models to the observers, from the most simple (as static images, as in [START_REF] Watson | Measuring and predicting visual fidelity[END_REF]) to the most complex (by allowing free rotation, zoom and translation, as in [START_REF] Corsini | Watermarked 3-D mesh quality assessment[END_REF]). While it is important for the observer to have access to different viewpoints of the 3D object, the problem of allowing free interaction is a cognitive overload which may alter the results. A good compromise is to use animations, as in [START_REF] Pan | Quality metric for approximating subjective evaluation of 3-D objects[END_REF]. For each object of our database, we generate a low-speed rotation animation around the vertical axis. The rendering is the same as in our videos.

Lighting and shading: As noticed by Rogowitz and Rushmeier [START_REF] Rogowitz | Are image quality metrics adequate to evaluate the quality of geometric objects? Photonics West[END_REF] the position and type of light sources have a strong influence on the perception of the artefacts. Lighting from the front have a masking effect, hence we chose an indirect illumination. Sun and Perona [START_REF] Sun | Where is the sun? Nature neuroscience[END_REF] showed that people tend to assume light is above and slightly to the left of the object when they interpret a shaded picture as a 3D scene. Their observations have been confirmed by O'Shea et al. [START_REF] O'shea | The assumed light direction for perceiving shape from shading[END_REF] who demonstrated that the viewer's perception of a 3D shape is more accurate when the angle between the light direction and viewing direction is 20-30 degree above the viewpoint and to the left of 12 degree from vertical. We follow this lighting condition by putting a spot light at this position. For the material, we kept the original parameters from the source reference objects, which are mainly diffuse. The video size is 1920 × 1080. The duration of the video is 15 seconds for the single-type distortions and 10 seconds for the mixed-distortions (for this latter case, videos have been made shorter in order to keep a reasonable duration for the comparison experiment).

In order to study the influence of shading on the results, we also re-generated the same set of videos by keeping only the reflectance (i.e. without shading). Examples are shown in Figure 6.4. We thus obtain 10 video sets to rate (5 models × 2 rendering settings), for a total of 232 videos.

Experimental procedure

As stated above, we opted for a paired comparison methodology since it has been demonstrated to be more reliable than rating methods [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. The participants are shown two videos of distorted models at a time, side by side, and are asked to choose the one that is most similar to the reference. The observer can replay the videos as much as (s)he wants. For sake of readability, the reference video is not displayed on the same screen but is presented just before the beginning of the comparisons, and can then be viewed at any time on a pop-up window by clicking on a button. The interface was developed in JavaScript, as web platform, and is illustrated in Figure 6.5. The main issue with the paired comparison protocol is the large number of possible comparisons: 2 20 =190 per model for the single distortion setting, and 2 36 = 630 for the mixed distortion one. It is therefore unrealistic to ask a participant to perform a complete test even on a single model. Fortunately, this high number of trials per model can be reduced by using sorting algorithms as recommended in [START_REF] Silverstein | Efficient method for paired comparison[END_REF][START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. The idea is to embed a sorting algorithm into the experiment platform; this algorithm then decides in an on-line fashion which pairs of videos to compare based on the previous comparisons.

We introduced a simple yet efficient sorting algorithm for the single-distortion setting. The idea is obtain a global ranking of the 20 stimuli by interleaving them progressively, one distortion type at a time (i.e., compression, simplification, smoothing, JPEG and Subsampling). For a given distortion D, we assume that the distortion strength goes from D 1 (weak) to D 4 (strong). The assumption behind our algorithm is that for a given distortion D, the quality of D i is always better than D j for j > i (noted as Q D i > Q D j , ∀ j > i). First, two distortions types Q and J are randomly chosen (in this example, Quantization and JPEG), Q 4 and J 4 are then compared. The index of the not-selected video (Q 4 ) is pushed into a list (List 1), as the poorest quality version. In the next trial, the selected model from the previous round (J 4 ) and a distorted model with a decreased level from the other type (Q 3 ) are shuffled and displayed to the user. This process continues until all 8 models are sorted from the worst to best quality. This sorting process is repeated with two other distortions types (Smoothing and Simplification in the example) to form a second list (List 2) which is then interleaved with the remaining distortion type (Sub-sampling) and then with List 1 to obtain the final ranking of the 20 distortions. In our study, the average comparison number was 36 (instead of 190 for the full design). This sorting algorithm is illustrated in Appendix B. For the mixed-distortion setting, the hypothesis Q D i > Q D j , ∀ j > i does not hold anymore. Hence, we implemented a more classical self-balancing binary tree, as in [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. The average number of comparison for sorting the 36 distorted models was 140 (instead of 630).

Participants

A total of 101 subjects took part in the experiment, aged between 20 and 55, all with normal or corrected to normal vision. Participants were students and staff from the University of Lyon in France and the University of Alberta in Canada. On average, it took 12 minutes for one observer to finish the experiment for one video set. 89 subjects rated 1 set, 8 rated 2 sets and 4 rated 3 sets. None of these repetitions took place on the same day in order to prevent any learning effect. The experiments were all conducted on the same 15-inch MacBook Pro screen, in a dark room. In total, each of the 10 video sets (5 models × 2 rendering settings) was judged by between 11 and 15 observers (see Table 6.3).

Computing scores

For each video set and each subject, we obtain a global ranking of the n m distorted models (n m equals 20 or 36 in our experiments). From this ranking, it is easy to retrieve the full preference matrix (n m × n m ), by applying the transitive relation: if object A is better than object B and B is better than C, then we can deduce that A is better than C. These per-subject preference matrices can then be summed into a single one (per video set). In this matrix P, each element P i, j represents the number of times the stimulus i was judged to have higher quality than stimulus j (the matrices are available in Appendix B). As in [START_REF] Ledda | Evaluation of tone mapping operators using a High Dynamic Range display[END_REF][START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF], we then consider the number of votes received by each stimuli as its quality score, which may then be divided by the number of human subjects n s for normalization among video sets:

s i = ∑ n m j=1 P i, j n s (6.1)
We then obtained a subjective score for each distorted model with belong to [0,19], for the single distortion type setting and [0,35] for the mixed distortion one. Note that the value 19 (resp. 35) occurs only for models which have been ranked first by every subjects. Note that more sophisticated statistical methods exist for inferring scale values from a preference matrix. We computed scores using Thurstone's Law of Comparative Judgments, Case V [START_REF] Thurstone | A law of comparative judgments[END_REF], which assumes that the observers' choices can be thought of as sampled from a normal distribution of underlying quality scores. Since the values obtained were very close to the simple vote counts described below (more than 0.99 Pearson correlation), we decided to keep the latter.

Analysis and discussion

Observer agreement

It is essential to analyze the agreements between the subjects before studying the results from the experiment. Since each observer outputs a global ranking of the stimuli, the best way to evaluate their agreement is to compute the Kendall's coefficient of concordance W [START_REF] Kendall | Rank Correlation Methods[END_REF] which assesses the agreement among raters. Table 6.3 gives details on the results. W ranges from 1, meaning complete agreement, to 0, meaning no agreement, while the p-value associated with W provides the likelihood of null hypothesis, which means no agreement between all the subjects. 

Observation

The visual impact of the distortions highly depends on the textured 3D model, as illustrated in Figure 6.6. The geometric quantization, for instance, is less visible on 3D shapes with fewer vertices (like the Squirrel). The reason is that the sampling density of the surface directly influences the frequency of the visual distortions created by the quantization and thus their perceptual impact (related to the contrast sensitivity function). The resolution and the content of the texture also strongly influence the perception of artifacts. 

Effect of the rendering

In this section, we investigate the influence of the rendering on the visual impact of the distortions. Figure 6.7 presents the quality scores, averaged over the models for the two rendering conditions: with and without shading. As expected, when only the reflectance of the surface is taken into account, the quality scores of the geometric distortions are consistently better since the impact of the geometry on the rendering is basically limited to silhouette. By conducting one-tailed paired t-tests, we found a significant increase of the quality of geometric distortions (p-value=0.012) and a significant decrease of the quality of texture distortions (p-value=0.001). These intuitive results have to be kept in mind, when assessing the quality of textured 3D models. A calibration according to the rendering may be necessary. 6.3 Toward an optimal metric for textured mesh quality assessment

In this section, we propose an objective metric for textured mesh quality assessment as a simple linear combination of mesh quality and texture quality. We use the subjective dataset presented below to evaluate the performance of different mesh and texture metrics for this task. We also compare their performance to video metrics computed on the rendered videos.

In the next section, we also propose a new metric for geometry quality assessment.

A new metric for geometry quality assessment

By looking at the subjective scores obtained for geometric distortions (smoothing, quantization and simplification), we observed that the ranks of the distortions with the highest strengths from these three types show a pattern common to all models: the distorted model ranked as the worst visual quality always comes from either the strongest quantization method or from the strongest simplification. Distorted models from the strongest smoothing never appear at the end of the ranks. For instance, among the 20 distorted Hulk models, the distortion with the worst visual quality is the 7 bits quantization (subjective score: 0.91), while the distortion of the worst smoothing has a fairly high subjective score (7.45) (see Figure 6.8). Quality scores from L3,L4 are actually significantly higher than Q3,Q4 (p-values = 0.011 and 0.0063 for shaded/non-shaded data) and significantly higher than Si3,Si4 (p-values = 0.011 and 0.03). This subjective pattern is related to the perceptual mechanisms of the human visual system which is more sensitive to high frequency variations on local areas (e.g. distortions caused by simplification or quantization) rather than to more global low-frequency variations (e.g. caused by smoothing). Based on these observations as well as previous studies which emphasize the good behavior of curvature for predicting visual distortions [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF][START_REF] Wang | A fast roughness-based approach to the assessment of 3D mesh visual quality[END_REF][START_REF] Torkhani | A curvature tensor distance for mesh visual quality assessment[END_REF][START_REF] Guo | Evaluating the local visibility of geometric artifacts[END_REF], we propose a novel local distortion measurement by computing the amount of variance of curvature in local corresponding neighborhoods between two meshes (a distorted mesh M d and a reference mesh M r ). We first establish a correspondence between M d and M r (as in [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF]), we then compute the mean curvature C on each vertex of M d and its corresponding curvature value Ĉ on corresponding point of M r . For each vertex v from M d , we then compute the standard deviation δ h v of the local curvature differences in a geodesic neighborhood of size h around v. δ h v is computed as follows:

δ h v = 1 k k ∑ j=1 [ Ĉj -C j max( Ĉj ,C j ) + a -E( Ĉj -C j max( Ĉj ,C j ) + a )] 2 (6.2)
where k is the number of vertices of the neighborhood, a a constant to avoid instability when denominators are close to zero, and E( Ĉj -C j max( Ĉj ,C j )+a ) the mean value of curvature differences in the neighborhood. δ h v is theoretically upper bounded by 2 but can be clamped in [0,1]. As in [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF], we make this computation for three different neighborhood sizes h i to capture the perceptually meaningful scales, and improve the efficiency and robustness of the metric. We took three scales h i ∈ {2ε, 3ε, 4ε}, where ε = 2.5% of the max length of the bounding box of the model. Then multi-scale local distortion measure δ

M (v) is computed as: δ M (v) = 1 n ∑ n i=1 δ h i v .
n is the number of scales (3 in our study). Finally, we consider a root mean square pooling of these local measurements to obtain our global SDCD (Standard Deviation of Curvature Difference) value:

SDCD(M d , M r ) = ( 1 
|M d | ∑ v∈M d δ M (v) 2 ) 1 2 . ( 6.3) 
This metric captures local roughness variations, whereas more global changes (e.g. a global shrink of the model) are not considered as perceptually significant. The performance of this metric is evaluated in the following section.

Mesh and Image metric evaluation

Since most of distorted models from our dataset are associated to a single attack (either on geometry or texture), their subjective scores may be used as ground truth to evaluate existing metrics respectively for geometry quality assessment only and image quality assessment only (applied on texture image) and consequently determine the most appropriate metrics (resp. for geometry and texture image) for their further combination. For each of our reference models, we split the dataset into two groups according to the distortion type: geometry ad texture. We select several commonly used perceptual geometric and image metrics. For geometry, we select the Root Mean Square Error (RMSE) computed on geometry, MSDM2 [START_REF] Lavoué | A multiscale metric for 3D mesh visual quality assessment[END_REF], which is one of the best performing perceptually-motivated metrics, and our newly proposed metric SDCD. For texture, we select the RMSE on image pixels, SSIM [START_REF] Wang | Image quality assessment: form error visibility to structural similarity[END_REF] and MS-SSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] (top performing metrics on natural images). Tables 6.4 and 6.5 detail the Spearman and Pearson correlations between the objective metrics and the subjective scores for geometry and texture quality assessment, respectively. Previous studies dedicated to quality assessment of 3D meshes [START_REF] Corsini | Perceptual metrics for static and dynamic triangle meshes[END_REF] and natural images [START_REF] Zhang | A comprehensive evaluation of full reference image quality assessment algorithms[END_REF] have shown that geometry and image RMSEs are not good predictors of the visual quality. It is interesting to see that these results are confirmed for our database for which they are outperformed by perceptual metrics. This result is interesting because, in our case, texture and geometry involve complex masking effects. Indeed, texture artifacts may be masked by the geometric mapping and vice versa. Table 6.4 shows that, on certain models, MSDM2 performs better than SDCD. However, for the Statue, SDCD demonstrates a significant improvement. Regarding the performance, we will consider both MSDM2 and SDCD for our further combined quality metric for textured mesh. For texture metric (see Table 6.5), MS-SSIM provides the best overall performance and will thus be chosen as texture metric for our further optimal combination.

Toward an optimal combination

We propose to assess the visual quality of a textured mesh as a simple linear combination of its geometry quality and its texture quality, respectively assessed by a 3D mesh metric Q G (MSDM2 or SDCD) and an image metric Q T (MS-SSIM). We will see in the results, that this simple scheme is able to provide very good results. Our combined metric is thus defined as follows:

CM = αQ G + (1 -α)Q T (6.4)
where α is an optimal weight determined through a greedy optimization in a 5-folds crossvalidation way. For each model (resp. Squirrel, Statue, Sport Car, Hulk and Dwarf) we compute the optimal weights as the one which maximize the Spearman correlation over the 4 other models. We propose two versions of our combined metric: CM 1 (the optimal combination of MSDM2 and MS-SSIM) and CM 2 (the optimal combination of SDCD and MS-SSIM). We compare our metrics CM 1 and CM 2 to several state of the art metrics:

• FQM [START_REF] Tian | Fqm: a fast quality measure for efficient transmission of textured 3d models[END_REF][START_REF] Tian | BaTex3: Bit allocation for progressive transmission of textured 3-D models[END_REF], a metric especially designed for textured mesh quality assessment. It is defined as a weighted combination of two simple error measures: the mean squared error over mesh vertices and the mean squared error over texture pixels. Optimal weights are computed using cross-validation, as for our metric.

• Several video quality metrics applied to the rendered videos: The DCT-based Video Quality Metric from F. Xiao [START_REF] Xiao | DCT-based video quality evaluation[END_REF], PSNR applied on all frames and averaged, and MS-SSIM applied on all frames and averaged. These metrics have been computed using the MSU Video Quality Measurement Tool1 .

The performance of these metrics are evaluated using the Spearman and Pearson correlations between the objective metric's values and the subjective scores, as well as the root-meansquared error (RMS). The Pearson correlation and the RMS are computed after a logistic regression which provides a non-linear mapping between the objective and subjective scores. Results are shown in Tables 6.6 and 6.7, respectively for the shaded and non-shaded rendering. Scatter plots of subjective scores versus metric's values are presented in Figure 6.10.

As illustrated in the tables, our metrics CM 1 and CM 2 outperform the other for most of the models. Given the fact that, for a given model, the weighting factor α is learnt using the other ones, this good performance demonstrates an excellent inter-model robustness. It is interesting to see that the performance of our metrics is generally better for the non-shaded rendering than for the shaded rendering. The reason is that shading involves complex masking interactions between texture and geometry that are not considered in our metrics since they evaluate geometry and texture separately. These interactions are extremely limited in the non-shaded rendering, which accounts for the improved results of our metrics. All combined metrics (CM 1 , CM 2 and FQM) have lower performances for the Statue. The reason is visible on Figure 6.10. Indeed, in the corresponding plots, we observe that the visual impact of simplification distortions (green dots) is underestimated by these metrics (which provide good quality scores for simplified models). The reason is that the poor subjective quality of these distorted versions is due to damage on the texture seams, which considerably alters the visual appearance but is totally unpredictable by combined metrics that do not take into account the texture mapping.he same underestimation of the simplification impact is observed for the Dwarf model, which also exhibits complex texture seams. For this latter model, the geometric metrics also underestimate the impact of quantization which is particularly harmful for such a high resolution model. One last observation is the superiority of video-based metrics for the Sport Car model (shaded rendering). The reason is as follows: this model exhibits several interior parts (e.g. seats, radio) whose texture maps are severely damaged by JPEG and Sub-sampling distortions. However, these interior parts are almost invisible due to the position of the camera in the videos. Hence, the subjective scores are rather good for these distorted models whereas the image metrics predict very low quality values. On the contrary, video-based metrics only take into account the visible parts and thus provide correct results (in particular Video-MSSSIM). To verify this effect, we adopted a slightly different viewpoint for this particular model, in the non-shaded rendering, which improves the visibility of these interior parts. As expected, combined metrics results are much better (see table 6.7).

It is interesting to see that the performance of our metrics is overall better for the reflectance-only rendering than for the shaded rendering. The reason is that the shading involves complex masking interactions between texture and geometry that are not considered in our metrics since they evaluate geometry and texture separately. These interactions are very limited in the reflectance-only rendering, which explains the improved results of our metrics. Table 6.8 details the α values for each model (computed using our 5-folds cross validation) for both rendering settings. As illustrated by the table, α are consistently smaller for the rendering without shading. As explained in section 6.2.6, when only the reflectance of the surface is taken into account, the visual impact of the geometric distortions is highly reduced. Hence, the parameter α may be adjusted/calibrated according to the lighting, material and other rendering parameters since they will emphasize either texture or geometry distortions. Still, it is interesting to notice that if we learn the α values on the subjective scores coming from the shaded rendering and use them to predict subjective score from the reflectance only dataset, the obtained correlation remain correct (less than 10% decrease of performance). 

Validation on compound distortions

In this section, we validate our objective metrics using a new set of compound geometrytexture distortions. We selected the Dwarf model, and we manually selected 36 distorted versions among the 12 × 8 = 96 possible combinations of the 12 geometry and 8 texture distortions detailed in Section 6.2.1, resulting in a new validation set of 36 models. Details about these mixed distortions are available in the supplementary material ; some examples are shown in Figure 6.4, bottom right. As before, we created two sets of videos (of 10 seconds duration) with and without shading, respectively. We performed a paired-comparison experiment to obtain the subjective scores. For this mixed-distortion setting, the hypothesis Q D i > Q D j , ∀ j > i from our sorting algorithm no longer holds. Hence, we implemented a more classical self-balancing binary tree, as in [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF]. The average number of comparisons for sorting the 36 distorted models was 140 (instead of 630 for the full comparison). 20 observers took part to this new experiment, 19 rated 1 set and 1 rated both sets. We thus obtained 10 judgments for the shaded rendering and 11 for the non-shaded one. The average time to finish the experiment for one video set of 36 videos was 21 minutes. As for the previous experiment, the agreement is rather high (resp. 0.75 and 0.71 for shaded and non-shaded settings). Raw scores are detailed on the supplementary material. To validate ou metrics, we computed their optimal weights based on the models from our previous experiment (we excluded the Dwarf). Results are detailed in Table 6.9 and Figure 6.9. Even for this difficult scenario (learning on single-type distortions and testing on compound distortions), our metrics offer excellent performance: 0.85 and 0.87 Spearman correlations for CM 2 , for both rendering settings, hence demonstrating once again an excellent robustness. 

Conclusion and Perspective

In this work, we have designed and constructed a new subjectively-rated database of textured 3D meshes. Our subjective study is based on a paired comparison protocol, and involved more than 100 subjects. The database contains 136 distorted models (subject to geometry and texture distortions), which were evaluated within 2 rendering settings. The subjective results allowed us to draw interesting conclusions regarding the influence of the shape and texture content as well as the rendering on the perceptual impact of distortions. We then proposed new objective metrics for visual quality assessment of textured meshes, as optimized linear combinations of mesh quality and texture quality. We used our subjective dataset to evaluate the performance of these metrics against state-of-the-art ones and to explain failure of metrics applied on the rendered images/videos. Such perceptually-validated metrics are of great interest for many applications such as 3D model simplification or compression, texture simplification and so on. We also proposed a new measure for geometry quality assessment. Note that our dataset, subjective scores and metric results will be made publicly available on-line. While our proposed metrics showed that they outperformed their counterparts for the task of textured mesh quality assessment, there is still room for improvement. For instance, when evaluating geometry and texture quality, we need to integrate some visibility information. Indeed, the interior parts of a 3D model do not contribute to its rendered visual appearance; as another example, regions in very convex areas will only be visible in a few viewpoints and thus will have little impact on subjective opinion. Another issue is the variation in texel size within a texture; indeed, different regions of a texture map are not necessarily mapped with the same size in the screen, and this effect should be taken into account. The angular resolution (in pixels per degree of visual angle) of the rendered scene is also of importance and may be integrated as a scale factor in the metric. Finally, a major issue is to integrate texture coordinate distortions which are a common side effect of geometric changes. As we observed, even slight movements of texture seams may seriously harm visual appearance. Finally, we could conduct a comprehensive evaluation to determine, among the dozens of existing image metrics, the most adapted for texture evaluation. and Geometry Laboratory for the Squirrel and Statue models. This work is supported in part by the China Scholarship Council. In this manuscript, we have presented our research study on objective and subjective assessments of 3D models. Our main objectives were firstly to evaluate the performance of several visual quality metrics on predicting the local visibility of different distortions and providing perceptual quality index for textured 3D models with various artifacts and rendering scenarios, and then to propose new visual quality metrics for the texture mapped meshes. These objectives were accomplished through our designed subjective quality assessments on evaluating the local visibility of artifacts, and a variety of distorted textured meshes with different rendering protocols respectively. The two new quality metrics for textured meshes were determined through the optimal combinations of geometry and texture quality metrics. The experimental results have demonstrated the effectiveness of the proposed methods. The contributions of this manuscript can be summarized as follows:

• Designing a novel subjective experiment to collect information about local visibility of complex artifacts We utilized the obtained distortion probability maps to illustrate several functionalities of the human visual system, and to quantitatively evaluate a large set of 3D mesh attributes as well as recent mesh visual quality metrics on predicting perceived local distortions. The experimental results showed that curvature-based attributes (particularly curvedness) demonstrate a much better performance than others (e.g. dihedral angles, normals, Laplacian, saliency), while Hausdorff geometric distance is a poor predictor of the perceived local distortion. Meanwhile, the recent perceptual quality metrics, originally designed for global quality estimation, also provides excellent results for the task of predicting locally perceived distortion

• A public dataset of distortion probability maps of complex artifacts This dataset contributes to a further understanding of the HVS mechanisms on perceiving geometric artifacts, and assists researchers to propose more efficient and effective visual quality metrics in future. In particular this dataset will be very useful to evaluate and/or to train future metrics.

• A new subjective rating database of textured 3D meshes Based on a paired comparison protocol, this subjective study enables us to draw remarkable conclusions regarding the perceptual impacts of the interactions between distortions and rendering protocols.

• New objective quality metrics of textured 3D meshes based on optimal combination of mesh quality and texture quality We used our subjective dataset to evaluate the performance of this metric against state-of-the-art ones. Such metric can play an efficient role in many applications, such as 3D model simplification or compression, texture simplification and so on. We also proposed a new metric for geometry quality assessment.

In a nutshell, an important characteristic of this thesis work is that we have made several creative efforts on exploiting the mechanisms of visual perception in complex quality evaluation tasks, and proposed some notable mathematical assessments to evaluate the visual quality of 3D meshes. Indeed, we believe that the future research on visual quality assessment of 3D objects can be improved by emending machine-learning mechanism, and integrating human vision processes (such like a model of contrast sensitivity function).

Perspective

Several research perspectives appear at the end of this thesis.

• Improvement of the mesh visual quality metrics based on Machine-learning mechanism Machine learning provides a good opportunity to construct the perceptual quality metrics based on our new ground-truths (i.e. distortion probability maps). Such metrics have potential applications of 3D mesh artifact localization.

• Improvement of the visual quality metrics for textured 3D objects by integrating visibility information Considering the effects of less visible regions (e.g., interior or convex areas of a model, etc.), texture mapping information and the complex masking interactions between geometry and texture, this visibility information could improve the efficiency of the future quality metrics for texture mapped meshes.

More challenges are still waiting in the fields of visual quality assessment for 3D graphical data. Particularly, many progresses still remain to be achieved in understanding the complex interactions between geometry, material and lighting information, and the hidden connections between these interactions and functionalities of HVS. All these factors should be considered to devise efficient quality metrics in future. In all, we believe that the study on this research area has a very promising future.
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Mean and global AUC values when considering the 11 objects (instead of 9, as presented in Chapter 5): Then the next two models will be shown. In this round, the selected model from previous round (J4) and a distorted model with a decreased strength from the other group (Q3) are shuffled and displayed to the subject. Then, following this way, we repeat the comparisons until all 8 models are sorted from the worst visual quality to the best into List 1. The same process is conducted between two other groups (e.g., L and Si), and another list (List 2) is obtained from these two groups. 
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Figure 1 . 1 :

 11 Figure 1.1: Examples of different 3D graphical data. from left to right: Dragon mesh, vertex number : 50,000; Squirrel mesh mapped with texture, vertex number: 6,185; Bunny mesh, vertex number : 34,835.

Figure 1 . 2 :

 12 Figure 1.2: Illustration of a typical computer graphics work-flow and its different causes of artifacts. Top row, from left to right: An original scanned 3D Dragon model (338K vertices); A simplified version (50K vertices) with uniform high frequency noise; result after watermarking[START_REF] Wang | Robust and blind mesh watermarking based on volume moments[END_REF] which produces some local bumps on the surface. Bottom row: Result after rendering (radiance caching) which creates a non uniform structured noise. This work-flow is presented in[START_REF] Lavoué | Quality assessment in computer graphics[END_REF].

Figure 2 . 1 :

 21 Figure 2.1: Some image noise examples. From left to right: Original Lena image, size: 512 × 512, White Gaussian noise (standard deviation 25), Multiplicative Speckle Noise. Both noises are generated by MATLAB.

Figure 2 . 2 :

 22 Figure 2.2: Left: Original Pepper image, size: 256 × 256, Right: Fat-tail distributed noise (added to 10% of the pixels). The noise is added by using MATLAB.

Figure 2 . 3 :

 23 Figure 2.3: A smoothing example using Gaussian filter with different σ values. From left to right: Original Lena image, size: 512 × 512; Image with Gaussian smoothing, σ =3; Image with Gaussian smoothing, σ =5. The original image is manipulated by MATLAB.

Figure 2 . 4 :

 24 Figure 2.4: A comparison between JPEG and JPEG2000. From top to bottom: Original photo, size: 1024 × 768; JPEG format, size: 576 × 224, compression ratio: 1:33.65; JPEG2000 format, size: 576 × 224, compression ratio: 1:33.65. The photo is captured from http: // www.wikipedia.com, Author: Shlomi Tal.

Figure 2 . 5 :

 25 Figure 2.5: Comparison of different resampling algorithms. From left to right: Original image, size: 200 × 200; Resampled image with Bicubic interpolation, size: 100 × 100; Resampled image with Bilinear interpolation, size: 100 × 100; Resampled image with Nearest-neighbor interpolation, size: 100 × 100. The cartoon images are from http:// www. chrismadden.co.uk.

Figure 2 . 6 :

 26 Figure 2.6: Scanned meshes from stanford 3D model repository [68]. From left to right: Happy Buddha, scan size: 4,586,124 points; Dragon, scan size: 2,748,318 points.

Figure 2 . 7 :

 27 Figure 2.7: An example of different smoothing methods. From left to right: Original Vase Lion model with 38,728 points; Laplacian smoothing, iteration steps: 3; Two-step smoothing,iteration steps: 3, feature angle: 30 degree, normal smoothing steps 10, vertex fitting steps 10; Taubin smoothing, iteration steps: 3, λ = 0.5, µ =-0.53. All the models are processed by the software Meshlab [19].

Figure 2 . 8 :

 28 Figure 2.8: The highlighted edge is contracted into a single point. The shaded triangles become degenerate and are removed during the contraction. The figure is adapted from [37].

Figure 2 . 9 :

 29 Figure 2.9: Different simplified Bunny models using quadric edge collapse decimation for different target triangles. From left to right: Original Bunny model with 69,451 triangles; A simplified Bunny model with 1,000 triangles; A simplified Bunny model with 100 triangles.The image is from[START_REF] Garland | Surface simplification using quadric error metrics[END_REF].

Figure 2 . 10 :

 210 Figure 2.10: Vector quantization vs. scalar quantization. From left to right: Original Bunny model: 96 bits per vertex (bpv); Vector quantization method proposed in [18] (7 bpv); Scalar quantization (7 bpv). The figure is captured from [18].

Figure 3 .Figure 3 . 1 :

 331 Figure 3.1: A original Einstein image (a) and different processed images: contrast enhance (b), Gaussian noise (c), Fat-tail distributed noise (d), speckle noise (e), JPEG compression (f), blurring (g). ALL the measured MSEs between original image and a distorted versions are 285.15, and PSNR equal to 23.58. The image is captured from [69].

Figure 3 . 3 :

 33 Figure 3.3: An illustration of contrast sensitivity function (CSF) using sinusoid contrast pattern at various spatial frequencies. The contrast decreases linearly from bottom to top and uniformly over all frequencies, which increase from left to right. The perceived contrast, however, peaks near the middle on the horizontal axis, near two cycles per degree. The image originates from Bolin and Meyer [7].

Figure 3 . 4 :

 34 Figure 3.4: A block diagram illustrating the three main components of HVS model designed in the VDP [25].

Figure 3 .

 3 5 presents an example of VDP output. The map of the detection probablity is able to provide a description of the threshold behavior of vision but do not discriminate among different suprathreshold errors. Hence, the VDP can be summarized as a threshold model for suprathreshold imagery, and capable of quantifying the important interactions among the threshold differences and suprathreshold of image content and structure[START_REF] Daly | Visible differences predictor: an algorithm for the assessment of image fidelity[END_REF].

Figure 3 . 5 :

 35 Figure 3.5: An example of VDP output. from left to right: Reference image; Distorted image proccessed by quantization; Detection probability map output by VDP. The figure originates in [76].

Figure 3 . 6 :

 36 Figure 3.6: A demonstration of visual masking effect.The edges of the mesh are less perceived when the texture contrast is high and the texture frequency and orientation are nearly same to the pattern of edges. The example is supplied by[START_REF] Ferwerda | A Model of Visual Masking for Computer Graphics[END_REF].

Figure 3 .

 3 [START_REF] Bolin | A perceptually based adaptive sampling algorithm[END_REF] shows an example of local measurement maps of MS-SSIM and SSIM.

Figure 3 . 7 :

 37 Figure 3.7: An example of prediction maps of MS-SSIM and SSIM local measurements. from left to right: Distorted image with gradient-based tone mapping artifacts[START_REF] Fattal | Gradient domain high dynamic range compression[END_REF]; the original image; Predicted disortion maps of MS-SSIM and SSIM , in which the distortion probabilities visualized from red (1) to blue (0). The example is adapted from[START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF].

Figure 3 . 8 :

 38 Figure 3.8:The theoretic framework of VIF : Mutual information between C and E quantifies the information that the HVS system could ideally extract from the reference image, whereas the mutual information between C and F quantifies the corresponding information that could be extracted from the test image.

Figure 3 . 9 :

 39 Figure 3.9: Comparison of distortion maps predicted by the trained metric and other metrics. from left to right: manually marked distortions in computer graphics and the predictions of image quality metrics: SSIM, HDR-VDP-2, sCorrel and the trained metric. The trained metric uses the predictions of the existing metrics as features for a decision forest classifier.It is trained to predict the subjective data. The all the distortion maps are captured from[START_REF] Čadík | Learning to predict localized distortions in rendered images[END_REF].

Figure 3 . 10 :

 310 Figure 3.10: The diagram of VQM procedure. The calibration of the original and processed video streams includes spatial alignment, valid region estimation, gain & level offset calculation, and temporal alignment. VQM calculation involves extracting perception-based features, computing video quality parameters, and combining parameters to construct the General Model. This figure is adapted from [85] .

  Figure 3.11 shows an visual example of the local predictions of watermarking distortion measured by e(v A i , B).

Figure 3 . 11 :

 311 Figure 3.11: From left to right: The Venus model; a distorted version after a watermarking algorithm by [124] ; Distortion map produced by the local measures of Hausdorff distance. Warmer colors represent higher measured distance values.
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 3 12 and Figure 3.13 present several examples of colorized curvatures of a Dinosaur object from LIRIS/EPFL General-Purpose database.

Figure 3 .

 3 Figure 3.12: Examples of maximum and minimum curvatures. From left to right: Dinosaur object; Colorized maximum curvature measurement; Colorized minimum curvature measurement. The curvatures measured and colorized by Meshlab [19] using APSS algorithm [41]. Warmer color means higher measured value.

Figure 3 . 13 :

 313 Figure 3.13: Examples of Curvedness and Gaussian curvatures. From left to right: Dinosaur object; Colorized Curvedness measurement; Colorized Gaussian curvature measurement.The curvatures measured and colorized by Meshlab[START_REF] Cignoni | Meshlab: an open-source mesh processing tool[END_REF] using APSS algorithm[START_REF] Guennebaud | Algebraic point set surfaces[END_REF]. Warmer color means higher measured value.

Figure 3 .

 3 Figure 3.14: Mesh Saliency: Image (a) shows the Stanford Armadillo model, and image (b)shows its mesh saliency. The image comes from[START_REF] Lee | Mesh saliency[END_REF].

Figure 3 . 15 :

 315 Figure 3.15: Example of local window computation for a vertex v and edge point v e . The image is obtained from [59].

Figure 3 . 16 :

 316 Figure 3.16: Distortion maps at different scales by MSDM2, the different MSDM measures are integrated into one multiscale map and then pooled into a global distortion score. The image comes from [56].

Figure 3 .

 3 Figure 3.18: Smoothing-based Roughness Estimation. The diagram is from [38].

Figure 3 . 19 :

 319 Figure 3.19: The sampled 20 2D snapshots sampled around the 3D mesh as the main criterion for decimation. The image is captured from [72].
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 41 Figure 4.1: Overview of the four subjective quality study protocols. from left to right: (a) single-stimulus, (b) double-stimulus, (c) forced-choice pairwise comparison and (d) similarity judgments. The diagram shows the timeline of each protocols and the corresponding screens.The diagram originates from [77].

Figure 4 .

 4 2 presents several examples of stimuli from LIRIS/EPFL General-Purpose Database[START_REF] Lavoue | Perceptually driven 3D distance metrics with application to watermarking[END_REF], and LIRIS Masking Database[START_REF] Lavoué | A local roughness measure for 3D meshes and its application to visual masking[END_REF].

Figure 4 . 2 :

 42 Figure 4.2: Several 3D stimuli, which are processed by smoothing and noise algorithms on different areas of the model surfaces from LIRIS/EPFL General-Purpose Database [59] (Top row) and LIRIS Masking Database [55] (Bottom row). The figure is from [57].

Figure 4 . 3 :

 43 Figure 4.3: Subjective detection probability maps of local visible distortion in[START_REF] Čadík | New measurements reveal weaknesses of image quality metrics in evaluating graphics artifacts[END_REF] ( two figures on the right), warmer color means higher probability. The middle right figure shows the detection probability map from double-stimulus protocol, in which observers were asked to mark all the areas in the image containing noticeable distortions compared with the reference, and the right figure presents the map from single-stimulus scenario, where observers marked all the areas in the image containing objectionable distortions without the reference.

Figure 4 . 4 :

 44 Figure 4.4: An example of experimental platform for forced-choice paired comparisonprotocol. An observor is asked to click on the appropriate button to indicate the center image appears more similar to the image on the left or to the image on the right. This platform is adapted from[START_REF] Wills | Toward a perceptual space for gloss[END_REF].

Figure 4 . 5 :

 45 Figure 4.5: Figures left and right show two objective metrics with approximately equal RMS errors between metrics predictions (shown as DMOS p in figures) and collected DMOS. Left figure is an example of a metric that has quite accurate predictions for the majority of stimuli but has large prediction error for the two points in the middle of the figure. Right figure is anexample of a metric that has a balanced set of prediction errors -it is not as accurate as the metric of left figure for most of the sequences but it performs "consistently" by providing reasonable predictions for all the stimuli. However, RMS errors cannot reflect this difference in terms of their measured values. The figures come from[START_REF] Chisholm | Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment[END_REF].

Figure 4 . 7 :

 47 Figure 4.7: The performance of the local distortion prediction of the objecive quality metrics is analyzed with ROC curve (the higher area-under-curve (AUC), the better the classification into distorted and undistorted regions). The results are from NoRM dataset [45], and subjective distortion maps of left figure are from double stimulus protocol, and subjective distortion maps of right figure are from single stimulus protocol. The threshold percentage of observers for determining the distortion visibility is 50%. The figure is captured from [9].
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 51 Figure 5.1: Example reference and distorted models from our dataset (object #8), along with human-perceived distortions (color coded probabilities of artifact detection)

Figure 5 . 2 :

 52 Figure 5.2: Reference and distorted models from our dataset (stimulus #9) along with human-perceived distortions (color-coded probabilities of artifact detection) and distortion maps from different metrics (colors mapped in the min-max range). The distortion prediction performance of each metric is given in term of Area Under ROC Curve (AUC).
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 53 Figure 5.3: Distorted models #2 (low frequency watermark) et #3 (high frequency watermark) and their Hausdorff and observer maps. Low frequency distortions are much less visible.
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 54 Figure 5.4: the ROC curves from MSDM2, FMPD, Hausdorff distance and 2 other features among best performing ones for each model.
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 56 Figure 5.6: Top: Mean of AUC values for all the tested features. Error bars denote standard deviations. Bottom: AUC values when computing ROC curves over the whole dataset.
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 57 Figure 5.7: the ROC curves from MSDM2, FMPD, Hausdorff distance and 2 other features among best performing ones on a model taking vertices from 9 as a whole dataset(left) and on a model taking vertices from 11 as a whole dataset (right).
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 615 Figure 6.1: 5 Models used in the subjective study (from left to right: Sport Car, Easter Island statue, squirrel, Hulk and Dwarf).

Figure 6 . 2 :

 62 Figure 6.2: Examples (Sport Car and squirrel ) of distorted models from our dataset. The rendering is the same as in our videos.
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 63 Figure 6.3: Examples (Hulk and Easter Island statue ) of distorted models from our dataset. The rendering is the same as in our videos.

Figure 6 . 4 :

 64 Figure 6.4: Examples of the appearances of distorted models with different lighting and shading settings from our dataset . The rendering is the same as in our videos. Note that for the Dwarf, we present here compound distortions (geometry+texture) from our validation set (see Section 6.3.4).

Figure 6 . 5 :

 65 Figure 6.5: Illustration of our browser-based interface for the paired comparison task. Pairs of 3D models are presented as videos ; the user selects the one he prefers and then clicks on the Next button. The reference model can be displayed at any time by clicking on the See Original Model button below the Next button.
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 66 Figure 6.6: Mean scores (averaged among the 4 strengths) for the 5 types of distortions and the 5 models for the rendering with shading. Higher scores mean better visual quality.
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 67 Figure 6.7: Mean scores (averaged among the 5 types of distortions and the 4 models) for the two types of rendering: with shading (top-left light source, diffuse material), and without shading (diffuse albedo only).
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 68 Figure 6.8: From left to right: Hulk model with 7-bits quantization (subjective score: 0.91), Original Hulk model and Hulk model with Laplacian smoothing of 4 iterations (subjective score: 7.45).
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 4469 0.66 6.90 0.76 0.77 5.73 CM 1 (Our Metric) 0.74 0.77 6.01 0.85 0.86 4.47 CM 2 (Our Metric) 0.80 0.85 5.33 0.86 0.87 4.Performance comparison on the compound distortion dataset.
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 69 Figure 6.9: Scatter plots of subjective scores versus objective metric values for the compound distortion dataset. Each point represents one distorted model. Fitted logistic curves are represented in black.
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 6101 Figure 6.10: Scatter plots of subjective scores versus objective metric's values. Each point represents one distorted model. Fitted logistic curves are represented in black.
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 4 Figure A.4: Left: Mean AUC values for all the tested features. Error bars denote standard deviations. Right: AUC values when computing ROC curves on the whole dataset.
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 5 Figure A.5: Reference and distorted models from our dataset (objects #7), observer data and distortion maps from different attributes and metrics (colors are mapped in the min-max range).
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 2 Figure B.2:Step 1 Two groups (e.g., Q and J) are randomly chosen. The subject firstly compares Q4 and J4. When the subject determines the model closer to the reference (J4), the index of the other model (Q4) will be pushed into a list (List1) as the worst quality model. Then the next two models will be shown. In this round, the selected model from previous round (J4) and a distorted model with a decreased strength from the other group (Q3) are shuffled and displayed to the subject. Then, following this way, we repeat the comparisons until all 8 models are sorted from the worst visual quality to the best into List 1. The same process is conducted between two other groups (e.g., L and Si), and another list (List 2) is obtained from these two groups.

Figure B. 3 :

 3 Figure B.3:Step 2 One list among List 1 and List 2 is randomly chosen (e.g., List 2), in which all the models are already sorted by their visual qualities. This list will be merged with the remaining group (Su). Following the procedure detailed in step 1, these two sets of models are interleaved into List 3.

Figure B. 4 :

 4 Figure B.4: Step 3 Finally the remaining lists (List 3) and (List 1) are merged with the same process than before, to obtain the Final List, which contains the 20 models ranked from the worst visual quality to the best (1 means the best, and 20 means the worst).

Figure B. 5 :

 5 Figure B.5: Subjective vote scores for all the 100 distorted models (single-type distortion setting) for the rendering with shading. Higher scores mean better visual quality..

Figure B. 6 :

 6 Figure B.6: Subjective vote scores for all the 100 distorted models (single-type distortion setting) for the rendering without shading. Higher scores mean better visual quality.

Figure B. 7 :

 7 Figure B.7: Subjective vote scores for the 36 distorted Dwarf models (mixed-type distortion setting) for the renderings with shading and without shading respectively. Higher scores mean better visual quality.
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Table 4 .

 4 

1: Example preference matrix for one observer when shown six different stimuli from d 1 to d 6 . Each stimulus in a row, d i is compared with another d j in each column. If the observer prefers d i to d j , then 1 is recoded in the cell (d i , d j ), otherwise 0 is filled in the cell.

Table 5 .

 5 1: Details of our dataset. MRMS stands for Maximum Root Mean Square error, calculated using the Metro tool

Table 5 .

 5 2: Inter-observer agreement statistics, in terms of Kendall's u and Krippendorff's α coefficients

		u	u mask Kripp. α [5 th ,95 th ]
	#1	0.901 0.719 0.029 [0.029;0.030]
	#2	0.952 0.761 0.011 [0.010;0.012]
	#3	0.806 0.604 0.057 [0.056;0.058]
	#4	0.705 0.435 0.127 [0.126;0.128]
	#5	0.546 0.292 0.218 [0.217;0.220]
	#6	0.537 0.282 0.206 [0.205;0.208]
	#7	0.649 0.366 0.177 [0.175;0.178]
	#8	0.483 0.337 0.162 [0.161;0.164]
	#9	0.320 0.310 0.082 [0.081;0.083]
	#10 0.537 0.498 0.032 [0.030;0.034]
	#11 0.181 0.132 0.022 [0.020;0.025]
	Mean 0.602 0.430 0.102 [0.101;0.104]

  .90 0.65 0.60 0.82 0.87 0.85 0.78 0.77 0.54 0.69 0.63 (2,S)

Table 5 .

 5 3: AUC values from best performed attribute-based features including LRF from FMPD, and AUC values from MSDM2 and Hausdorff distance.
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 6 

1: Details about our 3D models.

Table 6 .

 6 2: Details about the distortions applied on each reference model. For the Dwarf model, details about distortions are available in Appendix B.

Table 6

 6 

		Rendering with shading		Rendering without shading
		Observer Number Kendall's W p-value Observer Number Kendall's W p-value
	Squirrel	11	0.69	<0.0001	11	0.71	<0.0001
	Hulk	11	0.77	<0.0001	13	0.70	<0.0001
	Statue	11	0.83	<0.0001	15	0.76	<0.0001
	Sport Car	11	0.74	<0.0001	11	0.76	<0.0001
	Dwarf	11	0.72	<0.0001	12	0.77	<0.0001

.

[START_REF] Aydin | Video quality assessment for computer graphics applications[END_REF] 

shows that the overall Kendall's W coefficients are at least as large as 0.69, implying a strong agreement among the subjects, confirmed by the very low p-values.

Table 6 .

 6 3: Agreement between observers (Kendall's W between their ranks) for each reference model and each rendering condition.

Table 6 .

 6 4: Performance comparison (Pearson r p and Spearman r p correlations) of several geometric metrics on our subjective database (geometric distortions only). Rendering with shading. SSIM [129] 0.83 0.98 0.67 0.81 0.70 0.76 0.86 0.86 0.86 0.95 0.78 0.87

		Squirrel		Hulk		Statue	Sport Car		Dwarf	Average
		r p	r s	r p	r s	r p	r s	r p	r s	r p	r s	r p	r s
	Image RMSE	0.73 0.86 0.21 0.28 0.39 0.50 0.93 1.00 0.65 0.73 0.58 0.67
	SSIM [127]	0.27 0.17 0.60 0.77 0.70 0.69 0.90 0.93 0.73 0.88 0.64 0.69
	MS-											

Table 6 . 5 :

 65 Performance comparison (Pearson r p and Spearman r p correlations) of several image metrics on our subjective database (texture distortions only). Rendering with shading.

  Our Metric) 0.82 0.82 2.24 0.81 0.81 2.92 0.36 0.30 4.93 0.70 0.60 3.58 0.56 0.70 3.95 CM 2 (Our Metric) 0.78 0.72 2.80 0.73 0.72 3.48 0.62 0.68 3.94 0.68 0.51 3.72 0.58 0.70 3.87

			Squirrel	Hulk		Statue		Sport Car	Dwarf
		r p	r s	RMS r p	r s	RMS r p	r s	RMS r p	r s	RMS r p	r s	RMS
	Video-DCT	0.12 0.09 4.76 0.18 0.36 4.99 0.26 0.30 5.04 0.62 0.67 3.97 0.24 0.25 4.75
	Video-PSNR	0.22 0.26 4.68 0.33 0.36 4.79 0.21 0.26 5.12 0.67 0.70 3.68 0.31 0.32 4.63
	Video-MSSSIM	0.24 0.39 4.64 0.17 0.41 5.00 0.25 0.42 5.05 0.67 0.72 3.64 0.38 0.40 4.50
	FQM	0.80 0.85 2.83 0.41 0.56 4.55 0.26 0.18 5.07 0.67 0.47 3.86 0.38 0.41 4.53
	CM 1 (										

Table 6 .

 6 6: Performance comparison (Pearson r p and Spearman r p correlations, RMSE of the residuals) of several textured mesh quality metrics on our subjective database. Rendering with shading. Our Metric) 0.80 0.88 2.38 0.69 0.80 3.29 0.47 0.41 4.53 0.77 0.90 2.86 0.73 0.81 3.23 CM 2 (Our Metric) 0.79 0.81 2.54 0.72 0.82 2.93 0.63 0.69 3.81 0.74 0.88 3.12 0.76 0.88 3.04

			Squirrel		Hulk		Statue		Sport Car	Dwarf
		r p	r s	RMS r p	r s	RMS r p	r s	RMS r p	r s	RMS r p	r s	RMS
	Video-DCT	-0.21 -0.26 4.76 0.22 0.25 4.72 0.34 0.24 4.74 0.58 0.42 4.23 0.24 0.21 4.89
	Video-PSNR	-0.13 -0.04 4.82 0.35 0.39 4.50 0.13 0.22 4.97 0.51 0.56 4.32 0.31 0.29 4.78
	Video-MSSSIM	-0.05 0.14 4.86 0.28 0.61 4.64 0.34 0.37 4.72 0.67 0.69 3.77 0.65 0.63 3.80
	FQM	0.69 0.71 3.47 0.46 0.62 4.17 0.48 0.31 4.44 0.73 0.82 3.34 0.56 0.69 4.15
	CM 1 (										

Table 6 .

 6 7: Performance comparison (Pearson r p and Spearman r p correlations, RMSE of the residuals) of several textured mesh quality metrics on our subjective database. Rendering without shading.

  αCM 2 αCM 1 αCM 2 αCM 1 αCM 2 αCM 1 αCM 2 αCM 1 αCM 2 αCM 1 αCM 2 With shading 0.086 0.117 0.108 0.184 0.103 0.133 0.086 0.132 0.061 0.111 0.089 0.135 Without shading 0.061 0.109 0.026 0.108 0.061 0.118 0.061 0.109 0.061 0.109 0.054 0.111

	Squirrel	Hulk	Statue	Sport Car	Dwarf	Average
	αCM 1					

Table 6 .

 6 8: α values for each model and each rendering setting.
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Appendix A Supplementary materials for Chapter 5 In this supplement, we report additional images, tables and experimental results.

A.1 Additional details on the ground-truth data

The 11 subjective distortion maps: 

A.2 Additional results

Complete AUC (area under the ROC curve) results for all the tested features and for all filters. Mean values are also presented, averaged over the 11 objects and averaged over 9 objects (excluding #2 and #11). Features are ranked according to their "mean 9 objects" performance: Supplementary materials for Chapter 5 Dans le domaine de l'informatique graphique, les données tridimensionnelles, généralement représentées par des maillages triangulaires, sont employées dans une grande variété d'applications (par exemple, le lissage, la compression, le remaillage, la simplification, le rendu, etc.). Cependant, ces procédés introduisent inévitablement des artefacts qui altèrent la qualité visuelle des données 3D rendues. Ainsi, afin de guider perceptuellement les algorithmes de traitement, il y a un besoin croissant d'évaluations subjectives et objectives de la qualité visuelle à la fois performantes et adaptées, pour évaluer et prédire les artefacts visuels. Dans cette thèse, nous présentons d'abord une étude exhaustive sur les différentes sources d'artefacts associés aux données numériques graphiques, ainsi que l'évaluation objective et subjective de la qualité visuelle des artefacts. Ensuite, nous introduisons une nouvelle étude sur la qualité subjective conçue sur la base de l'évaluations de la visibilité locale des artefacts géométriques, dans laquelle il a été demandé à des observateurs de marquer les zones de maillages 3D qui contiennent des distorsions visibles. Les cartes de distorsion visuelle collectées sont utilisées pour illustrer plusieurs fonctionnalités perceptuelles du système visuel humain (HVS), et servent de vérité-terrain pour évaluer les performances des attributs et des mesures géométriques bien connus pour prédire la visibilité locale des distorsions. Notre deuxième étude vise à évaluer la qualité visuelle de modèles 3D texturés, subjectivement et objectivement. Pour atteindre ces objectifs, nous avons introduit 136 modèles traités avec à la fois des distorsions géométriques et de texture, mené une expérience subjective de comparaison par paires, et invité 101 sujets pour évaluer les qualités visuelles des modèles à travers deux protocoles de rendu. Motivés par les opinions subjectives collectées, nous proposons deux mesures de qualité visuelle objective pour les maillages texturés, en se fondant sur les combinaisons optimales des mesures de qualité issues de la géométrie et de la texture. Ces mesures de perception proposées surpassent leurs homologues en termes de corrélation avec le jugement humain.

MOTS-CLÉS :

Informatique graphique, Maillages 3D, Artefact visuel, Maillage texturé, Évaluation de la Qualité Visuelle des Maillages, Évaluation de la Qualité des Images, Métriques perceptuelles, Étude subjective.